UNIVERSIDADE FEDERAL DA PARAIBA
CENTRO DE INFORMATICA
GRADUACAO EM CIENCIA DA COMPUTACAO

COMPONENTES DE ARQUITETURA ANDROID E MICRO FRONTENDS:
DESCRICAO, IMPLEMENTACAO E COMPONENTIZACAO DE APLICATIVOS

EDNALDO MARTINS DA SILVA

Joao Pessoa

2020

EDNALDO MARTINS DA SILVA

COMPONENTES DE ARQUITETURA ANDROID E
MICRO FRONTENDS: DESCRICAO, IMPLEMENTACAO
E COMPONENTIZACAO DE APLICATIVOS

Monografia apresentada ao curso de
graduagdo em Ciéncia da Computagdo, do
Centro de Informdtica da Universidade
Federal da Paraiba, como requisito para a
obtencdo do grau de Bacharel em Ciéncia da

Computagio.

Orientador: Raoni Kulesza

Joao Pessoa

2020

Catalogagdo na publicagédo
Segdo de Catalogagdo e Classificagédo

5586c Silwva, Ednaldo Martins da.

Componentes de arguitetura android e micro
frontends: descrigdao, implementacioc e componentizagcdo
de aplicatives. / Ednalde Martins da Silva. - Jodo
Pessoa, 2020.

65 £. : il.

Orientacdoc: Racni Kulesza.
TCC (Graduacao) - UFPE/CI.

1. Sistema cperacioconal. 2. Andreoid. 3. Componentes.
4, Arguitetura android. 5. Aplicativo. &. Micro

Frontends. I. Kulesza, Racni. II. Titulo.

UFpPB/CI CDU 004.451.,

COMPONENTES DE ARQUITETURA ANDROID E MICRO FRONTENDS:
DESCRICAQ, IMPLEMENTACAO E COMPONENTIZACAO DE APLICATIVOS

EDNALDO MARTINS DA SILVA

Trabalho de Conclusdo de Curso de Ciéncia da Computacio intitulado Componentes
de Arguitetura Android ¢ Micro Frontends de autoria de Ednaldo Martins da Silva, aprovado

pela banca examinadora constituida pelos seguintes professores:

oy Loy

Professor Dr. Raoni Kulesza

Universidade Federal da Paraiba

L
Professor Dr. Carlos Eduardo Coelho Freire Batista

Universidade Federal da Paraiba

Professor Dr. Eudisley Gomes dos Anjos

Universidade Federal da Paraiba

Jodo Pessoa, 27 de Marco de 2020

Centro de Informatica, Universidade Federal da Paraiba
Rua dos Escoteiros, Mangabeira VII, Jodo Pessoa, Paraiba, Brasil CEP: 58058-600
Fone: +55 (83) 3216 7093 / Fax: +55 (83) 3216 7117

DEDICATORIA

Com gratidao, eu dedico este trabalho a Deus. Sem Ele eu ndo

sou nada.

Dedico este trabalho aos meus pais, José Soares (in memorian)
e Genalda Martins, e a meu irmdo, Gean Alves, que com grande
amor, me incentivaram e sempre acreditaram em mim durante a

jornada.

A minha noiva, amiga e psicéloga, Janayna Soares, por ter sido

meu suporte durante esse longo caminho.

AGRADECIMENTOS

Quero agradecer primeiramente a Deus que me fortaleceu, e me deu saide e
capacidade para realizar esse trabalho.

Agradeco aos meus familiares, que de alguma forma me ajudaram e estiveram ao meu
lado, seja na minha formagdo académica, ou formacdo como pessoa, portanto, foram
exemplos de pessoa para mim. Agradeco as minhas avds, Antonia Maria, e Maria das Neves;
e aos meus tios Concei¢do Alves, George Martins, Maria da Guia, Samuel José, Sebastido
Alves, Sérgio Martins e Silas Abrado.

Agradeco ao meu orientador e professor Raoni Kulesza por ter participado desse ciclo
e me ensinado, desde conhecimentos de introdu¢do a programacdo no primeiro periodo, a
realizagcdo do trabalho de conclusdo no dltimo periodo.

Agradeco a UFPB e o CI pela estrutura fornecida e pelos professores e demais
funcionarios ali presentes, que exerceram o seu papel, possibilitando a formagao de varios
alunos.

Por fim, agradeco também aos alunos que durante o curso estiveram presentes,
compartilhando seus conhecimentos e me ajudando ao longo dos anos, contribuindo para este
trabalho. Agradeco a Alef Berg, Alisson Galiza, Alexandre César, Bianca Amorin,

Cleanderson Lins, Danillo Medeiros, e Fabio Melo.

RESUMO

A plataforma Android foi lancada em outubro de 2008 e tornou-se posteriormente o sistema
mais difundido entre os dispositivos moveis. Todavia, os desenvolvedores de aplicativos para
Android, ao longo de anos, ndo encontraram um padrdo de arquitetura ideal para a
plataforma, e que seja fortemente recomendado para o desenvolvimentos das aplicagdes.
Padroes de arquitetura como Model-View-Presenter (MVP), ou Model-View-ViewModel
(MVVM), sempre foram questiondveis, simplesmente por dificultarem a manuten¢do, ou
geracdo de testes unitdrios para o aplicativo. Nesta pesquisa serdo apresentados alguns
componentes de arquitetura Android que foram anunciados na Google I/0 2017, os quais s@o
capazes de tornar a arquitetura dos aplicativos robusta. Para demonstrar a capacidade desses
componentes, um aplicativo foi desenvolvido e, além disso, técnicas de Micro Frontends
foram usadas, com o objetivo de construir uma aplicacdo Android, com componentes,

testavel, e melhor de manter.

Palavras-chaves: Android. Componentes. Arquitetura. Aplicativo. Micro Frontends.

ABSTRACT

The Android platform was released in October 2008, and later became the most widespread
system among mobile devices. However, the Android application developers, over the years,
haven't found an ideal architectural pattern for the platform, and they are strongly
recommended for application development. Android architecture patterns like
Model-View-Presenter (MVP), or Model-View-ViewModel (MVVM), have always been
questionable, simply because they make it difficult to maintain or generate unit tests for the
application. This research will present some Android architecture components that were
announced at Google I / O 2017, which are capable of making application architecture
stronger. To demonstrate the capability of these components an application was developed,
and then, Micro Frontends techniques were used, to build android application components,

testable, and maintainable.

Key-words: Android. Components. architecture. App. Micro Frontends.

Figura 1:
Figura 2:
Figura 3:
Figura 4:

LISTA DE ILUSTRACOES

Estados do ciclo de vida da atividade e retornos de chamada
Diagrama dos médulos dos componentes de arquitetura
Vida util da ViewModel durante execucdo de uma Activity

Implementagdo independente usando Micro frontends

Figura 5: Arquitetura do aplicativo Libflix

Figura 6:
Figura 7:
Figura 8:
Figura 9:

Figura 10:
Figura 11:
Figura 12:
Figura 13:
Figura 14:
Figura 15:
Figura 16:
Figura 17:
Figura 18:
Figura 19:
Figura 20:
Figura 21:
Figura 22:
Figura 23:
Figura 24:
Figura 25:
Figura 26:
Figura 27:
Figura 28:
Figura 29:

Representacdo da camada Presentation
Representacdo da camada Domain
Representacdo da camada Data

Splash screen

Cédigo - Lista do tipo LiveData recebe os dados e notifica controlador
Requisi¢do e carregamento das informacdes dos filmes com sucesso
Requisi¢do e retorno de erro apds a tentativa de comunicag¢do com o servidor
Erro e sucesso apds duas tentativas de comunica¢do com o servidor

Cédigo - Atualizando pagina da lista de filmes

Cadigo - Verificando se o filme estd na base de dados local

Cédigo - Objeto do tipo LiveData recebe os dados e notifica observador
Selecionando filme e requisitando dados na base de dados remota
Selecionando filme e abrindo o filme a partir da base de dados local

Cédigo - Verificar se € preciso deletar ou salvar filme na base de dados local
Marcando um filme como favorito

Marcando filme como favorito, e fechando aplicativo posteriormente
Buscando por filmes na base de dados remota

Cadigo - Realizando busca por filmes na API

Realizando uma busca na base de dados local

Cédigo - Realizando busca e aplicando nova lista na lista de apresentacdo
Componentizacdo da Activity

fragment_film_list.xml usado pelos Fragments que exibem a lista de filmes
activty_main.xml Activity principal contém um toolbar.xml em seu front-end

Cdédigo - Ferramenta de testes e componentes testados

19
24
26
32
39
40
41
42
44
46
46

48
49
49
50
50
51
53
53
54
56
57
57
58
59
60
60
61

Figura 30: Cddigo - Fun¢des chamadas antes de iniciar e ao finalizar os testes.
Figura 31: Cédigo - Teste do insert e get

Figura 32: Cddigo - Teste do clear

Figura 33: Cddigo - Teste do update

61
62
62
62

API
OS
DAO
JSON
MVC
MVP
MVVM
RF
RNF
TMDB
URI
VM
XML

LISTA DE ABREVIATURAS E SIGLAS

Application Programming Interface
Operating System

Data Access Object
JavaScript Object Notation
Model-View-Controller
Model-View-Presenter
Model-View-ViewModel
Requisitos Funcionais
Requisitos Nao Funcionais
The Movie Database
Uniform Resource Identifiers
Virtual Machine

Extensible Markup Language

SUMARIO

1 INTRODUCAO
1.1 DEFINICAO DO PROBLEMA
1.2 OBJETIVOS
1.2.1 Objetivo Geral
1.2.2 Objetivo Especifico
1.3 MOTIVACAO
1.4 GRUPO ALVO
1.5 ESTRUTURA DO TRABALHO

2 CONCEITOS GERAIS
2.1 ARQUITETURA ANDROID
2.2 COMPONENTES
2.2.1 Activity
2.2.1.1 Ciclo de vida
2.2.1.2 Comunicag¢ao
2.2.2 Services
2.2.3 Broadcast Receivers
2.2.4 Content Providers
2.3 COMPONENTES DE ARQUITETURA ANDROID
2.3.1 Visao Geral
2.3.1.1 ViewModel
2.3.1.2 LiveData
2.3.1.3 Room
2.3.2 Discussao
2.3.2.1 Vantagens
2.3.2.2 Desvantagens
2.3.2.3 Melhorias
2.4 MICRO FRONTENDS
2.4.1 Atualizacao do front-end
2.4.2 Independéncia entre os front-ends
2.4.3 Implantagdo do front-end
2.4.4 Autonomia das equipes

3 O APLICATIVO LIBFLIX
3.1 VISAO GERAL
3.2 LISTA DE REQUISITOS
3.2.1 Requisitos Funcionais
3.2.1.1 [RFO1] Solicitar Lista de Destaques

14
14
15
15
15
15
16
16

17
17
18
18
19
21
21
22
22
22
23
25
26
27
28
28
29
30
30
32
32
32
32

33
33
33
33
33

3.2.1.2 [RFO2] Apresentacdo da Lista de Filmes da Base de Dados Remota
3.2.1.3 [RFO3] Apresentacao da Lista de Filmes da Base de Dados Local
3.2.1.4 [RF04] Apresentacdo do Cartdes do Filme
3.2.1.5 [RFO5] Mudancga de Pagina
3.2.1.6 [RF06] Pesquisa na Base de Dados Remota
3.2.1.7 [RFO7] Pesquisa no Banco de Dados Local
3.2.1.8 [RF08] Chamar Tela de Detalhes do Filme
3.2.1.9 [RF09] Adicionar Filmes aos Favoritos
3.2.1.10 [RF10] Remover Filmes dos Favoritos
3.2.1.11 [RF11] Abrir Homepage do Filme
3.2.2 Requisitos Nao Funcionais
3.2.2.1 [RNFO1] Retornar Lista Vazia
3.2.2.2 [RNFO02] Apresentacdo dos Botdes de Mudanga de Pagina
3.2.2.3 [RNF03] Buscar Filme nas Bases de Dados
3.2.2.4 [RNF04] Exibir Detalhes do Filme
3.2.2.5 [RNFO05] Conexdo Com Internet
3.2.2.6 [RNF06] Tentativas de Requisi¢ao
3.2.2.7 [RNF07] Comunica¢do com a AP do TMDB
3.2.2.8 [RNFO8] Status do Carregamento da Lista
3.2.2.9 [RNF09] Compatibilidade do Aplicativo

3.3 ARQUITETURA DO APLICATIVO

3.3.1 As camadas da arquitetura
3.3.2 Presentation

3.3.3 Domain

3.3.4 Data

4 APLICABILIDADE DOS COMPONENTES DE ARQUITETURA
4.1 OS COMPONENTES GRAFICOS E A INTERFACE DE USUARIO

4.1.1 Splash Screen
4.1.2 A¢ao dos Componentes Arquiteturais durante a requisi¢ao da lista de filmes
4.1.2.1 Carregando a lista de destaques
4.1.2.2 Problemas com o carregamento dos filmes
4.1.2.3 Nova tentativa de requisi¢do ou atualizacdo dos dados
4.1.3 A¢ao dos Componentes Arquiteturais ao selecionar um filme
4.1.3.1 Abrindo o Filme a partir da base de dados remota
4.1.3.2 Abrindo o Filme a partir da base de dados local
4.1.4 Acao dos Componentes Arquiteturais ao salvar um filme localmente
4.1.4.1 Salvando normalmente
4.1.4.2 Salvando em situacdes inesperadas

4.1.5 A¢ao dos Componentes Arquiteturais ao buscar filmes

34
34
34
34
34
34
35
35
35
35
35
35
36
36
36
36
36
37
37
37
37
37
39
40
41

43
43
43
44
45
46
47
48
49
50
51
52
53
54

4.1.5.1 Buscar filme na base de dados remota
4.1.5.2 Buscar filme na base de dados local
4.2 APLICANDO MICRO FRONTENDS
4.3 TESTE DA APLICACAO

5 CONCLUSAO E TRABALHOS FUTUROS
REFERENCIAS

55
56
57
59

63
64

1 INTRODUCAO

Desde o momento em que os dispositivos méveis comecaram a ser lancados, o acesso
a esses aparelhos cresceu de forma rdpida, principalmente quando se trata de smartphones
com o sistema operacional Android. O sistema operacional Android, lancado em outubro de
2008 [1], tem evoluido a cada ano e vem sendo moldado para melhor atender aos usudrios e
desenvolvedores. Novos componentes para constru¢ao dos aplicativos estdo sendo testados e
oficializados, capazes de facilitar o desenvolvimento de aplicativos e torna-los robustos [2].

Os novos componentes apresentados sao recomendados idealmente em futuros
aplicativos desenvolvidos, permitindo que uma arquitetura planejada seja criada levando em

conta a capacidade desses componentes e a forma como se comportam [2].

1.1 DEFINICAO DO PROBLEMA

Fato é que a maior parte das arquiteturas usadas para desenvolver aplicagdes méveis
para dispositivos Android ndo vém tendo os melhores resultados e experiéncia, e acabam
apresentando dificuldades para testar e modular a aplicacdo. A arquitetura MVC
(Model-View-Controller) e suas derivagdes, nao foram criadas pensando em uma solugdo para
construir aplicacdes Android. Esses padrdes arquiteturais acabaram por tornar-se os modelos
mais utilizados para desenvolver aplicativos Android, e isso tem sido um problema na hora de
desenvolver, corrigir erros, € manter esses aplicativos atualizados [5].

Para evitar e reduzir a quantidade de problemas advindos da arquitetura do aplicativo,
¢ sugerido seguir um novo modelo de arquitetura sugerido pelo Android Developers, que
recomenda fortemente usar os novos componentes de arquitetura lancados, portanto, ird
facilitar a criacdo desses aplicativos, capazes de torna-los reativo e responsivos na sua

apresentacdo, funcional, e seguro em relacdo ao armazenamento dos dados [2].
1.2 OBJETIVOS

1.2.1 Objetivo Geral

O aspecto geral deste trabalho é apresentar um modelo de arquitetura idealizado para
criacdo de aplicacdes Android, baseado em componentes, a qual possui em sua estrutura os

novos componentes de arquitetura Android.

1.2.2 Objetivo Especifico

Em relacdo aos aspectos mais especificos deste trabalho, é objetivado:

e Apresentar e descrever os novos componentes de arquitetura Android

recomendados pelo Android Developers.

o

o

o

o

ViewModel.
LifeCycle
LiveData.

Room.

e Aplicar os conceitos descritos na elaboragdo de um aplicativo baseado na nova

arquitetura recomendada.

o

o

Identificar e especificar os requisitos funcionais e nao funcionais.

Apresentar o projeto de arquitetura de alto nivel.

e Criar um aplicativo com base no modelo de arquitetura elaborado.

1.3 MOTIVACAO

o

Apresentar resultados da interacdo entre 0os componentes arquiteturais
e interface do usudrio.
Utilizar técnicas de Micro Frontends para aprimorar a

componentizacio da arquitetura elaborada.

Um fator importante para esta pesquisa, € usar um novo modelo de arquitetura para

aplicativos Android, que possa prover solugdes para problemas existentes em outras

arquiteturas que nao foram bem adaptadas, e que ainda sdo utilizadas atualmente, devido a

inexisténcia de modelos conhecidos e difundidos na comunidade de desenvolvedores

Android.

1.4 GRUPO ALVO

Essa pesquisa € destinada aos desenvolvedores de aplicagdes Android, principalmente

aqueles que estdo ingressando nesse mundo, ou buscando novas tecnologias. A pesquisa

descreve os beneficios em usar a nova arquitetura recomendada e seus componentes

arquiteturais, como também apresenta os resultados obtidos.

1.5 ESTRUTURA DO TRABALHO

Este trabalho estd dividido em 4 partes. A primeira parte é a sessdo atual, o qual é
especificado o escopo do trabalho de maneira introdutdria, para ter conhecimento do que ha
de ser apresentado neste trabalho. Na secdo seguinte, os principais conceitos sobre a
arquitetura Android, e componentes arquiteturais serdo descritos, além de uma breve
explanacdo sobre Micro Frontends. Na sec¢do 3, um aplicativo serd elaborado e especificado,
baseado na arquitetura de componentes Android. A secdo 4 apresenta os conceitos da secao 2
de forma pratica na aplicacdo descrita na secdo 3. Nela o aplicativo construido ¢é

demonstrado usando os componentes arquiteturais.

2 CONCEITOS GERAIS

Esta secdo descreve as caracteristicas de uma aplicacdo Android, como essa aplicacdo
¢ estruturada dentro do préprio sistema Android, e descreve como as partes da arquitetura

compdem o sistema e as aplicagdes.

2.1 ARQUITETURA ANDROID

7z

A plataforma Android € um sistema Linux multiusudrio, onde os diversos
componentes e servicos da plataforma sdo desenvolvidos em C e C++, e um conjunto de
outros recursos estdo disponibilizados por APIs programadas utilizando a linguagem de
programacdo Java. A plataforma estd dividida em quatro camadas principais: Kernel do
Linux, Bibliotecas nativas, Estrutura da Java API, e Aplicativos do sistema [3].

Como foi dito, a plataforma Android é um sistema Linux multiusudrio. Cada
aplicativo é considerado um usudrio diferente, onde cada um desses aplicativos sdo
executados dentro de uma mdaquina virtual (ou simplesmente VM) exclusiva, de modo que
cada um destes receba um cddigo individual de usudrio do Linux. O Android inicia o
processo quando se faz necessario executar algum componente do aplicativo, encerrando-o de
forma automadtica quando o sistema precisa abrir espaco na memdria para outros aplicativos,
ou quando ¢ dispensado pelo usuério do dispositivo [4].

De forma individual o aplicativo é ativado dentro da sandbox de seguranca. A
sandbox € usada para executar aplicativos ndo testados vindos de fontes desconhecidas ou ndo
confidveis, ou seja, de fora da loja de aplicativo android da google (Play Store). Durante essa
execucdo, o acesso a recursos do dispositivos sdo limitados, logo a seguranca torna-se um
pouco mais reforcada contra ameacgas que possam danificar o dispositivo [10].

Entretanto € possivel que dois aplicativos compartilhem o mesmo cédigo de usudrio
Linux, sendo assim, um pode ter permissdo para acessar arquivos de um outro, podendo
compartilhar também a mesma VM. A plataforma Android implementa o principio de
privilégio minimo. Neste caso, o sistema operacional (OS) Android dd permissdo aos

aplicativos, apenas para acessar 0os componentes necessarios para o funcionamento correto da

aplicacdo. O aplicativo ndo pode acessar partes do sistema o qual ndo lhe € permitido [4].

2.2 COMPONENTES

De modo geral as aplicagdes Android t€ém uma estrutura complexa e baseada em
componentes. Levando em conta que as aplicacdes desenvolvidas para computadores
geralmente sdo executados como um unico processo monolitico, podemos enxergar de
maneira clara (principalmente no uso pratico), que aplicagcdes para dispositivos Android
possuem diversos componentes. Dentre estes temos, activities, fragments, services, content
providers, e broadcast receivers [2].

A alternancia de aplicativos € comum no sistema Android [2], sendo assim, € visivel a
componentizacdo dos aplicativos no uso prético do sistema. Um exemplo simples de entender
seria, um aplicativo de rede social genérico qualquer, que dispde a opcao de realizar uma
postagem com foto em sua rede social, e essa funcdo do aplicativo aciona o aplicativo de
camera padrdo do sistema, e apds retornar do aplicativo de cAmera o usudrio tem disponivel a
foto tirada, podendo posti-la em sua rede social (levando em conta que o usudrio tirou uma
foto).

Os componentes sdo como os blocos de construcdo para o aplicativo Android, onde
cada componente ¢ um mecanismo de interacio entre o aplicativo e 0 usuério, ou o sistema
[4]. Como dito antes, hd quatro tipos de componentes: Activity (e Fragment), Services,

Content Providers, e Broadcast receivers; e cada um deles t€m uma finalidade diferente.

2.2.1 Activity

Uma Activity € um mecanismo de entrada criado para interagir com o usudrio [4]. De
forma simples e direta, a Activity € uma tela inica com interface de usudrio para apresentacdo
de informagdes e (ou) entrada de dados.

As Activities sdo armazenadas em uma pilha de Activities, e geralmente a Activity em
execucdo € a que estd no topo desta pilha, pois pode ocorrer de uma ou mais Activities
estarem em execucao, e visiveis na tela. Quando uma Activity € iniciada, ela € alocada no topo
da pilha de Activities, e a Activity que antes estava no topo da pilha, passard a ficar abaixo
desta nova Activity. Ainda € possivel que mais de uma Activity esteja visivel na tela, mas

apenas a que estd em execucao permanece no topo [11].

2.2.1.1 Ciclo de vida

Para compreender melhor essa pilha de Activities, deve-se compreender que uma
Activity possui estados, e como esses estados definem a forma como a aplicacdo estd se
comportando no sistema. A imagem abaixo mostra o ciclo e estado das Activities. Os
retangulos com as laterais curvadas representam os estados principais de uma Activity, € as

setas com nomes entre os estados, representam os métodos de chamados para a transicao de

estados:
[Retomado]
a atividade entra em | a atividade sai de
foco, e passa a —% onResume onPause <«— foco, deixando de
interagir com o usuario | i interagir
[Comecado]
a atividade é iniciada, T | a atividade € parada
e se tornara visivel —3 onStart onStop <€— € torna-se invisivel
ao usuario para o usuario
Criado
chamado na primeira T | chamado uma Unica
vez que a atividade ——3 onCreate onDestroy €— vez quando a

€ iniciada | atividade é destruida

Inicializado

Figura 1: Estados do ciclo de vida da atividade e retornos de chamada'

Ao inicializar uma Activity, o método onCreate ¢ chamado para que ela possa ser
criada, e entrar no estado criado, logo, nesse estado a Activity estd criada. Nesse estado a
Activity ainda ndo estd visivel e nem em foco, portanto ndo pode interagir com o usudrio. Para
a Activity se tornar visivel o método onStart é executado, e em seguida o método onResume
coloca-a em foco, permitindo que o usudrio interaja com ela. Apds iniciada, ela é colocada no
topo da pilha. Apds colocada no topo da pilha, a Activity entra em execugdo e permanece em
foco até que uma nova forma de interacao seja chamada. Também € possivel que uma Activity

transparente ou menor que o tamanho real da tela do dispositivo esteja em execu¢do, mesmo

! Disponivel em:

https://video.udacity-data.com/topher/2018/November/5be286d0_14-1803sc-a-share-dialog-and
-onpause-onresume-border/14-1803sc-a-share-dialog-and-onpause-onresume-border.png. Acesso em janeiro de
2020.

https://video.udacity-data.com/topher/2018/November/5be286d0_l4-1803sc-a-share-dialog-and-onpause-onresume-border/l4-1803sc-a-share-dialog-and-onpause-onresume-border.png
https://video.udacity-data.com/topher/2018/November/5be286d0_l4-1803sc-a-share-dialog-and-onpause-onresume-border/l4-1803sc-a-share-dialog-and-onpause-onresume-border.png

que outras Activities estejam também visiveis na tela. Uma Activity é considerada visivel caso
ela esteja visivel para o usudrio na tela do dispositivo, ou esteja sobreposta por outra Activity
ou forma de interacdo, e nao esteja no topo da pilha. Nesse modo, a Activity estd criada, mas
pode ser parada, tornando-se um processo alvo a ser destruido a qualquer instante pelo
sistema, devido a falta de memoria. Se a Activity for oculta ou parada pelo método onStop,
ela também pode ser destruida por ter encerrado as suas tarefas [11].

Um Fragment possui o comportamento similar a uma Activity para o usudrio, mas de
forma modularizada, pois um Fragment pode dividir a tela com outros Fragments, como
também o mesmo espaco da tela de forma alternada durante uma execu¢do. Além disso um
Fragment fica contido em uma Activity e tem seu ciclo de vida dependente dessa Activity,
todavia o contrdario ndo € verdade. Vale ressaltar que o ciclo de vida de um Fragment, nao
depende de outros Fragments, mesmo que estes pertencam a mesma Activity e dividam o
mesmo espaco nela [12].

O sistema Android faz o gerenciamento do ciclo de vida dos controladores de
interface de usudrio (Activity ou Fragment), e portanto pode decidir quando destrui-los ou
recria-los. Ao destruir ou recriar, todos os dados referentes a interface de usuario serido
perdidos [7]. E possivel usar o método onSavelnstanceState() para salvar uma pequena
quantidade de dados, mas esse método ndo deve ser utilizado para guardar uma grande
quantidade de informagdes. Outros pontos importantes sobre os controladores que devem ser
citados sao [7]:

e frequentemente precisam realizar solicitagdes assincronas.

e gerenciam muitas solicitagdes e garantem que essas solicitagdes sejam limpas
pelo sistema ap0s a destrui¢ao para evitar possiveis vazamentos de memoria.

e precisam que o gerenciamento receba bastante manutengao.

e desperdicam recursos quando é recriado, pois pode ser necessdrio fazer novas
solicitacdes ja realizadas anteriormente.

e ndo devem conter légicas de negdcios.

e ndo devem ser responsdveis por carregar ou salvar dados, tanto localmente,

quanto remotamente.

A separacdo de conceitos € o mais importante principio a seguir aqui. Um erro

comum cometido € escrever todo o cddigo ou parte do cddigo, que deveria estar na logica de

negocios, dentro da Activity. Classes baseadas em interface de usuario devem conter apenas
interacdes entre o usudrio e o aplicativo, como entrada e saida de dados. Fazendo isso t€ém-se
menos problemas com a aplicacdo e seu ciclo de vida [2], pois 0 OS Android pode remover
uma Activity ou Fragment da memoria principal sempre que necessario, devido a novas

interagdes ou por falta de memoria.

2.2.1.2 Comunicag¢ao

A comunicagdo entre componentes e aplicagdes Android acontecem por intermédio
do Intent. O Intent € um objeto de mensagem, ou simplesmente mensagens que possibilitam a
comunicacdo entre componentes do aplicativo, onde um componente do aplicativo pode
solicitar a funcionalidade de outro componente do Android, ou do préprio aplicativo. A
comunica¢do pode ser usada para iniciar uma atividade (Activity), um servico (Service), ou
fornecer uma transmissao (Broadcast) [16].

Existem dois tipos de Intent, a explicita, e a implicita. A Intent explicita ndo indica de
forma clara qual componente do sistema deve ser chamado, e geralmente € utilizado para
iniciar um componente do préprio aplicativo em execugdo. De outro modo, a Infent implicita
ndo deixa especificado para o sistema qual componente deve ser solicitado, permitindo que
qualquer componente de outra aplicacdo receba a comunicacio [16].2

Geralmente o Intent possui dados para a acdo. Esses dados podem ser direcionados
para diversas agOes distintas, ¢ podem conter um nimero de telefone que serd usado para
realizar uma chamada telefonica, ou até mesmo uma mensagem que serd enviada para um
e-mail. Para realizar essas acdes faz necessdrio o uso de Identificadores de Recursos
Uniformes (URI), que referencia os dados a serem aproveitados e o seu tipo. Declarar o tipo
desses dados é fundamental para realizar essa comunicacdo, pois um nimero de telefone nao

deve ser enviado para uma Activity que € responsavel apenas por abrir imagens [17].

2.2.2 Services

Services ¢ um componente para lidar com tarefas que precisam ser executadas de
forma silenciosa. Um Service € muito utilizado para realizar processos remotos ou operagdes
de longa duracdo, como uma transferéncia de arquivo, de modo que esta execuc¢do ndo se

comporta de forma tdo visivel para o usudrio do dispositivo [4]. Um Service faz parte do todo

2 Declarar intent filter no AndroidManifest.xml do aplicativo.

de um aplicativo, portanto ndo é um processo separado de uma aplicacdo, e sua execucao é
realizada no mesmo processo do aplicativo ao qual pertence [13].

Os Services estao divididos em dois tipos [4], os que realizam tarefas iniciadas pelo
usudrio de forma indireta, e os que operam em segundo plano de forma invisivel, sem que o
usudrio saiba. Um exemplo para a primeira situacdo seria, um aplicativo de gerenciamento de
arquivo, que o usudrio pode decidir transferir arquivos de uma pasta para outra, e optar por
deixar que esta tarefa seja executada de forma oculta, mas permane¢a em primeiro plano no
sistema apenas de forma visivel como ponto de notificacdo, enquanto ele navega por outras
Activities. Para a segunda situacdo, um aplicativo para backup de fotos ou arquivos, que
periodicamente realiza suas tarefas quando necessério, em segundo plano e sem que o usudrio

perceba.

2.2.3 Broadcast Receivers

O Broadcast Receiver ¢ um componente do sistema, e que transmite eventos ao
aplicativo que ndo estejam em execu¢do no momento. A fun¢do desse componente é fazer
com que o aplicativo ndo precise permanecer em execucio at¢é o momento em que ele seja
necessario. Um exemplo seria uma notificacdo avisando que a bateria do dispositivo estd com

pouca carga [4].

2.2.4 Content Providers

Os Content Providers ou provedores de conteido, encapsulam os dados e definem
mecanismos para acessar sistemas de arquivos, permitindo que aplicativos possam armazenar
os dados e compartilhd-los com outras aplicacdes [14]. A partir desse compartilhamento é
possivel consultar ou modificar os dados, caso o provedor permita. O préprio OS Android
oferece um content provider para gerenciar os dados dos contatos do usudrio. Deste modo

qualquer aplicativo com permissao para acessar os contatos pode consultar esses dados [4].

2.3 COMPONENTES DE ARQUITETURA ANDROID

Nesta secdo, veremos como é recomendado a criagdo de aplicativos Android, e sua
estrutura usando a Android Architecture Components (componentes de arquitetura Android).

Essa arquitetura serve para diferentes tipos de aplicagdes. Vale ressaltar que essa arquitetura é

recomendada, mas ndo torna necessariamente as outras arquiteturas utilizadas para criar

aplicativos android obsoletas ou defasadas, nem tdo pouco ruins.

2.3.1 Visao Geral

A principio os componentes de arquitetura Android utilizam-se de uma variedade de
bibliotecas, que juntas tornam o aplicativo robusto, testdvel e de facil manuten¢do [15]. Para
melhor atender esses requisitos, é recomendado o uso de pelo menos 4 bibliotecas que vao

dar estrutura para o funcionamento do aplicativo, que sdo: LifeCycle, LiveData, ViewModel e
Room.

Antes de tudo é preciso saber o que cada uma dessas bibliotecas podem trazer como
beneficio, e como elas devem ser estruturadas para a criagdo do aplicativo. As principais
caracteristicas desses componentes sio [2]:

e LifeCycle: Gerencia o ciclo de vida do aplicativo, auxiliando os componentes
Activity e Fragment a manterem as suas configuracdes salvas, sendo assim,
evitando perda de dados, e tornando o carregamento dessas informacdes mais
facil [15].

® LiveData: Deve ser usado para criar objetos que podem notificar seus
observadores quando eles sdo alterados, ou quando hd alteragdes feitas no
banco de dados [15]. Esse componente trabalha em conjunto com o LifeCycle,
reconhecendo o ciclo de vida da aplicagdo [8].

e ViewModel: E responsdvel por armazenar os dados presentes na interface de
usudrio, que nao sdo descartados quando um aplicativo € rotacionado, ou para
guardar dados que ndo estejam relacionados as configuragdes da Activity e
Fragment [15].

® Room: Guarda os dados das aplicacdbes em execucdo em cache no
armazenamento do dispositivo [9]. Essa ferramenta faz um mapeamento de
objetos SQLite e recomenda-se ser utilizado para retornar um LiveData [15].

Como ja foi dito, esses componentes sao importantes para o correto funcionamento do
aplicativo, e durante a execucdo da aplicacdo eles interagem entre eles apenas com moddulos
de nivel préximo.

A figura 2 ilustra o funcionamento dos componentes e divisio dos moédulos na

Android Architecture Components, ¢ como cada um desses mddulos trocam informacgdes

quando a aplicacdo estd em execuc¢do. Apds construido, cada componente depende apenas do

modulo de que estd logo abaixo de si [2].

ViewModel 'l LiveData 3

Y

Modelo Fonte de Dados Remota

Figura 2: Diagrama dos médulos dos componentes de arquitetura®

Seguindo essa arquitetura, as Activities e Fragments que fazem parte de um unico
modulo, dependem apenas do mdédulo logo abaixo, a ViewModel. Além disso, o mddulo
Repository pode estar ligado a outros dois modelos de dados, um modelo dados armazenado
localmente, e outro remotamente [2]. A persisténcia de dados local é importante para que o
aplicativo continue funcionando mesmo que o usudrio esteja off-line.

Essa estrutura torna a aplicacdo mais consistente € melhor de se utilizar, pois mesmo
que o aplicativo ndo esteja em segundo plano, ou que o aplicativo ja tenha sido destruido da
memoria principal pelo sistema por falta de espaco, ele serd reaberto mais rapidamente,

restaurando as informagdes do usudrio a Activity, primeiramente trazendo esses dados da

? Disponivel em: https://developer.android.com/topic/libraries/architecture/images/final-architecture.png. Acesso
em janeiro de 2020.

https://developer.android.com/topic/libraries/architecture/images/final-architecture.png

persisténcia local, e posteriormente atualizando as informacdes através dos dados

armazenados remotamente, caso esses dados estejam desatualizados [2].

2.3.1.1 ViewModel

A classe ViewModel foi criada para encapsular e gerenciar dados referente a interface
de usudrio, ou seja, armazenar e atualizar dados presentes nas Activities € Fragments. 1sso
permite que a ViewModel consiga manter os dados intactos mesmo apds alteracdes na
configuracdo do dispositivo feitas pelo sistema Android. O ciclo de vida de um Objeto do tipo
ViewModel existe na memoria até que um ciclo de vida de uma Activity ou Fragment seja
finalizado [7].

Como ja foi dito antes, o ciclo de vida de um Fragment nao é dependente de outros
Fragments, e eles podem compartilhar um espaco na mesma Activity [12]. Todavia um
Fragment ndo tem conhecimento de outro Fragment, e portanto o ViewModel pode surgir
como uma solugdo para esse problema, pois, dois Fragments distintos podem ter um mesmo
objeto do tipo ViewModel no seu escopo. Sendo assim, dois ou mais Fragments podem
compartilhar o mesmo ViewModel a fim de gerar uma comunicacdo entre eles [7]. A
ViewModel esta logo abaixo do médulo que contém a Activity e Fragment, sendo assim, ela
nao pode ter conhecimento desses componentes [2].

Um objeto do tipo ViewModel fornece dados para uma Activity ou Fragment. Esse tipo
de objeto contém logica de negdcios para manipulacdo de dados, logo ele deve se comunicar
com componentes existentes no model, para que possa carregar e modificar dados através de
encaminhamentos solicitados pelo usudrio do dispositivo [2].

Os dados do objeto do tipo ViewModel sdao encapsulados de maneira automatica
quando acontecem alteracdes nas configuracdes do sistema, com o objetivo de que eles sejam
rapidamente recuperados quando forem solicitados novamente. Um bom exemplo sempre
utilizado € manter esses dados a salvo mesmo apds uma rotacdo de tela [7]. A figura 3

demonstra como iSso ocorre.

Activity Criada onCreate

onStart
> onResume >
Rotacionar
Activity
onPause
onStop >
onDestroy
Vida Gtil da
onCreate ViewModel
onStart
> onResume >
Finalizar
Activity
onPause
> onStop >
onDestroy
Activity
Finalizada onCleared

Figura 3: Vida util da ViewModel durante execugio de uma Activity”

A ViewModel trabalha em conjunto com o LiveData e o Room. O Room notifica o
LiveData quando ha alteragdes no banco de dados, enquanto o LiveData é responsavel por

atualizar os dados apresentados na interface de usuério [7].

2.3.1.2 LiveData

A classe LiveData € usada para armazenar dados observaveis [8]. O LiveData respeita
o ciclo de vida dos componentes do aplicativo, como Activities, Fragments e Services. Esta
classe pode ser usada por outros componentes para monitorar alteracdes nos objetos [2]. O
LiveData atualiza apenas observadores de componentes de aplicativos que estdo ativos, onde

o ciclo de vida desses componentes estdo no estado “comecado” ou “retomado” [8].

* Disponivel em: https://developer.android.com/images/topic/libraries/architecture/viewmodel-lifecycle.png.

Acesso em janeiro de 2020..

https://developer.android.com/images/topic/libraries/architecture/viewmodel-lifecycle.png

O LiveData permite que os Observadores da Activity ou Fragment facam parte das

atualizacdes, e sempre que um objeto LiveData € alterado, a interface de usudrio € atualizada

automaticamente. Existem vérias vantagens em usar o LiveData, como [8]:

Garantir que a interface de usudrio esteja sempre atualizada, pois o LiveData
notifica os objetos Observer quando eles passam por mudancas no seu ciclo de
vida. Quando essa mudanga ocorre, os dados mais recentes sdo recebidos pelo
componente de interface de usudrio. Um Observer é considerado ativo quando
seu estado é “comecado” ou “retomado”, e inativo quando seu estado €
“parado”.

Nao permitir vazamento de memdria, porque o objeto Observer é limpo da
memoria quando o ciclo de vida do componente de interface de usudrio é
destruido, devido ao fato dele estd atrelado ao objeto LifeCycle.

Nao ocorrerdo erros por partes de Activities e Fragments devido a inatividade,
portanto, o objeto LiveData ndo ird notificar esses componentes de interfaces
de usudrio. O LiveData remove de forma automatica o Observer quando a
Activity ou Fragment esta inativo.

Evitar manipulacdo manual do ciclo de vida dos componentes da interface de
usudrio, pois o proprio LiveData é responsavel por esse gerenciamento.
Trabalhar em conjunto com ViewModel, deste modo, um componente de
interface de usudrio, terd os seus dados atualizados sempre que for recriado
(por motivos de alteracdes nas configuracoes do sistema). Quando o
componente de interface de usudrio € recriado, ele recebe a mesma instancia

do objeto ViewModel.

Ainda € possivel usar o padrdo de projeto Singleton no objeto do tipo LiveData para

que qualquer Observer que necessite do LiveData, possa acessa-lo sempre que for preciso,

conectando o objeto LiveData apenas uma vez ao servico do sistema, oferecendo mais

consisténcia de dados [8].

2.3.1.3 Room

Seguindo o modelo da Android Architecture Component modelado na figura 2, O

repositorio pode ser dividido em outros dois ou mais médulos, 0 Model (para armazenamento

de dados local, o qual a biblioteca Room é a recomendado a ser usada), e o Remote Data

Source (para recuperagdo de dados em armazenamento remoto), € ambos os médulos sdo
usados para recuperar e atualizar os dados que sdo visualizados no componente de interface
de usuario [2].

Os dados do componente de interface de usudrio sdo recuperados imediatamente
quando disponiveis localmente pelo Model. Todavia, como foi visto no topico 2.2.1, um
componente de interface de usudrio pode ser destruido a qualquer momento, e quando isso
ocorre, o aplicativo precisa buscar os dados remotamente através do médulo Remote Data
Source. Nao é correto simplesmente manter esses dados solicitados remotamente em cache,
pois isso pode ocasionar problemas relacionados a inconsisténcia de dados, portanto, a
aplicacdo pode recarregar o componente de interface de usuario com dados salvos em cache,
e esses dados podem estar desatualizados. Isso poderia fazer com que o aplicativo
apresentasse duas versoes diferentes dos dados em uma mesma execugdo [2].

A melhor maneira para conter esses problemas é usando um modelo persistente, e a
biblioteca Room é uma recomendacgdo a se seguir. Com essa biblioteca os aplicativos podem
gerenciar melhor uma maior quantidade de dados persistentes localmente, onde o
armazenamento em cache de dados mais importantes ¢ muito utilizado [9]. Além disso, essa
biblioteca, em cada compilagdo, valida cada consulta em relacdo ao seu esquema de dados,
sendo assim, os erros de consultas SQL, sdo erros em tempo de compilagdo, evitando assim
erros em tempo de execucdo [2]. Qualquer tipo de alteracdo realizada pelo usudrio sdo

sincronizadas com o armazenamento remoto quando o dispositivo estiver online novamente

[9].

2.3.2 Discussao

Os componentes de arquitetura Android foram construidos para tornar os aplicativos
criados pelos desenvolvedores robustos, além de criar uma estrutura recomendada a ser

seguida pelos desenvolvedores, de forma padronizada [2].

2.3.2.1 Vantagens

Individualmente cada um desses componentes podem trazer suas vantagens, mas
recomenda-se que elas trabalhem em conjunto, para produzir um melhor resultado.

Unificadas podem trazer inimeras vantagens para a aplicacdo, como gerenciamento do ciclo

de vida dos componentes de interface de usudrio, prevencdo de vazamento de memdria,
persisténcia de dados local com atualizacdo de informagdes em tempo real [2].

Além do que ja foi mencionado antes, seguindo essas recomendacdes, € possivel
alcancar uma maior capacidade de testes [2], dificuldade comum encontrada na arquitetura
Model-View-Presenter (MVP) [5]. Um outro problema existente no MVP que pode ser
sanado usando componentes de arquitetura Android € a relacdo estrita entre a View e ao
Presenter, onde um tem referéncia do outro de forma exclusiva’, e segundo a recomendacdo
devemos evitar referéncias a View (no caso de aplicacdes Android, a Activity/Fragment,
mesmo que ndo seja uma View de fato), podendo nesse caso, resolver esse problema
utilizando um udnico ViewModel para guardar e compartilhar dados entre um ou véarios
controladores de interface [2][7], permitindo apenas que a Activity ou Fragment tenha
referéncia da ViewModel, e nao o contrdario. Uma outra vantagem em usar componentes de
arquitetura Android € ter melhor modificabilidade [2], problema caracteristico da arquitetura
Model-View-ViewModel (MVVM) [5]. Ambas arquiteturas, MVP e MVVM, sdo bastante
difundidas e utilizadas para criacdo de aplicativos Android, devido ao fato de serem
adaptagdes feitas a partir do Model-View-Controller (MVC) [18]. Além de tudo isso, usando
o componente LiveData € possivel tornar as apresentacdes dos dados, reativo, devido a sua
capacidade de observar modificacdes em objetos e notificd-las, para que alteracdes possam ser

feitas na apresentacao quando for o caso.

2.3.2.2 Desvantagens

Apesar desse pacote de componentes trazer diversos beneficios, vale ressaltar que
construir uma aplicacdo seguindo essa recomendagdo ndo € tdo simples, pois é necessario
compreender a funcio de cada um desses novos componentes, € como eles interagem durante
o funcionamento, tornando a estruturagdo do cédigo muito diferente do que tem sido mais
utilizado atualmente.

Levando em conta o estado atual das estruturas dos coédigos, é algo comum ver
Activities contendo légicas de negbcios, quando deveria apenas controlar a interface de
usudrio, e isso tornou-se ainda pior com o crescimento das aplicacdes, que acabaram por
gerar Activities gigantescas, portanto, um maior nimero de interagdes com o usuirio em uma

mesma interface [19], logo, uma classe controladora de interface contendo bastante cddigo. O

Srelagdo 1..1

componente Fragment foi criado a fim de solucionar esse problema, no entanto, erros
comuns, como tornar o Fragment responsdvel por gerenciar parte da 16gica de negdcios ainda
sdo cometidos [19][22].

E um desafio seguir essas recomendacdes, e manter a aplicacio atualizada com todos
os recursos do pacote de componentes, pois frequentemente novos componentes estao sendo

lancados para melhorar a criagdo e utiliza¢do dos aplicativos[20].

2.3.2.3 Melhorias

Uma das fun¢des da ViewModel é compartilhar dados entre Fragments, e isso € muito
util para compartilhar uma informac¢ado comum entre Fragments, principalmente quando esses
Fragments sao criados em momentos distintos durante o uso da aplicacdo, logo, o Fragment 1
pode ndao conhecer 0 momento exato de passar uma informacao para o Fragment 2. Outro
problema que também pode ocorrer, é em situacdes em que um Fragment 1, que contém um
dado compartilhado com o Fragment 2, possa ser destruido, e o Fragment 2 permanecga vivo
contendo a referéncia do dado que estd no Fragment 1. Nessa situacdo a ViewModel pode
compartilhar essa informa¢do de forma segura e consistente. Todavia usar ViewModel para
solucionar esses problemas, pode tornar a ViewModel uma classe grande, contendo
informacdes de varios Fragments, portanto, contendo também varidveis e métodos que sdo
exclusivos de um dnico Fragment.

Uma solugdo para o problema citado é separar a ViewModel em outras classes
ViewModel, caso isso seja possivel para a aplicacdo. Um bom exemplo para essa separagao,
seria uma aplicacdo compartilhando uma informacio armazenada dentro do Banco de Dados
local (pode ser um Banco de Dados criado através da biblioteca Room), onde as ViewModels
podem acessar o mesmo Banco de Dados, simplesmente implementando o padrio de projeto
Singleton para a cria¢do dele. Assim a classe ViewModel ndo se tornard grande e complexa,
mantendo sua funcdo, guardar os dados, e conter ldgicas de negdcios para apenas um

controlador de interface de usuario.

2.4 MICRO FRONTENDS

O conceito de Micro Frontends ndo é uma novidade, sabendo-se que a abordagem ¢é

baseada em sistemas independentes, como por exemplo o Front Integration for Verticalized

System [23]. Todavia, o termo Micro Frontends surgiu no ThoughtWorks Technology Radar
em 2016 [23][24].

As aplicagdes atuais costumam usar a ideia de aplicativos de pagina dnica, a qual,
cada pagina possui sua estrutura individual [23]. Desenvolver um front-end, onde ha varias
equipes trabalhando, ndo € fécil, e pode se tornar ainda mais dificil se tratando de aplica¢des
grandes. A tendéncia atual é que grandes front-ends sejam divididos em pequenos blocos
menores e gerencidveis [24].

Micro Frontends tem como principal objetivo, tornar a criacdo de aplicacdes robustas,
organizadas e separadas por equipes, o que abrange o conceito de microsservi¢os. Cada
equipe € responsavel pela criagdo de componentes de interface distintos, trazendo ainda mais
beneficios, como poder separar as equipes por setores nas quais elas estdo mais preparadas e
qualificadas. O objetivo € construir interfaces como um conjunto de varios componentes de
interface; tornando possivel a separacdo de tarefas em grupos independentes, e obtendo um
melhor gerenciamento das aplicagdes [23]. A figura 4, logo abaixo, exemplifica de maneira

genérica esse fluxo.

Construir e testar componente Produgdo

Controle de versoes trés aplicacOes

compostas em
uma principal

. - .
Micro frontend B &= —> —b--p - -

[
Micro frontend C E — —_ - /

Figura 4: Implementagdo independente usando Micro frontends®

Micro frontend A g g

A figura demonstra como as equipes se dividem e criam os seus componentes
individualmente. As equipes criam, implementam e testam os seus front-end, chegam a um
produto final, e posteriormente lancam as suas versdes dentro da aplicagdo final.

Usar Micro Frontends tornard a arquitetura da aplicacdo escaldvel, mantendo a
aplicacdo estdvel e funcional mesmo durante a manutencdo de sua estrutura, o que € muito

benéfico, visto que as aplicagOes atuais estdo em constante crescimento e atualizacio [24]. A

8 disponivel em <https://martinfowler.com/articles/micro-frontends/deployment.png>. Acesso em 5 Mar. 2020.

https://martinfowler.com/articles/micro-frontends/deployment.png

seguir os principais beneficios serdo citados ao aplicar as técnicas de Micro Frontends na

arquitetura da aplicacdo.

2.4.1 Atualizacao do front-end

Sempre com a apari¢do de novos recursos, € vidvel que apenas o componente que
deve ser atualizado com esse novo recurso, seja reescrito e atualizado. Com a técnica de
atualizacdo incremental, as equipes podem implementar um novo produto sempre que
necessdrio, e langéd-lo para o usudrio final quando estiver pronto, incrementando o produto

final.

2.4.2 Independéncia entre os front-ends

Organizar a estrutura do cédigo de cada componente de interface de forma separada,
desacoplando componentes que ndao devam ter conhecimento um do outro. Seguindo essa
técnica, dificilmente erros acidentais de acoplamento serdo cometidos, o que pode tornar o

codigo da aplicagcdo mais organizado, e de leitura mais facil.

2.4.3 Implantacio do front-end

Cada equipe individualmente esté trabalhando na cria¢do do seu préprio componente
de interface, e de maneira independente, estas equipes podem langar novos recursos, que
outrora ndo estavam disponiveis na aplicacdo. Quando a desacoplacdo de componentes foi
feita corretamente, a tendéncia € que a implementacdo de novas funcdes se torne menos

trabalhosa.

2.4.4 Autonomia das equipes

As equipes tém propriedades para criar novos recursos que trardo beneficios aos
usudrios através de funcdes que poderdo ser implantadas posteriormente. Para isso as equipes
precisam trabalhar de forma vertical na arquitetura, de maneira que uma equipe ndo seja
responsavel exatamente por uma camada da arquitetura como ocorre em alguns casos, mas

que cada equipe seja responsavel por um produto.

3 O APLICATIVO LIBFLIX

Para que a arquitetura recomendada possa ser testada, foi desenvolvido o aplicativo
Libflix, com o intuito de aplicar os conceitos vistos, de modo a apresentar o comportamento
dos componentes, durante a execu¢do da aplicacdo, como também descrever de modo pratico

como a aplicag¢do funciona com a utiliza¢do desses componentes.

3.1 VISAO GERAL

O Libflix ¢ um aplicativo para apresentar dados sobre filmes, compartilhando
informacdes como nome, data de lancamento ou duracdo do filme. Os dados dos filmes sdo
coletados a partir do The Movie Database (TMDB), um banco de dados de filmes criado’ e
mantido com a ajuda da comunidade.

Nessa aplicacdo € possivel visualizar a lista de filmes disponibilizada pela base de
dados remota, na qual essa lista, por op¢do do desenvolvedor, é a lista de destaques do
TMDB. Apesar disso, € possivel que o usudrio faca uma busca por filmes, caso ele queira,
permitindo que mais filmes dessa base de dados remota possam ser encontrados e
apresentados através da lista.

O aplicativo também disponibiliza de uma base de dados local, assim como a
arquitetura recomendada exemplifica, deste modo, é possivel que o usudrio possa salvar
filmes na memoria do dispositivo, e que estes filmes também sejam apresentados em uma

lista.

3.2 LISTA DE REQUISITOS

O aplicativo possui algumas func¢des que serdo descritas nesta se¢do. Essas funcgdes

serdo separadas por Requisitos Funcionais (RF) e Requisitos Nao Funcionais (RNF).

3.2.1 Requisitos Funcionais

3.2.1.1 [RFO1] Solicitar Lista de Destaques

O aplicativo deve realizar a requisi¢do da lista de filmes de destaques da base de dados

remota, e apresentar a lista de filmes apds obter com sucesso, as informagdes recebidas no

70 TMDB foi criado em 2008

JSON (Notagao de Objetos JavaScript). A lista possui um tamanho determinado pela prépria

fonte de dados remota.

3.2.1.2 [RFO2] Apresentacdo da Lista de Filmes da Base de Dados Remota

A lista responsdvel por apresentar os filmes da base de dados remota deve conter
tamanho que foi definido pelo JSON, e apresentar uma lista de cartdes, cada um contendo

informagdes individuais dos filmes recuperados.

3.2.1.3 [RFO3] Apresentacao da Lista de Filmes da Base de Dados Local

A lista responsdvel por apresentar os filmes da base de dados local deve conter
tamanho 10 (definido pelo desenvolvedor), e apresentar uma lista de cartdes, cada um

contendo informagdes individuais dos filmes recuperados.

3.2.1.4 [RF04] Apresentacdo do Cartdes do Filme

O cartdo do filme deve conter detalhes, como pdster do filme, nome do filme, data de
lancamento do filme, e popularidade do filme na comunidade do TMDB. O nome do Filme
deve ter maior énfase, possuindo um tamanho de letra maior, e cor mais clara que as demais

informagdes. Além disso, o nome do filme deve ser limitado a duas linhas.

3.2.1.5 [RF0O5] Mudancga de Pagina
O aplicativo deve apresentar uma barra de controle de piginas que permita que o
usudrio possa avangar, voltar, ir para a dltima pédgina, ou ir para a primeira pagina, caso seja

possivel.

3.2.1.6 [RF06] Pesquisa na Base de Dados Remota

A aplicacdo deve realizar uma pesquisa por filmes na base de dados remota através da
palavra ou letra digitada pelo usudrio na barra de pesquisa. A palavra deve ser usada para
realizar uma requisicdo a API, que pode retornar uma lista de filmes baseado na palavra

digitada.

3.2.1.7 [RFO7] Pesquisa no Banco de Dados Local

A aplicacdo deve realizar a pesquisa no banco de dados local, usando a palavra ou

letra digitada pelo usudrio na barra de pesquisa, para encontrar filmes que contenham essa

palavra ou letra no seu nome, e adicionar esses filmes a uma lista de filmes filtrados na
pesquisa. Ao fim da busca em todo o banco de dados local, essa lista de filmes filtrados deve

ser usada para atualizar a lista de apresentacao.

3.2.1.8 [RF08] Chamar Tela de Detalhes do Filme

Quando o usudrio selecionar um filme da lista de filmes, a aplicagdo deve repassar o
codigo de identificacdo do filme para a tela de detalhes que se encarregard de recuperar as

informacdes do filme, do banco de dados remoto ou local.

3.2.1.9 [RF09] Adicionar Filmes aos Favoritos

Na tela de detalhes do filme, quando o usudrio tocar na estrela de favoritos, o filme
deve ser adicionado ao banco de dados local, caso ele ainda ndo exista nele, ou seja, ainda

ndo é um filme favorito do usuario.

3.2.1.10 [RF10] Remover Filmes dos Favoritos

Na tela de detalhes do filme, quando o usudrio tocar na estrela de favoritos, o filme
deve ser removido do banco de dados local, caso ele ja exista nele, ou seja, é um filme

favorito do usuario.

3.2.1.11 [RF11] Abrir Homepage do Filme

Na tela de detalhes do filme, quando o usudrio tocar nas informa¢des da homepage do
filme, a aplicacdo deve chamar uma atividade externa para abrir uma pagina web. O sistema é

encarregado de apresentar ao usudrio os aplicativos disponiveis capazes de realizar essa a¢ao.

3.2.2 Requisitos Nao Funcionais

3.2.2.1 [RNFO1] Retornar Lista Vazia

Caso ndo seja possivel recuperar a lista de filmes da base de dados remota, a lista
responsavel por apresentar os dados deve receber uma lista vazia, ndo permitindo que valores

nulos sejam aplicados a lista de apresentacao.

3.2.2.2 [RNFO02] Apresentacao dos Botdes de Mudanca de P4gina

Na barra de controle de pédginas, deve ser apresentado ao usudrio apenas os botdes de
mudanca de pagina de acordo com a pégina atual e o total de paginas da lista de apresentacao.
Os botdes de voltar ou ir para a primeira pagina devem ser desabilitados caso o usudrio esteja
na primeira pagina. Os botdes de avancar ou ir para a ultima pagina devem ser desabilitados

caso o usudrio esteja na ultima pégina.

3.2.2.3 [RNF03] Buscar Filme nas Bases de Dados

Quando o usuério selecionar o filme da lista, deve ser realizado uma busca no banco
de dados local, caso o filme exista no banco de dados dos filmes favoritos, entdo ao chamar a
tela de detalhes do filme, a atividade atual deve repassa-la tanto o cédigo identificador (ID) do

filme, quanto a informac¢do de que o filme existe na base de dados local.

3.2.2.4 [RNF04] Exibir Detalhes do Filme

ApOs o usudrio selecionar o filme que deseja abrir para ver mais detalhes, a tela que
exibe apresentard os dados do filme apds receber a notificacdo de que o filme foi recuperado.
Caso o filme exista na base de dados local, o filme deve ser carregado a partir dela, mesmo

que tenha sido aberto pela tela que apresenta a lista de filmes da base de dados remota.

3.2.2.5 [RNFO05] Conexdo Com Internet

O aplicativo deve ter acesso a conexdo com internet para funcionamento correto e
completo das fungdes disponiveis. Sem conexdo, s6 serd possivel acessar os filmes

armazenados no banco de dados local.

3.2.2.6 [RNFO06] Tentativas de Requisi¢ao

Ao tentar realizar uma requisi¢do para recuperar os dados de um filme na base de
dados remota, € possivel que ocorra algum erro durante a tentativa por diversos fatores. Caso
ocorra algum erro durante a primeira tentativa, a aplicacio deve tentar solicitar novamente os

dados do filme até no maximo 5 vezes.

3.2.2.7 [RNF07] Comunica¢do com a AP do TMDB

O aplicativo deve comunicar-se com a API do TMDB para buscar a lista de filmes, e

poder apresentd-las ao usudrio.

3.2.2.8 [RNFO08] Status do Carregamento da Lista

A tela de que apresenta a lista de filmes deve apresentar uma imagem que corresponda
com o status atual do carregamento da lista. Quando a lista estiver sendo buscada na base de
dados remota, uma imagem de download da lista deve ser exibida até o término do processo.
Quando houver erro no carregamento da lista, uma imagem de erro no download da lista deve

ser exibida.

3.2.2.9 [RNF09] Compatibilidade do Aplicativo

O aplicativo deve estar disponivel na plataforma Android. O nivel de API
recomendada € a partir da 28 (Android 9.0 - Pie), e o nivel minimo da API € a 26 (Android
8.0 - Oreo).

3.3 ARQUITETURA DO APLICATIVO

A arquitetura do aplicativo Libflix apresentada na figura 4 mais abaixo, € similar ao
diagrama da figura 2 que encontra-se na secdo 2.3.1, a qual apresenta os modulos com os
componentes de arquitetura. A arquitetura tem trés camadas, que sdo Presentation, Domain €

Data, e cada uma delas tem suas distintas responsabilidades.

3.3.1 As camadas da arquitetura

A Presentation possui os controladores de interface de usudrio, como também
adaptadores. Os controladores de interface de usudrios, as Activities e Fragments, realizam
chamadas ao Domain a partir de acdes do usudrio com a tela, e também podem enviar e
receber dados dos adaptadores, que sdo responsdveis em preparar os dados que serdo
apresentados na tela. O Domain € composto pela ViewModel, por entidades de dominio, e por
modelos de abstracdo. Cada ViewModel € responsdvel por guardar os dados de um
controlador de interface individualmente. A ViewModel tem a referéncia ao LifeCyle dos seus
respectivos controladores de interface, podendo realizar acdes ao ocorrer mudangas no estado
do ciclo de vida desses controladores. Os dados relacionados a filmes, que ficam guardados
na ViewModel, sao do tipo LiveData. Esses dados podem ser requisitados ou guardados
através do moddulo Data. No Data esta contido a base de dados, e os objetos de acesso a

dados (DAO). A base de dados estd dividida em base de dados local e remoto, podendo

solicitar filmes e listas de filmes da API, como também solicitar e guardar os dados dos filmes

no armazenamento do dispositivo.

Presentation
(AR oo
[LifeCycle]
Domain ‘

ViewModel

Qutros
Modelos
LiveData 3

Data

Base de Dados Local Base de Dados Remota

o

TMDB

Figura 5: Arquitetura do aplicativo Libflix

Para compreender melhor como cada uma das camadas funcionam, as Figuras 5, 6 e 7

apresentam os modelos do diagrama de classe de cada uma delas.

3.3.2 Presentation

¢ BaseFilmListFragment ¢, FilmAdapter
V' 2 mFilmRecyclerView RecyclerView M = Companion Companion
v mSearchView SearchView °

. S
filmViewModelFactory FilmViewModelFactory G Companion

v filmListAdapter FilmListAdapter
_ adapt/sonToData(FilmJson) FilmData
getMFilmRecyclerView() e adaptDataTotson{FilmData) Filmlson
setMFilmRecyclerView(RecyclerView) void
getMSearchView() SearchView G DataFilmListFragment
setMSearchView(SearchView) void onCreateView(Layoutinflater, ViewGroup, Bundle) View
getFilmViewModelFactory() FilmViewModelFactory ¢ onRefresh() void
setFilmViewModelFactory(Film\ViewModelFactory) void onQueryTextChange(String) boolean
getFilmListAdapter() FilmListAdapter onQueryTextSubmit(String) boolean
setFilmListAdapter(FilmListAdapter) void onFilmClick{Long) void
onCreateView(Layoutinflater, ViewGroup, Bundle) View
setViewModel(FilmListViewModel) void
) G SplashActivity
onRefresh() void
onCreateOptionsMenu(Menu, Menuinflater) void TRCETIEEIET) TEt
refreshPageButton(int, int) void
onClick(View) void & MainActivity
onCreate(Bundle) void
onQueryTextSubmit(String) boolean

¢, FilmDetailsActivity

onCreate(Bundle) void

& ApiFilmlListFragment onClick(View) void

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
onQueryTextChange(String) boolean |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

onCreateView(Layoutinflater, ViewGroup, Bundle) View

A4
onRefresh() yoid I. OnFilmClicklListener
onQueryTextChange(String) boolean ~—— 7" "=~
i . onFilmClick(long) void
onQueryTextSubmit(String) boolean
onOptionsMenuClosed(Menu) void
onFilmClick(Long) void Package domain

G MyViewHolder Package data

onClick{View) void °
I B FilelistAdanter
:P filmReleaseDate TextView
. o X o onCreateViewHolder(ViewGroup, int) MyViewHolder
P onFilmClickListener OnFilmClickListener
)) © onBind\ViewHolder(MyViewHolder, int) void
P filmTitle TextView _
P filmPopularit TextView
P d i P itemCount int
P filmVoteAverage TextView
P filmld Long
P filmPoster ImageView

Figura 6: Representacdo da camada Presentation

Na camada Presentation, o controlador BaseFilmListFragment do tipo Fragment, é

herdado por ApiFilmListFragment e DataFilmListFragment, e ambos implementam o

método de click dos cartdes da lista de filmes, da interface OnFilmClickListener, existente
na classe FilmListAdapter.

A classe FilmAdapter possui dois métodos dentro do companionObject para
converter os tipos dos dados do filme. Alguns dados recebidos pelo JSON sao do tipo que nao
podem ser salvos pela biblioteca Room, e portanto, precisa preparar esses dados para serem

adaptados ao formato que o banco de dados local aceita.

3.3.3 Domain
G FilmListViewModel G FilmDataViewModel
P actualPage int ¢ + P presentationFilmList MutableLiveData<List<FilmData=>
P totalPages int P filmsDataBase LiveData<List<FilmData > >
«P presentation int «P presentation int

¢, FilmApiViewModel

_ rr Film

<P search String
P query String *I

|
P responseFilmlist LiveData<Filmslson: :
‘P status LiveData<FilmApiStatus = :

)]] Package entity

P responsefilmJson LiveData<FilmJson:>
<P presentation int

¢ FilmViewModelFact
¢ FilmDetailsViewModel g iomviewflode ractory

P film FilmData

<P isFavorite boolean

® fitmid Long Package presentation
P responsefilm/son LiveData<FilmJson:

‘W id e Package data

P lifecycle Lifecycle

Figura 7: Representacdo da camada Domain

Na camada Domain, a classe FilmListViewModel é do tipo ViewModel, e é herdada
pelas classes FilmApiViewModel e FilmDataViewModel. Estas classes guardam os dados

da lista de filmes que podem ser manipulados pelos seus respectivos controladores de

interface, e podem acessar a base de dados local e remota. Além disso, 0 Domain contém
duas entidades que moldam caracteristicas de filmes, de modo que, a entidade que € usada
para pegar os dados da API pode conter dados nulo, enquanto a outra, nao deve conter dados
nulos, pois esta segunda, deve conter dados que podem ser salvos ou apresentados na

interface de usuario.

3.3.4 Data
. FilmApiService Package presentation Package domain
callGenreMovieApi() Deferred <Genres:>
callFilmApi(long) Deferred <FilmJson=
callPopularMovielistApi(int) Deferred<Filmslson> ¢ FilmDatabase
callSearchMovielList(int, String) Deferred <Filmslson> f;v Companion Companion
caliMoviel istByGenreApi(String) Deferred <FilmsJson > _
FilmDatabase()
& FilmsApi I
- P .
v = INSTANCE FilmsApi o [HIEET RINIEEE
P retrofitService FilmApiService
¢ FilmApiServiceKt ‘e » FilmDatabase Impl
i 1
e €Eresien —— ——— — e} m = clearAllTables) void o
| I
|
| [P filmDao FilmDao
l |
| |
| |
! I
| 1
! |
| |
! |
A4 |
®x FilmDao_Impl \L’
m = FilmDao_lmpl(RoomDatabase) Tz FilmDao

. insertum(FmDato) void

m & insertFilm(FilmData) void updateFilm(FilmData) void
m deleteFilm(FilmData...) void deleteFilm(FilmData...) void
m updateFilm(FilmData) void clear() void
m = clear() void » get(String) FilmData < !
m get(String) FilmData get(long) FilmData
m get(long) FilmData getFavorite(long) boolean
m getFavorite(long) boolean filmList() LiveData<List<FilmData> >
m filmList() LiveData<List<FilmData> > filmListSortedByld() LiveData<List<FilmData=>
M % filmListSortedByld(LiveData<List<FilmData>> I

P JastFilm FilmData

Figura 8: Representacdo da camada Data

A camada Data € responsdvel pelo gerenciamento dos dados, e nela temos a base de
dados local e a remota. A base de dados remota (FilmApiService) utiliza a biblioteca Retrofit

para poder recuperar os dados, auxiliada pelo conversor Moshi. Ambas foram criadas pela

Square, e podem operar juntas para recuperar os dados da API, e converter de forma
serializada os dados do JSON. A base de dados local (FilmDatabase) utiliza a biblioteca
Room para salvar, recuperar e apagar dados na memoria do dispositivo. A base de dados local
foi implementada usando o padrido Singleton, contendo o FilmDao para executar as agdes

necessdrias para a manipulacdo desses dados.

4 APLICABILIDADE DOS COMPONENTES DE ARQUITETURA

Nesta secdo, o aplicativo serd apresentado, com os resultados obtidos ao construir o
aplicativo usando a arquitetura recomendada e seus componentes. Os resultados serdo
apresentados com a demonstracao das telas do aplicativo. O aplicativo esta disponivel no meu

perfil do GitHub®.

4.1 OS COMPONENTES GRAFICOS E A INTERFACE DE USUARIO

Nesta secdo serdo apresentados todas as telas do aplicativo. Em cada tépico das telas,
serdo descritos 0os componentes de arquitetura existentes, como também a forma como cada

um desses componentes se comportam durante a execucdo de suas tarefas.

4.1.1 Splash Screen

09 70%@22:57

Powered By TheMovieDB

Figura 9: Splash screen

A primeira tela que é apresentada, na figura 5, € a splash screen da aplicagdo, ou tela

de abertura. Nesta tela € apresentado o icone e o nome do aplicativo. Na parte de baixo da tela

8 repositorio do github: <https://github.com/ednaldomartins/ArchitectureComponentApp>

https://github.com/ednaldomartins/ArchitectureComponentApp

¢ mostrado que o The Movie Database é quem alimenta a aplica¢do (fornece as informacgdes
dos filmes). Nessa tela existem apenas componentes de criacao de interface. Nesta tela € visto

apenas alguns componentes de interfaces comumente utilizados para criagao de interface.

4.1.2 Acao dos Componentes Arquiteturais durante a requisicao da lista de filmes

A tela que apresenta os dados capturados da API, € composta por uma Activity
principal, que infla 2 Fragments, um deles é o visivel na tela. Esse Fragment possui uma
ViewModel particular, que € responsavel por fazer a requisicdo das informagdes dos filmes e
guarda-las em uma lista do tipo LiveData. Apds a requisicao, o objeto (lista) do tipo LiveData
notifica os observadores que a lista foi alterada. Os observadores que estdo dentro do
controlador de interface (o Fragment), recebem a notificagdo, e nesse instante, os dados
recebidos sdo adaptados e posteriormente aplicados a lista de apresentacdo. Esse tipo de

comportamento € semelhante em todas as requisi¢des de lista do servidor.

private var _requestFilmList = MutableliveData<FilmsJson>()

val responseFilmList: LiveData<FilmsJson> get() = _requestFilmList

(a) Cédigo - Lista do tipo LiveData

private suspend fun setRequestResult(callDeferred: Deferred<FilmsJson>) {
try {
_status.value = FilmApiStatus.LOADING
val resultlist = callDeferred.await()

requestFilmList.value = resultlist

actualPage = resultlist.page

totalPages = resultlList.totalPages
_status.vglue = FilmApiStatus.DONE

(b) Cdédigo - Requisitando lista de filmes

filmViewModel.responseFilmList.observe(owner this, Observer { it Filmslson

refreshPageButton(it.page, it.totalPages)

it.movies?.let { list -»>

filmListAdapter = FilmListAdapter(context = agctivity, filmlListJson = list

mFilmRecyclerView.adapter = filmListAdapter

b

(c) Cédigo - Observador a espera da notificacao

Figura 10: Cédigo - Lista do tipo LiveData recebe os dados e notifica controlador

4.1.2.1 Carregando a lista de destaques

46 9y 2y 9 100%M17:46 [09 100%M17:47

Libflix Q Libflix

DESTAQUES FAVORITOS DESTAQUES FAVORITOS

Ad Astra - Rumo as
Estrelas

@ rmE

W Frozen 2
£ R

0

< %

v

(a) Durante o carregamento das informacdes. (b) Ap0s carregar todas as informacdes.
Figura 11: Requisi¢do e carregamento das informagdes dos filmes com sucesso

Nas duas imagens acima € demonstrado como a tela se apresenta durante o
carregamento da lista de filmes da base de dados remota. Na imagem (a) o usudrio estd na tela
de destaques, e as informacdes dos filmes estdo sendo requisitadas a base de dados remota, e
apods o término do recebimento dessas informacdes, vé-se na imagem (b), uma lista de filmes

carregada sendo exibida na tela.

4.1.2.2 Problemas com o carregamento dos filmes

- L 83%[23:51

Qi

- € 83%§23:50 il q -

Q

4G .l
Libflix Libflix
DESTAQUES FAVORITOS

DESTAQUES FAVORITOS

ERRO: néo foi possivel buscar por filmes.
U

(b) Erro apés tentativa da requisi¢do.

]
D
(\J

N

V2

(a) Durante o carregamento das informagdes.
Figura 12: Requisi¢do e retorno de erro apds a tentativa de comunicagdo com o servidor

Nas imagens acima, € visto novamente uma tentativa de requisi¢do a base de dados
remota na imagem (a), todavia, a resposta obtida na imagem (b) é diferente, devido a falha
durante a requisicdo das informagdes. Essa falha pode ocorrer por diversos fatores, como:

problema com a conexao de internet, ou até problemas externos relacionados ao servidor.

Vale destacar que esse erro ndo ocorre por recebimento de dados nulos, pois os dados
sdo adaptados quando recebidos, e nem por receber uma lista vazia durante uma busca por

filmes, pois quando a busca por filmes ndo retorna nenhum filme, a lista de destaques é

recuperada.

4.1.2.3 Nova tentativa de requisi¢do ou atualiza¢do dos dados

{9 66%W22:31 3 . {9 66%m22:31

Libflix Q Libflix Q i

DESTAQUES FAVORITOS DESTAQUES FAVORITOS

W Ad Astra - Rumo as
Estrelas

mento

Sonic: O Filme

) g > . — 2 g >
S = = 4 2 v O = =

(a) Erro ap6s tentativa de requisicao. (b) Nova requisigdo.
Figura 13: Erro e sucesso ap6s duas tentativas de comunicagdo com o servidor

Na imagem (a) temos a tela de erro apds uma tentativa de comunicacdo com o servigo,
e também uma acdo de atualizacdao de pdgina. Quando ha um erro na pagina de destaques e o
usudrio atualiza a pagina, € realizada uma nova requisicao da dltima pagina que foi recebida
com sucesso. Apds a segunda tentativa, o resultado é o obtido na imagem (b).

override fun onRefresh() {
filmViewModel.setPresentation()

super.onRefresh()

(a) Cédigo - Atualizando a pagina

override fun setPresentation (page: Int) {

val newPage = super.validatePage(page)
if (_query == "")

requestPopularFilmList(newPage)
else

requestSearchedFilmList(newPage)

(b) Cdédigo - Realizando requisi¢do
Figura 14: Cédigo - Atualizando pagina da lista de filmes

4.1.3 Acao dos Componentes Arquiteturais ao selecionar um filme

Ao selecionar um filme da lista recebida pela base de dados remota, uma nova Activity
¢ solicitada para apresentar as informag¢des do filme. De antemao, essa nova Activity recebe o
ID do filme, e também ¢é informada se o filme selecionado esta armazenado localmente no
dispositivo. O componente responsavel por guardar os dados desses filmes no dispositivo € a
biblioteca Room. Ao selecionar o filme, uma busca € feita na base de dados local, e caso o
filme seja encontrado, € preferivel que o filme seja aberto localmente, para evitar consumo de
dados de internet, e também para que o filme possa ser aberto mesmo que o usudrio nio esteja
conectado no momento da selecdo. Apds a nova Activity entrar em execucao, ela deve se
comunicar com o servidor e requisitar as informagdes do filme caso o esse ndo esteja

armazenado localmente.

intent.putExtra(name "filmId", filmId)

val isFavorite: Boolean = filmViewModel.isFavoriteFilm(filmId!!)

intent.putExtra(name: "favorite", isFavorite)
Figura 15: Cédigo - Verificando se o filme estd na base de dados local

A Activity que exibe os detalhes do filme tem um ViewModel particular, é capaz de
requisitar ao servidor, a informa¢do de um tnico filme apenas com o ID, e salvar essas
informagdes dentro de um objeto’ do tipo LiveData. Aqui ocorre a mesma coisa que acontece
com a lista, o objeto do tipo LiveData notifica o observador, que nesse caso, esta dentro da
Activity que exibe os detalhes do filme. Essa notificacdo também ocorre caso as informagdes
sejam recuperadas localmente, pois ambos os métodos salvam as informagdes no mesmo
objeto. Apds recuperar as informacdes, os dados sdo adaptados e aplicados na tela de

detalhes.

? Objeto Film existente no projeto, e contém apenas variveis relacionadas a filme.

val getCallDeferred = FilmsApi.retrofitService.callFilmApi(filmId)

try {
val requestResult = getCallDeferred.await()

requestFilm.value = requestResult

(a) Cddigo - Requisitando Filme

viewModel.responseFilmlson.observe(owner this, Observer { it FilmslsonFilmlson
viewModel.setFilm { FilmAdapter.adaptlsonToData(it))
submitDetails(viewModel.film!!)

1))

(b) Codigo - Observador a espera da notificagdo
Figura 16: Cédigo - Objeto do tipo LiveData recebe os dados e notifica observador
4.1.3.1 Abrindo o Filme a partir da base de dados remota

a4 - - 4 98%800:59 2 - L 98%[800:59
Libflix

DESTAQUES FAVORITOS

== Um Lugar Silencioso

Um Lugar Silencioso - o
Parte Il Um Lugar Silencioso - Parte Il ¥

@ Logo apds os acontecimentos

' mortais, até mesmo dentro de
casa, a familia Abbott (Emily
Blunt, Millicent Simmonds, Noah
Jupe) precisa agora encarar o
terror mundo afora, continuando a
lutar para sobreviver em siléncio.
Obrigados a se aventurar pelo
desconhecido, eles rapidamente
percebem que as criaturas que
cagam pelo som ndo sao as Unicas
ameagas que os observam pelo
caminho de areia.

g‘;ﬂ Platinum Dunes, Sunday Night,

— - >
- ; < Z

0
A
[

g L)

(a) Selecionando um filme. (b) abrindo informagdes do filme.
Figura 17: Selecionando filme e requisitando dados na base de dados remota

Na imagem (a), apds o usudrio tocar no cartdo do filme que deseja abrir, uma nova

tela serd aberta, e assim que as informagdes forem recuperadas, elas serdo exibidas, como

representada na imagem (b). Nesse caso, as informagdes do filme foram requisitadas e

obtidas a partir da base de dados remota, pois o filme ndo estd disponivel localmente.

4.1.3.2 Abrindo o Filme a partir da base de dados local

=% Gl - 0 77%12:48 = O Gl - 0 77%12:48

Libflix

DESTAQUES FAVORITOS

6.7

O Exterminador do
Futuro: Destino S...

Coringa

‘ . Coringa é uma histéria original do
.. Coringa vildo nunca antes vista no cinema.
B | ancamento: 02 019 Arthur Fleck (Joaquin Phoenix)
trabalha como palhago para uma
agéncia de talentos e, toda se-

mana, precisa comparecer a uma

agente social, devido aos seus

conhecidos problemas mentais.

Apés ser demitido, Fleck reage

mal a gozagdo de trés homens

em pleno metr6 e os mata. Os as-

sassinatos iniciam um movimento

popular contra a elite de Gotham

City, da qual Thomas Wayne (Brett

Cullen) é seu maior representante.

A versdo de Phillips sobre Arthur

= - - . r N AN 1 7
< = N /\‘ . /’ v [J N /“

(a) Selecionando um filme (b) abrindo informagdes do filme.
Figura 18: Selecionando filme e abrindo o filme a partir da base de dados local

Na imagem (a), a situacdo € similar a anterior, onde o usudrio toca no cartdo do filme,
de modo que a nova tela € aberta na imagem (b), mas os dados sdo recuperados a partir da
base de dados local. Essa Acdo acontece tanto na aba “DESTAQUES”, quanto na aba
“FAVORITOS”, desde que o filme esteja armazenado na memoria do dispositivo. Na imagem
(b) € possivel ver que a estrela de favorito estd preenchida, sendo assim, € um filme favorito

do usuario.

4.1.4 Acao dos Componentes Arquiteturais ao salvar um filme localmente

Ao tocar na estrela de favoritos na Activity de detalhes, nenhuma agdo de na base de

dados € realizada, para evitar acdes que podem ser desnecessarias ou repetidas. Uma agdo

desnecessaria seria, um caso em que O usudrio toca na estrela para marcar o filme com
favorito, e depois toca novamente para desmarca-la, pois isso resultaria em um adicdo e
remocdo do mesmo filme na base de dados local.

A Activity de detalhes, sempre no inicio do seu ciclo de vida, envia a sua LifeCycle
para a sua ViewModel particular, e por fim, essa ViewModel passa a conhecer o ciclo de vida
da Activity detalhes. A ViewModel precisa ser um observador do ciclo de vida, para que ele
possa ser adicionado como observador do LifeCycle da Activity. A partir desse ponto, a
ViewModel pode realizar eventos em cada estado da Activity. Entdo, para evitar desperdicio
de processamento, sempre que a Activity entra no estado parado (onStop), a ViewModel é
notificada, e solicita a acdo de adicionar ou remover o filme no banco de dados dos filmes

favoritos, o qual a biblioteca Room € a responsavel em realizar essa agao.

class FilmDetailsViewModel (private wval databaseDac: FilmDao, app: Application) :
AndroidViewModel(app),

LifecycleObserver

(a) Cédigo - ViewModel € um Observador do ciclo de vida da Activity

private var _lifecyecle: Lifecycle? = null
val lifecycle: Lifecycle? get() = _lifecycle
fun setlifecycle(lf: Lifecycle) {

lifeecyecle = 1f
lifecycle?.addObserver(cobserver this)

I
(b) Cédigo - método get e set para o LifeCycle da Activity
viewModel.setlifecycle(this.lifecycle)
(c) Codigo - Activity “seta” o seu ciclo de vida na varidvel da ViewModel

@0nLifecycleEvent(Lifecycle.Event.ON_STOP)
fun onResultDetailsActivity () {

_Film?.let { it FilmData
val inDatabase = this.isFavoriteFilm(it.id)
if (_isFavorite!! &% !inDatabase) {
insertFilm(it)
b

else if (!_isFavorite!! &% inDatabase) {
val deleteFilm = this.getFilm(it.id)
deleteFilm(deleteFilm)

(d) Cédigo - Evento realizado quando a Activity passa pelo estado de parada

Figura 19: Cédigo - Verificar se € preciso deletar ou salvar filme na base de dados local

4.1.4.1 Salvando normalmente

{9 85%(H13:28 {9 85%0H13:29

It - Capitulo Dois ~r It - Capitulo Dois Y

PA 27 anos depois dos eventos de "It A 27 anos depois dos eventos de "It

- A Coisa", Mike (Isaiah Mustafa)
percebe que o palhago Pennywise
(Bill Skarsgard) esta de volta a
cidade de Derry. Ele convoca os
antigos amigos do Clube dos
Otarios para honrar a promessa de
infancia e acabar com o inimigo de
uma vez por todas. Mas quando
Bill (James McAvoy), Beverly (Jes-
sica Chastain), Ritchie (Bill Hader),
Ben (Jay Ryan) e Eddie (James
Ransone) retornam as suas ori-
gens, eles precisam se confrontar
a traumas nunca resolvidos de
suas infancias, e que repercutem

- A Coisa’, Mike (Isaiah Mustafa)
percebe que o palhago Pennywise
(Bill Skarsgard) esta de volta a
cidade de Derry. Ele convoca os
antigos amigos do Clube dos
Otdrios para honrar a promessa de
infancia e acabar com o inimigo de
uma vez por todas. Mas quando
Bill (James McAvoy), Beverly (Jes-
sica Chastain), Ritchie (Bill Hader),
Ben (Jay Ryan) e Eddie (James
Ransone) retornam as suas ori-
gens, eles precisam se confrontar
a traumas nunca resolvidos de
suas infancias, e que repercutem

(a) Filme nfo favorito. (b) Filme “adicionado” aos favoritos.
Figura 20: Marcando um filme como favorito

ApOs carregar as informagdes do filme na tela, € mostrado na imagem (a) que o filme
recuperado ndo € favorito, e portanto, foi feito uma requisicao ao servidor. Posteriormente o
filme foi marcado como favorito, mas ainda nao deve ser adicionado ao banco de dados de
filmes favoritos. A a¢do de salvar as informacdes do filme no armazenamento do dispositivo

sO serd realizada ap6s o fechamento da tela de detalhes (nesse exemplo).

4.1.4.2 Salvando em situacdes inesperadas

- 4 100%M01:54 ol © - - 4 100%M01:54
Libflix
DESTAQUES FAVORITOS

— Sonic: O Filme
REK
0 FUTURO COMEGR 7.4

Star Trek) ¢

James Tiberious Kirk (Chris Pine)
é um jovem rebelde inconformado
com a morte de seu pai. Certo dia,
recebe convite para fazer parte
da formagdo de novos cadetes
para a Frota Estelar. Uma vez la
conhece Spock (Zachary Quinto),
um vulcano que optou por deixar
seu planeta porque é metade
humano e discordava do precon-
ceito. Durante o treinamento, e

também na primeira missio, os GTAR TREK 7 4

: 3 - o 0 FUTURD cOmEGR
dois vivenciam novas experien-
= —— < I'p

. Y
_ Vingadores: Guerra
s Infinita

(a) aplicativo sendo fechado. (b) O filme foi salvo nos favoritos.

Figura 21: Marcando filme como favorito, e fechando aplicativo posteriormente

Durante essa acdo, o filme foi marcado favorito normalmente, mas nesse caso a
aplicacdo foi fechada antes de o usudrio voltar para a tela que apresenta a lista de filmes,
como visto na imagem (a). Em situacdes onde o armazenamento dessas informacdes seriam
salvas apenas quando o usudrio saisse da tela que exibe os detalhes do filme (através do
método onActivityResult), o usudrio voltaria posteriormente ao aplicativo o filme ndo estaria
no banco de dados de filmes favoritos. Nessa situacdo, o filme foi armazenado com sucesso
como mostra a imagem (b).

Essa acdo pode ser muito ttil quando a tela do aplicativo é colocada em segundo
plano devido a interrup¢des. Um exemplo que pode ser usado €, quando a aplicacdo é
colocada em segundo plano devido ao recebimento de uma chamada telefonica. Pode ocorrer

de o usudrio ndo abrir novamente a aplicacdo de imediato, todavia nesse caso, os dados do

filme j4 estdo armazenados em seguranca.

4.1.5 Acao dos Componentes Arquiteturais ao buscar filmes

A busca de filmes nos dois Fragments ocorre de maneira um pouco diferente, mas o
comportamento dos componentes € similar. O Fragment que controla a interface que exibe os
filmes da base de dados remota, busca os filmes apenas quando o usudrio submete a palavra,
enquanto o que controla a interface que exibe os filmes da base de dados local, busca os
filmes a cada nova letra digitada. No Fragment que controla a exibi¢do da lista da base de
dados remota, o restante das agdes ocorre de maneira similar ao que foi descrito na secao
4.1.2.1. Para o Fragment que controla a exibicdo da lista da base de dados local, o filme é
buscado através da biblioteca Room, realizando a busca pelo nome do filme, recuperando os
dados e aplicando-os na lista de apresentacdo do tipo LiveData, guardada na ViewModel. Em
seguida, o observador presente no Fragment € notificado, realizando as acdes necessdrias para

exibir a nova lista.

4.1.5.1 Buscar filme na base de dados remota

3
= il ol

9 96%@14:17
Libflix

= 9l
DESTAQUES

{9 96%M14:19
FAVORITOS

busca implacavel

X
Salve-me Quem Puder

DESTAQUES

FAVORITOS

veesls 7

Busca Implacavel

6.1

7.3

Busca Implacavel 3

6.1

hl{l_lllv BOY

sy AR R0

. .
= @ < %

(a) pagina 500 da lista de destaques.

(b) resultado da busca.
Figura 22: Buscando por filmes na base de dados remota

O usudrio pode ndo encontrar o filme que deseja ao procurar na pagina de destaques.
Além disso, seria demorado e cansativo ir de pidgina em pégina a procura do filme que deseja

encontrar. Para isso ele pode usar a funcdo de busca na barra superior, ao lado do nome da

aplicacdo, como mostra a figura (a). Apds digitar e submeter o que deseja buscar, o servidor
retorna com as respostas, como pode-se ver na imagem(b).

override fun onQueryTextSubmit(query: String?)}: Boolean {
filmViewModel. setSearch{query!!)

filmViewModel.setPresentation(1)

(a) Cédigo - Submetendo busca

private fun requestSearchedFilmlList (page: Int = _actualPage) {
uiCoroutineScope. launch { this: CoroutineScope
val getCallDeferred = FilmsApi.retrofitService.callSearchMovielist(page, query)
setRequestResult(getCallDeferred)

(b) Cédigo - Realizando busca na API por guery submetida
Figura 23: Cédigo - Realizando busca por filmes na API

4.1.5.2 Buscar filme na base de dados local

9 66%m22:29 {9 66%m22:29

XK

DESTAQUES FAVORITOS DESTAQUES FAVORITOS

Projeto Gemini

.. Coringa \& e
‘ &y Lancamen 2/1(

1‘ e

PROJETO GEMINI

JURQUIN PHOENIX
ROBERT DE NIAD

Doutor Sono Sonic: O Filme

G n ndo no 9 G ni no mi 9
12 3 456 7 8 9 0 12 3 45 6 7 8 90
qgwe rtyuiop qgwe rtyuiop
assdfgh k1 assdfgh jk I
O zxcvbnm & zxcvbnanm®
2123 © N C | 2123 © N O)
5 - 5 \V. < - 5 7

(a) busca realizada ap6s digitar “n”. (b) busca realizada ap6s digitar “ni”.

Figura 24: Realizando uma busca na base de dados local

Para buscar filmes localmente, é preciso apenas tocar na lupa na barra superior e
comecar a digitar. A cada nova letra digitada, a lista que apresenta os filmes favoritos é

atualizada, ndo sendo necessario submeter a palavra.

override fun onQueryTextChange(newText: String?): Boolean {
if (newText 1= "")

filmViewModel.searchFilmDatabase(newText!!)

(a) Cddigo - Realizando busca sempre que texto da busca for alterado

fun searchFilmDatabase (query: String) {
uiCoroutineScope. Launch { this: CoroutineScope
filmsDatabase? . value? . let { it List<FilmData=
val newlist: Mutablelist<FilmData>? = mutablelistOf()

for (i in © until it.size) {
if (it[i].title.tolowerCase().contains(query.tolowerCase()))
newlList?.add(it[i])

¥

mementoPresentationFilmList?.value = newlist

ge = 1)

setPresentation(pa

(b) Codigo - Buscando por filmes na base de dados local

Figura 25: Cédigo - Realizando busca e aplicando nova lista na lista de apresentagdo

4.2 APLICANDO MICRO FRONTENDS

Visto os beneficios que Micro Frontends deve trazer ao ser introduzido seus conceitos
na arquitetura da aplicacdo, o front-end da Activity que exibe as listas de filmes, foi
desenvolvido usando técnicas para reaproveitar componentes, tornando essa Activity, um
conjunto de outros componentes menores, que podem ser melhor gerenciados.

A separacdo de componentes dividiu a Activity que exibe a lista de filmes em 5 partes,
que podem ser separadas em grupos. A figura abaixo ilustra a Activity que exibe a lista de
filmes da base de dados remota, e como cada componente de interface estd separado, a qual,
cada caixa colorida possui uma cor diferente, representando componentes de interface
individualmente. A caixa amarela representa o todo da Activity, que deve gerenciar, implantar
ou remover outros componentes. A caixa azul proxima ao topo, gerencia o menu, contendo a
busca e outras opcdes de menu que podem ser implementadas futuramente. A caixa na cor
roxa, que contém uma caixa menor na cor verde, € responsdvel por controlar e apresentar a
lista de filmes, a qual deve replicar védrios componentes da caixa verde, que devem ser
exibidas na vertical; enquanto a verde que estd contida nela, exibe o cartdo do filme com
informagdes bdsicas. E por fim, a caixa na cor vermelha, no rodapé da Activity, é o

componente de interface que gerencia as paginas de filmes que s@o apresentadas ao usudrio.

9 100%M17:48
Libflix

DESTAQUES FAVORITOS

7 i

Guerra nas Estrelas

8.2

Histéria de um
Casamento

Historia de um 8 s 0

Casamento

It - Capitulo Dois

Figura 26: Componentizacdo da Activity

Ao usar esses conceitos, tornou-se possivel a reutilizacdo desses componentes em
outros front-ends do sistema, que neste caso, além de serem utilizados para exibir a lista de
filmes recuperadas na base de dados remota, também foram reutilizados para exibir a lista de
filmes da base de dados local. O Fragment que exibe a lista tem a RecyclerView como um
front-end, além do rodapé, que € inserido no Fragment através do include. O

adapter_film_list.xml € quem d4 forma aos cartdes que sdo exibidos na RecyclerView.

<androidx.constraintlayout.widget.ConstraintLayout
android:layout_width="match_parent"

android:layout_height="match_parent">

<androidx.recyclerview.widget.RecyclerView
android:id="@+id/film_list_recycle_wview"
android:layout_width="match_parent"
android:layout_height="8dp"

android:scrollbars="vertical”

app:layout_constraintBottom_toTopOf="@+id/activity_main_toolbar
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent”
app:layout_constraintTop_toTopOf="parent” />

<include
android:id="@+id/activity_main_toolbar"

layout="@layout/page_footer"
Figura 27: fragment_film_list.xml usado pelos Fragments que exibem a lista de filmes

A Activity principal € apenas responsavel por controlar o menu e inflar os Fragments
que exibem as listas. Nesse caso, os Fragments contidos na Activity principal controlam as
caixas na cor roxa, verde e vermelha, enquanto a Activity, controla a caixa amarela e azul.
Vale salientar que a Activity e os Fragments, estdo acoplando os componentes de interface, ou
pequenos front-ends, usando ConstraintLayout, para tornar a tela responsiva e adaptavel em
diversos dispositivos.

tools:context=".presentation.activity.MainActivity">

<include
android:id="@+id/activity_main_toolbar"

layout="@layout/toolbar"™

Figura 28: activty_main.xml Activity principal contém um toolbar.xml em seu front-end

4.3 TESTE DA APLICACAO

Para realizacdo de testes dos componentes, foi utilizado a ferramenta de Testes da
Robolectric'® em sua versdo 4.0.2. Para fins de estudo, apenas o componente Room foi

testado, usando as classes FilmDao e FilmDatabase que compdem esse componente.

1 link para mais informagdes disponivel em: http://robolectric.org/

http://robolectric.org/

@Config(manifest = "src/main/AndroidManifest.xml", sdk = [26])
@RunWith(RobolectricTestRunner::class)

class FilmDatabaseTest {
private lateinit var filmDac: FilmDao
private lateinit var db: FilmDatabase
Figura 29: Cédigo - Ferramenta de testes e componentes testados
Ainda na parte do cédigo, as notagdes @ Before, @After e @Test do framework JUnit
foram usados para organizar a ordem de execucdo dos testes. Para realizar os testes, a
principio foi definido o que deve ser realizado antes e depois deles, através das notagdes

@Before e @After. Antes do testes o banco de dados deve ser criado, e ao final dos testes ele

deve ser fechado.

@Before
fun createDb() {

val context =
db = Room.inMemoryDatabaseBuilder(context, FilmDatabase::class.java)

InstrumentationRegistry.getInstrumentation().targetContext

.allowMainThreadQueries()
-build(}
filmDaoc = db.filmDao

(a) Cédigo - notagdo para executar escopo da func¢io antes dos testes

@hafter
@Throws (I0Exception: :class)
fun closeDb() {

db.close()
¥

(b) Cédigo - notagao para executar trecho de c6digo ao final dos testes
Figura 30: Cédigo - Fun¢des chamadas antes de iniciar e ao finalizar os testes.

Para os testar o componente Room, foram criados trés testes: uma funcdo para inserir
e recuperar o filme, outra para inserir um filme e limpar a base de dados em seguida, e por fim

uma fun¢do para inserir e atualizar os dados de um filme do database.

@Test
@Throws (Exception: :class)
< fun insertAndGetFilm() {
val film = FilmData(id = 2@8L)
filmDao.insertFilm(film)
val getFilm = filmDao.get(2006L)
assertEquals(getFilm.id, film.id)

Figura 31: Cédigo - teste do insert e get
A funcio insertAndGetFilm() da figura 32, insere um filme com ID igual a 200

através do insert, em seguida o filme com ID igual a 200 € recuperado, e posteriormente

verificado que as acOes foram realizadas com sucesso.

@Test
@Throws (Exception::class)
< fun insertAndClearDatabase() {
val film = FilmData(id = 2L)

filmDao.insertFilm(film)
assertEquals(filmDac.getFilmsCount(), actual 1)

filmDao.clear()
assertEquals(filmDaoc.getFilmsCount(), actual @)

Figura 32: Cédigo - Teste do clear

A funcdo insertAndClearDatabase() da figura 33, insere um filme, verifica se a
quantidade de filmes na base de dados local € igual a 1, em seguida a base de dados é limpada

utilizando o clear, e posteriormente verificado que a quantidade de itens se tornou igual a 0

com SucCesso.

Test

@Throws (Exception: :class)
18 fun insertAndUpdateFilm() {
val film = FilmData(id = 28L, title = "SEM TITULO")
filmDaoc.insertFilm(film)
assertEquals(filmDaoc.get(20L).title, actual: "SEM TITULO")
val getFilm = filmDaoc.get(26L)
getFilm.title = "COM TITULO"
filmDac.updateFilm(getFilm)
assertEquals(filmDao.get(20L).title, actual "COM TITULO")

&

Figura 33: Cédigo - Teste do update
A funcdo insertAndUpdateFilm() da figura 34, insere um filme na base de dados

local com ID igual a 20 e titulo igual a “SEM TITULQO”, em seguida verificou-se que o filme

foi inserido corretamente. Para completar o teste, entdo recuperou-se o filme, alterou o seu
titulo para “COM TITULO”, em seguida o update foi utilizado e posteriormente foi
verificado que o titulo do filme existente na base de dados foi atualizado corretamente.

O componente Room mostrou-se uma biblioteca muito eficaz, capaz de auxiliar na
componentizacio da aplicacdo, e que também € facilmente testado. Fato € que as ferramentas
de testes no Android estdo em constantes atualizacoes, e que essas atualizacdes podem trazer
problemas durante a criacdo dos testes, todavia, o ponto principal é mostrar que o
componente testado € testavel, e sem a necessidade da utilizacdo de outros componentes que
estdo em moddulos mais acima na arquitetura apresentada na figura 4, a qual foi abordada e

utilizada nesta aplicacao.

5 CONCLUSAO E TRABALHOS FUTUROS

Neste trabalho foi apresentado conceitos basicos da arquitetura Android, e tem como
objetivo principal definir e apresentar novos componentes arquiteturais, capazes de criarem
uma aplicagdo com componentes e melhor construida, em conjunto com Micro Frontends.

Os componentes de arquitetura ViewModel, LiveData, LifeCycle Room mostraram-se
capazes de tornar uma aplicagdo Android escaldvel e testavel, caracteristicas indispensaveis
para criagdo de grandes aplicacdes. Atualmente tem sido muito importante tornar toda a
aplicacdo separada por componentes, para melhorar a divisao de tarefas entre equipes,
atualizar partes de um componente sem interferir o todo, e escalar aplicagdes de forma
organizada e com mais seguranca. Além disso, esses componentes se adequaram
perfeitamente as técnicas de Micro frontends para composi¢do da interface de usudrio,
garantido que a aplicagdo principal se tornasse modular.

O aplicativo criado para testar os componentes de arquitetura Android, foi o aplicativo
Libflix, e ainda ndo estd disponivel para download na loja de aplicativos Android, pois sua
principal finalidade é demonstrar e testar a capacidade desses componentes citados.

Alguns pontos ja foram identificados para futuras melhorias deste trabalho e da
aplicacdo. As principais sio:

e Comparar a arquitetura do trabalho com a arquitetura de componentizacao
Android da Netflix.

e® Definir e implementar o conceito de Single Activity com o componente
Navigation.

e Implementar e liberar o acesso a um novo front-end que apresenta uma lista de
séries de TV, também construido utilizando técnicas de Micro Frontends.

e Implementar uma base de dados remota para cadastro, login e backup de
dados dos usudrios.

e Realizar testes unitirios em outros componentes de arquitetura Android.

(1]

(2]

(3]

(4]

[5]

[6]

[7]

(8]

[9]

[10]

REFERENCIAS

DEITEL P.; DEITEL H.; DEITEL A. Android: Como Programar, 2 ed. Editora
Bookman, 2015.

Android Developers: Guide to App Architecture. Disponivel em:
<https://developer.android.com/jetpack/docs/guide>. Acesso em: 24 out. 2019.

Android Developers: Arquitetura da Plataforma. Disponivel em:
<https://developer.android.com/guide/platform>. Acesso em: 24 out. 2019.

Android Developers: Application Fundamentals. Disponivel em
<https://developer.android.com/guide/components/fundamentals.html>. Acesso em: 25
out. 2019.

LOU, T. A comparison of Android Native App Architecture - MVC, MVP and MVVM.
2016, 57f. Tese de Mestrado - Universidade de Tecnologia de Eindhoven. Disponivel
em: <https://pure.tue.nl/ws/portalfiles/portal/48628529/Lou_2016.pdf>. Acesso em 4
dez. 2019.

Android Developers: Handling Lifecycles with Lifecycle-Aware Components.
Disponivel em: <https://developer.android.com/topic/libraries/architecture/lifecycle>.
Acesso em: 27 out. 2019.

Android Developers: ViewModel Overview. Disponivel em:
<https://developer.android.com/topic/libraries/architecture/viewmodel>. Acesso em: 28
out. 2019.

Android Developers: Visdéo Geral do LiveData. Disponivel em:
<https://developer.android.com/topic/libraries/architecture/livedata>. Acesso em: 28
out. 2019.

Android Developers: Salvar dados em um banco de dados local usando o Room.
Disponivel em: <https://developer.android.com/training/data-storage/room/index.html>.
Acesso em: 28 out. 2019.

SINGH, Rajinder. An Overview of Android Operating System and Its Security
Features. Int. Journal of Engineering Research and Applications. www.ijera.com,
ISSN : 2248-9622, Vol. 4. Fevereiro, 2014, p. 519-521. Disponivel em:
<https://pdfs.semanticscholar.org/11f4/b8efd1a9af746f17ac5e8d6a789bd3c3a9b7.pdf>.
Acesso em: 25 out. 2019.

https://developer.android.com/jetpack/docs/guide
https://developer.android.com/guide/platform?hl=pt-br
https://developer.android.com/guide/components/fundamentals.html
https://pure.tue.nl/ws/portalfiles/portal/48628529/Lou_2016.pdf
https://developer.android.com/topic/libraries/architecture/lifecycle
https://developer.android.com/topic/libraries/architecture/viewmodel
https://developer.android.com/topic/libraries/architecture/livedata
https://developer.android.com/training/data-storage/room/index.html
https://pdfs.semanticscholar.org/11f4/b8efd1a9af746f17ac5e8d6a789bd3c3a9b7.pdf

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Android Developers: Activity. Disponivel em:
<https://developer.android.com/reference/android/app/Activity>.Acesso em: 9 nov.
2019.

Android Developers: Fragments. Disponivel em:
<https://developer.android.com/guide/components/fragments>. Acesso em: 9 nov. 2019.
Android Developers: Service. Disponivel em:
<https://developer.android.com/reference/android/app/Service.html>. Acesso em: 12
nov. 2019.

Android Developers: Provedores de Conteiido. Disponivel em:
<https://developer.android.com/guide/topics/providers/content-providers.html>. Acesso
em: 12 nov. 2019.

Android Developers: Componentes da Arquitetura do Android. Disponivel em:
<https://developer.android.com/topic/libraries/architecture>. Acesso em: 8 nov. 2019.
Android Developers: Intents e filtros de Intents. Disponivel em:
<https://developer.android.com/guide/components/intents-filters>. Acesso em: 30 nov.
de 2019.

Android Developers: Como direcionar o usudrio para outro aplicativo. Disponivel em:
<https://developer.android.com/training/basics/intents/sending>. Acesso em: 30 nov.
2019.

INTERNATIONAL CONFERENCES PERVASIVE PATTERNS AND APPLICATION
ANDROID PASSIVE MVC, 15, 2013. Android Passive MVC: a Novel Architecture
Model for Android Application Development... Universidade de Tecnologia de Troyes.
Disponivel em:
<https://pdfs.semanticscholar.org/3ffa/594333883a56fc0519072b6615600ec03708.pdf>
. Acesso em: 2 dez. 2019.

Android Developers: What the Fragment? - Google I/O 2016. Disponivel em:
<https://youtu.be/k3IT-1J0J98>. Acesso em: 5 dez. 2019.

Android Developers: Single Activity: Why, When, and How (Android Dev Summit '18).
Disponivel em: <https://youtu.be/2k8x8V77CrU>. Acesso em: 5 dez. 2019.

Vasiliy: Netflix Shows The Future of Android Architecture. Disponivel em:
<https://www.techyourchance.com/netflix-shows-the-future-of-android-architecture/>.

Acesso em 10 dez. 2019.

https://developer.android.com/reference/android/app/Activity
https://developer.android.com/guide/components/fragments
https://developer.android.com/reference/android/app/Service.html
https://developer.android.com/guide/topics/providers/content-providers.html
https://developer.android.com/topic/libraries/architecture
https://developer.android.com/guide/components/intents-filters?hl=pt-BR
https://developer.android.com/training/basics/intents/sending
https://pdfs.semanticscholar.org/3ffa/594333883a56fc0519072b6615600ec03708.pdf
https://youtu.be/k3IT-IJ0J98?t=242
https://youtu.be/2k8x8V77CrU?t=450
https://www.techyourchance.com/netflix-shows-the-future-of-android-architecture/

[22]

[23]

[24]

[25]

[26]

[27]

droidcon SF: droidcon SF 2018 - Netflix's componentization architecture with RxJava +
Kotlin - Part II. Disponivel em: <https://youtu.be/IcWwth_57ZQs>. Acesso em 10 dez.
2019.

Michael Geers: Micro Frontends - Extending the microservice idea to frontend
development. Disponivel em: <https://micro-frontends.org>. Acesso em: 9 fev. 2020.
Cam Jackson: Micro Frontends. Disponivel em:
<https://martinfowler.com/articles/micro-frontends.html>. Acesso em 9 fev. 2020.
GitHub: ednaldomartins - ArchitectureComponentApp. Diponivel em:
<https://github.com/ednaldomartins/ArchitectureComponentApp>. Acesso em 30 Jan.
2020.

The Movie Database: API Overview. Disponivel em:
<https://www.themoviedb.org/documentation/api>. Acesso em 15 dez. 2019.
Robolectric: test-drive your Android code. Disponivel em: <http://robolectric.org>.

Acesso em 13 mar. 2020.

https://micro-frontends.org/
https://martinfowler.com/articles/micro-frontends.html
https://github.com/ednaldomartins/ArchitectureComponentApp
https://www.themoviedb.org/documentation/api
http://robolectric.org/

