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Abstract

This thesis studies the geometry of complete Riemannian submanifolds immersed

in certain semi-Riemannian spaces via parabolicity criteria related to modified Cheng-

Yau’s operators and to a linearized differential operator which can be regarded as

a natural extension of the standard Laplacian, via generalization of a Liouville-type

result and versions of maximum principle. In this regard, via parabolicity criteria

and from appropriate Simons type formulas concerning spacelike submanifolds im-

mersed with parallel normalized mean curvature vector in Einstein Manifolds we prove

new characterization results. In the case of submanifolds of semi-Riemannian warped

products, under standard convergence conditions and appropriated constraints on the

higher order mean curvatures, we also obtain uniqueness and nonexistence results via

parabolicity and p-integrability criteria, for p ≥ 1, generalization of a Liouville-type

result, a version of maximum principle at infinity for vector fields and a maximum prin-

ciple related to polynomial volume growth. Applications are also presented to cases

in which the ambient space is either an Einstein manifold, the Steady State models,

Schwarzschild and Reeissner-Nordström spaces, and a particular investigation of entire

graphs constructed over the fiber of the ambient space.

Keywords: Riemannian Submanifolds, Semi-Riemannian Spaces, Parabolicity Crite-

ria, Maximum Principles.
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Resumo

Esta tese estuda a geometria de subvariedades Riemannianas completas imersas

em certos espaços semi-Riemannianos via critérios de parabolicidade relacionados ao

operador de Cheng-Yau modificado e a um operador diferencial linearizado que pode

ser considerado como uma extensão natural do Laplaciano padrão, via generalização de

um resultado tipo-Liouville e versões do princípio máximo. Neste sentido, através de

critérios de parabolicidade e de fórmulas apropriadas do tipo Simons relativas a sub-

variedades imersas com vetor de curvatura média normalizado paralelo em variedades

Einstein, provamos novos resultados de caracterização. No caso de subvariedades de

produtos warped semi-Riemannianos, sob condições de convergência e restrições apro-

priadas nas curvaturas médias de ordem superior, também obtemos resultados de uni-

cidade e inexistência via critérios de parabolicidade e de p-integrabilidade, para p ≥ 1,

generalização de um resultado do tipo-Liouville, uma versão do princípio máximo no

infinito para campos vetoriais e um princípio máximo relacionado ao crescimento de vol-

ume polinomial. Também são apresentadas aplicações aos casos em que o espaço ambi-

ente é uma variedade de Einstein, os modelos de Steady-Statede espaços Schwarzschild

e Reeissner-Nordström, e uma investigação particular de gráficos inteiros construídos

sobre a fibra do espaço ambiente.

Palavras-chave: Subvariedades Riemannianas, Espaços Semi-Riemannianos, Critérios

de Parabolicidade, Princípios do Máximo.
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Introduction

This Thesis is divided into two parts where we propose to study n-dimensional

complete Riemannian submanifolds immersed in semi-Riemannian spaces from the fol-

lowing themes: characterizations of complete linear Weingarten Riemannian submani-

folds immersed with parallel normalized mean curvature vector in (n+ p)-dimensional

Einstein manifolds and rigidity and nonexistence of Riemannian immersions in semi-

Riemannian warped products.

Part I: Parabolicity of complete linear Weingarten sub-
manifolds in semi-Riemannian manifolds

Initially, we established new characterization results related to n-dimensional

complete linear Weingarten Riemannian submanifolds Mn with parallel normalized

mean curvature vector immersed in (n+ p)-dimensional Riemannian space form Qn+p
c

of constant sectional curvature c ∈ {−1, 0, 1}, in the (n + p)-dimensional de Sitter

space Sn+p
p and in an arbitrary Einstein manifold En+p

p of index p ≥ 1 via parabolicity

criteria with respect to a modified Cheng-Yau’s operator L defined onMn. This criteria

are consequence of a general result concerning divergent type operators due to Pigola,

Rigoli and Setti [111, Theorem 2.6] (see also [21, Lemma 6.9 ]).

Following Chen [55], we say that a manifold Mn to have parallel normalized mean

curvature vector if the mean curvature vector H of M is nonzero and the corresponding

normalized mean curvature vector field h
H

is parallel as a section of the normal bun-

dle. We also recall that a submanifold is said to be linear Weingarten when its mean

curvature function H and its normalized scalar curvature R satisfy a linear relation of

the type

R = aH + b,
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for some constants a, b ∈ R. Manifolds satisfying this relation were introduced by Wein-

gartein [124, 125] in the study of surfaces in Euclidean space R3. Linear Weingarten

manifolds can be regarded as a natural generalization of manifolds with constant scalar

curvature.

In the case of constant scalar curvature, Cheng [58] showed that the totally

umbilical sphere Sn(r), totally geodesic Euclidean space Rn and generalized cylinder

R × Sn−1(r) are the only n-dimensional (n > 2) complete submanifolds with con-

stant scalar curvature and parallel normalized mean curvature vector in the Euclidean

space Rn+p, which satisfy a suitable constrain on the norm of the second fundamental

form. Later on, Guo and Li [79] generalized previous results of [90] showing that the

only n-dimensional compact (without boundary) submanifolds in the unit sphere Sn+p

with constant scalar curvature, parallel normalized mean curvature vector and whose

second fundamental form satisfies some appropriate boundedness are the totally um-

bilical sphere Sn(r) and the Clifford torus S1(
√
1− r2)×Sn−1(r). Afterwards, de Lima,

Araújo, dos Santos and Velásquez [39] obtained an Omori-type maximum principle for

the Cheng-Yau’s operator and applied it to establish an extension of the results of

[58, 79] for n-dimensional complete submanifolds immersed with parallel normalized

mean curvature vector in Qn+p
c , with positive constant normalized scalar curvature.

Next, these same authors [73] used the Hopf’s strong maximum principle and a

maximum principle at infinity due to Caminha [48] to obtain versions of the results

of [39, 58, 79] for the context of n-dimensional complete linear Weingarten submanifolds

immersed with parallel normalized mean curvature vector in Qn+p
c . In [36], Araújo and

de Lima studied compact linear Weingarten surfaces immersed with flat normal bundle

and parallel normalized mean curvature vector in Q2+p
c . In this setting, they got a

version of the classical Liebmann’s rigidity theorem showing that such a surface with

nonnegative Gaussian curvature must be isometric to a totally umbilical round sphere.

In [37], they obtained another version of this Liebmann’s result when the ambient

space is the hyperbolic space (see also [38] for other characterizations concerning linear

Weingarten submanifolds in the hyperbolic space).

Motivated by the works described above, in Chapter 2 we will study the L-

parabolicity of a complete linear Weingarten submanifold Mn immersed with parallel

normalized mean curvature vector in Qn+p
c to obtain L-parabolicity criterion(see Propo-
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sition A) and we apply it to prove that Mn must be either totally umbilical or isometric

to a hyperbolic cylinder H1
(
−
√
1 + r2

)
× Sn−1(r), when c = −1, a circular cylinder

R × Sn−1(r), when c = 0, and a Clifford torus, when c = 1 for a certain radius r (see

Theorems 2.4.1 and 2.4.2).

When the ambient is de Sitter space Sn+1
1 , Goddard [80] conjectured that every

complete spacelike hypersurface with constant mean curvature H constant must be

totally umbilical. Ramanathan in [112] proved that complete spacelike hypersurfaces

with constant mean curvature 0 ≤ H ≤ 1 in S3
1(1) are totally umbilical, but for H > 1

this not occurs, proving that Goddard’s conjecture is false, as can be seen from an

example due to Dajczer-Nomizu in [65]. In [3], Akutagawa showed that Goddard’s

conjecture is true provided that n = 2 and H2 ≤ 1 or n ≥ 3 and H2 < 4(n−1)
n2 . In the

case Mn compact. Montiel [100] also proved that this conjecture is true and exhibited

examples of complete spacelike hypersurfaces in Sn+1
1 (1) with constant H satisfying

H2 ≥ 4(n−1)
n2 and being not umbilical, the so-called hyperbolic cylinders, which are

isometric to a Riemannian product of the type Sn−1(c1) × H1(c2), where c1 > 0 and

c2 < 0 satisfy 1
c1
+ 1

c2
= 1. Moreover, the characterization theses hyperbolic cylinders as

the only complete non-compact spacelike hypersurfaces in Sn+1
1 (1) with constant mean

curvature H2 = 4(n−1)
n2 and having more than one topological connected component in

the complement of balls with radii increasing to infinity, was also obtained by Montiel

in [101].

Liu [92] showed that, when b = 0 the totally umbilical round spheres are the only

n-dimensional compact (without boundary) linear Weingarten spacelike submanifolds

of Sn+p
p with nonnegative sectional curvature and flat normal bundle. Later on, Yang

and Hou [127] applied the Omori-Yau’s generalized maximum principle to show that

a linear Weingarten spacelike submanifold in Sn+p
p , with a > 0, b < 1, having paral-

lel normalized mean curvature vector and such that the squared norm of its second

fundamental form satisfies a suitable boundedness, must be either totally umbilical

or isometric to a certain hyperbolic cylinder. Liu and Zhang [94] used the classical

strong maximum principle of Hopf to obtain other classifications for complete linear

Weingarten spacelike submanifolds in Sn+p
p having parallel normalized mean curvature.

More recently, Araújo, de Lima, dos Santos and Velásquez [41] obtained other

characterization results related to complete linear Weingarten spacelike submanifolds

3



with parallel normalized mean curvature vector in Sn+p
p under suitable constraints on

the values of the mean curvature and of the norm of the traceless part of the second

fundamental form, now through an extension of Hopf’s maximum principle for complete

Riemannian manifolds.

Proceeding, in Chapter 3, where the ambient space is the de Sitter space Sn+p
p ,

we also establish a suitable parabolicity criterion related to a Cheng-Yau’s modified

operator L (see Proposition C) and we use it to revisit the results of [41, 94, 127]

obtaining new characterizations concerning n-dimensional complete linear Weingarten

spacelike submanifolds immersed with parallel normalized mean curvature vector in

Sn+p
p (see Theorems 3.3.1, 3.3.2, 3.3.3, 3.3.4).

It should be noted that the study of de Sitter space Sn+1
1 is of interest from both

a geometric and a physical point of view, since it is a vacuum solution of the Einstein

field equations with positive cosmological constant, that is,

Ric− 1

2
Rg + Λg = 0,

where g is the metric, Ric is the Ricci tensor and Λ is the cosmological constant

Λ =

(
n− 1

2(n+ 1)
R

)
=
n(n− 1)

2
.

In relativity theory, Sn+1
1 is called de Sitter spacetime. (see, for instance, [82, Section

5.2], [49, Section 4.1] and [118, Section 2] for more details concerning the geometry of

S4
1).

Finally, in Chapter 4 we also deal with complete linear Weingarten spacelike sub-

manifolds Mn immersed with parallel normalized mean curvature vector in an Einstein

manifold En+p
p of index p, now supposing that such submanifolds have a flat normal

bundle, that is, its the normal curvature tensor vanishes identically.

In [68], H. de Lima and J. de Lima obtained characterization results for linear

Weingarten spacelike hypersurfaces immersed in a locally symmetric Einstein manifold

En+1
1 of index 1 considering restrictions on the square length of the second fundamental

form and some appropriate curvature constraints of the ambient space which were

inspired by the works of Nishikawa [106] and Choi et al. [61, 62]. Later, Araújo, de Lima,

dos Santos and Velásquez [40] extended these results for the context of an n-dimensional

spacelike submanifold Mn immersed with parallel normalized mean curvature vector in

4



a locally symmetric semi-Riemannian manifold Ln+p
p of index p. For this, they assumed

the existence of real constants c1, c2 and c3 such that the sectional curvature K and

curvature tensor R of Ln+p
p satisfy the following conditions:

K(u, η) =
c1
n
, (1)

for any u ∈ TM and η ∈ TM⊥;

K(u, v) ≥ c2, (2)

for any u, v ∈ TM ;

K(η, ξ) =
c3
p
, (3)

for η, ξ ∈ TM⊥; and

⟨R(ξ, u)η, u⟩ = 0, (4)

for u ∈ TM and ξ, η ∈ TM⊥ with ⟨ξ, η⟩ = 0. We note that, when p = 1, conditions (3)

and (4) are automatically satisfied. Afterwards, also assuming this set of constraints,

Araújo, Barboza, de Lima and Velásquez [35] applied the techniques developed by Hou

and Yang in [127] and by Liu and Zhang in [95] to get sufficient conditions guaranteeing

that such a spacelike submanifold Mn is either totally umbilical or isometric to an

isoparametric hypersurface of a totally geodesic submanifold Ln+1
1 ↪→ Ln+p

p , with two

distinct principal curvatures, one of which is simple.

In [93], Liu and Xie used the Omori-Yau’s generalized maximum principle to ob-

tain classification results concerning complete spacelike hypersurface Mn with constant

mean curvature in En+1
1 without asking that the ambient space is locally symmetric

but also assuming the curvature constraints (1) and (2).

As in Chapters 2 and 3, in the Chapter 4 we establish a L-parabolicity criterion

(see Proposition D) and we apply it to obtain sufficient conditions which guarantee

that complete linear Weingarten spacelike submanifolds immersed with parallel nor-

malized mean curvature vector and flat normal bundle in an Einstein manifold En+p
p of

index p obeying curvature constraints (1), (2), (3) and (4), must be an isoparametric

hypersurface of En+1
1 with two distinct principal curvatures one of which is simple (see

Theorem 4.3.1 and Corollary 4.3.1).

5



It is worth to point out that the works [40, 35] contain similar results under the

assumption that the ambient space is locally symmetric. But, according to Example

1.1 of [93], the semi-Riemannian product space Rp
p × Mn, where Mn is a Ricci flat

Riemannian manifold, is an Einstein manifold of index p. Moreover, supposing that

the sectional curvature KM of Mn is such that KM(u, v) ≥ c2 for any u, v ∈ TM

and some constant c2 and considering the spacelike submanifold given by the inclusion

ι : Mn ↪→ Rp
p ×Mn, we can verify that the curvature constraints (1), (2), (3) and (4)

are satisfied. However, if Mn is not locally symmetric, then Rp
p ×Mn is not a locally

symmetric manifold.

Part II: Rigidity and nonexistence of complete hyper-
surfaces in a semi-Riemannian warped product

Let Mn+1 be a semi-Riemannian warped product of the type Mn+1
= ϵI ×f M

n,

where Mn is an n-dimensional connected oriented Riemannian manifold, I ⊆ R is an

open interval, f : I → R is a positive smooth function and ϵ = ±1, being ϵ = 1 when

M
n+1 is a Riemannian space and ϵ = −1 when M

n+1 is a Lorentzian space. In the

Lorentzian case, Mn+1 is called a generalized Robertson-Walker (GRW) spacetime.

This thematic has been treated by several authors along the last years, which

have used a considerable amount of analytical tools in their investigations. For in-

stance, Alías and Dajczer [12] studied complete surfaces immersed in a warped prod-

uct R×ρ M
2 such that the fiber M2 is a complete surface with nonnegative Gaussian

curvature. Under certain restrictions on the constant mean curvature, they showed

nonexistence results of surfaces contained between two leaves Mt1 ,Mt2 with t1 < t2 of

the foliation Mt = {t} ×M2, as well as results in which these immersions are leaves

of the trivial totally umbilical foliation. These same authors in [13] generalized the re-

sults of Montiel [102] for compact hypersurfaces of constant mean curvature immersed

into R ×ρ M
n, treating the case of complete hypersurfaces via Omori-Yau maximum

principle.

Romero, Rubio and Salamanca [114] presented results for complete noncompact

maximal hypersurfaces in spatially parabolic GRW spacetimes, that is, the fiber is a

complete noncompact Riemannian manifold such that the only superharmonic func-

6



tions on it which are bounded from below are the constants. In [115], under curvature

assumptions on the Riemannian fiber of the ambient space and some conditions on

the warping function, these authors also studied complete maximal hypersurfaces in

spatially open GRW spacetimes via different maximum principles. Assuming that the

ambient spacetime satisfies the Null Convergence Condition (NCC), which means that

the Ricci curvature is nonnegative along null directions, Pelegrín and Rigoli [109] also

obtained uniqueness and nonexistence results for complete spacelike hypersurfaces of

constant mean curvature immersed in a GRW spacetime.

Alías, Impera and Rigoli [17, 18] investigated compact and complete noncompact

hypersurfaces with constant higher order mean curvatures Hr, 2 ≤ r ≤ n, immersed

into semi-Riemannian warped products Mn+1 via a generalized version of the Omori-

Yau maximum principle for a divergence-type operator Lr associated to each globally

defined Newton transformation Tr, 0 ≤ r ≤ n, which can be regarded as a natural

extension of the standard Laplacian operator.

Motivated by the work of Alías and Dajczer [13], García-Martínez, Impera and

Rigoli [77] proved height estimates for compact hypersurfaces of constant positive

higher order mean curvature in Riemannian warped product spaces with boundary

contained in a slice and applied such estimates in the study of properly immersed com-

plete hypersurfaces in pseudo-hyperbolic spaces R ×et M
n or R ×cosh t M

n contained

in certain half-spaces. Next, under appropriated constraints on the higher order mean

curvatures, Aquino, Araújo and de Lima [31] established new sufficient conditions to

guarantee the rigidity of hypersurfaces immersed in ϵI ×Mn via generalized version of

the Omori-Yau maximum principle.

Furthermore, many works have approached problems in the context of entire

graphs in semi-Riemannian warped products. For instance, Caminha and de Lima [47]

obtained necessary conditions for the existence of complete vertical graphs with con-

stant mean curvature in the hyperbolic and steady state spaces ϵR×etRn. For this, they

deduced suitable formulas for the Laplacian of the height function and of a support-like

function naturally attached to the graph. Later on, Alías, Colares and de Lima [11]

considered restrictions on Hr to obtain uniqueness results for entire graphs in a warped

product satisfying a standard curvature condition. As an application, they obtained

rigidity results for minimal and radial graphs over the Euclidean sphere. See also the

7



works [32, 63, 67] for similar rigidity results.

In the Chapter 6, under appropriate differential inequalities involving higher or-

der mean curvatures and assuming that the ambient space obeys suitable curvature

constraints, we establish new rigidity and nonexistence results concerning complete

spacelike hypersurfaces in a GRW spacetime and, afterwards, we treat the case of com-

plete two-sided hypersurfaces in a Riemannian warped product. Applications to the

cases that the ambient space is either an Einstein manifold, a steady state type space-

time or a pseudo-hyperbolic space are given, and a particular investigation of entire

graphs construct over the fiber of the ambient space is also made. Our approach is

based on a parabolicity criterion related to a linearized differential operator which is a

divergence-type operator and can be regarded as a natural extension of the standard

Laplacian. This criterion also is obtained as a application of [111, Theorem 2.6].

In Chapter 7, our strategy is to study Riemannian immersions in semi-Riemannian

warped products Mn+1
= ϵI ×ρ M

n by applying suitable maximum principles for the

operator Lr. Firstly, we will consider criteria of integrability from extension of a result

due to Yau in [128, Proposition 2.1] and of generalization of a Liouville-type result due

to Pigola, Rigoli and Setti [111, Theorem 1.1] to obtain uniqueness results via integra-

bility on the norm of the gradient of a arbitrary primitive of the warping function ρ.

Furthermore, motivated by recent works of Alías, Caminha and Nascimento in [7, 8], we

also obtain rigidity and nonexistence results from versions of a maximum principle for

vector fields [7, Theorem 2.2] and a maximum principle related to polynomial volume

growth [8, Theorem 2.1]. In both works, these authors obtained Bernstein-type results

for connected, oriented, complete noncompact Riemannian hypersurfaces with constant

mean curvature immersed into a semi-Riemannian warped product. In particular, we

obtain nonexistence results of complete spacelike hypersurfaces with polynomial vol-

ume growth in GRW spacetimes from appropriate constraints on the hyperbolic angle

between the unit timelike vectors N of the hypersurface and ∂t, that is, the standard

unit vector field tangent to I.

We also present applications considering that ambient space is either an Einstein

manifold, a steady state-type spacetime or a pseudo-hyperbolic space. Besides, we

obtain results in the Schwarzschild and Reissner-Nordström spaces. We recall that,

given a mass parameter m > 0, the Schwarzschild space is defined as being the product

8



M
n+1

= (r0(m),+∞) × Sn furnished with the metric ḡ = Vm(r)
−1dr2 + r2gSn , where

gSn is the standard metric of Sn,

Vm(r) = 1− 2mr1−n

stands for its potential function and

r0(m) = (2m)1/(n−1)

is the unique positive root of Vm(r) = 0. Its importance lies in the fact that the manifold

R×Mn+1 equipped with the Lorentzian static metric −Vm(r)dt2+ ḡ is a solution of the

Einstein field equation in vacuum with zero cosmological constant (see, for instance, [56,

Section 4.7] and [107, Chapter 13] for more details concerning Schwarzschild geometry).

As it was observed in [64, Example 1.3], Mn+1 can be reduced in the form

(0,+∞)×ρ Sn with metric (5.1.1) via the following change of variables:

t =

∫ r

r0(m)

dσ√
Vm(σ)

, ρ(t) = r(t), t ∈ (0,+∞). (5)

is the largest positive zero of Vm,q(r).

Moreover, given an electric charge q ∈ R with |q| ≤ m, the Reissner-Nordström

space is defined as being the product Mn+1
= (r0(m, q),+∞) × Sn endowed with the

metric ḡ = Vm,q(r)
−1dr2 + r2gSn , where gSn is the standard metric of Sn,

Vm,q(r) = 1− 2mr1−n + q2r2−2n

stands for its potential function and

r0(m, q) =

(
q2

m−
√
m2 − q2

)1/(n−1)

is the largest positive zero of Vm,q(r). The importance of this model lies in the fact that

the manifold R ×M
n+1 equipped with the Lorentzian static metric −Vm,q(r)dt

2 + ḡ

is a charged black-hole solution of the Einstein field equation in vacuum with zero

cosmological constant (see, for instance, [56, Remark 4.5] and [123, Section 12.3]). As

the Schwarzschild space, Mn+1 can be reduced in the form (0,+∞)×ρ Sn with metric

(5.1.1) via the same change of variables as in (5), just considering Vm,q instead of Vm.

At this point, it is worth to point out that Brendle [44] proved an analogue of

Alexandrov’s theorem for a class of warped product manifolds and obtained rigidity

9



results for compact, embedded hypersurfaces of nonzero constant mean curvature in

these spaces. Inspired by this work, Neto [105] also obtained rigidity results replacing

the assumption of embeddedness by stability.

Finally, we also establish nonparametric versions for our results in the context of

entire graphs constructed over the fiber of the ambient space (see Section 7.2).

This Thesis work was based on the following articles: previously published [26,

27, 28, 25], recently have been accepted for publication [29] and the submitted [30].

10



Part I

Parabolicity of complete linear
Weingarten submanifolds in
semi-Riemannian manifolds
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Chapter 1

Preliminaries I

In this chapter, we deal with some necessary background and definitions for de-

veloping the study the geometry of submanifolds complete linear Weingarten immersed

in semi-Riemannian space forms

1.1 Semi-Riemannian space forms

Let Qn+p
c , n ≥ 2 e p ≥ 1, be a complete Riemannian manifold, connected (n+p)-

dimensional of constant sectional curvature c ∈ {−1, 0, 1}. We recall that the Qn+p
c

is called Riemannian space form and, according to the sign of c, we can determine

that universal covering manifold of Qn+p
c (with the covering metric) is isometric to

Hyperbolic space Hn+p(c = −1), Euclidean sphere Sn+p(c = 1) and Euclidean space

Rn+p(c = 0)(see Theorem 4.1 of [74]).

We also consider the (n + p + 1)-dimensional real vector space Rn+p+1 endowed

with an inner product of index p given by

⟨x, y⟩ = −
p∑

i=1

xiyi +

n+p+1∑
j=p+1

xjyj,

denoted by Rn+p+1
p , where x = (x1, x2, . . . , xn+p+1) is the natural coordinate. The semi-

Riemannian manifold Rn+p+1
p is called an n+ p+ 1-dimensional semi-Euclidean space

and it has identically zero sectional curvature c. We define the (n+ p)-dimensional de

Sitter space Sn+p
p as the following hyperquadric of Rn+p+1

p

Sn+p
p (c) :=

{
(x1, x2, . . . , xn+p+1) ∈ Rn+p+1

p : ⟨x, x⟩ = −
p∑

i=1

x2i +

n+p+1∑
i=p+1

xi
2 =

1

c

}
(c > 0),

12



The induced metric ⟨ , ⟩ makes Sn+p
p (c) a complete semi-Riemannian manifold, con-

nected (n + p)-dimensional of index p with constant sectional curvature c equal to 1,

and in this case, this space is abbreviated by Sn+p
p .

Similarly, the n+ p-dimensional anti-de Sitter space of index p is defined by

Hn+p
p (c) :=

{
(x1, x2, . . . , xn+p+1) ∈ Rn+p+1

p : ⟨x, x⟩ = −
p∑

i=1

x2i +

n+p+1∑
i=p+1

xi
2 = −1

c

}
(c < 0),

and when we consider c = −1, this space is abbreviated by Hn+p
p .

These three spaces Rn+p+1
p , Sn+p

p (c) and Hn+p
p (c) are complete and of constant

curvature c and are called semi-Riemannian space forms.

1.2 Parabolicity and modified Cheng-Yau’s operator

The main purpose of this first part is to study the geometry of complete Riemna-

nian submanifolds Mn immersed in a (n+ p)−dimensional semi-Riemannian manifold

M
n+p, having parallel normalized mean curvature vector field h, that is, the mean cur-

vature function H is positive and the corresponding normalized mean curvature vector

field h
H

is parallel as a section of the normal bundle.

We recall that a Riemannian manifold Mn is said to be parabolic (with respect to

the Laplacian operator) if the constant functions are the only subharmonic functions

on Mn which are bounded from above; that is, for a smooth function f :Mn → R

∆f ≥ 0 and f ≤ f ∗ < +∞ implies f = constant.

It is well known that R is parabolic, since there is no non-constant negative

harmonic function defined in Euclidean space. When a complete, connected, noncom-

pact Riemannian surface of nonnegative Gaussian curvature, a classical result of Huber

in [84] guarantee the parabolicity of such surface. For examples, consider R2 and S1×R

(see also [60] and [78]). Other examples are obtained from the parabolicity criterion

due to Alías and Caminha in [6] when consider a product manifold M1 ×M2, where

M1 is a connected, compact, oriented Riemannian manifold and M2 is a parabolic

Riemannian manifold.

Extending this previous concept for a class of second-order differential of operators

on Mn which is substantially more general than the Laplacian operator, we consider

13



the following operator defined by

L(f) := tr(P ◦ ∇2f)

for every f ∈ C∞(M), where P : TM → TM is a symmetric operator on Mn and

∇2f stands for the self-adjoint linear operator metrically equivalent to the Hessian of

f . In this setting, a Riemannian manifold Mn is said to be L-parabolic or parabolic

with respect to the operator L if the constant functions are the only smooth functions

f : Mn → R which are bounded from above and satisfying Lf ≥ 0. In other words,

for a smooth function f :Mn → R such that f ∗ = supM f ,

Lf ≥ 0 and f ≤ f ∗ < +∞ implies f = constant.

It is well-known that the Laplacian operator ∆ is an elliptic operator. The dif-

ferential operator L is elliptic (respectively semi-elliptic) if and only if the operator P

is positive definite (respectively positive semi-definite).

In views of these, let us consider the self-adjoint differential operator □ introduced

by Cheng and Yau in [59], acting on a smooth function f :Mn → R given by

□f :=
∑
i,j

(nHδij − hn+1
ij )fij = nH∆f −

∑
i,j

hn+1
ij fij, (1.2.1)

where fij denote the components of the Hessian of f , hn+1 = (hn+1
ij ) denotes the second

fundamental form of Mn in the direction of normal vector field en+1 =
h
H

. From (1.2.1),

we also have

□f = tr(P1 ◦ ∇2f), (1.2.2)

where P1 : TM → TM is the operator given by

P1 = nHI − hn+1, (1.2.3)

I being the identity in the algebra of smooth vector fields on Mn.

The following concept will play a fundamental role in the first part of this work.

Definition 1.2.1 Let Mn be a submanifold in a semi-Riemannian. We say that Mn

is a linear Weingarten submanifold if its mean curvature function H and normalized
scalar curvature R satisfy R = aH + b for some a, b ∈ R.

14



As mentioned in the introduction, manifolds satisfying this relation were intro-

duced by Weingartein [124, 125] in the study of isometric deformations between sur-

faces in Euclidean space R3 preserving the mean curvature, and can be regarded as

a natural generalization of manifolds with constant scalar curvature. In such a sense,

from of linear relation the mean curvature H and Gaussian curvature K of a surface

in Euclidean space R3 satisfying aH + bK = c, where a, b, c ∈ R, López in [96] pre-

sented examples of linear Weingarten surfaces such that the constants a, b, c satisfy

a2+4bc < 0, the so called rotational linear Weingarten surfaces of hyperbolic type and

obtained a family of complete hyperbolic linear Weingarten surfaces in R3 that con-

sists of surfaces with self-intersections whose generating curves are periodic. Recently,

Silva in [66] also showed examples of surfaces in Euclidean, Lorentzian and Hyperbolic

3-space such that a2 + 4bc = 0, the so called tubular surfaces which are the surfaces

obtained by the moviment of a circle of constant radius r > 0 along a central curve

and proved that every Polynomial Weingarten tubular surface is linear.

In order to study of linear Weingarten submanifolds Mn in a semi-Riemannian

manifold, we will consider the following modified Cheng-Yau’s operator

L := □− ε
n− 1

2
a∆, (1.2.4)

where the constant ε = ±1 is chosen appropriately, such that, ε = 1 when the ambient

space is Riemannian (see, for instance, [52, 51, 53]), and ε = −1 when ambient space

has index p ≥ 1.

Note that, equivalently, for all smooth function f :Mn → R, the definition (1.2.4)

can be rewritten as follows:

Lf = tr(P ◦ ∇2f),

where P : TM → TM be the self-adjoint operator given by

P =

(
nH − ε

n− 1

2
a

)
I − hn+1. (1.2.5)

In the next Chapters we will obtain our parabolicity criteria with respect to

modified Cheng-Yau’s operator L and in Part II this work, a parabolicity criterion

with respect to a general class of second order differential operators on M defined

in (6.1.1). Our approach is based on a parabolicity criterion related to a linearized
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differential operator which is a divergence-type operator and obtained as a application

of Theorem 2.6 in [111] (see also Lemma 6.9 in [21]).

Theorem 1.2.1 (cf. [111]) Let (M, g) be a complete Riemannian manifold and let o
be a fixed reference point on M . We denote by r(x) the Riemannian distance from x to
o, and by Br the geodesic ball of radius r centered at o. Let h be the symmetric tensor
field on M satisfying the following bounds

h−(r) ≤ h(X,X) ≤ h+(r),∀X ∈ TxM, |X| = 1, x ∈ ∂Br

for some positive continuous functions h± defined on [0,+∞). If

(h+(r)vol(∂Br))
−1 /∈ L1(+∞), (1.2.6)

then M is parabolic with respect to the differential operator defined by

Lhu = div
(
h(∇u, ·)♯

)
, (1.2.7)

where ♯ denotes the musical isomorphism.
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Chapter 2

L-parabolic complete linear
Weingarten submanifolds in a
Riemannian space form

Our main goal in this chapter is to present the results obtained in article [29].

We start with the geometry of n-dimensional complete linear Weingarten submanifolds

immersed with parallel normalized mean curvature vector in an (n + p)-dimensional

Riemannian space form Qn+p
c of constant sectional curvature c ∈ {−1, 0, 1} and via a

parabolicity criterion related to modified Cheng-Yau’s operator L defined in (1.2.4) we

apply it to prove that such a submanifold must be either totally umbilical or isometric

to a hyperbolic cylinder, when c = −1, a circular cylinder, when c = 0, and a Clifford

torus, when c = 1.

2.1 Submanifolds immersed in a Riemannian space
form

Let Mn be an n-dimensional connected submanifold immersed in a Riemannian

space form Qn+p
c , with constant sectional curvature c ∈ {−1, 0, 1}. We choose a local

field of orthonormal frame {e1, . . . , en+p} in Qn+p
c adapted to Mn, that is, at each

point of Mn, e1, . . . , en are tangent to Mn and en+1, . . . , en+p are normal to Mn. Let

ω1, . . . , ωn+p be the corresponding dual coframe and let {ωAB} denote the connection

1-forms on Qn+p
c .

Moreover, throughout of first part this work, the following convention will be
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used on the range of indices:

1 ≤ A,B,C, . . . ≤ n+ p, 1 ≤ i, j, k, . . . ≤ n and n+ 1 ≤ α, β, γ, . . . ≤ n+ p.

Restricting the 1-forms to submanifold Mn, we note that, since eα is normal to

M for all α = n+ 1, ..., n+ p,

ωα = 0.

Since

0 = dωα =
∑
i

ωαi ∧ ωi, (2.1.1)

from Cartan’s lemma we can write

ωαi =
∑
j

hαijωj,

where (2.1.1) becomes
∑
i,j

hαijωi ∧ ωj = 0 which implies that

hαij = hαji.

Note that

−
(
∇eieα

)⊤
= −

∑
j

ωαj(ei)ej =
∑
j

hαijej.

This gives the second fundamental form of Mn and its square length,

B =
∑
α,i,j

hαijωi ⊗ ωj ⊗ eα and S = |B|2 =
∑
α,i,j

(hαij)
2. (2.1.2)

Furthermore, the mean curvature vector h and the mean curvature function H of Mn

are defined, respectively, by

h :=
1

n

∑
α

(∑
i

hαii

)
eα and H := |h| = 1

n

√√√√∑
α

(∑
i

hαii

)2

.

The components Rijkl of the curvature tensor R and the components R⊥
αβkl of the

normal curvature tensor R⊥ of Mn are given, respectively, by

dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl

and

dωαβ =
∑
γ

ωαγ ∧ ωγα − 1

2

∑
k,l

R⊥
αβklωk ∧ ωl.
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Therefore, the Gauss equation of Mn is

Rijkl = c(δikδjl − δilδjk) +
∑
α

(hαikh
α
jl − hαilh

α
jk). (2.1.3)

The components of the Ricci tensor Rij and the normalized scalar curvature R

of Mn are given, respectively, by

Rij = c(n− 1)δij +
∑
α

(∑
k

hαkk

)
hαij −

∑
α,k

hαikh
α
kj and R =

1

(n− 1)

∑
i

Rii.(2.1.4)

The Ricci and Codazzi equations of Mn are given, respectively, by

R⊥
αβij =

∑
k

(hαikh
β
kj − hαjkh

β
ki) (2.1.5)

and

hαijk = hαikj = hαjik, (2.1.6)

where the components hαijk of the covariant derivative ∇B satisfy∑
k

hαijkωk = dhαij +
∑
k

hαkiωkj +
∑
k

hαkjωki +
∑
β

hβijωβα. (2.1.7)

From (2.1.4), we get the following relation

S = n2H2 + n(n− 1)(c−R). (2.1.8)

By exterior differentiation of (2.1.7), we reach at the following Ricci formula

hαijkl − hαijlk =
∑
m

hαmjRmikl +
∑
m

hαimRmjkl +
∑
β

hβijR
⊥
βαkl. (2.1.9)

The Laplacian ∆hαij of the components hαij of the second fundamental form is

defined by

∆hαij :=
∑
k

hαijkk. (2.1.10)

Consequently, combining (2.1.2) with Codazzi equation (2.1.6) we obtain

1

2
∆S =

∑
α,i,j

hαij

(∑
k

hαijkk

)
+
∑
α,i,j,k

(hαijk)
2 = |∇B|2 +

∑
α,i,j,k

hαijh
α
kijk. (2.1.11)

Here, we deal with submanifold Mn immersed with parallel normalized mean

curvature vector in Qn+p
c , which means that the mean curvature function H is positive
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and h is parallel as a section of the normal bundle. In particular, we can choose a

orthonormal frame {e1, . . . , en+p} of TQn+p
c such that en+1 =

h
H

. Then we get

Hn+1 :=
1

n
tr(hn+1) = H and Hα :=

1

n
tr(hα) = 0, for α ≥ n+ 2, (2.1.12)

where hα denotes the matrix (hαij). Thus, using the equations equations (2.1.3)-(2.1.6),

together with (2.1.9)-(2.1.11), we can deduce the following Simon-type formula (see

Proposition 3.1 of [73])

1

2
∆S= |∇B|2 +

∑
i,j,α

nHα
ijh

α
ij + cn(S − nH2) + n

∑
β,i,j,k

Hhn+1
ij hβjkh

β
ki

−
∑
i,j,k,l

(∑
α

hαijh
α
kl

)2

−
∑
i,j,α,β

(R⊥
αβij)

2. (2.1.13)

2.2 A parabolicity criterion for linear Weingarten sub-
manifolds

Now, we consider the appropriate Cheng–Yau’s modified operator defined in (1.2.4),

the following result provides sufficient conditions which guarantee the L-parabolicity

of a linear Weingarten submanifold in a Riemannian space form Qn+p
c . This criterion

is obtained as an application of Theorem 2.6 in [111] (cf.Theorem 1.2.1).

Proposition A Let Mn be a complete linear Weingarten submanifold immersed with
parallel normalized mean curvature vector in Qn+p

c with c ∈ {−1, 0, 1}, such that R =

aH + b with b ≥ c. If H is bounded on Mn and, for some reference point o ∈Mn and
δ > 0, ∫ +∞

δ

dt

vol(∂Bt)
= +∞, (2.2.1)

where Bt is the geodesic ball of radius t in Mn centered at o, then Mn is L-parabolic.

Proof. Let us consider on Mn the symmetric (0, 2)-tensor field ξ given by

ξ(X, Y ) := ⟨PX, Y ⟩,

for all X, Y ∈ TM or, equivalently, ξ(∇u, ·)♯ = P (∇u) for all smooth function u :

Mn → R, where ♯ : T ∗M → TM denotes the musical isomorphism and P is the

operator defined in (1.2.5).
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Lemma 5 of [15] guarantees that Cheng-Yau’s operator □ defined in (1.2.1) can

be seen as a divergence type operator. Thus, from definition (1.2.4), we get

L(u) = div(P (∇u)). (2.2.2)

This implies that

L(u) = div
(
ξ(∇u, ·)♯

)
.

Now, note that since R = aH + b and b ≥ c, Lemma 3.3 of [33] gives that the

operator L is semi-elliptic and, consequently, P is positive semi-definite. We may choose

a local frame of orthonormal vector fields {e1, ..., en} on Mn such that hn+1
ij = λn+1

i δij.

Thus, we obtain ∑
i,j

(
hn+1
ij

)2 ≤∑
α,i,j

(
hαij
)2

= S.

It follows from (2.1.8) that

n2H2 ≥
(
λn+1
i

)2
+ n(n− 1)aH,

for all i = 1, . . . , n. Moreover, since

(
λn+1
i

)2 ≤ n2H2 − n(n− 1)aH ≤
(
nH − n− 1

2
a

)2

which together with the assumption that the normalized mean curvature vector is

parallel, we get

−nH +
n− 1

2
a ≤ λn+1

i ≤ nH − n− 1

2
a, i = 1, . . . , n.

Hence, for all i ∈ {1, . . . , n}, we obtain

0 ≤ σi ≤ 2nH − (n− 1)a,

where σi := nH− n− 1

2
a−λn+1

i are the eigenvalues of the operator P (see Lemma 3.4

of [14]). Consequently, we can define a positive continuous function ξ+ on [0,+∞) by

ξ+(t) := 2n sup
∂Bt

H − (n− 1)a.

Then it follows from the assumption that H is bounded on Mn that

ξ+(t) ≤ 2n sup
M

H − (n− 1)a < +∞.

21



From this last inequality we reach the following estimate:∫ +∞

δ

dt

ξ+(t)vol(∂Bt)
≥
(
2n sup

M
H − (n− 1)a

)−1 ∫ +∞

δ

dt

vol(∂Bt)
.

This together with hypothesis (2.2.1)implies that∫ +∞

δ

dt

ξ+(t)vol(∂Bt)
= +∞.

Therefore, applying Theorem 2.6 of [111], we conclude that Mn is L-parabolic.

Remark 2.2.1 It is worth to comment that we can reason as in the proof of Propo-
sition A to infer that an isometric immersion satisfying (2.2.1) is L-parabolic for
L = div(P(∇·)), where P is a positive semi-definite tensor such that supP < +∞
and divP ≡ 0.

Motivated by the work of Cheng and Yau in [59], we will also consider the fol-

lowing symmetric tensor

Φ =
∑
α,i,j

Φα
ijωi ⊗ ωjeα, (2.2.3)

where Φα
ij = hαij −Hαδij and Hα is defined by (2.1.12). Consequently, we have that

Φn+1
ij = hn+1

ij −Hδij and Φα
ij = hαij, n+ 2 ≤ α ≤ n+ p. (2.2.4)

Let |Φ|2 =
∑

α,i,j(Φ
α
ij)

2 be the square of the length of Φ. Then, by an easy

computation we show that tr (Φ) = 0. From of relation (2.1.8) we obtain

|Φ|2 = S − nH2 = nH2(n− 1) + n(n− 1)(c−R). (2.2.5)

2.3 Auxiliary Lemmas

In this section, we will recall some important well-known lemmas which will be

used to prove our characterization results in the next section. The first one is an

algebraic Lemma obtained in [116].

Lemma 2.3.1 (cf. [116]) Let A,B : Rn → Rn be symmetric linear maps such that
AB −BA = 0 and tr(A) = tr(B) = 0. Then∣∣tr(A2B)

∣∣ ≤ n− 2√
n(n− 1)

N(A)
√
N(B),

where N(A) = tr(AAt), for any matrix A = (aij). Moreover, the equality holds if, and
only if, (n− 1) of the eigenvalues xi of A and corresponding eigenvalues yi of B satisfy

|xi| =

√
N(A)

n(n− 1)
, xiyi ≥ 0 and yi =

√
N(B)

n(n− 1)

(
resp.−

√
N(B)

n(n− 1)

)
.
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The second one is also algebraic lemma, whose proof can be found in [89].

Lemma 2.3.2 (cf. [89]) Let B1, B2, ..., Bp be p symmetric (n× n)-matrices (p ≥ 2).
If Sαβ = tr

(
(Bα)tBβ

)
, Sα = Sαα = N(Bα) and S =

∑
α Sα,then∑

α,β

N
(
BαBβ −BβBα

)
+
∑
α,β

S2
αβ ≤ 3

2
S2, (2.3.1)

where N(B) = tr(BBt), for any matrix B = (bij).

Consider the classic algebraic lemma, the inequality case is obtained in Lemma

2.1 [108], and the equality is due to Lemma 1 of [24].

Lemma 2.3.3 (cf. [108] and [24]) Let µi, i = 1, 2, ..., n be real numbers satisfying

n∑
i=1

µi = 0 and
n∑

i=1

µ2
i = k2,

where k = const. nonnegative.Then we have

− n− 2√
n(n− 1)

k3 ≤
n∑

i=1

µ3
i ≤

n− 2√
n(n− 1)

k3.

and equality holds in the right-hand (left-hand) side if and only if (n − 1) of the µi’s
are nonpositive and equal ((n− 1) of the µi’s are nonnegative and equal).

The next key lemma due to [73] is very applicable.

Lemma 2.3.4 (cf. [73] ) Let Mn be a linear Weingarten submanifold immersed in a
Riemannian space form Qn+p

c , with R = aH + b for some a, b ∈ R. Suppose that

(n− 1)a2 + 4n(b− c) ≥ 0. (2.3.2)

Then
|∇B|2 ≥ n2|∇H|2. (2.3.3)

Moreover, the equality holds in (2.3.3) on Mn if, and only if, Mn is an isoparametric
submanifold of Qn+p

c .

Remark 2.3.1 It is worth mentioning also Lemma 3.1 obtaneid in [36] for the case of
surfaces. In this case, the authors concluded that the when the equality occurs in (2.3.3)
on M2, the mean curvature function H on M2 is constant.
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2.4 Characterization Results

Now we are ready to present and prove the main results of this chapter. In

what follows, we will apply Proposition A to get new characterization results con-

cerning complete linear Weingarten submanifolds immersed with parallel normalized

mean curvature vector in a Riemannian space form Qn+p
c with constant sectional

curvature c ∈ {−1, 0, 1}. These results are mostly inspired in those ones obtained

in [16, 34, 36, 73, 79].

Initially, we will consider the case of linear Weingarten surfaces immersed with

codimension p in Q2+p
c .

Theorem 2.4.1 Let M2 be a complete linear Weingarten surface immersed with par-
allel normalized mean vector and flat normal bundle in Q2+p

c , such that its Gaussian
curvature K and mean curvature H satisfy K = aH + b with b ≥ c. Suppose in ad-
dition that there exits a point q ∈ M2 such that K(q) > 0 and that H is bounded on
M2. If hypothesis (2.2.1) is satisfied and K is nonnegative on M2, then M2 is totally
umbilical.

Proof. Since we assume that M2 has flat normal bundle, that is, R⊥ ≡ 0, for each

fixed α, taking a local orthonormal frame {e1, e2} on M2 such that hαij = λαi δij, we

obtain from (2.1.9), (2.1.12) and (2.1.13) that

1

2
∆S = |∇B|2 +

∑
i,j

2H3
ijh

3
ij +

∑
i,j,k,m,α

hαijh
α
miRmkjk +

∑
i,j,k,m,α

hαijh
α
kmRmijk

= |∇B|2 +
∑
i

λ3i (2H)ii +
1

2

∑
i,j,α

Rijij(λ
α
i − λαj )

2. (2.4.1)

On the other hand, it follows from of modified Cheng-Yau’s operator defined in (1.2.4)

acting on the mean curvature function H that

L(2H) = □(2H)− a∆H

= 2H∆(2H)−
∑
i

λ3i (2H)ii − a∆H

=
1

2
∆(2H)2 −

∑
i

(2H)2i −
∑
i

λ3i (2H)ii − a∆H (2.4.2)

= ∆R +
1

2
∆S − 4|∇H|2 −

∑
i

λ3i (2H)ii − a∆H.

Since R = aH + b, combining (2.4.1) and (2.4.2) we obtain

L(2H) = |∇B|2 − 4|∇H|2 + 1

2

∑
i,j

Rijij(λ
α
i − λαj )

2. (2.4.3)
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Moreover, Gauss equation (2.1.3) gives

Rijij = c+
∑
β

λβi λ
β
j . (2.4.4)

This together with (2.1.8) and (2.2.5) implies that

1

2

∑
i,j,α

Rijij(λ
α
i − λαj )

2 =
∑
α

R1212(λ
α
1 − λα2 )

2

= 2|Φ|2
(
c+

∑
β

(
|hβ|2

2
− |Φβ|2

))

= 2|Φ|2
(
c+

S

2
− |Φ|2

)
(2.4.5)

= |Φ|2(−|Φ|2 + 2H2 + 2c) (2.4.6)

= 2K|Φ|2.

On the other hand, by our assumption b ≥ c, Lemma 3.1 of [36](cf. Remark 2.3.1)

guarantees that

|∇B|2 =
∑
α,i,j,k

(hαijk)
2 ≥ 4|∇H|2. (2.4.7)

Thus, since the Gaussian curvature K of M2 is nonnegative, from (2.4.3), (2.4.5)

and (2.4.7) we obtain

L(2H) ≥ 2K|Φ|2 ≥ 0. (2.4.8)

Moreover, Proposition A assures that M2 is L-parabolic. This together with the

assumption H is bounded, the above inequalitywe get H is constant on M2 which

implies, in particular, that L(2H) = 0 on M2. Therefore, since K = aH+ b and taking

into account the existence of a point q ∈ M2 such that K(q) > 0, from (2.4.8) we get

that |Φ| ≡ 0 and, hence, M2 is totally umbilical.

We recall that, for n ≥ 2, umbilical submanifolds of a space form Qn+p(c) have

constant curvature K = c + ||H||2, and, besides the totally geodesic submanifolds, if

c ≥ 0 they are the spheres; or, if c < 0 we have the geodesic spheres (K > 0) or we

have the horospheres (K = 0) or we have the hyperspheres equidistant (K < 0).

Lobos in [97], based on a theorem due to Ferus-Strübing (see [75, 76, 119]),

defined and classified a basic class of parallel immersions into space forms, the umbilical

manifolds and their extrinsic products.
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Finally, our approach allows us to establish the following characterization result

concerning n-dimensional complete linear Weingarten submanifolds, now considering

the case n ≥ 3.

Theorem 2.4.2 Let Mn be a complete linear Weingarten submanifold immersed with
parallel normalized mean curvature vector in Qn+p

c (n ≥ 4 and p ≥ 1 or n ≥ 3 and
p = 1), such that R = aH + b with b ≥ c. Suppose in addition that, when c ∈ {−1, 0},
R > 0 and, when c = 1, R ≥ 1. If hypothesis (2.2.1) is satisfied, H is bounded on Mn

and
sup
M

|Φ|2 ≤ n(n− 1)R2

(n− 2)(nR− (n− 2)c)
, (2.4.9)

then

i. either |Φ| ≡ 0 and Mn is totally umbilical,

ii. or |Φ|2 ≡ n(n− 1)R2

(n− 2)(nR− (n− 2)c)
and Mn is isometric to a

(a) hyperbolic cylinder H1
(
−
√
1 + r2

)
× Sn−1(r) ↪→ Hn+1 ↪→ Hn+p, when c =

−1;

(b) circular cylinder R× Sn−1(r) ↪→ Rn+1 ↪→ Rn+p, when c = 0;

(c) Clifford torus S1
(√

1− r2
)
× Sn−1(r) ↪→ Sn+1 ↪→ Sn+p, when c = 1;

where r =
√
n− 2

nR
.

Proof. In the first place, we will consider the case n ≥ 4 and p ≥ 1. Because of

relations (2.1.8) and (2.2.5) together with Simon-type formula (2.1.13), we have that

the modified Cheng-Yau’s operator defined in (1.2.4) acting on the mean curvature

function H is expressed as follows:

L(nH)=
∑
i,j

(nHδij − hn+1
ij )(nH)ij −

n− 1

2
a∆(nH)

=
1

2
n2∆H2 − n2|∇H|2 − n− 1

2
a∆(nH)− n

∑
i,j

hn+1
ij Hij (2.4.10)

=
(
|∇B|2 − n2|∇H|2

)
+ cn|Φ|2 + n

∑
β,i,j,k

Hhn+1
ij hβjkh

β
ki

−
∑
i,j,k,l

(∑
α

hαijh
α
kl

)2

−
∑
α,β,i,j

(R⊥
αβij)

2.

By our assumption b ≥ c, Lemma 4.1 of [73](cf. Lemma 2.3.4) assure that

L(nH)≥ cn|Φ|2 + n
∑
β,i,j,k

Hhn+1
ij hβjkh

β
ki
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−
∑
i,j,k,l

(∑
α

hαijh
α
kl

)2

−
∑
α,β,i,j

(R⊥
αβij)

2. (2.4.11)

To estimate the above inequality, we consider

I :=
∑
β,i,j,k

Hhn+1
ij hβjkh

β
ki (2.4.12)

and

II :=
∑
i,j,k,l

(∑
α

hαijh
α
kl

)2

+
∑
α,β,i,j

(R⊥
αβij)

2. (2.4.13)

Hence, (2.4.11) is rewritten as

L(nH) ≥ cn|Φ|2 + nI − II. (2.4.14)

Firstly, we estimate (2.4.12):

Combining (2.1.12) with (2.2.4), we get∑
i,j,k,β

Hhn+1
ij hβjkh

β
ki=Htr(Φn+1)3 + 3H2|Φn+1|2 + nH4

+

n+p∑
β=n+2

∑
i,j,k

HΦn+1
ij Φβ

jkΦ
β
ki +

n+p∑
β=n+2

H2|Φβ|2. (2.4.15)

Taking into account that the matrices Φβ are symmetric and traceless and Φn+1 com-

mutes with all the matrices Φβ, we can use Lemma 2.6 of [116](cf. Lemma 2.3.1) for

Φβ and Φn+1 in order to obtain

∣∣tr((Φβ)2Φn+1)
∣∣ ≤ n− 2√

n(n− 1)
|Φβ|2|Φn+1|. (2.4.16)

This together with (2.4.12) and the right-hand side of (2.4.15) implies

I ≥ − n− 2√
n(n− 1)

H|Φn+1|3 + 2H2|Φn+1|2 +H2|Φ|2 + nH4

− n− 2√
n(n− 1)

n+p∑
β=n+2

H|Φn+1||Φβ|2 (2.4.17)

= 2H2|Φn+1|2 +H2|Φ|2 + nH4 − n− 2√
n(n− 1)

H|Φn+1||Φ|2.

Hence, from (2.4.15) and (2.4.17) we have

I =
∑
β,i,j,k

Hhn+1
ij hβjkh

β
ki ≥ 2H2|Φn+1|2 +H2|Φ|2 + nH4 (2.4.18)
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− n− 2√
n(n− 1)

H|Φn+1||Φ|2.

Secondly, we estimate (2.4.13):

Note that

II =
∑
i,j,k,l

(∑
α

hαijh
α
kl

)2

+
∑
α,β,i,j

(R⊥
αβij)

2

=
∑
i,j,k,l

(∑
α,β

hαijh
α
klh

β
ijh

β
kl

)
+

∑
α ̸=n+1,β ̸=n+1,i,j

(R⊥
αβij)

2 (2.4.19)

=
∑
α,β

[
tr(BαBβ)

]2
+

∑
α,β,i,j,m,l

hαijh
α
imh

β
mlh

β
lj

−
∑

α,β,i,j,k,m

hαijh
α
kmh

β
jmh

β
ik −

∑
α,β,i,j,k

hαjih
β
ikR

⊥
βαji (2.4.20)

Hence, from Ricci equation (2.1.5) we get

II =
[
tr(Bn+1Bn+1)

]2
+ 2

∑
β ̸=n+1

[
tr(Bn+1Bβ)

]2 (2.4.21)

+
∑

α ̸=n+1,β ̸=n+1

[
tr(BαBβ)

]2
+
∑

α ̸=n+1,β ̸=n+1

|BαBβ −BβBα|2.

It follows from Theorem 1 of [89](cf. Lemma 2.3.2) and (2.2.4) that

∑
α ̸=n+1,β ̸=n+1

[tr(BαBβ)]2 +
∑

α̸=n+1,β ̸=n+1

|BαBβ −BβBα|2 ≤ 3

2

( ∑
β ̸=n+1

tr(BβBβ)

)2

≤ 3

2

( ∑
β ̸=n+1

|Φβ|2
)2

. (2.4.22)

Hence, combining (2.4.21) with (2.4.22) we obtain

II ≤ [tr(Bn+1Bn+1)]2 + 2
∑

β ̸=n+1

[tr(Bn+1Bβ)]2 +
3

2

( ∑
β ̸=n+1

|Φβ|2
)2

= |Φn+1|4 + 2nH2|Φn+1|2 + n2H4 + 2
∑

β ̸=n+1

[tr(Φn+1Φβ)]2 +
3

2
(|Φ|2 − |Φn+1|2)2

≤ 5

2
|Φn+1|4 + 2nH2|Φn+1|2 + n2H4 + 2|Φn+1|2(|Φ|2 − |Φn+1|2) + 3

2
|Φ|4

−3|Φ|2|Φn+1|2

=
1

2
|Φn+1|4 + 2nH2|Φn+1|2 + n2H4 − |Φ|2|Φn+1|2 + 3

2
|Φ|4. (2.4.23)

Therefore, from (2.4.11)-(2.4.14), (2.4.18) and (2.4.23) we get

L(nH)≥ cn|Φ|2 − n(n− 2)√
n(n− 1)

H|Φn+1||Φ|2 + nH2|Φ|2 − 1

2
|Φn+1|4
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+|Φ|2|Φn+1|2 − 3

2
|Φ|4

= |Φ|2
(
−|Φ|2 − n(n− 2)√

n(n− 1)
H|Φ|+ n(H2 + c)

)
(2.4.24)

+(|Φ| − |Φn+1|)
( n(n− 2)√

n(n− 1)
H|Φ|2

−1

2
(|Φ| − |Φn+1|)(|Φ|+ |Φn+1|)2

)
.

Note that the relations (2.1.8) and (2.2.5) implies that

H2 =
1

n(n− 1)
|Φ|2 + (R− c). (2.4.25)

Substituting this into (2.4.24), we obtain

L(nH)≥ (|Φ| − |Φn+1|)
( n(n− 2)√

n(n− 1)
H|Φ|2 (2.4.26)

−1

2
(|Φ| − |Φn+1|)(|Φ|+ |Φn+1|)2

)
+

1

n− 1
|Φ|2QR (|Φ|) ,

where QR(x) is the function introduced by Alías, García-Martínez and Rigoli in [16]

which is given by

QR(x) = −(n− 2)x2 − (n− 2)x
√
x2 + n(n− 1)(R− c) + n(n− 1)R. (2.4.27)

On the other hand, we quote the following algebraic inequality (3.5) of [79]

(|Φ| − |Φn+1|)(|Φ|+ |Φn+1|)2 ≤ 32

27
|Φ|3. (2.4.28)

Again using the relation (2.1.8) we also have S ≤ n2H2 and, consequently, (2.2.5)

gives us

H ≥ 1√
n(n− 1)

|Φ|. (2.4.29)

Thus, (2.4.28) together with (2.4.29) implies that

n(n− 2)√
n(n− 1)

H|Φ|2 − 1

2
(|Φ| − |Φn+1|)(|Φ|+ |Φn+1|)2 ≥

(
n− 2

n− 1
− 16

27

)
|Φ|3. (2.4.30)

Since n ≥ 4 we have that
n− 2

n− 1
− 16

27
> 0. (2.4.31)

Then, from (2.4.26), (2.4.30) and (2.4.31) we obtain

L(nH)≥ (|Φ| − |Φn+1|)
(
n− 2

n− 1
− 16

27

)
|Φ|3 + 1

n− 1
|Φ|2QR (|Φ|)
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≥ 1

n− 1
|Φ|2QR (|Φ|) . (2.4.32)

In the next place, let us consider the case n ≥ 3 and p = 1. In this case, for

simplicity, we will just denote hij := hn+1
ij . We choose a (local) orthonormal frame

{e1, . . . , en} on Mn such that hij = λiδij and Φij = µiδij. Thus,

L(nH) = |∇B|2 − n2|∇H|2 + 1

2

∑
i,j

Rijij(λi − λj)
2. (2.4.33)

From Gauss equation (2.1.3) we have Rijij = c+λiλj. Thus, combining this with

the relation (2.2.5) we obtain

L(nH) = |∇B|2 − n2|∇H|2 + nc|Φ|2 − S2 + nH
∑
i

λ3i . (2.4.34)

On the other hand, it is straightforward to check that∑
i

µi = 0,
∑
i

µ2
i = |Φ|2 and

∑
i

µ3
i =

∑
i

λ3i − 3H|Φ|2 − nH3. (2.4.35)

Thus, from (2.4.34) and (2.4.35) we get

L(nH) = |∇B|2 − n2|∇H|2 + nH
∑
i

µ3
i + |Φ|2(−|Φ|2 + nH2 + nc). (2.4.36)

Since b ≥ c, we can apply Lemma 4.1 of [73](cf. Lemma 2.3.4) and Lemma 2.1

of [108](cf. Lemma 2.3.3)to the real numbers µ1, . . . , µn to obtain

L(nH) ≥ |Φ|2
(
−|Φ|2 − n(n− 2)√

n(n− 1)
H|Φ|+ nH2 + nc

)
. (2.4.37)

Consequently, from (2.4.25) and (2.4.37) we also reach at

L(nH)≥ 1

n− 1
|Φ|2QR (|Φ|) , (2.4.38)

where QR(x) is the function given by (2.4.27).

It follows from our constraints on R that QR(0) = n(n−1)R > 0 and the function

QR(x) is strictly decreasing for x ≥ 0, with QR(x
∗) = 0 at

x∗ = R

√
n(n− 1)

(n− 2)(nR− (n− 2)c)
> 0.

Thus, since hypothesis (2.4.9) is satisfied, we obtain that QR (|Φ|) ≥ 0. Hence,

from (2.4.32) and (2.4.38) we have

L(nH) ≥ 1

n− 1
|Φ|2QR (|Φ|) ≥ 0.
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Moreover, Proposition A assures that Mn is L-parabolic. Consequently, from the

boundedness of H, we get that it is constant on Mn. This implies, in particular, that

L(nH) = 0 on Mn. Thus, returning to (2.4.10) and (2.4.33) we have

|∇B|2 = n2|∇H|2.

Therefore, for n ≥ 4 and p ≥ 1, Lemma 4.1 of [73](cf. Lemma 2.3.4) guarantees that

Mn is an isoparametric submanifold of Qn+p
c . In the case n ≥ 3 and p = 1, Lemma

1 of [24](cf. Lemma 2.3.3) assures that Mn is an isoparametric hypersurface with two

distinct principal curvatures one of which is simple.

Now, let us suppose that Mn is not totally umbilical. When n ≥ 4, taking

into account the inequality (2.4.31), from estimate (2.4.32) we conclude that |Φ| =

|Φn+1| and, consequently, Φα = 0, for all α ≥ n + 2. Thus, since Mn has parallel

normalized mean curvature vector we can apply Theorem 1 of [129] to conclude thatMn

is isometrically immersed in a (n+1)-dimensional totally geodesic submanifold Qn+1
c of

Qn+p
c .Therefore, in both cases, by the classical results on isoparametric hypersurfaces

of real space forms [50, 87, 117], we conclude that either |Φ|2 ≡ 0 and Mn is totally

umbilical or

|Φ|2 ≡ n(n− 1)R2

(n− 2)(nR− (n− 2)c)

and that Mn must be isometric to a following standard product embeddings:

(a) hyperbolic cylinder H1
(
−
√
1 + r2

)
× Sn−1(r) ↪→ Hn+1 ↪→ Hn+p, when c = −1.

(b) circular cylinder R× Sn−1(r) ↪→ Rn+1 ↪→ Rn+p, when c = 0;

(c) Clifford torus S1
(√

1− r2
)
× Sn−1(r) ↪→ Sn+1 ↪→ Sn+p, when c = 1;

To conclude this proof, we now consider the value of constant sectional curvature

c ∈ {−1, 0, 1} of Qn+p
c . In this setting, if c = −1, then for a given r > 0, in the

Hyperbolic space Hn+p, we have that

H1
(
−
√
1 + r2

)
× Sn−1(r) ↪→ Hn+1 ↪→ Hn+p

has constant principal curvatures given by

k1 =
r√

1 + r2
and k2 = · · · = kn =

√
1 + r2

r
.
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Thus,

H =
n(1 + r2)− 1

nr
√
1 + r2

and |Φ|2 = n− 1

nr2(1 + r2)
.

When c = 0, for a given radius r > 0, in the the Euclidean space Rn+p we have

that

R× Sn−1(r) ↪→ Rn+1 ↪→ Rn+p

has constant principal curvatures given by

k1 = 0, k2 = · · · = kn =
1

r

which implies that

H =
n− 1

nr
and |Φ|2 = n− 1

nr2
.

In the case c = 1, for a given radius 0 < r < 1, in the Euclidean sphere Sn+p we

have that

S1
(√

1− r2
)
× Sn−1(r) ↪→ Sn+1 ↪→ Sn+p

has constant principal curvatures given by

k1 =
r√

1− r2
, k2 = · · · = kn = −

√
1− r2

r

Thus, in this case,

H =
nr2 − (n− 1)

nr
√
1− r2

and |Φ|2 = n− 1

nr2(1− r2)
.

Finally, note that for all c ∈ {−1, 0, 1}, the relation (2.2.5) implies that and constant

scalar curvature of Qn+p
c is given by R =

n− 2

nr2
> 0. This finishes the proof of theorem.
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Chapter 3

L-parabolic complete linear
Weingarten spacelike submanifolds in
the de Sitter space

In this chapter, we present the results concerning the article [28]. By following

the same strategy of previous chapter, we can prove our characterization results for

complete linear Weingarten spacelike submanifold immersed with parallel normalized

mean curvature vector in de Sitter space Sn+p
p of index p. In this setting, imposing

appropriate restrictions on the values of the mean curvature function H, we establish

a parabolicity criterion related to a suitable Cheng-Yau’s modified operator L defined

in (1.2.4) and we use it to obtain sufficient conditions which guarantee that such a

spacelike submanifold must be either totally umbilical or isometric to certain hyperbolic

cylinders of Sn+p
p .

3.1 Spacelike Submanifolds immersed in the de Sitter
space

An n-dimensional submanifold Mn of Sn+p
p is said to be spacelike if the induced

metric on Mn from that of the ambient space Sn+p
p is positive definite. We choose a

local field of semi-Riemannian orthonormal frames {e1, . . . , en+p} in Sn+p
p adapted on

Mn. We will use the same indices convention as in the previous chapter:

1 ≤ A,B,C, . . . ≤ n+ p, 1 ≤ i, j, k, . . . ≤ n and n+ 1 ≤ α, β, γ, . . . ≤ n+ p,
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and taking the corresponding dual coframes ω1, . . . , ωn+p, the semi-Riemannian metric

of Sn+p
p is given by

ds2 =
∑
i

ω2
i −

∑
α

ω2
α =

∑
A

ϵA ω
2
A,

where ϵi = 1 and ϵα = −1, 1 ≤ i ≤ n and n+ 1 ≤ α ≤ n+ p.

Denote by {ωAB} the connection forms of Sn+p
p , we have that the structure equa-

tions of Sn+p
p are given by

dωA =
∑
B

ϵB ωAB ∧ ωB, ωAB + ωBA = 0, (3.1.1)

dωAB =
∑
C

ϵC ωAC ∧ ωCB − 1

2

∑
C,D

ϵCϵDKABCD ωC ∧ ωD, (3.1.2)

where KABCD = ϵAϵB(δACδBD − δADδBC).

Restricting those forms to Mn, that is, applying in Sn+p
p , we note that ωα = 0 on

Mn and the Riemannian metric of Mn is written as ds2 =
∑

i ω
2
i . Thus, from (3.1.1)

we obtain

dωi =
∑
j

ωij ∧ ωj, ωij + ωji = 0 (3.1.3)

and ∑
i

ωαi ∧ ωi = dωα = 0. (3.1.4)

Hence, from Cartan’s Lemma we obtain

ωαi =
∑
j

hαijωj and hαij = hαji. (3.1.5)

This gives the second fundamental form of Mn and its square length,

B =
∑
α,i,j

hαijωi ⊗ ωj ⊗ eα, and S = |B|2 =
∑
α,i,j

(hαij)
2, (3.1.6)

respectively. Furthermore, the mean curvature vector h and the mean curvature func-

tion H of Mn are defined, respectively, by in

h =
1

n

∑
α

(∑
i

hαii

)
eα and H = |h| = 1

n

√√√√∑
α

(∑
i

hαii

)2

. (3.1.7)

From (3.1.2) and (3.1.3), the structure equations of Mn are given by

dωi =
∑
j

ωij ∧ ωj, ωij + ωji = 0 and
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(3.1.8)

dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl,

where Rijkl are the components of the curvature tensor of Mn. From previous structure

equations, we obtain the Gauss equation

Rijkl = (δikδjl − δilδjk)−
∑
α

(hαikh
α
jl − hαilh

α
jk). (3.1.9)

The components of the Ricci curvature Rij and the normalized scalar curvature

R of Mn are given by

Rij = (n− 1)δij −
∑
α

(∑
k

hαkk

)
hαij +

∑
α,k

hαikh
α
kj (3.1.10)

and

R =
1

n(n− 1)

∑
i

Rii, (3.1.11)

respectively. Combining (3.1.10) with (3.1.11) we compute the following relation

S = n2H2 + n(n− 1)(R− 1). (3.1.12)

We also have the structure equations of the normal bundle of Mn

dωα = −
∑
β

ωαβ ∧ ωβ, ωαβ + ωβα = 0

and

dωαβ = −
∑
γ

ωαγ ∧ ωγβ −
1

2

∑
k,l

Rαβklωk ∧ ωl, (3.1.13)

where Rαβjk satisfy Ricci equation

Rαβij =
∑
l

(
hαilh

β
lj − hαjlh

β
li

)
. (3.1.14)

From (3.1.5) we obtain Codazzi equation

hαijk = hαikj = hαkij, (3.1.15)

where hαijk are the components of the covariant derivative ∇B, which satisfy∑
k

hαijkωk = dhαij +
∑
k

hαikωkj +
∑
k

hαjkωki −
∑
β

hβijωβα. (3.1.16)
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Differentiating (3.1.16) exteriorly we obtain the following Ricci formula for the second

fundamental form

hαijkl − hαijlk =
∑
m

hαmjRmikl +
∑
m

hαimRmjkl +
∑
k,β

hβikRαβjk. (3.1.17)

From these formulas, we can compute the Laplacian ∆hαij of the components hαij
of second fundamental form as follows:

∆hαij =
∑
k

hαkkij +
∑
k,l

hαklRlijk +
∑
k,l

hαliRlkjk +
∑
k,β

hβikRαβjk. (3.1.18)

As we considered in the previous chapter, here we also take H > 0 and from of

orthonormal frame {e1, . . . , en+p} of TSn+p
p such that en+1 =

h
H

. Thus, we get

Hn+1 :=
1

n
tr(hn+1) = H and Hα :=

1

n
tr(hα) = 0, α ≥ n+ 2, (3.1.19)

where hα = (hαij) denotes the second fundamental form of Mn in direction eα for every

n+ 1 ≤ α ≤ n+ p. Thus, from (3.1.9), (3.1.14), (3.1.18) and (3.1.19) we have

∆hn+1
ij = nHij + nhn+1

ij − nHδij

+
∑
β,m,k

hn+1
mk h

β
mkh

β
ij − 2

∑
β,m,k

hn+1
mk h

β
mjh

β
ik

+
∑
β,m,k

hn+1
mi h

β
mkh

β
jk − nH

∑
m

hn+1
mi h

n+1
mj

+
∑
β,m,k

hn+1
mj h

β
mkh

β
ik

and for all n+ 2 ≤ α ≤ n+ p,

∆hαij = nHα
ij + nhαij +

∑
β,m,k

hαmkh
β
kmh

β
ij

−2
∑
β,m,k

hαmkh
β
jmh

β
ik +

∑
β,m,k

hαmih
β
mkh

β
kj

−nH
∑
m

hαmih
n+1
jm +

∑
β,m,k

hαmjh
β
mkh

β
ik.

Hence, it follows from (2.1.11) the following Simons-type formula

1

2
∆S=

∑
α,i,j,k

(hαijk)
2 + n

∑
α,i,j

hαijH
α
ij + n(S − nH2) +

∑
α,β

(
tr(hαhβ)

)2
−nH

∑
α

tr
(
hn+1(hα)2

)
+
∑
α,β

N
(
hαhβ − hβhα

)
, (3.1.20)

where N(A) = tr(AAt), for all matrix A = (aij).
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3.2 A parabolicity criterion for linear Weingarten space-
like submanifolds

Our next result provides sufficient conditions which guarantee the parabolicity

of a linear Weingarten spacelike submanifold in de Sitter space Sn+p
p with respect to

modified Cheng-Yau’s operator L defined in (1.2.4) for ε = −1. With respect to the

ellipcity of this operator, the following results are stated in [127] and [19].

Lemma 3.2.1 (cf. [19]) Let Mn be a spacelike submanifold in the de Sitter space Sn+p
p

with H > 0. Let µ− and µ+ be, respectively, the minimum and the maximum of the
eigenvalues of the operator P1 at every point p ∈ Mn. If R < 1(resp., R ≤ 1 on Mn),
then the operator □ is elliptic (resp., semi-elliptic), with µ− > 0 (resp., µ− ≥ 0). and
µ+ < 2nH (resp., µ+ ≤ 2nH).

Proposition B (cf. [127]) Let Mn be an n-dimensional spacelike linear Weingarten
submanifold in de Sitter space Sn+p

p with R = aH+b. If a ̸= 0, b < 1, then L is elliptic.

As a application of Theorem 2.6 in [111] (cf.Theorem 1.2.1), we obtain the follow-

ing L-parabolicity criterion whose its proof is similar to proof of Proposition A, where

we used the results above.

Proposition C Let Mn be a complete linear Weingarten spacelike submanifold im-
mersed with parallel normalized mean curvature vector in Sn+p

p such that R = aH + b

for some a, b ∈ R with b ≤ 1. If H is bounded and, for some reference point o ∈ Mn

and some δ > 0, ∫ +∞

δ

dt

vol(∂Bt)
= +∞, (3.2.1)

where Bt is the geodesic ball of radius t in Mn centered at the reference point o, then
Mn is L-parabolic.

Let Φ be the traceless symmetric tensor defined in (2.2.3). Then, considering

a complete spacelike submanifold Mn immersed in Sn+p
p , it can be easily checked the

following relation

|Φ|2 = S − nH2 = n(n− 1)H2 + n(n− 1)(R− 1). (3.2.2)

3.3 Characterization Results

In this section, we revisit the results of [41, 94, 127] and we characterize complete

linear Weingarten submanifolds immersed with parallel normalized mean curvature
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vector in Sn+p
p applying Proposition C. For this, we consider also the result due to [127].

Lemma 3.3.1 (cf. [127] ) Let Mn be a spacelike linear Weingarten submanifold in
de Sitter space Sn+p

p with R = aH + b for some a, b ∈ R. If b ≤ 1, then

|∇B|2 ≥ n2|∇H|2. (3.3.1)

Moreover, suppose that the equality in (2.3.3) holds, then Mn is constant on Mn.

In this setting, we prepare the following theorem.

Theorem 3.3.1 Let Mn be a complete linear Weingarten spacelike submanifold im-
mersed with parallel normalized mean curvature vector in Sn+p

p , such that R = aH + b

for some a, b ∈ R with b ≤ 1. Suppose that Mn has nonnegative sectional curvature
and that H is bounded on Mn. If hypothesis (3.2.1) is satisfied, then Mn is either
totally umbilical or isometric to a product M1 ×M2 × . . .×Mk, where the factors Mi

are totally umbilical spacelike submanifolds of Sn+p
p which are mutually perpendicular

along their intersections.

Proof. Since N(B) := tr(BBt), for any matrix B = (bij), from Ricci equation (3.1.14)

we can verify that ∑
α,β,i,j,k

hαijh
β
kiRαβjk =

1

2

∑
α,β

N(hαhβ − hβhα). (3.3.2)

Thus, by the assumption on the normalized mean curvature vector and com-

bining (3.1.18), (3.1.20) with (3.3.2), the Cheng-Yau’s modified operator L defined

in (1.2.4) acting on the mean curvature function H is

L(nH) =
∑
α,i,j,k

(hαijk)
2 − n2|∇H|2 +

∑
i,j,k,m

(
hαijh

α
kmRmijk + hαijh

α
miRmkjk

)
+
1

2

∑
α,β

N
(
hαhβ − hβhα

)
. (3.3.3)

Now, we estimate the above equation. For this, note that, since we are also

supposing that b ≤ 1, from Proposition 2.2 of [127](cf. Lemma 3.3.1) we have

|∇B|2 =
∑
α,i,j,k

(hαijk)
2 ≥ n2|∇H|2. (3.3.4)

On the other hand, since the matrix hα := (hαij) can be diagonalized, for each

fixed α we consider a local orthonormal frame {ei} such that hαij = λαi δij, where λαi

38



denote the eigenvalue of hα. Thus, considering the third term of (3.3.3) we obtain the

following estimate∑
i,j,k,m

hαijh
α
kmRmijk +

∑
i,j,k,m

hαijh
α
miRmkjk ≥

1

2

∑
i,j

(λαi − λαj )
2Rijij. (3.3.5)

Note that for all matrix B = (bij) we have (Bt)ij =
∑

k bikb
t
kj and

N(B) = tr(BBt) =
∑
i,k

bikb
t
ki =

∑
i,k

(
btki
)2 ≥ 0.

Consequently, the last term of (3.3.3) is

N
(
hαhβ − hβhα

)
≥ 0. (3.3.6)

By assumption that the sectional curvature of Mn is nonnegative, substitut-

ing (3.3.4), (3.3.5), (3.3.6) into (3.3.3), we obtain

L(nH) ≥ 1

2

∑
i,j

(λαi − λαj )
2Rijij ≥ 0. (3.3.7)

Moreover, Proposition C assures that Mn is L-parabolic. Thus, since H is

bounded, H is constant on Mn. It follows from (3.3.6) that

hαhβ = hβhα for all α, β > n+ 1,

which implies that the normal bundle of Mn is flat. Hence, all the matrices hα can

be diagonalized simultaneously. Note also that, hαijk = 0, for all i, j, k, α and thus the

second fundamental form B is parallel. In particular, it implies that λαi is constant for

all i, α. Therefore, ∑
i,j

(λαi − λαj )
2Rijij = 0.

Thus by the assumption of nonnegative sectional curvature, we obtain that Mn

has parallel mean curvature vector and constant scalar curvature R. Therefore, we

can apply Theorem 1.11 of [54](see also Lemmas 5.1, 5.3 and Theorem 1.3 of [85]) to

conclude the proof.

Now, imposing a suitable constraint on the mean curvature function, we prove our

second characterization result for complete linear Weingarten spacelike submanifold of

Sn+p
p .
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Theorem 3.3.2 Let Mn, n ≥ 3, be a complete linear Weingarten spacelike sub-
manifold immersed with parallel normalized mean curvature vector in Sn+p

p , such that
R = aH + b for some a, b ∈ R with b ≤ 1. Suppose that

H2 ≤ 4(n− 1)

Q(p)
, (3.3.8)

where
Q(p) = p(n− 2)2 + 4(n− 1).

If hypothesis (3.2.1) is satisfied, then Mn is either totally umbilical or isometric to the

hyperbolic cylinder Sn−1(c1)×H1(c2), where c1 =
n− 2

n− 1
and c2 = −(n− 2).

Proof. From the assumption that Mn has parallel normalized mean curvature vector

en+1, that is, ∇⊥en+1 = 0, where ∇⊥ denote the normal connection of Mn in Sn+p
p .

Thus, ωαn+1 = 0, for all α > n+ 1. This together with the structure equation (3.1.13)

implies that

Rn+1αij = 0, for all 1 ≤ i, j ≤ n and α > n+ 1.

It follows from Ricci equation (3.1.14) that hαhn+1 = hn+1hα for all α, that is, hn+1

commutes with all the matrices hα. Thus, using the traceless symmetric tensor defined

in (2.2.3) we obtain that

Φn+1 = hn+1 −Hn+1I and Φα = hα for all α > n+ 1, (3.3.9)

which implies that Φn+1 commutes with all the matrices Φα. Since that the matrices

Φα are symmetric and traceless, we can use Lemma 2.6 of [116](cf. Lemma 2.3.1) for

Φα and Φn+1 in order to obtain

∣∣tr((Φα)2Φn+1)
∣∣ ≤ n− 2√

n(n− 1)
N(Φα)

√
N(Φn+1). (3.3.10)

On the other hand, using Cauchy-Schwarz inequality we get that

p
∑
α,β

[tr(ΦαΦβ)]2 ≥ p
∑
α

[tr(Φα)2]2 = p
∑
α

[N(Φα)]2 ≥

(∑
α

N(Φα)

)2

= |Φ|4.

(3.3.11)

Furthermore, combining (3.2.2) with (3.1.20) it follows that

□(nH) =
∑
α,i,j,k

(hαijk)
2 − n2|∇H|2 − nH

∑
α

tr
(
hn+1(hα)2

)
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+
∑
α,β

N
(
hαhβ − hβhα

)
+
∑
α,β

(
tr(hαhβ)

)2
+n(S − nH2)− n− 1

2
a∆(nH). (3.3.12)

Consequently, since

N(Φn+1) = tr(Φn+1)2 ≤ |Φ|2 and
∑
α

N(Φα) = |Φ|2,

substituting (3.3.10), (3.3.11) and (3.3.12) into Cheng-Yau’s modified operator L (1.2.4)

acting on the mean curvature function H, we obtain

L(nH) ≥ |Φ|2PH(|Φ|),

where

PH(x) =
x2

p
− n(n− 2)√

n(n− 1)
Hx− n

(
H2 − 1

)
. (3.3.13)

Note that, when H2 <
4(n− 1)

Q(p)
, by a direct computation, it is not difficult to

verify that PH(|Φ|) > 0.

In the case H2 =
4(n− 1)

Q(p)
, we can write H =

2
√
n− 1√
Q(p)

and the polynomial PH

just has a real root, namely

C(n, p) =
p(n− 2)

√
n√

Q(p)
.

Hence, in this case,

PH(|Φ|) =

(
|Φ|
√
p
−

(n− 2)
√
np√

Q(p)

)2

≥ 0.

This implies that, in both cases, we have

L(nH) ≥ |Φ|2PH(|Φ|) ≥ 0.

Moreover, Proposition C assures that Mn is L-parabolic. Thus, from the boundedness

of H, we get that it is constant on Mn implying, in particular, that L(nH) = 0 on Mn.

Consequently, if |Φ|2 = 0, thenMn is totally umbilical. Otherwise, if PH(|Φ|) = 0,

the inequalities (3.3.10) and (3.3.11) are, in facts, equalities. In particular, N(Φn+1) =

tr(Φn+1)2 = |Φ|2. It follows from (3.2.2) that

tr(Φn+1)2 = |Φ|2 = S − nH2. (3.3.14)
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Note that, the assumption implies that Mn has parallel normalized mean curva-

ture vector together with (3.1.19) implies that

tr(Φn+1)2 = S −
∑

α>n+1

∑
i,j

(hαij)
2 − nH2. (3.3.15)

Hence, combining (3.3.14) and (3.3.15) we conclude that
∑

α>n+1

∑
i,j

(hαij)
2 = 0.

On the other hand, using that inequality (3.3.11) is, in fact, an equality, we get

p|Φ|4 = pN(Φn+1)2 = p
∑

α≥n+1

[N(Φα)]2 = |Φ|4.

Thus, since in this case |Φ| > 0, we conclude that p = 1.

Moreover, since the mean curvature function H is constant on Mn and by as-

sumption b ≤ 1, Proposition 2.2 of [127](cf. Lemma 3.3.1) guarantee that∑
i,j,k

(hn+1
ijk )2 = n2|∇H|2 = 0,

that is, hn+1
ijk = 0 for all i, j, k. Therefore, Mn is an isoparametric spacelike hypersur-

face of Sn+1
1 . We also note that the inequality in (3.3.8) cannot be strict, otherwise,

PH(|Φ|) > 0. This implies that

H =
2
√
n− 1

n
and |Φ| = n− 2√

n
. (3.3.16)

Since the equality occurs in (3.3.10), we have that also happens the equality in

Lemma 2.6 of [116](cf. Lemma 2.3.1). Thus, Mn must be either totally umbilical or

an isoparametric spacelike hypersurface of Sn+1
1 with two distinct principal curvatures

one of which is simple. In this last case, we can apply Theorem 5.1 of [1] to conclude

that Mn is isometric to a hyperbolic cylinder Sn−k(c1)×Hk(c2), where k ∈ {1, n− 1},

c1 > 0, c2 < 0 and
1

c1
+

1

c2
= 1.

With a straightforward computation it is not difficult to verify that, for a suitable

choice of the normal vector field, in Sn+1
1 we have that

Sn−k(c1)×Hk(c2) ↪→ Sn+1

has principal curvatures given by

λ1 = · · · = λn−k =
√
1− c1 λn−k+1 = · · · = λn =

√
1− c2. (3.3.17)
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Hence,

nH = (n− k)
√
1− c1 + k

√
1− c2 (3.3.18)

and

S = (n− k))(1− c1) + k(1− c2). (3.3.19)

Substituting (3.3.18) and (3.3.19) into relation (3.2.2), we obtain that

|Φ|2 = n

4k(n− k)
((n− 2k)H ±

√
n2H2 − 4k(n− k))

2
. (3.3.20)

This together with (3.3.16) implies that Mn must be isometric to Sn−1(c1) ×

H1(c2), with c1 =
n− 2

n− 1
and c2 = −(n− 2).

In the case n = 2, as consequence of Theorem 3.3.2 and Cheng’s Theorem [57]

we obtain

Corollary 3.3.1 Let M2 be a complete linear Weingarten spacelike surface immersed
with parallel normalized mean curvature vector in S2+p

p , such that R = aH+ b for some
a, b ∈ R with b ≤ 1. If H2 ≤ 1 and hypothesis (3.2.1) is satisfied, then M2 is totally
umbilical.

We recall that Montiel in [100] (see also Section 3 of [103]) classified all totally um-

bilical spacelike hypersurfaces of de Sitter space Sn+1
1 . Such hypersurfaces are obtained

by intersecting the de Sitter space Sn+1
1 with affine hyperplanes {p ∈ Rn+2

1 ; ⟨p, a⟩ = τ} of

the ambient space Rn+2
1 , where a ∈ Rn+2

1 −{0} and τ 2 > ⟨a, a⟩ = c with c ∈ {1, 0,−1}.

Mτ = {x ∈ Sn+1
1 : ⟨p, a⟩ = τ}.

Then, for p ∈Mτ , the unit (timelike) normal fields on Mτ is given by

Nτ (p) =
1√
τ 2 − c

(a− τp).

Hence, the second fundamental form of Mτ is

AτX =
τ

τ 2 − c
X,

for all vector field X tangent to Mτ . So, Mn
τ has constant mean curvature H2 =

τ 2

τ 2 − c
.

In fact, it can be verified that:

i. If c = 1, that is, a is a spacelike vector, then Mn
τ is isometric to an n-dimensional

hyperbolic space of constant sectional curvature
−1

τ 2 − 1
andH2 ranges all possible

values in (1,∞);
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ii. If c = 0, that is, a is a null vector, then Mn
τ is isometric to an n-dimensional

Euclidean space Rn and H2 = 1;

iii. If c = −1, that is, a is a timelike vector, then Mn
τ is isometric to an n-dimensional

sphere with constant sectional curvature
1

τ 2 + 1
and H2 takes all possible values

in [0, 1);

Now, when considering the opposite inequality to given in (3.3.8) and under

appropriate restriction on the norm of traceless symmetric tensor defined in (2.2.3), we

present our third characterization result.

Theorem 3.3.3 Let Mn, n ≥ 3, be a complete linear Weingarten spacelike sub-
manifold immersed with parallel normalized mean curvature vector in Sn+p

p , such that
R = aH + b for some a, b ∈ R with b ≤ 1. Suppose that

4(n− 1)

Q(p)
≤ H2 < 1 and |Φ| ≤ C−(n, p,H), (3.3.21)

where is the real root of PH given by

C−(n, p,H) =

√
n

2
√
n− 1

(
p(n− 2)H −

√
pQ(p)H2 − 4p(n− 1)

)
.

If hypothesis (3.2.1) is satisfied, then either Mn is totally umbilical or isometric to the

hyperbolic cylinder Sn−1(c1)×H1(c2), where 0 < c1 <
n(n− 2)

(n− 1)2
and −n(n−2) < c2 < 0

with
1

c1
+

1

c2
= 1.

Proof. From hypothesis (3.3.21), by a direct computation, it is not difficult to verify

that the polynomial PH defined in (3.3.13) has two distinct real roots, which are given

by

C±(n, p,H) =

√
n

2
√
n− 1

(
p(n− 2)H ±

√
pQ(p)H2 − 4p(n− 1)

)
.

We observe that C−(n, p,H) is positive if, and only if,

4(n− 1)

Q(p)
≤ H2 < 1.

Hence, we have that PH(|Φ|) ≥ 0 for |Φ| ≤ C−(n, p,H), and PH(|Φ|) = 0 if, and

only if, |Φ| = C−(n, p,H). Consequently, proceeding in a similar way of the last

part of proof of Theorem 3.3.2, we obtain that Mn must be an isoparametric spacelike

hypersurface of Sn+1
1 and, from Theorem 5.1 of [1] to conclude that Mn is isometric to
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a hyperbolic cylinder Sn−1(c1)×H1(c2) with c1 > 0, c2 < 0 and
1

c1
+

1

c2
= 1. Moreover,

combining the assumption (3.3.21) with equation (3.3.20), we have 0 < c1 <
n(n− 2)

(n− 1)2

and −n(n− 2) < c2 < 0.

We closed our chapter by presenting a new version of Theorem 1.1 of [94] and

Theorem 1.4 of [127].

Theorem 3.3.4 Let Mn be a complete spacelike linear Weingarten submanifold im-
mersed with parallel normalized mean curvature vector in Sn+p

p , such that R = aH + b

for some a, b ∈ R with b ≤ 1. If S ≤ 2
√
n− 1 and hypothesis (3.2.1) is satisfied, then

either

i. Mn is totally umbilical, or

ii. S = 2
√
n− 1. Moreover, when b < 1, Mn is isometric to a hyperbolic cylinder

Sn−1(c1)×H1(c2) with
1

c1
+

1

c2
= 1.

Proof. Since R = aH + b, Cheng-Yau’s modified operator L (1.2.4) acting on the

mean curvature function H can be estimated as follows

L(nH) ≥
∑
α,i,j,k

(hαijk)
2 − n2|∇H|2 + n(S − nH2)

(
n− n

2
√
n− 1

S

)
(3.3.22)

This together with Proposition 2.2 of [127](cf. Lemma 3.3.1) and relation (3.2.2)

implies that

L(nH) ≥ |Φ|2
(
n− n

2
√
(n− 1)

S

)
. (3.3.23)

From assumption S ≤ 2
√
n− 1 and (3.3.23) we obtain that L(nH) ≥ 0. This hypoth-

esis with relation (3.1.12) also gives us that H is bounded on Mn.

Moreover, Proposition C guarantee that Mn is L-parabolic. Thus, we obtain that

H is constant on Mn. Consequently, returning to (3.3.23) we obtain

|Φ|2
(
n− n

2
√

(n− 1)
S

)
= 0 on Mn.

Consequently, if |Φ|2 = 0, then Mn is totally umbilical. Otherwise, S = 2
√
n− 1.

In the case when b < 1, proceeding in a similar way of the last part of proof of

Theorem 3.3.2 we conclude the proof of theorem.
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Chapter 4

L-parabolic complete linear
Weingarten submanifolds immersed in
an Einstein manifold

This chapter aims to present the results related to the articles [26, 27], where the

results of the second reference correspond to a natural improvement of the previous

ones obtained in the first one. We start with the geometry of a spacelike submanifold

immersed in a semi-Riemannian manifold and, by virtue of the work of [40], we ob-

tain a Simons-type formula and a characterization result via parabolicity criterion for

complete linear Weingarten spacelike submanifolds immersed with parallel normalized

mean curvature vector and flat normal bundle in an Einstein manifold En+p
p of index p

satisfying the curvature conditions (1), (2), (3) and (4).

4.1 Spacelike submanifolds immersed in a semi-Rieman-
nian manifold

Let Ln+p
p be an (n+ p)-dimensional semi-Riemannian manifold of index p and let

Mn be a spacelike submanifold immersed in Ln+p
p . In this context, we choose a local

field of semi-Riemannian orthonormal frames {e1, . . . , en+p} in Ln+p
p adapted to Mn.

Using the same indices convention as in the previous chapters:

1 ≤ A,B,C, . . . ≤ n+ p, 1 ≤ i, j, k, . . . ≤ n and n+ 1 ≤ α, β, γ, . . . ≤ n+ p.
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Let ω1, . . . , ωn+p be its corresponding dual coframes so that the semi-Riemannian metric

of Ln+p
p is given by ds2 =

∑
A ϵA ω

2
A.Then the structure equations of Ln+p

p are given by

dωA = −
∑
B

ϵB ωAB ∧ ωB, ωAB + ωBA = 0, (4.1.1)

dωAB = −
∑
C

ϵC ωAC ∧ ωCB − 1

2

∑
C,D

ϵCϵDRABCD ωC ∧ ωD, (4.1.2)

where RABCD denote the components of the curvature tensor of Ln+p
p . In this setting,

denoting by RCD and R the the components of the Ricci tensor and the scalar cur-

vature of Ln+p
p , respectively, we also have RCD =

∑
B

ϵBRCBDB, and R =
∑

A ϵARAA.

Moreover, the components RABCD;E of the covariant derivative of the curvature tensor

of Ln+p
p are defined by∑

E

ϵERABCD;EωE = dRABCD −
∑
E

ϵE
(
REBCDωEA +RAECDωEB

+ RABEDωEC +RABCEωED

)
.

Restricting all the tensors to Mn, i.e., applying in Ln+p
p , we have ωα = 0 on Mn.

Hence, from (4.1.1) and we obtain

dωi = −
∑
j

ωij ∧ ωj, ωij + ωji = 0 and (4.1.3)

∑
i

ωαi ∧ ωi = dωα = 0. (4.1.4)

Thus, from Cartan’s Lemma we obtain

ωαi =
∑
j

hαijωj and hαij = hαji, (4.1.5)

As in the previous chapters, let

B =
∑
α,i,j

hαijωi ⊗ ωj ⊗ eα, and S = |B|2 =
∑
α,i,j

(hαij)
2, (4.1.6)

be the second fundamental form of Mn and its square length, respectively. Further-

more, the mean curvature vector h and the mean curvature function H of Mn are

defined, respectively, by in

h =
1

n

∑
α

(∑
i

hαii

)
eα and H = |h| = 1

n

√√√√∑
α

(∑
i

hαii

)2

. (4.1.7)
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From (4.1.1) and (4.1.2), we deduce that the connection forms {ωij} of Mn are

characterized by the following structure equations

dωi = −
∑
j

ωij ∧ ωj, ωij + ωji = 0 and

(4.1.8)

dωij = −
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl,

where Rijkl are the components of the curvature tensor of Mn. From previous structure

equations, we obtain Gauss equation (see Theorem 4.5 of [107])

Rijkl = Rijkl −
∑
β

(hβikh
β
jl − hβilh

β
jk). (4.1.9)

Hence, combining (4.1.6), (4.1.7) with (4.1.9) we also get the following relation

S = n2H2 + n(n− 1)R−
∑
i,j

Rijij, (4.1.10)

where R stands for the normalized scalar curvature ofMn. Moreover, the first covariant

derivatives hαijk of hij satisfy∑
k

hαijkωk = dhαij −
∑
k

hαikωkj −
∑
k

hαjkωki −
∑
β

hβijωβα. (4.1.11)

Then, by exterior differentiation of (4.1.5) we get Codazzi equation (see Theorem 4.33

of [107])

hαijk − hαikj = Rαijk. (4.1.12)

The second covariant derivatives hαijkl of hαij are given by∑
l

hαijklωl = dhαijk −
∑
l

hαljkωli −
∑
l

hαilkωlj −
∑
l

hαijlωlk −
∑
β

hβijkωβα.

Taking the exterior derivative in (4.1.11), we obtain the following Ricci formula

hαijkl − hαijlk = −
∑
m

hαimRmjkl −
∑
m

hαmjRmikl. (4.1.13)

Restricting the covariant derivative RABCD;E of RABCD to Mn, we get

Rαijk;l = Rαijk;l +
∑
β

Rαβjkh
β
il +

∑
β

Rαiβkh
β
jl (4.1.14)
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+
∑
β

Rαijβh
β
kl +

∑
m,k

Rmijkh
α
lm,

where Rαijkl denotes the covariant derivative of Rαijk as a tensor on Mn. Note that,

when we suppose that Mn has flat normal bundle, that is, R⊥ = 0 (equivalently,

Rαβjk = 0), Rαβjk satisfy Ricci equation

Rαβij =
∑
k

(hαikh
β
kj − hαkjh

β
ik). (4.1.15)

In next section, let us consider the particular case when Ln+p
p is the Einstein

manifold. From now on, we will denote this ambient space by En+p
p of index p. We

recall that a semi-Riemannian manifold is called an Einstein manifold when its Ricci

curvature can be written as a multiple of its metric.

4.2 A Simons-type formula

Taking into account the previous digression, when deal with a spacelike sub-

manifold Mn immersed with parallel normalized mean curvature vector in an Einstein

manifold En+p
p , we can choose a orthonormal frame {e1, . . . , en+p} of TEn+p

p such that

en+1 =
h
H

. It follows that

Hn+1 :=
1

n
tr(hn+1) = H and Hα :=

1

n
tr(hα) = 0, α ≥ n+ 2, (4.2.1)

where hα denotes the matrix (hαij).

Thus, by similar method to the proofs of Lemma 2 in [40] and Lemma 3.1 in [93],

we can show the following Simons-type formula for a spacelike submanifold immersed

into an Einstein manifold En+p
p .

Lemma 4.2.1 Let Mn be a spacelike submanifold immersed with parallel normalized
mean curvature vector and flat normal bundle in an Einstein manifold En+p

p of index p.
Suppose that there exists an orthogonal basis for TM that diagonalizes simultaneously
all operators Bη with η ∈ TM⊥, where ⟨Bηu, v⟩ := ⟨B(u, v), η⟩ for any u, v ∈ TM .
Then

1

2
∆S = |∇B|2 + 2

( ∑
i,j,k,m,α

hαijh
α
kmRmijk +

∑
i,j,k,m,α

hαijh
α
jmRmkik

)
+
∑

i,j,k,α,β

hαijh
β
jkRαiβk −

∑
i,j,k,α,β

hαijh
β
jkRαkβi (4.2.2)
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+
∑

i,j,k,α,β

hαijh
β
ijRαkβk −

∑
i,j,k,α,β

hαijh
β
kkRαiβj + n

∑
i,j

hn+1
ij Hij

−nH
∑

i,j,m,α

hαijh
α
mih

n+1
mj +

∑
α,β

[tr(hαhβ)]2 +
3

2

∑
α,β

N(hαhβ − hβhα),

where N(A) = tr(AAt), for any matrix A = (aij).

Proof. Since [
(hαij)

2
]
k
= 2hαijh

α
ijk,

where k denotes the index of the derivative in the tangent direction ek, together with

the linearity of the Laplacian operator, a straightforward calculation shows that

1

2
∆S =

∑
α,i,j,k

hαij

(∑
k

hαijkk

)
+
∑
α,i,j,k

(hαijk)
2. (4.2.3)

Combining the equation (4.1.6) with Codazzi equation (4.1.12) we have

1

2
∆S =

∑
i,j,k,α

hαijRαijkk +
∑
α,i,j,k

hαijh
α
kijk + |∇B|2. (4.2.4)

Note that, since (En+p
p , g) is an Einstein manifold, the components of its Ricci

tensor satisfy RAB = λgAB, for some constant λ ∈ R. Moreover, by the assumption

that there exists an orthogonal basis for TM that diagonalizes simultaneously all Bη

with η ∈ TM⊥, we can consider {e1, . . . , en} a local orthonormal frame on Mn such

that hαij = λαi δij for all α ∈ {n+1, . . . , n+p}. Thus, if we proceed as in [93], then from

the differential Bianchi identity and from Ricci’s Lemma gAB behave as constants in

covariant differentiations, that is, gAB;C ≡ 0 we get∑
i,k,α

λαi Rαiik;k = −
∑
i,k,α

λαi
(
Rikik;α +Rkαik;i

)
= −

∑
i,α

λαi
(
Rii;α −Rαi;i

)
= −

∑
i,α

λαi
(
λgii;α − λgαi;i

)
= 0 (4.2.5)

and ∑
i,k,α

λαi Rαkik;i =
∑
i,α

λαi Rαi;i =
∑
i,α

λαi λgαi;i = 0, (4.2.6)

where Rijkl;m are the covariant derivatives of Rijkl on En+p
p . It follows from (4.2.5)

and (4.2.6) that ∑
i,j,k,α

(
Rαijk;k +Rαiki;j

)
hαij = 0. (4.2.7)
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Therefore, using the equations (4.1.9), (4.1.13) – (4.2.1) together with (4.2.4) and

(4.2.7), we can reason as in the proof of Lemma 2 in [40] to obtain formula (4.2.2).

Remark 4.2.1 Several authors obtained interesting results on the local symmetry of
Einstein Manifolds. In this direction, Tod [121] showed that four-dimensional Einstein
manifolds which are also D’Atri spaces are necessarily locally symmetric. Brendle [43]
proved that a compact Einstein manifold of dimension n ≥ 4 having nonnegative
isotropic curvature must be locally symmetric, extending a previous result of Micallef
and Wang for n = 4 (see Theorem 4.4 of [99]). See also [126] for another sufficient
conditions for an Einstein manifold to be locally symmetric. Recently, Peterson and
Wink [110] showed that Einstein manifolds with ⌊n−1

2
⌋-nonnegative curvature operators

are locally symmetric.

At this point we also observe that, denoting by RCD the components of the Ricci

tensor of En+p
p , the scalar curvature R of En+p

p is given by

R =

n+p∑
A

ϵARAA =
∑
i,j

Rijij − 2
∑
i,α

Riαiα +
∑
α,β

Rαβαβ.

Thus, if En+p
p satisfies curvature conditions (1) and (3) then we obtain

R = n(n− 1)R− 2pc1 + (p− 1)c3, (4.2.8)

where

R :=
1

n(n− 1)

∑
i,j

Rijij.

In views of these, since the scalar curvature of an Einstein manifold is constant, from

(4.2.8) we conclude that R is a constant naturally attached to an Einstein manifold

En+p
p satisfying (1) and (3).

4.3 A parabolicity criterion for spacelike submani-
folds immersed in an Einstein manifold

The next result provides sufficient conditions which guarantee the L-parabolicity

of a linear Weingarten spacelike submanifold immersed in En+p
p , whose its proof is

similar to proof of Proposition A.

In this setting, denoting by Ric the Ricci tensor of Einstein manifold En+p
p , Ric =

λ⟨ , ⟩ for some constant λ ∈ R and together with Lemma 3.1 of [4](cf. Lemma 5.2.1)
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we get

⟨divP1,∇f⟩ =
∑
i

⟨R(en+1, ei)ei,∇f⟩ = Ric(en+1,∇f)

= λ⟨en+1,∇f⟩ = 0, (4.3.1)

where P1 is defined in (1.2.3) and R denotes the curvature tensor of En+p
p . Choosing a

local orthonormal frame {e1, . . . , en} on Mn, we have

div(P1(∇f)) =
∑
i

⟨(∇eiP1)(∇f), ei⟩+ ⟨P1(∇ei∇f), ei⟩

= ⟨divP1,∇f⟩+□f. (4.3.2)

Thus, combining (4.3.1) with (4.3.2) we obtain □f = div(P1(∇f)). Consequently, we

get

L(f) = div(P (∇f)). (4.3.3)

Therefore, we can apply Theorem 2.6 of [111](cf. Theorem 1.2.1), to obtain our

L-parabolicity criterion as follows:

Proposition D Let Mn be a complete linear Weingarten spacelike submanifold im-
mersed with parallel normalized mean curvature vector in an Einstein manifold En+p

p

of index p, such that R = aH + b for some constants a, b ∈ R with b ≤ R. If H is
bounded on Mn and, for some reference point o ∈Mn and some δ > 0,∫ +∞

δ

dt

vol(∂Bt)
= +∞, (4.3.4)

where Bt denotes the geodesic ball of radius t in Mn centered at o, then Mn is L-
parabolic.

When considering again the traceless symmetric tensor Φ defined in (2.2.3)from

relation (4.1.10), for a complete spacelike submanifold Mn immersed in En+p
p we obtain

the following relation

|Φ|2 = S − nH2 = nH2(n− 1) + n(n− 1)(R−R). (4.3.5)

The following lemma is an immediate consequence of the equations (4.2.5)- (4.2.7)

obtained in the proof of Theorem 4.2.1 and Lemma 1 of [40].
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Lemma 4.3.1 Let Mn be a linear Weingarten spacelike submanifold immersed in an
Einstein manifold En+p

p satisfying conditions (1) and (3), such that R = aH + b for
some a, b ∈ R. Suppose that there exists an orthogonal basis for TM that diagonalizes
simultaneously all operators Bη with η ∈ TM⊥ and b ≤ R. Then,

|∇B|2 ≥ n2|∇H|2. (4.3.6)

Moreover, if the equality holds in (4.3.6) on Mn, then H is constant on Mn.

4.3.1 Main characterization Result

From Proposition D, we obtain the following characterization result for complete

linear Weingarten spacelike submanifolds.

Theorem 4.3.1 Let Mn be a complete linear Weingarten spacelike submanifold im-
mersed with parallel normalized mean curvature vector and flat normal bundle in an
Einstein manifold En+p

p of index p satisfying conditions (1), (2), (3) and (4), such that
R = aH + b for some constants a, b ∈ R with b ≤ R. Suppose that there exists an or-
thogonal basis for TM that diagonalizes simultaneously all operators Bη with η ∈ TM⊥,
where ⟨Bηu, v⟩ := ⟨B(u, v), η⟩ for any u, v ∈ TM . When c :=

c1
n
+ 2c2 > 0, assume in

addition that H2 ≥ 4(n−1)c
Q(p)

, where Q(p) := p(n − 2)2 + 4(n − 1). If H is bounded on
Mn, |Φ| ≥ C(n, p,H), where

C(n, p,H) :=

√
n

2
√
n− 1

(
p(n− 2)H +

√
pQ(p)H2 − 4p(n− 1)c

)
,

and hypothesis (4.3.4) is satisfied, then p = 1 and Mn is an isoparametric hypersurface
of En+1

1 with two distinct principal curvatures one of which is simple.

Proof. Since we assume that M has parallel normalized mean curvature vector, from

Ricci equation (4.1.15) it follows that hαhn+1 = hn+1hα for all α, that is, hn+1 commutes

with all the matrices hα. Thus, from traceless symmetric tensor Φ and (2.2.4)we have

that Φn+1 commutes with all the matrices Φα. Since the matrices Φα are symmetric and

traceless, applying Lemma 2.6 of [116](cf. Lemma 2.3.1) with A = Φα and B = Φn+1

in order to obtain ∣∣tr((Φα)2Φn+1)
∣∣ ≤ n− 2√

n(n− 1)
N(Φα)

√
N(Φn+1). (4.3.7)

Let us recall that, by Cauchy-Schwarz inequality we also have that

p
∑
α,β

[tr(ΦαΦβ)]2 ≥ p
∑
α

[tr(Φα)2]2 = p
∑
α

[N(Φα)]2
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≥

(∑
α

N(Φα)

)2

= |Φ|4. (4.3.8)

On the other hand, taking into account our set of constraints on Mn ↪→ En+p
p

together with Lemma 4.2.1, we can reason as in the proof of Proposition 1 in [40] to

obtain

L(nH) ≥ |Φ|2PH,p,c(|Φ|), (4.3.9)

where

PH,p,c(x) =
x2

p
− n(n− 2)√

n(n− 1)
Hx− n(H2 − c).

Now we analyze the sign of the constant c. First notice that in the case c > 0,

if H2 ≥ 4(n−1)c
Q(p)

, then the polynomial PH,p,c has (at last) a positive real root given by

C(n, p,H). Thus, since |Φ| ≥ C(n, p,H), we get PH,p,c(|Φ|) ≥ 0, with PH,p,c(|Φ|) = 0 if,

and only if, |Φ| = C(n, p,H). On the other hand, if c ≤ 0 we have that PH,p,c(|Φ|) ≥ 0

without any restriction on the values of the mean curvature function H. Consequently,

in both cases, from (4.3.9) we get that L(nH) ≥ 0.

Let us observe that in virtue of Proposition A the submanifold Mn is L-parabolic.

It follows from the boundedness of H, that it is constant on Mn implying, in particular,

that L(nH) = 0 on Mn. Since |Φ| > 0, we obtain that PH,p,c(|Φ|) = 0. Thus,

inequalities (4.3.7) and (4.3.8) are, in fact, equalities. This implies, in particular, that

N(Φn+1) = tr(Φn+1)2 = |Φ|2. Consequently, from (2.2.5) we obtain

tr(Φn+1)2 = |Φ|2 = S − nH2. (4.3.10)

Considering again that Mn has parallel normalized mean curvature vector, from (4.2.1)

we also have

tr(Φn+1)2 = S −
∑

α>n+1

∑
i,j

(hαij)
2 − nH2. (4.3.11)

By comparing the last two above expressions we conclude that
∑

α>n+1

∑
i,j

(hαij)
2 = 0.

Now, returning to (4.3.8) we get

p|Φ|4 = pN(Φn+1)2 = p
∑

α≥n+1

[N(Φα)]2 = |Φ|4.

It immediately follows that p = 1. Moreover, by the assumption b ≤ R, Lemma 1

of [40](cf. Lemma 4.3.1) together with fact that H is constant on Mn implies that∑
i,j,k

(hn+1
ijk )2 = n2|∇H|2 = 0,
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that is, hn+1
ijk = 0 for all i, j, k. Therefore, we have that Mn must be an isoparametric

spacelike hypersurface of En+1
1 .

We close this Chapter quoting the following consequence of Theorem 4.3.1.

Corollary 4.3.1 Let Mn be a complete linear Weingarten spacelike hypersurface im-
mersed in an Einstein manifold En+1

1 of index 1 satisfying conditions (1) and (2), such
that R = aH + b for some constants a, b ∈ R with b ≤ R. When c :=

c1
n

+ 2c2 > 0,

assume in addition that H2 ≥ 4(n−1)c
(n−2)2+4(n−1)

. If H is bounded on Mn,

|Φ| ≥
√
n

2
√
n− 1

(
(n− 2)H +

√
n2H2 − 4(n− 1)c

)
and hypothesis (4.3.4) is satisfied, then Mn is an isoparametric hypersurface of En+1

1

with two distinct principal curvatures one of which is simple.

Remark 4.3.1 Considering the particular case where p = 1, we also obtain in [26]
a characterization result similar to Corollary 4.3.1, now assuming that H has a strict
sign and S ≥ 2

√
n− 1c when c :=

c1
n

+ 2c2 > 0.
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Part II

Rigidity and nonexistence of complete
hypersurfaces in a semi-Riemannian

warped product
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Chapter 5

Preliminaries II

In a similar way to Chapter 1, here, we recall some basic facts related to Rieman-

nian immersions in semi-Riemannian warped products and we quote the auxiliaries

lemmas which will be used to prove our main results.

5.1 Semi-Riemannian warped product

We start given a description of our ambient space. Let Mn+1 be a connected

semi-Riemannian manifold with metric g = ⟨ , ⟩ of index ν ≤ 1, and semi-Riemannian

connection ∇. For a vector field X ∈ X(M), let ϵX = ⟨X,X⟩. We will say that X is a

unit vector field if ϵX = ±1, and timelike if ϵX = −1.

Now, let (Mn, ⟨, ⟩M) be a connected, n-dimensional oriented Riemannian manifold

and let I ⊆ R denote an open interval. The product manifold Mn+1
= I×Mn endowed

with the semi-Riemannian metric

⟨·, ·⟩M = ϵπ∗
I (dt

2) + ρ2(πI)π
∗
M(⟨·, ·⟩M), (5.1.1)

of index ν ≤ 1, where ϵ := ϵ
X

= ⟨X,X⟩M for any smooth vector field X ∈ X(M),

ρ ∈ C∞(I) is a positive smooth function, πI and πM denote the canonical projections

onto the factors I and Mn, respectively. Such a space is a particular case of a semi-

Riemannian warped product with fiber (Mn, ⟨, ⟩M), base (I, ϵdt2) and warping function

ρ, and, from now on, we will just write Mn+1
= ϵI ×ρ M

n to denote it.

In the Lorentzian setting ν = 1 or, equivalently, when ϵ = −1, according to the

terminology established in [22], Mn+1 is the so-called generalized Robertson-Walker

(GRW) spacetime.
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Remark 5.1.1 Related to Riemannian setting ν = 0, we can point out an interesting
fact about Riemannian space form Qn+1

c endowed with a non-trivial closed and confor-
mal vector field X. From [102, Proposition 2] we have:

1. The Euclidean space Rn\{0} is naturally isometric to product R+×Sn−1endowed
with metric dr2 + r2dσ2

n,where dσ2
n is the constant curvature one metric on the

sphere Sn.

2. Let a ∈ Sn+1 be an point arbitrary. The hyperfsurfaces Sn+1\{a,−a} are isometric
to (0, π)× Snendowed with metric dθ2 + sin θ2dσ2

n.

3. The Hyperbolic space Hn+1 is isometric to product manifold R+×sinh rSn,R×etRn

and R×cosh t Hn.

In the Lorentzian setting, we can quote the ambient space of Chapter 3. From
of works of [82, 49, 118] we have that the de Sitter space Sn+1

1 is isometric to product
R× Sn with metric −dt2 + cosh2(t)dσ2

n.

5.1.1 Riemannian immersions

Let us consider ψ : Σn → M
n+1 Riemannian immersions, that is, immersions

from a connected, n-dimensional orientable differentiable manifold Σn into a semi-

Riemannian warped product Mn+1
= ϵI ×ρ M

n, such that the induced metric on Σn

from the metric (5.1.1) is positive definite. When ν = 1, we will refer to (Σn, ⟨ , ⟩)

as a spacelike hypersurface of Mn+1. In this setting, ∇ will stand for the Levi-Civita

connection of Σn, while ∇ will represent the Levi-Civita connection of Mn+1.

We orient Σn by the choice of a unit normal vector field N on it. Let ∂t be

the standard unit vector field tangent to I. So, we have that ϵ = ϵ
∂t

= ϵ
N
. Let

A : X(Σ) → X(Σ) be the Weingarten operator of Σn with respect to N , which is

defined by

AX = −∇XN.

At each p ∈ Σn, A restricts to a self-adjoint linear map Ap : TpΣ → TpΣ. For 0 ≤ r ≤ n,

let Sr(p) denote the r-th elementary symmetric function on the eigenvalues of Ap; this

way one gets n smooth functions Sr : Σ
n → R, such that the characteristic polynomial

of A can be written in terms of the S ′
ks as

det(tI − A) =
n∑

k=0

(−1)kSkt
n−k,
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where S0 = 1 by construction. If p ∈ Σn and {ek} is a basis of TpΣ formed by

eigenvectors of Ap, with corresponding eigenvalues {λk}, one immediately sees that

Sr = σr(λ1, . . . , λn), where σr ∈ R[X1, . . . , Xn] is the r-th elementary symmetric poly-

nomial on the indeterminates X1, . . . , Xn.

We define the r-th mean curvature Hr of the hypersurface by(
n

r

)
Hr = ϵrSr = σr(ϵλ1, . . . , ϵλn), (5.1.2)

for every 0 ≤ r ≤ n. In particular, H0 = 1 and

H1 = ϵ
N

1

n

n∑
i=1

λi = ϵ
N

1

n
trace(A) = H

is the usual mean curvature of Σn.

For t0 ∈ I, we orient the slice Σn
t0
= {t0}×Mn by choosing ∂t. Note that Σt0 has

constant r-th mean curvature

Hr = (−ϵ)r
(
(log ρ)′

)r
(t0) = (−ϵ)r

(
ρ′(t0)

ρ

)r

(5.1.3)

with respect to ∂t (see, for instance, Example 5.6 of [4] and Section 2 of [18]).

We recall that a slab of a warped product ϵI ×ρ M
n is a region of the type

[t1, t2]×Mn = {(t, q) ∈ I ×ρ M
n : t1 ≤ t ≤ t2}. (5.1.4)

Now, for 0 ≤ r ≤ n, one defines the r-th Newton transformation Tr on Σn by

T0 = I and Tr = ϵrSrI − ϵATr−1 (1 ≤ r ≤ n), (5.1.5)

where I is the identity operator. With a trivial induction, from (5.1.5) we verify that

Tr = ϵr(SrI − Sr−1A+ Sr−2A
2 − · · ·+ (−1)rAr), (5.1.6)

so that Cayley-Hamilton theorem gives Tn = 0. Moreover, since for every r, Tr is a

polynomial function in A, it is also self-adjoint and commutes with A. Therefore, all

bases of TpΣ diagonalizing A at p ∈ Σn also diagonalize all of the Tr at p. So, let

{e1, . . . , en} be an orthonormal frame on TpΣ which diagonalizes Ap, Ap(ei) = λi(p)ei,

then from (5.1.6) we have that

(Tr)pei = ϵr
∑

i1<...<ir,ij ̸=i

λi1(p) . . . λir(p)ei. (5.1.7)
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For each Newton transformation Tr, 0 ≤ r ≤ n, we associate a second order linear

differential operator Lr : C
∞(Σ) → C∞(Σ) given by

Lr(f) = tr(Tr ◦ ∇2f), (5.1.8)

where ∇2f : X(Σ) → X(Σ) denotes the self-adjoint linear operator equivalent to the

Hessian operator of f , defined by

⟨∇2f(X), Y ⟩ = ⟨∇X∇f, Y ⟩,

for all vector fields X, Y ∈ X(Σ).

The divergence of Tr on Σn is defined by

divTr := tr(∇Tr) =
n∑

i=1

(∇eiTr)(ei) and divT0 = divI = 0, (5.1.9)

where {e1, · · · , en} be a local orthonormal frame on Σn. Thus, for any f ∈ C∞(Σ), we

have that

div(Tr(∇f)) =
n∑

i=1

⟨(∇eiTr)(∇f), ei⟩+
n∑

i=1

⟨Tr(∇ei∇f), ei⟩

= ⟨divTr,∇f⟩+ Lr(f). (5.1.10)

We close this subsection recalling a terminology introduced in [5]. We say that a

Riemannian immersion ψ : Σn → ϵI ×ρM
n is bounded away from the future infinity of

ϵI ×ρ M
n if there exists t ∈ I such that

ψ(Σ) ⊂ {(t, x) ∈ ϵI ×ρ M
n; t ≤ t},

and we say that it is bounded away from the past infinity of ϵI ×ρ M
n if there exists

t ∈ I such that

ψ(Σ) ⊂ {(t, x) ∈ ϵI ×ρ M
n; t ≥ t}.

5.2 Some auxiliary lemmas

In order to establish our main results, we will quote some auxiliary lemmas.

The lemma below gives us the divergences of Newton transformations divTr, defined

in (5.1.9), by Alías, Brasil and Colares in [4, Lemma 3.1] for a spacelike hypersurface

in a conformally stationary spacetime. Lima in [88, Theorem 2.4] obtained a similar

result in the Riemannian setting.
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Lemma 5.2.1 (cf. [4]) The divergences of the Newton transformations Tr are given
by the following inductive formula:

divT0 = 0,

divTr = A(divTr−1) +
∑n

i=1

(
R(N, Tr−1Ei)Ei

)⊤
,

where R stands for the curvature tensor of the ambient spacetime. Equivalently, for
every tangent field X ∈ X(M) it follows that

⟨divTr, X⟩ =
r∑

j=1

n∑
i=1

⟨R(N, Tr−jEi)Ei, A
j−iX⟩.

We note that the gradient of πI on Mn+1 is given by

∇πI = ϵ⟨∇πI , ∂t⟩∂t = ϵ∂t. (5.2.1)

Now, let h := (πI)|Σ and Θ := ⟨N, ∂t⟩ two particular functions naturally attached to

Σn, namely, the (vertical) height function and the angle function, respectively. In this

context, the following computation is obtained from (5.2.1) and definition of h.

∇h = (∇πI)⊤ = ϵ∂⊤t , (5.2.2)

where ∂⊤t = ϵ∂t − ΘN is the tangential component of ∂t on Σn. In particular, from

(5.2.2) we get

|∇h|2 = ϵ
(
1− ⟨N, ∂t⟩2

)
= ϵ

(
1−Θ2

)
, (5.2.3)

where | | denotes the norm of a vector field on Σn.

In our setting, the divergence of the Newton transformation Tr in M
n+1 is ob-

tained from lemma above and equation (3.12) of the proof of [11, Theorem 2] (see also

[88, Theorem 2.4]) .

Lemma 5.2.2 Let ψ : Σn → ϵI ×ρ M
n be a Riemannian immersion. Then

⟨divT1,∇h⟩ = −ϵ(RicM(N∗, N∗) + ϵ(n− 1)(log ρ)′′(h)|∇h|2)Θ, (5.2.4)

where RicM denotes the Ricci curvature of the fiber Mn and N∗ = N − ϵΘ∂t is the
projection of the N onto Mn. Moreover, when Mn has constant sectional curvature κ,

⟨divTr,∇h⟩ = −ϵ(n− r)

(
κ

ρ2(h)
+ ϵ(log ρ)′′(h)

)
⟨Tr−1∇h,∇h⟩Θ. (5.2.5)
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For an appropriate choice of the orientation N of Σn, the relation (5.1.10) guar-

antees that the operator Lr is elliptic if and only if the Newton transformation Tr is

positive definite. Note that, for r = 0, L0 = ∆ is always elliptic, where ∆ denotes

the Laplace-Beltrami operator. In this context, the following two lemmas establish

sufficient conditions to the ellipticity of the operator L1 and Lr when r ≥ 2 (see, for

instance, [9, Lemmas 3.2 and 3.3]).

Lemma 5.2.3 Let ψ : Σn → ϵI ×ρ M
n be a Riemannian immersion in a semi-

Riemannian warped product Mn+1
= ϵI×ρM

n. If H2 > 0 on Σn, then L1 is elliptic or,
equivalently, T1 is positive definite (for an appropriate choice of the Gauss map N).

Lemma 5.2.4 Let ψ : Σn → ϵI ×ρ M
n be a Riemannian immersion in a semi-

Riemannian warped product Mn+1
= ϵI ×ρ M

n. If there exists an elliptic point of
Σn, with respect to an appropriate choice of the Gauss map N , and Hr+1 > 0 on Σn,
for 2 ≤ r ≤ n− 1, then for all 1 ≤ j ≤ r the operator Lj is elliptic or, equivalently, Tj
is positive definite (for an appropriate choice of the Gauss map N , if j is odd).

We recall that a point is said to be elliptic in a Riemannian immersion when all

principal curvatures have the same sign. The next lemma gives a sufficient condition to

guarantee the existence of an elliptic point in a Riemannian immersion. For its proof,

see [4, Lemma 5.4] and [11, Lemma 4].

Lemma 5.2.5 Let ψ : Σn → ϵI ×ρ M
n be a Riemannian immersion in a semi-

Riemannian warped product Mn+1
= ϵI ×ρ M

n. If −ϵρ(h) attains a local minimum at
some p ∈ Σn, such that ρ′(h(p)) ̸= 0, then p is an elliptic point for Σn.

It follows from [9, Lemma 4.1] and [18, Proposition 6] the next formula:

Lemma 5.2.6 Let ψ : Σn → ϵI ×ρM
n be a Riemannian immersion and let g : I → R

be any primitive of the warping function ρ. Then, for every r = 0, · · · , n− 1,

Lr(g(h)) = ϵbr (ρ
′(h)Hr +Hr+1ρ(h)Θ) ,

where
br = (n− r)

(
n

r

)
= (r + 1)

(
n

r + 1

)
. (5.2.6)

Along this second part, we will always denote by u ∈ C∞(Σ) an arbitrary prim-

itive g of the warping function ρ restricted to the Riemannian immersion ψ : Σn →

M
n+1, that is,

u := g(h).

62



When the ambient space is a GRW spacetime Mn+1
= −I ×ρ M

n, since ∂t is a

unitary timelike vector field globally defined on M
n+1, there exists a unique timelike

unitary normal vector field N globally defined on a spacelike hypersurface Σn ↪→M
n+1

which is in the same time-orientation as ∂t. We then say that N is future-pointing

and, from the Cauchy-Schwarz inequality for timelike vectors, we have that the angle

function

Θ = ⟨N, ∂t⟩ ≤ −1. (5.2.7)

In the Riemannian setting, we recall that a hypersurface is said to be two-sided if its

normal bundle is trivial, that is, there is on it a globally defined unit normal vector

field N .

5.3 Entire graphs

Let Ω ⊆ (Mn, ⟨ , ⟩M) be a connected domain and let w ∈ C∞(Ω) be a smooth

function such that w(Ω) ⊆ I, then Σ(w) will denote the (vertical) graph over Ω deter-

mined by w, that is,

Σ(w) = {(w(x), x) : x ∈ Ω} ⊂ ϵI ×ρ M
n.

The metric induced on Ω from the metric of the ambient space via Σ(w) is

⟨ , ⟩ = ϵdw2 + ρ2(w)⟨ , ⟩M . (5.3.1)

We observe that for a graph Σ(w), its height function h is nothing but the function w

seen as a function on Σ(w). Therefore, in what follows, Dw stands for the gradient of

w, as a function on Mn, while ∇w = ∇h stands for the gradient of the height function,

as a function on Σ(w).

The graph is said to be entire when Ω =Mn. In the case ϵ = 1, when the function

ρ(w) is bounded on Mn, the entire graph Σ(w) is complete. In particular, this occurs

when Σ(w) lies between two slices of I×ρM
n. While in the case ϵ = −1, a graph Σ(w)

is a spacelike hypersurface if and only if |Dw|2Mn < ρ2(w), where |Dw|Mn stands for

the norm of Dw with respect to the metric ⟨ , ⟩M in Ω.

From [22, Lemma 3.1], in the case that Mn is simply connected, every complete

spacelike hypersurface Σn in −I ×ρ M
n such that the warping function ρ is bounded
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on Σn is an entire spacelike graph. In particular, this happens for complete spacelike

hypersurfaces contained in a timelike bounded region. However, in contrast to the

case of graphs in a Riemannian warped product, an entire spacelike graph in a GRW

spacetime is not necessarily complete, in the sense that its induced Riemannian metric

(5.3.1) is not necessarily complete on Mn. For instance, Albujer constructed explicit

examples of noncomplete entire maximal spacelike graphs (that is, whose mean cur-

vature is identically zero) in the Lorentzian product space −R × H2 (see [2, Section

3]).

Given an entire graph Σ(w) ⊂ ϵI ×ρ M
n, its orientation N which corresponds to

the choices made in Sections 6.2, 6.3 and 7.1 is described by

N =
ρ(w)

W (w)

(
ϵ∂t −

1

ρ2(w)
Dw

)
, (5.3.2)

where W (w) :=
√
ρ2(w) + ϵ|Dw|2Mn . Moreover, from (5.3.2) we obtain the correspond-

ing Weingarten operator

AX =
1

ρ(w)W (w)
DXDw−ϵ ρ

′(w)

W (w)
X+ϵ

(
−⟨DXDw,Dw⟩M
ρ(w)W 3(w)

− ϵ
ρ′(w)⟨Dw,X⟩M

W 3(w)

)
Dw,

(5.3.3)

for any vector fieldX tangent to Ω, whereD is the Levi-Civita connection of (Mn, ⟨ , ⟩M).

On the other hand, we have that

N = N∗ + ϵΘ∂t, (5.3.4)

where N∗ denotes the projection of N onto the tangent bundle of the fiber Mn. Con-

sequently, combining (5.2.2) with (5.3.4) we get

(N∗)⊤ = ϵΘ∇h (5.3.5)

and

|∇h|2 = ρ2(h)⟨N∗, N∗⟩M . (5.3.6)

Thus, from (5.3.2), (5.3.5) and (5.3.6) we obtain that

|∇h| = |Dw|Mn

W (w)
. (5.3.7)

64



Chapter 6

Rigidity and nonexistence of
Riemannian immersions in
semi-Riemannian warped products via
parabolicity

Our main goal in this chapter is to present the results obtained in article [30]. We

study complete Riemannian immersions in semi-Riemannian warped products obeying

suitable curvature constraints. Under appropriate differential inequalities involving

higher order mean curvatures, we establish rigidity and nonexistence results concerning

these immersions. Applications to the cases that the ambient space is either an Einstein

manifold, a steady state type spacetime or a pseudo-hyperbolic space are given, and a

particular investigation of entire graphs construct over the fiber of the ambient space

is also made. Our approach is based on a parabolicity criterion related to a linearized

differential operator which is a divergence-type operator and can be regarded as a

natural extension of the standard Laplacian.

6.1 A parabolicity criterion for Riemannian immer-
sions

In the Part I this thesis, we study the parabolicity of Riemannian submanifolds

with respect to modified Cheng-Yau’s operator L defined in (1.2.4). Here, considering

the setting of the previous chapter, from (5.1.10) we define the operator Lr : C
∞(Σ) →
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C∞(Σ) by

Lr(ξ) := div(Tr(∇ξ)). (6.1.1)

In particular, from [4, Corollary 3.2 ], when the ambient spacetime Mn+1 has

constant sectional curvature, the Newton transformations Tr are divergence-free, that

is, divTr = 0. Consequently, Lr(ξ) = Lr(ξ) for all 1 ≤ r ≤ n − 1. For instance,

in Chapter 3, since the Sitter spacetime Sn+1
1 has constant sectional curvature, the

Cheng-Yau’s operator □ defined in (1.2.1) is the divergence-free operator (6.1.1) in the

particular case r = 1.

With respect to operator Lr, the following concept is due to [17, Definition 5 · 4]

and [18, Definition 30].

Definition 6.1.1 A Riemannian immersion ψ : Σn → ϵI ×ρ M
n is said Lr-parabolic

if the only bounded from above smooth solutions of the differential inequality Lrξ ≥ 0

are the constant ones.

As in the previous parabolicity criteria (Propositions A, C and D), in the

next result we will consider the boundedness of the r-th mean curvature Hr of ψ,

1 ≤ r ≤ n. Moreover, under appropriate conditions on the Newton transformation Tr

defined in (5.1.5), we present the following result provides sufficient conditions which

guarantee the Lr-parabolicity of Riemannian immersions in a semi-Riemannian warped

product, whose its proof is similar to proof of Proposition A.

Proposition E Let ψ : Σn →M
n+1 be a complete Riemannian immersion in Mn+1

=

ϵI ×ρ M
n. Suppose that the Newton transformation Tr is positive semi-definite and

supΣHr < +∞, for some 0 ≤ r ≤ n. If, for some reference point o ∈ Σn,∫ +∞

0

dt

vol(∂Bt)
= +∞, (6.1.2)

where Bt is the geodesic ball of radius t in Σn centered at the origin o, then Σn is
Lr-parabolic.

6.2 Rigidity and nonexistence of spacelike hypersur-
faces

In this section, taking into account the previous digression, we can state and

prove our first rigidity result.
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Theorem 6.2.1 Let ψ : Σn → M
n+1 be a complete spacelike hypersurface immersed

into a GRW spacetime Mn+1
= −I ×ρM

n. Suppose that Σn is bounded away from the
future infinity of Mn+1 and H > 0 on Σn. If hypothesis (6.1.2) is satisfied and

H ≥ ρ′

ρ
(h), (6.2.1)

then Σn is a slice of Mn+1.

Proof. Since u := g(h), by the definition of operator (6.1.1) and Lemma 5.2.6 we have

L0(u) = −n(ρ′(h) + ρ(h)HΘ). (6.2.2)

It follows from assumptions H > 0 and Θ ≤ −1 on Σn that

L0(u) ≥ nρ(h)

(
H − ρ′

ρ
(h)

)
. (6.2.3)

Thus, combining the inequalities (6.2.1) and (6.2.3) we obtain that L0(u) ≥ 0.

Moreover, Proposition E guarantees that Σn is L0-parabolic. But, since Σn is

bounded away from the future infinity ofMn+1, we have that the primitive u is bounded

from above. Consequently, u is constant on Σn. Therefore, we conclude that the height

function h is constant and, hence, Σn must be a slice of Mn+1.

Next, we will consider a natural extension of the (n+1)-dimensional steady state

spacetime −R ×et Rn, the so-called steady state-type spacetime Mn+1
= −R ×et M

n,

where Mn is a connected n-dimensional Riemannian manifold (see [5, Section 4]). It

is worth to note that when a steady state-type spacetime admits a complete spacelike

hypersurface which is bounded away from the future infinity, [5, Lemma 7] guarantees

that its Riemannian fiber Mn is necessarily complete. In this setting, Theorem 6.2.1

reads as follows.

Corollary 6.2.1 Let ψ : Σn → M
n+1 be a complete spacelike hypersurface immersed

into a steady state-type spacetime Mn+1
= −R ×et M

n. Suppose that Σn is bounded
away from the future infinity of Mn+1. If H ≥ 1 and hypothesis (6.1.2) is satisfied,
then Σn is a slice of Mn+1.

For r = 1, we will suppose that the GRW spacetime obeys a suitable curvature

constraint.
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Theorem 6.2.2 Let ψ : Σn → M
n+1 be a complete spacelike hypersurface immersed

into a GRW spacetime Mn+1
= −I×ρM

n which obeys the following curvature constraint

RicM ≤ (n− 1) inf
I
(ρρ′′ − (ρ′)2)⟨ , ⟩M , (6.2.4)

where RicM stands for the Ricci tensor of Mn. Suppose that Σn is bounded away
from the future infinity of Mn+1, H > 0 with supΣH < +∞, and H2 > 0. If hypothesis
(6.1.2) is satisfied and

H2

H
≥ ρ′

ρ
(h), (6.2.5)

then Σn is a slice of Mn+1.

Proof. From operator (6.1.1) together with Lemma 5.2.6 and equation (5.2.4) of

Lemma 5.2.2, we obtain that

L1(u) = −ρ(h)((n− 1)(log ρ)′′(h)|∇h|2 − RicM(N∗, N∗))Θ

−c1(ρ′(h)H + ρ(h)H2Θ), (6.2.6)

where N∗ = N +Θ∂t.

On the other hand, from (5.2.3) we have that

⟨N∗, N∗⟩M =
1

ρ2(h)
|∇h|2.

Thus, using curvature constraint (6.2.4) and Θ ≤ −1, from (6.2.6) we get that

L1(u) ≥ c1ρ(h)H

(
H2

H
− ρ′

ρ
(h)

)
.

It follows from (6.2.5) we have that L1(u) ≥ 0. Moreover, by assumptions supΣH <

+∞ and (6.1.2), Proposition E assures that Σn is L1-parabolic.

Consequently, since Σn is bounded away from the future infinity of Mn+1, we

obtain that u is constant on Σn. Therefore, we conclude that the height function h is

constant, which means that Σn is a slice of Mn+1.

When the ambient spacetime is an Einstein manifold, Theorem 6.2.2 reads as it

follows:

Corollary 6.2.2 Let ψ : Σn → M
n+1 be a complete spacelike hypersurface immersed

into a Einstein GRW spacetime Mn+1
= −I ×ρM

n. Suppose that Σn is bounded away
from the future infinity of Mn+1. If H > 0 with supΣH < +∞, H2 > 0 and hypotheses
(6.1.2) and (6.2.5) are satisfied, then Σn is a slice of Mn+1.
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Proof. From [42, Corollary 9.107] (see also [23, Section 2]) we have that Mn+1 is an

Einstein manifold with Ricci tensor Ric = c g, c ∈ R, if and only if the fiber (Mn, g
M
)

has constant Ricci curvature RicM = c⟨, ⟩M and the warping function ρ satisfies the

differential equations

ρ′′

ρ
=
c

n
and

c(n− 1)

n
=
c+ (n− 1)(ρ′)2

ρ2
. (6.2.7)

and thus, we obtain (n− 1)(log ρ)′′ =
c

ρ2
. Therefore, in this case, we have that

RicM = (n− 1) inf
I
(ρρ′′ − (ρ′)2)⟨ , ⟩M .

Consequently, the result follows by applying Theorem 6.2.2.

Considering once more a steady state-type spacetime, from Theorem 6.2.2 we get

the following consequence.

Corollary 6.2.3 Let ψ : Σn → M
n+1 be a complete spacelike hypersurface immersed

into a steady state-type spacetime Mn+1
= −R×et M

n whose fiber Mn has nonpositive
Ricci curvature. Suppose that Σn is bounded away from the future infinity of Mn+1. If
supΣH < +∞, H2 ≥ H > 0 and hypothesis (6.1.2) is satisfied, then Σn is a slice of
M

n+1.

When 2 ≤ r ≤ n − 1, we will assume that the Riemannian fiber of the GRW

spacetime has constant sectional curvature. In this case, Mn+1
= −I ×ρ M

n is classi-

cally called a Robertson-Walker (RW) spacetime. In this setting, we will use Lemma

5.2.5 to guarantee the ellipticity of the operator Lr.

Theorem 6.2.3 Let ψ : Σn → M
n+1 be a complete spacelike hypersurface immersed

into a RW spacetime Mn+1
= −I ×ρM

n whose fiber Mn has constant sectional curva-
ture κ satisfying the following curvature constraint

κ ≤ inf
I
(ρρ′′ − (ρ′)2). (6.2.8)

Suppose that Σn is bounded away from the future infinity of Mn+1, Hr > 0 with
supΣHr < +∞, and Hr+1 > 0 for some 2 ≤ r ≤ n − 1. Assume in addition that
ρ(h) attains a local minimum at some point p ∈ Σn such that ρ′(h(p)) ̸= 0. If hypoth-
esis (6.1.2) is satisfied and

Hr+1

Hr

≥ ρ′

ρ
(h), (6.2.9)

then Σn is a slice of Mn+1.
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Proof. Since Mn has constant sectional curvature κ, from Lemma 5.2.6 together with

equation (5.2.5) of Lemma 5.2.2 and (6.1.1) we obtain

Lr(u) = ρ(h)(n− r)

(
κ

ρ2(h)
− (log ρ)′′(h)

)
⟨Tr−1∇h,∇h⟩Θ

−cr(ρ′(h)Hr + ρ(h)Hr+1Θ). (6.2.10)

On the other hand, since ρ(h) attains a local minimum at some point p ∈ Σn

such that ρ′(h(p)) ̸= 0, Lemma 5.2.5 guarantees that p is an elliptic point of Σn. Using

the assumption Hr+1 > 0, Lemma 5.2.4 we get that the operator Lj is elliptic or,

equivalently, Tj is positive definite for all 1 ≤ j ≤ r.

Thus, combining the curvature constraint (6.2.8) and the assumption Θ ≤ −1,

from (6.2.10) we obtain the following estimate

Lr(u) ≥ 1

ρ(h)
(n− r)

(
(ρρ′′ − (ρ′)2)(h)− κ

)
⟨Tr−1∇h,∇h⟩+ cr(ρ(h)Hr+1 − ρ′(h)Hr)

≥ crρ(h)Hr

(
Hr+1

Hr

− ρ′

ρ
(h)

)
. (6.2.11)

Hence, from inequalities (6.2.9) and (6.2.11) we get that Lr(u) ≥ 0 on Σn. More-

over, from hypotheses supΣHr < +∞ and (6.1.2), we have that Σn is Lr-parabolic.

Therefore, since Σn is bounded away from the future infinity of Mn+1, we conclude

that Σn must be a slice of Mn+1.

Let us recall that a GRW spacetime −I ×ρ M
n is said to be static when the

warping function ρ is constant. In this case, we can suppose, without loss of generality,

that ρ ≡ 1. In this case, we obtain the following nonexistence result:

Corollary 6.2.4 Let Mn+1
= −I ×Mn be a static RW spacetime whose fiber Mn has

nonpositive constant sectional curvature κ. There is no complete spacelike hypersurface
ψ : Σn → M

n+1 bounded away from the future infinity of Mn+1 such that, for some
2 ≤ r ≤ n − 1, Hr > 0 with supΣHr < +∞, Hr+1 > 0, having an elliptic point and
satisfying hypothesis (6.1.2).

Proof. By contradiction, let us suppose the existence of such a complete spacelike

hypersurface Σn. Since p ∈ Σn is a elliptic point and Hr+1 > 0, Lemma 5.2.4 guarantees

that Tj is positive definite for all 1 ≤ j ≤ r. Hence, since κ ≤ 0 and Θ ≤ −1, from

inequality (6.2.10) we have

Lr(u) ≥ (n− r)⟨Tr−1∇h,∇h⟩ − crHr+1Θ ≥ crHr+1 > 0.
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It follows from boundeness of Hr that Σn is Lr-parabolic. Therefore, since Σn also is

bounded away from the future infinity of ambient space, Σn must be a slice of Mn+1.

This implies that Hr = 0 and so, we reach at a contradiction.

Proceeding, we will consider also the case when the spacelike hypersurface is

bounded away from the past infinity of a GRW spacetime whose Riemannian fiber has

constant sectional curvature obeying a curvature constraint which corresponds to the

so-called strong null convergence condition (SNCC) which was originally conceived by

Alías and Colares in [9]. For a throughout discussion concerning the SNCC see also,

for instance, see [104].

Theorem 6.2.4 Let ψ : Σn → M
n+1 be a complete spacelike hypersurface immersed

into a RW spacetime Mn+1
= −I ×ρM

n whose fiber Mn has constant sectional curva-
ture κ satisfying the SNCC

κ ≥ sup
I
(ρρ′′ − (ρ′)2). (6.2.12)

Suppose that Σn is bounded away from the past infinity of Mn+1, Hr−1 > 0 and Hr > 0

with supΣHr < +∞, for some 2 ≤ r ≤ n − 1. Assume in addition that the sectional
curvature of Σn, KΣ, is such that

KΣ ≤ ρ′′

ρ
(h). (6.2.13)

If hypothesis (6.1.2) is satisfied and

Hr+1

Hr

≤ − 1

Θ

ρ′

ρ
(h), (6.2.14)

then Σn is a slice of Mn+1.

Proof. We consider the self-adjoint operator defined by Tr−1 : X(Σn) → X(Σn) by

Tr−1 := Hr−1Tr−1. Choose a local orthonormal frame {e1, · · · , en} such that Aei(p) =

λiei(p). It follows from (5.1.7) that

Tr−1ei = (−1)r−1
∑

i1<···<ir−1,ij ̸=i

λi1 · · ·λir−1ei.

This implies that, for all i ∈ 1, · · · , n, we get

⟨Tr−1ei, ei⟩ =
(

n

r − 1

)−1 ∑
i1<···<ir−1,ij ̸=i,j1<···<jr−1

(λi1λj1) · · · (λir−1λjr−1).
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Denote by KΣ and K the sectional curvatures of Σn and M
n+1, respectively. Thus,

from Gauss equation we obtain

KΣ(ei, ej) = K(ei, ej)− λiλj, (6.2.15)

From [107, Proposition 7.42] (see also [9, Equation (6.6)]), given arbitrary vector fields

U, V,W in Mn+1 we can compute the following relation

R(U, V )W = RM(U∗, V ∗)W ∗ + ((log ρ)′(h))2(⟨U,W ⟩V − ⟨V,W ⟩U)

−(log ρ)′′(h)⟨W,∂t⟩(⟨U, ∂t⟩V − ⟨V, ∂t⟩U)

−(log ρ)′′(h)(⟨U,W ⟩⟨V, ∂t⟩ − ⟨U, ∂t⟩⟨V,W ⟩)∂t, (6.2.16)

where U∗ = (πMn)∗U = U + ⟨U, ∂t⟩∂t. Hence, for an orthonormal basis {X, Y } of an

arbitrary 2-plane tangent to Σn, the above relation (6.2.16) we get

K(X, Y ) =
1

ρ2(h)
KM(X∗, Y ∗)|X∗ ∧ Y ∗|2

+((log ρ)′(h))2(⟨X,X⟩⟨Y, Y ⟩ − ⟨Y,X⟩⟨X, Y ⟩)

−(log ρ)′′(h)⟨X, ∂t⟩(⟨X, ∂t⟩⟨Y, Y ⟩ − ⟨Y, ∂t⟩⟨X, Y ⟩)

−(log ρ)′′(h)(⟨X,X⟩⟨Y, ∂t⟩ − ⟨X, ∂t⟩⟨Y,X⟩)⟨∂t, Y ⟩

=
1

ρ2(h)
KM(X∗, Y ∗)|X∗ ∧ Y ∗|2 + ((log ρ)′(h))2 (6.2.17)

−(log ρ)′′(h)(⟨X, ∂t⟩2 + ⟨Y, ∂t⟩2). (6.2.18)

Note that

|X∗ ∧ Y ∗|2 = |X∗|2|Y ∗|2 − ⟨X∗, Y ∗⟩2 = ⟨X∗, X∗⟩⟨Y ∗, Y ∗⟩ − ⟨X∗, Y ∗⟩2

= (1 + ⟨X, ∂t⟩2)(1 + ⟨Y, ∂t⟩2)− ⟨X, ∂t⟩2⟨Y, ∂t⟩2

= 1 + ⟨X, ∂t⟩2 + ⟨Y, ∂t⟩2. (6.2.19)

On the other hand, from (5.2.2)

⟨X, ∂t⟩2 = ⟨X,−∇h−ΘN⟩2 = ⟨X.∇h⟩2. (6.2.20)

Combining (6.2.19) with (6.2.20), we have that |X∗ ∧ Y ∗|2 = 1+ ⟨X,∇h⟩2 + ⟨Y,∇h⟩2.

Thus,

K(X, Y ) =
1

ρ2(h)
KM(X∗, Y ∗)(1 + ⟨X,∇h⟩2 + ⟨Y,∇h⟩2) + ((log ρ)′(h))2
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−(log ρ)′′(h)(⟨X,∇h⟩2 + ⟨Y,∇h⟩2)

=
1

ρ2(h)
KM(X∗, Y ∗) + ((log ρ)′(h))2

+

(
1

ρ2(h)
KM(X∗, Y ∗)− (log ρ)′′(h)

)
(⟨X,∇h⟩2 + ⟨Y,∇h⟩2)

=
1

ρ2(h)
KM(X∗, Y ∗) +

(
ρ′

ρ
(h)

)2

+
1

ρ2(h)
(KM(X∗, Y ∗)− ρρ′′ + (ρ′)2)(⟨X,∇h⟩2 + ⟨Y,∇h⟩2).(6.2.21)

This together with the convergence condition null (6.2.12) we deduce the following

inequality

K(X, Y ) ≥ ρ′′

ρ
(h). (6.2.22)

It follows from (6.2.15) and (6.2.22) that

λiλj = K(ei, ej)−KΣ(ei, ej) ≥
ρ′′

ρ
(h)−KΣ(ei, ej). (6.2.23)

Thus, from (6.2.13) and (6.2.23) we have λiλj ≥ 0, for all i, j ∈ {1, 2, · · · , n} with

i ̸= j. Hence,

⟨Tr−1ei, ei⟩ =
∑

(λj1λi1) · · · (λjr−1λir−1) ≥ 0. (6.2.24)

Therefore, conclude that the operator Tr−1 is positive semi-definite. Conse-

quently, since Hr−1 and Hr are positive, Θ ≤ −1 and the convergence condition (6.2.12)

is satisfied, from (6.2.10) we obtain

Lr(u) = ρ(h)(n− r)

(
κ

f 2(h)
− (log ρ)′′(h)

)
1

Hr−1

⟨Tr−1∇h,∇h⟩Θ

−cr(ρ′(h)Hr + ρ(h)Hr+1Θ)

≤ −crρ(h)HrΘ

(
Hr+1

Hr

+
1

Θ

ρ′

ρ
(h)

)
. (6.2.25)

Hence, considering inequality (6.2.14) into (6.2.25) we get that Lr(u) ≤ 0 on Σn.

Moreover, hypotheses supΣHr < +∞ and (6.1.2) assure that Σn is Lr-parabolic. Since

Σn is bounded away from the past infinity of Mn+1, we conclude that Σn must be a

slice of Mn+1.

Remark 6.2.1 Concerning Theorem 6.2.4, we observe that when Σn has a elliptic
point, hypothesis (6.2.13) can be dropped. Furthermore, we point out that inequality
(6.2.14) was already used in [32, Theorem 4] to obtain an extension of [10, Theorem
3.7] and in [113, Theorem 4.1].
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6.3 Rigidity and nonexistence of two-sided hypersur-
faces

Similarly to the case of spacelike hypersurfaces in GRW spacetimes, in this Sec-

tion we will establish rigidity and nonexistence results concerning complete two-sided

hypersurfaces immersed in a Riemannian warped product. We recall that a hypersur-

face is said to be two-sided if its normal bundle is trivial, that is, there is on it a globally

defined unit normal vector field N .

Theorem 6.3.1 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into a Riemannian warped product Mn+1
= I×ρM

n. Suppose that Σn is bounded away
from the future infinity of Mn+1 and that −1 ≤ Θ ≤ 0. If hypothesis (6.1.2) is satisfied
and

0 < H ≤ ρ′

ρ
(h), (6.3.1)

then Σn is a slice of Mn+1.

Proof. Taking into account that H > 0 and −1 ≤ Θ ≤ 0, from Lemma 5.2.6 together

with (6.3.1) we obtain that

L0(u) = n(ρ′(h) + ρ(h)HΘ)⟩ ≥ nρ(h)

(
ρ′

ρ
(h)−H

)
. (6.3.2)

Hence, combining the inequalities (6.3.1) and (6.3.2), we obtain that L0(u) ≥ 0. More-

over, by hypothesis (6.1.2) we have that Σn is L0-parabolic. So, since Σn is bounded

away from the future infinity of Mn+1, we obtain that u is constant on Σn and, there-

fore, Σn is a slice of Mn+1.

When the warping function ρ is either exponential or hyperbolic cosine, following

the terminology introduced by [120], the corresponding warped product R×et M
n or

R×cosh tM
n has been referred to as a pseudo-hyperbolic space. Tashiro’s terminology is

due to the fact that with suitable choices of the fiber Mn we obtain warped products

which are isometric to the hyperbolic space. For more details about these spaces see,

for instance, [12, 13, 77, 102]. In this context, we get the following applications of

Theorem 6.3.1.

Corollary 6.3.1 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into a pseudo-hyperbolic space Mn+1
= R ×et M

n. Suppose that Σn is bounded away
from the future infinity of Mn+1 and that −1 ≤ Θ ≤ 0. If hypothesis (6.1.2) is satisfied
and 0 < H ≤ 1, then Σn is a slice of Mn+1.
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Corollary 6.3.2 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into a pseudo-hyperbolic space Mn+1
= R×cosh tM

n. Suppose that Σn is bounded away
from the future infinity of Mn+1 and that −1 ≤ Θ ≤ 0. If hypothesis (6.1.2) is satisfied
and 0 < H ≤ tanh(h), then Σn is a slice of Mn+1.

In our next result, we will suppose that the ambient space obeys a suitable cur-

vature constraint which is the opposite of that assumed in the results of [102].

Theorem 6.3.2 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into a Riemannian warped product Mn+1
= I ×ρM

n, which obeys the following curva-
ture constraint

RicM ≥ (n− 1) sup
I
((ρ′)2 − ρρ′′)⟨ , ⟩M , (6.3.3)

where RicM stands for the Ricci tensor of Mn. Suppose that Σn is bounded away from
the future infinity of Mn+1 and that −1 ≤ Θ ≤ 0. If hypothesis (6.1.2) is satisfied,
H > 0 with supΣH < +∞, H2 > 0 and

H2

H
≤ ρ′

ρ
(h), (6.3.4)

then Σn is a slice of Mn+1.

Proof. From Lemma 5.2.6 and equation (5.2.4) of Lemma 5.2.2 we obtain that

L1(u) = ρ(h)(−RicM(N∗, N∗)− (n− 1)(log ρ)′′(h)|∇h|2)Θ

+c1(ρ
′(h)H + ρ(h)H2Θ), (6.3.5)

where N∗ = N −Θ∂t.

From (6.2) and curvature constraint (6.3.3) we obtain

(n− 1)

(
(ρ′)2 − ρρ′′

ρ2

)
(h)|∇h|2 − RicM(N∗, N∗) ≤ 0. (6.3.6)

Thus, since we are assuming −1 ≤ Θ ≤ 0, substituting (6.3.6) into (6.3.5) we get

L1(u) ≥ c1ρ(h)H

(
ρ′

ρ
(h)− H2

H

)
.

Hence, using the assumption (6.3.4) we reach at L1(u) ≥ 0. Moreover, since

Lemma 5.2.3 gives that P1 is positive definite, we can apply Proposition E to guarantee

that Σn is L1-parabolic. So, since Σn is bounded away from the future infinity of Mn+1,

we get that the function u is constant. Therefore, we conclude that Σn must be a slice

of Mn+1.

We can reason as in the proof of Corollary 6.2.2, obtaining the following conse-

quence of Theorem 6.3.2:
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Corollary 6.3.3 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into an Einstein warped product Mn+1
= I ×ρ M

n. Suppose that Σn is bounded away
from the future infinity of Mn+1 and that −1 ≤ Θ ≤ 0. If H > 0 with supΣH < +∞,
H2 > 0 and hypotheses (6.1.2) and (6.3.4) are satisfied, then Σn is a slice of Mn+1.

When the ambient is a pseudo-hyperbolic space, Theorem 6.3.2 leads us to the

following applications:

Corollary 6.3.4 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into a pseudo-hyperbolic space Mn+1
= R×et M

n whose fiber Mn has nonpositive Ricci
curvature. Suppose that Σn is bounded away from the future infinity of Mn+1 and that
−1 ≤ Θ ≤ 0. If hypothesis (6.1.2) is satisfied, H > 0 with supΣH < +∞, H2 > 0 and
H2

H
≤ 1, then Σn is a slice of Mn+1.

Corollary 6.3.5 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into a pseudo-hyperbolic space Mn+1
= R×cosh tM

n whose Ricci tensor of the fiber Mn

is such that RicM ≤ −(n− 1)⟨ , ⟩M . Suppose that Σn is bounded away from the future
infinity of Mn+1 and that −1 ≤ Θ ≤ 0. If hypothesis (6.1.2) is satisfied, H > 0 with

supΣH < +∞, H2 > 0 and
H2

H
≤ tanh(h), then Σn is a slice of Mn+1.

In our next results, we deal with higher order mean curvatures.

Theorem 6.3.3 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into a Riemannian warped product Mn+1
= I ×ρ M

n whose fiber Mn has constant
sectional curvature κ and it obeys the curvature constraint

κ ≥ sup
I
((ρ′)2 − ρρ′′). (6.3.7)

Suppose that Σn is bounded away from the future infinity of Mn+1, −1 ≤ Θ ≤ 0 and
that the sectional curvature of Σn, KΣ, is such that

KΣ ≥ 1

ρ2(h)
(κ− (ρ′(h))2). (6.3.8)

If hypothesis (6.1.2) is satisfied, Hr−1 > 0, Hr > 0 with supΣHr < +∞, and

Hr+1

Hr

≤ ρ′

ρ
(h), (6.3.9)

for some 2 ≤ r ≤ n− 1, then Σn is a slice of Mn+1.
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Proof. Since the fiber Mn has constant sectional curvature κ, from (6.1.1) toghether

with Lemma 5.2.6 and equation (5.2.5) of Lemma 5.2.2 we obtain

Lr(u) = −(n− r)ρ(h)

(
κ

f 2(h)
+ (log ρ)′′(h)

)
⟨Tr−1∇h,∇h⟩Θ

+cr(ρ
′(h)Hr + ρ(h)Hr+1Θ). (6.3.10)

As in the proof of Theorem 6.2.4 when we consider the self-adjoint operator

defined by Tr−1 : X(Σn) → X(Σn) by Tr−1 := Hr−1Tr−1. Choose a local orthonormal

frame {e1, · · · , en} such that Aei(p) = λiei(p). It follows from (5.1.7) that

Tr−1ei = (−1)r−1
∑

i1<···<ir−1,ij ̸=i

λi1 · · ·λir−1ei.

This implies that, for any i ∈ {1, · · · , n}

⟨Tr−1ei, ei⟩ =
(

n

r − 1

)−1 ∑
i1<···<ir−1,ij ̸=i,j1<···<jr−1

(λi1λj1) · · · (λir−1λjr−1).

Denote by KΣ and K the sectional curvatures of Σn and M
n+1, respectively. Thus,

from Gauss equation we obtain

KΣ(ei, ej) = K(ei, ej) + λiλj, (6.3.11)

From [107, Proposition 7.42], given arbitrary vector fields U, V,W in M
n+1 we can

compute the following relation

R(U, V )W = RM(U∗, V ∗)W ∗ − ((log ρ)′(h))2(⟨U,W ⟩V − ⟨V,W ⟩U)

−(log ρ)′′(h)⟨W,∂t⟩(⟨U, ∂t⟩V − ⟨V, ∂t⟩U)

−(log ρ)′′(h)(⟨U,W ⟩⟨V, ∂t⟩ − ⟨U, ∂t⟩⟨V,W ⟩)∂t, (6.3.12)

where U∗ = (πMn)∗U = U + ⟨U, ∂t⟩∂t. Hence, for an orthonormal basis {X, Y } of an

arbitrary 2-plane tangent to Σn, the above relation (6.3.12) we get

K(X, Y ) =
1

ρ2(h)
KM(X∗, Y ∗)|X∗ ∧ Y ∗|2

−((log ρ)′(h))2 − (log ρ)′′(h)(⟨X,∇h⟩2 + ⟨Y,∇h⟩2).

Note that

|X∗ ∧ Y ∗|2 = 1− ⟨X,∇h⟩2 + ⟨Y,∇h⟩2.
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Thus,

K(X, Y ) =
1

ρ2(h)
KM(X∗, Y ∗)(1− ⟨X,∇h⟩2 + ⟨Y,∇h⟩2)

−((log ρ)′(h))2 − (log ρ)′′(h)(⟨X,∇h⟩2 + ⟨Y,∇h⟩2)

=
1

ρ2(h)
KM(X∗, Y ∗)− ((log ρ)′(h))2

−
(

1

ρ2(h)
KM(X∗, Y ∗) + (log ρ)′′(h)

)
(⟨X,∇h⟩2 + ⟨Y,∇h⟩2)

=
1

ρ2(h)
KM(X∗, Y ∗)−

(
ρ′

ρ
(h)

)2

−
(

1

ρ2(h)
KM(X∗, Y ∗) +

ρρ′′ − (ρ′)2

ρ2
(h)

)
(⟨X,∇h⟩2 + ⟨Y,∇h⟩2).

This together with the convergence condition (6.3.7) and assumption (6.3.8) im-

plies the

λiλj ≥ 0, for all i, j ∈ {1, ..., n}, i ̸= j.

Thus, we conclude that ⟨Tr−1ei, ei⟩ ≥ 0 and Tr−1, is positive semi-definite. Since Hr−1

and Hr are positive and −1 ≤ Θ ≤ 0, from (6.3.7) and (6.3.10) we get

Lr(u) = −(n− r)ρ(h)

(
κ

f 2(h)
+ (log ρ)′′(h)

)
1

Hr−1

⟨Tr−1∇h,∇h⟩Θ

+cr(ρ
′(h)Hr + ρ(h)Hr+1Θ)

≥ crρ(h)Hr

(
ρ′

ρ
(h)− Hr+1

Hr

)
. (6.3.13)

Hence, considering (6.3.9) into (6.3.13) we conclude that Lr(u) ≥ 0 on Σn. Con-

sequently, since we are assuming that Σn is bounded away from the future infinity of

M
n+1, we can apply Proposition E to obtain that h is constant on Σn. Therefore, Σn

must be a slice of Mn+1.

From Theorem 6.3.3 we get the following nonexistence result:

Corollary 6.3.6 Let Mn+1
= I ×Mn be a Riemannian warped product whose fiber

Mn has constant nonnegative sectional curvature κ. There is no complete two-sided
hypersurface ψ : Σn → M

n+1 bounded away from the future infinity of Mn+1, with
−1 ≤ Θ ≤ 0, satisfying hypothesis (6.1.2) and such that KΣ ≥ κ, Hr−1, Hr > 0 and
Hr+1 > 0 with supΣHr < +∞, for some 2 ≤ r ≤ n− 1.

Related to the higher order mean curvatures, we also establish the following result:
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Theorem 6.3.4 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into a Riemannian warped product Mn+1
= I ×ρ M

n whose fiber Mn has constant
sectional curvature κ satisfying

κ ≤ inf
I
((ρ′)2 − ρρ′′). (6.3.14)

Suppose that Σn is bounded away from the past infinity of Mn+1 and that −1 ≤ Θ < 0.
Assume in addition that ρ(h) attains a local maximum at some point p ∈ Σn such that
ρ′(h(p)) ̸= 0. If hypothesis (6.1.2) is satisfied, Hr > 0 with supΣHr < +∞, Hr+1 > 0

and
Hr+1

Hr

≥ − 1

Θ

ρ′

ρ
(h), (6.3.15)

for some 2 ≤ r ≤ n− 1, then Σn is a slice of Mn+1.

Proof. Since we are assuming that ρ(h) attains a local maximum at some point p ∈ Σn

such that ρ′(h(p)) ̸= 0, Lemma 5.2.5 guarantees that p is an elliptic point of Σn. Using

the assumption Hr+1 > 0, from Lemma 5.2.4 the operator Lj is elliptic or, equivalently,

Tj is positive definite for all 1 ≤ j ≤ r. Thus, the curvature constraint (6.3.14) together

with −1 ≤ Θ < 0 and (6.3.10) implies

Lr(u) ≤ crρ(h)HrΘ

(
Hr+1

Hr

+
1

Θ

ρ′

ρ
(h)

)
.

Hence, from hypothesis (6.3.15) we have that Lr(u) ≤ 0 on Σn. Therefore, since

Σn is bounded away from the past infinity ofMn+1, we can apply once more Proposition

E to conclude that Σn must be a slice of Mn+1.

6.4 Applications to entire graphs

When Mn+1
= −I ×ρ M

n is a GRW spacetime, we can restate Theorem 6.2.3 in

the context of entire graphs as follows:

Corollary 6.4.1 Let Mn+1
= −I ×ρ M

n be a RW spacetime whose fiber Mn has
constant sectional curvature κ satisfying curvature constraint (6.2.8) and let Σ(w) be
an entire graph determined by a bounded function w ∈ C∞(M) such that, for some
2 ≤ r ≤ n − 1, Hr > 0 with supM Hr < +∞ and Hr+1 > 0. Suppose that ρ(w)
attains a local minimum at some point x ∈ Mn such that ρ′(w(x)) ̸= 0 and that
|Dw|2M ≤ αρ2(w), for some constant 0 < α < 1. If Σ(w) satisfies hypothesis (6.1.2)
and

Hr+1

Hr

≥ ρ′

ρ
(w), (6.4.1)

then w ≡ t0 for some t0 ∈ I.
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Proof. As in the beginning of the proof of Corollary 5.1 in [10], the assumption that

|Dw|2M ≤ αρ2(w), for some constant 0 < α < 1, guarantees that Σ(w) is a complete

spacelike hypersurface. Therefore, since we are also assuming that hypotheses (6.1.2)

and (6.4.1) are satisfied, we can apply Theorem 6.2.3 to conclude the result.

Taking into account (5.3.2), it is not difficult to see that we can also reformulate

Theorem 6.2.4 in the context of entire graphs as follows:

Corollary 6.4.2 Let Mn+1
= −I ×ρ M

n be a RW spacetime whose fiber Mn has
constant sectional curvature κ satisfying the SNCC (6.2.12) and let Σ(w) be an entire
graph determined by a bounded function w ∈ C∞(M) such that, for some 2 ≤ r ≤ n−1,
Hr−1 > 0 and Hr > 0 with supΣHr < +∞. Suppose that the sectional curvature of
Σ(w) satisfies (6.2.13) and that |Dw|2M ≤ αρ2(w), for some constant 0 < α < 1. If
hypothesis (6.1.2) is satisfied and

Hr+1

Hr

≤ ρ′

ρ2
(w)W (w),

then w ≡ t0 for some t0 ∈ I.

When the ambient space Mn+1
= I ×ρ M

n is a Riemannian warped product,

all results in Subsection 6.3 can be also rewritten for the context of entire graphs. In

particular, we quote the following versions of Theorems 6.3.3 and 6.3.4:

Corollary 6.4.3 Let Mn+1
= I ×ρ M

n be a Riemannian warped product whose fiber
Mn has constant sectional curvature κ obeying the curvature constraint (6.3.7) and
let be Σ(w) be an entire graph determined by a bounded function w ∈ C∞(M) such
that, for some 2 ≤ r ≤ n − 1, Hr−1 > 0, Hr > 0 with supΣHr < +∞. Suppose that
the sectional curvature of Σ(w) satisfies (6.3.8) and that |Dw|M < +∞. If hypothesis
(6.1.2) is satisfied and

Hr+1

Hr

≤ ρ′

ρ
(w),

then w ≡ t0 for some t0 ∈ I.

Corollary 6.4.4 Let Mn+1
= I ×ρ M

n be a Riemannian warped product whose fiber
Mn has constant sectional curvature κ obeying the curvature constraint (6.3.14) and
let be Σ(w) be an entire graph determined by a bounded function w ∈ C∞(M) such
that, for some 2 ≤ r ≤ n− 1, Hr > 0 with supΣHr < +∞ and Hr+1 > 0. Suppose that
ρ(w) attains a local maximum at some point x ∈ Mn such that ρ′(w(x)) ̸= 0 and that
|Dw|M < +∞. If hypothesis (6.1.2) is satisfied and

Hr+1

Hr

≥ ρ′

ρ2
(w)W (w),

then w ≡ t0 for some t0 ∈ I.
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Chapter 7

Rigidity and nonexistence of complete
hypersurfaces via Liouville type
results and other maximum principles

To close this Thesis, we present the results concerning the article [25]. As in

the previous chapter, here we investigate complete hypersurfaces with some positive

higher order mean curvature in a semi-Riemannian warped product space. Now, under

standard curvature conditions on the ambient space and appropriate constraints on

the higher order mean curvatures, we establish rigidity and nonexistence results via

Liouville type results and suitable maximum principles related to the divergence of

smooth vector fields on a complete noncompact Riemannian manifold. Applications

to standard warped product models, like the Schwarzschild, Reissner-Nordström and

pseudo-hyperbolic spaces, as well as steady state type spacetimes, are given and a

particular study of entire graphs is also presented.

7.1 Rigidity and nonexistence results

This section is devoted to present rigidity and nonexistence results concerning

complete Riemannian immersions in a semi-Riemannian warped product. Our ap-

proach is based on a criteria of integrability due to Yau in [128], a Liouville-type result

due to Pigola, Rigoli and Setti in [111], a version of maximum principle at infinity for

vector fields due to Alías, Caminha and Nascimento in [7] and a maximum principle

related to polynomial volume growth also obtained by these same authors in [8].
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7.1.1 Via integrability

We recall the f -divergence operator on a Riemannian manifold Σn endowed with

a (smooth) weight function f : Σn → R is defined by

divf (X) = efdiv(e−fX),

where X is a tangent vector field on Σn and div stands for the standard divergence

operator of Σn. From this, for all smooth function u : Σn → R, we define the drift

Laplacian of u by

∆fu = divf (∇u) = ∆u− ⟨∇u,∇f⟩.

Let us also consider the set of Lebesgue integrable functions on Σn

Lp
f (Σ) :=

{
w : Σn → R :

∫
Σ

|w|pe−fdΣ < +∞
}
,

with respect to the modified volume element e−fdΣ, where dΣ is the volume element

induced by the metric of Σn. In this setting, we get the following consequence of [128,

Proposition 2.1].

Lemma 7.1.1 Let u be a smooth function on a complete Riemannian manifold Σn

endowed with weight function f , such that ∆fu does not change sign on Σn. If |∇u| ∈
L1
f (Σ), then ∆fu vanishes identically on Σn.

Remark 7.1.1 We observe that Lemma 7.1.1 can be regarded as a consequence of the
version of Stokes’ Theorem due to Karp in [86]. Indeed, using [86, Theorem], condition
|∇u| ∈ L1

f (Σ) can be weakened to the following hypothesis

lim inf
r→+∞

1

r

∫
B(2r)\B(r)

|∇u|e−fdΣ = 0,

where B(r) stands for the geodesic ball of radius r center at some fixed origin o ∈
Σn. Moreover, [86, Corollary 1 and Remark] give some geometric conditions which
guarantee this hypothesis.

In our first rigidity result, we will suppose that the Riemannian fiber Mn of the

GRW spacetime obeys a suitable curvature constraint and that the Newton transfor-

mation T1 satisfies T1(∇u) = φ(∇u), for some 0 < φ ∈ C∞(Σ) and u := g(h) ∈ C∞(Σ)

an arbitrary primitive g of the warping function ρ. We observe that the totally um-

bilical hypersurfaces satisfy this last condition. Recently, this condition has been

82



used extensively in the study of a class of hypersurfaces of warped products whose

gradient of their height functions are principal directions. See, for instance, the

works [71, 69, 70, 98, 122]. In this setting, considering again the curvature con-

straint (6.2.4), we can present the following

Theorem 7.1.1 Let ψ : Σn → M
n+1 be a complete spacelike hypersurface immersed

into a GRW spacetime Mn+1
= −I ×ρ M

n, which obeys the following curvature con-
straint

RicM ≤ (n− 1) inf
I
(ρρ′′ − (ρ′)2)⟨, ⟩M , (7.1.1)

where RicM stands for the Ricci tensor of Mn. Suppose that H2 is positive and
T1(∇u) = φ(∇u), for some 0 < φ ∈ C∞(Σ). If |∇u| ∈ L1

− lnφ(Σ) and

H2

H1

≥ ρ′

ρ
(h), (7.1.2)

then Σn is a slice of Mn+1.

Proof. Since the function φ ∈ C∞(Σ) is positive, from definition (6.1.1) for r = 1, we

obtain

1

φ
L1(u) =

1

φ
div(T1(∇u)) = e− lnφdiv (φ∇u)

= e− lnφdiv
(
elnφ∇u

)
(7.1.3)

= ∆− lnφu.

On the other hand, from Lemma 5.2.6 and equation (5.2.4) of Lemma 5.2.2 we

obtain that

L1(u) = ρ(h)
(
RicM(N∗, N∗)− (n− 1)(log ρ)′′(h)|∇h|2

)
⟨N, ∂t⟩

−b1(ρ′(h)H1 + ρ(h)H2⟨N, ∂t⟩), (7.1.4)

where N∗ = N + ⟨N, ∂t⟩∂t. Since H2 > 0, Lemma 5.2.3 guarantees that, with respect

to N , H1 > 0 and T1 is positive definite. So, once N is future-pointing and |∇h|2 =

ρ2(h)⟨N∗, N∗⟩M , using curvature constraint (7.1.1) into (7.1.4), we obtain

L1(u) ≥ ρ(h)b1H1

(
H2

H1

− ρ′

ρ
(h)

)
. (7.1.5)

Hence, taking into account hypothesis (7.1.2), from (7.1.3) and (7.1.5) we have that

u is (− lnφ)-subharmonic function. Moreover, since |∇u| ∈ L1
− lnφ(Σ), Lemma 7.1.1
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gives that ∆− lnφu vanishes identically on Σn, that is, u is constant on Σn. Therefore,

we conclude that the height function h is constant and, hence, Σn is a slice of Mn+1.

As application of Theorem 7.1.1, we can consider the case when ambient is an

Einstein manifold to obtain the following rigidity result, whose its proof is similar to

proof of Corollary 6.2.2.:

Corollary 7.1.1 Let ψ : Σn → M
n+1 be a complete spacelike hypersurface immersed

into a Einstein GRW spacetime Mn+1
= −I×ρM

n. Suppose that T1 is positive definite
with T1(∇u) = φ(∇u), for some 0 < φ ∈ C∞(Σ). If |∇u| ∈ L1

− lnφ(Σ) and hypothesis
(7.1.2) is satisfied, then Σn is a slice of Mn+1.

Next, as in Corollary 6.2.1, we will consider the steady state-type spacetime

M
n+1

= −R ×et M
n. In this case, we also obtain the following application from

Theorem 7.1.1:

Corollary 7.1.2 Let ψ : Σn → M
n+1 be a complete spacelike hypersurface immersed

into a steady state-type spacetime Mn+1
= −R×et M

n whose fiber Mn has nonpositive
Ricci curvature. Suppose that T1 is positive definite with T1(∇u) = φ(∇u), for some
0 < φ ∈ C∞(Σ). If |∇u| ∈ L1

− lnφ(Σ) and H2 ≥ H1, then Σn is a slice of Mn+1.

In order to extend this reasoning to the higher order mean curvatures, we will

assume that the Riemannian fiberMn has constant sectional curvature, that is, Mn+1
=

−I ×ρ M
n is Robertson-Walker (RW) spacetime.

Theorem 7.1.2 Let ψ : Σn → M
n+1 be a complete spacelike hypersurface immersed

into a RW spacetime Mn+1
= −I ×ρ M

n whose constant sectional curvature κ of fiber
Mn obeys the curvature constraint

κ ≤ inf
I
(ρρ′′ − (ρ′)2). (7.1.6)

Suppose that, for some 2 ≤ r ≤ n−1, Hr+1 is positive and ρ(h) attains a local minimum
at a point q ∈ Σn such that ρ′(h(q)) ̸= 0. If Tr satisfies Tr(∇u) = φ(∇u), for some
0 < φ ∈ C∞(Σ), |∇u| ∈ L1

− lnφ(Σ) and

Hr+1

Hr

≥ ρ′

ρ
(h), (7.1.7)

then Σn is a slice of Mn+1.
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Proof. Since the fiber Mn has constant sectional curvature κ, from (6.1.1) jointly with

Lemma 5.2.6 and equation (5.2.5) of Lemma 5.2.2 we obtain

Lr(u) = (n− r)ρ(h)

(
κ

ρ2(h)
− (log ρ)′′(h)

)
⟨Tr−1∇h,∇h⟩⟨N, ∂t⟩

−br(ρ′(h)Hr + ρ(h)Hr+1⟨N, ∂t⟩). (7.1.8)

On the other hand, since Hr+1 > 0 and ρ(h) attains a local maximum at some

point q ∈ Σn such that ρ′(h(q)) ̸= 0, from Lemma 5.2.4 and Lemma 5.2.5, the Newton

transformations Tj is positive definite and Hj is positive for all 1 ≤ j ≤ r. Thus, taking

into account that N is future-pointing, from (7.1.6) and (7.1.8) we obtain

Lr(u) ≥ brρ(h)Hr

(
Hr+1

Hr

− ρ′

ρ
(h)

)
. (7.1.9)

But, we can reason as in (7.1.3) to deduce that

1

φ
Lr(u) = ∆− lnφu. (7.1.10)

Hence, considering (7.1.7) into (7.1.9) we have that u is (− lnφ)-subharmonic function.

Thus, since |∇u| ∈ L1
− lnφ(Σ), from Lemma 7.1.1 we get that u is constant on Σn.

Therefore, we conclude that Σn is a slice of Mn+1.

Remark 7.1.2 Concerning Theorem 7.1.2, we observe that if we substitute the as-

sumptions (7.1.6) and (7.1.7) by κ ≤ sup
I
(ρρ′′ − (ρ′)2) and

Hr+1

Hr

≤ − 1

⟨N, ∂t⟩
ρ′

ρ
(h),

respectively, we will also obtain the rigidity result.

When the ambient space is a Riemannian warped product and the complete

hypersurface is two-sided, we obtain the following result:

Theorem 7.1.3 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into a Riemannian warped product Mn+1
= I ×ρM

n, which obeys the following curva-
ture constraint

RicM ≥ (n− 1) sup
I
((ρ′)2 − ρρ′′)⟨, ⟩M , (7.1.11)

where RicM stands for the Ricci tensor of Mn. Suppose that H2 is positive, −1 ≤
⟨N, ∂t⟩ ≤ 0 and T1(∇u) = φ(∇u), for some 0 < φ ∈ C∞(Σ). If |∇u| ∈ L1

− lnφ(Σ) and

H2

H1

≤ ρ′

ρ
(h), (7.1.12)

then Σn is a slice of Mn+1.
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Proof. From Lemma 5.2.6 and equation (5.2.4) of Lemma 5.2.2 we obtain that

L1(u) = ρ(h)(−RicM(N∗, N∗)− (n− 1)(log ρ)′′(h)|∇h|2)⟨N, ∂t⟩

+b1(ρ
′(h)H1 + ρ(h)H2⟨N, ∂t⟩), (7.1.13)

where N∗ = N − ⟨N, ∂t⟩∂t.

We also note that, since H2 > 0, Lemma 5.2.3 guarantee that, with respect to

N , H1 > 0 and T1 positive definite. So, once |∇h|2 = ρ2(h)⟨N∗, N∗⟩M and we are

assuming −1 ≤ ⟨N, ∂t⟩ ≤ 0, using curvature constraint (7.1.11) into (7.1.13) we obtain

L1(u) ≥ ρ(h)b1H1

(
ρ′

ρ
(h)− H2

H1

)
. (7.1.14)

Hence, from (7.1.3), (7.1.12) and (7.1.14) we get that u is (− lnφ)-subharmonic

function. Thus, since |∇u| ∈ L1
− lnφ(Σ), from Lemma 7.1.1 we have that ∆− lnφu

vanishes identically on Σn, that is, u is constant on Σn. Therefore, Σn is a slice of

M
n+1.

In particular, when Mn+1 is an Einstein manifold, Theorem 7.1.3 reads as follows:

Corollary 7.1.3 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into an Einstein warped product Mn+1
= I ×ρ M

n. Suppose that H1 and H2 sat-
isfy (7.1.12), H2 is positive, −1 ≤ ⟨N, ∂t⟩ ≤ 0 and T1(∇u) = φ(∇u), for some
0 < φ ∈ C∞(Σ). If |∇u| ∈ L1

− lnφ(Σ) and hypothesis (7.1.12) is satisfied, then Σn

is a slice of Mn+1.

Proof. From [42, Corollary 9.107] (see also [45, Section 6]) we have that Mn+1 is an

Einstein manifold with Ricci tensor Ric = c g, for some constant c ∈ R, if and only if

the fiber (Mn, g
M
) has constant Ricci curvature RicM = c and the warping function ρ

satisfies the differential equations

−ρ
′′

ρ
=
c

n
and

c(n− 1)

n
=
c− (n− 1)(ρ′)2

ρ2
. (7.1.15)

Hence, from (7.1.15) we obtain −(n− 1)(log ρ)′′ =
c

ρ2
. Therefore, in this case, we have

that

RicM = (n− 1) sup
I
((ρ′)2 − ρρ′′)⟨ , ⟩M

and, consequently, the result follows by applying Theorem 7.1.14.

When M
n+1 is a pseudo-hyperbolic space, we get the following applications of

Theorem 7.1.3:
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Corollary 7.1.4 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into a pseudo-hyperbolic space Mn+1
= R×etM

n whose fiber Mn has nonnegative Ricci
curvature. Suppose that H1 ≥ H2 > 0, −1 ≤ ⟨N, ∂t⟩ ≤ 0 and T1(∇u) = φ(∇u), for
some 0 < φ ∈ C∞(Σ). If |∇u| ∈ L1

− lnφ(Σ), then Σn is a slice of Mn+1.

Corollary 7.1.5 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into a pseudo-hyperbolic space Mn+1
= R×cosh tM

n whose Ricci tensor of the fiber Mn

is such that RicM ≥ −(n− 1)⟨, ⟩M . Suppose that H2 is positive, −1 ≤ ⟨N, ∂t⟩ ≤ 0 and

T1(∇u) = φ(∇u), for some 0 < φ ∈ C∞(Σ). If |∇u| ∈ L1
− lnφ(Σ) and

H2

H
≤ tanh(h),

then Σn is a slice of Mn+1.

When the ambient is either the Schwarzschild space or Reissner-Nordström space,

Theorem 7.1.3 reads as follows.

Corollary 7.1.6 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into either a Schwarzschild space or a Reissner-Nordström space Mn+1
= (0,+∞)×r(t)

Sn, where r(t) is defined in (5). Suppose that H2 is positive, −1 ≤ ⟨N, ∂t⟩ ≤ 0 and
T1(∇u) = φ(∇u), for some 0 < φ ∈ C∞(Σ). If |∇u| ∈ L1

− lnφ(Σ) and

H2

H1

≤ r′

r
(t), (7.1.16)

then Σn is a slice of Mn+1.

In our next result, we will deal with higher order mean curvatures.

Theorem 7.1.4 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into a Riemannian warped product Mn+1
= I ×ρ M

n whose fiber Mn has constant
sectional curvature κ obeying the curvature constraint

κ ≥ sup
I
((ρ′)2 − ρρ′′). (7.1.17)

Suppose that, for some 2 ≤ r ≤ n − 1, Hr+1 is positive, −1 ≤ ⟨N, ∂t⟩ ≤ 0 and ρ(h)

attains a local maximum at a point q ∈ Σn such that ρ′(h(q)) ̸= 0. If Tr satisfies
Tr(∇u) = φ(∇u), for some 0 < φ ∈ C∞(Σ), |∇u| ∈ L1

− lnφ(Σ) and

Hr+1

Hr

≤ ρ′

ρ
(h), (7.1.18)

then Σn is a slice of Mn+1.
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Proof. Since the fiber Mn has constant sectional curvature κ, from (6.1.1) jointly with

Lemma 5.2.6 and equation (5.2.5) of Lemma 5.2.2 we obtain

Lr(u) = −(n− r)ρ(h)

(
κ

ρ2(h)
+ (log ρ)′′(h)

)
⟨Tr−1∇h,∇h⟩⟨N, ∂t⟩

+br(ρ
′(h)Hr + ρ(h)Hr+1⟨N, ∂t⟩). (7.1.19)

On the other hand, since Hr+1 > 0 and ρ(h) attains a local maximum at some

point q ∈ Σn such that ρ′(h(q)) ̸= 0, from Lemma 5.2.4 and Lemma 5.2.5 the Newton

transformation Tj is positive definite and Hj is positive for all 1 ≤ j ≤ r. Thus, taking

into account that −1 ≤ ⟨N, ∂t⟩ ≤ 0, from (7.1.17) and (7.1.19) we obtain

Lr(u) ≥ ρ(h)brHr

(
ρ′

ρ
(h)− Hr+1

Hr

)
. (7.1.20)

Hence, considering (7.1.18) into (7.1.20) and using (7.1.10), we get that u is (− lnφ)-

subharmonic function. Thus, since |∇u| ∈ L1
− lnφ(Σ), from Lemma 7.1.1 we have that

u is constant on Σn. Therefore, we conclude that Σn is a slice of Mn+1.

Remark 7.1.3 Concerning Theorem 7.1.4, we observe that if we substitute the as-

sumptions (7.1.17) and (7.1.18) by κ ≤ inf
I
((ρ′)2 − ρρ′′) and

Hr+1

Hr

≥ − 1

⟨N, ∂t⟩
ρ′

ρ
(h),

respectively, we will also obtain the rigidity result.

7.1.2 Via p–integrability, for p > 1.

We start quoting a consequence of [111, Theorem 1.1].

Lemma 7.1.2 Let Σ be complete Riemannian manifold and let u ∈ C∞(Σ) be nonneg-
ative. If u is (− lnφ)-subharmonic function, where 0 < φ ∈ C∞(Σ), and u ∈ Lp

− lnφ(Σ),
for some p > 1, then u is constant.

Remark 7.1.4 According to the ideas discussed in [32, Remark 3],
∫
Σ
|u|pφdΣ can be

considered as a sort of total (p, φ)-energy associated to u. In this setting, the hypothesis
u ∈ Lp

− lnφ(Σ) in Lemma 7.1.2 is equivalent to Σn having finite (p, φ)-energy associated
to u.

Now, we are in position to present our next rigidity result.

Theorem 7.1.5 Let ψ : Σn → M
n+1 be a complete spacelike hypersurface immersed

into a GRW spacetime Mn+1
= −I×ρM

n which obeys the curvature constraint (7.1.1).
Suppose that H1 and H2 satisfy (7.1.2), H2 is positive and T1(∇u) = φ(∇u), for some
0 < φ ∈ C∞(Σ). Assume in addition that u is nonnegative and bounded from above.
If u ∈ Lp

− lnφ(Σ), for some p > 1, then Σn is a slice of Mn+1.
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Proof. Since H2 > 0, Lemma 5.2.3 guarantees that H1 > 0 and T1 is positive definite.

Following similar steps of the proof of Theorem 7.1.1, we obtain that L1(u) = φ∆− lnφu.

Thus, from (7.1.1) and (7.1.2) we get that u is (− lnφ)-subharmonic function. Thus,

since u ∈ Lp
− lnφ(Σ) and 0 ≤ u ≤ supΣ u < +∞, from Lemma 7.1.2 we have that u is

constant on Σn. Therefore, we conclude that the height function h is constant, which

means that Σn is a slice of Mn+1.

As application of Theorem 7.1.5, we obtain the following result when the ambient

spacetime is an Einstein manifold:

Corollary 7.1.7 Let ψ : Σn → M
n+1 be a complete spacelike hypersurface immersed

into an Einstein GRW spacetime Mn+1
= −I ×ρ M

n. Suppose that H1 and H2 sat-
isfy (7.1.2), H2 is positive and T1(∇u) = φ(∇u), for some 0 < φ ∈ C∞(Σ). Assume
in addition that u is nonnegative and bounded from above. If u ∈ Lp

− lnφ(Σ), for some
p > 1, then Σn is a slice of Mn+1.

When the ambient space is an steady state-type spacetime, we also obtain the

following application for Theorem 7.1.5:

Corollary 7.1.8 Let Σn →M
n+1 be a complete spacelike hypersurface immersed into

a steady state-type spacetime Mn+1
= −R×etM

n whose fiber Mn has nonpositive Ricci
curvature. Suppose that H1 and H2 satisfy (7.1.2), H2 is positive and T1(∇u) = φ(∇u),
for some 0 < φ ∈ C∞(Σ). Assume in addition that u is nonnegative and bounded from
above. If u ∈ Lp

− lnφ(Σ), for some p > 1, then Σn is a slice of Mn+1.

In the case 2 ≤ r ≤ n− 1, we will consider the ambient space is a RW spacetime.

Theorem 7.1.6 Let ψ : Σn → M
n+1 be a spacelike hypersurface immersed into a

RW spacetime Mn+1
= −I ×ρ M

n whose constant sectional curvature κ of the fiber
Mn satisfies the curvature constraint (7.1.6). Suppose that, for some 2 ≤ r ≤ n − 1,
Hr and Hr+1 satisfy (7.1.7), Hr+1 is positive, ρ(h) attains a local minimum at some
point q ∈ Σn such that ρ′(h(q)) ̸= 0, and that Tr satisfies Tr(∇u) = φ(∇u), for some
0 < φ ∈ C∞(Σ). Assume in addition that u is nonnegative and bounded from above.
If u ∈ Lp

− lnφ(Σ), for some p > 1, then Σn is a slice of Mn+1.

Proof. Since the warping function ρ(h) attains a local minimum at some point q ∈ Σn

such that ρ′(h(q)) ̸= 0 and Hr+1 > 0, Lemma 5.2.4 and Lemma 5.2.5 guarantee that

Tr−1 and Tr are positive definite.
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On the other hand, since the fiber Mn has constant sectional curvature κ, from

Lemma 5.2.6 jointly equation (5.2.5) of Lemma 5.2.2 and (6.1.1) we obtain

Lr(u) = ρ(h)(n− r)

(
κ

ρ2(h)
− (log ρ)′′(h)

)
⟨Tr−1∇h,∇h⟩⟨N, ∂t⟩

−br(ρ′(h)Hr + ρ(h)Hr+1⟨N, ∂t⟩). (7.1.21)

Thus, taking into account curvature constraint (7.1.6) and that N is future-pointing,

from (7.1.21) we obtain

Lr(u) ≥ brHrρ(h)

(
Hr+1

Hr

− ρ′

ρ
(h)

)
. (7.1.22)

Consequently, from (7.1.7) and (7.1.22) we get that Lr(u) = φ∆− lnφu ≥ 0 on Σn, that

is, u is (− lnφ)-subharmonic function. So, since u ∈ Lp
− lnφ(Σ) and 0 ≤ u ≤ supΣ u <

+∞, Lemma 7.1.2 assures that u is constant on Σn. Therefore, we conclude that the

height function h is constant, which means that Σn is a slice of Mn+1.

As a consequence of Theorem 7.1.6 we obtain the following nonexistence result

when the GRW spacetime −I ×ρ M
n is static:

Corollary 7.1.9 Let Mn+1
= −I × Mn be a static RW spacetime whose constant

sectional curvature κ of the fiber Mn is nonpositive. There is no complete spacelike hy-
persurface Σn ↪→M

n+1 such that Hr > 0, Tr is positive definite with Tr(∇h) = φ(∇h),
for all 0 ≤ j ≤ r and some 0 < φ ∈ C∞(Σ), the height function h is nonnegative,
bounded from above with h ∈ Lp

− lnφ(Σ), for some p > 1, and hypothesis (7.1.7) is
satisfied.

Proof. Suppose, by contradiction, that there is such a hypersurface Σn satisfying these

assumptions. So, from Theorem 7.1.6 Σn must be a slice of Mn+1. Thus, since that

ρ(h) ≡ 1, we obtain that Hr = (ρ′(h))
r
= 0 which contradicts the assumption Hr > 0.

Remark 7.1.5 Concerning Theorem 7.1.6, we observe that if u is just nonnegative and
we substitute the hypothesis (7.1.6) by null convergence condition (NCC) (see [104]),

and replace the assumptions (7.1.7) by
Hr+1

Hr

≤ − 1

⟨N, ∂t⟩
ρ′

ρ
(h), respectively, we will

also obtain the rigidity result.

For complete two-sided hypersurfaces immersed in a Riemannian warped product,

we obtain the following:
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Theorem 7.1.7 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into a Riemannian warped product Mn+1
= I ×ρ M

n, which obeys the curvature
constraint (7.1.11). Suppose that H1 and H2 satisfy (7.1.12), H2 is positive, −1 ≤
⟨N, ∂t⟩ ≤ 0 and T1(∇u) = φ(∇u), for some 0 < φ ∈ C∞(Σ). Assume in addition that
u is nonnegative and bounded from above. If u ∈ Lp

− lnφ(Σ), for some p > 1, then Σn

is a slice of Mn+1.

Proof. Following similar steps of the proof of Theorem 7.1.3, we obtain that u is

(− lnφ)-subharmonic function. Thus, since u ∈ Lp
− lnφ(Σ) and 0 ≤ u ≤ supΣ u < +∞,

Lemma 7.1.2 guarantees that u is constant on Σn. Therefore, we conclude that Σn is

a slice of Mn+1.

It follows the applications of Theorem 7.1.7 when M
n+1 is either an Einstein

space or a pseudo-hyperbolic space.

Corollary 7.1.10 Let ψ : Σn →M
n+1 be a complete two-sided hypersurface immersed

into an Einstein warped product Mn+1
= I ×ρ M

n. Suppose that H1 and H2 sat-
isfy (7.1.12), H2 is positive, −1 ≤ ⟨N, ∂t⟩ ≤ 0 and T1(∇u) = φ(∇u), for some
0 < φ ∈ C∞(Σ). Assume in addition that u is nonnegative and bounded from above.
If u ∈ Lp

− lnφ(Σ), for some p > 1, then Σn is a slice of Mn+1.

Corollary 7.1.11 Let ψ : Σn →M
n+1 be a complete two-sided hypersurface immersed

into a pseudo-hyperbolic space Mn+1
= R×etM

n whose fiber Mn has nonnegative Ricci
curvature. Suppose that H1 ≥ H2 > 0, −1 ≤ ⟨N, ∂t⟩ ≤ 0 and T1(∇u) = φ(∇u), for
some 0 < φ ∈ C∞(Σ). Assume in addition that u is nonnegative and bounded from
above. If u ∈ Lp

− lnφ(Σ), for some p > 1, then Σn is a slice of Mn+1.

Corollary 7.1.12 Let ψ : Σn →M
n+1 be a complete two-sided hypersurface immersed

into a pseudo-hyperbolic space M
n+1

= R ×cosh t M
n whose Ricci tensor of the fiber

Mn is such that RicM ≥ −(n − 1)⟨, ⟩M . Suppose that H2 > 0, −1 ≤ ⟨N, ∂t⟩ ≤ 0 and
T1(∇u) = φ(∇u), for some 0 < φ ∈ C∞(Σ). Assume in addition that u is nonnegative

and bounded from above. If u ∈ Lp
− lnφ(Σ), for some p > 1, and

H2

H1

≤ tanh(h), then

Σn is a slice of Mn+1.

When the ambient is the Schwarzschild space or Reissner-Nordström space, we

get the following applications of Theorem 7.1.7:

Corollary 7.1.13 Let ψ : Σn →M
n+1 be a complete two-sided hypersurface immersed

into either a Schwarzschild space or a Reissner-Nordström space Mn+1
= (0,+∞)×r(t)

Sn, where r(t) is defined in (5). Suppose that H1 and H2 satisfy (7.1.16), H2 is positive,
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−1 ≤ ⟨N, ∂t⟩ ≤ 0 and T1(∇u) = φ(∇u), for some 0 < φ ∈ C∞(Σ). Assume in addition
that u is nonnegative and bounded from above. If u ∈ Lp

− lnφ(Σ), for some p > 1, then
Σn is a slice of Mn+1.

Now, we will consider the context of higher order mean curvatures.

Theorem 7.1.8 Let ψ : Σn → M
n+1 be a complete two-sided hypersurface immersed

into a Riemannian warped product Mn+1
= I ×ρ M

n whose fiber Mn has constant
sectional curvature κ obeying the curvature constraint (7.1.17). Suppose that, for some
2 ≤ r ≤ n− 1, Hr and Hr+1 satisfy (7.1.18), Hr+1 is positive, −1 ≤ ⟨N, ∂t⟩ ≤ 0, ρ(h)
attains a local maximum at some point q ∈ Σn such that ρ′(h(q)) ̸= 0 and Tr satisfies
Tr(∇u) = φ(∇u), for some 0 < φ ∈ C∞(Σ). Assume in addition that u is nonnegative
and bounded from above. If u ∈ Lp

− lnφ(Σ), for some p > 1, then Σn is a slice of Mn+1.

Proof. Following similar steps of the proof of Theorem 7.1.4, we obtain that u is

(− lnφ)-subharmonic function. Hence, since u ∈ Lp
− lnφ(Σ) and 0 ≤ u ≤ supΣ u < +∞,

Lemma 7.1.2 gives that u is constant on Σn. Therefore, we conclude that Σn is a slice

of Mn+1.

Remark 7.1.6 Concerning Theorem 7.1.8, we observe that if u is just nonnegative
and we substitute hypothesis (7.1.17) by κ ≤ infI((ρ

′)2 − ρρ′′) and replace assump-

tion (7.1.18) by
Hr+1

Hr

≥ − 1

⟨N, ∂t⟩
ρ′

ρ
(h), we will also obtain the rigidity result.

7.1.3 Via a version of maximum principle at infinity

Let Σn be a (connected) complete noncompact Riemannian manifold, and let

d(·, o) : Σ → [0,+∞) stand for the Riemannian distance of Σn, measured from a fixed

point o ∈ Σn. According to [7], we say that f ∈ C0(Σ) converges to zero at infinity

when it satisfies

lim
d(x,o)→+∞

f(x) = 0.

In this setting, from [7, Theorem 2.2], we have the following lemma:

Lemma 7.1.3 Let (Σn, ⟨, ⟩) be a complete noncompact Riemmanian manifold and let
X ∈ X(Σ) be a smooth vector field on Σn with divX ≥ 0. If there exists a nonnegative,
non-identically vanishing function f ∈ C∞(Σ) such that f converges to zero at infinity
and ⟨∇f,X⟩ ≥ 0, then ⟨∇f,X⟩ ≡ 0 on Σn.
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Returning to the context of a Riemannian immersion ψ : Σn →M
n+1 in a warped

product Mn+1
= ϵI ×ρ M

n, we say that Σn is asymptotic to a slice Σt∗ := {t∗} ×Mn

at infinity when the function f := h− t∗ converges to zero at infinity.

Keeping in mind this previous digression, we present our next rigidity result.

Theorem 7.1.9 Let ψ : Σn →M
n+1 be a complete noncompact spacelike hypersurface

immersed into a GRW spacetime Mn+1
= −I ×ρ M

n. Suppose that Σn lies above a
slice Σt∗ := {t∗}×Mn and is asymptotic to it at infinity. If H1 is positive and satisfies

H1 ≥
ρ′

ρ
(h), (7.1.23)

then Σn is the slice Σt∗.

Proof. Since H1 > 0 and N is future-pointing, from (6.1.1) and Lemma 5.2.6 we have

∆u = −n(ρ′(h) +H1ρ(h)⟨N, ∂t⟩) ≥ nρ(h)

(
H1 −

ρ′

ρ
(h)

)
. (7.1.24)

Thus, from inequalities (7.1.23) and (7.1.24) we obtain that u is a subharmonic

function. Moreover, since Σn lies above the slice Σt∗ and is asymptotic to it at infinity,

the function f := h−t∗ is nonnegative converging to zero at infinity. Hence, considering

the smooth vector field X = ∇u, from Lemma 7.1.3 we have ⟨∇f,∇u⟩ = ρ⟨∇h,∇h⟩ ≡

0. Therefore, we conclude that the height function h is constant and, since h − t∗

converges to zero at infinity, Σn must be the slice Σt∗ .

When Mn+1 is a steady state-type spacetime, Theorem 7.1.9 reads as follows.

Corollary 7.1.14 Let Σn ↪→ M
n+1 be a complete noncompact spacelike hypersurface

immersed into a steady state-type spacetime M
n+1

= −R ×et M
n such that Σn lies

above a slice Σt∗ := {t∗} ×Mn and is asymptotic to it at infinity. If H1 ≥ 1 on Σn,
then Σn is the slice Σt∗.

For r = 1, we will suppose that the GRW spacetime obeys curvature con-

straint (7.1.1).

Theorem 7.1.10 Let ψ : Σn → M
n+1 be a complete noncompact spacelike hypersur-

face immersed into a GRW spacetime Mn+1
= −I ×ρ M

n which obeys the curvature
constraint (7.1.1). Suppose that Σn lies above a slice Σt∗ := {t∗} ×Mn and is asymp-
totic to it at infinity. If H1 and H2 satisfy (7.1.2) with H2 positive, then Σn is the slice
Σt∗.
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Proof. Considering the smooth vector field X := T1(∇u) ∈ X(Σ), from (6.1.1), jointly

with Lemma 5.2.6 and equation (5.2.4) of Lemma 5.2.2, we obtain that

divX = L1(u) = ρ(h)((n− 1)(RicM(N∗, N∗)− (log f)′′(h)|∇h|2)⟨N, ∂t⟩

−b1(ρ′(h)H + ρ(h)H2⟨N, ∂t⟩), (7.1.25)

where N∗ = N + ⟨N, ∂t⟩∂t. But, from (5.2.3) we have that |∇h|2 = ρ2(h)⟨N∗, N∗⟩M .

So, using curvature constraint (7.1.1) and taking into account that H2 > 0 and N is

future-pointing, from (7.1.25) we get

L1(u) ≥ b1H1ρ(h)

(
H2

H
− ρ′

ρ
(h)

)
. (7.1.26)

By Cauchy-Schwarz inequality we have H2
1 ≥ H2 > 0, and H does not vanish on

Σn. Thus, we may assume that H1 > 0 and from (7.1.2) and (7.1.26) we obtain that u

is L1-subharmonic function, that is, divX = div (T1(∇u) on Σn.

On the other hand, since Σn lies above the slice Σt∗ and is asymptotic to it

at infinity, the function f := h − t∗ is nonnegative converging to zero at the infinity.

Moreover, using again that H2 > 0, Lemma 5.2.3 guarantees that T1 is positive definite.

Then,

⟨∇f,X⟩ = ⟨∇h, T1(∇u)⟩ = g′(h)⟨∇h, T1(∇h)⟩ = ρ(h)⟨∇h, T1(∇h)⟩ ≥ 0.

Hence, from Lemma 7.1.3 we have ⟨∇f,X⟩ ≡ 0. Consequently, the height func-

tion h is constant and, therefore, Σn must be the slice Σt∗ .

When the ambient spacetime is an Einstein manifold, Theorem 7.1.10 gives the

following consequence.

Corollary 7.1.15 Let ψ : Σn → M
n+1 be a complete noncompact spacelike hyper-

surface immersed into a Einstein GRW spacetime Mn+1
= −I ×ρ M

n such that Σn

lies above a slice Σt∗ := {t∗} ×Mn and is asymptotic to it at infinity. If H1 and H2

satisfy (7.1.2) with H2 positive, then Σn is the slice Σt∗.

Considering once more a steady state-type spacetime, from Theorem 7.1.10 we

obtain the next corollary.

Corollary 7.1.16 Let Σn ↪→ M
n+1 be a complete noncompact spacelike hypersurface

immersed into a steady state-type spacetime Mn+1
= −R ×et M

n whose fiber Mn has
nonpositive Ricci curvature. Suppose that Σn lies above a slice Σt∗ := {t∗} ×Mn and
is asymptotic to it at infinity. If H1 and H2 satisfy (7.1.2) with H2 positive, then Σn

is the slice Σt∗.
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For 2 ≤ r ≤ n − 1, we will consider that Mn+1 is a Robertson-Walker (RW)

spacetime.

Theorem 7.1.11 Let ψ : Σn → M
n+1 be a complete noncompact spacelike hypersur-

face immersed into a RW spacetime Mn+1
= −I ×ρ M

n whose Riemannian fiber Mn

has constant sectional curvature κ satisfying the curvature constraint (7.1.6). Suppose
that Σn lies above a slice Σt∗ := {t∗}×Mn and is asymptotic to it at infinity, and that
ρ(h) attains a local minimum at some point q ∈ Σn such that ρ′(h(q)) ̸= 0. If, for some
2 ≤ r ≤ n− 1, Hr and Hr+1 satisfy (7.1.7) with Hr+1 positive, then Σn is the slice Σt∗.

Proof. Considering the smooth vector field X := Tr(∇u) ∈ X(Σ), since Mn has

constant sectional curvature κ, from Lemma 5.2.6 jointly (6.1.1) and equation (5.2.5)

of Lemma 5.2.2 we obtain

divX = Lr(u) = ρ(h)(n− r)

(
κ

ρ2(h)
− (log ρ)′′(h)

)
⟨Tr−1∇h,∇h⟩⟨N, ∂t⟩

−br(ρ′(h)Hr + ρ(h)Hr+1⟨N, ∂t⟩). (7.1.27)

Since ρ(h) attains a local minimum at some point q ∈ Σ such that ρ′(h(q)) ̸= 0

and Hr+1 > 0, Lemma 5.2.4 guarantees that Tr−1 and Tr are positive definite. Thus,

since N is future-pointing, from (7.1.27) we obtain

Lr(u) ≥ brHrρ(h)

(
Hr+1

Hr

− ρ′

ρ
(h)

)
. (7.1.28)

SinceHr > 0, from inequalities (7.1.7) and (7.1.28) we get that u is Lr-subharmonic

function and, consequently, divX ≥ 0.

On the other hand, since Σn lies above the slice Σt∗ and is asymptotic to it at

infinity, the function f := h−t∗ is nonnegative converging to zero at the infinity. Thus,

⟨∇f,X⟩ = ⟨∇h, Tr(∇u)⟩ = g′(h)⟨∇h, Tr(∇h)⟩ = ρ(h)⟨∇h, Tr(∇h)⟩ ≥ 0.

Hence, from Lemma 7.1.3 we have ⟨∇f,X⟩ ≡ 0. Consequently, ∇h ≡ 0 and,

therefore, Σn must be the slice Σt∗ .

When M
n+1

= −I × Mn is a static RW spacetime, we obtain the following

nonexistence result.

Corollary 7.1.17 Let Mn+1
= −I×Mn be a static RW spacetime whose Riemannian

fiber Mn has nonpositive constant sectional curvature. There is no complete noncom-
pact spacelike hypersurface Σn ↪→M

n+1 lying above a slice Σt∗ := {t∗}×Mn and being
asymptotic to it at infinity, and such that Hr, Hr+1 are positive, for some 2 ≤ r ≤ n−1,
and Tj is positive definite for 0 ≤ j ≤ r.
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Now, we will consider also the case when the RW spacetime has Riemannian fiber

with constant sectional curvature obeying a curvature constraint which corresponds to

the so-called strong null convergence condition (SNCC).

Theorem 7.1.12 Let ψ : Σn → M
n+1 be a complete noncompact spacelike hyper-

surface immersed into a RW spacetime Mn+1
= −I ×ρ M

n whose constant sectional
curvature κ of the Riemannian fiber Mn satisfies the SNCC

κ ≥ sup
I
(ρρ′′ − (ρ′)2). (7.1.29)

Suppose that Σn lies below a slice Σt∗ := {t∗} ×Mn and is asymptotic to it at infinity.
If Tj is positive definite for all 0 ≤ j ≤ r, for some 2 ≤ r ≤ n− 1, Hr is positive and

Hr+1

Hr

≤ − 1

⟨N, ∂t⟩
ρ′

ρ
(h), (7.1.30)

then Σn is the slice of Σt∗.

Proof. Since the sectional curvature of the Riemannian fiberMn is constant, Hr is pos-

itive, Tr−1 is positive definite and N is future-pointing, taking into account that (7.1.29)

is satisfied, from (7.1.27) we obtain

Lr(u) ≤ −brHrρ(h)⟨N, ∂t⟩
(
Hr+1

Hr

+
1

⟨N, ∂t⟩
ρ′

ρ
(h)

)
. (7.1.31)

Thus, considering inequality (7.1.30) into (7.1.31) we get that u is Lr-superharmonic

function.

On the other hand, since Σn lies below the slice Σt∗ and is asymptotic to it at

infinity, the function f := t∗ − h is nonnegative converging to zero at the infinity.

Moreover, since Tr is positive definite we obtain

⟨∇f, Tr(∇u)⟩ = −⟨∇h, Tr(∇u)⟩ = −g′(h)⟨∇h, Tr(∇h)⟩ = −ρ(h)⟨∇h, Tr(∇h)⟩ ≤ 0.

Therefore, choosing the smooth vector field X := −Tr(∇u), from Lemma 7.1.3

we have ⟨∇f,X⟩ ≡ 0. Hence, ∇h ≡ 0 and, consequently, Σn must be the slice Σt∗ .

When the ambient space is a Riemannian warped product, we obtain the following

result.

Theorem 7.1.13 Let ψ : Σn → M
n+1 be a complete noncompact two-sided hyper-

surface immersed into a Riemannian warped product Mn+1
= I ×ρ M

n. Suppose
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that Σn lies above a slice Σt∗ := {t∗} × Mn and is asymptotic to it at infinity. If
−1 ≤ ⟨N, ∂t⟩ ≤ 0 and H1 is positive satisfying

H1 ≤
ρ′

ρ
(h), (7.1.32)

then Σn is the slice Σt∗.

Proof. Since H1 > 0 and −1 ≤ ⟨N, ∂t⟩ ≤ 0, from Lemma 5.2.6 jointly with (7.1.32)

we obtain that

∆u = n(ρ′(h) + ρ(h)H1⟨N, ∂t⟩) ≥ nρ(h)

(
ρ′

ρ
(h)−H1

)
. (7.1.33)

Thus, using inequality (7.1.32) in (7.1.33), we obtain that u is subharmonic func-

tion. Moreover, since Σn lies above the slice Σt∗ and is asymptotic to it at infinity, the

function f := h− t∗ is nonnegative converging to zero at infinity. Hence, Lemma 7.1.3

gives ⟨∇f,∇u⟩ = ρ(h)⟨∇h,∇h⟩ ≡ 0. Consequently, |∇h| ≡ 0 and, therefore, Σn must

be the slice Σt∗ .

When the ambient is a pseudo-hyperbolic space we have the following applications

of Theorem 7.1.13.

Corollary 7.1.18 Let ψ : Σn →M
n+1 be a complete noncompact two-sided hypersur-

face immersed into a pseudo-hyperbolic space Mn+1
= R×et M

n. Suppose that Σn lies
above a slice Σt∗ := {t∗} ×Mn and is asymptotic to it at infinity. If −1 ≤ ⟨N, ∂t⟩ ≤ 0

and 0 < H ≤ 1, then Σn is the slice Σt∗.

Corollary 7.1.19 Let ψ : Σn →M
n+1 be a complete noncompact two-sided hypersur-

face immersed into a pseudo-hyperbolic space Mn+1
= R×cosh tM

n. Suppose that Σn lies
above a slice Σt∗ := {t∗} ×Mn and is asymptotic to it at infinity. If −1 ≤ ⟨N, ∂t⟩ ≤ 0

and 0 < H ≤ tanh(h), then Σn is the slice Σt∗.

In our next result, we will suppose that the ambient space obeys a suitable cur-

vature constraint.

Theorem 7.1.14 Let ψ : Σn → M
n+1 be a complete noncompact two-sided hypersur-

face immersed into a Riemannian warped product Mn+1
= I ×ρ M

n which obeys the
curvature constraint (7.1.11). Suppose that Σn lies above a slice Σt∗ := {t∗} × Mn

and is asymptotic to it at infinity. If H1 and H2 satisfy (7.1.12) with H2 positive and
−1 ≤ ⟨N, ∂t⟩ ≤ 0, then Σn is the slice Σt∗.
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Proof. From (6.1.1), Lemma 5.2.6 and equation (5.2.4) of Lemma 5.2.2 we obtain that

L1(u) = ρ(h)(−RicM(N∗, N∗)− (n− 1)(log ρ)′′(h)|∇h|2)⟨N, ∂t⟩

+b1(ρ
′(h)H + ρ(h)H2⟨N, ∂t⟩), (7.1.34)

where N∗ = N − ⟨N, ∂t⟩∂t. Taking into account that |∇h|2 = ρ2(h)⟨N∗, N∗⟩M , −1 ≤

⟨N, ∂t⟩ ≤ 0, H2 > 0 and using curvature constraint (7.1.11), we obtain

L1(u) ≥ b1H1ρ(h)

(
ρ′

ρ
(h)− H2

H1

)
.

So, since H1 > 0, from hypothesis (7.1.12) we conclude that u is a L1-subharmonic

function.

On the other hand, since Σn lies above the slice Σt∗ and is asymptotic to it at

infinity, the function f := h − t∗ is nonnegative converging to zero at the infinity.

Moreover, since H2 > 0, Lemma 5.2.3 gives that T1 is positive definite. Thus, choosing

the smooth vector field X := T1(∇u) ∈ X(Σ), we get

⟨∇f,X⟩ = ⟨∇h, T1(∇u)⟩ = g′(h)⟨∇h, T1(∇h)⟩ = ρ(h)⟨∇h, T1(∇h)⟩ ≥ 0.

Hence, from Lemma 7.1.3 we have ⟨∇f,X⟩ ≡ 0. Consequently, |∇h| ≡ 0 and,

therefore, Σn must be the slice Σt∗ .

As application of Theorem 7.1.14, we can consider the case when ambient is an

Einstein manifold to obtain the following rigidity result:

Corollary 7.1.20 Let ψ : Σn →M
n+1 be a complete noncompact two-sided hypersur-

face immersed into an Einstein warped product Mn+1
= I ×ρ M

n. Suppose that Σn

lies above a slice Σt∗ := {t∗} ×Mn and is asymptotic to it at infinity. If H1 and H2

satisfy (7.1.12) with H2 positive and −1 ≤ ⟨N, ∂t⟩ ≤ 0, then Σn is the slice Σt∗.

When the ambient is a pseudo-hyperbolic space, Theorem 7.1.14 leads us to the

following applications:

Corollary 7.1.21 Let ψ : Σn →M
n+1 be a complete noncompact two-sided hypersur-

face immersed into a pseudo-hyperbolic space Mn+1
= R ×et M

n whose fiber Mn has
nonnegative Ricci curvature. Suppose that Σn lies above a slice Σt∗ := {t∗} ×Mn and
is asymptotic to it at infinity. If H1 ≥ H2 with H2 positive and −1 ≤ ⟨N, ∂t⟩ ≤ 0, then
Σn is the slice Σt∗.
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Corollary 7.1.22 Let ψ : Σn →M
n+1 be a complete noncompact two-sided hypersur-

face immersed into a pseudo-hyperbolic space Mn+1
= R×cosh tM

n whose Ricci tensor
of the fiber Mn is such that RicM ≥ −(n− 1)⟨ , ⟩M . Suppose that Σn lies above a slice

Σt∗ := {t∗}×Mn and is asymptotic to it at infinity. If H1 and H2 satisfy
H2

H1

≤ tanh(h)

with H2 positive and −1 ≤ ⟨N, ∂t⟩ ≤ 0, then Σn is the slice Σt∗.

In our next results, we deal with higher order mean curvatures.

Theorem 7.1.15 Let ψ : Σn → M
n+1 be a complete noncompact two-sided hypersur-

face immersed into a Riemannian warped product Mn+1
= I ×ρ M

n whose fiber Mn

has constant sectional curvature κ obeying curvature constraint (7.1.17). Suppose that
Σn lies above a slice Σt∗ := {t∗} × Mn and is asymptotic to it at infinity. Assume
in addition that Σn has an elliptic point. If, for some 2 ≤ r ≤ n − 1, Hr and Hr+1

satisfy (7.1.18) with Hr+1 positive and −1 ≤ ⟨N, ∂t⟩ ≤ 0, then Σn is the slice Σt∗.

Proof. Since the fiber Mn has constant sectional curvature κ, from (6.1.1) jointly with

Lemma 5.2.6 and equation (5.2.5) of Lemma 5.2.2 we obtain

Lr(u) = −(n− r)ρ(h)

(
κ

ρ2(h)
+ (log ρ)′′(h)

)
⟨Tr−1∇h,∇h⟩⟨N, ∂t⟩

+br(ρ
′(h)Hr + ρ(h)Hr+1⟨N, ∂t⟩). (7.1.35)

By the assumption of the existence of an elliptic point in Σn and since Hr+1 > 0,

Lemma 5.2.4 guarantees that Tr−1 and Tr are positive definite and Hr > 0. Thus, since

−1 ≤ ⟨N, ∂t⟩ ≤ 0, from (7.1.17) and (7.1.35) we get

Lr(u) ≥ brρ(h)Hr

(
ρ′

ρ
(h)− Hr+1

Hr

)
. (7.1.36)

Hence, considering (7.1.18) into (7.1.36) we conclude that u is a Lr-subharmonic

function. On the other hand, since Σn lies above the slice Σt∗ and is asymptotic to it

at infinity, the function f := h − t∗ is nonnegative converging to zero at the infinity.

Moreover, since Tr is positive definite, choosing the smooth vector field X := Tr(∇u)

we get

⟨∇f,X⟩ = ⟨∇h, Tr(∇u)⟩ = g′(h)⟨∇h, Tr(∇h)⟩ = ρ(h)⟨∇h, Tr(∇h)⟩ ≥ 0.

Thus, from Lemma 7.1.3 we have ⟨∇f,X⟩ ≡ 0. Consequently, |∇h| ≡ 0 and,

therefore, Σn must be the slice Σt∗ .

Related to the higher order mean curvatures, we also establish the following result:
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Theorem 7.1.16 Let ψ : Σn → M
n+1 be a complete noncompact two-sided hypersur-

face immersed into a Riemannian warped product Mn+1
= I ×ρ M

n whose fiber Mn

has constant sectional curvature κ satisfying

κ ≤ inf
I
((ρ′)2 − ρρ′′). (7.1.37)

Suppose that Σn lies below a slice Σt∗ := {t∗} ×Mn and is asymptotic to it at infinity.
If −1 ≤ ⟨N, ∂t⟩ < 0 and, for some 2 ≤ r ≤ n− 1, Hr is positive satisfying

Hr+1

Hr

≥ − 1

⟨N, ∂t⟩
ρ′

ρ
(h), (7.1.38)

and Tj is positive definite for all 0 ≤ j ≤ r, then Σn is the slice Σt∗.

Proof. Since we are assuming that Tj is positive definite for 1 ≤ j ≤ r, taking into

account curvature constraint (7.1.37) and that −1 ≤ ⟨N, ∂t⟩ < 0, from (7.1.35) we

obtain

Lr(u) ≤ brρ(h)Hr⟨N, ∂t⟩
(
Hr+1

Hr

+
1

⟨N, ∂t⟩
ρ′

ρ
(h)

)
.

Hence, sinceHr > 0, from hypothesis (7.1.38) we conclude that u is a Lr-superharmonic

function on Σn.

On the other hand, since Σn lies below the slice Σt∗ and is asymptotic to it at

infinity, the function f := t∗ − h is nonnegative converging to zero at the infinity.

Moreover, choosing the smooth vector field X := −Tr(∇u), we get

⟨∇f,X⟩ = ⟨∇h, Tr(∇u)⟩ = g′(h)⟨∇h, Tr(∇h)⟩ = ρ(h)⟨∇h, Tr (∇h)⟩ ≥ 0.

Hence, from Lemma 7.1.3 we have ⟨∇f,X⟩ ≡ 0. Consequently, |∇h| ≡ 0 and,

therefore, Σn must be the slice Σt∗ .

7.1.4 Via polynomial volume growth

Let Σn be a Riemannian manifold, and let us denote by B(p, r) the geodesic ball

centered at p ∈ Σn and with radius r. Given a polynomial function σ : (0,+∞) →

(0,+∞), we say that Σn has polynomial volume growth like σ if there exists p ∈ Σn

such that

vol(B(p, r)) = O(σ(r)),

as r → +∞, where vol denotes the canonical Riemannian volume of Σn. According

to [8], if p, q ∈ Σn are at a distance d from each other, we can verify that

vol(B(p, r))

σ(r)
≥ vol(B(q, r − d))

σ(r − d)
· σ(r − d)

σ(r)
.
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Consequently, the choice of p in the notion of volume growth is immaterial, and we

will just say that Σn has polynomial volume growth. In this setting, from [8, Theorem

2.1] we have the following

Lemma 7.1.4 Let Σn be a connected, oriented, complete noncompact Riemannian
manifold and let X ∈ X(Σ) be a vector field on Σn, with |X| ≤ c < +∞, for some
positive constant c ∈ R. Assume in addition that f ∈ C∞(Σn) is such that ⟨∇f,X⟩ ≥ 0

and divX ≥ af on Σn, for some positive constant a ∈ R. If Σn has polynomial volume
growth, then f ≤ 0 on Σn.

In what follows, we will apply Lemma 7.1.4 to the vector field X = Tr(∇Θ̂) for

0 ≤ r ≤ n− 1, where Θ̂ = ρ(h)⟨N, ∂t⟩ ∈ C∞(Σ).

Theorem 7.1.17 Let Mn+1
= −I ×ρ M

n be a GRW spacetime obeying the null con-
vergence condition

RicM ≥ (n− 1) sup
I
(ρρ′′ − (ρ′)2)⟨, ⟩M , (7.1.39)

where RicM stands the Ricci tensor of fiber Mn. There is not complete spacelike hy-
persurface Σn immersed into M

n+1 with polynomial volume growth such that H1, H2

are constant with H2 > 0, ρ′(h) nonpositive and |∇Θ̂| bounded on Σn.

Proof. Suppose, by contradiction, the existence of such a spacelike hypersurface.

Thus, from (6.1.1) and [9, Corollary 8.2] we obtain

∆Θ̂ = nρ(h)⟨∇h,∇H1⟩+ ρ′(h)nH1

+Θ̂
(
RicM(N∗, N∗)− (n− 1)(log ρ)′′(h)||∇h||2

)
+Θ̂n

(
nH2

1 − (n− 1)H2

)
.

Since H2 > 0, Lemma 5.2.3 guarantees that, with respect to the future pointing Gauss

map N , H1 > 0 on Σn. Moreover, since H1 and H2 are constant,

n2H2 − n(n− 1)H2 = |A|2 (7.1.40)

is also constant. Consequently, since ρ′(h) is nonpositive, from (7.1.39) we obtain

∆Θ̂ ≤ Θ̂n2(H2
1 −H2),

with H2
1 ≥ H2 > 0 by the Newton inequalities. Hence,

∆(−Θ̂) ≥ −Θ̂a,
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where a = n2(H2
1 −H2) ∈ R.

When Σn is compact, Divergence Theorem assures the nonexistence of it. In

the case that Σn is noncompact, since |∇Θ̂| is bounded on it, jointly with (7.1.40) we

conclude that there exists a constant C > 0 such that |∇Θ̂| ≤ C on Σn. We also

have that ⟨∇Θ̂,∇Θ̂⟩ ≥ 0 and, taking into account that we are also supposing that Σn

has polynomial volume growth, Lemma 7.1.4 implies −Θ̂ ≤ 0 on Σn. Therefore, since

ρ > 0, from (5.2.7) we arrive at a contradiction.

In the particular case that the ambient space is a static GRW spacetime, Corol-

lary 7.1.17 reads as follows.

Corollary 7.1.23 Let Mn+1
= −I×Mn be a GRW spacetime whose Riemannian fiber

Mn has nonnegative Ricci curvature. There is not complete spacelike hypersurface Σn

immersed into Mn+1 with polynomial volume growth, such that H1 and H2 are constant
with H2 > 0, and |∇Θ̂| is bounded on Σn.

Remark 7.1.7 Related to the previous nonexistence results, we point out that if Σn

is contained in a slab and |∇h| is bounded on it, then ρ(h) is bounded and, since
∇Θ̂ = ρ(h)A∇h and taking into account the constancy of H1 and H2, we guarantee
the boundedness of |∇Θ̂|.

When r = 1, we will suppose again that the constant sectional curvature κ of the

Riemannian fiber Mn of the RW spacetime −I×ρM
n obeys the strong null convergence

condition (SNCC)

κ ≥ sup
I
(ρρ′′ − (ρ′)2). (7.1.41)

Theorem 7.1.18 Let Mn+1
= −I ×ρM

n be a RW spacetime whose Riemannian fiber
Mn has constant sectional curvature κ satisfying the strong null convergence condition
(7.1.41). There is not complete spacelike hypersurface Σn immersed into M

n+1 with
polynomial volume growth, such that H2 and H3 are positive with H2 constant, ρ′(h) is
nonpositive and |T1(∇Θ̂)| is bounded on Σn.

Proof. Suppose, by contradiction, the existence of such a spacelike hypersurface.

So, we consider the smooth vector field X = T1∇Θ̂. Since Mn has constant sectional

curvature κ, from (6.1.1) jointly with equation (5.2.5) of Lemma 5.2.2 and [9, Corollary

8.4], we obtain

L1Θ̂ = (n− 1)

(
κ

ρ2(h)
− (log ρ)′′(h)

)
⟨∇h,∇Θ̂⟩⟨N, ∂t⟩
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+

(
n

2

)
ρ(h)⟨∇h,∇H2⟩+ ρ′(h)b1H2

+Θ̂

(
κ

ρ2(h)
− (log ρ)′′(h)

)(
||∇h||2b1H1 − ⟨T1∇h,∇h⟩

)
+Θ̂

(
n

2

)
(nH1H2 − (n− 2)H3) .

But, since ∇Θ̂ = ρA∇h, from (5.1.5) we get

L1Θ̂ = Θ̂(n− 2)

(
κ

ρ2(h)
− (log ρ)′′(h)

)
⟨T1∇h,∇h⟩+ ρ′(h)b1H2

+Θ̂

(
n

2

)
(nH1H2 − nH3 + 2H3) .

Hence, since H2 > 0, Lemma 5.2.3 guarantees that, with respect to the future

pointing Gauss map N , H1 > 0 and T1 positive definite. Thus, from (7.1.41) jointly

with our assumption over ρ′(h), we obtain

L1Θ̂ ≤ Θ̂

(
n

2

)
(n(H1H2 −H3) + 2H3) .

Since H2
2 ≥ H1H3 (see, for instance, [81, Theorems 51 and 144]]), from Newton

inequalities we have

H1H2 −H3 ≥
H2

H1

(H2
1 −H2) ≥ 0.

Consequently,

L1(−Θ̂) ≥ −Θ̂

(
n

2

)
(n(H1H2 −H3) + 2H3) .

Hence, since H3 > 0, there exists a positive constant a ∈ R such that

L1(−Θ̂) ≥ −Θ̂a.

Note that, if Σn is compact, Divergence Theorem gives the nonexistence of Σn. In the

case that Σn is complete noncompact, using again that T1 is positive definite, we have

that ⟨∇Θ̂, T1∇Θ̂⟩ ≥ 0. Then, since we are also supposing that |T1∇Θ̂| bounded on Σn

and that Σn has polynomial volume growth, Lemma 7.1.4 assures that −Θ̂ ≤ 0 on Σn.

Therefore, we reach a contradiction.

Similarly to Corollary 7.1.23 we have the following nonexistence result when the

ambient space is a static GRW spacetime.
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Corollary 7.1.24 Let Mn+1
= −I ×Mn be a RW spacetime whose Riemannian fiber

Mn has nonnegative sectional curvature κ. There is not complete spacelike hypersurface
Σn immersed into M

n+1 with polynomial volume growth, such that H2 and H3 are
positive with H2 constant, and |T1(∇Θ)| is bounded on Σn.

Next, we consider the case the r-th Newton Transformation Tr is positive semi-

definite, for some 2 ≤ r ≤ n− 1.

Theorem 7.1.19 Let Mn+1
= −I ×ρM

n be a RW spacetime whose Riemannian fiber
Mn has constant sectional curvature κ satisfying the strong null convergence condition
(7.1.41). There is not complete spacelike hypersurface Σn immersed into M

n+1 with
polynomial volume growth, such that Hr+1 is constant, for some 2 ≤ r ≤ n− 1, Hs is
positive, for r ≤ s ≤ r + 2, ρ′(h) is nonpositive, the r-th Newton transformation Tr is
positive semi-definite and |Tr(∇Θ̂)| is bounded on Σn.

Proof. Suppose, by contradiction, the existence of such a spacelike hypersurface. We

consider the smooth vector fieldX = Tr∇Θ̂. SinceMn has constant sectional curvature

κ, from (6.1.1) jointly with equation (5.2.5) of Lemma 5.2.2 and [9, Corollary 8.4] we

obtain

LrΘ̂ = (n− r)

(
κ

ρ2(h)
− (log ρ)′′(h)

)
⟨Tr−1∇h,∇Θ̂⟩⟨N, ∂t⟩

+

(
n

r + 1

)
ρ(h)⟨∇h,∇Hr+1⟩+ ρ′(h)brHr+1

+Θ̂

(
κ

ρ2(h)
− (log ρ)′′(h)

)(
||∇h||2brHr − ⟨Tr∇h,∇h⟩

)
+Θ̂

(
n

r + 1

)
(nH1Hr+1 − (n− r − 1)Hr+2) . (7.1.42)

Thus, since ∇Θ̂ = ρA∇h, from (5.1.5) and (7.1.42) we get

LrΘ̂ = Θ̂(n− r − 1)

(
κ

ρ2(h)
− (log ρ)′′(h)

)
⟨Tr∇h,∇h⟩+ ρ′(h)brHr+1

+Θ̂

(
n

r + 1

)
(nH1Hr+1 − (n− r − 1)Hr+2) . (7.1.43)

Hence, since Tr positive semi-definite, from (7.1.41), (7.1.43) and our assumptions

on Hr and ρ′(h), we deduce
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Lr(Θ̂) ≤ Θ̂

(
n

r + 1

)
(nH1Hr+1 − (n− r − 1)Hr+2) .

Consequently,

Lr(−Θ̂) ≥ −Θ̂

(
n

r + 1

)
(nH1Hr+1 − (n− r − 1)Hr+2) .

So, since Hr+2 > 0, from Newton inequality H1Hr+1 − Hr+2 ≥ 0 there exists a

positive constant a ∈ R such that

Lr(−Θ̂) ≥ −Θ̂a

If Σ is compact, then Divergence Theorem guarantees the nonexistence of such

a spacelike hypersurface. When Σn is complete noncompact, using again that Tr is

positive semi-definite, we have that ⟨∇Θ̂, Tr∇Θ̂⟩ ≥ 0. Hence, since we are also sup-

posing that Σn has polynomial volume growth, Lemma 7.1.4 assures that −Θ̂ ≤ 0 on

Σn. Therefore, we arrive at a contradiction.

It is not difficult to verify that, from [42, Corollary 9.107] and equation (7.1.43),

Theorem 7.1.19 also holds for GRW spacetimes with constant sectional curvature. More

precisely,

Corollary 7.1.25 Let Mn+1
= −I×ρM

n be a GRW spacetime with constant sectional
curvature. There is not complete spacelike hypersurface Σn immersed into Mn+1 with
polynomial volume growth, such that Hr+1 is constant, for some 2 ≤ r ≤ n− 1, Hs is
positive, for r ≤ s ≤ r + 2, ρ′(h) is nonpositive, the r-th Newton transformation Tr is
positive semi-definite and |Tr(∇Θ̂)| is bounded on Σn.

When the ambient space is a static RW spacetime, we have the following result.

Corollary 7.1.26 Let Mn+1
= −I ×Mn be a static RW spacetime whose Rieman-

nian fiber Mn has nonnegative sectional curvature. There is not complete spacelike
hypersurface Σn immersed into M

n+1 with polynomial volume growth such that Hr+1

constant, for some 2 ≤ r ≤ n − 1, Hs is positive, for r ≤ s ≤ r + 2, the r-th Newton
transformation Tr is positive semi-definite and |Tr(∇Θ)| is bounded on Σn.

Next, we will consider the case that the ambient space is a Riemannian warped

product.
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Theorem 7.1.20 Let ψ : Σn → M
n+1 be a complete noncompact two-sided hypersur-

face immersed into a Riemannian warped product Mn+1
= I ×ρ M

n which obeys cur-
vature constraint (7.1.11). Assume that the Weingarten operator A is bounded and Σn

has polynomial volume growth. If H1 is constant, ρ ≤ 1, ρ′(h)H1 ≥ 0 and Θ̂ = ⟨N,K⟩
satisfies

Θ̂ ≥ 1− ρ′nH1

|A|2 + 1
, (7.1.44)

then Σn is totally geodesic.

Proof. We define the function ξ = 1 − Θ̂. Since ρ ≤ 1, we have ξ ≥ 0. We consider

the vector field X = AK⊤ ∈ X(Σ), where K⊤ stands for the orthogonal projection of

K onto X(Σ). From [107, Corollary 7.43], we obtain

div(X) = ⟨N,K⟩
(
RicM(N∗, N∗) + (n− 1)(log ρ)′′(1− ⟨N, ∂t⟩2 + |A|2

)
−K⊤(nH1) + ρ′nH1. (7.1.45)

Using that K ∈ X(M) is a non-vanishing conformal closed field with conformal

factor ρ′ ∈ C∞(M), is not difficult verify that the gradient of Θ̂ is given by ∇Θ̂ =

−AK⊤. Thus, since A is self-adjoint we get

⟨∇ξ,X⟩ = −⟨∇Θ̂, X⟩ = ⟨AK⊤, AK⊤⟩ = |AK⊤|2 ≥ 0.

Moreover, since H1 is constant, from (7.1.45) we obtain

div(X) = ⟨N,K⟩
(
RicM(N∗, N∗) + (n− 1)(log ρ)′′(1− ⟨N, ∂t⟩2 + |A|2

)
+ ρ′nH1.

Thus, from (5.2.3) and constraint (7.1.44) we obtain

div(X) ≥ ρ′nH1 + ⟨N,K⟩|A|2, (7.1.46)

and it thus follows from assumption (7.1.44) that div(X) ≥ ξ on Σn.

Since we are assuming that A and ρ are bounded, we have that X = AK⊤ is

also bounded on Σn. Moreover, since Σn has polynomial volume growth, Lemma 7.1.4

guarantees that ξ ≤ 0 on Σn. Hence, ξ ≡ 0, that is, Θ̂ ≡ 1. Therefore, if ρ′H1 ≥ 0

then from of assumption (7.1.44) and inequality (7.1.46) we conclude that Σn must be

totally geodesic in Mn+1.

For 2 ≤ r ≤ n, assuming that the fiber of the ambient space has constant curva-

ture, we obtain the following nonexistence result.
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Theorem 7.1.21 Let Mn+1
= I ×ρ M

n be a Riemannian warped product whose fiber
Mn has constant sectional curvature κ satisfying

κ ≥ sup
I

(
(ρ′)2 − ρρ′′

)
. (7.1.47)

There is not a complete noncompact hypersurface ψ : Σn → M
n+1 with polynomial

volume growth immersed into Mn+1
= I ×ρ M

n, such that the Weingarten operator A
with respect to unit normal vector field N is bounded and Tr−1 is positive semi-definite,
for some 2 ≤ r ≤ n− 1, Hr is constant, Hj is positive, for all 1 ≤ j ≤ r + 1, and the
warping function ρ ≤ 1 and the support function Θ̂ = ⟨N,K⟩ satisfy

Θ̂ ≥ 1− ρ′rSr

tr(A2Tr−1) + 1
. (7.1.48)

Proof. Suppose, by contradiction, the existence of such a hypersurface immersed into

M
n+1. Thus, we define the function ξ := 1− Θ̂. Since ρ ≤ 1, we have ξ ≥ 0. Consider

the vector field X = ATr−1K
⊤ ∈ X(Σ), where K⊤ stands for the orthogonal projection

ofK onto the tangent bundle of Σn. Using thatK ∈ X(M) is a non-vanishing conformal

closed field with conformal factor ρ′ ∈ C∞(M), we show that the gradient of Θ̂ is given

by ∇Θ̂ = −ρA∇h. Since Hr is constant, from [18, Corollary 26 and Lemma 28] we get

Lr−1(−Θ̂) = Θ̂(n− r)

(
κ

ρ2(h)
+ (log ρ)′′(h)

)
⟨Tr−1∇h,∇h⟩+ ρ′(h)br−1Hr

+Θ̂tr(A2Tr−1). (7.1.49)

Consequently, Since Tr−1 is positive semi-definite, from (7.1.49)

Lr−1(−Θ̂) ≥ ρ′(h)rSr + Θ̂tr(A2Tr−1). (7.1.50)

Thus, from (7.1.48) and (7.1.50) we obtain

Lr−1(−Θ̂) ≥ 1− Θ̂ = ξ.

Hence, div(X) ≥ ξ on Σn. Since we are assuming that |A| and ρ are bounded on Σn,

we have that X is also is bounded on Σn. Moreover, since A is self-adjoint we get

⟨∇ξ,X⟩ = −⟨∇Θ̂, X⟩ = ⟨AK⊤, ATr−1K
⊤⟩ = ⟨K⊤, A2Tr−1K

⊤⟩ ≥ 0.

Then, since Σn has polynomial volume growth, [8, Theorem 2.1] guarantees that

ξ ≤ 0 on Σn. Therefore, ξ ≡ 0, that is, Θ̂ = 1. Hence, from assumption (7.1.48) and

inequality (7.1.50) we obtain

ρ′(h)rSr = −tr(A2Tr−1),
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that is, ρ′(h) ≤ −Hr+1

Hr

. Thus, from assumptions under Hr+1 and ρ′ on Σn, we arrive

at a contradiction.

In particular, when the ambient space has constant sectional curvature, we can

state the following nonexistence result.

Corollary 7.1.27 Let Mn+1
= I ×ρ M

n a Riemannian warped product of constant
sectional curvature. There is not a complete noncompact hypersurface with polynomial
volume growth immersed into Mn+1

= I ×ρ M
n, such that the Weingarten operator A

with respect to unit normal vector field N is bounded, Tr−1 is positive semi-definite, for
some 2 ≤ r ≤ n − 1, Hr is constant, Hj is positive, for all 1 ≤ j ≤ r + 1, and the
warping function ρ ≤ 1 and the support function Θ̂ = ⟨N,K⟩ satisfy (7.1.48).

7.2 Applications to entire graphs

In what follows, for simplification of notation, we will just identify

Tr

((
π

M
|Σ(w)

)−1

∗ (Dw)
)
=
(
φ ◦ π

M
|Σ(w)

)
(Dw)

by

Tr(Dw) = φDw.

In this setting, we can establish nonparametric versions for the results of Sec-

tion 7.1. For instance, from Theorem 7.1.2 we obtain the following:

Corollary 7.2.1 Let Mn+1
= −I ×ρ M

n be a RW spacetime whose Riemannian fiber
Mn has constant sectional curvature κ obeying the curvature constraint (7.1.6) and
let Σ(w) be an entire graph determined by a bounded function w ∈ C∞(M). Suppose
that, for some 2 ≤ r ≤ n − 1, Hr+1 is positive and ρ(w) attains a local minimum
at a point q ∈ Σ(w) such that ρ′(w(q)) ̸= 0. If Tr satisfies Tr(Dw) = φDw, for
some 0 < φ ∈ C∞(Σ(w)), |Dw|M ∈ L1

− lnφ(M), |Dw|2M ≤ αρ2(w), for some constant
0 < α < 1, and

Hr+1

Hr

≥ ρ′

ρ
(w), (7.2.1)

then w ≡ t0 for some t0 ∈ I.

Proof. As in the beginning of the proof of Corollary 5.1 in [10], the assumption that

|Dw|2M ≤ αρ2(w), for some constant 0 < α < 1, guarantees that Σ(w) is a complete

spacelike hypersurface. Moreover, it follows from (5.3.1) that dΣ(w) =
√
|G|dM ,
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where dM and dΣ(w) stand for the Riemannian volume elements of (Mn, ⟨ , ⟩M) and

(Σ(w), ⟨ , ⟩), respectively, and G = det(gij) with

gij = ⟨ei, ej⟩ = −ei(w)ej(w) + ρ2(w)δij. (7.2.2)

Here, {e1, · · · , en} denotes a local orthonormal frame with respect to the metric ⟨ , ⟩M .

It is not difficult to verify that

|G| = ρ2n−2(w)(ρ2(w)− |Dw|2Mn). (7.2.3)

Indeed, in the points where Dw does not vanish, it is enough to take e1 =
Dw

|Dw|Mn

and (7.2.3) can be easily deduced using (7.2.2). Consequently, from (7.2.3) we get

dΣ(w) = ρn−1(w)
√
ρ2(w)− |Dw|2MndM. (7.2.4)

It follows from (5.3.7) that

|Dw|dΣ(w) = ρn−1(w)|Dw|MndM.

Therefore, since |Dw|M ∈ L1
− lnφ(M), from condition (7.2.1) we can apply Theo-

rem 7.1.17 to conclude the result.

When the ambient space Mn+1
= I ×ρ M

n is a Riemannian warped product, all

results in Subsection 7.1.1 can be also rewritten for the context of entire graphs. In

particular, we quote the following nonparametric versions of Theorem 7.1.4.

Corollary 7.2.2 Let Mn+1
= I ×ρ M

n be a Riemannian warped product whose fiber
Mn has constant sectional curvature κ obeying the curvature constrain (7.1.17) and let
Σ(w) be an entire graph determined by a bounded function w ∈ C∞(M). Suppose that,
for some 2 ≤ r ≤ n − 1, Hr+1 is positive, −1 ≤ ⟨N, ∂t⟩ ≤ 0 and ρ(w) attains a local
maximum at a point q ∈ Σ(w) such that ρ′(w(q)) ̸= 0. If Tr satisfies Tr(Dw) = φ(Dw),
for some 0 < φ ∈ C∞(Σ(w)), |Dw| ∈ L1

− lnφ(M), |Dw|2M ≤ αρ2(w), for some constant
0 < α < 1, and

Hr+1

Hr

≤ ρ′

ρ
(w),

then w ≡ t0 for some t0 ∈ I.

Taking into account equation (7.2.4), if w ∈ C∞(M) is bounded and Mn has

polynomial volume growth, we conclude that Σ(w) also has polynomial volume growth.

Thus, we can also restate Theorem 7.1.17 in the context of entire graphs.
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Corollary 7.2.3 Let Mn+1
= −I×ρM

n be a GRW spacetime obeying the NCC (7.1.39)
and with Riemannian fiber Mn having polynomial volume growth. There is not entire
graph Σ(w) determined by a bounded function w ∈ C∞(M) such that H1, H2 are con-
stants with H2 positive, ρ′(w) is nonpositive, |Dw|2M ≤ αρ2(w), for some constant
0 < α < 1, and |∇Θ̂| is bounded on Σ(w).

From (5.3.2), it is not difficult to see that we can also reformulate Theorem 7.1.19

in the context of entire graphs as follows:

Corollary 7.2.4 Let Mn+1
= −I ×ρ M

n be a RW spacetime whose Riemannian fiber
Mn has polynomial volume growth and constant sectional curvature κ satisfying the
SNCC (7.1.41). There is not entire graph Σ(w) determined by a bounded function
w ∈ C∞(M) such that Hr+1 constant, for some 2 ≤ r ≤ n − 1, Hs is positive for all
r ≤ s ≤ r + 2, ρ′(w) is nonpositive, |Dw|2M ≤ αρ2(w), for some constant 0 < α < 1,
and Tr is positive semi-definite with |Tr(∇Θ̂)| bounded on Σ(w).

When the ambient space Mn+1
= I ×ρ M

n is a Riemannian warped product,

using (5.3.3) and denoting by D2w the Hessian of w ∈ C∞(M) with respect to the

metric ⟨ , ⟩M , we obtain nonparametric versions of Theorems 7.1.20 and 7.1.21.

Corollary 7.2.5 Let Mn+1
= I ×ρ M

n be a Riemannian warped product whose fiber
Mn has polynomial volume growth and which obeys the curvature constraint (7.1.11).
Let Σ(w) be entire graph determined by a bounded function w ∈ C∞(M) such that
|Dw|2M ≤ αρ2(w), for some constant 0 < α < 1, and D2w is bounded. If H1 is
constant, ρ(w) ≤ 1, ρ′(w)H1 ≥ 0 and Θ̂ = ⟨N,K⟩ satisfies (7.1.44), then Σ(w) is
totally geodesic.

Corollary 7.2.6 Let Mn+1
= I×ρM

n be a Riemannian warped product whose fiber Mn

has polynomial volume growth and constant sectional curvature κ satisfying (7.1.47).
There is not an entire graph Σ(w) determined by a bounded function w ∈ C∞(M) such
that Tr−1 is positive semi-definite, for some 2 ≤ r ≤ n−1, ρ(w) ≤ 1, |Dw|2M ≤ αρ2(w),
for some constant 0 < α < 1, D2w is bounded and Θ̂ = ⟨N,K⟩ satisfies (7.1.48).
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