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Resumo

O problema do caixeiro viajante com janelas de tempo, do inglés traveling salesman
problem with time windows (TSPTW), é uma variante do problema cldssico do caixeiro
viajante, no qual clientes devem ser atendidos dentro de janelas de tempo. Este trabalho
propoe uma busca genética hibrida para o TSPTW com veiculo elétrico hibrido, o qual,
comparado a veiculos tradicionais, é mais amigavel ao meio ambiente e ajuda a reduzir
a emissao de gases de efeito estufa. A abordagem desenvolvida inclui um operador ba-
seado no order crossover (OX) para melhorar solugdes, juntamente com uma estratégia
de limitacao de busca e um sistema eficiente de avaliacao de movimentos para acelerar
a etapa de busca local. Experimentos computacionais foram realizados em mais de 200
instancias de benchmark. O algoritmo proposto se mostrou efetivo em sistematicamente
encontrar solugoes de alta qualidade quando comparadas aquelas encontradas pela me-
lhor heuristica para o problema. Solucoes melhores foram encontradas, especialmente
para instancias maiores e mais desafiadoras, nas quais o algoritmo se mostrou, em média,
9 vezes mais rapido do que o melhor método existente. Além disso, foi examinada a
distribuicao de frequéncia do uso dos modos de operacao do veiculo associados com as

melhores solugoes encontradas.

Palavras-chave: Caixeiro viajante, veiculo elétrico hibrido, algoritmo genético

hibrido, busca local.



Abstract

The traveling salesman problem with time windows (TSPTW) is a variant of the
classical traveling salesman problem (TSP), in which customers must be served within
specific time windows. This work proposes a hybrid genetic search for the TSPTW con-
sidering a hybrid electric vehicle (HEV), which is more environmental friendly than con-
ventional vehicles and helps to decrease the emission of greenhouse gases. The developed
approach includes a specific operator based on the order crossover (OX) to obtain im-
proved solutions, as well as a search limitation strategy and an efficient move evaluation
scheme to speed up the local search phase. Extensive computational experiments were
conducted on more than 200 benchmark instances. The proposed algorithm was revealed
to be effective in systematically finding high-quality solutions when compared to those
achieved by the best heuristic for the problem. Improved solutions were found, especially
for the larger and more challenging cases, for which our algorithm performed, on average,
9 times faster than the quickest method available. Moreover, we examine the frequency
distribution of the operation mode usage of the vehicle associated with the best solutions

found.

Key-words: Traveling salesman, hybrid electric vehicle, hybrid genetic algorithm,

local search.
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1 Introduction

1.1 Preliminaries

The traveling salesman problem (TSP) is a combinatorial optimization problem
and one of the most prominent in the field of operations research. In the TSP, each of a
set of customers must be visited exactly once, and the vehicle must start from and return
to a depot. Moreover, the sequence of visited customers is considered a solution to the
problem, the overall distance can be regarded as the cost, and the optimal solution is the

one with the least cost.

Different variants of the TSP have been proposed over the years. For instance,
the TSP with time windows (TSPTW), in which every customer has a service time and
must be served within specific start and end times of a time window. A solution to the

TSPTW is said to be feasible if it satisfies the time-window constraints.

The hybrid electric vehicle TSPTW (HEVTSPTW) is a green variant of the TSP,
which adopts a more environmental friendly vehicle instead of the conventional internal
combustion engine (ICE) one. In addition to the ICE, HEVs can also benefit from an
electric motor. Green logistics considers not only economic factors of logistics activities,
but also the sustainability of the process [Sbihi and Eglese, 2007].

In combinatorial problems such as the TSPTW, the search space is composed
of a finite set of solutions. Fzxact and heuristic algorithms can be applied to find the
optimal solution in the search space. The former approach, searches for all possible
feasible solutions and returns the optimal one, but usually takes a lot of computational
time. The latter, uses different techniques to rapidly converge to good solutions, on

average, even though there is no guarantee that the optimal one will be found.

The hybrid genetic search (HGS) is a heuristic approach that combines population-
based search and local search. In population-based heuristics, characteristics of a set of
solutions, or individuals, are used to iteratively guide the search for improved solutions.
This is also the rationale behind genetic algorithms. Local search methods look for im-
proved solutions by moving, by means of incremental changes, from solution to solution.
Moreover, the HGS relies on an offspring generation operator applied to individuals se-
lected from the population. The idea of the crossover operator is to select characteristics

from promising parents to be passed on to offsprings.

This work presents a hybrid genetic search approach to solve the hybrid electric

vehicle traveling salesman problem with time windows.



1.2 Motivation

Over the past decades, the application of operations research in the fields of logistics
and transportation led to substantial savings. In that sense, ICE vehicles have been of
paramount importance. Nevertheless, they also have been contributing negatively to
climate changes due to their significant share of greenhouse gas emissions. The European
Union, for instance, aims at reducing, by 2030, 55% of the level of emission of such gases
in comparison to the amount produced in 1990 [Zhongming et al., 2020]. To this end,
two threads of operation might be considered: efficient exploitation of currently available
resources or the use of more environmental friendly technologies. The former alternative
has the potential of reducing, in some cases, up to 6.9% of pollutant emissions, as can be
observed in Suzuki [2011]. In such work, the objective is to minimize the time a vehicle
spends carrying a heavy payload and the waiting times to serve the customers. The latter
alternative is a hot topic that has been the subject of many scientific papers (see, e.g.,
Lin et al. [2014]) and has a greater potential for minimizing the emission of greenhouse

gases.

A popular environmental friendly technology for last mile deliveries is the electric
vehicle (EV) [Mancini, 2017]. This type of vehicle, however, has limitations regarding
its maximum driving range, due to battery capacity, as well as its charging time. The
HEVs present a reasonable solution to the driving range constraint and the charging
time problem by combining an electric motor and an ICE. Unlike plugin HEVs (PHEVS),
which can also be connected to power grids to recharge their batteries, HEVs can only be
charged while the vehicle operates with the ICE [Ghorbani et al., 2020].

Four distinct operation modes are assumed in the HEV considered in this arti-
cle: combustion, charging (while driving with the combustion engine), boost (which is a
combination of the combustion engine and the electric motor), and electric. Moreover,
the operation mode can only be changed at the vertices. The time and cost required to
traverse an arc depend on the selected mode, and each of them has a different impact on
the battery charging level. For more details about the vehicle, the reader should refer to
AG [2021].

The HEVTSPTW, proposed in Doppstadt et al. [2020], generalizes the well-known
TSPTW (so it is also A'P-hard) by employing an HEV instead of a regular combustion
vehicle. In this case, the traveling costs depend on the operation mode (i.e., combustion,
charging, boost, or electric) of the vehicle when going from one point to the other, and

one must ensure that the battery level is never violated during the tour.



1.3

Objectives

The main objective of this work is to propose a hybrid genetic search (HGS) [Vi-

dal et al., 2014] algorithm to solve the HEVTSPTW, which incorporates a hierarchical

randomized variable neighborhood descent (HRVND) procedure in the local search phase.

The remaining objectives are listed as follows.

1.4

Propose a novel crossover operator that exploits the particular characteristics of the
HEVTSPTW, such as the battery operation modes. The efficiency of such operator
is attested by comparing its performance with several others, including well-known

operators from the literature.

Devise a simple limitation strategy that avoids all possible arc combinations as-
sociated with battery operation modes to be evaluated during local search, and
empirically demonstrate that such strategy can yield a significant speed-up without

compromising the solution quality.

Develop an efficient procedure for computing violations on the battery level in amor-

tized O(1) operations, which substantially improves the runtime performance.

Examine the frequency distribution of the operation mode usage of the vehicle
associated with the best solutions found. We could observe that one of the modes

is likely to be used more as the instance size increases.

Monograph outline

The remainder of this work is organized as follows.

Section 2 reviews the related literature.
Section 3 formally defines the problem.

Section 4 describes the proposed algorithm, as well as the efficient move evaluation

and limitation strategy schemes.
Section 5 contains the results of extensive computational experiments.

Finally, Section 6 concludes.



2 Related work

Many works have studied the use of EVs as an alternative solution for decreasing
the amount of greenhouse gas emissions in routing problems. Some of them have EVs as
part of homogeneous or heterogeneous fleets of vehicle routing problems (VRPs), or as the
single vehicle used in TSP variants. This section reviews the problems that are closely
related to the variant addressed in this paper. The reader is referred to Lin et al. [2014],
Erdeli¢ and Carié¢ [2019], and Qin et al. [2021] for a comprehensive review on electric VRP

variants.

The green VRP (GVRP), proposed by Erdogan and Miller-Hooks [2012], is one of
the most prominent examples of the use of EVs in VRP-like variants. In such work, the
vehicle can only be charged to full battery capacity at specific stations, and the charging
time is constant. A general electric VRP (EVRP) is presented in Lin et al. [2016], in which
an exact approach is used to find a minimal cost solution based on travel time, energy
consumption and the amount of EVs dispatched. Furthermore, such work is claimed
to be the first EVRP model to study the relationship between vehicle load and battery

consumption.

Introduced by Schneider et al. [2014] and also studied (among others) by Brugli-
eri et al. [2015], the EVRPTW is a time-window extension of the EVRP, in which the
battery level and the recharging time (after being recharged, the battery is assumed to
be full) depend on the energy consumption. Both works presented a mized integer li-
near programming (MILP) formulation, but the former devised a hybrid solution method
based on wvariable neighborhood search (VNS) [Hansen et al., 2019, Sifaleras and Kons-
tantaras, 2020, Lan et al., 2021] and tabu search (TS) [Laguna, 2018|, while the latter
implemented a so-called VNS with branching (VNSB) procedure [Hansen et al., 2006],
which combines VNS with local branching [Fischetti and Lodi, 2003]. Moreover, four va-
riants of the EVRPTW were addressed by Desaulniers et al. [2016], namely: EVRPTWSF,
EVRPTWMEF, EVRPTWSP, and EVRPTWMP. The main difference among these vari-
ants is in the maximum number of recharges per route (at most one — S, multiple recharges
— M), the fact that batteries have to be fully recharged at each visit to a single station
(F), and the possibility to partially recharge the battery (P). In such work, solutions were

obtained by exact branch-price-and-cut algorithms.

The EVRPTWPR is another EVRPTW variant, proposed by Keskin and Catay
[2016], where the full recharging constraint is relaxed, allowing partial recharge of the
battery. The authors formulated the problem as a 0-1 MILP and developed an adap-
tive large neighborhood search (ALNS) [Pisinger and Ropke, 2019] heuristic to solve it.
Furthermore, the EVRPNL introduced by Montoya et al. [2017] adds a nonlinear char-

ging function, and the resulting problem is solved by a hybrid metaheuristic consisting



in the combination of iterated local search (ILS) [Lourengo et al., 2019] and the so-called
heuristic concentration [Rosing and ReVelle, 1997]. Finally, the electric fleet size and
miz VRP with time windows and recharging stations (EFSMFTW) was put forward by
Hiermann et al. [2016], which essentially integrates the characteristics of the classical
fleet size and miz VRP with those of the EVRPTW. The problem is solved exactly by a
branch-and-price algorithm and heuristically via a hybrid ALNS approach.

The hybrid VRP (HVRP) is another extension of the GVRP. Two early works on
this problem are those by Vincent et al. [2017] and Mancini [2017]. The former proposed
a simulated annealing (SA) [Delahaye et al., 2019] heuristic for an HFVRP that employs
PHEVs, while the latter put forward a large neighborhood search (LNS) [Pisinger and
Ropke, 2019] based matheuristic for an HFVRP with a fleet of EVs. A more complicated
version of the HVRP with PHEVs was later studied by Li et al. [2020], who devised a heu-
ristic algorithm that combines memetic algorithm with sequential variable neighborhood
descent (SVND). Moreover, Murakami [2018] studied a routing and scheduling problem
using a single PHEV and implemented two exact approaches, more precisely, a mized in-
teger programming (MIP) model and a labeling-based algorithm, as well as two heuristics.
Bahrami et al. [2020] proposed an HVRP that also considers power management optimi-
zation, and solved it by means of branch-and-price and heuristic algorithms. Hiermann
et al. [2019], on the other hand, studied a heterogeneous fleet VRP with combustion,
plug-in hybrid, and electric vehicles. Solutions were obtained via a hybrid approach, i.e.,
combining metaheuristic and exact algorithms. More details about hybrid VRPs can be

found in the surveys by Dascioglu and Tuzkaya [2019] and Ammar et al. [2022].

Zhen et al. [2020] and Seyfi et al. [2022] are two seminal works on hybrid electric
VRPs (HEVRPs) with mode selection. The former put forward an improved particle
swarm optimization (PSO) [Poli et al., 2007] algorithm to solve an HEVRP with a fleet
of PHEVs, with the delivery area composed of a depot, and sets of (i) customers, (ii)
charging, and (iii) gas stations. The latter, on the other hand, solved the HEVRP by

means of a matheuristic that combines VNS with mathematical programming.

Concerning TSP-like problems, Chau et al. [2016] developed an approach for selec-
ting the drive modes of a PHEV based on prediction using historical data. In this sense, a
driving profile is obtained, which takes into account parameters such as traffic conditions.
Such profile is used in a formula together with driving speed, vehicle weight, and other

metrics to determine the appropriate drive mode at each part of the road.

Another single vehicle variant is the hybrid electric vehicle traveling salesman pro-
blem (HEVTSP), introduced by Doppstadt et al. [2016]. To solve it, the authors developed
a mathematical formulation and a TS heuristic. Doppstadt et al. [2020] later extended the
HEVTSP, as well as the formulation, by adding time-window constraints (HEVTSPTW),
and they solved the problem heuristically via a parallel VNS (PVNS) algorithm. More

5



specifically, they divided their solution approach into two phases: initialization and im-
provement. The former is further divided into three steps: firstly, customers are ordered
according to their time window end time in non-decreasing order (operation modes are
set to combustion at this step); secondly, insertion-moves are employed using a so-called
hill-climbing procedure with the aim of modifying the position of single customers in the
route; lastly, the 3-mode change (3MC) approach [Doppstadt et al., 2016] (see Section
4.8) is executed as a hill-climbing procedure. The latter phase consists in applying the

PVNS algorithm and infeasible solutions are allowed during the search.

Given the above, we can observe that the amount of works addressing hybrid
electric routing problems without recharging stations is rather limited. Moreover, we
have also identified opportunities for devising more efficient heuristic procedures to solve
this very challenging class of problems when compared to existing works. Even when only
a single hybrid vehicle is considered, the best available strategies require from several
minutes to a few hours to achieve very good solutions for 50-customer instances when
time windows are taken into account. Therefore, our work attempts to make relevant
methodological progress when it comes to obtaining high-quality solutions for this latter

case in a matter of seconds.



3 Problem description

Let G = (V, A) be a directed graph, V = {0,1,2,...,n} be a set of vertices, and
A ={(i,j) € V% i # j} be a set of arcs. For each vertex i € V, there is a time window
[b;, €;] in which such vertex can be visited, and a service time s;. Vertex 0 is the depot
and the remaining ones are the customers. Moreover: (i) e; — b; > s;,Vi € V; and (ii)

ep — bp provides the maximum route duration (or working hours).

Each arc (i,7) € A has a cost and a travel time for each operation mode of the
vehicle, i.e, combustion (c), charging (ch), electric (e), and boost (b), as indicated in Table
1. Regarding the battery, there is a minimum (0) and a maximum l,,,, charging level, as
well as charging r. and discharging r; rates. In addition, /; is the battery charging level
at vertex ¢+ € V. Each mode of operation has a different impact on the battery when

traversing an arc, as also presented in Table 1.

Tabela 1: Data associated with each operation mode for an arc (7,j) in an
arbitrary solution.

Operation mode Arc cost Arc travel time l;
Combustion (c) cii te; l;
Charging (ch) e ter L+ min(lpae — b, £)7c)
Electric (e) c5; te; l; — min(l;, t5;74)
Boost (b) b t?, l; — min(l;, t%;rq)

For each mode, the last column in Table 1 ensures that the battery level stays

between 0 and ,,,,.. Therefore, we can conclude that:

e in combustion, the charging level is not affected;

e in charging, the increasing level is proportional to the time required to traverse the

arc in this mode multiplied by the charging rate;

e in electric or boost, the power consumption is proportional to the time required to

traverse the arc in this mode multiplied by the discharging rate.

The objective of the HEVTSPTW is to find the least-cost Hamiltonian cycle,
starting and ending at the depot, serving each customer within its specific time window
and with a non-negative battery level throughout the tour. A mathematical formulation
for the problem, as well as a more comprehensive description regarding the HEVTSPTW
constraints, can be found in Doppstadt et al. [2020].

Figure 1 depicts an example of a solution containing a depot and three customers,
with the associated time windows indicated in brackets and the arrival times showed just

below them. The battery charging level is depicted to the right of the nodes. Assuming

7



6 Time Window [b, €] | Battery level
. Arrival Time a

) . O Depot
0,91 (0) O(leaving), 1 (returning) [&9}@3
9 o ea’ ll'lg re urnlng

4, (O Customer
R - => Combustion
Rt —> Charging
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3 -=> Boost

Figura 1: Example of a solution regarding time windows and operation mo-
des, with a maximum battery level of 10.

that the battery charging level at the depot is 0, the vehicle can only use the charging
or combustion mode in order to keep the non-negative battery level requirement. In the
example, the charging mode is selected, and thus the battery is partially recharged. From
customer 3 to 1, the vehicle can use the combustion or charging mode, and, depending
on the battery level at 3, the electric or boost mode. Assuming that there is enough
charge available on the battery, the boost mode is selected. Moreover, one can only use
the combustion or charging mode from customer 1 to 2, if we assume that the use of the
electric or boost mode would incur in a negative battery level. In such arc (1, 2), we also
have to take into account the time window requirement, i.e. the use of a mode with a
long travel time might incur in a time window violation. Hence, with the aim of reaching
customer 2 within its time window, the combustion mode is selected, as it offers the least
travel time between the two available options. Finally, the vehicle returns to the depot

in electric mode, partially consuming the remaining charge on the battery.



4 Proposed algorithm

The proposed algorithm is based on the HGS framework that includes an HRVND
procedure in the local search phase. At each iteration, two parents, selected from a
population of individuals, undergo a crossover operator to create a new individual to be
potentially improved by the local search. New individuals are stored in subpopulations
according to their feasibility. The pseudocode of our method, here denoted as HGSygy, is
presented in Algorithm 1. The meaning of each input parameter is explained throughout

this section.

Algorithm 1 HGSqggy

1: procedure HGS-RVND(Ny, 0, o, 14, tetites feloses A)

2 Q, Q' «+ InitializePopulation(0, a, i, flesite, heloses N)

3 s < Select the individual with the best cost out of the subpopulations 2 U §2'.
4: 1t <0

5: while it < N;; do

6 it—it+1

7 P, < BinaryTournament (€2, ')

8 P, < BinaryTournament (€2, Q')

0. S < MOXMC(P,, P,)
10: S < HRVND(S)

11: if F(S) then

12: Insert S into €2

13: Q2 +— SubpopulationManagement (€2, 11, fieiite, hciose, N)
14: if f(S) < f(s) then

15: s+ S

16: it <0

17: else

18: Insert S into '

19: (Y < SubpopulationManagement (), 11, ficiite feioses \)
20: return s

HGSggy starts by creating two subpopulations of solutions: the first containing
only feasible individuals (2) and the second with only the infeasible ones (€') (line 2). The
solution with the best (i.e. least) cost (see Equation (1)), considered as the global solution,
is then selected from the population (line 3) and a counter is set to 0 (line 4). The main
loop of HGSygy (lines 5 to 19) is executed at most Ny times without improvement on the
global solution. Two binary tournaments are performed (lines 7 and 8) at each iteration
to choose two individuals from the population. For every tournament, two individuals P;
and P, are randomly selected from each subpopulation and the one with the best biased
fitness wins. The individuals returned from the binary tournament are used to generate
an offspring by means of a modified order crossover with mode changes (MOXMC). This
offspring undergoes an HRVND (line 10) and according to its feasibility it is included in



the corresponding subpopulation. The F procedure (line 11) returns true if the solution S
is feasible and false, otherwise, and function f (line 14) returns the cost of an individual.
If the solution S is feasible (line 11), it is placed in the feasible subpopulation (line 12)
and in case it has a better cost than the best individual s found so far (line 14), then it
becomes the global solution (line 15) and the counter is set to 0 (line 16). Otherwise, if S is
infeasible (line 17), it is inserted into the infeasible subpopulation (line 18). Whenever an
individual is added to a subpopulation, a population management procedure is executed
(lines 13 and 19). At the end of the algorithm, the global (best) solution is returned (line
20).

The next subsections thoroughly describe the main aspects of the proposed al-
gorithm, namely: search space; constructive procedure and criterion used to insert an
individual in a population; fitness function; subpopulations management; binary tourna-
ment and the crossover operator; local search operators; efficient move evaluation; and

limitation strategy.

4.1 Search space

The HGSggy explores both feasible and infeasible solutions of the search space.
The infeasibility may be caused by late arrivals at customers (or at the depot) or due to
negative battery levels across vertices. The simplest violation is excess duration, which
occurs whenever the vehicle arrives back at the depot after its time-window ending time.
Moreover, when the vehicle arrives late at a given customer, a “time-warp” is necessary
in order to serve it within its time window. The time-warp can be thought of as a kind
of time travel, and it is also a violation. Finally, a negative battery level occurs whenever
the vehicle departs from an origin vertex to a destination one, in electric or boost mode,
without enough charge to traverse the arc connecting them. In this case, we consider that
the vehicle is able to reach the destination and the negative amount of charge consumed
is considered a violation. The sum of the negative battery levels on all arcs of a solution

constitutes the battery violation.

In order to properly evaluate the solution quality, taking into account possible
violations, we decided to adopt an objective function similar to the one discussed in Vidal
et al. [2012]. This approach also allows one to compare feasible and infeasible individuals,
and, in our case, the former is always preferred over the latter, even if it has a worse cost.
Let 27} be a binary variable that takes value 1 if arc (7, j) € A in the operation mode
m € {c,ch,e, b} is selected; and 0, otherwise. Therefore, the objective function can be

expressed as follows:

min Z (cc:vfj + ccha?fjh + cexfj + cbxfj) + wtd + Wt + W, (1)
(3,7)€A
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4w and w® represent the penalties for violating route duration, time windows

where w
and battery level constraints, respectively; and d, tw and v represent excess duration,

time-warp use and negative battery level, respectively.

On the one hand, based on empirical analyses, duration and battery charging do
not seem to be the most challenging constraints. Hence, the values for w,; and for w, were
set to 1. On the other hand, due to the tightness of some time windows, we implemented

a basic preprocessing routine to compute the value of w* for each instance as follows:

W =m" — (m™ — 1) x (avg™ /maz*"),
where avg™ is the average length of the time windows of the instance and, max®" = 480
corresponds to the maximum working hours of the benchmark instances. The parametric
expression is intended to keep the values of w™ within the range of 1 to m™. Such
range was empirically selected after conducting experiments on challenging instances (see
Section 5) with different values for m', namely 1, 10, 50, and 100. While value 1 and
10 yielded many infeasible solutions, 100 led to more feasible solutions, but with inferior
quality than those achieved by m® = 50. We thus chose the latter value as it offered an

interesting compromise between the exploration of feasible an infeasible solutions.

4.2 Initial population

At each iteration, a solution is created by applying the constructive approach of the
metaheuristic greedy randomized adaptive search procedure (GRASP) [Feo and Resende,
1995]. The parameter that controls the greediness/randomness of the construction step is
a. The newly generated individual is then potentially improved by means of local search.
At this stage, the algorithm checks whether there is a solution in the population with
the same cost of such individual, which can be seen as a clone according to Vidal et al.
[2012]. If so, it is discarded and the constructive procedure restarts. Otherwise, the new

individual is placed in the appropriate subpopulation with respect to its feasibility status.

4.3 Evaluation of individuals

The evaluation function of an individual considers both its contribution to the
diversity of the population and its quality. Hence, two indicators are of most importance,
the average distance (ﬁ) of and individual to its pgese closest neighbors and its cost
according to Equation (1), which in turn are combined to form the biased fitness (BF) of
a solution, as in Vidal et al. [2013].

11



4.4 Computation of the average distance

Figure 2 depicts a solution S with 6 customers and the depot. Two types of
information are extracted from this individual for the computation of D, as shown in
Table 2, namely: (i) the arcs chromosome ¢;(.S), which is the sequence of arcs used in
the solution; and (ii) the modes chromosome 7;(S), which corresponds to the selected

operation modes of such arcs.

OnO2 OROnO0n0n000

= =» Combustion

© Depot — Charging
(O Customer —> Electric
-=> Boost

Figura 2: Arcs and operation modes of S.

Tabela 2: Chromosomes extracted from S.

Solution arcs i 0,3) 1 (3,5) | (5,1) | (1,2) | (2,6) | (6,4) | (4,0)
Arcs chromosome 3,(5) | (0,3) | (3.5) | (6.1 | (1.2 | (2.6) | 6.9 | (4,0
Modes chromosome T;(5) r b c c r e ¢

The distance 0(S1,S2) between two individuals S; and S5 is calculated as follows:

1

0(S1,52) = 5~ D (V(6i(S1), 6i(S2)) + V(mi(S1), mi(S2))) (2)

i=1.2,...n

where the binary operator V returns 1 if both arguments are different, and 0 otherwise;

n is the number or arcs in the solution.

Whenever an individual is added to a subpopulation, it is necessary to compute
its own list of closest neighbors (chosen among all individuals from the corresponding
subpopulation), as well as to update such list for the remaining solutions of the subset.
It is also mandatory to update the same lists when removing a solution from a subset.

The average distance of S to its closest neighbors is computed as follows:

DS)=—— 3 68,80, 3)

close ;
M Z:1)27~-7/J/close

4.5 Computation of the biased fitness

Two ranks are created and continuously updated for each subpopulation during
the HGSyugy execution: the cost rank (f,), in which the subpopulation is sorted in non-

decreasing order of cost computed using Equation (1); and the average distance rank

12



(f4), in which the subpopulation is sorted in non-ascending order of average distance. We
used the same sorting scheme as in Mecler et al. [2021]. Moreover, every individual S is

associated with a position in one of such ranks. The BF is then calculated as follows.

Helite
BF(S) = £,(8) + (1= 242 fu(S), (4)
where fieie 1S the number of elite individuals preserved for the next generation.

4.6 Subpopulation management

Each subpopulation has a maximum capacity of u + A\ individuals. When one
tries to insert one more solution in a subpopulation of size p + A, the worst A solutions,
regarding their biased fitness, are discarded. Thus, only the y best individuals survive for
the next generation. Furthermore, the number of solutions in each subpopulation depends

on their feasibility and is not necessarily proportional.

4.7 Parent selection and offspring generation

In the binary tournament, one individual from each subpopulation is randomly
selected and the one with the best BF wins. As there is no guarantee that a subpopulation

is not empty, the two individuals may be chosen from the same subset.

We devised a specific order crossover (OX) [Oliver et al., 1987] with a view of trying
to conserve the beginning and the ending subsequences of one parent chromosome in the
offspring, thus giving preference for changes in the middle subsequence. The rationale
behind this idea is that the combustion and the charging modes are likely to be used in
the beginning of a subsequence, as the charging level is initially set to zero, whereas the
electric and the boost modes are likely to be used in the end of a subsequence, as possibly
enough charging level is available on the battery. The middle of a subsequence, on the
other hand, has more room for changes because the battery level is probably not zero
anymore, thus more combinations can be evaluated. We call such new operator modified
order crossover (MOX). In this case, the operator preserves the modes chromosome of
a random parent in the child. Nevertheless, we also implemented an alternative version
of the operator, here denoted as MOX with mode changes (MOXMC), by selecting each
operation mode of the offspring based on parent and customer, as further explained. This
latter version of the operator yielded better solutions, on average, as shown in Section

5.3, and it was the one adopted in our algorithm.

Figure 3 illustrates the execution of the MOXMC on two individuals P; and Ps.
The execution of the MOX is similar regarding the subsequences, with the difference

relying on the selection of the operation modes, as previously mentioned.
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Figura 3: MOXMC operator.

Two subsequences are copied from parent P; in an intermediate offspring S’: the
first extends from indices 0 to i; and the second goes from index i, to the end of the
route. Next, the remainder of S’ is filled circularly from parent P, finishing the child S
generation. It is important to note that whenever a vertex is copied, so it is the operation
mode of this vertex to the next one. That was the case for vertices 5 of P, and 6, 1 and

2 of P,. The indices i; and i, are randomly selected and 7; < 5.

4.8 Local search

The local search procedure uses multiple neighborhood structures. Most of them
are based on classical TSP neighborhoods, but they had to be adapted to cope with the
characteristics of the HEVTSPTW. More precisely, the neighborhood operators also have
to consider the operation mode of the arcs involved in the move, as further explained in

this section. The neighborhood structures implemented are described as follows.

e Reinsertion — a customer is removed and inserted in another position of the tour.

e Or-opt-k — k consecutive customers are removed and inserted in another position of

the tour.

e 2-opt — two non-adjacent arcs are removed and two others are inserted to form a

new route.
e [rchange — permutation move between two customers.

e Swap-k — k consecutive customers are swapped with another k consecutive custo-

mers.

14



e 3-mode change (3MC) — every subset of three distinct arcs is evaluated. At each
evaluation, we test all 3% = 27 combinations of unused operation modes in the
selected arcs. For example, consider three arcs z, y, z € A, with ¢, ch, and e
operation modes, respectively. In such case, the tests consist in evaluating every
combination of the modes: ch,e, and b for arc x; ¢, e, and b for arc y; and ¢, ch, and

b for arc z.

In contrast to 3MC, the remaining neighborhoods do not consider all possible
combinations of operation modes in our implementation. This search limitation strategy
of restricting the number of possible combinations was based on the characteristics of
hybrid electric vehicles. The challenge of the HEVTSPTW is to properly explore the use
of the electric motor. Therefore, the modes involving the battery, i.e., ch, e, and b, have
to be evaluated often. However, two of them need special attention: the ch mode, as the
charging rate is much slower than the discharging one, and the e mode, as if offers the
largest travel time. We chose to consider only the ch and the e modes in order to improve
the runtime performance of the method. Any drawbacks originated by such approach are
likely to be mitigated by the SMC, as it focuses the search exclusively on the operation

modes.

Figure 4 depicts an example of a reinsertion move in which customer 6 is removed
from index 5 and reinserted in between customers 3 and 5. For such move, Figure 4a
shows the initial solution configuration (before reinsertion) and Figures 4b—4i show the
restricted combinations of operation modes on the newly created arcs. In particular, as
only two operation modes are considered for each arc, 2 = 8 distinct arc combinations
are checked instead of 43 = 64. Table 3 contains the total and restricted number of

combinations verified for a single move of each neighborhood structure, respectively.
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(a) Initial configuration.
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(b) Combination 1. (c) Combination 2. (d) Combination 3.
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(e) Combination 4. (f) Combination 5. (g) Combination 6.

4
4

(h) Combination 7. (i) Combination 8.

Figura 4: Reinsertion of customer 6 with evaluation of the operation modes

of the new arcs.

The pseudocode of the proposed HRVND procedure is presented in Algorithm 2.

The first step consists of applying the 3MC' neighborhood to the individual S, storing the
resulting solution on S’ (line 2). Next, the loop extending from lines 3 to 7 tries to achi-
eve improvements by means of the traditional randomized variable neighborhood descent
(RVND) scheme (line 4), introduced in Subramanian et al. [2010], using the remaining
neighborhoods, which in turn are less computationally costly. When no improvement is

reached (line 5), solution S is returned (line 6), otherwise, the 3MC' neighborhood is ap-
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Tabela 3: Combinations of operation modes evaluated with respect to the
neighborhood structures.

. Arcs involved All Restricted
Neighborhood #in the move #combinations #combinations
Reinsertion 3 43 = 64 23 =8
Or-opt-k 3 43 = 64 23 =8
2-opt 2 42 =16 22 =4
Exchange 4 4* = 256 24 =16
Swap-k 4 4* = 256 24 =16

plied (line 4). The reason for adopting this hierarchical approach is to limit the number
of calls to the 3MC' neighborhood, clearly the most costly one, with a view of reducing
the total CPU time of the method.

Algorithm 2 HRVND
1: procedure HRVND(S)
2 S+ 3MC(S5)

3: while true do

4: S < RVND(Y)

5

6

7

if f(S") = f(S) then
return S

S« 3MC(S)

4.9 Move evaluation

As infeasible solutions are allowed in the HGSygy algorithm, a mechanism is re-
quired to efficiently quantify the route duration, time-warp, and battery violations. All
of them rely on preprocessed data for every consecutive subsequence associated with the
current solution. Regarding the first two types, one could directly apply the procedures
described in Vidal et al. [2013] to evaluate these violations in amortized O(1) time. Con-
cerning the latter type, there are other works that suggested efficient move evaluation
schemes, such as those by Schneider et al. [2014] and Hiermann et al. [2016]. While the
former authors devised their own approach to perform move evaluations in O(1) operati-
ons, the latter somewhat merged the procedures implemented in Schneider et al. [2014],
Vidal et al. [2013]. However, the data structures proposed in those papers were specifically
designed for EVRPs with recharging stations in which a vehicle is completely recharged
at one of such stations. Also, they addressed problems whose vehicles have only one
operation mode that, in turn, always discharges the battery, as opposed to our problem.
Goeke and Schneider [2015] considered a heterogeneous fleet EVRP where the recharging
rate is not a linear function of the distance traveled and it actually depends, among other

things, on the vehicle mass. They have extended the structures by Schneider et al. [2014]
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to cope with such dependency on the cargo load by proposing a so-called surrogate battery
violation to avoid keeping track of the real battery violation, which is computationally
expensive, thus allowing them to perform move evaluations in constant time. Finally,
Hiermann et al. [2019] dealt with a heterogeneous fleet variant considering partial rechar-
ging in which the vehicles are either (i) pure electric, (i) ICE (pure combustion), or (iii)
PHEVs with two engines (electric motor and ICE) that can be switched at any point of
the route. Due to the complexity of the problem, the authors applied move evaluations
on sequences of customer visits combining (i) labeling techniques to compute the cost
of inserting recharging stations, and (ii) greedy policies adapting the ideas presented in
Hiermann et al. [2016] to decide on charging levels of the battery and the selection of
propulsion modes. To avoid systematic calls to computationally expensive procedures,
they make use of lower bounding approaches [Vidal, 2017] computed in O(1) operations
by considering pure electric and PHEVs as ICE vehicles.

In contrast to the aforementioned problems, the HEVTSPTW assumes that the
vehicle has 4 operation modes, with one recharging option and different discharging pos-
sibilities. Also, it does not consider recharging stations nor it imposes the battery to
always be completely recharged. In addition, the operations modes can only be switched
in the vertices. Although it is seemingly possible to adapt the structures proposed in
previous works (e.g., Schneider et al. [2014], Hiermann et al. [2016]) to our specific case,
we decided, for the sake of simplicity, to investigate the possibility of minimally exten-
ding the scheme by Vidal et al. [2013] for the VRPTW to address battery violations in
the HEVTSPTW. Interestingly enough, we found a correspondence between the rationale
used to compute the time-window infeasibilities and the charging violations, in a way that
the same structures can be adapted to evaluate the battery infeasibility, as described in

the following.

Let o = (00, ..., 05/-1) be a subsequence of vertices, and let 0;; = (03, ...,0;) be a
subsequence starting at the i-th position and ending at the j-th position. We compute
and store the following information regarding the battery for every possible subsequence
o of consecutive vertices of a given solution (original sequence): [(¢) minimum battery
level, v(o) minimum battery violation, and minimum s(¢) and maximum g(o) battery

levels allowing a subsequence of vertices with the minimum battery violation.

Such data is straightforward to compute for the trivial case, i.e. a subsequence
containing only a single customer oy, that is, [(cg) = 0, v(0g) = 0, s(00) = —lmaz, 9(00) =
0. If such customer is the starting depot, then s(og) = 0, which is based on the assumption
that the initial battery level is 0, as imposed by the benchmark instances. Equations (5)—
(8) are used to iteratively compute the same data for the remaining subsequences. Let
/ /

g

o = (04,...,05) and o' = (0}, ...,0}) be two subsequences of visits. We use the following
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data to compute the concatenated subsequence o & o'

odo)=1(o)+ 1)+ A+ A,
v(ie®d)=v(o)+ov(d)+ A,

s(oc ®o’) = max{s(c’) — A, s(o)} — A,
6(0 ® o') = min{g(o") — A, g(0)} + A,

where: A} = —t,.075,, A = l(0) —v(o) + Ay, Ac = maz{s(c’) — A — g(0),0}, and
A, = mazx{s(c) + A —g(c’),0}. A more detailed explanation on the computation of the

above data through an example is provided in Subsection 4.10.

The structures above have a direct correspondence with those by Vidal et al.
[2013], meaning that the same proof used to demonstrate the validity of their equations
can also be applied to show that Equations (5)—(8) are valid. In particular, battery
level corresponds to duration, minimum violation to time-warp use, and minimum and
maximum battery levels allowing a sequence of visits with the minimum violation to
earliest and latest visits, respectively. However, we remark that the computation of A,
is rather distinct from the original expression because in this case we are dealing with
variations in battery charging levels (—t,,,/7,;) instead of time (¢,,,/). Moreover, the data
structures can also be used with instances with different characteristics (e.g. a different
initial battery level), as long as the necessary changes to the parameters in the trivial case
are provided. Finally, because of the 2-opt neighborhood structure, we also compute the

aforementioned data for reverse subsequences.

4.10 Concatenation of subsequences

Table 4 contains a reduced version of the 8-customer benchmark instance HEVTSP_
1.08_1_"TWO0, obtained by removing its last two customers. Information regarding distan-
ces, costs, and time windows are not shown since they are irrelevant in this context. The

time, which is given in minutes, is presented according to the selected operation mode.

The individual S of Figure 5 illustrates an example of a possible solution for such

6-customer instance. All subsequences associated with S are then depicted in Figure 6.

/ OJ'

Furthermore, let o = (0y, ..., 05) and 0’ = (0}, ..., 7

) be two subsequences of visits. For the

sake of convenience, we reintroduce the following data used to compute the concatenated

19



Tabela 4: Time and battery specifications of the 6-customer instance.

Initial Charging: 0

Max Charging (in Watt/h): 16800
Charging Rate (in Watt/h): 12000
Discharging Rate (in Watt/h): 48000

Time for combustion mode
(Depot-Depot, Depot-1, Depot-..., Depot-6, 1-Depot, 1-1, ..., 6-6):

0.0 7.21 9.47 9.8 11.92 427 11.96 10.17 14.63
7.21 0.0 717 512 848 423 936 7.85 10.67
947 717 0.0 12.27  6.82 553 254 151 11.77
9.8 5.12 1227 0.0 12.04 8.67 11.88 10.7 12.14
1192 848 6.82 12.04 0.0 10.18  6.42  6.72 5.25
427 423 553 867 10.18 0.0 8.07  6.27 11.41
1196 9.36 254 11.88 6.42  8.07 0.0 2.54 11.67
10.17  7.85 1.51 10.7  6.72  6.27  2.54 0.0 11.79
14.63 10.67 11.77 1214 5.25 11.41 11.67 11.79 0.0

Time for charging mode
(same as time for combustion mode):

0.0 7.87 1033 10.69 133 4.65 13.04 11.09 16.32
7.87 0.0 7.82 558 9.25 461 10.21 8.56 11.64
10.33  7.82 0.0 1338 744  6.03 2.77 1.64 12.83
10.69 5.58 13.38 0.0 13.14 946 13.26 11.94 13.24
133 925 744 1314 0.0 11.11  7.01 7.33 5.73
4.65  4.61 6.03 946 11.11 0.0 8.81 6.84 12.72
13.04 10.21 277 1326 7.01 881 0.0 2.7 12.73
11.09  8.56 1.64 1194 733 6.84 2.7 0.0 12.86
16.32 11.64 12.83 13.24 5.73 12.72 12.73 12.86 0.0

Time for electric mode
(same as time for combustion mode):

0.0 8.66 11.36 11.76 15.03 5.12 1435 12.2 18.45
8.66 0.0 8.6 6.14 10.17 5.07 11.23 9.42 12.81
11.36 8.6 0.0 14.72 818  6.64 3.05 1.81 14.12
11.76 6.14 14.72 0.0 14.45 1041 1498 13.49 14.56
15.03 10.17 8.18 1445 0.0 1222 7.71 8.06 6.3
5.12  5.07 6.64 1041 1222 0.0 9.69  7.53 14.38
14.35 11.23 3.06 1498 7.71  9.69 0.0 2.88 14.0
12.2 9.42 1.81 1349 8.06 7.53  2.88 0.0 14.15
18.45 12.81 14.12 1456 6.3 1438 14.0 14.15 0.0

Time for boost mode
(same as time for combustion mode):

0.0 6.66 874 9.04 10.17 394 11.04 9.39 12.48
6.66 0.0 6.62 4.72  7.82 3.9 8.64  7.24 9.85
8.74  6.62 0.0 1132 6.3 5.1 235 1.39 10.86
9.04 472 1132 00 11.12 &8.01 10.14 9.13 11.2
10.17  7.82 6.3 11.12 0.0 9.4 5.93 6.2 4.85
3.94 3.9 5.1 8.01 9.4 0.0 745  5.79 9.73
11.04 864 235 1014 593 745 0.0 24 10.77
939 724 139 9.13 6.2 5.79 2.4 0.0 10.89
1248 9.85 1086 11.2 485 9.73 10.77 10.89 0.0
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subsequence o & o’

odo)=1(o)+ 1)+ A+ A, (9)
v(e® o) =v(o)+v(d) + A, (10)
s(oc ® o) = max{s(c’) — A, s(0)} — A, (11)
6(0 ® o') = min{g(o") — A, g(0)} + A, (12)

where: A} = —t,.075,, A = l(0) —v(o) + Ay, Ac = maz{s(c’) — A — g(0),0}, and
A, = maz{s(c) + A —g(o’),0}.

OO OR0,000n000

- =» Combustion

© Depot —> Charging
(O Customer —> Electric
-=> Boost

Figura 5: Solution S.

Table 5 shows the results of Equations (9)—(12) for the subsequences of Figure 6,
taking into account the time matrix of Table 4 and its battery information. It is impor-
tant to note that we need to divide the battery charging and discharging rates by 60 in

order to properly multiply them by the time for traversing an arc.

We use a reinsertion move to illustrate the concatenation of subsequences, which
consists in reinserting customer 6 in between customers 3 and 5, as depicted in Figure 7.
For simplicity, the charging operation mode is used on the three newly connected arcs.

The concatenation is performed using the preprocessed data of Table 5.
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Figura 6: All subsequences associated with a 6-customer solution.
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Tabela 5: Values of Equations (9)—(12) for every subsequence of the 6-
customer solution.

ID oy l(oij) v(oi;) s(oi;) g(oi;)

T oo 0.0 (0.0%) 00  (0.0%) 0.0 (0.0%) 0.0 (0.0%)
2 o001 -2138.0 (-12.7%) 00  (0.0%) 0.0 (0.0%) 0.0 (0.0%)
3 ope 42700 (25.4%)  4270.0 (25.4%) 0.0 (0.0%) 0.0 (0.0%)
4 op3 42700 (25.4%)  4270.0 (25.4%) 0.0 (0.0%) 0.0 (0.0%)
5 oos 11150.0 (66.4%) 11150.0 (66.4%) 0.0 (0.0%) 0.0 (0.0%)
6 oos 13590.0 (80.9%)  13590.0 (80.9%) 0.0 (0.0%) 0.0 (0.0%)
7 oos 12188.0 (72.5%)  13590.0 (80.9%) 0.0 (0.0%) 0.0 (0.0%)
8  oor 24212.0 (144.1%) 24212.0 (144.1%) 0.0 (0.0%) 0.0 (0.0%)
9 on 0.0  (0.0%) 0.0 0.0%)  -16800.0 (-100.0%) 0.0 (0.0%)

(
10 o012 6408.0 (38.1%) (0.0%)  -16800.0 (-100.0%) -6408.0 (-38.1%)
11 o013 6408.0 (38.1%) 0.0  (0.0%)  -16800.0 (-100.0%) -6408.0 (-38.1%)
12 o4 132880 (79.1%) 00 ¢

) (

0.0%)  -16800.0 (-100.0%) -13288.0 (-79.1%)
13 o015 15728.0 (93.6% 0.0 0.0%)  -16800.0 (-100.0%) -15728.0 (-93.6%)
14 o016  14326.0 (85.3%) 0.0  (0.0%)  -16800.0 (-100.0%) -15728.0 (-93.6%)
15 o017 26350.0 (156.8%) 9550.0 (56.8%)  -16800.0 (-100.0%) -16800.0 (-100.0%)
16 o092 0.0  (0.0%) 0.0  (0.0%)  -16800.0 (-100.0%) 0.0 (0.0%)
17 o3 0.0  (0.0%) 0.0  (0.0%)  -16800.0 (-100.0%) 0.0 (0.0%)
18 o024  6880.0 (41.0%) 0.0  (0.0%) -16800.0 (-100.0%) -6880.0 (-41.0%)
19 o095 93200 (55.5%) 0.0  (0.0%)  -16800.0 (-100.0%) -9320.0 (-55.5%)
20 o6  7918.0 (47.1%) 0.0  (0.0%)  -16800.0 (-100.0%) -9320.0 (-55.5%)
21 o7 199420 (118.7%) 3142.0 (18.7%) -16800.0 (-100.0%) -16800.0 (-100.0%)
22 o33 0.0  (0.0%) 0.0  (0.0%)  -16800.0 (-100.0%) 0.0 (0.0%)
23 o34 6880.0 (41.0%) 0.0  (0.0%) -16800.0 (-100.0%) -6880.0 (-41.0%)
24 o35 93200 (55.5%) 0.0  (0.0%)  -16800.0 (-100.0%) -9320.0 (-55.5%)
25 o3 T918.0 (47.1%) 0.0  (0.0%) -16800.0 (-100.0%) -9320.0 (-55.5%)
26 o037 199420 (118.7%) 3142.0 (18.7%) -16800.0 (-100.0%) -16800.0 (-100.0%)
27 oua 0.0  (0.0%) 0.0  (0.0%)  -16800.0 (-100.0%) 0.0 (0.0%)
28 o45 24400 (14.5%) 0.0  (0.0%)  -16800.0 (-100.0%) -2440.0 (-14.5%)
29 o046 1038.0  (6.2%) 0.0  (0.0%)  -16800.0 (-100.0%) -2440.0 (-14.5%)
30  our  13062.0 (77.8%) 0.0  (0.0%)  -16800.0 (-100.0%) -13062.0 (-77.8%)
31 oss 0.0  (0.0%) 0.0  (0.0%)  -16800.0 (-100.0%) 0.0 (0.0%)
32 o5 -1402.0 (-8.3%) 0.0  (0.0%) -15398.0 (-91.7%) 0.0 (0.0%)
33 o057 10622.0 (63.2%) 0.0  (0.0%) -15398.0 (-91.7%) -10622.0 (-63.2%)
34 o6 0.0  (0.0%) 0.0  (0.0%)  -16800.0 (-100.0%) 0.0 (0.0%)
35  oer 12024.0 (71.6%) 0.0  (0.0%) -16800.0 (-100.0%) -12024.0 (-71.6%)
36 o7 0.0  (0.0%) 0.0  (0.0%) -16800.0 (-100.0%) 0.0 (0.0%)
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Figura 7: Illustration of a reinsertion move regarding subsequences.
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Tabela 6: Computation of Equations (9)—(12) for concatenations of subse-
quences associated with a reinsertion move.

Concatenated .
subsequences® Parameter Expression Result
Ay —0010570y —200.0 x 13.26 = —2652.0
A 1(001) — v(o01) + A —2138.0 — 0.0 + (—2652.0) = —4790.0
Ac maz{s(os5) — A — g(oo01),0} maxz{—16800.0 — (—4790.0) — 0.0,0} = 0.0
oot @ 055 Ay maz{s(oo1) + A — g(os5),0} maxz{0.0 + (—4790.0) — 0.0,0} = 0.0
loo1 ®oss)  U(oo1) + U(oss) + Ay + Ae ~2138.0 + 0.0 + (—2652.0) + 0.0 = —4790.0
v(o01 ® o55) v(o01) +v(os5) + Ay 0.0+ 0.0+ 0.0 =0.0
s(oo1 @ o55) maz{s(os5) — A, s(oo1)} max{—16800.0 — (—4790.0),0.0} — 0.0 = 0.0
g(c01 ® 055) min{g(oss) — A, g(oo1)} + Ay min{0.0 — (—4790.0),0.0} + 0.0 = 0.0
A OosoaTas 7200.0 x 8.81 = —1762.0
A 1(0') — v(o!) + A —4790.0 — 0.0 + (—1762.0) = —6552.0
Ae maz{s(o24) — A —g(c’),0} maxz{—16800.0 — (—6552.0) — 0.0,0} = 0.0
o' & oo Ay maz{s(c’) + A — g(o24),0} maz{0.0 + (—6552.0) — (—6880.0),0} = 328.0
o' ®o21) (o) + U(o24) + Ay + Ac —4790.0 + 6880.0 + (—1762.0) + 0.0 = 328.0
v(o! ® o24) v(o’) +v(o24) + Ay 0.0 + 0.0 + 328.0 = 328.0
s(o’ @ o24) max{s(o24) — A, s(c’)} maz{—16800.0 — (—6552.0),0.0} — 0.0 = 0.0
9(0’ ® 021)  min{g(oaa) — A, g(c")} + Ay min{—6880.0 — (—6552.0),0.0} + 328.0 = 0.0
A 000570 —200.0 x 7.44 = —1488.0
A 1(0") — v(o") + A 328.0 — 328.0 + (—1488.0) = —1488.0
Ae maz{s(oe7) — A — g(c’),0} maz{—16800.0 — (—1488.0) — 0.0,0} = 0.0
o @ oar Ay maz{s(c”) + A — g(o67),0} max{0.0 + (—1488.0) — (—12024.0),0} = 10536.0
Wo" ®oer)  U(o”) +U(oer) + Ay + Ae 328.0 + 12024.0 + (—1488.0) + 0.0 = 10864.0
v(o” @ og7) v(0”) + v(o6r) + Ay 328.0 + 0.0 + 10536.0 = 10864.0
s(a” @ oer) maz{s(oe7) — A, s(c”)} maz{—16800.0 — (—1488.0),0.0} — 0.0 = 0.0
g(c” ® oe7) min{g(oer) — A, g(c”)} + Ay min{—12024.0 — (—1488.0),0.0} 4+ 10536.0 = 0.0

1" :UI®0'24

*o! = 001 ® o355, O

Table 6 contains the computation performed in the reinsertion. Firstly, subsequen-

ces 0g1 and o055 are concatenated. Secondly, the resulting data is used to concatenate the

newly created subsequence with g94. Finally, the remaining of the individual is concate-

nated, concluding the reinsertion procedure. By performing such move, the violation is
reduced from 24212.0 to 10864.0 (see og; in Table 5).
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5 Computational experiments

The proposed algorithm was coded in C++4, and all experiments were executed
on a single thread of an Intel(R) Core(TM) i7-3770 CPU 3.40 GHz, with 8 GB of RAM
running Linux Ubuntu 16.04. We decided to run HGS 10 times for each instance following
a common practice adopted by many renowned authors (see, e.g., Cordeau and Maisch-
berger [2012], Vidal et al. [2014], Erdogan [2017], Hellsten et al. [2020], and Keskin et al.
2021].

A set of benchmark instances was proposed in Doppstadt et al. [2020] and solved
by means of a so-called PVNS algorithm considering two versions, runtime optimized
(RO) and quality optimized (QO), with a focus on the runtime and quality performances,
respectively. The benchmark dataset is publicly available at https://data.mendeley.
com/datasets/9j3tt84hyx/1. The instances are divided into 4 groups according to the

number of customers, namely 8, 10, 20 and 50. Each group contains 54 instances.

On the other hand, the PVNS approach was executed only 5 times for each instance
(possibly because of the large computational times reported for each run) on multiple
threads (4 threads for the set RO and 8 threads for the set QO) of an Intel(R) Core(TM)
i7-4790 CPU 3.6 GHz, with 24 GB of RAM, running Windows 10. Moreover, according
to the site https://www.cpubenchmark.net/compare/Intel-i7-3770-vs-Intel-i7-4
790/896vs2226, the CPU used to run the PVNS is approximately 1.07 times faster than
the one used to execute the HGS algorithm.

Finally, in order to check whether there are significant statistical differences between
the average gaps found during parameter tuning and also when comparing HGS with RO,
and HGS with QO, we have conducted a non-parametric significance test, more speci-
fically, the Wilcoxon signed-rank test, after statistically confirming that the differences
between the average gap values do not seem to be normally distributed. The tests were

always conducted separately for each different group of instances.

5.1 Determining the parameter values, neighborhood structures and search

strategy

We selected the 108 most challenging instances, among the 216 of the current
benchmark, to perform the parameter tuning. The selected instances appear to be more

difficult due to the density of their time windows.

The routine for building the initial population is executed # = 4y times (the
same value adopted in Vidal et al. [2012]). Regarding parameter «, at first, we tried to
randomly select it from the set {0.1,0.2,0.3,0.4,0.5}, as in Bulhoes et al. [2018]. However,

the results obtained were sometimes not favorable, especially when using 0.1 and 0.2 on
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smaller instances, because the method tends to become completely greedy in practice.
Therefore, we chose to adopt the set {0.3,0.4,0.5}.

With respect to the parameters used in the subpopulations management, we adop-
ted in all experiments the same values as Mecler et al. [2021]: pu = 20, A\ = 40, periee = 10,

and fie0se = 3. The remaining parameters were calibrated as discussed in the following.

With the purpose of tuning the remaining parameters of the HGSygy algorithm,
we started with a baseline configuration and incrementally adjusted each parameter, as
can be observed in the next subsections. For this configuration, N; = n, the violation
coefficients w?, W', and w® were set to 100, and the search strategy was best improvement.
The values of the violation coefficients focus the search on the space of feasible solutions.

This is in principle a desired behavior as only a few iterations are performed.

With respect to the impact of the neighborhoods, we conducted experiments with

block-based settings, and with the 2-opt structure. Such settings are specified as follows.

o IIM — reinsertion and exchange neighborhoods.

o 1™ — or-opt-k and swap-k, k = {2,3,4,5}, with each k associated with a neigh-
borhood.

o Ily ,,x — 2-opt neighborhood.

Table 7 reports the average gap and CPU time for five combinations of settings. The gaps
(%) are computed as follows: gap = 100 X {[avg(HGSugy) — best(PVNS)]/best(PVNS)}.
It is important to note that for small instances, e.g. the ones with 8 and 10 customers, the
larger the value of k, the larger the number of infeasible solutions, considering only the
employment of individual settings instead of combinations of them. Moreover, we decided
not to report the results of applying individual settings due to the number of infeasible

solutions found.

Tabela 7: Results obtained for five different settings of neighborhood struc-
tures.

Setting Combination Avg. Gap (%) Avg. CPU (s)
1 W + Ty 0.224 0.92
2 ITW 4 113 + Ty 0.135 0.86
3 IO + T + 116G + Ty 0.134 0.81
4 MW 4+ 1@ + TG + T® + Iy, 0.118 0.77
5 MW+ 10 4+ TG + TIW 4+ TG 411, ,,, 0.125 0.76

We chose the fourth setting of Table 7 (a combination of settings IV, T1() 11

™, and Iy opt), which yielded a good compromise between average gap and CPU time.
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In fact, the Wilcoxon signed-rank test pointed out a statistical difference between the
average gaps of settings 3 and 4 for the 10- and the 50- customer instances (p-values of
0.0463 and 0.0436, respectively), but no statistical differences between settings 4 and 5
(p-value > 0.2 for all 4 groups of instances).

Furthermore, we verified the impact of different number of iterations of the main
loop of the algorithm, together with two different search strategies: (i) best improvement,
which consists of evaluating all possible moves of a neighborhood in search for the best one;
and (ii) first improvement, which aims at searching for the first improving move. Hereafter,
the parameters discussed in Subsection 4.1 are applied for the violation coefficients as
enough iterations are performed to also allow for better exploration of infeasible solutions.
Three distinct values were then tested for N;;, namely: max(12n,600), max(20n,600), and
max(30n,600). For each of those values, four different settings were employed regarding
the search strategy. Furthermore, the reason for the increase in the number of iterations is
due to the use of the first improvement strategy on some settings, requiring more iterations
to converge. Figure 8 depicts the results found using the different settings described in
Table 8. Note that the reason for testing a different search strategy on the 3MC' was due

to the fact that this neighborhood structure deals exclusively with the operation modes

of the arcs.
Tabela 8: Search strategy settings.
Search strategy
Setting 3-mc remaining moves
first impr. best impr. first impr. best impr.
A v v
B v v
C v v
D v v

As Figure 8 suggests, settings A and B converge faster, even though the gaps are
worse in comparison to those of settings C and D. Such fact can be explained by the
employment of the best improvement strategy on the 3MC neighborhood. Moreover,
setting C is the only which was dominated in all situations, regardless of the values of
Nj;. Setting D, with N;; = Ni(tl) = max(12n,600), was selected as it offers an interesting
compromise between solution quality and CPU time. To ratify our choice, we performed
a statistical analysis on the differences between the average gaps of the non-dominated
settings of Figure 8, namely settings D and B (Ni(tl), for both), and settings D (Nl-(tl))
and B (Ni(f)). The Wilcoxon signed-rank test indicated a difference on the average gaps,
more specifically, for the 20- and the 50-customer instances (p-values < 0.001), in both

comparisons.
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Figura 8: Impacts of the number of iterations and the search strategy.

5.2 Comparison with the literature

Tables 9, 10, 11, and 12 present the results obtained by the HGSggy on the
HEVTSPTW benchmark instances, which are compared with those found by two ver-
sions of PVNS: RO and QO. Hereafter, all experiments were conducted considering all
instances of the current benchmark. For each instance and method, we report the cost
of the best solution, the average cost and the average CPU time. We also present the
gap between the average solution and the best known solution (BKS). Gaps of improved

solutions are highlighted in bold.

Each instance is composed of four attributes: a distance, in kilometers, from the
depot to the delivery area (D); the number of customers (C); a number of time windows
(TWs); and for a combination of D, C, and TWs, variations in service times and cus-
tomer locations (V). Some T'Ws have a “4+” symbol to indicate a pair of customers with

very late time windows. In addition, the delivery area covers approximately 25 km?.

Tables 9 and 10 show the results achieved on the instances containing 8 and 10
customers, respectively. All algorithms managed to find the optimal solutions, according
to the values found by CPLEX and reported in Doppstadt et al. [2020]. However, HGSygy
attained better CPU times especially in comparison with the QO version of PVNS.

The results obtained on the 20-customer instances are presented in Table 11. It
can be observed that the HGSygy was capable of finding highly competitive results in
terms of solution cost and with an average runtime 4.69 and 144.79 times faster than
those of versions RO and QO of PVNS, respectively. Furthermore, two new improved

solutions were found.

Table 12 illustrates the results found on the 50-customer instances. Overall,
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Tabela 9: Results obtained on the 8-customer instances.

Instance P-VNSRro P-VNSqo HGSuev

Best Avg. Gap CPU Best Avg. Gap CPU Best Avg. Gap CPU

D C TWs V (%) (s) (%) (s) (%) (s)
0 8 0 0 1830.69 1830.69 0.00 0.10 1830.69 1830.69 0.00 1.80 1830.69 1830.69 0.00 0.08
0 8 2 0 1849.37 1849.37 0.00 0.10 1849.37 1849.37 0.00 1.80 1849.37 1849.37 0.00 0.07
0 8 6 0 1849.37 1849.37 0.00 0.10 1849.37 1849.37 0.00 2.00 1849.37 1849.37 0.00 0.06
0 8 24+ 0 1849.37 1849.37 0.00 0.10 1849.37 1849.37 0.00 2.10 1849.37 1849.37 0.00 0.07
0 8 44+ 0 1849.37 1849.37 0.00 0.10 1849.37 1849.37 0.00 2.10 1849.37 1849.37 0.00 0.07
0 8 8+ 0 1849.37 1849.37 0.00 0.10 1849.37 1849.37 0.00 2.10 1849.37 1849.37 0.00 0.07
0 8 0 1 1553.15 1553.15 0.00 0.10 1553.15 1553.15 0.00 1.70 1553.15 1553.15 0.00 0.07
0 8 2 1 1553.15 1553.15 0.00 0.10 1553.15 1553.15 0.00 1.80 1553.15 1553.15 0.00 0.08
0 8 6 1 1553.15 1553.15 0.00 0.10 1553.15 1553.15 0.00 2.00 1553.15 1553.15 0.00 0.07
0 8 24+ 1 1553.15 1553.15 0.00 0.10 1553.15 1553.15 0.00 1.90 1553.15 1553.15 0.00 0.07
0 8 44 1 1553.15 1553.15 0.00 0.10 1553.15 1553.15 0.00 2.00 1553.15 1553.15 0.00 0.09
0 8 84 1 1553.15 1553.15 0.00 0.10 1553.15 1553.15 0.00 1.70 1553.15 1553.15 0.00 0.07
0 8 0 2 1435.74 1435.74 0.00 0.10 1435.74 1435.74 0.00 1.80 1435.74 1435.74 0.00 0.06
0 8 2 2 1445.89 1445.89 0.00 0.10 1436.09 1438.05 0.14 1.80 1436.09 1436.09 0.00 0.08
0 8 6 2 1460.31 1460.31 0.00 0.10 1460.31 1460.31 0.00 1.80 1460.31 1460.31 0.00 0.09
0 8 24 2 1436.09 1445.78 0.67 0.10 1436.09 1436.09 0.00 2.10 1436.09 1436.09 0.00 0.07
0 8 4+ 2 1436.09 1440.93 0.34 0.10 1436.09 1436.09 0.00 2.10 1436.09 1436.09 0.00 0.07
0 8 8+ 2 1460.31 1460.31 0.00 0.10 1460.31 1460.31 0.00 1.70 1460.31 1460.31 0.00 0.08
28 8 0 0 7189.85 7189.85 0.00 0.10 7189.85 7189.85 0.00 1.70 7189.85 7189.85 0.00 0.09
28 8 2 0 7189.85 7189.85 0.00 0.10 7189.85 7189.85 0.00 1.70 7189.85 7189.85 0.00 0.09
28 8 6 0 7189.85 7189.85 0.00 0.10 7189.85 7189.85 0.00 2.00 7189.85 7189.85 0.00 0.08
28 8 24+ 0 7202.07 7202.07 0.00 0.10 7202.07 7202.07 0.00 2.00 7202.07 7202.07 0.00 0.07
28 8 44+ 0 7202.07 7202.07 0.00 0.10 7202.07 7202.07 0.00 2.00 7202.07 7202.07 0.00 0.05
28 8 8+ 0 7202.07 7202.07 0.00 0.10 7202.07 7202.07 0.00 2.10 7202.07 7202.07 0.00 0.07
28 8 0 1 7140.95 7140.95 0.00 0.10 7140.95 7140.95 0.00 1.80 7140.95 7140.95 0.00 0.09
28 8 2 1 7174.85 7174.85 0.00 0.10 7174.85 7174.85 0.00 1.80 7174.85 7174.85 0.00 0.10
28 8 6 1 7174.85 7174.85 0.00 0.10 7174.85 7174.85 0.00 2.10 7174.85 7174.85 0.00 0.07
28 8 2+ 1 7174.85 7174.85 0.00 0.10 7174.85 7174.85 0.00 1.80 7174.85 7174.85 0.00 0.07
28 8 44+ 1 717485 7174.85 0.00 0.10 7174.85 7174.85 0.00 1.90 7174.85 7174.85 0.00 0.07
28 8 8+ 1 7174.85 7174.85 0.00 0.10 7174.85 7174.85 0.00 2.10 7174.85 7174.85 0.00 0.06
28 8 0 2 7292.25 7292.25 0.00 0.10 7292.25 7292.25 0.00 1.60 7292.25 7292.25 0.00 0.09
28 8 2 2 7292.25 7292.25 0.00 0.10 7292.25 7292.25 0.00 1.80 7292.25 7292.25 0.00 0.07
28 8 6 2 7292.25 7292.25 0.00 0.10 7292.25 7292.25 0.00 1.80 7292.25 7292.25 0.00 0.08
28 8 2+ 2 729225 729225 0.00 0.10 7292.25 7292.25 0.00 1.90 7292.25 7292.25 0.00 0.07
28 8 44+ 2 7292.25 7292.25 0.00 0.10 7292.25 7292.25 0.00 1.90 7292.25 7292.25 0.00 0.08
28 8 8+ 2 729225 729225 0.00 0.10 7292.25 7292.25 0.00 1.90 7292.25 7292.25 0.00 0.07
57 8 0 0 12706.60 12708.00 0.01 0.10 12706.60 12706.60 0.00 2.20 12706.60 12706.60 0.00 0.10
57 8 2 0 12706.60 12706.60 0.00 0.10 12706.60 12706.60 0.00 2.30 12706.60 12706.60 0.00 0.10
57 8 6 0 12724.75 12724.75 0.00 0.10 12724.75 12724.75 0.00 2.30 12724.75 12724.75 0.00 0.07
57 8 2+ 0 12706.60 12706.60 0.00 0.10 12706.60 12706.60 0.00 2.50 12706.60 12706.60 0.00 0.10
57 8 44 0 12706.60 12706.60 0.00 0.10 12706.60 12706.60 0.00 2.60 12706.60 12706.60 0.00 0.08
57 8 8+ 0 12724.75 12724.75 0.00 0.10 12724.75 12724.75 0.00 2.40 12724.75 12724.75 0.00 0.07
57 8 0 1 12687.90 12687.90 0.00 0.10 12687.90 12687.90 0.00 2.10 12687.90 12687.90 0.00 0.08
57 8 2 1 12712.96 12712.96 0.00 0.10 12712.96 12712.96 0.00 2.10 12712.96 12712.96 0.00 0.07
57 8 6 1 1271296 12712.96 0.00 0.10 12712.96 12712.96 0.00 2.30 1271296 12712.96 0.00 0.07
57 8 24+ 1 1271296 12712.96 0.00 0.10 12712.96 12712.96 0.00 2.30 12712.96 12712.96 0.00 0.09
57 8 4+ 1 1271296 12712.96 0.00 0.10 12712.96 12712.96 0.00 2.30 12712.96 12712.96 0.00 0.09
57 8 8+ 1 12712.96 12712.96 0.00 0.10 12712.96 12712.96 0.00 2.50 12712.96 12712.96 0.00 0.07
57 8 0 2 12708.57 12708.57 0.00 0.10 12708.57 12708.57 0.00 1.90 12708.57 12708.57 0.00 0.08
57 8 2 2 12708.57 12708.57 0.00 0.10 12708.57 12708.57 0.00 2.00 12708.57 12708.57 0.00 0.07
57 8 6 2 12738.05 12747.31 0.07 0.10 12738.05 12738.05 0.00 2.20 12738.05 12738.05 0.00 0.07
57 8 2+ 2 12761.21 12761.21 0.00 0.10 12738.05 12738.05 0.00 2.20 12738.05 12738.05 0.00 0.09
57 8 44 2 12761.21 12761.21 0.00 0.10 12738.05 12738.05 0.00 2.30 12738.05 12738.05 0.00 0.08
57 8 8+ 2 12738.05 12746.12 0.06 0.10 12738.05 12738.05 0.00 2.50 12738.05 12738.05 0.00 0.09
Avg. 0.02 0.10 < 0.01 2.02 0.00 0.08
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Tabela 10: Results obtained on the 10-customer instances.

Instance P-VNSgro P-VNSqo HGSugv

Best Avg. Gap CPU Best Avg. Gap CPU Best Avg. Gap CPU

D C TWs V (%) (s) (%) (s) (%) (s)
0 10 O 0 1798.94 1799.44 0.03 0.20 1798.94 1799.44 0.03 4.50 1798.94 1798.94 0.00 0.11
0 10 3 0 1798.94 1798.94 0.00 0.30 1798.94 1799.95 0.06 4.80 1798.94 1798.94 0.00 0.12
0 10 8 0 1801.46 1801.46 0.00 0.20 1801.46 1801.46 0.00 5.10 1801.46 1801.46 0.00 0.09
0 10 2+ 0 1798.94 179894 0.00 0.20 1801.46 1801.46 0.00 4.80 1798.94 1798.94 0.00 0.12
0 10 5+ 0 1798.94 179894 0.00 0.20 1801.46 1801.46 0.00 5.00 1798.94 1798.94 0.00 0.12
0 10 10+ O 1801.46 1801.46 0.00 0.20 1801.46 1801.46 0.00 4.60 1801.46 1801.46 0.00 0.11
0 10 O 1 1598.18 1598.18 0.00 0.30 1598.18 1598.18 0.00 4.60 1598.18 1598.18 0.00 0.13
0 10 3 1 1601.73 1601.73 0.00 0.30 1602.08 1602.08 0.00 4.70 1601.73 1601.73 0.00 0.17
0 10 8 1 1601.73 1601.73 0.00 0.20 1601.73 1601.73 0.00 5.90 1601.73 1601.73 0.00 0.10
0 10 2+ 1 1601.73 1601.73 0.00 0.20 1602.08 1602.08 0.00 4.90 1601.73 1601.73 0.00 0.13
0 10 5+ 1 1601.73 1601.73 0.00 0.20 1602.08 1602.08 0.00 4.70 1601.73 1601.73 0.00 0.13
0 10 10+ 1 1601.73 1601.73 0.00 0.20 1601.73 1601.73 0.00 5.40 1601.73 1601.73 0.00 0.12
0 10 O 2 1478.90 1478.90 0.00 0.20 1478.90 1478.90 0.00 4.30 147890 1478.90 0.00 0.10
0 10 3 2 1531.45 1533.67 0.14 0.20 1531.45 1531.45 0.00 4.30 1531.45 1531.45 0.00 0.14
0 10 8 2 1531.45 1534.89 0.22 0.20 1531.45 1531.45 0.00 4.40 1531.45 1531.45 0.00 0.11
0 10 24+ 2 1531.45 1531.45 0.00 0.20 1531.45 1531.45 0.00 4.70 1531.45 1531.45 0.00 0.13
0 10 5+ 2 1531.45 1533.17 0.11 0.20 1531.45 1531.45 0.00 4.50 1531.45 1531.45 0.00 0.11
0 10 104+ 2 1531.45 1532.03 0.04 0.20 1531.45 1531.45 0.00 4.40 1531.45 1531.45 0.00 0.12
28 10 0 0 7308.15 7308.15 0.00 0.20 7308.15 7308.15 0.00 4.10 7308.15 7310.25 0.03 0.12
28 10 3 0 7314.32 7314.32 0.00 0.20 7314.32 7314.32 0.00 4.40 7314.32 7314.32 0.00 0.12
28 10 8 0 7329.18 7329.18 0.00 0.20 7329.18 7329.18 0.00 4.70 7329.18 7329.18 0.00 0.11
28 10 24+ 0 7314.32 7314.32 0.00 0.20 7314.32 7314.32 0.00 4.80 7314.32 7314.32 0.00 0.10
28 10 5+ 0 7314.32 7314.32 0.00 0.20 7314.32 7314.32 0.00 5.10 7314.32 7314.32 0.00 0.09
28 10 10+ 0O 7329.18 17329.18 0.00 0.20 7329.18 7329.18 0.00 5.20 7329.18 7329.18 0.00 0.10
28 10 O 1 7362.93 7362.93 0.00 0.20 7362.93 7362.93 0.00 4.10 7362.93 7362.93 0.00 0.14
28 10 3 1 7362.93 736293 0.00 0.20 7362.93 7362.93 0.00 4.40 7362.93 7362.93 0.00 0.12
28 10 8 1 7362.93 7362.93 0.00 0.20 7362.93 7362.93 0.00 4.90 7362.93 7362.93 0.00 0.11
28 10 2+ 1 7362.93 7362.93 0.00 0.20 7362.93 7362.93 0.00 4.80 7362.93 7362.93 0.00 0.10
28 10 5+ 1 7362.93 7362.93 0.00 0.20 7362.93 7362.93 0.00 4.80 7362.93 7362.93 0.00 0.10
28 10 104+ 1 7362.93 7362.93 0.00 0.20 7362.93 7362.93 0.00 5.00 7362.93 7362.93 0.00 0.11
28 10 0 2 7290.82 7290.82 0.00 0.20 7290.82 7290.82 0.00 4.10 7290.82 7290.82 0.00 0.16
28 10 3 2 7290.82 7290.82 0.00 0.20 7290.82 7290.82 0.00 4.10 7290.82 7290.82 0.00 0.16
28 10 8 2 7290.82 7290.82 0.00 0.20 7290.82 7290.82 0.00 4.50 7290.82 7290.82 0.00 0.12
28 10 2+ 2 7290.82 7290.82 0.00 0.20 7290.82 7290.82 0.00 4.60 7290.82 7290.82 0.00 0.12
28 10 5+ 2 7290.82 7290.82 0.00 0.20 7290.82 7290.82 0.00 4.60 7290.82 7290.82 0.00 0.12
28 10 104+ 2 7290.82 7290.82 0.00 0.20 7290.82 7290.82 0.00 4.40 7290.82 7290.82 0.00 0.10
57 10 0 0 12747.22 12747.22 0.00 0.20 12747.22 12747.22 0.00 5.20 12747.22 12747.22 0.00 0.14
57 10 3 0 12759.24 12760.75 0.01 0.20 12759.24 12759.24 0.00 5.70 12759.24 12759.24 0.00 0.16
57 10 8 0 12759.24 12759.24 0.00 0.20 12759.24 12759.24 0.00 6.20 12759.24 12759.24 0.00 0.13
57 10 2+ 0 12759.24 12759.24 0.00 0.20 12759.24 12759.24 0.00 5.70 12759.24 12759.24 0.00 0.13
57 10 5+ 0 12759.24 12759.24 0.00 0.20 12759.24 12759.24 0.00 6.00 12759.24 12759.24 0.00 0.12
57 10 104+ 0 12759.24 12759.24 0.00 0.20 12759.24 12759.24 0.00 5.80 12759.24 12759.24 0.00 0.14
57 10 O 1 12725.88 12725.88 0.00 0.20 12725.88 12725.88 0.00 5.10 12725.88 12725.88 0.00 0.13
57 10 3 1 12738.38 12738.38 0.00 0.20 12738.38 12738.38 0.00 5.50 12738.38 12738.38 0.00 0.15
57 10 8 1 12738.38 12738.38 0.00 0.20 12738.38 12738.38 0.00 6.30 12738.38 12738.38 0.00 0.14
57 10 2+ 1 12738.38 12738.38 0.00 0.20 12738.38 12738.38 0.00 5.90 12738.38 12738.38 0.00 0.12
57 10 5+ 1 12738.38 12738.38 0.00 0.20 12738.38 12738.38 0.00 6.10 12738.38 12738.38 0.00 0.14
57 10 104+ 1 12738.38 12738.38 0.00 0.20 12738.38 12738.38 0.00 6.90 12738.38 12738.38 0.00 0.13
57 10 0 2 12935.48 12935.58 0.00 0.20 12935.48 12935.48 0.00 4.90 12935.48 12935.48 0.00 0.15
57 10 3 2 12935.48 12935.48 0.00 0.20 12935.48 12935.48 0.00 5.40 12935.48 12935.55 0.00 0.16
57 10 8 2 1293548 12935.48 0.00 0.20 12935.48 12935.48 0.00 6.10 12935.48 12935.48 0.00 0.11
57 10 24+ 2 12935.48 12935.48 0.00 0.20 12935.48 12935.48 0.00 5.50 12935.48 12935.48 0.00 0.12
57 10 54+ 2 12935.48 12935.48 0.00 0.20 12935.48 12935.48 0.00 5.70 12935.48 12935.48 0.00 0.13
57 10 104+ 2 12935.48 12935.48 0.00 0.20 12935.48 12935.48 0.00 6.50 12935.48 12935.48 0.00 0.10
Avg. 0.01 0.21 < 0.01 5.05 < 0.01 0.12
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Tabela 11: Results obtained on the 20-customer instances.

Instance P-VNSgro P-VNSqo HGSugv

Best Avg. Gap CPU Best Avg. Gap CPU Best Avg. Gap CPU

D C TWs V (%) (s) (%) (s) (%) (s)
0 20 O 0 2005.89 2009.63 0.19 4.10 2005.89 2005.89 0.00 96.10 2005.89 2005.89 0.00 0.70
0 20 8 0 2005.89 2005.89 0.00 4.10 2005.89 2005.89 0.00 108.40 2005.89 2005.89 0.00 0.67
0 20 18 0 2005.89 2005.89 0.00 3.80 2005.89 2005.89 0.00 91.00 2005.89 2005.89 0.00 0.58
0 20 2+ 0 2005.89 2005.89 0.00 4.10 2005.89 2005.89 0.00 103.30 2005.89 2005.89 0.00 0.71
0 20 104+ O 2005.89 2005.89 0.00 4.00 2005.89 2005.89 0.00 116.90 2005.89 2005.89 0.00 0.64
0 20 20+ O 2005.89 2005.89 0.00 3.70 2005.89 2005.89 0.00 99.50 2005.89 2005.89 0.00 0.62
0 20 O 1 1969.78 1970.77 0.05 4.10 1969.78 1969.80 0.00 100.10 1969.78 1969.78 0.00  0.87
0 20 8 1 1969.78 1969.78 0.00 4.30 1969.78 1969.78 0.00 116.30 1969.78 1969.78 0.00 0.67
0 20 18 1 1969.78 1969.80 0.00 4.20 1969.78 1969.78 0.00 133.10 1969.78 1969.78 0.00 0.81
0 20 24 1 1969.78 1969.80 0.00 4.10 1969.78 1969.78 0.00 110.00 1969.78 1969.78 0.00 0.67
0 20 104+ 1 1969.78 1969.78 0.00 4.10 1969.78 1969.78 0.00 143.70 1969.78 1969.78 0.00 0.63
0 20 20+ 1 1969.78 1969.78 0.00 3.00 1969.78 1969.78 0.00 111.80 1969.78 1969.78 0.00  0.65
0 20 O 2 1606.42 1606.42 0.00 4.60 1606.57 1606.57 0.00 93.00 1606.42 1606.42 0.00 0.73
0 20 8 2 1606.42 1606.42 0.00 4.40 1606.42 1606.51 0.01 104.70 1606.42 1606.42 0.00 0.66
0 20 18 2 1608.37 1608.37 0.00 3.80 1608.37 1608.37 0.00 103.30 1608.37 1608.37 0.00 0.61
0 20 24+ 2 1606.42 1606.81 0.02 4.20 1606.42 1606.51 0.01 111.70 1606.42 1606.42 0.00 0.59
0 20 10+ 2 1606.42 1606.42 0.00 4.30 1606.42 1606.51 0.01 123.00 1606.42 1606.42 0.00 0.78
0 20 20+ 2 1608.37 1608.37 0.00 3.50 1608.37 1608.37 0.00 99.00 1608.37 1608.37 0.00 0.54
28 20 0 0 7807.05 7813.40 0.08 3.50 7807.05 7807.25 0.00 75.90 7807.05 7807.05 0.00 0.87
28 20 8 0 7807.05 7807.05 0.00 3.60 7807.05 7807.05 0.00 94.80 7807.05 7807.05 0.00 0.72
28 20 18 0 7807.05 7807.05 0.00 3.10 7807.05 7807.05 0.00 92.50 7807.05 7807.05 0.00 0.71
28 20 24+ 0 7807.05 7807.05 0.00 3.60 7807.56 7807.56 0.00 90.60 7807.05 7807.05 0.00 0.81
28 20 104+ O 7807.95 7874.43 0.85 3.70 7807.56 7807.56 0.00 135.10 7807.05 7807.05 -0.01 0.71
28 20 20+ O 7807.05 7807.05 0.00 2.80 7807.05 7807.05 0.00 113.30 7807.05 7807.05 0.00 0.58
28 20 O 1 7672.11 7689.21 0.22 3.70 7670.94 7670.94 0.00 81.10 7670.94 7671.00 0.00 1.42
28 20 8 1 7670.94 767144 0.01 3.60 7670.94 7670.94 0.00 89.30 7670.94 7671.13 0.00 1.03
28 20 18 1 7670.94 7670.94 0.00 3.20 7670.94 7670.94 0.00 84.40 7670.94 7671.00 0.00 0.80
28 20 2+ 1 7670.94 7678.20 0.09 3.60 7670.94 7670.94 0.00 99.30 7670.94 7671.00 0.00 0.96
28 20 104+ 1 7670.94 7670.94 0.00 3.70 7670.94 7670.94 0.00 122.00 7670.94 7671.00 0.00 1.02
28 20 204+ 1 7670.94 7670.94 0.00 3.10 7670.94 7670.94 0.00 110.50 7670.94 7671.14 0.00 0.67
28 20 0 2 7717.25 7722.01 0.06 3.40 7713.39 7713.39 0.00 7250 7709.14 7711.27 -0.03 1.09
28 20 8 2 7715.01 7717.39 0.03 3.30 7709.14 7714.31 0.07 96.30 7709.14 7709.14 0.00 0.71
28 20 18 2 7709.14 7709.14 0.00 3.20 7709.14 7709.14 0.00 104.00 7709.14 7709.73 0.01 0.61
28 20 2+ 2 7709.14 7709.14 0.00 3.50 7709.14 7711.08 0.03 88.10 7709.14 7709.63 0.01 0.75
28 20 104+ 2 7709.14 7709.14 0.00 3.60 7709.14 7710.76 0.02 130.90 7709.14 7709.14 0.00 0.63
28 20 204+ 2 7709.14 7709.14 0.00 3.10 7709.14 7709.14 0.00 119.10 7709.14 7709.14 0.00 0.50
57 20 0 0 13343.32 13343.32 0.00 3.30 13329.82 13329.82 0.00 86.00 13329.82 13329.82 0.00 0.97
57 20 8 0 13343.32 13345.86 0.02 3.50 13343.32 13343.34 0.00 109.60 13343.32 13344.17 0.01 0.92
57 20 18 0 13343.32 13343.32 0.00 3.50 13343.32 13343.32 0.00 132.80 13343.32 13343.32 0.00 0.82
57 20 2+ 0 13329.82 13332.52 0.02 3.40 13329.82 13329.82 0.00 107.00 13329.82 13329.82 0.00 0.77
57 20 104+ 0 13343.32 13343.32 0.00 3.70 13343.32 13343.32 0.00 144.90 13343.32 13343.32 0.00 0.81
57 20 204+ 0 13343.32 13343.32 0.00 3.40 13343.32 13343.32 0.00 161.30 13343.32 13343.32 0.00 0.65
57 20 0 1 13290.27 13299.34 0.07 3.40 13287.61 13287.61 0.00 92.80 13287.61 13289.01 0.01 1.05
57 20 8 1 13287.61 13287.61 0.00 3.60 13287.61 13288.14 0.00 120.70 13287.61 13287.61 0.00 0.85
57 20 18 1 13287.61 13287.61 0.00 3.30 13287.61 13287.61 0.00 122.90 13287.61 13287.61 0.00 0.82
57 20 2+ 1 13287.61 13294.01 0.05 3.60 13287.61 13287.61 0.00 111.60 13287.61 13287.61 0.00 0.79
57 20 10+ 1 13287.61 13287.61 0.00 3.70 13287.61 13287.61 0.00 159.80 13287.61 13287.61 0.00 0.91
57 20 204 1 13287.61 13287.61 0.00 3.20 13287.61 13287.61 0.00 170.50 13287.61 13287.61 0.00 0.85
57 20 0 2 13247.33 13247.33 0.00 3.40 13247.33 13247.33 0.00 91.40 13247.33 13250.29 0.02 0.85
57 20 8 2 13247.33 13247.33 0.00 3.20 13247.33 13247.33 0.00 108.40 13247.33 13247.33 0.00 0.82
57 20 18 2 13247.33 13247.33 0.00 3.20 13247.33 13247.33 0.00 134.30 13247.33 13247.33 0.00 0.72
57 20 24+ 2 13247.33 13247.59 0.00 3.40 13247.33 13247.33 0.00 102.10 13247.33 13247.33 0.00 0.68
57 20 104+ 2 13247.33 13247.33 0.00 3.50 13247.33 13247.33 0.00 143.90 13247.33 13247.33 0.00 0.89
57 20 204+ 2 13247.33 13247.33 0.00 2.90 13247.33 13247.33 0.00 156.10 13247.33 13247.33 0.00 0.71
Avg. 0.03 3.61 < 0.01 111.49 < 0.01 0.77
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HGSygy achieved high quality solutions and new improved solutions were found for 26

instances. With respect to the runtime performance, HGSygy managed to be 9.86 and

331.47 times faster than the versions RO and QO of PVNS, on average, respectively.

Tabela 12: Results obtained on the 50-customer instances.

Instance P-VNSgo P-VNSqo HGSygv

Best Avg. Gap CPU Best Avg. Gap CPU Best Avg. Gap CPU

D C TWs V (%) (s) %) (s) (%) (s)
0 50 O 0 3046.44 3071.36 0.82 182.70 2771.98 2819.37 1.71 3848.10 2712.90 2713.65 -2.10 17.12
0 50 23 0 271290 271290 0.00 169.10 2712.90 2714.44 0.06 5649.00 2712.90 2712.90 0.00 15.25
0 50 48 0 2716.54 2716.54 0.00 158.40 2716.54 2716.54 0.00 4552.60 2716.54 2716.54 0.00 12.00
0 50 2+ 0 2843.86 2843.86 0.00 191.60 2761.61 2828.51 2.42 4183.40 2712.90 2712.92 -1.76 20.73
0 50 254+ 0 2712.90 2712.90 0.00 198.70 2713.97 2714.53 0.02 11744.30 2712.90 2712.90 0.00 15.57
0 50 50+ 0 2716.54 2716.54 0.00 164.80 2716.54 2716.54 0.00 6415.50 2716.54 2716.54 0.00 11.59
0 50 O 1 2727.67 2824.08 3.53 223.20 2574.63 2587.52 0.50 4321.60 2489.24 2489.57 -3.30 19.61
0 50 23 1 2497.43 2497.99 0.02 224.30 2497.78 2508.73 0.44 8163.60 2489.24 2489.24 -0.33 12.84
0 50 48 1 2497.78 2497.78 0.00 200.90 2497.78 2497.78 0.00 5272.10 2497.78 2497.78 0.00 13.05
0 50 2+ 1 2750.81 2792.02 1.50 210.10 2626.64 2626.64 0.00 4830.60 2489.24 2490.44 -5.19 20.43
0 50 25+ 1 2496.82 2502.71 0.24 224.40 2497.78 2502.45 0.19 12580.20 2489.24 2489.24 -0.30 14.69
0 50 50+ 1 2497.78 2497.78 0.00 163.50 2497.78 2497.78 0.00 7449.90 2497.78 2497.78  0.00 13.99
0 50 O 2 2595.56 2623.22 1.07 198.50 2506.76 2506.76 0.00 4117.80 2474.21 2474.80 -1.27 19.44
0 50 23 2 2481.22 2513.84 1.31 206.40 2499.59 2523.86 0.97 7383.30 2474.21 247421 -0.28 15.24
0 50 48 2 2497.59 2497.59 0.00 194.10 2497.59 2497.63 0.00 4443.10 2497.59 2497.60 0.00 13.60
0 50 2+ 2 261841 2618.41 0.00 196.20 2539.65 2656.19 4.59 4765.20 2487.14 2487.35 -2.06 19.20
0 50 254+ 2 2505.68 2505.68 0.00 209.20 2531.96 2531.96 0.00 11573.00 2487.14 2487.47 -0.73 16.41
0 50 50+ 2 2497.59 2500.92 0.13 136.60 2497.59 2497.86 0.01 7073.70 2497.59 2497.61 0.00 15.09
28 50 0O 0 8456.38 8497.22 0.48 102.80 8420.92 8421.19 0.00 1405.40 8338.12 8338.17 -0.98 24.96
28 50 23 0 8387.19 8388.64 0.02 73.70 8363.71 8363.71 0.00 4512.60 8363.71 8363.71 0.00 12.17
28 50 48 0 8363.71 8363.71 0.00 124.60 8363.71 8363.71 0.00 3665.60 8363.71 8363.71 0.00 11.96
28 50 24+ 0 8503.34 8535.99 0.38 85.10 8414.32 8418.38 0.05 1797.90 8338.12 8338.12 -0.91 18.58
28 50 25+ 0 8387.19 8405.95 0.22 56.40 8386.99 8387.11 0.00 5361.00 8386.99 8386.99 0.00 13.92
28 50 50+ O 8400.11 8400.12 0.00 122.30 8404.00 8404.56 0.01 3607.80 8404.75 8410.26 0.12 18.95
28 50 0 1 8691.60 8691.60 0.00 241.10 8585.05 8586.54 0.02 2963.10 8425.70 8427.87 -1.83 26.09
28 50 23 1 8427.26 8438.68 0.14 153.40 8427.26 8427.26 0.00 5090.30 8425.90 8425.90 -0.02 18.80
28 50 48 1 8427.26 8427.26 0.00 152.60 8425.90 8425.90 0.00 4944.80 8425.90 8425.90 0.00 17.56
28 50 24+ 1 8762.09 8762.09 0.00 174.90 8565.78 8576.23 0.12 3648.10 8425.70 8425.70 -1.64 19.93
28 50 25+ 1 8427.26 8485.88 0.70 124.30 8427.26 8427.26 0.00 7233.10 8425.90 8425.90 -0.02 17.28
28 50 50+ 1 8425.90 8426.17 0.00 145.60 8425.90 8425.90 0.00 7834.00 8425.90 8425.90 0.00 13.19
28 50 0 2 8749.99 8775.47 0.29 162.90 8508.20 8508.20 0.00 2560.30 8422.15 8428.20 -0.94 25.09
28 50 23 2 8446.66 8448.81 0.03 90.70 8428.38 8431.13 0.03 4250.90 8428.38 8428.38 0.00 14.38
28 50 48 2 8428.38 8428.38 0.00 168.60 8428.38 8428.38 0.00 4870.40 8428.38 8428.38 0.00 13.52
28 50 24+ 2 8590.87 8590.87 0.00 159.70 8475.79 8497.20 0.25 2890.20 8428.38 8428.38 -0.56 21.62
28 50 25+ 2 8437.85 8479.76 0.50 69.10 8428.38 8429.78 0.02 5520.50 8428.38 8428.38 0.00 14.60
28 50 50+ 2 8428.38 8428.38 0.00 155.00 8428.38 8428.38 0.00 7255.60 8428.38 8428.38 0.00 11.87
57 50 0 0 14108.54 14108.54 0.00 196.20 13881.72 13942.60 0.44 3263.80 13846.98 13860.74 -0.15 23.21
57 50 23 0 13935.30 13965.74 0.22 175.70 13853.20 13891.55 0.28 5627.70 13846.98 13847.02 -0.04 17.58
57 50 48 0 13846.98 13846.98 0.00 179.70 13846.98 13846.98 0.00 4763.50 13846.98 13847.06 0.00 15.73
57 50 24+ 0 14150.30 14150.30 0.00 178.50 13847.37 13907.15 0.43 3978.30 13846.98 13849.67 0.02 18.00
57 50 254+ 0 13846.98 13884.15 0.27 212.10 13847.37 13875.43 0.20 9454.10 13846.98 13847.02 0.00 15.62
57 50 504+ 0 13846.98 13846.98 0.00 162.70 13846.98 13846.98 0.00 8677.90 13846.98 13847.02 0.00 12.98
57 50 0 1 14135.44 14135.44 0.00 180.70 14043.83 14072.36 0.20 3336.80 13935.63 13946.66 -0.69 24.74
57 50 23 1 13980.33 13984.36 0.03 173.30 13980.34 13980.34 0.00 5815.90 13980.33 13981.33 0.01 15.83
57 50 48 1 13985.22 13985.22 0.00 172.80 13985.22 13985.22 0.00 5224.40 13985.22 13985.22 0.00 16.24
57 50 24+ 1 14207.78 14306.90 0.70 148.20 14077.99 14085.20 0.05 3666.30 13985.22 13988.28 -0.64 26.47
57 50 25+ 1 13985.22 13985.22 0.00 161.40 13985.22 13985.22 0.00 8367.10 13985.22 13985.22 0.00 14.66
57 50 504 1 13985.22 13985.22 0.00 162.20 13985.22 13985.22 0.00 8439.60 13985.22 13985.22 0.00 14.28
57 50 0 2 13929.89 13929.89 0.00 188.30 13866.67 13866.67 0.00 3257.60 13805.51 13806.26 -0.44 16.27
57 50 23 2 13875.02 13942.94 0.49 206.20 13821.48 13821.48 0.00 5820.30 13805.96 13805.96 -0.11 16.50
57 50 48 2 13819.39 13819.86 0.00 173.40 13820.18 13820.18 0.00 4637.50 13819.30 13819.30 0.00 14.85
57 50 24+ 2 13929.21 13940.95 0.08 183.30 13953.07 13981.12 0.20 4039.30 13805.96 13805.98 -0.88 20.96
57 50 25+ 2 13806.14 13864.39 0.42 169.20 13821.48 13821.48 0.00 9018.90 13805.96 13805.96 < 0.00 16.16
57 50 504+ 2 13820.18 13820.18 0.00 177.80 13819.30 13819.83 0.00 7868.50 13819.30 13819.30 0.00 13.85
Avg. 0.25 166.99 0.24 5611.78 -0.50 16.93

According to the Wilcoxon signed-rank test, there are no significant differences

(p-values > 0.05) for the instances involving 10 customers, as expected, because the
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average gaps are zero for the vast majority of the instances. On the other hand, there
seems to be a significant difference between HGS and RO, and HGS and QO for the
50-customer instances with p-values < 0.001 in both comparisons. As for the 8- and the
20-customer instances, there was a statistical difference when comparing HGS with RO
(p-values < 0.01), but the same did not happen for HGS and QO (p-values > 0.1).

Table 13 summarizes the results found by the HGSygy in terms of solution quality,
when compared with those achieved by the PVNS considering both versions: RO and QO.
It can be observed that the gains tend to be more prominent as the size of the instance
increases. Note that in many cases our average solution was better than the best known
solution attained by PVNS, which ratifies the superior performance of HGSggy in terms

of solution quality.

Tabela 13: Summary of the results found by HGSxgyv compared with those
of versions RO and QO of PVNS.

8 customers 10 customers 20 customers 50 customers
RO QO RO QO RO QO RO QO

#Best improved 3 0 0 5 6 4 34 31
#Best equaled 51 54 54 49 48 50 19 22
#Best worse 0 0 0 0 0 0 1 1
#Avg. better than the Best 3 0 0 5 6 4 34 29
#Avg. equal to the Best 51 54 52 47 39 39 13 18
#Avg. improved 8 1 7 7 18 13 38 37
#Avg. equaled 46 53 45 45 30 31 12 13
#Avg. worse 0 0 2 2 6 10 4 4
#Worst better than the Best 3 0 0 5 5 3 34 27
#Worst equal to the Best 51 54 52 47 39 40 13 19
#Worst better than the Avg. 8 1 7 7 15 11 37 36
#Worst equal to the Avg. 46 53 45 45 30 32 12 13

5.3 Impact of the newly proposed offspring generation procedure

In order to demonstrate the effectiveness of the newly proposed offspring genera-
tion operators, i.e., MOX and MOXMC, we have also executed the HGSggy algorithm
with the following crossover operators: order crossover (OX) [Oliver et al., 1987]; OX with
mode changes (OXMC); modified order crossover (MOX); sequential constructive crosso-
ver (SCX), described in [Ahmed, 2010]; SCX with mode changes (SCXMC); edge recom-
bination crossover (ERX) [Whitley et al., 1989]; and ERX with mode changes (ERXMC).

For the OX, MOX, SCX and ERX, the modes chromosome of one of the parents
is randomly selected and copied to the child. In the case of OXMC, whenever a vertex
is copied from one parent to the offspring, the operation mode connecting such vertex

to the next one is also copied, regardless of the next customer served in the offspring

solution. As for the SCXMC and the ERXMC, the modes chromosome at index 0 of the
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child is randomly selected from one of the parents’ 0 index modes chromosome. In the
SCXMC, the remaining of such chromosome is filled according to the selected customer
and parent in a similar way as the MOXMC; whereas in the ERXMC, the remaining modes

chromosome is filled randomly from one of the parents based on the selected customer.

Figure 9 exhibits the results of employing the discussed operators on the 50-
customer instances, which is definitely the most challenging set and the one where the
differences become more evident. It can be observed that crossover operators with mode
changes tend to offer better solutions in terms of average gap, but with larger runtimes.
The operator ERXMC, for example, resulted in a average gap of approximately —0.44%
against —0.38% of ERX, but with an average CPU time approximately 3 seconds worse.
Moreover, the figure clearly shows the superiority of both MOX and MOXMC operators,
which dominate the remaining ones. While the former improved the runtime performance
of HGSygy, the latter helped the proposed algorithm to consistently obtain better ave-
rage solutions, especially on larger instances, as summarized in Table 14. Moreover, the
Wilcoxon signed-rank test confirmed that there is a statistical difference between the ave-
rage gaps achieved by MOX and MOXMUC for the 8-, 20- and 50-customer instances, with
p-values < 0.001 in these three groups. For this reason, it was thought advisable to adopt
MOXMC as the crossover operator.
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Figura 9: Impact of different crossover operators.

Tabela 14: Number of cases in which the average solution of one operator
was better than the other.

8 customers 10 customers 20 customers 50 customers
MOX 0 0 3 5
MOXMC 14 5 32 43
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5.4 Impact of the efficient move evaluation scheme

Table 15 shows the speed-up achieved by employing the proposed move evaluation
scheme compared to a straightforward implementation. The speed-up is obtained even for
small instances (8 customers), and it becomes increasingly significant with the instance
size. Therefore, one can conclude that the proposed approach plays a crucial role on the

runtime performance of our algorithm, most notably on larger instances.

Tabela 15: Speed-up achieved by using the efficient move evaluation scheme.

Avg. CPU (s)
Instance size Efficient Straightforward Speed-up
Implementation Implementation
08 0.08 0.12 1.54
10 0.12 0.20 1.60
20 0.77 1.46 1.90
50 16.93 54.13 3.20

5.5 Impact of restricting the number of arc combinations during local

search

Table 16 presents the impact on solution quality and CPU time of restricting the
number of arc combinations during local search. The results suggest that a significant

speed-up can be attained without loss on the average gaps.

Tabela 16: Impact of restricting the number of arc combinations during lo-
cal search.

Avg. CPU (s) Avg. Gap (%)
Instance size Restricted All Speed-up Restricted All
Combinations Combinations Combinations Combinations
08 0.08 0.43 5.59 0.00 0.01
10 0.12 0.75 6.06 < 0.01 < 0.01
20 0.77 3.08 4.00 < 0.00 < 0.00
50 16.93 48.56 2.87 -0.50 -0.49

5.6 Impact of the instance size on the operation modes

As the final step of the numerical experiments, we conducted an analysis on the
impact of the number of customers on the selected operation modes of the vehicle. The
best solution was considered on this analysis. In addition, the percentage usage of each
operation mode was computed for each instance and then the average percentage value

was computed based on 4 groups created according to the sizes of the instances.

36



Figure 10 depicts the results obtained per group. The reason for the missing
information about the boost operation mode is because no arc was selected with such
mode in any of the best solutions found by HGSugy. As can be observed, there is an
inverse relationship between the usage of the combustion mode ¢ and the size of the
instances, that is, as the number of customers increases, the number of arcs traversed in
such mode decreases. There is also a direct relationship between the usage of the charging
mode ch and the instance size, that is, as one increases the other one also increases. The
electric mode e usage, on the other hand, is not significantly changed as the number of
customers increases. These observations convey better usage of the electric characteristics

of the vehicle as the sizes of the instances increase for the benchmark under consideration.
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Figura 10: Relation between instance length and the operation mode use.

Moreover, Table 17 shows the average length of the arcs (of the best solutions), in
meters, per operation mode and instance size. According to the table, as the size of the
instances increases, the average length of the arcs with the charging mode decreases with
respect to the average length of the arcs with the combustion and electric modes. For
this reason, more arcs have to be used with the charging mode in order to balance the

electric mode usage. This fact explains the behavior reported in Figure 10.

Tabela 17: Average length of the arcs, in meters, per operation mode and
instance size.

Operation #Customers
mode 8 10 20 50
c 15842.20 20067.57 22543.46 21769.84
ch 3633.45  2502.55  930.66 481.96
e 1612.75  1637.42  1376.10 1116.47
ch/c 0.23 0.12 0.04 0.02
ch/e 2.25 1.53 0.68 0.43

37



6 Concluding remarks and future work

This work presented a hybrid genetic search (HGS) algorithm to solve the traveling
salesman problem with time windows (HEVTSPTW). The proposed method includes a
hierarchical randomized variable neighborhood descent (HRVND) procedure in the local
search phase, a limitation strategy to prevent all combinations of arcs associated with the
battery operation modes from being inspected, and a novel move evaluation scheme to
efficiently compute battery violations in O(1) time. We also introduced a modified order
crossover procedure with mode changes (MOXMC) that takes advantage of the battery

operation modes of the problem.

Extensive computational experiments were carried out on benchmark instances to
show the gains of each of the main components of our HGS, as well as to assess the
performance of the method itself. The results ratified the importance of such components
and also clearly showed that the proposed HGS clearly outperformed the best known
solution approach, both in terms of solution quality and CPU time. All best known
solutions were achieved or improved and the difference between the average gaps increased
in favor of HGS when compared to the best existing method. Furthermore, we conducted
an analysis on the proportional usage of each battery operation mode, and it was observed
that the larger the instance size the larger the charging mode tends to be employed and

the lesser the combustion mode is likely to be activated.

Promising avenues of research include the extension of the proposed HGS algo-
rithm to solve the version with multiple vehicles and additional attributes such as vehicle
capacity and multiple depots. Furthermore, one could also consider scenarios involving
uncertainties (e.g., on travel time) in order to produce solutions that are more reliable to
be adopted in practice. Such uncertainties can be tackled both under the lenses of sto-
chastic programming or robust optimization, thus requiring the development of further

procedures to efficiently cope with the challenges arising from these characteristics.
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