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Abstract
Esta tese oferece uma análise aprofundada de duas categorias distintas de problemas de fronteira
livre, fundamentais para a compreensão de sistemas complexos regidos por equações diferenciais.

No primeiro segmento do estudo, mergulhamos no âmbito das equações elípticas altamente
degeneradas. Esta parte foca em um modelo caracterizado por um processo de difusão não
linear, que se torna a força motriz em áreas onde o gradiente excede um limiar específico. Esta
investigação não apenas ilumina o comportamento dessas soluções, mas também explora os
pontos de convergência com outras tendências emergentes de pesquisa, enriquecendo assim o
discurso neste campo.

A segunda parte da tese transita para a exploração de modelos variacionais de fronteira livre,
particularmente aqueles marcados por singularidades oscilatórias. Este segmento é fundamental
para abordar problemas em que a natureza oscilatória resulta em um espectro de geometrias
de fronteira livre. Por meio de uma pesquisa meticulosa, conduzimos uma análise extensiva e
estabelecemos uma nova fórmula de monotonicidade. Esta fórmula é instrumental para considerar
os aspectos variáveis desses modelos. De forma significativa, demonstramos que, quando o
poder singular varia de acordo com um padrão 𝑊1,𝑛+ , então a fronteira livre se manifesta
localmente como uma superfície 𝐶1,𝛿, exceto por um conjunto negligenciável, caracterizado por
uma co-dimensão de Hausdorff de pelo menos 2.

Esta tese tem como objetivo contribuir substancialmente para o campo da análise matemática e
equações diferenciais, oferecendo perspectivas e metodologias novas no estudo de problemas de
fronteira livre.

Palavras-chave: Problemas de fronteira livre sem restrição, Estimativas de regularidade, Proble-
mas de fronteira livre singulares.



Abstract
This thesis provides an in-depth analysis of two distinct categories of free boundary problems,
which are fundamental in understanding complex systems governed by differential equations.

In the first segment of the study, we delve into the realm of highly degenerate elliptic equations.
This part focuses on a model characterized by a nonlinear diffusion process, which becomes the
driving force in areas where the gradient exceeds a specific threshold. This investigation not only
sheds light on the behavior of these solutions but also explores the convergence points with other
emerging research trends, thereby enriching the discourse in this field.

The second part of the thesis transitions into an exploration of free boundary variational models,
particularly those marked by oscillatory singularities. This segment is pivotal in addressing
problems where the oscillatory nature results in a spectrum of free boundary geometries. Through
meticulous research, we conduct an extensive analysis and establish a novel monotonicity formula.
This formula is instrumental in considering the variable aspects of these models. Significantly,
we demonstrate that when the singular power varies in a𝑊1,𝑛+ fashion, then the free boundary is
locally a 𝐶1,𝛿 surface, up to a negligible set of Hausdorff co-dimension at least 2.

This thesis aims to contribute substantially to the field of mathematical analysis and differential
equations, offering novel perspectives and methodologies in the study of free boundary problems.

Keywords: Unconstrained free boundary problems, Regularity estimates, Singular free boundary
problems
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Introduction

Free Boundary Problems (FBPs) stand out as a captivating subject of study of mathematical
analysis. At the heart of these problems lies an unknown function, 𝑢, which solves an Partial
Differential Equation (PDE) within an unknown domain, Ω. The boundary of this domain,
denoted as 𝜕Ω, is referred to as the free boundary. What makes FBPs particularly fascinating
and challenging is the dynamic nature of the region in which the diffusive process occurs. This
region’s dependence on the solution itself injects an element of unpredictability and complexity
into mathematical analysis, setting FBPs apart as a uniquely intriguing aspect of mathematical
theory.

The emerging interest in FBPs can be attributed to their extensive applicability in various
physical phenomena, bridging abstract mathematical concepts with tangible real-world situations.
These problems underpin a myriad of phenomena, ranging from the melting of ice to the
complexities of superconductivity, from the dynamics of flame propagation to the growth patterns
of species, and from the principles of fluid mechanics to the challenges of shape optimization
and material science. The presence of FBPs is even observed in practical scenarios, such as
when attaching a membrane to a wire above an obstacle, where the membrane adjusts itself to
minimize energy, exemplifying a FBP well known as the obstacle problem. This interplay between
the mathematical modeling and their manifestation in both nature and daily life highlights the
importance of their study. It is through the meticulous mathematical analysis of FBPs that we
gain a precise understanding of these diverse and fascinating phenomena.

It turns out that most of these captivating problems can be encapsulated within a unifying
mathematical framework, elegantly capturing the essence of these problems:

𝐹 (𝑥, 𝑢, 𝐷𝑢, 𝐷2𝑢) = 0 in 𝐵1 ∩Ω

𝐺 (𝑥, 𝑢, 𝐷𝑢, 𝐷2𝑢) = 0 in 𝐵1\Ω,
(0.1)

where the free boundary is 𝜕Ω ∩ 𝐵1. In this concise representation, it reveals the unknown pair
(𝑢,Ω), where 𝑢 belongs to a specific functional space, rendering the equations meaningful, and
𝐹 and 𝐺 are, usually, functions with some elliptic structure. For a more in-depth discussion
on this elegant and unified approach to FBPs, the [44] survey offers a wealth of knowledge,
further bridging the gap between abstract theory and the palpable reality of the phenomena FBPs
represent.

Diving deeper into the mathematical analysis of FBPs, the study bifurcates into two
well-defined yet interconnected branches. When solutions to (0.1) do not enjoy a further (a priori)
structure on the free boundary, they are often referred to as unconstrained. The first part of this
thesis focuses on degenerate unconstrained FBPs, where we delve into the regularity estimates
for viscosity solutions. The second part pivots to examining singular FBPs, coming from the
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minimization of an Alt-Philips-type functional, where the emphasis relies on the regularity and
geometric characteristics of the free boundary 𝜕Ω. This dual approach, examining both the
solutions and the free boundaries, presents a comprehensive understanding of the complexities
inherent in FBPs, each aspect bringing its unique challenges.

In Chapter 1, we set some notations and important aspects of the problems to be treated
in the thesis. In particular, we discuss the different notions of solutions to be adopted in the sequel
and scaling properties for the problems.

In Chapter 2, we investigate diffusion models triggered by a gradient threshold, results
obtained in collaboration with Damião Araújo, and Eduardo Teixeira, [8]. These are self-regulatory
systems in which a diffusive agent is prompted whenever the density difference becomes much
larger than the displacement. Mathematically, this leads to the analysis of a class of highly
degenerate elliptic partial differential equations of the form

H(𝐷𝑢, 𝐷2𝑢) = 𝑓 , (0.2)

where the operator H collapses in a subset C ⊂ R𝑛, and is elliptic for R𝑛 \ C.

Problems of that nature appear, for instance, in the theory of superconductivity, when
examining vortices in the mean-field model, e.g. [12, 27, 41] and [25]. Variational interpretations
are related to minimization issues in random surfaces and tilings, see [28, 50] and [33] for such a
connection, as well as to problems in congested traffic dynamics, see [16] as well as [14, 29, 61].
Fully nonlinear equations of this type also appear as limiting free boundary problems, obtained
when the degeneracy parameter of the equation tends to infinity, which can be understood as a
free boundary version of the infinity Laplacian operator.

Note the region where a PDE governs the system depends upon the solution itself, more
precisely on its gradient. That is, the correct way to interpret (0.2) is as an (unconstrained) free
boundary problem, viz.

H(𝐷𝑢, 𝐷2𝑢) = 𝑓 , in
{
𝑥 ∈ Ω

�� 𝐷𝑢(𝑥) ∈ R𝑛 \ C}
. (0.3)

We will further discuss this point of view in subsection 2.4.1.

To simplify the presentation, we focus on the case C = 𝐵𝜅, for 𝜅 ≥ 0, leading to the free
boundary problem

( |𝐷𝑢 | − 𝜅)𝑞+𝐹 (𝐷2𝑢) = 𝑓 in {|𝐷𝑢 | > 𝜅}. (0.4)

The operator 𝐹 is uniformly elliptic and the parameter, 𝑞 ≥ 0, prescribes the degeneracy degree
of the model along the free boundary 𝜕{|𝐷𝑢 | > 𝜅}. It is worth noting that the problem is still
(very) degenerate even if 𝑞 = 0, due to the diffusion collapse in the (a priori unknown) region
{|𝐷𝑢 | ≤ 𝜅}.

It is also important to highlight that no information upon the sets {|𝐷𝑢 | ≤ 𝜅} and
{|𝐷𝑢 | > 𝜅} can be a priori inferred. In particular, the free boundary, 𝜕{|𝐷𝑢 | > 𝜅} can be very
irregular, and thus out of the scope of known elliptic boundary regularity estimates.
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The case 𝜅 = 𝑞 = 0 falls into the theory launched by [24], where the authors investigated
fully nonlinear elliptic equations of the form

𝐹 (𝐷2𝑢) = 𝑔(𝑥, 𝑢)𝜒{|𝐷𝑢 |≠0} . (0.5)

Solutions of (0.5) are understood in a very weak viscosity sense, where one disregards smooth
test functions that touch with zero gradient. In [24], the authors manage to show that solutions of
(0.5) satisfy (ordinary) viscosity inequalities, and thus the classical fully nonlinear regularity
theory applies. In the case 𝐹 = Δ and 𝑔(𝑥, 𝑢) = 𝑐𝑢, the authors obtain the sharp 𝐶1,1-regularity
of solutions to (0.5); see also [22] for related advances on similar problems.

In parallel to the approach adopted in [24], in this thesis we introduce the concept of
𝜅-grad viscosity solutions of (0.4), see Definition 1.2. The idea is to interpret (0.4) by disregarding
test functions touching 𝑢 at point 𝑥0 with not sufficient large slope. That is, the corresponding
viscosity inequalities are enforced only at points 𝑥0 for which one can touch by a smooth test
function 𝜑 verifying |𝐷𝜑(𝑥0) | > 𝜅.

When 𝜅 > 0, the optimal (local) regularity one can hope for a solution of (0.4) is Lipschitz
continuity. This is because any function whose gradient norm is less than 𝜅 automatically satisfies
the equation. Also, one can easily construct 1D-examples of solutions of (0.4) that are merely
Lipschitz continuous. On the other hand, 𝜅-grad viscosity solutions of (0.4) are entitled to the
regularity theory developed in [48]. In particular, solutions are locally of class 𝐶0,𝛼, for some
0 < 𝛼 ≪ 1, depending on dimension, ellipticity constants, and 𝜅.

The first main result of this chapter is the sharp Lipschitz regularity estimate for 𝜅-grad
viscosity solutions of (0.4), see Theorem 2.2. The proof relies on carefully crafting special jets, as
in [30], whose gradient at touching points is sufficiently large. We perform a meticulous analysis,
identifying all possible dependencies along the process. In particular, we prove that the Lipschitz
norm of solutions of (0.4) does not depend upon the degree of degeneracy, 𝑞. We mention that
this remark is new (and sharp) even in the case that the PDE holds everywhere, say for the family
of PDEs:

|𝐷𝑢 |𝑞𝐹 (𝐷2𝑢) = 𝑓 , in 𝐵1 ⊂ R𝑛, (0.6)

with 𝑐 < 𝑓 < 𝑐−1. Indeed, a result proven in [5], see also [47] and [4], assures that viscosity
solutions of (0.6) are locally of class 𝐶1, 1

1+𝑞 (at least for 𝑞 ≫ 1) and that such a regularity is
optimal. Hence, insofar as uniform-in-𝑞 estimates are concerned, gradient bounds are the best
one can hope for solutions 𝑢𝑞 of (0.6).

While Lipschitz estimates are indeed optimal in regards to the local regularity of solutions
to (0.4), one could inquire about 𝐶1 regularity within the PDE region, viz. Ω𝑢 B {|𝐷𝑢 | > 𝜅}, up
the free boundary,

Γ𝑢 B 𝜕{|𝐷𝑢 | > 𝜅}.

This problem is particularly challenging, as it seems hard to say anything about the structure of
Γ𝑢, unless further information is given; see [25] for the case 𝑞 = 𝜅 = 0 and 𝐹 = Δ.
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It is worth noting that, the continuity of ( |𝐷𝑢 | − 𝜅)+ implies Ω𝑢 must be an open set, and
that the PDE ( |𝐷𝑢 | − 𝜅)𝑞+𝐹 (𝐷2𝑢) = 𝑓 holds in the traditional viscosity sense within Ω𝑢.

The considerations above give rise to a slightly stronger, though necessary, notion of
solutions to (0.4), see Definition 1.4. Under such a regime, the second main result we prove in
this chapter yields a universal modulus of continuity of the gradient of 𝑢 in Ω𝑢, up to the free
boundary, Γ𝑢, see Theorem 2.3. The proof combines several ingredients and it will be delivered
in Section 2.3. The idea relies on an interplay between interior 𝐶1,𝛼𝑑 regularity estimates at
points that are 𝑑-away (concerning the gradient level-set distance) from the free-boundary, Γ𝑢,
and how 0 < 𝛼𝑑 ≪ 1 deteriorates as 𝑑 → 0. This is attained by introducing a sort of DeGiorgi’s
improvement of oscillation technique at the gradient level. This is particularly useful to gauge
regularity for points sufficiently close to the free boundary, concerning the gradient level-sets.
For points far from the free boundary (again concerning the gradient level-set distance), the
equation is elliptic, and thus, up to rescaling, 𝑢 is close to a 𝐹-harmonic function; uniform 𝐶1,𝛼

regularity estimates are then obtained ala Caffarelli, [18]; see also [65] for a didatical account of
this method.

|𝐷𝑢 | ∼ 𝜅+

|𝐷𝑢 | ≤ 𝜅 |𝐷𝑢 | > 𝜅+

( |𝐷𝑢 | − 𝜅)𝑞𝐹 (𝐷2𝑢) = 𝑓

Figure 1 – This figure is a representation of the geometry of the problem. The white region,
{|𝐷𝑢 | > 𝜅}, displays the part of the domain in which a diffusion PDE drives the
system. The system is dormant in the dark grey zone, {|𝐷𝑢 | ≤ 𝜅}. The analysis in the
intermediary light grey sector, {𝜅 < |𝐷𝑢 | < 𝜅 + 𝜇}, for some 0 < 𝜇 ≪ 1, is critical
for the proof of Theorem 2.3. It is worth highlighting, however, that the topology of
such a region can be much more complicated and their corresponding boundaries
highly irregular. This is why Theorem 2.3 is a non-trivial (somewhat striking) result.

This chapter is organized as follows. In Section 2.2.1, we prove the uniform Lipschitz
estimate, Theorem 2.2. In Section 2.2.2, we establish compactness for the scaled PDE. In Section
2.3, we split the analysis between the region close and far away from the free boundary to attain
the universal 𝐶1 regularity theorem. In the last Section 2.4, we discuss further applications of the
methods introduced in this chapter.

In Chapter 3 of the thesis, we develop a variational framework for the analysis of free
boundary problems that include a continuum of singularities, [9], results obtained in collaboration
with Damião Araújo, José Miguel Urbano, and Eduardo Teixeira. The mathematical setup leads
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to the minimization of an energy-functional of type

ℰ(𝑣,O) =
∫
O
𝐹 (𝐷𝑣, 𝑣, 𝑥) 𝑑𝑥, (0.7)

whose Lagrangian, 𝐹 ( ®𝑝, 𝑣, 𝑥), is non-differentiable concerning the 𝑣 argument, and the degree
of singularity varies with respect to the spatial variable 𝑥. The singularity oscillation exerts an
intricate influence on the free boundary’s trace and shape in a notably unpredictable manner.
This dynamic not only alters the geometric behavior of the solution but also significantly impacts
the regularity of the free boundary. As a consequence, the associated Euler-Lagrange equation
gives rise to a rich new class of singular elliptic partial differential equations, which, in their own
right, present an array of intriguing and independent mathematical challenges and interests.

Singular elliptic PDEs, particularly those involving free boundaries, find applications
in a variety of fields, including thin film flows, image segmentation, shape optimization, and
biological invasion models in ecology, to cite just a few. Mathematically, such models lead to the
analysis of an elliptic PDE of the form

Δ𝑢 = 𝔰(𝑥, 𝑢)𝜒{𝑢>0}, (0.8)

within a domain Ω ⊂ R𝑛. The defining characteristic of the PDE above lies in the singular term
𝔰 : Ω × (0,∞) → R, which becomes arbitrarily large near the zero level set of the solution, i.e.,

lim
𝑣→0

𝔰(𝑥, 𝑣) = ∞. (0.9)

Fine regularity properties of solutions to (0.8), along with geometric measure estimates and
eventually the differentiability of their free boundaries, 𝜕{𝑢 > 0}, are inherently intertwined with
quantitative information concerning the blow-up rate outlined in (0.9). Heuristically, solutions
of PDEs with a faster singular blow-up rate will exhibit reduced regularity along their free
boundaries. Existing methods for treating these singular PDE models, in various forms, rely to
some extent on the uniformity of the blow-up rate prescribed in (0.9).

We investigate a broader class of variational free boundary problems, extending our focus
to encompass oscillatory blow-up rates. That is, we are interested in PDE models involving
singular terms with fluctuating asymptotic behavior,

Δ𝑢 ∼ 𝑢−𝑝(𝑥) , (0.10)

for some function 𝑝 : Ω → [0, 1). As anticipated, the analysis will be variational, i.e., we will
investigate local minimizers of a given non-differentiable functional, as described in (0.7), which
exhibit a spectrum of oscillatory exponents of non-differentiability.

The investigation of the static case, i.e., of PDE models in the form of Δ𝑢 ∼ 𝑢−𝑝0 , where
0 < 𝑝0 < 1, has a rich historical lineage, tracing its roots to the classical Alt-Phillips problem, as
documented in [3, 58,59]. This elegant problem has served as a source of inspiration, sparking
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significant advancements in the domain of free boundary problems, as exemplified by works
like [7, 35,39,40,62,66–68], to cite just a few. Remarkably, the Alt-Phillips model serves as a
bridge connecting the classical obstacle problem, which pertains to the case 𝑝0 = 0, and the
cavitation problem, achieved as the limit when 𝑝0 ↗ 1. Each intermediary model exhibits its
unique geometry. That is, solutions present a precise geometric behavior at a free boundary point,
viz. 𝑢 ∼ dist𝛽 (𝑥, 𝜕{𝑢 > 0}), for a critical, well-defined and uniform exponent 𝛽(𝑝0).

Mathematically, the oscillation of the singular exponent brings several new challenges,
as the model prescribes multiple free boundary geometries. The main difficulty in analyzing
free boundary problems with oscillatory singularities relies on quantifying how the local free
boundary geometry fluctuations affect the regularity of the solution 𝑢 as well as the behavior of
its associated free boundary 𝜕{𝑢 > 0}. In essence, the main quest in this chapter is to understand
how changes in the free boundary geometry directly influence its local behavior.

From the applied viewpoint, the model studied in this chapter accounts for the heterogeneity
of external factors influencing the reaction rates within the porous catalyst region where the
gas density 𝑢(𝑥) is distributed. To be more specific, when examining the theory of diffusion
and reaction within catalysts modeled in an isotropic, homogeneous medium, the task at hand
involves the minimization of an energy-functional, which takes the form

𝒥(𝑣,O) =
∫
O

1
2
|𝐷𝑣 |2𝑑𝑥 +

∫
O
𝑓 (𝑥, 𝑣)𝑑𝑥. (0.11)

Minimizers of 𝒥 describe the density distribution of the gas in a stationary situation. The term∫
O 𝑓 (𝑥, 𝑣)𝑑𝑥 corresponds to the rupture law along the free boundary. It models the complexities

of the catalytic reaction, dictated by the abrupt shifts and discontinuities in the reaction rates as
they intersect the catalyst’s surface. Mathematically, such factors prompt the non-differentiability
of the term 𝑓 (𝑥, 𝑣) concerning the 𝑣−argument.

The singularity of 𝜕𝑣 𝑓 (𝑥, 𝑣) along 𝑣 = 0 carries critical information about the model’s
behavior. It is a no-static feature of the model, dynamically shifting in response to several
external factors, including temperature, pressure, and the roughness of the catalyst’s surface.
Such considerations require mathematical models allowing for non-differentiable terms whose
singularity may vary concerning the spatial variable 𝑥.

In this chapter, our focus is directed toward fine regularity properties of local minimizers
of the energy-functional

𝐽
𝛾(𝑥)
𝛿(𝑥) (𝑣) :=

∫
1
2
|𝐷𝑣 |2 + 𝛿(𝑥) (𝑣+)𝛾(𝑥)𝑑𝑥, (0.12)

where the functions 𝛾(𝑥) and 𝛿(𝑥) possess specific properties that will be elaborated upon in
due course. In connection with the theory of singular elliptic PDEs, minimizers of (0.12) are
distributional solutions of{

Δ𝑢 = 𝛿(𝑥)𝛾(𝑥)𝑢𝛾(𝑥)−1 in {𝑢 > 0}
𝐷𝑢 = 0 on 𝜕{𝑢 > 0},
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with the free boundary condition being observed by local regularity estimates, to be shown in
this chapter.

This chapter is organized as follows. We establish the existence of minimizers as well as
local 𝐶1,𝛼★-regularity, for some 0 < 𝛼★ < 1, independent of the modulus of continuity of 𝛾(𝑥) in
sections 3.1 and 3.2. Non-degeneracy estimates are obtained in Section 3.3. In Section 3.4, we
obtain gradient estimates near the free boundary, quantifying the magnitude of 𝐷𝑢(𝑦) in terms of
the pointwise value 𝑢(𝑦). We highlight that the results established in Sections 1.3 and 3.4 are all
independent of the continuity of 𝛾(𝑥). However, when 𝛾(𝑥) varies randomly, regularity estimates
of 𝑢 and its non-degeneracy properties along the free boundary have different homogeneities,
and thus no further regularity properties of the free boundary are expected to hold. We tackle
this issue in Section 3.5, where under a very weak condition on the modulus of continuity of
𝛾(𝑥), we establish sharp pointwise growth estimates of 𝑢. The estimates from Section 3.5 imply
that near a free boundary point 𝑥0 ∈ 𝜕{𝑢 > 0}, the minimizer 𝑢 behaves precisely as ∼ 𝑑

2
2−𝛾 (𝑥0 ) ,

with universal estimates. Section 3.6 is devoted to Hausdorff’s estimates of the free boundary. In
Section 3.7, we obtain a Weiss-type monotonicity formula which yields blow-up classification,
and in Section 3.8, we discuss the regularity of the free boundary 𝜕{𝑢 > 0}.
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1
Preliminaries

In this chapter, we lay the foundational framework essential for navigating the subsequent
sections of the thesis. We first establish some standard notation. Then, we delve into the intricate
structural aspects of Fully Nonlinear models, and minimization problems.

1.1 Notation

Problems are modeled in the 𝑛-dimensional Euclidean space, R𝑛. The open ball of radius
𝑟 centered at the point 𝑥0 is denoted by 𝐵𝑟 (𝑥0). We shall omit the center of the ball for 𝑥0 = 0.
When writing integrals, the symbol ∫

𝑈

𝑓 (𝑥)𝑑𝑥,

means the integral of 𝑓 concerning the Lebesgue measure, in the measurable set 𝑈. We omit
the symbol 𝑑𝑥 when there is no misunderstanding. When calculating surface integrals in a
(𝑛 − 1)-dimensional set𝑈′, we will write∫

𝑈′
𝑓 (𝑥)𝑑H 𝑛−1,

and omit the symbol whenever there is no misunderstanding.

We will write |𝑈 | to denote the Lebesgue measure of a set 𝑈. Given a number 𝑠 > 0,
the symbol H 𝑠 (𝑈) denotes the 𝑠-dimensional Hausdorff measure. Properties concerning these
measures will be used without further comments.

The space of all 𝑛×𝑛 symmetric matrices is denoted by Sym(𝑛). For a matrix𝑀 ∈ Sym(𝑛),
we denote by Spec(𝑀) the set of all eigenvalues of 𝑀 .

For an open set𝑈, a natural number 𝑘 and an exponent 𝛼 ∈ (0, 1], we define 𝐶𝑘,𝛼 (𝑈), to
be the set of functions that are continuously differentiable up to order 𝑘 , and the 𝑘−th derivatives
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are Hölder continuous of order 𝛼. The usual norm associated with this set of functions is

∥𝑣∥𝐶𝑘,𝛼 (𝑈) B
𝑘∑︁
𝑖=0

∥𝐷𝑖𝑣∥𝐿∞ (𝑈) + [𝐷𝑘𝑣]𝐶0,𝛼 (𝑈) .

Here, ∥𝑤∥𝐿∞ (𝑈) denotes the supremum norm, and

[𝑤]𝐶0,𝛼 (𝑈) B sup
𝑥,𝑦∈𝑈

|𝑤(𝑥) − 𝑤(𝑦) |
|𝑥 − 𝑦 |𝛼 .

When 𝛼 = 1, we shall also write Lip(𝑈) instead of𝐶0,1. We recall that when 𝑘 = 0, then 𝐷𝑘𝑣 = 𝑣.

Likewise, we define the Sobolev spaces 𝑊 𝑘,𝑝 (𝑈), for 𝑝 > 1 to be the set of weakly
differentiable functions 𝑢, whose weak derivatives lie in 𝐿𝑝 (𝑢). Classical immersion theorems,
equivalences, and properties shall also be used without further comments.

Given 𝑎 ∈ R, we denote

𝑎+ B max{𝑎, 0} and 𝑎− B max{−𝑎, 0}.

To simplify notation, we will also write 𝑎+ and 𝑎− to denote the same objects.

Given a finite set 𝐹 ⊂ N, we write #𝐹 to denote its cardinality, that is, the number of
elements in 𝐹.

1.2 Fully nonlinear models

The main structure our problem requires is the long-standing notion of uniform ellipticity.
To define so, we need the notion of Pucci Extremal Operators. Given constants 0 < 𝜆 ≤ Λ, let

A𝜆,Λ B
{
𝐴 ∈ Sym(𝑛)

�� Spec(𝐴) ⊆ [𝜆,Λ]
}
.

The so-called Pucci Extremal Operators M+
𝜆,Λ

and M−
𝜆,Λ

, acting on Sym(𝑛), are defined as

M+
𝜆,Λ(𝑀) B sup

𝐴∈A𝜆,Λ

Trace(𝐴𝑀) and M−
𝜆,Λ(𝑀) B inf

𝐴∈A𝜆,Λ

Trace(𝐴𝑀),

we will simply write M+ and M− whenever the ellipticity constants, 𝜆 and Λ, are understood.

There is an equivalent way of defining such operators. Given a matrix 𝑀 ∈ Sym(𝑛),
we denote by 𝑒𝑖 (𝑀) the 𝑖 − th eigenvalue of the symmetric matrix 𝑀 and 𝑒𝑖 (𝑀)+, 𝑒𝑖 (𝑀)− its
positive and negative part, respectively. Then,

M+(𝑀) = Λ
∑︁

𝑒𝑖 (𝑀)+ − 𝜆
∑︁

𝑒𝑖 (𝑀)−,

M−(𝑀) = 𝜆
∑︁

𝑒𝑖 (𝑀)+ − Λ
∑︁

𝑒𝑖 (𝑀)−.

Definition 1.1. Given constants 0 < 𝜆 ≤ Λ, we say that 𝐹 : Sym(𝑛) → R is (𝜆,Λ)-elliptic if

M−(𝑀 − 𝑁) ≤ 𝐹 (𝑀) − 𝐹 (𝑁) ≤ M+(𝑀 − 𝑁),

for every 𝑀, 𝑁 ∈ Sym(𝑛).
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This sort of monotonicity assumption is what allows the regularity theory developed here
to hold.

The notion of viscosity solutions has been presented to the mathematical community a
while ago in a paper by Crandall, Ishii and Lions, [30]. Such a notion was a breakthrough in the
analysis of partial differential equations and ever since, a great amount of work has been done.
Important extensions of this notion to equations with 𝐿𝑝 ingredients have also been done, pushing
the theory beyond the boundaries of continuous viscosity solutions, see [20]. In particular, in [24],
the authors consider the usual notion of viscosity solution type, but they disregard touching
function whose slope is zero. Nevertheless, they still managed to prove their solutions satisfied
ordinary viscosity inequalities and were thus entitled to the classical regularity theory, see [19].
Inspired by them, we propose the following definition:

Definition 1.2. (𝜅-grad viscosity solutions) Let 𝐺 : R𝑛 × 𝑆𝑦𝑚(𝑛) → R be a continuous function.
Given a nonnegative 𝜅, we say that 𝑢 is a 𝜅-grad viscosity subsolution to

𝐺 (𝐷𝑢, 𝐷2𝑢) = 𝑓 (1.1)

if for every 𝑥0 and 𝜑 such that (𝑢 − 𝜑) attain a local maximum at 𝑥0 with |𝐷𝜑(𝑥0) | > 𝜅 there
holds

𝐺 (𝐷𝜑(𝑥0), 𝐷2𝜑(𝑥0)) ≥ 𝑓 (𝑥0).

We say 𝑢 is a 𝜅-grad viscosity supersolution for (1.1), if for every 𝑥0 and 𝜑 such that (𝑢 − 𝜑)
attain a local minimum at 𝑥0 with |𝐷𝜑(𝑥0) | > 𝜅 there holds

𝐺 (𝐷𝜑(𝑥0), 𝐷2𝜑(𝑥0)) ≤ 𝑓 (𝑥0).

We say 𝑢 is a 𝜅-grad viscosity solution for (1.1) if 𝑢 is both a 𝜅-grad subsolution and supersolution.

Similarly, we will say that a continuous 𝑣 : 𝐵1 → R satisfies |𝐷𝑣 | (𝑥0) > 𝜅 (in the
viscosity sense) if there exists a 𝐶2 function 𝜑 touching 𝑣 from above (or below) at 𝑥0 satisfying
|𝐷𝜑(𝑥0) | > 𝜅.

Definition 1.3. Given a continuous function 𝑣 : 𝐵1 → R we define

Ω𝑣 =
{
𝑥 ∈ 𝐵1

�� |𝐷𝑣 | > 𝜅} .
The interior boundary of this set will be denoted by Γ𝑣, i.e.

Γ𝑣 B 𝜕Ω𝑣 ∩ 𝐵1

For the PDE model we will investigate in this paper, Γ𝑢 will represent the free boundary
of the problem, whereas Ω𝑢 is the region in which the system is driven by a (fully nonlinear,
degenerate) elliptic equation.
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We note that the notion of 𝜅-grad viscosity solutions is indeed very weak. It enlarges the
set where we search for solutions by disregarding test functions whose slope at a touching point
is less than or equal to 𝜅. In particular, this definition gives very little information about the set
Ω𝑢, where the PDE is placed. If one seeks for further regularity of solutions to (0.4) within Ω𝑢, a
bit more structure is naturally required. This is the contents of the next definition:

Definition 1.4. We say 𝑢 is an effective viscosity solution of (0.4), if the set Ω𝑢 defined as{
𝑥 ∈ 𝐵1

�� |𝐷𝑢 | > 𝜅} is open and 𝑢 satisfies

( |𝐷𝑢 | − 𝜅)𝑞+𝐹 (𝐷2𝑢) = 𝑓 in Ω𝑢,

in the classical viscosity sense.

As a byproduct of the results to be proven in Chapter 2, 𝜅-grad viscosity solutions of (0.4)
can be easily obtained through a limiting process. More precisely, let 𝑢 𝑗 be a bounded family of
viscosity solutions to (

( |𝐷𝑢 𝑗 | − 𝜅)𝑞+ + 1/ 𝑗
)
𝐹 (𝐷2𝑢 𝑗 ) = 𝑓 , in Ω. (1.2)

The regularity estimates established in this paper are uniform with respect to the approximation
parameter 𝑗 . Hence, up to a subsequence, one can pass the limit as 𝑗 → ∞ in (1.2). It is standard
to verify that the limit function will enjoy the same regularity estimate of 𝑢 𝑗 , i.e. Lipschitz
continuous, and it solves (0.4) in the 𝜅-grad viscosity sense. The 𝐶1 regularity of 𝑢 𝑗 , up to the
free boundary, viz. the corresponding Theorem 2.3, is too uniform concerning the parameter 𝑗 .

Next, we comment on the scaling properties of the model, which shall be used throughout
the entire evolution of the paper.

Remark 1.1. Let 𝑢 be a 𝜅-grad (resp. effective) viscosity solution of (0.4) in 𝐵1. Assume 𝜅 > 0
and define the constants:

𝐴 =
1

max(1, ∥𝑢∥∞)
and 𝐵 =

𝜏 · max(1, ∥𝑢∥∞)
𝜅

,

for an arbitrary 𝜏 > 0. In the sequel, define

𝑤(𝑥) B 𝐴𝑢(𝐵𝑥).

One verifies that 𝑤 is a 𝜏-grad (resp. effective) viscosity solution of the re-scaled model:

( |𝐷𝑤 | − 𝜏)𝑞+𝐹 (𝐷2𝑤) = 𝑓 ,

in the ball 𝐵1/𝐵, where
𝐹 (𝑀) = (𝐴𝐵2)𝐹 ((𝐴𝐵2)−1𝑀)

and
𝑓 (𝑥) = 𝐴𝑞+1𝐵𝑞+2 𝑓 (𝐵𝑥).

Indeed, if 𝜑 ∈ 𝐶2 touches 𝑤 from above(or below) at a point 𝑥 with |𝐷𝜑(𝑥) | > 𝜏, then the
function 𝜑(𝑥) = 𝐴−1𝜑(𝐵−1𝑥) touches 𝑢 from above(or below) at 𝐵𝑥 with |𝐷𝜑(𝐵𝑥) | > 𝜅.
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Given the previous remark, all results in this paper will be proven, with no loss of
generality, for a normalized solution, −1 ≤ 𝑢 ≤ 1.

1.3 Minimization problems

In this section, we bring some important preliminaries to deal with certain minimization
problems. We start by describing precisely the mathematical setup of our problem. We assume
Ω ⊂ R𝑛 is a bounded domain and 𝛿, 𝛾 : Ω → R+0 are bounded mensurable functions.

For each subset O ⊂ Ω, we denote

𝛾★(O) B ess inf
𝑦∈O

𝛾(𝑦) and 𝛾★(O) B ess sup
𝑦∈O

𝛾(𝑦). (1.3)

In the case of balls, we adopt the simplified notation

𝛾★(𝑥, 𝑟) B 𝛾★(𝐵𝑟 (𝑥)) and 𝛾★(𝑥, 𝑟) B 𝛾★(𝐵𝑟 (𝑥)).

Throughout the whole paper, we shall assume

0 < 𝛾★(Ω) ≤ 𝛾★(Ω) ≤ 1. (1.4)

For a non-negative boundary datum 0 ≤ 𝜑 ∈ 𝐻1(Ω) ∩ 𝐿∞(Ω), we consider the problem
of minimizing the functional

J 𝛿
𝛾 (𝑣,Ω) :=

∫
Ω

1
2
|𝐷𝑣 |2 + 𝛿(𝑥) (𝑣+)𝛾(𝑥)𝑑𝑥 (1.5)

among competing functions

𝑣 ∈ A :=
{
𝑣 ∈ 𝐻1(Ω) : 𝑣 − 𝜑 ∈ 𝐻1

0 (Ω)
}
.

We say 𝑢 ∈ A is a minimizer of (1.5) if

J 𝛿
𝛾 (𝑢,Ω) ≤ J 𝛿

𝛾 (𝑣,Ω), ∀𝑣 ∈ A.

Note that minimizers as above are, in particular, local minimizers in the sense that, for any open
subset Ω′ ⊂ Ω,

J 𝛿
𝛾 (𝑢,Ω′) ≤ J 𝛿

𝛾 (𝑣,Ω′), ∀𝑣 ∈ 𝐻1(Ω′) : 𝑣 − 𝑢 ∈ 𝐻1
0 (Ω

′).

Scaling

Some of the arguments used recurrently in this paper rely on a scaling feature of the
functional (1.5) that we detail in the sequel for future reference. Let 𝑥0 ∈ Ω and consider two
parameters 𝐴, 𝐵 ∈ (0, 1]. If 𝑢 ∈ 𝐻1(Ω) is a minimizer of J 𝛿

𝛾 (𝑣, 𝐵𝐴 (𝑥0)), then

𝑤(𝑥) :=
𝑢(𝑥0 + 𝐴𝑥)

𝐵
, 𝑥 ∈ 𝐵1 (1.6)
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is a minimizer of the functional

J 𝛿
𝛾̃ (𝑣, 𝐵1) :=

∫
𝐵1

1
2
|𝐷𝑣 |2 + 𝛿(𝑥)𝑣𝛾̃(𝑥)𝑑𝑥,

with

𝛿(𝑥) := 𝐵𝛾(𝑥0+𝐴𝑥)
(
𝐴

𝐵

)2
𝛿(𝑥0 + 𝐴𝑥) and 𝛾̃(𝑥) := 𝛾(𝑥0 + 𝐴𝑥).

Indeed, by changing variables,∫
𝐵𝐴(𝑥0)

1
2
|𝐷𝑢(𝑥) |2 + 𝛿(𝑥)𝑢(𝑥)𝛾(𝑥)𝑑𝑥

= 𝐴𝑛
∫
𝐵1

1
2
|𝐷𝑢(𝑥0 + 𝐴𝑥) |2 𝑑𝑥 + 𝐴𝑛

∫
𝐵1

𝛿(𝑥0 + 𝐴𝑥)𝑢(𝑥0 + 𝐴𝑦)𝛾(𝑥0+𝐴𝑥)𝑑𝑦

= 𝐴𝑛
∫
𝐵1

1
2

����(𝐵𝐴 )
𝐷𝑤(𝑥)

����2 + 𝛿(𝑥0 + 𝐴𝑥) [𝐵𝑤(𝑥)]𝛾(𝑥0+𝐴𝑥) 𝑑𝑥

= 𝐴𝑛−2𝐵2
∫
𝐵1

1
2
|𝐷𝑤(𝑥) |2 + 𝐵𝛾(𝑥0+𝐴𝑥)−2𝐴2𝛿(𝑥0 + 𝐴𝑥) [𝑤(𝑥)]𝛾(𝑥0+𝐴𝑥) 𝑑𝑥

= 𝐴𝑛−2𝐵2
∫
𝐵1

1
2
|𝐷𝑤(𝑥) |2 + 𝛿(𝑥) [𝑤(𝑥)] 𝛾̃(𝑥) 𝑑𝑥.

Observe that since 0 < 𝐵 ≤ 1, 𝛿 satisfies

∥𝛿∥𝐿∞ (𝐵1) ≤ 𝐵𝛾★(𝑥0,𝐴)−2𝐴2∥𝛿∥𝐿∞ (𝐵𝐴(𝑥0)) .

In particular, choosing 𝐴 = 𝑟 and 𝐵 = 𝑟 𝛽, with 0 < 𝑟 ≤ 1 and

𝛽 =
2

2 − 𝛾★(𝑥0, 𝐴)
,

we obtain ∥𝛿∥𝐿∞ (𝐵1) ≤ ∥𝛿∥𝐿∞ (𝐵𝑟 (𝑥0)) .
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2
Regularity in diffusion models with gradient
activation

In this chapter, we embark on an in-depth examination of viscosity solutions in the 𝜅-grad
sense, to

( |𝐷𝑢 | − 𝜅)𝑞+𝐹 (𝐷2𝑢) = 𝑓 ∈ 𝐿∞.

Our analysis is particularly focused on seeking regularity issues for such solutions. The challenge
lies in devising analytical tools capable of discerning between the states of degeneracy and
non-degeneracy; it is worth pointing out that the degeneracy set {|𝐷𝑢 | ≤ 𝜅} has no structure
whatsoever.

The program initiates in Section 2.1 with the proof of the ABP estimate, venturing beyond
conventional approaches due to the absence of additional PDE information within the degeneracy
set. Our discourse offers a detailed exposition on the utilization of inf-sup convolutions, enhancing
the understanding of this critical analytical tool.

Progressing to Section 2.2, we delve into the optimal Lipschitz regularity for solutions of
both the original and scaled PDEs. This investigation is crucial, as the precise dependence of
Lipschitz estimates underpins the regularity achievements discussed in Section 2.3. Here, by
refining the solution concept, we introduce a methodology to effectively distinguish between
degeneracy and non-degeneracy phases, facilitating gradient continuity up to the free boundary.

Concluding the chapter in Section 2.4, we elucidate the connections between our model
and current research trends, highlighting the broader implications and potential applications of
our findings. This section not only bridges our work with ongoing research efforts but also sets
the stage for future explorations into the complex interplay of viscosity solutions and nonlinear
PDE analysis.
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2.1 Aleksandrov-Bakelman-Pucci estimate

In this section, we discuss the validity of the Aleksandrov-Bakelman-Pucci estimate for
solutions of 0.4. The usual estimate should not hold, as no further PDE information can be
gathered within the set where {|𝐷𝑢 | < 𝜅}. The key idea, however, is that such information can
also be understood as PDE information.

It is worth mentioning that the ABP estimate presented here appeared in [46] for a more
general class of equations. The issue, however, is that it requires the equation to hold everywhere
in an open set, let us say, Ω. The gap we fill with our proof of the ABP estimate is that the region
we only have PDE information is {|𝐷𝑢 | > 𝜅}. A similar issue was pointed out in [48] for the
𝐿𝜖 -estimate.

The main result of this chapter is the following:

Theorem 2.1. Let 𝑢 be a 𝜅-grad viscosity solution of (0.4) in an open domain Ω. Then

∥𝑢∥𝐿∞ (Ω) ≤ sup
𝜕Ω

|𝑢 | + 𝐶
(
∥ 𝑓 ∥

1
𝑞+1
𝐿𝑛

+ 𝜅
)
,

for a constant 𝐶 = 𝐶 (𝑛, 𝑞, diam(Ω), 𝜆,Λ).

We split the proof of this result into two parts: first, we assume solutions are 𝐶2 smooth
and proceed through an approximation argument. In general, the first step is where lies the key
ideas of the proof.

To ease the presentation, let us define

Γ+
𝑟,𝑠 (𝑢) = {𝑦 ∈ Ω : ∃ 𝜉 ∈ 𝐵𝑟\𝐵𝑠 such that 𝑢(𝑥) ≤ ℓ𝑢(𝑦),𝜉 (𝑥) in Ω},

Γ−
𝑟,𝑠 (𝑢) = {𝑦 ∈ Ω : ∃ 𝜉 ∈ 𝐵𝑟\𝐵𝑠 such that 𝑢(𝑥) ≥ ℓ𝑢(𝑦),𝜉 (𝑥) in Ω},

where ℓ𝑎,𝑏 (𝑥) B 𝑎 + 𝑏 · 𝑥. These are the contact sets of the solution with its concave(convex)
envelope whose slope lies in the annulus 𝐵𝑟\𝐵𝑠.

To bring a comprehensive proof of the ABP estimate, and taking into advantage that the
proof is modular, we will split the analysis into a few lemmas and put it all together at the end.

2.1.1 Geometric argument for classical functions

First, we begin with the geometric part of the argument, which does not require any PDE
information.

Lemma 2.1. Let 𝑢 ∈ 𝐶 (Ω) ∩ 𝐶2(Ω). Then,

supΩ 𝑢− − sup𝜕Ω 𝑢−

diam(Ω) ≤
(
2(𝑞 + 1) |𝜕𝐵1 |

𝜆𝑛𝑛𝑛−1

) 1
(𝑞+1)𝑛 

( |𝐷𝑢 | − 𝜅)𝑞+M−(𝐷2𝑢)



 1
𝑞+1

𝐿𝑛
(
Γ+
𝑟 ,2𝜅 (−𝑢)

) + 5𝜅,

where
𝑟 B

supΩ 𝑢− − sup𝜕Ω 𝑢−

diam(Ω) .



Chapter 2. Regularity in diffusion models with gradient activation 23

Proof. First, we may assume 𝑟 ≥ 2𝜅, otherwise the Lemma would be automatically true. Since
𝑟 ≥ 2𝜅, it holds that −𝑢(𝑥) = supΩ 𝑢− > 0. Define the mapping 𝐹 : R𝑛 → R as

𝐹 (𝜉) = ( |𝜉 | − 𝜅)𝑞+ 𝜉.

By definition of the quantity 𝑟, it follows that

𝐵𝑟\𝐵2𝜅 ⊆ 𝐷𝑢

(
Γ+
𝑟,2𝜅 (−𝑢)

)
. (2.1)

Indeed, let 𝜉 ∈ 𝐵𝑟\𝐵2𝜅 and consider the affine function ℓℎ,𝜉 , where

ℎ = sup
𝑦∈Ω

{−𝑢(𝑦) − 𝜉 · 𝑦} .

The constant ℎ is precisely the value we need to lower the hyperplane so that −𝑢 ≤ ℓℎ,𝜉 in Ω and
touches −𝑢 from above at some 𝑧 ∈ Ω. Observe that 𝑧 ∈ Ω, otherwise if 𝑧 ∈ 𝜕Ω, then

sup
Ω

𝑢− = −𝑢(𝑥) ≤ ℓℎ,𝜉 (𝑥) = ℓℎ,𝜉 (𝑧) + 𝜉 · (𝑥 − 𝑧)

= −𝑢(𝑧) + 𝜉 · (𝑥 − 𝑧) < sup
𝜕Ω

𝑢− + 𝑟 diam(Ω) = sup
Ω

𝑢−,

which is a contradiction, and so, it follows that 𝑧 ∈ Ω. As a consequence,

𝜉 = −𝐷𝑢(𝑧) for some 𝑧 ∈ Ω,

and so (2.1) follows. Since 𝑢 ∈ 𝐶2(Ω), it also holds 𝐷2𝑢 ≥ 0. Now, from (2.1), it follows that

|𝐹 (𝐵𝑟\𝐵2𝜅) | ≤
���𝐹 (

𝐷𝑢

(
Γ+
𝑟,2𝜅 (−𝑢)

))��� . (2.2)

Let us estimate the LHS of (2.2) from below. Observe that

|𝐹 (𝐵𝑟\𝐵2𝜅) | =

∫
𝐹 (𝐵𝑟\𝐵2𝜅 )

𝑑𝑥

=

∫
𝐵𝑟\𝐵2𝜅

| det(𝐷𝐹 (𝜉)) |𝑑𝜉

=

∫
𝐵𝑟\𝐵2𝜅

����det
(
𝑞( |𝜉 | − 𝜅)+

𝜉

|𝜉 | ⊗ 𝜉 + (|𝜉 | − 𝜅)+𝐼)
)���� 𝑑𝜉

=

∫
𝐵𝑟\𝐵2𝜅

(
𝑞( |𝜉 | − 𝜅)𝑛𝑞−1

+ |𝜉 | + (|𝜉 | − 𝜅)𝑞𝑛+
)
𝑑𝜉

= |𝜕𝐵1 |
∫ 𝑟

2𝜅

(
𝑞(𝑡 − 𝜅)𝑛𝑞−1

+ 𝑡 + (𝑡 − 𝜅)𝑞𝑛+
)
𝑡𝑛−1𝑑𝑡

=
|𝜕𝐵1 |
𝑛

(
(𝑟 − 𝜅)𝑞𝑛+ 𝑟𝑛 − 𝜅𝑞𝑛 (2𝜅)𝑛

)
.
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Now, let us estimate the RHS of (2.2) from above. This will be achieved through a change of
variables.���𝐹 (

𝐷𝑢

(
Γ+
𝑟,2𝜅 (−𝑢)

))��� =

∫
𝐹 (𝐷𝑢(Γ+

𝑟 ,2𝜅 (−𝑢))
𝑑𝑥 =

∫
Γ+
𝑟 ,2𝜅 (−𝑢)

| det (𝐷 (𝐹 ◦ 𝐷𝑢) |𝑑𝑦

=

∫
Γ+
𝑟 ,2𝜅 (−𝑢)

| det𝐷𝐹 (𝐷𝑢(𝑦)) | det𝐷2𝑢(𝑦)𝑑𝑦

≤
∫
Γ+
𝑟 ,2𝜅 (−𝑢)

| det𝐷𝐹 (𝐷𝑢(𝑦)) |
(
Δ𝑢

𝑛

)𝑛
𝑑𝑦

≤
∫
Γ+
𝑟 ,2𝜅 (−𝑢)

| det𝐷𝐹 (𝐷𝑢(𝑦)) |
(
M−(𝐷2𝑢)

𝜆𝑛

)𝑛
𝑑𝑦.

Observe now that in the set Γ+
𝑟,2𝜅 (−𝑢), we have

2𝜅 ≤ |𝐷𝑢 | ≤ 𝑟,

and so, we have
|𝐷𝑢 | ≤ 2( |𝐷𝑢 | − 𝜅)+.

Now, since
𝐷𝐹 (𝜉) = 𝑞 ( |𝜉 | − 𝜅)𝑞−1

+
𝜉

|𝜉 | ⊗ 𝜉 + (|𝜉 | − 𝜅)𝑞+ 𝐼,

we obtain by direct computations that

det (𝐷𝐹 (𝜉)) =
(
𝑞

|𝜉 |
( |𝜉 | − 𝜅)+

+ 1
)
( |𝜉 | − 𝜅)𝑞𝑛+ ≤ 2(𝑞 + 1) ( |𝜉 | − 𝜅)𝑞𝑛+ .

Thus, ���𝐹 (
𝐷𝑢(Γ+

𝑟,2𝜅 (−𝑢))
)��� ≤ 2(𝑞 + 1)

𝜆𝑛𝑛𝑛

∫
Γ+
𝑟 ,2𝜅 (−𝑢)

(
( |𝐷𝑢 | − 𝜅)𝑞+ M−(𝐷2𝑢)

)𝑛
𝑑𝑦.

Putting all together, the Lemma is proven. □

The previous lemma is interesting in itself, but it only gives us quantitative information
whenever 𝑢 solves an elliptic PDE.

2.1.2 Estimate for viscosity solutions

First, we will prove the estimate to the case where 𝑢 is semiconvex.

Lemma 2.2. Let 𝑢 ∈ 𝐶 (Ω) be a semiconcave 𝜅-grad viscosity supersolution of (0.4). Then,

supΩ 𝑢− − sup𝜕Ω 𝑢−

diam(Ω) ≤
(
2(𝑞 + 1) |𝜕𝐵1 |

𝜆𝑛𝑛𝑛−1

) 1
(𝑞+1)𝑛 

 𝑓 +

 1

𝑞+1

𝐿𝑛
(
Γ+
𝑟 ,2𝜅 (−𝑢)

) + 5𝜅.

Proof. First, recall that if 𝑢 is semiconcave, then it follows that

( |𝐷𝑢 | − 𝜅)𝑞+𝐹 (𝐷2𝑢) ≤ 𝑓 a.e in Ω ∩ {|𝐷𝑢 | > 𝜅},
𝐷2𝑢 ≤ 𝐶0𝐼𝑛 a.e in Ω,
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for some constant 𝐶0 > 0. Now, let 𝑢𝜂 be a standard mollification of 𝑢, see (appendix). It then
follows that 𝑢𝜂 → 𝑢 is locally uniform in Ω. Furthermore, 𝐷𝑢𝜂 → 𝐷𝑢 and 𝐷2𝑢𝜂 → 𝐷2𝑢 a.e in
Ω, with 𝐷2𝑢𝜂 ≤ 𝐶0𝐼𝑛 in Ω. Let

𝑟𝜂 B
supΩ 𝑢−𝜂 − sup𝜕Ω 𝑢−𝜂

diam(Ω) .

As 𝑢𝜂 ∈ 𝐶 (Ω) ∩ 𝐶2(Ω), we can apply Lemma 2.1 in order to obtain

supΩ 𝑢−𝜂 − sup𝜕Ω 𝑢−𝜂
diam(Ω) ≤ 5𝜅 +

(
2(𝑞 + 1) |𝜕𝐵1 |

𝜆𝑛𝑛𝑛−1

) 1
(𝑞+1)𝑛 

( |𝐷𝑢𝜂 | − 𝜅)𝑞+M−(𝐷2𝑢𝜂)



 1
𝑞+1

𝐿𝑛
(
Γ+
𝑟𝜂 ,2𝜅 (−𝑢𝜂)

) .
Recall, from the proof of Lemma 2.1, that within Γ+

𝑟𝜂 ,2𝜅 (−𝑢𝜂), it also holds 𝐷2𝑢𝜂 ≥ 0, and so
|𝐷2𝑢𝜂 | ≤ 𝐶0. Thus, it follows that��( |𝐷𝑢𝜂 | − 𝜅)𝑞+M−(𝐷2𝑢𝜂)

�� ≤ 𝐶′
0 in Γ+

𝑟𝜂 ,2𝜅 (−𝑢𝜂),

and by dominated convergence theorem, we can pass to the limit in order to obtain

supΩ 𝑢− − sup𝜕Ω 𝑢−

diam(Ω) ≤ 5𝜅 +
(
2(𝑞 + 1) |𝜕𝐵1 |

𝜆𝑛𝑛𝑛−1

) 1
(𝑞+1)𝑛 

( |𝐷𝑢 | − 𝜅)𝑞+M−(𝐷2𝑢)



 1
𝑞+1

𝐿𝑛
(
Γ+
𝑟 ,2𝜅 (−𝑢)

) ,
where

𝑟 B
supΩ 𝑢− − sup𝜕Ω 𝑢−

diam(Ω) .

As the equation holds at almost every point for 𝑢, we have

supΩ 𝑢− − sup𝜕Ω 𝑢−

diam(Ω) ≤
(
2(𝑞 + 1) |𝜕𝐵1 |

𝜆𝑛𝑛𝑛−1

) 1
(𝑞+1)𝑛 

 𝑓 +

 1

𝑞+1

𝐿𝑛
(
Γ+
𝑟 ,2𝜅 (−𝑢)

) + 5𝜅,

and the Lemma is proved. □

Now we perform a regularization argument to bypass the a priori semiconcavity assumed
in Lemma 2.2.

Proposition 2.1. Let 𝑢 be a 𝜅-grad viscosity supersolution of (0.4). Then, the conclusion of
Lemma 2.2 holds.

Proof. Given 𝜖 > 0, we consider 𝑢𝜖 to be the inf-convolution of 𝑢 defined as

𝑢𝜖 (𝑥) B inf
𝑦∈Ω

{
𝑢(𝑦) + |𝑥 − 𝑦 |2

2𝜖

}
.

It is classical that 𝑢𝜖 is semiconcave and by Lemma 2.3 below, 𝑢𝜖 solves

( |𝐷𝑢𝜖 | − 𝜅)𝑞+𝐹 (𝐷2𝑢𝜖 ) = 𝑓𝜖 in Ω𝜖 ,
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where

𝑓𝜖 (𝑥) B sup
|𝑦−𝑥 |<2

√
𝜖 ∥𝑢∥∞

𝑓 (𝑦),

Ω𝜖 B
{
𝑥 ∈ Ω

�� dist(𝑥, 𝜕Ω) > 2
√︁
𝜖 ∥𝑢∥∞

}
.

Now, as 𝑢𝜖 falls in the hypothesis of Lemma 2.2, it holds that

supΩ𝜖
𝑢−𝜖 − sup𝜕Ω𝜖

𝑢−𝜖
diam(Ω𝜖 )

≤
(
2(𝑞 + 1) |𝜕𝐵1 |

𝜆𝑛𝑛𝑛−1

) 1
(𝑞+1)𝑛 

 𝑓 +𝜖 

 1

𝑞+1

𝐿𝑛
(
Γ+
𝑟𝜖 ,2𝜅 (−𝑢𝜖 )

) + 5𝜅,

where
𝑟𝜖 B

supΩ𝜖
𝑢−𝜖 − sup𝜕Ω𝜖

𝑢−𝜖
diam(Ω𝜖 )

.

Since 𝑢𝜖 → 𝑢, 𝑓𝜖 → 𝑓 locally uniform and Ω𝜖 → Ω we can pass to the limit to have the
Proposition proved. □

Observe that everything could have been done to the subsolution case. Nevertheless,
small modifications should be taken care and we just comment on. The precise estimate we want
to prove is the following.

Proposition 2.2. Let 𝑢 be a 𝜅-grad viscosity subsolution of (0.4). Then,

supΩ 𝑢+ − sup𝜕Ω 𝑢+

diam(Ω) ≤
(
2(𝑞 + 1) |𝜕𝐵1 |

𝜆𝑛𝑛𝑛−1

) 1
(𝑞+1)𝑛

∥ 𝑓 −∥
1

𝑞+1

𝐿𝑛
(
Γ+
𝑟 ,2𝜅 (𝑢)

) + 5𝜅.

Proof. It is enough to assume 𝑢 ∈ 𝐶 (Ω) ∩ 𝐶2(Ω) and the quantity

𝑟 B
supΩ 𝑢+ − sup𝜕Ω 𝑢−

diam(Ω) ≥ 2𝜅.

It can be proved that
𝐵𝑟\𝐵2𝜅 ⊆ 𝐷𝑢

(
Γ+
𝑟,2𝜅 (𝑢)

)
.

The only difference is that we take

ℎ = sup
𝑦∈Ω

{𝑢(𝑦) − 𝜉 · 𝑦},

so that ℓℎ,𝜉 touches 𝑢 from above at some 𝑧 ∈ Ω whenever 𝜉 ∈ 𝐵𝑟\𝐵2𝜅. The proof is finished
when we estimate���𝐹 (

𝐷𝑢

(
Γ+
𝑟,2𝜅 (𝑢)

))��� =

∫
𝐹 (𝐷𝑢(Γ+

𝑟 ,2𝜅 (𝑢))
𝑑𝑥 =

∫
Γ+
𝑟 ,2𝜅 (𝑢)

| det (𝐷 (𝐹 ◦ 𝐷𝑢) |𝑑𝑦

=

∫
Γ+
𝑟 ,2𝜅 (𝑢)

| det𝐷𝐹 (𝐷𝑢(𝑦)) | − det𝐷2𝑢(𝑦)𝑑𝑦

≤
∫
Γ+
𝑟 ,2𝜅 (𝑢)

| det𝐷𝐹 (𝐷𝑢(𝑦)) |
(
−Δ𝑢
𝑛

)𝑛
𝑑𝑦

≤
∫
Γ+
𝑟 ,2𝜅 (𝑢)

| det𝐷𝐹 (𝐷𝑢(𝑦)) |
(
−M+(𝐷2𝑢)

𝜆𝑛

)𝑛
𝑑𝑦.

The rest of the proof follows seamlessly with 𝑓 − instead of 𝑓 +. □
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2.1.3 Inf-sup convolutions

It will be necessary, to proceed with the regularization argument, to make use of the
so-called inf-sup convolutions. Given a continuous function 𝑢 ∈ 𝐶 (Ω) and a parameter 𝜖 > 0 we
define the sup-convolution of 𝑢 as

𝑢𝜖 (𝑥) B sup
𝑦∈Ω

{
𝑢(𝑦) − |𝑥 − 𝑦 |2

2𝜖

}
.

Similarly, we define the inf-convolution as

𝑢𝜖 (𝑥) B inf
𝑦∈Ω

{
𝑢(𝑦) + |𝑥 − 𝑦 |2

2𝜖

}
.

It is classical, see [19], that such functions are approximations of the function 𝑢 from above
and from below, respectively. Furthermore, they enjoy the property of being semiconvex and
semiconcave, respectively. When elliptic PDE information from 𝑢 is available, one can carry
such information to these approximations as in the following lemma.

Lemma 2.3. Let 𝑢 ∈ 𝐶 (Ω) be a 𝜅-grad viscosity solution of (0.4). Then, 𝑢𝜖 is a 𝜅-grad viscosity
supersolution of

( |𝐷𝑢𝜖 | − 𝜅)𝑞+𝐹 (𝐷2𝑢𝜖 ) = 𝑓𝜖 in Ω𝜖 ,

where

𝑓𝜖 (𝑥) B sup
|𝑦−𝑥 |<2

√
𝜖 ∥𝑢∥∞

𝑓 (𝑦),

Ω𝜖 B
{
𝑥 ∈ Ω

�� dist(𝑥, 𝜕Ω) > 2
√︁
𝜖 ∥𝑢∥∞

}
.

Similarly, 𝑢𝜖 is a 𝜅-grad viscosity subsolution of

( |𝐷𝑢𝜖 | − 𝜅)𝑞+𝐹 (𝐷2𝑢𝜖 ) = 𝑓 𝜖 in Ω𝜖 ,

where
𝑓 𝜖 (𝑥) B inf

|𝑦−𝑥 |<2
√
𝜖 ∥𝑢∥∞

𝑓 (𝑦).

Proof. We prove only the supersolution case. First, observe that

𝑢𝜖 (𝑥) = inf
𝑦∈Ω

{
𝑢(𝑦) + |𝑥 − 𝑦 |2

2𝜖

}
= 𝑢(𝑥∗) + |𝑥 − 𝑥∗ |2

2𝜖

≥ −∥𝑢∥∞ + |𝑥 − 𝑥∗ |2
2𝜖

,

and so, since 𝑢𝜖 ≤ 𝑢,
|𝑥 − 𝑥∗ |2 ≤ 4𝜖 ∥𝑢∥∞ < dist(𝑥, 𝜕Ω). (2.3)

As a consequence, the infimum is always attained in Ω𝜖 .
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Now, let 𝜑 ∈ 𝐶2(𝐵𝑟 (𝑥0)) touching 𝑢𝜖 from below at 𝑥0 with |𝐷𝜑(𝑥0) | > 𝜅. Denoting by
𝑥∗0 the point where the infimum is attained, then

𝜑(𝑥0) = 𝑢𝜖 (𝑥0) = 𝑢(𝑥∗0) +
|𝑥0 − 𝑥∗0 |

2

2𝜖

𝜑(𝑥) ≤ 𝑢𝜖 (𝑥) ≤ 𝑢(𝑦) +
|𝑥 − 𝑦 |2

2𝜖
,

for every 𝑥 ∈ 𝐵𝑟 (𝑥0) and 𝑦 ∈ Ω. Hence, these conditions together, imply that the function

Ψ(𝑥) B 𝜑(𝑥 + 𝑥0 − 𝑥∗0) −
|𝑥0 − 𝑥∗0 |

2

2𝜖

touches 𝑢 from below at 𝑥∗0. Furthermore, it holds that

𝐷Ψ(𝑥∗0) = 𝐷𝜑(𝑥0) and 𝐷2Ψ(𝑥∗0) = 𝐷
2𝜑(𝑥0),

and so, by (2.3),
( |𝐷𝜑(𝑥0) | − 𝜅)𝑞+𝐹 (𝐷2𝜑(𝑥0)) ≤ 𝑓 (𝑥∗0) ≤ 𝑓𝜖 (𝑥0),

as desired. □
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2.2 Optimal regularity and compactness for scaled PDE’s

In this section, we will prove (optimal) Lipschitz regularity for viscosity solutions of
(0.4). This is done through the Ishii-Lions method.

2.2.1 Uniform Lipschitz estimates

This section discusses the proof of sharp Lipschitz regularity of 𝜅-grad viscosity solution
of (0.4). The main result is the following:

Theorem 2.2. Let 𝑢 be a 𝜅-grad viscosity solution of (0.4) in 𝐵1. Then 𝑢 is Lipschitz continuous
in 𝐵1/2, with universal bounds. More precisely, there exists a constant 𝐶 depending only on 𝑛, 𝜆,
Λ, 𝜅, ∥ 𝑓 ∥∞ and ∥𝑢∥∞, but not on 𝑞, such that

sup
𝑥,𝑦∈𝐵1/2

|𝑢(𝑥) − 𝑢(𝑦) |
|𝑥 − 𝑦 | ≤ 𝐶.

As commented, Theorem 2.2 is optimal, even in the case 𝑞 = 0. It is also important
to highlight that the Lipschitz bound does not depend on the degeneracy parameter, 𝑞. This is
interesting (and new) even in the case when the PDE holds everywhere in the domain. We will
further discuss this in Section 2.4.

The first key Lemma in the proof of Theorem 2.2 fosters useful bounds for barriers, to be
crafted, at maximum points of the double-variable function 𝑤(𝑥, 𝑦) B 𝑢(𝑥) − 𝑢(𝑦).

Lemma 2.4. Let 𝑢 be a 𝜅-grad viscosity solution of (0.4) and consider double-variable functions:

𝑤(𝑥, 𝑦) = 𝑢(𝑥) − 𝑢(𝑦) and 𝜑(𝑥, 𝑦) B 𝐿𝜙( |𝑥 − 𝑦 |) + 𝐾 ( |𝑥 |2 + |𝑦 |2),

for positive parameters 𝐿, 𝐾 and 𝜙 ∈ 𝐶2(R+) a nonnegative function. Let (𝑥, 𝑦) be an interior
maximum point for 𝑤 − 𝜑 such that 𝑥 ≠ 𝑦. Then,

−4𝜙′′( |𝑥 − 𝑦 |)𝐿 ≤

4𝑛
Λ

𝜆
𝐾 + 1

𝜆
∥ 𝑓 ∥∞

[
( |𝐷𝑥𝜑(𝑥, 𝑦) | − 𝜅)−𝑞+ +

(��𝐷𝑦𝜑(𝑥, 𝑦)
�� − 𝜅)−𝑞+ ]

.

Proof. Consider
𝐷𝑥𝜑(𝑥, 𝑦), 𝐷𝑦𝜑(𝑥, 𝑦) ∈ R𝑛\𝐵𝜅 .

From Jensen-Ishii’s Lemma [30, Theorem 3.2], there exist 𝑋,𝑌 ∈ S(𝑛), such that

( |𝐷𝑥𝜑(𝑥, 𝑦) | − 𝜅)𝑞+𝐹 (𝑋) ≥ 𝑓 (𝑥) and ( |𝐷𝑦𝜑(𝑥, 𝑦) | − 𝜅)𝑞+𝐹 (𝑌 ) ≤ 𝑓 (𝑦). (2.4)

In addition, 
𝑋 0

0 −𝑌

 ≤

𝑍 −𝑍

−𝑍 𝑍

 + (2𝐾 + 𝜄)𝐼2𝑛×2𝑛, (2.5)
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where 𝑍 = 𝐿𝐷2
𝑥𝜙( | · |) (𝑥 − 𝑦). Estimate (2.5) applied to vectors (𝜉, 𝜉), provides 𝑠𝑝𝑒𝑐(𝑋 −𝑌 ) ⊂

(−∞, 4𝐾 + 2𝜄]. On the other hand, now choosing (𝜂,−𝜂), for 𝜂 = (𝑥 − 𝑦)/|𝑥 − 𝑦 |, gives

(𝑋 − 𝑌 )𝜂 · 𝜂 ≤ 4𝑍𝜂 · 𝜂 + (4𝐾 + 2𝜄)

= 4𝐿𝜙′′( |𝑥 − 𝑦 |) + 4𝐾 + 2𝜄.

This implies that at least one eigenvalue of (𝑋 − 𝑌 ) should be less than

4𝐿𝜙′′( |𝑥 − 𝑦 |) + 4𝐾 + 2𝜄.

Therefore,

M+(𝑋 − 𝑌 ) ≤ Λ(𝑛 − 1) (4𝐾 + 2𝜄) + 𝜆(4𝐿𝜙′′( |𝑥 − 𝑦 |) + 4𝐾 + 2𝜄)

= 𝑛Λ(4𝐾 + 2𝜄) + 4𝜆𝐿𝜙′′( |𝑥 − 𝑦 |).

From (1.1) and (2.4), we conclude

−∥ 𝑓 ∥∞
[
( |𝐷𝑥𝜑(𝑥, 𝑦) | − 𝜅)−𝑞+ +

(��𝐷𝑦𝜑(𝑥, 𝑦)
�� − 𝜅)−𝑞+ ]

≤ M+(𝑋 − 𝑌 ),

and the Lemma is proven. □

We are ready to deliver a proof of Theorem 2.2; extra care is required to keep track of all
constants’ dependence.

Proof of Theorem 2.2. The idea is to show the existence of universal positive parameters 𝐿 and
𝐾 , such that

𝑢(𝑥) − 𝑢(𝑦) ≤ 𝐿 |𝑥 − 𝑦 | + 𝐾
(
|𝑥 |2 + |𝑦 |2

)
, (2.6)

for each (𝑥, 𝑦) ∈ 𝐵1/2 × 𝐵1/2.

Let us denote
𝜙(𝑡) = 3𝑡 − 2𝑡3/2

3
(2.7)

for 𝑡 ∈ [0, 1]. We further define

𝑀 B sup
𝑥,𝑦∈𝐵1/2

(
𝑢(𝑥) − 𝑢(𝑦) − 𝐿𝜙( |𝑥 − 𝑦 |) − 𝐾

(
|𝑥 |2 − |𝑦 |2

))
.

Note that showing 𝑀 ≤ 0 yields (2.6). The strategy is then to assume that 𝑀 > 0 and verify that
this implies a constraint to the size of 𝐿 and 𝐾 .

Let (𝑥, 𝑦) be the point in which 𝑀 is attained. Since 𝜙(0) = 0, we easily see that 𝑥 ≠ 𝑦.
Additionally,

𝐿𝜙( |𝑥 − 𝑦 |) + 𝐾
(
|𝑥 |2 + |𝑦 |2

)
< 𝑢(𝑥) − 𝑢(𝑦) ≤ 2.

This implies that, choosing 𝐾 universally large, there holds |𝑥 − 𝑦 | ≤ 1/4. Also,

1
2
≤ 𝜙′( |𝑥 − 𝑦 |) ≤ 1
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and thus, for 𝐿 ≥ 4𝐾 , we have

𝐿

4
≤ 𝐿

2
− 𝐾 ≤ min{|𝐷𝑥𝜑(𝑥, 𝑦) |, |𝐷𝑦𝜑(𝑥, 𝑦) |}, (2.8)

where, hereafter,
𝜑(𝑥, 𝑦) B 𝐿𝜙( |𝑥 − 𝑦 |) + 𝐾 ( |𝑥 |2 + |𝑦 |2).

From Lemma 2.4 and the fact that 𝜙′′( |𝑥 − 𝑦 |) < −1, we derive

𝐿 ≤ 𝑛Λ
𝜆
𝐾 + 1

4𝜆
∥ 𝑓 ∥∞

(
( |𝐷𝑥𝜑(𝑥, 𝑦) | − 𝜅)−𝑞+ +

(��𝐷𝑦𝜑(𝑥, 𝑦)
�� − 𝜅)−𝑞+ )

. (2.9)

Taking in account the last two estimates, we obtain

𝐿 − 𝑛Λ
𝜆
𝐾 ≤ 1

𝜆
∥ 𝑓 ∥∞

(
𝐿

4
− 𝜅

)−𝑞
+

For 𝐿 > 4(1 + 𝜅), we conclude
𝐿 < 𝐾𝑛

Λ

𝜆
+ 1
𝜆
∥ 𝑓 ∥∞. (2.10)

Thus, if one selects

𝐿 > max
{
4(1 + 𝜅), 4𝐾, 𝐾𝑛Λ

𝜆
+ 1
𝜆
∥ 𝑓 ∥∞

}
,

we conclude 𝑀 cannot be a positive quantity and the proof of Theorem 2.2 is complete. □

2.2.2 Compactness for scaled PDEs

In this section, we establish equicontinuity estimates for normalized solutions of

( |𝜉 + 𝜗𝐷𝑢 | − 𝜅)𝑞+𝐹 (𝐷2𝑢) = 𝑓 . (2.11)

The main goal is to obtain estimates that are independent of 𝜉 ∈ R𝑛 and of 𝜗 > 0.

We note that the aforementioned equation is understood in the 𝜅-grad viscosity sense for
the auxiliary function 𝑣(𝑥) = 𝜉 · 𝑥 + 𝜗𝑢(𝑥) with respect to the PDE

( |𝐷𝑣 | − 𝜅)𝑞+𝐹𝜗 (𝐷2𝑣) = 𝑓𝜗, (2.12)

where 𝐹𝜗 (𝑀) = 𝜗𝐹 (𝜗−1𝑀) and 𝑓𝜗 = 𝜗 𝑓 . That is, saying 𝑢 verifies (2.11) means that 𝑣 is a
𝜅-grad viscosity solution of (2.12). With that understood, we pass to discuss the first technical
lemma needed to obtain uniform compactness for such PDEs.

Lemma 2.5. Assume 𝑢 is normalized and satisfies (2.11) with ∥ 𝑓 ∥∞ ≤ 1. Given 𝜇 ∈ (0, 1), there
exists a constant 𝐶 depending only on 𝑛, 𝜆 and Λ, such that if

|𝜉 | ≥ 𝜅 + 2𝜇 and 𝜗 ≤ 𝜇𝑞+1

2𝐶
, (2.13)

then
sup

𝑥,𝑦∈𝐵1/2

|𝑢(𝑥) − 𝑢(𝑦) |
|𝑥 − 𝑦 | ≤ 𝐶𝜇−𝑞 .
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Proof. The proof follows the lines of reasoning employed in Section 2.2.1. We will only comment
on the necessary amendments.

Consider 𝜙 as defined in (2.7) and

𝑀 B sup
𝑥,𝑦∈𝐵1/2

(
𝑢(𝑥) − 𝑢(𝑦) − 𝐿𝜙( |𝑥 − 𝑦 |) − 𝐾

(
|𝑥 |2 − |𝑦 |2

))
.

Let (𝑥, 𝑦) be the pair where 𝑀 is attained and assume 𝑀 > 0. First, we localize the points where
𝑀 is attained by choosing 𝐾 large enough.

The auxiliary function 𝑣(𝑥) = 𝜉 · 𝑥 + 𝜗𝑢(𝑥) solves (2.12) in the 𝜅-grad viscosity sense,
thus we can apply Lemma 2.4 with 𝜑(𝑥, 𝑦) B 𝐿𝜙( |𝑥 − 𝑦 |) + 𝐾 ( |𝑥 |2 + |𝑦 |2) as to reach

𝐿 ≤ 𝑛Λ
𝜆
𝐾 + 1

4𝜆

(
( |𝜗𝐷𝑥𝜑(𝑥, 𝑦) + 𝜉 | − 𝜅)−𝑞+ +

(��𝜗𝐷𝑦𝜑(𝑥, 𝑦) − 𝜉
�� − 𝜅)−𝑞+ )

. (2.14)

From (2.13) and the estimate

max{|𝐷𝑥𝜑(𝑥, 𝑦) |, |𝐷𝑦𝜑(𝑥, 𝑦) |} ≤ 2𝐿,

there holds
min{|𝜉 + 𝜗𝐷𝑥𝜑(𝑥, 𝑦) |, |𝜉 − 𝜗𝐷𝑦𝜑(𝑥, 𝑦) |} ≥ 𝜅 + 𝜇.

Therefore, from estimate (2.14), we can further estimate

𝐿 < 𝑛
Λ

𝜆
𝐾 + 1

2𝜆
𝜇−𝑞 ≤ 𝐶𝜇−𝑞,

for 𝐶 = 𝐶 (𝑛, 𝜆,Λ). The conclusion is that if 𝐿 ≥ 𝐶𝜇−𝑞, then 𝑀 ≤ 0, which is equivalent to the
thesis of the Lemma. □
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2.3 Regularity estimates up to the free boundary

In this Section, we establish gradient continuity for effective viscosity solutions of (0.4),
viz Definition 1.4. Some of the technical lemmas to be presented here, though, are still valid for
the weaker notion of solutions, according to Definition 1.2. We will state such results in their
more general form for future reference.

We further comment that in this section we will deal with the solutions of (0.4) for a
universally small 𝜅 > 0, to be chosen later in the proof. According to Remark 1.1, this is not
restrictive. The main result of this section reads as follows:

Theorem 2.3. Let 𝑢 be an effective viscosity solution of (0.4) in 𝐵1. Then, there exists a modulus
of continuity 𝜎, depending on 𝜅, 𝑞, 𝑛, 𝜆, Λ, ∥ 𝑓 ∥𝐿𝑖𝑝 and ∥𝑢∥∞, such that

( |𝐷𝑢 | − 𝜅)+ ∈ 𝐶0,𝜎 (𝐵1/2).

We comment that the main new information given by Theorem 2.3 is that 𝑢 is uniformly
in 𝐶1

loc in Ω𝑢, up to the free boundary Γ𝑢; a non-trivial result, as no information can be retrieved
from the local structure of Γ𝑢. Throughout this section, we shall obtain a slightly stronger result,
from which Theorem 2.3 follows as a consequence. We state it here for future reference.

Proposition 2.3. Let 𝑢 be an effective viscosity solution of (0.4). Then, given 0 < 𝜇 < 1, there
exist constants 𝛼𝜇 ∈ (0, 1) and 𝐶𝜇 > 0, depending only upon 𝑛, 𝑞, 𝜆, Λ, ∥ 𝑓 ∥𝐿𝑖𝑝, ∥𝑢∥∞ and 𝜇,
such that

∥(|𝐷𝑢 | − (𝜅 + 𝜇))+∥𝐶0,𝛼𝜇 (𝐵1/2) ≤ 𝐶𝜇 .

Critical to Proposition 2.3 is the fact that, while the Hölder exponent 𝛼𝜇 may degenerate
as 𝜇 → 0, the estimate is local, i.e. holds within 𝐵1/2, and not only in the region where the PDE
drives the system.

The proof of Theorem 2.3 will be divided into two main steps: given 0 < 𝜇 < 1, we slice
Ω𝑢 as follows

Ω𝑢 =
{
𝑥 ∈ 𝐵1

�� 𝜅 < |𝐷𝑢 | < 𝜅 + 𝜇
}
∪

{
𝑥 ∈ 𝐵1

�� |𝐷𝑢 | > 𝜅 + 𝜇} .
At points 𝜇-close (in the sense of level set of |𝐷𝑢 |) to the free boundary Γ𝑢, we employ a De
Giorgi based argument to get improvement of oscillation for functions of 𝐷𝑢, which corresponds
to subsection 2.3.1. At points 𝜇-far away from the free boundary, the equation is uniformly
elliptic, so one can proceed with an approximation argument.

2.3.1 Improvement of oscillation near the free boundary

Hereafter in this section we assume the source term 𝑓 to be a Lipschitz continuous
function. Note that if 𝑢 is an effective viscosity solution of (0.4), then it is locally of class 𝐶1,𝛼 in
{|𝐷𝑢 | > 𝜅}.
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Lemma 2.6. Let 𝑢 be an effective viscosity solution of (0.4) with 𝑓 ∈ Lip(𝐵̄1). For a unit vector
𝑒 ∈ 𝜕𝐵1, consider 𝑤 to be defined as

𝑤 = (𝜕𝑒𝑢 − (𝜅 + 𝜇))+.

Then, 𝑤 satisfies
M+(𝐷2𝑤) + 𝑞 𝜇−𝑞−1 ∥ 𝑓 ∥∞ |𝐷𝑤 | ≥ −𝜇−𝑞 ∥ 𝑓 ∥𝐿𝑖𝑝,

in the viscosity sense in 𝐵1.

Proof. To ease notation, let G be defined by G(𝜉) = ( |𝜉 | − 𝜅)𝑞+. Notice that for |𝜉 | > 𝜅

|𝐷G(𝜉) | ≤ 𝑞( |𝜉 | − 𝜅)𝑞−1
+ . (2.15)

Differentiating the equation with respect to 𝑒 ∈ 𝜕𝐵1 inside the open set
{
𝑥 ∈ 𝐵1

�� 𝑤 > 0
}
,

we obtain
𝐷G(𝐷𝑢) · 𝐷 (𝜕𝑒𝑢)𝐹 (𝐷2𝑢) + G(𝐷𝑢)𝐹𝑖 𝑗 (𝐷2𝑢)𝜕𝑖 𝑗 (𝜕𝑒𝑢) = 𝜕𝑒 𝑓 .

Taking into account that 𝐹 (𝐷2𝑢) = 𝑓 [G(𝐷𝑢)]−1 and dividing the above equation by G(𝐷𝑢) we
get

𝐷G(𝐷𝑢) · 𝐷 (𝜕𝑒𝑢) [G(𝐷𝑢)]−2 𝑓 + 𝐹𝑖 𝑗 (𝐷2𝑢)𝜕𝑖 𝑗 (𝜕𝑒𝑢) = 𝜕𝑒 𝑓 [G(𝐷𝑢)]−1. (2.16)

Now, from (2.15) and the fact that{
𝑥 ∈ 𝐵1

�� 𝑤(𝑥) > 0
}
⊂

{
𝑥 ∈ 𝐵1

�� |𝐷𝑢(𝑥) | > 𝜅 + 𝜇} ,
we obtain

𝐷G(𝐷𝑢) · 𝐷 (𝜕𝑒𝑢) [G(𝐷𝑢)]−2 𝑓 ≤ ∥ 𝑓 ∥∞ [G(𝐷𝑢)]−2 |𝐷G(𝐷𝑢) | |𝐷 (𝜕𝑒𝑢) |

≤ 𝑞 𝜇−𝑞−1 ∥ 𝑓 ∥∞ |𝐷 (𝜕𝑒𝑢) |

= 𝑞 𝜇−𝑞−1 ∥ 𝑓 ∥∞ |𝐷𝑤 |.

Moreover, by definition of G, we have

𝜕𝑒 𝑓 [G(𝐷𝑢)]−1 ≥ −∥𝐷 𝑓 ∥∞ 𝜇−𝑞 .

Hence, ellipticity of 𝐹 yields

𝑞 𝜇−𝑞−1 ∥ 𝑓 ∥∞ |𝐷𝑤 | + M+(𝐷2𝑤) ≥ −𝜇−𝑞 ∥𝐷 𝑓 ∥∞, (2.17)

as desired. □

Next, we obtain an oscillation improvement of the gradient, away from (but arbitrarily
near) the free boundary Γ𝑢. In order to ease presentation throughout this section, we adopt the
following notation for a vector 𝑒 ∈ 𝜕𝐵1:

𝑤𝑒 B (𝜕𝑒𝑢 − (𝜅 + 𝜇))+ and 𝑤𝑀 B ( |𝐷𝑢 | − (𝜅 + 𝜇))+
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Lemma 2.7. Assume 𝑢 is an effective viscosity solution of (0.4), with 𝑓 ∈ Lip(𝐵̄1). Assume that
for some 𝜂 > 0, there holds

sup
𝑒∈𝜕𝐵1

��{𝑥 ∈ 𝐵1/8
�� 𝑤𝑒 ≥ (1 − 𝜂)∥𝑤𝑀 ∥𝐿∞ (𝐵1/4)

}�� ≤ (1 − 𝜂)
��𝐵1/8

�� . (2.18)

Then, there exist parameters 𝑐, depending only on 𝑛, 𝜆, Λ, 𝑞, 𝜇, ∥ 𝑓 ∥∞, and 𝜃, depending on 𝑛, 𝜆,
and Λ, such that

∥𝑤𝑀 ∥𝐿∞ (𝐵1/4) ≤ max
{
(1 − 𝑐 𝜂1+ 1

𝜃 )∥𝑤𝑀 ∥𝐿∞ (𝐵1/4) ,
(
𝑐 𝜂

1
𝜃
+1

)−1
∥ 𝑓 ∥𝐿𝑖𝑝

}
.

Proof. Let us call
A B

{
𝑥 ∈ 𝐵1/8

�� 𝑤𝑒 ≥ (1 − 𝜂)𝑑
}
.

Easily one notes that
𝑤 B ∥𝑤𝑀 ∥∞ − 𝑤𝑒 ≥ 0,

where ∥𝑤𝑀 ∥∞ B ∥𝑤𝑀 ∥𝐿∞ (𝐵1/4) . Combining Lemma 2.6 and the weak Harnack inequality, see
for instance [51, Theorem 4.5], we obtain

∥𝑤∥𝐿 𝜃 (𝐵1/8) ≤ 𝐶
(
inf
𝐵1/8

𝑤 + ∥ 𝑓 ∥𝐿𝑖𝑝
)
,

for some 𝜃 = 𝜃 (𝑛, 𝜆,Λ), and 𝐶 = 𝐶 (𝜇, ∥ 𝑓 ∥∞, 𝑛, 𝜆,Λ, 𝑞). From the last inequality and (2.18), we
obtain

𝑤 + ∥ 𝑓 ∥𝐿𝑖𝑝 ≥ 𝐶−1

(∫
𝐵1/8

𝑤 𝜃𝑑𝑥

)1/𝜃

≥ 𝐶−1
(∫

A𝑐

(∥𝑤𝑀 ∥∞ − 𝑤𝑒)𝜃 𝑑𝑥
)1/𝜃

,

and thus,
𝑤 + ∥ 𝑓 ∥𝐿𝑖𝑝 ≥ 𝐶−1 |A𝑐 | 1

𝜃 𝜂∥𝑤𝑀 ∥∞ ≥ 𝑐1𝜂
1
𝜃
+1𝜂∥𝑤𝑀 ∥∞,

for some 𝑐1 = 𝑐1(𝜇, ∥ 𝑓 ∥∞, 𝑛, 𝜆,Λ, 𝑞). This implies that

∥𝑤𝑀 ∥∞ − 𝑤𝑒 ≥ 𝑐1𝜂
1
𝜃
+1∥𝑤𝑀 ∥∞ − ∥ 𝑓 ∥𝐿𝑖𝑝,

which translates into

∥𝑤𝑀 ∥∞ − 𝑤𝑒 ≥ 𝑐1𝜂
1
𝜃
+1∥𝑤𝑀 ∥∞ − ∥ 𝑓 ∥𝐿𝑖𝑝 in 𝐵1/8. (2.19)

Next, we split the analysis into two cases. First, we assume

𝑐1𝜂
1
𝜃
+1∥𝑤𝑀 ∥∞ ≥ 2∥ 𝑓 ∥𝐿𝑖𝑝 .

By (2.19), we have

𝑤𝑒 ≤
(
1 − 𝑐1𝜂

1
𝜃
+1

2

)
∥𝑤𝑀 ∥∞ in 𝐵1/8,
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and hence,
∥𝑤𝑀 ∥𝐿∞ (𝐵1/16) ≤

(
1 − 𝑐𝜂 1

𝜃
+1

)
∥𝑤𝑀 ∥∞.

Next, we assume that
𝑐1𝜂

1
𝜃
+1∥𝑤𝑀 ∥∞ < 2∥ 𝑓 ∥𝐿𝑖𝑝 .

From this,
∥𝑤𝑀 ∥𝐿∞ (𝐵1/16) ≤ ∥𝑤𝑀 ∥∞ ≤

(
𝑐𝜂

1
𝜃
+1

)−1
∥ 𝑓 ∥Lip.

The proof is complete. □

Iterating the previous Lemma in dyadic balls we obtain the following:

Proposition 2.4. Assume 𝑢 is an effective viscosity solution of (0.4) and let 𝜇, 𝜂 be positive
constants. For some integer 𝑘 > 0, we assume that the following holds

sup
𝑒∈𝜕𝐵1

���{𝑥 ∈ 𝐵2−(2𝑖+1)
�� 𝑤𝑒 ≥ (1 − 𝜂)∥𝑤𝑀 ∥𝐿∞(𝐵2−2𝑖 ) }

��� ≤ (1 − 𝜂)
��𝐵2−(2𝑖+1)

��
for all 𝑖 = 1, · · · , 𝑘 . Then, there exists constants 𝐶 > 0 and 𝛼 ∈ (0, 1), depending only on 𝜇, 𝜂,
∥ 𝑓 ∥Lip, 𝑛, 𝜆, Λ, 𝑞 such that

∥𝑤𝑀 ∥𝐿∞(𝐵2−2𝑖 ) ≤ max
(
∥𝐷𝑢∥𝐿∞ (𝐵1/4) , 𝐶

)
2−2(𝑖−1)𝛼,

for all 𝑖 = 1, . . . , 𝑘 + 1.

Proof. We argue by induction. Case 𝑖 = 1 is obvious. We assume that Proposition 2.4 holds for
𝑖 = 𝑘 . Let 𝑟 = 2−2(𝑘−1) and consider

𝑢𝑟 (𝑥) B 𝑢(𝑟𝑥)/𝑟.

Easily one notes that 𝑤 solves (0.4), for 𝐹𝑟 (𝑀) = 𝑟𝐹 (𝑟−1𝑀) and 𝑓𝑟 (𝑥) = 𝑟 𝑓 (𝑟𝑥). In addition,���{𝑥 ∈ 𝐵2−2𝑘−1
�� 𝑤𝑒 ≥ (1 − 𝜂)∥𝑤𝑀 ∥𝐿∞(𝐵2−2𝑘 )

}���
= 2−2(𝑘−1)𝑛 ��{𝑥 ∈ 𝐵1/8

�� (𝜕𝑒𝑢𝑟 (𝑥) − (𝜅 + 𝜇))+ ≥ (1 − 𝜂)𝑑
}�� ,

where
𝑑 = ∥(|𝐷𝑢𝑟 | − (𝜅 + 𝜇))+∥𝐿∞ (𝐵1/4) = ∥𝑤𝑀 ∥𝐿∞(𝐵2−2𝑘 ) .

Hence, 𝑢𝑟 is under assumptions of Lemma 2.7. Therefore,

∥(|𝐷𝑢𝑟 | − (𝜅 + 𝜇))+∥𝐿∞(𝐵1/16) ≤

max
{
(1 − 𝑐 𝜂 1

𝜃
+1)∥(|𝐷𝑢𝑟 | − (𝜅 + 𝜇))+∥𝐿∞ (𝐵1/4) ,

(
𝑐 𝜂

1
𝜃
+1

)−1
𝑟 ∥ 𝑓 ∥Lip

}
.

From this,

∥𝑤𝑀 ∥𝐿∞(𝐵2−2(𝑘+1) ) ≤

max
{
(1 − 𝑐 𝜂 1

𝜃
+1)∥𝑤𝑀 ∥𝐿∞(𝐵2−2𝑘 ) ,

(
𝑐 𝜂

1
𝜃
+1

)−1
2−2(𝑘−1) ∥ 𝑓 ∥Lip

}
.

(2.20)
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In what follows, we choose

𝛼 B
− ln

(
1 − 𝑐𝜂 1

𝜃
+1

)
2 ln 2

.

Hence 1 − 𝜂 1
𝜃
+1𝑐 = 2−2𝛼. Utilizing the result for 𝑖 = 𝑘 , we obtain

∥𝑤𝑀 ∥𝐿∞(𝐵2−2(𝑘+1) ) ≤ max
(
∥𝐷𝑢∥𝐿∞ (𝐵1/4) , 𝐶

)
2−2𝑘𝛼,

which completes the proof. □

2.3.2 Regularity estimates far from the free boundary

In what follows, for a given 𝜇 ∈ (0, 1), we denote

𝜗𝜇 B
𝜇1+𝑞

2𝐶
,

where 𝐶 > 0 is the universal constant given by Lemma 2.5.

Lemma 2.8. Let 𝑢 be a solution of (2.11), under the conditions

𝜗 ∈ (0, 𝜗𝜇), and |𝜉 | ≥ 𝜅 + 2𝜇.

Given 𝜀 > 0, there exists 𝜍 > 0 depending on 𝜀, 𝜇 and 𝑞 such that, if

max
(
∥𝑢∥∞, 𝜍−1∥ 𝑓 ∥∞

)
≤ 1,

then, there exists a 𝜅-grad viscosity solution to

F (𝐷2ℎ) = 0 in {|𝐷ℎ| > 𝜅} ∩ 𝐵1/2, (2.21)

with F satisfying (1.1), such that

∥𝑢 − ℎ∥𝐿∞ (𝐵1/2) ≤ 𝜀.

Proof. Let us assume, seeking a contradiction, that the thesis of Lemma fails. That is, for some
𝜀0 > 0, there exists a sequence

(𝑢𝑘 , 𝜗𝑘 , 𝜉𝑘 , 𝜍𝑘 , 𝑓𝑘 , 𝐹𝑘 )𝑘∈N ,

where 𝑢𝑘 is a normalized solution of (2.11), according to Definition 1.2, with the corresponding
parameters given above and

𝜍𝑘 = o(1),

as 𝑘 → ∞; however,
|𝑢𝑘 − ℎ | > 𝜀0 in 𝐵1/2, (2.22)

for all ℎ satisfying (2.21). From Lemma 2.5, we have

∥𝐷𝑢𝑘 ∥𝐿∞ (𝐵1/2) ≤ 𝐶𝜇
−𝑞 .
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From this, and the fact that 𝜗𝑘 ≤ 𝜗𝜇 and |𝜉𝑘 | ≥ 𝜅 + 2𝜇, one has

|𝐹𝑘 (𝐷2𝑢𝑘 ) | ≤ ∥ 𝑓𝑘 ∥∞( |𝜉𝑘 + 𝜗𝑘𝐷𝑢𝑘 | − 𝜅)−𝑞+ ≤ 𝜍𝑘𝜇
−𝑞 .

Now both 𝐹𝑘 and 𝑢𝑘 are uniformly bounded and equicontinuous, hence, up to a subsequence,
𝐹𝑘 → 𝐹∞ and 𝑢𝑘 → 𝑢∞ locally uniformly. By stability 𝑢∞ solves

𝐹∞(𝐷2𝑢∞) = 0 in 𝐵1/2,

in the 𝜅-grad viscosity sense. This leads to a contradiction on (2.22) for 𝑘 ≫ 1 large enough. □

The previous Lemma gives proximity to functions that are 𝜅-grad viscosity solutions, and
thus only entitled to local Lipschitz regularity. Next, we show that those functions are actually
close to 𝐶1,𝛼 functions.

Lemma 2.9. Given 𝜀 > 0, there exists small positive parameters 𝜅 and 𝜍 , depending on 𝑛, 𝜆, Λ
and 𝜖 such that if

max
(
∥𝑢∥∞, 𝜍−1∥ 𝑓 ∥∞

)
≤ 1,

and 𝑢 is a 𝜅-grad viscosity solution to

( |𝐷𝑢 | − 𝜅)𝑞+𝐹 (𝐷2𝑢) = 𝑓 ,

then, there exists ℎ ∈ 𝐶1,𝛼 with universal bounds satisfying

sup
𝐵1/2

|𝑢 − ℎ | < 𝜖

Proof. Assume, seeking a contradiction, that the Lemma thesis does not hold true. This means
there are sequences 𝑢𝑘 , 𝐹𝑘 , 𝑓𝑘 , 𝜍𝑘 , 𝜅𝑘 with 𝜅𝑘 and 𝜍𝑘 converging to zero, such that 𝑢𝑘 is a 𝜅𝑘 -grad
viscosity solution to

( |𝐷𝑢𝑘 | − 𝜅𝑘 )𝑞+𝐹𝑘 (𝐷2𝑢𝑘 ) = 𝑓𝑘 ,

but
sup
𝐵1/2

|𝑢𝑘 − ℎ| > 𝜖0,

for some 𝜖0 > 0 and every ℎ in the set of 𝐶1,𝛼 functions (with universal bounds to be set a
posteriori).

Since 𝜍𝑘 → 0, we have 𝑓𝑘 → 0. As ∥𝑢𝑘 ∥∞ ≤ 1, Theorem 2.2 yields equicontinuity, and
thus, up to a subsequence, we can assume 𝑢𝑘 → 𝑢∞. Passing a further subsequence, if necessary,
𝐹𝑘 → 𝐹∞, and, by stability, 𝑢∞ is a 0-grad viscosity solution to

|𝐷𝑢∞ |𝑞𝐹∞(𝐷2𝑢∞) = 0.

Notice that since the equation is homogeneous, 𝑢∞ solves

|𝐷𝑢∞ |𝑞𝐹∞(𝐷2𝑢∞) = 0,
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and by [47, Lemma 6], there holds
𝐹∞(𝐷2𝑢∞) = 0

in the classical viscosity sense. The contradiction follows as in the proof of Lemma 2.8. □

Next, we use iteration arguments to obtain the following result.

Proposition 2.5. Let 𝑢 be a 𝜅-grad viscosity solution of (0.4). There exists constants 𝜌0, 𝛾 ∈ (0, 1)
depending on 𝑛, 𝜆, Λ, and small positive constants 𝜍0, 𝜏0 depending only on 𝜇, 𝑛, 𝜆, Λ and 𝑞,
such that, if

∥ 𝑓 ∥∞ ≤ 𝜍0, and |𝑢(𝑥) − (𝜉 · 𝑥 + 𝑏) | ≤ 𝜏0 in 𝐵1,

for some 𝜉 ∈ R𝑛, such that
𝜅 + 3𝜇 ≤ |𝜉 |,

then, for each positive integer 𝑘 , there exists an affine function

ℓ𝑘 = 𝜉𝑘 · 𝑥 + 𝑏𝑘 ,

such that
|𝜉𝑘 − 𝜉𝑘−1 | ≤ 𝐶𝜏0𝜌

(𝑘−1)𝛾
0 , |𝑏𝑘 − 𝑏𝑘−1 | ≤ 𝐶𝜏0𝜌

(𝑘−1) (1+𝛾)
0

and
|𝑢 − ℓ𝑘 | ≤ 𝜏0𝜌

(𝑘−1) (1+𝛾)
0 in 𝐵𝜌𝑘−1

0
,

for some 𝐶 ≥ 1 depending on 𝑛, 𝜆, Λ.

Proof. We argue inductively. Case 𝑘 = 1 follows from the assumptions, taking 𝜉0 = 𝜉1 = 𝜉 and
𝑏0 = 𝑏1 = 𝑏. Assume that the thesis of the Proposition holds for 𝑘 = 𝑗 . Define the following
function

𝑢 𝑗 (𝑦) B
(𝑢 − ℓ 𝑗 ) (𝜌 𝑗−1

0 𝑦)

𝜏0𝜌
( 𝑗−1) (1+𝛾)
0

in 𝐵1.

Note that 𝑢 𝑗 solves

( |𝜉 𝑗 + 𝜏0𝜌
( 𝑗−1)𝛾
0 𝐷𝑢 𝑗 | − 𝜅)𝑞+𝐹𝑗 (𝐷2𝑢 𝑗 ) = 𝑓 𝑗 in 𝐵1,

where

𝐹𝑗 (𝑀) = 𝜏−1
0 𝜌

( 𝑗−1) (1−𝛾)
0 𝐹 (𝜏0𝜌

( 𝑗−1) (𝛾−1)
0 𝑀) and 𝑓 𝑗 (𝑥) = 𝜌( 𝑗−1) (1−𝛾)

0 𝜏−1
0 𝑓 (𝜌 𝑗−1

0 𝑥).

From the induction thesis, 𝑘 = 𝑗 , we have ∥𝑢 𝑗 ∥∞ ≤ 1. In the sequel, we make the following
choice

𝜏0 ≤ min
{

1
4𝐶

𝜇, 𝜗𝜇

}
. (2.23)

In addition, take 𝜍0 sufficiently small, such that

∥ 𝑓 𝑗 ∥∞ ≤ 𝜏−1
0 𝜍0 = 𝜍,
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where 𝜍 is given by Lemma 2.8, for 𝜀 = 𝜌
1+𝛾
0 /2. Additionally, from (2.23)

𝑗∑︁
𝑖=1

|𝜉𝑖 − 𝜉𝑖−1 | ≤ 𝐶𝜏0

𝑗∑︁
𝑖=1

𝜌
(𝑖−1)𝛾
0 ≤ 𝐶𝜏0

∞∑︁
𝑖=1

1
2𝑖

≤ 1
4
𝜇,

provided 𝜌𝛾0 ≤ 1/2. This implies that

|𝜉 𝑗 | ≥ |𝜉 | −
𝑗∑︁
𝑖=1

|𝜉𝑖 − 𝜉𝑖−1 | ≥ 𝜅 + 2𝜇.

In view of these estimates, we can apply Lemma 2.8 for 𝑢 𝑗 in combination with Lemma 2.9, as
to obtain the existence of a (𝜆,Λ)-harmonic function ℎ, such that

∥𝑢 𝑗 − ℎ∥𝐿∞ (𝐵1/2) ≤
𝜌

1+𝛾
0
2
.

Since ℎ is universally bounded, we apply classical regularity estimates, to obtain

|ℎ(𝑥) − 𝐷ℎ(0) · 𝑥 − ℎ(0) | ≤ 𝐶′|𝑥 |1+𝛼′ for 𝑥 ∈ 𝐵1/4,

for constants 𝐶′ and 𝛼′ depending upon 𝑛, 𝜆 and Λ. Therefore, selecting

𝛾 = 𝛼′/2 and 𝜌0 ≤ min

{(
1
2

) 1
𝛾

,

(
2
𝐶′

) 1
𝛾

}
,

we obtain
|ℎ(𝑥) − 𝐷ℎ(0) · 𝑥 − ℎ(0) | ≤ 𝜌

1+𝛾
0 /2, for 𝑥 ∈ 𝐵𝜌0 .

By the triangle inequality,

|𝑢 𝑗 (𝑥) − 𝐷ℎ(0) · 𝑥 − ℎ(0) | ≤ 𝜌
1+𝛾
0 , for 𝑥 ∈ 𝐵𝜌0 .

Finally, we define
ℓ 𝑗+1(𝑥) B ℓ 𝑗 (𝑥) − 𝜏0𝜌

( 𝑗−1) (1+𝛾)
0 ℓ(𝜌−( 𝑗−1)

0 𝑥)

where ℓ(𝑥) = 𝐷ℎ(0) · 𝑥 + ℎ(0). Hence,

|𝑢 − ℓ 𝑗+1 | ≤ 𝜏0𝜌
𝑗 (1+𝛾)
0 in 𝐵

𝜌
𝑗

0
,

which completes the proof. □

Corollary 2.1. Under the assumptions of Proposition 2.5, there exists a constant 𝐶 depending
only on 𝑛, 𝜆 and Λ, such that

|𝐷𝑢(𝑥) − 𝐷𝑢(0) | ≤ 𝜏0𝐶 |𝑥 |𝛾,

for each 𝑥 ∈ 𝐵1/2.



Chapter 2. Regularity in diffusion models with gradient activation 41

Proof. Recall that
𝜌𝑘0 |𝜉𝑘+1 − 𝜉𝑘 | + |𝑏𝑘+1 − 𝑏𝑘 | ≤ 2𝐶𝜏0𝜌

𝑘 (1+𝛾)
0 , (2.24)

implies that sequences 𝜉𝑘 and 𝑏𝑘 converge. Labeling,

lim
𝑘→∞

𝜉𝑘 = 𝜉∞, and lim
𝑘→∞

𝑏𝑘 = 𝑏∞,

from (2.24), we obtain

|𝜉∞ − 𝜉𝑘 | ≤
𝐶𝜏0

1 − 𝜌0
𝜌
𝑘𝛾

0 and |𝑏∞ − 𝑏𝑘 | ≤
𝐶𝜏0

1 − 𝜌0
𝜌
𝑘 (1+𝛾)
0 .

Next, given 𝑟 < 1, consider integer 𝑘 > 0 such that 𝜌𝑘+1
0 ≤ 𝑟 ≤ 𝜌𝑘0 . Hence, denoting

ℓ∞(𝑥) B 𝜉∞ · 𝑥 + 𝑏∞,

we apply Proposition 2.5, obtaining so

|𝑢(𝑥) − ℓ∞(𝑥) | ≤ |𝑢(𝑥) − ℓ𝑘 (𝑥) | + |ℓ𝑘 (𝑥) − ℓ∞(𝑥) | ≤ 𝜏0
1
𝜌

1+𝛾
0

(
1 + 2𝐶

1 − 𝜌0

)
𝑟1+𝛾,

for each 𝑥 ∈ 𝐵𝜌𝑘0 . This implies that

sup
𝑥∈𝐵𝑟

|𝑢 − ℓ∞ | (𝑥) ≤ 𝜏0𝐶𝑟
1+𝛾 .

and some constant 𝐶 = 𝐶 (𝑛, 𝜆,Λ). Therefore,

|𝑢(𝑥) − ℓ∞(𝑥) | ≤ 𝜏0𝐶 |𝑥 |1+𝛾,

for |𝑥 | < 1. Notice that if we make 𝑥 = 0 we get 𝑏∞ = 𝑢(0). Furthermore, for 𝑠 < 1 we get����𝑢(𝑠𝑒𝑖) − 𝑢(0)𝑠
− 𝜉∞ · ®𝑒𝑖

���� ≤ 𝜏0𝐶𝑠
𝛾 .

where 𝑒𝑖 is a 𝑛-dimensional canonical vector. Passing to the limit when 𝑠 → 0 we obtain that
𝜉∞ · 𝑒𝑖 = 𝜕𝑒𝑖𝑢(0) for every 𝑖 = 1, · · · , 𝑛, and so 𝜉∞ = 𝐷𝑢(0). Therefore,

|𝑢(𝑥) − 𝑢(0) − 𝐷𝑢(0) · 𝑥 | ≤ 𝜏0𝐶 |𝑥 |1+𝛾,

for |𝑥 | < 1. In particular,
|𝐷𝑢(𝑥) − 𝐷𝑢(0) | ≤ 𝜏0𝐶 |𝑥 |𝛾,

for 𝑥 ∈ 𝐵1/2. □
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Proof of Proposition 2.3

First, for 𝑟 ≤ 1/2 and 𝑥0 ∈ 𝐵1/4, we define

𝑢𝑟 (𝑥) B
1
𝑟
𝑢(𝑥0 + 𝑟𝑥),

for 𝑥 ∈ 𝐵1. Note that we have

∥𝐷𝑢𝑟 ∥𝐿∞ (𝐵1/2) ≤ ∥𝐷𝑢∥𝐿∞ (𝐵1/2) ≤ 𝐶, (2.25)

where the last estimate is due to Theorem 2.2, for some 𝐶 depending on dimension, ellipticity
and ∥ 𝑓 ∥∞. Additionally, we observe that 𝑢𝑟 solves

( |𝐷𝑢𝑟 | − 𝜅)𝑞+𝐹𝑟 (𝐷2𝑢𝑟) = 𝑓𝑟 in 𝐵1

for 𝐹𝑟 (𝑀) = 𝑟𝐹 (𝑟−1𝑀) and 𝑓𝑟 (𝑥) = 𝑟 𝑓 (𝑥0 + 𝑟𝑥). Next, consider

𝑟 B
1

1 + ∥ 𝑓 ∥∞
𝜍0

for 𝜍0 as in Proposition 2.5. In the sequel, let

𝑤𝑒 B (𝐷𝑢𝑟 · 𝑒 − (𝜅 + 𝜇))+ and 𝑤𝑀 B ( |𝐷𝑢𝑟 | − (𝜅 + 𝜇))+.

Let 𝜂 ∈ (0, 1) to be chosen later. Define 𝑖★ ∈ N to be the smallest parameter 𝑖 such that

sup
𝑒∈𝜕𝐵1

���{𝑥 ∈ 𝐵2−(2𝑖+1)
�� 𝑤𝑒 ≥ (1 − 𝜂)∥𝑤𝑀 ∥𝐿∞(𝐵2−2𝑖 )

}��� ≥
(1 − 𝜂) |𝐵2−(2𝑖+1) |.

If 𝑖★ = ∞, Proposition 2.3 follows directly from Proposition 2.4. If, on the other hand, 𝑖★ < +∞,
for constants 𝐶 > 0 and 𝛼 ∈ (0, 1), there holds

∥𝑤𝑀 ∥𝐿∞(𝐵2−2𝑖 ) ≤ 𝐶2−2(𝑖−1)𝛼, (2.26)

for all 𝑖 = 1, 2, · · · , 𝑖★. Thus, we can estimate

∥𝑤𝑀 ∥𝐿∞(𝐵2−2𝑖 ) ≤ ∥𝑤𝑀 ∥𝐿∞(𝐵2−2𝑖★ ) ≤ 𝐶2−2(𝑖★−1)𝛼 ≤ 4𝐶2−𝑖𝛼

for 𝑖 = 𝑖★ + 1, · · · , 2𝑖★. From the definition of 𝑖★, there exists at least one direction 𝑒 ∈ 𝜕𝐵1 for
which ���{𝑥 ∈ 𝐵2−2𝑖★−1

�� 𝑤𝑒 ≥ (1 − 𝜂)∥𝑤𝑀 ∥𝐿∞(𝐵2−2𝑖★ )
}��� ≥ (1 − 𝜂) |𝐵2−2𝑖★−1 |.

Therefore, for
𝑣(𝑥) B 22𝑖★+1(𝑢𝑟 (2−2𝑖★−1𝑥) − 𝑢𝑟 (0)) for 𝑥 ∈ 𝐵1,

we have that

|{𝑥 ∈ 𝐵1
�� (𝜕𝑒𝑣(𝑥) − (𝜅 + 𝜇))+ ≥ (1 − 𝜂)𝑑★}| ≥ (1 − 𝜂) |𝐵1 |,
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where 𝑑★ B ∥(𝜕𝑒𝑣(𝑥) − (𝜅 + 𝜇))+∥𝐿∞ (𝐵1) . Additionally, by (2.25) there holds

|𝐷𝑣 | ≤ 𝜅 + 𝜇 + 𝑑★ ≤ 𝐶 and 𝑣(0) = 0.

Considering 𝜖 = 𝜏0/𝐶 and applying [29, Lemma 4.1], we choose 𝜂 (depending only on the choice
of 𝜖) to find (𝜉, 𝑏), such that

|𝜉 | = 𝜅 + 𝜇 + 𝑑★ and |𝑣(𝑥) − 𝑏 − 𝜉 · 𝑥 | ≤ 𝜖 (𝜅 + 𝜇 + 𝑑★) ≤ 𝜏0.

We can now apply Proposition 2.5 to obtain

|𝐷𝑣(𝑥) − 𝐷𝑣(0) | ≤ 𝐶1 |𝑥 |𝛾

for 𝑥 ∈ 𝐵1/2. Recall that for 𝑥 ∈ 𝐵2−2𝑖★−2 we have

|𝑤𝑀 (𝑥) − 𝑤𝑀 (0) | ≤ |𝐷𝑣
(
22𝑖★+1𝑥

)
− 𝐷𝑣(0) |,

and thus
|𝑤𝑀 (𝑥) − 𝑤𝑀 (0) | ≤ 𝐶12−𝑖𝛾,

for each 𝑥 ∈ 𝐵2−2𝑖 and 𝑖 ≥ 2𝑖★ + 1.

We are ready to conclude the proof. Setting

𝐶′ = 8 max{𝐶,𝐶1} and 𝛼 =
1
2

min{𝛼, 𝛾},

we conclude

∥(|𝐷𝑢(𝑥) | − (𝜅 + 𝜇))+ − (|𝐷𝑢(𝑥0) | − (𝜅 + 𝜇))+∥𝐿∞(𝐵𝑟2−2𝑖 (𝑥0)) ≤ 𝐶
′2−2𝑖𝛼,

for every 𝑖 ∈ N. Given 𝑥 ∈ 𝐵𝑟 (𝑥0), we take integer 𝑗 > 0, such

𝑟2−2( 𝑗+1) ≤ |𝑥 − 𝑥0 | ≤ 𝑟2−2 𝑗 .

This implies that

2−2 𝑗𝛼 ≤
(
4|𝑥 − 𝑥0 |

𝑟

)𝛼
.

We then obtain

| ( |𝐷𝑢(𝑥) | − (𝜅 + 𝜇))+ − (|𝐷𝑢(𝑥0) | − (𝜅 + 𝜇))+ | ≤ 𝐶′′|𝑥 − 𝑥0 |𝛼,

for 𝑥 ∈ 𝐵𝑟 (𝑥0), and constant 𝐶′′ > 0 depends upon 𝜇, 𝑞, 𝑛, 𝜆, Λ and ∥ 𝑓 ∥∞. For 𝑥 ∈ 𝐵1/2 \ 𝐵𝑟 (𝑥0),
we estimate

| ( |𝐷𝑢(𝑥) | − (𝜅 + 𝜇))+ − (|𝐷𝑢(𝑥0) | − (𝜅 + 𝜇))+ | ≤ 2∥𝐷𝑣∥𝐿∞ (𝐵1)

≤ 𝐶 |𝑥 − 𝑥0 |𝛼

where 𝐶 is another constant that depends only on 𝜇, 𝑞, 𝑛, 𝜆, Λ and ∥ 𝑓 ∥∞. Since 𝑥0 was taken
arbitrarily, the proof of Proposition 2.3 is finally complete.
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Concluding the proof of Theorem 2.3

Recall that 𝑢 is an effective viscosity solution of

( |𝐷𝑢 | − 𝜅)𝑞+ 𝐹 (𝐷2𝑢) = 𝑓 .

By Theorem 2.2, we have ∥𝐷𝑢∥∞ ≤ 𝐶, for a positive constant

𝐶 = 𝐶 (𝑛, 𝜆,Λ, 𝜅, ∥𝑢∥∞, ∥ 𝑓 ∥∞).

By Proposition 2.3, given any 𝜇 > 0, there exist constants 𝐶𝜇 > 0 and 𝛼𝜇 ∈ (0, 1) depending
upon 𝜇 and universal data, such that:

∥(|𝐷𝑢 | − (𝜅 + 𝜇))+∥𝐶0,𝛼𝜇 (𝐵1/4) ≤ 𝐶𝜇 .

To ease notation define

𝑣𝜇 (𝑥) = ( |𝐷𝑢(𝑥) | − (𝜅 + 𝜇))+ and 𝑣(𝑥) = ( |𝐷𝑢 | − 𝜅)+

By triangle inequality we can estimate:

|𝑣(𝑥) − 𝑣(𝑦) | ≤ |𝑣𝜇 (𝑥) − 𝑣(𝑥) | + |𝑣𝜇 (𝑦) − 𝑣(𝑦) | + |𝑣𝜇 (𝑥) − 𝑣𝜇 (𝑦) |

≤ 2𝜇 + 𝐶𝜇 |𝑥 − 𝑦 |𝛼(𝜇) ,

for every 𝜇 ∈ (0, 1). Since such an estimate holds for all 𝜇 > 0, we obtain

|𝑣(𝑥) − 𝑣(𝑦) | ≤ 𝜎( |𝑥 − 𝑦 |),

where
𝜎(𝑡) := min

𝜇∈(0,1)
{2𝜇 + 𝐶𝜇𝑡𝛼(𝜇)}.

It is easy to see that 𝜎, as defined above, is indeed a modulus of continuity and that 𝐷𝑢 is
𝜎-continuous within the region {|𝐷𝑢 | ≥ 𝜅}.
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2.4 Connection to other trends of research

In this section, we will bring a comprehensive discussion on how our very general
problem intersects with other trends of research.

2.4.1 Unconstrained free boundary problems

Initially we revisit the theory of unconstrained free boundary problems, as in the work of
Figalli and Shahgholian, [43].

Let Ω be an open set of R𝑛 and 𝑤 ∈ 𝑊2,𝑝 (𝐵1) be a viscosity solution of
𝐹 (𝐷2𝑤) = 1 in 𝐵1 ∩Ω

|𝐷2𝑤 | ≤ 𝐾 in 𝐵1\Ω,

where 𝐹 is convex and uniformly elliptic. The main result proven in [43] is a sharp 𝐶1,1 regularity
of solutions. It is worth comparing such an improved estimate with the results of [64], where
𝐶1,log-Lip regularity is proven for 𝐹 (𝐷2𝑢) = 𝑓 ∈ 𝐿∞; see also [21] for related results.

Theorem 2.2 can also be viewed as an unconstrained free boundary problem; the first-order
counterpart of [43]. More precisely, solutions of

𝐹 (𝐷2𝑤) = 1 in 𝐵1 ∩Ω

|𝐷𝑤 | ≤ 𝐾 in 𝐵1\Ω,

are 𝐾-grad viscosity solutions in the sense investigated in this paper. In particular, in the case
of linear equations, say 𝐹 = Δ, Theorem 2.2 applied to 𝑤𝑒 implies the sharp 𝐶1,1-regularity of
unconstrained free boundary problems at the hessian level. Furthermore, Theorem 2.3, applied
to 𝑤𝑒, yields to the existence of a modulus of continuity 𝜎 such that 𝐷2𝑤 ∈ 𝐶0,𝜎 ({|𝐷2𝑤 | ≥
𝐾} ∩ 𝐵1/2).

2.4.2 Flame propagation with an obstacle

Singularly perturbed PDEs of the flame propagation type have received warm attention
since the pioneering work [11], see for instance [6,15,23,26,52–54,56,63] and references therein.
For free boundary problems driven by operators in non-divergence form, introducing a heavy
penalization term, 𝛽𝜖 (𝑢), allows for an existence theory, as long as one can obtain strong enough
estimates that are uniform concerning the regularizing parameter 𝜖 , see for instance [7,31,49,60].

Typically, 𝛽𝜖 is an approximation of the Dirac delta function, 𝛿0, in 𝐿1. One can think of

𝛽𝜖 (𝑠) :=
1
𝜖
𝛽

( 𝑠
𝜖

)
,

where 𝛽 is a fixed, smooth function with bounded support. The main goal is to obtain uniform-in-𝜖
regularity estimates for 𝑢 and its free boundary.
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Here we are interested in a new type of flame propagation model, which carries activation
fronts. Mathematically this gives raise to a free boundary problem of the singularly perturbed
type for which the jump discontinuity happens along the coincidence set Λ𝜖 := {𝑢𝜖 = 𝜑}, for a
given obstacle function 𝜑.

The starting point of this program is to prove that solutions are uniformly-in-𝜖 Lipschitz
continuous, provided the obstacle, 𝜑, is Lipschitz. This is the result we discuss here as the final
application of the methods introduced in this paper.

Hereafter 𝑢𝜖 denotes a viscosity solution of the PDE

𝐹 (𝐷2𝑢𝜖 ) = 𝛽𝜖 (𝑢𝜖 − 𝜑), (2.27)

with 𝑢𝜖 ≥ 𝜑 and 𝜑 ∈ 𝐶0,1.

Existence of minimal solutions

We dedicate this section to discuss the existence of minimal solutions to

𝐹 (𝐷2𝑢) = 𝛽𝜖 (𝑢 − 𝜑),

with 𝜑 ∈ 𝐶0,1. From [60], it is clear that the diffusion operator 𝐹 could be more general. We will
keep it as it is to ease the presentation.

We also point out that the Classical Perron method cannot be applied directly due to the
lack of monotonicity in the variable 𝑢.

Theorem 2.4. Let 𝑔 ∈ 𝐿∞(R) ∩ 𝐶0,1(R). Assume 𝐹 is a (𝜆,Λ)-elliptic operator and that
𝐹 (𝐷2𝑢) = 𝑔(𝑢 − 𝜑) admits a Lipschitz viscosity subsolution 𝑢∗ and a Lipschitz viscosity
supersolution 𝑢∗ such that 𝑢∗ = 𝑢∗ = Ψ ∈ 𝐶1,𝛾 (𝜕Ω). Define the set of functions,

F B
{
𝑤 ∈ 𝐶 (Ω)

�� 𝑢∗ ≤ 𝑤 ≤ 𝑢∗ and𝑤 is a supersolution to 𝐹 (𝐷2𝑢) = 𝑔(𝑢 − 𝜑)
}
.

Then,
𝑣(𝑥) B inf

𝑤∈F
𝑤(𝑥)

is a continuous viscosity solution to 𝐹 (𝐷2𝑢) = 𝑔(𝑢 − 𝜑) and 𝑢 = Ψ continuously on 𝜕Ω.

Proof. The proof is a small adaptation of [60, Theorem 2.1]. By Lipschitz continuity of 𝑔, let
𝜃 > 0 be such that |𝐷𝑔 | < 𝜃/2. Define ℎ(𝑧) = 𝜃𝑧 − 𝑔(𝑧). Given a Lipschitz function 𝑓 , define

𝐺 𝑓 [𝑢] B 𝐹 (𝐷2𝑢) − 𝜃 (𝑢 − 𝜑) + 𝑓 .

Now, 𝐺 𝑓 is a uniformly elliptic operator and strictly monotone in the variable 𝑢. By Classical
Perron’s method, one obtains the existence of solutions to

𝐺 𝑓 [𝑢] = 0 in Ω

𝑢 = Ψ in 𝜕Ω.
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By classical regularity theory, 𝑢 ∈ 𝐶1,𝛾 (Ω) with a estimate depending on the parameters. We
will now iterate this argument. Set 𝑢0 = 𝑢∗ and let 𝑢𝑘+1 be the solution to

𝐺 𝑓𝑘 [𝑢] = 0 in Ω

𝑢 = Ψ in 𝜕Ω,

where 𝑓𝑘 (𝑥) = ℎ(𝑢𝑘 (𝑥) − 𝜑(𝑥)). Observe that

𝐺 𝑓0 [𝑢] B 𝐹 (𝐷2𝑢) − 𝜃 (𝑢 − 𝜑) + ℎ(𝑢0 − 𝜑) = 𝐹 (𝐷2𝑢) − ℎ(𝑢 − 𝜑) + ℎ(𝑢0 − 𝜑) − 𝑔(𝑢 − 𝜑),
𝐺 𝑓𝑘 [𝑢] B 𝐹 (𝐷2𝑢) − 𝜃 (𝑢 − 𝜑) + ℎ(𝑢𝑘 − 𝜑) = 𝐺 𝑓𝑘−1 [𝑢] + ℎ(𝑢𝑘 − 𝜑) − ℎ(𝑢𝑘−1 − 𝜑),
𝐺∗ [𝑢] B 𝐹 (𝐷2𝑢) − 𝜃 (𝑢 − 𝜑) + ℎ(𝑢∗ − 𝜑) = 𝐹 (𝐷2𝑢) − ℎ(𝑢 − 𝜑) + ℎ(𝑢∗ − 𝜑) − 𝑔(𝑢 − 𝜑),
𝐺∗ [𝑢] B 𝐹 (𝐷2𝑢) − 𝜃 (𝑢 − 𝜑) + ℎ(𝑢∗ − 𝜑) = 𝐺 𝑓𝑘 [𝑢] + ℎ(𝑢∗ − 𝜑) − ℎ(𝑢𝑘 − 𝜑).

The proof is done once we show the following claim.

Claim: The sequence {𝑢𝑘 }𝑘∈N is increasing in 𝑘 and satisfies 𝑢∗ ≤ 𝑢𝑘 ≤ 𝑢∗ in Ω for
every 𝑘 ∈ N. Indeed, assume the claim is true. Recall that 𝑢𝑘 is an uniformly bounded sequence
that satisfies

|𝐹 (𝐷2𝑢𝑘 ) | = |𝜃 (𝑢𝑘 − 𝜑) + 𝑓𝑘−1 | ≤ 𝐶 (𝜃, 𝜑, ∥𝑢∗∥∞, ∥𝑢∗∥∞),

and thus are bounded in𝐶0,1 with a universal estimate that does not depend on 𝑘 . By Arzelá-Ascoli
theorem, it converges through a subsequence, and so

𝐺 𝑓𝑘 [𝑢] → 𝐺 [𝑢] B 𝐹 (𝐷2𝑢) − 𝜃 (𝑢 − 𝜑) + ℎ(𝑢 − 𝜑) as 𝑘 → ∞.

By the claim, we can define the pointwise limit 𝑣(𝑥) = lim𝑘→∞ 𝑢𝑘 (𝑥), and we get that 𝑣 solves

𝐹 (𝐷2𝑢) = 𝑔(𝑢 − 𝜑),

in the viscosity sense. Comparison principle allow us to show that 𝑣 is actually the least
supersolution, that is

𝑣(𝑥) = inf
𝑤∈F

𝑤(𝑥).

Now let us get back to the claim. We will show, by induction, that 𝑢𝑘 ≤ 𝑢𝑘+1 for every 𝑘 ∈ N. By
definition of 𝐺 𝑓0 and our assumptions, it holds

𝐺 𝑓0 [𝑢1] = 0 ≤ 𝐺 𝑓0 [𝑢0]

in the viscosity sense. Comparison principle thus implies that 𝑢0 ≤ 𝑢1 and the case 𝑘 = 0 is done.
Assuming it holds up to 𝑘 , that is 𝑢𝑘−1 ≤ 𝑢𝑘 . Since ℎ′ ≥ 0, we have ℎ(𝑢𝑘−1 − 𝜑) ≤ ℎ(𝑢𝑘 − 𝜑),
and so

𝐺 𝑓𝑘 [𝑢𝑘 ] = 𝐺 𝑓𝑘−1 [𝑢𝑘 ] + ℎ(𝑢𝑘 − 𝜑) − ℎ(𝑢𝑘−1 − 𝜑)
≥ 𝐺 𝑓𝑘−1 [𝑢𝑘 ] = 0.

Hence, 𝐺 𝑓𝑘 [𝑢𝑘+1] = 0 ≤ 𝐺 𝑓𝑘 [𝑢𝑘 ] and by the comparison principle once more, 𝑢𝑘 ≤ 𝑢𝑘+1. The
same could have been done to show 𝑢𝑘 ≤ 𝑢∗ for every 𝑘 ∈ N and the Theorem is proved. □
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The purpose of the previous theorem is to ensure that the problem
𝐹 (𝐷2𝑢) = 𝛽𝜖 (𝑢 − 𝜑) in Ω

𝑢 = Ψ in 𝜕Ω,

has a solution for every 𝜖 > 0. When 𝜑 = 0, an application of the ABP estimate, see [60, Lemma
2.3], leads to 𝑢 ≥ 0, so it would be natural to expect that our solutions satisfy 𝑢 ≥ 𝜑. It turns out
that this is not a straightforward task as we need to force the obstacle 𝜑 to satisfy differential
inequalities. Nevertheless, if we can assure the existence of functions 𝑢∗, 𝑢∗ ≥ 𝜑 such that

𝐹 (𝐷2𝑢∗) = 𝑐𝜖 in Ω

𝑢∗ = Ψ in 𝜕Ω,


𝐹 (𝐷2𝑢∗) = 0 in Ω

𝑢∗ = Ψ in 𝜕Ω,

then it follows, by classical regularity estimates, 𝑢∗, 𝑢∗ ∈ 𝐶0,1, and thus an application of Theorem
2.4 leads to the desired.

Theorem 2.5. Let Ω ⊂ R𝑛 be a Lipschitz domain and Ψ ∈ 𝐶1,𝛾 (𝜕Ω). Then, for each 𝜖 > 0, the
problem 

𝐹 (𝐷2𝑢) = 𝛽𝜖 (𝑢 − 𝜑) in Ω

𝑢 = Ψ in 𝜕Ω,

admits a minimal solution 𝑢𝜖 ∈ 𝐶 (Ω).

Proof. Let 𝑐𝜑 = ∥𝜑∥∞ and 𝑐𝜖 = sup 𝛽𝜖 . By classical Perron’s method, consider 𝑢1 and 𝑢2 to be
the solutions to

𝐹 (𝐷2𝑢1) = 𝑐𝜖 in Ω

𝑢1 = Ψ − 𝑐𝜑 in 𝜕Ω,


𝐹 (𝐷2𝑢2) = 0 in Ω

𝑢2 = Ψ − 𝑐𝜑 in 𝜕Ω.

Assuming Ψ − 𝑐𝜑 ≥ 0, applying the classical ABP estimate we get that both 𝑢1 and 𝑢2 are
nonnegative. Now consider 𝑢∗ = 𝑢1 + 𝑐𝜑 and 𝑢∗ = 𝑢2 + 𝑐𝜑. They solve

𝐹 (𝐷2𝑢∗) = 𝑐𝜖 in Ω

𝑢∗ = Ψ in 𝜕Ω,


𝐹 (𝐷2𝑢∗) = 0 in Ω

𝑢∗ = Ψ in 𝜕Ω,

and, by the comparison principle, 𝑢∗ ≥ 𝑢∗. Furthermore,

𝑢∗ = 𝑢2 + 𝑐𝜑 ≥ 𝑐𝜑 ≥ 𝜑.

By classical regularity estimates, both 𝑢∗ and 𝑢∗ are Lipschitz, and by Theorem 2.4 we can find a
minimal solution 𝑢𝜖 to our problem between 𝑢∗ and 𝑢∗. □

We remark that the minimality of the solutions is not used in the proof of Lipschitz
estimates. This will be important when trying to prove nondegeneracy estimates.
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Lipschitz estimates

The most important step, to analyze the limiting problem as 𝜖 → 0, is to obtain Lipschitz
estimates independent of the parameter 𝜖 . It is clear that such family 𝑢𝜖 is in𝐶1,𝛼, but the estimate
is not uniform in the parameter 𝜖 . As pointed out in [60], uniform-in-𝜖 Lipschitz estimates are
sharp.

Theorem 2.6. Given Ω′ ⋐ Ω, there exists a constant 𝐶′ such that any bounded family {𝑢𝜖 }𝜖>0 of
solutions of (2.27) satisfies

∥𝐷𝑢𝜖 ∥𝐿∞ (Ω′) ≤ 𝐶′ (𝑛, 𝜆,Λ, 𝛽, [𝜑]𝐶0,1 ,Ω′) .

Proof. The key feature of the model is its distinct behavior within the regions

Ω1 := Ω′ ∩ {𝑢𝜖 − 𝜑 ≤ 𝜖} and Ω2 := Ω′ ∩ {𝑢𝜖 − 𝜑 > 𝜖}.

By means of a standard covering argument, we can restrict the analysis to the case Ω = 𝐵1 and
Ω′ = 𝐵1/2.

Case I: Let 𝑥0 ∈ Ω1 be fixed. We will prove the existence of a constant 𝐶′
1 > 0 that does not

depend on 𝜖 > 0 such that

|𝐷𝑢𝜖 (𝑥0) | ≤ 𝐶′
1 (𝑛, 𝜆,Λ, 𝛽, [𝜑]𝐶0,1) .

For that, define the auxiliary function, 𝑣 : 𝐵2 → R, as:

𝑣(𝑧) B 𝜖−1 [𝑢𝜖 (𝑥0 + 𝜖𝑧) − 𝑢𝜖 (𝑥0)] .

Direct calculations show that 𝑣 solves

𝐹𝜖 (𝐷2𝑣) = 𝛽(𝑣 − 𝜑̃),

in 𝐵2, where 𝜑̃(𝑧) B 𝜖−1(𝜑(𝑥0 + 𝜖𝑧) − 𝑢𝜖 (𝑥0)) and 𝐹𝜖 (𝑀) B 𝜖𝐹 (𝜖−1𝑀). Note that the equation
for 𝑣 is uniformly elliptic and therefore Lipschitz estimates are available. In particular, we can
estimate

|𝐷𝑢𝜖 (𝑥0) | = |𝐷𝑣(0) | ≤ 𝐶∥𝑣∥𝐿∞ (𝐵3/2) ,

for a constant 𝐶 > 0 depending only on 𝑛, 𝜆, Λ and ∥𝛽∥∞.
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Now we turn to get uniform (in the parameter 𝜖) estimates for ∥𝑣∥𝐿∞ (𝐵3/2) . Recall that
since 𝑢𝜖 ≥ 𝜑 and 𝑢𝜖 (𝑥0) − 𝜑(𝑥0) ≤ 𝜖 , we get for 𝑧 ∈ 𝐵2,

𝑣(𝑧) = 𝜖−1 [𝑢𝜖 (𝑥0 + 𝜖𝑧) − 𝑢𝜖 (𝑥0)]

≥ 𝜖−1 [𝜑(𝑥0 + 𝜖𝑧) − 𝜑(𝑥0) − 𝜖]

≥ −𝜖−1 |𝜑(𝑥0 + 𝜖𝑧) − 𝜑(𝑥0) | − 1

≥ −[𝜑]C0,1 |𝑧 | − 1

≥ −2
(
[𝜑]C0,1 + 1

)
= −𝜅

Harnack inequality applied to the non-negative function 𝑤 := 𝑣 + 𝜅 ≥ 0 yields

sup
𝐵3/2

𝑤 ≤ 𝐶
(
𝑤(0) + ∥𝛽∥𝐿∞ (R)

)
≤ 𝐶

(
𝜅 + ∥𝛽∥𝐿∞ (R)

)
.

Combining all such estimates we finally end up with

∥𝐷𝑢𝜖 ∥𝐿∞ (Ω1) ≤ 𝐾.

for 𝐾 depending on 𝑛, 𝜆, Λ, ∥𝛽∥∞ and [𝜑]𝐶0,1 .

Case II: The estimate for 𝑥0 ∈ Ω2.

We simply note that, because of the estimate obtained in Case I, 𝑢𝜖 satisfies

𝐹 (𝐷2𝑢𝜖 ) = 0 in {|𝐷𝑢𝜖 | > 𝐾}.

Theorem 2.2 then gives the desired local Lipschitz estimate, independently of the parameter
𝜖 > 0. □

It is worth pointing out that after we get the estimate as in Case I, then the same barrier
construction as in [60] would work. This proof, however, is way shorter than theirs. The idea
behind it is, somehow, reminiscent of the doubling variables technique presented in this thesis.
Once it is known that the estimates hold at some region, it can be used to push the points of
maxima away from this region.

2.4.3 PDE models with infinite degree of degeneracy

Next, we would like to discuss connections with limiting free boundary problems,
obtaining when the degree of degeneracy tends to infinity. More precisely, let us look at the
non-variational 𝑞-Laplacian equation:

|𝐷𝑢 |𝑞𝐹 (𝐷2𝑢) = 𝑓 in 𝐵1 (2.28)
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This model has received warm attention in the last two decades, see for instance [5,13,32,37,38,47]
and references therein.

The type of results we are interested in the section are uniform-in-q regularity results.
The first result of this type in this thesis is described in Section 2.1. More precisely, if 𝜅 = 0, then
Theorem 2.1 says that solutions of (2.28) satisfies

∥𝑢∥𝐿∞ (𝐵1) ≤ sup
𝜕𝐵1

|𝑢 | + 𝐶∥ 𝑓 ∥
1

𝑞+1
𝐿𝑛
,

for a constant
𝐶 = 𝑜

(
(1 + 𝑞)

1
(1+𝑞)𝑛

)
.

If, say, 𝑢 has a fixed bounded boundary data 𝑔 (to successfully assure existence) and taking into
account that

lim
𝑞→∞

(1 + 𝑞)
1

(1+𝑞)𝑛 = 1,

then we obtain that solutions to (2.28) are uniform bounded in the parameter 𝑞 ∈ [0, +∞].

It is important to mention that this estimate, with precisely the same dependence as ours,
was obtained in [10].

Uniform-in-q Lipschitz estimates

The prime goal we want to achieve is to analyze the limiting problem as 𝑞 → ∞, and to
do so, we need compactness. First and foremost, solutions are bounded, depending only on the
boundary data and RHS, so we may assume they are normalized.

An important Corollary of the analysis carried out in Section 2.2.1 is the following sharp
regularity estimate:

Corollary 2.2. Let 𝑞 ≥ 0, 𝑓 ∈ 𝐿∞(𝐵1), and 𝑢𝑞 be a normalized viscosity solution of

|𝐷𝑢𝑞 |𝑞𝐹 (𝐷2𝑢𝑞) = 𝑓 in 𝐵1.

Then, there exists a constant 𝐶, depending only on dimension, ellipticity, and ∥ 𝑓 ∥𝐿∞ (𝐵1) , but
independent of 𝑞, such that

∥𝐷𝑢𝑞 ∥𝐿∞ (𝐵1/2) ≤ 𝐶.

An equivalent way, by applying directly our results, is to observe that

𝐹 (𝐷2𝑢𝑞) = 𝑓 for 𝑓 = 𝑓 |𝐷𝑢𝑞 |−𝑞

in the viscosity sense, and | 𝑓 |∞ ≤ | 𝑓 |∞ within {|𝐷𝑢𝑞 | > 1} (or, in the 1-grad sense), and thus
entitled to Theorem 2.2. Therefore, solutions are bounded in 𝐶0,1(𝐵1/2). It is worth pointing out
that to get to the limiting problem, 𝐶0 compactness is enough, This can be achieved by the same
argument with the regularity results from [48].
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Uniform-in-q Gradient regularity

It is well known that solutions to the nonvariational 𝑞-Laplacian are in 𝐶1,𝛼𝑞 , for some
𝛼𝑞 ≤ 1

1+𝑞 . The counterpart of every regularity estimate for this problem, however, is that the
estimate degenerates as 𝑞 → ∞. Here, we provide a regularity result that allows us to pass to the
limit when 𝑞 → ∞.

Theorem 2.7. Let 𝑞 ≥ 0, 𝑓 ∈ Lip(𝐵1), and 𝑢𝑞 be a normalized viscosity solution of

|𝐷𝑢𝑞 |𝑞𝐹 (𝐷2𝑢𝑞) = 𝑓 in 𝐵1.

Then, given 0 < 𝜇 < 1, there exists constants 0 < 𝛼𝜇 < 1 and 𝐶𝜇 > 0 depending on data, 𝜇 but
independent of 𝑞 such that

∥(|𝐷𝑢𝑞 | − (1 + 𝜇))∥𝐶0,𝛼𝜇 (𝐵1/2) ≤ 𝐶𝜇 .

The rationale to prove this result was already presented in Section 2.3.2. As a courtesy
to the reader, explain the main differences and the adapted proofs whenever it is necessary. A
careful analysis is needed to ensure everything is uniform in the degeneracy parameter 𝑞.

The first, and important, step is the (uniform-in-q) Lipschitz estimates, as Lipschitz
rescalings will be used in the proof. As before, a compactness estimate for scaled PDEs will be
necessary and we shall use the following version of Lemma 2.5.

Lemma 2.10. Assume 𝑢 is normalized and satisfies

|𝜉 + 𝜗𝐷𝑢 |𝑞𝐹 (𝐷2𝑢) = 𝑓 with ∥ 𝑓 ∥∞ ≤ 1.

Given 𝜇 ∈ (0, 1), there exists a constant 𝐶 depending only on 𝑛, 𝜆 and Λ, such that if

|𝜉 | ≥ 1 + 2𝜇 and 𝜗 ≤ 𝜇

2𝐶
, (2.29)

then
sup

𝑥,𝑦∈𝐵1/2

|𝑢(𝑥) − 𝑢(𝑦) |
|𝑥 − 𝑦 | ≤ 𝐶.

Proof. Consider 𝜙 as defined in (2.7) and

𝑀 B sup
𝑥,𝑦∈𝐵1/2

(
𝑢(𝑥) − 𝑢(𝑦) − 𝐿𝜙( |𝑥 − 𝑦 |) − 𝐾

(
|𝑥 |2 − |𝑦 |2

))
.

Let (𝑥, 𝑦) be the pair where 𝑀 is attained and assume 𝑀 > 0. First, we localize the points where
𝑀 is attained by choosing 𝐾 large enough.

We can apply Lemma 2.4 (with 𝜅 = 0) with 𝜑(𝑥, 𝑦) B 𝐿𝜙( |𝑥 − 𝑦 |) + 𝐾 ( |𝑥 |2 + |𝑦 |2) as to
reach

𝐿 ≤ 𝑛Λ
𝜆
𝐾 + 1

4𝜆

(
|𝜗𝐷𝑥𝜑(𝑥, 𝑦) + 𝜉 |−𝑞 +

��𝜗𝐷𝑦𝜑(𝑥, 𝑦) − 𝜉
��−𝑞) . (2.30)
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From (2.29) and the estimate

max{|𝐷𝑥𝜑(𝑥, 𝑦) |, |𝐷𝑦𝜑(𝑥, 𝑦) |} ≤ 2𝐿,

there holds
min{|𝜉 + 𝜗𝐷𝑥𝜑(𝑥, 𝑦) |, |𝜉 − 𝜗𝐷𝑦𝜑(𝑥, 𝑦) |} ≥ 1 + 𝜇.

Therefore, from estimate (2.30), we can further estimate

𝐿 < 𝑛
Λ

𝜆
𝐾 + 1

2𝜆
(1 + 𝜇)−𝑞 ≤ 𝐶,

for 𝐶 = 𝐶 (𝑛, 𝜆,Λ). The conclusion is that if 𝐿 ≥ 𝐶, then 𝑀 ≤ 0, which is equivalent to the
thesis of the Lemma. □

It is worthwhile to mention, although not important to the subsequent analysis, that the
previous Lipschitz estimates do not depend upon the parameter 𝜇 ∈ (0, 1). The one obtained in
Lemma 2.5, however, not only depended on 𝜇, but was blowing up as 𝑞 → ∞.

Following the program developed before, we need to prove some sort of regularity
estimates near and far from the free boundary. It is important to observe that, at this point, there
is no free boundary as in (0.4). A preliminary analysis unveils that the free boundary, in the
limiting problem, will be as if 𝜅 = 1 in (0.4). That explains, in some sense, why we are proving
Theorem 2.7 that way.

The first step of the dichotomy to be obtained further is to prove a version of Proposition
2.4, which reflects the estimates near the free boundary. We recall that, given a vector 𝑒 ∈ 𝜕𝐵1,
we define

𝑤𝑒 B (𝜕𝑒𝑢 − (1 + 𝜇))+ and 𝑤𝑀 B ( |𝐷𝑢 | − (1 + 𝜇))+.

Proposition 2.6. Assume 𝑢 solves

|𝐷𝑢 |𝑞𝐹 (𝐷2𝑢) = 𝑓 in 𝐵1,

and let 𝜇, 𝜂 be positive constants. For some integer 𝑘 > 0, we assume that the following holds

sup
𝑒∈𝜕𝐵1

���{𝑥 ∈ 𝐵2−(2𝑖+1)
�� 𝑤𝑒 ≥ (1 − 𝜂)∥𝑤𝑀 ∥𝐿∞(𝐵2−2𝑖 ) }

��� ≤ (1 − 𝜂)
��𝐵2−(2𝑖+1)

��
for all 𝑖 = 1, · · · , 𝑘 . Then, there exists constants 𝐶 > 0 and 𝛼 ∈ (0, 1), depending only on 𝜇, 𝜂,
∥ 𝑓 ∥Lip, 𝑛, 𝜆, Λ, such that

∥𝑤𝑀 ∥𝐿∞(𝐵2−2𝑖 ) ≤ max
(
∥𝐷𝑢∥𝐿∞ (𝐵1/4) , 𝐶

)
2−2(𝑖−1)𝛼,

for all 𝑖 = 1, . . . , 𝑘 + 1.
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The proof of this proposition is exactly as the proof of Proposition 2.4 with 𝜅 = 1. The
only difference is the equation we apply weak-harnack to, which comes from a version of Lemma
2.6, which is when we make 𝜅 = 0 and change 𝜇 by 1 + 𝜇. We remark that it will be independent
of the parameter 𝑞 because

𝑞

(1 + 𝜇)𝑞+1 → 0 as 𝑞 → ∞.

Now we proceed to obtain regularity estimates far from the free boundary. In what follows, for a
given 𝜇 ∈ (0, 1), we denote

𝜗𝜇 B
𝜇

2𝐶
,

where 𝐶 > 0 is the universal constant given by Lemma 2.10.

Lemma 2.11. Let 𝑢 be a solution of

|𝜉 + 𝜗𝐷𝑢 |𝑞𝐹 (𝐷2𝑢) = 𝑓 , (2.31)

under the conditions
𝜗 ∈ (0, 𝜗𝜇), and |𝜉 | ≥ 1 + 2𝜇.

Given 𝜀 > 0, there exists 𝜍 > 0 depending on 𝜀, 𝜇 such that, if

max
(
∥𝑢∥∞, 𝜍−1∥ 𝑓 ∥∞

)
≤ 1,

then, there exists a viscosity solution to

F (𝐷2ℎ) = 0 in 𝐵1/2, (2.32)

with F satisfying (1.1), such that

∥𝑢 − ℎ∥𝐿∞ (𝐵1/2) ≤ 𝜀.

Proof. The proof is essentially the same as the proof of Lemma 2.8, except that the parameter 𝑞
needs to vary. Let us assume, seeking a contradiction, that the thesis of Lemma fails. That is, for
some 𝜀0 > 0, there exists a sequence

(𝜗𝑘 , 𝜍𝑘 , 𝑞𝑘 , 𝜉𝑘 , 𝑢𝑘 , 𝑓𝑘 , 𝐹𝑘 )𝑘∈N ,

where 𝑢𝑘 is a normalized solution of (2.31), with the corresponding parameters given above and

𝜍𝑘 = o(1),

as 𝑘 → ∞; however,
|𝑢𝑘 − ℎ | > 𝜀0 in 𝐵1/2, (2.33)

for all ℎ satisfying (2.32). From Lemma 2.10, we have

∥𝐷𝑢𝑘 ∥𝐿∞ (𝐵1/2) ≤ 𝐶.
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From this, and the fact that 𝜗𝑘 ≤ 𝜗𝜇 and |𝜉𝑘 | ≥ 1 + 2𝜇, one has

|𝐹𝑘 (𝐷2𝑢𝑘 ) | ≤ ∥ 𝑓𝑘 ∥∞ |𝜉𝑘 + 𝜗𝑘𝐷𝑢𝑘 |−𝑞𝑘 ≤ 𝜍𝑘 (1 + 𝜇)−𝑞𝑘 .

Now both 𝐹𝑘 and 𝑢𝑘 are uniformly bounded and equicontinuous, hence, up to a subsequence,
𝐹𝑘 → 𝐹∞ and 𝑢𝑘 → 𝑢∞ locally uniformly. By stability 𝑢∞ solves

𝐹∞(𝐷2𝑢∞) = 0 in 𝐵1/2,

in the viscosity sense. This leads to a contradiction on (2.33) for 𝑘 ≫ 1 large enough. □

As before, by employing iteration arguments, we have the following result.

Proposition 2.7. Let 𝑢 be a viscosity solution of

|𝐷𝑢 |𝑞𝐹 (𝐷2𝑢) = 𝑓 in 𝐵1.

There exists constants 𝜌0, 𝛾 ∈ (0, 1) depending on 𝑛, 𝜆, Λ, and small positive constants 𝜍0, 𝜏0

depending only on 𝜇, 𝑛, 𝜆, Λ, such that, if

∥ 𝑓 ∥∞ ≤ 𝜍0, and |𝑢(𝑥) − (𝜉 · 𝑥 + 𝑏) | ≤ 𝜏0 in 𝐵1,

for some 𝜉 ∈ R𝑛, such that
1 + 3𝜇 ≤ |𝜉 |,

then, for each positive integer 𝑘 , there exists an affine function

ℓ𝑘 = 𝜉𝑘 · 𝑥 + 𝑏𝑘 ,

such that
|𝜉𝑘 − 𝜉𝑘−1 | ≤ 𝐶𝜏0𝜌

(𝑘−1)𝛾
0 , |𝑏𝑘 − 𝑏𝑘−1 | ≤ 𝐶𝜏0𝜌

(𝑘−1) (1+𝛾)
0

and
|𝑢 − ℓ𝑘 | ≤ 𝜏0𝜌

(𝑘−1) (1+𝛾)
0 in 𝐵𝜌𝑘−1

0
,

for some 𝐶 ≥ 1 depending on 𝑛, 𝜆, Λ.

The proof is equal to the one we did before, with the obvious modifications. As
consequence, Corollary 2.1 also holds. Notice that they are independent of the parameter 𝑞
due to the approximation lemma. Moreover, as a consequence of the results independent of the
parameter 𝑞, we can prove Theorem 2.7 by the very same proof of Proposition 2.3 as if 𝜅 = 0 and
exchanging 𝜇 by 1 + 𝜇.
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Limiting equation

Now, let us briefly explain how we draw the limiting problem and how the regularity
estimates independent of 𝑞 are useful. Consider {𝑢𝑞}𝑞>0 to be a family of normalized viscosity
solutions to (2.28). First, let us assume 𝑓 ≥ 𝑐 > 0, for some constant 𝑐. By Corollary 2.2, up to
a subsequence, it holds that 𝑢𝑞 → 𝑢∞, for some Lipschitz function 𝑢∞. We will show that 𝑢∞
solves,

min
(
|𝐷𝑢∞ | − 1, 𝐹 (𝐷2𝑢∞)

)
= 0

in the viscosity sense. Indeed, let 𝜑 ∈ 𝐶2 touching 𝑢∞ from above at 𝑥0. By uniform convergence,
a vertical translation of 𝜑 touches 𝑢𝑞 from above at 𝑥𝑞, and so

|𝐷𝜑(𝑥𝑞) |𝑞𝐹 (𝐷2𝜑(𝑥𝑞)) ≥ 𝑓 (𝑥𝑞) ≥ 0.

Observe that
𝐹 (𝐷2𝜑(𝑥𝑞)) ≥ 0

for every 𝑞, and so, by continuity,
𝐹 (𝐷2𝜑(𝑥0)) ≥ 0.

Moreover, we must have |𝐷𝜑(𝑥0) | ≥ 1. Indeed, if |𝐷𝜑(𝑥0) | < 1, then by continuity we would
have |𝐷𝜑(𝑥𝑞) | < 1 for large 𝑞. Since,

|𝐷𝜑(𝑥𝑞) |𝑞𝐹 (𝐷2𝜑(𝑥𝑞)) ≥ 𝑓 (𝑥𝑞) ≥ 𝑐 > 0,

passing to the limit as 𝑞 → ∞, we obtain

0 ≥ 𝑐,

a contradiction. This proves that 𝑢∞ is a subsolution. Let us now prove the supersolution side.
Let 𝜑 ∈ 𝐶2 touching 𝑢∞ from below at 𝑥0. We need to show that

min
(
|𝐷𝑢∞(𝑥0) | − 1, 𝐹 (𝐷2𝜑(𝑥0))

)
≤ 0.

Since it is a minimum, we may assume |𝐷𝜑(𝑥0) | > 1, otherwise the inequality would be
automatically true. By continuity, |𝐷𝜑(𝑥𝑞) | > 1 for large 𝑞 and so,

|𝐷𝜑(𝑥𝑞) |𝑞𝐹 (𝐷2𝜑(𝑥𝑞)) ≤ 𝑓 (𝑥𝑞) ≤ ∥ 𝑓 ∥∞,

and so, passing to the limit as 𝑞 → ∞, it holds that

𝐹 (𝐷2𝜑(𝑥0)) ≤ 0.

When the RHS has no sign assumption, the only information we can obtain for the
limiting problem is that 𝑢∞ satisfies:

𝐹 (𝐷2𝑢∞) = 0, in {|𝐷𝑢∞ | > 1},

that is, 𝑢∞ is a 1-grad 𝐹-harmonic function. Due to our Lipschitz regularity results, 𝑢∞ ∈ 𝐶0,1.

As a further consequence, by considering another subsequence if necessary, from Theorem
2.7, that the limiting solution 𝑢∞ has a continuous gradient up to the free boundary. Moreover,
the set {|𝐷𝑢∞ | > 1} in an open set and 𝑢∞ is an effective viscosity solution.
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3
On free boundary problems shaped by oscil-
latory singularities

In this chapter, we delve into the geometric characteristics of minimizers associated with
the functional (1.5). Our exploration embarks on a thorough investigation into the existence of
minimizers under the broadest possible conditions, alongside an analysis of non-degeneracy and
gradient estimates within this environment. We dedicate the first four sections of this chapter to
meticulously unfold these implications and the program will develop as further structure on the
oscillatory singularities are in force.

Commencing with an environment where the oscillatory singularities satisfies a weak
Dini continuity assumption, we achieve precise gradient regularity and establish positive density
estimates for the free boundary in Section 3.5. These findings lay the groundwork for advancing
our understanding of the functional’s behavior under finely tuned conditions.

Transitioning to Section 3.6, we tackle the ambitious goal of deriving Hausdorff measure
estimates, a task demanding exceptional regularity in the underlying parameters due to the
necessity of differentiating the equation twice. This section underscores the intricate balance
required in handling an array of parameters, highlighting the complexity and depth of our
analytical approach.

Our journey reaches a pivotal moment in Section 3.7, where, under the assumption
that the oscillatory parameters exhibit a Sobolev regularity, we introduce a novel Weiss-type
monotonicity formula. This innovative analytical tool not only enables the classification of
blow-ups but also sets the stage for addressing the classification of minimal cones in lower
dimensions. Leveraging Federer’s reduction argument, we culminate our analysis in Section 3.8
by establishing the regularity of the free boundary.

This chapter represents a comprehensive endeavor to dissect and understand the intricate
geometric properties of minimizers, navigating through the complexities of non-degeneracy,
gradient estimates, and the free boundary’s geometric and regularity properties. Through
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meticulous analysis and innovative methodologies, we contribute significantly to the ongoing
dialogue in the field, paving the way for further research and exploration.

3.1 Existence of minimizers

We start by proving the existence of non-negative minimizers of functional (1.5) and
deriving global 𝐿∞-bounds.

Proposition 3.1. Under the conditions above, namely (1.4), there exists a minimizer 𝑢 ∈ A of
the energy-functional (1.5). Furthermore, 𝑢 is non-negative in Ω and ∥𝑢∥𝐿∞ (Ω) ≤ ∥𝜑∥𝐿∞ (Ω) .

Proof. Let
𝑚 = inf

𝑣∈A
J 𝛿
𝛾 (𝑣,Ω)

and choose a minimizing sequence 𝑢𝑘 ∈ A such that, as 𝑘 → ∞,

J 𝛿
𝛾 (𝑢𝑘 ,Ω) −→ 𝑚.

Then, for 𝑘 ≫ 1, we have

∥𝐷𝑢𝑘 ∥2
𝐿2 (Ω) = 2J 𝛿

𝛾 (𝑢𝑘 ,Ω) − 2
∫
Ω

𝛿(𝑥) (𝑢+𝑘 )
𝛾(𝑥)𝑑𝑥

≤ 2(𝑚 + 1) + 2 ∥𝛿∥𝐿∞ (Ω)

(
|Ω| + ∥𝑢𝑘 ∥𝐿1 (Ω)

)
≤ 2(𝑚 + 1) + 2 ∥𝛿∥𝐿∞ (Ω)

(
|Ω| +

√︁
|Ω| ∥𝑢𝑘 ∥𝐿2 (Ω)

)
.

From Poincaré inequality, we also have

∥𝑢𝑘 ∥𝐿2 (Ω) ≤ ∥𝑢𝑘 − 𝜑∥𝐿2 (Ω) + ∥𝜑∥𝐿2 (Ω)

≤ 𝐶 ∥𝐷𝑢𝑘 − 𝐷𝜑∥𝐿2 (Ω) + ∥𝜑∥𝐿2 (Ω)

≤ 𝐶 ∥𝐷𝑢𝑘 ∥𝐿2 (Ω) + 𝐶 ∥𝐷𝜑∥𝐿2 (Ω) + ∥𝜑∥𝐿2 (Ω) ,

and so
∥𝑢𝑘 ∥𝐿2 (Ω) ≤ 𝐶2(4𝜖)−1 + 𝜖 ∥𝐷𝑢𝑘 ∥2

𝐿2 (Ω) + 𝐶 ∥𝐷𝜑∥𝐿2 (Ω) + ∥𝜑∥𝐿2 (Ω) , (3.1)

with 𝜖 > 0 to be chosen. We thus obtain

∥𝐷𝑢𝑘 ∥2
𝐿2 (Ω) ≤ 𝐶1 + 2𝜖 ∥𝛿∥𝐿∞ (Ω)

√︁
|Ω| ∥𝐷𝑢𝑘 ∥2

𝐿2 (Ω) ,

with
𝐶1 = 𝐶1

(
𝑚, ∥𝛿∥𝐿∞ (Ω) , |Ω|, 𝐶, 𝜖, ∥𝜑∥𝐻1 (Ω)

)
.

Choosing
𝜖 =

1
4 ∥𝛿∥𝐿∞ (Ω)

√︁
|Ω|

,
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we conclude
∥𝐷𝑢𝑘 ∥2

𝐿2 (Ω) ≤ 2𝐶1

and thus, using again (3.1), that {𝑢𝑘 }𝑘 is bounded in 𝐻1(Ω). Consequently, for a subsequence
(relabeled for convenience) and a function 𝑢 ∈ 𝐻1(Ω), we have

𝑢𝑘 −→ 𝑢,

weakly in 𝐻1(Ω), strongly in 𝐿2(Ω) and pointwise for a.e. 𝑥 ∈ Ω. Using Mazur’s theorem, it is
standard to conclude that 𝑢 ∈ A.

The weak lower semi-continuity of the norm gives∫
Ω

1
2
|𝐷𝑢 |2 𝑑𝑥 ≤ lim inf

𝑘→∞

∫
Ω

1
2
|𝐷𝑢𝑘 |2 𝑑𝑥

and the pointwise convergence and Lebesgue’s dominated convergence give∫
Ω

𝛿(𝑥) (𝑢+𝑘 )
𝛾(𝑥)𝑑𝑥 −→

∫
Ω

𝛿(𝑥) (𝑢+)𝛾(𝑥)𝑑𝑥.

We conclude that
J 𝛿
𝛾 (𝑢,Ω) ≤ lim inf

𝑘→∞
J 𝛿
𝛾 (𝑢𝑘 ,Ω) = 𝑚

and so 𝑢 is a minimizer.

We now turn to the bounds on the minimizer. That 𝑢 is non-negative for a non-negative
boundary datum is trivial since (𝑢+)+ = 𝑢+, and testing the functional against 𝑢+ ∈ A immediately
gives the result. For the upper bound, test the functional with 𝑣 = min

{
𝑢, ∥𝜑∥𝐿∞ (Ω)

}
∈ A to get,

by the minimality of 𝑢,

0 ≤
∫
Ω

|𝐷 (𝑢 − 𝑣) |2 𝑑𝑥 =

∫
Ω∩{𝑢>∥𝜑∥𝐿∞(Ω) }

|𝐷𝑢 |2 𝑑𝑥

=

∫
Ω

|𝐷𝑢 |2 − |𝐷𝑣 |2 𝑑𝑥

≤ 2
∫
Ω

𝛿(𝑥)
[
(𝑣+)𝛾(𝑥) − (𝑢+)𝛾(𝑥)

]
𝑑𝑥

≤ 0.

We conclude that 𝑣 = 𝑢 in Ω and thus ∥𝑢∥𝐿∞ (Ω) ≤ ∥𝜑∥𝐿∞ (Ω) . □

Remark 3.1. If the boundary datum 𝜑 changes sign, the existence theorem above still applies,
but the minimizer is no longer non-negative. Uniqueness may, in general, fail, even in the case of
𝛾 ≡ 𝛾0 < 1.

3.2 Local 𝐶1,𝛼−regularity estimates

Our first main regularity result yields local 𝐶1,𝛼−regularity estimates for minimizers of
the energy-functional (1.5), under no further assumption on 𝛾(𝑥) other than (1.4).
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Theorem 3.1. Let 𝑢 be a minimizer of the energy-functional (1.5) under assumption (1.4). For
each subdomain Ω′ ⋐ Ω, there exists a constant 𝐶 > 0, depending only on 𝑛, ∥𝛿∥∞, 𝛾★(Ω′),
dist(Ω′, 𝜕Ω) and ∥𝑢∥∞, such that

∥𝑢∥𝐶1,𝛼 (Ω′) ≤ 𝐶,

for 𝛼 =
𝛾★(Ω′)

2 − 𝛾★(Ω′) .

For the proof of Theorem 3.1, we will argue along the lines of [45, 55], but several
adjustments are needed, and we will mainly comment on those. We start by noting that, without
loss of generality, one can assume that the minimizer satisfies the bound

∥𝑢∥𝐿∞ (Ω) ≤ 1. (3.2)

Indeed, 𝑢 minimizes (1.5) if, and only if, the auxiliary function

𝑢(𝑥) :=
𝑢(𝑥)
𝑀

,

minimizes the functional
𝑣 ↦→

∫
Ω

1
2
|𝐷𝑣 |2 + 𝛿(𝑥) (𝑣+)𝛾(𝑥) 𝑑𝑥,

where
𝛿(𝑥) := 𝑀𝛾(𝑥)−2𝛿(𝑥).

Taking 𝑀 = max{1, ∥𝑢∥𝐿∞ (Ω)}, places the new function 𝑢 under condition (3.2); any regularity
estimate proven for 𝑢 automatically translates to 𝑢.

Next, we gather some useful estimates, which can be found in [55, Lemma 2.4 and
Lemma 4.1, respectively]. We adjust the statements of the lemmata to fit the setup treated here.
Given a ball 𝐵𝑅 (𝑥0) ⋐ Ω, we denote the harmonic replacement (or lifting) of 𝑢 in 𝐵𝑅 (𝑥0) by ℎ,
i.e., ℎ is the solution of the boundary value problem

Δℎ = 0 in 𝐵𝑅 (𝑥0) and ℎ − 𝑢 ∈ 𝐻1
0 (𝐵𝑅 (𝑥0)).

By the maximum principle, we have ℎ ≥ 0 and

∥ℎ∥𝐿∞ (𝐵𝑅 (𝑥0)) ≤ ∥𝑢∥𝐿∞ (𝐵𝑅 (𝑥0)) . (3.3)

Lemma 3.1. Let 𝜓 ∈ 𝐻1(𝐵𝑅) and ℎ be the harmonic replacement of 𝜓 in 𝐵𝑅. There exists 𝑐,
depending only on 𝑛, such that

𝑐

∫
𝐵𝑅

|𝐷𝜓 − 𝐷ℎ|2 𝑑𝑥 ≤
∫
𝐵𝑅

|𝐷𝜓 |2 − |𝐷ℎ |2 𝑑𝑥. (3.4)
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Lemma 3.2. Let 𝜓 ∈ 𝐻1(𝐵𝑅) and ℎ be the harmonic replacement of 𝜓 in 𝐵𝑅. Given 𝛽 ∈ (0, 1),
there exists 𝐶, depending only on 𝑛 and 𝛽, such that∫

𝐵𝑟

|𝐷𝜓 − (𝐷𝜓)𝑟 |2 𝑑𝑥 ≤ 𝐶

( 𝑟
𝑅

)𝑛+2𝛽 ∫
𝐵𝑅

|𝐷𝜓 − (𝐷𝜓)𝑅 |2 𝑑𝑥

+𝐶
∫
𝐵𝑅

|𝐷𝜓 − 𝐷ℎ|2 𝑑𝑥,

for each 0 < 𝑟 ≤ 𝑅.

We are ready to prove the local regularity result.

Proof of Theorem 3.1. We prove the result for the case of balls 𝐵𝑅 (𝑥0) ⋐ Ω. Without loss of
generality, assume 𝑥0 = 0 and denote 𝐵𝑅 := 𝐵𝑅 (0). Since 𝑢 is a local minimizer, by testing (1.5)
against its harmonic replacement, we obtain the inequality∫

𝐵𝑅

|𝐷𝑢 |2 − |𝐷ℎ|2 𝑑𝑥 ≤ 2
∫
𝐵𝑅

𝛿(𝑥)
(
ℎ(𝑥)𝛾(𝑥) − 𝑢(𝑥)𝛾(𝑥)

)
𝑑𝑥. (3.5)

Next, with the aid of [55, Lemma 2.5], one obtains

ℎ(𝑥)𝛾(𝑥) − 𝑢(𝑥)𝛾(𝑥) ≤ |𝑢(𝑥) − ℎ(𝑥) |𝛾(𝑥) ,

and, using (1.4), together with (3.2) and (3.3), we get

|𝑢(𝑥) − ℎ(𝑥) |𝛾(𝑥) ≤ |𝑢(𝑥) − ℎ(𝑥) |𝛾★(0,𝑅) , a.e. in 𝐵𝑅 . (3.6)

This readily leads to∫
𝐵𝑅

𝛿(𝑥)
(
ℎ(𝑥)𝛾(𝑥) − 𝑢(𝑥)𝛾(𝑥)

)
𝑑𝑥 ≤ ∥𝛿∥𝐿∞ (Ω)

∫
𝐵𝑅

|𝑢(𝑥) − ℎ(𝑥) |𝛾★(0,𝑅) 𝑑𝑥.

In addition, by combining Hölder and Sobolev inequalities, we obtain

∫
𝐵𝑅

|𝑢 − ℎ |𝛾★(0,𝑅) 𝑑𝑥 ≤ 𝐶 |𝐵𝑅 |1−
𝛾★ (0,𝑅)

2∗
©­­«
∫
𝐵𝑅

|𝑢 − ℎ |2∗ 𝑑𝑥
ª®®¬

𝛾★ (0,𝑅)
2∗

≤ 𝐶 |𝐵𝑅 |1−
𝛾★ (0,𝑅)

2∗
©­­«
∫
𝐵𝑅

|𝐷𝑢 − 𝐷ℎ|2 𝑑𝑥
ª®®¬

𝛾★ (0,𝑅)
2

(3.7)

for 2∗ =
2𝑛
𝑛 − 2

.

Therefore, using Lemma 3.1, together with (3.5), (3.6) and (3.7), we get∫
𝐵𝑅

|𝐷𝑢 − 𝐷ℎ |2 𝑑𝑥 ≤ 𝐶 |𝐵𝑅 |
2(2∗−𝛾★ (0,𝑅) )
2∗ (2−𝛾★ (0,𝑅) ) = 𝐶𝑅

𝑛+2 𝛾★ (0,𝑅)
2−𝛾★ (0,𝑅) . (3.8)
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Finally, by taking

𝛽 =
𝛾★(0, 𝑅)

2 − 𝛾★(0, 𝑅)
∈ (0, 1),

in Lemma 3.2, we conclude ∫
𝐵𝑟

|𝐷𝑢 − (𝐷𝑢)𝑟 |2 𝑑𝑥

≤ 𝐶
( 𝑟
𝑅

)𝑛+2 𝛾★ (0,𝑅)
2−𝛾★ (0,𝑅)

∫
𝐵𝑅

|𝐷𝑢 − (𝐷𝑢)𝑅 |2 𝑑𝑥 + 𝐶𝑅𝑛+2 𝛾★ (0,𝑅)
2−𝛾★ (0,𝑅) ,

for each 0 < 𝑟 ≤ 𝑅. Campanato’s embedding theorem completes the proof. □

Hereafter, in this paper, we assume Ω = 𝐵1 ⊂ R𝑛 and, according to what was argued
around (3.2), fix a normalized, non-negative minimizer, 0 ≤ 𝑢 ≤ 1, of the energy-functional
(1.5).

Remark 3.2. It is worth noting that the proof of Theorem 3.1 does not rely on the non-negativity
property of 𝑢. Therefore, the same conclusion applies to the two-phase problem, and the proof
remains unchanged.

3.3 Non-degeneracy

We now turn our attention to local non-degeneracy estimates. We will assume 𝛿(𝑥) is
bounded below away from zero, namely that it satisfies the condition

ess inf
𝑥∈𝐵1

𝛿(𝑥) =: 𝛿0 > 0. (3.9)

Theorem 3.2. Assume (3.9) is in force. For any 𝑦 ∈ {𝑢 > 0} and 0 < 𝑟 ≪ 1, we have

sup
𝜕𝐵𝑟 (𝑦)

𝑢 ≥ 𝑐 𝑟
2

2−𝛾★ (𝑦,𝑟 ) , (3.10)

where 𝑐 > 0 depends only on 𝑛, 𝛿0 and 𝛾★(0, 1).

Proof. With 𝑦 ∈ {𝑢 > 0} and 0 < 𝑟 ≪ 1 fixed, define the auxiliary function 𝜑 by

𝜑(𝑥) := 𝑢(𝑥)2−𝛾★(𝑦,𝑟) − 𝑐 |𝑥 − 𝑦 |2,

for 𝑐 > 0 to be chosen later. Note that in {𝑢 > 0} ∩ 𝐵𝑟 (𝑦), we have

Δ𝜑 = (2 − 𝛾★(𝑦, 𝑟))
(
(1 − 𝛾★(𝑦, 𝑟))𝑢−𝛾★(𝑦,𝑟) |𝐷𝑢 |2 + 𝑢1−𝛾★(𝑦,𝑟)Δ𝑢

)
− 2𝑛𝑐

= (2 − 𝛾★(𝑦, 𝑟))
(
(1 − 𝛾★(𝑦, 𝑟))𝑢−𝛾★(𝑦,𝑟) |𝐷𝑢 |2 + 𝛿(𝑥)𝛾(𝑥)𝑢𝛾(𝑥)−𝛾★(𝑦,𝑟)

)
−2𝑛𝑐

≥ (2 − 𝛾★(𝑦, 𝑟))𝛿(𝑥)𝛾(𝑥)𝑢𝛾(𝑥)−𝛾★(𝑦,𝑟) − 2𝑛𝑐.
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Hence, choosing 𝑐 > 0 small enough such that

0 < 𝑐 ≤ min
{
1,
𝛿0𝛾★(0, 1)

2𝑛

}
,

we obtain Δ𝜑 ≥ 0 in {𝑢 > 0} ∩ 𝐵𝑟 (𝑦). In addition, since 𝜑(𝑦) > 0, by the Maximum Principle,

𝜕 ({𝑢 > 0} ∩ 𝐵𝑟 (𝑦)) ∩ {𝜑 > 0} ≠ ∅.

Consequently, since 1
2−𝛾★(𝑦,𝑟) ≤ 1

sup
𝜕𝐵𝑟 (𝑦)

𝑢 > 𝑐
1

2−𝛾★ (𝑦,𝑟 ) 𝑟
2

2−𝛾★ (𝑦,𝑟 ) ≥ 𝑐 𝑟
2

2−𝛾★ (𝑦,𝑟 ) ,

and the proof is complete for 𝑦 ∈ {𝑢 > 0}; the general case follows by continuity. □

3.4 Gradient estimates near the free boundary

In this section, we study gradient oscillation estimates for minimizers of (1.5) in regions
relatively close to the free boundary. We first show that pointwise flatness implies an 𝐿∞−estimate.

Lemma 3.3. Let 𝑢 be a local minimizer of the energy-functional (1.5) in 𝐵1. Assume that

𝛾★(0, 1) > 0.

There exists a constant 𝐶 > 1, depending only on 𝛾★(0, 1) and universal parameters, such that, if

𝑢(𝑥) ≤ 1
𝐶
𝑟

2
2−𝛾★ (𝑥,𝑟 ) , (3.11)

for 𝑥 ∈ 𝐵1/2 and 𝑟 ≤ 1/4, then
sup
𝐵𝑟 (𝑥)

𝑢 ≤ 𝐶𝑟
2

2−𝛾★ (𝑥,𝑟 ) .

Proof. We suppose the thesis of the lemma fails. Then, for each integer 𝑘 > 0, there exist a
minimizer 𝑢𝑘 of (1.5) in 𝐵1, 𝑥𝑘 ∈ 𝐵1/2 and 0 < 𝑟𝑘 < 1/4, such that

𝑢𝑘 (𝑥𝑘 ) ≤
1
𝑘
𝑟

2
2−𝛾𝑘
𝑘

,

but
𝑘 𝑟

2
2−𝛾𝑘
𝑘

< sup
𝐵𝑟𝑘 (𝑥𝑘)

𝑢𝑘 =: 𝑠𝑘 ≤ 1,

where 𝛾𝑘 := 𝛾★(𝑥𝑘 , 𝑟𝑘 ). Note that from the last two estimates,

𝑢𝑘 (𝑥𝑘 ) ≤
1
𝑘
𝑟

2
2−𝛾𝑘
𝑘

<
1
𝑘2 𝑠𝑘 ,

and
𝑟

2
2−𝛾𝑘
𝑘

𝑠𝑘
<

1
𝑘
. (3.12)
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In the sequel, define

𝜑𝑘 (𝑥) :=
𝑢𝑘 (𝑥𝑘 + 𝑟𝑘𝑥)

𝑠𝑘
in 𝐵1.

Hence,
sup
𝐵1

𝜑𝑘 = 1, and 𝜑𝑘 (0) <
1
𝑘2 . (3.13)

In addition, note that 𝜑𝑘 minimizers

𝑣 ↦−→
∫
𝐵1

1
2
|𝐷𝑣 |2 + 𝛿𝑘 (𝑥)𝑣𝛾𝑘 (𝑥)𝑑𝑥,

for

𝛿𝑘 (𝑥) := 𝛿(𝑥𝑘 + 𝑟𝑘𝑥)
𝑟2
𝑘

𝑠
2−𝛾(𝑥𝑘+𝑟𝑘𝑥)
𝑘

and 𝛾𝑘 (𝑥) := 𝛾(𝑥𝑘 + 𝑟𝑘𝑥).

From (3.12), we obtain

𝑠
𝛾(𝑥𝑘+𝑟𝑘𝑥)−2
𝑘

𝑟2
𝑘 ≤ 𝑠

𝛾(𝑥𝑘+𝑟𝑘𝑥)−2
𝑘

( 𝑠𝑘
𝑘

)2−𝛾𝑘
= 𝑠

𝛾(𝑥𝑘+𝑟𝑘𝑥)−𝛾𝑘
𝑘

(
1
𝑘

)2−𝛾𝑘
≤ 1
𝑘
,

for each 𝑥 ∈ 𝐵1. The last estimate is guaranteed since, for each 𝑘 ,

𝛾𝑘 = inf
𝑦∈𝐵𝑟𝑘 (𝑥𝑘)

𝛾(𝑦) = inf
𝑥∈𝐵1

𝛾(𝑥𝑘 + 𝑟𝑘𝑥) ≤ 𝛾(𝑥𝑘 + 𝑟𝑘𝑥).

Hence,
∥𝛿𝑘 ∥𝐿∞ (𝐵1) ≤ ∥𝛿∥𝐿∞ (𝐵1)𝑘

−1.

Next, we apply Theorem 3.1 for the lower bound

inf
𝑦∈𝐵1

𝛾𝑘 (𝑦) = inf
𝑦∈𝐵1

𝛾(𝑥𝑘 + 𝑟𝑘 𝑦) = inf
𝑥∈𝐵𝑟𝑘 (𝑥𝑘)

𝛾(𝑥) = 𝛾★(𝑥𝑘 , 𝑟𝑘 ) ≥ 𝛾★(0, 1) =: 𝜃,

and observe that the sequence {𝜑𝑘 }𝑘 is 𝐶1, 𝜃
2−𝜃−equicontinuous. Therefore, up to a subsequence,

𝜑𝑘 converges uniformly to 𝜑∞ in 𝐵1/2, as 𝑘 → ∞. Taking into account the estimates above, we
conclude that 𝜑∞ minimizers the functional

𝑣 ↦−→
∫
𝐵1

1
2
|𝐷𝑣 |2 𝑑𝑥.

In particular, 𝜑∞ is harmonic in 𝐵1, and 𝜑∞(0) = 0. Therefore, by the strong maximum principle,
one has 𝜑∞ ≡ 0 in 𝐵1. But this contradicts

sup
𝐵1

𝜑∞ = 1,

and the proof of the lemma is complete. □

Next, we prove a pointwise gradient estimate.
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Lemma 3.4. Let 𝑢 be a local minimizer of energy-functional (1.5) in 𝐵1. Assume 𝛾 is lower
semi-continuous in Ω and that

𝛾★(0, 1) > 0.

There exists a small universal parameter 𝜏 > 0 and a constant 𝐶, depending only on 𝛾★(0, 1)
and universal parameters, such that if

0 ≤ 𝑢 ≤ 𝜏 in 𝐵1, (3.14)

then
|𝐷𝑢(𝑥) |2 ≤ 𝐶 [𝑢(𝑥)]𝛾★(0,1) , (3.15)

for each 𝑥 ∈ 𝐵1/2.

Proof. The case 𝑥 ∈ 𝜕{𝑢 > 0} ∩ 𝐵1/2 follows from Theorem 3.1. In fact, since solutions are
locally 𝐶1,𝛽, for some 𝛽 > 0, the fact that 𝑢 attains at each 𝑥 ∈ 𝜕{𝑢 > 0} its minimum value
implies that |𝐷𝑢(𝑥) | = 0.

We now consider 𝑥 ∈ {𝑢 > 0} ∩ 𝐵1/2 and choose

𝜏 :=
1
𝐶

(
1
4

) 2
2−𝛾★ (0,1)

,

for 𝐶 as in Lemma 3.3. Note that
lim
𝑠→0+

𝑠
2

2−𝛾★ (𝑥,𝑠) = 0,

for each 𝑥 ∈ 𝐵1/2. From this and the fact that 𝛾★(𝑥, ·) is continuous, we select 𝑟 > 0 such that

𝑟
2

2−𝛾★ (𝑥,𝑟 ) = 𝐶𝑢(𝑥) ≤
(
1
4

) 2
2−𝛾★ (0,1)

,

the inequality following from (3.14). This implies, in particular, that

𝑟 ≤
(
1
4

) 2−𝛾★ (𝑥,𝑟 )
2−𝛾★ (0,1)

≤ 1
4
,

since the exponent in the above expression is greater than 1. We can now apply Lemma 3.3 since
condition (3.11) holds trivially, obtaining

sup
𝐵𝑟 (𝑥)

𝑢 ≤ 𝐶 𝑟
2

2−𝛾★ (𝑥,𝑟 ) .

Define
𝑣(𝑦) := 𝑢(𝑥 + 𝑟𝑦) 𝑟−

2
2−𝛾★ (𝑥,𝑟 ) in 𝐵1,

and observe that it satisfies the uniform bound

sup
𝐵1

𝑣 ≤ 𝐶.
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Additionally, by the scaling properties of section 2, 𝑣 is a minimizer of a scaled functional as
(1.5) in 𝐵1, and so, by Theorem 3.1,

|𝐷𝑣(0) | ≤ 𝐿,

for some 𝐿, depending only on 𝛾★(0, 1) and universal parameters. This translates into

|𝐷𝑢(𝑥) | ≤ 𝐿𝑟
𝛾★ (𝑥,𝑟 )

2−𝛾★ (𝑥,𝑟 )

= 𝐿 (𝐶𝑢(𝑥))
𝛾★ (𝑥,𝑟 )

2−𝛾★ (𝑥,𝑟 ) ·
2−𝛾★ (𝑥,𝑟 )

2

≤ 𝐿
√
𝐶 [𝑢(𝑥)]

𝛾★ (𝑥,𝑟 )
2 ,

recalling that 𝐶 > 1. Since 𝛾★(𝑥, 𝑟) ≥ 𝛾★(0, 1) and 0 ≤ 𝑢 ≤ 1, the proof follows with 𝐶 = 𝐿2𝐶,
which depends only on 𝛾★(0, 1) and universal parameters. □

Remark 3.3. We have proved Lemma 3.4 under the assumption that (3.14) holds. Observe,
however, that the conclusion is trivial otherwise. Indeed, if 𝑢(𝑥) > 𝜏, then by Lipschitz regularity
we have

|𝐷𝑢(𝑥) |2 ≤ 𝐿2 = 𝐿2
(𝜏
𝜏

)𝛾★(0,1)
≤ 𝐿2

𝜏𝛾★(0,1)
[𝑢(𝑥)]𝛾★(0,1) .

Remark 3.4. It is worthwhile mentioning that the lower semi-continuity assumption on 𝛾(𝑥) in
Lemma 3.4 can be removed. To do so, one has to prove a weaker version of Lemma 3.3, with
2/(2 − 𝛾∗(0, 1)) replacing 2/(2 − 𝛾∗(𝑥, 𝑟)). The reasoning follows seamlessly.

3.5 Weak Dini-continuous exponents and sharp estimates

The local regularity result in Theorem 3.1 yields a (1+𝛼)−growth control for a minimizer
𝑢 near its free boundary. More precisely, if 𝑧0 is a free boundary point then 𝑢(𝑧0) = 𝐷𝑢(𝑧0) = 0.
Consequently, with 𝑟 = |𝑦 − 𝑧0 |, we have, by continuity,

𝑢(𝑦) ≤ sup
𝑥∈𝐵𝑟 (𝑧0)

|𝑢(𝑥) − 𝑢(𝑧0) − 𝐷𝑢(𝑧0) · (𝑥 − 𝑧0) |

≤ 𝐶𝑟1+𝛼

= 𝐶 |𝑦 − 𝑧0 |
2

2−𝛾★ (𝑧0 ,𝑟 ) .

However, such an estimate is suboptimal and a key challenge is to understand how the oscillation
of 𝛾(𝑥) impacts the prospective (point-by-point) 𝐶1,𝛼 regularity of minimizers along the free
boundary.

In this section, we assume 𝛾 is continuous at a free boundary point 𝑧0, with a modulus of
continuity 𝜔 satisfying

𝜔(1) + lim
𝑡→0

𝜔(𝑡) ln
(
1
𝑡

)
≤ 𝐶̃, (3.16)
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for a constant 𝐶̃ > 0. Such a condition often appears in models involving variable exponent
PDEs as a critical (minimal) assumption for the theory; see, for instance, [1] for functionals with
𝑝(𝑥)-growth and [17] for the non-variational theory.

Note that assumption (3.16) is weaker than the classical notion of Dini continuity. In fact,
if (3.16) is violated then, for a constant 𝑀 > 0 and 0 < 𝑡0 ≪ 1, we have

𝜔(𝑡) ln
(
1
𝑡

)
≥ 𝑀, ∀𝑡 ∈ (0, 𝑡0)

and then ∫ 1

0

𝜔(𝑡)
𝑡
𝑑𝑡 ≥

∫ 𝑡0

0

𝑀

𝑡 ln
(

1
𝑡

) 𝑑𝑡 = 𝑀 ∫ +∞

− ln 𝑡0

𝑑𝑦

𝑦
= +∞,

so 𝛾 is not Dini continuous.

We are ready to state a sharp pointwise regularity estimate for local minimizers of (1.5)
under (3.16). We define the subsets

Ω(𝑢) :=
{
𝑥 ∈ 𝐵1

�� 𝑢(𝑥) > 0
}

and 𝐹 (𝑢) := 𝜕Ω(𝑢),

corresponding to the non-coincidence set and the free boundary of the problem, respectively.

Theorem 3.3. Let 𝑢 be a local minimizer of (1.5) in 𝐵1 and 𝑧0 ∈ 𝐹 (𝑢) ∩ 𝐵1/2. Assume 𝛾 satisfies
(3.16) at 𝑧0. Then, there exist universal constants 𝑟0 > 0 and 𝐶′ > 1 such that

𝑢(𝑦) ≤ 𝐶′ |𝑦 − 𝑧0 |
2

2−𝛾 (𝑧0 ) , (3.17)

for all 𝑦 ∈ 𝐵𝑟0 (𝑧0).

Proof. Since (3.16) is in force, let 𝑟0 ≪ 1 be such that, for 𝑟 < 𝑟0,

𝜔(𝑟) ln
(
1
𝑟

)
≤ 2

[
𝐶̃ − 𝜔(1)

]
=: 𝐶∗. (3.18)

Fix 𝑦 ∈ 𝐵𝑟0 (𝑧0) and let
𝑟 := |𝑦 − 𝑧0 | < 𝑟0.

Apply Theorem 3.1 to 𝑢 over 𝐵𝑟 (𝑧0), to get

sup
𝑥∈𝐵𝑟 (𝑧0)

𝑢(𝑥) ≤ 𝐶 𝑟
2

2−𝛾★ (𝑧0 ,𝑟 ) .

In particular, by continuity, it follows that

𝑢(𝑦) ≤ 𝐶 𝑟
2

2−𝛾∗ (𝑧0 ,𝑟 ) . (3.19)

In view of (3.16), we can estimate

𝛾(𝑧0) − 𝛾★(𝑧0, 𝑟) ≤ 𝜔(𝑟),
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and, since the function 𝑔 : [0, 1] → [0, 1] given by

𝑔(𝑡) :=
2

2 − 𝑡

satisfies 1
2 ≤ 𝑔′(𝑡) ≤ 2, for all 𝑡 ∈ [0, 1], we have

𝑔 (𝛾(𝑧0)) − 𝑔 (𝛾★(𝑧0, 𝑟)) ≤ 2 (𝛾(𝑧0) − 𝛾★(𝑧0, 𝑟))
≤ 2𝜔(𝑟).

Combining (3.19) with this inequality, and taking (3.18) into account, we reach

𝑢(𝑦) ≤ 𝐶 𝑟−[𝑔(𝛾(𝑧0))−𝑔(𝛾★(𝑧0,𝑟))] 𝑟
2

2−𝛾 (𝑧0 )

≤ 𝐶 𝑟−2𝜔(𝑟) 𝑟
2

2−𝛾 (𝑧0 )

≤ 𝐶 𝑒2𝐶∗
𝑟

2
2−𝛾 (𝑧0 )

= 𝐶′ |𝑦 − 𝑧0 |
2

2−𝛾 (𝑧0 ) ,

as desired. □

We also obtain a sharp strong non-degeneracy result.

Theorem 3.4. Let 𝑢 be a local minimizer of (1.5) in 𝐵1 and 𝑧0 ∈ 𝐹 (𝑢) ∩ 𝐵1/2. Assume (3.9) and
that (3.16) is in force at 𝑧0. Then, there exist universal constants 𝑟0 > 0 and 𝑐∗ > 0 such that

sup
𝜕𝐵𝑟 (𝑧0)

𝑢 ≥ 𝑐∗ 𝑟
2

2−𝛾 (𝑧0 ) ,

for every 0 < 𝑟 < 𝑟0.

Proof. As before, let 𝑟0 ≪ 1 be such that (3.18) holds and fix 𝑟 < 𝑟0. From Theorem 3.2, we
know

sup
𝜕𝐵𝑟 (𝑧0)

𝑢 ≥ 𝑐 𝑟
2

2−𝛾★ (𝑧0 ,𝑟 ) ,

with 𝑐 > 0 depending only on 𝑛, 𝛿0 and 𝛾★(0, 1).

Now, observe that

2
2 − 𝛾★(𝑧0, 𝑟)

=
2

2 − 𝛾(𝑧0)
+ 2

2 − 𝛾★(𝑧0, 𝑟)
− 2

2 − 𝛾(𝑧0)

and

2
2 − 𝛾★(𝑧0, 𝑟)

− 2
2 − 𝛾(𝑧0)

=
2(𝛾★(𝑧0, 𝑟) − 𝛾(𝑧0))

(2 − 𝛾★(𝑧0, 𝑟)) (2 − 𝛾(𝑧0))
≤ 2(𝛾★(𝑧0, 𝑟) − 𝛾(𝑧0))
≤ 2𝜔(𝑟).
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Thus,

𝑟
2

2−𝛾★ (𝑧0 ,𝑟 ) ≥ 𝑟2𝜔(𝑟)𝑟
2

2−𝛾 (𝑧0 )

= 𝑒2𝜔(𝑟) ln 𝑟 𝑟
2

2−𝛾 (𝑧0 )

≥ 𝑒−2𝐶∗
𝑟

2
2−𝛾 (𝑧0 ) ,

due to (3.18), and the result follows with 𝑐∗ := 𝑐 𝑒−2𝐶∗ . □

With sharp regularity and non-degeneracy estimates at hand, we can now prove the
positive density of the non-coincidence set.

Theorem 3.5. Let 𝑢 be a local minimizer of (1.5) in 𝐵1 and 𝑧0 ∈ 𝐹 (𝑢) ∩ 𝐵1/2. Assume (3.9) and
that (3.16) is in force at 𝑧0. There exists a constant 𝜇0 > 0, depending on 𝑛, 𝛿0, 𝛾★(0, 1) and the
constant from (3.16), such that

|𝐵𝑟 (𝑧0) ∩Ω(𝑢) |
|𝐵𝑟 (𝑧0) |

≥ 𝜇0,

for every 0 < 𝑟 < 𝑟0. In particular, 𝐹 (𝑢) is porous and there exists an 𝜖 > 0 such that
H 𝑛−𝜖 (𝐹 (𝑢) ∩ 𝐵1/2) = 0.

Proof. Fix 𝑟 < 𝑟0, with 𝑟0 as in Theorem 3.3. It follows from the non-degeneracy (Theorem 3.4)
that there exists 𝑦 ∈ 𝜕𝐵𝑟 (𝑧0) such that

𝑢(𝑦) ≥ 𝑐∗𝑟
2

2−𝛾 (𝑧0 ) .

Now, let 𝑧 ∈ 𝐹 (𝑢) be such that

|𝑧 − 𝑦 | = dist(𝑦, 𝐹 (𝑢)) =: 𝑑.

Then, we have
𝑐∗𝑟

2
2−𝛾 (𝑧0 ) ≤ 𝑢(𝑦) ≤ sup

𝐵𝑑 (𝑧)
𝑢 ≤ 𝐶𝑑

2
2−𝛾 (𝑧) .

Furthermore, observe that

|𝑧 − 𝑧0 | ≤ |𝑧 − 𝑦 | + |𝑦 − 𝑧0 | ≤ 𝑑 + 𝑟,

and so, since 𝑑 ≤ 𝑟, we have |𝑧 − 𝑧0 | ≤ 2𝑟. Therefore, one can proceed as in Theorem 3.3 to
obtain

𝑐∗𝑟
2

2−𝛾 (𝑧0 ) ≤ 𝑢(𝑦) ≤ 𝐶𝑑
2

2−𝛾 (𝑧0 ) .

This implies that

𝑟 ≤
(
𝐶

𝑐∗

) 2−𝛾 (𝑧0 )
2

𝑑 ≤ max
{
1,
𝐶

𝑐∗

}
𝑑.

So for 𝜅 = min {1, 𝑐∗/𝐶}, we have

𝐵𝜅𝑟 (𝑦) ⊂ 𝐵𝑑 (𝑦) ⊂ Ω(𝑢).
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Since also 𝐵𝜅𝑟 (𝑦) ⊂ 𝐵2𝑟 (𝑧0), we conclude

|𝐵2𝑟 (𝑧0) ∩Ω(𝑢) | ≥
( 𝜅
2

)𝑛
𝛼(𝑛) (2𝑟)𝑛,

where 𝛼(𝑛) is the volume of the unit ball in R𝑛, and the result follows with 𝜇0 =
(
𝜅
2
)𝑛. □

Next we establish an optimized version of Lemma 3.4, assuming that 𝛾(𝑥) satisfies
condition (3.16). First, observe that if 𝑥 ∈ Ω(𝑢) ∩ 𝐵1/2 is such that

𝑢(𝑥) ≤ 1
𝐶
𝑟

2
2−𝛾 (𝑥 ) ,

for 𝑟 ≤ 1/4, then (3.11) also holds at 𝑥. Therefore, Lemma 3.3 applies and we also have

sup
𝐵𝑟 (𝑥)

𝑢 ≤ 𝐶𝑟
2

2−𝛾∗ (𝑥,𝑟 ) .

Condition (3.16) comes into play, and proceeding as in the proof of Theorem 3.4, for a larger
constant 𝐶1, we have

sup
𝐵𝑟 (𝑥)

𝑢 ≤ 𝐶1𝑟
2

2−𝛾 (𝑥 ) , (3.20)

for 𝑟 universally small. This remark leads to the following result.

Lemma 3.5. Let 𝑢 be a local minimizer of the energy-functional (1.5) in 𝐵1. Assume (3.9) and
(3.16) are in force. There exists a constant 𝐶, depending on 𝛾★(0, 1) and universal parameters,
such that

|𝐷𝑢(𝑥) |2 ≤ 𝐶 [𝑢(𝑥)]𝛾(𝑥) ,

for each 𝑥 ∈ 𝐵1/2.

Proof. The proof is essentially the same as the proof of Lemma 3.4, except for the steps we
highlight below. By Remark 3.3, it is enough to prove the result at points such that 0 ≤ 𝑢(𝑥) ≤ 𝜏.
First, we choose 𝑟 so that

𝑟
2

2−𝛾 (𝑥 ) = 𝐶𝑢(𝑥),

which can be taken small enough depending on 𝜏. As a consequence, (3.20) implies that the
function, defined in 𝐵1 by

𝑣(𝑦) B 𝑢(𝑥 + 𝑟𝑦)𝑟−
2

2−𝛾 (𝑥 ) ,

is uniformly bounded. What remains to be shown is that the parameters in the functional that 𝑣
minimizes are also controlled. Due to the scaling properties from section 1.3, we have

∥𝛿∥𝐿∞ (𝐵1) ≤ 𝑟
2

2−𝛾 (𝑥 ) 𝛾∗ (𝑥,𝑟)−2
𝑟2∥𝛿∥𝐿∞ (𝐵1) ≤ 𝑟𝛾∗ (𝑥,𝑟)−𝛾(𝑥) ∥𝛿∥𝐿∞ (𝐵1) .

Condition (3.16) comes into play once more so that the power

𝑟𝛾∗ (𝑥,𝑟)−𝛾(𝑥)

can be uniformly bounded. Consequently, Lipschitz estimates are also available for 𝑣, and the
lemma follows. □
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Example 3.1. We conclude this section with an insightful observation leading to a class of
intriguing free boundary problems. Initially, it is worth noting that the proof of the existence of a
minimizer can be readily adapted for more general energy functionals of the form

𝐽 (𝑣) =
∫

1
2
|𝐷𝑣 |2 + 𝛿(𝑥) (𝑣+)𝛾(𝑥,𝑣(𝑥)) 𝑑𝑥, (3.21)

provided 𝛾 : Ω × R→ R is a Carathéodory function. We further emphasize that our local 𝐶1,𝛼

regularity result, Theorem 3.1, also applies to this class of functionals.

To illustrate the applicability of these results, let us consider the following toy model,
where the oscillatory singularity 𝛾(𝑣) is given only globally measurable and bounded, such that
𝛾(𝑣) ≥ 1/6, and

𝛾(𝑥, 𝑣) = 1
2
− 3

(ln(𝑣))2 for 0 < 𝑣 ≪ 1, (3.22)

see figure 2. One easily checks that 𝛾 is Dini continuous along the surface

{𝛾(𝑥, 𝑢) = 0} ⊂ 𝐹 (𝑢),

for any minimizer 𝑢 of the corresponding functional 𝐽 in (3.21). Since

𝛾★(0, 1) =
1
6
,

the local regularity estimate obtained in Theorem 3.1, gives that minimizers are locally of class
𝐶12/11. In contrast, observe that

𝛾 ≡ 1
2

at 𝐹 (𝑢),

and so, Theorem 3.3 asserts that local minimizers are precisely of class 𝐶4/3 at free boundary
points. A wide range of meaningful examples can be constructed out of functions obtained
in [4, Section 2].

Applying similar reasoning, we can provide examples of energy functionals for which
minimizers are locally of class 𝐶1,𝜖 , for 0 < 𝜖 ≪ 1, whereas along the free boundary, they are
𝐶1,1−𝜖−regular. We anticipate revisiting the analysis of such models in future investigations.
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Figure 2 – The graph above illustrates a power singularity 𝛾(𝑥, 𝑢), characterized by pronounced
measurement imprecision arising from inherent randomness in the microstructure
composition of the material. Despite this inherent uncertainty, our regularity results,
applicable both locally and at free boundary points, offer universal and accurate esti-
mates. Remarkably, these estimates remain independent of the substantial oscillations
observed in the function 𝛾(𝑥, 𝑢).

3.6 Hausdorff measure estimates

In this section, we prove Hausdorff measure estimates for the free boundary under the
stronger regularity assumptions on the data

𝛿(𝑥) ∈ 𝑊2,∞(𝐵1) and 𝛾(𝑥) ∈ 𝑊2,∞(𝐵1). (3.23)

Differentiability of the free boundary will be obtained in Section 3.8, assuming only 𝛿, 𝛾 ∈
𝑊1,𝑞 (𝐵1), for some 𝑞 > 𝑛.

Furthermore, we shall also assume

𝛾∗(0, 1) B 𝛾∗(𝐵1(0)) < 1. (3.24)

We will need a few preliminary results, as in [3]. We begin with a slightly different
pointwise gradient estimate with respect to Lemma 3.5.
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Lemma 3.6. Let 𝑢 be a local minimizer of the energy-functional (1.5) in 𝐵1. Assume (3.9), (3.16),
(3.24) and (3.23) are in force and let 𝑥0 ∈ 𝐹 (𝑢) ∩ 𝐵1/2. There exists a constant 𝑐1, depending
only on 𝑛, 𝛿0, 𝛾★(0, 1), ∥𝐷𝛿∥∞, ∥𝐷2𝛿∥∞, ∥𝐷𝛾∥∞ and ∥𝐷2𝛾∥∞, such that

|𝐷𝑢(𝑥) |2 ≤ 2𝛿(𝑥) [𝑢(𝑥)]𝛾(𝑥) + 𝑐1𝑢(𝑥),

for each 𝑥 ∈ 𝐵1/8(𝑥0).

Proof. Consider 𝜁 : [0, 3𝜏] → R, defined by

𝜁 (𝑡) =


0 if 𝑡 ∈ [0, 𝜏]

𝐾1 (𝑡 − 𝜏)3 if 𝑡 ∈ [𝜏, 3𝜏],

and define, for 𝜏 = 1/8 and 𝐾 > 0 a large constant to be chosen later,

𝑤(𝑦) B |𝐷𝑢(𝑦) |2 − 2𝛿(𝑦) [𝑢(𝑦)]𝛾(𝑦) − 𝐾𝑢(𝑦) − 𝜁 ( |𝑦 − 𝑥0 |) [𝑢(𝑦)]𝛾(𝑦) ,

for 𝑦 ∈ Ω(𝑢) ∩ 𝐵3𝜏 (𝑥0). By Lemma 3.5, we can suitably choose 𝐾1 > 0 so that 𝑤 ≤ 0 on
𝜕𝐵3𝜏 (𝑥0), and so 𝑤 ≤ 0 on 𝜕 [Ω(𝑢) ∩ 𝐵3𝜏 (𝑥0)]. We will show that 𝑤 ≤ 0 in Ω(𝑢) ∩ 𝐵3𝜏 (𝑥0). To
do so, we assume, to the contrary, that 𝑤 attains a positive maximum at 𝑝 ∈ Ω(𝑢) ∩ 𝐵3𝜏 (𝑥0).
Since 𝑤 is smooth within Ω(𝑢) and 𝑝 is a point of maximum for 𝑤, we have Δ𝑤(𝑝) ≤ 0. To
reach a contradiction, we will show that Δ𝑤(𝑝) > 0, for 𝜏 small and 𝐾 large.

We will omit the point 𝑝 whenever possible to ease the notation. We also rotate the
coordinate system so that 𝑒1 is in the direction of 𝐷𝑢(𝑝). We then have

0 = 𝜕1𝑤(𝑝)
= 2𝐷𝑢 · 𝐷𝜕1𝑢 − 2𝜕1𝛿𝑢

𝛾 − 2𝛿
(
𝛾𝑢𝛾−1𝜕1𝑢 + 𝜕1𝛾𝑢

𝛾 ln(𝑢)
)
− 𝐾𝜕1𝑢

−𝜕1𝜁𝑢
𝛾 − 𝜁

(
𝛾𝑢𝛾−1𝜕1𝑢 + 𝜕1𝛾 𝑢

𝛾 ln(𝑢)
)

= 𝜕1𝑢

[
2𝜕11𝑢 −

𝑢𝛾

𝜕1𝑢
(2𝜕1𝛿 + 𝜕1𝜁) − 𝑢𝛾−1𝛾(2𝛿 + 𝜁) − 𝐾

]
+𝜕1𝑢

[
− 𝑢

𝛾

𝜕1𝑢
𝜕1𝛾 ln(𝑢) (2𝛿 + 𝜁)

]
.

Since 𝜕1𝑢(𝑝) > 0, we obtain

2𝜕11𝑢 =
𝑢𝛾

𝜕1𝑢
(2𝜕1𝛿 + 𝜕1𝜁) + 𝑢𝛾−1𝛾(2𝛿 + 𝜁) + 𝐾 + 𝑢𝛾

𝜕1𝑢
𝜕1𝛾 ln(𝑢) (2𝛿 + 𝜁).

Moreover, since 𝑤(𝑝) > 0, it also holds that 𝜕1𝑢(𝑝) >
√︁

2𝛿(𝑝)𝑢(𝑝)
𝛾 (𝑝)

2 , and so

𝑢𝛾

𝜕1𝑢
≤ 𝑢

𝛾

2
√

2𝛿
≤ 1

√
2𝛿0

𝑢
𝛾

2 .

This implies that

2𝜕11𝑢 ≥ 2𝛿𝛾𝑢𝛾−1 + 𝐾 + 𝜁𝛾𝑢𝛾−1 − 𝐶1𝑢
𝛾

2 − 𝐶2𝑢
𝛾

2 | ln(𝑢) |,
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for constants 𝐶1 = 𝐶1(𝛿0, ∥𝐷𝛿∥∞, 𝐾1) and 𝐶2 = 𝐶2(𝛿0, ∥𝐷𝛾∥∞, 𝐾1). For a small 𝜂∗ > 0 so that
𝛾/2 − 𝜂∗ > 0 and a larger constant 𝐶3, we then have

2𝜕11𝑢 ≥ 2𝛿𝛾𝑢𝛾−1 + 𝐾 + 𝜁𝛾𝑢𝛾−1 − 𝐶3𝑢
𝛾

2 −𝜂
∗
.

Writing 𝐾 = 𝜂𝐾 + (1 − 𝜂)𝐾 , for 𝜂 ∈ (0, 1), we obtain, for large 𝐾 ,

2𝜕11𝑢 ≥ 2𝛿𝛾𝑢𝛾−1 + 𝜂𝐾 + 𝜁𝛾𝑢𝛾−1,

and as a consequence, squaring and dropping positive terms,

2 (𝜕11𝑢)2 ≥ 2
(
𝛿𝛾𝑢𝛾−1

)2
+ 2𝛿𝛾𝜂𝐾𝑢𝛾−1 + 2𝛿𝜁

(
𝛾𝑢𝛾−1

)2
. (3.25)

Now, we calculate Δ𝑤 at the point 𝑝. By direct computations, we obtain

Δ𝑤 = 2
∑︁
𝑘, 𝑗

(𝜕𝑘, 𝑗𝑢)2 + 2𝐷𝑢 · 𝐷 (Δ𝑢) − 2𝑢𝛾Δ𝛿 − 4𝐷𝛿 · 𝐷 (𝑢𝛾)

−2𝛿 Δ(𝑢𝛾) − 𝐾Δ𝑢 − 𝑢𝛾Δ𝜁 − 2𝐷𝜁 · 𝐷 (𝑢𝛾) − 𝜁Δ(𝑢𝛾).

Moreover,

𝐷 (𝑢𝛾) = 𝑢𝛾 ln(𝑢)𝐷𝛾 + 𝛾𝑢𝛾−1𝐷𝑢,

Δ(𝑢𝛾) = 𝑢𝛾 ln(𝑢)Δ𝛾 + 𝑢𝛾 (ln(𝑢))2 |𝐷𝛾 |2 + 2𝛾𝑢𝛾−1 ln(𝑢)𝐷𝛾 · 𝐷𝑢
+2𝑢𝛾−1𝐷𝛾 · 𝐷𝑢 + 𝛾(𝛾 − 1)𝑢𝛾−2 |𝐷𝑢 |2 + 𝛾𝑢𝛾−1Δ𝑢.

Observe that, by Lemma 3.5 and since 𝛾 < 1,

|𝐷 (𝑢𝛾) | ≤ 𝐶4𝛾𝑢
2𝛾−1.

We also have
Δ(𝑢𝛾) ≤ 𝐶5𝑢

𝛾−1 + 𝛿𝛾2𝑢2𝛾−2
[
(𝛾 − 1)
𝛾𝛿

|𝐷𝑢 |2
𝑢𝛾

+ 1
]
,

for a constant 𝐶5 = 𝐶5(∥𝐷𝛾∥∞, ∥𝐷2𝛾∥∞, 𝛾★(0, 1)). One can now further estimate Δ𝑤 from
below to obtain

Δ𝑤 ≥ 2(𝜕11𝑢)2 − 𝐶6𝑢
𝛾−1 + 2𝛿𝛾(𝛾 − 1)𝑢𝛾−2 |𝐷𝑢 |2

−2𝛿2𝛾2𝑢2𝛾−2
[
(𝛾 − 1)
𝛾𝛿

|𝐷𝑢 |2
𝑢𝛾

+ 1
]
− 𝐾𝛿𝛾𝑢𝛾−1

−𝛿𝜁𝛾2𝑢2𝛾−2
[
(𝛾 − 1)
𝛾𝛿

|𝐷𝑢 |2
𝑢𝛾

+ 1
]

= 2(𝜕11𝑢)2 − 2𝛿2𝛾2𝑢2𝛾−2 − 𝐶6𝑢
𝛾−1

−𝐾𝛿𝛾𝑢𝛾−1 − 𝛿𝜁𝛾2𝑢2𝛾−2
[
(𝛾 − 1)
𝛾𝛿

|𝐷𝑢 |2
𝑢𝛾

+ 1
]
.
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By (3.25), it follows that

Δ𝑤 ≥ 2𝛿𝛾𝜂𝐾𝑢𝛾−1 + 2𝛿𝜁
(
𝛾𝑢𝛾−1

)2
− 𝐶6𝑢

𝛾−1

−𝐾𝛿𝛾𝑢𝛾−1 − 𝛿𝜁𝛾2𝑢2𝛾−2
[
(𝛾 − 1)
𝛾𝛿

|𝐷𝑢 |2
𝑢𝛾

+ 1
]

= 𝑢𝛾−1 [2𝛿𝛾𝜂𝐾 − 𝐶6 − 𝐾𝛿𝛾] + 2𝛿𝜁
(
𝛾𝑢𝛾−1

)2

−𝛿𝜁𝛾2𝑢2𝛾−2
[
(𝛾 − 1)
𝛾𝛿

|𝐷𝑢 |2
𝑢𝛾

+ 1
]
.

Since 𝛾 < 1, we conclude

Δ𝑤 ≥ 𝑢𝛾−1 [2𝛿𝛾𝜂𝐾 − 𝐶6 − 𝐾𝛿𝛾] .

Now we fix any 1/2 < 𝜂 < 1 and choose 𝐾 so large that the above expression is positive. This
leads to a contradiction, as discussed before. Since 𝜁 vanishes on 𝐵𝜏 (𝑥0), the result is proved. □

The second preliminary result concerns the integrability of a negative power of the
minimizer.

Lemma 3.7. Let 𝑢 be a local minimizer of the energy-functional (1.5) in 𝐵1. Assume (3.9), (3.16),
(3.23) and (3.24) are in force. If 0 ∈ 𝐹 (𝑢), then

𝑢(𝑥)−
𝛾 (𝑥 )

2 ∈ 𝐿1(Ω(𝑢) ∩ 𝐵1/2).

Proof. Observe that it is enough to show that

𝑢(𝑥)−
𝛾 (𝑥 )

2 ∈ 𝐿1(Ω(𝑢) ∩ 𝐵𝜏 (𝑧)), (3.26)

for some small 𝜏 > 0 and every 𝑧 ∈ 𝐹 (𝑢). Indeed, once this is proved, we can cover 𝐹 (𝑢) ∩ 𝐵1/2

with finitely many balls with radius 𝜏 > 0, say {𝐵𝜏 (𝑧𝑖)}. Then,∫
Ω(𝑢)∩(∪𝐵𝜏 (𝑧𝑖))

𝑢−
𝛾 (𝑥 )

2 ≤
∑︁
𝑖

∫
Ω(𝑢)∩𝐵𝜏 (𝑧𝑖)

𝑢−
𝛾 (𝑥 )

2 ≤ 𝐶.

Also, by continuity of 𝑢, we have

𝑢 ≥ 𝑐 in
(
Ω(𝑢) ∩ 𝐵1/2

)
\ ∪𝑖 𝐵𝜏 (𝑧𝑖),

from which the statement in the lemma follows.

To prove (3.26), we follow closely the argument in [59, Lemma 2.5]. Set

𝑤 = 𝑢2− 3
2𝛾(𝑥) .

First, take 𝜌 ∈ 𝐶∞(R+), satisfying 𝜌′ ≥ 0, 𝜌 ≡ 0 in [0, 1/2] and 𝜌(𝑡) = 𝑡 in [1,∞). For 𝛿 > 0,
let 𝜌𝛿 (𝑡) = 𝛿𝜌(𝛿−1𝑡). If 𝛿 < 𝜖 , then

1
𝜖

∫
{0≤𝑢<𝜖}∩𝐵𝜏 (𝑧𝑖)

𝐷𝑤 · 𝐷𝑢 𝜌′𝛿 (𝑢) =
1
𝜖

∫
𝐵𝜏 (𝑧𝑖)

𝐷𝑤 · 𝐷𝜌𝛿 (min(𝑢, 𝜖)) =: 𝐴. (3.27)
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Integrating by parts, we obtain

𝐴 = −1
𝜖

∫
{0<𝑢}∩𝐵𝜏 (𝑧𝑖)

𝜌𝛿 (min(𝑢, 𝜖))Δ𝑤 +
∫
𝜕𝐵𝜏 (𝑧𝑖)

𝜌𝛿 (min(𝑢, 𝜖))
𝜖

𝜕𝜈𝑤.

Now we choose 𝛿 = 𝜖/2, observing that 𝜌𝛿 (𝑢) = 0 in the set {0 < 𝑢 ≤ 𝜖/4}. Therefore,

𝐴 = −1
2

∫
{𝜖/4<𝑢≤𝜖}∩𝐵𝜏 (𝑧𝑖)

𝜌

(
2
𝜖
𝑢

)
Δ𝑤 −

∫
{𝜖<𝑢}∩𝐵𝜏 (𝑧𝑖)

Δ𝑤

+
∫
𝜕𝐵𝜏 (𝑧𝑖)

𝜌𝛿 (min(𝑢, 𝜖))
𝜖

𝜕𝜈𝑤.

By Lemma 3.5, we have

|𝐷𝑤(𝑥) | ≤ 2|𝐷𝛾(𝑥) |𝑢(𝑥)2− 3
2𝛾(𝑥) ln(𝑢(𝑥))

+
(
2 − 3

2
𝛾(𝑥)

)
𝑢(𝑥)1− 3

2𝛾(𝑥) |𝐷𝑢(𝑥) |

≤ 𝐶 ( |𝐷𝛾(𝑥) | + 1) ,

for some universal constant 𝐶 > 0, and so

𝐴 ≤ 𝐶𝜏𝑛−1 − 1
2

∫
{𝜖/4<𝑢≤𝜖}∩𝐵𝜏 (𝑧𝑖)

𝜌

(
2
𝜖
𝑢

)
Δ𝑤 −

∫
{𝜖<𝑢}∩𝐵𝜏 (𝑧𝑖)

Δ𝑤. (3.28)

By direct computations, it follows that

Δ𝑤(𝑥) = 𝑎(𝑥) +
(
2 − 3

2
𝛾(𝑥)

) ((
1 − 3

2
𝛾(𝑥)

)
𝑢(𝑥)− 3

2𝛾(𝑥) |𝐷𝑢(𝑥) |2

+𝑢(𝑥)1− 3
2𝛾(𝑥)Δ𝑢(𝑥)

)
,

where
2
3
𝑎(𝑥) = −𝑤(𝑥) ln(𝑢(𝑥))Δ𝛾(𝑥) − ln(𝑢(𝑥))𝐷𝛾(𝑥) · 𝐷𝑢(𝑥)

−2𝑢(𝑥)1− 3
2𝛾(𝑥)𝐷𝛾(𝑥) · 𝐷𝑢(𝑥)

−
(
2 − 3

2
𝛾(𝑥)

)
ln(𝑢(𝑥))𝑢(𝑥)1−𝛾(𝑥)𝐷𝛾(𝑥) · 𝐷𝑢(𝑥).

By Lemma 3.6, there exists a universal constant 𝑐 > 0 such that((
1 − 3

2
𝛾(𝑥)

)
𝑢(𝑥)− 3

2𝛾(𝑥) |𝐷𝑢(𝑥) |2 + 𝑢(𝑥)1− 3
2𝛾(𝑥)Δ𝑢(𝑥)

)
=

𝑢(𝑥)
−𝛾 (𝑥 )

2

((
1 − 3

2
𝛾(𝑥)

)
|𝐷𝑢(𝑥) |2

𝑢(𝑥)𝛾(𝑥)
+ 𝛿(𝑥)𝛾(𝑥)

)
≥

𝑢(𝑥)
−𝛾 (𝑥 )

2 𝛿(𝑥) (2(1 − 𝛾(𝑥)) + 𝑐(1 − 𝑔(𝑥))𝑢(𝑥)) ≥
𝛿0𝑢(𝑥)

−𝛾 (𝑥 )
2

(
2(1 − 𝛾∗(0, 1)) − 𝑐1𝜏

2
2−𝛾 (𝑧𝑖 )

)
,

where, for the last inequality, we used Theorem 3.3. Since 𝛾∗(0, 1) < 1, we can choose 𝜏 > 0
small enough, such that

2(1 − 𝛾∗(0, 1)) − 𝑐1𝜏
2

2−𝛾 (𝑧𝑖 ) ≥ (1 − 𝛾∗(0, 1)),
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and so
Δ𝑤(𝑥) ≥ 𝑎(𝑥) + 𝑐2𝑢(𝑥)−

𝛾 (𝑥 )
2 .

Furthermore, notice that

|𝑎(𝑥) | ≤ 𝐶 ( |𝐷𝛾(𝑥) | + |𝐷2𝛾(𝑥) | + 1),

for some positive universal constant 𝐶 > 0. Therefore, by (3.28), we have

𝐴 ≤ −1
2

∫
{𝜖/4<𝑢≤𝜖}∩𝐵𝜏 (𝑧𝑖)

𝜌

(
2
𝜖
𝑢

) (
𝑎(𝑥) + 𝑐2𝑢(𝑥)−

𝛾 (𝑥 )
2

)
−

∫
{𝜖<𝑢}∩𝐵𝜏 (𝑧𝑖)

(
𝑎(𝑥) + 𝑐2𝑢(𝑥)−

𝛾 (𝑥 )
2

)
≤ 𝐶

(
∥𝐷𝛾∥𝐿1 , ∥𝐷2𝛾∥𝐿1

)
− 𝑐

∫
{𝜖/4<𝑢}∩𝐵𝜏 (𝑧𝑖)

𝑢(𝑥)−
𝛾 (𝑥 )

2 .

Now, we estimate the left-hand side of (3.27). By Lemma 3.5 and since 𝛾∗(0, 1) < 1, we obtain

𝐷𝑤 · 𝐷𝑢 ≥ −2𝑢(𝑥)2− 3
2𝛾(𝑥) | ln(𝑢(𝑥)) | |𝐷𝛾(𝑥) | |𝐷𝑢(𝑥) |

≥ −𝐶𝑢(𝑥)2−𝛾(𝑥) | ln(𝑢(𝑥)) | |𝐷𝛾(𝑥) |
≥ −𝐶𝑢(𝑥)2−𝛾∗ (0,1) | ln(𝑢(𝑥)) | |𝐷𝛾(𝑥) |
≥ −𝐶1𝑢(𝑥) |𝐷𝛾(𝑥) |,

for some universal constant 𝐶1. Thus, from (3.27), we have

−𝐶1
1
𝜖

∫
{0≤𝑢<𝜖}∩𝐵𝜏 (𝑧𝑖)

𝑢(𝑥) |𝐷𝛾(𝑥) | 𝜌′𝛿 (𝑢)

≤ 𝐶
(
∥𝐷𝛾∥𝐿1 , ∥𝐷2𝛾∥𝐿1

)
− 𝑐

∫
{𝜖/4<𝑢}∩𝐵𝜏 (𝑧𝑖)

𝑢(𝑥)−
𝛾 (𝑥 )

2 .

Since 𝜌′
𝛿
≤ 1, we obtain∫

{𝜖/4<𝑢}∩𝐵𝜏 (𝑧𝑖)
𝑢(𝑥)−

𝛾 (𝑥 )
2 ≤ 𝐶

(
𝑐, 𝐶1, ∥𝐷𝛾∥𝐿1 , ∥𝐷2𝛾∥𝐿1

)
.

We get the result by passing to the limit as 𝜖 → 0. □

We are now ready to state and prove the main result of this section.

Theorem 3.6. Let 𝑢 be a local minimizer of the energy-functional (1.5) in 𝐵1. Assume (3.9),
(3.16), (3.23) and (3.24) are in force. Then, there exists a universal constant 𝐶 > 0, depending
only on 𝑛, 𝛿0, 𝛾★(0, 1), ∥𝐷𝛿∥∞, ∥𝐷2𝛿∥∞, ∥𝐷𝛾∥∞ and ∥𝐷2𝛾∥∞, such that

H 𝑛−1(𝐹 (𝑢) ∩ 𝐵1/2) < 𝐶.
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Proof. Assume 0 ∈ 𝐹 (𝑢). It is enough to prove that for some small 𝑟,

H 𝑛−1(𝐹 (𝑢) ∩ 𝐵𝑟) < ∞.

Given a small parameter 𝜖 > 0, we cover 𝐹 (𝑢) ∩ 𝐵𝑟 with finitely many balls {𝐵𝜖 (𝑥𝑖)}𝑖∈𝐹𝜖 with
finite overlap, that is, ∑︁

𝑖∈𝐹𝜖
X𝐵𝜖 (𝑥𝑖) ≤ 𝑐,

for a constant 𝑐 > 0 that depends only on the dimension 𝑛. It then follows that

H 𝑛−1(𝐹 (𝑢) ∩ 𝐵𝑟) ≤ 𝑐 lim inf
𝜖→0

𝜖𝑛−1#(𝐹𝜖 ).

Since 𝑥𝑖 ∈ 𝐹 (𝑢), by Theorem 3.3, we have

Ω(𝑢) ∩ 𝐵𝜖 (𝑥𝑖) ⊂
{
0 < 𝑢 ≤ 𝑀𝜖 𝛽𝑖

}
∩ 𝐵𝜖 (𝑥𝑖),

where 𝛽𝑖 = 2/(2 − 𝛾(𝑥𝑖)). By assumption (3.16), it follows that

Ω(𝑢) ∩ 𝐵𝜖 (𝑥𝑖) ⊂
{
0 < 𝑢 ≤ 𝑀1𝜖

𝛽∗ (𝑥𝑖 ,𝜖)
}
∩ 𝐵𝜖 (𝑥𝑖),

for a universal constant 𝑀1 > 𝑀 . Let us assume, to simplify, that 𝑀1 = 1. Now, observe that⋃
𝑖∈𝐹𝜖

(
𝐵𝜖 (𝑥𝑖) ∩

{
0 < 𝑢(𝑥) ≤ 𝜖 𝛽∗ (𝑥𝑖 ,𝜖)

})
⊆ 𝐵2𝑟 ∩

{
0 < 𝑢(𝑥)

1
𝛽 (𝑥 ) < 𝜖

}
.

Since the covering {𝐵𝜖 (𝑥𝑖)}𝑖∈𝐹𝜖 has finite overlap, it then follows that∑︁
𝑖∈𝐹𝜖

|Ω(𝑢) ∩ 𝐵𝜖 (𝑥𝑖) | ≤ 𝑐
���𝐵2𝑟 ∩

{
0 < 𝑢(𝑥)

1
𝛽 (𝑥 ) < 𝜖

}��� .
By Theorem 3.5, this implies that

|Ω(𝑢) ∩ 𝐵𝜖 (𝑥𝑖) | ≥ 𝜇0𝜖
𝑛,

and so

𝜖𝑛−1#(𝐹𝜖 ) ≤
𝑐

𝜇0

���𝐵2𝑟 ∩
{
0 < 𝑢(𝑥)

1
𝛽 (𝑥 ) < 𝜖

}���
𝜖

,

which readily leads to

H 𝑛−1(𝐹 (𝑢) ∩ 𝐵𝑟) ≤
𝑐 𝑐

𝜇0
lim inf
𝜖→0

|
���𝐵2𝑟 ∩

{
0 < 𝑢(𝑥)

1
𝛽 (𝑥 ) < 𝜖

}���
𝜖

.

We will show below that the right-hand side of the inequality above can be bounded above
uniformly in 𝜖 . To do so, let

𝑣(𝑥) B 𝑢(𝑥)
1

𝛽 (𝑥 ) .

Observe that ∫
𝐵2𝑟∩{0<𝑣≤𝜖}

|𝐷𝑣 |2 =

∫
𝐵2𝑟

𝐷 (min(𝑣, 𝜖)) · 𝐷𝑣 =: 𝐼 .
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Integrating by parts, we get

𝐼 = −
∫
𝐵2𝑟

min(𝑣, 𝜖)Δ𝑣 +
∫
𝜕𝐵2𝑟

min(𝑣, 𝜖)𝜕𝜈𝑣,

and so, ∫
𝐵2𝑟∩{0<𝑣≤𝜖}

|𝐷𝑣 |2 + 𝑣Δ𝑣 = −𝜖
∫

𝐵2𝑟∩{𝑣>𝜖}

Δ𝑣 +
∫
𝜕𝐵2𝑟

min(𝑣, 𝜖)𝜕𝜈𝑣. (3.29)

By direct computations, we readily obtain

𝐷𝑣(𝑥) = 𝑔(𝑥)𝐷
(

1
𝛽(𝑥)

)
+ 1
𝛽(𝑥)𝑢(𝑥)

1
𝛽 (𝑥 ) −1

𝐷𝑢(𝑥)

and
Δ𝑣(𝑥) = 𝐴(𝑥) + 𝐵(𝑥) + 𝛿(𝑥) 𝛾(𝑥)

𝛽(𝑥) 𝑢(𝑥)−
1

𝛽 (𝑥 ) ,

where 𝑔(𝑥) = 𝑣(𝑥) ln(𝑢(𝑥)), with

𝐴(𝑥) = 𝑔(𝑥)Δ
(

1
𝛽(𝑥)

)
+ 𝐷

(
1
𝛽(𝑥)

)
· 𝐷𝑔(𝑥)

+𝑢(𝑥)
1

𝛽 (𝑥 ) −1
𝐷

(
1
𝛽(𝑥)

)
· 𝐷𝑢(𝑥),

and
𝐵(𝑥) = 1

𝛽(𝑥)𝐷
(
𝑢

1
𝛽 (𝑥 ) −1

)
· 𝐷𝑢(𝑥).

Let us first bound (3.29) from below. To do so, we estimate

|𝐷𝑣 |2 + 𝑣Δ𝑣 = 𝑔(𝑥)2
����𝐷 (

1
𝛽(𝑥)

)����2 + 1
𝛽(𝑥)2𝑢(𝑥)

2
(

1
𝛽 (𝑥 ) −1

)
|𝐷𝑢 |2

+2
1
𝛽(𝑥) 𝑔(𝑥)𝐷

(
1
𝛽(𝑥)

)
· 𝐷𝑢(𝑥)

+(𝐴(𝑥) + 𝐵(𝑥))𝑢(𝑥)
1

𝛽 (𝑥 ) + 𝛿(𝑥) 𝛾(𝑥)
𝛽(𝑥)

≥ 𝐵(𝑥)𝑢(𝑥)
1

𝛽 (𝑥 ) + 1
𝛽(𝑥)2𝑢(𝑥)

2
(

1
𝛽 (𝑥 ) −1

)
|𝐷𝑢 |2

+2
1
𝛽(𝑥) 𝑔(𝑥)𝐷

(
1
𝛽(𝑥)

)
· 𝐷𝑢(𝑥)

+𝐴(𝑥)𝑢(𝑥)
1

𝛽 (𝑥 ) + 𝛿0 𝛾★(0, 1)
2

.

By Lemma 3.5, we have

𝐵(𝑥)𝑢(𝑥)
1

𝛽 (𝑥 ) + 1
𝛽(𝑥)2𝑢(𝑥)

2
(

1
𝛽 (𝑥 ) −1

)
|𝐷𝑢 |2

≥ 1
𝛽(𝑥)𝑢

2
𝛽 (𝑥 ) −1 ln(𝑢(𝑥))𝐷

(
1
𝛽(𝑥)

)
· 𝐷𝑢(𝑥)

≥ −𝑢(𝑥)
1

𝛽 (𝑥 ) ln(𝑢(𝑥)) |𝐷𝛾(𝑥) |
≥ −𝑢

1
2𝛽 (𝑥 ) |𝐷𝛾(𝑥) |,
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which implies

|𝐷𝑣 |2 + 𝑣Δ𝑣 ≥ −𝐶𝑢
1

2𝛽 (𝑥 ) |𝐷𝛾(𝑥) |

+2
1
𝛽(𝑥) 𝑔(𝑥)𝐷

(
1
𝛽(𝑥)

)
· 𝐷𝑢(𝑥)

+𝐴(𝑥)𝑢(𝑥)
1

𝛽 (𝑥 ) + 𝛿0 𝛾★(0, 1)
2

,

for some universal constant 𝐶. Using Lemma 3.5 once more, we can show that����2 1
𝛽(𝑥) 𝑔(𝑥)𝐷

(
1
𝛽(𝑥)

)
· 𝐷𝑢(𝑥)

���� ≤ 𝐶1𝑢(𝑥)
1

𝛽 (𝑥 ) |𝐷𝛾(𝑥) |

and
|𝐴(𝑥) | ≤ 𝐶1( |𝐷𝛾(𝑥) | + |𝐷2𝛾(𝑥) | + |𝐷𝛾(𝑥) | | ln(𝑢(𝑥)) |),

for some universal constant 𝐶1, and so

|𝐷𝑣 |2 + 𝑣Δ𝑣 ≥ −𝐶2𝑢
1

2𝛽 (𝑥 ) |𝐷𝛾(𝑥) | − 𝐶1𝑢
1

𝛽 (𝑥 )
(
|𝐷𝛾(𝑥) | + |𝐷2𝛾(𝑥) |

)
+𝛿0 𝛾★(0, 1)

2
,

for a universal constant 𝐶2. We can now estimate the left-hand side of (3.29) as∫
𝐵2𝑟∩{0<𝑣≤𝜖}

|𝐷𝑣 |2 + 𝑣Δ𝑣 ≥ −𝐶2∥𝐷𝛾∥∞𝜖1/2 |𝐵2𝑟 ∩ {0 < 𝑣 ≤ 𝜖}|

−𝐶1𝜖 (∥𝐷𝛾∥𝐿1 (𝐵2𝑟 ) + ∥𝐷2𝛾∥𝐿1 (𝐵2𝑟 ))

+𝛿0 𝛾★(0, 1)
2

|𝐵2𝑟 ∩ {0 < 𝑣 ≤ 𝜖}|

≥ 𝛿0 𝛾★(0, 1)
4

|𝐵2𝑟 ∩ {0 < 𝑣 ≤ 𝜖}| − 𝐶3𝜖,

for 𝜖 small enough and depending only on universal constants. By Lemma 3.5, there exists a
constant 𝐶4 > 0 such that |𝐷𝑣 | ≤ 𝐶4, and so (3.29) implies

𝛿0 𝛾★(0, 1)
4

|𝐵2𝑟 ∩ {0 < 𝑣 ≤ 𝜖}| − 𝐶2𝜖 ≤ −𝜖
∫

𝐵2𝑟∩{𝑣>𝜖}

Δ𝑣 + 𝐶4𝜖,

and so
𝛿0 𝛾★(0, 1)

4
|𝐵2𝑟 ∩ {0 < 𝑣 ≤ 𝜖}|

𝜖
≤ 𝐶2 + 𝐶4 −

∫
𝐵2𝑟∩{𝑣>𝜖}

Δ𝑣.

The proof will then be complete as long as this remaining integral is uniformly bounded in 𝜖 > 0.
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Recalling the expression for Δ𝑣, we have

−Δ𝑣 ≤ |𝐴(𝑥) | + 𝐵(𝑥) + 𝛿(𝑥) 𝛾(𝑥)
𝛽(𝑥) 𝑢(𝑥)−

1
𝛽 (𝑥 )

≤ 𝐶1( |𝐷𝛾(𝑥) | + |𝐷2𝛾(𝑥) | + |𝐷𝛾(𝑥) | | ln(𝑢(𝑥)) |)

+𝑢(𝑥)−
𝛾 (𝑥 )

2

(
1
2

ln(𝑢(𝑥))𝐷𝛾(𝑥) · 𝐷𝑢(𝑥) + 𝛾(𝑥)
2

1
𝑢(𝑥) |𝐷𝑢(𝑥) |

2
)

−𝛿(𝑥) 𝛾(𝑥)
𝛽(𝑥) 𝑢(𝑥)−

1
𝛽 (𝑥 )

≤ 𝐶5( |𝐷𝛾(𝑥) | + |𝐷2𝛾(𝑥) |) + 𝐶6 |𝐷𝛾(𝑥) | | ln(𝑢(𝑥)) | + 𝐶7𝑢(𝑥)−
𝛾 (𝑥 )

2

≤ 𝐶5( |𝐷𝛾(𝑥) | + |𝐷2𝛾(𝑥) |) + 𝐶8 |𝐷𝛾 |∞𝑢(𝑥)−
𝛾 (𝑥 )

2 ,

where we used Lemma 3.6 and the fact that | ln(𝑢(𝑥)) | can be bounded above by 𝑢(𝑥)−
𝛾 (𝑥 )

2 . This
implies that ∫

𝐵2𝑟∩{𝑣>𝜖}

Δ𝑣 ≤ 𝐶5(∥𝐷𝛾∥𝐿1 + ∥𝐷2𝛾∥𝐿1) + 𝐶8 |𝐷𝛾 |∞ +
∫

𝐵2𝑟∩{𝑣>𝜖}

𝑢(𝑥)−
𝛾 (𝑥 )

2 ,

from which the conclusion of the theorem follows because of Lemma 3.7. □

3.7 Monotonicity formula and classification of blow-ups

In this section, we obtain a monotonicity formula valid for local minimizers of the
energy-functional (1.5). Given 𝑧0 ∈ 𝐵1, let

𝛾 B 𝛾(𝑧0) and 𝛽 B
2

2 − 𝛾 .

Now, for a Lipschitz function 𝑣 and 𝑧0 ∈ 𝐹 (𝑣), define

𝑊𝑣,𝑧0 (𝑟) := 𝑟−(𝑛+2(𝛽−1))
∫

𝐵𝑟 (𝑧0)

1
2
|𝐷𝑣 |2 + 𝛿(𝑥)𝑣𝛾(𝑥)𝜒{𝑣>0}

−𝛽𝑟−((𝑛−1)+2𝛽)
∫

𝜕𝐵𝑟 (𝑧0)

𝑣2

−
∫ 𝑟

0
𝛽𝑡−(𝑛+𝛽𝛾+1)

∫
𝐵𝑡 (𝑧0)

(𝛾(𝑥) − 𝛾)𝛿(𝑥)𝑣𝛾(𝑥)𝜒{𝑣>0}

−
∫ 𝑟

0
𝑡−(𝑛+𝛽𝛾+1)

∫
𝐵𝑡 (𝑧0)

(𝐷𝛾(𝑥) · (𝑥 − 𝑧0)) 𝛿(𝑥)𝑣𝛾(𝑥) ln(𝑣)𝜒{𝑣>0}

−
∫ 𝑟

0
𝑡−(𝑛+𝛽𝛾+1)

∫
𝐵𝑡 (𝑧0)

(𝐷𝛿(𝑥) · (𝑥 − 𝑧0))𝑣𝛾(𝑥)𝜒{𝑣>0} . (3.30)

For our formula to hold, we will further need to assume that, for some 0 < 𝑟0 < 1,

𝑡 → 𝑡−𝑛
∫
𝐵𝑡 (𝑧0)

|𝐷𝛿(𝑥) |𝑑𝑥 ∈ 𝐿1(0, 𝑟0) (3.31)
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and
𝑡 → 𝑡−𝑛 ln 𝑡

∫
𝐵𝑡 (𝑧0)

|𝐷𝛾(𝑥) |𝑑𝑥 ∈ 𝐿1(0, 𝑟0). (3.32)

We remark that sufficient conditions for these to hold are |𝐷𝛿 | ∈ 𝐿𝑞 (𝐵1) and |𝐷𝛾 | ∈ 𝐿𝑞 (𝐵1), for
𝑞 > 𝑛. Indeed, we readily have

𝑡−𝑛 ln 𝑡
∫
𝐵𝑡 (𝑧0)

|𝐷𝛾(𝑥) |𝑑𝑥 ≤ 𝐶 (𝑛, 𝑞)∥𝐷𝛾∥𝐿𝑞 (𝐵𝑟0 (𝑧0)) 𝑡
− 𝑛

𝑞 ln 𝑡,

and ∫ 𝑟0

0
𝑡
− 𝑛

𝑞 ln 𝑡 𝑑𝑡 < ∞ ⇐= 𝑞 > 𝑛.

Remark 3.5. If we assume 𝛾 ∈ 𝑊1,𝑞, for 𝑞 > 𝑛, then 𝛾 is Hölder continuous and therefore
condition (3.16) is automatically satisfied. We also point out that these integrability conditions
are important to assure that𝑊𝑢,𝑧0 (𝑟) < ∞, for every 0 < 𝑟 and 𝑧0 ∈ 𝐹 (𝑢) such that 𝐵𝑟 (𝑧0) ⋐ 𝐵1,
for 𝑢 a local minimizer of (1.5).

We are now ready to state and prove the monotonicity formula for local minimizers of
our oscillatory exponent functional.

Theorem 3.7. Let 𝑢 be a local minimizer of (1.5) and assume (3.31) and (3.32) are in force. If
𝑧0 ∈ 𝐹 (𝑢), then

𝑑

𝑑𝑟
𝑊𝑢,𝑧0 (𝑟) ≥ 0.

Proof. Without loss of generality, we consider 𝑧0 = 0. Let

𝑊𝑢 (𝑟) = 𝑟−(𝑛+2(𝛽−1))
∫
𝐵𝑟

1
2
|𝐷𝑢 |2 + 𝛿(𝑥) 𝑢𝛾(𝑥)𝜒{𝑢>0}

−𝛽𝑟−((𝑛−1)+2𝛽)
∫
𝜕𝐵𝑟

𝑢2,

and define
𝑢𝑟 (𝑥) B

𝑢(𝑟𝑥)
𝑟 𝛽

and 𝛾𝑟 (𝑥) B 𝛾(𝑟𝑥).

By scaling,

𝑊𝑢 (𝑟) =
∫
𝐵1

1
2
|𝐷𝑢𝑟 |2 + 𝛿(𝑟𝑥) 𝑟 𝛽(𝛾𝑟 (𝑥)−𝛾)𝑢𝛾𝑟 (𝑥)𝑟 𝜒{𝑢𝑟>0} − 𝛽

∫
𝜕𝐵1

𝑢2
𝑟 ,

where we used that, by definition of the parameter 𝛽, we have

2(𝛽 − 1) = 𝛽𝛾.

Differentiating𝑊𝑢 with respect to 𝑟 leads to

𝑑

𝑑𝑟
𝑊𝑢 (𝑟) =

∫
𝐵1

𝐷𝑢𝑟 · 𝐷
(
𝑑

𝑑𝑟
𝑢𝑟

)
+ 𝑑

𝑑𝑟

(
𝛿(𝑟𝑥) 𝑟 𝛽(𝛾𝑟 (𝑥)−𝛾)𝑢𝛾𝑟 (𝑥)𝑟

)
𝜒{𝑢𝑟>0}

−𝛽
∫
𝜕𝐵1

2𝑢𝑟
𝑑

𝑑𝑟
𝑢𝑟 .
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Integrating by parts, we obtain

𝑑

𝑑𝑟
𝑊𝑢 (𝑟) = (𝐴) + (𝐵) + (𝐶) + (𝐷) + (𝐸),

for

(𝐴) B
∫
𝐵1

−Δ𝑢𝑟 ·
𝑑

𝑑𝑟
𝑢𝑟 ,

(𝐵) B 2
∫
𝜕𝐵1

(𝜕𝜈𝑢𝑟 − 𝛽𝑢𝑟)
𝑑

𝑑𝑟
𝑢𝑟 ,

(𝐶) B
∫
𝐵1

𝑑

𝑑𝑟

(
𝑟 𝛽(𝛾𝑟 (𝑥)−𝛾)

)
𝛿(𝑟𝑥) 𝑢𝛾𝑟 (𝑥)𝑟 𝜒{𝑢𝑟>0},

(𝐷) B
∫
𝐵1

𝑟 𝛽(𝛾𝑟 (𝑥)−𝛾)𝛿(𝑟𝑥) 𝑑
𝑑𝑟

(
𝑢
𝛾𝑟 (𝑥)
𝑟

)
𝜒{𝑢𝑟>0},

(𝐸) B
∫
𝐵1

(𝐷𝛿(𝑟𝑥) · 𝑥) 𝑟 𝛽(𝛾𝑟 (𝑥)−𝛾)𝑢𝛾𝑟𝑟 𝜒{𝑢𝑟>0} .

In order to simplify the notation, we write 𝛾𝑟 = 𝛾𝑟 (𝑥) and notice that

(𝐷) =

∫
𝐵1

𝑟 𝛽(𝛾𝑟−𝛾)𝛿(𝑟𝑥)
(
𝛾𝑟𝑢

𝛾𝑟−1
𝑟

𝑑

𝑑𝑟
𝑢𝑟 + 𝑢𝛾𝑟𝑟 ln(𝑢𝑟)

𝑑

𝑑𝑟
𝛾𝑟

)
𝜒{𝑢𝑟>0}

= (𝐷.1) + (𝐷.2).

Since 𝑢 is a minimizer to (1.5), it follows that (𝐷.1) + (𝐴) = 0, and so

𝑑

𝑑𝑟
𝑊𝑢 (𝑟) = (𝐵) + (𝐶) + (𝐷.2) + (𝐸).

By direct computations, it follows that

𝑑

𝑑𝑟
𝑢𝑟 (𝑥) = 𝑟−𝛽

(
𝐷𝑢(𝑟𝑥) · 𝑥 − 𝛽𝑟 𝛽−1𝑢𝑟 (𝑥)

)
.

Since 𝜈 is the normal vector at 𝜕𝐵1, we obtain

𝜕𝜈𝑢𝑟 (𝑥) = 𝑟1−𝛽𝜕𝜈𝑢(𝑟𝑥) = 𝑟1−𝛽𝐷𝑢(𝑟𝑥) · 𝑥,

which implies that
𝑑

𝑑𝑟
𝑢𝑟 =

1
𝑟
(𝜕𝜈𝑢𝑟 − 𝛽𝑢𝑟) .

Hence,
(𝐵) = 2

𝑟

∫
𝜕𝐵1

|𝜕𝜈𝑢𝑟 − 𝛽𝑢𝑟 |2.

Moreover,

(𝐶) =

∫
𝐵1

𝛽(𝛾𝑟 − 𝛾)𝑟 𝛽(𝛾𝑟−𝛾)−1𝛿(𝑟𝑥) 𝑢𝛾𝑟𝑟 𝜒{𝑢𝑟>0}

+
∫
𝐵1

𝑟 𝛽(𝛾𝑟−𝛾)𝛽 ln(𝑟)𝛿(𝑟𝑥) 𝑢𝛾𝑟𝑟
(
𝑑

𝑑𝑟
𝛾𝑟

)
𝜒{𝑢𝑟>0},
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and
(𝐷.2) =

∫
𝐵1

𝑟 𝛽(𝛾𝑟−𝛾)𝛿(𝑟𝑥) 𝑢𝛾𝑟𝑟 (ln(𝑢(𝑟𝑥)) − 𝛽 ln(𝑟))
(
𝑑

𝑑𝑟
𝛾𝑟

)
𝜒{𝑢𝑟>0} .

Therefore,

(𝐶) + (𝐷.2) = 𝑟−(𝑛+𝛽𝛾+1)
∫
𝐵𝑟

𝛽(𝛾(𝑥) − 𝛾)𝛿(𝑥)𝑢𝛾(𝑥)𝜒{𝑢>0}

+𝑟−(𝑛+𝛽𝛾+1)
∫
𝐵𝑟

𝛿(𝑥) ln(𝑢)𝑢𝛾(𝑥) (𝐷𝛾(𝑥) · 𝑥)𝜒{𝑢>0} .

This implies that

𝑑

𝑑𝑟
𝑊𝑢 (𝑟) =

2
𝑟

∫
𝜕𝐵1

|𝜕𝜈𝑢𝑟 − 𝛽𝑢𝑟 |2

+𝑟−(𝑛+𝛽𝛾+1)
∫
𝐵𝑟

𝛽(𝛾(𝑥) − 𝛾)𝛿(𝑥)𝑢𝛾(𝑥)𝜒{𝑢>0}

+𝑟−(𝑛+𝛽𝛾+1)
∫
𝐵𝑟

𝛿(𝑥) ln(𝑢)𝑢𝛾(𝑥) (𝐷𝛾(𝑥) · 𝑥)𝜒{𝑢>0}

+𝑟−(𝑛+𝛽𝛾+1)
∫
𝐵𝑟

(𝐷𝛿(𝑥) · 𝑥)𝑢𝛾(𝑥)𝜒{𝑢>0} .

Now, recalling the definition of𝑊𝑢,0(𝑟), we have

𝑑

𝑑𝑟
𝑊𝑢,0(𝑟) =

𝑑

𝑑𝑟
𝑊𝑢 (𝑟) − 𝑟−(𝑛+𝛽𝛾+1)

∫
𝐵𝑟

𝛽(𝛾(𝑥) − 𝛾)𝛿(𝑥)𝑢𝛾(𝑥)𝜒{𝑢>0}

−𝑟−(𝑛+𝛽𝛾+1)
∫
𝐵𝑟

𝛿(𝑥) ln(𝑢)𝑢𝛾(𝑥) (𝐷𝛾(𝑥) · 𝑥)𝜒{𝑢>0}

−𝑟−(𝑛+𝛽𝛾+1)
∫
𝐵𝑟

(𝐷𝛿(𝑥) · 𝑥)𝑢𝛾(𝑥)𝜒{𝑢>0},

which implies, by our previous computations, that

𝑑

𝑑𝑟
𝑊𝑢,0(𝑟) =

2
𝑟

∫
𝜕𝐵1

|𝜕𝜈𝑢𝑟 − 𝛽𝑢𝑟 |2 ≥ 0.

□

As a consequence of the monotonicity formula, we obtain the homogeneity of blow-ups.

Definition 3.1 (Blow-up). Given a point 𝑧0 ∈ 𝐹 (𝑢), we say that 𝑢0 is a blow-up of 𝑢 at 𝑧0 if the
family {𝑢𝑟}𝑟>0, defined by

𝑢𝑟 (𝑥) B
𝑢(𝑧0 + 𝑟𝑥)
𝑟 𝛽(𝑧0)

, with 𝛽(𝑧0) B
2

2 − 𝛾(𝑧0)
,

converges, through a subsequence, to 𝑢0, when 𝑟 → 0.

We say 𝑢0 is 𝛽(𝑧0)-homogeneous if

𝑢0(𝜆𝑥) = 𝜆𝛽(𝑧0)𝑢0(𝑥), ∀𝜆 > 0, ∀𝑥 ∈ R𝑛.
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Unlike in the constant case 𝛾(𝑥) ≡ 𝛾0, the homogeneity property of blow-ups will vary
depending on the free boundary point we are considering. This is the object of the following
result.

Corollary 3.1. Let 𝑢 be a local minimizer of (1.5) and assume (3.31) and (3.32) are in force. If
𝑢0 is a blow-up of 𝑢 at a point 𝑧0 ∈ 𝐹 (𝑢) ∩ 𝐵1/2, then 𝑢0 is 𝛽(𝑧0)-homogeneous.

Proof. Without loss of generality, we assume 𝑧0 = 0. Recall

𝛽 B
2

2 − 𝛾 where 𝛾 B 𝛾(0).

In order to ease the notation, for each 𝑗 ∈ N, we will write 𝛾 𝑗 instead of 𝛾(𝜆 𝑗𝑥), and define

𝑊
𝑗
𝑣 (𝑟) := 𝑟−(𝑛+2(𝛽−1))

∫
𝐵𝑟

1
2
|𝐷𝑣 |2 + 𝜆𝛽(𝛾 𝑗−𝛾)

𝑗
𝑣𝛾 𝑗𝛿(𝜆 𝑗𝑥)𝜒{𝑣>0}

− 𝛽𝑟−((𝑛−1)+2𝛽)
∫
𝜕𝐵𝑟

𝑣2

−
∫ 𝑟

0
𝛽𝑡−(𝑛+𝛽𝛾+1)

∫
𝐵𝑡

(𝛾 𝑗 − 𝛾)𝜆
𝛽(𝛾 𝑗−𝛾)
𝑗

𝛿(𝜆 𝑗𝑥)𝑣𝛾 𝑗 𝜒{𝑣>0}

−
∫ 𝑟

0
𝑡−(𝑛+𝛽𝛾+1)

∫
𝐵𝑡

(
𝐷𝛾(𝜆 𝑗𝑥) · 𝑥

)
𝜆
𝛽(𝛾 𝑗−𝛾)+1
𝑗

𝛿(𝜆 𝑗𝑥)𝑣𝛾 𝑗 ln(𝜆𝛽
𝑗
𝑣)𝜒{𝑣>0}

−
∫ 𝑟

0
𝑡−(𝑛+𝛽𝛾+1)

∫
𝐵𝑡

(
𝐷𝛿(𝜆 𝑗𝑥) · 𝑥

)
𝜆
𝛽(𝛾 𝑗−𝛾)+1
𝑗

𝑣𝛾 𝑗 𝜒{𝑣>0}

and
𝑊∞
𝑣 (𝑟) := 𝑟−(𝑛+2(𝛽−1))

∫
𝐵𝑟

1
2
|𝐷𝑣 |2 + 𝛿(0)𝑣𝛾(0)𝜒{𝑣>0} − 𝛽𝑟−((𝑛−1)+2𝛽)

∫
𝜕𝐵𝑟

𝑣2.

We now show that

𝑊∞
𝑢0 (𝑟) = lim

𝑗→∞
𝑊

𝑗
𝑢 𝑗
(𝑟) as long as lim

𝑗→∞
𝜆
𝛽(𝛾 𝑗−𝛾)
𝑗

→ 1.

Indeed,

𝑊
𝑗
𝑢 𝑗
(𝑟) = 𝑟−(𝑛+2(𝛽−1))

∫
𝐵𝑟

1
2
|𝐷𝑢 𝑗 |2 + 𝜆

𝛽(𝛾 𝑗−𝛾)
𝑗

𝛿(𝜆 𝑗𝑥)𝑢
𝛾 𝑗

𝑗
𝜒{𝑢 𝑗>0}

−𝛽𝑟−((𝑛−1)+2𝛽)
∫
𝜕𝐵𝑟

𝑢2
𝑗

−
∫ 𝑟

0
𝛽𝑡−(𝑛+𝛽𝛾+1)

∫
𝐵𝑡

(𝛾 𝑗 − 𝛾)𝜆
𝛽(𝛾 𝑗−𝛾)
𝑗

𝛿(𝜆 𝑗𝑥)𝑢
𝛾 𝑗

𝑗
𝜒{𝑢 𝑗>0}

−
∫ 𝑟

0
𝑡−(𝑛+𝛽𝛾+1)

∫
𝐵𝑡

(
𝐷𝛾(𝜆 𝑗𝑥) · 𝑥

)
𝜆
𝛽(𝛾 𝑗−𝛾)+1
𝑗

𝛿(𝜆 𝑗𝑥)𝑢
𝛾 𝑗

𝑗
ln(𝑢(𝜆 𝑗𝑥))𝜒{𝑢 𝑗>0}

−
∫ 𝑟

0
𝑡−(𝑛+𝛽𝛾+1)

∫
𝐵𝑡

(
𝐷𝛿(𝜆 𝑗𝑥) · 𝑥

)
𝜆
𝛽(𝛾 𝑗−𝛾)+1
𝑗

𝑢
𝛾 𝑗

𝑗
𝜒{𝑢 𝑗>0}
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and scaling back to 𝑢, we obtain

𝑊
𝑗
𝑢 𝑗
(𝑟) = (𝜆 𝑗𝑟)−(𝑛+2(𝛽−1))

∫
𝐵𝜆 𝑗 𝑟

1
2
|𝐷𝑢 |2 + 𝛿(𝑥)𝑢𝛾(𝑥)𝜒{𝑢>0}

−𝛽(𝜆 𝑗𝑟)−((𝑛−1)+2𝛽)
∫
𝜕𝐵𝜆 𝑗 𝑟

𝑢2

−
∫ 𝑟

0
𝛽𝑡−(𝑛+𝛽𝛾+1)𝜆−(𝑛+𝛽𝛾)

𝑗

∫
𝐵𝜆 𝑗 𝑡

(𝛾(𝑥) − 𝛾)𝛿(𝑥)𝑢𝛾(𝑥)𝜒{𝑢>0}

−
∫ 𝑟

0
𝑡−(𝑛+𝛽𝛾+1)𝜆−(𝑛+𝛽𝛾)

𝑗

∫
𝐵𝜆 𝑗 𝑡

(𝐷𝛾(𝑥) · 𝑥) 𝛿(𝑥)𝑢𝛾(𝑥) ln (𝑢(𝑥)) 𝜒{𝑢>0}

−
∫ 𝑟

0
𝑡−(𝑛+𝛽𝛾+1)𝜆−(𝑛+𝛽𝛾)

𝑗

∫
𝐵𝜆 𝑗 𝑡

(𝐷𝛿(𝑥) · 𝑥) 𝑢𝛾(𝑥)𝜒{𝑢>0} .

Changing variables in the last three integrals, we reach

𝑊
𝑗
𝑢 𝑗
(𝑟) = (𝜆 𝑗𝑟)−(𝑛+2(𝛽−1))

∫
𝐵𝜆 𝑗 𝑟

1
2
|𝐷𝑢 |2 + 𝛿(𝑥)𝑢𝛾(𝑥)𝜒{𝑢>0}

−𝛽(𝜆 𝑗𝑟)−((𝑛−1)+2𝛽)
∫
𝜕𝐵𝜆 𝑗 𝑟

𝑢2

−
∫ 𝜆 𝑗𝑟

0
𝛽𝑡−(𝑛+𝛽𝛾+1)

∫
𝐵𝑡

(𝛾(𝑥) − 𝛾)𝛿(𝑥)𝑢𝛾(𝑥)𝜒{𝑢>0}

−
∫ 𝜆 𝑗𝑟

0
𝑡−(𝑛+𝛽𝛾+1)

∫
𝐵𝑡

(𝐷𝛾(𝑥) · 𝑥) 𝛿(𝑥)𝑢𝛾(𝑥) ln(𝑢)𝜒{𝑢>0}

−
∫ 𝜆 𝑗𝑟

0
𝑡−(𝑛+𝛽𝛾+1)

∫
𝐵𝑡

(𝐷𝛿(𝑥) · 𝑥) 𝑢𝛾(𝑥)𝜒{𝑢>0},

and so
𝑊

𝑗
𝑢 𝑗
(𝑟) = 𝑊𝑢 (𝜆 𝑗𝑟).

Therefore
𝑊∞
𝑢0 (𝑟) = lim

𝑗→∞
𝑊

𝑗
𝑢 𝑗
(𝑟) = lim

𝑗→∞
𝑊𝑢 (𝜆 𝑗𝑟) = 𝑊𝑢 (0+),

where the last inequality is guaranteed by the monotonicity of the functional at the minimizer 𝑢.
We conclude that𝑊∞

𝑢0 is constant. We note that 𝑢0 is a minimizer to the functional∫
𝐵𝑅

1
2
|𝐷𝑣 |2 + 𝛿(0)𝑣𝛾(0)𝜒{𝑣>0}, (3.33)

for every 𝑅 > 0, and thus entitled to the regularity results from [3]. In particular, it follows,
from [3, Lemma 7.1], that 𝑢0 is 𝛽(0)-homogeneous. □

Remark 3.6. To assure the existence of blow-ups, one needs to guarantee that the family (𝑢𝑟)𝑟>0,
defined as

𝑢𝑟 (𝑥) =
𝑢(𝑧0 + 𝑟𝑥)
𝑟 𝛽(𝑧0)

for 𝛽(𝑧0) =
2

2 − 𝛾(𝑧0)
,
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is locally bounded in 𝐶1,𝛽(𝑧0)−1. Indeed, by Theorem 3.3, there exists a constant 𝐶′ > 1 such that

∥𝑢𝑟 ∥𝐿∞ (𝐵1) ≤ 𝐶′.

Moreover, by applying Theorem 3.1 to 𝑢 over 𝐵𝑟 (𝑧0), we obtain

osc𝐵𝑟 (𝑧0) |𝐷𝑢 | B
(

sup
𝐵𝑟 (𝑧0)

|𝐷𝑢 |
)
−

(
inf
𝐵𝑟 (𝑧0)

|𝐷𝑢 |
)
≤ 𝐶𝑟

𝛾∗ (𝑧0 ,2𝑟 )
2−𝛾∗ (𝑧0 ,2𝑟 ) .

Proceeding as at the end of the proof of Theorem 3.3, we use condition (3.16) to obtain

𝐶𝑟
𝛾∗ (𝑧0 ,2𝑟 )

2−𝛾∗ (𝑧0 ,2𝑟 ) ≤ 𝐶𝑟
𝛾 (𝑧0 )

2−𝛾 (𝑧0 ) ,

which implies

osc𝐵𝑟 (𝑧0) ≤ 𝐶𝑟
𝛾 (𝑧0 )

2−𝛾 (𝑧0 ) .

As a consequence, the family {𝑢𝑟}𝑟>0 is locally bounded in 𝐶1,𝛽(𝑧0)−1.

Given the above, blow-up limits of minimizers of the variable singularity functional (1.5)
are global minimizers of an energy-functional with constant singularity, namely 𝛾(𝑧0). Corollary
3.1 further yields that blow-ups are 𝛽(𝑧0)-homogeneous.

The pivotal insight here is that the blow-up limits of minimizers of the variable singularity
functional are entitled to the same theoretical framework applicable to the constant coefficient case.
In particular, in dimension 𝑛 = 2, blow-up profiles are thoroughly classified due to [3, Theorem
8.2]. More precisely, if 𝑢0 is the blow-up of 𝑢 at 𝑧0 ∈ 𝐹 (𝑢), for 𝑢 a local minimizer of (1.5) and
0 < 𝛾(𝑧0) < 1, then 𝑢0 verifies

𝛽(𝑧0)√
2
𝑢0(𝑥)

1
𝛽 (𝑧0 ) = 𝛿(𝑧0) ((𝑥 − 𝑥0) · 𝜈)+ for 𝑥 ∈ R𝑛,

for some 𝜈 ∈ 𝜕𝐵1.

Classifying minimal cones in lower dimensions is crucial, chiefly because of Federer’s
dimension reduction argument that we will utilize in our upcoming session.

3.8 Free boundary regularity

In this final section, we investigate the regularity of the free boundary. For models with
constant exponent 𝛾, differentiability of the free boundary was obtained in [3], following the
developments of [2]. Although it may seem plausible, the task of amending the arguments
from [2, 3] to the case of oscillatory exponents – the object of study of this paper – proved
quite intricate. More recently, similar free boundary regularity estimates have been obtained
via a linearization argument in [35] (see also [33]). Here, we will adopt the latter strategy, i.e.,
and proceed through an approximation technique, where the tangent models are the ones with
constant 𝛾.
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More precisely, given a point 𝑧0 ∈ 𝐹 (𝑢) ∩ 𝐵1/2, let us define

𝑐0(𝑧0) =
[
(𝛼(𝑧0) − 1)𝛼(𝑧0)
𝛾(𝑧0)𝛿(𝑧0)

] 1
𝛾 (𝑧0 )−2

and
𝑤 = 𝑐

− 1
𝛼

0 𝑢1/𝛼,

for 𝛼 := 𝛼(𝑧0) = 2/(2 − 𝛾(𝑧0)). We note that since the equation holds within the set where 𝑢 is
positive, we have

𝛿(𝑥) 𝛾(𝑥)𝑢𝛾(𝑥)−1 = 𝑐0𝛼𝑤
𝛼−2 [

𝑤Δ𝑤 + (𝛼 − 1) |𝐷𝑤 |2
]
,

and so
𝑤Δ𝑤 = 𝛿(𝑥) 𝛾(𝑥)

𝛼
𝑐
𝛾(𝑥)−2
0 𝑤𝛼(𝛾(𝑥)−1)+2−𝛼 − (𝛼 − 1) |𝐷𝑤 |2.

Since
𝛼(𝛾(𝑥) − 1) + 2 − 𝛼 = 𝛼(𝛾(𝑥) − 𝛾(𝑧0)),

we can rewrite the equation as

Δ𝑤 =
ℎ(𝑥, 𝑤, 𝐷𝑤)

𝑤
, (3.34)

where ℎ : 𝐵1 × R+ × R𝑛 → R is defined as

ℎ(𝑥, 𝑠, 𝜉) = 𝛿(𝑥) 𝛾(𝑥)
𝛼

𝑐
𝛾(𝑥)−2
0 𝑠𝛼(𝛾(𝑥)−𝛾(𝑧0)) − (𝛼 − 1) |𝜉 |2.

The crucial insight here is that given appropriate continuity conditions on 𝛾(𝑥), we
can achieve a uniform approximation of the classical Alt-Philips problem. To put it differently,
the oscillatory exponent model will be uniformly close to the classical Alt-Philips functional.
Since minimizers of the latter have smooth free boundaries, one should be able to infer the free
boundary regularity of the former via compactness methods. To put this strategy into practice,
though, we must first introduce and discuss some necessary tools.

We first remark that defining 𝑤𝑟 as

𝑤𝑟 (𝑥) =
𝑤(𝑧0 + 𝑟𝑥)

𝑟
, (3.35)

direct calculations yield

Δ𝑤𝑟 =
ℎ𝑟 (𝑥, 𝑤𝑟 , 𝐷𝑤𝑟)

𝑤𝑟
,

where

ℎ𝑟 (𝑦, 𝑠, 𝜉) = 𝛿(𝑧0 + 𝑟𝑥)
𝛾(𝑧0 + 𝑟𝑥)

𝛼
𝑐
𝛾(𝑧0+𝑟𝑥)−2
0 (𝑟𝑠)𝛼(𝛾(𝑧0+𝑟𝑥)−𝛾(𝑧0))

−(𝛼 − 1) |𝜉 |2.

We can now pass to the limit as 𝑟 → 0, and in view of the choice of 𝑐0, we reach

ℎ𝑟 (𝑦, 𝑠, 𝜉) → ℎ(𝑧0, 𝜉),
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where ℎ(𝑧0, 𝜉) is given by

ℎ(𝑥0, 𝜉) = (𝛼(𝑧0) − 1) (1 − |𝜉 |2).

The second key remark is that if the exponent function 𝛾(𝑥) is assumed to be Hölder
continuous, say, of order 𝜇 ∈ (0, 1), then for a fixed 𝑠 > 0, the above convergence does not
depend on the free boundary point, 𝑧0 ∈ 𝐹 (𝑢) ∩ 𝐵1/2. Indeed, we can estimate

|𝛼(𝑧0) (𝛾(𝑧0 + 𝑟𝑥) − 𝛾(𝑧0)) ln(𝑟𝑠) | ≤ 𝐶𝑟𝜇 | (ln(𝑟) + ln(𝑠) |
≤ 𝐶 ( [𝛾]𝐶0,𝜇 , | ln(𝑠) |)𝑟

𝜇

2 ,

which implies that
lim
𝑟→0

(𝑟𝑠)𝛼(𝑧0) (𝛾(𝑧0+𝑟𝑥)−𝛾(𝑧0)) = 1,

uniformly in 𝑧0 ∈ 𝐹 (𝑢) ∩ 𝐵1/2. Arguing similarly, one also obtains that

lim
𝑟→0

𝛿(𝑧0 + 𝑟𝑥)
𝛾(𝑧0 + 𝑟𝑥)

𝛼
𝑐
𝛾(𝑧0+𝑟𝑥)−2
0 = 𝛼(𝑧0) − 1,

uniformly in 𝑧0 ∈ 𝐹 (𝑢) ∩ 𝐵1/2. Here, we only need the uniform continuity of the ingredients
involved.

The insights above are critical to ensure the linearized problem is uniformly close to
the one with constant exponent as treated in [35]. To be more precise, we borrow the following
improvement of flatness result, [35, Proposition 6.1], available for the constant exponent case.

Lemma 3.8. Let 𝑤 be a viscosity solution to

Δ𝑤 =
ℎ(𝑧0, 𝐷𝑤)

𝑤
in {𝑤 > 0}, (3.36)

with 0 ∈ 𝐹vis(𝑤) and 𝑧0 ∈ 𝐵1/2. There exist 𝜖0, 𝜂 > 0 such that if 𝜖 ≤ 𝜖0 and

(𝑥𝑛 − 𝜖)+ ≤ 𝑤 ≤ (𝑥𝑛 + 𝜖)+ in 𝐵1,

then (
𝑥 · 𝜈 − 𝜖

2
𝜂

)
+
≤ 𝑤 ≤

(
𝑥 · 𝜈 + 𝜖

2
𝜂

)
+

in 𝐵𝜂,

with |𝜈 | = 1 and |𝜈 − 𝑒𝑛 | ≤ 𝐶𝜖 , for 𝐶 > 0 universal.

It’s important to note that in [35], and thus in Lemma 3.8, being a free boundary point
conveys additional information. This is encoded in the free boundary condition held in the
viscosity sense, as defined in [35, Definition 1.1]. We display the precise definition below for the
readers’ convenience.

Definition 3.2. We say that 𝑥0 ∈ 𝐹vis(𝑤) in the viscosity sense if 𝑥0 ∈ 𝐹 (𝑤), and if 𝜓 ∈ 𝐶2 is
such that 𝜓+ touches 𝑤 from below (resp., from above) at 𝑥0, with |𝐷𝜓(𝑥0) | ≠ 0, then

|𝐷𝜓(𝑥0) | ≤ 1 (resp., |𝐷𝜓(𝑥0) | ≥ 1).
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Next, we will argue that, as the solutions we address in this paper arise from a variational
problem, we can still employ the flatness improvement technique outlined in Lemma 3.8. The
rationale behind this is explained in the sequel.

Let 𝑢 be a minimizer to the functional (1.5) and 𝑧0 ∈ 𝐹 (𝑢). The distorted solution 𝑤,
as defined before, solves (3.34). By optimal regularity, Theorem 3.3, Lipschitz rescalings of 𝑤
defined as in (3.35) converge to a viscosity solution to (3.36), say 𝑤. The rescalings are related to
a sequence of the form

𝑢𝑟 (𝑥) =
𝑢(𝑧0 + 𝑟𝑥)

𝑟𝛼
, for 𝛼 =

2
2 − 𝛾(𝑧0)

,

which is a minimizer to a scaled functional that converges to the one with constant 𝛾(𝑥) ≡ 𝛾(𝑧0).
Thus, we get

𝑤 = 𝑐
− 1

𝛼

0 𝑢
1
𝛼 ,

for a minimizer 𝑢 of the functional with constant exponent.

What is left to show is that 𝑤 satisfies the free boundary condition as in Definition 3.2.
However, as pointed out in [33], see also [36], this is a consequence of a one-dimensional analysis.
For a free boundary point 𝑥0 ∈ 𝐹 (𝑢), there holds

𝑢(𝑥0 + 𝑡𝜈) ≈ 𝑐0𝑡
𝛼,

where 𝑡 ≥ 0 small and 𝜈 is the unit normal pointing towards {𝑢 > 0}.

With this well understood, we proceed with the discussion of another delicate issue in the
program, namely the necessity to control the dependence of the constant 𝐶, appearing in Lemma
3.8, as the free boundary point 𝑧0 varies. The results in [35] guarantee that this dependence will
be contingent on the dimension and the 𝐶1−norm of ℎ(𝑧0, 𝜉) within a neighborhood of 𝜕𝐵1.
Importantly, this norm remains uniformly bounded due to our assumptions regarding the range
of the function 𝛾(𝑥).

The discussions presented above bring us to the next crucial tool required in the proof of
the free boundary regularity.

Lemma 3.9. Let 𝑤 be a solution to (3.34), 0 ∈ 𝐹 (𝑤) and 𝑟, 𝜖 > 0 be two positive small
parameters such that

(𝑥𝑛 − 𝜖𝑟)+ ≤ 𝑤 ≤ (𝑥𝑛 + 𝜖𝑟)+ in 𝐵𝑟 .

Then, there exists 𝜂 > 0 small enough such that

(𝑥 · 𝜈 − 𝜂𝜖𝑟)+ ≤ 𝑤 ≤ (𝑥 · 𝜈 + 𝜂𝜖𝑟)+ in 𝐵𝜂𝑟 .

Proof. By considering 𝑤𝑟 (𝑥) = 𝑟−1𝑤(𝑟𝑥), the flatness assumption reads as

(𝑥𝑛 − 𝜖)+ ≤ 𝑤𝑟 ≤ (𝑥𝑛 + 𝜖)+ in 𝐵1.
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We will prove that there exist 𝜖0, 𝜂 > 0 such that

(𝑥 · 𝜈 − 𝜂𝜖)+ ≤ 𝑤𝑟 ≤ (𝑥 · 𝜈 + 𝜂𝜖)+ in 𝐵𝜂,

for 𝑟 > 0 small enough. By Theorem 3.3, it follows that 𝑤𝑟 is bounded and Lipschitz continuous.
Thus, 𝑤𝑟 → 𝑤, for some sequence 𝑟 → 0. By Lemma 3.8, there exist 𝜖0, 𝜂 > 0 such that(

𝑥 · 𝜈 − 𝜖

2
𝜂

)
+
≤ 𝑤 ≤

(
𝑥 · 𝜈 + 𝜖

2
𝜂

)
+

in 𝐵𝜂 .

Observe that since we can restrict to the set where 𝑤 is positive, for 𝑟 small enough, we obtain

(𝑥 · 𝜈 − 𝜖𝜂)+ ≤ 𝑤𝑟 ≤ (𝑥 · 𝜈 + 𝜖𝜂)+ in 𝐵𝜂,

as desired. □

Notice that, by taking 𝑤𝜂 = 𝜂−1𝑤(𝜂𝑥), the conclusion of Lemma 3.9 says that 𝑤𝜂 satisfies

(𝑥 · 𝜈 − 𝜖𝑟)+ ≤ 𝑤𝜂 ≤ (𝑥 · 𝜈 + 𝜖𝑟)+ in 𝐵𝑟 .

By further composing with an orthogonal linear transformation, Lemma 3.9 leads to the existence
of 𝜈′ ∈ 𝜕𝐵1 such that |𝜈′ − 𝜈 | ≤ 𝐶𝜖/2 and

(𝑥 · 𝜈′ − 𝜂𝜖𝑟)+ ≤ 𝑤𝜂 ≤ (𝑥 · 𝜈′ + 𝜂𝜖𝑟)+ in 𝐵𝜂𝑟 .

Therefore,
(𝑥 · 𝜈′ − 𝜂2𝜖𝑟)+ ≤ 𝑤 ≤ (𝑥 · 𝜈′ + 𝜂2𝜖𝑟)+ in 𝐵𝜂2𝑟 .

By induction, one gets a sequence (𝜈𝑘 )𝑘∈N ⊂ 𝜕𝐵1 such that

|𝜈𝑘 − 𝜈𝑘−1 | ≤ 𝐶2−𝑘𝜖

and
(𝑥 · 𝜈𝑘 − 𝜂𝑘𝜖𝑟)+ ≤ 𝑤 ≤ (𝑥 · 𝜈𝑘 + 𝜂𝑘𝜖𝑟)+ in 𝐵𝜂𝑘𝑟 .

As a consequence, 𝐹 (𝑤) is 𝐶1,𝛿 at 0.

We conclude by commenting on Federer’s classical dimension reduction argument, [42],
and how one can adapt it to the free boundary problem investigated in this paper.

We start by arguing, as explored above, that when 𝛾(𝑥) is a continuous function, blow-ups
converge to minimizers of the functional with constant exponent 𝛾(𝑧0). Now, at least in dimension
𝑛 = 2, it is possible to classify them using ODE techniques, see [3]. Hence, a successful
implementation of Federer’s reduction argument will imply that the singular part of the free
boundary, Sing(𝐹 (𝑢)), satisfies

H 𝑛−2+𝑠 (Sing(𝐹 (𝑢))) = 0 for every 𝑠 > 0.
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This, in particular, will allow us to conclude the portion of the free boundary to which Lemma
3.9 can be applied has total measure.

Here are the ingredients needed. Let 𝑧0 ∈ 𝐹 (𝑢) and define

𝑢𝑟 (𝑥) B
𝑢(𝑧0 + 𝑟𝑥)
𝑟 𝛽(𝑧0)

, with 𝛽(𝑧0) =
2

2 − 𝛾(𝑧0)
.

Such a family converges, up to a subsequence, to some function 𝑢0 that is a minimizer to the
Alt-Philips functional with constant exponent 𝛾(𝑧0). The first step is to establish the convergence
of the singular sets of the family {𝑢𝑟} as 𝑟 → 0. This is a consequence of the sharp non-degeneracy,
Theorem 3.2, and that the set of regular points is locally an open set because of our Lemma 3.9.
Next, as a consequence of optimal regularity estimates and monotonicity formula, Corollary 3.1,
blow-up limits of the family {𝑢𝑟}𝑟 are homogeneous of degree 𝛽(𝑧0). The final step of Federer’s
routine is to prove a dimension reduction result to the singular set of a global 𝛽(𝑧0)-homogeneous
minimizer of the Alt-Philips functional with constant parameters. To do so, one must prove a sort
of translation invariance of global minimizers. This part follows using similar arguments found
in [36], and thus we omit it here.

The comprehensive discussion above leads to the regularity of the free boundary, which
can be briefly summarized in the following theorem. We say a function belongs to 𝑊1,𝑛+ if it
belongs to𝑊1,𝑞, for some 𝑞 > 𝑛.

Theorem 3.8. Let 𝑢 be a local minimizer of (1.5) and assume

𝛾(𝑥) ∈ 𝑊1,𝑛+ .

Then, the free boundary 𝐹 (𝑢) is locally a𝐶1,𝛿 surface, up to a negligible singular set of Hausdorff
dimension less or equal to 𝑛 − 2.

Proof. With all the ingredients from the preceding discussion available, the proof is standard,
and we only highlight the main steps.

We start by decomposing the free boundary as the disjoint union of its regular points and
its singular points, that is,

𝐹 (𝑢) = Reg(𝑢) ∪ Sing(𝑢).

The set Reg(𝑢) stands for the points where blow-ups can be classified. More precisely, 𝑧0 ∈ Reg(𝑢),
if for a sequence of radii 𝑟𝑛 converging to zero and a unitary vector 𝜈, there holds

𝑢𝑟𝑛 (𝑥) B
𝑢(𝑧0 + 𝑟𝑛𝑥)

𝑟
2

2−𝛾 (𝑧0 )
𝑛

−→ 𝑐0(𝑥 · 𝜈)
2

2−𝛾 (𝑧0 )
+ .

The set Sing(𝑢) is simply the complement of Reg(𝑢). That is

Sing(𝑢) B 𝐹 (𝑢)\Reg(𝑢).
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The dimension reduction argument mentioned earlier assures that

H 𝑛−2+𝑠 (Sing(𝑢)) = 0,

for all 𝑠 > 0. Thus, one can estimate the Hausdorff dimension of the singular set as

dimH (Sing(𝑢)) B inf{𝑑 : H 𝑑 (Sing(𝑢)) = 0} ≤ 𝑛 − 2 + 𝑠,

for every 𝑠 > 0, and so
dimH (Sing(𝑢)) ≤ 𝑛 − 2.

In particular, we conclude that Sing(𝑢) is a negligible set with respect to the Hausdorff measure
H 𝑛−1, i.e.,

H 𝑛−1 (𝐹 (𝑢) \ Reg(𝑢)) = 0.

Now, we show that Reg(𝑢) is locally𝐶1,𝛿, for some 𝛿 > 0 universal. Consider 𝑧0 ∈ Reg(𝑢)
and let 𝑢0 be a blow-up limit of 𝑢 at 𝑧0. In other words, for a sequence 𝑟 = 𝑜(1), and up to a
change of coordinates, there holds

𝑢𝑟 (𝑥) B
𝑢(𝑧0 + 𝑟𝑥)

𝑟
2

2−𝛾 (𝑧0 )
−→ 𝑐0(𝑥𝑛)

2
2−𝛾 (𝑧0 )
+ ,

in the 𝐶
1, 𝛾 (𝑧0 )

2−𝛾 (𝑧0 )
𝑙𝑜𝑐

(R𝑛) topology. By such a convergence, one deduces that

𝑐0(𝑥𝑛 − 𝜖)
2

2−𝛾 (𝑧0 )
+ ≤ 𝑢𝑟 (𝑥) ≤ 𝑐0(𝑥𝑛 + 𝜖)

2
2−𝛾 (𝑧0 )
+ in 𝐵1.

As a consequence, we obtain

(𝑥𝑛 − 𝜖𝑟)
2

2−𝛾 (𝑧0 )
+ ≤ 𝑐−1

0 𝑢(𝑧0 + 𝑥) ≤ (𝑥𝑛 + 𝜖𝑟)
2

2−𝛾 (𝑧0 )
+ in 𝐵1.

Next, we define

𝑤(𝑥) := 𝑐
− 1

𝛼(𝑧0 )
0 𝑢(𝑧0 + 𝑥)

1
𝛼(𝑧0 ) , for 𝛼(𝑧0) = 2/(2 − 𝛾(𝑧0)),

which is a function satisfying the assumptions of Lemma 3.9. Hence, scaling back to 𝑢 the thesis
of Lemma 3.9 and repeating the process inductively, keeping in mind the remarks previously
noted, we conclude that 𝐹 (𝑢) is 𝐶1,𝛿 at 𝑧0.

By Hölder continuity of 𝛾(𝑥) and the computations made at the beginning of the section,
the proximity condition in Lemma 3.9 is uniform in 𝑧0 ∈ 𝐹 (𝑢) ∩ 𝐵1/2. By the boundedness
assumption on 𝛾(𝑥), the constant 𝐶 in Lemma 3.8 is universally bounded, and therefore 𝐹 (𝑢) is
locally 𝐶1,𝛿, with universal estimates. □
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