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Abstract

This thesis studies the geometry of complete Riemannian submanifolds immersed
in certain semi-Riemannian spaces via parabolicity criteria related to modified Cheng-
Yau’s operators and to a linearized differential operator which can be regarded as
a natural extension of the standard Laplacian, via generalization of a Liouville-type
result and versions of maximum principle. In this regard, via parabolicity criteria
and from appropriate Simons type formulas concerning spacelike submanifolds im-
mersed with parallel normalized mean curvature vector in Einstein Manifolds we prove
new characterization results. In the case of submanifolds of semi-Riemannian warped
products, under standard convergence conditions and appropriated constraints on the
higher order mean curvatures, we also obtain uniqueness and nonexistence results via
parabolicity and p-integrability criteria, for p > 1, generalization of a Liouville-type
result, a version of maximum principle at infinity for vector fields and a maximum prin-
ciple related to polynomial volume growth. Applications are also presented to cases
in which the ambient space is either an Einstein manifold, the Steady State models,
Schwarzschild and Reeissner-Nordstrom spaces, and a particular investigation of entire

graphs constructed over the fiber of the ambient space.

Keywords: Riemannian Submanifolds, Semi-Riemannian Spaces, Parabolicity Crite-

ria, Maximum Principles.
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Resumo

Esta tese estuda a geometria de subvariedades Riemannianas completas imersas
em certos espagos semi-Riemannianos via critérios de parabolicidade relacionados ao
operador de Cheng-Yau modificado e a um operador diferencial linearizado que pode
ser considerado como uma extensao natural do Laplaciano padrao, via generalizacao de
um resultado tipo-Liouville e versoes do principio maximo. Neste sentido, através de
critérios de parabolicidade e de féormulas apropriadas do tipo Simons relativas a sub-
variedades imersas com vetor de curvatura média normalizado paralelo em variedades
Einstein, provamos novos resultados de caracterizacao. No caso de subvariedades de
produtos warped semi-Riemannianos, sob condigoes de convergéncia e restrigoes apro-
priadas nas curvaturas médias de ordem superior, também obtemos resultados de uni-
cidade e inexisténcia via critérios de parabolicidade e de p-integrabilidade, para p > 1,
generalizacao de um resultado do tipo-Liouville, uma versao do principio maximo no
infinito para campos vetoriais e um principio maximo relacionado ao crescimento de vol-
ume polinomial. Também sao apresentadas aplicagoes aos casos em que o espaco ambi-
ente ¢ uma variedade de Einstein, os modelos de Steady-Statede espagos Schwarzschild
e Reeissner-Nordstrom, e uma investigagao particular de gréficos inteiros construidos

sobre a fibra do espago ambiente.

Palavras-chave: Subvariedades Riemannianas, Espagos Semi-Riemannianos, Critérios

de Parabolicidade, Principios do Maximo.
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Introduction

This Thesis is divided into two parts where we propose to study n-dimensional
complete Riemannian submanifolds immersed in semi-Riemannian spaces from the fol-
lowing themes: characterizations of complete linear Weingarten Riemannian submani-
folds immersed with parallel normalized mean curvature vector in (n + p)-dimensional
Einstein manifolds and rigidity and nonexistence of Riemannian immersions in semi-

Riemannian warped products.

Part I: Parabolicity of complete linear Weingarten sub-

manifolds in semi-Riemannian manifolds

Initially, we established new characterization results related to n-dimensional
complete linear Weingarten Riemannian submanifolds M™ with parallel normalized
mean curvature vector immersed in (n + p)-dimensional Riemannian space form Q77
of constant sectional curvature ¢ € {—1,0,1}, in the (n + p)-dimensional de Sitter
space Sg*p and in an arbitrary Einstein manifold 5;“’ of index p > 1 via parabolicity
criteria with respect to a modified Cheng-Yau’s operator L defined on M"™. This criteria
are consequence of a general result concerning divergent type operators due to Pigola,
Rigoli and Setti [111, Theorem 2.6] (see also [21, Lemma 6.9 |).

Following Chen [55], we say that a manifold M™ to have parallel normalized mean
curvature vector if the mean curvature vector H of M is nonzero and the corresponding
normalized mean curvature vector field % is parallel as a section of the normal bun-
dle. We also recall that a submanifold is said to be linear Weingarten when its mean
curvature function H and its normalized scalar curvature R satisfy a linear relation of
the type

R=aH +0,



for some constants a, b € R. Manifolds satisfying this relation were introduced by Wein-
gartein [124, 125] in the study of surfaces in Euclidean space R3. Linear Weingarten
manifolds can be regarded as a natural generalization of manifolds with constant scalar
curvature.

In the case of constant scalar curvature, Cheng [58] showed that the totally
umbilical sphere S™(r), totally geodesic Euclidean space R™ and generalized cylinder
R x S""!(r) are the only n-dimensional (n > 2) complete submanifolds with con-
stant scalar curvature and parallel normalized mean curvature vector in the Euclidean
space R™"?  which satisfy a suitable constrain on the norm of the second fundamental
form. Later on, Guo and Li |79] generalized previous results of [90] showing that the
only n-dimensional compact (without boundary) submanifolds in the unit sphere S"*?
with constant scalar curvature, parallel normalized mean curvature vector and whose
second fundamental form satisfies some appropriate boundedness are the totally um-
bilical sphere S”(r) and the Clifford torus S'(v/1 — 72) x S*~1(r). Afterwards, de Lima,
Aratjo, dos Santos and Velasquez [39] obtained an Omori-type maximum principle for
the Cheng-Yau’s operator and applied it to establish an extension of the results of
[58, 79| for n-dimensional complete submanifolds immersed with parallel normalized
mean curvature vector in QP with positive constant normalized scalar curvature.

Next, these same authors [73] used the Hopf’s strong maximum principle and a
maximum principle at infinity due to Caminha [48] to obtain versions of the results
of [39, 58, 79] for the context of n-dimensional complete linear Weingarten submanifolds
immersed with parallel normalized mean curvature vector in Q7*?. In [36], Aratjo and
de Lima studied compact linear Weingarten surfaces immersed with flat normal bundle
and parallel normalized mean curvature vector in Q**?. In this setting, they got a
version of the classical Liebmann’s rigidity theorem showing that such a surface with
nonnegative Gaussian curvature must be isometric to a totally umbilical round sphere.
In [37], they obtained another version of this Liebmann’s result when the ambient
space is the hyperbolic space (see also [38] for other characterizations concerning linear
Weingarten submanifolds in the hyperbolic space).

Motivated by the works described above, in Chapter 2 we will study the L-
parabolicity of a complete linear Weingarten submanifold M™ immersed with parallel

normalized mean curvature vector in Q? to obtain L-parabolicity criterion(see Propo-



sition A) and we apply it to prove that M™ must be either totally umbilical or isometric
to a hyperbolic cylinder H' (—v/1+r2) x S"7!(r), when ¢ = —1, a circular cylinder
R x S"7'(r), when ¢ = 0, and a Clifford torus, when ¢ = 1 for a certain radius r (see
Theorems 2.4.1 and 2.4.2).

When the ambient is de Sitter space Si™', Goddard [30] conjectured that every
complete spacelike hypersurface with constant mean curvature H constant must be
totally umbilical. Ramanathan in [112] proved that complete spacelike hypersurfaces
with constant mean curvature 0 < H <1 in S:f (1) are totally umbilical, but for H > 1
this not occurs, proving that Goddard’s conjecture is false, as can be seen from an
example due to Dajczer-Nomizu in [65]. In [3], Akutagawa showed that Goddard’s
conjecture is true provided that n = 2 and H> < 1 or n > 3 and H? < 4(2—;1). In the
case M™ compact. Montiel [100] also proved that this conjecture is true and exhibited
examples of complete spacelike hypersurfaces in S"™(1) with constant H satisfying
H? > % and being not umbilical, the so-called hyperbolic cylinders, which are
isometric to a Riemannian product of the type S"7!(c;) x H!(cy), where ¢; > 0 and
co < 0 satisfy é + é = 1. Moreover, the characterization theses hyperbolic cylinders as
the only complete non-compact spacelike hypersurfaces in S (1) with constant mean
curvature H? = % and having more than one topological connected component in
the complement of balls with radii increasing to infinity, was also obtained by Montiel
in [101].

Liu [92] showed that, when b = 0 the totally umbilical round spheres are the only
n-dimensional compact (without boundary) linear Weingarten spacelike submanifolds
of S;“Lp with nonnegative sectional curvature and flat normal bundle. Later on, Yang
and Hou [127] applied the Omori-Yau’s generalized maximum principle to show that
a linear Weingarten spacelike submanifold in S;L“’ , with @ > 0, b < 1, having paral-
lel normalized mean curvature vector and such that the squared norm of its second
fundamental form satisfies a suitable boundedness, must be either totally umbilical
or isometric to a certain hyperbolic cylinder. Liu and Zhang [94] used the classical
strong maximum principle of Hopf to obtain other classifications for complete linear
Weingarten spacelike submanifolds in S;‘er having parallel normalized mean curvature.

More recently, Araijo, de Lima, dos Santos and Velasquez [41] obtained other

characterization results related to complete linear Weingarten spacelike submanifolds



with parallel normalized mean curvature vector in Sgﬂ’ under suitable constraints on
the values of the mean curvature and of the norm of the traceless part of the second
fundamental form, now through an extension of Hopf’s maximum principle for complete
Riemannian manifolds.

Proceeding, in Chapter 3, where the ambient space is the de Sitter space S;“rp,
we also establish a suitable parabolicity criterion related to a Cheng-Yau’s modified
operator L (see Proposition C) and we use it to revisit the results of [41, 94, 127]
obtaining new characterizations concerning n-dimensional complete linear Weingarten
spacelike submanifolds immersed with parallel normalized mean curvature vector in
Sp*P (see Theorems 3.3.1, 3.3.2, 3.3.3, 3.3.4).

It should be noted that the study of de Sitter space S7*" is of interest from both
a geometric and a physical point of view, since it is a vacuum solution of the Einstein

field equations with positive cosmological constant, that is,
, 1
Ric — §Rg +Ag =0,

where ¢ is the metric, Ric is the Ricci tensor and A is the cosmological constant

In relativity theory, S is called de Sitter spacetime. (see, for instance, [82, Section
5.2], [49, Section 4.1] and [118, Section 2| for more details concerning the geometry of
s4).

Finally, in Chapter 4 we also deal with complete linear Weingarten spacelike sub-
manifolds M"™ immersed with parallel normalized mean curvature vector in an Einstein
manifold £'*? of index p, now supposing that such submanifolds have a flat normal
bundle, that is, its the normal curvature tensor vanishes identically.

In [68], H. de Lima and J. de Lima obtained characterization results for linear
Weingarten spacelike hypersurfaces immersed in a locally symmetric Einstein manifold
Et! of index 1 considering restrictions on the square length of the second fundamental
form and some appropriate curvature constraints of the ambient space which were
inspired by the works of Nishikawa [106] and Choi et al. [61, 62]. Later, Aratjo, de Lima,
dos Santos and Velasquez [40] extended these results for the context of an n-dimensional

spacelike submanifold M"™ immersed with parallel normalized mean curvature vector in

4



a locally symmetric semi-Riemannian manifold Lg*” of index p. For this, they assumed
the existence of real constants c1, ¢ and c3 such that the sectional curvature K and

curvature tensor R of Lg*p satisfy the following conditions:

— C1
K =— 1
() =&, )
for any u € TM and n € TM*;
K(u,v) > ¢, (2)
for any u,v € TM;
— c
K(n.€) = -, (3)
p
for n,& € TM+; and
(R(&,u)n, u) =0, (4)

for u € TM and &, € TM~* with (£,7) = 0. We note that, when p = 1, conditions (3)
and (4) are automatically satisfied. Afterwards, also assuming this set of constraints,
Aratjo, Barboza, de Lima and Velasquez [35] applied the techniques developed by Hou
and Yang in [127] and by Liu and Zhang in [95] to get sufficient conditions guaranteeing
that such a spacelike submanifold M" is either totally umbilical or isometric to an
isoparametric hypersurface of a totally geodesic submanifold L™ —» LZJFP, with two
distinct principal curvatures, one of which is simple.

In [93], Liu and Xie used the Omori-Yau’s generalized maximum principle to ob-
tain classification results concerning complete spacelike hypersurface M"™ with constant
mean curvature in &' without asking that the ambient space is locally symmetric
but also assuming the curvature constraints (1) and (2).

As in Chapters 2 and 3, in the Chapter 4 we establish a L-parabolicity criterion
(see Proposition D) and we apply it to obtain sufficient conditions which guarantee
that complete linear Weingarten spacelike submanifolds immersed with parallel nor-
malized mean curvature vector and flat normal bundle in an Einstein manifold 8;}*? of
index p obeying curvature constraints (1), (2), (3) and (4), must be an isoparametric
hypersurface of £ with two distinct principal curvatures one of which is simple (see

Theorem 4.3.1 and Corollary 4.3.1).



It is worth to point out that the works [40, 35| contain similar results under the
assumption that the ambient space is locally symmetric. But, according to Example
1.1 of [93], the semi-Riemannian product space R} x M", where M™ is a Ricci flat
Riemannian manifold, is an Einstein manifold of index p. Moreover, supposing that
the sectional curvature Kj; of M™ is such that Ky (u,v) > ¢y for any u,v € TM
and some constant ¢, and considering the spacelike submanifold given by the inclusion
L M™ — Rb x M", we can verify that the curvature constraints (1), (2), (3) and (4)
are satisfied. However, if M" is not locally symmetric, then R x M™ is not a locally

symmetric manifold.

Part II: Rigidity and nonexistence of complete hyper-

surfaces in a semi-Riemannian warped product

Let """ be a semi-Riemannian warped product of the type M = el x § M",
where M™ is an n-dimensional connected oriented Riemannian manifold, / C R is an
open interval, f : I — R is a positive smooth function and ¢ = +1, being ¢ = 1 when
M is a Riemannian space and € = —1 when M is a Lorentzian space. In the
Lorentzian case, M s called a generalized Robertson-Walker (GRW) spacetime.

This thematic has been treated by several authors along the last years, which
have used a considerable amount of analytical tools in their investigations. For in-
stance, Alias and Dajczer [12] studied complete surfaces immersed in a warped prod-
uct R x, M? such that the fiber M? is a complete surface with nonnegative Gaussian
curvature. Under certain restrictions on the constant mean curvature, they showed
nonexistence results of surfaces contained between two leaves M, , M, with t; < ¢y of
the foliation M, = {t} x M? as well as results in which these immersions are leaves
of the trivial totally umbilical foliation. These same authors in [13] generalized the re-
sults of Montiel [102] for compact hypersurfaces of constant mean curvature immersed
into R x, M™, treating the case of complete hypersurfaces via Omori-Yau maximum
principle.

Romero, Rubio and Salamanca [114] presented results for complete noncompact
maximal hypersurfaces in spatially parabolic GRW spacetimes, that is, the fiber is a

complete noncompact Riemannian manifold such that the only superharmonic func-



tions on it which are bounded from below are the constants. In [115], under curvature
assumptions on the Riemannian fiber of the ambient space and some conditions on
the warping function, these authors also studied complete maximal hypersurfaces in
spatially open GRW spacetimes via different maximum principles. Assuming that the
ambient spacetime satisfies the Null Convergence Condition (NCC), which means that
the Ricci curvature is nonnegative along null directions, Pelegrin and Rigoli [109] also
obtained uniqueness and nonexistence results for complete spacelike hypersurfaces of
constant mean curvature immersed in a GRW spacetime.

Alias, Impera and Rigoli [17, 18] investigated compact and complete noncompact
hypersurfaces with constant higher order mean curvatures H,, 2 < r < n, immersed
into semi-Riemannian warped products M via a generalized version of the Omori-
Yau maximum principle for a divergence-type operator L, associated to each globally
defined Newton transformation 7,, 0 < r < n, which can be regarded as a natural
extension of the standard Laplacian operator.

Motivated by the work of Alias and Dajczer [13|, Garcia-Martinez, Impera and
Rigoli [77] proved height estimates for compact hypersurfaces of constant positive
higher order mean curvature in Riemannian warped product spaces with boundary
contained in a slice and applied such estimates in the study of properly immersed com-
plete hypersurfaces in pseudo-hyperbolic spaces R X+ M™ or R X oy M™ contained
in certain half-spaces. Next, under appropriated constraints on the higher order mean
curvatures, Aquino, Aratdjo and de Lima [31] established new sufficient conditions to
guarantee the rigidity of hypersurfaces immersed in el x M"™ via generalized version of
the Omori-Yau maximum principle.

Furthermore, many works have approached problems in the context of entire
graphs in semi-Riemannian warped products. For instance, Caminha and de Lima [47]
obtained necessary conditions for the existence of complete vertical graphs with con-
stant mean curvature in the hyperbolic and steady state spaces €R x.«R™. For this, they
deduced suitable formulas for the Laplacian of the height function and of a support-like
function naturally attached to the graph. Later on, Alias, Colares and de Lima [11]
considered restrictions on H, to obtain uniqueness results for entire graphs in a warped
product satisfying a standard curvature condition. As an application, they obtained

rigidity results for minimal and radial graphs over the Euclidean sphere. See also the



works [32, 63, 67| for similar rigidity results.

In the Chapter 6, under appropriate differential inequalities involving higher or-
der mean curvatures and assuming that the ambient space obeys suitable curvature
constraints, we establish new rigidity and nonexistence results concerning complete
spacelike hypersurfaces in a GRW spacetime and, afterwards, we treat the case of com-
plete two-sided hypersurfaces in a Riemannian warped product. Applications to the
cases that the ambient space is either an Einstein manifold, a steady state type space-
time or a pseudo-hyperbolic space are given, and a particular investigation of entire
graphs construct over the fiber of the ambient space is also made. Our approach is
based on a parabolicity criterion related to a linearized differential operator which is a
divergence-type operator and can be regarded as a natural extension of the standard
Laplacian. This criterion also is obtained as a application of [111, Theorem 2.6|.

In Chapter 7, our strategy is to study Riemannian immersions in semi-Riemannian
warped products M = el x » M™ by applying suitable maximum principles for the
operator L,. Firstly, we will consider criteria of integrability from extension of a result
due to Yau in [128, Proposition 2.1] and of generalization of a Liouville-type result due
to Pigola, Rigoli and Setti [111, Theorem 1.1| to obtain uniqueness results via integra-
bility on the norm of the gradient of a arbitrary primitive of the warping function p.
Furthermore, motivated by recent works of Alias, Caminha and Nascimento in |7, 8], we
also obtain rigidity and nonexistence results from versions of a maximum principle for
vector fields [7, Theorem 2.2] and a maximum principle related to polynomial volume
growth [8, Theorem 2.1]. In both works, these authors obtained Bernstein-type results
for connected, oriented, complete noncompact Riemannian hypersurfaces with constant
mean curvature immersed into a semi-Riemannian warped product. In particular, we
obtain nonexistence results of complete spacelike hypersurfaces with polynomial vol-
ume growth in GRW spacetimes from appropriate constraints on the hyperbolic angle
between the unit timelike vectors N of the hypersurface and 0;, that is, the standard
unit vector field tangent to I.

We also present applications considering that ambient space is either an Einstein
manifold, a steady state-type spacetime or a pseudo-hyperbolic space. Besides, we
obtain results in the Schwarzschild and Reissner-Nordstrom spaces. We recall that,

given a mass parameter m > 0, the Schwarzschild space is defined as being the product



M= (ro(m), +00) x S™ furnished with the metric g = Vi,(r)"'dr? + r2gs., where

gsn is the standard metric of S™,

Va(r) =1—2mr!™"
stands for its potential function and

ro(m) = (2m)Y/ (=1

is the unique positive root of V;,(r) = 0. Its importance lies in the fact that the manifold
Rx 3" equipped with the Lorentzian static metric —V;,(r)dt? + g is a solution of the
Einstein field equation in vacuum with zero cosmological constant (see, for instance, [56,
Section 4.7] and [107, Chapter 13| for more details concerning Schwarzschild geometry).
As it was observed in [64, Example 1.3, M can be reduced in the form
(0, +00) x, S™ with metric (5.1.1) via the following change of variables:
t:/r B Lty =r(t), e (0, +00). (5)
ro(m) / V()
is the largest positive zero of Vi (7).
Moreover, given an electric charge q € R with |q| < m, the Reissner-Nordstrom

space is defined as being the product M = (ro(m, q), +00) x S" endowed with the

metric § = Vi q(r)'dr? + r2gs», where gs» is the standard metric of S",
Vig(r) =1 =2mr! ™" 4 g?r?2"

stands for its potential function and

q2 1/(n—1)
740(111’ q) - ( )

m —y/m? — g?

is the largest positive zero of V;, 4(7). The importance of this model lies in the fact that
the manifold R x M equipped with the Lorentzian static metric —Vi 4(r)dt* + g
is a charged black-hole solution of the Einstein field equation in vacuum with zero
cosmological constant (see, for instance, [56, Remark 4.5] and [123, Section 12.3]). As
the Schwarzschild space, M can be reduced in the form (0,400) x, S™ with metric
(5.1.1) via the same change of variables as in (5), just considering V},  instead of V.
At this point, it is worth to point out that Brendle [44] proved an analogue of

Alexandrov’s theorem for a class of warped product manifolds and obtained rigidity
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results for compact, embedded hypersurfaces of nonzero constant mean curvature in
these spaces. Inspired by this work, Neto [105] also obtained rigidity results replacing
the assumption of embeddedness by stability.

Finally, we also establish nonparametric versions for our results in the context of
entire graphs constructed over the fiber of the ambient space (see Section 7.2).

This Thesis work was based on the following articles: previously published |26,
27, 28, 25], recently have been accepted for publication [29] and the submitted [30].
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Part 1

Parabolicity of complete linear
Weingarten submanifolds in

semi-Riemannian manifolds
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Chapter 1

Preliminaries 1

In this chapter, we deal with some necessary background and definitions for de-
veloping the study the geometry of submanifolds complete linear Weingarten immersed

in semi-Riemannian space forms

1.1 Semi-Riemannian space forms

Let QP n >2ep > 1, be a complete Riemannian manifold, connected (n+ p)-
dimensional of constant sectional curvature ¢ € {—1,0,1}. We recall that the Q"*?
is called Riemannian space form and, according to the sign of ¢, we can determine
that universal covering manifold of Q7*? (with the covering metric) is isometric to
Hyperbolic space H""?(¢c = —1), Euclidean sphere S"™?(¢ = 1) and Euclidean space
R"™P(c = 0)(see Theorem 4.1 of [74]).

We also consider the (n + p + 1)-dimensional real vector space R"™P! endowed
with an inner product of index p given by

n+p+1

szyz+ Z x;Yj,

Jj=p+1

denoted by Rgﬂ’“, where © = (21, %2, ..., Tnipt1) Is the natural coordinate. The semi-
Riemannian manifold Rg*p“ is called an n + p + 1-dimensional semi-FEuclidean space
and it has identically zero sectional curvature ¢. We define the (n + p)-dimensional de

Sitter space S*P as the following hyperquadric of R} +7+!

n+p+1
SptP(c) = {(Il,xg, ey Xpgpr1) € Rz+p+1 : Zx + Z r2 = —} (c>0),

i=p+1

12



The induced metric (,) makes S;*P(c) a complete semi-Riemannian manifold, con-
nected (n + p)-dimensional of index p with constant sectional curvature ¢ equal to 1,
and in this case, this space is abbreviated by S;*p.

Similarly, the n + p-dimensional anti-de Sitter space of index p is defined by

P n+p+1
1
HY*P(c) = {(ml,xg, e Tpapr) € R (g 1) = — fo + Z r® = _E} (c<0),
=1 i=p+1
and when we consider ¢ = —1, this space is abbreviated by ]HIZ“” .

These three spaces RP*7+! SP*7(¢) and H*P(c) are complete and of constant

curvature ¢ and are called semi-Riemannian space forms.

1.2 Parabolicity and modified Cheng-Yau’s operator

The main purpose of this first part is to study the geometry of complete Riemna-
nian submanifolds M™ immersed in a (n + p)—dimensional semi-Riemannian manifold
Mnﬂ], having parallel normalized mean curvature vector field h, that is, the mean cur-
vature function H is positive and the corresponding normalized mean curvature vector
field % is parallel as a section of the normal bundle.

We recall that a Riemannian manifold M" is said to be parabolic (with respect to
the Laplacian operator) if the constant functions are the only subharmonic functions

on M™ which are bounded from above; that is, for a smooth function f: M™ — R
Af>0 and f< f*<4oo implies f = constant.

It is well known that R is parabolic, since there is no non-constant negative
harmonic function defined in Euclidean space. When a complete, connected, noncom-
pact Riemannian surface of nonnegative Gaussian curvature, a classical result of Huber
in [84] guarantee the parabolicity of such surface. For examples, consider R? and S! x R
(see also [60] and [78]). Other examples are obtained from the parabolicity criterion
due to Alias and Caminha in [6] when consider a product manifold M; x M,, where
M is a connected, compact, oriented Riemannian manifold and M is a parabolic
Riemannian manifold.

Extending this previous concept for a class of second-order differential of operators

on M™ which is substantially more general than the Laplacian operator, we consider

13



the following operator defined by
L(f) = tr(P o V%)

for every f € C*(M), where P : TM — TM is a symmetric operator on M" and
V2f stands for the self-adjoint linear operator metrically equivalent to the Hessian of
f. In this setting, a Riemannian manifold M™ is said to be L-parabolic or parabolic
with respect to the operator L if the constant functions are the only smooth functions
f+ M™ — R which are bounded from above and satisfying £f > 0. In other words,
for a smooth function f : M™ — R such that f* = sup,, f,

Lf>0 and f < f"<4oo implies f = constant.

It is well-known that the Laplacian operator A is an elliptic operator. The dif-
ferential operator L is elliptic (respectively semi-elliptic) if and only if the operator P
is positive definite (respectively positive semi-definite).

In views of these, let us consider the self-adjoint differential operator [J introduced

by Cheng and Yau in [59], acting on a smooth function f: M™ — R given by
Of ==Y (nHoy; — b5 fiy = nHAF = W5 i) (1.2.1)
1,J 1,J
where f;; denote the components of the Hessian of f, h"t! = (h?j“) denotes the second

fundamental form of M™ in the direction of normal vector field e,; = %. From (1.2.1),

we also have

Of = tr(P, o V2f), (1.2.2)

where P, : T'"M — T'M is the operator given by
P, =nHI — h"t, (1.2.3)

I being the identity in the algebra of smooth vector fields on M™.

The following concept will play a fundamental role in the first part of this work.

Definition 1.2.1 Let M™ be a submanifold in a semi-Riemannian. We say that M™
is a linear Weingarten submanifold if its mean curvature function H and normalized

scalar curvature R satisfy R = aH + b for some a,b € R.
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As mentioned in the introduction, manifolds satisfying this relation were intro-
duced by Weingartein [124, 125] in the study of isometric deformations between sur-
faces in Euclidean space R? preserving the mean curvature, and can be regarded as
a natural generalization of manifolds with constant scalar curvature. In such a sense,
from of linear relation the mean curvature H and Gaussian curvature K of a surface
in Euclidean space R? satisfying aH + bK = ¢, where a,b,c € R, Lépez in [96] pre-
sented examples of linear Weingarten surfaces such that the constants a,b, ¢ satisty
a®+4bc < 0, the so called rotational linear Weingarten surfaces of hyperbolic type and
obtained a family of complete hyperbolic linear Weingarten surfaces in R? that con-
sists of surfaces with self-intersections whose generating curves are periodic. Recently,
Silva in [66] also showed examples of surfaces in Euclidean, Lorentzian and Hyperbolic
3-space such that a? + 4bc = 0, the so called tubular surfaces which are the surfaces
obtained by the moviment of a circle of constant radius » > 0 along a central curve
and proved that every Polynomial Weingarten tubular surface is linear.

In order to study of linear Weingarten submanifolds M"™ in a semi-Riemannian
manifold, we will consider the following modified Cheng-Yau’s operator

n—1

L.=0—
T

al, (1.2.4)

where the constant € = +1 is chosen appropriately, such that, e = 1 when the ambient
space is Riemannian (see, for instance, [52, 51, 53]), and ¢ = —1 when ambient space
has index p > 1.

Note that, equivalently, for all smooth function f : M™ — R, the definition (1.2.4)
can be rewritten as follows:

Lf =t(PoV2f),

where P : TM — T'M be the self-adjoint operator given by

~1
p— (nH —el 5 a> [ — B, (1.2.5)

In the next Chapters we will obtain our parabolicity criteria with respect to
modified Cheng-Yau’s operator L and in Part II this work, a parabolicity criterion
with respect to a general class of second order differential operators on M defined

in (6.1.1). Our approach is based on a parabolicity criterion related to a linearized
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differential operator which is a divergence-type operator and obtained as a application

of Theorem 2.6 in [111] (see also Lemma 6.9 in [21]).

Theorem 1.2.1 (cf. [111]) Let (M, g) be a complete Riemannian manifold and let o
be a fized reference point on M. We denote by r(x) the Riemannian distance from x to
o, and by B, the geodesic ball of radius r centered at o. Let h be the symmetric tensor

field on M satisfying the following bounds
h_(r) <h(X,X) < hy(r),vX e T,M,|X|=1,2 € 0B,
for some positive continuous functions hy defined on [0, +00). If
(ho(r)vol(dB,)) " ¢ L*(+00), (1.2.6)
then M is parabolic with respect to the differential operator defined by
Lyu = div (h(Vu,-)"), (1.2.7)

where § denotes the musical isomorphism.
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Chapter 2

L-parabolic complete linear
Weingarten submanifolds in a

Riemannian space form

Our main goal in this chapter is to present the results obtained in article [29].
We start with the geometry of n-dimensional complete linear Weingarten submanifolds
immersed with parallel normalized mean curvature vector in an (n + p)-dimensional
Riemannian space form Q7*? of constant sectional curvature ¢ € {—1,0,1} and via a
parabolicity criterion related to modified Cheng-Yau’s operator L defined in (1.2.4) we
apply it to prove that such a submanifold must be either totally umbilical or isometric
to a hyperbolic cylinder, when ¢ = —1, a circular cylinder, when ¢ = 0, and a Clifford

torus, when ¢ = 1.

2.1 Submanifolds immersed in a Riemannian space

form

Let M™ be an n-dimensional connected submanifold immersed in a Riemannian
space form QP with constant sectional curvature ¢ € {—1,0,1}. We choose a local
field of orthonormal frame {ei,...,en4,} in QPP adapted to M", that is, at each
point of M", eq,...,e, are tangent to M" and e,1,...,€,+, are normal to M". Let
Wi, ... ,Wntp be the corresponding dual coframe and let {wap} denote the connection
1-forms on Q7.

Moreover, throughout of first part this work, the following convention will be
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used on the range of indices:
1<ABC,...<n+p, 1<ijk,...<n and n+1<a,08,7,...<n+p.

Restricting the 1-forms to submanifold M", we note that, since e, is normal to
M forala=n+1,...n+p,

W = 0.
Since

0=dws =Y wai Aw;, (2.1.1)

from Cartan’s lemma we can write

Zh wj,

where (2.1.1) becomes Z hi;wi A wj = 0 which implies that
7]

h; = hj;.
Note that
= (Veea) ' Zwm e Zh
This gives the second fundamental form of M™ and its square length,

B=) hw®w®e, and S=|[B=Y () (2.1.2)

a,t,] a,i,]

Furthermore, the mean curvature vector A and the mean curvature function H of M™

are defined, respectively, by

2
:%Z<Zh§;>ea and H::|h|:% Z(Zha)

The components R;jj,; of the curvature tensor R and the components R, of the

normal curvature tensor R+ of M™ are given, respectively, by

1
dwij = Z Wik A Wkj — 5 Z Rz-jklwk N W
k k,l
and

1
dwap = Z Way N Wya — 3 Z R(Jx_ﬁklwk A wy.

¥ k,l

18



Therefore, the Gauss equation of M™ is
Rijrr = c(6irdji — 0adjn) + Z( whi — hithGy)- (2.1.3)

The components of the Ricci tensor R;; and the normalized scalar curvature R

of M™ are given, respectively, by

1
Rij =c(n—1)d;; + Z <Z hgk> hg; — Z hihy; and R = 1) Z R;(2.1.4)
« k a,k %

The Ricci and Codazzi equations of M™ are given, respectively, by

RQ/BZ] = Z(hfkhgj - h hgz) (215)
k
and
hise = iy = M (2.1.6)

where the components £}, of the covariant derivative VB satisfy

Z hepwr, = dhg + Z hiswr; + > Bgywi + Y hiiwga. (2.1.7)
k B

From (2.1.4), we get the following relation
S =n?H?+n(n—1)(c— R). (2.1.8)
By exterior differentiation of (2.1.7), we reach at the following Ricci formula

l]k‘l z]lk Z hm]lekl + Z hlmRm]kl + Z h‘m Rﬁakl (219)

The Laplacian Ahf; of the components hf; of the second fundamental form is

defined by
AR = thkh (2.1.10)

Consequently, combining (2.1.2) with Codazzi equation (2.1.6) we obtain
1 « (o2 N(e%
SAS = > hg (Z hmkk) + ) (W) = VB + Y hehg,. (2.1.11)
a,t,] a,i, g,k a,i, g,k
Here, we deal with submanifold M"™ immersed with parallel normalized mean

curvature vector in Q”*?, which means that the mean curvature function H is positive
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and h is parallel as a section of the normal bundle. In particular, we can choose a

orthonormal frame {ey, ..., e,1,} of TQI*? such that e, 1 = % Then we get

1 1
H" = —tr(h"*) = H and H®:= —tr(h*) =0, for a >n+2, (2.1.12)
n n

where h* denotes the matrix (h{;). Thus, using the equations equations (2.1.3)-(2.1.6),
together with (2.1.9)-(2.1.11), we can deduce the following Simon-type formula (see
Proposition 3.1 of |73])

1 2 ap o 2 nt+l18 18
SAS=|VEB| + Y nHZhS +en(S —nH?) +n > HAST B,

17" %17
1,7, B,i,j.k
2
- (Z h?jh?z> =D (Ras)™ (2.1.13)
,5,k,1 a ij,a,8

2.2 A parabolicity criterion for linear Weingarten sub-

manifolds

Now, we consider the appropriate Cheng—Yau’s modified operator defined in (1.2.4),
the following result provides sufficient conditions which guarantee the L-parabolicity
of a linear Weingarten submanifold in a Riemannian space form Q*?. This criterion

is obtained as an application of Theorem 2.6 in [111] (cf. Theorem 1.2.1).

Proposition A Let M™ be a complete linear Weingarten submanifold immersed with
parallel normalized mean curvature vector in Q2P with ¢ € {—1,0,1}, such that R =
aH +b with b > c. If H is bounded on M™ and, for some reference point o € M"™ and

0 >0,
_ = 2.2.1
/5 vol(0By) +oo, ( )

where By is the geodesic ball of radius t in M™ centered at o, then M™ is L-parabolic.
Proof. Let us consider on M™ the symmetric (0, 2)-tensor field £ given by
EX,Y) = (PX,)Y),

for all X,Y € TM or, equivalently, £&(Vu,-)* = P(Vu) for all smooth function u :
M™ — R, where ff : T*"M — TM denotes the musical isomorphism and P is the
operator defined in (1.2.5).
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Lemma 5 of [15] guarantees that Cheng-Yau’s operator [J defined in (1.2.1) can

be seen as a divergence type operator. Thus, from definition (1.2.4), we get
L(u) = div(P(Vu)). (2.2.2)

This implies that
L(u) = div ({(Vu,-)").
Now, note that since R = aH + b and b > ¢, Lemma 3.3 of [33] gives that the
operator L is semi-elliptic and, consequently, P is positive semi-definite. We may choose

a local frame of orthonormal vector fields {eq, ..., e, } on M™ such that h?fl = A\,

Thus, we obtain

> () <y (h) =

'L,‘] a7z7.]

It follows from (2.1.8) that
n?H? > (X2 4 n(n — 1)aH,

for all i = 1,...,n. Moreover, since

—1\?
(/\I.H'l)2 <n’H?* —n(n—1)aH < (nH U 5 a)

which together with the assumption that the normalized mean curvature vector is

parallel, we get

n—1 n—1

—nH + a <\ <nH -

Hence, for all 7 € {1,...,n}, we obtain

0<o0;<2nH —(n—1)a,

n—1

where 0, :=nH — a— A1 are the eigenvalues of the operator P (see Lemma 3.4

of [14]). Consequently, we can define a positive continuous function &, on [0, +00) by
£4(t) :=2nsup H — (n — 1)a.
OBy
Then it follows from the assumption that H is bounded on M™ that

£4(t) <2nsupH — (n— 1)a < +o0.
M
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From this last inequality we reach the following estimate:

—+00 dt -1 ptoo dt
/ 5+<t>vol<aBt>Z(MﬁpH*”‘”a) / w08,

This together with hypothesis (2.2.1)implies that

“+o00 dt .
/5 & (tvol(@B,)

Therefore, applying Theorem 2.6 of [111]|, we conclude that M™ is L-parabolic. ]

Remark 2.2.1 [t is worth to comment that we can reason as in the proof of Propo-
sition A to infer that an isometric immersion satisfying (2.2.1) is L-parabolic for
L = div(P(V:)), where P is a positive semi-definite tensor such that supP < 400
and divP = 0.

Motivated by the work of Cheng and Yau in [59], we will also consider the fol-

lowing symmetric tensor

O =) Phw ® wjea, (2.2.3)

a,t,J

where & = hi, — H*d;; and H® is defined by (2.1.12). Consequently, we have that

QU = it — HEy; and @ =k, n+2<a<n+p. (2.2.4)

(YR
Let [®* = 37, (®%)?* be the square of the length of ®. Then, by an easy

computation we show that tr (®) = 0. From of relation (2.1.8) we obtain

@] =S —nH*=nH*n—1)+n(n—1)(c— R). (2.2.5)

2.3 Auxiliary Lemmas

In this section, we will recall some important well-known lemmas which will be
used to prove our characterization results in the next section. The first one is an
algebraic Lemma obtained in [116].

Lemma 2.3.1 (cf. [116]) Let A,B : R" — R" be symmetric linear maps such that
AB — BA =0 and tr(A) = tr(B) = 0. Then
te(A2B)| < — =2 N(4)/N(B).
n(n —1)
where N(A) = tr(AAY), for any matriz A = (a;;). Moreover, the equality holds if, and

only if, (n—1) of the eigenvalues x; of A and corresponding eigenvalues y; of B satisfy

‘$Z| = m, Z;Yi >0 and Yi = m (7"63]7- N m) .
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The second one is also algebraic lemma, whose proof can be found in [89].

Lemma 2.3.2 (cf. [89]) Let B, B?,..., B be p symmetric (n X n)-matrices (p > 2).
If Sup = tr ((B*)!B?), So = Saa = N(B*) and S = 3", Sa.then

ZN (B*B” — B®B*) +Z < 52 (2.3.1)

where N(B) = tr(BB"), for any matriz B = (b;;).

Consider the classic algebraic lemma, the inequality case is obtained in Lemma

2.1 [108], and the equality is due to Lemma 1 of [24].

Lemma 2.3.3 (cf. [108] and [24]) Let p;,i = 1,2,...,n be real numbers satisfying

imzo and iu?sz,
=1 i=1

where k = const. nonnegative. Then we have

n—2 k3<ZMl_ n—2 k3,

n(n—1) Vn(n—1)
and equality holds in the right-hand (left-hand) side if and only if (n — 1) of the p;’s

are nonpositive and equal ((n — 1) of the p;’s are nonnegative and equal).

The next key lemma due to [73] is very applicable.

Lemma 2.3.4 (cf. [73] ) Let M™ be a linear Weingarten submanifold immersed in a

Riemannian space form QP  with R = aH + b for some a,b € R. Suppose that
(n —1)a® +4n(b—c) > 0. (2.3.2)

Then
|VB|? > n*|VH?. (2.3.3)

Moreover, the equality holds in (2.3.3) on M™ if, and only if, M"™ is an isoparametric
submanifold of QP.

Remark 2.3.1 [t is worth mentioning also Lemma 3.1 obtaneid in [36] for the case of
surfaces. In this case, the authors concluded that the when the equality occurs in (2.3.3)

on M?, the mean curvature function H on M? is constant.
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2.4 Characterization Results

Now we are ready to present and prove the main results of this chapter. In
what follows, we will apply Proposition A to get new characterization results con-
cerning complete linear Weingarten submanifolds immersed with parallel normalized
mean curvature vector in a Riemannian space form Q?*? with constant sectional
curvature ¢ € {—1,0,1}. These results are mostly inspired in those ones obtained
in [16, 34, 36, 73, 79].

Initially, we will consider the case of linear Weingarten surfaces immersed with
codimension p in Q**?,

Theorem 2.4.1 Let M? be a complete linear Weingarten surface immersed with par-
allel normalized mean vector and flat normal bundle in Q*P, such that its Gaussian
curvature K and mean curvature H satisfy K = aH + b with b > ¢. Suppose in ad-
dition that there exits a point ¢ € M? such that K(q) > 0 and that H is bounded on
M?. If hypothesis (2.2.1) is satisfied and K is nonnegative on M?, then M? is totally
umbilical.

Proof. Since we assume that M2 has flat normal bundle, that is, R+ = 0, for each
fixed «, taking a local orthonormal frame {e;,es} on M? such that ho‘ = A\0;5, we
obtain from (2.1.9), (2.1.12) and (2.1.13) that

1 2 313 [o' No' (e No'

SAS = |vB +22Hmh” + Y hSR R+ Y hehg R

z]kma 3,9k, m,a

= |VB|2+Z)\3 (2H);; ZRW (A =A%) (2.4.1)

z]a

On the other hand, it follows from of modified Cheng-Yau'’s operator defined in (1.2.4)

acting on the mean curvature function H that
L(2H) = 0O((2H) - aAH
= 2HA(2H) ZA?’ (2H); — aAH

_ 1 2 2 3
= SARH) - Zi:(zH)i — Z A(2H); — aAH (2.4.2)
1 2 3

= AR+ ;AS—4[VH| - Z A(2H);; — aAH.
Since R = aH + b, combining (2.4.1) and (2.4.2) we obtain

1
L2H) = VB[’ —4[VH + 3 D Rijii(Ar = A% (2.4.3)
(2
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Moreover, Gauss equation (2.1.3) gives
Ryij=c+ Y NN, (2.4.4)
B
This together with (2.1.8) and (2.2.5) implies that

1
9 Z Rijij (A — )‘?)2 = Z Rig1a(AT — )\3)2

i7j7a
B2
= 2|9 M \gop2
) (w}ﬁj( I |)>

= 2|®)? <c+ g — |<1>|2> (2.4.5)
= |®*(—|®|* + 2H? + 2¢) (2.4.6)
= 2K|®%.

On the other hand, by our assumption b > ¢, Lemma 3.1 of [36](cf. Remark 2.3.1)
guarantees that

VB> =) (hfy)* > 4 VH|. (2.4.7)

a,t,g,k
Thus, since the Gaussian curvature K of M? is nonnegative, from (2.4.3), (2.4.5)
and (2.4.7) we obtain
L(2H) > 2K|®]* > 0. (2.4.8)

Moreover, Proposition A assures that M? is L-parabolic. This together with the
assumption H is bounded, the above inequalitywe get H is constant on M? which
implies, in particular, that L(2H) = 0 on M?. Therefore, since K = aH +b and taking
into account the existence of a point ¢ € M? such that K(q) > 0, from (2.4.8) we get
that |®| = 0 and, hence, M? is totally umbilical. n

We recall that, for n > 2, umbilical submanifolds of a space form Q"*?(c¢) have
constant curvature K = ¢ + ||H||?, and, besides the totally geodesic submanifolds, if
¢ > 0 they are the spheres; or, if ¢ < 0 we have the geodesic spheres (K > 0) or we
have the horospheres (K = 0) or we have the hyperspheres equidistant (K < 0).

Lobos in [97], based on a theorem due to Ferus-Striibing (see |75, 76, 119]),
defined and classified a basic class of parallel immersions into space forms, the umbilical

manifolds and their extrinsic products.
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Finally, our approach allows us to establish the following characterization result
concerning n-dimensional complete linear Weingarten submanifolds, now considering

the case n > 3.

Theorem 2.4.2 Let M"™ be a complete linear Weingarten submanifold immersed with
parallel normalized mean curvature vector in QP (n > 4 and p > 1 orn > 3 and
p=1), such that R = aH + b with b > c. Suppose in addition that, when ¢ € {—1,0},
R >0 and, when ¢ =1, R > 1. If hypothesis (2.2.1) is satisfied, H is bounded on M"

and
n(n — 1)R?

(n—2)(nR — (n—2)c)’

sup |®]* < (2.4.9)
M

then
i. either |®| =0 and M™ is totally umbilical,

n(n —1)R?
(n—2)(nR — (n — 2)c)

ii. or |®* = and M™ 1is isometric to a

(a) hyperbolic cylinder H' (—v/1+12) x S""H(r) < H"*! — H"*P, when ¢ =
1

(b) circular cylinder R x S""(r) — R*"™! — R when ¢ = 0;

(¢) Clifford torus S* (V1 —r2) x S"7}(r) < S"*! — S"*P, when ¢ = 1;

In —2
where r = i )
n

Proof. In the first place, we will consider the case n > 4 and p > 1. Because of

relations (2.1.8) and (2.2.5) together with Simon-type formula (2.1.13), we have that

the modified Cheng-Yau’s operator defined in (1.2.4) acting on the mean curvature

function H is expressed as follows:

LnH) =3 (nHoy — b (nH )y — =2
i.j

1
= §n2AH2 —n*|VH|* —

aA(nH)

n—1

aA(nH)—nY hTH;  (24.10)
4,
= (IVB* = n*|VH|?) + cn|®|* + ny _ HKS B b,
B?i7j7k
2
[y Ne" 1 2
3 () -k
,5,k,l o a,B,i,]

By our assumption b > ¢, Lemma 4.1 of [73](cf. Lemma 2.3.4) assure that

L(nH)> cn|® +nY  HU R R,

/B’i’j)k
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>, <Z h%h?z) =3 (Risi)* (2.4.11)

Z.7‘7'7]€7l [ed a7ﬁ7i7j
To estimate the above inequality, we consider
. n+1 B
I:= > Hh;'hh, (2.4.12)
B7i7j7k

and

7= (Z h%h§l> +> (Rag,)*. (2.4.13)

/L.7j7k7l « a767i7j
Hence, (2.4.11) is rewritten as

L(nH) > cn|®|? +nl —I1. (2.4.14)

Firstly, we estimate (2.4.12):
Combining (2.1.12) with (2.2.4), we get

> HO WG by = Hte(@")? + 3H2|0" ' * + nH*

i7j7k’ﬁ
n+p n+p
+ Y Y HEEL )+ Y HY O (2.4.15)

Taking into account that the matrices ®” are symmetric and traceless and ®"*! com-
mutes with all the matrices ®’, we can use Lemma 2.6 of [116](cf. Lemma 2.3.1) for

®F and ®"*H in order to obtain

—9
[tr((7)20™H)] < ——=—|o?|" ). (2.4.16)
n(n—1)

This together with (2.4.12) and the right-hand side of (2.4.15) implies

n—2

]’ 2 _—H’q)n+l‘3+2H2‘(I)n+l|2+H2’@’2+nH4
n(n—1)
n—9 n+p
————— ) H|o" 2P (2.4.17)
n<n - )ﬂ:n—i—Q
—2
= 2P+ HAOP + nHY — — L {0 ||D)?.
n(n —1)
Hence, from (2.4.15) and (2.4.17) we have
=" HhFWGh, > 2H? |9 P 4 H?|®|* 4+ nH* (2.4.18)

ﬂ7i7j7k

27



—9
T2 gt |o).
n(n—1)

Secondly, we estimate (2.4.13):
Note that

I7

> (S o5

,7,k,l « a,B,i,j

=y (Zh lhfjhfl) + ) (Ragy)’ (2.4.19)

,7,k,l a#n+1,#n+1,i,j
= > [t(B*BY] + D g, b
a,f a,B,i,5,m,l
apa 1B 1B apfB
— Y kg R R — > RSB Ry, (2.4.20)
a,B,i,5,k,m a,f,i,5,k

Hence, from Ricci equation (2.1.5) we get

11 =B BN +2 Y [t(B™BY)]° (2.4.21)
B#n+1
+ Y (BB + Y 1B°B° — BB
a#n+1,#n+1 a#n+1,0#n+1
It follows from Theorem 1 of [89](cf. Lemma 2.3.2) and (2.2.4) that

2
3
> [tr(B*BY)*+>  |B°B” - BB < 5 ( > tr(BBBB)>
a#n+1,#n+1 a#n+1,#n+1 B#n+1
2
3
< 5(2 |c1>ﬂ|2> . (24.22)
B#n+1

Hence, combining (2.4.21) with (2.4.22) we obtain

1 < [te(B™'B"™)P+2 ) [tx(B"'BY)? (Z |q>ﬂ|)

B#n+1 B#n+1

_ q)n+l‘4 +271H2|@n+1‘2 +n2H4 +9 Z [tr(q)nJrlq)ﬂ)]Q + g(lq)|2 _ |(I)n+1’2)2
B#N+1
) 3
§|®n+1|4+2nH2|¢n+1|2 +n2H4+2|(I)n+1|2(|(I)|2 |<I>n+1|2) + §|(I>|4
—3|(I)|2|(I)”+1|2
1
— §|q)n+1’4 4 2nH2|(I)n+1|2 4 n2H4 o |(I)|2|(I)n+1|2 + %|(I)|4_ (2'4.23>
Therefore, from (2.4.11)-(2.4.14), (2.4.18) and (2.4.23) we get
n(n —2)
n(n—1)
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n 3
HO I - 2ot

= |® <_|<I>|2 — —"i?;_Qi)mcm +n(H?+ c)> (2.4.24)
gl n(n —2) 5
D — | 2 >
+(|2] — | |)( D |D|

(1] = @) (] + 277,

Note that the relations (2.1.8) and (2.2.5) implies that

1

=D

|®* + (R — ¢). (2.4.25)

Substituting this into (2.4.24), we obtain
n(n — 2)
n(n —1)
1 . . 1

(] [ (0] 7)) + [0 Qp ().

L(nH) > (@] - [&"*])( H|®P (2.4.26)

where Qg(z) is the function introduced by Alias, Garcia-Martinez and Rigoli in [16]
which is given by

Qr(z) = —(n —2)2® — (n — 2)zy/22 +n(n — 1)(R —¢) +n(n — 1)R. (2.4.27)
On the other hand, we quote the following algebraic inequality (3.5) of [79]

32
(1@ = [@" (1] + [@"))* < o=

|3 (2.4.28)
Again using the relation (2.1.8) we also have S < n? H? and, consequently, (2.2.5)
gives us

1
H > ———|9|. 2.4.29
> ol (24.20)

Thus, (2.4.28) together with (2.4.29) implies that

n(n —2) 5 1 n—2 16
— " _HI|®* - Z(|®] — [®"))(|P P2 > — — ) |®?. (2.4.30
R L R e e e ) L RYCEE
Since n > 4 we have that
noz 16, (2.4.31)
n—1 27 ' o
Then, from (2.4.26), (2.4.30) and (2.4.31) we obtain

Lot 2 (o] - fori) (225 - 2

1
— =) |®f + ——|? ®
—2 - ) 18P+ T lePon(e)
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1
> ——|0]*Qr (0. (2.4.32)

In the next place, let us consider the case n > 3 and p = 1. In this case, for
simplicity, we will just denote h;; = h%“. We choose a (local) orthonormal frame

{61, ce ,Gn} on M™ such that hij = )\’L(;Z] and q)ij = :U’Z(Sz] ThUS,
2 _ 2 2, 1 2
1,]

From Gauss equation (2.1.3) we have R;j;; = ¢+ A;Aj. Thus, combining this with

the relation (2.2.5) we obtain
L(nH) = |VB[* = n?|VH[” + nc|®|* — $* + nH Y _ A}, (2.4.34)

On the other hand, it is straightforward to check that

Z,ui =0, Zu? = |®]* and Zuf’ = Z)\f’ — 3H|®|* — nH®. (2.4.35)
Thus, from (2.4.34) and (2.4.35) we get

L(nH) = VB = n?|VH] + nH Y il + [®*(—|®” + nH? + nc). (2.4.36)

Since b > ¢, we can apply Lemma 4.1 of [73](cf. Lemma 2.3.4) and Lemma 2.1
of [108|(cf. Lemma 2.3.3)to the real numbers py, ..., 4, to obtain
n(n —2)
n(n —1)

Consequently, from (2.4.25) and (2.4.37) we also reach at

L(nH) > |® <—|c1>|2 - H|®]| +nH2—|—nc). (2.4.37)

LinH) > ——|8PQx |2]), (2.4.38)

where Qr(x) is the function given by (2.4.27).
It follows from our constraints on R that Qr(0) = n(n—1)R > 0 and the function

Qr(x) is strictly decreasing for x > 0, with Qg(z*) = 0 at

. n(n—1)
v _R\/(n—Q)(nR—(n—Q)c) > 0.

Thus, since hypothesis (2.4.9) is satisfied, we obtain that Qg (|®|) > 0. Hence,
from (2.4.32) and (2.4.38) we have

LinH) > 1 [3['Qn (2) > 0.
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Moreover, Proposition A assures that M"™ is L-parabolic. Consequently, from the
boundedness of H, we get that it is constant on M". This implies, in particular, that

L(nH) =0 on M". Thus, returning to (2.4.10) and (2.4.33) we have
IVB|* = n*|VH|.

Therefore, for n > 4 and p > 1, Lemma 4.1 of [73](cf. Lemma 2.3.4) guarantees that
M™ is an isoparametric submanifold of Q?*P. In the case n > 3 and p = 1, Lemma
1 of |24](cf. Lemma 2.3.3) assures that M™ is an isoparametric hypersurface with two
distinct principal curvatures one of which is simple.

Now, let us suppose that M"™ is not totally umbilical. When n > 4, taking
into account the inequality (2.4.31), from estimate (2.4.32) we conclude that || =
|®" 1| and, consequently, ®* = 0, for all « > n + 2. Thus, since M™ has parallel
normalized mean curvature vector we can apply Theorem 1 of [129] to conclude that M™
is isometrically immersed in a (n+ 1)-dimensional totally geodesic submanifold Q7 *! of
Q*P. Therefore, in both cases, by the classical results on isoparametric hypersurfaces
of real space forms [50, 87, 117], we conclude that either |®*> = 0 and M™ is totally

umbilical or
n(n —1)R?
(n—2)(nR — (n—2)c)

o =
and that M™ must be isometric to a following standard product embeddings:
(a) hyperbolic cylinder H' (—v/1+r2) x S"~!(r) — H"*' — H"*?, when ¢ = —1.
(b) circular cylinder R x S"~1(r) — R""! < R"*? when ¢ = 0;
(c) Clifford torus S (v/1—12) x S*7(r) < S**! < S"*?, when ¢ = 1;

To conclude this proof, we now consider the value of constant sectional curvature
¢ € {—1,0,1} of Q2*P. In this setting, if ¢ = —1, then for a given r > 0, in the

Hyperbolic space H" P, we have that
HY (—VT+72) x 874 (r) o B o HH
has constant principal curvatures given by

r
ki =—— and ky=---=k,=
' 1+ 72 ’ r
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Thus,

n(l+r?)—1 5 n—1
H=——"— and |P|"=—FF——-.
V1 T

When ¢ = 0, for a given radius r > 0, in the the Euclidean space R"™? we have
that

R x S*71(r) s R*" s R™P

has constant principal curvatures given by

1
by =0 ky ==k, =~
,
which implies that
1 -1
g=" and |(I>|2:n2.
nr

In the case ¢ = 1, for a given radius 0 < r < 1, in the Euclidean sphere S we
have that

St (\/1 — 7‘2) x S"THr) s ST s ST
has constant principal curvatures given by

r V1—r1r2
b= k= =y = YT
V1—1r2 r

Thus, in this case,
nr? —(n—1)

nryv/1 —r?

Finally, note that for all ¢ € {—1,0,1}, the relation (2.2.5) implies that and constant
n—2

n—1

H = _—
nr2(1 —r?)

and |®|* =

scalar curvature of Q7*? is given by R = > (. This finishes the proof of theorem.

nr?
| ]
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Chapter 3

L-parabolic complete linear
Weingarten spacelike submanifolds in

the de Sitter space

In this chapter, we present the results concerning the article [28]. By following
the same strategy of previous chapter, we can prove our characterization results for
complete linear Weingarten spacelike submanifold immersed with parallel normalized
mean curvature vector in de Sitter space Sgﬂ’ of index p. In this setting, imposing
appropriate restrictions on the values of the mean curvature function H, we establish
a parabolicity criterion related to a suitable Cheng-Yau’s modified operator L defined
in (1.2.4) and we use it to obtain sufficient conditions which guarantee that such a
spacelike submanifold must be either totally umbilical or isometric to certain hyperbolic

cylinders of Sy*P.

3.1 Spacelike Submanifolds immersed in the de Sitter

space

An n-dimensional submanifold M™ of S;”rp is said to be spacelike if the induced
metric on M" from that of the ambient space SZ*” is positive definite. We choose a
local field of semi-Riemannian orthonormal frames {ei,...,en1,} in S;™” adapted on

M™. We will use the same indices convention as in the previous chapter:

1<ABC,...<n+p, 1<ijk,...<n and n+1<a,0,7,...<n+p,
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and taking the corresponding dual coframes wy, . .., wp4,, the semi-Riemannian metric
+ . .
of S)™ is given by
1= Y- Y= Yeash
7 «a A
wheree; =lande, = -1, 1<t <nandn+1<a<n+p.

Denote by {wap} the connection forms of S7*7, we have that the structure equa-

tions of S}*P are given by

de:ZGBwAB/\wB, wap +wpa =0, (3.1.1)
B
1
dUJAB = EC:EC waAC /\wCB — 5 CZ;ECGDKABCD we /\cuD, (3.1.2)

where Kapep = €a€3(0acdpp — 0apdpc).

Restricting those forms to M™, that is, applying in S;”rp , we note that w, = 0 on
M™ and the Riemannian metric of M™ is written as ds* = Y, w?. Thus, from (3.1.1)
we obtain

J

and

Zw‘” Aw; = dw, = 0. (3.1.4)

Hence, from Cartan’s Lemma we obtain
Wai = » hw; and hf = hS,. (3.1.5)
J
This gives the second fundamental form of M"™ and its square length,

B = Zh%wi Ruw;®e,, and S=|B>= Z(h‘fj)Z, (3.1.6)

a,i,j a,i,j
respectively. Furthermore, the mean curvature vector h and the mean curvature func-

tion H of M™ are defined, respectively, by in

h= %Z (Zh;) eo and H = |h| :% > (Zhg;) . (3.1.7)

From (3.1.2) and (3.1.3), the structure equations of M™ are given by

dwl- = Zwij N Wi, Wij + Wj; = 0 and
J

34



(3.1.8)

1
dwy = > wip Awgy — 5 > Rijrawi Aw,
K ol

where RR;;; are the components of the curvature tensor of M". From previous structure

equations, we obtain the Gauss equation

Riji = (061 — 0adje) — > (WSS — hihS,). (3.1.9)

(03
The components of the Ricci curvature R;; and the normalized scalar curvature

R of M™ are given by

Rij = (n—1)6; — Z (Z hgk) h; + Z hihi; (3.1.10)
o' k a,k

and
1
R=—— S "Ry, 3.1.11
n(n —1) XZ: ( )

respectively. Combining (3.1.10) with (3.1.11) we compute the following relation
S=n*H?+n(n—1)(R-1). (3.1.12)
We also have the structure equations of the normal bundle of M™

dw, = —Zwag/\wg, Wap + wge = 0
B

and

1
dwap = — Z Way N\ Wyg — 5 Z Ropgrwi N w, (3.1.13)
k,l

~

where R,g;i, satisfy Ricci equation

Ragij = Y (h?zhfj - h?ﬂl’ﬁ-) : (3.1.14)
l

From (3.1.5) we obtain Codazzi equation

Wy = hg

ki = Niijs (3.1.15)

where hf); are the components of the covariant derivative VB, which satisfy
3 hn = dh+ > B + > heoni — Y hwpa. (3.1.16)
k k k 8
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Differentiating (3.1.16) exteriorly we obtain the following Ricci formula for the second

fundamental form
S — M = Y h R + Y 1 Rt + Y 1 Ragi. (3.1.17)
m m k.8
From these formulas, we can compute the Laplacian Ahg; of the components hf;
of second fundamental form as follows:

AhS = hiys + > hfRige + > b Ruge + Y Wi Ragji (3.1.18)
k k.l k.l k.p

As we considered in the previous chapter, here we also take H > 0 and from of

orthonormal frame {es,...,e,4,} of TSZ“’ such that e, = % Thus, we get
1 1
H" = —tr(h")=H and H®:= —tr(h*) =0, a >n+2, (3.1.19)
n n

where h® = (hg;) denotes the second fundamental form of M™ in direction e, for every

n+1<a<n+p. Thus, from (3.1.9), (3.1.14), (3.1.18) and (3.1.19) we have

Ah%—i_l = TLHZ‘j + nh?;“l — nH5U
+ ) R D B =2 B b

mk '"mk’'%ij mk '"mj'%ik
ﬁ7m7k“ ,B,m,k
+18 18 +1pn+1
+ Z Poi Dot P = ”thfm P
B,m,k m
+118 1B
ﬁ7m7k

and for alln +2 < a <n+p,

« _ (o « [e% B B
Ahg = nHZ+nhf+ Y o by b

km'%ij
B?m7k‘

—2 Z hohl bl + Z h%ihikhgj
Bm,k B,m,k

o 1n+l a 18 18
—nH Y hehrt 4y " he kD Bl
m B,m,k

Hence, it follows from (2.1.11) the following Simons-type formula

1
5= ST+ > hGHS + n(S —nH?) + Y (tr(hh?))’

a,i,j,k a,i,] a,fB
—nH Y tr (B"(h*)?) + > N(h*B = n°he) (3.1.20)
« a,
where N(A) = tr(AA?), for all matrix A = (a;;).
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3.2 A parabolicity criterion for linear Weingarten space-

like submanifolds

Our next result provides sufficient conditions which guarantee the parabolicity
of a linear Weingarten spacelike submanifold in de Sitter space S}*7 with respect to
modified Cheng-Yau’s operator L defined in (1.2.4) for ¢ = —1. With respect to the

ellipcity of this operator, the following results are stated in [127] and [19].

Lemma 3.2.1 (cf. [19]) Let M™ be a spacelike submanifold in the de Sitter space S;+P
with H > 0. Let p_ and py be, respectively, the minimum and the maximum of the
eigenvalues of the operator Py at every point p € M™. If R < 1(resp., R <1 on M"),
then the operator O is elliptic (resp., semi-elliptic), with p_ > 0 (resp., p— > 0). and
py < 2nH (resp., py < 2nH ).

Proposition B (cf. [127]) Let M™ be an n-dimensional spacelike linear Weingarten
submanifold in de Sitter space S;l“’ with R =aH +b. Ifa # 0, b < 1, then L is elliptic.

As a application of Theorem 2.6 in [111] (cf. Theorem 1.2.1), we obtain the follow-
ing L-parabolicity criterion whose its proof is similar to proof of Proposition A, where

we used the results above.

Proposition C Let M"™ be a complete linear Weingarten spacelike submanifold im-
mersed with parallel normalized mean curvature vector in S;”rp such that R =aH + b
for some a,b € R with b < 1. If H is bounded and, for some reference point o € M"

and some § > 0,
dt

—+00
/5 M = +OO, (3.2.1)

where By is the geodesic ball of radius t in M™ centered at the reference point o, then

M™" s L-parabolic.

Let ® be the traceless symmetric tensor defined in (2.2.3). Then, considering
a complete spacelike submanifold M™ immersed in Sg“’ , it can be easily checked the

following relation

@ =S —nH*=n(n—1)H*+n(n—1)(R—1). (3.2.2)

3.3 Characterization Results

In this section, we revisit the results of [41, 94, 127] and we characterize complete

linear Weingarten submanifolds immersed with parallel normalized mean curvature

37



vector in S;L“’ applying Proposition C. For this, we consider also the result due to [127].

Lemma 3.3.1 (cf. [127] ) Let M™ be a spacelike linear Weingarten submanifold in
de Sitter space Sy™P with R = aH +b for some a,b € R. If b <1, then

VB> > n*|VH|. (3.3.1)

Moreover, suppose that the equality in (2.3.3) holds, then M™ is constant on M".

In this setting, we prepare the following theorem.

Theorem 3.3.1 Let M™ be a complete linear Weingarten spacelike submanifold im-
mersed with parallel normalized mean curvature vector in SZJFP, such that R = aH + b
for some a,b € R with b < 1. Suppose that M™ has nonnegative sectional curvature
and that H is bounded on M™. If hypothesis (3.2.1) is satisfied, then M™ is either
totally umbilical or isometric to a product My x My x ... x My, where the factors M;
are totally umbilical spacelike submanifolds of S;}er which are mutually perpendicular

along their intersections.

Proof. Since N(B) := tr(BB'), for any matrix B = (b;;), from Ricci equation (3.1.14)
we can verify that
> hhRagis = %ZN(ho‘hﬂ — hPhe). (3.3.2)
o,B,i,5,k B
Thus, by the assumption on the normalized mean curvature vector and com-
bining (3.1.18), (3.1.20) with (3.3.2), the Cheng-Yau’s modified operator L defined
in (1.2.4) acting on the mean curvature function H is

LinH) = > (hg)> =n’IVH + > (hghg Roniji + b Rukjie)

a’i7j7k i’j’k’m

1 « «
+5 Eﬁ: N(h“h? — hPhe) . (3.3.3)

Now, we estimate the above equation. For this, note that, since we are also

supposing that b < 1, from Proposition 2.2 of [127](cf. Lemma 3.3.1) we have

VB> =) (hy,)” > n?|VH|, (3.3.4)
.5,k
On the other hand, since the matrix h® := (hg;) can be diagonalized, for each

fixed a we consider a local orthonormal frame {e;} such that hf; = Afd;;, where A¢
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denote the eigenvalue of h*. Thus, considering the third term of (3.3.3) we obtain the
following estimate

1
> hehg R+ > hShS Ry > §Z(A$—A;*)QRW. (3.3.5)

i,7,k,m i,5,k,m ©,]

Note that for all matrix B = (b;;) we have (B');; = >~ bibj,; and
N(B) = tr(BB') = Zblkb =3 () > 0.
ik
Consequently, the last term of (3.3.3) is
N(h*h® = h°n*) > 0. (3.3.6)

By assumption that the sectional curvature of M™ is nonnegative, substitut-

ing (3.3.4), (3.3.5), (3.3.6) into (3.3.3), we obtain

1
L(nH) > 3 > (A=A Riji; > 0. (3.3.7)
i,
Moreover, Proposition C assures that M"™ is L-parabolic. Thus, since H is

bounded, H is constant on M". It follows from (3.3.6) that
ReRP = PR for all o, >n+1,

which implies that the normal bundle of M" is flat. Hence, all the matrices h® can
be diagonalized simultaneously. Note also that, i = 0, for all 4, j, k, @ and thus the
second fundamental form B is parallel. In particular, it implies that A$" is constant for

all 7, a. Therefore,
D (A = X)Ryji = 0.
1,J
Thus by the assumption of nonnegative sectional curvature, we obtain that M™"
has parallel mean curvature vector and constant scalar curvature R. Therefore, we
can apply Theorem 1.11 of [54](see also Lemmas 5.1, 5.3 and Theorem 1.3 of [85]) to
conclude the proof. [

Now, imposing a suitable constraint on the mean curvature function, we prove our

second characterization result for complete linear Weingarten spacelike submanifold of

n-+p
SutP,
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Theorem 3.3.2 Let M™, n > 3, be a complete linear Weingarten spacelike sub-
manifold immersed with parallel normalized mean curvature vector in S;}er, such that
R =aH + b for some a,b € R with b < 1. Suppose that

4(n —1)

H Qlp) ’

IN

(3.3.8)

where
Q(p) = p(n —2)* +4(n — 1),

If hypothesis (3.2.1) is satisfied, then M™ is either totally umbilical or isometric to the
-2

hyperbolic cylinder S" ' (c;) x H'(¢cy), where ¢; = n 0 and ¢y = —(n — 2).

n JR—

Proof. From the assumption that M™ has parallel normalized mean curvature vector
nt1, that is, V¥te,. 1 = 0, where V! denote the normal connection of M™ in S;”p.
Thus, wani1 = 0, for all @ > n + 1. This together with the structure equation (3.1.13)

implies that
Ryt10ij =0, forall 1<i7,5<n and a>n+1.

It follows from Ricci equation (3.1.14) that h*h™* = h"1he for all «, that is, h"*!
commutes with all the matrices h*. Thus, using the traceless symmetric tensor defined

in (2.2.3) we obtain that
et = pt — H™M and ®* = h* forall a >n+1, (3.3.9)

which implies that ®"*! commutes with all the matrices ®*. Since that the matrices
®“ are symmetric and traceless, we can use Lemma 2.6 of [116](cf. Lemma 2.3.1) for

®% and ®"*! in order to obtain

|tr((@*)?@")| < n—_2N(CI>a)\/N(<I>”+1). (3.3.10)

n(n —1)

On the other hand, using Cauchy-Schwarz inequality we get that

2
pY (@)= p )y [w(@)F =p) [N(@) > (Z N@“)) =|®[".
a,B o e e
(3.3.11)
Furthermore, combining (3.2.2) with (3.1.20) it follows that

O(nH) = Y (hg)* = n’[VH]> —=nH Y tr (k" (h*)?)

a7i7j7k
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+3 N (hhP — W) + 3 (tr(heh?))?

a,fB a,p

+n(S —nH?) - = S LoAmm). (3.3.12)

Consequently, since
N(@") = tr(@"')* < [®° and > N(O%) = [®],

substituting (3.3.10), (3.3.11) and (3.3.12) into Cheng-Yau’s modified operator L (1.2.4)

acting on the mean curvature function H, we obtain

L(nH) = |®*Py(|®]),

where
2 n(n-—2)
Py(z)=— — ———Hz—n(H*-1). 3.3.13
e TS A Gl (3:.19)
, _An—1) . . o .
Note that, when H* < W, by a direct computation, it is not difficult to
p

verify that Py (|®|) > 0.

4(n—1 2v/n —1
In the case H? = M, we can write H = 2Y2 - and the polynomial Py
Q(p) VQ(p)
just has a real root, namely
n—2)\/n
Cln,p) = p(—)\/_
VQ(p

Hence, in this case,

(12l (n—2)ynp ’

This implies that, in both cases, we have
L(nH) > | Py (|®]) > 0.

Moreover, Proposition C assures that M" is L-parabolic. Thus, from the boundedness
of H, we get that it is constant on M™ implying, in particular, that L(nH) = 0 on M".

Consequently, if |®|? = 0, then M™" is totally umbilical. Otherwise, if Pg(|®|) = 0,
the inequalities (3.3.10) and (3.3.11) are, in facts, equalities. In particular, N(®"*1) =
tr(®"1)2 = |®|2. It follows from (3.2.2) that

tr(®")? = |®]* = S — nH>. (3.3.14)
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Note that, the assumption implies that M™ has parallel normalized mean curva-
ture vector together with (3.1.19) implies that

(@) =S — > > (k) —nH”. (3.3.15)

a>n+1 i,j

Hence, combining (3.3.14) and (3.3.15) we conclude that Z Z(h%)Q = 0.
a>ntl ij
On the other hand, using that inequality (3.3.11) is, in fact, an equality, we get

pl®f* = pN (@) =p Y [N(®Y)* = [o]*.

a>n+1

Thus, since in this case |®| > 0, we conclude that p = 1.
Moreover, since the mean curvature function H is constant on M™ and by as-
sumption b < 1, Proposition 2.2 of [127|(cf. Lemma 3.3.1) guarantee that
Y (hh)? =n?|VH[? =0,
0.4,k
that is, h?ﬁ;l = 0 for all 7, j, k. Therefore, M™ is an isoparametric spacelike hypersur-
face of ST, We also note that the inequality in (3.3.8) cannot be strict, otherwise,

Py (|®]) > 0. This implies that

H =

2v/n —1 n—2 (3316)
n

and |®| = N

Since the equality occurs in (3.3.10), we have that also happens the equality in
Lemma 2.6 of [116](cf. Lemma 2.3.1). Thus, M™ must be either totally umbilical or
an isoparametric spacelike hypersurface of St with two distinct principal curvatures
one of which is simple. In this last case, we can apply Theorem 5.1 of [1] to conclude
that M™ is isometric to a hyperbolic cylinder S"~*(c;) x H¥(cy), where k € {1,n — 1},
cl>0,02<0andl—|—i:1.

1 C

With a straightforward computation it is not difficult to verify that, for a suitable

choice of the normal vector field, in S"™ we have that
S”_k(cl) X Hk(Cg) — Sn+1
has principal curvatures given by

)\1:"':>\n—k:\/1_cl )\n—k+1:"':)\n:\/1_c2' (3317)
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Hence,

nH = (n—kv1—c+k/1—c (3.3.18)
and

S=m—k)1—-c)+k(1l—cy). (3.3.19)

Substituting (3.3.18) and (3.3.19) into relation (3.2.2), we obtain that

|2 = m((n _k)H + /n2H? — 4k(n — k) . (3.3.20)

This together with (3.3.16) implies that M™ must be isometric to S""!(¢;) x
H!(cy), with ¢; = n-
n —

2

. and ¢y = —(n — 2). |
In the case n = 2, as consequence of Theorem 3.3.2 and Cheng’s Theorem [57]

we obtain

Corollary 3.3.1 Let M? be a complete linear Weingarten spacelike surface immersed

with parallel normalized mean curvature vector in Sf,*p, such that R = aH +b for some

a,b € R with b < 1. If H?> < 1 and hypothesis (3.2.1) is satisfied, then M? is totally

umbilical.

We recall that Montiel in [100] (see also Section 3 of [103]) classified all totally um-
bilical spacelike hypersurfaces of de Sitter space S, Such hypersurfaces are obtained
by intersecting the de Sitter space ST with affine hyperplanes {p € R}*% (p,a) = 7} of

the ambient space R7™2, where a € R} — {0} and 72 > (a,a) = ¢ with ¢ € {1,0, —1}.
M, ={z €St : (p,a) =7}

Then, for p € M., the unit (timelike) normal fields on M, is given by

N:(p) = ! (a—Tp).

T2 —¢

Hence, the second fundamental form of M, is

T
2 X’
T —C

A X =

for all vector field X tangent to M,. So, M has constant mean curvature H? =

In fact, it can be verified that:

i. If ¢ =1, that is, a is a spacelike vector, then M is isometric to an n-dimensional

hyperbolic space of constant sectional curvature and H? ranges all possible

T J—
values in (1, 00);
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u. If ¢ = 0, that is, a is a null vector, then M is isometric to an n-dimensional

Euclidean space R® and H? = 1;

ui. If c = —1, that is, a is a timelike vector, then M is isometric to an n-dimensional

and H? takes all possible values

sphere with constant sectional curvature

in [0, 1);

T

Now, when considering the opposite inequality to given in (3.3.8) and under
appropriate restriction on the norm of traceless symmetric tensor defined in (2.2.3), we

present our third characterization result.

Theorem 3.3.3 Let M"™, n > 3, be a complete linear Weingarten spacelike sub-
manifold immersed with parallel normalized mean curvature vector in S;}ﬂ’, such that
R =aH + b for some a,b € R with b < 1. Suppose that

4(n—1)
Q(p)

where is the real root of Py given by

C_(n,p, H) = 2\/% (p(n —2)H — \/pQ(p)H? — 4p(n — 1)) :

If hypothesis (3.2.1) is satisfied, then either M™ is totally umbilical or isometric to the

<H*<1 and |® <C_(n,p H), (3.3.21)

-2
hyperbolic cylinder S"(c1) x H'(cq), where 0 < ¢; < % and —n(n—2) < ¢y <0
n —
1 1
with — + — = 1.
C1 (6))

Proof. From hypothesis (3.3.21), by a direct computation, it is not difficult to verify
that the polynomial Py defined in (3.3.13) has two distinct real roots, which are given

by
i ) = 5L (o~ D £ V/QUIFE — T D).

We observe that C'_(n, p, H) is positive if, and only if,

4(n—1) 9
WSH < 1.

Hence, we have that Py (|®|) > 0 for |®| < C_(n,p, H), and Pg(|®|) = 0 if, and
only if, |®| = C_(n,p, H). Consequently, proceeding in a similar way of the last
part of proof of Theorem 3.3.2, we obtain that M™ must be an isoparametric spacelike

hypersurface of i and, from Theorem 5.1 of [1] to conclude that M™ is isometric to
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1 1
a hyperbolic cylinder S"~*(c;) x H'(¢3) with ¢; > 0, ¢ < 0 and — + — = 1. Moreover,

C1 Co
-2
combining the assumption (3.3.21) with equation (3.3.20), we have 0 < ¢; < %
n p—
and —n(n —2) < cy <0. u

We closed our chapter by presenting a new version of Theorem 1.1 of [94] and

Theorem 1.4 of [127].

Theorem 3.3.4 Let M™ be a complete spacelike linear Weingarten submanifold im-
mersed with parallel normalized mean curvature vector in SZJFP, such that R = aH + b
for some a,b € R with b < 1. If S < 2y/n — 1 and hypothesis (3.2.1) is satisfied, then

either
1. M™ is totally umbilical, or
1. S = 2v/n— 1. Moreover, when b < 1, M™ is isometric to a hyperbolic cylinder
1 1
S" 1 (ey) x HY (co) with — + — = 1.
1 G

Proof. Since R = aH + b, Cheng-Yau’s modified operator L (1.2.4) acting on the

mean curvature function H can be estimated as follows

n

2vn —1

This together with Proposition 2.2 of [127](cf. Lemma 3.3.1) and relation (3.2.2)

LinH) > Y (h&)* —n’|VH]> +n(S — nH?) <n -

i,k

S) (3.3.22)

implies that

L(nH) > |®? <n - ﬁs) . (3.3.23)

From assumption S < 2y/n — 1 and (3.3.23) we obtain that L(nH) > 0. This hypoth-
esis with relation (3.1.12) also gives us that H is bounded on M™.
Moreover, Proposition C guarantee that M™ is L-parabolic. Thus, we obtain that

H is constant on M". Consequently, returning to (3.3.23) we obtain

=0 on M".

n
o2 (n— ——m==S
2] < 2y/(n—1) >
Consequently, if |®|? = 0, then M" is totally umbilical. Otherwise, S = 2v/n — 1.
In the case when b < 1, proceeding in a similar way of the last part of proof of

Theorem 3.3.2 we conclude the proof of theorem.
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Chapter 4

L-parabolic complete linear
Weingarten submanifolds immersed in

an Einstein manifold

This chapter aims to present the results related to the articles |26, 27|, where the
results of the second reference correspond to a natural improvement of the previous
ones obtained in the first one. We start with the geometry of a spacelike submanifold
immersed in a semi-Riemannian manifold and, by virtue of the work of [40], we ob-
tain a Simons-type formula and a characterization result via parabolicity criterion for
complete linear Weingarten spacelike submanifolds immersed with parallel normalized
mean curvature vector and flat normal bundle in an Einstein manifold £*? of index p

satisfying the curvature conditions (1), (2), (3) and (4).

4.1 Spacelike submanifolds immersed in a semi-Rieman-

nian manifold

Let L7*? be an (n + p)-dimensional semi-Riemannian manifold of index p and let
M™ be a spacelike submanifold immersed in L;”rp. In this context, we choose a local
field of semi-Riemannian orthonormal frames {ei,...,e,,} in L7*? adapted to M™.

Using the same indices convention as in the previous chapters:

1<ABC,...<n+p, 1<ijk,...<n and n+1<a,8,7,...<n+p.
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Let wy, ..., wyyp beits corresponding dual coframes so that the semi-Riemannian metric

of L;“’ is given by ds? = > , eaw?.Then the structure equations of LZ+p are given by

dwy = — ZﬁB wap ANwp, wap+wpa =0, (4.1.1)
B
1 —
deB = _ZC:ECWAC/\WCB_502;€C€DRABCDWC/\WDa (412)

where Rapcp denote the components of the curvature tensor of L;}er . In this setting,
denoting by Rcp and R the the components of the Ricci tensor and the scalar cur-

vature of L;‘“’, respectively, we also have Rop = E egRceppi, and R = ZA eaRAa.
- B
Moreover, the components R pcp.g of the covariant derivative of the curvature tensor

of Ly*P are defined by

E GERABCD;EWE = dRapcp — E € (REBCDWEA + RapcpWEB
E E
+ Rapepwec + Rapcswep) -

Restricting all the tensors to M™, i.e., applying in L;*?, we have w, = 0 on M™.

Hence, from (4.1.1) and we obtain

dw; = — Zwij ANwj, wij +wj = 0 and (4'1'3)
J

D Wi Aw; = dw, = 0. (4.1.4)
Thus, from Cartan’s Lemma we obtain
ji

Wai = Y _hfw; and B =R, (4.1.5)
J

As in the previous chapters, let

B=) hw®w®e,, and S=[B>=> (h), (4.1.6)
a,,] a,,]
be the second fundamental form of M™ and its square length, respectively. Further-

more, the mean curvature vector h and the mean curvature function H of M" are

defined, respectively, by in

h:%Z(Zh%)ea and H:|h|:% Z(th§>
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From (4.1.1) and (4.1.2), we deduce that the connection forms {w;;} of M™ are

characterized by the following structure equations

dwi:—Zwij/\wj, wij —|—wjz-:0 and
J

(4.1.8)

1
dw;j = — Z Wik N\ Wgj — 3 Z Rijrwr A wy,
k k.l

where R;j; are the components of the curvature tensor of M™. From previous structure

equations, we obtain Gauss equation (see Theorem 4.5 of [107])

Riji = Rigi — Y _(Bh — hihly). (4.1.9)
B

Hence, combining (4.1.6), (4.1.7) with (4.1.9) we also get the following relation
S = 7’L2H2 + n(n - 1)R - Zﬁiﬁj’ (4110)
Y]

where R stands for the normalized scalar curvature of M™. Moreover, the first covariant

derivatives hgy, of h;; satisfy

> e = dhS =Y hwr; — Y hSwki — > hiwsa. (4.1.11)
k k k 8

Then, by exterior differentiation of (4.1.5) we get Codazzi equation (see Theorem 4.33
of [107])
he

ijk

— h*

fij = Raijh- (4.1.12)

The second covariant derivatives hj,, of hf; are given by
D hiwn = dhfy = ) B — Y By — Y hien = Y hiws.
! ! l l B
Taking the exterior derivative in (4.1.11), we obtain the following Ricci formula
m m
Restricting the covariant derivative EABCD; g of Rapep to M™, we get

Faijk;l = Eaijk;l + Zﬁaﬁjk‘hiﬁl + Zﬁaiﬁkh]@l (4.1.14)
B B
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+3  Ragjshiyy + > Ruijihien,
B m,k

where Rm-jkl denotes the covariant derivative of }_%aijk as a tensor on M". Note that,
when we suppose that M" has flat normal bundle, that is, Rt = 0 (equivalently,

Rogjr = 0), Rapji satisfy Ricci equation

Rogij = Y (Wb — hihiy). (4.1.15)
k

In next section, let us consider the particular case when Lgﬂ’ is the Einstein
manifold. From now on, we will denote this ambient space by £'*? of index p. We
recall that a semi-Riemannian manifold is called an Einstein manifold when its Ricci

curvature can be written as a multiple of its metric.

4.2 A Simons-type formula

Taking into account the previous digression, when deal with a spacelike sub-
manifold M™ immersed with parallel normalized mean curvature vector in an Einstein
manifold 8;””’ , we can choose a orthonormal frame {ey,...,e,4,} of TEI?“” such that
Eni1 = % It follows that

1 1
H™ = —tr(h"*) = H and H*:= —tr(h*) =0, a >n+2, (4.2.1)
n n

where h® denotes the matrix (h}).
Thus, by similar method to the proofs of Lemma 2 in [40] and Lemma 3.1 in [93],
we can show the following Simons-type formula for a spacelike submanifold immersed

into an Einstein manifold EZ}JFP )

Lemma 4.2.1 Let M" be a spacelike submanifold immersed with parallel normalized
mean curvature vector and flat normal bundle in an Einstein manifold El’,”p of indez p.
Suppose that there exists an orthogonal basis for T'M that diagonalizes simultaneously
all operators B, with n € TM*, where (Byu,v) := (B(u,v),n) for any u, v € TM.
Then

AS = |VB|2+2< Z Mg R + Z h%h?mRmkik>

17]7k7m7a 7’7‘77k7m7a

+ Z h%hfkﬁaiﬁk_ Z h%hfkﬁakﬂi (4.2.2)
i,5,k,0,8 i,5,k,a,8
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+ > hhRaksk — Y Wk Rais; +n ) bt H,
i,5,k,,8 i,5,k,,8 1,7

—nH Y hGho bt > [t (hR))? + ; > N (hh? = nPh%),

ij' 'mi’ "myj

’]?m «@ a’/B a7/6

where N(A) = tr(AAY), for any matriz A = (aij).

Proof. Since
[<hzaj) } = Qhw ijk>
where k denotes the index of the derivative in the tangent direction e, together with
the linearity of the Laplacian operator, a straightforward calculation shows that
%AS = > h (Z hwkk> > (kg% (4.2.3)
aiyjik ik
Combining the equation (4.1.6) with Codazzi equation (4.1.12) we have
%AS = jzka he Roje + azjk heshisy, + |V BJ. (4.2.4)
Note that, since (£]77,7) is an Einstein manifold, the components of its Ricci
tensor satisfy Ryp = Ag4p, for some constant A € R. Moreover, by the assumption
that there exists an orthogonal basis for T'M that diagonalizes simultaneously all B,
with n € TM+*, we can consider {ey,...,e,} a local orthonormal frame on M" such
that hg; = A#d;; for all a € {n+1,...,n+p}. Thus, if we proceed as in [93], then from
the differential Bianchi identity and from Ricci’s Lemma g, behave as constants in

covariant differentiations, that is, g,5.c = 0 we get

Z X Raiipre = — Z Y (Eikik;a + Ekaik;i)
ik« i,k,a
- _ZAQ _zza__azi)
= = Z )‘? /\gii;a - /\gai;i) =0 (425>

[e"

and

Z )\?Rakik;i = Z )‘?Eai;i - Z )‘?)‘gai;i =0, (4.2.6)

ik,
where Rjjgm are the covariant derivatives of Rjjp on &P, Tt follows from (4.2.5)

and (4.2.6) that
Z (Raijrn + Rairizj) his = 0. (4.2.7)

i7j7k7a
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Therefore, using the equations (4.1.9), (4.1.13) — (4.2.1) together with (4.2.4) and

(4.2.7), we can reason as in the proof of Lemma 2 in [40] to obtain formula (4.2.2). =

Remark 4.2.1 Several authors obtained interesting results on the local symmetry of
Einstein Manifolds. In this direction, Tod [121] showed that four-dimensional Einstein
manifolds which are also D’Atri spaces are necessarily locally symmetric. Brendle [43]
proved that a compact Einstein manifold of dimension n > 4 having nonnegative
isotropic curvature must be locally symmetric, extending a previous result of Micallef
and Wang for n = 4 (see Theorem 4.4 of [99]). See also [126] for another sufficient
conditions for an Einstein manifold to be locally symmetric. Recently, Peterson and
Wink [110] showed that Einstein manifolds with | 25 |-nonnegative curvature operators

are locally symmetric.

At this point we also observe that, denoting by Rep the components of the Ricci
tensor of £77, the scalar curvature R of £/7 is given by
n—+p

— ZGA}_%AA = Zf_%ijij - 22731‘0404 + Zﬁaﬁaﬁ-
A 1,5 1,00 a,B

Thus, if £)77 satisfies curvature conditions (1) and (3) then we obtain

=

R=n(n—1)R —2pc; + (p— 1)cs, (4.2.8)

where
_ 1 —
17]
In views of these, since the scalar curvature of an Einstein manifold is constant, from

(4.2.8) we conclude that R is a constant naturally attached to an Einstein manifold

E)P satisfying (1) and (3).

4.3 A parabolicity criterion for spacelike submani-

folds immersed in an Einstein manifold

The next result provides sufficient conditions which guarantee the L-parabolicity
of a linear Weingarten spacelike submanifold immersed in Eg“’, whose its proof is
similar to proof of Proposition A.

In this setting, denoting by Ric the Ricci tensor of Einstein manifold ETP, Ric =

A(,) for some constant A € R and together with Lemma 3.1 of [4|(cf. Lemma 5.2.1)
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we get

<diVP17 Vf) = Z<]~:_{<€n+17 ei)eia Vf> = m(erﬂrla Vf)
= /\<6n+17 Vf) =0, (431)
where P is defined in (1.2.3) and R denotes the curvature tensor of E)7P. Choosing a
local orthonormal frame {ey,...,e,} on M", we have

div(PU(V ) = Y (Ve P)(V) e) + (P(Ve, V) e)

- (cllivPl, Vi) + Of. (4.3.2)

Thus, combining (4.3.1) with (4.3.2) we obtain Of = div(P(Vf)). Consequently, we
get
L(f) =div(P(VYf)). (4.3.3)

Therefore, we can apply Theorem 2.6 of [111](cf. Theorem 1.2.1), to obtain our

L-parabolicity criterion as follows:

Proposition D Let M™ be a complete linear Weingarten spacelike submanifold im-
mersed with parallel normalized mean curvature vector in an Finstein manifold ggﬂ?
of index p, such that R = aH + b for some constants a,b € R with b < R. If H is

bounded on M"™ and, for some reference point o € M"™ and some § > 0,

/m _dr (4.3.4)
s vol(@B,) i

where By denotes the geodesic ball of radius t in M™ centered at o, then M"™ is L-

parabolic.

When considering again the traceless symmetric tensor ® defined in (2.2.3)from
relation (4.1.10), for a complete spacelike submanifold M™ immersed in £} we obtain

the following relation

D=8 —nH*=nH*n—1)+n(n—-1)(R-TR). (4.3.5)

The following lemma is an immediate consequence of the equations (4.2.5)- (4.2.7)

obtained in the proof of Theorem 4.2.1 and Lemma 1 of [40].
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Lemma 4.3.1 Let M" be a linear Weingarten spacelike submanifold immersed in an
Einstein manifold P satisfying conditions (1) and (3), such that R = aH +b for
some a,b € R. Suppose that there exists an orthogonal basis for TM that diagonalizes
simultaneously all operators B, withn € TM* and b < R. Then,

|VB|? > n*|VH?. (4.3.6)

Moreover, if the equality holds in (4.3.6) on M™, then H is constant on M™.

4.3.1 Main characterization Result

From Proposition D, we obtain the following characterization result for complete

linear Weingarten spacelike submanifolds.

Theorem 4.3.1 Let M™ be a complete linear Weingarten spacelike submanifold im-
mersed with parallel normalized mean curvature vector and flat normal bundle in an
Einstein manifold E)"P of index p satisfying conditions (1), (2), (3) and (4), such that
R = aH + b for some constants a,b € R with b < R. Suppose that there exists an or-
thogonal basis for TM that diagonalizes simultaneously all operators B, withn € TM*,
where (Byu,v) = (B(u,v),n) for anyu, v € TM. When c:= %+ 2¢9 > 0, assume in

addition that H* > 4(5631))6, where Q(p) := p(n — 2)*> +4(n —1). If H is bounded on

M™, |®| > C(n,p, H), where

Cloap ) = 5 (o= D+ QIR — T D).

and hypothesis (4.3.4) is satisfied, then p = 1 and M™ is an isoparametric hypersurface

of EM with two distinct principal curvatures one of which is simple.

Proof. Since we assume that M has parallel normalized mean curvature vector, from
Ricci equation (4.1.15) it follows that A*h™ ! = A" h* for all o, that is, A" commutes
with all the matrices h*. Thus, from traceless symmetric tensor ® and (2.2.4)we have
that ®"*! commutes with all the matrices ®. Since the matrices ® are symmetric and
traceless, applying Lemma 2.6 of [116](cf. Lemma 2.3.1) with A = ®* and B = " *!

in order to obtain

|tr((@)20" )| < %N(@“)\/N(cbnﬂ). (4.3.7)

Let us recall that, by Cauchy-Schwarz inequality we also have that
pY [tr(@ @) > p (@) =p) [N(&)]
OL,B « (%
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(Z N(@%) = |, (4.3.8)

On the other hand, taking into account our set of constraints on M" — E'*P

together with Lemma 4.2.1, we can reason as in the proof of Proposition 1 in [40] to

obtain
L(nH) > |®*Py,(|9]), (4.3.9)
where
2 n(n-2)
Py, () ="—— ——""Hzx —n(H?*—-0).
aele) = = = He (0

Now we analyze the sign of the constant c. First notice that in the case ¢ > 0,
if H? > A‘(ST;}))C, then the polynomial Py, . has (at last) a positive real root given by
C(n,p, H). Thus, since |®| > C(n,p, H), we get Pp,.(|®]) > 0, with Py, (|®|) = 0 if,
and only if, |®| = C(n,p, H). On the other hand, if ¢ < 0 we have that Py, .(|®]) >0
without any restriction on the values of the mean curvature function H. Consequently,
in both cases, from (4.3.9) we get that L(nH) > 0.

Let us observe that in virtue of Proposition A the submanifold M™ is L-parabolic.
It follows from the boundedness of H, that it is constant on M"™ implying, in particular,
that L(nH) = 0 on M". Since |®| > 0, we obtain that Py, .(|®|) = 0. Thus,
inequalities (4.3.7) and (4.3.8) are, in fact, equalities. This implies, in particular, that
N(®") = tr(®"H1)? = |®|?. Consequently, from (2.2.5) we obtain

tr(®")? = |®]* = S — nH>. (4.3.10)

Considering again that M™ has parallel normalized mean curvature vector, from (4.2.1)

we also have
(@) =S — > > (he)? —nH”. (4.3.11)
a>n+1 4,5

By comparing the last two above expressions we conclude that Z Z(h%)z =0.
a>ntl ij
Now, returning to (4.3.8) we get

pl®|* = pN(@")? =p > [N = [®[%,
a>n+1

It immediately follows that p = 1. Moreover, by the assumption b < R, Lemma 1
of [40](cf. Lemma 4.3.1) together with fact that H is constant on M™ implies that

Z(thrl) _ n2’v[{‘2 — O,

ijk
Z‘?j’k
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that is, h%l = 0 for all 7, j, k. Therefore, we have that M"™ must be an isoparametric

spacelike hypersurface of &', [

We close this Chapter quoting the following consequence of Theorem 4.3.1.

Corollary 4.3.1 Let M™ be a complete linear Weingarten spacelike hypersurface im-

mersed in an Einstein manifold £ of index 1 satisfying conditions (1) and (2), such

that R = aH + b for some constants a,b € R with b < R. When ¢ := a + 2¢9 > 0,
n

assume in addition that H* > %. If H is bounded on M",

|®| > 2\/% ((n —2)H + \/n2H? — 4(n — 1)c>

and hypothesis (4.3.4) is satisfied, then M™ is an isoparametric hypersurface of £t

with two distinct principal curvatures one of which is simple.

Remark 4.3.1 Considering the particular case where p = 1, we also obtain in [26]
a characterization result similar to Corollary 4.3.1, now assuming that H has a strict
sign and S > 2+y/n — 1c when ¢ := o + 2c9 > 0.

n
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Part 11

Rigidity and nonexistence of complete
hypersurfaces in a semi-Riemannian

warped product
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Chapter 5

Preliminaries 11

In a similar way to Chapter 1, here, we recall some basic facts related to Rieman-
nian immersions in semi-Riemannian warped products and we quote the auxiliaries

lemmas which will be used to prove our main results.

5.1 Semi-Riemannian warped product

We start given a description of our ambient space. Let M be a connected
semi-Riemannian manifold with metric g = (, ) of index v < 1, and semi-Riemannian
connection V. For a vector field X € X(M), let ex = (X, X). We will say that X is a
unit vector field if ex = £1, and timelike if ex = —1.

Now, let (M™, (,) ) be a connected, n-dimensional oriented Riemannian manifold
and let I C R denote an open interval. The product manifold M = I'x M™ endowed

with the semi-Riemannian metric

(-, )ar = emy(dt*) + p*(mr)mi (), (5.1.1)

of index v < 1, where € := €, = (X, X)y; for any smooth vector field X € X(M),
p € C(I) is a positive smooth function, 7; and m); denote the canonical projections
onto the factors I and M™, respectively. Such a space is a particular case of a semi-
Riemannian warped product with fiber (M™, (,)5), base (I, edt?) and warping function
p, and, from now on, we will just write M = X, M™ to denote it.

In the Lorentzian setting v = 1 or, equivalently, when ¢ = —1, according to the
terminology established in [22], M is the so-called generalized Robertson-Walker
(GRW) spacetime.
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Remark 5.1.1 Related to Riemannian setting v = 0, we can point out an interesting
fact about Riemannian space form Q™ endowed with a non-trivial closed and confor-
mal vector field X. From [102, Proposition 2] we have:

1. The Euclidean space R"\{0} is naturally isometric to product R* x S"~*endowed
with metric dr* + r?do?,where do? is the constant curvature one metric on the

sphere S™.

2. Leta € S™™ be an point arbitrary. The hyperfsurfaces S*™\{a, —a} are isometric
to (0,7) x S"endowed with metric df* + sin §*do?.

3. The Hyperbolic space H" ! is isometric to product manifold RY X gup S, R X o« R”
and R X cosn H™.

In the Lorentzian setting, we can quote the ambient space of Chapter 3. From
of works of [82, 49, 118] we have that the de Sitter space STt is isometric to product
R x S with metric —dt? + cosh®(t)do?.

5.1.1 Riemannian immersions

Let us consider ¢ : X" — M Riemannian immersions, that is, immersions
from a connected, n-dimensional orientable differentiable manifold X" into a semi-
Riemannian warped product M= el x » M", such that the induced metric on X"
from the metric (5.1.1) is positive definite. When v = 1, we will refer to (X", (,))
as a spacelike hypersurface of M. In this setting, V will stand for the Levi-Civita
connection of ", while V will represent the Levi-Civita connection of M

We orient X" by the choice of a unit normal vector field N on it. Let 9; be
the standard unit vector field tangent to . So, we have that e =€, = €,. Let
A X(X) - X(X) be the Weingarten operator of ™ with respect to N, which is
defined by

AX = —VxN.

At each p € X", Arestricts to a self-adjoint linear map A, : T,X — T,X. For 0 <r <mn,
let S, (p) denote the r-th elementary symmetric function on the eigenvalues of A,; this
way one gets n smooth functions S, : 3" — R, such that the characteristic polynomial

of A can be written in terms of the Sjs as

det(t] — A) = (=S,

k=0
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where S; = 1 by construction. If p € X" and {e;} is a basis of 7,X formed by
eigenvectors of A,, with corresponding eigenvalues {\;}, one immediately sees that
Sy =0,(A1,..., \n), where 0, € R[Xq,..., X,] is the r-th elementary symmetric poly-
nomial on the indeterminates Xi, ..., X,,.

We define the r-th mean curvature H, of the hypersurface by

r

(n) H, =¢S5, =0.(e\1,...,e\), (5.1.2)
for every 0 < r < n. In particular, Hy = 1 and
1 < 1
H1 = ENE Zl:/\l = eNﬁtrace(A) =H

is the usual mean curvature of »".
For tg € I, we orient the slice ¥} = {to} x M™ by choosing 9;. Note that ¥, has

constant r-th mean curvature

H,

(o (g )’ 1) = (o (222 (5.13)

with respect to 0; (see, for instance, Example 5.6 of [4] and Section 2 of [18]).
We recall that a slab of a warped product eI x, M™ is a region of the type

[t1,to] x M™ ={(t,q) € I x, M" : t; <t <ty}. (5.1.4)

Now, for 0 < r < n, one defines the r-th Newton transformation 7. on X" by
To=1Tand T, =€85.1—€AT,; (1<r<n), (5.1.5)
where I is the identity operator. With a trivial induction, from (5.1.5) we verify that
T, =€ (S, — S, 1A+ S, gA* — - 4+ (=1)"A"), (5.1.6)

so that Cayley-Hamilton theorem gives T,, = 0. Moreover, since for every r, T, is a
polynomial function in A, it is also self-adjoint and commutes with A. Therefore, all
bases of T, diagonalizing A at p € X" also diagonalize all of the T, at p. So, let
{e1,...,e,} be an orthonormal frame on 7,% which diagonalizes A,, A,(e;) = \i(p)es,

then from (5.1.6) we have that

(Topei =€ > A(p)-. i (p)ei. (5.1.7)

i1 <oy
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For each Newton transformation 7., 0 < r < n, we associate a second order linear

differential operator L, : C®(X) — C*(X) given by
L.(f) = tr(T, o V2f), (5.1.8)

where V2f : X(X) — X(X2) denotes the self-adjoint linear operator equivalent to the

Hessian operator of f, defined by
<v2f(X)a Y) = <VXVf7 Y>a

for all vector fields X,Y € X(X).
The divergence of T, on X" is defined by

n

divT, == tx(VT,) = Y (Ve T)(e;) and divTp = divI =0, (5.1.9)
i=1
where {ej, -+, e,} be a local orthonormal frame on 3". Thus, for any f € C*(X), we
have that
div(T(Vf) = Y A(VeT)(V]),e)+ D> (T(V V), e)
i=1 i=1
= (AT, Vf) + L.(f). (5.1.10)

We close this subsection recalling a terminology introduced in [5]. We say that a
Riemannian immersion ¢ : X" — el X, M™ is bounded away from the future infinity of

el x, M™ if there exists ¢ € I such that
(X)) C {(t,x) € el x, M";t < t},

and we say that it is bounded away from the past infinity of el x, M™ if there exists
t € I such that
Y(X) C{(t,x) € el x, Mt > t}.

5.2 Some auxiliary lemmas

In order to establish our main results, we will quote some auxiliary lemmas.
The lemma below gives us the divergences of Newton transformations div7,., defined
in (5.1.9), by Alias, Brasil and Colares in [4, Lemma 3.1] for a spacelike hypersurface
in a conformally stationary spacetime. Lima in [88, Theorem 2.4] obtained a similar

result in the Riemannian setting.
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Lemma 5.2.1 (cf. [4]) The divergences of the Newton transformations T, are given

by the following inductive formula:

diVTO = 0,

divT, = A(divT,—1) + > i, (R(N, T,— 1E)E)

where R stands for the curvature tensor of the ambient spacetime. Equivalently, for
every tangent field X € X(M) it follows that

(divT,, X) = ZZ R(N,T,_;E)E;, A7 X).

7j=1 =1

We note that the gradient of 7; on M s given by
vﬂ—[ = €<v'ﬂ—[, 8,5)(9,5 = E@t. (521)

Now, let h := (77)|, and © := (V,0;) two particular functions naturally attached to
" namely, the (vertical) height function and the angle function, respectively. In this

context, the following computation is obtained from (5.2.1) and definition of h.
Vh= (V)" =ed,, (5.2.2)

where 9, = €0, — ©ON is the tangential component of d, on ¥". In particular, from
(5.2.2) we get
VA =€ (1= (N,9,)*) = €(1-6?), (5.2.3)

where | | denotes the norm of a vector field on ™.
In our setting, the divergence of the Newton transformation 7, in M s ob-

tained from lemma above and equation (3.12) of the proof of [11, Theorem 2] (see also

[88, Theorem 2.4]) .
Lemma 5.2.2 Let ¢ : X" — el x, M™ be a Riemannian immersion. Then
(divTy, Vh) = —e(Ricpy (N*, N*) + e(n — 1)(log p)”(h)|[VR|*)6, (5.2.4)

where Ricy; denotes the Ricci curvature of the fiber M™ and N* = N — €©0; is the

projection of the N onto M"™. Moreover, when M™ has constant sectional curvature K,

(divT,,Vh) = —e(n — 1) (% + ¢(log p)"(h)) (T,—1Vh,Vh)O. (5.2.5)
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For an appropriate choice of the orientation N of 3", the relation (5.1.10) guar-
antees that the operator L, is elliptic if and only if the Newton transformation 7T, is
positive definite. Note that, for r = 0, Ly = A is always elliptic, where A denotes
the Laplace-Beltrami operator. In this context, the following two lemmas establish
sufficient conditions to the ellipticity of the operator L; and L, when r > 2 (see, for

instance, |9, Lemmas 3.2 and 3.3]).

Lemma 5.2.3 Let v : X" — el x, M™ be a Riemannian tmmersion in a semi-
Riemannian warped product M = X, M™. If Hy > 0 on X", then Ly is elliptic or,
equivalently, Ty is positive definite (for an appropriate choice of the Gauss map N ).

Lemma 5.2.4 Let ¢ : X" — el x, M™ be a Riemannian tmmersion in a semi-
Riemannian warped product M = e X, M™. If there exists an elliptic point of
Y, with respect to an appropriate choice of the Gauss map N, and H,., 1 > 0 on X7,
for2 <r <mn-—1, then for all 1 < j <1 the operator L; is elliptic or, equivalently, T
is positive definite (for an appropriate choice of the Gauss map N, if j is odd).

We recall that a point is said to be elliptic in a Riemannian immersion when all
principal curvatures have the same sign. The next lemma gives a sufficient condition to
guarantee the existence of an elliptic point in a Riemannian immersion. For its proof,

see |4, Lemma 5.4] and [11, Lemma 4].

Lemma 5.2.5 Let ¢ : X" — el x, M™ be a Riemannian tmmersion in a semi-
Riemannian warped product M = X, M"™. If —ep(h) attains a local minimum at
some p € X", such that p'(h(p)) # 0, then p is an elliptic point for ¥".

It follows from [9, Lemma 4.1] and [18, Proposition 6] the next formula:

Lemma 5.2.6 Let ¢ : X" — €l x, M" be a Riemannian immersion and let g : I — R

be any primitive of the warping function p. Then, for everyr =0,--- n—1,

L,(g(h)) = €b, (¢/ (W) H, + Hy1p(h)O)

by = (n — ) (Z) = (r+1) (T i 1). (5.2.6)

Along this second part, we will always denote by u € C°°(X) an arbitrary prim-

where

itive g of the warping function p restricted to the Riemannian immersion ¢ : X" —
W”H, that is,
u:=g(h).
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When the ambient space is a GRW spacetime M= I x o, M™, since 0, is a
unitary timelike vector field globally defined on Mnﬂ, there exists a unique timelike
unitary normal vector field N globally defined on a spacelike hypersurface X" < !
which is in the same time-orientation as 0;. We then say that N is future-pointing

and, from the Cauchy-Schwarz inequality for timelike vectors, we have that the angle

function

O =(N,3) < —1. (5.2.7)

In the Riemannian setting, we recall that a hypersurface is said to be two-sided if its
normal bundle is trivial, that is, there is on it a globally defined unit normal vector

field N.

5.3 Entire graphs

Let Q C (M"™, (,)m) be a connected domain and let w € C*°(2) be a smooth
function such that w(Q2) C I, then ¥ (w) will denote the (vertical) graph over € deter-

mined by w, that is,
Y(w) ={(w(z),z):x€Q} Cel x, M".
The metric induced on €2 from the metric of the ambient space via ¥(w) is
(,) = edw?® + p*(w)(, ). (5.3.1)

We observe that for a graph X (w), its height function A is nothing but the function w
seen as a function on X(w). Therefore, in what follows, Dw stands for the gradient of
w, as a function on M", while Vw = Vh stands for the gradient of the height function,
as a function on X(w).

The graph is said to be entire when 2 = M™. In the case € = 1, when the function
p(w) is bounded on M™", the entire graph ¥(w) is complete. In particular, this occurs
when X(w) lies between two slices of I x, M™. While in the case e = —1, a graph X(w)
is a spacelike hypersurface if and only if |[Dwl|3,. < p*(w), where |Dw|ym stands for
the norm of Dw with respect to the metric (, )y in Q.

From [22, Lemma 3.1], in the case that M" is simply connected, every complete

spacelike hypersurface ¥" in —I x, M" such that the warping function p is bounded
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on X" is an entire spacelike graph. In particular, this happens for complete spacelike
hypersurfaces contained in a timelike bounded region. However, in contrast to the
case of graphs in a Riemannian warped product, an entire spacelike graph in a GRW
spacetime is not necessarily complete, in the sense that its induced Riemannian metric
(5.3.1) is not necessarily complete on M™. For instance, Albujer constructed explicit
examples of noncomplete entire maximal spacelike graphs (that is, whose mean cur-
vature is identically zero) in the Lorentzian product space —R x H? (see |2, Section
3]).

Given an entire graph X(w) C €l x, M™, its orientation N which corresponds to
the choices made in Sections 6.2, 6.3 and 7.1 is described by

_pw) 1
N_—W(w) (at p2(w)D ) (5.3.2)

where W (w) := /p?(w) + €| Dw|%,.. Moreover, from (5.3.2) we obtain the correspond-

ing Weingarten operator

1 P (w) X+e <_<DXDU% Dw)y pl(wwa’X)M) Dw,

A= W) P W ) H)Wi(w) W)

(5.3.3)
for any vector field X tangent to §2, where D is the Levi-Civita connection of (M™, (, )as).
On the other hand, we have that

N = N* + €00, (5.3.4)

where N* denotes the projection of N onto the tangent bundle of the fiber M"™. Con-

sequently, combining (5.2.2) with (5.3.4) we get
(N*)T = eBOVh (5.3.5)
and
|Vh|? = p?(h)(N*, N*) . (5.3.6)
Thus, from (5.3.2), (5.3.5) and (5.3.6) we obtain that

|Dw|Mn

VH =

(5.3.7)
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Chapter 6

Rigidity and nonexistence of
Riemannian immersions in
semi-Riemannian warped products via

parabolicity

Our main goal in this chapter is to present the results obtained in article [30]. We
study complete Riemannian immersions in semi-Riemannian warped products obeying
suitable curvature constraints. Under appropriate differential inequalities involving
higher order mean curvatures, we establish rigidity and nonexistence results concerning
these immersions. Applications to the cases that the ambient space is either an Einstein
manifold, a steady state type spacetime or a pseudo-hyperbolic space are given, and a
particular investigation of entire graphs construct over the fiber of the ambient space
is also made. Our approach is based on a parabolicity criterion related to a linearized
differential operator which is a divergence-type operator and can be regarded as a

natural extension of the standard Laplacian.
6.1 A parabolicity criterion for Riemannian immer-

sions

In the Part I this thesis, we study the parabolicity of Riemannian submanifolds
with respect to modified Cheng-Yau’s operator L defined in (1.2.4). Here, considering
the setting of the previous chapter, from (5.1.10) we define the operator £, : C*(X) —
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C>(X) by
L,(€) = div(T,(VE)). (6.1.1)

In particular, from [4, Corollary 3.2 |, when the ambient spacetime M has
constant sectional curvature, the Newton transformations 7, are divergence-free, that
is, divl'r = 0. Consequently, £,(§) = L,(§) for all 1 < r < n — 1. For instance,
in Chapter 3, since the Sitter spacetime S7™' has constant sectional curvature, the
Cheng-Yau’s operator [J defined in (1.2.1) is the divergence-free operator (6.1.1) in the
particular case r = 1.

With respect to operator L, the following concept is due to [17, Definition 5 - 4]
and [18, Definition 30].

Definition 6.1.1 A Riemannian immersion ¢ : X" — el x, M™ is said L,-parabolic
if the only bounded from above smooth solutions of the differential inequality L£,.£ > 0

are the constant ones.

As in the previous parabolicity criteria (Propositions A, C and D), in the
next result we will consider the boundedness of the r-th mean curvature H, of v,
1 < r < n. Moreover, under appropriate conditions on the Newton transformation T,
defined in (5.1.5), we present the following result provides sufficient conditions which
guarantee the £,-parabolicity of Riemannian immersions in a semi-Riemannian warped
product, whose its proof is similar to proof of Proposition A.

Proposition E Lety : X" — M bea complete Riemannian immersion in M =
el x, M". Suppose that the Newton transformation T, is positive semi-definite and

supy, H, < 400, for some 0 < r < n. If, for some reference point o € X",

/+OO _@ (6.1.2)
o vol(0B) oo o

where By is the geodesic ball of radius t in X" centered at the origin o, then X" is

L,.-parabolic.

6.2 Rigidity and nonexistence of spacelike hypersur-

faces

In this section, taking into account the previous digression, we can state and

prove our first rigidity result.
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Theorem 6.2.1 Let ¢ : X" — M be a complete spacelike hypersurface immersed
into a GRW spacetime Mt =g X, M"™. Suppose that X" is bounded away from the
future infinity of M and H> 0 on ¥, If hypothesis (6.1.2) is satisfied and

H>2n), (6.2.1)
then X" is a slice ofﬁnﬂ.
Proof. Since u := g(h), by the definition of operator (6.1.1) and Lemma 5.2.6 we have
Lo(u) = —n(p'(h) + p(h)HO). (6.2.2)
It follows from assumptions H > 0 and © < —1 on X" that

Lo(u) > np(h) (H - %,(h)) . (6.2.3)

Thus, combining the inequalities (6.2.1) and (6.2.3) we obtain that Ly(u) > 0.
Moreover, Proposition E guarantees that X" is Ly-parabolic. But, since X" is
bounded away from the future infinity of MnH, we have that the primitive u is bounded
from above. Consequently, u is constant on ¥". Therefore, we conclude that the height
function A is constant and, hence, ¥ must be a slice of M [
Next, we will consider a natural extension of the (n+ 1)-dimensional steady state
spacetime —R X R"™, the so-called steady state-type spacetime M= R Xet M™,
where M™ is a connected n-dimensional Riemannian manifold (see [5, Section 4]). It
is worth to note that when a steady state-type spacetime admits a complete spacelike
hypersurface which is bounded away from the future infinity, [5, Lemma 7| guarantees
that its Riemannian fiber M™ is necessarily complete. In this setting, Theorem 6.2.1

reads as follows.

Corollary 6.2.1 Let ¢ : X" — M bea complete spacelike hypersurface immersed
mto a steady state-type spacetime M= R Xet M™. Suppose that X" is bounded
away from the future infinity of M If H > 1 and hypothesis (6.1.2) is satisfied,
then X" is a slice oanH.

For r» = 1, we will suppose that the GRW spacetime obeys a suitable curvature

constraint.
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Theorem 6.2.2 Let ¢ : X" — M be a complete spacelike hypersurface immersed

into a GRW spacetime M= —Ix,M"™ which obeys the following curvature constraint
Ricys < (n — 1)inf(pp” — (0)*)(, ), (6.2.4)

where Ricy; stands for the Ricci tensor of M™. Suppose that 3" is bounded away
from the future infinity oanH, H > 0 with supy, H < +00, and Hy > 0. If hypothesis

(6.1.2) is satisfied and

H2 pl
=2 ;(h), (6.2.5)

then X" is a slice of M

Proof. From operator (6.1.1) together with Lemma 5.2.6 and equation (5.2.4) of

Lemma 5.2.2, we obtain that

Li(u) = —p(h)((n—1)(logp)"(h)|Vh|* = Ricyr(N*, N*))©
—c1(p'(h)H + p(h)H>0), (6.2.6)

where N* = N + ©0;.
On the other hand, from (5.2.3) we have that

1
p*(h)

(N*, N*) 5 = IVh[2

Thus, using curvature constraint (6.2.4) and © < —1, from (6.2.6) we get that

i) = ap it (2 =2 ).
It follows from (6.2.5) we have that £;(u) > 0. Moreover, by assumptions supy, H <
+oo and (6.1.2), Proposition E assures that X" is £;-parabolic.

Consequently, since " is bounded away from the future infinity of Mnﬂ, we
obtain that u is constant on X". Therefore, we conclude that the height function A is
constant, which means that >" is a slice of M [

When the ambient spacetime is an Einstein manifold, Theorem 6.2.2 reads as it

follows:

Corollary 6.2.2 Let ¢ : X" — M be a complete spacelike hypersurface immersed
ito a Einstein GRW spacetime M= X, M™. Suppose that X" is bounded away
from the future infinity oanH. If H > 0 with supy, H < 400, Hy > 0 and hypotheses
(6.1.2) and (6.2.5) are satisfied, then X" is a slice OanH.
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Proof. From [42, Corollary 9.107] (see also [23, Section 2|) we have that M s an
Einstein manifold with Ricci tensor Ric = ¢g,¢ € R, if and only if the fiber (M™, g,,)
has constant Ricci curvature Ricy, = ¢(, ) and the warping function p satisfies the

differential equations

= = -1 -1 /\2
P g WD et 62
p n n p
and thus, we obtain (n — 1)(log p)” = % Therefore, in this case, we have that
p
Ricas = (n — 1) inf(pp” = (0')*)(, ).
Consequently, the result follows by applying Theorem 6.2.2. ]

Considering once more a steady state-type spacetime, from Theorem 6.2.2 we get

the following consequence.

Corollary 6.2.3 Let ¢ : X" — M be a complete spacelike hypersurface immersed
mto a steady state-type spacetime M= R Xot M™ whose fiber M™ has nonpositive
Ricci curvature. Suppose that X" is bounded away from the future infinity of M 'f
supy, H < +00, Hy > H > 0 and hypothesis (6.1.2) is satisfied, then X" is a slice of

—n—+1
M.

When 2 < r < n — 1, we will assume that the Riemannian fiber of the GRW
spacetime has constant sectional curvature. In this case, M= I x p M™ is classi-
cally called a Robertson-Walker (RW) spacetime. In this setting, we will use Lemma

5.2.5 to guarantee the ellipticity of the operator L,.

Theorem 6.2.3 Let ¢ : X" — M bea complete spacelike hypersurface immersed
mto a RW spacetime M= X, M™ whose fiber M™ has constant sectional curva-

ture k satisfying the following curvature constraint
5 < inf(pp” — (5)°). (6.2.8)

Suppose that X" is bounded away from the future infinity of WH, H, > 0 with
supy H, < +o00, and H,.1; > 0 for some 2 < r < n — 1. Assume in addition that

p(h) attains a local minimum at some point p € X" such that p'(h(p)) # 0. If hypoth-

esis (6.1.2) is satisfied and
HrJrl

H,

p/

> —(h), (6.2.9)
P

then X" is a slice of M
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Proof. Since M™ has constant sectional curvature x, from Lemma 5.2.6 together with

equation (5.2.5) of Lemma 5.2.2 and (6.1.1) we obtain

L) = p(h)(n—r) (m ~ (log p>"<h>) (T, V1. VIO
—c,.(p'(h)H, + p(h)H,110). (6.2.10)

On the other hand, since p(h) attains a local minimum at some point p € X"
such that p/'(h(p)) # 0, Lemma 5.2.5 guarantees that p is an elliptic point of ¥". Using
the assumption H,;; > 0, Lemma 5.2.4 we get that the operator L, is elliptic or,
equivalently, 7 is positive definite for all 1 < j <.

Thus, combining the curvature constraint (6.2.8) and the assumption © < —1,

from (6.2.10) we obtain the following estimate

Lo(u) > ﬁm—m (0" = (0)?)(h) = &) (T, V1, VE) + ¢, (p(h) Hysr — /() H,)

> ¢.p(h)H, (H;; - %(h)) . (6.2.11)

Hence, from inequalities (6.2.9) and (6.2.11) we get that £,(u) > 0 on ¥". More-
over, from hypotheses supy, H, < 400 and (6.1.2), we have that ¥" is £,-parabolic.
Therefore, since X" is bounded away from the future infinity of WH, we conclude
that $" must be a slice of 37" . ]

Let us recall that a GRW spacetime —I x, M" is said to be static when the
warping function p is constant. In this case, we can suppose, without loss of generality,

that p = 1. In this case, we obtain the following nonexistence result:

Corollary 6.2.4 Let M = —I x M™ be a static RW spacetime whose fiber M™ has

nonpositive constant sectional curvature k. There is no complete spacelike hypersurface
—mn

YY"t —> M ! bounded away from the future infinity of M such that, for some
2<r<n-1, H. > 0 with supy H, < 400, H.11 > 0, having an elliptic point and
satisfying hypothesis (6.1.2).

Proof. By contradiction, let us suppose the existence of such a complete spacelike
hypersurface ¥". Since p € 3" is a elliptic point and H,,; > 0, Lemma 5.2.4 guarantees
that T} is positive definite for all 1 < 7 < r. Hence, since k < 0 and © < —1, from

inequality (6.2.10) we have

L.(uw) > (n—r)T,_1Vh,Vh) —c¢,H,.10 > ¢.H, ;1 > 0.
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It follows from boundeness of H, that ¥" is L,-parabolic. Therefore, since X" also is
bounded away from the future infinity of ambient space, 3™ must be a slice of M
This implies that H, = 0 and so, we reach at a contradiction.
]
Proceeding, we will consider also the case when the spacelike hypersurface is
bounded away from the past infinity of a GRW spacetime whose Riemannian fiber has
constant sectional curvature obeying a curvature constraint which corresponds to the
so-called strong null convergence condition (SNCC) which was originally conceived by
Alias and Colares in [9]. For a throughout discussion concerning the SNCC see also,

for instance, see [104].

Theorem 6.2.4 Let ¢ : ¥" — M be a complete spacelike hypersurface immersed
imto a RW spacetime M= X, M™ whose fiber M™ has constant sectional curva-
ture k satisfying the SNCC

k= sup(pp” = (¢')7). (6.2.12)

Suppose that X" is bounded away from the past infinity oanH, H.1>0and H >0
with supy, H, < +00, for some 2 < r <n —1. Assume in addition that the sectional

curvature of X", Ky, is such that

p//
Ky < —(h). (6.2.13)
p
If hypothesis (6.1.2) is satisfied and
Hr—i—l 1 P/
< " (h 6.2.14
Hr — (_) p( )7 ( )

then X" is a slice oanH.

Proof. We consider the self-adjoint operator defined by 7,1 : X(X") — X(X") by
Tr—1:= H,_1T,_1. Choose a local orthonormal frame {ej,--- ,e,} such that Ae;(p) =

Aie;(p). It follows from (5.1.7) that

Tr_lei = (—1)T_1 Z /\i1 R )\irflei.
11 <<l 1,071
This implies that, for all 2 € 1,--- ,n, we get

(Tr_1ei,e:) :( " )1 > AiAi) - N ).

r—1 , = ,
<l 1,85 4, J1 < <Jr—1
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Denote by Ky and K the sectional curvatures of " and MHH, respectively. Thus,

from Gauss equation we obtain
KE(Gi, ej) = K(ei, €j) — )\i)\ja (6215)

From [107, Proposition 7.42] (see also |9, Equation (6.6)]), given arbitrary vector fields

U, V,W in M we can compute the following relation

RU V)W = Ry(U*,VIW* + ((log p)' (h))*({(U, W)V — (V,W)U)
—(log P)”<h)<VV7 ) (U, 0)V — (V,0,)U)
—(log p)" (h)({U, W)V, 8;) — (U, 3;){V, W), (6.2.16)

where U* = (mpym)U = U + (U, 0;)0;. Hence, for an orthonormal basis {X,Y} of an
arbitrary 2-plane tangent to 3", the above relation (6.2.16) we get

K(X,Y) = 21 PR,
+((log p)' (R))*({(X, X)(Y, V) — (¥, X)(X,Y))

YH)X*AYH?

)

—(log p)"(A)(X, 0) ((X, O)(Y,Y) — (Y, O }(X,Y))
(10gp)’(h)(< XNY,00) — (X, 0)(Y, X))(0,, Y)
- 0 )KM<X XAV 4 ((log p)' (h)? (6.2.17)
—(log p)"(h)((X,0,)* + (Y, 0,)*). (6.2.18)
Note that
’X* Ay*‘Z — |X*|2‘Y*’2 _ <X*,Y*>2 —_ <X*,X*><Y*,Y*> - <X*,Y*>2

= (1+(X,0))(1+(Y,9)*) = (X,0)%(Y, D)
= 1+ (X,0)* + (Y, 0)% (6.2.19)

On the other hand, from (5.2.2)
(X,0:)% = (X,—Vh—ON)*> = (X.Vh)%. (6.2.20)

Combining (6.2.19) with (6.2.20), we have that | X* AY*|* = 1 + (X, Vh)? + (Y, Vh)>.
Thus,

K(X)Y) = Ky (X", Y7)(1+ (X, Vh)? + (Y, Vh)?) + ((log p)' (h))?

p*(h)
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~(log p)(W)(X, Vh)? + (¥, VH)?)
S Y + (Lo (1)

(/12 h) m(X7Y7) — (10g/))"(h)) ((X, Vh)2 + (Y, Vh)?)

- s ()

p<h)<KM<X* ) = pp” + (0)) (X, VR)* + (Y, Vh)?).(6.2.21)

This together with the convergence condition null (6.2.12) we deduce the following
inequality

K(X,Y) > %(h) (6.2.22)

It follows from (6.2.15) and (6.2.22) that
/!
A\ = K(eie;) — Ks(ei e) > %(h) — Kx(ei e)). (6.2.23)

Thus, from (6.2.13) and (6.2.23) we have \;A\; > 0, for all 4,5 € {1,2,--- ,n} with
i # 7. Hence,
<77“*1€i7 61) = Z()‘jl)‘il) e ()\jr—1>\ir—1) > 0. (6224)

Therefore, conclude that the operator 7,_; is positive semi-definite. Conse-
quently, since H,_; and H, are positive, © < —1 and the convergence condition (6.2.12)
is satisfied, from (6.2.10) we obtain

~ (log p>"<h>) (T VA TR0

-1

L) = p()n—1) (m
—¢(p'(h)Hy + p(h)H,110)

< —cp(h)H,© ( ]_}jl + é%(h)) (6.2.25)

Hence, considering inequality (6.2.14) into (6.2.25) we get that £,(u) < 0 on ™.
Moreover, hypotheses supy, H, < +oo and (6.1.2) assure that X" is £,-parabolic. Since

3" is bounded away from the past infinity of M”H, we conclude that ¥" must be a

slice of WH. ]

Remark 6.2.1 Concerning Theorem 6.2.4, we observe that when »" has a elliptic
point, hypothesis (6.2.13) can be dropped. Furthermore, we point out that inequality
(6.2.14) was already used in [32, Theorem 4| to obtain an extension of [10, Theorem
3.7) and in [113, Theorem 4.1].
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6.3 Rigidity and nonexistence of two-sided hypersur-

faces

Similarly to the case of spacelike hypersurfaces in GRW spacetimes, in this Sec-
tion we will establish rigidity and nonexistence results concerning complete two-sided
hypersurfaces immersed in a Riemannian warped product. We recall that a hypersur-
face is said to be two-sided if its normal bundle is trivial, that is, there is on it a globally
defined unit normal vector field N.

Theorem 6.3.1 Let vy : X" — M bea complete two-sided hypersurface immersed
into a Riemannian warped product M = T1x oM™ . Suppose that X" is bounded away

from the future infinity oanJrl and that —1 < © < 0. If hypothesis (6.1.2) is satisfied

and

~

0<H<Zm), (6.3.1)

)

then X" is a slice ofﬁnﬂ.

Proof. Taking into account that H > 0 and —1 < © < 0, from Lemma 5.2.6 together
with (6.3.1) we obtain that

/

Calu) = (s () + p(1) 1)) = ) (2 0) ~ 1) (6:2)

Hence, combining the inequalities (6.3.1) and (6.3.2), we obtain that Ly(u) > 0. More-
over, by hypothesis (6.1.2) we have that X" is Ly-parabolic. So, since ¥£" is bounded
away from the future infinity of Mnﬂ, we obtain that u is constant on X and, there-
fore, X" is a slice of M [ ]
When the warping function p is either exponential or hyperbolic cosine, following
the terminology introduced by [120], the corresponding warped product R x. M™ or
R Xcosnt M™ has been referred to as a pseudo-hyperbolic space. Tashiro’s terminology is
due to the fact that with suitable choices of the fiber M™ we obtain warped products
which are isometric to the hyperbolic space. For more details about these spaces see,
for instance, [12, 13, 77, 102]. In this context, we get the following applications of
Theorem 6.3.1.
Corollary 6.3.1 Let vy : X" — M be a complete two-sided hypersurface immersed
imto a pseudo-hyperbolic space M =R Xot M™. Suppose that X" is bounded away

from the future infinity oanH and that —1 < © < 0. If hypothesis (6.1.2) is satisfied
and 0 < H <1, then X" is a slice oanH.
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Corollary 6.3.2 Let ¢ : X" — M be a complete two-sided hypersurface immersed
into a pseudo-hyperbolic space M =R Xeosnt M™. Suppose that X" is bounded away
from the future infinity oanH and that —1 < © < 0. If hypothesis (6.1.2) is satisfied
and 0 < H < tanh(h), then X" is a slice ofﬂnﬂ.

In our next result, we will suppose that the ambient space obeys a suitable cur-

vature constraint which is the opposite of that assumed in the results of [102].

Theorem 6.3.2 Let ¢ : ¥" — M be a complete two-sided hypersurface immersed
mto a Riemannian warped product M =1 X, M™, which obeys the following curva-

ture constraint
Ricyr > (n —1) Sl;p((p’f — ")) (6.3.3)

where Ricy; stands for the Ricci tensor of M™. Suppose that X" is bounded away from
the future infinity of M and that —1 < © < 0. If hypothesis (6.1.2) is satisfied,
H > 0 with supy, H < +00, Hy > 0 and

Hy o
< ;(h), (6.3.4)

then X" is a slice of M
Proof. From Lemma 5.2.6 and equation (5.2.4) of Lemma 5.2.2 we obtain that

Li(u) = p(h)(=Ricy(N",N") — (n — 1)(log p)"(h)| Vh|*)®
+c1(p'(h)H + p(h)H20), (6.3.5)

where N* = N — ©0,.

From (6.2) and curvature constraint (6.3.3) we obtain

(n—1) <M) (R)|VR|* — Ricy (N*, N*) < 0. (6.3.6)

2
Thus, since we are assuming —1 < © < 0, substituting (6.3.6) into (6.3.5) we get

catw) = eyt (20 - ).

Hence, using the assumption (6.3.4) we reach at £y(u) > 0. Moreover, since
Lemma 5.2.3 gives that P is positive definite, we can apply Proposition E to guarantee
that X" is Lq-parabolic. So, since " is bounded away from the future infinity of MnH,
we get that the function w is constant. Therefore, we conclude that ™ must be a slice
of M [ ]

We can reason as in the proof of Corollary 6.2.2, obtaining the following conse-

quence of Theorem 6.3.2:
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Corollary 6.3.3 Let ¢ : X" — M be a complete two-sided hypersurface immersed
into an Finstein warped product Mt =1 X, M™. Suppose that X" is bounded away
from the future infinity of M and that —1 <O <L0. If H> 0 with supy, H < 400,
Hy > 0 and hypotheses (6.1.2) and (6.3.4) are satisfied, then X" is a slice ofmnﬂ.

When the ambient is a pseudo-hyperbolic space, Theorem 6.3.2 leads us to the

following applications:

Corollary 6.3.4 Let ¢ : X" — M be a complete two-sided hypersurface immersed
mto a pseudo-hyperbolic space M =R Xt M™ whose fiber M™ has nonpositive Ricci
curvature. Suppose that X" is bounded away from the future infinity of M and that
—1 <0 <0. If hypothesis (6.1.2) is satisfied, H > 0 with supy, H < +00, Hy > 0 and

H —n
FQ <1, then X" is a slice of M +1.

Corollary 6.3.5 Let ¢ : X" — M be a complete two-sided hypersurface immersed
into a pseudo-hyperbolic space M =R Xeosht M™ whose Ricci tensor of the fiber M™
is such that Ricyy < —(n— 1)(, )ar. Suppose that X" is bounded away from the future
infinity of M and that —1 < © < 0. If hypothesis (6.1.2) is satisfied, H > 0 with
supy H < 400, Hy > 0 and % < tanh(h), then 3" is a slice oanH.

In our next results, we deal with higher order mean curvatures.

Theorem 6.3.3 Let ¢ : X" — M bea complete two-sided hypersurface immersed
into a Riemannian warped product M= X, M™ whose fiber M"™ has constant

sectional curvature k and it obeys the curvature constraint
k> sup((p')* — pp"). (6.3.7)
I

Suppose that X" is bounded away from the future infinity of WH, -1 <06 <0and

that the sectional curvature of X", K, is such that

Ko 2 s (5= (0 (0)") (6.3.8)

If hypothesis (6.1.2) is satisfied, H._; > 0, H, > 0 with supy, H, < +00, and

Hr—i—l
H,

4
<5 (), (6.3.9)

for some 2 <r <n—1, then X" is a slice oanH.
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Proof. Since the fiber M™ has constant sectional curvature s, from (6.1.1) toghether

with Lemma 5.2.6 and equation (5.2.5) of Lemma 5.2.2 we obtain

L) = —(n—r)(h) (%ngp)"(h)) (T, V. VIO
s (P () Hy + p(h)Hy 1) (6.3.10)

As in the proof of Theorem 6.2.4 when we consider the self-adjoint operator
defined by 7,-1 : X(¥") — X(X") by T,—1 := H,_1T,_;. Choose a local orthonormal
frame {ey,--- ,e,} such that Ae;(p) = A\ie;(p). It follows from (5.1.7) that

Tr_lei = (—1)7171 Z >\i1 s )\Z-Tflei.
i1 <o i1,
This implies that, for any ¢ € {1,--- n}
0\
(Tr—1€i,€5) = (T B 1) > (A Ajy) o (N A y)-
i< < 1,8 0,51 < <Jr—1

Denote by Ky and K the sectional curvatures of " and Mnﬂ, respectively. Thus,

from Gauss equation we obtain
Kg(ei,ej) = K(ei,ej) +)\i)\j7 (6311)

From [107, Proposition 7.42|, given arbitrary vector fields U, V,W in M we can

compute the following relation

ROUVIW = Ry(U*,V)W* = ((log p) () *((U, W)V — (V,W)U)
—(log )" () (W, &) (U, 0V — (V, 8)U)
—(log p)" (W) (U, W)(V, ) — (U, &)V, W)@, (6.3.12)

where U* = (mpym).U = U + (U, 0;)0;. Hence, for an orthonormal basis {X,Y} of an
arbitrary 2-plane tangent to X", the above relation (6.3.12) we get

N7 1 * * * *|2
K(X)Y) = WKM(X Y )X AY™
—((log p)'(h))* — (log p)" (h) ((X, V) + (Y, Vh)?).
Note that
IX*AY*? = 1—(X,Vh)??+(Y,Vh)2
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Thus,

K(X)Y) = piﬁ) m(X* Y (1 — (X, Vh)? + (Y, Vh)?)
—((log p)'(h))* — (log p)" (h)((X, Vh)? + (Y, Vh)?)

1 * * ! 2
:pm)(XY)KMMW)

(p2 h Y*) + (log p)”(h>> ((X, Vh>2 + <Y7 Vh>2)

< - (2

: (pim 0y PR ) (06 9+ (92

This together with the convergence condition (6.3.7) and assumption (6.3.8) im-

plies the
AiX; >0, forall 4,je{l,....,n}, i#}J.

Thus, we conclude that (7,_1e;,¢e;) > 0 and 7,_1, is positive semi-definite. Since H,
and H, are positive and —1 < © <0, from (6.3.7) and (6.3.10) we get

£a(0) = (= r)p(h) (s + Qo)1) ) 71 (T, e
‘f‘c’r(p,(h)Hr + P(h>Hr+1@)
pl Hr-H
zqmw%#m_m). (6.3.13)

Hence, considering (6.3.9) into (6.3.13) we conclude that £,(u) > 0 on X". Con-
sequently, since we are assuming that X" is bounded away from the future infinity of
W”H, we can apply Proposition E to obtain that A is constant on ™. Therefore, »"
must be a slice of 37" . ]

From Theorem 6.3.3 we get the following nonexistence result:

Corollary 6.3.6 Let M = I x M™ be a Riemannian warped product whose fiber
M"™ has constant nonnegative sectional curvature k. There is no complete two-sided
hypersurface ¢ : X" — M bounded away from the future infinity of M”H, with
—1 < O <0, satisfying hypothesis (6.1.2) and such that Ky, > k, H._1,H, > 0 and
H, .y > 0 with supy, H, < 400, for some2 <r <n — 1.

Related to the higher order mean curvatures, we also establish the following result:
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Theorem 6.3.4 Let v : X" — M be a complete two-sided hypersurface immersed
into a Riemannian warped product Mt =1 X, M™ whose fiber M"™ has constant

sectional curvature k satisfying
K < iI}f((p/)Q —pp"). (6.3.14)

Suppose that X" is bounded away from the past infinity oanH and that —1 < O < 0.
Assume in addition that p(h) attains a local maximum at some point p € X" such that
p'(h(p)) # 0. If hypothesis (6.1.2) is satisfied, H, > 0 with supy, H, < +00, H,41 >0
and H »
r+1 Y
>_—Z(h 6.3.15
> =52 (6:3.15)

for some 2 <r <mn—1, then X" is a slice oanH.

Proof. Since we are assuming that p(h) attains a local maximum at some point p € X"
such that p/(h(p)) # 0, Lemma 5.2.5 guarantees that p is an elliptic point of X". Using
the assumption H,;; > 0, from Lemma 5.2.4 the operator L; is elliptic or, equivalently,
T} is positive definite for all 1 < j < r. Thus, the curvature constraint (6.3.14) together
with —1 < © < 0 and (6.3.10) implies

]jr-l-l 1 pl
< —_— .
L.(u) < c.p(h)H,.© ( q + o, (h))

Hence, from hypothesis (6.3.15) we have that £,(u) < 0 on ¥". Therefore, since
3" is bounded away from the past infinity of Mnﬂ, we can apply once more Proposition

E to conclude that X" must be a slice of MRH. ]

6.4 Applications to entire graphs

When M = —1 X, M"™ is a GRW spacetime, we can restate Theorem 6.2.3 in

the context of entire graphs as follows:

——n+1

Corollary 6.4.1 Let M = —1 x, M" be a RW spacetime whose fiber M"™ has
constant sectional curvature k satisfying curvature constraint (6.2.8) and let ¥ (w) be
an entire graph determined by a bounded function w € C*°(M) such that, for some
2 <r<n-1, H > 0 with sup,; H. < 400 and H,;; > 0. Suppose that p(w)
attains a local minimum at some point x € M™ such that p'(w(x)) # 0 and that
|Dw|%; < ap®(w), for some constant 0 < a < 1. If X(w) satisfies hypothesis (6.1.2)

and
Hr—i-l

H,

pl
> ;(w), (6.4.1)

then w = tg for some ty € I.
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Proof. As in the beginning of the proof of Corollary 5.1 in [10], the assumption that
|Dw|%, < ap?(w), for some constant 0 < o < 1, guarantees that ¥(w) is a complete
spacelike hypersurface. Therefore, since we are also assuming that hypotheses (6.1.2)
and (6.4.1) are satisfied, we can apply Theorem 6.2.3 to conclude the result. ]

Taking into account (5.3.2), it is not difficult to see that we can also reformulate

Theorem 6.2.4 in the context of entire graphs as follows:

——n+1

Corollary 6.4.2 Let M = —1 x, M" be a RW spacetime whose fiber M"™ has
constant sectional curvature k satisfying the SNCC (6.2.12) and let X (w) be an entire
graph determined by a bounded function w € C*°(M) such that, for some 2 <r <n-—1,
H. 1 >0 and H, > 0 with supy H, < 4+00. Suppose that the sectional curvature of
Y(w) satisfies (6.2.13) and that |Dw|%; < ap*(w), for some constant 0 < a < 1. If
hypothesis (6.1.2) is satisfied and

then w = tg for some ty € 1.

When the ambient space M= T x » M" is a Riemannian warped product,
all results in Subsection 6.3 can be also rewritten for the context of entire graphs. In

particular, we quote the following versions of Theorems 6.3.3 and 6.3.4:

Corollary 6.4.3 Let M =1 X, M™ be a Riemannian warped product whose fiber
M™ has constant sectional curvature k obeying the curvature constraint (6.3.7) and
let be X (w) be an entire graph determined by a bounded function w € C®(M) such
that, for some 2 <r <n-—1, H._; >0, H. > 0 with supy H, < +00. Suppose that
the sectional curvature of ¥(w) satisfies (6.3.8) and that |Dw|y < +oo. If hypothesis

(6.1.2) is satisfied and
Hr—l—l

H,

/
< Ew),
p
then w = tg for some ty € I.

Corollary 6.4.4 Let M =1 X, M™ be a Riemannian warped product whose fiber
M™ has constant sectional curvature k obeying the curvature constraint (6.3.14) and
let be X (w) be an entire graph determined by a bounded function w € C®(M) such
that, for some 2 <r <n—1, H, > 0 with supy H, < 400 and H,1; > 0. Suppose that
p(w) attains a local mazimum at some point x € M™ such that p'(w(x)) # 0 and that
|Dw|y < +oo. If hypothesis (6.1.2) is satisfied and

H, 4 > P

then w = tg for some ty € I.
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Chapter 7

Rigidity and nonexistence of complete
hypersurfaces via Liouville type

results and other maximum principles

To close this Thesis, we present the results concerning the article [25]. As in
the previous chapter, here we investigate complete hypersurfaces with some positive
higher order mean curvature in a semi-Riemannian warped product space. Now, under
standard curvature conditions on the ambient space and appropriate constraints on
the higher order mean curvatures, we establish rigidity and nonexistence results via
Liouville type results and suitable maximum principles related to the divergence of
smooth vector fields on a complete noncompact Riemannian manifold. Applications
to standard warped product models, like the Schwarzschild, Reissner-Nordstrom and
pseudo-hyperbolic spaces, as well as steady state type spacetimes, are given and a

particular study of entire graphs is also presented.

7.1 Rigidity and nonexistence results

This section is devoted to present rigidity and nonexistence results concerning
complete Riemannian immersions in a semi-Riemannian warped product. Our ap-
proach is based on a criteria of integrability due to Yau in [128], a Liouville-type result
due to Pigola, Rigoli and Setti in [111], a version of maximum principle at infinity for
vector fields due to Alias, Caminha and Nascimento in [7] and a maximum principle

related to polynomial volume growth also obtained by these same authors in [§].
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7.1.1 Via integrability

We recall the f-divergence operator on a Riemannian manifold 3" endowed with

a (smooth) weight function f : X" — R is defined by
div(X) = e div(e X)),

where X is a tangent vector field on 3" and div stands for the standard divergence
operator of ¥X". From this, for all smooth function v : X" — R, we define the drift
Laplacian of u by

Apu=divy(Vu) = Au— (Vu, V).

Let us also consider the set of Lebesgue integrable functions on "
LUE) = {w X" >R / jwlPe~!dy < —I—oo} ,
b

with respect to the modified volume element e~fdY, where dX is the volume element
induced by the metric of ™. In this setting, we get the following consequence of [128,
Proposition 2.1].

Lemma 7.1.1 Let u be a smooth function on a complete Riemannian manifold ™
endowed with weight function f, such that Agu does not change sign on ¥". If [Vu| €
L£4(X), then Aju vanishes identically on X"

Remark 7.1.1 We observe that Lemma 7.1.1 can be regarded as a consequence of the
version of Stokes” Theorem due to Karp in [86]. Indeed, using [86, Theorem]|, condition

|Vu| € £5(X) can be weakened to the following hypothesis

r—-+oo T

1
lim inf —/ |Vule™/dS =0,
B(2r)\B(r)

where B(r) stands for the geodesic ball of radius r center at some fixed origin o €
¥". Moreover, [86, Corollary 1 and Remark| give some geometric conditions which

guarantee this hypothesis.

In our first rigidity result, we will suppose that the Riemannian fiber M of the
GRW spacetime obeys a suitable curvature constraint and that the Newton transfor-
mation T} satisfies T7(Vu) = ¢(Vu), for some 0 < p € C®(X) and u := g(h) € C*(X)
an arbitrary primitive g of the warping function p. We observe that the totally um-

bilical hypersurfaces satisfy this last condition. Recently, this condition has been
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used extensively in the study of a class of hypersurfaces of warped products whose
gradient of their height functions are principal directions. See, for instance, the
works [71, 69, 70, 98, 122]. In this setting, considering again the curvature con-

straint (6.2.4), we can present the following

Theorem 7.1.1 Let ¢ : X" — M be a complete spacelike hypersurface immersed
into a GRW spacetime M =1 X, M™, which obeys the following curvature con-

straint
Ricy < (n —1)inf(pp” — (P)2) (), (7.1.1)

where Ricy; stands for the Ricci tensor of M™. Suppose that Hy s positive and
Ty(Vu) = ¢(Vu), for some 0 < ¢ € C=(¥). If [Vu| € £1 (¥) and

(h), (7.1.2)
then X" s a slice ofﬁnﬂ.

Proof. Since the function ¢ € C*(X) is positive, from definition (6.1.1) for r = 1, we

obtain
1 L. —lng g:
Eﬁl(U) = ;dlv(Tl(Vu)) = e~ "¥div (pVu)
= e "¥div (e"¥Vu) (7.1.3)
= A_ppu.

On the other hand, from Lemma 5.2.6 and equation (5.2.4) of Lemma 5.2.2 we
obtain that

Li(u) = p(h) (Rica(N*,N*) — (n— 1)(log p)" ()| VA[*) (N, ;)
by (0 (W)H, + p(h) Ho(N. 0. (7.14)

where N* = N + (N, 9;)0;. Since Hy > 0, Lemma 5.2.3 guarantees that, with respect
to N, H; > 0 and T; is positive definite. So, once N is future-pointing and |Vh|? =
p*(h)(N*, N*) 5, using curvature constraint (7.1.1) into (7.1.4), we obtain

Hence, taking into account hypothesis (7.1.2), from (7.1.3) and (7.1.5) we have that

u is (— In ¢)-subharmonic function. Moreover, since |Vu| € £, (¥), Lemma 7.1.1

lngo(
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gives that A_y, ,u vanishes identically on X", that is, u is constant on X". Therefore,
we conclude that the height function h is constant and, hence, X" is a slice of M .

As application of Theorem 7.1.1, we can consider the case when ambient is an
Einstein manifold to obtain the following rigidity result, whose its proof is similar to

proof of Corollary 6.2.2.:

Corollary 7.1.1 Let ¢ : X" — M bea complete spacelike hypersurface immersed
into a Finstein GRW spacetime Mt = X, M™. Suppose that Ty is positive definite
with Ty (Vu) = o(Vu), for some 0 < ¢ € C’oj(E). If [Vu| € £, (¥) and hypothesis
(7.1.2) is satisfied, then 3" is a slice of M

Next, as in Corollary 6.2.1, we will consider the steady state-type spacetime

M= R Xet M™. In this case, we also obtain the following application from

Theorem 7.1.1:

Corollary 7.1.2 Let ¢ : ¥" — M bea complete spacelike hypersurface immersed
into a steady state-type spacetime M =R Xt M™ whose fiber M™ has nonpositive
Ricci curvature. Suppose that T is positive definite with Ty(Vu) = ¢(Vu), for some
0<@eC™(X). If|[Vul € £1, (¥) and Hy > H,, then X" is a slice oanH.

In order to extend this reasoning to the higher order mean curvatures, we will
: . . . =n+tl
assume that the Riemannian fiber M"™ has constant sectional curvature, that is, M "=

—1I x, M™ is Robertson-Walker (RW) spacetime.

Theorem 7.1.2 Let ¢ : X" — M be a complete spacelike hypersurface immersed
mto a RW spacetime M= X, M™ whose constant sectional curvature r of fiber

M™ obeys the curvature constraint
5 < nf(pp” — ()°). (7.16)

Suppose that, for some 2 < r < n—1, H,,1 is positive and p(h) attains a local minimum
at a point ¢ € X" such that p'(h(q)) # 0. If T, satisfies T,(Vu) = o(Vu), for some
0<peC™®X), | Vul e (2 and

Ingp

Hr—i—l
H,

4
> ; (h), (7.1.7)

then X" is a slice oanH.
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Proof. Since the fiber M™ has constant sectional curvature &, from (6.1.1) jointly with

Lemma 5.2.6 and equation (5.2.5) of Lemma 5.2.2 we obtain

L) = (=) (s = g (1)) (11 Vh, T, )
(0 (W) H, + (W) Hy 1 (N, 90). (7.18)

On the other hand, since H,;; > 0 and p(h) attains a local maximum at some
point ¢ € £" such that p'(h(q)) # 0, from Lemma 5.2.4 and Lemma 5.2.5, the Newton
transformations 77 is positive definite and H; is positive for all 1 < j7 <r. Thus, taking

into account that N is future-pointing, from (7.1.6) and (7.1.8) we obtain

@w>ZbMME(ﬁj—%w). (7.19)

But, we can reason as in (7.1.3) to deduce that
1
— Lo (1) = Al pu. (7.1.10)
¥
Hence, considering (7.1.7) into (7.1.9) we have that u is (— In ¢)-subharmonic function.
Thus, since |Vu| € £ (X)), from Lemma 7.1.1 we get that u is constant on X"

Therefore, we conclude that X" is a slice of M [

Remark 7.1.2 Concerning Theorem 7.1.2, we observe that if we substitute the as-

. H 1
sumptions (7.1.6) and (7.1.7) by x < su " — (p)?) and L < — = (h),
prions (1.16) and (.17) by < suplp” — (9)7) amd et < — Lol

respectively, we will also obtain the rigidity result.

When the ambient space is a Riemannian warped product and the complete

hypersurface is two-sided, we obtain the following result:

Theorem 7.1.3 Let vy : X" — M bea complete two-sided hypersurface immersed
into a Riemannian warped product M =1 X, M™, which obeys the following curva-

ture constraint
Ricar = (n — 1) sup((5)2 = p") (s )ar, (7.1.11)
I

where Ricys stands for the Ricci tensor of M™. Suppose that Hs is positive, —1 <
(N,0y) <0 and Ty(Vu) = o(Vu), for some 0 < ¢ € C*(¥). If |[Vu| € £1 (¥) and

(h), (7.1.12)

then X" is a slice of M
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Proof. From Lemma 5.2.6 and equation (5.2.4) of Lemma 5.2.2 we obtain that

Li(u) = p(h)(—Ricy(N*, N*) = (n — 1)(log p)"'(h)|VA|*)(N, 0,)
+b1(p'(h)Hy + p(h)Ha(N, 0y)), (7.1.13)

where N* = N — (N, 0;)0;.
We also note that, since Hy > 0, Lemma 5.2.3 guarantee that, with respect to
N, H; > 0 and T} positive definite. So, once |Vh|?> = p?(h){N*, N*)5; and we are

assuming —1 < (N, d;) < 0, using curvature constraint (7.1.11) into (7.1.13) we obtain

La(u) > p(h)by H, (%I(h) - %) | (7.1.14)

Hence, from (7.1.3), (7.1.12) and (7.1.14) we get that u is (— In ¢)-subharmonic

function. Thus, since |Vu| € £, (¥), from Lemma 7.1.1 we have that A_,,u

Inep

vanishes identically on »", that is, u is constant on »". Therefore, X" is a slice of
—n+1

M ]

In particular, when M is an Einstein manifold, Theorem 7.1.3 reads as follows:
Corollary 7.1.3 Let ¢ : X" — M be a complete two-sided hypersurface immersed
into an FEinstein warped product M= X, M". Suppose that H, and H, sat-
isfy (7.1.12), Hy is positive, =1 < (N,0;) < 0 and T1(Vu) = ¢(Vu), for some
0<@eCoX). If |[Vul € £, () and hypothesis (7.1.12) is satisfied, then X"

. . —n+1
1s a slice of M~ .

Proof. From [42, Corollary 9.107] (see also [45, Section 6]) we have that M s an
Einstein manifold with Ricci tensor Ric = €7, for some constant ¢ € R, if and only if
the fiber (M™, g,,) has constant Ricci curvature Ricys = ¢ and the warping function p

satisfies the differential equations

c
. _Z d = ) d.1
—an (7.1.15)

Hence, from (7.1.15) we obtain —(n — 1)(log p)” = % Therefore, in this case, we have

that
Riear = (n — 1) sup((p)* = po")(, )
and, consequently, the result follows by applying Theorem 7.1.14. ]

When " is a pseudo-hyperbolic space, we get the following applications of

Theorem 7.1.3:
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Corollary 7.1.4 Let ¢ : X" — M be a complete two-sided hypersurface immersed
into a pseudo-hyperbolic space M =R Xt M™ whose fiber M™ has nonnegative Ricci
curvature. Suppose that Hy > Hy > 0, —1 < (N,0;) < 0 and T1(Vu) = p(Vu), for
some 0 < p € C®(X). If [Vu| € £, (X), then X" is a slice oanH.

Corollary 7.1.5 Let ¢ : X" — M be a complete two-sided hypersurface immersed
into a pseudo-hyperbolic space M =R Xeosnt M™ whose Ricci tensor of the fiber M™
is such that Ricyy > —(n — 1)(, ). Suppose that Hy is positive, —1 < (N, 0;) < 0 and

H
Ty(Vu) = p(Vu), for some 0 < ¢ € C=(X). If |[Vu| € £ (¥) and ﬁ < tanh(h),

then X" is a slice oanH.

When the ambient is either the Schwarzschild space or Reissner-Nordstrom space,

Theorem 7.1.3 reads as follows.

Corollary 7.1.6 Let ¢ : X" — M be a complete two-sided hypersurface immersed
into either a Schwarzschild space or a Reissner-Nordstrom space M= (0, +00) Xt
S™, where r(t) is defined in (5). Suppose that Hy is positive, —1 < (N,0;) < 0 and
Ty(Vu) = ¢(Vu), for some 0 < ¢ € C=(¥). If [Vu| € £1, (X) and

— < —(¥), (7.1.16)
then X" is a slice ofﬁnﬂ.

In our next result, we will deal with higher order mean curvatures.

Theorem 7.1.4 Let vy : X" — M bea complete two-sided hypersurface immersed
into a Riemannian warped product M =1 X, M™ whose fiber M"™ has constant

sectional curvature k obeying the curvature constraint
k> sup((p')* — pp"). (7.1.17)
I

Suppose that, for some 2 < r < n—1, H.yy is positive, —1 < (N,9;) < 0 and p(h)
attains a local mazximum at a point ¢ € X" such that p'(h(q)) # 0. If T, satisfies
T.(Vu) = ¢(Vu), for some 0 < p € C=(%), |Vu| € £1 (¥) and

Hr—i—l
H,

4
< ; (h), (7.1.18)

then X" is a slice ofﬁnﬂ.
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Proof. Since the fiber M™ has constant sectional curvature &, from (6.1.1) jointly with

Lemma 5.2.6 and equation (5.2.5) of Lemma 5.2.2 we obtain

L) = (0ol (7

b, (p (W) H, + p(h)H, 41 (N, 8,)). (7.1.19)

+ (log p>"<h>) (T, Vh, Vh)(N. )

On the other hand, since H,;; > 0 and p(h) attains a local maximum at some
point ¢ € X" such that p'(h(q)) # 0, from Lemma 5.2.4 and Lemma 5.2.5 the Newton
transformation 7 is positive definite and H; is positive for all 1 < j <. Thus, taking

into account that —1 < (N, 0;) <0, from (7.1.17) and (7.1.19) we obtain

L) > p(hbH, (%(h)—H;;). (7.1.20)

Hence, considering (7.1.18) into (7.1.20) and using (7.1.10), we get that u is (—Iny)-
subharmonic function. Thus, since |[Vu| € £', (%), from Lemma 7.1.1 we have that

u is constant on X". Therefore, we conclude that >" is a slice of M [

Remark 7.1.3 Concerning Theorem 7.1.4, we observe that if we substitute the as-

H 1 /
sumptions (7.1.17) and (7.1.18) by k < iI}f((p’)2 — pp") and }}H > N 8t>%(h),

respectively, we will also obtain the rigidity result.

7.1.2 Via p—integrability, for p > 1.

We start quoting a consequence of [111, Theorem 1.1].

Lemma 7.1.2 Let ¥ be complete Riemannian manifold and let u € C*°(3) be nonneg-
ative. Ifu is (—In)-subharmonic function, where 0 < ¢ € C*(X), andu € £ (X)),

for some p > 1, then u is constant.

Remark 7.1.4 According to the ideas discussed in [32, Remark 3], [, [u[P@d% can be
considered as a sort of total (p, p)-energy associated to w. In this setting, the hypothesis
ue Ll () in Lemma 7.1.2 is equivalent to X" having finite (p, ¢)-energy associated

to u.

Now, we are in position to present our next rigidity result.

Theorem 7.1.5 Let ¢ : X" — M bea complete spacelike hypersurface immersed
into a GRW spacetime M =T X, M™ which obeys the curvature constraint (7.1.1).
Suppose that Hy and Hs satisfy (7.1.2), Hy is positive and T1(Vu) = o(Vu), for some
0 < e C®X). Assume in addition that u is nonnegative and bounded from above.
Ifue £l (¥), for somep > 1, then X" is a slice oanH.
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Proof. Since Hy > 0, Lemma 5.2.3 guarantees that H; > 0 and 77 is positive definite.
Following similar steps of the proof of Theorem 7.1.1, we obtain that £4(u) = ¢A_, ,u.
Thus, from (7.1.1) and (7.1.2) we get that u is (— In ¢)-subharmonic function. Thus,
since u € £, (¥) and 0 < u < supgu < +oo, from Lemma 7.1.2 we have that u is
constant on »". Therefore, we conclude that the height function A is constant, which
means that $" is a slice of M. ]

As application of Theorem 7.1.5, we obtain the following result when the ambient

spacetime is an Einstein manifold:

Corollary 7.1.7 Let ¢ : X" — M be a complete spacelike hypersurface immersed
into an Finstein GRW spacetime Mt = g X, M"™. Suppose that H, and H, sat-
isfy (7.1.2), Hy is positive and Ti(Vu) = o(Vu), for some 0 < ¢ € C®(X). Assume
in addition that u is nonnegative and bounded from above. If u € £F lnW(E), for some
p > 1, then X" is a slice ofﬁnﬂ.

When the ambient space is an steady state-type spacetime, we also obtain the

following application for Theorem 7.1.5:

Corollary 7.1.8 Let X" — M bea complete spacelike hypersurface immersed into
a steady state-type spacetime M =R X ot M™ whose fiber M™ has nonpositive Ricci
curvature. Suppose that Hy and Hy satisfy (7.1.2), Hs is positive and T1(Vu) = o(Vu),
for some 0 < ¢ € C®(X). Assume in addition that u is nonnegative and bounded from
above. Ifu € £, (%), for some p > 1, then ¥" is a slice oanH.

In the case 2 < r < n—1, we will consider the ambient space is a RW spacetime.

Theorem 7.1.6 Let ¢ : X" — M be a spacelike hypersurface immersed into a
RW spacetime M= 1 X, M™ whose constant sectional curvature k of the fiber
M™ satisfies the curvature constraint (7.1.6). Suppose that, for some 2 < r <n —1,
H, and H,.1 satisfy (7.1.7), H,y1 is positive, p(h) attains a local minimum at some
point ¢ € X" such that p'(h(q)) # 0, and that T, satisfies T,(Vu) = p(Vu), for some
0 < e C®X). Assume in addition that u is nonnegative and bounded from above.
Ifue Szilw(E), for some p > 1, then X" is a slice oanH.

Proof. Since the warping function p(h) attains a local minimum at some point g € X"
such that p'(h(q)) # 0 and H,,; > 0, Lemma 5.2.4 and Lemma 5.2.5 guarantee that

T._1 and T, are positive definite.

89



On the other hand, since the fiber M"™ has constant sectional curvature s, from
Lemma 5.2.6 jointly equation (5.2.5) of Lemma 5.2.2 and (6.1.1) we obtain

L) = p(h)(n—r) (m

—b,(¢'(h)H, + p(h)H,41(N,0,)). (7.1.21)

~ (log p>"<h>) (T, VI, V) (N, 3))

Thus, taking into account curvature constraint (7.1.6) and that N is future-pointing,

from (7.1.21) we obtain

L) = o) (L), (7.1.22

Consequently, from (7.1.7) and (7.1.22) we get that £,(u) = ¢A_1,,u > 0 on X", that
is, u is (—In )-subharmonic function. So, since u € £, (¥) and 0 < u < supyu <
+o00, Lemma 7.1.2 assures that u is constant on ¥". Therefore, we conclude that the
height function h is constant, which means that ¥" is a slice of M ]

As a consequence of Theorem 7.1.6 we obtain the following nonexistence result

when the GRW spacetime —1 x, M" is static:

Corollary 7.1.9 Let M = —I x M™ be a static RW spacetime whose constant
sectional curvature k of the fiber M™ is nonpositive. There is no complete spacelike hy-
persurface ¥ —» M such that H, > 0, T, is positive definite with T,.(Vh) = ¢(Vh),
for all 0 < j < r and some 0 < ¢ € C>®(X), the height function h is nonnegative,
bounded from above with h € £7 (¥), for some p > 1, and hypothesis (7.1.7) is
satisfied.

Proof. Suppose, by contradiction, that there is such a hypersurface X" satisfying these
assumptions. So, from Theorem 7.1.6 X" must be a slice of . Thus, since that
p(h) = 1, we obtain that H, = (¢'(h))" = 0 which contradicts the assumption H, > 0.

Remark 7.1.5 Concerning Theorem 7.1.6, we observe that if u is just nonnegative and

we substitute the hypothesis (7.1.6) by null convergence condition (NCC) (see [104]),
Hyp _ 1 p
Hr - <N, (9t> P

and replace the assumptions (7.1.7) by (h), respectively, we will

also obtain the rigidity result.

For complete two-sided hypersurfaces immersed in a Riemannian warped product,

we obtain the following:
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Theorem 7.1.7 Let v : X" — M be a complete two-sided hypersurface immersed
into a Riemannian warped product M= T x o, M", which obeys the curvature
constraint (7.1.11). Suppose that Hy and Hs satisfy (7.1.12), Hy is positive, —1 <
(N,0) <0 and T1(Vu) = ¢(Vu), for some 0 < ¢ € C®(X). Assume in addition that
u is nonnegative and bounded from above. If u € £, (%), for some p > 1, then X"

. . —n+1
1s a slice of M~ .

Proof. Following similar steps of the proof of Theorem 7.1.3, we obtain that u is
(= Inp)-subharmonic function. Thus, since u € £°, (%) and 0 < u < supyu < +o0,
Lemma 7.1.2 guarantees that u is constant on ¥". Therefore, we conclude that X" is
a slice of M. ]

It follows the applications of Theorem 7.1.7 when M" is either an Einstein

space or a pseudo-hyperbolic space.

Corollary 7.1.10 Lety : X" — M bea complete two-sided hypersurface immersed
into an Einstein warped product M =1 X, M"™. Suppose that H, and H, sat-
isfy (7.1.12), Hy is positive, —1 < (N,0;) < 0 and T1(Vu) = o(Vu), for some
0 < e C®X). Assume in addition that u is nonnegative and bounded from above.
Ifue £l (¥), for somep > 1, then X" is a slice oanH.

Corollary 7.1.11 Lety : X" — M be a complete two-sided hypersurface immersed
into a pseudo-hyperbolic space M =R X ot M™ whose fiber M™ has nonnegative Ricci
curvature. Suppose that Hy > Hy > 0, —1 < (N,0;) < 0 and T1(Vu) = ¢(Vu), for
some 0 < ¢ € C™(X). Assume in addition that u is nonnegative and bounded from
above. If u € Eﬁln@(E), for some p > 1, then X" is a slice oanH.

Corollary 7.1.12 Lety : X" — M bea complete two-sided hypersurface immersed
into a pseudo-hyperbolic space M =R Xcosht M™ whose Ricci tensor of the fiber
M™ is such that Ricyr > —(n — 1)(,)p. Suppose that Hy > 0, —1 < (N,0;) < 0 and
T1(Vu) = o(Vu), for some 0 < ¢ € C®(X). Assume in addition that u is nonnegative

H.
and bounded from above. If u € L7 (%), for some p > 1, and f < tanh(h), then
1

>" is a slice oanH.
When the ambient is the Schwarzschild space or Reissner-Nordstrom space, we

get the following applications of Theorem 7.1.7:

Corollary 7.1.13 Lety : X" — M be a complete two-sided hypersurface immersed
into either a Schwarzschild space or a Reissner-Nordstrom space M= (0, +00) X1
S™, where r(t) is defined in (5). Suppose that Hy and Hy satisfy (7.1.16), Hy is positive,
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—1 <(N,0) <0 and T1(Vu) = o(Vu), for some 0 < p € C*(X). Assume in addition
that u is nonnegative and bounded from above. If u € LY | (3), for some p > 1, then

. . —n+1
" is a slice of M.

Ingp

Now, we will consider the context of higher order mean curvatures.

Theorem 7.1.8 Let v : X" — M bea complete two-sided hypersurface immersed
into a Riemannian warped product Mt =1 X, M™ whose fiber M"™ has constant
sectional curvature k obeying the curvature constraint (7.1.17). Suppose that, for some
2<r<n-—1, H and H,,; satisfy (7.1.18), H,,1 is positive, —1 < (N,0;) <0, p(h)
attains a local mazimum at some point g € X" such that p'(h(q)) # 0 and T, satisfies
T.(Vu) = o(Vu), for some 0 < p € C*(X). Assume in addition that u is nonnegative
and bounded from above. If u € LV ln@(z)’ for some p > 1, then X" is a slice oanH.

Proof. Following similar steps of the proof of Theorem 7.1.4, we obtain that u is
(— In ¢)-subharmonic function. Hence, since u € £°. my(2) and 0 < u < supg u < 400,

Lemma 7.1.2 gives that u is constant on X". Therefore, we conclude that X" is a slice

——n+1

of M . ]

Remark 7.1.6 Concerning Theorem 7.1.8, we observe that if u is just nonnegative

and we substitute hypothesis (7.1.17) by x < inf;((p)> — pp”) and replace assump-
/

H, 1
tion (7.1.18) by ——L > —

H, = (N.0y)p

s

(h), we will also obtain the rigidity result.

7.1.3 Via a version of maximum principle at infinity

Let ¥" be a (connected) complete noncompact Riemannian manifold, and let
d(-,0) : ¥ — [0,4+00) stand for the Riemannian distance of ", measured from a fixed
point 0 € ¥". According to [7], we say that f € C°(X) converges to zero at infinity
when it satisfies

lim  f(z) =0.

d(z,0)—+00

In this setting, from |7, Theorem 2.2|, we have the following lemma:

Lemma 7.1.3 Let (¥",(,)) be a complete noncompact Riemmanian manifold and let
X € X(X) be a smooth vector field on X" with divX > 0. If there exists a nonnegative,
non-identically vanishing function f € C*°(X) such that f converges to zero at infinity
and (Vf,X) >0, then (Vf, X) =0 on X".
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Returning to the context of a Riemannian immersion v : ¥ — M ina warped
product M = X, M", we say that X" is asymptotic to a slice ¥y, := {t.} x M"
at infinity when the function f := h — t, converges to zero at infinity.

Keeping in mind this previous digression, we present our next rigidity result.

Theorem 7.1.9 Letvy : X" — M bea complete noncompact spacelike hypersurface
immersed into a GRW spacetime M= X, M"™. Suppose that X" lies above a
slice 3y, := {t.} x M™ and is asymptotic to it at infinity. If Hy is positive and satisfies

> 2, (7.1.23)

then X" is the slice X, .

Proof. Since H; > 0 and N is future-pointing, from (6.1.1) and Lemma 5.2.6 we have
/
Au = —n(p'(h) + Hip(h){N,0;)) > np(h) (H1 — %(h)) : (7.1.24)

Thus, from inequalities (7.1.23) and (7.1.24) we obtain that w is a subharmonic
function. Moreover, since »" lies above the slice ¥;, and is asymptotic to it at infinity,
the function f := h—t, is nonnegative converging to zero at infinity. Hence, considering
the smooth vector field X = Vu, from Lemma 7.1.3 we have (V f, Vu) = p(Vh,Vh) =
0. Therefore, we conclude that the height function h is constant and, since h — t,
converges to zero at infinity, %" must be the slice ¥, . [ ]

When " is a steady state-type spacetime, Theorem 7.1.9 reads as follows.

Corollary 7.1.14 Let X" — M bea complete noncompact spacelike hypersurface
immersed into a steady state-type spacetime M= R Xet M™ such that X" lies
above a slice ¥y, := {t.} x M™ and is asymptotic to it at infinity. If Hy > 1 on X",
then X" is the slice X, .

For » = 1, we will suppose that the GRW spacetime obeys curvature con-

straint (7.1.1).

Theorem 7.1.10 Let ¢ : X" — M be a complete noncompact spacelike hypersur-
face immersed into a GRW spacetime M= g X, M™ which obeys the curvature
constraint (7.1.1). Suppose that X" lies above a slice 3y, := {t.} X M™ and is asymp-
totic to it at infinity. If Hy and Hy satisfy (7.1.2) with Hy positive, then 3™ is the slice
2y

"
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Proof. Considering the smooth vector field X := T1(Vu) € X(X), from (6.1.1), jointly
with Lemma 5.2.6 and equation (5.2.4) of Lemma 5.2.2, we obtain that

divX = Li(u) = p(h)((n — D)(Ricar(N*, N*) — (log )" (h)|Vh|)(N, 8,)
—bu(p/ (W) H + p(h) Ha(N, 3,)). (7.1.25)

where N* = N + (N, 9;)0;. But, from (5.2.3) we have that |Vh|? = p*(h)(N*, N*) .
So, using curvature constraint (7.1.1) and taking into account that Hy > 0 and N is

future-pointing, from (7.1.25) we get

£1(u) > by Hyp(R) (% - %’(h)) . (7.1.26)

By Cauchy-Schwarz inequality we have H? > H, > 0, and H does not vanish on
¥". Thus, we may assume that H; > 0 and from (7.1.2) and (7.1.26) we obtain that u
is £;-subharmonic function, that is, div.X = div (71(Vu) on X"

On the other hand, since X" lies above the slice ¥;, and is asymptotic to it
at infinity, the function f := h — t, is nonnegative converging to zero at the infinity.
Moreover, using again that Hy > 0, Lemma 5.2.3 guarantees that T} is positive definite.

Then,
(Vf,X) = (Vh,Ti(Vu)) = ¢'(h){Vh,T1(Vh)) = p(h){Vh,T:(Vh)) = 0.

Hence, from Lemma 7.1.3 we have (V f, X) = 0. Consequently, the height func-
tion A is constant and, therefore, 3™ must be the slice ¥, . [
When the ambient spacetime is an Einstein manifold, Theorem 7.1.10 gives the

following consequence.

Corollary 7.1.15 Let ¢ : ¥ — M be a complete noncompact spacelike hyper-
surface immersed into a Finstein GRW spacetime M= 1 X, M"™ such that 3"
lies above a slice 3y, = {t.} x M™ and is asymptotic to it at infinity. If Hy and Hy
satisfy (7.1.2) with Hy positive, then X" is the slice ¥, .

Considering once more a steady state-type spacetime, from Theorem 7.1.10 we

obtain the next corollary.

Corollary 7.1.16 Let X" — M be a complete noncompact spacelike hypersurface
immersed into a steady state-type spacetime M= R X ot M™ whose fiber M™ has
nonpositive Ricci curvature. Suppose that X" lies above a slice ¥y, = {t.} x M™ and
is asymptotic to it at infinity. If Hy and Hy satisfy (7.1.2) with Hy positive, then %"

15 the slice Y, .
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For 2 < r < n —1, we will consider that " is a Robertson-Walker (RW)
spacetime.
Theorem 7.1.11 Let ¢ : X" — M be a complete noncompact spacelike hypersur-
face immersed into a RW spacetime M= X, M™ whose Riemannian fiber M"
has constant sectional curvature K satisfying the curvature constraint (7.1.6). Suppose
that X" lies above a slice ¥y, := {t.} x M™ and is asymptotic to it at infinity, and that

p(h) attains a local minimum at some point g € X" such that p'(h(q)) # 0. If, for some
2<r<n-1, H, and H,,1 satisfy (7.1.7) with H, 1 positive, then X" is the slice ¥;,.

Proof. Considering the smooth vector field X := T,(Vu) € X(X), since M™ has
constant sectional curvature x, from Lemma 5.2.6 jointly (6.1.1) and equation (5.2.5)

of Lemma 5.2.2 we obtain

divX = L,(u) = p(h)(n 1) (p;jh) ~ (log p)"(h)) (T,-1Vh, VR)(N, 9,
—b,(p(R)H, + p(R)H,41(N, ). (7.1.27)

Since p(h) attains a local minimum at some point ¢ € ¥ such that p'(h(q)) # 0
and H,,; > 0, Lemma 5.2.4 guarantees that T,._; and 7T, are positive definite. Thus,

since N is future-pointing, from (7.1.27) we obtain

L) = o) (G- 2. (7.1.28)

Since H, > 0, from inequalities (7.1.7) and (7.1.28) we get that u is £,-subharmonic
function and, consequently, divX > 0.
On the other hand, since 3" lies above the slice ¥;, and is asymptotic to it at

infinity, the function f := h—t, is nonnegative converging to zero at the infinity. Thus,
(V1 X) = (Vh, T,(Vu)) = g (h)(Vh, T.(Vh)) = p(h)(Vh, T,(Vh)) > 0.

Hence, from Lemma 7.1.3 we have (Vf, X) = 0. Consequently, VA = 0 and,

therefore, ™ must be the slice >, . ]

When M = —I x M™ is a static RW spacetime, we obtain the following

nonexistence result.

Corollary 7.1.17 Let M = I x M™ be a static RW spacetime whose Riemannian
fiber M™ has nonpositive constant sectional curvature. There is no complete noncom-
pact spacelike hypersurface X" <> ! lying above a slice ¥y, = {t.} x M™ and being
asymptotic to it at infinity, and such that H,, H, 1 are positive, for some2 <r < n—1,
and T} is positive definite for 0 < j <.
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Now, we will consider also the case when the RW spacetime has Riemannian fiber
with constant sectional curvature obeying a curvature constraint which corresponds to

the so-called strong null convergence condition (SNCC).

Theorem 7.1.12 Let ¢ : ¥" — M be a complete noncompact spacelike hyper-
surface immersed into a RW spacetime M= X, M™ whose constant sectional
curvature Kk of the Riemannian fiber M" satisfies the SNCC

k> sup(pp” — (p')?). (7.1.29)

I
Suppose that 3" lies below a slice 3y, := {t.} x M™ and is asymptotic to it at infinity.
If T; is positive definite for all 0 < j <vr, for some 2 <r <mn—1, H, is positive and

H. iy Iy
< - 2 (n), 7.1.30
0=y " (7:1:30)

then X" is the slice of X, .

Proof. Since the sectional curvature of the Riemannian fiber M" is constant, H, is pos-
itive, T}._ is positive definite and N is future-pointing, taking into account that (7.1.29)
is satisfied, from (7.1.27) we obtain

L) < —boHp(h)(N, 00 (H[;jl n (N,18t>%/<h)) S (13

Thus, considering inequality (7.1.30) into (7.1.31) we get that u is £,-superharmonic
function.

On the other hand, since ¥" lies below the slice ¥;, and is asymptotic to it at
infinity, the function f := t, — h is nonnegative converging to zero at the infinity.

Moreover, since T, is positive definite we obtain
(V1 To(Vu)) = —(Vh, TH (V) = —g'(h)(VA, T,(VA)) = —p(h)(Vh, To(Vh)) < 0.

Therefore, choosing the smooth vector field X := —T,.(Vu), from Lemma 7.1.3
we have (Vf, X) = 0. Hence, Vh = 0 and, consequently, " must be the slice 3;,. m
When the ambient space is a Riemannian warped product, we obtain the following

result.

Theorem 7.1.13 Let ¢ : X" — M be a complete noncompact two-sided hyper-

surface immersed into a Riemannian warped product M =1 X, M"™.  Suppose
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that X" lies above a slice ¥y, = {t.} x M™ and is asymptotic to it at infinity. If
—1 < (N, 0,) <0 and H; is positive satisfying

H <2, (7.1.32)

then X" s the slice X, .

Proof. Since H; > 0 and —1 < (N, 9;) < 0, from Lemma 5.2.6 jointly with (7.1.32)
we obtain that

Au = n(p'(h) + p(h)H1(N,0,)) > np(h) (%(h) - H1> . (7.1.33)

Thus, using inequality (7.1.32) in (7.1.33), we obtain that u is subharmonic func-
tion. Moreover, since X" lies above the slice ¥;, and is asymptotic to it at infinity, the
function f := h — t, is nonnegative converging to zero at infinity. Hence, Lemma 7.1.3
gives (Vf,Vu) = p(h)(Vh,Vh) = 0. Consequently, |[Vh| = 0 and, therefore, X" must
be the slice >3, . [ ]

When the ambient is a pseudo-hyperbolic space we have the following applications

of Theorem 7.1.13.

Corollary 7.1.18 Let ¢ : X" — M bea complete noncompact two-sided hypersur-
face immersed into a pseudo-hyperbolic space M =R Xt M™. Suppose that 3" lies
above a slice ¥y, = {t.} x M"™ and is asymptotic to it at infinity. If —1 < (N,0;) <0
and 0 < H <1, then X" 1is the slice X, .

Corollary 7.1.19 Let vy : X" — M bea complete noncompact two-sided hypersur-
face immersed into a pseudo-hyperbolic space M= RXcosne M™. Suppose that X" lies
above a slice ¥y, := {t.} x M"™ and is asymptotic to it at infinity. If —1 < (N,0;) <0
and 0 < H < tanh(h), then X" is the slice 3, .

In our next result, we will suppose that the ambient space obeys a suitable cur-

vature constraint.

Theorem 7.1.14 Let ¢ : X" — M be a complete noncompact two-sided hypersur-
face immersed into a Riemannian warped product M =1 x p M™ which obeys the
curvature constraint (7.1.11). Suppose that X" lies above a slice ¥y, := {t.} x M™
and is asymptotic to it at infinity. If Hy and Hy satisfy (7.1.12) with Hy positive and
—1 < (N,0;) <0, then X" is the slice 3,
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Proof. From (6.1.1), Lemma 5.2.6 and equation (5.2.4) of Lemma 5.2.2 we obtain that

Li(u) = p(h)(=Ricyr(N*,N*) = (n — 1)(log p)"(h)|Vh[*)(N, 0;)
+01(p'(h)H + p(h) Ha(N, ;) (7.1.34)

where N* = N — (N, 9;)0;. Taking into account that |Vh|? = p*(h)(N*, N*),;, —1 <
(N,0;) <0, Hy > 0 and using curvature constraint (7.1.11), we obtain
' H,
Li(u) > b Hip(h) (;(h) — E) .

So, since H; > 0, from hypothesis (7.1.12) we conclude that u is a £;-subharmonic
function.

On the other hand, since ¥" lies above the slice ¥;, and is asymptotic to it at
infinity, the function f := h — t, is nonnegative converging to zero at the infinity.

Moreover, since Hy > 0, Lemma 5.2.3 gives that T} is positive definite. Thus, choosing

the smooth vector field X :=T1(Vu) € X(X), we get
(V£,X) = (Vh, Ty(Vu)) = ¢ (W){Vh, Ty(Vh)) = p(h)(Vh, T (VA)) > 0.

Hence, from Lemma 7.1.3 we have (Vf, X) = 0. Consequently, |Vh| = 0 and,
therefore, 3™ must be the slice >3, . ]
As application of Theorem 7.1.14, we can consider the case when ambient is an

Einstein manifold to obtain the following rigidity result:

Corollary 7.1.20 Let vy : ¥" — M bea complete noncompact two-sided hypersur-
face tmmersed into an Einstein warped product M= X, M"™. Suppose that X"
lies above a slice 3y, = {t.} x M™ and is asymptotic to it at infinity. If Hy and Hy
satisfy (7.1.12) with Hy positive and —1 < (N,0;) < 0, then X" is the slice ¥,

When the ambient is a pseudo-hyperbolic space, Theorem 7.1.14 leads us to the

following applications:

Corollary 7.1.21 Let vy : X" — M bea complete noncompact two-sided hypersur-
face immersed into a pseudo-hyperbolic space M =R Xet M™ whose fiber M™ has
nonnegative Ricci curvature. Suppose that X" lies above a slice 3y, := {t.} x M™ and
is asymptotic to it at infinity. If Hy > Hy with Hy positive and —1 < (N, 0;) < 0, then
" is the slice Y, .
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Corollary 7.1.22 Let ¢ : X" — M bea complete noncompact two-sided hypersur-
face immersed into a pseudo-hyperbolic space M =R Xeosht M™ whose Ricci tensor
of the fiber M™ is such that Ricyr > —(n — 1)(, ). Suppose that X" lies above a slice

H
Y, = {t} x M™ and is asymptotic to it at infinity. If Hy and Hy satisfy # < tanh(h)
1
with Hy positive and —1 < (N, 0;) <0, then X" is the slice ¥, .

In our next results, we deal with higher order mean curvatures.

Theorem 7.1.15 Let ¢ : X" — M be a complete noncompact two-sided hypersur-
face immersed into a Riemannian warped product M =1 X, M™ whose fiber M"
has constant sectional curvature k obeying curvature constraint (7.1.17). Suppose that
¥ lies above a slice 3, = {t.} x M™ and is asymptotic to it at infinity. Assume
in addition that X" has an elliptic point. If, for some 2 < r <n—1, H. and H, 4,
satisfy (7.1.18) with H, 41 positive and —1 < (N, 0;) < 0, then X" is the slice ¥, .

Proof. Since the fiber M™ has constant sectional curvature x, from (6.1.1) jointly with

Lemma 5.2.6 and equation (5.2.5) of Lemma 5.2.2 we obtain

L) = ~(n=ph) (55 + logp)' (1) (T, VRN, 0)

by (0! () H, + p(R) Hy 41 (N, 01). (7.1.35)
By the assumption of the existence of an elliptic point in >" and since H,.; > 0,

Lemma 5.2.4 guarantees that T,_; and 7, are positive definite and H, > 0. Thus, since

—1 < (N, 0,) <0, from (7.1.17) and (7.1.35) we get

L) = ooty (L - Z1). (7.1.36)

Hence, considering (7.1.18) into (7.1.36) we conclude that u is a £,-subharmonic
function. On the other hand, since >" lies above the slice ;. and is asymptotic to it
at infinity, the function f := h — ¢, is nonnegative converging to zero at the infinity.
Moreover, since T, is positive definite, choosing the smooth vector field X := T,.(Vu)

we get
(Vf, X) = (Vh,T(Vu)) = ¢'(h){Vh,T,(Vh)) = p(h)(Vh,T.(Vh)) = 0.

Thus, from Lemma 7.1.3 we have (Vf, X) = 0. Consequently, |Vh| = 0 and,
therefore, ¥™ must be the slice ¥, . ]

Related to the higher order mean curvatures, we also establish the following result:
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Theorem 7.1.16 Let ¢ : X" — M be a complete noncompact two-sided hypersur-
face itmmersed into a Riemannian warped product M =1 X, M"™ whose fiber M"

has constant sectional curvature k satisfying

k< ir}f((p’)2 —pp"). (7.1.37)
Suppose that X" lies below a slice ¥y, := {t.} X M™ and is asymptotic to it at infinity.
If =1 < (N,0;) <0 and, for some 2 <r <n—1, H, is positive satisfying

H, 1 /
a2 > — ﬁ(h)v

Hr <N, at> 1%

and T is positive definite for all 0 < j <r, then ¥" is the slice X,.

(7.1.38)

Proof. Since we are assuming that 7} is positive definite for 1 < j < r, taking into
account curvature constraint (7.1.37) and that —1 < (N,0;) < 0, from (7.1.35) we

obtain

£,(u) < bop(h)H, (N, ) (Hglj n <N,18t>%,<h)) |

Hence, since H, > 0, from hypothesis (7.1.38) we conclude that u is a £,-superharmonic
function on ™.

On the other hand, since ¥" lies below the slice ¥;, and is asymptotic to it at
infinity, the function f := t, — h is nonnegative converging to zero at the infinity.

Moreover, choosing the smooth vector field X := —T,.(Vu), we get
(Vf,X) = (Vh,T.(Vu)) = g'(h)(Vh,T.(Vh)) = p(h)(Vh, T, (Vh)) > 0.

Hence, from Lemma 7.1.3 we have (Vf, X) = 0. Consequently, |Vh| = 0 and,

therefore, 3™ must be the slice >3, . [

7.1.4 Via polynomial volume growth

Let ¥" be a Riemannian manifold, and let us denote by B(p,r) the geodesic ball
centered at p € X" and with radius r. Given a polynomial function ¢ : (0, 4+00) —
(0, +00), we say that X" has polynomial volume growth like o if there exists p € X"
such that

vol(B(p,7)) = O(a(r)),

as r — 400, where vol denotes the canonical Riemannian volume of »". According

to [8], if p,q € X" are at a distance d from each other, we can verify that
vol(B(p, 1)) S vol(B(q,r —d)) o(r—d)
a(r) - o(r —d) o(r)
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Consequently, the choice of p in the notion of volume growth is immaterial, and we
will just say that X" has polynomial volume growth. In this setting, from [8, Theorem

2.1] we have the following

Lemma 7.1.4 Let X" be a connected, oriented, complete noncompact Riemannian
manifold and let X € X(X) be a vector field on X", with | X| < ¢ < +o0, for some
positive constant ¢ € R. Assume in addition that f € C(X") is such that (Vf, X) >0
and divX > af on X", for some positive constant a € R. If X" has polynomial volume
growth, then f <0 on ¥".

In what follows, we will apply Lemma 7.1.4 to the vector field X = TT(V(:)) for
0 <r<n—1, where © = p(h)(N,d,) € C>=().
Theorem 7.1.17 Let M

vergence condition

= —1 x, M" be a GRW spacetime obeying the null con-

Riear > (n— 1) sup(pp” — (¢))( D, (7.1.39)

where Ricy; stands the Ricci tensor of fiber M™. There is not complete spacelike hy-
persurface X" tmmersed into M with polynomial volume growth such that Hy, Ho
are constant with Hy > 0, p'(h) nonpositive and |VO| bounded on ™.

Proof. Suppose, by contradiction, the existence of such a spacelike hypersurface.

Thus, from (6.1.1) and [9, Corollary 8.2] we obtain

AO = np(h)(Vh,VH) + p'(h)nH,
+0 (Rica (N*, N*) = (n — 1)(log p)"(h)[|VA|*)

+6n (nH — (n—1)H,) .

Since Hy > 0, Lemma 5.2.3 guarantees that, with respect to the future pointing Gauss

map N, H; > 0 on X". Moreover, since H; and Hy are constant,
n*H?* —n(n — 1)Hy = |A? (7.1.40)
is also constant. Consequently, since p'(h) is nonpositive, from (7.1.39) we obtain
AG < On*(H? — H,),
with H? > H, > 0 by the Newton inequalities. Hence,
A(—6) > —6a,
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where a = n?(H} — Hy) € R.

When X" is compact, Divergence Theorem assures the nonexistence of it. In
the case that ¥" is noncompact, since |VO| is bounded on it, jointly with (7.1.40) we
conclude that there exists a constant C' > 0 such that |Vé| < C on X" We also
have that <V@, Vé) > 0 and, taking into account that we are also supposing that "
has polynomial volume growth, Lemma 7.1.4 implies —6<0onxm Therefore, since
p >0, from (5.2.7) we arrive at a contradiction. |

In the particular case that the ambient space is a static GRW spacetime, Corol-

lary 7.1.17 reads as follows.

Corollary 7.1.23 Let M = —IxM" be a GRW spacetime whose Riemannian fiber
M™ has nonnegative Ricci curvature. There is not complete spacelike hypersurface X"
immersed into M with polynomial volume growth, such that H, and Hs are constant
with Hy > 0, and |VO| is bounded on X"

Remark 7.1.7 Related to the previous nonexistence results, we point out that if X"
is contained in a slab and |Vh| is bounded on it, then p(h) is bounded and, since
VO = p(h)AVh and taking into account the constancy of Hy and Hy, we guarantee
the boundedness of |VO).

When r = 1, we will suppose again that the constant sectional curvature x of the

Riemannian fiber M™ of the RW spacetime —1 x , M"™ obeys the strong null convergence

condition (SNCC)

k= sup(pp” — (£)?). (7.1.41)

Theorem 7.1.18 Let M" = —I X, M™ be a RW spacetime whose Riemannian fiber
M™ has constant sectional curvature Kk satisfying the strong null convergence condition
(7.1.41). There is not complete spacelike hypersurface X" immersed into M with
polynomial volume growth, such that Hy and Hj are positive with Hy constant, p'(h) is
nonpositive and |Ty(VO)| is bounded on X"

Proof. Suppose, by contradiction, the existence of such a spacelike hypersurface.
So, we consider the smooth vector field X = T; V0. Since M™ has constant sectional
curvature &, from (6.1.1) jointly with equation (5.2.5) of Lemma 5.2.2 and [9, Corollary
8.4], we obtain

L6 = (-1 (p“ —<1ogp>"<h>) (Vh, VO)(N. D)
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+(5 ) V) + o

+

e <p2(h) — (1ogp)”(h)> (||Vh|[?b1Hy — (T1Vh, VL))

+6 (Z) (nH,Hy — (n — 2)H;) .
But, since VO = pAVh, from (5.1.5) we get

£,0 = é(n—2>( - (logp)"(h)) (TyVh, Vh) + o/ (h)b, Hy

o
p*(h)

Hence, since Hy > 0, Lemma 5.2.3 guarantees that, with respect to the future
pointing Gauss map N, H; > 0 and T} positive definite. Thus, from (7.1.41) jointly

with our assumption over p/(h), we obtain

Since H2 > HyHs; (see, for instance, [81, Theorems 51 and 144]]), from Newton
inequalities we have

H
HHy — H3 > f(H% — Hy) > 0.
1

Consequently,

Hence, since H3 > 0, there exists a positive constant a € R such that

,Cl(—@) > —Ou.
Note that, if X" is compact, Divergence Theorem gives the nonexistence of X™. In the
case that X" is complete noncompact, using again that 7T is positive definite, we have
that (V@, T1Vé) > 0. Then, since we are also supposing that \T1V(;)] bounded on X"
and that X" has polynomial volume growth, Lemma 7.1.4 assures that —© <0onX"
Therefore, we reach a contradiction. [
Similarly to Corollary 7.1.23 we have the following nonexistence result when the

ambient space is a static GRW spacetime.
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Corollary 7.1.24 Let M = —Ix M" be a RW spacetime whose Riemannian fiber
M™ has nonnegative sectional curvature k. There is not complete spacelike hypersurface
S immersed into M+ with polynomial volume growth, such that Hy and Hjz are
positive with Hy constant, and |T1(VO)| is bounded on ™.

Next, we consider the case the r-th Newton Transformation 7, is positive semi-

definite, for some 2 <r <n — 1.

Theorem 7.1.19 Let M"' = —I X, M™ be a RW spacetime whose Riemannian fiber
M™ has constant sectional curvature Kk satisfying the strong null convergence condition
(7.1.41). There is not complete spacelike hypersurface X" immersed into M with
polynomial volume growth, such that H,.1 is constant, for some 2 <r <n—1, Hy 1is
positive, forr < s < r+ 2, p'(h) is nonpositive, the r-th Newton transformation T, is
positive semi-definite and |T,(VO)| is bounded on .

Proof. Suppose, by contradiction, the existence of such a spacelike hypersurface. We
consider the smooth vector field X = TTVé. Since M™ has constant sectional curvature
Kk, from (6.1.1) jointly with equation (5.2.5) of Lemma 5.2.2 and |9, Corollary 8.4] we

obtain

L0 = (n—r) ( — (log p)’ (h)) (T._1Vh,VO)(N,d,)

p*(h)

(7“ 1>p h Vh VHT+1> p/(h)bf,«HT‘_i_l

<p 2 () — (log p)"(h )) (IIVh||*b,H, — (T, Vh, Vh))
+0 (r Z 1) (nH Hypy = (0 =7 = 1) Hys) (7.1.42)

Thus, since VO = pAVh, from (5.1.5) and (7.1.42) we get

£6 = 6ln—r—1) (7~ (o) (0)) (LVRTH) + 5 (1) oo
+6 (T i 1) (nH Hyiy — (n— 1 — 1) Hy 1) (7.1.43)

Hence, since T, positive semi-definite, from (7.1.41), (7.1.43) and our assumptions

on H, and p'(h), we deduce
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L.(©)

IN

A n
@(T‘ 1 1) (nHlHr+1 — (n -7 — 1)Hr+2) .

Consequently,
A ~( n
,CT(—@> Z -0 <T i 1) (nHlHr+1 — (n —Tr— 1)Hr+2) .

So, since H,,o > 0, from Newton inequality HiH,,; — H,,o > 0 there exists a

positive constant a € R such that

L.(-6) > —6a
If ¥ is compact, then Divergence Theorem guarantees the nonexistence of such
a spacelike hypersurface. When X" is complete noncompact, using again that 7, is
positive semi-definite, we have that <Vé), TrVé> > 0. Hence, since we are also sup-
posing that X" has polynomial volume growth, Lemma 7.1.4 assures that —© <0 on
>, Therefore, we arrive at a contradiction. [
It is not difficult to verify that, from [42, Corollary 9.107] and equation (7.1.43),
Theorem 7.1.19 also holds for GRW spacetimes with constant sectional curvature. More

precisely,

Corollary 7.1.25 Let M= X, M™ be a GRW spacetime with constant sectional
curvature. There is not complete spacelike hypersurface ¥ immersed into M with
polynomial volume growth, such that H,.1 is constant, for some 2 <r <n—1, Hy is
positive, forr < s < r+ 2, p'(h) is nonpositive, the r-th Newton transformation T, is
positive semi-definite and |T,(VO)| is bounded on .

When the ambient space is a static RW spacetime, we have the following result.

———n+1

Corollary 7.1.26 Let M = —I X M™ be a static RW spacetime whose Rieman-
nian fiber M™ has nonnegative sectional curvature. There is not complete spacelike
hypersurface X" immersed into M with polynomial volume growth such that H,q
constant, for some 2 <r < n —1, H, is positive, for r < s < r + 2, the r-th Newton

transformation T, is positive semi-definite and |T,.(VO)| is bounded on ™.

Next, we will consider the case that the ambient space is a Riemannian warped

product.
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Theorem 7.1.20 Let vy : X" — M be a complete noncompact two-sided hypersur-
face immersed into a Riemannian warped product M =1 x o M™ which obeys cur-
vature constraint (7.1.11). Assume that the Weingarten operator A is bounded and X"
has polynomial volume growth. If Hy is constant, p < 1, p/(h)H; > 0 and 6= (N, K)

satisfies
1—p'nH,y

o> AR+ (7.1.44)

then X" is totally geodesic.

Proof. We define the function £ = 1 — ©. Since p <1, we have £ > 0. We consider
the vector field X = AKT € X(X), where K stands for the orthogonal projection of
K onto X(X). From [107, Corollary 7.43|, we obtain

div(X) = (N, K) (Ricar(N*, N*) + (n — 1)(log p)"(1 — (N, 0;)* + |A|*)
— K" (nH,) + p'nH,. (7.1.45)

Using that K € X(M) is a non-vanishing conformal closed field with conformal
factor p' € C(M), is not difficult verify that the gradient of © is given by VO =
—AKT. Thus, since A is self-adjoint we get

(VE,X)=—(VO,X)=(AKT, AK") = |[AKT|> > 0.
Moreover, since H; is constant, from (7.1.45) we obtain
div(X) = (N, K) (Ricy(N*, N*) + (n — 1)(log p)"(1 — (N, 0,)* + |A]*) + p'nH,.
Thus, from (5.2.3) and constraint (7.1.44) we obtain
div(X) > p'nH,+ (N, K)|AJ]? (7.1.46)

and it thus follows from assumption (7.1.44) that div(X) > & on X"
Since we are assuming that A and p are bounded, we have that X = AKT is
also bounded on . Moreover, since 2" has polynomial volume growth, Lemma 7.1.4
guarantees that & < 0 on X". Hence, £ = 0, that is, 6 =1. Therefore, if p’H; > 0
then from of assumption (7.1.44) and inequality (7.1.46) we conclude that X" must be
totally geodesic in M |
For 2 < r < n, assuming that the fiber of the ambient space has constant curva-

ture, we obtain the following nonexistence result.
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Theorem 7.1.21 Let M =1 X, M"™ be a Riemannian warped product whose fiber

M™ has constant sectional curvature Kk satisfying
k> sup ((p')* — pp") . (7.1.47)
I

There is not a complete noncompact hypersurface v : X" — M with polynomial

volume growth immersed into M =1 X, M™, such that the Weingarten operator A

with respect to unit normal vector field N is bounded and T,_1 is positive semi-definite,

for some 2 <r <n—1, H, is constant, H; is positive, for all1 < j <r 41, and the

warping function p < 1 and the support function © = (N, K) satisfy
&> 1—prS,

> AT T (7.1.48)

Proof. Suppose, by contradiction, the existence of such a hypersurface immersed into
M Thus, we define the function £ :=1 — ©. Since p <1, we have £ > 0. Consider
the vector field X = AT, ;K" € X(X), where K stands for the orthogonal projection
of K onto the tangent bundle of ¥". Using that K € X(M) is a non-vanishing conformal
closed field with conformal factor p’ € C°° (M), we show that the gradient of © is given

by VO = —pAVh. Since H, is constant, from [18, Corollary 26 and Lemma 28| we get

L,_1(—6) = 6(n—r) <p2,;h) + (log p)”(h)) (T,_1Vh,Vh) + p'(h)b,_1H,

+Otr(A%T,_y). (7.1.49)
Consequently, Since T,_; is positive semi-definite, from (7.1.49)
L,_1(—0) > p(h)rS, + O6tr(4A%T,_,). (7.1.50)

Thus, from (7.1.48) and (7.1.50) we obtain

A

Er—l(—@) > 1-0=¢

Hence, div(X) > £ on X". Since we are assuming that |A| and p are bounded on X",

we have that X is also is bounded on »". Moreover, since A is self-adjoint we get
(VE,X) = —(VO,X) = (AKT AT, _\K") = (K", A’T,_,K") > 0.

Then, since ¥" has polynomial volume growth, [8, Theorem 2.1] guarantees that
¢ <0 on X" Therefore, £ = 0, that is, 6 =1. Hence, from assumption (7.1.48) and

inequality (7.1.50) we obtain
o (h)rS, = —tr(A*T,_,),
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that is, p'(h) < — ];_H. Thus, from assumptions under H,,; and p’ on X", we arrive

at a contradiction. n
In particular, when the ambient space has constant sectional curvature, we can

state the following nonexistence result.

Corollary 7.1.27 Let M =1 X, M™ a Riemannian warped product of constant
sectional curvature. There is not a complete noncompact hypersurface with polynomial
volume growth immersed into M =T X, M", such that the Weingarten operator A
with respect to unit normal vector field N s bounded, T,._, is positive semi-definite, for
some 2 < r <n—1, H, is constant, H; is positive, for all 1 < j < r + 1, and the
warping function p < 1 and the support function © = (N, K) satisfy (7.1.48).

7.2 Applications to entire graphs

In what follows, for simplification of notation, we will just identify

7 ((mulsw), " (D) = (¢, lsw) (Dw)

T, (Dw) = ¢Dw.

In this setting, we can establish nonparametric versions for the results of Sec-

tion 7.1. For instance, from Theorem 7.1.2 we obtain the following:

Corollary 7.2.1 Let M =1 X, M™ be a RW spacetime whose Riemannian fiber
M™ has constant sectional curvature k obeying the curvature constraint (7.1.6) and
let X(w) be an entire graph determined by a bounded function w € C*(M). Suppose
that, for some 2 < r < n —1, H.yy is positive and p(w) attains a local minimum
at a point ¢ € X(w) such that p'(w(q)) # 0. If T, satisfies T,.(Dw) = @Dw, for
some 0 < ¢ € C®(X(w)), [Dw|y € £, (M), |[Dw|y; < ap*(w), for some constant
0<a<l1, and

T
b\

> Dw), (7.2.1)

then w = tg for some ty € I.

Proof. As in the beginning of the proof of Corollary 5.1 in [10], the assumption that
|Dw|%; < ap?(w), for some constant 0 < o < 1, guarantees that X(w) is a complete

spacelike hypersurface. Moreover, it follows from (5.3.1) that dX(w) = /|G|dM,
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where dM and d¥(w) stand for the Riemannian volume elements of (M", (,)s) and
(X(w), (,)), respectively, and G = det(g;;) with

gij = (e, €j) = —e;(w)ej(w) + p2(w)(5l-j. (7.2.2)

Here, {e1,--- ,e,} denotes a local orthonormal frame with respect to the metric (, ).

It is not difficult to verify that

Gl = p2 2 (w) (0P (w) — | Dwly). (7.2.3)

Dw
and (7.2.3) can be easily deduced using (7.2.2). Consequently, from (7.2.3) we get

Indeed, in the points where Dw does not vanish, it is enough to take e; =

dS(w) = " (w)y/p?(w) — | DwfydM. (7.2.4)
It follows from (5.3.7) that
| Dwld%(w) = p"H(w)| Dw|pnd M.

Therefore, since |Dw|y € £1,, (M), from condition (7.2.1) we can apply Theo-
rem 7.1.17 to conclude the result. ]
When the ambient space M =1 x » M™ is a Riemannian warped product, all
results in Subsection 7.1.1 can be also rewritten for the context of entire graphs. In

particular, we quote the following nonparametric versions of Theorem 7.1.4.

Corollary 7.2.2 Let M =1 X, M™ be a Riemannian warped product whose fiber
M™ has constant sectional curvature k obeying the curvature constrain (7.1.17) and let
Y(w) be an entire graph determined by a bounded function w € C*°(M). Suppose that,
for some 2 < r <n—1, H.yy is positive, —1 < (N,0;) < 0 and p(w) attains a local
mazximum at a point g € X(w) such that p'(w(q)) # 0. If T, satisfies T,.(Dw) = ¢(Dw),

for some 0 < p € C>(X(w)), [Dw| € £L,, (M), |Dw|3; < ap®(w), for some constant

0<a<l, and
Hr—i—l

H,

/
< Z(w),
p

then w = tg for some ty € I.

Taking into account equation (7.2.4), if w € C*°(M) is bounded and M™ has
polynomial volume growth, we conclude that ¥(w) also has polynomial volume growth.

Thus, we can also restate Theorem 7.1.17 in the context of entire graphs.
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Corollary 7.2.3 Let M = —Ix,M" be a GRW spacetime obeying the NCC (7.1.39)
and with Riemannian fiber M™ having polynomial volume growth. There is not entire
graph 3(w) determined by a bounded function w € C*°(M) such that Hy, Hy are con-
stants with Ho positive, p'(w) is nonpositive, |Dw|3, < ap*(w), for some constant
0<a<1,and |VO| is bounded on ¥(w).

From (5.3.2), it is not difficult to see that we can also reformulate Theorem 7.1.19

in the context of entire graphs as follows:

Corollary 7.2.4 Let M= X, M"™ be a RW spacetime whose Riemannian fiber
M™ has polynomial volume growth and constant sectional curvature k satisfying the
SNCC (7.1.41). There is not entire graph X(w) determined by a bounded function
w € C®°(M) such that H,y1 constant, for some 2 < r < n — 1, Hy is positive for all
r<s<r+2, p(w) is nonpositive, |Dw|3; < ap*(w), for some constant 0 < a < 1,
and T, is positive semi-definite with |T,(VO)| bounded on L (w).

When the ambient space M =1 x p» M™ is a Riemannian warped product,
using (5.3.3) and denoting by D?w the Hessian of w € C°°(M) with respect to the

metric (,)ar, we obtain nonparametric versions of Theorems 7.1.20 and 7.1.21.

Corollary 7.2.5 Let Mt =1 X, M™ be a Riemannian warped product whose fiber
M™ has polynomial volume growth and which obeys the curvature constraint (7.1.11).
Let 3 (w) be entire graph determined by a bounded function w € C>®°(M) such that
|Dw|%;, < ap*(w), for some constant 0 < o < 1, and D*w is bounded. If Hy is
constant, p(w) < 1, p(w)Hy > 0 and © = (N, K) satisfies (7.1.44), then S(w) is
totally geodesic.

Corollary 7.2.6 Let M= I'x,M"™ be a Riemannian warped product whose fiber M™
has polynomial volume growth and constant sectional curvature k satisfying (7.1.47).
There is not an entire graph X(w) determined by a bounded function w € C*(M) such
that T,_, 1is positive semi-definite, for some2 <r <n-—1, p(w) < 1, |Dw|3; < ap*(w),
for some constant 0 < a < 1, D?w is bounded and © = (N, K) satisfies (7.1.48).
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