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Resumo

Este trabalho trata de algumas classes de desigualdades do tipo Adams envol-
vendo potenciais e pesos que podem decair a zero no infinito. A partir dessas de-
sigualdades, estabelecemos resultados de compacidade e resultados de concentracao-
compacidade. Como aplicacdes dessas desigualdades de Adams com peso, usando
métodos minimax, provamos a existéncia de solucoes para algumas classes de prob-
lemas elipticos envolvendo o operador biharmonico em R* e o operador poliharmonico
em R?>™, onde o termo ndo linear pode ter crescimento exponencial critico no sentido
de Trudinger-Moser. Além disso, em alguns casos, provamos que as solugoes obtidas

sao limitadas em L2, ou seja, sdo "bound state solutions".

Palavras-chave: Métodos variacionais; Desigualdade de Adams; Crescimento expo-

nencial; Equacoes elipticas de ordem superior.
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Abstract

This work deals with some classes of Adams-type inequalities involving potentials
and weights that can decay to zero at infinity. From these inequalities, we establish
compactness results and concentration-compactness results. As applications of these
weighted Adams inequalities, using minimax methods, we prove the existence of solu-
tions to some classes of elliptic problems involving the biharmonic operator on R* and
the polyharmonic operator on R?™, where the nonlinear term has critical exponential
growth in the Trudinger-Moser sense. Furthermore, in some cases we prove that the

solutions obtained are bounded in L2, which are the so-called bound state solutions.

Keywords: Variational methods; Adams inequality; Exponential growth; Higher-

order elliptic equations.
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Introduction

In this thesis, we study weighted Adams-type inequalities and some of their con-
sequences in the study of elliptic equations involving biharmonic and polyharmonic
operators. These inequalities are natural generalizations for Sobolev spaces involving
higher-order derivatives of the famous Trudinger-Moser inequality. Let us see a brief re-
view of the literature on the main results involving Adams’ inequalities that motivated
the development of this work.

Let Q € RY be a smooth bounded domain with N > 2. The classical Sobolev
theorem states that the embedding W™ () < L%(Q) is continuous for all 1 < ¢ < oo,
but Wy (Q) 4 L°(2). In this limiting case, the optimal embedding involves an Orlicz
space, which was studied by Yudovich |74], Pohozaev [57|, Peetre [56], Trudinger [66]
and Moser [51]. As 2 is a bounded domain, using the Dirichlet norm [|Vul||y =
(J, \Vu]N)l/N (equivalent to the Sobolev norm |[lull1,n = [[,(|VulY + [u|™)]'N in
Wy (Q)), it was established, by Moser [51], that

sup / MY dr < Oy |9, (1)
Q

{ueWy N (Q) 1| Vul n <1}

1
for any v < vn := Nwy_7, where || denotes the Lebesgue measure of Q and wy_4

is the measure of the unit sphere in RY. Moreover, vy is the best constant in the
following sense: the integral on the left of the previous inequality is finite for any
~v > 0, but if v > vy it can be made arbitrarily large by an appropriate choice of u and
the supremum is infinity.

In the literature, (1) is known under the name Trudinger-Moser inequality. This
result has been generalized and extended in many directions. Related results and

variants can be found in several papers, see for instance, Li [11, 42| and Yang [68, 72|



for generalizations to functions on compact Riemannian manifolds. When Q = RY, we
cite Adachi and Tanaka [1]|, Adimurthi and Yang [5], Cao [14], do O [27, 29], de Souza
and do O [26], Ruf [60], Li and Ruf [43], Yang and Zhu [73].

The Adams inequality is the extension of the Trudinger-Moser inequality for the
higher-order derivatives and says that for m € N and Q an open bounded set of RY

with m < N, there exists a positive constant C,, x such that

N
sup M g < O |9, (2)
N
{ueW]" ™ (@) [Vl y <1}

for any v < 7, n, where

- m N—m
—_—2 if m is even
N F(Ngm 9 )
N
1

)] 5=
} , if m is odd,

and

Az, m is even,

VA z u, m isodd
denotes the mth-order gradient of u. Furthermore, inequality (2) is sharp, that is, for
any vy > Ym.n, the integral in (2) can be made as large as possible (see Adams [2] for
details). In the particular case when N =4 and m = 2, inequality (2) becomes

) <CQ  ify <3277
/ew dz (3)
Q

sup
{u€HF(Q) 1 || Aul2<1} =400 if y > 3272

Similar to the classic Trudinger-Moser inequality, Adams inequality in its form

(2) cannot be extended to unbounded domains. As far as the author knows, the first

attempt to generalize Adams’s inequality to unbounded domains was due to Ozawa in

[54]. He proved the existence of two positive constants v and C' such that

N
/ G (Yl 77 ) do < Ollul %, for all we WH(EY) with [V7uls <1, (4)
RN m m
where
JN=2
ro : . . .. N
OmN(t) =€ — Z — . meN, N>m, jyn :=minjeN: j>—5 and t > 0.
— J! m m

.



In [61], Ruf and Sani established the following very useful result: let m = 2k be
an even integer less than /N. Then, there exists a constant C), x > 0 such that, for any
domain Q C R¥, one has

_N_
s Omy (v [ul 77 ) do < Co, (5)
fuewy™ ™ (@) | (At Dkl y <137

and this inequality is also sharp. In the particular case N = 4, m = 2 and = R*,

inequality (5) becomes

sup / <632”2“2 - 1> dzr < oo. (6)
(ueH2(R): | (—A+Dul2<1} SR

Many other improvements of the Adams inequality in bounded and unbounded
domains have been proved. We can refer to Lam and Lu [38, 40|, Masmoudi and
Sani [17], Lu and Yang [16], Tarsi [65]. Among them, we would like to emphasize the
result proved by Masmoudi and Sani [47], which complements some of the works cited
previously. Precisely, in [47], it was proved that, for any v € (0,3272), there exists a

constant C' = C'(y) > 0 such that
/ (e = 1)dz < Clu|?, forall ue HXRY) with |Aul, <1,
R4
and this inequality is not valid if v > 3272,

The Trudinger-Moser inequality (1) has motivated many works on the existence of
solutions to second-order nonlinear elliptic problems, we can cite for example Adimurthi
et al. [3, 4]. The researcher’s de Figueiredo, Miyagaki, and Ruf [23], following the
ideas introduced by Brezis and Nirenberg [13], studied the existence of a solution for
the equation —Au = f(x,u) in a bounded domain of R? when the nonlinear term f

has subcritical and critical exponential growth.

The Adams inequality (2) motivated the study of elliptic problems involving the
polyharmonic operator in bounded domains. For example, Lakkis [37] considered the

following quasilinear elliptic equation in  C RY:
(=A)"u = g(u) in €,
u=Vu=---=V™"lu=0, ondQ,

with N = 2m and the nonlinearity g having critical exponential growth. We can also

quote the article by Lam and Lu [39], where they studied the existence of solutions

3



for a nonlinear polyharmonic problem with nonlinearity having subcritical and critical
exponential growth bounded domains in R®*™. Sani in [62, 63] studied a biharmonic

equation in R* involving nonlinearities with subcritical and critical exponential growth.

In this context, we study Adams-type inequalities and some applications. To
reach our goal, we divided this work into three chapters. In what follows, we describe
each of the chapters.

In Chapter 1, motivated by the results in [30, 33|, our first aim is to investigate a
new Adams inequality in R* involving a potential V and a weight K which can decay
to zero at infinity. Moreover, as an application, we establish the existence of solutions
for a class of elliptic biharmonic equations in the critical growth range.

In a more precise way, we consider functions V' (z) and K (z) satisfying the fol-

lowing assumptions:

(V) V € C(R*) and there exist «, a > 0 such that V(x) > — for all z € R%;

a
1+ |z
b
(K) K € C(R*) and there exist 8,b > 0 such that 0 < K(z) < TP for all z € R*.
T

In particular, we restrict our attention to the case when « and (3 satisfy
a€ (0,4) and S € [a,+0). (7)
Let us consider the following space:

E = {u € L (RY) : |Vu|, Au € L*(R*) and / V(z)uldr < oo} (8)
R4

endowed with the inner product (u,v)p = / (AulAv + VuVov + V(z)uv) dz and its

R4

1/2
corresponding norm ||ul := </ (JAul® + |Vul* + V($>U2)dl‘) :
R4

In this context, our first result is a weighted version of Adams inequality, as

follows:

Theorem 0.0.1 Suppose that (V) and (K) hold with o and 8 satisfying (7). Then,
for any v > 0 and any u € E, it holds
K(z)(e —1)dz < 0. (9)
R4
Moreover, we have

< oo, if 0<~y <321 (10)
Huﬁfl 4 +oo, if > 3272

sup K(z)(@™ = 1)dz = {

4



As initial applications of Theorem 0.0.1, we will prove the compact embedding
of the space E into L% (R*) for p > 2, € (0,4) and 8 € (o, +00). We also will ob-
tain a Lions-type Concentration-Compactness Principle involving exponential growth,
which is a refinement of Theorem 0.0.1 (see Proposition 1.3.2). Furthermore, we will

investigate the existence of weak solutions for the following class of problems:
A*u— Au+V(z)u = K(z)f(z,u) in R* (11)

where the potential V' and the weight K satisfy the conditions (V') and (K), respec-
tively, and the nonlinearity f(z,s) has the maximal growth which allows us to study
(11) by using variational methods. Precisely, motivated by (10), we say that f(x,s)
has critical exponential growth if there exists vy > 0 such that

. f(=x,s) 0, for all v > o,

lim ——= =

2
|s|—sc0 €78

400, for all v < 7y,

uniformly in z € R*.

We require the following assumptions on the nonlinearity f(z,s):

(Hy) lim L5%)

= 0, uniformly in x € R*;
s—0 S

(H,) the function f:R* x R — R is continuous and has critical exponential growth;
(Hs) there exists u > 2 such that

0 < pF(x,s) <sf(x,s), forall (z,s)€R*xR\{0};

(H,) there exist constants s, My > 0 such that

F(z,5) < My|f(x,s)], forall |s|>sy and z¢cR*

(Hs) We also consider one of the following assumptions:

F
(1) there exist 0,6y > 0 such that liminf (z,5) >

= > 0, uniformly in x € R*;
s—oo  glen0s

.. .S, S . . o
(1) liminf f(%s; ) > 6 for some 6} > M";—A‘R, uniformly in x € R?*, where K =

§—00 (&

min K (z).

w€§1

Under these conditions we can prove an existence result that says the following:

5



Theorem 0.0.2 Assume (V),(K) and (Hy) — (Hs) hold with o € (0,4) and B €

(a, 400). Then, problem (11) has a nontrivial weak solution.

Denoting by uy the weak solution obtained in the previous theorem, our next
result can be stated as follows:

Theorem 0.0.3 Assume (V),(K) and (Hy) — (Hs) hold with o € (0,2) and B €
(o, +00). Then, ug € H*(R?), that is, ug is a bound state solution of problem (11).

In this chapter, we improve and extend some results obtained in [6, 7, 8,9, 11, 12,
15, 18, 21, 22, 49, 63, 67, 69, 75], in the sense that we have considered nonlinearities
with critical exponential growth and V' (z), K(x) can vanish at infinity, and they do
not need to be radial. These features considered here are not treated in these previous
works. Finally, as far as we know, there are few results involving biharmonic operators
and vanishing potentials.

In Chapter 2, inspired by [30, 64|, we study the solvability of the following bihar-

monic Choquard equation:
A’u— Au+V(z)u= [|z| 7 * (K(z)F(z,u)] K(z)f(z,u), z € R, (12)

where the functions V' and K satisfy the hypotheses (V') and (K) defined in the first
chapter.

Equations like (12) arise in various branches of applied mathematics and physics,
see [34, 35, 36, 55| and references therein. For instance, part of the interest is be-
couse that solutions of (12) are related to the existence of solitary wave solutions for

Schriédinger equations of the form

iz—f = A%p — A+ W () — [Ja| ™ % (K (2)F(2,9))] K(z)f(2,),

where ¢ : R x R* — C is an unknown function and W : R* — R is the potential
function. For the physical interest in the influence of the biharmonic term in nonlinear
Schrodinger equations, we refer the reader to [24] and references therein. For the study
of problem (12) involving the biharmonic operator, it will be necessary to enlarge the
range of variation of the constants a and § adopted in [64].

Precisely, we will assume the following conditions:

(8 —n)
8

0<a<4 and a§6<oo, with p € (0,4). (13)



Considering the space E defined in (8), we can establish the following weighted
version of the Adams inequality obtained in [2]:

Theorem 0.0.4 Suppose that (V), (K) and (13) hold. Then, for all v > 0 and any

u € FE, we have

Ks%u(:v)(eWZ —1)dz < 0. (14)
R4

Moreover, we can conclude that

< oo if v€(0,327%);

15
+oo if v > 3272 (15)

sup Kﬁ(x)(eW2 —1)dz = {
{u€E:||ul|<1} JR?
The proof of this result follows the same line as Theorem 0.0.1.
To control the nonlocal term |z|™* % (K (x)F(z,u)) of (12), we need the well-
known Hardy-Littlewood-Sobolev inequality, which we state in R" and that will play

an important role in Chapter 2 (see Proposition 2.1.2). We assume that the nonlinearity

f(z, s) satisfies the condition (H,) and the hypotheses:

(H}) f € C(R* x R), f has critical exponential growth, f(z,s) = 0 for all (z,s) €

R* x (—00,0] and f(z,s) = 0(5477“) as s — 0T, uniformly in x € R*

(Hy)) 0 < H(x,t) < H(x,s) for all 0 < t < s and for x € R* where H(z,u) =

F
(H%) liminf Flas) Bo > 0, uniformly in x € R*.

s—+00 6’7032 -
We emphasize that during Chapter 2 we do not use the famous Ambrosetti-Rabinowitz

condition (Hj).

We are ready to state the main existence results of Chapter 2. The first result is

the following:

Theorem 0.0.5 Assume (V') and (K) hold with o € (0,4) and 8 > (8 — p)a/8. If f
satisfies (Hy) — (HY) and (Hy), then (12) admits a nontrivial weak solution in E.

In the next result, by restricting the range of o, we will show that the solution
obtained in the above theorem is L?*(R?) and thus belongs to H?*(R?), that is, the
solution is a bound state. The statement can be expressed as follows:

Theorem 0.0.6 Suppose that (V) and (K) hold with o € (0,2) and > (8 — u)a/8.
If f satisfies (Hy) — (H}) and (Hy), then the solution obtained in the previous result is

a bound state.



In Chapter 3, we prove a weighted Adams inequality in R”Y, that is, much more
general than the one proved in Chapter | (see Theorem 0.0.1). As an application we
study a class of elliptic equations involving the polyharmonic operator.

We consider functions V(x) and K(x) satisfying the following assumptions:

(V") V € C(RY) and there exist «,a > 0 such that V(z) > for all z € RY;

1+ |z|®

b
(K'Y K € C(RY) and there exist 3,b > 0 such that 0 < K(z) < TP for all
x
r € RY;

and we restrict our attention to the case when o and [ satisty
a€(0,N) and B € [a,+0). (16)

Next, to present our first result, we will fix some notations. For m integer such

that m > 2 and m < N, we consider the space

E:= {u € Lh (RY) : [Viu| € Ln(RY) Vi=1,...,m and / V(z)|u|mda < oo}
RN

m/N
and norm ||u|| := (/ (V™M V)N 4 V() [u Y™ d:v) :
RN

In this context, we can establish the following result.

Theorem 0.0.7 Suppose that (V') and (K') hold with o and [ satisfying (16). Then,
for any v > 0 and any u € E, it holds

[ K@nasrluf77) do < o a7)
R
Moreover, we have

<00, if v< VmnN;

4 (18)
oo, if 7> YmN-

sup [ K<x>¢m,m\urfv%>dx:{

uelE RN
lull<1

As initial application of Theorem 0.0.7, we will prove the compact embedding of the
space E into LE (RY) for p > 2, € (0, N) and 8 € (a, +00) (see Proposition 3.3.1).
For the second part of the chapter, we assume that the integer m > 2 and
the dimension N of the domain satisfy N = 2m. We also will obtain a Lions-
type concentration-compactness principle involving exponential growth (see Proposi-

tion 3.5.3), which is a refinement of Theorem 0.0.7.

8



Furthermore, we will investigate the existence of weak solutions for the following

class of problems:
S (AYu+ V() = K@) f(r,u) in B (19)

7j=1
where the potential V' and the weight K satisfy the conditions (V) and (K”), respec-

tively and « and 3 are such that
a€ (0,2m) and f € (a,+0). (20)

In this case as N = 2m, we have the norm in space F is characterized as ||u||* =

(u,u) g where

(u,v)p = /RQm (Z ViuViv + V(w)uv) dz.

We assume that the nonlinearity f(z,s) satisfes the assumptions:

(H,) lim f(z:9)

= 0, uniformly in z € R®*™;
s—0 S

([A{;) the function f :R?™ x R — R is continuous and has critical exponential growth;

(Hs) there exists & > 2 such that

0 < puF(z,s) < sf(x,s), forall (z,5)cR*™xR\{0};

(E) there exist constants sg, My > 0 such that
F(x,8) < Mo|f(x,s)|, forall |s|>sy and z€R>;

sf(x,s)

(ITI;) lim inf "2 >, for some p > 2222 yniformly with respect to z € R2™,
5—+00 eYos wam K0
where K = min K(x).
Q?EEl

Hence, we prove the following existence result:

Theorem 0.0.8 Assume (V'), (K’), (IA{;) — (ﬁg)) and (20) hold. Then, problem (19)

has a nontrivial weak solution.

We do not resort to the introduction and for the sake of the independence of
the chapters, we will present again, in each chapter, the main results and the related

assumptions.



Notation and terminology

e C,C, C; i=1,2,..., denote positive (possibly different) constants;
e ('(g) denotes positive constant which depends on the parameter &;
e Bpr(r) denotes the open ball centered at x € RY and radius R and Br = Bg(0);

e for a subset Q C RY, we denote by 992, Q, || and Q°, the boundary, the closure,

the Lebesgue measure and the complement of Q in RY, respectively;

e Yo denotes the characteristic function of a set @ C R¥, that is, yo(z) = 1 if

z € Qand yo(r) =0if x € Q%
e 0,(1) denotes a sequence that converges to zero;
e for 1 < p < oo, the standard norm in LP(R”) is denoted by || - ||

e u, — u and u, — u denote weak and strong convergence, respectively, in a

normed space;

o C5°(Q2) denotes the space of infinitely differentiable real functions whose support

is compact in Q C RY,



Chapter 1

On a weighted Adams type inequality
and an application to a biharmonic

equation

This chapter deals with an improvement of a class of Adams-type inequalities
involving a potential V and a weight K which can decay to zero at infinity as (1+]z|*) ™,
a € (0,4) and (1 + |z]%)~1, B € |a, +00), respectively.

As an application of this result and by using minimax methods, we establish the

existence of solutions for the following class of problems:
A*u— Au+V(z)u = K(z)f(z,u) in R*

where A%y = A(Au) is the operator biharmonic and the nonlinear term f(x,u) can
have critical exponential growth. Furthermore, when o« € (0,2) we prove that the

solutions belong to the Sobolev space H?(R?) (bound state solutions).

1.1 Introduction and main results

The main purpose of this chapter is two-fold: motivated by the results in |30, 33],
our first aim is to investigate a new Adams inequality in R* involving a potentials V/
and a weights K which can decay to zero at infinity. Moreover, as an application we
establish the existence of solutions for a class of elliptic biharmonic equations in the

critical growth range.



In a more precise way, we consider some weight functions V' (z) and K(z) satis-

fying the following assumptions:

(V) V € C(R*) and there exist «,a > 0 such that V(x) > for all x € R%;

1+ |z|«
b
(K) K € C(R?) and there exist 3,b > 0 such that 0 < K(z) < TP for all z € R™.
x
We use the notation || - [z for the norm of the weighted Lebesgue space

LE(RY = {u : R* — R : u is measurable and K(x)|ufPdz < oo} :

R4

1/p
that is, ||ullzz gy = (/4 K(m)]u|pdx> .
R

In particular, we restrict our attention to the case when « and [ satisfy
a€ (0,4) and fS € [a,+00). (1.1)

Next, in order to present our first result, we will fix some notations. Consider the

space

E = {u € L. (RY) : |Vu|, Au € L*(R*) and /

loc
R4

V(z)u*de < oo}
endowed with the inner product
(u,v)p := / (AuAv + VuVo + V(z)uw) dz
R4

and its corresponding norm

] == (/R4(|Au\2 + | Vul? + V(w)uz)dx) "

By using condition (V'), it follows that the space E equipped with the inner product

(-,-)g is a Hilbert space and we have that C5°(R*) is dense in F (see Appendix A).
We cite again the following results that were presented in the Introduction as

they will be useful for the proof of our first theorem. The first inequality concerns the

particular case of (2) when N =4 and m = 2

sup

<ClQ| if y < 3272,
/ e dz
{uGH&(Q):HAquSl} Q = 400 if v > 327T2.

12



Masmoudi and Sani [47], proved that, for any v € (0, 327?), there exists a constant

C = C(v) > 0 such that
/ (e —1)dz < C|u|?, forall ue H*X(RY) with [|Aul, <1, (1.3)
R4

and this inequality is not valid if v > 3272

In this context, we can establish our first result.

Theorem 1.1.1 Suppose that (V) and (K) hold with o and B satisfying (1.1). Then,
for any v > 0 and any u € E, it holds

K(z)(e —1)dz < 0. (1.4)
R4
Moreover, we have

< oo, if 0<vy<32n%

1.5
too, if > 3272 (1.5)

sup | K(w)(e —1)de = {

uelk R4
llull<1

Remark 1.1.2 We highlight that inequality (1.5) in Theorem 1.1.1 treats only the

subcritical case. The critical case v = 3272 is still an open question.

As initial applications of Theorem 1.1.1, we will prove the compact embedding
of the space E into LE.(R*) for p > 2,a € (0,4) and 8 € (a,+0o0) (see Proposition
1.3.1). We also will obtain a Lions-type concentration-compactness principle involving
exponential growth (see Proposition 1.3.2), which is a refinement of Theorem 1.1.1.

The existence of solutions for elliptic equations involving the biharmonic operator
has been the object of study in recent years by several researchers, mainly motivated
by the wide variety of applications. For example, we can cite the modeling of thin
elastic plates, clamped plates and in the study of the Paneitz-Branson equation and
the Willmore equation (see [34]).

Due to the applicability of problems involving the biharmonic operator and mo-
tivated by the Theorem 1.1.1, we will investigate the existence of weak solutions for

the following class of problems
A*u— Au+V(z)u = K(z)f(z,u) in R (1.6)

where the potential V' and the weight K satisfy the conditions (V') and (K), respec-

tively, and the nonlinearity f(z,s) has the maximal growth which allows us to study

13



(1.6) by using a variational method. Precisely, motivated by (1.5), we say that f(x,s)

has critical exponential growth if there exists vy > 0 such that

. flx,s) 0, for all v > ~p,
im —+ =
|s]—o0 ers?

+oo, for all v < 7,

uniformly in 2 € R*. In this context, we say that u € E is a weak solution for (1.6) if

/ (AulAv + VuVo + V(z)uw)de = | K(z)f(x,u)vdx, forallve E.  (L.7)
R4

R4
We will assume sufficient conditions on f so that weak solutions of (1.6) become

critical points of the functional I : £ — R defined by

1

1) = 5llP = [ K@F@w

where F(z,s) := [ f(x,t)dt.

We require the following assumptions on the nonlinearity f(z,s):

() tim T222)

= 0, uniformly in x € R*;
—0 S

(fo) the function f:R* x R — R is continuous and has critical exponential growth;
(f3) there exists p > 2 such that

0 < pF(x,s) < sf(x,s), forall (z,5)cR*xR\{0};

(f1) there exist constants sg, My > 0 such that

F(x,s) < Mo|f(x,s)|, forall |s|>sy and z€R%

(f5) We also consider one of the following assumptions:

F(x,s ) .
(1) there exist 0,6y > 0 such that liminf <—2) > @, uniformly in z € R*;
s—oo  glenos
sf(x,s N
(1) liminf f(W’Q ) > 6 for some 6 > f—A‘R, uniformly in x € R?*, where K =
S§—00 e 0
min K (z).

$€§1
Our existence result is stated below.

Theorem 1.1.3 Assume (V),(K) and (f1) — (fs5) hold with a € (0,4) and § €

(v, 400). Then, problem (1.6) has a nontrivial weak solution.

14



Denoting by ug the weak solution obtained in Theorem 1.1.3, our next result can

be stated as follows:

Theorem 1.1.4 Assume (V),(K) and (f1) — (f5) hold with o € (0,2) and 8 €
(o, 400). Then ug € H*(R?), that is, uy is a bound state solution of problem (1.6).

Regarding this issue, we would like to mention interesting works that we found in
the literature that have treated the existence of solutions through variational methods.
We begin by citing some works that consider the biharmonic operator and nonlinearities
with polynomial growth at infinity, e.g., [6, 7, 8, 9, 12, 15, 18, 21, 22, 67, 75]. On the
other hand, elliptic problems involving nonlinearities with exponential growth were
initially studied in [3, 23]. There were introduced the notions of critical exponential
growth to problems that can be treated by using variational methods. This notion was
motivated by the Trudinger-Moser inequality (1).

Sani [63], Aouaoui and Albuquerque [11], Miyagaki et al. [19] and Yang [69] have
applied these ideas to treat some fourth-order problems. In these works, following the
ideas from [3, 23] and motivated by Adams’ inequality (2), Sani [63]| studied a class
of problems involving the biharmonic operator and a class of spherically symmetric
potentials (or even coercive) and bounded from below by a positive constant. Aouaoui
and Albuquerque [11] considered potentials and weights that are radial and can have
a singularity at the origin and can vanish at infinity.

In [69], Yang considered a class of nonhomogeneous problems similar to (1.6) and
studied the case where the potential is bounded from below by a positive constant and
satisfies the integrability condition 1/V € L*(R*). For other related results, we would
like to mention the works [19, 33, 48, 50, 52, 58, 59, 77].

In this chapter, we improve and extend some results obtained in [6, 7, 8, 9, 11,
12,15, 18,21, 22,49, 63, 67, 69, 75], in the sense that we have considered nonlinearities
with critical exponential growth and potentials that can vanish at infinity which are not
radially symmetric. These features considered here are not treated in these previous
works. Finally, as far as we know, there are few results involving biharmonic operators

and vanishing potentials.

The outline of the chapter is as follows: in Section 1.2 we prove the weighted

Adams’ inequality. In Section 1.3 we prove that the embedding F — LE (R?) is

15



compact for all p € [2,400) (see Proposition 1.3.1). Moreover, we prove a version of
the Concentration-Compactness Principle due to P. -L. Lions [15] to the space E (see
Proposition 1.3.2). Section 1.4 contains the variational framework related to problem
(1.6) and we also check the geometric properties of the functional I. Section 1.5 deals
with the Palais-Smale compactness condition. In Section 1.6 we estimate the minimax
level. In Section 1.7 we complete the proof of Theorem 1.1.3 and in Section 1.8 we

prove some auxiliary results and Theorem 1.1.4.

1.2 Proof of Theorem 1.1.1

This section is devoted to the proof of Theorem 1.1.1.
Proof . We begin proving the first part of (1.5). The proof will be divided into two
steps.

Step 1: Let uw € E be such that ||ul| < 1. First, we want to estimate the weighted

Trudinger-Moser functional

TM(u,v,R)= [ K@) —1)dx

Br
for some R > 0, independently of u, that will be chosen during the proof. From

condition (K'), we have

K(z)(@™ —1) dz < b/ (e —1) da. (1.8)

Br Br

Consider a cutoff function ¢ € C§°(Bayg) such that
. . c . c .
0<¢<1inByg, =1 in Bg, |Vy| < 7 I Bor and |Ap| < Tz B,
for some constant C' > 0. Then, we have

IA(pu)* = |AplPu? + 4(pAu)VpVu + 2(pAu)ule + 4(Ve - Vu)?

+ AVeVu(ulp) + | Aul’e?,

16



and by Young’s inequality a;b; < ea? +¢e71b%, with € € (0,1) and ay,b; > 0, we obtain

C? 4C*
/ |A(pu)|* dz < —4/ u?dzr + 45/ |Aul?dz + — ]Vude
BQR R BQR BQR R
2 2 2
+ 26/ | Aul*dx + 04 wdr + % |Vul*dx
Bar eR Bar R Bar

4eC? 407
¢ Vul?dr + — ¢ w?dz + | Aul?dx
R? Jp eR* Jp B

2R 2R 2R

4C?%  4C?%  4eC?
= (1+ 6¢) /BQR |Au|? dz + (55’2 +t Tt )/Bm |Vul® dz
o 602>/ )
+ | =+ = u® dux.
(R4 R? Ban

Thus, by using (V), it follows that

4C?  4C?  4eC?
Aapugdazg 1+6€/ AquIIJ—I—( + + )/ Vul? dx
[ atenf e < e [ aatan s (S G ) [ wu

6\ C?1+ (2R)" )
142 ) =Y .
—i—( +€> - 7 V(z)u® dz

Bar
Fixed ¢ € (0,1) such that (1 + 6¢) < 3272 and since o € (0,4), we can choose

R = R(g,a,a) > 0 sufficiently large satisfying

<1+ 6¢,

AC?  4C% 4eC? 6\ C?1+ (2R)"
et TR See and (HE)?T

for all R > R. Thus,
/ A(pw)2 da < (14 66)|[ul® < 1+ 6¢.
Baor

Therefore, defining
U

- V1 + 6¢

/ |A(pu)|? dz < 1, and applying (1.2), we get
Bar

1
1+ 6¢

/ (6"{“2 N 1) dr — / (e’Y(SOu)? . 1) dz < / e ~(1+6¢)v? dx < CR2
Br Bgr Bagr

The previous inequality combined with (1.8) implies that

we have that ||Av]|3 =

K(z)(e™ —dz < b/ (e — 1) dz < CR?, for all u € E with ||jul| < 1. (1.9)
Br

Br
Step 2: Now, we estimate the weighted Trudinger-Moser functional in the exterior of a

large ball.

17



For any n > ng fixed, where ny will be chosen during the proof, we consider B

the exterior de B,, and the covering of B¢ formed by all annuli A? with o > n given by
AT ={reB |z|<o}={reR :n<|z| <o}

By the Besicovitch covering Lemma [25], for any o > ng, there exist a sequence of

points (x) € AZ and an universal constant 6 > 0 such that

o 1/2 1/2 1 ||
AﬁngJUk/, where Uk;/ ::B(xk,§T

and

x
ZXUk(m) <@ for any z € R* where U, :=B (:L‘k, %)
k
where Xy, is its characteristic function. Let u € E be such that ||u|| < 1. We start with
the estimate of the weighted exponential integral of v in A§, with n > ng and o > 3n.
Note that

A3, c Azl v
k
and defining the set of indices K, , := {k € N: U”> N BS, # 0 }, we have

A, ¢ | o
kEKn o
Therefore,

K@) (e~ 1) do <

1/2
Agn keKn,o Uk /

K(z) (67“2 . 1) dz. (1.10)

Since 2|xy| < |y| < 3lak| for all y € Uy, from (V) and (K), we obtain

a

Vi(y) >

a
> > — , forall ye Uy (1.11)
Lyl = 14 (2)" |al®

and
b

< <
T+ T 4 (2) )
Besides, if Uy N B, # 0 then U, C BE, which implies that

K(y)

, for all y e U. (1.12)

U u?c |J hCB CB (1.13)

k€K, o k€K o

Next, let us fix k € K,,,. From (1.12), we obtain

K(z) (67”2 — 1) der < 4/ 1/Q(ewz —1)dz. (1.14)

U+ @)l
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Again, consider a cutoff function ¢;, € C§°(Uy) such that

c . c .
0< <1 inlU, ¢r=1 in U,iﬂ, IVr| < Tl in Uy and |Agi| < T in Uy,
k k

for some constant C' > 0. Proceeding as before, it follows that

407 402 4202
IA(pru)? dz < (1+6¢) [ |Aul? dz + < C e,

UL U, ler?  |wel?  |ol?

> 607 ,
+ yoRE 1 u” dux,
2|t lte ) Ju,

4C? 4C? 4eC?
]Au|2dx+< ¢_Li¢ EC)/ IVuf? dz
Uy,

) |Vul? do
Uy

and by (1.11)

A(ppu)? dar < (1+ 6e) /

U

21 4\« a
+ (1 + §> o1+ (3) || / V(z)u? d.
Uy

e) a AR

o lar?  |wkl?  |of?

Since k € Ky, in view of (1.13), we obtain that x;, € By, . Once a € (0,4), we can

choose ng = ny(e, a, «) > 0 sufficiently large such that

6) C21+ (3)" |
>§1+65 and (1+g)—M§1+65,

( 4C* 4C*  4eC?

log?  |wel* ol

for all k € K,,, and n > ny. Thus,

|A(pru)])? do < (14 6¢)]jul|* < 1+ 6e.
Uy

Therefore, defining vy = pru/+/1 + 6 one has

1

Avg |3 =
Idult= g /.

|A(ppu)|* dz < 1.

Now, applying (1.3), we get

/ (€™ —1)da = / (" — 1) dz < / (0 1) de < C [ orl* da,
U/ v, R #

By the previous inequality and (1.11), we have

1+ (2)7 |zl
/ (e —1)dz < ¢ / u? do < ¢ (5)" lesl / V(z)u® dz. (1.15)
Ul/2 1+ 6¢e Jy, 1+ 6e a Up
k

Combining the estimates (1.10), (1.14), (1.15) and by using (1.13), we get

K(z) (ew? _ 1) de < ¢ b Z M/U V(z)u? dz

- B
Ag, 1+6€akeK 1+ (%) ||
C b 1+ (4)" |kl
< T+ 6ca (2%/ V(z)u*xp, dz.
“0 G 1+ CF b Ui
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By (1.13) again, we obtain

- I

4\ o 4\« @
M < B, = sup M for all k € K, ,.
1+ ( ) |xk|ﬁ zeBg 1 + (%) |JI|B

Therefore,

K(x)(eWQ—l) _1+6€QB Z / V(z)u*xp, dz.

o
A3n

Applying the Besicovitch covering lemma, we reach

2
- dz.
1+ 6¢ aB Be Vigu dz

K(x) (eWQ - 1> dz <
Agn

Letting 0 — oo, we deduce the existence of ng = ng(e,a,a) > 1 sufficiently large so

that

K(z) (eW . 1) do < CanH/ Vix)u? de < ChB.0|ul? < CbB.0,  (1.16)

Bg,
for any n > ng. Note that
1+ ( n 0, if >«

lim B, = lim — 5= (1.17)
e L) e i g

QO
v

Thus, from (1.9) and (1.16), we conclude the proof of the first part of (1.5).

For the second part of (1.5), we consider the Moser sequence @,, defined by

(
1 2
Vs — ——|z]’ + /——, for|z| < 1
m \/ 3272 logn \/ 3272 logn n

p(r) =4 L L 1 <
(x) \/mlog - for - < |z <1,
[ Gn (), for |z| > 1.

Here ¢, is a compactly supported smooth function in B;(0) satisfying

Colom© = Colomao = 0, 2% ! On,
naBl(O) naBQ(O) 9 a aBl ) \/Wa 81/ 832(0)

and (,, |V(,|, AG, are O(1/y/logn). For any n € N, we have that @,, € F and straight-

=0

forward calculations show that
Hdan% = 0O(1/logn), HVchHg =O0(1/logn) and HA@nH% =1+ 0(1/logn).
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Consequently, by (V), it follows that ||@,||* = 1 + §,, where 6, — 0 and §, =
O(1/logn), as n — oo. Setting

&

Wy 1= —— (1.18)

@l
we have w, € E and [|w,|| = 1. Observe that w, > m\/logn/(&r?) for all z € R*

with |z| < 1 and defining K := min K (), for all 7 > 3272, we have
reB,

/ K(x) (ew’% — 1) de > K (en —1) da
R4

Bl/n
> K (enaZHQ = 1)dx
Bl/n
w2 v _logn
=—K (e\lfvnl\2 8r2 1> — 00 as n — 0o,
2n?
that is,
lim K(x) (ew’% — 1) dz = oc. (1.19)
n—o0 R4

Taking into account that
sup / K(x) (QWQ - 1) dz > / K(x) (e”’”’% - 1) dz,
Hqiﬁgl R R*

then our sharpness result can be derived from (1.19).

To finish the proof of the theorem, it remains to show that (1.4) holds. For
every v > 0 and u € E, by density of C;°(R*) in E (see Appendix A), there exists
ug € C°(RY) such that

1
lu = uoll < —=.
vl

Since u? < 2(u — ug)? + 2u3, choosing R > 0 such that supp(ug) C Bg, we have

/ K () (eW _ 1> dr < / K(x) <62”’(“‘”0)262wg - 1) dz
R4 R
R4

+ % /BR K(z) <€4w3 — 1) dz.

Thus, by using (1.5) and since 47|ju — ug||* < 4 < 3272, we reach that (1.4) holds.

Therefore, the result is proved. m
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1.3 Some consequences of Theorem 1.1.1

A first important consequence that we have obtained is the following compactness

result:

Proposition 1.3.1 If (V) and (K) hold with o € (0,4) and € o, +00), then for all
p € [2,+00) the embedding
E — [F(RY) (1.20)

18 continuous. Moreover, if § > « then the above embedding is compact.

Proof . We will proceed in two steps, on a ball of radius R > 0 and on its complement.

Let u € E and observe that by condition (K') we have

1
P b P 1
K Pd < ——|ulPd < br » . 1.21
([ w@hwpar)’ < ([ plobas)” < blulis,. 20

By the embedding H?(Br) — LP(Bg) for all p € [1,+00), we get

1/2
lallzrn < Cilllzgsn = Cr [ [ au + 19+ u?)dx}

Bgr

< Cy UBR (yAuP + | Vul? + (1 ZRa) V(w)uz) dx} v (1.22)

1/2
< Oy {/ <1Au|2+NuP+V<x>u2>dx] |
Bpr

because V(x) > a/(1 + |z|*) > a/(1 + R*). Thus, for each R > 0, it follows, from
(1.21) and (1.22), that

p/2
K(z)|ufPdz < bCh {/ (|Aul* + |Vu|* + V(:E)u2)dx] < bCR||ulP. (1.23)
B

Br R

For each p € [2,00), there is C}, > 0 such that
|s]P < C’p(652 —1), forall seR
and proceeding as in the proof of Theorem 1.1.1, we obtain

K(z)lulP dz < C, K(z)(e" —1)de

o o
A3n A3n
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for all n > ny. Letting 0 — +o00 we reach

K(z)|ulP dz < CSBnH/ V(z)u? dw < CSBnQHuHZ (1.24)

Bg, B

Taking R = 3ny, from (1.24) we conclude that
b 2
K(x)|ulP de < C=B,,0|ul|*. (1.25)
BS, a
Now, if (u,) C E is such that u,, — 0 in E, then by (1.23) and (1.25) we obtain
K(x)|up|P de = K(x)|upm [P dx—l—/ K(x)|up|P de — 0 as m — oo

R4 Br B
and the continuity of the embedding is proved for all p € [2, c0).

Next, suppose that § > « and (u,,) C FE is such that w,, — 0 in E. Since (u,,)
is bounded in F and

(e
) n°

1
lim B, = lim +( 3

=0, if 8 > q,

—~
~—

nB

in view of (1.24), for all € > 0, there exists ny > ng such that

K (@)|upn|? do < g for all m € N.

c
BBnl

Taking R = 3n; and since (u,,) is also bounded in H?(Bg), by the compact embedding
H?(Bgr) < LP(Bg) for all p € [2,00), it follows from (1.21) that / K(x)|up[Pdz — 0
Bgr

as m — oo and therefore there exists my € N such that

K(x)|up,|P de <

< E, for all m > my.
Br 2

Hence, for all m > mg one has

K(z)|up|? do = K () |um|? dx+/ K(z)|upP de <e
B,

R4 Br

which shows that u,, — 0 in L%.(R*). Therefore, the compact embedding is proved for

b>a n

The next result is a Lions-type Concentration-Compactness Principle (see [45])
and the proof follows the same lines as in Lemma 2.6 of [32]. This result will be crucial

to show that the functional I satisfies the Palais-Smale condition.
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Proposition 1.3.2 Suppose that (V), (K) hold with o € (0,4) and € o, +00). If
(un) C E satisfies ||uy|| = 1, for alln € N, and u,, = u in E with ||u|| < 1, then for
all p € (O ﬂ) we have

P 1 (ulf?

sup [ K(z)(e"" —1)dz < oo.
n R4

Proof . Since u, — v in E and ||u,|| = 1, we have

3272
[t — ull® = [Jun||* = 2(un, u) g + fJul]* = 1= J|u]* < P

Thus, for n € N enough large, we get pllu, —ul|* <y < 3272 for some v > 0. Choosing

q > 1 close to 1 and ¢ > 0 small satisfying
pa(L +e*)|luy —ull® <,

by invoking Theorem 1.1.1, we obtain

Un —U

K(x)(ep(I(l'f‘EQ)(un—u)Q — 1)z = K(x)<€PQ(1+52)Hun—ul|2(Wrﬁuu)2 — 1)dz
R R (1.26)
= )2
< [ K(z)(e\ =) —1)dz < C.
R4

Now, notice that pu2 < p(1 + €*)(u, — u)? + p (1 + %) u?, and by Young’s inequality

0nehasab—1§%%—I’T%for%—l—%:l.Thus,

2

ePin — 1 < ep(l—s—g?)(un_u)gep(1+8%)u2) .

(epr(1+g%)u2 - 1) | (1.27)

< <€pq<1+e2’>(un—u>2 _ 1) 4

S| =

| =N

Therefore, (1.26) and (1.27) imply that

1
/ K(x) <epu?1 _ 1) dr < _/ K(7) (epq(1+e2)(un—u)2 B 1> A
R4 q Jre

1 1/ K(x) (em(lt%)“ — 1) de < C,
R4

r

for n sufficiently large, which concludes the proof. m

The next sections are dedicated to the study of the problem (1.6) that is an
application of Theorem 1.1.1.
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1.4 The variational framework

The purpose of this section is to prove some geometric properties of the Euler-
Lagrange functional associated to problem (1.6). We begin by considering the func-

tional [ : £ — R given by

I(u) = %HuHQ _ /R K (2)F(x,u) d.

Notice that from (f1) and (f2), for each v > 79, ¢ > 0 and ¢ > 2, there exists
C(v,q,e) > 0 such that

[z, s) < elsl + Clv,q.0)lslH (€™ 1) (1.28)
and by (f3)
|F(z,s)| < 232 +C(v,q,¢)|s]%(e™* — 1), for all (z,s) € R* x R. (1.29)

Thus, given u € E, by Holder’s inequality with p > 1 and 1/p+ 1/p’ = 1, we can find
C' > 0 such that

K@)Fau)dr< & [ K@ dz+C ( K ()|l dx)p

R4 R*

x ( 9 K(z)(e" — 1) dx)

R4

1
Y

In view of (1.30) combined with the continuous embedding £ — LE(R*) and (1.4),
we reach K (z)F (z,u) € L'(R), for all u € E. Consequently, I is well-defined and by
standard arguments I € C'(E,R) with

(I'(u),v) = /IR4(AUAU + VuVo + V(z)w) dz — » K(x)f(z,u)vde, for w,ve E. (1.30)

Hence, a critical point of I is a weak solution of problem (1.6) and reciprocally.

The geometric conditions of the Mountain Pass Theorem for the functional I are

established by the next lemma.

Lemma 1.4.1 Suppose that (V'),(K), (f1) — (fs) and (1.1) hold. Then,
(i) there exist T,p > 0 such that [(u) > 7 for all ||u| = p.

(11) there exists e € E with ||e|| > p such that I(e) < 0.
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Proof . (i) Here we consider v > 79, € > 0 and ¢ > 2. In view of (1.30), the continuous
embedding £ — L% (R*) and (1.5), we can find Cy = Cy(7,q,¢) > 0 such that
K(z)F(x,u) de < e Cy||ul|® + Cqljul?, (1.31)
R4

for all u € E with ||u|| = p, where p > 0 satisfies vp'p* < 3272, By using (1.31), we get
1 2 2 q 1 2 q
) = el = Crellull = ol = (3 = Cue ) 2 = Capt.

Thus, if u € E with |lu|| = p, choosing ¢ > 0 sufficiently small such that ; — Cie > 0

we get

I(u) > Cp* — Cypt.

Since ¢ > 2 we may choose p > 0 small enough such that 7 := C;p? — Cop? > 0. Thus,
there exists 7 > 0 satisfying I(u) > 7 whenever |u|| = p.

(17) Let u € C§°(Bg) \ {0} be such that v > 0. By (f3;), there exist positive
constants C; and C5 such that

F(x,8) > Cys* — Cy, forall (x,s) € Bg x [0,00).

Then, for t > 0, we get

t2
I(tu) < —||uH2 — Ctt K(z)u"dx 4+ Cy K(z) dx.
2 Bgr Br
Since p > 2, we have I(tu) — —oo as t — oo. Setting e = tu with ¢ large enough, the

proof is finished. m

1.5 The Palais-Smale compactness condition

In this section, we show that the functional I satisfies the Palais-Smale condition
for certain energy levels. We recall that the functional I satisfies the Palais-Smale

condition at the level ¢, denoted by (PS). condition, if any sequence (u,,) C E verifying

I(u,) = ¢ and ['(u,) =0 as n — oo, (1.32)

has a strongly convergent subsequence in E. We begin by proving some auxiliary

results.
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Lemma 1.5.1 Suppose that (V),(K), (f1) — (f3) and (1.1) hold. Then, any (PS).-

sequence (uy,) for I is bounded in (E,|| - ) and satisfies
sup [ K(z)f(z, up)u, dr < oo. (1.33)
n R4

Proof . Since (u,) is (PS).sequence for I, we have

I(u,) = %Hunn2 — /R4 K(x)F(z,u,) doz — ¢ (1.34)

and

(I (n), v)] = |(tn, v} — » K () f(z,un)v dz| < enllvll, (1.35)

for all v € E, where £, — 0 as n — oo. Note that (1.34) guarantees (I(u,)) C R is

bounded and hence, there exists a constant C' > 0 such that
1 2
§||un|] <C+ | K(x)F(z,u,) dz, (1.36)
R4

for all n € N. By the condition (f3), we have

1
K(x)F(z,u,) dz < —/ K(x)f(z,u,)u, dx. (1.37)
R4 K JRra
By choosing v = u,, in (1.35), we obtain
K(2)f (2, tn)un dz < Jlug|* + enllunll- (1.38)
R4
From (1.36), (1.37) and (1.38), we get
1 1 En
(53 lalP <€+

and once p > 2, it follows that (u,) is bounded in E. This together with (1.38) implies
(1.33). m

The previous lemma guarantees that, up to a subsequence, there exists u € E
such that u,, — u in E. Moreover, in view of (1.33), we can apply [23, Lemma 2.1] to
conclude that

K(z)f(z,u,) = K(z)f(x,u) in L (RY). (1.39)

Now let us see the following convergence result that can be found in [33, Lemma

5.4]. We have added the proof here for the reader’s convenience.
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Lemma 1.5.2 Suppose that (V'),(K) and (f1) — (f1) are satisfied with o € (0,4) and
p € (a,+00). Let (u,) C E be a Palais-Smale sequence of I at the level ¢ with u, — u
m B. Then,

K(z)F(x,u,) de — K(z)F(x,u) dz as n — oo.
R4 R4

Proof . Note that by (f3) and (fy), we have

Fles) o Mo _

0 < lim
|s]—+o0 ’S’

|s| o0 Sf(x, )

and for any £ > 0 there exists s, = sy(¢) > 0 such that
F(z,s) <esf(z,s) forall |s| > s. (1.40)
Using (1.33), for some C' > 0 we obtain
) K(z)f(x,u)u de < C and K(z)f(z,up)u, de < C forall neN.
R R4
From (1.10) and by the previous inequalities, fixed € > 0, we reach
/{| | }K(m)F(m,u)des/ K(z)f(z,u)udz
ul>s)

{lul=sp}

and

/ K(x)F(z,uy,)dz < e/ K(z)f(z,un)u, dzx.
{‘"n|25/o}

{|“n|256}

Defining (,,(7) = K(2)X{jun|<sp} (2, u,) and £(z) 1= K(2)X{juj<s) F (2, 1), we have
that {¢,} is a sequence of measurable functions and /¢,(x) — ((z) for a.e x € R,
because u,, — u a.e. in R*. Using (1.29) with v > 49, € > 0 and ¢ = 2, for any |s| < s,
we obtain

F(2,) S 562+ Oy, )2 = 1) £ O, )5

So writing
gn(x) == C(v,e,50) K (x)up, and g(z) = C(v,¢, s5) K (x)u?,

we have 0 < £, (z) < gn(7) and g,(x) — g(z) a.e. in R, and by virtue of the compact
embedding E — L% (R?), we get

lim gn(z) doz = /R4 g(x) dz.

n—oo R4
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Hence, applying the Generalized Lebesgue Dominated Convergence Theorem, we have

lim lp(x) do = / ((x) da.

n—oo R4

In conclusion, for any fixed € > 0, denoting by

A, = K(x)F(z,u,) de — [ K(x)F(z,u) dz

R4 R4

Y

we obtain

A, < / K(z)F(z,u,) dx +/ K(z)F(z,u) dx
{lun|=s0} {lul=sp}

_I_

K(x)F(x,u,) do — K(x)F(x,u) dx
/{Iwg} @F@w)de~ [ K@Fw)

{lul<st}

/R4 lolz) do — /R (z) do

and passing to the limit as n — oo, we get 0 < lim A,, < 2Ce¢. Since € > 0 is arbitrary,

n—oo

< 2Ce +

we conclude the proof of the lemma. m
Next, we shall prove the main compactness result of this chapter.

Proposition 1.5.3 Under the hypotheses (V'), (K) and (f1) — (f1) with a € (0,4) and
B € (a,+00), the functional I satisfies (PS). condition for any 0 < ¢ < 1672 /~p.

Proof . Let (u,) C E be an arbitrary Palais-Smale sequence of I at the level c. By
Lemma 1.5.1, up to a subsequence, u, — u weakly in E. We shall show that, up to a

subsequence, u,, — u strongly in E. For this, we have two cases to consider:
Case 1: w = 0. In this case, by Lemma 1.5.2, we have

K(z)F(z,u,)dz — 0 as n — oo.
R4
Since
1
I(un) = lun? —/ K(2)F (2, u,) dz = ¢ + 0(1),
2 R4
we get
lim [Ju,|* = 2c.
— 00
Hence, we can deduce that for n large there exist r > 1 sufficiently close to 1, v > g

close to vo and 7 > r sufficiently close to r such that 7y||u,||* < 327%. Thus, by (1.5)

K@) 1) de < [ K@) @) Z e < (1.41)

R4 R4
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We claim that

K(z)f(z,up)u,de — 0 as n— oo.
R4

Indeed, since f(x, s) satisfies (f1) and (f2), for v > 9 and £ > 0, there exists C(v,e) > 0
such that

|f(z,s)| < els| + C(v,e) (™ = 1), forall (z,s)cR*xR.

Choosing r > 1 close to 1 such that 7 > 2, where 1/r+1/r" = 1, by Holder’s inequality

we obtain

K(z)f(z,up)u, do| < C | K(z)u? dz

R4

+C(WK@mwﬂ4ym>

R4

1
r o

< K () |u|"” dx) — 0,
R4

as n — oo, where we have used (3.46) and the compact embedding E — L (R*), for
all [2,00). Therefore, once (I'(u,), u,) = 0,(1), we conclude that, up to a subsequence,

u, — 0 strongly in F.

Case 2: u # 0. In this case, since (u,) is a Palais-Smale sequence of I at the level c,

we may define

Uy, U
= and v=——+—.
| Tinn [ |

U

Thus, v, — v in E, ||v,|| = 1 and |jv]| < 1. If ||v]| = 1, we conclude the proof. If
|lv]] < 1, we claim that there exist r > 1 sufficiently close to 1, v > =, close to 7y and
o > 0 such that

mlun|? <o < ——— (1.42)

3272
1 —|lv[]?

for n € N large. Indeed, since I(u,) = ¢+ 0,(1), we have

1
— lim |u,|* = c—|—/ K(x)F(z,u)dx. (1.43)
2n~>oo R4

Setting
A = e+ [ K@F@a) 1 o),
R4
from (1.43) and by the definition of v, we obtain A(u) = ¢ — I(u), which together with

(1.43) imply
1. A(u) c—I(u)
= lim |u,||* = = . (1.44)
2 n=oe 1 I ]
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Hence, from (3.49) and the fact ¢ — I(u) < ¢, we conclude

c—1(u) c 1672
H2 = 7 < 3 < 2
L=l T =floll> (1 = [vf?)

(1.45)

2 i, len

because 0 < ¢ < 1672 /7. Therefore, by using (1.45) we reach that (1.42) holds. Thus,
by Proposition 1.3.2, we get
K(z)(e™ —1) dz < C.
R4
By using Hélder’s inequality, the compact embedding E < LP.(R*), for all [2, 00), and
arguing similar to Case 1, it follows that
K(z)f(x,un)(u, —u)de — 0 as n — oo.
R4

This convergence and the fact that (I’ (u,), u,—u) = 0,(1) show that ||u,||* = (U, u) s+
on(1). Since u,, — u in E, we conclude u,, — u strongly in E what concludes completes

the proof. m

1.6 The minimax level

In this section, we prove an estimate for the minimax level associated to the

functional 1.

Lemma 1.6.1 Suppose that (V),(K), (fi1) — (f3), (fs) and (1.1) hold. Then, there

exists n € N such that
1672

Yo

max [ (tw,) <
>0

where wy, is defined in (1.18).

Proof . Let us first study the case where (f5)(i) is valid. Assume by contradiction

that
r?gaoxf(twn) > %2 for all n e N.
For each n € N, let ¢,, > 0 be such that
@ _ 1672

K(z)F(x, tywy,) do = max I(tw,) > :

2 R4 70

By (f3), we obtain




and therefore

2 2
t2 > 527 , forall neN. (1.46)
0
At t =t,, we have
d [t?
0=—|=— | K(z)F(z,tw,) dz =t,— [ K(x)f(z, t,w,)w, dz,
dt 2 R4 t=t,, R4
which implies that
t2 = | K(z)f(z,tywy)tpw, do for all n € N. (1.47)

R4
Now, we will prove that (t,) is bounded sequence. In fact, in view of assumptions (f3)

and (f5), given € € (0,6y), there exists R = R. > 0 such that

fx,8)s > pF(z,s) > (b — €)s’e* for all s > R and = € R%. (1.48)
Since
n logn
thn > By 1.49
2V s 49
and
tn logn
~ — +00 as n — oo,
[@nll V- 872

by (1.49) we have t,w, — 00 as n — 0o in Byj,. Taking n € N sufficiently large so

that t,w,(x) > R, for all © € By, it follows, from (1.47), (1.48) and (1.49), that

> K(x)f(z, thwn)tyw, dx
Bl/n
> (0 — ) K (2) (twy ) e dz
Bl/n
- tn \’ [logn : o —tn_loan
> (o — ) K RN oz ) ¢ Tonl? 872 (o
Bl/n wn Q

7T2 ~ t 0 ].Og n % t% logn
=gito- ok (ggtp) (5a)
n Wn, T

where K := min K (z). Thus, we may write
r€EBy

2 ~
ﬁzzw%—dKQ

, (1.50)

tn 0 1 (HJfHQ 87%— ) IOgn—&-g log(log(n))
(&
2 (

@l ) (872)%
which implies that (¢,) is bounded. Therefore, there exists C' > 0 such that 33—?;2 <

t2 < C. Thus, from (1.50) it follows that

tn 0 ~
n_ 104 ~ log(1 <C
(H%”QSWZ ) ogn + 5 og(logn) <
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for some constant C' > 0, that is,

20 — 3272 46, 0 ~
n — 1 log(l < (.
(L1008 (1o, o8ntglosllosn) <

By (1.46), (t2v0 — 3272) logn/[(1 + 6,)87?] > 0 and consequently

46, 0 -
m logn + ) log(logn) < C.

However, 6 > 0, 6,, — 0, 6, logn — C5 and log(logn) — 0o as n — oo, which leads us

to a contradiction. This completes the proof with the condition (f5)(7).

Now we will prove the lemma under the condition (f5)(i7) (the proof this case is

inspired by [63, Lemma 8|). We start by remembering that

64
96 > —— (1.51)
Yok

where K = min K (z). From (f;)(ii), for any € > 0 there exists R = R(¢) > 0 such
r€EB
that

sf(xz,s) > (0 —e)e™ forall s > R and z € R*. (1.52)

Proceeding as in the previous case, suposse by contradiction that max I(tw,) > 1677 /70,
t>
for all n € N and let ¢,, > 0 such that
2

t
max [ (tw,) = = — | K(z)F(x,t,w,)dz.

t>0 2 R4

We claim that (¢,) is a bounded sequence. Indeed, taking n € N sufficiently large so
that t,w,(x) > R, for all © € By, it follows, from (1.47), (1.49) and (1.52), that

to > K(x)f(z, thwn)thw, dz > (6 —¢) K (z)emten dy
Bl/n Bl/n (1 53)
, ~ - 2 . logn 7T2 , 5 10gn<70 Hw2”2 Si 4) .
> (0 —e)K ¢ Tanl? 57 g = 7(60 —g)K :
Bl/n
Consequently,
2 % ogn
1> %(9' - E)f(e( LR _41°gn_1°gt%)

and it turns out that (¢,) is a bounded sequence. In view of (1.46), from (1.53) we can

conclude that

3272
lim 2 = T

(1.54)
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Consider the sets defined by
A, ={x € B tyw, > R} and C,:= B\ A,
where R > 0 is given in (1.52). It follows from (1.47) and (1.52) that

2> K(x)f(z, thwp)tyw, dx
By

> (0, —e)K [ erhen dr + K/ [z, thw, ) taw, do (1.55)
Ch

B1

— (6, — e)ff/ et g,
Chn
By definition of €', and since w,, — 0 almost everywhere in B, we reach

Xc, =+ 1 ae. in Bj.

Using the Lebesgue dominated convergence Theorem, we get

2

f(z, thw,)tyw, dr — 0 and / et g — I (1.56)

Cn 2

Observe that by (1.46) and the definition of w, we have

1
2,2 2,2 _4 1 (1o 1)2
/ elotnen dp > / e3¥en dg = 27?2/ eTon? Ben 18 5)° (3 g ¢
Bl Bl\Bl/n 1/n

Making the change of variable

1

t=———1log -
||©on || log n S

we can we estimate
t2 w2 2 Y@l 1 42 —4]|@on ||t
/ eon¥n dx > 27 HwnHlOgn/ elosn(=4llenllt) q¢.
B 0

Consider g : [0,1/||@,|]] = R the function defined by g(t) = logn(4t* — 4(|@,]|t). Then

we have that

. . 8 .
g (0) = —4[|@,|[logn  and ¢'(1/||@n]]) = T logn — 4logn||@,||.

Let € > 0 be sufficiently small, thus

g(t) = —4t||o, || logn + o(t), t€0,¢]
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and

2 . 1 - -
ott) = atogn (2 r =1l (= =) +ol0) ¢ 1/l = =1/l

1

~—— we have that
2||@n]

Hence, choosing ¢ =

t2 w2 2 H2lenl 4t||op || 1
/ 0 dx > 21%||@,|| logn/ e~ Hli@nlllogn 4y
B 0

1/ |n )
+27T2||6.'Jn||logn/ Ao (i —lenl) (= 2y) gy
1/2]|@n ||
WQ G 2 otogn E-lng?
= S(l—e?loem) g —— oo (L—e T e )
- el (1 )

Since ||@,||* — 1 as n — oo, we get that

lim [ 0% dz > 72, (1.57)

n—o0 B1
Therefore, combining (1.54)-(1.57) and calculating the limit we obtain that

2m? N 2 2
2T im 2 > (6 — &) Kr® — (6, ~OR T = Oy )R

’YO n—oo

By the arbitrariness of € > 0, we can let ¢ — 0, thus

3272 72

Yoo 2

contradicting (1.51) and this concludes the proof. m

1.7 Proof of Theorem 1.1.3

Initially, it follows from Lemma 1.4.1 that the functional I satisfies the geometric

conditions of the Mountain Pass Theorem. As a consequence, the minimax level

= inf I(g(t
¢:= inf max (g9(t))

is positive, where I' := {g € C([0,1], E) : g(0) = 0,9(1) = e}. We also have by
Proposition 1.5.3 that the functional I satisfies the (PS). condition. Thus, by invoking

the Mountain Pass Theorem, [ has a critical point uy € I/ at the minimax level c.
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1.8 Bound state solution

This section is dedicated to the proof of Theorem 1.1.4. In particular, we will
prove that any weak solution of problem (1.6) is a bound state solution, that is, belongs
to H*(R"). In order to reach this goal, we will adapt some arguments presented by
Ambrosetti, Felli and Malchiodi in [10]. The lemma below is a direct consequence of

inequalities (1.16), (1.17) and will be useful in the later lemma.

Lemma 1.8.1 Let (V), (K) with a € (0,4), 8 € (a, +00) and v € (0,327%). Then, for
each v € E\{0} with ||v]] <1 and any € > 0, there exists a constant n = n(y,a,a) > 1
independent of v such that

K(z)(e" —1)dz < 8/ (|Av]* + |Vo|* + V(z)v*)dz, for all n > q.

BS, B

c
n

The next result is inspired by arguments in [10, Lemma 11].

Lemma 1.8.2 Suppose that (V) and (K) hold with « € (0,2) and 5 € («, +00). Let
v >0 and u € E\{0}. Then, for any ¢ > 0, there exists a constant R = R(u,v,a,a) >
0 such that

K(z)(e™ —1)dz < 5/ (|Au|* + |Vul> + V(z)u®)dz, for all R> R. (1.58)

By By

Proof . Let R > 1 and ¢ : R, — [0,1] be a smooth nondecreasing function such

that

0, if r<R—RY?
Yr(r) =
1, if r>R
and satisfying
—/ < 2 —1 < 2
Wl < 7o and [¥g] < 50

By using polar coordinates, for (r,6) € [0, +00) x S* we define

;

0, if < R — RY2,

ar(r,0) = S Yp(r)u(2R —r,60), if R—R*?<r <R,

u(r, 0), if r > R.
In the annulus Az = {z € R* : R — R*/?2 < |z| < R}, we have
_ _ 1—
Viig = Gr(r)u(2R — r.0)e, — Dp(r)us (2R — 1.6)e, + U p(r)ug(2R — r.0)e,
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where e, = x/|z| and ey is a unit vector tangent to the unit sphere. Moreover,

Atiy = %E/R(r)u(QR — ) — %ER(T)UT(ZR 1 0) + Do) u(2R — 7, 6)

= Tl )urs (2R~ 1,6) + 5 (r)uan (2R — 7,6)
= (20 + 2Talr) w2 = 16) + (Tl + TT(r) ) 2R~ 1),
Thus, in Ap we obtain
Vig|* < C1|Vu(2R —r,0)” + %uQ(ZR —7,0)
and

|ATg* < Cs|Au(2R — 7, 0)* + %|VU(2R —r,0) + %uz(ﬂ% —7,0).

So, by integrating in Ar and making the change of variable (r,0) — (2R — r,0) we

have

/ |ATig|? < Cﬁ/ (JAul® + [Vul> + R~*?) dz
Ap R<|z|<R+Re/2

< 07/ (1Auf + [Vuf + V(z)u?) da.
R<|z|<R+Re/2
Since ug = u(r, 0) for |x| > R, it follows that

/ |Atig|* < CS/ (|Auf + [Vul® + V(z)u?) dz. (1.59)
Ar

Bg

Analogously, we obtain the estimates

/ |Viig|* < 09/ (IVul* + V(2)u?) dz < 010/ (IVul® + V(z)u?) dz.
AR R<|z|<R+R>/2 B¢,

(1.60)
and

/ V(z)E < Ci / V(e < Ciy / Vizylde.  (1.61)
An R<|z|<R+Ro/2

Bg

Thereby, by (1.59), (1.60) and (1.61), we deduce that

/ |ATig|? + |Vug|* + V(z)uy dz < C/ |Aul? + |Vul* + V(z)u’dz.
Ag B
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Recalling that iz = 0 when |z| < R — R*/? and Tz = u for |x| > R, we obtain
ag|* = / |Augl? + |Vug|* + V(2)uy, dx
R Re/2

< (1+0) / |Aul® + |Vul® + V(z)u*d. (1.62)
By

Since u € F, there exists R = R(u,v) > 1 such that

J

which combined with (1.62) shows that v|[ug||? < 327 for all R > R. Choosing

3272

(18T + [Vaf* + Vi@)i) do = [ (A + [Vuf + V(o)) do < 20

(& C
o By

R = R(u,v,a,a) > 0 sufficiently large such that R — R*/? > 3n, by Lemma 1.8.1 and

for v = ug/|[ug||, we have

K@) — 1)z = [ K@) ™ (FED Z 1y

Bg Bg

< / K(x><evllﬂR||2(|\;§\|)2 _ 1)dLL’

c
R—R%®/2

< 5/ (JAuf® + [Vul® + V(z)u?) dz,
B

}C%
for all R > R. Therefore, (1.58) holds and the proof is done. m

From now on, uy € E will denote a nontrivial weak solution of (1.6).

Lemma 1.8.3 Suppose that (V') and (K) hold with « € (0,2) and 8 € (a, +00). Then,
there exists R > 0 such that for any n € N satisfying R,, = = > R we have

J

Proof . Arguing as in [10, Lemma 17], let y,, : R* — [0, 1] be a smooth function such

3
(|Aug|* + |Vuo|* + V(z)ud)dz < Z_l/ (|Aug|* + |Vuol* + V(z)ug)d.

c C
Rpt1 B,

that

in A,

C
Xn =0 1in Bg,, xn=1inBg,,, |Vxal< inA, and |Ax,| < —
}%n+1 n+1

where A, := {r € R*: R, < |2| < R,;1}. Note that by construction y,uy € E and

therefore
(JAu|* + [Vuo|* + V(2)ud) dz < / (JAug|* + [Vuo|* + V(z)uf) xndz.  (1.63)

A

Rn+1 Rn
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By using ugy,, as a test function in (1.30), since x, = 0 in Bg, and x, < 1, we obtain

/ Xn (|Auo|? + |Vuo|* + V(z)uf) dz
B,
/ (K () f(z,u)Xnto — (AugAxnto + 2Au0V xn Vg + VugVxnug)|de

Rn

< [ K@ do- [

c c
B%., B%

Using Young’s inequality with ¢ € (0, 1), we can estimate the second integral of (1.64)

(AugAxnug + 2AuoV X, Vug + VugVxug) de.

by

/ (AugAxnug + 2Au0V xn Vug + VugVxnug) de

Rn
C? 2C? C?
2 2 2 2 2 2
< /% (5|Au0| + %Uo + 2e|Aug|” + 2 |Vug|” + e|Vuo|® + 6R721+1u0) dx
2 2C? 2
< 3e |Aug|® dz + (e + —3 |Vue|* dz
B, eR, B,
2C? 1+ R%
+ (—%) / V(z)uj dx.
a eR., B,
Fixed € = 1/6, we can choose R, sufficiently large so that

207 1 2C?1+ R% 1

<l g 1 en 1

6+5R,21+1_2 an a eRZ., ~ 2

Therefore,
/ (AugAxnug + 2AuoV X, Vug + VugVxnug) de
B
1
< 5/ (|Aug)? + [Vuo|* + V(2)ud)dz. (1.64)
B

Now, let us estimate the first integral of (1.64). By (1.29), we have

|f(z,s)s| < C(H)|s|(e” —1) forall |s| >R and z € R
for some R > 1. By the previous inequality and Hélder’s inequality, we find

K(z)f(x,up)ug de < 0(7)/ K (z)|ug| (€76 — 1) dx

c
Rn,

1/2 1/2
gcw)( . K(z)u? dx) (BC K(x)(ezwg—l)dx) .

c
BRn
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According to (1.58), we have

K(z)(e? — 1)dz < 6/ (|Au)? + [Vuol* + V(x)ud)dz.
B

c c
BRn Rp

Moreover, if R is sufficiently large then for all n € N such that R, > R, we obtain

K K b(1+ |2|%) _ b(1+ ke )
sup (z) < sup (7) < sup (14 |x|*) < ( +}E ) — B(R)
z€Bg V(ZE) z€B¢, V(:E) vE€Bg a(l + |ZL‘|5) a(l + R/B)
and hence
K(v)ug dz < B(R) V(z)ug dz.
B, Bg,
Therefore,

K(x)f(z,up)ug dx < C’(V)BI/Q(}?)/ (|Aug)? + [Vuo|* + V(2)ud) dz. (1.65)

C c
BRn BRn

Since 3 > a, one sees that lim B(R) = 0, which implies that C(7)B(R) < 1/4 for
R—+00
R > 0 sufficiently large. Thus, combining (1.63)-(1.65) we finished the proof. m

Let us see the last result before proof of Theorem 1.1.4.

Lemma 1.8.4 Suppose that (V') and (K) hold with o € (0,2) and 5 € (a, +00). Then,
there exist R > 0 and C' > 0 such that, for any o > 2R, there holds

o(2—)/2

/ (|Au0|2 + |Vuo| + V(m)ug) dz < C’e(log%)
B

Proof . Let R and (R,) be as in Lemma 1.8.3. Considering ¢ > 2R, there exist

ni,ne € N, ny > ny such that
R, <R<R,4u and R, 1 <0<R,
and then
Ny —ng = RZ/12 _ RE=0)/2 5 ((2=0)/2 _ p2-a)/2 5 R(o(=e)/2 _ 1) 5 9

ng ni

for R > 0 sufficiently large. Hence, ny — nq > 3 and in particular Ry,—2> Ry 11> R.
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By Lemma 1.8.3, we have

/(|Au0|2+|Vu0]+V(x)u(2)) dxg/ (|Auol? + [Vauo| + V(2)u2) da

anfl

< (|Auo|?® + |Vuo| + V(z)ug) da

7L22

\

ng—ni— 2
(|Aug|?® + [Vuo| + V(z)ud) dz

n+1

A~ w

IA

IN
/\ N R

6

—_

|
)
ello

|
© |

3)(9(2 a)/2_ R<2 a>/2/ (|Au0|2—|— ]Vuo\ —H/(x)u%) da
i

— C’(R)e(logi)gwaw/ (JAug|? + [Vuo| + V(x)ud) da.

which proves the lemma. m

We highlight that the following proof is inspired by [64, Theorem 1.11], which
in turn simplifies the proof given in |10, Theorem 16| by not using Borel’s finite cover

Lemma.

Proof of Theorem 1.1./: Since ug € E, for any x € By we have

1+2¢
/ ugdxg( i )/ V(2)ug dz < oo.
BQ B2

a

In order to conclude that uy € L*(R?), it is enough to prove that [, u dz < oco.
2
Let ¥, :={x € R*: 27 < |z < 27"} for j € NU{0}. Since

27V () > (1+ [2]")V (@) > a

on X;, we get

2(i+2)a 9(j+2)a
/ ud dv < - / V(z)ug dr < - / (|Aug|?® + |Vuol* + V(2)ul) dx
> s

J X

/ | (|Auo|2 + |Vu0|2 + V(x)ug) dz

i
9 +2)ex

IN

a

and it follows from Lemma 1.8.4, taking o := 27 > 2R, that

(7+2)ex
/ ug do < 2 Cellos )22 (1.66)
N - a

J
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Therefore, there exists an integer jo, > 0 such that (1.66) holds for all 7 > jo+ 1. Hence,
0 Jo 0
/ugdm:Z/ugdx:Z/ugdm—I—Z/ugdx
B j=17%j j=17%j 5

[ .
2 J=jo+1

Jo o0
C . 3\o(2—a)j/2
2 - (J+2)a (10g—)2( )i/
< E /2 ug do + , g 2 e\t < 00
j=1"%;

Jj=jo+1

since o € (0,2) and log% < 0. This completes the proof.
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Chapter 2

On a biharmonic Choquard equation

involving critical exponential growth

In this chapter, we will study the solvability of the following biharmonic Choquard

equation:
A’u— Au+V(z)u = [|z| 7 * (K(z)F(z,u)] K(z)f(z,u), z € R,

where the functions V and K may decay to zero at infinity like (1+ |z|*)™!, a € (0,4),
and (14 ]z|%)71, B> (8 — u)a/8, respectively and p € (0,4). The nonlinear term f is
a continuous function that behaves like €70%* at infinity, for some Yo > 0 and F' is the
primitive of f. By establishing a weighted version of the Adams inequality involving
V and K, we investigate the existence of nontrivial solutions for the problem above.
Furthermore, we establish that the nontrivial solution is a bound state solution when

a€(0,2).

2.1 Introduction and main results

This chapter concerns the existence of solutions to the following fourth-order
elliptic equation:

A*u— Au+V(z)u = [|z|™ = (K(z)F(z,u)] K(z)f(z,u), z€R (2.1)

where V' and K are positive continuous functions, which can vanish at infinity, f

is a nonnegative continuous function with critical exponential growth at infinity (see



Definition (2.8)), F is the primitive of f, * denotes the convolution operator and
pe (0,4).

Equations like (2.1) arise in various branches of applied mathematics and physics,
see [34, 35, 36, 55| and references therein. For instance, part of the interest is becouse
solutions of (2.1) are related to the existence of solitary wave solutions for Schrodinger

equations of the form

19 = A% Ay W — [fa] (K ()P, 0)] K (0)f (2, ),

where ¢ : R x R* — C is an unknown function and W : R* — R is the potential
function. For the physical interest in the influence of the biharmonic term in nonlinear
Schrodinger equations we can cite [24] and references therein.

Motivated by these physical aspects, Equation (2.1) has attracted a lot of at-
tention from many researchers and some existence and multiplicity results have been
obtained. In [69], Yang considered a class of nonhomogeneous problems and studied
the case where the potential is bounded from below by a positive constant and satis-
fies the integrability condition 1/V € L'(R*). Generally, the conditions imposed on
the potential V' are to overcome the loss of compactness of the Sobolev embedding
H?(R*) — L5(R*) for s > 2.

Miyagaki et al. [19] studied the existence of ground state solution for fourth-order

elliptic equations of the form
A%~ Autu = Q)(fi(u) + fo(w) in R

where f; is a continuous nonnegative function with polynomial growth at infinity, f; is a
continuous nonnegative function with exponential growth and () is a positive bounded
continuous function that can vanish at infinity in the sense that if {4, } is a sequence
of Borel sets of R with sup,,cy |An| < R, for some R > 0, then
lim Q(x)dx =0, uniformly in n € N. (2.2)
=20 J A,,NBS(0)
Recently, Chen and Wang in [20] studied the existence of a normalized ground

state solution for the following biharmonic Choquard-type problem:

A’y — BAu = du+ (I, F(u))f(u) in R

lu|*dz = ¢,

R4
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where § > 0 is small, ¢ > 0, A € R, [,(xz) = 1/|z|* with u € (0,4) and f has critical
exponential growth, among other standard conditions. For others related results with
(2.1), we would like to mention the works [19, 33, 77].

The present work has been motivated by some aforementioned works and by a
paper due to Shen, Radulescu and Yang [64] that studied the existence of solutions for

a class of Schrédinger equations of the type
At V() = [Ja] # « (K ()G()] K(x)g(u), =€ B,

where the potential V and the weight K may decay to zero at infinity like (1 + |x|*)™!
and (1 + |z|?)~1, respectively, for a € (0,2), 8 > (4 — p)a/4, p € (0,2) and G is the
primitive of g, which fulfills a critical exponential growth in the Trudinger-Moser sense.

Therefore, inspired by |30, 64|, throughout this work we will assume the following

hypotheses on the functions V' and K:

(V) V € C(R*) and there exist «, a > 0 such that V(x) > for all x € R%;

1+ |x|«

b
(K) K € C(R?) and there exist 3,b > 0 such that 0 < K(z) < TP for all z € R™.
T

We observe that the above conditions allow that V' and K to vanish at infinity.
For the study of problem (2.1) involving the biharmonic operator it will be necessary
to enlarge the range of variation of the constants o and 5 adopted in [64]. Precisely,

we will assume the following conditions:

(8 — )
8

0<a<4 and a§B<oo, with p € (0,4). (2.3)

Next, we will introduce some notations and definitions that will be used through-

out of the chapter. Consider the space defined as follows
E = {u € L. (RY) : |Vu|, Au € L*(R*) and /IR V(z)u*dr < oo}
endowed with the inner product
(u, V) := /R4 (AulAv + VuVo + V(x)uv) dx

and its corresponding norm

1/2

Julli= | [ (au 4 1902 + Vi) da
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We use the notation | - || »(r4 i) for the norm of the weighted Lebesgue space

L’(RYK) = {u : R* — R : u is measurable and K(z)|ulPdx < oo} ,

R4

1/p
that is, [Jul|r@s k) = (/ K(x)|u|pdx) .
R4

In this context, we can establish the following weighted version of the Adams

inequality:

Theorem 2.1.1 Suppose that (V'), (K) and (2.3) hold. Then, for all v > 0 and any
u € E we have

K%(.I')(G’WQ —1)dz < oo. (2.4)
R4

Moreover, if we consider the supremum

<oo if ve€(0,32n%);

2.5
+oo  if v > 3272 (2:5)

{ueE : ||u||<1} JR4

sup Kf%t(a:)(ewz —1)dz = {

To control the nonlocal term |z| ~#x(K (x)F(x,u)), we need the well-known Hardy-
Littlewood-Sobolev inequality, which we state in RY and that will play an important

role in this chapter.

Proposition 2.1.2 (Hardy-Littlewood-Sobolev inequality [/, Theorem 4.3]). Suppose
that s,r > 1 and 0 < u < N with % + &+ % =2, g€ L*(RY) and h € L"(RY). Then,
there exists a sharp constant C' = C(s, N, u,r) > 0, independent of g and h, such that

[ Jal s g(@lha)az < Cllgl. ], (2.6

As an application of Theorem 2.1.1 and Proposition 2.1.2, we will investigate the
existence of a weak solution for problem (2.1). We say that u € F is a weak solution
for (2.1), if for all v € E it holds the equality

/ (AuAv+ VuVo+V(z)uv)dz = / [lz| ™% (K (z)F(z,u))]K(x) f(z,u)vdz. (2.7)
R4 R4

We are interested in the case that the nonlinearity f(z, s) has the maximal growth
which allows us to study (2.1) by using a variational framework considering the space
E. More specifically, we assume sufficient conditions so that weak solutions of (2.1)

become critical points of the functional I : F — R defined by

I) = 5lhal? = 5 [ el « (K@) PG )} @) (o) do
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where F(z,s) := / f(z,t)dt (see details in Section 2.5). Precisely, we say that f(x,s)
0
has critical exponential growth (at infinity) if there exists vy > 0 such that

0, for all v > 7y,
im L8 " (2.8)

sl—4oo €757
et € +oo, for all v < 7,

uniformly in z € R*.

Now, we can to establish our main assumptions on the nonlinearity f(z,s):

(f1) f € C(R* x R), f has critical exponential growth, f(z,s) = 0 for all (z,s) €

R* x (—00,0] and f(z,s) = o(s 1) as s — 0T, uniformly in = € R%;

(f2) 0 < H(x,t) < H(x,s) for all 0 < t < s and for x € R*, where H(z,u) =

(f3) F(z,s) > 0 for all (z,s) € R* x [0,400) and there exist constants so, My > 0
such that

0 < sF(z,s) < Myf(z,s), for all s > sy and z € R*;

F
(f4) liminf (=,5) := [y > 0, uniformly in z € R%.

s—sto00  e0s*

We are ready to state the main existence results of the present chapter. The first

theorem is the following:

Theorem 2.1.3 Assume (V) and (K) hold with o € (0,4) and 8 > (8 — p)a/8. If f

satisfies (f1) — (fa), then (2.1) admits a nontrivial weak solution in E.

In the next result, by restricting the range of o, we will show that the solution
obtained in Theorem 2.1.3 is in L?(R*) and thus belongs to H?(R?), that is, the solution

is a bound state.

Theorem 2.1.4 Suppose that (V) and (K) hold with o € (0,2) and > (8 — u)a/8.
If f satisfies (f1) — (f4), then the solution obtained in Theorem 2.1.3 is a bound state
solution of (2.1),

Compared to the works cited above, the main novelties of our work are the fol-

lowing;:
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(1) Theorem 2.1.1 is a weighted version of the well known Adams inequality, see The-
orem 2.2.1 below. We highlight that inequality (2.5) in Theorem 2.1.1 treats only the
subcritical case (v < 3272). The critical case v = 3272 is still an open question. The
technique exploited here uses suitable cutoff functions, which restrict some estimates

in the derivatives and hold only when v < 3272,

(77) naturally Theorem 2.1.1 can be used to extend results in the literature for potentials
that may decay at infinity. For example, concerning the work [64], we seek to improve
the hypotheses considered in the study of the existence of solutions, namely, we use
(f2) instead of the well-known Ambrosetti-Rabinowitz condition. This generated an
additional difficulty to prove the boundedness of Cerami sequences (see Lemma 2.7.2).
Moreover, by using condition (f;), we present a simplified proof of the minimax level

estimate (see Lemma 2.6.1);

(7ii) we prove a compactness condition for the Euler-Lagrange functional associated
with Equation (2.1) (see Lemma 2.7.3), which is generally very delicate to obtain for
problems involving critical exponential growth and potentials vanishing at infinity.

Moreover, we are not requiring that the functions V' and K be radial;

(1v) as far as the authors know, Theorem 2.1.3 has not been obtained yet even for
the case where the potential V(x) is bounded from below by a positive constant or
coercive. In this sense, our results complement the papers |63, 49, 69]. Furthermore,

Theorem 2.1.1 extends some results in [30, 64] to the biharmonic operator;

(v) since a € (0,4) and f > (8 — u)a/8, assumption (K') addresses situations where
the function K5 is not integrable, that is, it does not satisfy a condition like (2.2),
which has been used in many works such as |12, 22, 19, 75]. Moreover, when a € (0, 2),

we managed to prove that the solution obtained is a bound state.

The outline of the chapter is as follows: in Section 2.2 we present some results that
will be used throughout the chapter. Section 2.3 is devoted to the proof of Theorem
2.1.1 (a weighted Adams inequality). In Section 2.4 we prove two consequences of
Theorem 2.1.1. First, we prove a version of the Concentration-Compactness Principle
due to P.-L. Lions [15] to the space E (see Proposition 2.4.1) and then we prove that
the embedding £ — L%(R‘l, Kﬁ) is compact for all p > (8 — u)/4 (see Proposition
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2.4.2). Section 2.5 contains the variational framework related to problem (2.1) and we
also check the geometric properties of the functional I. In Section 2.6, we estimate
the minimax level associated with I. Section 2.7 deals with the Cerami compactness
condition. In Section 2.8, we complete the proof of Theorem 2.1.3 and in Section 2.9

we prove some auxiliary results and Theorem 2.1.4.

2.2 Preliminary results

We initially bring some results from the literature that will help us. First, we

recall the well known Adams inequality [2, Theorem 3| for bounded domains in R*.
Theorem 2.2.1 Let Q) be a bounded domain of R*. Then, there exists a constant C' > (
such that
2 <C|Q ify <3277,
sup / e’ dx
{(ueH2(Q) : || Aul2<1} JQ =400 ify > 3272
The second result is due to [17, Theorem 2.2], who have proved in dimension four

the analogous of the Adachi-Tanaka inequality [1] for the space H?(R%).

Theorem 2.2.2 For any o € (0,327?), there exists a constant C = C(a) > 0 such
that

(€ —1)de < Cllull?, for all u € H*(RY) with |Aulls < 1,
R4

and this inequality is false if o > 3272

The next result is similar to |71, Lemma 4.1].

Lemma 2.2.3 There exists a constant C > 0 such that for ally € R*, R > 0 and any
u € H§(Bgr(y)) satisfying || Aul| 2y < 1, there holds

/ (2 — 1)dx < CR4/ | Aul*da.
Br(y) Br(y)

Proof . Let @ := r——*—— with u # 0 and [|Aul|z2(p,()) < 1. Then

12wl 2 (5 5wy

(3272)%|| Aul|?s |11|2’“ _
m2u? L2(Br(y) o202
e - E X =) < HAUH%%BR(@,))(@M —1). (2.9)
k=1

Note that @ € H(Bgr(y)) and ||Ad|y = 1. Thus, it follows from Theorem 2.2.1 that

/ (™% _ 1)dz < CR.
Br(y)

Therefore, integrating (2.9) in Bgr(y) and using the previous inequality, we obtain the

desired result. m
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2.3 Proof of Theorem 2.1.1

In this subsection, we prove our weighted version of the Adams inequality.
Proof . We will start by proving the first part of (2.5). The proof will be divided into

two steps.

Step 1: Set u € E be such that ||u|| < 1. First, we want to estimate the functional

A(u, i, 7, R) = | Ko7 (2)(e™ — 1) da

Br
for some R > 0, independent of u, that will be chosen during the proof. From condition
(K) we get
/ K57 (z)(e™ —1) dz < b5# / (e —1) da. (2.10)
BR BR

Consider a cutoff function ¢ € C§°(Bsyg) satisfying the conditions
. : c . c .
0<¢<1inByg, p=1in By, |Vy|< 3 in Bag and |Ap| < Tz in Bog, (2.11)
for some constant C' > 0. Now, notice that
Alpu)]* = |Ap*u® + 4(pAu)VeVu + 2(pAu)ulp
+4(V - Vu)? + 4VeVu(ulp) + |Aul?o?

and by Young’s inequality a;b; < ea?+e71b?, with e € (0,1) and a1, b; > 0, we estimate

2

2
/ |A(pu)|* dz < 04/ uzd:z:+45/ | Aul*dx + 02/ |Vul*dz
Bar R Bar Baog R

2C? 4C*
+ 25/ |Aul*dz + = wide + — |Vul*dx
eR* R?
Baogr Bor Baor
4eC? 4C*
+ = Vul?dr + — w?de + | Au|*dz
R* Jp eR' Jp B
2R 2R 2R

4C% AC? 4eC?
=(1+6 Aul? d Vul? d
(—i—a)/BQRI ul x+(sR2+R2+ R2)/BQR| ul” dz

+ 0—2—1-6—02 / u? dz
R*  eR*) Jp,. ’

Thus, by (V) we have V(z)(1 + (2R)*) > V(z)(1 + |z]|*) > a > 0 for x € By and

therefore

4C* 407 4502
/ |A(pu))? do < (1 + 66)/ |Aul? dz + (5R2 7 ) / \Vul|? dz
BQR BQR B2R

21 (2
+(1+ >C all R / V(x udx
Bar

20




Fixed ¢ € (0,1) such that (1 + 6¢) < 3272 and since o € (0,4), we can choose
R = R(e,a,a) > 0 sufficiently large such that

1\ 4C? 6\ C21+ (2R)"
<1+€+g)ﬁ§1+68 and (1+E>FT§1+68,

for all R > R. Consequently,
/‘|A@mFdx§(L+&MMF§1+6a
Baog

1

Therefore, defining v := pu/v/1 + 6¢, we obtain |Av||3 = 56
£

/ |A(<pu)|2 dr <1
Bar

and by invoking Theorem 2.2.1, we reach

/ (e —1)dax = / (7 —1)da < / 1046 4 < CRY,
Br Br Baog

This combined with (2.10) implies, for all u € C5°(R*) with |lul| < 1, that

Kﬁ(m)(eW2 —1)dx < b5 / (e —1) dz < CR*. (2.12)
Bgr Br
Step 2: Let us to estimate A(u, p,v, R) = Kﬁ(m)(eW2 — 1) da for some R large.

Bg
For any fixed n > n, with n € N to be chosen during the proof, we consider B¢
the exterior de B,, and the covering of By formed by all annuli A7 with o > n defined
by

A2 ={zeB:|r|<o}={r eR" :n< 2| <0}

Besicovitch covering Lemma [25] ensures that for any o > i, there exist a sequence of

points (zx) € AZ and 6 > 0 universal constant such that

a 1/2 1/2 1 ’$k|
A? C LkJU,/ , where U>:=B <xk,§? :
ZxUk(m) <@ for any z € R* where U, :=B (:L‘k, @)
k

and xp, is its characteristic function. Let u € C§°(R?) be such that ||u|| < 1. We start
with the estimate of the weighted exponential integral of w in A§, with n > n and
o > 3n. Observe that
Az, c Az clJu?
k

ol



and defining the set of indices K,,, := {k € N : U,i/Q N Bs, # 0 }, we have

A, | v

k‘eKn,o'

and hence we obtain the following estimate:

/ K%(x) <67“ — 1 dz < Z / K5 w( ew2 — 1) dz. (2.13)
o 1/2
3n keEKn,
Since 2|xy| < |y| < 3lax| for all y € Uy, from (V) and (K), we deduce
Vig) > —2 > ¢ for all y € U, (2.14)
Yy) = = o ) r Yy k .
Lyl = 14 (3)" |al®
and
Ky <—> <Y forall yeU (2.15)
y) < < , for all y e U. :
L+yl? = 14 (%)’B EE
Furthermore, if Uy, N BS,, # () then U, C BE, implying that
U u?c |J nnc B CB. (2.16)
keKn,U keKTL,U
Let us fix k € K,, ,. From (2.15), we obtain
_8 2 bs=r 2
K3 (x) (ew — 1) dz < S / (e —1)dux. (2.17)
1/2 m 1/2
Ut/ |:1+() |k|’8}8 Ut/
Consider now a cutoff function ¢ € C5°(Uy) such that
C C
0< <1 inU, ¢r=1in U,i/2, Vr| < ﬁ in Uy, and |Agg| < |—|2 in Uy,
T L
for some constant C' > 0. Proceeding as before, we have
4C*  4C* 4eC?
|A(ppu)|? do < (146¢) [ |Aul* dz + < 5 5 2 2) |Vul? da
Uk Uk elel*  faxl* - fxnl? ) Ju,
C? 6C?
+ ( 1T 1 )/ u? dz,
k|t lalte ) Ju,
and in view (2.14) it follows that
4C*  4C*  4eC?
|A(ppu)? do < (1+6¢) | |Aul* do + ( 5 5 c 2) |Vul? do
U Uk elee? - fekl? ) Ju,
6\ C2 1+ (3)" |l
+ (1 + —) —M V(z)u? dz.
e) a || o



Since k € K, ,, in view of (2.16), we obtain z; € BS. Once a € (0,4) we can choose
n = n(e,a,a) > 0 sufficiently large satisfying

1\ 4C? 6\ C21+ (2)" |zx|*
ldtedt - <1+4+6: and (14— —M§1+65,
e ) |zgl? 5

for all k € K,,, and n > n. Hence,

|A(ppu)? dz < (14 6¢)||ul®* < 1+ 6¢.
Uk

Therefore, setting vy = pru/v/1 + 6 we have

1

Avgl2 = ——
N

/ |A(gpku)|2 dz <1.
Uk

Fixed € € (0,1) such that (1 + 6¢) < 3272, by applying Theorem 2.2.2 we obtain

/ (¢ —1)de = / () — 1) da < / (0H0ME 1) dz < C | gl da
U2 u,”? R *

By the previous inequality, the definition of vj, and (2.14) we get

1+ ()" x|
/ (e —1)dz < ¢ / u? do < O _14(3) sl / V(z)u*dr. (2.18)
Ui/ 1+ 6e Jy, Uy,

— 14 6¢ a

By estimates (2.13), (2.17), (2.18) and in view of (2.16), we have

8 o
bs-w 1+ (3 o
K5 (z) (e'VUQ—l) dr < < 06 - (3) I - / V(2z)u? dz.
A, 4+ 0 a Iy <1+ (%)6‘$ |ﬁ) 8—n JU
8 «Q
C b5 1+ (3 @
< > AT ey,
1+6e a 2\ B 8- JBe

By using again (2.16), we deduce

é o o 4_1 @ (07
1+ (3)" |zl < B, := sup L+ (3) " le] ——, forall ke K,,

_8
(14 () k)™ ) )

and therefore

8
2 bs-n
K%(:c) <€7u — 1) dzx < i

C
/ B, E / V(z)u*xy, dz.
A, kE€Kp,q ¥ Pn

— 146 a o

Applying the Besicovitch covering Lemma, we have

_8
b5

= et < 2
" K5 (z) (e 1) dz < 56 a Bnﬁ/% V(z)u® dz.
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Taking 0 — oo, there exists 7 = (e, a, ) >> 1 such that

K%(CI)) <67u2 _ 1) dr < CbéSSuBnQ/ \ V(l’)uz dx

Bg’!L L
< CbvrB0|ul? < CbB.Y, (2.19)
for any n > n. Notice that
14 (4" pe 0, if B> B—pa
lim B, = lim +< ) s (2.20)
B

n—o00 n—o0 (

AL P
Therefore, from estimates (2.12) and (2.19), we prove the first part of (2.5).

Next, we will now prove the second part of (2.5). Consider the Moser’s sequence

w, defined by

V lgig \/327r210gn| |2 \/327r210gn for |l‘| < %7
0 = 1 1 1
W () mlog ah for - < |z <1,
\Cn(m), for |z| > 1,

where (, is a smooth function compactly supported in B, and satisfying ,|op, =
Cn|832 = 07

G = ! aC"|(9B2 =0 and (,, |V, AG, are all O(1/4/logn).

8 ’831 /—87T21Ogn7 ov

Observe that @, € E for any n € N, and straightforward calculations show that

|5a]l3 = O(1/logn), [IV@ll; = O(1/logn) and [[Adn[lz =1+ O(1/logn).

Besides, by (V) it follows that [|@,||*> = 1+ d,,, where &, — 0 and 8, = O(1/logn), as

n — 0o. Setting

&

oy 1= (2.21)
[<on |
1
we have w,, € F and ||w,|| = 1. Notice further that w,(z) > | ;gQ for all z € R*
7r
with |z| < 1/n. Defining K := min K (), we obtain, for all v 327T , that

IEBl

~ ~ logn
/ K= (z)(@ = V)de > K= [ (% —1)dz > Ko / (eTen® 572 — 1) dg
R* Bi/n 1/
7'('2 ~ 8 Y logn
= — K8 (enmmﬂ w2 — 1) — 00,
2n4

o4



as n — oo and therefore

lim [ K% (x) (awi - 1) dz = +oo. (2.22)

n—o0 R4

Since

_8 2
sup K&u(x) (ew — 1) dz >
Hzﬁfl R*

the result can be obtained from (2.22).

K%({L’) (67“”% — 1) dz,

Rél

To finalize the proof, it remains to show that (2.4) holds. In this way, for ally > 0
and u € E, using the density of C5°(R*) in E, there exists ug € C5°(R*) such that
lu—wuol| < 1/\/7. Since u® < 2(u—ug)*+2ug, choosing R > 0 such that supp(ug) C Bk,

we get

Kﬁ(m) (67“2 - 1) dzr < Kﬁ(x) (627(“_“0)2627“(2) — 1) dz

R4

2 Ju—ug|®
S l\/ KSEH (,’L‘) 64'}/”“7“0” HuquOH . 1 dl‘ + 1/ KSEH (x) <64'7’U% . 1) dx
2 R4 2 BR

Hence, using (2.5) and once 4v||u — ug||* < 4 < 3272, if follows that (2.4) holds. Thus,

R4

the theorem is proved. m

2.4 Some applications of Theorem 2.1.1

The next result is a Lions-type concentration-compactness principle (see [15]) and
the proof follows the same lines as in Lemma 2.6 of [32]. This result will be crucial to
show that the functional I satisfies the Cerami compactness condition.

Proposition 2.4.1 Suppose that (V), (K) and (2.3) hold. If (u,) C E satisfies ||u,| =
1, foralln € N, and u,, = v in E withu € E and ||u|| < 1, then for allp € (0 ﬂ)

T 1= ull?
we have
sup Kﬁ(x)(ep“% —1)dz < 0. (2.23)
n R4
Proof . Since u, — v in E and ||u,|| = 1, we have

3272
[un — ull® = [Jun]l* = 2(un, u) i + Jull* = 1= Jlull* < :

For n € N enough large, we get p||u, —ul|* < v < 3272 for some v > 0. Choosing ¢ > 1

close to 1 and € > 0 small such that
pa(1+ &%) |lun — ull* <,

%)



by Theorem 2.1.1, we obtain

K5 (z) (e”q(1+52)(“”‘“)2 — 1) dz

R4
— [ K (@) (PO (125)"  1)de
R4 (2.24)
_8 V(|un*u‘)2
< K& (z)(e\Tun=ul) — 1)dz
R4
<C.

By using Young’s inequality, it follows that ab — 1 < % + brT—_l for 1/¢g+ 1/r = 1.
From this and since pu? < p(1 + €2)(u, — u)? + p (1 + %) u?, we have
e — 1< (ep(1+€2><"n—“)2e”(”a%)?ﬂ) —1

<! < pa(1+e)(un—u)? _ 1) e (ew(lm%)“ - 1) |
q r

(2.25)

Therefore, inequalities (2.21) and (2.25) imply that

K& (x) <ep“$l - 1> dz < 1 K&(m) (epq<1+€2)(“”_“)2 - 1> dz

R4 q Jpr4

+ 1 K57 () (em(lt%)“Q — 1) dr < C,

T JRra
for n sufficiently large, completing the proof. m

Finally, we establish the following compactness result:

Proposition 2.4.2 Suppose that (V'), (K) and (2.3) hold. Then, for all p > 877“, the
embedding
8p
E < Lo (R K57) (2.26)

is continuous. Moreover, if the condition (2.3) is replaced by

(8 — pa

O<a<4 and (> 3

, where 0 < p <4, (2.27)

. 8—
then the above embeddings are compact for every p > 5.

Proof . Let u € E. By condition (K), it follows that

8—pun

8
bl w =( Kmstzdx) Tl s . (228)
& = B L8=# (Bg)

26



Now, from the embedding H?(Bg) < L(Bg) for all ¢ € [1,00), we have H?(Bg) —
L5 (Bp). Thus,

1
2
Hu|| 8p S CIHUHHQ(BR) = Cl (/ ’AU|2 + |VU’2 + u2dx>
R Bgr

<G (/ |Aul? 4+ [Vul* + <1 A > V(a:)qu:c) ) (2.29)
Br a

< ( [ 18w+ vl + v<x>u2dx) = Collullgan
Br

where we have used that V(z) > ﬁ > for x € Bg. Tt follows, from (2.28) and
(2.29), that

lull | & s < Cllullpsg).

L8=r(Bg,K8H)

Therefore,
s s 8
B, < H*(Bgr) =< L%#(Bg) < L% (Bp, K¥#)

B

showing the compactness of the embedding in a ball Bg.

Now let us see the compact embedding in Bf for R > 0 sufficiently large. Let
(u,) be a sequence in F such that w,, — uw in E. We will show that u,, — u in
Lo (BG, K %) after passing to a subsequence if necessary. Without loss of generality,
we may assume that u = 0.

Using the fact that for any ¢ € [2,00), there is C, > 0, such that |u,|? <

Cq(euzn — 1) and that i—pu > 2, proceeding as in the proof of Theorem 2.1.1, we obtain

Ko@) do £ G [ KR ()(e — 1) do
Ag, 8
8

= 1 4_1 o «
< Cp#bg - Z + ()" Il 8/ V(z)u2 xu, dz.
a keKn.o <1 4 (é),@ |l’k"8> 8- JB

c
n

From Besicovitch covering Lemma and the definition of B, letting 0 — oo we have
8 8p bﬁ b%
K55 ()|t |3+ do < Cp ,——B,0 V(z)uZ, de < Cpi——B,0||uml|?, (2.30)
Bs,, a By, a
and provided that u,, — 0in E, we get ||u,,|* < C, for some C' > 0 and for all m € N.

Thereby,
8
8—pn

"B,6.
a

b
K5 () |um |55 dz < G,
B3,

o7



Since [ > %, by (2.20), for all € > 0 there exists my > 0 such that
8 Sp
/ K5 (2)|uy|3-+dz < ¢,
Bg,
for all m > mg. Consequently, we conclude that u,, — 0 in L%(B}},KB%N), ending

the proof. m

2.5 The variational framework

The purpose of this section is to prove some geometric properties of the Euler-

Lagrange functional I : E — R associated to problem (2.1) given by

1) = 3l =5 [ [l 5 (K@) F (@, )| K (@) Pl ) o

First, notice that by (f1), for each v > 79, ¢ > 0 and ¢ > 1, there exists C' = C(v, q,¢) >
0 such that
[f(z, 9)| < els] T + Ol (e — 1) (2.31)

and

[F(z,s)| <els|'T +Cls](e? = 1), (2.32)

for all (z,s) € R* x R. We will verify that I is well defined on the space E. Indeed,
given u € E, from (2.6), (2.32) and the continuous embedding E — L2(R%, K57 ), we

have
/RZLHIB‘_”*(K(@F(%U))]K(x)F(x,u) da

< c( 3 K55 (z)F5r (2, u) dx)

< C (/R K5 (z)|u] © 5r dx) (2.33)
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By using Hoélder’s inequality with p > 1 and 1/p+1/p’ = 1, the continuous embedding
E < L3556 (R, K57 ) and (2.4), we get

8—p

5 T
( K55 () |ul 57 (577" — 1) d‘f)
]R4

8—p 8—pu
pq Ap P 2 ap”
< ( K5 (2 )|u|88ud:)3) X ( K5 (z)(esa® — 1) dx) (2.34)

8p
Ap’
<l (/ K& a ( e%qﬁ - 1) dx) " <.

Thus, from (2.33) and (2.34), we reach

/R4[|$|_“ x (K(x)F(z,u))]K(z)F(x,u)dz

8—pu (235)
8~ 8 syp’ 2 4p’

<Cllul| = + Cul* (/ Ks(x)(es=+" —1) dx) < 00.

R4

Consequently, [ is well-defined and by standard arguments we can see that I &

C'(E,R) with

(w0 = [ (BusosTuTory () do= [ [l #x(K ) o) K (e) o, wpuda,
R4 R4

for all u,v € E. Hence, a critical point of I is a weak solution of problem (2.1).

The geometric conditions of the Mountain Pass Theorem for the functional [ are

established by the next lemma.
Lemma 2.5.1 Suppose that (V),(K), (f1), (f1) and (2.3) hold. Then
(1) there exist T,p > 0 such that I(u) > 7 for all ||ul| = p;

(11) there exists e € E, with ||e|| > p, such that I(e) < 0.
Proof . (i) In view of (2.35) and (2.5), it follows that
/ (] 5 (K (2) F(, w)) K (2) F(,u) dar < Gy [Jul] = + Cajul|*
R4

for all u € E with ||ul]| = p, where p’ > 1,¢ > 1 and p > 0 satisfies %'yp’pQ < 3272
Hence,

1 8—u 1 a-p _
10 2 gl = Cullul® = Gl = ul? (5 - Cullal 5" = CalllP2).

Therefore, choosing p > 0 sufficiently small such that 1/2—Clp4% —Cyp*la1) =5 > 0,

we get I(u) > p?oc =: 7 whenever ||u|| = p and item (i) is proved.
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(77) Consider a nonnegative function u € C§°(By) \ {0}. Denoting by K; = m%l K(x),
TED
we have

/R4[|IE|_M x (K (x)F(x,tu))]K(x)F(x, tu) dz

_ /B ( i K(y)wdy> K(2)F(z, tu)dz

|z — y|»

K? ?
> 1 </ F(a:,tu)da:) :
24 B

Hence, by (fy) it follows that

t2 2 }<12 ?
< -
I(tu) 5 [|u| St (/1 F(x,tu)dx) — —00

as t — +o0o. Setting e = tu with ¢ large enough, the proof is complete. m
From Lemma 2.5.1, the functional [ satisfies the geometric conditions of the

Mountain Pass Theorem. As a consequence, the minimax level

cy = inf max I(v(¢)) (2.36)

v€T t€[0,1]

is positive, where I' := { € C([0,1], E) : v(0) = 0, I(y(1)) < 0}.

2.6 The minimax level

In this section, we prove an estimate for the minimax level c;; associated to the
functional /.
Lemma 2.6.1 Suppose that (V),(K), (f1),(fs), (f4) and (2.3) hold. Then

212(8 —
_ (8 —p)
Yo

CyM

Proof . It is enough to prove that there exists n € N such that

2m2(8 —
max [ (tw,) < M,
20 Y0

where w, is defined in (2.21). Arguing by contradiction, we assume that

2712(8 —
max [ (tw,) > M,
t20 Yo

for all n € N. Then, for each n € N, let £,, > 0 such that

21 212 (8 —
b L s (K () P o)V () F (5, b)) s = max I(hwy) > 2~ #)
2 2 Jp £20 Yo

60



Since F(x,t,w,) > 0 for all z € R?*, we obtain

47?(8 —
2 > u, for all n € N. (2.37)
70

At t =t,, we have

d
a[[(twn)]]t:tn =t, — / |z| 7 % (K (z)F(x, tywn)) K (x) f (x, tyw,)w, dz =0,
R4
which implies

= |z| ™« (K (x) F(x, thwn) ) K () f (2, thwy ) thw, do, for all ne N (2.38)
R4

Now we will prove that (¢,) is bounded sequence. Indeed, in view of (f3) and (fy), for

all € € (0, fp), there exists R = R. > 0 such that

F(x,8)f(z,s)s > My (B — ¢)*s? 205" for all s > R. (2.39)
Since
tn logn
tnwn(T) 2 7= fi Bim 2.40
wp () oV s or v € By (2.40)
and
tn logn

ku 32 — +00 as n — oo,
n

we conclude for € By, that t,w,(r) — oo as n — oo. Taking n € N sufficiently

large such that t,w,(z) > R for all € By, and using (2.38)- (2.40), we reach

2> / 2 5 (K (2) P, o)) K (@) f (@, boon )i d
Bi/n

F tnn

ZK%/ / —(y, w )dy [z, thwn ) tpwpde
—yle
Bijn \YBi/n |z =yl

> My '(Bo — ¢)? (tnwn>2€270(tnwn ki /
Bl/n Bl/n

t logn logn
> Mt n 7Ouw 12 4r? KQ/ / dyd
2 My (Ao —e) (n n||) (w) oo o g e

4 +2
™ o 2 n logn Yo w”QIO;gﬂn
= Qu+2p8=1 M, (60 5> K “ nH2 ( )6 o= Am=

where K = min, - K(x). Thus, we may write

1
——— dydx
— y|

2
4 th

T 1
1 > _ 2K2 (1+5n 472
= 220, (ﬁo 5) 1 (1 + 5n)87T26

—(8— u)) log n+log(logn) (2 41)
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By (2.37) and once log(logn) > 0 we get

m 1 2 %
>1 _— —e)?K?P——— t—— —(8— 1 . (242
0> 0g <2M+2MO (BO 5) 1 (1 + (5n)87T2) + (1 + 5n 472 (8 M)) ogn ( )

In view of (2.42), we see that (,,) is bounded, because if ¢, — 400 then letting n — oo

in (2.42) and since d,, — 0, we obtain a contradiction. Thus, up to a subsequence, by

(2.37), there exists a positive constant ¢, such that

) 4% (8 —
lim 2 =2 > M.

We claim that t2 = 47%(8 — 1) /7. To prove this, it suffices suppose that 3 > 47%(8 —
1)/ and letting n — oo in (2.12), again we reach a contradiction.

Finally, passing to the limit as n — oo in (2.41), there holds

mt 1 vtonn
> grrpy o = gy Jim €08 = oo

which is an absurd. This completes the proof of the lemma. =

2.7 On the Cerami compactness condition

In this section, we show that the functional I satisfies the Cerami condition for
certain energy levels. We recall that the functional I satisfies the Cerami condition at

the level ¢, denoted by (Ce). condition, if any sequence (u,) C E verifying
I(u,) = ¢ and (1 + ||uu|)||I"(un)|l« = 0 as n — oo, (2.43)

has a strongly convergent subsequence in F.
We begin by proving some auxiliary results. First we will present a convergence

result, whose proof follows the same lines of [64, Lemma 3.4], and we omit it.

Lemma 2.7.1 Suppose that (V'), (K), (f1) — (f1) and (2.27) hold. If (u,) C E is such

that u, — u in F as n — oo and there is a constant C' > 0 satisfying
sup/ [|z| ™" * (K (z)F(x,u,))| K (x) f (2, up)u,dz < C, (2.44)
neN JR4

then, up to a subsequence, there holds

/ [|z| ™ * (K (z)F(x,u,))]| K (z)F(x, u,)dz
. (2.45)
— [ 2|« (K(2)F(z,u))] K (z)F (z,u)dz.

R4
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Moreover, for all ¢ € C(RY), up to a subsequence, we have

[ Ll (K (@) o ) (0 i
- (2.46)
- R4[|$|_“ * (K (2) F (2, w))| K () f (2, u)da.
Now we can prove the following result:
Lemma 2.7.2 Suppose that (V),(K), (f1) — (f1) and (2.3) hold. Then, any (Ce).,,-

sequence (uy,) for I is bounded in E.

Proof . Consider (u,,) C E such that

= 5||un||2 — 5/ (2| % (K (2)F(x,u,))]| K () F(x,u,) de — cp (2.47)
R4

and for allv e B

(1 + [[unl])

() = [ [l (K@) Pl IK @) w0 da| < o, (0ol (248)

We argue by a contradiction by assuming that, up to a subsequence, |u,| — +oco. Let

2m2(8 —
JZJWM,
Yo

By Lemma 2.6.1, it follows that

Uy, := Uy /||un|| where

28 —p) _ 4m*(8 —p)
7o Yo ‘

2

2car < ||lvn|* = 0% = car + (2.49)

Now, choose 7 > v, sufficiently close to 79 and r > 1 close to 1, where 1/r + 1/r' =1
such that
_ Syrllual?

=g < 3272 (2.50)
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y (f2), together with (2.6), (2.31), (2.26), (2.50) and (2.5), it follows that

\

|:cy "ox (K () F (2, 00) K () f (2, 00 Jon daz

8—p

<C < 3 KS—Su(x)(f(x,vn)vn)ésfudx>

<C (/ K57 (2)|vn|? dx>
R4

+C ( K55 () o |57 (€527 — 1) dx)
R4

8—p

i (2.51)

8—p 8 8qr’
< C'an“ 2 +C K-« (x)lvn|87”dx

8—p

8 Byr,, 2 ar
X ( K&=i(x) <68—“v" - 1) dx)
R4
5 8—u
—u 8 8yr|lvn || vn )2 ar
< C“Un”ST + C||vn||2q (/ stu () (e s ()™ 1) dx)
R4

R4

8—u
4r
— 8
< Co 2" + Co™ sup K& (z)(em —1)da < C.
MERES
Since ||v,|| = o, up to a subsequence, there exists v € E such that v, — v in E. We

will analyze two possibilities:
Case 1: v = 0;

In view of (2.51) and (2.45), we have

lim [ [Jz|™ % (K(x)F(z,v,))]K(z)F(x,v,)dz =0

n—oo R4

and this implies that
2 1 2

lim I(v,) = % ~ Zlim [ [Je| ™ (K(2)F(x, v)) K (2)F (2, v)de = % (2.52)

n—00 2 n—oo R4

Note that o/||u,| € (0,1) for n € N sufficiently large, once ||u,| — +o0o0 as n — oo.

Let t, € (0, 1] be such that m(ax] I(tu,) is achieved. Thus, (I'(t,u,), th,u,) = 0 and by
te(0,1
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(f2) we get

1
< max I(tuy,) = I(tyu,) = I(tau,) — = (I (taun), taty)
te(0,1] 2

_ % /R [l (K@) F (o)) VK () (f (2 ttin Yt — F (2, i) )l (2.53)
< %/RJW\H * (K(x)F(z,u,)) | K(2)(f(x, up)u, — F(x,u,))dx
= I(u,) — 1(1/(%)7“”)‘

2
Thereby, from (2.47), (2.48) and (2.52), letting n — oo in (2.53), we obtain 0% < 2¢yy,
which contradicts (2.49).
Case 2: v # 0;
In this case, there exists R > 0 such that T N Bg has positive Lebesgue measure,
where T := {z € R? : v(x) # 0}. Notice that
1

[

/R4[|$‘“ * (K(2)F (2, u,))] K (x)F (z,u,)dz

([ ) s
> <2l§~z> (/ ATRRLLY

where K := min, 5 K(z). Since |[u,| — +oo, by definition of v we have |u,| — oo

in TN Bg. Moreover, by assumption (f;) we have F(x, u,)/|u,| — +00 as |u,| — +o0.

By applying Fatou’s Lemma we reach

1

[un

/ [lz| ™" % (K (z)F(x,u,))| K (x)F(z,u,)dz — +00 as n — 0.
R4
Therefore, since I(u,) — ¢y as n — 0o, we obtain

0 = liminf &nl
noe ||
1 1
— — limsup W/ [|z| ™" % (K (z)F(z,u,))] K (x)F(x,u,)dx
Un R4

2 n—0o0

<

N —

= —00

which is a contradiction. Thus, we complete the proof of the lemma. m

We are ready to prove the main compactness result of this section.
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Proposition 2.7.3 Under hypotheses (V'),(K), (fi1) — (f1) and (2.27) the functional

I satisfies (Ce).,, condition.

Proof . Let (u,) C E be a Cerami sequence of I at the level ¢j;. By Lemma 2.7.2,
up to a subsequence, there exists u € E such that u,, — u weakly in . Taking v = u,,
in (2.18) we have (2.11) holds. Then, by Lemma 2.7.1, 2.45 and (2.46) must occur. It
follows from (2.46) that I'(u) = 0 and this combined with (f;) shows that

() = 1(u) — 50" (u) )

2.54)
1 (
=5 [l 4 (K@) P ) K @) (o = o)) de 20
R4
Since c¢p; > 0, we have two cases to consider.
Case 1: u = 0;
In this case, taking u = 0 in (2.45), we obtain
lim [ [|lz]™ % (K(x)F(x,u,))|K(x)F(x,u,)dx = 0. (2.55)
n—o0 R4
This together with (2.47) and Lemma 2.6.1 implies that
472 (8 —
lim sup ||u,||? = 2ear < M (2.56)
n—00 Yo
We claim that
lm [ [|z]™ % (K(2))F(x,u,)]| K (x) f(z, u,)u,dz = 0. (2.57)
n—o0 R4
Indeed, by using (f2), (2.6), (2.31), (2.56) and Proposition 2.1.2, we get
[ a5 (@) P ) K () ) d
4
: 8-
<c (/ Ksi‘u(x)(f(x,un)un)&dx)
R4
L 8=
8 2 8 8a 8y, 2 *
<C ( K5 (x)|uy,| da:) +C < K5 (x)|u,|3-# (e5=+""" — 1) dx)
R4 R4
8—p
8—p 2 8 8y ., 2 ar
<CllZ, o+ Ol ([ KR -y ) T oo
L2(R*, K 8=#) L3—r (R4, K8-r) \JR4

—_

as n — 00, with v > = sufficiently close to 79 and r > 1 close to 1, where 1/r+1/r" =

From this and once (I'(u,),u,) — 0 we obtain ||u,| — 0, which contradicts (2.56).
Case 2: u # 0;
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In this case, since (uy,) is (Ce).,, sequence for I, we may define

Uy, U
——— and wv:=

Uy 1= _—
) lim. |y, |
n—oo

Thus, v, — v weakly in E, ||v,|| =1 and ||v|]] < 1. If |jv]| = 1 then we conclude the
proof. Suppose that ||v|| < 1. From Lemma 2.6.1, (2.54), (2.48) and (2.15) we obtain

4% (8 —
ATE =) - 9o > 2Aeas — I()
Yo
= lim sup([Ju, ||* — [Ju]|*)
n—oo
T
= limsup ||u,|* [ 1 — H— .
By the definition of v and Fatou’s Lemma, we get
4% (8 —
limsup [|u,||* < Lﬂ;
n—00 Yo(1 — [[v][?)

Choosing v > 7 sufficiently close to 7y and r > 1 sufficiently close to 1 such that
1/r+1/r" =1, we can deduce that

8ry|| || 32>
Son =TT (2%
for n € N large and for some > 0. By using that |u,|> = ||u,|*|v.|?, (2.58) and (2.23)
we reach
sup/ K%(m) (e%\unﬁ — 1) dr < Sup/ Kﬁ(x) (e”l”"‘2 - 1) dr < c0. (2.59)
neN JR4 neN JR4

Now, we claim that

/[|x|_“ x (K (z)F(z,un))|K(z) f(x,un)(u, —u)de — 0 as n — oo. (2.60)
Indeed, from (2.6) one has

/[le“ # (K () F (2, un) )] K (2) f (2, un) (un — u) do

< C’||K(x)F(x,un)||%||K(x)f(x,un)(un —u) =:Cl 1o, (2.61)

[
By using (2.32), (2.59), Holder’s inequality and Proposition 2.1.2, we obtain

_8 _
IFF<C | Ko (a)|u,=n 7 de+ C/ K555 () uy |55 (5 — 1)z
R4 R4

2 - 8qr’ > 5 Sry 1y, 12 v
< Cllunll*+C K5 (x)|u,|3-#dx K& (x)(es+""" — 1)dx
R4 R4

8ry

< Cllunll? + C ]| 55 ( [ EE @ 1>dx)’” <
R4
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_“, we have r = q% and by using (2.31),

Similarly, choosing ¢ > 0 and ¢ = 1’ > -

Holder’s inequality and Proposition 2.4.2, we get

_8 —
157 e | K55 (@)un] ¥ 55, — uf e
R4
8(q—1)

+C(%Qv5)/ Kgf“ () |ty — u|5=2 “‘U | 5=n (68 Slunl® _ 1)dx
R4

8 9 g%ﬁ 8 9 Sf“
<e / K& (z)|u,| dx / K& (x)|u, —u|°dx
R4 R4
q(q— %
# 00 [ K5 @l — ol 55 )
gq-1
X ( Ks%t(x)(ef% Silunl® )dx)
R4
(4=p) ﬁ
< 5||unH2(84w) (/ Kﬁ(ajﬂun —u]gdx)
R4
1 a-1
4(g—1) 169 2q q
+ Cffua | 5 (/ K55 ()], —ulgf“dx) ( K5 () (e )d“") |
R4 R4

Hence, combining the previous estimate with (2.59) and Proposition 2.4.2) up to a

subsequence, we have I, — 0 as n — oco. From this and according to (2.61) and (2.7),
it follows that (2.60) holds.

Finally, note that the convexity of the functional J(v) := 1||v||* guarantees that
1 2 !
§||u|| = J(u) > J(un) + (J'(up), u — up)
1
= §||un\|2 + / A, At — uy) + Vua V(u — un) + V(@) (u — uy)da
R4
1
= S lunll® + (' (un), u = )

- A4[\I|“ * (K () F (2, un) )] K (2) f (2, un) (un — u)da.

By virtue of (I'(u,),u —u,) — 0 as n — oo and (2.60), we conclude limsup ||u,||* <

n—oo
|u||* and consequenlty u, — u strongly in £. m
2.8 Proof of Theorem 2.1.3
From Lemma 2.5.1, the functional I satisfies the geometric conditions of the

Mountain Pass Theorem and in view of Lemma 2.6.1 and Proposition 2.7.3 we have

that I satisfies the (Ce).,, condition. Thus, by the Mountain Pass Theorem (with
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Cerami condition, see |16, 17]) the functional [ has a critical point 4y nontrivial at the

minimax level ¢y.

2.9 Bound state solution

In this last section, we prove Theorem 2.1.4. We will show that any weak solution
of problem (2.1) is a bound state solution, that is, belongs to H?(R*). Therefore, it
remains to verify that ug € L?(R*). To do this, we will adapt some arguments presented

by Ambrosetti, Felli and Malchiodi in [10]. The first result is the following:

Lemma 2.9.1 Let (V),(K) with a € (0,4), 8 > (8 — p)a/8 and v € (0,327?), then
for each v € E \ {0} with ||[v|| < 1 and any € > 0, there exists n = n(y,a,a) > 1

independent of v such that for everyn > n,

/ Ks%u(x)(e”ﬂ —1)dz <e.
B

3n
The proof follows directly from inequalities (2.19) and (2.20). The next lemma is

inspired by the arguments of |10, Lemma 11].

Lemma 2.9.2 Suppose that (V) and (K) hold with o € (0,2) and f > (8 — pu)a/8.
Let v > 0 and u € E\{0}. Then, for any € > 0 there exists R = R(u,,a,a) such that

K5 (z)(e™ —1)dz <e, forall R>R. (2.62)
Bj,

Proof . Let R > 1 and ¢ : RT — [0, 1] be a smooth nondecreasing function given by

0, ifr<R— R,

Vg(r) =
1, ifr>R
and satisfying
— 2 —! 2
YRl < Rol2 and [¢p] < Re
In polar coordinates (r,6) € [0, +00) x S*, we define
(
0, if r < R— R*?,

Ug(r,0) == S Po(ru(2R —1,60), if R—R¥2<r <R,

u(r, 9)7 if > R.

\
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In the annulus Az = {z € R* : R — R*/? < |z| < R}, we have
_ _ 1—
Viig = Un(r)u(2R = r.0)e, — dp(r)us (2R — 1.0)e, + U p(r)ug(2R — r.0)e,
where e, = x/|z| and ey is a unit vector tangent to the unit sphere. Furthermore,

Nt = T p(r)u(2R ~ 7,0) = ~Tg(r)un (2R~ 1,6) + U (r)u(2R — 1,6)

= 20 (1) ur (2R — 1,0) + g(r)um (2R — 1,0) + %ER(T)W@@R —7,0)

U p(P)um (2R —7,0) + T—IQER(T)ugg(ZR —r,0)

— 1— —n 1—
— (QwR(r) + ;wR(r)) u-(2R —r,0) + (wR(T) + ;?ﬂR(r)) uw(2R —r,0).
Hence, in the annulus Ar we obtain

C
IVag|? < C1|Vu(2R — 1, 0)* + R—iu2(2R —r,0)

and
— 2 2 Cy 2 05 2
|ATg|* < C3|Au(2R —1,0)| +—RQ|VU(2R—T, 0)| —i——Rau (2R —r,0).

So, by integrating in Ar and making the change of variable (r,0) — (2R — r,0), we

reach
/ |ATig|? < C’G/ (JAuf + [Vul> + R™*?) da
AR

R<|z|<R+R/2
< 07/ (|Auf + [Vul? + V(z)u?) dz.
R<|z|<R+R/2

Since ug = u(r, 0) for |x| > R, it follows that

/ |ATig|? < 08/ (|Auf + [Vul® + V(z)u?) dz. (2.63)
AR

By

Similarly, we obtain

/ |Vig|? < Cg/ (IVul]® + V(2)u?) dz < cw/ (IVu]®* + V(z)u®)dz  (2.64)
AR R<|z|<R+R~/?

Bg

and

/ V(z)us < C’H/ V(z)us < C’H/ V(z)u*d. (2.65)
AR R<|z|<R+R*/?

< B%

Thereby, by (2.63), (2.64) and (2.65), we deduce that
/ AT + Vsl + V(@) do < c/ Al + |Vl + V(2)ude.
Ag BS,
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Recalling that Tz = 0 when |z| < R — R*/? and g = u for |x| > R, we see that
ag|* = / |Augl? + |Vug|* + V(2)uy, dx
;:—Ra/2

< (1+0) / |Aul® + |Vul® + V(z)u*d. (2.66)
By

Since u € F, there exists R = R(u,v) > 1 such that

J

This combined with (2.66) shows that v||ug||*> < 3272 for all R > R. Choosing R =

3272

C (&
7 By

R(u,v,a,a) > 0 sufficiently large such that R — R*/? > 3n, by Lemma 2.9.1 for

v =Tug/|[ur| we have

K5 (@)@ —de = [ K5 (@)@ (m) —1)de

Br Bg

_ ur \2
< / Ks%u(x)(eﬂluﬂp(nﬂgu) —1)dz <&,V R >R,
B

which concludes the proof of (2.62). m

From now on, we will denote by uy € E a nontrivial weak solution of (2.1).

Lemma 2.9.3 Suppose that (V) and (K) hold with o € (0,2) and 5 > (8 — pu)a/8.
There exists R > 0 such that for any n € N satisfying R, = n¥a > R we have

3
/ (|Auo? + |Vuo|* + V(2)ud)dz < 71/ (1Aul* + [Vuo|* + V (z)ug)da.

C
Rpy1 Bga

Proof . Arguing as in [[10], Lemma 17|, set x, : R* — [0,1] be a smooth function
such that

C C
Xn(z) =0in Bg,, xn(x) =1in Bg,,,, |Vxa| < in A, and [Ax,| < ——in 4,
RTH-l Rn—l—l

where A, = {z € R*: R, <|z| < R,41}. Note that by construction y,uy € F and

/ | Aug | + | Vue* + V (2)ug dz < / (|Auo|? + [Vuo|* + V(2)ud) xn dz. (2.67)

c
Rpy1 Bg,

If we use x,up as test function in (2.7), since x,(x) = 0 in By, and that x,(z) < 1,
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we obtain

/ Xn (|Au0|2 + |Vu0|2 + V(x)ug) dz
Bj,

_ /Bc [|z| ™ % (K (2)F (2, u0))] K () f (2, up) xnuodx
R
_ /Bc (AugAx g + 2AueVx, Vg + VugVx,ug) d
< /BC [Jz| ™" * (K(x)F(x,u0))] K (x) f(x, ug)ugdz
_ /; (AugAxnug + 2AugVx, Vug + VugVx,ug) de.

c
Rn

(2.68)

Using Young’s inequality with € € (0, 1), we can estimate the second part of (2.68) by

/ (AugAxnug + 2Au0V xnVug + VugVxpug) dz
B

R
< / (5|Au0|2 + : ud + 2¢|Aug|* + 2C7 |Vug|* 4 &|Vug|* + : u2) dz
e Ry eRy eRy,y "
20C"? 2C%1+ R
< 35/ | Aug|*da + (5—|— > )/ |Vug|*dz + ——2’”1/ V(z)uj dz.
B, eR; Bg, a €eRn,, B,
Fixed ¢ = 1/6, we can choose R, sufficiently large such that
207 1 20%1+ R® 1
et —5— <3 and ——2"H§—.
R, — 2 a eR; ., 2
Therefore,
/ (AugAxnug + 2AuoV X, Vug + VugVxnug) de
By,
1
< —/ (|Aug)?® + [Vuol* + V(x)ud)dz. (2.69)
B,

Now let us estimate the first integral of (2.68). By (2.32), we have
|f(x,s)s| < C’(oz)|s|(e752 — 1) for all |s| > R,

for some R > 1. From (2.6), (f»), the previous inequality, Holder’s inequality and by
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applying (2.62) for e € (0,C%®#=), we find

[ el (@) F o) @) w0

8—u
8

<C / K57 (2)|f (z, uo)uo| ™ 7 dx)

/ K&mwm&@ﬁ%—nm)

Moreover, if R is sufficiently large then for all n € N such that R, > R, we have

8 s s N s - i

sup UG < sup M < su b u(1—|—|x|8) < b (1~+R8) =: B(R).

z€Bg V(Q:> z€BE, V(l‘) z€Bg a(l + |x|5)ﬁ a(l + Rﬁ)ﬂ
Thus,

/ [lz| ™" % (K (z)F(x,u0))| K (x) f (2, uo)updr < B(ﬁi)/ V(.:z:)ug dz

ion ) Fin (2.70)
< B(R)/ (|Aug|* + |Vuol* + V(z)ug) da.
Bg,

Since § > (8—p)a/8, one sees that lim B(R) = 0, which implies that B(R) < 1/4 for
R—+00

R > 0 sufficiently large. Therefore, combining the equations (2.67)-(2.70) we finished

the proof. m

Lemma 2.9.4 Suppose that (V) and (K) hold with « € (0,2) and 8 > (8 — u)a/8.

There exists R > 0 and constant C > 0 such that for any o > 2R, there holds

2 2 (logg)g@_w/2

(|Augl” + |Vuo| + V(x)ug) do < Cel*®4 :

B3

Proof . Let R and (R,), be as in Lemma 2.9.3. Considering o > 2R, there exist

n > n positive integers such that
Ry <R < Rppy and Ry <0< R
and therefore
n—n= Rﬁf‘“w - Rff‘“w > 3/2 _ RE/2 5 R(22=/2 _ 1) > 9
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for R > 0 sufficiently large. Hence, n — n > 3 and in particular R; o > Rz > R. Tt
follows from Lemma 2.9.3 that
/ (|Auo|?® + |Vuo| + V(z)ud) dz
Bg

< (|Aup? + |Vuo| + V(2)u) do

n\

ool
3
|

IN

(|Au)® + |Vuo| + V(z)ug) dz

S

)
31

|
N

3
|
=]
|
[\e}

(|Auo|2 + |Vug| + V(x)ug) dz
B?%ﬁJrl

n—n—2
/ (|Aug)? + [Vuo| + V(z)ud) dz
B

<
R

IN

IA
N

o W w

N—— —

16 —a PD(2—a
< 3e(log%)(é’u 2R )/2)/ (|Aup* + |Vuo| + V(2)ul) d
B%
= CRDE [ (Aol + [T + V()i d
B

R
and proof of the lemma is done. m
We highlight that the following proof was inspired by [64, Theorem 1.11], which

in turn simplifies the proof given in [[10], Theorem 16], because we do not use Borel’s

finite cover lemma.

Proof of Theorem 2.1./: Note that as uy € E, for any x € B,, we have

142«
/ ugdxg( i )/ V(z)ug dz < oo.
BQ B2

a

To conclude that vy € L*(R?), it is enough to prove that / ul dr < co.
s
Let 3; := {x € R* : 29 < |2| < 271} for all j € NU {0}. Since 20UtV () >

(14 |z|*)V(x) > a for x € X, we get

a a

9(j+2)a 2(j+2)ex
/ ug dr < / V(z)ug do < / (|Auo|?® + |Vuol* + V(2)ug) dx
> 5

J J 2
2(j+2)a

<

/ (At + [Vao|? + V(2)i) da.
Bec.

27

a

It follows from Lemma 2.9.3, taking o := 2/ > 2R, that

(J+2)a ) o
/ uy d < 2 Cellos3)2e 72 (2.71)
Z.

a
J
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Hence, there exists an integer jo > 0 such that (2.71) holds for all j > jo+ 1. Therefore,

00 Jo 00
/ugdx:Z/ ugdm:Z/ u%dx—l—Z/ugdaj
B3 j=17%j j=17%; %

Jj=jo+1
J0 C > 3\o(2—a)j/2
. 3\o(2—a)j
< g uy do + — E 9(i+2)a(log )2 < 00,
- . a =
J=1v=d Jj=jo+1

because a € (0,2) and 1og% < 0. This completes the proof of Theorem 2.1.4.
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Chapter 3

On a weighted Adams type inequality
and an application to a polyharmonic

equation

In this chapter, we have two objectives. The first deals with the improvement of
a class of Adams-type inequalities involving a potential V' and a weight K, which can
decay to zero at infinity as (1 + |z|*)™!, « € (0,N), and (1 + |z|*)~1, B € |a, +0o0)
for all z € RY, respectively. The second objective is, using minimax methods and the
Adams inequality obtained in the first moment, to establish the existence of solutions

for the following class of problems:

> (—AYu+V(x)u=K(x)f(x,u) in R*™,

j=1
where (—A)’ denote the polyharmonic operator, m is a positive integer and the non-

linear term f(x,u) can have critical exponential growth.

3.1 Introduction and main results

In a more precise way, throughout this chapter, we consider some weight functions

V(z) and K (z) satisfying the following assumptions:

(V) V € C(RY) and there exist o, a > 0 such that V(z) > for all x € RY;

1+ |x|«



b
(K) K € C(RY) and there exist 3,b > 0 such that 0 < K(z) < TP for all
x
r € RV,

In particular, we restrict our attention to the case when « and [ satisfy
a€ (0,N) and f € [a,+00). (3.1)

Next, in order to present our first result, we will fix some notations. Consider the

space
E = {u € L (RY) : |Viu| € L%(RN) Vi=1,...,m and / V(x)|u]%dx < oo}
RN
and norm
m/N
|lul| == (/ (V™ u|N™ e (VN V() [u N dx) .
RN
We use the notation | - [[z» @~y for the norm of the weighted Lebesgue space

LP(RY) = {u :RY — R : u is measurable and K(z)|ulPdz < oo} :

RN

1/p
that is, [|ullze @v) = (/N K(m)]u|pdx> :
R

Before presenting our first theorem, let us recall here what inequality (2) says, for
m € N and Q C RY a bounded domain with m < N, there exists a positive constant
Cy.v such that

N
sup M dg < O |9, (3.2)

N Q
{uewy "™ (Q): |Vl x <1}

for any v < v N

In this context, we can establish our first result, as follows.

Theorem 3.1.1 Suppose that (V') and (K) hold with o and 5 satisfying (3.1). Then,
for any v > 0 and any u € E, it holds

/ K(x)gbm,N(7|u|Nme) dz < 0. (3.3)
RN
Moreover, we have

<00, if ¥ < YmnN;

‘ (3.4)
+00, if ¥ > Ymn-

ueckE N
lull<1

SUp/ K(z)¢m7N(7|uyz¢fm)dz:{
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Remark 3.1.2 We highlight that inequality (3.1) in Theorem 3.1.1 treats only the

subcritical case. The critical case v = vy, N @5 still an open question.

Remark 3.1.3 Note that when m = 2 and N = 4, 24 = 3272 and Theorem 5.1.1

coincides with Theorem 1.1.1.

As initial applications of Theorem 3.1.1, we will prove the compact embedding
of the space E into L5 (RN) for p > 2,a € (0, N) and 3 € (o, +00) (see Proposition
3.3.1). From now on, we assume that the integer m > 2 and the dimension N of the
domain satisfy N = 2m. We also will obtain a Lions-type concentration-compactness
principle involving exponential growth (see Proposition 3.5.3), which is a refinement of
Theorem 3.1.1. Furthermore, we will investigate the existence of weak solution for the

following class of problems

> (=AY u+V(x)u=K()f(x,u) in R™, (3.5)
j=1
where the potential V' and the weight K satisfy the conditions (V') and (K), respectively

and «, # are such that
a€ (0,2m) and p € (a,+0). (3.6)

The nonlinearity f(z,s) has the maximal growth which allows us to study (3.5) by
using a variational method. Precisely, motivated by (3.1), we say that f(z,s) has

critical exponential growth if there exists 7y > 0 such that

. flx,s) 0, for all v > 7y,
im =

2
|s| o0 €78

+oo, for all v < 7,

uniformly in x € R?*™. In this context, we say that u € F is a weak solution for (3.5)
if

/ (Z ViuViv + V(w)uv) dz = K(z)f(x,u)vde, forallve E. (3.7)
Rem \ 5=

R2m

We will assume sufficient conditions on f so that weak solutions of (3.5) become

critical points of the functional I : £ — R defined by

1
I(u) = S lull* = . K(x)F(x, u)d,
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s

where F(z,s) := / f(z,t)dt. In this case as N = 2m, we have the norm in space E
0
can be characterized as ||u||? = (u, u)r where
(u,v)p = / (Z ViuViv + V(x)uv) dz.
R2m j:1

We require the following assumptions on the nonlinearity f(z,s):

() tim T

= 0, uniformly in x € R?™;
s—0 S

(f2) the function f:R?*™ x R — R is continuous and has critical exponential growth;
(f3) there exists p > 2 such that

0 < puF(z,s) <sf(x,s), forall (z,s)€R™xR\{0};
(f1) there exist constants sq, My > 0 such that

0 < F(z,s) < My|f(x,s)|, forall |s|>sy and x¢cR™;

sf(z,s . :
(f5) liminf / > ) > 0, for some 6 > 22Im2m ypiformly with respect to 2 € R?™,
5—00 ~€703 wW2am L7570
where K = min K ().
xEEl

Our existence result is stated as follows:

Theorem 3.1.4 Assume (V),(K), (f1) — (fs) and (3.6) hold. Then, problem (3.5)

has a nontrivial weak solution.

In [76], Zhao and Chang establish a singular Adams-type inequality on the whole

R2™ for m > 2. In addition, they deduce that for further conditions on f, the problem

m—1

(~A)™u+ S (-1 - (ay (2) V) = / %5“) teh(z) in R

v=0
has at least two distinct weak solutions where m > 2 is an even integer and a.(x) are
continuous functions satisfying: there exist positive constants a,,y =0,1,2...,m—1,

such that a,(z) > a, for all z € R*™ and #(I) e LY(R*™).

Do O and Macedo in [31] studied a Adams type inequality for the Sobolev space
Wm2(R*™) and establish od the existence of a nontrivial radial solution to the following

class of polyharmonic equations:
(=A)"u(z) +u(x) = f(lz],u), in R*™,
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where the nonlinearity is superlinear and has critical exponential growth at infinity.

The outline of the chapter is as follows: in Section 3.2 we present some prelimi-
nary results. In Section 3.3 we prove the weighted Adams’ inequality (Theorem 3.1.1)
and that the embedding £ < L (RY) is compact for all p € [N/m, +0c0) (Proposition
3.3.1). Section 3.4 contains the variational framework related to problem (3.5) and we
also check the geometric properties of the functional /. Section 3.5 we prove a version
of the Concentration-Compactness Principle due to P. -L. Lions [15] to the space E (see
Proposition 3.5.3) and deals with the Palais-Smale compactness condition. In Section
3.6 we estimate the minimax level. Finally, in Section 3.7 we complete the proof of

Theorem 3.1.4.

3.2 Some preliminary results

The following lemmas are adaptations of Lemma 2.1 and Lemma 2.2 respectively
obtained from Yang in [70]. Adaptation is simply replacing N > 2 with j~ > 2 in the
results.

Lemma 3.2.1 Let s > 0 and p > 1 be real numbers. Then, there holds
[N (8)]" < P v (PS)

Lemma 3.2.2 For all jxn > 2,5 > 0,t > 0,u > 1 and v > 1 with %L +zl/ =1 there
holds

v (5 1) € 0 15) + 0 (05).

3.3 Proof of Theorem 3.1.1 and Compactness Result

In the first subsection, we prove Theorem 3.1.1.

3.3.1 Proof of Theorem 3.1.1

Proof . We begin proving the first part of (3.4). The proof will be divided into two
steps.

Step 1: Let w € E be such that [|ul| < 1. First, we want to estimate the weighted

Adams functional

AD(u,7,R) = | K(2)¢mn(yJu|77) dz

Br
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for some R > 0, independently of u, that will be chosen during the proof
condition (K'), we have

From

K(2) ¢y (v]u|77) dz < b
Bgr

N
¢m,N(fY|u| N=m ) dx.
Br
Consider a cutoff function ¢ € C3°(Byg) such that

(3.8)

0<@<1inByg, @=11in B, and |Vip| < — in Byg,
forall © =1,...,m and for some constant C' > 0. From Leibniz’s formula we have
N
m . T
v (pu) 5 = |3 ( .)vwm—ﬂu .

— \J

]_
Using the elementary inequality

(a+b)? < (1+e)%a+ (1+e 1),
with € > 0,a,b > 0 and ¢ > 1, we obtain that

z

[ o an= [ levrar Y () wern
Bar j=1

dx
Bar
g(1+e)ﬁ/ gpﬁ|vmu|ﬁdx+(1+al)ﬁ/
Bar

3 <m> ViV
Bsr |5 J
< (1+6)%/ |Vmu|%dm
Bar

m—1
+(1+ 8_1)% / Z (T;L) VoV u +m(V™p)u
Bar | j=1

N

m

dx

3=z

dx
m—1 I
< (1+6)an/ |Vmu|%dx+(1+5_1)27g/ Z (@)ngovm—ju dz
Ban Bog | =1 \J
+(1+5>Z(1+51)flmﬁ/ V) ful S da.

Bor

Repeating the same process m times for the second term of the previous inequality, we
estimate

N
/ V™ (gu)|m dxg<1+e)ﬁ/ V™ ulmda + (141N 2O
Bor Bor

mm—N/ \Vm’lu]%dx
Rm JByg
C% N
R Bar
N
N
+(1+e)m

Cm
(l—l—e_l)%mwﬁ ~ / |u|%dx
R Bayr



Now, using the condition (V), it follows that

C'm
/ ‘Vm(ﬁ,ﬁu)’% dr < (1_|_5)7]X/ ’Vmu‘%d$—|—(1+5*1)Nm%—N / ‘melu’%dl'
Baor Bzr o
R v~ Cm
_|_..._|_(1—|—5)H(1+6_1)Wmﬁ (m—D)N / [V
R =  JBar

m

N
mdx

N N

xmmCm 1+(2R)0‘/ N

m V m d .
Ry ), V@i

Fixed ¢ € (0,1) such that (1 + e)ﬁ < Y~ and since a € (0, N), we can choose

N
m

+(1+¢)

(147

R = R(s,a,a) > 0 sufficiently large satisfying

C'm C'm
(1+e)Vmn =5 < (1+2), ... ,(H(;)z(ml)ww—w < (14w
and .
mCm 1 2R
(1te)m(14eynl 2R _ gy

a RN
for all R > R. Thus,
N

/ Vo) de < (14 )5 ull ¥ < (1+2)
Bar

Therefore, defining

U
V=
1+¢
we have that v € F and
m o 1 m N
IVl = [ 9l de <L
m (1—|—€)m Bar

Applying Adams inequality (3.2), we get
v v ere) ¥ o
omn(ful =) dz = [ G n(lpuly=r)de < [ T 4 < O Bygl
Br Br Bagr
where | Bog| denotes the Lebesgue measure of the ball of radius 2R in RY. The previous

inequality combined with (3.8) implies that

K(@)bmn(Yu| ™)z <b | dmn(ylul77) de < C|Bogl,  (3.9)
Br Br

for all uw € E with |Ju|| < 1.

Step 2: Now, we estimate the weighted Adams functional in the exterior of a large ball.
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For any n > ng fixed, where ny will be chosen during the proof, we consider B

the exterior de B,, and the covering of B¢ formed by all annuli A? with o > n given by
AT ={reB |z|<o}={r eRY :n< |z| <0}

By the Besicovitch covering Lemma [25], for any o > ng, there exist a sequence of

points (x) € AZ and a universal constant § > 0 such that

o 1/2 1/2 1 ||
AﬁngJUk/, where Uk;/ ::B(xk,§T

and

ZXUk(x) <@ for any z €R"Y, where U, :=B (:L‘k, %)
k

and xyp, is its characteristic function. Let v € E be such that ||u| < 1. We start with
the estimate of the weighted exponential integral of v in Ag, with n > ng and o > 3n.
Note that
Ag, c Az c|Ju”
k

and defining the set of indices K, , := {k € N: U”> N BS, # 0 }, we have

A, ¢ | o

k€K o
Therefore,
N _ N _
K (2)gmn(yu| ™) de < ) K () v (v]u[¥=7) da. (3.10)
Ag, kekn,q Uk

Since 2|xy| < |y| < 3lak| for all y € Uy, from (V) and (K), we obtain

a

Vi(y) >

a
> > — , forall ye U (3.11)
Lyl = 14 (2)" |al®

and
b

< <
T+ T 4 (2) )
Besides, if Uy N B, # 0 then U, C BE, which implies that

K(y)

, for all y e U. (3.12)

U u?c |J hCB CB (3.13)

keKﬂ,7G keKTL,G'
Next, let us fix k € K,,,. From (3.12), we obtain

b

[, K@l ™) ds <
) O N (YU ¥ )dr < ——r—7r——
@)l

N
/U s Gm,n (Yu|¥=)dz.  (3.14)
k
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Again, consider a cutoff function ¢;, € C§°(Uy) such that

, C
0<¢r<1inlU, @r=1in U |Vig < AT in U,
k
for all 7 =1,...,m and for some constant C' > 0. Proceeding as before, it follows that
oN
N m
|Vm(g0ku)|% de < (1+¢)m |Vmu|% dr + (1 + e_l)Nmm |Vm_1u|%da:
Uy U xk‘m
+...+(1+5)%(1—|—5_1)2gmm DN 1)N / |VU| dx
|5Ck!
N N
m C'm
441+@ﬁu+gﬂﬁm;jr/’mﬂdx
| Ug
and by (3.11)
oN
N m
V™ ()| da < (L+e)m [ [V™ulw do+ (1+e ) Nmw [Vl da
Us Ug ‘xk‘ﬁ Uk

c%
|$k’ Uy,

O 1+ a
F(14e)m(l+e Ymmm (5)° ‘xk‘ /V(x)|u|ii da
Uk

a k]

Since k € K, 5, in view of (3.13), we obtain that x;, € By . Once a € (0, N), we can

choose ng = ny(e, a, ) > 0 sufficiently large such that

C'm Cm
(14+e H¥mm < (14¢)m, J(Le)m(Lre ) mmnm — e < (L4e)m
|y | |zg|
and
Co 14+ (5" x|
R e

for all £ € K,,, and n > ny. Thus,

Defining vy = 2% we have v, € Wy ™ (Uk) C W™ (RY) and one has

1

= [ IV (ppu)|m de < 1
1+¢e)m Ju,

V™|

3\23\2

Now, fixed ¢ € (0, 1) such that v(1 + 6)% < Ym.n We can apply (1) and we find

_N N
1 (ﬁm’N(fy‘u’Nf'nl)d,fC = (bm’N(’y’gpku’me)dx
Ul/? yl/2
k k

< | ()Tl m)de <O [ oyl de.
RN RN
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The previous inequality combined with the definition of v, and (3.11) leads us to

x C y
PN (Y|u|7=m)dr < ulm dx
[ omstat o
C 1+ (3)" |l
_ (5"l /V(:L')|u|:vn dz. (3.15)
(1"‘5)% a Uy,

Combining the estimates (3.10), (3.14), (3.15) and by using (3.13), we get,

C b 14 (5 |ag|*
K@) yde < —C 0 5~ LRGN D™ [y 00 20,
’ N 2\6
Ag, (I+eg)ma kekno 1+ (2)" |a)® Jon
L+ (3) |a|™
__¢ ﬁé T +(2)5|$k| / V@)l Sy, de
(Ate)m @i, 1+ (3)" lal? Vs
By (3.13) again, we obtain
1 o 1+ (3)" =]
M < B, := sup Lﬁlﬂ for all k € Ki.y.
1+ (2 ) B veB; 14 (2)" |z
Therefore,
_N
K@onn O™ s < o8 3 [ Vilulf, dr
Ag, (1+5 " KEKn,o

By invoking the Besicovitch Covering Lemma, we reach

K@) Glul¥s) dr < —= 25,0 [ Vig)ul? do
A3, (I+e)yma

Letting 0 — oo, we deduce the existence of ng = ng(e,a,a) > 1 sufficiently large so

that

K(@)omalildPo)de < CZB6 [ Vi)l do

B3,
b b
< C-Buf|lu||™ < C-B,0, (3.16)
a a
for any n > ng. Note that
1 4 0, if B>«
lim B, = lim % = (3.17)
noee e+ (3) 0 e i goa

Thus, from (3.9) and (3.16), we conclude the proof of the first part of (3.4).
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For the second part of (3.4), inspired by [53], we consider the Moser sequence M,
defined by

( —m -1 m-1
(logn)l N NVmN Z 1—”N‘5’7’ )’ for |z] < -
N Y, N logn % i ) f>
M, (x) = m_ m
)= N tog ) tog Jal, for = < o] < 1,
Gau(2), for |z| > 1.

\
Here ¢, is a compactly supported smooth function in By (0) satisfying for j = 1,2,...,m
1 and such that

C”|3Bl(0) = <n|8Bz(0) =0, %C]anl = (— 1)j(j — 1)!’y7§]_\,1(logn)_%7 %b&(o) —0
and (,, |[VI¢,| and |[V™(,| are all O((logn)~~).

For any n € N, we have that Mn € F and straightforward calculations show that
forj=1,2,...,m—1,

M, % = O(1/logn), [[V/M,|[% = O(1/logn) and [[V"M,|% = 1+0(1/logn).

3\2 2
3\23\2
3\23\2

Consequently, by condition (V') it follows that HMHH% = 1+ ,, where 6, — 0 and
0, = O(1/logn), as n — oco. Defining

—~

M,
- (3.18)
[ My
we obtain that M, € F and || M,|| = 1. Notice that
1 (logn\'" %
M, (z) > — ( ogn) for ze€B_1 (3.19)
||M ” Ym,N Am

and defining K := min K(z), for all v > ~,,, v, we have
z€B,

e 7 N
[ K@itz & [ oM dr
N
R B%ﬁ
~ ]
ZK/ Sy | L2 ) g
B_1_ ||Mn||m Ym,N
wWN N v logn
= N7 K¢m,N —
N (ﬁ) (nw%w)

w logn(ﬂ,—1>
N -
WKG WM | 57 Ym0 — 00 as n — 00.

&
[~ 9

v
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Thereby,
im [ K(2)bmn (Y| M| %7 )dz = o0o. (3.20)
N

n—o0 R

Taking into account that

sup [ K@ (lulw 7)o = [ K (@)onn0IM, 77 ds,

uelE RN
[lull<1

then our sharpness result can be derived from (3.20).

To finish the proof of the theorem, it remains to show that (3.3) holds. For every

v >0 and u € E, by density of C°(RY) in E, there exists uy € C°(RY) such that

_N_ Tm,
V][t — uo|| 7 < TN (3.21)

Using the inequality |ul? < (14¢€)|u—ug|” +c(e, p)|upl?, for all e > 0,p > 1 and ¢(e, p)

is a constant depending only on € and p, and by Lemma 3.2.2 we have
N
[ K@il
RN

< | E@)dnn ((1 +e)lu — up| ¥ + (e, N/ (N —m)) |u0|ﬁ) do

1RN N (3.22)
S 10 Jan K(z)¢m,n (u(l +&)y|u — uolﬂ) dx
+ l K(z)m,n (VC (e, N/(N —m)) |u0|ﬁ> dz,
V RN

where p, v > 1 and i + % = 1. Choosing € > 0 sufficiently small and p close to 1 such

that
TYm,N
2

and from (3.21) we get u(1 + &)y|ju — u0||ﬁ < (1 +e)2%X < 4, . Thus, in view

:u(]' + 8) S ,Vm,N

(3.4) we obtain

K(z)pmn (,u(l +e)y|u — u0|Nme> dz
RN

|u — ug| N-m

. N (3.23)
= | K@)énx ((u(l )l — o |77 —) dr < C.

RY [ = wol|~=m

Moreover, since ug € C5°(RY), we have that ug has compact support. Thereby,

. K(z)pm.n <1/c (5, N]ifm) |u0|NNm) dz < oc. (3.24)

Combining (3.22), (3.23) and (3.24) we reach that (3.3) holds. Therefore, the theorem

is proved. m
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3.3.2 The compactness result

The first important consequence we get from Theorem 3.1.1 is the following com-

pactness result:

Proposition 3.3.1 If (V) and (K) hold with (3.1), then for all p € [N/m,+00) the
embedding
E — Lb(RY) (3.25)

18 continuous. Moreover, if B > « then the above embedding is compact.

Proof . We will proceed in two steps, on a ball of radius R > 0 and on its complement.

Let u € E and observe that by condition (K') we have

1
» b I

K Pd < ——|ulPd < br » . 3.26
([ welrar) < ([ phiras)” < lulom,. (20

By the embedding W™ (Bg) — LP(Bg) for all p € [1, +00), we get

< V (yvmu|m+...+yvuym+( il )V(a:)|u|m) dx]
Br a

N m/N
< Ckg {/ (|Vmu\% +... 4+ | Vu|» + V(x)|u|%> dx} : (3.27)
Br

m/N
m N N N
il < Colilln s gy = Cr | [ (97l 4 9l 4 |

because V(z) > a/(1 + |z|*) > a/(1 + R*). Thus, for each R > 0, it follows, from
(3.26) and (3.27), that

%
K(z)lufPdz < bCP, U (|vmu|%+...+|vu|ﬁ+\/(x)\u|ﬁ)dx]
Br

Br

< bCR||ulP. (3.28)
Proceeding as in the proof of Theorem 3.1.1 for the function |ulP instead of
¢m,N(7|U|NJX7m), where p € [N/m, c0) we obtain

N
m

dx.

K(x)ulP dz < LNQBnQ/ V(z)|lu
43, (14e)ma 6

for all n > ny. Letting 0 — +o00 we reach

N
m

wodr < C’SBnQHu

/L K(x)|ulP dz < C’anQ/B V(x)|u (3.29)

C
3n n
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Taking R = 3ny, from (3.29) we have that
b N
K(z)|ul? de < C=B,,,0]|ul||™. (3.30)
B, @
Now, if (u,,) C E is such that u,, — 0 in E, then from estimates (3.28) and (3.30) we
conclude
K(x)|up|P de = K(z)|upm|P dox + K(z)|lumP de — 0 as m — oo

RN Br By
and the continuity of the embedding is proved for all p € [N/m, c0).

Now, suppose that 8 > a and (u,,) C E is such that u,, — 0in E. Since (u,,) is
a bounded sequence in £ and from (3.17) for 8 > «

14 (3)“ne
lim B, = lim # -

Thus, in view of (3.29), for all € > 0 there exists ny > ng such that

K (@)|um|? dz < g for all m € N.

c
BSnl

Choosing R = 3n; and since (u,,) is also bounded in W™ (Bg), by the compact
embedding W™ (Bg) < LP(Bg) for all p € [N/m,o0), it follows from (3.26) that

K(x)|up|[Pdz — 0 as m — oo and therefore there exists my € N such that
Br

K(z)|up|P de <
Bgr

, forall m > my.

DO | ™

Hence, for all m > mg one has
K(z)|up,|? de = K(z)|upm|P do + K(z)|upP de <e
RN Br B,
which guarantees that w,, — 0 in LE (RY) and the compact embedding is proved as

b>a =

3.4 The variational framework

The purpose of this section is to prove some geometric properties of the Euler-
Lagrange functional associated to problem (3.5). We emphasize that in the context of

problem (3.5), the space E is defined by

E = {u € L (R*) : |V'u| € L*(R*)Vi=1,...,m and / V(a:)uzdx < oo}
R

2m

89



and norm

2

R2m

|ul| = </ (V™ u* + -+ + [Vul]® + V(2)u?) dx)
We begin by considering the functional [ : E — R given by

1
I(u) = S lul* = » K(x)F(z,u)dz.

Notice that from (f1), (f2) and (f3), for each v > 79, € > 0 and g > 2, there exists
C(v,q,€) > 0 such that

1f(z,8)] <els|+C(v,q,e)|s|" (7 —1), forall (z,s) € R* xR (3.31)
and
|F(z,s)| < %|s]2 +C(v,q,¢)|s]%(e™* —1), forall (z,5) € R* x R. (3.32)

Thus, given u € E, using Holder’s inequality with p,p’ > 1 satisfying 1/p+ 1/p' =1
and Lemma 3.2.1, we can find C' > 0 such that

K(z)F(z,u) dz < ° K(z)u® dz + C ( K(z)|ulP? dx) ’

R2m R2m

X ( K(z)(e? ™ — 1) dx>’° .
R2m

R2m

(3.33)

Since pg > 2, combining (3.33) with the continuous embedding given by Proposition
3.3.1 and (3.3), we have that K(z)F (z,u) € L'(R), for all u € E. Consequently, I is
well-defined and by standard arguments I € C'(E,R) with

(I'(u),v) = /Rm (V™uN™v + -+ -+ VuVo + V(z)uv) do — K(z)f(x,u)vdx,

R2m
for all u,v € E. Hence, a critical point of I is a weak solution of problem (3.5) and

reciprocally.

The geometric conditions of the Mountain Pass Theorem for the functional I is

established by the next lemma.

Lemma 3.4.1 Suppose that (V'), (K) with o € (0,2m) and B € [a, +00) and (f1)—(f3)
hold. Then,

(1) there exist T,p > 0 such that I(u) > 7 for all ||lu]| = p;

(i1) there exists e € E with ||e|| > p such that I(e) < 0.
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Proof . (i) Here we consider v > 79, € > 0 and ¢ > 2. In view of (3.33), the continuous
embedding £ < L% (R?™) and (3.4), we can find Cy = Cy(7,q,¢) > 0 such that
K(z)F(x,u) dv < e Cy||ul|® + Cyjul|?, (3.34)
R2m
for all u € E with |lul| = p, where p > 0 satisfies p'yp? < Ym2m. The inequality (3.34)
implies that

1 1
0 2 lul? = Cosll? - Calll = (5 - Cie ) = o

Thus, if u € E with ||u| = p, choosing € > 0 sufficiently small such that 3 — Cie > 0

we get

I(u) > C’po — Cypt.

Since ¢ > 2 we may choose p > 0 small enough such that 7 := C}p? — Cyp? > 0. Thus,
there exists 7 > 0 satisfying I(u) > 7 whenever [ju|| = p.

(17) Let u € C§°(Bgr) \ {0} be such that v > 0. By (f3), there exist positive
constants ' and C5 such that

F(z,5) > Cys" — Cy, forall (x,s) € Bgx [0,00).

Then, for ¢t > 0, we get

t2
I(tu) < —||ul* = Cyt* K(z)u'dz + Cy K(z) dx.
2 Br Br
Since pu > 2, we have I(tu) — —oo as t — oo. By setting e = tu to t large enough, we

immediately achieve the desired result. m

3.5 The Palais-Smale compactness condition

In this section, we show that the functional I satisfies the Palais-Smale condition
for certain energy levels. We recall that the functional [ satisfies the Palais-Smale

condition at the level ¢, denoted by (PS). condition, if any sequence (u,,) C E verifying

I(u,) = ¢ and [I'(u,) — 0 as n — oo, (3.35)

has a strongly convergent subsequence in E. We begin by proving some auxiliary

results.
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Lemma 3.5.1 Suppose that (V'), (K) with o € (0,2m) and B € [a, +00) and (f1)—(f3)
hold. Then, any (PS).-sequence (uy,) for I is bounded in (E,|| - ||) and satisfies

sup K(z)f(x,u,)u, dr < co. (3.36)

n R2m
Proof . Since (u,) is (PS).sequence for I, we have

1
I(u,) = §HunH2 — . K(z)F(z,u,) de — ¢ (3.37)

and

R2m

(I'(uy),v) = /]RQm (Z Viu,Viv + V(:L')unv) dz — K(x)f(z,up)vde < epllv|l, (3.38)
j=1

for all v € E, where ¢, — 0 as n — oco. Note that (3.37) guarantees (/(u,)) C R is
bounded and hence, there exists a constant C' > 0 such that
1 2
§||un|| <C+ K(x)F(z,uy) dz, (3.39)
R2m
for all n € N and from the condition (f3), we have
1
K(x)F(z,u,) dx < — K(z)f(x,u,)u, dz. (3.40)
R2m ,LL R2m
By choosing v = u,, in (3.38), we obtain
K (@) f (2, un)un dz < [ug||?* + enllun]- (3.41)
R2m

It follows from (3.39), (3.40) and (3.41) that

1 1

3
5= )l < O+ =
(2 M) [

and since 1 > 2 we obtain that (u,) is bounded in E. This together with (3.41) implies
(3.36). m

The previous lemma guarantees that, up to a subsequence, there exists u € F
such that u,, — u in E. Moreover, in view of (3.36), we can apply [23, Lemma 2.1] to
conclude that

K(2)f(2,un) = K(2)f(z,u) in Li(R™).

Now let us see the following convergence result that can be found in [33, Lemma

5.4]. We have added the proof here for the reader’s convenience.
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Lemma 3.5.2 Suppose that (V),(K) with (3.6) and (f1) — (f1) are satisfied. Let
(un) C E be a Palais-Smale sequence of I at the level c. Then there exist a subsequence
of (uy,), still denoted by (u,), and w € E such that u, — u in E, u, — u in L% (R*™)
for all p > 2 and
K(z)F(z,u,) do — K(x)F(z,u) dz.
R2m R2m

Furthermore, u is a weak solution of problem (3.5).

Proof . Note that by (f3) and (f;), we have

0< lim F(z, s) < tim Mo _g
|s|so0 Sf(x,8) T |sl=+oo |$]

and for any ¢ > 0 there exists s; = s(¢) > 0 such that
F(x,s) <esf(x,s) forall |s]| > s. (3.42)
Using (3.36), for some constant C' > 0 we obtain

K(z)f(x,u)u de < C and K(x)f(z,up)u, de < C forall n € N.

R2m RQm
From (3.42) and by the previous inequalities, fixed € > 0, we have

/ K(z)F(z,u)dx < 5/ K(z)f(z,u)udz
{lulzsp}

{lul=st}

and

/ K(z)F(z,u,)dr < 5/ K(z)f(x,u,)u, dz.
{lun|=s0}

{lunl=sp}

Defining £, (7) = K(2)X{ju,|<sp} F (7, un) and £(z) := K(2)X{juj<s;) F'(z,u), we have
that {(,} is a sequence of measurable functions and /¢,(x) — ((x) for a.e x € R*™,
because u, — u a.e. in R?*™. Using (3.32) with v > 4, ¢ > 0 and ¢ = 2, for any

|s| < s; we obtain
|F(z,5)] < 252 4O, 0)s2 (e — 1) < Cly, e, sb)s2
So writing
gn(@) := C(v,6,50) K (2)Ju|* and g(z) := C(v, ¢, s0) K ()]ul?,

we have 0 < ¢, () < g,(z) and g, (z) — g(z) a.e. in R*", and by virtue of the compact
embedding £ — L% (R*™), we get

lim gn(x) do = / g(x) dz.
R2m

n—oo R2m
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Hence, applying the Generalized Lebesgue Dominated Convergence Theorem, we have

lim lp(x) do = / ((x) dx.
R2m

n—oo Jpr2m

In conclusion, for any fixed € > 0, denoting by

A, =

K(x)F(z,u,) dx — K(z)F(z,u) dz

R2m R2m

Y

we obtain

A, < / K(z)F(x,u,) dz —|—/ K(z)F(x,u) dz
{lun|=sp} {lul=st}

+

K(x)F(x,u,) dr — K (2)F(z,u) dz
/{|“n|<56} ( ) ( ) / ( ) ( )

{lul<sp}

<2Ce + ly(x) do — {(x) dx

R2m R2m

and passing to the limit as n — oo, we get 0 < lim A,, < 2Ce¢. Since £ > 0 is arbitrary,

n—oo

we have that K(x)F(z,u,) de — / K(x)F(z,u) dz.
R2m R2m
Moreover, since u, — u in E and K(z)f(z,u,) — K(z)f(z,u) in L}(R?*™), we

get from (3.38) that for all p € C5°(R*™),
/ (Z ViuVip + V(x)ugo) dz — K(z)f(x,u)p dx = 0.
R2m i—1 R2m

Since Cg°(RY) is dense in E, the above equation implies that u is a weak solution of

(3.5). This completes the proof of the lemma. m

The next result is a Lions-type Concentration-Compactness Principle (see [15])
and the proof follows the same lines as in Lemma 2.6 of [32]. This result will be crucial
to study of the compactness of Palais-Smale sequences.

Proposition 3.5.3 Suppose that (V), (K) hold with o € (0,2m) and 8 € |a, +00). If

(un) C E satisfies ||uy|| = 1, for all n € N, and u, — u in E with ||u|| < 1, then for
all p € (O, f_”h—iﬂ}) we have

sup K(z)(e"™* — 1) dz < 0. (3.43)
n R2m
Proof . Since u, — win E and |lu,|| = 1, we obtain using the Hilbert’s structure of

L?*(R*™) that

Ym,2m
p

= ull* = unl* = 20un, w) + [Jull® < 1= [ul* + 04(1) <
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Thus, for n € N enough large, we get p||u, — ul[* < < Ym.am for some v > 0. Choose

q > 1 close to 1 and ¢ > 0 small satisfying
pq(1+ %) |lun — ul]* < 7.

By inequality (3.1) of Theorem 3.1.1, we obtain

K(:E) (ePQ(1+€2)|un—u|2 _ 1) dr = K(ZL’) (epq(l—i-sQ)I“n—“2(||ZZ:Z|>2 _ 1) dzr

R2m

R2m

< K(x) (ev(ﬁjZ_ZH)Q — 1) de < C. (3.44)

R2m

On the other hand, observe that by elementary inequality plu,|* < p(1+&2)|u, —u|* +
p(1+1/e*)|ul* and Lemma 3.2.2 for 1/p+1/v =1

K(x) (ep|“"‘2 - 1) dz < K(z) [(ep(HsQ)‘“”_“'Q*’p(Hg%)|“‘2) — 1] dz

RQm RQm
1
< - K(x) (ep“(1+52)|“”_“|2 - 1) dx (3.45)
,u RQm
+ 1 K(x) <ep”(1+s%)|"‘2 — 1) dx.
1% R2m

Therefore, for n sufficiently large, we can conclude by the inequalities (3.44), (3.45)

and using (3.3) that (3.43) holds. m

Next, we shall prove the main compactness result of this chapter.

Proposition 3.5.4 Under the hypotheses (V'), (K) with (3.6) and (f1) — (f1) hold, the

Ym,2m

functional I satisfies (PS). condition for any 0 < ¢ < ol

Proof . Let (u,) C E be an arbitrary Palais-Smale sequence of I at the level ¢. By
Lemma 3.5.1, (u,) is bounded sequence in E so, up to a subsequence, u,, — u weakly
in . We shall show that, up to a subsequence, u,, — u strongly in E. For this, we
have three cases to consider:
Case 1: ¢ > 0 and v = 0. In this case, by Lemma 3.5.2, we have
K(z)F(x,u,)dz -0 as n — oo.
R2m
Since
1

I(u,) = 5”“71”2 — . K(x)F(z,u,)dz = ¢+ o,(1),
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we have that

lim ||u,||* = 2c.
n—o0

Hence, we can deduce that for n large there exist » > 1 sufficiently close to 1, v > 7

close to 7o and 7 > r sufficiently close to r such that 7y||u,||* < Ym.2m. Thus, by (3.4)

K(m)(e”"i —1)yde<C K(x) (GMHunIIQ(ZZh)2 — 1) dz < C. (3.46)

R2m RQm
We claim that

K(x)f(z,up)up,dz — 0 as n — oo.
R2m

Indeed, for v > vy, € > 0 and ¢ = 2, we have from (3.31) that there exists C'(y,¢) > 0
such that

flz,s) <els| + C(vy,e)(e = 1), forall (z,s)€R* xR.

Choosing r > 1 close to 1 such that ' > 2, where 1/r+1/r" = 1, it follows by Holder’s

inequality that

K(x)f(x,u,)u, dz

R2m

<C K(z)u? dz
R2m

1 1
+C < K (z)(e"n — 1)%@) < K (2)|un|” dx) -0,
R2m R2m
as n — 0o, where we have used (3.46) and the compact embedding £ < L% (R*™), for
p € [2,00). Therefore, once (I'(uy,), u,) = 0,(1), we conclude that, up to a subsequence,

u, — 0 strongly in F.

Case 2: ¢ > 0 and u # 0. In this case, since (u,) is a Palais-Smale sequence of I at the

level ¢, we may define

Up, q u
vp=—= and v=-——.
Tl T ]

Thus, v, = v in E, ||v,]| = 1 and ||v|| < 1. Case ||v|| = 1, we conclude the proof. If

|lv]] < 1, we claim that there exist r > 1 sufficiently close to 1, v > =, close to 7y and
o > 0 satisfies

P)/m,2m

for n € N large. Really, using that I(u,) = ¢+ 0,(1) and Lemma 3.5.2, we have

1
— lim |jup|* =c+ K(z)F(xz,u)dx. (3.48)
2 n—oo R2m
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Consider
A= (et [ K@F@ar) - o),
R2m
from (3.48) and by the definition of v, we obtain A(u) = ¢ — I(u), which together with
(3.48) imply that
A(u) c—I(u)

1
= lim |u,||* = = : (3.49)
2 noo L—{lol> 1= ol?

Hence, from (3.49) and the fact ¢ — I(u) < ¢, we conclude

]_ _] m,zm
— lim |u,||* = ¢~ I{u) ¢ Ym,2

_ - (3.50)
2 niroo L—lof2 " 1=of> = 27(1 — [|v]]?)

because 0 < ¢ < % Therefore, by using (3.50) we conclude that (3.417) holds. Thus,
by Proposition 3.5.3, we get
K(z)(e™ —1) dz < C.
R2m
By using Holder’s inequality, the compact embedding E — L5 (R*™) for p € [2,00)
and arguing similar to Case 1, it follows that
K(z)f(x,u,)(u, —u)de -0 as n— oo.
R2m

This convergence and the fact that (I'(u,),u, — u) = 0,(1) show that
[unll* = (n, )& + 0n(1).

Since u, — u in E, we conclude u,, — u strongly in FE.

Case 3: ¢ = 0. Observe that

0 < I(u) <liminf I(u,) =0,

n—o0

consequently, I(u) = 0. And from Lemma 3.5.2, K(z)F(x,u,) — K(z)F(z,u) in
LY(R?*™), thereby ||u,| — ||u/, in other words, u, — u in E which completes the

proof. m

3.6 The minimax level

In this section, we provide an estimate for the minimax level associated to the

functional .
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Lemma 3.6.1 Suppose that (V), (K) with o € (0,2m) and 8 € [a, +00), (f1) — (f3)
and (fs) hold. Then, there exists n € N such that

Ym,2m
I(tM, :
00 < 3

where M, is defined in (3.18).

Proof . Assume by contradiction that

max [ (tM,,) > Jm2m - for all n e N,
£20 270

For each n € N, let £, > 0 such that

t2 m,zm
ri K(x)F(z,t,M,) de = max I(tM,) > Jm,2m.
2 R2m >0 2%

By hypothesis (f3), we obtain

Yim.2 t2 t2
e K(z)F(z,t,M,) do < =
2% — 2 Joom 2
and therefore
2> %n’2m, for all n € N. (3.51)
7o
At t =t,, we have
d t2
0= K(x)F(z,tM,) dx =t, — K(x)f(z,t,M,)M, dz,
dt R2m t=tp, R2m
which implies that
U / K(x)f(z, t,M,)t, M, dx for all n € N. (3.52)
R2m

From condition (f5), for any € > 0 there exists R = R(¢) > 0 such that
sf(z,s) > (6 — )€, for all s > R and z € R*™. (3.53)

We claim that (¢,) is a bounded sequence. Indeed, taking n € N sufficiently large so
that t,M,(z) > R, for all z € B_1_, it follows, from (3.19) (3.52) and (3.53), that

§

n

t2 Z / K(a:)f(m)tnMn)tnMn df[' Z (90 — 6)/ K(ZE) "y/()tQJM2 d.T
B 1

B 1
M
logn
> (6 —e) K, / T e da
Wom, ~ logn(%—l)
— _(00 _ (c_;:)Kne "/m,2m”]wn” . (3.54)
2m
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where we are denoting by K, = min K(x). Thereby,

reB 1
2"%
w - M—logn—logﬂ
1> 22m (B — €) Kpe \mzmlbinl® "

2m

for n > 1 sufficiently large and hence (t,) is a bounded sequence. Even more, we have

lim 2 = 1m2m, (3.55)

Suppose by contradiction that this does not happen. Since that (3.51) holds, we must
have
7m,2m

lim ¢2 >

However, letting n — oo in (3.54), since IM,|| — 1, we get a contradition with the

boundedness of the sequence (t,). So, (3.55) holds.

Now, we consider the sets defined by
A, ={x€B; : t,M, >R} and C,:=DB;\ A4,
where R > 0 is given in (3.53). Using (3.52) and (3.53) we get that

2> | K(x)f(x, t,M,)t,M, dx

By
> 0y —)K,, | M da+ K, | f(x, taMy)ta M, dz (3.56)
B, Cr
— (6o — z—:)l?n ML .
Cn

By definition of C,, and since w, — 0 almost everywhere in By, we reach xo, — 1

almost everywhere in B;. Using the Lebesgue Dominated Convergence Theorem, we

get
Wam
flx, t,M,)t, M, dz — 0 and / M gy 2L as n — 00. (3.57)
Cn n m
Observe that by (3.51) and the definition of M,, we have
/ M Qg > / etmemMi g
B1 BI\B 1
2”%
1 m2
= WQm/ GH?\%H? loé”(log%)252m71 ds.
1/ 2%/
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Making the change of variable

1 1
t=-—"——1log—,
||n || log n 5

we can estimate

1
2 1/2 —~ 2m|| Mnp || 242 kY
/ M A > wop || M,|| logn/ elogn(Am = =2ml|Mullt) gy
B 0

Consider the function g : [O, m} — R defined by g(t) = (4m?t* — 2m||@,||t) log n.
Then we have that

1

"(0) = —2m||@, |1 d ¢ ——
/0 = <2l logn and o (5

) ol || logn — 2m||@,]| log n.
Let € > 0 sufficiently small, thus

g(t) = —2mt||®, || logn + o(t), t€]0,¢]
and

(t) = 2m1 (2 M)(t ! )+<t> te[ ! ! }
g\t) = 2amlogn | —— — ||Wn - o(?), — — €, —~ .
@] 2] ol S Zmlln]

Hence, choosing ¢ =

—L__ we have that
dm||n |
1
2272 — am||Mnpl  _ M.
/ oM dg > wgmHMnHlogn/ e~ 2mtl|Mulllogn 4y
Bi 0

1
T 2m| Myl 2mlogn T . T
+ 02m||Mn||logn/2 Pl 2o (1921 (- 5pier) &t
1

am|| M ||
stz B (ool
om om (2 _ HMn||2>

Since || M, || — 1 we obtain that

w w w
lim [ ePHMidg > lim —n 4 20— 22 (3.58)
n—00 By n—oo 21Mm 2m m

Therefore, combining (3.55)-(3.58) and calculating the limit, we conclude

m,2m . m ~ m 9 _ }z’ m
Jm2m _ lim t2 (00_5)_}(&_(90_5)](“)2 _ (0o — &) Kwy .
Yo n—o0 m 2m 2m

By the arbitrariness of € > 0, we deduce that

2m’ym 2m

w2mK70

0o

IN

This contradicts the hypothesis (f5) and ends the proof of the lemma. =
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3.7 Proof of Theorem 3.1.4

In view of Lemma 3.4.1, the functional I satisfies the geometric conditions of the

Mountain Pass Theorem. As a consequence, the minimax level

= inf I(qg(t
¢:= inf max (9(1))

is positive, where I' := {g € C([0,1], E) : ¢g(0) = 0,9(1) = e}. We also have by
Proposition 3.5.4 that the functional I satisfies the (PS). condition. Then, using the
Mountain Pass Theorem, I has a critical point ug € E at the minimax level ¢. Hence,

up is a nontrivial weak solution of problem (3.5).
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Appendix A

Auxiliary results

Lemma A.0.1 E is a Banach space with the norm || - ||.

Proof . Let (u,) C E be a Cauchy sequence, then (Au,), (Vu,) and (V2 (z)u,)
are Cauchy sequences in L?(R%). Since L?(R*) is complete, there are wy, w, and ws in

L?*(R*) such that
Au, — wy, Vu, — wy and V%(x)un — ws in L*(R?*) respectively.

Note that (u,) is Cauchy in L. Indeed, for all R > 0 we have from Holder inequality,
the condition (V) and the fact that (V2 (z)u,) Cauchy in L2(R*) that

) 1/2
/ |un, — up|de < |Bgl|? (/ |, — um|2dm>
Bgr Br
1 N 1/2
< C {/ |, — U | (V(x)ﬂ> dx}
Br a

1/2
< C (/ V(x)|u, — um|2dx)
Br

< €2

for all m,n € N sufficient large; so there is u € L] _such that u, — u in L} . Observe

loc loc*

that wy = V2u almost everywhere in R* and for all ¢ € C5°(R*) we have

/ wip dr = lim Au,p dr = lim u,Ap dr = / ulAp dx
R4 R4 R4

n—00 Jpa n—00

and

/ wop dr = lim Vupp de = — lim u, Vo do = —/ uVe dx
R4 R4 R4

n—00 [pa n—oo



implying that w; = Au and wy = Vu almost everywhere in R*. Since wy, w, € L*(R?)
we obtain that |Aul, |[Vu| € L?(R*).

Now by Lemma de Fatou, we have that

/ V(z)u*dr < lim inf/ V(z)u? dv = / w3 dz < +o0
R4 R4

n—oo R4

because w3 € L*(R*). Therefore, u € E and
o =l = i [ 18 =)+ ¥ = )7+ (V) a0 — ) = 0,
since A, — wy = Au, Vu, — wy = Vu and V(2)2u, — wy = V(z)2u in L2(R*). m
Lemma A.0.2 C°(RY) is dense in (E, || - ||).
Proof . We show first that C5°(R*) is dense in
Ey :={u € E : u has a compact support}.

Indeed, let u € Ey and K = supp(u), since C§°(K) is dense in HZ(K), then for all
e > 0, there is ¢, € C§°(K) such that

g
\/2 max{l, HVHLOO(K)} '

|u — %HH@(K) <

Notice that
lu— 3 < / Au— Ape + [V — Voo + V(@)u — p.Pda
R4

- /K A= A + |V — V2 + V@) — p.Pde

IA

max{L, [|V[| o) Hlw = el 2 i)
g2 g2 )
< max{l, |V~ = — <&
{ H HL (K)}Qmax{l,HVHLw(K)} 2

Hence, given u € Ey there exists ¢ € C°(K) C C5°(R*) such that ||u — ¢||g < e.
Therefore, C5°(R?) is dense in (Ey, || - ||z)-

Now, we prove that Fy is dense in E. In fact, for every R > 1, consider a function
or € CP(RY[0,1]) satisfying pgr(x) = 1 for |z] < R, pr(z) = 0 for |z| > 2R,
[Vr| < % for every € R* and |Apg| < & for all z € R* for some constant C' > 0.
Given the function v € E, we have that pru € Ej for each fixed R > 1. We will prove
that

loru —ul* = /]1@4 |A(pru—u)* + |V (pru—u)|* + V(2)|oru —ul*dz — 0 as R — oo.
(A.1)
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Observe that V'2(2)(¢r — 1)u — 0 a.e in R* as R — oo and V'2(2)|pgu — u| <

2V1/2(x)u € L*(R*), then by Lebesgue Dominated Convergence Theorem, one has
/ V(z)|pru —ul*dz — 0 as R — oo. (A.2)
R4

Since V(pru) = V(vr)u + ¢rVu, we have that

/ IV (opu —u)|*dr < 2 (/ |V (or)ul*dz +/ |(¢r — 1)Vu|2dx) : (A.3)
R4 R4 R4

From the fact that |Vu| € L*(R*), since u € E, we can derive by Lebesgue Dominated
Convergence Theorem that

|(pr — 1)Vul|*dz — 0 as R — oc. (A4)

R4

Let’s see that it is also valid IV(or)u|’dz — 0 as R — oc. Indeed, define
R4

A :=inf {/ |Voul’dz : v € H} (B, \ B;) and / lv[2dx = 1} :
B2\ B B

2\B1
that is, the first eigenvalue with the Dirichlet condition in the annulus. Using x = Ry

and ug(y) = u(Ry), we obtain that
2 2 ¢ 2
V(pr)ulds = V(pryulds < = [uf*da
R4 Bor\Br R Bar\Br
2 2 CR? 2
= CR lur(y)|"dy < [Vur(y)|"dy
Bg\Bl BQ\BI
CR?

C
= / |RVu(Ry)|*dy = — |Vul|?dz.
A Bao\B1 A Bar\Br

Therefore, since |Vu|? is integrable, we concluded that

/ IV (pr)ul’de < g |Vul’dz < g |Vul|?dz — 0 as R — 4+o00. (A.5)
R4 BS,

Bar\Br
Finally, let’s see that

/R4 |A(pgu) —ul’dz — 0 as R — oo. (A.6)
Using that A(pru) = A(pr)u + 2VerVu + prAu we obtain
[ 1 - wPds <2 ([ (ewus 2Vonvarde s [ Jion - DAuPac)

< 4/ |A(pg)ul*dr + 16/ |V¢RVU\2dx+2/ [(pr — 1)Aul*dr (A7)
R4 R4 R4
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and the third integral of (A.7) converges to zero by Lebesgue Dominated Convergence

Theorem as R — oo. The first integral of (A.7) can be estimated as follows

/ |A(pp)ulrdr < g% V(z)u*dx

R4

and by the definition of £ and that a € (0,4) we obtain that / |A(pg)ul*dr — 0 as
R4
R — oo. From the fact that |Vu| € L?(R*), we concluded that

VQORVu2dx§—C Vul’dz =+ 0 as R — oo.
2
]R4 R ]R4

So, (A.6) is valid. Combining (A.2)-(A.6) the convergence (A.1) is proven. Thus Ej is
dense in E, and combined with C{°(R?*) being dense in £, we concluded the proof that
Ce°(R?) is dense in £. m
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