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Resumo

O problema do caixeiro viajante com janelas de tempo, do inglês traveling salesman

problem with time windows (TSPTW), é uma variante do problema clássico do caixeiro

viajante, no qual clientes devem ser atendidos dentro de janelas de tempo. Este trabalho

propõe uma busca genética h́ıbrida para o TSPTW com véıculo elétrico h́ıbrido, o qual,

comparado a véıculos tradicionais, é mais amigável ao meio ambiente e ajuda a reduzir

a emissão de gases de efeito estufa. A abordagem desenvolvida inclui um operador ba-

seado no order crossover (OX) para melhorar soluções, juntamente com uma estratégia

de limitação de busca e um sistema eficiente de avaliação de movimentos para acelerar

a etapa de busca local. Experimentos computacionais foram realizados em mais de 200

instâncias de benchmark. O algoritmo proposto se mostrou efetivo em sistematicamente

encontrar soluções de alta qualidade quando comparadas àquelas encontradas pela me-

lhor heuŕıstica para o problema. Soluções melhores foram encontradas, especialmente

para instâncias maiores e mais desafiadoras, nas quais o algoritmo se mostrou, em média,

9 vezes mais rápido do que o melhor método existente. Além disso, foi examinada a

distribuição de frequência do uso dos modos de operação do véıculo associados com as

melhores soluções encontradas.

Palavras-chave: Caixeiro viajante, véıculo elétrico h́ıbrido, algoritmo genético

h́ıbrido, busca local.



Abstract

The traveling salesman problem with time windows (TSPTW) is a variant of the

classical traveling salesman problem (TSP), in which customers must be served within

specific time windows. This work proposes a hybrid genetic search for the TSPTW con-

sidering a hybrid electric vehicle (HEV), which is more environmental friendly than con-

ventional vehicles and helps to decrease the emission of greenhouse gases. The developed

approach includes a specific operator based on the order crossover (OX) to obtain im-

proved solutions, as well as a search limitation strategy and an efficient move evaluation

scheme to speed up the local search phase. Extensive computational experiments were

conducted on more than 200 benchmark instances. The proposed algorithm was revealed

to be effective in systematically finding high-quality solutions when compared to those

achieved by the best heuristic for the problem. Improved solutions were found, especially

for the larger and more challenging cases, for which our algorithm performed, on average,

9 times faster than the quickest method available. Moreover, we examine the frequency

distribution of the operation mode usage of the vehicle associated with the best solutions

found.

Key-words: Traveling salesman, hybrid electric vehicle, hybrid genetic algorithm,

local search.
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1 Introduction

1.1 Preliminaries

The traveling salesman problem (TSP) is a combinatorial optimization problem

and one of the most prominent in the field of operations research. In the TSP, each of a

set of customers must be visited exactly once, and the vehicle must start from and return

to a depot. Moreover, the sequence of visited customers is considered a solution to the

problem, the overall distance can be regarded as the cost, and the optimal solution is the

one with the least cost.

Different variants of the TSP have been proposed over the years. For instance,

the TSP with time windows (TSPTW), in which every customer has a service time and

must be served within specific start and end times of a time window. A solution to the

TSPTW is said to be feasible if it satisfies the time-window constraints.

The hybrid electric vehicle TSPTW (HEVTSPTW) is a green variant of the TSP,

which adopts a more environmental friendly vehicle instead of the conventional internal

combustion engine (ICE) one. In addition to the ICE, HEVs can also benefit from an

electric motor. Green logistics considers not only economic factors of logistics activities,

but also the sustainability of the process [Sbihi and Eglese, 2007].

In combinatorial problems such as the TSPTW, the search space is composed

of a finite set of solutions. Exact and heuristic algorithms can be applied to find the

optimal solution in the search space. The former approach, searches for all possible

feasible solutions and returns the optimal one, but usually takes a lot of computational

time. The latter, uses different techniques to rapidly converge to good solutions, on

average, even though there is no guarantee that the optimal one will be found.

The hybrid genetic search (HGS) is a heuristic approach that combines population-

based search and local search. In population-based heuristics, characteristics of a set of

solutions, or individuals, are used to iteratively guide the search for improved solutions.

This is also the rationale behind genetic algorithms. Local search methods look for im-

proved solutions by moving, by means of incremental changes, from solution to solution.

Moreover, the HGS relies on an offspring generation operator applied to individuals se-

lected from the population. The idea of the crossover operator is to select characteristics

from promising parents to be passed on to offsprings.

This work presents a hybrid genetic search approach to solve the hybrid electric

vehicle traveling salesman problem with time windows.

1



1.2 Motivation

Over the past decades, the application of operations research in the fields of logistics

and transportation led to substantial savings. In that sense, ICE vehicles have been of

paramount importance. Nevertheless, they also have been contributing negatively to

climate changes due to their significant share of greenhouse gas emissions. The European

Union, for instance, aims at reducing, by 2030, 55% of the level of emission of such gases

in comparison to the amount produced in 1990 [Zhongming et al., 2020]. To this end,

two threads of operation might be considered: efficient exploitation of currently available

resources or the use of more environmental friendly technologies. The former alternative

has the potential of reducing, in some cases, up to 6.9% of pollutant emissions, as can be

observed in Suzuki [2011]. In such work, the objective is to minimize the time a vehicle

spends carrying a heavy payload and the waiting times to serve the customers. The latter

alternative is a hot topic that has been the subject of many scientific papers (see, e.g.,

Lin et al. [2014]) and has a greater potential for minimizing the emission of greenhouse

gases.

A popular environmental friendly technology for last mile deliveries is the electric

vehicle (EV) [Mancini, 2017]. This type of vehicle, however, has limitations regarding

its maximum driving range, due to battery capacity, as well as its charging time. The

HEVs present a reasonable solution to the driving range constraint and the charging

time problem by combining an electric motor and an ICE. Unlike plugin HEVs (PHEVs),

which can also be connected to power grids to recharge their batteries, HEVs can only be

charged while the vehicle operates with the ICE [Ghorbani et al., 2020].

Four distinct operation modes are assumed in the HEV considered in this arti-

cle: combustion, charging (while driving with the combustion engine), boost (which is a

combination of the combustion engine and the electric motor), and electric. Moreover,

the operation mode can only be changed at the vertices. The time and cost required to

traverse an arc depend on the selected mode, and each of them has a different impact on

the battery charging level. For more details about the vehicle, the reader should refer to

AG [2021].

The HEVTSPTW, proposed in Doppstadt et al. [2020], generalizes the well-known

TSPTW (so it is also NP-hard) by employing an HEV instead of a regular combustion

vehicle. In this case, the traveling costs depend on the operation mode (i.e., combustion,

charging, boost, or electric) of the vehicle when going from one point to the other, and

one must ensure that the battery level is never violated during the tour.

2



1.3 Objectives

The main objective of this work is to propose a hybrid genetic search (HGS) [Vi-

dal et al., 2014] algorithm to solve the HEVTSPTW, which incorporates a hierarchical

randomized variable neighborhood descent (HRVND) procedure in the local search phase.

The remaining objectives are listed as follows.

• Propose a novel crossover operator that exploits the particular characteristics of the

HEVTSPTW, such as the battery operation modes. The efficiency of such operator

is attested by comparing its performance with several others, including well-known

operators from the literature.

• Devise a simple limitation strategy that avoids all possible arc combinations as-

sociated with battery operation modes to be evaluated during local search, and

empirically demonstrate that such strategy can yield a significant speed-up without

compromising the solution quality.

• Develop an efficient procedure for computing violations on the battery level in amor-

tized O(1) operations, which substantially improves the runtime performance.

• Examine the frequency distribution of the operation mode usage of the vehicle

associated with the best solutions found. We could observe that one of the modes

is likely to be used more as the instance size increases.

1.4 Monograph outline

The remainder of this work is organized as follows.

• Section 2 reviews the related literature.

• Section 3 formally defines the problem.

• Section 4 describes the proposed algorithm, as well as the efficient move evaluation

and limitation strategy schemes.

• Section 5 contains the results of extensive computational experiments.

• Finally, Section 6 concludes.

3



2 Related work

Many works have studied the use of EVs as an alternative solution for decreasing

the amount of greenhouse gas emissions in routing problems. Some of them have EVs as

part of homogeneous or heterogeneous fleets of vehicle routing problems (VRPs), or as the

single vehicle used in TSP variants. This section reviews the problems that are closely

related to the variant addressed in this paper. The reader is referred to Lin et al. [2014],

Erdelić and Carić [2019], and Qin et al. [2021] for a comprehensive review on electric VRP

variants.

The green VRP (GVRP), proposed by Erdoğan and Miller-Hooks [2012], is one of

the most prominent examples of the use of EVs in VRP-like variants. In such work, the

vehicle can only be charged to full battery capacity at specific stations, and the charging

time is constant. A general electric VRP (EVRP) is presented in Lin et al. [2016], in which

an exact approach is used to find a minimal cost solution based on travel time, energy

consumption and the amount of EVs dispatched. Furthermore, such work is claimed

to be the first EVRP model to study the relationship between vehicle load and battery

consumption.

Introduced by Schneider et al. [2014] and also studied (among others) by Brugli-

eri et al. [2015], the EVRPTW is a time-window extension of the EVRP, in which the

battery level and the recharging time (after being recharged, the battery is assumed to

be full) depend on the energy consumption. Both works presented a mixed integer li-

near programming (MILP) formulation, but the former devised a hybrid solution method

based on variable neighborhood search (VNS) [Hansen et al., 2019, Sifaleras and Kons-

tantaras, 2020, Lan et al., 2021] and tabu search (TS) [Laguna, 2018], while the latter

implemented a so-called VNS with branching (VNSB) procedure [Hansen et al., 2006],

which combines VNS with local branching [Fischetti and Lodi, 2003]. Moreover, four va-

riants of the EVRPTWwere addressed by Desaulniers et al. [2016], namely: EVRPTWSF,

EVRPTWMF, EVRPTWSP, and EVRPTWMP. The main difference among these vari-

ants is in the maximum number of recharges per route (at most one – S, multiple recharges

– M), the fact that batteries have to be fully recharged at each visit to a single station

(F), and the possibility to partially recharge the battery (P). In such work, solutions were

obtained by exact branch-price-and-cut algorithms.

The EVRPTWPR is another EVRPTW variant, proposed by Keskin and Çatay

[2016], where the full recharging constraint is relaxed, allowing partial recharge of the

battery. The authors formulated the problem as a 0-1 MILP and developed an adap-

tive large neighborhood search (ALNS) [Pisinger and Ropke, 2019] heuristic to solve it.

Furthermore, the EVRPNL introduced by Montoya et al. [2017] adds a nonlinear char-

ging function, and the resulting problem is solved by a hybrid metaheuristic consisting

4



in the combination of iterated local search (ILS) [Lourenço et al., 2019] and the so-called

heuristic concentration [Rosing and ReVelle, 1997]. Finally, the electric fleet size and

mix VRP with time windows and recharging stations (EFSMFTW) was put forward by

Hiermann et al. [2016], which essentially integrates the characteristics of the classical

fleet size and mix VRP with those of the EVRPTW. The problem is solved exactly by a

branch-and-price algorithm and heuristically via a hybrid ALNS approach.

The hybrid VRP (HVRP) is another extension of the GVRP. Two early works on

this problem are those by Vincent et al. [2017] and Mancini [2017]. The former proposed

a simulated annealing (SA) [Delahaye et al., 2019] heuristic for an HFVRP that employs

PHEVs, while the latter put forward a large neighborhood search (LNS) [Pisinger and

Ropke, 2019] based matheuristic for an HFVRP with a fleet of EVs. A more complicated

version of the HVRP with PHEVs was later studied by Li et al. [2020], who devised a heu-

ristic algorithm that combines memetic algorithm with sequential variable neighborhood

descent (SVND). Moreover, Murakami [2018] studied a routing and scheduling problem

using a single PHEV and implemented two exact approaches, more precisely, a mixed in-

teger programming (MIP) model and a labeling-based algorithm, as well as two heuristics.

Bahrami et al. [2020] proposed an HVRP that also considers power management optimi-

zation, and solved it by means of branch-and-price and heuristic algorithms. Hiermann

et al. [2019], on the other hand, studied a heterogeneous fleet VRP with combustion,

plug-in hybrid, and electric vehicles. Solutions were obtained via a hybrid approach, i.e.,

combining metaheuristic and exact algorithms. More details about hybrid VRPs can be

found in the surveys by Dascioglu and Tuzkaya [2019] and Ammar et al. [2022].

Zhen et al. [2020] and Seyfi et al. [2022] are two seminal works on hybrid electric

VRPs (HEVRPs) with mode selection. The former put forward an improved particle

swarm optimization (PSO) [Poli et al., 2007] algorithm to solve an HEVRP with a fleet

of PHEVs, with the delivery area composed of a depot, and sets of (i) customers, (ii)

charging, and (iii) gas stations. The latter, on the other hand, solved the HEVRP by

means of a matheuristic that combines VNS with mathematical programming.

Concerning TSP-like problems, Chau et al. [2016] developed an approach for selec-

ting the drive modes of a PHEV based on prediction using historical data. In this sense, a

driving profile is obtained, which takes into account parameters such as traffic conditions.

Such profile is used in a formula together with driving speed, vehicle weight, and other

metrics to determine the appropriate drive mode at each part of the road.

Another single vehicle variant is the hybrid electric vehicle traveling salesman pro-

blem (HEVTSP), introduced by Doppstadt et al. [2016]. To solve it, the authors developed

a mathematical formulation and a TS heuristic. Doppstadt et al. [2020] later extended the

HEVTSP, as well as the formulation, by adding time-window constraints (HEVTSPTW),

and they solved the problem heuristically via a parallel VNS (PVNS) algorithm. More

5



specifically, they divided their solution approach into two phases: initialization and im-

provement. The former is further divided into three steps: firstly, customers are ordered

according to their time window end time in non-decreasing order (operation modes are

set to combustion at this step); secondly, insertion-moves are employed using a so-called

hill-climbing procedure with the aim of modifying the position of single customers in the

route; lastly, the 3-mode change (3MC) approach [Doppstadt et al., 2016] (see Section

4.8) is executed as a hill–climbing procedure. The latter phase consists in applying the

PVNS algorithm and infeasible solutions are allowed during the search.

Given the above, we can observe that the amount of works addressing hybrid

electric routing problems without recharging stations is rather limited. Moreover, we

have also identified opportunities for devising more efficient heuristic procedures to solve

this very challenging class of problems when compared to existing works. Even when only

a single hybrid vehicle is considered, the best available strategies require from several

minutes to a few hours to achieve very good solutions for 50-customer instances when

time windows are taken into account. Therefore, our work attempts to make relevant

methodological progress when it comes to obtaining high-quality solutions for this latter

case in a matter of seconds.

6



3 Problem description

Let G = (V,A) be a directed graph, V = {0, 1, 2, ..., n} be a set of vertices, and

A = {(i, j) ∈ V 2, i ̸= j} be a set of arcs. For each vertex i ∈ V , there is a time window

[bi, ei] in which such vertex can be visited, and a service time si. Vertex 0 is the depot

and the remaining ones are the customers. Moreover: (i) ei − bi ≥ si, ∀i ∈ V ; and (ii)

e0 − b0 provides the maximum route duration (or working hours).

Each arc (i, j) ∈ A has a cost and a travel time for each operation mode of the

vehicle, i.e, combustion (c), charging (ch), electric (e), and boost (b), as indicated in Table

1. Regarding the battery, there is a minimum (0) and a maximum lmax charging level, as

well as charging rc and discharging rd rates. In addition, li is the battery charging level

at vertex i ∈ V . Each mode of operation has a different impact on the battery when

traversing an arc, as also presented in Table 1.

Tabela 1: Data associated with each operation mode for an arc (i, j) in an
arbitrary solution.

Operation mode Arc cost Arc travel time lj
Combustion (c) ccij tcij li
Charging (ch) cchij tchij li +min(lmax − li, t

ch
ij rc)

Electric (e) ceij teij li −min(li, t
e
ijrd)

Boost (b) cbij tbij li −min(li, t
b
ijrd)

For each mode, the last column in Table 1 ensures that the battery level stays

between 0 and lmax. Therefore, we can conclude that:

• in combustion, the charging level is not affected;

• in charging, the increasing level is proportional to the time required to traverse the

arc in this mode multiplied by the charging rate;

• in electric or boost, the power consumption is proportional to the time required to

traverse the arc in this mode multiplied by the discharging rate.

The objective of the HEVTSPTW is to find the least-cost Hamiltonian cycle,

starting and ending at the depot, serving each customer within its specific time window

and with a non-negative battery level throughout the tour. A mathematical formulation

for the problem, as well as a more comprehensive description regarding the HEVTSPTW

constraints, can be found in Doppstadt et al. [2020].

Figure 1 depicts an example of a solution containing a depot and three customers,

with the associated time windows indicated in brackets and the arrival times showed just

below them. The battery charging level is depicted to the right of the nodes. Assuming
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Figura 1: Example of a solution regarding time windows and operation mo-
des, with a maximum battery level of 10.

that the battery charging level at the depot is 0, the vehicle can only use the charging

or combustion mode in order to keep the non-negative battery level requirement. In the

example, the charging mode is selected, and thus the battery is partially recharged. From

customer 3 to 1, the vehicle can use the combustion or charging mode, and, depending

on the battery level at 3, the electric or boost mode. Assuming that there is enough

charge available on the battery, the boost mode is selected. Moreover, one can only use

the combustion or charging mode from customer 1 to 2, if we assume that the use of the

electric or boost mode would incur in a negative battery level. In such arc (1, 2), we also

have to take into account the time window requirement, i.e. the use of a mode with a

long travel time might incur in a time window violation. Hence, with the aim of reaching

customer 2 within its time window, the combustion mode is selected, as it offers the least

travel time between the two available options. Finally, the vehicle returns to the depot

in electric mode, partially consuming the remaining charge on the battery.

8



4 Proposed algorithm

The proposed algorithm is based on the HGS framework that includes an HRVND

procedure in the local search phase. At each iteration, two parents, selected from a

population of individuals, undergo a crossover operator to create a new individual to be

potentially improved by the local search. New individuals are stored in subpopulations

according to their feasibility. The pseudocode of our method, here denoted as HGSHEV, is

presented in Algorithm 1. The meaning of each input parameter is explained throughout

this section.

Algorithm 1 HGSHEV

1: procedure HGS-RVND(Nit, θ, α, µ, µelite, µclose, λ)
2: Ω,Ω′ ← InitializePopulation(θ, α, µ, µelite, µclose, λ)
3: s← Select the individual with the best cost out of the subpopulations Ω ∪ Ω′.
4: it← 0
5: while it < Nit do
6: it← it+ 1
7: P1 ← BinaryTournament(Ω,Ω′)
8: P2 ← BinaryTournament(Ω,Ω′)
9: S ←MOXMC(P1, P2)
10: S ← HRVND(S)
11: if F(S) then
12: Insert S into Ω
13: Ω← SubpopulationManagement(Ω, µ, µelite, µclose, λ)
14: if f(S) < f(s) then
15: s← S
16: it← 0
17: else
18: Insert S into Ω′

19: Ω′ ← SubpopulationManagement(Ω′, µ, µelite, µclose, λ)

20: return s

HGSHEV starts by creating two subpopulations of solutions: the first containing

only feasible individuals (Ω) and the second with only the infeasible ones (Ω′) (line 2). The

solution with the best (i.e. least) cost (see Equation (1)), considered as the global solution,

is then selected from the population (line 3) and a counter is set to 0 (line 4). The main

loop of HGSHEV (lines 5 to 19) is executed at most Nit times without improvement on the

global solution. Two binary tournaments are performed (lines 7 and 8) at each iteration

to choose two individuals from the population. For every tournament, two individuals P1

and P2 are randomly selected from each subpopulation and the one with the best biased

fitness wins. The individuals returned from the binary tournament are used to generate

an offspring by means of a modified order crossover with mode changes (MOXMC). This

offspring undergoes an HRVND (line 10) and according to its feasibility it is included in

9



the corresponding subpopulation. The F procedure (line 11) returns true if the solution S

is feasible and false, otherwise, and function f (line 14) returns the cost of an individual.

If the solution S is feasible (line 11), it is placed in the feasible subpopulation (line 12)

and in case it has a better cost than the best individual s found so far (line 14), then it

becomes the global solution (line 15) and the counter is set to 0 (line 16). Otherwise, if S is

infeasible (line 17), it is inserted into the infeasible subpopulation (line 18). Whenever an

individual is added to a subpopulation, a population management procedure is executed

(lines 13 and 19). At the end of the algorithm, the global (best) solution is returned (line

20).

The next subsections thoroughly describe the main aspects of the proposed al-

gorithm, namely: search space; constructive procedure and criterion used to insert an

individual in a population; fitness function; subpopulations management; binary tourna-

ment and the crossover operator; local search operators; efficient move evaluation; and

limitation strategy.

4.1 Search space

The HGSHEV explores both feasible and infeasible solutions of the search space.

The infeasibility may be caused by late arrivals at customers (or at the depot) or due to

negative battery levels across vertices. The simplest violation is excess duration, which

occurs whenever the vehicle arrives back at the depot after its time-window ending time.

Moreover, when the vehicle arrives late at a given customer, a “time-warp” is necessary

in order to serve it within its time window. The time-warp can be thought of as a kind

of time travel, and it is also a violation. Finally, a negative battery level occurs whenever

the vehicle departs from an origin vertex to a destination one, in electric or boost mode,

without enough charge to traverse the arc connecting them. In this case, we consider that

the vehicle is able to reach the destination and the negative amount of charge consumed

is considered a violation. The sum of the negative battery levels on all arcs of a solution

constitutes the battery violation.

In order to properly evaluate the solution quality, taking into account possible

violations, we decided to adopt an objective function similar to the one discussed in Vidal

et al. [2012]. This approach also allows one to compare feasible and infeasible individuals,

and, in our case, the former is always preferred over the latter, even if it has a worse cost.

Let xm
ij be a binary variable that takes value 1 if arc (i, j) ∈ A in the operation mode

m ∈ {c, ch, e, b} is selected; and 0, otherwise. Therefore, the objective function can be

expressed as follows:

min
∑

(i,j)∈A

(ccx
c
ij + cchx

ch
ij + cex

e
ij + cbx

b
ij) + ωdd+ ωtwtw + ωcv, (1)
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where ωd, ωtw and ωc represent the penalties for violating route duration, time windows

and battery level constraints, respectively; and d, tw and v represent excess duration,

time-warp use and negative battery level, respectively.

On the one hand, based on empirical analyses, duration and battery charging do

not seem to be the most challenging constraints. Hence, the values for ωd and for ωv were

set to 1. On the other hand, due to the tightness of some time windows, we implemented

a basic preprocessing routine to compute the value of ωtw for each instance as follows:

ωtw = mtw − (mtw − 1)× (avgtw/maxwh),

where avgtw is the average length of the time windows of the instance and, maxwh = 480

corresponds to the maximum working hours of the benchmark instances. The parametric

expression is intended to keep the values of ωtw within the range of 1 to mtw. Such

range was empirically selected after conducting experiments on challenging instances (see

Section 5) with different values for mtw, namely 1, 10, 50, and 100. While value 1 and

10 yielded many infeasible solutions, 100 led to more feasible solutions, but with inferior

quality than those achieved by mtw = 50. We thus chose the latter value as it offered an

interesting compromise between the exploration of feasible an infeasible solutions.

4.2 Initial population

At each iteration, a solution is created by applying the constructive approach of the

metaheuristic greedy randomized adaptive search procedure (GRASP) [Feo and Resende,

1995]. The parameter that controls the greediness/randomness of the construction step is

α. The newly generated individual is then potentially improved by means of local search.

At this stage, the algorithm checks whether there is a solution in the population with

the same cost of such individual, which can be seen as a clone according to Vidal et al.

[2012]. If so, it is discarded and the constructive procedure restarts. Otherwise, the new

individual is placed in the appropriate subpopulation with respect to its feasibility status.

4.3 Evaluation of individuals

The evaluation function of an individual considers both its contribution to the

diversity of the population and its quality. Hence, two indicators are of most importance,

the average distance (D) of and individual to its µclose closest neighbors and its cost

according to Equation (1), which in turn are combined to form the biased fitness (BF) of

a solution, as in Vidal et al. [2013].
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4.4 Computation of the average distance

Figure 2 depicts a solution S with 6 customers and the depot. Two types of

information are extracted from this individual for the computation of D, as shown in

Table 2, namely: (i) the arcs chromosome ϕi(S), which is the sequence of arcs used in

the solution; and (ii) the modes chromosome πi(S), which corresponds to the selected

operation modes of such arcs.

0 3 5 1 2 6 4 0

Depot

Customer

Combustion
Charging

Electric

Boost

Figura 2: Arcs and operation modes of S.

Tabela 2: Chromosomes extracted from S.

Solution arcs i (0, 3) (3, 5) (5, 1) (1, 2) (2, 6) (6, 4) (4, 0)
Arcs chromosome ϕi(S) (0, 3) (3, 5) (5, 1) (1, 2) (2, 6) (6, 4) (4, 0)
Modes chromosome πi(S) r b c c r e e

The distance δ(S1, S2) between two individuals S1 and S2 is calculated as follows:

δ(S1, S2) =
1

2n

∑
i=1,2,...,n

(V(ϕi(S1), ϕi(S2)) +V(πi(S1), πi(S2))) , (2)

where the binary operator V returns 1 if both arguments are different, and 0 otherwise;

n is the number or arcs in the solution.

Whenever an individual is added to a subpopulation, it is necessary to compute

its own list of closest neighbors (chosen among all individuals from the corresponding

subpopulation), as well as to update such list for the remaining solutions of the subset.

It is also mandatory to update the same lists when removing a solution from a subset.

The average distance of S to its closest neighbors is computed as follows:

D(S) =
1

µclose

∑
i=1,2,...,µclose

δ(S, Si). (3)

4.5 Computation of the biased fitness

Two ranks are created and continuously updated for each subpopulation during

the HGSHEV execution: the cost rank (fp), in which the subpopulation is sorted in non-

decreasing order of cost computed using Equation (1); and the average distance rank
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(fd), in which the subpopulation is sorted in non-ascending order of average distance. We

used the same sorting scheme as in Mecler et al. [2021]. Moreover, every individual S is

associated with a position in one of such ranks. The BF is then calculated as follows.

BF (S) = fp(S) +
(
1− µelite

n

)
fd(S), (4)

where µelite is the number of elite individuals preserved for the next generation.

4.6 Subpopulation management

Each subpopulation has a maximum capacity of µ + λ individuals. When one

tries to insert one more solution in a subpopulation of size µ + λ, the worst λ solutions,

regarding their biased fitness, are discarded. Thus, only the µ best individuals survive for

the next generation. Furthermore, the number of solutions in each subpopulation depends

on their feasibility and is not necessarily proportional.

4.7 Parent selection and offspring generation

In the binary tournament, one individual from each subpopulation is randomly

selected and the one with the best BF wins. As there is no guarantee that a subpopulation

is not empty, the two individuals may be chosen from the same subset.

We devised a specific order crossover (OX) [Oliver et al., 1987] with a view of trying

to conserve the beginning and the ending subsequences of one parent chromosome in the

offspring, thus giving preference for changes in the middle subsequence. The rationale

behind this idea is that the combustion and the charging modes are likely to be used in

the beginning of a subsequence, as the charging level is initially set to zero, whereas the

electric and the boost modes are likely to be used in the end of a subsequence, as possibly

enough charging level is available on the battery. The middle of a subsequence, on the

other hand, has more room for changes because the battery level is probably not zero

anymore, thus more combinations can be evaluated. We call such new operator modified

order crossover (MOX). In this case, the operator preserves the modes chromosome of

a random parent in the child. Nevertheless, we also implemented an alternative version

of the operator, here denoted as MOX with mode changes (MOXMC), by selecting each

operation mode of the offspring based on parent and customer, as further explained. This

latter version of the operator yielded better solutions, on average, as shown in Section

5.3, and it was the one adopted in our algorithm.

Figure 3 illustrates the execution of the MOXMC on two individuals P1 and P2.

The execution of the MOX is similar regarding the subsequences, with the difference

relying on the selection of the operation modes, as previously mentioned.
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P1 0 3 5 1 2 6 4 0

i1 i2

S
′

0 3 5 1 2 6 4 0

P2 0 4 2 5 6 3 1 0

S 0 3 5 6 1 2 4 0

Depot

Customer

Combustion
Charging

Electric

Boost

Figura 3: MOXMC operator.

Two subsequences are copied from parent P1 in an intermediate offspring S ′: the

first extends from indices 0 to i1 and the second goes from index i2 to the end of the

route. Next, the remainder of S ′ is filled circularly from parent P2, finishing the child S

generation. It is important to note that whenever a vertex is copied, so it is the operation

mode of this vertex to the next one. That was the case for vertices 5 of P1, and 6, 1 and

2 of P2. The indices i1 and i2 are randomly selected and i1 < i2.

4.8 Local search

The local search procedure uses multiple neighborhood structures. Most of them

are based on classical TSP neighborhoods, but they had to be adapted to cope with the

characteristics of the HEVTSPTW. More precisely, the neighborhood operators also have

to consider the operation mode of the arcs involved in the move, as further explained in

this section. The neighborhood structures implemented are described as follows.

• Reinsertion – a customer is removed and inserted in another position of the tour.

• Or-opt-k – k consecutive customers are removed and inserted in another position of

the tour.

• 2-opt – two non-adjacent arcs are removed and two others are inserted to form a

new route.

• Exchange – permutation move between two customers.

• Swap-k – k consecutive customers are swapped with another k consecutive custo-

mers.
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• 3-mode change (3MC) – every subset of three distinct arcs is evaluated. At each

evaluation, we test all 33 = 27 combinations of unused operation modes in the

selected arcs. For example, consider three arcs x, y, z ∈ A, with c, ch, and e

operation modes, respectively. In such case, the tests consist in evaluating every

combination of the modes: ch, e, and b for arc x; c, e, and b for arc y; and c, ch, and

b for arc z.

In contrast to 3MC, the remaining neighborhoods do not consider all possible

combinations of operation modes in our implementation. This search limitation strategy

of restricting the number of possible combinations was based on the characteristics of

hybrid electric vehicles. The challenge of the HEVTSPTW is to properly explore the use

of the electric motor. Therefore, the modes involving the battery, i.e., ch, e, and b, have

to be evaluated often. However, two of them need special attention: the ch mode, as the

charging rate is much slower than the discharging one, and the e mode, as if offers the

largest travel time. We chose to consider only the ch and the e modes in order to improve

the runtime performance of the method. Any drawbacks originated by such approach are

likely to be mitigated by the 3MC, as it focuses the search exclusively on the operation

modes.

Figure 4 depicts an example of a reinsertion move in which customer 6 is removed

from index 5 and reinserted in between customers 3 and 5. For such move, Figure 4a

shows the initial solution configuration (before reinsertion) and Figures 4b–4i show the

restricted combinations of operation modes on the newly created arcs. In particular, as

only two operation modes are considered for each arc, 23 = 8 distinct arc combinations

are checked instead of 43 = 64. Table 3 contains the total and restricted number of

combinations verified for a single move of each neighborhood structure, respectively.
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Figura 4: Reinsertion of customer 6 with evaluation of the operation modes
of the new arcs.

The pseudocode of the proposed HRVND procedure is presented in Algorithm 2.

The first step consists of applying the 3MC neighborhood to the individual S, storing the

resulting solution on S ′ (line 2). Next, the loop extending from lines 3 to 7 tries to achi-

eve improvements by means of the traditional randomized variable neighborhood descent

(RVND) scheme (line 4), introduced in Subramanian et al. [2010], using the remaining

neighborhoods, which in turn are less computationally costly. When no improvement is

reached (line 5), solution S is returned (line 6), otherwise, the 3MC neighborhood is ap-

16



Tabela 3: Combinations of operation modes evaluated with respect to the
neighborhood structures.

Neighborhood
#Arcs involved All Restricted
in the move #combinations #combinations

Reinsertion 3 43 = 64 23 = 8
Or-opt-k 3 43 = 64 23 = 8
2-opt 2 42 = 16 22 = 4

Exchange 4 44 = 256 24 = 16
Swap-k 4 44 = 256 24 = 16

plied (line 4). The reason for adopting this hierarchical approach is to limit the number

of calls to the 3MC neighborhood, clearly the most costly one, with a view of reducing

the total CPU time of the method.

Algorithm 2 HRVND

1: procedure HRVND(S)
2: S ′ ← 3MC(S)
3: while true do
4: S ← RVND(S ′)
5: if f(S ′) = f(S) then
6: return S
7: S ′ ← 3MC(S)

4.9 Move evaluation

As infeasible solutions are allowed in the HGSHEV algorithm, a mechanism is re-

quired to efficiently quantify the route duration, time-warp, and battery violations. All

of them rely on preprocessed data for every consecutive subsequence associated with the

current solution. Regarding the first two types, one could directly apply the procedures

described in Vidal et al. [2013] to evaluate these violations in amortized O(1) time. Con-

cerning the latter type, there are other works that suggested efficient move evaluation

schemes, such as those by Schneider et al. [2014] and Hiermann et al. [2016]. While the

former authors devised their own approach to perform move evaluations in O(1) operati-
ons, the latter somewhat merged the procedures implemented in Schneider et al. [2014],

Vidal et al. [2013]. However, the data structures proposed in those papers were specifically

designed for EVRPs with recharging stations in which a vehicle is completely recharged

at one of such stations. Also, they addressed problems whose vehicles have only one

operation mode that, in turn, always discharges the battery, as opposed to our problem.

Goeke and Schneider [2015] considered a heterogeneous fleet EVRP where the recharging

rate is not a linear function of the distance traveled and it actually depends, among other

things, on the vehicle mass. They have extended the structures by Schneider et al. [2014]
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to cope with such dependency on the cargo load by proposing a so-called surrogate battery

violation to avoid keeping track of the real battery violation, which is computationally

expensive, thus allowing them to perform move evaluations in constant time. Finally,

Hiermann et al. [2019] dealt with a heterogeneous fleet variant considering partial rechar-

ging in which the vehicles are either (i) pure electric, (ii) ICE (pure combustion), or (iii)

PHEVs with two engines (electric motor and ICE) that can be switched at any point of

the route. Due to the complexity of the problem, the authors applied move evaluations

on sequences of customer visits combining (i) labeling techniques to compute the cost

of inserting recharging stations, and (ii) greedy policies adapting the ideas presented in

Hiermann et al. [2016] to decide on charging levels of the battery and the selection of

propulsion modes. To avoid systematic calls to computationally expensive procedures,

they make use of lower bounding approaches [Vidal, 2017] computed in O(1) operations
by considering pure electric and PHEVs as ICE vehicles.

In contrast to the aforementioned problems, the HEVTSPTW assumes that the

vehicle has 4 operation modes, with one recharging option and different discharging pos-

sibilities. Also, it does not consider recharging stations nor it imposes the battery to

always be completely recharged. In addition, the operations modes can only be switched

in the vertices. Although it is seemingly possible to adapt the structures proposed in

previous works (e.g., Schneider et al. [2014], Hiermann et al. [2016]) to our specific case,

we decided, for the sake of simplicity, to investigate the possibility of minimally exten-

ding the scheme by Vidal et al. [2013] for the VRPTW to address battery violations in

the HEVTSPTW. Interestingly enough, we found a correspondence between the rationale

used to compute the time-window infeasibilities and the charging violations, in a way that

the same structures can be adapted to evaluate the battery infeasibility, as described in

the following.

Let σ = (σ0, ..., σ|σ|−1) be a subsequence of vertices, and let σij = (σi, ..., σj) be a

subsequence starting at the i-th position and ending at the j-th position. We compute

and store the following information regarding the battery for every possible subsequence

σ of consecutive vertices of a given solution (original sequence): l(σ) minimum battery

level, v(σ) minimum battery violation, and minimum s(σ) and maximum g(σ) battery

levels allowing a subsequence of vertices with the minimum battery violation.

Such data is straightforward to compute for the trivial case, i.e. a subsequence

containing only a single customer σ0, that is, l(σ0) = 0, v(σ0) = 0, s(σ0) = −lmax, g(σ0) =

0. If such customer is the starting depot, then s(σ0) = 0, which is based on the assumption

that the initial battery level is 0, as imposed by the benchmark instances. Equations (5)–

(8) are used to iteratively compute the same data for the remaining subsequences. Let

σ = (σi, ..., σj) and σ′ = (σ′
i, ..., σ

′
j) be two subsequences of visits. We use the following
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data to compute the concatenated subsequence σ ⊕ σ′:

l(σ ⊕ σ′) = l(σ) + l(σ′) + ∆l +∆e (5)

v(σ ⊕ σ′) = v(σ) + v(σ′) + ∆v (6)

s(σ ⊕ σ′) = max{s(σ′)−∆, s(σ)} −∆e (7)

g(σ ⊕ σ′) = min{g(σ′)−∆, g(σ)}+∆v (8)

where: ∆l = −tσjσ′
i
rσj

, ∆ = l(σ) − v(σ) + ∆l, ∆e = max{s(σ′) − ∆ − g(σ), 0}, and
∆v = max{s(σ) + ∆− g(σ′), 0}. A more detailed explanation on the computation of the

above data through an example is provided in Subsection 4.10.

The structures above have a direct correspondence with those by Vidal et al.

[2013], meaning that the same proof used to demonstrate the validity of their equations

can also be applied to show that Equations (5)–(8) are valid. In particular, battery

level corresponds to duration, minimum violation to time-warp use, and minimum and

maximum battery levels allowing a sequence of visits with the minimum violation to

earliest and latest visits, respectively. However, we remark that the computation of ∆l

is rather distinct from the original expression because in this case we are dealing with

variations in battery charging levels (−tσjσ′
i
rσj

) instead of time (tσjσ′
i
). Moreover, the data

structures can also be used with instances with different characteristics (e.g. a different

initial battery level), as long as the necessary changes to the parameters in the trivial case

are provided. Finally, because of the 2-opt neighborhood structure, we also compute the

aforementioned data for reverse subsequences.

4.10 Concatenation of subsequences

Table 4 contains a reduced version of the 8-customer benchmark instance HEVTSP

1 08 1 TW0, obtained by removing its last two customers. Information regarding distan-

ces, costs, and time windows are not shown since they are irrelevant in this context. The

time, which is given in minutes, is presented according to the selected operation mode.

The individual S of Figure 5 illustrates an example of a possible solution for such

6-customer instance. All subsequences associated with S are then depicted in Figure 6.

Furthermore, let σ = (σi, ..., σj) and σ′ = (σ′
i, ..., σ

′
j) be two subsequences of visits. For the

sake of convenience, we reintroduce the following data used to compute the concatenated
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Tabela 4: Time and battery specifications of the 6-customer instance.

Initial Charging: 0
Max Charging (in Watt/h): 16800
Charging Rate (in Watt/h): 12000
Discharging Rate (in Watt/h): 48000

Time for combustion mode
(Depot-Depot, Depot-1, Depot-..., Depot-6, 1-Depot, 1-1, ..., 6-6):
0.0 7.21 9.47 9.8 11.92 4.27 11.96 10.17 14.63
7.21 0.0 7.17 5.12 8.48 4.23 9.36 7.85 10.67
9.47 7.17 0.0 12.27 6.82 5.53 2.54 1.51 11.77
9.8 5.12 12.27 0.0 12.04 8.67 11.88 10.7 12.14
11.92 8.48 6.82 12.04 0.0 10.18 6.42 6.72 5.25
4.27 4.23 5.53 8.67 10.18 0.0 8.07 6.27 11.41
11.96 9.36 2.54 11.88 6.42 8.07 0.0 2.54 11.67
10.17 7.85 1.51 10.7 6.72 6.27 2.54 0.0 11.79
14.63 10.67 11.77 12.14 5.25 11.41 11.67 11.79 0.0

Time for charging mode
(same as time for combustion mode):

0.0 7.87 10.33 10.69 13.3 4.65 13.04 11.09 16.32
7.87 0.0 7.82 5.58 9.25 4.61 10.21 8.56 11.64
10.33 7.82 0.0 13.38 7.44 6.03 2.77 1.64 12.83
10.69 5.58 13.38 0.0 13.14 9.46 13.26 11.94 13.24
13.3 9.25 7.44 13.14 0.0 11.11 7.01 7.33 5.73
4.65 4.61 6.03 9.46 11.11 0.0 8.81 6.84 12.72
13.04 10.21 2.77 13.26 7.01 8.81 0.0 2.7 12.73
11.09 8.56 1.64 11.94 7.33 6.84 2.7 0.0 12.86
16.32 11.64 12.83 13.24 5.73 12.72 12.73 12.86 0.0

Time for electric mode
(same as time for combustion mode):

0.0 8.66 11.36 11.76 15.03 5.12 14.35 12.2 18.45
8.66 0.0 8.6 6.14 10.17 5.07 11.23 9.42 12.81
11.36 8.6 0.0 14.72 8.18 6.64 3.05 1.81 14.12
11.76 6.14 14.72 0.0 14.45 10.41 14.98 13.49 14.56
15.03 10.17 8.18 14.45 0.0 12.22 7.71 8.06 6.3
5.12 5.07 6.64 10.41 12.22 0.0 9.69 7.53 14.38
14.35 11.23 3.05 14.98 7.71 9.69 0.0 2.88 14.0
12.2 9.42 1.81 13.49 8.06 7.53 2.88 0.0 14.15
18.45 12.81 14.12 14.56 6.3 14.38 14.0 14.15 0.0

Time for boost mode
(same as time for combustion mode):

0.0 6.66 8.74 9.04 10.17 3.94 11.04 9.39 12.48
6.66 0.0 6.62 4.72 7.82 3.9 8.64 7.24 9.85
8.74 6.62 0.0 11.32 6.3 5.1 2.35 1.39 10.86
9.04 4.72 11.32 0.0 11.12 8.01 10.14 9.13 11.2
10.17 7.82 6.3 11.12 0.0 9.4 5.93 6.2 4.85
3.94 3.9 5.1 8.01 9.4 0.0 7.45 5.79 9.73
11.04 8.64 2.35 10.14 5.93 7.45 0.0 2.4 10.77
9.39 7.24 1.39 9.13 6.2 5.79 2.4 0.0 10.89
12.48 9.85 10.86 11.2 4.85 9.73 10.77 10.89 0.0
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subsequence σ ⊕ σ′:

l(σ ⊕ σ′) = l(σ) + l(σ′) + ∆l +∆e (9)

v(σ ⊕ σ′) = v(σ) + v(σ′) + ∆v (10)

s(σ ⊕ σ′) = max{s(σ′)−∆, s(σ)} −∆e (11)

g(σ ⊕ σ′) = min{g(σ′)−∆, g(σ)}+∆v (12)

where: ∆l = −tσjσ′
i
rσj

, ∆ = l(σ) − v(σ) + ∆l, ∆e = max{s(σ′) − ∆ − g(σ), 0}, and
∆v = max{s(σ) + ∆− g(σ′), 0}.

0 3 5 1 2 6 4 0

Depot

Customer

Combustion
Charging

Electric

Boost

Figura 5: Solution S.

Table 5 shows the results of Equations (9)–(12) for the subsequences of Figure 6,

taking into account the time matrix of Table 4 and its battery information. It is impor-

tant to note that we need to divide the battery charging and discharging rates by 60 in

order to properly multiply them by the time for traversing an arc.

We use a reinsertion move to illustrate the concatenation of subsequences, which

consists in reinserting customer 6 in between customers 3 and 5, as depicted in Figure 7.

For simplicity, the charging operation mode is used on the three newly connected arcs.

The concatenation is performed using the preprocessed data of Table 5.
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ID Subsequence

1 0

2 0 3

... ...
8 0 3 5 1 2 6 4 0

9 3

10 3 5

... ...
15 3 5 1 2 6 4 0

16 5

17 5 1

... ...
21 5 1 2 6 4 0

22 1

23 1 2

... ...
26 1 2 6 4 0

27 2

28 2 6

29 2 6 4

30 2 6 4 0

31 6

32 6 4

33 6 4 0

34 4

35 4 0

36 0

Depot

Customer

Combustion
Charging

Electric

Boost

Figura 6: All subsequences associated with a 6-customer solution.
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Tabela 5: Values of Equations (9)–(12) for every subsequence of the 6-
customer solution.

ID σij l(σij) v(σij) s(σij) g(σij)
1 σ00 0.0 (0.0%) 0.0 (0.0%) 0.0 (0.0%) 0.0 (0.0%)
2 σ01 -2138.0 (-12.7%) 0.0 (0.0%) 0.0 (0.0%) 0.0 (0.0%)
3 σ02 4270.0 (25.4%) 4270.0 (25.4%) 0.0 (0.0%) 0.0 (0.0%)
4 σ03 4270.0 (25.4%) 4270.0 (25.4%) 0.0 (0.0%) 0.0 (0.0%)
5 σ04 11150.0 (66.4%) 11150.0 (66.4%) 0.0 (0.0%) 0.0 (0.0%)
6 σ05 13590.0 (80.9%) 13590.0 (80.9%) 0.0 (0.0%) 0.0 (0.0%)
7 σ06 12188.0 (72.5%) 13590.0 (80.9%) 0.0 (0.0%) 0.0 (0.0%)
8 σ07 24212.0 (144.1%) 24212.0 (144.1%) 0.0 (0.0%) 0.0 (0.0%)
9 σ11 0.0 (0.0%) 0.0 (0.0%) -16800.0 (-100.0%) 0.0 (0.0%)
10 σ12 6408.0 (38.1%) 0.0 (0.0%) -16800.0 (-100.0%) -6408.0 (-38.1%)
11 σ13 6408.0 (38.1%) 0.0 (0.0%) -16800.0 (-100.0%) -6408.0 (-38.1%)
12 σ14 13288.0 (79.1%) 0.0 (0.0%) -16800.0 (-100.0%) -13288.0 (-79.1%)
13 σ15 15728.0 (93.6%) 0.0 (0.0%) -16800.0 (-100.0%) -15728.0 (-93.6%)
14 σ16 14326.0 (85.3%) 0.0 (0.0%) -16800.0 (-100.0%) -15728.0 (-93.6%)
15 σ17 26350.0 (156.8%) 9550.0 (56.8%) -16800.0 (-100.0%) -16800.0 (-100.0%)
16 σ22 0.0 (0.0%) 0.0 (0.0%) -16800.0 (-100.0%) 0.0 (0.0%)
17 σ23 0.0 (0.0%) 0.0 (0.0%) -16800.0 (-100.0%) 0.0 (0.0%)
18 σ24 6880.0 (41.0%) 0.0 (0.0%) -16800.0 (-100.0%) -6880.0 (-41.0%)
19 σ25 9320.0 (55.5%) 0.0 (0.0%) -16800.0 (-100.0%) -9320.0 (-55.5%)
20 σ26 7918.0 (47.1%) 0.0 (0.0%) -16800.0 (-100.0%) -9320.0 (-55.5%)
21 σ27 19942.0 (118.7%) 3142.0 (18.7%) -16800.0 (-100.0%) -16800.0 (-100.0%)
22 σ33 0.0 (0.0%) 0.0 (0.0%) -16800.0 (-100.0%) 0.0 (0.0%)
23 σ34 6880.0 (41.0%) 0.0 (0.0%) -16800.0 (-100.0%) -6880.0 (-41.0%)
24 σ35 9320.0 (55.5%) 0.0 (0.0%) -16800.0 (-100.0%) -9320.0 (-55.5%)
25 σ36 7918.0 (47.1%) 0.0 (0.0%) -16800.0 (-100.0%) -9320.0 (-55.5%)
26 σ37 19942.0 (118.7%) 3142.0 (18.7%) -16800.0 (-100.0%) -16800.0 (-100.0%)
27 σ44 0.0 (0.0%) 0.0 (0.0%) -16800.0 (-100.0%) 0.0 (0.0%)
28 σ45 2440.0 (14.5%) 0.0 (0.0%) -16800.0 (-100.0%) -2440.0 (-14.5%)
29 σ46 1038.0 (6.2%) 0.0 (0.0%) -16800.0 (-100.0%) -2440.0 (-14.5%)
30 σ47 13062.0 (77.8%) 0.0 (0.0%) -16800.0 (-100.0%) -13062.0 (-77.8%)
31 σ55 0.0 (0.0%) 0.0 (0.0%) -16800.0 (-100.0%) 0.0 (0.0%)
32 σ56 -1402.0 (-8.3%) 0.0 (0.0%) -15398.0 (-91.7%) 0.0 (0.0%)
33 σ57 10622.0 (63.2%) 0.0 (0.0%) -15398.0 (-91.7%) -10622.0 (-63.2%)
34 σ66 0.0 (0.0%) 0.0 (0.0%) -16800.0 (-100.0%) 0.0 (0.0%)
35 σ67 12024.0 (71.6%) 0.0 (0.0%) -16800.0 (-100.0%) -12024.0 (-71.6%)
36 σ77 0.0 (0.0%) 0.0 (0.0%) -16800.0 (-100.0%) 0.0 (0.0%)
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Initial configuration (σ)

0 3 5 1 2 6 4 0

Subsequences before reinsertion

σ01 σ24 σ55 σ67

0 3 5 1 2 6 4 0

Subsequences during reinsertion

σ01 σ55 σ24 σ67

0 3 6 5 1 2 4 0

Final configuration (σ01 ⊕ σ55 ⊕ σ24 ⊕ σ67)

0 3 6 5 1 2 4 0

Depot

Customer

Combustion
Charging

Electric

Boost

Figura 7: Illustration of a reinsertion move regarding subsequences.
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Tabela 6: Computation of Equations (9)–(12) for concatenations of subse-
quences associated with a reinsertion move.

Concatenated
Parameter Expression Result

subsequences∗

σ01 ⊕ σ55

∆l −δσ1σ5rσ1 −200.0× 13.26 = −2652.0

∆ l(σ01)− v(σ01) + ∆l −2138.0− 0.0 + (−2652.0) = −4790.0

∆e max{s(σ55)−∆− g(σ01), 0} max{−16800.0− (−4790.0)− 0.0, 0} = 0.0

∆v max{s(σ01) + ∆− g(σ55), 0} max{0.0 + (−4790.0)− 0.0, 0} = 0.0

l(σ01 ⊕ σ55) l(σ01) + l(σ55) + ∆l +∆e −2138.0 + 0.0 + (−2652.0) + 0.0 = −4790.0

v(σ01 ⊕ σ55) v(σ01) + v(σ55) + ∆v 0.0 + 0.0 + 0.0 = 0.0

s(σ01 ⊕ σ55) max{s(σ55)−∆, s(σ01)} max{−16800.0− (−4790.0), 0.0} − 0.0 = 0.0

g(σ01 ⊕ σ55) min{g(σ55)−∆, g(σ01)}+∆v min{0.0− (−4790.0), 0.0}+ 0.0 = 0.0

σ′ ⊕ σ24

∆l −δσ5σ2rσ5 −200.0× 8.81 = −1762.0

∆ l(σ′)− v(σ′) + ∆l −4790.0− 0.0 + (−1762.0) = −6552.0

∆e max{s(σ24)−∆− g(σ′), 0} max{−16800.0− (−6552.0)− 0.0, 0} = 0.0

∆v max{s(σ′) + ∆− g(σ24), 0} max{0.0 + (−6552.0)− (−6880.0), 0} = 328.0

l(σ′ ⊕ σ24) l(σ′) + l(σ24) + ∆l +∆e −4790.0 + 6880.0 + (−1762.0) + 0.0 = 328.0

v(σ′ ⊕ σ24) v(σ′) + v(σ24) + ∆v 0.0 + 0.0 + 328.0 = 328.0

s(σ′ ⊕ σ24) max{s(σ24)−∆, s(σ′)} max{−16800.0− (−6552.0), 0.0} − 0.0 = 0.0

g(σ′ ⊕ σ24) min{g(σ24)−∆, g(σ′)}+∆v min{−6880.0− (−6552.0), 0.0}+ 328.0 = 0.0

σ′′ ⊕ σ67

∆l −δσ4σ6rσ4 −200.0× 7.44 = −1488.0

∆ l(σ′′)− v(σ′′) + ∆l 328.0− 328.0 + (−1488.0) = −1488.0

∆e max{s(σ67)−∆− g(σ′′), 0} max{−16800.0− (−1488.0)− 0.0, 0} = 0.0

∆v max{s(σ′′) + ∆− g(σ67), 0} max{0.0 + (−1488.0)− (−12024.0), 0} = 10536.0

l(σ′′ ⊕ σ67) l(σ′′) + l(σ67) + ∆l +∆e 328.0 + 12024.0 + (−1488.0) + 0.0 = 10864.0

v(σ′′ ⊕ σ67) v(σ′′) + v(σ67) + ∆v 328.0 + 0.0 + 10536.0 = 10864.0

s(σ′′ ⊕ σ67) max{s(σ67)−∆, s(σ′′)} max{−16800.0− (−1488.0), 0.0} − 0.0 = 0.0

g(σ′′ ⊕ σ67) min{g(σ67)−∆, g(σ′′)}+∆v min{−12024.0− (−1488.0), 0.0}+ 10536.0 = 0.0
∗σ′ = σ01 ⊕ σ55, σ′′ = σ′ ⊕ σ24

Table 6 contains the computation performed in the reinsertion. Firstly, subsequen-

ces σ01 and σ55 are concatenated. Secondly, the resulting data is used to concatenate the

newly created subsequence with σ24. Finally, the remaining of the individual is concate-

nated, concluding the reinsertion procedure. By performing such move, the violation is

reduced from 24212.0 to 10864.0 (see σ07 in Table 5).
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5 Computational experiments

The proposed algorithm was coded in C++, and all experiments were executed

on a single thread of an Intel(R) Core(TM) i7-3770 CPU 3.40 GHz, with 8 GB of RAM

running Linux Ubuntu 16.04. We decided to run HGS 10 times for each instance following

a common practice adopted by many renowned authors (see, e.g., Cordeau and Maisch-

berger [2012], Vidal et al. [2014], Erdoğan [2017], Hellsten et al. [2020], and Keskin et al.

[2021].

A set of benchmark instances was proposed in Doppstadt et al. [2020] and solved

by means of a so-called PVNS algorithm considering two versions, runtime optimized

(RO) and quality optimized (QO), with a focus on the runtime and quality performances,

respectively. The benchmark dataset is publicly available at https://data.mendeley.

com/datasets/9j3tt84hyx/1. The instances are divided into 4 groups according to the

number of customers, namely 8, 10, 20 and 50. Each group contains 54 instances.

On the other hand, the PVNS approach was executed only 5 times for each instance

(possibly because of the large computational times reported for each run) on multiple

threads (4 threads for the set RO and 8 threads for the set QO) of an Intel(R) Core(TM)

i7-4790 CPU 3.6 GHz, with 24 GB of RAM, running Windows 10. Moreover, according

to the site https://www.cpubenchmark.net/compare/Intel-i7-3770-vs-Intel-i7-4

790/896vs2226, the CPU used to run the PVNS is approximately 1.07 times faster than

the one used to execute the HGS algorithm.

Finally, in order to check whether there are significant statistical differences between

the average gaps found during parameter tuning and also when comparing HGS with RO,

and HGS with QO, we have conducted a non-parametric significance test, more speci-

fically, the Wilcoxon signed-rank test, after statistically confirming that the differences

between the average gap values do not seem to be normally distributed. The tests were

always conducted separately for each different group of instances.

5.1 Determining the parameter values, neighborhood structures and search

strategy

We selected the 108 most challenging instances, among the 216 of the current

benchmark, to perform the parameter tuning. The selected instances appear to be more

difficult due to the density of their time windows.

The routine for building the initial population is executed θ = 4µ times (the

same value adopted in Vidal et al. [2012]). Regarding parameter α, at first, we tried to

randomly select it from the set {0.1, 0.2, 0.3, 0.4, 0.5}, as in Bulhões et al. [2018]. However,

the results obtained were sometimes not favorable, especially when using 0.1 and 0.2 on
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smaller instances, because the method tends to become completely greedy in practice.

Therefore, we chose to adopt the set {0.3, 0.4, 0.5}.

With respect to the parameters used in the subpopulations management, we adop-

ted in all experiments the same values as Mecler et al. [2021]: µ = 20, λ = 40, µelite = 10,

and µclose = 3. The remaining parameters were calibrated as discussed in the following.

With the purpose of tuning the remaining parameters of the HGSHEV algorithm,

we started with a baseline configuration and incrementally adjusted each parameter, as

can be observed in the next subsections. For this configuration, Nit = n, the violation

coefficients ωd, ωtw, and ωc were set to 100, and the search strategy was best improvement.

The values of the violation coefficients focus the search on the space of feasible solutions.

This is in principle a desired behavior as only a few iterations are performed.

With respect to the impact of the neighborhoods, we conducted experiments with

block-based settings, and with the 2-opt structure. Such settings are specified as follows.

• Π(1) – reinsertion and exchange neighborhoods.

• Π(k) – or-opt-k and swap-k, k = {2, 3, 4, 5}, with each k associated with a neigh-

borhood.

• Π2-opt – 2-opt neighborhood.

Table 7 reports the average gap and CPU time for five combinations of settings. The gaps

(%) are computed as follows: gap = 100× {[avg(HGSHEV)− best(PVNS)]/best(PVNS)}.
It is important to note that for small instances, e.g. the ones with 8 and 10 customers, the

larger the value of k, the larger the number of infeasible solutions, considering only the

employment of individual settings instead of combinations of them. Moreover, we decided

not to report the results of applying individual settings due to the number of infeasible

solutions found.

Tabela 7: Results obtained for five different settings of neighborhood struc-
tures.

Setting Combination Avg. Gap (%) Avg. CPU (s)

1 Π(1) +Π2-opt 0.224 0.92
2 Π(1) +Π(2) +Π2-opt 0.135 0.86
3 Π(1) +Π(2) +Π(3) +Π2-opt 0.134 0.81
4 Π(1) +Π(2) +Π(3) +Π(4) +Π2-opt 0.118 0.77
5 Π(1) +Π(2) +Π(3) +Π(4) +Π(5) +Π2-opt 0.125 0.76

We chose the fourth setting of Table 7 (a combination of settings Π(1), Π(2), Π(3),

Π(4), and Π2-opt), which yielded a good compromise between average gap and CPU time.
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In fact, the Wilcoxon signed-rank test pointed out a statistical difference between the

average gaps of settings 3 and 4 for the 10- and the 50- customer instances (p-values of

0.0463 and 0.0436, respectively), but no statistical differences between settings 4 and 5

(p-value > 0.2 for all 4 groups of instances).

Furthermore, we verified the impact of different number of iterations of the main

loop of the algorithm, together with two different search strategies: (i) best improvement,

which consists of evaluating all possible moves of a neighborhood in search for the best one;

and (ii) first improvement, which aims at searching for the first improving move. Hereafter,

the parameters discussed in Subsection 4.1 are applied for the violation coefficients as

enough iterations are performed to also allow for better exploration of infeasible solutions.

Three distinct values were then tested forNit, namely: max(12n, 600),max(20n, 600), and

max(30n, 600). For each of those values, four different settings were employed regarding

the search strategy. Furthermore, the reason for the increase in the number of iterations is

due to the use of the first improvement strategy on some settings, requiring more iterations

to converge. Figure 8 depicts the results found using the different settings described in

Table 8. Note that the reason for testing a different search strategy on the 3MC was due

to the fact that this neighborhood structure deals exclusively with the operation modes

of the arcs.

Tabela 8: Search strategy settings.

Search strategy
Setting 3-mc remaining moves

first impr. best impr. first impr. best impr.
A ✓ ✓
B ✓ ✓
C ✓ ✓
D ✓ ✓

As Figure 8 suggests, settings A and B converge faster, even though the gaps are

worse in comparison to those of settings C and D. Such fact can be explained by the

employment of the best improvement strategy on the 3MC neighborhood. Moreover,

setting C is the only which was dominated in all situations, regardless of the values of

Nit. Setting D, with Nit = N
(1)
it = max(12n, 600), was selected as it offers an interesting

compromise between solution quality and CPU time. To ratify our choice, we performed

a statistical analysis on the differences between the average gaps of the non-dominated

settings of Figure 8, namely settings D and B (N
(1)
it , for both), and settings D (N

(1)
it )

and B (N
(2)
it ). The Wilcoxon signed-rank test indicated a difference on the average gaps,

more specifically, for the 20- and the 50-customer instances (p-values < 0.001), in both

comparisons.
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Figura 8: Impacts of the number of iterations and the search strategy.

5.2 Comparison with the literature

Tables 9, 10, 11, and 12 present the results obtained by the HGSHEV on the

HEVTSPTW benchmark instances, which are compared with those found by two ver-

sions of PVNS: RO and QO. Hereafter, all experiments were conducted considering all

instances of the current benchmark. For each instance and method, we report the cost

of the best solution, the average cost and the average CPU time. We also present the

gap between the average solution and the best known solution (BKS). Gaps of improved

solutions are highlighted in bold.

Each instance is composed of four attributes: a distance, in kilometers, from the

depot to the delivery area (D); the number of customers (C); a number of time windows

(TWs); and for a combination of D, C, and TWs, variations in service times and cus-

tomer locations (V). Some TWs have a “+” symbol to indicate a pair of customers with

very late time windows. In addition, the delivery area covers approximately 25 km2.

Tables 9 and 10 show the results achieved on the instances containing 8 and 10

customers, respectively. All algorithms managed to find the optimal solutions, according

to the values found by CPLEX and reported in Doppstadt et al. [2020]. However, HGSHEV

attained better CPU times especially in comparison with the QO version of PVNS.

The results obtained on the 20-customer instances are presented in Table 11. It

can be observed that the HGSHEV was capable of finding highly competitive results in

terms of solution cost and with an average runtime 4.69 and 144.79 times faster than

those of versions RO and QO of PVNS, respectively. Furthermore, two new improved

solutions were found.

Table 12 illustrates the results found on the 50-customer instances. Overall,
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Tabela 9: Results obtained on the 8-customer instances.

Instance
P-VNSRO P-VNSQO HGSHEV

Best Avg. Gap CPU Best Avg. Gap CPU Best Avg. Gap CPU
D C TWs V (%) (s) (%) (s) (%) (s)
0 8 0 0 1830.69 1830.69 0.00 0.10 1830.69 1830.69 0.00 1.80 1830.69 1830.69 0.00 0.08
0 8 2 0 1849.37 1849.37 0.00 0.10 1849.37 1849.37 0.00 1.80 1849.37 1849.37 0.00 0.07
0 8 6 0 1849.37 1849.37 0.00 0.10 1849.37 1849.37 0.00 2.00 1849.37 1849.37 0.00 0.06
0 8 2+ 0 1849.37 1849.37 0.00 0.10 1849.37 1849.37 0.00 2.10 1849.37 1849.37 0.00 0.07
0 8 4+ 0 1849.37 1849.37 0.00 0.10 1849.37 1849.37 0.00 2.10 1849.37 1849.37 0.00 0.07
0 8 8+ 0 1849.37 1849.37 0.00 0.10 1849.37 1849.37 0.00 2.10 1849.37 1849.37 0.00 0.07
0 8 0 1 1553.15 1553.15 0.00 0.10 1553.15 1553.15 0.00 1.70 1553.15 1553.15 0.00 0.07
0 8 2 1 1553.15 1553.15 0.00 0.10 1553.15 1553.15 0.00 1.80 1553.15 1553.15 0.00 0.08
0 8 6 1 1553.15 1553.15 0.00 0.10 1553.15 1553.15 0.00 2.00 1553.15 1553.15 0.00 0.07
0 8 2+ 1 1553.15 1553.15 0.00 0.10 1553.15 1553.15 0.00 1.90 1553.15 1553.15 0.00 0.07
0 8 4+ 1 1553.15 1553.15 0.00 0.10 1553.15 1553.15 0.00 2.00 1553.15 1553.15 0.00 0.09
0 8 8+ 1 1553.15 1553.15 0.00 0.10 1553.15 1553.15 0.00 1.70 1553.15 1553.15 0.00 0.07
0 8 0 2 1435.74 1435.74 0.00 0.10 1435.74 1435.74 0.00 1.80 1435.74 1435.74 0.00 0.06
0 8 2 2 1445.89 1445.89 0.00 0.10 1436.09 1438.05 0.14 1.80 1436.09 1436.09 0.00 0.08
0 8 6 2 1460.31 1460.31 0.00 0.10 1460.31 1460.31 0.00 1.80 1460.31 1460.31 0.00 0.09
0 8 2+ 2 1436.09 1445.78 0.67 0.10 1436.09 1436.09 0.00 2.10 1436.09 1436.09 0.00 0.07
0 8 4+ 2 1436.09 1440.93 0.34 0.10 1436.09 1436.09 0.00 2.10 1436.09 1436.09 0.00 0.07
0 8 8+ 2 1460.31 1460.31 0.00 0.10 1460.31 1460.31 0.00 1.70 1460.31 1460.31 0.00 0.08
28 8 0 0 7189.85 7189.85 0.00 0.10 7189.85 7189.85 0.00 1.70 7189.85 7189.85 0.00 0.09
28 8 2 0 7189.85 7189.85 0.00 0.10 7189.85 7189.85 0.00 1.70 7189.85 7189.85 0.00 0.09
28 8 6 0 7189.85 7189.85 0.00 0.10 7189.85 7189.85 0.00 2.00 7189.85 7189.85 0.00 0.08
28 8 2+ 0 7202.07 7202.07 0.00 0.10 7202.07 7202.07 0.00 2.00 7202.07 7202.07 0.00 0.07
28 8 4+ 0 7202.07 7202.07 0.00 0.10 7202.07 7202.07 0.00 2.00 7202.07 7202.07 0.00 0.05
28 8 8+ 0 7202.07 7202.07 0.00 0.10 7202.07 7202.07 0.00 2.10 7202.07 7202.07 0.00 0.07
28 8 0 1 7140.95 7140.95 0.00 0.10 7140.95 7140.95 0.00 1.80 7140.95 7140.95 0.00 0.09
28 8 2 1 7174.85 7174.85 0.00 0.10 7174.85 7174.85 0.00 1.80 7174.85 7174.85 0.00 0.10
28 8 6 1 7174.85 7174.85 0.00 0.10 7174.85 7174.85 0.00 2.10 7174.85 7174.85 0.00 0.07
28 8 2+ 1 7174.85 7174.85 0.00 0.10 7174.85 7174.85 0.00 1.80 7174.85 7174.85 0.00 0.07
28 8 4+ 1 7174.85 7174.85 0.00 0.10 7174.85 7174.85 0.00 1.90 7174.85 7174.85 0.00 0.07
28 8 8+ 1 7174.85 7174.85 0.00 0.10 7174.85 7174.85 0.00 2.10 7174.85 7174.85 0.00 0.06
28 8 0 2 7292.25 7292.25 0.00 0.10 7292.25 7292.25 0.00 1.60 7292.25 7292.25 0.00 0.09
28 8 2 2 7292.25 7292.25 0.00 0.10 7292.25 7292.25 0.00 1.80 7292.25 7292.25 0.00 0.07
28 8 6 2 7292.25 7292.25 0.00 0.10 7292.25 7292.25 0.00 1.80 7292.25 7292.25 0.00 0.08
28 8 2+ 2 7292.25 7292.25 0.00 0.10 7292.25 7292.25 0.00 1.90 7292.25 7292.25 0.00 0.07
28 8 4+ 2 7292.25 7292.25 0.00 0.10 7292.25 7292.25 0.00 1.90 7292.25 7292.25 0.00 0.08
28 8 8+ 2 7292.25 7292.25 0.00 0.10 7292.25 7292.25 0.00 1.90 7292.25 7292.25 0.00 0.07
57 8 0 0 12706.60 12708.00 0.01 0.10 12706.60 12706.60 0.00 2.20 12706.60 12706.60 0.00 0.10
57 8 2 0 12706.60 12706.60 0.00 0.10 12706.60 12706.60 0.00 2.30 12706.60 12706.60 0.00 0.10
57 8 6 0 12724.75 12724.75 0.00 0.10 12724.75 12724.75 0.00 2.30 12724.75 12724.75 0.00 0.07
57 8 2+ 0 12706.60 12706.60 0.00 0.10 12706.60 12706.60 0.00 2.50 12706.60 12706.60 0.00 0.10
57 8 4+ 0 12706.60 12706.60 0.00 0.10 12706.60 12706.60 0.00 2.60 12706.60 12706.60 0.00 0.08
57 8 8+ 0 12724.75 12724.75 0.00 0.10 12724.75 12724.75 0.00 2.40 12724.75 12724.75 0.00 0.07
57 8 0 1 12687.90 12687.90 0.00 0.10 12687.90 12687.90 0.00 2.10 12687.90 12687.90 0.00 0.08
57 8 2 1 12712.96 12712.96 0.00 0.10 12712.96 12712.96 0.00 2.10 12712.96 12712.96 0.00 0.07
57 8 6 1 12712.96 12712.96 0.00 0.10 12712.96 12712.96 0.00 2.30 12712.96 12712.96 0.00 0.07
57 8 2+ 1 12712.96 12712.96 0.00 0.10 12712.96 12712.96 0.00 2.30 12712.96 12712.96 0.00 0.09
57 8 4+ 1 12712.96 12712.96 0.00 0.10 12712.96 12712.96 0.00 2.30 12712.96 12712.96 0.00 0.09
57 8 8+ 1 12712.96 12712.96 0.00 0.10 12712.96 12712.96 0.00 2.50 12712.96 12712.96 0.00 0.07
57 8 0 2 12708.57 12708.57 0.00 0.10 12708.57 12708.57 0.00 1.90 12708.57 12708.57 0.00 0.08
57 8 2 2 12708.57 12708.57 0.00 0.10 12708.57 12708.57 0.00 2.00 12708.57 12708.57 0.00 0.07
57 8 6 2 12738.05 12747.31 0.07 0.10 12738.05 12738.05 0.00 2.20 12738.05 12738.05 0.00 0.07
57 8 2+ 2 12761.21 12761.21 0.00 0.10 12738.05 12738.05 0.00 2.20 12738.05 12738.05 0.00 0.09
57 8 4+ 2 12761.21 12761.21 0.00 0.10 12738.05 12738.05 0.00 2.30 12738.05 12738.05 0.00 0.08
57 8 8+ 2 12738.05 12746.12 0.06 0.10 12738.05 12738.05 0.00 2.50 12738.05 12738.05 0.00 0.09

Avg. 0.02 0.10 < 0.01 2.02 0.00 0.08
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Tabela 10: Results obtained on the 10-customer instances.

Instance
P-VNSRO P-VNSQO HGSHEV

Best Avg. Gap CPU Best Avg. Gap CPU Best Avg. Gap CPU
D C TWs V (%) (s) (%) (s) (%) (s)
0 10 0 0 1798.94 1799.44 0.03 0.20 1798.94 1799.44 0.03 4.50 1798.94 1798.94 0.00 0.11
0 10 3 0 1798.94 1798.94 0.00 0.30 1798.94 1799.95 0.06 4.80 1798.94 1798.94 0.00 0.12
0 10 8 0 1801.46 1801.46 0.00 0.20 1801.46 1801.46 0.00 5.10 1801.46 1801.46 0.00 0.09
0 10 2+ 0 1798.94 1798.94 0.00 0.20 1801.46 1801.46 0.00 4.80 1798.94 1798.94 0.00 0.12
0 10 5+ 0 1798.94 1798.94 0.00 0.20 1801.46 1801.46 0.00 5.00 1798.94 1798.94 0.00 0.12
0 10 10+ 0 1801.46 1801.46 0.00 0.20 1801.46 1801.46 0.00 4.60 1801.46 1801.46 0.00 0.11
0 10 0 1 1598.18 1598.18 0.00 0.30 1598.18 1598.18 0.00 4.60 1598.18 1598.18 0.00 0.13
0 10 3 1 1601.73 1601.73 0.00 0.30 1602.08 1602.08 0.00 4.70 1601.73 1601.73 0.00 0.17
0 10 8 1 1601.73 1601.73 0.00 0.20 1601.73 1601.73 0.00 5.90 1601.73 1601.73 0.00 0.10
0 10 2+ 1 1601.73 1601.73 0.00 0.20 1602.08 1602.08 0.00 4.90 1601.73 1601.73 0.00 0.13
0 10 5+ 1 1601.73 1601.73 0.00 0.20 1602.08 1602.08 0.00 4.70 1601.73 1601.73 0.00 0.13
0 10 10+ 1 1601.73 1601.73 0.00 0.20 1601.73 1601.73 0.00 5.40 1601.73 1601.73 0.00 0.12
0 10 0 2 1478.90 1478.90 0.00 0.20 1478.90 1478.90 0.00 4.30 1478.90 1478.90 0.00 0.10
0 10 3 2 1531.45 1533.67 0.14 0.20 1531.45 1531.45 0.00 4.30 1531.45 1531.45 0.00 0.14
0 10 8 2 1531.45 1534.89 0.22 0.20 1531.45 1531.45 0.00 4.40 1531.45 1531.45 0.00 0.11
0 10 2+ 2 1531.45 1531.45 0.00 0.20 1531.45 1531.45 0.00 4.70 1531.45 1531.45 0.00 0.13
0 10 5+ 2 1531.45 1533.17 0.11 0.20 1531.45 1531.45 0.00 4.50 1531.45 1531.45 0.00 0.11
0 10 10+ 2 1531.45 1532.03 0.04 0.20 1531.45 1531.45 0.00 4.40 1531.45 1531.45 0.00 0.12
28 10 0 0 7308.15 7308.15 0.00 0.20 7308.15 7308.15 0.00 4.10 7308.15 7310.25 0.03 0.12
28 10 3 0 7314.32 7314.32 0.00 0.20 7314.32 7314.32 0.00 4.40 7314.32 7314.32 0.00 0.12
28 10 8 0 7329.18 7329.18 0.00 0.20 7329.18 7329.18 0.00 4.70 7329.18 7329.18 0.00 0.11
28 10 2+ 0 7314.32 7314.32 0.00 0.20 7314.32 7314.32 0.00 4.80 7314.32 7314.32 0.00 0.10
28 10 5+ 0 7314.32 7314.32 0.00 0.20 7314.32 7314.32 0.00 5.10 7314.32 7314.32 0.00 0.09
28 10 10+ 0 7329.18 7329.18 0.00 0.20 7329.18 7329.18 0.00 5.20 7329.18 7329.18 0.00 0.10
28 10 0 1 7362.93 7362.93 0.00 0.20 7362.93 7362.93 0.00 4.10 7362.93 7362.93 0.00 0.14
28 10 3 1 7362.93 7362.93 0.00 0.20 7362.93 7362.93 0.00 4.40 7362.93 7362.93 0.00 0.12
28 10 8 1 7362.93 7362.93 0.00 0.20 7362.93 7362.93 0.00 4.90 7362.93 7362.93 0.00 0.11
28 10 2+ 1 7362.93 7362.93 0.00 0.20 7362.93 7362.93 0.00 4.80 7362.93 7362.93 0.00 0.10
28 10 5+ 1 7362.93 7362.93 0.00 0.20 7362.93 7362.93 0.00 4.80 7362.93 7362.93 0.00 0.10
28 10 10+ 1 7362.93 7362.93 0.00 0.20 7362.93 7362.93 0.00 5.00 7362.93 7362.93 0.00 0.11
28 10 0 2 7290.82 7290.82 0.00 0.20 7290.82 7290.82 0.00 4.10 7290.82 7290.82 0.00 0.16
28 10 3 2 7290.82 7290.82 0.00 0.20 7290.82 7290.82 0.00 4.10 7290.82 7290.82 0.00 0.16
28 10 8 2 7290.82 7290.82 0.00 0.20 7290.82 7290.82 0.00 4.50 7290.82 7290.82 0.00 0.12
28 10 2+ 2 7290.82 7290.82 0.00 0.20 7290.82 7290.82 0.00 4.60 7290.82 7290.82 0.00 0.12
28 10 5+ 2 7290.82 7290.82 0.00 0.20 7290.82 7290.82 0.00 4.60 7290.82 7290.82 0.00 0.12
28 10 10+ 2 7290.82 7290.82 0.00 0.20 7290.82 7290.82 0.00 4.40 7290.82 7290.82 0.00 0.10
57 10 0 0 12747.22 12747.22 0.00 0.20 12747.22 12747.22 0.00 5.20 12747.22 12747.22 0.00 0.14
57 10 3 0 12759.24 12760.75 0.01 0.20 12759.24 12759.24 0.00 5.70 12759.24 12759.24 0.00 0.16
57 10 8 0 12759.24 12759.24 0.00 0.20 12759.24 12759.24 0.00 6.20 12759.24 12759.24 0.00 0.13
57 10 2+ 0 12759.24 12759.24 0.00 0.20 12759.24 12759.24 0.00 5.70 12759.24 12759.24 0.00 0.13
57 10 5+ 0 12759.24 12759.24 0.00 0.20 12759.24 12759.24 0.00 6.00 12759.24 12759.24 0.00 0.12
57 10 10+ 0 12759.24 12759.24 0.00 0.20 12759.24 12759.24 0.00 5.80 12759.24 12759.24 0.00 0.14
57 10 0 1 12725.88 12725.88 0.00 0.20 12725.88 12725.88 0.00 5.10 12725.88 12725.88 0.00 0.13
57 10 3 1 12738.38 12738.38 0.00 0.20 12738.38 12738.38 0.00 5.50 12738.38 12738.38 0.00 0.15
57 10 8 1 12738.38 12738.38 0.00 0.20 12738.38 12738.38 0.00 6.30 12738.38 12738.38 0.00 0.14
57 10 2+ 1 12738.38 12738.38 0.00 0.20 12738.38 12738.38 0.00 5.90 12738.38 12738.38 0.00 0.12
57 10 5+ 1 12738.38 12738.38 0.00 0.20 12738.38 12738.38 0.00 6.10 12738.38 12738.38 0.00 0.14
57 10 10+ 1 12738.38 12738.38 0.00 0.20 12738.38 12738.38 0.00 6.90 12738.38 12738.38 0.00 0.13
57 10 0 2 12935.48 12935.58 0.00 0.20 12935.48 12935.48 0.00 4.90 12935.48 12935.48 0.00 0.15
57 10 3 2 12935.48 12935.48 0.00 0.20 12935.48 12935.48 0.00 5.40 12935.48 12935.55 0.00 0.16
57 10 8 2 12935.48 12935.48 0.00 0.20 12935.48 12935.48 0.00 6.10 12935.48 12935.48 0.00 0.11
57 10 2+ 2 12935.48 12935.48 0.00 0.20 12935.48 12935.48 0.00 5.50 12935.48 12935.48 0.00 0.12
57 10 5+ 2 12935.48 12935.48 0.00 0.20 12935.48 12935.48 0.00 5.70 12935.48 12935.48 0.00 0.13
57 10 10+ 2 12935.48 12935.48 0.00 0.20 12935.48 12935.48 0.00 6.50 12935.48 12935.48 0.00 0.10

Avg. 0.01 0.21 < 0.01 5.05 < 0.01 0.12
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Tabela 11: Results obtained on the 20-customer instances.

Instance
P-VNSRO P-VNSQO HGSHEV

Best Avg. Gap CPU Best Avg. Gap CPU Best Avg. Gap CPU
D C TWs V (%) (s) (%) (s) (%) (s)
0 20 0 0 2005.89 2009.63 0.19 4.10 2005.89 2005.89 0.00 96.10 2005.89 2005.89 0.00 0.70
0 20 8 0 2005.89 2005.89 0.00 4.10 2005.89 2005.89 0.00 108.40 2005.89 2005.89 0.00 0.67
0 20 18 0 2005.89 2005.89 0.00 3.80 2005.89 2005.89 0.00 91.00 2005.89 2005.89 0.00 0.58
0 20 2+ 0 2005.89 2005.89 0.00 4.10 2005.89 2005.89 0.00 103.30 2005.89 2005.89 0.00 0.71
0 20 10+ 0 2005.89 2005.89 0.00 4.00 2005.89 2005.89 0.00 116.90 2005.89 2005.89 0.00 0.64
0 20 20+ 0 2005.89 2005.89 0.00 3.70 2005.89 2005.89 0.00 99.50 2005.89 2005.89 0.00 0.62
0 20 0 1 1969.78 1970.77 0.05 4.10 1969.78 1969.80 0.00 100.10 1969.78 1969.78 0.00 0.87
0 20 8 1 1969.78 1969.78 0.00 4.30 1969.78 1969.78 0.00 116.30 1969.78 1969.78 0.00 0.67
0 20 18 1 1969.78 1969.80 0.00 4.20 1969.78 1969.78 0.00 133.10 1969.78 1969.78 0.00 0.81
0 20 2+ 1 1969.78 1969.80 0.00 4.10 1969.78 1969.78 0.00 110.00 1969.78 1969.78 0.00 0.67
0 20 10+ 1 1969.78 1969.78 0.00 4.10 1969.78 1969.78 0.00 143.70 1969.78 1969.78 0.00 0.63
0 20 20+ 1 1969.78 1969.78 0.00 3.00 1969.78 1969.78 0.00 111.80 1969.78 1969.78 0.00 0.65
0 20 0 2 1606.42 1606.42 0.00 4.60 1606.57 1606.57 0.00 93.00 1606.42 1606.42 0.00 0.73
0 20 8 2 1606.42 1606.42 0.00 4.40 1606.42 1606.51 0.01 104.70 1606.42 1606.42 0.00 0.66
0 20 18 2 1608.37 1608.37 0.00 3.80 1608.37 1608.37 0.00 103.30 1608.37 1608.37 0.00 0.61
0 20 2+ 2 1606.42 1606.81 0.02 4.20 1606.42 1606.51 0.01 111.70 1606.42 1606.42 0.00 0.59
0 20 10+ 2 1606.42 1606.42 0.00 4.30 1606.42 1606.51 0.01 123.00 1606.42 1606.42 0.00 0.78
0 20 20+ 2 1608.37 1608.37 0.00 3.50 1608.37 1608.37 0.00 99.00 1608.37 1608.37 0.00 0.54
28 20 0 0 7807.05 7813.40 0.08 3.50 7807.05 7807.25 0.00 75.90 7807.05 7807.05 0.00 0.87
28 20 8 0 7807.05 7807.05 0.00 3.60 7807.05 7807.05 0.00 94.80 7807.05 7807.05 0.00 0.72
28 20 18 0 7807.05 7807.05 0.00 3.10 7807.05 7807.05 0.00 92.50 7807.05 7807.05 0.00 0.71
28 20 2+ 0 7807.05 7807.05 0.00 3.60 7807.56 7807.56 0.00 90.60 7807.05 7807.05 0.00 0.81
28 20 10+ 0 7807.95 7874.43 0.85 3.70 7807.56 7807.56 0.00 135.10 7807.05 7807.05 -0.01 0.71
28 20 20+ 0 7807.05 7807.05 0.00 2.80 7807.05 7807.05 0.00 113.30 7807.05 7807.05 0.00 0.58
28 20 0 1 7672.11 7689.21 0.22 3.70 7670.94 7670.94 0.00 81.10 7670.94 7671.00 0.00 1.42
28 20 8 1 7670.94 7671.44 0.01 3.60 7670.94 7670.94 0.00 89.30 7670.94 7671.13 0.00 1.03
28 20 18 1 7670.94 7670.94 0.00 3.20 7670.94 7670.94 0.00 84.40 7670.94 7671.00 0.00 0.80
28 20 2+ 1 7670.94 7678.20 0.09 3.60 7670.94 7670.94 0.00 99.30 7670.94 7671.00 0.00 0.96
28 20 10+ 1 7670.94 7670.94 0.00 3.70 7670.94 7670.94 0.00 122.00 7670.94 7671.00 0.00 1.02
28 20 20+ 1 7670.94 7670.94 0.00 3.10 7670.94 7670.94 0.00 110.50 7670.94 7671.14 0.00 0.67
28 20 0 2 7717.25 7722.01 0.06 3.40 7713.39 7713.39 0.00 72.50 7709.14 7711.27 -0.03 1.09
28 20 8 2 7715.01 7717.39 0.03 3.30 7709.14 7714.31 0.07 96.30 7709.14 7709.14 0.00 0.71
28 20 18 2 7709.14 7709.14 0.00 3.20 7709.14 7709.14 0.00 104.00 7709.14 7709.73 0.01 0.61
28 20 2+ 2 7709.14 7709.14 0.00 3.50 7709.14 7711.08 0.03 88.10 7709.14 7709.63 0.01 0.75
28 20 10+ 2 7709.14 7709.14 0.00 3.60 7709.14 7710.76 0.02 130.90 7709.14 7709.14 0.00 0.63
28 20 20+ 2 7709.14 7709.14 0.00 3.10 7709.14 7709.14 0.00 119.10 7709.14 7709.14 0.00 0.50
57 20 0 0 13343.32 13343.32 0.00 3.30 13329.82 13329.82 0.00 86.00 13329.82 13329.82 0.00 0.97
57 20 8 0 13343.32 13345.86 0.02 3.50 13343.32 13343.34 0.00 109.60 13343.32 13344.17 0.01 0.92
57 20 18 0 13343.32 13343.32 0.00 3.50 13343.32 13343.32 0.00 132.80 13343.32 13343.32 0.00 0.82
57 20 2+ 0 13329.82 13332.52 0.02 3.40 13329.82 13329.82 0.00 107.00 13329.82 13329.82 0.00 0.77
57 20 10+ 0 13343.32 13343.32 0.00 3.70 13343.32 13343.32 0.00 144.90 13343.32 13343.32 0.00 0.81
57 20 20+ 0 13343.32 13343.32 0.00 3.40 13343.32 13343.32 0.00 161.30 13343.32 13343.32 0.00 0.65
57 20 0 1 13290.27 13299.34 0.07 3.40 13287.61 13287.61 0.00 92.80 13287.61 13289.01 0.01 1.05
57 20 8 1 13287.61 13287.61 0.00 3.60 13287.61 13288.14 0.00 120.70 13287.61 13287.61 0.00 0.85
57 20 18 1 13287.61 13287.61 0.00 3.30 13287.61 13287.61 0.00 122.90 13287.61 13287.61 0.00 0.82
57 20 2+ 1 13287.61 13294.01 0.05 3.60 13287.61 13287.61 0.00 111.60 13287.61 13287.61 0.00 0.79
57 20 10+ 1 13287.61 13287.61 0.00 3.70 13287.61 13287.61 0.00 159.80 13287.61 13287.61 0.00 0.91
57 20 20+ 1 13287.61 13287.61 0.00 3.20 13287.61 13287.61 0.00 170.50 13287.61 13287.61 0.00 0.85
57 20 0 2 13247.33 13247.33 0.00 3.40 13247.33 13247.33 0.00 91.40 13247.33 13250.29 0.02 0.85
57 20 8 2 13247.33 13247.33 0.00 3.20 13247.33 13247.33 0.00 108.40 13247.33 13247.33 0.00 0.82
57 20 18 2 13247.33 13247.33 0.00 3.20 13247.33 13247.33 0.00 134.30 13247.33 13247.33 0.00 0.72
57 20 2+ 2 13247.33 13247.59 0.00 3.40 13247.33 13247.33 0.00 102.10 13247.33 13247.33 0.00 0.68
57 20 10+ 2 13247.33 13247.33 0.00 3.50 13247.33 13247.33 0.00 143.90 13247.33 13247.33 0.00 0.89
57 20 20+ 2 13247.33 13247.33 0.00 2.90 13247.33 13247.33 0.00 156.10 13247.33 13247.33 0.00 0.71

Avg. 0.03 3.61 < 0.01 111.49 < 0.01 0.77
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HGSHEV achieved high quality solutions and new improved solutions were found for 26

instances. With respect to the runtime performance, HGSHEV managed to be 9.86 and

331.47 times faster than the versions RO and QO of PVNS, on average, respectively.

Tabela 12: Results obtained on the 50-customer instances.

Instance
P-VNSRO P-VNSQO HGSHEV

Best Avg. Gap CPU Best Avg. Gap CPU Best Avg. Gap CPU
D C TWs V (%) (s) (%) (s) (%) (s)
0 50 0 0 3046.44 3071.36 0.82 182.70 2771.98 2819.37 1.71 3848.10 2712.90 2713.65 -2.10 17.12
0 50 23 0 2712.90 2712.90 0.00 169.10 2712.90 2714.44 0.06 5649.00 2712.90 2712.90 0.00 15.25
0 50 48 0 2716.54 2716.54 0.00 158.40 2716.54 2716.54 0.00 4552.60 2716.54 2716.54 0.00 12.00
0 50 2+ 0 2843.86 2843.86 0.00 191.60 2761.61 2828.51 2.42 4183.40 2712.90 2712.92 -1.76 20.73
0 50 25+ 0 2712.90 2712.90 0.00 198.70 2713.97 2714.53 0.02 11744.30 2712.90 2712.90 0.00 15.57
0 50 50+ 0 2716.54 2716.54 0.00 164.80 2716.54 2716.54 0.00 6415.50 2716.54 2716.54 0.00 11.59
0 50 0 1 2727.67 2824.08 3.53 223.20 2574.63 2587.52 0.50 4321.60 2489.24 2489.57 -3.30 19.61
0 50 23 1 2497.43 2497.99 0.02 224.30 2497.78 2508.73 0.44 8163.60 2489.24 2489.24 -0.33 12.84
0 50 48 1 2497.78 2497.78 0.00 200.90 2497.78 2497.78 0.00 5272.10 2497.78 2497.78 0.00 13.05
0 50 2+ 1 2750.81 2792.02 1.50 210.10 2626.64 2626.64 0.00 4830.60 2489.24 2490.44 -5.19 20.43
0 50 25+ 1 2496.82 2502.71 0.24 224.40 2497.78 2502.45 0.19 12580.20 2489.24 2489.24 -0.30 14.69
0 50 50+ 1 2497.78 2497.78 0.00 163.50 2497.78 2497.78 0.00 7449.90 2497.78 2497.78 0.00 13.99
0 50 0 2 2595.56 2623.22 1.07 198.50 2506.76 2506.76 0.00 4117.80 2474.21 2474.80 -1.27 19.44
0 50 23 2 2481.22 2513.84 1.31 206.40 2499.59 2523.86 0.97 7383.30 2474.21 2474.21 -0.28 15.24
0 50 48 2 2497.59 2497.59 0.00 194.10 2497.59 2497.63 0.00 4443.10 2497.59 2497.60 0.00 13.60
0 50 2+ 2 2618.41 2618.41 0.00 196.20 2539.65 2656.19 4.59 4765.20 2487.14 2487.35 -2.06 19.20
0 50 25+ 2 2505.68 2505.68 0.00 209.20 2531.96 2531.96 0.00 11573.00 2487.14 2487.47 -0.73 16.41
0 50 50+ 2 2497.59 2500.92 0.13 136.60 2497.59 2497.86 0.01 7073.70 2497.59 2497.61 0.00 15.09
28 50 0 0 8456.38 8497.22 0.48 102.80 8420.92 8421.19 0.00 1405.40 8338.12 8338.17 -0.98 24.96
28 50 23 0 8387.19 8388.64 0.02 73.70 8363.71 8363.71 0.00 4512.60 8363.71 8363.71 0.00 12.17
28 50 48 0 8363.71 8363.71 0.00 124.60 8363.71 8363.71 0.00 3665.60 8363.71 8363.71 0.00 11.96
28 50 2+ 0 8503.34 8535.99 0.38 85.10 8414.32 8418.38 0.05 1797.90 8338.12 8338.12 -0.91 18.58
28 50 25+ 0 8387.19 8405.95 0.22 56.40 8386.99 8387.11 0.00 5361.00 8386.99 8386.99 0.00 13.92
28 50 50+ 0 8400.11 8400.12 0.00 122.30 8404.00 8404.56 0.01 3607.80 8404.75 8410.26 0.12 18.95
28 50 0 1 8691.60 8691.60 0.00 241.10 8585.05 8586.54 0.02 2963.10 8425.70 8427.87 -1.83 26.09
28 50 23 1 8427.26 8438.68 0.14 153.40 8427.26 8427.26 0.00 5090.30 8425.90 8425.90 -0.02 18.80
28 50 48 1 8427.26 8427.26 0.00 152.60 8425.90 8425.90 0.00 4944.80 8425.90 8425.90 0.00 17.56
28 50 2+ 1 8762.09 8762.09 0.00 174.90 8565.78 8576.23 0.12 3648.10 8425.70 8425.70 -1.64 19.93
28 50 25+ 1 8427.26 8485.88 0.70 124.30 8427.26 8427.26 0.00 7233.10 8425.90 8425.90 -0.02 17.28
28 50 50+ 1 8425.90 8426.17 0.00 145.60 8425.90 8425.90 0.00 7834.00 8425.90 8425.90 0.00 13.19
28 50 0 2 8749.99 8775.47 0.29 162.90 8508.20 8508.20 0.00 2560.30 8422.15 8428.20 -0.94 25.09
28 50 23 2 8446.66 8448.81 0.03 90.70 8428.38 8431.13 0.03 4250.90 8428.38 8428.38 0.00 14.38
28 50 48 2 8428.38 8428.38 0.00 168.60 8428.38 8428.38 0.00 4870.40 8428.38 8428.38 0.00 13.52
28 50 2+ 2 8590.87 8590.87 0.00 159.70 8475.79 8497.20 0.25 2890.20 8428.38 8428.38 -0.56 21.62
28 50 25+ 2 8437.85 8479.76 0.50 69.10 8428.38 8429.78 0.02 5520.50 8428.38 8428.38 0.00 14.60
28 50 50+ 2 8428.38 8428.38 0.00 155.00 8428.38 8428.38 0.00 7255.60 8428.38 8428.38 0.00 11.87
57 50 0 0 14108.54 14108.54 0.00 196.20 13881.72 13942.60 0.44 3263.80 13846.98 13860.74 -0.15 23.21
57 50 23 0 13935.30 13965.74 0.22 175.70 13853.20 13891.55 0.28 5627.70 13846.98 13847.02 -0.04 17.58
57 50 48 0 13846.98 13846.98 0.00 179.70 13846.98 13846.98 0.00 4763.50 13846.98 13847.06 0.00 15.73
57 50 2+ 0 14150.30 14150.30 0.00 178.50 13847.37 13907.15 0.43 3978.30 13846.98 13849.67 0.02 18.00
57 50 25+ 0 13846.98 13884.15 0.27 212.10 13847.37 13875.43 0.20 9454.10 13846.98 13847.02 0.00 15.62
57 50 50+ 0 13846.98 13846.98 0.00 162.70 13846.98 13846.98 0.00 8677.90 13846.98 13847.02 0.00 12.98
57 50 0 1 14135.44 14135.44 0.00 180.70 14043.83 14072.36 0.20 3336.80 13935.63 13946.66 -0.69 24.74
57 50 23 1 13980.33 13984.36 0.03 173.30 13980.34 13980.34 0.00 5815.90 13980.33 13981.33 0.01 15.83
57 50 48 1 13985.22 13985.22 0.00 172.80 13985.22 13985.22 0.00 5224.40 13985.22 13985.22 0.00 16.24
57 50 2+ 1 14207.78 14306.90 0.70 148.20 14077.99 14085.20 0.05 3666.30 13985.22 13988.28 -0.64 26.47
57 50 25+ 1 13985.22 13985.22 0.00 161.40 13985.22 13985.22 0.00 8367.10 13985.22 13985.22 0.00 14.66
57 50 50+ 1 13985.22 13985.22 0.00 162.20 13985.22 13985.22 0.00 8439.60 13985.22 13985.22 0.00 14.28
57 50 0 2 13929.89 13929.89 0.00 188.30 13866.67 13866.67 0.00 3257.60 13805.51 13806.26 -0.44 16.27
57 50 23 2 13875.02 13942.94 0.49 206.20 13821.48 13821.48 0.00 5820.30 13805.96 13805.96 -0.11 16.50
57 50 48 2 13819.39 13819.86 0.00 173.40 13820.18 13820.18 0.00 4637.50 13819.30 13819.30 0.00 14.85
57 50 2+ 2 13929.21 13940.95 0.08 183.30 13953.07 13981.12 0.20 4039.30 13805.96 13805.98 -0.88 20.96
57 50 25+ 2 13806.14 13864.39 0.42 169.20 13821.48 13821.48 0.00 9018.90 13805.96 13805.96 < 0.00 16.16
57 50 50+ 2 13820.18 13820.18 0.00 177.80 13819.30 13819.83 0.00 7868.50 13819.30 13819.30 0.00 13.85

Avg. 0.25 166.99 0.24 5611.78 -0.50 16.93

According to the Wilcoxon signed-rank test, there are no significant differences

(p-values > 0.05) for the instances involving 10 customers, as expected, because the
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average gaps are zero for the vast majority of the instances. On the other hand, there

seems to be a significant difference between HGS and RO, and HGS and QO for the

50-customer instances with p-values < 0.001 in both comparisons. As for the 8- and the

20-customer instances, there was a statistical difference when comparing HGS with RO

(p-values < 0.01), but the same did not happen for HGS and QO (p-values > 0.1).

Table 13 summarizes the results found by the HGSHEV in terms of solution quality,

when compared with those achieved by the PVNS considering both versions: RO and QO.

It can be observed that the gains tend to be more prominent as the size of the instance

increases. Note that in many cases our average solution was better than the best known

solution attained by PVNS, which ratifies the superior performance of HGSHEV in terms

of solution quality.

Tabela 13: Summary of the results found by HGSHEV compared with those
of versions RO and QO of PVNS.

8 customers 10 customers 20 customers 50 customers
RO QO RO QO RO QO RO QO

#Best improved 3 0 0 5 6 4 34 31
#Best equaled 51 54 54 49 48 50 19 22
#Best worse 0 0 0 0 0 0 1 1
#Avg. better than the Best 3 0 0 5 6 4 34 29
#Avg. equal to the Best 51 54 52 47 39 39 13 18
#Avg. improved 8 1 7 7 18 13 38 37
#Avg. equaled 46 53 45 45 30 31 12 13
#Avg. worse 0 0 2 2 6 10 4 4
#Worst better than the Best 3 0 0 5 5 3 34 27
#Worst equal to the Best 51 54 52 47 39 40 13 19
#Worst better than the Avg. 8 1 7 7 15 11 37 36
#Worst equal to the Avg. 46 53 45 45 30 32 12 13

5.3 Impact of the newly proposed offspring generation procedure

In order to demonstrate the effectiveness of the newly proposed offspring genera-

tion operators, i.e., MOX and MOXMC, we have also executed the HGSHEV algorithm

with the following crossover operators: order crossover (OX) [Oliver et al., 1987]; OX with

mode changes (OXMC); modified order crossover (MOX); sequential constructive crosso-

ver (SCX), described in [Ahmed, 2010]; SCX with mode changes (SCXMC); edge recom-

bination crossover (ERX) [Whitley et al., 1989]; and ERX with mode changes (ERXMC).

For the OX, MOX, SCX and ERX, the modes chromosome of one of the parents

is randomly selected and copied to the child. In the case of OXMC, whenever a vertex

is copied from one parent to the offspring, the operation mode connecting such vertex

to the next one is also copied, regardless of the next customer served in the offspring

solution. As for the SCXMC and the ERXMC, the modes chromosome at index 0 of the
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child is randomly selected from one of the parents’ 0 index modes chromosome. In the

SCXMC, the remaining of such chromosome is filled according to the selected customer

and parent in a similar way as the MOXMC; whereas in the ERXMC, the remaining modes

chromosome is filled randomly from one of the parents based on the selected customer.

Figure 9 exhibits the results of employing the discussed operators on the 50-

customer instances, which is definitely the most challenging set and the one where the

differences become more evident. It can be observed that crossover operators with mode

changes tend to offer better solutions in terms of average gap, but with larger runtimes.

The operator ERXMC, for example, resulted in a average gap of approximately −0.44%
against −0.38% of ERX, but with an average CPU time approximately 3 seconds worse.

Moreover, the figure clearly shows the superiority of both MOX and MOXMC operators,

which dominate the remaining ones. While the former improved the runtime performance

of HGSHEV, the latter helped the proposed algorithm to consistently obtain better ave-

rage solutions, especially on larger instances, as summarized in Table 14. Moreover, the

Wilcoxon signed-rank test confirmed that there is a statistical difference between the ave-

rage gaps achieved by MOX and MOXMC for the 8-, 20- and 50-customer instances, with

p-values < 0.001 in these three groups. For this reason, it was thought advisable to adopt

MOXMC as the crossover operator.
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Figura 9: Impact of different crossover operators.

Tabela 14: Number of cases in which the average solution of one operator
was better than the other.

8 customers 10 customers 20 customers 50 customers
MOX 0 0 3 5
MOXMC 14 5 32 43
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5.4 Impact of the efficient move evaluation scheme

Table 15 shows the speed-up achieved by employing the proposed move evaluation

scheme compared to a straightforward implementation. The speed-up is obtained even for

small instances (8 customers), and it becomes increasingly significant with the instance

size. Therefore, one can conclude that the proposed approach plays a crucial role on the

runtime performance of our algorithm, most notably on larger instances.

Tabela 15: Speed-up achieved by using the efficient move evaluation scheme.

Instance size
Avg. CPU (s)

Speed-upEfficient Straightforward
Implementation Implementation

08 0.08 0.12 1.54
10 0.12 0.20 1.60
20 0.77 1.46 1.90
50 16.93 54.13 3.20

5.5 Impact of restricting the number of arc combinations during local

search

Table 16 presents the impact on solution quality and CPU time of restricting the

number of arc combinations during local search. The results suggest that a significant

speed-up can be attained without loss on the average gaps.

Tabela 16: Impact of restricting the number of arc combinations during lo-
cal search.

Instance size
Avg. CPU (s)

Speed-up
Avg. Gap (%)

Restricted All Restricted All
Combinations Combinations Combinations Combinations

08 0.08 0.43 5.59 0.00 0.01
10 0.12 0.75 6.06 < 0.01 < 0.01
20 0.77 3.08 4.00 < 0.00 < 0.00
50 16.93 48.56 2.87 -0.50 -0.49

5.6 Impact of the instance size on the operation modes

As the final step of the numerical experiments, we conducted an analysis on the

impact of the number of customers on the selected operation modes of the vehicle. The

best solution was considered on this analysis. In addition, the percentage usage of each

operation mode was computed for each instance and then the average percentage value

was computed based on 4 groups created according to the sizes of the instances.
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Figure 10 depicts the results obtained per group. The reason for the missing

information about the boost operation mode is because no arc was selected with such

mode in any of the best solutions found by HGSHEV. As can be observed, there is an

inverse relationship between the usage of the combustion mode c and the size of the

instances, that is, as the number of customers increases, the number of arcs traversed in

such mode decreases. There is also a direct relationship between the usage of the charging

mode ch and the instance size, that is, as one increases the other one also increases. The

electric mode e usage, on the other hand, is not significantly changed as the number of

customers increases. These observations convey better usage of the electric characteristics

of the vehicle as the sizes of the instances increase for the benchmark under consideration.
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Figura 10: Relation between instance length and the operation mode use.

Moreover, Table 17 shows the average length of the arcs (of the best solutions), in

meters, per operation mode and instance size. According to the table, as the size of the

instances increases, the average length of the arcs with the charging mode decreases with

respect to the average length of the arcs with the combustion and electric modes. For

this reason, more arcs have to be used with the charging mode in order to balance the

electric mode usage. This fact explains the behavior reported in Figure 10.

Tabela 17: Average length of the arcs, in meters, per operation mode and
instance size.

Operation #Customers
mode 8 10 20 50

c 15842.20 20067.57 22543.46 21769.84
ch 3633.45 2502.55 930.66 481.96
e 1612.75 1637.42 1376.10 1116.47

ch/c 0.23 0.12 0.04 0.02
ch/e 2.25 1.53 0.68 0.43
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6 Concluding remarks and future work

This work presented a hybrid genetic search (HGS) algorithm to solve the traveling

salesman problem with time windows (HEVTSPTW). The proposed method includes a

hierarchical randomized variable neighborhood descent (HRVND) procedure in the local

search phase, a limitation strategy to prevent all combinations of arcs associated with the

battery operation modes from being inspected, and a novel move evaluation scheme to

efficiently compute battery violations in O(1) time. We also introduced a modified order

crossover procedure with mode changes (MOXMC) that takes advantage of the battery

operation modes of the problem.

Extensive computational experiments were carried out on benchmark instances to

show the gains of each of the main components of our HGS, as well as to assess the

performance of the method itself. The results ratified the importance of such components

and also clearly showed that the proposed HGS clearly outperformed the best known

solution approach, both in terms of solution quality and CPU time. All best known

solutions were achieved or improved and the difference between the average gaps increased

in favor of HGS when compared to the best existing method. Furthermore, we conducted

an analysis on the proportional usage of each battery operation mode, and it was observed

that the larger the instance size the larger the charging mode tends to be employed and

the lesser the combustion mode is likely to be activated.

Promising avenues of research include the extension of the proposed HGS algo-

rithm to solve the version with multiple vehicles and additional attributes such as vehicle

capacity and multiple depots. Furthermore, one could also consider scenarios involving

uncertainties (e.g., on travel time) in order to produce solutions that are more reliable to

be adopted in practice. Such uncertainties can be tackled both under the lenses of sto-

chastic programming or robust optimization, thus requiring the development of further

procedures to efficiently cope with the challenges arising from these characteristics.

38



Bibliography

Abdelkader Sbihi and Richard W Eglese. Combinatorial optimization and green logistics.

4OR, 5(2):99–116, 2007.

Zhu Zhongming, Lu Linong, Zhang Wangqiang, Liu Wei, et al. Trends and projections in

Europe 2020 tracking progress towards europe’s climate and energy targets. Technical

Report 13/2020A, European Environment Agency (EEA), 2020.

Yoshinori Suzuki. A new truck-routing approach for reducing fuel consumption and pol-

lutants emission. Transportation Research Part D: Transport and Environment, 16(1):

73–77, 2011.

Canhong Lin, King Lun Choy, George TS Ho, Sai Ho Chung, and HY Lam. Survey of

green vehicle routing problem: past and future trends. Expert systems with applications,

41(4):1118–1138, 2014.

Simona Mancini. The hybrid vehicle routing problem. Transportation Research Part C:

Emerging Technologies, 78:1–12, 2017.

Erfan Ghorbani, Mahdi Alinaghian, Gevork B Gharehpetian, Sajad Mohammadi, and

Guido Perboli. A survey on environmentally friendly vehicle routing problem and a

proposal of its classification. Sustainability, 12(21):9079, 2020.

ARADEX AG. Retrofit electric drive kit for diesel delivery vehicles, 2021. URL https:

//aradex.asia/en/system-solutions/aradex-project-report/light-vehicle

s-small-vans/retrofit-electric-drive-kit-for-diesel-delivery-vehicles/.

Christian Doppstadt, Achim Koberstein, and Daniele Vigo. The hybrid electric vehi-

cle—traveling salesman problem with time windows. European Journal of Operational

Research, 284(2):675–692, 2020.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins. A unified

solution framework for multi-attribute vehicle routing problems. European Journal of

Operational Research, 234(3):658–673, 2014.

Tomislav Erdelić and Tonči Carić. A survey on the electric vehicle routing problem:

variants and solution approaches. Journal of Advanced Transportation, 2019, 2019.

Hu Qin, Xinxin Su, Teng Ren, and Zhixing Luo. A review on the electric vehicle routing

problems: Variants and algorithms. Frontiers of Engineering Management, 8(3):370–

389, 2021.
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