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Resumo

Na presente dissertação apresentamos uma revisão do formalismo envolvido no estudo

de flutuações de cone de luz, seguido por novos resultados e discussões realizados ao longo

do mestrado.

Em um primeiro momento, fizemos uma revisão da Teoria Linearizada da Gravidade

no regime clássico. Começamos tomando o limite de campo gravitacional fraco de modo a

permitir que este varie no tempo. Como resultado, fomos capazes de expandir a métrica do

nosso espaço-tempo em torno de um espaço-tempo de fundo e considerar apenas o termo

linear na perturbação. Em seguida, buscamos descobrir como essa expansão modifica os

elementos da Relatividade Geral, encontrar as equações de campo para a perturbação e

discutir a liberdade de calibre associada à perturbação. Em seguida, passamos a trabalhar

sob a hipótese de que a perturbação é quantizada e apresentamos uma revisão dos efeitos

de flutuação do cone de luz. Tais flutuações levam à remoção de divergências associadas

ao cone de luz clássico; em particular, mostramos explicitamente como a quantização da

perturbação remove algumas dessas divergências e discutimos a possibilidade de observar

o efeito de tais flutuações sobre o tempo de deslocamento de fótons.

Seguindo o caminho trilhado pela análise da perturbação quantizada, revisamos o

procedimento para escrever ⟨σ2
1⟩ em termos da função de Hadamard para o gráviton

em (d + 1) dimensões. No último capítulo, apresentamos novos resultados obtidos ao

longo da pesquisa. Inspirados pelo trabalho dos autores na Ref. [1], buscamos ampliar

a descrição de uma possível dimensão espacial extra, tornando-a compacta por meio da

condição de contorno quasiperiódica. Realizamos uma discussão sobre a transição para

modelos com dimensões extras e calculamos as quantidades associadas ao desvio no tempo

de propagação de um fóton como consequência da topologia do espaço compactificado.

Discutimos também qual deveria ser o tamanho da dimensão extra para que seja possível

detectar tais desvios, utilizando como base o Near Infrared Spectrograph (NIRSpec) a
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bordo do telescópio James Webb. Para isto, dividimos nossa análise em duas partes:

uma para o caso periódico e outra para casos nos quais o regulador de fase da condição

quasiperiódica é diferente de zero. Como consequência, mostramos que o reflexo de cada

caso no tempo de propagação de um fóton difere fundamentalmente um do outro.

Palavras-chave: Flutuação de Cone de Luz, Teoria Quântica de Campos, Teoria

Linearizada da Gravidade, Kaluza-Klein.
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Abstract

In this dissertation, we present a review of the formalism involved in the study of light

cone fluctuations accompanied by new results and discussions conducted throughout this

master’s program.

We initially conducted a review of the Linearized Theory of Gravity in the classical

regime. We began by considering the weak gravitational field limit while allowing it to

vary with time we sought to determine the modification caused by this expansion on

the elements of General Relativity (GR), derived the field equations for the perturbation

and discussed the gauge freedom associated to the latter. Following this first contact with

linearized gravity, we worked under the assumption that the perturbation is quantized and

provided a review of lightcone fluctuation effects which leads to the removal of divergences

associated with the classical lightcone and discussed the possibility of observing the effects

of such fluctuations upon photon propagation. Continuing our analysis, we reviewed

the procedure to express ⟨σ2
1⟩ in terms of the Hadamard function for the graviton in

(d + 1) dimensions. Finally, we presented the new results obtained during this research.

Inspired by the work in Ref. [1], we sought to expand the description of a possible extra

spatial dimension by making it compact through a quasiperiodic boundary condition.

We discussed the transition to models with extra dimensions and calculated quantities

associated with the deviation in the photon propagation time as a consequence of the

compactified space’s topology. We also discussed the requirements for the size of the

extra dimension in order to obtain detectable changes on a photon flight time using the

Near Infrared Spectrograph (NIRSpec) aboard the James Webb Telescope as a model for

detections. For this purpose, we divided our analysis into two parts: one for the periodic

case and another for cases where the phase regulator of the quasiperiodic condition is

nonzero. Consequently, we found that the resulting effects of each scenario upon photon

10



propagation fundamentally differs from one another other.

Palavras-chave: Lightcone Fluctuations, Quantum Field Theory, Linerized Gravity,

Kaluza-Klein models.
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Introduction

If there exists a quantized theory of gravity, divergences that commonly appear in

Quantum Field Theory, such as lightcone divergences, are expected to be smoothed out.

This was first conjectured by Pauli, in 1956 [3], and discussed in the following years by

Deser, Isham, and others [4–6]. One approach for understanding possible implications of

a full-fledged quantum theory of gravity lies in the quantization of the Linearized Theory

of Gravity. The latter is obtained when one considers a perturbative approach for the

weak field limit while still allowing it to vary over time. As the name suggests, in this

scenario, only linear terms on the perturbation will be considered on the spacetime metric,

which is now written as a background spacetime plus a symmetric perturbation hµν . This

perturbation can be considered to be quantized [7–9]. In particular, it has been shown

that, in the context of a linearized quantum theory of gravity, some lightcone divergences

are in fact smeared out due to nonzero metric fluctuations [9, 10]. The lightcone fluctu-

ations effects are analogous to the Casimir effect [11–16] in the sense that the presence

of boundary conditions, nontrivial topology and spacetime dimensionality can introduce

perturbations to the usual quantities, causing some of the vacuum expectation values to

fluctuate [1, 17–19].

On the other hand, there are more than one scenario through which metric fluctuations

can arise. The subject of this dissertation are the fluctuations caused by the quantum

nature of the gravitational field. By allowing the gravitational field to change over time,

its own dynamical degrees of freedom will lead to spacetime fluctuations. These are called

“active” fluctuations (see Refs. [9,10,19,20]). However, it follows directly from Einstein’s

field equation that even a classical gravitational field coupled to a quantized matter field

can undergo fluctuations, called “passive” fluctuations (See Ref. [10]).

Furthermore, from its symmetry properties under spatial rotations, we can see that

upon quantization, a spin-2 particle is expected to arise from excited modes of the per-
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turbation’s freely propagating degrees of freedom, the graviton. The introduction of a

perturbation to the background spacetime cause modifications to the two-point function

of the graviton, and its effects upon photon propagation could, in principle, be observed.

The smeared lightcone can be interpreted as a change in the speed of massless particles

traveling through this perturbation, thereby also modifying its typical flight time [9,10,20].

If we consider a light pulse as it travels through the perturbation, it is natural to expect

that the modification on the classical flight time can varies slightly from a photon to

another, however, the observed spectral lines of a light pulse will exhibit a characteristic

mean deviation from the original configuration and are related to the typical change in the

photons flight time as ∆t = ∆λ. Observable effects such as this could help us understand

many phenomena involving cosmic messengers and the structure of spacetime even within

a particular scope such as the linearized theory of gravity. The latter can also be applied

to lightcone fluctuations in order to understand horizon fluctuations, in particular, in the

case of black hole horizons, some interesting developments on black hole thermodynamics

can arise [20].

Several attempts have been made to unify gravity and the electromagnetic theory in

the years following the formulation of General Relativity (GR). Among them, in 1921,

Theodor Kaluza tried to grasp a solution describing a world beyond our usual (3 + 1)

dimensions introducing an extra dimension, and six years later, Oskar Klein revisited

Kaluza’s work under the scope of the emergent quantum mechanics. As Kaluza’s work is

regarded to be the first attempt to grasp a higher-dimensional world, (d+ 1)D quantum

scenarios featuring compact extra dimensions are often referred to as Kaluza-Klein models,

whereas the particular case of d = 4 is referred to as the Original Kaluza-Klein model

which we will approach in this dissertation. In recent years, such models are sought out in

an attempt to describe several phenomena in many areas of physics beyond the purpose

it was find intended to serve [21–25].

We know for a fact that by introducing boundary conditions to a specific direction, we

tend to obtain observable physical effects on the others. The same is true for the effects of

metric fluctuations resulting from modifications imposed to a particular direction. Hence,

this approach could also provide us with a powerful mean to test the existence of extra

dimensions. The search for the latter goes through a wide range of study subjects in

physics. In particular, in Refs. [1, 18, 26], lightcone fluctuations effects have been consid-
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ered assuming periodically compactified extra dimensions. Such condition imposed to the

scalar part of a tensorial field in 5D is written as ϕk(x, y, z, w + ℓc) = ϕk(x, y, z, w) with

ℓc being the circumference of the extra dimension. If we consider the idealized case of a

single monochromatic plane wave solution computed at the origin, this expressions tells

us that the intensity and behaviour of the tensorial field repeats itself after traversing the

whole length of the extra dimension. However, although we can postulate the existence

of compact extra dimensions in our search for understanding some physical phenomena,

without actual verification we can not say that this perfectly repeating behaviour would

actually happen. An alternative approach is to consider more complex behaviours of the

perturbation as it traverses the extra dimension via a quasiperiodic boundary condition,

namely ϕk(x, y, z, w + ℓc) = ei2παϕk(x, y, z, w) where α is the phase angle regulator vary-

ing from 0 to 1. Our calculations and discussions for this case can be found in Ref. [27],

written during the course of the research conducted for this dissertation and accepted for

publication in the Journal of High Energy Physics (JHEP).

As we have mentioned, attempts of detecting the existence of extra dimensions passes

through many areas of study. Additionally, the transition to higher dimensional space-

times comes with the need of reviewing our understanding of the most fundamental laws

of physics [24,28–30]. As a reflection of the interdisciplinarity of higher-dimensional mod-

els, we can find a wide range of experiments designed to detect extra dimensions. Some

examples would be table-top experiments to determine the force law acting between two

masses at very short distances [28, 31] and the search for heavier particles than those of

the Standard Model in the Large Hadron Collider (LHC) [29,30] which would help solve

large difference between the Planck scale and the electroweak scale, known as the hier-

archy problem (see. Ref [25]). Each of these, among other experiments, are designed to

explore different length scale ranges. However, one common aspect of such experiments

is the fact that current detection methods seem to be far from reaching the Planck scale.

Therefore, the need arises to look for alternative manifestations of the existence of extra

dimensions.

Inspired by this need, as our contribution for the study of lightcone fluctuations effects

and as solidification of our review of the formalism involved, we will discuss the potentially

observable effects arising from a quasiperiodically compactified (4+1) dimensional Kaluza-

Klein model. As we discuss our results, we will look at the sensitivity range of the Near-
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Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope [2] in an attempt

to estimate the potential size and structure of the extra spatial dimension.

This dissertation is organized as follows: In the first Chapter we will make a detailed

review on how a linearized theory of gravity modifies the GR elements in a classical

regimen, find the Einstein field equations for the perturbation, explore the gauge freedom

associated with the perturbation, analyse the degrees of freedom for the perturbative field

equation and understand their implications in the transverse and tracefree (TT) gauge. In

Chapter 2 we will start working under the assumption that the perturbation is quantized

and see how it leads to the smearing of some lightcone divergences and how it affects the

flight time of a photon. In Chapter 3 we will obtain the mathematical expressions through

which we can study the lightcone fluctuations. That is, we will obtain an expression for

⟨σ2
1⟩ in terms of the graviton Hadamard function by expanding the quantized perturbation

as a set of plane waves obeying the Klein-Gordon like equation in the TT gauge. Finally,

in Chapter 4 we begin by discussing the transition to higher-dimensional models and its

effects on fundamental constants related to gravity, we obtain the exact forms of hµν , of

the graviton two-point function calculated on the lightcone and of ⟨σ2
1⟩R in (4+ 1)D with

a quasiperiodic condition imposed on the extra dimension. In particular, we discuss the

possibility of using the NIRSpec sensitivity range to verify these results and divide our

analisys of ⟨σ2
1⟩R for large values of γ = r/ℓc in two parts: one for the periodic case (α = 0)

and one for all other condition cases for α. We also plot some of these results in order to

further our analysis on how to determine the potential structure of the extra dimension.

Throughout this dissertation, except for when it is made clear that we are recovering the

original units for our results, we will use natural units ℏ = c = 1, Gd = (32π)−1,
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Chapter 1

The Linearized Theory of Gravity

In this chapter we make a review of the initial concepts involved in the Linearized

Theory of Gravity from the perturbative approach to gravitational wave solutions in the

transverse and tracefree (TT) gauge. We will expose the calculations with as most details

as possible, so that any student with a solid knowledge of General Relativity can also use

it as a guide. Two books were adopted to make most of this review (See Refs. [7,8]), other

eventual references used will be cited as needed.

1.1 Einstein’s field equation for the metric perturbation

The usual path when on a first study on the principles of General Relativity is to con-

nect the generalization of GR for curved spacetime to the Newtonian gravity by adopting

the weak limit for the classical gravitational field that obeys the Einstein’s field equations

while considering it to be static. However, it is also possible to consider such limit while

also allowing the gravitational field to change over time. By doing this we would risk

violating the the compatibility between the General Relativity (GR) and the Newtonian

mechanics for the low energy limit, however, it can be shown that this compatibility is

in fact preserved (see Ref. [8]). In order the obtain this weak and non-static limit, one

can expand the spacetime metric gµν as a fixed background, which for us will be the

Minkowski spacetime described by ηµν , plus perturbative terms. Retaining terms only up

to first order in the perturbation yields

gµν = ηµν + hµν , |hµν | ≪ 1, (1.1)

20



1.1. EINSTEIN’S FIELD EQUATION FOR THE METRIC PERTURBATION

being hµν the perturbative term. Throughout this chapter we will adopt the signature

(−,+,+,+). Eq. (1.1) gives us an expression for the spacetime metric with two covariant

indexes, however, one must be careful when writing gµν . We know that Eq. (1.1) is a

linear equation of hµν and, since the spacetime metric must obey gµσg
σν = δνµ, we can

obtain

gµσg
σν = (ηµσ + hµσ)(η

σν ± hσν)

= δνµ + hνµ ± hνµ + hµσh
σν = δνµ

⇒ gµν = ηµν − hµν . (1.2)

Note that, as we are not interested in keeping higher order terms on hµν , we can use ηµν

and ηµν instead of gµν and gµν to raise and lower indexes. Consequently, we have

hµν = ηµαηβνhαβ. (1.3)

We can understand the linearized gravity as a theory describing a symmetric tenso-

rial field hµν traveling through a background field and, in this context, the spacetime is

actually curved. However, since we expanded the spacetime metric around a Minkowski

spacetime we will see that this will allow us to obtain and solve wave equations for hµν

as if the actual spacetime was flat. We could have expanded gµν around some other back-

ground spacetime, in this case we would obtain equations describing the perturbation

traveling through that fixed spacetime and we would obtain wave equations for hµν in

that background. Additionally, ηµν is invariant under Lorentz transformations, whereas

xµ
′
= Λµ′

µx
µ, hµ′ν′ = Λµ

µ′Λ
ν
ν′hµν . (1.4)

Our interest now lies in understanding how our theory will be modified by considering

only up to first order corrections to the metric and in finding the equation of motion to

which the perturbation hµν obeys. To that end, let us seek the new description for the GR

elements that depend on the spacetime metric. Let us start from the Christoffel symbols,
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1.1. EINSTEIN’S FIELD EQUATION FOR THE METRIC PERTURBATION

using Eqs. (1.1) and (1.2) on the connection definition yields

Γλ
µν =

1

2
gλσ(∂µgνσ + ∂νgσµ − ∂σgµν)

=
1

2
(ηλσ − hλσ) [∂µ(ηνσ + hνσ) + ∂ν(ησµ + hσµ)− ∂σ(ηµν + hµν)]

=
1

2
ηλσ(∂µhνσ + ∂νhσµ − ∂σhµν).

(1.5)

We can use this result to obtain the modified Riemann tensor, namely

Rµναβ = ηµλR
λ
ναβ = ηµλ

(
∂αΓ

λ
βν − ∂βΓ

λ
αν + Γλ

ασΓ
σ
βν − Γλ

βσΓ
σ
αν

)
=

1

2

[
ηµλη

λσ∂α(∂βhνσ + ∂νhσβ − ∂σhβν)− ηµλη
λσ∂β(∂αhνσ + ∂νhσα − ∂σhαν)

]
=

1

2
δσµ(∂α∂βhνσ + ∂α∂νhσβ − ∂α∂σhβν − ∂β∂αhνσ − ∂β∂νhσα + ∂β∂σhαν)

=
1

2
(∂α∂νhµβ − ∂α∂µhβν − ∂β∂νhµα + ∂β∂µhαν).

(1.6)

Note that, in Eq. (1.6) we already discarded quadratic terms on the connection, since they

would only result in second order terms of the perturbation. We have also interchanged

some of the partial derivatives and used the fact that the perturbation is symmetric. From

Eq. (1.6) we can directly obtain the modified Ricci tensor, which reads

Rνβ = ηµαRµναβ

=
1

2
ηµα(∂α∂νhµβ − ∂α∂µhβν − ∂β∂νhµα + ∂β∂µhαν)

=
1

2
(∂α∂νh

α
β − ∂α∂

αhβν − ∂β∂νh
α
α + ∂β∂αh

α
ν)

⇒ Rµν =
1

2
(∂α∂µh

α
ν + ∂α∂νh

α
µ − ∂µ∂νh−2hµν), (1.7)

where h = h µ
µ is the trace of the perturbation hµν . The Ricci scalar follows directly from

Eq. (1.7), that is

R = ηµνRµν

=
1

2
ηµν
(
∂α∂µh

α
ν + ∂α∂νh

α
µ − ∂µ∂νh−2hβν

)
=

1

2

(
∂α∂µh

αµ + ∂α∂νh
αν − ∂µ∂

µh−2hµµ
)

= ∂µ∂νh
µν −2h.

(1.8)
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1.1. EINSTEIN’S FIELD EQUATION FOR THE METRIC PERTURBATION

Finally, the modified Einstein tensor for the linearized gravity reads

Gµν = Rµν −
1

2
ηµνR

=
1

2

(
∂α∂µh

α
ν + ∂α∂νh

α
µ − ∂µ∂νh−2hµν

)
− 1

2
ηµν
(
∂α∂βh

αβ −2h
)

=
1

2

(
∂α∂µh

α
ν + ∂α∂νh

α
µ − ∂µ∂νh−2hµν − ηµν∂α∂βh

αβ − ηµν2h
)
.

(1.9)

Alternatively, it can be shown that the Einstein’s field equation for hµν arises from

the Fierz-Pauli action [32,33], that is

SFP =
1

16πG

∫
dx

[
∂µh

µν∂νh− ∂µh
λσ∂λh

µ
σ +

1

2
ηµν∂µh

λσ∂νhλσ −
1

2
ηµν∂µh∂νh

]
, (1.10)

which is the Einstein-Hilbert action expanded to second order in hµν . By varying Eq.

(1.10) with respect to hµν after adding a coupling to matter of the form hµνT
µν , one

obtains

Gµν = 8πGTµν , (1.11)

where Gµν is given by Eq. (1.9) and the energy-momentum tensor Tµν is computed to

zeroth order in the perturbation [8].

The next step would be to solve the equations we found for hµν . However, note that

the expansion in Eq. (1.1) is not unique. With careful examination we can see that, just

as in the electromagnetic theory one is able to find a transformation for the 4-potential

Aµ → Aµ + ∂µλ which keeps Fµν invariant, in linearized gravity we also observe a gauge

invariance for the perturbation hµν . This freedom can be expressed as the existence of a

vector field ϵξµ through which the metric perturbation will be modified as

h(ϵ)µν = hµν + 2ϵ∂(µξν) (1.12)

in a way such that the spacetime curvature will remain invariant. In other words, there

is more than one way to write the perturbation while describing the same physical con-

figuration. In Eq. (1.12) we introduced the notation

∂(µξν) =
∂µξν + ∂νξµ

2
, ∂[µξν] =

∂µξν − ∂νξµ
2

. (1.13)

Given Eq. (1.12), we can verify if the spacetime remains the same through the Riemann
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curvature tensor, that is

δRµνρσ = Rµνρσ −R(ϵ)
µνρσ

=
ϵ

2

(
∂ρ∂ν∂µξσ + ∂σ∂µ∂νξρ − ∂σ∂ν∂µξρ − ∂ρ∂µ∂νξσ + ∂ρ∂ν∂σξµ

+ ∂σ∂µ∂ρξν − ∂σ∂ν∂ρξµ − ∂ρ∂µ∂σξν

)
= 0.

(1.14)

In General Relativity, gravity is presented as a consequence of spacetime curvature.

The same is still valid in linearized gravity, however, we are isolating a weak gravitational

contribution from the background spacetime and treating it individually with gravitational

effects of its own. We also state that this perturbation travels through the background

spacetime causing perturbations to the metric as described by Eq. (1.1).

1.2 The decomposition of hµν and the Einstein’s equa-

tion degrees of freedom

With Einstein’s field equations for hµν and the gauge transformation in Eq. (1.12), we

could start working on the solution for hµν . Of course we will not do that just yet, let us

first try to obtain further insight into the information hµν can provide us with. To that

end, let us remind that in electromagnetism, given Fµν , we can assume a fixed observer

and analyze the 3-vectors E and B independently. Let us see what new information comes

about when we do the same for hµν .

We know hµν to be a symmetric tensor. The component h00 is a scalar under spatial

rotations. For i ̸= 0, the components of hi0 are the same as those from h0i and, just as the

components Fi0 of the electromagnetic tensor form E, they can also be used to construct

some 3-vector. Finally, the spatial part hij is a symmetric tensor that can be decomposed

in a diagonal tensor plus a trace-free tensor. Therefore, we can rewrite hµν as

h00 = −2Φ

h0i = ωi

hij = 2sij − 2Ψδij,

(1.15)
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where sij is the trace-free tensor given by

sij =
1

2

(
hij −

1

3
δklhklδij

)
, (1.16)

and Ψ contains the information about the trace of hij, that is

Ψ = −1

6
δijhij. (1.17)

As we shall see, this new way of expressing the components of hµν will prove itself useful.

Sometimes, however, it will be simpler to just keep hµν . In terms of these new quantities,

the line element of our actual spacetime is given by

ds2 = −(1 + 2Φ)dt2 + ωi(dtdxi + dxidt) + [(1− 2Ψ)δij + 2sij]dx
idxj. (1.18)

Before reviewing the elements of General Relativity in terms of these new quantities, one

should pay attention to how the index of ωi given by Eq. (1.15) is raised. Even though

we are looking at ωi as a 3-vector, it was defined from the second order tensor hµν and

it must be consistent with this fact while also transforming as a 3-vector upon lowering

and raising indexes regardless of the signature we are working with. Note that, if we were

adopting the signature (+,−,−,−), we should have defined ωi as to obtain ηjiωi = −ωj.

In this case, it would not matter if we have defined ωi as h i
0 or h0i. The negative signal

we need will be carried by the spatial index. However, in our case we must have ωi such

that ηjiωi = ωj. Therefore, we need to be careful to define ωi ≡ h i
0 , otherwise, we would

have obtained η00ηiih
0i = −ωi. Consequently, for it to work regardless of the signature,

let us define ωi ≡ h i
0 .
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Let us now rewrite our GR elements. Combining Eqs. (1.5) and (1.15) yields

⇒ Γ0
00 =

1

2
η00 (∂0h00 + ∂0h00 − ∂0h00) = −1

2
∂0 (−2Φ)

= ∂0Φ

⇒ Γi
00 =

1

2
ηiσ(∂0h0σ + ∂0hσ0 − ∂σh00) =

1

2
[∂0ωi + ∂0ωi − ∂i(−2Φ)]

= ∂0ωi + ∂iΦ

⇒ Γ0
j0 =

1

2
η0σ(∂jh0σ + ∂0hσj − ∂σhj0) = −1

2
[∂j(−2Φ) + ∂0ωj − ∂0ωj]

= ∂jΦ

⇒ Γi
j0 =

1

2
ηiσ(∂jh0σ + ∂0hσj − ∂σhj0) =

1

2
[∂jωi + ∂0(2sij − 2Φδij)− ∂iωj]

= ∂[jωi] +
1

2
∂0hij

⇒ Γ0
jk =

1

2
η0σ(∂jhkσ + ∂khσj − ∂σhjk) = −1

2
(∂jωk + ∂kωj − ∂0hjk)

= −∂(jωk) +
1

2
∂0hjk

⇒ Γi
jk =

1

2
ηiσ(∂jhkσ + ∂khσj − ∂σhjk) =

1

2
(∂jhki + ∂khij − ∂ihjk)

= ∂(jhk)i −
1

2
∂ihjk.

(1.19)

For the Riemann tensor in Eq. (1.6), one obtains

⇒ R0j0l =
1

2
(∂0∂jh0l − ∂0∂0hlj − ∂l∂jh00 + ∂l∂0h0j)

=
1

2
[∂0∂jωl − ∂0∂0hlj − ∂l∂j(−2Φ) + ∂l∂0ωj]

= ∂0∂(jωl) + ∂j∂lΦ− 1

2
∂0∂0hjl

⇒ R0jkl =
1

2
(∂k∂jh0l − ∂k∂0hlj − ∂l∂jh0k + ∂l∂0hkj)

=
1

2
(∂k∂jωl − ∂k∂0hlj − ∂l∂jωk + ∂l∂0hkj)

= ∂j∂[kωl] − ∂0∂[khl]j

⇒ Rijkl =
1

2
(∂k∂jhil − ∂k∂ihlj − ∂l∂jhik + ∂l∂ihkj)

=
1

2
(∂k∂jhil − ∂k∂ihlj − ∂l∂jhik + ∂l∂ihkj)

= ∂j∂[khl]i − ∂i∂[khl]j.

(1.20)

Note that if h is the trace of hµν , in the decomposed form one obtains h = 2Φ − 6Ψ.
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Hence, the decomposition of the Ricci tensor in Eq. (1.7) yields

⇒ R00 =
1

2
(∂α∂0h

α
0 + ∂α∂0h

α
0 − ∂0∂0h−2h00)

= ∂0∂0h
0
0 + ∂i∂0h

i
0 +

1

2
[−∂0∂0(2Φ− 6Ψ)−2(−2Φ)]

= −∂20(−2Φ) + ∂0∂iω
i − ∂20Φ + 3∂20Ψ+2Φ

= ∇2Φ + ∂0∂iω
i + 3∂20Ψ

⇒ R0j =
1

2
(∂α∂0h

α
j + ∂α∂jh

α
0 − ∂0∂jh−2h0j)

=
1

2

[
∂0∂0h

0
j + ∂i∂0h

i
j + ∂0∂jh

0
0 + ∂i∂jh

i
0 − ∂0∂j(2Φ− 6Ψ)−2ωj

]
= ∂i∂0(sij −Ψδij) + ∂0∂jΦ + ∂0∂j(−Φ + 3Ψ) +

1

2

[
−∂20ωj + ∂j∂iω

i −2ωj

]
= ∂i∂0sij + 2∂0∂jΨ+

1

2

[
∂j∂iω

i −∇2ωj

]
⇒ Rij =

1

2
(∂α∂ih

α
j + ∂α∂jh

α
i − ∂i∂jh−2hij)

=
1

2

[
∂0∂ih

0
j + ∂k∂ih

k
j + ∂0∂jh

0
i + ∂k∂jh

k
i

]
− ∂i∂j(Φ− 3Ψ)−2(sij −Ψδij)

=
1

2
(−∂0∂iωj − ∂0∂jωi) + ∂k∂i(skj −Ψδkj) + ∂k∂j(ski −Ψδki)− ∂i∂j(Φ− 3Ψ)

−2(sij −Ψδij)

= −∂0∂(iωj) + 2∂k∂(isj)k − 2∂i∂jΨ− ∂i∂jΦ + 3∂i∂jΨ−2sij +2Ψδij

= ∂i∂j(Ψ− Φ)− ∂0∂(iωj) + 2∂k∂(isj)k −2sij +2Ψδij,

(1.21)

whereas the Ricci scalar in Eq. (1.8) becomes

R = ∂µ∂νh
µν −2h

= ∂0∂νh
0ν + ∂i∂νh

iν −2(2Φ− 6Ψ)

= ∂0∂0h
00 + ∂0∂jh

0j + ∂i∂0h
i0 + ∂i∂jh

ij −2(2Φ− 6Ψ)

= ∂0∂0(−2Φ)− ∂0∂jω
j − ∂i∂0ω

i + ∂i∂j(2s
ij − 2Ψδij)−2(2Φ− 6Ψ)

= −2∂20Φ− 2∂0∂iω
i + 2∂i∂js

ij − 2∇2Ψ− 22Φ + 62Ψ

= 2
[
∂i∂js

ij − ∂0∂iω
i −∇2(Φ + Ψ) + 32Ψ

]
.

(1.22)
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Finally, the decomposed Einstein tensor in Eq. (1.9) reads

⇒ G00 = R00 −
1

2
η00R

= ∇2Φ + ∂0∂iω
i + 3∂20Ψ+

[
∂i∂js

ij − ∂0∂iω
i −∇2(Φ + Ψ) + 32Ψ

]
= ∂i∂js

ij + 2∇2Ψ

⇒ G0j = R0j −
1

2
η0jR

= ∂i∂0sij + 2∂0∂jΨ+
1

2

[
∂j∂iω

i −∇2ωj

]
⇒ Gij = Rij −

1

2
ηijR

= ∂i∂j(Ψ− Φ)− ∂0∂(iωj) + 2∂k∂(isj)k −2sij +2Ψδij

− δij
[
∂k∂ls

kl − ∂0∂kω
k −∇2(Φ + Ψ) + 32Ψ

]
= ∂i∂j(Ψ− Φ) +2Ψδij +∇2(Φ + Ψ)δij +∇2Ψδij −∇2Ψδij − 32Ψδij

+ ∂0∂kω
kδij − ∂0∂(iωj) + 2∂k∂(isj)k −2sij − ∂k∂ls

klδij

= (∇2δij − ∂i∂j)(Φ−Ψ) + 2∂20Ψδij + δij∂0∂kω
k − ∂0∂(iωj)

+ 2∂k∂(isj)k −2sij − ∂k∂ls
klδij

(1.23)

We have started this procedure inspired by the electromagnetism approach. However,

substituting the new decomposed Einstein tensor found in Eq. (1.23) in the Einstein’s

field equations, we find that the resulting equations reveals the existence of less degrees

of freedom than we could think we would have at first sight. Substituting Eq. (1.23) in

Gµν = 8πTµν , the 00 component yields

∇2Ψ = 4πGT00 −
1

2
∂i∂js

ij, (1.24)

whereas the 0i components reads

(δij∇2 − ∂j∂i)ω
i = −16πGT0j + 2∂i∂0sij + 4∂0∂jΨ, (1.25)

and for the purely spatial indexes we have

(∇2δij − ∂i∂j)Φ = (∇2δij − ∂i∂j)Ψ− 2∂20Ψδij − δij∂0∂kω
k + ∂0∂(iωj)

− 2∂k∂(isj)k +2sij + ∂k∂ls
klδij + 8πGTij.

(1.26)

Note that Eq. (1.24) is an equation for Ψ with no time derivatives and by knowing T00
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and sij at any given time we can somehow determine Ψ. This same argument applies

to Eqs. (1.25) and (1.26) as equations for ωi and Φ if T0j, Tij and skj are known. The

energy-momentum tensor is calculated to the zeroth order in hµν [8] and, therefore, the

only propagating degree of freedom in Einstein’s equation for linearized gravity are those

contained in sij. However, this is not always the case. In alternative theories with higher

order terms in the action or with extra fields, the other components of hµν can also

represent degrees of freedom on Einstein’s equations [8]. An example of the latter, in

quadratic gravity, there are extra degrees of freedom that can be associated to a massive

spin-0 field and to a massive spin-2 field in addition to those associated to a massless

spin-2 field (see Refs. [34, 35]). Furthermore, moving forward we will also see that the

tensor sij in fact leads to a spin-2 particle upon quantization within the linearized theory.

1.3 An analogy with the Lorentz force law

To gain further insight on the components of hµν , let us consider the movement of a

test particle described by the geodesic equation

d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0, (1.27)

where λ = τ/m. However, notice that

p0 =
dx0

dλ
=
dt

dλ
= E −→ d

dλ
=
dt

dλ

d

dt
= E

d

dt
, (1.28)

and therefore,

pi = γmvi = Evi = E
dxi

dt
=
dxi

dλ
. (1.29)

With both these equations we can rewrite Eq. (1.27) as

dpµ

dt
= −Γµ

ρσ

pρpσ

E
. (1.30)
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The expression for µ = 0 in Eq. (1.30) gives us an equation for the total time derivative

of the energy E. Using Eq. (1.19), we can write

dE

dt
= −Γ0

ρσ

pρpσ

E

= −Γ0
0σ

p0pσ

E
− Γ0

iσ

pipσ

E

= −Γ0
00

p0p0

E
− Γ0

0j

p0pj

E
− Γ0

i0

pip0

E
− Γ0

ij

pipj

E

= −∂0ΦE − 2(∂iΦ)Ev
i −
[
−∂(iωj) +

1

2
∂0hij

]
Evivj

= −E
{
∂0Φ + 2(∂iΦ)v

i −
[
∂(iωj) −

1

2
∂0hij

]
vivj

}
.

(1.31)

Note that the energy E only contains the test particle’s inertial energy. It does not contain

the energy due to gravitational interactions, and therefore, does not need to be conserved.

In other words, we are allowed to obtain dE/dt ̸= 0. As for the spatial components of the

geodesic equation we obtain

dpi

dt
= −Γi

ρσ

pρpσ

E

= −Γi
0σ

p0pσ

E
− Γi

jσ

pjpσ

E

= −Γi
00

p0p0

E
− Γi

0k

p0pk

E
− Γi

j0

pjp0

E
− Γi

jk

pjpk

E

= −(∂0ωi + ∂iΦ)E − 2(∂[jωi] +
1

2
∂0hij)Ev

j − (∂(jhk)i −
1

2
∂ihjk)Ev

jvk

= −E
{
∂iΦ + ∂0ωi + (2∂[jωi] + ∂0hij)v

j +

(
∂(jhk)i −

1

2
∂ihjk

)
vjvk

}
.

(1.32)

As an attempt to understand physical implications of these results, let us define two

quantities inspired by the electromagnetism

Gi ≡ −∂iΦ− ∂0ω
i

H i ≡ (∇× ω⃗)i = −ϵijk∂jωk,
(1.33)

where we used

2∂[jωi] = ∂jωi − ∂iωj = −ϵijk(∇× ω⃗)k. (1.34)
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In other words, the quantity above is the k-component of the curl of ω⃗ if j ≤ i, otherwise

it is its negative. Therefore, we can write

−ϵijk(∇× ω⃗)kvj = −[v⃗ × (∇× ω⃗)]i. (1.35)

Substituting Eqs. (1.33) and(1.35) back in Eq. (1.32) one obtains

dpi

dt
= E

{
Gi − (v⃗ × H⃗)i − ∂0hijv

j −
(
∂(jhk)i +

1

2
∂ihjk

)
vjvk

}
. (1.36)

Note that the first two terms in the r.h.s. of Eq. (1.36) takes the form of the Lorentz

force law. They tell us that a test particle moving along a geodesic reacts to Φ and to ωi

in the same way a point charge reacts to the potential vector and potential scalar in the

electromagnetic theory. Furthermore, we also find terms of the purely spatial hij, which

we know are associated with Ψ and sij in first and second order on the the test particle’s

velocity 3-vector.

1.4 The transverse gauge

We are still to dive into fixing a gauge to completely specify hµν . In the two previous

sections we found that making analogies with the electromagnetic theory results in fruitful

interpretations. Let us make one more. By decomposing hµν in Eq. (1.12) we find that

the transformations

Φ −→ Φ + ∂0ξ
0

Ψ −→Ψ− 1

3
∂iξ

i

ω −→ ωi + ∂0ξ
i − ∂iξ

0

sij −→ sij + ∂(iξj) −
1

3
∂kξ

kδij

(1.37)

result in the same physical problem that is, the same spacetime curvature. What we will

define here as the transverse gauge is very similar to the Coulomb gauge in electromag-

netism. We start by looking for a ξj that will result in a new hµν such that

∂is
ij = 0. (1.38)

31



1.4. THE TRANSVERSE GAUGE

To that end we make use of the transformation for sij in Eq. (1.37) and impose Eq.

(1.38). After some algebraic manipulation we obtain

∂is
ij + ∂i∂

(iξj) − 1

3
∂i∂

kξkδ
ij = 0

∂is
ij +

1

2
∂i∂

iξj +
1

2
∂i∂

jξi − 1

3
∂j∂kξ

k = 0

2∂is
ij +∇2ξj +

1

3
∂j∂iξ

i = 0,

which gives us

∇2ξj +
1

3
∂j∂iξ

i = −2∂is
ij (1.39)

as the equation for the ξj that will result in (1.38). However, we did not completely

determine ξµ as the ξ0 component is still not specified. Let us now impose

∂iω
i = 0 (1.40)

and follow the same steps using the third line of Eq. (1.37) to obtain the equation for ξ0,

which reads

∇2ξ0 − ∂0∂iξ
i = ∂iω

i. (1.41)

Remember that in electromagnetism, given a transformation Aµ → Aµ + ∂µf , one

obtains the same magnetic field for any scalar f . By fixing ∂µAµ = 0, we still have the

freedom to choose any f as long as it satisfies 2f = 0. In our case, given Eqs. (1.39) and

(1.41), we can see that the transverse gauge is also only an partial gauge fixing in this

same sense. Both of them are second-order differential equations, therefore, we still need

boundary conditions to uniquely determine ξµ. This will be discussed this in more details

in the next section.

The equations (1.38) and (1.40) define what we call the transverse gauge. In this

gauge, the decomposed Einstein’s equations (1.24)-(1.26) become

G00 = 2∇Ψ2 = 8πT00, (1.42)

G0j = −1

2
∇2ωj + 2∂0∂jΨ = 4πGT0j, (1.43)
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and

Gij = (δij∇2 − ∂i∂j)(Φ−Ψ) + 2∂20Ψδij − ∂0∂(iωj) −2sij = 8πGTij. (1.44)

This partial gauge receives its name because the resulting wave vector will be orthog-

onal to the polarization tensor, as we will be able to verify in the next section.

1.5 The transverse traceless gauge and gravitational

wave solutions for hµν

Depending on how a certain tensor field behaves under spatial rotations, particles of

different spin will be described upon quantization. The scalars Φ and Ψ would describe

spin-0 particles, ωi would describe a spin-1 particle and sij spin-2 particles. This tells

us that sij, the only propagating degree of freedom in hµν , will contain the gravitational

radiation information [8]. Let us see what happens to a freely propagating degree of

freedom in linearized gravity by adopting the transverse gauge. Since we are not interested

in the gravitational source, only on the propagation of the perturbation, let us turn off the

energy-momentum tensor, that is, we make Tµν = 0. By doing this, Eq. (1.42) becomes

∇2Ψ = 0. (1.45)

Additionally, note that since we are interested only in quantities that are related to spin-

2 particles, we can impose boundary conditions in order obtain Ψ = 0, resulting in a

traceless hµν . In other words, we impose a form for ξµ in Eqs. (1.37) as to obtain Ψ = 0.

As for the trace of Eq. (1.43), we now obtain

−1

2
∇2ωj + 2∂0∂jΨ = 0 → ∇2ωj = 0, (1.46)

which yields ωi = 0 by using Ψ = 0 and making the same argument as that of Ψ. Following

the same steps for Eq. (1.44) we have

∇2Φ = 0, (1.47)
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that again, by the same argument, yields Φ = 0. Finally, for the Eq. (1.43),

2sij = 0. (1.48)

That is, we are left with a Klein-Gordon like equation for sij. As a result, hµν takes the

form of

hTT
µν =


0 0 0 0

0

0 2sij

0

 . (1.49)

The combination of Eqs. (1.38) and (1.40) together with the boundary conditions

resulting in Ψ = Φ = ωi = 0 leads to what we call the transverse traceless (TT) gauge.

In this gauge, notice that hTT
µν is traceless, transverse and purely spatial, this means that

we can write the TT gauge conditions as

ηµνhTT
µν = 0,

∂µhTT
µν = 0,

hTT
0ν = 0,

(1.50)

while retaining only freely propagatin degrees of freedom. Additionally, Eqs. (1.48) and

(1.49) tell us that the equation of motion for hTT
µν is also a Klein-Gordon like equation,

that is

2hTT
µν = 0, (1.51)

and, therefore, can be resolved using a set of plane waves, namely

hTT
µν = Aµνe

ikαxα

, (1.52)

where Aµν is a constant, symmetric, traceless and purely spatial tensor that should result

in the transverse traceless hµν . Since hµν is purely spatial, we will sometimes refer to it

as hij. Note that, although hTT
µν is real we can see that eikαxα is a complex quantity. We

shall consider only the real part in our final calculations. Finally, kα is the wave vector,

which again, is a constant vector.

Substituting the plane wave solution (1.52) in Eq. (1.51) we obtain a new constraint,
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which reads

2hTT
µν = ∂β∂

βAµνe
ikαxα

= ∂β(ik
β)Aµνe

ikαxα

= −kβkβAµνe
ikαxα

= 0,

kβk
β = 0. (1.53)

Eq. (1.53) tells us that the plane wave is an acceptable solution to the equation of motion

for hTT
µν only if its wave vector is null. In other words, gravitational waves propagate at

the speed of light. By writing the wave vector as kµ = (ω,k), this condition becomes

ω = |k|. (1.54)

Now, we know that Aµν is such that hTT
µν is traceless and purely spatial, that is

Aµ
µ = 0,

A0ν = 0.
(1.55)

To ensure that it is also transverse, we must have

∂µh
µν
TT = ∂µA

µνeikαx
α

= (ikµ)A
µνeikαx

α

= 0,

that is,

kµA
µν = 0. (1.56)

This is exactly what we meant when we said that the transverse gauge results in a solution

in which the wave vector is orthogonal to polarization tensor. We will see that the latter

is given by Aµν .

In order to simplify our investigation, let us choose spatial coordinates such that the

wave vector is pointing at the x3 direction in a (3+1)-dimensional spacetime. By making

use of Eq. (1.54), the wave vector can be written as kµ = (ω, 0, 0, ω). Adding this to the

constraints in Eqs. (1.55) and (1.56) we obtain

kµA
µν = k0A

0ν + k1A
1ν + k2A

2ν + k3A
3ν

= ωA3ν = 0,
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that is,

A3ν = 0. (1.57)

As Aµν must be symmetric, Eq. (1.57) tells us that its only nonzero components are A11,

A12, A21 and A22. Since Aµν is also traceless, we can write it in terms of two components,

that is

Aµν =


0 0 0 0

0 A11 A12 0

0 A12 −A11 0

0 0 0 0

 . (1.58)

As a result, we only need A11, A12 and the frequency ω in order to completely determine

hTT
µν . We still can exercise our results a little more in order to obtain a more profound

physical understanding of our gravitational wave solution and of its effects. It would be

meaningless to study the trajectory of a single test particle since it would only tell us

about the coordinates along the particle’s worldline. Furthermore, it is always possible

to find transverse traceless coordinates in which the particle would appear stationary in

first order in hTT
µν [8]. To actually understand what is happening in our 4-dimensional

spacetime we must consider the relative movement of nearby particles described by the

geodesic deviation equation. Given a ensemble of particles with 4-velocity Uµ and the

separation vector between them Sµ, the geodesic deviation equation reads

d2Sµ

dτ 2
= Rµ

ναβU
νUαSβ. (1.59)

Now, if we consider that the particles are moving very slowly, we can expand the 4-velocity

as Uµ = (1, 0, 0, 0) plus corrections of first order in hTT
µν which we can ignore, because as

we know from Eq. (1.6), the Riemann tensor is already of first order in the perturbation.

As a result, the only nonzero terms will be the ones involving

Rµ
00β =

1

2
(∂0∂0h

µ
β − ∂0∂

µhβ0 − ∂β∂0h
µ
0 + ∂β∂

µh00)

=
1

2
∂0∂0h

µ
β.

Furthermore, as the particles are moving slowly, we can approximate dτ = dt. This way,
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the geodesic deviation equation becomes

∂2Sµ

∂t2
=

1

2

∂2hTTµ
β

∂t2
Sβ. (1.60)

Since the perturbation is transverse, the only separation vector components affected by the

gravitational radiation traveling in the x3 direction will be the S1 and the S2 directions.

We are seeking to determine the effects of the A11 and A12 components on the test

particles. Let us consider these two separately. By taking A12 = 0, the geodesic deviation

equations becomes
∂2S1

∂t2
=
S1

2

∂2

∂t2
A11e

−iω(t−z) (1.61)

and,
∂2S2

∂t2
= −S

2

2

∂2

∂t2
A11e

ikαxα

, (1.62)

whose solutions can be written as

S1 =

(
1 +

1

2
A11e

ikαxα

)
S1(0),

S2 =

(
1− 1

2
A11e

ikαxα

)
S2(0).

(1.63)

Eq. (1.63) tells us that if the particles have a separation in the x1 direction, they will

oscillate in the x1 direction, and if they have a separation in the x2 direction, they will

oscillate in the x2 direction. If they are initially predisposed in a circle in the x1x2

plane, the circle will be stretched upwards and downwards simultaneously, come back to

the initial configuration and then be stretched to both sides, come back to the initial

configuration and so on... This is why the component A11 is usually written as h+, and a

gravitational wave in this gauge with A12 = 0 is said to contain a plus polarization.

Following the same steps for the case A11 = 0, we obtain

S1 = S1(0) +
1

2
A12e

ikαxα

S2(0),

S2 = S2(0)− 1

2
A12e

ikαxα

S1(0).
(1.64)

from the geodesic deviation equations. This means that particles with a separation along

the x1 direction will oscillate in the x2 direction and vice versa. If they are initially

predisposed in a circle in the x1x2 plane, the circle will be stretched in the northeast and
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southwest directions simultaneously, come back to the initial configuration, it will be then

stretched in the northwest and southeast directions, come back to the initial configuration

again and so on... This is the reason why the component A12 is usually written as h× and

a gravitational wave in this gauge with A11 = 0 is said to contain a cross polarization.

Figure 1.1: The effect of h+ and h× on test particles initially predisposed in a circle on
the xy plane, trespassed by a gravitational wave traveling along the z-direction.

The quantities h+ and h× measure independent modes of polarization of the gravita-

tional waves and its effects upon a circular disposition of test particles are depicted in

Fig. 1.1. We can also use these to construct the circular polarization modes

hR =
1√
2
(h+ + ih×),

hL =
1√
2
(h+ − ih×),

(1.65)

where the sub index R stands for “right”, indicating the direction in which our hypothetical

particle distribution would appear to be rotating and, as expected, L stands for “left”, for

the same reason. It is worth noticing that the distribution of particles would not be the

one rotating, each particle would describe a small circle around its initial position.

So far we are talking about classical gravitational waves, however, note that the po-

larization modes depicted in Fig. 1.1 are invariant under spatial rotations of 180º on the

x1x2 plane. If we rotate each stage of the movement in Fig. 1.1 by 90º, we would be

able to tell that it was rotated. However, by rotating it 180º, an observer would not be
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able to tell the difference. The angle under which the polarization modes of a given field

are invariant are observed to be related to the spin of the particle arising from the their

quantization as s = 360º/θ. This is one of the indications that the particles associated

with gravitational waves upon quantization should be spin-2, postulated as the gravitons.
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Chapter 2

Gravitons and light cone fluctuations

From this chapter on, we will consider the perturbation to be quantized and we shall

see that this assumption leads to the smearing of classical lightcone divergences. This

possibility was first raised by Pauli as he commented on the work submitted by Oskar

Klein to the 50th Jubilee of General Relativity [3]. This chapter will be mostly a review

of Refs. [1, 9, 17]. We will show how some of the lightcone divergences are smeared out

and discuss the order of magnitude on hµν that must be taken into account in order to

observe its effects on a photon’s flight time.

2.1 Lightcone divergence smearing and the change on

a photon’s flight time

We are still considering a linearized perturbation hµν propagating in a flat (3 + 1)-

dimensional spacetime, so the line element is given by

ds2 = gµνdx
µdxν = (ηµν + hµν)dx

µdxν , (2.1)

which is the same from the decomposed form in Eq. (1.18). Although this decomposition

is still valid, hµν will be sufficient for our current goal. As we are solely interested in

gravitational wave solutions, we will adopt the TT gauge. Let σ be one half of the
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geodesic separation squared between two points, then

σ =
1

2
gµνX

µXν

=
1

2
(ηµν + hµν)X

µXν +O(h2µν)

=
1

2
(t− t′)2 − 1

2
(x − x′)2 +

1

2
hµνX

µXν +O(h2µν)

= σ0 + σ1 +O(h2µν),

(2.2)

where σ0 = (t− t′)2− (x−x′)2, Xµ = xµ−x′µ and, the sub index of σ expresses the order

of hµν on each term. For a massless scalar field in flat spacetime, the retarded Green’s

function reads [36]

Gret = θ(t− t′)
δ(σ)

4π
=
θ(t− t′)

8π2

∫ ∞

−∞
ds eis(σ0+σ1). (2.3)

Note that we used of the integral representation for the Dirac delta function in the last

term on the r.h.s.

If the spacetime was free from perturbation, that is, in Minkowski spacetime, we

would have σ1 = 0 and, the presence of the δ-function would be telling us that the

retarded Green’s function is zero everywhere except for a singularity on the future light

cone. However, in the presence of the perturbation, the singularity is now located on the

perturbed light cone.

Now, considering hµν to be quantized [7,8], we will make a little change in our vocab-

ulary: what we were calling perturbations traveling in a flat background we will now call

gravitons in a vacuum state |ψ⟩. We say that |ψ⟩ is a vacuum state in the sense that,

upon quantization, hµν becomes an operator that can be decomposed into its positive and

negative frequency parts such that

h+µν |ψ⟩ = 0, ⟨ψ|hµν = 0, (2.4)

and since σ1 is written in first order on hµν , it can also be decomposed in σ+
1 and σ−

1

replicating the behaviours in Eq. (2.4). The resulting operators can be understood as

representing the operators of creation and annihilation of gravitons. In the previous chap-

ter we saw that the TT gauge results in a Klein-Gordon like equation for the perturbation,

allowing us to write it in terms of a plane wave expansion (see Eqs. (1.51) and (1.52)).
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Therefore, the same is valid for σ1 and we can write

σ+
1 =

∑
λ

aλfλ, σ−
1 =

∑
λ

a†λf
∗
λ , (2.5)

where f and f ∗ are the mode functions, λ is the set of momentum vectors and polarization

modes, and the coefficients aσ and a†σ obey

[aσ, a
†
σ′ ] = δσσ′ ,

[aσ, aσ′ ] = [a†σ, a
†
σ′ ] = 0.

(2.6)

Using the Campbell-Baker-Hausdorff (CBH) formula [37]

exp{A+B} = exp

{
A+B +

1

2
[A,B] +

1

12
[A, [A,B]] + ...

}
, (2.7)

along with the fact that both σ+
1 and σ−

1 commute with their own commutator [σ+, σ−],

we can write the exponential in Eq. (2.3) as

exp{isσ1} = exp

{
isσ+

1 − s2

2
[σ+

1 , σ
−
1 ] + isσ−

1

}
. (2.8)

Note that although we truncated σ up to first order in hµν , the exponential above retains

terms of all orders in hµν . This will be crucial in order to obtain non-null contributions

of the expected value of eisσ1 , as we shall discuss in the next section. By expanding each

exponential above we obtain

eisσ
+
1 |ψ⟩ = (1 + isσ+

1 + · · · ) |ψ⟩ = |ψ⟩ ,

⟨ψ| eisσ
−
1 = ⟨ψ| (1 + isσ−

1 + · · · ) = ⟨ψ| .
(2.9)

and, using Eq. (2.6), we find that

[σ+
1 , σ

−
1 ] =

∑
λλ′

[aλ, a
†
λ′ ]fλf

∗
λ′ =

∑
λ

fλf
∗
λ . (2.10)
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On the other hand, note that from Eq. (2.6) we can also obtain

⟨σ2
1⟩ = ⟨ψ|

(∑
λ

aλfλ +
∑
λ

a†λfλ

)2

|ψ⟩ = ⟨ψ|
∑
λλ′

aλa
†
λ′fλf

∗
λ′ |ψ⟩

= ⟨ψ|
∑
λλ′

(δλλ′ + a†λ′aλ)fλf
∗
λ′ |ψ⟩ =

∑
λ

fλf
∗
λ ⟨ψ|ψ⟩ =

∑
λ

fλf
∗
λ .

(2.11)

Note the importance of this result. We can directly see from Eq. (2.4) that ⟨hµν⟩ =

⟨σ1⟩ = 0. However, Eq. (2.11) is telling us that ⟨σ2
1⟩ and, therefore, ⟨h2µν⟩ may not be

null. In other words, the perturbation is fluctuating and so is the spacetime metric.

Substituting Eqs. (2.9), (2.10) and (2.11) back in Eq. (2.8) we can write

⟨eisσ1⟩ = ⟨eisσ
+
1 e−

s2

2
[σ+

1 ,σ−
1 ]eisσ

−
1 ⟩ = ⟨e−

s2

2
[σ+

1 ,σ−
1 ]⟩ = e−

s2

2
⟨σ2

1⟩. (2.12)

Using Eq. (2.12) the expectation value in Eq. (2.3) becomes

⟨Gret(x, x
′)⟩ = θ(t− t′)

8π2

∫ ∞

−∞
ds eisσ0− 1

2
s2⟨σ2

1⟩, (2.13)

where we take into account that σ0 is the classical square of the geodesic deviation and

therefore does not act on the vacuum state. As we will see in Chapter 4, direct calculations

of the quantity ⟨σ2
1⟩ entail divergences, therefore, this quantity should be renormalized.

As we shall also see, this is done by subtracting the respective contribution from the

background spacetime.

We can now proceed to perform the integral in (2.13). Completing the square in the

exponential argument, that is, substituting

isσ0 −
s2

2
⟨σ2

1⟩ = −

(
s
√

⟨σ2
1⟩√

2
+

iσ0√
2⟨σ2

1⟩

)2

− σ2
0

2⟨σ2
1⟩

in Eq. (2.13) and performing the integral, one obtains

⟨Gret(x, x
′)⟩ = θ(t− t′)

8π2

√
2π

⟨σ2
1⟩
e
− σ2

0
2⟨σ2

1⟩ . (2.14)

From Eq. (2.14) we can see that the expectation value of the retarded Green’s function

is now finite even for σ0 = 0, as long as ⟨σ2
1⟩ ≠ 0. We can also see that the convergence
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of the above integral is conditioned to ⟨σ2
1⟩ > 0, otherwise its behaviour would be that of

an upside-down Gaussian.

The light cone singularity has now been smeared out. We can interpret this smear-

ing as a larger region (no longer a line) in which massless particles can travel through

spacetime. This means that these particles can now have a speed that is a bit smaller

or a bit greater than the usual light speed. In other words, by separating the quantized

perturbation from a background Minkowski spacetime, we find that massless particles

traveling through this background are now being boosted or slowed down by the metric

fluctuations, that is, by the spin-2 particles arising from the quantized perturbation, the

gravitons. Additionally, one could wonder whether this scenario results in some kind of

causality violation. However, the graviton state defines a preferred reference frame, so

this system is Lorentz invariant to begin with.

Note that the lightcone smearing is a consequence of the behaviour in Eq. (2.6) arising

from the quantization of hµν . In other words, it is mandatory for the gravitons to be in a

nonclassical state, otherwise the retarded Green’s function would still contain a δ-function

divergence on the light cone even in the presence of the perturbation.

Now, imagine a light source emitting evenly spaced pulses. An observer at a distance

r from the source will detect a variation of the order of ∆t between their arrivals. The

geodesic separation between the emission of the photon by the source and its arrival at

the observer after traveling a distance r in a time r +∆t is given by

2σ = (r +∆t)2 − r2 = ∆t2 + 2r∆t → σ ≈ r∆t, ∆t≪ r,

which means that the time delay or advance on the photons flight time can be taken to

be on the order of

∆t ≈
√
⟨σ2

1⟩
r

. (2.15)

This means that spectral lines can be both shortened or broadened as they travel through

the perturbation. As the lightcone fluctuates, so will the speed of the photons, therefore,

∆t should be thought of as a mean deviation on the flight time of photons traveling

through a perturbation instead of an actual change in the flight time of each photon. A

more detailed calculation on the influence of ⟨σ2
1⟩ in the mean deviation on a photon’s

flight time can be found in Ref. [1].
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2.2 Higher order corrections to the metric

We found the expected value of the retarded Green function in Eq. (2.14) to contain

exponential terms of ⟨σ2
1⟩, which is of second order on hµν . Therefore, one could also

wonder if higher order terms on the perturbation could affect these results in a non-

negligible way. Let us take into account the second order correction term to the metric

and see what it tells us. The geodesic separation is now terminated at σ2, i.e.,

σ = σ0 + σ1 + σ2. (2.16)

We will decompose σ1 into its positive and negative frequency parts and apply the CBH

formula. As for σ2, we will decompose it into its normal ordering part with respect to

the vacuum state |ψ⟩, and the part which actually contributes to the vacuum expectation

value. The normal ordering, or Wick ordering part of an operator is its portion in which

all creation operators are to the left and all annihilation operators to the right and, for an

operator A, it is denoted by : A :. This can be understood by looking at the last term on

the first line of Eq. (2.11) in which we discarded all terms resulting in a null expectation

value. The sum of all discarded terms are exactly : σ2
1 :. By doing this for σ2 we obtain

σ2 = : σ2 : + ⟨σ2⟩, (2.17)

which results in

eis:σ2: |ψ⟩ ≈ (1 + is : σ2 :) |ψ⟩ = |ψ⟩ .

This way, the equivalent of Eq. (2.13) by taking terms of second order of hµν will be

⟨Gret(x, x
′)⟩ = θ(t− t′)

8π2

∫ ∞

−∞
ds eisσ0− 1

2
s2⟨σ2

1⟩+is⟨σ2⟩

=
θ(t− t′)

8π2

√
2π

⟨σ2
1⟩
e
−σ2

0+⟨σ2⟩
2⟨σ2

1⟩ .

(2.18)

In the last step we eliminated terms of third and higher order in the perturbation that

resulted from the integration. Notice that this result shows us that second order terms

stemming from σ2 will not change the form of the expected value of the retarded Green’s

function, they will only relocate the peak of the Gaussian.
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Note that we adopted the normal ordering in Eq. (2.17) instead of using the CBH

formula for σ2 just for simplicity. We did not explicitly write σ2 because it will not be

a relevant quantity for our future calculations. However, if we did write it and used the

CBH formula, we would still find that terms of second order in hµν would be accompanied

by a factor of s in the integral, while only terms of higher order (the commutation terms of

the CBH formula) would be accompanied by s2. The latter would still be discarded after

integration for being negligible when compared to the second order term in Eq. (2.14)

and the result would be the same.

Additionally, although it could seem arbitrary to keep high order terms from the

exponential but not from σ, the result from Eq. (2.18) already proves that higher terms

will not change the form of our results.

2.3 The Hadamard function

In the previous section we chose the retarded Green function to illustrate the lightcone

smearing, however, we can show that the presence of the metric fluctuations will also

remove the singularity of other two-point functions that can be expressed in terms of

vacuum expectation values. Among them, the Hadamard function will prove to be a

valuable resource in our search for observational aspects of lightcone fluctuations. The

Hadamard function for a scalar field ϕ in flat spacetime can be obtained from [36]

G1(x− x′) = ⟨ϕ(x)ϕ(x′) + ϕ(x′)ϕ(x)⟩. (2.19)

For the massless case in flat spacetime the free field solution can be written as

ϕ(x) =
1

(2π)
3
2

∫
d3k

(2ωk)
1
2

(
ake

−iωkt+ik·x + a†ke
iωkt−ik·x

)
, (2.20)

from which the Hadamard function reads [36]

G1(x, x
′) = − 1

4π2σ
. (2.21)

Both the expression for the Hadamard function in Eq. (2.21) and the expression for the

retarded Green function in Eq. (2.3) have the same form than those in unperturbed
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spacetime. This was happened because the free field solutions carry an exponential of the

internal product gµνpµxν = (ηµν + hµν)p
µxν , resulting in both terms of σ = σ0 + σ1, while

the measure of the integral can be taken to be √
g ≈ 1. Therefore, as it happened in the

previous section, σ = σ0 in an unperturbed scenario, and σ = σ0 + σ1 in the presence

of metric perturbations. Since we found that higher-order terms on the perturbation

will not produce relevant terms on the two-point function, we will no longer discuss

them. Furthermore, the expression above also describes the asymptotic behavior of the

Hadamard function for the massive case near the light cone. Let us set to find out how

the lightcone divergence is removed in the presence of a quantized perturbation. We can

use the identity ∫ ∞

0

dse±isx = ± i

x
+ πδ(x), (2.22)

to write
1

σ0 + σ1
= − i

2

∫ ∞

0

ds
[
eis(σ0+σ1) − e−is(σ0+σ1)

]
(2.23)

Combining the identity we found in Eq. (2.12) and Euler’s formula, the expected value

of the expression above can be written as

〈
1

σ0 + σ1

〉
=

∫ ∞

0

ds sin(σ0s)e
− 1

2
s2⟨σ2

1⟩, (2.24)

Consequently, the expectation value of the Hadamard function becomes

⟨G1(x, x
′)⟩ = − 1

4π2

∫ ∞

0

ds sin(σ0s)e
− 1

2
s2⟨σ2

1⟩, (2.25)

for which we can see that once again ⟨σ2
1⟩ > 0. Let us now take a look the asymptotic

behaviors of the Hadamard function. The Dawson function FD(x) reads [38]

FD(x) =
1

2

∫ ∞

0

e−t2/4 sin(xt)dt, (2.26)

and can be expanded near the origin as

FD(x) =
∞∑
n=0

(−1)n2n

(2n− 1)!!
x2n+1 = x− 2x3

3
+

4x5

15
− 8x7

105
+

16x9

945
· · · , (2.27)
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and for large arguments as

FD(x) =
1

2x
+

1

4x3
+

3

8x5
+

15

16x7
+ · · · . (2.28)

Performing the change of coordinates

t = s
√
2⟨σ2

1⟩, x =
σ0√
2⟨σ2

1⟩

in Eq. (2.25), we can write it in terms of the Dawson function, namely

⟨G1(x, x
′)⟩ = − 1

4π2

√
2

⟨σ2
1⟩
FD

(
σ0√
2⟨σ2

1⟩

)
. (2.29)

Note that by performing this change of coordinates, we are once again making the as-

sumption that ⟨σ2
1⟩ > 0. From (2.27), the behavior near the origin, σ0 → 0, in first order

of hµν for Eq. (2.29) will be given by

⟨G1(x, x
′)⟩ = − σ0

4π2⟨σ2
1⟩
, σ0 → 0, (2.30)

from which we can see that the light cone divergence is also removed as long as ⟨σ2
1⟩ ≠ 0,

which we can see to be generally the case for non-coincident points from Eq. (2.11). For

large distances Eq. (2.28) becomes

⟨G1(x, x
′)⟩ = − 1

4π2σ0
, σ0 ≫ ⟨σ2

1⟩, (2.31)

which is the classical form of Eq. (2.21). Alternatively, we could have performed an

integration by parts on the r.h.s. of Eq. (2.25) by making the substitutions

u = e
1
2
s2⟨σ2

1⟩ → du = s⟨σ2
1⟩e−

s2⟨σ2
1⟩

2

dv = sin(σ0s)ds → v = − 1

σ0
cos(σ0s),
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to obtain

⟨G1(x, x
′)⟩ = − 1

4π2

[
1

σ0
cos(σ0s)e

− s2⟨σ2
1⟩

2

∣∣∣∣∣
∞

0

−
∫ ∞

0

s⟨σ2
1⟩

σ0
cos(σ0s)e

− s2⟨σ2
1⟩

2 ds

]

= − 1

4π2σ0

[
1− ⟨σ2

1⟩
∫ ∞

0

ds s cos(σ0s)e
− s2⟨σ2

1⟩
2

]
.

By making an additional substitution σ0s = t we are left with

⟨G1(x, x
′)⟩ = − 1

4π2σ0

[
1− ⟨σ2

1⟩
σ2
0

∫ ∞

0

dt t cos t e
− t2⟨σ2

1⟩
2σ2

0

]
, (2.32)

which for σ2
0 ≫ ⟨σ2

1⟩ also reduces to Eq. (2.31).

As we have mentioned before, in the process of performing the integral in (2.25) and in

all subsequent steps we have assumed that ⟨σ2
1⟩ > 0. However, it is possible to construct

an expression that will lead us to the asymptotic behaviors for negative values of ⟨σ2
1⟩.

Using the integral representation for the inverse function with a real exponential argument

∫ ∞

0

ds e−sx =
1

x
(2.33)

combined with Eq. (2.12), we can write the Hadamard function for a massless scalar field

with ⟨σ2
1⟩ < 0, namely

⟨G1(x, x
′)⟩ = − 1

4π2

〈
1

σ0 + σ1

〉
= − 1

4π2

∫ ∞

0

dse−sσ0+
1
2
s2⟨σ2

1⟩. (2.34)

Just as we did for positive values of ⟨σ2
1⟩, we can see that the integral in Eq. (2.34) is

reduced to a simple Gaussian near the origin, leaving us with

⟨G1(x, x
′)⟩ = − 1

4π2

√
π

2|⟨σ2
1⟩|
, σ0 → 0. (2.35)

Additionally, we can also perform integration by parts in Eq. (2.34) to obtain

⟨G1(x, x
′)⟩ = − 1

4π2σ0

[
1 +

⟨σ2
1⟩
σ0

∫ ∞

0

dt t e
−t+

t2⟨σ2
1⟩

2σ2
0

]
, (2.36)

which for σ2
0 ≫ |⟨σ2

1⟩| is also reduced to Eq. (2.31). Note that Eqs. (2.35) and (2.36) could

also be obtained by writing the result of the integral in Eq. (2.34) in terms of Dawson
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functions by extending them to the complex plane via error functions and applying the

expansions on Eqs. (2.27) and (2.28), however, that would be a needlessly extensive work.
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Chapter 3

Gravitons and the form of ⟨σ21⟩ in the

TT gauge

In this Chapter we will lay down the ground work for our calculations of ⟨σ2
1⟩. We

will find an expression for ⟨σ2
1⟩ between the emission and detection of a photon in terms

of the graviton Hadamard function in the TT gauge and by writing the perturbation

as plane-wave expansion, we will also find an expression for the sum over the graviton

polarization modes in (d+1) dimensions. This review will be mostly based on Refs. [1,9].

3.1 ⟨σ21⟩ in terms of the graviton Hadamard function

We are now interested in obtaining an expression for ⟨σ2
1⟩. Notice that, even though

we have mentioned a flat (3+1)-dimensional spacetime to illustrate some concepts so far,

there was no actual need to particularize our results to a specific spacetime dimensionality.

Since we are only interested in gravitational radiation, we will adopt the TT gauge defined

by the constraints in Eq. (1.50). Consequently, hµν takes the form of a purely spatial

tensor and for a light-like interval we have

0 = dt2 − dx2 + hijdx
idxj → dt =

√
dx2 − hijdxidxj, (3.1)

with i, j = 1, 2, ..., d. Eq. (3.1) allows us to write

dt

|dx|
=

√
dx2

|dx|2
− hij

dxi

|dx|
dxj

|dx|
→ dt =

√
1− hijninj dr ≈

(
1− 1

2
hijn

inj

)
dr, (3.2)
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where dr = |dx|, and since dxi satisfies (3.1), ni = dxi/dr is the unit vector pointing at

the spatial direction of the geodesic. From Eq. (3.2) we find that the time interval ∆t a

null ray will take to travel a distance ∆r = r1 − r0 in the presence of a perturbation is

given by

∆t = ∆r − 1

2

∫ r1

r0

hijn
inj dr. (3.3)

If we think of this as something with the form of ∆t2 − ∆l2 = 0, then the r.h.s. of the

expression above can be interpreted as the proper distance between the initial and final

points of the null ray trajectory. We started from the light-like interval in (3.1), however,

when considering a pair of arbitrary points not necessarily null separated, the square of

the geodesic separation between them can be written as

2σ = (∆t)2 − (∆l)2 = (∆t)2 −
(
∆r − 1

2

∫ r1

r0

hijn
inj dr

)2

,

which up to first order in hµν reduces to

2σ = (∆t)2 − (∆r)2 +∆r

∫ r1

r0

hijn
inj dr. (3.4)

As σ = σ0 + σ1, we find that

σ1 =
1

2
∆r

∫ r1

r0

hijn
inj dr. (3.5)

Finally, we can obtain an expression for ⟨σ2
1⟩ by averaging this result over the quantized

metric perturbation hij. That is

⟨σ2
1⟩ =

1

4
(r1 − r0)

2

∫ r1

r0

dr

∫ r1

r0

dr′ ninjnknl⟨hij(x)hkl(x′)⟩, (3.6)

where ⟨hij(x)hkl(x′)⟩ is the graviton two-point function, dr = |dx| is the spatial interval

of the trajectory of a null ray from a point r0 to a point r1 and ni = dxi/dr is an unitary

vector pointing to the direction of the geodesic. As we mentioned before and will see

explicitly in Chapter 4, direct calculations of the graviton two-point function will contain

divergences over the unperturbed lightcone. However, the two-point function can be

renormalized by subtracting the contribution of the Minkowski spacetime in the absence

of the quantized perturbation so it is null when the quantum state of the graviton is the
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vacuum state and it is finite when evaluated on the lightcone.

Furthermore, it is straightforward to show that Eq. (3.6) can be also written in terms

of the graviton Hadamard function as

⟨σ2
1⟩ =

1

8
(r1 − r0)

2

∫ r1

r0

dr

∫ r1

r0

dr′ ninjnknl Gijkl(x, x
′), (3.7)

where

Gijkl(x, x
′) = ⟨hij(x)hkl(x′) + hij(x

′)hkl(x)⟩. (3.8)

As we have previously mentioned, these expressions for ⟨σ2
1⟩ are valid for any non nec-

essarily flat (d+1)-dimensional spacetime. However, from Eq. (1.51) we can see that the

calculation of the two-point function will include the sum over momenta and polarization

modes and, from this point on, the calculations will require certain particularisation.

3.2 Graviton two-point function in flat (d+1)-dimensional

spacetime

Let us further develop Eq. (3.7) as we start particularize the graviton solution for our

purposes. Since the quantized perturbation obeys a Klein-Gordon like equation, i.e. Eq.

(1.51), it can be written in terms of a plane wave expansion, namely

hµν =
∑
k,λ

[
ak,λeµν(k, λ)fk(x) + a†k,λeµν(k, λ)f

∗
k(x)

]
, (3.9)

where ak,λ and its Hermitian conjugate are the creation and annihilation operators asso-

ciated with the behavior described in Eq. (2.4), λ labels the polarization states, eµν(k, λ)

is the polarization tensor, k is the d-dimensional wave vector in Cartesian coordinates,

and

fk(x) = A(2ω)−
1
2 e−iωt+ik·x = (2ω)−

1
2 e−iωtϕk(x) (3.10)

and its Hermitian conjugate are solutions of the Klein-Gordon equation, with A being

some normalization constant. Substitution of Eq. (3.9) in Eq. (3.8) along with Eq. (2.4)

yields

Gijkl(x, x
′) = 2Re

∑
k,λ

eij(k, λ)ekl(k, λ)fk(x)f ∗
k(x

′). (3.11)
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As we shall further discuss in the next section, the sum over the polarization modes in

(d+ 1) is given by [17]

∑
λ

eij(k, λ)ekl(k, λ) = δikδjl + δilδjk −
2

d− 1
δijδkl

+
2(d− 2)

d− 1
k̂ik̂j k̂kk̂l +

2

d− 1
(k̂ik̂jδkl + k̂kk̂lδij)

− k̂ik̂lδjk − k̂ik̂kδjl − k̂j k̂lδik − k̂j k̂kδil,

(3.12)

where k̂i = ki/k. From this definition, note that when substituted back into Eq. (3.11),

the product of two quantum operators on the form of k̂ik̂k can actually be written as

the operator ∂i∂′j∇−2 acting on the spatial part of the graviton two-point function. One

should pay special attention to the indexes of such quantum operators in order to know if

the partial derivative acts on ϕk(x) or on ϕ∗
k(x′). Substitution of the sum in (3.12) back

in Eq. (3.11) yields

Gijkl(x, x
′) = 2

(
δikδjl + δilδjk −

2

d− 1
δijδkl

)
D(x, x′) +

4(d− 2)

d− 1
Hijkl(x, x

′)

+
4

d− 1
[δklFij(x, x

′) + δijFkl(x, x
′)]

− 2 [δjlFik(x, x
′) + δjkFil(x, x

′) + δikFjl(x, x
′) + δilFjk(x, x

′)] ,

(3.13)

where D(x, x′) is the real part of the Wightman function for fk(x). From Eq. (3.10) we

can write Fij(x, x
′) and Hijkl(x, x

′) as

Fij(x, x
′) = Re ∂i∂′j

∑
k

e−iω∆t

2ω3
ϕk(x)ϕ∗

k(x
′), (3.14)

and,

Hijkl(x, x
′) = Re ∂i∂′j∂k∂

′
l

∑
k

e−iω∆t

2ω5
ϕk(x)ϕ∗

k(x
′). (3.15)

3.3 The sum over the polarization modes in (3 + 1) and

in (d + 1)-dimensional flat spacetimes

Let us find an expression for the sum over the polarization modes in (3+1)D and then

extend it for other spacetime dimensionalities. Let us consider the orthonormal 3-vectors
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e1(k), e2(k) and e3(k). As in the TT gauge the polarization tensor is perpendicular to

the propagation direction, we will chose the latter to be an unitary vector pointing to the

direction of the wave vector, i. e., e3(k) = k
k
= k̂. Consequently, our triad will obey

ea(k) · eb(k) = δab → eia(k)e
i
b(k) = δab, a, b = 1, 2, 3

eia(k) · eja(k) = ei1e
j
1 + ei2e

j
2 + kikj = δij i, j = x, y, z.

(3.16)

In Chapter 1 we found a way to describe the polarization tensor for the four-dimensional

case in Eq. (1.58) in terms of two independent polarization modes, the plus polarization

and the cross polarization. We can express these modes as [7]

eij(k,+) = ei1 ⊗ ej1 − ei2 ⊗ ej2

eij(k,×) = ei1 ⊗ ej2 + ei2 ⊗ ej1,
(3.17)

where the symbol ⊗ indicates an inner product. Explicitly writing the summation over

these polarization modes yields

∑
λ

eij(k⃗, λ)ekl(k⃗, λ) = eij(k,+)ekl(k,+) + eij(k,×)ekl(k,×)

= ei1e
j
1e

k
1e

l
1 − ei1e

j
1e

k
2e

l
2 − ei2e

j
2e

k
1e

l
1 + ei2e

j
2e

k
2e

l
2

+ ei1e
j
2e

k
1e

l
2 + ei1e

j
2e

k
2e

l
1 + ei2e

j
1e

k
1e

l
2 + ei2e

j
1e

k
2e

l
1

= (ei1e
k
1 + ei2e

k
2)(e

j
1e

l
1 + ej2el2) + (ei1e

l
1 + ei2e

l
2)(e

j
1e

k
1 + ej2e

k
2)

− ei1e
j
1e

k
1e

l
1 − ei2e

j
2e

k
2e

l
2 − ei1e

j
1e

k
2e

l
2 − ei2e

j
2e

k
1e

l
1

= (ei1e
k
1 + ei2e

k
2)(e

j
1e

l
1 + ej2el2) + (ei1e

l
1 + ei2e

l
2)(e

j
1e

k
1 + ej2e

k
2)

− (ei1e
j
1 + ei2e

j
2)(e

k
1e

l
1 + ek2e

l
2)

= (δik − kikk)(δjl − kjkl) + (δil − kikl)(δjk − kjkk)

− (δij − kikj)(δkl − kkkl)

= δikδjl + δilδjk − δijδkl + kikkkjkl + kiklkjkk − kikjkkkl

− k̂ik̂kδjl − k̂j k̂lδik − k̂ik̂lδjk − k̂j k̂kδil + k̂ik̂jδkl + k̂kk̂lδij

= δikδjl + δilδjk − δijδkl + kikkkjkl

− k̂ik̂kδjl − k̂j k̂lδik − k̂ik̂lδjk − k̂j k̂kδil + k̂ik̂jδkl + k̂kk̂lδij,

(3.18)
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which is valid only in a (3 + 1)-dimensional spacetime, since it only includes the two

independent polarization modes found in such scenario. Let us now see how we can

expand this result for a (d + 1)-dimensional spacetime. This sum over the polarization

modes can also be denoted as a tensor

Tijkl(k) ≡
∑
λ

eij(k⃗, λ)ekl(k⃗, λ). (3.19)

Note from Eq. (3.16) that for any spacetime dimensionality, this sum will still be written

in specific combinations of Kronecker deltas and unit wave vectors. Therefore, we can

write a general expression for T ijkl(k) as the one given in Eq. (3.18) with undefined

coefficients for each term. Furthermore, the polarization tensor must obey the TT gauge

conditions in Eq. (1.50). For the new tensor Tijkl they read

kiT
ijkl = kjT

ijkl = kkT
ijkl = kkT

ijkl = 0 (transverse)

T iikl = T ijkk = 0 (traceless),
(3.20)

and since hµν is a symmetric tensor, Tijkl must also obey

T ijkl = T jikl = T ijlk = T klij. (3.21)

It can be shown that

Tijkl =δikδjl + δilδjk −
2

d− 1
δijδkl +

2(d− 2)

d− 1
k̂ik̂j k̂kk̂l +

2

d− 1
(k̂ik̂jδkl + k̂kk̂lδij)

− k̂ik̂lδjk − k̂ik̂kδjl − k̂j k̂lδik − k̂j k̂kδil,

(3.22)

being d the number of spatial dimensions, satisfies Eqs. (3.20) and (3.21). Note that in

higher-dimensional spacetimes, the number of independent polarization modes also grows.

We could, for example, have followed the same steps we went through in Chapter 1 in order

to explicitly write the polarization tensor in (4+1). We would then go through its degrees

of freedom using the TT gauge and symmetry properties while searching for the equivalent

of (3.17) in 5D. Finally, we would explicitly perform the sum over the polarization modes

just as we did in Eq. (3.18). However, for higher-dimensional spacetimes this procedure

becomes impractical.
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Chapter 4

Gravitons in a five-dimensional

Kaluza-Klein model with

quasiperiodically compactified extra

dimension

In this chapter we will make a quick discussion on the transition to higher dimensional

models and the search for extra dimensions. This discussion will be mostly based on

Ref. [24]. Later, we will set about computing the mean deviation on a photon flight time

for a five-dimensional quasiperiodically compactified spacetime. Finally, we will discuss

some observational aspects of these results and use them to estimate the size of the extra

dimension having the Near-Infrared Spectrograph (NIRSpec) aboard the James Webb

Space Telescope (JWST) as a model of instrument for possible detections. Except for the

first section, this chapter consists of new results obtained during the course of this Master’s

program, which led to the work in Ref. [27] accepted for publication in the Journal of High

Energy Physics (JHEP). The case α = 0 for the quasiperiodic boundary condition in 5D

was already discussed in Ref. [1], however, we revisit it under the possibility that it results

in an observable shift on the flight time of photons and then move on to discuss the other

condition cases for α.
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4.1 Higher-dimensional models and the search for extra

dimensions

It has now been over a century since we first sought a world beyond our 4 spacetime

dimensions in order to address some unresolved aspects of our current models. In the years

following the formulation of General Relativity many attempts have been made to unify

the electromagnetic theory with gravity [39–42]. Among these, in 1921, Theodor Kaluza

proposed a five-dimensional world in an attempt to incorporate the electromagnetic tensor

into the metric tensor [39] and, five years later Oskar Klein revisited Kaluza’s work under

the scope of the emergent quantum mechanics [40]. As Kaluza’s work is regarded to

be the first attempt to grasp a world beyond our usual (3 + 1) framework, scenarios

involving (d + 1) dimensions with small unobservable extra dimensions with quantized

fields are often regarded as a Kaluza-Klein model, whereas the d = 4 case is regarded as

the Kaluza-Klein original model. From now on we will now work under the assumption

that we live in such five-dimensional world. Let us go through this transition step-by-step.

In a first moment, it is important to note that the transition to a higher-dimensional

model comes with modifications to some physical constants. One simple way to visualize

this is to look at the Poisson’s equation for the gravitational potential, namely

∇2Vg = 4πGρ. (4.1)

The left hand side (l.h.s.) of Eq. (4.1) has the same units for any spacetime dimension-

ality: the Laplace operator has units of L−2, being L some unit of length, whereas the

gravitational potential Vg has units of energy divided by mass. As a result, for any space-

time dimensionality, the r.h.s. must be such as to preserve these same units. However,

note that the matter density ρ has, by definition, units of mass divided by Ld, with d

being the number of spatial dimensions. Therefore, the gravitational constant must also

suffer modifications based on the spacetime dimensionality. Consequently, from now on,

we will refer to it as G(D), instead of simply G. It is straightforward to note that c and ℏ

are invariant under changes on spacetime dimensionality.

The well known four-dimensional Planck length ℓP , on the other hand, is a quantity
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constructed by combinations of G(4), c and ℏ as

ℓP =

(
G(4)ℏ
c3

) 1
2

. (4.2)

Therefore, for our work on a five-dimensional model, we must look for a five-dimensional

Planck length ℓ
(5)
P constructed from powers of G(5), c and ℏ. From our analysis of ρ in

Eq. (4.1) we can see that, for every extra spatial dimension, G(D) becomes one order of

magnitude higher in length and, therefore, G(5) must have units of length times the unit

of G(4), i.e. [
G(D+1)

]
= L

[
G(D)

]
−→

[
G(5)

]
= L

[
G(4)

]
. (4.3)

We can use Eq. (4.1) or Eq. (4.2) to infer the units of G(4) and rewrite the equation

above as [
G(5)

]
=
L3 [c]3

[ℏ]3
. (4.4)

Therefore, the five-dimensional Planck length must be constructed as

ℓ
(5)
P =

(
G(5)ℏ
c3

) 1
3

. (4.5)

Furthermore, from the recurrence formula on the l.h.s. of Eq. (4.3) we can extend this

analysis for any D-dimensional spacetime as

ℓ
(D)
P =

(
G(D)ℏ
c3

) 1
D−2

. (4.6)

Now, since G(D) is modified by spacetime dimensionality, Eq. (4.1) tells us that we can

expect gravity to work differently if we do live in a higher-dimensional world. However,

as we only observe our usual four dimensions, we can postulate extra dimensions to be

compact: for distances larger than the size of the extra dimension, we would see our world

as effectively four-dimensional and we would only be able to detect discrepancies from the

gravitational inverse-square law at distances smaller than the size of compactification.

This raises the question of how to calculate G(5) if all we have detected so far was gravity

working in an effective four-dimensional world. Additionally, although we have postulated

a compact extra dimension, note that in some models is not the size of the extra dimension

itself which is small, it can be infinite in length and postulated to be curled up to a finite
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volume [43].

By combining Eqs. (4.2) and (4.5) we can write

ℓ
(5)
P =

(
ℓ2PG

(5)

G(4)

) 1
3

. (4.7)

Since G(5) and G(4) do not share the same units, it does not make sense to compare

them directly. However, the opposite is true for Planck lengths, they can be directly

compared. We are fully aware about the need for extra-dimensions to be compact, but

does it have any influence on how we compare an effective four-dimensional world with

an actual five-dimensional one?

We can play with the functional dependence in Eq. (4.1) as an attempt to answer

this question. Let us consider a five-dimensional world with (x1, x2, x3) being three free

spatial dimensions and x4 an fourth spatial dimension compactified to a radius R and a

length ℓc = 2πR. We begin by placing an uniform distribution with total mass M in a

ring around this circumference at x1 = x2 = x3 = 0. Note that ρ(5)(x) is null everywhere

except for x1 = x2 = x3 = 0 and

M =

∫
ρ(5)(x) d4x = 2πR m, (4.8)

being m the linear mass density. Therefore, we can use the Dirac delta function definition

∫ ∞

−∞
δ(x) dx = 1 (4.9)

to write the mass density ρ in five dimensions as

ρ(5)(x) = mδ(x1)δ(x2)δ(x3). (4.10)

This assumption is reasonable: Eq. (4.10) satisfies Eq. (4.8) and, from Eq. (4.9), is easy

to see that each delta has units of inverse of length. Therefore, Eq. (4.10) also has units

of mass/L4, consistent with a five-dimensional world.

We are interested in the comparison between the actual five-dimensional world config-

uration with how it is seen in an effectively four-dimensional world. If we were not able

to see the ring in the extra-dimension, then we would perceive this mass distribution as
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a point-like mass at x1 = x2 = x3 = 0 in a four-dimensional world and we would describe

it as

ρ(4)(x) =Mδ(x1)δ(x2)δ(x3). (4.11)

Comparing Eqs. (4.11) and (4.10) and using Eq. (4.8) we can write

ρ(4)(x) = 2πR ρ(5)(x) = ℓc ρ
(5)(x). (4.12)

Substituting this result back into Eq. (4.1) in five dimensions yields

∇2V (5)
g = 4πG(5)ρ(5)(x) =

4π

ℓc
G(5)ρ(4)(x), (4.13)

whereas, in four-dimensions, it yields

∇2V (4)
g = 4πG(4)ρ(4)(x). (4.14)

Note that neither V (5)
g nor V (4)

g have any dependence on x4. Therefore, the Laplacian on

both equations can be written as the four-dimensional one. Since both equations describe

the same physical problem and have the same functional dependence, we can compare

Eqs. (4.13) and (4.14) to write

G(5) = ℓc G
(4), (4.15)

or equivalently, from Eq. (4.7),

ℓ
(5)
P =

(
ℓcℓ

2
P

) 1
3 . (4.16)

In other words, the effective four-dimensional Planck length we observe could be a conse-

quence of a five-dimensional world with a fundamental length scale ℓ(5)P in which the extra

dimension is curled up to a circumference ℓc. So the answer for our question is yes: there

is a relationship between the size of compactification of a potential extra dimension and

how gravity is modified in this higher-dimensional spacetime.

The search for extra dimensions pass through many physical phenomena. For example,

we can use Eq. (4.1) to find the gravitational force law between two masses and test it

for smaller distances. For distances greater than the size of the extra dimension the world

is seen as four-dimensional and gravity is described by the inverse-square law. However,

for distances smaller than ℓc this law must change following the dimensional analysis of
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Eq. (4.1). However, this method is extremely difficult to test since the gravitational force

is too weak and other forces must be precisely canceled out. In particular, by measuring

harmonic torques exerted on a detector pendulum by a rotating attractor, it has been

shown that the inverse-square law holds down to separations of about 52µm [28,31].

On the other hand, in the Large Hadron Collider (LHC), one of the most significant

indicators of the existence of extra dimensions would be the production of heavier particles

than those of the Standard Model (SM) [29]. However, so far the LHC probed distances

down to 10−18cm without any indication of the existence of anything beyond our usual

4-dimensional spacetime [30]. This distance is associated with the energy scale in which

experiments are conducted in the LHC, therefore, it should be understood as a measure

of how close such experiments are to the Planck scale. If we consider the fundamental

length to be around this value, that is, if we were to have something like ℓ(5)p ∼ 10−19cm,

then Eq. (4.16) tells us that the extra dimension should be thousands of kilometers long.

If that was the case, we would already have found deviations for the inverse-square law.

Therefore, if we do live in a five-dimensional world, the fundamental Planck scale is still

a few orders of magnitude away from our grasp via LHC.

As we shall see throughout this chapter, the change in a photon flight time caused by

metric fluctuations also provides a promising test for the existence of extra dimensions.

The reason for this is because it works under the possibility that the fundamental Planck

scale is many orders of magnitude smaller than the four-dimensional one. However, note

that the extra dimension is not completely specified just by its size. There are more

than one way to mathematically obtain a small extra dimension and not all of them will

necessarily result in the same physical phenomena. In this chapter we will make the extra

dimension compact via a quasiperiodic boundary condition, this could help us explore not

only the size of the extra dimension, but to shed light in additional ways of understanding

its structure.

4.2 Calculation of ⟨σ21⟩R for a photon propagating along

the z-direction

Although the decomposition of the line element describing a flat background in Eq.

(1.18) remains valid, let us describe our five-dimensional compactified spacetime once
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more simply as we did in Eq. (2.1) with µ, ν = 0, 1, 2, 3, 4. The extra dimension becomes

compact by imposing a quasiperiodic condition to the quantized perturbation hµν given

by Eqs. (3.9) and (3.10). It reads

ϕk(x, y, z, w + ℓc) = ei2παϕk(x, y, z, w), (4.17)

where ℓc is the compactification length and α is a parameter which regulates the phase

angle and varies within the range 0 ≤ α < 1. Notice that for α = 0, Eq. (4.17) reproduces

the periodic case discussed in Ref. [1], whereas α = 1/2 corresponds to the antiperiodic

case.

We can further visualize what we meant by the possible structure of the extra di-

mension via quasiperiodic condition if we take x = y = z = w = 0 in Eq. (4.17) while

considering the simplest case of a plane monochromatic wave. For α = 0, this would

mean that the intensity and the behaviour of the gravitational field would repeat them-

selves by traversing the whole circumference of the extra dimension. However we have no

indications at all that this is true. We know that the extra dimension must be small, but

we have no idea about how it is structurally built to be as such, nor we know how gravity

would behave in it. This is why it is important to consider the most various scenarios

when looking for possible ways to describing phenomena in extra dimensions.

The imposition of (4.17) to the free solution of the five-dimensional massless Klein-

Gordon equation in flat spacetime will cause the momentum coordinate parallel to the

direction of compactification to suffer discretization, and it will now be given by

kw =
2π

ℓc
(n+ α), n = 0,±1,±2, . . . . (4.18)

By making use of the normalization condition for the Klein-Gordon equation

∫
fk(x)f

∗
k′(x) d5x =

1

2ω
δ
(5)

k,k′ , (4.19)

where δ(5)k,k′ stands for a Dirac delta for continuous momenta coordinates and for a Kro-

necker delta for discrete momenta coordinates, one obtains the complete set of normalized
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spatial solutions under the quasiperiodic boundary condition, namely

ϕk(x) =
eikT ·rT+i

2π(n+α)
ℓc

w√
(2π)3ℓc

, (4.20)

where kT = (kx, ky, kz) and rT = (x, y, z) are the momenta and their respective spatial co-

ordinate 3-vectors relative to the directions perpendicular to the compactified dimension.

In this case, the eigenvalues equation reads

ω2 = |k|2 = k2x + k2y + k2z +

(
2π

ℓc

)2

(n+ α)2 , (4.21)

and the sum over all momenta coordinate possible values in D(x, x′) and in Eqs. (4.25),

and (4.26) for this scenario should be written as

∑
k

=

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dkz

∞∑
n=−∞

. (4.22)

We have determined the spacetime dimensionality and now we obtained the complete

and normalized set of ϕk(x). There is just one ingredient missing in order to compute the

graviton two-point function in Eq. (3.13) and that is to determine the trajectory of the

photon. We saw from Eq. (3.7) that the only contribution of the Hadamard function for

⟨σ2
1⟩ will be the components parallel to the lightcone. What we seek is to estimate the

modification on a photon’s flight time caused by the compact extra dimension. Hence, let

us choose our coordinate system such that the photon is propagating along an ordinary

direction perpendicular to the compactification, let us say z. With d = 4 and i = j =

k = l = z, Eq. (3.13) takes the form

Gzzzz(x, x
′) =

8

3
[D(x, x′)− 2Fzz(x, x

′) +Hzzzz(x, x
′)] , (4.23)

where

D(x, x′) = Re
∑
k

e−iω∆t

2ω
ϕk(x)ϕ∗

k(x
′), (4.24)

and, defining ∆z = z − z′, we can rewrite the derivatives on Eqs. (3.14) and (3.15) to

obtain

Fzz(x, x
′) = −Re ∂2∆z

∑
k

e−iω∆t

2ω3
ϕk(x)ϕ∗

k(x
′), (4.25)
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and,

Hijkl(x, x
′) = Re ∂4∆z

∑
k

e−iω∆t

2ω5
ϕk(x)ϕ∗

k(x
′). (4.26)

Now we have all the elements needed so we can set about performing the sums over k

for D(x, x′), Fzz(x, x
′) and Hijkl(x, x

′). As we shall see, this calculation will be smoother

if we start from D(x, x′) and work our way up to the functions with higher order on the

derivatives. Substituting Eq. (4.20) in Eq. (4.24) and explicitly writing the sum in Eq.

(4.22) yields

D(x, x′) = Re
1

(2π)3ℓc

∞∑
n=−∞

∫
d3kT

e−iω∆t

2ω
eikT ·∆rT+i 2π

ℓc
(n+α)∆w, (4.27)

where ∆xiT = xi − x′i for i = 1, 2, 3, and ∆w = w−w′. We can use the integral form [19]

e−iω∆t

2ω
=

1√
π

∫ ∞

0

ds e−ω2s2+∆t2

4s2 , (4.28)

to rewrite the terms involving ω on the r.h.s. of Eq. (4.27). By doing this and substituting

ω2 given by Eq. (4.21), we are able to perform the Gaussian integrals resulting from the

components of kT . Our resulting expression for D(x, x′) is

D(x, x′) = Re
1

8π2ℓc

∞∑
n=−∞

∫ ∞

0

ds

s3
e−

∆x2T−∆t2

4s2
−( 2πs

ℓc
)
2
(n+α)2+

i2π(n+α)
ℓc

∆w. (4.29)

Note that the integral on the r.h.s. of Eq. (4.29) over the parameter s now has taken the

form of a Bessel function, however, the resulting expression would not be very friendly

towards the remaining sum over n. Hence, let us write this sum as

∞∑
n=−∞

e−(
2πs
ℓc
)
2
(n+α)2+

i2π(n+α)
ℓc

∆w = e−(
2παs
ℓc

)
2
+ i2πα∆w

ℓc ϑ

(
iα

4πs2

ℓ2c
+

∆w

ℓc
, i
4πs2

ℓ2c

)
, (4.30)

where ϑ(u, µ) is the Jacobi Theta function, defined as

ϑ(u, µ) =
∞∑

n=−∞

eiπn
2µ+i2πnu, (4.31)
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which has the property [15]

ϑ(u, µ) = ϑ

(
u

µ
,− 1

µ

)
e−iπu2/µ

(−iµ) 1
2

, (4.32)

which we can use to write Eq. (4.30) as

∞∑
n=−∞

e−(
2πs
ℓc
)
2
(n+α)2+

i2π(n+α)
ℓc

∆w =
∞∑

n=−∞

ℓc

2π
1
2 s
e−

(∆w+nℓc)
2

4s2
+i2πnα. (4.33)

Substituting (4.33) back into Eq. (4.29), performing the integral over the parameter s

and taking only the real part yields

D(x, x′) =
1

8π2

∞∑
n=−∞

cos(2παn)

[∆x2
T + (∆w + nℓc)2 −∆t2]

3
2

. (4.34)

One can immediately see that the n = 0 term of the sum is exactly the real part of

the Wightman function of the free solution to the massless Klein-Gordon equation in

(4+1)D and, therefore, must be subtracted in order to obtain the renormalized DR(x, x′).

Additionally, by considering a photon traveling along the z-direction, that is, ∆x = ∆y =

∆w = 0, and noticing that the resulting summation for negative values of n provides the

same terms than those for positive values of n, we can write

DR(t, z, t′, z′) =
1

4π2

∞∑
n=1

cos(2παn)

[∆z2 + (nℓc)2 −∆t2]
3
2

. (4.35)

If it were the case that the photon trajectory was not limited to the z-axis, DR(x, x′)

would be given by Eq. (4.34) simply by making the change
∑

→
∑′, where the primed

summation indicates that the n = 0 term has been subtracted.

The calculation of Fzz(x, x
′) is much simpler as it takes into account most of the

calculations we already did while computing D(x, x′). Substituting Eq. (4.20) in Eq.

(4.25) explicitly writing the sum in Eq. (4.22) yields

Fzz(x, x
′) = −Re

∂2∆z

(2π)3ℓc

∞∑
n=−∞

∫
d3kT

e−iω∆t

2ω3
eikT ·∆xT+i 2π

ℓc
(n+α)∆w. (4.36)

We can write the fraction involving terms of ω in the integrand on the r.h.s. of Eq. (4.36)
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in terms of the consecutive integrals

e−iω∆t

ω3
= −

∫ ∆t

0

dt2

∫ t2

0

dt1
e−iωt1

ω
− i∆t

ω2
+

1

ω3
. (4.37)

Note that, when substituted back in Eq. (4.36), the first term on the r.h.s. of Eq. (4.37)

will result in an expression similar to Eq. (4.29) and that the second term on the r.h.s.

of Eq. (4.37) disappears since we are only interested in the real part of these results.

Therefore, we can write

Fzz(x, x
′) = ∂2∆z

∫ ∆t

0

dt2

∫ t2

0

dt1D(0, z, t1, z
′)

− Re
∂2∆z

(2π)3ℓc

∞∑
n=−∞

∫
d3kT

2ω3
eikT ·∆xT+i 2π

a
(n+α)∆w,

(4.38)

where D(0, z, t1, z
′) is given by Eq. (4.34). Combining the integral form [19]

1

2ω2s
=

1

Γ(s)

∫ ∞

0

dττ 2s−1e−ω2τ2 , (4.39)

with Eq. (4.21) and the new expression for the sum over n we found in Eq. (4.33) in

the second term on the r.h.s. of Eq. (4.38), performing the integrals on both terms and

considering the photon propagating along the z-direction yields

Fzz(t, z, t
′, z′) =

∂2∆z

8π2

∞∑
n=−∞

cos(2πnα)

√
∆z2 + (nℓc)2 −∆t2

∆z2 + (nℓc)2
. (4.40)

Once again we find that the term for n = 0 of the sum corresponds to the Minkowski

contribution, which can be easily verified by following these same steps for the free solution

of the massless Klein-Gordon equation. Therefore, the renormalized FR
zz for a photon

traveling along the z-direction is given by

FR
zz(t, z, t

′, z′) =
∂2∆z

4π2

∞∑
n=1

cos(2πnα)

√
∆z2 + (nℓc)2 −∆t2

∆z2 + (nℓc)2
. (4.41)

Finally, the procedure to compute Hzzzz(x, x
′) will be very similar to that of Fzz(x, x

′).
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By substituting of Eqs. (4.20) and (4.22) in Eq. (4.26) one obtains

Hzzzz(x, x
′) = Re

∂4∆z

(2π)3ℓc

∞∑
n=−∞

∫
d3kT

e−iω∆t

2ω5
eikT ·∆xT+i 2π

ℓc
(n+α)∆w. (4.42)

Similarly as we did for Fzz(x, x
′), we can write the terms involving ω in the integrand

above as the consecutive integrals

e−iω∆t

ω5
= −

∫ ∆t

0

dt2

∫ t2

0

dt1
e−iωt1

ω3
− i∆t

ω4
+

1

ω5
, (4.43)

where the first term on the r.h.s. of (4.43) will result in something resembling Eq. (4.36)

and the second term will also vanish. The expressions in Eqs. (4.37) and (4.43) can be

easily verified by performing the integrals on the r.h.s. of both equations. Substitution

of Eq. (4.43) back in Eq. (4.42) yields

Hzzzz(x, x
′) = −∂2∆z

∫ ∆t

0

dt2

∫ t2

0

dt1Fzz(0, z, t1, z
′)

+ Re
∂4∆z

(3π)2ℓc

∞∑
n=−∞

∫
d3kT

2ω5
eikT ·∆xT+i 2π

ℓc
(n+α)∆w

= IH1
zzzz + IH2

zzzz,

(4.44)

where Fzz(0, z, t1, z
′) is given by (4.40). Performing the integrals in the first term on the

r.h.s. gives us

IH1
zzzz = −∂

4
∆z

8π2

∞∑
n=−∞

cos(2πnα)

{
[2∆z2 + 2(nℓc)

2 +∆t2]
√
∆z2 + (nℓc)2 −∆t2

6[∆z2 + (nℓc)2]

−
√

∆z2 + (nℓc)2

3
+

∆t

2
arctan

[
∆t√

∆z2 + (nℓc)2 −∆t2

]}
.

(4.45)

As for the second term on the r.h.s. of Eq. (4.44), by considering the photon trajectory

and using Eqs. (4.39) and (4.33) one obtains

IH2
zzzz =

∂4∆z

8π2

2π
1
2

3

∞∑
n=−∞

cos(2πnα)

∫ ∞

0

dτe−
∆z2+(na)2

4τ2 . (4.46)

Note the integral over τ as in Eq. (4.46) does not converge. There are some ways to deal

with this. One could include an exponential regulator parameter or consider the massive
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solution to the Klein-Gordon equation and then remove it, or similarly, take the massless

limit, after performing the integral. An alternative procedure is to simply permute and

execute a single derivative in ∆z, from which one obtains a term of τ−2, and then proceed

to perform the integral. Following the latter, Eq. (4.46) becomes

IH2
zzzz =

∂3∆z

24π2

∞∑
n=−∞

∆z√
∆z2 + (na)2

, (4.47)

which cancels out the second term on the r.h.s. of Eq. (4.45) upon substitution back

in (4.44). By doing this, we obtain the Hzzzz(t, z, t
′, z′) for a photon propagating in the

z-direction, namely

HR
zzzz(t, z, t

′, z′) = −∂
4
∆z

4π2

∞∑
n=1

cos(2πnα)

{
∆t

2
arctan

[
∆t√

∆z2 + (na)2 −∆t2

]

+
[2∆z2 + 2(na)2 +∆t2]

√
∆z2 + (na)2 −∆t2

6[∆z2 + (na)2]

}
,

(4.48)

where, once again, we have subtracted the n = 0 term corresponding to the Minkowski

contribution, as it can be easily verified by retaking the same steps for the free scalar

field in a five-dimensional Minkowski spacetime and we also considered the parity of the

summation over n.

After such long calculations, we can finally find an expression for GR
zzzz(x, x

′). Substi-

tuting the renormalized expressions in Eqs. (4.35), (4.41) and (4.48) back into Eq. (4.23),

performing the derivatives on ∆z and then taking the null path ∆t = ∆z, we obtain the

graviton renormalized Hadamard function calculated over the lightcone, i.e.,

GR
zzzz(t, z, t

′, z′)|∆t=∆z =
16

3π2

∞∑
n=1

∆z (nℓc) (5n
2ℓ2c − 3∆z2)

(∆z2 + n2ℓ2c)
5

cos(2πnα). (4.49)

For a photon traveling along the z-direction, Eq. (3.7) becomes

⟨σ2
1⟩R =

1

8
(b− a)2

∫ b

a

dz

∫ b

a

dz′GR
zzzz(t, z, t

′, z′)|∆t=∆z, (4.50)

which combined with the renormalized graviton Hadarmard function in Eq. (4.49) yields

⟨σ2
1⟩R =

2ℓc
9π2

∞∑
n=1

γ8 cos(2πnα)

n(n2 + γ2)3
, (4.51)

69



4.3. THE PERIODIC CASE AND AN ESTIMATION ON THE SIZE OF THE EX-
TRA DIMENSION

where we defined r = b− a, γ = r/ℓc. The exact sum on the r.h.s. of Eq. (4.51) for a non

fixed phase regulator α can be obtained. However, the resulting expression is too lengthy

to be exposed here.

In order to find a more approachable expression for this sum, let us take a look at

the parameters in Eq. (4.51). As we discussed in the first section of this chapter, the

compactification length ℓc should be small enough for the Newton’s gravitational law to

be no longer valid. Therefore, we should have ℓc < 5.2 · 10−3cm. On the other hand, in

this work we will be looking at the deviation on the typical flight time of photons detected

by instruments such as spectrographs. These instruments use a combination of mirrors

and filters to divide the light in several wavelength intervals. Even if such detections are

not focused on sources at cosmological distances, the distance traveled by the photon still

includes the optical path inside the detector. Therefore, the distance r in this case is

always much larger than the compactification length and, consequently, the cases of most

interest for us will be those with γ ≫ 1. The remaining parameter α, just as the size

of the extra dimension ℓc, is a parameter to be inferred from possible detections of ∆t.

Hence, let us begin to explore observational implications of Eq. (4.51) for a fixed α and

then look at more general cases.

4.3 The periodic case and an estimation on the size of

the extra dimension

From the cosine in Eq. (4.51) and from Eq. (2.15) we can expect the periodic case,

i.e. α = 0, to result in the maximum mean deviation to a photon flight time for a fixed

γ. This particular case is exactly the one discussed in Ref. [1]. However, let us revisit it

here by performing the exact sum over n in Eq. (4.51) for the periodic case, that is,

⟨σ2
1⟩R =

ℓcγ
2

72π2

{
16γe + 8

[
ψ(0)(1− iγ) + ψ(0)(1 + iγ)

]
+ 5iγ

[
ψ(1)(1− iγ)− ψ(1)(1 + iγ)

]
− γ2

[
ψ(2)(1− iγ) + ψ(2)(1 + iγ)

] }
,

(4.52)

where γe is the Euler-Mascheroni constant and ψ(n)(x) is a Polygamma function of order n.

From Eq. (4.52) we could already compute the exact mean deviation on the photon flight
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time upon substitution in Eq. (2.15). However, in order to have a better understanding

of what this result is indicating, let us expand (4.52) for γ ≫ 1, i.e.,

⟨σ2
1⟩R =

2ℓcγ
2

9π2

[(
γe −

3

4
+ lnγ

)
+

1

4γ2
+

1

20γ4
+O(γ−6)

]
. (4.53)

Substituting Eq. (4.53) back into Eq. (2.15) we can approximate the mean flight time

deviation as

∆t ≈
√

2

9π2ℓc
lnγ = ℓ

− 1
2

c

√
2lnγ
9π2

. (4.54)

We know that the compactification length ℓc is expected to be smaller than 52µm [31].

However, even if ℓc is much smaller than this value, smaller even than the 4-dimensional

Planck scale, and if r is a cosmological distance, the quantity resulting from the square

root on the r.h.s. of Eq. (4.54) still would not be large enough to change the magnitude of

∆t in more that a couple of orders, as it has been pointed out in Ref. [1]. As a result, we

can see that ℓ−1/2
c is actually the main quantity guiding the magnitude of the flight time

mean deviation, and in an interesting way: the smaller the size of the extra dimension, the

easier it would be to detect the change in the flight time of photons in a five-dimensional

world.

In the previous section we saw that the compactification length can be related to the

fundamental Planck length in five dimensions ℓ(5)P , as well as to the known four-dimensional

Planck length ℓP through Eq. (4.16). We discussed that a measurement for a value of ℓ(5)P

depends on how gravity works in a five-dimensional world and, as a consequence, there is

no guarantee it will be equal the four-dimensional Planck length ℓP . By recovering units

of time in Eq. (4.54) and using Eqs. (4.2) and (4.16) we find that, for α = 0 and γ ≫ 1,

∆t ≈ ℓ
− 1

2
c

1

c

(
Gℏ
c3

) 3
4

√
2lnγ
9π2

= tP

(
ℓP

ℓ
(5)
P

) 3
2
√

2lnγ
9π2

, (4.55)

where tP = ℓP/c is the four-dimensional Planck time. From Eq. (4.55) we can see that,

for a compactification length close to the four-dimensional Planck scale, or equivalently,

from Eq. (4.16), if ℓ(5)P ∼ ℓP , the mean flight time deviation will be of order of the four-

dimensional Planck time tP ∼ 10−44s. Such deviation would be far from observable. This

is the same conclusion reached by the authors in Ref. [1].

However, we can still run some estimations if we assume that ℓc is such that ∆t is
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detectable through a measurement device based on a spectrograph. When a spectrograph

or radio telescope observes light emitted from a source at certain wavelength λ with a

resolving power R, it will be able to discern shifts in wavelength in the order of ∆λ = λ/R.

Such shifts will tell us if there were changes in the expected flight time of photons emitted

from a source. For this analysis, let us take the NIRSpec aboard the James Webb Space

Telescope as an example.

The NIRSpec is able to detect photons in a wavelength range of 6× 10−5cm to 5.3×

10−4cm, with spectral resolutions of 100, 1000, and 2700 [2]. More specific values of the

spectral resolution for each wavelength observed from the NIRSpec are depicted in Fig.4.1,

reproduced without modifications from Ref. [2]. The Figure shows performances for each

of the seven dispersive elements present in the grating wheel assembly (GWA) inside the

NIRSpec, one prism and 6 gratings. We can see from the plot that, even though the prism

alone covers all the wavelength range for which the NIRSpec was designed, it is not able

to provide the optimal discernible ∆λ. For this end one could look at the G140H data.

In order to detect the smallest deviations on the flight time as possible, we need to look

for the smallest observed wavelength to resolving power ratio of the detector rather than

the distance from the source. Inspired by the NIRSPec performance in Fig.4.1, supposing

that a detection occurs at λ = 1.4×10−4cm with resolving power R = 2700, the perceived

shift in wavelength would be of order of ∆λ ≈ 5.2×10−8cm. In this scenario, the smallest

flight time shift the NIRSpec would be able to discern is ∆t ≈ 1.7×10−18s, where we used

∆t = ∆λ/c. Substituting this shift back in Eq. (4.55) we find that, in order to obtain

a flight time deviation observable via NIRSpec, the extra dimension length should be of

order of ℓc ∼ 10−84cm. Equivalently from Eq. (4.16), the fundamental Planck length

in five dimensions should be no greater than ℓ
(5)
P ∼ 10−50cm, many orders of magnitude

smaller than ℓP ≃ 10−33cm.

This is an interesting estimation in the sense that it provides a possibility to test the

existence of extra dimensions at a length scale that measurements through the LHC or

table-top experiments will not be able to reach in the near future. In the next section let

us find a more compact expression for other values of the phase regulator α.
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Figure 4.1: Depiction of the spectral resolution for observed wavelength for each of the
seven disperser elements on the GWA from the NIRSpec, being one prism and six grat-
ings. In order to obtain an detection throughout the NIRSpec full wavelength range, one
could rely on a single exposure using the prism. The result would be a low resolution and
highly contaminated image. In order to obtain high resolution data with least contami-
nation containing the full wavelength range for which the NIRSpec was designed, each of
the six gratings on the GWA work combined only with specific transmission filter from
the seven present in the filter wheel assembly (FWA). Each solid line depicts the nominal
spectral resolution (the resolution at the center of the nominal wavelength range for a
given disperser-filter combination) for each disperser-filter combination (further details
on filter-disperser pairing can be found in the original source and in the JWST docu-
mentation), and the dotted lines depicts the anticipated wavelength range. Reproduced
without modifications from Jakobsen, P., Ferruit, et al., The Near-Infrared Spectrograph
(NIRSpec) on the James Webb Space Telescope (JWST) published in A&A by EDP Sci-
ences (Ref. [2]) under the CC BY 4.0 Legal Code.

4.4 Other values for the phase angle regulator α

Let us turn our attention for the other condition cases for α. As discussed, for our

investigation based on instruments such as spectrographs, the most relevant cases are

those where γ ≫ 1. In other to find an expression for this limit, let us write Eq. (4.51) as

⟨σ2
1⟩R =

2ℓcγ
2

9π2

∞∑
n=1

cos(2πnα)

n(n̄2 + 1)3
, (4.56)

73

https://creativecommons.org/licenses/by/4.0/legalcode.en


4.4. OTHER VALUES FOR THE PHASE ANGLE REGULATOR α

where n̄ = n/γ. Note that the sum in Eq. (4.56) is a descending series of n and large

values of γ will result in n̄ < 1 for the dominating terms of the series. Therefore, we can

use the negative binomial expansion

(x+ 1)−n =
∞∑
k=0

(
n+ k − 1

k

)
(−x)k, (4.57)

which converges only for |x| < 1, and

(
n

k

)
=

 n!
k!(n−k)!

, 0 ≤ k < n

0, else
, (4.58)

to write Eq. (4.56) as

⟨σ2
1⟩R =

2ℓcγ
2

9π2

∞∑
k=0

(−1)k
(k + 2)(k + 1)

2γ2k

∞∑
n=1

n2k−1 cos(2πnα). (4.59)

Note that we can write the sum in n as a combination of Polylogarithm functions, namely

⟨σ2
1⟩R =

2ℓcγ
2

9π2

∞∑
k=0

(−1)k
(k + 2)(k + 1)

4γ2k
[
Li1−2k(e

i2πα) + Li1−2k(e
−i2πα)

]
. (4.60)

We can see that the remaining sum over k indeed results in an convergent expression for

large γ as long as α ̸= 0. Evaluating the Polylogarithm functions for the first two terms

of the sum, we can write

⟨σ2
1⟩R =

ℓcγ
2

18π2

[
−2 ln

(
1− e−i2πα

)
− 2 ln

(
1− ei2πα

)
+

3 csc2(πα)

γ2
+O(γ−4)

]
, (4.61)

which is only valid for α ̸= 0. For the periodic case and large values of γ one should

look at Eq. (4.53). Furthermore, we can also see from Eq. (4.61) that there are certain

values of α for which the natural logarithm terms will dominate resulting in ⟨σ2
1⟩R < 0.

Additionally, one can see directly from Eq. (4.51) that, among all α resulting in negative

⟨σ2
1⟩R, the antiperiodic case will result in the highest |⟨σ2

1⟩R|, and therefore, in the highest

flight time mean deviation. The behaviors of the exact expression for ⟨σ2
1⟩R in Eq. (4.51),

as well as the expansion for large γ in Eq. (4.61) after discarding terms with k > 1

are depicted in Fig.4.2 for α = 0.01 in solid black and dotted red lines, respectively. It

becomes clear from the plot that Eq. (4.61) is in fact a good expression for larger values
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Figure 4.2: The behaviour for α = 0.01 of the exact sum in Eq. (4.51) in terms of γ and
in units of ℓc, is depicted in solid black line and compared with the expansion for γ ≫ 1
in Eqs. (4.53) and (4.61) in dotted red line. In fact, for large γ, the curves meet for any
value of α.

of γ. Our choice of α in Fig.4.2 holds no special meaning, we have numerically verified

that the approximation (4.60) is good for any value of α ̸= 0. However, note that different

values of α result in different paces at which our approximation will converge to the exact

behaviour of ⟨σ2
1⟩R. Note also that in Fig.4.2 both γ = r/ℓc and ⟨σ2

1⟩/ℓc, are dimensionless

quantities, as we can see from any of the previous equations for ⟨σ2
1⟩.

Furthermore, we can see that the expression for ⟨σ2
1⟩R for α ̸= 0 in Eq. (4.61) differs

fundamentally from the expression for α = 0 in Eq. (4.53). The first contains a depen-

dence on γ with positive and negative powers, whereas the latter contains both as well as

a logarithmic dependence as the most significant contribution. This will result in much

larger values of ⟨σ2
1⟩R for α = 0 than for any other value as γ increases, just as we already

expected from Eq. (4.51). Considering contributions down to zeroth order of γ−2 in Eq.

(4.61) and substituting it back in Eq. (2.15), one can also obtain an expression for the

mean deviation on the flight time of photons for α ̸= 0. Recovering units of time, just as

we did for the periodic case, on the resulting expression yields

∆t ≈ ℓ
− 1

2
c√
18π2

1

c

(
Gℏ
c3

) 3
4

∣∣∣∣∣− 2 ln
(
1− e−i2πα

)
− 2 ln

(
1− ei2πα

)
+

3 csc2(πα)

γ2

∣∣∣∣∣
1
2

. (4.62)

Comparing Eqs. (4.54) and (4.62) we can see that the most significant dependence on γ

for α ̸= 0 comes from the last term in the square root on the r.h.s. of the expression above,
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in contrast to the square root of the logarithm we obtained for α = 0. Consequently, for

large values of γ, the dominating terms for α ̸= 0 will be the constant terms of natural

logarithmic fixed by the quasiperiodicity phase angle regulator. Hence, similarly to the

periodic case, the main quantity guiding the magnitude of ∆t, for each fixed α, will be

the inverse of the square root of the compactification length, i.e., ℓ−1/2
c .

Figure 4.3: The exact behaviour of ∆t
√
ℓc, in terms of γ, for several values of α.

Although it was important to obtain a clean expression for the behavior of ∆t, even

if only for large values of γ, we should still look at the behavior of the exact expression

obtained by combining Eqs. (4.51) and (2.15). This behavior is depicted in Fig.4.3.

Note that the we chose the vertical axis to be ∆t
√
ℓc and consequently, it has units

of s · cm1/2. This choice enables us to gauge the influence of both γ and ℓc on the

magnitude of ∆t based on the observational criteria discussed in the previous section for

the case α = 0. For example, from Fig.4.3 we can see that, for γ around 102, the general

magnitude of the result are on the order of ∆t
√
ℓc ∼ 10−61s · cm1/2. It follows from a

straightforward dimensional analysis that, for an observable flight time shift for these

values of α (∆t ∼ 10−18s) one must have ℓc ∼ 10−84cm, in perfect accordance with the

discussion in the previous subsection. However, note that there seems to be some values

of α for which ∆t
√
ℓc is closer to zero, potentially reducing this estimative.

Fig.4.3 also reflects the different behaviours of Eqs. (4.54) and (4.62) and, as a result,

as γ increases, the periodic case will lead to a logarithmically increasing mean flight

time deviation, whereas for any other α ̸= 0 case it will quickly converge to a constant

∆t determined by the structure of the extra dimension, i.e., by α and ℓc. This is an
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interesting feature of our results: if the extra dimension does not exhibit a perfectly

periodic behavior, then the distance that the photons travelled through the perturbation

does not matter as long as r ≫ ℓc, that is, they will all exhibit the same characteristic ∆t.

The distinction between the periodic case and the others can be crucial in comprehending

the potential structure of the extra dimension through measurements at a given distance r

from the source. Although this distance is limited to the length of the observable universe,

approximately 1028 cm, the functional dependence of ∆t with γ could play a pivotal role

in determining values for α and, consequently, for ℓc.

Imagine this: if we were to make a measurement of ∆t at a distance r from the source

and assume that we could move our detector a few meters away for another measurement

while the photons still travels through the same perturbation hµν , Fig.4.3 tells us that it

could be easier to discern α = 0 from all other condition cases because of the different

behaviors of ∆t between them. However, the same would not be true when trying to make

the distinction between other values of α, at least not in a detection via devices such as the

NIRSpec. We know that ∆t converges quickly as γ increases, therefore, we would be left

with two free parameters α and ℓc which could be chosen as to satisfy the measured ∆t.

On the other hand, notice that the region for smaller values of γ in Fig. 4.3 shows many

different behaviors of ∆t
√
ℓc for each α depicted and it could help us solve this ambiguity

over ℓc and α ̸= 0. However, as we pointed out, detections for smaller values of γ falls out

of the detection range for instruments such as the NIRSpec as a consequence of how they

are built. Hence, this discussion does not fall within the scope of this work. However, as

possible continuation of this work it would be interesting to seek the possibility of making

detections of ∆t within such range.

As the contribution of γ to the mean flight time deviation does not give us the means

to determine the structure of the extra dimension α ̸= 0, let us look at Eq. (4.62) from

another perspective. Fig.4.4 depicts the general behaviour of ∆t
√
ℓc as a function of α,

assuming three distinct values of γ. For each curve, the region in between the minima

provides the values of α for which ⟨σ2
1⟩R < 0, whereas the values of α outside this region

give ⟨σ2
1⟩R > 0. This can be verified from the exact expression in Eq. (4.51). As we have

previously stated, it also becomes clear from the plot in Fig.4.4 that, for a fixed γ, α = 1/2

indeed results in a maximum flight time mean deviation when compared with all other

values of α for which ⟨σ2
1⟩R < 0. An interesting aspect also revealed by the plot is that
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Figure 4.4: The behaviour of ∆t
√
ℓc as a function of the quasiperiodic parameter α, for

some values of γ.

there are more than one possible value for α that provides the same potential ’measured’

∆t, making it difficult to completely understand the structure of the extra dimension. In

addition, we can also see in Fig.4.4 the quick convergence of ∆t
√
ℓc to constant values

shown in the plot of Fig.4.3 for α ̸= 0 (note that there are no difference in the curves for

sufficiently large γ).

Upon the possibility that we live in a five-dimensional world, both the size of the extra

dimension, ℓc, and the phase angle regulator, α, are crucial parameters to be inferred from

experimental data, like the ones from NIRSpec. As we have mentioned before, the extra

dimension should be small. If it exists, it is expected to be at least smaller than 55µm.

On the other hand, there are some factors that can modify the spectrum of a light pulse,

if we assume that lightcone fluctuations are one of them and that the resulting mean

flight time deviation falls right within the NIRSpec’s sensitivity, then our model provides

estimations on the size of the extra dimension for α = 0, and also for most values of α ̸= 0,

that are of order of ℓc ∼ 10−84cm, resulting in an estimation of the Planck length in five

dimensions that is of order of 10−50cm. Such values are well beyond the scale being tested

by current experiments seeking the find evidence of the existence of extra dimensions.
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Chapter 5

Conclusions and discussions

In the present dissertation we discussed key concepts involved in the lightcone fluctu-

ations effects. We started by reviewing the linearized theory of gravity from the classical

perspective and then moved on to the quantum approach. We saw how the quantization

of the perturbation leads to the smearing of classical lightcone divergences, resulting in a

fluctuation around the usual light speed. As a result, a light pulse emitted from a source

will present a characteristic deviation in its spectral lines associated with a typical change

in the time flight ∆t of photons. As the last piece of our review, we found expressions in

(d + 1) for the graviton Hadamard function in Eq. (3.13), complemented by Eqs. (3.14)

and (3.15), and for the expectation value of half of the geodesic distance between two

points in first order on the perturbation ⟨σ2
1⟩ in Eq. (3.7). All these elements are used in

order to compute the typical change on a photon flight time in Eq. (2.15).

In Chapter 4, we reviewed some aspects of higher-dimensional spacetimes and of the

search for evidence of their existence. As consolidation of our study, we presented our

new results on lightcone fluctuation effects in a quasiperiodically compactified (4 + 1)-

dimensional flat spacetime and discussed some of their observational aspects using the

Near Infrared Spectrograph aboard the James Webb Space Telescope. This analysis re-

sulted in the work in Ref. [27] to be published in the Journal of High Energy Physics

(JHEP). By considering a photon propagating along the z-direction, we found a renor-

malized expression for the graviton Hadamard function calculated on the lightcone in Eq.

(4.49) by subtracting the unperturbed spacetime contribution, and we used it to compute

⟨σ2
1⟩R in Eq. (4.51), which leads to the typical deviation on the flight time of photons

upon substitution in Eq. (2.15). This expression for ⟨σ2
1⟩R contains an infinite sum which
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is, in fact, convergent and can be performed. However, as the complete resulting expres-

sion is too extensive, we chose to look for some potential cases of interest. Our result is

written in terms of the parameters α, ℓc and γ = r/ℓc, being α the parameter that regu-

lates the phase angle on the quasiperiodic boundary condition, ℓc the length of the extra

dimension, and r the distance traversed by the photon. We found that, when looking for

observations via instruments such as the NIRSpec, the optical path inside the detector is

always much larger than the maximum possible size of the extra dimension, resulting in

γ ≫ 1.

Our focus was to find out whether and how measures of lightcone fluctuations effects

could be used as a way of understanding the potential structure of an extra spatial dimen-

sion. That is, if a detection of ∆t could help us estimate values for α and ℓc. We started

this analysis by considering the periodic case α = 0. By performing the exact sum in Eq.

(4.51) and expanding it for large values of γ we obtained Eq. (4.53), from which we could

approximate the mean deviation on the photons flight time as in Eqs. (4.54) and (4.55),

just as found by the authors in Ref. [1] for a periodically compactified (4 + 1) spacetime.

These equations tell us that, regardless of the values that γ can assume, the main con-

tribution for the magnitude of ∆t will come from ℓ
−1/2
c and, as the authors in Ref. [1]

also discussed, if the compactification length is close to the four-dimensional Planck scale,

then the resulting mean flight time deviation would be on order of the four-dimensional

Planck time. Nonetheless, we discussed the possibility of obtaining an observable flight

time deviation within the sensitivity range of the NIRSpec and found that, in order to

obtain it, the size of the extra dimension ℓc should be on the order of 10−84cm. Further-

more, Eq. (4.54) also states that, as the size of the extra dimension becomes smaller,

more significant the change on a photon’s flight time becomes. These are both interesting

conclusions in the sense that our results provide observational possibilities that work in

a length scale that other experiments seeking to detect the existence extra dimensions,

such as those discussed in Chapter 4.1, are not capable of reaching.

Finally, we discussed other condition cases for α. We used the binomial negative

expansion to expand Eq. (4.51) for large values of γ with α ̸= 0 and obtained the

expression in Eq. (4.61), which leads to the approximated mean deviation on the flight

time in Eq. (4.62). We plotted the exact expression for ⟨σ2
1⟩R in Eq. (4.51) along with

Eq. (4.61) down to the zeroth order on the perturbation with respect to γ in Figure 4.2

80



in order to show that Eq. (4.61) is in fact a good approximation for γ ≫ 1. We also

found that the expression for ∆t for the periodic case in Eq. (4.54) contains a logarithm

dependence on γ, whereas the expression for α ̸= 0 contains a constant term fixed by α

and a inverse-square dependence on γ. This is also an interesting feature of our results: for

any fixed α ̸= 0, as γ increases, the mean flight time deviation will quickly converge to a

constant value whose magnitude is guided once more by ℓ−1/2
c . In other words, regardless

of how long the photons traveled through the quantized perturbation, the same typical

deviation on its flight time will be observed as long as r ≫ ℓc. On the other hand, for

the case where behavior of the quantized perturbation is perfectly periodic as it travels

through the extra dimension, that is for α = 0, most significant values of ∆t will be

obtained as γ increases. These results were depicted in Figure 4.3. Another interesting

development of the quick convergence for α ̸= 0 is that, if we were capable to detect a ∆t

that could be attributed to fluctuations on the metric on devices such as the NIRSpec,

and if this data did not match the logarithmic growth consistent with α = 0, we would

be unable to uniquely fix values for α.

Subsequently, as γ is no longer a relevant parameter for the case α ̸= 0 in detections

via isntruments such as the NIRSpec, we plotted the behavior of the exact expression for

∆t obtained by substituting (4.51) in Eq. (2.15) with respect to α for some values of

γ in Figure 4.4. We discussed some elements of this plot, in particular, the range of α

that results in ⟨σ2
1⟩R < 0 as residing between the to minima, and that leads to ⟨σ2

1⟩R > 0

otherwise. From Figure 4.4 we were also able to observe the quick converge of ∆t as γ

increases, and that for a certain “measured” ∆t, and even for a fixed ℓc, one would still

obtain at least two possible values of α.

Although this work resulted in some interesting features and discussions, it still raises

pertinent questions for future research on lightcone fluctuation effects. In particular, we

can observe different behaviors for ∆t in the region for smaller values of γ on Figure 4.3

that could help us solve the ambiguity over the parameters α and ℓc. Furthermore, it is

generally the case that, when a higher number of extra dimensions is taken into account,

the changes of making the phenomenon considered be detectable increases (see Ref. [24]).

The calculations of lightcone fluctuation effects for higher than five dimensional quasiperi-

odically compactified Kaluza-Klein models are no easy task. However, for each additional

extra dimension considered, ∆t can be expected to be proportional to increasingly nega-
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tive powers of ℓc, which can result in deviations on the flight time of photons which are

more likely to be detected even if the length of the extra dimensions are greater than our

current estimative in (4 + 1). Our results in a flat background also paves the way to the

possibility of a similar analysis for the structure of the extra dimension be reproduced in

more realistic scenarios. In particular, in a cosmological background with a spatially flat

(3 + 1) Friedmann-Lemaître-Robertson-Walker metric lightcone fluctuation effects have

been analyzed in Ref. [9]. As we deal with cosmological distances and relic gravitons pro-

duced in the early Universe are expected to be a potential source of metric fluctuations,

we could wonder whether it is possible to generalize the results of Ref. [9] to include a

compactified extra dimension, as well as a cosmological constant, and investigate the role

played by the scale factor a(t) in determining the structure of the extra dimension by also

using the sensitivity of measure devices such as the NIRSpec. For future work we are also

interested in searching for observable scenarios on lightcone fluctuations effects by includ-

ing temperature corrections in the calculations, considering additional extra dimensions

or working with curved backgrounds.
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