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“The realization that the majority of the matter in the Universe might be non-baryonic is
the ultimate Copernican viewpoint; not only are we in no special place in the Universe, but
we aren’t even made out of the same stuff as dominates the matter density of the Universe.”

(Andrew Liddle, An Introduction to Modern Cosmology, 3rd ed)





Abstract
In this doctoral thesis, I investigate how the decay of a very heavy particle into dark matter
and photons (or neutrinos) can alleviate the Hubble tension, that is, it can reconcile the
value of the Hubble constant (H0) measured through the analysis of the cosmic microwave
background (CMB) radiation with the measurements obtained in regions of the universe
with low redshift. I show that by adopting the standard cosmological model, ΛCDM, this
mechanism is unable to completely remove the tension, resulting in only a small reduction
between the measurements of H0. However, in a universe with a phantom-like fluid, the
decay adds enough radiation to the point where CMB measurements allow for H0 within
the range of 70−74 km s−1 Mpc−1, which would completely eliminate the tension. I also use
constraints from BBN to show that many of the important results of the standard cosmology
are preserved, which prevents the model from being phenomenologically excluded.

Keywords: Cosmology. Dark Matter. Hubble Tension. Effective Field Theory.





Resumo
Nesta tese de doutorado, eu investigo como um decaimento de uma partícula muito pesada
em matéria escura e photons (ou neutrinos) podem aliviar a tensão de Hubble, ou seja, pode
fazer o valor da constante de Hubble (H0) medido através da análise da radiação cósmica de
fundo (CMB) ser compatível com as medidas obtidas em regiões do universo com pequeno
redshift. Mostro que adotando o modelo cosmológico padrão, ΛCDM, esse mecanismo
não é capaz de remover totalmente a tensão, produzindo apenas uma pequena redução
entre as medições de H0. Contudo, em um universo com um fluido do tipo fantasmagórico,
o decaimento adiciona radiação suficiente ao ponto de medidas da CMB permitirem H0

no intervalor 70 − 74 km s−1 Mpc−1, o que eliminaria totalmente a tensão. Também
utilizo restrições oriundas da BBN para mostrar que muitos dos importantes resultados da
cosmologia padão são mantidos, o que faz o modelo não ser fenomenologicamente excluido.

Palavras-chave: Cosmologia. Matéria Escura. Tensão de Hubble. Teoria de Campo
Efetiva.
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1 Introduction

The ΛCDM model is the standard cosmological framework and is highly consistent
with observational data. It successfully explains various phenomena such as the formation
of light elements in the cosmos, the existence of the homogeneous and isotropic cosmic
microwave background (CMB), and the ongoing accelerated expansion of the universe.
Nonetheless, there are certain challenges that remain the subject of extensive research.
One of these challenges is known as the Hubble tension, which arises from the discrepancy
between the value of the Hubble constant (H0) obtained from early universe analysis and
the value derived from late universe observations.

To elaborate further, the Planck Collaboration analyzed the slight anisotropies
in the CMB and determined H0 = 67.27 ± 0.6 km s−1 Mpc−1 [4]. On the other hand,
local measurements of the Hubble constant typically rely on standard candles, which are
stars with known intrinsic luminosity, allowing for accurate distance measurements. By
determining the distance and redshift caused by the expanding universe, astronomers can
estimate H0. Using this technique, values of H0 above 70 km s−1 Mpc−1 are often obtained
[5].

The essence of the Hubble tension lies not only in the discrepancy between the
central values of the Hubble constant obtained from early and late universe measurements
but also in the fact that these measurements are highly precise with small error bars.
Additionally, the error bars of the early and late universe measurements do not overlap,
further emphasizing the tension.

There exist several potential solutions to alleviate the Hubble tension, and in
this discussion, I will highlight two of them. The first approach involves introducing
additional radiation before the formation of the cosmic microwave background (CMB).
This extra radiation contributes to an effective number of neutrinos, resulting in a range
of 3 < Neff < 3.7 [5, 6, 7]. Although this additional radiation can slightly reduce the
aforementioned discrepancy, it is insufficient to completely eliminate it [7].

The second solution involves considering an alternative dark energy model with
an equation of state described by a linear relation between its pressure P and energy
density ρ, where P = wρ and w < −1. This type of fluid is referred to as phantom-like
dark energy.

The core of this thesis is to unify these two solutions and provide an explanation
for the extra source of radiation. The proposed model suggests the existence of a heavy
particle, denoted as χ′, which decoupled from the fundamental plasma. This particle can
undergo decay processes producing photons (γ) and dark matter (χ), or it can decay into
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dark matter and standard model neutrinos (ν). The particles generated by the decay of χ′

contribute to the relativistic energy of the fundamental plasma, providing a reason for
the requirement of Neff > 3. However, to ensure consistency with observations, the dark
matter produced through this mechanism should be cold at the time of matter-radiation
equivalence. This ensures compatibility with cosmic microwave background data and
structure formation, while only constituting a small fraction of the overall dark matter
budget. The primary advantage of this solution is its ability to alleviate the Hubble
tension while satisfying the constraints imposed by primordial nucleosynthesis (BBN).
Furthermore, it establishes a connection between the Hubble tension and the nature of
dark matter.

This thesis is structured as follows:

Chapter 2 provides a comprehensive review of standard cosmology. It begins with
an exploration of the general relativity approach, deriving the fundamental equations for
cosmology. The chapter then employs statistical mechanics to describe the state equations
governing the universe’s budget. Finally, I categorize the different phases of the universe
and present the corresponding scale factor solutions.

Chapter 3 is dedicated to a detailed presentation of the Hubble tension. Within this
chapter, I review the methods employed by cosmologists to estimate the Hubble constant
using distance and redshift measurements. Furthermore, I delve into the intricacies of
the Hubble tension, analyzing the discrepancies and possible solutions proposed by the
scientific community.

In Chapter 4, I conduct an extensive investigation on how the decays χ′ → χ+γ or
χ′ → χ+ γ can alleviate the Hubble tension within both a ΛCDM universe and a universe
featuring a phantom-like fluid. This chapter serves as an expansion of two articles where I
was the main author. One of these articles, titled "The Hubble constant troubled by dark
matter in non-standard cosmologies," was published in Nature - Scientific Reports [3]. The
second article, titled "The Hubble rate trouble: an effective field theory of dark matter,"
was published in The European Physical Journal C [1].

Chapter 5 concludes the thesis by providing my final considerations and outlining
potential avenues for future research and analysis.

Overall, this thesis is structured to provide a comprehensive examination of standard
cosmology, an in-depth exploration of the Hubble tension, and a detailed investigation of
possible solutions to address this discrepancy.

Throughout this text, I employ natural units in which fundamental constants,
namely the speed of light in vacuum c, the reduced Planck constant ℏ, the Boltzmann
constant kB, and the gravitational constant G, are set to unity, i.e., c = ℏ = kB = G = 1.
This choice greatly simplifies calculations in general relativity, cosmology, and quantum
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field theory. Appendix A provides a comprehensive review of these units and outlines the
procedure for recovering the fundamental constants when necessary.
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2 Cosmology

The first two sections are a review of special and general relativity. The goal of
these sections is to introduce the conventions of general relativity that I use throughout
the entire text. This is important because there are various conventions for the Minkowski
metric, Riemann tensor, Ricci tensor, Einstein’s equation, and the energy-momentum
tensor. Therefore, I explain the specific convention I am using and provide a brief review of
some useful concepts for the development of cosmology. To avoid citing the same reference
multiple times in these two sections, I would like to emphasize that they are primarily
based on reference [8].

The remaining sections of this chapter are dedicated to a non-perturbative review
of cosmology. These concepts are crucial for the development of the subsequent chapters;
therefore, I will take the necessary time to review them thoroughly. It is important to
note that the cosmology review will only cover topics that are relevant to the upcoming
chapters. Subjects such as inflation, perturbative theory of cosmology, and primordial
gravitational waves will not be explored in this review as they are beyond the scope of
this thesis. However, there will be instances in the subsequent chapters where I will briefly
incorporate perturbative information, such as the CMB power spectrum, in a superficial
manner without delving deeply into the topic. Hence, it is not necessary to extensively
review this aspect.

2.1 Special Relativity

The theory of special relativity is grounded on two principles [9]: (i) the speed of
light has the same value for any inertial frame; (ii) the physics laws are the same for all
inertial frame. These both postulates have profound consequences for our space and time
knowledge. In classical mechanics, both space and time are two independent concepts,
while in relativity they are aspects of the same thing, the space-time. Time should be
considered as a geometric coordinate [8].

Using Cartesian coordinates, the infinitesimal distance between two points in
Euclidean space is calculated using the line element

ds2 = dx2 + dy2 + dz2 = δijdx
idxj. (2.1)

This object is invariant under rotations and translations. It is also always positive.

Special relativity requires that the line element in Minkowski coordinates takes the
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following form
ds2 = dt2 − dx2 − dy2 − dz2 = ηµνdx

µdxν . (2.2)

This object is invariant under Lorentz transformation (or Lorentz boost). It is a
global transformation that connects the measurement between two inertial frames. The
matrix ηµν is the Minkowski metric and the above line element describe the so-called
Minkowski space-time.

The matrix that represents the Lorentz transformation is denoted by [Λµ
ν ]. There-

fore, the components of a event {x̄µ} in a inertial frame are connected with the components
{xµ} from the other inertial frame trough the relation

x̄µ = Λµ
νx

ν . (2.3)

Four-vectors (or Lorentz vectors) are objects whose modules are invariant under
Lorentz transformations, and their components transform in the same way that the above
relation.

A particle with mass m has a four-position xµ = (t,x) and its four-velocity is
Uµ ≡ dxµ/dτ , where τ is the proper time. The four-velocity is a useful concept because it
is a Lorentz vector. The four-momentum is pµ ≡ mUµ = (E,p), where E is the energy
and p is the momentum of the particle. The four-momentum is also a Lorentz vector and
its modulus provides the particle mass, i.e., pµpµ ≡ p2 = m2. The immediate consequence
of this equation is the famous equation

E2 = p2 +m2, (2.4)

which tells us that the mass is the particle rest energy (E0 = m). That also informs that
massless energy particles is E = |p|.

The Minkowski metric has the matrix representation

[ηµν ] = diag(+1,−1,−1,−1), (2.5)

and its inverse matrix is
[ηµν ] = diag(+1,−1,−1,−1). (2.6)

Thus, we can write
ηµαηαν = δµν . (2.7)

A Lorentz four-vector has its components in a covariant representation Vµ, and it
also has the components in a contravariant representation V µ. The relation between these
two components is V µ = ηµνVν or Vµ = ηµνV

ν .
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We can define the Lorentz tensor as an object with many indices that upon
undergoing a Lorentz transformation (LT) its contravariant components change in the
following way:

Tα1...αn LT−→ T̄α1...αn = Λα1
β1 . . .Λ

αn
βn
T β1...βn . (2.8)

The connection between covariant and contravariant Lorentz tensors is provided
by the Minkowski metric, i.e.,

Tα1...αn ≡ ηα1β1 . . . ηαnβnT
β1...βn . (2.9)

It is important to emphasize that any identity with Lorentz tensors is true for all
the inertial frames. This section began with the requirement that the physics laws are the
same for all inertial frames, thus writing the physical equation in tensor form is enough
for the special relativity second postulate to be obeyed.

The energy-momentum tensor T µν is one of the most important objects of special
relativity. It is symmetric and obeys the conservation equation

∂µT
µν = 0. (2.10)

In many applications, we deal with perfect fluids, with a four-velocity field Uµ,
a scalar pressure P , and a scalar energy density ρ. Such fluids are described by the
energy-momentum tensor

T µν = (ρ+ P )UµUν − Pηµν . (2.11)

This tensor when inserted in the conservation law Eq. 2.10 provides the relativistic version
of the continuity equation and Euler equation for fluids, which are the necessary relation
to describe a perfect fluid.

2.2 General Relativity

2.2.1 Tensors

General Relativity extends the second postulate of Special Relativity replacing
inertial frame to all frames, i.e., the laws of physics must be the same for all frames.
Therefore, the Lorentz tensor should be replaced by a more general class of tensors, where
tensor identities hold in all reference frames.

To construct this idea of tensor, let’s suppose that exists a scalar field ϕ defined
over all spacetime. We calculate the value of ϕ in each point of a region using the set of
coordinates xµ. But, there is nothing special in this coordinate system, therefore we can
calculate ϕ using other coordinates x̄µ.
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Lets calculate,
∂ϕ

∂x̄µ
= ∂ϕ

∂xν
∂xν

∂x̄µ
⇒ ∂̄µ = ∂xν

∂x̄µ
∂ν . (2.12)

The above equation is the prototype of a covariant tensor, i.e., an n-rank covariant
tensor T is defined as an object whose components transform in the following way

T̄µ1···µn = ∂xν1

∂x̄µ1
· · · ∂x

νn

∂x̄µn
Tν1···νn , (2.13)

when a coordinate transformation xµ → x̄µ is made.

The prototype for the contravariant tensor is the transformation law of the differ-
ential dxµ under the coordinate transformation xµ → x̄µ,

dx̄µ = ∂x̄µ

∂xν
dxν . (2.14)

Therefore, a contravariant n-rank tensor T is defined as an object whose components
transform as

T µ1···µn = ∂x̄µ1

∂xν1
· · · ∂x̄

µn

∂xνn
T ν1···νn , (2.15)

when a coordinate transformation xµ → x̄µ is made.1

To show the straightforward way to define a mixed tensor, consider the tensor

T̄αβ = ∂x̄α

∂xµ
∂xν

∂x̄β
T µν . (2.16)

Supposing that in a reference frame the identity T µν = 0, the above equation
implies that in any other frame, this equality holds true, i.e., T̄αβ = 0. As anticipated
at the beginning of this subsection, the main important consequence of the definition of
tensors is that a tensor equation holds for all coordinates. General Relativity is constructed
on the demand that physical laws should hold for all frames. Therefore, all fundamental
equations should be written in the tensor form.

2.2.2 Metric and Connection

General relativity is the best description of gravity that we have until now. In this
theory, gravity is the manifestation of the curvature of spacetime. The presence of matter
and energy generates curvature. Unlike the Newtonian formulation, gravity is no longer
treated as a force. A remarkable point that makes this paradigm very clear is the idea that
particles that interact only gravitationally are considered free particles, i.e., they move
in geodesics. Therefore, the role of the other interactions is to make the particles deviate
from the geodesic path.
1 The Lorentz tensor is only a special class of tensors where ∂xµ

∂x̄ν = Λµ
ν .
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The first important object of the theory is the metric gµν , a second-rank tensor
that is a unique function of the coordinates {xµ} used to describe spacetime. It informs
us how to calculate distance, proper time, proper length, area, volume, and any other
geometric information needed.

The line element
ds2 = gµν(x)dxµdxν (2.17)

is an object with a pseudo-Riemannian structure, invariant under coordinates transforma-
tions. It is pseudo-Riemannian because ds2 can be positive, null, or negative. Free massive
particles move in geodesics with a positive line element, while free massless particles move
in geodesics with a null line element. No particle moves on trajectories with ds2 < 0,
otherwise, there would be a causality break.

To find the geodesic equations it is necessary to extremize the functional∫
dλ

√
gµν

dxµ

dλ

dxν

dλ
, (2.18)

where lambda is an affine parameter defined over the entire geodesic. This is done using
the Euler-Lagrange equation,[

∂

∂xα
− d

dλ

∂

∂ (dxα/dλ)

]√
gµν

dxµ

dλ

dxν

dλ
= 0. (2.19)

Thus, the geodesic x = x(Λ) is the solution of the equation
d2xµ

dλ2 + Γµαβ
dxα

dλ

dxβ

dλ
= 0. (2.20)

Where the connection Γµαβ is a symmetric object (Γµαβ = Γµβα) and it is related to the
metric through the identity

Γµαβ = 1
2g

µν (∂αgνβ + ∂βgαν − ∂νgαβ) . (2.21)

It is interesting to note extremize the functional∫
dλ gµν

dxµ

dλ

dxν

dλ
(2.22)

also provides the geodesic equation (Eq. 2.20). This greatly facilitates the work of finding
the geodesic of a specific geometry. Another important point is that extremize the above
functional is a direct way to determine the connections without using Eq. 2.21.

2.2.3 The covariant derivative and the Riemann tensor

Unfortunately, the partial derivative of a vector does not transform as a tensor.
To address this issue, the concept of a covariant derivative is introduced. The covariant
derivative of a contravariant vector component is defined as:

∇µV
ν = ∂µV

ν + ΓναµV α. (2.23)
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Similarly, the covariant derivative of a covariant vector component is defined as:

∇µVν = ∂µVν − ΓανµVα. (2.24)

The generalization of the covariant derivative to higher-ranked tensors is straight-
forward. As an example, the covariant derivative of a generic contravariant tensor of rank
2, denoted as Tαβ, is given by:

∇µT
αβ = ∂µT

αβ + ΓανµT νβ + ΓβνµTαν . (2.25)

The covariant derivative of the metric tensor and its inverse satisfies the following
relations:

∇µ gαβ = 0 and ∇µ g
αβ = 0. (2.26)

Partial derivatives commutes, however, this is not true for the covariant derivative.
The commutator of covariant derivatives is defined as:

[∇β,∇α]Vν ≡ Rµ
ναβVµ, (2.27)

where Rµ
ναβ represents the components of the Riemann tensor. It is given by:

Rµ
ναβ = ∇αΓµνβ − ∇βΓµνα + ΓλνβΓµλα − ΓλναΓµλβ. (2.28)

The Riemann tensor characterizes the curvature of spacetime. If all components of the
Riemann tensor are null, the spacetime is Minkowskian [8].

The Riemann tensor components obey the following properties:

Rµ
ναβ +Rµ

αβν +Rµ
βνα = 0 (2.29a)

Rµ
ναβ = −Rµ

νβα (2.29b)

Rµναβ = −Rνµαβ (2.29c)

Rµναβ = Rαβµν (2.29d)

Rµ
µαβ = 0 (2.29e)

∇λR
µ
ναβ + ∇αR

µ
νβλ + ∇βR

µ
νλα = 0. (2.29f)

These properties reduce the number of independent components of the Riemann tensor to
20.
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2.2.4 The Einstein equation

The Ricci tensor is one of the terms of the equation that describes the space-time
dynamics. It is a symmetric 2-rank tensor defined by

Rµν ≡ Rα
µνα = ∂νΓαµα − ∂αΓαµν + ΓαµβΓβαν − ΓαµνΓ

β
αβ. (2.30)

The contraction between the Ricci tensor and the metric is called the Ricci scalar:

R = gαβRαβ (2.31)

The combination
Gµν = Rµν − 1

2Rgµν (2.32)

is called Einstein tensor and has a vanishing covariant divergence, i.e.,

∇µG
µν = 0. (2.33)

Einstein’s equation,

Rµν − 1
2Rgµν + Λgµν = −8πTµν , (2.34)

describes the dynamics of spacetime. The left-hand side involves metric derivatives in
a highly nonlinear manner. The right-hand side is a multiple of the energy-momentum
tensor Tµν , which serves as the source of curvature. In summary, Einstein’s equation is
a nonlinear equation for the metric tensor. Solving it is equivalent to obtaining all the
geometric information of a given spacetime.

It is fundamental to note that the energy-momentum tensor is divergenceless, i.e.,

∇µT
µν = 0, (2.35)

which represents the general conservation equation.

2.3 Friedmann-Robertson-Walker Geometry

2.3.1 Friedmann’s and acceleration equation

Cosmological observations show that on large scales the universe is homogeneous
and isotropic [8, 10, 11]. 2 Homogeneity is understood as a translation symmetry, while
isotropy is a rotation symmetry. In a philosophic way, the cosmological principle means
that there is no privileged place in the Universe.
2 In the Cosmology development there was an understanding that structure formation like galaxies

and galaxy clusters requires some fluctuations in the matter density. The microwave background also
has anisotropy in photons’ temperature. Hence, a more accurate study of the Universe requires small
inhomogeneities.
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A homogeneous and isotropic universe is a maximal symmetric spacetime that is
described by a Friedmann-Robertson-Walker (FRW) metric [12, 10, 8]:

ds2 = dt2 −R2(t)
[

dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)
]
. (2.36)

The constant k is related to the spatial geometry. For k = −1, the space is open and has a
flat hyperbolic geometry. When k = 0 the geometry is flat. If k = 1, the space is closed
and has a spherical geometry. 3

It is important to understand that homogeneity and isotropy do not mean that the
universe has no dynamic. The presence of matter and energy induces a certain geometry
that describes space-time on large scales. This curvature source can be modeled as a
perfect fluid, the cosmological fluid, in which the energy-momentum tensor is

T µν = (ρ+ P )UµUν − Pgµν , (2.37)

where P is the pressure, ρ is the energy density, and Uµ is the fluid four-velocity.

The comoving coordinate system is the one adopted in Cosmology comoving frame
the four-velocity is Uµ = (1,0)

All the mathematics of cosmology is developed in the comoving coordinate system,
where the cosmological fluid has fixed spatial coordinates, i.e., the fluid four-velocity is
Uµ = δµν [8]. Consequently, the approximation or distancing of comoving observers is due
to the malleability of spacetime itself, generating a recession velocity.

The FRW metric allows us to define the functional

L = ṫ2 −R2(t)
[

ṙ2

1 − kr2 + r2(θ̇2 + sin2 θϕ̇2)
]
, (2.38)

where ẋµ ≡ dxµ/dλ, λ being an affine parameter.4

Extremizing this functional provides the geodesic equations for FRW geometries,
which gives the connections below.

Γtrr = RṘ

1 − kr2 Γtθθ = r2RṘ Γtϕϕ = (r sin θ)2RṘ (2.39a)

Γrtr = Ṙ

R
Γrrr

kr

1 − kr2 Γrθθ = −r(1 − kr2) Γrϕϕ = −r(1 − kr2) sin2 θ (2.39b)
3 Here, I will sketch how to deduce that k = ±1 are hyperbolic and spherical geometries. First, it is

necessary to take the hypersurface that delimits the desired geometric shape, after that, the metric
should be induced. The hyperbolic hypersurface w2−(x2+y2+z2) = R2 in the Minkowski spacetime has
dσ2 = dw2 − (dx2 + dy2 + dz2) = −R2

[
dr2

1+r2 + r2(dθ2 + sin2 θdϕ2)
]

as the induced metric. A spherical
hypersurface x2 + y2 + z2 + w2 = R2 in the 4D Euclidean space has dσ2 = dw2 + dx2 + dy2 + dz2 =

dr2

1−r2 + r2(dθ2 + sin2 θdϕ2) as the induced metric.
4 Here there is a notation that can be misleading. In almost all moments I use the dot notation to

express a time derivative, but in the context of extremizing the L functional to obtain the geodesic
equation, the dot notation means a derivative with respect to the affine parameter λ.
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Γθtθ = Ṙ

R
Γθrθ = 1

r
Γθϕϕ = − sin θ cos θ (2.39c)

Γϕtϕ = Ṙ

R
Γϕtϕ = 1

r
Γϕθϕ = cotϕ (2.39d)

Applying these connections in Eq. 2.30 gives the Ricci tensor components:

Rtt = 3R̈
R
, (2.40a)

Rrr = −RR̈ + 2Ṙ2 + 2k
1 − kr2 , (2.40b)

Rθθ = −r2(RR̈ + 2Ṙ2 + 2k), (2.40c)

Rϕϕ = Rθθ sin2 θ. (2.40d)

To describe the universe it is needed to solve Einstein’s equation (Eq. 2.34).

R00 = −8πT00 ⇒ R̈ = −4π
3 (ρ+ 3P )R + Λ

3R. (2.41)

Which is the so-called acceleration-equation. It is important to note that this equation
does not depend explicitly on the curvature k.

R11 = −8πT11 ⇒ Ṙ2 = 8π
3 ρR2 + Λ

3R
2 − k. (2.42)

It is usual to work with the normalized scale factor,

a(t) ≡ R(t)
R(t0)

= R

R0
· (2.43)

Where t0 is the “current” moment of the Universe. Note that a(t0) = a0 = 1.

Therefore, Eq.2.41 becomes

ä = −4π
3 (ρ+ 3P ) a+ Λ

3 a. (2.44)

Diving Eq. 2.42 by R2 and setting the Hubble parameter to

H(t) ≡ Ṙ

R
= ȧ

a
, (2.45)

one of the standard forms of Friedmann equations is obtained.

H2 = 8π
3 ρ+ Λ

3 − k

R2 · (2.46)

The above equation provides a clue that the cosmological constant should be
considered a non-trivial fluid with constant energy density

ρΛ = Λ
8π · (2.47)
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This is the so-called dark energy density. With this definition, Eq. 2.46 can be rewrite in
the following way:

H2 = 8π
3

[
ρ+ ρΛ −

( 3
8π

)
k

R2

]
= H2

0

(
8π

3H2
0

)[
ρ+ ρΛ −

( 3
8π

)
k

R2

]
, (2.48)

where H0 ≡ H(t0).

It is usual to define the critical density as

ρcrit = 3H2

8π · (2.49)

Therefore, the Friedmann equation becomes

H2 = H2
0

ρcrit,0

[
ρ+ ρΛ −

( 3
8π

)
k

R2

]
· (2.50)

Where, ρcrit,0 ≡ ρcrit(t0).

Einstein’s equation also provides the condition ∇µT
µν = 0, which does not generate

any new independent equation, but ∇µT
µ0 = 0 gives a very physical identity:

ρ̇+ 3H(ρ+ P ) = 0 . (2.51)

That is the cosmological manifestation of the first law of Thermodynamics! 5

2.3.2 Four-momentum in null curvature case

The most important FRW geometry case is the null curvature, in which the line
element is

ds2 = dt2 − a2
(
dx2 + dy2 + dz2

)
. (2.52)

Note that here I am using the Minkowskian coordinates, t, x, y, z, while in Eq. 2.36 it was
used the spherical coordinates for the spatial part.

In this case, the proper time is given by

dτ 2 = dt2(1 − a2v2), (2.53)

where I am using the traditional definition of velocity v = dx/dt. Hence the relation
between the proper time and the coordinate times is

dt = dτ√
1 − a2v2

· (2.54)
5 To see this, imagine a perfect fluid with no heat exchange and no chemical potential. The variation of

the internal energy of this system is dU = −PdV . The internal energy is proportional to the energy
density and the volume, thus

d
(
ρR3) = −PdR3 ⇒ ρ̇+ 3H(ρ+ P ) = 0.

This gives us a clue that the Universe entropy is constant, something that I will explore more in Sect.
2.5.
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In special relativity, the Lorentz factor (γ) is defined by the relation dt = γdτ [9]. Using
this same definition and the above equation, the Lorentz factor to FRW geometry with
null curvature is

γ ≡ 1√
1 − a2v2

. (2.55)

In special relativity, the four-momentum of a massive particle is defined as pµ ≡
mdxµ/dτ . For general relativity, the definition is the same, because of the equivalence
principle [8]. The difference is that in special relativity the space-time is Minkowskian,
while in general relativity the space-time is curved. The famous energy-momentum relation,
E2 = p2 + m2, comes from the identity gµνp

µpν = m2. Using the equivalence principle
this must also hold for general relativity, but this generates a non-usual expression for the
energy and momentum.

In special relativity, the four-momentum of a massive particle is defined as pµ ≡
mdxµ/dτ . This definition remains the same in general relativity due to the equivalence
principle [8]. The key difference is that in special relativity, the space-time is Minkowskian,
whereas, in general relativity, the space-time is curved. The well-known energy-momentum
relation E2 = p2 + m2 arises from the identity gµνp

µpν = m2. Utilizing the equivalence
principle, this relation must also hold in general relativity, but it yields new expressions
for energy and momentum.

Adopting the line element given by Eq. 2.52, the p2 expression gives

m2
(
dt

dτ

)2

−m2a2
(
dx

dτ

)2

= m2. (2.56)

It is straighter to interpret the term

E ≡ m
dt

dτ
= mγ, (2.57)

as the massive particle energy, and

p ≡ ma
dx

dτ
= maγv (2.58)

is the massive particle momentum.

At this moment is interesting to obtain the geodesic equation for this geometry.
This is done by extremizing the functional

L = ṫ2 − a2
(
ẋ2 + ẏ2 + ż2

)
. (2.59)

Again I warn you that just in this case dot notation represents a derivative in the affine
parameter, not in time.

The Euler-Lagrange equation

∂L

∂t
− d

dλ

(
∂L

∂ṫ

)
= 0, (2.60)
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provides that time geodesic equation is given by

d2t

dλ2 + a
da

dλ

(dx
dλ

)2

+
(
dy

dλ

)2

+
(
dz

dλ

)2
 = 0. (2.61)

The spatial Euler-Lagrange equation,

∂L

∂x
− d

dt

(
∂L

∂v

)
= 0, (2.62)

results that the vector a2dx/dλ is constant over the geodesic path. Since adx/dλ is the
momentum of a free particle, it follows that the vector ap is constant along the geodesic
path. Therefore, momentum is inversely proportional to the scale factor:

p ∝ 1
a

· (2.63)

This result has significant implications. In an expanding universe, the scale factor
increases over time, leading to a decrease in the momentum of free particles. This obser-
vation highlights a key aspect introduced by general relativity: there is no momentum
conservation in an expanding universe. As a consequence, massive particles eventually
become non-relativistic at a certain stage. Due to the energy-momentum relation, the
energy of a free massive particle is not conserved in the same manner.

Photons move along null geodesics, which means that the proper time cannot
be used as an affine parameter. However, any affine parameter can be used to define
the photon four-momentum, denoted as pµγ = dxµ/dλ. In this case, Eγ ≡ dt/dλ and
pγ ≡ adx/dλ. These definitions preserve the well-known energy-momentum relation for
photons: Eγ = |pγ|. There is an interesting consequence in this case: just like massive
particles, the momentum of photons also decreases with time. As a result, the energy of
free photons decreases with the passage of time:

Eγ ∝ 1
a

· (2.64)

This implies that cosmological photons experience a redshift due to the expansion of the
universe [8, 12, 11, 10].

If a source of photons emits photons at a frequency ν at time t, and these photons
are detected today at a frequency ν0, the redshift parameter z is defined as [8, 13]:

z = ν − ν0

ν0
⇒ 1 + z = ν

ν0
· (2.65)

It is important to note that a positive value of z corresponds to a redshift, indicating that
the observed frequency ν is lower than the emitted frequency ν0. Conversely, a negative
value of z represents a blueshift, indicating that the observed frequency is higher than the
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emitted frequency. The case where z = 0 corresponds to no shift in frequency and is not
assigned a special name. In the context of cosmology, due to the overall expansion of the
universe, the observed cosmological photons almost always exhibit a redshift.

According to quantum mechanics, the energy Eγ of a photon is directly proportional
to its frequency ν [14]. Combining this relation with Equation 2.64 the connection between
scale factor and redshift is obtained:

ν

ν0
= a0

a
= 1
a

⇒ 1 + z = 1
a

· (2.66)

Some cosmologists use cosmological time (t) as a reference for event occurrences in
the universe, while others prefer to utilize redshift. The previously derived result establishes
a connection between these two methods of recording events.6

2.3.3 Geodesic on flat FRW geometry using spatial spherical coordinates

In the last section, I used the geodesic equation for a flat FRW geometry in Euclidean
space coordinates. Now, I will study the geodesic equation using polar coordinates. However,
instead of using the geodesic expression given by Eq. 2.20, I will employ an alternative
version of this equation.

First, let’s recall that the four-velocity Uµ is defined as dxµ/dλ, where λ is an affine
parameter. With this definition, the geodesic equation becomes:

dU ν

dλ
+ ΓναβUαUβ = 0. (2.67)

Multiplying this equation by gνµ and using the definition of the connections given in Eq.
2.21, I obtain the following result:

dU ν

dλ
+
(
∂αgµν − 1

2∂µgαβ
)
UαUβ = 0. (2.68)

This equation can be rewritten in a useful form as:

dUµ
dλ

= 1
2(∂µgαβ)UαUβ. (2.69)

This form of the geodesic equation is very powerful as it automatically yields the conserved
components along the geodesic.

Now, I will apply the metric for a flat universe in spherical spatial coordinates,
ds2 = dt2 − a2[dr2 + r2(dθ2 + sin2 θdϕ2)], to Eq. 2.69 in order to determine the conserved
quantities along a geodesic path.
6 The temperature of photons can also serve as a parameter to identify the timing of events. I will soon

explore the connection between photons’ energy and the scale factor.
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Let’s start with the ϕ component:
dUϕ
dλ

= 1
2(∂ϕgαβ)UαUβ = 0 ⇒ Uϕ = 0 (2.70)

However, Uϕ is equivalent to gϕαUα, which is the same as −a2r2 sin2 θdϕ/dλ. Thus,
this last expression represents the conserved quantity. In the Big Bang model, defined by
setting a(0) = 0, Uϕ(0) = 0. Therefore, the conclusion is that through the geodesic the ϕ
component is constant.

The calculations for the θ component are very similar to the previous case:
dUθ
dλ

= 1
2(∂θgαβ)UαUβ = 1

2(∂θgϕϕ)UϕUϕ = 0, (2.71)

where the last identity holds because ϕ is constant along the geodesic.

It was found that Uθ is constant along the geodesic, which is the same as saying
that gθθU θ = −a2r2dθ/dλ is also constant. Therefore, the Big Bang condition, a(0) = 0
implies that ϕ must be constant.

The constancy of the θ and ϕ components along the geodesic was initially deduced
under the assumption of non-curvature. However, it is important to know that these
conditions also hold in the curved cases of FRW geometries.

The calculations for Ur are straightforward and confirm that this quantity remains
constant along the geodesic. In other words, this implies that a2dr/dλ remains constant
as well.

2.4 Number density, energy density, and pressure

2.4.1 Equation of state

Cosmology usually deals with fluids whose pressure is proportional to energy
density,

P = wρ. (2.72)

In the following subsections, I will show that a non-relativistic fluid has w = 0 and
a relativistic fluid has w = 1/3.7 This kind of equation of state simplifies a lot the solution
of Eq. 2.51, as you can see below.

ρ̇+ 3H(1 + w)ρ = 0 ⇒ ρ ∝ 1
a3(1+w) ⇒

ρ ∝ 1
a3 , w = 0 (dust)

ρ ∝ 1
a4 , w = 1/3 (radiation)

(2.73)

Dark energy is a non-usual fluid that also follows the state of equation (2.72). In
the dark energy case P = −ρ. I will explore more this point in Sect. 2.9.3.
7 In many moments non-relativistic fluids are called dust or cold particles, and relativistic fluids are

labeled radiation or hot particle. I will use all these nomenclatures in the scope of this thesis.
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2.4.2 Equilibrium thermodynamics

In cosmology, we are usually concerned about the number density n, the energy
density ρ, and the pressure P of some perfect fluid. To calculate these quantities we only
need the energy spectrum E, the specie degeneracy gs, and the function distribution f

[15].

n(t,x) = gs

∫ d3p

(2π)3f(t,x,p) (2.74)

ρ(t,x) = gs

∫ d3p

(2π)3E(p)f(t,x,p) (2.75)

P (t,x) = gs

∫ d3p

(2π)3
p2

3E(p)f(t,x,p) (2.76)

The distribution function f depends on the spin nature of the fluid constituent. For
bosonic particles, it is necessary to use the Bose-Einstein distribution function

fBE = 1
e(E−µ)/T − 1 , (2.77)

where T is the temperature and µ is the chemical potential.

For fermionic particles, it is mandatory to employ the Fermi-Dirac distribution
function

fFD = 1
e(E−µ)/T + 1 · (2.78)

An essential case is a limit where e−µ/T ≫ 1, in which the Bose-Einstein and
Fermi-Dirac distribution functions have the same behavior [15]:

fBE,FD ≈ e−(E−µ)/T . (2.79)

2.4.3 Equation of state for dust

Dust is a non-relativistic fluid, i.e., the energy-momentum relation of its constituent
is E = p2/(2m) +m, where the rest energy m is much bigger than kinetic energy p2/(2m).
For dust, the distribution function provided by Eq. 2.79 is enough to obtain n (Eq. 2.74),
ρ (Eq. 2.75), and P (Eq. 2.76).

The number density gives

ndust = gs

∫ d3p

(2π)3 exp
[
− 1
T

(
p2

2m +m− µ

)]

⇒ ndust = gs

(
mT

2π

)3/2
exp

(
µ−m

T

)
. (2.80)

The energy density requires more careful analysis.

ρdust = gs

∫ d3p

(2π)3

(
p2

2m +m

)
exp

[
− 1
T

(
p2

2m +m− µ

)]
=
(
m+ 3T

2

)
ndust. (2.81)
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The work is not done yet. First, notice that the condition e−µ/T ≫ 1 implies
that −µ/T ≫ 1. In the above result the Boltzmann suppression factor exp [−(m− µ)/T ]
demands that m/T ≫ 1, otherwise the factor m/T would not be relevant. In this condition,
m+ 3T/2 ≈ m. Therefore the energy density of dust is

ρdust = mndust . (2.82)

The last step is the pressure calculation.

Pdust = gs

∫ d3p

(2π)3
p2

3m exp
[
− 1
T

(
p2

2m +m− µ

)]
= ρdustT

m
· (2.83)

As I pointed out before, m ≫ T , which implies that Pdust ≪ ρ. This is the reason
some books define dust as a pressureless fluid.

Pdust ≈ 0 . (2.84)

Applying this result to Eq. 2.51, the cosmological evolution of dust energy density
is obtained.

ρ̇dust + 3Hρdust = 0 ⇒ d

dt

(
ρdusta

3
)

⇒ ρdust ∝ 1
a3 (2.85)

The above equation and Eq. 2.82 gives

ndust ∝ 1
a3 · (2.86)

Which makes perfect sense since the number density is inversely proportional to the
volume.

2.4.4 Equation of state for radiation

Let’s suppose an ensemble of ultrarelativistic particles that forms a perfect fluid.
Let’s also assume that the chemical potential is irrelevant. The dispersion relation for this
case is E = |p|. Unlike cold particles, the spin nature of the hot particles is fundamental
to obtaining the correct factor in the thermodynamic functions. An example of an ultra-
relativistic boson fluid is a photon gas and an example of a fermionic one is a massless
neutrino gas. Therefore, I will calculate n, ρ, and P for bosonic and fermionic cases of hot
fluid.

2.4.4.1 Ultrarelativistic bosonic gas

In the bosonic case, we must use the Bose-Einstein function distribution (Eq. 2.77).
In this case, the number density of an ultrarelativistic gas (radiation) is

nBE
rad = gs

∫ d3p

(2π)3
1

e|p|/T − 1 = gs
2π2

∫ ∞

0
dp

p2

ep/T − 1 = gsT
3

2π2

∫ ∞

0

x2

ex − 1 (2.87)
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⇒ nBE
rad = gsζ(3)

π2 T 3· (2.88)

Where ζ(x) is the zeta function and ζ(3) ≈ 1.20206.

The energy density is

ρBErad = gs

∫ d3p

(2π)3
|p|

e|p|/T − 1 = gs
2π2

∫ ∞

0
dp

p3

ep/T − 1 = gT 4

2π2

∫ ∞

0
dx

x3

ex − 1 (2.89)

⇒ ρBErad = π2gs
30 T 4. (2.90)

The pressure gives

PBE
rad = gs

∫ d3p

(2π)3
p2

3|p|
1

e|p|/T − 1 ⇒ PBE
rad = 1

3ρ
BE
rad . (2.91)

2.4.4.2 Ultrarelativistic fermionic gas

In the fermionic case, the application of Fermi-Dirac (Eq. 2.78) distribution is
mandatory. As I did before, I start with the number density calculation.

nFDrad = gs

∫ d3p

(2π)3
1

e|p|/T + 1 = gs
2π2

∫ ∞

0
dp

p2

ep/T + 1 = gsT
3

2π2

∫ ∞

0

x2

ex + 1 (2.92)

⇒ nFD
rad = 3gsζ(3)

4π2 T 3· (2.93)

The next step is the energy density calculation.

ρFDrad = gs

∫ d3p

(2π)3
|p|

e|p|/T + 1 = gs
2π2

∫ ∞

0
dp

p3

ep/T + 1 = gT 4

2π2

∫ ∞

0
dx

x3

ex + 1 (2.94)

⇒ ρFDrad = 7π2gs
240 T 4. (2.95)

The pressure is

P FD
rad = gs

∫ d3p

(2π)3
p2

3|p|
1

e|p|/T + 1 ⇒ PBE
rad = 1

3ρ
FD
rad . (2.96)

2.4.4.3 Effective energy density and pressure for radiation

The total radiation energy density is the sum of the contribution due to ultrarela-
tivistic férmions and bosons:

ρrad =
∑
b

π2gb
30 T 4

b +
∑
f

7π2gf
240 T 4

f . (2.97)

Which can be rewritten as

ρrad = π2

30

∑
b

gb

(
Tb
T

)4
+ 7

8
∑
f

gf

(
Tf
T

)4
T 4. (2.98)
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Where T is the temperature of the photons.

It is common to define the effective number of relativistic degrees of freedom as

g∗(T ) ≡
∑
b

gb

(
Tb
T

)4
+ 7

8
∑
f

gf

(
Tf
T

)4
, (2.99)

to rewrite

ρrad = π2g∗

30 T 4. (2.100)

It is not easy to calculate g∗(T ) at any temperature due to the QCD phase transition
[16]. However, this is not relevant to this work, so I will not explore it in depth. The
important thing to keep in mind is that in thermal equilibrium, all species have the same
temperature, and only after some species decouple from the fundamental plasma does the
temperature ratio become relevant.

The pressure generated by the amount of radiation is simply one-third the energy
density, i.e.,

Prad = 1
3ρrad = π2g∗

90 T 4. (2.101)

2.4.4.4 Radiation

For bosonic or fermionic radiation we have n ∝ T 3 and ρ ∝ T 4, in which the only
difference between both cases is just the proportional constant. In the two situations was
obtained P = ρ/3, and this is the equation of state that defines a radiation fluid.

Let’s apply the radiation equation of state in Eq. 2.51.

ρ̇rad + 3H
(

1 + 1
3

)
ρrad = 0 ⇒ d

dt

(
ρrada

4
)

⇒ ρrad ∝ 1
a4 · (2.102)

Both equations 2.90 and 2.95 demand that ρrad ∝ T 4. Connecting this result with
the above equation provides one of the most important results in cosmology, that the
temperature of a source of radiation is inversely proportional to the scale factor, i.e,

Trad ∝ 1
a

· (2.103)

Both BE and FD radiation fluid obeys nrad ∝ T 3. That information together with
the above equation gives

nrad ∝ 1
a3 · (2.104)

Corroborating the idea that the number density must be inversely proportional to the
volume.
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2.4.5 Mass and temperature comparison

I pointed out that particles of cold matter (dust) are non-relativistic and the mass
is the main contribution to the mean energy. On the other hand, hot matter (radiation)
particles are ultrarelativistic and the mass contribution to the energy is completely
suppressed by the momentum. But, in an expanded universe the scale factor increase in
time, therefore if a particle is massive and relativist it will lose energy and become a cold
particle. Therefore it is important to have a clear criterion to classify a particle as hot or
cold at a such moment. I anticipate that this is related to the comparison between the
mass and the temperature, i.e., cold gas is one that m ≫ T and a hot gas has m ≪ T [16].

First, let’s consider a Bose-Einstein gas with energy density

ρBE = gs

∫ d3p

(2π)3E(p)fBE(t,x,p) = gs

∫ d3p

(2π)3

√
p2 +m2

exp
[

1
T

(
√

p2 +m2)
]

− 1

= gsm

2π2

∫ ∞

0
dp

p2
√

1 + (p/m)2

exp
[
m
T

√
1 + (p/m)2

]
− 1

= gsT
4

2π2

∫ ∞

m/T
dx

x2
√
x2 − (m/T )2

ex − 1 ·
(2.105)

Where the substitution x ≡ (m/T )
√

1 + (p/m)2 was used.

Using the expression (2.90) the above equation can be rewrite as follow:

ρBE
ρBErad

= 15
π4

∫ ∞

m/T
dx

x2
√
x2 − (m/T )2

ex − 1 · (2.106)

This is not an easy integral to calculate analytically. But in Fig 1 you can see that
for m ≪ T the right-hand side of the above equation is equal to 1. Therefore, the criteria
for a bosonic gas to be hot is that its temperature is much larger than the mass of particles
that compose the gas.

The energy density for a fermionic gas gives

ρFD = gsT
4

2π2

∫ ∞

m/T
dx

x2
√
x2 − (m/T )2

ex + 1 ⇒ ρFD
ρFDrad

= 120
7π4

∫ ∞

m/T
dx

x2
√
x2 − (m/T )2

ex + 1 · (2.107)

Where I used the expression (2.95).

Again, the analytical expression is not easy to obtain. But, I put the numerical
solution in Fig. 1. As in the bosonic case, the right-hand side of the above equation is
equal to 1 when m ≪ T .

The conclusion is: A fluid is considered hot (radiation) if the mass of its particle
components is much smaller than the fluid temperature [16].

To study the criteria for classifying a cold fluid, I follow the procedure sketched in
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Figure 1 – Ratio between the energy density and the ultrarelativistic energy density for a
generic bosonic and a fermionic fluid. For m ≪ T both densities are equivalent.

[16]. First, I rewrite the number density in the following way:

n± = gs

∫ d3p

(2π)3
1

exp
[

1
T

√
p2 +m2 ± 1

]
= gs

2π2

∫ ∞

0

d3p

(2π)3
p2

exp
[
m
T

√
1 + (p/m)2 ± 1

]
= gsT

3

2π2

∫ ∞

m/T
dx

x
√
x2 − (m/T )2

ex ± 1 ·

(2.108)

Where n− is the BE number density, n+ is the FD number density, the substitution
x ≡ (m/T )

√
1 + (p/m)2 was applied, and the chemical potential was disregarded.

I showed previously that

ρ± = gsm

2π2

∫ ∞

0
dp

p2
√

1 + (p/m)2

exp
[
m
T

√
1 + (p/m)2

]
− 1

= gsT
4

2π2

∫ ∞

m/T
dx

x2
√
x2 − (m/T )2

ex ± 1 · (2.109)

Therefore, the ratio

ρ±

mn±
= 1
m/T

∫∞
m/T dx

x2
√
x2−(m/T )2

ex±1∫∞
m/T dx

x
√
x2−(m/T )2

ex±1

(2.110)

is the quantity that needed to be analyzed numerically. As you can see in Fig. 2, for
m ≫ T the approximation ρ ≈ mn becomes more and more accurate. We can conclude
that a fluid is considered cold (dust) if the mass of its particle components is much greater
than the fluid temperature [16].
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Figure 2 – Ratio between the energy density of a generic fluid and the dust energy density.
When m ≫ T the ratio is 1, which shows that in this regime the fluid is cold.
This behavior is valid for a generic bosonic and fermionic gas.

2.4.6 Equation of state for dark energy

In the standard cosmological model, dark energy is the energy duo to the presence
of the cosmological constant Λ in Einstein’s equation (Eq. 2.34). Here, I will not explore
possible interpretations of dark energy. In this text, I follow a very pragmatic use of
this concept where this energy is necessary to describe well the universe and its energy
density is defined by Eq. 2.47. Therefore, the dark energy density is constant. Applying
this constancy to Eq. 2.51 the dark energy pressure is obtained:

PΛ = −ρΛ. (2.111)

This is a very strange state of the equation because if ρΛ > 0 implies a negative
pressure. Planck 2018 mission [17] provides a positive value for the dark energy density,
therefore adopting the standard cosmological model, it is necessary to consider the existence
of such a weird equation of state.8

2.5 Entropy
The first law of thermodynamics states that, for a system with a negligible chemical

potential (µ ≈ 0), the entropy variation is expressed as

dS = 1
T
dU + P

T
dV, (2.112)

8 I explore deeply the Planck 2018 results in Sect. 2.8.
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where U is the internal energy and V is the volume of the thermodynamic system [15].

Expressing the internal by U = ρV rewrites the thermodynamics first law in the
following way:

TdS = d(ρV ) + PdV = V
dρ

dT
dT + (ρ+ P )dV ⇒ dS = V

T

dρ

dT
dT + ρ+ P

T
dV. (2.113)

Entropy is a state function, so dS is an exact differential [15], which gives the
relation

∂

∂V

(
V

T

dρ

dT

)
T

= ∂

∂T

(
ρ+ P

T

)
V

⇒ 1
T

dρ

dT
= 1
T 2

[(
dρ

dT
+ dP

dT

)
T − (ρ+ P )

]

⇒ dP

dT
= ρ+ P

T
· (2.114)

The next step is to apply the above equation to the fist law of thermodynamics
(Eq. 2.112) to obtain the entropy variation.

TdS = d(ρV ) + PdV

= d(ρV ) + d(PV ) − V dP

= d[(ρ+ P )V ] − V
dP

dT
dT

= d[(ρ+ P )V ] − V
(
ρ+ P

T

)
dT

⇒ dS = 1
T 2 {Td[(ρ+ P )V ] − V (ρ+ P )dT}

= d
(
ρ+ P

T
V
)

Defining the entropy density as s = S/V , the above result provides

s = ρ+ P

T
· (2.115)

The universe is an expanding system, therefore, a region of volume Vref at reference
time tref has energy U = ρa3Vref and volume V = a3Vref at time t. Applying these
reparametrizations to the right-handed side of TdS equation gives

dU + PdV = d(ρa3Vref ) + Pd(a3Vref )

= Vref [a3dρ+ 3ρa2da+ 3Pa2da]

= Vref

[
dρ

dt
+ 3
a

da

dt
(ρ+ P )

]
dt

= [ρ̇+ 3H(ρ+ P )]Vrefdt

The expression ρ̇+3H(ρ+P ) vanishes (see Eq. 2.51), which provides dU+PdV = 0,
i.e., the entropy of the homogeneous and isotropic universe must be constant, dS = 0
[16, 12].
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The entropy conservation and the relation S = sV = sa3Vref informs how the
entropy density changes with time.

dS = 0 ⇒ d(sa3) = 0 ⇒ s ∝ 1
a3 (2.116)

Realize that this means a decrease in the entropy density, as the universe expands.

In a phase where the universe is dominated by radiation the density entropy due
to one relativistic bosonic specie is

1
T

(ρ+ P ) = 1
T

(
ρ+ 1

3P
)

= 4ρ
3T = 4

3T × π2g

30 T
4 = 2π2g

45 T 3,

while to a fermionic specie is

4ρ
3T = 4

3T × 7π2g

240 T
4 = 7

8

(
2π2g

45 T 3
)
.

Where Eqs. 2.90 and 2.95 was used.

The total density is the sum of fermionic and bosonic contribution, i.e.,

srad =
∑
b

2π2gb
45 T 3

b + 7
8
∑
f

2π2gf
45 T 3

f . (2.117)

Defining

g∗s(T ) =
∑
b

gb

(
Tb
T

)3
+ 7

8
∑
f

gf

(
Tf
T

)3
, (2.118)

rewrites the total radiation entropy density in the following way:

srad = 2π2g∗s

45 T 3. (2.119)

Notice that only when all relativistic particles are in thermal equilibrium does the
identity g∗ = g∗s hold, i.e., if only one relativistic particle is decoupled, the equivalence
fails.

2.6 Density parameter
Let’s return the attention to Eq. 2.50,

H2 = H2
0

ρcrit,0

[
ρ+ ρΛ −

( 3
8π

)
k

R2

]
· (2.120)

It is enough to assume that energy density ρ is the sum of the matter and radiation energy
density [8]. Which implies

H2 = H2
0

ρcrit,0

[
ρm + ρrad + ρΛ −

( 3
8π

)
k

R2

]
· (2.121)
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Eq. 2.85 provides ρm = ρm,0/a
3 and Eq. 2.102 gives ρrad = ρm,0/a

4. Thus

H2 = H2
0

ρcrit,0

[
ρrad,0
a4 + ρm,0

a3 + ρΛ −
( 3

8π

)
k

R2

]
· (2.122)

The above equation prompts the natural definition of density parameter Ω as the
ration between the energy density and the critical density, i.e.,

Ωm ≡ ρm
ρcrit

, (2.123a)

Ωrad ≡ ρrad
ρcrit

, (2.123b)

ΩΛ ≡ ρΛ

ρcrit
· (2.123c)

It is also useful to define [8]

Ωk ≡ − k

R2H2 · (2.124)

All these number density definitions provide another very usual way of the Fried-
mann equation:

H2 = H2
0

[
Ωrad,0

a4 + Ωm,0

a3 + Ωk,0

a2 + ΩΛ,0

]
. (2.125)

Setting t = t0 this equation provides the constraint

Ωrad,0 + Ωm,0 + Ωk,0 + ΩΛ,0 = 1. (2.126)

Assuming k = −1 implies in Ωk,0 > 0, therefore the above constraint demands
Ωrad,0 + Ωm,0 + ΩΛ,0 < 1. If k = 0, the equality Ωrad,0 + Ωm,0 + ΩΛ,0 = 1 must hold. In case
k = +1, it holds Ωk,0 < 0, which implies in Ωrad,0 + Ωm,0 + ΩΛ,0 > 1. This means that
knowing the numerical value of the sum Ωrad,0 + Ωm,0 + ΩΛ,0 gives the geometry of the
universe!

2.7 Cosmic catalogue

2.7.1 Photons

In the early universe, all standard model particles were in thermal equilibrium
with each other, forming the fundamental plasma. Over time, some particles decoupled
from fundamental plasma, in a process called freeze-out. In the very early universe, the
photons had a very small free path, i.e., the photons’ interaction rate was so huge that
universe was opaque for this kind of radiation. Around 350 000 years after the Big Bang,
the photons were not able to interact efficiently with other particles, then the universe
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became transparent to them. Therefore the photons became free particles and generate a
background of electromagnetic radiation. This background is very close to a perfect black
body, having a present-day temperature T0 = 2.7255(6) K [13], which provides radiation
in the microwave wavelength. For these reasons, this radiation is called cosmic microwave
background (CMB). The CMB is the richest source of cosmological information we have.
Its small deviations from a perfect black body provide all the cosmological parameters
[10, 12].

Photons are bosons without mass with two polarization states (gγ = 2), which
allows us to make use of Eq. 2.88 to calculate the photon present-day number density.

nγ,0 = 2ζ(3)
π2 T 3

0 = 2ζ(3)
π2 T 3

0 × 1
(TP lP )3 ≈ 412cm−3. (2.127)

Where the Planck temperature TP and the Planck length lP were used to provide the
result in a more experimental unity.9

The above result tells us that there is a huge concentration of cosmological photons
in current days.

I want also to calculate the present-day photons density parameter Ωγ,0. To do this
I use Eq. 2.90 and Eq. 2.49.

Ωγ,0 = 8π3T 4
0

45H2
0

(2.128)

Unfortunately, there isn’t a consensus about the value of the Hubble constant. CMB
adopting the standard cosmological model demands H0 = 67.4(5)km s−1 Mpc−1 [17, 13],
while cosmic distance-ladder estimates H0 = 0.732 ± 0.013km s−1 Mpc−1 [13]. In fact, the
problem is worse than I sketched, because many H0 measure methods don’t agree with
each other, generating the so-called Hubble tension. That is one of the most important
subjects of this thesis, therefore I will dedicate an entire chapter, Ch. 3, to discussing this
subject.

The Hubble tension leads us to write the Hubble constant in the following way:

H0 = 100h km s−1 Mpc−1. (2.129)

Applying the above result to Eq. 2.128 gives

Ωγ,0h
2 = 8π3T 4

0

45(100 km s−1 Mpc−1)2 × 1
T 4
P t

2
P

⇒ Ωγ,0h
2 ≈ 2.49 × 10−5. (2.130)

In Tab. 1 there is the Ωγ,0 value, adopting CMB data.

9 In App. A I review the Planck units, natural units, and how to convert one to another.
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2.7.2 Baryons

Cosmology is the kingdom of weird nomenclatures. For example, in this theory, all
ordinary matter is called baryons, i.e., the matter that forms stars, planets, diffuse gas
around galaxies, hot ionized gas, light elements like hydrogen, deuterium, helium, lithium,
and even electrons are labeled as baryons [12].10 It is not easy to measure the baryon
energy density in the universe directly, but the formation of light elements in the early
universe, called big bang nucleosynthesis theory (BBN) together with the analyses of the
small perturbations in the CMB spectrum provides strong bounds on it.

Planck Collaboration 2018 [17] sets the baryon density parameter to be

Ωb,0h
2 = 0.0225 ± 0.0003. (2.131)

Comparing this numerical value with Eq. 2.130, we infer that the present-day energy
of baryons is much more relevant than the photons’ energy density. However, there are
much more photons than barons in current days, i.e., the current number density of photons
is much greater than that of baryons. To show this I will calculate the baryon-to-photon
ratio ηb.

Baryons are usually very massive, in such a way that they can be considered cold
particles in almost every moment I will treat them. Adopting this point of view, I use
Eq. 2.82 to write nb = ρb/mb. I also use Eq. 2.85 and Eq. 2.104 to write ρb = ρb,0/a

3 and
nγ = nγ,0/a

3. Applying all this in ηb provides that the baryon-to-photon ratio is constant.

ηb = nb
nγ

= ρb/mb

nγ
= 1
mb

ρb,0
a3

1
nγ

= 1
mb

ρb,0
a3

a3

nγ,0
= ρb,0
mbnγ,0

· (2.132)

Protons and neutrons yield the mean contribution to the baryon density [16, 12],
which allows writing ρb ≈ mpnp + mnnn. Proton mass is mp = 938.272 MeV and the
neutron mass is mn = 939.565 MeV [13], therefore the approximation mp = mn = mp

together with nb = np + nn is good enough for the current purpose.

ηb = ρb,0
mpnγ,0

(2.133)

Another step for the ηb calculation is using the parameter density definition to make
the substitution ρb,0 = Ωb,0ρcrit,0. Other substitution comes from the comparison between Eq.
2.49, Eq. 2.88, and Eq. 2.128, that provides the relation nγ,0/ρcrit,0 = (30ζ(3)Ωγ,0)/(π4T0).

Thus, the baryon-to-photon ratio gives [13]

ηb = π4T0

30mpζ(3)

(
Ωb,0h

2

Ωγ,0h2

)
⇒ ηb = 6.14(19) × 10−10. (2.134)

There are approximately 109 cosmological photons to each baryon in the universe!
10 In particle physics jargon electrons are leptons, not baryons. But, as I said, cosmology is the kingdom

of weird nomenclatures.
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2.7.3 Dark matter

Here I will sketch the history of dark matter, a fundamental concept to understand
the standard cosmological model.

In 1933 the Swiss astronomer Fritz Zwicky applied the virial theorem to calculate
the velocity of the galaxies in the Coma galaxy cluster. He found that the virial velocity
distribution is considerably smallest than the observed velocity, concluding that dark
matter (“non-luminous matter”) is much more abundant than luminous matter [18, 19].
In 1937, Zwicky deepened his analysis of the Coma galaxy cluster, concluding that the
mass and the non-luminous mass ratio was about 500, concluding again that dark matter
is much more abundant than the luminous matter in the cluster [18, 20].

In 1936 the American astronomer Sinclair Smith published his study of the Virgo
Cluster. He assumed that the outer galaxies were in a circular motion, and he concluded
that the average mass per galaxy was two orders of magnitude greater than the estimates
made by Edwin Powell Hubble [18], providing strong evidence of dark matter.

Zwicky and Sinclair advocate that the “non-luminous” matter were cold stars and
low luminous clouds [18]. Neville Woolf in 1967 suggested that dark matter was an ionized
gas capable to emit X-rays [18, 21]. In 1970, Barry E. Turnrose and Herbert J. Rood
concluded that X-ray emission gas is less than 2% of the required mass needed to keep the
system bounded [18, 22]. Which ruled out ionized gas as a solution to the “missing mass”
problem [18].

The 1970s was a revolutionary decade in dark matter research. Kent Ford and Vera
Rubin used a new kind of spectroscope to observe the rotation curve of the Andromeda
Galaxy (M31), with high quality when compared with the previous observations. They
found that the velocity shape of stars around the galaxy has a non-Newtonian behavior in
the outermost radius region [18, 23]. A few years later, they jointly with Norbert Thonnard
showed that ten high-luminous spiral galaxies had flat rotation curves in their outermost
regions [18, 24].

In 1970, K. C. Freeman found that galaxies M33 and NGC 300 had rotation curve
peak at larger radii than expected, providing another clue that an amount of non-luminous
matter exists and it is distributed in a different way than the ordinary mass [18].

The conclusion of the amount of rotation galaxies studies was that the velocity
curves have a flat shape in the outermost radii region, the spiral galaxies must be bigger
than indicated by photometric measurements methods, the mass of a galaxy continues to
grow beyond the region populated by stars, and the luminous mater is a small contribution
to the galaxy mass [18]. This is the essence of the dark matter halo proposal, in which
galaxies and clusters are embedded within a large distribution of dark matter.

For a long time, there were proponents of the idea that the dark matter halo could
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be composed of very low-luminosity, massive astrophysical objects such as planets, brown
dwarfs, red dwarfs, white dwarfs, neutron stars, and black holes. However, investigations
of microlensing events by the EROS Collaboration have placed an upper limit on the
contribution of these massive astrophysical compact halo objects (MACHOs) to the dark
matter halo mass, which is less than 8% [25, 18].

In the 1950s, the astrophysics community realized that stellar processes were unable
to account for the observed abundance of helium. Subsequently, in the 1970s, the detection
of deuterium in the interstellar medium further reinforced the notion that these light
elements could not be solely produced within stars. These challenges provided strong
evidence for the need of a cosmological mechanism for the formation of light elements. Big
Bang nucleosynthesis (BBN) emerged as the most plausible explanation for the observed
abundance of helium and deuterium. According to BBN, baryonic matter constitutes
less than 10% of the present-day critical density, which indicates that the matter of the
universe is mostly of non-baryonic origin. This conclusion was supported by the WMAP
[26] and the Planck Collaboration [17], which analyzed the cosmic microwave background
(CMB) power spectrum and demonstrated that baryonic matter does not constitute the
majority of the overall matter abundance.

BBN and CMB measurements constrain the baryon density parameter to be
Ωb,0 = 0.0493(6), while the CMB analysis determines Ωm,0 = 0.315(7) [13, 17]. This
indicates that baryonic matter constitutes only about one-sixth of the total matter content
in the universe. However, this does not necessarily imply that the standard cosmological
model is incorrect or that our understanding of the universe needs to be revised. As I
mentioned earlier, numerous independent methods and observations consistently suggest a
much smaller fraction of non-baryonic matter compared to baryonic matter.

Throughout the history of dark matter research, numerous candidates have been
proposed, with some being ruled out by experimental data while others remain viable.
Primordial black holes are among the candidates that have been considered. These black
holes are believed to have formed before the BBN and should have a mass below the
detectability threshold of microlensing experiments. However, in order to produce a
sufficiently abundant population of primordial black holes, it would require the presence
of non-Gaussianity in the primordial power spectrum [18].

Another candidate is the modified Newtonian dynamics (MOND), which introduces
modifications to Newton’s second law at large scales. MOND is able to explain the observed
rotation curves of galaxies. However, it encounters difficulties when applied to the scale of
galaxy clusters, where the introduction of a dark matter component is still necessary to
reconcile with observational data. Additionally, providing a relativistic version of MOND
poses challenges that require careful consideration and additional theoretical developments
[18].
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In the realm of particle physics, there exist various candidates for dark matter,
including supersymmetric particles, axion-like particles, and a multitude of particles beyond
the standard model. Among these, the most prominent class of dark matter candidates
is the weakly interacting particles (WIMPs). WIMPs are characterized by a freeze-out
mechanism that generates their present-day abundance, and their interaction cross-section
is typically on the order of the weak scale [18, 27].

Collisions between galaxy clusters lead to non-baryonic mass distributions within
the clusters, providing additional evidence for the non-baryonic nature of dark matter [18].

Computational simulations provide additional fundamental evidence for dark matter.
These simulations demonstrate that the growth of small-scale structures is suppressed if
dark matter is hot, indicating that hot dark matter is not a suitable candidate. They also
reveal that galaxies would be unstable systems without cold dark matter, contradicting
observational data. Simulations support the idea that a galaxy is surrounded by a massive
spherical cold dark matter halo, with rotation curves that align with observed data.
Interestingly, the results of cosmological simulations are relatively insensitive to the specific
interactions of dark matter, whether they are electroweak or non-gravitational. However,
the initial velocity distribution of dark matter particles has a significant influence on the
simulation outcomes [18].

In summary, based on the evidence presented, the majority of the scientific com-
munity believes in the existence of dark matter. It is widely accepted that dark matter
must be cold at structure formation, and it is significantly more abundant than baryonic
matter. The exact nature of dark matter remains an open problem. However, in this thesis,
I join in with those who defend that dark matter is a beyond-standard model particle that
exhibits extremely weak interactions with known particles, lacks an electric charge, and is
stable.

2.7.4 Neutrinos

Neutrinos are particles that interact only by the weak force, i.e., they do not have
electric and color charges. In the standard model of particles (SM), the neutrinos are
massless and there are three neutrinos flavors: electron (νe), muon (νµ), and tau neutrino
(ντ ). All of them are fermions and classified as leptons [28]. It is now clear that the
assumption that neutrinos are massless is incorrect, as it has been discovered that they
oscillate between flavors, which implies that they have mass [28]. The mechanism that
generates their mass is a matter of debate and the value of an individual neutrino is
unknown until this moment. Neutrinos oscillation provides that the sum of the three
neutrinos’ mass is bigger than 0.06 eV, while cosmology provides that this sum has an
upper limit of 0.12 eV, i.e., 0.06 eV ≤ ∑

imνi
< 0.12 eV [13]. This implies that cosmology

provides the most stringent constraint on the total mass of neutrinos [16, 13, 12].
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To prove the cosmological constraints on the total mass of neutrinos is necessary
to calculate the temperature at that neutrinos decouple from the fundamental plasma and
the present-day number density of neutrinos. Detailed calculations show that neutrino
decoupling occurred before electron-positron annihilation [12, 10]. This fact, together
with entropy conservation, can be used to determine the ratio of neutrino temperature to
photon temperature after the neutrino decoupling.

Just before the neutrino decoupling only electrons (e−), neutrinos (ν), photons
(γ), and their antiparticles (e+, ν̄) were relativistic and in thermal equilibrium, with
temperature T1. Therefore, Eq. 2.119 shows that at T1 the entropy density is

s1 = 2π2

45

{
gγ + 7

8 [Nν(gν + gν̄) + ge− + ge+ ]
}
T 3

1 = 2π2

45

(
2 + 7

2 + 7
4Nνgν

)
T 3

1 . (2.135)

Immediately before the electron-positron annihilation, the entropy density gives

s2 = 2π2

45

(
gγT

3
γ + 7

4NνgνT
3
ν

)
= 2π2

45

[
2
(
Tγ
Tν

)3
+ 7

4Nνgν

]
T 3
ν . (2.136)

Entropy conservation implies that sa3 is constant. Therefore, I can equate s1a
3
1 to

s2a
3
2, i.e., (

2 + 7
2 + 7

4Nνgν

)
(T1a1)3 =

[
2
(
Tγ
Tν

)3
+ 7

4Nνgν

]
(Tνa2)3. (2.137)

When decoupled, the neutrinos behave like radiation, having temperature inversely
proportional to the scale factor, T ∝ a−1. This fact rules out the factors (T1a1)3 and
(Tνa2)3 in the above equation, and provides the following value for the neutrino-photon
temperature ratio:

2
(
Tγ
Tν

)3
= 2 + 7

2 ⇒ Tν
Tγ

=
( 4

11

)1/3
. (2.138)

This important result is independent of both the number of neutrino flavors (Nν)
and the number of neutrino helicity states (gν).

According to Eq. 2.93, the number density of neutrinos in the hot stage is

nν = (2 × 3) × 3ζ(3)
4π2 T 3

ν , (2.139)

where factor 2 comes from the neutrino and antineutrino contribution, and factor 3 is due
to the three neutrinos flavors.

Dividing this result by nγ gives

nν
nγ

= 9ζ(3)T 3
ν

2π2 × π2

2ζ(3)T 3 = 9
4 × 4

11 = 9
11 · (2.140)

This ratio is valid for any moment after the neutrinos decouple, even when neutrinos
are no more relativistic. This holds because any number density of decoupled particles is



2.7. Cosmic catalogue 59

inversely proportional to the scale factor, therefore the ratio between two number densities
is constant.

The present-day density parameter for massive neutrinos gives:

Ων,0 = 1
ρcrit,0

×
∑
i

mνi

nν,0
3

= 8π
9H2

0

(∑
i

mνi

)
nν,0
nγ,0

nγ,0

= 8π
9H2

0

(∑
i

mνi

)
× 9

11 × 412
cm3 × l3P

t2PmP

⇒ Ων,0h
2 =

∑
imνi

94 eV · (2.141)

Where I made use of Planck units to restore Gs, ℏs, and cs. The numerical value for the
present-day number density for photons comes from Eq. 2.127, and the Hubble constant
was used in the form H0 = 100h km s−1 Mpc−1. It was also necessary to use that 1 Mpc
is equivalent to 3.086 × 1022 m [11] and 1 Kg is equal to 5.60959 × 1026 GeV.

Using the CMB power spectrum limit of Ων,0 < 0.03 [13, 17] in the above expression
gives ∑imνi

< 0.13 eV. It is worth noting that the limit provided in [13] is ∑imνi
< 0.12

eV, as the numerical truncation used there is more precise than the calculations performed
here.

2.7.5 Dark energy

Standard candles, like supernovae type Ia, and standard rulers show that at
present, the universe is expanding at an accelerated phase. Considering that for a radiation-
dominated and a matter-dominated universe, the expansion is slowed down, the accelerated
phase implies the necessity of an extra fluid with a negative state equation, i.e., it must
exist a fluid obeying P = wρ with w < 0 [11, 12].11,12 This new fluid is called dark energy,
a pompous name that indicates our ignorance of its physical nature.

In the standard cosmological model, the dark energy is due to the presence of the
cosmological constant Λ in Einstein’s equation (Eq. 2.34). It is interesting to note that
even in the absence of an energy-momentum tensor in Einstein’s equation, the universe
still exhibits dynamics because of the cosmological constant. Thus, it is common to refer
to the energy associated with the cosmological constant as vacuum energy.
11 In Sec. 2.9, I show why a radiation-dominated phase and a matter-dominated phase can not generate

an accelerated expanding universe. In this section, I also prove that a universe with a cosmological
constant enables an accelerated expanding behavior.

12 The sentence “it must exist a fluid obeying P = wρ with w < 0” is a very strong statement, because
there is still a chance that modification to general relativity generates corrections in the cosmological
equations that explain the accelerated expanding phase [13, 29]. In this thesis, I consider that general
relativity provides the correct description for cosmology, which justifies my assertion.
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Type Ia supernovae and CMB data provide that the present-day dark energy
density parameter is

ΩΛ,0 ≈ 0.7, (2.142)

being the biggest contribution to the current parameter density [13, 12, 29].

2.8 ΛCDM: the benchmark model
A huge set of astrophysical and cosmological data give the conclusion that the

present-day universe is flat and is basically dominated by dark energy and dark matter. In
the current era, radiation and neutrinos do not contribute significantly to the universe’s
energy budget, being relevant only in early times. The main part of the contribution of
the matter density parameter comes from cold dark matter (CDM). For these reasons, the
standard cosmological model is called ΛCDM. Remarkably, almost 95% of the present-day
total energy has unknown sources. All planets, stars, visible galaxies, clouds of dust, light,
and neutrinos represent about 5% of the content of the universe. The necessity for these
energy sources is clear, but their physical nature is an open problem.

For quick future checks, I summarize in Tab. 1 the cosmological parameters that
appear in the Friedmann equation for the standard cosmological model.

Cosmological parameter Symbol Numerical Value [13]
Present-day CMB temperature T0 2.7255(6) K

Hubble constant H0 67.4(5)km s−1 Mpc−1

Present-day photon density parameter Ωγ,0 5.38(15) × 10−5

Present-day baryon density parameter Ωb,0 0.0493(6)
Present-day matter density parameter Ωm,0 0.315(7)

Present-day cold dark matter density parameter Ωc,0 0.265(7)
Present-day neutrino density parameter Ων,0 [0.0012, 0.003)
Present-day curvature density parameter Ωk,0 0.0007(19)

Present-day dark energy density parameter ΩΛ,0 0.685(7)

Table 1 – Present-day density parameter for photons, baryonic matter, matter, cold dark
matter, neutrinos, curvature, and dark energy. The table also has the CMB
inferred value for the Hubble constant and the present-day CMB temperature.

2.9 Cosmological eras
In a simplified way, the universe has first a radiation-dominated phase, followed

by a matter-domination phase, and after that, it is dominated by dark-energy [12]. The
transitions between these stages are calculated by the Friedmann equation (Eq. 2.125).
The matter-radiation equality happens when

ρrad = ρm ⇒ Ωrad,0

a4
emr

= Ωm,0

a3
emr

⇒ 1 + zemr = Ωm,0

Ωrad,0
⇒ zemr ≈ 3600. (2.143)
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The equivalence between dark energy and matter happens when

ρm = ρΛ ⇒ Ωm,0

a3
eΛm

= ΩΛ,0 ⇒ (1 + zeΛm)3 = ΩΛ,0

Ωm,0
⇒ zeΛm ≈ 0.3. (2.144)

In Fig. 3 are shown the energy density evolution for radiation, matter, and dark
energy. The radiation era is the shortest, lasting about 47,000 years. The universe was
dominated by matter for approximately 10 Gy. After the equivalence between dark energy
and matter, the universe starts to be dominated by dark energy, and it will spend all
eternity in this stage.13
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Figure 3 – Energy density evolution for radiation, matter, and dark energy. The energy
density (ρ) is normalized by the present-day critical density (ρcrit,0). The hori-
zontal axis is the scale factor, and the orange region represents the radiation
phase, the blue region represents the matter phase, and the gray region repre-
sents the dark energy phase.

My next step is to calculate the analytical expression for the scale factor, a(t), in
each one of the three domination phases, and also calculate the scale factor for a universe
dominated by matter and dark energy, which provides a good approximation for the
majority of the history of the universe.

13 The calculation of the equivalence moments between radiation and matter, and between matter and
dark energy are well explained in [8].
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2.9.1 Radiation era

To find the scale factor in the radiation-dominated phase, it is necessary to solve
the equation

H2 = H2
0

Ωrad,0

a4 · (2.145)

The solution to this is

a(t) =
√

2H0

√
Ωrad,0, t. (2.146)

Here, I used the big-bang condition a(0) = 0.

Realize that for the radiation phase a ∝ t1/2 and H = 1/(2t). The deceleration
parameter q ≡ −äa/ȧ2 in this period is q = 1, which implies a decelerating expansion
[8, 12].14

2.9.2 Matter era

Finding the scale factor for the matter-domination phase involves solving the ODE

H2 = H2
0

Ωm,0

a3 · (2.148)

Whose solution is

a(t) =
(3

2H0

√
Ωm,0 t

)2/3
. (2.149)

Again, the big-bang condition a(0) = 0 was used. This approximation is valid because the
radiation-dominated phase lasts for less than 50,000 years, while the matter-dominated
era lasts until around 10 billion years.

In this case, a ∝ t2/3, H = 2/(3t), and q = 1/2, which implies in a decelerating
phase [8, 12].
14 I did not create a section discussing the deceleration parameter deeply because it is a concept that I do

not frequently use in this thesis. But, I can provide a fast explanation for it. If q < 0, the universe is in
an accelerating expansion phase, while q = 0 the universe is static, and q > 0 is a decelerating stage.

The deceleration parameter is not an independent quantity. Using the acceleration equation, Eq.
2.44, and the critical density definition, Eq. 2.49, q can be related to the matter, radiation, and dark
energy density parameter:

q = − äa

ȧ2

= − a

ȧ2 ×
[
−4π

3 (ρm + 2ρrad − 2ρΛ) a
]

= 4π
3H2 (ρm + 2ρrad − 2ρΛ)

= 1
2ρcrit

(ρm + 2ρrad − 2ρΛ)

= 1
2 (Ωm + 2Ωrad − 2ΩΛ) . (2.147)
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2.9.3 Dark energy era

The last phase is the dark-energy domination era, where the scale factor is deter-
mined by solving the ODE

H2 = H2
0 ΩΛ,0 ⇒ H =

√
Λ
3 · (2.150)

Whose the solution is

a ∝ exp
√Λ

3 t
. (2.151)

This scale factor provides q = −1, implying an accelerating phase [8, 12].
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3 The Hubble tension

In this chapter, I will provide an overview of the methods employed to measure the
Hubble constant. Through an examination of these techniques, it will become clear the
reasons why determining H0 gave rise to a cosmological challenge known as the Hubble
tension. Understanding the nature of this tension is crucial as it sets the stage for the
subsequent chapter, where I will present a potential solution to this intriguing problem.

3.1 The many definitions of distance in cosmology

Many cosmological parameters can be determined by studying the distance-redshift
relation of astrophysical objects. However, the question arises: what concept of distance
should be used? The natural approach is to define distance in terms of proper distance
(dp). However, it is impossible to directly measure the proper distance of an object on the
cosmological scale. As a result, alternative distance concepts have been developed, such as
luminosity distance (dL) and angular distance (dA). In this section, I present a review of
the proper distance and the luminosity distance.1

3.1.1 Proper distance and Hubble’s law

The non-normalized scale factor, R(t), can be expanded around the present-day
time as follows [8]:

R(t) = R0 + Ṙ0(t− t0) + 1
2R̈0(t− t0)2 + · · · (3.1)

By factoring out R0 and using the definitions of the Hubble parameter (H = Ṙ/R =
ȧ/a) and the deceleration parameter (q = −R̈R/Ṙ2 = −äa/ä2), the above equation can
be rewritten as [11]:

a(t) = 1 −H0(t0 − t) − 1
2q0H

2
0 (t0 − t)2 + · · · (3.2)

Applying the scale factor and redshift relation, 1 + z = 1/a, to Equation 3.2, the
connection between z and the time difference t0 − t is obtained:

z = H0(t0 − t) +
(

1 + q0

2

)
H2

0 (t0 − t)2 + · · · (3.3)

1 The angular distance is an interesting subject, but for the future discussions contained in this thesis, it
is a concept that will not be necessary. Therefore, I consider it beyond the scope of this text, and I
will not discuss this concept in depth.



66 Chapter 3. The Hubble tension

This equation can be inverted to solve for t0 − t:

t0 − t = 1
H0

[
z −

(
1 + q0

2

)
z2 + O(z3)

]
(3.4)

Equation 3.4 indicates that knowing the redshift of a light source provides informa-
tion about the time t at which the light was emitted.

As shown in Subsection 2.3.3, light travels along a geodesic with ϕ and θ constant,
implying that its geodesic is given by:

dr = −dt

a
(3.5)

The proper distance, or physical distance, of a light emitter is defined as the length
of the null geodesic that the light travels to reach the Earth. It can be expressed as [11]:

lp =
∫ t0

t

dt

a
(3.6)

Using the scale factor expansion from Equation 3.2, lp can express as:

lp =
∫ t0

t

dt

1 −H0(t0 − t) − 1
2q0H2

0 (t0 − t)2 + · · ·
(3.7)

Performing the integration yields:

lp = (t0 − t) + 1
2H0(t0 − t)2 + · · · (3.8)

By applying Equation 3.4, relationship between the proper distance and the redshift
is given:

lp = 1
H0

[
z − 1

2(1 + q0)z2 + O(z3)
]

(3.9)

For small redshift values, this result yields Hubble’s law:

z = H0lp (3.10)

This interpretation is straightforward: the greater the distance of a galaxy, the
greater the redshift detected on Earth. The observation of this behavior was the first
evidence of the expansion of the universe.

There is another way to express Hubble’s law by associating the redshift with
a Doppler effect. In special relativity, the ratio of the emitted radiation frequency (ν)
to the received frequency (ν0) for a source moving at a low speed (v) is approximately
ν/ν0 ≈ 1−v [8, 9]. By comparing this equation with the cosmological redshift ν/ν0 = 1+z

(Eq. 2.65), the approximation v ≈ v holds, which provides an alternative formulation of
Hubble’s law:

v = H0lp (3.11)

The linear dependence of H0 in Hubble’s law was the first method used to determine
the numerical value of the Hubble constant.
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3.1.2 Luminous distance

In a Euclidean space, a radiation source has a luminosity denoted by L, representing
the energy released per unit of time. This energy propagates spherically, resulting in a
flux F = L/4πd2 when detected at a distance d [8]. Therefore, it is natural to define the
luminosity distance as:

dL =
√

L

4πF · (3.12)

Extending this concept to a null-curvature FRW geometry involves accounting for
the decrease in received radiation due to cosmological expansion. Suppose that at time tE, a
radiation source emits a photon with frequency νE, and after a time interval ∆tE, the same
amount of energy is emitted. The emitted luminosity is thus given by LE = 4πνE/∆tE,
utilizing the energy-frequency relation E = 2πν [14]. If these two photons are detected by
an observer on Earth with a time difference of ∆tR, the detected luminosity is represented
by LR = 4πνR/∆tR. Consequently, the ratio between the emitted luminosity LE and the
detected luminosity LR is given by:

LE
LR

= νE/∆tE
νR/∆tR

= ν2
E

ν2
R

= (1 + z)2, (3.13)

where the redshift-frequency relation from Eq. 2.65 is employed.

The flux detected at a physical distance lp from the source is simply:

F = LR
4πl2p

. (3.14)

The luminosity distance for an FRW geometry is defined in a similar manner as
Eq. 3.12, replacing L with emitted luminosity and F with detected flux. This yields:

dL =
√
LE

4πF ⇒ dL = lp(1 + z). (3.15)

By employing the approximation of proper distance lp for small redshift, as given
by Equation 3.9, the expression for the luminosity distance is derived [11, 30]:

dL = lp(1 + z) = 1
H0

[
z + 1

2(1 − q0)z2 + O(z3)
]
. (3.16)

This equation represents the core of late measurements of the Hubble constant H0

and the deceleration parameter q0. Here, "late" refers to small redshifts, corresponding to
a more recent epoch in the universe.

The key idea is to identify a population of astrophysical objects whose luminosity
is well-known. They are called standard candles. After identifying these objects, it is
necessary to measure their redshift and flux. Using the relation dL = [L/(4πF )]1/2, the
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luminosity distance is calculated. After completing these steps, the curve of z versus dL
must be plotted, and its slope gives H0 and q0 [11].

The difficult task is to identify suitable candidates for standard candles. This
objective will be further explored in the following section.

3.2 Standard candles for local measurements

3.2.1 Cepheids

Cepheids are pulsating stars with a luminosity that is proportional to their pulsation
period. This class of stars exhibits a well-established period-luminosity relationship. By
comparing the observed luminosity of Cepheids with their intrinsic luminosity, astronomers
can determine their distances [31, 30]. However, the calibration of this technique is necessary,
which involves accurately measuring the distances of nearby Cepheids using independent
methods.

Using Cepheids, Edwin Powell Hubble applied the relation between redshift and
distance (Eqs. 3.10 and 3.11) to estimate H0. Although his numerical estimation of H0

was significantly different from the values accepted today, his work was revolutionary.

3.2.2 Type Ia Supernovae

A supernova is a powerful stellar explosion that can shine as an entire galaxy at its
luminous peak [30]. It is a rare event; for example, in the Milky Way, a supernova occurs,
on average, once per century [11]. There are two types of supernovae: Type I and Type II.
Type I supernovae do not have hydrogen absorption lines in their spectra, while Type II
supernovae do [31, 11]. Type I can be further divided into two classes: Type Ia and Type
Ib. Type Ia supernovae are excellent standard candles. They originate from white dwarfs
that accrete an excessive amount of matter from an orbiting companion star, reaching the
Chandrasekhar limit. When this occurs, their core becomes unstable, triggering a runaway
fusion process and releasing a tremendous amount of energy in an explosion. The maximum
luminosity of Type Ia supernovae varies between (3 − 5) × 109L⊙ [11, 31]. The formation
process of this type of supernova is highly uniform, making it an excellent characteristic
of a standard candle. Its intrinsic luminosity is well understood, and by comparing it with
the observed luminosity, astronomers can estimate their distances. With knowledge of the
distance and redshift, the Hubble constant can be estimated, as explained earlier.
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3.3 Standard sirens
A standard siren refers to the use of gravitational waves for measuring cosmic

distances. The merger of black holes or neutron stars represents highly energetic events
that disturb the fabric of space-time and generate gravitational waves, making them
excellent candidates for this purpose. These waves propagate through space, carrying
valuable information about the objects that gave rise to them and the dynamics of their
interactions. The idea behind standard sirens is to detect the gravitational waves generated
and utilize the information obtained from the detection to determine the luminosity of the
source [30].

The process of measuring distances using standard sirens involves several steps.
Initially, the gravitational wave signal captured by ground-based or space-based detectors,
such as the Laser Interferometer Gravitational-Wave Observatory (LIGO) or the Virgo
detector, is analyzed to extract relevant information regarding the merging objects. The
gravitational wave signal contains encoded details about the masses, spins, and orbital
dynamics of the involved objects [32].

In cases where the gravitational wave source can also be detected electromagnetically,
such as in the scenario of a binary neutron star merger, combining the gravitational and
electromagnetic analyses allows for the generation of precise information about the distance
of the source.

3.4 Measurement from the Early Universe: Cosmic Microwave Back-
ground
The measurement of the Hubble constant from the early universe relies on obser-

vations of temperature anisotropies in the cosmic microwave background (CMB). This
anisotropy arises due to scalar perturbations on the FRW metric with null curvature.
These geometric perturbations induce tiny deformations in the energy density spectra of
photons, neutrinos, baryons, and dark matter [12].

The CMB anisotropy serves as a rich source of information, providing insights into
the spatial geometry of the universe, the present-day density parameters of the universe’s
energy components, and the Hubble constant itself [2, 33, 12, 10]. Two notable missions
that have analyzed the CMB power spectrum are the Wilkinson Microwave Anisotropy
Probe (WMAP), which provided measurements of the Hubble constant, and the Planck
Collaboration [4], which has furnished the most precise information regarding the CMB.

Another important cosmological probe is the Baryon Acoustic Oscillation (BAO),
which manifests as a perturbation in the matter power spectrum. This phenomenon
generates pressure waves in the primordial plasma, leading to additional constraints on
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the Hubble constant.

Projects like the Baryon Oscillation Spectroscopic Survey (BOSS) [34] and the
Dark Energy Survey (DES) [35] have undertaken extensive galaxy surveys on large scales
to precisely measure the BAO scale. These measurements, when combined with CMB data
and other cosmological probes, contribute significantly to the determination of the Hubble
constant.

3.5 The Hubble tension

Knowing the theory behind measuring distance and the cosmological and astro-
physical phenomena used, it is time to delve into the numerical results of these techniques.

The SH0ES team utilized data from the Hubble Space Telescope (HST) and Gaia
to refine the determination of the Hubble constant [36]. They studied 75 Milky Way
Cepheids and achieved precise calibration of their luminosities by combining different
calibration sources. Applying this calibration to Type Ia supernovae, they measured the
Hubble constant as H0 = 73.2 ± 1.3 km s−1 Mpc−1, reaching a precision of 1.8%. The
study confirmed the agreement of Cepheid properties in the Milky Way with those in
other galaxies.

The Carnegie–Chicago Hubble Programme (CCHP) combines calibration of the
tip of the red-giant branch with Type Ia supernovae to determine a value for the Hubble
constant of H0 = 69.8 ± 0.6(stat) ± 1.6(sys) km s−1 Mpc−1 [37]. Their method shows
consistency with other calibrations and does not require new physics beyond the standard
cosmological model.

The HOLiCOW collaboration [38] presents a measurement of the Hubble constant
using six gravitationally lensed quasars with measured time delays. In a flat ΛCDM
cosmology, H0 is determined to be 73.3 ± 1.7 km s−1 Mpc−1, which is consistent with
other local measurements. The method used is independent of supernovae and CMB
analyses. The study explores different cosmological models and shows the complementarity
of time-delay cosmography with other methods.

LIGO and Virgo detected a gravitational-wave event resulting from a binary neutron-
star merger, and the Hubble constant was measured directly from the gravitational wave
and redshift data, yielding a value of H0 = 70+12

−8 km s−1 Mpc−1 [39]. In [40], the same
gravitational wave event was studied, but two extra standard sirens were added, resulting
in H0 = 72+12

−8 km s−1 Mpc−1.

There are many other direct measurement values for the Hubble constant. To
continue the discussion, I will briefly cite some of them. Parallax measurements of Cepheids
provide H0 = 73.24 ± 1.74 km s−1 Mpc−1 [33]. The overlap of cepheids and Type Ia
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supernovae (SNIa) yields H0 in the range of 70.1 − 77.1 km s−1 Mpc−1 [5]. Combining the
tip of the red giant branch (TRGB) with SNIa results in H0 in the range of 67.7 − 74.2 km
s−1 Mpc−1 [5]. The Tully-Fisher relation (TRF), which relates the luminosity of a galaxy
to its rotational velocity, has also been used to estimate H0, yielding a range of 72.3 − 78.6
km s−1 [5].2

The main source of early measurements of the Hubble constant is the CMB.
Considering the ΛCDM model and CMB power spectrum, Planck data favors H0 =
67.27 ± 0.6 km s−1 Mpc−1 [4]. Other early methods, whether they use the CMB or not,
yield results very close to the Planck measurement [5].

In summary, early measurements of the Hubble constant favor H0 < 69 km s−1

Mpc−1, while local measurements yield H0 > 70 km s−1 Mpc−1 [2, 5]. The discrepancy
between these values is known as the Hubble tension, and its magnitude varies depending on
the dataset used. Table 2 presents some of these measurements, highlighting the discrepancy
between late and early universe data. Overall, it is evident that local measurements do
not align with CMB-inferred values for H0.

EARLY UNIVERSE Dataset
H0 = 70.0 ± 2.2 km s−1 Mpc−1 WMAP9 [41]
H0 = 67.36 ± 0.54 km s−1 Mpc−1 CMB 2018 [4]
H0 = 67.36 ± 0.54 km s−1 Mpc−1 SPT 2021 [42]
H0 = 69.72 ± 1.63 km s−1 Mpc−1 ACT 2019 [43]
H0 = 67.9 ± 1.1 km s−1 Mpc−1 BOSS data [44]
H0 = 69.6 ± 1.8 km s−1 Mpc−1 eBOSS Collab. [45]

LATE UNIVERSE Dataset
H0 = 73.8 ± 2.1 km s−1 Mpc−1 SN1a 2021 [46]
H0 = 75.4 ± 1.7 km s−1 Mpc−1 Pantheon 2019 [47]
H0 = 72.8 ± 1.9 km s−1 Mpc−1 Gaia 2020 [48]
H0 = 73.2 ± 1.3 km s−1 Mpc−1 Gaia and HST 2020 [36]
H0 = 69.8 ± 2.5 km s−1 Mpc−1 Red Giants 2019 [49]

Table 2 – Early and late universe measurements of the Hubble constant and their respective
data sets.

Although the measurement of the luminosity of a standardized star is a direct task,
it is more susceptible to systematic errors compared to early universe measurements. This
fact is evident in the last measurement presented in Table (2). It utilizes Red Giants instead
of Cepheids or Supernovae to assess the distance-redshift relation, and the inferred value
for H0 is slightly larger but compatible with the early universe evaluations, considering the
2 The Tully-Fisher relation is based on the observation that spiral galaxies with higher rotational

velocities tend to have greater luminosities. The Tully-Fisher relation has been widely used in cosmology
and extragalactic astronomy to estimate the distances to galaxies, particularly when other distance
indicators, such as Cepheid variable stars or Type Ia supernovae, are not available or applicable. It is
important to note that the Tully-Fisher relation is an empirical relationship based on observations,
and its physical mechanism is still the subject of ongoing research and investigation [13, 5].
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error bars. In many cases, the Red Giants and Cepheids used to obtain the different data
sets are located in the same galaxies. The discrepancy in the results indicates the presence
of a significant systematic error in one or both of these measurements. It is possible that
new observations using the James Webb telescope may resolve this issue in the coming
years. For a detailed discussion of this conflict, refer to Ref. [37].

Both late and early results have such significant statistical discrepancies that they
can no longer agree with each other. In many cases, there is no overlap between their
uncertainties, highlighting the essence of the Hubble tension. If the early measurements
are correct, it implies that the methods astronomers use to calculate distances to very
distant objects need improvement. On the other hand, if the late measurements are correct,
it suggests that something must be added to the cosmological equation to resolve the
discrepancy.

3.6 Possible solutions for the Hubble tension

One possible way to alleviate the Hubble tension is by extending the standard
cosmological model. One popular alternative extension is to consider non-standard dark
energy models, such as quintessence. Another approach is to modify the theory of gravity.
These models introduce additional parameters that can influence the expansion rate and
potentially reconcile the conflicting measurements [5].

It is also common in the literature to propose modifications to early universe
physics with the intention of addressing the Hubble tension. This includes scenarios where
the early universe underwent a phase transition or experienced non-standard inflationary
dynamics. Such modifications can have an impact on the expansion rate and result in
different predictions for the Hubble constant [5].

The Hubble tension has also given rise to speculations about new physics and
potential variations in fundamental constants. Some hypotheses suggest that the tension
could be resolved by considering a time-varying speed of light or variations in the fine-
structure constant. These ideas introduce fundamental changes to our understanding of
physics and cosmology and are actively being explored through theoretical and observational
studies [5].

Extensive investigations have been conducted to understand the systematic ef-
fects and biases in measurement methods that contribute to the Hubble tension. These
investigations encompass various factors, including uncertainties in distance indicator cali-
bration, variations in dust extinction treatment, and assumptions within the cosmological
framework. Ongoing efforts are focused on refining the calibration of distance indicators,
particularly Cepheid variable stars and Type Ia supernovae, to reduce systematic uncer-
tainties. Additionally, careful examination is being given to the impact of local variations in
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matter distribution and peculiar motions, as these factors can introduce biases that affect
the determination of the Hubble constant. Another perspective in the literature suggests
that the tension may arise from statistical anomalies or unaccounted-for systematic effects,
emphasizing the need for continued investigation and methodological refinement to address
and resolve the tension conclusively [5].

Two mechanisms have emerged as potential solutions to alleviate the Hubble tension,
which will be further explored in the following chapter. The first involves the addition of
extra radiation energy during the early universe, while the second entails considering a
non-standard dark matter fluid. These approaches offer promising avenues for addressing
the tension and will be the focus of in-depth analysis in subsequent discussions.

One possibility to increase the Hubble constant inferred from CMB probes is
to add some amount of radiation at early times. A plausible way to accomplish this is
via the introduction of new light species that were in thermal equilibrium much before
CMB decoupling [2, 50, 51]. Such light species will contribute to the effective number of
relativistic particles, Neff, which is positively correlated with the Hubble rate [4, 6, 2]. An
alternative way to increase Neff is to introduce a relativistic production mechanism of dark
matter particles, which in turn mimic the effect of a neutrino species [52]. The relation
between the variation in the Hubble constant ∆H0 induced by Neff in the ΛCDM model is
estimated to be ∆H0 = 6.2(Neff − 3.046) [6], i.e., Neff > 3.046 can alleviate the Hubble
tension. Unfortunately, this alleviation is not too high, because CMB power spectrum does
not allow enough Neff to the early and late measurement of H0 be compatible [6, 2]. I will
explore deeply this limitation in the next chapter.

As mentioned earlier, another intriguing path for alleviating the Hubble tension is
the exploration of non-standard dark energy scenarios. One possibility involves considering
the dark energy contribution in the Friedmann equation with the following form [2]:

ΩDE,0 exp
(

3
∫ z

0
dz′ 1 + w

1 + z′

)
, (3.17)

Here, w represents a constant associated with an equation of state P = wρ. In the ΛCDM
model, the traditional dark energy corresponds to the case where w = −1. Another class
of dark energy models involves the existence of a scalar fluid that slowly rolls towards
the minimum of its potential, leading to a range of models with −1 < w < −1/3. The
phantom-like fluid is characterized by w < −1 [53, 54, 55]. Interestingly, phantom dark
energy has the potential to alleviate the Hubble tension [7]. The relationship between the
variation in the Hubble constant ∆H0 induced by a non-standard dark energy fluid is
estimated to be ∆H0 = −18.5(1 + w) when Neff is fixed at the value 3.046 [6].
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4 Alleviating the Hubble tension with dark
matter and non-standard cosmologies

In this chapter, I use a non-thermal production mechanism of dark matter to
increase the relativistic energy density in the early universe, which has the potential to
raise H0 [52, 56] and then alleviate the Hubble tension.

The main idea is considering a heavy particle χ′ that is thermally decoupled from
the fundamental plasma in the early universe. This particle decays into dark matter χ
and another source of radiation, which may be photons or neutrinos, i.e., χ′ → χ + ν

and/or χ′ → χ+ γ. I will assume that mχ′ ≫ mχ and that the neutrino mass is negligible
when compared with χ′ and χ masses. Thus the dark matter particle will be relativistic
at first but as the universe expands it cools and becomes a standard cold relic at the
matter-radiation equality for structure formation purposes.

It is crucial to assume that only a small fraction of present-day dark matter
abundance is due to this mechanism. If a large fraction of the overall dark matter abundance
comes from the χ′, the changes in the matter power spectrum are sufficiently large, in
disagreement with Lyman-α observations [57]. This fact is also important to avoid conflict
with structure formation [58]. The small fraction consideration also prevents possible
problems with light element formations in the early universe [59, 60].

The small fraction of relativistic dark matter contributes to the energy density
in the radiation-dominated phase, generating an effective relativistic degree of freedom,
Neff. This parameter is positively correlated with the Hubble constant (H0) [17, 2, 33, 6],
therefore increasing in Neff translates into a larger H0.

Introducing Neff into ΛCDM model is not enough to increase H0 to a point where
the Hubble tension is alleviated. However, adding a phantom-like fluid and the extra source
of radiation made the job [2, 6, 61], i.e., physics beyond the ΛCDM is needed. Having
that in mind, I use combined data from Planck, BAO, and Supernovae IA observations to
determine what is the parameter region in which the proposed mechanism can increase H0

and reconcile CMB and local measurements.

I emphasize that in χ′ decay, the neutrino and/or photon appearing in the final
state is a pragmatic choice. Other decay channels involving further SM particles or particles
beyond the SM are possible, but I do not consider these cases here.

I will start explaining the mechanism in a model-independent way, and later I use
effective theories to describe the χ′ decay channels, considering cases where dark matter
and dark matter mother (χ′) are spin 0, spin 1, and spin 1/2 particles. In the primer



76 Chapter 4. Alleviating the Hubble tension with dark matter and non-standard cosmologies

approach, the important quantities are the ratio mχ′/mχ and the fraction of dark matter
provided by the non-thermal decay, f . While in the former, the relevant quantities are
the masses of the particles and the energy scale of the effective operator, Λ. With this at
hand, I delimit the region of parameter space which offers a solution to the H0 trouble.

4.1 Dark matter particles as the source of dark radiation: a particle
physics model-independent approach
I am considering a stage where the universe is dominated by radiation. In this

period of time, the radiation energy density (ρrad) is a function of the photon’s temperature
(T ) and the relativistic degrees of freedom (g∗),

ρrad = π2

30g∗T
4. (4.1)

To calculate the g∗ factor I consider the case where only photons and neutrinos
are ultrarelativistic, which implies that the neutrinos-to-photons temperature ratio is
Tν/Tγ = (4/11)1/3. It is well known that photons have two polarization states, providing
gγ = 2. Standard model neutrinos are only left-handed, which sets gν = 1. Therefore,

g∗ = gγ + 7
8 (gν + gν̄)Neff

(
Tν
Tγ

)4

= 2 + 7
4

( 4
11

)4/3
Neff. (4.2)

Where Neff is the effective number of relativistic neutrino species.

In the standard model, there are three neutrinos species: electron, muon, and tau
neutrino. Thus it is expected to have Neff close to three, not precisely three, because of
some temperature dependence.1 However, it is useful to write Neff = 3 + ∆Neff, where
∆Neff refers to the extra number of relativistic degrees of freedom, which may come from
new light species or other mechanisms that mimic the neutrino effects.

Denoting the energy density of a single kind of standard model neutrino as

ρ1ν ≡ π2

30

[
7
4

( 4
11

)4/3]
T 4, (4.3)

the standard model radiation energy density can be split into two parts:

ρSMrad ≡ ργ + 3ρ1ν . (4.4)

Which provides a natural justification to define the extra radiation energy density as

ρextra ≡ ρrad − ρSMrad . (4.5)
1 The standard model predicts a value for the effective number of neutrino species, Neff, slightly different

from 3 [62, 10, 13]. However, for the purposes of this text, this correction is negligible and can be safely
ignored.
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Using all these definitions and notations, I can write

∆Neff = ρextra

ρ1ν
· (4.6)

The key idea of the above equation is that it is possible to reproduce the effect of
an extra neutrino species by adding any other kind of radiation source.

It is important to notice that the ratio between one neutrino specie and cold dark
matter energy density at the matter-radiation equality (t = teq) is

ρ1ν

ρCDM

∣∣∣∣∣
t=teq

= Ων,0ρc
3a4

eq

×
(

ΩCDM,0ρc
a3
eq

)−1

= 0.16. (4.7)

Where the factor 1/3 comes from the consideration that only one neutrino species con-
tributes to the ratio, Ων,0 = 3.65 × 10−5 [11], ΩDM,0 = 0.265 [13] and aeq = 3 × 10−4.2,3

The above equation informs that the energy density of one neutrino specie is equal
to 16% of the dark matter energy density at matter-radiation equality.

Let’s suppose that a heavy particle χ′ decays into dark matter χ and photons γ or
SM neutrinos ν, i.e., χ′ → χ+ ν or χ′ → χ+ γ. I am considering that this happened at a
time between neutrino decoupling and matter-radiation equality, i.e., the decay happened
in the radiation era.

In χ′ resting frame, the four-momentum of particles are:

pχ′ = (mχ′ ,0) , (4.8a)

pχ = (E(p),p) , (4.8b)

pν,γ = (|p| ,−p) . (4.8c)

Therefore, with these expressions and the 4-momentum conservation I find the energy of
dark matter immediately after the decay,

pχ′ = pχ + pν,γ ⇒ pχ′ − pχ = pν,γ ⇒ m2
χ′ − 2pχ′ · pχ +m2

χ = 0 ⇒ 2mχ′Eχ = m2
χ′ +m2

χ

⇒ Eχ(τ) = mχ

(
mχ′

2mχ

+ mχ

2mχ′

)
≡ mχγχ(τ). (4.9)

Where τ is the lifetime of the mother particle χ′ and γ(τ) is the Lorentz factor at this
moment. I highlight that I am adopting the instant decay approximation, i.e., that all
mother particles decay in the same moment.4
2 You may think that the neutrino density used here is in conflict with the value shown in Tab. 1,

however, it is not. In the phase considered in this section, the neutrinos are ultrarelativistic, therefore
the approximation of massless neutrinos is completely fine. In Tab. 1 the present-day neutrinos are
cold particles.

3 In the previous chapters I used Ωc,0 to denote the present-day cold dark matter density. In this chapter,
I change this notation because in my analyses I utilize dark matter in cold and hot stages.

4 I intend to alleviate this instant decay approximation in future work.
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The above equation indicates that dark matter generated from χ′ decay is ultrarel-
ativistic. This is because the condition mχ′ ≫ mχ implies that Eχ ≫ mχ.

Using the above result and the fact that the momentum of a particle is inversely
proportional to the scale factor (Eq. 2.63), I obtain

E2
χ −m2

χ = p2
χ ∝ 1

a2

⇒
(
E2
χ(t) −m2

χ

)
a2(t) =

(
E2
χ(τ) −m2

χ

)
a2(τ)

⇒ Eχ(t)
mχ

=
1 +

(
a(τ)
a(t)

)2 (
γ2
χ(τ) − 1

)1/2

≡ γχ(t).

As I pointed out early, I am considering that the universe is in the radiation
domination phase, where a(τ)/a(t) =

√
τ/t (see Eq. 2.146). In this way, the dark matter

Lorentz factor is

γχ(t) =

√√√√(m2
χ −m2

χ′)2

4m2
χm

2
χ′

(
τ

t

)
+ 1. (4.10)

In the non-relativistic regime, the mass of a particle is the dominant contribution
to its energy. Thus, rewriting the dark matter energy as

Eχ = mχ (γχ − 1) +mχ (4.11)

provides the interpretation that in the ultrarelativistic regime mχ (γχ − 1) dominates.
Consequently, the total energy of the dark matter particle can be written as

EDM = NHDMmχ (γχ − 1) +NCDMmχ.

Here, NHDM is the total number of ultrarelativistic dark matter particles (hot particles),
whereas NCDM is the total number of nonrelativistic DM (cold particles). Obviously,
NHDM ≪ NCDM to be consistent with the cosmological data.5

The ratio between hot and cold dark matter energy density is

ρHDM

ρCDM
= NHDMmχ (γχ − 1)

NCDMmχ

≡ f (γχ − 1) . (4.12)

Where f is the fraction of dark matter particles which are produced via this non-thermal
process.

As aforementioned, f ought to be small. For calculation purposes, I consider
f = 0.01, as a conservative benchmark. In Sect. 4.3, I clarify further this choice.
5 The CMB power spectrum and structure formation observations support the idea that dark matter

should be predominantly cold [27, 18, 13]. Therefore, I assume that the fraction of hot dark matter
particles is much smaller than that of cold dark matter.
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Considering that in Eq. 4.6 the extra source of radiation is the hot dark matter
produced by the χ′ decay, and applying Eq. 4.12 and Eq. 4.7 to Eq. 4.6 provides that

∆Neff = ρHDM

ρ1ν
= ρHDM

0.16 × ρCDM(teq) = lim
t→teq

f (γχ − 1)
0.16 · (4.13)

In the regime mχ′ ≫ mχ, the Lorentz factor at matter-radiation equality becomes

γχ(teq) − 1 ≈ γχ(teq) ≈ mχ′

2mχ

√
τ

teq
,

and Eq. 4.13 reduces to

∆Neff ≈ 2.5 × 10−3
√

τ

106 s × f
mχ′

mχ

· (4.14)

Where the approximation teq ≈ 50000 years ≈ 1.6 × 1012 s was used.

The ∆Neff is a function of four parameters: (i) the lifetime and (ii) the mass of χ′;
(iii) the mass of χ; (iv) the fraction of hot dark matter particles (f), that as I pointed
before, I assume to be 0.01.

As aforementioned, analyses of the CMB spectrum provide that Neff and H0 are
positively correlated [2, 17, 33, 6]. Therefore, Eq. 4.14 can be used to connect H0 with
fmχ′/mχ for a given lifetime.

Assuming that the Hubble constant measured locally should indeed be larger than
70 km s−1 Mpc−1, one can conclude that the ΛCDM model does not suffice [2]. In other
words, if there are no methodological mistakes in late measurements of H0, the Hubble
tension is a sign that small deviations from the standard cosmological model are needed
[2]. Here, I will consider the addition of phantom-like fluid in the Freedman equation [63],
as the cosmological model extension. I do this because phantom-like cosmologies alone
allow H0 values larger than 70 km s−1 Mpc−1, and consequently can solve the H0 trouble
[2, 6].

In the first column of Fig. 4 is shown the regions of the parameter that correlate
H0 and Neff found in [2]. They do that via likelihood analyses of the CMB power spectrum,
together with BAO6 and type Ia supernovae data. In the figure, there are three cases: the
standard ΛCDM model (Fig. 4(a)), a universe with a phantom-like fluid without curvature
(Fig. 4(c)), and other phantom-like case but with small curvature (Fig. 4(e)).7,8 Applying
this correlation between H0 and Neff into Eq. 4.14, I determine the allowed values of H0 for
6 BAO is an abbreviation for baryonic acoustic oscillations.
7 An important observation is that in Fig. 4 the non-flat ΛCDM case is not contemplated, because it

does not ameliorate the Hubble tension [64].
8 The phantom-like case with null curvature has the equation of state P = −1.004+0.038

−0.016 × ρ, while the
non-zero curvature scenario has −1.06ρ < P < −ρ. The likelihood analyses of these two setups have
been carried out in [2], where they are labeled as P7 and P18.
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Figure 4 – Allowed regions of parameters that connect the non-thermal dark matter
mechanism presented here and the value of Hubble constant in the ΛCDM
and phantom-like cases [1]. The first row corresponds to the ΛCDM model,
and in the second and third rows, a phantom-like quintessence is introduced,
first in a spatially flat model, then with non-null spatial curvature. The data
set that connects ∆Neff and H0 showed in (a), (c), and (e) is taken from [2].
In all figures, the lighter regions correspond to 99% of CL, while the darkest
regions correspond to 68% of CL. In (b), (d), and (f) the orange, blue and
gray regions correspond to the cases where χ′ lifetime is 102s, 103s and 104s
respectively. The bounds use Planck 2018 CMB data, BAO, and type Ia data
from the Pantheon sample.
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different choices of the product fmχ′/mχ at τ = 102 s, 103 s, and 104 s. That procedure
generates the second column of Fig. 4.14.9

In Fig. 4, it is clear that Phantom-like cosmologies alone allow H0 values larger
than 70 km s−1 Mpc−1, and consequently can solve the H0 trouble. This explains why in
all cases fmχ′/mχ can go to zero.

The Fig. 4(a) and Fig. 4(b) imply that if local measurements pointing to H0 ≤
70 km s−1 Mpc−1 is adopted, there would be no need for a Phantom-like cosmology. In
this case, the mechanism described here can yield Neff = 3.3, and consequently, provides
H0 = 70 km s−1 Mpc−1 [2]. Nevertheless, it is clear that it is not possible to obtain
H0 > 71 km s−1 Mpc−1 adopting the ΛCDM as a prior. It is needed to go beyond the
ΛCDM model to find values of H0 consistent with local measurements.

In Fig. 4, phantom-like cases have a mild difference in the allowed parameter space.
Thus, I can safely say that with or without curvature, the proposal used here can alleviate
the H0 tension.

I stress that the advantage of this mechanism is a small introduction of new concepts
to alleviate the Hubble tension. In other words, the dark matter particle hypothesis is
an already well-established idea, therefore, to alleviate the cited cosmological tension, it
was needed add only a phantom-like fluid, a new particle, the dark matter “mother”, and
the χ′ → χ + γ and/or χ′ → χ + ν decay channels. These considerations are not too
extravagant. Furthermore, observing the central values of the parameters contained in
[2], it is clear that the phantom-like cases considered here are small deviations from the
standard cosmological model.

By observing the phantom-like cases depicted in Figure 4, it is evident that the
inclusion of the phantom-like fluid alone can potentially provide a solution to the Hubble
tension, as no additional ∆Neff is required. However, when ∆Neff is not null, the mechanism
employed here can explain the presence of an additional radiation source.

Figures 4(a), 4(c), and 4(e) offer a means to establish an upper bound on the
lifetime of χ′. To illustrate, I set τ to 103 s and 104 s, and f = 0.01, and generated Fig.
5. For mχ′/mχ = 103 the upper limit is τ ≲ 5 × 108 s, while for mχ′/mχ = 104 it is
τ ≲ 5 × 106 s. I anticipate that these limits will be improved soon, in a more restrictive
way. These chosen mass ratio values will be clear in the next subsection.
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Figure 5 – Allowed parameter space for dark matter lifetime τ and Hubble constant H0
for phantom-like cases. The data used to create this figure is the same as in
Fig. 4. The lighter regions in both figures represent 99% of the confidence level,
while the darkest regions represent 68% of the confidence level. The orange
region represents the null curvature case, while the gray region represents the
curved case. In both cases, it is assumed that only 1% of the present-day dark
matter abundance is generated by the χ′ decay, i.e., f = 0.01. The left figure
considers a mass ratio of mχ′/mχ = 103, while the right figure represents the
case where mχ′/mχ = 104.

4.1.1 Energy evolution of dark matter

Here, the fraction of dark matter particles are created in a hot stage. At matter-
radiation equality, the kinetic energy of these particles is lost as the universe expands and
they become cold. It is important for this event to occur before matter-radiation equality
(teq). I use Eq. 4.11 to assess whether dark matter particles produced in this way are
non-relativistic at teq.

Taking τ ∼ 102 s − 104 s and mχ′/mχ ∼ 104 − 106, which is within the region of
interest to solve the H0 problem, I show in Figs. 6(a) and 6(b) that the dark matter particles
are non-relativistic at matter-radiation equality for mχ′/mχ = 103 and mχ′/mχ = 104. In
Figs. 6(c) and 6(d), it is shown that for mχ′/mχ = 105 and mχ′/mχ = 106, dark matter
particles are still relativistic at matter-radiation equality.

Fig. 6 informs mχ′/mχ ∼ 104 is an upper limit. This holds independent of f . Despite
the energy of dark matter being independent of f , I assume f to be small, for reasons
that I will explain deeply soon. Anyway, the mechanism used here may have a cold and

9 The two phantom-like cases considered here do not appreciably alter the matter-radiation equality.
Thus, Eq. 4.7 is still valid as well as the Eq. 4.14. For more details of the cosmological central value
parameters see [2].
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Figure 6 – Time evolution of dark matter energy [1]. Dark matter mother lifetime is
τ = {102 s, 103 s, 104 s} and the ratio between dark matter mother and dark
matter mass is mχ′/mχ = {103, 104, 105, 106}. In all situations of (a) and (b),
dark matter is cold at matter-radiation equality (teq), while in (c) and (d)
dark matter is hot in all lifetime scenarios.

hot dark matter contribution (see Figs. 6(c) and 6(d)), i.e., it is a mixed scenario, which
may solve some small-scale problems appearing in purely cold dark matter simulations
[13, 65, 66, 67, 68].

I am also considering that χ′ decay occurs after the dark matter freeze-out, which
implies that the dark matter particles added to the fundamental plasma are not able to
be annihilated in standard model particles in an efficient way, i.e., the process χ+ χ̄ →
SM + SM is basically irrelevant in the stages of the Universe that I am considering.

My next step is to calculate the dark matter present-day density parameter due to
the considered mechanism. I denote ρ̃χ as the dark matter energy density generated the χ′

decay, to distinguish the dark matter energy density from any other mechanism ρχ. The
ratio between these two values is

ρ̃χ
ρχ

= ñχmχγχ
nχmχ

⇒ Ω̃χ

Ωχ

= fγχ. (4.15)

Where I use the density parameter definition: Ω = ρ/ρcrit.
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Today γχ = 1. Then, I can write

Ω̃χ,0

Ωχ,0
= f. (4.16)

Thus, the parameter density for cold dark matter at present-day is

ΩCDM,0 = Ω̃χ,0 + Ωχ,0 = (1 + f)Ωχ,0. (4.17)

Which allows me to write

Ω̃χ,0h
2 = f

1 + f
ΩCDM,0h

2 ≈ 0.0012. (4.18)

Where I used f ≈ 0.01 and ΩCDM,0h
2 ≈ 0.12 [13].

The above equation is the contribution of this mechanism for the currently cold
dark matter density parameter.

4.2 BBN constraints
The Big Bang Nucleosynthesis is well-supported by the observational data, being

one of the cosmology cornerstones. Any energy injection episode that happens around this
period of time may alter the BBN predictions, therefore, BBN can be used as a bound.

The decay χ′ → χ + γ adds new photons to the cosmological fluid, increases its
electromagnetic energy, and may lead to significant perturbations in the abundance of
light elements such as Helium, Deuterium, and Lithium. The decay χ′ → χ+ ν also can
generate a photon cascade as pointed in [69, 60]. The goal of this section is to avoid these
perturbations in the BBN results and generates a parameter space that agrees with BBN
bounds.

Before χ′ decay, the universe has a background of photons. Therefore, the energy
of photons detected in the CMB is the addition of the energy of this photon background
and the energy of new photons generated from the mechanism presented here. For that
reason, I write the mean energy of CMB photons as

ECMB
γ = EBG

γ

(
nBGγ
nCMB
γ

)
+ Eγ

(
ñγ

nCMB
γ

)
, (4.19)

where EBG
γ is the mean energy of background photons, Eγ the mean energy of photons

due to the χ′ decay, nBGγ the number density of background photons, nCMB
γ the number

density of CMB photons, and ñγ the number density of photons generated by the χ′ decay
mechanism.

The above equation motivates the definition of the electromagnetic energy released
by χ′ decay as

ζEM ≡ EγYγ. (4.20)
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Where Yγ = ñγ/n
CMB
γ . The kinematics of χ′ decay provides Eγ, and cosmology gives Yγ

factor.

Taking the definition of Yγ as inspiration, I define the ratio between the dark matter
number density and the CMB photons as

YDM ≡ nDM
nCMB
γ

= nCDM + nHDM
nCMB
γ

= nCDM
nCMB
γ

(1 + f) .

Which provides a natural way to define

Yχ ≡ nCDM
nCMB
γ

× f. (4.21)

Applying the definition of critical density (ρcrit ≡ 3H/(8πG)), the definition of
density parameter (Ω ≡ ρ/ρcrit), the cold particle energy density expression (ρ = nm), and
the time evolution of number density of CMB photons (nCMB

γ = nCMB
γ,0 /a3) to Yχ gives

Yχ ≡ nCDM
nCMB
γ

× f = f

mχnCMB
γ,0

× ΩCDMa
3ρcrit. (4.22)

To calculate ΩCDMa
3ρcrit, I use the dark matter density parameter definition,

ΩDM = ρDM/ρcrit, together with the dark matter energy density evolution, ρDM =
ρDM,0/a

3:
ΩCDMa

3ρcrit = ρDM
ρcrit

× a3ρcrit = ρDM,0

a3 × a3 = ΩCDM,0ρcrit,0. (4.23)

Consequently, the expression for Yχ depends only on some of the present-day cosmological
parameters:

Yχ = f

mχnCMB
γ,0

× ΩCDM,0ρcrit,0. (4.24)

Adopting ρcrit,0 ≈ 1.05 × 10−5h2 GeV/ cm3 [13], nCMB
γ,0 = 412 cm−3 (Eq. 2.127), and

ΩCDM,0h
2 = 0.12 [13], gives

Yχ = 3.01 × 10−9
(

GeV
mχ

)
× f. (4.25)

The decay χ′ → χ + γ implies that nχ′ = nχ = ñγ. This provides the relation
Yχ = Yγ . Therefore, to calculate ζEM for this decay channel, it is only necessary to calculate
Eγ. To do that, I use four-momentum conservation: pχ′ − pγ = pχ, where each of these
four-momenta is defined in Eq. 4.8, under the limit where mχ′ ≫ mχ.

pχ′ − pγ = pχ ⇒ m2
χ′ − 2pχ′ · pγ = m2

χ ⇒ 2mχ′Eγ = m2
χ′ −m2

χ
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⇒ Eγ = mχ′

2

1 −
(
mχ

mχ′

)2
 ≈ mχ′

2 · (4.26)

Thus, the electromagnetic energy released by χ′ → χ+ γ is

ζEM = EγYγ = EγYχ ⇒ ζEM = 1.5 × 10−9GeV ×
(
f
mχ′

mχ

)
. (4.27)

By calculating the ratio of Eq. 4.27 to Eq. 4.14, the relation between ζEM and
∆Neff is obtained, which is given by:

ζEM = 6 × 10−7 GeV
√

106 s
τ

∆Neff· (4.28)

Now, I will calculate ζEM for the decay χ′ → χ + ν. In this case, the number
density relation is nχ′ = nχ = ñν , where ñν is not the total neutrinos number density, it
is the number density of neutrinos included in the universe due to the χ′ decay. The χ′

decay generates neutrinos that can interact with particles in the background resulting
in high-energy photons which induce nuclear reactions and consequently alter the BBN
predictions. I will adopt the illustrative example where all the neutrino energy is converted
into electromagnetic energy, i.e., Eν ≈ Eγ and ñν ≈ ñγ, which implies Yν ≈ Yγ ≈ Yχ.
Because Yν is being considered equivalent to Eq. 4.25, calculating ζEM only requires
determining the neutrino energy after the χ′ decay. To do that, I again use the four-
momenta conservation (pχ′ − pν = pχ), where each of these four-momenta is defined in Eq.
4.8, under the limits: mχ′ ≫ mχ and mχ′ ≫ mν .

pχ′ − pν = pχ ⇒ m2
χ′ − 2pχ′ · pν +m2

ν = m2
χ ⇒ 2mχ′Eν = m2

χ′ +m2
ν −m2

χ (4.29)

⇒ Eν = mχ′

2

1 +
(
mν

mχ′

)2

−
(
mχ

mχ′

)2
 ⇒ Eν ≈ mχ′/2 (4.30)

Thus, the electromagnetic energy released by the decay χ′ → χ+ ν is

ζEM = EγYγ = EνYχ = 1.5 × 10−9GeV ×
(
f
mχ′

mχ

)
, (4.31)

which is equivalent to the case χ′ → χ+ γ.

The electromagnetic energy released by the decay of χ′ particles can have a
significant impact on the abundance of light elements in the early universe. There are two
primary ways in which this can occur. Firstly, the additional photons generated by the decay
can be highly energetic and, in turn, destroy light elements such as Deuterium, Helium,
and Lithium. Secondly, the injected neutrinos can induce the conversion of neutrons into
protons and electrons, which can also generate an electromagnetic cascade and affect the
abundance of light elements.
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Figure 7 – BBN bounds based on light element abundances [3]. The shaded regions are
excluded because they represent a situation where the electromagnetic energy
released by χ′ decay alters the well-understood light element abundance. The
nearly vertical dotted line is the constraint stemming from the spectral distortion
of the CMB is also present. All region to its left is excluded. The diagonal
lines are the superior limit for theoretical prediction for H0 using the non-
thermal dark matter production mechanism. In Fig.7(a) I display the results
for Eγ = Eν and k ̸= 0, where Eγ is the energy of the gamma-rays produced
after the χ′ → χ + ν or χ′ → χ + γ decay. In Fig.7(b) I show the results for
Eγ = Eν , but with k = 0. The detail of these geometrical considerations is in
the text.
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The numerical results from [70] provide constraints on τ × ζEM parameter space,
that could potentially lead to the destruction of light element abundances predicted by
BBN. These bounds, along with Eq. 4.27, are used to construct Fig. 7, where the shaded
regions represent the excluded τ × fmχ′/mχ parameter space that would either destroy
Helium-4, Lithium-7, and Deuterium or induce a nuclear reaction that saturates the
production of Deuterium. These shaded regions are in disagreement with astronomical
observations [71, 72, 73, 74, 75, 76, 77].

Figure 7 also shows the excluded region of the parameter space that would alter
the CMB power spectrum. This constraint is represented by the entire region to the left of
the nearly vertical dotted line. In this figure, there are two diagonal lines that represent
the allowed regions for H0 = 73 km s−1 Mpc−1 and H0 = 70 km s−1 Mpc−1, respectively.
All the regions below these lines permit the respective Hubble constant. The figure also
shows that to satisfy both CMB and BBN constraints, it is necessary to have τ ≲ 104 s. I
reiterate that this means that there is a region in the relevant parameter space that allows
the formalism presented here not to destroy the light element abundances and not deform
the CMB power spectrum.

4.3 Entropy injection bounds
Equation 2.119 informs us that the entropy ratio between two moments ti and tf

is given by
Sf
Si

=
gf∗sT

3
f a

3
f

gi∗sT
3
i a

3
i

· (4.32)

In a radiation-dominated phase, the relations H = 1/(2t) and H2 = 8πρr/3 can be used
to write

ρr = 3
32πt2 · (4.33)

Comparing this result with ρr = π2g∗T
4/30, given by Eq. 2.100, I get

T =
(

45
16π3g∗t2

)1/4

, (4.34)

which consequently gives
Ti
T

=
(
g∗

gi∗

)1/4√
t

ti
· (4.35)

During the radiation era, the following result holds :
af
ai

=
(
tf
ti

)1/2
. (4.36)

Applying the temperature ratio and the scale factor ratio to the entropy ratio
provides

Sf
Si

= gf∗s
gi∗s

(
gi∗
gf∗

)3/4

· (4.37)
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The immediate consequence of this result is that in the standard cosmology, between
BBN and CMB, gi∗s = gf∗s and gi∗ = gi∗s, which implies that between these two events, there
is no relevant addition to the entropy radiation, i.e., Sf = Si [78, 79, 59, 80].

The χ′ decay adds an effective number of neutrinos, which increases fundamental
plasma entropy. Equation 4.37 informs that relative entropy variation is

Sf − Si
Si

= ∆S
Si

= gf∗s
gi∗s

(
gi∗
gf∗

)3/4

− 1, (4.38)

whose g’s factors are defined by

gi∗ = gγ + 7
8Nν × 2 × gν

(
Tν
Tγ

)4

= 2 + 21
4

( 4
11

)4/3
= 3.36264, (4.39a)

gi∗s = gγ + 7
8 ×Nν × 2 × gν

(
Tν
Tγ

)3

= 2 + 21
4

( 4
11

)
= 3.90909, (4.39b)

gf∗ = gγ + 7
8(3 + ∆Neff) × 2 × gν

(
Tν
Tγ

)4

= 2 + 7
4(3 + ∆Neff)

( 4
11

)4/3
, (4.39c)

gf∗s = gγ + 7
8 × (3 + ∆Neff) × 2 × gν

(
Tν
Tγ

)3

= 2 + 7
4 × (3 + ∆Neff)

( 4
11

)
· (4.39d)
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Figure 8 – Relative entropy variation as a function of ∆Neff. The blue solid line is obtained
by Eq. 4.38, while the orange dotted line is a linear approximation.
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In Fig. 8, I show how the relative entropy variation changes with ∆Neff. It is
important to note that in the range 0 ≤ ∆Neff ≤ 1 the approximation

∆S
Si

= 0.057∆Neff (4.40)

is quite accurate. Also, observe that for the superior limit, ∆Neff = 1, the relative entropy
variation is less than 6%. This is an excellent sign that the formalism used here is not in
strong disagreement with BBN and CMB data.

Figure 4 shows that ∆Neff ≲ 0.6. Applying this inequality to Eq. 4.40, the limit
∆S/Si ≲ 0.0342 is obtained. This means that the formalism used here can increase the
entropy by at most about 4%, avoiding problems with BBN and indicating that the
mechanism is not excluded.

4.4 Effective theory for the case where decay yields dark matter
and photons

Until this point, the procedure adopted here to alleviate the Hubble tension has
been model-independent. The transition from a model-independent to a model-dependent
description is accomplished by introducing specific Lagrangians that describe the decay of
χ′ [81].

Up to the present day, the dark matter particle was not detected, and its spinorial
nature remains unknown. If dark matter is a spin-0 particle, akin to the Higgs boson, it
must be described by a scalar field ϕχ. If it possesses a spin of 1/2, like leptons and quarks,
it should be described by a spinorial field ψχ. Another possibility is that the dark matter
particle has a spin of 1, similar to the photon, W± boson, Z0 boson, and gluons, which
would require a vector field χµ for its description [81].10 11

I will consider three effective operators of dimension five that encompass spin-
0, spin-1, and spin-1/2 dark matter particles for the decay process χ′ → χ + γ. The
corresponding Feynmann diagrams are shown in Fig. 9.

The decay rate Γ for the two-body decay process χ′ → χ+ γ can be analytically
calculated and is given by [82]:

Γ(χ′ → χ+ γ) = |pχ(τ)|
8πm2

χ′
|M|2 . (4.41)

10 A higher spin case for the dark matter particle is theoretically possible. However, for the purpose of
this analysis, I will not consider such exotic cases.

11 This field notation also applies to the χ′ particle. If χ′ is a spin-0 particle, it is described by a scalar
field ϕχ′ . If χ′ is a spin-1/2 particle, it is described by a spinor field ψχ′ . If χ′ is a spin-1 particle, it is
described by a vector field χ′

µ.
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Figure 9 – Diagrammatic representation of a heavy particle (χ′) that decay in hot dark
matter (χ) and photon (γ). Three cases are considered: (a) χ′ is spin-1 and χ
is a spin-0 particle; (b) χ′ and χ are spin-1/2 particles; (c) χ′ is spin-0 and χ
is a spin-1 particle.

Here, M is the Feynman amplitude, which is determined from the specific Lagrangian
that describes the decay process.

The kinematics of the decay allows us to determine the momentum of the χ particle
at t = τ . In the rest frame of χ′, the four-momentum of particles involved in the χ′ decay
are given by Eq. 4.8. By imposing four-momentum conservation, I find that the magnitude
of pχ(τ) is equal to

|pχ(τ)| = |p| = mχ′ −Eχ(τ) = mχ′ −mχ

(
mχ′

2mχ

+ mχ

2mχ′

)
= 1

2mχ′

1 −
(
mχ

mχ′

)2
 . (4.42)

Where I have used the expression for Eχ(τ) given by Eq. 4.9.

After substituting the expression of the magnitude of the momentum, given by Eq.
4.42, into the decay rate formula, I obtain:

Γ = 1
16πmχ′

1 −
(
mχ

mχ′

)2
 |M|2 . (4.43)

I will use this interaction rate expression to calculate the lifetime τ = 1/Γ for three
distinct effective operators presented below.

4.4.1 Decay in spin-0 dark matter and photon

The first case to be considered is when the decay χ′ → χ+ γ involves a spin-1 χ′

particle and a spin-0 χ particle. The corresponding Feynman diagram is shown in Figure
9(a). The effective Lagrangian used to describe this decay is given by

Leff = 1
Λϕχχ

′
µνF

µν , (4.44)

where the energy scale Λ is introduced to ensure that the Lagrangian has the correct
energy dimension. The specific value of Λ needs to be determined through experiments
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Figure 10 – The figure presents the plots of Λ as a function of mχ′ and mχ for the scenario
where χ′ is a spin-1 particle and χ is a spin-0 particle [1]. In panel (a), the
curves for mχ′ ×Λ are shown, calculated using Eq. (4.46) for different lifetimes
τ = 102 103 and 104 s. In panel (b), the curves for mχ × Λ are displayed,
obtained from Eqs. (4.14) and (4.46). The parameter space is explored for
cases where ∆Neff = 0.1 − 0.6, with a fixed ratio f = 0.01 and mχ′/mχ = 104.

and observations.12 In this equation, the notation χ′
µν ≡ ∂µχ

′
ν − ∂νχ

′
µ is being used. The

12 In the previous context, where Λ represented the cosmological constant, it referred to a specific physical
quantity associated with the expansion of the universe. In the current context, where Λ represents the
energy scale in the Lagrangian, it is used as a notation to ensure the correct energy dimension of the
Lagrangian term. The difference in contexts and the clear distinction between the two uses of Λ should
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object F µν is the well know electromagnetic tensor, which is defined as Fµν = ∂µAν −∂νAµ,
where Aµ being the four-potential [81].

The Feynman amplitude for the present case is given by13

|M|2 =
2m4

χ′

3Λ2

1 −
(
mχ

mχ′

)2
2

. (4.45)

By substituting this expression into the general decay rate formula, Eq. 4.43, I obtain the
specific decay rate for this case:

Γ =
m3
χ′

24πΛ2

1 −
(
mχ

mχ′

)2
3

⇒ Γ ≈
m3
χ′

24πΛ2 · (4.46)

Therefore, the lifetime is determined by Λ and mχ′ . I present this relation in Figure
10(a) for τ = 102 s, 103 s, and 104 s. It is worth noting that in this figure, the energy scale
of Λ appears to be very large. However, this is not a problem since it simply reflects the
fact that χ′ is very long-lived.

Equation 4.14 establishes a connection between ∆Neff and τ , while Equation 4.46
relates τ to mχ′ and Λ. As a result, ∆Neff also depends on Λ. By considering these
relationships, it becomes possible to identify the parameter space region that addresses the
H0 problem. Figure 10(b) illustrates this region for mχ/mχ = 104, displaying the values
of Λ that result in ∆Neff = 0.1 − 0.6, corresponding to H0 ∼ 70 − 72 km s−1 Mpc−1 as
shown in Figure 4(b). It is important to reiterate that if local measurements converge
to H0 ∼ 70 km s−1 Mpc−1, the proposed mechanism alone is sufficient to resolve the
discrepancy in H0, as demonstrated in Figure 4(a).

4.4.2 Decay in spin-1/2 dark matter and photon

In the second scenario, I consider the decay χ′ → χ + γ, where both χ′ and χ

are spin-1/2 fermions. The corresponding Feynman diagram is depicted in Fig. 9(b). To
prevent any confusion between the two concepts.

13 To obtain the Feynman rules for the specific vertices and the Feynman amplitude used in this analysis,
I followed the following steps:

1. I implemented the effective Lagrangian into the LanHEP program [83] to generate the Feynman
rules file. LanHEP allows for the automated derivation of Feynman rules from the Lagrangian.

2. The generated Feynman rules file was then incorporated into the CalcHEP program [84], which
enables the computation of the Feynman amplitude (|M|2) associated with the given Feynman
rules.

3. Using CalcHEP, I obtained the Feynman amplitude (|M|2) for the specific decay process.

4. Additionally, I utilized CalcHEP to generate a Wolfram Mathematica file containing the calculation
of the decay rate (Λ) based on the obtained Feynman amplitude.

By following this procedure, I was able to determine the Feynman rules, compute the Feynman
amplitude, and perform the decay rate calculation for the all decay process under investigation.
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Figure 11 – Plot of Λ as a function of the masses of χ and χ′ for the case where χ′ and χ
are spin-1/2 particles [1]. In panel (a), the curves of mχ′ × Λ are generated
using Eq. 4.49 with τ = 102, 103, and, 104 s. Panel (b) displays the curves of
mχ×Λ constructed from Eqs. 4.14 and 4.49. The cases where ∆Neff = 0.1−0.6
are considered, with f = 0.01 and mχ′/mχ = 104.

describe this decay, I utilize the effective theory given by the Lagrangian:

Leff = 1
Λ ψ̄χσ

µνψχ′Fµν + h.c., (4.47)
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where σµν = i
2 [γµ, γν ]. The Hermitian conjugate (h.c.) is added to ensure the Lagrangian’s

Hermiticity. The corresponding Feynman amplitude is

|M|2 =
8m4

χ′

Λ2

1 −
(
mχ

mχ′

)2
2

. (4.48)

Applying the obtained Feynman amplitude to the decay rate formula given by Eq.
4.43, I arrive at the following result:

Γ =
m3
χ′

2πΛ2

1 −
(
mχ

mχ′

)2
3

≈
m3
χ′

2πΛ2 · (4.49)

In a similar manner to the previous case, I utilize Eq. (4.49) to generate a plot
illustrating the relationship between Λ and mχ for different values of τ in Fig. 11(a).
Additionally, I determine the energy scale Λ that corresponds to ∆Neff = 0.1 − 0.6 and can
potentially address the H0 discrepancy in Fig. 11(b). This analysis assumes mχ′/mχ = 104

and f = 0.01.

4.4.3 Decay in spin-1 dark matter and photon

The last case considered for the decay χ′ → χ+ γ involves χ′ as a spin-0 particle
and χ as a spin-1/2 fermion. The corresponding Feynman diagram is shown in Fig. 9(c).
The effective Lagrangian for this case is given by

Leff = 1
Λϕχ

′χµνF
µν , (4.50)

where χµν ≡ ∂µχν − ∂νχµ. The Feynman amplitude is then obtained as

|M|2 =
2m4

χ′

Λ2

1 −
(
mχ

mχ′

)2
2

, (4.51)

which leads to the decay rate

Γ =
m3
χ′

8πΛ2

1 −
(
mχ

mχ′

)2
3

≈
m3
χ′

8πΛ2 · (4.52)

Figure 12(a) illustrates the relationship between Λ and mχ′ for τ = 102, 103, 104

s. On the other hand, Fig. 12(a) presents the variation of Λ with mχ for different values
of ∆Neff, which could potentially provide a solution to the H0 problem. These plots are
generated under the assumptions of mχ′/mχ = 104 and f = 0.01.
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Figure 12 – Plot of Λ as a function of the χ and χ′ masses for the case where χ′ is
a spin-0 particle and χ is a spin-1 particle [1]. (a) Curves of mχ′ × Λ are
constructed using Eq. 4.52 with τ = 102, 103, and 104 s. (b) Curves of mχ × Λ
are constructed using Eqs. 4.14 and 4.52 for different values of ∆Neff ranging
from 0.1 to 0.6. The parameters f = 0.01 and mχ′/mχ = 104 are considered.

4.4.4 Considerations about lifetime, energy scale and truncation of effective
Lagrangians

In all the considered effective theories, the relation τ ∝ Λ2/m3
χ′ holds. Consequently,

as the mass of the parent particle increases, its lifetime decreases. This observation is
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not new and has been explored in previous studies searching for gamma-rays and x-rays
emitted by long-lived particles [85]. These searches have provided lower mass limits for
such particles. To achieve a long-lived χ′, a large value of Λ is required. This correlation
between the lifetime and the energy scale is evident in Figs. 10, 11, and 12. The connection
between long-lived particles and suppression mechanisms, either in the coupling constant or
the energy scale, is well-established. In the present work, the latter mechanism is employed
[86].

Equation 4.46 provides the lifetime τχ′
µ

≈ 75.4m3
χ′/Λ2. Similarly, Eq. 4.49 yields

the lifetime τψχ′ ≈ 6.28m3
χ′/Λ2. Lastly, Eq. 4.52 gives the lifetime τϕχ′ ≈ 25.1m3

χ′/Λ2.
Based on these equations I can draw the following conclusions: the longest lifetime for
χ′ is observed when it is a vector particle, while the intermediate case corresponds to its
scalar nature, and the shortest lifetime is observed when χ′ is a spin-1/2 fermion.

It is worth noting that the effective Lagrangians used in this analysis have been
truncated, specifically by considering only effective field blocks with dimension five. While
incorporating additional effective terms could potentially lead to more precise results,
it would require the inclusion of higher-order field combinations and additional energy
scale constants to ensure the correct energy dimensions of the Lagrangian. However, it is
important to acknowledge that there are limitations to the inclusion of more and more
higher-order field blocks, as these additional terms would contribute increasingly minor
corrections.

In the end, if the decay χ′ → χ+γ is a genuine physical phenomenon, it is expected
that there exists a renormalizable theory capable of incorporating this new particle χ′

alongside the dark matter particle. Such a theory should provide an explanation for the
generation of only a small fraction of dark matter through the decay of χ′. It is important to
note that the results presented here are based on an approximation within a certain energy
scale, and there may exist a more complete theory that provides a better understanding of
this phenomenon.

χ′

χ

ν

(a)

χ′

χ

ν̄

(b)

χ′

χ

ν

(c)

Figure 13 – Diagrammatic representation of a heavy particle (χ′) that decay in hot dark
matter (χ) and neutrino (ν). Three cases are considered: (a) χ′ is spin-1/2
and χ is a spin-0 particle; (b) χ′ has spin-1 and χ has spin-1/2 particles; (c)
χ′ is spin-1/2 and χ is a spin-1 particle.



98 Chapter 4. Alleviating the Hubble tension with dark matter and non-standard cosmologies

4.5 Effective theory for the case where decay yields dark matter
and standard model neutrinos
In this section, I investigate the model-dependent scenario for the decay χ′ → χ+ν.

Similar to the previous section, I examine three cases: (a) when χ′ is a spin-1/2 particle
and χ is a spin-0 particle; (b) when χ′ is a spin-1 particle and χ is a spin-1/2 particle; (c)
when χ′ is a spin-1/2 fermion and χ is a spin-1 boson. Diagrams illustrating these cases
are shown in Figure 13.

Similar to the previous section, I use effective theories to calculate the Feynman
amplitude for each decay case. Using this information, I determine Γ by applying Eq. 4.43.
With the obtained decay rates, I plot the curves of mχ′ = mχ′(Λ) and mχ = mχ(Λ) for
each model.

4.5.1 Decay in spin-0 dark matter and neutrino

Here, I analyze the decay process depicted in Fig. 13(a), where χ′ is a spin-1/2
particle and χ is represented by a real scalar field. The effective Lagrangian describing the
decay χ′ → χ+ ν is given by

Leff =
∑

ν=νe, νµ, ντ

[ 1
Λ1
ψ̄ν

1
2
(
I + γ5

)
γµ(∂µψχ′)ϕχ + 1

Λ2
ψ̄ν

1
2
(
I + γ5

)
γµψχ′∂µϕχ

]
+ h.c.,

(4.53)
where Λ1 and Λ2 are constants with mass dimensions. The chirality projection operators
PR = (I + γ5)/2 and PL = (I − γ5)/2 are introduced to ensure that the neutrinos in the
final states are left-handed.14 Thus, the Feynman amplitude has three contributions, one
for each neutrino, and its expression is:

∑
ν=νe, νµ, ντ

|M|2 =
3m4

χ′

2

( 1
Λ1

− 1
Λ2

)2
1 −

(
mχ

mχ′

)2
 . (4.54)

Applying this result to Eq. (4.43), I find that

Γ =
3m3

χ′

32π

( 1
Λ1

− 1
Λ2

)2
1 −

(
mχ

mχ′

)2
2

⇒ Γ ≈
3m3

χ′

32π

( 1
Λ1

− 1
Λ2

)2
. (4.55)

There are two energy scales Λ1 and Λ2. If both have the same value, the χ′ decay
does not occur. If one is much larger than the other, I can ignore it and only the remaining
scale energy is necessary. In this case, it is important to note that the surviving scale is
14 Until now, only left-handed neutrinos have been detected, and thus the correct spinorial terms for

neutrinos should be (I − γ5)ψν/2 and ψ̄ν(I + γ5)/2 [81, 28, 13].
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Figure 14 – Plot of Λ as a function of the χ and χ′ masses for the case where χ′ is a spin-1/2
particle and χ is a spin-0 particle. (a) mχ′ × Λ curves built from Eq. 4.55,
using τ = 102, 103, and, 104 s and Λ1 = Λ2 = Λ. (b) mχ×Λ curves constructed
from Eqs. 4.14 and 4.55. I consider the cases where ∆Neff = 0.1 − 0.6, with
f = 0.01 and mχ′/mχ = 103.

the lowest energy case, as the decay rate depends inversely on the energy scale, i.e., if
Λ1 ≪ Λ2, the relevant scale is Λ1, while if Λ2 ≪ Λ1, the relevant scale is Λ2. Figure 14
illustrates the dependence of mχ′ and mχ on the relevant scale energy, Λ.
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4.5.2 Decay in spin-1/2 dark matter and neutrino
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Figure 15 – Plot of Λ as a function of the masses mχ′ and mχ for the case where χ′ is a
spin-1/2 particle and χ is a spin-0 particle. (a) Curves of mχ′ as a function
of Λ built from Eq. 4.58, using τ = 102, 103, and 104 s. (b) Curves of Λ as
a function of mχ constructed from Eqs. 4.14 and 4.58. I consider the cases
where ∆Neff = 0.1 − 0.6, with f = 0.01 and mχ′/mχ = 103.

In this subsection, I consider the decay χ′ → χ+ ν̄, where χ′ is a spin-1 particle
and χ is a spin-1/2 particle. The Feynman diagram for this case is displayed in Fig. 13(b).
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To describe this decay, I adopt the following effective Lagrangian:

Leff =
∑

ν=νe, νµ, ντ

1
Λ ψ̄χσ

µνχ′
µν

1
2
(
I − γ5

)
ψν + h.c., (4.56)

where Λ is a constant with dimension of energy, χ′
µν ≡ ∂µχ

′
ν − ∂νχ

′
µ, and χ′

µ is the vector
field that describes χ′. The Feynman amplitude for this model is

∑
ν=νe,νµ,ντ

|M|2 =
4m4

χ′

Λ2

1 +
(
mχ

mχ′

)2

− 2
(
mχ

mχ′

)4
 , (4.57)

and the interaction rate is given by

Γ =
m3
χ′

4πΛ2

1 −
(
mχ

mχ′

)2
1 +

(
mχ

mχ′

)2

− 2
(
mχ

mχ′

)4
 .

This results in the mχ′ ≫ mχ′ limit becomes:

Γ ≈
m3
χ′

4πΛ2 · (4.58)

Once more, I present the plots illustrating the relationship between mχ′ and Λ
(Fig. 15(a)), as well as between mχ and Λ (Fig. 15(b)). Fig. 15(a) presents the results
obtained using lifetimes that do not significantly impact the important outcomes of Big
Bang Nucleosynthesis (BBN). In Fig. 15(b), the parameter choices of mχ′/mχ = 104,
f = 0.01, and ∆Neff = 0.1 − 0.6 correspond to a useful parameter region for mitigating
the Hubble tension.

4.5.3 Decay in spin-1 dark matter and neutrino

In the last case, I consider the decay χ′ → χ+ ν, where χ′ is a spin-1/2 particle
and χ is a spin-1 particle. The Feynman diagram representing this process is shown in Fig.
13(c). I adopt the following effective Lagrangian to describe this decay:

Leff =
∑

ν=νe,νµ,ντ

1
Λ ψ̄ν

1
2
(
I + γ5

)
σµνψχ′χµν + h.c., (4.59)

where Λ is a constant with dimension of mass, χµν = ∂µχν − ∂νχµ, and χµ is the vector
field that describe χ. The respective Feynman amplitude is given by:

∑
ν=νe,νµ,ντ

|M|2 =
6m4

χ′

Λ2

2 −
(
mχ

mχ′

)2

−
(
mχ

mχ′

)4
 . (4.60)

Hence, the interaction rate gives

Γ =
3m3

χ′

8πΛ2

1 −
(
mχ

mχ′

)2
2 −

(
mχ

mχ′

)2

−
(
mχ

mχ′

)4
 ,
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Using one more time the mχ′ ≫ mχ′ limit, Γ becomes:

Γ ≈
3m3

χ′

4πΛ2 · (4.61)

The graphical results for this case are displayed in Figs. 16(a) and 15(b). These
figures show the dependence of mχ′ and mχ on Λ. The parameter choices for τ , f , ∆Neff,
and mχ′/mχ are selected to investigate the potential alleviation of the Hubble tension.

4.6 Considerations about the decay dynamics
The results for the χ′ → χ + ν decay are very similar to those obtained for the

χ′ → χ+ γ decay, as can be observed by examining the decay rate case and the curves of
Λ(mχ′) and Λ(mχ). In the neutrino case, the lifetime of χ′ is also proportional to Λ2/m3

χ′ ,
requiring a large energy scale Λ to address the Hubble tension.

Equation 4.55 provides the lifetime τϕχ′ = 33.5Λ2/m3
χ′ . On the other hand, Equation

4.58 yields τχ′
µ

= 12.6Λ2/m3
χ′ . Lastly, Equation 4.61 gives τψχ′ = 4.19Λ2/m3

χ′ . These
equations demonstrate that for the same Λ2/m3

χ′ value, the longest-lived scenario occurs
when χ′ is a spin-0 particle, followed by the case of spin-1, and the shortest-lived situation
corresponds to the spin-1/2 nature of χ′. This hierarchy of lifetimes is different from what
was observed in the photonic case.

In the previous case, it seems unlikely that there exists a fundamental vertex
connecting dark matter particles and neutrinos. The use of effective theory addresses
this issue by providing an approximation of a more complex Feynman diagram that may
involve loops and multiple vertex diagrams. Initially, dark matter and neutrinos can be
treated within the same fundamental vertex, and the effective theory is employed because
the nature of this fundamental interaction remains unknown. The significant advantage
of using an effective theory lies in the flexibility to propose effective Lagrangians, which
represent an energetically limited description of the fundamental theory [87, 81].
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Figure 16 – Plot of Λ as a function of the χ and χ′ masses for the case where χ′ is a
spin-1/2 and χ is a spin-0 particle. (a) mχ′ × Λ curves built from Eq. (4.61),
using τ = 102, 103 and 104 s. (b) mχ × Λ curves constructed from Eqs. (4.14)
and (4.61). I consider the cases where ∆Neff = 0.1 − 0.6, with f = 0.01 and
mχ′/mχ = 103.
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5 Conclusions

Considering that the Hubble tension is a genuine cosmological problem, not stem-
ming from biases, statistical errors, or methodological issues, it becomes evident, through
CMB analyses, that the ΛCDM model alone fails to reconcile the discrepancy between
early and late measurements. This is clear upon direct inspection of Figure 4. Whether or
not an effective number of neutrinos is considered, the ΛCDM model fails to alleviate the
tension. However, Figure 4 also illustrates that the inclusion of phantom-like fluids can
reduce the Hubble tension, and the degree of reduction is somewhat associated with Neff.
While the phantom-like scenario introduces changes to the cosmology, the set of parameters
needed to fit the CMB data remains only a minor perturbation from the ΛCDM case. This
is a good feature since the standard cosmological model is excellent in explaining many
observed phenomena. It was considered a phantom-like scenario with null and non-null
curvatures. The discrepancy between both cases is not substantial, suggesting that the
scenario which effectively mitigates the Hubble tension and has flat geometry is favored.
Of course, adopting Occam’s razor philosophy, where the case with fewer parameters is
better.

Given the requirement for an additional Neff, the framework utilized in this study
provides a compelling explanation for the presence of extra radiation in the early universe.
The decay processes χ′ → χ+ γ or χ′ → χ+ ν offer a viable solution as they are consistent
with both CMB and BBN constraints. Moreover, these processes possess the advantage of
requiring only one additional particle, the dark matter "mother". The existence of dark
matter particles is widely accepted by the scientific community, so the only real new
particle added here is χ′. Nevertheless, this work considers multiple scenarios encompassing
different natures of dark matter particles, because its precise properties, such as mass,
spin, and Lagrangian description, remain unknown. The proposed formalism is applicable
to all of them.

It is evident that the framework employed in this study is not the ideal solution
for fully understanding the χ′ decay. The ideal case would be having access to the
renormalizable Lagrangian that precisely describes χ′, χ, and their interactions with
standard model particles. Unfortunately, such knowledge remains hazy, and it may take
time before the complete theory is confirmed. In the meantime, progress can be reached by
utilizing effective theories that encompass various dark matter scenarios. This approach
circumvents the challenges associated with determining the fundamental theory governing
these particles. Importantly, even if a more comprehensive theory of χ′ decay is eventually
discovered, the results obtained in this study will remain valuable. These effective cases
serve as approximations that capture the essential behavior of the decay process within
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the appropriate energy regime.

Furthermore, it is worth noting that all the effective cases considered in this study
exhibit similar outcomes. Despite slight variations in proportional constants, the lifetimes
of χ′ exhibit consistent behavior across all scenarios.

In summary, the adopted mechanism successfully explains the observed range of
0 < ∆Neff ≲ 0.5 and provides a consistent estimate for the CMB-based value of H0 within
the range of 70 − 74 km s−1 Mpc−1, i.e., it alleviates the Hubble tension. In order to ensure
compatibility with Big Bang Nucleosynthesis (BBN) and other cosmological constraints,
certain choices were made for the theory. Specifically, a decay lifetime τ less than 104

seconds was selected to avoid conflicts with BBN. Additionally, a constraint of ∆Neff < 1
was imposed to prevent excessive entropy addition, which could lead to incompatibility
with BBN predictions. Furthermore, it was found that maintaining a ratio of mχ′/mχ ≲ 104

guarantees that χ is in a cold state at matter-radiation equality.

This work has several possible deepening to be done in future investigations. Firstly,
it is crucial to refine the approximations used throughout the study. The instantaneous
decay approximation, the assumption of mean energy for the particles, and the instan-
taneous thermalization of the decay products from χ′ are all crude approximations that
can be improved. A more rigorous analysis would involve considering a decay process
that follows the traditional exponential reduction in the number of particles. Additionally,
incorporating the Boltzmann equations that account for all relevant interactions would
provide a more comprehensive understanding of the system. Furthermore, conducting
an independent analysis of the CMB power spectrum is necessary since the inclusion of
additional particle physics parameters can potentially alter the allowed parameter space. I
also did not investigate how this no-standard cosmology can change local measurements
of H0. In future analyses, I intend to add this information. By addressing these aspects
and refining the calculations, a more detailed and accurate description of the phenomenon
can be achieved. This would contribute to a deeper understanding of the decay dynamics
and its implications for the Hubble tension.
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APPENDIX A – Planck scale and natural
units

Throughout this thesis, I use natural units (NU) and SI units. Therefore, in the
appendix, I review the definition of NU, how to connect NU and SI, and the Planck units.

A.1 Planck units
Each physical theory introduces a set of fundamental constants. Where I highlight

four of them: the speed of light in the vacuum c, the Boltzmann constant kB, the Planck
constant ℏ, and the gravitational constant G. In SI units these constants have the following
numerical values [13]:

c = 299792458 m s−1; (A.1a)

kB = 1.380649 × 10−23 J K−1; (A.1b)

ℏ = 1.054571817 × 10−34 J s = 6.582119569 × 10−22 MeV s; (A.1c)

G = 6.67430(15) × 10−11 m3 Kg−1 s−2 = 6.70883(15) × 10−39 ℏc (GeV/c2)−2. (A.1d)

Using dimensional analyses, it is possible to construct four quantities: the Planck
mass mP , The Planck length lP , the Planck time scale tP , and the Planck temperature TP
[88]. The idea is to find the combination of α, β, γ, δ exponents in cα kβB ℏγGδ that provides
a number with the dimension of mass, length, time, and temperature. The solution to that
is

mP =
√
ℏc
G

(A.2a)

lP =
√
ℏG
c3 (A.2b)

tP =
√
ℏG
c5 (A.2c)

TP =
√

ℏc5

Gk2
B

(A.2d)

The numerical values of Planck units in SI are shown in Tab. 3.

Other Planck units can be obtained, for example, the Planck volume l3P , the Planck
momentum mP lP/tP , etc. One of these extra Planck units that I want to highlight is the
Planck energy

EP = mP c
2 =

√
ℏc5

G
. (A.3)
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Planck unit Symbol Numerical value in SI [89]
Planck mass mP 2.176434(24) × 10−8 Kg
Planck length lP 1.616255(18) × 10−35 m
Planck time tP 5.391247(60) × 10−44 s
Planck temperature TP 1.416784(16) × 1032 K

Table 3 – Numerical value of Planck units in SI.

A.2 Natural units
Natural units (NU) are defined by setting c = kB = ℏ = G = 1. This simplifies a

lot of the mathematical expressions in quantum field theory and general relativity.

Usually, theoretical developments are made using natural units, and the experi-
mental data are expressed in SI units or another convenient system of units.

For my proposal, it is useful to express 1 Kg, 1 m, 1 s, and 1 K in the GeV scale.
To do that, I make use of the relation 1 eV = 1.602176634 × 10−19J [13] and some energy
relations that make easy this conversion.

Using the mass-energy relation E = mc2 [8], I can express the mass of a particle
whose energy is 1 GeV:

m = 1 GeV
c2 = 1.78266 × 10−27 Kg. (A.4)

Using the wavelength-energy relation E = pc = 2πℏc/λ [8], I can find a wavelength
of a particle whose energy is 1 GeV:

λ = 2πℏc
1GeV = 1.23984 × 10−15 m. (A.5)

Using the period-energy relation E = 2πℏ/t [8], I can express the period of a
particle whose energy is 1 GeV:

t = 2πℏ
1 GeV = 4.13567 × 10−24s. (A.6)

Using the temperature-energy relation E = kBT [15], I can provide the equivalent
temperature of a system whose energy is 1 GeV:

T = 1 GeV
kB

= 1.16045 × 1013 K. (A.7)

With the four equations above, I built Tab. 4, where there are the desired conversion
factors.

A.3 Rewriting expressions in NU into SI
I have already shown how to connect numerical values from SI to NU. Now, I want

to show how to recover all unit constants, hidden through the use of natural units. This
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Quantity SI Natural Units
Mass 1 Kg 5.60959 × 1026 GeV
Length 1 m 5.06774 × 1015 GeV−1

Time 1 s 1.51927 × 1024 GeV−1

Temperature 1 K 8.61735 × 10−14 GeV
Energy 1 J 6.24154 × 109 GeV

Table 4 – Conversion factors from SI to natural units.

can be done using dimensional analyses and the Planck units [88]. As an example, in NU
the energy of a massive particle is given by E2 = p2 +m2. Looking at the dimension in SI
units this equation is not right. The first thing to obtain this correspondent expression in
SI is to write the p therm in the right SI dimension:

p → p

mP × (lP/tP ) × EP = pc. (A.8)

The next step is to do the same thing to the mass therm, i.e.,

m → m

mP

× EP = mc2. (A.9)

Finally, the dimensionally correct SI expression E2 = p2c2 +m2c4 is obtained.
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