
Localização de robô móvel sujeita a

ambientes sem caracteŕısticas

Claudio de Souza Brito

CENTRO DE INFORMÁTICA

UNIVERSIDADE FEDERAL DA PARAÍBA

João Pessoa, 2022

Claudio de Souza Brito

Localização de robô móvel sujeita a ambientes sem

caracteŕısticas

Monografia apresentada ao curso Engenharia da computação

do Centro de Informática, da Universidade Federal da Paráıba,

como requisito para a obtenção do grau de Bacharel em Engenharia

da computação

Orientador: Tiago Pereira do Nascimento

Junho de 2022

CENTRO DE INFORMÁTICA

UNIVERSIDADE FEDERAL DA PARAÍBA

Trabalho de Conclusão de Curso de Engenharia da computação intitulado Loca-

lização de robô móvel sujeita a ambientes sem caracteŕısticas de autoria de

Claudio de Souza Brito, aprovada pela banca examinadora constitúıda pelos seguintes

professores:

Prof. Dr. Tiago Pereira Do Nascimento

Universidade Federal da Paráıba

Prof. Dr. Alisson Vasconcelos De Brito

Universidade Federal da Paráıba

Prof. Dr. Clauirton De Albuquerque Siebra

Universidade Federal da Paráıba

Coordenador(a) do Curso de Engenharia da Computação

Verônica Maria Lima Silva

CI/UFPB

João Pessoa, 23 de junho de 2022

Centro de Informática, Universidade Federal da Paráıba

Rua dos Escoteiros, Mangabeira VII, João Pessoa, Paráıba, Brasil CEP: 58058-600

Fone: +55 (83) 3216 7093 / Fax: +55 (83) 3216 7117

”Nem todos os que vagueiam estão

perdidos”

J.R.R.Tolkien

AGRADECIMENTOS

Primeiramente agradeço aos meus pais por terem me educado, e lutado tanto para

que eu tivesse as melhores condições de ensino para poder ter chegado até aqui. Agradeço

à Universidade Federal da Paráıba e ao laboratório LaSER por ter me ensinado tanto.

Também agradeço ao professor Dr. Tiago Pereira Do Nascimento por ter aceitado ser meu

orientador, e me guiado durante esses últimos 12 meses de estudo. E por fim agradeço a

empresa Automni por essa parceria.

RESUMO

A localização de robôs em ambientes sem caracteŕısticas é um problema muito atual

na área de robótica, presente em empresas de loǵıstica e picking que tem o objetivo de usar

robôs para mover prateleiras de um armazém, a fim de poupar esforço humano. Para essa

tarefa foram implementados algoritmos clássicos da área, como: o A* para planejamento

de trajetória, e o NMPC (Nonlinear Model Predictive Control) como controlador. Usando

as ferramentas dispońıveis no ROS (Robotic Operating System), foi desenvolvido um

mapa simulado para testes, além de integrados o EKF (Extended Kalman Filter) e o

AMCL (Adaptive Monte Carlo Localization), para resultar em uma boa precisão com

desvio padrão de poucos cent́ımetros.

Palavras-chave: Robótica; Localização; Trajetória; Caracteŕısticas; Controlador.

ABSTRACT

Robot localization in featureless environments is a current problem in robotics,

present in logistics and picking companies that aim to use robots to move shelves in a

warehouse, in order to save human e↵ort. For this task, classical algorithms in the area

were implemented, such as: A* for trajectory planning, and NMPC (Nonlinear Model

Predictive Control) as a controller. Using the tools available in ROS (Robotic Operating

System), a simulated map was developed for testing, in addition to integrating the EKF

(Extended Kalman Filter) and AMCL (Adaptive Monte Carlo Localization), to result in

a good accuracy with standard deviation of a few centimeters.

Key-words: Robotics; Localization; Trajectory; Featureless; Controller.

LISTA DE FIGURAS

1 Robô de limpeza (esquerda) ao lado de robôs de loǵıstica e picking (direita) 14

2 RPLIDAR A3, um tipo de sensor laser LiDAR 15

3 Robô L1BR no Gazebo . 16

4 Representação de mapeamento por SLAM pelo RViz 17

5 Modelo 3D do robô L1BR representado no Gazebo 21

6 Esboço do laboratório . 23

7 Funcionamento do NMPC . 26

8 Funcionamento do Algoritmo Monte Carlo 27

9 Fluxograma de todo o projeto . 29

10 Visão de cima do mapa modelado, espelhando a figura 6 30

11 Visão de lado do mapa modelado . 31

12 Mapa obtido pelo sensor . 32

13 Mapa dilatado . 32

14 Trajetória vertical . 33

15 Trajetória horizontal . 33

16 Trajetória final . 34

17 Pontos onde acontece a trajetória circular 35

18 TF tree . 37

19 Part́ıculas no RViz . 38

20 Performance dos modos omni e di↵ . 38

21 Performance de diferentes valores para laser max beam 39

22 Performance de distância mı́nima de atualização = 0,001 40

23 Resultado do experimento de simulação de acidente 42

LISTA DE TABELAS

1 Experimentação com paramêtros do AMCL 41

2 Desvios padrões para cada limite máximo de part́ıculas 41

LISTA DE ABREVIATURAS

ROS – Robot Operating System

A* – A estrela

NMPC – NonLinear Model Predictive Controller

SLAM - Simultaneous Localization and Mapping

LiDAR - Light Detection And Ranging

LASER - Laboratório de Sistemas Embarcados e Robótica

EKF - Extended Kalman Filter

UFPB - Universidade Federal da Paráıba

AMCL - Adaptative Monte Carlo Localization

PRM - Probabilistic RoadMap

Sumário

1 INTRODUÇÃO 13

1.1 Definição do Problema e justificativa . 13

1.2 Premissas e Hipóteses . 13

1.3 Objetivo geral . 14

1.4 Objetivos espećıficos . 14

2 CONCEITOS GERAIS E REVISÃO DA LITERATURA 16

2.1 ROS . 16

2.2 SLAM . 17

2.3 A* . 18

2.4 Nonlinear Model Predictive Control - NMPC 19

2.5 Ambientes sem caracteŕısticas . 19

3 METODOLOGIA 21

3.1 Softwares e Hardwares . 21

3.2 Sensor laser e Hector SLAM . 22

3.3 Concepção do ambiente do LaSER simulado 22

3.4 Dilatamento de mapa e Planejamento de rota 24

3.5 Controlador . 24

3.6 Localização em ambientes sem caracteŕısticas 26

3.7 Integração das partes . 28

4 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS 30

4.1 Modelagem, captura e dilatação do mapa 30

4.2 Planejamento de rota e controle de trajetória com odometria 31

4.3 Integração com EKF e AMCL . 35

4.4 Experimentação . 36

5 CONCLUSÕES E TRABALHOS FUTUROS 43

REFERÊNCIAS 44

12

1 INTRODUÇÃO

Robótica é a área da computação que estuda as técnicas e tecnologias para a

concepção e uso de robôs. Os robôs são conjuntos de dispositivos que realizam atividades

e movimentos simples ou complexos conforme foi programado. A robótica tem grande

aplicação em diversas áreas desde a produção industrial[1], que introduz 85 mil robôs aos

mercados todo ano, medicina[2], que possui IA e robótica como ferramentas indispensáveis

no futuro, e também atividades domésticas com os famosos robôs de limpeza[3], onde nesta

área a introdução da robótica é menos por profissionalismo e mais por conforto. É notável

que a área de robótica existe para a de otimização de tempo e trabalho, esse padrão se

repete neste projeto.

1.1 Definição do Problema e justificativa

Este projeto é em parceria com a empresa Automni, a qual financia a construção

do robô de loǵıstica e picking L1BR desenvolvido no LaSER, laboratório da UFPB de

robótica. Esta empresa está financiando a construção do primeiro robô L1BR, que tem a

habilidade de movimentar prateleiras por baixo, evitando esforço humano, e que deverá

ficar pronto até o fim do ano de 2021. O restante dos recursos para desenvolvimento do

projeto será fornecido pelo LaSER.

Parecidos com os robôs de limpeza doméstica, os robôs usados em warehouses (ar-

mazéns) são terrestre e possuem estatura baixa, e são usados para movimentar prateleiras

e outros itens pelo armazém, que é considerado um ambiente sem caracteŕıstica (como

vãos e espaços abertos). Para um robô móvel de baixa estatura, isso se torna um fator

complicador, um desafio na localização de robôs móveis, pois os cálculos de localização

são feitos usando como base os objetos ao redor, um robô baixo, com um alcance laser li-

mitado, tem dificuldade para conseguir captar o ambiente. Outro fator complicador é que

as poucas caracteŕısticas visuais existentes são repetitivas e similares (janelas, colunas,

etc), podendo confundir o algoritmo. O LaSER, possui tal espaço com uma grande área

de circulação e com caracteŕısticas repetitivas, ambiente apropriado para experimentação.

A Figura 1 mostra a semelhança f́ısica entre robôs de limpeza e robôs de warehouses.

1.2 Premissas e Hipóteses

Há várias ferramentas no ramo da robótica que podem nos ajudar a resolver esse

problema. Algoritmos do tipo SLAM conseguem entregar representações do mapa local

através de sensores. O Hector SLAM[4], por exemplo, pois este foi criado para utilizar

sensores laser como o LiDAR.

13

Figura 1: Robô de limpeza (esquerda) ao lado de robôs de loǵıstica e picking
(direita)

Fonte: Montagem do autor[6][7].

Para a localização, a fusão de sensores através de filtros de Kalman[5], e algoritmos

de extração e reconhecimento de marcos naturais para triangulação da posição do robô

no ambiente, como feito em [8], são alternativas válidas para cumprir o objetivo.

Para por a localização em prova, é preciso que o robô se mova com uma trajetória

planejada. Um planejador de trajetória, como o A*, e um controlador, como o NMPC,

seriam o suficiente.

1.3 Objetivo geral

Este trabalho visa localizar um robô móvel warehouse em ambientes com poucas

caracteŕısticas, e com objetos repetitivos, se valendo de algoritmos de SLAM, feito com

um sensor laser acoplado no robô, fusão de sensores e extração e reconhecimento de

caracteŕısticas (marcos naturais), processados pelo ROS, o conjunto de softwares para

aplicação de robótica. Além de projetar os algoritmos de planejamento de trajetória e

controle. Dessa forma teremos um robô capaz de se localizar no espaço com precisão, e se

locomover até o destino com pouco erro. E podemos aplicar esse trabalho em armazéns,

minimizando a complexidade das tarefas e otimizando o trabalho.

1.4 Objetivos espećıficos

A primeira etapa do projeto seria aplicar o algoritmo Hector SLAM no robô. Após

isso o térreo do LaSER será modelado no Gazebo, um simulador 3D de robótica open

source. Em seguida os algoritmos de trajetória e controle serão implementados, A* e

NMPC respectivamente. Finalizando com a fusão de sensores usando filtro de Kalman

14

estendido (EKF) e o reconhecimento de marcos naturais (AMCL) serão adicionados ao

trabalho, aumentando a eficiência de localização.

A Figura 2 mostra o sensor RPLIDAR A3, modelo utilizado no trabalho.

Figura 2: RPLIDAR A3, um tipo de sensor laser LiDAR

Fonte: Site oficial[9]

15

2 CONCEITOS GERAIS E REVISÃO DA LITERATURA

Neste caṕıtulo serão introduzidos os conceitos sobre as ferramentas utilizadas neste

projeto. Foi feita uma revisão bibliográfica para cada subtópico com o propósito de

entender ao máximo suas propriedades, limitações, e seus potenciais.

2.1 ROS

De acordo com a descrição ofinal do site, o Robot Operating System (ROS) é um

conjunto de bibliotecas de softwares e ferramentas que ajudam a construir aplicações com

robôs, e é open source. É o núcleo do projeto e o que permite que todas as partes se

juntem.

Uma das ferramentas que vem com o ROS é o Gazebo, um software de simulação

3D que é capaz de renderizar modelos de vários tipos de extensão diferentes. O modelo

do L1BR foi criado pelo aluno Jorge Luiz no projeto de extensão com o professor Tiago

Nascimento. No Gazebo podemos ver o robô em tamanho real e do jeito que foi idealizado

para ser. A construção f́ısica do mesmo irá seguir o modelo. A f́ısica é definida em arquivos

à parte e servem para fazer a simulação mais consistente com a realidade, e inclui também

a capacidade de se locomover de forma cŕıvel. Neste projeto usaremos esse software para

construir o ambiente do LaSER.

A Figura 3 mostra o robô L1BR no software Gazebo.

Figura 3: Robô L1BR no Gazebo

Fonte: Print screen feito pelo autor

O RViz é outra ferramenta poderosa do ROS, um visualizador 3D, mas diferente do

Gazebo, ele não foca nas caracteŕısticas f́ısicas do ambiente, mas sim no efeito dos plugins

16

do robô. Caso tenha equipado uma câmera, é posśıvel visualizar o conteúdo em tempo

real de simulação, um sensor laser mostra quais pontos estão sendo interceptados. Além

de promover a visualização dos efeitos dos sensores, ele também permite a utilização de

algoritmos, como por exemplo os algoritmos SLAM, e sua representação visual.

A Figura 4 mostra a utilização simultânea do Gazebo (a esquerda), e o RViz (a

direita). No RViz é posśıvel ver o uso do algoritmo SLAM em processo de mapeamento.

Figura 4: Representação de mapeamento por SLAM pelo RViz

Fonte: Retirado de um v́ıdeo da ROBOTIS[10]

2.2 SLAM

Existem vários tipos de SLAM, em [11] vemos várias derivações de SLAM que

usam a câmera como sensor. Os chamados visual SLAM (vSLAM) usam exclusivamente

as informações visuais e podem ser classificados em: algoritmo baseado em features (ca-

racteŕısticas de ambiente), algoritmo de método direto, e algoritmo baseado em câmeras

RGB-D.

O primeiro utiliza certos pontos do ambiente para o mapeamento, ao capturar essas

caracteŕısticas espećıficas o algoritmo rastreia (tracking) suas posições e começa a formar

o mapa (mapping) juntando-as de maneira consistente. Por fim, são utilizados algoritmos

”assistentes”para otimizar o mapa, um dos usados na pesquisa é o EKF (Extended Kalman

Filter), capaz de aumentar a precisão de medição ao combinar sensores. O segundo

procura adquirir o mapa de maneira, como seu nome sugere, direta. Diferente do método

anterior que procura por caracteŕısticas espećıficas, este forma uma imagem rasa com

toda a informação entregue pela câmera, e então a otimização é feita com base no erro

entre o resultado criado e a imagem original.

17

E por fim, a técnica das câmeras RGB-D consistem em utilizar esta tecnologia já

muito avançada, presente até mesmo no aparelho Kinect da Microsoft, que se tornaram

menores e mais baratos ao longo do tempo. A câmera entrega as formas, texturas, e escala

das imagens diretamente, o algoritmo entra no tratamento de profundidade, existem várias

maneiras de fazer esse tratamento, tudo muito detalhado em [11].

Porém, diferente do que é exibido nesses projetos, o método SLAM que utilizaremos

é Hector SLAM, que não utiliza a câmera, por mais que o robô L1BR a tenha, mas sim

um sensor laser RPLIDAR, que tem 16MHz de frequência, e será usado com alcance de

14 metros. O uso de sensor laser é justificado por ter se tornado a opção mais comum de

localização atualmente, e de custo baixo.

Como é posśıvel ver em [12] o Hector SLAM não é o melhor SLAM que existe,

porém, isso se deve à sensibilidade do algoritmo à rotação, o que não necessariamente é

um problema. Além disso, ele foi criado para rodar com pouco poder computacional, o

que significa que é eficiente. O Hector SLAM foi escolhido por uma questão de velocidade

de processamento.

2.3 A*

O algoritmo A* (lê-se ”A estrela”) é um dos planejamentos de trajetória mais

famosos de todos, seu prinćıpio básico de direto ao ponto permite que possa ser imple-

mentado por qualquer programador sem exigir grandes complexidades, essa é com certeza

uma das forças dessa técnica. Em [13] vemos um projeto com um ideal simples de testar

técnicas convencionais de robótica com um modelo de robô caseiro, com o intuito de ver

como o mesmo se sai com adversidades comuns, como por exemplo rodas defeituosas,

controle dessincronizado, sensores com leitura incorreta. Pela proposta do projeto em

[13], o código do A* utilizado não foge do básico.

Porém, a versão utilizada neste projeto levemente desvia do convencional, pois

em vez de sempre buscar o melhor caminho posśıvel, recorrendo à utilização de função

de custo, que testa todos os caminhos posśıveis, está em mente uma ideia mais simples:

Encontrar o primeiro caminho posśıvel. Tendo em vista que o objetivo final desse trabalho

é promover um sistema de localização, controle, e planejamento de trajetória para robôs

picking, o mais importante é ser eficiente. Para isso precisamos de um algoritmo que

consiga entregar o objetivo rápido, adiantando a movimentação da máquina, isso reduz

o custo computacional de tal maneira que compensa o fato de o robô está indo por uma

rota mais demorada.

A justificativa de usar este algoritmo se deve ao fato de que, com o A*, muitas

vezes o primeiro caminho encontrando já é o melhor caminho, isso ocorre quando entre a

máquina e o destino final não existe obstáculo nenhum, um cenário bastante comum. Isso

18

não acontece com outras alternativas como o PRM (probabilistic roadmap) por exemplo.

Se fosse utilizado o A* convencional, teŕıamos um desperd́ıcio de tempo e processamento.

2.4 Nonlinear Model Predictive Control - NMPC

O modelo de controle preditivo não linear é um controlador bastante complexo, que

diferente da maioria das outras espécies trabalha com prever os estados futuros, em vez de

focar em erros anteriores. Por mais que tenha ocorrido inúmeras melhorias tecnológicas

em hardware e otimização, ainda é bastante dif́ıcil resolver os problemas do algoritmo em

tempo real, principalmente em caso onde há perturbações, parâmetros desconhecidos, e

erros de medida.

Uma pesquisa[14] propôs uma técnica de aproximar um NMPC robusto usando

deep learning, e usar uma técnica de validação probabiĺıstica como medidor de qualidade,

visando implementar em sistemas rápidos e em sistemas embarcados de custo baixo. O

NMPC que será utilizado neste trabalho difere do visto na pesquisa, por mais que a

proposta seja interessante. Foi usado uma versão mais tradicional do controlador, pro-

gramado na linguagem C++, e com seu próprio looping de otimização sem uso de nada

baseado em redes neurais. O foco deste projeto não se encontra no controle, que já provou

funcionar de maneira concreta, mas sim na localização e uso de filtro de Kalman.

2.5 Ambientes sem caracteŕısticas

Também conhecidos como featureless environments são uma problemática comum

no ramo da robótica. Caracterizados como espaços sem muitos objetos, eles dificultam a

tarefa de localização por laser visto que o mesmo necessita atingir superf́ıcies para exercer

sua função, e o problema é maior quando o alcance do sensor é curto. Às vezes ocorre

de apenas um pequeno pedaço do ambiente ser dessa forma, como por exemplo quando o

robô faz uma curva, e ao se aproximar da quina, a mesma ocupa metade da leitura, mas

é considerada apenas como 1 (uma) caracteŕıstica.

Um artigo sobre localização de robôs de alta velocidade[15] propôs, utilizando

sensor laser, 3 alternativas de contornar este problema:

• Usar a diferença entre as leituras ponto a ponto do sensor entre os tempos t1 e

t2, dessa forma calculando a posśıvel localização em x (coordenada horizontal), y

(coordenada vertical) , e ✓ (ângulo de inclinação do robô), e usando uma função de

erro para calcular a similaridade entre as leituras.

• Usar o EKF para combinar os dados do laser com a odometria das rodas, aumen-

tando a precisão dos resultados, mas apenas em ambientes com poucas features,

para poupar tempo de processamento.

19

• Ao se encontrar em um ambiente com poucas caracteŕısticas, o algoritmo iria criar

novos pontos artificialmente usando cálculos de aproximação.

Um outro artigo[16] resolveu o mesmo problema com bases de dados. O robô ar-

mazenaria vários locais coletados previamente, dividiria cada local em pequenos pedaços,

e transformaria cada um em matriz. Ao se locomover, o robô iria fazer um matching

entre as matrizes do que os seus sensores estão captando, com as matrizes dos pedaços na

base de dados, e então o algoritmo iria juntar os pedaços, como em um quebra cabeça,

descobrindo a localização do robô, e aonde ele deve ir.

20

3 METODOLOGIA

O objetivo deste trabalho é ter sucesso em localizar um robô em um ambiente sem

caracteŕısticas, mais especificamente o robô L1BR (figura 5), que está sendo desenvolvido

nesse momento por uma outra equipe dentro do laboratório LaSER da Universidade

Federal da Paráıba (UFPB), também em parceria com a empresa Automni. Foi utilizado

então um modelo 3D do robô na primeira parte do projeto, e após a construção do

verdadeiro aparelho, houveram testes práticos.

Figura 5: Modelo 3D do robô L1BR representado no Gazebo

Fonte: Screenshot feita pelo autor

3.1 Softwares e Hardwares

A coleção de frameworks ROS é definitivamente a parte mais importante deste

projeto, um ambiente feito para testes de robótica com todas as ferramentas necessárias

para a confecção deste projeto, neste caso em espećıfico estará sendo utilizado a versão

noetic. Instalado junto com o ROS, o Gazebo foi bastante requisitado ao longo deste

trabalho, o software se encontra na versão 11. Finalizando o pacote de robótica, o RViz,

programa de visualização de sensores e atuadores, foi usado na versão noetic.

Os códigos foram todos escritos pelo Visual Studio Code, um editor de código-

fonte desenvolvido pela Microsoft, em uma máquina LINUX Ubuntu 20.04. Máquina esta

que possui um processador AMD A10-5757M APU, com placa gráfica integrada, 6GB de

memória RAM DDR3, são requisições fracas e até ultrapassadas, porém não houve sinal

de má performance, portanto não se espera que muitas outras máquinas sejam incapazes

de executar este projeto. A situação melhora quando levado em consideração que a parte

que mais exige poder computacional são os softwares de simulação, Gazebo e RViz, que

21

não serão utilizados na etapa f́ısica, e o algoritmo de planejamento de rota, que será

executado online, poupando o processador para outras tarefas.

As últimas ferramentas utilizadas são as peças robóticas f́ısicas, sendo elas o L1BR

e o sensor que será acoplado.

3.2 Sensor laser e Hector SLAM

Foi adicionado ao modelo do L1BR um RPLIDAR, um sensor laser 2D, na parte

superior do robô, este é posśıvel de ser obtido pelos pacotes oficiais[17] desenvolvidos e

distribúıdos gratuitamente pela empresa Shanghai Slamtec. O item é capaz de acessar o

tópico scan do ROS, e pode ser configurado por programação. Neste projeto utilizamos

360 e um longo alcance de 14 metros, visando capturar os elementos mais rapidamente.

Turtlebot é um kit de robô pessoal simples desenvolvido com o intuito de testes.

A empresa ROBOTIS disponibilizou gratuitamente pacotes ROS[18] contendo diversos

algoritmos comuns de estudo e trabalho, alguns deles são algoritmos SLAM que mesmo

tendo sido criados para a série turtlebot, depois de algumas modificações podem funcionar

para o L1BR também, portanto serão utilizados neste projeto.

O Hector SLAM recebe o input do sensor vindo pelo tópico scan e mapeia o am-

biente, diferenciando obstáculos de espaços livres. Para movimentar o robô nesta fase,

capturando cada ponto espećıfico, foi utilizado um código de controle manual. A Figura

4 mostra como aparenta o processo em andamento. Após a figura do mapa ter sido

completada, ela é salva para uso futuro.

3.3 Concepção do ambiente do LaSER simulado

Visto que a segunda, e mais importante, parte deste projeto se trata do robô f́ısico

no laboratório da universidade, a parte referente a simulação deve ser consistente, sendo

assim, o térreo do LaSER foi constrúıdo em ambiente simulado e visualizado pelo Gazebo.

O primeiro passo se tratou de uma visita ao local para tirar as medidas necessárias

para a simulação. Foram levados em conta: Os comprimentos das paredes principais, as

posições dos objetos fixos, incluindo colunas, bancadas, armários, suas medidas exatas e

as distâncias entre os objetos. As medições foram feitas com uma trena laser. A Figura

6 mostra um esboço das anotações feitas.

Há duas maneiras de fazer modelagem 3D. A primeira delas é criar os objetos

usando a tag geometry no próprio arquivo model.sdf do modelo, cada objeto possui 3

(três) coordenadas de posição e tamanho, é posśıvel fazer estruturas paraleleṕıpedas de

várias maneiras diferentes. As paredes são longas, mas finas, as colunas são menores

22

em comprimento, mas mais grossas. As bancadas são mais complicadas, foi preciso criar

vários paraleleṕıpedos, e combiná-los para fingir que é uma estrutura inteira.

A segunda maneira de modelagem é procurar modelos já prontos, criados em

softwares como o Blender, e inclúılos no projeto, precisando apenas focar na posição,

essa estratégia foi usada para os diferentes armários. Infelizmente não pode ser feito o

mesmo com as bancadas, o que evitaria bastante trabalho, pois o visual das bancadas do

LaSER são bastante espećıficas, e precisava ser mais veŕıdico à bancada real.

A Figura 6 mostra o esboço do laboratório feito com as medidas e distâncias

coletadas. Sendo verde as bancadas, cinza as colunas, laranja os armários.

Figura 6: Esboço do laboratório

Fonte: Feito pelo autor no site app.diagrams

23

3.4 Dilatamento de mapa e Planejamento de rota

Antes de começar a planejar a trajetória, é preciso ter em mente que todos os

algoritmos consideram o objeto como uma part́ıcula, isto é, algo que tenha o tamanho de

1 (um) pixel. Porém é sabido que o robô possui sua largura, e se isso não for considerado,

acontecerá do mesmo ficar preso nas paredes e quinas do ambiente, pois seu tamanho

não foi considerado. A solução então seria engordar todos os obstáculos na proporção

de largura do robô, ou seja, todos os obstáculos terão suas larguras aumentadas no valor

igual (ou aproximado) à metade da largura do robô. Dessa forma, mesmo que o mesmo

continue sendo considerado uma part́ıcula pelo A*, passará distante dos obstáculos.

Como dito anteriormente, o algoritmo usado para planejar a rota entre pontos A e

B será o A*, que tem como natureza verificar cada ponto dispońıvel no mapa, verificando

todos os posśıveis caminhos. A linguagem de programação escolhida foi C++, é a lingua-

gem mais comum nessa área, fortemente tipada, o que evita erros indesejados, além de

ser fácil e eficiente.

Após definir quais são os nós de ińıcio e fim, o código entra em um looping onde

ele verifica cada nó ainda não visitado, cada nó possui sua distância local, a distância

entre o nó de ińıcio até aquele nó. Então é feito uma avaliação entre todos os seus

vizinhos, caso o mesmo não seja um obstáculo, o algoritmo atualiza a distância local do

vizinho como: distância-local-do-nó + ditância-entre-nó-e-vizinho. O código segue até

que eventualmente chegará no nó final.

A distinção entre obstáculo e espaço livre é feita pelo algoritmo Hector SLAM,

que atribui cores diferentes aos pixels onde o laser atinge e os que ele não atinge. A

maneira escolhida para descobrir a distância entre o nó atual e o vizinho foi o cálculo de

distância euclidiana, simples e eficiente. O pseudo-código abaixo mostra a ideia principal

do algoritmo, que recebe como parâmetro 2 (dois) pontos, sendo start o nó de ińıcio e

end o nó final, e então é traçado um caminho de pixel a pixel do ponto de partida até o

ponto de chegada. As coordenadas de cada um desses pixels é gravado em um arquivo

.txt posteriormente.

3.5 Controlador

Com o mapa e trajetória prontos, o próximo passo é a locomoção, como dito

anteriormente será usado o modelo preditivo não linear (NMPC) possui seu diferencial

por ser um sistema que trabalha com a previsão de movimento, em vez de focar no erro

do passo anterior.

O algoritmo recebe as coordenadas atuais do robô e os dados da trajetória, e então

calcula um número de passos até chegar naquele ponto da trajetória. O número de passos é

24

Algorithm 1: Pseudo-código do A* implementado

current start;
start.localGoal 0.0;
notTestedNodes.pushback(start);
while NOT notTestedNodes.empty() AND current != end do

while NOT notTestedNodes.empty() AND notTestedNodes.front().visited
do

notTestedNodes.popfront();
end
if notTestedNodes.empty() then

BREAK
current notTestedNodes.front();
current.visited TRUE;
for EACH neighbour IN current.neighbours do

if NOT neighbour.visited AND neighbour.obstacle == 0 then
notTestedNodes.pushback(neighbour)

LowerGoal current.localGoal + distance(current, neighbour);
if LowerGoal < neighbour.localGoal then

neighbour.parent current;
neighbour.localGoal LowerGoal;

neighbour.globalGoal
 neighbour.localGoal + distance(neighbour, end);
end

end

25

chamado de horizonte de previsão, isto é, o quanto o robô irá prever o movimento. Porém,

para garantir que a trajetória planejada pelo robô é a mais ideal, a fase do horizonte de

planejamento é repetida várias vezes, conseguindo valores diferentes todas as vezes, e

então é executado um otimizador que calcula o custo de cada decisão de cada horizonte

de predição. Aquele que conseguir menor custo é escolhido, e o resto do código segue

esses valores escolhidos.

Um número pequeno de horizonte de previsão, entre 1 e 5, é bastante ideal, pois é

rápido de ser calculado, e além disso, quando o robô chega no primeiro ponto do horizonte

ele refaz todo o procedimento, criando outro novo horizonte. Ou seja, apenas o primeiro

ponto é realmente importante, uma escolha de horizonte de predição longo irá apenas

deixar o código mais lento, e talvez até causar um erro caso, por exemplo, um objeto

indesejado apareça na área do horizonte de predição, mas o robô segue sem atualizar o

mapa (que só é atualizado após a fase de controle) e acaba colidindo.

A Figura 7 ilustra o funcionamento do NMPC no processo de função de custo. É

posśıvel ver 3 diferentes caminhos feitos para chegar ao mesmo ponto, e o caminho menos

custoso sendo escolhido.

Figura 7: Funcionamento do NMPC

Fonte: Vı́deo aula feita pelo professor Tiago Nascimento[19]

3.6 Localização em ambientes sem caracteŕısticas

Ao fazer o planejamento de trajetória, o A* assume que o objeto (robô) seguirá

aquele caminho sem erro (desvio), ou seja, ele assume que o robô sempre estará nas

coordenadas corretas, bem localizado, principalmente em ambientes sem caracteŕısticas.

26

Monte Carlo é uma espécie de filtro de part́ıculas bastante usado na computação.

Várias part́ıculas são espalhadas no mapa de maneira aleatória, cada part́ıcula tem suas

medidas x, y, e ✓ e se movem junto com o robô dependendo da decisão do controlador.

Depois disso, cada part́ıcula é posta no modelo de medição que decidirá o peso de cada

part́ıcula, as part́ıculas mais pesadas são aquelas que possuem mais chances de estarem

sobre o robô. Sempre que o mesmo andar, as part́ıculas levemente perdem levemente

a precisão, pois não é posśıvel prever perfeitamente onde o controlador levará o robô,

mas quando o código for executado novamente, elas convergem. O modelo de medição

utilizado foi o de marcos naturais, o sensor laser irá detectar pontos próximos, cada ponto

é um marco, uma estrutura de referência. O código testa a distância de cada part́ıcula a

cada marco, e atribui peso de acordo com essa medida.

A Figura 8 ilustra o funcionamento do AMCL durante o processo de atribuição de

peso das part́ıculas. Importante notar como as part́ıculas tem mais peso perto das portas

(marco natural).

Figura 8: Funcionamento do Algoritmo Monte Carlo

Fonte: Vı́deo aula feita pelo professor Tiago Nascimento[20]

Por mais que seja uma maneira muito boa de se localizar no ambiente, no que

se refere à ambientes sem caracteŕıstica o sensor laser possuirá limitações, tendo poucos

objetos para usar como referência, na sessão anterior foram citadas soluções para este

problema. O artigo [15] propõe uma solução de criar marcos artificiais baseados nos

verdadeiros. Dado uma distância fixa, um novo marco seria gerado a tal distância de

um marco verdadeiro numa mesma linha. Supondo então que se trata de uma quina,

e o alcance do sensor é curto e capta apenas o começo dela, o algoritmo irá notar a

caracteŕıstica de parede pelo alinhamento dos pontos do sensor, a geração de novos pontos

funcionaria ao criar seguindo o comprimento da parede, tal como se o alcance do sensor

fosse maior.

27

Outra estratégia que o artigo mostra é combinar mais de um sensor, no caso do

exemplo dado seria a odometria das rodas, ambos os valores seriam combinados no filtro

de Kalman estendido, que consegue produzir uma espécie de ”média”entre os dados. É um

método bastante utilizado pela comunidade por ser bastante eficiente, e funciona melhor

quando ambos os sensores usados no cálculo são independentes.

A proposta final deste trabalho é combinar duas dessas estratégias, o AMCL e

o EKF. O algoritmo de Monte Carlo (ou AMCL, sigla para Adaptive Monte Carlo Lo-

calization) utiliza o cálculo de medida de pesos das part́ıculas e o número de part́ıculas

utilizadas fora testado experimentalmente, a medida utilizada para o cálculo da distância

entre as part́ıculas e marcos naturais é a distância euclidiana, e a probabilidade é atribúıda

à part́ıcula utilizando a equação de distribuição gaussiana, sendo: X a distância entre o

robô e aquele marco, a média é a distância da part́ıcula até o marco, e o desvio-padrão o

fator aleatório. Como há chances do Monte Carlo ser impreciso, utilizamos o EKF para

juntar os resultados de mais de um sensor (Odom e IMU), e então o resultado disto é

passado para o AMCL, trazendo uma média satisfatória, e definindo a localização do robô

em ambientes sem caracteŕıstica com precisão.

3.7 Integração das partes

Para juntar as etapas deste projeto, será também implementado um código princi-

pal chamado de control.cpp. O funcionamento deste código começaria com uma chamada

da função para adquirir os valores de coordenadas do caminho planejado. Porém, os valo-

res de coordenadas precisam ser compat́ıveis com os mesmos obtidos no ROS, pelo Gazebo

principalmente. Sendo assim, é preciso realizar uma transformada na relação entre pixels

e metros, uma simples aplicação da regra de 3 é o suficiente, dessa forma:

larguraDoAmbienteEmMetros

x[i]

larguraDoMapaEmPixel

L[i]
(1)

alturaDoAmbienteEmMetros

y[i]

alturaDoMapaEmPixel

A[i]
(2)

Sendo L o conjunto de coordenadas referentes ao eixo x de cada ponto da trajetória,

A o conjunto de coordenadas referentes ao eixo y de cada ponto de trajetória, e i o ponto

atual a ser transformado.

Após isso, para cada ponto na trajetória a ser seguido, alimentamos a função de

controle com os valores da coordenada x do ponto, coordenada y do ponto, coordenada

x atual do robô (obtido pelo AMCL), coordenada y atual do robô (obtido pelo AMCL),

inclinação do robô em relação ao plano do chão, velocidade linear atual e velocidade

angular atual, sendo esses 3 últimos obtidos pela odometria.

28

A função de controle retorna as velocidades lineares e angulares necessárias para

que o robô alcance o ponto da vez, essas velocidades são passadas para o ROS, que faz

o movimento ordenado. É preciso um certo tempo antes do próximo ciclo, fim de dar

tempo para o robô se locomover, então um delay é chamado no fim do ciclo anterior. O

pseudo-código abaixo ilustra o funcionamento do arquivo control.cpp.

Algorithm 2: Pseudo-código do control.cpp implementado

L, A lerArquivo(coordenadas.txt);
x[] emptyArray();
y[] emptyArray();
for i = 0; i  L.lenght(); i++ do

x[i] larguraDoAmbienteEmMetros ⇤ L[i]/larguraDoMapaEmPixel;
y[i] alturaDoAmbienteEmMetros ⇤ A[i]/alturaDoMapaEmPixel;
end
for i = 0; i  x.lenght(); i++ do

velo
NMPC(x[i], y[i], AMCL.x,AMCL.y,ODOM.teta, ODOM.v,ODOM.w);

velPub.publish(velo);
delay();
end

Houve um erro de indentação no algoritmo, é preciso observar que o segundo

”For”só começa após o fim do primeiro.

A Figura 9 mostra o fluxograma do projeto inteiro. Eles são divididos em duas par-

tes majoritariamente, uma parte referente ao ROS, e outra parte referente aos algoritmos

externos. É posśıvel também ver quais informações cada entidade passa para outra

Figura 9: Fluxograma de todo o projeto

Fonte: Feito pelo autor

29

4 APRESENTAÇÃO E ANÁLISE DOS RESULTADOS

4.1 Modelagem, captura e dilatação do mapa

O Gazebo renderiza arquivos do tipo .sdf, e são por esses arquivos que é feita

a modelagem. Foram criados objetos cujas medidas se encaixam no que fora medido

anteriormente na Seção 3.3, assim como também foram utilizados alguns modelos de

armários de um repositório gratuito de objetos no Blender.

As Figuras 10 e 11 mostram o resultado da modelagem do laboratório LaSER.

Figura 10: Visão de cima do mapa modelado, espelhando a figura 6

Fonte: Screenshot feita pelo autor

30

Figura 11: Visão de lado do mapa modelado

Fonte: Screenshot feita pelo autor

Com o ambiente do robô pronto, foi usado um algoritmo de controle manual para

mover o robô pelo mapa. Ao longo de sua passagem, o sensor laser atinge os objetos e

suas formas ficam registradas no software de visualização RViz.

A Figura 12 mostra o mapa na visão do RViz após a utilização do mapeamento

SLAM.

O arquivo de mapa será enviado para um código em python que identifica por cores

quais partes são obstáculos/espaço indispońıveis e quais são espaços livres. Sendo branco

espaço livre, cinza espaço indispońıvel, e preto obstáculo. Depois de identificar, ele trata

de expandir todas as partes cinzas e pretas.

A Figura 13 mostra o resultado da dilatação, a alteração das cores faz parte do

programa, agora dividido entre branco e preto, sendo obstáculo e espaço livre respectiva-

mente.

4.2 Planejamento de rota e controle de trajetória com odometria

É com o mapa dilatado que o planejamento de trajetória é feito. Primeiramente,

antes de verificar a precisão da localização, será testada a movimentação do robô em

trajetórias espećıficas. Estas trajetórias são: vertical (figura 14), horizontal (figura 15),

final (figura 16), esta última possuindo caracteŕısticas vertical e horizontal.

31

Figura 12: Mapa obtido pelo sensor

Fonte: Gerado pelo RViz

Figura 13: Mapa dilatado

Fonte: Gerado pelo autor

32

Figura 14: Trajetória vertical

Fonte: Gerado pelo autor

Figura 15: Trajetória horizontal

Fonte: Gerado pelo autor

33

Figura 16: Trajetória final

Fonte: Gerado pelo autor

Como ambos os EKF e AMCL ainda não foram implementados, serão utilizadas

as informações apenas da odometria.

Quando se trata da trajetória vertical, o robô segue com quase perfeição, precisando

corrigir o seu alinhamento apenas algumas vezes. Porém, ao realizar a trajetória na

horizontal, o robô realiza um movimento de ”ré”assim como um carro. Tomando distância

e se inclinando para a direita, para então finalmente começar a andar na horizontal. Caso

o robô julgue que saiu do alinhamento, ele performará o movimento de ré novamente.

Ao se locomover na trajetória final, a presença de trechos diagonais fez com que

o robô tomasse decisões problemáticas. Como para cada ponto do trecho diagonal existe

uma mudança horizontal, o robô alinha seu eixo para corresponder com a coordenada do

ponto, mas logo depois vem um novo ponto, que também tem mudança na horizontal,

então o robô deve alinhar novamente. Apenas após o código (ver Algorithm 2) ter passado

do ponto do trecho diagonal, o robô finalmente se mexe em uma trajetória circular que

começa do ponto de ińıcio do trecho diagonal até o fim (figura 17).

34

Figura 17: Pontos onde acontece a trajetória circular

Fonte: Gerado pelo autor

Essa trajetória circular pode ser bastante problemática em outros ambientes, feliz-

mente o mapa do laboratório LaSER não causou problemas. Mas é importante levar em

consideração que no segundo trecho diagonal o robô quase colide com a primeira coluna,

corrigindo sua posição horizontal ao longo do resto do trajeto, se aproximando mais das

mesas como previsto pelo caminho gerado pelo algoritmo A*.

Algo que possa ter contribúıdo com isso é o fato de que o robô não foi constrúıdo

fisicamente ainda, portanto não é posśıvel saber os verdadeiros valores da f́ısica do seu

corpo (coeficientes de atrito, inércia, etc). Sendo assim, este trabalho lida com uma

aproximação do que seria o comportamento f́ısico do L1BR.

4.3 Integração com EKF e AMCL

Como dito na documentação do EKF[21], o filtro de Kalman estendido é obtido

pela união de até 3 informações entregues pelo robô, sendo elas: Odometria, IMU(Inertial

Measurement Unit), e Odometria visual. Este último se refere à terceira dimensão, a

altura, como não é relevante neste projeto, será deixado de fora. Para utilizar o filtro de

Kalman usamos o nó ”robot pose ekf”e passamos como parâmetro o carcaça do robô. O

resultado do EKF se chama Odom combined.

O nó ”amcl”cuida da integração com o algoritmo de Monte Carlo, para isso teremos

que passar o resultado do EKF para que ele use como referência de Odometria (EKF

35

é considerado uma Odometria melhorada), assim como o mapa da figura 12 para que o

mesmo tenha noção do ambiente. O AMCL possui outros parâmetros que serão explorados

na sessão seguinte.

A Figura 18 mostra como ficou a tf tree do projeto, isto é, a formatação de

todos os frames ou partes. Left wheel, right wheel, right front wheel, left front wheel,

right rear wheel, left rear wheel são as rodas do robô, camera 1 é a câmera, piston e tray

dizem respeito ao pistão, rplidar é o RPLIDAR. A ”carcaca”representa a carcaça do robô,

e é o nó que mantém todas as componentes anteriores unidas. Odom combined é a re-

sultante do EKF e se conecta ao robô para obter as informações dos sensores dele. Map

e scanmatcher frame se conecta à árvore por Odom combined para obter os valores da

localização do robô, a fim de representá-lo nos mapas do Gazebo e RViz.

Por mais que o frames odom não esteja conectado com o resto da árvore, é confir-

mado que ele está servindo para alimentar o Odom combined.

A Figura 19 mostra como fica o robô e o mapa com as part́ıculas do AMCL fun-

cionando. Os pontos verdes são a parte do mapa que o sensor consegue captar por estar

no alcance de 14 metros. Os pontos vermelhos são as part́ıculas que já estão convergindo

no robô.

4.4 Experimentação

Existem vários parâmetros no nó do AMCL, todos eles possuem valores padrões

que foram testados pelos seus desenvolvedores[22]. Como está sendo usado outro robô,

não necessariamente os valores corresponderão bem, e será recomendado uma alteração

nos valores, estes que são encontrados apenas por experimentação. Serão verificados os

parâmetros: odom model type, laser max beams, resample interval, min particles, max particles,

update min d, update min a.

Serão exibidos gráficos, usando um código na linguagem python de diferença de

performance entre os diferentes valores para cada parâmetro escolhido. Para decidir a

melhor performance, foram retirados a média dos desvios padrões entre a posição estimada

e a posição real ponto a ponto do código para cada coordenada. Vários testes são efetuados

para ter certeza de que o experimento não será afetado por outliers. A melhor opção para

o parâmetro será mantida para o teste do próximo, visto que eles possuem natureza

independente, e portanto a alteração de um não afeta o outro. O andamento do processo

será exibido em tabelas no final deste tópico.

O primeiro parâmetro que é preciso ver é o odom model type, ou seja, o mo-

delo de Odometria utilizado. Há dois valores posśıveis ”di↵”(manobridade diferencial)

e ”omni”(manobridade omnidirecional), ambos são parecidos, a diferença é que a segunda

opção leva em consideração a tendência do robô de transladar sem rotacionar, isto é,

36

Figura 18: TF tree

Fonte: Gerado pelo autor

37

Figura 19: Part́ıculas no RViz

Fonte: Screenshot feita pelo autor

andar perpendicular a algum plano.

Figura 20: Performance dos modos omni e di↵

Fonte: Gerado pelo autor

38

Foi percebido, pela figura 20 as diferenças entre as poses reais e estimadas dos

parâmetros. Os desvios padrões dos valores entre a pose real e a pose estimada para o

modo di↵ foram de 0,030 e 0,058 para as coordenadas X e Y respectivamente. Enquanto

que para o modo omni foram de 0,0181 e 0,0588. A superioridade do segundo modo é

clara, provavelmente se ocorrida devido à vantagem de levar em consideração movimentos

de translação sem rotação, que é caracteŕıstico deste projeto. Sendo assim o modo omni

será mantido para os próximos testes.

O próximo parâmetro a ser testado é o laser max beams , que representa o valor de

feixes de luz levados em consideração pelo algoritmo na hora de calcular a probabilidade

de localização. O valor padrão é de 30, cuja performance pode ser vista na figura 20,

serão testados então valores de 15 e 60, próximo do padrão. O motivo disto é que ao

testar valores mais ”absurdos”havia uma óbvia diminuição na qualidade de localização,

dispensando qualquer necessidade de experimentação com gráficos e desvio padrão. Isso se

deve ao fato de que leva mais tempo para processar a informação, e o valor de localização

se torna atrasado ao longo do tempo.

Figura 21: Performance de diferentes valores para laser max beam

Fonte: Gerado pelo autor

Como é posśıvel ver pela figura 21, a opção de diminuir os valores do parâmetro

para 15 é a melhor, isso trás o desvio padrão médio para 0,0185 e 0,0408 (x e y). Esse

valor será mantido para os próximos testes.

O resample interval representa o número de atualizações no filtro do algoritmo

39

antes de fazer o resampling, que é a reorganização das part́ıculas no espaço. O valor

padrão deste é de 2, serão feitos testes com 1 e 3, não é o tipo de parâmetro que é posśıvel

distanciar do padrão sem comprometer o experimento, caso o valor seja muito alto, a

leitura ficará atrasada.

Infelizmente não houve melhoria, com desvios padrões de 0,0353 e 0,0384 para

resample interval = 1, e 0,0212 e 0.0481 para resample interval = 3, temos valores piores

do que os apresentados anteriormente. Será dispensado o uso de gráfico nesse caso.

Em seguida será avaliado os parâmetros update min d e update min a, que tratam

da distância mı́nima percorrida (linear e angular respectivamente) pelo robô para que o

filtro seja atualizado. Seguindo a lógica de que quanto mais rápida seja a atualização,

melhor será o trajeto do robô, o instinto é diminuir esses valores ao máximo. Sendo assim

eles serão reduzidos dos seus valores padrões de 0,2 e 0,5236 para 0,001 em ambos.

Figura 22: Performance de distância mı́nima de atualização = 0,001

Fonte: Gerado pelo autor

Como indicavam a figura 22, a melhoria é bastante clara, não apenas no gráfico, mas

durante a simulação foi posśıvel ver uma convergência de part́ıculas logo cedo. Os valores

do desvio padrão foram de 0,0219 e 0,0279, infelizmente houve uma pequena queda de

qualidade na coordenada x, porém a grande melhoria na coordenada y compensa bastante.

Esses valores para update min d e update min a permanecerão no próximo teste.

Por enquanto, a tabela 1 representa o andamento dos experimentos, sendo ”DP”abreviação

para desvio padrão:

40

Tabela 1: Experimentação com paramêtros do AMCL

odom type laser beams resample interval min d/a DP em X DP em Y

omni 30 2 0,2 e 0,5236 0,0181 0,0588
di↵ 30 2 0,2 e 0,5236 0,030 0,058
omni 15 2 0,2 e 0,5236 0,0185 0,0408
omni 60 2 0,2 e 0,5236 0,0405 0,0394
omni 15 1 0,2 e 0,5236 0,0353 0,0384
omni 15 3 0,2 e 0,5236 0,0212 0,0481
omni 15 2 0,001 e 0,001 0,0219 0,0279

Fonte: Gerado pelo autor com base nos valores obtidos

Os últimos parâmetros testados foram min particles e max particles, que ditam

respectivamente os números mı́nimos e máximos de part́ıculas usadas pelo filtro. O AMCL

funciona de tal maneira que ele irá usar um número de part́ıculas x que esteja dentro do

intervalo definido pelo projetista. Esse número é decidido de acordo com a dificuldade

atual do filtro em localizar o robô, usando como parâmetro o tópico de odometria e o

resultado do sensor laser.

Os valores padrões são 100 e 5000, o limite mı́nimo será mantido pois já é um valor

muito pequeno e o intervalo entre o mı́nimo e máximo será controlado pela alteração

apenas pelo limite máximo. O objetivo é encontrar o intervalo de valores como melhor

resultado e, em caso de empate, escolher o com menor limite máximo, o que diminui o

esforço de processamento. A Tabela 2 mostra o resultado da média de desvios padrões

para cada limite máximo testado.

Tabela 2: Desvios padrões para cada limite máximo de part́ıculas

max particles Desvio padrão em X Desvio padrão em Y

500 0,0174 0,0324
2500 0,0181 0,0292
3000 0,0199 0,0365
4000 0,0182 0,0371
6600 0,0170 0,0440

Fonte: Gerado pelo autor com base nos valores obtidos

É posśıvel ver que os valores não divergem muito, o que indica que o AMCL

não está tendo muitos problemas em encontrar o robô, provavelmente porque os outros

parâmetros já foram otimizados, então a diferença de part́ıculas usadas têm pouco efeito.

Mesmo assim, 2500 mostra um melhor resultado em comparação com os outros, então

será escolhido como valor definitivo.

Um último experimento foi proposto para casos extremos de acidentes no armazém,

41

onde o robô pode sofrer uma translação inesperada, provavelmente resultante de uma

batida ou empurro. Então para simular esse acidente, durante a execução do código, o

robô foi tirado de sua posição atual para uma posição longe. Isso foi feito pelo Gazebo, a

ferramenta de simulação do ROS.

O visual do RViz indica que os pontos convergem longe do robô, o que a prinćıpio

indicaria que houve uma falha na localização. Porém, durante a execução do código, é

posśıvel ver que os valores, em metros, do AMCL são muitos próximos ao do Gazebo,

com diferença menor de 1cm para a coordenada X e de quase 10 cm para a coordenada

Y.

A Figura 23 mostra a esquerda o andamento do programa e as informações sobre

localização real (Gazebo), e estimada (AMCL). A direita vemos, pelo RViz, o robô L1BR

com as part́ıculas convergindo fora dele.

Figura 23: Resultado do experimento de simulação de acidente

Fonte: Screenshot feita pelo autor

Levando em consideração que o robô possui aproximadamente 50 cm de largura

e altura, é incab́ıvel a convergência de part́ıculas estar acontecendo fora do robô. Sendo

assim é posśıvel afirmar que não passa de um mero bug do RViz.

42

5 CONCLUSÕES E TRABALHOS FUTUROS

Este trabalho tem como objetivo localizar um robô terrestre móvel warehouse em

ambiente sem caracteŕısticas, tal qual armazéns com prateleiras, usando o laboratório

LaSER como mapa de teste (modelado em 3D), e usando ferramentas clássicas da área

de robótica (SLAM, A*, NMPC, EKF, AMCL) para alcançar esse objetivo.

O mapa é verosśımil, representando bem o ambiente com falta de caracteŕısticas

que é o LaSER, este é o primeiro modelo 3D do laboratório, e ficará dispońıvel para uso

público. Este trabalho também é o primeiro a aplicar algoritmos ao L1BR, visto que acaba

de ser criado, sendo assim, aqui fica registrado informações pertinentes para futuros usos

desde robô.

O Hector SLAM se mostra um desafio para ser utilizado, pois as documentações

dos nós do ROS são bastante escassas, mas depois de muitas pesquisas e tutoriais, a

maneira correta de manipular os parâmetros foi encontrada.

A implementação do dilatamento de mapa e do A* são bastante direto ao ponto,

uma questão de encontrar a linguagem e as ferramentas corretas.

O mesmo não pode ser dito do NMPC, que possui versões diferentes dependendo

da fonte, portanto é necessário um aprofundamento teórico no algoritmo para descobrir

a melhor versão. Além disso, a ausência dos verdadeiros valores da f́ısica do robô aca-

bou custando bastante tempo para descobrir o porquê do controle estar tão irregular.

Após descoberto o problema, foram usados valores da f́ısica do Turtlebot 2 da empresa

ROBOTICS, visto que a carcaça do L1BR foi baseada na base dele, tendo assim uma

aproximação do comportamento que o robô teria de fato.

O uso dos nós EKF e AMCL também são marcados pela falta de documentação do

ROS, o primeiro exige uma manipulação de frames que demanda muita tentativa e erro

até funcionar. Para substituir o Odom por Odom combined é necessário criar um frame

fantasma, que não existe ou interfere no programa, chamado base footprint, pois o Odom

não aceita estar presente na árvore sem estar conectado a um frame. Isso pode ser visto

na figura 18. Já com o AMCL há um problema de conflito com a árvore tf, sendo que

como o resultado dele não retorna para o ROS, mas sim é encaminhado para o NMPC,

se faz necessário uma pesquisa entre os parâmetros para descobrir que é posśıvel cortar a

conexão do mesmo com a árvore, atribuindo o valor false ao parametro tf broadcast. Não

que isso atrapalhe o projeto.

O resultado final da localização é bastante satisfatório com desvio padrão médio

pequeno, impedindo que o robô se perca. O mesmo se move seguindo a trajetória correta,

salvo alguns movimentos diagonais onde, às vezes, ele performa movimentos circulares

abertos, chegando perto de bater nas colunas. O código completo foi armazenado no site

43

Github[23].

Infelizmente, por uma questão de falta de tempo, não foi posśıvel implementar

uma das estratégias de localização planejada inicialmente, a criação de marcos artificiais,

o que poderia ser um diferencial. Além disso houve atrasos na construção do robô f́ısico,

então este trabalho é encerrado apenas com a parte referente a simulação. Portanto, para

posśıveis projetos futuros, seria ideal concretizar essas duas promessas.

44

REFERÊNCIAS

[1] Cerqueira, Wagner. A robotização na produção industrial: Uol. Dispońıvel em:

https://mundoeducacao.uol.com.br/geografia/a-robotizacao-na-producao-

industrial.htm. Acesso em: 8 Dez, 2021.

[2] J.F. Avila-Tomás, M.A. Mayer-Pujadas, V.J. Quesada-Varela, La inteligencia artifi-

cial y sus aplicaciones en medicina I: introducción antecedentes a la IA y robótica,

Atención Primaria, Volume 52, Issue 10, 2020, Pages 778-784, ISSN 0212-6567,

https://doi.org/10.1016/j.aprim.2020.04.013.

[3] Tondo, Stephanie. Robôs de limpeza viram sonho de consumo: veja as

opções dispońıveis no mercado: O Globo, 2021. Dispońıvel em: https:

//oglobo.globo.com/economia/como-economizar/robos-de-limpeza-viram-

sonho-de-consumo-veja-as-opcoes-disponiveis-no-mercado-24915406.

Acesso em: 8 Dez, 2021.

[4] Kohlbrecher, Stefan. How to set up hector slam for your robot: ROS.org,

2012. Dispońıvel em: http://wiki.ros.org/hector_slam/Tutorials/

SettingUpForYourRobot. Acesso em: 8 Dez, 2021.

[5] R F Junior, Jose. Filtro de Kalman: Medium, 2019. Dispońıvel em: https:

//medium.com/@web2ajax/filtro-de-kalman-6e84f82993fc. Acesso em: 8 Dez,

2021.

[6] G, Filipe. Robô aspirador que também passa pano funciona por voz e limpa

rápido. Dispońıvel em: https://www.techtudo.com.br/noticias/2021/01/robo-

aspirador-que-tambem-passa-pano-funciona-por-voz-e-limpa-rapido-

ces2021.ghtml. Acesso em: 10 Jun, 2022.

[7] Face Middle East FZC. Testing Floors for G2P Automation. Dispońıvel em: https:

//facemiddleeast.ae/testing-floors-g2p-automation/. Acesso em: 10 Jun,

2022.

[8] BEZERRA, Clauber Gomes. Localização de um robô móvel usando odometria e

marcos naturais. 2004. 122 f. Dissertação (Mestrado em Automação e Sistemas; En-

genharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande

do Norte, Natal, 2004.

[9] SLAMTEC. RPLIDAR A3 360 degree laser range scanner for indoor and outdoor

applictaion. Dispońıvel em: https://www.slamtec.com/en/Lidar/A3. Acesso em:

10 Jun, 2022.

45

[10] TurtleBot3 ROS1 Noetic Quick Start Guide for Noetic, 2020. 1 v́ıdeo (4 min).

Publicado pelo canal ROBOTIS OpenSourceTeam. Dispońıvel em: https://

www.youtube.com/watch?v=ji2kQXgCjeM&ab_channel=ROBOTISOpenSourceTeam.

Acesso em: 10 Jun, 2022.

[11] Taketomi, T., Uchiyama, H. Ikeda, S. Visual SLAM algorithms: a survey from 2010

to 2016. IPSJ T Comput Vis Appl 9, 16 (2017). https://doi.org/10.1186/s41074-017-

0027-2

[12] Pengtao Qu et al 2021 J. Phys.: Conf. Ser. 2024 012056

[13] Raza, Sayyed Ja↵ar Ali, et al. ”Real-world modeling of a pathfinding robot using

robot operating system (ROS).”arXiv preprint arXiv:1802.10138 (2018).

[14] Karg, Benjamin, Teodoro Alamo, and Sergio Lucia. ”Probabilistic performance

validation of deep learning-based robust NMPC controllers.”arXiv preprint ar-

Xiv:1910.13906 (2019).

[15] Kai Lingemann, Andreas Nüchter, Joachim Hertzberg, Hartmut Surmann,

High-speed laser localization for mobile robots, Robotics and Autonomous

Systems, Volume 51, Issue 4, 2005, Pages 275-296, ISSN 0921-8890,

https://doi.org/10.1016/j.robot.2005.02.004.

[16] Oh, J.; Han, C.; Lee, S. Condition-Invariant Robot Localization Using

Global Sequence Alignment of Deep Features. Sensors 2021, 21, 4103.

https://doi.org/10.3390/s21124103

[17] Kanning, T. RPLIDAR, 2019. Dispońıvel em: http://wiki.ros.org/rplidar.

Acesso em: 14 Dez, 2021.

[18] Lim D. Turtlebot3, 2018. Dispońıvel em: http://wiki.ros.org/turtlebot3.

Acesso em: 14 Dez, 2021.

[19] Aula 5 - Controle de Trajetória de Robôs - Parte2, 2020. 1 v́ıdeo

(53 min). Publicado pelo canal Laboratory of Systems Engineering

and Robotics. Dispońıvel em: www.youtube.com/watch?v=tm_mEKuNb6w&

list=PLI1MB8Tq01INJdTRUKjs42LGaylORblJ8&index=11&ab_channel=

LaboratoryofSystemsEngineeringandRobotics. Acesso em: 10 Jun, 2022.

[20] Aula 9 - Localização - Parte 2, 2020. 1 v́ıdeo (29 min). Publicado pelo canal Labora-

tory of Systems Engineering and Robotics. Dispońıvel em: https://www.youtube.

com/watch?v=y_6aT0DfbGo&list=PLI1MB8Tq01INJdTRUKjs42LGaylORblJ8&

index=15&ab_channel=LaboratoryofSystemsEngineeringandRobotics. Acesso

em: 10 Jun, 2022.

46

[21] Sivalingam, D. robot pose ekf, 2022. Dispońıvel em: http://wiki.ros.org/robot_

pose_ekf. Acesso em: 05 Jun, 2022.

[22] AV. AMCL, 2020. Dispońıvel em: http://wiki.ros.org/amcl. Acesso em: 07 Jun,

2022.

[23] S Brito, Claudio. SRC. João Pessoa: Github, 2022. Dispońıvel em: https://github.

com/claudiosouzabrito/src. Acesso em: 11 Jun, 2022.

47

