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RESUMO

SILVA, J. W. L. Funcionais generalizados para qualificação de locais de injeção para arma-
zenamento geológico de carbono. 2024. 117pp. Tese (Doutorado em Engenharia Mecânica) –
Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal da Paraíba, João
Pessoa, 2024.

Muitas nações comprometeram-se a alcançar a neutralidade de carbono até 2050 através da
implementação do armazenamento geológico de carbono (GCS) como uma tecnologia funda-
mental no quadro da captura, utilização e armazenamento de carbono (CCUS), liderando assim
a iniciativa Net Zero. O objetivo do CCUS é capturar as emissões de dióxido de carbono (CO2),
reciclando-as ou transportando-as através de dutos até formações geológicas subterrâneas para
armazenamento permanente. Apesar do sucesso global nos projetos de GCS, impulsionados
pelo setor de petróleo e gás, as iniciativas de GCS em grande escala ainda estão em seus es-
tágios iniciais no Brasil. Estão em desenvolvimento bases de dados para potenciais locais de
armazenamento, incluindo aquíferos salinos e reservatórios esgotados, tal como acontece com
a estrutura regulamentar. Esta tese apresenta modelos matemáticos para a seleção sistemática e
classificação de locais subterrâneos de armazenamento de CO2. A pesquisa explora uma família
de funcionais matemáticos, cada um com funções de ponderação distintas, atingindo dois obje-
tivos principais. Em primeiro lugar, esclarece as interações não lineares entre as propriedades
das rochas e dos fluidos utilizando indicadores de qualidade. Em segundo lugar, avalia regiões
geográficas, considerando armadilhas estruturais em rochas capeadoras. Esta metodologia é
um recurso valioso para identificar locais adequados de injeção e armazenamento. Os modelos
foram implementados utilizando o Matlab Reservoir Simulation Toolbox (MRST), e estudos de
casos utilizando o modelo UNISIM-I-D para o Campo de Namorado na Bacia de Campos, Bra-
sil, mostraram a influência da permeabilidade e porosidade assim como de curvas sigmóides,
exponenciais ou híbridas nas diferentes interpretações de locais ideais de armazenamento, com
excedentes que variam até 66% no melhor dos casos. Foram utilizados o modelo de equilíbrio
vertical para diminuição do custo computacional e análise de sensibilidade Sobol para estudar
a influência individual de cada parâmetro. Resultados das simulações corroboram com as aná-
lises teóricas. O objetivo final do estudo é estabelecer uma base de conhecimento fundamental
para futuros projetos de GCS no Brasil, aproveitando infraestruturas de poços herdados.

Palavras-chave: descarbonização, armazenamento geológico de carbono, métodos computaci-
onais, seleção de locais geológicos.



ABSTRACT

SILVA, J. W. L. Generalized functionals for qualification of geological carbon storage in-
jection sites. 2024. 117pp. Thesis (Doctoral Degree in Mechanical Engineering) – Graduate
Program in Mechanical Engineering, Federal University of Paraíba, João Pessoa, 2024.

Many nations have pledged to achieve carbon neutrality by 2050 through the implementation
of geological carbon storage (GCS) as a pivotal technology within the carbon capture, utiliza-
tion, and storage (CCUS) framework, thus spearheading the Net Zero initiative. The CCUS
goal is to capture carbon dioxide (CO2) emissions, recycling them or transporting them through
pipelines to underground geological formations for permanent storage. Despite global success
in GCS projects, driven by the oil and gas sector, large-scale GCS initiatives are still in their
early stages in Brazil. Databases for potential storage sites, including saline aquifers and de-
pleted reservoirs, are in development, as with the regulatory structure. This thesis introduces
mathematical models for the systematic selection and ranking of underground CO2 storage
sites. The research explores a family of mathematical functionals, each with distinct weighting
functions, achieving two main objectives. Firstly, it clarifies non-linear interactions between
rock and fluid properties using quality indicators. Secondly, it evaluates geographical regions,
considering structural traps in caprocks. This methodology is a valuable resource for identify-
ing suitable injection and storage locations. The models were implemented using the Matlab
Reservoir Simulation Toolbox (MRST), and a case study using the UNISIM-I-D model for the
Namorado Field in the Campos Basin, Brazil, indicates the influence of permeability and poros-
ity as well as sigmoid, exponential or hybrid curves on different interpretations of ideal storage
locations, with surpluses that range up to 66% in the best case. The vertical equilibrium model
was used to reduce computational cost and Sobol sensitivity analysis to study the individual in-
fluence of each parameter. Simulation results corroborate the theoretical analyses. The ultimate
objective of the study is to establish a fundamental knowledge base for future GCS projects in
Brazil, leveraging legacy well infrastructures.

Keywords: decarbonization, geological carbon storage, computational methods, geological site
selection.
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1 INTRODUCTION

The escalating global energy demand has compelled governments, private entities, and
the international community to commit to reducing greenhouse gas emissions into the atmo-
sphere. Given that CO2 is a primary driver of anthropogenic climate change, the development
of effective abatement mechanisms is imperative in our pursuit of achieving carbon neutrality
by 2050, commonly referred to as “Net Zero” (BOUCKAERT et al., 2021; IEA, 2023).

In anticipation of this sustainable future, geological carbon storage (GCS) has emerged
as a vital technology for mitigating CO2 emissions. Since the 1990s, the industrial implemen-
tation of underground CO2 injection for permanent storage has been underway (FURRE et al.,
2017). Typical storage sites for CO2 are assignable to depleted oil and gas reservoirs. These
sites possess adequate storage capacity, benefit from previous understanding of geological and
hydrodynamic features, and are less susceptible to injection-induced seismic events compared
to saline aquifers (ZOBACK; SMIT, 2023).

Brazil as a global frontline country in storage potential1 embraces CCS initiatives na-
tionwide since the disclosure of its National Climate Change Plan (FEDERAL, 2008). Pioneer
surveys concerning CCS and the theoretical CO2 storage capacity of Brazilian hydrocarbon
fields, aquifers, and coalbeds underscored that its sedimentary basins could potentially accom-
modate more than 2035 Gt of CO2 (IGLESIAS et al., 2015). Newer assessments point out that
the country is ready to leverage prolific GCS ventures (CIOTTA et al., 2021). At present, off-
shore basins and depleted reserves, especially those covering the Pre-salt region, are the most
promising sites (DREXLER et al., 2020; RODRIGUES et al., 2022).

Beyond the precise mapping of GCS opportunities, the definitive approval of a regu-
latory framework and investments in lower-cost technologies are open issues. Advancements
toward GCS regulation in the country came primarily from the Bill of Law 1425/2022, coined
the “CCS Bill of Law”, which will rule GCS activities and reuse along the national territory,
both in economic zones and in the continental shelf under homeland jurisdiction2. The areas of
interest for GCS extend from North to South, both onshore and offshore, but their individual
storage capacity varies dramatically.

As a backbone for the GCS challenges, reservoir simulation plays a relevant role for
action in emerging carbon markets. Therein, site selection, site characterization, and injection
well placement are key factors to add efficiency, safety, and predictability in field projects (JUN
et al., 2019; LUBOŃ, 2021). Although injection well placement methods for GCS have much
in common with the knowledge base inherited from the petroleum industry, they need adap-
1 The Global Status of CCS 2018.
2 Incentive to decarbonize the economy is approved by the Brazilian environmental commission.

https://www.globalccsinstitute. com/resources/publications-reports-research/global-status-of-ccs-report-2018/
https://www12.senado.leg.br/noticias/materias/2023/08/30/incentivo-a-descarbonizacao-da-economia-passa-na-cma
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tions for different scenarios and goals, such as caprock identification, detailed modeling of
supercritical gas dynamics, and general site selection frameworks. All of these features are of
fundamental interest for exploration and development planning.

With that growing interest in GCS, traditional well placement techniques formerly used
for production purposes are being transformed and readjusted for injection purposes. A few
examples of the literature include simulation-based optimization for reduction of leakage risk
in storage operations tested in brine-saturated reservoirs (STOPA et al., 2016), mixed integer
programming for injection schedule (MIYAGI et al., 2018), multiphase simulations for analysis
of gas flow in fractured media (case from Yangtze Basin, China) (HU et al., 2021), and coupled
geomechanics / neural networks simulations for injection efficiency in faulted sands (case from
Gulf of Mexico) (ESPINOZA et al., 2022).

While GCS well placement strategies focused on the internal features of the formations
have been developed worldwide, so far, there are limited application of frameworks for storage
in Brazilian basins and especially of mathematical models for GCS selection, characterization,
and simulation under the perspective of quality maps and dynamic petrophysical units –– sub-
jects detailed in the next section. To fill in these gaps, this thesis presents a family of functionals
intended to qualifying GCS sites and ultimately indicating high-performance injection sites.
Each functional provides a distinguished interpretation of appropriate storage locations and in-
corporate several static and dynamic variables. Through numerical simulations, we examined
the CO2 plume path and its storage inventory over a well-known model for a reservoir located
at the Campos Basin, in Brazil southeastern region. Simulations of new-frontier infrastructure
reveal that the storage surplus reached at the locations suggested by the functionals may be
better up to 66% in contrast to the legacy well infrastructure at the best case.

1.1 Thesis objectives and findings

The specific objectives of this thesis are:

• To propose detailed multi-parametric mathematical models that help to select and priori-
tize carbon dioxide (CO2) storage sites within underground formations;

• To simulate numerically the CO2 plume dynamics through the porous media for different
scenarios and assess the trapping mechanisms inventory, especially the stratigraphical and
structural ones;

• To suggest well placement strategies and techniques and potential locations for efficient
injection by using the underlying concepts of flow units, injectivity, and volumetric quality

map;
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• To apply computational engineering techniques for discretizing, clustering, and ranking
CO2 storage sites.

As a consequence, one ultimately expects it will share insights for:

• Establishing a physically consistent and explainable theoretical framework that supports
realistic GCS field projects;

• Providing a numerical perspective for the wide-scope issue of greenhouse gas (GHG)
mitigation with special attention to CO2 disposal;

• Leveraging the scientific and technological development of GCS in Brazil.

This study presented a set of injectivity functionals that can be used to qualify CO2

storage sites. These functionals are promising in supporting geological carbon storage ventures,
as they can improve injection performance for wells located in strategic positions. Since there
are many physical properties affecting gas dynamics in deep storage, this study handled them
statically. For the Brazilian context, this research is useful in developing a comprehensive un-
derstanding of CO2 injection processes. Comparisons showed a storage surplus increase of up
to 66%.

1.2 Thesis outline

Beyond this introduction chapter and the conclusion, this thesis has the following core
chapters and matters:

• Chapter 2: a literature review on relevant works on CO2 storage is presented;

• Chapter 3: the methods that were applied to obtain the results are presented, through
geological, mathematical and computational frameworks;

• Chapter 4, the results obtained are presented, adding discussion, comparison and justifi-
cation.
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2 LITERATURE REVIEW

CO2 storage in underground geological formations has a plentiful history. This chapter
introduces the state-of-art devoted to this technology from a review of the scientific progress of
its implementation worldwide.

First of all, we provide some contextual information to base specific discussions.

2.1 Energy transition challenges

The growth in demand for energy worldwide has been pushing society and public agents
to seek mechanisms that reduce the emission of carbon dioxide into the atmosphere, since it is
the main triggering component of anthropogenic climate change. The scale of the problem is
evident given the growing population base with increasing demands for more energy-intensive
lifestyles (MACDOWELL et al., 2010; STOCKER, 2014; VERHEGGEN et al., 2014; COOK
et al., 2016; ROSE et al., 2017). Despite the urgent transition toward renewables, the domi-
nance of fossil fuels persists due to their energy density, well-established resource base, and
extensive infrastructure for extraction and distribution. This perpetuates their integral role in
power generation, heating, and heavy industrial manufacturing operations. Acknowledging this
reality, it is clear that fossil fuels will remain a crucial component to meet energy demands
for the foreseeable future. Balancing the imperative for sustainable practices with the current
energy infrastructure represents a complex challenge as the world grapples with the need to ad-
dress climate change while ensuring continued access to reliable and abundant energy sources.
The increase of atmospheric concentration of CO2 is responsible for raising the average earth
temperature and the ocean’s level (RISE, 2004; SOLOMON, 2009; NASA, 2015)

Power plants and energy-intensive industries are the major CO2 emitters, and now they
are compelled to drastically reduce their CO2 emission. The high carbon intensity of the power
sector (42%) is due to the large share of coal-fired plants in the global electricity supply. Hence,
decarbonization of power and industrial sectors is essential to achieve emission reduction tar-
gets. By 2050, the global energy demand should to double. At the same time, it is expected
that the production of energy from fossil sources will gradually decline until a carbon neutral
scenario is reached: the so-called Net Zero (BOUCKAERT et al., 2021).

The annual increase in CO2 emissions is an alarming phenomenon, driven by voracious
energy consumption in the industrial sector in China and the United States. Both economic
powers have increased their demand for energy sources, many of which still depend intensively
on fossil fuels. Furthermore, the rising economic dynamism in India, Indonesia, Saudi Arabia
and Mexico also contributes to this worrying scenario. Rapid growth in these nations drives
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industrial production and energy consumption, often from non-renewable sources. The need for
infrastructure and increased industrial production in these emerging countries are intrinsically
linked to an increase in CO2 emissions. Given this panorama, it is crucial to implement effec-
tive strategies to contain emissions, such as the transition to renewable energy sources and the
adoption of cleaner technologies (Figure 1).

Figure 1 – Global CO2 emission (MtCO2) in 2022. Source: (ENERDATA, 2023).

2.2 Carbon Capture and Storage (CCS)

As the global community transitions towards a more sustainable energy chain, the focus
on carbon capture and storage (CCS) intensifies as one of the most promising technologies to
mitigate CO2 emissions and, consequently, greenhouse gases. The inception of this technique
dates back to the 1970s, as documented in the literature (Table 1), gaining substantial attractive-
ness roughly two decades later. At its core, CCS involves capturing the CO2 emanating from
industrial processes that involve the combustion of fuels. The captured CO2 is then transported
to a suitable location, where it is injected into deep geological formations, ensuring permanent
storage and preventing gas leakages into the atmosphere. This method is characterized by its
substantial storage capacity, offering long-term isolation of CO2 for at least several hundred
years. Additionally, CCS demonstrates a reasonable cost-effectiveness and minimizes environ-
mental impact (YAMASAKI, 2003). As industrial activities continue to play a pivotal role in
global economies, the imperative to adopt technologies like CCS becomes increasingly evident.
The collaborative pursuit of such innovative solutions holds the key to achieving sustainable
and environmentally responsible practices on a global scale.



24

Table 1 – CCS Milestones.

Year Resume
1972 First injection of CO2 at an oil field in Texas, USA. The CO2 was used to enhance oil recovery

(EOR).

1986 The concept of CO2 capture and storage (CCS) was for the first time presented by Norwegian re-
searchers.

1996 The Sleipner project in the North Sea opens as the world’s first large scale commercial CO2 stor-
age project, storing one Mton-CO2 annually. CO2 is separated from natural gas produced from the
Sleipner field and injected into the Utsira formation, an aquifer 800 m below the bottom of the sea.

1997 Working with the Kyoto Protocol, world leaders acknowledged CCS as a potential mitigation mech-
anism, but no incentives were included in the final agreement.

2004 Second commercial large scale project in operation: The In Salah project in Algeria

2005 Australia is the first country to establish a regulatory framework for CCS.

2007 EU heads of state and governments commit to building 10-12 demonstration projects for CCS by
2015. The G8 leaders recognize the critical role of CCS in tackling climate change, and recommend
to build 20 CCS demonstration plants worldwide by 2010.

2008 The EU Climate package: An EU wide demonstration programme for CCS is established, and in-
come from the European Trading Scheme (ETS) will be used to finance the demonstration pro-
gramme. CO2 Storage Directive and financial mechanisms for CCS demonstration projects also part
of the agreement.

2010 Introduction of European Commission’s NER300 – world’s largest funding programme for CCS
demonstration projects and innovative renewable energy technologies.

2012 Official opening of Technology Centre Mongstad (TCM) in Norway – world’s largest facility for
testing and improving CO2 capture. Canada sets CO2 Emission Performance Standard (EPS) for
both new coal-fired power plants and existing plants that have reached the end of their useful lives,
which effectively calls for CCS, at 420 tonnes of CO2 per GWh.

2013 EU releases CCS Communication which acknowledges role of CCS in tackling emissions from
industry. Bio-CCS facility Decatur in Illinois, USA, stores world’s first 500,000 carbon negative
tonnes of CO2.

2014 World’s first full-scale commerical CCS project opens at coal power plant Boundary Dam in
Canada’s Saskatchewan province. The EU sets climate targets in the 2030 Framework for Climate
and Energy Policy and begins work on the Energy Union Strategy.

2015 Adoption of the Paris Agreement at COP21, which emphasizes the role of CCS in achieving climate
goals. SaskPower’s Boundary Dam CCS project in Canada becomes fully operational, demonstrating
large-scale CCS for coal-fired power plants.

2016 Start of operation of the Petra Nova CCS project in Texas, USA, capturing CO2 from a coal-fired
power plant.

2017 Continued cost reductions in CCS technologies and processes, making them more economically
viable. Advancements in solvent-based capture technologies and monitoring methods.

2018 Start of operations of the world’s first commercial-scale natural gas power plant with CCS, the
Net Power plant in Texas and increase in operational CCS storage projects globally, demonstrating
storage viability.

2019 Growing policy support for CCS with increased funding and incentives in several countries and
expansion of CCS projects in Europe, North America, and Asia-Pacific regions.

2020 Accelerated focus on CCS as a key technology for achieving net-zero emissions targets by mid-
century and investment: Increased private and public sector investments in CCS projects and re-
search.

2021 CCS prominently featured at COP26 with renewed commitments and initiatives.

2022 Advances in direct air capture (DAC) and carbon utilization technologies and expansion of CCS
infrastructure and pipelines to support multiple projects.

2023 Launch of large-scale CCS projects in emerging markets and continued deployment in established
markets and increased international cooperation on CCS research, development, and deployment.

CCS emerges as a pivotal strategy in the comprehensive decarbonization of both the
power and industrial sectors (BRINCKERHOFF et al., 2011). Recognized by the Intergovern-
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mental Panel on Climate Change (IPCC) as an indispensable resource, CCS plays a crucial role
in the pursuit of international environmental objectives. The IPCC identifies it as a linchpin for
achieving goals such as constraining future global warming within the 2∘C threshold, thereby
mitigating the onset of severe climate change events (IPCC, 2005; AGENCY, 2016; BRUHN
et al., 2016).

Projections suggest that the widespread implementation of CCS has the potential to re-
duce CO2 emissions by approximately 20% come 2050, as outlined in the roadmap presented by
the Department of Energy & Climate Change of the United Kingdom (DECC, 2012). This es-
timate underscores the transformative impact that CCS can wield on mitigating climate change
by curbing carbon emissions.

In the overarching context of the global climate crisis, the endorsement and active inte-
gration of CCS into sustainability agendas represent a critical step toward realizing a low-carbon
future. The collaborative efforts to propel CCS technologies forward are fundamental to achiev-
ing a substantial reduction in greenhouse gas emissions and fostering a resilient and sustainable
global environment.

2.3 Brazilian context

Brazil is renowned for its low carbon intensity energy matrix, primarily driven by hydro-
electric power generation. The country’s greenhouse gas (GHGs) are predominantly attributed
to deforestation and land use changes. In spite of this, Brazil has shown a strong commitment
to advancing research on geological carbon storage (GCS) as a crucial approach to mitigating
GHGs. This commitment has been particularly underscored by the commencement of produc-
tion from pre-salt reservoirs, which contain significant amounts of CO2 in the extracted fluids3.

In a study by Iglesias et al. (2015), efforts by various sectors in Brazil, including govern-
ment, academia, and industry, were briefly described in their pursuit of CCS development and
promotion. Among the key initiatives driving CCS advancement in Brazil, the establishment
of a dedicated research center for CO2 capture technologies and the investigation of potential
long-term storage reservoirs within the country were highlighted. Additionally, pilot-scale in-
stallations for field testing and validation of CCS technologies have been initiated. The support
and involvement of Brazil’s largest oil company, PETROBRAS, have played a key role in the
initial phases of CCS development, with the impetus being the substantial pre-salt oil reserves
and a commitment to minimizing emissions from these reserves. The establishment and growth
of Center of Excellence in Carbon Storage Research (CEPAC), a research center focused on ad-
dressing geological storage challenges and knowledge gaps, have also significantly contributed
to CCS development in the country.
3 1st Annual CCS: Report in Brazil 2022/2023.

https://www.ccsbr.com.br/relatorios-anuais
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In line with international trends, Brazil presented your first CCS Atlas (KETZER et al.,
2015), illustrating the potential for establishing CCS projects within its borders. This potential
is particularly noteworthy, given the prospect of CCS projects in the bioenergy sector, taking
into account the considerable number of existing biofuel production facilities in the country.
Amidst global challenges facing CCS deployment in recent years, Brazil has emerged as a
nation actively engaged in advancing this key technological solution for emissions reduction
and climate change mitigation.

Brazil as a global frontline country in storage potential (INSTITUTE, 2018) embraces
CCS initiatives nationwide since the disclosure of its National Climate Change Plan (FED-
ERAL, 2008). According to Iglesias et al. (2015), pioneer surveys concerning CCS and the
theoretical CO2 storage capacity of Brazilian hydrocarbon fields, aquifers, and coalbeds under-
scored that its sedimentary basins could potentially accommodate more than 2035 Gt of CO2

(Figure 2a). Newer assessments point out that the country is ready to leverage prolific GCS
ventures (CIOTTA et al., 2021). At present, offshore basins and depleted reserves, especially
those covering the Pre-salt region, are the most promising sites (DREXLER et al., 2020; RO-
DRIGUES et al., 2022).
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Figure 2 – (a) Selected areas of interest for CO2 storage in Brazil; (b) Brazilian basins with the largest

theoretical storage capacities of supercritical CO2 in Gigatons (adapted from (CIOTTA et al.,
2021)).

Beyond the precise mapping of GCS opportunities, the definitive approval of a regu-
latory framework and investments in lower-cost technologies are open issues. Advancements
toward GCS regulation in the country came primarily from the Bill of Law 1425/2022, coined
the “CCS Bill of Law”, which will rule GCS activities and reuse along the national territory,
both in economic zones and in the continental shelf under homeland jurisdiction4. The areas of
4 Incentive to decarbonize the economy is approved by the Brazilian environmental commission.

https://www12.senado.leg.br/noticias/materias/2023/08/30/incentivo-a-descarbonizacao-da-economia-passa-na-cma
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interest for GCS extend from North to South, both onshore and offshore, but their individual
storage capacity varies dramatically.

Câmara et al. (2016) presented the need to structure a regulatory framework for the use
of CCS technologies to create an environment of trust for civil society and the private sector and
presented legal and infra-legal normative documents (laws, decrees, regulations, among others)
existing in force in Brazil to identify gaps and regulatory weaknesses for the implementation of
CCS projects in Brazil, since CCS technologies are recent and current laws and regulations do
not provide for the use of such technologies. The expected Brazilian economic and industrial
growth suggests that, in the coming years, CO2 emissions in the country will increase. The
activities of the oil industry, especially activities related to exploration in the pre-salt zone, and
the growing demand for energy, will be the major concerns involving CO2 emissions in Brazil,
since it has a great potential for geological storage of CO2 based on the existence of mature oil
basins or those in declining production, such as the Recôncavo Basin, which are favorable to
the large-scale use of CCS technology.

In the current environmental context, the significance of technological advancements
is evident, along with the incentives for adopting CCS technology, not only in Brazil but also
globally. Whether through public financing or emissions fees, exploratory studies indicate the
potential for CO2 mitigation. Specifically, in Brazil’s petroleum-rich Pre-salt and Recôncavo
Basin regions, an estimated annual emissions capacity suggests the mitigation potential of 26.4
million tonnes of CO2e. Research further reveals that Brazil’s geological reservoirs have the
capacity to store approximately 2,000 billion tonnes (2,000 Gt) of CO2e (CÂMARA; AN-
DRADE; ROCHA, 2011). The implementation of CCS activities, both in Brazil and worldwide,
and the concurrent development of associated technologies are essential for reducing a substan-
tial amount of carbon dioxide in the atmosphere over the coming decades. However, given the
multitude of factors to consider, both technically and operationally, CCS should be treated as
a coordinated international endeavor. This entails formulating clear and achievable proposals
and goals for implementation in line with the Paris Agreement, which includes setting specific
targets for carbon dioxide capture and storage, methods for stimulating public and private in-
vestments, and the establishment of formal agreements ratified by the legislative and executive
branches of participating countries. Effective collaboration between governmental bodies, pri-
vate enterprises, and international organizations is paramount to create a secure legal framework
for CCS activities in Brazil (NUNES; COSTA, 2019).

Luo et al. (2023) recently presented an in-depth examination of the mechanisms un-
derlying carbon dioxide storage and utilization at the ocean floor. Their analysis encompassed
critical technical and economic considerations and synthesized existing research on safety risks,
investment monitoring and control technologies, as well as operational costs, with a focus on
identifying remaining gaps in knowledge. The unique characteristics of the deep-sea environ-
ment, characterized by high pressure and low temperatures, enable the generation of liquid



28

CO2 and CO2 hydrate with larger density and gravitational stability compared to seawater. This
makes deep-sea storage an effective and reliable option for carbon dioxide sequestration. The
cost associated with offshore carbon dioxide storage is closely intertwined with several factors,
including the type of storage reservoir (e.g., saline formations or depleted fields), geological
conditions (e.g., porosity, permeability, and depth), and the chosen storage methods (liquid or
mineral carbonation). Notably, the study found that many coastal countries prefer offshore lo-
cations for their carbon storage sites due to these factors. Furthermore, the research highlighted
that offshore carbon capture, utilization, and storage (CCUS) is still in its nascent stages in
Brazil, and public awareness and perception of this concept are evolving.

Based on research conducted by Ciotta et al. (2021), Brazil’s substantial size and sig-
nificant global economic involvement warrant international attention when it comes to efforts
aimed at mitigating its carbon emissions. Utilizing depleted oil and gas fields offers a multitude
of benefits, including access to technical data, economic viability, pre-existing infrastructure,
and reduced environmental impacts. The authors provide an estimation of the storage capacity
within 85 offshore oil and gas fields in Brazil, connecting this capacity with the existing in-
frastructure and emissions-related criteria. This combination of storage capacity analysis, emis-
sions information, and infrastructure availability serves as crucial criteria for pinpointing the
most suitable areas for carbon dioxide (CO2) storage in the Brazilian offshore region. One key
takeaway from this study is that many of Brazil’s major cities are situated along the coast and
are significant sources of CO2 emissions. Consequently, designating offshore fields for CO2

storage proves pertinent as it minimizes the distance for transportation. Furthermore, employ-
ing depleted oil and gas fields for CCS also offers the possibility of substituting straightforward
decommissioning processes. By capitalizing on existing infrastructure and technical expertise,
Brazilian offshore fields enhance the feasibility of successful carbon storage projects. The re-
gions of utmost interest, possessing the most favorable criteria for implementing a CO2 storage
initiative, are the Santos and Campos basins (Figure 2b). The Brazilian Northeast region also
holds potential for carbon storage, albeit to a relatively lesser extent compared to the Recôncavo
and Southeast regions. This underscores the feasibility of utilizing pilot projects to store coastal
emissions.

Within the Brazilian context, a study by Oliveira et al. (2021) and Cañas (2022) con-
ducted an assessment of the CO2 storage potential within the Irati Formation, situated in the
Paraná Basin—a region hosting a majority of the nation’s stationary carbon emission sources.
Among the deep geological formations considered for CO2 storage, shale layers have emerged
as a promising field due to their high efficiency, abundance, and significant organic matter con-
tent, which enhances CO2 retention. However, one of the key challenges in identifying suitable
reservoir locations lies in the need for accurate geological characterization and storage vol-
ume estimation. To address this, three-dimensional (3D) implicit modeling techniques were
employed, not only for volume calculations but also for site selection. These techniques gener-
ated thematic 3D models that indicated critical attributes such as thickness, depth, geological
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structures, and proximity to aquifer systems. The initial findings are promising, as the estimated
storage capacity surpasses the total locally produced CO2, signifying the potential to support
the development of new CCS projects in this region.

2.4 Geological carbon storage challenges

In CCS technology, one of the best options for CO2 sequestration is underground geo-
logical storage (IPCC, 2005), which comprises saline aquifers, depleted oil and gas reservoirs
and coal seams (Figure 3) (BACHU, 2000; YANG et al., 2008; MICHAEL et al., 2010; NA et

al., 2015). Initial work such as Holloway and Savage (1993) showed the need and possibility of
disposing of CO2 underground in offshore oil and gas fields with great advantages in relation
to the cost of exploration and storage, with the need to search for ideal locations with large
blockages in reservoir rocks.

Figure 3 – Methods for storing CO2 in deep underground geological formations. Source: (IPCC, 2005).

According to Bachu (2000), geological CO2 sinks do not require major technological
development as they use technologies applied by industry for the exploration and production
of hydrocarbons. However, the biggest challenge is identifying the best methods and locations
for adequate long-term CO2 storage. Some ways of storing CO2 take into account elimination
in oil and gas reservoirs and injection into deep saline aquifers. Some criteria are considered
to evaluate the potential of a sedimentary basin for CO2 storage, such as geological configu-
ration, economic aspects and socio-political conditions. The most suitable sedimentary basins
for CO2 sequestration are basins in a mature stage of exploration and development located on
stable continental shelves or along divergent tectonic plates and with favorable geology and hy-
drodynamic regime of formation waters, conducive to hydrodynamic and mineral entrapment
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in geological time scale. The identification of zones of high permeability and porosity will help
locate the best locations for CO2 injection and sequestration.

Still by Bachu (2002), the potential for CO2 escape and migration is a decisive factor
in screening unsafe sites and site capacity must be determined based on in situ conditions and
the properties and behavior of CO2. It was suggested that the geological space of each basin be
transformed into CO2 space. The CO2 space can then be mapped and used to identify locations
with significant storage capacity and locations that are unsafe due to CO2 phase instability or
potential migration and escape.

Studies carried out by Nordbotten, Celia and Bachu (2005) suggest an analytical so-
lution that provides a tool to estimate practical quantities associated with CO2 injection, de-
scribing the spatio-temporal evolution of the plume. Kumar et al. (2005) presented reservoir
simulation studies of a CO2 sequestration project in a deep saline aquifer with the feasibility of
permanent storage such that large volumes of CO2 do not escape from the aquifer. The authors
concluded that the movement of gas leaves a residual gas saturation and dissolves in the native
brine, reducing the amount of mobile gas, thus preventing CO2 from reaching the top of the
aquifer.

Meyer et al. (2008) reported the regional screening, selection and geological charac-
terization of a potential onshore CO2 storage site (saline aquifer) in northeastern Germany to
identify and investigate a candidate CO2 storage site from a lignite-fired power plant. Even
with the results achieved by the study, the authors suggest more data and research (modeling)
to prove the structural integrity of the storage site and ensure long-term safety, as some issues
regarding the integrity of the cover rock or the quality of the reservoir could not be addressed.
According to Stangeland (2007), the European Union could feasibly capture and store 25 billion
tonnes of CO2 by 2050.

Grataloup et al. (2009) applied a methodology for selecting geological CO2 storage sites
taking into account criteria whose combinations allowed potential sites, considering storage op-
timization in terms of capacity and injectivity, risk minimization, regulation, environmental
restrictions, in addition economic considerations and social aspects. The amalgamation of es-
sential selection criteria enables the demarcation of potential CO2 storage zones, whereas the
synthesis of criteria for site qualification offers a means to evaluate potential locations and sub-
sequently pinpoint the most suitable ones within a specific context. The choice of criteria for
this site selection process may vary based on local conditions, objectives, and data accessibility.
Qualitative or quantitative attributes can be determined through data aggregation, reprocessing,
analysis, or fresh data acquisition, depending on the specific requirements.

Schnaar and Digiulio (2009) presented a summary of computational modeling studies
developed to predict the fate and transport of CO2 based on scientific understanding of these
underground processes through sensitivity analyzes and descriptions of the use of site charac-
terization data in model development. However, the study did not characterize the injection site
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for best efficiency.

Research carried out by Shukla et al. (2010) identified important research gaps and the
need for further studies on the integrity of caprock. A comprehensive study was presented on the
various techniques and mechanisms involved in mitigating carbon dioxide during and after its
sequestration in geological formations, with special emphasis on its safe storage in sedimentary
basins. Storage periods typically last a long period of time and therefore the importance of the
integrity of the caprock seal for the required duration is critical for successful CO2 sequestration
projects. Pioneering geological CO2 storage projects, as cited by Jenkins et al. (2012), have
shown satisfactory results in relation to safety and the possibility of significant amounts of
storage, also taking into account the social aspects relating to the challenges inherent to CCS
projects.

Zhao et al. (2014) introduced an approach for assessing CO2 storage that takes into ac-
count factors such as CO2 displacement efficiency, CO2 sweep efficiency, CO2 dissolution in
oil and gas, and CO2 displacement mechanisms. These critical factors in the evaluation method
are determined through the integration of reservoir simulation techniques, thermodynamic prin-
ciples, and statistical analysis methods. As a result, they established a comprehensive system
for evaluating CO2 storage capacity.

In recent work, open source computational tools have been used to model large-scale,
long-term CO2 migration. An example of this is MRST - Matlab Reservoir Software Toolbox,
through your module MRST-co2lab, which takes into account the ideas of basin modeling,
computational geometry, hydrology and reservoir simulation. Furthermore, vertical equilibrium
methods for efficient simulation of structural, residual and solubility traps were used, such as
Nilsen et al. (2015a), and addressing the need for future work to identify good injection sites
and optimize injection strategies.

Considering the importance of ensuring the safety of CCS projects over thousands of
years, it is important to study the structural traps and spill paths beneath a seal rock. Subsurface
knowledge can be captured quantitatively using computational methods, for example, developed
in oil production. In this regard, Nilsen et al. (2015b) presented a set of tools provided by the
separate module in the open source Matlab Reservoir Simulation Toolbox (MRST), consisting
of geometric and percolation-type methods for calculating structural traps and spill paths below
of a sealing rock. Using water management concepts, these tools have been applied to large-
scale aquifer models to quickly estimate structural entrapment potential, determine spill paths
from potential injection points, suggest optimal injection locations, etc.

Lie et al. (2016) presents a simulation workflow for large-scale CO2 storage in the
Norwegian North Sea. It addresses the need for robust computational tools to model and pre-
dict CO2 injection and migration in geological formations. The authors develop and validate a
workflow that integrates various simulation components, including geological modeling, flow
simulation, and uncertainty quantification. They apply this workflow to a case study in the
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North Sea, demonstrating its capability to handle complex subsurface scenarios and providing
insights into the feasibility and safety of CO2 storage. The study underscores the importance of
advanced simulations for effective CO2 sequestration strategies.

Allen et al. (2017) explored the potential storage capacities within different geological
formations through the optimization of well placement, injection rates, and the utilization of
production wells for pressure management as needed. They devised optimal strategies based on
various simple yet realistic objectives and constraints, including penalties for CO2 leakage, cost
minimization of well operations, and restrictions on pressure build-up. The optimization tech-
niques employed accounted for the long-term impact of CO2 leakage, circumventing the need
to make assumptions about the geological timescale over which the aquifer’s properties would
remain constant. The duration that CO2 must be retained within a rock formation to qualify as
permanent storage is a subject of political and regulatory debate. Nonetheless, irrespective of
whether this timeframe is defined as centuries, millennia, or millions of years, the algorithms
developed in this study can be used to maximize storage capacity under the assumption of a
stable geological model.

Ahmadinia and Shariatipour (2018) analyzed the importance of the structural geometry
of the top seal on CO2 plume migration and long-term retention behavior. The results indicate
the feasibility of vertical equilibrium models for simulating CO2 migration and the approach
can be used to develop other simulators. The authors suggested to use VE and composition
models in ECLIPSE (PETTERSEN, 2006) to carry out a comprehensive study on the feasibility
of the VE module in MRST to simulate the CO2 storage process in saline aquifers.

Ringrose (2018) studied CO2 plume monitoring on the Sleipner offshore gas platform
(Norway). The results indicated a storage efficiency of 5% of the pore volume after 14 years
of injection, with approximately 10% of this volume dissolved into the brine phase. These
estimates are consistent with the fluid dynamics of CO2 injection, in which gravity-dominated
processes are expected to provide efficiencies in the range of 1-6%. The author concluded that
there are ways to increase storage efficiency beyond 6%, whether using smart well placements to
explore geology or modifying the injection flow. In the same year, Abbaszadeh and Shariatipour
(2018) examined CO2 injection in a model and performed sensitivity analyzes for some fluid,
rock and injection parameters. The results showed that pressure and the CO2 plume influence
storage efficiency and safety.

Ajayi, Gomes and Bera (2019) presented an extensive perusal on CO2 storage technolo-
gies. This comprehensive review encompassed the historical evolution of fundamental storage
concepts, the intricate physical processes at play, the modeling techniques and simulators em-
ployed, capacity estimation methods, measurement monitoring and verification strategies, as
well as the associated risks and challenges. It turns out that the key components of a successful
carbon dioxide storage project involve precise site selection, rigorous characterization (includ-
ing storage capacity estimation and plume modeling), and diligent monitoring to mitigate the
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risks of potential leaks through seals.

In the quest for sedimentary basins suitable for CCS projects, an investigation by Abuov,
Seisenbayev and Lee (2020) identified optimal basins in Kazakhstan (Central Asian country),
considering factors such as containment, capacity, and feasibility. The study had estimated that
the nation possesses a total effective CO2 storage capacity of around 583 Gt. The findings indi-
cated that four sedimentary basins have the potential to make a substantial impact on reducing
greenhouse gas emissions in Kazakhstan, thereby facilitating the country’s transition toward
achieving the objectives outlined in the Paris Agreement.

An examination of the impact of injection well placement on CO2 storage efficiency was
conducted by Luboń (2021) in the context of three well-known geological formations (traps)
located in the deep aquifers of the Early Jurassic Polish Lowlands. To simulate CO2 injection,
geological models of these structures were employed across fifty distinct well locations. Com-
puter simulations revealed that the dynamic CO2 storage capacity varies based on the chosen
injection well location. The findings indicated that for structures with favorable reservoir prop-
erties, the CO2 storage efficiency increases as the distance from the injection well to the top of
the structure and the depth differential to the top of the structure expand. Conversely, for struc-
tures with less favorable reservoir properties, the opposite trend is observed. Furthermore, as
the quality of petrophysical reservoir parameters improves, such as porosity and permeability,
the significance of injection well placement in assessing CO2 storage efficiency becomes more
pronounced.

Akai et al. (2021) introduced a numerical modeling investigation concerning the CO2

storage capacity within depleted gas reservoirs. Initially, this study relied on a basic volumetric
equation to estimate the CO2 storage capacity in such reservoirs. Subsequently, a numerical
reservoir simulation was conducted, accounting for various reservoir characteristics, including
reservoir heterogeneity, aquifer water intrusion, rock compaction, and their potential reversibil-
ity. The simulation outcomes consistently indicated a substantial quantity of CO2 trapped in the
form of a dissolved component into water.

The utilization of deep saline aquifers for CO2 storage represents a clear avenue for
large-scale CO2 mitigation. The initial and vital step in deploying large-scale CCUS projects is
to determine the storage capacity. However, the assessment of CO2 capacity in aquifer forma-
tions through existing methods is subject to uncertainties arising from the selection of storage
mechanisms, data quality, evaluation algorithms, and exogenous factors. Wei et al. (2022) con-
ducted a comprehensive review of these methods. They introduced a hierarchical framework
for capacity evaluation, categorizing capacity types and providing insights into the assessment
processes and the uncertainties associated with capacity estimation.

Romeo et al. (2022) introduced the assessment method employed by the US Department
of Energy for evaluating storage capacity in non-petroleum saline reservoirs, with a specific fo-
cus on offshore environments. Offshore carbon storage offers several potential advantages, in-
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cluding increased distance from densely populated areas and reduced likelihood of interactions
with groundwater. The study also delved into considerations related to potential storage distri-
butions, sensitivity analyses, and the integration of spatial data and tools aimed at facilitating
the secure selection of suitable storage sites.

Callas et al. (2022) details a comprehensive workflow and criteria for selecting depleted
hydrocarbon reservoirs for carbon storage, addressing the growing need for effective CO2 se-
questration solutions. The authors highlight the advantages of using depleted reservoirs, such
as their established capacity, existing infrastructure, and available geological data, which make
them promising candidates for carbon storage. The proposed selection workflow is a multi-
criteria decision-making process that integrates technical, economic, and environmental con-
siderations. Key technical criteria include reservoir capacity, integrity, and injectivity, ensuring
the site can safely and effectively store CO2. Economic factors encompass the costs associated
with transportation, injection, and monitoring of CO2, as well as potential financial incentives
or regulatory frameworks supporting carbon storage projects. Environmental criteria focus on
minimizing ecological impacts and ensuring long-term containment of CO2 to prevent leak-
age. The authors demonstrate the application of this workflow through detailed case studies,
showcasing its practical utility in real-world scenarios. The case studies illustrate the evaluation
process, from initial screening of potential sites to detailed assessments of their suitability for
carbon storage. This systematic approach ensures that selected reservoirs meet stringent safety
and efficiency standards, contributing to the development of viable carbon storage strategies.

Yang et al. (2023) presents a method for evaluating the CO2 storage potential of saline
aquifers in a petroliferous basin, addressing the critical need for effective carbon sequestration
strategies. The authors develop a comprehensive evaluation method that integrates geological,
hydrodynamic, and economical factors to assess the suitability of saline aquifers for CO2 stor-
age. The proposed method involves a detailed analysis of the geological characteristics of the
aquifer, including its porosity, permeability, and thickness, which determine the storage capac-
ity and injectivity of CO2. Hydrodynamic assessments are conducted to understand fluid flow
and pressure changes within the aquifer, ensuring that CO2 can be effectively injected and con-
tained over long periods. Additionally, economic evaluations consider the costs associated with
CO2 capture, transportation, injection, and monitoring, as well as potential financial incentives
and regulatory requirements. The authors validate their method through a case study in a petro-
liferous basin, demonstrating its practical application and effectiveness. The case study involves
detailed geological and hydrodynamic modeling, as well as cost-benefit analyses, to identify the
most suitable sites for CO2 storage within the basin. Overall, the study provides a robust frame-
work for assessing the CO2 storage potential of saline aquifers, contributing to the development
of viable carbon sequestration solutions. This method can be applied to other basins, aiding in
the global effort to mitigate climate change by securely storing CO2 emissions.

In their study, Rasool et al. (2023) conducted a comprehensive comparative analysis
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of CO2 storage across various geological formations, including deep saline aquifers, depleted
reservoirs, coal seams, basalt formations, and clastic formations. This analysis was based on
seven key factors sourced from the literature: safety, storage capacity, injection rates, efficiency,
residual entrapment, containment and integrity, and potential for improvement. These factors
were individually assessed and ranked on a scale from low to high. Subsequently, a classifi-
cation system was developed to categorize geological formations for CO2 storage. The results
revealed that deep saline aquifers and basalt formations emerged as the most promising options
for effective CO2 storage.

Callas et al. (2023) introduced a regional exploration method designed to identify and
prioritize numerous potential sites for large-scale CCS projects, ultimately pinpointing the most
suitable location or locations for sequestering a substantial volume of CO2. This method em-
ploys a phased, criteria-based approach that comprehensively screens a wide range of depleted
hydrocarbon reservoirs, taking into account technical, regulatory, political, socioeconomical,
and environmental factors. It is worth noting that many studies offering best practices or gen-
eral approaches for site selection in carbon storage lack a focus on the quality of the data used
for assessments. Specifically, there is a lack of specific metrics that elucidate how to quantita-
tively evaluate various properties. The workflow outlined in that study is structured into multiple
steps, spanning from the initial screening of potential sites to the site-specific characterization
phase. However, it acknowledges that, during the site characterization phase, additional infor-
mation, simulations, and data collection may be necessary. The criteria used in this methodology
are categorized to address key aspects related to CO2 injection and geological storage, encom-
passing: injection capacity and optimization; retention and mitigation of geomechanical risks;
location and economic constraints. This structured approach ensures a comprehensive evalua-
tion of candidate sites and promotes a more informed and systematic decision-making process
in CCS project planning.

In a recent study by Yang et al. (2023), a comprehensive assessment was conducted
to examine the progress achieved in carbon dioxide (CO2) storage projects worldwide, with a
focus on analyzing the key companies and businesses engaged in CCS initiatives. The research
highlighted the critical importance of a well-thought-out CO2 injection strategy, as deficiencies
in this aspect can lead to well integrity issues, hydrate formation, and challenges in maintaining
proper pressure control. Moreover, it emphasized the need for further research, particularly in
the realm of geological assessments before injection and storage. Several salient points emerged
from the analysis: While CO2 injection can be applied to a variety of geological formations, de-
pleted oil and gas reservoirs stand out as the most promising candidates for carbon storage. This
preference arises from the fact that these reservoirs have undergone thorough exploration and
development phases, providing valuable information on key factors such as reservoir capacity,
permeability, porosity, and the quality of the covering rock and sealing mechanisms—essential
prerequisites for effective carbon storage; additionally, the existing critical infrastructure origi-
nally utilized for oil exploration and production, including pipelines, injection wells, and pro-
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duction wells, can be repurposed for CCS with only minor modifications, thus streamlining the
implementation of carbon storage projects; advances in monitoring techniques during the CO2

injection and storage processes, whether in deep or shallow geological formations, have signif-
icantly reduced environmental and resource-related risks. This progress enhances confidence in
the successful execution of CCS initiatives, as it helps ensure the protection of the environment
and natural resources.

Examining the fate of CO2 dynamics and storage on a large scale necessitates the in-
corporation of uncertainty and sensitivity analysis. In their recent work, Alqahtani et al. (2023)
introduced a robust workflow that leverages machine learning (ML) to facilitate both uncertainty
and global sensitivity analysis in the prediction of CO2 storage within deep saline aquifers. Ad-
vanced sampling techniques were used, enabling high-resolution simulations (MRST-co2lab)
that capture the intricate details of the system. Moreover, acknowledging the non-linear rela-
tionships between input parameters and the corresponding output variables, the workflow em-
ploys ML to manage these complex associations effectively. To expedite the hyperparameter
tuning process, Bayesian optimization was utilized, enhancing the efficiency of the analysis.
The workflow employs Monte Carlo simulations to explore the propagation of uncertainty, pro-
viding valuable insights into how uncertainties affect the system. This approach holds great
potential for application in field-scale CO2 sequestration projects within deep saline aquifers,
contributing to a more informed understanding of the dynamics and storage of CO2 on a large
scale. Recently, Fotias, Ismail and Gaganis (2024) advocated for the efficacy of Bayesian Op-
timization in the context of optimizing well placement for CCS operations, emphasizing its
potential as a preferred methodology for enhancing sustainability in the energy sector.

Izadpanahi et al. (2024) highlights the advantages of nano-injection, particularly in
larger pores, which increases capillary entry pressure and interfacial tension, thereby enhancing
long-term capillary trapping. Foam-assisted gas injection, especially in multi-cycle applica-
tions, is shown to improve sweep efficiency and residual trapping. The stimulation of micro-
bial activity is crucial for converting dissolved CO2 into mineral-secured CO2, facilitating its
sequestration through mineralization. For narrow, low-permeability saline aquifers, hydraulic
fracturing is recommended to enhance injectivity and storage capacity, while rock heterogene-
ity can further improve storage efficiency. The study emphasizes the importance of maintaining
water-wet conditions for optimal storage and containment security. Additionally, it suggests
co-injecting pollutants like SO2 and CH4 with CO2 to increase safety and cost-effectiveness
in CCS systems. Overall, the study underscores the need for a holistic approach that integrates
these methods to maximize the efficiency and safety of CO2 storage in saline formations.
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2.5 Thermodynamics considerations to GCS

Supercritical CO2 is recognized as one of the most effective industrial solvents. Due to
its planar molecular configuration, CO2 can escape from tight geological formations that have
historically trapped methane more easily, a molecule with a three-dimensional structure. Moni-
toring at a CO2 injection facility in Frio, Texas, has shown that injecting CO2 into saline aquifers
results in decreased brine pH and the dissolution of carbonates and iron oxyhydroxides. This
dissolution process compromises the structural integrity of surrounding rocks, potentially creat-
ing fractures and pathways for CO2 and brine leakage. Furthermore, it can mobilize toxic trace
metals and organic compounds, leading to significant environmental risks if these substances
migrate into potable groundwater (KHARAKA et al., 2006). Additionally, a monitoring study
conducted in Cranfield, Mississippi, revealed that current models and computational tools are
inadequate for accurately predicting reservoir responses. This highlights the challenges faced
in forecasting the long-term fate and transport of CO2 in geological reservoirs (HOVORKA;
MECKEL; TREVINO, 2013).

An interesting aspect of offshore CO2 storage is related to the molecular structure of
CO2, which is planar and angular. When CO2 dissolves in fresh and saline water, it increases
the density of the aqueous solution [43]. This denser CO2-saline solution tends to sink in the
ocean, preventing the gas from rising to the surface and escaping into the atmosphere. This
characteristic renders deep ocean sequestration of CO2 significantly less risky compared to
storage in geological formations and suggests that it may be the preferable long-term storage
option for CO2 (MCBRIDE-WRIGHT; MAITLAND; TRUSLER, 2015).

Aminu et al. (2017) provided an overview of advancements in carbon dioxide storage,
addressing both resolved critical issues and highlighting challenges that demand increased focus
in the realms of CO2 sequestration, criteria for assessing storage sites, CO2 behavior within
reservoirs, and methodologies for estimating CO2 storage capacity. In reference to the critical
CO2 point (7.38 MPa and 31.1∘C, equivalent to a hydrostatic head of 738 m), even a minor
variation in geothermal gradient with depth can lead to CO2 reaching supercritical conditions
(Figure 4a).

Assuming that the pressure distribution within a sedimentary basin follows hydrostatic
principles, the minimum required depth for injecting CO2 in its supercritical state, under a
geothermal gradient of 25∘C/km and a surface temperature of 15∘C, is approximately 800 m
(Figure 4b). Moreover, Siqueira, Iglesias and Ketzer (2017) revised experimental and numeri-
cal models utilized in the examination of CO2-water-rock interactions and their practicality in
assessing how carbon dioxide injection affects the quality and integrity of carbonate reservoirs.
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Figure 4 – (a) CO2 pressure-temperature phase diagram; (b) The density of CO2 varies with depth, as-

suming hydrostatic pressure and a geothermal gradient of 25°C per kilometer from 15°C at the
surface. Beyond 800 meters depth, there is a rapid increase in carbon dioxide density, leading
to the attainment of a supercritical state. The cubes in the representation signify the relative
volume occupied by CO2, showing a significant decrease in volume down to 800 m. Beyond
this depth, specifically below 1.5 km, both density and specific volume stabilize, exhibiting
near-constant values. Source: (IPCC, 2005).

2.6 Particular challenges of GCS numerical modeling

Kumar et al. (2005) identify several numerical challenges associated with the simulation
of CO2 storage in deep saline aquifers. These challenges include:

• Nonlinearities in multiphase flow equations: the simulation of CO2 injection involves
solving highly nonlinear multiphase flow equations. These nonlinearities arise from phase
behavior, relative permeability, and capillary pressure effects, which complicate the nu-
merical solution and require robust iterative solvers;

• Large-scale computational models: modeling CO2 storage accurately requires detailed
geological models with fine spatial discretization to capture heterogeneities in the reser-
voir. This leads to large-scale computational models with millions of grid cells, demand-
ing substantial computational resources and efficient numerical algorithms;

• Phase behavior of CO2: CO2 exhibits complex phase behavior under reservoir conditions,
including supercritical states, which must be accurately represented in the simulation.
The equations of state (EOS) used to describe CO2 properties add to the complexity of
the numerical model;

• Coupling of mass and energy transport: the injection of CO2 into saline aquifers involves
coupled mass and energy transport processes, including heat transfer and dissolution of
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CO2 into the brine. Accurately simulating these coupled processes poses significant nu-
merical challenges;

• Stability and convergence: ensuring numerical stability and convergence of the solution
is challenging, especially when dealing with sharp fronts and discontinuities in the con-
centration of CO2 and pressure fields. Advanced stabilization techniques and adaptive
time-stepping methods are often required;

• Heterogeneity of the reservoir: geological formations are inherently heterogeneous, and
accurately capturing this heterogeneity is crucial for realistic simulations. Representing
fine-scale heterogeneities in large-scale models without excessive computational cost re-
mains a challenge;

• Capillary trapping and hysteresis: capillary trapping mechanisms and hysteresis effects in
relative permeability and capillary pressure relationships must be included in the models
to accurately predict CO2 plume behavior and long-term storage security;

• Numerical diffusion: numerical diffusion can artificially smear sharp fronts and inter-
faces, leading to inaccurate predictions of CO2 migration and trapping. Mitigating these
numerical artifacts requires high-resolution schemes and careful grid design.

The authors address these challenges by implementing advanced numerical techniques,
such as adaptive gridding, efficient solvers, and improved physical models, to enhance the ac-
curacy and efficiency of CO2 storage simulations.

Benson and Cole (2008) highlight the numerical and geological challenges associated
with simulating CO2 storage in deep sedimentary formations, including interactions between
gas and brine, are diverse and complex. In relation to geological heterogeneity, the variability in
the properties of sedimentary formations, such as permeability and porosity, makes it difficult to
accurately model the behavior of CO2 after injection. The simulation must capture interactions
between CO2, brine and rock phases, including dissolution processes, mineral precipitation and
capillary displacement. As the behavior of CO2 is influenced by the pressure and temperature
conditions of the reservoir, models must integrate mass and heat transfer accurately. According
to the authors, numerical techniques need to predict and validate the migration of CO2 and its
retention over time to guarantee the safety and effectiveness of storage. Regarding temporal and
spatial scale, simulations must cover long periods (hundreds to thousands of years) and large
areas, which requires significant computational resources and advanced modeling techniques to
maintain accuracy and efficiency. These challenges highlight the need for continued advances in
modeling techniques and the importance of a detailed understanding of the processes involved
in CO2 storage in deep sedimentary formations.

Hesse, Orr et al. (2008) investigates the behavior of CO2 gravity currents in deep saline
aquifers, with a specific focus on residual trapping. The research addresses how CO2 behaves
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after injection, moving like a gravitational current due to the difference in density between CO2

and saline water. The formation of a CO2 plume is analyzed, considering the influence of resid-
ual entrapment, where part of the CO2 is retained in the rock matrix, reducing its mobility and
escape potential. The study develops mathematical models and analytical solutions to describe
the temporal and spatial evolution of these gravitational currents. A crucial aspect of the model
is the consideration of vertical balance, which simplifies the analysis by assuming that vertical
pressure variations are negligible compared to horizontal variations. This allows the application
of more simplified and analytical solutions to predict the behavior of CO2. The results show that
residual trapping plays a significant role in the long-term security of geological CO2 storage,
helping to limit plume extent and promoting the retention of injected CO2.

Kopp, Class and Helmig (2009) present several numerical and geological challenges
associated with simulating CO2 storage in deep sedimentary formations, especially considering
the interactions between gas and brine. Some of the main challenges include the estimation of
storage capacity coefficients as the accurate determination of storage capacity coefficients is
complicated due to the heterogeneity of saline aquifers and variations in pressure and temper-
ature conditions. Furthermore, sedimentary formations present great variability in permeability
and porosity properties, which influences the distribution and migration of injected CO2. Re-
garding multiphase interactions, accurate simulation must consider the complex interactions
between CO2, brine and rock phases, including capillary effects, CO2 solubility in brine and
the formation of residual phases. Regarding the modeling of transport processes, capturing the
dynamics of CO2 transport in porous media, including advection, dispersion and diffusion, is
fundamental and requires advanced numerical techniques. Due to the complexity and scale of
the simulations, significant computational resources are required to solve the 3D multiphase
flow equations. Regarding monitoring and verification, predicting CO2 migration and validat-
ing numerical models require robust monitoring and verification techniques to ensure that CO2

remains confined in the reservoir.

Studies carried out by Eigestad et al. (2009) described a dataset for the Johansen ge-
ological model (southwest of Norway) for estimating the CO2 sequestration capacity and the
processes that could cause gas leakage into the above formations through numerical simulation.
Results show that the choice of lateral boundary conditions can significantly alter simulation re-
sults and that a computational improvement is necessary to adequately resolve the CO2 plume.

From Juanes, MacMinn et al. (2010) studies pointed out that CO2 moves radially away
from the injection well and up the formation due to buoyancy forces when injected into deep
saline aquifers. Because of the large horizontal dimensions of the plume, three-dimensional
simulations of CO2 plume migration over long periods of time are computationally expensive.
Therefore, to obtain results within a reasonable period of time it is necessary to use coarse
meshes that result in inaccurate results due to numerical errors. More accurate models based
on vertical equilibrium (LAKE, 1989) were used in studies by Nilsen et al. (2011) and Nilsen,
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Lie and Andersen (2016), ensuring an increase in performance compared to standard three-
dimensional models, providing reliable estimates of long-term CO2 migration, incorporating
geometry and aquifer heterogeneity, considering the effects of hydrodynamic and residual trap-
ping, which can be used to provide reliable estimates of long-term CO2 migration.

Some early studies on geological leak risk assessment from underground storage using
a depleted oil field or deep saline aquifers, such as Zucatelli et al. (2013), used numerical
modeling as a tool to evaluate and predict the fate of CO2 injected from the storage behavior,
what will be the fate of the CO2 after its injection and what will be the geological risk of leakage.

Bandilla et al. (2014) used mathematical modeling as a tool to predict the migration of
CO2 to ensure safe and permanent storage through a series of models with different levels of
complexity, such as a numerical model of vertical equilibrium with a clear interface, a numerical
model of vertical balance with capillary transition zone and vertically integrated model with
dynamic vertical pressure. The results showed that vertical balance models are sufficient for
modeling.

When the IPCC Special Report on CCS was released in 2005, the notion of CO2 storage
efficiency had not yet been introduced, and as a result, no numerical values had been included
in the scientific literature. CO2 storage efficiency is defined as the ratio of the volume of CO2

injected into a geological formation’s pore space to the total rock volume. This concept was
first introduced in 2007 in regional-scale assessments of storage capacity in the United States
and Europe. Since then, numerous research papers, as discussed in this article, have addressed
the topic of CO2 storage efficiency and its associated values. The calculated values for storage
efficiency, as reported in the literature, exhibit a considerable range, spanning from less than
1% to over 10%. Efficiency is highly variable and depends on the specific characteristics of
each reservoir and the implementation of appropriate monitoring and management techniques
(BACHU, 2015).

Sáinz et al. (2015) presented initial studies on the efficiency and safety of CO2 storage
and showed that the results depend on dominant capture mechanisms in each specific reservoir.
The authors presented four trapping mechanisms that contribute to retention: structural, capil-
lary, solubility and mineral entrapment. The objective of this study was to evaluate the influence
of the location of the injection point on the evolution of the trapping mechanisms, quantifying
the CO2 trapped in the free phase, by capillarity and dissolved. Numerical simulations showed
that even small changes in injection well location can lead to different distributions between
trapping mechanisms. By injecting CO2 away from the top of the storage formation, super-
critical plume migration becomes greater and “fast” capillary trapping is improved increasing
storage security.

One of the primary aims of employing numerical simulations in the context of oil reser-
voirs and saline aquifers is to predict their behavior over their operational lifespan. An integral
petrophysical characteristic used for the characterization of these porous environments is per-
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meability. Permeability signifies the medium’s capacity to convey fluids, and, in the context at
hand, it pertains to the potential for the saline aquifer to impede the passage of gas during the
injection process. In their research, Zucatelli (2016) undertook a study involving simulations of
CO2 injection and geological storage within a saline aquifer, with the objective of scrutinizing
how the reservoir’s performance is impacted by variations in permeability. The physical model
under examination took the form of a hypothetical rectangular parallelepiped reservoir, housing
an injection well at its center. The findings were assessed and elucidated, focusing on changes
in pressure and gas saturation within the saline aquifer. This article concludes that both of the
parameters analyzed exhibit heightened sensitivity in response to reduced permeability.

Raza et al. (2018) aimed to emphasize the significance of residual gas in determining
the capacity, injectivity, pressurization of reservoirs, and trapping mechanisms at storage sites
by employing numerical simulations. The findings revealed a direct correlation between storage
performance and the quantity of residual gas present in the medium, highlighting that reservoirs
with lower residual fluids are preferable for storage purposes.

To explore the impact of injection rate and timing on reservoir dynamics and storage
performance, Li et al. (2019) designed continuous and intermittent injection scenarios with
the goal of storing 1 million tons of CO2 annually over a 30-year period. These scenarios were
assessed through numerical simulations conducted in saline aquifers utilizing real field data. The
findings were generally promising for most intermittent injection strategies, albeit necessitating
higher injection pressures compared to continuous injection for achieving the same CO2 storage
targets. However, over the long-term, differences in capture efficiencies between intermittent
and continuous injections typically fell within the 1% to 3% range.

In a recent study by Yue et al. (2022), it was recommended that the CO2 injection rate
in CCS projects should be meticulously assessed, taking into account the outcomes of reservoir
models. Analytical analysis was proposed as a valuable approach for validating migration dis-
tances derived from numerical simulations. The presence of reservoir heterogeneity was found
to augment lateral displacement while concurrently impeding vertical plume migration through-
out the injection period. In the same year, Urych et al. (2022) introduced dynamic simulation
models for CO2 injection into saline aquifers within the Choszczno-Suliszewo structure located
in northwestern Poland. Two distinct injection scenarios, each featuring different injection rates
of 1 Mt CO2/year and 2 Mt CO2/year, were meticulously examined. This comprehensive anal-
ysis focused on assessing pressure changes and the evolving characteristics of the sequestra-
tion process. Additionally, the spatial distribution of free CO2 saturation within the structure
and dissolved carbon dioxide within the brine was visually represented. The observation pe-
riod for tracking transformations within the rock mass extended up to 1,000 years after the
completion of injection. The modeling of CO2 sequestration in Early Jurassic aquifers within
the Suliszewo structure successfully achieved the predetermined CO2 injection rates for both
scenarios. The sequestration process demonstrated remarkable effectiveness, primarily driven
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by the phenomenon of CO2 dissolution in the brine, resulting in the convection movement of
CO2-enriched brine. This process not only led to an expansion of CO2 storage capacity but
also resulted in the permanent, long-term retention of the injected carbon dioxide. Furthermore,
the study observed the displacement of injected CO2 from the collection layers to the layers
forming the reservoir seal.
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3 METHODS

In this chapter, the methodological body is presented as a six-part division, consisting of
quality maps, petrophysical units, GCS classification systems as well as geologic, mathematical
and computational frameworks. These frameworks respectively cover the geologic context of
this study, the concepts and functions that support the qualifying process with a consistent math-
ematical and physical basis, and the numerical procedures needed for modeling and simulating
storage sites.

Furthermore, each of these methodological parts is essential for the comprehensive un-
derstanding and accurate execution of the study. Geological structures provide the solid basis
for contextual analysis, allowing a detailed assessment of the specific geological aspects that
influence storage. Without this understanding of the geological context, the effectiveness of the
qualification process could be compromised, resulting in inaccurate and potentially inefficient
assessments.

On the other hand, the incorporation of robust mathematical and physical concepts pro-
vides a solid structure for the formulation and analysis of the models involved. This mathemat-
ical basis not only validates the methods used, but also guarantees the accuracy and reliability
of the results obtained during qualification. Additionally, detailed numerical procedures pro-
vide the tools necessary to transform geological data and mathematical concepts into practical,
meaningful simulations that can effectively guide storage decisions.

3.1 Quality maps: revamping an old strategy

More than two decades ago, the concept of “quality map” (QM) emerged in O&G in-
dustry to find productive areas by means of a two-dimensional representation of the reservoir
responses and uncertainties. The core idea of this reduced-order approach aimed to aggregate
the depth-wise dynamics of a surveyed region onto a 2D map through two main steps: i) multiple
runs of flow simulations for a single well in different areal locations and ii) filling of uncovered
sites by interpolation over non-simulated cells (CRUZ et al., 2004).

Pioneer investigations associated QMs with concepts broadly used today, such as pro-
ductivity potential (BABU; ODEH, 1989; NAKAJIMA; SCHIOZER, 2003) and quality index
(MARTINI et al., 2005). Although QMs could have a time-dependent representation change-
able as a function of the dynamic properties captured by recurrent simulations over long time
steps, this procedure reached the computational cost. Then, heuristic methods proposed another
qualification perspective through proxy functions.
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Proxy functions combined attributes of grid cells (petrophysical, dynamic, and geomet-
rical) and assumed parametric forms abstracted from Darcy’s law under considerations on rel-
ative productivity, oil-bearing capacity, and fluid mobility (KHARGHORIA et al., 2003). Nec-
essary adjustments to improve the correlation with flow simulation results appeared later sup-
ported by zone ranking (DAVIES et al., 2006), geostatistics (GUERRA; NARAYANASAMY,
2006), artificial intelligence (MIN et al., 2011), and optimization. In this last case, QMs re-
lated to productivity proxies as screening methods. One argued that proxy functions should be
a compound of both time-invariant reservoir properties, such as permeability and time-varying
properties, such as pressure and saturation (LIU; JALALI, 2006). Following this tenet, several
dynamic measures to identify “sweet spots” appeared in the literature embedding time-of-flight,
net-to-gross (TAWARE et al., 2012; RAVALEC, 2012), water coning, gas cap, gas channelling,
distances between the grid cells and gas-oil contact, among other parameters (DING et al.,
2014; DING et al., 2019; POULADI et al., 2020).

QMs and productivity potential intermingled over the years to produce high-fidelity
models focused on well placement whose main difference were variables that composed the
proxy functions. All things considered, our first assumption for this thesis is: proxy functions

formerly used to identify production sites can be revamped and adapted to create 3D (volumet-

ric) QMs useful for qualification of CO2 storage sites.

3.2 Petrophysical units: static vs. dynamic

The flow unit (FU) concept has been a base model for delineating productive volumes in
reservoirs for many years due to its ability to incorporate sorts of petrophysical and geological
properties (SLATT et al., 1990). Having reached an apogee because its distinguishing aspects
of lateral and vertical continuity (HEARN et al., 1984), internal consistency (JR, 1987; JR et

al., 1992), and statistical explanation (ABBASZADEH et al., 1996), a FU is, in the jargon of
reservoir modelers, a “volume endowed with good fluid flow properties” (CANNON, 2015).

Recently, there has been a better understanding of FUs, particularly in carbonate rocks,
thanks to new concepts about the different nature of petrophysical static units and petrophysical
dynamic units. A static rock type is now defined quantitatively as a group of rocks with the
same primary drainage capillary pressure curves or unique water saturation for a given distance
above the free water level. On the other hand, a dynamic rock type is a classification of rocks
with similar fluid flow behavior. FUs are since then identified as dynamic rock types mainly
because of the superior experimental performance grounded on the flow deliverability potential
(MIRZAEI-PAIAMAN et al., 2018; MIRZAEI-PAIAMAN et al., 2019).

Analyzing the dynamics of CO2 flow through a potential geological site is a complex
challenge due to the multiple variables and processes involved. Dynamic units are a practical
approach to this analysis for several reasons:
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• Multi-scale modeling: Dynamic units allow modeling processes at different temporal and
spatial scales, which is essential for understanding CO2 migration in geological reser-
voirs. This includes everything from the microscopic scale (porous interactions within
rocks) to the macroscopic scale (movement of CO2 in large volumes of rocks or along
fault lines).

• Integration of geophysical and geological properties. The dynamics of CO2 flow is in-
fluenced by several rock properties, such as porosity, permeability, and mineral structure.
Dynamic units allow you to integrate these physical and chemical properties into a cohe-
sive model, enabling a more detailed understanding of how CO2 behaves in a geological
location.

• Simulation of physico-chemical processes. The flow of CO2 in geological environments
involves a series of physical and chemical processes, such as dissolution in groundwater,
chemical reactions with minerals, and diffusion through pores. Dynamic units are capa-
ble of simulating these complex processes and their interactions, providing an accurate
representation of the dynamics of CO2 flow.

• Capturing non-linearities and heterogeneities. The geological environment is intrinsi-
cally heterogeneous and the processes that govern the flow of CO2 are often non-linear.
Dynamic units can capture these heterogeneities and non-linearities, allowing for more
realistic and accurate modeling of CO2 fluxes.

• Response to environmental and operational changes. During the injection of CO2 into a
geological reservoir, several changes can occur, such as variations in pressure, temper-
ature, and chemical reactions. Dynamic units allow you to simulate these changes and
predict how the CO2 flow will respond to different operational and environmental condi-
tions, helping to identify risks and optimize management strategies.

• Feedbacks and feedback processes. Interactions between CO2, rocks and fluids in the
reservoir can generate feedbacks that affect flow dynamics. For example, dissolving CO2

in water can change the chemistry of the water and influence the reactivity of minerals.
Dynamic units allow you to model these complex feedbacks, providing a comprehensive
view of how processes interact over time.

• Risk and safety assessment. The injection of CO2 into geological reservoirs must consider
potential risks, such as the possibility of leaks or fracturing. Dynamic units allow you to
simulate risk scenarios and assess the security of geological storage, helping to develop
mitigation and response strategies.

In this thesis, we assume that using dynamic units as models to characterize rock vol-
umes that have internal consistency in terms of rock-fluid interaction is a practical approach to
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analyze CO2 flow dynamics through a potential site. Our second assumption is that the dynamic

unit model is suitable for characterizing storage sites because its internal constituents describe

underground volumes as disjoint compartments.

3.3 GCS classification systems

A Geologic Carbon Storage Classification System (GCSCS) establishes protocols that
shape well-segmented workflows for selecting appropriate sites and making decisions about
CO2 storage. There are different opinions on how to organize such systems, but generally, a
successful subsurface container requires two main elements: i) a set of desirable geological
characteristics and ii) a series of successive stages that culminate at a potential site.

When referring to a subsurface region, the former group of parameters includes three
aspects: capacity, which refers to the volume of pore space available for CO2 storage; injectivity,
which measures a formation’s ability to conduct fluid flow and provide quick access to the
pore space; and containment, which pertains to a formation’s ability to securely trap and retain
the injected CO2 for an extended period of time (COOPER et al., 2009). The latter group of
parameters, on the other hand, includes various terminologies presented alternatively in the
literature (CARPENTER et al., 2011; BACHU, 2010; GOODMAN et al., 2011; CALLAS et

al., 2022).

Figure 5 – Association between desirable geologic characteristics and exploratory stages of the GCS
classification system adopted in this thesis.

Here, the focus falls on three main stages of GCS:

1. Site screening. In this stage, potential areas of interest for GCS are identified, despite the
presence of uncertainty and limited data.
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2. Site selection. In this stage, technical scores and rankings are used, usually based on
additional geological information. Potential areas approved in the previous stage gain an
increased level of confidence.

3. Site characterization. In this stage, the best-ranked sites found in the previous stage un-
dergo detailed analyses and individual studies.

Our proposal intersperses the second and third stages through a sub-stage defined here
as site qualification (Figure 5).

Under this viewpoint, we can define site qualification as the process dedicated to con-
structing measurable criteria (e.g. scores and indices) both mathematically and geologically
consistent applicable to site characterization. This definition lays down the third assumption of
this thesis: mathematical functionals are appropriate to create multi-feature qualifying indices

useful to support GCS modeling.

3.4 Geologic framework

3.4.1 Reservoir model

The UNISIM-I-D model developed by CEPETRO (Center for Petroleum Studies, Uni-
camp, Brazil) is a crucial tool in the simulation and analysis of oil and gas reservoirs. This
model, an abbreviation for "UNIversal SIMulator for I-Dimensional reservoirs", is designed to
provide an accurate and efficient representation of reservoir characteristics, enabling a compre-
hensive assessment of different scenarios and production strategies.

Figure 6 – 3D view of depth variation (m) of the UNISIM-I-D model. Unfilled cells represent the cropped
part of the original model.

One of the distinguishing features of UNISIM-I-D is its ability to simplify the complex-
ity of three-dimensional reservoirs into a one-dimensional representation. This is achieved by
dividing the reservoir into vertical cells, allowing detailed modeling of reservoir properties, such
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Table 2 – General properties of the reduced model.

Property Value
Depth range 2900 - 3300 m
Average pore pressure 30 MPa
Maximum porosity 0.3
Water saturation 100%
Global average permeability (cf. Eq. (3.3)) 2.58 mD

as permeability, porosity and fluid saturation, across depth. This simplified approach not only
reduces the computational burden required for simulations, but also makes the results easier
to interpret, making UNISIM-I-D a valuable tool for engineers and researchers. Furthermore,
UNISIM-I-D offers a wide range of options for data entry, allowing the integration of geological
and petrophysical information in a flexible and personalized way.

The model used for the current experiments is a cropped version of the UNISIM-I-D
model, whose cutoff layer was placed just above the outset of the discontinuity locus existing in
the original model (Figure 6). This version let us to bypass numerical limitations concerning the
CO2 flow simulation model. Its geologic characteristics are representative of the superior strata
of the Namorado sandstone, a mature field located offshore in the Campos Basin, southwestern
region of Brazil, predominantly formed by turbiditic deposits (AVANSI; SCHIOZER, 2015;
GONZALEZ et al., 2019), having reasonable properties for CGS simulations (Table 2) and has
the largest theoretical storage capacity of supercritical CO2 among Brazilian sedimentary basins
(Figure 2b).

3.4.2 Trap analysis

By applying the trap analysis resource available in MRST-co2lab module, it is possible
to visualize how spill paths, spill points, catchment regions, and traps are all hierarchically
interconnected. These terms are specific to the software but useful to represent geologic entities
relevant to appraisal and modeling of GCS projects (NILSEN et al., 2015b; LIE, 2019).

Nilsen et al. (2015b) clarifies the fundamental concepts and basic algorithm for the
corner-based method, which views the top surface grid as a network composed of nodes and
edges, where flow occurs between nodes along the edges (Figure 7).

• The neighborhood of an internal node is defined as the node itself, along with all nodes
immediately connected to it.

• The shallowest node within a neighborhood is called the local maximum.

• The relationship between a node and each of its surrounding neighbors defines a vector,
with a node’s upward neighbor being the one with the steepest upward slope (if any).
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Figure 7 – Left: The neighborhood of an internal node consists of the node itself and its surrounding
nodes. Middle: A node and its upslope neighbor marked blue. Right: a local maximum does
not have any upslope node. Source: (NILSEN et al., 2015b).

The link between the nodes and their neighbors on the upper slope establishes a directed
tree, in which the infinitesimal flow, driven by buoyancy, travels along paths known as spill

paths. These paths connect each node to its upslope neighbor. Each spill path culminates in a
local maximum or boundary node. The spillover area of an internal local maximum is defined
as all nodes on the paths leading to that maximum (Figure 8). All nodes on paths that terminate
at a boundary node are assigned to the region’s spillover area.

Figure 8 – Three interior and one exterior spill region with associated spill edges. The spill-point edge is
the shallowest spill edge connected to a spill region. Source: (NILSEN et al., 2015b).

A spill edge refers to an edge in the mesh that connects nodes belonging to two distinct
spill regions. When CO2 moves upward along a spill path, it may leave the domain or accu-
mulate near a local maximum, waiting until the surface of the accumulated CO2 reaches the
shallowest spill edge of the associated spill region. This shallower edge is called the spill point

edge, with the spill point being the deeper node between the two, and the corresponding depth
is known as the spill depth. In degenerate cases, the spill point may not be unique. The area
under the surface where CO2 accumulates before reaching the spill point is identified as the
trap associated with the local maximum. The mesh nodes contained in this trap are called trap

nodes, thus defining the trap region associated with this local maximum. The remaining portion
of the spill region is called the catchment region.
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When the accumulated CO2 reaches the spill point, it will begin to leak in a different
region, following the path found upwards. If this path leads to a new local maximum, the trap
from which the CO2 leaked is said to be upslope connected to the trap associated with the new
local maximum, with the leak path being called a connection or river. The set of traps and rivers
forms a directed graph. Traps associated with different local maxima can connect to each other,
resulting in cycles in this graph. This occurs when local traps constitute subpockets within a
larger global capture structure (Figure 9).

Figure 9 – Illustration of a trap hierarchy. A, B and C are local maxima with associated traps colored
in blue, red and green. Trap C is upslope - connected to B, whereas A and B are upslope -
connected to each other and are therefore subtraps of a larger trap AB shown in purple. Now,
AB and C form local pockets of yet a larger trap structure ABC (cyan), whose spill point is at
the far left of the domain. Source: (NILSEN et al., 2015b).

If two or more local traps combine in this way to form a more comprehensive trap, we
call them lower-level traps, or subtraps, of a higher-level trap. The volume of the upper level
trap may be significantly greater than the combined volume of the lower level traps. The process
of identifying cycles and merging traps is repeated iteratively until the graph composed of traps
and rivers becomes acyclic. A trap that can no longer be merged is called a global trap and is
either upwardly connected to another global trap or extends outside the domain. Algorithm 1
explains the step-by-step process for calculating the total volume within each trap by building
a graph of nodes and their connections.

In summary, spill paths explain possible paths followed by the CO2 buoyancy-driven
flow under a sealing caprock towards its top portion and describes the path taken by CO2 below
the cover rock during its floating migration, considering an infinitesimal flow. When a trap
is completely saturated with CO2, any additional amount entering the trap will result in an
equivalent amount escaping. For infinitesimal quantities, the flow will follow a spill path out of
the trap, culminating in another trap or exiting the domain. In this way, it is possible to view
individual traps as connected by spill paths, similar to the interconnection of lakes via rivers.

All these elementary entities form a large network of channels, “rivers”, subtraps, and
higher-level traps that allow us to detect migration paths, injection sites, and probable leakage
points. The trap analysis over the reduced model portraits a “spider”-like network of 11 traps
with variable capacity (Figure 10) and total capacity of around 1.6×107 m3. A large top-level
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(a) (b)

(c)
Figure 10 – Trap analysis of the reduced UNISIM-I-D model: (a) 3D view of the network of traps and

rivers plotted over the top layer of the corner-point grid; (b) 3D view of the traps, rivers, and
catchment regions associated to the traps; (c) top view version of (b) with numbered traps
and identification of the legacy wells (in red).

trap locates at the central region of the field. Smaller satellite subtraps from second to fourth
levels – in terms of a hierarchical tree – form around connecting rivers that flow into the larger
trap.

3.5 Mathematical framework

Firstly, the mathematical framework provides a short theoretical background on func-
tionals and how they apply to this thesis. Secondly, it establishes the underlying functions and
parameters necessary to express the functionals. Lastly, it defines the family of qualifying func-
tionals.
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Algorithm 1 – Compute the bulk volume inside each trap (adapted by (NILSEN et al., 2015b)).
Require: Construct the graph G of individual nodes and their connections with upslope neigh-

bors.
Ensure: The bulk volume geometrically inside each trap.

1: Create graph G by depicting individual nodes and their connections to upslope neighbors.
This should be done for each interior node that is not a local maximum. Eliminate connec-
tions to downslope neighbors.

2: Allocate each node to a distinct spill region.
3: Detect spill edges.
4: Allocate a spill-point edge to each spill region by selecting the highest among the spill

edges that intersect the region’s boundary.
5: Establish connections between local maxima by following the rivers originating from the

spill-point edge(s) of each region along the spill paths defined by G. This process results in
a new graph H composed of interconnected local maxima/traps.

6: Identify global traps by systematically eliminating cycles in H through iterations and merg-
ing the traps implicated in the process.

7: Compute the bulk volume geometrically inside each trap.

3.5.1 Theoretical synopsis on functionals

Functionals are popular in applications involving calculus of variations. Loosely speak-
ing, a functional can be defined as a real-valued “function of functions”. This means it is an
mathematical entity that depends on functions as its variables, which, in turn, may depend on
other variables (GELFAND; FOMIN, 1963). Functionals are often defined by integral expres-
sions that require certain properties such as bounded variation, compactness, and continuity, but
can be constructed for non-integral models under less rigid assumptions. In fact, when working
with porous materials, the mathematical constraints imposed by functional theory are relaxed
to some extent. This is because quantities such as porosity are defined only in the sense of a
Representative Elementary Volume (BEAR, 1972). Therefore, the qualifying functionals intro-
duced in this thesis are based on the premises of the continuum hypothesis and the nonlinear
nature of the medium’s properties.

As the position vector x on the 3D Euclidean space determines the main free variable of
our applications, a functional ℱ is generically expressed by the form

ℱ(u1(x),u2(x), . . . ,uk(x)), (3.1)

where each u j, j = 1,2, . . . ,k, is a real-valued function assumed continuous pointwise. Here, the
functionals will take the similar form of a parametric group, built as a product of dimensional
quantities. Therefore, one has that the formal definition of a qualifying functional for storage
site is:

ℱ : 𝒱⊗,k(R3)→ [0,+∞)

Π
k
j=1u j ↦→ ℱ(Πk

j=1u j),
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where 𝒱⊗,k represents a Cartesian product of k functional spaces – where the k underlying
functions lie in – and Π is the product operator. At this point, we should underline that the deep
examination of the properties of these individual spaces is out of scope, as with the inspection
of their operations on the ground of the mathematical analysis.

This way, a qualifying functional is an indicator whose input is a product of under-
lying functions, and the output is a single real value. However, due to the variety of physical
interpretations that such indicator may have from the combination of several dimensions of its
underlying functions, it is practical and suitable to construct a dimensionless normalized ver-
sion for ℱ . A straightforward way to do that is by using the min-max rule, from which we get
to

J(x) =
ℱ(x)−min(ℱ(x))

max(ℱ(x))−min(ℱ(x))
. (3.2)

Subsection 3.5.4 expounds the practical implementation of the abstraction discussed so
far in simpler notations. For the rest of the thesis, J is the meaningful quantity for CO2 storage
site qualification.

3.5.2 Flow deliverability function

The flow deliverability function measures the quality of a formation taking into account
the so-called reservoir process speed, RPS, interpreted as a factor that controls the speed of a
fluid moving through a reservoir layer (OLIVEIRA et al., 2022). By defining RPS =

κ

φ
, where

φ is the effective porosity, and

κ(x) =

{
3

∑
i=1

K(x)2
ii

}1/2

, (3.3)

is a local average absolute permeability computed from the principal components of the perme-
ability tensor K, the flow deliverability function assumes the form

λ (x) = 0.0314 [RPS(x)]1/2, (3.4)

where 0.0314 is a unit conversion factor from millidarcies.

Experimental results showed that λ performs better for different rock formations, in
contrast with a series of other theoretical flow indicators (MIRZAEI-PAIAMAN et al., 2018;
MIRZAEI-PAIAMAN et al., 2019; FARAMARZI-PALANGAR; MIRZAEI-PAIAMAN, 2021;
MIRZAEI-PAIAMAN; GHANBARIAN, 2022). Roughly speaking, λ is a “flow potential” met-
ric for the storage site. It is worthwhile mentioning that λ depends exclusively on space since
φ and κ change only locally and are maintained fixed over time. That is why λ is treated here
as a function instead of an index.
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3.5.3 Distance-to-trap function

To locally weigh the quality of a storage site, distances are an effective way for assigning
degrees of relevance to locations in the surroundings of a trap. In order to have things clearer,
we defined a few entities that establish metric relations.

Let x be a spatial position; d(x,y) the Euclidean distance between x and another position
y; xτ the τ-th trap top point; xb;τ a position at the τ-th trap boundary; xb a position at the field
boundary; and x⊥τ the normal projection of xτ on the horizontal plane tangent to the τ-th spill
point.

Besides, let us consider that a catchment region embraces both the effective trap region,
denoted by 𝒯 , and the complementary trap region below the spill point of the respective trap,
denoted by 𝒯 c. The effective trap region is the pocket where CO2 will get withheld, whereas
the complementary trap region is a transitional flow region. Since the injectable gaseous mass
is limited by the effective trap capacity, it is appropriate to define the trap volume ratio as

υ =





vol(𝒯 )

vol(𝒯 c)
, if 𝒯 c ̸= /0

vol(𝒯 )

∑
nτ

τ=1 vol(𝒯τ)
, otherwise,

(3.5)

where vol stands for “volume”. One expects that υ < 1 because the effective trap volume usually
is higher than the transitional region volume. Once established, these quantities allow us to
define a distance-to-trap function by a generic form given by

β (x; p1, p2, . . . , pm), (3.6)

which depends on space and a finite number of m parameters. Below are defined the three
β -functions proposed (Figure 11):

β1(x;d1) := mean
1≤τ≤nτ

{β1,τ(x;d1)} (3.7)

β2(x;υ ,d1,d2,nτ) := mean
1≤τ≤nτ

{β2,τ(x;υ ,d1,d2,nτ)} (3.8)

β3(x;d1,d3) := mean
1≤τ≤nτ

{β3,τ(x;d1,d3)} (3.9)

where

β1,τ(x;d1) :=





1 , if 0 < d1 ≤ 1,
1

log(d1)
, otherwise,

(3.10a)

β2,τ(x;υ ,d1,d2,nτ) := − 1

1+
1
υ

exp
[
−
(d1 −d2

n𝒯

)] , and (3.10b)

β3,τ(x;d1,d3) := exp
(
− d1

d3

)
. (3.10c)
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(a)

(b)
Figure 11 – Reduced-order schemes (out of scale) illustrating how the distance-to-trap functions are ap-

plied over the 3D model for an individual trap: (a) projection view of domains and isolines
of the β functions. At the trap top (xτ ), or at its projection (x⊥τ ) in case of β2 only, any β

function assumes a unit value –– 100% of weighting effect over the functional –– and decays
asymptotically to zero at the “dead zone” – quasi-null weighting effect. (b) 1D representa-
tion β functions embodied in a few functionals (cf. Eqs. 3.12a - 3.12i). When applied over
the whole field, they generate smoothly decaying isosurfaces as a function of distances com-
puted in relation to xτ or x⊥τ that behave in the following manner: inverted logarithm with
small plateau near the trap top (β1); logistic with abrupt jump around the catchment region
boundary (β2); and hybrid logistic (β3).

Aside υ and the number of traps n𝒯 , the other parameters appearing in Eqs. (3.10a-3.10c) are:

d1 = d(x,xτ), x ̸= xτ , (3.11a)

d2 = max
1≤τ≤n𝒯

{d(x⊥τ ,xb;τ)}, and (3.11b)

d3 = max
1≤τ≤n𝒯

{d(xτ ,xb)}. (3.11c)

As an illustration, we plotted the scattering of β3,τ computed for two individual traps and of β3

(Figure 12).
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Figure 12 – Top view of the scattering over the grid model of: (a) β3,4; (b) β3,5; (c) β3. The cell marked
in black and the wireframe, where they appear, indicate the grid column which the trap’s
top lies and the projection of the trap volume onto the uppermost grid layer, respectively.
As seen, these distance-to-trap functions create isosurfaces whose weighting value decays
outward from the trap.

3.5.4 Qualifying functionals

As discussed in subsection 3.5.1, the derivation of a qualifying functional depends
uniquely on its composition of functions. Beyond the flow deliverability function and the distance-
to-trap functions, other commonplace quantities are admissible as underlying functions. This
way, the family of qualifying functionals proposed here is the following:

ℱ1(x) := φ(x)κ(x)sw(x), (3.12a)

ℱ2(x) := λ (x)sw(x)p(x), (3.12b)

ℱ3(x) := ℱ2(x)β1(x), (3.12c)

ℱ4(x) := ℱ2(x)β2(x), (3.12d)

ℱ5(x) := ℱ2(x)β3(x), (3.12e)

ℱ6(x) := sw(x)p(x) log(κ(x)) log(d(x,xb)), (3.12f)

ℱ7(x) := ℱ6(x)β1(x), (3.12g)

ℱ8(x) := ℱ6(x)β2(x), (3.12h)

ℱ9(x) := ℱ6(x)β3(x), (3.12i)

where sw is the water saturation function and p is the pore pressure function. Noteworthy points
necessary for enlightenment regarding Eqs. (3.12a-3.12i) are:

• Unavailability of injectivity functionals. To the best of the authors’ knowledge, the liter-
ature lacks qualifying indicators grounded on a consistent mathematical basis when one
takes CO2 injection into account. This fact led us to adapt a few methods formerly used
for assessing productivity potential to injectivity potential scores. As a result, Eqs. (3.12a)
and (3.12f), inspired after (KHARGHORIA et al., 2003) and (LIU; JALALI, 2006) re-
spectively, are assumed as benchmarks, since they differ from the original form only by
the water saturation, which replaces the oil saturation.
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• Inherited benchmarks. Because ℱ1 is a form inherited from the literature, the functionals
from ℱ2 to ℱ5 are proposed as its direct competitors. It turns out that ℱ2 acts upon ℱ3, ℱ4

and ℱ5 as a nuclear group intended to verifying if the addition of the flow deliverability
function and the pore pressure interfere for better qualification in terms of injectivity
potential. As supplementary part, the β -functions weigh the functionals by infusing the
distance-to-trap factor. Likewise, ℱ6 is a second benchmark extracted from the literature
that adds a log-regularity on the permeability field and on the interior field locations
taking the boundary into account. In turn, the presence of another nuclear group in ℱ7, ℱ8,
and ℱ9 propose that these three last functionals are tested in contrast with ℱ6 equally from
the the distance-to-trap factor. Ultimately, all these functionals are propositions equally
testable for site qualification.

• Physical interpretation and nondimensionality. Eq. 3.12a is a “transport potential”, a
measure of the capacity of the porous medium to transport fluid, influenced by properties
such as permeability, porosity and saturation. Eq. 3.12b provides a combined metric that
captures the flow capacity of the porous medium, the force driving the flow, and fluid
availability, offering an estimate of the potential for injection or movement of fluids in
the reservoir. Eq. 3.12f combines the flow capacity of the porous medium, the driving
force of the flow, the presence of fluids and the transport efficiency over distance, and
can be used to estimate and compare the injection potential of different zones, adjust-
ing the influence of factors based on distance and linearizing the analysis through the
permeability logarithm. Eqs. 3.12c-3.12e and Eqs. 3.12g-3.12i are used to estimate and
compare the potential injectivity of different zones taking into account the influence of
distance on fluid transport efficiency. If carefully inspected as for their dimension, it be-
comes clear that the functionals can transmit different meanings. By taking SI units, for
instance, one verifies that ℱ1, ℱ3, and ℱ6, in this order, could resemble area, force, and
momentum. On the other hand, neither there is plausibility in choosing the (most) correct
unit, nor comparing the performance of the functionals by their physical sense. Therefore,
the functionals are made dimensionless and normalized.

• Normalization and the J-forms. As explained in the previous point, it is quite convenient
to work with dimensionless and normalized functionals, so that its output value limits to
the unit interval instead of [0,+∞). This process is conducted by Eq. (3.2), after which the
J-forms remain unitless. Despite of that, we only consider the strictly positive values, i.e.
(0,1], for practical reasons, since 0 means null quality.

• Pore pressure normalization. One knows that the CO2 injectable for permanent storage
should be in a supercritical state. To reach this condition, the depth and in-situ pore pres-
sure at the storage site should be, respectively, around 1000 m and 7.39 MPa. This way,
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for functionals that contain the pore pressure, Eq. (3.2) succeeds Eq. (3.13):

p̄(x) =
p(x)− pcrit

max{p(x)}− pcrit
, (3.13)

where pcrit is the critical pressure, here fixed at 7.39 MPa (VESELY et al., 2019).

• Static and dynamic quantities. The functionals are hybrid entities that absorb both static
(porosity, permeability and distances) and dynamic (saturation and pressure) quantities,
each of them treated as a function. Currently, we consider functionals at a fixed time
instant, allowing them to vary only over space.

3.6 Computational framework

This section explains the discrete procedures for implementing the qualifying function-
als computationally. To convert the concepts defined in the preceding subsections from con-
tinuum domains to discrete ones, the required change is the replacement of the spatial point
notation x by the grid cell notation c. From that point on, the rationale for the novel technicali-
ties introduced in this section results from progressive advancements extensively discussed in a
series of earlier papers (OLIVEIRA et al., 2016; ROQUE et al., 2017; OLIVEIRA et al., 2020;
OLIVEIRA et al., 2022)).

3.6.1 Grid description

The reduced model is represented by a complex cell-based corner-point grid denoted by

Ω = {c(i, j,k);1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K}, (3.14)

for I = 81, J = 58, and K = 4 of cell extension over the 3D discrete domain Ω, with centroid
c(i, j,k), np = 8083 active cells, and average pore volume of around 1.33×104 m3. The porosity
varies between 0.0 and 0.3 (Figure 13).

3.6.2 Discrete dynamic units and injectivity unit classes

A discrete dynamic unit (DDU) reflects a petrophysical dynamic unit (cf. section 3.2)
under the discrete viewpoint. Each DDU is a set of cells of the computational grid that covers a
region where the formation is statistically similar. They represent the physical containers where
CO2 injection wells should be placed for potential injectivity.

Injectivity unit class (IUC) is a set of one or more disjoint DDUs. The purpose of a class
is to assign a single positive integer value to its members, so that they classify regions according
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Figure 13 – Top surface view of the porosity field of the reduced model.

to the volumetric quality map quantitatively determined by a J-functional. The IUCs will rank
the volumes for well placement, making them qualified sites after a binning transform like

IUC(c) = B(J(c)), ∀c ∈ Ω, (3.15)

where IUC is the class label and B is a statistical method that creates partitions over the distri-
bution of J over all grid cells. In other words, the number of IUCs is equivalent to the number
of bins of a histogram and the bin edges are the classification boundaries for the DDUs.

The transform of the J-distribution into IUCs employs a binning algorithm that cre-
ates class intervals automatically (Figure 14). Here, B matches one of the following options:
scott (SCOTT, 2015); freedman-diaconis (FREEDMAN; DIACONIS, 1981); sturges
(STURGES, 1926); or sqrt (DAVIES et al., 1947).

• Scott’s rule is optimal if the data is close to being normally distributed, but is also ap-
propriate for most other distributions. It uses a bin width of

B(J) = 3.5σ(J)(#J)−1/3, (3.16)

where σ is the standard deviation and #J is the number of elements in J;

• Freedman-Diaconis (fd) rule is less sensitive to outliers in the data, and may be more
suitable for data with heavy-tailed distributions. It uses a bin width of

B(J) = 2 IQR(J)(#J)−1/3, (3.17)

where IQR is the interquartile range;
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• Sturges’ rule is a simple rule that is popular due to its simplicity. It chooses the number
of bins to be

B(J) = ⌈1+ log2(#J)⌉, (3.18)

where ⌈ ⌉ rounds up the next integer (ceiling function);

• The Square Root (sqrt) rule is another simple rule widely used in other software pack-
ages.

B = ⌈
√

#J⌉. (3.19)

| | | | | |

...

...
J

(a)

J...

(b)
Figure 14 – Example of binning method applied to the distribution of a functional J: (a) histogram bins

of injectivity unit classes (IUCs) overlaid by the density curve; (b) integer function resulting
from the binning transform by Eq. (3.15).

In essence, Eq. (3.15) represents a classifier function that will generate up to N finite
classes. It is desirable that N is small so that the number of injection sites and the “statistical
power” balance each other to avoid excessive numerical simulations. The interpretation of this
statistical power for our purposes is in the ability of the binning method to provide enough
explainability of the distribution (see subsection 3.6.5).
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3.6.3 Injection site and well placement

The IUCs lead to DDU partitions of cells whose J values vary within a short range. The
DDUs, in turn, become identifiable as smaller storages (clusters) defined by

CD,q := {c; IUC(c) = D and c ∈ N6(cs)}, (3.20)

where q = 1,2, . . . ,Q is the cluster index and N6 is a 6-neighbor face-connected aggregator used
to produce connectivity among cells belonging to the same IUC. Each cluster can comprise a
distinct number of interconnected cells, represented by nq. Consequently, CD,q represents either
a constituent portion of or a unique DDU.

We associated the storage CD,q to a graph GD,q through a one-to-one function 𝒢

𝒢 : CD,q → GD,q

ci
q ↦→ vi

q, (3.21)

that maps a cell of the storage onto a node of the graph, thus establishing a connectivity entan-
glement among the neighboring cells (Figure 15).

Figure 15 – Cluster-to-graph mapping for a storage site: CD,q is a cluster formed by face-connected grid
cells mapped onto nodes of a graph GD,q. The vertices math the cell centroids and the edges
establish flux connectivity. Source: (OLIVEIRA et al., 2021).

As with the clusters are used to model a volumetric injection site, we employed the met-
ric known as closeness centrality to determine the exact injection well placement. The closeness
centrality of each node vq ∈ GD,q is computed as

γ(vq) =
1

ηλ

∑
i=1

d(vq,vn)

, ∀vn ∈ GD,q, vn ̸= vq, (3.22)

where d(vq,vn) is the shortest path distance between vq and vn (FREEMAN, 1978; NEWMAN,
2010). The closeness centrality relates to a communication control and interpreted here as a
potential injection site for well placement.

However, since the γ values change per node, we computed the maximum closeness

centrality (MCC) of the cluster CD,q to determine a single well placement locus that features
the bottom hole point (Figure 16).
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Figure 16 – Closeness centrality (γ) distribution over a hypothetical cluster. It varies from lower values
(colder colors) to higher values (hotter colors) within the unit interval. The black dot indi-
cates the maximum closeness centrality cell (MD,q).

3.6.4 Volumetric quality map

The ideas formulated so far give rise to the definition of a volumetric quality map
(VQM) directed to CO2 storage site qualification. A VQM is a tuple formed by a qualifying
functional, a binning method, and a collection of DDUs determined by IUCs and its respective
clusters. In full form, a VQM is a triplet like (J,B,{Cd,q}). Once J is fixed and B is variable,
the collection {Cd,q} becomes, in fact, a response to these two presets.

We can express a VQM as a leaf of a combinatorial tree headed by the qualifying func-
tional at the first level and the binning method at the second level. Both unwrap the IUCs and
DDUs into a third and fourth levels. This way, the elements that form a VQM are equivalent to
field regions with different scores that may be potential storage sites.

By making an ordered correspondence of integer indices for the VQM’s elements to fa-
cilitate the computational manipulation, one concludes that a VQM can be alternatively written
as:

V QM j,b := {S j,b,d,q}, (3.23)

for j = 1,2, . . .9 enumerating the normalized versions of the qualifying functionals introduced
in Eqs. (3.12a - 3.12i), b = 1, . . . ,4 enumerating the binning methods – scott, fd, sturges
and sqrt, in this order –, d enumerating the IUCs, and q enumerating the clusters as defined
in Eq. (3.20). As such, {S j,b,d,q} represents a collection of single storage sites described by a
given functional and a binning method (Figure 17).

3.6.5 Intersecting sites

Due to the statistical nature of the binning methods, it is possible that two or more ele-
ments correspond to the same physical storage site – at least by a minimum threshold of volume
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(a)

(b) (c)
Figure 17 – (a) Illustrative scheme of a combinatorial tree for a hypothetical functional (denoted by 1)

highlighting its third leaf and an homologous site; (b) Illustrative scheme of a combinatorial
tree for a second hypothetical functional (denoted by 2) highlighting its first leaf and another
homologous site; (c) Legend written in formal notation according to Eq. (3.23). The symbol
J≡ stands for “equivalent by Jaccard”. Hierarchical view of a small combinatorial tree formed
by two functionals: (a) the first functional ( j = 1), alongside three binning methods (b =
1,2,3), anchors 3 VQMs (shaded stripe in light yellow) and a varying number of IUCs and
clusters per VQM. In total, it returns 15 storage sites; (b) the second functional ( j = 2),
alongside two binning methods (b = 1,2), anchors 2 VQMs (shaded stripe in light orange)
and a varying number of IUCs and clusters, summing ten storage sites. Among all 25 storage
sites, two are equivalent by Jaccard to S1,1,2,2 (connected lines in blue) and negligible for
simulation. It turns out that the storage sites (elements), generically denoted by S j,b,d,q,, are
the endpoints of minor branches that make up a leaf. Also, the union of single combinatorial
trees form a highly complex structure of leafs and elements when one organizes all the
functionals and binning methods.

coverage – even though they lie in distinct VQMs (Figure 17a and Figure 17b). In case of exist-
ing homologous elements in other VQMs, the intersections are eliminated by removal of circular
dependencies. A circular dependence occurs when some homologous yield intersections in the
VQMs (Figure 18).
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The technique implemented in this thesis to eschew intersecting VQMs resorts to the
Jaccard index. The Jaccard index J measures the similarity between storage sites (VQM ele-
ments) based on their cell indices (JACCARD, 1912). Here, it is defined as

J(S j1,b1,d1,q1,S j2,b2,d2,q2) =
#(S j1,b1,d1,q1 ∩S j2,b2,d2,q2)

#(S j1,b1,d1,q1 ∪S j2,b2,d2,q2)
, (3.24)

for S j1,b1,d1,q1 ∈V QM j1,b1 and S j2,b2,d2,q2 ∈V QM j2,b2 . The numerator of this fraction is the num-
ber of cells of the intersection set between the two elements, whereas the denominator is the
number of cells of the union of both elements. Given that 0 ≤ J ≤ 1, we imposed that two
elements yield circular dependence if their J value is higher than J*, where J* is the 3rd quar-
tile of the distribution of all Jaccard numbers calculated for VQMs’ elements (Figure 18). This
threshold enforces that pairs of storage sites with high stratigraphic coverage by a volume per-
centage above J* should be treated as identical and considered as a single site. Consequently,
all the elements homologous to a leading element in the hierarchy of the combinatorial tree
are neglected for further analysis. The positive effect of the Jaccard filtering is the reduction of
computer simulations.

Figure 18 – Scheme depicting how intersecting storage sites are identifiable and its application to the
case of Figure 17. The intersecting sites S1,1,2,3, S1,2,1,3, and S2,2,1,4 cover, two-by-two, the
same volume (left) at a given extension and create a “circular dependence” portrayed by
a simple graph (top right). The threshold for the volume coverage stems from the Jaccard
index J, which varies from 0, when there is no intersection between two elements, to 1,
when they match exactly (bottom right). In this example, J′ = J(S1,1,2,3,S1,2,1,3) and J′′ =
J(S1,1,2,3,S2,2,1,4). Both overcome the threshold J*, taken as the third quartile of all Jaccard
indices computed for viable pairs of elements within the tree. Viable pairs are those formed
by elements belonging to different VQMs.

3.6.6 Fluid flow model

The processes of CO2 injection and migration are approximated by the interaction of
brine (aqueous) and supercritical gas phases indicated by w and g, respectively. The fluid flow
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dynamics is modeled by the multiphase version of the mass conservation equation coupled to
the Darcy’s flux model, resulting on the following set of equations

∂ (φραsα)

∂ t
+∇ · (ραuα) = ραqα (3.25a)

uα = κλα(∇pα −ραg) (3.25b)

∑
α

sα = 1, α = w,g, (3.25c)

where ρ is the fluid density, s is the fluid saturation, u is the fluid velocity, q is the volumetric
flux from any source or sink, λ is the mobility, and g is the gravitational acceleration (LIE,
2019).

Equations 3.25a-3.25c are firstly integrated vertically by assuming that the fluid phases
are subject to hydrostatic equilibrium and totally segregated. One admits that CO2 and brine
are separated by a sharp interface and each vertical column of the aquifer is divided into a
three-zone model as follows (Fig. 19):

• gas plume zone of thickness h, where CO2 flows freely. Here, CO2 saturation is 1 - sw,r

and brine saturation is sw,r.

• residual zone of thickness hmax − h, where brine re-invades the pore space previously
occupied by the plume. In this zone, CO2 residual saturation is sg,r and brine saturation is
1− sg,r.

• brine only zone of thickness H −hmax, where H is the aquifer thickness.

Vertically-averaged quantities for permeability, mobility and Darcy fluxes define the so-
called h-formulation of the vertical equilibrium (VE) model, for which a transport equation is
numerically solved by an explicit method. See the Appendix B for more details.

3.6.7 Trapping mechanisms

Using a sharp-interface VE model (see Appendix B) allows for accurate carbon trap-
ping inventories for specific scenarios, detailing how injected CO2 volumes are divided into
safely contained parts and those that might potentially leak back to the surface. Over time, CO2

becomes more securely trapped due to various trapping processes occurring at different rates,
ranging from days to thousands of years.

When CO2 is injected into a deep subsurface rock formation, it forms a separate, typi-
cally dense phase (the CO2 plume) that displaces other liquids in the pore space (usually brine).
Since the CO2 phase is almost always less dense than the resident fluids, it will rise and be re-
placed by other fluids. However, as the CO2 volume fraction falls below a certain level, capillary
pressure from the other fluids traps the CO2 in the pore space between rock grains, preventing
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Figure 19 – Overview of the sharp-interface three-zone description for the vertical equilibrium (VE)
model adopted here under a generalized configuration tilted by θ . h, hmax, and H divide
a vertical column, thus defining the plume, residual plume and brine regions over the aquifer
thickness. The top and bottom dashed areas represent impermeable walls (sealing rock).
Source: (NILSEN et al., 2017).

Figure 20 – Schematic of a vertical section of an aquifer showing the different ways in which injected
CO2 may be present during migration (adapted from (NILSEN; LIE; ANDERSEN, 2016)).

further movement. This process, known as residual trapping, results in CO2 volumes categorized
as residual in the inventory. Thus, the plume inventory is divided into two categories: residual

in plume, representing the CO2 fraction that will remain residually trapped when the plume
moves, and free plume, which is the remaining part free to migrate from its current position.

In most relevant scenarios, CO2 is injected beneath a sealing rock where the capillary
pressure within pore throats exceeds the buoyancy pressure of the CO2. This top seal prevents
the plume from moving directly upward. If the seal is sloped, the CO2 will form a thin layer
underneath, gradually migrating upslope until it encounters a structural trap, such as a fold in the
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top surface where the CO2 will accumulate. Once inside a trap, the CO2 remains structurally
trapped unless the plume height creates enough capillary pressure to penetrate the seal. The
structurally trapped volumes are categorized into two types: structural residual, which will stay
immobile and never leak, and structural plume, which could potentially escape through a crack
in the top seal. Once a trap fills, the CO2 will spill over and continue migrating upward. To
summarize, the structural residual and residual volumes are securely stored unless changes in
the aquifer alter the residual saturation of CO2. The structural plume volumes are immobilized
and safely stored unless the structural traps have leakage points. The remaining volumes will
continue migrating upslope. The residual in plume volumes will eventually become residually
trapped, while the free plume volumes may leak if not trapped by another mechanism later. In
the inventory shown in Figure 19, the various CO2 volume categories are stacked by increasing
leakage risk, from structural residual CO2 (darker green) to volumes still plume (yellow/orange)
or those that have already left the simulated domain (red). Each volume type is detailed below:

• Structural residual volume. CO2 both residually and structurally trapped. The volume
(VR1) is given by

VR1 = ∑
x∈

⋃
τ

sRc(pv)x, (3.26)

where sRc is the residual CO2 saturation, pv is the pore volume and τ is a trap.

• Residual volume (not structural): CO2 residually (but not structurally) trapped, outside
the free-flowing zone. The volume (VR2) is given by

VR2 =
[

∑
x ̸∈

⋃
τ

max(hmax −max(x̂,hx))(pv)x

]
sRc, (3.27)

where sRc is the residual CO2 saturation and x̂ = min(d(spτ ,x),Hx), with spτ is the spill
point of trap τ .

• Residual in plume volume: CO2 still inside the free-flowing zone residually (but not struc-
turally) trapped. The volume (VR3) is given by

VR3 =
[

∑
x̸∈

⋃
τ

(hx · (pv)x)− (min(x̂,hx) · (pv)x)
]
sRc, (3.28)

• Structural plume volume: CO2 structurally (but not residually) trapped. The volume (VSP)
is given by

VSP =
[

∑
x∈

⋃
τ

(min(x̂,hx) · (pv)x)
]
(1− sRw − sRc), (3.29)

where sRw is the residual brine saturation.

• Free plume volume: CO2 neither structurally nor residually trapped. The volume (VFP) is
given by

VFP =
[

∑
x̸∈

⋃
τ

(hx · (pv)x)− ∑
x̸∈

⋃
τ

(min(x̂,hx) · (pv)x)
]
(1− sRw − sRc), (3.30)
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where sRc is the residual CO2 saturation and sRw is the residual brine saturation.

• Leaked volume: CO2 escaped outward the simulated domain. The leaked volume (VL) is
given by

VL =VT − (VR1 +VR2 +VR3 +VSP +VFP), (3.31)

where VT is the total injected volume.
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4 RESULTS

In this chapter, a comprehensive overview of the results is presented, encompassing the
identification of potential storage sites for each functional and the development of a volumet-
ric quality map. The methodology employed involves Sobol sensibility analysis and Jaccard
filtering, which assesses the number of intersection sites for each functional, contributing to a
nuanced understanding of storage possibilities. The numerical simulations conducted using the
MRST-co2lab simulator further enhance the reliability of the results.

The simulations were executed at each potential storage site, considering parameter val-
ues recommended in the existing literature. This approach ensures a robust foundation, aligning
the study with established scientific principles. The use of the MRST-co2lab simulator adds a
layer of sophistication to the analysis, allowing for a detailed exploration of the potential stor-
age sites’ viability. The results, elucidated for each functional, provide valuable insights into the
dynamics of CO2 storage. The focus extends to the existing wells of the UNISIM-I-D model,
contributing to a holistic understanding of the interplay between various factors influencing
storage outcomes. Notably, the analysis includes a meticulous examination of the percentage
of residual CO2 storage over a significant temporal spans, specifically 15, 30, 50 and 100 years
post-injection and 1985, 1970, 1950 and 1900 years of plume migration, respectively.

By delving into the residual storage percentages, the study sheds light on the long-term
effectiveness and sustainability of CO2 storage at the identified sites. This temporal analysis is
crucial for assessing the feasibility of these sites over extended periods, aligning with the need
for sustainable carbon capture and storage strategies.

The chapter’s emphasis on the UNISIM-I-D model, with their characteristics and legacy
wells, provides a benchmark for evaluating the results against an established framework. This
comparative approach enhances the applicability and reliability of the findings, fostering a
deeper understanding of the potential storage sites’ performance. The integration of numeri-
cal simulations and consideration of established parameter values contribute to the robustness
of the findings, laying the groundwork for informed decision-making in the realm of carbon
capture and storage.

4.1 Sobol sensibility analysis

Sobol sensitivity analysis (SSA) is a technique used in modeling and simulation to un-
derstand the relative importance of different input variables in relation to the model output. It
allows decomposing the total variance of the model output into individual contributions of each
input variable and their interactions (SOBOL, 2001).
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SSA is especially useful when there are a large number of input variables and com-
plex interactions between them. It provides a deeper understanding of the relationships between
variables and helps us to identify which variables have the greatest impact on the model output
(SALTELLI, 2002; SALTELLI et al., 2010). SSA belongs to the Global Sensitivity Analy-
sis (GSA) group, in which all model inputs vary simultaneously over the entire input range
(SOBOL, 1993; SALTELLI, 2002). The contribution of the inputs to the model output and their
interaction can be estimated using Equation 4.1:

D(ℱ) = ∑
i

Di +∑
i< j

Di j + ∑
i< j<k

Di jk +D12...dp (4.1)

where D(ℱ) represents the total variance or total effect on the model output, Di indicates the
first-order variance contribution, and Di j signifies the second-order variance contribution, also
known as the interaction between input parameters. Additionally, the remaining terms in Equa-
tion 4.1 represent higher-order interactions up to dp (the total number of input parameters in the
model). The first-order and total-order sensitivity indices are defined by equations 4.2 and 4.3 ,
respectively:

Si =
Di

D
(4.2)

STi = 1−Si (4.3)

The benefit of using the SSA method is that it considers the relationships between the model
inputs and output, encompassing all input parameters and their interactions (ZHANG et al.,
2015; KUMAR et al., 2020). Let us consider the model given by Equation 3.1. The input
variables X1, . . . ,Xp represent the input variables having known probability distribution, and
the model output is represented by Y which is a scalar. The decomposition nature of Sobol
method converts output variance into contributed input factor. To estimate the relative influence
of an input factor on the model output, the Xi is fixed as X*

i , considering conditional variance
VXi

(Y | Xi = X*
i ), where Xi denotes all the inputs except Xi and also EX(Y ) as the conditional

expectation of X in relation to Y (PAPOULIS, 2002). The law of total variance (Equation 4.1)
is the basic framework of Sobol method, which can be clearly seen in Equation 4.4:

V (Y ) =VXi

(
EXi

(Y | Xi)
)
+EXi

(
VXi

(Y | Xi)
)

(4.4)

After normalization,

1 =
VXi

(
EXi

(Y | Xi)
)

V (Y )
+

EXi

(
VXi

(Y | Xi)
)

V (Y )
(4.5)

The first term of Equation 4.5 represents the first-order effect (FOE) for the parameter Xi, i.e.,

Si =
VXi

(
EXi

(Y | Xi)
)

V (Y )
(4.6)
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The second term of Equation 4.5 denotes second-order effect (SOE). The SOE represents the
interaction of the factors (Xi and X j) contributed to model output Y (i.e., sensitivity to Xi and X j

not expressed in Vi nor Vj) as in Equation 4.7.

Si j =
Vi j

V (Y )
(4.7)

and, by Homma and Saltelli (1996), the total-order sensitivity (STi) is defined as

STi = 1−
EXi

(
VXi

(
Y | Xi

))

V (Y )
(4.8)

Table 3 presents the Sobol sensibility analysis of the functionals ℱ1-ℱ9 (Eqs. 3.12a
and 3.12i). Permeability κ (also incorporated in λ according to the Equation 3.4) has a greater
influence compared to other parameters. Furthermore, there is no influence of pressure. Some
justifications for this are the linearity of the distribution, the assumption of vertical equilibrium
in the simulation and the short depth range of the reduced UNISIM-I-D, resulting in a small
pressure variation.

Table 3 – Sobol sensibility analysis of the functionals ℱ1-ℱ9.

Parameters S1 ST

ℱ1

{
φ 0.01 0.01
κ 0.99 0.99

Parameters S1 ST

ℱ2

{
λ 1 1
p 0.00 0.00

ℱ3

{
λ 0.98 0.99
p 0.00 0.00

β1 0.01 0.01

ℱ4

{
λ 0.48 0.60
p 0.00 0.00

β2 0.40 0.51

ℱ5

{
λ 0.92 0.94
p 0.00 0.00

β3 0.05 0.07

Parameters S1 ST

ℱ6

{
p 0.00 0.01

logκ 0.58 0.80
logd 0.19 0.40

ℱ7





p 0.00 0.00
logκ 0.58 0.81
logd 0.18 0.40
β1 0.00 0.00

ℱ8





p 0.00 0.00
logκ 0.47 0.75
logd 0.14 0.36
β2 0.07 0.22

ℱ9





p 0.00 0.00
logκ 0.57 0.81
logd 0.18 0.40
β3 0.00 0.01

Regarding the influence of β -functions (Eqs. 3.10a-3.10c), it is possible to observe from
the Table 3 that β2 has a greater influence in relation to β1 and β3, evidenced by the greater S1

and ST , that is, the logistic function (β2) contributes significantly more compared to the inverted
logarithmic function (β1) and the logistic function β3. This can be justified by the fact that β2

has a value very close to 1 in both the trap and the catchment region, reaching a value close to
the maximum for a larger number of cells.

4.2 Quality map generation

By constructing the complete combinatorial tree for the VQMs, a total of 36 leaves
and 1450 possible storage sites were systematically generated. However, a meticulous filtering
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process, guided by Eq. (3.24) for intersection removal, led to the selection of 184 sites for
subsequent simulation. This culling process resulted in an absolute ratio of 12.7% (184 out of
1450) for the harnessing of potential storage sites (refer to Table 4 for detailed information).
This careful selection ensures that the simulated sites are representative of a diverse range of
conditions, enhancing the reliability and applicability of the ensuing analysis.

Table 4 – Detailed counting of storage sites per functional and volumetric quality map. The column de-
noted by #Vj,b indicates the number of storage sites of the VQM generated by the j-th func-
tional and b-th binning method. The following columns, namely #SH

j , #SJ
j and e j stand for the

number of intersecting sites (homologous) for the j-th functional and all binning methods, the
number of remaining potential storage sites after the Jaccard filtering, and the relative ratio of
potential storage site harnessing.

j #Vj,1 #Vj,2 #Vj,3 #Vj,4 #SH
j #SJ

j e j

1 32 17 41 12 348 25 7.2%
2 8 8 62 0 80 10 12.5%
3 10 0 72 0 50 7 14.0%
4 47 24 93 3 314 37 11.8%
5 12 1 70 0 66 7 10.6%
6 16 16 52 1 132 18 13.6%
7 39 11 39 1 168 41 24.4%
8 21 21 50 4 198 24 12.1%
9 12 12 38 0 94 15 16.0%

Total 1450 184

4.3 Numerical simulations

In order to conduct numerical simulations focused on CO2 injection across the identified
184 potential storage sites, a meticulous setup of the MRST-co2lab simulator was undertaken.
This setup involved configuring rock-fluid properties and numerical parameters in alignment
with established literature, ensuring the simulations adhere to recognized standards and prac-
tices.

The placement of injection wells across each site was determined utilizing Eq. (3.22),
which specifically designates the MCC cell within the corresponding cluster, representative of
a potential storage site. This approach ensures a systematic and representative allocation of
injection wells across the diverse range of potential storage conditions identified in the earlier
stages of the study.

Each MCC cell is assigned a single well for the injection process, responsible for pump-
ing CO2 into the geological formation. The well allocation, detailed in Table 5, outlines the key
properties and parameters associated with each injection well, emphasizing the specificity and
consistency maintained throughout the simulation process.

This systematic approach to simulation setup and well placement is integral to the re-
liability and robustness of the subsequent analyses. It ensures that the numerical simulations
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capture the inherent complexities of the identified potential storage sites, providing a founda-
tion for in-depth insights into the dynamics of CO2 injection and storage. For more details
regarding relative permeability, see Appendix A.

Table 5 – Simulation setup used in MRST-co2lab for all numerical experiments.

Parameter Value
Residual brine saturation 0.11
Residual CO2 saturation 0.21
Brine viscosity 0.3086 cP
CO2 viscosity 0.0566 cP
Brine density 975.86 kg/m3

CO2 density 686.54 kg/m3

Brine relative permeability 0.2142
CO2 relative permeability 0.8500
Gravity acceleration 9.8066 m/s2

CO2 injection rate 0.1417 ·106 m3/year
Injection time span 15-30-50-100 years
Migration time span 1985-1970-1950-1900 years
Average well bottomhole depth 3090 m

4.3.1 Injection performance

The numerical outputs of VQM and potential storage sites tested are detailed per in-
jection periods (Tables 7 - 10). Among all, the best injection performances, i.e. those with the
highest residual trapping proportions, were collected, summarized, and used for benchmark-
ing. The color scheme employed should be interpreted as six different categories (Table 6) of
CO2 storage inventory states (NILSEN et al., 2015a). For comparative analysis of the CO2 con-
tainment performance, we consider the residual sum ∑

3
i=1 Ri, where each Ri refers to a type of

residual.

Table 6 – Default CO2 storage inventory states and their description according to the MRST-co2lab.

State Description Color
Structural residual (R1) CO2 both residually and structurally trapped

Residual (R2) CO2 residually (but not structurally) trapped, outside the free-flowing zone

Residual in plume (R3) CO2 still inside the free-flowing zone residually (but not structurally) trapped

Structural plume (SP) CO2 structurally (but not residually) trapped

Free plume (FP) CO2 neither structurally nor residually trapped

Leaked (L) CO2 escaped outward the simulated domain

Below we have the CO2 inventory resulting from numerical simulations. Tables 7-10
presents the results referring to wells W that represent the largest group with nodes connected by
functional (Group 1). Tables 11-14 presents the results referring to the W wells that represent the
second largest group with nodes connected by functional (Group 2) and Tables 15-18 presents
the results referring to the W wells that represent the third largest group with nodes connected
by functional (Group 3).
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Table 7 – Group 1: CO2 inventory resulting from 15 years of injection plus 1985 years of migration.

Well R1 R2 R3 ∑Ri SP FP L

W3,1,26,1 13.49 43.54 0.64 57.67 39.56 2.07 0.70
W7,1,12,2 13.94 42.23 0.69 56.86 40.91 2.23 0.00
W2,1,31,1 13.94 42.23 0.69 56.86 40.91 2.23 0.00
W6,3,12,1 13.46 42.44 0.62 56.52 39.45 2.01 2.01
W4,1,8,1 13.49 41.80 0.61 55.90 39.52 1.98 2.60
W8,1,6,1 14.38 40.14 0.76 55.28 42.26 2.46 0.00
W9,1,17,1 14.47 39.81 0.75 55.03 42.54 2.43 0.00
W5,1,24,1 14.69 38.29 0.89 53.87 43.26 2.87 0.00
W1,1,1,8 15.24 36.12 0.87 52.23 44.95 2.82 0.00

legacy





NA2 15.02 34.10 1.63 50.76 43.96 5.28 0.00
RJS19 17.25 23.82 1.56 42.63 52.31 5.06 0.00
NA3D 16.22 21.89 0.00 38.11 42.30 0.00 19.59
NA1A 20.42 17.62 0.00 38.04 61.96 0.00 0.00

Table 8 – Group 1: CO2 inventory resulting from 30 years of injection plus 1970 years of migration.

Well R1 R2 R3 ∑Ri SP FP L

W3,1,26,1 15.16 36.11 0.94 52.21 44.73 3.05 0.00
W6,3,12,1 15.26 35.54 0.95 51.75 45.06 3.08 0.12
W4,1,8,1 15.36 35.07 0.96 51.38 45.37 3.09 0.16
W7,1,12,2 15.48 34.63 0.97 51.08 45.76 3.15 0.00
W2,1,31,1 15.48 34.63 0.97 51.08 45.76 3.15 0.00
W8,1,6,1 15.65 33.81 1.00 50.46 46.31 3.23 0.00
W9,1,17,1 15.73 33.50 0.99 50.23 46.56 3.22 0.00
W5,1,24,1 15.69 33.44 1.05 50.17 46.44 3.39 0.00
W1,1,1,8 16.18 31.33 1.06 48.58 48.00 3.42 0.00

legacy





NA2 15.94 30.39 1.64 47.97 46.71 5.32 0.00
RJS19 17.57 22.37 1.57 41.51 53.41 5.08 0.00
NA3D 17.51 19.15 0.00 36.66 47.30 0.00 16.04
NA1A 20.84 15.11 0.00 35.95 64.05 0.00 0.00

Table 9 – Group 1: CO2 inventory resulting from 50 years of injection plus 1950 years of migration.

Well R1 R2 R3 ∑Ri SP FP L

W3,1,26,1 15.99 31.99 1.09 49.07 47.42 3.52 0.00
W6,3,12,1 16.08 31.56 1.09 48.74 47.72 3.54 0.00
W4,1,8,1 16.18 31.15 1.10 48.42 48.02 3.56 0.00
W7,1,12,2 16.24 30.85 1.11 48.20 48.22 3.58 0.00
W2,1,31,1 16.24 30.85 1.11 48.20 48.22 3.58 0.00
W5,1,24,1 16.30 30.44 1.14 47.88 48.42 3.70 0.00
W8,1,6,1 16.34 30.37 1.12 47.83 48.54 3.62 0.00
W9,1,17,1 16.41 30.10 1.12 47.63 48.75 3.62 0.00
W1,1,1,8 16.69 28.76 1.15 46.61 49.66 3.73 0.00

legacy





NA2 16.78 26.96 1.66 45.40 49.24 5.36 0.00
RJS19 17.88 21.08 1.57 40.53 54.38 5.09 0.00
NA3D 18.85 16.33 0.00 35.17 52.99 0.00 11.84
NA1A 21.19 12.93 0.00 34.12 65.88 0.00 0.00

Table 10 – Group 1: CO2 inventory resulting from 100 years of injection plus 1900 years of migration.

Well R1 R2 R3 ∑Ri SP FP L

W9,1,17,1 16.41 30.10 1.12 47.63 48.75 3.62 0.00
W3,1,26,1 16.90 27.40 1.24 45.54 50.44 4.02 0.00
W6,3,12,1 16.97 27.09 1.24 45.31 50.66 4.03 0.00
W4,1,8,1 17.04 26.80 1.25 45.09 50.88 4.04 0.00
W7,1,12,2 17.08 26.62 1.25 44.95 51.00 4.05 0.00
W2,1,31,1 17.08 26.62 1.25 44.95 51.00 4.05 0.00
W5,1,24,1 17.06 26.59 1.27 44.92 50.97 4.11 0.00
W8,1,6,1 17.13 26.37 1.26 44.76 51.17 4.07 0.00
W1,1,1,8 17.34 25.42 1.27 44.04 51.85 4.12 0.00

legacy





NA2 18.04 20.99 1.70 40.72 53.78 5.49 0.00
RJS19 18.41 18.29 1.60 38.30 56.51 5.19 0.00
NA3D 20.62 11.47 0.00 32.09 62.21 0.00 5.70
NA1A 21.57 9.62 0.00 31.19 68.81 0.00 0.00
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Table 11 – Group 2: CO2 inventory resulting from 15 years of injection plus 1985 years of migration.

Well R1 R2 R3 ∑Ri SP FP L

W2,1,13,1 6.37 50.45 6.36 63.18 16.20 20.59 0.03
W1,1,1,3 7.24 48.24 6.22 61.70 18.13 20.15 0.02
W5,1,23,1 13.91 40.71 1.09 55.70 40.76 3.53 0.00
W3,1,28,1 14.40 39.44 0.92 54.75 42.27 2.97 0.00
W8,1,15,1 15.04 35.82 1.54 52.40 42.61 4.99 0.00
W4,1,8,3 15.65 33.50 1.09 50.23 46.25 3.52 0.00
W9,1,20,2 15.72 33.46 1.03 50.20 46.48 3.32 0.00
W6,1,18,1 15.58 33.44 1.11 50.13 46.05 3.60 0.22
W7,1,10,6 20.55 18.25 0.00 38.80 61.20 0.01 0.00

legacy





NA2 15.02 34.10 1.63 50.76 43.96 5.28 0.00
RJS19 17.25 23.82 1.56 42.63 52.31 5.06 0.00
NA3D 16.22 21.89 0.00 38.11 42.30 0.00 19.59
NA1A 20.42 17.62 0.00 38.04 61.96 0.00 0.00

Table 12 – Group 2: CO2 inventory resulting from 30 years of injection plus 1970 years of migration.

Well R1 R2 R3 ∑Ri SP FP L

W2,1,13,1 6.17 42.32 8.44 56.93 15.31 27.33 0.43
W1,1,1,3 6.90 40.87 8.35 56.12 16.58 27.03 0.27
W5,1,23,1 15.09 35.67 1.13 51.89 44.45 3.67 0.00
W3,1,28,1 15.43 34.63 1.04 51.09 45.55 3.36 0.00
W8,1,15,1 15.83 31.88 1.54 49.25 45.75 5.00 0.00
W4,1,8,3 16.20 30.93 1.13 48.27 48.06 3.67 0.00
W6,1,18,1 16.19 30.94 1.15 48.27 48.02 3.71 0.00
W9,1,20,2 16.33 30.49 1.12 47.93 48.45 3.62 0.00
W7,1,10,6 20.93 15.74 0.00 36.67 63.33 0.00 0.00

legacy





NA2 15.94 30.39 1.64 47.97 46.71 5.32 0.00
RJS19 17.57 22.37 1.57 41.51 53.41 5.08 0.00
NA3D 17.51 19.15 0.00 36.66 47.30 0.00 16.04
NA1A 20.84 15.11 0.00 35.95 64.05 0.00 0.00

Table 13 – Group 2: CO2 inventory resulting from 50 years of injection plus 1950 years of migration.

Well R1 R2 R3 ∑Ri SP FP L

W2,1,13,1 5.75 35.41 10.29 51.44 13.97 33.31 1.28
W1,1,1,3 6.69 34.75 9.97 51.41 15.58 32.28 0.72
W5,1,23,1 15.86 32.39 1.13 49.38 46.95 3.67 0.00
W3,1,28,1 16.11 31.51 1.10 48.72 47.74 3.55 0.00
W4,1,8,3 16.63 28.94 1.18 46.74 49.45 3.81 0.00
W6,1,18,1 16.61 28.96 1.18 46.75 49.41 3.84 0.00
W9,1,20,2 16.73 28.54 1.17 46.44 49.77 3.79 0.00
W8,1,15,1 16.60 28.09 1.54 46.24 48.77 5.00 0.00
W7,1,10,6 21.21 13.67 0.00 34.88 65.12 0.00 0.00

legacy





NA2 16.78 26.96 1.66 45.40 49.24 5.36 0.00
RJS19 17.88 21.08 1.57 40.53 54.38 5.09 0.00
NA3D 18.85 16.33 0.00 35.17 52.99 0.00 11.84
NA1A 21.19 12.93 0.00 34.12 65.88 0.00 0.00

Table 14 – Group 2: CO2 inventory resulting from 100 years of injection plus 1900 years of migration.

Well R1 R2 R3 ∑Ri SP FP L

W5,1,23,1 16.85 27.94 1.17 45.96 50.23 3.80 0.00
W3,1,28,1 16.96 27.44 1.18 45.59 50.58 3.84 0.00
W1,1,1,3 6.66 26.67 11.42 44.75 15.19 36.99 3.07
W6,1,18,1 17.27 25.87 1.24 44.38 51.61 4.01 0.00
W4,1,8,3 17.28 25.84 1.23 44.36 51.65 4.00 0.00
W2,1,13,1 5.13 27.03 12.13 44.29 12.24 39.27 4.20
W9,1,20,2 17.36 25.52 1.23 44.12 51.90 3.98 0.00
W8,1,15,1 17.73 22.54 1.54 41.81 53.21 4.98 0.00
W7,1,10,6 21.59 10.45 0.00 32.04 67.96 0.00 0.00

legacy





NA2 18.04 20.99 1.70 40.72 53.78 5.49 0.00
RJS19 18.41 18.29 1.60 38.30 56.51 5.19 0.00
NA3D 20.62 11.47 0.00 32.09 62.21 0.00 5.70
NA1A 21.57 9.62 0.00 31.19 68.81 0.00 0.00
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Table 15 – Group 3: CO2 inventory resulting from 15 years of injection plus 1985 years of migration.

Well R1 R2 R3 ∑Ri SP FP L

W2,4,93,1 14.14 40.19 0.99 55.32 41.46 3.22 0.00
W1,1,1,6 9.95 43.38 0.91 54.23 27.47 2.94 15.37
W9,1,16,1 15.70 36.36 0.62 52.67 45.34 1.99 0.00
W8,1,6,2 15.34 34.58 1.13 51.06 45.27 3.67 0.00
W3,1,3,1 14.92 35.40 0.00 50.32 43.75 0.00 5.93
W6,1,15,4 20.55 18.25 0.00 38.80 61.20 0.01 0.00
W7,1,9,7 0.55 17.45 16.50 34.50 1.76 53.44 10.29
W4,1,3,3 11.68 22.12 0.00 33.80 25.95 0.00 40.25
W5,1,12,1 0.55 23.07 7.98 31.59 1.72 25.83 40.86

legacy





NA2 15.02 34.10 1.63 50.76 43.96 5.28 0.00
RJS19 17.25 23.82 1.56 42.63 52.31 5.06 0.00
NA3D 16.22 21.89 0.00 38.11 42.30 0.00 19.59
NA1A 20.42 17.62 0.00 38.04 61.96 0.00 0.00

Table 16 – Group 3: CO2 inventory resulting from 30 years of injection plus 1970 years of migration.

Well R1 R2 R3 ∑Ri SP FP L

W1,1,1,6 12.75 39.54 1.11 53.40 35.98 3.59 7.03
W2,4,93,1 15.24 35.28 1.08 51.59 44.92 3.48 0.00
W3,1,3,1 16.96 32.41 0.00 49.37 50.31 0.00 0.32
W8,1,6,2 15.98 31.79 1.15 48.92 47.35 3.73 0.00
W9,1,16,1 16.83 30.72 0.81 48.35 49.04 2.61 0.00
W4,1,3,3 14.82 22.89 0.00 37.71 37.24 0.00 25.05
W6,1,15,4 20.93 15.74 0.00 36.67 63.33 0.00 0.00
W5,1,12,1 0.55 22.32 9.34 32.21 1.76 30.25 35.78
W7,1,9,7 0.54 14.58 16.40 31.53 1.76 53.12 13.60

legacy





NA2 15.94 30.39 1.64 47.97 46.71 5.32 0.00
RJS19 17.57 22.37 1.57 41.51 53.41 5.08 0.00
NA3D 17.51 19.15 0.00 36.66 47.30 0.00 16.04
NA1A 20.84 15.11 0.00 35.95 64.05 0.00 0.00

Table 17 – Group 3: CO2 inventory resulting from 50 years of injection plus 1950 years of migration.

Well R1 R2 R3 ∑Ri SP FP L

W1,1,1,6 14.75 34.47 1.20 50.43 42.41 3.90 3.27
W2,4,93,1 15.96 32.09 1.11 49.15 47.25 3.59 0.00
W8,1,6,2 16.48 29.57 1.17 47.23 48.99 3.79 0.00
W3,1,3,1 18.10 27.80 0.00 45.90 54.09 0.00 0.00
W9,1,16,1 17.57 27.02 0.90 45.50 51.57 2.93 0.00
W4,1,3,3 17.51 21.15 0.00 38.66 48.15 0.00 13.19
W6,1,15,4 21.21 13.67 0.00 34.88 65.12 0.00 0.00
W5,1,12,1 0.55 21.50 11.02 33.06 1.77 35.67 29.50
W7,1,9,7 0.54 12.87 15.02 28.44 1.76 48.64 21.16

legacy





NA2 16.78 26.96 1.66 45.40 49.24 5.36 0.00
RJS19 17.88 21.08 1.57 40.53 54.38 5.09 0.00
NA3D 18.85 16.33 0.00 35.17 52.99 0.00 11.84
NA1A 21.19 12.93 0.00 34.12 65.88 0.00 0.00

Table 18 – Group 3: CO2 inventory resulting from 100 years of injection plus 1900 years of migration.

Well R1 R2 R3 ∑Ri SP FP L

W2,4,93,1 16.88 27.82 1.18 45.87 50.32 3.81 0.00
W8,1,6,2 17.20 26.24 1.22 44.66 51.38 3.96 0.00
W1,1,1,6 17.32 25.67 1.13 44.12 51.16 3.65 1.08
W9,1,16,1 18.50 22.39 0.99 41.88 54.91 3.21 0.00
W3,1,3,1 19.53 20.86 0.00 40.39 59.61 0.00 0.00
W4,1,3,3 20.16 15.19 0.00 35.35 60.82 0.00 3.82
W5,1,12,1 0.54 19.72 12.93 33.19 1.76 41.86 23.18
W6,1,15,4 21.59 10.45 0.00 32.04 67.96 0.00 0.00
W7,1,9,7 0.54 11.13 11.14 22.82 1.76 36.08 39.35

legacy





NA2 18.04 20.99 1.70 40.72 53.78 5.49 0.00
RJS19 18.41 18.29 1.60 38.30 56.51 5.19 0.00
NA3D 20.62 11.47 0.00 32.09 62.21 0.00 5.70
NA1A 21.57 9.62 0.00 31.19 68.81 0.00 0.00
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Results presented in the Tables 7-18 showed a great influence directly proportional
to the number of nodes connected in the functional equipped with β -functions in relation to
the percentage gain in residual storage. NA1A, NA2, NA3D e RJS19 are legacy wells from
UNISIM-I-D.

(a) W3,1,26,1 for 15 years of uninterrupted
injection.

(b) W3,1,26,1 for 30 years of uninterrupted
injection.

(c) W3,1,26,1 for 50 years of uninterrupted
injection.

(d) W3,1,26,1 for 100 years of uninterrupted
injection.

Figure 21 – CO2 volume injected over time and storage dynamics for all four injection periods tested.
The colors appearing in the plots correspond to volume proportions for each inventory state
in the exact same way as described in Table 6. The time frame considers: (a) 1985 years of
migration; (b) 1970 years of migration; (c) 1950 years of migration; and (d) 1900 years of
migration.

The dynamics of the inventory states can be viewed through a time vs. injected volume
plot in which the colored areas represent proportions of the total volume of CO2 injected into
a specific storage site (Fig. 21). All cases simulated have a similar dynamics (Fig. 22) due to
the shareable numerical setup (Table 5). Initially, a fast and steep change in mass emerges as a
response to the continuous injection process that lasts for 15, 30, 50 or 100 years. Next, during
the post-injection stage, one observes asymptotic behaviors representing slow CO2 migration
inside the formation, or outsets of plateaus in the early post-injection period for residual storage
and leakage that extend towards the late post-injection period over around 2000 years since
the beginning of injection (Fig. 21). Furthermore, the amount of structural plume (SP) and free
plume (FP) is greater in cases not suggested by the functional ones (Fig. 28), that is, greater
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(a) (b) (c)

(d) (e) (f)
Figure 22 – Overlay of the CO2 migrating gas plume (colored cells) and identified traps (dark gray re-

gions) for the case described in Table 7: (a) portrays the initial condition; (b) the CO2 satu-
ration exactly at 15 years after injection; (c) to (f) portray the post-injection time. As seen,
the gas flows mostly into the largest trap characterized.

(a) (b) (c)

(d) (e) (f)
Figure 23 – Overlay of the CO2 migrating gas plume (colored cells) and identified traps (dark gray re-

gions) for the NA1A well case: (a) portrays the initial condition; (b) the CO2 saturation
exactly at 15 years after injection; (c) to (f) portray the post-injection time. As seen, the gas
flows mostly into the largest trap characterized.
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(a) (b) (c)

(d) (e) (f)
Figure 24 – Overlay of the CO2 migrating gas plume (colored cells) and identified traps (dark gray re-

gions) for the NA2 well case: (a) portrays the initial condition; (b) the CO2 saturation exactly
at 15 years after injection; (c) to (f) portray the post-injection time. As seen, the gas flows
mostly into the largest trap characterized.

(a) (b) (c)

(d) (e) (f)
Figure 25 – Overlay of the CO2 migrating gas plume (colored cells) and identified traps (dark gray re-

gions) for the NA3D well case: (a) portrays the initial condition; (b) the CO2 saturation
exactly at 15 years after injection; (c) to (f) portray the post-injection time. As seen, the gas
flows mostly into the largest trap characterized.
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(a) (b) (c)

(d) (e) (f)
Figure 26 – Overlay of the CO2 migrating gas plume (colored cells) and identified traps (dark gray re-

gions) for the RJS19 well case: (a) portrays the initial condition; (b) the CO2 saturation
exactly at 15 years after injection; (c) to (f) portray the post-injection time. As seen, the gas
flows mostly into the largest trap characterized.

(a) (b) (c)

(d) (e) (f)
Figure 27 – Overlay of the CO2 migrating gas plume (colored cells) and identified traps (dark gray re-

gions) for the random well (RW ) case: (a) portrays the initial condition; (b) the CO2 satura-
tion exactly at 15 years after injection; (c) to (f) portray the post-injection time. As seen, the
gas flows mostly into the largest trap characterized.
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quantity in non-residual states.

(a) Well in catchment regions associated to
the trap 9 for 15 years of uninterrupted
injection.

(b) Well in catchment regions associated to
the trap 2 for 15 years of uninterrupted
injection.

(c) NA3D legacy well for 15 years of unin-
terrupted injection.

(d) NA2 legacy well for 15 years of uninter-
rupted injection.

Figure 28 – CO2 volume injected over time and storage dynamics for an injection periods tested. The
colors appearing in the plots correspond to volume proportions for each inventory state in the
exact same way as described in Table 6. The time frame considers 1985 years of migration.

4.3.2 Benchmarking

An efficient way to highlight the injection performance of the potential storage sites is
comparing visually the residual gas proportions reached after the simulations. To this end, two
analyses are presented: the physical benchmark and the analytic benchmark, which are specific
charts derived from the bar chart (Figs. 29 - 32) relative to the best CO2 injection performances
collected before (Tables 7 - 10).

The physical benchmarks (Figs. 29b, 30b, 31b, and 32b) rely on the legacy well infras-
tructure existing in the Namorado field model when assuming that it is already located in poten-
tial storage sites immediately exploitable for abatement interests. There are four legacy wells
for scrutiny (NA2, RJS19, NA3D, and NA1A) whose maximum residual storages achieved af-
ter simulations were 50.76%, 47.97%, 45.40%, and 40.72% at the well NA2 for 15, 30, 50, and
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100 years of injection, respectively (Tables 7-10). These upper bounds dominated over the other
legacy well residual sum and are annotated as a dashed line in dark grey on the right (Fig. 29a,
30a, 31a, 32a). In contrast, all the best-simulated storage performances obtained by wells per-
forated according to the proposed functionals reached higher storage. For instance, for 15 years
of injection, the well W3,1,26,1, related to the storage site S3,1,26,1, reached 57.67%, whereas the
well W1,1,1,8, related to the storage site S1,1,1,8, reached 52.23% (Table 7). In terms of relative
gain, the storage surplus delivered by the storage sites proposed by the qualifying functions var-
ied from around 12% when compared to the legacy well NA2 to around 43% when compared
to the legacy well NA1A and NA3D (Fig. 29b).

In Figure 29a, proportion chart for the best-performance wells (cf. Table 7) identified
by the volumetric quality map approach (analytical benchmark) and those placed at the legacy
sites (physical benchmark). From left to right, W3,1,26,1 is the well that reached the best mark for
residual storage (around 57.67%); W5,1,24,1 the worst among the analytical functionals (around
53.87%); NA2 is the best-performance legacy well (around 50.76%); and NA1A is the legacy
well with the worst performance (around 38.04%), besides considerable leakage. In Figure 29b,
lollipop chart displaying the relative gain in CO2 storage (surplus) of the wells placed at the sites
qualified by the functionals compared to the legacy wells. For instance, the chart underscores
that the well W6,3,12,1 obtained a residual storage about 40% higher than NA1A, whereas the
well W9,1,17,1 led to 25% more residual storage when compared to the well RJS19. In Figure 29c
likewise, this lollipop chart shows the relative surplus comparing the best wells provided by
the novel functional formulae and the well derived by the 𝒥1 functional benchmark. One sees
that the gain is positive in all cases, but milder than the results achieved for the legacy wells.
Globally, one verifies that the functional approach improved the CO2 containment rates.

Complementarily, the analytical benchmarks (Figs. 29c, 30c, 31c, and 32c) take into ac-
count only the best-simulated injection performances obtained by the most fundamental func-
tional, namely 𝒥1, at the well W1,1,1,8 over the storage site S1,1,1,8, as reference, and measures
how the other theoretical functionals perform against it at their associated wells and storage
sites. In order of appearance, one sees that the well W3,1,26,1, corresponding to the storage site
S3,1,26,1 reached the best surplus among all other theoretical functionals by around 13%, 10%,
5.5%, and 4%, respectively, in the order of injection cases. Oppositely, the worst performance
verified for the theoretical functionals were: 𝒥5, for the cases of 15- and 30-years injection,
since the well W5,1,24,1, placed over the storage site S5,1,24,1, only improved the residual storage
by around 3%; 𝒥9, for the case of 50-years injection, since the well W9,1,17,1, placed over the
storage site S9,1,17,1, only improved the residual storage by around 2.2%; and 𝒥8, for the cases
of 100-years injection, since the well W8,1,6,1, placed over the storage site S8,1,6,1, only improved
the residual storage by around 1.63%.
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(a) CO2 storage states per best-performance well for 15 years of injection. Green yellow/orange, and red colors
stand for residual storage, flowing storage, and leakage, respectively.
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(b) Relative gain in CO2 storage - physical benchmarks for 15 years of injection. The 4-stems groups represent the
individual performances of the well Wj,d,b,q compared to each one of the legacy wells.
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(c) Relative gain in CO2 storage - analytic benchmarks for 15 years of injection. The stems represent the individual
performances of wells Wj,d,b,q compared to W1,1,34,1, the best-performance well associated to the underlying
functional 𝒥1.

Figure 29 – Comparative performance of CO2 injection by largest group with nodes connected by func-
tional (Group 1).
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(a) CO2 storage states per best-performance well for 30 years of injection. Green yellow/orange, and red colors
stand for residual storage, flowing storage, and leakage, respectively.
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(b) Relative gain in CO2 storage - physical benchmarks for 30 years of injection. The 4-stems groups represent the
individual performances of the well Wj,d,b,q compared to each one of the legacy wells.
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(c) Relative gain in CO2 storage - analytical benchmarks for 30 years of injection. The stems represent the individ-
ual performances of wells Wj,d,b,q compared to W1,1,34,1, the best-performance well associated to the underlying
functional 𝒥1.

Figure 30 – Comparative performance of CO2 injection for 30 years of injection by largest group with
nodes connected by functional (Group 1) (cf. Table 8). Similar interpretation as that from
Figure 29 applies here: (a) proportion chart for the best performance wells; (b) lollipop chart
displaying the relative gain in CO2 storage (surplus) of the wells placed at the sites qualified
by the functionals compared to the legacy wells; (c) lollipop chart of the relative surplus
comparing the best wells provided by the novel functional formulae and the well derived by
the 𝒥1 functional benchmark. One sees that the gain is positive in all cases, but milder than
the results achieved for the legacy wells. Globally, one verifies that the functional approach
improved the CO2 containment rates.

4.3.3 Pressure field

A few considerations on the pressure field can be useful to give an overview of the mag-
nitudes treated here (order of 30 MPa). Since that the injection rate applied to the simulations
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(a) CO2 storage states per best-performance well for 50 years of injection. Green yellow/orange, and red colors
stand for residual storage, flowing storage, and leakage, respectively.
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(b) Relative gain in CO2 storage - physical benchmarks for 50 years of injection. The 4-stems groups represent the
individual performances of the well Wj,d,b,q compared to each one of the legacy wells.
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(c) Relative gain in CO2 storage - analytical benchmarks for 50 years of injection. The stems represent the individ-
ual performances of wells Wj,d,b,q compared to W1,1,34,1, the best-performance well associated to the underlying
functional 𝒥1.

Figure 31 – Comparative performance of CO2 injection for 50 years of injection by largest group with
nodes connected by functional (Group 1) (cf. Table 9). Similar interpretation as that from
Figures 29 and 30 apply here: (a) proportion chart for the best performance wells; (b) lollipop
chart displaying the relative gain in CO2 storage (surplus) of the wells placed at the sites
qualified by the functionals compared to the legacy wells; (c) lollipop chart of the relative
surplus comparing the best wells provided by the novel functional formulae and the well
derived by the 𝒥1 functional benchmark. One sees that the gain is positive in all cases, but
milder than the results achieved for the legacy wells. Globally, one verifies that the functional
approach improved the CO2 containment rates.

were backed by literature data, the pressure field is expected to be limited within a marginally
safe range.
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(a) CO2 storage states per best-performance well for 100 years of injection. Green yellow/orange, and red colors
stand for residual storage, flowing storage, and leakage, respectively.
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(b) Relative gain in CO2 storage - physical benchmarks for 100 years of injection. The 4-stems groups represent
the individual performances of the well Wj,d,b,q compared to each one of the legacy wells.
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(c) Relative gain in CO2 storage - analytical benchmarks for 100 years of injection. The stems represent the
individual performances of wells Wj,d,b,q compared to W1,1,34,1, the best-performance well associated to the
underlying functional 𝒥1.

Figure 32 – Comparative performance of CO2 injection for 100 years of injection by largest group with
nodes connected by functional (Group 1) (cf. Table 10). Similar interpretation as that from
Figures 29, 30, and 31 apply here: (a) proportion chart for the best performance wells; (b)
lollipop chart displaying the relative gain in CO2 storage (surplus) of the wells placed at
the sites qualified by the functionals compared to the legacy wells; (c) lollipop chart of the
relative surplus comparing the best wells provided by the novel functional formulae and
the well derived by the 𝒥1 functional benchmark. One sees that the gain is positive in all
cases, but milder than the results achieved for the legacy wells. Globally, one verifies that
the functional approach improved the CO2 containment rates.

Because of the VE model assumption, there is no considerable pressure variation and
the simulator responses are similar for all cases. For completeness, we plotted 2D views of the
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pressure field for the same case depicted in Figure 22 at 1 year and 15 years after injection
(Figs. 33, 34, 35, 36 and 37). As seen, both images are consistent with expectancy and show
quasi-static behaviors, so that it is irrelevant to analyze changes over time or along the third
direction in depth.

Figure 33 – 2D views of the pressure field for the case presented in Figure 22 at two fixed time instants:
1 year and 15 years after injection. Due to the VE formulation, the depth-wise variation is
projected onto the grid top layer, so that high gradients are noticed only in the well neighbor-
hood. The pressure is quantitatively measured in MPa and remains under equilibrium over
time after the well opening (see Figure 38).

Figure 34 – 2D views of the pressure field for the NA1A well case at two fixed time instants: 1 year and
15 years after injection. Due to the VE formulation, the depth-wise variation is projected
onto the grid top layer, so that high gradients are noticed only in the well neighborhood. The
pressure is quantitatively measured in MPa and remains under equilibrium over time after
the well opening (see Figure 40).

Plots over time of the local pressure field for cells randomly chosen in the model also
show that it undergoes just a natural initial burst because of the well opening, but it stabilizes
quite soon due to the vertical equilibrium (see Appendix B). The first plot concerns a cell inside
the volume covered by the biggest trap; the second to a cell in the middle and the third to a cell
near the lateral boundary of the reservoir (Fig. 38).
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Figure 35 – 2D views of the pressure field for the NA2 well case at two fixed time instants: 1 year and
15 years after injection. Due to the VE formulation, the depth-wise variation is projected
onto the grid top layer, so that high gradients are noticed only in the well neighborhood. The
pressure is quantitatively measured in MPa and remains under equilibrium over time after
the well opening (see Figure 40).

Figure 36 – 2D views of the pressure field for the NA3D well case at two fixed time instants: 1 year and
15 years after injection. Due to the VE formulation, the depth-wise variation is projected
onto the grid top layer, so that high gradients are noticed only in the well neighborhood. The
pressure is quantitatively measured in MPa and remains under equilibrium over time after
the well opening (see Figure 40).

Figure 37 – 2D views of the pressure field for the RJS19 well case at two fixed time instants: 1 year and
15 years after injection. Due to the VE formulation, the depth-wise variation is projected
onto the grid top layer, so that high gradients are noticed only in the well neighborhood. The
pressure is quantitatively measured in MPa and remains under equilibrium over time after
the well opening (see Figure 40).

4.4 Discussion

A few comments to clarify the results are drawn in this section and arranged in the form
of topics. First, we underscore the positive aspects:
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Figure 38 – Plots over time of the local pressure field for three cells sampled in different locations: inside
the biggest trap (cell 1); in the central region of (cell 2); and at the lateral boundary (cell 3)
of the model. As seen, the pressure remains stable almost over all the simulation time, by
following the VE formulation assumptions. The initial perturbations reflect the instantaneous
well opening.

• Functional choice and usability. The family of functionals introduced here comprises
different levels of complexity in terms of their constituent properties. In contrast to the
analytical benchmark 𝒥1, their construction aggregates nonlinear effects that improve
the site qualification. Out of nine best wells selected for comparison appearing in all
cases of injection, seven wells had total residual storage varying from 55.03% to 57.67%
for t = 15 (Table 7), 50.23% to 52.21% for t = 30 (Table 8), 47.63% to 49.07% for
t = 50 (Table 9) and 44.76% to 45.54% for t = 100 (Table 10). The other two wells,
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Figure 39 – Plots over time of the local pressure field for three cells sampled in different locations: inside
the trap 4; inside the trap 7; and inside the trap 11 of the model. As seen, the pressure remains
stable almost over all the simulation time, as seen in the Figure 38, by following the VE
formulation assumptions. The initial perturbations reflect the instantaneous well opening.

W5,1,24,1 and W1,1,1,8, had worse performances. A possible reason why that seven wells
had superior performance is due to the inclusion of the distance-to-trap functions, which
are absent in J5 and J1. While it is clear that the β functions had a positive effect upon
the benchmark functional, the surpluses are below 2% due to modeling factors, such as
fixed brine saturation and small variations of pressure. This modest gain is, however, an
indication that the functionals improve the site qualification and have usability for the
industry. Based on the current study case, it is not clear which functional must occupy the
first rank because their performance is tightly competitive. However, it is undeniable that
the incorporation of parameters related to the traps into the β -functions place functionals
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Figure 40 – Plots over time of the local pressure field for UNISIM-I-D wells: NA1A, NA2, NA3D and
RJS19. As seen, the pressure remains stable almost over all the simulation time, as seen
in the Figure 38 and Figure 39, by following the VE formulation assumptions. The initial
perturbations reflect the instantaneous well opening.
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like 𝒥3 and 𝒥6 at the top of the best performances.

• Efficiency of the volumetric quality map approach. The number of possible storage sites
found through the VQM approach may vary from zero, like V2,2, V2,4, and V5,4, to a few
dozens, like V7,1, V4,2, and V8,3, with 39, 24, and 50 sites, respectively (Table 4). This, in
turn, is a consequence of the combined action of the binning methods and partitioning
criterion. On one hand, each binning method has its own power to explain the statistical
nuances of the field model; on the other hand, the clustering depends on a minimum num-
ber of grid cells fixed in 10, which correspond to a minimum storage site of 134550 m3 in
pore volume. For the current study, the average relative ratio of harnessing per VQM was
13.6%. In absolute counting, this ratio reverts to 12.7%, since 1450 storage sites were
found in total, but only 184 were taken for analysis. The Jaccard filtering is an impor-
tant mechanism to avoid duplicata sites and excessive simulation, but replaceable with
a different approach. If a minimum effort criterion was adopted, sqrt (b = 4) would be
the most appropriate binning method to use. However, it would also be the poorest in ex-
plaining the regions. Working with a specific binning method is a matter of decision and
depends on the balance between statistical explainability and computational effort. How-
ever, after the IUC/clustering implementation, it becomes clear which VQM performs
better. Based on the resulting residual storages, only scott (b = 1) and sturges (b = 3)
were efficient.

• Performance in relation to legacy wells. Under the assumption that the locations of the
legacy wells existing in the model were previously determined by screening and selection,
it is straightforward to think they reach potential storage sites. This way, the physical
benchmarks delivered dramatic contrasts. One sees that the injection performance of the
functionals overcame the marks of all legacy wells. In particular, the surplus for NA3D
jumped to around 45% for W3,1,26,1 (Fig. 29b), mainly because of the high leakage portion
observed in the simulation (Fig. 29). Even so, the surplus for the other wells were quite
better in all cases, with rates from 6% to 42%, thus demonstrating that the functionals
have the ability to improve site selection through their qualification scores.

• Trapping mechanisms. The injection dynamics over time pointed out that a considerable
portion of the CO2 inventory was kept stored residually. The total volumetric capacity of
structural traps computed for this study was 2.13× 106 m3, corresponding to 2% of the
available bulk pore volume.

On the other hand, it is worthwhile mentioning a few drawbacks and limitations of this
study:

• Field coverage and gridding. Due to numerical limitations to cope with the gas plume
over noncontiguous layers of the grid, the model created for the current test reduced the
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total coverage of the field to much less layers. As a consequence both from the VE formu-
lation and the reduced reservoir thickness, the pressure field is almost unchanged. More-
over, the functionals soon reach a saturated state of structural residual storage (R1), by
featuring a strong dominance of buoyancy forces. This limitation affected the analytical
tests.

• Fully-dynamic functionals. The current functionals deal with properties inherently dy-
namic, such as pressure and saturation, but they are maintained fixed at a time instant. In
the future, we intend to incorporate a more extensive range of processes and properties
that vary with time.

• Generalization. For the time being, the functionals were tested in a single reservoir model.
Further study is required to assess the performance in other models for generalization.
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5 CONCLUSION

This study presented a set of injectivity functionals that can be used to qualify CO2

storage sites. These functionals are promising in supporting geologic carbon storage ventures,
as they can improve injection performance for wells located in strategic positions.

Since there are many physical properties affecting gas dynamics in deep storage, this
study handled them statically. However, time-varying quantities are necessary for a more real-
istic behavior.

For the Brazilian context, this research is useful in developing a comprehensive un-
derstanding of CO2 injection processes. It is important to note that the comparisons showed a
storage surplus increase of up to 50% when legacy and novels wells are compared, and 22%
when novels and random wells are compared.

In relation to the use of reservoir process speed without the use of β -functions shows a
storage increase of up to 66% when legacy and novels wells are compared. Results presented
showed a great influence directly proportional to the number of nodes connected in the func-
tional units equipped with β -functions in relation to the percentage gain in residual storage.

Storage efficiency is influenced by several geological and operational factors. Detailed
future studies are needed to better understand these factors and optimize injection and monitor-
ing techniques.

The thesis did not cover geomechanical couplings, which take into account dynamic
variations of properties, and anisotropy analyses, which provide precise control over the gas
plume. These subjects will be explored in future research.
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APPENDIX A - RELATIVE PERMEABILITY

Relative permeability measures the ability of a specific fluid (such as oil, water, or gas)
to flow through a reservoir when other fluids are also present. It is crucial for reservoir simula-
tion, as it directly affects the movement and production of fluids within the reservoir.

κr,α = κ
e
α/κ (A.1)

Relative permeabilities will generally be functions of saturation, which means that for a
two-phase system we can write

κr,w = κr,w (sw) and κr,c = κr,c (sc) (A.2)

It is important to note that relative permeabilities are generally nonlinear functions of
saturations, meaning the sum of these functions at a specific location (with a specific composi-
tion) is not necessarily equal to one. Therefore, it is common practice to associate a unique set
of curves with each rock type represented in the geological model. While relative permeabil-
ities may also depend on pore-size distribution, fluid viscosity, and temperature, these factors
are typically ignored in models of conventional reservoirs.

In simplified models, it is common to assume that κr,α are monotone functions that
assume unique values in [0,1] for all values sα ∈ [0,1], so that κr,α = 1 corresponds to the case
with fluid α occupying the entire pore space, and κr,α = 0 when sα = 0 (Figure 41).

Figure 41 – Illustration of relative permeabilities for a two-phase system. Source: (LIE, 2016).

Due to the significant density difference between the injected CO2 and the resident
brine (NORDBOTTEN; CELIA; BACHU, 2005), the system exhibits strong buoyant segrega-
tion (NORDBOTTEN; CELIA, 2006). To develop the equations for the numerical simulator,
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we start with a three-dimensional system (x,y,z), where two fluids, the non-wetting (CO2-rich)
phase (c) and the wetting (brine) phase (w), are separated by a sharp interface within an aquifer
of thickness H (Figure 42). Initially, the system is saturated with the wetting phase. The distance
from the datum to the bottom of the aquifer is b1, to the interface is b2, and to the top of the
aquifer is b3. Thus, b3 − b1 = H and b3 − b2 = h, as shown in Figure 42. We consider incom-
pressible flow within this system. For simplicity, we present the approximation for a primary
drainage system, with the imbibition process discussed later.

Brine (w)

CO² (c)

Figure 42 – Schematic of vertically averaged CO2-brine system. Source: adapted by (GASDA, 2009).

We consider the system starts fully saturated with brine, which is then displaced by the
injected CO2, leaving only residual brine behind the CO2–brine interface. With the assumption
of a sharp interface between the two fluids, the local relative permeability in each phase, κr,α ,
is the endpoint value at maximum saturation of the phase, κ∘

r,α , as shown in Figure 43. Relative
permeability is found by special core analysis (SCAL).

In the case of the brine phase, the local relative permeability is κ∘
rw = 1 because the

region is still fully saturated with the brine phase. For the CO2 phase, the relative permeability at
maximum saturation, κ∘

r,c, is the value of the local function at sc = (1− sRw). Within the context
of a vertically averaged system, the local values of relative permeability are scaled by the height
of the interface relative to the total thickness of the aquifer. The interface height can in turn be
related to the vertically averaged saturation through Equation A.3 and Equation A.4, leading
to pseudo-relative permeability functions. In the simple case where the intrinsic permeability

is homogenous in the vertical direction, the pseudo-relative permeability functions reduce to

scalars and are linear with respect to vertically averaged saturation:

κ̃r,w =
H −h

H
= s̄w − h

H
sRw, (A.3)

κ̃r,c = κ
∘
r,c

h
H

= κ
∘
r,c

s̄n

(1− sRw)
(A.4)

Once the injection operation is completed, the system will undergo imbibition in some
portions of the domain where the CO2–brine interface is receding. It is still possible to have
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Figure 43 – Hypothetical local relative permeability drainage (solid line) and imbibition (dotted line)
curves for CO2 and brine. The maximum values of relative permeability for the CO2 phase
at residual brine and for the brine phase at residual CO2 are indicated on the figure. Source:
(GASDA, 2009).

primary drainage along the leading edge of the plume, especially if there is angle to the top
surface of the aquifer along which the CO2 will migrate upslope over time. Residual CO2 will
be trapped in the pore space during imbibition, leaving some residual saturation of the CO2

behind. This phenomenon leads to local and average relative permeability functions that are
hysteretic in nature. Thus when solving this system, different relative permeability values are
calculated depending on whether the system is in drainage or imbibition. It should be noted that
residual CO2 will only be trapped within the fraction of the aquifer between the current location
of the interface and the historically lowest height of the interface at that spatial location, which
corresponds to the maximum thickness of CO2 which we refer to as hmax(x,y). Thus wherever
imbibition has occurred, the vertically averaged phase saturations become,

s̄w =
1
H

[(H −hmax)+hsRw +(hmax −h)(1− sRc)] , (A.5)

s̄c =
1
H

[h(1− sRw)+(hmax −h)sRc] (A.6)

The corresponding effective relative permeability functions are similar to drainage case,
except now instead of two regions with either fully saturated brine or partially saturated CO2

with immobile brine, there is an additional region of partially saturated brine with immobile
CO2. Therefore, the brine phase effective relative permeability needs to account for the ad-
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ditional region of partially saturated brine and the reduced local relative permeability in that
region (κ∘

r,w < 1),

κ̃r,w =
1
H

[
H −hmax +κ

∘
r,w (hmax −h)

]
(A.7)

In the Appendix B we will see the importance of relative permeability in calculating
upscaled relative mobilities.
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APPENDIX B - VERTICAL-EQUILIBRIUM MODEL

CO2 exhibits high mobility, and when introduced into a porous rock formation, the re-
sulting plume of supercritical fluid can traverse considerable distances. A typical saline aquifer
earmarked for CO2 storage can be conceptualized as a thin, gently inclined sheet spanning thou-
sands of square kilometers. Within this sheet, the flow of CO2 is typically confined to slender
layers beneath the sealing caprock or other vertically impeding barriers with low permeabil-
ity. This leads to a substantial contrast in lateral and vertical scales. Coupled with variations in
density between the supercritical CO2 plume and the underlying brine, this results in nearly in-
stantaneous vertical fluid segregation compared to the upward migration. The tendency of CO2

to form a relatively flat fluid interface arises from pressure distribution, which, in turn, is highly
dependent on vertical flow. To prevent significant inaccuracies in predicting upward migration,
it is imperative to accurately represent the vertical fluid distribution. In practical terms, this
necessitates the utilization of a higher grid resolution than what is typically feasible in conven-
tional 3D simulators. Consequently, such simulations are often under-resolved unless executed
using large-scale systems designed for high-performance computing.

In a vertical equilibrium model, the fundamental assumption is that the flow system
achieves a state of vertical equilibrium, enabling the determination of the vertical distribution of
fluid phases through analytical expressions. Subsequently, the flow equations can be integrated
in the vertical direction to derive a simplified model. This approach, widely employed in various
branches of physics such as the description of water waves and creep flow, proves effective. Ver-
tical integration not only reduces the spatial dimensions and, consequently, the requisite number
of grid cells, but also diminishes the coupling between pressure and fluid transport. This leads
to an enhancement in the characteristic time constants of the problem. Consequently, simula-
tions based on vertical equilibrium, often termed as vertical-equilibrium simulations, typically
exhibit orders of magnitude faster computation and substantially lower memory consumption
compared to conventional 3D simulators (NILSEN et al., 2011; NILSEN; LIE; ANDERSEN,
2016; NILSEN et al., 2017; LIE, 2019).

Consider brine as the wetting fluid and CO2 as the non-wetting fluid. Assume incom-
pressible rock and fluids, no capillary forces, and impermeable top and bottom boundaries of
the aquifer. Under these conditions, mass conservation and Darcy’s law can be expressed as
follows:

∂ (φsα)

∂ t
+∇ · (uα) = qα , α = w,c, (B.1a)

uα = −κλα(∇p−ραg), (B.1b)

where ρα is the density, q is the volumetric flux resulting from sources or sinks, α indicates the
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fluid, λα is the fluid mobility, dependent on the relative permeability and fluid viscosity, p is the
pressure, and g is the gravitational acceleration.

Let (eξ ,eη ,eζ ) be a curvilinear coordinate system oriented to closely align with the
global system (ex,ey,ez), with a slight tilt ensuring that locally, eζ is perpendicular to the main
flow direction (ignoring small and medium-scale oscillations). The tilt is solely dependent on
ξ and η , assumed to vary smoothly, and is maintained at all points within modest limits (a few
degrees). Let g and ∇ be given by

g = g||+gζ eζ (B.2)

and
∇ = ∇||+ eζ ∂ζ , (B.3)

respectively, where || means the (eξ ,eη) components of a vector/operator. Within the updated
coordinate system, the aquifer is characterized by the top surface Z(ξ ,η) and its thickness
H(ξ ,η) in the ζ -direction (Figure 44). Capital letters denote quantities in the upscaled model.

Figure 44 – Diagram illustrating the fluid distribution and coordinate systems employed for developing
the fundamental vertical-equilibrium model. Source: (NILSEN; LIE; ANDERSEN, 2016).

In Figure 44, h(ξ ,η) represents the interface between CO2 and brine, with hmax de-
noting the historical maximum value of h at a specific location. The dashed line denotes the
assumed mean flow direction within the aquifer, depicted as straight in this illustration but per-
mitted to be slightly curved in the general case. Performing the integration of equation B.1a
from the upper to the lower extent of the aquifer, we obtain

∂

∂ t

[∫ Z+H

Z
φsαdζ

]
+∇|| ·

[∫ Z+H

Z
uαdζ

]
=

∫ Z+H

Z
qαdζ . (B.4)

Due to the design of the coordinate system, the flow along the eζ direction is antici-
pated to occur significantly faster than the migration in the (eξ ,eη) direction. Consequently, we
assume hydrostatic equilibrium in the eζ direction. In the absence of capillary pressure consid-
erations, CO2 and brine will be separated by a distinct interface positioned at a distance h(ξ ,η)

from the caprock along the eζ direction when in equilibrium. Establishing the pressure datum
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PZ at the top surface, the pressure at a specific depth ζ is ascertained by:

p(ζ ) =





PZ +ρcgζ (ζ −Z) , if Z < ζ ≤ Z +h,

PZ +ρcgζ h+ρwgζ (ζ −Z −h) , if Z +h < ζ ≤ Z +H,
(B.5)

Figure 44 also shows how each vertical column is divided into three regions:

1. The CO2 plume between Z and Z + h with residual brine saturation sRw, CO2 saturation
1− sRw, and CO2 mobility λc,e = λc(1− sRw);

2. The residual region between h and hmax with CO2 saturation sRc, brine saturation 1− sRc,
and brine mobility λw,e = λw(1− sRc);

3. The region below hmax filled by brine.

We hence define vertically-averaged quantities:

K =
1
H

∫ Z+H

Z
κ||dζ , (B.6a)

Λc(h) =
1
H

[∫ Z+h

Z
λc,eκ||dζ

]
K−1 (B.6b)

Λw(h,hmax) =
1
H

[∫ Z+hmax

Z
λw,eκ||dζ +

∫ Z+H

Z+hmax

λw(1)κ||dζ

]
K−1 (B.6c)

In Equation B.6c we have sRc = 0. Combining these expressions with Darcy’s law (Equa-
tion B.1b) and setting ∆ρ = ρw −ρc, we obtain vertically-integrated fluxes:

Vc = −HΛcK
[
∇||(PZ −ρcgζ Z)−ρcg||

]
(B.7a)

Vw = −HΛwK
[
∇||(PZ −ρcgζ Z)−gζ ∆ρ∇||h−ρwg||

]
. (B.7b)

To develop the usual fractional-flow formulation, we introduce total velocity V = Vc +Vw,
assume that K and Λα commute (K isotropic or κ|| constant in ζ ), and sum (Equation B.4) over
phases. After some manipulations, we obtain a pressure equation:

∇|| ·V = Q,

V = −HΛK
[
∇||PZ − (ρcFc +ρwFw)(g||+gζ ∇||Z)−Fwgζ ∆ρ∇||h

]
, (B.8)

where Λ(h,hmax) = Λw(h,hmax)+Λc(h) and Fα(h,hmax) = ΛαΛ−1, and a transport equation:

∂

∂ t
Φ+∇||

[
FcV+∆ρKΛwFc[g||+gζ ∇||(Z +h)]

]
= Qc, (B.9)

where Φ(h,ξ ,η)=
∫ Z+h

Z
φ(1−sRw)dζ and Qc =

∫ Z+h

Z
qcdζ . This is the so-called h-formulation

of the VE model.
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APPENDIX C - COMPUTATIONAL RESOURCES

All simulations were conducted using MATLAB R2023a on a 2.30 GHz Intel Core i7
machine with 16G RAM. The pie chart below (Figure 45) shows the percentage of memory
used by the relative functions for each section of the simulations.

Figure 45 – Pie Chart of the percentage of memory used by the relative functions for each section of the
simulations.
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