Localizacao de robo moével sujeita a

ambientes sem caracteristicas

Claudio de Souza Brito

/ 4

CENTRO DE INFORMATICA
UNIVERSIDADE FEDERAL DA PARAIBA

Joao Pessoa, 2022

Claudio de Souza Brito

Localizacao de robo movel sujeita a ambientes sem

caracteristicas

Monografia apresentada ao curso Engenharia da computacgao
do Centro de Informatica, da Universidade Federal da Paraiba,
como requisito para a obtencao do grau de Bacharel em Engenharia

da computagao

Orientador: Tiago Pereira do Nascimento

Junho de 2022

Catalogagdoc na publicacgéo
Secdo de Catalogagdo e Classificacgdo

B8621 Brito, Claudic de Souza.

Localizacgdo de robd mével sujeita a ambientes sem
caracteristicas / Claudio de Souza Brito. - Jodo
Pessoa, 2022.

45 £. @ il.

Orientagdo: Tiago Pereira do Nascimento.
TCC (Graduagdc) - UFPB/CI.

1. Robética. 2. Algoritmo. 3. Trajetéria. 4.
Controlador. I. NWascimento, Tiago Pereira do. II.
Titulo.

UFPB/CI CDU 004.89%6

Elaborado por ROGERICO FERREIRA MARQUES - CRB-15/6%0

O
/ 4

CENTRO DE INFORMATICA
UNIVERSIDADE FEDERAL DA PARAIBA

Trabalho de Conclusao de Curso de Engenharia da computacao intitulado Loca-
lizacao de robé movel sujeita a ambientes sem caracteristicas de autoria de
Claudio de Souza Brito, aprovada pela banca examinadora constituida pelos seguintes

professores:

7

Pro‘fﬁ Tiago Pereira Do Nascimento

Universidade Federal da Paraiba
a8,

Prof. Dr. Alisson Vasconcelos De Brito

Universidade Federal da Paraiba

QXNN\)M-\ L LB R P

Prof. Dr. Clauirton De Albuquerque Siebra

Universidade Federal da Paraiba

UERGN|CA MRH'A LIM.A Bssinado de forma digital por VEROMICA

INUBRIA LIMA SILVAOQS5ET] 2297

SILVA:02558212397 Dados: 20220627 1531:48 -1300

Coordenador(a) do Curso de Engenharia da Computacao
Veronica Maria Lima Silva
CI/UFPB

Joao Pessoa, 23 de junho de 2022

Centro de Informaética, Universidade Federal da Paraiba
Rua dos Escoteiros, Mangabeira VII, Joao Pessoa, Paraiba, Brasil CEP: 58058-600
Fone: +55 (83) 3216 7093 / Fax: +55 (83) 3216 7117

”Nem todos os que vagueiam estao

perdidos”

J.R.R.Tolkien

AGRADECIMENTOS

Primeiramente agradeco aos meus pais por terem me educado, e lutado tanto para
que eu tivesse as melhores condigoes de ensino para poder ter chegado até aqui. Agradeco
a Universidade Federal da Paraiba e ao laboratério LaSER por ter me ensinado tanto.
Também agradeco ao professor Dr. Tiago Pereira Do Nascimento por ter aceitado ser meu
orientador, e me guiado durante esses iltimos 12 meses de estudo. E por fim agradeco a

empresa Automni por essa parceria.

RESUMO

A localizagao de robos em ambientes sem caracteristicas ¢ um problema muito atual
na area de robotica, presente em empresas de logistica e picking que tem o objetivo de usar
robos para mover prateleiras de um armazém, a fim de poupar esforco humano. Para essa
tarefa foram implementados algoritmos classicos da drea, como: o A* para planejamento
de trajetéria, e o NMPC (Nonlinear Model Predictive Control) como controlador. Usando
as ferramentas disponiveis no ROS (Robotic Operating System), foi desenvolvido um
mapa simulado para testes, além de integrados o EKF (Extended Kalman Filter) e o
AMCL (Adaptive Monte Carlo Localization), para resultar em uma boa precisdo com

desvio padrao de poucos centimetros.

Palavras-chave: Roboética; Localizacao; Trajetéria; Caracteristicas; Controlador.

ABSTRACT

Robot localization in featureless environments is a current problem in robotics,
present in logistics and picking companies that aim to use robots to move shelves in a
warehouse, in order to save human effort. For this task, classical algorithms in the area
were implemented, such as: A* for trajectory planning, and NMPC (Nonlinear Model
Predictive Control) as a controller. Using the tools available in ROS (Robotic Operating
System), a simulated map was developed for testing, in addition to integrating the EKF
(Extended Kalman Filter) and AMCL (Adaptive Monte Carlo Localization), to result in

a good accuracy with standard deviation of a few centimeters.

Key-words: Robotics; Localization; Trajectory; Featureless; Controller.

Ot = W

o o N O

11
12
13
14
15
16
17
18
19
20
21
22
23

LISTA DE FIGURAS

Rob6 de limpeza (esquerda) ao lado de robos de logistica e picking (direita) 14

RPLIDAR A3, um tipo de sensor laser LiDAR 15
Robo L1IBR no Gazebo 16
Representacao de mapeamento por SLAM pelo RViz 17
Modelo 3D do robo L1BR representado no Gazebo 21
Esboco do laboratério 23
Funcionamento do NMPC o0 26
Funcionamento do Algoritmo Monte Carlo 27
Fluxograma de todo o projeto 29
Visao de cima do mapa modelado, espelhando a figura 6 30
Visao de lado do mapa modelado 31
Mapa obtido pelo sensor 32
Mapa dilatado 32
Trajetoria vertical 33
Trajetoria horizontal oo 33
Trajetoria finalo 34
Pontos onde acontece a trajetéria circular 35
TF tree o o 37
Particulasno RViz oo 38
Performance dos modos omni e diff 000000 38
Performance de diferentes valores para laser_max_beam 39
Performance de distancia minima de atualizacao = 0,001 40

Resultado do experimento de simulacao de acidente 42

1

2

LISTA DE TABELAS

Experimentacao com paramétros do AMCL

Desvios padroes para cada limite maximo de particulas

LISTA DE ABREVIATURAS

ROS — Robot Operating System

A* — A estrela

NMPC — NonLinear Model Predictive Controller

SLAM - Simultaneous Localization and Mapping

LiDAR - Light Detection And Ranging

LASER - Laboratério de Sistemas Embarcados e Robética
EKF - Extended Kalman Filter

UFPB - Universidade Federal da Paraiba

AMCL - Adaptative Monte Carlo Localization

PRM - Probabilistic RoadMap

Sumario

1 INTRODUCAO

1.1 Definicao do Problema e justificativa

1.2 Premissas e Hipoteseso

1.3 Objetivo geral .

1.4 Objetivos especificos oL

2 CONCEITOS GERAIS E REVISAO DA LITERATURA

21 ROS
22 SLAM
23 A% L.

2.4 Nonlinear Model Predictive Control - NMPC

2.5 Ambientes sem caracteristicaso

3 METODOLOGIA

3.1 Softwares e Hardwares

3.2 Sensor laser e Hector SLAM

3.3 Concepcao do ambiente do LaSER simulado

3.4 Dilatamento de mapa e Planejamento derota

3.5 Controlador . .

3.6 Localizacao em ambientes sem caracteristicas

3.7 Integracao das partes

4 APRESENTACAO E ANALISE DOS RESULTADOS

4.1 Modelagem, captura e dilatagao domapa

4.2 Planejamento de rota e controle de trajetéria com odometria

4.3 Integracao com EKF e AMCL

4.4 Experimentacao

5 CONCLUSOES E TRABALHOS FUTUROS

REFERENCIAS

12

13
13
13
14
14

16
16
17
18
19
19

21
21
22
22
24
24
26
28

30
30
31
35
36

43

44

1 INTRODUCAO

Robdtica é a area da computagao que estuda as técnicas e tecnologias para a
concepcao e uso de robos. Os robos sao conjuntos de dispositivos que realizam atividades
e movimentos simples ou complexos conforme foi programado. A robdtica tem grande
aplicacao em diversas dreas desde a producao industrial[l], que introduz 85 mil robos aos
mercados todo ano, medicina[2], que possui [A e robética como ferramentas indispenséveis
no futuro, e também atividades domésticas com os famosos robos de limpeza[3], onde nesta
area a introducgao da robdtica é menos por profissionalismo e mais por conforto. E notével
que a area de robodtica existe para a de otimizacao de tempo e trabalho, esse padrao se

repete neste projeto.

1.1 Definicao do Problema e justificativa

Este projeto é em parceria com a empresa Automni, a qual financia a construcao
do robo de logistica e picking L1BR desenvolvido no LaSER, laboratério da UFPB de
robdtica. Esta empresa estd financiando a construcao do primeiro robo L1BR, que tem a
habilidade de movimentar prateleiras por baixo, evitando esfor¢co humano, e que devera
ficar pronto até o fim do ano de 2021. O restante dos recursos para desenvolvimento do

projeto sera fornecido pelo LaSER.

Parecidos com os robos de limpeza doméstica, os robos usados em warehouses (ar-
mazéns) sao terrestre e possuem estatura baixa, e sdo usados para movimentar prateleiras
e outros itens pelo armazém, que é considerado um ambiente sem caracteristica (como
vaos e espacos abertos). Para um robd mdvel de baixa estatura, isso se torna um fator
complicador, um desafio na localizagao de robos méveis, pois os cdlculos de localizagao
sao feitos usando como base os objetos ao redor, um robo baixo, com um alcance laser li-
mitado, tem dificuldade para conseguir captar o ambiente. Outro fator complicador é que
as poucas caracteristicas visuais existentes sao repetitivas e similares (janelas, colunas,
etc), podendo confundir o algoritmo. O LaSER, possui tal espago com uma grande drea

de circulagao e com caracteristicas repetitivas, ambiente apropriado para experimentacao.

A Figura 1 mostra a semelhanca fisica entre robos de limpeza e robos de warehouses.

1.2 Premissas e Hipoteses

H4& varias ferramentas no ramo da robdtica que podem nos ajudar a resolver esse
problema. Algoritmos do tipo SLAM conseguem entregar representagdes do mapa local
através de sensores. O Hector SLAM[4], por exemplo, pois este foi criado para utilizar

sensores laser como o LiIDAR.

13

Figura 1: Robé de limpeza (esquerda) ao lado de robds de logistica e picking
(direita)

Fonte: Montagem do autor[6][7].

Para a localizacio, a fusdo de sensores através de filtros de Kalman[5], e algoritmos
de extragao e reconhecimento de marcos naturais para triangulacao da posi¢ao do robo

no ambiente, como feito em [8], sdo alternativas validas para cumprir o objetivo.

Para por a localizacao em prova, é preciso que o robd se mova com uma trajetéria
planejada. Um planejador de trajetéria, como o A* e um controlador, como o NMPC,

seriam o suficiente.

1.3 Objetivo geral

Este trabalho visa localizar um rob6 moével warehouse em ambientes com poucas
caracteristicas, e com objetos repetitivos, se valendo de algoritmos de SLAM, feito com
um sensor laser acoplado no robo6, fusao de sensores e extracao e reconhecimento de
caracteristicas (marcos naturais), processados pelo ROS, o conjunto de softwares para
aplicacao de robdtica. Além de projetar os algoritmos de planejamento de trajetéria e
controle. Dessa forma teremos um robo capaz de se localizar no espago com precisao, e se
locomover até o destino com pouco erro. E podemos aplicar esse trabalho em armazéns,

minimizando a complexidade das tarefas e otimizando o trabalho.

1.4 Objetivos especificos

A primeira etapa do projeto seria aplicar o algoritmo Hector SLAM no robo. Apds
isso o térreo do LaSER serd modelado no Gazebo, um simulador 3D de robdtica open
source. Em seguida os algoritmos de trajetéria e controle serdo implementados, A* e

NMPC respectivamente. Finalizando com a fusao de sensores usando filtro de Kalman

14

estendido (EKF) e o reconhecimento de marcos naturais (AMCL) serao adicionados ao

trabalho, aumentando a eficiéencia de localizagao.

A Figura 2 mostra o sensor RPLIDAR A3, modelo utilizado no trabalho.

Figura 2: RPLIDAR A3, um tipo de sensor laser LIDAR

RPLIDAR A3

360 Degree Laser Range Scanner for Indoor and Outdoor Applictaion

&

25 meters range radius | 16000 samples per second | Indoor and outdoor availability

Fonte: Site oficial[9]

15

2 CONCEITOS GERAIS E REVISAO DA LITERATURA

Neste capitulo serao introduzidos os conceitos sobre as ferramentas utilizadas neste
projeto. Foi feita uma revisao bibliografica para cada subtopico com o propdsito de

entender ao méaximo suas propriedades, limitagoes, e seus potenciais.

2.1 ROS

De acordo com a descri¢ao ofinal do site, o Robot Operating System (ROS) é um
conjunto de bibliotecas de softwares e ferramentas que ajudam a construir aplicagoes com
robos, e é open source. E o ntcleo do projeto e o que permite que todas as partes se

juntem.

Uma das ferramentas que vem com o ROS é o Gazebo, um software de simulacao
3D que é capaz de renderizar modelos de varios tipos de extensao diferentes. O modelo
do L1BR foi criado pelo aluno Jorge Luiz no projeto de extensao com o professor Tiago
Nascimento. No Gazebo podemos ver o robd em tamanho real e do jeito que foi idealizado
para ser. A construcao fisica do mesmo ira seguir o modelo. A fisica é definida em arquivos
a parte e servem para fazer a simulacao mais consistente com a realidade, e inclui também
a capacidade de se locomover de forma crivel. Neste projeto usaremos esse software para

construir o ambiente do LaSER.
A Figura 3 mostra o robo L1BR no software Gazebo.

Figura 3: Rob6 L1BR no Gazebo

Gazebo
ile Edit Car

world | Insert Layers - - !- € ' |. &: Z | RB | B O | 19

[«V]}

Spherical Coordinates
Physics

Atmosphere

P Lights

Il Real Time Factor: Sim Time: Real Time: Iterations:

Fonte: Print screen feito pelo autor

O RViz é outra ferramenta poderosa do ROS, um visualizador 3D, mas diferente do

Gazebo, ele nao foca nas caracteristicas fisicas do ambiente, mas sim no efeito dos plugins

16

do robo. Caso tenha equipado uma camera, é possivel visualizar o contetiido em tempo
real de simulagao, um sensor laser mostra quais pontos estao sendo interceptados. Além
de promover a visualizacao dos efeitos dos sensores, ele também permite a utilizacao de

algoritmos, como por exemplo os algoritmos SLAM, e sua representacao visual.

A Figura 4 mostra a utilizacdo simultanea do Gazebo (a esquerda), e o RViz (a

direita). No RViz é possivel ver o uso do algoritmo SLAM em processo de mapeamento.

Figura 4: Representacao de mapeamento por SLAM pelo RViz

turtlebot3_gmapping.rviz* - RViz x

Eile panels Help v
et | GMoecamers Liseec proauscamen Meswe 0poseisinate /201 Y o 4]

Fonte: Retirado de um video da ROBOTIS[10]

2.2 SLAM

Existem vérios tipos de SLAM, em [11] vemos vérias derivagdes de SLAM que
usam a camera como sensor. Os chamados visual SLAM (vSLAM) usam exclusivamente
as informagoes visuais e podem ser classificados em: algoritmo baseado em features (ca-
racteristicas de ambiente), algoritmo de método direto, e algoritmo baseado em cameras
RGB-D.

O primeiro utiliza certos pontos do ambiente para o mapeamento, ao capturar essas
caracteristicas especificas o algoritmo rastreia (tracking) suas posigoes e comega a formar
o mapa (mapping) juntando-as de maneira consistente. Por fim, sdo utilizados algoritmos
” assistentes” para otimizar o mapa, um dos usados na pesquisa é o EKF (Extended Kalman
Filter), capaz de aumentar a precisao de medi¢do ao combinar sensores. O segundo
procura adquirir o mapa de maneira, como seu nome sugere, direta. Diferente do método
anterior que procura por caracteristicas especificas, este forma uma imagem rasa com
toda a informagao entregue pela camera, e entao a otimizacgao é feita com base no erro

entre o resultado criado e a imagem original.

17

E por fim, a técnica das cameras RGB-D consistem em utilizar esta tecnologia ja
muito avancgada, presente até mesmo no aparelho Kinect da Microsoft, que se tornaram
menores e mais baratos ao longo do tempo. A camera entrega as formas, texturas, e escala
das imagens diretamente, o algoritmo entra no tratamento de profundidade, existem varias

maneiras de fazer esse tratamento, tudo muito detalhado em [11].

Porém, diferente do que é exibido nesses projetos, o método SLAM que utilizaremos
é Hector SLAM, que nao utiliza a camera, por mais que o robo L1BR a tenha, mas sim
um sensor laser RPLIDAR, que tem 16MHz de frequéncia, e serd usado com alcance de
14 metros. O uso de sensor laser é justificado por ter se tornado a opcao mais comum de

localizagao atualmente, e de custo baixo.

Como é possivel ver em [12] o Hector SLAM nao é o melhor SLAM que existe,
porém, isso se deve a sensibilidade do algoritmo a rotagao, o que nao necessariamente é
um problema. Além disso, ele foi criado para rodar com pouco poder computacional, o
que significa que é eficiente. O Hector SLAM foi escolhido por uma questao de velocidade

de processamento.

2.3 A*

O algoritmo A* (lé-se "A estrela”) é um dos planejamentos de trajetéria mais
famosos de todos, seu principio basico de direto ao ponto permite que possa ser imple-
mentado por qualquer programador sem exigir grandes complexidades, essa é com certeza
uma das forgas dessa técnica. Em [13] vemos um projeto com um ideal simples de testar
técnicas convencionais de robdtica com um modelo de robo caseiro, com o intuito de ver
como o mesmo se sai com adversidades comuns, como por exemplo rodas defeituosas,
controle dessincronizado, sensores com leitura incorreta. Pela proposta do projeto em

[13], o c6digo do A* utilizado nao foge do bésico.

Porém, a versao utilizada neste projeto levemente desvia do convencional, pois
em vez de sempre buscar o melhor caminho possivel, recorrendo a utilizacao de funcgao
de custo, que testa todos os caminhos possiveis, estd em mente uma ideia mais simples:
Encontrar o primeiro caminho possivel. Tendo em vista que o objetivo final desse trabalho
é promover um sistema de localizagao, controle, e planejamento de trajetoria para robos
picking, o mais importante é ser eficiente. Para isso precisamos de um algoritmo que
consiga entregar o objetivo rdpido, adiantando a movimentacao da méaquina, isso reduz
o custo computacional de tal maneira que compensa o fato de o robo esta indo por uma

rota mais demorada.

A justificativa de usar este algoritmo se deve ao fato de que, com o A*, muitas
vezes o primeiro caminho encontrando ja é o melhor caminho, isso ocorre quando entre a

maquina e o destino final nao existe obstaculo nenhum, um cenério bastante comum. Isso

18

nao acontece com outras alternativas como o PRM (probabilistic roadmap) por exemplo.

Se fosse utilizado o A* convencional, terfamos um desperdicio de tempo e processamento.

2.4 Nonlinear Model Predictive Control - NMPC

O modelo de controle preditivo nao linear é um controlador bastante complexo, que
diferente da maioria das outras espécies trabalha com prever os estados futuros, em vez de
focar em erros anteriores. Por mais que tenha ocorrido intimeras melhorias tecnolégicas
em hardware e otimizagao, ainda ¢é bastante dificil resolver os problemas do algoritmo em
tempo real, principalmente em caso onde hé perturbagoes, parametros desconhecidos, e

erros de medida.

Uma pesquisa[l4] propos uma técnica de aproximar um NMPC robusto usando
deep learning, e usar uma técnica de validacao probabilistica como medidor de qualidade,
visando implementar em sistemas rapidos e em sistemas embarcados de custo baixo. O
NMPC que sera utilizado neste trabalho difere do visto na pesquisa, por mais que a
proposta seja interessante. Foi usado uma versao mais tradicional do controlador, pro-
gramado na linguagem C++4, e com seu proprio looping de otimizagao sem uso de nada
baseado em redes neurais. O foco deste projeto nao se encontra no controle, que ja provou

funcionar de maneira concreta, mas sim na localizacao e uso de filtro de Kalman.

2.5 Ambientes sem caracteristicas

Também conhecidos como featureless environments sao uma problematica comum
no ramo da robédtica. Caracterizados como espacgos sem muitos objetos, eles dificultam a
tarefa de localizagao por laser visto que o mesmo necessita atingir superficies para exercer
sua funcao, e o problema é maior quando o alcance do sensor é curto. As vezes ocorre
de apenas um pequeno pedaco do ambiente ser dessa forma, como por exemplo quando o
robo faz uma curva, e ao se aproximar da quina, a mesma ocupa metade da leitura, mas

é considerada apenas como 1 (uma) caracteristica.

Um artigo sobre localizacao de robos de alta velocidade[15] propos, utilizando

sensor laser, 3 alternativas de contornar este problema:

e Usar a diferenca entre as leituras ponto a ponto do sensor entre os tempos tl e
t2, dessa forma calculando a possivel localiza¢do em x (coordenada horizontal), y
(coordenada vertical) ; e 6 (angulo de inclina¢ao do robo), e usando uma funcao de

erro para calcular a similaridade entre as leituras.

e Usar o EKF para combinar os dados do laser com a odometria das rodas, aumen-
tando a precisao dos resultados, mas apenas em ambientes com poucas features,

para poupar tempo de processamento.

19

e Ao se encontrar em um ambiente com poucas caracteristicas, o algoritmo iria criar

novos pontos artificialmente usando calculos de aproximacao.

Um outro artigo[16] resolveu o mesmo problema com bases de dados. O robo ar-
mazenaria varios locais coletados previamente, dividiria cada local em pequenos pedagos,
e transformaria cada um em matriz. Ao se locomover, o robo iria fazer um matching
entre as matrizes do que os seus sensores estao captando, com as matrizes dos pedacos na
base de dados, e entao o algoritmo iria juntar os pedagos, como em um quebra cabeca,

descobrindo a localizagao do robo, e aonde ele deve ir.

20

3 METODOLOGIA

O objetivo deste trabalho é ter sucesso em localizar um robd em um ambiente sem
caracteristicas, mais especificamente o rob6 L1BR (figura 5), que estd sendo desenvolvido
nesse momento por uma outra equipe dentro do laboratério LaSER da Universidade
Federal da Paraiba (UFPB), também em parceria com a empresa Automni. Foi utilizado
entao um modelo 3D do robo na primeira parte do projeto, e apds a construcao do

verdadeiro aparelho, houveram testes praticos.

Figura 5: Modelo 3D do rob6 L1BR representado no Gazebo

Fonte: Screenshot feita pelo autor

3.1 Softwares e Hardwares

A colecao de frameworks ROS é definitivamente a parte mais importante deste
projeto, um ambiente feito para testes de robdtica com todas as ferramentas necessarias
para a confeccao deste projeto, neste caso em especifico estard sendo utilizado a versao
noetic. Instalado junto com o ROS, o Gazebo foi bastante requisitado ao longo deste
trabalho, o software se encontra na versao 11. Finalizando o pacote de robdtica, o RViz,

programa de visualizagao de sensores e atuadores, foi usado na versao noetic.

Os cddigos foram todos escritos pelo Visual Studio Code, um editor de codigo-
fonte desenvolvido pela Microsoft, em uma méaquina LINUX Ubuntu 20.04. Maquina esta
que possui um processador AMD A10-5757M APU, com placa gréfica integrada, 6GB de
memoéria RAM DDRA3, sao requisigoes fracas e até ultrapassadas, porém nao houve sinal
de mé performance, portanto nao se espera que muitas outras maquinas sejam incapazes
de executar este projeto. A situagdo melhora quando levado em consideragao que a parte

que mais exige poder computacional sao os softwares de simulacao, Gazebo e RViz, que

21

nao serao utilizados na etapa fisica, e o algoritmo de planejamento de rota, que serda

executado online, poupando o processador para outras tarefas.

As ultimas ferramentas utilizadas sao as pecas robdticas fisicas, sendo elas o LIBR

e o sensor que sera acoplado.

3.2 Sensor laser e Hector SLAM

Foi adicionado ao modelo do L1BR um RPLIDAR, um sensor laser 2D, na parte
superior do robd, este é possivel de ser obtido pelos pacotes oficiais[17] desenvolvidos e
distribuidos gratuitamente pela empresa Shanghai Slamtec. O item é capaz de acessar o
topico scan do ROS, e pode ser configurado por programacgao. Neste projeto utilizamos

360° e um longo alcance de 14 metros, visando capturar os elementos mais rapidamente.

Turtlebot é um kit de robo pessoal simples desenvolvido com o intuito de testes.
A empresa ROBOTIS disponibilizou gratuitamente pacotes ROS[18] contendo diversos
algoritmos comuns de estudo e trabalho, alguns deles sao algoritmos SLAM que mesmo
tendo sido criados para a série turtlebot, depois de algumas modificagdes podem funcionar

para o L1BR também, portanto serao utilizados neste projeto.

O Hector SLAM recebe o input do sensor vindo pelo tépico scan e mapeia o am-
biente, diferenciando obstaculos de espacos livres. Para movimentar o robo nesta fase,
capturando cada ponto especifico, foi utilizado um cédigo de controle manual. A Figura
4 mostra como aparenta o processo em andamento. Apds a figura do mapa ter sido

completada, ela é salva para uso futuro.

3.3 Concepgao do ambiente do LaSER simulado

Visto que a segunda, e mais importante, parte deste projeto se trata do robo fisico
no laboratério da universidade, a parte referente a simulacao deve ser consistente, sendo

assim, o térreo do LaSER foi construido em ambiente simulado e visualizado pelo Gazebo.

O primeiro passo se tratou de uma visita ao local para tirar as medidas necessarias
para a simulacao. Foram levados em conta: Os comprimentos das paredes principais, as
posicoes dos objetos fixos, incluindo colunas, bancadas, armarios, suas medidas exatas e
as distancias entre os objetos. As medicoes foram feitas com uma trena laser. A Figura

6 mostra um esbogo das anotagoes feitas.

H&4 duas maneiras de fazer modelagem 3D. A primeira delas é criar os objetos
usando a tag geometry no préprio arquivo model.sdf do modelo, cada objeto possui 3
(trés) coordenadas de posicao e tamanho, é possivel fazer estruturas paralelepipedas de

varias maneiras diferentes. As paredes sao longas, mas finas, as colunas sao menores

22

em comprimento, mas mais grossas. As bancadas sao mais complicadas, foi preciso criar

varios paralelepipedos, e combina-los para fingir que é uma estrutura inteira.

A segunda maneira de modelagem é procurar modelos ja prontos, criados em
softwares como o Blender, e incluilos no projeto, precisando apenas focar na posicao,
essa estratégia foi usada para os diferentes armarios. Infelizmente nao pode ser feito o
mesmo com as bancadas, o que evitaria bastante trabalho, pois o visual das bancadas do

LaSER sao bastante especificas, e precisava ser mais veridico a bancada real.

A Figura 6 mostra o esbogo do laboratério feito com as medidas e distancias

coletadas. Sendo verde as bancadas, cinza as colunas, laranja os armarios.

Figura 6: Esboco do laboratério

53cm m _835cm 39,5cm

) o [S

270cm 265cm

197.3cm
1

1 173.8cm 145,6cm

198cm

250em

230cm

]

197cm

220cm

280cm

D f

47.1cm

22em

{CEOHAOFA
]

200cm

250cm 260em

310cm 255cm
| I I |
= IE‘ ! 1

Fonte: Feito pelo autor no site app.diagrams

23

3.4 Dilatamento de mapa e Planejamento de rota

Antes de comecar a planejar a trajetéria, é preciso ter em mente que todos os
algoritmos consideram o objeto como uma particula, isto é, algo que tenha o tamanho de
1 (um) pixel. Porém é sabido que o rob6 possui sua largura, e se isso nao for considerado,
acontecera do mesmo ficar preso nas paredes e quinas do ambiente, pois seu tamanho
nao foi considerado. A solucao entao seria engordar todos os obstaculos na proporgao
de largura do robd, ou seja, todos os obstaculos terao suas larguras aumentadas no valor
igual (ou aproximado) a metade da largura do robo. Dessa forma, mesmo que o mesmo

continue sendo considerado uma particula pelo A*, passard distante dos obstaculos.

Como dito anteriormente, o algoritmo usado para planejar a rota entre pontos A e
B serd o A*, que tem como natureza verificar cada ponto disponivel no mapa, verificando
todos os possiveis caminhos. A linguagem de programacao escolhida foi C++, é a lingua-
gem mais comum nessa area, fortemente tipada, o que evita erros indesejados, além de

ser facil e eficiente.

Apos definir quais sao os nos de inicio e fim, o cddigo entra em um looping onde
ele verifica cada né ainda nao visitado, cada né possui sua distancia local, a distancia
entre o né de inicio até aquele n6. Entao é feito uma avaliacao entre todos os seus
vizinhos, caso o mesmo nao seja um obstaculo, o algoritmo atualiza a distancia local do
vizinho como: distancia-local-do-n6 + ditancia-entre-né-e-vizinho. O codigo segue até

que eventualmente chegara no noé final.

A disting¢ao entre obstaculo e espacgo livre é feita pelo algoritmo Hector SLAM,
que atribui cores diferentes aos pixels onde o laser atinge e os que ele nao atinge. A
maneira escolhida para descobrir a distancia entre o né atual e o vizinho foi o calculo de
distancia euclidiana, simples e eficiente. O pseudo-cdédigo abaixo mostra a ideia principal
do algoritmo, que recebe como parametro 2 (dois) pontos, sendo start o né de inicio e
end o no6 final, e entao é tracado um caminho de pixel a pixel do ponto de partida até o
ponto de chegada. As coordenadas de cada um desses pixels é gravado em um arquivo

.txt posteriormente.

3.5 Controlador

Com o mapa e trajetoria prontos, o préximo passo é a locomocao, como dito
anteriormente sera usado o modelo preditivo nao linear (NMPC) possui seu diferencial
por ser um sistema que trabalha com a previsao de movimento, em vez de focar no erro

do passo anterior.

O algoritmo recebe as coordenadas atuais do robo e os dados da trajetoria, e entao

calcula um ntimero de passos até chegar naquele ponto da trajetoria. O ntimero de passos é

24

Algorithm 1: Pseudo-cédigo do A* implementado

current < start;

start.localGoal < 0.0;

notTested N odes.pushback(start);

while NOT notTestedNodes.empty() AND current = end do

while NOT notTestedNodes.empty() AND notTestedNodes.front().visited
do
| notTestedNodes.popfront();

end

if notTestedNodes.empty() then
| BREAK

current < notTestedNodes. front();
current.visited < T RUFE;
for EACH neighbour IN current.neighbours do

if NOT neighbour.visited AND neighbour.obstacle == 0 then
| notTestedNodes.pushback(neighbour)
LowerGoal < current.localGoal + distance(current, neighbour);
if LowerGoal < neighbour.localGoal then
neighbour.parent < current;
neighbour.localGoal <— LowerGoal,

neighbour.globalGoal
« neighbour.localGoal + distance(neighbour, end);
end

end

25

chamado de horizonte de previsao, isto é, o quanto o robo ira prever o movimento. Porém,
para garantir que a trajetéria planejada pelo robo é a mais ideal, a fase do horizonte de
planejamento é repetida varias vezes, conseguindo valores diferentes todas as vezes, e
entao é executado um otimizador que calcula o custo de cada decisao de cada horizonte
de predicao. Aquele que conseguir menor custo é escolhido, e o resto do cédigo segue

esses valores escolhidos.

Um ntmero pequeno de horizonte de previsao, entre 1 e 5, é bastante ideal, pois é
rapido de ser calculado, e além disso, quando o rob6 chega no primeiro ponto do horizonte
ele refaz todo o procedimento, criando outro novo horizonte. Ou seja, apenas o primeiro
ponto é realmente importante, uma escolha de horizonte de predicao longo ird apenas
deixar o cédigo mais lento, e talvez até causar um erro caso, por exemplo, um objeto
indesejado apareca na area do horizonte de predi¢ao, mas o robo segue sem atualizar o

mapa (que s6 ¢ atualizado apds a fase de controle) e acaba colidindo.

A Figura 7 ilustra o funcionamento do NMPC no processo de funcgao de custo. E
possivel ver 3 diferentes caminhos feitos para chegar ao mesmo ponto, e o caminho menos

custoso sendo escolhido.

Figura 7: Funcionamento do NMPC

— ’_.__\
- -
- -
k kel ko2 kel ked ke
Prediction horizon, p
» - - » - -
v
-
. . - » » — — R] -
%‘Q_‘// J = cost
® @9 & le —p e =20
5 -

MPC Controller

Fonte: Video aula feita pelo professor Tiago Nascimento[19]

3.6 Localizacao em ambientes sem caracteristicas

Ao fazer o planejamento de trajetéria, o A* assume que o objeto (robd) seguird
aquele caminho sem erro (desvio), ou seja, ele assume que o rob6 sempre estard nas

coordenadas corretas, bem localizado, principalmente em ambientes sem caracteristicas.

26

Monte Carlo é uma espécie de filtro de particulas bastante usado na computacao.
Vérias particulas sao espalhadas no mapa de maneira aleatoria, cada particula tem suas
medidas x, y, e e se movem junto com o robd dependendo da decisao do controlador.
Depois disso, cada particula é posta no modelo de medicao que decidira o peso de cada
particula, as particulas mais pesadas sao aquelas que possuem mais chances de estarem
sobre o robo. Sempre que o mesmo andar, as particulas levemente perdem levemente
a precisao, pois nao é possivel prever perfeitamente onde o controlador levard o robo,
mas quando o cédigo for executado novamente, elas convergem. O modelo de medicao
utilizado foi o de marcos naturais, o sensor laser ira detectar pontos proximos, cada ponto
¢ um marco, uma estrutura de referéncia. O cédigo testa a distancia de cada particula a

cada marco, e atribui peso de acordo com essa medida.

A Figura 8 ilustra o funcionamento do AMCL durante o processo de atribuicao de
peso das particulas. Importante notar como as particulas tem mais peso perto das portas

(marco natural).

Figura 8: Funcionamento do Algoritmo Monte Carlo

S

k
P(ols) After robot senses the door, Monte Carlo Localization Assigns importance

factors to eacE panic'e A i

Fonte: Video aula feita pelo professor Tiago Nascimento[20]

Por mais que seja uma maneira muito boa de se localizar no ambiente, no que
se refere a ambientes sem caracteristica o sensor laser possuira limitacoes, tendo poucos
objetos para usar como referéncia, na sessao anterior foram citadas solucoes para este
problema. O artigo [15] propoe uma solugao de criar marcos artificiais baseados nos
verdadeiros. Dado uma distancia fixa, um novo marco seria gerado a tal distancia de
um marco verdadeiro numa mesma linha. Supondo entao que se trata de uma quina,
e o alcance do sensor é curto e capta apenas o comeco dela, o algoritmo ird notar a
caracteristica de parede pelo alinhamento dos pontos do sensor, a geragao de novos pontos
funcionaria ao criar seguindo o comprimento da parede, tal como se o alcance do sensor

fosse maior.

27

Outra estratégia que o artigo mostra é combinar mais de um sensor, no caso do
exemplo dado seria a odometria das rodas, ambos os valores seriam combinados no filtro
de Kalman estendido, que consegue produzir uma espécie de "média” entre os dados. E um
método bastante utilizado pela comunidade por ser bastante eficiente, e funciona melhor

quando ambos os sensores usados no calculo sao independentes.

A proposta final deste trabalho é combinar duas dessas estratégias, o AMCL e
o EKF. O algoritmo de Monte Carlo (ou AMCL, sigla para Adaptive Monte Carlo Lo-
calization) utiliza o célculo de medida de pesos das particulas e o niimero de particulas
utilizadas fora testado experimentalmente, a medida utilizada para o cédlculo da distancia
entre as particulas e marcos naturais ¢ a distancia euclidiana, e a probabilidade ¢ atribuida
a particula utilizando a equacao de distribuicao gaussiana, sendo: X a distancia entre o
robo e aquele marco, a média é a distancia da particula até o marco, e o desvio-padrao o
fator aleatorio. Como ha chances do Monte Carlo ser impreciso, utilizamos o EKF para
juntar os resultados de mais de um sensor (Odom e IMU), e entéo o resultado disto é
passado para o AMCL, trazendo uma média satisfatéria, e definindo a localizacao do robo

em ambientes sem caracteristica com precisao.

3.7 Integracao das partes

Para juntar as etapas deste projeto, sera também implementado um codigo princi-
pal chamado de control.cpp. O funcionamento deste cédigo comecaria com uma chamada
da funcao para adquirir os valores de coordenadas do caminho planejado. Porém, os valo-
res de coordenadas precisam ser compativeis com os mesmos obtidos no ROS, pelo Gazebo
principalmente. Sendo assim, é preciso realizar uma transformada na relacao entre pixels

e metros, uma simples aplicagao da regra de 3 é o suficiente, dessa forma:

larguraDoAmbienteEmMetros _ larguraDoMapaEm Pizel (1)
zli] o L[i]

alturaDoAmbienteEmMetros alturaDoMapaEm Pixel 2)
yli] o Ali]

Sendo L o conjunto de coordenadas referentes ao eixo x de cada ponto da trajetéria,
A o conjunto de coordenadas referentes ao eixo y de cada ponto de trajetoria, e i o ponto

atual a ser transformado.

Apoés isso, para cada ponto na trajetoria a ser seguido, alimentamos a funcao de
controle com os valores da coordenada x do ponto, coordenada y do ponto, coordenada
z atual do robd (obtido pelo AMCL), coordenada y atual do robo (obtido pelo AMCL),
inclinacao do rob6 em relacao ao plano do chao, velocidade linear atual e velocidade

angular atual, sendo esses 3 ultimos obtidos pela odometria.

28

A funcao de controle retorna as velocidades lineares e angulares necessarias para
que o robo alcance o ponto da vez, essas velocidades sao passadas para o ROS, que faz
o movimento ordenado. E preciso um certo tempo antes do préximo ciclo, fim de dar
tempo para o robd se locomover, entao um delay é chamado no fim do ciclo anterior. O

pseudo-codigo abaixo ilustra o funcionamento do arquivo control.cpp.

Algorithm 2: Pseudo-cddigo do control.cpp implementado

L, A < ler Arquivo(coordenadas.txt);
x[] < emptyArray();
y[] « emptyArray();
for i = 0; i < L.lenght(); i++ do
x[i| <= larguraDoAmbiente EmMetros * L[i]/larguraDoM apa Em Pizel,
yli] < alturaDoAmbiente EmMetros x Ali|/alturaDoM apaEm Pixel,
end
for i = 0; i < z.lenght(); i++ do
velo
NMPC(z[i],yi], AMCL.x, AMC L.y, ODOM teta, ODOM.v, ODOM .w);

vel Pub.publish(velo);
delay();
end

Houve um erro de indentacao no algoritmo, é preciso observar que o segundo

"For”s6 comega apds o fim do primeiro.

A Figura 9 mostra o fluxograma do projeto inteiro. Eles sao divididos em duas par-
tes majoritariamente, uma parte referente ao ROS, e outra parte referente aos algoritmos

externos. E possivel também ver quais informacoes cada entidade passa para outra

Figura 9: Fluxograma de todo o projeto

Mapa no Gazebo

Hector

SLAM
Mapa no RViz
» L1BR 0

Odom_combined Coordenadas (metro)

IMU Odometria —
Cédigo Principal
EKF . Coordenadas (pixel)
Pixel -> Metro A
ODOM.8, ODOM.v, ODOM.w]

v |
AMCL | — | nmec
(AMCL.x, AMCL.y) L

velo (v,w)

Fonte: Feito pelo autor

29

4 APRESENTACAO E ANALISE DOS RESULTADOS

4.1 Modelagem, captura e dilatagao do mapa

O Gazebo renderiza arquivos do tipo .sdf, e sao por esses arquivos que é feita
a modelagem. Foram criados objetos cujas medidas se encaixam no que fora medido
anteriormente na Sec¢ao 3.3, assim como também foram utilizados alguns modelos de

armarios de um repositério gratuito de objetos no Blender.

As Figuras 10 e 11 mostram o resultado da modelagem do laboratério LaSER.

Figura 10: Visao de cima do mapa modelado, espelhando a figura 6

Fonte: Screenshot feita pelo autor

30

Figura 11: Visao de lado do mapa modelado

Fonte: Screenshot feita pelo autor

Com o ambiente do robo pronto, foi usado um algoritmo de controle manual para
mover o robo pelo mapa. Ao longo de sua passagem, o sensor laser atinge os objetos e

suas formas ficam registradas no software de visualizagao RViz.

A Figura 12 mostra o mapa na visao do RViz apéds a utilizagdo do mapeamento
SLAM.

O arquivo de mapa sera enviado para um cédigo em python que identifica por cores
quais partes sao obstaculos/espaco indisponiveis e quais sao espagos livres. Sendo branco
espago livre, cinza espago indisponivel, e preto obstdculo. Depois de identificar, ele trata

de expandir todas as partes cinzas e pretas.

A Figura 13 mostra o resultado da dilatagao, a alteragdo das cores faz parte do
programa, agora dividido entre branco e preto, sendo obstaculo e espaco livre respectiva-

mente.

4.2 Planejamento de rota e controle de trajetéria com odometria

E com o mapa dilatado que o planejamento de trajetéria é feito. Primeiramente,
antes de verificar a precisao da localizagao, sera testada a movimentacao do robo em
trajetorias especificas. Estas trajetorias sao: vertical (figura 14), horizontal (figura 15),

final (figura 16), esta dltima possuindo caracteristicas vertical e horizontal.

31

Figura 12: Mapa obtido pelo sensor

Fonte: Gerado pelo RViz

Figura 13: Mapa dilatado

Fonte: Gerado pelo autor

32

Figura 14: Trajetoria vertical

Fonte: Gerado pelo autor

Figura 15: Trajetdria horizontal

Fonte: Gerado pelo autor

33

Figura 16: Trajetoria final

Fonte: Gerado pelo autor

Como ambos os EKF e AMCL ainda nao foram implementados, serao utilizadas

as informacoes apenas da odometria.

Quando se trata da trajetéria vertical, o robo segue com quase perfeicao, precisando
corrigir o seu alinhamento apenas algumas vezes. Porém, ao realizar a trajetéria na
horizontal, o robo realiza um movimento de "ré” assim como um carro. Tomando distancia
e se inclinando para a direita, para entao finalmente comegar a andar na horizontal. Caso

o robo julgue que saiu do alinhamento, ele performara o movimento de ré novamente.

Ao se locomover na trajetéria final, a presenca de trechos diagonais fez com que
o rob0 tomasse decisoes problematicas. Como para cada ponto do trecho diagonal existe
uma mudanca horizontal, o robo alinha seu eixo para corresponder com a coordenada do
ponto, mas logo depois vem um novo ponto, que também tem mudanca na horizontal,
entao o robo deve alinhar novamente. Apenas apds o cddigo (ver Algorithm 2) ter passado
do ponto do trecho diagonal, o robo finalmente se mexe em uma trajetéria circular que

comeca do ponto de inicio do trecho diagonal até o fim (figura 17).

34

Figura 17: Pontos onde acontece a trajetéria circular

Fonte: Gerado pelo autor

Essa trajetoria circular pode ser bastante problematica em outros ambientes, feliz-
mente o mapa do laboratéorio LaSER nao causou problemas. Mas é importante levar em
consideragao que no segundo trecho diagonal o robo quase colide com a primeira coluna,
corrigindo sua posicao horizontal ao longo do resto do trajeto, se aproximando mais das

mesas como previsto pelo caminho gerado pelo algoritmo A*.

Algo que possa ter contribuido com isso é o fato de que o rob6 nao foi construido
fisicamente ainda, portanto nao é possivel saber os verdadeiros valores da fisica do seu
corpo (coeficientes de atrito, inércia, etc). Sendo assim, este trabalho lida com uma

aproximacao do que seria o comportamento fisico do L1BR.

4.3 Integracao com EKF e AMCL

Como dito na documentacao do EKF[21], o filtro de Kalman estendido é obtido
pela uniao de até 3 informagdes entregues pelo robo, sendo elas: Odometria, IMU (Inertial
Measurement Unit), e Odometria visual. Este ultimo se refere a terceira dimensao, a
altura, como nao é relevante neste projeto, sera deixado de fora. Para utilizar o filtro de
Kalman usamos o n6 "robot_pose_ekf”’e passamos como parametro o carcaga do robd. O

resultado do EKF se chama Odom_combined.

O no6 ”amcl” cuida da integracao com o algoritmo de Monte Carlo, para isso teremos

que passar o resultado do EKF para que ele use como referéncia de Odometria (EKF

35

é considerado uma Odometria melhorada), assim como o mapa da figura 12 para que o
mesmo tenha noc¢ao do ambiente. O AMCL possui outros parametros que serao explorados

na sessao seguinte.

A Figura 18 mostra como ficou a tf tree do projeto, isto é, a formatacao de
todos os frames ou partes. Left_wheel, right_wheel, right_front_wheel, left_front_wheel,
right_rear_wheel, left_rear_wheel sao as rodas do robo, camera_1 é a camera, piston e tray
dizem respeito ao pistao, rplidar é o RPLIDAR. A ”carcaca”representa a carcaga do robo,
e é 0 n6 que mantém todas as componentes anteriores unidas. Odom_combined é a re-
sultante do EKF e se conecta ao robo para obter as informacoes dos sensores dele. Map
e scanmatcher_frame se conecta a arvore por Odom_combined para obter os valores da

localizacao do robo, a fim de representa-lo nos mapas do Gazebo e RViz.

Por mais que o frames odom nao esteja conectado com o resto da arvore, é confir-

mado que ele estd servindo para alimentar o Odom_combined.

A Figura 19 mostra como fica o robo e o mapa com as particulas do AMCL fun-
cionando. Os pontos verdes sao a parte do mapa que o sensor consegue captar por estar
no alcance de 14 metros. Os pontos vermelhos sao as particulas que ja estao convergindo

no robo.

4.4 Experimentacao

Existem varios parametros no né do AMCL, todos eles possuem valores padroes
que foram testados pelos seus desenvolvedores[22]. Como esta sendo usado outro robo,
nao necessariamente os valores corresponderao bem, e sera recomendado uma alteracao
nos valores, estes que sao encontrados apenas por experimentacao. Serao verificados os
parametros: odom_model_type, laser_mazx_beams, resample_interval, min_particles, maz_particles,

update_min_d, update_min_a.

Serao exibidos graficos, usando um cédigo na linguagem python de diferenca de
performance entre os diferentes valores para cada parametro escolhido. Para decidir a
melhor performance, foram retirados a média dos desvios padroes entre a posigao estimada
e a posicao real ponto a ponto do cédigo para cada coordenada. Varios testes sao efetuados
para ter certeza de que o experimento nao sera afetado por outliers. A melhor op¢ao para
o parametro serda mantida para o teste do proximo, visto que eles possuem natureza
independente, e portanto a alteracao de um nao afeta o outro. O andamento do processo

serd exibido em tabelas no final deste tépico.

O primeiro parametro que é preciso ver é o odom_model_type, ou seja, o Mmo-
delo de Odometria utilizado. H& dois valores possiveis ”diff” (manobridade diferencial)
e "omni” (manobridade omnidirecional), ambos sao parecidos, a diferenca é que a segunda

opcao leva em consideracao a tendéncia do robo de transladar sem rotacionar, isto é,

36

Figura 18: TF tree

985 7L 1 “yibua] Jegng
(p10995 000) 82 97 “UL0}SueL} ol 10
24 6 Ty 412t fetany
saysygnd a1e1s 10qoy -lejseapeoig

(PO29S 02010) 1€ LojSUen ueoad 10

900 9]

998 911 ‘fus] sogng

(P85 000) 7€' JSTe 0081 50| (1095 0770) 7187 “WOjURE) aned 10

7} 02617 811 aferany
Jausnd aje1s 10q01/ Jaiseapeolq

988 gy T i) Joyng

TH 779'Fp oted afesasy
Jystqnd aje1s Joqos/ ajseapeolg

985 gy s Joyng

H 170°h ‘911 abesany
Jaystqnd 81e1s Jqoy/ 1ajseoprolg

988 000') b Jong
(10988 ZEE'GT) 0000 “WojSuex) Juasat 50
74 00000001 41 abesany
Jasjgnd ajels 10q0y Jalseopeorg

(PI098S 7E€'87) 000'0 “Wiojsey Jua0a1 50}y

995 (00'0 “pua 1ogng

T (00 00001 41 aesany
s afeis Joqoy eopeoig

oo reax Jubu

10285 76¢'87) 0000 Li0JSUeA) 13081 IS0}

[

9 () 0] g
(PI0298 765197) 000 ULCSTRX) 81 SO
4 000 00001 91 aesary
Jaystqnd afe1s J0qoy :1ajseopeoiq

880000 _ﬁmaﬂ Isgng

2 (0 00001 411 aesany
Jausd afeis Joqoy eiseopeoug

[68M a1]

998 ()0') ‘e 2ogng

(pi099S 687) 000’0 “ULI0}SUex) JU8daI 150§
ZH 0000001 9101 afelany

Jaysiand aje)s 1000 1ajseopeog

995 9111 “yibua] sapng
(P10 285 880°0) 7 8 WiojSteL} JUaDa1 15O
71 71§61 8101 abesany
Buddew 103281 :1315eapR0Ig

(P10385090°0) 7478 “UwiojSUe) Jusoda 10}y

(

1S Q7L ”:.B_E Ing

74 079°97 ‘911 abelany
‘i@ asod J0q0/ Jajseopeoig

288 9] “Uifue| Jayng

(P10 995 88170) P 87 “ULO}SURI) 1a0ad 1801
1 1861 91l aflasy

fuddew 10103y :19)seapeoiq

BORAIR)

Juutdjo0] aseq

288§ ybue| Jayng

10988 000) 87¢ 87 “WL0JSUeA3 1ua01 180)§
TH 706 91kl afllasy
04azeb) 13)seape0ig

TEE'8 U Je paplossy

1INSBY SAULRL] Ml

B9 Ju01) o]

985 (010 i soyng

(PIO99S 76€ 67) 0000 ULojSe) uanar 101y
ZH 00000001 9 afesany
Joysiqnd o3e1s 10q0y Jaiseapeoig

Fonte: Gerado pelo autor
37

Figura 19: Particulas no RViz

Fonte: Screenshot feita pelo autor

andar perpendicular a algum plano.

Valor da Coordenada

Valor da Coordenada

Figura 20: Performance dos modos omni e diff

Modo diff, coordenada x

Modo diff, coordenada y

8 1 —— Pose real
| —— Pose estimada
71 J
6 1 ~
P g
—— Pose real | ,.-’"j
57 —— Pose estimada /«""f
Modo omni, coordenada X Modo omni, coordenada y
8 1 —— Pose real f/
—— Pose estimada f
7 B ‘f'—/.
6 [. Jf/
J j”ﬂ
—— Pose real
1 4 —— Pose estimada 1 /
0 100 200 300 400 0 100 200 300 400

Ponto do caminho

Ponto do caminho

Fonte: Gerado pelo autor

38

Foi percebido, pela figura 20 as diferencas entre as poses reais e estimadas dos
parametros. Os desvios padroes dos valores entre a pose real e a pose estimada para o
modo diff foram de 0,030 e 0,058 para as coordenadas X e Y respectivamente. Enquanto
que para o modo omni foram de 0,0181 e 0,0588. A superioridade do segundo modo é
clara, provavelmente se ocorrida devido a vantagem de levar em consideragao movimentos
de translagao sem rotagao, que é caracteristico deste projeto. Sendo assim o modo omni

serd mantido para os proximos testes.

O proximo parametro a ser testado é o laser_maz_beams , que representa o valor de
feixes de luz levados em consideracao pelo algoritmo na hora de calcular a probabilidade
de localizacao. O valor padrao é de 30, cuja performance pode ser vista na figura 20,
serao testados entao valores de 15 e 60, proximo do padrao. O motivo disto é que ao
testar valores mais ”absurdos” havia uma obvia diminuicao na qualidade de localizacao,
dispensando qualquer necessidade de experimentacao com graficos e desvio padrao. Isso se
deve ao fato de que leva mais tempo para processar a informagao, e o valor de localizacao

se torna atrasado ao longo do tempo.

Figura 21: Performance de diferentes valores para laser max_beam

LMB=15, coordenada x LMB=15, coordenada y
B 8 x““‘”\ 4 —— Pose real
@ put \ .
- > —— Pose estimada H,ﬁ"
i n'l T ;4('1
S /
8.] S | il
3 7~ " o
s -~ —— Pose real o
B 5 . d “ . s:-""(-
g I —— Pose estimada o

LMB=60, coordenada x LMB=60, coordenada y
8 8- //‘;':;:\7\ —— Pose real g
© = < o
c r"' | —— Pose estimada
S 7 4 s
5 y“’J ,‘;“'F
S |] o
© 6 'ﬁ P
© o ! Y ad
5 g [~ —— Pose real] P
g J/' —— Pose estimada o o

0 100 200 300 400 0 100 200 300 400
Ponto do caminho Ponto do caminho

Fonte: Gerado pelo autor

Como ¢ possivel ver pela figura 21, a opcao de diminuir os valores do parametro
para 15 é a melhor, isso tras o desvio padrao médio para 0,0185 e 0,0408 (x e y). Esse

valor serd mantido para os proximos testes.

O resample_interval representa o nimero de atualizacoes no filtro do algoritmo

39

antes de fazer o resampling, que é a reorganizacao das particulas no espaco. O valor
padrao deste é de 2, serao feitos testes com 1 e 3, nao € o tipo de parametro que é possivel
distanciar do padrao sem comprometer o experimento, caso o valor seja muito alto, a

leitura ficara atrasada.

Infelizmente nao houve melhoria, com desvios padroes de 0,0353 e 0,0384 para
resample_interval = 1, e 0,0212 e 0.0481 para resample_interval = 3, temos valores piores

do que os apresentados anteriormente. Serd dispensado o uso de grafico nesse caso.

Em seguida sera avaliado os parametros update_min_d e update_min_a, que tratam
da distancia minima percorrida (linear e angular respectivamente) pelo robo para que o
filtro seja atualizado. Seguindo a logica de que quanto mais rapida seja a atualizacao,
melhor sera o trajeto do robo, o instinto é diminuir esses valores ao méximo. Sendo assim

eles serao reduzidos dos seus valores padroes de 0,2 e 0,5236 para 0,001 em ambos.

Figura 22: Performance de distancia minima de atualizacao = 0,001

min_distancia = 0,001, coordenada x

P sl . — Pose real
© 84 P L Pose estimada
° y & \ -
® / - I~
S 7/

S / \
e 7 /
< / \
8 / -~
s 5 e
s /’"—0"/
E e

s /_,_.._-

s —

20 { — Pose real -

Pose estimada /—/

15

10 A S

Valor da Coordenada
\

0 50 100 150 200 250 300 350 400
Ponto do caminho

Fonte: Gerado pelo autor

Como indicavam a figura 22, a melhoria é bastante clara, nao apenas no grafico, mas
durante a simulagao foi possivel ver uma convergéncia de particulas logo cedo. Os valores
do desvio padrao foram de 0,0219 e 0,0279, infelizmente houve uma pequena queda de
qualidade na coordenada x, porém a grande melhoria na coordenada y compensa bastante.

Esses valores para update_min_d e update_min_a permanecerao no proximo teste.

Por enquanto, a tabela 1 representa o andamento dos experimentos, sendo " DP” abreviacao

para desvio padrao:

40

Tabela 1: Experimentacao com paramétros do AMCL

H odom_type laser_beams resample_interval min_d/a DPem X DPemY H
omni 30 2 0,2 e 0,5236 0,0181 0,0588
diff 30 2 0,2 e 0,5236 0,030 0,058
omni 15 2 0,2 e 0,5236 0,0185 0,0408
omni 60 2 0,2 e 0,5236 0,0405 0,0394
omni 15 1 0,2 e 0,5236 0,0353 0,0384
omni 15 3 0,2 e 0,5236 0,0212 0,0481
omni 15 2 0,001 e 0,001 0,0219 0,0279

Fonte: Gerado pelo autor com base nos valores obtidos

Os ultimos parametros testados foram min_particles e maz_particles, que ditam
respectivamente os nimeros minimos e maximos de particulas usadas pelo filtro. O AMCL
funciona de tal maneira que ele ird usar um nimero de particulas x que esteja dentro do
intervalo definido pelo projetista. Esse niimero é decidido de acordo com a dificuldade
atual do filtro em localizar o robo, usando como parametro o tépico de odometria e o

resultado do sensor laser.

Os valores padroes sao 100 e 5000, o limite minimo sera mantido pois ja é um valor
muito pequeno e o intervalo entre o minimo e méaximo serda controlado pela alteracao
apenas pelo limite maximo. O objetivo é encontrar o intervalo de valores como melhor
resultado e, em caso de empate, escolher o com menor limite maximo, o que diminui o
esforco de processamento. A Tabela 2 mostra o resultado da média de desvios padroes

para cada limite maximo testado.

Tabela 2: Desvios padroes para cada limite maximo de particulas

H maz_particles Desvio padrao em X Desvio padrao em Y

500 0,0174 0,0324
2500 0,0181 0,0292
3000 0,0199 0,0365
4000 0,0182 0,0371
6600 0,0170 0,0440

Fonte: Gerado pelo autor com base nos valores obtidos

E possivel ver que os valores nao divergem muito, o que indica que o AMCL
nao esta tendo muitos problemas em encontrar o robo, provavelmente porque os outros
parametros ja foram otimizados, entao a diferenca de particulas usadas tém pouco efeito.
Mesmo assim, 2500 mostra um melhor resultado em comparagao com os outros, entao

serd escolhido como valor definitivo.

Um 1ultimo experimento foi proposto para casos extremos de acidentes no armazém,

41

onde o robo pode sofrer uma translagao inesperada, provavelmente resultante de uma
batida ou empurro. Entao para simular esse acidente, durante a execucao do codigo, o
robo foi tirado de sua posicao atual para uma posicao longe. Isso foi feito pelo Gazebo, a

ferramenta de simulacao do ROS.

O visual do RViz indica que os pontos convergem longe do robo, o que a principio
indicaria que houve uma falha na localizagdo. Porém, durante a execucao do codigo, é
possivel ver que os valores, em metros, do AMCL sao muitos préximos ao do Gazebo,

com diferenca menor de lcm para a coordenada X e de quase 10 cm para a coordenada
Y.

A Figura 23 mostra a esquerda o andamento do programa e as informagoes sobre
localizagao real (Gazebo), e estimada (AMCL). A direita vemos, pelo RViz, o robo L1BR

com as particulas convergindo fora dele.

Figura 23: Resultado do experimento de simulacao de acidente

188

Querendo ir para X = 7.48163, Y = 11.8988
Gazebo.x = 7.52949, Gazebo.y = 8.19275
amcl.x = 7.50338, amcl.y = 8.26954

189

Querendo ir para X = 7.48163, Y = 11.9492
Gazebo.x = 7.5746, Gazebo.y = 8.27423
amcl.x = 7.55649, amcl.y = 8.36669

Fonte: Screenshot feita pelo autor

Levando em consideragao que o robo possui aproximadamente 50 cm de largura
e altura, ¢ incabivel a convergéncia de particulas estar acontecendo fora do robo. Sendo

assim é possivel afirmar que nao passa de um mero bug do RViz.

42

5 CONCLUSOES E TRABALHOS FUTUROS

Este trabalho tem como objetivo localizar um robo terrestre mével warehouse em
ambiente sem caracteristicas, tal qual armazéns com prateleiras, usando o laboratorio

LaSER como mapa de teste (modelado em 3D), e usando ferramentas cldssicas da area

de robética (SLAM, A*, NMPC, EKF, AMCL) para alcangar esse objetivo.

O mapa é verossimil, representando bem o ambiente com falta de caracteristicas
que é o LaSER, este é o primeiro modelo 3D do laboratorio, e ficara disponivel para uso
publico. Este trabalho também ¢é o primeiro a aplicar algoritmos ao L1BR, visto que acaba
de ser criado, sendo assim, aqui fica registrado informacgoes pertinentes para futuros usos

desde robo.

O Hector SLAM se mostra um desafio para ser utilizado, pois as documentagoes
dos nos do ROS sao bastante escassas, mas depois de muitas pesquisas e tutoriais, a

maneira correta de manipular os parametros foi encontrada.

A implementacao do dilatamento de mapa e do A* sdo bastante direto ao ponto,

uma questao de encontrar a linguagem e as ferramentas corretas.

O mesmo nao pode ser dito do NMPC, que possui versoes diferentes dependendo
da fonte, portanto é necessario um aprofundamento tedrico no algoritmo para descobrir
a melhor versao. Além disso, a auséncia dos verdadeiros valores da fisica do robo aca-
bou custando bastante tempo para descobrir o porqué do controle estar tao irregular.
Ap6s descoberto o problema, foram usados valores da fisica do Turtlebot 2 da empresa
ROBOTICS, visto que a carcaca do L1BR foi baseada na base dele, tendo assim uma

aproximacao do comportamento que o robo teria de fato.

O uso dos nés EKF e AMCL também sao marcados pela falta de documentagao do
ROS, o primeiro exige uma manipulacao de frames que demanda muita tentativa e erro
até funcionar. Para substituir o Odom por Odom_combined é necessério criar um frame
fantasma, que nao existe ou interfere no programa, chamado base_footprint, pois o Odom
nao aceita estar presente na arvore sem estar conectado a um frame. Isso pode ser visto
na figura 18. J4 com o AMCL ha um problema de conflito com a arvore tf, sendo que
como o resultado dele nao retorna para o ROS, mas sim é encaminhado para o NMPC,
se faz necessario uma pesquisa entre os parametros para descobrir que é possivel cortar a
conexao do mesmo com a arvore, atribuindo o valor false ao parametro tf_broadcast. Nao

que isso atrapalhe o projeto.

O resultado final da localizacao é bastante satisfatério com desvio padrao médio
pequeno, impedindo que o robo se perca. O mesmo se move seguindo a trajetoria correta,
salvo alguns movimentos diagonais onde, as vezes, ele performa movimentos circulares

abertos, chegando perto de bater nas colunas. O cddigo completo foi armazenado no site

43

Github[23].

Infelizmente, por uma questao de falta de tempo, nao foi possivel implementar
uma das estratégias de localizacao planejada inicialmente, a criacao de marcos artificiais,
o que poderia ser um diferencial. Além disso houve atrasos na construcao do robo fisico,
entao este trabalho é encerrado apenas com a parte referente a simulacao. Portanto, para

possiveis projetos futuros, seria ideal concretizar essas duas promessas.

44

1]

REFERENCIAS

Cerqueira, Wagner. A robotizacao na producao industrial: Uol. Disponivel em:
https://mundoeducacao.uol.com.br/geografia/a-robotizacao-na-producao-

industrial.htm. Acesso em: 8 Dez, 2021.

J.F. Avila-Tomas, M.A. Mayer-Pujadas, V.J. Quesada-Varela, La inteligencia artifi-
cial y sus aplicaciones en medicina I: introduccién antecedentes a la IA y robdtica,
Atencion Primaria, Volume 52, Issue 10, 2020, Pages 778-784, ISSN 0212-6567,
https://doi.org/10.1016/j.aprim.2020.04.013.

Tondo, Stephanie. Robdés de limpeza viram sonho de consumo: veja as
opcoes disponiveis no mercado: O Globo, 2021. Disponivel em: https:
//oglobo.globo.com/economia/como-economizar/robos-de-limpeza-viram-
sonho-de-consumo-veja-as-opcoes-disponiveis-no—-mercado-24915406.
Acesso em: 8 Dez, 2021.

Kohlbrecher, Stefan. How to set up hector_slam for your robot: ROS.org,
2012. Disponivel em: http://wiki.ros.org/hector_slam/Tutorials/
SettingUpForYourRobot. Acesso em: 8 Dez, 2021.

R F Junior, Jose. Filtro de Kalman: Medium, 2019. Disponivel em: https:
//medium.com/Q@web2ajax/filtro-de-kalman-6e84£82993fc. Acesso em: 8 Dez,
2021.

G, Filipe. Robo aspirador que também passa pano funciona por voz e limpa
rapido. Disponivel em: https://www.techtudo.com.br/noticias/2021/01/robo-
aspirador-que-tambem-passa-pano-funciona-por-voz-e-limpa-rapido-
ces2021.ghtml. Acesso em: 10 Jun, 2022.

Face Middle East FZC. Testing Floors for G2P Automation. Disponivel em: https:
//facemiddleeast.ae/testing-floors-g2p-automation/. Acesso em: 10 Jun,
2022.

BEZERRA, Clauber Gomes. Localizagao de um robo mével usando odometria e
marcos naturais. 2004. 122 f. Dissertacao (Mestrado em Automagao e Sistemas; En-
genharia de Computacao; Telecomunicagoes) - Universidade Federal do Rio Grande
do Norte, Natal, 2004.

SLAMTEC. RPLIDAR A3 360 degree laser range scanner for indoor and outdoor
applictaion. Disponivel em: https://www.slamtec.com/en/Lidar/A3. Acesso em:
10 Jun, 2022.

45

[10]

[11]

[15]

[16]

[17]

[18]

[19]

[20]

TurtleBot3 ROS1 Noetic Quick Start Guide for Noetic, 2020. 1 video (4 min).
Publicado pelo canal ROBOTIS OpenSourceTeam. Disponivel em: https://
www.youtube. com/watch?v=;i2kQXgCjeM&ab_channel=ROBOTISOpenSourceTean.
Acesso em: 10 Jun, 2022.

Taketomi, T., Uchiyama, H. Ikeda, S. Visual SLAM algorithms: a survey from 2010
to 2016. IPSJ T Comput Vis Appl 9, 16 (2017). https://doi.org/10.1186/s41074-017-
0027-2

Pengtao Qu et al 2021 J. Phys.: Conf. Ser. 2024 012056

Raza, Sayyed Jaffar Ali, et al. "Real-world modeling of a pathfinding robot using
robot operating system (ROS).” arXiv preprint arXiv:1802.10138 (2018).

Karg, Benjamin, Teodoro Alamo, and Sergio Lucia. ”Probabilistic performance
validation of deep learning-based robust NMPC controllers.”arXiv preprint ar-
Xiv:1910.13906 (2019).

Kai Lingemann, Andreas Niichter, Joachim Hertzberg, Hartmut Surmann,
High-speed laser localization for mobile robots, Robotics and Autonomous
Systems, Volume 51, Issue 4, 2005, Pages 275-296, ISSN 0921-8890,
https://doi.org/10.1016/j.robot.2005.02.004.

Oh, J.; Han, C.; Lee, S. Condition-Invariant Robot Localization Using
Global Sequence Alignment of Deep Features. Sensors 2021, 21, 4103.
https://doi.org/10.3390/521124103

Kanning, T. RPLIDAR, 2019. Disponivel em: http://wiki.ros.org/rplidar.
Acesso em: 14 Dez, 2021.

Lim D. Turtlebot3, 2018. Disponivel em: http://wiki.ros.org/turtlebot3.
Acesso em: 14 Dez, 2021.

Aula 5 - Controle de Trajetéria de Robos - Parte2, 2020. 1 video
(53 min). Publicado pelo canal Laboratory of Systems FEngineering
and Robotics. Disponivel em: www . youtube. com/watch?v=tm_mEKuNb6w&
1ist=PLI1MB8TqO1INJATRUKjs42LGaylORb1J8&index=11&ab_channel=

LaboratoryofSystemsEngineeringandRobotics. Acesso em: 10 Jun, 2022.

Aula 9 - Localizagao - Parte 2, 2020. 1 video (29 min). Publicado pelo canal Labora-
tory of Systems Engineering and Robotics. Disponivel em: https://www.youtube.
com/watch?v=y_6aTODfbGo&1ist=PLI1MB8Tq01INJATRUK js42LGayl0Rb1lJ8%&
index=15&ab_channel=LaboratoryofSystemsEngineeringandRobotics. Acesso
em: 10 Jun, 2022.

46

[21] Sivalingam, D. robot_pose_ekf, 2022. Disponivel em: http://wiki.ros.org/robot_
pose_ekf. Acesso em: 05 Jun, 2022.

[22] AV. AMCL, 2020. Disponivel em: http://wiki.ros.org/amcl. Acesso em: 07 Jun,
2022.

[23] S Brito, Claudio. SRC. Joao Pessoa: Github, 2022. Disponivel em: https://github.

com/claudiosouzabrito/src. Acesso em: 11 Jun, 2022.

A7

