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RESUMO 

 

A expansão de áreas urbanas ocorre pela alteração de superfícies naturais, trazendo efeitos 

ambientais como modificações no balanço de energia da superfície e a formação das ilhas de 

calor urbano de superfície (SUHIs). A variação espaço-temporal das intensidades de SUHIs 

(SUHIIs) e sua relação com parâmetros biofísicos de superfície em regiões metropolitanas 

(RMs) brasileiras precisam ser mais exploradas, especialmente considerando a evolução mensal 

e anual contínua da urbanização. Este estudo tem como objetivo fornecer informações de base 

sobre a influência da urbanização na expansão das SUHIs e na variabilidade de parâmetros 

biofísicos em vinte e uma principais RMs brasileiras de 2003 a 2022. Foram utilizados dados 

de temperatura da superfície (LST) dos sensores MODIS (MOD11A2 e MYD11A2) para 

quantificar continuamente SUHIIs diurnas e noturnas. Reflectância espectral do MODIS 

(MOD09Q1, MYD09Q1, MOD09A1 e MYD09A1) e dados de reanálise (GLDAS 2.1 e ERA5-

Land) foram usados para acessar a variabilidade do Índice de Vegetação Aprimorado-2 (EVI2), 

albedo de superfície (α), crescimento de áreas urbanas (UAs), radiação líquida de superfície 

(Rn) e evapotranspiração real (ET) com resolução espacial de 250 m. O teste de tendência de 

Mann-Kendall foi aplicado para todas as variáveis, e suas relações com o LST foram 

investigadas por meio da correlação de Pearson (r), coeficiente de determinação (R2) e 

Eficiência de Kling-Gupta (KGE). Os resultados mostram que as SUHIIs foram 60% (1,64 ºC) 

maiores durante o dia, com tendências de crescimento significativas ao longo do período 

estudado e variações sazonais mensais mais pronunciadas em RMs de latitudes mais elevadas 

que possuem zonas climáticas subtropicais. As UAs mostraram ser mais influentes sobre a LST 

durante o dia, com a associação da LST com EVI2 e α desempenhando um papel fundamental 

na regulação do clima urbano. Os resultados também demonstraram que o aumento da ET 

mitiga potencialmente a LST, especialmente durante o dia. Rn influenciou mais a LST noturno, 

levando a uma maior disponibilidade de calor sensível durante esse período. Os resultados deste 

estudo proporcionam uma compreensão detalhada dos fatores que influenciam a dinâmica 

espaço-temporal das ICUs nas maiores RMs do Brasil, contribuindo com insights valiosos para 

o planejamento urbano e estratégias de mitigação climática. 
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ABSTRACT 

 

The expansion of urban areas occurs by changing natural surfaces, bringing environmental 

effects like modifications in the surface energy balance and the formation of surface urban heat 

islands (SUHIs). The spatial-temporal variation of SUHIs intensities (SUHIIs) and their 

relationship with surface biophysical parameters in Brazilian metropolitan regions (MRs) need 

to be better explored, especially taking into consideration the continuous monthly and annual 

evolution of urbanisation. This study aims then to provide baseline information on the influence 

of urbanisation in the expansion of SUHIs and the variability of biophysical parameters in 

twenty-one major Brazilian MRs from 2003 to 2022. We used land surface temperature (LST) 

data from MODIS (MOD11A2 and MYD11A2) sensors to continuously quantify the daytime 

and nighttime SUHIIs. Spectral reflectance from MODIS (MOD09Q1, MYD09Q1, 

MOD09A1, and MYD09A1) and reanalysis data (GLDAS 2.1 and ERA5-Land) were used to 

access the variability of Enhanced Vegetation Index-2 (EVI2), surface albedo (α), urban areas 

(UAs) growth, surface net radiation (Rn), and actual evapotranspiration (ET) at 250-m spatial 

resolution. The Mann-Kendall trend test was applied for all variables, and their relationships 

with LST were investigated through Pearson correlation (r), determination coefficient (R2) and 

Kling-Gupta Efficiency (KGE). The results show that the SUHIs were 60% (1.64 ºC) higher 

during the daytime, with significant growth trends along the studied period and more 

pronounced monthly seasonal variations in higher latitudes MRs holding subtropical climate 

zones. The UAs showed to be more influential on LST during daytime, with the association of 

LST with EVI2 and α playing a fundamental role in regulating the urban climate. The results 

also demonstrated that increasing ET potentially mitigates LST, especially during the daytime. 

Rn highest influenced the nighttime LST, leading to a higher availability of sensible heat during 

this period. The results found from this study provide a nuanced understanding of the factors 

influencing the spatiotemporal dynamics of SUHIIs in the largest MRs of Brazil, contributing 

valuable insights for urban planning and climate mitigation strategies. 
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1 INTRODUCTION 

 

The growth of the world population and the intense migration from rural to urban areas 

during the last decades has been driving the expansion of metropolises, especially in developing 

regions (e.g. sub-Saharan Africa, Eastern Asia, Western Asia, Latin America, and the 

Caribbean) (Arshad et al., 2022; United Nations, 2018; Zhang et al., 2022). Around 56% of the 

global population lives in urban environments (United Nations, 2018), with estimations that by 

the middle of the 21st century, this proportion will reach close to 70% (Hosseini et al., 2016). 

Specifically in Latin America, Brazil has experienced significant urbanisation over the last 

decades, driven by population growth, rural-urban migration, and economic development, with 

twenty-one metropolitan regions holding more than 1 million inhabitants, according to the last 

demographic census in 2022 (IBGE, 2022). Between 2010 and 2022, the Brazilian urban 

population reached a level of 124.1 million inhabitants, corresponding to 61% of the country's 

population (IBGE, 2022). 

In this context of rapid growth, urbanisation may occur in an uncontrolled manner, 

bringing environmental changes like deforestation, land cover changes, and soil sealing 

(Carrillo-Niquete et al., 2022; Sfîca et al., 2023; Xiao and Weng, 2007). These modifications 

on natural surfaces can bring serious environmental effects (Gong et al., 2020), including 

changes in the surface energy balance (Grimm et al., 2008), intensification of flooding events 

(Berland et al., 2017), increase in air pollution (Piracha et al., 2022), and formation of urban 

heat islands (UHIs) (Venter et al., 2021). Therefore, urban planning alternatives based on 

assessments must be considered to minimise such effects.  

The UHIs occur when the city experiences higher temperatures than the surrounding areas 

due to the amplification of thermal intensity in the urban environment because of human 

activities (Li et al., 2022; Oke, 1987; Santamouris et al., 2017). This mechanism, first observed 

in London in the early 1800s (Howard, 1833), can lead to temperatures that exceed human 

physiological tolerance levels (Raymond et al., 2020). UHIs also affect air circulation, leading 

to the concentration of pollutants, directly contributing to the emergence of air quality-related 

diseases (Di bernardino, et al. 2021).  

Assessing environmental indicators that act as UHI's triggering factors requires detecting 

land surface property changes caused by land use and land cover (LULC) change and 

controlling environmental processes at different time scales (Carrillo-Niquete et al., 2022). 
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From a thermodynamic point of view, UHI development corresponds to an alteration of the 

surface energy balance, which plays a key role in regulating the exchange of energy between 

the Earth's surface and the atmosphere (Christopherson and Birkeland., 2017). This energy 

balance depends on biophysical parameters, such as vegetation greenness, surface albedo, net 

radiation of the land surface, and evapotranspiration. The reduction of green areas tends to 

decrease the latent heat fluxes (i.e. associated with the evapotranspiration processes) while 

increasing the sensible heat fluxes (i.e. rising air and soil temperatures) (Christopherson and 

Birkeland, 2017), contributing to the warming of the urban surface and to the development of 

the so-called surface urban heat islands (SUHIs) that affects in turn the atmosphere (Chen et 

al., 2022). 

There are different techniques for quantifying and assessing the SUHIs. These techniques 

can be divided into two main groups: (i) field measurements and (ii) orbital measurements from 

remote sensing techniques by selecting shortwave and thermal bands (Mohamed et al., 2017). 

On the one hand, field measurements (e.g. fixed stations or mobile devices) are essential for 

defining the actual conditions on the ground (Hu et al., 2016). However, this approach is 

punctual and only representative of small areas, hardly integrating the spatial heterogeneity of 

the processes in urban areas. Such an approach requires the presence of many sensors in the 

cities and their surroundings, high financial resources, specialised labour, many materials, and 

time-consuming implementation. On the other hand, the quantification of such information 

through orbital remote sensing data may provide spatialized information, provided that the 

temporal resolution, although not as high as ground-based techniques, may be relevant for long-

term trending analyses. Consistently, this latter has been widely used in various studies 

worldwide (e.g. Arshad et al., 2022; Chakraborty and Lee, 2019; Clinton and Gong, 2013; 

Dewan et al., 2021; Gao et al., 2022; Lai et al., 2021; Li et al., 2023; Maimaitiyiming et al., 

2014; Moazzam et al., 2022; Peng et al., 2012; Peng et al., 2018; Quan et al., 2014; Si et al., 

2022; Zhou et al., 2014), including Brazil (Correia Filho, 2019; Flores et al., 2016; Monteiro et 

al., 2021; Nascimento et al., 2022; Peres et al., 2018; Portela et al., 2020; Santos et al., 2017; 

Silva et al., 2018). These studies were carried out from local to global scales to demonstrate the 

relationship between SUHIs intensities (SUHIIs) and a range of environmental parameters. 

Table 1 provides a focused tabular literature review of some of the most relevant studies in 

urban areas around the world and Brazil, with their respective methodologies and main results. 
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Table 1 - Summary of relevant literature on SUHII estimation using remotely sensed data 

around the world in relation to the proposed study. Note that recent studies have assessed only 

the relationship between SUHII and triggering factors, ignoring the possible influence of that 

on some biophysical parameters, like net radiation and evapotranspiration 

Study 
Remotely sensed 

data/methods used 
Location/period  Main results 

1. Peng et al. 

(2012) 

SUHII measured from the 

MODIS LST MYD11A2 

(Aqua). 

419 global big 

cities/2003-2008. 

Daytime and 

nighttime SUHII; 

Correlation with 

driven factors (albedo, 

vegetation and 

nighttime light).  

2. Clinton and 

Gong (2013) 

SUHII measured from the 

MODIS LST MOD11A2 

(Terra) and MYD11A2 

(Aqua); EVI and NDVI from 

MOD13A2; and Land cover 

from MOD12Q1. 

Global cities 

without 

specification/201

0. 

Daytime and 

nighttime SUHII; 

Correlation with 

EVI/NDVI and urban 

area. 

3. 

Maimaitiyimi

ng et al. 

(2014) 

LST and green spaces from 

Landsat 5 ™. 

Aksu City, 

Northwestern 

China/ One 

image in August 

2011. 

Correlation between 

LST and spatial 

configuration of 

vegetation. 

4. Flores et al. 

(2016) 

SUHII measured of the LST 

from MOD11A2 (Terra); 

land use and land cover 

(LULC) from MCD12C1; 

and NDVI/EVI from 

MOD13C2. 

São Paulo and 

Rio de Janeiro, 

Brazil/2001-

2014. 

Daytime and 

nighttime SUHII using 

two methods and their 

relationship with the 

factors. 

5. Dos Santos 

et al. (2017) 

Landsat 5 to quantify LST, 

NDVI, and NDBI. 

City of Vila 

Velha, 

Brazil/2008-

2011. 

Mapping of green and 

build-up areas and 

their relationship with 

LST. 

6. Peres et al. 

(2018) 

Landsat 5(TM), 7(ETM+) 

and 8(OLI) to estimate LST. 

Rio de Janeiro, 

Brazil/1984-

2015. 

Investigation 

ofincreasing LST. 

7. Silva et. al. 

(2018) 

 

 

LULC and LST from Landsat 

5 (TM) and 8 (OLI); and Air 

temperature and relative 

humidity from the National 

Institute of Meteorology 

(INMET). 

  

 

City of Paço do 

Lumiar, 

Brazil/1988,1999

, 2010, and 2014. 

Temporal and spatial 

variability of 

LULC/LST and their 

correlation with air 

temperature and 

humidity. 
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8. 

Chakraborty 

and Lee 

(2019) 

SUHII measured from the 

MODIS LST MOD11A2 and 

MYD11A2; and Land use 

and land cover classification 

(LULC) from MCD12Q1. 

9500 global 

cities/2001-2017. 

Variability and 

seasonality of daytime 

and nighttime SUHII. 

9. Correia 

Filho et al. 

(2019) 

Images from Landsat 5 (TM) 

and 8 (OLI) to estimate LST, 

NDVI, and NDBI. 

Maceió, 

Brazil/1987, 

1998, 2003, and 

2017. 

Correlation between 

NDVI, NDBI, and 

LST. 

10. 

Khamchiangta 

and Dhakal 

(2020) 

LULC, LST, and NDVI from 

Landsat 5 and 7 images. 

Bangkok, 

Thailand/1991, 

1997, 2005, and 

2016. 

Time series analysis of 

LULC and NDVI 

related with SUHII. 

11. Portela et 

al. (2020) 

LULC, NDVI. and LST from 

Landsat 5 (TM) and 8 (OLI). 

São José dos 

Campos, 

Brazil/2010-

2016 

Time series analysis of 

LST, LULC, and 

NDVI; Correlations 

between NDVI, 

NDBI, and LST. 

12. Dewan et 

al. (2021) 

SUHII measured from the 

MODIS LST MOD11A2; 

LULC from MCD12Q1, and 

EVI, NDWI, BCI, and 

albedo. from MODIS 

reflectance. 

Five large cities 

in 

Bangladesh/2000

-2019. 

Time series analysis of 

SUHII, with 

identification of 

driven factors and 

trends. 

13. Monteiro 

et al. (2021) 

SUHII calculated with LST 

from MOD11A2 (Terra), 

NDVI from MOD13A2, and 

surface albedo from 

MCD43A3. 

21 cities in 

Brazil/2000-

2016. 

Relationship between 

SUHII, NDVI, and 

albedo, with analysis 

of SUHII. 

14. Arshad et 

al. (2022) 

LST, NDVI, and NDBI 

measured with images from 

Landsat 5 (TM), 7 

(ETM+/TIRS), and 8 (OLI). 

LST time series with 

MOD11A2. 

Lahore District, 

Punjab, 

Pakistan/2001-

2020. 

Times series analysis 

of LST and its 

relationship with 

NDVI and NDBI. 

15. De Souza 

e Silva et al. 

(2022) 

LULC and LST estimated 

from Landsat 5 (TM) and 8 

(OLI) images; Air 

temperature and relative 

humidity from weather 

stations. 

João Pessoa, 

Brazil/1991, 

2006, 2010, and 

2018. 

Analysis of thermal 

comfort and 

relationship between 

LST and LULC. 

16. Moazzam 

et al. (2022) 

 

LST and LULC classification 

with Landsat 5 (TM), 7 

(ETM+) and 8 (OLI) images. 

 

Jeju Island, 

Republic of 

Korea/2002, 

2011, and 2021. 

Relationship between 

LULC changes and 

increasing LST. 
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17. 

Nascimento et 

al. (2022) 

 

LULC and LST estimated 

from Landsat 8 (OLI), and air 

temperature from 29 weather 

stations. 

 

São Paulo, 

Brazil/2019 and 

2021. 

Comparison between 

LST and air 

temperature correlated 

with LULC. 

18. Li et al. 

(2023) 

LST from Landsat 5, 7, and 8 

images and LST from 

MOD11A2. 

511 major cities 

worldwide/1985-

2020. 

Trend analysis of 

SUHII and its 

relationship with 

NDVI, impervious 

area, rainfall, and 

elevation. 

19. This study 

Daytime and nighttime 

SUHIIs measured from 

MODIS LST 

(MOD11A2/MYD11A2) and 

driven factors (i.e. EVI2, 

surface albedo, ET, Rn, and 

BU index) estimated by 

MODIS reflectance products 

and reanalysis data (ERA5-

Land and GLDAS). 

21 major 

metropolitan 

regions in 

Brazil/2003-

2022 

Time-series and trend 

analyses of daytime 

and nighttime SUHII 

and their relationships 

with net radiation, 

vegetation greenness, 

ET, impervious 

surfaces, and surface 

albedo. 

 

All studies listed in Table 1 advanced in the characterisation of the relationship between 

the urbanisation process and some variables, mainly the correlation between SUHII, LST, and 

vegetation indexes. For instance, Li et al. (2023) analysed the inter-annual trends of daytime 

SUHII in 511 cities worldwide, of which 13 were in Brazil, using annual averages based on 

reconstructed thermal images of the Landsat series between 1985 and 2020. They examined the 

annual relationship between SUHII, vegetation index, rainfall, and elevation, whose products 

were resampled to a spatial resolution of 1 km. Monteiro et al. (2021) further analysed the 

relationship between land surface temperature, surface albedo, and NDVI in 21 metropolitan 

regions of Brazil during the dry season (minimising cloud contamination) from 2000 to 2016. 

Additionally, Monteiro et al. (2021) used the MODIS-based products MCD43A3 (a daily 

product with 500 m spatial resolution, recently decommissioned) and MOD13A1 (a 16-day 

product with 1 km spatial resolution) to analyse the influences of LST in the surface albedo and 

NDVI, respectively, which can be coarse spatial resolutions for some smaller urban areas. 

These studies carried out worldwide and in Brazil mainly focused on the spatiotemporal 

analysis of LST or SUHII and its relationship with LULC and some biophysical parameters 

(mainly vegetation indexes). It appears that the LULC changes can affect many other 

biophysical parameters. For instance, the increase of impervious areas and, consequently, the 
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decrease of vegetated areas, can reduce the surface albedo and the LST, reducing the surface 

net radiation available and the latent heat fluxes associated with the actual evapotranspiration 

processes (Vujovic et al., 2021). This reduction of actual evapotranspiration can increase the 

sensible heat flux, warming the atmosphere and land surface in urban areas. 

However, the studies focusing on multiple urban areas of Brazil did not consider the intra- 

and inter-annual variabilities of SUHIIs and their relationship with biophysical parameters, 

including surface net radiation and actual evapotranspiration at a reasonable timescale (e.g. 

monthly). Therefore, this study intends to provide baseline information on the influence of 

urbanisation in the expansion of SUHIs and the variability of biophysical parameters in the 

urban Brazilian context, which is representative of many situations encountered throughout the 

Global South featuring tropical climates. To do so, the specific objectives of this study are: (i) 

to investigate the impacts of the urbanisation process on the formation of SUHIs in the major 

metropolitan regions of Brazil over the past 20 years, considering both intra-annual and inter-

annual scales; and (ii) to assess variations of the controlling surface biophysical parameters at 

a monthly timescale, including LST, surface albedo, vegetation index, net radiation, and actual 

evapotranspiration, over the last two decades, in response to the urbanisation process. 
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2 THEORICAL REFERENCE 

 

2.1  The urban climate 

Urban climate generally differs from those of nearby nonurban areas, with urban areas 

regularly reaching temperatures as much as 6ºC hotter than surrounding suburban and rural 

areas and the surface energy characteristics of urban areas are like those of desert locations, 

mainly because vegetation is lacking in both environments (Christopherson and Birkeland, 

2017). 

Defined as the complex interaction between natural and anthropogenic elements that 

affect atmospheric conditions in urban environments, the urban climate has been the subject of 

study in various fields, including meteorology, climatology, and urban geography. The 

increasing urbanization and global climate changes have expanded the significance of this 

research field, aiming to comprehend the climate characteristics in urban areas. According to 

Oke (1987), urban climate is shaped by a combination of factors such as urban layout, building 

geometry, pavement surfaces, vegetation, and anthropogenic heat release. 

Research related to the study of urban climate began in the 17th century, a period during 

which the air pollution levels in cities and the climatic changes caused by the pace of 

industrialization were being assessed. The inception of this research field dates to 1661, with 

John Evelyn's study "Fumifugium" (1661) on the urban climate of London, motivated by a high 

concentration of pollutants in the air. As early as 1833, after the 2nd Industrial Revolution, Luke 

Howard (1833) described a significant portion of urban climatic elements, including 

temperature and precipitation, through his study "The Climate of London" thereby conducting 

the initial comparisons of these variables between the urban zone and neighbouring areas. 

Local climate changes mainly arise due to modifications in land use and land cover, and 

these changes can be exemplified by alterations in precipitation patterns, decreased relative 

humidity, increased energy consumption, and intensified urban temperatures (Arshad et al., 

2022). An important environmental risk of urbanization is the formation of urban heat islands 

(UHIs) in which the increase in impermeable surfaces (Makiranta and Hiltunen, 2019) and the 

gradual loss of vegetation (Shojanoori and Shafri, 2016) modify the surface energy properties. 
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2.2 Urban heat islands (UHIs) 

In this situation, both maximum and minimum temperatures (on average) are higher 

within the cities when compared to the nearby rural settings (Christopherson and Birkeland, 

2017). Urbanization has led to rising air and surface temperatures in built-up areas, causing 

seasonal heat stress and increasing heat-related mortality in most global cities, especially with 

the formation of UHIs (Trenberth and Fasullo, 2012; Scherer et al., 2013; Nwakaire et al., 

2020). Its formation is highly associated with the heat-absorbing properties of the built 

environment and thermal effects of anthropogenic heat sources (Stone & Rodgers, 2001; Kim 

et al., 2022). 

UHIs modulate local climate (Landsberg, 1981; Roth, 2007), however they can also 

significantly influence both local and regional climates (Kalnay and Cai, 2003). Amorim (2010) 

says that temperature differences lead to differences in pressure, as at local scale of climate, 

higher temperatures result in lower pressures, and consequently, cooler air from the 

surroundings moves towards the warmer areas. During this process, if there are sources of air 

pollution, theses pollutants are carried to warmer location, potentially resulting in health issues 

for people (Amorim, 2010).  

On the other hand, green areas can remain cooler due to the role of trees in providing 

shade and dissipating energy through evapotranspiration and vegetated areas are gaining more 

support to become part of the solution through the structures of natured based solutions and 

urban green infrastructure (Nature Based Solutions Handbook, 2019; Augusto et al., 2020).  

According to Dewan et al. (2021), two major types of UHIs are distinguished: a) the 

atmospheric urban heat island (AUHI), and b) the surface urban heat island (SUHI). The type 

of UHI is based on the height above the ground at which the phenomenon is observed and 

measured (Oke, 1982). In-situ air temperature (Tair or Ta) records are typically used to examine 

AUHI, and land surface temperature (LST) data is used to reveal the spatiotemporal pattern of 

SUHI (Figure 1). 
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Figure 1 - Temperature differences forming the two principal types of intensity of UHIs: 

atmospheric urban heat island intensity (AUHII) and surface urban heat island intensity 

(SUHII). Adapted from Oke et al., (2017). 

 

In-situ observations, either by fixed weather stations or mobile traversing, are valuable in 

defining actual ground conditions (Hu et al., 2016), however a change in 

location/instrumentation, as well as inadequate coverage, can complicate their use (Wang et al., 

2007). To overcome these possible issues, land surface temperature (LST) data from airborne 

and earth observing satellites is commonly employed in UHI studies. 

 

2.3 The remote sensing applications to SUHIs studies 

Remote sensing can be understood as a set of activities that enables the acquisition of 

information from objects comprising the Earth's surface without the need for direct contact with 

them (Liu, 2015). These activities involve the detection, acquisition, and analysis (interpretation 

and extraction of information) of electromagnetic radiation emitted or reflected by terrestrial 

objects and recorded by remote sensors. According to Liu (2015), the quantity and quality of 

electromagnetic energy reflected and emitted by terrestrial objects result from interactions 

between electromagnetic energy and these objects. These interactions are determined by the 

physical, chemical, and biological properties of these objects and can be identified in remote 

sensor images and data. It allows for quantifying the spectral energy reflected and/or emitted 

by them, thus evaluating their key characteristics. Therefore, remote sensors are indispensable 
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tools for conducting inventories, mapping, and monitoring of natural resources. 

Characterization and monitoring of natural resources with the aid of remote sensing are often 

carried out by obtaining vegetation indices such as the Normalised Difference Vegetation Index 

(NDVI) (Rouse et al., 1973), Soil-Adjusted Vegetation Index (SAVI) (Huete, 1988), Enhanced 

Vegetation Index 2 (EVI2) (Jiang et al., 2008; Zhang, 2015), and Leaf Area Index (LAI) (Miller, 

1997). In turn, evolutionary patterns of land use and land cover can be quantified with the help 

of indices such as the NDBI (Zha et al., 2003) and even classifications of land cover types and 

land use, as employed with Landsat data in the study by Souza et al. (2020).  

The sensors on satellites also effectively provide surface temperature values from local 

to global scales (Moazzam et al. 2022) and can serve as a tool in characterizing the SUHIs. 

Several sensors provide global scale surface temperature data that are accessible for research, 

such as the Thermal Infrared Sensor 2 (TIRS-2) on the Landsat series, the Advanced Very High-

Resolution Radiometer (AVHRR), and the Moderate Resolution Imaging Spectroradiometer 

(MODIS) aboard the Terra and Aqua platforms. 

Satellite remotely sensed data helped to identify driving factors and spatial-temporal land-

use changes of cities which includes urbanisation and economic growth along with policy 

guidelines and environmental measures (Samal and Gedam, 2015; Yang et al., 2019). Moazzam 

et al. (2022) demonstrated through a land use and land cover classification that the highest 

temperature in Jeju Island (Republic of Korea) was observed for the urban class. However, the 

forest cover and water body had the lowest temperature in the island. Similar results were 

detected in the study of Arshad et al. (2022) that showed that large green spaces exhibit 1 to 

4ºC lower land surface temperature (LST) compared to their surrounding built-up land in a 

metropolitan city of Pakistan. Khamchiangta and Dhakal (2020) and Dewan et al. (2021) 

emphasized that the changing trends of LST tends to be increasing while the vegetation tends 

to be declining. Peng et al. (2012) attested that the daytime surface urban heat island intensity 

(SUHII) was higher that nighttime in 419 global cities and that the driven factors of SUHII 

differed according to the climate zone of the cities. The same result was observed for Si et al. 

(2022) with the use of 1711 cities around the world, during 2003-2019. Chakraborty and Lee 

(2019) found that the variability of SUHII is higher in equatorial zones and lower in arid zones 

and L. Li et al. (2023) discovered that the impacts of urbanization on SUHIs trends are larger 

in humid climates that characterized by dense vegetation and high precipitation. 
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Some studies carried out in Brazil have also applied remote sensing data to analyse the 

relationship between SUHIs and different land use and land cover types, vegetation presence, 

and urban areas (Flores R. et al., 2016; Santos et al., 2017; Peres et al., 2018; Silva et al., 2018; 

Correia Filho, 2019; Portela et al., 2020; Nascimento et al., 2022; De Souza e Silva et al., 2022), 

and surface albedo (Monteiro et al., 2021). Among these studies, Santos et al. (2017) found a 

positive correlation between LST and NDBI for the city of Vila Velha, Espírito Santo. 

Furthermore, on a local scale, Flores R. et al. (2016), Filho et al. (2019) and Portela et al. (2020) 

highlighted that the replacement of green areas, quantified by the NDVI, by residential and 

commercial areas contributed to the growth of SUHII in their respective studied cities. Only the 

study by Monteiro et al. (2021) was conducted on a national scale, encompassing different 

cities, and revealed substantial differences between daytime and nighttime SUHIIs. 

The vast majority of these studies have utilized these techniques in Geographic 

Information System (GIS) platforms, which are still commonly used and require considerable 

computational demand for processing such data, as they often involve extensive files and 

images that occupy a large computational memory. To address such issues, these techniques 

can be easily adopted in the Google Earth Engine (GEE) geospatial analysis platform, which 

provides access to a vast amount of remote sensing, climate, and other data exclusively in the 

cloud, thus eliminating the need for a greater computational demand from the user's machine, 

with planetary-scale analysis capabilities. Scientists, researchers, and developers use GEE to 

detect changes, map trends, and quantify differences on the Earth's surface. 

These geospatial approaches have shown a strong potential for rapid monitoring of urban 

expansion and devising effective policies to mitigate its environmental impacts and ensure 

sustainable urban development. But to understand the formation of SUHIs and mitigate its 

effects, it is also important to have insights about the surface energy balance dynamics. 

 

2.4 Simplified surface energy budget (Rn and α) 

 The surface energy balance (SEB) is the fundamental starting point to understand and 

predict surface microclimates. The SEB is affected by the specific characteristics of Earth’s 

surface, such as the presence or absence of vegetation and local topography (Christopherson 

and Birkeland, 2017; Chrysoulakis et al., 2018). The surface in any given location that receives 

and loses shortwave (SW) and longwave energy (LW) and that balance between incoming 
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(downwelling) and outgoing (upwelling) these two types of radiation at the surface is defined 

as net radiation (Rn) (Ferreira et al., 2020) and can be represented by the Equation 1 and 

illustrated by the Figure 2: 

 

Rn =  +SWinsolation ↓  − SWreflection ↑  + LWinfrared ↓  −LWinfrared ↑                                   (1) 

 

 
Figure 2 - Idealized input and output of energy at the surface within a column of soil (SW = 

shortwave, LW = longwave) (Christopherson and Birkeland, 2017). 

 

Heat is transferred by conduction through the soil, predominantly downward during the 

day and toward the surface at night (Figure 2). This part of the energy is represented by the 

ground heating and cooling flux (G). On the other hand, energy moving from the atmosphere 

into the surface is reported as a positive value (gain), and energy moving outward from the 

surface, through sensible (H) and latent heat (LE) transfers, is reported as a negative value (loss) 

in the surface account. LE is the energy that is stored in water vapor as water evaporates. Water 

absorbs large quantities of this LE as it changes state to water vapor, thereby removing this heat 

energy from the surface. Conversely, this heat energy releases to the environment when water 

vapor changes state back to a liquid. And H is the heat transferred back and forth between air 

and surface in turbulent eddies through convection and conduction within materials. 

According to Oke et al. (2017) the ratio of the two turbulent heat flux densities H / LE, 

known as the Bowen ratio (β), is significant to a surface climate. If β > 1 it indicates that the 

surface or system channels more heat into sensible form, which warms the lower atmosphere 



25 

 

whereas and the surface, if β < 1 latent heat dominates, which keeps the surface and near-surface 

air cooler, whilst it adds humidity to the environment. 

Energy gains include shortwave from the Sun (both diffuse and direct) and longwave that 

is reradiated from the atmosphere after leaving Earth. Energy losses include reflected shortwave 

and Earth’s longwave emissions that pass through to the atmosphere and space (Christopherson 

and Birkeland, 2017). The amount of energy losses from shortwave depends on the coefficient 

of reflection of incident shortwave radiation, referred to as surface albedo (α) and its variability 

can induce changes in non-radiant fluxes (e.g., latent, and sensible heat) within the energy 

balance, as well as in the surface temperature (Chen et al., 2004). 

In the urban areas, surface albedo varies with complex urban morphologies (e.g., block 

shapes, plan density, facade density, building height, and layout orientation) and other factors 

(e.g., latitude and time) (Groleau et al., 2013), and the average urban surface albedo is the lowest 

for a medium-density city with high-rise buildings presenting greater building height 

differences (Yang and Li, 2015). It seems to be an effective solution to increase urban surface 

albedo using reflective materials, which can offset anthropogenic heat emissions in urban areas 

(Yuan et al., 2015; Morini et al., 2017). Modelling experiments to calculate the UHI in 

Sacramento, United States, by Taha (2008) indicates that increasing surface albedo does have 

a significant impact on the daytime SUHI but little influence on the nocturnal SUHI. The land 

cover change that causes the surface albedo changes is dominated by a replacement of 

croplands, savannas, and grasslands with urban lands (Ouyang et al., 2022). 

Figure 3 illustrates the surface energy components for a typical summer day at a 

midlatitude location (Christopherson and Birkeland, 2017). Daily, Rn values are positive during 

the daylight hours, peaking just after noon with the peak in insolation; at night, values become 

negative because the shortwave component ceases at sunset and the surface continues to lose 

longwave radiation to the atmosphere. The surface rarely reaches a zero Rn value (a perfect 

balance) at any one moment. 
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Figure 3 - Daily radiation budget on a typical summer day in Matador in southern 

Saskatchewan, Canada (Christopherson and Birkeland, 2015). 

 

Satellite imagery has been widely used to determine Rn from field to regional scales, and 

over heterogeneous areas (Bisht et al., 2005; Allen et al., 2007; Ryu et al., 2008; Bisht and Bras, 

2010; Silva et al., 2011; Silva et al., 2015). Many algorithms have been defined to quantify the 

downwelling shortwave radiation (Zillman, 1972; Allen et al., 2007), downwelling longwave 

radiation (Sugita and Brutsaert, 1993; Prata, 1996; Bastiaanssen et al., 1998; Duarte et al., 2006; 

Allen et al., 2007; Kruk et al., 2010; Santos et al., 2011), longwave radiation, and radiative 

properties (Tasumi, 2003; Muñoz-Jiménez et al., 2006; Tang and Li, 2008; Teixeira et al., 

2009). 

 

2.5 The key role of vegetation cover 

In addition to the net radiation balance (Rn) and surface albedo (α), other biophysical 

parameters are important in analysing urban microclimate and their potential to change the 

SUHIs effects, including the assessment of vegetation patterns in the urban environment. Trees 

in urban areas can mitigate the SUHIs effect, especially locally, for example by shading surfaces 

and people (Figure 4).  
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Figure 4 - The potential of vegetation in mitigating heat in the urban environment. Adapted 

from McDonald et al. (2015). 

 

Shade makes heat more tolerable and can protect people from excessive sun exposure 

during travel, work, or leisure (Nowak and Dwyer, 2007). Trees that shade buildings can reduce 

surface temperatures in a wide variety of contexts (Wang et al., 2014). For example, surface 

temperatures were reduced by 11°C–25°C in Sacramento, California (Akbari et al., 1997); by 

5°C–7°C in Akure, Nigeria (Morakinyo et al., 2013), and by 9°C in Melbourne, Australia (Berry 

et al., 2013). 

 

During the day, trees may create lower air temperatures by releasing water into the air as 

they photosynthesize (Bowler et al., 2010; Säumel et al., 2016). As water vapor is released, it 

takes with it some of the ambient heat. Large trees with ample access to water may evaporate 

more than 100 litres of water in a single day, which dissipates about 70 kilowatt-hours (kWh) 

of solar energy that would otherwise remain stored in the urban environment (Fath, 2018). 

Various remote-sensing studies have emphasized that key role that vegetation plays with 

the quantification of vegetation indexes (Santos et al., 2017; Chakraborty and Lee, 2019; Portela 

et al., 2020; Dewan et al., 2021). Satellite vegetation index (VI) products are commonly used 

in that application that aim to monitor and characterize the vegetation cover in urban 

environment. Some authors even state that the patterns of built-up land and vegetation have the 

largest impact on urban LST (Yang et al., 2017). 
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Gallo et al. (1993) explored the relationship between SUHIs and NDVI for the first time, 

which still constitutes one of the major indicators to measure the LST-vegetation relationship. 

Weng et al. (2004) introduced the vegetation fraction, which is an alternative indicator of 

vegetation to SUHI research. They found that the vegetation fraction possessed a slightly 

stronger relationship with LST than NDVI in urban areas. Dewan et al. (2021) characterized 

vegetation with Enhanced Vegetation Index (EVI) and showed a consistently negative 

relationship with day and nighttime SUHIs. 

A good parameter to assess the spatial and temporal variability of vegetation in urban 

areas is crucial and Jiang et al. (2008) showed an alternative to quantify the EVI-2 without the 

blue band from remote satellite sensors. They developed and evaluated that index with global 

and local scale MODIS data, showing that EVI-2 can used to substitute the original EVI for 

good observations (Jiang et al., 2008). 

It is important to mention that the effectiveness of vegetation in mitigating SUHIs can 

vary depending on factors such as vegetation density, plant types, ground cover, and other 

factors. Sustainable urban planning should consider the incorporation of green spaces and 

appropriate use of vegetation as essential strategies to mitigate the effects of SUHIs and enhance 

thermal comfort in cities. 

2.6 The evapotranspiration process 

The process of evapotranspiration (ET) can reduce both the risk of heat-related illness or 

death and increase the liveability of cities (Bowler et al., 2010; Mohajerani et al., 2017; Wolf 

et al., 2020). ET is the phenomenon by which water is converted from liquid into its vapor phase 

over land (Melo et al., 2021) composed by the plant transpiration and surface evaporation. It 

has an important role in the modulation of global climate feedback being a key driver of the 

Earth’s carbon, energy, and water cycles at local, regional, and global scales (Tong et al., 2017; 

Khosa et al., 2019; Valle Júnior et al., 2020). 

Quantifying ET is one of the largest research challenges in hydrology because ET is 

driven by a complex combination of atmospheric, vegetation, edaphic, and terrain 

characteristics (Wang et al., 2016; Bhattarai et al., 2017), and this complexity is also present in 

the urban areas. While the important role of ET in regulating the urban thermal environment is 

well known, the spatial characteristics of ET’s cooling effect and its quantification at a regional 

scale are rarely studied (Wang et al., 2020). This is mainly due to the challenges of measuring 
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and modelling ET in urban areas with highly heterogeneous surfaces. Urban ET is a large 

physical process that depends on various key drivers, including air temperature, solar radiation, 

land cover types, building and street orientations, and radiative shade dynamics, along with 

landscape type, end-user aesthetical preference, and landscape affordability (Saher et al., 2021). 

Current, most studies on regional-scale ET have employed remote sensing data with 

corresponding surface energy balance (SEB) models or the Penman–Monteith (PM) (Vahmani 

et al., 2014; Wang et al., 2016; Zhang et al., 2017; Zhang et al., 2018; Wang et al. 2020; Rocha 

et al., 2022). Wang et al. (2020) quantified the ET in urban areas of Xuzhou (China) using 

Landsat 8 data for the period of 2014-2018 and showed that the relationship of ET and LST 

was significantly negative during the warmer months of the year but during the colder months, 

there was no significant correlation. Their findings provide a new perspective for the 

improvement of urban thermal comfort, which can be applied to urban management, planning, 

and natural design. Rocha et al. (2022) provided a method for mapping spatially and temporally 

high-resolution ET for Berlin (Germany) to support actions to mitigate UHIs and severe heat 

waves. 

These existing models have the potential to improve the estimation of urban ET, 

especially mapping the process and correlating with the urban expansion and the variability of 

LST in urban lands. The ET estimation have a great potential to address the thermal effects of 

urban surfaces. The substitution of natural lands and plant cover for sealed surfaces brings the 

reduction of the cooling effect of evaporation and plant transpiration, situation that can be 

evaluated with the quantification of ET. 
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3 STUDY AREA 

 

This study focused on twenty-one Brazilian metropolitan regions (MRs) (Figure 5) 

distributed throughout different Brazilian biomes (Figure 5a): Amazon Forest (rainforest, 49% 

of land area), Caatinga (xeric shrubland, 10% of the land area), Cerrado (wooded savannah, 

24% of land area), Atlantic Forest (several variations of forest, 13% of land area), and Pampa 

(grassland, 2% of the land area) (Roesch et al., 2009). The analysed MRs were: Manaus, Belém, 

and São Luís in Amazon; Natal, João Pessoa, Recife, Maceió, Salvador, Vitória, Belo 

Horizonte, Campinas, São Paulo, Rio de Janeiro, Santos, Curitiba, and Florianópolis in Atlantic 

Forest; Fortaleza in Caatinga; Teresina, Goiânia, and Distrito Federal in Cerrado; and Porto 

Alegre in Pampa. Each MR has a population of over one million inhabitants, according to the 

census from the Brazilian Institute of Geography and Statistics (IBGE) in 2022, with the 

number of inhabitants ranging from 1,249,822 (Teresina) to 20,743,587 million (São Paulo) 

(IBGE, 2022). 

Manaus (MA), Belém (BE), and São Luís (SL) in Amazon hold tropical humid (Af), 

tropical monsoon (Am), and tropical with dry summer (As) climates, respectively (Alvares et 

al., 2013). These climate classifications in the Amazon biome are characterised by annual 

elevated temperatures (27ºC, on average), high air humidity (75%, on average), and abundant 

rainfall (2500 mm, on average). The metropoles located in the Atlantic Forest biome feature a 

diverse range of climates, with Natal (NA), João Pessoa (JP), Maceió (MAC), Vitória (VI), 

Santos (SAN), and Rio de Janeiro (RJ) holding a tropical climate with dry season in the summer 

(As), while Recife (RE) and Salvador (SA) possess a tropical monsoon (Am) climate. On the 

other hand, São Paulo (SP) and Curitiba (CU) have a subtropical climate with tempered summer 

(Cfb), while Belo Horizonte (BH) has a subtropical climate with dry winter and tempered 

summer (Cwb), and Campinas (CAM) and Florianópolis (FLO) hold a subtropical climate with 

hot summer (Cfa). Fortaleza (FO), in the Caatinga biome, is characterised by a tropical climate 

with a dry season in the summer (As). Teresina (TE), Goiânia, and Distrito Federal (DF), 

located in the Cerrado biome, have a tropical climate with a dry season in the winter (Aw), 

whose mean air temperatures remain constantly high throughout the year (i.e. higher than 35ºC). 

Located in the Pampa biome, Porto Alegre (PA) has a subtropical climate with a hot summer 

(Cfa), with a dominant presence of low mean air temperatures in the winter season, ranging 

from 0 to 22 ºC (Alvares et al., 2013).



31 

 

 

Figure 5 - Spatial distribution of the analysed metropolitan regions according to (a) the different Köppen's climate classification defined by Alvares 

et al. (2013) for Brazil and (b) the Brazilian biomes (IBGE, 2022). 
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4 MATERIAL AND METHODS 

 

This study analysed the spatial-temporal variability of SUHIIs between 2003 and 2022. 

In order to investigate the impacts of the urbanisation process on the formation of SUHIs 

(objective i) and (ii) to assess the variations of the controlling surface biophysical parameters 

(objective ii), the following steps were applied (Figure 6): (a) delimitation of urban areas and 

their spatial-temporal variability; (b) estimation of SUHIs intensities (SUHIIs); (c) 

quantification of biophysical parameters; (d) analysis of temporal trends; and (e) statistical 

analyses of the relationship between urban areas, urban LST, and biophysical parameters. All 

data used in this study is summarised in Table 2 and its available on the Google Earth Engine 

(GEE) platform, the tool used in this research application. GEE is a geospatial analysis platform 

that utilizes JavaScript programming language and combines a multi-petabyte catalog of 

satellite imagery and geospatial datasets with planetary-scale analysis capabilities. The 

methodological steps are described in detail in the next items of this section. 

 

 

Figure 6 - Analytical techniques applied in the study. The inputs are represented for the 

identification products and the outputs are the variables cited. 
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Table 2 - Description of the datasets used in the research 

Product 
Bands/applied 

variables 

Time 

coverage 

Spatial 

Resolution 

Temporal 

Resolution 
Results 

MOD11A2 

MYD11A2 

Day and nighttime 

land surface 

temperature (ºC) 

2000-

present 
1 km 8 days SUHIIs 

MOD09Q1 

MYD09Q1 

RED – surface 

reflectance (620-

670 nm); NIR – 

surface reflectance 

(841-876 nm) 

2000-

present 
250 m 8 days 

Surface  

albedo  

Vegetation  

index 

MOD09A1 

MYD09A1 

SWIR - surface 

reflectance  

(1628-1652 nm) 

2000-

present 
500 m 8 days Urban areas 

GLDAS 

2.1 

short-wave 

radiation flux 

(W/m²) 

2000-

present 
27,83 km 3h 

Net radiation 

Evapotranspira

tion 

ERA5-

Land 

air temperature (ºC) 

surface pressure 

(kPa) 

1981-

present 
11,13 km 1h 

Net radiation 

Evapotranspira

tion 

Mapbiomas 

Collection 

7 

LULC classification 
1985-

2021 
30 m Yearly 

Canopy 

conductance 

and plant 

transpiration 

 

4.1 Growth of urban areas (UAs) 

The growth of the metropolitan regions over the last two decades was annually analysed 

through the use of the built-up index (BU; Zha et al., 2003), which allows distinguishing built 

and non-built surfaces using the NDBI (Normalised Difference Built-Up Index) and the NDVI 

(Normalised Difference Vegetation Index), as follows: 

BU = NDBI − NDVI                                                                                                                               (2) 

 

The NDBI (Zha et al., 2003) and NDVI (Rouse et al., 1973) were calculated by Eqs. 3 

and 4, respectively: 

NDBI =
SWIR − NIR

SWIR + NIR
                                                                                                                            (3) 

NDVI =
NIR − RED

NIR + RED
                                                                                                                               (4) 
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where SWIR, NIR, and RED correspond to the surface reflectance in the shortwave infrared, 

near-infrared, and red wavelengths, respectively, detected by the Moderate-Resolution Imaging 

Spectroradiometer (MODIS) sensor on board the Terra and Aqua satellites, provided by the 

MOD09Q1 (NIR and RED bands), MYD09Q1 (NIR and RED bands), MOD09A1 (SWIR 

band), and MYD09A1 (SWIR band) products. Both MOD09Q1 and MYD09Q1 products have 

a spatial resolution of 250 m, while the MOD09A1 and MYD09A1 products have a spatial 

resolution of 500 m. For each pixel of all reflectance products used to calculate the BU, a value 

is selected from all the acquisitions within the 8-day composite period, mainly based on lower 

view angles and the absence of clouds. Overall, 3,678 images from these reflectance products 

were used, corresponding to all the images available in the period from 2003 to 2022. It is 

important to mention that the NDVI and NDBI scales range from -1 to +1. Therefore, the BU 

scale is virtually between -2 and 2, where only pixels with BU > -0.5 are classified as urban 

areas (UAs), as also defined by Zha et al. (2003). 

 

4.2 Estimation of surface urban heat island intensities (SUHIIs) 

Land surface temperature (LST) data, obtained from the thermal infrared bands of 

MODIS sensors, were used to analyse the temporal (monthly and annual) and spatial variability 

of SUHIIs during the day and nighttime. SUHII was estimated by evaluating the difference 

between the average temperatures of the urban and the surrounding rural areas. The BU index 

was used to set the boundary between urban and rural areas, using a buffer of 2 km around the 

urban areas to delineate the rural area boundaries for calculating the SUHIIs, similar to Li and 

Zha (2019), Suomi et al. (2012), Tian et al. (2021), Xian et al. (2021), and Zhou et al. (2014). 

 MODIS sensors onboard the Terra (data obtained at 10:30 a.m. and 10:30 p.m.) and Aqua 

(data obtained at 1:30 a.m. and 1:30 p.m.) platforms can provide LST from 2003. The daytime 

and nighttime data from MOD11 products present quality control (QC) bands indicating the 

reliability and conditions of measurements performed by the sensors (Wan et al., 2021). Such 

bands can be used to identify pixels affected by clouds and temperature errors, which consist 

of binary (bit) information where each bit has a specific meaning. Based on this, the LST data 

were filtered to use only pixels with error estimates less than or equal to 3 K, allowing a focus 

on areas of interest with higher reliability (Chakraborty and Lee, 2009). In the frame of this 
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study, 920 and 919 images of the MOD11A2 (Terra) and MYD11A2 (Aqua) products, 

respectively, were used, which similarly to the surface reflectance products, consist of pixels 

with the best observations within an 8-day period, containing LST with 1 km spatial resolutions. 

Similarly, to Chakraborty and Lee (2019) and Li et al. (2022), we removed from the analysis 

the pixels corresponding to water bodies due to their cooling capacity, which, consequently, 

can influence the average estimation of LST in the metropolitan regions. The selection of pixels 

corresponding to water bodies was based on the collection 7 of the annual land use and land 

cover (LULC) classifications provided by Mapbiomas, a Landsat-based project that makes 

available twenty-seven LULC classes at a 30-m spatial resolution for the Brazilian territory 

from 1985 to the present (Souza et al., 2020). 

The reason for conducting the urban heat island analysis at the metropolitan region level 

rather than at the neighbourhood or smaller areas within cities is primarily due to the moderate 

spatial resolution of the MODIS Land Surface Temperature (LST) product. Additionally, the 

study limited itself to this product for quantifying LST because it provides greater temporal 

coverage, ensuring a more suitable analysis of time series data. 

 

4.3 Variability of biophysical parameters 

4.3.1 Vegetation greenness 

 In order to assess the vegetation greenness at the monthly and annual scales, we 

determined the Enhanced Vegetation Index 2 (EVI2) (Jiang et al., 2008; Zhang, 2015; Eq. 5): 

EVI2 = 2.5 x 
RED −  NIR

NIR + 2.4RED + 1.0
                                                                                                   (5) 

 

To obtain the EVI2, 1,839 images of the MOD09Q1 and MYD09Q1 products were used, 

where the RED and NIR (near-infrared) bands are available. To address the shortcomings 

related to cloudy conditions, we carried out monthly map compositions based on the selection 

of pixels with the higher values of EVI2 obtained from the eight images available per month 

(i.e. four MOD09Q1 and four MYD09Q1), assuming that lower or negative values of EVI2 

were possibly contaminated by clouds. The EVI2 scale ranged from 0 to 1, with the remaining 

negative values being considered water bodies and, therefore, excluded from the spatialisation. 
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4.3.2 Surface albedo 

 To estimate the monthly and annual variations of surface albedo (α), the same reflectance 

products used to obtain the EVI2 were utilised, according to the model proposed by Teixeira et 

al. (2013; 2014) (Eq. 6): 

α = a + bRED + cNIR                                                                                                                           (6) 

 

where a, b, and c are the regression coefficients calibrated for each Brazilian biome. These 

coefficients were obtained through the comparison between remote sensing and field 

measurements of five well-distributed flux towers across the country, located in different 

Brazilian biomes (Claudino et al., 2024; Table 3). Similarly, to EVI2, we carried out monthly 

map compositions with the 8-day images of α to also address the shortcomings related to cloudy 

conditions. Only the lower value of α per pixel, from the eight images available per month (i.e. 

four MOD09Q1 and four MYD09Q1), were considered, assuming that higher values of surface 

albedo resulted from cloud contamination. 

 

Table 3 - Regression coefficients used to estimate the surface albedo (α) for each Brazilian 

biome and, consequently, each metropolitan region. 

Brazilian 

biome 
Metropolitan Regions a b c 

Atlantic 

Forest 

Natal, João Pessoa, Recife, Maceió, Salvador, 

Vitória, Rio de Janeiro, Belo Horizonte, São 

Paulo, Santos, Campinas, Curitiba, and 

Florianópolis 

0.156 -0.099 0.103 

Amazon Manaus, Belém, and São Luís 0.118 -0.016 0.016 

Caatinga Fortaleza 0.08 0.41 0.14 

Cerrado Teresina, Goiânia, and Distrito Federal 0.124 -0.009 0.043 

Pampa Porto Alegre 0.139 -0.125 0.192 

 

4.3.3 Net radiation of the land surface (Rn) 

Rn is the result of the balance between the incoming (positive flux) and outgoing 

(negative flux) short- and long-wave radiation at the Earth's surface (Ferreira et al. 2020). Rn 

influences other surface energy balance components (e.g. evapotranspiration, photosynthesis, 

and heating of air and soil). Therefore, quantifying Rn in the urban environment is significant 
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for the analysis because it can influence the LST variations in urban areas. The daily daytime 

(i.e. considered for solar radiation > 10 W/m2 in this study; Mu et al., 2011) and nighttime Rn 

were computed in this study through the method proposed by Cleugh et al. (2007) (Eq. 7): 

Rn = (1 − α)S +  σ(εa − εs)(273.15 + Ta)                                                                                    (7) 

 

where εs is the surface emissivity, S the shortwave radiation reaching the surface (W/m2) 

obtained from the Global Land Data Assimilation System version 2.1 (GLDAS 2.1; Rodell et 

al., 2004), σ (W m-2 K-4) is Stefan-Boltzmann constant, Ta is the air temperature (ºC) obtained 

from the European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5-

Land; Muñoz Sabater, 2019), and εa is the atmospheric emissivity (Eq. 8): 

εa = 1 − 0.26ex p(7.77 ∙  10−4Ta
2)                                                                                                 (8) 

 

εs was estimated using Eq. 9: 

εs = 0.95 + 0.01LAI                                                                                                                              (9) 

 

where LAI is the Leaf Area Index (Eq. 10; Miller, 1997). For pixels with LAI > 3 or NDVI < 

0, 𝜀𝑠 were set as 0.98 and 0.99, respectively.  

LAI = −
ln (

0,69 −  SAVI
0,59

)

0,91
                                                                                                               (10) 

 

where SAVI represents the Soil-Adjusted Vegetation Index (Huete, 1988), calculated using the 

surface reflectance from RED and NIR bands (Eq. 11). 

SAVI =  
(1 +  L)(RED −  NIR)

(L +  RED +  NIR)
                                                                                                      (11) 

 

where L corresponds to the soil adjustment factor, fixed as 0.2 in this study (Allen et al., 2002). 

4.3.4 Actual evapotranspiration (ET) 

Actual evapotranspiration (ET) corresponds to the combined process of water evaporation 

from surfaces and transpiration from plants (Mu et al., 2011), playing a crucial role in regulating 
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the LST and the energy balance in urban areas. We estimated ET based on the logic of the 

Penman-Monteith equation (Monteith, 1965), similar to Mu et al. (2011) to create the global 

MOD16 ET product made available by NASA (National Aeronautics and Space 

Administration). Currently, the MOD16 dataset provides global ET information at a 500 m 

spatial resolution and three temporal scales: 8-day, monthly, and annual. 

Unlike the original MOD16 dataset, we followed the adaptations proposed by Claudino 

et al. (2024), which include a cloud cleaning procedure and the application of more fine-tuned 

LULC (Mapbiomas project) and meteorological (ERA5-Land and GLDAS 2.1) information for 

Brazil to provide daily ET data with 250-m spatial resolution, the so-called ESTIMET 

(Evaluation and Spatial-Temporal Improvement of MODIS Evapotranspiration). The cloud 

cleaning procedure of ESTIMET consists of the adoption of monthly compositions of 

biophysical parameters as input of the model, similar to the described in this study to estimate 

LAI, EVI2, and α. The daily ET was then calculated based on Eq. 12, assuming daily ET as the 

sum of daytime and nighttime components (Mu et al., 2011): 

𝜆ET = λEwet c + λEtrans + λEsoil =  
s A + ρ Cp

(esat − ea)
ra

s + γ (1 +
rs

ra
)

                                                    (12) 

 

where λET is the latent heat flux density (W/m2), consisting of the evaporation from the wet 

canopy of vegetation (λEwet c), plant transpiration (λEtrans), and soil evaporation (λEsoil), 

converted to daily ET (mm dia-1) after multiplying by the conversion factor (3.53 x 10-2 mm d-

1 W-1 m2). A is the available energy determined from the daily net radiation of the land surface 

(Rn) in W/m2 and calculated as Eq. 6, s is the slope (kPa °C-1) of the curve relating saturated 

water vapour pressure (esat) to temperature, ρ is the air density (1.2 kg m-3), Cp is the specific 

heat capacity of air at constant pressure (1005 J kg-1 ºC-1), ra is the aerodynamic resistance (s 

m-1), rs is the surface resistance (s m-1), ea is the actual water vapour pressure (kPa), esat is the 

saturated water vapour pressure to the temperature (kPa ºC-1), and γ is the psychometric 

constant (kPa ºC-1). 

4.4 Spatiotemporal analysis and statistical metrics 

The spatiotemporal patterns of the estimated variables were obtained based on their 

averages over 5-year periods within the historical series (i.e. 2003-2007, 2008-2012, 2013-
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2017, and 2018-2022). To assess the presence of statistically significant trends in the twenty 

years series of data, the non-parametric Mann-Kendall test (Mann, 1945; Kendall, 1948) was 

applied at a significance level of 95% to all variables, and computed by Eq. 13: 

S = ∑  

n−1

i=1

∑  

n

j=i+1

sign(Xj − Xi), sign(Xj − Xi) = {+1 (Xj − Xi) > 0 0 (Xj − Xi)

= 0 − 1 (Xj − Xi) < 0       (13)    

where 𝑛 is the number of observations, 𝑋𝑖 represents the observation at time i, 𝑋𝑗 represents the 

observation at time j, and sign(x) is the sign function of x. The variance of S (Var(S)) and the 

standard normal statistic (Z) were computed from the Eq. 14 and Eq. 15, respectively: 

Var(S) =  
n(n + 1)(2n + 5) −  ∑  m

i=1 ti(ti − 1)(2ti + 5)

18
                                                         (14) 

Z =  {
S − 1

√Var(S)
, S > 0 0, S = 0 

S + 1

√Var(S)
, S < 0                                                                   (15) 

 

where n is the number of data, m is the number of tied groups and ti denotes the number of ties 

to the extent i. A tied group is a set of sample data having the same value. Positive values of Z 

indicated increasing trends, while negative Z values indicated decreasing trends. The 

corresponding p-value was also calculated to determine the statistical significance of the 

observed trends. Finally, the Theil-Sen slope (Sen, 1968) was used to estimate the slope of the 

found trends. 

Historical averages of SUHII for each month of the year were obtained from the monthly 

time series to investigate the variability of SUHIs throughout the year in different cities, 

analysed according to the biome in which each MR is located. Pearson's correlation coefficient 

(r) (Eq. 16) was used to identify the relationship between the UA and the variability of urban 

LST, Rn, and ET. The same statistical parameter was used to assess the triggering factors of 

SUHIs, represented by the urban LST and its relationship with the analysed surface biophysical 

parameters (EVI2, surface albedo, Rn, and ET). 

r =  
∑ (xi − x)(yi − y)  

 

√∑ (xi − x)2  
 ∑ (yi − y)2 

 

                                                                                                          (16) 
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where xi is the value of the x variable, yi is the value of the y variable, x is the mean of the x 

variable and y is the mean of the y variable. The values of r range from -1 to 1, with -1 indicating 

the strongest negative correlations and 1 indicating the strongest positive correlations. The 

reason for using urban LST instead of SUHIIs was to quantify the local problem of 

intensification of surface temperature within the urban boundaries, as performed by other 

studies (Tran et al., 2006; Zhou et al., 2020; Xian et al., 2021; Moazzam et al., 2022; 

Nascimento et al., 2022; Sfîcă et al., 2023). 

The associations were also evaluated with the Determination Coefficient (R2) and Kling-

Gupta Efficiency (KGE) (Gupta et al., 2009) presented in Eqs. 17 and 18, respectively: 

R2(y, ŷ) =  1 −  
∑ (yi −  ŷi)2n

i=1

∑ (yi − y)
2

n
i=1

                                                                                                       (17) 

KGE (y, ŷ) =  1 −  √(r − 1)2 + (β − 1)2 + (δ − 1)2                                                                 (18) 

 

where y is the real values, ŷ corresponds to predicted values, y represents the mean of the real 

values, n is the number of values, β is the ratio of quantified to predicted standard deviations 

and δ is the bias (i.e. the difference between the quantified and predicted means, normalised by 

the observed standard deviation). R2 and KGE values vary from 0 to 1 and from -∞ to 1, 

respectively, whose results close to 1 represent that the modelled relationship is more 

explanatory. The populational data (e.g. total population and population density) from the last 

demographic census of IBGE in 2022 was used to evaluate the overall impact on the daytime 

and nighttime SUHIs. 
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5 RESULTS AND DISCUSSIONS 

 

5.1 The country scale perspective: Regional contrasts of surface urban heat island intensities 

(SUHIIs) 

The analysis of SUHIIs over the 2003-2022 period reveals that all MRs were subject to 

the SUHI effects, with values ranging from 0.08 ºC (JP) to 6.1 ºC (MA) in the daytime. For the 

nighttime, the values were between -0.24 ºC (FLO) and  2.71 ºC (MA and RE) (Figure 7). The 

Mann-Kendall test performed in the annual time series of daytime SUHII (Table 4) highlights 

the growth trends in seventeen MRs, of which nine exhibiting statistically significant growth 

trends, two located in Amazon (i.e. BE, and SL) and seven in Atlantic Forest (i.e. RE, JP, SA, 

VI, SAN, CU, and FLO; p-value < 0.05). Overall, the average value of SUHIIs during daytime 

was 1.64 ºC, i.e. 60% superior when compared to the nighttime estimations. This pattern of 

higher values during daytime was also identified by Dewan et al. (2021), Monteiro et al. (2021), 

and Chakraborty et al. (2019) in Bangladesh, Brazil, and the United States of America, 

respectively. 

The analyses of daytime SUHIIs trend revealed that the highest and lowest growth rates 

were observed in the MRs of BE/RE (0.05 ºC/year) and MAC (0.01 ºC/year), respectively. 

From a nighttime perspective, SUHIIs presented positive rates in eleven MRs, of which three 

in the Atlantic Forest biome exhibited statistically significant trends (i.e. JP, SA, and CAM; p-

value < 0.05). The highest and lowest levels of nighttime SUHII were observed in SA (0.02 

ºC/year) and JP (0.01 ºC/year), respectively. 
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Figure 7 - Annual variability of daytime and nighttime SUHIIs and trend for MRs of (a) 

Manaus, (b) Belém, (c) São Luís, (d) Fortaleza, (e) Teresina, (f) Natal, (g) João Pessoa, (h) 

Recife, (i) Maceió, (j) Salvador, (k) Distrito Federal, (l) Goiânia, (m) Belo Horizonte, (n) 

Vitória, (o) Rio de Janeiro, (p) Campinas, (q) São Paulo, (r) Santos, (s) Curitiba, (t) 

Florianópolis, and (u) Porto Alegre. 
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Table 4 - Annual trends for day and nighttime SUHII, performed by the Mann-Kendall test 

and Sen’s slope, where + (increasing trend); - (decreasing trend); and 0 (no trend). 

MR 
daytime SUHII nighttime SUHII 

Trend p-value Sen's slope Trend p-value Sen's slope 

MA 0 0,06 0,04 0 0,11 -0,02 

BE + 0,00 0,05 0 0,60 0,00 

TE 0 0,63 0,01 0 0,63 0,00 

RE + 0,00 0,05 0 0,38 0,01 

FO 0 0,31 0,01 0 0,72 0,00 

SL + 0,00 0,04 0 0,63 0,00 

NA 0 0,72 -0,01 - 0,04 -0,01 

JP + 0,01 0,04 + 0,03 0,01 

SA + 0,00 0,04 + 0,00 0,02 

MAC 0 0,14 0,01 0 0,18 0,01 

VI + 0,02 0,03 0 0,77 0,00 

SAN + 0,01 0,02 0 0,35 0,01 

RJ 0 0,21 0,02 0 0,46 -0,01 

SP 0 0,92 0,00 0 0,07 -0,02 

CAM 0 1,00 0,00 + 0,01 0,01 

BH 0 0,58 -0,01 0 0,72 0,00 

CU + 0,04 0,03 0 0,72 0,01 

FLO + 0,00 0,04 0 0,26 0,01 

PA 0 0,09 0,03 0 0,42 0,03 

GO 0 0,35 0,04 0 0,21 0,01 

DF 0 0,35 0,01 0 0,16 0,01 

 

Figure 8 shows the spatial distribution of the 21 Brazilian MRs, exhibiting the average 

daytime and nighttime SUHIIs by Brazilian biome over the twenty years. The MRs in the 

Amazon biome exhibited the highest historical averages for daytime SUHII (i.e. 3.69 ºC), 

mainly influenced by the scenario observed in MA, with an average of 5.18 ºC. The second 

prominent biome was the Atlantic Forest (2.62 ºC), followed by Caatinga (2.47 ºC), Cerrado 

(2.42 ºC), and Pampa (2.38 ºC). Two MRs presented mean daytime SUHIIs between 4 and 6 

°C (i.e. MA and SP), fourteen ranging from 2 to 4 °C (i.e. BE, SL, RE, MAC, SA, VI, BH, RJ, 

SAN, CU, FO, TE, GO, and PA), and five between 0 and 2 °C (NA, JP, CAM, FLO, and DF) 

(Figure 8ac). These overall higher values for the daytime SUHIIs in the MRs located in the 

Amazon biome (i.e. MA, BE, and SL) may have been induced by the changes in climate, 

primarily represented by imbalances in precipitation and air temperature (Dubreuil et al., 2017; 

West et al., 2019). Such a context makes these MRs susceptible to droughts and potential fires 
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triggered by the deforestation process through wildfires, i.e. serving as a contributor to the 

formation of SUHIs (Carrillo-Quinete et al., 2022; Silva et al. 2017). 

During the nighttime period, four MRs presented nighttime values between 1.5 ºC and 2 

ºC (i.e. MA, RJ, FO, and TE), nine between 1 ºC and 1.5 ºC (i.e. BE, JP, RE, MAC, SA, BH, 

VI, SP, and SAN), seven between 0.5 ºC and 1ºC (i.e. SL, NA, CAM, CU, GO, DF, and PA), 

and only one between 0 ºC and 0.5 ºC (i.e. FLO). Analysing from the biome perspective, the 

SUHII magnitudes were observed, in descending order, in the following biomes: Caatinga (1.52 

ºC), Amazon (1.33 ºC), Atlantic Forest (1.04 ºC), Cerrado (0.99 ºC), and Pampa (0.83 ºC). The 

higher values for nighttime SUHIIs in Caatinga may reflect the characteristic semi-arid climate 

of this biome (Alvares et al., 2013; Santos e Silva, 2024). This climate features elevated 

temperatures on natural surfaces during the day, often followed by significant drops at night 

(Alvares et al., 2013; Borges et al., 2020; Santos e Silva, 2024). Additionally, Caatinga is 

characterised by less dense vegetation, predominantly consisting of shrubs and small trees 

(Giulietti et al., 2004; Lima et al., 2010). Wang et al. (2021) mention that greater vegetation 

cover leads to increased emission of long-wave radiation back to the soil surface, resulting in 

reduced heat loss during nighttime (He et al., 2024). In contrast, due to its lower vegetation 

cover, the Caatinga biome behaves oppositely, causing lower nighttime rural LST and 

consequently higher SUHIIs values in this period. The semi-arid climate also contributes to the 

persistence of clear skies, meaning with fewer clouds, a situation that contributes to higher 

values of SUHIIs in the nighttime. 
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Figure 8 - Spatial distribution of the average (a) daytime and (b) nighttime SUHII, and box 

plots of (c) daytime and (d) nighttime SUHII for each MR. 

 

MRs located within the Amazon and Atlantic Forest biomes tend to be more populous, 

presenting a faster pace of urban growth (IBGE, 2022) that contributes to increased 

impermeable areas and reduced vegetation cover (Carlson and Arthur, 2000; Zhou et al., 2023). 

In general, the population of the MRs obtained from the last demographic census (Table S1; 

Appendixes) showed a stronger correlation with the average daytime SUHIIs (r = 0.48) when 

compared to nighttime (r = 0.23). The results obtained by Tran et al. (2006) in 18 cities in Asia 

also showed that the influence of the population size on the daytime UHIs is greater than that 

on the nighttime due to the strong presence of anthropogenic heat. The daytime socio-economic 
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activities (e.g. vehicular traffic, industries, and building operations) are recognised as a source 

of imbalance for the surface energy balance by the emission of sensible heat (Chrysoulakis et 

al., 2016; Grimmond, 1992; Oke, 1988; Sailor et al., 2015), potentially enhancing the formation 

of SUHIs during daytime (Yang et al., 2015; Yang W. et al., 2017). 

Nevertheless, in contrast to the studies performed by Hung et al. (2006), Kalnay and Cai 

(2003), Oke (1973), and Shahmohamadi et al. (2010), which identified the population density 

as a crucial factor in the growth of SUHIs, no such significant correlation was found when the 

statistical correlation was applied using the population density from the demographic census 

(IBGE, 2022). This suggests that, similarly to Du et al. (2016) in the Yangtze River Delta Urban 

Agglomeration (China) or Clinton and Gong (2013) globally, the population density is a less 

significant factor compared to other more local potential factors, such as vegetation loss and 

the expansion of urban areas. Considering that the two highest historical averages of daytime 

(i.e. MA and SP) and nighttime (i.e. MA and TE) SUHIIs were found in inland areas, a possible 

effect of continentality has been noticed, as suggested by Peng et al. (2019). These authors 

observed that the UHI was stronger in inland areas of China when compared to the coastal 

regions. Such contrast may result from a thermal regulation between land and sea in coastal 

cities, where other natural circulations, such as monsoons and ocean currents, may favour the 

limitations of UHI development by changing the energy balance of a city (Peng et al., 2019). 

At the monthly scale, the temperature anomalies vary significantly according to the MRs 

(Figure 9). In Amazon, BE presented the highest mean monthly daytime (5.5 ºC in September) 

and nighttime (2.2 ºC in July) SUHIIs (Figure 9). For Caatinga, FO presented the highest values 

of daytime and nighttime SUHIIs in March, with 5.3 and 2.1 ºC, respectively. For the Atlantic 

Forest, the highest values for daytime and nighttime SUHIIs were observed in January in BH, 

with 7.8 and 3.2 ºC, respectively. In Cerrado, GO recorded the highest monthly averages for 

daytime (5.3 ºC in April) and nighttime (2.9 ºC in May) SUHIIs. The Pampa biome, represented 

by PA, exhibited in December the highest daytime and nighttime averages, with anomalies of 

5.6 and 2.5 ºC, respectively. 

These monthly variations highlight a seasonality in the daytime and nighttime SUHIIs, 

with some similarities in the variabilities among the MRs within the biomes. For instance, 

seasonalities were observed in the MRs located at higher latitudes (from -30 to -16°) in different 

biomes (i.e. Pampa, Atlantic Forest, and Cerrado), exhibiting higher mean values of daytime 

SUHII during the austral summer and spring seasons in subtropical climates zones (Shen et al., 
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2023), where the magnitudes of surface warming are often larger (i.e. SP, SAN, CU, and PA). 

On the other hand, MRs at lower latitudes (from -13 to -1º) exhibited an absence of seasonality, 

as observed in Amazon (e.g. MA, BE, and SL), Atlantic Forest (e.g. NA, JP, RE, MAC), 

Caatinga (e.g. FO), and Cerrado (e.g. TE). These seasonal/latitudinal variabilities suggest the 

sensitivity of the latitudinal position of MR in the development of SUHIs (Halder et al., 2023; 

Miles and Eseau, 2017; Wienert and Kuttler, 2005). In a recent analysis using solar angle, 

Halder et al. (2023) observed that during a specific period of summer, sunlight reaches certain 

locations on the Earth's surface with a 90º angle, resulting in maximum insolation and, 

consequently, maximum surface temperature from the equatorial area to the tropics, 

potentializing the SUHIs effect in these areas. However, the same does not occur from the 

tropics to the poles, where sunlight strikes with an angle less than 90º. Based on this, the 

availability of sunlight varies from the Equator to the poles in locations with different latitudes, 

and places with the same or close latitudes receive similar amounts of sunlight throughout the 

year. 
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Figure 9 - Heatmap for the monthly average daytime and nighttime SUHII (ºC) for each MR, 

organised by the Brazilian biomes. 

 

Overall, the monthly trends in Table 5 show that the daytime SUHII presented more 

months with growth trends in all Brazilian biomes. However, none of the biomes showed 

growth trends concentrated in specific months, demonstrating the absence of an intra-annual 

pattern of growth in all MRs. This situation is exemplified by Atlantic Forest, a biome that 

encompasses MRs at different latitudes with trends occurring in different months of the year.



49 

 

 

Table 5 - Monthly trends for daytime and nighttime SUHIIs, performed by the Mann-Kendall test and Sen’s slope, where + means an increasing 

trend, - indicates a decreasing trend, and 0 denotes no trend. 

Biome 

Month/trend 

Daytime SUHII Nighttime SUHII 

MR 
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n 
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Se

p 
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t 

No

v 

De

c 
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b 
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r 
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Amazon 

MA 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 

BE 0 0 0 - 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SL 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 

Caating

a 
FO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 

Cerrado 

TE 0 0 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GO + 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 

DF + 0 + 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 

Atlantic 

Forest 

RE 0 0 + 0 0 + 0 0 + + + + 0 0 0 0 0 0 0 0 0 0 0 0 

NA 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 

JP 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 

SA + 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MA

C 
0 0 0 0 + + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

VI + 0 0 + 0 0 + 0 0 0 + + 0 0 0 + 0 0 0 0 0 0 0 0 

SAN 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 - 0 0 0 0 0 

RJ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 

SP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 

CA

M 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

BH 0 0 0 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 

CU 0 0 0 0 0 0 0 0 0 + 0 0 0 0 0 0 0 0 0 0 + 0 0 0 

FLO + 0 0 0 0 + 0 0 0 + + + 0 0 0 0 - 0 0 0 0 0 0 0 

Pampa PA 0 0 0 0 0 0 0 + 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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5.2 The urban land-use perspective: surface alteration systematically favouring temperature 

increase 

5.2.1 Evolution of urban areas (UA) and LST 

The quantification of UA by the BU index revealed an increase in the coverage rate of 

build-up materials (e.g. asphalt and concrete) in eighteen MRs (Table 6), with slope trends 

higher than 0.31 km2/year. It is also possible to notice an intensification of the urbanisation 

processes in already urbanised regions of some MRs, represented by the observed fourteen 

increasing rates of the mean BU in the urban areas, with slope trends higher than 0.007/year, 

suggesting an increase in the coverage rate of the build-up materials. For instance, the spatial 

distribution of the BU in RE shows considerable temporal changes in the values of BU, with a 

clear presence of diverse alterations of the surface materials over the years highlighted by the 

greater intensity of red in Figure 10. 

 

Figure 10 - 5-year average of (a-d) BU index, (e-h) EVI2, (i-l) surface albedo, (m-p) daytime 

Rn, (q-t) nighttime Rn, and (u-x) ET with a 250-m spatial resolution for the Recife metropolitan 

region (RE): (a, e, i, m, q and u) 2003-2007; (b, f, j, n, r  and v) 2008-2012; (c, g, k, o, s and w) 

2013-2017; and (d, h, l, p, t, and u) 2018-2022. 
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Table 6 also demonstrates that thirteen MRs distributed in all Brazilian biomes exhibited 

statistically significant trends of UA growth, with the highest and lowest rates observed in GO 

(3.60 km²/year; Cerrado) and SAN (0.31 km²/year; Atlantic Forest). Pampa presented the 

highest value of Sen's slope (2.71 km2/year) but only PA is located at this biome. When 

analysing biomes with more than one MR, Amazon showed the highest value of increasing rate, 

with 2.02 km2/year. Souza et al. (2020) also indicated an increase in non-natural areas of the 

Amazon biome, which experienced, together with Cerrado, the highest pressure on natural areas 

in recent years in Brazil. 

The correlation between UAs and mean daytime LST was globally positive when 

considering all analysed MRs (r = 0.54, R2 = 0.38, and KGE = 0.09) (Figure 11), with only SP 

(r = -0.19, R2 = 0.04, and KGE = 0.02) and CU (r = -0.14, R2 = 0.02, and KGE = 0.01) presenting 

negative or absence of correlation (Table S2; Appendixes). The highest positive correlations 

between UA and daytime LST were found in TE (r = 0.88, R2 = 0.77, and KGE = 0.09), FO (r 

= 0.84, R2 = 0.71, and KGE = 0.11), and VI (r = 0.81, R2 = 0.66, and KGE = 0.12), with the 

low positive correlation observed in DF (r = 0.25, R2 = 0.06, and KGE = 0.03). Overall, the 

positive correlation for nighttime was lower than for the daytime LST, with the highest 

coefficients noticed in TE (r = 0.73, R2 = 0.53, and KGE = 0.13), GO (r = 0.68, R2 = 0.43, and 

KGE = 0.13), and RJ (r = 0.63, R2 = 0.40, and KGE = 0.13). This trend suggests that the fast 

urban expansion in Brazil, characterised by the suppression of natural areas, can be potentially 

linked to LST alteration, possibly reflecting the effect of surface changes. 
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Table 6 - Annual trends for urban areas, EVI2, surface albedo, day and nighttime Rn, and ET, performed by the Mann-Kendall test and Sen's slope, 

where + means an increasing trend, - indicates a decreasing trend, and 0 denotes no trend. 

Biome MR 

Urban areas (km2) EVI2 Surface albedo (α) daytime Rn (W/m2) nighttime Rn (W/m2) ET (mm) 

Trend p-value 
Sen's 

slope 
Trend p-value 

Sen's 

slope 
Trend p-value 

Sen's 

slope 
Trend p-value 

Sen's 

slope 
Trend p-value 

Sen's 

slope 
Trend p-value 

Sen's 

slope 

Amazon 

MA + 0 2,46 - 0 0 - 0 0 - 0,03 -2,39 + 0,04 0,12 - 0 -18,1 

BE + 0 1,94 - 0 0 - 0 0 - 0,01 -2,71 + 0,01 0,07 0 0,87 -1,1 

SL + 0,01 1,67 - 0 0 - 0 0 0 0,5 -1,54 + 0,01 0,07 0 0,06 5,79 

Atlantic 

Forest 

RE + 0 3,1 - 0 0 - 0 0 + 0,01 4,09 + 0 0,05 0 0,06 7,24 

NA 0 0,54 -0,1 0 0,08 0 0 0,1 0 + 0 4,38 + 0,02 0,03 + 0,01 11,36 

JP + 0 1,21 - 0 0 - 0 0 + 0 4,29 + 0 0,05 + 0,05 6,3 

SA + 0 1,39 - 0,04 0 - 0,01 0 0 0,46 -0,96 + 0,05 0,04 0 0,77 0,87 

MAC 0 0,14 0,32 - 0 0 - 0,01 0 0 0,26 0,76 + 0,03 0,04 + 0,03 6,23 

VI 0 0,5 0,77 0 0,58 0 0 0,29 0 0 0,97 -0,04 0 0,07 0,05 0 0,58 -1,86 

SAN + 0 0,31 0 0,87 0 0 0,4 0 0 0,54 -0,33 0 0,14 0,04 0 0,97 -0,31 

RJ + 0,03 2,93 - 0,05 0 - 0,03 0 0 0,58 -0,38 0 0,06 0,07 0 0,13 -6,43 

SP 0 0,54 -0,28 + 0,01 0 + 0,02 0 0 0,46 0,49 0 0,23 0,02 0 0,38 -3,44 

CAM 0 0,18 0,73 0 0,1 0 0 0,82 0 0 0,42 0,34 + 0,03 0,09 - 0 -13,2 

BH 0 0,14 1,09 - 0,01 0 - 0,02 0 0 0,21 0,72 + 0 0,08 - 0,05 -7,47 

CU 0 0,13 1,14 0 0,16 0 0 0,73 0 0 0,35 -0,85 + 0,02 0,05 0 0,14 -2,37 

FLO + 0 0,9 - 0 0 - 0 0 - 0 -2,07 + 0 0,09 - 0,01 -4,82 

Caatinga FO + 0,05 1,69 - 0 0 - 0 0 0 0,5 0,78 + 0 0,12 0 0,72 2,34 

Cerrado 

TE + 0 1,99 - 0 0 - 0 0 0 0,13 -1,16 0 0,13 0,06 0 0,97 -0,51 

GO + 0,01 3,6 - 0 0 - 0,03 0 0 0,7 0,12 + 0 0,09 - 0,03 -6,19 

DF - 0 -6 + 0,01 0 + 0,04 0 0 0,23 -0,72 + 0,03 0,04 0 0,06 -5,58 

Pampa PA + 0,01 2,71 0 0,79 0 0 0,6 0 0 0,06 -1,4 0 0,28 0,03 0 0,18 -2,66 
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Figure 11 - Associations represented by the statistical metrics (r, R2, and KGE) between the 

urban areas (UA) and the variables daytime LST, nighttime LST, daytime Rn, nighttime Rn, 

and ET. 

 

5.2.2 Evolution of surface alteration proxies in urban areas: EVI2 and α 

Impervious surfaces without vegetation appeared to be strong contributors to the rise of 

urban temperature (Dewan et al., 2021), which consequently plays an important role in further 

latent heat (ET) transfers, especially during the daytime (e.g. Chakraborty and Lee, 2019; Li et 

al., 2020; Quan et al., 2016; Peng et al., 2019; Raj et al., 2020; Xu et al., 2017; Yao et al., 2018; 

Zhou et al., 2014). A decrease in green areas then determines the loss of cooling potential in 

urban areas (Charabi and Bakhit, 2011; Ojeh et al., 2016; Shojaei et al., 2017). This loss of the 

cooling potential in all MRs of Brazil was also confirmed by the downward trends in EVI2 

during the twenty years of analysis, with decreasing trends ranging from -0.0001 in PA to -

0.0026/year in TE (Table 6). From a biome perspective, Amazon and Cerrado showed the 

highest mean rates of decreasing trend for EVI2 (-0.0020/year), as also observed by Souza et 

al. (2020), which identified the highest removal of natural surfaces in the last two decades in 

these two biomes. Consistently, the EVI2 showed a negative association with daytime (r = -

0.37, R2 = 0.26, and KGE = 0.08) and nighttime (r = -0.20, R2 = 0.15, and KGE = 0.06) LST 

when considering the average values of all MRs. The highest and lowest negative correlations 
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for daytime LST were identified in TE (r = -0.82, R2 = 0.67, and KGE = 0.12) and DF (r = -

0.11, R2 = 0.01, and KGE = 0.01), respectively. The highest and lowest negative correlations 

for nighttime LST were observed in GO (r = -0.68, R2 = 0.46, and KGE = 0.13) and SAN (r = 

-0.03, R2 = 0, and KGE = 0), respectively. 

These results show that the impact caused by the presence of vegetation (i.e. with 

evaporative cooling and shadowing effects) in the intensification of urban LST predominates 

in the daytime period, as also observed in other studies considering multiple (e.g. Chakraborty 

and Lee, 2019; Clinton and Gong, 2013; Peng et al., 2012) and individual cities (e.g. 

Chakraborty et al., 2016; Qiao et al., 2013). Nevertheless, the findings also showed that the 

effectiveness of vegetation in mitigating SUHIs can vary across the Brazilian territory from 

biome to biome. First, both the Amazon (EVI2 vs daytime LST = -0.52; EVI2 vs nighttime LST 

= -0.47) and the Atlantic Forest (EVI2 vs daytime LST = -0.49; EVI2 vs nighttime LST = -

0.26) biomes exhibited a negative association between the vegetation greenness and urban LST, 

especially during the daytime. This supports the hypothesis that the dense and tropical 

vegetation in these territories (Randow et al., 2004; Teixeira et al., 2020; Laipelt et al., 2021) 

constitutes an important tool for minimising LST during the day due to photosynthetic activity 

during this period. On the other hand, despite having a natural savanna vegetation characterised 

by grassland, sparse shrubland, and deciduous seasonal forests (Furley, 1999; Laipelt et al., 

2021), the Cerrado biome showed the highest magnitudes of overall negative association 

between EVI2 and LST (EVI2 vs daytime LST = -0.53; EVI2 vs nighttime LST = -0.61), 

indicating that its less dense vegetation acts as a significant factor in decreasing LST during the 

night. 

Additionally, the Caatinga biome (EVI2 vs daytime LST = -0.67; EVI2 vs nighttime LST 

= -0.39), characterised by seasonally dry forests with a predominance of shrubs and thorny trees 

that minimise water loss during long periods of precipitation absence (Althoff et al., 2016; Moro 

et al., 2016; Queiroz et al., 2017; Tavares-Damasceno et al., 2017), also showed an overall 

negative association between these variables, especially during the day. Finally, the Pampa, 

with dominant vegetation of grasslands, sparse shrubs, and tree formations (Berreta, 2001), did 

not exhibit associations indicating the cooling role of the local vegetation (EVI2 vs daytime 

LST = 0.02; EVI2 vs nighttime LST= 0.56). Therefore, the findings support the idea that 

sustainable urban planning should consider implementing suitable green spaces as an essential 

strategy to mitigate the effects of heat risk and enhance thermal comfort in cities, especially in 
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cities located in biomes where vegetation presents a major control of LST, as also highlighted 

by other studies (e.g. Dewan et al., 2021; Maimaitiyiming et al., 2014; Vulova et al., 2023). 

 

 

Figure 12 - Associations represented by the statistical metrics considered in the study (i.e. r, R2, 

and KGE) between LST and the biophysical parameters EVI2, surface albedo, Rn, and ET. 

 

The replacement of vegetation cover by urban canopies presupposes alterations in surface 

albedo (Christopherson and Birkeland, 2017; Myhre G. et al., 2013) by the replacement of 

forests, croplands, savannas, and grasslands with urban lands (Ouyang et al., 2022), inducing 

an overall decrease of the sunlight reflected by the surface (shortwave wavelengths) and an 

increase of emissivity (longwave wavelengths) (Zhou et al., 2014). The results obtained in this 

study show that thirteen MRs in Brazil presented statistically significant decreases of α (Table 

6), with an overall rate of -0.0001/year. In parallel, α also presented an overall inversely 

proportional relationship with daytime (r = -0.37, R2 = 0.24, and KGE = 0.08) and nighttime 

LST (r = -0.20, R2 = 0.15, and KGE = 0.06) (Figure 12). Nineteen and seventeen MRs presented 

negative associations of α with daytime and nighttime LST, respectively, with the highest levels 

observed in TE during the day (r = -0.77, R2 = 0.59, and KGE = 0.13) and at night (r = -0.64, 

R2 = 0.41, and KGE = 0.13). 
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This inversely strong relationship between LST and α was also observed by Taha (2008) 

in Sacramento, United States, with a more significant impact on the daytime SUHII when 

compared to the nocturnal SUHII. This negative statistical association between α and LST 

confirms the role of α as a mitigating factor for the occurrence of SUHIs, especially during the 

daytime period (e.g. Dugord et al., 2014; Herath et al., 2021; Nwakaire et al., 2020). Not only 

is it necessary to preserve green areas, but adopting alternative construction materials from the 

usual ones is also an option for increasing α (Dugord et al., 2014). For instance, the use of 

reflective pavements, which have high solar reflectivity to dissipate solar radiation (Ferrari et 

al., 2020; Nwakaire et al., 2020), as well as permeable or water-retentive pavements that utilise 

the latent heat of vaporisation to lower their surface temperature (Ferrari et al., 2020), are 

potential strategies. 

5.3 The energy balance perspective: an interplay between country-scale and urban-scale 

trends 

5.3.1 UA and Rn 

The relationship between the urban surfaces and their thermal properties was investigated 

by the analysis of links between the UA and the mean annual Rn (Figure 11). Overall, good 

correlations between UA and Rn were observed at night when considering global values for all 

MRs (r = 0.47, R2 = 0.30, and KGE = 0.09), with nineteen MRs displaying positive 

relationships. The MRs in the Cerrado biome showed the highest association between UA and 

nighttime Rn, especially in TE (r = 0.79, R2 = 0.62, and KGE = 0.13). Only SP (r = -0.17, R2 = 

0.03, and KGE = 0.01) and DF (r = -0.19, R2 = 0.04, and KGE = 0.01) exhibited an absence of 

a relationship between UA and nighttime Rn. The overall correlation between UA and daytime 

Rn (r = 0.24, R2 = 0.16, and KGE = 0.06) was moderated compared to nighttime Rn. JP 

presented a higher correlation between UA and daytime Rn (r = 0.78, R2 = 0.61, and KGE = 

0.13), with five MRs (i.e. MA, BE, FLO, CU, and SP) showing negative or lack of correlations. 

During the daytime, Rn showed statistically significant decreasing trends in three MRs (Table 

6): FLO (-2.07 W/m2/year; Atlantic Forest), MA (-2.39 W/m2/year; Amazon), and BE (-2.71 

W/m2/year; Amazon) (Table 6). The increasing trends of daytime Rn was identified in NA (4.38 

W/m2/year), RE (4.09 W/m2/year), and JP (4.29 W/m2/year). For the nighttime Rn, an 

increasing trend over the time series was observed in all MRs, with fifteen exhibiting 

statistically significant trends (i.e. MA, BE, RE, FO, SL, NA, JP, SA, MAC, CAM, BH, CU, 
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FLO, GO, and DF) and the highest estimated growth rate from the Sen's slope observed in FO 

(0.12 W/m2/year). 

The stronger correlation between UA and nighttime Rn, as well as the observed growth 

trends in Rn during this period, suggest that urban characteristics related to construction 

materials and land use patterns exert a more pronounced influence on radiative processes during 

the night. This influence is particularly notable in the emission of long-wave radiation, which 

is stored in the ground during the day and released at night (Chen et al., 2020; Sabino et al., 

2020), contributing to maintaining elevated temperatures in urban areas (Peng et al., 2020). 

Based on the results, Rn exhibited a highly heterogeneous variability among the MRs. As 

expected, the highest averages of daytime and nighttime Rn were detected in the MRs located 

in Amazon, Atlantic Forest (lower latitudes), and Caatinga due to the greater availability of 

solar radiation in low latitude regions (Figures S152 to S172; Appendixes). The spatial 

distributions of Rn show that the urban areas presented higher values during the daytime and 

nighttime (i.e. Rn > 520 W/m2 and -55 W/m2, respectively) (Figures S22 to S151; Appendixes). 

 

5.3.2 LST and energy balance proxies 

The relationship between LST and Rn (Figure 12) was overall directly proportional for 

daytime (r = 0.33, R2 = 0.16, and KGE = 0.06) and nighttime (r = 0.72, R2 = 0.54, and KGE = 

0.12), with values of r ranging from -0.27 to 0.89. During the daytime and nighttime, the highest 

correlations between LST and Rn were observed in BH (r = 0.75, R2 = 0.57, and KGE = 0.13; 

Atlantic Forest) and RJ (r = 0.89, R2 = 0.80, and KGE = 0.08; Atlantic Forest), respectively. 

For the nighttime, the correlations for all MRs were positive (r ranging from 0.27 to 0.89), 

indicating that increasing Rn is a crucial factor in heat production. The absorbed net radiation 

at the surface should balance outgoing fluxes and can be expressed as the sum of G (soil heat 

flux), H (sensible heat flux), and LE (latent heat flux) (Kato and Yamaguchi, 2005). During the 

daytime, soil heat is conducted into the soil due to lower underground temperatures than the 

surface. Stored heat in the soil is released to the atmosphere by longwave radiation overnight 

(Chen et al., 2020; Kato and Yamaguchi, 2005). H increases while LE decreases, warming the 

surface and driving heat exchange from the Earth's surface to the atmosphere, raising both air 

temperature and surface temperatures, a situation represented by the correlations found at night. 

The replacement of vegetated surfaces with urban materials influences the amount of LE 

(i.e. ET) and, consequently, the values of Rn. Higher ET rates play a key role in regulating the 
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surface energy balance by increasing LE and reducing H, bringing cooling effects to the cities 

(Chrysoulakis et al., 2018). Such a relationship can be expressed by the negative associations 

between daytime LST and ET (r = -0.47, R2 = 0.30, and KGE = 0.07) when considering all 

analysed MRs. This association highlights the strong potential of ET to mitigate the effects of 

thermal intensification. The highest negative association between ET and LST was observed 

during the daytime in CAM (r = -0.93, R2 = 0.86, and KGE = 0.06). In the nighttime context, 

the strongest negative association was noticed in DF (r = -0.69, R2 = 0.48, and KGE = 0.13). 

The values of ET decreased in fourteen MRs across all the biomes along the twenty years of 

analysis, with four exhibiting yearly statistically significant trends (p-value < 0.05): MA (-18.12 

mm/year), CAM (-13.20 mm/year), FLO (-4.82 mm/year), and GO (-6.19 mm/year) (Table 6). 

While the intensification of daytime LST was broadly regarded as the consequence of a 

reduction in LE (Arnfield, 2003; Clinton and Gong, 2013; Oke, 1982; Peng et al., 2012; Voogt 

and Oke, 2003), during the nighttime this rising of LST may result from an increase in the heat 

storage in the urban zones during the day compared to surrounding areas (Clinton and Gong, 

2013; Voogt and Oke, 2003). 
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6 CONCLUSIONS AND RECOMENDATIONS 

 

By analysing the spatio-temporal evolution of SUHIIs over Brazil, this study aimed at 

providing a baseline information to better characterise the evolution of this effect over the past 

20 years in twenty-one MRs of the country, considering both intra-annual and inter-annual 

scales and assessing variations of the controlling surface biophysical parameters at a monthly 

timescale in response to urbanisation. This allowed highlighting that the SUHIIs were globally 

amplified during the studied period, but the trends may differ in amplitude depending on the 

location (biomes) of the MRs as well as their local characteristics. 

The continental perspective underscores the widespread presence of SUHI effects across 

all MRs, with significant variations in intensity observed during daytime and nighttime. At the 

country scale, the results therefore demonstrate that the latitudinal and demographic gradients 

seem to have a moderate influence in explaining the development of SUHIIs in Brazil. In 

contrast, the absence of a clear influence of continentality and population density suggests that 

more local features such as urban area size and building density, combined with a reduction of 

evaporative cooling and alteration of albedo (Zhao et al., 2014), may play an important role at 

the metropolitan scale. 

The findings also reveal a concerning trend of increasing urban coverage in several 

metropolitan regions (MRs) of Brazil, notably the rapid growth of built-up areas in materials 

such as asphalt and concrete. This urban expansion is closely linked to the rise in land surface 

temperature (LST), particularly during the day, due to the replacement of natural areas with 

impermeable surfaces. Additionally, the decrease in green areas, evidenced by the decline in 

the vegetation index EVI2, contributes to the elevation of urban surface temperatures. The 

inversely proportional relationship between EVI2 and LST underscores the importance of green 

spaces in mitigating the effects of urban heat, especially in biomes like the Amazon and the 

Atlantic Forest, where dense vegetation plays a crucial role in thermal regulation.  

On the other hand, the replacement of vegetative cover by urban areas also results in a 

decrease in surface albedo, which contributes to the increase in urban temperatures. Strategies 

such as the use of more reflective construction materials and the preservation of green areas are 

essential to mitigate the impacts of urban heat and promote a healthier and more sustainable 

urban environment. 
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The examination of energy balance dynamics at both country-scale and urban-scale levels 

reveals intricate interplays between urban surfaces and thermal properties, particularly 

regarding radiative processes and LST variations. Notably, the correlation between UAs and 

Rn demonstrates distinct patterns during daytime and nighttime. While a moderate correlation 

is observed between UA and daytime Rn, nighttime Rn exhibits a stronger association with 

urban surfaces, especially in regions within the Cerrado biome. The heterogeneity in Rn among 

the MRs underscores the influence of local factors on radiative processes, with higher Rn values 

detected in regions characterized by greater solar radiation availability, such as those situated 

in lower latitudes. 

The direct proportional relationship between LST and Rn emphasizes the role of radiative 

fluxes in heat production, particularly evident during nighttime when higher Rn values 

contribute to elevated temperatures. The replacement of vegetated surfaces with urban materials 

alters the energy balance, affecting Rn values, with more sensible heat available (H) and less 

presence of latent heat flux (LE). Notably, higher rates of evapotranspiration (ET) are 

associated with cooling effects, highlighting the potential of ET in mitigating thermal 

intensification. However, the observed decreasing trends in ET across various MRs underscore 

the challenges posed by urbanisation to surface energy balance dynamics. 

Overall, the findings underscore the complex interplay between urbanisation, radiative 

processes, and surface temperature variations, with implications for urban heat management 

strategies. These findings highlight the urgent need for urban planning policies that prioritize 

the conservation of green spaces and the adoption of more sustainable construction practices to 

address the challenges of urban warming, enhancing the urban resilience to climate change. 

Such mitigation policies, implemented with a prioritisation of Nature-Based Solutions (NBS) 

and through regulation of municipal master plans, can be the solution to the accelerated growth 

of SUHIs and many other environmental issues arising from the urbanisation process. Within 

urban settings, some examples of NBS include rain gardens, green roofs, linear and river parks, 

river naturalisation, and slope restoration. In a context of changing climate, interventions like 

these contribute to rainwater drainage and aquifer recharge; temperature regulation and 

reduction of urban heat; and erosion reduction and landslide prevention. In the peri-urban areas, 

forest restoration contributes to the quantity and quality of water reaching reservoirs, as well as 

reducing the risk of floods and inundations. 
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Further studies could then explore the potential of these adaptations in the process of 

attenuation of these phenomena and could also quantify how future urban growth, population 

growth, and climate-changing scenarios, as well as the effects of the increasing anthropogenic 

heat emissions from traffic, industry, and domestic buildings, can affect the SUHIIs and, 

consequently, the biophysical parameters within tropical cities. To achieve this, machine 

learning techniques and atmospheric general circulation models (AGCMs) could be used to 

determine the future scenarios of the defined parameters in this study. 
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8 APPENDIXES 

8.1 Table S1: Population and population density of the 21 Metropolitan Regions 

Table S1. Population and population density of the 21 Metropolitan Regions 

Metropolitan Region Population density (hab/km2) Total population (hab) 

SP 2,610.29 20,743,587 

RJ 1,751.71 13,191,031 

BH 541.32 5,127,694 

DF 50.85 4,808,484 

PA 417.31 4,317,508 

FO 548.09 4,077,811 

SA 910.71 3,984,479 

CU 234.51 3,731,769 

RE 1,349.00 3,726,442 

CAM 881.54 3,342,707 

BE 549.02 2,677,089 

GO 357.27 2,613,491 

MA 19.89 2,532,226 

VI 872.18 2,033,067 

SAN 784.13 1,897,551 

SL 175.89 1,656,503 

NA 4,488.03 1,647,414 

FLO 181.53 1,356,861 

JP 476.77 1,331,885 

MAC 409,320.31 1,330,291 

TE 113.85 1,249,822 

 

8.2 Figure S1 to S21: Annual (5-year-period) spatial distributions of Built-up index (BU, 250-

m spatial resolution) 

 
Fig. S1. Annual (5-year-period) spatial distributions of Built-up index for Manaus (MA). 
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Fig. S2. Annual (5-year-period) spatial distributions of Built-up index for Belém (BE). 

 

 
Fig. S3. Annual (5-year-period) spatial distributions of Built-up index for São Luís (SL). 

 

 
Fig. S4. Annual (5-year-period) spatial distributions of Built-up index for Natal (NA). 
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Fig. S5. Annual (5-year-period) spatial distributions of Built-up index for João Pessoa (JP). 

 

 
Fig. S6. Annual (5-year-period) spatial distributions of Built-up index for Recife (RE). 

 

 

 
Fig. S7. Annual (5-year-period) spatial distributions of Built-up index for Salvador (SA). 
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Fig. S8. Annual (5-year-period) spatial distributions of Built-up index for Maceió (MAC). 

 

 
Fig. S9. Annual (5-year-period) spatial distributions of Built-up index for Vitória (VI). 

 

 
Fig. S10. Annual (5-year-period) spatial distributions of Built-up index for Santos (SAN). 
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Fig. S11. Annual (5-year-period) spatial distributions of Built-up index for Rio de Janeiro 

(RJ). 

 

 
Fig. S12. Annual (5-year-period) spatial distributions of Built-up index for São Paulo (SP). 

 

 
Fig. S13. Annual (5-year-period) spatial distributions of Built-up index for Campinas (CAM). 
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Fig. S14. Annual (5-year-period) spatial distributions of Built-up index for Belo Horizonte 

(BH). 

 

 
Fig. S15. Annual (5-year-period) spatial distributions of Built-up index for Curitiba (CU). 

 

 
Fig. S16. Annual (5-year-period) spatial distributions of Built-up index for Florianópolis 

(FLO). 
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Fig. S17. Annual (5-year-period) spatial distributions of Built-up index for Fortaleza (FO). 

 

 
Fig. S18. Annual (5-year-period) spatial distributions of Built-up index for Teresina (TE). 

 

 
Fig. S19. Annual (5-year-period) spatial distributions of Built-up index for Goiânia (GO). 
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Fig. S20. Annual (5-year-period) spatial distributions of Built-up index for Distrito Federal 

(DF). 

 

 
Fig. S21. Annual (5 year-period) Built-up index of Porto Alegre (PA) 
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8.3 Tables S2 to S5: Associations between the variables 

Tables S2. Associations between urban LST and urban areas (UAs) 

MR 
day LST x UA night LST x UA 

r R2 KGE r R2 KGE 

MA 0,72 0,51 0,13 0,55 0,30 0,11 

BE 0,46 0,21 0,09 0,58 0,34 0,12 

SL 0,73 0,53 0,13 0,49 0,24 0,10 

NA 0,58 0,34 0,12 0,07 0,01 0,00 

JP 0,44 0,20 0,08 0,44 0,20 0,08 

RE 0,63 0,40 0,13 0,46 0,21 0,09 

MAC 0,74 0,55 0,13 0,39 0,15 0,07 

SA 0,74 0,55 0,13 0,30 0,09 0,04 

VI 0,81 0,66 0,12 0,34 0,12 0,05 

BH 0,52 0,27 0,10 0,02 0,00 0,00 

CAM 0,76 0,58 0,13 0,03 0,00 0,00 

SAN 0,40 0,16 0,07 0,20 0,04 0,02 

RJ 0,76 0,57 0,13 0,63 0,40 0,13 

SP -0,19 0,04 0,02 -0,42 0,18 0,08 

FLO 0,38 0,14 0,06 -0,20 0,04 0,02 

CU -0,14 0,02 0,01 -0,25 0,06 0,03 

FO 0,84 0,71 0,11 0,53 0,28 0,11 

TE 0,88 0,77 0,09 0,73 0,53 0,13 

GO 0,74 0,55 0,13 0,68 0,46 0,13 

DF 0,25 0,06 0,03 -0,38 0,14 0,06 

PA 0,22 0,05 0,02 0,09 0,01 0,00 
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Tab. S3. Associations between daytime and nighttime Rn, and ET with urban areas (UA). 

MR 
day Rn x UA night Rn x UA ET x UA 

r R2 KGE r R2 KGE r R2 KGE 

MA -0,36 0,13 0,06 0,75 0,56 0,13 -0,64 0,42 0,13 

BE -0,44 0,19 0,08 0,77 0,59 0,13 0,00 0,00 0,00 

SL 0,33 0,11 0,05 0,71 0,51 0,13 0,05 0,00 0,00 

NA 0,26 0,07 0,03 0,23 0,05 0,03 -0,57 0,33 0,12 

JP 0,78 0,61 0,13 0,62 0,38 0,13 0,00 0,00 0,00 

RE 0,76 0,57 0,13 0,65 0,42 0,13 0,28 0,08 0,04 

MAC 0,47 0,22 0,09 0,35 0,13 0,06 -0,18 0,03 0,02 

SA 0,35 0,12 0,06 0,58 0,34 0,12 -0,04 0,00 0,00 

VI 0,36 0,13 0,06 0,64 0,41 0,13 -0,71 0,50 0,13 

BH 0,41 0,17 0,07 0,32 0,10 0,05 -0,57 0,33 0,12 

CAM 0,41 0,17 0,07 0,37 0,13 0,06 0,70 0,49 0,13 

SAN -0,14 0,02 0,01 0,33 0,11 0,05 0,27 0,07 0,03 

RJ 0,30 0,09 0,04 0,66 0,43 0,13 -0,84 0,70 0,11 

SP 0,00 0,00 0,00 -0,17 0,03 0,01 0,09 0,01 0,00 

FLO 0,52 0,27 0,10 0,62 0,38 0,13 0,10 0,01 0,01 

CU -0,20 0,04 0,02 0,32 0,11 0,05 0,21 0,04 0,02 

FO 0,48 0,23 0,09 0,70 0,49 0,13 -0,48 0,23 0,09 

TE -0,05 0,00 0,00 0,79 0,62 0,13 -0,47 0,22 0,09 

GO 0,16 0,03 0,01 -0,19 0,43 0,13 -0,81 0,66 0,12 

DF 0,48 0,23 0,09 0,66 0,04 0,02 -0,21 0,04 0,02 

PA 0,11 0,01 0,01 0,16 0,03 0,01 -0,44 0,19 0,08 
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Tab. S4. Associations between daytime and nighttime LST with EVI2 and α. 

MR 
day LST x EVI2 night LST x EVI2 day LST x α night LST x α 

r R2 KGE r R2 KGE r R2 KGE r R2 KGE 

MA -0,53 0,28 0,11 -0,36 0,13 0,06 -0,49 0,24 0,10 -0,28 0,08 0,04 

BE -0,37 0,14 0,06 -0,53 0,28 0,11 -0,52 0,27 0,10 -0,58 0,33 0,12 

SL -0,66 0,44 0,13 -0,52 0,27 0,10 -0,59 0,35 0,12 -0,45 0,20 0,08 

NA -0,32 0,10 0,05 -0,28 0,08 0,04 -0,33 0,11 0,05 -0,26 0,07 0,03 

JP -0,24 0,06 0,03 -0,39 0,15 0,07 -0,26 0,07 0,03 -0,33 0,11 0,05 

RE -0,50 0,25 0,10 -0,37 0,14 0,06 -0,55 0,30 0,11 -0,35 0,12 0,06 

MAC -0,65 0,42 0,13 -0,45 0,20 0,08 -0,57 0,32 0,12 -0,34 0,12 0,05 

SA -0,48 0,23 0,09 -0,17 0,03 0,01 -0,45 0,20 0,08 -0,04 0,00 0,00 

VI -0,72 0,52 0,13 -0,25 0,06 0,03 -0,73 0,54 0,13 -0,28 0,08 0,04 

BH -0,50 0,25 0,10 -0,10 0,01 0,01 -0,73 0,53 0,13 -0,46 0,21 0,09 

CAM -0,65 0,42 0,13 -0,05 0,00 0,00 -0,36 0,13 0,06 0,23 0,05 0,03 

SAN 0,14 0,02 0,01 -0,03 0,00 0,00 -0,03 0,00 0,00 -0,31 0,10 0,04 

RJ -0,61 0,37 0,12 -0,53 0,28 0,11 -0,57 0,32 0,12 -0,61 0,38 0,13 

SP 0,49 0,24 0,10 0,42 0,18 0,08 0,29 0,06 0,03 0,44 0,19 0,08 

FLO -0,24 0,06 0,03 0,25 0,06 0,03 -0,25 0,06 0,03 0,22 0,05 0,02 

CU 0,38 0,14 0,06 0,21 0,04 0,02 0,46 0,21 0,09 0,33 0,11 0,05 

FO -0,67 0,45 0,13 -0,39 0,16 0,07 -0,54 0,29 0,11 -0,41 0,17 0,07 

TE -0,82 0,67 0,12 -0,64 0,40 0,13 -0,77 0,59 0,13 -0,64 0,41 0,13 

GO -0,65 0,42 0,13 -0,68 0,46 0,13 -0,62 0,38 0,13 -0,49 0,24 0,10 

DF -0,11 0,01 0,01 0,50 0,25 0,10 -0,14 0,02 0,01 0,40 0,16 0,07 

PA 0,02 0,00 0,00 0,26 0,07 0,03 -0,03 0,00 0,00 0,06 0,00 0,00 
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Tab. S5. Associations between land surface temperature (LST) and the surface biophysical 

parameters. 

MR 
day LST x day Rn 

night LST x night 

Rn 
day LST x ET night LST x ET 

r R2 KGE r R2 KGE r R2 KGE r R2 KGE 

MA 0,12 0,02 0,01 0,75 0,57 0,13 
-

0,70 
0,49 0,13 

-

0,63 
0,39 0,13 

BE 
-

0,27 
0,07 0,03 0,78 0,61 0,13 

-

0,08 
0,01 0,00 

-

0,33 
0,11 0,05 

SL 0,32 0,10 0,05 0,69 0,47 0,13 0,00 0,00 0,00 0,27 0,07 0,04 

NA 0,31 0,10 0,04 0,82 0,67 0,12 
-

0,34 
0,11 0,05 0,21 0,04 0,02 

JP 0,27 0,07 0,03 0,76 0,58 0,13 
-

0,34 
0,12 0,05 0,14 0,02 0,01 

RE 0,44 0,19 0,08 0,70 0,49 0,13 
-

0,24 
0,06 0,03 0,02 0,00 0,00 

MAC 0,53 0,29 0,11 0,78 0,62 0,13 
-

0,11 
0,01 0,01 0,07 0,00 0,00 

SA 0,53 0,28 0,11 0,62 0,39 0,13 
-

0,20 
0,04 0,02 0,00 0,00 0,00 

VI 0,56 0,31 0,11 0,79 0,62 0,13 
-

0,56 
0,31 0,11 

-

0,14 
0,02 0,01 

BH 0,75 0,57 0,13 0,76 0,58 0,13 
-

0,82 
0,67 0,12 

-

0,58 
0,34 0,12 

CAM 0,45 0,20 0,08 0,80 0,64 0,12 
-

0,93 
0,86 0,06 

-

0,55 
0,31 0,11 

SAN 0,17 0,03 0,01 0,77 0,59 0,13 
-

0,08 
0,01 0,00 

-

0,12 
0,01 0,01 

RJ 0,55 0,30 0,11 0,89 0,80 0,08 
-

0,67 
0,45 0,13 

-

0,49 
0,24 0,10 

SP 0,40 0,16 0,07 0,79 0,62 0,13 
-

0,53 
0,29 0,11 

-

0,40 
0,16 0,07 

FLO 0,35 0,12 0,05 0,27 0,07 0,03 
-

0,12 
0,01 0,01 

-

0,40 
0,16 0,07 

CU 
-

0,11 
0,01 0,01 0,63 0,39 0,13 

-

0,84 
0,71 0,11 

-

0,59 
0,34 0,12 

FO 0,39 0,15 0,07 0,65 0,42 0,13 
-

0,42 
0,17 0,07 

-

0,29 
0,08 0,04 

TE 0,07 0,01 0,00 0,80 0,63 0,12 
-

0,66 
0,44 0,13 

-

0,68 
0,46 0,13 

GO 0,36 0,13 0,06 0,88 0,77 0,09 
-

0,77 
0,63 0,13 

-

0,60 
0,36 0,12 

DF 0,41 0,16 0,07 0,86 0,73 0,10 
-

0,80 
0,64 0,12 

-

0,69 
0,48 0,13 

PA 0,42 0,18 0,08 0,42 0,18 0,08 
-

0,51 
0,26 0,10 

-

0,19 
0,03 0,02 
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8.4 Figures S22 to S151: Annual spatial distribution (5-year-period) of Land surface 

temperature (LST, 1-km spatial resolution), Enhanced Vegetation Index 2 (EVI2, 250-m 

spatial resolution), surface albedo (α, 250-m spatial resolution), surface net radiation (Rn, 

250-m spatial resolution), and actual evapotranspiration (ET, 250-m spatial resolution). 

 
Fig. S22. Annual (5-year-period) daytime LST for Manaus (MA). 

 

 
Fig. S22. Annual (5-year-period) nighttime LST for Manaus (MA). 

 

 
Fig. S23. Annual (5-year-period) EVI2 for Manaus (MA). 
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Fig. S24. Annual (5-year-period) 𝛼 for Manaus (MA). 

 

 
Fig. S25. Annual (5-year-period) daytime Rn for Manaus (MA). 

 

 
Fig. S26. Annual (5-year-period) nighttime Rn for Manaus (MA). 

 

 
Fig. S27. Annual (5-year-period) ET for Manaus (MA). 

 
Fig. S28. Annual (5-year-period) daytime LST for Belém (BE). 
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Fig. S29. Annual (5-year-period) nighttime LST for Belém (BE). 

 

 
Fig. S30. Annual (5-year-period) EVI2 for Belém (BE). 

 
Fig. S31. Annual (5-year-period) α for Belém (BE). 

 
Fig. S32. Annual (5-year-period) daytime Rn for Belém (BE). 
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Fig. S33. Annual (5-year-period) nighttime Rn for Belém (BE). 

 

 
Fig. S34. Annual (5-year-period) ET for Belém (BE). 

 

 
Fig. S35. Annual (5-year-period) daytime LST for São Luís (SL). 

 
Fig. S36. Annual (5-year-period) nighttime LST for São Luís (SL). 

 

 
Fig. S37. Annual (5-year-period) EVI2 for São Luís (SL). 
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Fig. S38. Annual (5-year-period) α for São Luís (SL). 

 

 
Fig. S39. Annual (5-year-period) daytime Rn for São Luís (SL). 

 
Fig. S40. Annual (5-year-period) nighttime Rn for São Luís (SL). 

 

 
Fig. S41. Annual (5-year-period) ET for São Luís (SL). 
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Fig. S42. Annual (5-year-period) daytime LST for Natal (NA). 

 
Fig. S43. Annual (5-year-period) nighttime LST for Natal (NA). 

 

 
Fig. S44. Annual (5-year-period) EVI2 for Natal (NA). 
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Fig. S45. Annual (5-year-period) α for Natal (NA). 

 
Fig. S46. Annual (5-year-period) daytime Rn for Natal (NA). 

 

 
Fig. S47. Annual (5 year-period) nighttime Rn of Natal (NA). 
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Fig. S48. Annual (5 year-period) ET of Natal (NA). 

 
Fig. S49. Annual (5 year-period) daytime LST of João Pessoa (JP). 

 

 
Fig. S50. Annual (5 year-period) nighttime LST of João Pessoa (JP). 
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Fig. S51. Annual (5 year-period) EVI2 of João Pessoa (JP). 

 
Fig. S52. Annual (5 year-period) α of João Pessoa (JP). 

 

 
Fig. S53. Annual (5 year-period) daytime Rn of João Pessoa (JP). 

 



101 

 

 
Fig. S54. Annual (5 year-period) nighttime Rn of João Pessoa (JP). 

 

 
Fig. S55. Annual (5 year-period) ET of João Pessoa (JP). 

 

 
Fig. S56. Annual (5 year-period) daytime LST of Recife (RE). 
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Fig. S57. Annual (5 year-period) nighttime LST of Recife (RE). 

 

 
Fig. S58. Annual (5 year-period) EVI2 of Recife (RE). 

 

 
Fig. S59. Annual (5 year-period) α of Recife (RE). 
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Fig. S60. Annual (5 year-period) daytime Rn of Recife (RE). 

 
Fig. S61. Annual (5 year-period) nighttime Rn of Recife (RE). 

 

 
Fig. S62. Annual (5 year-period) ET of Recife (RE). 
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Fig. S63. Annual (5 year-period) daytime LST of Salvador (SA). 

 

 
Fig. S64. Annual (5 year-period) nighttime LST of Salvador (SA). 

 

 
Fig. S65. Annual (5 year-period) EVI2 of Salvador (SA). 

 

 
Fig. S66. Annual (5 year-period) α of Salvador (SA). 
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Fig. S67. Annual (5 year-period) daytime Rn of Salvador (SA). 

 
Fig. S68. Annual (5 year-period) nighttime Rn of Salvador (SA). 

 

 
Fig. S69. Annual (5 year-period) ET of Salvador (SA). 

 

 
Fig. S70. Annual (5 year-period) daytime LST of Maceió (MAC). 
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Fig. S71. Annual (5 year-period) nighttime LST of Maceió (MAC). 

 

 
Fig. S72. Annual (5 year-period) EVI2 of Maceió (MAC). 

 

 
Fig. S73. Annual (5 year-period) α of Maceió (MAC). 

 

 
Fig. S74. Annual (5 year-period) daytime Rn of Maceió (MAC). 
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Fig. S74. Annual (5 year-period) nighttime Rn of Maceió (MAC). 

 

 
Fig. S74. Annual (5 year-period) ET of Maceió (MAC). 

 

 
Fig. S75. Annual (5 year-period) daytime LST of Vitória (VI). 
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Fig. S76. Annual (5 year-period) nighttime LST of Vitória (VI). 

 

 
Fig. S77. Annual (5 year-period) EVI2 of Vitória (VI). 

 

 
Fig. S78. Annual (5 year-period) α of Vitória (VI). 
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Fig. S79. Annual (5 year-period) daytime Rn of Vitória (VI). 

 

 
Fig. S80. Annual (5 year-period) nighttime Rn of Vitória (VI). 

. 

 
Fig. S81. Annual (5 year-period) ET of Vitória (VI). 
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Fig. S75. Annual (5 year-period) daytime LST of Santos (SAN). 

 

 
Fig. S76. Annual (5 year-period) nighttime LST of Santos (SAN). 

 

 
Fig. S77. Annual (5 year-period) EVI2 of Santos (SAN). 

 

 
Fig. S78. Annual (5 year-period) α of Santos (SAN). 
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Fig. S79. Annual (5 year-period) daytime Rn of Santos (SAN). 

 

 
Fig. S80. Annual (5 year-period) nighttime Rn of Santos (SAN). 

 

 

 
Fig. S81. Annual (5 year-period) ET of Santos (SAN). 

 

 
Fig. S82. Annual (5 year-period) daytime LST of Rio de Janeiro (RJ). 
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Fig. S83. Annual (5 year-period) nighttime LST of Rio de Janeiro (RJ). 

 

 
Fig. S84. Annual (5 year-period) EVI2 of Rio de Janeiro (RJ). 

 

 
Fig. S85. Annual (5 year-period) α of Rio de Janeiro (RJ). 

 

 
Fig. S86. Annual (5 year-period) daytime Rn of Rio de Janeiro (RJ). 
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Fig. S87. Annual (5 year-period) nighttime Rn of Rio de Janeiro (RJ). 

 

 
Fig. S88. Annual (5 year-period) ET of Rio de Janeiro (RJ). 

 

 
Fig. S89. Annual (5 year-period) daytime LST of São Paulo (SP). 

 

 
Fig. S90. Annual (5 year-period) nighttime LST of São Paulo (SP). 
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Fig. S91. Annual (5 year-period) EVI2 of São Paulo (SP). 

 

 
Fig. S92. Annual (5 year-period) α of São Paulo (SP). 

 

 
Fig. S93. Annual (5 year-period) daytime Rn of São Paulo (SP). 

 

 
Fig. S94. Annual (5 year-period) nighttime Rn of São Paulo (SP). 
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Fig. S95. Annual (5 year-period) ET of São Paulo (SP). 

 

 
Fig. S96. Annual (5 year-period) daytime LST of Campinas (CAM). 

 

 
Fig. S97. Annual (5 year-period) nighttime LST of Campinas (CAM). 

 

 
Fig. S98. Annual (5 year-period) EVI2 of Campinas (CAM). 
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Fig. S99. Annual (5 year-period) α of Campinas (CAM). 

 

 
Fig. S100. Annual (5 year-period) daytime Rn of Campinas (CAM). 

 

 
Fig. S101. Annual (5 year-period) nighttime Rn of Campinas (CAM). 

 

 
Fig. S102. Annual (5 year-period) ET of Campinas (CAM). 
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Fig. S103. Annual (5 year-period) daytime LST of Belo Horizonte (BH). 

 

 
Fig. S104. Annual (5 year-period) nighttime LST of Belo Horizonte (BH). 

 

 
Fig. S105. Annual (5 year-period) EVI2 of Belo Horizonte (BH). 
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Fig. S106. Annual (5 year-period) α of Belo Horizonte (BH). 

 

 
Fig. S107. Annual (5 year-period) daytime Rn of Belo Horizonte (BH). 

 

 
Fig. S108. Annual (5 year-period) nighttime Rn of Belo Horizonte (BH). 
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Fig. S109. Annual (5 year-period) ET of Belo Horizonte (BH). 

 

 
Fig. S110. Annual (5 year-period) daytime LST of Curitiba (CU). 

 
Fig. S111. Annual (5 year-period) nighttime LST of Curitiba (CU). 
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Fig. S112. Annual (5 year-period) EVI2 of Curitiba (CU). 

 

 
Fig. S113. Annual (5 year-period) α of Curitiba (CU). 

 
Fig. S114. Annual (5 year-period) daytime Rn of Curitiba (CU). 

 
Fig. S115. Annual (5 year-period) nighttime Rn of Curitiba (CU). 

 

 
Fig. S116. Annual (5 year-period) ET of Curitiba (CU). 
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Fig. S117. Annual (5 year-period) daytime LST of Florianópolis (FLO). 

 

 
Fig. S118. Annual (5 year-period) nighttime LST of Florianópolis (FLO). 

 
Fig. S119. Annual (5 year-period) EVI2 of Florianópolis (FLO). 

 

 
Fig. S120. Annual (5 year-period) α of Florianópolis (FLO). 
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Fig. S121. Annual (5 year-period) daytime Rn of Florianópolis (FLO). 

 

 
Fig. S122. Annual (5 year-period) nighttime Rn of Florianópolis (FLO). 

 
Fig. S123. Annual (5 year-period) ET of Florianópolis (FLO). 

 

 
Fig. S124. Annual (5 year-period) daytime LST of Fortaleza (FO). 
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Fig. S125. Annual (5 year-period) nighttime LST of Fortaleza (FO). 

 

 
Fig. S126. Annual (5 year-period) EVI2 of Fortaleza (FO). 

 
Fig. S127. Annual (5 year-period) α of Fortaleza (FO). 

 

 
Fig. S128. Annual (5 year-period) daytime Rn of Fortaleza (FO). 
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Fig. S129. Annual (5 year-period) nighttime Rn of Fortaleza (FO). 

 

 
Fig. S130. Annual (5 year-period) ET of Fortaleza (FO). 

 

 
Fig. S131. Annual (5 year-period) daytime LST of Teresina (TE). 
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Fig. S132. Annual (5 year-period) nighttime LST of Teresina (TE). 

 

 
Fig. S133. Annual (5 year-period) EVI2 of F Teresina (TE). 

 
Fig. S134. Annual (5 year-period) α of Teresina (TE). 
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Fig. S135. Annual (5 year-period) daytime Rn of Teresina (TE). 

 

 
Fig. S136. Annual (5 year-period) nighttime Rn of Teresina (TE). 

 
Fig. S137. Annual (5 year-period) ET of Teresina (TE). 
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Fig. S131. Annual (5 year-period) daytime LST of Goiânia (GO). 

 

 
Fig. S132. Annual (5 year-period) nighttime LST of Goiânia (GO). 

 

 
Fig. S133. Annual (5 year-period) EVI2 of F Goiânia (GO). 

 

 
Fig. S134. Annual (5 year-period) 𝛼 of Goiânia (GO). 
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Fig. S135. Annual (5 year-period) daytime Rn of Goiânia (GO). 

 

 
Fig. S136. Annual (5 year-period) nighttime Rn of Goiânia (GO). 

 
Fig. S137. Annual (5 year-period) ET of Goiânia (GO). 
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Fig. S138. Annual (5 year-period) daytime LST of Distrito Federal (DF). 

 

 
Fig. S139. Annual (5 year-period) nighttime LST of Distrito Federal (DF). 

 

 
Fig. S140. Annual (5 year-period) EVI2 of Distrito Federal (DF). 
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Fig. S141. Annual (5 year-period) α of Distrito Federal (DF). 

 

 
Fig. S142. Annual (5 year-period) daytime Rn of Distrito Federal (DF). 

 
Fig. S143. Annual (5 year-period) nighttime Rn of Distrito Federal (DF). 
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Fig. S144. Annual (5 year-period) ET of Distrito Federal (DF). 

 

 
Fig. S145. Annual (5 year-period) daytime LST of Porto Alegre (PA). 

 

 
Fig. S146. Annual (5 year-period) nighttime LST of Porto Alegre (PA). 

 

 
Fig. S147. Annual (5 year-period) EVI2 of Porto Alegre (PA). 
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Fig. S148. Annual (5 year-period) α of Porto Alegre (PA). 

 

 
Fig. S149. Annual (5 year-period) daytime Rn of Porto Alegre (PA). 

 
Fig. S150. Annual (5 year-period) nighttime Rn of Porto Alegre (PA). 

 

 
Fig. S151. Annual (5 year-period) ET of Porto Alegre (PA). 
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8.5 Figures S152 to S172: Monthly variability (2003-2022) of daytime and nighttime urban 

LST, daytime and nighttime SUHII, Enhanced Vegetation Index 2 (EVI2), surface albedo 

(α), surface net radiation (Rn), and actual evapotranspiration (ET). 

 
Fig. S152. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Manaus (MA). 



134 

 

 
Fig. S153. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Belém (BE). 
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Fig. S154. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of São Luís (SL). 
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Fig. S155. Monthly variability of daytime and nighttime urban LST (ºC), daytime and 

nighttime SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net 

radiation (Rn, W/m2), and actual evapotranspiration (ET, mm) of Natal (NA). 
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Fig. S156. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of João Pessoa (JP). 
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Fig. S157. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Recife (RE). 
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Fig. S158. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Salvador (SA). 
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Fig. S159. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Maceió (MAC). 
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Fig. S160. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Vitória (VI). 
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Fig. S161. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Santos (SAN). 
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Fig. S162. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Rio de Janeiro (RJ). 
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Fig. S163. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of São Paulo (SP). 
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Fig. S164. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Campinas (CAM). 
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Fig. S165. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Belo Horizonte (BH). 
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Fig. S166. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (𝛼), surface net radiation 

(Rn, W/m2), and actual evapotranspiration (ET, mm) of Curitiba (CU). 
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Fig. S167. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Florianópolis (FLO). 
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Fig. S168. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Fortaleza (FO). 
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Fig. S169. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Teresina (TE). 
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Fig. S170. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Goiânia (GO). 
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Fig. S171. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Distrito Federal (DF). 
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Fig. S172. Monthly variability of daytime and nighttime urban LST (ºC), daytime and nighttime 

SUHII (ºC), Enhanced Vegetation Index 2 (EVI2), surface albedo (α), surface net radiation (Rn, 

W/m2), and actual evapotranspiration (ET, mm) of Porto Alegre (PA). 
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