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Resumo

Este trabalho trata de algumas classes de desigualdades do tipo Adams envol-

vendo potenciais e pesos que podem decair a zero no in�nito. A partir dessas de-

sigualdades, estabelecemos resultados de compacidade e resultados de concentração-

compacidade. Como aplicações dessas desigualdades de Adams com peso, usando

métodos minimax, provamos a existência de soluções para algumas classes de prob-

lemas elípticos envolvendo o operador biharmônico em R4 e o operador poliharmônico

em R2m, onde o termo não linear pode ter crescimento exponencial crítico no sentido

de Trudinger-Moser. Além disso, em alguns casos, provamos que as soluções obtidas

são limitadas em L2, ou seja, são "bound state solutions".

Palavras-chave: Métodos variacionais; Desigualdade de Adams; Crescimento expo-

nencial; Equações elípticas de ordem superior.
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Abstract

This work deals with some classes of Adams-type inequalities involving potentials

and weights that can decay to zero at in�nity. From these inequalities, we establish

compactness results and concentration-compactness results. As applications of these

weighted Adams inequalities, using minimax methods, we prove the existence of solu-

tions to some classes of elliptic problems involving the biharmonic operator on R4 and

the polyharmonic operator on R2m, where the nonlinear term has critical exponential

growth in the Trudinger-Moser sense. Furthermore, in some cases we prove that the

solutions obtained are bounded in L2, which are the so-called bound state solutions.

Keywords: Variational methods; Adams inequality; Exponential growth; Higher-

order elliptic equations.
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Introduction

In this thesis, we study weighted Adams-type inequalities and some of their con-

sequences in the study of elliptic equations involving biharmonic and polyharmonic

operators. These inequalities are natural generalizations for Sobolev spaces involving

higher-order derivatives of the famous Trudinger-Moser inequality. Let us see a brief re-

view of the literature on the main results involving Adams' inequalities that motivated

the development of this work.

Let Ω ⊂ RN be a smooth bounded domain with N ≥ 2. The classical Sobolev

theorem states that the embedding W 1,N
0 (Ω) ↪→ Lq(Ω) is continuous for all 1 ≤ q <∞,

butW 1,N
0 (Ω) 6↪→ L∞(Ω). In this limiting case, the optimal embedding involves an Orlicz

space, which was studied by Yudovich [74], Pohozaev [57], Peetre [56], Trudinger [66]

and Moser [51]. As Ω is a bounded domain, using the Dirichlet norm ‖∇u‖N :=(∫
Ω
|∇u|N

)1/N
(equivalent to the Sobolev norm ‖u‖1,N := [

∫
Ω

(|∇u|N + |u|N)]1/N in

W 1,N
0 (Ω)), it was established, by Moser [51], that

sup
{u∈W 1,N

0 (Ω) : ‖∇u‖N≤1}

∫
Ω

eγ|u|
N
N−1

dx ≤ CN |Ω|, (1)

for any γ ≤ γN := Nω
1

N−1

N−1, where |Ω| denotes the Lebesgue measure of Ω and ωN−1

is the measure of the unit sphere in RN . Moreover, γN is the best constant in the

following sense: the integral on the left of the previous inequality is �nite for any

γ > 0, but if γ > γN it can be made arbitrarily large by an appropriate choice of u and

the supremum is in�nity.

In the literature, (1) is known under the name Trudinger-Moser inequality. This

result has been generalized and extended in many directions. Related results and

variants can be found in several papers, see for instance, Li [41, 42] and Yang [68, 72]



for generalizations to functions on compact Riemannian manifolds. When Ω = RN , we

cite Adachi and Tanaka [1], Adimurthi and Yang [5], Cao [14], do Ó [27, 29], de Souza

and do Ó [26], Ruf [60], Li and Ruf [43], Yang and Zhu [73].

The Adams inequality is the extension of the Trudinger-Moser inequality for the

higher-order derivatives and says that for m ∈ N and Ω an open bounded set of RN

with m < N , there exists a positive constant Cm,N such that

sup

{u∈Wm,Nm
0 (Ω) : ‖∇mu‖N

m
≤1}

∫
Ω

eγ|u|
N

N−m
dx ≤ Cm,N |Ω|, (2)

for any γ ≤ γm,N , where

γm,N :=
N

ωN−1


[
π
N
2 2mΓ(m

2
)

Γ(N−m2 )

] N
N−m

, if m is even,[
π
N
2 2mΓ(m+1

2
)

Γ(N−m+1
2 )

] N
N−m

, if m is odd,

and

∇mu :=

∆
m
2 u, m is even,

∇∆
m−1

2 u, m is odd

denotes the mth-order gradient of u. Furthermore, inequality (2) is sharp, that is, for

any γ > γm,N , the integral in (2) can be made as large as possible (see Adams [2] for

details). In the particular case when N = 4 and m = 2, inequality (2) becomes

sup
{u∈H2

0 (Ω) : ‖∆u‖2≤1}

∫
Ω

eγu
2

dx

≤ C|Ω| if γ ≤ 32π2,

= +∞ if γ > 32π2.

(3)

Similar to the classic Trudinger-Moser inequality, Adams inequality in its form

(2) cannot be extended to unbounded domains. As far as the author knows, the �rst

attempt to generalize Adams's inequality to unbounded domains was due to Ozawa in

[54]. He proved the existence of two positive constants γ and C such that∫
RN
φm,N

(
γ|u|

N
N−m

)
dx ≤ C‖u‖

N
m
N
m

, for all u ∈ Wm,N
m (RN) with ‖∇mu‖N

m
≤ 1, (4)

where

φm,N(t) := et −
jN
m
−2∑

j=0

tj

j!
, m ∈ N, N > m, jN

m
:= min

{
j ∈ N : j ≥ N

m

}
and t ≥ 0.

2



In [61], Ruf and Sani established the following very useful result: let m = 2k be

an even integer less than N . Then, there exists a constant Cm,N > 0 such that, for any

domain Ω ⊂ RN , one has

sup

{u∈Wm,Nm
0 (Ω) : ‖(−∆+I)ku‖N

m
≤1}

∫
Ω

φm,N

(
γm,N |u|

N
N−m

)
dx ≤ Cm,N , (5)

and this inequality is also sharp. In the particular case N = 4, m = 2 and Ω = R4,

inequality (5) becomes

sup
{u∈H2(R4) : ‖(−∆+I)u‖2≤1}

∫
R4

(
e32π2u2 − 1

)
dx <∞. (6)

Many other improvements of the Adams inequality in bounded and unbounded

domains have been proved. We can refer to Lam and Lu [38, 40], Masmoudi and

Sani [47], Lu and Yang [46], Tarsi [65]. Among them, we would like to emphasize the

result proved by Masmoudi and Sani [47], which complements some of the works cited

previously. Precisely, in [47], it was proved that, for any γ ∈ (0, 32π2), there exists a

constant C = C(γ) > 0 such that∫
R4

(eγu
2 − 1) dx ≤ C‖u‖2

2, for all u ∈ H2(R4) with ‖∆u‖2 ≤ 1,

and this inequality is not valid if γ ≥ 32π2.

The Trudinger-Moser inequality (1) has motivated many works on the existence of

solutions to second-order nonlinear elliptic problems, we can cite for example Adimurthi

et al. [3, 4]. The researcher's de Figueiredo, Miyagaki, and Ruf [23], following the

ideas introduced by Brezis and Nirenberg [13], studied the existence of a solution for

the equation −∆u = f(x, u) in a bounded domain of R2, when the nonlinear term f

has subcritical and critical exponential growth.

The Adams inequality (2) motivated the study of elliptic problems involving the

polyharmonic operator in bounded domains. For example, Lakkis [37] considered the

following quasilinear elliptic equation in Ω ⊂ RN :(−∆)mu = g(u) in Ω,

u = ∇u = · · · = ∇m−1u = 0, on ∂Ω,

with N = 2m and the nonlinearity g having critical exponential growth. We can also

quote the article by Lam and Lu [39], where they studied the existence of solutions

3



for a nonlinear polyharmonic problem with nonlinearity having subcritical and critical

exponential growth bounded domains in R2m. Sani in [62, 63] studied a biharmonic

equation in R4 involving nonlinearities with subcritical and critical exponential growth.

In this context, we study Adams-type inequalities and some applications. To

reach our goal, we divided this work into three chapters. In what follows, we describe

each of the chapters.

In Chapter 1, motivated by the results in [30, 33], our �rst aim is to investigate a

new Adams inequality in R4 involving a potential V and a weight K which can decay

to zero at in�nity. Moreover, as an application, we establish the existence of solutions

for a class of elliptic biharmonic equations in the critical growth range.

In a more precise way, we consider functions V (x) and K(x) satisfying the fol-

lowing assumptions:

(V ) V ∈ C(R4) and there exist α, a > 0 such that V (x) ≥ a

1 + |x|α
for all x ∈ R4;

(K) K ∈ C(R4) and there exist β, b > 0 such that 0 < K(x) ≤ b

1 + |x|β
for all x ∈ R4.

In particular, we restrict our attention to the case when α and β satisfy

α ∈ (0, 4) and β ∈ [α,+∞). (7)

Let us consider the following space:

E :=

{
u ∈ L1

loc
(R4) : |∇u|, ∆u ∈ L2(R4) and

∫
R4

V (x)u2dx <∞
}

(8)

endowed with the inner product 〈u, v〉E :=

∫
R4

(∆u∆v +∇u∇v + V (x)uv) dx and its

corresponding norm ‖u‖ :=

(∫
R4

(|∆u|2 + |∇u|2 + V (x)u2) dx

)1/2

.

In this context, our �rst result is a weighted version of Adams inequality, as

follows:

Theorem 0.0.1 Suppose that (V ) and (K) hold with α and β satisfying (7). Then,

for any γ > 0 and any u ∈ E, it holds∫
R4

K(x)(eγu
2 − 1) dx <∞. (9)

Moreover, we have

sup
u∈E
‖u‖≤1

∫
R4

K(x)(eγu
2 − 1) dx =

{
<∞, if 0 < γ < 32π2;

+∞, if γ > 32π2.
(10)

4



As initial applications of Theorem 0.0.1, we will prove the compact embedding

of the space E into LpK(R4) for p ≥ 2, α ∈ (0, 4) and β ∈ (α,+∞). We also will ob-

tain a Lions-type Concentration-Compactness Principle involving exponential growth,

which is a re�nement of Theorem 0.0.1 (see Proposition 1.3.2). Furthermore, we will

investigate the existence of weak solutions for the following class of problems:

∆2u−∆u+ V (x)u = K(x)f(x, u) in R4, (11)

where the potential V and the weight K satisfy the conditions (V ) and (K), respec-

tively, and the nonlinearity f(x, s) has the maximal growth which allows us to study

(11) by using variational methods. Precisely, motivated by (10), we say that f(x, s)

has critical exponential growth if there exists γ0 > 0 such that

lim
|s|→∞

f(x, s)

eγs2
=

0, for all γ > γ0,

+∞, for all γ < γ0,

uniformly in x ∈ R4.

We require the following assumptions on the nonlinearity f(x, s):

(H1) lim
s→0

f(x, s)

s
= 0, uniformly in x ∈ R4;

(H2) the function f : R4 × R→ R is continuous and has critical exponential growth;

(H3) there exists µ > 2 such that

0 < µF (x, s) ≤ sf(x, s), for all (x, s) ∈ R4 × R \ {0};

(H4) there exist constants s0,M0 > 0 such that

F (x, s) ≤M0|f(x, s)|, for all |s| ≥ s0 and x ∈ R4;

(H5) We also consider one of the following assumptions:

(i) there exist θ, θ0 > 0 such that lim inf
s→∞

F (x, s)

sθeγ0s2
≥ θ0, uniformly in x ∈ R4;

(ii) lim inf
s→∞

sf(x, s)

eγ0s2
≥ θ′0 for some θ′0 >

64
γ0K̃

, uniformly in x ∈ R4, where K̃ =

min
x∈B1

K(x).

Under these conditions we can prove an existence result that says the following:

5



Theorem 0.0.2 Assume (V ), (K) and (H1) − (H5) hold with α ∈ (0, 4) and β ∈
(α,+∞). Then, problem (11) has a nontrivial weak solution.

Denoting by u0 the weak solution obtained in the previous theorem, our next

result can be stated as follows:

Theorem 0.0.3 Assume (V ), (K) and (H1) − (H5) hold with α ∈ (0, 2) and β ∈
(α,+∞). Then, u0 ∈ H2(R4), that is, u0 is a bound state solution of problem (11).

In this chapter, we improve and extend some results obtained in [6, 7, 8, 9, 11, 12,

15, 18, 21, 22, 49, 63, 67, 69, 75], in the sense that we have considered nonlinearities

with critical exponential growth and V (x), K(x) can vanish at in�nity, and they do

not need to be radial. These features considered here are not treated in these previous

works. Finally, as far as we know, there are few results involving biharmonic operators

and vanishing potentials.

In Chapter 2, inspired by [30, 64], we study the solvability of the following bihar-

monic Choquard equation:

∆2u−∆u+ V (x)u =
[
|x|−µ ∗ (K(x)F (x, u))

]
K(x)f(x, u), x ∈ R4, (12)

where the functions V and K satisfy the hypotheses (V ) and (K) de�ned in the �rst

chapter.

Equations like (12) arise in various branches of applied mathematics and physics,

see [34, 35, 36, 55] and references therein. For instance, part of the interest is be-

couse that solutions of (12) are related to the existence of solitary wave solutions for

Schrödinger equations of the form

i
∂ψ

∂t
= ∆2ψ −∆ψ +W (x)ψ −

[
|x|−µ ∗ (K(x)F (x, ψ))

]
K(x)f(x, ψ),

where ψ : R × R4 → C is an unknown function and W : R4 → R is the potential

function. For the physical interest in the in�uence of the biharmonic term in nonlinear

Schrödinger equations, we refer the reader to [24] and references therein. For the study

of problem (12) involving the biharmonic operator, it will be necessary to enlarge the

range of variation of the constants α and β adopted in [64].

Precisely, we will assume the following conditions:

0 < α < 4 and
(8− µ)α

8
≤ β <∞, with µ ∈ (0, 4). (13)

6



Considering the space E de�ned in (8), we can establish the following weighted

version of the Adams inequality obtained in [2]:

Theorem 0.0.4 Suppose that (V ), (K) and (13) hold. Then, for all γ > 0 and any

u ∈ E, we have ∫
R4

K
8

8−µ (x)(eγu
2 − 1) dx <∞. (14)

Moreover, we can conclude that

sup
{u∈E : ‖u‖≤1}

∫
R4

K
8

8−µ (x)(eγu
2 − 1) dx =

{
<∞ if γ ∈ (0, 32π2);

+∞ if γ > 32π2.
(15)

The proof of this result follows the same line as Theorem 0.0.1.

To control the nonlocal term |x|−µ ∗ (K(x)F (x, u)) of (12), we need the well-

known Hardy-Littlewood-Sobolev inequality, which we state in RN and that will play

an important role in Chapter 2 (see Proposition 2.1.2). We assume that the nonlinearity

f(x, s) satis�es the condition (H4) and the hypotheses:

(H ′1) f ∈ C(R4 × R), f has critical exponential growth, f(x, s) = 0 for all (x, s) ∈

R4 × (−∞, 0] and f(x, s) = o(s
4−µ

4 ) as s→ 0+, uniformly in x ∈ R4;

(H ′2) 0 ≤ H(x, t) ≤ H(x, s) for all 0 < t < s and for x ∈ R4, where H(x, u) =

uf(x, u)− F (x, u);

(H ′3) lim inf
s→+∞

F (x, s)

eγ0s2
=: β0 > 0, uniformly in x ∈ R4.

We emphasize that during Chapter 2 we do not use the famous Ambrosetti-Rabinowitz

condition (H3).

We are ready to state the main existence results of Chapter 2. The �rst result is

the following:

Theorem 0.0.5 Assume (V ) and (K) hold with α ∈ (0, 4) and β > (8− µ)α/8. If f

satis�es (H ′1)− (H ′3) and (H4), then (12) admits a nontrivial weak solution in E.

In the next result, by restricting the range of α, we will show that the solution

obtained in the above theorem is L2(R4) and thus belongs to H2(R4), that is, the

solution is a bound state. The statement can be expressed as follows:

Theorem 0.0.6 Suppose that (V ) and (K) hold with α ∈ (0, 2) and β > (8− µ)α/8.

If f satis�es (H ′1)− (H ′3) and (H4), then the solution obtained in the previous result is

a bound state.
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In Chapter 3, we prove a weighted Adams inequality in RN , that is, much more

general than the one proved in Chapter 1 (see Theorem 0.0.1). As an application we

study a class of elliptic equations involving the polyharmonic operator.

We consider functions V (x) and K(x) satisfying the following assumptions:

(V ′) V ∈ C(RN) and there exist α, a > 0 such that V (x) ≥ a

1 + |x|α
for all x ∈ RN ;

(K ′) K ∈ C(RN) and there exist β, b > 0 such that 0 < K(x) ≤ b

1 + |x|β
for all

x ∈ RN ;

and we restrict our attention to the case when α and β satisfy

α ∈ (0, N) and β ∈ [α,+∞). (16)

Next, to present our �rst result, we will �x some notations. For m integer such

that m ≥ 2 and m < N , we consider the space

E :=

{
u ∈ L1

loc
(RN) : |∇iu| ∈ L

N
m (RN) ∀ i = 1, . . . ,m and

∫
RN
V (x)|u|

N
mdx <∞

}

and norm ‖u‖ :=

(∫
RN

(|∇mu|N/m + · · ·+ |∇u|N/m + V (x)|u|N/m) dx

)m/N
.

In this context, we can establish the following result.

Theorem 0.0.7 Suppose that (V ′) and (K ′) hold with α and β satisfying (16). Then,

for any γ > 0 and any u ∈ E, it holds∫
RN
K(x)φm,N(γ|u|

N
N−m ) dx <∞. (17)

Moreover, we have

sup
u∈E
‖u‖≤1

∫
RN
K(x)φm,N(γ|u|

N
N−m ) dx =

{
<∞, if γ < γm,N ;

+∞, if γ > γm,N .
(18)

As initial application of Theorem 0.0.7, we will prove the compact embedding of the

space E into LpK(RN) for p ≥ 2, α ∈ (0, N) and β ∈ (α,+∞) (see Proposition 3.3.1).

For the second part of the chapter, we assume that the integer m ≥ 2 and

the dimension N of the domain satisfy N = 2m. We also will obtain a Lions-

type concentration-compactness principle involving exponential growth (see Proposi-

tion 3.5.3), which is a re�nement of Theorem 0.0.7.
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Furthermore, we will investigate the existence of weak solutions for the following

class of problems:

m∑
j=1

(−∆)ju+ V (x)u = K(x)f(x, u) in R2m, (19)

where the potential V and the weight K satisfy the conditions (V ′) and (K ′), respec-

tively and α and β are such that

α ∈ (0, 2m) and β ∈ (α,+∞). (20)

In this case as N = 2m, we have the norm in space E is characterized as ‖u‖2 =

〈u, u〉E where

〈u, v〉E =

∫
R2m

(
m∑
j=1

∇ju∇jv + V (x)uv

)
dx.

We assume that the nonlinearity f(x, s) satisfes the assumptions:

(H̃1) lim
s→0

f(x, s)

s
= 0, uniformly in x ∈ R2m;

(H̃2) the function f : R2m×R→ R is continuous and has critical exponential growth;

(H̃3) there exists µ > 2 such that

0 < µF (x, s) ≤ sf(x, s), for all (x, s) ∈ R2m × R \ {0};

(H̃4) there exist constants s0,M0 > 0 such that

F (x, s) ≤M0|f(x, s)|, for all |s| ≥ s0 and x ∈ R2m;

(H̃5) lim inf
s→∞

sf(x, s)

eγ0s2
≥ θ0, for some θ0 >

2mγm,2m

ω2mK̃γ0
uniformly with respect to x ∈ R2m,

where K̃ = min
x∈B1

K(x).

Hence, we prove the following existence result:

Theorem 0.0.8 Assume (V ′), (K ′), (H̃1) − (H̃5) and (20) hold. Then, problem (19)

has a nontrivial weak solution.

We do not resort to the introduction and for the sake of the independence of

the chapters, we will present again, in each chapter, the main results and the related

assumptions.
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Notation and terminology

• C̃, C, Ci, i = 1, 2, ..., denote positive (possibly di�erent) constants;

• C(ε) denotes positive constant which depends on the parameter ε;

• BR(x) denotes the open ball centered at x ∈ RN and radius R and BR = BR(0);

• for a subset Ω ⊂ RN , we denote by ∂Ω, Ω, |Ω| and Ωc, the boundary, the closure,

the Lebesgue measure and the complement of Ω in RN , respectively;

• χΩ denotes the characteristic function of a set Ω ⊂ RN , that is, χΩ(x) = 1 if

x ∈ Ω and χΩ(x) = 0 if x ∈ Ωc;

• on(1) denotes a sequence that converges to zero;

• for 1 ≤ p ≤ ∞, the standard norm in Lp(RN) is denoted by ‖ · ‖p;

• un ⇀ u and un → u denote weak and strong convergence, respectively, in a

normed space;

• C∞0 (Ω) denotes the space of in�nitely di�erentiable real functions whose support

is compact in Ω ⊂ RN .



Chapter 1

On a weighted Adams type inequality

and an application to a biharmonic

equation

This chapter deals with an improvement of a class of Adams-type inequalities

involving a potential V and a weightK which can decay to zero at in�nity as (1+|x|α)−1,

α ∈ (0, 4) and (1 + |x|β)−1, β ∈ [α,+∞), respectively.

As an application of this result and by using minimax methods, we establish the

existence of solutions for the following class of problems:

∆2u−∆u+ V (x)u = K(x)f(x, u) in R4,

where ∆2u = ∆(∆u) is the operator biharmonic and the nonlinear term f(x, u) can

have critical exponential growth. Furthermore, when α ∈ (0, 2) we prove that the

solutions belong to the Sobolev space H2(R4) (bound state solutions).

1.1 Introduction and main results

The main purpose of this chapter is two-fold: motivated by the results in [30, 33],

our �rst aim is to investigate a new Adams inequality in R4 involving a potentials V

and a weights K which can decay to zero at in�nity. Moreover, as an application we

establish the existence of solutions for a class of elliptic biharmonic equations in the

critical growth range.



In a more precise way, we consider some weight functions V (x) and K(x) satis-

fying the following assumptions:

(V ) V ∈ C(R4) and there exist α, a > 0 such that V (x) ≥ a

1 + |x|α
for all x ∈ R4;

(K) K ∈ C(R4) and there exist β, b > 0 such that 0 < K(x) ≤ b

1 + |x|β
for all x ∈ R4.

We use the notation ‖ · ‖LpK for the norm of the weighted Lebesgue space

LpK(R4) =

{
u : R4 → R : u is measurable and

∫
R4

K(x)|u|pdx <∞
}
,

that is, ‖u‖LpK(R4) =

(∫
R4

K(x)|u|pdx
)1/p

.

In particular, we restrict our attention to the case when α and β satisfy

α ∈ (0, 4) and β ∈ [α,+∞). (1.1)

Next, in order to present our �rst result, we will �x some notations. Consider the

space

E :=

{
u ∈ L1

loc
(R4) : |∇u|, ∆u ∈ L2(R4) and

∫
R4

V (x)u2dx <∞
}

endowed with the inner product

〈u, v〉E :=

∫
R4

(∆u∆v +∇u∇v + V (x)uv) dx

and its corresponding norm

‖u‖ :=

(∫
R4

(|∆u|2 + |∇u|2 + V (x)u2) dx

)1/2

.

By using condition (V ), it follows that the space E equipped with the inner product

〈·, ·〉E is a Hilbert space and we have that C∞0 (R4) is dense in E (see Appendix A).

We cite again the following results that were presented in the Introduction as

they will be useful for the proof of our �rst theorem. The �rst inequality concerns the

particular case of (2) when N = 4 and m = 2

sup
{u∈H2

0 (Ω) : ‖∆u‖2≤1}

∫
Ω

eγu
2

dx

≤ C|Ω| if γ ≤ 32π2,

= +∞ if γ > 32π2.

(1.2)

12



Masmoudi and Sani [47], proved that, for any γ ∈ (0, 32π2), there exists a constant

C = C(γ) > 0 such that∫
R4

(eγu
2 − 1) dx ≤ C‖u‖2

2, for all u ∈ H2(R4) with ‖∆u‖2 ≤ 1, (1.3)

and this inequality is not valid if γ ≥ 32π2.

In this context, we can establish our �rst result.

Theorem 1.1.1 Suppose that (V ) and (K) hold with α and β satisfying (1.1). Then,

for any γ > 0 and any u ∈ E, it holds∫
R4

K(x)(eγu
2 − 1) dx <∞. (1.4)

Moreover, we have

sup
u∈E
‖u‖≤1

∫
R4

K(x)(eγu
2 − 1) dx =

{
<∞, if 0 < γ < 32π2;

+∞, if γ > 32π2.
(1.5)

Remark 1.1.2 We highlight that inequality (1.5) in Theorem 1.1.1 treats only the

subcritical case. The critical case γ = 32π2 is still an open question.

As initial applications of Theorem 1.1.1, we will prove the compact embedding

of the space E into LpK(R4) for p ≥ 2, α ∈ (0, 4) and β ∈ (α,+∞) (see Proposition

1.3.1). We also will obtain a Lions-type concentration-compactness principle involving

exponential growth (see Proposition 1.3.2), which is a re�nement of Theorem 1.1.1.

The existence of solutions for elliptic equations involving the biharmonic operator

has been the object of study in recent years by several researchers, mainly motivated

by the wide variety of applications. For example, we can cite the modeling of thin

elastic plates, clamped plates and in the study of the Paneitz-Branson equation and

the Willmore equation (see [34]).

Due to the applicability of problems involving the biharmonic operator and mo-

tivated by the Theorem 1.1.1, we will investigate the existence of weak solutions for

the following class of problems

∆2u−∆u+ V (x)u = K(x)f(x, u) in R4, (1.6)

where the potential V and the weight K satisfy the conditions (V ) and (K), respec-

tively, and the nonlinearity f(x, s) has the maximal growth which allows us to study
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(1.6) by using a variational method. Precisely, motivated by (1.5), we say that f(x, s)

has critical exponential growth if there exists γ0 > 0 such that

lim
|s|→∞

f(x, s)

eγs2
=

0, for all γ > γ0,

+∞, for all γ < γ0,

uniformly in x ∈ R4. In this context, we say that u ∈ E is a weak solution for (1.6) if∫
R4

(∆u∆v +∇u∇v + V (x)uv) dx =

∫
R4

K(x)f(x, u)v dx, for all v ∈ E. (1.7)

We will assume su�cient conditions on f so that weak solutions of (1.6) become

critical points of the functional I : E → R de�ned by

I(u) =
1

2
‖u‖2 −

∫
R4

K(x)F (x, u) dx,

where F (x, s) :=
∫ s

0
f(x, t)dt.

We require the following assumptions on the nonlinearity f(x, s):

(f1) lim
s→0

f(x, s)

s
= 0, uniformly in x ∈ R4;

(f2) the function f : R4 × R→ R is continuous and has critical exponential growth;

(f3) there exists µ > 2 such that

0 < µF (x, s) ≤ sf(x, s), for all (x, s) ∈ R4 × R \ {0};

(f4) there exist constants s0,M0 > 0 such that

F (x, s) ≤M0|f(x, s)|, for all |s| ≥ s0 and x ∈ R4;

(f5) We also consider one of the following assumptions:

(i) there exist θ, θ0 > 0 such that lim inf
s→∞

F (x, s)

sθeγ0s2
≥ θ0, uniformly in x ∈ R4;

(ii) lim inf
s→∞

sf(x, s)

eγ0s2
≥ θ′0 for some θ′0 >

64
γ0K̃

, uniformly in x ∈ R4, where K̃ =

min
x∈B1

K(x).

Our existence result is stated below.

Theorem 1.1.3 Assume (V ), (K) and (f1) − (f5) hold with α ∈ (0, 4) and β ∈
(α,+∞). Then, problem (1.6) has a nontrivial weak solution.
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Denoting by u0 the weak solution obtained in Theorem 1.1.3, our next result can

be stated as follows:

Theorem 1.1.4 Assume (V ), (K) and (f1) − (f5) hold with α ∈ (0, 2) and β ∈
(α,+∞). Then u0 ∈ H2(R4), that is, u0 is a bound state solution of problem (1.6).

Regarding this issue, we would like to mention interesting works that we found in

the literature that have treated the existence of solutions through variational methods.

We begin by citing some works that consider the biharmonic operator and nonlinearities

with polynomial growth at in�nity, e.g., [6, 7, 8, 9, 12, 15, 18, 21, 22, 67, 75]. On the

other hand, elliptic problems involving nonlinearities with exponential growth were

initially studied in [3, 23]. There were introduced the notions of critical exponential

growth to problems that can be treated by using variational methods. This notion was

motivated by the Trudinger-Moser inequality (1).

Sani [63], Aouaoui and Albuquerque [11], Miyagaki et al. [49] and Yang [69] have

applied these ideas to treat some fourth-order problems. In these works, following the

ideas from [3, 23] and motivated by Adams' inequality (2), Sani [63] studied a class

of problems involving the biharmonic operator and a class of spherically symmetric

potentials (or even coercive) and bounded from below by a positive constant. Aouaoui

and Albuquerque [11] considered potentials and weights that are radial and can have

a singularity at the origin and can vanish at in�nity.

In [69], Yang considered a class of nonhomogeneous problems similar to (1.6) and

studied the case where the potential is bounded from below by a positive constant and

satis�es the integrability condition 1/V ∈ L1(R4). For other related results, we would

like to mention the works [19, 33, 48, 50, 52, 58, 59, 77].

In this chapter, we improve and extend some results obtained in [6, 7, 8, 9, 11,

12, 15, 18, 21, 22, 49, 63, 67, 69, 75], in the sense that we have considered nonlinearities

with critical exponential growth and potentials that can vanish at in�nity which are not

radially symmetric. These features considered here are not treated in these previous

works. Finally, as far as we know, there are few results involving biharmonic operators

and vanishing potentials.

The outline of the chapter is as follows: in Section 1.2 we prove the weighted

Adams' inequality. In Section 1.3 we prove that the embedding E ↪→ LpK(R4) is
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compact for all p ∈ [2,+∞) (see Proposition 1.3.1). Moreover, we prove a version of

the Concentration-Compactness Principle due to P. -L. Lions [45] to the space E (see

Proposition 1.3.2). Section 1.4 contains the variational framework related to problem

(1.6) and we also check the geometric properties of the functional I. Section 1.5 deals

with the Palais-Smale compactness condition. In Section 1.6 we estimate the minimax

level. In Section 1.7 we complete the proof of Theorem 1.1.3 and in Section 1.8 we

prove some auxiliary results and Theorem 1.1.4.

1.2 Proof of Theorem 1.1.1

This section is devoted to the proof of Theorem 1.1.1.

Proof . We begin proving the �rst part of (1.5). The proof will be divided into two

steps.

Step 1: Let u ∈ E be such that ‖u‖ ≤ 1. First, we want to estimate the weighted

Trudinger-Moser functional

TM(u, γ, R) =

∫
BR

K(x)(eγu
2 − 1) dx

for some R > 0, independently of u, that will be chosen during the proof. From

condition (K), we have∫
BR

K(x)(eγu
2 − 1) dx ≤ b

∫
BR

(eγu
2 − 1) dx. (1.8)

Consider a cuto� function ϕ ∈ C∞0 (B2R) such that

0 ≤ ϕ ≤ 1 in B2R, ϕ ≡ 1 in BR, |∇ϕ| ≤
C

R
in B2R and |∆ϕ| ≤ C

R2
in B2R,

for some constant C > 0. Then, we have

|∆(ϕu)|2 = |∆ϕ|2u2 + 4(ϕ∆u)∇ϕ∇u+ 2(ϕ∆u)u∆ϕ+ 4(∇ϕ · ∇u)2

+ 4∇ϕ∇u(u∆ϕ) + |∆u|2ϕ2,
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and by Young's inequality a1b1 ≤ εa2
1 + ε−1b2

1, with ε ∈ (0, 1) and a1, b1 ≥ 0, we obtain∫
B2R

|∆(ϕu)|2 dx ≤ C2

R4

∫
B2R

u2dx+ 4ε

∫
B2R

|∆u|2dx+
4C2

εR2

∫
B2R

|∇u|2dx

+ 2ε

∫
B2R

|∆u|2dx+
2C2

εR4

∫
B2R

u2dx+
4C2

R2

∫
B2R

|∇u|2dx

+
4εC2

R2

∫
B2R

|∇u|2dx+
4C2

εR4

∫
B2R

u2dx+

∫
B2R

|∆u|2dx

= (1 + 6ε)

∫
B2R

|∆u|2 dx+

(
4C2

εR2
+

4C2

R2
+

4εC2

R2

)∫
B2R

|∇u|2 dx

+

(
C2

R4
+

6C2

R4ε

)∫
B2R

u2 dx.

Thus, by using (V ), it follows that∫
B2R

|∆(ϕu)|2 dx ≤ (1 + 6ε)

∫
B2R

|∆u|2 dx+

(
4C2

εR2
+

4C2

R2
+

4εC2

R2

)∫
B2R

|∇u|2 dx

+

(
1 +

6

ε

)
C2

a

1 + (2R)α

R4

∫
B2R

V (x)u2 dx.

Fixed ε ∈ (0, 1) such that γ(1 + 6ε) ≤ 32π2 and since α ∈ (0, 4), we can choose

R̄ = R̄(ε, a, α) > 0 su�ciently large satisfying

4C2

εR2
+

4C2

R2
+

4εC2

R2
≤ 1 + 6ε and

(
1 +

6

ε

)
C2

a

1 + (2R)α

R4
≤ 1 + 6ε,

for all R ≥ R̄. Thus, ∫
B2R

|∆(ϕu)|2 dx ≤ (1 + 6ε)‖u‖2 ≤ 1 + 6ε.

Therefore, de�ning

v :=
ϕu√

1 + 6ε

we have that ‖∆v‖2
2 =

1

1 + 6ε

∫
B2R

|∆(ϕu)|2 dx ≤ 1, and applying (1.2), we get

∫
BR

(eγu
2 − 1) dx =

∫
BR

(eγ(ϕu)2 − 1) dx ≤
∫
B2R

eγ(1+6ε)v2

dx ≤ CR2.

The previous inequality combined with (1.8) implies that∫
BR

K(x)(eγu
2 − 1)dx ≤ b

∫
BR

(eγu
2 − 1) dx ≤ CR2, for all u ∈ E with ‖u‖ ≤ 1. (1.9)

Step 2: Now, we estimate the weighted Trudinger-Moser functional in the exterior of a

large ball.
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For any n ≥ n0 �xed, where n0 will be chosen during the proof, we consider Bc
n

the exterior de Bn and the covering of Bc
n formed by all annuli Aσn with σ > n given by

Aσn := {x ∈ Bc
n : |x| < σ} = {x ∈ R4 : n < |x| < σ}.

By the Besicovitch covering Lemma [25], for any σ > n0, there exist a sequence of

points (xk) ∈ Aσñ and an universal constant θ > 0 such that

Aσñ ⊆
⋃
k

U
1/2
k , where U

1/2
k := B

(
xk,

1

2

|xk|
3

)
and ∑

k

χUk(x) ≤ θ for any x ∈ R4, where Uk := B

(
xk,
|xk|
3

)
where χUk is its characteristic function. Let u ∈ E be such that ‖u‖ ≤ 1.We start with

the estimate of the weighted exponential integral of u in Aσ3n with n ≥ n0 and σ > 3n.

Note that

Aσ3n ⊂ Aσñ ⊆
⋃
k

U
1/2
k

and de�ning the set of indices Kn,σ := {k ∈ N : U
1/2
k ∩Bc

3n 6= ∅ }, we have

Aσ3n ⊆
⋃

k∈Kn,σ

U
1/2
k .

Therefore, ∫
Aσ3n

K(x)
(
eγu

2 − 1
)
dx ≤

∑
k∈Kn,σ

∫
Uk

1/2

K(x)
(
eγu

2 − 1
)
dx. (1.10)

Since 2
3
|xk| ≤ |y| ≤ 4

3
|xk| for all y ∈ Uk, from (V ) and (K), we obtain

V (y) ≥ a

1 + |y|α
≥ a

1 +
(

4
3

)α |xk|α , for all y ∈ Uk (1.11)

and

K(y) ≤ b

1 + |y|β
≤ b

1 +
(

2
3

)β |xk|β , for all y ∈ Uk. (1.12)

Besides, if Uk ∩Bc
3n 6= ∅ then Uk ⊂ Bc

n, which implies that⋃
k∈Kn,σ

U
1/2
k ⊆

⋃
k∈Kn,σ

Uk ⊆ Bc
n ⊆ Bc

ñ. (1.13)

Next, let us �x k ∈ Kn,σ. From (1.12), we obtain∫
Uk

1/2

K(x)
(
eγu

2 − 1
)
dx ≤ b

1 +
(

2
3

)β |xk|β
∫
Uk

1/2

(eγu
2 − 1) dx. (1.14)
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Again, consider a cuto� function ϕk ∈ C∞0 (Uk) such that

0 ≤ ϕk ≤ 1 in Uk, ϕk ≡ 1 in U
1/2
k , |∇ϕk| ≤

C

|xk|
in Uk and |∆ϕk| ≤

C

|xk|2
in Uk,

for some constant C > 0. Proceeding as before, it follows that∫
Uk

|∆(ϕku)|2 dx ≤ (1 + 6ε)

∫
Uk

|∆u|2 dx+

(
4C2

ε|xk|2
+

4C2

|xk|2
+

4εC2

|xk|2

)∫
Uk

|∇u|2 dx

+

(
C2

|xk|4
+

6C2

|xk|4ε

)∫
Uk

u2 dx,

and by (1.11)∫
Uk

|∆(ϕku)|2 dx ≤ (1 + 6ε)

∫
Uk

|∆u|2 dx+

(
4C2

ε|xk|2
+

4C2

|xk|2
+

4εC2

|xk|2

)∫
Uk

|∇u|2 dx

+

(
1 +

6

ε

)
C2

a

1 +
(

4
3

)α |xk|α
|xk|4

∫
Uk

V (x)u2 dx.

Since k ∈ Kn,σ, in view of (1.13), we obtain that xk ∈ Bc
n0
. Once α ∈ (0, 4), we can

choose n0 = n0(ε, a, α) > 0 su�ciently large such that(
4C2

ε|xk|2
+

4C2

|xk|2
+

4εC2

|xk|2

)
≤ 1 + 6ε and

(
1 +

6

ε

)
C2

a

1 +
(

4
3

)α |xk|α
|xk|4

≤ 1 + 6ε,

for all k ∈ Kn,σ and n ≥ n0. Thus,∫
Uk

|∆(ϕku)|2 dx ≤ (1 + 6ε)‖u‖2 ≤ 1 + 6ε.

Therefore, de�ning vk = ϕku/
√

1 + 6ε one has

‖∆vk‖2
2 =

1

1 + 6ε

∫
Uk

|∆(ϕku)|2 dx ≤ 1.

Now, applying (1.3), we get∫
U

1/2
k

(eγu
2 − 1) dx =

∫
U

1/2
k

(eγ(ϕku)2 − 1) dx ≤
∫
R4

(eγ(1+6ε)v2
k − 1) dx ≤ C

∫
R4

|vk|2 dx.

By the previous inequality and (1.11), we have∫
U

1/2
k

(eγu
2 − 1) dx ≤ C

1 + 6ε

∫
Uk

u2 dx ≤ C

1 + 6ε

1 +
(

4
3

)α |xk|α
a

∫
Uk

V (x)u2 dx. (1.15)

Combining the estimates (1.10), (1.14), (1.15) and by using (1.13), we get∫
Aσ3n

K(x)
(
eγu

2 − 1
)
dx ≤ C

1 + 6ε

b

a

∑
k∈Kn,σ

1 +
(

4
3

)α |xk|α
1 +

(
2
3

)β |xk|β
∫
Uk

V (x)u2 dx

≤ C

1 + 6ε

b

a

∑
k∈Kn,σ

1 +
(

4
3

)α |xk|α
1 +

(
2
3

)β |xk|β
∫
Bcn

V (x)u2χUk dx.
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By (1.13) again, we obtain

1 +
(

4
3

)α |xk|α
1 +

(
2
3

)β |xk|β ≤ Bn := sup
x∈Bcn

1 +
(

4
3

)α |x|α
1 +

(
2
3

)β |x|β , for all k ∈ Kn,σ.

Therefore, ∫
Aσ3n

K(x)
(
eγu

2 − 1
)
dx ≤ C

1 + 6ε

b

a
Bn

∑
k∈Kn,σ

∫
Bcn

V (x)u2χUk dx.

Applying the Besicovitch covering lemma, we reach∫
Aσ3n

K(x)
(
eγu

2 − 1
)

dx ≤ C

1 + 6ε

b

a
Bnθ

∫
Bcn

V (x)u2 dx.

Letting σ → ∞, we deduce the existence of n0 = n0(ε, a, α) > 1 su�ciently large so

that∫
Bc3n

K(x)
(
eγu

2 − 1
)
dx ≤ CbBnθ

∫
Bcn

V (x)u2 dx ≤ CbBnθ‖u‖2 ≤ CbBnθ, (1.16)

for any n ≥ n0. Note that

lim
n→∞

Bn = lim
n→∞

1 +
(

4
3

)α
nα

1 +
(

2
3

)β
nβ

=

0, if β > α

2α, if β = α.

(1.17)

Thus, from (1.9) and (1.16), we conclude the proof of the �rst part of (1.5).

For the second part of (1.5), we consider the Moser sequence ω̃n de�ned by

ω̃n(x) =



√
logn
8π2 − n2√

32π2 logn
|x|2 + 1√

32π2 logn
, for |x| ≤ 1

n
,

1√
8π2 logn

log 1
|x| , for 1

n
< |x| ≤ 1,

ζn(x), for |x| > 1.

Here ζn is a compactly supported smooth function in B2(0) satisfying

ζn|∂B1(0) = ζn|∂B2(0) = 0,
∂ζn
∂ν
|∂B1(0) =

1√
8π2 log n

,
∂ζn
∂ν
|∂B2(0) = 0

and ζn, |∇ζn|,∆ζn are O(1/
√

log n). For any n ∈ N, we have that ω̃n ∈ E and straight-

forward calculations show that

‖ω̃n‖2
2 = O(1/ log n), ‖∇ω̃n‖2

2 = O(1/ log n) and ‖∆ω̃n‖2
2 = 1 +O(1/ log n).
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Consequently, by (V ), it follows that ‖ω̃n‖2 = 1 + δn, where δn → 0 and δn =

O(1/ log n), as n→∞. Setting

ωn :=
ω̃n
‖ω̃n‖

, (1.18)

we have ωn ∈ E and ‖ωn‖ = 1. Observe that ωn ≥ 1
‖ω̃n‖

√
log n/(8π2) for all x ∈ R4

with |x| ≤ 1
n
and de�ning K̃ := min

x∈B1

K(x), for all γ > 32π2, we have

∫
R4

K(x)
(
eγω

2
n − 1

)
dx ≥ K̃

∫
B1/n

(eγω
2
n − 1) dx

≥ K̃

∫
B1/n

(e
γ

‖ω̃n‖2
logn

8π2 − 1) dx

=
π2

2n4
K̃
(
e

γ

‖ω̃n‖2
logn

8π2 − 1
)
→∞ as n→∞,

that is,

lim
n→∞

∫
R4

K(x)
(
eγω

2
n − 1

)
dx =∞. (1.19)

Taking into account that

sup
u∈E
‖u‖≤1

∫
R4

K(x)
(
eγu

2 − 1
)

dx ≥
∫
R4

K(x)
(
eγω

2
n − 1

)
dx,

then our sharpness result can be derived from (1.19).

To �nish the proof of the theorem, it remains to show that (1.4) holds. For

every γ > 0 and u ∈ E, by density of C∞0 (R4) in E (see Appendix A), there exists

u0 ∈ C∞0 (R4) such that

‖u− u0‖ ≤
1
√
γ
.

Since u2 ≤ 2(u− u0)2 + 2u2
0, choosing R > 0 such that supp(u0) ⊆ BR, we have∫

R4

K(x)
(
eγu

2 − 1
)
dx ≤

∫
R4

K(x)
(
e2γ(u−u0)2

e2γu2
0 − 1

)
dx

≤ 1

2

∫
R4

K(x)

(
e

4γ‖u−u0‖2 |u−u0|
2

‖u−u0‖ − 1

)
dx

+
1

2

∫
BR

K(x)
(
e4γu2

0 − 1
)
dx.

Thus, by using (1.5) and since 4γ‖u − u0‖2 ≤ 4 < 32π2, we reach that (1.4) holds.

Therefore, the result is proved.
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1.3 Some consequences of Theorem 1.1.1

A �rst important consequence that we have obtained is the following compactness

result:

Proposition 1.3.1 If (V ) and (K) hold with α ∈ (0, 4) and β ∈ [α,+∞), then for all

p ∈ [2,+∞) the embedding

E ↪→ LpK(R4) (1.20)

is continuous. Moreover, if β > α then the above embedding is compact.

Proof . We will proceed in two steps, on a ball of radius R > 0 and on its complement.

Let u ∈ E and observe that by condition (K) we have(∫
BR

K(x)|u|pdx
) 1

p

≤
(∫

BR

b

1 + |x|β
|u|pdx

) 1
p

≤ b
1
p‖u‖Lp(BR). (1.21)

By the embedding H2(BR) ↪→ Lp(BR) for all p ∈ [1,+∞), we get

‖u‖Lp(BR) ≤ C1‖u‖H2(BR) = C1

[∫
BR

(|∆u|2 + |∇u|2 + u2)dx

]1/2

≤ C1

[∫
BR

(
|∆u|2 + |∇u|2 +

(
1 +Rα

a

)
V (x)u2

)
dx

]1/2

≤ CR

[∫
BR

(|∆u|2 + |∇u|2 + V (x)u2)dx

]1/2

,

(1.22)

because V (x) ≥ a/(1 + |x|α) ≥ a/(1 + Rα). Thus, for each R > 0, it follows, from

(1.21) and (1.22), that∫
BR

K(x)|u|pdx ≤ bCp
R

[∫
BR

(|∆u|2 + |∇u|2 + V (x)u2)dx

]p/2
≤ bCp

R‖u‖
p. (1.23)

For each p ∈ [2,∞), there is Cp > 0 such that

|s|p ≤ Cp(e
s2 − 1), for all s ∈ R

and proceeding as in the proof of Theorem 1.1.1, we obtain∫
Aσ3n

K(x)|u|p dx ≤ Cp

∫
Aσ3n

K(x)(eu
2 − 1) dx

≤ C
b

a

∑
k∈Kn,σ

1 +
(

4
3

)α |xk|α
1 +

(
2
3

)β |xk|β
∫
Bcn

V (x)u2χUk dx.
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for all n ≥ n0. Letting σ → +∞ we reach∫
Bc3n

K(x)|u|p dx ≤ C
b

a
Bnθ

∫
Bcn

V (x)u2 dx ≤ C
b

a
Bnθ‖u‖2 (1.24)

Taking R = 3n0, from (1.24) we conclude that∫
BcR

K(x)|u|p dx ≤ C
b

a
Bn0θ‖u‖2. (1.25)

Now, if (um) ⊂ E is such that um → 0 in E, then by (1.23) and (1.25) we obtain∫
R4

K(x)|um|p dx =

∫
BR

K(x)|um|p dx+

∫
BcR

K(x)|um|p dx→ 0 as m→∞

and the continuity of the embedding is proved for all p ∈ [2,∞).

Next, suppose that β > α and (um) ⊂ E is such that um ⇀ 0 in E. Since (um)

is bounded in E and

lim
n→∞

Bn = lim
n→∞

1 +
(

4
3

)α
nα

1 +
(

2
3

)β
nβ

= 0, if β > α,

in view of (1.24), for all ε > 0, there exists n1 ≥ n0 such that∫
Bc3n1

K(x)|um|p dx ≤
ε

2
, for all m ∈ N.

Taking R = 3n1 and since (um) is also bounded in H2(BR), by the compact embedding

H2(BR) ↪→ Lp(BR) for all p ∈ [2,∞), it follows from (1.21) that
∫
BR

K(x)|um|pdx→ 0

as m→∞ and therefore there exists m0 ∈ N such that∫
BR

K(x)|um|p dx ≤
ε

2
, for all m ≥ m0.

Hence, for all m ≥ m0 one has∫
R4

K(x)|um|p dx =

∫
BR

K(x)|um|p dx+

∫
BcR

K(x)|um|p dx ≤ ε

which shows that um → 0 in LpK(R4). Therefore, the compact embedding is proved for

β > α.

The next result is a Lions-type Concentration-Compactness Principle (see [45])

and the proof follows the same lines as in Lemma 2.6 of [32]. This result will be crucial

to show that the functional I satis�es the Palais-Smale condition.
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Proposition 1.3.2 Suppose that (V ), (K) hold with α ∈ (0, 4) and β ∈ [α,+∞). If

(un) ⊂ E satis�es ‖un‖ = 1, for all n ∈ N, and un ⇀ u in E with ‖u‖ < 1, then for

all p ∈
(

0, 32π2

1−‖u‖2

)
we have

sup
n

∫
R4

K(x)(epu
2
n − 1) dx <∞.

Proof . Since un ⇀ u in E and ‖un‖ = 1, we have

‖un − u‖2 = ‖un‖2 − 2〈un, u〉E + ‖u‖2 → 1− ‖u‖2 <
32π2

p
.

Thus, for n ∈ N enough large, we get p‖un−u‖2 < γ < 32π2 for some γ > 0. Choosing

q > 1 close to 1 and ε > 0 small satisfying

pq(1 + ε2)‖un − u‖2 < γ,

by invoking Theorem 1.1.1, we obtain∫
R4

K(x)(epq(1+ε2)(un−u)2 − 1)dx =

∫
R4

K(x)(epq(1+ε2)‖un−u‖2( un−u
‖un−u‖)

2

− 1)dx

≤
∫
R4

K(x)(eγ(
|un−u|
‖un−u‖)

2

− 1)dx ≤ C.

(1.26)

Now, notice that pu2
n ≤ p(1 + ε2)(un − u)2 + p

(
1 + 1

ε2

)
u2, and by Young's inequality

one has ab− 1 ≤ aq−1
q

+ br−1
r

for 1
q

+ 1
r

= 1. Thus,

epu
2
n − 1 ≤

(
ep(1+ε2)(un−u)2

ep(1+ 1
ε2

)u2
)
− 1

≤ 1

q

(
epq(1+ε2)(un−u)2 − 1

)
+

1

r

(
epr(1+ 1

ε2
)u2

− 1
)
.

(1.27)

Therefore, (1.26) and (1.27) imply that∫
R4

K(x)
(
epu

2
n − 1

)
dx ≤ 1

q

∫
R4

K(x)
(
epq(1+ε2)(un−u)2 − 1

)
dx

+
1

r

∫
R4

K(x)
(
epr(1+ 1

ε2
)u2

− 1
)
dx ≤ C,

for n su�ciently large, which concludes the proof.

The next sections are dedicated to the study of the problem (1.6) that is an

application of Theorem 1.1.1.
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1.4 The variational framework

The purpose of this section is to prove some geometric properties of the Euler-

Lagrange functional associated to problem (1.6). We begin by considering the func-

tional I : E → R given by

I(u) =
1

2
‖u‖2 −

∫
R4

K(x)F (x, u) dx.

Notice that from (f1) and (f2), for each γ > γ0, ε > 0 and q ≥ 2, there exists

C(γ, q, ε) > 0 such that

|f(x, s)| ≤ ε|s|+ C(γ, q, ε)|s|q−1(eγs
2 − 1) (1.28)

and by (f3)

|F (x, s)| ≤ ε

2
s2 + C(γ, q, ε)|s|q(eγs2 − 1), for all (x, s) ∈ R4 × R. (1.29)

Thus, given u ∈ E, by Hölder's inequality with p > 1 and 1/p+ 1/p′ = 1, we can �nd

C > 0 such that∫
R4

K(x)F (x, u) dx ≤ ε

2

∫
R4

K(x)u2 dx+ C

(∫
R4

K(x)|u|pq dx
) 1

p

×
(∫

R4

K(x)(ep
′γu2 − 1) dx

) 1
p′

.

In view of (1.30) combined with the continuous embedding E ↪→ LpqK (R4) and (1.4),

we reach K(x)F (x, u) ∈ L1(R), for all u ∈ E. Consequently, I is well-de�ned and by

standard arguments I ∈ C1(E,R) with

〈I ′(u), v〉 =

∫
R4

(∆u∆v +∇u∇v + V (x)uv) dx−
∫
R4

K(x)f(x, u)v dx, for u, v ∈ E. (1.30)

Hence, a critical point of I is a weak solution of problem (1.6) and reciprocally.

The geometric conditions of the Mountain Pass Theorem for the functional I are

established by the next lemma.

Lemma 1.4.1 Suppose that (V ), (K), (f1)− (f3) and (1.1) hold. Then,

(i) there exist τ, ρ > 0 such that I(u) ≥ τ for all ‖u‖ = ρ.

(ii) there exists e ∈ E with ‖e‖ > ρ such that I(e) < 0.
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Proof . (i) Here we consider γ > γ0, ε > 0 and q > 2. In view of (1.30), the continuous

embedding E ↪→ L2
K(R4) and (1.5), we can �nd C2 = C2(γ, q, ε) > 0 such that∫

R4

K(x)F (x, u) dx ≤ εC1‖u‖2 + C2‖u‖q, (1.31)

for all u ∈ E with ‖u‖ = ρ, where ρ > 0 satis�es γp′ρ2 < 32π2. By using (1.31), we get

I(u) ≥ 1

2
‖u‖2 − C1ε‖u‖2 − C2‖u‖q =

(
1

2
− C1ε

)
ρ2 − C2ρ

q.

Thus, if u ∈ E with ‖u‖ = ρ, choosing ε > 0 su�ciently small such that 1
2
− C1ε > 0

we get

I(u) ≥ C̃1ρ
2 − C2ρ

q.

Since q > 2 we may choose ρ > 0 small enough such that τ := C̃1ρ
2−C2ρ

q > 0. Thus,

there exists τ > 0 satisfying I(u) ≥ τ whenever ‖u‖ = ρ.

(ii) Let u ∈ C∞0 (BR) \ {0} be such that u ≥ 0. By (f3), there exist positive

constants C1 and C2 such that

F (x, s) ≥ C1s
µ − C2, for all (x, s) ∈ BR × [0,∞).

Then, for t > 0, we get

I(tu) ≤ t2

2
‖u‖2 − C1t

µ

∫
BR

K(x)uµ dx+ C2

∫
BR

K(x) dx.

Since µ > 2, we have I(tu)→ −∞ as t→∞. Setting e = tu with t large enough, the

proof is �nished.

1.5 The Palais-Smale compactness condition

In this section, we show that the functional I satis�es the Palais-Smale condition

for certain energy levels. We recall that the functional I satis�es the Palais-Smale

condition at the level c, denoted by (PS)c condition, if any sequence (un) ⊂ E verifying

I(un)→ c and I ′(un)→ 0 as n→∞, (1.32)

has a strongly convergent subsequence in E. We begin by proving some auxiliary

results.
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Lemma 1.5.1 Suppose that (V ), (K), (f1) − (f3) and (1.1) hold. Then, any (PS)c-

sequence (un) for I is bounded in (E, ‖ · ‖) and satis�es

sup
n

∫
R4

K(x)f(x, un)un dx <∞. (1.33)

Proof . Since (un) is (PS)c-sequence for I, we have

I(un) =
1

2
‖un‖2 −

∫
R4

K(x)F (x, un) dx→ c (1.34)

and

|〈I ′(un), v〉| =
∣∣∣∣〈un, v〉E − ∫

R4

K(x)f(x, un)v dx

∣∣∣∣ ≤ εn‖v‖, (1.35)

for all v ∈ E, where εn → 0 as n → ∞. Note that (1.34) guarantees (I(un)) ⊂ R is

bounded and hence, there exists a constant C > 0 such that

1

2
‖un‖2 ≤ C +

∫
R4

K(x)F (x, un) dx, (1.36)

for all n ∈ N. By the condition (f3), we have∫
R4

K(x)F (x, un) dx ≤ 1

µ

∫
R4

K(x)f(x, un)un dx. (1.37)

By choosing v = un in (1.35), we obtain∫
R4

K(x)f(x, un)un dx ≤ ‖un‖2 + εn‖un‖. (1.38)

From (1.36), (1.37) and (1.38), we get(
1

2
− 1

µ

)
‖un‖2 ≤ C +

εn
µ
‖un‖

and once µ > 2, it follows that (un) is bounded in E. This together with (1.38) implies

(1.33).

The previous lemma guarantees that, up to a subsequence, there exists u ∈ E

such that un ⇀ u in E. Moreover, in view of (1.33), we can apply [23, Lemma 2.1] to

conclude that

K(x)f(x, un)→ K(x)f(x, u) in L1
loc

(R4). (1.39)

Now let us see the following convergence result that can be found in [33, Lemma

5.4]. We have added the proof here for the reader's convenience.
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Lemma 1.5.2 Suppose that (V ), (K) and (f1)− (f4) are satis�ed with α ∈ (0, 4) and

β ∈ (α,+∞). Let (un) ⊂ E be a Palais-Smale sequence of I at the level c with un ⇀ u

in E. Then, ∫
R4

K(x)F (x, un) dx→
∫
R4

K(x)F (x, u) dx as n→∞.

Proof . Note that by (f3) and (f4), we have

0 ≤ lim
|s|→∞

F (x, s)

sf(x, s)
≤ lim
|s|→+∞

M0

|s|
= 0

and for any ε > 0 there exists s′0 = s′0(ε) > 0 such that

F (x, s) ≤ εsf(x, s) for all |s| ≥ s′0. (1.40)

Using (1.33), for some C > 0 we obtain∫
R4

K(x)f(x, u)u dx ≤ C and
∫
R4

K(x)f(x, un)un dx ≤ C for all n ∈ N.

From (1.40) and by the previous inequalities, �xed ε > 0, we reach∫
{|u|≥s′0}

K(x)F (x, u) dx ≤ ε

∫
{|u|≥s′0}

K(x)f(x, u)u dx

and ∫
{|un|≥s′0}

K(x)F (x, un) dx ≤ ε

∫
{|un|≥s′0}

K(x)f(x, un)un dx.

De�ning `n(x) := K(x)χ{|un|<s′0}F (x, un) and `(x) := K(x)χ{|u|<s′0}F (x, u), we have

that {`n} is a sequence of measurable functions and `n(x) → `(x) for a.e x ∈ R4,

because un → u a.e. in R4. Using (1.29) with γ > γ0, ε > 0 and q = 2, for any |s| ≤ s′0

we obtain

F (x, s) ≤ ε

2
s2 + C(γ, ε)s2(eγs

2 − 1) ≤ C(γ, ε, s′0)s2.

So writing

gn(x) := C(γ, ε, s′0)K(x)u2
n and g(x) := C(γ, ε, s′0)K(x)u2,

we have 0 ≤ `n(x) ≤ gn(x) and gn(x)→ g(x) a.e. in R4, and by virtue of the compact

embedding E ↪→ L2
K(R4), we get

lim
n→∞

∫
R4

gn(x) dx =

∫
R4

g(x) dx.
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Hence, applying the Generalized Lebesgue Dominated Convergence Theorem, we have

lim
n→∞

∫
R4

`n(x) dx =

∫
R4

`(x) dx.

In conclusion, for any �xed ε > 0, denoting by

An :=

∣∣∣∣∫
R4

K(x)F (x, un) dx−
∫
R4

K(x)F (x, u) dx

∣∣∣∣ ,
we obtain

An ≤
∫
{|un|≥s′0}

K(x)F (x, un) dx+

∫
{|u|≥s′0}

K(x)F (x, u) dx

+

∣∣∣∣∣
∫
{|un|<s′0}

K(x)F (x, un) dx−
∫
{|u|<s′0}

K(x)F (x, u) dx

∣∣∣∣∣
≤ 2Cε+

∣∣∣∣∫
R4

`n(x) dx−
∫
R4

`(x) dx

∣∣∣∣
and passing to the limit as n→∞, we get 0 ≤ lim

n→∞
An ≤ 2Cε. Since ε > 0 is arbitrary,

we conclude the proof of the lemma.

Next, we shall prove the main compactness result of this chapter.

Proposition 1.5.3 Under the hypotheses (V ), (K) and (f1)− (f4) with α ∈ (0, 4) and

β ∈ (α,+∞), the functional I satis�es (PS)c condition for any 0 ≤ c < 16π2/γ0.

Proof . Let (un) ⊂ E be an arbitrary Palais-Smale sequence of I at the level c. By

Lemma 1.5.1, up to a subsequence, un ⇀ u weakly in E. We shall show that, up to a

subsequence, un → u strongly in E. For this, we have two cases to consider:

Case 1: u = 0. In this case, by Lemma 1.5.2, we have∫
R4

K(x)F (x, un) dx→ 0 as n→∞.

Since

I(un) =
1

2
‖un‖2 −

∫
R4

K(x)F (x, un) dx = c+ on(1),

we get

lim
n→∞

‖un‖2 = 2c.

Hence, we can deduce that for n large there exist r > 1 su�ciently close to 1, γ > γ0

close to γ0 and r̃ > r su�ciently close to r such that r̃γ‖un‖2 < 32π2. Thus, by (1.5)∫
R4

K(x)(eγu
2
n − 1)r dx ≤ C

∫
R4

K(x)(er̃γ‖un‖
2( un
‖un‖)

2

− 1) dx ≤ C. (1.41)
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We claim that ∫
R4

K(x)f(x, un)un dx→ 0 as n→∞.

Indeed, since f(x, s) satis�es (f1) and (f2), for γ > γ0 and ε > 0, there exists C(γ, ε) > 0

such that

|f(x, s)| ≤ ε|s|+ C(γ, ε)(eαs
2 − 1), for all (x, s) ∈ R4 × R.

Choosing r > 1 close to 1 such that r′ ≥ 2, where 1/r+1/r′ = 1, by Hölder's inequality

we obtain∣∣∣∣∫
R4

K(x)f(x, un)un dx

∣∣∣∣ ≤ C

∫
R4

K(x)u2
n dx

+ C

(∫
R4

K(x)(eγu
2
n − 1)r dx

) 1
r
(∫

R4

K(x)|un|r
′
dx

) 1
r′

→ 0,

as n → ∞, where we have used (3.46) and the compact embedding E ↪→ LpK(R4), for

all [2,∞). Therefore, once 〈I ′(un), un〉 = on(1), we conclude that, up to a subsequence,

un → 0 strongly in E.

Case 2: u 6= 0. In this case, since (un) is a Palais-Smale sequence of I at the level c,

we may de�ne

vn =
un
‖un‖

and v =
u

lim
n→∞

‖un‖
.

Thus, vn ⇀ v in E, ‖vn‖ = 1 and ‖v‖ ≤ 1. If ‖v‖ = 1, we conclude the proof. If

‖v‖ < 1, we claim that there exist r > 1 su�ciently close to 1, γ > γ0 close to γ0 and

σ > 0 such that

rγ‖un‖2 ≤ σ <
32π2

1− ‖v‖2
(1.42)

for n ∈ N large. Indeed, since I(un) = c+ on(1), we have

1

2
lim
n→∞

‖un‖2 = c+

∫
R4

K(x)F (x, u) dx. (1.43)

Setting

A(u) =

(
c+

∫
R4

K(x)F (x, u) dx

)
(1− ‖v‖2),

from (1.43) and by the de�nition of v, we obtain A(u) = c− I(u), which together with

(1.43) imply
1

2
lim
n→∞

‖un‖2 =
A(u)

1− ‖v‖2
=
c− I(u)

1− ‖v‖2
. (1.44)
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Hence, from (3.49) and the fact c− I(u) < c, we conclude

1

2
lim
n→∞

‖un‖2 =
c− I(u)

1− ‖v‖2
<

c

1− ‖v‖2
<

16π2

γ0(1− ‖v‖2)
(1.45)

because 0 ≤ c < 16π2/γ0. Therefore, by using (1.45) we reach that (1.42) holds. Thus,

by Proposition 1.3.2, we get ∫
R4

K(x)(eγu
2
n − 1)r dx ≤ C.

By using Hölder's inequality, the compact embedding E ↪→ LpK(R4), for all [2,∞), and

arguing similar to Case 1, it follows that∫
R4

K(x)f(x, un)(un − u) dx→ 0 as n→∞.

This convergence and the fact that 〈I ′(un), un−u〉 = on(1) show that ‖un‖2 = 〈un, u〉E+

on(1). Since un ⇀ u in E, we conclude un → u strongly in E what concludes completes

the proof.

1.6 The minimax level

In this section, we prove an estimate for the minimax level associated to the

functional I.

Lemma 1.6.1 Suppose that (V ), (K), (f1) − (f3), (f5) and (1.1) hold. Then, there

exists n ∈ N such that

max
t≥0

I(tωn) <
16π2

γ0

where ωn is de�ned in (1.18).

Proof . Let us �rst study the case where (f5)(i) is valid. Assume by contradiction

that

max
t≥0

I(tωn) ≥ 16π2

γ0

, for all n ∈ N.

For each n ∈ N, let tn > 0 be such that

t2n
2
−
∫
R4

K(x)F (x, tnωn) dx = max
t≥0

I(tωn) ≥ 16π2

γ0

.

By (f3), we obtain

16π2

γ0

≤ t2n
2
−
∫
R4

K(x)F (x, tnωn) dx ≤ t2n
2
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and therefore

t2n ≥
32π2

γ0

, for all n ∈ N. (1.46)

At t = tn, we have

0 =
d

dt

[
t2

2
−
∫
R4

K(x)F (x, tωn) dx

] ∣∣∣∣
t=tn

= tn −
∫
R4

K(x)f(x, tnωn)ωn dx,

which implies that

t2n =

∫
R4

K(x)f(x, tnωn)tnωn dx for all n ∈ N. (1.47)

Now, we will prove that (tn) is bounded sequence. In fact, in view of assumptions (f3)

and (f5), given ε ∈ (0, θ0), there exists R = Rε > 0 such that

f(x, s)s ≥ µF (x, s) ≥ µ(θ0 − ε)sθeγ0s2 , for all s ≥ R and x ∈ R4. (1.48)

Since

tnωn(x) ≥ tn
‖ω̃n‖

√
log n

8π2
in B1/n (1.49)

and
tn
‖ω̃n‖

√
log n

8π2
→ +∞ as n→∞,

by (1.49) we have tnωn → ∞ as n → ∞ in B1/n. Taking n ∈ N su�ciently large so

that tnωn(x) ≥ R, for all x ∈ B1/n, it follows, from (1.47), (1.48) and (1.49), that

t2n ≥
∫
B1/n

K(x)f(x, tnωn)tnωn dx

≥ µ(θ0 − ε)
∫
B1/n

K(x)(tnωn)θeγ0t2nω
2
n dx

≥ µ(θ0 − ε)K̃
∫
B1/n

(
tn
‖ω̃n‖

)θ (
log n

8π2

) θ
2

e
γ0

t2n
‖ω̃n‖2

logn

8π2 dx

=
π2

2n4
µ(θ0 − ε)K̃

(
tn
‖ω̃n‖

)θ (
log n

8π2

) θ
2

e
γ0

t2n
‖ω̃n‖2

logn

8π2 ,

where K̃ := min
x∈B1

K(x). Thus, we may write

t2n ≥
π2

2
µ(θ0 − ε)K̃

(
tn
‖ω̃n‖

)θ
1

(8π2)
θ
2

e

(
t2n
‖ω̃n‖2

γ0
8π2−4

)
logn+ θ

2
log(log(n))

, (1.50)

which implies that (tn) is bounded. Therefore, there exists C > 0 such that 32π2

γ0
≤

t2n ≤ C. Thus, from (1.50) it follows that(
t2n
‖ω̃n‖2

γ0

8π2
− 4

)
log n+

θ

2
log(log n) ≤ C̃
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for some constant C̃ > 0, that is,[
t2nγ0 − 32π2

(1 + δn)8π2
− 4δn

(1 + δn)

]
log n+

θ

2
log(log n) ≤ C̃.

By (1.46), (t2nγ0 − 32π2) log n/[(1 + δn)8π2] > 0 and consequently

− 4δn
(1 + δn)

log n+
θ

2
log(log n) ≤ C̃.

However, θ > 0, δn → 0, δn log n→ C2 and log(log n)→∞ as n→∞, which leads us

to a contradiction. This completes the proof with the condition (f5)(i).

Now we will prove the lemma under the condition (f5)(ii) (the proof this case is

inspired by [63, Lemma 8]). We start by remembering that

θ′0 >
64

γ0K̃
(1.51)

where K̃ = min
x∈B1

K(x). From (f5)(ii), for any ε > 0 there exists R = R(ε) > 0 such

that

sf(x, s) ≥ (θ′0 − ε)eγ0s2 , for all s ≥ R and x ∈ R4. (1.52)

Proceeding as in the previous case, suposse by contradiction that max
t≥0

I(tωn) ≥ 16π2/γ0,

for all n ∈ N and let tn > 0 such that

max
t≥0

I(tωn) =
t2n
2
−
∫
R4

K(x)F (x, tnωn)dx.

We claim that (tn) is a bounded sequence. Indeed, taking n ∈ N su�ciently large so

that tnωn(x) ≥ R, for all x ∈ B1/n, it follows, from (1.47), (1.49) and (1.52), that

t2n ≥
∫
B1/n

K(x)f(x, tnωn)tnωn dx ≥ (θ′0 − ε)
∫
B1/n

K(x)eγ0t2nω
2
n dx

≥ (θ′0 − ε)K̃
∫
B1/n

e
γ0

t2n
‖ω̃n‖2

logn

8π2 dx =
π2

2
(θ′0 − ε)K̃e

logn

(
γ0

t2n
‖ω̃n‖2

1
8π2−4

)
.

(1.53)

Consequently,

1 ≥ π2

2
(θ′0 − ε)K̃e

(
γ0

t2n
‖ω̃n‖2

logn

8π2 −4 logn−log t2n

)

and it turns out that (tn) is a bounded sequence. In view of (1.46), from (1.53) we can

conclude that

lim
n→∞

t2n =
32π2

γ0

. (1.54)
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Consider the sets de�ned by

An := {x ∈ B1 : tnωn ≥ R} and Cn := B1 \ An

where R > 0 is given in (1.52). It follows from (1.47) and (1.52) that

t2n ≥
∫
B1

K(x)f(x, tnωn)tnωn dx

≥ (θ′0 − ε)K̃
∫
B1

eγ0t2nω
2
n dx+ K̃

∫
Cn

f(x, tnωn)tnωn dx

− (θ′0 − ε)K̃
∫
Cn

eγ0t2nω
2
n dx.

(1.55)

By de�nition of Cn and since ωn → 0 almost everywhere in B1, we reach

χCn → 1 a.e. in B1.

Using the Lebesgue dominated convergence Theorem, we get∫
Cn

f(x, tnωn)tnωn dx→ 0 and
∫
Cn

eγ0t2nω
2
n dx→ π2

2
. (1.56)

Observe that by (1.46) and the de�nition of ωn we have∫
B1

eγ0t2nω
2
n dx ≥

∫
B1\B1/n

e32π2ω2
n dx = 2π2

∫ 1

1/n

e
4

‖ω̃n‖2
1

logn
(log 1

s
)2

s3 ds.

Making the change of variable

t =
1

‖ω̃n‖ log n
log

1

s

we can we estimate∫
B1

eγ0t2nω
2
n dx ≥ 2π2‖ω̃n‖ log n

∫ 1/‖ω̃n‖

0

elogn(4t2−4‖ω̃n‖t) dt.

Consider g : [0, 1/‖ω̃n‖]→ R the function de�ned by g(t) = log n(4t2 − 4‖ω̃n‖t). Then

we have that

g′(0) = −4‖ω̃n‖ log n and g′(1/‖ω̃n‖) =
8

‖ω̃n‖
log n− 4 log n‖ω̃n‖.

Let ε > 0 be su�ciently small, thus

g(t) = −4t‖ω̃n‖ log n+ o(t), t ∈ [0, ε]

34



and

g(t) = 4 log n

(
2

‖ω̃n‖
− ‖ω̃n‖

)(
t− 1

‖ω̃n‖

)
+ o(t), t ∈ [1/‖ω̃n‖ − ε, 1/‖ω̃n‖].

Hence, choosing ε = 1
2‖ω̃n‖ we have that∫

B1

eγ0t2nω
2
n dx ≥ 2π2‖ω̃n‖ log n

∫ 1/2‖ω̃n‖

0

e−4t‖ω̃n‖ logn dt

+2π2‖ω̃n‖ log n

∫ 1/‖ω̃n‖

1/2‖ω̃n‖
e4 logn( 2

‖ω̃n‖
−‖ω̃n‖)(t− 1

‖ω̃n‖) dt

=
π2

2
(1− e−2 logn) +

π2‖ω̃n‖2

(4− 2‖ω̃n‖2)

(
1− e−2 logn

(2−‖ω̃n‖2)

‖ω̃n‖2

)
.

Since ‖ω̃n‖2 → 1 as n→∞, we get that

lim
n→∞

∫
B1

eγ0t2nω
2
n dx ≥ π2. (1.57)

Therefore, combining (1.54)-(1.57) and calculating the limit we obtain that

32π2

γ0

= lim
n→∞

t2n ≥ (θ′0 − ε)K̃π2 − (θ′0 − ε)K̃
π2

2
= (θ′0 − ε)K̃

π2

2
.

By the arbitrariness of ε > 0, we can let ε→ 0, thus

32π2

γ0

≥ θ′0K̃
π2

2

contradicting (1.51) and this concludes the proof.

1.7 Proof of Theorem 1.1.3

Initially, it follows from Lemma 1.4.1 that the functional I satis�es the geometric

conditions of the Mountain Pass Theorem. As a consequence, the minimax level

c := inf
g∈Γ

max
t∈[0,1]

I(g(t))

is positive, where Γ := {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}. We also have by

Proposition 1.5.3 that the functional I satis�es the (PS)c condition. Thus, by invoking

the Mountain Pass Theorem, I has a critical point u0 ∈ E at the minimax level c.
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1.8 Bound state solution

This section is dedicated to the proof of Theorem 1.1.4. In particular, we will

prove that any weak solution of problem (1.6) is a bound state solution, that is, belongs

to H2(R4). In order to reach this goal, we will adapt some arguments presented by

Ambrosetti, Felli and Malchiodi in [10]. The lemma below is a direct consequence of

inequalities (1.16), (1.17) and will be useful in the later lemma.

Lemma 1.8.1 Let (V ), (K) with α ∈ (0, 4), β ∈ (α,+∞) and γ ∈ (0, 32π2). Then, for

each v ∈ E \{0} with ‖v‖ ≤ 1 and any ε > 0, there exists a constant n̄ = n̄(γ, a, α) > 1

independent of v such that∫
Bc3n

K(x)(eγv
2 − 1)dx ≤ ε

∫
Bcn

(|∆v|2 + |∇v|2 + V (x)v2)dx, for all n ≥ n̄.

The next result is inspired by arguments in [10, Lemma 11].

Lemma 1.8.2 Suppose that (V ) and (K) hold with α ∈ (0, 2) and β ∈ (α,+∞). Let

γ > 0 and u ∈ E\{0}. Then, for any ε > 0, there exists a constant R̄ = R̄(u, γ, a, α) >

0 such that∫
BcR

K(x)(eγu
2 − 1)dx ≤ ε

∫
BcR

(|∆u|2 + |∇u|2 + V (x)u2)dx, for all R ≥ R̄. (1.58)

Proof . Let R > 1 and ψR : R+ → [0, 1] be a smooth nondecreasing function such

that

ψR(r) =

0, if r ≤ R−Rα/2,

1, if r ≥ R

and satisfying

|ψ′R| ≤
2

Rα/2
and |ψ′′R| ≤

2

Rα
.

By using polar coordinates, for (r, θ) ∈ [0,+∞)× S3 we de�ne

uR(r, θ) =


0, if r ≤ R−Rα/2,

ψR(r)u(2R− r, θ), if R−Rα/2 ≤ r ≤ R,

u(r, θ), if r ≥ R.

In the annulus AR = {x ∈ R4 : R−Rα/2 ≤ |x| ≤ R}, we have

∇uR = ψ
′
R(r)u(2R− r, θ)er − ψR(r)ur(2R− r, θ)er +

1

r
ψR(r)uθ(2R− r, θ)eθ,
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where er = x/|x| and eθ is a unit vector tangent to the unit sphere. Moreover,

∆uR =
1

r
ψ
′
R(r)u(2R− r, θ)− 1

r
ψR(r)ur(2R− r, θ) + ψ

′′
R(r)u(2R− r, θ)

− 2ψ
′
R(r)ur(2R− r, θ) + ψR(r)urr(2R− r, θ) +

1

r2
ψR(r)uθθ(2R− r, θ).

= ψR(r)urr(2R− r, θ) +
1

r2
ψR(r)uθθ(2R− r, θ)

−
(

2ψ
′
R(r) +

1

r
ψR(r)

)
ur(2R− r, θ) +

(
ψ
′′
R(r) +

1

r
ψ
′
R(r)

)
u(2R− r, θ).

Thus, in AR we obtain

|∇uR|2 ≤ C1|∇u(2R− r, θ)|2 +
C2

Rα
u2(2R− r, θ)

and

|∆uR|2 ≤ C3|∆u(2R− r, θ)|2 +
C4

Rα
|∇u(2R− r, θ)|2 +

C5

Rα
u2(2R− r, θ).

So, by integrating in AR and making the change of variable (r, θ) 7→ (2R − r, θ) we

have ∫
AR

|∆uR|2 ≤ C6

∫
R≤|x|≤R+Rα/2

(
|∆u|2 + |∇u|2 +R−αu2

)
dx

≤ C7

∫
R≤|x|≤R+Rα/2

(
|∆u|2 + |∇u|2 + V (x)u2

)
dx.

Since uR = u(r, θ) for |x| ≥ R, it follows that∫
AR

|∆uR|2 ≤ C8

∫
BcR

(
|∆u|2 + |∇u|2 + V (x)u2

)
dx. (1.59)

Analogously, we obtain the estimates∫
AR

|∇uR|2 ≤ C9

∫
R≤|x|≤R+Rα/2

(
|∇u|2 + V (x)u2

)
dx ≤ C10

∫
BcR

(
|∇u|2 + V (x)u2

)
dx.

(1.60)

and ∫
AR

V (x)u2
R ≤ C11

∫
R≤|x|≤R+Rα/2

V (x)u2
R ≤ C11

∫
BcR

V (x)u2dx. (1.61)

Thereby, by (1.59), (1.60) and (1.61), we deduce that∫
AR

|∆uR|2 + |∇uR|2 + V (x)u2
R dx ≤ C

∫
BcR

|∆u|2 + |∇u|2 + V (x)u2dx.
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Recalling that uR ≡ 0 when |x| ≤ R−Rα/2 and uR ≡ u for |x| ≥ R, we obtain

‖uR‖2 =

∫
Bc
R−Rα/2

|∆uR|2 + |∇uR|2 + V (x)u2
R dx

≤ (1 + C)

∫
BcR

|∆u|2 + |∇u|2 + V (x)u2dx. (1.62)

Since u ∈ E, there exists R̄ = R̄(u, γ) > 1 such that∫
Bc
R̄

(
|∆uR|2 + |∇uR|2 + V (x)u2

R

)
dx =

∫
Bc
R̄

(
|∆u|2 + |∇u|2 + V (x)u2

)
dx <

32π2

(1 + C)γ
,

which combined with (1.62) shows that γ‖uR‖2 < 32π2 for all R ≥ R̄. Choosing

R̄ = R̄(u, γ, a, α) > 0 su�ciently large such that R̄ − R̄α/2 ≥ 3n̄, by Lemma 1.8.1 and

for v = uR/‖uR‖, we have∫
BcR

K(x)(eγu
2 − 1)dx =

∫
BcR

K(x)(e
γ‖uR‖2

(
uR
‖uR‖

)2

− 1)dx

≤
∫
Bc
R−Rα/2

K(x)(e
γ‖uR‖2

(
uR
‖uR‖

)2

− 1)dx

≤ ε

∫
Bc
R̄

(
|∆u|2 + |∇u|2 + V (x)u2

)
dx,

for all R ≥ R̄. Therefore, (1.58) holds and the proof is done.

From now on, u0 ∈ E will denote a nontrivial weak solution of (1.6).

Lemma 1.8.3 Suppose that (V ) and (K) hold with α ∈ (0, 2) and β ∈ (α,+∞). Then,

there exists R̄ > 0 such that for any n ∈ N satisfying Rn := n
2

2−α ≥ R̄ we have∫
BcRn+1

(|∆u0|2 + |∇u0|2 + V (x)u2
0)dx ≤ 3

4

∫
BcRn

(|∆u0|2 + |∇u0|2 + V (x)u2
0)dx.

Proof . Arguing as in [10, Lemma 17], let χn : R4 → [0, 1] be a smooth function such

that

χn ≡ 0 in BRn , χn ≡ 1 inBRn+1 , |∇χn| ≤
C

Rn+1

inAn and |∆χn| ≤
C

R2
n+1

in An

where An := {x ∈ R4 : Rn ≤ |x| ≤ Rn+1}. Note that by construction χnu0 ∈ E and

therefore∫
BcRn+1

(
|∆u0|2 + |∇u0|2 + V (x)u2

0

)
dx ≤

∫
BcRn

(
|∆u0|2 + |∇u0|2 + V (x)u2

0

)
χndx. (1.63)
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By using u0χn as a test function in (1.30), since χn ≡ 0 in BRn and χn ≤ 1, we obtain∫
BcRn

χn
(
|∆u0|2 + |∇u0|2 + V (x)u2

0

)
dx

=

∫
BcRn

[K(x)f(x, u0)χnu0 − (∆u0∆χnu0 + 2∆u0∇χn∇u0 +∇u0∇χnu0)]dx

≤
∫
BcRn

K(x)f(x, u0)u0 dx−
∫
BcRn

(∆u0∆χnu0 + 2∆u0∇χn∇u0 +∇u0∇χnu0) dx.

Using Young's inequality with ε ∈ (0, 1), we can estimate the second integral of (1.64)

by∫
BcRn

(∆u0∆χnu0 + 2∆u0∇χn∇u0 +∇u0∇χnu0) dx

≤
∫
BcRn

(
ε|∆u0|2 +

C2

εR4
n+1

u2
0 + 2ε|∆u0|2 +

2C2

εR2
n+1

|∇u0|2 + ε|∇u0|2 +
C2

εR2
n+1

u2
0

)
dx

≤ 3ε

∫
BcRn

|∆u0|2 dx+

(
ε+

2C2

εR2
n+1

)∫
BcRn

|∇u0|2 dx

+

(
2C2

a

1 +Rα
n+1

εR2
n+1

)∫
BcRn

V (x)u2
0 dx.

Fixed ε = 1/6, we can choose Rn+1 su�ciently large so that

ε+
2C2

εR2
n+1

≤ 1

2
and

2C2

a

1 +Rα
n+1

εR2
n+1

≤ 1

2
.

Therefore, ∫
BcRn

(∆u0∆χnu0 + 2∆u0∇χn∇u0 +∇u0∇χnu0) dx

≤ 1

2

∫
BcRn

(|∆u0|2 + |∇u0|2 + V (x)u2
0)dx. (1.64)

Now, let us estimate the �rst integral of (1.64). By (1.29), we have

|f(x, s)s| ≤ C(γ)|s|(eγs2 − 1) for all |s| ≥ R̃ and x ∈ R4,

for some R̃ > 1. By the previous inequality and Hölder's inequality, we �nd∫
BcRn

K(x)f(x, u0)u0 dx ≤ C(γ)

∫
BcRn

K(x)|u0|(eγu
2
0 − 1) dx

≤ C(γ)

(∫
BcRn

K(x)u2
0 dx

)1/2(∫
BcRn

K(x)(e2γu2
0 − 1)dx

)1/2

.
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According to (1.58), we have∫
BcRn

K(x)(e2γu2
0 − 1)dx ≤ ε

∫
BcRn

(|∆u0|2 + |∇u0|2 + V (x)u2
0)dx.

Moreover, if R̃ is su�ciently large then for all n ∈ N such that Rn ≥ R̃, we obtain

sup
x∈BcRn

K(x)

V (x)
≤ sup

x∈Bc
R̃

K(x)

V (x)
≤ sup

x∈Bc
R̃

b(1 + |x|α)

a(1 + |x|β)
≤ b(1 + R̃α)

a(1 + R̃β)
:= B(R̃)

and hence ∫
BcRn

K(x)u2
0 dx ≤ B(R̃)

∫
BcRn

V (x)u2
0 dx.

Therefore,∫
BcRn

K(x)f(x, u0)u0 dx ≤ C̃(γ)B1/2(R̃)

∫
BcRn

(|∆u0|2 + |∇u0|2 + V (x)u2
0) dx. (1.65)

Since β > α, one sees that lim
R̃→+∞

B(R̃) = 0, which implies that C̃(γ)B(R̃) ≤ 1/4 for

R̃ > 0 su�ciently large. Thus, combining (1.63)-(1.65) we �nished the proof.

Let us see the last result before proof of Theorem 1.1.4.

Lemma 1.8.4 Suppose that (V ) and (K) hold with α ∈ (0, 2) and β ∈ (α,+∞). Then,

there exist R̃ > 0 and C > 0 such that, for any % > 2R̃, there holds∫
Bc%

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx ≤ Ce(log 3

4)%(2−α)/2

.

Proof . Let R̃ and (Rn) be as in Lemma 1.8.3. Considering % > 2R̃, there exist

n1, n2 ∈ N, n1 > n2 such that

Rn1 ≤ R̃ ≤ Rn1+1 and Rn2−1 ≤ % ≤ Rn2

and then

n2 − n1 = R(2−α)/2
n2

−R(2−α)/2
n1

≥ %(2−α)/2 − R̃(2−α)/2 > R̃(2(2−α)/2 − 1) > 2

for R̃ > 0 su�ciently large. Hence, n2 − n1 ≥ 3 and in particular Rn2−2 ≥ Rn1+1 ≥ R̃.
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By Lemma 1.8.3, we have∫
Bc%

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx ≤

∫
BcRn2−1

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx

≤ 3

4

∫
BcRn2−2

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx

≤
(

3

4

)n2−n1−2 ∫
BcRn1+1

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx

≤
(

3

4

)n2−n1−2 ∫
Bc
R̃

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx

≤ 16

9
e(log 3

4)(%(2−α)/2−R̃(2−α)/2)

∫
Bc
R̃

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx

= C(R̃)e(log 3
4)%(2−α)/2

∫
Bc
R̃

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx.

which proves the lemma.

We highlight that the following proof is inspired by [64, Theorem 1.11], which

in turn simpli�es the proof given in [10, Theorem 16] by not using Borel's �nite cover

Lemma.

Proof of Theorem 1.1.4: Since u0 ∈ E, for any x ∈ B2 we have∫
B2

u2
0 dx ≤ (1 + 2α)

a

∫
B2

V (x)u2
0 dx <∞.

In order to conclude that u0 ∈ L2(R4), it is enough to prove that
∫
Bc2
u2

0 dx <∞.

Let Σj := {x ∈ R4 : 2j ≤ |x| < 2j+1} for j ∈ N ∪ {0}. Since

2(j+2)αV (x) ≥ (1 + |x|α)V (x) ≥ a

on Σj, we get∫
Σj

u2
0 dx ≤ 2(j+2)α

a

∫
Σj

V (x)u2
0 dx ≤ 2(j+2)α

a

∫
Σj

(|∆u0|2 + |∇u0|2 + V (x)u2
0) dx

≤ 2(j+2)α

a

∫
Bc

2j

(|∆u0|2 + |∇u0|2 + V (x)u2
0) dx

and it follows from Lemma 1.8.4, taking % := 2j ≥ 2R̃, that∫
Σj

u2
0 dx ≤ 2(j+2)α

a
Ce(log 3

4)2(2−α)j/2

. (1.66)
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Therefore, there exists an integer j0 > 0 such that (1.66) holds for all j ≥ j0 +1. Hence,∫
Bc2

u2
0 dx =

∞∑
j=1

∫
Σj

u2
0 dx =

j0∑
j=1

∫
Σj

u2
0 dx+

∞∑
j=j0+1

∫
Σj

u2
0 dx

≤
j0∑
j=1

∫
Σj

u2
0 dx+

C

a

∞∑
j=j0+1

2(j+2)αe(log 3
4)2(2−α)j/2

<∞

since α ∈ (0, 2) and log 3
4
< 0. This completes the proof.
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Chapter 2

On a biharmonic Choquard equation

involving critical exponential growth

In this chapter, we will study the solvability of the following biharmonic Choquard

equation:

∆2u−∆u+ V (x)u =
[
|x|−µ ∗ (K(x)F (x, u))

]
K(x)f(x, u), x ∈ R4,

where the functions V and K may decay to zero at in�nity like (1 + |x|α)−1, α ∈ (0, 4),

and (1 + |x|β)−1, β > (8− µ)α/8, respectively and µ ∈ (0, 4). The nonlinear term f is

a continuous function that behaves like eγ0s2 at in�nity, for some γ0 > 0 and F is the

primitive of f . By establishing a weighted version of the Adams inequality involving

V and K, we investigate the existence of nontrivial solutions for the problem above.

Furthermore, we establish that the nontrivial solution is a bound state solution when

α ∈ (0, 2).

2.1 Introduction and main results

This chapter concerns the existence of solutions to the following fourth-order

elliptic equation:

∆2u−∆u+ V (x)u =
[
|x|−µ ∗ (K(x)F (x, u))

]
K(x)f(x, u), x ∈ R4, (2.1)

where V and K are positive continuous functions, which can vanish at in�nity, f

is a nonnegative continuous function with critical exponential growth at in�nity (see



De�nition (2.8)), F is the primitive of f , ∗ denotes the convolution operator and

µ ∈ (0, 4).

Equations like (2.1) arise in various branches of applied mathematics and physics,

see [34, 35, 36, 55] and references therein. For instance, part of the interest is becouse

solutions of (2.1) are related to the existence of solitary wave solutions for Schrödinger

equations of the form

i
∂ψ

∂t
= ∆2ψ −∆ψ +W (x)ψ −

[
|x|−µ ∗ (K(x)F (x, ψ))

]
K(x)f(x, ψ),

where ψ : R × R4 → C is an unknown function and W : R4 → R is the potential

function. For the physical interest in the in�uence of the biharmonic term in nonlinear

Schrödinger equations we can cite [24] and references therein.

Motivated by these physical aspects, Equation (2.1) has attracted a lot of at-

tention from many researchers and some existence and multiplicity results have been

obtained. In [69], Yang considered a class of nonhomogeneous problems and studied

the case where the potential is bounded from below by a positive constant and satis-

�es the integrability condition 1/V ∈ L1(R4). Generally, the conditions imposed on

the potential V are to overcome the loss of compactness of the Sobolev embedding

H2(R4) ↪→ Ls(R4) for s ≥ 2.

Miyagaki et al. [49] studied the existence of ground state solution for fourth-order

elliptic equations of the form

∆2u−∆u+ u = Q(x)(f1(u) + f2(u)) in R4,

where f1 is a continuous nonnegative function with polynomial growth at in�nity, f2 is a

continuous nonnegative function with exponential growth and Q is a positive bounded

continuous function that can vanish at in�nity in the sense that if {An} is a sequence

of Borel sets of R with supn∈N |An| ≤ R, for some R > 0, then

lim
r→∞

∫
An∩Bcr(0)

Q(x) dx = 0, uniformly in n ∈ N. (2.2)

Recently, Chen and Wang in [20] studied the existence of a normalized ground

state solution for the following biharmonic Choquard-type problem:
∆2u− β∆u = λu+ (Iµ ∗ F (u))f(u) in R4,∫

R4

|u|2dx = c2,
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where β ≥ 0 is small, c > 0, λ ∈ R, Iµ(x) = 1/|x|µ with µ ∈ (0, 4) and f has critical

exponential growth, among other standard conditions. For others related results with

(2.1), we would like to mention the works [19, 33, 77].

The present work has been motivated by some aforementioned works and by a

paper due to Shen, Radulescu and Yang [64] that studied the existence of solutions for

a class of Schrödinger equations of the type

−∆u+ V (x)u =
[
|x|−µ ∗ (K(x)G(u))

]
K(x)g(u), x ∈ R2,

where the potential V and the weight K may decay to zero at in�nity like (1 + |x|α)−1

and (1 + |x|β)−1, respectively, for α ∈ (0, 2), β > (4 − µ)α/4, µ ∈ (0, 2) and G is the

primitive of g, which ful�lls a critical exponential growth in the Trudinger-Moser sense.

Therefore, inspired by [30, 64], throughout this work we will assume the following

hypotheses on the functions V and K:

(V ) V ∈ C(R4) and there exist α, a > 0 such that V (x) ≥ a

1 + |x|α
for all x ∈ R4;

(K) K ∈ C(R4) and there exist β, b > 0 such that 0 < K(x) ≤ b

1 + |x|β
for all x ∈ R4.

We observe that the above conditions allow that V and K to vanish at in�nity.

For the study of problem (2.1) involving the biharmonic operator it will be necessary

to enlarge the range of variation of the constants α and β adopted in [64]. Precisely,

we will assume the following conditions:

0 < α < 4 and
(8− µ)α

8
≤ β <∞, with µ ∈ (0, 4). (2.3)

Next, we will introduce some notations and de�nitions that will be used through-

out of the chapter. Consider the space de�ned as follows

E :=

{
u ∈ L1

loc
(R4) : |∇u|, ∆u ∈ L2(R4) and

∫
R4

V (x)u2dx <∞
}

endowed with the inner product

〈u, v〉E :=

∫
R4

(∆u∆v +∇u∇v + V (x)uv) dx

and its corresponding norm

‖u‖ :=

[∫
R4

(|∆u|2 + |∇u|2 + V (x)u2) dx

]1/2

.
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We use the notation ‖ · ‖Lp(R4,K) for the norm of the weighted Lebesgue space

Lp(R4, K) =

{
u : R4 → R : u is measurable and

∫
R4

K(x)|u|pdx <∞
}
,

that is, ‖u‖Lp(R4,K) =

(∫
R4

K(x)|u|pdx
)1/p

.

In this context, we can establish the following weighted version of the Adams

inequality:

Theorem 2.1.1 Suppose that (V ), (K) and (2.3) hold. Then, for all γ > 0 and any

u ∈ E we have ∫
R4

K
8

8−µ (x)(eγu
2 − 1) dx <∞. (2.4)

Moreover, if we consider the supremum

sup
{u∈E : ‖u‖≤1}

∫
R4

K
8

8−µ (x)(eγu
2 − 1) dx =

{
<∞ if γ ∈ (0, 32π2);

+∞ if γ > 32π2.
(2.5)

To control the nonlocal term |x|−µ∗(K(x)F (x, u)), we need the well-known Hardy-

Littlewood-Sobolev inequality, which we state in RN and that will play an important

role in this chapter.

Proposition 2.1.2 (Hardy-Littlewood-Sobolev inequality [44, Theorem 4.3]). Suppose

that s, r > 1 and 0 < µ < N with 1
s

+ µ
N

+ 1
r

= 2, g ∈ Ls(RN) and h ∈ Lr(RN). Then,

there exists a sharp constant C = C(s,N, µ, r) > 0, independent of g and h, such that∫
RN

[|x|−µ ∗ g(x)]h(x)dx ≤ C‖g‖s‖h‖r. (2.6)

As an application of Theorem 2.1.1 and Proposition 2.1.2, we will investigate the

existence of a weak solution for problem (2.1). We say that u ∈ E is a weak solution

for (2.1), if for all v ∈ E it holds the equality∫
R4

(∆u∆v+∇u∇v+V (x)uv) dx =

∫
R4

[|x|−µ ∗ (K(x)F (x, u))]K(x)f(x, u)v dx. (2.7)

We are interested in the case that the nonlinearity f(x, s) has the maximal growth

which allows us to study (2.1) by using a variational framework considering the space

E. More speci�cally, we assume su�cient conditions so that weak solutions of (2.1)

become critical points of the functional I : E → R de�ned by

I(u) =
1

2
‖u‖2 − 1

2

∫
R4

[|x|−µ ∗ (K(x)F (x, u))]K(x)F (x, u) dx,
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where F (x, s) :=

∫ s

0

f(x, t)dt (see details in Section 2.5). Precisely, we say that f(x, s)

has critical exponential growth (at in�nity) if there exists γ0 > 0 such that

lim
|s|→+∞

f(x, s)

eγs2
=

0, for all γ > γ0,

+∞, for all γ < γ0,

(2.8)

uniformly in x ∈ R4.

Now, we can to establish our main assumptions on the nonlinearity f(x, s):

(f1) f ∈ C(R4 × R), f has critical exponential growth, f(x, s) = 0 for all (x, s) ∈

R4 × (−∞, 0] and f(x, s) = o(s
4−µ

4 ) as s→ 0+, uniformly in x ∈ R4;

(f2) 0 ≤ H(x, t) ≤ H(x, s) for all 0 < t < s and for x ∈ R4, where H(x, u) =

uf(x, u)− F (x, u);

(f3) F (x, s) ≥ 0 for all (x, s) ∈ R4 × [0,+∞) and there exist constants s0,M0 > 0

such that

0 < sF (x, s) ≤M0f(x, s), for all s ≥ s0 and x ∈ R4;

(f4) lim inf
s→+∞

F (x, s)

eγ0s2
:= β0 > 0, uniformly in x ∈ R4.

We are ready to state the main existence results of the present chapter. The �rst

theorem is the following:

Theorem 2.1.3 Assume (V ) and (K) hold with α ∈ (0, 4) and β > (8− µ)α/8. If f

satis�es (f1)− (f4), then (2.1) admits a nontrivial weak solution in E.

In the next result, by restricting the range of α, we will show that the solution

obtained in Theorem 2.1.3 is in L2(R4) and thus belongs toH2(R4), that is, the solution

is a bound state.

Theorem 2.1.4 Suppose that (V ) and (K) hold with α ∈ (0, 2) and β > (8− µ)α/8.

If f satis�es (f1)− (f4), then the solution obtained in Theorem 2.1.3 is a bound state

solution of (2.1),

Compared to the works cited above, the main novelties of our work are the fol-

lowing:
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(i) Theorem 2.1.1 is a weighted version of the well known Adams inequality, see The-

orem 2.2.1 below. We highlight that inequality (2.5) in Theorem 2.1.1 treats only the

subcritical case (γ < 32π2). The critical case γ = 32π2 is still an open question. The

technique exploited here uses suitable cuto� functions, which restrict some estimates

in the derivatives and hold only when γ < 32π2;

(ii) naturally Theorem 2.1.1 can be used to extend results in the literature for potentials

that may decay at in�nity. For example, concerning the work [64], we seek to improve

the hypotheses considered in the study of the existence of solutions, namely, we use

(f2) instead of the well-known Ambrosetti-Rabinowitz condition. This generated an

additional di�culty to prove the boundedness of Cerami sequences (see Lemma 2.7.2).

Moreover, by using condition (f4), we present a simpli�ed proof of the minimax level

estimate (see Lemma 2.6.1);

(iii) we prove a compactness condition for the Euler-Lagrange functional associated

with Equation (2.1) (see Lemma 2.7.3), which is generally very delicate to obtain for

problems involving critical exponential growth and potentials vanishing at in�nity.

Moreover, we are not requiring that the functions V and K be radial;

(iv) as far as the authors know, Theorem 2.1.3 has not been obtained yet even for

the case where the potential V (x) is bounded from below by a positive constant or

coercive. In this sense, our results complement the papers [63, 49, 69]. Furthermore,

Theorem 2.1.1 extends some results in [30, 64] to the biharmonic operator;

(v) since α ∈ (0, 4) and β > (8 − µ)α/8, assumption (K) addresses situations where

the function K
8−µ

8 is not integrable, that is, it does not satisfy a condition like (2.2),

which has been used in many works such as [12, 22, 49, 75]. Moreover, when α ∈ (0, 2),

we managed to prove that the solution obtained is a bound state.

The outline of the chapter is as follows: in Section 2.2 we present some results that

will be used throughout the chapter. Section 2.3 is devoted to the proof of Theorem

2.1.1 (a weighted Adams inequality). In Section 2.4 we prove two consequences of

Theorem 2.1.1. First, we prove a version of the Concentration-Compactness Principle

due to P.-L. Lions [45] to the space E (see Proposition 2.4.1) and then we prove that

the embedding E ↪→ L
8p

8−µ (R4, K
8

8−µ ) is compact for all p ≥ (8− µ)/4 (see Proposition
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2.4.2). Section 2.5 contains the variational framework related to problem (2.1) and we

also check the geometric properties of the functional I. In Section 2.6, we estimate

the minimax level associated with I. Section 2.7 deals with the Cerami compactness

condition. In Section 2.8, we complete the proof of Theorem 2.1.3 and in Section 2.9

we prove some auxiliary results and Theorem 2.1.4.

2.2 Preliminary results

We initially bring some results from the literature that will help us. First, we

recall the well known Adams inequality [2, Theorem 3] for bounded domains in R4.

Theorem 2.2.1 Let Ω be a bounded domain of R4. Then, there exists a constant C > 0

such that

sup
{u∈H2

0 (Ω) : ‖∆u‖2≤1}

∫
Ω

eγu
2

dx

≤ C|Ω| if γ ≤ 32π2,

= +∞ if γ > 32π2.

The second result is due to [47, Theorem 2.2], who have proved in dimension four

the analogous of the Adachi-Tanaka inequality [1] for the space H2(R4).

Theorem 2.2.2 For any α ∈ (0, 32π2), there exists a constant C = C(α) > 0 such

that ∫
R4

(eαu
2 − 1)dx ≤ C‖u‖2

2, for all u ∈ H2(R4) with ‖∆u‖2 ≤ 1,

and this inequality is false if α ≥ 32π2.

The next result is similar to [71, Lemma 4.1].

Lemma 2.2.3 There exists a constant C > 0 such that for all y ∈ R4, R > 0 and any

u ∈ H2
0 (BR(y)) satisfying ‖∆u‖L2(BR(y)) ≤ 1, there holds∫

BR(y)

(e32π2u2 − 1)dx ≤ CR4

∫
BR(y)

|∆u|2dx.

Proof . Let ũ := u
‖∆u‖L2(BR(y))

with u 6= 0 and ‖∆u‖L2(BR(y)) ≤ 1. Then

e32π2u2 − 1 =
∞∑
k=1

(32π2)k‖∆u‖2k
L2(BR(y))|ũ|2k

k!
≤ ‖∆u‖2

L2(BR(y))(e
32π2ũ2 − 1). (2.9)

Note that ũ ∈ H2
0 (BR(y)) and ‖∆ũ‖2 = 1. Thus, it follows from Theorem 2.2.1 that∫

BR(y)

(e32π2ũ2 − 1)dx ≤ CR4.

Therefore, integrating (2.9) in BR(y) and using the previous inequality, we obtain the

desired result.
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2.3 Proof of Theorem 2.1.1

In this subsection, we prove our weighted version of the Adams inequality.

Proof . We will start by proving the �rst part of (2.5). The proof will be divided into

two steps.

Step 1: Set u ∈ E be such that ‖u‖ ≤ 1. First, we want to estimate the functional

A(u, µ, γ, R) =

∫
BR

K
8

8−µ (x)(eγu
2 − 1) dx

for some R > 0, independent of u, that will be chosen during the proof. From condition

(K) we get ∫
BR

K
8

8−µ (x)(eγu
2 − 1) dx ≤ b

8
8−µ

∫
BR

(eγu
2 − 1) dx. (2.10)

Consider a cuto� function ϕ ∈ C∞0 (B2R) satisfying the conditions

0 ≤ ϕ ≤ 1 in B2R, ϕ ≡ 1 in BR, |∇ϕ| ≤
C

R
in B2R and |∆ϕ| ≤ C

R2
in B2R, (2.11)

for some constant C > 0. Now, notice that

|∆(ϕu)|2 = |∆ϕ|2u2 + 4(ϕ∆u)∇ϕ∇u+ 2(ϕ∆u)u∆ϕ

+4(∇ϕ · ∇u)2 + 4∇ϕ∇u(u∆ϕ) + |∆u|2ϕ2,

and by Young's inequality a1b1 ≤ εa2
1+ε−1b2

1, with ε ∈ (0, 1) and a1, b1 ≥ 0, we estimate∫
B2R

|∆(ϕu)|2 dx ≤ C2

R4

∫
B2R

u2dx+ 4ε

∫
B2R

|∆u|2dx+
4C2

εR2

∫
B2R

|∇u|2dx

+ 2ε

∫
B2R

|∆u|2dx+
2C2

εR4

∫
B2R

u2dx+
4C2

R2

∫
B2R

|∇u|2dx

+
4εC2

R2

∫
B2R

|∇u|2dx+
4C2

εR4

∫
B2R

u2dx+

∫
B2R

|∆u|2dx

= (1 + 6ε)

∫
B2R

|∆u|2 dx+

(
4C2

εR2
+

4C2

R2
+

4εC2

R2

)∫
B2R

|∇u|2 dx

+

(
C2

R4
+

6C2

εR4

)∫
B2R

u2 dx.

Thus, by (V ) we have V (x)(1 + (2R)α) ≥ V (x)(1 + |x|α) ≥ a > 0 for x ∈ B2R and

therefore∫
B2R

|∆(ϕu)|2 dx ≤ (1 + 6ε)

∫
B2R

|∆u|2 dx+

(
4C2

εR2
+

4C2

R2
+

4εC2

R2

)∫
B2R

|∇u|2 dx

+

(
1 +

6

ε

)
C2

a

1 + (2R)α

R4

∫
B2R

V (x)u2 dx.
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Fixed ε ∈ (0, 1) such that γ(1 + 6ε) ≤ 32π2 and since α ∈ (0, 4), we can choose

R̄ = R̄(ε, a, α) > 0 su�ciently large such that(
1 + ε+

1

ε

)
4C2

R2
≤ 1 + 6ε and

(
1 +

6

ε

)
C2

a

1 + (2R)α

R4
≤ 1 + 6ε,

for all R ≥ R̄. Consequently,∫
B2R

|∆(ϕu)|2 dx ≤ (1 + 6ε)‖u‖2 ≤ 1 + 6ε.

Therefore, de�ning v := ϕu/
√

1 + 6ε, we obtain ‖∆v‖2
2 =

1

1 + 6ε

∫
B2R

|∆(ϕu)|2 dx ≤ 1

and by invoking Theorem 2.2.1, we reach∫
BR

(eγu
2 − 1) dx =

∫
BR

(eγ(ϕu)2 − 1) dx ≤
∫
B2R

eγ(1+6ε)v2

dx ≤ CR4.

This combined with (2.10) implies, for all u ∈ C∞0 (R4) with ‖u‖ ≤ 1, that∫
BR

K
8

8−µ (x)(eγu
2 − 1)dx ≤ b

8
8−µ

∫
BR

(eγu
2 − 1) dx ≤ CR4. (2.12)

Step 2: Let us to estimate A(u, µ, γ, R) =

∫
BcR

K
8

8−µ (x)(eγu
2 − 1) dx for some R large.

For any �xed n ≥ ñ, with ñ ∈ N to be chosen during the proof, we consider Bc
n

the exterior de Bn and the covering of Bc
n formed by all annuli Aσn with σ > n de�ned

by

Aσn := {x ∈ Bc
n : |x| < σ} = {x ∈ R4 : n < |x| < σ}.

Besicovitch covering Lemma [25] ensures that for any σ > ñ , there exist a sequence of

points (xk) ∈ Aσñ and θ > 0 universal constant such that

Aσñ ⊆
⋃
k

U
1/2
k , where U

1/2
k := B

(
xk,

1

2

|xk|
3

)
,

∑
k

χUk(x) ≤ θ for any x ∈ R4, where Uk := B

(
xk,
|xk|
3

)
and χUk is its characteristic function. Let u ∈ C∞0 (R4) be such that ‖u‖ ≤ 1. We start

with the estimate of the weighted exponential integral of u in Aσ3n with n ≥ ñ and

σ > 3n. Observe that

Aσ3n ⊂ Aσñ ⊆
⋃
k

U
1/2
k

51



and de�ning the set of indices Kn,σ := {k ∈ N : U
1/2
k ∩Bc

3n 6= ∅ }, we have

Aσ3n ⊆
⋃

k∈Kn,σ

U
1/2
k

and hence we obtain the following estimate:∫
Aσ3n

K
8

8−µ (x)
(
eγu

2 − 1
)
dx ≤

∑
k∈Kn,σ

∫
Uk

1/2

K
8

8−µ (x)
(
eγu

2 − 1
)
dx. (2.13)

Since 2
3
|xk| ≤ |y| ≤ 4

3
|xk| for all y ∈ Uk, from (V ) and (K), we deduce

V (y) ≥ a

1 + |y|α
≥ a

1 +
(

4
3

)α |xk|α , for all y ∈ Uk (2.14)

and

K(y) ≤ b

1 + |y|β
≤ b

1 +
(

2
3

)β |xk|β , for all y ∈ Uk. (2.15)

Furthermore, if Uk ∩Bc
3n 6= ∅ then Uk ⊂ Bc

n, implying that⋃
k∈Kn,σ

U
1/2
k ⊆

⋃
k∈Kn,σ

Uk ⊆ Bc
n ⊆ Bc

ñ. (2.16)

Let us �x k ∈ Kn,σ. From (2.15), we obtain∫
Uk

1/2

K
8

8−µ (x)
(
eγu

2 − 1
)
dx ≤ b

8
8−µ[

1 +
(

2
3

)β |xk|β] 8
8−µ

∫
Uk

1/2

(eγu
2 − 1) dx. (2.17)

Consider now a cuto� function ϕk ∈ C∞0 (Uk) such that

0 ≤ ϕk ≤ 1 in Uk, ϕk ≡ 1 in U
1/2
k , |∇ϕk| ≤

C

|xk|
in Uk and |∆ϕk| ≤

C

|xk|2
in Uk,

for some constant C > 0. Proceeding as before, we have∫
Uk

|∆(ϕku)|2 dx ≤ (1 + 6ε)

∫
Uk

|∆u|2 dx+

(
4C2

ε|xk|2
+

4C2

|xk|2
+

4εC2

|xk|2

)∫
Uk

|∇u|2 dx

+

(
C2

|xk|4
+

6C2

|xk|4ε

)∫
Uk

u2 dx,

and in view (2.14) it follows that∫
Uk

|∆(ϕku)|2 dx ≤ (1 + 6ε)

∫
Uk

|∆u|2 dx+

(
4C2

ε|xk|2
+

4C2

|xk|2
+

4εC2

|xk|2

)∫
Uk

|∇u|2 dx

+

(
1 +

6

ε

)
C2

a

1 +
(

4
3

)α |xk|α
|xk|4

∫
Uk

V (x)u2 dx.
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Since k ∈ Kn,σ, in view of (2.16), we obtain xk ∈ Bc
ñ. Once α ∈ (0, 4) we can choose

ñ = ñ(ε, a, α) > 0 su�ciently large satisfying(
1 + ε+

1

ε

)
4C2

|xk|2
≤ 1 + 6ε and

(
1 +

6

ε

)
C2

a

1 +
(

4
3

)α |xk|α
|xk|4

≤ 1 + 6ε,

for all k ∈ Kn,σ and n ≥ ñ. Hence,∫
Uk

|∆(ϕku)|2 dx ≤ (1 + 6ε)‖u‖2 ≤ 1 + 6ε.

Therefore, setting vk = ϕku/
√

1 + 6ε we have

‖∆vk‖2
2 =

1

1 + 6ε

∫
Uk

|∆(ϕku)|2 dx ≤ 1.

Fixed ε ∈ (0, 1) such that γ(1 + 6ε) < 32π2, by applying Theorem 2.2.2 we obtain∫
U

1/2
k

(eγu
2 − 1) dx =

∫
U

1/2
k

(eγ(ϕku)2 − 1) dx ≤
∫
R4

(eγ(1+6ε)v2
k − 1) dx ≤ C

∫
R4

|vk|2 dx.

By the previous inequality, the de�nition of vk and (2.14) we get∫
U

1/2
k

(eγu
2 − 1) dx ≤ C

1 + 6ε

∫
Uk

u2 dx ≤ C

1 + 6ε

1 +
(

4
3

)α |xk|α
a

∫
Uk

V (x)u2dx. (2.18)

By estimates (2.13), (2.17), (2.18) and in view of (2.16), we have∫
Aσ3n

K
8

8−µ (x)
(
eγu

2 − 1
)
dx ≤ C

1 + 6ε

b
8

8−µ

a

∑
k∈Kn,σ

1 +
(

4
3

)α |xk|α(
1 +

(
2
3

)β |xk|β) 8
8−µ

∫
Uk

V (x)u2 dx.

≤ C

1 + 6ε

b
8

8−µ

a

∑
k∈Kn,σ

1 +
(

4
3

)α |xk|α(
1 +

(
2
3

)β |xk|β) 8
8−µ

∫
Bcn

V (x)u2χUk dx.

By using again (2.16), we deduce

1 +
(

4
3

)α |xk|α(
1 +

(
2
3

)β |xk|β) 8
8−µ
≤ Bn := sup

x∈Bcn

1 +
(

4
3

)α |x|α(
1 +

(
2
3

)β |x|β) 8
8−µ

, for all k ∈ Kn,σ

and therefore∫
Aσ3n

K
8

8−µ (x)
(
eγu

2 − 1
)
dx ≤ C

1 + 6ε

b
8

8−µ

a
Bn

∑
k∈Kn,σ

∫
Bcn

V (x)u2χUk dx.

Applying the Besicovitch covering Lemma, we have∫
Aσ3n

K
8

8−µ (x)
(
eγu

2 − 1
)

dx ≤ C

1 + 6ε

b
8

8−µ

a
Bnθ

∫
Bcn

V (x)u2 dx.
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Taking σ →∞, there exists ñ = ñ(ε, a, α) >> 1 such that∫
Bc3n

K
8

8−µ (x)
(
eγu

2 − 1
)
dx ≤ Cb

8
8−µBnθ

∫
Bcn

V (x)u2 dx

≤ Cb
8

8−µBnθ‖u‖2 ≤ CbBnθ, (2.19)

for any n ≥ ñ. Notice that

lim
n→∞

Bn = lim
n→∞

1 +
(

4
3

)α
nα(

1 +
(

2
3

)β
nβ
) 8

8−µ
=

0, if β > (8−µ)α
8

2α, if β = (8−µ)α
8

.

(2.20)

Therefore, from estimates (2.12) and (2.19), we prove the �rst part of (2.5).

Next, we will now prove the second part of (2.5). Consider the Moser's sequence

ω̃n de�ned by

ω̃n(x) =



√
logn
8π2 − n2√

32π2 logn
|x|2 + 1√

32π2 logn
, for |x| ≤ 1

n
,

1√
8π2 logn

log 1
|x| , for 1

n
< |x| ≤ 1,

ζn(x), for |x| > 1,

where ζn is a smooth function compactly supported in B2 and satisfying ζn|∂B1 =

ζn|∂B2 = 0,

∂ζn
∂ν
|∂B1 =

1√
8π2 log n

,
∂ζn
∂ν
|∂B2 = 0 and ζn, |∇ζn|, ∆ζn are all O(1/

√
log n).

Observe that ω̃n ∈ E for any n ∈ N, and straightforward calculations show that

‖ω̃n‖2
2 = O(1/ log n), ‖∇ω̃n‖2

2 = O(1/ log n) and ‖∆ω̃n‖2
2 = 1 +O(1/ log n).

Besides, by (V ) it follows that ‖ω̃n‖2 = 1 + δn, where δn → 0 and δn = O(1/ log n), as

n→∞. Setting

ωn :=
ω̃n
‖ω̃n‖

, (2.21)

we have ωn ∈ E and ‖ωn‖ = 1. Notice further that ωn(x) ≥ 1
‖ω̃n‖

√
log n

8π2
for all x ∈ R4

with |x| ≤ 1/n. De�ning K̃ := min
x∈B1

K(x), we obtain, for all γ > 32π2, that

∫
R4

K
8

8−µ (x)(eγω
2
n − 1)dx ≥ K̃

8
8−µ

∫
B1/n

(eγω
2
n − 1) dx ≥ K̃

8
8−µ

∫
B1/n

(e
γ

‖ω̃n‖2
logn

8π2 − 1) dx

=
π2

2n4
K̃

8
8−µ

(
e

γ

‖ω̃n‖2
logn

8π2 − 1
)
→ +∞,
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as n→∞ and therefore

lim
n→∞

∫
R4

K
8

8−µ (x)
(
eγω

2
n − 1

)
dx = +∞. (2.22)

Since

sup
u∈E
‖u‖≤1

∫
R4

K
8

8−µ (x)
(
eγu

2 − 1
)

dx ≥
∫
R4

K
8

8−µ (x)
(
eγω

2
n − 1

)
dx,

the result can be obtained from (2.22).

To �nalize the proof, it remains to show that (2.4) holds. In this way, for all γ > 0

and u ∈ E, using the density of C∞0 (R4) in E, there exists u0 ∈ C∞0 (R4) such that

‖u−u0‖ ≤ 1/
√
γ. Since u2 ≤ 2(u−u0)2+2u2

0, choosing R > 0 such that supp(u0) ⊂ BR,

we get∫
R4

K
8

8−µ (x)
(
eγu

2 − 1
)
dx ≤

∫
R4

K
8

8−µ (x)
(
e2γ(u−u0)2

e2γu2
0 − 1

)
dx

≤ 1

2

∫
R4

K
8

8−µ (x)

(
e

4γ‖u−u0‖2 |u−u0|
2

‖u−u0‖ − 1

)
dx+

1

2

∫
BR

K
8

8−µ (x)
(
e4γu2

0 − 1
)
dx.

Hence, using (2.5) and once 4γ‖u− u0‖2 ≤ 4 < 32π2, if follows that (2.4) holds. Thus,

the theorem is proved.

2.4 Some applications of Theorem 2.1.1

The next result is a Lions-type concentration-compactness principle (see [45]) and

the proof follows the same lines as in Lemma 2.6 of [32]. This result will be crucial to

show that the functional I satis�es the Cerami compactness condition.

Proposition 2.4.1 Suppose that (V ), (K) and (2.3) hold. If (un) ⊂ E satis�es ‖un‖ =

1, for all n ∈ N, and un ⇀ u in E with u ∈ E and ‖u‖ < 1, then for all p ∈
(

0, 32π2

1−‖u‖2

)
we have

sup
n

∫
R4

K
8

8−µ (x)(epu
2
n − 1) dx <∞. (2.23)

Proof . Since un ⇀ u in E and ‖un‖ = 1, we have

‖un − u‖2 = ‖un‖2 − 2〈un, u〉E + ‖u‖2 → 1− ‖u‖2 <
32π2

p
.

For n ∈ N enough large, we get p‖un−u‖2 < γ < 32π2 for some γ > 0. Choosing q > 1

close to 1 and ε > 0 small such that

pq(1 + ε2)‖un − u‖2 < γ,
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by Theorem 2.1.1, we obtain∫
R4

K
8

8−µ (x)
(
epq(1+ε2)(un−u)2 − 1

)
dx

=

∫
R4

K
8

8−µ (x)(epq(1+ε2)‖un−u‖2( un−u
‖un−u‖)

2

− 1)dx

≤
∫
R4

K
8

8−µ (x)(eγ(
|un−u|
‖un−u‖)

2

− 1)dx

≤ C.

(2.24)

By using Young's inequality, it follows that ab − 1 ≤ aq−1
q

+ br−1
r

for 1/q + 1/r = 1.

From this and since pu2
n ≤ p(1 + ε2)(un − u)2 + p

(
1 + 1

ε2

)
u2, we have

epu
2
n − 1 ≤

(
ep(1+ε2)(un−u)2

ep(1+ 1
ε2

)u2
)
− 1

≤ 1

q

(
epq(1+ε2)(un−u)2 − 1

)
+

1

r

(
epr(1+ 1

ε2
)u2

− 1
)
.

(2.25)

Therefore, inequalities (2.24) and (2.25) imply that∫
R4

K
8

8−µ (x)
(
epu

2
n − 1

)
dx ≤ 1

q

∫
R4

K
8

8−µ (x)
(
epq(1+ε2)(un−u)2 − 1

)
dx

+
1

r

∫
R4

K
8

8−µ (x)
(
epr(1+ 1

ε2
)u2

− 1
)
dx ≤ C,

for n su�ciently large, completing the proof.

Finally, we establish the following compactness result:

Proposition 2.4.2 Suppose that (V ), (K) and (2.3) hold. Then, for all p ≥ 8−µ
4
, the

embedding

E ↪→ L
8p

8−µ (R4, K
8

8−µ ) (2.26)

is continuous. Moreover, if the condition (2.3) is replaced by

0 < α < 4 and β >
(8− µ)α

8
, where 0 < µ < 4, (2.27)

then the above embeddings are compact for every p ≥ 8−µ
4
.

Proof . Let u ∈ E. By condition (K), it follows that

‖u‖
L

8p
8−µ (BR,K

8
8−µ )

=

(∫
BR

K
8

8−µ (x)|u|
8p

8−µdx

) 8−µ
8p

≤ b
1
p‖u‖

L
8p

8−µ (BR)
. (2.28)
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Now, from the embedding H2(BR) ↪→ Lq(BR) for all q ∈ [1,∞), we have H2(BR) ↪→

L
8p

8−µ (BR). Thus,

‖u‖
L

8p
8−µ (BR)

≤ C1‖u‖H2(BR) = C1

(∫
BR

|∆u|2 + |∇u|2 + u2dx

) 1
2

≤ C1

(∫
BR

|∆u|2 + |∇u|2 +

(
1 +Rα

a

)
V (x)u2dx

) 1
2

≤ C2

(∫
BR

|∆u|2 + |∇u|2 + V (x)u2dx

) 1
2

:= C2‖u‖E(BR),

(2.29)

where we have used that V (x) ≥ a
1+|x|α ≥

a
1+Rα

for x ∈ BR. It follows, from (2.28) and

(2.29), that

‖u‖
L

8p
8−µ (BR,K

8
8−µ )
≤ C‖u‖E(BR).

Therefore,

E|BR ↪→ H2(BR) ↪→↪→ L
8p

8−µ (BR) ↪→ L
8p

8−µ (BR, K
8

8−µ )

showing the compactness of the embedding in a ball BR.

Now let us see the compact embedding in Bc
R for R > 0 su�ciently large. Let

(um) be a sequence in E such that um ⇀ u in E. We will show that um → u in

L
8p

8−µ (Bc
R, K

8
8−µ ) after passing to a subsequence if necessary. Without loss of generality,

we may assume that u ≡ 0.

Using the fact that for any q ∈ [2,∞), there is Cq > 0, such that |um|q ≤

Cq(e
u2
m − 1) and that 8p

8−µ ≥ 2, proceeding as in the proof of Theorem 2.1.1, we obtain∫
Aσ3n

K
8

8−µ (x)|um|
8p

8−µ dx ≤ Cp,µ

∫
Aσ3n

K
8

8−µ (x)(eu
2
m − 1) dx

≤ Cp,µ
b

8
8−µ

a

∑
k∈Kn,σ

1 +
(

4
3

)α |xk|α(
1 +

(
2
3

)β |xk|β) 8
8−µ

∫
Bcn

V (x)u2
mχUk dx.

From Besicovitch covering Lemma and the de�nition of Bn, letting σ →∞ we have∫
Bc3n

K
8

8−µ (x)|um|
8p

8−µ dx ≤ Cp,µ
b

8
8−µ

a
Bnθ

∫
Bcn

V (x)u2
m dx ≤ Cp,µ

b
8

8−µ

a
Bnθ‖um‖2, (2.30)

and provided that um ⇀ 0 in E, we get ‖um‖2 ≤ C, for some C > 0 and for all m ∈ N.

Thereby, ∫
Bc3n

K
8

8−µ (x)|um|
8p

8−µ dx ≤ Cp,µ
b

8
8−µ

a
Bnθ.
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Since β > (8−µ)α
8

, by (2.20), for all ε > 0 there exists m0 > 0 such that∫
Bc3n

K
8

8−µ (x)|um|
8p

8−µdx ≤ ε,

for all m ≥ m0. Consequently, we conclude that um → 0 in L
8p

8−µ (Bc
R, K

8
8−µ ), ending

the proof.

2.5 The variational framework

The purpose of this section is to prove some geometric properties of the Euler-

Lagrange functional I : E → R associated to problem (2.1) given by

I(u) =
1

2
‖u‖2 − 1

2

∫
R4

[|x|−µ ∗ (K(x)F (x, u))]K(x)F (x, u) dx.

First, notice that by (f1), for each γ > γ0, ε > 0 and q ≥ 1, there exists C = C(γ, q, ε) >

0 such that

|f(x, s)| ≤ ε|s|
4−µ

4 + C|s|q−1(eγs
2 − 1) (2.31)

and

|F (x, s)| ≤ ε|s|
8−µ

4 + C|s|q(eγs2 − 1), (2.32)

for all (x, s) ∈ R4 × R. We will verify that I is well de�ned on the space E. Indeed,

given u ∈ E, from (2.6), (2.32) and the continuous embedding E ↪→ L2(R4, K
8

8−µ ), we

have∫
R4

[|x|−µ∗(K(x)F (x, u))]K(x)F (x, u) dx

≤ C

(∫
R4

K
8

8−µ (x)F
8

8−µ (x, u) dx

) 8−µ
4

≤ C

(∫
R4

K
8

8−µ (x)|u|
8−µ

4
· 8
8−µ dx

) 8−µ
4

+ C

(∫
R4

K
8

8−µ (x)|u|
8q

8−µ (e
8γ

8−µu
2

− 1) dx

) 8−µ
4

≤ C1‖u‖
8−µ

2 + C2

(∫
R4

K
8

8−µ (x)|u|
8q

8−µ (e
8γ

8−µu
2

− 1) dx

) 8−µ
4

.

(2.33)
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By using Hölder's inequality with p > 1 and 1/p+ 1/p′ = 1, the continuous embedding

E ↪→ L
8pq
8−µ (R4, K

8
8−µ ) and (2.4), we get(∫

R4

K
8

8−µ (x)|u|
8q

8−µ (e
8γ

8−µu
2

− 1) dx

) 8−µ
4

≤
(∫

R4

K
8

8−µ (x)|u|
8pq
8−µdx

) 8−µ
4p

×
(∫

R4

K
8

8−µ (x)(e
8γp′
8−µ u

2

− 1) dx

) 8−µ
4p′

≤ ‖u‖2q

(∫
R4

K
8

8−µ (x)(e
8γp′
8−µ u

2

− 1) dx

) 8−µ
4p′

<∞.

(2.34)

Thus, from (2.33) and (2.34), we reach∫
R4

[|x|−µ ∗ (K(x)F (x, u))]K(x)F (x, u)dx

≤ C‖u‖
8−µ

2 + C‖u‖2q

(∫
R4

K
8

8−µ (x)(e
8γp′
8−µ u

2

− 1) dx

) 8−µ
4p′

<∞.
(2.35)

Consequently, I is well-de�ned and by standard arguments we can see that I ∈

C1(E,R) with

〈I ′(u), v〉 =

∫
R4

(∆u∆v+∇u∇v+V (x)uv) dx−
∫
R4

[|x|−µ∗(K(x)F (x, u))]K(x)f(x, u)vdx,

for all u, v ∈ E. Hence, a critical point of I is a weak solution of problem (2.1).

The geometric conditions of the Mountain Pass Theorem for the functional I are

established by the next lemma.

Lemma 2.5.1 Suppose that (V ), (K), (f1), (f4) and (2.3) hold. Then

(i) there exist τ, ρ > 0 such that I(u) ≥ τ for all ‖u‖ = ρ;

(ii) there exists e ∈ E, with ‖e‖ > ρ, such that I(e) < 0.

Proof . (i) In view of (2.35) and (2.5), it follows that∫
R4

[|x|−µ ∗ (K(x)F (x, u))]K(x)F (x, u) dx ≤ C1‖u‖
8−µ

2 + C2‖u‖2q

for all u ∈ E with ‖u‖ = ρ, where p′ > 1, q > 1 and ρ > 0 satis�es 8
8−µγp

′ρ2 < 32π2.

Hence,

I(u) ≥ 1

2
‖u‖2 − C1‖u‖

8−µ
2 − C2‖u‖2q = ‖u‖2

(
1

2
− C1‖u‖

4−µ
2 − C2‖u‖2q−2

)
.

Therefore, choosing ρ > 0 su�ciently small such that 1/2−C1ρ
4−µ

2 −C2ρ
2(q−1) := σ > 0,

we get I(u) ≥ ρ2σ =: τ whenever ‖u‖ = ρ and item (i) is proved.
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(ii) Consider a nonnegative function u ∈ C∞0 (B1) \ {0}. Denoting by K1 = min
x∈B1

K(x),

we have∫
R4

[|x|−µ ∗ (K(x)F (x, tu))]K(x)F (x, tu) dx

=

∫
B1

(∫
B1

K(y)
F (y, tu)

|x− y|µ
dy

)
K(x)F (x, tu)dx

≥ K2
1

2µ

(∫
B1

F (x, tu)dx

)2

.

Hence, by (f4) it follows that

I(tu) ≤ t2

2
‖u‖2 − K2

1

2µ+1

(∫
B1

F (x, tu)dx

)2

→ −∞

as t→ +∞. Setting e = tu with t large enough, the proof is complete.

From Lemma 2.5.1, the functional I satis�es the geometric conditions of the

Mountain Pass Theorem. As a consequence, the minimax level

cM := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) (2.36)

is positive, where Γ := {γ ∈ C([0, 1], E) : γ(0) = 0, I(γ(1)) < 0} .

2.6 The minimax level

In this section, we prove an estimate for the minimax level cM associated to the

functional I.

Lemma 2.6.1 Suppose that (V ), (K), (f1), (f3), (f4) and (2.3) hold. Then

cM <
2π2(8− µ)

γ0

.

Proof . It is enough to prove that there exists n ∈ N such that

max
t≥0

I(tωn) <
2π2(8− µ)

γ0

,

where ωn is de�ned in (2.21). Arguing by contradiction, we assume that

max
t≥0

I(tωn) ≥ 2π2(8− µ)

γ0

,

for all n ∈ N. Then, for each n ∈ N, let tn > 0 such that

t2n
2
− 1

2

∫
R4

|x|−µ ∗ (K(x)F (x, tnωn))K(x)F (x, tnωn) dx = max
t≥0

I(tωn) ≥ 2π2(8− µ)

γ0

.
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Since F (x, tnωn) ≥ 0 for all x ∈ R4, we obtain

t2n ≥
4π2(8− µ)

γ0

, for all n ∈ N. (2.37)

At t = tn, we have

d

dt
[I(tωn)]|t=tn = tn −

∫
R4

|x|−µ ∗ (K(x)F (x, tnωn))K(x)f(x, tnωn)ωn dx = 0,

which implies

t2n =

∫
R4

|x|−µ ∗ (K(x)F (x, tnωn))K(x)f(x, tnωn)tnωn dx, for all n ∈ N. (2.38)

Now we will prove that (tn) is bounded sequence. Indeed, in view of (f3) and (f4), for

all ε ∈ (0, β0), there exists R = Rε > 0 such that

F (x, s)f(x, s)s ≥M−1
0 (β0 − ε)2s2e2γ0s2 , for all s ≥ R. (2.39)

Since

tnωn(x) ≥ tn
‖ω̃n‖

√
log n

8π2
for x ∈ B1/n (2.40)

and
tn
‖ω̃n‖

√
log n

8π2
→ +∞ as n→∞,

we conclude for x ∈ B1/n that tnωn(x) → ∞ as n → ∞. Taking n ∈ N su�ciently

large such that tnωn(x) ≥ R for all x ∈ B1/n, and using (2.38)- (2.40), we reach

t2n ≥
∫
B1/n

|x|−µ ∗ (K(x)F (x, tnωn))K(x)f(x, tnωn)tnωn dx

≥ K2
1

∫
B1/n

(∫
B1/n

F (y, tnωn)

|x− y|µ
dy

)
f(x, tnωn)tnωndx

≥M−1
0 (β0 − ε)2(tnωn)2e2γ0(tnωn)2

K2
1

∫
B1/n

∫
B1/n

1

|x− y|µ
dydx

≥M−1
0 (β0 − ε)2

(
tn
‖ω̃n‖

)2(
log n

8π2

)
e
γ0

t2n
‖ω̃n‖2

logn

4π2 K2
1

∫
B1/n

∫
B1/n

1

|x− y|µ
dydx

≥ π4

2µ+2n8−µM0

(β0 − ε)2K2
1

t2n
‖ω̃n‖2

(
log n

8π2

)
e
γ0

t2n
‖ω̃n‖2

logn

4π2 ,

where K1 = minx∈B1
K(x). Thus, we may write

1 ≥ π4

2µ+2M0

(β0 − ε)2K2
1

1

(1 + δn)8π2
e

(
t2n

1+δn

γ0
4π2−(8−µ)

)
logn+log(logn)

. (2.41)
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By (2.37) and once log(log n) > 0 we get

0 ≥ log

(
π4

2µ+2M0

(β0 − ε)2K2
1

1

(1 + δn)8π2

)
+

(
t2n

1 + δn

γ0

4π2
− (8− µ)

)
log n. (2.42)

In view of (2.42), we see that (tn) is bounded, because if tn → +∞ then letting n→∞

in (2.42) and since δn → 0, we obtain a contradiction. Thus, up to a subsequence, by

(2.37), there exists a positive constant t0 such that

lim
n→∞

t2n = t20 ≥
4π2(8− µ)

γ0

.

We claim that t20 = 4π2(8− µ)/γ0. To prove this, it su�ces suppose that t20 > 4π2(8−

µ)/γ0 and letting n→∞ in (2.42), again we reach a contradiction.

Finally, passing to the limit as n→∞ in (2.41), there holds

1 ≥ π4

2µ+2M0

(β0 − ε)2K2
1

1

8π2
lim
n→∞

elog(logn) = +∞

which is an absurd. This completes the proof of the lemma.

2.7 On the Cerami compactness condition

In this section, we show that the functional I satis�es the Cerami condition for

certain energy levels. We recall that the functional I satis�es the Cerami condition at

the level c, denoted by (Ce)c condition, if any sequence (un) ⊂ E verifying

I(un)→ c and (1 + ‖un‖)‖I ′(un)‖∗ → 0 as n→∞, (2.43)

has a strongly convergent subsequence in E.

We begin by proving some auxiliary results. First we will present a convergence

result, whose proof follows the same lines of [64, Lemma 3.4], and we omit it.

Lemma 2.7.1 Suppose that (V ), (K), (f1)− (f4) and (2.27) hold. If (un) ⊂ E is such

that un ⇀ u in E as n→∞ and there is a constant C > 0 satisfying

sup
n∈N

∫
R4

[|x|−µ ∗ (K(x)F (x, un))]K(x)f(x, un)undx ≤ C, (2.44)

then, up to a subsequence, there holds∫
R4

[|x|−µ ∗ (K(x)F (x, un))]K(x)F (x, un)dx

→
∫
R4

[|x|−µ ∗ (K(x)F (x, u))]K(x)F (x, u)dx.

(2.45)
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Moreover, for all ψ ∈ C∞0 (R4), up to a subsequence, we have∫
R4

[|x|−µ ∗ (K(x)F (x, un))]K(x)f(x, un)ψdx

→
∫
R4

[|x|−µ ∗ (K(x)F (x, u))]K(x)f(x, u)ψdx.

(2.46)

Now we can prove the following result:

Lemma 2.7.2 Suppose that (V ), (K), (f1)− (f4) and (2.3) hold. Then, any (Ce)cM -

sequence (un) for I is bounded in E.

Proof . Consider (un) ⊂ E such that

I(un) =
1

2
‖un‖2 − 1

2

∫
R4

[|x|−µ ∗ (K(x)F (x, un))]K(x)F (x, un) dx→ cM (2.47)

and for all v ∈ E

(1 + ‖un‖)
∣∣∣∣〈un, v〉E − ∫

R4

[|x|−µ ∗ (K(x)F (x, un))]K(x)f(x, un)v dx
∣∣∣∣ ≤ on(1)‖v‖. (2.48)

We argue by a contradiction by assuming that, up to a subsequence, ‖un‖ → +∞. Let

vn := σun/‖un‖ where

σ =

√
cM +

2π2(8− µ)

γ0

.

By Lemma 2.6.1, it follows that

2cM < ‖vn‖2 = σ2 = cM +
2π2(8− µ)

γ0

<
4π2(8− µ)

γ0

. (2.49)

Now, choose γ > γ0 su�ciently close to γ0 and r > 1 close to 1, where 1/r + 1/r′ = 1

such that

γ1 :=
8γr‖vn‖2

8− µ
< 32π2. (2.50)
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By (f2), together with (2.6), (2.31), (2.26), (2.50) and (2.5), it follows that∫
R4

[|x|−µ ∗ (K(x)F (x, vn))]K(x)f(x, vn)vn dx

≤ C

(∫
R4

K
8

8−µ (x)(f(x, vn)vn)
8

8−µdx

) 8−µ
4

≤ C

(∫
R4

K
8

8−µ (x)|vn|2 dx

) 8−µ
4

+ C

(∫
R4

K
8

8−µ (x)|vn|
8q

8−µ (e
8γ

8−µvn
2

− 1) dx

) 8−µ
4

≤ C‖vn‖
8−µ

2 + C

(∫
R4

K
8

8−µ (x)|vn|
8qr′
8−µdx

) 8−µ
4r′

×
(∫

R4

K
8

8−µ (x)
(
e

8γr
8−µvn

2

− 1
)

dx

) 8−µ
4r

≤ C‖vn‖
8−µ

2 + C‖vn‖2q

(∫
R4

K
8

8−µ (x)

(
e

8γr‖vn‖2
8−µ ( vn

‖vn‖)
2

− 1

)
dx

) 8−µ
4r

≤ Cσ
8−µ

2 + Cσ2q

 sup
u∈E
‖u‖≤1

∫
R4

K
8

8−µ (x)(eγ1u2 − 1) dx


8−µ
4r

≤ C.

(2.51)

Since ‖vn‖ = σ, up to a subsequence, there exists v ∈ E such that vn ⇀ v in E. We

will analyze two possibilities:

Case 1: v ≡ 0;

In view of (2.51) and (2.45), we have

lim
n→∞

∫
R4

[|x|−µ ∗ (K(x)F (x, vn))]K(x)F (x, vn)dx = 0

and this implies that

lim
n→∞

I(vn) =
σ2

2
− 1

2
lim
n→∞

∫
R4

[|x|−µ ∗ (K(x)F (x, vn))]K(x)F (x, vn)dx =
σ2

2
. (2.52)

Note that σ/‖un‖ ∈ (0, 1) for n ∈ N su�ciently large, once ‖un‖ → +∞ as n → ∞.

Let tn ∈ (0, 1] be such that max
t∈(0,1]

I(tun) is achieved. Thus, 〈I ′(tnun), tnun〉 = 0 and by
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(f2) we get

I(vn) = I

(
σun
‖un‖

)
≤ max

t∈(0,1]
I(tun) = I(tnun) = I(tnun)− 1

2
〈I ′(tnun), tnun〉

=
1

2

∫
R4

[|x|−µ ∗ (K(x)F (x, tnun))]K(x)(f(x, tnun)tnun − F (x, tnun))dx

≤ 1

2

∫
R4

[|x|−µ ∗ (K(x)F (x, un))]K(x)(f(x, un)un − F (x, un))dx

= I(un)− 1

2
〈I ′(un), un〉.

(2.53)

Thereby, from (2.47), (2.48) and (2.52), letting n→∞ in (2.53), we obtain σ2 ≤ 2cM ,

which contradicts (2.49).

Case 2: v 6= 0;

In this case, there exists R > 0 such that Υ∩BR has positive Lebesgue measure,

where Υ := {x ∈ R4 : v(x) 6= 0}. Notice that

1

‖un‖2

∫
R4

[|x|−µ ∗ (K(x)F (x, un))]K(x)F (x, un)dx

=

∫
R4

(∫
R4

K(y)F (y, un)

|x− y|µ‖un‖
dy

)
K(x)F (x, un)

‖un‖
dx

≥ K2
R

(2R)µ

(∫
Υ∩BR

F (x, un)

|un|
|vn|dx

)2

where KR := minx∈BR K(x). Since ‖un‖ → +∞, by de�nition of v we have |un| → ∞

in Υ∩BR. Moreover, by assumption (f4) we have F (x, un)/|un| → +∞ as |un| → +∞.

By applying Fatou's Lemma we reach

1

‖un‖2

∫
R4

[|x|−µ ∗ (K(x)F (x, un))]K(x)F (x, un)dx→ +∞ as n→∞.

Therefore, since I(un)→ cM as n→∞, we obtain

0 = lim inf
n→∞

I(un)

‖un‖2

≤ 1

2
− 1

2
lim sup
n→∞

1

‖un‖2

∫
R4

[|x|−µ ∗ (K(x)F (x, un))]K(x)F (x, un)dx

= −∞

which is a contradiction. Thus, we complete the proof of the lemma.

We are ready to prove the main compactness result of this section.
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Proposition 2.7.3 Under hypotheses (V ), (K), (f1) − (f4) and (2.27) the functional

I satis�es (Ce)cM condition.

Proof . Let (un) ⊂ E be a Cerami sequence of I at the level cM . By Lemma 2.7.2,

up to a subsequence, there exists u ∈ E such that un ⇀ u weakly in E. Taking v = un

in (2.48) we have (2.44) holds. Then, by Lemma 2.7.1, 2.45 and (2.46) must occur. It

follows from (2.46) that I ′(u) = 0 and this combined with (f2) shows that

I(u) = I(u)− 1

2
〈I ′(u), u〉

=
1

2

∫
R4

[|x|−µ ∗ (K(x)F (x, u))]K(x) (f(x, u)u− F (x, u)) dx ≥ 0.
(2.54)

Since cM > 0, we have two cases to consider.

Case 1: u = 0;

In this case, taking u ≡ 0 in (2.45), we obtain

lim
n→∞

∫
R4

[|x|−µ ∗ (K(x)F (x, un))]K(x)F (x, un)dx = 0. (2.55)

This together with (2.47) and Lemma 2.6.1 implies that

lim sup
n→∞

‖un‖2 = 2cM <
4π2(8− µ)

γ0

. (2.56)

We claim that

lim
n→∞

∫
R4

[|x|−µ ∗ (K(x))F (x, un)]K(x)f(x, un)undx = 0. (2.57)

Indeed, by using (f2), (2.6), (2.31), (2.56) and Proposition 2.4.2, we get∫
R4

[|x|−µ ∗ (K(x)F (x, un))]K(x)f(x, un)un dx

≤ C

(∫
R4

K
8

8−µ (x)(f(x, un)un)
8

8−µdx

) 8−µ
4

≤ C

(∫
R4

K
8

8−µ (x)|un|2 dx

) 8−µ
4

+ C

(∫
R4

K
8

8−µ (x)|un|
8q

8−µ (e
8γ

8−µun
2

− 1) dx

) 8−µ
4

≤ C‖un‖
8−µ

2

L2(R4,K
8

8−µ )
+ C‖un‖2q

L
8qr′
8−µ (R4,K

8
8−µ )

(∫
R4

K
8

8−µ (x)(e
8γr
8−µun

2

− 1) dx

) 8−µ
4r

→ 0,

as n→∞, with γ > γ0 su�ciently close to γ0 and r > 1 close to 1, where 1/r+1/r′ = 1.

From this and once 〈I ′(un), un〉 → 0 we obtain ‖un‖ → 0, which contradicts (2.56).

Case 2: u 6= 0;

66



In this case, since (un) is (Ce)cM sequence for I, we may de�ne

vn :=
un
‖un‖

and v :=
u

lim
n→∞

‖un‖
.

Thus, vn ⇀ v weakly in E, ‖vn‖ = 1 and ‖v‖ ≤ 1. If ‖v‖ = 1 then we conclude the

proof. Suppose that ‖v‖ < 1. From Lemma 2.6.1, (2.54), (2.48) and (2.45) we obtain

4π2(8− µ)

γ0

> 2cM ≥ 2(cM − I(u))

= lim sup
n→∞

(‖un‖2 − ‖u‖2)

= lim sup
n→∞

‖un‖2

(
1−

∥∥∥∥ u

‖un‖

∥∥∥∥2
)
.

By the de�nition of v and Fatou's Lemma, we get

lim sup
n→∞

‖un‖2 <
4π2(8− µ)

γ0(1− ‖v‖2)
.

Choosing γ > γ0 su�ciently close to γ0 and r > 1 su�ciently close to 1 such that

1/r + 1/r′ = 1, we can deduce that

8rγ‖un‖2

8− µ
≤ η <

32π2

1− ‖v‖2
(2.58)

for n ∈ N large and for some η > 0. By using that |un|2 = ‖un‖2|vn|2, (2.58) and (2.23)

we reach

sup
n∈N

∫
R4

K
8

8−µ (x)
(
e

8rγ
8−µ |un|

2

− 1
)

dx ≤ sup
n∈N

∫
R4

K
8

8−µ (x)
(
eη|vn|

2 − 1
)

dx <∞. (2.59)

Now, we claim that∫
R4

[|x|−µ ∗ (K(x)F (x, un))]K(x)f(x, un)(un − u) dx→ 0 as n→∞. (2.60)

Indeed, from (2.6) one has∣∣∣∣∣∣
∫
R4

[|x|−µ ∗ (K(x)F (x, un))]K(x)f(x, un)(un − u) dx

∣∣∣∣∣∣
≤ C‖K(x)F (x, un)‖ 8

8−µ
‖K(x)f(x, un)(un − u)‖ 8

8−µ
=: CI1,nI2,n. (2.61)

By using (2.32), (2.59), Hölder's inequality and Proposition 2.4.2, we obtain

I
8

8−µ
1,n ≤ C

∫
R4

K
8

8−µ (x)|un|
8

8−µ ·
8−µ

4 dx+ C

∫
R4

K
8

8−µ (x)|un|
8q

8−µ (e
8γ

8−µ |un|
2

− 1)dx

≤ C‖un‖2 + C

(∫
R4

K
8

8−µ (x)|un|
8qr′
8−µdx

) 1
r′
(∫

R4

K
8

8−µ (x)(e
8rγ
8−µ |un|

2

− 1)dx

) 1
r

≤ C‖un‖2 + C‖un‖
8q

8−µ

(∫
R4

K
8

8−µ (x)(e
8rγ
8−µ |un|

2

− 1)dx

) 1
r

≤ C̃.
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Similarly, choosing ε > 0 and q = r′ ≥ 8−µ
4
, we have r = q

q−1
and by using (2.31),

Hölder's inequality and Proposition 2.4.2, we get

I
8

8−µ
2,n ≤ ε

∫
R4

K
8

8−µ (x)|un|
4−µ

4
· 8
8−µ |un − u|

8
8−µdx

+ C(γ, q, ε)

∫
R4

K
8

8−µ (x)|un − u|
8

8−µ |un|
8(q−1)

8−µ (e
8γ

8−µ |un|
2

− 1)dx

≤ ε

(∫
R4

K
8

8−µ (x)|un|2dx

) 4−µ
8−µ
(∫

R4

K
8

8−µ (x)|un − u|2dx

) 4
8−µ

+ C(γ, q, ε)

(∫
R4

K
8

8−µ (x)|un − u|
8q

8−µ |un|
8q(q−1)

8−µ dx

) 1
q

×
(∫

R4

K
8

8−µ (x)(e
8rγ
8−µ |un|

2

− 1)dx

) q−1
q

≤ ε‖un‖
2(4−µ)
(8−µ)

(∫
R4

K
8

8−µ (x)|un − u|2dx

) 4
8−µ

+ C‖un‖
4(q−1)
(8−µ)

(∫
R4

K
8

8−µ (x)|un − u|
16q
8−µdx

) 1
2q
(∫

R4

K
8

8−µ (x)(e
8rγ
8−µ |un|

2

− 1)dx

) q−1
q

.

Hence, combining the previous estimate with (2.59) and Proposition 2.4.2, up to a

subsequence, we have I2,n → 0 as n→∞. From this and according to (2.61) and (2.7),

it follows that (2.60) holds.

Finally, note that the convexity of the functional J(v) := 1
2
‖v‖2 guarantees that

1

2
‖u‖2 = J(u) ≥ J(un) + 〈J ′(un), u− un〉

=
1

2
‖un‖2 +

∫
R4

∆un∆(u− un) +∇un∇(u− un) + V (x)un(u− un)dx

=
1

2
‖un‖2 + 〈I ′(un), u− un〉

−
∫
R4

[|x|−µ ∗ (K(x)F (x, un))]K(x)f(x, un)(un − u)dx.

By virtue of 〈I ′(un), u − un〉 → 0 as n → ∞ and (2.60), we conclude lim sup
n→∞

‖un‖2 ≤

‖u‖2 and consequenlty un → u strongly in E.

2.8 Proof of Theorem 2.1.3

From Lemma 2.5.1, the functional I satis�es the geometric conditions of the

Mountain Pass Theorem and in view of Lemma 2.6.1 and Proposition 2.7.3 we have

that I satis�es the (Ce)cM condition. Thus, by the Mountain Pass Theorem (with
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Cerami condition, see [16, 17]) the functional I has a critical point u0 nontrivial at the

minimax level cM .

2.9 Bound state solution

In this last section, we prove Theorem 2.1.4. We will show that any weak solution

of problem (2.1) is a bound state solution, that is, belongs to H2(R4). Therefore, it

remains to verify that u0 ∈ L2(R4). To do this, we will adapt some arguments presented

by Ambrosetti, Felli and Malchiodi in [10]. The �rst result is the following:

Lemma 2.9.1 Let (V ), (K) with α ∈ (0, 4), β > (8 − µ)α/8 and γ ∈ (0, 32π2), then

for each v ∈ E \ {0} with ‖v‖ ≤ 1 and any ε > 0, there exists n̄ = n̄(γ, a, α) > 1

independent of v such that for every n ≥ n̄,∫
Bc3n

K
8

8−µ (x)(eγv
2 − 1)dx ≤ ε.

The proof follows directly from inequalities (2.19) and (2.20). The next lemma is

inspired by the arguments of [10, Lemma 11].

Lemma 2.9.2 Suppose that (V ) and (K) hold with α ∈ (0, 2) and β > (8 − µ)α/8.

Let γ > 0 and u ∈ E\{0}. Then, for any ε > 0 there exists R̄ = R̄(u, γ, a, α) such that∫
BcR

K
8

8−µ (x)(eγu
2 − 1)dx ≤ ε, for all R ≥ R̄. (2.62)

Proof . Let R > 1 and ψR : R+ → [0, 1] be a smooth nondecreasing function given by

ψR(r) =

0, if r ≤ R−Rα/2,

1, if r ≥ R

and satisfying

|ψ′R| ≤
2

Rα/2
and |ψ′′R| ≤

2

Rα
.

In polar coordinates (r, θ) ∈ [0,+∞)× S3, we de�ne

uR(r, θ) :=


0, if r ≤ R−Rα/2,

ψR(r)u(2R− r, θ), if R−Rα/2 ≤ r ≤ R,

u(r, θ), if r ≥ R.
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In the annulus AR = {x ∈ R4 : R−Rα/2 ≤ |x| ≤ R}, we have

∇uR = ψ
′
R(r)u(2R− r, θ)er − ψR(r)ur(2R− r, θ)er +

1

r
ψR(r)uθ(2R− r, θ)eθ,

where er = x/|x| and eθ is a unit vector tangent to the unit sphere. Furthermore,

∆uR =
1

r
ψ
′
R(r)u(2R− r, θ)− 1

r
ψR(r)ur(2R− r, θ) + ψ

′′
R(r)u(2R− r, θ)

− 2ψ
′
R(r)ur(2R− r, θ) + ψR(r)urr(2R− r, θ) +

1

r2
ψR(r)uθθ(2R− r, θ)

= ψR(r)urr(2R− r, θ) +
1

r2
ψR(r)uθθ(2R− r, θ)

−
(

2ψ
′
R(r) +

1

r
ψR(r)

)
ur(2R− r, θ) +

(
ψ
′′
R(r) +

1

r
ψ
′
R(r)

)
u(2R− r, θ).

Hence, in the annulus AR we obtain

|∇uR|2 ≤ C1|∇u(2R− r, θ)|2 +
C2

Rα
u2(2R− r, θ)

and

|∆uR|2 ≤ C3|∆u(2R− r, θ)|2 +
C4

Rα
|∇u(2R− r, θ)|2 +

C5

Rα
u2(2R− r, θ).

So, by integrating in AR and making the change of variable (r, θ) 7→ (2R − r, θ), we

reach ∫
AR

|∆uR|2 ≤ C6

∫
R≤|x|≤R+Rα/2

(
|∆u|2 + |∇u|2 +R−αu2

)
dx

≤ C7

∫
R≤|x|≤R+Rα/2

(
|∆u|2 + |∇u|2 + V (x)u2

)
dx.

Since uR = u(r, θ) for |x| ≥ R, it follows that∫
AR

|∆uR|2 ≤ C8

∫
BcR

(
|∆u|2 + |∇u|2 + V (x)u2

)
dx. (2.63)

Similarly, we obtain

∫
AR

|∇uR|2 ≤ C9

∫
R≤|x|≤R+Rα/2

(
|∇u|2 + V (x)u2

)
dx ≤ C10

∫
BcR

(
|∇u|2 + V (x)u2

)
dx (2.64)

and ∫
AR

V (x)u2
R ≤ C11

∫
R≤|x|≤R+Rα/2

V (x)u2
R ≤ C11

∫
BcR

V (x)u2dx. (2.65)

Thereby, by (2.63), (2.64) and (2.65), we deduce that∫
AR

|∆uR|2 + |∇uR|2 + V (x)u2
R dx ≤ C

∫
BcR

|∆u|2 + |∇u|2 + V (x)u2dx.
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Recalling that uR ≡ 0 when |x| ≤ R−Rα/2 and uR ≡ u for |x| ≥ R, we see that

‖uR‖2 =

∫
Bc
R−Rα/2

|∆uR|2 + |∇uR|2 + V (x)u2
R dx

≤ (1 + C)

∫
BcR

|∆u|2 + |∇u|2 + V (x)u2dx. (2.66)

Since u ∈ E, there exists R̄ = R̄(u, γ) > 1 such that∫
Bc
R̄

|∆uR|2 + |∇uR|2 + V (x)u2
Rdx =

∫
Bc
R̄

|∆u|2 + |∇u|2 + V (x)u2dx <
32π2

(1 + C)γ
.

This combined with (2.66) shows that γ‖uR‖2 < 32π2 for all R ≥ R̄. Choosing R̄ =

R̄(u, γ, a, α) > 0 su�ciently large such that R̄ − R̄α/2 ≥ 3n̄, by Lemma 2.9.1 for

v = uR/‖uR‖ we have∫
BcR

K
8

8−µ (x)(eγu
2 − 1)dx =

∫
BcR

K
8

8−µ (x)(e
γ‖uR‖2

(
uR
‖uR‖

)2

− 1)dx

≤
∫
Bc
R−Rα/2

K
8

8−µ (x)(e
γ‖uR‖2

(
uR
‖uR‖

)2

− 1)dx ≤ ε,∀ R ≥ R̄,

which concludes the proof of (2.62).

From now on, we will denote by u0 ∈ E a nontrivial weak solution of (2.1).

Lemma 2.9.3 Suppose that (V ) and (K) hold with α ∈ (0, 2) and β > (8 − µ)α/8.

There exists R̄ > 0 such that for any n ∈ N+ satisfying Rn := n
2

2−α ≥ R̄ we have∫
BcRn+1

(|∆u0|2 + |∇u0|2 + V (x)u2
0)dx ≤ 3

4

∫
BcRn

(|∆u0|2 + |∇u0|2 + V (x)u2
0)dx.

Proof . Arguing as in [[10], Lemma 17], set χn : R4 → [0, 1] be a smooth function

such that

χn(x) ≡ 0 in BRn , χn(x) ≡ 1 in BRn+1 , |∇χn| ≤
C

Rn+1

in An and |∆χn| ≤
C

R2
n+1

in An

where An = {x ∈ R4 : Rn ≤ |x| ≤ Rn+1}. Note that by construction χnu0 ∈ E and∫
BcRn+1

|∆u0|2 + |∇u0|2 +V (x)u2
0 dx ≤

∫
BcRn

(
|∆u0|2 + |∇u0|2 + V (x)u2

0

)
χn dx. (2.67)

If we use χnu0 as test function in (2.7), since χn(x) ≡ 0 in BRn and that χn(x) ≤ 1,
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we obtain∫
BcRn

χn
(
|∆u0|2 + |∇u0|2 + V (x)u2

0

)
dx

=

∫
BcRn

[|x|−µ ∗ (K(x)F (x, u0))]K(x)f(x, u0)χnu0dx

−
∫
BcRn

(∆u0∆χnu0 + 2∆u0∇χn∇u0 +∇u0∇χnu0) dx

≤
∫
BcRn

[|x|−µ ∗ (K(x)F (x, u0))]K(x)f(x, u0)u0dx

−
∫
BcRn

(∆u0∆χnu0 + 2∆u0∇χn∇u0 +∇u0∇χnu0) dx.

(2.68)

Using Young's inequality with ε ∈ (0, 1), we can estimate the second part of (2.68) by∫
BcRn

(∆u0∆χnu0 + 2∆u0∇χn∇u0 +∇u0∇χnu0) dx

≤
∫
BcRn

(
ε|∆u0|2 +

C2

εR4
n+1

u2
0 + 2ε|∆u0|2 +

2C2

εR2
n+1

|∇u0|2 + ε|∇u0|2 +
C2

εR2
n+1

u2
0

)
dx

≤ 3ε

∫
BcRn

|∆u0|2dx+

(
ε+

2C2

εR2
n+1

)∫
BcRn

|∇u0|2dx+
2C2

a

1 +Rα
n+1

εR2
n+1

∫
BcRn

V (x)u2
0 dx.

Fixed ε = 1/6, we can choose Rn+1 su�ciently large such that

ε+
2C2

εR2
n+1

≤ 1

2
and

2C2

a

1 +Rα
n+1

εR2
n+1

≤ 1

2
.

Therefore, ∫
BcRn

(∆u0∆χnu0 + 2∆u0∇χn∇u0 +∇u0∇χnu0) dx

≤ 1

2

∫
BcRn

(|∆u0|2 + |∇u0|2 + V (x)u2
0)dx. (2.69)

Now let us estimate the �rst integral of (2.68). By (2.32), we have

|f(x, s)s| ≤ C(α)|s|(eγs2 − 1) for all |s| ≥ R̃,

for some R̃ > 1. From (2.6), (f2), the previous inequality, Hölder's inequality and by
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applying (2.62) for ε ∈ (0, C̃4/(µ−4)), we �nd∫
BcRn

[|x|−µ ∗ (K(x)F (x, u0))]K(x)f(x, u0)u0 dx

≤ C

(∫
BcRn

K
8

8−µ (x)|f(x, u0)u0|
8

8−µ dx

) 8−µ
4

≤ C̃

(∫
BcRn

K
8

8−µ (x)|u0|
8

8−µ (e
8γ

8−µu
2
0 − 1) dx

) 8−µ
4

≤ C̃

∫
BcRn

K
8

8−µ (x)u2
0 dx

(∫
BcRn

K
8

8−µ (x)(e
8γ

4−µu
2
0 − 1)dx

) 4−µ
4

≤
∫
BcRn

K
8

8−µ (x)u2
0 dx.

Moreover, if R̃ is su�ciently large then for all n ∈ N such that Rn ≥ R̃, we have

sup
x∈BcRn

K
8

8−µ (x)

V (x)
≤ sup

x∈Bc
R̃

K
8

8−µ (x)

V (x)
≤ sup

x∈Bc
R̃

b
8

8−µ (1 + |x|α)

a(1 + |x|β)
8

8−µ
≤ b

8
8−µ (1 + R̃α)

a(1 + R̃β)
8

8−µ
=: B(R̃).

Thus,∫
BcRn

[|x|−µ ∗ (K(x)F (x, u0))]K(x)f(x, u0)u0dx ≤ B(R̃)

∫
BcRn

V (x)u2
0 dx

≤ B(R̃)

∫
BcRn

(|∆u0|2 + |∇u0|2 + V (x)u2
0) dx.

(2.70)

Since β > (8−µ)α/8, one sees that lim
R̃→+∞

B(R̃) = 0, which implies that B(R̃) ≤ 1/4 for

R̃ > 0 su�ciently large. Therefore, combining the equations (2.67)-(2.70) we �nished

the proof.

Lemma 2.9.4 Suppose that (V ) and (K) hold with α ∈ (0, 2) and β > (8 − µ)α/8.

There exists R̃ > 0 and constant C > 0 such that for any % > 2R̃, there holds∫
Bc%

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx ≤ Ce(log 3

4)%(2−α)/2

.

Proof . Let R̃ and (Rn)n be as in Lemma 2.9.3. Considering % > 2R̃, there exist

ñ > n̄ positive integers such that

Rñ ≤ R̃ ≤ Rñ+1 and Rn̄−1 ≤ % ≤ Rn̄

and therefore

n̄− ñ = R
(2−α)/2
n̄ −R(2−α)/2

ñ ≥ %(2−α)/2 − R̃(2−α)/2 > R̃(2(2−α)/2 − 1) > 2
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for R̃ > 0 su�ciently large. Hence, n̄− ñ ≥ 3 and in particular Rn̄−2 ≥ Rñ+1 ≥ R̃. It

follows from Lemma 2.9.3 that∫
Bc%

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx

≤
∫
BcRn̄−1

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx

≤ 3

4

∫
BcRn̄−2

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx

≤
(

3

4

)n̄−ñ−2 ∫
BcRñ+1

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx

≤
(

3

4

)n̄−ñ−2 ∫
Bc
R̃

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx

≤ 16

9
e(log 3

4)(%(2−α)/2−R̃(2−α)/2)

∫
Bc
R̃

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx

= C(R̃)e(log 3
4)%(2−α)/2

∫
Bc
R̃

(|∆u0|2 + |∇u0|+ V (x)u2
0) dx

and proof of the lemma is done.

We highlight that the following proof was inspired by [64, Theorem 1.11], which

in turn simpli�es the proof given in [[10], Theorem 16], because we do not use Borel's

�nite cover lemma.

Proof of Theorem 2.1.4: Note that as u0 ∈ E, for any x ∈ B2, we have∫
B2

u2
0 dx ≤ (1 + 2α)

a

∫
B2

V (x)u2
0 dx <∞.

To conclude that u0 ∈ L2(R4), it is enough to prove that
∫
Bc2

u2
0 dx <∞.

Let Σj := {x ∈ R4 : 2j ≤ |x| < 2j+1} for all j ∈ N ∪ {0}. Since 2(j+2)αV (x) ≥

(1 + |x|α)V (x) ≥ a for x ∈ Σj, we get∫
Σj

u2
0 dx ≤ 2(j+2)α

a

∫
Σj

V (x)u2
0 dx ≤ 2(j+2)α

a

∫
Σj

(|∆u0|2 + |∇u0|2 + V (x)u2
0) dx

≤ 2(j+2)α

a

∫
Bc

2j

(|∆u0|2 + |∇u0|2 + V (x)u2
0) dx.

It follows from Lemma 2.9.3, taking % := 2j ≥ 2R̃, that∫
Σj

u2
0 dx ≤ 2(j+2)α

a
Ce(log 3

4)2(2−α)j/2

. (2.71)
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Hence, there exists an integer j0 > 0 such that (2.71) holds for all j ≥ j0 +1. Therefore,∫
Bc2

u2
0 dx =

∞∑
j=1

∫
Σj

u2
0 dx =

j0∑
j=1

∫
Σj

u2
0 dx+

∞∑
j=j0+1

∫
Σj

u2
0 dx

≤
j0∑
j=1

∫
Σj

u2
0 dx+

C

a

∞∑
j=j0+1

2(j+2)αe(log 3
4)2(2−α)j/2

<∞,

because α ∈ (0, 2) and log 3
4
< 0. This completes the proof of Theorem 2.1.4.
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Chapter 3

On a weighted Adams type inequality

and an application to a polyharmonic

equation

In this chapter, we have two objectives. The �rst deals with the improvement of

a class of Adams-type inequalities involving a potential V and a weight K, which can

decay to zero at in�nity as (1 + |x|α)−1, α ∈ (0, N), and (1 + |x|β)−1, β ∈ [α,+∞)

for all x ∈ RN , respectively. The second objective is, using minimax methods and the

Adams inequality obtained in the �rst moment, to establish the existence of solutions

for the following class of problems:

m∑
j=1

(−∆)ju+ V (x)u = K(x)f(x, u) in R2m,

where (−∆)j denote the polyharmonic operator, m is a positive integer and the non-

linear term f(x, u) can have critical exponential growth.

3.1 Introduction and main results

In a more precise way, throughout this chapter, we consider some weight functions

V (x) and K(x) satisfying the following assumptions:

(V ) V ∈ C(RN) and there exist α, a > 0 such that V (x) ≥ a

1 + |x|α
for all x ∈ RN ;



(K) K ∈ C(RN) and there exist β, b > 0 such that 0 < K(x) ≤ b

1 + |x|β
for all

x ∈ RN .

In particular, we restrict our attention to the case when α and β satisfy

α ∈ (0, N) and β ∈ [α,+∞). (3.1)

Next, in order to present our �rst result, we will �x some notations. Consider the

space

E :=

{
u ∈ L1

loc
(RN) : |∇iu| ∈ L

N
m (RN) ∀ i = 1, . . . ,m and

∫
RN
V (x)|u|

N
mdx <∞

}
and norm

‖u‖ :=

(∫
RN

(|∇mu|N/m + · · ·+ |∇u|N/m + V (x)|u|N/m) dx

)m/N
.

We use the notation ‖ · ‖LpK(RN ) for the norm of the weighted Lebesgue space

LpK(RN) =

{
u : RN → R : u is measurable and

∫
RN
K(x)|u|pdx <∞

}
,

that is, ‖u‖LpK(RN ) =

(∫
RN
K(x)|u|pdx

)1/p

.

Before presenting our �rst theorem, let us recall here what inequality (2) says, for

m ∈ N and Ω ⊂ RN a bounded domain with m < N , there exists a positive constant

Cm,N such that

sup

{u∈Wm,Nm
0 (Ω) : ‖∇mu‖N

m
≤1}

∫
Ω

eγ|u|
N

N−m
dx ≤ Cm,N |Ω|, (3.2)

for any γ ≤ γm,N .

In this context, we can establish our �rst result, as follows.

Theorem 3.1.1 Suppose that (V ) and (K) hold with α and β satisfying (3.1). Then,

for any γ > 0 and any u ∈ E, it holds∫
RN
K(x)φm,N(γ|u|

N
N−m ) dx <∞. (3.3)

Moreover, we have

sup
u∈E
‖u‖≤1

∫
RN
K(x)φm,N(γ|u|

N
N−m ) dx =

{
<∞, if γ < γm,N ;

+∞, if γ > γm,N .
(3.4)
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Remark 3.1.2 We highlight that inequality (3.4) in Theorem 3.1.1 treats only the

subcritical case. The critical case γ = γm,N is still an open question.

Remark 3.1.3 Note that when m = 2 and N = 4, γ2,4 = 32π2 and Theorem 3.1.1

coincides with Theorem 1.1.1.

As initial applications of Theorem 3.1.1, we will prove the compact embedding

of the space E into LpK(RN) for p ≥ 2, α ∈ (0, N) and β ∈ (α,+∞) (see Proposition

3.3.1). From now on, we assume that the integer m ≥ 2 and the dimension N of the

domain satisfy N = 2m. We also will obtain a Lions-type concentration-compactness

principle involving exponential growth (see Proposition 3.5.3), which is a re�nement of

Theorem 3.1.1. Furthermore, we will investigate the existence of weak solution for the

following class of problems

m∑
j=1

(−∆)ju+ V (x)u = K(x)f(x, u) in R2m, (3.5)

where the potential V and the weightK satisfy the conditions (V ) and (K), respectively

and α, β are such that

α ∈ (0, 2m) and β ∈ (α,+∞). (3.6)

The nonlinearity f(x, s) has the maximal growth which allows us to study (3.5) by

using a variational method. Precisely, motivated by (3.4), we say that f(x, s) has

critical exponential growth if there exists γ0 > 0 such that

lim
|s|→∞

f(x, s)

eγs2
=

0, for all γ > γ0,

+∞, for all γ < γ0,

uniformly in x ∈ R2m. In this context, we say that u ∈ E is a weak solution for (3.5)

if ∫
R2m

(
m∑
j=1

∇ju∇jv + V (x)uv

)
dx =

∫
R2m

K(x)f(x, u)v dx, for all v ∈ E. (3.7)

We will assume su�cient conditions on f so that weak solutions of (3.5) become

critical points of the functional I : E → R de�ned by

I(u) =
1

2
‖u‖2 −

∫
R2m

K(x)F (x, u) dx,
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where F (x, s) :=

∫ s

0

f(x, t)dt. In this case as N = 2m, we have the norm in space E

can be characterized as ‖u‖2 = 〈u, u〉E where

〈u, v〉E =

∫
R2m

(
m∑
j=1

∇ju∇jv + V (x)uv

)
dx.

We require the following assumptions on the nonlinearity f(x, s):

(f1) lim
s→0

f(x, s)

s
= 0, uniformly in x ∈ R2m;

(f2) the function f : R2m×R→ R is continuous and has critical exponential growth;

(f3) there exists µ > 2 such that

0 < µF (x, s) ≤ sf(x, s), for all (x, s) ∈ R2m × R \ {0};

(f4) there exist constants s0,M0 > 0 such that

0 < F (x, s) ≤M0|f(x, s)|, for all |s| ≥ s0 and x ∈ R2m;

(f5) lim inf
s→∞

sf(x, s)

eγ0s2
≥ θ0, for some θ0 >

2mγm,2m

ω2mK̃γ0
uniformly with respect to x ∈ R2m,

where K̃ = min
x∈B1

K(x).

Our existence result is stated as follows:

Theorem 3.1.4 Assume (V ), (K), (f1) − (f5) and (3.6) hold. Then, problem (3.5)

has a nontrivial weak solution.

In [76], Zhao and Chang establish a singular Adams-type inequality on the whole

R2m for m ≥ 2. In addition, they deduce that for further conditions on f , the problem

(−∆)mu+
m−1∑
γ=0

(−1)γ∇γ · (aγ(x)∇γu) =
f(x, u)

|x|β
+ εh(x) in R2m

has at least two distinct weak solutions where m ≥ 2 is an even integer and aγ(x) are

continuous functions satisfying: there exist positive constants aγ, γ = 0, 1, 2 . . . ,m− 1,

such that aγ(x) ≥ aγ for all x ∈ R2m and 1
a0(x)

∈ L1(R2m).

Do Ó and Macedo in [31] studied a Adams type inequality for the Sobolev space

Wm,2(R2m) and establish od the existence of a nontrivial radial solution to the following

class of polyharmonic equations:

(−∆)mu(x) + u(x) = f(|x|, u), in R2m,

79



where the nonlinearity is superlinear and has critical exponential growth at in�nity.

The outline of the chapter is as follows: in Section 3.2 we present some prelimi-

nary results. In Section 3.3 we prove the weighted Adams' inequality (Theorem 3.1.1)

and that the embedding E ↪→ LpK(RN) is compact for all p ∈ [N/m,+∞) (Proposition

3.3.1). Section 3.4 contains the variational framework related to problem (3.5) and we

also check the geometric properties of the functional I. Section 3.5 we prove a version

of the Concentration-Compactness Principle due to P. -L. Lions [45] to the space E (see

Proposition 3.5.3) and deals with the Palais-Smale compactness condition. In Section

3.6 we estimate the minimax level. Finally, in Section 3.7 we complete the proof of

Theorem 3.1.4.

3.2 Some preliminary results

The following lemmas are adaptations of Lemma 2.1 and Lemma 2.2 respectively

obtained from Yang in [70]. Adaptation is simply replacing N ≥ 2 with jN
m
≥ 2 in the

results.

Lemma 3.2.1 Let s ≥ 0 and p ≥ 1 be real numbers. Then, there holds

[φm,N(s)]p ≤ φm,N(ps)

Lemma 3.2.2 For all jN
m
≥ 2, s ≥ 0, t ≥ 0, µ > 1 and ν > 1 with 1

µ
+ 1

ν
= 1 there

holds

φm,N(s+ t) ≤ 1

µ
φm,N(µs) +

1

ν
φm,N(νs).

3.3 Proof of Theorem 3.1.1 and Compactness Result

In the �rst subsection, we prove Theorem 3.1.1.

3.3.1 Proof of Theorem 3.1.1

Proof . We begin proving the �rst part of (3.4). The proof will be divided into two

steps.

Step 1: Let u ∈ E be such that ‖u‖ ≤ 1. First, we want to estimate the weighted

Adams functional

AD(u, γ, R) =

∫
BR

K(x)φm,N(γ|u|
N

N−m ) dx
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for some R > 0, independently of u, that will be chosen during the proof. From

condition (K), we have∫
BR

K(x)φm,N(γ|u|
N

N−m ) dx ≤ b

∫
BR

φm,N(γ|u|
N

N−m ) dx. (3.8)

Consider a cuto� function ϕ ∈ C∞0 (B2R) such that

0 ≤ ϕ ≤ 1 in B2R, ϕ ≡ 1 in BR, and |∇iϕ| ≤ C

Ri
in B2R,

for all i = 1, . . . ,m and for some constant C > 0. From Leibniz's formula we have

|∇m(ϕu)|
N
m =

∣∣∣∣∣
m∑
j=0

(
m

j

)
∇jϕ∇m−ju

∣∣∣∣∣
N
m

.

Using the elementary inequality

(a+ b)q ≤ (1 + ε)qaq + (1 + ε−1)qbq,

with ε > 0, a, b ≥ 0 and q ≥ 1, we obtain that∫
B2R

|∇m(ϕu)|
N
m dx =

∫
B2R

∣∣∣∣∣ϕ∇mu+
m∑
j=1

(
m

j

)
∇jϕ∇m−ju

∣∣∣∣∣
N
m

dx

≤ (1 + ε)
N
m

∫
B2R

ϕ
N
m |∇mu|

N
mdx+ (1 + ε−1)

N
m

∫
B2R

∣∣∣∣∣
m∑
j=1

(
m

j

)
∇jϕ∇m−ju

∣∣∣∣∣
N
m

dx

≤ (1 + ε)
N
m

∫
B2R

|∇mu|
N
mdx

+ (1 + ε−1)
N
m

∫
B2R

∣∣∣∣∣
m−1∑
j=1

(
m

j

)
∇jϕ∇m−ju+m(∇mϕ)u

∣∣∣∣∣
N
m

dx

≤ (1 + ε)
N
m

∫
B2R

|∇mu|
N
mdx+ (1 + ε−1)

2N
m

∫
B2R

∣∣∣∣∣
m−1∑
j=1

(
m

j

)
∇jϕ∇m−ju

∣∣∣∣∣
N
m

dx

+ (1 + ε)
N
m (1 + ε−1)

N
mm

N
m

∫
B2R

|∇mϕ|
N
m |u|

N
mdx.

Repeating the same process m times for the second term of the previous inequality, we

estimate∫
B2R

|∇m(ϕu)|
N
m dx ≤ (1 + ε)

N
m

∫
B2R

|∇mu|
N
mdx+ (1 + ε−1)Nm

N
m
C

N
m

R
N
m

∫
B2R

|∇m−1u|
N
mdx

+ · · ·+ (1 + ε)
N
m (1 + ε−1)

2N
m m

N
m

C
N
m

R
(m−1)N

m

∫
B2R

|∇u|
N
mdx

+ (1 + ε)
N
m (1 + ε−1)

N
mm

N
m
C

N
m

RN

∫
B2R

|u|
N
mdx.
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Now, using the condition (V ), it follows that∫
B2R

|∇m(ϕu)|
N
m dx ≤ (1 + ε)

N
m

∫
B2R

|∇mu|
N
mdx+ (1 + ε−1)Nm

N
m
C

N
m

R
N
m

∫
B2R

|∇m−1u|
N
mdx

+ · · ·+ (1 + ε)
N
m (1 + ε−1)

2N
m m

N
m

C
N
m

R
(m−1)N

m

∫
B2R

|∇u|
N
mdx

+ (1 + ε)
N
m (1 + ε−1)

N
m
m

N
mC

N
m

a

1 + (2R)α

RN

∫
B2R

V (x)|u|
N
m dx.

Fixed ε ∈ (0, 1) such that γ(1 + ε)
N

N−m ≤ γm,N and since α ∈ (0, N), we can choose

R̄ = R̄(ε, a, α) > 0 su�ciently large satisfying

(1 + ε−1)Nm
N
m
C

N
m

R
N
m

≤ (1 + ε)
N
m , . . . , (1 + ε)

N
m (1 + ε−1)

2N
m m

N
m

C
N
m

R
(m−1)N

m

≤ (1 + ε)
N
m

and

(1 + ε)
N
m (1 + ε−1)

N
m
m

N
mC

N
m

a

1 + (2R)α

RN
≤ (1 + ε)

N
m ,

for all R ≥ R̄. Thus,∫
B2R

|∇m(ϕu)|
N
m dx ≤ (1 + ε)

N
m‖u‖

N
m ≤ (1 + ε)

N
m .

Therefore, de�ning

v :=
ϕu

1 + ε

we have that v ∈ E and

‖∇mv‖
N
m
N
m

=
1

(1 + ε)
N
m

∫
B2R

|∇m(ϕu)|
N
m dx ≤ 1.

Applying Adams inequality (3.2), we get∫
BR

φm,N(γ|u|
N

N−m ) dx =

∫
BR

φm,N(γ|ϕu|
N

N−m ) dx ≤
∫
B2R

eγ(1+ε)
N

N−m |v|
N

N−m dx ≤ C |B2R|

where |B2R| denotes the Lebesgue measure of the ball of radius 2R in RN . The previous

inequality combined with (3.8) implies that∫
BR

K(x)φm,N(γ|u|
N

N−m )dx ≤ b

∫
BR

φm,N(γ|u|
N

N−m ) dx ≤ C|B2R|, (3.9)

for all u ∈ E with ‖u‖ ≤ 1.

Step 2: Now, we estimate the weighted Adams functional in the exterior of a large ball.
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For any n ≥ n0 �xed, where n0 will be chosen during the proof, we consider Bc
n

the exterior de Bn and the covering of Bc
n formed by all annuli Aσn with σ > n given by

Aσn := {x ∈ Bc
n : |x| < σ} = {x ∈ RN : n < |x| < σ}.

By the Besicovitch covering Lemma [25], for any σ > n0, there exist a sequence of

points (xk) ∈ Aσñ and a universal constant θ > 0 such that

Aσñ ⊆
⋃
k

U
1/2
k , where U

1/2
k := B

(
xk,

1

2

|xk|
3

)
and ∑

k

χUk(x) ≤ θ for any x ∈ RN , where Uk := B

(
xk,
|xk|
3

)
and χUk is its characteristic function. Let u ∈ E be such that ‖u‖ ≤ 1. We start with

the estimate of the weighted exponential integral of u in Aσ3n with n ≥ n0 and σ > 3n.

Note that

Aσ3n ⊂ Aσñ ⊆
⋃
k

U
1/2
k

and de�ning the set of indices Kn,σ := {k ∈ N : U
1/2
k ∩Bc

3n 6= ∅ }, we have

Aσ3n ⊆
⋃

k∈Kn,σ

U
1/2
k .

Therefore,∫
Aσ3n

K(x)φm,N(γ|u|
N

N−m ) dx ≤
∑

k∈Kn,σ

∫
Uk

1/2

K(x)φm,N(γ|u|
N

N−m ) dx. (3.10)

Since 2
3
|xk| ≤ |y| ≤ 4

3
|xk| for all y ∈ Uk, from (V ) and (K), we obtain

V (y) ≥ a

1 + |y|α
≥ a

1 +
(

4
3

)α |xk|α , for all y ∈ Uk (3.11)

and

K(y) ≤ b

1 + |y|β
≤ b

1 +
(

2
3

)β |xk|β , for all y ∈ Uk. (3.12)

Besides, if Uk ∩Bc
3n 6= ∅ then Uk ⊂ Bc

n, which implies that⋃
k∈Kn,σ

U
1/2
k ⊆

⋃
k∈Kn,σ

Uk ⊆ Bc
n ⊆ Bc

ñ. (3.13)

Next, let us �x k ∈ Kn,σ. From (3.12), we obtain∫
Uk

1/2

K(x)φm,N(γ|u|
N

N−m ) dx ≤ b

1 +
(

2
3

)β |xk|β
∫
Uk

1/2

φm,N(γ|u|
N

N−m ) dx. (3.14)
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Again, consider a cuto� function ϕk ∈ C∞0 (Uk) such that

0 ≤ ϕk ≤ 1 in Uk, ϕk ≡ 1 in U
1/2
k , |∇iϕk| ≤

C

|xk|i
in Uk,

for all i = 1, . . . ,m and for some constant C > 0. Proceeding as before, it follows that∫
Uk

|∇m(ϕku)|
N
m dx ≤ (1 + ε)

N
m

∫
Uk

|∇mu|
N
m dx+ (1 + ε−1)Nm

N
m
C

N
m

|xk|
N
m

∫
Uk

|∇m−1u|
N
mdx

+ · · ·+ (1 + ε)
N
m (1 + ε−1)

2N
m m

N
m

C
N
m

|xk|
(m−1)N

m

∫
Uk

|∇u|
N
mdx

+ (1 + ε)
N
m (1 + ε−1)

N
m
m

N
mC

N
m

|xk|N

∫
Uk

|u|
N
m dx

and by (3.11)∫
Uk

|∇m(ϕku)|
N
m dx ≤ (1 + ε)

N
m

∫
Uk

|∇mu|
N
m dx+ (1 + ε−1)Nm

N
m
C

N
m

|xk|
N
m

∫
Uk

|∇m−1u|
N
mdx

+ · · ·+ (1 + ε)
N
m (1 + ε−1)

2N
m m

N
m

C
N
m

|xk|
(m−1)N

m

∫
Uk

|∇u|
N
mdx

+ (1 + ε)
N
m (1 + ε−1)

N
mm

N
m
C

N
m

a

1 +
(

4
3

)α |xk|α
|xk|N

∫
Uk

V (x)|u|
N
m dx.

Since k ∈ Kn,σ, in view of (3.13), we obtain that xk ∈ Bc
n0
. Once α ∈ (0, N), we can

choose n0 = n0(ε, a, α) > 0 su�ciently large such that

(1 + ε−1)Nm
N
m
C

N
m

|xk|
N
m

≤ (1 + ε)
N
m , . . . , (1 + ε)

N
m (1 + ε−1)

2N
m m

N
m

C
N
m

|xk|
(m−1)N

m

≤ (1 + ε)
N
m

and

(1 + ε)
N
m (1 + ε−1)

N
mm

N
m
C

N
m

a

1 +
(

4
3

)α |xk|α
|xk|N

≤ (1 + ε)
N
m ,

for all k ∈ Kn,σ and n ≥ n0. Thus,∫
Uk

|∇m(ϕku)|
N
m dx ≤ (1 + ε)

N
m‖u‖

N
m ≤ (1 + ε)

N
m .

De�ning vk = ϕku
1+ε

we have vk ∈ W
m,N

m
0 (Uk) ⊂ Wm,N

m (RN) and one has

‖∇mvk‖
N
m
N
m

=
1

(1 + ε)
N
m

∫
Uk

|∇m(ϕku)|
N
m dx ≤ 1.

Now, �xed ε ∈ (0, 1) such that γ(1 + ε)
N

N−m < γm,N we can apply (4) and we �nd∫
U

1/2
k

φm,N(γ|u|
N

N−m ) dx =

∫
U

1/2
k

φm,N(γ|ϕku|
N

N−m ) dx

≤
∫
RN
φm,N(γ(1 + ε)

N
N−m |vk|

N
N−m ) dx ≤ C

∫
RN
|vk|

N
m dx.
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The previous inequality combined with the de�nition of vk and (3.11) leads us to∫
U

1/2
k

φm,N(γ|u|
N

N−m ) dx ≤ C

(1 + ε)
N
m

∫
Uk

|u|
N
m dx

≤ C

(1 + ε)
N
m

1 +
(

4
3

)α |xk|α
a

∫
Uk

V (x)|u|
N
m dx. (3.15)

Combining the estimates (3.10), (3.14), (3.15) and by using (3.13), we get∫
Aσ3n

K(x)φm,N(γ|u|
N

N−m ) dx ≤ C

(1 + ε)
N
m

b

a

∑
k∈Kn,σ

1 +
(

4
3

)α |xk|α
1 +

(
2
3

)β |xk|β
∫
Uk

V (x)|u|
N
m dx

≤ C

(1 + ε)
N
m

b

a

∑
k∈Kn,σ

1 +
(

4
3

)α |xk|α
1 +

(
2
3

)β |xk|β
∫
Bcn

V (x)|u|
N
mχUk dx.

By (3.13) again, we obtain

1 +
(

4
3

)α |xk|α
1 +

(
2
3

)β |xk|β ≤ Bn := sup
x∈Bcn

1 +
(

4
3

)α |x|α
1 +

(
2
3

)β |x|β , for all k ∈ Kn,σ.

Therefore,∫
Aσ3n

K(x)φm,N(γ|u|
N

N−m )dx ≤ C

(1 + ε)
N
m

b

a
Bn

∑
k∈Kn,σ

∫
Bcn

V (x)|u|
N
mχUk dx.

By invoking the Besicovitch Covering Lemma, we reach∫
Aσ3n

K(x)φm,N(γ|u|
N

N−m ) dx ≤ C

(1 + ε)
N
m

b

a
Bnθ

∫
Bcn

V (x)|u|
N
m dx.

Letting σ → ∞, we deduce the existence of n0 = n0(ε, a, α) > 1 su�ciently large so

that ∫
Bc3n

K(x)φm,n(γ|u|
N

N−m )dx ≤ C
b

a
Bnθ

∫
Bcn

V (x)|u|
N
m dx

≤ C
b

a
Bnθ‖u‖

N
m ≤ C

b

a
Bnθ, (3.16)

for any n ≥ n0. Note that

lim
n→∞

Bn = lim
n→∞

1 +
(

4
3

)α
nα

1 +
(

2
3

)β
nβ

=

0, if β > α

2α, if β = α.

(3.17)

Thus, from (3.9) and (3.16), we conclude the proof of the �rst part of (3.4).
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For the second part of (3.4), inspired by [53], we consider the Moser sequence M̃n

de�ned by

M̃n(x) =



(
log n

γm,N

)1−m
N

+
Nγ

m
N
−1

m,N

2(log n)
m
N

m−1∑
j=1

(1− n 2
N |x|2)j

j
, for |x| ≤ 1

N√n ,

−Nγ
m
N
−1

m,N (log n)−
m
N log |x|, for 1

N√n < |x| ≤ 1,

ζn(x), for |x| ≥ 1.

Here ζn is a compactly supported smooth function inB2(0) satisfying for j = 1, 2, . . . ,m−

1 and such that

ζn|∂B1(0) = ζn|∂B2(0) = 0,
∂jζn
∂νj
|∂B1(0) = (−1)j(j − 1)!γ

m
N
−1

m,N (log n)−
m
N ,

∂jζn
∂νj
|∂B2(0) = 0

and ζn, |∇jζn| and |∇mζn| are all O((log n)−
m
N ).

For any n ∈ N, we have that M̃n ∈ E and straightforward calculations show that

for j = 1, 2, . . . ,m− 1,

‖M̃n‖
N
m
N
m

= O(1/ log n), ‖∇jM̃n‖
N
m
N
m

= O(1/ log n) and ‖∇mM̃n‖
N
m
N
m

= 1+O(1/ log n).

Consequently, by condition (V ) it follows that ‖M̃n‖
N
m = 1 + δn, where δn → 0 and

δn = O(1/ log n), as n→∞. De�ning

Mn :=
M̃n

‖M̃n‖
, (3.18)

we obtain that Mn ∈ E and ‖Mn‖ = 1. Notice that

Mn(x) ≥ 1

‖M̃n‖

(
log n

γm,N

)1−m
N

for x ∈ B 1
N√n

(3.19)

and de�ning K̃ := min
x∈B1

K(x), for all γ > γm,N , we have∫
RN
K(x)φm,N(γ|Mn|

N
N−m )dx ≥ K̃

∫
B 1
N√n

φm,N(γ|Mn|
N

N−m ) dx

≥ K̃

∫
B 1
N√n

φm,N

(
γ

‖M̃n‖
N

N−m

log n

γm,N

)
dx

=
ωN
N

(
1
N
√
n

)N
K̃φm,N

(
γ

‖M̃n‖
N

N−m

log n

γm,N

)

≥ ωN
N
K̃e

logn

 γ

‖M̃n‖
N

N−m γm,N

−1


→∞ as n→∞.
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Thereby,

lim
n→∞

∫
RN
K(x)φm,N(γ|Mn|

N
N−m )dx =∞. (3.20)

Taking into account that

sup
u∈E
‖u‖≤1

∫
RN
K(x)φm,N(γ|u|

N
N−m )dx ≥

∫
RN
K(x)φm,N(γ|Mn|

N
N−m )dx,

then our sharpness result can be derived from (3.20).

To �nish the proof of the theorem, it remains to show that (3.3) holds. For every

γ > 0 and u ∈ E, by density of C∞0 (RN) in E, there exists u0 ∈ C∞0 (RN) such that

γ‖u− u0‖
N

N−m <
γm,N

2
. (3.21)

Using the inequality |u|p ≤ (1 + ε)|u−u0|p + c(ε, p)|u0|p, for all ε > 0, p > 1 and c(ε, p)

is a constant depending only on ε and p, and by Lemma 3.2.2 we have∫
RN
K(x)φm,N(γ|u|

N
N−m )dx

≤
∫
RN
K(x)φm,N

(
(1 + ε)γ|u− u0|

N
N−m + c (ε,N/(N −m)) |u0|

N
N−m

)
dx

≤ 1

µ

∫
RN
K(x)φm,N

(
µ(1 + ε)γ|u− u0|

N
N−m

)
dx

+
1

ν

∫
RN
K(x)φm,N

(
νc (ε,N/(N −m)) |u0|

N
N−m

)
dx,

(3.22)

where µ, ν > 1 and 1
µ

+ 1
ν

= 1. Choosing ε > 0 su�ciently small and µ close to 1 such

that

µ(1 + ε)
γm,N

2
≤ γm,N

and from (3.21) we get µ(1 + ε)γ‖u − u0‖
N

N−m < µ(1 + ε)
γm,N

2
≤ γm,N . Thus, in view

(3.4) we obtain∫
RN
K(x)φm,N

(
µ(1 + ε)γ|u− u0|

N
N−m

)
dx

=

∫
RN
K(x)φm,N

((
µ(1 + ε)γ‖u− u0‖

N
N−m

) |u− u0|
N

N−m

‖u− u0‖
N

N−m

)
dx ≤ C.

(3.23)

Moreover, since u0 ∈ C∞0 (RN), we have that u0 has compact support. Thereby,∫
RN
K(x)φm,N

(
νc

(
ε,

N

N −m

)
|u0|

N
N−m

)
dx <∞. (3.24)

Combining (3.22), (3.23) and (3.24) we reach that (3.3) holds. Therefore, the theorem

is proved.
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3.3.2 The compactness result

The �rst important consequence we get from Theorem 3.1.1 is the following com-

pactness result:

Proposition 3.3.1 If (V ) and (K) hold with (3.1), then for all p ∈ [N/m,+∞) the

embedding

E ↪→ LpK(RN) (3.25)

is continuous. Moreover, if β > α then the above embedding is compact.

Proof . We will proceed in two steps, on a ball of radius R > 0 and on its complement.

Let u ∈ E and observe that by condition (K) we have(∫
BR

K(x)|u|pdx
) 1

p

≤
(∫

BR

b

1 + |x|β
|u|pdx

) 1
p

≤ b
1
p‖u‖Lp(BR). (3.26)

By the embedding Wm,N
m (BR) ↪→ Lp(BR) for all p ∈ [1,+∞), we get

‖u‖Lp(BR) ≤ C1‖u‖Wm,Nm (BR)
= C1

[∫
BR

(|∇mu|
N
m + . . .+ |∇u|

N
m + |u|

N
m )dx

]m/N
≤ C1

[∫
BR

(
|∇mu|

N
m + . . .+ |∇u|

N
m +

(
1 +Rα

a

)
V (x)|u|

N
m

)
dx

]m/N
≤ CR

[∫
BR

(
|∇mu|

N
m + . . .+ |∇u|

N
m + V (x)|u|

N
m

)
dx

]m/N
, (3.27)

because V (x) ≥ a/(1 + |x|α) ≥ a/(1 + Rα). Thus, for each R > 0, it follows, from

(3.26) and (3.27), that∫
BR

K(x)|u|pdx ≤ bCp
R

[∫
BR

(
|∇mu|

N
m + . . .+ |∇u|

N
m + V (x)|u|

N
m

)
dx

] pm
N

≤ bCp
R‖u‖

p. (3.28)

Proceeding as in the proof of Theorem 3.1.1 for the function |u|p instead of

φm,N(γ|u|
N

N−m ), where p ∈ [N/m,∞) we obtain∫
Aσ3n

K(x)|u|p dx ≤ C

(1 + ε)
N
m

b

a
Bnθ

∫
Bcn

V (x)|u|
N
m dx.

for all n ≥ n0. Letting σ → +∞ we reach∫
Bc3n

K(x)|u|p dx ≤ C
b

a
Bnθ

∫
Bcn

V (x)|u|
N
m dx ≤ C

b

a
Bnθ‖u‖

N
m . (3.29)
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Taking R = 3n0, from (3.29) we have that∫
BcR

K(x)|u|p dx ≤ C
b

a
Bn0θ‖u‖

N
m . (3.30)

Now, if (um) ⊂ E is such that um → 0 in E, then from estimates (3.28) and (3.30) we

conclude∫
RN
K(x)|um|p dx =

∫
BR

K(x)|um|p dx+

∫
BcR

K(x)|um|p dx→ 0 as m→∞

and the continuity of the embedding is proved for all p ∈ [N/m,∞).

Now, suppose that β > α and (um) ⊂ E is such that um ⇀ 0 in E. Since (um) is

a bounded sequence in E and from (3.17) for β > α

lim
n→∞

Bn = lim
n→∞

1 +
(

4
3

)α
nα

1 +
(

2
3

)β
nβ

= 0.

Thus, in view of (3.29), for all ε > 0 there exists n1 ≥ n0 such that∫
Bc3n1

K(x)|um|p dx ≤
ε

2
, for all m ∈ N.

Choosing R = 3n1 and since (um) is also bounded in Wm,N
m (BR), by the compact

embedding Wm,N
m (BR) ↪→ Lp(BR) for all p ∈ [N/m,∞), it follows from (3.26) that∫

BR

K(x)|um|pdx→ 0 as m→∞ and therefore there exists m0 ∈ N such that∫
BR

K(x)|um|p dx ≤
ε

2
, for all m ≥ m0.

Hence, for all m ≥ m0 one has∫
RN
K(x)|um|p dx =

∫
BR

K(x)|um|p dx+

∫
BcR

K(x)|um|p dx ≤ ε

which guarantees that um → 0 in LpK(RN) and the compact embedding is proved as

β > α.

3.4 The variational framework

The purpose of this section is to prove some geometric properties of the Euler-

Lagrange functional associated to problem (3.5). We emphasize that in the context of

problem (3.5), the space E is de�ned by

E :=

{
u ∈ L1

loc
(R2m) : |∇iu| ∈ L2(R2m) ∀ i = 1, . . . ,m and

∫
R2m

V (x)u2dx <∞
}

89



and norm

‖u‖ :=

(∫
R2m

(|∇mu|2 + · · ·+ |∇u|2 + V (x)u2) dx

) 1
2

.

We begin by considering the functional I : E → R given by

I(u) =
1

2
‖u‖2 −

∫
R2m

K(x)F (x, u) dx.

Notice that from (f1), (f2) and (f3), for each γ > γ0, ε > 0 and q ≥ 2, there exists

C(γ, q, ε) > 0 such that

|f(x, s)| ≤ ε|s|+ C(γ, q, ε)|s|q−1(eγs
2 − 1), for all (x, s) ∈ R2m × R (3.31)

and

|F (x, s)| ≤ ε

2
|s|2 + C(γ, q, ε)|s|q(eγs2 − 1), for all (x, s) ∈ R2m × R. (3.32)

Thus, given u ∈ E, using Hölder's inequality with p, p′ > 1 satisfying 1/p + 1/p′ = 1

and Lemma 3.2.1, we can �nd C > 0 such that∫
R2m

K(x)F (x, u) dx ≤ ε

2

∫
R2m

K(x)u2 dx+ C

(∫
R2m

K(x)|u|pq dx
) 1

p

×
(∫

R2m

K(x)(ep
′γu2 − 1) dx

) 1
p′

.

(3.33)

Since pq ≥ 2, combining (3.33) with the continuous embedding given by Proposition

3.3.1 and (3.3), we have that K(x)F (x, u) ∈ L1(R), for all u ∈ E. Consequently, I is

well-de�ned and by standard arguments I ∈ C1(E,R) with

〈I ′(u), v〉 =

∫
R2m

(∇mu∇mv + · · ·+∇u∇v + V (x)uv) dx−
∫
R2m

K(x)f(x, u)v dx,

for all u, v ∈ E. Hence, a critical point of I is a weak solution of problem (3.5) and

reciprocally.

The geometric conditions of the Mountain Pass Theorem for the functional I is

established by the next lemma.

Lemma 3.4.1 Suppose that (V ), (K) with α ∈ (0, 2m) and β ∈ [α,+∞) and (f1)−(f3)

hold. Then,

(i) there exist τ, ρ > 0 such that I(u) ≥ τ for all ‖u‖ = ρ;

(ii) there exists e ∈ E with ‖e‖ > ρ such that I(e) < 0.
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Proof . (i) Here we consider γ > γ0, ε > 0 and q > 2. In view of (3.33), the continuous

embedding E ↪→ L2
K(R2m) and (3.4), we can �nd C2 = C2(γ, q, ε) > 0 such that∫

R2m

K(x)F (x, u) dx ≤ εC1‖u‖2 + C2‖u‖q, (3.34)

for all u ∈ E with ‖u‖ = ρ, where ρ > 0 satis�es p′γρ2 < γm,2m. The inequality (3.34)

implies that

I(u) ≥ 1

2
‖u‖2 − C1ε‖u‖2 − C2‖u‖q =

(
1

2
− C1ε

)
ρ2 − C2ρ

q.

Thus, if u ∈ E with ‖u‖ = ρ, choosing ε > 0 su�ciently small such that 1
2
− C1ε > 0

we get

I(u) ≥ C̃1ρ
2 − C2ρ

q.

Since q > 2 we may choose ρ > 0 small enough such that τ := C̃1ρ
2−C2ρ

q > 0. Thus,

there exists τ > 0 satisfying I(u) ≥ τ whenever ‖u‖ = ρ.

(ii) Let u ∈ C∞0 (BR) \ {0} be such that u ≥ 0. By (f3), there exist positive

constants C1 and C2 such that

F (x, s) ≥ C1s
µ − C2, for all (x, s) ∈ BR × [0,∞).

Then, for t > 0, we get

I(tu) ≤ t2

2
‖u‖2 − C1t

µ

∫
BR

K(x)uµ dx+ C2

∫
BR

K(x) dx.

Since µ > 2, we have I(tu)→ −∞ as t→∞. By setting e = tu to t large enough, we

immediately achieve the desired result.

3.5 The Palais-Smale compactness condition

In this section, we show that the functional I satis�es the Palais-Smale condition

for certain energy levels. We recall that the functional I satis�es the Palais-Smale

condition at the level c, denoted by (PS)c condition, if any sequence (un) ⊂ E verifying

I(un)→ c and I ′(un)→ 0 as n→∞, (3.35)

has a strongly convergent subsequence in E. We begin by proving some auxiliary

results.
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Lemma 3.5.1 Suppose that (V ), (K) with α ∈ (0, 2m) and β ∈ [α,+∞) and (f1)−(f3)

hold. Then, any (PS)c-sequence (un) for I is bounded in (E, ‖ · ‖) and satis�es

sup
n

∫
R2m

K(x)f(x, un)un dx <∞. (3.36)

Proof . Since (un) is (PS)c-sequence for I, we have

I(un) =
1

2
‖un‖2 −

∫
R2m

K(x)F (x, un) dx→ c (3.37)

and

〈I ′(un), v〉 =

∫
R2m

 m∑
j=1

∇jun∇jv + V (x)unv

dx−
∫
R2m

K(x)f(x, un)v dx ≤ εn‖v‖, (3.38)

for all v ∈ E, where εn → 0 as n → ∞. Note that (3.37) guarantees (I(un)) ⊂ R is

bounded and hence, there exists a constant C > 0 such that

1

2
‖un‖2 ≤ C +

∫
R2m

K(x)F (x, un) dx, (3.39)

for all n ∈ N and from the condition (f3), we have∫
R2m

K(x)F (x, un) dx ≤ 1

µ

∫
R2m

K(x)f(x, un)un dx. (3.40)

By choosing v = un in (3.38), we obtain∫
R2m

K(x)f(x, un)un dx ≤ ‖un‖2 + εn‖un‖. (3.41)

It follows from (3.39), (3.40) and (3.41) that(
1

2
− 1

µ

)
‖un‖2 ≤ C +

εn
µ
‖un‖

and since µ > 2 we obtain that (un) is bounded in E. This together with (3.41) implies

(3.36).

The previous lemma guarantees that, up to a subsequence, there exists u ∈ E

such that un ⇀ u in E. Moreover, in view of (3.36), we can apply [23, Lemma 2.1] to

conclude that

K(x)f(x, un)→ K(x)f(x, u) in L1
loc

(R2m).

Now let us see the following convergence result that can be found in [33, Lemma

5.4]. We have added the proof here for the reader's convenience.
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Lemma 3.5.2 Suppose that (V ), (K) with (3.6) and (f1) − (f4) are satis�ed. Let

(un) ⊂ E be a Palais-Smale sequence of I at the level c. Then there exist a subsequence

of (un), still denoted by (un), and u ∈ E such that un ⇀ u in E, un → u in LpK(R2m)

for all p ≥ 2 and ∫
R2m

K(x)F (x, un) dx→
∫
R2m

K(x)F (x, u) dx.

Furthermore, u is a weak solution of problem (3.5).

Proof . Note that by (f3) and (f4), we have

0 ≤ lim
|s|→∞

F (x, s)

sf(x, s)
≤ lim
|s|→+∞

M0

|s|
= 0

and for any ε > 0 there exists s′0 = s′0(ε) > 0 such that

F (x, s) ≤ εsf(x, s) for all |s| ≥ s′0. (3.42)

Using (3.36), for some constant C > 0 we obtain∫
R2m

K(x)f(x, u)u dx ≤ C and
∫
R2m

K(x)f(x, un)un dx ≤ C for all n ∈ N.

From (3.42) and by the previous inequalities, �xed ε > 0, we have∫
{|u|≥s′0}

K(x)F (x, u) dx ≤ ε

∫
{|u|≥s′0}

K(x)f(x, u)u dx

and ∫
{|un|≥s′0}

K(x)F (x, un) dx ≤ ε

∫
{|un|≥s′0}

K(x)f(x, un)un dx.

De�ning `n(x) := K(x)χ{|un|<s′0}F (x, un) and `(x) := K(x)χ{|u|<s′0}F (x, u), we have

that {`n} is a sequence of measurable functions and `n(x) → `(x) for a.e x ∈ R2m,

because un → u a.e. in R2m. Using (3.32) with γ > γ0, ε > 0 and q = 2, for any

|s| ≤ s′0 we obtain

|F (x, s)| ≤ ε

2
s2 + C(γ, ε)s2(eγs

2 − 1) ≤ C(γ, ε, s′0)s2.

So writing

gn(x) := C(γ, ε, s′0)K(x)|un|2 and g(x) := C(γ, ε, s′0)K(x)|u|2,

we have 0 ≤ `n(x) ≤ gn(x) and gn(x)→ g(x) a.e. in R2m, and by virtue of the compact

embedding E ↪→ L2
K(R2m), we get

lim
n→∞

∫
R2m

gn(x) dx =

∫
R2m

g(x) dx.
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Hence, applying the Generalized Lebesgue Dominated Convergence Theorem, we have

lim
n→∞

∫
R2m

`n(x) dx =

∫
R2m

`(x) dx.

In conclusion, for any �xed ε > 0, denoting by

An :=

∣∣∣∣∫
R2m

K(x)F (x, un) dx−
∫
R2m

K(x)F (x, u) dx

∣∣∣∣ ,
we obtain

An ≤
∫
{|un|≥s′0}

K(x)F (x, un) dx+

∫
{|u|≥s′0}

K(x)F (x, u) dx

+

∣∣∣∣∣
∫
{|un|<s′0}

K(x)F (x, un) dx−
∫
{|u|<s′0}

K(x)F (x, u) dx

∣∣∣∣∣
≤ 2Cε+

∣∣∣∣∫
R2m

`n(x) dx−
∫
R2m

`(x) dx

∣∣∣∣
and passing to the limit as n→∞, we get 0 ≤ lim

n→∞
An ≤ 2Cε. Since ε > 0 is arbitrary,

we have that
∫
R2m

K(x)F (x, un) dx→
∫
R2m

K(x)F (x, u) dx.

Moreover, since un ⇀ u in E and K(x)f(x, un) → K(x)f(x, u) in L1(R2m), we

get from (3.38) that for all ϕ ∈ C∞0 (R2m),∫
R2m

(
m∑
j=1

∇ju∇jϕ+ V (x)uϕ

)
dx−

∫
R2m

K(x)f(x, u)ϕ dx = 0.

Since C∞0 (RN) is dense in E, the above equation implies that u is a weak solution of

(3.5). This completes the proof of the lemma.

The next result is a Lions-type Concentration-Compactness Principle (see [45])

and the proof follows the same lines as in Lemma 2.6 of [32]. This result will be crucial

to study of the compactness of Palais-Smale sequences.

Proposition 3.5.3 Suppose that (V ), (K) hold with α ∈ (0, 2m) and β ∈ [α,+∞). If

(un) ⊂ E satis�es ‖un‖ = 1, for all n ∈ N, and un ⇀ u in E with ‖u‖ < 1, then for

all p ∈
(

0, γm,2m
1−‖u‖2

)
we have

sup
n

∫
R2m

K(x)(ep|un|
2 − 1) dx <∞. (3.43)

Proof . Since un ⇀ u in E and ‖un‖ = 1, we obtain using the Hilbert's structure of

L2(R2m) that

‖un − u‖2 = ‖un‖2 − 2〈un, u〉+ ‖u‖2 ≤ 1− ‖u‖2 + on(1) <
γm,2m
p

.
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Thus, for n ∈ N enough large, we get p‖un − u‖2 < γ < γm,2m for some γ > 0. Choose

q > 1 close to 1 and ε > 0 small satisfying

pq(1 + ε2)‖un − u‖2 < γ.

By inequality (3.4) of Theorem 3.1.1, we obtain∫
R2m

K(x)
(
epq(1+ε2)|un−u|2 − 1

)
dx =

∫
R2m

K(x)

(
epq(1+ε2)‖un−u‖2( un−u

‖un−u‖)
2

− 1

)
dx

≤
∫
R2m

K(x)

(
eγ(

|un−u|
‖un−u‖)

2

− 1

)
dx ≤ C. (3.44)

On the other hand, observe that by elementary inequality p|un|2 ≤ p(1 + ε2)|un−u|2 +

p(1 + 1/ε2)|u|2 and Lemma 3.2.2 for 1/µ+ 1/ν = 1∫
R2m

K(x)
(
ep|un|

2 − 1
)
dx ≤

∫
R2m

K(x)
[(
ep(1+ε2)|un−u|2+p(1+ 1

ε2
)|u|2
)
− 1
]

dx

≤ 1

µ

∫
R2m

K(x)
(
epµ(1+ε2)|un−u|2 − 1

)
dx

+
1

ν

∫
R2m

K(x)
(
epν(1+ 1

ε2
)|u|2 − 1

)
dx.

(3.45)

Therefore, for n su�ciently large, we can conclude by the inequalities (3.44), (3.45)

and using (3.3) that (3.43) holds.

Next, we shall prove the main compactness result of this chapter.

Proposition 3.5.4 Under the hypotheses (V ), (K) with (3.6) and (f1)− (f4) hold, the

functional I satis�es (PS)c condition for any 0 ≤ c < γm,2m
2γ0

.

Proof . Let (un) ⊂ E be an arbitrary Palais-Smale sequence of I at the level c. By

Lemma 3.5.1, (un) is bounded sequence in E so, up to a subsequence, un ⇀ u weakly

in E. We shall show that, up to a subsequence, un → u strongly in E. For this, we

have three cases to consider:

Case 1: c > 0 and u = 0. In this case, by Lemma 3.5.2, we have∫
R2m

K(x)F (x, un) dx→ 0 as n→∞.

Since

I(un) =
1

2
‖un‖2 −

∫
R2m

K(x)F (x, un) dx = c+ on(1),
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we have that

lim
n→∞

‖un‖2 = 2c.

Hence, we can deduce that for n large there exist r > 1 su�ciently close to 1, γ > γ0

close to γ0 and r̃ > r su�ciently close to r such that r̃γ‖un‖2 < γm,2m. Thus, by (3.4)∫
R2m

K(x)(eγu
2
n − 1)r dx ≤ C

∫
R2m

K(x)

(
er̃γ‖un‖

2( un
‖un‖)

2

− 1

)
dx ≤ C. (3.46)

We claim that ∫
R2m

K(x)f(x, un)un dx→ 0 as n→∞.

Indeed, for γ > γ0, ε > 0 and q = 2, we have from (3.31) that there exists C(γ, ε) > 0

such that

f(x, s) ≤ ε|s|+ C(γ, ε)(eγs
2 − 1), for all (x, s) ∈ R2m × R.

Choosing r > 1 close to 1 such that r′ ≥ 2, where 1/r+ 1/r′ = 1, it follows by Hölder's

inequality that∣∣∣∣∫
R2m

K(x)f(x, un)un dx

∣∣∣∣ ≤ C

∫
R2m

K(x)u2
n dx

+ C

(∫
R2m

K(x)(eγu
2
n − 1)r dx

) 1
r
(∫

R2m

K(x)|un|r
′
dx

) 1
r′

→ 0,

as n→∞, where we have used (3.46) and the compact embedding E ↪→ LpK(R2m), for

p ∈ [2,∞). Therefore, once 〈I ′(un), un〉 = on(1), we conclude that, up to a subsequence,

un → 0 strongly in E.

Case 2: c > 0 and u 6= 0. In this case, since (un) is a Palais-Smale sequence of I at the

level c, we may de�ne

vn =
un
‖un‖

and v =
u

lim
n→∞

‖un‖
.

Thus, vn ⇀ v in E, ‖vn‖ = 1 and ‖v‖ ≤ 1. Case ‖v‖ = 1, we conclude the proof. If

‖v‖ < 1, we claim that there exist r > 1 su�ciently close to 1, γ > γ0 close to γ0 and

σ > 0 satis�es

rγ‖un‖2 ≤ σ <
γm,2m

1− ‖v‖2
(3.47)

for n ∈ N large. Really, using that I(un) = c+ on(1) and Lemma 3.5.2, we have

1

2
lim
n→∞

‖un‖2 = c+

∫
R2m

K(x)F (x, u) dx. (3.48)
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Consider

A(u) :=

(
c+

∫
R2m

K(x)F (x, u) dx

)
(1− ‖v‖2),

from (3.48) and by the de�nition of v, we obtain A(u) = c− I(u), which together with

(3.48) imply that
1

2
lim
n→∞

‖un‖2 =
A(u)

1− ‖v‖2
=
c− I(u)

1− ‖v‖2
. (3.49)

Hence, from (3.49) and the fact c− I(u) < c, we conclude

1

2
lim
n→∞

‖un‖2 =
c− I(u)

1− ‖v‖2
<

c

1− ‖v‖2
<

γm,2m
2γ0(1− ‖v‖2)

(3.50)

because 0 ≤ c < γm,2m
2γ0

. Therefore, by using (3.50) we conclude that (3.47) holds. Thus,

by Proposition 3.5.3, we get∫
R2m

K(x)(eγu
2
n − 1)r dx ≤ C.

By using Hölder's inequality, the compact embedding E ↪→ LpK(R2m) for p ∈ [2,∞)

and arguing similar to Case 1, it follows that∫
R2m

K(x)f(x, un)(un − u) dx→ 0 as n→∞.

This convergence and the fact that 〈I ′(un), un − u〉 = on(1) show that

‖un‖2 = 〈un, u〉E + on(1).

Since un ⇀ u in E, we conclude un → u strongly in E.

Case 3: c = 0. Observe that

0 ≤ I(u) ≤ lim inf
n→∞

I(un) = 0,

consequently, I(u) = 0. And from Lemma 3.5.2, K(x)F (x, un) → K(x)F (x, u) in

L1(R2m), thereby ‖un‖ → ‖u‖, in other words, un → u in E which completes the

proof.

3.6 The minimax level

In this section, we provide an estimate for the minimax level associated to the

functional I.
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Lemma 3.6.1 Suppose that (V ), (K) with α ∈ (0, 2m) and β ∈ [α,+∞), (f1) − (f3)

and (f5) hold. Then, there exists n ∈ N such that

max
t≥0

I(tMn) <
γm,2m
2γ0

where Mn is de�ned in (3.18).

Proof . Assume by contradiction that

max
t≥0

I(tMn) ≥ γm,2m
2γ0

, for all n ∈ N.

For each n ∈ N, let tn > 0 such that

t2n
2
−
∫
R2m

K(x)F (x, tnMn) dx = max
t≥0

I(tMn) ≥ γm,2m
2γ0

.

By hypothesis (f3), we obtain

γm,2m
2γ0

≤ t2n
2
−
∫
R2m

K(x)F (x, tnMn) dx ≤ t2n
2

and therefore

t2n ≥
γm,2m
γ0

, for all n ∈ N. (3.51)

At t = tn, we have

0 =
d

dt

[
t2n
2
−
∫
R2m

K(x)F (x, tMn) dx

] ∣∣∣∣
t=tn

= tn −
∫
R2m

K(x)f(x, tnMn)Mn dx,

which implies that

t2n =

∫
R2m

K(x)f(x, tnMn)tnMn dx for all n ∈ N. (3.52)

From condition (f5), for any ε > 0 there exists R = R(ε) > 0 such that

sf(x, s) ≥ (θ0 − ε)eγ0s2 , for all s ≥ R and x ∈ R2m. (3.53)

We claim that (tn) is a bounded sequence. Indeed, taking n ∈ N su�ciently large so

that tnMn(x) ≥ R, for all x ∈ B 1
2m√n

, it follows, from (3.19) (3.52) and (3.53), that

t2n ≥
∫
B 1

2m√n

K(x)f(x, tnMn)tnMn dx ≥ (θ0 − ε)
∫
B 1

2m√n

K(x)eγ0t2nM
2
n dx

≥ (θ0 − ε)K̃n

∫
B 1

2m√n

e
γ0

t2n
‖M̃n‖2

logn
γm,2m dx

=
ω2m

2m
(θ0 − ε)K̃ne

logn

(
γ0t

2
n

γm,2m‖M̃n‖2
−1

)
. (3.54)
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where we are denoting by K̃n = min
x∈B 1

2m√n

K(x). Thereby,

1 ≥ ω2m

2m
(θ0 − ε)K̃ne

(
γ0t

2
n logn

γm,2m‖M̃n‖2
−logn−log t2n

)

for n ≥ 1 su�ciently large and hence (tn) is a bounded sequence. Even more, we have

lim
n→∞

t2n =
γm,2m
γ0

. (3.55)

Suppose by contradiction that this does not happen. Since that (3.51) holds, we must

have

lim
n→∞

t2n >
γm,2m
γ0

.

However, letting n → ∞ in (3.54), since ‖M̃n‖ → 1, we get a contradition with the

boundedness of the sequence (tn). So, (3.55) holds.

Now, we consider the sets de�ned by

An := {x ∈ B1 : tnMn ≥ R} and Cn := B1 \ An

where R > 0 is given in (3.53). Using (3.52) and (3.53) we get that

t2n ≥
∫
B1

K(x)f(x, tnMn)tnMn dx

≥ (θ0 − ε)K̃n

∫
B1

eγ0t2nM
2
n dx+ K̃n

∫
Cn

f(x, tnMn)tnMn dx

− (θ0 − ε)K̃n

∫
Cn

eγ0t2nM
2
n dx.

(3.56)

By de�nition of Cn and since ωn → 0 almost everywhere in B1, we reach χCn → 1

almost everywhere in B1. Using the Lebesgue Dominated Convergence Theorem, we

get ∫
Cn

f(x, tnMn)tnMn dx→ 0 and
∫
Cn

eγ0t2nM
2
n dx→ ω2m

2m
as n→∞. (3.57)

Observe that by (3.51) and the de�nition of Mn we have∫
B1

eγ0t2nM
2
n dx ≥

∫
B1\B 1

2m√n

eγm,2mM
2
n dx

= ω2m

∫ 1

1/ 2m√n
e

4m2

‖M̃n‖2
1

logn
(log 1

s
)2

s2m−1 ds.
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Making the change of variable

t =
1

‖ω̃n‖ log n
log

1

s
,

we can estimate∫
B1

eγ0t2nM
2
n dx ≥ ω2m‖M̃n‖ log n

∫ 1

2m‖M̃n‖

0

elogn(4m2t2−2m‖M̃n‖t) dt.

Consider the function g :
[
0, 1

2m‖ω̃n‖

]
→ R de�ned by g(t) = (4m2t2 − 2m‖ω̃n‖t) log n.

Then we have that

g′(0) = −2m‖ω̃n‖ log n and g′
(

1

N2m‖ω̃n‖

)
=

4m

‖ω̃n‖
log n− 2m‖ω̃n‖ log n.

Let ε > 0 su�ciently small, thus

g(t) = −2mt‖ω̃n‖ log n+ o(t), t ∈ [0, ε]

and

g(t) = 2m log n

(
2

‖ω̃n‖
− ‖ω̃n‖

)(
t− 1

2m‖ω̃n‖

)
+o(t), t ∈

[
1

2m‖ω̃n‖
− ε, 1

2m‖ω̃n‖

]
.

Hence, choosing ε = 1
4m‖ω̃n‖ we have that∫

B1

eγ0t2nM
2
n dx ≥ ω2m‖M̃n‖ log n

∫ 1

4m‖M̃n‖

0

e−2mt‖M̃n‖ logn dt

+ σ2m‖M̃n‖ log n

∫ 1

2m‖M̃n‖

1

4m‖M̃n‖

e
2m logn

(
2

‖M̃n‖
−‖M̃n‖

)(
t− 1

2m‖M̃n‖

)
dt

=
ω2m

2m
(1− e−

1
2

logn) +
ω2m

2m

‖M̃n‖2(
2− ‖M̃n‖2

) (1− e
− logn

(
1

‖M̃n‖2
− 1

2

))
.

Since ‖M̃n‖2 → 1 we obtain that

lim
n→∞

∫
B1

eγ0t2nM
2
n dx ≥ lim

n→∞

ω2m

2m
+
ω2m

2m
=
ω2m

m
. (3.58)

Therefore, combining (3.55)-(3.58) and calculating the limit, we conclude

γm,2m
γ0

= lim
n→∞

t2n ≥ (θ0 − ε)K̃
ω2m

m
− (θ0 − ε)K̃

ω2m

2m
=

(θ0 − ε)K̃ω2m

2m
.

By the arbitrariness of ε > 0, we deduce that

θ0 ≤
2mγm,2m

ω2mK̃γ0

.

This contradicts the hypothesis (f5) and ends the proof of the lemma.
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3.7 Proof of Theorem 3.1.4

In view of Lemma 3.4.1, the functional I satis�es the geometric conditions of the

Mountain Pass Theorem. As a consequence, the minimax level

c := inf
g∈Γ

max
t∈[0,1]

I(g(t))

is positive, where Γ := {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}. We also have by

Proposition 3.5.4 that the functional I satis�es the (PS)c condition. Then, using the

Mountain Pass Theorem, I has a critical point u0 ∈ E at the minimax level c. Hence,

u0 is a nontrivial weak solution of problem (3.5).
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Appendix A

Auxiliary results

Lemma A.0.1 E is a Banach space with the norm ‖ · ‖.

Proof . Let (un) ⊂ E be a Cauchy sequence, then (∆un), (∇un) and (V
1
2 (x)un)

are Cauchy sequences in L2(R4). Since L2(R4) is complete, there are w1, w2 and w3 in

L2(R4) such that

∆un → w1, ∇un → w2 and V
1
2 (x)un → w3 in L2(R4) respectively.

Note that (un) is Cauchy in L1
loc. Indeed, for all R > 0 we have from Hölder inequality,

the condition (V ) and the fact that (V
1
2 (x)un) Cauchy in L2(R4) that∫

BR

|un − um|dx ≤ |BR|
1
2

(∫
BR

|un − um|2dx
)1/2

≤ C

[∫
BR

|un − um|2
(
V (x)

1 + |x|α

a

)
dx

]1/2

≤ C

(∫
BR

V (x)|un − um|2dx
)1/2

≤ ε1/2,

for all m,n ∈ N su�cient large; so there is u ∈ L1
loc such that un → u in L1

loc. Observe

that w3 = V
1
2u almost everywhere in R4 and for all ϕ ∈ C∞0 (R4) we have∫

R4

w1ϕ dx = lim
n→∞

∫
R4

∆unϕ dx = lim
n→∞

∫
R4

un∆ϕ dx =

∫
R4

u∆ϕ dx

and ∫
R4

w2ϕ dx = lim
n→∞

∫
R4

∇unϕ dx = − lim
n→∞

∫
R4

un∇ϕ dx = −
∫
R4

u∇ϕ dx



implying that w1 = ∆u and w2 = ∇u almost everywhere in R4. Since w1, w2 ∈ L2(R4)

we obtain that |∆u|, |∇u| ∈ L2(R4).

Now by Lemma de Fatou, we have that∫
R4

V (x)u2dx ≤ lim inf
n→∞

∫
R4

V (x)u2
n dx =

∫
R4

w2
3 dx < +∞

because w3 ∈ L2(R4). Therefore, u ∈ E and

‖un − u‖2
E = lim

n→∞

∫
R4

|∆(un − u)|2 + |∇(un − u)|2 + (V (x)
1
2 (un − u))2dx = 0,

since ∆un → w1 = ∆u,∇un → w2 = ∇u and V (x)
1
2un → w3 = V (x)

1
2u in L2(R4).

Lemma A.0.2 C∞0 (R4) is dense in (E, ‖ · ‖).

Proof . We show �rst that C∞0 (R4) is dense in

E0 := {u ∈ E : u has a compact support}.

Indeed, let u ∈ E0 and K = supp(u), since C∞0 (K) is dense in H2
0 (K), then for all

ε > 0, there is ϕε ∈ C∞0 (K) such that

‖u− ϕε‖H2
0 (K) <

ε√
2 max{1, ‖V ‖L∞(K)}

.

Notice that

‖u− ϕε‖2
E ≤

∫
R4

|∆u−∆ϕε|2 + |∇u−∇ϕε|2 + V (x)|u− ϕε|2dx

=

∫
K

|∆u−∆ϕε|2 + |∇u−∇ϕε|2 + V (x)|u− ϕε|2dx

≤ max{1, ‖V ‖L∞(K)}‖u− ϕε‖2
H2

0 (K)

< max{1, ‖V ‖L∞(K)}
ε2

2 max{1, ‖V ‖L∞(K)}
=
ε2

2
< ε2.

Hence, given u ∈ E0 there exists ϕ ∈ C∞0 (K) ⊂ C∞0 (R4) such that ‖u − ϕ‖E < ε.

Therefore, C∞0 (R4) is dense in (E0, ‖ · ‖E).

Now, we prove that E0 is dense in E. In fact, for every R > 1, consider a function

ϕR ∈ C∞0 (R4, [0, 1]) satisfying ϕR(x) ≡ 1 for |x| ≤ R, ϕR(x) ≡ 0 for |x| ≥ 2R,

|∇ϕR| ≤ C
R
for every x ∈ R4 and |∆ϕR| ≤ C

R2 for all x ∈ R4 for some constant C > 0.

Given the function u ∈ E, we have that ϕRu ∈ E0 for each �xed R > 1. We will prove

that

‖ϕRu−u‖2 =

∫
R4

|∆(ϕRu−u)|2 + |∇(ϕRu−u)|2 +V (x)|ϕRu−u|2dx→ 0 as R→∞.

(A.1)
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Observe that V 1/2(x)(ϕR − 1)u → 0 a.e in R4 as R → ∞ and V 1/2(x)|ϕRu − u| ≤

2V 1/2(x)u ∈ L2(R4), then by Lebesgue Dominated Convergence Theorem, one has∫
R4

V (x)|ϕRu− u|2dx→ 0 as R→∞. (A.2)

Since ∇(ϕRu) = ∇(ϕR)u+ ϕR∇u, we have that∫
R4

|∇(ϕRu− u)|2dx ≤ 2

(∫
R4

|∇(ϕR)u|2dx+

∫
R4

|(ϕR − 1)∇u|2dx
)
. (A.3)

From the fact that |∇u| ∈ L2(R4), since u ∈ E, we can derive by Lebesgue Dominated

Convergence Theorem that∫
R4

|(ϕR − 1)∇u|2dx→ 0 as R→∞. (A.4)

Let's see that it is also valid
∫
R4

|∇(ϕR)u|2dx→ 0 as R→∞. Indeed, de�ne

λ := inf

{∫
B2\B1

|∇v|2dx : v ∈ H1
0 (B2 \B1) and

∫
B2\B1

|v|2dx = 1

}
,

that is, the �rst eigenvalue with the Dirichlet condition in the annulus. Using x = Ry

and uR(y) = u(Ry), we obtain that∫
R4

|∇(ϕR)u|2dx =

∫
B2R\BR

|∇(ϕR)u|2dx ≤ C

R2

∫
B2R\BR

|u|2dx

= CR2

∫
B2\B1

|uR(y)|2dy ≤ CR2

λ

∫
B2\B1

|∇uR(y)|2dy

=
CR2

λ

∫
B2\B1

|R∇u(Ry)|2dy =
C

λ

∫
B2R\BR

|∇u|2dx.

Therefore, since |∇u|2 is integrable, we concluded that∫
R4

|∇(ϕR)u|2dx ≤ C

λ

∫
B2R\BR

|∇u|2dx ≤ C

λ

∫
BcR

|∇u|2dx→ 0 as R→ +∞. (A.5)

Finally, let's see that ∫
R4

|∆(ϕRu)− u|2dx→ 0 as R→∞. (A.6)

Using that ∆(ϕRu) = ∆(ϕR)u+ 2∇ϕR∇u+ ϕR∆u we obtain∫
R4

|∆(ϕRu− u)|2dx ≤ 2

(∫
R4

(∆(ϕR)u+ 2∇ϕR∇u)2dx+

∫
R4

|(ϕR − 1)∆u|2dx
)

≤ 4

∫
R4

|∆(ϕR)u|2dx+ 16

∫
R4

|∇ϕR∇u|2dx+ 2

∫
R4

|(ϕR − 1)∆u|2dx (A.7)
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and the third integral of (A.7) converges to zero by Lebesgue Dominated Convergence

Theorem as R→∞. The �rst integral of (A.7) can be estimated as follows∫
R4

|∆(ϕR)u|2dx ≤ C

a

1 + (2R)α

R4

∫
R4

V (x)u2dx

and by the de�nition of E and that α ∈ (0, 4) we obtain that
∫
R4

|∆(ϕR)u|2dx→ 0 as

R→∞. From the fact that |∇u| ∈ L2(R4), we concluded that∫
R4

|∇ϕR∇u|2dx ≤
C

R2

∫
R4

|∇u|2dx→ 0 as R→∞.

So, (A.6) is valid. Combining (A.2)-(A.6) the convergence (A.1) is proven. Thus E0 is

dense in E, and combined with C∞0 (R4) being dense in E0 we concluded the proof that

C∞0 (R4) is dense in E.
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