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Resumo

Esta tese centra-se na investigacdo de estruturas localizadas em diferentes cendrios. Comecamos
com uma revisao de teoria de campos para um campo escalar em uma dimensao espacial e outra
temporal, incluindo uma a¢do com densidade Lagrangiana padrdo e uma discussdo de temas-
chave, como o procedimento de Bogomol’nyi, formalismo de primeira ordem para minimiza-
¢do de energia, estabilidade de solucdes e estruturas como kinks, lumps, paredes de dominio do
tipo Néel e Bloch. Introduzimos um modelo de dois campos escalares acoplados que podem ser
usados para descrever Bloch Walls e investigamos modificagdes na sua estrutura interna em um
modelo campo de trés escalares com um acoplamento ndo minimo. Nessa tese também apresen-
tamos o método da orbita tentativa, usado para encontrar orbitas que desacoplam as equagoes
de primeira ordem. Apresentamos uma nova forma de construir estruturas topoldgicas com
simetria global em D dimensdes espaciais, contornando o teorema de Derrick e Hobart. O pro-
cedimento nos leva a estruturas localizadas como monopolos globais com energia regularizada.
Também investigamos configuracdes de multicampos eletricamente carregadas, onde consider-
amos uma permissividade elétrica controlada por campos escalares que descrevem uma parede
do tipo Bloch capaz de regularizar a divergéncia do campo elétrico na origem dando origem a
estruturas do tipo anel e casca para duas e trés dimensoes, respectivamente.

Palavras-chave: Kinks, Parede de Bloch, Monopolo global, Estruturas carregadas.
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Abstract

This thesis focuses on the investigation of localized structures in different scenarios. We start
with a review of the scalar field theory in one spatial and one temporal dimension, including
a standard Lagrangian density action and a discussion of key topics such as the Bogomol’nyi
procedure, first-order formalism for energy minimization, stability of solutions and structures
like kinks, lumps, Néel and Bloch domain walls. We introduce a two-coupled scalar field model
that can be used to describe Bloch Walls and investigate modifications in its internal structure in
a three-scalar field model with a non-minimum coupling. This thesis also presents the trial orbit
method for orbits that decouple the first-order equations. We present a new way to construct
topological structures with global symmetry in D spatial dimensions, bypassing the Derrick
and Hobart theorem. The procedure leads us to localized structures like global monopoles with
regularized energy. We also investigate electrically charged multi-field configurations, where
we consider an electric permittivity controlled by scalar fields that describe a Bloch-type wall
capable of regulating the electric field divergence at the origin, giving rise to ring and shell
structures for two and three dimensions, respectively.

Keywords: Kinks, Bloch Wall, Global Monopole, Charged Structures.

XV






Contents

Introduction

Domain Walls
2.1 The scalar field
2.1.1 BPS models
2.1.2  Linear stability
2.2 Kinks
2.3 A brief comment on topology
2.4  Lumps
2.5 Bloch Wall
2.5.1 BPS for two scalar fields
2.5.2 BNRT model
2.5.3  Trial orbit method

Internal Structure of Bloch Walls

3.1 Manipulating the internal structure
3.1.1 First Model
3.1.2 Second Model
3.1.3 Third Model

Spatially localized structures
4.1 Circumventing the Theorem
4.2  Global Monopole
42.1 The |¢*| model
422 The |¢%| model
4.3 Extended global monopole
4.3.1 The second extend model

Electrically charged multi-field configurations
5.1 A single point charge
5.2 Charged configurations
5.2.1 Two spatial dimensions
5.2.2  Three spatial dimensions
5.3 Internal structure of charged configurations
5.3.1 Two spatial dimensions
5.3.1.1  First model

Xvii



Xviii CONTENTS

5.3.1.2 Second model
5.3.2 Three spatial dimensions
5.3.2.1  First model
5.3.2.2  Second model
5.4 Global Monopole in the presence of electric charge

6 Conclusions and perspectives

A Integrating factor for BPS equations
A.1 Integrating factor

A Conserved quantities
A.1 Noether Current
A.2 Energy-momentum tensor

66
69
70
71
72

79

81
81

85
85
89



1.1

2.1
2.2
23
24
2.5
2.6

2.7
2.8

3.1

32

33

34

3.5

3.6

3.7

List of Figures

Néel wall (top) and Bloch wall (bottom).

The potential V(¢), in Eq.(2.34).

The solution ¢ (x) in Eq. (2.37).

The Néel Wall.

The energy density p in Eq. (2.38).

The potential V(¢) in Eq. (2.42).

The lump solution ¢ (x) (left) in Eq. (2.44) and the energy density p (right) in
Eq. (2.45).

The Bloch Wall.

The solutions ¢ (x) (red, dotted line) and y (x) (blue, solid line) in Egs. (2.62)
and (2.63), depicted for k = 1/3.

The solution y(x) (left) in Eq. (3.30) and the energy density p, (right) in
Eq. (3.31) depicted for ¢ = 0.2 (solid, blue line) and & = 0.8 (dotted, red line).
The solutions ¢ (x) (left) and y (x) (right) associated to the model in Sec. 3.1.1,
for r =1/3 and a = 0.2 (solid, blue line), and 0.8 (dotted, red line).

The energy density p; associate to model in Sec. 3.1.1, forr=1/3 and @ = 0.2
(solid, blue line), and 0.8 (dotted, red line).

The solutions ¢ (x) and  (x) for the model in Sec. 3.1.2, with f(y) = sec?(nmy),
depicted with r = 1/3 and for a = 0.2 (solid, blue line) and 0.6 (dotted, red
line) and with n = 1 (top) and n = 2 (bottom). The insets highlight the behavior
of the x-field configurations near the origin.

The solutions ¢ (x) and  (x) for the model in Sec. 3.1.2, with f(y) = csc?((n+
1/2)my), depicted with the same values used in Fig. 3.4, for comparison. The
insets highlight the behavior of the y-field configurations near the origin.

The solutions ¢ (x) (top panel) and y (x) (bottom panel) for the model in Sec. 3.1.3,

with f(y) = 1/J?(ay), depicted with r = 1/3 and for o = 0.2 and with a = 5
(red, dotted line) and a = 9 (blue, solid line). The inset highlights the behavior
of the x-field configurations near the origin.

The energy density for f(y) being controlled by the cos-secant (blue) and the
Bessel (red) functions, depicted for r =1/3, @ = 0.2, and forn =1 and a = 5,
respectively.

Xix

11
12
12
13
14

15
16

18

26

27

28

31

31



XX

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

5.3

54

5.5

5.6

5.7

5.8

59

LIST OF FIGURES

The solution in Eq. (4.55) (top left) and the energy density (4.56) (top right),
and the planar section passing through the center of the energy density (bot-
tom), for D = 3.

Solution in Eq. (4.61) (top left), the energy density in Eq. (4.62) (top right) and
planar section passing through the center of the energy density (bottom), for
D =3.

Solutions H and 57 in Eq. (4.85) and (4.86) (left) and the energy density in
Eq. (4.87) (right) for s = 1/3 and with D = 3. The thinner line represents H (r)
and the thicker one stands for 7 (r).

Planar section of the energy density (42) passing through its center, for D =3
and s = 0.2 (left), s = 0.3 (center), s = 0.4 (right).

Solution H(r) (left) in Eq. (51a) its associated energy density (23) (right) for
D =3 and n = 1,4 and 16. The darkness of the color increases with n.

Planar section passing through the center of the energy density (23) for D =3
and n =1 (left), 4 (center) and 16 (right). The darkness of the color increases
with n.

The solutions ¢ (r) (left) and y/(r) (right) associated to the model in Sec. 5.2.1
for o =5, with k = 1 (solid, blue line) and 2 (dotted, red line).

The radial component of the electric field (left) for e = 1 and the energy density
(right) associated to the model in Sec. 5.2.1 for o =5, with k = 1 (solid, blue
line) and 2 (dotted, red line).

The radial component of the electric field (left, blue) with e = 1 and the energy
density (right, orange) associated to the model in Sec. 5.2.1 depicted in the
plane for o =5, with k = 1 (top), and k = 2 (bottom). The intensity of the blue
and orange colors increases with the increasing of the electric field and energy
density, respectively.

The solutions @ (r) (left) and x/(r) (right) associated to the model in Sec. 5.2.2
for o = 5, with k = 1 (solid, blue line) and 2 (dotted, red line).

The radial component of the electric field (left) with e = 1 and the energy den-
sity (right) associated to the model in Sec. 5.2.2 for o0 =5, with k =1 (solid,
blue line) and 2 (dotted, red line). The inset in the bottom figure shows the
interval p € [0,0.04].

The electric field in the plane (left, blue) with e = 1 and the energy density
(right, orange) associated to the model in Sec. 5.2.2 for 6 =5 and k = 1. The
intensity of the blue and orange colors increases with the increasing of the
electric field and energy density, respectively.

The solutions y(r) in Eq. (5.55) (left), and the energy density in Eq. (5.56)
(right) for o¢ = 2.

The solutions @ (r) (left) and y (r) (right) associated to the model in Sec. 5.3.1.1
for 0 =5 and o = 2, with k = 1 (solid, blue line) and 2 (dotted, red line).

The radial component of the electric field (left) with e = 1 and the energy den-
sity (right) associated to the model in Sec. 5.3.1.1 forc =5, a =2, withk =1
(solid, blue line) and 2 (dotted, red line).

43

44

48

48

51

51

58

59

60

61

61

62

65

66

66



5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

LIST OF FIGURES

The radial component of the electric field (left, blue) with e = 1 and the energy
density (right, orange) associated to the model in Sec. 5.3.1.1 depicted in the
plane for 6 = 5 and o = 2, with k = 1 (top), and k = 2 (bottom). The intensity
of the blue and orange colors increases with the increasing of the electric field
and energy density, respectively.

The solutions ¢ (r) (left) and x/(r) (right) associated to the model in Sec. 5.3.1.2
foroc =5, 0 =2and n =2, with k = 1 (solid, blue line) and 2 (dotted, red line).
The inset in the bottom figure shows the interval r € [0.5,1.5] for k = 2.

The radial component of the electric field (left) with e = 1 and the energy den-
sity (right) associated to the model in Sec. 5.3.1.2forc =5, « =2 and n = 2,
with &k = 1 (solid, blue line) and k = 2 (dotted, red line).

The electric field (left, blue) with e = 1 and the energy density (right, orange)
associated to the model in Sec. 5.3.1.2 depicted in the plane for 6 =5, ¢ =2
and n =2, with k = 1 (top) and 2 (bottom). The intensity of the blue and orange
colors increases with the increasing of the electric field and energy density,
respectively.

The solution y(r) in Eq. (5.68) (left) and the energy density p, in Eq. (5.69)

(right) for o¢ = 2. The inset in the top figure shows the solution near the origin.

The solution ¢ (r) (left) and x () (right) associated to the model in Sec. 5.3.2.1
for 0 =5 and o = 2 with kK = 1 (solid, blue line) and 2 (dotted, red line).

The radial component of the electric field (left) with e = 1 and the energy den-
sity (right) associated to the model in Sec. 5.3.2.1 forc =5, ® =2, and k =1
(solid, blue line) and 2 (dotted, red line).

The section passing through the center of the structure, representing the electric
field (left, blue) with e = 1 and the energy density (right, orange) associated to
the model in Sec. 5.3.2.1 for 6 =5, & = 2 and k = 2. The intensity of the blue
and orange colors increases with the increasing of the electric field and energy
density, respectively.

The solutions ¢ (r) (left) and y/(r) (right) associated to the model in Sec. 5.3.2.2
for c =5, @ =2 and n = 2 with k = 1 (solid, blue line) and 2 (dotted, red line).
The inset in the top figure shows the behavior for small r.

The radial component of the electric field (left) with e = 1 and energy density
(right) associated to the model in Sec. 5.3.2.2 for 0 =5, @ =2 and n = 2, with
k =1 (solid, blue line) and 2 (dotted, red line). For k = 2, we have depicted
2E, and 2p to illustrate the behavior better.

The section passing through the center of the structure, representing the electric
field (left, blue) with e = 1 and the energy density (right, orange) associated to
the model in Sec. 5.3.2.2 for 0 =5, o = 2, with k = 1 (top) and 2 (bottom).
The intensity of the blue and orange colors increases with the increasing of the
electric field and energy density, respectively.

Gauge field (left) and the radial component of the electric field in Eq.(5.90)
(right) associated to the system with electric permittivity in Eq.(5.89), for D =3
and e = 1.%*

xXx1i

67

68

68

69

70

70

71

71

72

73

73

76



xXxil

522

5.23

5.24

LIST OF FIGURES

Section of the electric field passing through the center of the structure in the
interval r € [0,3] for D = 3 and e = 1. White, blue and purple are used to
represent £, =0, E, = 0.079 and E, = 2, respectively.

Gauge field (left) and the electric field in Eq. (5.92) (right) associated to the
system with electric permittivity in Eq. (5.91), for D = 3 and e = 1. The inset
in the right panel highlights the behavior of the electric field near the origin.
Section of the electric field passing through the center of the structure in the
interval r € [0,3] for D = 3 and e = 1. White, blue and purple are used to
represent £, =0, E, = 0.034 and E, = 1, respectively.

76

77

78



CHAPTER 1

Introduction

Following the approach outlined in Ref. [38], we consider that physics aims to describe a
natural phenomenon mathematically and then infer results about experiments that have not
been performed. Math seems to speak the language of nature, then why not use it as a starting
point? In other words, instead of observing the phenomenon and describing it mathematically,
we can use math as a starting point, develop it, and investigate if the results match experiments.
In this thesis, we do a bit of both. We use field theory to describe phenomena observed in nature
and also propose new results from math which should lead to phenomena not yet observed but
which are of interest to several areas of science and technology. For that, we use field theory to
investigate topological structures through a branch of math known as topology.

In classical field theory, topological structures are non-trivial solutions of the field equa-
tions, which can exhibit stability due to quantized topological properties. These structures
emerge as a consequence of the topology of the underlying space and remain independent of
the specific details of the field’s dynamics. Notably, they are characterized by conserved topo-
logical charges that remain unchanged under smooth deformations of the field configuration.

Topological structures are mathematical objects that find applications in many areas, such
as physics, mathematics, biology, and computer science. These structures can also be called
topological defects. The simplest objects are the kinks, which emerge in one spatial dimen-
sion in systems with spontaneous breaking symmetry, which are named domain walls when
immersed in more dimensions. Domain walls are stable structures with a topological charge
connecting two degenerate potential minima. This structure can be identified in magnetic ma-
terials as the configuration between two regions with different magnetizations. Ferromagnetic
materials in low temperatures tend to direct spins up or down, giving rise to a non-null magneti-
zation featuring a spontaneous symmetry breaking. These systems present a degenerate ground
state, 1.e., there are two configurations with minimum energy: all spins up or all spins down.
The two cases can coexist, generating two regions with different vacuums. The configuration
between these regions gives rise to a localized structure known as the Néel and Bloch wall,
which can be identified as a topological structure or domain wall in the context of field theory.

In Ch. 2, we review scalar field theory, where we study the BPS formalism that leads to
first-order equations with stable solutions of minimum energy. We show that the procedure can
be used to investigate localized structures, which are used to describe the Néel Wall (one scalar
field) and Bloch Walls (two scalar fields). In Fig. 1.1, are illustrated these two kinds of walls
[30]. This chapter will serve as a starting point for the development of this thesis.

In Ch. 3, we present a procedure that we devolved that leads to modifications in the internal
structure of Bloch Walls caused by a function coupled to the dynamical term that simulates
geometrical constrictions in a model with three scalar fields introduced by us in Ref. [21]. The
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Figure 1.1 Néel wall (top) and Bloch wall (bottom).
Coey, 2010, p. 240.

model investigated deals with a Lagrangian density with three scalar fields and non-minimal
coupling between fields done through a function that depends on an independent scalar field.
The intriguing consequences of this procedure give rise to captivating effects within the walls,
making it a valuable tool for investigating magnetic materials. These findings open new avenues
for exploring the behavior of magnetic materials under intricate conditions, especially at the
nanometric scale.

Moving on to Chapter 4, we shift our attention to monopoles, another class of topological
structures that emerge in three spatial dimensions. Originally introduced by Dirac [37] and
further developed by t’Hooft and Polyakov [2][70], monopoles are found in grand unified the-
ories and are considered stable due to local symmetries. This chapter presents new localized
structures involving monopoles with global symmetry developed by us in Ref. [19]. In our in-
vestigation, we have revealed that the global monopole possesses infinite energy [8]. However,
through our developed procedure that leads to first-order formalism, we successfully regularize
this infinite energy, offering new insights into the structure’s behavior and properties. Fur-
thermore, we go beyond the standard model and explore the implications of extended models
involving two families of scalar fields.

In addition to the discussed topological structures, it is worth noting that models with mul-
tiple spatial dimensions and diverse fields can give rise to various other intriguing topological
objects. Notably, Skyrmions introduced in Refs.[81][80], cosmic strings [86] and vortices[1]
are among these fascinating structures. While these objects hold significant interest and impor-
tance, they fall beyond the scope of the current thesis and will not be discussed further herein.
Nonetheless, their exploration remains an exciting avenue for future research and investigation
in the realm of topological phenomena.

The vortices and monopoles in the *70s paved the way for the investigation of topological
structures charged. In the next years, theoretical physics devoted itself to exploring such objects
as Dyons, structures with magnetic and electric charge [53], and vortices with Chern-Simons
dynamics [47][51], which play a crucial role in the presence of magnetic vortices that carry an
electric charge. In Chapter 5, we explore the possibility of the new charged localized struc-
tures. In the investigation, we consider a point charge in a medium with electric permittivity
controlled by scalar fields, which describes Bloch walls. The procedure regularizes the electric
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field divergence at the origin. Furthermore, we investigate a similar model, where we consider
a set of scalar fields and electric permittivity controlled by the modulus of the family of scalar
fields.

We ended our work in Ch. 6, summarizing the results obtained and discussing future per-
spectives.

This present thesis considers natural unity, which uses the following definition for the con-
stants ¢ = h = kg = 1. The spacetime coordinates in these physical units have an inverse energy
dimension, while the action defined as S = [.Zd"*+'x has a null energy dimension. Here, D+ 1
represents D spatial dimensions and one time dimension.






CHAPTER 2

Domain Walls

In the 20th century, Lev Landau took the first step towards spontaneous symmetry breaking in
his study of the statistical physics of phase transition [59]. Later these concepts were adopted
in field theory.

It can be said that the study of the real scalar field is the most elementary problem in a field
theory and the simplest model that allows symmetry breaking and topological solutions. In
(1, 1) spacetime dimensions, models with spontaneous symmetry breaking can lead to localized
topological structures called kinks. When they are immersed in more than one dimension, they
are called domain walls.

In this chapter, we will study kinks, lumps, and the energy-momentum tensor for these
structures, describe the first-order formalism that minimizes the energy, and analyze their linear
stability. In addition, we present a model with two coupled scalar fields that mimic the domain
wall with an internal structure.

2.1 The scalar field

The scalar field is a mathematical function that associates a scalar value with each point in
space. Its applications are widespread, encompassing various fields of study. For instance, in
general scenarios, the scalar field can be employed to describe the temperature distribution in a
room, the humidity in a given space, the frequency of lightning strikes in a region, or even the
population density in a country, among others.

In the realm of physics, scalar fields find diverse and fundamental applications. They are
used to represent the electric potential in electrostatic scenarios, the gravitational potential, and
the pressure variation in regions traversed by sound waves.

Moreover, in condensed matter physics, scalar fields are instrumental in describing the order
parameter in ferromagnetic materials [21]. They provide critical insights into the behavior and
properties of these materials at a microscopic level.

Additionally, scalar fields serve as essential tools in understanding and describing branes
in cosmology. Within the braneworld scenario, the observable universe is represented by a
hypersurface in (3, 1) spacetime dimensions, known as the brane. This brane exists within a
higher-dimensional space denoted by (3, 1,d), commonly referred to as the bulk [74]. In this
particular model, the scalar field assumes a crucial role in modeling the extra dimension. No-
tably, in reference [11], the authors put forth a system incorporating two scalar fields, effectively
generating a brane with an intriguing internal structure.

Among these applications, a particularly intriguing one involves utilizing scalar fields to

5
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describe the phenomenon of spontaneous symmetry breaking, which leads to interesting effects
such as phase transitions, the emergence of new excitations, and the formation of topological
structures, among others [58]. In our investigation, we focus on studying localized structures
like kinks and lumps, for which a scalar field theory serves as a powerful tool.

Let us start with the model for the real scalar field described by the canonical Lagrangian
density given by

£ = 3u09"0 -V (9). @

where ¢ is the real scalar field, the derivatives are written in the form d, ¢ = d¢ /dx*, V(¢) is
the potential density, although we call it a potential. Here, x* is identified as the components of
the coordinate system, where i = 0,1, ..., D, with x° being the temporal part and x’ the spatial,
withi=1,...,D. In our investigation, we are considering the Minkowski flat space with metric
tensor given by 7,y, and components 7)gg = 1 and 1;; = —9;;, where j =1,...,D.

In this chapter, we focus the investigations on the (1,1) spacetime dimensions. The action
in this case is given by S = [ Zd’x. As it has a null energy dimension, the Lagrangian density
must have a squared energy dimension since d?x has an inverse squared energy dimension.
Note that the term d, ¢d*¢ and the Lagrangian density have the same dimension, and the
partial derivative dy, has an energy dimension, which leads to the scalar field ¢ dimensionless.

The equation of motion obtained by varying the action associated (see AppendixA) has the
form

A" +Vy =0, 2.2)

where Vy = dV /d¢. Writing the above equation in terms of components, we get

O (x,1)— 9" (x,1)+Vy =0. 2.3)

Here, we use the compact notation that follows ¢” = 92¢ /dx? and ¢ = d*¢ /dt>.

The localized structures we are looking for are time-independent, that is, are the solutions
of the equation of motion constant in time. In order to investigate these static configurations,
we take ¢ (x,7) = ¢(x). In this situation, the equation of motion in Eq. (2.3) becomes

¢"(x) =V . (2.4)

The Lagrangian density in Eq. (2.1) is a functional of the fields and their derivatives. In
other words, the Lagrangian density can be written as £ = .Z (¢, 9, ¢), not explicitly depend-
ing on the coordinates x*. In variational calculus models of this type, translation invariants,
allow us to define a tensor called the energy-momentum tensor. Below we write it for a general
case of (D, 1)—dimensions:

0.
T = 5amg)

This expression in components terms can be written in matrix form as follows

S+ vie) 09 )
Tyv=1\|2% 2% PR . (2.6)
8 ( 0'¢ O+ —v(9)

N (x) —NuvZL . (2.5)
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The steps for getting it can be seen in Appendix A. Here, Ty is identified as the energy density
p and Tj; denotes pressure or stress. The components Tp; and Tjg are the flux density and
momentum density, respectively. The static configurations scenario in (1,1) leads us to the
disappearance of the other components 7y, and 77¢, while the others become

”2

Too = % +V(9), 2.7
n”

Ty = % —V(9) . (2.8)

2.1.1 BPS models

In this section, we delve into a significant challenge posed by the second-order equation in (2.4)
governing the scalar field ¢. Obtaining analytical solutions for this equation is not a straight-
forward task, and in certain cases, numerical methods are the only viable option. However, an
insightful alternative to simplify the problem arises through the method introduced by Bogo-
mol’nyi [27], Prasad, and Sommerfield [71], known as BPS (Bogomol’nyi-Prasad-Sommerfield).
This remarkable method enables the reduction of second-order equations to first-order equa-
tions, thus offering a more manageable approach.

The essence of the BPS procedure seems to resonate with Dirac’s principle of simplicity
[38], as it involves "completing the square on energy density." Despite its apparent simplicity,
the implications of the BPS approach are profound, as it leads to solutions with minimal energy.

Here, we present the BPS procedure in the context of a scalar field in (1, 1) spacetime
dimensions. Furthermore, in the subsequent chapter, we showcase its versatile application
in higher dimensions and various fields, highlighting its significance as a powerful tool for
investigating topological structures in different physical systems.

The Bogomol’nyi formalism consists in to include an auxiliary function W (¢) in the energy
density in Eq. (2.7) as follows

oo\ Wo \
p=5(¢ ﬂFWq)) V() - W, 2.9)
where W = dW /dx e Wy = dW /d¢. Then, we take the potential V (¢) in terms of the auxiliary
function and recognize it as a non-negative

1
V() = EW(,%. (2.10)

In this way, the energy density takes the form

1 2
p:§(¢’¢w¢) +W @2.11)

By integration, we get the energy

l tee !/ /
E:E/_w [(¢/ FWy)2 +W'] dx. (2.12)
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Notice that the second term is surface integral, so it can be rewritten as follows

R N PV > dW
E—E/_Oo (0" F W) d)c—f-/_oo de
1 [,
:5/_00 (¢ T We)? dx +Eg (2.13)
where
Ep = [W((+o0)) —W(9(—0))| (2.14)

or just Eg = |AW|. Note that the first term in this equation can be positive or null once it is
squared. Therefore, we can conclude that the energy has a lower bound, E > Ep, where Ep is
called Bogomol’nyi energy. The minimum energy is reached when the first term is null, in this
case, E = Ep, and for this to happen, the first-order equation must be written as

0 = +W, . 2.15)

This expression reduces the energy density in Eq. (2.11) to p = W’, minimizing the energy.
The first-order equation solutions are known as BPS state or BPS solutions. Notice that for
these configurations to exist the condition ¢ () # ¢ (—cc) must be met, otherwise from the
Bogomol’nyi Ep in Eq. (2.14) becomes null, that is, the ground state theory must be degenerate.
In topology, we say that the homotopy group needs to be non-trivial. Therefore, BPS solutions
are naturally Furthermore, these states produce configurations with null stress, as can be seen
by replacing the first-order equation (2.15) in Eq.(2.8), which leads to

W2
Ty = 7¢ -V(9)
2 2
Wy Wy
2 2
=0. (2.16)

One of the advantages of the method is that it features minimum energy states, which can be
obtained knowing only the boundary conditions for the scalar field ¢. In this case, we need to
know ¢ (x — +oo) and calculate |[AW ()| in these limits. Note that the adjacent minimum must
be degenerate, so there is Bogomol’nyi energy.

2.1.2 Linear stability

In order to investigate the configuration stability under small perturbations, we write the scalar
field as ¢ (x,¢) = @¢(x) + n(x,t), where ¢(x) is the static solution and 71 (x,?) represents the
fluctuations around it. Replacing in the equation of motion (2.2) we get

A" P (x) + ot n(x,t) + Vo + Ven(x,1) =0, (2.17)



2.1 THE SCALAR FIELD 9

where the potential derivative was expanded considering 1 (x,#) until the first-order, as follows

dv d’v
Vown = 75| to23 x1)—¢(x)), (2.18)
or yet in a compact form
Voier) = Vo +Voen(x,1) - (2.19)

Notice that the sum of the first and the third term in Eq. (2.17) can be identified as the equation
of motion (2.2) for the static case, and since this term is null, we can eliminate it. Thus, the
stability equation, in coordinate terms, can be rewritten as

1(x,t) =" (x,t) +U ()N (x,1) =0, (2.20)
where stability potential is defined by
U(x) = V¢¢. (2.21)

In order to solve the partial second-order equation in (2.20), one can rewrite the fluctuation
n(x,t) using the separation of variables, where the spatial and temporal parts are written in
terms of 1 (x) and cos(w;t) functions, as follows

n(x,1) =) &(x)cos(wit) . (2.22)
In this way, Eq. (2.20) becomes
d? 2

Notice that this expression can be identified as a eigenvalues and eigenvectors problem, where
H is the linear operator given by H = —d*/dx*> + U (x) and &; is the eigenfunction with eigen-
value wl-z, as follows

HE = wiE; . (2.24)

We can do the trick to get the zero modes of the stability equation differentiating the equation
of motion in (2.2) concerning the x coordinate, which leads us to

d? ,
(_ﬁwu))(p 0. (225)
Comparing the above equation with (2.23), we can identify the zero modes as a spatial deriva-
tive of the scalar field &y = A¢’, where A is a constant and the eigenvalue is w% = 0. This
trick will not always be efficient, and sometimes will be necessary to factor the operator and
calculate the zero modes.
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Notice that if wi2 < 0, then the values for w; will be complex but remember that the temporal
part in Eq. (2.22) is given by cos(wt). It turns out that the cosine argument of complex value
makes it a hyperbolic cosine, and analyzing the hyperbolic cosine, we see that it diverges
asymptotically. To avoid divergences in the temporal part, we should look for eigenvalues
wl-2 > 0, so that w; is real and the temporal part of the stability equation float around the static
solution giving rise to stable solutions.

Consider the H operator, if it can be factored and rewritten as H = SST, where S is an
operator and ST is its supersymmetric partner, so the equation (2.24) becomes

STSE = w?E;, (2.26)

multiplying by 5; left and integrating we can show that

o e s Foo
/ E'S"SE dx = / ETW2E; dx, (2.27)

or yet

+o0 2
Wl — ——rw|55’| dx, (2.28)
S0 |&il* dx
that is, W% > 0. Therefore, showing that the operator H can be written in the form H = SST, we
can ensure w; real, in that way to obtain stable solutions.

The above results were obtained for a general case of a scalar field in (1,1) spacetime
dimensions. Since the target of our investigation are BPS solutions, we take the operator H
in Eq.(2.23) in terms of an auxiliary function W(¢) in order to evaluate the stability of the
configuration, as follows

2

H=—
dx?

+ Wiy +WeWeo - (2.29)

Note that the above expression can be written as

T 2
s's 73 T Woo +WoWoo , (2.30)
if we identify
d
S=——+W, 2.31
o T Woo s (2.31)
d
ST = — + Wy . 2.32
I +Woo ( )

Therefore, we conclude that the operator H for the BPS case can be factored, H = STS. This
means that BPS configurations produce positive eigenvalues and hence are stable. It is worth
remembering that BPS configurations are solutions of minimum energy and, therefore, cannot
decay into a less energetic solution. In this sense, it was expected that they would be stable.
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¢

Figure 2.1 The potential V(¢), in Eq.(2.34).

2.2 Kinks

Kinks are localized structures that arise from spontaneous symmetry breaking in a scalar field
theory with one spatial dimension. The symmetry break occurs in models where the ground
state is degenerate. When immersed in high dimensions, kinks become domain walls; see
Refs.[86][83][31][63]. The symmetry break occurs in models where the ground state is degen-
erate.

A well-known model that supports these conditions is the A¢* described by the potential

V() = %kz(az —¢?)>. (2.33)

where a and A are parameters. As we saw earlier, in natural unity, the potential has a square
energy dimension as the Lagrangian and the scalar field is dimensionless. In this case, A must
have an energy dimension, and a must be dimensionless.

We can execute a transformation that eliminates the parameters taking the scalar field ¢ —
a@, the coordinate x* — x* /aA and Lagrangian density . — A%a*.#, which leads us to write
the potential as

V(0) = 2(1—¢7)2. (2.34)

2
Notice that the ground state of this model is degenerate. The potential has two different mini-
mum energy states on = —1 and ¢ = 1, as seen in Fig.2.1. The topological sector is the patch
that connects the potential minima. The field configuration that arises between the two minima
due to spontaneous symmetry breaking is known as kink.
The auxiliary function associated with this model is obtained through the equation in (2.10)
that relates W (¢) with the potential V(¢):

W()=¢—". (2.35)
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-5 0 5
T

Figure 2.2 The solution ¢(x) in Eq. (2.37).

Axis of rotation

v,

Figure 2.3 The Néel Wall.
Coey, 2010, p.240.

In this scenario, the first-order equation in (2.15) takes the form

¢ =+(1—¢?%). (2.36)

This equation supports kink-type solutions for the positive sign and anti-kinks for the negative
case given by

¢ (x) = +tanh(x) . (2.37)

Notice that ¢ (x) = tanh(x+ b) is also a solution for the first-order equation, where b is a con-
stant that plays the role of locating the center of the solution. As the Lagrangian density is
invariant by translation, we can take b = 0 without loss of generality.

Kinks can be used to describe structures known as Néel Walls, which are characterized by
the spin rotation in their own plane through an angle 7 [30]. In Fig. 2.2 we depicted the kink
centered at the origin and in Fig. 2.3 the Néel Wall. The energy density associated with this
configuration is given by

p = sech*(x) , (2.38)

by integration, we get the energy E = 2/3, which match with the expression Ep = |[AW|.
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Figure 2.4 The energy density p in Eq. (2.38).

2.3 A brief comment on topology

When we study a field from a geometric point of view, we deal with physical quantities such as
sizes, angles, lines, shapes, the dimensions of an object, and any other things that might involve
the metric. If we calculate the distance between two points on a rubber plane, for instance, and
then stretch this plane, we know that the distance will never be the same. For the geometry,
these objects are different. On the other hand, for topology, these objects are topologically
equivalent. Topology is a mathematics branch that deals with continuous transformations, such
as stretching, bending, and the properties preserved under these transformations.

Topological objects may arise in a field theory with spontaneous symmetry breaking and
are called topological defects, as discussed in Refs [77][58][39] and in for a more mathematical
approach[67]. Defects can be introduced in a field theory through the fundamental fields, which
are the sum of a regular field and a singular multivalued part; see Ref. [28].

As seen, the kink connects the two vacuums presented in the model. Such field configura-
tion allows defining a quantity Q given by

Q= 9(es) — (o). (2:39)

Notice that this quantity is not null only for the cases in which the ground state is degener-
ate. Moreover, Q is independent of Noether’s Theorem, which relates continuous symmetries
in Lagrangian density to conserved quantities. Therefore, the quantity Q is independent of
symmetries, and its conservation depends only on the topology, and that’s why it is called
topological charge. In this way, one can define a topological conserved current

JE=¢etvo,¢ | (2.40)

where "V is the Levi-Civita symbol and J? is identified as the charge density, such that duJH =
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¢

Figure 2.5 The potential V(¢) in Eq. (2.42).

0. In this sense, the expression for the topological charge is obtained by integration
0= / - JO dx
- /_+0080181¢ dx
= 9(4o0) —P(—o0). (2.41)

Well-behaved fields possess a non-degenerate vacuum that nullifies the above expression. In
this case, there is no BPS energy. Defects may still exist, but these are the non-topological type,
such as the lump we will see next.

2.4 Lumps

Lumps are non-topological configurations with null topological charges. Although these struc-
tures are unstable, they still arouse interest in the description of some physical, such as bright
solitons in optic phenomena [44]. The author in Ref. [64] proposes new models that present an
unusual decay. In Ref. [6] are exhibited lump-like structures that have their profile controlled
by parameters. Another important application for the lumps occurs in non-topological struc-
tures called Q-ball [32]. Q-balls are stable structures described for a complex scalar field and
carry a conserved global charge due to continuous symmetry.
A model that leads to configurations lump type is the inverse ¢* with potential given by

Lot (2.42)

2
_(P _2

V(9) =3

In order to obtain time-independent solutions, we consider statics configurations, which leads
the equation of motion in (2.2) to

0" = o(1—2¢%). (2.43)
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0.2f

-5 0 5 -5 0 5
T T

Figure 2.6 The lump solution ¢ (x) (left) in Eq. (2.44) and the energy density p (right) in Eq. (2.45).

Notice that, different from the previous example, this potential crosses the zero taking negative
values, as can be seen in Fig. 2.5. On the other hand, the potential for BPS solutions must
be positive from the V = W(g /2 in Eq. (2.10). Therefore, BPS solutions are incompatible with
lumps. The equation of motion (2.43) supports the solution

¢(x) = sech(x) , (2.44)
and the energy density of this structure is given by
p = sech?(x)tanh?(x) . (2.45)

In fig.2.6, we depicted the lump solution and its energy density. Notice that this configuration
tends to zero for x — =4-oo, which implies in Bogomol’nyi energy Ep null. The energy of this
structure is E = 2/3.

2.5 Bloch Wall

In this investigation, we examine a specific type of domain wall known as the Bloch Wall.
These structures possess an internal structure and are characterized by spins that rotate outside
the plane in which they are contained, as depicted in Fig. 2.7. To accurately describe Bloch
Wall structures, scalar field theories must be formulated using two scalar fields. The Lagrangian
density that accommodates these configurations can be represented by

1 1
L= 50u09"0 + 59ux " x V(9. 2) (2.46)

where ¥ is the scalar field and now the potential V (¢, ) ) depends on ¢ and x. The next steps
are to proceed with the same method of handling as for the Néel Wall.
The equations of motion associated with this model are given by
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Axis of rotation

777

Figure 2.7 The Bloch Wall.
Coey, 2010, p.240.

The above equations for static configurations become

"=V, , (2.48)
x'=Vy. (2.49)
The energy density for this configuration is
” 7
p=0 Vo). (2.50)

2.5.1 BPS for two scalar fields

In order to perform the Bogomol’nyi procedure for two scalar fields, we set a new auxiliary
function W (¢, x). Following the lines of Eq. (2.9), we rewrite the energy density in Eq.(2.50)
in the form

1 | 2 1 1
pP=5 <¢/¢W¢) +5 (XIEFWX> +V(,x) - §W¢2 - EWfiW/ ; (2.51)
where
oW d oW d
W' = __(P + ow ax
do dx  dy dx
do dx
=Wy—+W,—=. 2.52
? dx W dx (2.52)
In this case, we identify the potential as
L, S
the energy density becomes
l !/ g 1 / g /
p:E O FWy ~|—§ X FWy | W, (2.54)

By integrating, we get the energy
1 2 2
E = /E qu’:pw(p) + (X/¢Wx> }dx+/W’dx

1 2 2
:/EK¢'¢W¢> +(x’¢Wx> }dx—|—EB (2.55)
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Notice the energy is bounded by a Bogomol’nyi energy Ep that depends on the two field con-
figuration at the infinity

Ep =W ((),x()) =W(¢(=2), x(=))| - (2.56)

Now for that, the energy can be minimized for configurations it must obey the two first-order
equations bellow

o' =Wy, (2.57)
K = LW, . (2.58)

Next, we illustrate this procedure with a famous model.

2.5.2 BNRT model

When selecting models for the auxiliary function, it is crucial to exercise caution. Using a
simple auxiliary function such as the sum of powers of ¢ and y, for example, W(¢,x) = ¢ + %,
can result in a trivial potential (2.53). An alternative choice, such as W(¢,x) = ¢ — ¢> + x2,
results in a non-constant potential, but it will lack an interaction term between the fields, so
the equations of motion become independent, leading to a non-interact scalar fields scenario.
Therefore, it is essential to have a cross-term that couples the scalar fields. A suitable choice
would be

W=¢-— §¢3 —kox*, (2.59)

with & serving as a controlling parameter for the intensity of coupling between the scalar fields.
Moreover, as we progress, we will discover that k also governs the width of the Bloch wall
and influences the amplitude of the ) solution. This captivating model was first introduced
in reference [9] and is commonly referred to as BNRT, a nomenclature originating from its
association with Ref. [25].

By employing the positive sign in the first-order equations (2.57) and (2.58), we obtain the
following outcome:

o' =1-9>—kr’, (2.60)
x = —-2koy . (2.61)

These equations support the solutions
¢ (x) = tanh(2kx) , (2.62)

2(6) = £y /% — 2 sech(2kx) (2.63)

Note that as the parameter k increases, the argument of the hyperbolic tangent in ¢ grows
rapidly, resulting in a thin domain wall that resembles a step function. Conversely, for small
values of k, the solution becomes thicker. The effects of k on the solution ) are manifested
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¢(x), x+(2) 0

Figure 2.8 The solutions ¢ (x) (red, dotted line) and y (x) (blue, solid line) in Egs. (2.62) and (2.63),
depicted for k = 1/3.

through the amplitude of the function /(k—! —2), which decreases for larger values of k and
increases for smaller ones. The width of y is affected in a manner similar to ¢.

In the following section, we will delve into the specific steps for obtaining solutions for
Bloch walls. However, for now, we will only provide a qualitative overview.

It is important to note that the values of k cannot be arbitrary. First, one must take k =~ 0 to
avoid divergences, and beyond that k < 1/2 in order for y(x) to be a real value. The solutions
come in pairs (¢ (x), x+(x)) and (¢ (x), x—(x)), which can be used to describe the left and right
chiralities in magnetization as those investigated in recent works [29][69]. The pair (¢, ) can
be related to the order parameter of the Bloch wall, which projects ¢ (x) in the ¢ axis and ) (x)
in the ) axis. In Fig. 2.8, we have plotted the fields (¢ (x), x+ (x)) for k = 1/3. By analyzing this
figure in comparison to Fig. 2.7, one can see ¢(x) is associated with the rotation for an angle
m going from —1({) to +1(1), while x(x) is related to the twist that occurs out of the plane
starting at 0, increasing, and then returning to 0. These structures have also been found to have
applications in describing hydrogen-bonded chains and crystalline polyethylene, as detailed in
references [24][26].

2.5.3 Trial orbit method

As previously mentioned, solving non-linear coupled differential equations can be a challeng-
ing task. The trial orbit method aims to simplify this process by decoupling the differential
equations and making them more tractable to solve; see Refs. [73] [10]. This method involves
several steps, the first of which is identifying the minima of the potential.

Here we show the method using the BNRT as an example. The potential in Eq. (2.53) for
the auxiliary function W (¢, x) in Eq. (2.59) has the form

V(0.0 = 51~ 67 ki + (14 200072 + 1Ky, .60

its minimums are put like an ordered pair (¢, ) ), being (£1,0) considering k < 0, and (£1,0)
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and (0,41/v/k) for k > 0.

We explore the case where k > 0. In this situation the potential has four minimums given by
Wi =W(1,0)=2/3,Wo =W (—1,0)=—2/3, W3 =W(0,1/vk) =0and Wy =W (0,—1/Vk) =
0. The arrangement them must be able to produce BPS energy, for that W (¢;, xi) # W (9;,x;).
giving rise to BPS sectors. A combination W; with W,, for example, produces the energy
E éz = 4/3, W; with the other two minimums produce the same energy Ej° = E 1134 = 2/3, the
same occurs with W, that gives rising E§3 = E§4 =2/3. The last combination is W3 with Wy, but
this combination has no BPS energy E>* = 0. Next, we need to choose an orbit that connects
the fields, and this is done through a constant function F (¢, y) = C that depends on the fields,
where C is a constant. It also must support the first-order equations (2.60) and (2.61) in the
topological sector analyzed. We start out considering the BPS sector formed by W;=(1,0) and
W, = (—1,0), and we suggest the orbit a¢? + by? = C, where a, b and C are parameters to be
determined. In this BPS sector, ¢ must be equal to =1 for ¥ = 0, which leads us to identify
a = c = 1. Thus the orbit takes the form ¢+ by? = 1, differentiating with relation to x, we get

0o’ +bxx =0, (2.65)
replacing (2.60) and (2.61) the equation takes the form
0>+ k(1+2b)x>=1. (2.66)

Finally, we can identify b = k/(1 — 2k), for k € (0,1/2), and write the expression for the orbit

1
2 2 _

We can then use the orbit in (2.60) to decouple the equation and write

¢’ =2k(1—¢2) . (2.68)
This equation supports the solution

¢ (x) = tanh(2kx) . (2.69)

In order to get the solution x(x), we replace the above equation in the orbit equation (2.67):

1
tanh(2kx)? + 73 x=1. (2.70)

2(x) = 44 /% — 2 sech(2kx) . 271

In conclusion, we have explored the trial orbit method as a valuable approach to simplifying
the resolution of non-linear coupled differential equations, which can be challenging tasks.
Decoupling the differential equations makes them more tractable to solve, facilitating the iden-
tification of their minima.

Finally, we get the solution
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In conclusion, this chapter has been devoted to the in-depth exploration of domain walls and
the rich phenomena they entail. Our journey began with studying the scalar field and examin-
ing the energy-momentum tensor associated with localized configurations. This foundational
knowledge provided crucial insights into these structures.

We then delved into the first-order formalism, known as the BPS model, which emerged as
a powerful and indispensable tool for investigating topological structures. Demonstrating the
stability of solutions under this formalism.

Moreover, we shed light on the remarkable capability of these localized structures to accu-
rately describe domain walls, commonly referred to as Bloch walls, which exhibit intriguing
internal structures. The profound interplay between these structures and their representation by
kinks and lumps serves as an initial step for other discussions that will come throughout the
other chapters.



CHAPTER 3

Internal Structure of Bloch Walls

As we saw earlier, kinks are topological solutions for first-order equations that support BPS en-
ergy. In the introductory case, we analyze the Néel Wall, showing how it emerges in a scenario
of spontaneous symmetry breaking for one scalar field. We also saw that rich structures that
arise in two scalar fields context can be identified as Bloch Walls, where the second field plays
the role of the degree of freedom. In Ref. [52], the authors show experimentally that geometri-
cal constrictions could modify the profile of kink-like structures giving rise to a plateau in the
core of the configuration. In a recent study (Ref. [12]), the authors examined a model with two
scalar fields and a function that alters the kinematics term in Lagrangian density, resulting in
effects of deformation of the medium that can be characterized as such geometrical constric-
tion. In [21], we developed a procedure with three scalar fields capable of manipulating the
internal structure of Bloch walls through a first-order formalism that minimizes the solutions’
energy. The modifications bring to light internal structures for solutions never seen before and
may be of interest in studying magnetic materials.

3.1 Manipulating the internal structure

We start with the Lagrangian density inspired by the work [12], where we consider three real
scalar fields ¢, x, and y, and a function coupled to the dynamic terms of ¢ and x in (1,1)-
dimension

1 1 1
L= Ef(w)8u¢8“¢ + Ef(w)auxa“x + 58uw8“1//— Vo, x,v). (3.1)

Here f(y) denotes a real and positive function that depends only on y and V (¢, x, ) is the
potential. Notice that f(y) modifies the kinematic terms that involve ¢ and ), while y stays
standard. The equations of motion for this model are given by

Iu(fI* ) +Vy =0, (3.2)

Iu(fO*x) +Vy =0, (3.3)
1

oMy — 2 fy(Iu9d" ¢ +0uxd" ) +Vy =0, (3.4)

where fy, = df/dy. The energy-momentum tensor (2.5) can be easily extended to three fields
problem, as follows

0% 0% 0%
Tuy = WM)()C) + Wavl(x) + Wav Y (x) = NuvZ . (3.5)
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Feeding the above expression with the Lagrangian density in Eq. (3.1), we get

Tuv = f(¥) (0u9vo + duxovX) + OuWovy — Ny L. (3.6)

Since we are looking for structures that describe Bloch Walls, we follow the lines in the
previous chapter, and we will consider static configurations. Thereby, the set of the equation of
motions (3.2), (3.3), and (3.4) become

(f0) = Vo, 3.7)

(fx") =Vy, (3.8)
! 1 / /

V= (074 2%) = Ve (3.9)

The scenario of (1, 1)—dimension implies in four components for the energy-momentum tensor
in Eq. (3.6), these being Ty, 111, To; and Tyg. As discussed in Ch. 2, the components 7j; and
Tyo are null for static configurations, which leaves us with T and 771, respectively

1 / ! 1 /

p=3f¥) (¢2+x2)+5w2+v(¢,x,w), (3.10a)
1 / ! 1 /

p=3w) (97 +17) + 3" V(9. 2.¥). (3.100)

To implement the Bogomol’nyi procedure, we introduce an auxiliary function W (¢, x, v)
into the energy density in Eq. (3.10a), following the approach outlined in Eq. (2.51):

2 2
p f(¢’¢%> +f<x’¢%) +%(w’¢ww)2

) 2
! ) / (3.11)
R (L TR B
+ —5 7+7+ v .

Here, the subscripts represent partial derivatives with respect to scalar fields, and the prime
indicates differentiation with respect to the spatial coordinate x, as shown below

AW _Wdy owdy W dy

= =77 3.12
dx  J¢ dx * dx dx Jy dx (3-12)
=Wy '+ Wy x'+Wyy' . (3.13)
Identifying the potential as
LW W2 e
—_ | 24X 3.14
V=> ( 7 + 7 +Wy | (3.14)

we get the energy density in Eq. (3.11) in the form

_f W ? A r_ Wy 2 1 2 /
p—§<¢ ¢7) +§(}C $7) +5 (W FWy) =W (3.15)
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In this situation, the energy obtained by integration becomes bounded, that is
. _W ’ f (. Wy 2 / 2 /
=[5 (07F) +5 (2= ) atvem)aw]a
1
2

A Wy \?
0 R P

where E > Ep = AW or yet
Ep=|W((),x(0), () =W(P(—00), x(—00), y(—o0))] . (3.17)

The minimum energy state Ep is reached for configurations that support the first-order equa-
tions

¢ = % (3.18)
f '

'::i:% (3.19)
X 7 .

W/::tww, (3.20)

leading the energy density (3.15) to p = W'. The authors in Ref. [14] demonstrated that defect
structures in generalized models, described by a real scalar field in (1,1) spacetime dimensions,
could be stable against contractions and dilations as long as they meet the null pressure condi-
tion. This statement has also been proven to be valid for a generalized model of n scalar fields,
as stated in Ref. [13]. In Sec. 4.1 we show a brief discussion about it. The above arguments are
sufficient to ensure the stability of the solutions for the first-order equations (3.18), (3.19), and
(3.20).

In principle, the auxiliary function W (¢, x, ¥) can take into account the coupling between
the three real scalar fields. However, it is essential to note that the first-order equations (3.18)
and (3.19) depend on f, a function of the scalar field y, and on the auxiliary derivatives Wy and
Wy, respectively. While the first-order equation (3.20) considers only the derivative Wy,. This
condition allows us to write the auxiliary function in a particular form

W, x,v) =Wi(¢,x)+Wa(y). (3.21)

Thus, the solution Y can be obtained independently. Therefore, knowing v, one can use it to
feed the function f(y) in first-order equations (3.18) and (3.19) and solve them. This way, the
scalar field y can be understood as a source that feeds the other solutions ¢ and ). The energy
density for this configuration can be written as the sum of two parts p; and p;, being the second
independent of ¢ and y:

p=r(9”+x%) +v"”
=p1+p2, (3.22)
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where one we identify

p1=f(0"+27), (3.23)
= W/Z ) (3.24)

By integration, we can obtain the total energy E as sum E = E| + E; arising from the energy
densities, respectively. Since the energy density equation was obtained taking into account the
BPS solutions, the total energy must match the expression E = E. Although the energy density
p1 depends on f, the same no occurs with the energy Ej, as seen in Eq. (3.17). Therefore,
different configurations generated by functions f(y) must present the same energy. The energy
density, denoted as p,, describes how the mass of the source is distributed. Here, p; can be
understood as the structure’s mass affected by the source arranged. In Ref. [21], we investigated
how the other scalar fields feel the effects of f(y).

In order to illustrate the procedure, we take ¢ and ) describing structures of Bloch walls
type, so we considered the model of two scalar fields investigated in Refs. [9] [25] and revised
in section 2.5.2 for W;. For W,, we take the ¢4 model as follows

1
Wi=¢—30"—kox®, (3.25)
Wr = oty — a%yﬁ , (3.26)

where k and o are parameters. In this situation, the first-order equations (3.18), (3.19) and
(3.20) become

1— 2 2
Il (3.27)
f(y)
2rox
/
=F ; (3.28)
f(y)
v =+a(l-y?). (3.29)
The first-order equation (3.29) can be solved independently. The solution is as follows:
y(x) = tanh(ax) . (3.30)
Feeding the energy density in Eq. (3.24) with the above expression, we get
p> = o’ sech? (). (3.31)

In Fig.3.1, we present the solution and its energy density for different values of o. The energy
associated with the source is E; = 40./3 and can be obtained by integrating p,. As observed
in the figure, o regulates the width of the solution and energy, resulting in thinner widths as
higher values are used.

To solve the remaining first-order equations (3.27) and (3.28), we can employ the trial orbit
method, previously discussed in Sec. 2.5.3, to obtain an orbit that decouples the equations. This
approach leads us to the well-known orbit in Eq. (2.67):

1
2 2 _
¢ +1/k_2x =1. (3.32)
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0.6

Figure 3.1 The solution y(x) (left) in Eq. (3.30) and the energy density p, (right) in Eq. (3.31) depicted
for o = 0.2 (solid, blue line) and o = 0.8 (dotted, red line).

Notice that although the coupled first-order equations depend on f(y), the same no occurs
with the orbit, which is written only in terms of ¢ and ). Replacing the above orbit equation in
Eq. (2.15) leads us to

2r(1—¢?)
fly)

The investigations in Refs.[23] and [12] lead to similar equations. A function coupled to the
dynamic term in Lagrangian density is used to modify the kink profile. Here, we use f(y) to
simulate geometrical constrictions in Bloch Walls. Notice that f is a function of y, and this is a
function of x, so why not just consider f = f(x)? Why a third scalar field? If we take f = f(x),
the Lagrangian density loses translational invariance, which no occurs with the third field y.
Therefore, including a third field enables modifications to the core of Bloch Wall structures
while maintaining translation invariance and preserving the stability of solutions. Next, we
investigate some possibilities for the function f(y).

o =+ (3.33)

3.1.1 First Model

As we saw earlier, f(y) must be real and positive, so as the first model we take f(y) = 1/y?.
In this case, the potential (3.14) in terms of scalar fields takes the form

1 1
V(9,2 ¥) = 5w (1= 0" —r®) 42707y 4 P (1P (3.34)

In order to get the ¢ and ) solution, we use the first-order equation (3.33) obtained from the
trial orbit method feeding it with f(y) = 1/y?, as follows

¢ =+£2r(1—¢*)y?, (3.35)
or yet

¢’ = +2r(1 — ¢?) tanh(0wx)? . (3.36)
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Figure 3.2 The solutions ¢ (x) (left) and x (x) (right) associated to the model in Sec. 3.1.1, for r = 1/3
and o = 0.2 (solid, blue line), and 0.8 (dotted, red line).

This equation supports the solution

6(x) = £tanh (& (x)), (3.37)
where & (x) plays the role of geometrical coordinate and is given by
&(x) =2r(x—tanh (ox) /o). (3.38)
The orbit in Eq. (3.32) fed with the solution ¢ (x) in Eq. (3.37) becomes
h 2 2=1 .
fanh (¢ ())° + 752" = 1 (3:39)

which leads to

200 = i,/%—zsech(g(x)). (3.40)

In Fig. 3.2, we plot the scalar fields ¢ and y for « different values to investigate as the
intensity of this coupling modifies the behavior solutions. It can be seen that stronger cou-
plings tend to reduce the width of the solutions. In addition, one can see how the geometrical
coordinate changes the profile solutions giving rise to a plateau in the core of configurations
in ¢ and a plateau in ). This structure can be used to describe magnetic domain walls that
arise in micrometer-sized Fe,(Nigg, where the emergence of plateaus occurs in the presence of
geometrical constriction; see Ref. [52]. The energy density in Eq. (3.23) for this structure is
given by

p1 = 4r” tanh? (ax) sech? (&) | sech? (&) + tanh? (&) <% - 2>] : (3.41)

Notice that o controls the width of the energy density, as seen in Fig. 3.3. The energy density

p1 depends on o, but the same non-occurs with the energy associated that is independent, as
expected from (3.17). In this way, one can say that o modifies the shape of energy density,
squeezing it without changing the energy giving rise to structures with degenerate energy. The
total energy, considering source and structure, is given by E = E| + E, where E; = 4/3 and
E, =4a / 3.
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Figure 3.3 The energy density p; associate to model in Sec. 3.1.1, for r = 1/3 and o = 0.2 (solid, blue
line), and 0.8 (dotted, red line).

3.1.2 Second Model

In the second model, another possibility is explored, inspired by [52] and the work in Ref. [23],
which considers fermions in the presence of topological structures under geometrical constric-
tions. Here, the function is denoted by f(y) = sec?(nmy), where n is an integer. In this case,
the first-order equation becomes

¢' = 2r(1 — ¢*)cos? (nmtanh (oux)). (3.42)

This equation is similar to the first-order equation in (3.36), which gives a clue about the solu-
tion. Then following the first case, we get a solution ¢ = tanh(n(x)) type, where n(x) is the
new geometrical coordinate given by

-
20

N(x) = rx+ 5—(Ci(&+(x)) — Ci(§-(v))), (3.43)

and &1 (x) = 2nm(1 +tanh (oex)). In this way, ) (x) supports the solution in Eq. (3.40) with
the geometrical coordinate & (x) replaced by 7 (x). The term Ci(z) that appears in Eq. (3.43) is
known as cosine integral and is defined as

) Zcos(y) —1
Ci(z) = y+In(z) + /0 —(yy ) =1y, (3.44)
where the first term in Ci(z) is called Euler—-Mascheroni constant and its value is approximately
Y~ 0,58. For small z, this function behaves as
2

Ci() = y+1n(3) - 5+ 0(), (3.45)

while for large z it takes the form

Ci(z) = Sinz(z) - CO;(Z) +O(1/2). (3.46)
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Figure 3.4 The solutions ¢ (x) and y(x) for the model in Sec. 3.1.2, with f(y) = sec?(nmy), depicted
with r = 1/3 and for @ = 0.2 (solid, blue line) and 0.6 (dotted, red line) and with n = 1 (top) and n =2
(bottom). The insets highlight the behavior of the y-field configurations near the origin.

In order to investigate how o and n modify the solution profile, k£ was fixed while the other
parameters varied. The kinklike ¢ (x) and lumplike ¥ (x) configurations show a structure with
2n plateaus that have their width associated with ¢, as seen in Fig 3.4.

In the inflection point, the derivative of the solution is zero. The solution is approximately
constant near this point, giving rise to a plateau. Then in this region, its derivative is approx-
imately zero. To understand better, we analyze the roots of the first-order equation (3.42).
The term cos?(nmtanh(cx)), which comes to the function f(y) = sec’(nmy), has roots in
nmtanh(ox) = +(nmw — 1 /2), that is these roots are reach for tanh(ox) = (1 — 1/2n). There-
fore, for n = 1, we have roots in tanh(ax) = £1/2, for n = 2, the roots will be tanh(ax) = £1/2
and 13 /4, thus for n, there will be 2n roots and consequently 27 plateaus.

Note that the energy density of p, remains the same since it depends on y. On the other
hand, the energy density p; in (3.23) for this model becomes

p1 = 4r? cos? (nmtanh (ax))sech?(n) [ sech?(n) + tanh? (1) (l — 2)] : (3.47)

r

Although the energy density p; depends on f(y), the same does not occur with the energy
E| =4/3, which matches with (3.17). In this way, the total energy is given by E =40/ /3+4/3,
equal to the first model.
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Figure 3.5 The solutions ¢ (x) and x(x) for the model in Sec. 3.1.2, with f(y) = csc?((n+1/2)my),
depicted with the same values used in Fig. 3.4, for comparison. The insets highlight the behavior of the
x-field configurations near the origin.
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Another possibility to consider is a similar function f(y) = csc?((n+ 1/2)wy). In this
case, we get
¢' =2r(1 — ¢?)sin® ((n+1/2)wtanh (ax)). (3.48)

The argument about the plateaus and inflection points can also be used here. In this case, the
term sin’ ((n+ 1/2)mwtanh (ax)) possesses zero at the origin. Then it is natural that there is one
plateau there. In this way, the number of plateaus for kinklike and lumplike configurations is
2n+1, as can be seen in Fig. 3.5. Here, ¢ and ) support solutions (3.36) and (3.40) with geo-
metrical coordinate 71 (x) in Eq. (3.43), where &4 (x) = 2nm(1 £ tanh (ox)) is replaced by new
E+(x) = (2n+ 1) (1 £ tanh (oex)). The modifications in the shape of solutions are significant
and show different structures with the same energy.

3.1.3 Third Model

In Refs. [54, 65, 56, 55, 36] were investigated models with a vortex in Bessel optical lattices.
Inspired by these works, we propose the function f(y) given by f(y) = 1/J?(ay), where J;
stands for the Bessel function of the first kind, and a is a real and positive parameter. We inves-
tigated the Bloch wall structures in (1, 1)—dimension in the medium geometrically constrained
by the Bessel function. Here, the stability of the configurations is ensured by the first-order
procedure that minimizes the energy. For this case, the first-order equation in (3.33) takes the
form

¢' = 2r(1 — ¢?)J? (atanh(owx)). (3.49)

We solve this equation numerically and then get y through the orbit in Eq. (3.32) fed by the
numerical solution ¢. As we saw earlier, the configurations in Sec. 3.1.1 and 3.1.2 share a
similar size, but the same does not occur with the third model. Notice that the Bessel function
produces plateaus in the internal structure of the configurations. In Sec. 3.1.3, one can note
that ¢ and Y solutions are wider and their profiles look stretched; see Fig 3.6. Furthermore, the
energy density is diffuse, in the sense of being much less concentrated around its center, as can
be seen in Fig. 3.7, where we depicted the energy density for () = csc?((n+ 1/2)wy) and
f(w) =1/J3(ay). The energy is the same as the other models. In this way, we can identify the
Bessel function as a tool that helps increase the size of the wall, stretching it.
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20 0 20

Figure 3.6 The solutions ¢(x) (top panel) and x(x) (bottom panel) for the model in Sec. 3.1.3, with
f(y) = 1/J?(ay), depicted with r = 1/3 and for & = 0.2 and with a = 5 (red, dotted line) and a =9
(blue, solid line). The inset highlights the behavior of the y-field configurations near the origin.
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Figure 3.7 The energy density for f(y) being controlled by the cos-secant (blue) and the Bessel (red)
functions, depicted for r = 1/3, & = 0.2, and for n = 1 and a = 5, respectively.






CHAPTER 4

Spatially localized structures

Topological structures, such as kinks, vortices, and monopoles, are objects of significant in-
terest across various fields of physics. These structures arise in different spatial dimensions,
with kinks appearing in one dimension, vortices in two dimensions, and monopoles in three
dimensions. Vortices, for instance, are topological defects introduced by Nielsen—Olesen [1]
that arise in two-dimensional systems and can find applications in magnetic materials [79][87],
superfluid Helium [75], and Bose-Einstein condensate [62]. Monopoles emerge as topological
structures in three spatial dimensions in grand unified theories [72], although Dirac’s first ver-
sion was made in Ref. [37]. From Derrick and Hobart’s Theorem, time-independent topological
structures for scalar field models in dimensions greater than one are unstable or divergent; see
[35] [45]. Therefore, Vortices and Monopoles with global symmetry are usually unstable, and
their energy diverges. However, However, some possibilities exist to evade the theorem [86],
such as considering local symmetries. In Ref. [15], the authors showed that vortices models
scale invariant can present stability, and in a recent work [19], we introduce a way to find Global
Monopoles with finite energy.

In this chapter, we study a procedure that evades Derrick-Hobart’s theorem, allowing us
to find localized structures with finite energy. Next, we investigate the global monopole and
introduce first-order formalism that stabilizes the solution. In order to illustrate the procedure,
we take some examples. We investigate an extended model that deals with the dark and hidden
sector in the context of the Higgs portal. Finally, we investigate a second extended model where
the Global Monopole is inserted in a medium with geometrical constrictions.

4.1 Circumventing the Theorem

In the first step, we demonstrate that Derrick’s and Hobart’s theorem forbid topological defects
time-independent in dimensions more than one in a canonical scalar field theory. The procedure
that leads to the theorem analyzes the change in the energy scale. For that, we consider the
Lagrangian density for N scalar fields below

$(¢a,ai¢a) s 4.1)

where the field index is given by a = 1,...,N. Here, ¢“ denotes a N—plet of fields. The energy
associated with this model is obtained by integration, as follows

E = / Too dPx . (4.2)
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The energy-momentum tensor component 7 for static configurations can be written as
Too = -2, 4.3)

which lead us to
_ / L(6°,3,0%) dPx (4.4)

where i = 1,...,D. Consider the energy with the change of scale E — E; and x' — Ax!, where
A is the scale parameter. In same way, the fields ¢“(x) become ¢%(x)* = ¢“(Ax), and the
derivatives take the form dx; — A dx;. The infinitesimal volume element d”x becomes

dPx = (%) (%) (‘%) - ;L—DdD (4.5)

Replacing the above equation in the energy in Eq. (4.4), we get
- / dPx AP L(0% 1010 . (4.6)

The solutions ¢“(x)* will be constricted for A > 1 and enlarged for A < 1. The standard case
is recovered for E;_; = E. In order to analyze the energy variation in terms of A, we take

8E,1 p |,-p9Z . _p
/d {/1 P ipy

p_|,-p_ 9L 9(Ad9") , p,
= [ @ {’l Jaes  on D‘z}

D —D—1 0 a
/d x A { ST90° )aq) —D.Z}. 4.7

Since A = 1 recovers the energy without contractions or dilations, the above equation must be
null in this situation as follows

aE;L D
—— [ P { 550779 DX} 4.8)
which leads us to
<
——00°-D¥ =0. 4.9
a9 " “

In order to investigate the energy-momentum tensor components we consider the stress in
Eq. (2.5) for one scalar field in (1, 1)—dimension, which is given by

07

=50

o (x) —NiiL, (4.10)
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if we consider more dimensions, it is necessary to sum the other components in the calculus for
the total stress. Thus, from the expression in Eq. (4.9) we can identify the stress in D spatial
dimensions for a family of fields ¢“(x) as Tj; + To2 + ...+ Tpp

07

(8¢a)a¢ -DY = ZT’ (4.11)

This expression reveals that models stables by scale variation must have average pressure null.
Consider the canonical Lagrangian density for N scalar fields with scale variation in coor-
dinates given by

1
g:Aziamaa“(p“—\/(q)ﬁ,...@g), (4.12)

where a = 1,...,N. In this case, the expression for energy variation in Eq. (4.7) takes the form

&E’L /dD AP 1[ 229'9% ;¢ D’L 2;9“07 ¢+ DV (o], . %)}
/dD A~D- 1{ (D—2)(9;9)? +DV}, (4.13)
for A = 1 we get
aEl /dD { (D—2)(9;0°)2 +DV]:O 4.14)
or yet
aa% . = (2—D)EgG—DEp=0, (4.15)

where Eg and Ep are the energy gradient and potential, respectively, representing positive quan-
tities. Then, so that the above relation is respected, the first term must be positive, in this sense
(2—D) > 0. Thus, for D =2, we get Ep = 0, which is the trivial case. On the other hand,
D =1 implies Eg = Ep, which leads to the null pressure condition. If we consider D > 3,
the expression in Eq. (4.15) is not respected, showing the impossibility of getting topological
objects time-independent in high dimensions.

There are some possibilities to evade this theorem [86]. One can consider terms with high
derivatives in Lagrangian density as in skyrmion models [81][80]. Another way is to consider
time dependence as in non-topological solutions called Q-balls [60][41][40][31]. Models with
more symmetries can also be stables, as vortices in two-dimension with local U(1) symmetry
or monopoles with SU(2) in three dimensions [2][70].

Next, we focus on another special case where the Lagrangian density has explicit depen-
dence on the coordinate term. Inspired by Ref. [22], we introduce a procedure that allows us to
find structures in D spatial dimensions with finite energy.
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4.2 Global Monopole

The magnetic monopole was initially proposed by Dirac in Ref. [37] as a singularity in the
gauge field, producing a non-divergence in the magnetic field. In modern theories such as
those proposed by t’Hooft [2] and Polyakov [70], the monopole arises as a topological object
in a triplet of scalar field coupled to a non-Abelian gauge field in three spatial dimensions, and
its energy regularization is due to local symmetry SU(2). While the structures known as global
monopoles emerge from the spontaneous breaking of a global symmetry O(3) and its infinite
energy.

According to Grand Unified Theories, global monopoles could have emerged during the
early Universe [57]. In Reference [8], an investigation was carried out on the gravitational
impact of a monopole, revealing that global monopoles do not gravitationally interact with
non-relativistic matter. The paper also explores the annihilation efficiency between global
monopoles and antimonopoles, which could potentially account for the observed absence of
global monopoles in the Universe. In a recent work Ref. [34], the authors investigated the in-
fluence of a global monopole on generalized Klein—Gordon relativistic quantum oscillator for
bosonic fields in the presence of a non-central potential. The Refs. [42] [76] [68] are a sequence
of works where the stability is discussed.

In our procedure, we propose a first-order formalism that minimizes the energy, evading
the Derrick and Hobart theorem and finding structures with finite energy. For that, we initially
consider (D, 1) flat spacetime, with D > 3, and next, we study the particular case for D = 3.
The Lagrangian density which governs this model is given by

1
L = =50u9 "9 = V(I9]), (4.16)

where |¢| = \/¢9¢?. For convenience, in this chapter we use the metric with diag(nuy) =
(—,+,4+,...,+) to avoid problems with the field and metric index. The equation of motion
obtained by varying the action has the form

0y ¢ = % ol .17)

where Vjy| = dV /d|¢ |. In order to find static configurations, we consider the ansatz with radial
symmetry

a
a X

0% = H(r). (4.18)

r
where |¢| = H(r) and r is the radial coordinate. The implicit sum allow us to write x;x' = r2 =
x“x“. In this way, the equation of motion (4.17) takes the form

@mwzgw. (4.19)
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As ¢“ depends only on the radial coordinate r, its derivative can be written as

, d (x4
al¢)a - g (—H)

H&x . 0 <1) x* o0H
+ Hx +Z
; r ox;

r ox; ox;
ia a _x_i _a_H
_75 +Hx ( r3> r2 or

(4.20)

Thereby, the first term in the equation of motion (4.17) can be calculated as follow
0 i a laH
3919 = ( 5 + H (—%)ﬁ%—) .21
dx! r r? dr
5’“ JoH w9 (1 xx'0H Hx' dx* Hx* dx!
Hé“— (- ) —
axi \ r

rooxi r3oxt 3 adxt 3 ox

—Hx“xii( ! ) + 5 X' OH 0x* +x—aa—HE +xaxia—Hi (l)
12 0r dxi ' 12 Jr oxi dr dxi \ r?
x*xt 9 [OH
(5)

5 (4.22)

or yet

D

x; 0 0H X; Xxix; 0H Hx Hx*?
0;0' ¢4 == +H& — L) - i |
(P 2 or ( r3) r or P r3
xix; X 0H x* 0H xx; 0H  x%'x; 0*H
BH TS 4+ 65 S+ D S~ S A
+ + 2 or + r2 dr o r dr + r3 9r?
x? dH x* x*9dH Hx* Hx“D

97 gt 277

r? dr r3 r2or r3 r3
x4 xa8H+ x* 0H xa8H+x“82H

r2 or r2 dr r2adr r orr’

+ 3H (4.23)

and finally
i, XY0’H [x*0H _x“
0;9'¢ =32 [ﬁW—Hﬁl (D—1). (4.24)

Thus, the equation of motion (4.17) takes the form

x*9d*H [x*0H x4 x4

Multiplying both sides by x*/r we get

0’°H [10H 1
Er {rar Hr_z}(D_l):VHa (4.26)
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or better |

/D1

(P 'H) = (D_l)fl_z‘f’VH- 4.27)

Here we are using the prime subscript to indicate the derivative in radial coordinate, H' =
dH /dr, and so on. Note that in D spatial dimensions arise more a term in the equation of
motion with dependence on dimension.

The energy density is calculated following Eq. (4.3). Although the metric has an inverse
signal, the expression is still the same p = Npo-Z. Using the derivative in Eq. (4.20), we can
write the energy density in the form

1[H , 4 X; xxidH | [H _, B X X% OH
p:§[761 + Hx (—r—3) —i-r—zg} {76 + Hx (—r—3) +7W:| +Vy, (4.28)

which lead us to

1 [H? H?> _HOH H? OH\> _HOH
— | Ep_2T 4 T () Ty, 4.29
p 2{# T+ r8r+r2+(3r) r8r1+ Ho (4.29)
or yet
1 » D—1H?
— gt H). 4.
p=sH +———5+V(H) (4.30)

One can define a core structure with size 7., such that asymptotically, that is, r >> ., the
solution H goes to a constant value 7). In this way, H ~ 1, H' ~ 0, and V(H) ~ 0. Realize
that in this scenario, the energy density takes the form p o< 1 /72, and when integrated, this term
produces a divergence in the energy, which matches Derrick and Hobart’s arguments.

In order to evade the theorem, we introduce an auxiliary function W(|@|) in the energy
density inspired by the works [27][22], aiming to regularize the energy as follows

2 2 2
1 , Wu D—-1H- 1 Wy 1 _,

Inspired by Ref. [22], we take the potential V (H) with explicit dependence on radial coordinate

as follows
Wi D-1H?

V(rnhH) = T R . (4.32)
Thereby, the energy density in Eq. (4.31) takes the form
1/, Wa\*, 1 _,

Wi \*
(H’q:—) QD) Vdr+Ep, (4.34)
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where Qp) = 27P/2 /T(D/2) denotes the D—dimensional solid angle and Ep is the Bogo-
mol’nyi energy. The energy E is bounded by Ep, as follows
EEEB:Q(D)’W(H(OO))—W(H(O)H . (4.35)

The configurations that supports the first-order equation below minimize the energy:

Wy
/
which allows writing the energy density in Eq. (4.33) in the form
=+ | w’ 4.37)
p= D-1"" ° :

It is important to comment that this equation matches the equation of motion in (4.27). We can
interpret these results in another form. For that, we define a new variable, x, such that

dr

and
1
In this case, the first-order equation (4.36) takes the form
dH
I Wh, (4.40)
where
dH dx
H=——=
dx dr
dH 1
- (441)

Notice that the change of variable leads to an equation already seen in Chapter 1 in kinks
investigations. In fact, what we have here is the structure in D dimensions being mapped in
a kink in (1,1)-dimension. In addition, one can use the potential in Eq. (4.32) to write the
equation of motion in terms of an effective potential as follows

1 H o[ W; D-1H?

PHY =(D-1)= + -
rD—l ( ) ( )r2+aH 2r2D—2 2 ,,2
H WyWyy H?
~ WuWun

— m 9 (4.42)
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or better
PP Y = Uy, (4.43)
where Uy = WygWpyp and the effective potential

1

=, 4.44
W (4.44)

U(H)

which has its connected minima by the kink solution related to the global monopole by the
change of variable. In this case, the energy density can be written as

1 o 1

pP=5H"+ 353

U(H) . (4.45)

The formalism we presented, introduced in Ref. [19], has proven effective in regularizing
the energy of global monopoles, revealing structures with finite energy that were unprecedented
in the literature. By utilizing an auxiliary function, we successfully eliminated the problematic
second term in the energy density (4.30) that was causing divergence in the energy. To achieve
this, we needed to consider a potential with radial dependence, which led to sacrificing trans-
lational invariance. Despite this trade-off, models with broken translational invariance hold
significant relevance in physics.

In holographic models, where gravity is linked to a strongly coupled nongravitational the-
ory, properties such as optical conductivity in lattices with broken translational invariance have
been studied (Ref. [49]). Additionally, authors in Ref. [84] have explored breaking translational
invariance through the framework of massive gravity in the context of describing strongly cou-
pled quantum fields. Moreover, the presence of electric and magnetic impurities in BPS vor-
tices has also been associated with breaking translation invariance (Ref. [82]). Recent work in
Ref. [61] has achieved the realization of a supersolid exhibiting translational symmetry break-
ing along one direction in a quantum gas.

Overall, the incorporation of break translational invariance offers fascinating avenues for
investigating diverse physical phenomena and is a subject of significant interest and exploration
in various areas of research.

As we saw earlier, the effective potential given by U(H) =1/ 2W}21 1s positive. On the other
hand, the potential in Eq. (4.32) there is a negative term, which could cause instability of the
solutions of Eq. (4.36). In this way, it is recommended to investigate the stability of these
solutions under small fluctuations.

Following the lines of Sec. 2.1.2, we write the scalar fields as static part ¢¢(r) and a small
perturbation time-dependent n%(r,z):

¢“(r,1) = ¢“(r) +1%(r;1). (4.46)
Replacing in equation of motion (4.17) we get

90" N (1,1) = Vigy°(r,1) = 0. (4.47)
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The radial part of 1(r,¢) can be written similarly to the ansatz of the static configurations in
Eq. (4.18) as follows

ne(rt) = X;Zﬁk(r) cos (t). (4.48)
k

To calculate the stability equation we replace the above equation in (4.47) and follow the ap-
proach outlined in Eq. (4.20) that leads to (4.27)

I b (D-1) 2
— 5 (P + ( 3 +V|¢||¢|) & = wjc & (4.49)
Notice that this expression is valid for any solution of the equation of motion (4.27). In order
to investigate our first-order formalism, we consider the potential with dependence on radial
coordinate as in Eq. (4.32), thereby the stability equation takes the form

1 - WeWann +Wg
(7S = o (4.50)

As we have seen in Sec. 2.1.2, the solutions are stables if w,% > 0. For that, it is necessary
that the above expression can be written as L&, = w,%ﬁk, where the operator is given by L = SS.
The operator factorization in S and its supersymmetric partner S' ensures that the eigenvalue
in Eq. (4.50) only supports non-negative eigenvalues. Here we see that the operators can be
written in the form

d Wuy
T (4.51a)
d Wgz (D—1)
t— 2 THH 4.51b
S dr+rD_1 ro (4.510)

which ensures that the solutions of Eq. (4.36) are stables under small fluctuations.

Therefore, the formalism developed can be used to find localized structures in D spatial di-
mensions stables and with finite energy. Next, we investigate some models in order to illustrate
the procedure.

4.2.1 The |¢*| model

To illustrate our procedure, we suggest as an example the |¢ |4 model with auxiliary function
W(|¢[) given by

1
w(lol) =g —3loF. (4.52)
The effective potential U(H) in Eq. (4.44) takes the form
12
UH)==
(H) = W
H2
=—(2—H)>. (4.53)

2
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The minima are localized at [¢| =2 and |¢| = 0, there is also a maximum located at [¢| = 1,
which U(1) = 1/2. From the first-order equation (4.36) we get

H2-H
This equation supports the solution
1

Notice that this solution connects the points |¢| = 0 and |@| = 1. The energy density associated
with the structure in Eq. (4.37) is given by

o /
=5 WuH

H?*(2—H)?
7 2D

1 1
——sech*( ——— ). 4.
2D—25¢¢ ((D_z)rD2> (4.56)

By integration, we get the energy E = Q(D)2/3, which matches with the Bogomol’nyi energy
as follows

Ep =Q(D)|W (H(e)) —W(H(0))]
=Q(D)|W (1) —W(0)]

zggg». (4.57)

Fig. 4.1 presents the solution from Eq. (4.55) and its energy density in three spatial dimensions,
depicted as a planar section. The energy density exhibits a hole around the origin, resembling
the magnetic monopole in Ref. [18].

4.2.2 The |¢% model

Another model studied is the |¢|® with an auxiliary function associated given by

1 1
w(ol) =519 7lol" (4.58)

Its effective potential in Eq. (4.44) is written in the form

Ulloh = 510P (1-101). (4.59
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Figure 4.1 The solution in Eq. (4.55) (top left) and the energy density (4.56) (top right), and the planar
section passing through the center of the energy density (bottom), for D = 3.

with minima at |¢| = 0 and |¢| = 1, and a maximum in |¢| = 1/+/3, which implies U (1/+/3) =
2/27. The first order equation (4.36) takes the form

H(1-H?

In this case, the solution supported is given by

1 1 1
H(r)=4/z—=<tanh| ————5—5 ). 4.61
(r) \/2 p ((D—2)rD—2) (4.61)
It connects the points [¢| = 0 to || = 1/+/2. The energy density in Eq. (4.37) takes the form
(r) 1 1+ tanh 1 h? ! (4.62)
r)=—5+> anh [ —————=— | |sech” [ ——— ). .
P = gap=2 (D—2)rD2 (D—2)02

In Fig. 4.2, we plot the solution in Eq.(4.61) and the energy density in Eq. (4.62) for D = 3.
In addition, we plot the planar section of the energy density, where the blue color indicates the
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0.244

0.124

S ——
e,

Figure 4.2 Solution in Eq. (4.61) (top left), the energy density in Eq. (4.62) (top right) and planar section
passing through the center of the energy density (bottom), for D = 3.

energy density height. Since this energy density is higher than in the previous case, it is colored
darker blue. This structure also carries a hole in the center, as can be seen. By integration, we
get the energy E = 3Q(D) /16 matching the lower energy bound in Eq.(4.35).

4.3 Extended global monopole

The results obtained above encourage us to explore other possibilities. Recent work in Ref.[5]
investigated a model where particles that represent dark matter interact through the Standard
Model-like Higgs boson. In this scenario, the Higgs plays the role of a communication chan-
nel between the visible sector, i.e., the standard-model particles, and the dark sector or hid-
den sector. Motivated by this work, we propose a topological model with two distinct global
monopoles that may communicate with each other through the Higgs portal. For that, we in-
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troduce the Lagrangian density given by
1 1
L= —50u9%0"0" — 59 x 0"y =V (|6l [x1) - (4.63)

Here, x“ denotes another family of scalar fields, where a = 1,...,D, for D > 3, V(|¢|,|x]|) is
the potential with dependence on the modulus of the scalar fields, with |x| = \/x%x% The
equations of motions associated with the Lagrangian density in Eq. (4.63) are given by

oot 9 = (4.64)

¢a
9] lob
dy ot a:x_" (4.65)
nworx x| 2l :

In order to get another structure with a global monopole profile, we consider the ansatz for
x“ with a shape similar to Eq. (4.18) as follows

X =) (4.66)

Since the fields depend only on the radial component r, the equations of motion are written in
the form

H

rD 1(’D lH) (D—l)r—z+VH, (4.67)
I

D— 1(rD 1%) (D _1)},—24"/%- (4.68)

The energy density associated with these structures is calculated standardly. It is the previous
energy density plus the new contributions from the other field as follows
1

1 » D—1
:_H/Z _jip/
2 +2 2r?

(H> + ) +V(H, ). (4.69)

In order to explore the first-order formalism, we introduce an auxiliary function W (|¢|, |x|)
in the energy density following the steps of the previous case

pt (=) 2 () v B o

2 ro=l 1 (4.70)
1 1, '
— 5n 2(mﬂrw%ﬂ)i—lw ,
where
dwW
W=—
dr

oW d|¢| N oW d|y|
~ || dr  d|y| dr
=WyH' + Wy " . 4.71)




46 CHAPTER 4 SPATIALLY LOCALIZED STRUCTURES

If we consider the potential in the form

1 D—1
V(H, )= W(W,?, +W3,) - = (H? +57), (4.72)
the energy density in Eq. (4.70) becomes
_ 1 / Wy 2 1 / W?f 2 1 ! (4.73)
p=s\HFo575) t5(X Fo1) T oW - :

From this expression we can see that the energy is bounded, that is, £ > Ep, where
Ep = Q(D)|W(H(>)), 7 ((2)) =W (H(0)),2((0))] - (4.74)

The minimum energy is reached for solutions that obey the first-order equations

Wy

!
W

Ao =+ (4.76)
r

which allows writing the energy density in the form p = W’ /rP ~!, leading the energy E = Ej.
The auxiliary function W(|¢],|x|) is inspired by the model introduced in Ref. [9] and studied
in Sec. 2.5.2:

W(|¢|7|%|)=|¢|2—§|¢I3—S(|¢|—1)|%|2, 4.77)

where s is a real parameter that controls the interaction intensity between the families of scalar
fields, in other words, the Higgs portal. In this case, the first-order equations in Eqgs.(4.75) and
(4.76) becomes

H(2—H)—s?

H — = : (4.78)
H = —w . (4.79)
r

To decouple these equations, we will use some tools obtained in Ch. 2. Perform the trial orbit
method here may not be such an easy task, so we do a change variable of

H=u+1, (4.80)
which leads to H' = «/. In this case, the set of first-order equations become

;o 1 —u? — 502

= 4.81
u D1 ; (4.81)

(4.82)
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The above expressions are very similar to the first-order equations in (2.60) and (2.61) and lead
to the same orbit (2.67) seen previously:

1
2 2

1. 4.83
u +1/s I ( )

We can use this expression to decouple the fields. Replacing it in first-order equation (4.81)
leads us to

W =2s(1—u?), (4.84)

This equation supports the analytical solution written in terms of H

H=1-tanh (#) . (4.85)

In this case, the solution .7# can be written as

1-—2s 2s
I = g sech(<D_ 2)rD2) , (4.86)

where s € (0,1/2]. The energy density for this structure is written as

4582
= 7 (1 —25—(1—35)8? 4.
P rZH( s—(1-35)87), (4.87)

where S = sech(2s/((D —2)r”~?)). By a change variable of r for x as in Eq. (4.38), we
can understand the first-order equations in (4.78) and (4.79) as r?~!(dH /dr) = dH /dx and
PN d A |dr) = d# |dx, or yet

dH

_— —_ —_ 2

. H(Q2—H)—sit?, (4.88)
dA#

= = —2s(H—-1)7 . (4.89)

Although these equations resemble the BNRT, we must be careful. In this case, H € [0, 1] while
the kink seen in Ch.2 belongs to the interval [—1, 1].

From Eq. (4.74), we get E = 2Q(D)/3. One can realize that the energy is independent s,
which allows us to control the Higgs portal without changing the energy. In Fig. 4.3 are plotted
the solutions H and 7, and the energy density in Eq. (4.87) for s = 1/3 and D = 3. Notice
that the energy density presents a hole around the origin, yet in this graph, we can see that this
structure has its matter more concentrated. Therefore, the energy density has a height greater
than this chapter’s other models. In order to investigate the influence of s on the profile of the
global monopoles, we plot in the planar section for energy density with s = 0.2, 0.3, and 0.4;
see Fig. 4.4. One can notice that s may control the distribution of matter inside the structure.
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0.5+ p

T T
0 5 10 0 1 2
r r

Figure 4.3 Solutions H and 7 in Eq. (4.85) and (4.86) (left) and the energy density in Eq. (4.87) (right)
for s = 1/3 and with D = 3. The thinner line represents H(r) and the thicker one stands for J#(r).

o O

Figure 4.4 Planar section of the energy density (42) passing through its center, for D = 3 and s = 0.2
(left), s = 0.3 (center), s = 0.4 (right).
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4.3.1 The second extend model

We propose another model with a scalar field y, where the dynamical part of the global
monopole is coupled to this new field through a function f() as follows

1 1
& =5 ()09 = 5dux o x = V(|#].x) - (4.90)

This procedure is similar to performing in Ch. 3, where we investigated the possibilities of
controlling the internal structures of Bloch Walls by geometrical constrictions. The equations
of motion associated with this model are given by

du(fo" ¢ z% e (4.91)
oty = % Fy0u 0 o +V, . (4.92)

Here we consider static configurations and the ansatz in Eq. (4.18). The scalar field is written
as x = x(r). Thus, the equations of motion take the form

1 / H
D1 (P71 :(D—l)];_z+VH7 (4.93)
1 -1 n’ 1 /12 H2
D1 (%) =§fx(H +(D—1)r—2)+vx. (4.94)

In this case, the Bogomol’nyi procedure leads to the energy E bounded below by
Ep = Q(D)|W(H (), (o)) = W(H(0),2(0))], (4.95)
for potential with explicit radial dependence written in the form
2
Wl 2

1 D—1
V(|¢|:Xa’”)zm<m+wx>— 22 f0l91*. (4.96)

The energy minimum energy is reached for configurations that support the first-order equations

Wy
H/ = },.DTJC(X)’ (4.97)
Ww.
X =55 (4.98)

In order to investigate effects in global monopole behavior by a geometrical constriction,
we take the auxiliary function in the form

1 1
Wollxl) =91 =3P +x* =327 (4.99)
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The first-order equations for f(yx) = (1 — )~ %" take the form

P HG -

ramc. %)VDHI(Z H) (4.100)
9 _

X' = —%(},DIX) : (4.101)

Since the fields in the auxiliary function are decoupled, it can be written as W(|¢|,x) =
Wi(]@|) +Wa(x). In this way, the energy density associated with these structures can be written
separately in two distinct contributions given by

(1- x>~ H)?

py = P , (4.102)

_e-x)?
P2="1m=2 -

(4.103)

The first-order (4.101) for x(r) can be solved independent as follows

x(r) =1—tanh (W) . (4.104)
Then we can use it to feed the Eq. (4.100) and get the solution:
H(r)=1—tanh& , (4.105)
where the argument is written as
n
&= W —k;l Zk—l_ltanthl (W) : (4.106)
Thus, the energy densities become
1 20 1 4
p1 = mtanh (W) sech™ (&), (4.107)
p2 = rlezsech“(W) . (4.108)

By integration, one can get the total energy E = E| + E», each term referring to one energy
density. The structure with energy density p, is the same as obtained in Eq. (4.56), which
leads to E; = 2Q(D)/3, the same energy for Ej. As expected, these values for the energies
match the minimum value Ep. Fig. 4.5 are depicted the solution H and the energy density p;
to investigate the influence of » in the structure. One can see that large values of n make the
solution H less smooth, which leads to shrink structures. Notice that the energy density forms
a structure shell-like that may control by n; see Fig. 4.6.



4.3 EXTENDED GLOBAL MONOPOLE 51

20 4

Figure 4.5 Solution H(r) (left) in Eq. (51a) its associated energy density (23) (right) for D = 3 and
n = 1,4 and 16. The darkness of the color increases with 7.

L) O O

Figure 4.6 Planar section passing through the center of the energy density (23) for D =3 and n =1
(left), 4 (center) and 16 (right). The darkness of the color increases with n.






CHAPTER 5

Electrically charged multi-field configurations

In this chapter are investigated electrically charged structures that are localized in two and
three spatial dimensions. Here, the Maxwell term in Lagrangian density is coupled to the
scalar field in an unusual way giving rise to charged structures in D > 2 dimensions. We
developed a procedure in Ref. [20], inspired by the work in Ref. [16], that considers a single
point charge in a medium with the electric permittivity controlled by scalar fields, which leads
to first-order equations with stable solutions of minimum energy. Moreover, other possibilities
are investigated considering modifications in scalar fields kinematics simulating geometrical
constrictions, similar to those seen in Ch. 3. We also investigate the electrical permittivity
controlled by a family of scalar fields studied in the previous chapter.

5.1 A single point charge

It is known that the electric field generated by a charge grows quickly near the charge’s location,
diverging at the point. Recent work in Ref. [16] showed that the electric field behavior could
be regularized by an electric permittivity controlled by a scalar field. To present this procedure,
we start with the standard electromagnetic field in the presence of an external charged source
in (D + 1)-dimensions described by the Lagrangian density

1 :

where Fj,y = dyAy — dvAy is the electromagnetic strength tensor, Ay, is the gauge field and j#
is a (conserved) source current. In this chapter, we are considering the flat space in (D + 1)-
dimensions, with diagonal of metric diag(nuv) = (+,—,—,...,—). The equation of motion
obtained in a standard way is given by

OuFH’ = jv. (5.2)

Consider the electrostatics scenario of a single point charge e at the origin in the absence of
currents, taking j* in the form

P’ =eQ(D)S(r) and [ =0, (5.3)

where Q(D) = 27x°/2/T'(D/2) denotes the D-dimensional solid angle introduced in this ex-
pression for convenience and I'(D/2) is the gamma function. Here, d(r) represents the Dirac

53
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delta function of radial vector r = r7, with 7 denoting the unit vector in the radial direction. The
Dirac delta can also be written as

o(r)

5(1’):W7

5.4)

such that for D = 3 in spherical coordinates, for instance

/ 5(r) dr — / Q‘S(;?rz dr
-]
:/f;:l4ﬂr2 dr

1. (5.5

r?sin(0) d6 de dr

There is no magnetic field in this case, and the electric field is written as E I = FO One can
show that Gauss’s law in Eq. (5.2) takes the form

F0 =0 (5.6)
which leads to
e A
E(r)=p=F (5.7)

where E(r) = E, 7 is the electric field vector with divergence at the origin.

The procedure developed by the authors in Ref. [16] that regularizes the electric field be-
havior considers a scalar field non-minimally coupled to the gauge field by a function that
describes the electric permittivity as follows

Here, P(¢) denotes the electric permittivity controlled by the scalar field ¢. The equations of
motion associated are given by

1
du(P(9)FHY) = j" =0, (5.10)
where Py = dP/d¢. Here we also consider the same scenario of a single-point charge e at

the origin in the absence of currents described by Eq (5.3). In this situation, Gauss’s law in
Eq. (5.10) leads to the electric field

E(r)=— 1. (5.11)
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Notice that this expression can be replaced in the equation of motion (5.9), leading to a new
equation, which allows writing the scalar field ¢ independent of the gauge field A,. The energy
density associated with this configuration follows the steps in the appendixA.

1 12 P 2
= = —|E
p=5¢"+lE|
1 e
op 2D-2"

The Bogomol’nyi procedure is performed by introducing an auxiliary function W(¢) in the
energy density, adding zero to the equation as follows

1 / Ws 2 1 ¢ 2 1 /
p= §(¢ T rDl) T 5202 (;—W(p s LU (5.13)

where W' = ¢'W, and W, = dW /d¢. Notice that if P = e /Wj, the energy is bounded from
below E > Ep. In this way, the minimum energy is reached for solutions that obey the first-order
equation

_1 2
=97+ (5.12)

W,
o' = 5. (5.14)

In order to illustrate the procedure, takes the auxiliary function W (¢) = ¢ — ¢> /3 introduced
in Ch. 2, Eq. (2.35), for D =2 and D > 3. The first-order equation in Eq. (5.14) for this case
becomes

1—¢?
¢ = pral (5.15)
The planar case with D = 2 leads to the first-order equation solution below
(r?=15)
= . 5.16
¢ (r) (rz _|_ r(z)) ( )

Feeding the electric permittivity P(¢) with the solution allows us to write the electric field in
Eq. (5.11) in the form

2rro 41 R

er
While for D > 3, the solutions for the first-order equation (5.14) are given by

-1
¢(r) = tanh (—(D—Z)rD_2> . (5.18)
In this case, the electric field takes the form
—1 1
_ 4 ~
E(r) = sech ((D— 2)rD2> o (5.19)

Notice that the electric permittivity modifies the usual field behavior, regularizing divergence
at the origin. Next, we study a model inspired by this work, in which two coupled scalar fields
control the permittivity.
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5.2 Charged configurations

In Ref. [20] we developed a procedure inspired by the above results, where the electric permit-
tivity is controlled by two scalar fields that describe the domain wall. Here, we use the scalar
fields to mimic the Bloch wall structures, as was presented in Ch. 3. The Lagrangian density
for this model is inspired by the ones in Egs. (5.8) and (2.46)

1 1 1
Z = —ZP(q),x)Fqu“"Jr§8u¢8“¢)+§8u18“x—Auj“, (5.20)

where y is a real scalar field and P(¢, x) is the new permittivity controlled by the fields ¢ and
x- This expression is quite different from the one in Ref. [16], although both models deal with
two scalar fields ¢, and J, here they are coupled exclusively by the electric permittivity. The
equations of motion are given by

P
Ouot o+ Z"’FHVF“V =0, (5.21a)
u PX uv
o g+ f FayF* =0, (5.21b)
du(PF™Y) — j¥ =0. (5.21c)

Consider the electrostatics scenario of a single point charge described by the current in Eq. (5.3).
In this case, Gauss’s law in Eq. (5.21c¢) leads to the electric field

e

b= 0 .2)

similar to expression in Eq. (5.7). The equations of motion (5.21a) and (5.21b) for static scalar
fields are given by

7, (5.22)

1 YN €2 3 1
D1 (”D ¢') _W% P =0, (5.23a)
1 —1.I\ 62 d 1
S (X)) - 2 295\p) =0 (5.23b)
The energy density for this configuration is given by
1 1 P
p=50"+ " +5EP
2 2 2 (5.24)
Lo 1 o, 1 €
=0 +-x +

In order to perform the Bogomol’nyi procedure, we introduce an auxiliary function W (¢, x)
following the lines of Sec. 5.1 and rewrite the energy density in Eq. (5.24) in the form

1/, We\> 1/, W\ 1 (& /[ , 1,
P:z("”FrD—l) +§<”ra—1 tamr (= (W+W7) )& 5 529
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Notice that if the permittivity has the form

62

P(o,x) = —W(g W (5.26)

then the energy is bounded, that is £ > Ep, where
Ep = Q(D)|W(¢(o0),%(=)) =W (¢(0), x(0))] - (5.27)

For the minimum energy value to be reached the configurations must obey the first-order equa-
tions below

!/ j: W‘P

¢ =+5 (5.282)
! WX

X =+ (5.28b)

In this case, the energy density becomes

p(r)=¢"+x". (5.29)

Since we studied in Ch. 3, the auxiliary function W(¢, ) in Eq. (3.25) leads to scalar
fields that describe Bloch wall structure type. In order to investigate the behavior of a single
point charge in a medium with the electric permittivity controlled by ¢ and ) fields that mimic
domain wall, we consider W(¢, x) in Eq. (3.25) with a new parameter & as follow

W(0.2) =09~ 300> ko, (5.30)

where k is a parameter that controls the intensity of the coupling between the fields ¢ and y.
Here, o denotes a real and positive parameter, which is not required for one spatial dimension.
On the other hand, in high dimensions ¢ play an important role in avoiding divergences in
energy density, as we will see further below. In this situation, the first-order equations in
(5.28a) and (5.28b) take the form

o 2—k 2
P il 7 (5.31a)
r
2k
= rD‘P’f . (5.31b)

To decouple these equations we can use the elliptic orbit in Eq. (3.32) with a slight difference

k
2 2
=1 5.32
O+ =1, (5.32)
which leads to the first-order equation (5.31a) below
2k(1— ¢?
¢’ = L2 07) fop ) (5.33)
r

Next, we investigated the scenario for D = 2 and D = 3. For simplicity, we take the positive
equation above.
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0 2 4 0 4 8
r T

Figure 5.1 The solutions @ (r) (left) and y(r) (right) associated to the model in Sec. 5.2.1 for ¢ =5,
with k = 1 (solid, blue line) and 2 (dotted, red line).

5.2.1 Two spatial dimensions

In the planar case, with D = 2, the first-order equation (5.33) becomes

2k(1 — ¢
o' = M (5.34)
r
This equation supports the solution
4k
r*—1
= —. 5.35

To find yx, we feed the orbit equation (5.32) with the above solution to get

o r2k
=2 /= =2 —— .
x(r) v XA (5.36)

Notice that one must take ¢ /k > 2 to respect the condition that x is a real scalar field and
non-vanishing. In Fig 5.1 are plotted the solutions ¢ (r) and x(r) in Egs. (5.35) and (5.36). The
energy density in Eq. (5.29) becomes

42T 2% \*
P<”>:7[(r4k—+1)

2% N2/ _1\? /o 637
—=211.
() () (7-2)
The electric field in Eq. (5.22) with the permittivity P(¢, x) in Eq. (5.26) takes the form
42T 27k \*
Er= ;K—,Am)
(5.38)

. 272k N2 /A 1\ 2 2_2
rk 41 r 1 k '
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4 0 ‘ - é 4
Figure 5.2 The radial component of the electric field (left) for e = 1 and the energy density (right)
associated to the model in Sec. 5.2.1 for o = 5, with k = 1 (solid, blue line) and 2 (dotted, red line).

Asymptotically the energy density and the electric field go to zero. On the other hand, near the
origin, the first term in energy density [2r2%/(r* +1)]* becomes proportional to 3%~ since, in
this situation, r* +1 ~ 1. Doing the same analysis for the second term, we see that it becomes
proportional to ¥*=2. Then, for the energy density not to diverge at the origin, one must take
4k —2 > 0, this is, k > 1/2. Since ¢ /k > 2 must be satisfied, this condition imposes that ¢ > 1.
Similarly, near the origin, the first and second terms in the electric field become proportional
to r3~1 and r*~1, respectively. These terms impose the condition k > 1/4. However, this
condition is already covered by k > 1/2.

In Fig. 5.2 can be seen that the electric field (left) presents a behavior quite different than
usual (see Eq. (5.7)), giving rise to a valley around the origin. The same can be observed for
the energy density (right). Therefore, the Bloch wall modeled by the scalar fields regularizes
the electric field generated by a single-point charge. The planar plot in Fig. 5.3 allows us to
visualize the ring-like structure in the electric field and energy density; the hole with a center
at the origin is controlled by k. The total energy of this structure is £ = 875 /3.

5.2.2 Three spatial dimensions

Following the analysis, we take the spatial case with D = 3. The first-order equation (5.33), in
this case, becomes

2k(1— ¢?
0 = —( 5 ¢7) . (5.39)
r
In this situation, the solutions ¢ and y are given by
¢(r) =tanh(&(r)) (5.40a)

2() = /% — 2 sech(&(r), (5.40b)

where & (r) plays the role of a geometrical coordinate, with

2k
E(r)=——, (5.41)

7
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[e]

Figure 5.3 The radial component of the electric field (left, blue) with ¢ = 1 and the energy density
(right, orange) associated to the model in Sec. 5.2.1 depicted in the plane for o = 5, with k =1 (top),
and k = 2 (bottom). The intensity of the blue and orange colors increases with the increasing of the
electric field and energy density, respectively.

as in Eq. (3.38). In Fig. 5.4 are plotted the solutions ¢ and ). In this scenario, ¢(r) goes
from —1 to 0. The solution x(r) becomes a monotonically increasing function, starting from
zero, reaching its maximum value /o /k asymptotically. Moreover, these solutions are more
elongated than those of the planar case, as shown in axis r.

The energy density associated is given by

4k 4 2 2( O
p(r):7 sech(&)* + tanh(&)“sech(&) E—Z , (5.42)
and the electric field has the form
4K 4 ) 2( O
E,(r):m sech(&)*+ tanh(&)“sech(&) 2—2 , (5.43)

where the expressions are written in terms of geometrical coordinate & (r). Notice that the en-
ergy density and the electric field go to zero asymptotically. The term sech( (r)) = sech(—2k/r)
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Figure 5.4 The solutions @ (r) (left) and y(r) (right) associated to the model in Sec. 5.2.2 for ¢ =5,
with k = 1 (solid, blue line) and 2 (dotted, red line).

Figure 5.5 The radial component of the electric field (left) with e = 1 and the energy density (right)
associated to the model in Sec. 5.2.2 for ¢ = 5, with k = 1 (solid, blue line) and 2 (dotted, red line). The
inset in the bottom figure shows the interval p € [0,0.04].

goes to zero quickly, even before the 1/ r* diverges. Therefore, for any allowed value of k, these
physical quantities do not diverge at the origin, unlike in the planar case with D = 2. Thus, ¢
is not required here to avoid divergences and to ensure that the electric field is single-valued.
In Fig. 5.5 are plotted the energy density and the electric field for some values of k. To better
visualize their behavior, we plot them at the plane in Fig. 5.6. The total energy for this structure
is E=8nc/3.

5.3 Internal structure of charged configurations

In the previous section, we presented a single-point charge in a medium with an electric per-
mittivity controlled by scalar fields, which mimic a Bloch wall. This procedure regularizes the
electric field locating it in a ring-like structure. Authors in Ref. [12] presented the effects of de-
formation in the kink profile through a function that changes the kinematic term in Lagrangian
density. In Ref. [21], we describe a procedure to manipulate the internal structure of the Bloch
wall, which was presented in Ch. 3. In that sense, we continue the investigation with the idea
of modifying the internal structures of charged configurations shown in the previous section.
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o

Figure 5.6 The electric field in the plane (left, blue) with e = 1 and the energy density (right, orange)
associated to the model in Sec. 5.2.2 for 6 = 5 and k = 1. The intensity of the blue and orange colors
increases with the increasing of the electric field and energy density, respectively.

For that, in Ref [20], we propose the Lagrangian density

1 1
2L = _ZP(¢7%7‘I/)FMVF#V+Ef(‘/’)au‘i)a“‘])
(5.44)

1 1 .
+5f (w)dux o x + Eau yorty —Auj*,

where P(@,x,y) is the new electric permittivity, y is the scalar field that plays the role of
source, f () is the function that is coupled to the kinematic terms of ¢ and ¢ associated to the
Bloch wall. Here, j* is the current in Eq. (5.3). The equations of motion are written as

a’u (f&“d)) + %Fquuv =0, (5.45a)
Ol fOH ) + L Fu FHY =0, (5.45b)
QY+ Ly f—z‘”(awa% 919" 7) = 0. (5.45¢)

Gauss’s law leads to Eq. (5.11) with the new electric permittivity P(¢, x, ). The set of equa-
tions of motion for the static field configuration is given by

1 Ao 2 ad (1

’,D—_1("D 'fo') — 27202 3¢ (1—3) =0, (5.46a)
1 -1 IN 62 3 1 .

W(VD ) = Wa (F) =0, (5.46b)

1 _ 29 /1
D1 (r? 1‘V/), - #W/ (F) — %(%’2 + (P'Z) =0. (5.46¢)
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As before, the scalar fields are decoupled from the gauge field due to the electric field. On the
other hand, these fields are coupled with each other. The energy density associated with the
field configuration has the form

2
p:§(¢’2+ )+ w’ +2P . (5.47)

In order to perform the first-order formalism, one considers the function W = W (¢, x, v) and
we rewrite the energy density as

f Wy \> f W, \? 1 Wy \?
pzz((P,:FfrDl +§ xlq:ferl +§ W/:':m

1 ¢ W¢2 Wy 2 |
*wz(p—(T*?*Ww oW

W =Wyo'+Wyx' +Wyy' . (5.48)

where

As before, the minimum energy is reached if the permittivity is written in the form

W W2 —1

P92, W)= ( A 4 +W2) , (5.49)
o f
and the equations of motion are compatible with the first-order equations
Mo (5.50a)
9 = D=1 -Duva
P 5.50b
X = DT (5.50b)
Wi

Y =+50 (5.50¢)

In this case, the energy becomes Ep = Q(D)|W (@ (o0), x (o), W (e0)) — W($(0), x(0), w(0))|.
Notice that the first-order equations (5.50a) and (5.50b) are given in terms of Wy and W,
respectively, and also f(y). On the other hand, Eq. (5.50c) depends only on Wy,, which makes
it independent of ¢ and x. This particular case allows us to write the auxiliary function in the
form W (¢, x,yv) = W(¢9,x) +W(y). Therefore, the first-order in Eq. (5.50c) can be solved
independently. Thus, as in Sec. 3.1, we use its solution to feed the function f(y), which plays
the role of the source of geometrical constrictions. In this scenario, the energy is written as
P = p1 + p2, where py is the part that depends on the f(y) and the other fields, and p; is the
energy density associated to the source, as follows

p1=F(W)(0”+ 1), (5.51a)

P =y (5.51b)
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In order to investigate the geometrical constrictions effects in the Bloch Wall described by the
scalar fields ¢ and ), we take W) (¢, x) as the auxiliary function shown in Eq. (5.30). For the
source field, we take an auxiliary W, () as in Eq. (2.35) as follows

1
Wsr = ay — gonf, (5.52a)

where « is a real and positive parameter. Then, we get the set of first-order equations (5.50a)-
(5.50¢)-(5.50b) in the form

c— 09> —ky?
¢/ - :l: f:.PD—l X ) (5.533)
2k
—2 0k, (5.53b)
a(l—y?
Y = i%. (5.53¢)

Using the trial orbit method, one can show that the first-order equations (5.53a) and (5.53b)
support the orbit elliptic in Eq. (3.32). Thus, we get

2k(1 — ¢?

¢ = i(—z)q)—l)' (5.54)

fw)r
This equation is very similar to Eq. (3.33) in Ch. 3 for one dimension, where some possibilities
for the function f(y) are explored, which leads to modifications in the profile of structures of
the Bloch wall type. The following models, in two and three spatial dimensions, are inspired
by these results.

5.3.1 Two spatial dimensions

We start with the charged configurations inspired by the structures in Sec. 5.2.1, with D = 2.
The first step is getting the solution y(r), so we can feed the function f(y) and replace it in
the first-order equations involving ¢ and y. Eq. (5.53c) supports the solution

Pl |

w(r)
where we have taken the condition y(1) = 0, for simplicity. The energy density associated to
the field source in Eq.(5.51b) has the form

1602742

= . 5.56

Notice that one must take 40t —2 > 0 or yet o > 0.5 to prevent the energy density from diverg-

ing at the origin. In Fig. 5.7 one can see the solution y(r) (left) forms a kink-type structure.

It and its energy density present a known profile. Next, distinct possibilities for the function
f(y) are investigated.
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Figure 5.7 The solutions y(r) in Eq. (5.55) (left), and the energy density in Eq. (5.56) (right) for a@ = 2.

5.3.1.1 First model

We start out taking f = 1/y?. The first-order equation in Eq. (5.54) becomes

42
¢ = 2szw , (5.57)

r

where we consider the upper sign for it. Replacing the solution y/(r) in Eq. (5.55), we get

o 2
¢'=2k(r2 _1) (1=9%) (5.58)

2o r

This equation supports a kink-like solution

¢(r) =tanh(&(r)), (5.59)

2(r) = /% — 2 sech(&(r)) (5.60)

where &£(r) is the new geometrical coordinate given by

which leads us to

2% ( 1 Lol 5.61
&(r) = (n(r)—am)- (3.61)
Notice that the fields ¢(r) and x(r) are similar to Eqs.(5.40a) and (5.40b), with another geo-
metrical coordinate. Just like in Ch. 3, the function f(y) modifies the internal structure of the
Bloch wall. Therefore, a new function f(y) still implies a Bloch wall described by ¢ (r) and
x(r), but with a new geometrical coordinate for the scalar fields. In Fig. 5.8, one can see the
formation of a plateau in solutions ¢(r) and y(r) for 6 =5, a = 2, and some values of k. The
energy density associated to this configuration is given by p;. Below we write it in terms of the
geometrical coordinate & (r)

p1 = 4%2 (rw — 1)2 (sech“(e:) +sech?(&)tanh?(€) (% - 2)) : (5.62)

r2e 41
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Figure 5.8 The solutions ¢ (r) (left) and x(r) (right) associated to the model in Sec. 5.3.1.1 for 6 =5
and o = 2, with k =1 (solid, blue line) and 2 (dotted, red line).
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Figure 5.9 The radial component of the electric field (left) with e = 1 and the energy density (right)
associated to the model in Sec. 5.3.1.1 for 6 = 5, & = 2, with k = 1 (solid, blue line) and 2 (dotted, red
line).

and the electric field in the form

2a

E = [4kzsech2(§) (:m - 1 )2 <sech2(§) + tanh?(&) (% - 2)) + (16‘1‘&} L 63

r2e 4+ 1)4 | re

In Fig. 5.9, we illustrate the electric field and the energy density. One can see that these new
configurations present two peaks, which are controlled by k, the parameter that controls the
strength of the coupling between the scalar fields. As k grows, the hole with the center at
the origin becomes bigger, squeezing the electric field and energy density and making the
peaks higher. In Fig. 5.10, these structures can be seen at the plane. The total energy of the
configurationis E = E; + E; = 8n(c+ a)/3.

5.3.1.2 Second model

In the second model we take f = sec?(nmy) following the lines of Sec.3.1.2, where n is an in-
teger. The first-order equations associated support solutions similar to Egs.(5.40a) and (5.40b)
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Figure 5.10 The radial component of the electric field (left, blue) with e = 1 and the energy density
(right, orange) associated to the model in Sec. 5.3.1.1 depicted in the plane for 0 =5 and a = 2, with
k=1 (top), and k = 2 (bottom). The intensity of the blue and orange colors increases with the increasing
of the electric field and energy density, respectively.

with a new geometrical coordinate 1 (r) replacing &(r) given by

(r) =KIn(r) + 50 [CI(E (1) ~ Ci(& (7)), (5.60)

where C; denotes the cosine integral function defined in Eq. (3.44) and £ (r) = 27n[1 & (r2% —
1)/(r** +1)]. In Fig. 5.11, we depicted the solutions ¢ () and X (r) for the new geometrical
coordinate. In this situation, the scalar fields show 2n inflection points that appear due to the
form of f(y). The energy density in Eq. (5.51a) reads

— |4k%sech? 2 (o] h
p1= sech”(n)cos” | n T sech”(n)

+tanh?(1) (% —2)” r—lz

(5.65)
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Figure 5.11 The solutions ¢(r) (left) and x(r) (right) associated to the model in Sec. 5.3.1.2 for 0 =5,
a =2 and n =2, with k = 1 (solid, blue line) and 2 (dotted, red line). The inset in the bottom figure
shows the interval r € [0.5, 1.5] for k = 2.
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Figure 5.12 The radial component of the electric field (left) with ¢ = 1 and the energy density (right)
associated to the model in Sec. 5.3.1.2 for 6 =5, o = 2 and n = 2, with k = 1 (solid, blue line) and
k = 2 (dotted, red line).

and the electric field in Eq. (5.7) takes the form

E = [4kzsech2(71) cos’ (mr(rza — 1)) (SeChz(n)

r2e 41
c 16a2r*® 7 1
tanh? -2 —_ .
I (n)(k >>+(r2“+1>4} re

In Fig. 5.12, we illustrate the electric field and energy density. Notice that these new configu-
rations are richer than the previous ones, presenting a multi-ring structure controlled by k. To
better illustrate these features, we plot them on the plane in Fig. 5.13. Here one can see that as
k grows, the inner ring becomes diffuse. On the other hand, the following two rings become
more concentrated. The total energy for this structure is the same as the previous case since it
no depends on the function f(y). Next, we explore modifications generated by the function
f(y) in three dimensions scenario.

(5.66)
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Figure 5.13 The electric field (left, blue) with e = 1 and the energy density (right, orange) associated
to the model in Sec. 5.3.1.2 depicted in the plane for c =5, a =2 and n = 2, with k =1 (top) and 2
(bottom). The intensity of the blue and orange colors increases with the increasing of the electric field
and energy density, respectively.

5.3.2 Three spatial dimensions

We continue our investigation of the model (5.44), studying it in three spatial dimensions.
As before, we explore the unusual behavior of the electrical structure induced by the electric
permittivity controlled by scalar fields. Here we consider the same functions f(y) shown in
the previous section. The first-order equation in Eq. (5.53c) is given by

a(l—y?
v = i# . (5.67)
r
In this case, we get
(04
¥ = — tanh (—) , (5.68)
r
the energy density in Eq. (5.51b) for this configuration is given by
2

(04 o

p2 = —ysech’ <7> . (5.69)
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Figure 5.14 The solution y/(r) in Eq. (5.68) (left) and the energy density p, in Eq. (5.69) (right) for
a = 2. The inset in the top figure shows the solution near the origin.
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Figure 5.15 The solution @ (r) (left) and x(r) (right) associated to the model in Sec. 5.3.2.1 for 6 =5
and o = 2 with k = 1 (solid, blue line) and 2 (dotted, red line).

In Fig. 5.14, we plot the solution (5.68) and the energy density (5.69) for o« = 2. Notice that
contrary to the case for D = 2, here « is not required in order to avoid divergences.

5.3.2.1 First model

Consider f = 1/y?. In this case, the first-order equation (5.54) supports solution ¢ (r) similar
to (5.53a), which leads to solution x(r) in Eq. (5.53b) with geometrical coordinate replaced by

E(r) = % (tanh <%> - %) (5.70)

In Fig. 5.15 we depicted ¢(r) and x(r) for 0 =5, o« = 2 and some values of k. The energy
density associated to this configuration in Eq. (5.51a) is

p1 = |4K2sech?(&) tanh? (g) (sechz('g') + tanh?(€) (% —2>)} rl4 RN KA

r
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Figure 5.16 The radial component of the electric field (left) with e = 1 and the energy density (right)
associated to the model in Sec. 5.3.2.1 for 6 = 5, o = 2, and k = 1 (solid, blue line) and 2 (dotted, red
line).

O

Figure 5.17 The section passing through the center of the structure, representing the electric field (left,
blue) with e = 1 and the energy density (right, orange) associated to the model in Sec. 5.3.2.1 for 6 =5,
a =2 and k = 2. The intensity of the blue and orange colors increases with the increasing of the electric
field and energy density, respectively.

and the electric field (5.22) is given by

E = [4k2sech2(é>tanh2 (%) (sechz(é)

+ tanh?(€) <% . 2)) + o?sech? (%ﬂ 617

In order to illustrate the behavior of the physics quantities, we plot them in Fig. 5.16. One can
see that the electric field and the energy density show a hole near the origin controlled by k.
Moreover, k also controls the height of the peaks. We depicted these structures on the plane in
Fig. 5.17 to better illustrate the behavior.

(5.72)

5.3.2.2 Second model

The other model investigates three spatial dimensions considering f = sec?(nmy). Following
the lines of the previous example, we get solutions similar to Egs. (5.40a) and (5.40b) with
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Figure 5.18 The solutions ¢(r) (left) and x(r) (right) associated to the model in Sec. 5.3.2.2 for 0 =5,
a =2 and n =2 with k =1 (solid, blue line) and 2 (dotted, red line). The inset in the top figure shows
the behavior for small .

geometrical coordinate & given by

kK k

n(r) = —;+E[Ci(§+(r)) —Ci(§-(r))], (5.73)

where &1 (r) =2nm(1Ftanh(oc/r)). The solutions ¢ (r) and x(r) can be visualized in Fig. 5.18.
In this case, the energy density is written in the form

p1 = {4kzsech2(n) cos? (nmtanh(a/r)) (sechz(n)

2 c 1
+tanh?(n) <Z _z)>] L (5.74)

and the electric field is

E, = {4kzsech2(n) cos? (nmwtanh(a/r)) (SeChz(Tl)
| (5.75)
+tanh?(7) (% — 2)) - azsech“(a/r)] —.

er

5.4 Global Monopole in the presence of electric charge

Ref. [20] introduces a new way to construct localized structures, such as the global monopole.
Here, we propose a model inspired by previous results, which considers a single-point charge
in a medium whose electric permittivity is controlled by a family of scalar fields. For that, we
replace the Bloch Wall in Sec. 5.2 by the global monopole. The Lagrangian density for this
model is inspired by the ones in (4.16) and (5.8). Its form is given by

1 1
2L = 30904 9" — TPONEF! — Ayt (5.76)
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Figure 5.19 The radial component of the electric field (left) with e = 1 and energy density (right)
associated to the model in Sec. 5.3.2.2 for 6 =5, o = 2 and n = 2, with k = 1 (solid, blue line) and 2
(dotted, red line). For k = 2, we have depicted 2E, and 2p; to illustrate the behavior better.

©

Figure 5.20 The section passing through the center of the structure, representing the electric field (left,
blue) with e = 1 and the energy density (right, orange) associated to the model in Sec. 5.3.2.2 for 6 =5,
a =2, with k = 1 (top) and 2 (bottom). The intensity of the blue and orange colors increases with the
increasing of the electric field and energy density, respectively.
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Here we use a coupling inspired by Ref. [16], where the family of fields is coupled to the gauge
field A* through a dielectric function that describes a generalized electric permittivity P(|¢]).
The equations of motion associated are given by

¢ uv
4|¢|P|¢|FWF =0 (5.77)
Iu(P(|@NF™) —j* =0. (5.78)

Consider the scenario of a single point charge at the origin in the absence of currents de-
scribed by the current j = e§(r)/rP~1 and j' = 0, where e denotes the electric charge, as in

Eq. (5.3). There is no magnetic field, in this case. The electric field is written as Ef = F©,
Thus, the Gauss law in Eq (5.78) becomes

d(P(Ip)F?)—j° =0, (5.79)
or yet
, o(r
APHDE) e ) =0, (5.80)
which leads to ¢
E=——F -7 .81
erIP(H)r (5 8 )
By the ansatz (4.18), we get the equation of motion (5.77) in the form
_ ! H 1
e (7Y = (D= 1) 5 5 PalBP =0, 682

where Py = dP/dH. This equation can be written in a compact form

2
I Y 1 d 2 e
B (P 'H) =537 | P VH + 555 (5.83)
The energy density associated to the structure is given by
1 D—1H*> 1 ¢
P =t g 659

The steps for getting follow the lines in A. Following the previous line, we introduce an auxil-
iary function in the energy density, which becomes

1 /

1 Wy 1 ¢ D—1H?
H , 5.85
pr= 2( D= l) T2 T2 2 202 -89

In order to get the boundary conditions for the energy, we suppose that the dielectric function
has the form

-1
P=¢ (sz, —(D— 1)H2r20—4) : (5.86)
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In this way, the energy density becomes

2
pr= % (H’q: X—ﬂ) + FDL_IW’. (5.87)
The procedure is similar to that performed previously, where the potential is written as a func-
tion of radial coordinates. Notice that the energy bounded, E > Ep, and the minimum is reach-
ing for configurations that meet the first-order equation H' = =Wy /rP~!, which leads to energy
density p = W’/rP~1. Since the electric field in Eq. (5.81) is written in terms of P(H), one
might expect the negative terms in the dielectric function to modify its behavior. In addition,
the negative term in P(H ) breaks the translational invariance.

In order to illustrate these results, we take the auxiliary function in Eq. (4.52) associated to
the |¢|* model studied in this chapter. The dielectric function then takes the form

P=e ((1—H2)2—(D—1)H2r2D4>_1 . (5.88)

We need to feed it with solution H To get the dielectric function. The first-order with solution
H is the same in Eq. (4.36), and we know that it supports the solution (4.55). Therefore, we
can replace the known solution H and get the dielectric function

-1
P= 82 <S€Ch4 <W) — (D — 1)tanh2 (W) 7'2D_4) . (589)

Thus, the electric field in Eq. (5.81) takes the form

1 1 1 1 1
E:z{rl)_lsech4 (W) —tanh2 <W) (D—l)rD 3},. (5.90)

One can get the gauge field A through the expression dAg/dr = —E, from the electric field.
For simplicity, we take Ag(0) = 0. In Fig. 5.21, we display the electric field E and Ag for D =3
and e = 1. An interesting behavior is observed. At the origin, the electric field is null. However,
as we move away from the origin it grows, becoming positive, and then falls quickly becoming
negative, even for a positive charge. This particular behavior is observed in Fig. 5.22, where the
spatial section of the electric field passing through the center of the structure is plotted, with the
color purple representing E, = —2, the color white E, = 0, and the color blue for E, ~ 0.079.
The special behavior is the opposite of Coulomb’s law since the field attracts positive charge.
In addition, the electric field non diverge at the origin. Actually, it is null at this point for D > 3.
The energy density in Eq. (5.87) associated to this structure has the same form as Eq. (4.56).
Therefore by integrating, we get the energy E = 2Q(D) /3.

In a second example, we consider the auxiliary function W in Eq. (4.58) associated to the
|¢|® model. For this case, the dielectric function (5.86) is written as

p=2 (102 ((1-101) - @~ *)) | (5.91)
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Figure 5.21 Gauge field (left) and the radial component of the electric field in Eq.(5.90) (right) associ-
ated to the system with electric permittivity in Eq.(5.89), for D =3 and e = 1.**

Figure 5.22 Section of the electric field passing through the center of the structure in the interval r €
[0,3] for D =3 and e = 1. White, blue and purple are used to represent E, = 0, E, = 0.079 and E, = 2,
respectively.
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Figure 5.23 Gauge field (left) and the electric field in Eq. (5.92) (right) associated to the system with
electric permittivity in Eq. (5.91), for D =3 and e = 1. The inset in the right panel highlights the
behavior of the electric field near the origin.

and the electric field in Eq. (5.81) becomes

E= é{ rDll {sechz (W) +4(D— 1);»20—4}
X {1 + tanh (W) ] —8(D— l)rD_3}f.

In order to illustrate the electric field behavior, we plot it and Ag for D =3 and e = 1 in Fig. 5.23.
Similar to the previous case, the electric field is null at the origin and grows as r gets bigger, then
cross the zero and flips the signal reaching its minimum value of —1 asymptotically. However,
in this case, the electric field performs this faster, forming a smaller positive shell-like structure
than in the previous case; see Fig. 5.24. The energy density associated is the same as obtained
in Eq. (4.62), and its energy is E = 3Q(D)/16.

(5.92)
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Figure 5.24 Section of the electric field passing through the center of the structure in the interval r €
[0,3] for D =3 and e = 1. White, blue and purple are used to represent E, =0, E, = 0.034 and E, = 1,
respectively.



CHAPTER 6

Conclusions and perspectives

In this thesis, we investigated localized structures in different scenarios. We started with a re-
view of scalar field theory in (1, 1)-dimension, considering an action with standard Lagrangian
density in Ch. 2. The first part establishes tools used throughout the thesis. Key themes, such
as the Bogomol’nyi procedure, first-order formalism for energy minimization, stability of so-
lutions, and structures (kinks, lumps, domain walls, Néel walls), are also discussed. Also, this
chapter briefly commented on topology and topological charge. In the following pages, we
introduce a model of coupled scalar fields used to describe Bloch Walls, known as BNRT, in
order to motivate the investigations in the next chapter. Furthermore, we presented the trial
orbit method as a mathematical tool to decouple the first-order equations.

In chapter 3, we explore modifications in the internal structure of the Bloch Walls developed
by us in Ref. [20]. For that, we proposed a model with three scalar fields, where two areas were
coupled by the potential describing the Bloch Wall structure. The third field is coupled to the
other non-minimally through a function f(y) that multiplies the dynamic terms, producing
effects that mimic geometrical constrictions in a medium that involves the other fields. We
developed a first-order formalism that minimizes energy and decouples the fields. In order to
illustrate the procedure, we propose different possibilities for the function, such as f(y) =
1/w? producing a plateau in the core of solution matching with recent experiments involving
domain walls in micrometer-sized FeNigg, f = sec? (nmy) inspired by the work that considers
fermions in the presence of topological structures in Ref. [23] and another model that involves
the Bessel function of the first kind. The procedure studied brings the possibility of another
geometrical deforming of the medium, giving rise to configurations with new modifications in
the profile’s structures.

Chapter 4 is marked by topological structures in D spatial dimensions. Following Ref. [19],
we developed a novel way to construct topological structures in D dimensions that avoid the
Derrick and Hobart Theorem. We started with a Lagrangian density involving a family of
scalar fields showing that usually, these structures diverge, which matches Derrick and Hobart’s
Theorem. Then, we proposed a first-order formalism inspired by [22], which considers the
potential depends on the radial coordinate r regularizing the energy of the solutions. This
procedure allowed the construction of localized structures with finite energy, such as the Global
Monopoles. The first-order equations led us to a connection between global monopoles in D—
dimensions with kinks in one spatial dimension. In order to illustrate the procedure, we took the
auxiliary function W (|¢|) associated with the |¢|* and |¢|® models. In addition, we investigate
two extended models. The first considered two families of fields inspired by the recent works
that involve the Higgs portal, where one family is in the visible sector and the other in the
hidden or dark sector. The second extended model dealt with a scalar field ¥ coupled non-

79
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minimally to the family of fields ¢“ that simulate geometrical constrictions similar to those
investigated in Chapter 3. This procedure, which is the result of our work in Ref. [19], brings
the light new possibilities for topological structures that may have existed in the early universe.

In chapter 5, we investigated electrically charged multi-field configurations introduced in
our recent work [20]. We started with the review of electromagnetism in the presence of point
charge in D spatial dimensions. Then, we propose a procedure that regularizes the divergence
of the electric field at the origin. For that, we considered a point charge in a medium with elec-
tric permittivity controlled by scalar fields that mimic Bloch Walls. The procedure executed
led to first-order equations and solutions with minimum energy. We use the trial orbit method
to decouple the equations and get the expression of the electric field in two and three spatial
dimensions. The investigations showed that the electric field presented a particular behavior
forming structures of the type ring and shell for two and three dimensions, respectively. In
addition, we investigated an extended model with three scalar fields, which dealt with geomet-
rical constrictions in the Bloch Wall that controls the electric permittivity inspired in chapter
3 and Ref. [21]. Finally, we investigate a model with a family of fields inspired by the global
monopole in chapter 4, in which the electric permittivity is controlled by the modulus of ¢¢.
The results led to an electric field with an unusual behavior contrary to Coulomb’s law since
the field attracts positive charge. The results have motivated our group to explore new possibil-
ities, as in Ref. [17], where the authors investigate the electric field of a dipole immersed in a
medium with permittivity controlled by scalar fields.

The current study inspires us to explore new possibilities of structures immersed in a
medium controlled by electric permittivity, the Q-balls are an example. These are non-topological
charge structures that need particular conditions to be stable. Modifications in the medium can
change these conditions, giving rise to new possibilities. Other objects of our interest are the
cuscuton models. Introduced in Ref. [3], cuscuton is a scalar field dark energy model with
a non-standard dynamical term. In Ref. [4], the authors investigated how the cuscuton term
modifies the usual behavior of kinks, showing that the solution stays the same while the energy
is modified. Currently, we keep working on a paper about cuscuton following these lines of
investigation.



APPENDIX A

Integrating factor for BPS equations

A.1 Integrating factor

The integrating factor method finds a function that multiplies both sides of the differential
equation, making integrating the problem simpler; see Ref. [66]. In Ref. [50], the authors
demonstrate that for certain first-order differential equations, it is possible to find an integrating
factor that enables us to uncover all the BPS states of the system. This method of integrating
factor to solve differential equations is a powerful technique that can help us gain insight into
the underlying physics of various systems. We aim is to use it to decouple the BPS first-order
equations (2.60) and (2.61). For that, we start with a review of the general case. Consider the
differential equation bellow

f(x)+a(x)f(x) = b(x), (A.1)

Here, f(x) denotes a real function, a and b are parameters that can depend on x and ' =df/dx.
Consider the integrating factor u to be determined. Multiplying both sides by it leads us to

uf'+uaf = pb, (A.2)

Suppose that the above equation can be written in the form

(Wf) = ub. (A.3)

The task of getting the function f(x) becomes to solve the integral

/,Lf:/,ubdx+c, (Ad)
or yet
bdx+c
poJpbdxte e (A.5)

where c is an integration constant. Then the next step is to find u in terms of the parameters
a and b. For that, we rewrite the differential equation (A.3) explicitly using the chain rule as
follow

uf'+u'f = ub. (A.6)
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Using the Eq. (A.2) in the above equation allows rewriting the right side in the form

uf +u'f=npf +uaf . (A7)
Thus, we can identify the integrating factor derivative as
u = ua, (A.8)

and finally by integration we get

u :exp{/a dx} . (A9)

In order to use the method of integrating factors to solve our problem, we must first manip-
ulate the differential equations (2.60) and (2.61):

o' =1-¢>—kx*,
X' =—2koy,

so that they have the same form as equation (A.1). To do this, we can identify the variable f
as ¢ and x as . Next, we can divide equation (2.60) by equation (2.61) to bring them into the
desired form for solving using integrating factors:
/ 1— 2 k 2
o _1-0 -k (A.10)
x' —2kox

1\ 1 [kx*—1
o (a5 (),

¢ do dx
X dxdy
_ 49
S dx
— 0y - (A.12)

By analyzing the equation (A.1) in comparison to (A.11), we can identify the parameters a =
—1/2ky and b = (kx> — 1) /2ky. Thus, the differential equation (A.11) become

regrouping terms

where

¢x+a¢:$b. (A.13)

Now with the expression has the shape of the equation (A.1) we can perform the procedure.
We start multiplying the above expression by u, as follows

O(Loy +Had) = ub. (A.14)
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Then, as before, we suppose that

1
§(M¢2>x =ub. (A.15)
By integrating, we get

2
¢? = —f“ij+C, (A.16)

where C is a constant determining the orbit connecting the minima. From the equations (A.14)
and (A.16) we can identify

1
SHx 9+ 190y = 1Oy + pag?, (A.17)

which leads us to

u:exp{Z/adx}. (A.18)

Replacing the parameter a in the above equation, we get

1
u:exp{—Z/mdx}. (A.19)

This equation supports the solution
=y Yk, (A.20)

We can use the above expression for p and the parameter b to feeding the equation (A.16) as
follows

2 C
¢ = x_l/k/[x—l/k(kx2—1)(2kx)—1]d;ﬁﬁ. (A21)

By integration, we get the expression

0> = — r+14+Cx'*, (A.22)

1/k—2

or yet

1
2 2 _ 1/k
=1+4+C . A.23
This orbit equation can be used to decouple the first-order equations that involve the scalar
fields. In Ref. [50], the authors find a critical value and analyze the orbit behavior for different
values of C. Here, we consider the case for C — o and C = 0. To investigate it, we consider

the analysis in Sec. 2.5.3, which leads to the topological sector formed by W; = (1,0) and
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W, = (—1,0). In this sector configuration, the scalar field ¢ = +1 implies in y = 0. The regime
where C — oo must consider ¥ = 0 in Eq. (A.23) to satisfy the topological sector condition,

which leads (2.60) to
¢/ — 1 _ ¢2.
The pair of solutions that involve this regime is given by

¢ (x) = tanh(x),
x(x)=0.

On the other hand, the regime where C = 0 leads to the orbit

and therefore, the solutions

¢ (x) = tanh(2kx) ,

2(x) = 44 /% — 2 sech(2kx)

where one must take k € (0,1/2)).

(A.24)

(A.25)
(A.26)

(A.27)

(A.28)

(A.29)



APPENDIX A

Conserved quantities

A.1 Noether Current

Continuous symmetry can be related to conserved physical quantities through the Noether The-
orem. This appendix, inspired by the book [43], focuses on the steps to get the Noether Current
that leads to these quantities, such as the energy-momentum tensor.

Here, we will consider the action in (3, 1)—dimensions that remains unchanged after a con-
tinuous transformation on the coordinates

S:/g(gb(xﬂ),am(xﬂ))d“x. (A1)

A small continuous variation can be written as a change in the coordinates that leads x* in x'*,
where we denote x'* = x* + dx*. The fields also feel the effect of variation going from ¢ (x*)
to ¢'(x’*), where ¢’(x’*) represents the field ¢ (x*) with a shape variation at the transformed
coordinate x’*. In order to not carry the notation, we define .2 (9,9, ¢) = £ (x), also omitting
the index u in the coordinate x. Thus varying the action, we get

55 =5 / ZL(0,9u0)d"x (A2)
- / 5(.2(x)d*x)
= | Z')a*Y —/ ZL(x)8d*x,
o Q
where
8L (x)=ZL"(X)-ZL(x). (A.3)

The volume element variation in the integral becomes
Sd*x = d*x —d*x
= J(x,x)d*x — d*x
=d**x(J(x,x)—1), (A.4)

where J(x,x') is the is the Jacobian determinant that relates x* with x’*. It is written in the form

I
J(x,x') = det (3’; . ) , (A.5)
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where
Xt 9(8xH)
oxa %t o
= 85 4 dpSxH . (A.6)

Thus, the Jacobian determinant in Eq. (A.5) can be written in matrix form as follows

1+ 805)60 o 50 826)60 A SxY
305)61 149, Sx! 826)61 835)61
0y Ox2 016x2 14+ 00,8x*  0:6x> ’
900x° 0,6x° 203 1+036x°

J(x,x') = det (A.7)

Notice that non-nulls terms are in the diagonal. In this way, we can use it to rewrite the Jacobian
determinant in the form

J(x,x') =149y (8x1) . (A.8)
Replacing the above expression in the volume element variation (A.4) leads us to
Sd*x = d*x(1+ 9y (5x) 1)
= I (8x*)d*x . (A.9)

In the same way, the scalar field transforms as

¢'(x') =9 (x)+ 59 (x), (A.10)

where this expression compares the variation of the field shape in the new coordinate and the
field in the original coordinate x. It is interesting to define another kind of variation, which we
denote by §. It operating in ¢ (x), compares the field variation at the same point as follows

59(x) =¢'(x) — ¢ (x)

=8¢ (x) — (¢'(x') — ' (x))
=3¢ (x) — [¢'(x) + angX) (X —xu) — ¢'(x)
u
:5¢)(x)—aa¢7(:j)5xu ) (A.11)

As seen, the Lagrangian density depends on the field derivative, so we need to be careful when
applying the operator because it may not commute. Consider the analysis below

7 (50(x)) =52 (0/(x) ~ 0 (x)
U

_99'(x) 99 (x)

- Ixy Ixy

=5 (M) . (A.12)

oxy

Ixu
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Therefore, we can conclude that the operators S and du commute. On the other hand, the same
non-occurs with the derivative and the operator & as follows

J J 1ot
E(&P(x)) :E(fp (x) —¢(x))
_9¢'(¥)  do(x) N d9'(x’)  d¢'(¥)
N 8xh Ixy oxy Bxit
s (3¢(X)) N d¢9'(x') dx,  9d¢"(x')
N Ixy dx, dxy dx},

:5(8¢<x>) L 99 (gw N aaxv> _9¢9'(¥)

Ixy ax,, Ixy 5x&
o [9¢(x) 2¢'(x') dbxy
_5( o, ) L Tt (A.13)

The extra term impedes the operator’s commute. Then we rewrite the variation in terms of J,
starting with the Lagrangian density

8L (x) =4"(x)— L (x)
22" (x)
Ixy
20.%"(x)
Ixy

=" (x)+ Oxy — Z(x)

=5.2(x) +

Sxy (A.14)

Replacing the above expression and volume element variation (A.9) in the action in Eq. (A.2)
leads us to

58 = / <5$(x) At SX”) d*x+ / L(x) aaiz# d*x

oxy
_ / (Sg(x)Jra&Tﬂ(z(x)(sxﬂ))d“x. (A.15)

The next step is to calculate §.% (x). It is important to remember that this variation is considered
at the same point. Therefore, variations will be only in the field, and its derivative will be as
follows

0% ~<a¢> 0. A16)
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Thus, the action variation in Eq. (A.15) becomes

55 = /{&p (ax";>af&"f¢>+aiﬂ(zaxﬂ)}d4x
=/ {ax”( 7515)) 50~ 30y (g7 ) 30+ 3054+ 3, 50) <a°f¢>+aiu(%x“)}d4x

S o ] s

Now if we take the action invariant by the small variation, that is, 5 = 0, the integrand in the
above expression will be null

55~ s (00 ) |0+ 3, 9] g om0 a

Notice that the first term in the above expression is the Euler-Lagrange equation, which is null.
In this way, we can write

0 0. 0

vy (STmg72%) 000~

d 0.

7w (aing o0+ 5x”>

0

3 i (x) =0. (A.19)

Note that for the above expression to be obeyed, the term in parentheses must be constant.
Therefore, this term describes a quantity conserved that we define as Noether Current:

<
fulx) = 3o ¢)5(])+$5xu , (A.20)
or yet
0%
ul) = 55547 (80() = 0"0(x)3xy) + 26y
0 07 v
:W o (x) — ( IEETS 2V (x)6xy — L 6x,6x 3xu)
0 0 v
:W&p( x) — ( (8u¢)8\,¢( x)6x" — guvox 3) (A.21)
Thus we finally get
0 207
fu(x)zm o(x) — ( (8#¢)av¢<) guvg)ng_ (A.22)



A.2 ENERGY-MOMENTUM TENSOR 89

A.2 Energy-momentum tensor

The energy-momentum tensor is a quantity related to invariant translations. To see that, we
consider that the scalar field is invariant by coordinate transformation x’* = x* + e, we can un-
derstand it as ¢ (x) does not change its shape on transformation. This can write as ¢’(x") = ¢ (x),
and the consequence of that is ¢ = 0, which allows us to discard the first term. Multiplying
the equation (A.22) by €, and differentiating we get

d

ETHV - 0, (A23)
where
0¥
T[.LV = iwa\;gb()o :Fg“vg . (A24)

The sign respect the metric (4, F, F,...,F), but by convention, we choose the energy density
Top with a positive sign.

The above expression can present problems in the case of vector fields. In the gauge field
AM | the energy-momentum tensor is non-gauge invariant and non-symmetric. A modification
can be done in the tensor to respect these conditions leading to the Belinfante-Rosenfeld tensor.
Another way to get the energy-momentum tensor for a vector field without putting a term by
hand is through a general relativity approach. Here, we present this other way following the way
outlined in books [88] and [46]. As a model, we will use the Lagrangian density in Eq. (5.8)
without the source.

Consider the Einstein—Hilbert action in general relativity for this model

1 1
S:/ [_Zp(q,)gﬂngGFpGFuv_l_Egﬂ"auq)av(p}\/—_ngx. (A.25)

Here, g denotes the metric determinant. A variation in this model leads to
1 1
55 = [ |~ 3POI8(606" Mnai + 35(6)3,0010] v 5

1 1
+f [— PO FpaFP? + Eaaw%} 5(v/—g) d"x, (A.26)
which leads us to

1 1
08 = / [_ ZP(‘P) (28pGFuvac - Egquchp(F)

1 1
+ zau‘Pav(P - (Zaafpaaqj)guv} 58’”\/ —8 dPx ) (A.27)
where 8/—g = —(1/2)/—g8uv0g"". The term between square brackets is identified as
1 1 1
ETNV = ZP(‘p) <ng0Fuvao - Egquchpc)

+ %auq’avd’ - (iaad’aad’)guv ) (A.28)
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or yet

1 1
Ty =— ZP((;)) <4Fuvap — gqungpo) + 0y 9oy — Egyvaad)aad’ : (A.29)

The energy density Tpo in this case is given by

1 1
Too = —7P(¢) <4F0pF(f —goonchG) + 0099 — Egooaafl)aafp : (A.30)

This expression in terms of the electric field takes the form

Too =~ P(0) ( —4IBF — (-21BF) ) + 30", (A3D)

where static configurations were considered. Thus, we write the energy density for this model
in the form

1 1
Too = 5P|E|2 + §¢’2 : (A.32)

The above expressions can serve as a guide to obtain the other energy density for the other
models.
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