
UNIVERSIDADE FEDERAL DA PARAÍBA

CENTRO DE INFORMÁTICA

GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

COMPONENTES DE ARQUITETURA ANDROID E MICRO FRONTENDS:

DESCRIÇÃO, IMPLEMENTAÇÃO E COMPONENTIZAÇÃO DE APLICATIVOS

EDNALDO MARTINS DA SILVA

João Pessoa

2020

EDNALDO MARTINS DA SILVA

COMPONENTES DE ARQUITETURA ANDROID E

MICRO FRONTENDS: DESCRIÇÃO, IMPLEMENTAÇÃO

E COMPONENTIZAÇÃO DE APLICATIVOS

Monografia apresentada ao curso de

graduação em Ciência da Computação, do

Centro de Informática da Universidade

Federal da Paraíba, como requisito para a

obtenção do grau de Bacharel em Ciência da

Computação.

Orientador: Raoni Kulesza

João Pessoa

2020

João Pessoa, 27 de Março de 2020

Centro de Informática, Universidade Federal da Paraíba

Rua dos Escoteiros, Mangabeira VII, João Pessoa, Paraíba, Brasil CEP: 58058-600

Fone: +55 (83) 3216 7093 / Fax: +55 (83) 3216 7117

DEDICATÓRIA

Com gratidão, eu dedico este trabalho a Deus. Sem Ele eu não

sou nada.

Dedico este trabalho aos meus pais, José Soares (in memorian)

e Genalda Martins, e a meu irmão, Gean Alves, que com grande

amor, me incentivaram e sempre acreditaram em mim durante a

jornada.

À minha noiva, amiga e psicóloga, Janayna Soares, por ter sido

meu suporte durante esse longo caminho.

AGRADECIMENTOS

Quero agradecer primeiramente a Deus que me fortaleceu, e me deu saúde e

capacidade para realizar esse trabalho.

Agradeço aos meus familiares, que de alguma forma me ajudaram e estiveram ao meu

lado, seja na minha formação acadêmica, ou formação como pessoa, portanto, foram

exemplos de pessoa para mim. Agradeço às minhas avós, Antônia Maria, e Maria das Neves;

e aos meus tios Conceição Alves, George Martins, Maria da Guia, Samuel José, Sebastião

Alves, Sérgio Martins e Silas Abraão.

Agradeço ao meu orientador e professor Raoni Kulesza por ter participado desse ciclo

e me ensinado, desde conhecimentos de introdução a programação no primeiro período, a

realização do trabalho de conclusão no último período.

Agradeço a UFPB e o CI pela estrutura fornecida e pelos professores e demais

funcionários ali presentes, que exerceram o seu papel, possibilitando a formação de vários

alunos.

Por fim, agradeço também aos alunos que durante o curso estiveram presentes,

compartilhando seus conhecimentos e me ajudando ao longo dos anos, contribuindo para este

trabalho. Agradeço a Alef Berg, Alisson Galiza, Alexandre César, Bianca Amorin,

Cleanderson Lins, Danillo Medeiros, e Fábio Melo.

RESUMO

A plataforma Android foi lançada em outubro de 2008 e tornou-se posteriormente o sistema

mais difundido entre os dispositivos móveis. Todavia, os desenvolvedores de aplicativos para

Android, ao longo de anos, não encontraram um padrão de arquitetura ideal para a

plataforma, e que seja fortemente recomendado para o desenvolvimentos das aplicações.

Padrões de arquitetura como Model-View-Presenter (MVP), ou Model-View-ViewModel

(MVVM), sempre foram questionáveis, simplesmente por dificultarem a manutenção, ou

geração de testes unitários para o aplicativo. Nesta pesquisa serão apresentados alguns

componentes de arquitetura Android que foram anunciados na Google I/O 2017, os quais são

capazes de tornar a arquitetura dos aplicativos robusta. Para demonstrar a capacidade desses

componentes, um aplicativo foi desenvolvido e, além disso, técnicas de Micro Frontends

foram usadas, com o objetivo de construir uma aplicação Android, com componentes,

testável, e melhor de manter.

Palavras-chaves: Android. Componentes. Arquitetura. Aplicativo. Micro Frontends.

ABSTRACT

The Android platform was released in October 2008, and later became the most widespread

system among mobile devices. However, the Android application developers, over the years,

haven't found an ideal architectural pattern for the platform, and they are strongly

recommended for application development. Android architecture patterns like

Model-View-Presenter (MVP), or Model-View-ViewModel (MVVM), have always been

questionable, simply because they make it difficult to maintain or generate unit tests for the

application. This research will present some Android architecture components that were

announced at Google I / O 2017, which are capable of making application architecture

stronger. To demonstrate the capability of these components an application was developed,

and then, Micro Frontends techniques were used, to build android application components,

testable, and maintainable.

Key-words: Android. Components. architecture. App. Micro Frontends.

LISTA DE ILUSTRAÇÕES

Figura 1: Estados do ciclo de vida da atividade e retornos de chamada 19

Figura 2: Diagrama dos módulos dos componentes de arquitetura 24

Figura 3: Vida útil da ViewModel durante execução de uma Activity 26

Figura 4: Implementação independente usando Micro frontends 32

Figura 5: Arquitetura do aplicativo Libflix 39

Figura 6: Representação da camada Presentation 40

Figura 7: Representação da camada Domain 41

Figura 8: Representação da camada Data 42

Figura 9: Splash screen 44

Figura 10: Código - Lista do tipo LiveData recebe os dados e notifica controlador 46

Figura 11: Requisição e carregamento das informações dos filmes com sucesso 46

Figura 12: Requisição e retorno de erro após a tentativa de comunicação com o servidor 47

Figura 13: Erro e sucesso após duas tentativas de comunicação com o servidor 48

Figura 14: Código - Atualizando página da lista de filmes 49

Figura 15: Código - Verificando se o filme está na base de dados local 49

Figura 16: Código - Objeto do tipo LiveData recebe os dados e notifica observador 50

Figura 17: Selecionando filme e requisitando dados na base de dados remota 50

Figura 18: Selecionando filme e abrindo o filme a partir da base de dados local 51

Figura 19: Código - Verificar se é preciso deletar ou salvar filme na base de dados local 53

Figura 20: Marcando um filme como favorito 53

Figura 21: Marcando filme como favorito, e fechando aplicativo posteriormente 54

Figura 22: Buscando por filmes na base de dados remota 56

Figura 23: Código - Realizando busca por filmes na API 57

Figura 24: Realizando uma busca na base de dados local 57

Figura 25: Código - Realizando busca e aplicando nova lista na lista de apresentação 58

Figura 26: Componentização da Activity 59

Figura 27: fragment_film_list.xml usado pelos Fragments que exibem a lista de filmes 60

Figura 28: activty_main.xml Activity principal contém um toolbar.xml em seu front-end 60

Figura 29: Código - Ferramenta de testes e componentes testados 61

Figura 30: Código - Funções chamadas antes de iniciar e ao finalizar os testes. 61

Figura 31: Código - Teste do insert e get 62

Figura 32: Código - Teste do clear 62

Figura 33: Código - Teste do update 62

LISTA DE ABREVIATURAS E SIGLAS

API Application Programming Interface

OS Operating System

DAO Data Access Object

JSON JavaScript Object Notation

MVC Model-View-Controller

MVP Model-View-Presenter

MVVM Model-View-ViewModel

RF Requisitos Funcionais

RNF Requisitos Não Funcionais

TMDB The Movie Database

URI Uniform Resource Identifiers

VM Virtual Machine

XML Extensible Markup Language

SUMÁRIO

1 INTRODUÇÃO 14

1.1 DEFINIÇÃO DO PROBLEMA 14

1.2 OBJETIVOS 15

1.2.1 Objetivo Geral 15

1.2.2 Objetivo Específico 15

1.3 MOTIVAÇÃO 15

1.4 GRUPO ALVO 16

1.5 ESTRUTURA DO TRABALHO 16

2 CONCEITOS GERAIS 17

2.1 ARQUITETURA ANDROID 17

2.2 COMPONENTES 18

2.2.1 Activity 18

2.2.1.1 Ciclo de vida 19

2.2.1.2 Comunicação 21

2.2.2 Services 21

2.2.3 Broadcast Receivers 22

2.2.4 Content Providers 22

2.3 COMPONENTES DE ARQUITETURA ANDROID 22

2.3.1 Visão Geral 23

2.3.1.1 ViewModel 25

2.3.1.2 LiveData 26

2.3.1.3 Room 27

2.3.2 Discussão 28

2.3.2.1 Vantagens 28

2.3.2.2 Desvantagens 29

2.3.2.3 Melhorias 30

2.4 MICRO FRONTENDS 30

2.4.1 Atualização do front-end 32

2.4.2 Independência entre os front-ends 32

2.4.3 Implantação do front-end 32

2.4.4 Autonomia das equipes 32

3 O APLICATIVO LIBFLIX 33

3.1 VISÃO GERAL 33

3.2 LISTA DE REQUISITOS 33

3.2.1 Requisitos Funcionais 33

3.2.1.1 [RF01] Solicitar Lista de Destaques 33

3.2.1.2 [RF02] Apresentação da Lista de Filmes da Base de Dados Remota 34

3.2.1.3 [RF03] Apresentação da Lista de Filmes da Base de Dados Local 34

3.2.1.4 [RF04] Apresentação do Cartões do Filme 34

3.2.1.5 [RF05] Mudança de Página 34

3.2.1.6 [RF06] Pesquisa na Base de Dados Remota 34

3.2.1.7 [RF07] Pesquisa no Banco de Dados Local 34

3.2.1.8 [RF08] Chamar Tela de Detalhes do Filme 35

3.2.1.9 [RF09] Adicionar Filmes aos Favoritos 35

3.2.1.10 [RF10] Remover Filmes dos Favoritos 35

3.2.1.11 [RF11] Abrir Homepage do Filme 35

3.2.2 Requisitos Não Funcionais 35

3.2.2.1 [RNF01] Retornar Lista Vazia 35

3.2.2.2 [RNF02] Apresentação dos Botões de Mudança de Página 36

3.2.2.3 [RNF03] Buscar Filme nas Bases de Dados 36

3.2.2.4 [RNF04] Exibir Detalhes do Filme 36

3.2.2.5 [RNF05] Conexão Com Internet 36

3.2.2.6 [RNF06] Tentativas de Requisição 36

3.2.2.7 [RNF07] Comunicação com a API do TMDB 37

3.2.2.8 [RNF08] Status do Carregamento da Lista 37

3.2.2.9 [RNF09] Compatibilidade do Aplicativo 37

3.3 ARQUITETURA DO APLICATIVO 37

3.3.1 As camadas da arquitetura 37

3.3.2 Presentation 39

3.3.3 Domain 40

3.3.4 Data 41

4 APLICABILIDADE DOS COMPONENTES DE ARQUITETURA 43

4.1 OS COMPONENTES GRÁFICOS E A INTERFACE DE USUÁRIO 43

4.1.1 Splash Screen 43

4.1.2 Ação dos Componentes Arquiteturais durante a requisição da lista de filmes 44

4.1.2.1 Carregando a lista de destaques 45

4.1.2.2 Problemas com o carregamento dos filmes 46

4.1.2.3 Nova tentativa de requisição ou atualização dos dados 47

4.1.3 Ação dos Componentes Arquiteturais ao selecionar um filme 48

4.1.3.1 Abrindo o Filme a partir da base de dados remota 49

4.1.3.2 Abrindo o Filme a partir da base de dados local 50

4.1.4 Ação dos Componentes Arquiteturais ao salvar um filme localmente 51

4.1.4.1 Salvando normalmente 52

4.1.4.2 Salvando em situações inesperadas 53

4.1.5 Ação dos Componentes Arquiteturais ao buscar filmes 54

4.1.5.1 Buscar filme na base de dados remota 55

4.1.5.2 Buscar filme na base de dados local 56

4.2 APLICANDO MICRO FRONTENDS 57

4.3 TESTE DA APLICAÇÃO 59

5 CONCLUSÃO E TRABALHOS FUTUROS 63

REFERÊNCIAS 64

1 INTRODUÇÃO

Desde o momento em que os dispositivos móveis começaram a ser lançados, o acesso

a esses aparelhos cresceu de forma rápida, principalmente quando se trata de smartphones

com o sistema operacional Android. O sistema operacional Android, lançado em outubro de

2008 [1], tem evoluído a cada ano e vem sendo moldado para melhor atender aos usuários e

desenvolvedores. Novos componentes para construção dos aplicativos estão sendo testados e

oficializados, capazes de facilitar o desenvolvimento de aplicativos e torná-los robustos [2].

Os novos componentes apresentados são recomendados idealmente em futuros

aplicativos desenvolvidos, permitindo que uma arquitetura planejada seja criada levando em

conta a capacidade desses componentes e a forma como se comportam [2].

1.1 DEFINIÇÃO DO PROBLEMA

Fato é que a maior parte das arquiteturas usadas para desenvolver aplicações móveis

para dispositivos Android não vêm tendo os melhores resultados e experiência, e acabam

apresentando dificuldades para testar e modular a aplicação. A arquitetura MVC

(Model-View-Controller) e suas derivações, não foram criadas pensando em uma solução para

construir aplicações Android. Esses padrões arquiteturais acabaram por tornar-se os modelos

mais utilizados para desenvolver aplicativos Android, e isso tem sido um problema na hora de

desenvolver, corrigir erros, e manter esses aplicativos atualizados [5].

Para evitar e reduzir a quantidade de problemas advindos da arquitetura do aplicativo,

é sugerido seguir um novo modelo de arquitetura sugerido pelo Android Developers, que

recomenda fortemente usar os novos componentes de arquitetura lançados, portanto, irá

facilitar a criação desses aplicativos, capazes de torná-los reativo e responsivos na sua

apresentação, funcional, e seguro em relação ao armazenamento dos dados [2].

1.2 OBJETIVOS

1.2.1 Objetivo Geral

O aspecto geral deste trabalho é apresentar um modelo de arquitetura idealizado para

criação de aplicações Android, baseado em componentes, a qual possui em sua estrutura os

novos componentes de arquitetura Android.

1.2.2 Objetivo Específico

Em relação aos aspectos mais específicos deste trabalho, é objetivado:

● Apresentar e descrever os novos componentes de arquitetura Android

recomendados pelo Android Developers.

○ ViewModel.

○ LifeCycle

○ LiveData.

○ Room.

● Aplicar os conceitos descritos na elaboração de um aplicativo baseado na nova

arquitetura recomendada.

○ Identificar e especificar os requisitos funcionais e não funcionais.

○ Apresentar o projeto de arquitetura de alto nível.

● Criar um aplicativo com base no modelo de arquitetura elaborado.

○ Apresentar resultados da interação entre os componentes arquiteturais

e interface do usuário.

○ Utilizar técnicas de Micro Frontends para aprimorar a

componentização da arquitetura elaborada.

1.3 MOTIVAÇÃO

Um fator importante para esta pesquisa, é usar um novo modelo de arquitetura para

aplicativos Android, que possa prover soluções para problemas existentes em outras

arquiteturas que não foram bem adaptadas, e que ainda são utilizadas atualmente, devido a

inexistência de modelos conhecidos e difundidos na comunidade de desenvolvedores

Android.

1.4 GRUPO ALVO

Essa pesquisa é destinada aos desenvolvedores de aplicações Android, principalmente

aqueles que estão ingressando nesse mundo, ou buscando novas tecnologias. A pesquisa

descreve os benefícios em usar a nova arquitetura recomendada e seus componentes

arquiteturais, como também apresenta os resultados obtidos.

1.5 ESTRUTURA DO TRABALHO

Este trabalho está dividido em 4 partes. A primeira parte é a sessão atual, o qual é

especificado o escopo do trabalho de maneira introdutória, para ter conhecimento do que há

de ser apresentado neste trabalho. Na seção seguinte, os principais conceitos sobre a

arquitetura Android, e componentes arquiteturais serão descritos, além de uma breve

explanação sobre Micro Frontends. Na seção 3, um aplicativo será elaborado e especificado,

baseado na arquitetura de componentes Android. A seção 4 apresenta os conceitos da seção 2

de forma prática na aplicação descrita na seção 3. Nela o aplicativo construído é

demonstrado usando os componentes arquiteturais.

2 CONCEITOS GERAIS

Esta seção descreve as características de uma aplicação Android, como essa aplicação

é estruturada dentro do próprio sistema Android, e descreve como as partes da arquitetura

compõem o sistema e as aplicações.

2.1 ARQUITETURA ANDROID

A plataforma Android é um sistema Linux multiusuário, onde os diversos

componentes e serviços da plataforma são desenvolvidos em C e C++, e um conjunto de

outros recursos estão disponibilizados por APIs programadas utilizando a linguagem de

programação Java. A plataforma está dividida em quatro camadas principais: Kernel do

Linux, Bibliotecas nativas, Estrutura da Java API, e Aplicativos do sistema [3].

Como foi dito, a plataforma Android é um sistema Linux multiusuário. Cada

aplicativo é considerado um usuário diferente, onde cada um desses aplicativos são

executados dentro de uma máquina virtual (ou simplesmente VM) exclusiva, de modo que

cada um destes receba um código individual de usuário do Linux. O Android inicia o

processo quando se faz necessário executar algum componente do aplicativo, encerrando-o de

forma automática quando o sistema precisa abrir espaço na memória para outros aplicativos,

ou quando é dispensado pelo usuário do dispositivo [4].

De forma individual o aplicativo é ativado dentro da sandbox de segurança. A

sandbox é usada para executar aplicativos não testados vindos de fontes desconhecidas ou não

confiáveis, ou seja, de fora da loja de aplicativo android da google (Play Store). Durante essa

execução, o acesso a recursos do dispositivos são limitados, logo a segurança torna-se um

pouco mais reforçada contra ameaças que possam danificar o dispositivo [10].

Entretanto é possível que dois aplicativos compartilhem o mesmo código de usuário

Linux, sendo assim, um pode ter permissão para acessar arquivos de um outro, podendo

compartilhar também a mesma VM. A plataforma Android implementa o princípio de

privilégio mínimo. Neste caso, o sistema operacional (OS) Android dá permissão aos

aplicativos, apenas para acessar os componentes necessários para o funcionamento correto da

aplicação. O aplicativo não pode acessar partes do sistema o qual não lhe é permitido [4].

2.2 COMPONENTES

De modo geral as aplicações Android têm uma estrutura complexa e baseada em

componentes. Levando em conta que as aplicações desenvolvidas para computadores

geralmente são executados como um único processo monolítico, podemos enxergar de

maneira clara (principalmente no uso prático), que aplicações para dispositivos Android

possuem diversos componentes. Dentre estes temos, activities, fragments, services, content

providers, e broadcast receivers [2].

A alternância de aplicativos é comum no sistema Android [2], sendo assim, é visível a

componentização dos aplicativos no uso prático do sistema. Um exemplo simples de entender

seria, um aplicativo de rede social genérico qualquer, que dispõe a opção de realizar uma

postagem com foto em sua rede social, e essa função do aplicativo aciona o aplicativo de

câmera padrão do sistema, e após retornar do aplicativo de câmera o usuário tem disponível a

foto tirada, podendo postá-la em sua rede social (levando em conta que o usuário tirou uma

foto).

Os componentes são como os blocos de construção para o aplicativo Android, onde

cada componente é um mecanismo de interação entre o aplicativo e o usuário, ou o sistema

[4]. Como dito antes, há quatro tipos de componentes: Activity (e Fragment), Services,

Content Providers, e Broadcast receivers; e cada um deles têm uma finalidade diferente.

2.2.1 Activity

Uma Activity é um mecanismo de entrada criado para interagir com o usuário [4]. De

forma simples e direta, a Activity é uma tela única com interface de usuário para apresentação

de informações e (ou) entrada de dados.

As Activities são armazenadas em uma pilha de Activities, e geralmente a Activity em

execução é a que está no topo desta pilha, pois pode ocorrer de uma ou mais Activities

estarem em execução, e visíveis na tela. Quando uma Activity é iniciada, ela é alocada no topo

da pilha de Activities, e a Activity que antes estava no topo da pilha, passará a ficar abaixo

desta nova Activity. Ainda é possível que mais de uma Activity esteja visível na tela, mas

apenas a que está em execução permanece no topo [11].

2.2.1.1 Ciclo de vida

Para compreender melhor essa pilha de Activities, deve-se compreender que uma

Activity possui estados, e como esses estados definem a forma como a aplicação está se

comportando no sistema. A imagem abaixo mostra o ciclo e estado das Activities. Os

retângulos com as laterais curvadas representam os estados principais de uma Activity, e as

setas com nomes entre os estados, representam os métodos de chamados para a transição de

estados:

Figura 1: Estados do ciclo de vida da atividade e retornos de chamada1

Ao inicializar uma Activity, o método onCreate é chamado para que ela possa ser

criada, e entrar no estado criado, logo, nesse estado a Activity está criada. Nesse estado a

Activity ainda não está visível e nem em foco, portanto não pode interagir com o usuário. Para

a Activity se tornar visível o método onStart é executado, e em seguida o método onResume

coloca-a em foco, permitindo que o usuário interaja com ela. Após iniciada, ela é colocada no

topo da pilha. Após colocada no topo da pilha, a Activity entra em execução e permanece em

foco até que uma nova forma de interação seja chamada. Também é possível que uma Activity

transparente ou menor que o tamanho real da tela do dispositivo esteja em execução, mesmo

1 Disponível em:
https://video.udacity-data.com/topher/2018/November/5be286d0_l4-1803sc-a-share-dialog-and
-onpause-onresume-border/l4-1803sc-a-share-dialog-and-onpause-onresume-border.png. Acesso em janeiro de
2020.

https://video.udacity-data.com/topher/2018/November/5be286d0_l4-1803sc-a-share-dialog-and-onpause-onresume-border/l4-1803sc-a-share-dialog-and-onpause-onresume-border.png
https://video.udacity-data.com/topher/2018/November/5be286d0_l4-1803sc-a-share-dialog-and-onpause-onresume-border/l4-1803sc-a-share-dialog-and-onpause-onresume-border.png

que outras Activities estejam também visíveis na tela. Uma Activity é considerada visível caso

ela esteja visível para o usuário na tela do dispositivo, ou esteja sobreposta por outra Activity

ou forma de interação, e não esteja no topo da pilha. Nesse modo, a Activity está criada, mas

pode ser parada, tornando-se um processo alvo a ser destruído a qualquer instante pelo

sistema, devido a falta de memória. Se a Activity for oculta ou parada pelo método onStop,

ela também pode ser destruída por ter encerrado as suas tarefas [11].

Um Fragment possui o comportamento similar a uma Activity para o usuário, mas de

forma modularizada, pois um Fragment pode dividir a tela com outros Fragments, como

também o mesmo espaço da tela de forma alternada durante uma execução. Além disso um

Fragment fica contido em uma Activity e tem seu ciclo de vida dependente dessa Activity,

todavia o contrário não é verdade. Vale ressaltar que o ciclo de vida de um Fragment, não

depende de outros Fragments, mesmo que estes pertençam a mesma Activity e dividam o

mesmo espaço nela [12].

O sistema Android faz o gerenciamento do ciclo de vida dos controladores de

interface de usuário (Activity ou Fragment), e portanto pode decidir quando destruí-los ou

recriá-los. Ao destruir ou recriar, todos os dados referentes a interface de usuário serão

perdidos [7]. É possível usar o método onSaveInstanceState() para salvar uma pequena

quantidade de dados, mas esse método não deve ser utilizado para guardar uma grande

quantidade de informações. Outros pontos importantes sobre os controladores que devem ser

citados são [7]:

● frequentemente precisam realizar solicitações assíncronas.

● gerenciam muitas solicitações e garantem que essas solicitações sejam limpas

pelo sistema após a destruição para evitar possíveis vazamentos de memória.

● precisam que o gerenciamento receba bastante manutenção.

● desperdiçam recursos quando é recriado, pois pode ser necessário fazer novas

solicitações já realizadas anteriormente.

● não devem conter lógicas de negócios.

● não devem ser responsáveis por carregar ou salvar dados, tanto localmente,

quanto remotamente.

A separação de conceitos é o mais importante princípio a seguir aqui. Um erro

comum cometido é escrever todo o código ou parte do código, que deveria estar na lógica de

negócios, dentro da Activity. Classes baseadas em interface de usuário devem conter apenas

interações entre o usuário e o aplicativo, como entrada e saída de dados. Fazendo isso têm-se

menos problemas com a aplicação e seu ciclo de vida [2], pois o OS Android pode remover

uma Activity ou Fragment da memória principal sempre que necessário, devido a novas

interações ou por falta de memória.

2.2.1.2 Comunicação

A comunicação entre componentes e aplicações Android acontecem por intermédio

do Intent. O Intent é um objeto de mensagem, ou simplesmente mensagens que possibilitam a

comunicação entre componentes do aplicativo, onde um componente do aplicativo pode

solicitar a funcionalidade de outro componente do Android, ou do próprio aplicativo. A

comunicação pode ser usada para iniciar uma atividade (Activity), um serviço (Service), ou

fornecer uma transmissão (Broadcast) [16].

Existem dois tipos de Intent, a explícita, e a implícita. A Intent explícita não indica de

forma clara qual componente do sistema deve ser chamado, e geralmente é utilizado para

iniciar um componente do próprio aplicativo em execução. De outro modo, a Intent implícita

não deixa especificado para o sistema qual componente deve ser solicitado, permitindo que

qualquer componente de outra aplicação receba a comunicação [16].2

Geralmente o Intent possui dados para a ação. Esses dados podem ser direcionados

para diversas ações distintas, e podem conter um número de telefone que será usado para

realizar uma chamada telefônica, ou até mesmo uma mensagem que será enviada para um

e-mail. Para realizar essas ações faz necessário o uso de Identificadores de Recursos

Uniformes (URI), que referencia os dados a serem aproveitados e o seu tipo. Declarar o tipo

desses dados é fundamental para realizar essa comunicação, pois um número de telefone não

deve ser enviado para uma Activity que é responsável apenas por abrir imagens [17].

2.2.2 Services

Services é um componente para lidar com tarefas que precisam ser executadas de

forma silenciosa. Um Service é muito utilizado para realizar processos remotos ou operações

de longa duração, como uma transferência de arquivo, de modo que esta execução não se

comporta de forma tão visível para o usuário do dispositivo [4]. Um Service faz parte do todo

2 Declarar intent filter no AndroidManifest.xml do aplicativo.

de um aplicativo, portanto não é um processo separado de uma aplicação, e sua execução é

realizada no mesmo processo do aplicativo ao qual pertence [13].

Os Services estão divididos em dois tipos [4], os que realizam tarefas iniciadas pelo

usuário de forma indireta, e os que operam em segundo plano de forma invisível, sem que o

usuário saiba. Um exemplo para a primeira situação seria, um aplicativo de gerenciamento de

arquivo, que o usuário pode decidir transferir arquivos de uma pasta para outra, e optar por

deixar que esta tarefa seja executada de forma oculta, mas permaneça em primeiro plano no

sistema apenas de forma visível como ponto de notificação, enquanto ele navega por outras

Activities. Para a segunda situação, um aplicativo para backup de fotos ou arquivos, que

periodicamente realiza suas tarefas quando necessário, em segundo plano e sem que o usuário

perceba.

2.2.3 Broadcast Receivers

O Broadcast Receiver é um componente do sistema, e que transmite eventos ao

aplicativo que não estejam em execução no momento. A função desse componente é fazer

com que o aplicativo não precise permanecer em execução até o momento em que ele seja

necessário. Um exemplo seria uma notificação avisando que a bateria do dispositivo está com

pouca carga [4].

2.2.4 Content Providers

Os Content Providers ou provedores de conteúdo, encapsulam os dados e definem

mecanismos para acessar sistemas de arquivos, permitindo que aplicativos possam armazenar

os dados e compartilhá-los com outras aplicações [14]. A partir desse compartilhamento é

possível consultar ou modificar os dados, caso o provedor permita. O próprio OS Android

oferece um content provider para gerenciar os dados dos contatos do usuário. Deste modo

qualquer aplicativo com permissão para acessar os contatos pode consultar esses dados [4].

2.3 COMPONENTES DE ARQUITETURA ANDROID

Nesta seção, veremos como é recomendado a criação de aplicativos Android, e sua

estrutura usando a Android Architecture Components (componentes de arquitetura Android).

Essa arquitetura serve para diferentes tipos de aplicações. Vale ressaltar que essa arquitetura é

recomendada, mas não torna necessariamente as outras arquiteturas utilizadas para criar

aplicativos android obsoletas ou defasadas, nem tão pouco ruins.

2.3.1 Visão Geral

A princípio os componentes de arquitetura Android utilizam-se de uma variedade de

bibliotecas, que juntas tornam o aplicativo robusto, testável e de fácil manutenção [15]. Para

melhor atender esses requisitos, é recomendado o uso de pelo menos 4 bibliotecas que vão

dar estrutura para o funcionamento do aplicativo, que são: LifeCycle, LiveData, ViewModel e

Room.

Antes de tudo é preciso saber o que cada uma dessas bibliotecas podem trazer como

benefício, e como elas devem ser estruturadas para a criação do aplicativo. As principais

características desses componentes são [2]:

● LifeCycle: Gerencia o ciclo de vida do aplicativo, auxiliando os componentes

Activity e Fragment a manterem as suas configurações salvas, sendo assim,

evitando perda de dados, e tornando o carregamento dessas informações mais

fácil [15].

● LiveData: Deve ser usado para criar objetos que podem notificar seus

observadores quando eles são alterados, ou quando há alterações feitas no

banco de dados [15]. Esse componente trabalha em conjunto com o LifeCycle,

reconhecendo o ciclo de vida da aplicação [8].

● ViewModel: É responsável por armazenar os dados presentes na interface de

usuário, que não são descartados quando um aplicativo é rotacionado, ou para

guardar dados que não estejam relacionados às configurações da Activity e

Fragment [15].

● Room: Guarda os dados das aplicações em execução em cache no

armazenamento do dispositivo [9]. Essa ferramenta faz um mapeamento de

objetos SQLite e recomenda-se ser utilizado para retornar um LiveData [15].

Como já foi dito, esses componentes são importantes para o correto funcionamento do

aplicativo, e durante a execução da aplicação eles interagem entre eles apenas com módulos

de nível próximo.

A figura 2 ilustra o funcionamento dos componentes e divisão dos módulos na

Android Architecture Components, e como cada um desses módulos trocam informações

quando a aplicação está em execução. Após construído, cada componente depende apenas do

módulo de que está logo abaixo de si [2].

Figura 2: Diagrama dos módulos dos componentes de arquitetura3

Seguindo essa arquitetura, as Activities e Fragments que fazem parte de um único

módulo, dependem apenas do módulo logo abaixo, a ViewModel. Além disso, o módulo

Repository pode estar ligado a outros dois modelos de dados, um modelo dados armazenado

localmente, e outro remotamente [2]. A persistência de dados local é importante para que o

aplicativo continue funcionando mesmo que o usuário esteja off-line.

Essa estrutura torna a aplicação mais consistente e melhor de se utilizar, pois mesmo

que o aplicativo não esteja em segundo plano, ou que o aplicativo já tenha sido destruído da

memória principal pelo sistema por falta de espaço, ele será reaberto mais rapidamente,

restaurando as informações do usuário à Activity, primeiramente trazendo esses dados da

3 Disponível em: https://developer.android.com/topic/libraries/architecture/images/final-architecture.png. Acesso
em janeiro de 2020.

https://developer.android.com/topic/libraries/architecture/images/final-architecture.png

persistência local, e posteriormente atualizando as informações através dos dados

armazenados remotamente, caso esses dados estejam desatualizados [2].

2.3.1.1 ViewModel

A classe ViewModel foi criada para encapsular e gerenciar dados referente à interface

de usuário, ou seja, armazenar e atualizar dados presentes nas Activities e Fragments. Isso

permite que a ViewModel consiga manter os dados intactos mesmo após alterações na

configuração do dispositivo feitas pelo sistema Android. O ciclo de vida de um Objeto do tipo

ViewModel existe na memória até que um ciclo de vida de uma Activity ou Fragment seja

finalizado [7].

Como já foi dito antes, o ciclo de vida de um Fragment não é dependente de outros

Fragments, e eles podem compartilhar um espaço na mesma Activity [12]. Todavia um

Fragment não tem conhecimento de outro Fragment, e portanto o ViewModel pode surgir

como uma solução para esse problema, pois, dois Fragments distintos podem ter um mesmo

objeto do tipo ViewModel no seu escopo. Sendo assim, dois ou mais Fragments podem

compartilhar o mesmo ViewModel a fim de gerar uma comunicação entre eles [7]. A

ViewModel está logo abaixo do módulo que contém a Activity e Fragment, sendo assim, ela

não pode ter conhecimento desses componentes [2].

Um objeto do tipo ViewModel fornece dados para uma Activity ou Fragment. Esse tipo

de objeto contém lógica de negócios para manipulação de dados, logo ele deve se comunicar

com componentes existentes no model, para que possa carregar e modificar dados através de

encaminhamentos solicitados pelo usuário do dispositivo [2].

Os dados do objeto do tipo ViewModel são encapsulados de maneira automática

quando acontecem alterações nas configurações do sistema, com o objetivo de que eles sejam

rapidamente recuperados quando forem solicitados novamente. Um bom exemplo sempre

utilizado é manter esses dados a salvo mesmo após uma rotação de tela [7]. A figura 3

demonstra como isso ocorre.

Figura 3: Vida útil da ViewModel durante execução de uma Activity4

A ViewModel trabalha em conjunto com o LiveData e o Room. O Room notifica o

LiveData quando há alterações no banco de dados, enquanto o LiveData é responsável por

atualizar os dados apresentados na interface de usuário [7].

2.3.1.2 LiveData

A classe LiveData é usada para armazenar dados observáveis [8]. O LiveData respeita

o ciclo de vida dos componentes do aplicativo, como Activities, Fragments e Services. Esta

classe pode ser usada por outros componentes para monitorar alterações nos objetos [2]. O

LiveData atualiza apenas observadores de componentes de aplicativos que estão ativos, onde

o ciclo de vida desses componentes estão no estado “começado” ou “retomado” [8].

4 Disponível em: https://developer.android.com/images/topic/libraries/architecture/viewmodel-lifecycle.png.
Acesso em janeiro de 2020..

https://developer.android.com/images/topic/libraries/architecture/viewmodel-lifecycle.png

O LiveData permite que os Observadores da Activity ou Fragment façam parte das

atualizações, e sempre que um objeto LiveData é alterado, a interface de usuário é atualizada

automaticamente. Existem várias vantagens em usar o LiveData, como [8]:

● Garantir que a interface de usuário esteja sempre atualizada, pois o LiveData

notifica os objetos Observer quando eles passam por mudanças no seu ciclo de

vida. Quando essa mudança ocorre, os dados mais recentes são recebidos pelo

componente de interface de usuário. Um Observer é considerado ativo quando

seu estado é “começado” ou “retomado”, e inativo quando seu estado é

“parado”.

● Não permitir vazamento de memória, porque o objeto Observer é limpo da

memória quando o ciclo de vida do componente de interface de usuário é

destruído, devido ao fato dele está atrelado ao objeto LifeCycle.

● Não ocorrerão erros por partes de Activities e Fragments devido a inatividade,

portanto, o objeto LiveData não irá notificar esses componentes de interfaces

de usuário. O LiveData remove de forma automática o Observer quando a

Activity ou Fragment está inativo.

● Evitar manipulação manual do ciclo de vida dos componentes da interface de

usuário, pois o próprio LiveData é responsável por esse gerenciamento.

● Trabalhar em conjunto com ViewModel, deste modo, um componente de

interface de usuário, terá os seus dados atualizados sempre que for recriado

(por motivos de alterações nas configurações do sistema). Quando o

componente de interface de usuário é recriado, ele recebe a mesma instância

do objeto ViewModel.

Ainda é possível usar o padrão de projeto Singleton no objeto do tipo LiveData para

que qualquer Observer que necessite do LiveData, possa acessá-lo sempre que for preciso,

conectando o objeto LiveData apenas uma vez ao serviço do sistema, oferecendo mais

consistência de dados [8].

2.3.1.3 Room

Seguindo o modelo da Android Architecture Component modelado na figura 2, O

repositório pode ser dividido em outros dois ou mais módulos, o Model (para armazenamento

de dados local, o qual a biblioteca Room é a recomendado a ser usada), e o Remote Data

Source (para recuperação de dados em armazenamento remoto), e ambos os módulos são

usados para recuperar e atualizar os dados que são visualizados no componente de interface

de usuário [2].

Os dados do componente de interface de usuário são recuperados imediatamente

quando disponíveis localmente pelo Model. Todavia, como foi visto no tópico 2.2.1, um

componente de interface de usuário pode ser destruído a qualquer momento, e quando isso

ocorre, o aplicativo precisa buscar os dados remotamente através do módulo Remote Data

Source. Não é correto simplesmente manter esses dados solicitados remotamente em cache,

pois isso pode ocasionar problemas relacionados à inconsistência de dados, portanto, a

aplicação pode recarregar o componente de interface de usuário com dados salvos em cache,

e esses dados podem estar desatualizados. Isso poderia fazer com que o aplicativo

apresentasse duas versões diferentes dos dados em uma mesma execução [2].

A melhor maneira para conter esses problemas é usando um modelo persistente, e a

biblioteca Room é uma recomendação a se seguir. Com essa biblioteca os aplicativos podem

gerenciar melhor uma maior quantidade de dados persistentes localmente, onde o

armazenamento em cache de dados mais importantes é muito utilizado [9]. Além disso, essa

biblioteca, em cada compilação, valida cada consulta em relação ao seu esquema de dados,

sendo assim, os erros de consultas SQL, são erros em tempo de compilação, evitando assim

erros em tempo de execução [2]. Qualquer tipo de alteração realizada pelo usuário são

sincronizadas com o armazenamento remoto quando o dispositivo estiver online novamente

[9].

2.3.2 Discussão

Os componentes de arquitetura Android foram construídos para tornar os aplicativos

criados pelos desenvolvedores robustos, além de criar uma estrutura recomendada a ser

seguida pelos desenvolvedores, de forma padronizada [2].

2.3.2.1 Vantagens

Individualmente cada um desses componentes podem trazer suas vantagens, mas

recomenda-se que elas trabalhem em conjunto, para produzir um melhor resultado.

Unificadas podem trazer inúmeras vantagens para a aplicação, como gerenciamento do ciclo

de vida dos componentes de interface de usuário, prevenção de vazamento de memória,

persistência de dados local com atualização de informações em tempo real [2].

Além do que já foi mencionado antes, seguindo essas recomendações, é possível

alcançar uma maior capacidade de testes [2], dificuldade comum encontrada na arquitetura

Model-View-Presenter (MVP) [5]. Um outro problema existente no MVP que pode ser

sanado usando componentes de arquitetura Android é a relação estrita entre a View e ao

Presenter, onde um tem referência do outro de forma exclusiva5, e segundo a recomendação

devemos evitar referências a View (no caso de aplicações Android, a Activity/Fragment,

mesmo que não seja uma View de fato), podendo nesse caso, resolver esse problema

utilizando um único ViewModel para guardar e compartilhar dados entre um ou vários

controladores de interface [2][7], permitindo apenas que a Activity ou Fragment tenha

referência da ViewModel, e não o contrário. Uma outra vantagem em usar componentes de

arquitetura Android é ter melhor modificabilidade [2], problema característico da arquitetura

Model-View-ViewModel (MVVM) [5]. Ambas arquiteturas, MVP e MVVM, são bastante

difundidas e utilizadas para criação de aplicativos Android, devido ao fato de serem

adaptações feitas a partir do Model-View-Controller (MVC) [18]. Além de tudo isso, usando

o componente LiveData é possível tornar as apresentações dos dados, reativo, devido a sua

capacidade de observar modificações em objetos e notificá-las, para que alterações possam ser

feitas na apresentação quando for o caso.

2.3.2.2 Desvantagens

Apesar desse pacote de componentes trazer diversos benefícios, vale ressaltar que

construir uma aplicação seguindo essa recomendação não é tão simples, pois é necessário

compreender a função de cada um desses novos componentes, e como eles interagem durante

o funcionamento, tornando a estruturação do código muito diferente do que tem sido mais

utilizado atualmente.

Levando em conta o estado atual das estruturas dos códigos, é algo comum ver

Activities contendo lógicas de negócios, quando deveria apenas controlar a interface de

usuário, e isso tornou-se ainda pior com o crescimento das aplicações, que acabaram por

gerar Activities gigantescas, portanto, um maior número de interações com o usuário em uma

mesma interface [19], logo, uma classe controladora de interface contendo bastante código. O

5 relação 1..1

componente Fragment foi criado a fim de solucionar esse problema, no entanto, erros

comuns, como tornar o Fragment responsável por gerenciar parte da lógica de negócios ainda

são cometidos [19][22].

É um desafio seguir essas recomendações, e manter a aplicação atualizada com todos

os recursos do pacote de componentes, pois frequentemente novos componentes estão sendo

lançados para melhorar a criação e utilização dos aplicativos[20].

2.3.2.3 Melhorias

Uma das funções da ViewModel é compartilhar dados entre Fragments, e isso é muito

útil para compartilhar uma informação comum entre Fragments, principalmente quando esses

Fragments são criados em momentos distintos durante o uso da aplicação, logo, o Fragment 1

pode não conhecer o momento exato de passar uma informação para o Fragment 2. Outro

problema que também pode ocorrer, é em situações em que um Fragment 1, que contém um

dado compartilhado com o Fragment 2, possa ser destruído, e o Fragment 2 permaneça vivo

contendo a referência do dado que está no Fragment 1. Nessa situação a ViewModel pode

compartilhar essa informação de forma segura e consistente. Todavia usar ViewModel para

solucionar esses problemas, pode tornar a ViewModel uma classe grande, contendo

informações de vários Fragments, portanto, contendo também variáveis e métodos que são

exclusivos de um único Fragment.

Uma solução para o problema citado é separar a ViewModel em outras classes

ViewModel, caso isso seja possível para a aplicação. Um bom exemplo para essa separação,

seria uma aplicação compartilhando uma informação armazenada dentro do Banco de Dados

local (pode ser um Banco de Dados criado através da biblioteca Room), onde as ViewModels

podem acessar o mesmo Banco de Dados, simplesmente implementando o padrão de projeto

Singleton para a criação dele. Assim a classe ViewModel não se tornará grande e complexa,

mantendo sua função, guardar os dados, e conter lógicas de negócios para apenas um

controlador de interface de usuário.

2.4 MICRO FRONTENDS

O conceito de Micro Frontends não é uma novidade, sabendo-se que a abordagem é

baseada em sistemas independentes, como por exemplo o Front Integration for Verticalized

System [23]. Todavia, o termo Micro Frontends surgiu no ThoughtWorks Technology Radar

em 2016 [23][24].

As aplicações atuais costumam usar a ideia de aplicativos de página única, a qual,

cada página possui sua estrutura individual [23]. Desenvolver um front-end, onde há várias

equipes trabalhando, não é fácil, e pode se tornar ainda mais difícil se tratando de aplicações

grandes. A tendência atual é que grandes front-ends sejam divididos em pequenos blocos

menores e gerenciáveis [24].

Micro Frontends tem como principal objetivo, tornar a criação de aplicações robustas,

organizadas e separadas por equipes, o que abrange o conceito de microsserviços. Cada

equipe é responsável pela criação de componentes de interface distintos, trazendo ainda mais

benefícios, como poder separar as equipes por setores nas quais elas estão mais preparadas e

qualificadas. O objetivo é construir interfaces como um conjunto de vários componentes de

interface; tornando possível a separação de tarefas em grupos independentes, e obtendo um

melhor gerenciamento das aplicações [23]. A figura 4, logo abaixo, exemplifica de maneira

genérica esse fluxo.

Figura 4: Implementação independente usando Micro frontends6

A figura demonstra como as equipes se dividem e criam os seus componentes

individualmente. As equipes criam, implementam e testam os seus front-end, chegam a um

produto final, e posteriormente lançam as suas versões dentro da aplicação final.

Usar Micro Frontends tornará a arquitetura da aplicação escalável, mantendo a

aplicação estável e funcional mesmo durante a manutenção de sua estrutura, o que é muito

benéfico, visto que as aplicações atuais estão em constante crescimento e atualização [24]. A

6 disponível em <https://martinfowler.com/articles/micro-frontends/deployment.png>. Acesso em 5 Mar. 2020.

https://martinfowler.com/articles/micro-frontends/deployment.png

seguir os principais benefícios serão citados ao aplicar as técnicas de Micro Frontends na

arquitetura da aplicação.

2.4.1 Atualização do front-end

Sempre com a aparição de novos recursos, é viável que apenas o componente que

deve ser atualizado com esse novo recurso, seja reescrito e atualizado. Com a técnica de

atualização incremental, as equipes podem implementar um novo produto sempre que

necessário, e lançá-lo para o usuário final quando estiver pronto, incrementando o produto

final.

2.4.2 Independência entre os front-ends

Organizar a estrutura do código de cada componente de interface de forma separada,

desacoplando componentes que não devam ter conhecimento um do outro. Seguindo essa

técnica, dificilmente erros acidentais de acoplamento serão cometidos, o que pode tornar o

código da aplicação mais organizado, e de leitura mais fácil.

2.4.3 Implantação do front-end

Cada equipe individualmente está trabalhando na criação do seu próprio componente

de interface, e de maneira independente, estas equipes podem lançar novos recursos, que

outrora não estavam disponíveis na aplicação. Quando a desacoplação de componentes foi

feita corretamente, a tendência é que a implementação de novas funções se torne menos

trabalhosa.

2.4.4 Autonomia das equipes

As equipes têm propriedades para criar novos recursos que trarão benefícios aos

usuários através de funções que poderão ser implantadas posteriormente. Para isso as equipes

precisam trabalhar de forma vertical na arquitetura, de maneira que uma equipe não seja

responsável exatamente por uma camada da arquitetura como ocorre em alguns casos, mas

que cada equipe seja responsável por um produto.

3 O APLICATIVO LIBFLIX

Para que a arquitetura recomendada possa ser testada, foi desenvolvido o aplicativo

Libflix, com o intuito de aplicar os conceitos vistos, de modo a apresentar o comportamento

dos componentes, durante a execução da aplicação, como também descrever de modo prático

como a aplicação funciona com a utilização desses componentes.

3.1 VISÃO GERAL

O Libflix é um aplicativo para apresentar dados sobre filmes, compartilhando

informações como nome, data de lançamento ou duração do filme. Os dados dos filmes são

coletados a partir do The Movie Database (TMDB), um banco de dados de filmes criado7 e

mantido com a ajuda da comunidade.

Nessa aplicação é possível visualizar a lista de filmes disponibilizada pela base de

dados remota, na qual essa lista, por opção do desenvolvedor, é a lista de destaques do

TMDB. Apesar disso, é possível que o usuário faça uma busca por filmes, caso ele queira,

permitindo que mais filmes dessa base de dados remota possam ser encontrados e

apresentados através da lista.

O aplicativo também disponibiliza de uma base de dados local, assim como a

arquitetura recomendada exemplifica, deste modo, é possível que o usuário possa salvar

filmes na memória do dispositivo, e que estes filmes também sejam apresentados em uma

lista.

3.2 LISTA DE REQUISITOS

O aplicativo possui algumas funções que serão descritas nesta seção. Essas funções

serão separadas por Requisitos Funcionais (RF) e Requisitos Não Funcionais (RNF).

3.2.1 Requisitos Funcionais

3.2.1.1 [RF01] Solicitar Lista de Destaques

O aplicativo deve realizar a requisição da lista de filmes de destaques da base de dados

remota, e apresentar a lista de filmes após obter com sucesso, as informações recebidas no

7 O TMDB foi criado em 2008

JSON (Notação de Objetos JavaScript). A lista possui um tamanho determinado pela própria

fonte de dados remota.

3.2.1.2 [RF02] Apresentação da Lista de Filmes da Base de Dados Remota

A lista responsável por apresentar os filmes da base de dados remota deve conter

tamanho que foi definido pelo JSON, e apresentar uma lista de cartões, cada um contendo

informações individuais dos filmes recuperados.

3.2.1.3 [RF03] Apresentação da Lista de Filmes da Base de Dados Local

A lista responsável por apresentar os filmes da base de dados local deve conter

tamanho 10 (definido pelo desenvolvedor), e apresentar uma lista de cartões, cada um

contendo informações individuais dos filmes recuperados.

3.2.1.4 [RF04] Apresentação do Cartões do Filme

O cartão do filme deve conter detalhes, como pôster do filme, nome do filme, data de

lançamento do filme, e popularidade do filme na comunidade do TMDB. O nome do Filme

deve ter maior ênfase, possuindo um tamanho de letra maior, e cor mais clara que as demais

informações. Além disso, o nome do filme deve ser limitado a duas linhas.

3.2.1.5 [RF05] Mudança de Página

O aplicativo deve apresentar uma barra de controle de páginas que permita que o

usuário possa avançar, voltar, ir para a última página, ou ir para a primeira página, caso seja

possível.

3.2.1.6 [RF06] Pesquisa na Base de Dados Remota

A aplicação deve realizar uma pesquisa por filmes na base de dados remota através da

palavra ou letra digitada pelo usuário na barra de pesquisa. A palavra deve ser usada para

realizar uma requisição à API, que pode retornar uma lista de filmes baseado na palavra

digitada.

3.2.1.7 [RF07] Pesquisa no Banco de Dados Local

A aplicação deve realizar a pesquisa no banco de dados local, usando a palavra ou

letra digitada pelo usuário na barra de pesquisa, para encontrar filmes que contenham essa

palavra ou letra no seu nome, e adicionar esses filmes a uma lista de filmes filtrados na

pesquisa. Ao fim da busca em todo o banco de dados local, essa lista de filmes filtrados deve

ser usada para atualizar a lista de apresentação.

3.2.1.8 [RF08] Chamar Tela de Detalhes do Filme

Quando o usuário selecionar um filme da lista de filmes, a aplicação deve repassar o

código de identificação do filme para a tela de detalhes que se encarregará de recuperar as

informações do filme, do banco de dados remoto ou local.

3.2.1.9 [RF09] Adicionar Filmes aos Favoritos

Na tela de detalhes do filme, quando o usuário tocar na estrela de favoritos, o filme

deve ser adicionado ao banco de dados local, caso ele ainda não exista nele, ou seja, ainda

não é um filme favorito do usuário.

3.2.1.10 [RF10] Remover Filmes dos Favoritos

Na tela de detalhes do filme, quando o usuário tocar na estrela de favoritos, o filme

deve ser removido do banco de dados local, caso ele já exista nele, ou seja, é um filme

favorito do usuário.

3.2.1.11 [RF11] Abrir Homepage do Filme

Na tela de detalhes do filme, quando o usuário tocar nas informações da homepage do

filme, a aplicação deve chamar uma atividade externa para abrir uma página web. O sistema é

encarregado de apresentar ao usuário os aplicativos disponíveis capazes de realizar essa ação.

3.2.2 Requisitos Não Funcionais

3.2.2.1 [RNF01] Retornar Lista Vazia

Caso não seja possível recuperar a lista de filmes da base de dados remota, a lista

responsável por apresentar os dados deve receber uma lista vazia, não permitindo que valores

nulos sejam aplicados à lista de apresentação.

3.2.2.2 [RNF02] Apresentação dos Botões de Mudança de Página

Na barra de controle de páginas, deve ser apresentado ao usuário apenas os botões de

mudança de página de acordo com a página atual e o total de páginas da lista de apresentação.

Os botões de voltar ou ir para a primeira página devem ser desabilitados caso o usuário esteja

na primeira página. Os botões de avançar ou ir para a última página devem ser desabilitados

caso o usuário esteja na última página.

3.2.2.3 [RNF03] Buscar Filme nas Bases de Dados

Quando o usuário selecionar o filme da lista, deve ser realizado uma busca no banco

de dados local, caso o filme exista no banco de dados dos filmes favoritos, então ao chamar a

tela de detalhes do filme, a atividade atual deve repassá-la tanto o código identificador (ID) do

filme, quanto a informação de que o filme existe na base de dados local.

3.2.2.4 [RNF04] Exibir Detalhes do Filme

Após o usuário selecionar o filme que deseja abrir para ver mais detalhes, a tela que

exibe apresentará os dados do filme após receber a notificação de que o filme foi recuperado.

Caso o filme exista na base de dados local, o filme deve ser carregado a partir dela, mesmo

que tenha sido aberto pela tela que apresenta a lista de filmes da base de dados remota.

3.2.2.5 [RNF05] Conexão Com Internet

O aplicativo deve ter acesso a conexão com internet para funcionamento correto e

completo das funções disponíveis. Sem conexão, só será possível acessar os filmes

armazenados no banco de dados local.

3.2.2.6 [RNF06] Tentativas de Requisição

Ao tentar realizar uma requisição para recuperar os dados de um filme na base de

dados remota, é possível que ocorra algum erro durante a tentativa por diversos fatores. Caso

ocorra algum erro durante a primeira tentativa, a aplicação deve tentar solicitar novamente os

dados do filme até no máximo 5 vezes.

3.2.2.7 [RNF07] Comunicação com a API do TMDB

O aplicativo deve comunicar-se com a API do TMDB para buscar a lista de filmes, e

poder apresentá-las ao usuário.

3.2.2.8 [RNF08] Status do Carregamento da Lista

A tela de que apresenta a lista de filmes deve apresentar uma imagem que corresponda

com o status atual do carregamento da lista. Quando a lista estiver sendo buscada na base de

dados remota, uma imagem de download da lista deve ser exibida até o término do processo.

Quando houver erro no carregamento da lista, uma imagem de erro no download da lista deve

ser exibida.

3.2.2.9 [RNF09] Compatibilidade do Aplicativo

O aplicativo deve estar disponível na plataforma Android. O nível de API

recomendada é a partir da 28 (Android 9.0 - Pie), e o nível mínimo da API é a 26 (Android

8.0 - Oreo).

3.3 ARQUITETURA DO APLICATIVO

A arquitetura do aplicativo Libflix apresentada na figura 4 mais abaixo, é similar ao

diagrama da figura 2 que encontra-se na seção 2.3.1, a qual apresenta os módulos com os

componentes de arquitetura. A arquitetura tem três camadas, que são Presentation, Domain e

Data, e cada uma delas tem suas distintas responsabilidades.

3.3.1 As camadas da arquitetura

A Presentation possui os controladores de interface de usuário, como também

adaptadores. Os controladores de interface de usuários, as Activities e Fragments, realizam

chamadas ao Domain a partir de ações do usuário com a tela, e também podem enviar e

receber dados dos adaptadores, que são responsáveis em preparar os dados que serão

apresentados na tela. O Domain é composto pela ViewModel, por entidades de domínio, e por

modelos de abstração. Cada ViewModel é responsável por guardar os dados de um

controlador de interface individualmente. A ViewModel tem a referência ao LifeCyle dos seus

respectivos controladores de interface, podendo realizar ações ao ocorrer mudanças no estado

do ciclo de vida desses controladores. Os dados relacionados a filmes, que ficam guardados

na ViewModel, são do tipo LiveData. Esses dados podem ser requisitados ou guardados

através do módulo Data. No Data está contido a base de dados, e os objetos de acesso a

dados (DAO). A base de dados está dividida em base de dados local e remoto, podendo

solicitar filmes e listas de filmes da API, como também solicitar e guardar os dados dos filmes

no armazenamento do dispositivo.

Figura 5: Arquitetura do aplicativo Libflix

Para compreender melhor como cada uma das camadas funcionam, as Figuras 5, 6 e 7

apresentam os modelos do diagrama de classe de cada uma delas.

3.3.2 Presentation

Figura 6: Representação da camada Presentation

Na camada Presentation, o controlador BaseFilmListFragment do tipo Fragment, é

herdado por ApiFilmListFragment e DataFilmListFragment, e ambos implementam o

método de click dos cartões da lista de filmes, da interface OnFilmClickListener, existente

na classe FilmListAdapter.

A classe FilmAdapter possui dois métodos dentro do companionObject para

converter os tipos dos dados do filme. Alguns dados recebidos pelo JSON são do tipo que não

podem ser salvos pela biblioteca Room, e portanto, precisa preparar esses dados para serem

adaptados ao formato que o banco de dados local aceita.

3.3.3 Domain

Figura 7: Representação da camada Domain

Na camada Domain, a classe FilmListViewModel é do tipo ViewModel, e é herdada

pelas classes FilmApiViewModel e FilmDataViewModel. Estas classes guardam os dados

da lista de filmes que podem ser manipulados pelos seus respectivos controladores de

interface, e podem acessar a base de dados local e remota. Além disso, o Domain contém

duas entidades que moldam características de filmes, de modo que, a entidade que é usada

para pegar os dados da API pode conter dados nulo, enquanto a outra, não deve conter dados

nulos, pois esta segunda, deve conter dados que podem ser salvos ou apresentados na

interface de usuário.

3.3.4 Data

Figura 8: Representação da camada Data

A camada Data é responsável pelo gerenciamento dos dados, e nela temos a base de

dados local e a remota. A base de dados remota (FilmApiService) utiliza a biblioteca Retrofit

para poder recuperar os dados, auxiliada pelo conversor Moshi. Ambas foram criadas pela

Square, e podem operar juntas para recuperar os dados da API, e converter de forma

serializada os dados do JSON. A base de dados local (FilmDatabase) utiliza a biblioteca

Room para salvar, recuperar e apagar dados na memória do dispositivo. A base de dados local

foi implementada usando o padrão Singleton, contendo o FilmDao para executar as ações

necessárias para a manipulação desses dados.

4 APLICABILIDADE DOS COMPONENTES DE ARQUITETURA

Nesta seção, o aplicativo será apresentado, com os resultados obtidos ao construir o

aplicativo usando a arquitetura recomendada e seus componentes. Os resultados serão

apresentados com a demonstração das telas do aplicativo. O aplicativo está disponível no meu

perfil do GitHub8.

4.1 OS COMPONENTES GRÁFICOS E A INTERFACE DE USUÁRIO

Nesta seção serão apresentados todas as telas do aplicativo. Em cada tópico das telas,

serão descritos os componentes de arquitetura existentes, como também a forma como cada

um desses componentes se comportam durante a execução de suas tarefas.

4.1.1 Splash Screen

Figura 9: Splash screen

A primeira tela que é apresentada, na figura 5, é a splash screen da aplicação, ou tela

de abertura. Nesta tela é apresentado o ícone e o nome do aplicativo. Na parte de baixo da tela

8 repositório do github: <https://github.com/ednaldomartins/ArchitectureComponentApp>

https://github.com/ednaldomartins/ArchitectureComponentApp

é mostrado que o The Movie Database é quem alimenta a aplicação (fornece as informações

dos filmes). Nessa tela existem apenas componentes de criação de interface. Nesta tela é visto

apenas alguns componentes de interfaces comumente utilizados para criação de interface.

4.1.2 Ação dos Componentes Arquiteturais durante a requisição da lista de filmes

A tela que apresenta os dados capturados da API, é composta por uma Activity

principal, que infla 2 Fragments, um deles é o visível na tela. Esse Fragment possui uma

ViewModel particular, que é responsável por fazer a requisição das informações dos filmes e

guardá-las em uma lista do tipo LiveData. Após a requisição, o objeto (lista) do tipo LiveData

notifica os observadores que a lista foi alterada. Os observadores que estão dentro do

controlador de interface (o Fragment), recebem a notificação, e nesse instante, os dados

recebidos são adaptados e posteriormente aplicados a lista de apresentação. Esse tipo de

comportamento é semelhante em todas as requisições de lista do servidor.

(a) Código - Lista do tipo LiveData

(b) Código - Requisitando lista de filmes

(c) Código - Observador a espera da notificação

Figura 10: Código - Lista do tipo LiveData recebe os dados e notifica controlador

4.1.2.1 Carregando a lista de destaques

(a) Durante o carregamento das informações. (b) Após carregar todas as informações.

Figura 11: Requisição e carregamento das informações dos filmes com sucesso

Nas duas imagens acima é demonstrado como a tela se apresenta durante o

carregamento da lista de filmes da base de dados remota. Na imagem (a) o usuário está na tela

de destaques, e as informações dos filmes estão sendo requisitadas a base de dados remota, e

após o término do recebimento dessas informações, vê-se na imagem (b), uma lista de filmes

carregada sendo exibida na tela.

4.1.2.2 Problemas com o carregamento dos filmes

(a) Durante o carregamento das informações. (b) Erro após tentativa da requisição.

Figura 12: Requisição e retorno de erro após a tentativa de comunicação com o servidor

Nas imagens acima, é visto novamente uma tentativa de requisição a base de dados

remota na imagem (a), todavia, a resposta obtida na imagem (b) é diferente, devido a falha

durante a requisição das informações. Essa falha pode ocorrer por diversos fatores, como:

problema com a conexão de internet, ou até problemas externos relacionados ao servidor.

Vale destacar que esse erro não ocorre por recebimento de dados nulos, pois os dados

são adaptados quando recebidos, e nem por receber uma lista vazia durante uma busca por

filmes, pois quando a busca por filmes não retorna nenhum filme, a lista de destaques é

recuperada.

4.1.2.3 Nova tentativa de requisição ou atualização dos dados

(a) Erro após tentativa de requisição. (b) Nova requisição.

Figura 13: Erro e sucesso após duas tentativas de comunicação com o servidor

Na imagem (a) temos a tela de erro após uma tentativa de comunicação com o serviço,

e também uma ação de atualização de página. Quando há um erro na página de destaques e o

usuário atualiza a página, é realizada uma nova requisição da última página que foi recebida

com sucesso. Após a segunda tentativa, o resultado é o obtido na imagem (b).

(a) Código - Atualizando a página

(b) Código - Realizando requisição

Figura 14: Código - Atualizando página da lista de filmes

4.1.3 Ação dos Componentes Arquiteturais ao selecionar um filme

Ao selecionar um filme da lista recebida pela base de dados remota, uma nova Activity

é solicitada para apresentar as informações do filme. De antemão, essa nova Activity recebe o

ID do filme, e também é informada se o filme selecionado está armazenado localmente no

dispositivo. O componente responsável por guardar os dados desses filmes no dispositivo é a

biblioteca Room. Ao selecionar o filme, uma busca é feita na base de dados local, e caso o

filme seja encontrado, é preferível que o filme seja aberto localmente, para evitar consumo de

dados de internet, e também para que o filme possa ser aberto mesmo que o usuário não esteja

conectado no momento da seleção. Após a nova Activity entrar em execução, ela deve se

comunicar com o servidor e requisitar as informações do filme caso o esse não esteja

armazenado localmente.

Figura 15: Código - Verificando se o filme está na base de dados local

A Activity que exibe os detalhes do filme tem um ViewModel particular, é capaz de

requisitar ao servidor, a informação de um único filme apenas com o ID, e salvar essas

informações dentro de um objeto9 do tipo LiveData. Aqui ocorre a mesma coisa que acontece

com a lista, o objeto do tipo LiveData notifica o observador, que nesse caso, está dentro da

Activity que exibe os detalhes do filme. Essa notificação também ocorre caso as informações

sejam recuperadas localmente, pois ambos os métodos salvam as informações no mesmo

objeto. Após recuperar as informações, os dados são adaptados e aplicados na tela de

detalhes.

9 Objeto Film existente no projeto, e contém apenas variáveis relacionadas a filme.

(a) Código - Requisitando Filme

(b) Código - Observador a espera da notificação

Figura 16: Código - Objeto do tipo LiveData recebe os dados e notifica observador

4.1.3.1 Abrindo o Filme a partir da base de dados remota

(a) Selecionando um filme. (b) abrindo informações do filme.

Figura 17: Selecionando filme e requisitando dados na base de dados remota

Na imagem (a), após o usuário tocar no cartão do filme que deseja abrir, uma nova

tela será aberta, e assim que as informações forem recuperadas, elas serão exibidas, como

representada na imagem (b). Nesse caso, as informações do filme foram requisitadas e

obtidas a partir da base de dados remota, pois o filme não está disponível localmente.

4.1.3.2 Abrindo o Filme a partir da base de dados local

(a) Selecionando um filme (b) abrindo informações do filme.

Figura 18: Selecionando filme e abrindo o filme a partir da base de dados local

Na imagem (a), a situação é similar a anterior, onde o usuário toca no cartão do filme,

de modo que a nova tela é aberta na imagem (b), mas os dados são recuperados a partir da

base de dados local. Essa Ação acontece tanto na aba “DESTAQUES”, quanto na aba

“FAVORITOS”, desde que o filme esteja armazenado na memória do dispositivo. Na imagem

(b) é possível ver que a estrela de favorito está preenchida, sendo assim, é um filme favorito

do usuário.

4.1.4 Ação dos Componentes Arquiteturais ao salvar um filme localmente

Ao tocar na estrela de favoritos na Activity de detalhes, nenhuma ação de na base de

dados é realizada, para evitar ações que podem ser desnecessárias ou repetidas. Uma ação

desnecessária seria, um caso em que o usuário toca na estrela para marcar o filme com

favorito, e depois toca novamente para desmarcá-la, pois isso resultaria em um adição e

remoção do mesmo filme na base de dados local.

A Activity de detalhes, sempre no início do seu ciclo de vida, envia a sua LifeCycle

para a sua ViewModel particular, e por fim, essa ViewModel passa a conhecer o ciclo de vida

da Activity detalhes. A ViewModel precisa ser um observador do ciclo de vida, para que ele

possa ser adicionado como observador do LifeCycle da Activity. A partir desse ponto, a

ViewModel pode realizar eventos em cada estado da Activity. Então, para evitar desperdício

de processamento, sempre que a Activity entra no estado parado (onStop), a ViewModel é

notificada, e solicita a ação de adicionar ou remover o filme no banco de dados dos filmes

favoritos, o qual a biblioteca Room é a responsável em realizar essa ação.

(a) Código - ViewModel é um Observador do ciclo de vida da Activity

(b) Código - método get e set para o LifeCycle da Activity

(c) Código - Activity “seta” o seu ciclo de vida na variável da ViewModel

(d) Código - Evento realizado quando a Activity passa pelo estado de parada

Figura 19: Código - Verificar se é preciso deletar ou salvar filme na base de dados local

4.1.4.1 Salvando normalmente

(a) Filme não favorito. (b) Filme “adicionado” aos favoritos.

Figura 20: Marcando um filme como favorito

Após carregar as informações do filme na tela, é mostrado na imagem (a) que o filme

recuperado não é favorito, e portanto, foi feito uma requisição ao servidor. Posteriormente o

filme foi marcado como favorito, mas ainda não deve ser adicionado ao banco de dados de

filmes favoritos. A ação de salvar as informações do filme no armazenamento do dispositivo

só será realizada após o fechamento da tela de detalhes (nesse exemplo).

4.1.4.2 Salvando em situações inesperadas

(a) aplicativo sendo fechado. (b) O filme foi salvo nos favoritos.

Figura 21: Marcando filme como favorito, e fechando aplicativo posteriormente

Durante essa ação, o filme foi marcado favorito normalmente, mas nesse caso a

aplicação foi fechada antes de o usuário voltar para a tela que apresenta a lista de filmes,

como visto na imagem (a). Em situações onde o armazenamento dessas informações seriam

salvas apenas quando o usuário saísse da tela que exibe os detalhes do filme (através do

método onActivityResult), o usuário voltaria posteriormente ao aplicativo o filme não estaria

no banco de dados de filmes favoritos. Nessa situação, o filme foi armazenado com sucesso

como mostra a imagem (b).

Essa ação pode ser muito útil quando a tela do aplicativo é colocada em segundo

plano devido a interrupções. Um exemplo que pode ser usado é, quando a aplicação é

colocada em segundo plano devido ao recebimento de uma chamada telefônica. Pode ocorrer

de o usuário não abrir novamente a aplicação de imediato, todavia nesse caso, os dados do

filme já estão armazenados em segurança.

4.1.5 Ação dos Componentes Arquiteturais ao buscar filmes

A busca de filmes nos dois Fragments ocorre de maneira um pouco diferente, mas o

comportamento dos componentes é similar. O Fragment que controla a interface que exibe os

filmes da base de dados remota, busca os filmes apenas quando o usuário submete a palavra,

enquanto o que controla a interface que exibe os filmes da base de dados local, busca os

filmes a cada nova letra digitada. No Fragment que controla a exibição da lista da base de

dados remota, o restante das ações ocorre de maneira similar ao que foi descrito na seção

4.1.2.1. Para o Fragment que controla a exibição da lista da base de dados local, o filme é

buscado através da biblioteca Room, realizando a busca pelo nome do filme, recuperando os

dados e aplicando-os na lista de apresentação do tipo LiveData, guardada na ViewModel. Em

seguida, o observador presente no Fragment é notificado, realizando as ações necessárias para

exibir a nova lista.

4.1.5.1 Buscar filme na base de dados remota

(a) página 500 da lista de destaques. (b) resultado da busca.

Figura 22: Buscando por filmes na base de dados remota

O usuário pode não encontrar o filme que deseja ao procurar na página de destaques.

Além disso, seria demorado e cansativo ir de página em página à procura do filme que deseja

encontrar. Para isso ele pode usar a função de busca na barra superior, ao lado do nome da

aplicação, como mostra a figura (a). Após digitar e submeter o que deseja buscar, o servidor

retorna com as respostas, como pode-se ver na imagem(b).

(a) Código - Submetendo busca

(b) Código - Realizando busca na API por query submetida

Figura 23: Código - Realizando busca por filmes na API

4.1.5.2 Buscar filme na base de dados local

(a) busca realizada após digitar “n”. (b) busca realizada após digitar “ni”.

Figura 24: Realizando uma busca na base de dados local

Para buscar filmes localmente, é preciso apenas tocar na lupa na barra superior e

começar a digitar. A cada nova letra digitada, a lista que apresenta os filmes favoritos é

atualizada, não sendo necessário submeter a palavra.

(a) Código - Realizando busca sempre que texto da busca for alterado

(b) Código - Buscando por filmes na base de dados local

Figura 25: Código - Realizando busca e aplicando nova lista na lista de apresentação

4.2 APLICANDO MICRO FRONTENDS

Visto os benefícios que Micro Frontends deve trazer ao ser introduzido seus conceitos

na arquitetura da aplicação, o front-end da Activity que exibe as listas de filmes, foi

desenvolvido usando técnicas para reaproveitar componentes, tornando essa Activity, um

conjunto de outros componentes menores, que podem ser melhor gerenciados.

A separação de componentes dividiu a Activity que exibe a lista de filmes em 5 partes,

que podem ser separadas em grupos. A figura abaixo ilustra a Activity que exibe a lista de

filmes da base de dados remota, e como cada componente de interface está separado, a qual,

cada caixa colorida possui uma cor diferente, representando componentes de interface

individualmente. A caixa amarela representa o todo da Activity, que deve gerenciar, implantar

ou remover outros componentes. A caixa azul próxima ao topo, gerencia o menu, contendo a

busca e outras opções de menu que podem ser implementadas futuramente. A caixa na cor

roxa, que contém uma caixa menor na cor verde, é responsável por controlar e apresentar a

lista de filmes, a qual deve replicar vários componentes da caixa verde, que devem ser

exibidas na vertical; enquanto a verde que está contida nela, exibe o cartão do filme com

informações básicas. E por fim, a caixa na cor vermelha, no rodapé da Activity, é o

componente de interface que gerencia as páginas de filmes que são apresentadas ao usuário.

Figura 26: Componentização da Activity

Ao usar esses conceitos, tornou-se possível a reutilização desses componentes em

outros front-ends do sistema, que neste caso, além de serem utilizados para exibir a lista de

filmes recuperadas na base de dados remota, também foram reutilizados para exibir a lista de

filmes da base de dados local. O Fragment que exibe a lista tem a RecyclerView como um

front-end, além do rodapé, que é inserido no Fragment através do include. O

adapter_film_list.xml é quem dá forma aos cartões que são exibidos na RecyclerView.

Figura 27: fragment_film_list.xml usado pelos Fragments que exibem a lista de filmes

A Activity principal é apenas responsável por controlar o menu e inflar os Fragments

que exibem as listas. Nesse caso, os Fragments contidos na Activity principal controlam as

caixas na cor roxa, verde e vermelha, enquanto a Activity, controla a caixa amarela e azul.

Vale salientar que a Activity e os Fragments, estão acoplando os componentes de interface, ou

pequenos front-ends, usando ConstraintLayout, para tornar a tela responsiva e adaptável em

diversos dispositivos.

Figura 28: activty_main.xml Activity principal contém um toolbar.xml em seu front-end

4.3 TESTE DA APLICAÇÃO

Para realização de testes dos componentes, foi utilizado a ferramenta de Testes da

Robolectric10 em sua versão 4.0.2. Para fins de estudo, apenas o componente Room foi

testado, usando as classes FilmDao e FilmDatabase que compõem esse componente.

10 link para mais informações disponível em: http://robolectric.org/

http://robolectric.org/

Figura 29: Código - Ferramenta de testes e componentes testados

Ainda na parte do código, as notações @Before, @After e @Test do framework JUnit

foram usados para organizar a ordem de execução dos testes. Para realizar os testes, a

princípio foi definido o que deve ser realizado antes e depois deles, através das notações

@Before e @After. Antes do testes o banco de dados deve ser criado, e ao final dos testes ele

deve ser fechado.

(a) Código - notação para executar escopo da função antes dos testes

(b) Código - notação para executar trecho de código ao final dos testes

Figura 30: Código - Funções chamadas antes de iniciar e ao finalizar os testes.

Para os testar o componente Room, foram criados três testes: uma função para inserir

e recuperar o filme, outra para inserir um filme e limpar a base de dados em seguida, e por fim

uma função para inserir e atualizar os dados de um filme do database.

Figura 31: Código - teste do insert e get

A função insertAndGetFilm() da figura 32, insere um filme com ID igual a 200

através do insert, em seguida o filme com ID igual a 200 é recuperado, e posteriormente

verificado que as ações foram realizadas com sucesso.

Figura 32: Código - Teste do clear

A função insertAndClearDatabase() da figura 33, insere um filme, verifica se a

quantidade de filmes na base de dados local é igual a 1, em seguida a base de dados é limpada

utilizando o clear, e posteriormente verificado que a quantidade de itens se tornou igual a 0

com sucesso.

Figura 33: Código - Teste do update

A função insertAndUpdateFilm() da figura 34, insere um filme na base de dados

local com ID igual a 20 e título igual a “SEM TITULO”, em seguida verificou-se que o filme

foi inserido corretamente. Para completar o teste, então recuperou-se o filme, alterou o seu

título para “COM TITULO”, em seguida o update foi utilizado e posteriormente foi

verificado que o título do filme existente na base de dados foi atualizado corretamente.

O componente Room mostrou-se uma biblioteca muito eficaz, capaz de auxiliar na

componentização da aplicação, e que também é facilmente testado. Fato é que as ferramentas

de testes no Android estão em constantes atualizações, e que essas atualizações podem trazer

problemas durante a criação dos testes, todavia, o ponto principal é mostrar que o

componente testado é testável, e sem a necessidade da utilização de outros componentes que

estão em módulos mais acima na arquitetura apresentada na figura 4, a qual foi abordada e

utilizada nesta aplicação.

5 CONCLUSÃO E TRABALHOS FUTUROS

Neste trabalho foi apresentado conceitos básicos da arquitetura Android, e tem como

objetivo principal definir e apresentar novos componentes arquiteturais, capazes de criarem

uma aplicação com componentes e melhor construída, em conjunto com Micro Frontends.

Os componentes de arquitetura ViewModel, LiveData, LifeCycle Room mostraram-se

capazes de tornar uma aplicação Android escalável e testável, características indispensáveis

para criação de grandes aplicações. Atualmente tem sido muito importante tornar toda a

aplicação separada por componentes, para melhorar a divisão de tarefas entre equipes,

atualizar partes de um componente sem interferir o todo, e escalar aplicações de forma

organizada e com mais segurança. Além disso, esses componentes se adequaram

perfeitamente às técnicas de Micro frontends para composição da interface de usuário,

garantido que a aplicação principal se tornasse modular.

O aplicativo criado para testar os componentes de arquitetura Android, foi o aplicativo

Libflix, e ainda não está disponível para download na loja de aplicativos Android, pois sua

principal finalidade é demonstrar e testar a capacidade desses componentes citados.

Alguns pontos já foram identificados para futuras melhorias deste trabalho e da

aplicação. As principais são:

● Comparar a arquitetura do trabalho com a arquitetura de componentização

Android da Netflix.

● Definir e implementar o conceito de Single Activity com o componente

Navigation.

● Implementar e liberar o acesso a um novo front-end que apresenta uma lista de

séries de TV, também construído utilizando técnicas de Micro Frontends.

● Implementar uma base de dados remota para cadastro, login e backup de

dados dos usuários.

● Realizar testes unitários em outros componentes de arquitetura Android.

REFERÊNCIAS

[1] DEITEL P.; DEITEL H.; DEITEL A. Android: Como Programar, 2 ed. Editora

Bookman, 2015.

[2] Android Developers: Guide to App Architecture. Disponível em:

<https://developer.android.com/jetpack/docs/guide>. Acesso em: 24 out. 2019.

[3] Android Developers: Arquitetura da Plataforma. Disponível em:

<https://developer.android.com/guide/platform>. Acesso em: 24 out. 2019.

[4] Android Developers: Application Fundamentals. Disponível em

<https://developer.android.com/guide/components/fundamentals.html>. Acesso em: 25

out. 2019.

[5] LOU, T. A comparison of Android Native App Architecture - MVC, MVP and MVVM.

2016, 57f. Tese de Mestrado - Universidade de Tecnologia de Eindhoven. Disponível

em: <https://pure.tue.nl/ws/portalfiles/portal/48628529/Lou_2016.pdf>. Acesso em 4

dez. 2019.

[6] Android Developers: Handling Lifecycles with Lifecycle-Aware Components.

Disponível em: <https://developer.android.com/topic/libraries/architecture/lifecycle>.

Acesso em: 27 out. 2019.

[7] Android Developers: ViewModel Overview. Disponível em:

<https://developer.android.com/topic/libraries/architecture/viewmodel>. Acesso em: 28

out. 2019.

[8] Android Developers: Visão Geral do LiveData. Disponível em:

<https://developer.android.com/topic/libraries/architecture/livedata>. Acesso em: 28

out. 2019.

[9] Android Developers: Salvar dados em um banco de dados local usando o Room.

Disponível em: <https://developer.android.com/training/data-storage/room/index.html>.

Acesso em: 28 out. 2019.

[10] SINGH, Rajinder. An Overview of Android Operating System and Its Security

Features. Int. Journal of Engineering Research and Applications. www.ijera.com,

ISSN : 2248-9622, Vol. 4. Fevereiro, 2014, p. 519-521. Disponível em:

<https://pdfs.semanticscholar.org/11f4/b8efd1a9af746f17ac5e8d6a789bd3c3a9b7.pdf>.

Acesso em: 25 out. 2019.

https://developer.android.com/jetpack/docs/guide
https://developer.android.com/guide/platform?hl=pt-br
https://developer.android.com/guide/components/fundamentals.html
https://pure.tue.nl/ws/portalfiles/portal/48628529/Lou_2016.pdf
https://developer.android.com/topic/libraries/architecture/lifecycle
https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/topic/libraries/architecture/livedata
https://developer.android.com/training/data-storage/room/index.html
https://pdfs.semanticscholar.org/11f4/b8efd1a9af746f17ac5e8d6a789bd3c3a9b7.pdf

[11] Android Developers: Activity. Disponível em:

<https://developer.android.com/reference/android/app/Activity>.Acesso em: 9 nov.

2019.

[12] Android Developers: Fragments. Disponível em:

<https://developer.android.com/guide/components/fragments>. Acesso em: 9 nov. 2019.

[13] Android Developers: Service. Disponível em:

<https://developer.android.com/reference/android/app/Service.html>. Acesso em: 12

nov. 2019.

[14] Android Developers: Provedores de Conteúdo. Disponível em:

<https://developer.android.com/guide/topics/providers/content-providers.html>. Acesso

em: 12 nov. 2019.

[15] Android Developers: Componentes da Arquitetura do Android. Disponível em:

<https://developer.android.com/topic/libraries/architecture>. Acesso em: 8 nov. 2019.

[16] Android Developers: Intents e filtros de Intents. Disponível em:

<https://developer.android.com/guide/components/intents-filters>. Acesso em: 30 nov.

de 2019.

[17] Android Developers: Como direcionar o usuário para outro aplicativo. Disponível em:

<https://developer.android.com/training/basics/intents/sending>. Acesso em: 30 nov.

2019.

[18] INTERNATIONAL CONFERENCES PERVASIVE PATTERNS AND APPLICATION

ANDROID PASSIVE MVC, 15, 2013. Android Passive MVC: a Novel Architecture

Model for Android Application Development… Universidade de Tecnologia de Troyes.

Disponível em:

<https://pdfs.semanticscholar.org/3ffa/594333883a56fc0519072b6615600ec03708.pdf>

. Acesso em: 2 dez. 2019.

[19] Android Developers: What the Fragment? - Google I/O 2016. Disponível em:

<https://youtu.be/k3IT-IJ0J98>. Acesso em: 5 dez. 2019.

[20] Android Developers: Single Activity: Why, When, and How (Android Dev Summit '18).

Disponível em: <https://youtu.be/2k8x8V77CrU>. Acesso em: 5 dez. 2019.

[21] Vasiliy: Netflix Shows The Future of Android Architecture. Disponível em:

<https://www.techyourchance.com/netflix-shows-the-future-of-android-architecture/>.

Acesso em 10 dez. 2019.

https://developer.android.com/reference/android/app/Activity
https://developer.android.com/guide/components/fragments
https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/topic/libraries/architecture
https://developer.android.com/guide/components/intents-filters?hl=pt-BR
https://developer.android.com/training/basics/intents/sending
https://pdfs.semanticscholar.org/3ffa/594333883a56fc0519072b6615600ec03708.pdf
https://youtu.be/k3IT-IJ0J98?t=242
https://youtu.be/2k8x8V77CrU?t=450
https://www.techyourchance.com/netflix-shows-the-future-of-android-architecture/

[22] droidcon SF: droidcon SF 2018 - Netflix's componentization architecture with RxJava +

Kotlin - Part II. Disponível em: <https://youtu.be/1cWwfh_5ZQs>. Acesso em 10 dez.

2019.

[23] Michael Geers: Micro Frontends - Extending the microservice idea to frontend

development. Disponível em: <https://micro-frontends.org>. Acesso em: 9 fev. 2020.

[24] Cam Jackson: Micro Frontends. Disponível em:

<https://martinfowler.com/articles/micro-frontends.html>. Acesso em 9 fev. 2020.

[25] GitHub: ednaldomartins - ArchitectureComponentApp. Diponível em:

<https://github.com/ednaldomartins/ArchitectureComponentApp>. Acesso em 30 Jan.

2020.

[26] The Movie Database: API Overview. Disponível em:

<https://www.themoviedb.org/documentation/api>. Acesso em 15 dez. 2019.

[27] Robolectric: test-drive your Android code. Disponível em: <http://robolectric.org>.

Acesso em 13 mar. 2020.

https://micro-frontends.org/
https://martinfowler.com/articles/micro-frontends.html
https://github.com/ednaldomartins/ArchitectureComponentApp
https://www.themoviedb.org/documentation/api
http://robolectric.org/

