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RESUMO 

A leishmaniose, classificada como uma Doença Tropical Negligenciada (NTD), 

representa um desafio significativo para a saúde pública nas Américas. A forma clínica 

cutânea (CL) da doença tem um impacto considerável na América do Sul, com Brasil, 

Colômbia e Peru figurando entre os nove países que relatam 85% dos casos anuais em 

todo o mundo. O Brasil também enfrenta uma carga significativa de Leishmaniose 

Visceral (VL), a forma mais letal da doença. Apesar dos esforços de controle 

implementados nos últimos anos, a transmissão persiste em regiões pobres com 

condições precárias de higiene, facilitando o contato com os vetores da doença. Os 

tratamentos atuais, como compostos antimoniais, isetionato de pentamidina, miltefosina 

e anfotericina B liposomal, oferecem opções terapêuticas, mas não conseguem erradicar 

a infecção e apresentam diversos eventos adversos. Nesse contexto, surge a necessidade 

de desenvolver novas quimioterapias contra as diferentes formas clínicas da 

leishmaniose. Considerando a rica biodiversidade de Colômbia e Brasil, a busca por 

metabólitos secundários com propriedades leishmanicidas se torna relevante. A família 

botânica Asteraceae, com sua abundância de espécies (mais de 32.000) e uma ampla 

gama de metabólitos secundários, incluindo terpenoides e flavonoides, se apresenta 

como uma fonte promissória de moléculas bioativas. Atualmente, a seleção de 

moléculas com potencial atividade biológica é apoiada por ferramentas computacionais, 

demonstrando benefícios substanciais em termos de custo e tempo em comparação com 

abordagens clássicas, como a triagem em larga escala (High-throughput Screening). 

Esse enfoque permite uma exploração mais eficiente de compostos naturais para o 

desenvolvimento de novos tratamentos contra a leishmaniose.  

Assim, este trabalho buscou realizar estudos quimioinformáticos da família Asteraceae 

para encontrar novas estruturas com potencial terapêutico contra as diversas formas 

clínicas da leishmaniose. O estudo começa com um capítulo dedicado aos paradigmas 

da descoberta de medicamentos com base nas estruturas do alvo terapêutico. Em 

seguida, no capítulo II, é realizada uma revisão de vários estudos que utilizaram 

ferramentas computacionais para examinar diversos compostos identificados na família 

Asteraceae na busca por possíveis candidatos a medicamentos contra Leishmania, 

destacando o uso de bancos de dados como uma ferramenta-chave na busca por 

potenciais moléculas leishmanicidas. Os capítulos subsequentes focam em estudos 

computacionais, utilizando diferentes abordagens de triagem virtual, utilizando diversas 

classes de metabólitos secundários presentes na Asteraceae para selecionar potenciais 

leishmanicidas. O capítulo III utiliza um banco de sesquiterpenlactonas presentes no 

SistematX para a seleção de potenciais leishmanicidas, empregando uma abordagem 

combinada de triagem virtual baseada na estrutura do ligante assim como do receptor, 

identificando estruturas com potencial inibitório para múltiplos alvos. O capítulo IV, 

dividido em duas partes, avalia a inibição da Pteridina redutase 1 (PTR1) e diidrofolato 

redutase – timidilato sintase (DHFR-TS), duas enzimas cruciais para o metabolismo 

desses parasitas tripanosomatídeos. Dois compostos com atividade inibidora dual para 

múltiplas espécies de Leishmania foram identificados partindo de um banco composto 

por 360 diterpenoides. Finalmente, no capítulo V, foram selecionadas lignanas do tipo 

butirolactona híbrida C6C3 como inibidores da LmDHFR-TS entre um banco de 314 

derivados de ácido cinâmico, validando os modelos computacionais construídos 

mediante ensaios in-vitro com a enzima recombinante de DHFR-TS.  

 

Palavras-chave: Asteraceae, triagem virtual, Leishmania, metabolitos secundários, 

aprendizado de máquina, doenças tropicais negligenciadas, acoplamento molecular. 
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ABSTRACT 

 

 

Leishmaniasis, classified as a Neglected Tropical Disease (NTD), poses a significant 

challenge to public health in the Americas. The cutaneous form (CL) of the disease has 

a considerable impact in South America, with Brazil, Colombia, and Peru among the 

nine countries reporting 85% of annual cases worldwide. Brazil also faces a significant 

burden of Visceral Leishmaniasis, the most lethal form of the disease. Despite control 

efforts in recent years, transmission persists in impoverished regions with poor hygiene 

conditions, facilitating contact with disease vectors. Current treatments, such as 

antimonial compounds, pentamidine isethionate, miltefosine, and liposomal 

amphotericin B, offer therapeutic options but fail to eradicate the infection and present 

various adverse events. In this context, there is a need to develop new chemotherapies 

against the different clinical forms of leishmaniasis. Considering the rich biodiversity of 

Colombia and Brazil, the search for secondary metabolites with leishmanicidal 

properties becomes relevant. The botanical family Asteraceae, with its abundance of 

species (over 32,000) and a wide range of secondary metabolites, including terpenoids 

and flavonoids, emerges as a promising source of bioactive molecules. Currently, the 

selection of molecules with potential biological activity is supported by computational 

tools, demonstrating substantial benefits in terms of cost and time compared to classical 

approaches like High-throughput Screening. This approach allows for a more efficient 

exploration of natural compounds for the development of new treatments against 

leishmaniasis. This doctoral work aimed to conduct chemoinformatics studies of the 

Asteraceae family to find new structures with therapeutic potential against the various 

clinical forms of leishmaniasis. The study begins with a chapter dedicated to the 

paradigms of drug discovery based on the structures of the therapeutic target. Next, in 

Chapter II, a review of various studies that used computational tools to examine 

compounds identified in the Asteraceae family in the search for potential drug 

candidates against Leishmania is conducted, highlighting the use of databases as a key 

tool in the search for potential leishmanicidal molecules. Subsequent chapters focus on 

computational studies, using different virtual screening approaches and various classes 

of secondary metabolites present in Asteraceae to select potential leishmanicidal 

compounds. Chapter III uses a library of sesquiterpene lactones from SistematX to 

select potential leishmanicidal compounds, employing a combined virtual screening 

approach based on ligand and receptor structure, identifying structures with inhibitory 

potential for multiple targets. Chapter IV, divided into two parts, evaluates the 

inhibition of Pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate 

synthase (DHFR-TS), two crucial enzymes for the metabolism of these trypanosomatid 

parasites. Two compounds with dual inhibitory activity for multiple Leishmania species 

were identified from a library of 360 diterpenoids. Finally, in Chapter V, hybrid C6C3 

butyrolactone lignans were selected as inhibitors of LmDHFR-TS from a library of 314 

cinnamic acid derivatives, validating the computational models through in vitro assays 

with the recombinant DHFR-TS enzyme. 

 

Keywords: Asteraceae, virtual screening, Leishmania, secondary metabolites, machine 

learning, neglected tropical diseases, molecular docking. 
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ns nanoseconds 

NSiteMatch Nucleic Acid-Binding Site Match 

NTD Neglected Tropical Diseases  

NUBBEdb Natural Products in Brazil Database 

ODC Ornithine Decarboxylase 

OPLS-DA Orthogonal Projections to Latent Structures Discriminant Analysis 

PAINS Pan Assay Interference Compounds 

PCA Principal Component Analysis 

PDB Protein Data Bank 

pIC50 Negative logarithm (base 10) of the IC50 values 
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1. Introdução  

 

  As doenças tropicais negligenciadas (NTDs) constituem um grupo de 20 

condições que predominam em áreas tropicais, afetando principalmente populações 

empobrecidas e tendo um impacto desproporcional em mulheres e crianças [1]. A 

incidência global padronizada por idade e o número de casos de NTDs aumentaram 

entre 1990 e 2019 [2]. Para o período de 2020-2021, foi relatado que 1,65 bilhão de 

pessoas precisavam de tratamento em massa ou individual e cuidados para as NTDs, 

experimentando uma leve redução diretamente relacionada à pandemia de Covid-19. 

Essa emergência alterou tanto as cifras quanto o monitoramento desse grupo de 

doenças. Por exemplo, no Brasil, observou-se uma queda significativa nas consultas de 

casos de leishmaniose visceral (LV) em 2020 [3]. No entanto, o percentual da 

população mundial que poderia ser afetado por essas doenças permanece alto, gerando 

consequências sociais e econômicas para cerca de 20% da população global, indicando 

que as NTDs continuam sendo um significativo problema de saúde pública global [4,5]. 

  Um dos principais desafios para o controle e eliminação desse grupo de doenças 

é a falta de atenção da maioria das empresas farmacêuticas, pois a pesquisa e produção 

de novos medicamentos para o tratamento delas não representariam um lucro 

significativo [6]. Os tratamentos atuais têm múltiplas limitações, como baixa eficácia, 

alta toxicidade e durações prolongadas. Desde a década de 1950, compostos antimoniais 

pentavalentes têm sido usados como tratamento principal para leishmanioses visceral 

(LV) e cutânea (LC), pois apresentam um melhor índice terapêutico do que 

medicamentos de segunda linha como anfotericina B, pentamidina e outros. Apesar de 

sua alta eficácia, os compostos antimoniais pentavalentes muitas vezes estão associados 

a altas frequências de efeitos adversos, como dor musculoesquelética, distúrbios 

gastrointestinais, dor de cabeça e anorexia, além de efeitos graves como toxicidade 

cardíaca, hepática e pancreática [7,8]. 

  Portanto, o desenvolvimento de novos medicamentos contra esse grupo de 

doenças é crucial, sendo os produtos naturais uma das melhores alternativas para buscar 

estruturas potencialmente ativas contra essas NTDs. O número de medicamentos 

derivados de produtos naturais (PNs) no total de lançamentos de medicamentos no 

mercado ao longo de quatro décadas representa uma fonte significativa de novas 

entidades farmacológicas. Atualmente, mais de 80% dos novos medicamentos 
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aprovados pela FDA (Food and Drug Administration) estão diretamente ou 

indiretamente relacionados a produtos naturais [10]. 

  Uma das famílias mais interessantes a ser estudada nesse campo, devido à sua 

diversidade, é Asteraceae (Compositae). Muitas plantas na família Asteraceae têm 

importância econômica, medicinal e ornamental [11]. É a maior família de plantas com 

flores, com mais de 1.690 gêneros e 32.000 espécies relatadas em todo o mundo 

(principalmente nas Américas) [12, 13]. As atividades parasitárias de algumas espécies 

de Asteraceae foram demonstradas anteriormente, com a artemisinina, uma lactona 

sesquiterpênica de Artemisia annua, sendo notável. Foi aprovada para o tratamento da 

malária devido às suas propriedades de endoperoxídeo, e seu descobridor recebeu o 

Prêmio Nobel de Fisiologia ou Medicina em 2015 [14, 15]. 

  Várias espécies de Asteraceae demonstraram forte atividade antioxidante, anti-

inflamatória e antimicrobiana, além de propriedades diuréticas e cicatrizantes. Seus 

efeitos farmacológicos podem ser atribuídos a uma variedade de compostos 

fitoquímicos, incluindo polifenóis, ácidos fenólicos, flavonoides, acetilenos e triterpenos 

[16]. Cerca de 5.500 compostos lactonas sesquiterpênicas (SLs), diversificados em 40 

tipos estruturais, predominantemente exibindo esqueletos básicos de germacranolídeo, 

eudesmanolídeo e guaianolídeo, foram identificados [17]. 

  De 2000 a 2023, cerca de 9.000 espécies da família Asteraceae foram 

descobertas [12, 13]. Com esse crescimento na quantidade de dados sobre produtos 

naturais, que geralmente são registrados separadamente em inúmeros artigos e livros, a 

seleção de informações para pesquisa muitas vezes é desafiadora. Portanto, um 

procedimento adequado para armazenar e sistematicamente organizar informações de 

dados de metabólitos secundários recuperados é essencial, com bancos de dados 

emergindo como ferramentas-chave em estudos de química medicinal [18]. 

  Dois exemplos-chave contendo informações sobre Asteraceae foram 

desenvolvidos no Brasil: o software SistematX (http://sistematx.ufpb.br), um exemplo 

de banco de dados de produtos naturais desenvolvido pela Universidade Federal da 

Paraíba para fornecer informações para estudos quimiossistemáticos, desreplicação e 

correlações botânicas. Tem sido utilizado com sucesso em vários estudos in silico [18]. 

Por outro lado, o AsterDB (http://www.asterbiochem.org/asterdb) e o banco de dados 

interno Aster-BioChem, que contém centenas de estruturas químicas relatadas apenas 

em espécies de Asteraceae. O AsterDB é o primeiro banco de dados a fornecer acesso 

gratuito e é dedicado especificamente a essa família botânica [19]. 
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  Esse fortalecimento de bancos de dados nas últimas duas décadas permitiu que 

estudos computacionais emergissem como uma boa alternativa em química medicinal 

para ajudar a estabelecer o design experimental, encontrar novos medicamentos e 

comparar a estrutura molecular e a atividade por meio de uma das ferramentas mais 

importantes nessa área, a relação quantitativa estrutura-atividade (QSAR), gerando 

resultados bem-sucedidos a baixo custo em curto espaço de tempo [20, 21]. 

  O design de medicamentos assistido por computador (CADD) oferece a 

possibilidade de projetar novos medicamentos in silico, o que, combinado com 

estratégias convencionais em laboratório, permite que os pesquisadores desenvolvam 

tratamentos eficazes em tempos mais curtos e a custos mais baixos. Especificamente, 

modelos de relação quantitativa estrutura-atividade (QSAR) podem ser usados para 

identificar padrões moleculares que podem ser modificados em um motivo molecular 

para maximizar a atividade. A metodologia de ancoragem molecular também pode ser 

usada para explorar os comportamentos de pequenas moléculas no local de ligação de 

uma proteína alvo [19]. 

  Neste trabalho, serão realizados diversos estudos de quimioinformática da 

família Asteraceae, incluindo triagem virtual baseada em estrutura de ligante e receptor, 

modelos QSAR, simulações de dinâmica molecular, entre outros. Esses estudos visam 

identificar estruturas potencialmente ativas contra leishmanioses, usando três diferentes 

bancos de dados de metabólitos secundários presentes em Asteraceae, divididos em três 

grandes classes: lactonas sesquiterpênicas, diterpenos do tipo caurano e estruturas 

derivadas do ácido cinâmico, em busca de moléculas com potencial atividade multialvo. 

Além disso, as moléculas selecionadas com potencial atividade serão testadas in vitro 

para validar todos os cálculos computacionais realizados. 
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2. Objetivos 

2.1  Objetivo geral  

Realizar estúdios quimioinformáticos da família Asteraceae para encontrar novas 

estruturas com um potencial terapêutico contra Leishmanioses, uma das principais 

doenças parasitárias negligenciadas. 

2.2 Objetivos específicos. 

• Construir bancos de metabólitos secundários da família Asteraceae usando o 

software SistematX. 

• Criar modelos de relação estrutura-atividade quantitativos (QSAR) para predizer 

a atividade de metabolitos secundários da família Asteraceae. 

• Selecionar enzimas alvo involucradas no metabolismo dos parasitas do gênero 

Leishmania, entendendo o mecanismo de ação de essas proteínas.  

• Combinar as diversas aproximações de triagem virtual para a seleção de 

moléculas com potencial atividade contra as principais doenças parasitárias 

negligenciadas. 

• Avaliar termodinamicamente os complexos entre enzimas do parasita e as 

estruturas selecionadas mediante simulações de dinâmica molecular. 

• Verificar mediante ensaios in vitro, a atividade inibitória dos hits selecionados 

nos estudos computacionais. 
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O planejamento de fármacos auxiliado por computador, CADD (Computer-

Aided Drug Design), tem sido significativo nos últimos anos para identificar moléculas 

com potencial atividade contra diversas doenças, incluindo as denominadas doenças 

tropicais negligenciadas, NTDs (Neglected Tropical Diseases). Esses métodos in silico 

tornaram-se uma alternativa viável, auxiliando na formulação de projetos experimentais, 

na descoberta de novos medicamentos e na análise comparativa de estruturas e 

atividades moleculares [1]. 

Dentro das metodologias de CADD, os métodos de desenho de medicamentos 

baseados em estrutura, SBDD (Structure-based Drug Design), incluindo docking 

molecular, simulações de dinâmica molecular e desenho De novo, estão entre os mais 

amplamente utilizados para a seleção de moléculas promissoras. Houve casos bem-

sucedidos que resultaram no desenvolvimento de medicamentos disponíveis 

comercialmente, incluindo Amprenavir, Raltitrexed e Zanamivir [2]. 

Essas técnicas oferecem diversas vantagens dentro das ferramentas 

quimioinformáticas, como a redução no tempo e custo envolvidos na triagem de 

milhões de pequenas moléculas. Além disso, a avaliação computacional pode ser 

realizada antes da síntese física da molécula, e há uma variedade de ferramentas 

disponíveis para auxiliar em SBDD, tanto licenciadas quanto de acesso livre, facilitando 

seu uso [3]  

No entanto, assim como todas as metodologias computacionais, algumas 

limitações estão associadas ao uso dessas ferramentas. Primordialmente, a 

especificidade para seu uso e a dificuldade em prever com precisão a posição correta de 

ligação e classificação de compostos devido à complexidade das interações de ligante-

receptor são fatores a serem considerados para obter resultados confiáveis. 

Devido à importância desse tipo de ferramentas na seleção de potenciais 

moléculas bioativas, no Capítulo 1 deste trabalho, foi realizada uma revisão abrangente 

das principais técnicas de SBDD, com foco nos fundamentos dessas técnicas, 

algoritmos de amostragem e pontuação, algumas vantagens e desvantagens associadas a 

essas metodologias, com ênfase em dois aspectos-chave: a identificação do alvo e do 

local de ligação.  
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Abstract: Target-based drug discovery tools have been used with success in the 

pharmaceutical industry. They have become the fundamental methodologies for 

discovering new drugs in recent years, with two main advantages over the traditional 

methodologies: increased speed and greater economic efficiency. The improved 

computational capacities and new software packages have allowed the diversification 

and strengthening of these procedures. This chapter describes the main concepts related 

to target-based drug discovery, including two key steps, target and binding site 

identification, as well as the main features and limitations of the most common target-

based methodologies: de novo drug discovery, molecular docking, and molecular 

dynamics. 
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1. Introduction 

  Computer-aided drug design (CADD) has become the fundamental approach for 

the discovery, development, and analysis of structures with potential activity against 

many diseases in recent years. Two main types of approaches in CADD have been 

reported: ligand-based virtual screening (LBSS) and structure-based drug design 

(SBDD). These two approaches offer versatility and synergy, both in academia and 

industry [1]. SBDD, also known as target-based drug discovery, has as its main 

characteristic the use of computational methods and the three-dimensional (3D) 

structural information of the protein target to investigate the underlying molecular 

interactions involved in ligand–protein binding and thus interpret experimental results at 

an atomic level of detail [2]. 

  Advances in structural resolution techniques such as X-ray crystallography, 

nuclear magnetic resonance (NMR), and cryogenic electron microscopy (cryo-EM) 

have allowed the development and strengthening of SBDD techniques [3]. Currently, 

the number of macromolecular structures registered in the Protein Data Bank (PDB) is 

close to 180,000 [4], significantly increasing the structural information about key 

macromolecular drug targets [1]. This evolution also drove the development of 

sophisticated software packages, facilitating in silico calculations of inhibitors into their 

predicted binding sites as well as the computational analysis of inhibitor binding and 

information on further enhancements [5]. 

  Various examples of commercially available drugs developed from target-based 

drug design studies can be identified, including Amprenavir (Figure 1), which acts 

against two targets of human immunodeficiency virus (HIV), thymidylate synthase. 

Molecular dynamics calculations were used to explain the experimental observation that 

the P1′ amide NH of substrate sequences was not required for binding and productive 

catalysis. From these results, and supported by in silico modeling, the N,N-dialkyl 

sulfonamide moiety was chosen to bind to the flap water molecule and to act as a 

scaffold for the P1′ and P2′ groups [6]. 

  Other successful uses of SBDD include supporting the development of new 

drugs include Raltitrexed and Zanamivir (Figure 1). Raltitrexed acts against thymidylate 

synthase of the HIV [7]. Zanamivir was the first neuraminidase inhibitor to be marketed 

for the treatment of influenza. Using the GRID program, it was predicted that in the 

active site of the target, replacing the hydroxyl group at the 4-position of the ring by an 
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amine will improve the interactions with two neighboring glutamic acid residues, which 

identified this potent inhibitor of the neuraminidase enzyme (Ki = 0.2 nM) [6]. 

 

 

Figure 1.  Examples of drugs commercially available that were developed from target-

based drug design. Left: Amprenavir. Center: Zanamivir - GRID program predicted that 

the replacement of the hydroxyl group at the 4-position of the ring by an amine, would 

be improved the interaction with two neighboring glutamic acid (E) residues of the 

target (neuraminidase) [6]. Right: Raltitrexed. 

 

  In summary, the workflow of the SBDD process begins with target 

identification, which is supported by genetics, molecular biology, and bioinformatics 

methodologies. Next, protein extraction and purification are carried out. A structural 

determination of the target is performed, mainly using NMR, X-ray crystallography, and 

Cry-EM; for those proteins whose crystal structure is not defined, homology models are 

built in specialized software. Then, the biological assay is performed through different 

methodologies (Figure 2). The main three SBDD approaches are molecular docking, 

molecular dynamics, and de novo drug design. The small molecules to be evaluated in 

structure-based virtual screening (VS) methodologies are typically selected from 

databases of active compounds. Finally, the top hits are synthesized, and in-vitro tests 

are performed to identify the best structures.[7, 8]  
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Figure 2.  General workflow of the structure-based drug design  (SBDD) [8]. 

  This chapter reviews the main concepts in target-based drug design and 

describes the two key steps in these studies: identifying the target and the binding site. 

Also, we summarize the three main SBDD methodologies: molecular docking, 

molecular dynamics, and de novo drug design, discussing the basic concepts and 

classifications, as well as the algorithms and functions using for the calculations and the 

limitations of these methods. 

 

2. Target Identification 

  When a research group proposes developing a new drug for a given disease, the 

first step is to understand the physiological and pathological processes of the disease. 

This study completed, it is possible to visualize possible molecular targets that are 

components of the human body or a particular pathogen. The main targets are proteins, 

such as enzymes, metabotropic or ionotropic receptors, antibodies, and nucleic acids, 

including nuclear and mitochondrial DNA in addition to messenger RNA. Protein 

targets are the most abundant since they mediate several important metabolic processes 

[9-11]. 

  Drugs that act on enzymatic targets are mostly inhibitors; however, some can act 

as allosteric activators. In contrast, the drugs that act on membrane receptors can be 

agonists (when mimicking the effect of the endogenous substance) or antagonists (when 

blocking the signal promoted by the endogenous substance). That is, the mode of 

interaction determines the type of signal that will be transmitted to effectors located on 

the cytosolic side of the membrane. These effectors can be enzymes, ion channels, or 

sites for binding intracellular proteins. Examples of signal transduction pathways are 
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those in which the receptors are coupled to G proteins that in turn activate other 

enzymes that catalyze the conversion of triphosphate nucleotides into their cyclic 

variants that will act as second messengers. In other ways, these messengers can 

activate other enzymes and ion channels. Sometimes the channel itself can be the target, 

either through an allosteric receptor site located on the same protein or through direct 

interaction with the ion transport pore, which usually involves blocking the ion channel 

[12, 13]. 

  Drugs that interact with nucleic acids can be obtained in two ways: i) by 

planning molecules that have the ability for direct interaction, that is, by forming 

covalent bonds or cleaving bonds, as well as by intercalation; ii) indirectly, through 

proteins that regulate gene replication and expression. These pathways are important for 

designing drugs to combat diseases caused by disorders in regulating the cell cycle, such 

as cancer [7, 11]. 

  For the development of the SBDD, it is necessary to know the topological 

arrangement of the molecular targets and, for that, detailed 3D data of the 

macromolecule, obtained through X-ray crystallography techniques, NMR 

spectroscopy, and cryo-EM, is used. Such structures, when determined, are deposited in 

public databases that can be accessed freely. The most popular and widespread such 

databases are the PDB, InterPro, ExPASy, and Relibase [7, 10]. 

  It is also possible to perform SBDD when the specific structure of a given 

macromolecule is not known using homology modeling. This method uses in silico 

methods, where it is possible to model a 3D structure from a homologous protein with a 

known structure. The three most well-known methods of predicting structures are 

comparative modeling, threading, and ab initio modeling, which are reliable and 

possible to validate. The first step in this process is to determine the registration or 

alignment of the target sequence that allows insertions and deletions in the experimental 

structure, which can be accomplished with several dynamic programming algorithms.  

  In the second stage, mutations are made to the amino acid residues of the 

experimental structure so that they correspond to those of the target protein. This 

strategy can also be used when more than one experimental structure is available, 

allowing the creation of a model with a hybrid structure that is closer to the structure of 

the target protein. The final step is to refine and examine the structure to ensure that it is 

reasonable and validates the model [14-16]. 
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  In the process of refining the model, one of the steps is the alignment of the 

structures, where identities and similarities are verified, the conserved regions are 

observed, and common amino acid residues in the active site are identified. A detailed 

investigation of these similarities allows the planning of new drugs more likely to be 

effective against the pathology under study.  

  There are tools available for the validation stage, such as the Ramachandran 

plot, which is useful because it defines the residues found in the most energetically 

favorable and unfavorable regions and guides the evaluation of the quality of the 

theoretical or experimental models of the proteins. This graph represents all possible 

combinations of the dihedral angles Ψ versus φ for each amino acid, except for glycine, 

which has no side chain. For the model to be considered reliable, at least 90% of the 

amino acids in the regions favorable to the study must be similar [17, 18]. 

  The next step of SBDD is identifying the binding site on the macromolecular 

target and identifying the types of interactions necessary for the micromolecule to 

interact effectively and trigger a useful biological response. In this process, information 

about the free energy of the complex can be obtained, and the types of interactions 

between the atoms can be observed, leading to the identification of the best 

pharmacophores for the new ligand.  

  These binding sites are determined experimentally by X-ray crystallography 

techniques, including co-crystallization. The data obtained from the co-crystallized 

structures provide robust information about the binding sites and are very useful in 

understanding the interaction between the micro- and macromolecules. In some 

situations, only the macromolecule structures are deposited in the databases, without the 

presence of a ligand. There is no information about the connection site in such cases, so 

servers and online tools must be used to identify the sites.  

  Some examples of servers that can assist are DoGSite Scorer [19], CASTp [20], 

NSiteMatch [21], Metapocket [22], DEPTH [23], LISE [24], and MSpocket [25]. After 

the connection site has been identified, the volume of the connection pocket can be 

assessed using the tools TRAPP [26] and POVME [27]. More specifically, the residues 

in the macromolecules that favor an optimal interaction to trigger a biological response 

are identified. Therefore, it is necessary to know the interaction energies, van der Waals 

(vdW) forces, to obtain an optimal mapping of the connection site.  

  There are several methods for this purpose, one of which is Q-SiteFinder [28], 

which calculates the vdW interaction energies with a methyl probe. This method allows 
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the retention and grouping of those sites with more favorable energies based on their 

total interaction energies. From this knowledge, simulating the binding of various 

library compounds or compounds designed de novo in the active site of the protein 

allows the potential identification of novel drug candidates [7]. 

 

3. Binding site identification  

  Once the target protein has been identified and its biological effect has been 

confirmed, the next challenge in any SBDD research is identifying and validating the 

sites in the structure of the protein that will be more likely to interact with ligands. 

These binding sites, or cavities, can be classified into two different categories. If the 

interaction between the ligand and the target protein occurs in the catalytic site of the 

protein, it is called an orthosteric site; if the interaction takes place in a different region 

where the interaction produces changes in the protein conformation and the structure of 

the catalytic site, it is called an allosteric site [29].  

  Regardless of the type, understanding the cavity structure and its interaction 

energies with ligands is of great importance to any SBDD process. Therefore, several 

strategies have been developed to identify these binding sites in the target protein. These 

involve methods and algorithms that make use of information such as similarities of 

residues between functionally related proteins (evolutionary methods), structural 

features of the protein (geometrical methods), and interaction energy with probe 

molecules (energy-based methods) [30, 31]. 

 

3.1. Evolutionary methods 

  Based on the idea that homologous proteins (proteins that have a common 

ancestry) have some conserved residues, it is possible to assume that important regions 

of those proteins, such as those involved in biological or enzymatic activity, have 

functionally relevant sequences of residues that are conserved among different 

organisms to avoid malfunction in their physiological processes [32]. According to this 

assumption, information related to the cavities in a protein can be used in an 

evolutionary method to find the binding sites of any homologous or functionally related 

protein by comparing the residue sequence of their primary structures. Table 1 lists 

different algorithms based on this method. 
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Table 1.  Examples of binding site identification software classified according to the 

type of algorithm used for the prediction [31, 33]. 

Evolutionary Methods Geometrical Methods Energy-based Methods 

ConSurf 

Rate4Site 

GarLig 

LIGSITE 

CAST 

SURFNET 

PocketPicker 

VOIDOO 

KVFinder 

GRID 

DrugSite 

QsiteFinder 

MCSS 

 

 

  The main drawback of this type of algorithm is the necessity of prior knowledge 

and the availability of information related to the sequences of existing proteins, which is 

practically impossible considering the huge number and diversity of proteins that exist 

in different organisms and species. Additionally, a low degree of similarity between the 

sequences of the target protein and the reported protein will lead to deficient cavity 

prediction results, interfering with the success of the SBDD study [30, 32]. 

 

3.2. Geometrical methods 

Cavities are usually conceived as regions of large surface area in the protein and 

displayed as hole-shaped concave sections in the structure of the protein [33]. 

Geometry-based methods use the 3D structure of proteins and locate binding sites by 

considering their size, shape, and chemical properties (e.g., ionizability, intermolecular 

interaction tendency, and covalent bonding sites) [34]. In these methods, the protein 

structure and surface are analyzed using probe objects, typically spheres, that fit in the 

protein cavities, depending on their size [31, 34]. Other geometric techniques involve 

tessellation and 3D gridding of the protein structure to identify voids of a significant 

size on the protein surface. Thus, geometry-based methods can be classified as grid 

system scanning, probe sphere filling, and alpha-shape modeling [35]. 

Geometrical methods are the most frequently used for cavity detection in 

different software and algorithms [31]. Their greatest advantage is that these methods 

depend only on the availability of the 3D structure of the protein, and no additional prior 

information is needed. Since these algorithms use crystal structures from databases like 

the PDB, the protein structure is treated as static, disregarding its intrinsic flexibility and 

plasticity [36]. The most significant disadvantages for this category of methods come 
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from: i) the freedom and randomness considering the tessellation and griding 

parameters that are needed to probe the protein surface, and ii) the inaccuracies that may 

arise from protein orientation effects and conformational changes that may occur [33]. 

 

3.3. Energy-based methods 

As stated previously, to study the interaction energy of the molecules and the 

target protein, it is essential to predict their bonding probability and, consequently, to 

predict if the ligand will be an eligible potential drug candidate. Hence, another family 

of methods has been proposed to identify binding sites in target proteins, which is 

related to evaluating the interaction energy between different regions of the protein and 

some small molecules.  

Energy-based methods identify cavities using only energetic criteria. In these 

algorithms, the vdW interaction energy, the hydrogen bond energy, or the Lennard–

Jones potentials of a probe (a small molecule or fragment, such as water or a methyl 

group) and the target protein are evaluated [28, 35, 36]. These methods are usually more 

computationally demanding, which is a considerable disadvantage because of the 

interest in reduced calculation times in SBDD research [36]. 

 

4.. Target-based methodologies 

4.1. Molecular docking 

Molecular docking is the most common target-based drug discovery 

methodology. More than 52,000 papers related to target-based drug discovery have been 

published recently; more than 50% of them have been published in the last five years 

(2017–2021), (Web of Science, Copyright Clarivate 202). Molecular docking 

techniques aim to predict the binding mode of a ligand that best matches a 

macromolecular partner (i.e., proteins). These methodologies aim to accurately predict 

the structure of a ligand within the constraints of a receptor binding site and correctly 

estimate the strength of binding [37]. In protein–ligand docking, the process consists of 

generating several possible conformations and orientations, also called poses, of the 

ligand within the protein binding site [38]. 

Identifying the most likely binding conformations requires two steps: first, the 

exploration of a large conformational space representing the various potential binding 

modes; second, the accurate prediction of the interaction energy associated with each of 

the predicted binding conformations. All docking programs perform these two steps 
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through a cyclical process, in which the ligand conformation is evaluated by specific 

scoring functions until the results converge to a solution having minimum energy [1]. 

There are three types of molecular docking techniques, categorized by the 

flexibility of the molecules involved in the molecular docking calculations: 

• Rigid docking: Both the ligand and the protein are considered rigid entities, and 

only the three translational and three rotational degrees of freedom are 

considered during sampling [38]. 

• Semi-flexible docking: One of the molecules, the ligand, is flexible, while the 

protein is rigid. Thus, the conformational degrees of freedom of the ligand are 

sampled, in addition to the six translational and rotational degrees of freedom 

[38]. 

• Flexible docking: The protein is not a passive rigid entity during binding, and 

both the ligand and the protein are considered flexible counterparts [38]. 

A molecular docking program has two essential components: sampling the 

conformations of the ligand in the active site of the protein and ranking these 

conformations via a scoring function [39, 40]. Sampling describes the generation of 

putative ligand-binding orientations and conformations near a binding site of the 

protein. Sampling can be further divided into two aspects, ligand sampling, and protein 

flexibility. Scoring explains the prediction of the binding tightness for individual ligand 

orientations and conformations using a physical or empirical energy function [41]. The 

computational cost required in the docking calculations increases according to the 

number of degrees of freedom. For this reason, both sampling and scoring should be 

optimized to give a good balance between accuracy and speed [38]. 

 

4.1.1. Sampling algorithms   

Sampling algorithms evaluate the capability of each docking program to predict 

the ligand-binding poses [42]. Sufficient sampling of ligand and protein states in 

docking is essential, as well as accurate evaluation of the binding energies of potential 

protein–ligand complexes. A key issue is whether the docking program samples the 

possible states sufficiently and how increased sampling relates to improved scoring and 

outcomes. This includes sampling the internal degrees of freedom within the ligand, as 

well as sampling the poses between the ligand and the protein receptor [43]. The 

sampling algorithms are classified into three main categories (Table 2) [42]: 
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i) Shape matching: These approaches consider the geometrical overlap between 

the two molecules. These algorithms can predict docking conformations 

rapidly; however, their accuracy is lower [44]. 

ii) Systematic search: These approaches explore all ligand degrees of freedom 

during the search [45]. 

iii) Stochastic search algorithms: These approaches randomly change all the 

degrees of freedom of the ligand (translational, rotational, and 

conformational) at each step, generating very diverse solutions. However, 

multiple independent runs of the algorithm are required to maximize the 

probability of finding the global energy minimum [45]. 

 

Table 2. Summary of the most common sampling algorithms for molecular docking. 

Algorithm Description Examples Ref. 

Shape 

matching 

Consider the geometrical overlap between two molecules. 

being able to predict docking conformations in fast speed, 

however at lower accuracy rate  

ZDOCK 

SYSDOCK 
[44] 

Systematic search 

Exhaustive 

search 

Explore the values of each degree of freedom in a 

combinatorial manner, rotating all dihedral angles of the 

ligand according to a predetermined range of values and a 

set of initial restraints  

Glide 

eHiTS 
 

[45] 

Fragmentation 

The ligand is separated in smaller fragments, followed by 

the selection, and docking of a base fragment into the 

receptor binding site. The ligand is then reconstructed 

incrementally by covalently linking the other fragments 

to the base group  

FlexX [45] 

Conformation 

ensemble 

Rigidly docks a set of previously generated ligand 

conformations into the binding site. 

DOCK 4.0 

FLOG 
[45] 

    

Stochastic search 

Monte-Carlo 

The method involves applying random cartesian moves to 

the system and accepting or rejecting the move based on 

a Boltzmann probability   

LigandFit, 

rDock 
[46] 

Genetic 

algorithm 

Evaluating the evolution of a population of possible 

solutions via genetic operators to a final population, 

rDock 

AutoDock 
[46] 
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optimizing a predefined fitness function. Degrees of 

freedom are encoded into genes or binary strings and the 

collection of genes, or chromosome, being assigned a 

fitness based on a scoring function.  

GOLD 

Tabu search 

methods 

An iterative procedure designed to obtain solution of 

optimization problems. The technique is defined as a 

Meta-Heuristic methodology that can move from a 

solution to another being able to save in memory the 

already visited solutions 

PSI-DOCK [44] 

Swarm 

optimization 

methods 

 In each iteration, a particle moves based on the 

knowledge of other particles and its own experience to 

speculate about the promising region to explore. One 

global best solution is kept updated by all particles and 

each individual particle also keeps record of its own best 

solution.  

PLANTS 

PSO-VINA 
[47] 

 

4.1.2. Scoring algorithms  

In the molecular docking calculations, the scoring functions are responsible for 

distinguishing the correct poses (binders) from the incorrect poses (inactive compounds) 

in a reasonable computation time. The scoring functions estimate the binding affinity 

between the protein and the ligand by adopting various assumptions and simplifications 

[39]. 

Two theoretical aspects of these functions dominate their operational 

performance. The first is the degree to which a scoring function has a global extremum 

within the ligand pose landscape at the proper location. The second is the degree to 

which the magnitude of the function at the extremum is accurate [48]. 

In the docking process, the scoring algorithms have three aims: 

i) Pose prediction: The scoring function should be able to distinguish the 

experimental binding modes from all other modes explored through the 

searching algorithm [46].  

ii) Virtual screening: The capacity to classify active and inactive ligands [45]. 

iii) Binding affinity estimation: Prediction of the affinity constants and correctly 

rank several compounds according to their potency [45]. 
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The scoring functions are commonly classified into three general groups: 

force fields (FF), knowledge-based and empirical. Recently, a fourth group has 

appeared and become relevant, machine learning-based functions (Table 3) [7]. 

• Force field scoring functions: These employ energy functions from classical 

molecular mechanics (MM), which is the binding free energy of protein–ligand 

complexes defined by the sum of the vdW forces and the electrostatic 

interactions. The solvation is determined as a distance-dependent dielectric 

function, and the nonpolar contributions are assumed to be proportional to the 

solvent-accessible surface area [49]. 

• Knowledge-based scoring functions: These are based on the inverse Boltzmann 

statistic principle, which assumes that the frequency of different pairs of atoms 

at different distances is related to the interaction of the two atoms and converts 

their frequency into the distance-dependent potential of the mean force. 

Knowledge-based scoring functions have great advantages of reduced 

computing cost and predictive accuracy relative to other types of scoring 

functions [50]. 

• Empirical scoring functions: These functions compute the fitness of a 

protein−ligand binding by summing up the contributions of a number of 

individual terms, each representing an important energetic factor in 

protein−ligand binding. Multivariate linear regression (MLR) or partial least-

squares (PLS) analysis is used in these empirical functions to determine the 

different related factors that affect the final binding score [51]. 

• Machine learning-based functions: dynamic techniques for constructing and 

optimizing models to predict a binding pose and affinity [7]. These functions 

have emerged in the last few years as potential rescoring tools for structure-

based VS. The machine learning-based approaches can implicitly learn the 

function form from the training data and use adjustable parameters to improve 

performance further, thus offering higher performance flexibility and greater 

convenience [52]. The most common machine learning algorithms used as 

scoring functions are the support, vector machine, random forest, neural 

network, and deep learning algorithms [50]. 

• Consensus scoring. None of the four types of scoring functions mentioned above 

have general applicability or are perfectly accurate. Consensus scoring is used to 
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improve the probability of finding correct solutions by combining the scores 

from multiple scoring functions, using the advantages of the scoring functions 

while reducing the limitations. Suitable selection of the individual scores is 

fundamental to the design of the consensus analysis [53]. 

 

Table 3. Examples of the scoring functions in molecular docking calculations [53-56]. 

Force field-based Empirical Knowledge-based Machine learning-

based 

AutoDock 

DOCK/FF 

SYBYL/G-Score 

SYBYL/D-Score 

ICM-Score 

SYBYL/F-Score 

SYBYL/ChemScore 

LUDI 

X-Score 

ICM-PMF 

SYBYL/PMF-Score3 

DrugScore 

RF-Score 

RF-IChem 

SVM-IChem 

 

4.1.3. Molecular docking limitations 

Although molecular docking calculations have been a fundamental tool in target-

based drug discovery and many successful cases have been reported, several limitations 

are still present that mainly affect the accuracy of the calculations and their 

computational cost [57]. The ability to computationally predict the thermodynamics of 

these molecular recognition processes has been relatively poor until recently [58] 

because of a lack of confidence in the scoring functions used to provide accurate 

binding energies [1]. 

The majority of docking studies have been performed using rigid conformations 

of the protein due to the high computational cost added by increasing the flexibility of 

the macromolecules; therefore, although the development of computers with greater 

calculation power has improved performance in flexible systems, integration of 

conformational changes with the scoring functions is still a problem to be solved [59]. 

Additionally, in molecular docking calculations, the solvation phenomenon is 

not explicitly considered, impeding the estimation of the desolvation energies. Water 

molecules have an important role in the ligand–target binding process because they are 

necessary to correct the free energy of binding associated with the ligand displacement 

of water molecules. Although some docking software such as Autodock4 and GOLD 

have implemented some approaches, solvation is an important challenge to resolve in 

the currently available docking scoring functions [1, 59]. 



46 

 

The algorithms based on quantum mechanics (QM) and mixed methodologies 

such as the semiempirical and QM/MM methods have emerged as alternatives for 

improving the accuracy of binding energy calculations. The development of graphics 

processing units (GPUs) has supported an increase in the use of these types of 

techniques [59]. In general terms, QM-based scoring functions are better able to predict 

ligand affinities than MM-based functions. However, this is not observed in all cases: 

the agreement between experimentally measured activities and calculated binding 

energies is highly dependent on the chemical series under study [60].  

Finally, the limitations related to the X-ray crystallographic data, which is the 

basis of the molecular docking calculations, are very important. Uncertainties in the 

atomic model can have significant consequences when this model is used as the basis 

for manual design, docking, scoring, and VS efforts [61]. The redocking procedure, 

where a known ligand is docked to the “induced-fit” form of the target [62],  is often the 

only method of validating the docking parameters used; it is important to develop 

additional validation procedures, especially those that include biological information, in 

order to decrease potential errors related to the X-ray crystallographic data and improve 

the robustness of the molecular docking calculations. 

 

 4.2.  Molecular dynamics simulations  

One of the main limitations of the molecular docking calculations is related to 

the flexibility of the targets. A high percentage of protein–ligand systems evaluated by 

docking require rigid conditions to test a large number of molecules quickly with low 

computational cost by VS. To evaluate the physical movements of these systems, 

molecular dynamics (MD) simulations are used. MD is an in silico technique, Which 

aims to derive statements about the structural, dynamical, and thermodynamical 

properties of the molecular systems [63]. 

Leimkuhler and Matthews define the MD method as developing quantitative 

predictions of molecular size and shape, flexibilities, interactions with other molecules, 

behavior under pressure, and the relative frequency of one state or conformation 

compared to another [64]. Historically, MD was developed in the early 1950s and has 

evolved constantly since then. Rahman and Verlet [65, 66] refined the technique by 

implementing the method for all states of matter. Part of the evolution and relevance of 

these techniques is related to the foundation of powerful programs found by Martin 

Karplus, Michael Levitt, and Arieh Warshel that were used to understand and predict 
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chemical processes. These three researchers were recognized with the Nobel Prize in 

Chemistry in 2013 for the development of multiscale models for complex chemical 

systems [67]. Currently, more than 20,000 papers related to MD are published annually, 

with close to 6% annual growth in the number of works from 2016 to 2020 (Web of 

Science, Copyright Clarivate 202). 

 

4.2.1 Algorithms in molecular dynamics simulations. 

For a MM system, MD consists of iterations of the instant forces present and the 

consequent movements of that system. The MM system is described as a set of particles 

that move in response to their interactions according to Newton’s equations of motion, 

and the MD simulation computes the movements of atoms with time by integrating 

these equations, given below [38, 68]:  

𝑑2𝑟𝑖(𝑡)

𝑑𝑡2
=  

𝐹𝑖(𝑡)

𝑚𝑖
 

where Fi(t) is the force exerted on atom i at time t, ri(t) is the vector position of the atom 

i at time t, and mi is the mass of the atom [38]. 

 

The essential function of the MD algorithms is to derive Newton’s equations in a 

time differential (dt) for each atom of the system [38].  

• Position: 𝑟𝑖 (𝑡) = ( 𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡), 𝑧𝑖 (𝑡))    

• Velocity: 𝑣𝑖 (𝑡) =
𝑑𝑟𝑖 (𝑡)

𝑑𝑡
       

• Acceleration: 𝑎𝑖 (𝑡) =
𝑑2𝑟𝑖 (𝑡) 

𝑑2𝑡
=  

𝑓𝑖 (𝑡)

𝑚𝑖
              

• Force: 𝑓𝑖 (𝑡) = −
𝑑𝑉 (𝑟(𝑡))

𝑑𝑟𝑖  (𝑡)
  

• Potential Energy: 𝑉 (𝑟(𝑡))  

Where, xi, yi and zi are the coordinates of the i atom in the time (t). 

The algorithms used in MD are classified into five types: integrators, short-range 

interaction, long-range interaction, parallel computing, and ab initio (Table 4).  
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Table 4. Main classification of the most common MD algorithms 

Short-range 

interaction [69] 

Large-range 

interaction [70] 

Integrators 

[68] 

Paralleling 

computing [71] 

Ab initio [72] 

Verlet Cell-

linked List 

(VCL) 

 

Ewald summation 

PME 

P3M 

MSM 

SHAKE 

Beeman´s 

Verlet-Stoermer 

Leapfrog 

Point-centered 

domain 

decomposition 

 

Car-Parrinello 

 

Two types of algorithms depend on the type of nonbonded interactions 

evaluated, short-range and large-range interactions. The short-range algorithms are 

based on the Lennard–Jones potential that represents the van der Waals interactions. 

Meanwhile, the large-range algorithms are based on the treatment of the long-range 

electrostatic potentials [70]. In the ab initio algorithms, the interactions between ions 

and electrons are treated fully by QM, and the ions are moved using the classical 

Newton equations of motion. Carr–Parrinello is one of the most common ab initio 

algorithms, which was developed to calculate the ab initio forces on the ions and keep 

the electrons close to the Born–Oppenheimer surface while the atoms move [72]. In 

parallel computing, MD simulations are performed on parallel computers: the molecular 

system is divided into clusters assigned to individual processors [71]. Finally, 

integrators consist of different algorithms to integrate the equations of motion. Many of 

these are difference methods, in which the integration is partitioned into small steps, 

each separated by a defined period because the continuous potentials describing atomic 

interaction preclude an analytical solution. Among the most common MD integrator 

algorithms identified are Verlet, Leapfrog, and Beeman [68]. 

 

4.2.2. Force field in Molecular dynamics simulations. 

As observed previously in Molecular docking calculations, MM techniques use a 

force field to describe the dependence of the energy on the atomic coordinates of the 

system [73]. In MD, the accuracy of the force field is critical to the validity and stability 

of the simulations of proteins and, in fact, all macromolecules [68]. The main FFs used 

in MD include MM2, MM3, MM4, CHARMM, AMBER, GROMOS, OPLS, and 
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COMPASS. Many versions of these force fields exist to perform MD simulations, such 

as GROMOS96, GROMOS45A3, and GROMOS53A5 [73].  

The formal expression of a force field is divided into two groups of terms, 

bounded and nonbounded. The bonded interactions account for the stretching of bonds, 

the bending of valence angles, and the rotation of dihedral angles. The nonbonded 

interactions capture electrostatics, dispersion, and the Pauli exclusion forces [74].  

𝐸𝑇𝑜𝑡𝑎𝑙 =  𝐸𝐵𝑜𝑛𝑑𝑒𝑑 +  𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 +  𝐸𝑜𝑡ℎ𝑒𝑟𝑠  

  

𝐸𝑏𝑜𝑛𝑑𝑒𝑑 =  ∑ 𝐾𝑏(𝑏 − 𝑏𝑜)2

𝐵𝑜𝑛𝑑𝑠

+  ∑ 𝐾𝜃(𝜃 − 𝜃𝑜)2

𝑎𝑛𝑔𝑙𝑒𝑠

+   ∑ Kχ[1 + cos(nχ − σ)]

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

 

 

𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 =  ∑ ( 𝑖𝑗  [(
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 ∗ (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝑟𝑖𝑗
)

6

 ] + 
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗

)
𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 

𝑝𝑎𝑖𝑟𝑠 𝑖𝑗

 

The first part of the energy equation is related with the bonded interactions and 

has three terms. The first describes the stretching of bonds, where b is the interatomic 

distance (bond length) and Kb and b0 are the parameters describing the stiffness and the 

equilibrium length of the bond, respectively. In agreement with the assumption in MM 

treating the bonded interactions as springs, this term also has a quadratic form known as 

Hooke’s Law. For the calculation of the second term, the involvement of three atoms is 

necessary to describe the bending of angles, where θ is the angle formed by the two 

bond vectors; Kθ and θ0 are the parameters describing the stiffness and equilibrium 

geometry of the angle, respectively. These parameters are similar to the terms for bond 

stretching, Kb and b0. The last term is related to the energy associated with the rotation 

of dihedral angles defined by four atoms, where χ is the dihedral value, Kχ is the 

energetic parameter that determines the barrier heights, n is the periodicity or 

multiplicity, and σ is the phase [38, 74].  

Nonbonded interactions have two terms. The first is known as the Lennard–

Jones equation. The second term relates the models of attractive dispersion and 

repulsive Pauli exclusion interactions and is commonly referred to as the van der Waals 

term [38, 74]. Calculating these nonbonded interactions in biomolecular simulations is a 

key issue and one of the main challenges in the area [75]. 

Since the early 1980s, when the most common protein FFs, Amber, CHARMM, 

and OPLS, were developed, protein FFs have continuously evolved and improved [76]. 
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Currently, protein FFs are highly advanced, even with respect to other macromolecules. 

Guvench and Mackerell performed a comparison among the most common protein FFs 

for MD and found that all the studied force fields (Amber, CHARMM, GROMOS, and 

OPLS-AA) treat proteins at an often satisfactory level of accuracy [74]. Developments 

in these methods have produced multi-microsecond simulations of two proteins, 

ubiquitin and Protein G, using a number of different FFs. Four FFs (CHARMM22*, 

CHARMM27, Amber ff99SB-ILDN, and Amber ff99SB*-ILDN) showed a good 

agreement between NMR data and MD simulations [77].  

 

4.2.3. Limitations of Molecular dynamics simulations. 

Gonzalez chose an interesting definition of the utility of the MD simulations: the 

aim is not to reproduce an experimental result but to understand the microscopic origin 

of the physical properties observed or to predict qualitatively the behavior expected at 

conditions that cannot be accessed experimentally [73]. In protein FFs, the constant 

evolution has allowed a high level of accuracy in the predictions. However, the same 

level of accuracy is not observed for other macromolecules since only a few specialized 

force fields are regularly used today for sugars, nucleic acids, and lipids [75]. For 

example, Ricci performed a comparison of FF and terminal nucleotide definitions 

because, despite the importance of DNA as a target for several proteins and drugs, 

molecular dynamics simulations with nucleic acids still face many challenges, such as 

the reliability of the chosen force fields [78]. 

The computational cost is one of the main limitations of MD simulations. The 

conformational sampling of biological systems is in many cases limited by the 

capabilities of the computational hardware [79]. Even though other techniques have 

been developed to overcome the limitations of MD, such as enhanced sampling MD 

simulations, in classical molecular dynamics, a low computational cost requires some 

approximations, which decrease the accuracy of the predictions. Ab initio methods 

produce more realistic simulations of complex molecular systems and processes but are 

computationally complex. To overcome this difficulty, electronic interactions are 

approximated with an effective pseudopotential, and the orbitals are expressed in terms 

of a suitable functional basis. Hybrid QM/MM methods follow a similar approach [80].  

Moreover, the size of the biological system is a key factor in MD simulations. 

Some biomolecular processes, including ligand binding and conformational change, 

often take place on timescales longer than those accessible with a classical all-atom MD 
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simulation. For some systems with about 50,000 atoms, one GPU takes a few days to 

simulate a single microsecond [81]. Through Markov State Models (MSMs), these 

limitations have been overcome. MSMs are based on an ensemble view of the 

dynamics, from which statistical properties, such as the probability of a state being 

occupied and the probability of jumping from one state to another, are computed [38].  

 

4.3. De novo drug design 

The development of new molecular structures and entities with therapeutical 

uses is an enormous challenge in producing new drugs for commercial use. 

Consequently, different strategies have been proposed to find and design new 

candidates to fulfill this demand. Considering the gigantic amount of information 

available to explore the extant chemical space associated with different diseases, it is 

possible to approach the drug design task, where this information is valuable and 

convenient, by proposing new molecular entities from small molecular fragments 

assembled to maximize the interaction of the ligand with the active site, by means of 

using computational growth algorithms, through a method called de novo drug design 

(DNDD) [82]. 

De novo design can be defined as a method where a molecule is designed to 

satisfy the constraints and characteristics needed to achieve the required biological or 

therapeutical activity [83]. There are two useful ways to start a de novo methodology. 

First, in the structure-based approach, the construction of the molecules can be started 

using the knowledge acquired from the structure of the active site: the 3-D structure and 

the possible interaction sites are known. The second approach is the ligand-based 

approach, in which the construction of molecules is started from a known active ligand, 

but the active site information is unavailable and hard to obtain [82]. Once the 

methodology has been chosen, the next step is to build and evaluate the molecules that 

satisfy the established restrictions  [82, 83]. Some popular software for these approaches 

is shown in Table 5 and classified according to the methodology used. 
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Table 5.  Examples of De novo software classified according to the type of 

methodology used to construct and score molecules [82, 84]. 

Fragment-based Software 

 Ligand-based Structure-based 

LUDI 

SPROUT 

Chemical Genesis 

PRO_LIGAND 

TOPAS 

ADAPT 

 

 

X 

X 

X 

 

X 

X 

X 

X 

 

X 

 Atom-based Software 

 Ligand-based Structure-based 

Diamond Lattice 

LEGEND 

MCDNLG 

DLD 

RASSE 

 X 

X 

X 

X 

X 

 

4.3.1. Sampling, Scoring and Optimization 

To assemble a list of candidate molecules, there are two possible methodologies. 

First, in the atom-based methodology, the transformation of the molecules is achieved 

by modifying one atom into another to explore the molecular possibilities. This is a very 

intuitive method, which results in a wider ensemble of novel structures. However, it 

suffers from the possibility of creating new molecules with unfavorable structures, 

unstable hetero–hetero atomic bonds, or difficult synthetic accessibility [82, 85, 86]. 

Second, in the fragment-based approach, the design of the molecules is achieved by the 

mutation of pre-defined molecular fragments, which causes a vast reduction of the 

possibilities within the chemical space, is less time-consuming, and the chemical 

feasibility of the proposed molecules is higher (see Table 5) [85, 86]. 

During the construction of the molecules, they are scored according to a set of 

suitable molecular descriptors to determine their druggability using different algorithms. 

If the study is done using a structure-based methodology, the algorithm calculates the 

score based on the interaction of the fragments with the active site by docking 

procedures, and those fragments are then used as seeds to build the rest of the molecule. 
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In contrast, in ligand-based approaches, molecules or fragments are compared to a 

reference ligand by considering its similarity to their descriptors. 

Optimization processes are typically based on evolutionary computation, which 

is inspired by biological evolution, involving mutation, crossover, and selection of the 

candidates more likely to “survive” based on their performance in the defined biological 

function. Evolutionary computation is divided into four categories: genetic algorithms, 

genetic programming, evolution strategies, and evolutionary programming [82, 87]. In 

general, all of these algorithms begin with a population of candidates, within which the 

most promising molecules are selected, finally proposing a new generation of 

candidates to replace the initial one, and then the algorithm restarts. The main 

advantages of these algorithms are their simplicity, adaptability, and efficacy in 

exploring the chemical space [87].  

 

4.3.2. Machine Learning in De novo drug design 

Regarding the vast amount of information available about existing compounds 

and their biological activity in databases such as ChEMBL, COCONUT [88], and 

ZINC, several methods have been developed to analyze and predict the chemical 

behavior of these bioactive compounds, causing a considerable reduction in time and 

allowing a more efficient exploration of the chemical space in de novo studies [89]. In 

particular, due to the advances achieved in machine learning, the possibility of allowing 

computers to learn to select a promising molecule by starting from chemical and 

biological information, as well as giving them the ability to find structural fingerprints 

that can lead to the identification of the most important characteristics of molecules to 

enhance their activity, has had a remarkable effect on de novo methodologies. 

Deep Learning (DL) [90-92], Reinforcement Learning (RL) [93, 94],  Deep 

Reinforcement Learning (DRL) [95] and Reinforcement Learning for Structural 

Evolution (ReLeaSE) [96] are some of the machine learning methods developed to 

assist with de novo design of molecules in the last decade [82, 96]. For all these 

methods, it is necessary to start from molecular information, usually in the SMILES 

format, and the biological activity measurements of the selected target. The main 

differences between these methods are the type of architecture developed for data 

analysis and evaluation and the evaluated molecular properties. 
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4.3.3. Limitations in De novo drug design 

Despite all the advantages of de novo methodologies, especially the possibility 

of extensively exploring the chemical space for lead structure identification, some 

existing disadvantages and limitations exist. The most relevant limitation is related to 

the accuracy of the scoring functions. De novo software does not consider the 

conformational modifications that may take place in the structure of the target protein 

(particularly in the active site) or the entropic effects caused by the solvent–ligand 

interaction, which limits the calculation of the ligand–pocket interaction energy and thus 

reduces the accuracy of the molecular design [97]. 

Additionally, de novo designed molecules might have good predicted 

selectivities and interaction energies with targets; however, these methodologies do not 

allow the prediction of other important physicochemical properties of the designed 

structures (e.g., solubility, permeability to cells, and affinity to transport proteins) 

involved in pharmacokinetic studies and relevant to choosing the most promising 

therapeutical candidates [82, 84]. These limitations need to be overcome in order to 

increase the success of de novo methodologies in the design of effective drug 

molecules. 

 

5. Conclusions and future directions 

In this chapter, we reviewed the main aspects of target-based drug design to 

explain the development and importance of these types of techniques in drug discovery. 

Various structures have been successfully discovered through this class of methods, but 

it is still necessary to overcome some existing limitations of these methodologies.  

The constantly growing and updated databases are the main source of structures 

for methodologies such as VS and online software for molecular docking calculations 

present a promising future of target-based drug design. However, for the continued 

growth of these databases to be useful, the correct use of these techniques is necessary, 

which begins with understanding the main concepts of the methodologies. 

For the molecular docking calculations, the development of scoring functions is 

critical for flexible receptor docking to improve the energy prediction and the correct 

spatial position of the ligands. In the same way, it is fundamental to develop new 

scoring algorithms to improve the accuracy, such as those based on QM or mixed 

methodologies, including the semiempirical and QM/MM methods and the 

corresponding validation procedures of the calculations.  
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Moreover, the importance of MD simulations as a key technique in the drug 

development process is likely to grow substantially with increasing computer power and 

advances in the development of FFs and enhanced MD methodologies [63]. In addition, 

improving and developing the FF for macromolecules such as sugars, nucleic acids, and 

lipids is vital to expand the applications of the MD simulations in biological systems.  

In all cases, the main challenges in target-based drug design methodologies are 

related to improving the accuracy of the predictions while reducing the computational 

cost of the calculations. 
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Nesee capítulo foi realizada uma revisão sobre aprendizado de máquina aplicado a QSAR  

CAPÍTULO II 



65 

 

  O século XXI tem sido chamado de era da big data. Até o ano de 2020, o volume 

de dados atingiu 59 zettabytes (ZB), esperando-se alcançar 149 ZB em 2024 (um ZB 

equivale a 1x10^12 gigabytes) [1]. Na área da química medicinal, essa situação não é 

muito diferente; a informação sobre produtos naturais e seus metabólitos secundários, 

como ponto de partida para o desenvolvimento de novos tratamentos para inúmeras 

doenças, aumenta exponencialmente, sendo fundamental o desenvolvimento de bancos de 

dados - entre eles ZINC, PubChem e ChEMBL, que possuem milhões de estruturas - para o 

correto armazenamento dessas informações [2]. 

  A Asteraceae é uma das famílias botânicas com maior diversidade no mundo, 

possuindo mais de 32.000 espécies identificadas pertencentes a 1.900 gêneros [3, 4]. 

Várias espécies desta família demonstraram forte atividade antioxidante, anti-inflamatória 

e antimicrobiana, além de propriedades diuréticas e cicatrizantes. Seus efeitos 

farmacológicos podem ser atribuídos a uma variedade de compostos fitoquímicos, 

incluindo polifenóis, ácidos fenólicos, flavonoides, acetilenos e triterpenos [5]. 

  Com tanta variedade e quantidade de informações, a classificação sistemática 

destas por meio de bancos de dados torna-se cada vez mais relevante para estudos futuros 

com a Asteraceae, e ferramentas específicas como SistematX e AsterDB, desenvolvidas no 

Brasil, tornam-se essenciais para o desenvolvimento de estudos quimioinformáticos, 

favorecendo a obtenção de informações relevantes e não redundantes [2]. 

  As famílias de plantas mais promissoras para identificar compostos com potencial 

atividade leishmanicida são Asteraceae e Lamiaceae [6]. No entanto, várias classes de 

metabólitos secundários, assim como alvos terapêuticos, ainda não foram estudadas em 

profundidade. Para direcionar os estudos computacionais observados nos próximos 

capítulos do presente trabalho, fizemos esta revisão de literatura, procurando a maior parte 

dos estudos que utilizaram ferramentas computacionais para examinar vários compostos 

identificados na família Asteraceae na busca por possíveis candidatos a medicamentos 

contra Leishmania, enfatizando as possíveis bases de dados que podem ser utilizadas, 

assim como as principais espécies e alvos terapêuticos usados. 
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Abstract: Leishmaniasis is a complex disease caused by over 20 Leishmania species that 

primarily affect populations with poor socioeconomic conditions. Currently available drugs 

for leishmaniasis treatment include amphotericin B, paromomycin, and pentavalent 

antimonials, which have been associated with several limitations, such as low efficacy, the 

development of drug resistance, and high toxicity. Natural products are an interesting 

source of new drug candidates. The Asteraceae family includes more than 23,000 species 

worldwide. Secondary metabolites that can be found in species from this family have been 

widely explored as potential new treatments for leishmaniasis. Recently, computational 

tools have become more popular in medicinal chemistry to establish experimental designs, 

identify new drugs, and compare the molecular structures and activities of novel 

compounds. Here, we review various studies that have used computational tools to 

examine various compounds identified in the Asteraceae family in the search for potential 

drug candidates against Leishmania. 
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1. Introduction 

  Leishmaniasis is a general term used to describe more than 20 diseases caused by 

protozoans of the genus Leishmania (31 species are known to be mammalian parasites, of 

which 20 species are pathogenic in humans), which are transmitted by various species of 

phlebotomine sandflies (Diptera and Psychodidae) [1,2]. These diseases are categorized as 

neglected tropical diseases (NTDs) and represent a huge challenge for developing countries 

due to their economic and social impacts. The risk of infection and disease severity are 

associated with the socioeconomic conditions of the population, including the sanitation 

and nutritional conditions of a community, environmental or climate changes, and the 

response of the host immune system to the infection [2]. Leishmaniasis can be classified 

according to the severity of the infection as visceral (VL), cutaneous (CL), and 

mucocutaneous (MCL) leishmaniasis [3,4]. 

  Similar to other NTDs, leishmaniasis does not attract much attention from most 

pharmaceutical companies because the research and production of new medicines to treat 

these diseases are unlikely to result in significant profit [5]. This situation has prompted the 

cooperation between governments, global organizations, and research institutions to 

address these diseases, which represent public health challenges in several countries [6,7]. 

  In attempts to identify low-cost medicines for the treatment of leishmaniasis, many 

researchers have focused their investigations on natural products, which, in contrast to 

conventional chemotherapeutic drugs, can offer high efficacy and low toxicity [8]. 

Currently, more than 50% of all new drugs approved by the United States Food and Drug 

Administration (US FDA) are associated with natural products [9]. In recent decades, 

extracts and fractions of plants in the Asteraceae, Lamiaceae, Apiaceae, and other families 

have been used in traditional medicine approaches to treat leishmaniasis, showing high 

activity and selectivity [10]. Asteraceae is one of the most well-studied plant families for 

the treatment of parasite-associated diseases [8]. For instance, artemisinin, a sesquiterpene 

lactone (SL) derived from Artemisia annua, has been approved for the treatment of malaria 

due to its endoperoxidase properties [11,12]. 

  The high variability of Leishmania strains and their strong resistance to currently 

available drugs are currently the biggest obstacles to the search for new antileishmanial 

treatments. Since the 1950s, anti-Leishmania treatments have primarily been based on 

pentavalent antimonial compounds (SbV), including meglumine antimoniate 

(Glucantime®) and sodium stibogluconate (Pentostam®), although the efficacy of these 

two SbV treatments has declined of six decades of use, and multiples studies have reported 



69 

 

several complications associated with these two drugs, such as high toxicity, parasite 

resistance, prolonged treatments, and multiple side effects [8,13,14]. More recent 

chemotherapies that have been developed against different types of Leishmania, including 

amphotericin B, miltefosine, and paromomycin, have been reported to present similar 

problems [15,16]. Therefore, understanding the mechanism of action through which 

available drugs exert leishmanicidal effects and the mechanism through which parasites 

develop antibiotic resistance is extremely important. The discovery of new antibiotic 

targets would facilitate the identification of more effective and selective leishmanicidal 

drugs [8,17].  

  Computer-aided drug design (CADD) offers the possibility to design new drugs in 

silico, which, combined with conventional wet-lab strategies, allows researchers to develop 

effective treatments in shorter times and at lower costs. Specifically, quantitative structure-

activity relationship (QSAR) models can be used to identify molecular patterns that can be 

modified in a molecular motif to maximize activity [18]. Molecular docking methodology 

can also be used to explore the behaviors of small molecules at the binding site of a target 

protein [19]. 

  This review summarizes existing databases (DBs) associated with Asteraceae and 

explores the reported results of studies that have used in silico methodologies (particularly 

machine learning and molecular docking calculations) to identify new structures with 

potential anti-Leishmania activities, based on secondary metabolites found in Asteraceae 

species.   

 

2. Databases as key tools for cheminformatic studies exploring Asteraceae 

components. 

  Asteraceae is one of the more-studied plant families in the world. Asteraceae are 

highly distributed worldwide, including 1,000 genera and 25,000–30,000 species [20]. 

More than 22 million georeferenced reports have been identified (Figure 1)) [21]. 

Additionally, secondary metabolites derived from members of this family have 

successfully demonstrated antiparasitic activity, such as artemisinin (Artemisia annua), an 

SL with antimalarial activity that received the Nobel Prize in Medicine in 2015 and has 

been approved for treatment against malaria caused by Plasmodium falciparum [11,12].  
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Figure 1. Asteraceae is highly distributed worldwide. More than 23,000 species and 22 

million georeferenced reports are registered in the Global Biodiversity Information Facility 

(GBIF) [21].  

 

  Due to the large amounts of existing data for Asteraceae, the systematic storage and 

retrieval of information regarding identified metabolites in this family are important. 

Natural products DBs [22,23], allow data to be classified according to chemical structures, 

trade names, systematic names, synonyms, molecular formulae, and a wide range of 

calculated and/or experimental data [24]. 

  Currently, natural product DBs are key tools for CADD studies, including 

Dictionary of Natural Products [25], NUBBEdb [26], Super Natural II [27], NAPRALERT 

[28], KNApSAcK Family Databases [29], among others. 

  DNP is one of the most complete natural product DBs currently available, 

providing chemical, physical, and structural data for over 190,000 natural products 

organized into more than 43,000 entries; however, DNP is a commercial DB and is 

relatively expensive to access, which limits its use as a research tool [30,31]. KNApSAcK 

Metabolomics contains more than 10,000 structures, allowing metabolites to be searched 

according to mass spectrometry (MS) peaks, molecular weights, molecular formulas, and 

species [29]. 

  SuperNatural II, a free, web-based natural product DB, contains approximately 

326,000 molecules. NUBBEdb, another web-based DB, has registered a variety of 

secondary metabolite classes from among the biodiversity in Brazil, including botanical, 

chemical, pharmacological, and toxicological compound data [26]. NAPRALERT was 

developed by the University of Illinois at Chicago and is described as a relational DB of 

natural products, including ethnomedical and pharmacological/biochemical data for 
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extracts tested in a variety of organisms using in vitro, in situ, and in vivo studies, in 

addition to studies performed in humans, such as case reports, non-clinical trials, and 

clinical studies [28].  

  None of the above-mentioned DBs are specifically focused on the Asteraceae 

family. In that past decade, two natural products DBs have been introduced, containing 

data for a large number of secondary metabolites from Asteraceae: SistematX and 

AsterDB. Studies using the compounds registered in these two DBs have recently been 

published, including a combined virtual screening approach aiming to identify antichagasic 

structures [23] and a fingerprinting metabolomics study of tropical mistletoes that grow on 

aluminum-accumulating and aluminum-excluding hosts [32]. 

  SistematX (http://sistematx.ufpb.br) was developed in the cheminformatics 

laboratory of the Federal University of Paraíba, whose interface includes the following 

aspects: (a) the ability to search by structure, SMILES (Simplified Molecular-Input Line-

Entry System) code, compound name, and species; (b) the ability to save chemical 

structures identified during searches; (c) compound data results, including important 

natural products chemical characteristics, such as spectrometric data; and (d) the ability to 

identify specific information regarding the taxonomic rank (from family to species) of the 

plant from which each compound was isolated, the searched-for molecule, spectroscopy 

data, bibliographic references, and Global Positioning System (GPS) coordinates. 

SistematX includes more than 1,300 SLs and 850 flavonoids and chalcones that are 

associated with more than 4,000 botanical occurrences in Asteraceae [22]. 

  AsterDB (http://www.asterbiochem.org/asterdb) is the AsterBioChem in-house DB, 

which contains hundreds of chemical structures that have only been reported in Asteraceae 

species. AsterDB is the first DB to provide free access and is dedicated specifically to this 

botanical family. At this time, AsterDB has registered 2,500 unique chemical structures of 

terpenoids, flavonoids, trans-cinnamic acid derivatives, and other minor chemical classes 

of natural products, including more than 1,000 structures of SLs [33]. 

 

3. Computational studies against Leishmania. 

 For Leishmania, compounds from diverse plant sources and their modified analogs 

have been tagged with nanoparticles to explore potential mechanisms to increase the 

delivery, efficacy, and bioavailability of these compounds [34]. The leishmanicidal activity 

of Asteraceae has been widely studied, including multiple ethanol extracts [35], SLs 

(which are characteristic Asteraceae chemomarkers)  [8], flavonoids [36,37], tannins and 
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steroids. Some secondary metabolites found to efficiently treat experimental leishmaniasis 

include ferulic acid, rosmarinic acid, and ursolic acid [38].  

 In this section, we summarized key computational studies that have been based on 

compounds identified in Asteraceae species and used to identify new structures with 

potential activity against various Leishmania species (Figure 2). These results are divided 

into two groups: those that used machine learning methodologies and those that were based 

on the structure of a target protein from Leishmania (Table 1), primarily through the 

application of molecular docking calculations. 

 

3.1. Machine learning studies.  

Hologram QSAR (HQSAR) is a technique that employs specialized fragment 

fingerprints (called molecular holograms) as variables for the prediction of biological 

activities or other structurally related data [39]. Trossini et al. built HQSAR models using 

16 series of fragment distinctions and fixed fragment sizes (4–7 atoms) based on 40 SLs 

that were identified in several species of Asteraceae and showed antiprotozoal activity 

against four NTDs, including Leishmania donovani, and cytotoxicity against L6 rat skeletal 

myoblasts. Cross-validation (leave-one-out and leave-n-out) and external validation, using 

different latent variables, were used to test the biological activity prediction capabilities of 

these models [40]. 

The best HQSAR models for activity against L. donovani (Q2 = 0.775) and 

cytotoxicity (Q2 = 0.647) showed that SL activities against L. donovani and L6 cytotoxicity 

are clearly influenced by stereoselectivity and H-bond interactions because these models 

were constructed using only these two parameters. The authors also observed that the 

oxygen atom of the oxirane group contributes negatively to the L. donovani HQSAR model 

and that the α, β-unsaturated groups are fundamental to the biological activity of SLs 

[40,41]. 

The antileishmanial activity of seventeen SLs, isolated from five species of the tribe 

Vernonieae, were tested in vitro using the parasitic promastigote forms of Leishmania 

braziliensis and Leishmania amazonensis. Isodeoxyelephantopin (1, half-maximal 

inhibitory concentration (IC50): 1.45 µM) and deoxyelephantopin (2, IC50: 1.34 µM), two 

germacranolides that were previously isolated from Elephantopus carolinianus [42] were 

identified as the most active structures against L. braziliensis, whereas centratherin, with an 

IC50 value of 1.45 µM, had the highest activity against L. amazonensis [43] (Figure 2). 
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To establish the structural features associated with the observed IC50 values, various 

molecular descriptors were calculated using the PaDel-Descriptor software [44]. The 

constructed QSAR models showed that descriptors related to the partition coefficient 

(LogP) and polarizability (bpol) were the best-correlated descriptors with determination 

coefficients (R2), with R2 values greater than 0.77 for L. braziliensis and greater than 0.81 

for L. amazonensis. Validation data for the QSAR models were not shown. The analysis of 

these QSAR models showed an optimal range for LogP, at the point where the hydrophilic 

and lipophilic properties are balanced, which was correlated with an increase in the 

biological activity. The three most active molecules had the lowest polarizability, based on 

bpol values, which is associated with the ability of these molecules to penetrate the cellular 

membrane and may affect the van der Walls interactions involved in ligand–receptor 

recognition. 

In a study reported by Tasdemir et al., the antileishmanial activity of a series of 105 

flavonoid aglycones and glycosides was tested against L. donovani axenic amastigotes. The 

majority of the tested metabolites presented considerable leishmanicidal potential, with 

fisetin (compound 3), luteolin (compound 4), 3-hydroxyflavone (compound 5), and 

quercetin (compound 6) representing the most potent anti-L. donovani structures, with IC50 

values of 2.1, 2.8, 2.9, and 3.3 µM, respectively [45]. Compounds 4, 5, and 6 had only 

slight or no toxicity in mammalian cells, with selectivity index (SI) values from 20 to 64. 

These three molecules have been reported as common flavonoids found in the Asteraceae 

family, which display antiparasitic activity [46].   

Using Molecular Operating Environment (MOE) software [47], 241 molecular 

descriptors were calculated using the lowest-energy conformer of each compound, and a 

partial-least squares (PLS) analysis was performed. A low correlation value for L. 

donovani was obtained. The authors proposed three possibilities to explain these results, 

including that a common structure-activity relationship (SAR) may not exist for the studied 

compounds, that the range of biological data (the difference between the most and least 

active was relatively small for L. donovani) may have been too small, and that the 

structural factors underlying these biological effects may not be represented by the chosen 

molecular descriptions. Despite these contradictory results, this study presented a good 

computational approximation for establishing a relationship between the in vitro and in 

silico studies of some flavonoids (although most studies are performed using SLs) found in 

the Asteraceae family and served as a starting point for the rational design of quercetin 

(compound 6) derivatives as potent leishmanicidal agents [45].  
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Chibli et al. performed two studies involving Leishmania major dihydroorotate 

dehydrogenase (LmDHODH) and in silico methods to explore natural products from 

Asteraceae [48,49]. LmDHODH is a flavoenzyme that catalyzes the stereoselective 

oxidation of (S)-dihydroorotate to orotate in the fourth of the six conserved, enzymatic 

reactions involved in the de novo pyrimidine biosynthetic pathway, which is a protein 

involved in vital cellular functions [50].   

The in vitro inhibition of LmDHODH, including cross-validation against human 

DHODH (HsDHODH), was examined for 57 natural products, including 48 that have 

previously been reported in Asteraceae species. IC50 values ranging from 27 to 1,200 µM 

were obtained against LmDHODH, and the inhibition was found to be highly selective, as 

no relevant inhibitory effect was observed against HsDHODH [49]. 

  A QSAR model based on molecular descriptors and a pharmacophore-based 3D-

QSAR were performed in MOE software [47]. Variable selection, with a genetic algorithm 

(GA) and multiple linear regression (MLR), followed by partial least squares (PLS) 

regression were performed, which were validated by calculating R2, Q2
CV, and Q2

EXT. In the 

first QSAR model, a set of 21 SLs were used to build the model, and both 2-dimensional 

(2D, n = 198) and 3-dimensional (3D, n = 126) molecular descriptors were calculated for 

each molecule. The 21 SLs were divided into a training set (15 SLs) and a test set (6 SLs). 

The results showed validation parameters for R2 of 0.83, Q2
CV of 0.69, and Q2

EXT of 0.66 

for the best linear model obtained. The descriptors that influence the model are associated 

with the presentation of hydrophobic regions across the molecular surface, in addition to 

the increased width and lower hydrophobicity of the molecules (Only 3D descriptors, 

vsurf_ID8 explain 58% of the variance in activity values) [49]. 

Two of the most-active SLs (both present in Asteraceae), 2-oxo-8b-tigloyloxy-

guaia-1(10),3,11(13)-trien-6a,12-olide (compound 7, IC50 = 27 mM) and glaucolide B 

(compound 8, IC50 = 31 mM) were examined in a pharmacophore-based QSAR model. 

Using this method, the SLs were aligned based on the most important pharmacophore 

descriptors, including cyclopentenone, tigloyl, the carbonyl oxygen of cyclopentenone, and 

the ester carbonyl oxygen of tigloyl moieties for compound 7, and the acetyl group at CH2-

13, acetyl, the ester carbonyl oxygen of the acetyl group at CH2-13, and the acetyl groups 

for compound 8. The best 3D-QSAR models obtained using the pharmacophore descriptors 

(R2: 0.72; Q2
CV: 0.50 and Q2

EXT: 0.62) confirmed the importance of the correct ligand 

orientation and the molecular surface features to induce stronger inhibition, which 

suggested shared properties for a putative common binding site [49]. 
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Figure 2 Asteraceae secondary metabolites were identified as hits based on in silico 

methodologies.  
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  In a metabolomic study, IC50 values against LmDHODH were determined for 

extracts from 59 Asteraceae species, which ranged from 0.148 mg/mL to 9.4 mg/mL. 

Using SIMCA-P+ Software (v.13.0, Umetrics, Umea, Sweden), unsupervised principal 

component analysis (PCA) and supervised orthogonal projections to latent structures 

discriminant analysis (OPLS-DA) were performed to discover structures with inhibitory 

capabilities against LmDHODH. Classification labels of active (IC50 less than 500  g/mL) 

and inactive (IC50 greater than 500 g/mL) were assigned to separate the extracts, which 

resulted in a clear differentiation into two clusters, indicating significant differences in the 

chemical compositions of these two groups. The dereplication of the metabolic fingerprints 

for the active extracts resulted in the identification of 48 metabolites, including one 

belonging to the quinic acids class: 4,5-di-O-E-caffeoylquinic acid (compound 9, IC50 73 

µM), which demonstrated inhibitory capacity against LmDHODH [48].  

  A second OPLS-DA model was built based on the previously described model to 

predict the LmDHODH inhibitory potential of extracts that were not tested in this study. 

The model was validated with a training set (44 extracts) and a test set (15 extracts). The 

results showed validation parameters of R2: 0.96, Q2: 0.72, and RMSECV: 0.24, with a 60% 

correct prediction rate for the test set. The good predictability of this model suggests that it 

may represent a useful tool for identifying active extracts against this protein in 

Leishmania and may serve as a good starting point for the development of leishmanicidal 

treatments [48].  

  Recently, promising enzyme-targeting, antileishmanial SLs from SistematX that 

may act against L. donovani were identified in a combined approach, based on two 

different virtual screening (VS) methods. A ChEMBL dataset, including 3,159 and 1,569 

structures that were previously tested against L. donovani amastigotes and promastigotes in 

vitro, respectively, was used to develop two random forest models, which performed with 

greater than 74% accuracy in both the cross-validation and test sets [51].  

  A ligand-based VS assay was performed against the 1,306 SistematX-registered 

SLs. In parallel, using the crystal structures of three L. donovani target proteins, N-

myristoyltransferase (PDB ID: 2WUU) [52], ornithine decarboxylase (PDB ID: 2OO0) 

[53], and mitogen-activated protein kinase 3 (PDB ID: 4O2Z), and a homology model of 

pteridine reductase 1 were used to perform a structure-based VS (molecular docking) of the 

entire SistematX SL dataset. The consensus analysis of these two VS approaches resulted 

in the normalization of probability scores and identified 13 promising, enzyme-targeting, 

antileishmanial SLs from SistematX that may act against L. donovani [51]. Despite this, 
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the work is exploratory, since in vitro tests showing leishmanicidal activity of these 

molecules were not performed. Further studies validating experimentally the obtained 

results are necessary. 

 

3.2. Molecular docking studies. 

  Bernal and Coy-Barrera performed a molecular docking study examining 123 

sesquiterpene-related compounds that possess in vitro antiparasitic activity within the 

active sites of four targets (Table 1): L. major pteridine reductase-1 [PTR1, Protein Data 

Bank (PDB) IDL 2QHX] [54],  cysteine synthase (CS, PDB ID: 4AIR) [55], trypanothione 

synthetase (TS, PDB ID: 2VOB) [56] and L. donovani (NMT, PDB: ID 2WUU) [52]. All 

calculations were performed using AutoDock/Vina (1.1.2). After, PCA analysis, the drug-

like properties were calculated from the best-docked sesquiterpenes, using R software and 

ChemBio3D (Cambridge Soft Corporation, Cambridge, MA, USA) [57].  For all ligands, 

molecular energy minimization was performed using Merck Molecular Force Field 

(MMFF94) included in the Spartan ‘14 software with a limit of 500 conformers. 

Energetically lowest stable conformers within a 6 kcal/mol energy range were 

geometrically optimized using the semi-empirical AM1 parametrization. 

  The docking results showed that dimeric xanthanolide compounds, including 

pungiolide A (compound 10) and pungiolide B (compound 11), exhibited the best affinity 

values (−10.6 kcal/mol) for L. major PTR1, with even lower values than that for the 

redocked ligand (DB07765, −10.2 kcal/mol). Compound 10 was also one of the best-

docked structures within L. major CS, with an affinity value of −10.6 kcal/mol, which 

indicated a higher affinity for this target than the inhibitor used as a control 

(ZINC01690699, −9.6 kcal/mol). Two germacranolides, 8-hydroxy-9a-isovaleroyloxy-

calyculatolide (compound 12, −8.7 kcal/mol) and neurolenin B (compound 13, −8.5 

kcal/mol) were the best-docked secondary metabolites from Asteraceae for L. major TS, 

with similar values as those identified for the control ligand (DDD66604, −8.2 kcal/mol). 

  L. donovani NMT1 was the most restrictive protein of the four tested, with none of 

the 123 sesquiterpenoids displaying higher affinity than the control ligand (DDD64558; 

−8.0 kcal/mol). However, 2α,3α-2,3-dihydro caleurticolide-isovalerate (compound 14), 

together with compounds 10 and 11, were three of the ten-best docked sesquiterpenoids, 

with affinity values close to −6.4 kcal/mol [57]. Compounds 10 and 11 interacted within 

the active site of L. major PTR1 at the same residues, establishing two H-bonds with the 

side chain of R17 and two H-bonds with the amino acid backbone of S111 and S227. The 
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α,β-unsaturated groups, such as 2-methylen-γ-lactone, were able to interact with the 

residues of the pocket, satisfying the structural requirements for a possible Michael 

addition. Through PCA analysis, the vina scores for L. major PTR1 and CS and L. 

donovani NMT were found to be highly correlated, and compounds 10 and 11 were 

differentiated compared with the other sesquiterpenoids, demonstrating poor affinity for L. 

major TS but good results for the other three targets. Finally, compound 14 presented one 

of the best lead-like properties. These screening results indicated that this method could be 

used to identify ligands with potential activity against Leishmania. However, only 

structures with promising docking scores were identified, in vitro tests were not performed 

[57]. 

  Ogungbe and Setzer performed a study with the aim of identifying potential 

Leishmania biochemical targets among known plant-derived isoprenoids that have 

exhibited in vitro antiparasitic activity. For this purpose, molecular docking calculations 

were performed in Molegro Virtual docker (v.5.0. Molegro ApS, Aarhus, Denmark), using 

29 PDB crystal structures for targets from different species of Leishmania: L. major (12 

proteins), L. mexicana (8 proteins), L. donovani (4 proteins), and L. infantum (5 proteins) 

Each ligand structure was built using Spartan ’10 for Windows and the structures were 

geometry optimized using the MMFF force field [58]. Within the group of tested natural 

products, which can be found in the Asteraceae family, monoterpenoids were found to 

selectively dock with L. infantum nicotinamidase (PDB ID: 3R2J) [59], L. major uridine 

diphosphate-glucose pyrophosphorylase (PDB ID: 2OEF and 2OEG) [60] and methionyl t-

RNA synthetase (PDB ID: 3KFL) [61]; germacranolides sesquiterpenoids docked with L. 

major methionyl t-RNA synthetase (PDB ID: 3KFL) [61] and dihydroorotate 

dehydrogenase (PDB ID: 3MHU) [62]; diterpenoids docked with L. mexicana glycerol-3-

phosphate dehydrogenase (PDB ID: 1N1E) [63], and triterpenoids docked with L. infantum 

sterol 14α-demethylase (CYP51, PDB ID: 3L4D) [64]. 

  Geranial (compound 15), a monoterpene found in the essential oils derived from 

several species of Asteraceae [65,66] exhibited the lowest docking energies for L. major 

uridine diphosphate-glucose pyrophosphorylase (−76.9 kJ/mol) and L. major methionyl t-

RNA synthetase (−76.8 kJ/mol). Piperitone (compound 16), found in the essential oils of 

several common species of Asteraceae, such as White wormwood (Artemisia herba alba) 

[67] and Chamomile (Matricaria chamomilla) [68] also showed a high affinity for L. 

major uridine diphosphate-glucose pyrophosphorylase (−68.0 kcal/mol) and L. infantum 

nicotinamidase (−73.0 kJ/mol). Together with  α-thujone (compound 17, −74.5 kJ/mol) and 
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carvone (compound 18, −73.6 kJ/mol), these molecules presented docking energies even 

less than that of the co-crystalized ligand, nicotinic acid, which had a docking energy of 

−65.5 kcal/mol [58]. 

  Among the sesquiterpenes, 16,17-dihydrobrachycalyxolide (compound 19), was the 

strongest-docking germacranolide, with the lowest energies against L. major methionyl t-

RNA synthetase (−152.9 kJ/mol) and dihydroorotate dehydrogenase (−129.1 kJ/mol). This 

energy docking was lower than that for the PDB ligand, 5-nitroorotic acid (−102.2 kJ/mol). 

Additionally, 4α,5-epoxy-8-epi-inunolide (compound 20), which is found in multiple 

Asteraceae species, such as in the aerial segments of Stevia ovata [69], showed docking 

selectivity toward both L. major methionyl t-RNA synthetase (−99.1 kJ/mol) and 

dihydroorotate dehydrogenase (−100.5 kJ/mol). 8-[4-Hydroxy-5-(5-

hydroxytigloyloxy)tigloyl]santamarin (compound 21) was the strongest-docking 

eudesmanolide, presenting docking selectivity for L. major methionyl t-RNA synthetase 

(−153.1 kJ/mol)  [58].  

  The most selective targets for diterpenoids and triterpenoids were L. mexicana 

glycerol-3-phosphate dehydrogenase and L. infantum sterol 14α-demethylase, respectively. 

Kaurane diterpenoids were docked to this target, especially ent-15β-senecioyloxy-16,17-

epoxy-kauran-18-oic acid (compound 22), which was the best-docked kaurane (−128.9 

kJ/mol). Compound 22 can be found in Asteraceae species and was initially isolated during 

a bioactivity-guided fractionation of the total crude extract of Aspilia pruliseta [70]. 

Finally, triterpenes and steroids demonstrated significant docking preferences for L. 

infantum CYP51, with a range of energy values from (−120 to −110 kJ/mol), which 

highlighted molecules that are reported in Asteraceae plants such as -sitosterol 

(compound 23) and stigmasterol (compound 24) [71].  

 So, from the fact that this study uses molecules that have previously been shown to 

have in vitro activity, this research is an advance looking for alternative chemotherapies 

against Leishmania parasites, establishing a possible mechanism of action for these 

secondary metabolites obtained from species of Asteraceae 
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Table 1. Enzymes from different Leishmania species were studied by molecular docking, 

using secondary metabolites from Asteraceae. 

Species Enzyme PDB ID Resolution [Å] Reference 

L. donovani 

Cathepsin B 
Homologue 

model 
- 

Ogungbe et al. [58] Cyclophilin A 
2HAQ [72] 1.97 

3EOV [73] 2.60 

Dihydroorotate 

dehydrogenase 
3C61 1.80 

Mitogen-activated 

protein kinase 3 -

MPK3 

4O2Z 2.71 

Herrera-Acevedo  

et al. [51] 
Ornithine 

decarboxylase 
2OO0 [53] 1.90 

Pteridine reductase 1 
Homologue 

model 
- 

N-Myristoyl 

transferase 
2WUU [52] 1.42 

Bernal, Coy-Barrera 

[57] 

Ogungbe et al. [58] 

Herrera-Acevedo  

et al. [51] 

L. infantum 

14-alpha demethylase 

(CYP51) 
3L4D [64] 2.75 

Warfield, et al. [74] 

Souza-Melo et al. 

[75] 

Ogungbe et al. [58] 

Glyoxalase II 
2P1E [76] 1.90 

Ogungbe et al. [58] 

2P18 [76] 1.80 

Nicotinamidase 3R2J [59] 2.68 

Thiol-dependent 

reductase I 
4AGS [77] 2.30 

Trypanothione 

Reductase 

4APN [78] 3.20 

Shah, et al. [80] 

Ogungbe et al. [58] 

4APN [78] 3.20 

2YAU [79] 2.50 

4ADW [78] 3.61 

L. major Cathepsin B 
Homologue 

model 
- Ogungbe et al. [58] 
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Cysteine synthase 4AIR [55] 1.80 
Bernal,  

Coy-Barrera.[57] 

Deoxyuridine 

triphosphate  

nucleotidohydrolase 

2YAY [81] 1.86 

Ogungbe et al. [58] 

2YB0 [81] 2.28 

Dihydroorotate  

dehydrogenase 

3GYE [82] 2.00 

3MJY [83] 1.96 

3MHU [62] 1.85 

Leishmanolysin - GP63 1LML [84] 1.86 Shah, et al [80]. 

Methionyl-tRNA 

synthetase 
3KFL [61] 2.00 

Ogungbe et al. [58] 

N-myristoyltransferase 

NMT 

2WSA [85] 1.60 

3H5Z [85] 1.49 

4A30 [86] 1.50 

Nucleoside 

diphosphate kinase b 

3NGS [87] 1.80 

3NGT [87] 2.57 

3NGU [87] 2.29 

Nucleoside hydrolase, 1EZR [88] 2.50 

Oligopeptidase B, 2XE4 [89] 1.65 

Phosphodiesterase 1 2R8Q [90] 1.50 

Pteridine reductase 1 

1E7W [91] 1.75 Ogungbe et al. [58] 

1W0C [92] 2.60 Ogungbe et al. [58] 

2BF7 [93] 2.40 

Bernal,  

Coy-Barrera. [57] 

3H4V [54] 2.40 

2QHX [54] 2.61 

Trypanothione 

synthetase 
2VOB [56] 2.30 

Tyrosyl-tRNA 

synthetase, 

3P0H [94] 3.00 
Ogungbe et al. [58] 

3P0J [94] 2.89 

Uridine diphosphate-

glucose  

pyrophosphorylase 

2OEF [60] 2.40 

Ogungbe et al. [58] 
2OEG [60] 2.30 

L. mexicana 

Glyceraldehyde-3-

phosphate  

dehydrogenase 

1A7K [95] 2.80 

Ogungbe et al. [58] 1GYP [96] 2.80 

Glycerol-3-phosphate  1EVZ [97] 2.80 
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dehydrogenase 1M66 [98] 1.90 

1N1E [63] 1.90 

1N1G [98] 2.50 

Phosphoglucose 

isomerase, 

1Q50 [99] 2.60 

1T10 [99] 2.35 

Pyruvate kinase, 

1PKL [100] 2.35 

3HQP [101] 2.30 

3PP7 [102] 2.35 

Phosphomannomutase, 
2I54 [103] 2.10 

2I55 [103] 2.90 

Triosephosphate 

isomerase 

2VXN [104] 0.82 

2Y61 [105] 0.99 

L. panamensis Leishmanolysin - GP63 
Homologue 

model 
- 

Mercado-Camargo, 

et al. [106] 

 

  Based on the results of the study, using the crystal structure of L. infantum CYP51 

(PDB ID: 3L4D) [64], Warfield et al. used molecular docking calculations performed in 

Molegro Virtual docker (v.5.0. Molegro ApS, Aarhus, Denmark) to test a series of 

antiparasitic sterol-like compounds and their structural congeners, attempting to identify 

potential antiprotozoal drugs [74]. Some of these compounds can be found in Asteraceae 

species, especially in the Taraxacum genus [107-109]. Docking calculations were validated 

using ketoconazole and docking calculations were validated using ketoconazole and N-1-

(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadi-azol-2-

yl)benzamide, which showed redocking scores of −148.25 kcal/mol and −128.63 kcal/mol, 

respectively [74]. 

  Interestingly, epi-oleanolic acid (compound 25) and its derivates presented high 

docking affinities for L. infantum CYP51 compared with the other sterols evaluated in this 

study, with a docking score of −105.7 kcal/mol. These docking results showed that epi-

oleanolic acid derivates with hydroxycinnamoyl groups interacted more at the active site of 

CYP51, establishing a hydrogen bond (H-bond) with A290 and steric interactions with the 

heme-cofactor. The best-ranked derivates also interacted with L355, M459, F48, V356, 

and M357, a critical amino acid that interacts with lanosterol. Therefore, the inhibitory 

capacity of compound 25 and its derivates was validated experimentally against CYP51. 

This study represents an interesting starting point for the identification of new therapies 
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against Leishmania, however only shows promising docking scores and further studies are 

necessary [74]. 

  Oleanolic acid (compound 26, 3β-hydroxyolean-12-en-28-oic acid), a pentacyclic 

triterpenoid compound that has been isolated from several species of the Asteraceae 

family, including Aspilia africana, Taraxacum officinale, Calendula officinalis, and 

Baccharis uncinella, among others [110-112]. Souza Melo et al., using L. infantum CYP51 

(PDB ID: 3L4D) [74], evaluated the antileishmanial activity of compound 26, using 

promastigotes and amastigotes from three Leishmania species: L. braziliensis, L. 

amazonensis, and L. infantum. They reported IC50 values ranging from 30.5 µM to 68.8 

µM, with low cytotoxicity against mouse peritoneal macrophages. Molecular docking 

calculations were performed to establish the possible mechanism of action for compound 

26 against CYP51 protein and to establish the molecular properties of this triterpenoid 

[75]. 

  Molecular property calculations were studied in Spartan ‘14 software. Similar 

values were observed between compound 26 and lanosterol for van der Walls volume and 

the area; however, compound 26 showed a higher hydrophobic character (CLogP: 8.17) 

compared with lanosterol (CLogP: 7.10) and three times the polar surface area (PSA), with 

49.241 Ǻ2 compared with 17.950 Ǻ2 for lanosterol. The energetic calculations suggested 

that compound 26 contains an additional region that is not present in lanosterol that is 

capable of interacting strongly with a hypothetical target [75]. 

  Molecular docking was performed using GOLD software (v 4.1, CCDC Software 

Limited), and the crystal structure of L. infantum CYP51 (PDB ID: 3L4D) was obtained 

with fluconazole (PDB ID: TPF) as the ligand [64]. All of these in silico calculations were 

compared with those for lanosterol, a triterpenoid that is structurally like compound 26 and 

is a known, natural CYP51 substrate. For lanosterol, a strong interaction was observed with 

M357, in addition to the hydrophobic pocket, interacting with the residues Y102, M105, 

F109, V113, T115, and M283. Additionally, the methyl moiety of carbon-14 in lanosterol 

interacts with the heme-cofactor. In contrast, compound 26 did not establish any 

interactions with M357 or any residues of the hydrophobic pocket. The pentacyclic system 

of compound 26 establishes a similar spatial disposition in the pocket as the 

cyclopentanoperhydrophenanthrene in lanosterol. Finally, the authors highlighted the 

coordination of the carboxyl group in compound 26 (which has a similar orientation as the 

methyl moiety of carbon-14 in lanosterol) with the heme-cofactor. From these results, 

compound 26 shows leishmanicidal activity with low cytotoxicity against mouse peritoneal 
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macrophages might be a good candidate for the development of new leishmanicidal drugs, 

being established that acts against CYP51 through a different method than lanosterol [75]. 

-sitosterol (compound 23) is a phytosterol (a steroid subgroup) that has presented 

multiple pharmacological activities and is distributed in diverse genera of Asteraceae, such 

as Achillea, Cichorium, and Aspilia, among others [71,113,114].  

  Shah et al. isolated compound 23 from Ifloga spicata and evaluated its in vitro anti-

leishmanial activity against L. tropica promastigotes. Compound 23 showed an IC50 value 

of 22.2 µM, whereas the control drug (glucantime) presented an IC50 value of 14.6 µM. 

Molecular docking calculations were performed in MOE using the crystal structures of L. 

major leishmanolysin (GP63, PDB: 1LML) [84] and L. infantum trypanothione reductase 

(TR, PDB ID: 4APN) [78] receptors [80]. 

  The docking results showed that compound 23 interacted with TR and GP63, with 

binding energies of −61.54 kcal/mol and −33.24 kcal/mol, respectively. No redocking 

results were reported. The presence of the hydroxyl group in compound 23 may be 

responsible for the activity of the compound at the active site of TR, as the OH moiety of 

compound 23 establishes two H-bonds with G16 and A159, and this same OH group 

interacts at the active site of GP63 with D134 to establish a unique H-bond. Additionally, 

an H-π interaction with T226 was also observed [69]. Although these results are promising 

for compound 23, proteins for L. tropica were not used in this study, and similarity results 

between the TR and GP63 structures for L. tropica were not reported. 

  Recently, Mercado-Camargo et al., using the same GP63 target (PDB: 1LML) as a 

template and built an L. panamensis GP63 homolog model using the SWISS-MODEL web 

server [115]. A series of biflavonoids were tested using AutoDock Vina in PyRx 0.8 [116]. 

In vitro tests were not performed. Among the 24 biflavonoids, quercitrin (compound 27) 

was identified, which has been isolated from the Asteraceae genera Solidago and Tagetes 

[117].  Compound 27 shows moderate docking values of −8.2 kcal/mol for L. major and 

−7.5 kcal/mol for the homolog model of L. panamensis GP63. Amphotericin B was used as 

a control, which achieved docking values lower than −10.7 kcal/mol for GP63 in both 

species. Biflavonoids from the Lanariaceae and Podocarpaceae were the best-docked 

molecules in this study [106]. 

 

4. Conclusions 

  In recent years, cheminformatics tools have been widely used to identify safer and 

more effective treatments against Leishmania, which has included but was not limited to 
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the identification of new hits, the modification of existing molecules, and to better 

understand the parasitic life cycle. Vast numbers of secondary metabolites from Asteraceae 

have demonstrated antiparasitic activities, both in vitro and in vivo. Asteraceae, due to its 

broad distribution worldwide, represents an interesting source of potential new drug 

candidates against Leishmania. 

  Several studies that have used in silico methodologies to study compounds from 

Asteraceae have been published. Therefore, strengthening the specialized DBs for 

Asteraceae compounds represents an important step for better classifying and 

systematizing the large diversity of chemicals found in this family, to facilitate the 

performance of new computational structure-based and ligand-based virtual screening 

studies that allow a great number of molecules to be processed, with the aim of discovering 

new drug candidates against Leishmania at lower costs and with fewer side effects.   

  However, from this review, we identified the absence of in vitro results to verify 

the potential predicted activity in computational studies for secondary Asteraceae 

metabolites. The development of these assays is essential to advance in the search for new 

chemotherapies against the Leishmania parasites. This work presented the current 

panorama regarding this issue and seeks to be a starting point for future studies. 
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 A leishmaniose visceral (LV) também conhecida como Calazar, é uma doença 

causada por L. infantum e L. donovani, sendo a segunda doença tropical e subtropical mais 

letal e a sétima em perda de anos de vida ajustados por incapacidade [1]. É transmitido pela 

picada de um flebotomíneo infectado e pode afetar pessoas de todas as idades, embora em 

áreas endêmicas sua incidência seja maior em crianças devido à imunidade adquirida por 

adultos [2]. 

 Os parasitas Leishmania são organismos dimórficos que vivem e se replicam no 

intestino dos flebótomos na forma flagelada (promastigota) ou como formas aflageladas 

(amastigotas) nas células de mamíferos. No hospedeiro mamífero, esses parasitas 

preferencialmente infectam células fagocíticas, principalmente macrófagos e células 

dendríticas [3]. Cada uma dessas formas parasitárias apresenta características únicas que 

desempenham um papel crucial no ciclo de vida e na patogenicidade da Leishmania 

donovani. 

 Na busca por novas quimioterapias contra o parasita Leishmania, as 

sesquiterpenlactonas, metabólitos secundários vegetais com ocorrência especialmente 

generalizada na família de plantas Compositae/Asteraceae, emergiram como compostos 

promissores [4]. A Asteraceae é uma das famílias que se destaca na busca por novas 

moléculas bioativas, especialmente aquelas com atividade antiparasitária [5]. 

 Especificamente, respeito a Leishmania donovani, Schmidt et al. relataram as 

bioatividades in vitro de 40 sesquiterpenlactonas (SLs). Duas SLs de Xanthium brasilicum, 

4,15-dinor-1,11(13)-xanthadiene-3,5β:12,8β-diolide e 8-epixanthatin 1β,5β-epoxide, foram 

as mais seletivas [6]. Em outro estudo, três SLs de Anthemis auriculata apresentaram 

atividade contra amastigotas de L. donovani, com valores de IC50 de 3,27, 8,18 e 12,5 

mg/mL, respectivamente [7].  

 No entanto, tenham sido identificados várias SLs promissórias, a maior parte destes 

estudos relatados estão focados em um único alvo. Recentemente, o conceito de hits 

multialvo ganhou relevância na pesquisa de doenças parasitárias como a leishmaniose. O 

desenvolvimento de medicamentos que podem interagir simultaneamente com vários alvos 

é uma abordagem promissora para o tratamento de doenças complexas. Em comparação 

com o uso de combinações de medicamentos de alvo único, os medicamentos multialvo 

têm vantagens em termos de maior eficácia, perfil de segurança aprimorado e 

administração mais simples [8]. 

 Assim, no presente capítulo, utilizando métodos de triagem virtual em lactonas 

sesquiterpênicas (SLs), o estudo empregou abordagens baseadas em ligantes e em 
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estrutura, incluindo a análise de proteínas-alvo, para buscar compostos multitarget contra 

quatro proteínas de Leishmania donovani. Uma análise de consenso identificou 13 SLs 

potenciais contra a leishmaniose a partir do banco de dados SistematX, mostrando agentes 

promissórios direcionados a múltiplas enzimas de L. donovani. O estudo demonstra uma 

abordagem estratégica para a descoberta de medicamentos no combate à leishmaniose. 
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Abstract: Leishmaniasis refers to a complex of diseases, caused by the intracellular 

parasitic protozoans belonging to the genus Leishmania. Among the three types of disease 

manifestations, the most severe type is visceral leishmaniasis, which is caused by 

Leishmania donovani, and is diagnosed in more than 20,000 cases annually, worldwide. 

Because the current therapeutic options for disease treatment are associated with several 

limitations, the identification of new potential leads/drugs remains necessary. In this study, 

a combined approach was used, based on two different virtual screening (VS) methods, 

which were designed to select promising antileishmanial agents from among the entire 

sesquiterpene lactone (SL) dataset registered in SistematX, a web interface for managing a 

secondary metabolite database that is accessible by multiple platforms on the Internet. 

Thus, a ChEMBL dataset, including 3,159 and 1,569 structures that were previously tested 

against Leishmania donovani amastigotes and promastigotes in vitro, respectively, was 

used to develop two random forest models, which performed with greater than 74% 

accuracy in both the cross-validation and test sets. Subsequently, a ligand-based virtual 

screening assay was performed against the 1,306 SistematX-registered SLs. In parallel, the 

crystal structures of three Leishmania donovani target proteins, N-myristoyltransferase, 

ornithine decarboxylase, and mitogen-activated protein kinase 3, and a homology model of 
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pteridine reductase 1 were used to perform a structure-based virtual screening, using 

molecular docking, of the entire SistematX SL dataset. The consensus analysis of these two 

virtual screening approaches resulted in the normalization of probability scores and 

identified 13 promising, enzyme-targeting, antileishmanial SLs from SistematX that may 

act against Leishmania donovani.  

 

Keywords: Leishmania donovani; Sesquiterpene lactones; Ligand-based virtual screening; 

Structure-based virtual screening; Machine learning; SistematX database. 

 

1. Introduction 

  Leishmaniasis refers to a complex of diseases, caused by the intracellular parasitic 

protozoans of the genus Leishmania, a representative of the order Kinetoplastida and the 

family Trypanosomatidae [1]. These organisms are heteroxenous parasites that require two 

hosts to complete their life cycle, a vertebrate and an invertebrate, and commonly infect the 

hematophagous dipterans, more commonly known as sandflies, belonging to the genus 

Phlebotomus, of the order Diptera in the subfamily Phlebotominae (family Psychodidae) 

[2,3]. Sandflies become infected when they bite an infected individual, ingesting host-

infected macrophages or free amastigotes from the blood or tissues. Upon reaching the 

insect's midgut, amastigotes develop into promastigotes. These flagellar forms, after rapid 

multiplication, become infective, and migratory promastigotes are regurgitated and 

introduced into the skin of the next host when the insect takes a new blood meal [4]. 

  The clinical manifestation of leishmaniasis depends on the complexity of the 

interaction between the host's immune system and the protozoan type, with four recognized 

disease presentations: cutaneous, cutaneous mucosal, diffuse cutaneous, and, visceral 

leishmaniasis (VL), which is the most severe [5,6]. The number of VL cases, annually, is 

estimated at 20,000, worldwide, caused by Leishmania donovani, and VL can be fatal 

without treatment [7,8]. VL is a chronic, systematic disease, with marked clinical 

manifestations, including fever, hepatomegaly, splenomegaly, cutaneous/mucosal pallor, 

diarrhea, and weight loss [9]. In addition, a canine form of visceral-cutaneous 

leishmaniasis develops a clinical manifestation that resembles the presentation in humans 

[10]. 

  Currently available therapeutic drugs are associated with prolonged treatment times 

and intense side-effects, which often result in patients abandoning treatment; therefore, the 

identification of new drugs or lead structures is urgently necessary; however, leishmaniasis 
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is considered to be a Neglected Tropical Disease, due to a lack of research and the poor 

development of new drugs over many decades [11-14]. Many classes of chemicals, 

including natural products, have provided interesting leads for the treatment of parasites, 

particularly sesquiterpene lactones (SLs) [11,15]. Several studies have evaluated the 

leishmanicidal activity of SLs as potential anti-Leishmania drugs [16]. Schmidt et al. 

reported the in vitro bioactivities of 40 SLs against L. donovani and other parasites and 

their cytotoxicities against L6 rat skeletal myoblasts. Two SLs, 4,15-dinor-1,11(13)-

xanthadiene-3,5β:12,8β-diolide and 8-epixanthatin 1β,5β-epoxide, which were isolated 

from Xanthium brasilicum, were identified as the most selective SLs against L. donovani 

[17]. In another study, three irregular, linear SLs derived from Anthemis auriculata, 4-

hydroxyanthecotulide, anthecotulide, and 4-acetoxyanthecotulide, showed activity against 

L. donovani amastigotes, with half-maximal inhibitory concentration (IC50) values of 3.27, 

8.18, and 12.5 mg/mL, respectively [18].  

  Enzymes and metabolites that are present in the parasite but absent from their 

mammalian hosts are considered ideal targets for rational drug design [19]. Several 

potential enzymatic targets have been explored during the development of new 

leishmaniasis treatment drugs, which aim to utilize natural products as enzymatic 

inhibitors. Ornithine decarboxylase (ODC, E.C. 4.1.1.17) is a key enzyme involved in 

polyamine biosynthesis in L. donovani, catalyzing the conversion of ornithine to 

putrescine, which is a precursor of other polyamines. The inhibition of ODC depletes the 

parasite of trypanothione, causing an imbalance in redox metabolism and increasing 

reactive oxygen species [20-23].  

  N- myristoyltransferase (NMT, E.C. 2.3.1.97) is a ubiquitous enzyme that catalyzes 

the attachment of myristic acid (a 14-carbon saturated fatty acid) to the amino-terminal 

glycine residue of a subset of eukaryotic proteins [24,25]. Mitogen-activated protein 

(MAP) kinase 3 (MPK3, E.C. 2.7.11.25) is a component of signal transduction pathways 

and an important regulator of cell differentiation and cell proliferation in eukaryotic cells. 

Thus far, ten MAP kinases have been identified in Leishmania mexicana [26]. Pteridine 

reductase 1 (PTR1, E.C. 1.5.1.33), an NADPH-dependent short-chain reductase, is 

responsible for the unusual salvage of pterin in Leishmania and acts as a metabolic bypass 

for drugs that target dihydrofolate reductase [27]. 

  In this study, two virtual screening (VS) approaches were utilized to examine the 

potential activity of 1,306 SLs against L. donovani, from the compounds registered in the 

SistematX database. Initially, a ligand-based VS approach was developed, using random 
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forest (RF) models constructed against the two parasitic forms, amastigotes and 

trypomastigotes. Subsequently, using a homolog model of L. donovani PTR1 and the 

crystal structures of three enzymes expressed by this Leishmania species, a structure-based 

VS approach was also applied to the SistematX SL dataset. Finally, a combined approach, 

using both VS approaches, was performed to identify SLs with potential activity against L. 

donovani, and to establish potential mechanisms of action for the identified compounds. 

 

2. Material and methods 

2.1. Database 

  From the ChEMBL database (https://www.ebi.ac.uk/chembl/), we selected a 

diverse set of structures that were initially classified according to their predicted activity 

against the two L. donovani parasitic forms: amastigote (5,500 structures) and promastigote 

(2,045 structures). These compounds were classified according to pIC50 values [–logIC50 

(mol/L)]; therefore, we stratified them into active (pIC50 ≥ 4.7) and inactive (pIC50 < 4.7) 

structures. Due to the variability of experimental protocols used by the ChEMBL database, 

a qualitative pattern was used, to partially minimize the differences in activity values 

associated with different experimental protocols and strains. IC50 values represent the 

concentration required to inhibit 50% of parasite growth. For each ChEMBL dataset, 35 

amastigote-associated and six promastigote-associated SL structures, which were not 

included in the dataset used for the ligand-based VS, and their respective pIC50 values were 

added, to increase the representativeness of the generated models with regard to the 

chemical space of this class of secondary metabolites. 

  The applicability domain (APD), based on Euclidean distances, was used to 

identify those compounds in the test set for which predictions may be unreliable; 

compounds were considered unreliable if they had APD values higher than d + Zσ, where d 

was the average Euclidian distance and σ was the standard deviation of the set of samples 

in the training set with lower than average Euclidian distance values relative to all samples 

in the training set. The parameter Z is an empirical cut off value, and 0.5 was used as the 

default value [28].  Structures with pIC50 values ranging from 4.6 to 4.7 (range of 0.1 units) 

were excluded, to avoid edge effects and improve the predictive capacity of the models. 

Excluding these structures minimized the differences in activity values resulting from 

errors and differences in experimental protocols [29].  

  Data curation of the datasets was performed, according to the suggested procedures 

in the literature [30-32]. Standardizer software [Jchem, version 16.11.28 (2016), 



104 

 

calculation module developed by ChemAxon, http://www.chemaxon.com/] was used to 

canonize all simplified molecular-input line-entry system (SMILES) codes. After duplicate 

structures were removed, those with higher pIC50 values were eliminated. The use of only 

those compounds with lower activity values facilitated the generation of more restrictive 

models.  

  After dataset curation, 3,159 structures for amastigotes (1,564 active and 1,595 

inactive) and 1,569 structures for promastigotes (756 active and 813 inactive) were 

included in the analysis. An SL dataset was obtained from the SistematX database 

(http://sistematx.ufpb.br), and a total of 1,306 molecules from this dataset were used in this 

study.  

  For predictions, those SL structures that were also included in the ChEMBL dataset 

were excluded for each parasitic form. For all structures, SMILES codes were used as the 

input data in Marvin [ChemAxon, version 16.11.28 (2016), calculation module developed 

by ChemAxon, http://www.chemaxon.com/]. We used standardizer software [Jchem, 

version 16.11.28 (2016), calculation module developed by ChemAxon, 

http://www.chemaxon.com/]. ChemAxon was used to canonize the structures, add 

hydrogens, perform aromatic form conversions, and clean molecular graphs in three 

dimensions. This software was used to generate and optimize conformers for the initial 

structure (represented by the root node in the tree). Those molecules that presented 

structural problems during the three-dimensional (3D) generation were manually corrected 

using Marvin.  

 

2.2. Volsurf+ descriptors 

  The 3D structures of the identified molecules, in special data file (SDF) format, 

were used as input data in Volsurf+, v. 1.0.7 [33] and were subjected to molecular 

interaction fields (MIFs), to generate descriptors, using the following probes: N1 (amide 

nitrogen–hydrogen-bond donor probe), O (carbonyl oxygen–hydrogen-bond acceptor 

probe), OH2 (water probe) and DRY (hydrophobic probe). Additional non-MIF-derived 

descriptors were generated, resulting in a total of 128 descriptors [33]. One of the main 

advantages of using VolSurf descriptors is the relatively low influence of conformational 

sampling and averaging on these descriptors [34]. 
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2.3 RF models 

  Knime 3.1.0 software (KNIME 3.1.0 the Konstanz Information Miner Copyright, 

2003–2014, www.knime.org) [35] was used to perform all of the following analyses. 

Initially, the descriptors calculated in the Volsurf+ program were imported, in comma-

separated value (CSV) format, and the “Partitioning” node in the stratified sampling option 

was used to classify 80% of the initial dataset as the training set and the remaining 20% as 

the test set. The model was generated by employing the modeling set and the RF algorithm, 

with a “5-fold external validation” procedure, using WEKA nodes. In the 5-fold cross-

validation procedure, the dataset is divided five times into a modeling set (80%–20%).  

  After this modeling set (which was used to build and validate models) is divided 

additionally into multiple training (80%) and test sets (20%) [32,36]. The parameters 

selected for the RF models included the following: number of trees to build = 200; seed for 

random number generator = 1; and Gini Index, as a split criterion, for both the training and 

internal cross-validation sets. 

   From the confusion matrix, the internal and external performances of the selected 

models were analyzed, using the following parameters: sensitivity (true-positive rate), 

specificity (true-negative rate), and accuracy (overall predictability). In addition, to 

describe the true performance of the model with more clarity than can be obtained from 

accuracy alone, the receiver operating characteristic (ROC) curve was employed, using a 

“ROC curve” node, which uses the sensitivity and specificity parameters. The plotted ROC 

curve shows the true-positive (active) rate versus the false-positive rate (1 - specificity) 

[37].  

  In this representation, when a variable of interest cannot be distinguished between 

the two groups, the ROC area under the curve (AUC) value is 0.5, whereas the perfect 

separation between the values of the two groups, with no distribution overlap, results in a 

ROC AUC value of 1. Matthew’s correlation coefficient (MCC) was also calculated, 

wherein a value of 1 represents a perfect prediction, a value of 0 represents a random 

prediction, and a value of −1 represents total disagreement between the prediction and the 

observation [38].  

 

2.4 False positive remover 

  To detect false-positive structures among the SLs that were classified as active in 

the two RF models, the substructure filter for the removal of pan assay interference 

compounds (PAINS) was used [39]. All SMILES codes for SLs classified as active were 
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submitted to PAINS removal (http://www.cbligand.org/PAINS/), and those structures that 

were classified as false-positives were excluded from the final analysis. 

 

 2.5 Homology model of LdPTR1 

 

 2.5.1. Homolog identification of target sequences, the selection of a protein 

template, and the alignment of the template and target sequences.  

  The target protein sequence was obtained from the National Center for 

Biotechnology Information (https://www.ncbi.nlm.nih.gov/pubmed) [40]. The selection of 

a template protein was performed using the Basic Local Alignment Search Tool (BLAST, 

https://blast.ncbi.nlm.nih.gov/Blast.cgi) [28] The RCSB Protein Data Bank (PDB, 

https://www.rcsb.org/pdb/home/home.do) [41] was used to obtain the protein structure. 

The template protein that was selected was LmPTR1 (PDB ID: 1E7W) [42]. The alignment 

of multiple sequences was performed using FASTA 

(http://www.ebi.ac.uk/Tools/sss/fasta/), and the following values were obtained for the 

comparisons between L. donovani PTR1 (LdPTR1) and Leishmania major PTR1 

(LmPTR1): 91.0% identity and 97.2% similarity 

 

 2.5.2. Construction and validation of the model 

  The LdPTR1 model was constructed using the homology molecular modeling 

method, using MODELLER 9.18 software [43], which is based on spatial-constraint 

satisfaction modeling. Five models were generated, and the lowest energy model was 

chosen.  

  The stereochemical qualities of the model were evaluated with PROCHECK [44], 

which evaluated several stereochemical parameters, such as the torsional angles of the 

main chain, the torsional angles of the side chain, bad contacts or steric impediments, and 

planarity. PROCHECK generated a Ramachandran graph [45] , which verified the allowed 

and unallowed regions of the main amino acid chain. 

   The structural quality was evaluated in VERIFY 3D software 

(http://services.mbi.ucla.edu/SAVES/), which analyzes the compatibility of the protein 

sequence with its 3D structure, according to the chemical environment, and WHAT IF 

(http://swift.cmbi.ru.nl/servers/html/index.html), which analyzes various structural 

parameters, such as the atomic contacts between residues. The software Discovery Studio 

Visualizer [46] was used to visualize the modeled protein. 
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 2.6 Molecular docking 

  In addition to a homology model of PTR1, the structures of three L. donovani 

proteins, ODC (PDB ID: 2OO0) [47], NMT (PDB ID: 2WUU) [48], and MPK3 (PDB ID: 

402Z), in complex with their respective inhibitors: pyridoxal-5'-phosphate (PDB ID: PLP), 

2-oxopentadecyl-CoA (PDB ID: NHW), and 5-{[6-(acetylamino)pyrimidin-4-yl]oxy}-N-

{4-[(4-methylpiperazin-1-yl)methyl]-3(trifluoromethyl)phenyl}-2,3-dihydro-1H-indole-1-

carboxamide (PDB ID: 046), were downloaded from PDB. Using Molegro 6.0.1 software, 

all water compounds were deleted from the enzyme structures, and the enzyme/compound 

structures were prepared using the same default parameter settings, in the same software 

package (Score function: MolDock Score; Ligand evaluation: Internal ES, Internal HBond, 

Sp2–Sp2 Torsions, all checked; Number of runs: 10 runs; Algorithm: MolDock SE; 

Maximum Interactions: 1500; Max. population size: 50; Max. steps: 300; Neighbor 

distance factor: 1.00; Max. number of poses returned: 5).  

  The docking procedure was performed using a grid, with a 15-Å radius and a 0.30-

Å resolution, to cover the ligand-binding site for the four enzyme structures. All SMILES 

codes of the SLs classified as active in molecular docking calculations were submitted to 

PAINS removal (http://www.cbligand.org/PAINS/), and those structures that the filter 

classified as false-positive were excluded from the final analysis [36,39]. 

 

2.7 Molecular dynamics simulations 

  Protein-ligand complexes for the best-ranked molecules identified by the three VS 

approaches were each subjected to a 20-ns molecular dynamics (MD) simulation, using 

GROMACS 5.0, with the GROMOS 43a1 force field (FF) [49,50]. Using the webserver 

PROGRG26 topology generator (http://davapc1.bioch.dundee.ac.uk/cgi-

bin/prodrg/submit.html)  [51], the topologies for the six analyzed ligands were generated. 

The same FF was used to prepare the topology of the homology model, LdPTR1. A 100-ps, 

restrained equilibration and a 1-ns MD simulation were performed, to refine the model 

prior to the evaluation of protein-ligand complexes.  

  The MD simulations were performed using an SPC water model of point load, 

extended in a dodecahedral box. Na+ and Cl- ions were added to neutralize the overall 

charge on the system. The system was also balanced in 300 K, using the V-rescale 

algorithm, at 100 ps, represented by NVT (constant number of particles, volume, and 
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temperature), followed by equilibrium at 1 atm of pressure, using the Parrinello-Rahman 

algorithm of NPT (constant pressure, number of particles, and temperature), at 100 ps.  

  The root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), 

and radius of gyration (RoG) plots were generated in Grace software (http://plasma-

gate.weizmann.ac.il/Grace/), and the proteins and ligands were visualized using UCSF 

Chimera [52]. The molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) 

method was used to calculate binding free energies, using the trajectories calculated by the 

MD simulations [53]. 

 

3. Results and discussion 

  Following the good practices established for quantitative structure-activity 

relationship (QSAR) and molecular docking studies [54,31,55], a combined ligand-based 

and structure-based VS study was performed, using a databank containing 1,306 SLs that 

was stored in SistematX, a database developed at the Laboratory of Cheminformatics of 

the Federal University of Paraiba, which contains a wealth of useful information regarding 

natural products, including the locations of the species from which the indexed compounds 

were isolated [56]. Ligand-based VS was performed starting with a ChEMBL database 

(https://www.ebi.ac.uk/chembl/), which contained structures with previously demonstrated 

in vitro activity against L. donovani.  

  Data were curated from these datasets according to the procedures suggested in the 

literature [30,32]. Afterward, Volsurf+ descriptors (Volsurf+ program v. 1.0.7) [33,34] 

were calculated, using the 3D structures generated using ChemAxon JChem, v. 16.11.28 

(2016), a calculation module developed by ChemAxon (http://www.chemaxon.com/). 

Using Knime 3.1.0 software (KNIME 3.1.0 the Konstanz Information Miner Copyright, 

2003–2014, http://www.knime.org) [35], two RF models were generated and validated for 

their abilities to determine the activity probabilities for the entire SL dataset (Figure 1). 

  In parallel, using the homologous protein LdPTR1, which based on the crystal 

structure of L. major PTR1 (LmPTR1) [42] and three crystal structures for potential target 

enzymes expressed by L. donovani, ODC [47], NMT [48] and MPK3, molecular docking 

was performed in Molegro virtual docker, 6.0.1 using the SL dataset. Finally, using the 

active probability values that were obtained from these two methodologies, a consensus 

analysis was performed to select those molecules with the best-combined values (Figure 1). 

MD simulations were also performed to refine and validate the LdPTR1 homology model 
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and to evaluate the formation of protein-ligand complexes between LdPTR1 and the best-

ranked SLs, over time. 

 

 

 

Figure 1. The VS methodology used in this study. Solid blue lines represent the two sets of 

compounds used to generate and validate the RF model for L. donovani amastigotes and 

promastigotes (clear blue line represents the external test set). The red dotted lines 

represent the SLs from Asteraceae, obtained from SistematX (in-house database). The 

black dash-dot line represents both datasets (ChEMBL and SistematX). The yellow dashed 

line represents the three L. donovani protein structures extracted from the Research 

Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB), (PDB ID: 

2WUU, 2OO0 and 4O2Z) and the homologous protein, LdPTR1. The dash-dot border 

delimits the process performed in KNIME software. 
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3.1 Ligand-based virtual screening 

 Volsurf+ descriptors (128) were calculated for two ChEMBL datasets: promastigote 

(1,628 structures) and amastigote (3,259 structures), which were classified as either active 

or inactive (binary classification), using a cut-off value of pIC50 ≥ 4.7, which allowed the 

maximum representation of the chemical space for each class of structure (active and 

inactive). Subsequently, VolSurf+ descriptor values, together with their respective binary 

classifications, were used as input data, to generate two RF models in the Knime program. 

All 128 Volsurf+ descriptors were used to build the RF models. Several models were 

evaluated to minimize the false-positive rate of the models. Finally, for both models, 200 

trees and the Gini Index, as a split criterion, were selected. Structures with pIC50 values 

between 4.6 and 4.7 (range of 0.1 units) were excluded, to avoid edge effects and improve 

the predictive capacity of the models, by minimizing potential activity differences due to 

errors and different experimental protocols. A 5-fold cross-validation procedure was 

performed, splitting the dataset five times into a modeling set (80%–20%). Only the 

modeling set, which was additionally divided into multiple training and test sets (80%–

20%) was used to build and validate the models.  [32,36]. 

 

Table 1. Summary of cross-validation and 5-fold external validation results, which were 

obtained using the RF algorithm on the total set of 3,159 compounds for L. donovani 

amastigotes, and 1,569 compounds for L. donovani promastigotes 

 

Model Outcome 
Cross-validation 5-fold external validation 

(%) (%) 

Amastigote 

Active 73.7 72.8 

Inactive 78.0 76.8 

Total 76.8 74.8 

Promastigote 

Active 72.1 74.8 

Inactive 78.9 77.3 

Total 75.6 76.1 

 

 For the training sets used in both RF models, the match percentage values approached 

100%. For the cross-validation and test sets, values above 72.8% were obtained. In all 

cases, the inactive values (from 77.3% to 78.9%) were greater than the active values (from 

72.1% to 74.8%), demonstrating that the obtained models were highly restrictive, which is 
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a fundamental requirement for this type of study, as restrictive models minimize the 

probability of obtaining false-positive structure selection and prevents inactive molecules 

from being predicted as active. 

 Sensitivity and specificity are two key parameters for the selection of RF models. 

Specificity, which is defined as the true-negative rate, was higher for promastigote models 

(78.9% and 77.3%) than for amastigote models (78.0% and 76.8%), for both the internal 

validation and test sets, respectively. Similarly, sensitivity, which is defined as the true-

positive rate, showed that the percentage of predicted true-positive compounds was higher 

for the amastigote model (73.7%) than for the promastigote model, during cross-validation. 

For the test set, the promastigote model achieved a slightly higher specificity (74.8%) than 

the amastigote model.  

 The ROC curve is a quality parameter that plots the true-positive rate (sensitivity) 

against the false-positive rate (1 - specificity), and the values for the AUC of a ROC plot 

can range between 0 and 1  [37]. The maximum value is achieved when the perfect 

separation occurs between the values of two groups, whereas an AUC equal to 0.5 

indicates that the variable of interest cannot be distinguished between the two groups 

(Figure 2, gray line). 

 The L. donovani RF models achieved AUC values greater than 0.82, demonstrating a 

high degree of differentiation between the active and inactive compounds in the ChEMBL 

dataset. AUC values for the amastigote model (Figure 2a), of 0.84 and 0.82 for the internal 

cross-validation and 5-fold external validation, respectively, were minimally lower than 

those for the promastigote model (Figure 2b), of 0.84 and 0.83.  

Additionally, MCC, which is a quality parameter, was determined for the two models, 

using all values in the confusion matrix, based on Equation 1.  

 

(TP x TN) - (FP x FN)
MCC=

(TP+FP) (TP+FN) (TN+FP) (TN+FN)
    (Equation 1) 

 where TP is the true-positive rate, TN is the true-negative rate, FP is the false-positive 

rate, and FN is the false-negative rate [38]. An MCC value equal to 1 indicates a perfect 

correlation, a value of 0 indicates a random prediction, and a value of –1 indicates total 

disagreement between the prediction and the observation [38]. Here, similar MCC values 

were observed for both models, with a slightly higher MCC value for the amastigote model 

(0.52) in the 5-fold external validation. In contrast, the promastigote model achieved a 

major MCC value during cross-validation. 
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Figure 2. ROC plot, sensitivity versus (1 - specificity), generated by the selected RF model 

for cross-validation and 5-fold external validation of the (a) promastigote and (b) 

amastigote models. AUC = value of the Area Under the Curve; MCC = Matthews’s 

Correlation Coefficient. 

 To identify any compounds in the test sets for both models and the SL dataset for which 

the predictions may be unreliable, the domain of applicability was calculated. Only one 

molecule, out of 630 structures in the test set, was classified as unreliable for the 

amastigote model. For the promastigote model, and for the SL dataset used for VS, all 

structures were classified as reliable.  

 Ligand-based VS was performed to predict which structures may potentially be active 

against the two parasitic forms of Leishmania, using the entire set of 1,306 SLs registered 

in SistematX. For the amastigote model, 712 molecules were classified as active, with 

active probability (LB) values ranging between 0.50 and 0.87. Two types of skeletons were 

observed among the five best-ranked structures: four pseudoguaianolides (Figure 3, 

structures 1 and 3-5) and a germacranolide (structure 2). Some specific structural features 

were observed among this group, specifically the presence of alkyl esters moieties in all 

hits, such as the two cis-related acetyl groups in the most active germacranolide and the 

most active SL, cumanin-diacetate (structure 1), which is a secondary metabolite 
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commonly identified in plants from the Ambrosia genus (A. psilostachya and A. 

acanthicarpa) [57].  

 Similarly, an α-methylene-γ-lactone was observed in three of the five best-ranked 

structures (structures 1, 3, and 4), the presence of this moiety has been associated with 

interactions between this type of metabolite and the sulfhydryl group of cysteine, through a 

Michael addition [58]. 

 Interestingly, arnicolide C (structure 3, Figure 3) and arnifolin (structure 4), two SLs 

that are typically found in Arnica montana L., also known as mountain arnica [59], 

presented high LB-values during the ligand-based VS as two of the best-ranked molecules 

for the amastigote parasitic form. Structurally, these two molecules are 

pseudoguaianolides, with similar molecular weights, that only differ by the substitution of 

an isobutyrate group at C-6 in arnicolide C (structure 3) and an angelate group (in addition 

to the presence of the α-methylene-γ-lactone system in C-11) in arnifolin (structure 4). 

 For the promastigote model, only 14 of 1,306 screened SLs were classified as active. A 

different structural pattern was observed among the five best-ranked SLs for promastigotes 

compared with those identified for amastigotes. In all five cases, SLs with high molecular 

weights presented the highest LB values, including SL dimers of structures 1-4. Bedfordia 

symmetric dimeric lactone (structure 6, Figure 3), a secondary metabolite isolated from 

Bedfordia salicina, which is a species commonly found in Tasmania, reached an LB value 

of 0.66. This SL is composed of two eremophilanolide units, which are linked through a 

covalent bond between the carbon 8 of both structures (structure 7, Figure 3).  

 

Figure 3. Potentially active sesquiterpene lactones (five best-ranked), identified using 

ligand-based VS, for the two-parasitic forms of L. donovani. LB = active probability value. 
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 Similarly, carpedilactone G (structure 6) also presented a high LB value against 

promastigotes and, similar to structure 7, features an eremophilanolide skeleton. 

Additionally, two dimers isolated from Inula japonica, japonicone V (structure 8) and 

japonicone U (structure 9), which achieved LB values of 0.60, were classified by the 

ligand-based VS as potential antileishmanial structures against promastigotes. Previously, 

dimeric SLs from this plant have been reported to have anti-inflammatory and cytotoxic 

activities [60].  

 To examine the results for false-positive molecules, the entire set of 712 (amastigote) 

and 14 (promastigote) SLs that were classified as potentially active by the ligand-based VS 

were tested using the PAINS remover web tool [38]. All of the molecules that were 

classified as active against the promastigote parasitic form passed through the filter, 

whereas among the 712 molecules with LB values above 0.5 from the amastigote RF 

model, two structures, Neurolobatin B (LB = 0.508) and 3-chlorodehydroleucodin (LB = 

0.544) did not pass the filter and were classified as false-positives. 

 

 3.2. Structure-based virtual screening 

 

3.2.1. Homology model of LdPTR1 

 Molecular modeling was performed for the L. donovani PTR1 protein, based on 

homology with L. major PTR1 [42]. A good template for LdPTR1 was obtained due to the 

high level of similarity between the target sequence (LdPTR1) and the template sequence 

(LmPTR1). To verify and validate the reliability and stereochemical qualities of the 

modeled protein, data from Ramachandran, VERIFY 3D, and WHAT IF graphs were 

considered. The Ramachandran plot showed that the main possible chain conformations 

included 88.3% with residues in the most favored regions, 11.7% with residues in allowed 

regions, and 0% outliers (Supplementary Figure S1). Because no residues were found in 

the outlier region, the generated model was considered satisfactory, and all residues in the 

active site were analyzed against the template sequence and found to be conserved [42]. 

The G factors, which indicate the quality of the covalent distance and the bond angle, were 

0.15 for dihedrons and 0.09 for phi/psi. Positive, or non-negative, values indicate a model 

with good stereochemistry. According to the VERIFY 3D results, 85.07% of residues had 

mean 3D/1D scores ≥ 0.2, which indicated a reliable model because more than 80% of 

amino acids had values of 0.2 in the 3D/1D profile. The quality of atomic contacts between 

the atoms of each residue was analyzed, using the Fine Packing Quality Control module of 
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WHAT IF, which compares the distribution of atom positions around each residue. The 

mean score of all wastes was -0.687. A score of less than -5.0 for a residue indicates poor 

or unusual atomic contacts. Finally, MD simulations (1 ns) were performed to refine and 

validate the homology model.  

 

3.2.2. Molecular docking  

  In addition to LdPTR1, three L. donovani target proteins, whose crystal structures 

were obtained from the PDB databank, were analyzed by molecular docking: ODC (E.C. 

4.1.1.17), NMT (E.C. 2.3.1.97), and MPK3 (E.C. 2.7.11.25). Initially, the methodology 

was validated by performing redocking with the ligand reported in the PDB crystal 

structure for each of the three L. donovani proteins used in this study. These values were 

not obtained for LdPTR1. The docking scores and their respective RMSD values are listed 

in Table 2. 

  Using the same parameters, a binding VS for the entire set of 1,306 SLs was 

performed. Based on the binding energy values, all tested molecules were ranked, using the 

following probability calculation. 

   

𝑺𝑩 =  
𝐸𝑖

𝐸𝑚𝑖𝑛
  𝑖𝑓 𝐸𝑖 < 𝐸𝑙𝑖𝑔𝑎𝑛𝑑(Equation 2) 

where SB is the structure-based probability; Ei is the docking energy of compound i, where 

i ranges from 1 to 1,306 (SL dataset); Emin is the lowest energy value of the dataset; and 

Eligand is the ligand energy from protein crystallography 

 

  This equation was proposed used to normalize the scores obtained from the 

molecular docking analyses during the structure-based VS and to generate values that were 

comparable to the active probability values obtained during the ligand-based VS. 

Structures that presented structure-based probability values (SB) above 0.5 were classified 

as active. An additional applied criterion was defined to select those structures with 

energies below that obtained for the ligand used in the crystallography study. This criterion 

was not applied to LdPTR1 and, instead, SLs were only ranked according to the minimum 

docking energy value [61]. 

  The analysis of the NMT protein identified 528 compounds with SB values above 

0.5; however, only 490 of these had binding energy values lower than that for the PDB 

ligand, 2-oxopentadecyl-CoA (PDB ID: NHW), which was –50.4 KJ/mol. For MPK3 and 

ODC, the numbers of SLs with SB values > 0.5 were 243 and 8, respectively. For both 
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enzymes, only two structures (structures 13-14 for MPK3 and structures 14-15 for ODC) 

had lower energies than the respective inhibitors reported in the crystal structures. Finally, 

for LdPTR1, 346 molecules showed SB values greater than the cut-off value; however, no 

reference ligand was used for this homologous protein. To produce the probability of 

selecting molecules with high SB but without real activity against Leishmania (false-

positives), all SLs that were classified as being active by the structure-based VS were 

filtered using the PAINS. For NMT only 1 of the 490 structures classified as active was 

identified as being a false-positive (Neurolobatin A); for PTR1 two structures with SB 

values higher than 0.5 were filtered out by PAINS (Neurolobatin A and B); for ODC and 

MPK3, no molecules were identified as being false-positive. 

 The best-ranked molecules for each enzyme are listed in Table 2 and Figure 4. All binding 

energy values can be found in the supporting information 

 

Table 2. The docking energy (kJ/mol) for the best-ranked SLs, according to the structure-

based approach, for each of the four L. donovani proteins studied. Ligand = docking energy 

(kJ/mol) for the PDB ligand. 

 

 

  Guaianolide skeletons were predominant among the seven SLs that presented the 

highest SB values for the four enzymes studied, and structures 12, 13, 15, and 17 (Figure 

4) all belonged to this group of substructures. Similarly, two germacranolides, structures 11 

and 16, displayed very low docking energy values for NMT and LdPTR1, respectively. 

Structure 14, an SL extracted from Picradeniopsis woodhousei, was classified as a 

disecoeudesmanolide and was the only compound identified by the structure-based VS 

associated with high scores for two L. donovani proteins (Table 2), MPK3 (–128.5 kJ/mol) 

and ODC (–83.7 kJ/mol). 

L. donovani protein SL-1 SL-2 Ligand Redocking RMSD 

NMT 11 (-98.8) 12 (-98.1) (-50.4) 1.77 

ODC 13 (-92.1) 14 (-83.7) (-72.0) 0.14 

MPK3 14 (-128.5) 15 (-114.4) (-112.6) 0.29 

LdPTR1 16 (-76.7) 17 (-76.3) - - 
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Figure 4. Best-ranked antileishmanial SLs from the structure-based virtual screening. 

 

 

Figure 5. Hydrogen-bonding interactions (blue dotted lines) and steric interactions (green 

dotted lines) between (a) pyridoxal-5'-phosphate (PDB ID: PLP) and (b) 

disecoeudesmanolide 3A (structure 14) at the active site of L. donovani ODC protein. (c) 

An inhibitor reported in the PDB for MPK3 (PDB ID:046) and (d) disecoeudesmanolide 

3A (structure 14), in the active site of MPK3 protein. Common H-bond interactions are 

highlighted in yellow. 
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  Hydrogen-bonding (H-bond) interactions between disecoeudesmanolide 3A 

(structure 14) and ODC residues are shown in Figure 5b. Six residues of the ODC active 

site interact with this SL: K69, D88, E274, S200, G276, and Y389. S200, G276, and Y389 

also interacted with the inhibitor reported for the PDB crystal structure, pyridoxal-5'-

phosphate (PDB ID: PLP, Figure 5a). In addition to the H-bond interactions between the 

disecoeudesmanolide 3A ester group and residues S200, G276, and Y389 of ODC, an 

interaction between the oxygen of the pyranose ring and Y389 was also observed. Six 

steric interactions, which adversely contributed to the docking energy values, were 

identified for structure 14, with H197, Y331, A393, and G237; a similar steric interaction 

also was identified with PLP.  

  Similarly, structure 14 also interacts with MPK3 primarily through H-bonds and 

steric interactions with specific residues of the active site. Four H-bond interactions formed 

between E94 and D193, primarily with hydroxyl groups of the monosaccharide and the 

oxygen in the pyranose ring. Interestingly, two critical residues, M133 and T130, were 

found to form H-bonds with disecoeudesmanolide 3A (structure 14) and with the inhibitor 

reported in the PDB for this protein (PDB ID: 046, Figure 5c). The interaction between the 

inhibitor compound and these two MPK3 residues occurs through carbonyl groups. Unlike 

the interactions observed for ODC, the carbonyl group of the disecoeudesmanolide 3A 

lactone ring interacts with MPK3, specifically at residue M133. Four steric interactions 

that unfavorably influence the molecular binding energy were identified for structure 14, 

with the non-polar amino acids, P131, L132, and I192, which interact with the α-

methylene-γ-lactone system of the SL; however, the docking score for this molecule is 

primarily associated with H-bonds that form with the glycoside moiety.  

Figure 6. Docking formations between (a) 5-sarracinate-eucannabinolide (structure 11), 

(b) pannonicoside (structure 12) and (c) 2-oxopentadecyl-CoA (PDB ID: NHW) at the 

active site of L. donovani NMT. Labels: H-bonds (blue), steric interactions (gray), 

electrostatic interactions (yellow), and critical interactions (red). 
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  The two best-ranked molecules for NMT were identified as 5-sarracinate-

eucannabinolide (structure 11, Figure 4) and pannonicoside (structure 12). Figure 6 shows 

the primary interactions for these two SLs and NMT. Structures 11 and 12 contain a 

similar number of H-bonds, which may be associated with the obtained docking energy 

values of –98.8 and – 98.1 kJ/mol, respectively. Similarly, some NMT residues were 

highlighted in these interactions, including F14, E177, and R179 (also establishes an 

electrostatic interaction with NMT), which were identified in interactions with both 

structures 11 and 12 and with the PDB inhibitor, 2-oxopentadecyl-CoA (PDB ID: NHW). 

For the two SLs, some steric interactions were also identified which may have unfavorable 

effects on the docking score, especially P182, which interacts with both structures. For 

NHW, a higher number of steric interactions were identified in the docking site for the 

aliphatic moiety (oxopentadecyl group). This type of interaction was not identified for the 

most polar region of NHW, which interacts with the L. donovani NMT pocket, where 

electrostatic interactions occur with H12 and R179. 

 

3.3 Combined approach Structure-Based VS and Ligand-Based VS 

  Consensus analysis of the two methodologies used in this study (structure- and 

ligand-based VS) was performed, to verify potentially active molecules and their possible 

mechanisms of action, facilitating the identification of potential multitarget compounds. A 

new score (CA, Equation 3) was calculated, to combine the probability scores of both VS 

approaches and the true-negative rate of the RF model and minimize the probability of 

selecting false-positive compounds (Equation 3).  

 

𝑪𝑨 =
𝑺𝑩 +(1+TN) 𝑥 𝑳𝑩

2+TN
    (Equation 3) 

where CA is the combined probability; SB is the structure-based probability; TN is the 

true-negative rate, and LB is the ligand-based probability  

 

  Different weights were assigned to the structure-based VS (SB, weight = 1) and 

ligand-based VS (LB, weight = 1+TN) probabilities because the structure-based 

probabilities were based only on interactions between proteins and ligands, whereas the 

ligand-based VS used pIC50 experimental values and molecular descriptors to generate the 

RF model. Therefore, to diminish the false-positive rate (an increment of the TN), 

Equation 3 associated the TN rate from the internal cross-validation set with the LB values 

obtained by the SLs in each model. Minimizing the probability of selecting inactive 
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molecules as active molecules (false-positive) is very important for these types of studies 

because the selection of false-positive molecules can result in significant costs in the forms 

of wasted time and money [61].  

  Some structures that did not present with the highest scores for either of the two VS 

approaches appeared in the consensus analysis, as potential leishmanicidal drug structures 

(structures 18-23, Figure 7). Disecoeudesmanolide 3A (structure 14) emerged as a potential 

multitarget structure that may act against two target enzymes in L. donovani (Table 3) and 

was the only SL in the entire data set to demonstrate high CA scores for both parasitic 

forms against a specific protein, ODC (third-best-ranked compound for the amastigote 

parasitic form). 

 

Figure 7. Representation of the best-ranked structures for each parasitic form, identified 

using a combined ligand-based and structure-based virtual screening approach. 
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Table 3. Summary of the best-ranked structures, identified using a combined ligand- and 

structure-based virtual screening approach; LB = active probability value in ligand-based 

VS; SB = active probability value in structure-based VS. CA = combined probability value 

 

  Additionally,9α-linoloyloxy-8β-(2-methylbutyryloxy)-15-hydroxy-14-oxo-

acanthospermolide (structure 22, Figure 7), similar to SL structure 14, presented high 

combined probability values for two targets in L. donovani promastigotes (NMT and 

LdPTR1) and was classified as active using both VS methodologies, in this study. Structure 

22, together with structure 18, which were identified as potentially active compounds 

against NMT in amastigotes, are both characteristic secondary metabolites of 

Acanthospermun hispidium, a plant native to Central and South America [62], and both 

contain a germacranolide skeleton, bound to linoleic and linolenic fatty acid ester, 

respectively. 

  For both parasitic forms, the best-ranked structures for LdPTR1, which achieved 

CA values above 0.70, also previously presented high probability values during the ligand-

based VS: (cis, cis)-3α-acetoxy-8β-acetoxy-costunolide (structure 2), for amastigotes, and 

Bedfordia symmetric dimeric lactone (structure 7), for promastigotes. Nine compounds 

were classified as active using this combined approach for the promastigote parasitic form; 

however, only four of these SLs were also classified as active using the either of the two 

VS methodologies because the RF models were highly restrictive.  

  MD studies were performed to validate the constructed homology model and to 

evaluate the protein-ligand stabilities of five of the best-ranked structures identified for 

LdPTR1, using the various approaches in this study. Because PTR1 catalyzes the NADPH-

dependent reversible reduction of oxidized pterins into dihydrobiopterin (DHB) and the 

  Amastigote Promastigote 

Protein Structure LB SB CA Structure LB SB CA 

NMT 
18 0.71 0.79 0.74 22 0.50 0.79 0.60 

19 0.75 0.68 0.73 10 0.58 0.61 0.59 

ODC 
13 0.61 1.00 0.75 14 0.43* 0.91 0.60 

20 0.61 0.74 0.66 - - - - 

MPK3 
14 0.51 1.00 0.82 23 0.53 0.58 0.55 

15 0.54 0.89 0.76 - - - - 

LdPTR1 
21 0.65 0.96 0.76 7 0.64 0.66 0.65 

2 0.78 0.67 0.74 22 0.50 0.56 0.52 
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reduction of tetrahydrobiopterin (THB) and folates into 7,8-dihydrofolate (DHF) and 

5,6,7,8-tetrahydrofolate (THF), the molecule 7, 8-dihydrobiopterin was used as a reference 

ligand for LdPTR1 [63].  

 

Figure 8. (a) Root mean square differentiation (RMSD), (b) root mean square fluctuation 

(RMSF), and (c) radius of gyration (RoG) values within the LdPTR1 binding site, obtained 

after molecular dynamics simulations using five of the best-ranked SLs, identified using 

various VS approaches. LdPTR1 (yellow); DHB: LdPTR1 complex (Sky blue); structure 2: 

LdPTR1 (light green); structure 7: LdPTR1 (dark green); structure 17: LdPTR1 (red); 

structure 21: LdPTR1 (Orange); structure 22: LdPTR1 (dark blue). 
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  RMSD values were used to evaluate the structural stability of the receptor frame, 

by measuring the distance between different positions (in nm) that a set of atoms exhibited 

over time [64]. During the first 5 ns of the simulation, similar behaviors were observed 

among the 5 SLs, and LdPTR1, without the ligand (the apoenzyme), was less perturbed 

over time (Figure 8a) than the enzyme in complex with any of the other six test molecules. 

Starting at 7 ns, structures 2 and 22 demonstrated increased stability compared with the 

other SLs and the DHB ligand, whereas the LdPTR1 apoenzyme evolved continuously and 

did not reach a clear stability timeframe during the 20-ns simulation.  

  Structure 2, (cis, cis)-3α-acetoxy-8β-acetoxy-costunolide, which was the best-

ranked molecule in the consensus analysis between the two VS methodologies, exerted 

more stability on the complex with LdPTR1, and the RMSD value for this complex was 

almost constant (approximately 0.15), starting at 12 ns. For the structures 7, 17, and 21, the 

respective ligand–enzyme complexes showed similar conformational change evolutions, 

resulting in RMSD values of approximately 0.45, which are comparable to that obtained 

for LdPTR1 alone (approximately 0.5). 

  Then, the RMSF values were analyzed, by examining fluctuations in each LdPTR1 

residue. The most variable regions were observed for the LdPTR1 loops. For the section 

formed between A64 and T84, the ligand-LdPTR1 complexes presented lower values than 

that for the apoenzyme (Figure 8b). Interestingly, structure 2 promoted reduced flexibility, 

in both the A64 and T84 loop region (RMSF approximately 0.35 vs. 0.75 for unbound 

LdPTR1) and the loop formed from N109 to R133 (RMSF approximately 0.7 vs. 0.3 for 

unbound LdPTR1 RMSF ca), which were lower RMSF values to those for the other four 

SLs and DHB.  

  These results indicated that this compound has a better affinity for LdPTR1 than the 

other molecules. Similarly, slight differences in the RMSF values were observed for the 

LdPTR1 active site, except for the residues K16, S112, K198, L226, and S227, which 

demonstrated decreased RMSF values for the five tested SLs. Interestingly, structure 2 

showed the lowest RMSF values for the whole active site, for with either LdPTR1 or DHB: 

LdPTR1, further supporting that this SL has the highest affinity with LdPTR1 among all of 

the SLs examined.  

  Among the SL- LdPTR1 complexes examined (Figure 8c), fluctuations in the 

tertiary structure of the LdPTR1 protein were observed (the RoG of LdPTR1 was 

approximately 4.31 nm), and the complexes between LdPTR1 and the structures 7, 17, and 

22 appeared to be stably folded after the MD simulation (RoG of approximately 4.33 nm). 
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These three structures showed no differences in RoG values compared with the complex 

formed between DHB and LdPTR1. For structure 2, a slightly major effect on LdPTR1 

folding was observed, during the interval from 13 to 16 ns (RoG of approximately 4.36 

nm); however, this fluctuation did not represent a protein deformation because the RoG 

values after this time (16 ns) remained similar to those for DHB and the other SLs 

(approximately 4.33 nm), except structure 21, for which the MD simulation generated an 

unfolded protein starting at 12 ns, representing the loss LdPTR1 stability (RoG of 

approximately 4.40 nm). 

  Based on these MD simulations, structure 2 appears to have a better affinity for 

LdPTR1 than the other studied structures. Structural stability may be associated with the 

germacranolide skeleton and the presence of the α-methylene-γ-lactone moiety because the 

RMSD values for structures 2 and 22 (which is also a germacranolide with the same α, β-

unsaturated carbonyl system) were the lowest among all examined molecules. A similar 

trend was observed in the structure-based VS, in which the highest SB value was achieved 

by structure 16, which has a similar skeleton, suggesting that this type of SL should be 

examined in future studies attempting to identify potential antileishmanial leads.  

 

Table 4. Binding free energies (kJ/mol) from the MM/PBSA calculations for five of the 

best-ranked structures identified for LdPTR1. 

Energies 2 7 17 21 22 Ligand 

Polar 
Electrostatic -18.3 -14.4 -80.1 -46.5 -27.8 -90.9 

Polar solvation 80.1 78.1 158.2 145.6 167.0 171.1 

Unpolar 
Van der Waals -209.9 -235.2 -272.2 -236.5 -338.5 -113.8 

SASA -16.6 -17.9 -22.2 -19.0 -27.8 -13.1 

Binding energy -164.7 -189.4 -216.3 -156.4 -227.1 -46.7 

 

  The binding free energies of the corresponding components can be observed in 

Table 4. The MM/PBSA method was used to calculate the binding free energies of the five 

structures that were previously analyzed by MD simulations [53]. All complexes formed 

with the examined SLs presented negative binding free energies, with lower values than 

that for the DHB-LdPTR1 complex. For all studied compounds, electrostatic and van der 

Waals interactions and the solvent-accessible surface area (SASA) contributed negatively 

to the binding free energies, and only polar solvation showed a positive contribution to the 

total energy value. DHB demonstrated a different behavior compared with the examined 
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SLs, with the increased contribution of polar parameters (polar solvation and electrostatic 

interactions) to the total binding free energy value. 

  In complexes with SLs, van der Waals interactions shoed the highest energetic 

contributions, which were much stronger for structure 22 than those observed for the other 

four SLs, which is directly related to the presence of a very hydrophobic group, such as 

linoleic acid. This germacranolide presented the lowest binding energy value (–227.1 

kJ/mol), confirming that it represents a promising multitarget hit against L. donovani. 

Interestingly, structure 17, obtained a similar binding free energy value as that for structure 

22, showing that the energy calculations performed by this method are not influenced by 

the molecular sizes of the analyzed molecules, which is a common problem for docking 

calculations. 

 

4. Conclusions  

  In this study, two different VS approaches were performed to identify structures 

with promising antileishmanial activity, from a dataset of 1,306 SLs, obtained from 

SistematX. For the ligand-based VS, two RF models, with accuracies above 71%, were 

constructed for both L. donovani parasitic forms. Some structural features were identified, 

including germacranolide and guaianolide skeletons, as the most common features among 

the active structures for amastigotes; in contrast, for promastigotes, dimeric molecules had 

the highest p-values. In the structure-based VS, using three PDB crystal structures and a 

homology model of L. donovani PTR1, SLs with lower docking scores than the reported 

inhibitors were identified. Finally, through a consensus analysis, the probability scores of 

the two VS approaches were normalized to identify 13 promising leishmanicidal SLs that 

were classified as being active by both VS approaches. Disecoeudesmanolide 3A (structure 

14) and 9α-linoloyloxy-15-hydroxy-8β-(2-methylbutyryloxy)-14-oxo-acanthospermolide 

(structure 22), appear to be promising, multitarget, antileishmanial SLs. MD simulations 

also showed that germacranolides with α-methylene-γ-lactone moieties, such as structures 

2 and 22, have better affinities with LdPTR1 than other structures. 

  Therefore, the combined use of two VS approaches was able to preliminarily 

identify potentially active SLs against the two parasitic forms of L. donovani, from an in-

house dataset. The combination of probability scores generated by the ligand- and 

structure-based VS approaches represents a novel methodology for these types of studies, 

facilitating the identification of promising molecules and their possible mechanisms of 

action. 
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CAPÍTULO IV 
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  A diidrofolato redutase-timidilato sintase (DHFR-TS) é uma enzima crucial no 

metabolismo do folato, dependendo do NADPH para sua função. Desempenha um papel 

fundamental na geração de tetraidrofolato a partir do folato ou diidrofolato e facilita a 

conversão de monofosfato de deoxiuridina (dUMP) em monofosfato de deoxitimidina 

(dTMP) [1]. Simultaneamente, a enzima PTR1, com uma função semelhante à DHFR, 

desempenha um papel chave na regulação do equilíbrio redox e na homeostase dos níveis 

de folato, contribuindo para contornar a inibição metabólica da DHFR convertendo 

diidrofolato (DHF) em tetraidrofolato (THF). Esse mecanismo leva à ineficácia de 

medicamentos contra Leishmania e ao desenvolvimento de resistência medicamentosa no 

parasita [2].  

  Foi relatado que a inibição da diidrofolato redutase-timidilato sintase (DHFR-TS) 

faz com que a Pteridina redutase 1 (PTR1) forneça folato suficiente para garantir a 

sobrevivência do parasita. Portanto, ambas as enzimas, DHFR-TS e PTR1, devem ser 

consideradas como potenciais alvos terapêuticos na busca por tratamentos mais eficazes 

contra a leishmaniose [3]. No entanto, essa teoria ainda é debatida, uma vez que a 

eliminação do gene ptr1 provou ser letal para o parasita, indicando o papel crucial de PTR1 

no crescimento e na metaciclogênese do parasita devido à produção reduzida de pterina 

[4]. 

  Este capítulo busca a seleção de potenciais inibidores de PTR1 e DHFR-TS em 

diferentes espécies de Leishmania causadoras de Leishmaniose cutânea (CL), a partir de 

um banco de moléculas in-house composto por 360 cauranos. Em todo o mundo, 

aproximadamente, 20 diferentes espécies de Leishmania são responsáveis pela transmissão 

de CL, incluindo L. tropica, L. major, L. aethiopica, L. infantum e L. donovani, sendo que 

L. major representa o organismo causador mais comum [5]. No Novo Mundo (do sul dos 

Estados Unidos à América Latina e América do Sul), L. mexicana, L. venezuelensis, L. 

amazonensis, L. braziliensis, L. panamensis, L. guyanensis e L. peruviana são as principais 

espécies causadoras de CL [6,7]. 

  O capítulo está dividido em duas partes. Na primeira, é criado um modelo 

classificatório de random forest para a seleção de potenciais inibidores contra L. major 

PTR1. O modelo foi validado por meio de ensaios in vitro usando a enzima recombinante 

L. major PTR1. Adicionalmente, considerando que a maioria dos casos de CL na América 

Latina é causada por L. amazonensis, L. braziliensis e L. panamensis, foram realizados 

cálculos computacionais, incluindo docking molecular e simulações de dinâmica 
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molecular, para avaliar a capacidade desses cauranos de inibir em diferentes espécies do 

parasita. 

  A segunda parte do capítulo buscou avaliar se os compostos selecionados contra 

PTR1 também podem ter uma capacidade multialvo, sendo também inibidores de DHFR-

TS. Foram realizados ensaios in vitro dos cauranos previamente selecionados, e foi 

encontrada uma potencial capacidade inibitória dupla DHFR-TS/PTR1 para os compostos: 

ácido 3-p-cumaroiloxi-ent-caur-16-eno-19-oico e ácido 3-cinamoiloxi-ent-caur-16-eno-19-

oico. 
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Abstract: The current treatments against Leishmania parasites present high toxicity and 

multiple side effects, which makes the control and elimination of leishmaniasis 

challenging. Natural products constitute an interesting and diverse chemical space for the 

identification of new antileishmanial drugs. To identify new drug options, an in-house 

database of 360 kauranes (tetracyclic diterpenes) was generated, and a combined ligand- 

and structure-based virtual screening (VS) approach was performed to select potential 

inhibitors of Leishmania major (Lm) pteridine reductase I (PTR1). The best-ranked 

kauranes were employed to verify the validity of the VS approach through LmPTR1 

enzyme inhibition assay. The half-maximal inhibitory concentration (IC50) values of 

selected bioactive compounds were examined using the random forest (RF) model (i.e., 2β-

hydroxy-menth-6-en-5β-yl ent-kaurenoate (135) and 3α-cinnamoyloxy-ent-kaur-16-en-19-

oic acid (302)) were below 10 M. A compound similar to 302, 3α-p-coumaroyloxy-ent-

kaur-16-en-19-oic acid (302a), was also synthesized and showed the highest activity 

against LmPTR1. Finally, molecular docking calculations and molecular dynamics 
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simulations were performed for the VS-selected, most-active kauranes within the active 

sites of PTR1 hybrid models, generated from three Leishmania species that are known to 

cause cutaneous leishmaniasis in the new world (i.e., L. braziliensis, L. panamensis, and L. 

amazonensis) to explore the targeting potential of these kauranes to other species-

dependent variants of this enzyme. 

 

Keywords: Leishmania; Natural products; Kauranes; Asteraceae; Virtual screening; 

Machine learning; Molecular docking 

 

1. Introduction 

  Leishmaniasis refers to a group of anthroponotic and zoonotic diseases that affect 

between 700,000 and 1 million people worldwide, causing between 20,000 and 30,000 

deaths each year, primarily among populations found in tropical and subtropical areas. 

Leishmaniasis has been classified as a neglected tropical disease (NTD) due to a lack of 

research and the poor development of new drugs over many decades. [1-3]. Leishmaniasis 

is caused by approximately 20 protozoan parasite species of the genus Leishmania, which 

are transmitted to humans by more than 30 different species of phlebotomine sandflies [4]. 

The distinct species of Leishmania cause at least four separate syndromes: visceral 

leishmaniasis (VL, also known as kala-azar), post-kala-azar dermal leishmaniasis (PKDL), 

cutaneous leishmaniasis (CL), and mucocutaneous leishmaniasis (MCL) [5]. 

  The CL subtype is typically characterized by localized, diffuse, or disseminated 

skin lesion[6]. In the old world (southern Europe, the Middle East, southwest Asia, and 

Africa), approximately 20 different Leishmania species are responsible for the transmission 

of CL, including L tropica, L. major, L. aethiopica, L. infantum, and L. donovani, with L. 

major representing the most common causative organism [7]. In the new world (from the 

southern United States through Latin America to South America), L. mexicana, L. 

venezuelensis, L. amazonensis, L. braziliensis, L. panamensis, L. guyanensis, and L. 

peruviana are the primary causal species of CL [8, 9]. In Colombia, the overall 

leishmaniasis incident rate is 26.2 cases per 100,000 population (including 98.6% of the 

cases related to CL), and in Brazil, autochthonous cases of CL have been reported in all 

states. Colombia and Brazil represent the new world countries with the most frequently 

reported CL clinical manifestation [10, 11]. 

  Starting in the 1950s, pentavalent antimonial compounds were introduced as 

treatments against Leishmania species; however, these drugs are associated with several 
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adverse events and are becoming increasingly ineffective due to the development of 

resistance [12, 13].  

  Other drugs used to treat leishmaniasis include amphotericin B in a liposomal 

formulation, which significantly reduced the side effects and treatment duration associated 

with amphotericin B in the free form but is very expensive; and paromomycin and 

miltefosine, which are associated with high toxicity (particularly renal toxicity), increased 

resistance, and teratogenic and abortifacient effects [4, 12]. Therefore, alternative 

chemotherapies must be developed to improve the control and elimination of this group of 

diseases. Natural products, which have always been an important source of bioactive 

compounds, are commonly used as the starting material for new drug development [14-16].  

  Recently, computational studies using natural products have been reported in the 

continuous search for new leishmanicidal drugs or lead compounds. In particular, machine 

learning and molecular docking calculations have been used to identify new structures with 

potential anti-Leishmania activities, based on secondary metabolites found in Asteraceae 

species [17, 18], especially sesquiterpenoids [19, 20], triterpenes [21] and phytosterols [22] 

. However, anti-Leishmania studies examining the effects of diterpenoids, a common class 

of secondary metabolites found in Asteraceae (more than 1,200 structures have been 

identified), are rare [23] 

  Thus, in this study, an in silico approach, combining both structure- and ligand-

based virtual screening (VS), was used to select structures with potential activity against 

pteridine reductase 1 (PTR1) from L. major (LmPTR1) from an in-house database 

containing 360 kauranes. PTR1 (E.C. 1.5.1.33), is an NADPH-dependent short-chain 

reductase, is responsible for the unusual salvage of pterin in Leishmania and acts as a 

metabolic bypass for drugs that target dihydrofolate reductase [24] 

  Subsequently, the in silico results were verified through in vitro assays, determining 

the half-maximal inhibitory concentrations (IC50) for the structures 135, 301, and 302. In 

addition, two derivatives structures (301a and 302a) were synthesized, and their IC50 

values were also calculated. Finally, molecular docking and molecular dynamics 

simulations were performed to identify potential kauranes against PTR1 of various 

Leishmania species known to cause CL in the new world. 
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2. Results and discussion 

 

2.1 A combined ligand‑/structure‑based virtual screening approach using LmPTR1.  

2.1.1. Ligand-based VS 

  The ChEMBL dataset (https://www.ebi.ac.uk/chembl/) was classified as either 

active or inactive (binary classification), using a cutoff value of pIC50 ≥ 5.0 (pIC50 = log 

IC50). This value was selected according to the range of pIC50 values observed for the 

entire dataset (657 structures) to obtain the maximum representation of the chemical space 

for each class of structure (active and inactive). Structures with pIC50 values between 4.9 

and 5.0 (range of 0.1 units) were excluded to avoid edge effects and improve the predictive 

capacity of the models by minimizing potential activity differences associated with errors 

and different experimental protocols. IC50 values describe the concentration of a given 

substance required to inhibit 50% of parasite growth [20]. 

  Subsequently, VolSurf+ descriptors (128) were calculated for the remaining 

molecules, including 298 inactive (46.9%) and 338 active (53.1%) molecules. All 

VolSurf+ descriptors [25, 26] together with their respective binary classifications were 

used to build a random forest (RF) model in Knime software (KNIME 3.1.0 the Konstanz 

Information Miner Copyright, 2003–2014, www.knime.org) [27], A model with 200 trees 

was selected, and the Gini Index was used as a split criterion, which has the lowest false-

positive rate. A five-fold cross-validation procedure was performed, splitting the dataset 

five times into a modeling set (80%/20%). Only the modeling set, which was additionally 

divided into multiple training and test sets (80%/20%), was used to build and validate the 

models [28]. 

  For the training set used in the RF model, the match percentage values approached 

100%. Sensitivity (true-positive rate) values of 78.1% and 82.6 % and specificity (true-

negative rate) values of 72.7% and 73.7%, were obtained for the cross-validation and test 

sets, respectively. Two parameters were calculated to evaluate the quality of the RF model: 

the receiver operating characteristic (ROC) curve and Matthews’s correlation coefficient 

(MCC). The area under the ROC curve (AUC) plots the true-positive rate (sensitivity) 

against the false-positive rate (1 − specificity), and the MCC correlates all values in the 

confusion matrix [29, 30]. 

   For the L. major RF model, AUC values of 0.85 and 0.87 were obtained for the 

internal cross-validation and five-fold external validation datasets, respectively. When 
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calculating the MCC parameter, a value of 1 represents a perfect prediction, a value of 0 

represents a random prediction, and a value of −1 represents total disagreement between 

the prediction and the observation. Our L. major RF model returned values of 0.51 (cross-

validation) and 0.57 (five-fold external validation) [30], The slightly higher MCC value 

obtained for the five-fold external validation (0.57) demonstrates a high degree of 

differentiation between the active and inactive compounds identified in the ChEMBL 

dataset. 

  The applicability domain (APD) was used to assess the reliability of the predictions 

for the samples in the test and SL sets, and the calculation of the APD is based on the 

molecular interactions determined by the VolSurf+ descriptors [14, 20]. For the L. major 

RF model set, more than 98.4% of molecules were classified as reliable, with only 8 

molecules classified as unreliable. When the RF models were applied to the kaurane 

dataset, more than 94.2% of molecules were classified as reliable in each model, with only 

20 molecules classified as unreliable. Unreliable molecules were removed. 

 

 

Figure 1:  Potentially active kauranes, identified using RF model (ligand-based VS), for L. 

major. LB active probability value. 

 

  A ligand-based VS was performed on the remaining 340 kauranes was performed. 

Only 7 of the 340 structures were classified as active (ligand-based probability value [LB] 

≥ 0.5), with structures 134 and 135 representing the two best-ranked kauranes, with LB 

values of 0.57 and 0.55, respectively (Figure 1). These two diterpenoids are found in 

Wedelia chinensis, a species of Asteraceae [31]. Structurally, these two kauranes are 

characterized by the presence of (1S,4R,5R)-2-Methyl-5-propan-2-ylcyclohex-2-ene-1,4-
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diol, linked through an ester bound to the kaurenoic acid. The LB values for these two 

kauranes are almost identical, indicating that the activity of these two compounds is likely 

associated with the presence of this monoterpenoid and the pi-bond in the structure 

between C9 and C11. 

  Additionally, two additional kauranes isolated from Wedelia trilobata, structures 

298 and 302, also presented LB values greater than 0.5. Cinnamoyl (302) and 2-

phenylacetic (298) esters are established with the carboxyl group of the kaurenoic acid 

(Figure 1) [32]. ]. In these two structures, the functional groups present in R3 were also 

found to play key roles, as structure 301, which also includes a cinnamoyl ester, was 

classified as inactive (LB = 0.48). The presence of a hydroxyl moiety in R3 represents the 

unique structural difference between structures 301 and the active structure 302. 

2.1.2. Structure-based VS 

  A structure-based VS (molecular docking) was performed to explore the 

mechanism of action of the kauranes dataset against the crystal structure of PTR1 (E.C. 

1.5.1.33), an NADPH-dependent short-chain reductase that is responsible for the unusual 

salvage of pterin in Leishmania and acts as a metabolic bypass for drugs that target 

dihydrofolate reductase [24]. The docking scores and the respective deviation values for 

the best-ranked structures are reported in Table 1 (all binding energy values can be found 

in Supplementary Material, Table S3). All tested molecules were ranked using the 

following probability calculation (Equation 1), as previously reported by Herrera-Acevedo 

et al. [14, 20]. Those kauranes that presented structure-based probability values (SB) above 

0.5 were classified as active. 

. 

SB = (Ei /Emin) > 0.5 and  Ei < Eligand Equation 1 

 

where SB is the structure-based probability; Ei is the docking energy of compound i, where 

i ranges from 1 to 360 (Kauranes dataset); Emin is the lowest energy value of the dataset; 

and Eligand is the ligand energy from protein crystallography. 

 

 The docking results showed that all 360 compounds obtained SB values above 0.5; 

however, relative to the PTR1 inhibitors that were used as controls, 252 structures and 359 

structures had lower docking scores than 7,8-dihydro-L-biopterin (DHB) and 

pyrimethamine (PMA), respectively. The Protein Data Bank (PDB) ligand for LmPTR1, 

methotrexate (PDB ID: MTX) [33], has a calculated docking score of −560.4 kJ/mol.. 
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Table 1:  Docking energies of the best-ranked structures from the structure-based VS for 

L. major PTR1. SD = Standard Deviation; RMSD values = Root Mean Square Deviation 

and SB = Structure-based probability. 

Ligand Docking Score (kJ/mol) SD RMSD SB 

101 -449.5 2.8 1.5 1.00 

270 -437.6 7.4 1.6 0.97 

302 -423.0 9.4 1.3 0.94 

299 -422.7 9.2 1.3 0.94 

175 -421.8 18.0 1.0 0.94 

298 -420.2 20.1 1.6 0.93 

174 -419.9 9.7 1.4 0.93 

173 -419.7 7.4 1.3 0.93 

135 -416.7 9.1 1.1 0.93 

MTX -560.4 17.6 0.4 - 

 

  Structures 135 and 302 (Figure 1), which were predicted to have high LB 

probability values based on the RF model, also showed high SB values and were two of the 

ten best-ranked kauranes identified, with SB values of −423.0 kJ/mol and −416.7 kJ/mol, 

respectively. Spatially, in the active site of LmPTR1, structures 135 and 302 adopted an L-

shaped conformation, similar to that observed for the ligand methotrexate (Figure 2a). 

Base on the two-dimensional analysis, common interactions were identified for these two 

kauranes compared with methotrexate, highlighting the π-alkyl interaction with M233 and 

the van der Waals interactions with S112, Y191, K198, and G225 (Figure 2). 

  Methotrexate achieved a docking score of −560.4 kJ/mol in the active site of 

LmPTR1, and the formation of two H-bond interactions with S111 and N118 were 

observed (Figure 2b). Structure 302 also formed two H-bonds between S227 and the 

carboxylic group of C-19. Additionally, the aromatic ring of F113 interacted with both 135 

and 302, in addition to methotrexate, through π–π and π–alkyl interactions. Two steric 

interactions that unfavorably influenced the molecular binding energy were identified for 

the structures 135 (R17 and D232) and 302 (S111 and L226), as shown in Figure 2c and d, 

respectively. 
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Figure 2:  a) Docking conformations of Structure 135 (green), 302 (red) and MTX 

(yellow) in the active site of LmPTR1; 2D-residual interaction diagrams of (b) 

methotrexate (MTX), (c) structure 135 and (d) structure 302. Interacting residues are 

shown as colored circles depending on the interactions (as colored dashed lines): H-bond 

(lime), Van der Waals (green), π- π (purple) and π-alkyl (pink), unfavorable (red) and 

Carbon H-bond (teal) interactions. 

 

2.1.3. Consensus analysis of the two VS approaches.   

  To verify the potentially active kauranes and their possible mechanisms of action, a 

combined approach using both structure- and ligand-based VS was performed. An equation 

was used to combine the probability scores of both VS approaches with the true-negative 

rate from the RF model to minimize the probability of selecting false-positive compounds 

(Equation 2) [14, 20].  

 

CALm = [SB + (1+TN) x LB ] / [2 + TN]  Equation 2 
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where CALm = combined-approach probability, SB = structure-based probability, TN = true-

negative rate, and LB = ligand-based probability. 

 

  Equation 2 is based on the fact that the ligand-based VS uses pIC50 experimental 

values; thus, the LB score has a high weight with respect to the SB score, which only 

relates interactions between the protein and ligand. The ligand-based VS seeks to reduce 

the probability of selecting inactive molecules as active compounds (false positive); 

therefore, in Equation 2, the LB is associated with an increment of TN. 

 

Table 2: Kauranes classified as active using an approach combining ligand-based and 

structure-based VS. 

Kaurane SB LB CALm 

135 0.93 0.57 0.70 

101 1.00 0.51 0.69 

302 0.94 0.54 0.68 

134 0.90 0.55 0.68 

298 0.93 0.53 0.68 

 

  Table 2 shows the results for the five kauranes that were classified as active using 

the combined approach and the two VS methodologies. Four of the five structures that 

previously displayed a high active probability value in the ligand-based VS (Figure 1) 

emerged as interesting potential anti-Leishmania structures that might act on the LmPTR1 

protein.  

  In addition, fischericin F (structure 101), extracted from Ligularia fischeri, a 

species of the Ligularia genus (Asteraceae) [34], was also classified as potentially active in 

the combined approach (CALm = 0.69). Although this kaurane did not present the highest 

scores from the ligand-based VS, it emerged as the best-ranked structure from the 

structure-based VS approach. Structurally, 101 has ferulic acid as the main feature, bound 

to the ent-kaurane skeleton through an ester bond at C14. 

  Through this combined approach, based on two different VS methodologies, five 

kauranes from various Asteraceae species were identified as having promising 

antileishmanial activity against LmPTR1 from a dataset of 360 kauranes, with structures 

302 and 135 indicated as having high probability values based on both the ligand-based 

and structure-based VS approaches. 
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2.2. In vitro enzymatic activity inhibition for VS-selected kauranes against LmPTR1. 

  To verify the results obtained from the combined approach using the two VS 

methodologies, the in vitro enzymatic inhibitory activities of structures 135 and 302 

(actives) and structure 301 (inactive) were examined. In addition, two kauranes, structures 

301a and 302a (in which the cinnamoyloxy group was replaced by a coumaroyloxy group), 

were also tested against LmPTR1. The diterpenes 135, 301, and 302 were synthesized for 

use in an in vitro enzymatic activity inhibition assay. This aim was oriented to identify 

appropriate precursors, as such compounds are not commercially available. Therefore, a 

phytochemical study was initially performed focusing on the fruits of Xylopia frutescens, 

an annonaceous plant that is rich in kaurane-type diterpenes [35].  

  This procedure led to the isolation of various diterpenes, but interest was focused 

on ent-kaurenoic acid (A), 3α-hydroxy-ent-kaur-16-en-19-oic acid (B), and 3α,9β-

dihydroxy-ent-kaur-16-en-19-oic acid (C) because these structures are fully elucidated by 

spectroscopic data interpretation, and comparisons are possible with data available in the 

literature [36, 37], Therefore, these compounds were considered suitable precursors to 

initiate the synthesis of target compounds. Thus, compound 135 was obtained from the 

commercially available (R)-(-)-carvone (D) (Figure 3), which was first transformed into 

5β-hydroxy-(R)-carvone (E) by chemoselective monohydroxylation and subsequently 

reduced to 2-oxo-menth-6-en-5ß-ol (F) by selective hydrogenation using the Wilkinson’s 

catalyst [38].  

  Diterpenic acid A esterified with F under mild conditions via Steglich esterification 

[39] to produce 2-oxo-menth-6-en-5β-yl ent-kaurenoate (G). This monoterpene/diterpene 

ester adduct was finally converted into 2β-hydroxy-menth-6-en-5β-yl ent-kaurenoate (135) 

through the selective 1,2 reduction of α,β-unsaturated ketones using Luche conditions [40], 

in which the Re face of the enone in G favored the desired β-epimer (68% epimeric 

excess). 

 

Figure 3. Synthetic route to produce monoterpene/diterpene ester adduct 135. 
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  Steglich esterification was also exploited to obtain the other two selected diterpenes 

(Figure 4). Isolated compounds B and C were separately esterified with cinnamic acid (H), 

yielding the phenylpropanoid/diterpene ester adducts 301 and 302, respectively, with good 

yields (78%–79%). Additionally, the scope of this reaction was expanded to produce 

compounds 301a and 302a, using the same diterpene precursors (B and C) condensed with 

p-coumaric acid (I) to observe the influence of the p-hydroxyl group at the 

phenylpropanoid moiety in the subsequent enzymatic study. 

 

 

Figure 4. Synthetic route to produce phenylpropanoid/diterpene ester adducts 301, 302, 

301a, and 302a. 

 

  The selected synthetic diterpene esters 135, 301, 302, 301a, and 302a were tested in 

vitro to experimentally determine their abilities to inhibit the enzymatic activity of 

LmPTR1 as an extension of the results provided by the in silico screening. Recombinant 

LmPTR1 was kinetically assessed, as previously reported [40], to ensure the appropriate 

enzymatic features, resulting in a consistent substrate Km of 5.6 µM. After testing 

LmPTR1 inhibition, the selected diterpenes exhibited inhibitory properties at different 

levels, following a concentration-response behavior within the 0.1–128 µM range. The IC50 

was then calculated for the tested diterpenes, and these values were used to calculate the 

apparent inhibitory constant (Kiapp) (Table 3) using the Cheng-Prusoff equation, assuming 

reversible competitive inhibition and 1:1 stoichiometry [41]. PMA, a known PTR1 

inhibitor, was used as a positive control.  

  Among the three VS-selected diterpenes, 135 was found to be the most potent 

inhibitor, whereas 301 exhibited the lowest Kiapp. Remarkably, the inhibitory activity was 

improved by approximately 60% if a 3α-p-coumaroyloxy group was present in 302 instead 

of a 3α-cinnamoyloxy substituent, as 302a exhibited a lower Kiapp value than 302. No 

similar effect was observed for 301, as 301a showed a slightly lower inhibitory activity 
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than 301. Therefore, a reasonable inference based on this small set of compounds is that 

the presence of a p-hydroxyl group at the phenylpropanoid moiety might favor inhibitory 

activity, whereas a 9β-hydroxyl group at the diterpene moiety has a negative influence on 

LmPTR1 inhibition. 

  Finally, although the test diterpenes were found to be less active than the positive 

control, the concentration-response behavior and the consequently calculated Kiapp (≤5 

µM) of the selected diterpenes demonstrated the validity of the designed VS approach for 

the selection of bioactive compounds against PTR1 and the computationally-studied 

binding modes of these selected compounds within the active site of LmPTR1, which is 

associated with the development of CL. These selected compounds can be considered 

important leads that can be used to obtained additional active PTR1 inhibitors. 

 

Table 3: Results for VS-selected diterpenes as inhibitors of LmPTR1 

Compound 135 302 301 302a 301a PMA 

IC50 (µM) 8.6 9.6 21.2 6.1 23.2 1.11 

Confidence 

Interval (95%) 
9.4–7.9 10.7–8.6 23.4–18.9 7.1–5.2 26.3–20.4 1.20–1.01 

Kiapp 1.88 2.10 4.64 1.33 5.08 0.24 

 

2.3.Molecular docking calculations for the kaurane dataset using hybrid models of 

La, Lb, and LpPTR1 

  The structures 135, 302, and 302a displayed in vitro activity against L. major, 

which is one of the species responsible for most CL cases in the Mediterranean littoral, the 

Middle East, the Indian subcontinent, and central Asia [42]. However, in the American 

continent, other Leishmania species, such as L. amazonensis (La), L. braziliensis (Lb), and 

L. panamensis (Lp), are associated with great clinical diversity, associated particularly with 

CL and MCL [43]. Therefore, the potential activity of kauranes against PTR1 from these 

three species must also be examined, despite the absence of crystal structure for these 

species. 

 

2.3.1. Hybrid models of La, Lb, and LpPTR1 

  Hybrid models were built in YASARA software (YASARA (18.4.24) Vienna, 

Austria: YASARA Biosciences GmbH; 2018) [44] from sequences of three Leishmania 

species, Lp, La, and Lb. To verify and validate the reliability and stereochemical qualities 
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of the modeled protein, data from Ramachandran, WHAT IF, and VERIFY 3D plots and 

the quality Z-scores of dihedrals were determined for the built models, which describes 

how many standard deviations separate the model quality from the average high-resolution 

X-ray structure [45]. Higher values are better, and negative values indicate that the 

homology model looks worse than a high-resolution X-ray structure [46, 47]. The 

Ramachandran plot showed that the main possible chain conformations included more than 

88.7% of residues in the most favored regions for the three hybrid models, with close to 

10.0% of residues in allowed regions. Only the Lp model showed two residues (0.8%) in 

disallowed regions (outliers; Supplementary Material, Figure S2). Because the percentage 

of residues found in the outlier region was low or absent, the generated models were 

considered satisfactory. Eleven residues in the active site were analyzed against the 

template sequence and were found to be conserved [33]. 

  According to the VERIFY 3D results (https://services.mbi.ucla.edu/SAVES/), 

87.1% (Lp), 86.1% (Lb), and 80.0% (La) of residues had mean 3D/1D scores ≥ 0.2, which 

indicated a reliable model because more than 80% of amino acids had values of 0.2 in the 

3D/1D profile. The verification of dihedral quality was classified as optimal for the three 

models, with values above 0.913. The quality of atomic contacts between the atoms of each 

residue was analyzed using the Coarse Packing Quality Control module of WHAT IF 

(https://swift.cmbi.ru.nl/servers/html/index.html), which compares the distribution of atom 

positions around each residue. The mean scores of all wastes were −0.334, −0.488, and 

−0.667, for Lb, La, and Lp, respectively. A score of less than −5.0 for a residue indicates 

poor or unusual atomic contacts. 

 

2.3.2. Molecular docking calculations for kauranes dataset. 

  Molecular docking calculations for the 360 kaurane dataset plus the two derivative 

compounds, 301a and 302a, were obtained using the Autodock/Vina algorithm for the 

three generated Leishmania hybrid models (Lp, Lb, and La) to evaluate whether the 

kauranes that showed in vitro activity against L. major have the potential to display 

multispecies activity. Equation 3 combines the SB probability scores obtained from the 

docking calculations of all three models, and DHB and PMA were used as references. 

 

          CA = [(LaSB +LbSB + LpSB) / 3] ≥ 0.5 Equation 3 

 



150 

 

where LbSB is the structure-based probability score for L. braziliensis, LpSB is the 

structure-based probability score for L. panamensis, and LaSB is the structure-based 

probability score for L. amazonensis. CA is the consensus analysis for all three species. 

 

Table 4: Kauranes classified as active using an approach combining ligand-based and 

structure-based VS. 

Kaurane Lb SB Lp SB La SB CA 

302a 0.87 1.00 1.00 0.96 

301a 0.86 0.97 0.98 0.94 

175 0.90 0.95 0.92 0.92 

69 0.93 0.94 0.88 0.92 

135 1.00 0.88 0.82 0.90 

134 0.93 0.80 0.87 0.87 

302 0.85 0.89 0.82 0.86 

 

  Therefore, a CA value equal to or greater than 0.5 is classified as active. Among the 

362 structures tested, only 274 were classified as active, and 301a and 302a were the best-

ranked molecules, with CA values of 0.96 and 0.94, respectively. The kauranes (135 and 

302) that demonstrated in vitro activity against L. major also showed high CA values 

(above 0.86) and were among the ten best-ranked molecules (Table 4). 

  DHB showed more affinity for PTR1 from the three Leishmania species than PMA. 

Lower docking scores than the two control structures were obtained for 100%, 81%, and 

99% of the tested kauranes for Lb, Lp, and La, respectively. 

  Docking poses for structure 302 in the active site of the three Leishmania PTR1 

models and the interacting residues for 302, DHB, and PMA are displayed in Figure 5 and 

Table 5, respectively. A Vina score of −9.73 kcal/mol was calculated for Lp, 

predominantly due to van der Waals interactions, with five common interactions identified 

between DHB and PMA (L19, S112, Y194, L226, and S227). A critical common π-anion 

interaction was observed between D181 and the aromatic ring of the cinnamoyl group. No 

H-bond interactions are observed for this kaurane in the active site of LpPTR1. 

  Similarly, the structure of 302 achieved a Vina score of −11.1 kcal/mol in the active 

site of LbPTR1, exhibiting some common van der Waals interactions with DHB and PMA 

(S112, S227, and L228. An H-bond interaction was established between G225 and the 

carboxylic group of C-19. G225 did not interact with DHB and PMA, which establish three 
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H-bonds (L19 and N110 were common between these two molecules). Interestingly, an 

alkyl interaction with L19 was observed for the structures 302 and 135, which was the 

best-ranked molecule for LbPTR1 (Vina score of −13.07 kcal/mol). 

  For structure 302, in the active site of LaPTR1, two H-bond interactions were 

observed with A15 and K16, and K16 was also observed in the complex between LaPTR1 

and DHB, identified as a critical amino acid for the binding. For both the kaurene 302 and 

the two controls (PMA and DHB), a higher number of van der Waals interactions were 

exhibited than any other type of intermolecular interaction, although only the interaction 

with Y193 was common among all three of these structures. Finally, an alkyl interaction 

with P223 was identified for the structures 302 and PMA. 

 

Table 5: VINA scores and interactions of structure 302, PMA and DHB with aminoacid 

residues of LpPTR1, LbPTR1 and LaPTR1. Critical interactions are highlighted in bold 

font. 

Protein Ligand 
VINA score 

(kcal/mol) 
Interacting residues 

LpPTR1 

Structure 

302 
-9.73 

Van der Waals: A14, G20, L19, N110, S112, Y114, M179, 

I180, Q186, P187, Y194, G225, L226, S227, L228, F229, 

Y283; Carbon H-bond: K198; Alkyl: R18, L19;  π-alkyl: 

M183; π-sigma: L188; π-anion: D181. 

PMA -7.92 

H-bond N110, I180; Van der Waals: R18, L19, S112, M179, 

Y194, K198, G225, L226, S227, L228; π-alkyl: Y114, F229; 

π-π T-shaped: Y114; π-anion: D181. 

DHB -8.33 

H-bond: M179, D181, K198, G224; Van der Waals: L19, 

S112, Y194, P224, L226,  S227, F229; Carbon H-bond: 

I180; π-π T-shaped: Y114 π-anion: D181. 

LbPTR1 

Structure 

302 
-11.1 

H-bond G225 ; Van der Waals: K17, R18, N110, S112, Y114 

I180, D181, L188, Y194, K198, S227, L228, F229, P230, 

Y241; π-sigma: M233, L226; Alkyl: L19 

PMA -7.41 

H-bond: R14, L19, N110; Van der Waals: G20, C21, A111, 

S112, S227, L228;   

π-alkyl: R18, Y194; π-sigma: Y114.  

DHB -7.75 
H-bond: L19, N110, P224; Van der Waals: A14, K17, R18, 

G20, C21, S112, I179, I180, D181, A182, Y194, S227, L228.  
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LaPTR1 

Structure 

302 
-9.87 

H-bond: A15, K16;  Van der Waals: T12, G13, A14, R17, 

L18, H36, Y37, H38, R39, S40, N109, S111, S146, Y193, 

K197;  Alkyl: P223   π-alkyl: A110, L66. 

PMA -7.19 

H-bond: G224; Van der Waals: S111, M178, V179, A181, 

Y193, L228, M232;  π-alkyl: P223; Alkyl: F113, L187, L225, 

Y240 π-anion: D180. 

DHB -7.61 

H-bond: K16, R17, N109; Van der Waals: G13, G19, M178, 

V179, D180, A181, Y193, K197, P223, G224, L225; π-alkyl: 

R17, L18. 

 

 

 

Figure 5.  Docking formations between a structure 302 in the active site of a) LpPTR1; b) 

LbPTR1 and c) LaPTR1. Labels: H-bonds (green), π- alkyl interactions (purple). 

2.4. Molecular dynamics simulations 

  L. braziliensis is the causative agent of human CL and MCL in various countries of 

the American continent, including Colombia, Brazil, Nicaragua, and Ecuador, among 

others [43, 48, 49]. Thus, to validate the hybrid model constructed for LbPTR1 and to 

evaluate the protein–ligand stabilities of the structures 135, 302, and 302a, molecular 

dynamics (MD) studies were performed using DHB and PMA as reference ligands. 

  Root-mean-square deviation (RMSD) values were used to evaluate the structural 

stability of the receptor frame by measuring the distance between different positions (in 

nm) that a set of atoms exhibited over time [50]. In the first half of the simulation time (0–

25 ns), the structures 135, 302, 302a, DHB, PMA, and the apoenzyme of LbPTR1 

(apoLbPTR1, protein without ligand) showed a similar grade of perturbation, with RMSD 

values ranging from approximately 0.35 to 0.65 nm. After 25 ns, all ligands exhibited 

reduced perturbations relative to that observed for apoLbPTR1, which suggests increased 

stability exerted by the inhibitors on the complex with LbPTR1. RMSD values for the 
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protein–kaurane complexes of approximately 0.5 nm were observed, except for the 

reference ligand, DHB, which showed a slightly higher RMSD value (approximately 0.55 

nm). In contrast, apoLbPTR1 exhibited values approaching 0.7 nm (Figures 6a). 

 

 

Figure 6. a) Root-mean-square deviation (RMSD), b) root-mean-square-fluctuation 

(RMSF), and c) radius of gyration (RoG) values within the LbPTR1 binding site, obtained 

after molecular dynamics simulations using three of the best-ranked structures in molecular 

docking calculations. apoLbPTR1 (blue); DHB: LbPTR1 complex (light green); PMA: 

LbPTR1 complex (sky blue); structure 135: LbPTR1 complex (pink); structure 302: 

LbPTR1 complex (yellow); structure 302a: LbPTR1 complex (dark green); 

 

  The fluctuations for each LbPTR1 residue were analyzed by calculating root-mean-

square fluctuation (RMSF) values. Kauranes, DHB, and PMA in complex with LbPTR1 

presented lower values than the apoenzyme, and the LbPTR1 loops were identified as the 

most variable regions. In the sections of LbPTR1 with defined tertiary structures (helical or 

-sheets), the fluctuation of residues for both the apoenzyme and the complexes formed 

with DHB, PMA, and kauranes (135, 302, and 302a) was less than 0.25 nm. For most of 

the residues in the active site, the RMSF values decreased when LbPTR1 was in complex 

with structure 302. 

  In the loop region, from A65 to S85, structure 302a showed the highest RMSF 

value (approximately. 0.9 nm) compared with structures 135 and 302a, which reached 

RMSF values lower than 0.6 nm. This behavior might be due to differences in the spatial 

conformation of 302a within the active site of LbPTR1 compared with those for structures 

135 and 302; consequently, the molecular docking values are justified. The analysis of the 

loop section between N110 to T135 showed that inhibitors (structures 135, 302, and 302a, 

DHB, and PMA) in complex with LbPTR1 reached RMSF values approaching 1.0 nm; in 

contrast, the apoenzyme exhibited a value above 1.65 nm (Figure 6b), indicating that these 

structures stabilized the protein following the formation of an LbPTR1-kaurane complex. 
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The diterpenes showed similar RMSF values as DHB; however, in this loop region, PMA 

has a lower RMSF value (approximately 0.8 nm). 

  The evolution of the LbPTR1 packing level was observed through the radius of 

gyration (RoG) values. The diterpene-LbPTR1 complexes showed no differences in RoG 

values compared with the complex formed between DHB and LbPTR1 (RoG of 

approximately 2.00 nm), with fluctuations in the tertiary structure lower than 0.10 nm. The 

RoG values for PMA were slightly different (approximately 2.05), demonstrating a 

different behavior throughout the 50 ns test period than the other structures analyzed 

(Figure 6c). ApoLbPTR1, during the initial 25 ns, showed a higher RoG than the 

complexes, with an RoG value approaching 2.05 nm. However, in the second half of the 

simulation, a decrease in the RoG value was observed, reaching a value similar to those 

observed for the complexes formed with diterpenes and DHB (RoG of approximately 1.95 

nm). Based on these results, the structures 135, 302, and 302a appeared to be stably folded 

after the MD simulation. 

  According to the MD simulations, the binding free energies for structures 135, 302, 

302a, PMA, and DHB were calculated through the MM/PBSA method. The diterpenes 

135, 302, and 302a presented binding free energy values of −132.7 kJ/mol, −121.4 kJ/mol, 

and −138.3 kJ/mol, respectively, which were all lower energy values than those measured 

for DHB and PMA in complex with LbPTR1, which presented free energy values of 

−107.4 kJ/mol and −110.0 kJ/mol, respectively. These differences in energetic 

contributions were associated with structural differences (Table 6). 

 

Table 6: Binding free energies (kJ/mol) from the MM/PBSA calculations for three of the 

best-ranked structures identified for LbPTR1; DHB and PMA were used as reference 

ligands 

  135 302 302a PMA DHB 

Energy 

contribution 
kJ/mol SD kJ/mol SD kJ/mol SD kJ/mol SD kJ/mol SD 

Van der Waals -210.7 6.0 -170.8 7.9 -208.6 7.6 -138.8 1.7 -121.3 3.0 

Electrostatic  -2.9 1.5 -26.7 3.4 -9.7 3.0 -145.0 2.5 -194.6 10.3 

Polar solvation  103.6 4.1 95.5 9.9 100.7 13.1 186.4 5.9 221.4 12.0 

SASA -22.7 0.5 -19.4 0.9 -20.6 0.4 -12.7 0.4 -12.9 0.3 

Binding energy -132.7 7.6 -121.4 6.1 -138.3 9.3 -110.0 4.2 -107.4 6.1 
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  In the three kauranes, van der Waals interactions showed the highest negative 

contributions to the binding free energy, which supported the previously observed docking 

results. The solvent-accessible surface area (SASA) and electrostatic parameters 

contributed negatively, but to a lesser degree, to the binding free energies in similar 

proportions (except for the electrostatic parameter of 302, which displayed a higher 

contribution to total binding energy).  

  The reference inhibitor (PMA) and the native ligand (DHB) demonstrated different 

behaviors from those observed for the three diterpenes, with a higher contribution of 

electrostatic interactions to the total binding free energy value, which represented the 

energy parameter with the highest negative energetic contribution. For all molecules, the 

polar solvation had a positive contribution to the total energy value, with larger 

contributions to the complexes DHB-LbPTR1 and PMA-LbPTR1. 

 

3. Materials and Methods 

3.1. Database 

  From the ChEMBL database (https://www.ebi.ac.uk/chembl/), we selected a 

diverse set of 1,085 structures that were initially classified according to their predicted 

activity against L. major. These compounds were classified according to their pIC50 values 

[−logIC50 (mol/L)]; therefore, we stratified them into active (pIC50 ≥ 5.0) and inactive 

(pIC50 < 5.0) structures. 

  The APD, based on Euclidean distances, was used to identify those compounds in 

the test set for which predictions may be unreliable; compounds were considered unreliable 

if they had APD values higher than d + Zσ, where d is the average Euclidian distance, and 

σ is the standard deviation of the set of samples used as the training set, with lower-than-

average Euclidian distance values relative to all samples in the training set. The parameter 

Z is an empirical cutoff value, and 0.5 was used as the default value [51]. 

  Structures with pIC50 values ranging from 4.9 to 5.0 (range of 0.1 units) were 

excluded to avoid edge effects and improve the predictive capacity of the models. 

Excluding these structures minimized the differences in activity values resulting from 

errors and differences in experimental protocols [52]. Data curation was performed for the 

datasets according to procedures suggested in the literature [53-55]. Standardizer software 

[JChem, version 16.11.28 (2016), calculation module developed by ChemAxon, 

https://www.chemaxon.com/] was used to canonize all simplified molecular-input line-

entry system (SMILES) codes. After duplicate structures were removed, those with higher 
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pIC50 values were eliminated, facilitating the generation of more restrictive models. 

Finally, 638 structures for L. major (338 active and 300 inactive structures) were included 

in the analysis, 

  The kaurane dataset was built in-house, and a total of 360 molecules from this 

dataset were used in this study. For all structures, SMILES codes were used as the input 

data in Marvin [ChemAxon, version 16.11.28 (2016), calculation module developed by 

ChemAxon, https://www.chemaxon.com/]. We used standardizer software [JChem, version 

16.11.28 (2016), calculation module developed by ChemAxon, 

https://www.chemaxon.com/]. ChemAxon was used to canonize the structures, add 

hydrogens, perform aromatic form conversions, and clean molecular graphs in three 

dimensions. 

 

3.2. Volsurf+ descriptors 

  The three-dimensional (3D) structures of the identified molecules, in special data 

file (SDF) format, were used as the input data for VolSurf+, v. 1.0.7 [25] and were 

subjected to molecular interaction fields (MIFs) to generate descriptors using the following 

probes: N1 (amide nitrogen–hydrogen bond donor probe), O (carbonyl oxygen–hydrogen 

bond acceptor probe), OH2 (water probe), and DRY (hydrophobic probe). Additional non-

MIF-derived descriptors were generated, resulting in a total of 128 descriptors [25]. One of 

the main advantages of using VolSurf descriptors is the relatively low influence of 

conformational sampling and averaging on these descriptors [26]. 

 

3.3. RF models 

  Knime 3.1.0 software (KNIME 3.1.0 the Konstanz Information Miner Copyright, 

2003–2014, www.knime.org) [27] was used to perform all of the following analyses. 

Initially, the descriptors calculated in the VolSurf+ program were imported in comma-

separated value (CSV) format, and the “Partitioning” node in the stratified sampling option 

was used to classify 80% of the initial dataset as the training set and the remaining 20% as 

the test set.  

  The model was generated by employing the modeling set and the RF algorithm, 

with a five-fold external validation procedure, using WEKA nodes. In the five-fold cross-

validation procedure, the dataset is divided five times into a modeling set (80%/20%). The 

modeling set (which was used to build and validate the models) was further divided into 

training (80%) and test sets (20%) [28, 53]. The parameters selected for the RF models 
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included the following: number of trees to build = 200; seed for random number generator 

= 1; and Gini Index, as a split criterion, for both the training and internal cross-validation 

sets.    

  From the confusion matrix, the internal and external performances of the selected 

models were analyzed, using the following parameters: sensitivity (true-positive rate), 

specificity (true-negative rate), and accuracy (overall predictability). In addition, to 

describe the true performance of the model with more clarity than can be obtained from 

accuracy alone, the ROC curve was employed, using a “ROC curve” node, which uses the 

sensitivity and specificity parameters. The plotted ROC curve shows the true-positive 

(active) rate versus the false-positive rate (1 − specificity) [29].  

  In this representation, when a variable of interest cannot be distinguished between 

the two groups, the AUC value is 0.5, whereas a perfect separation between the values of 

the two groups, with no distribution overlap, results in an AUC value of 1. The MCC was 

also calculated, for which a value of 1 represents a perfect prediction, a value of 0 

represents a random prediction, and a value of −1 represents a total disagreement between 

the prediction and the observation [30]. 

 

3.4. False‑positive remover 

  To detect false-positive structures among the SLs that were classified as active in 

the two RF models, the substructure filter for the removal of pan assay interference 

compounds (PAINS) was used [56]. All SMILES codes for SLs classified as active were 

submitted to PAINS removal (https://www.cblig and.org/PAINS/), and those structures 

that were classified as false-positives were excluded from the final analysis. 

 

3.5 Synthesis of VS-selected diterpenes 

3.5.1. Materials and reagents 

  Optical rotations and UV data were recorded using a Jasco P-2000ST digital 

polarimeter and a Thermo Fisher Scientific Genesys 10S spectrophotometer, respectively. 

1H and 13C Nuclear magnetic resonance experiments were recorded in a Bruker 

Avance400 spectrometer using CDCl3 as solvent. All shifts are given in δ (ppm) using the 

signal of TMS as reference. All coupling constants (J) are given in Hz. HRESIMS data 

were obtained on a Bruker micro-QToF II spectrometer, respectively. Thin-layer 

chromatography (TLC) using silica gel 60 F254 TLC plates (Merck) and mobile phases 

comprising solvent mixtures of n-hexane, EtOAc, and MeOH were used. Plates after TLC 
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development were observed under UV light (254 and 365 nm) and derivatized using I2 

vapor and Hannessian′s reagent (aqueous solution of ammonium molybdate, cerium 

sulphate and H2SO4). Silica gel (SiO2) 60 (0.04-0.063 mm) (Merck) was used for flash 

chromatography (flash CC). Cinnamic acid, p-coumaric acid, (R)-(-)-carvone and other 

reagents and solvents for synthesis and enzyme inhibition assay were acquired from 

Sigma-Aldrich. 

 

3.5.2. Isolation of compounds A-C.  

  Fruits (325 g) of Xylopia frutescens (Annonaceae) were extracted with ethanol 96% 

and a portion of the resulting crude extract (25.5 g) was fractionated by CC over SiO2 in 

gradient elution (n-hexane to methanol) affording twenty-five different fractions. Fractions 

7, 8, 11 and 13 were independently depurated by flash CC on SiO2, yielding compounds 

ent-kaurenoic acid (A) (75.6 mg) [37] 3α-hydroxy-ent-kaur-16-en-19-oic acid (B) (52.3 

mg) [36] and 3α,9β-dihydroxy-ent-kaur-16-en-19-oic acid (C) (42.6 mg), using mixtures of 

n-hexane:EtOAc:MeOH 9:1.5:0.5; 8:1:1, 7:2:1 and 6:2:2, respectively.  

  3α,9β-dihydroxy-ent-kaur-16-en-19-oic acid (C): Oil; [α]D
20 = –61.8 (c = 0.1, 

CHCl3); 
1H NMR (400 MHz, CHCI3) δ4.78 (br s, 1H), 4.67 (br s, 1H), 4.63 (dd, J = 12.0, 

5.0 Hz, 1H), 2.65 (br s, 1H), 2.63 (br d, J = 13.5 Hz, 1H), 2.49-2.44 (m, 1H), 2.31 (dd, J = 

11.0, 1.3 Hz, 1H), 2.16-2.10 (m, 2H), 2.07-2.03 (m, 1H), 1.88-1.85 (m, 1H), 1.82-1.76 (m, 

2H), 1.73-1.67 (m, 1H), 1.65-1.55 (m, 4H), 1.48-1.44 (m, 2H), 1.35-1.33 (m, 1H), 1.29 (s, 

3H), 1.15 (s, 3H); 13C NMR (100 MHz, CHCI3) δ 180.1, 156.8, 104.4, 78.6, 76.9, 50.3, 

49.4, 48.5, 48.5, 43.6, 42.1, 39.6, 35.2, 34.5, 30.5, 29.6, 24.3, 24.2, 20.9, 17.4; HREIMS 

[M+H]+ m/z 335.2203 (calcd for C20H31O4, 335.2222). 

 

3.5.3. Synthesis of 2ß-hydrohy-menth-6(1)-en-5ß-yl ent-kaurenoate (135)  

  The synthesis of the top-ranked ester 135 was accomplished following the next four 

synthetic steps: 

 

3.5.3.1. Synthesis of 5ß-hydroxy-(R)-carvone (E) 

  Compound G was synthesized as previously reported [38]. Briefly, Cu–Al Ox 

catalyst (168 mg) was placed into a 100-mL round-bottom flask (RBF) containing absolute 

EtOH (30 mL). The resulting mixture was stirred at room temperature (rt) for 10 min. 

Subsequently, (R)-(-)-carvone (D) (450 mg, 3.0 mmol, 1.0 equiv) and t-BuOK (168 mg, 

1.5 mmol, 0.5 equiv) were added, and this reaction mixture was further stirred at rt for 30 
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h. After completion, the mixture was filtered through celite, rinsing with MeOH (15 mL). 

The filtrate was concentrated under reduced pressure, and the residue was purified by flash 

CC on SiO2 (10% EtOAc in n-hexane) to afford compound E (194 mg, 39% yield). Oil; 

[α]D
20 +65.2 (c 0.1, CHCI3); 

1H NMR (400 MHz, CDCl3) δ 6.85 (br d, J = 9.7 Hz, 1H), 

5.05 (br s, 2H), 4.48 (dd, J = 9.7, 1.9 Hz, 1H), 3.29 (ddd, J = 6.5, 2.6, 1.9 Hz, 1H), 2.65 

(dd, J = 11.8, 2.6 Hz, 1H), 2.29 (dd, J = 11.8, 6.5 Hz, 1H), 1.79 (s, 3H), 1.77 (s, 3H); 13C 

NMR (100 MHz, CDCl3)  198.5, 147.7, 437, 135.3, 114.6, 68.4, 52.7, 40.5, 19.1, 15.3; 

HREIMS [M+H]+ m/z 167.1055 (calcd for C10H15O2, 167.1072). 

 

3.5.3.2. Synthesis of 2-oxo-menth-6-en-5ß-ol (F)  

  Compound F was prepared as previously reported [38]. Briefly, RhCl (PPh3)3 (46.2 

mg, 0.05 mmol, 5 mol %) was added to a 25-mL RBF containing a stirred solution of E 

(166 mg, 1.0 mmol, 1.0 equiv) in dry toluene (10 mL) under nitrogen. This flask was 

sealed with a rubber septum, headspace evacuated, and hydrogen flushed. The reaction 

mixture was stirred at rt for 14 h. After completion, the solvent was removed under 

reduced pressure and the residue was purified by flash CC on SiO2 (5% EtOAc in n-

hexane) to afford compound F (153 mg, 91% yield). Oil; [α]D
20 = –62.1 (c = 0.3, CHCl3); 

1H NMR (400 MHz, CHCI3) δ 6.83 (dd, J = 9.0, 1.3 Hz, 1H), 4.31 (d, J = 9.5 Hz, 1H), 2.48 

(dd, J = 15.5, 3.6 Hz, 1H), 2.13-2.09 (m, 3H), 2.01-1.87 (m, 1H), 1.75 (s, 3H), 0.95 (d, J = 

7.1 Hz, 3H), 0.88 (d, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CHCI3) δ 200.5, 148.8, 135.1, 

69.5, 50.8, 37.2, 26.6, 20.5, 16.6, 15.5; HREIMS [M+H]+ m/z 169.1211 (calcd for 

C10H17O2, 169.1229). 

 

3.5.3.3.Synthesis of 2-oxo-menth-6-en-5ß-yl ent-kaurenoate (G) 

  Compound G was obtained by Steglich esterification [39] from A and F. Briefly, 

ent-kaurenoic acid (A) (30.2 mg, 0.1 mmol, 1.0 eq), compound F (16.6 mg, 0.1 mmol, 1.0 

eq), and dimethylaminopyridine (DMAP) (2.5 mg, 0.02 mmol, 0.2 eq) were mixed within a 

10-mL RBF. This flask was sealed with a rubber septum, inner air evacuated, and nitrogen 

flushed. Anhydrous CH2Cl2 (3 mL) was added, followed by 1 M dicyclohexylcarbodiimide 

(DCC) in CH2Cl2 (110 µL, 0.11 mmol, 1.10 eq). The resulting mixture was stirred 

overnight then filtered through Celite. The filtrate was concentrated under reduced pressure 

and the residue was purified by flash CC on SiO2 (20% EtOAc in n-hexane) to afford 

compound G (35.7 mg, 79% yield). Oil; [α]D
20 = –58.5 (c = 0.2, CHCl3); 

1H NMR (400 

MHz, CDCl3) δ 6.79 (br d, J = 9.4 Hz, 1H), 5.21 (dd, J = 9.4, 1.7 Hz, 1H), 4.78 (br s, 1H), 
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4.72 (br s, 1H), 2.76-2.68 (m, 2H), 2.65-2.60 (m, 2H), 2.17 (br d, J = 13.0 Hz, 1H), 2.08-

2.03 (m, 2H), 1.88 (dd, J = 11.4, 1.1 Hz, 1H), 1.16 (dd, J = 11.4, 4.7 Hz, 1H), 1.91-1.83 (m, 

5H), 1.78 (s, 3H), 1.47-1.40 (m, 1H), 1.59-1.51 (m, 6H), 1.16 (s, 3H), 1.08-1.05 (m, 1H), 

1.05-1.03 (m, 1H), 1.02 (d, J = 6.7 Hz, 3H), 1.01-0.97 (m, 1H), 0.97 (d, J = 6.7 Hz, 3H), 

0.88 (s, 3H), 0.76 (m, 1H); 13C NMR (100 MHz, CHCI3) δ 200.6, 177.9, 155.5, 140.1, 

134.4, 102.4, 71.5, 57.8, 55.2, 49.5, 45.6, 44.7, 44.4, 43.5, 41.4, 40.2, 39.4, 38.9, 37.7, 

37.3, 33.5, 28.6, 26.8, 21.5, 20.3, 19.1, 18.8, 16.7, 15.9, 15.7; HREIMS [M+H]+ m/z 

453.3345 (calcd for C30H45O3, 453.3369). 

 

3.5.3.4. Synthesis of 2β-hydroxy-menth-6-en-5β-yl ent-kaurenoate (135)  

  Compound 135 was obtained from G, through Luche reduction using a reported 

procedure [57]. Briefly, compound G (27.1 mg, 0.06 mmol, 1.0 eq), CeCl3.7H2O (5.6 mg, 

0.015 mmol, 0.25 eq), and MeOH (3 mL) was mixed into a 10-mL RBF by stirring at 0 °C. 

A 1 M NaBH4 solution (0.06 mL, 0.06 mmol) in MeOH was then added. Reaction mixture 

was allowed to warm to 20 °C and then stirred at this temperature for 1 h. After 

completion, reaction was quenched with 2M HCl (2 mL) and extracted with CH2Cl2 (3 x 2 

mL). The separated CH2Cl2 extract was washed with 10% NaCl (2 x 3 mL), dried over 

MgSO4, filtered, and concentrated under reduced pressure. The resulting residue was 

purified by flash CC on SiO2 (20% EtOAc in n-hexane) to afford 135 (22.4 mg, 82% yield) 

(wedelobatin A) [58]. Oil; [α]D
20 –92.6 (c 0.2, CHCI3); 

1H NMR (400 MHz, CDCl3) δ 5.44 

(br s , 1H), 5.17 (br d, J = 8.5 Hz, 1H), 4.77 (br s, 1H), 4.75 (br s, 1H), 4.03 (t, J = 3.2 Hz, 

1H), 2.63 (br s, 1H), 2.19 (br d, J = 13.3 Hz, 1H), 2.06-2.02 (m, 2H), 1.93 (dd, J = 11.1, 1.2 

Hz, 1H), 1.14 (dd, J = 11.1, 5.0 Hz, 1H), 1.87-1.81 (m, 7H), 1.79 (s, 3H), 1.46-1.41 (m, 

2H), 1.60-1.50 (m, 6H), 1.19 (s, 3H), 1.07-1.05 (m, 1H), 1.03-1.01 (m, 1H), 1.00-0.97 (m, 

1H), 0.95 (d, J = 6.8 Hz, 3H), 0.90 (s, 3H), 0.81 (d, J = 6.8 Hz, 3H), 0.78 (m, 1H); 13C 

NMR (100 MHz, CHCI3) δ 177.5, 155.4, 139.4, 124.4, 101.9, 71.6, 67.4, 57.2, 55.6, 48.8, 

44.2, 43.9, 43.4, 41.1, 41.2, 40.1, 40.1, 39.4, 37.7, 33.0, 30.2, 29.2, 26.2, 22.2, 21.1, 20.2, 

19.2, 18.2, 17.2, 16.0; HREIMS [M+H]+ m/z 455.3511 (calcd for C30H47O3, 455.3525). 

 

3.5.4. Synthesis of 3α-cinnamoyloxy-9β-hydroxy-ent-kaur-16-en-19-oic acid (301) 3α-

cinnamoyloxy-ent-kaur-16-en-19-oic acid (302), 3α-p-coumaroyloxy-9β-hydroxy-ent-

kaur-16-en-19-oic acid (301a), 3α-p-coumaroyloxy-ent-kaur-16-en-19-oic acid (302a). 

  Separated reaction, following the same procedure as described for compound H 

(Steglich esterification [39]) of cinnamic acid (H) (7.4 mg, 0.05 mmol, 1.0 eq) with B (15.9 
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mg, 0.05 mmol, 1.0 eq) or C (16.7 mg, 0.05 mmol, 1.0 eq) afforded the top-ranked 

compounds 301 (17.9 mg, 77%) and 302 (17.5 mg, 78%), respectively. Additionally, 

separated reaction of p-coumaric acid (I) (8.2 mg, 0.05 mmol, 1.0 eq) with B (15.9 mg, 0.5 

mmol, 1.0 eq) and C (16.7 mg, 0.5 mmol, 1.0 eq) afforded compounds 301a (17.0 mg, 

71%) and 302a (16.0 mg, 69%), respectively.  

  301: Oil; [α]D
20 –56.3 (c 0.05, CHCI3); 

1H NMR (400 MHz, CDCl3) δ 7.68-7.66 

(m, 2H), 7.65 (d, J = 15.3 Hz, 1H), 7.40-7.37 (m, 3H), 6.49 (d, J = 15.3 Hz, 1H), 4.82 (br s, 

1H), 4.77 (br s, 1H), 4.68 (dd, J = 12.2, 4.5 Hz, 1H), 2.71 (br d, J = 14.7 Hz, 1H), 2.59 (br 

s, 1H), 2.53-2.50 (m, 1H), 2.28 (dd, J = 10.5, 1.8 Hz, 1H), 2.16-2.09 (m, 2H), 2.04-2.00 (m, 

1H), 1.93-1.80 (m, 3H), 1.74-1.70 (m, 1H), 1.67-1.55 (m, 3H), 1.51 (dd, J = 10.5, 5.3 Hz, 

1H), 1.48-1.43 (m, 2H), 1.30-1.27 (m, 1H), 1.26 (s, 3H), 1.12 (s, 3H); 13C NMR (100 MHz, 

CHCI3) δ 179.7, 166.7, 157.9, 145.1, 134.7, 130.1, 128.7, 128.2, 118.6, 105.8, 78.5, 75.4, 

52.3, 52.1, 49.8, 49.3, 43.7, 42.3, 38.9, 38.5, 34.6, 30.7, 27.3, 25.5, 24.3, 20.5, 17.8; 

HREIMS [M+H]+ m/z 465.2623 (calcd for C29H37O5, 465.2641). 

  302: Oil; [α]D
20 –41.2 (c 0.03, CHCI3); 

1H NMR (400 MHz, CDCl3) δ 7.69 (d, J = 

15.1 Hz, 1H), 7.65-7.62 (m, 2H), 7.47-7.43 (m, 3H), 6.54 (d, J = 15.1 Hz, 1H), 4.81 (br s, 

1H), 4.75 (br s, 1H), 4.64 (dd, J = 12.1, 4.7 Hz, 1H), 2.66 (br s, 1H), 2.36-2.32 (m, 1H), 

2.07-2.03 (m, 2H), 1.96 (d, J = 11.1 Hz, 1H), 1.93-1.90 (m, 1H), 1.84-1.81 (m, 1H), 1.68-

1.62 (m, 3H), 1.55-1.50 (m, 3H), 1.47-1.42 (m, 2H), 1.13-1.07 (m, 2H), 1.05 (br s, 1H), 

1.01 (d, J = 9.3 Hz, 1H), 1.21 (s, 3H), 0.97 (s, 3H); 13C NMR (100 MHz, CHCI3) δ 180.2, 

166.8, 155.1, 145.3, 134.6, 130.3, 128.8, 128.1, 118.5, 103.1, 79.1, 56.5, 55.1, 48.6, 48.3, 

43.8, 43.5, 41.3, 39.6, 39.5, 38.8, 33.3, 24.3, 23.7, 21.5, 18.5, 15.5; HREIMS [M+H]+ m/z 

449.2678 (calcd for C29H37O4, 449.2692). 

  301a: Oil; [α]D
20 –43.7 (c 0.03, CHCI3); 

1H NMR (400 MHz, CDCl3) δ 7.71 (d, J = 

15.0 Hz, 1H), 7.48 (d, J = 8.3 Hz, 2H), 6.91 (d, J = 8.3 Hz, 2H), 6.38 (d, J = 15.0 Hz, 1H), 

4.84 (br s, 1H), 4.71 (br s, 1H), 4.66 (dd, J = 11.9, 4.9 Hz, 1H), 2.69 (d, J = 14.5 Hz, 1H), 

2.57 (br s, 1H), 2.55-2.51 (m, 1H), 2.26 (dd, J = 10.8, 1.6 Hz, 1H), 2.20-2.17 (m, 1H), 

2.15-2.11 (m, 1H), 2.03-1.98 (m, 1H), 1.91-1.80 (m, 3H), 1.78-1.76 (m, 1H), 1.69-1.63 (m, 

2H), 1.58-1.55 (m, 1H), 1.53 (dd, J = 10.6, 5.1 Hz, 1H), 1.49-1.44 (m, 2H), 1.29-1.26 (m, 

1H), 1.24 (s, 3H), 1.13 (s, 3H); 13C NMR (100 MHz, CHCI3) δ 181.1, 166.1, 158.1, 156.6, 

144.2, 129.1, 127.1, 118.3, 117.9, 107.1, 78.5, 75.4, 52.3, 52.1, 49.6, 49.5, 43.4, 41.8, 38.7, 

38.4, 34.5, 30.7, 27.6, 25.7, 24.3, 20.4, 17.9; HREIMS [M+H]+ m/z 481.2577 (calcd for 

C29H37O6, 481.2590). 
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  302a: Oil; [α]D
20 –36.5 (c 0.01, CHCI3); 

1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 

15.2 Hz, 1H), 7.51 (d, J = 8.1 Hz, 2H), 6.87 (d, J = 8.1 Hz, 2H), 6.45 (d, J = 15.2 Hz, 1H), 

4.85 (br s, 1H), 4.77 (br s, 1H), 4.62 (dd, J = 12.0, 4.9 Hz, 1H), 2.67 (br s, 1H), 2.38-2.34 

(m, 1H), 2.10-2.06 (m, 2H), 1.97 (d, J = 11.4 Hz, 1H), 1.94-1.90 (m, 1H), 1.85-1.81 (m, 

1H), 1.69-1.65 (m, 2H), 1.61-1.53 (m, 4H), 1.49-1.44 (m, 2H), 1.17-1.13 (m, 1H), 1.09-

1.07 (m, 1H), 1.04 (br s, 1H), 1.02 (d, J = 9.5 Hz, 1H), 1.21 (s, 3H), 0.97 (s, 3H); 13C NMR 

(100 MHz, CHCI3) δ 180.5, 166.3, 158.3, 155.7, 144.8, 129.5, 127.7, 118.5, 117.4, 103.1, 

79.1, 56.7, 55.5, 48.7, 48.1, 44.2, 43.8, 41.1, 40.3, 39.3, 39.3, 33.2, 24.5, 23.4, 21.5, 18.7, 

15.4; HREIMS [M+H]+ m/z 465.2628 (calcd for C29H37O5, 465.2641). 

 

3.6. LmPTR1 enzyme inhibition assay 

  Recombinant LmPTR1 enzyme was obtained, purified, and kinetically 

characterized, as reported previously [59]. The in vitro assessment of selected diterpenes 

(i.e., 135, 301, 302, 301a, and 302a) for LmPTR1 inhibitory activity was performed 

through the spectrophotometric monitoring of the enzymatic activity under balanced 

conditions: LmPTR1 (30 µg), 7,8-dihydro-L-biopterin (DHB, 20 µM), sodium citrate 

buffer (20 mM, pH 6.0), 30 °C, and a final assay volume of 600 µL. Each reaction was 

started by the addition of 250 µM NADPH. Absorbance was monitored at 340 nm (i.e., 

oxidation of NADPH to NADP+) for 240 s, and the resulting profile was used to measure 

the initial reaction rate (IRR) through the respective slope by linear regression.  

  All recordings were performed in triplicate. PMA was used as the positive control. 

The resulting IRR values were used to calculate the % inhibition, as 100 − (Ri / Rc × 100), 

where Ri is the IRR in the presence of the inhibitor and Rc is the IRR in the absence of 

inhibitors (1% DMSO v/v final concentration). The % inhibition for at least five 

concentrations (range: 0.1–128 µM) for each test compound (diterpenes and PMA) were 

calculated, and concentration-response curves (% inhibition vs. Log[inhibitor]) were 

obtained by non-linear regression to determine the IC50 using GraphPad Prism 5.0 

(GraphPad, San Diego, CA, USA). Finally, Kiapp values were calculated using the Cheng-

Prusoff equation for competitive inhibition, assuming a 1:1 stoichiometry and that he 

inhibitor-binding reactions are reversible [41]: Kiapp = IC50 / (1 + [S] / Km), where [S] is the 

substrate (DHB) concentration and Km is the Michaelis constant. The substrate Km was 

calculated during the kinetic characterization of purified, recombinant LmPTR1. 
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3.7.  Hybrid models of L .braziliensis, L. panamensis and L. amazonensis 

  Hybrid models for Lb, Lp, and LaPTR1 were constructed using YASARA software 

(YASARA (18.4.24) Vienna, Austria: YASARA Biosciences GmbH; 2018) based on the 

FASTA sequences of LbPTR1 (A4HCP1), LpPTR1 (A0A088SA10), and LaPTR1 

(O09352), which were obtained from the UniProt database (https://www.uniprot.org/). The 

stereochemical qualities of the models were evaluated with PROCHECK [60], which 

Molecular Diversity evaluated several stereochemical parameters, such as the torsional 

angles of the main chain, the torsional angles of the side chain, bad contacts or steric 

impediments, and planarity. PROCHECK generated a Ramachandran graph [45], which 

verified the allowed and unallowed regions of the main amino acid chain.  

  The structural quality was evaluated in VERIFY 3D software 

(https://services.mbi.ucla.edu/SAVES/), which analyzes the compatibility of the protein 

sequence with its 3D structure, according to the chemical environment, and WHAT IF 

(https://swift.cmbi.ru.nl/servers/html/index.html), which analyzes various structural 

parameters, such as the atomic contacts between residues. The software Discovery Studio 

Visualizer was used to visualize the modeled protein [61].  

 

3.8. Molecular docking calculations 

  The LmPTR1 crystal structure (PDB ID: 1E7W), in complex with its respective 

inhibitor, methotrexate (PDB ID: MTX), was downloaded from PDB [33]. Using Molegro 

6.0.1 software, all water compounds were deleted from the enzyme structures, and the 

enzyme/compound structures were prepared using the same default parameter settings, in 

the same software package (Score function: MolDock Score; Ligand evaluation: Internal 

ES, Internal H-Bond, Sp2–Sp2 Torsions, all checked; Number of runs: 10 runs; Algorithm: 

MolDock SE; Maximum Interactions: 1500; Max. population size: 50; Max. steps: 300; 

Neighbor distance factor: 1.00; Max. number of poses returned: 5). The docking procedure 

was performed using a grid with a 15-Å radius and a 0.30-Å resolution to cover the ligand-

binding site for the four enzyme structures [14, 20].  

  The docking procedures for hybrid models of Leishmania (Lb, Lp, and La) were 

performed with the Autodock/Vina (1.1.2) plug-in for PyMOL (1.3r2), under a Python 

2.5.2 environment for Windows. Docking calculations were then performed between the 

minimized ligand through a cube (dimensions 22.5 Å × 22.5 Å × 22.5 Å, grid spacing 

0.375 Å) located in the geometric center of the binding pocket (coordinates Lb: 18.75, 

−13.1, 10.25; Lp: 18.1, 12.6, 8.0; and La: 20.1, 19.6, 7.8), which was identified through 
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cavities analysis in Molegro 6.0.1. Flexible residues in the binding site were selected for 

each model. Lb: L19, H39, R40, N110, S112, D181, and S227; Lp: K17, L19, S112, M179, 

and I180; and La: R18, L19, H38, L188, M233, K244, and Y283. Docking poses were 

classified according to their docking scores (such as the free energy or affinity). Each 

calculation was performed in three replicates. Two known PTR1 ligands (DHB and PMA) 

were used as controls. The two-dimensional (2D)-residual interaction diagrams were 

visualized on Discovery Studio 2016 Visualizer Client (Biovia, San Diego, CA, USA) 

[61]. 

 

3.9. Molecular dynamics simulations 

  MD simulations were run in Gromacs 5.0.5 on Ubuntu 12.04 server [62, 63]. 

Structures 135, 302, and 302a displayed the best poses from docking, and the DHB and 

PMA structures, as well as the hybrid model of LbPTR1, were employed as the inputs for 

the MD simulations. The five ligands were prepared by adding hydrogen atoms and the 

corresponding charges using the AM1-BCC charge scheme in UCSF Chimera. 

Subsequently, ligand topologies were generated automatically with ACPYPE script. 

Protein topologies were obtained in Gromacs using the Amber 99SB force field, and the 

TIP3P water model was implemented. Solvation was performed in a triclinic box using a 

margin distance of 1.0 nm. The addition of 0.1 M NaCl to complexes and proteins was 

performed by randomly replacing water molecules until neutrality was achieved [20, 50].  

  The systems were energy-minimized by 2,000 steps using the steepest descent 

method. Systems were subjected to NVT equilibration was performed at 310 K for 50 ps, 

followed by NPT equilibration for 500 ps, using the Parrinello−Rahman method at 1 bar as 

a reference, using position restraints. Finally, the solute position restraints were released, 

and a production run for 5 ns was performed. The temperature and pressure were 

maintained constant at 310 K and 1 bar, respectively. Coordinates were recorded in a 1 fs 

time step. Electrostatic forces were calculated using the particle-mesh Ewald method. 

Periodic boundary conditions were used in all simulations, and covalent bond lengths were 

constrained by the LINCS algorithm. The molecular mechanics Poisson–Boltzmann 

surface area (MM/PBSA) method was used to calculate binding free energies, using the 

trajectories calculated by the MD simulations [20, 50]. 
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4. Conclusions 

  Structures 135 and 302 are two kauranes that were identified as hits for anti-

leishmanicidal activity, with IC50 values against L. major below 10 M. These two 

structures were selected from an in-house database comprising 360 kauranes through an in 

silico approach combining machine learning and molecular docking methodologies. Only 5 

structures from Asteraceae were classified as active by both methodologies. The in vitro 

results allowed the successful verification of the RF classification model, which predicted 

that structures 135 and 302 would be active (pIC50 > 5.0) and that structure 301 would be 

inactive (pIC50 ≥ 5.0), which was observed experimentally. 

  Additionally, the inhibitory activity was improved by approximately 60% when a 

3α-p-coumaroyloxy group was used in 302 in place of the 3α-cinnamoyloxy substituent, 

with 302a exhibiting a lower Kiapp value. Although the tested diterpenes were found to be 

less active than the positive control, the validity of the designed VS approach for the 

selection of bioactive molecules against PTR1 was demonstrated, and the computationally-

studied binding mode of these selected compounds within the active site of LmPTR1, 

which causes CL, was explored. These selected compounds can be considered important 

leads that can be used to obtain more active PTR1 inhibitors. 

  Finally, because throughout the American continent, other Leishmania species are 

responsible for the clinical diversity of CL and MCL, including L. amazonensis (La), L. 

braziliensis (Lb), and L. panamensis (Lp), molecular docking calculations and MD 

simulations were performed for the entire set of kauranes (including 301a and 302a), and 

the compounds 135, 302, and 302a were identified as potential multispecies agents. 

Therefore, this study describes a valuable screening approach for the identification of lead 

compounds in natural products, which can contribute to the further development of 

alternative chemotherapies against this group of diseases. 
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Abstract: The bifunctional enzyme Dihydrofolate reductase-thymidylate synthase (DHFR-

TS) plays a crucial role in the survival of the Leishmania parasite, as folates are essential 

cofactors for purine and pyrimidine nucleotide biosynthesis. However, DHFR inhibitors 

are largely ineffective in controlling trypanosomatid infections, largely due to the presence 

of Pteridine reductase 1 (PTR1). Therefore, the search for structures with dual inhibitory 

activity against PTR1/DHFR-TS is crucial in the development of new anti-Leishmania 

chemotherapies. In this research, using the Leishmania major DHFR-TS recombinant 

protein, enzymatic inhibitory assays were performed on four kauranes and two derivatives 

that were previously tested against LmPTR1. The structure 302 (6.3 µM) and its derivative 

302a (4.5 µM) showed the lowest IC50 values among the evaluated molecules. To evaluate 

the mechanism of action of these structures, molecular docking calculations and molecular 
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dynamics simulations were performed using a DHFR-TS hybrid model. Results showed 

that hydrogen bond interactions are critical for the inhibitory activity against LmDHFR-TS, 

as well as the presence of the p-hydroxyl group of the phenylpropanoid moiety of 302a. 

Finally, additional computational studies were performed on DHFR-TS structures from 

Leishmania species that cause cutaneous and mucocutaneous leishmaniasis in the New 

World (L. braziliensis, L. panamensis, and L. amazonensis) to explore the targeting 

potential of these kauranes in these species. It was demonstrated that structures 302 and 

302a are multi-Leishmania species compounds with dual DHFR-TS/PTR1 inhibitory 

activity. 

 

Keywords: kauranes; Leishmania; Asteraceae; machine learning; DHFR-TS; diterpenes; 

natural products. 

 

1. Introduction 

  Leishmaniasis is a neglected tropical disease (NTD) caused by Leishmania 

parasites, a type of trypanosomatid protozoa [1]. The disease affects 15 million people 

globally, presenting in three forms: cutaneous (CL), mucocutaneous (ML), and visceral 

(VL) [2,3]. Despite the public health concerns and need for control, current treatments, 

including pentavalent antimony salts as the first-line drugs or amphotericin B, pentamidine, 

miltefosine, or paromomycin as second-line drugs, are frequently toxic, expensive, and 

only marginally effective with increasing resistance outbreaks [3-5]. Although attempts to 

discover more effective and safe alternatives through drug discovery [1,2,6], limited 

progress has been made, making the search for new antileishmanial chemotherapies 

necessary [7]. 

  A metabolic pathway that is traditionally considered a crucial target against 

trypanosomatid parasites involves the inhibition of dihydrofolate reductase (DHFR) in the 

biosynthesis of folate-like cofactors [8]. DHFR (EC 1.5.1.3) catalyzes the NADPH-

dependent reduction of 7,8-dihydrofolates (H2Fs) to 5,6,7,8-tetrahydrofolates (H4Fs) [9], 

which are necessary for maintaining adequate intracellular folate concentrations [8,9]. In 

trypanosomatids, a single, fused gene encodes a bifunctional enzyme that has both the 

DHFR domain and the thymidylate synthase (TS) domain [10]. This bifunctional enzyme 

is crucial for the parasite's survival because folates are essential cofactors for the 

biosynthesis of purine and pyrimidine nucleotides. As a result, inhibition of this single 

polypeptide can affect two steps of this essential pathway [11]. In contrast, humans have 
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separate mono-functional polypeptides for DHFR and TS, leading to structural differences 

and unique roles in human folate production [8]. This makes the DHFR-TS combination an 

attractive molecular target for the development of antimicrobial agents. In fact, antifolate-

based antimicrobial drugs such as methotrexate (MTX), trimethoprim, and pyrimethamine 

are already in use [8,11].  

  However, Leishmania parasites are auxotrophic for folate, meaning they have a 

sophisticated metabolic pathway for acquiring folate from the host and incorporating it into 

intermediate or alternative metabolism through the action of pteridine reductase (PTR1) 

[12]. PTR1 (EC 1.5.1.33) transforms conjugated and non-conjugated pterins, including the 

reduction of biopterin to dihydrobiopterin, and then to tetrahydrobiopterin. This catalytic 

role is crucial for maintaining vital intracellular levels of tetrahydropterin and has been 

shown to be an essential component of growth in vivo through gene expression studies 

[13]. Since PTR1 is less sensitive to the effect of MTX and catalyzes folate reduction, this 

explains the therapeutic failures of antifolate drugs against trypanosomatid parasites 

[12,14,15]. Thus, an appropriate strategy would involve searching for dual inhibitors of 

PTR1 and DHFR as antileishmanial agents [16], and natural compounds are still 

considered a vast source of bioactive agents [2]. 

  In this context, a class of bioactive naturally-occurring compounds known as 

Kaurane-type diterpenes has been shown to exhibit antileishmanial activity at various 

levels [17-19]. Based on this evidence, a previous in silico and in vitro study was 

performed on a custom-made library of 360 compounds to select Kaurane-type diterpenes 

against Leishmania major PTR1 (LmPTR1). The top-ranked compounds and two semi-

synthetic derivatives were found to have half-maximal inhibitory concentrations (IC50) less 

than 10 µg/mL. Given these results and with the aim of exploring dual inhibitors of 

DHFR/PTR1, the present study investigated the selection of kauranes with activity against 

L. major DHFR-TS. 

 

2. Results and discussion 

 

2.1. Kauranes 302 and its derivative 302a have dual in vitro enzymatic activity against 

L. major PTR1/DHFR-TS 

 The potential dual enzymatic activity of L. major PTR1/DHFR-TS for the diterpene 

esters 135, 301, 302, 301a, and 302a (which have already been evaluated against L. major 

PTR1 [20], as shown in Figure 1a), along with structure 4, which was synthesized from the 
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kaurane 148 (ent-kaurane-3-oxo-16α,17-diol, shown in Figure 1b), a compound isolated 

from Euphorbia gracilis Jacq. (Euphorbiaceae), was evaluated using spectrophotometric 

monitoring of enzymatic activity under a standard DHFR assay. This was done with a 

range of test compound concentrations (0.1–128 µM), and methotrexate was used as a 

positive control. 

  The IC50 values were calculated based on the concentration-response behavior 

within the range of 0.1–128 μM, resulting in values ranging from 4.5 to 11.2 μM (pIC50 

values ranging from 4.95 to 5.35). Then, using the Cheng–Prusoff equation and assuming 

reversible competitive inhibition and a 1:1 stoichiometry [21], the apparent inhibitory 

constant (Kiapp) was calculated for the selected kauranes using the IC50 results, as shown 

in Table 1. 

 

Figure 1. (a) Synthesis of compound 4. (b) Structures of selected kaurane-type diterpenes 

(135, 301, 302) and their derivatives (301a and 302a) 

 

Table 1. Results of enzymatic activity against L. major dihydrofolate reductase (LmDHFR) 

for selected kaurane-type diterpenes. 

Compound 4 135 302 301 302a 301a MTX 

IC50 (µM) 7.6 11.2 6.3 8.8 4.5 7.9 1.4 

Confidence 

Interval (95%) 
6.9–8.1 10.2–12.1 5.8–6.9 8.0–9.9 3.9–5.2 7.1–8.4 1.1–1.8 

Kiapp 0.81 1.20 0.68 0.94 0.48 0.85 0.15 
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  The evaluated structures showed similar IC50 values. Among the six tested 

diterpenes, structure 135 was the least active, which was contrary to what was observed 

with PTR1. Structure 301, which was classified as inactive against PTR1, showed a 

different behavior against DHFR-TS with a pIC50 value above 5.0, and was classified as 

active against this enzyme, according to the cutoff value used to build the machine learning 

model of L. major (pIC50 = -log IC50) [20]. 

  Using MolpredictX, a recent web tool developed in the Laboratory of 

Cheminformatics at the Federal University of Paraíba, which provides predictions for 27 

different biological activities, including L. major, the structures 301 and 301a were 

classified as active. This tool provides qualitative predictions of molecule activity (active 

or inactive) and a quantitative probability of activity based on molecular descriptors. [22]. 

  For DHFR-TS, the kaurane-type diterpenes 301, 302, 301a, and 302a showed 

similar pIC50 values above 5.0, indicating that the 9-hydroxyl group at the diterpene moiety 

is not relevant to the inhibitory activity as observed with PTR1, and suggesting different 

mechanisms of action for these two enzymes in Leishmania. Additionally, the p-hydroxyl 

group has a favorable influence on the inhibitory activity of the evaluated kauranes, 

reducing the inhibitory constant (Kiapp) values by 10-30% for 301a and 302a, respectively, 

compared to the kauranes 301 and 302, which do not have this hydroxyl group present in 

their structures. 

  The structures 302 and 302a showed the lowest Kiapp values among the six tested 

structures against DHFR-TS (despite both having Kiapp values that are higher than MTX). 

These two structures also displayed a similar behavior with lower Kiapp values in previous 

enzymatic assays against L. major PTR1 [20], which indicates that these two structures 

have dual in vitro enzymatic activity against L. major PTR1/DHFR-TS, with the 9-

hydroxyl group at the diterpene moiety being the critical structural feature for the observed 

dual action against these targets. 

 

2.2. Hybrid Model of L. major DHFR-TS and Molecular Docking Calculations. 

  To examine the mechanism of action of the tested kauranes and determine whether 

the kauranes that previously showed inhibitory activity against pteridine reductase 1 

(PTR1) also act against dihydrofolate reductase-thymidylate synthase (DHFR-TS), a 

molecular docking study was conducted using a LmDHFR-TS hybrid model built in the 

YASARA software (YASARA Biosciences GmbH, Vienna, Austria; 2018). The model's 

reliability and stereochemical qualities were evaluated through Ramachandran, WHAT IF, 
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and VERIFY 3D plots, as well as Z-scores of dihedrals, which describe the deviation of the 

model's quality from the average high-resolution X-ray structure. The Ramachandran plot 

showed that 96.9 of residues were in the most favored regions, with 99.5% in allowed 

regions and only 0.5% (corresponding to five amino acids) in the outlier region, indicating 

that the LmDHFR-TS model was satisfactory (Supplementary Material).  

  The VERIFY 3D (https://services.mbi.ucla.edu/SAVES/) results showed that 

92.6% of residues had an averaged 3D-1D score of ≥0.2, indicating a reliable model. The 

Coarse Packing Quality Control of the LmDHFR-TS model, evaluated using WHAT IF, 

showed a mean score of -0.594, with only 1.7% of residues (8 of 520 amino acids) scoring 

-5.0 or lower. The dihedral quality was classified as optimal for the LmDHFR-TS hybrid 

model, with values above 1.085 [24]. 

  Molecular docking calculations for the selected kaurane dataset and derivatives 

301a and 302a were performed using Molegro 6.0 software and the previously validated L. 

major DHFR-TS hybrid model. The docking energy values ranged from -62.85 to -81.43 

kJ/mol, with all structures showing higher values than the positive control MTX (-107.60 

kJ/mol). Interestingly, kaurane 302 (-76.53 kJ/mol) and its derivative 302a (-81.43 kJ/mol), 

which showed the highest inhibitory activity against L. major DHFR-TS in the enzymatic 

assay, had the lowest docking scores among the evaluated molecules. The analysis of the 

docking conformations revealed that the phenylpropanoid moiety of these two molecules 

adopted a similar conformation in the active site of L. major DHFR-TS, with the p-

hydroxyl group identified as a crucial feature for the observed inhibitory activity (Figure 

2h). 

 

Table 2. Docking energies of six tested structures and MTX for L. major DHFR-TS. SD = 

standard deviation; RMSD values = root mean square deviation. 

Structure Docking score (kJ/mol) RMSD (A) SD 

4 -70.25 0.68 5.7 

135 -62.85 1.23 8.6 

301 -73.34 1.09 10.3 

302 -76.53 1.13 4.9 

301a -72.26 0.89 9.8 

302a -81.43 1.29 6.4 

MTX -107.60 0.24 5.9 

 



179 

 

  Using a two-dimensional analysis, critical interactions with active site amino acid 

residues of the enzyme were identified. It was observed that hydrogen bond interactions 

are directly related to the IC50 values obtained in the enzymatic assay. Structures 302 and 

302a, which had the lowest IC50 values, showed two hydrogen bond interactions involving 

residues I45 and S86 for 302 and W47 for 302a, and the carbon-19 of these two kauranes 

(Figure 2d-f). The interaction with residue S86 was also observed for structure 301, which 

had a moderate IC50 value among the tested structures, with the only hydrogen bond 

interaction being observed in this kaurane (Figure 2c). This behavior was also observed in 

structure 4 (Figure 2a), which only interacted with residue A32 through hydrogen bonds. 

  The positive control, MTX, showed three hydrogen bond interactions with residues 

D52, K57, and V30. The interaction with V30 potentially having a crucial role in the 

inhibition of DHFR-TS. This interaction was only observed in the derivative 302a, which 

had the highest inhibitory activity among the tested molecules. Interestingly, this hydrogen 

bond interaction was formed with the p-hydroxyl group of the phenylpropanoid moiety of 

302a, reinforcing the importance of this structural feature in the dual L. major 

PTR1/DHFR-TS inhibitory activity. 

  Residue F56 also plays a key role in the inhibition of L. major DHFR-TS when it 

interacts with aromatic regions in the kaurane series, as the most active molecules 

exhibited a π–π interaction between the phenyl group of the amino acid and the pteridine 

ring and phenylpropanoid moiety of MTX and structure 302a, respectively. A different 

behavior was observed for structure 302 and the derivative 301a, which had intermediate 

inhibitory activity against DHFR-TS. These two molecules, along with structure 135, 

showed a π–σ interaction with the hydrogens of the kaurane region. Structure 302a was the 

only structure that showed an unfavorable interaction with residue M53, which is important 

for MTX, with a π–sulfur interaction being established (Figure 2f-g). 

 

2.3. Kaurane 302 and its derivative 302a may have the potential to inhibit DHFR-TS 

in different species of Leishmania from the New World. 

  Leishmaniasis contracted in North and South America is referred to as "new world 

leishmaniasis" [25]. Studying this type of species is crucial for the control and elimination 

of the disease, as there is a high diversity of Leishmania species in the Americas, with high 

concentrations of different species found in countries such as Brazil and Colombia, leading 

to a significant disease burden [26]. Some of the main new world Leishmania species 

include: Leishmania panamensis, which is the primary cause of cutaneous leishmaniasis 
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(CL) in Panama and has been found to infect both anthropophilic vectors and mammalian 

reservoirs [27]; Leishmania braziliensis, a pathogenic agent of CL and mucocutaneous 

leishmaniasis (MCL), primarily distributed in South and Central America [25-28]; and 

Leishmania amazonensis, an etiological agent of diffuse CL and tegumentary leishmaniasis 

(TL) [29]. In previous research, molecular docking calculations and MD simulations using 

PTR1 hybrid models of L. braziliensis, L. amazonensis, and L. panamensis have identified 

the kauranes 135, 302, and its derivative 302a as potential multi-species agents [20].  

 

 

Figure 2. Two-dimensional residual interaction diagrams of (a) Structure 4, (b) structure 

135, (c) Structure 301, (d) Structure 302, (e) Structure 301a, (f) Structure 302a and (g) 

Methotrexate (MTX). Interacting residues are shown as colored circles depending on the 
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interactions (as colored dashed lines): H-bond (lime), Van der Waals (green), π–σ (purple), 

π– alkyl (pink), π– π (fuchsia), unfavorable (red), and carbon H-bond (teal) interactions. (h) 

Docking conformations of structure 302 (purple) and its derivative 302a (pink) in the 

active site of L. major DHFR-TS (green). 

 

  To evaluate their potential dual inhibitory activity against PTR1 and DHFR-TS, 

hybrid models of DHFR-TS for these three Leishmania species were built, and molecular 

docking calculations and MD simulations were performed using the four kauranes and two 

derivatives, which were previously tested against the DHFR-TS recombinant. The 

Ramachandran plot of these three hybrid models showed that the main possible chain 

conformations included more than 97.2% of residues in the most favored regions for the 

three hybrid models, with 99.7% of residues in allowed regions. All models showed three 

residues (0.3%) in disallowed regions (outliers; Supplementary Material). 

 

Table 3. The VINA score values for six tested structures and MTX (methotrexate) for 

dihydrofolate reductase-thymidylate synthase (DHFR-TS) of Leishmania brazilensis, 

Leishmania panamensis, and Leishmania amazonensis. SD = standard deviation; RMSD 

values = root mean square deviation. 

 

  The analysis of the docking results showed that for L. braziliensis, the tested 

structures had similar VINA score values, except for derivative 302a, which presented the 

lowest affinity value (-11.17 kcal/mol). All structures had lower docking values compared 

to MTX (-9.64 kcal/mol), as seen in Table 3. 

Structure 

L. braziliensis L. panamensis L. amazonensis 

VINA Score 

(kcal/mol) 
SD RMSD 

VINA Score 

(kcal/mol) 
SD RMSD 

VINA Score 

(kcal/mol) 
SD RMSD 

4 -10.70 0.05 0.13 -10.96 0.07 0.46 -10.68 0.04 0.11 

135 -10.50 0 0.21 -10.19 0.03 0.31 -10.52 0.06 0.25 

302 -10.90 0.05 0.55 -10.44 0.05 2.73 -10.55 0.15 0.86 

302ª -11.17 0.13 0.61 -12.55 0.28 0.56 -10.60 0.08 0.61 

301 -10.40 0.10 0.92 -10.84 0.07 1.68 -10.85 0.05 0.64 

301ª -10.66 0.20 0.45 -12.54 0.08 0.86 -11.14 0.15 0.79 

MTX -9.64 0.07 1.87 -9.45 0.15 1.48 -9.54 0.07 1.71 
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Figure 3. Best pose of structure 302 (orange) and MTX (red) in the active site of (a-d) L. 

amazonensis (b-e) L. brazilensis and (c-f) L. panamensis DHFR-TS (green). Flexible 

aminoacids are marked in pink. 

 

  By analyzing the interactions between the tested kauranes and the flexible residues 

of the active site of L. braziliensis DHFR-TS, it was found that the unsaturation of carbon-

17 is crucial for the inhibition of 301, 302, and their derivatives 301a and 302a with the 

enzyme, via π-alkyl interactions with Y91 and M53. This interaction was also observed in 

MTX through a π-sulfur interaction with the thiol group of methionine. In addition, the 

potential inhibitory activity observed for structure 4 was related to a hydrogen bond 

interaction between Q48 and the carbonyl group of carbon-3, as well as the presence of a 

1,3-dioxolane group. Neither structure 301 nor 302 interacted with the phenylpropanoid 

moiety of their structures, which was different from what was previously observed with L. 

major DHFR-TS. 

  For L. panamensis, both derivative structures 301a and 302a presented the lowest 

VINA score values, -12.55 kcal/mol and -12.54 kcal/mol, respectively, showing a higher 

inhibitory activity compared to the four kauranes and the control, MTX (Table 3). 

Structures 301 and 302 did not show any π-alkyl interaction with Y91 (Figure 3b), with 

mainly Van der Waals forces observed with flexible residues such as V31, V49, and V156. 

Kaurane 301 established a hydrogen bond between the carboxylic group of Carbon 4 and 

residue Q48. This interaction was also observed for MTX, however, a Negative-Negative 

unfavorable interaction with D52 affected the affinity value for this compound. A common 
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alkyl interaction between V31 and the unsaturation of carbon-17 of structure 135, and 

between V31 and the 1,3-dioxolane group of structure 4, was also observed. 

  In the same manner, L. amazonensis exhibited a behavior similar to that of L. 

brazilensis with VINA score values ranging from -10.52 to -11.14 kcal/mol, all of which 

showed lower affinity values compared to MTX (-9.54 kcal/mol). The latter only showed 

three interactions with the flexible residues in the active site of the enzyme, including two 

Van der Waals interactions with V49 and Q48 and a π-sulfur interaction between the 

sulfhydryl group of M53 and the pteridine ring. Structures 301 and 302 displayed the same 

interactions, which were classified into three groups: π-alkyl with M53 and Y91, alkyl with 

V87, and Van der Waals with Q49, V31, and V156. On the other hand, Structure 4 was the 

only kaurane that exhibited a hydrogen bond interaction with Q48, which might explain the 

slight difference in its affinity value. 

  Figure 3 displays the complex between the best-docked pose of structure 302, the 

potential multispecies dual DHFR-TS/PTR1 inhibitor, and each of the three DHFR-TS 

hybrid models built in this study. For the L. brazilensis and L. amazonensis species (Figure 

3a and 3b), similar poses and intermolecular interactions were observed, highlighting, the 

π-alkyl interactions of Y91 and M53 with the double bond of carbon-17. 

  In contrast, L. panamensis showed a different three-dimensional conformation in 

the active site of DHFR-TS, with a different spatial position for the phenylpropanoid 

moiety compared to the other two species of Leishmania. Additionally, residue Y91, which 

was a key residue in the interaction of the evaluated structures with the enzyme in L. 

amazonensis and L. brazilensis species (Figure 3a and 3b), did not interact with the 

unsaturation of carbon-17. This same pattern was also observed for MTX, where Y91 did 

not appear to be a relevant amino acid for the inhibitory activity. 

 

2.4. Molecular dynamics simulations for L. major and L. brazilensis DHFR-TS 

interacting with 302 and MTX. 

  To validate the hybrid models built for the different Leishmania species used in this 

study and evaluate the protein-ligand stability of structure 302 and its derivative 302a, 

molecular dynamics (MD) studies were performed on L. major and L. brazilensis DHFR-

TS using MTX as a reference ligand. 

  Initially, Root-mean-square deviation (RMSD) analyses were conducted to assess 

the structural stability of the receptor frame. These analyses measured the distance between 

different positions of a set of atoms over time (in nm) [30]. For L. major DHFR-TS, during 
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the first 30 ns, similar levels of perturbation were observed, with RMSD values ranging 

from 0.15 to 0.30 nm for structures 302, 302a, MTX, and the apoenzyme (apoLmDHFR-

TS, the protein without the ligand).  

  After 30 ns, the protein in complex with structure 302 and its derivative 302a 

showed increased stability, with lower RMSD values compared to apoLmDHFR-TS 

(Figure 4a). The same pattern was observed for L. brazilensis, as apoLbDHFR-TS showed 

a constant increase in RMSD values (from 0.20 to 0.40 nm) during the 50 ns, while the 

complexes LbDHFR-TS:302 and LbDHFR-TS:MTX had values ranging from 0.20 to 0.25 

nm (Figure 4b). This indicates that structure 302 increases the stability of the complex with 

DHFR-TS in both Leishmania species, similar to the stability exerted by MTX. 

 

Figure 4. (a-b) Root-mean-square deviation (RMSD), (c-d) root-mean-square-fluctuation 

(RMSF), and (e-f) radius of gyration (RoG) values within the L. major DHFR-TS and L. 

braziliensis DHFR-TS binding site, obtained after molecular dynamics simulations. 

Apoenzyme (blue); DHFR-TS:MTX complex (yellow); DHFR-TS:302 complex (pink); 

DHFR-TS:302a complex (light green). 
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  Afterward, we analyzed the flexibility of residues with different ligands using root-

mean-square fluctuations (RMSF) values. Similar patterns were found in both L. major and 

L. brazilensis during the entire dynamic simulations (Figure 4c and 4d). Regions with 

defined tertiary structures (α-helices or β-sheets) showed similar RMSF values (0.1 to 0.2 

nm) for structure 302 and its derivative 302a in complex with L. major DHFR-TS, as well 

as for the apoenzyme.  

  However, the control compound MTX presented higher RMSF values, particularly 

in loop regions of the protein. On analyzing the RMSF values in L. brazilensis DHFR-TS, 

the LbDHFR-TS:302 and the apoenzyme showed similar behaviors over the simulation 

time, while structure 302 had higher fluctuations in loop regions than MTX and the 

uncomplexed protein, especially in the region from A113 to T121, where values ranging 

from 0.30 nm to 0.63 nm were observed. Despite this, in regions with defined tertiary 

structure, both MTX and the kaurane 302 showed RMSF values lower than 0.20 nm, which 

indicates low flexibility in L. major DHFR-TS when complexed (Figure 4d). 

  In addition, we observed the evolution of the packing level of L. major and L. 

brazilensis DHFR-TS through the radius of gyration (RoG) values. For L. major, the 

complexes with structure 302 and its derivative 302a showed no difference in RoG values 

compared with the control MTX and apoLmDHFR-TS (ranging from 2.65 nm to 2.70 nm), 

indicating high stability and low fluctuations in the tertiary structure (Figure 4e). 

  For L. brazilensis, the RoG values for DHFR-TS were different for the two 

evaluated complexes compared to the apoLbDHFR-TS. During the first 30 ns of the 

simulation, no differences in RoG values were observed (RoG of approximately 2.68 nm). 

However, after this time, the complexes LbDHFR-TS:302 and LbDHFR-TS:MTX 

demonstrated different behaviors, with a reduction in the RoG value (approximately 2.64 

nm). This indicates that structure 302 stably folded after the simulation, compared to the 

apoenzyme, which remained at a constant value during the 50 ns test period (Figure 4f). 

 

2.5 Free energy calculations by the Molecular Mechanics - Poisson Boltzmann 

Surface Area approach (MM/PBSA) method. 

  After the molecular dynamic simulations were completed, the binding free energies 

for the complexes of structures 302 and 302a, and MTX with L. major DHFR-TS, as well 

as the complexes of structure 302 and MTX with L. brazilensis DHFR-TS, were calculated 

using the MM/PBSA method. The kaurane 302 and its derivative 302a in complex with L. 

major DHFR-TS reached binding free energy values of -105.8 kJ/mol and -118.2 kJ/mol, 
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respectively, which were both higher than the value measured for the complex LmDHFR-

TS: MTX, which was -127.4 kJ/mol. Conversely, the complex LbDHFR-TS:302 (-137.2 

kJ/mol) reached a lower binding free energy value compared to the complex LbDHFR-TS: 

MTX (-93.9 kJ/mol). Nevertheless, for both Leishmania species, similar energetic 

contributions were observed, which were linked to the structural features of the evaluated 

molecules (Table 4). 

 

Table 4. Binding free energies (kJ/mol) from the MM/PBSA calculations for structure 302 

and its derivative 302a for L. major DHFR-TS and Structure 302 for L. brazilensis DHFR-

TS; In both proteins MTX was used as reference ligand. 

 

  For the complexes with 302 in both Leishmania species, Van der Waals, 

Electrostatic, and solvent-accessible surface area (SASA) parameters showed negative 

contributions to the binding free energy. The Van der Waals parameter had the highest 

negative contribution, and these results are directly related to the molecular docking 

calculations, where in L. major and mainly in new world Leishmania species, this type of 

interaction is fundamental for the stability of the DHFR-TS-diterpenoid complexes. 

Electrostatic parameter also contributed negatively to the binding free energies; however, 

its contribution was close to 50% for structure 302 and its derivative 302a, compared to the 

contribution observed for MTX, which had a higher contribution to the total binding 

energy. Finally, for all molecules, polar solvation had a positive contribution to the total 

energy value, with larger contributions to the complexes with MTX in both evaluated 

Leishmania species. 

 

 

Leishmania major 

Structure 
Van der Waals 

(kJ/mol) 

Electrostatic 

(kJ/mol) 

Polar solvation 

(kJ/mol) 

SASA 

(kJ/mol) 

Binding energy 

(kJ/mol) 

302 -211.1 ± 6.9 -26.4 ± 3.2 151.6 ± 8.1 -19.8 ± 1.6 -105.8 ± 5.0 

302a -219.2 ± 5.2 -27.6 ± 3.0 148.5 ± 8.6 -19.9 ± 1.0 -118.2 ± 4.5 

MTX -233.9 ± 7.4 -56.3 ± 5.2 192.4 ± 9.5 -22.1 ± 2.2 -127.4 ± 6.1 

Leishmania brazilensis 

302 -230.1 ± 6.0 -20.6 ± 1.5 137.2 ± 7.5 -24.0 ± 0.2 -137.2 ± 6.6 

MTX -206.4 ± 5.4 -54.8 ± 4.5 189.6 ± 10.0 -21.3 ± 0.4 -93.3 ± 4.9 
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3. Materials and Methods 

 

3.1. LmDHFR-TS enzyme inhibition assay 

  Purification and kinetic characterization of the recombinant LmDHFR-TS protein 

was performed according to the previously reported procedures [31,32]. The in vitro 

evaluation of selected diterpenoids (i.e., 4, 135, 301, 302, 301a, and 302a) for inhibitory 

activity against LmDHFR-TS was conducted using a spectrophotometric assay under 

standard DHFR conditions. The assay consisted of LmDHFR (2.7 nM), bovine serum 

albumin (BSA, 1 mg/mL), N-[tris(hydroxymethyl)-methyl]-2-aminoethanesulfonic acid 

(TES) buffer (100 mM, pH 7.0, 150 mM β-mercaptoethanol, 2 mM 

ethylenediaminetetraacetic acid (EDTA)), and nicotinamide adenine dinucleotide 

phosphate (NADPH, 100 μM) with varying concentrations of the test compounds (0.1-128 

μM).  

  The reaction was initiated by adding the substrate (7,8-dihydrofolate (H2F), 20 μM) 

and was monitored for 360 seconds at 340 nm (i.e. oxidation of NADPH to NADP+) to 

determine the initial reaction rate (Vo) through linear regression analysis of the resulting 

absorbance profile. All measurements were performed in triplicate and MTX was used as a 

positive control. The resulting Vo values were used to calculate the % inhibition, as 100 - 

(Ri / Rc x 100), where Ri is the Vo in the presence of the inhibitor and Rc is the Vo in the 

absence of inhibitors (1% DMSO v/v final concentration).  

  The % inhibition was measured for at least five concentrations (0.1-128 μM) for 

each test compound (diterpenoids and MTX), and concentration-response curves (% 

inhibition vs. Log[inhibitor]) were constructed using non-linear regression to determine the 

IC50 using GraphPad Prism 7.0 (GraphPad, San Diego, CA, USA). The Kiapp values were 

finally calculated using the Cheng-Prusoff equation for competitive inhibition with a 1:1 

stoichiometry and reversible inhibitor-binding reactions: Kiapp = IC50 / (1 + [S] / Km), 

where [S] is the substrate (H2F) concentration and Km is the Michaelis constant. The 

substrate Km was calculated during the kinetic characterization of the purified, 

recombinant LmDHFR-TS and was determined to be 2.4 ± 0.7 μM. 

 

3.2. Isolation of compound 148 

  Kaurane-type diterpene 148 was isolated from Euphorbia graminea Jacq. 

(Euphorbiaceae), which was propagated under greenhouse conditions from commercially 

available seeds (Swallowtail Garden Seeds, Santa Rosa, CA, USA). The aerial part (128 g) 
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of two-month-old plants of E. graminea was extracted with 96% ethanol, and the raw 

extract (11.2 g) was purified by column chromatography (CC) using a gradient elution of 

n-hexane to methanol, yielding fifteen fractions. The purification of fraction 7 was then 

performed independently by flash column chromatography on SiO2 using a mobile phase 

of a 7:3 mixture of n-hexane and ethyl acetate, which resulted in the isolation of diterpene 

148 (35.6 mg). Its spectroscopic data, including NMR and HRMS, were found to match 

those of the previously isolated compound ent-kaurane-3-oxo-16α,17-diol [33] 

 

3.3. Synthesis of 16ß,17-isopropylidenedioxy-ent-kauran-3-one (4) 

  Compound 4 was synthesized from 148 using a previously reported procedure [34]. 

Briefly, compound 148 (24 mg, 0.075 mmol) and tetrahydrofuran (THF) (4 mL) were 

mixed in a 10-mL round-bottom flask by stirring at 0 °C. Then, 2,2-dimethoxypropane (46 

µL, 0.375 mmol) and p-toluenesulfonic acid monohydrate (0.75 mg, 0.375 µmol) were 

added. The reaction mixture was stirred at 0 °C for 2 hours, allowed to warm to 20 °C, and 

then stirred at this temperature for 16 hours. 

  The reaction was then quenched with saturated NaHCO3 (3 mL) and extracted with 

CH2Cl2 (3 x 3 mL). The CH2Cl2 extract was separated, washed with 10% NaCl (2 x 3 mL), 

dried over MgSO4, filtered, and concentrated under reduced pressure to obtain the structure 

4 (26 mg, 96%); [α]D
20 –41.8 (c 0.04, CHCI3); 

1H NMR (400 MHz, CDCl3) δH 4.22 (d, J = 

8.3 Hz, 1H), 3.61 (d, J=10.5 Hz, 1H), 2.41 (dd, J = 8.1, 6.3 Hz, 2H), 2.33-2.28 (m, 1H), 

1.85 (dd, J = 10.4, 3.6 Hz, 1H), 1.76-1.72 (m, 1H), 1.68-1.65 (m, 2H), 1.64-1.61 (m, 1H), 

1.52-1.47 (m, 1H), 1.47-1.44 (m, 1H), 1.37 (s, 3H), 1.33 (s, 3H), 1.27-1.25 (m, 3H), 1.24-

1.23 (m, 1H), 1.23-1.19 (m, 3H), 1.14-1.11 (m, 1H), 0.99 (s, 3H), 0.91 (s, 3H), 0.88 (s, 

3H), 0.82 (d, J = 8.4 Hz, 1H); 13C NMR (100 MHz, CHCI3) δC 217.6, 193.0, 109.3, 79.6, 

69.5, 55.2, 54.7, 52.3, 47.4, 44.1, 40.6, 40.4, 37.8, 37.3, 37.2, 34.5, 27.6, 27.4, 27.2, 26.7, 

20.3, 19.4, 17.8; HREIMS [M+H]+ m/z 361.2724 (calcd. for C23H37O3, 361.2743). 

 

3.4. Hybrid models of Leishmania DHFR-TS 

  Hybrid models of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) of 

different Leishmania species were constructed using YASARA software (YASARA 

18.4.24, Vienna, Austria: YASARA Biosciences GmbH, 2018). The FASTA sequences of 

L. major DHFR-TS (P07382), L. brazilensis DHFR-TS (A4H4P8), L. panamensis DHFR-

TS (S5M3K7), and L. amazonensis DHFR-TS (P16126) were obtained from the UNIPROT 

database (https://www.uniprot.org/). The constructed hybrid models were validated 
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through stereochemical quality assessment using PROCHECK [35]. PROCHECK 

evaluated molecular diversity through several stereochemical parameters, including the 

torsional angles of the main chain, side chain torsional angles, bad contacts or steric 

impediments, and planarity.  

  PROCHECK generated a Ramachandran graph [23], which verified the allowed 

and prohibited regions of the main amino acid chain. The structural quality was evaluated 

using VERIFY 3D software (https://services.mbi.ucla.edu/SAVES/, accessed on January 3, 

2023) and WHAT IF (https://swift.cmbi.ru.nl/servers/html/index.html, accessed on January 

5, 2023). VERIFY 3D software analyzes the compatibility of the protein sequence with its 

3D structure based on the chemical environment, while WHAT IF analyzes various 

structural parameters, such as atomic contacts between residues. The Discovery Studio 

Visualizer (BIOVIA, Dassault Systèmes, Discovery Studio Visualizer, v21.1.0.20298, San 

Diego: Dassault Systèmes, 2020) was used to visualize the modeled protein [20]. 

 

3.5. Molecular docking calculations 

  The hybrid model of L. major DHFR-TS in complex with methotrexate (PDB ID: 

MTX) was used for the molecular docking calculations of the six kaurane-type diterpenes 

using the Molegro 6.0.1 software. All water molecules were removed from the enzyme 

structures and both the enzyme and compound structures were prepared with the same 

default parameters in the same software package. The MolDock Score function was used 

as the score function, and the internal ES, internal H-bond, Sp2-Sp2 Torsions were all 

checked as the ligand evaluation criteria. The molecular docking procedure was run 10 

times, using the MolDock SE algorithm, with a maximum of 1500 interactions, a 

maximum population size of 50, a maximum of 300 steps, a neighbor distance factor of 

1.00, and a maximum of 5 poses returned. A grid with a 15 Å radius and 0.30 Å resolution 

was used to cover the ligand-binding site for the enzyme structure [36, 37]. 

  For L. brazilensis, L. panamensis, and L. amazonensis DHFR-TS, the docking 

calculations were performed using the Autodock/Vina (1.1.2) plug-in for PyMOL (1.3r2) 

under a Python 2.5.2 environment for Windows. The minimized structure was located in a 

cube with dimensions of 22.5 Å × 22.5 Å × 22.5 Å and a grid spacing of 0.375 Å at the 

geometric center of the binding pocket (coordinates for L. brazilensis: 43.01, 23.70, 1.67; 

L. panamensis: 43.64, 24.00, 1.50; and L. amazonensis: 43.49, 24.96, 1.95), which was 

identified through cavities analysis in Molegro 6.0.1. Flexible residues in the binding site 

were selected for each model: L. brazilensis and L. amazonensis: I30, V31, Q48, V49, 
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M53, V87, and V156; L. panamensis: I30, V31, Q48, V49, D52, M53, S86, and V87. The 

docking poses were classified based on their docking scores, such as the free energy or 

affinity, and each calculation was performed in three replicates. Methotrexate (MTX) was 

used as a control. The two-dimensional residual interaction diagrams were visualized on 

the Discovery Studio Visualizer (BIOVIA, Dassault Systèmes, Discovery Studio 

Visualizer, v21.1.0.20298, San Diego: Dassault Systèmes, 2020) [20]. 

 

3.6. Molecular dynamics simulations 

  Molecular dynamics simulations were carried out using Gromacs 5.0.5 on an 

Ubuntu 12.04 server [38,39]. The structures 302, its derivative 302a, MTX, and the hybrid 

models of L. brazilensis, L. panamensis, and L. amazonensis DHFR-TS were used as 

inputs for the simulations. [40] The hydrogen atoms and corresponding charges for the 

ligands were added using the AM1-BCC charge scheme in UCSF Chimera, and the ligand 

topologies were generated automatically with the ACPYPE script. 

  The protein topologies were obtained in Gromacs using the Amber 99SB force field 

and the TIP3P water model. Solvation was performed in a triclinic box with a margin 

distance of 1.0 nm and 0.1 M NaCl was added to the complexes and proteins by randomly 

replacing water molecules until neutrality was achieved [30, 37-39]. 

  The systems were energy-minimized for 2,000 steps using the steepest descent 

method. Then, NVT equilibration was performed at 310 K for 50 ps followed by NPT 

equilibration for 500 ps, using the Parrinello-Rahman method at 1 bar with position 

restraints. The solute position restraints were then released, and a production run was 

performed for 5 ns while maintaining constant temperature and pressure at 310 K and 1 

bar, respectively. 

  The coordinates were recorded in a 1 fs time step, and electrostatic forces were 

calculated using the particle-mesh Ewald method. All simulations used periodic boundary 

conditions and covalent bond lengths were constrained by the LINCS algorithm. The 

binding free energies were calculated using the molecular mechanics Poisson-Boltzmann 

surface area (MM/PBSA) method based on the trajectories obtained from the molecular 

dynamics’ simulations [37-39]. 

 

4. Conclusions 

  This study identified compounds 302 (3α-cinnamoyloxy-ent-kaur-16-en-19-oic 

acid) and 302a as potential inhibitors of both PTR1 and DHFR-TS in L. major, building 
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upon previous findings of PTR1 inhibition [20]. Both 302 and 302a displayed in vitro 

inhibitory activity against L. major DHFR-TS, with IC50 values of 6.3 and 4.5 µM, 

respectively. Additionally, other kaurane-type diterpenes, such as synthesized structure 4, 

also inhibited DHFR-TS in vitro with an IC50 value of 7.6 µM. Structures 301 and 301a, 

which were previously classified as inactive against PTR1, also showed inhibitory activity 

against DHFR-TS, verifying the results obtained from MolpredictX. Furthermore, 

molecular docking calculations using a hybrid model of L. major DHFR-TS allowed 

evaluation of the mechanism of action of the tested kauranes. The p-hydroxyl group of the 

phenylpropanoid moiety of structure 302a was found to play a crucial role in the inhibition 

of DHFR-TS. 

  Additionally, hybrid models for three Leishmania species with high incidence in 

Central and South America were constructed. The best docked results for structure 302 and 

its derivative 302a in the three hybrid models showed a correlation between the affinity 

values obtained from the molecular docking and some structural features of the kauranes, 

such as the presence of an unsaturation at carbon-17 that interacts with the amino acids of 

DHFR-TS through π-alkyl interactions, making these two structures potential multispecies 

inhibitors. Furthermore, molecular dynamics’ simulation, in addition to validating the 

hybrid models, confirmed the results previously obtained from the molecular docking 

calculations. So, this study presented a valuable approach for identifying potential dual 

PTR1/DHFR-TS inhibitors, contributing to the development of alternative chemotherapy 

strategies against these diseases. 
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 O ácido cinâmico é um ácido orgânico presente naturalmente em plantas, sendo 

caracterizado por baixa toxicidade e amplo espectro de atividades biológicas. Na busca por 

compostos farmacologicamente ativos, os derivados de ácido cinâmico são considerados 

importantes e promissores, com grande potencial para o desenvolvimento de medicamentos 

[1]. Quimicamente, nos ácidos cinâmicos, a funcionalidade do ácido 3-fenil acrílico 

oferece três principais sítios reativos: substituição no anel fenílico, adição na insaturação-α, 

β e reações da funcionalidade do ácido carboxílico [2]. Derivados de ácido cinâmico, 

incluindo flavonoides e lignanas, apresentam notável potencial leishmanicida, tornando-os 

candidatos promissores no combate a infecções por Leishmania. 

 Encontrado em muitas plantas, o ácido cinâmico e seus derivados são 

frequentemente avaliados por sua atividade farmacológica [3]. Gouri et al. relatam alguns 

inibidores naturais contra amastigotas de Leishmania, como luteolina (IC50 = 3,12 μM), 

quercetina (IC50 = 10,5 μM), crisina (IC50 = 13 μM), apigenina, miricetina, ácido cinâmico 

(IC50 = 0,25 μM) e licocalcona A (IC50 = 0,9 μM), que podem desempenhar um papel 

importante na descoberta de medicamentos [4]. Por outro lado, Peixoto et al. avaliaram a 

atividade biológica de 25 derivados de ácido cinâmico contra amastigotas de Leishmania 

braziliensis, obtendo resultados promissores e observando que anéis aromáticos com 

oxigênio como heteroátomo tiveram um efeito benéfico em termos de atividade contra 

Leishmania [5]. 

 Flavonoides derivados do ácido cinâmico têm mostrado notável atividade 

leishmanicida. Compostos como quercetina [6], kaempferol [7] e naringenina [8], 

originados da via do ácido cinâmico, possuem propriedades anti-Leishmania. Sua 

capacidade de modular o estresse oxidativo e interferir em processos celulares essenciais 

no parasita os torna valiosos no combate a infecções por Leishmania. 

 Lignanas, outra classe de derivados do ácido cinâmico, exibem atividades 

leishmanicidas promissoras. A nirantina, uma lignana isolada das partes aéreas da planta 

Phyllanthus amarus, apresenta amplo espectro de atividades farmacológicas, incluindo um 

potente efeito antileishmanial [9]. Secoisolariciresinol [10] e matairesinol [11], derivados 

do ácido cinâmico, demonstraram eficácia contra parasitas da Leishmania. Essas lignanas 

podem interferir nos mecanismos de crescimento e sobrevivência do parasita, tornando-as 

candidatas potenciais para o desenvolvimento de medicamentos. 

 Este capítulo foca na identificação de potenciais inibidores da diidrofolato redutase-

timidilato sintase (DHFR-TS) da Leishmania major, essencial para a síntese de DNA. 

Utilizando um banco de dados com 314 metabólitos secundários derivados do ácido 



197 

 

cinâmico na família Asteraceae, uma triagem virtual identificou hits promissores, incluindo 

ácido litospérmico, diarctigenina e isolappaol A. Simulações de dinâmica molecular 

validaram sua estabilidade, e ensaios in vitro demonstraram inibição efetiva da LmDHFR-

TS. Notavelmente, duas lignanas exibiram seletividade superior em relação ao metotrexato, 

indicando seu potencial no combate à leishmaniose. Pesquisas contínuas nessas lignanas 

híbridas butirolactonas C6C3 podem oferecer uma perspectiva mais promissora para 

combater essa doença tropical negligenciada.  
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Abstract: The critical enzyme dihydrofolate reductase-thymidylate synthase in 

Leishmania major (LmDHFR-TS) serves a dual-purpose role and is essential for DNA 

synthesis, a cornerstone of the parasite’s reproductive processes. Consequently, the 

development of inhibitors against LmDHFR-TS is crucial for the creation of novel anti-

Leishmania chemotherapies. In this study, we employed an in-house database containing 

314 secondary metabolites derived from cinnamic acid that occurred in the Asteraceae 

family. We conducted a combined ligand/structure-based virtual screening to identify 

potential inhibitors against LmDHFR-TS. Through consensus analysis of both approaches, 



200 

 

we identified three compounds, i.e., lithospermic acid (237), diarctigenin (306), and 

isolappaol A (308), that exhibited a high probability of being inhibitors according to both 

approaches and were consequently classified as promising hits. Subsequently, we 

expanded the binding mode examination of these compounds within the active site of the 

test enzyme through molecular dynamics simulations, revealing a high degree of structural 

stability and minimal fluctuations in its tertiary structure. The in silico predictions were 

then validated through in vitro assays to examine the inhibitory capacity of the top-ranked 

naturally occurring compounds against LmDHFR-TS recombinant protein. The test 

compounds effectively inhibited the enzyme with IC50 values ranging from 6.1 to 10.1 μM. 

In contrast, other common cinnamic acid derivatives (i.e., flavonoid glycosides) from the 

Asteraceae family, such as hesperidin, isovitexin 4′-O-glucoside, and rutin, exhibited low 

activity against this target. The selective index (SI) for all tested compounds was 

determined using HsDHFR with moderate inhibitory effect. Among these hits, lignans 306 

and 308 demonstrated the highest selectivity, displaying superior SI values compared to 

methotrexate, the reference inhibitor of DHFR-TS. Therefore, continued research into the 

anti-leishmanial potential of these C6C3-hybrid butyrolactone lignans may offer a brighter 

outlook for combating this neglected tropical disease. 

 

Keywords: Leishmania; Asteraceae; DHFR-TS; lignans; flavonoids; natural products; 

machine learning 

 

1. Introduction 

  Leishmaniasis is a neglected tropical disease (NTD) caused by protozoan parasites 

of the genus Leishmania, which are transmitted by the bite of infected sandflies. This 

disease affects millions of people worldwide, particularly in developing countries with 

poor health infrastructure. The primary clinical forms of the disease are visceral, 

cutaneous, and mucocutaneous. According to the World Health Organization (WHO), the 

global burden of leishmaniasis is estimated to be around 700,000 to 1 million new cases 

each year, with 90% of the cases occurring in just six countries: Afghanistan, Algeria, 

Brazil, Colombia, Iran, and Syria [1,2]. The sandflies that transmit leishmaniasis are most 

active at night and breed in wet soil, organic matter, or animal burrows [3]. In Colombia, 

10 out of the 20 species that can infect both humans and other living beings are present. 

The cutaneous leishmaniasis (CL) form is the most frequent (98–99%), with the population 

under five years old and immunocompromised individuals being the most affected [4,5]. 
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The number of CL cases reported in Colombia in 2022 was 4906, with the departments of 

Amazonas, Boyacá, Caquetá, Cesar, Córdoba, Cundinamarca, Putumayo, Santander, and 

Sucre being the most affected areas [6]. 

  Since the late 1980s, Leishmania-HIV co-infection has been reported in 35 

countries, and there have also been other cases of Leishmania-Malaria co-infection, which 

are associated with the worsening of the clinical condition of patients with leishmaniasis. 

This co-infection type has increased the disease’s burden due to the greater difficulty of 

clinical treatment [7,8]. Currently, antimonial compounds are the primary treatment for 

leishmaniasis; however, they present high toxicity and resistance in some endemic regions. 

To address these challenges, alternative drugs have been developed, such as liposomal 

amphotericin B, which significantly reduces the side effects and treatment duration 

associated with free amphotericin B but is expensive [9,10]. Other drugs, such as 

paromomycin and miltefosine, have been associated with high toxicity, resistance, and 

teratogenic and abortive effects, promoting the discovery and development of low-cost, 

highly effective drugs with low toxicity [11]. Furthermore, it is worth noting that while 

Leishmania is a parasitic disease mainly affecting humans, it also affects animals such as 

dogs and rodents, which can serve as reservoirs for the parasite and increase the risk of 

transmission to humans [12,13]. 

  Therefore, efforts to develop effective treatments and control measures must be 

considered. High-throughput screening (HTS) has been used since the early 1990s to test 

the activity of large numbers of molecules against different diseases and thereby identify 

potential hits for drug development [14]. However, the uncertainty of success, as well as 

the time and screening costs, limit the use of this technique [15]. In recent years, 

chemoinformatics tools (e.g., molecular docking, machine learning) have been utilized to 

conduct in silico studies that can predict the interactions between a protein and a ligand, 

reducing the number of actual laboratory experiments and accelerating the drug discovery 

process more efficiently and cost-effectively [14,16]. The different research conducted in 

this field has led to the development of increasingly efficient and better classifying models, 

which take advantage of large compound databases, opening the possibility of studying 

diseases that mainly affect poorer populations (NTD), which are not attractive to large 

industries and big pharma [17]. 

  Leishmaniasis is commonly treated with plants from the Asteraceae family in 

traditional medicine. Given the diversity of this family (32,913 species) and the wide range 

of phytochemicals they contain, including alkaloids, coumarins, flavonoids, benzofurans, 
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sterols, and terpenoids, they are considered a promising source of new leishmanicidal 

compounds [18]. Some secondary metabolites studied in this family have been 

sesquiterpenoids [19,20], triterpenes [21], phytosterols [22], and kauranes [23]. However, 

although they have shown activity to inhibit the disease, their pIC50 is not large enough, 

and compounds that are effective at low concentrations and selective against the parasite 

are preferred. A group of compounds that has not yet been studied, with records reporting 

promising in vitro activity, is the derivatives of cinnamic acid belonging to the Asteraceae 

family [24–26]. 

  Gouri et al. report some natural inhibitors against Leishmania amastigotes, such as 

luteolin (IC50 = 3.12 μM), quercetin (IC50 = 10.5 μM), chrysin (IC50 = 13 μM), apigenin, 

myricetin, cinnamic acid (IC50 = 0.25 μM), and licochalcone A (IC50 = 0.9 μM), which can 

play an important role in drug discovery [24]. Peixoto et al., on the other hand, evaluated 

the biological activity of 25 cinnamic acid derivatives against Leishmania braziliensis 

amastigotes, obtaining promising results and finding that aromatic rings with oxygen as a 

heteroatom had a beneficial effect in terms of activity against Leishmania [25]. 

Considering that heterocyclic compounds have been of great importance for drug 

development in the pharmaceutical industry, derivatives of cinnamic acid, which is an 

aromatic carboxylic acid commonly substituted in the trans position by an acrylic acid 

group, represent an interesting starting point for directing studies in the search for possible 

hits against different species of leishmaniasis [27]. Although some of these compounds 

have already been studied, many more remain to be analyzed. 

  Some cinnamic acid derivatives, such as indole-based inhibitors with a Michael 

acceptor cinnamic ester head, have been tested against human coronaviruses, 

demonstrating EC50 values of 9.14 μM and 10.1 μM [28]. Another area in which their 

potential has been demonstrated is as antitumor agents. In this context, it has been found 

that brefeldin A 4-O-(4)-dimethylaminocinnamate improves aqueous solubility and 

exhibits strong cytotoxic activity against HepG2 and BEL-7402 cell lines, with IC50 values 

of 0.29 and 0.84 μM, respectively [29]. 

  Additionally, the compound (E)-N-(2-(dimethylamino)ethyl)-3-(1H-indol-3-yl)-N-

(pyridin-2-yl) acrylamide has shown promise as a focal adhesion kinase (FAK) inhibitor 

for the intervention in metastatic triple-negative breast cancer. It potently inhibits the 

proliferation, invasion, and migration of TNBC cells in vitro, with an IC50 of 8.37 μM [30]. 

Additionally, these types of compounds have been proven to be potential anti-

inflammatory agents by inhibiting Akt/NF-κB and MAPK signaling pathways. Among 
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them, ursodeoxycholic acid–cinnamic acid hybrids showed the best inhibitory activity, 

with an IC50 of 7.70 μM and no significant toxicity [31]. 

  In the present study, a computational approach was undertaken to identify potential 

inhibitors of the bifunctional enzyme dihydrofolate reductase-thymidylate synthase 

(DHFR-TS) of Leishmania major given its crucial role in the synthesis of DNA in 

trypanosomatids, which is essential for the parasite’s reproduction [32]. To accomplish 

this, a custom-made, in-house library containing 314 specialized metabolites derived from 

cinnamic acid was virtually screened. 

  Initially, a ligand-based predictive classification model was developed using 

experimental information on the IC50 values retrieved from in vitro assays of reported 

compounds against Leishmania. Simultaneously, employing a hybrid LmDHFR-TS model 

constructed based on its amino acid sequence [33], a structure-based ranking through 

molecular docking calculations was performed using the investigated specialized 

metabolite database. Through a consensus analysis, molecules with the highest probability 

of being inhibitors by both approaches were classified as possible hits. 

These secondary metabolites were further evaluated through in vitro assays using the 

recombinant LmDHFR-TS, and ADMET properties were calculated to determine their 

pharmacokinetic properties. 

 

2. Results and Discussion 

 

2.1. Combined Ligand-/Structure-Based Virtual Screening Approach Using 

LmDHFR-TS. 

 

2.1.1. Ligand-Based Virtual Screening 

  Initially, a compilation of compounds exhibiting inhibitory activity against 

LmDHFR-TS was assembled from the ChEMBL database. These compounds underwent 

classification as either active or inactive, a determination based on their reported IC50 

values. A cutoff point of pIC50 = 5.0 was employed for this classification. The choice of 

this threshold was grounded in the range of IC50 values documented in the ChEMBL 

database, with an effort to strike a balance between the number of active and inactive 

compounds. This specific value aims to optimize the representation of chemical space for 

both active and inactive structure classes while concurrently minimizing the false positive 

rate of the model. 
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  To refine the dataset, duplicate molecules were eliminated during the data curation 

process, ensuring the creation of a virtual screening model characterized by high prediction 

efficiency. Additionally, molecules with an IC50 value falling within ±0.1 of the cut-off 

point were included in the analysis. Ultimately, a total of 790 molecules were chosen for 

model training. Within this set, 378 were identified as inactive (47.8%), while 412 were 

recognized as active (52.2%). 

  In the ligand-based process, VolSurf+ (128) and AlvaDesc (more than 4000) 

molecular descriptors were calculated from the three-dimensional representation of each 

compound in the database. For AlvaDesc molecular descriptors, a feature selection was 

conducted before model training. This process involved removing all constant variables, 

variables with only one unique value, variables that had at least one sample with a missing 

value or exhibited autocorrelation greater than 0.95. After this process, 523 molecular 

descriptors were used for the model construction. 

  These descriptors were then utilized to construct the random forest (RF) model in 

Knime software (KNIME 4.5.0, the Konstanz Information Miner, Copyright 2003–2014, 

www.knime.org (accessed on 2 February 2023)), which comprised 200 decision trees. The 

Gini index was employed as the split criterion in the RF model to reduce the number of 

false positive results. The dataset underwent a five-fold cross-validation strategy, where it 

was divided into five subsets, each containing an 80% modeling set and a 20% validation 

set. The modeling set was exclusively used for model construction and further subdivided 

into multiple training and test sets, maintaining an 80%/20% split ratio. These procedures 

were conducted following the approach described by Fourches et al. [34]. 

  Molecular descriptors play a crucial role in drug discovery and development, 

serving as representations of the molecular and chemical properties of the compounds 

under investigation. In this study, the selected descriptors proved to be instrumental. 

VolSurf+ generates three-dimensional (3D) molecular descriptors based on the distribution 

of molecular electrostatic potentials and hydrophobicity, encapsulating molecular surface 

properties, such as size, shape, and electrostatic potential distribution [35,36]. On the other 

hand, AlvaDesc provides a diverse array of descriptor types, encompassing constitutional 

descriptors (detailing the number and type of atoms, bonds, and functional groups in the 

molecule), topological descriptors (representing molecular shape, size, and complexity), 

electrostatic descriptors (conveying molecular polarity and charge distribution), and 

quantum mechanical descriptors (pertaining to the electronic structure and properties of the 

molecule) [37,38]. 
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  The performance of the RF model was assessed to compare the efficacy of the two 

types of descriptors. This assessment included calculating classification precision, recall, 

F1-score, and Matthew’s correlation coefficient (MCC). Additionally, receiver operating 

characteristic (ROC) curves were analyzed, and the area under the ROC curve (AUC) was 

calculated (Figure 1). These evaluation metrics are commonly utilized to gauge the 

effectiveness of binary classification models. ROC curves and their AUCs are frequently 

employed to evaluate the performance of models that generate continuous output scores or 

probabilities. AUC serves as a scalar measure of the model’s overall ability to distinguish 

between positive and negative cases [37,39]. 

 

Figure 1. ROC curve comparison for the RF model using AlvaDesc and VolSurf 

descriptors for (a) test sets and (b) cross-validation. Performance evaluation of RF using 

(c) AlvaDesc and (d)VolSurf descriptors. (e) Precision–recall (PR) curves for cross-

validation. (f) Scatter plots depicting the results of the PCA analysis conducted on the 

training and test datasets. 
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  According to the parameters presented in Figure 1, it is evident that the MCC and 

AUC values for both the test sets and cross-validation are higher for AlvaDesc descriptors 

compared to those obtained for VolSurf descriptors. However, considering that a higher 

AUC value indicates a more remarkable classification ability of the model and that MCC is 

expressed in a range of −1 to 1 (where a high value close to 1 suggests a strong correlation 

between the predicted class and the true class), good values were obtained for both 

AlvaDesc (AUC: 0.863 and 0.906, MCC: 0.554 and 0.645) and VolSurf (AUC: 0.855 and 

0.884, MCC: 0.539 and 0.598) descriptors. 

  Regarding precision, recall, and F1 score, good and similar values were obtained 

for both models, except for the recall for inactive compounds in the model created using 

VolSurf descriptors, which was low, with a value of 0.69. Sensitivity and specificity 

measures were also calculated to assess the performance of the RF model. For AlvaDesc, 

the values were 0.807 and 0.752, while for VolSurf, the values were 0.843 and 0.690, 

respectively. These results indicate a tendency to have few false negatives, a higher value 

of true negatives, and a lower false positive rate for both descriptors. 

  The precision–recall (PR) curves, closely related to the ROC curve, were 

constructed as an evaluation tool for binary classification, enabling the visualization of 

performance across various thresholds [40]. The results revealed an area under the PR 

curve of 0.934 for AlvaDesc and 0.885 for VolSurf molecular descriptors, indicating a 

high-quality model and balanced datasets. 

  The reliability of the regression model was systematically verified by assessing its 

applicability domain, ensuring the capability to generate trustworthy predictions. The 

applicability domain (APD) determination relied on molecular interactions. Results for the 

training set indicated high reliability rates, reaching 98.1% and 98.4% for the AlvaDesc 

and VolSurf descriptors, respectively. 

  Similarly, the test set demonstrated substantial reliability, boasting rates of 96.1% 

and 100% for the AlvaDesc and VolSurf descriptors, respectively. These results emphasize 

the model’s dependability in predicting outcomes. In the specific context of cinnamic acid 

derivatives, the APD calculation yielded a noteworthy 80% of structurally reliable 

outcomes. This analysis further attests to the model’s robustness in diverse chemical 

scenarios. 

  To enhance insights from the APD and visually represent the chemical space 

distribution, principal component analysis (PCA) was conducted on the datasets employed 

in this study. This analysis, performed using the training set, projected the results of the 
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test set onto the distribution observed for the training set (Figure 1f). Remarkably, the 

chemical space of the training set encompassed that of the test set, incorporating molecules 

classified as both active and inactive. 

  Regarding the model constructed with AlvaDesc molecular descriptors, those 

demonstrating greater relevance are those associated with the last eigenvector of the 

Barysz matrix. This can be achieved either by calculating the average of its coefficients 

(VE2sign_Dz(p)) or by summing them, with the resulting value weighted by the 

molecule’s polarizability (VE2sign_Dz(p)) or by Van der Waals volumes 

(VE2sign_Dz(v)). Additionally, descriptors AVS_B(m) and AVS_B(v) utilize the charge 

matrix, summing the elements of a specific row or column, and weighting them by mass or 

Van der Waals volumes, respectively. Furthermore, descriptors based on extended 

topochemical atom (ETA) indices are considered, specifically those related to hydrogen 

bond donor atoms (ETA_D_epsiD) [37]. The obtained results regarding the relevance of 

molecular descriptors are presented in Table S1. 

  The same analysis, evaluating the relevance of molecular descriptors, was also 

conducted for VolSurf. The two descriptors with the highest accuracy values were 

associated with the partition coefficient between 1-octanol and water, namely LgD6 and 

LgD5, which ranked highest. These descriptors calculate the logarithm of the partition 

coefficient between 1-octanol and water by summing the logP and the fraction of each 

species at pH 5 and 6, respectively (Table S1). 

  Additionally, the LogP n-oct descriptor emerges as one of the most relevant in 

model construction, along with LdS5, which computes the logarithm of the partition 

coefficient between 1-octanol and water through a linear equation derived by fitting GRID-

derived atom types to experimental data on n-octanol/water partition coefficients. Finally, 

DD1 appears, measuring the difference between the maximum hydrophobic volumes and 

the hydrophobic volumes of the imported 3D structure calculated at the first level of 

energy [35,36]. 

  Ligand-based virtual screening (VS) was utilized to predict the potential inhibitory 

activity of 314 compounds derived from cinnamic acid in the Asteraceae family, as 

documented in the literature. Figure 2 showcases the structure and probability of the five 

best compounds classified using AlvaDesc descriptors. These compounds were (E)-2-

hydroxy-3′,6′-dimethoxychalcone (103) [41], apigenin 7-O-(6″-caffeoyl)-glucoside (235) 

[42], montamine (63) [43], 3-O-p-coumaroyl-betulinic acid (150) [44], and cordoin (202) 

[45]. Additionally, Figure 2 presents the top five compounds predicted using VolSurf 
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descriptors: 6,8-di-C-β-glucopyranosylchrysin (242) [46], montamine (63) [43], 

dihydrocubebin (305) [47], prebalanophonin (312) [48], and 4-O-feruloyl 5-O-

caffeoylquinic acid (96) [49]. 

 

Figure 2. Chemical structures of the five top-ranked cinnamic acid derivatives using a 

ligand-based virtual screening (LB) with AlvaDesc and VolSurf+ descriptors; PLB =active 

probability value. 

 

  Among all the tested compounds, 116 were classified as active using AlvaDesc 

molecular descriptors, with probability values ranging from 0.50 to 0.71. On the other 

hand, 93 compounds were considered active with VolSurf molecular descriptors, and their 

probability values ranged from 0.50 to 0.86. Some of these molecules were previously 

reported to exhibit various activities, such as analgesic activity (305), antimalarial activity 

(150), cytotoxic activity (63), acting as anticancer agents (202), and demonstrating 

antiproliferative properties (312) [43,45–47,50–52]. 
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  Regarding the best compounds, only one contains nitrogen in its structure (63). The 

rest have various oxygen atoms, forming heterocycles or containing carbonyl groups, 

ethers, and alcohols. Additionally, one of them is a steroid (150), and another is 

glycosylated (242). 

 

2.1.2. Structure-Based Virtual Screening 

  Structure-based virtual screening (VS) was conducted using a hybrid homology 

model of LmDHFR-TS [33], a bifunctional enzyme with a critical role in the metabolic 

pathway of Leishmania parasites as well as several protozoa species. The Leishmania 

genus is autotrophic for folate and unconjugated pteridines, with the enzyme DHFR-TS 

playing a pivotal role in the reduction of dihydrofolate to tetrahydrofolate, a cofactor in the 

biosynthesis of thymine in nucleotide metabolism [53,54]. 

  The LmDHFR-TS hybrid model was constructed in YASARA software v.19.12.14 

and subjected to thorough evaluation for reliability and stereochemical qualities through 

Ramachandran, WHAT IF, and VERIFY 3D analyses. The Ramachandran plot indicated 

that 96.9% of residues were in favored regions, confirming model satisfaction (Figure S1). 

VERIFY 3D results, with 92.6% of residues having a reliable 3D-1D score, and WHAT IF 

evaluation, showing a mean score of −0.594, substantiated the model’s quality. Dihedral 

assessment revealed optimal values above 1.085, affirming the robustness of the LmDHFR-

TS hybrid model [33]. 

  To assess the potential inhibitory capability of cinnamic acid derivatives against 

LmDHFR-TS, molecular docking calculations were carried out using Molegro software. 

The results were validated by redocking the co-crystallized ligand, i.e., ethyl 4-(5-{[(2,4-

diaminoquinazolin-6-yl)methyl]amino}-2-methoxyphenoxy)butanoate (DQ1), along with 

the reference inhibitor methotrexate (MTX) (Figure 3). 
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Figure 3. (A) Chemical structures of reference ligands: Methotrexate (MTX) and ethyl 4-

(5-{[(2,4-diaminoquinazolin-6-yl)methyl]amino}-2-methoxyphenoxy)butanoate (DQ1). 

Redocking results of (B) MTX and (C) DQ1 in the active site of LmDHFR-TS. The 

original ligand conformation is highlighted in red, while the best pose found in the 

molecular docking procedure is shown in green. 

 

  The compounds were ranked based on the predicted docking binding energy using 

the probability calculation shown below (Equation (1)), as previously reported by Herrera-

Acevedo et al. [19,20]. The ten compounds exhibiting the highest probability of being 

active are presented in Table 1. Ranked compounds that did not previously show high 

ligand-based probability values but appeared among the best-ranked derivatives through a 

structure-based approximation are represented in Figure 4 along with their respective 

structure-based probability (PSB) values. 

 

𝑃𝑆𝐵 = (𝐸𝑖/𝐸𝑚𝑖𝑛) > 0.5 and 𝐸𝑖 < 𝐸𝑙𝑖𝑔𝑎𝑛𝑑 (1) 

  

where 𝑃𝑆𝐵 is the structure-based probability; 𝐸𝑖 is the docking energy of compound 𝑖, 

where 𝑖 ranges from 1 to 314 (cinnamic acid derivatives dataset); 𝐸𝑚𝑖𝑛  is the lowest energy 

value of the dataset; and 𝐸𝑙𝑖𝑔𝑎𝑛𝑑  is the ligand energy from the co-crystalized inhibitor. 
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  The results showed that the energy-based scoring values were lower for the 

cinnamic acid derivatives compared to the reference ligands. This suggests that the studied 

compounds exhibit a higher affinity with the LmDHFR-TS active site in the molecular 

recognition process. Furthermore, the docking results revealed that 24.5% of the 314 

cinnamic acid derivatives dataset had PSB values above 0.5, and among these top-ranked 

compounds, 64 had a lower docking score than methotrexate, which achieved −114.15 

kJ/mol. 

 

Figure 4. Chemical structure of six of the best-ranked cinnamic acid derivatives that 

appear as active in the structure-based virtual screening with their respective probability to 

be active. PSB = active probability value. 

 

  Three of the top-ranked molecules predicted to have high ligand-based probability 

values based on the RF model also demonstrated high structure-based probability values. 

Specifically, Compound 242, ranked fourth in the structure-based classification (Table 1), 

was the best classified in the ligand-based VS model with VolSurf descriptors. Compounds 

235 and 63, positioned among the top ten compounds in structure-based VS with docking 

scores of −161.4 kJ/mol and −160.1 kJ/mol, respectively, also showed high ligand-based 

probabilities. Compound 235 was predicted to be the second-best structure with high 

potential for inhibition using the model built with AlvaDesc descriptors, while Compound 

63 was classified in the top three for both RF models (AlvaDesc and VolSurf molecular 

descriptors). 



212 

 

Table 1. Chemical structure of six of the best-ranked cinnamic acid derivatives that appear 

as active in the structure-based virtual screening with their respective probability to be 

active. PSB = active probability value. 

 

Rank Ligand Docking Score (kJ/mol) SD RMSD 

1 241 −182.8 5.4 1.0 

2 164 −175.6 7.1 1.8 

3 21 −175.5 11.2 1.0 

4 242 −169.6 1.9 1.2 

5 140 −167.0 3.3 0.4 

6 283 −165.4 4.8 1.7 

7 165 −161.8 7.4 1.2 

8 235 −161.4 5.9 0.9 

9 285 −160.9 8.8 1.2 

10 63 −160.1 5.2 1.1 

Redocking 
MTX −114.2 2.2 0.3 

DQ1 −134.4 2.5 0.3 

 

  The analysis of residues for the best poses in the top three compounds revealed that 

the residues responsible for ligand binding (Val30, Val31, Ala32, Ile45, Trp47, Asp52, 

Met53, Phe56, Val87, Pro88, Fhe91, Leu94, Val156, Tyr162, and Thr180) have been 

previously reported in the literature as part of the active site [55]. Certain characteristics of 

these residues, such as accessibility and charge distribution, enable selective drug design 

against these protozoans without affecting human enzymes [55]. The interaction diagrams 

in Figure 5 illustrate that the compound with the highest docking score (Compound 241, 

Figure 5C) possesses heterocyclic rings like the reference ligands, with oxygen atoms 

replacing the nitrogen atoms present in the reference ligands. However, due to the similar 

electronegativities of nitrogen and oxygen, these atoms favor nearly identical interactions 

with the enzyme’s active site. 



213 

 

 

Figure 5. Residual interaction diagrams of (A) compound 241, (B) compound 164, (C) 

compound 21, (D) DQ1, and (E) methotrexate. Interacting residues are shown in colored 

circles and dashed lines depending on the type of interaction: H-bond (lime), van der 

Waals (green), π–π (purple), π–alkyl (pink), unfavorable (red), carbon H-bond (light 

green), π–anion (orange), π–sulfide (yellowish orange). (F) structural conformations of the 

coupling between the LmDHFR-TS enzyme and the ligands: DQ1 (red), Compound 241 

(green), Compound 164 (pink), Compound 21 (blue). 

 

  Compounds 164 and 21 lack heterocyclic rings but contain benzene rings, which 

participate in π–π and π–alkyl interactions. Additionally, these compounds exhibit a 

relevant number of oxygen-containing groups, such as esters, ethers, and carboxylic acids, 

facilitating interactions with both residues within the active site and other residues. 

Specifically, the carboxylic moiety facilitates van der Waals interactions, crucial as they 

occur with the amino groups in the reference ligands and appear to be important since they 

are present in the three top-ranked molecules. On the other hand, Compounds 242 and 140, 

containing only hydroxyl groups, are less favorable in this binding mode. Although both 

compounds are isomeric, Compound 164 has few favorable interactions (8 interactions), 

and Compound 21 has more interactions (25 interactions). 

  All ligands adopted a U-shaped conformation like the reference ligands DQ1 and 

MTX (Figure 5F), and most of them formed robust hydrogen bonding interactions with the 

enzyme (Val156, Val30, Lys95, Met53, Phe91, and Arg97), which are crucial determinants 
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for binding [53]. To delve deeper into this behavior, a topological polar surface area 

(TPSA) map was constructed for both the reference ligands and the best-ranked 

compounds (Figure 6). 

 

Figure 6. Topological polar surface area (TPSA) map of (A) DQ1, (B) methotrexate, (C) 

Compound 241, (D) Compound 164, and (E) Compound 21. The arrows show the 

electron-deficient region of the molecule. 

 

  The results of the TPSA maps confirmed a similar spatial distribution among the 

three top-ranked compounds concerning DQ1 and MTX. An electron-deficient region was 

identified at the top of the molecule (Figure 6, blue area), which is consistently present in 

all evaluated molecules, including the two reference ligands. This observation rationalized 

the similar binding behavior within the active site of LmDHFR-TS, particularly with Met53 

as a common crucial contact for these test compounds. 

  The molecular lipophilic potential (MLP) was also analyzed for both ligands and 

the protein (2). The results obtained from both TPSA and MLP concerning the active site 

of LmDHFR-TS show that the active site ends are highly polar, explaining the observed 

charge distribution in cinnamic acid derivatives. 

  The lipophilic areas of the pocket predominate in the center of the active site, 

justifying the charge distribution depicted in Figure 6. Additionally, these calculations 

revealed a pattern of distribution for polar charges for DQ1, MTX, and the three top-

ranked structures. However, this was not observed in the lipophilic regions determined in 

the MLP. The structure 241 exhibits a pattern like MTX, while Ligands 146 and 21 present 

lipophilic potential like DQ1 (Figure S2). 
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2.1.3. Consensus Analysis of the Two VS Approaches 

  A combined approach was employed to determine the potential activity of cinnamic 

acids against the LmDHFR-TS enzyme and to mitigate the selection of false positive 

compounds. This approach incorporated probability scores derived from both structure-

based and ligand-based virtual screening (VS) methods in conjunction with the true 

negative rate obtained from the RF model (Equation (2)) [19]. 

  The design of this approach aimed to assign a higher weight to the ligand-based 

probability scores (considering their reliance on experimental pIC50 values), in contrast to 

the structure-based probability scores, which are founded on protein–ligand interactions. 

This weighting scheme significantly reduces the risk of incorrectly classifying inactive 

molecules as active (false positives) [23]. 

 

𝐶𝐴𝐿𝑚 =
[𝑃𝑆𝐵 + ((1 + 𝑇𝑁𝐿𝐵(𝐴𝐷))𝑥𝑃𝐿𝐵(𝐴𝐷) + (1 + 𝑇𝑁𝐿𝐵(𝑉𝑆))𝑥𝑃𝐿𝐵(𝑉𝑆))]

[3 + 𝑇𝑁𝐿𝐵(𝐴𝐷) + 𝑇𝑁𝐿𝐵(𝑉𝑆)]
 (2) 

 

where 𝐶𝐴𝐿𝑚 = combined-approach probability, 𝑃𝑆𝐵 = structure-based probability, TN = 

true-negative rate, and 𝑃𝐿𝐵 = ligand-based probability (AD = AlvaDesc descriptors and VS 

= VolSurf descriptors). 

 

  Table 2 presents the results of the best-ranked compounds calculated from the 

consensus analysis equation. The compounds ranked among the top five for each method 

are highlighted in bold. Except for 235, all compounds were classified as potentially active 

in all virtual screening approximations used in this study. The consensus analysis identified 

110 compounds with combined-approach probability values greater than 0.5; however, 

only 47% of these compounds (52) were classified as active through the three in silico 

models used in this study (Table S2). Compound 63 (montamine) was the top-ranked 

compound. Montamine is an indole alkaloid that has been isolated from Asteraceae 

species, such as Centaurea schischkinii and Centaurea montana. Previous studies have 

reported its anticancer properties [43,56], but its efficacy against Leishmania has not been 

investigated. 
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Table 2. Cinnamic acid derivatives are classified as active by combining ligand-based and 

structure-based VS. The numbers in italics represent those compounds classified as active 

in all three in silico models, but they were not previously identified as the best-ranked 

compounds in any approach. 

 

Rank Ligand PLB(AD) PLB(VS) PSB CALm 

1 63 0.68 0.83 0.88 0.78 

2 242 0.52 0.86 0.93 0.74 

3 96 0.55 0.73 0.77 0.67 

4 241 0.53 0.55 1.00 0.64 

5 39 0.57 0.64 0.77 0.64 

6 237 0.61 0.55 0.84 0.64 

7 306 0.63 0.53 0.83 0.63 

8 165 0.53 0.60 0.88 0.63 

9 140 0.59 0.51 0.91 0.63 

10 308 0.57 0.59 0.81 0.63 

 

  The second best-ranked compound was 6,8-di-C-β-glucopyranosylchrysin (242), a 

derivative of chrysin obtained from Lychnophora ericoides (Asteraceae). Compared to 

Compounds 69 (chrysin) and 231 (techtochrysin), classified as inactive, the glycosylated 

derivative 242 has more hydroxyl groups, enabling interactions with the enzyme’s active 

site. In previous studies, chrysin was biofunctionalized with gold particles due to its low 

bioavailability, poor absorption, and rapid excretion issues, aiming to neutralize 

Leishmania parasites through its activity against the kinase−3 enzyme [57]. However, 

Compound 242 could represent an alternative due to its hydrophilic character resulting 

from the glycosyl groups, potentially inhibiting Leishmania parasites by interacting with 

LmDHFR-TS. 

  The third- and fourth-best-ranked compounds were 4-O-feruloyl-5-O-

caffeoylquinic acid (96) and lucenin-2, 6,8-di-C-β-glucopyranosylluteolin (241), 

respectively, both extracted from the genus Lychnophora—specifically, Lychnophora 

ericoides [46] and Lychnophora salicifolia [49], respectively. Additionally, apigenin 7-O-

rutinoside (39), lithospermic acid (237), diarctigenin (306), and isolappaol A (308)—four 

cinnamic acid derivatives that previously exhibited moderate values in both RF models and 

the molecular docking calculations (all classified as active)–appeared among the top ten 



217 

 

ranked compounds in the combined approach (Figure 7). Hence, these compounds emerge 

as interesting antileishmanial candidates, as they exhibit activity across all models and 

maintain consistency in their probability values. Notably, consensus scoring methods are 

known to enhance hit rates by diminishing the likelihood of false positives [53–58]. 

 

 

Figure 7. Cinnamic acid derivatives as potential inhibitors of LmDHFR-TS were identified 

using an approach that combines ligand-based and structure-based virtual screening (VS). 

CALm represents the combined probability value. 

  

  The compounds 4-(3,4-dihydroxybenzyl)-2-(3,4-dihydroxyphenyl)tetrahydrofuran-

3-carboxy-O-β-d-glucopyranoside (306) and 7-(3,4-dihydroxyphenyl)-3′,4′-dihydroxy-

7,8,7′,8′-tetrahydronaphtho [8,8′-c]furan-1(3H)-one (308) are two lignans found in certain 

species of Asteraceae. Notably, Hypochaeris radicata (native to Europe, northern Asia, 

and parts of North Africa) and Arctium lappa (native to Europe and Asia) have been 

reported as natural sources of these compounds. However, A. lappa is widely disseminated 

in America, and H. radicata has also become invasive in regions as far-flung as New 

Zealand and Chile [59].  

  Conversely, compound 237, lithospermic acid, is a common polycyclic phenolic 

carboxylic acid that has been isolated from species of multiple botanical families, including 

Lamiaceae and Asteraceae. It has demonstrated a wide range of beneficial properties, 

acting against cardiovascular diseases and hepatitis. It allows endothelium-dependent 

vasodilatation, lowers blood pressure, and produces antioxidant effects [60,61]. 

 

2.2. Molecular Dynamics Simulations 

  Conducting molecular dynamics (MD) studies aimed at evaluating protein–ligand 

stabilities involved considering various factors such as solvent, ions, pressure, and 

temperature for Compounds 237, 306, and 308. These three compounds emerged as 

potential inhibitors of LmDHFR-TS based on the consensus analysis of the methodologies 

employed in this study. Methotrexate (MTX) served as the reference ligand. 
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  The assessment of structural stability was accomplished through root mean square 

deviation (RMSD) measurements. Over the simulated period of 100 ns, all tested 

compounds exhibited comparable behavior in relation to the apoenzyme of LmDHFR-TS 

(apoLmDHFR-TS, the protein without a ligand) and the LmDHFR-TS···MTX complex. 

Upon detailed examination of Figure 8A, it becomes evident that during the initial 30 ns of 

the simulation, the complexes formed by LmDHFR-TS with the three analyzed ligands 

exhibit behavior like that of the complex with MTX and apoLmDHFR-TS. However, after 

the 40 ns mark, derivatives 237 and 308 display a higher level of disturbance, with RMSD 

values fluctuating between 0.10 and 0.15 nm (Figure 8A). 

  Structure 306, in contrast, maintains behavior like the LmDHFR-TS···MTX 

complex throughout the entire 100 ns simulation, with a minor RMSD variation (close to 

0.10 nm) compared to the other two analyzed derivatives. This suggests favorable stability 

of the protein, as the apoLmDHFR-TS experiences a variation of 0.15 nm, with a minimum 

observed at 40 ns and an increase in RMSD values reaching a maximum near 85 ns of the 

simulation. 

  Concerning RMSF values (Figure 8B), all examined compounds displayed similar 

behavior, although specific cases revealed distinct characteristics. Residues Glu218 and 

Thr410, situated in the protein’s loop regions, exhibited the highest fluctuations for the 

apoenzyme, with Glu218 showing approximately twice the RMSF value compared to the 

complexes with MTX and the tested cinnamic acid derivatives. 

  Among the selected compounds, Compound 237 demonstrated higher fluctuations 

in the loop regions than the other derivatives and MTX, with Gly118, Arg254, and Arg380 

being the most variable amino acids. Compounds 306 and 308 exhibited a similar behavior 

throughout the simulation, showcasing reduced flexibility when complexed. 

  The critical amino acid residues involved in binding to LmDHFR-TS· exhibited 

relatively stable behavior, with RMSF values ranging from 0.10 to 0.20 nm throughout the 

simulation. Among these residues, Phe91 and Lys95 demonstrated higher variation, 

exceeding 0.20 nm. In contrast, Arg97 and Val156 exhibited minimal fluctuation, with 

values close to 0.10 nm. Notably, Val156 in apoLmDHFR-TS and the MTX complex 

displayed lower fluctuation (approximately 30%) compared to the three analyzed cinnamic 

acid derivatives. 
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Figure 8. (A) Root mean square deviation (RMSD), (B) root mean square fluctuation 

(RMSF), and (C) radius of gyration (RoG) values within the LmDHFR-TS binding site 

obtained after molecular dynamics simulations. Apoenzyme (blue); DHFR-TS···MTX 

complex (cyan); DHFR-TS···237 complex (light green); DHFR-TS···306 complex (yellow) 

and DHFR-TS···308 complex (pink). 
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  Conversely, Arg97 displayed values between 0.09 and 0.12 nm. Structure 306 

achieved a remarkable value of 0.09 nm, even lower than observed for the MTX complex, 

while Structures 237 and 208 showed values like those of the apoprotein. Throughout the 

simulation, the LmDHFR-TS complex with Structure 306 consistently promoted protein 

stability, evidenced by lower RMSF values in this complex, except for residues Leu145 

and Lys90. 

  The structural compactness and mobility of the protein–ligand complexes were 

assessed throughout the simulation using the radius of gyration (RoG) plot (Figure 8C) 

[23]. In the initial half of the 50 ns simulation, complexes with cinnamic acid derivatives 

displayed RoG values indistinguishable from those of the control MTX and apoLmDHFR-

TS, ranging from 2.64 nm to 2.70 nm. 

  This indicates a high level of stability and low fluctuations in the tertiary structure. 

However, after 60 ns, Compounds 237, 306, and 308 exhibited similar behavior (varying 

between 2.64 nm and 2.70 nm) with increased perturbation compared to the DHFR-

TS···MTX complex and the apoenzyme, maintaining a consistent mean value with 

fluctuations ranging from 2.62 to 2.64 nm. 

  Following molecular dynamic simulations, binding free energies for complexes 

involving Compounds 237, 306, 308, and the control (MTX) with LmDHFR-TS were 

determined using the MM/PBSA method. The complexes of benzylbutyrolactone-type 

lignans (306 and 308) and the polyphenolic acid (compound 237) with LmDHFR-TS 

showed binding free energies of −111.1 kJ/mol, −81.0 kJ/mol, and −91.6 kJ/mol, 

respectively. In all cases, the energy was higher than the −124.5 kJ/mol observed for the 

complex of MTX with LmDHFR-TS (Table 3). 
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Table 3. Binding free energies (kJ/mol) from the MM/PBSA calculations for Compounds 

237, 306, and 308 in the active site of LmDHFR-TS; MTX was used as the reference 

ligand. 

 237 306 308 MTX 

Energy Contribution kJ/mol SD kJ/mol SD kJ/mol SD kJ/mol SD 

van der Waals −218.3 6.2 −209.7 4.6 −217.6 6.2 −239.5 8.2 

Electrostatic −31.3 4.1 −38.0 3.9 −29.0 4.6 −57.3 4.3 

Polar solvation 181.5 6.5 157.6 6.3 185.6 6.5 194.6 8.5 

SASA −23.6 1.8 −21.0 1.9 −20.0 1.2 −22.4 2.2 

Binding energy −91.6 4.7 −111.1 4.2 −81 4.6 −124.5 5.8 

 

  All complexes under evaluation, including the MTX reference, exhibited a 

consistent contribution pattern characterized by negative energy values arising from van 

der Waals, electrostatic, and solvent-accessible surface area (SASA) parameters 

influencing the binding free energy. The van der Waals parameter, displaying the most 

substantial negative contribution, registered values lower than −209 kJ/mol. This finding 

implies that non-polar electrostatic interactions play a pivotal role in the molecular 

recognition of the LmDHFR-TS binding site by the tested compounds. 

  Concerning polar solvation, all compounds made positive contributions to the total 

binding energy, with similar values observed for Compounds 237, 308, and MTX. 

Conversely, diarctigenin (306) exhibited a lesser contribution to this parameter. 

Additionally, electrostatic interactions negatively influenced the binding free energies, with 

MTX showing a more significant negative contribution of −57.3 kJ/mol. Meanwhile, the 

impact of electrostatic interactions for the evaluated cinnamic acid derivatives ranged from 

35% to 50% relative to the reference ligand. 

 

2.3. In Vitro Enzymatic Activity Inhibition for Selected Cinnamic Acid Derivatives 

(Compounds 237, 306, and 308) against LmDHFR-TS and HsDHFR 

  To validate the outcomes of our combined approach utilizing two virtual screening 

(VS) methodologies, we conducted in vitro enzymatic inhibition assays on five compounds 

sourced from our in-house library. Compounds 237, 306, and 308, identified as active in all 

approaches, were selected, along with hesperidin (140), a notable flavonoid recognized for 

its reported antileishmanial activity through apoptosis induction and sterol C-24 reductase 
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inhibition [62]. Isovitexin 4′-O-glucoside and rutin, demonstrating moderate levels of 

activity and categorized as inactive in one of the three approaches, were also assessed 

against LmDHFR-TS, with methotrexate serving as the positive control. 

  The determination of IC50 values involved analyzing concentration-response curves 

within the 0.1–128 μM range, employing spectrophotometric monitoring of enzymatic 

activity in a standard DHFR assay. This investigation yielded a spectrum of values ranging 

from 6.1 to 53.2 μM, corresponding to pIC50 values between 4.27 and 5.21. Notably, 

Compounds 237, 306, and 308 demonstrated the highest activity against LmDHFR-TS. 

Hesperidin (IC50 = 21.6 μM) exhibited substantial activity against the target among the 

three evaluated flavonoids, with IC50 values of 53.2 μM and 41.7 μM for isovitexin 4′-O-

glucoside and rutin, respectively (Table 4). 

 

Table 4. Results of enzymatic activity against LmDHFR-TS and HsDHFR for selected 

cinnamic acid derivatives. CI = confidence interval (95%). SI = selectivity index. 

Compound 
LmDHFR-TS HsDHFR 

SI 
IC50 (µM) CI (95%) IC50 (µM) CI (95%) 

hesperidin 21.6 20.2–23.1 86.5 82.3–87.2 4.0 

lithospermic acid (237) 7.5 6.8–7.9 22.6 21.3–24.7 3.0 

diarctigenin (306) 6.1 5.7–6.4 27.9 26.8–28.6 4.6 

isolappaol A (308) 10.1 9.7–10.3 44.8 42.4–45.9 4.4 

isovitexin 4′-O-glucoside 53.2 51.1–54.1 125.7 122.8–127.8 2.4 

rutin 41.7 40.3–43.1 188.9 186.2–190.6 4.5 

MTX 1.4 1.1–1.5 4.9 4.7–5.1 3.5 

 

  Structurally, we sought to establish a correlation between the inhibitory activity 

against LmDHFR-TS and the interaction of hydrogen bond acceptors and donors, 

particularly carbonyl and hydroxyl groups. Among the lignans—306 and 308—the 

presence of the γ-butyrolactone moiety highlighted that the most active compound (306) 

possessed a higher number of carbonyl groups compared to 308—a feature shared with 

lithospermic acid (237). However, the glycosylated flavonoids (hesperidin, isovitexin 4′-O-

glucoside, and rutin) exhibited low inhibitory activities, suggesting that the abundant 

hydroxyl groups may negatively impact inhibitory activity. 

  Following this, we calculated the selectivity index (SI) based on the results 

obtained from in vitro tests using the recombinant protein of Homo sapiens (Hs) DHFR. 
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The IC50 values against HsDHFR revealed a distinct pattern, implying different 

mechanisms of action for these two proteins. Moderate SI values were observed, with both 

benzylbutyrolactone-type lignans (Compounds 306 and 308) exhibiting the highest SI 

values—4.6 and 4.4, respectively. Notably, both lignans demonstrated higher SI values 

than MTX, employed as a positive control (Table 4) 

 

2.4. Pharmacokinetic Properties Predictions 

  The pharmacokinetic properties, encompassing absorption, distribution, 

metabolism, excretion, and toxicity (ADMET), of Compounds 237, 306, and 308 were 

predicted using ADMETlab 2.0 and OSIRIS DataWarrior 5.5.0 [63,64]. Multiple 

approaches were employed to evaluate oral bioavailability, yielding mixed results. While 

all compounds adhered to Lipinski’s “rule of five” [65], none met the criteria set by Pfizer 

[66] and GSK [67], suggesting potential challenges in oral bioavailability (Table S3). 

  Regarding cytochrome P450 (CYP) and its isoenzymes, compound 237 exhibited a 

significant probability of inhibiting CYP2C9. Similarly, Compounds 306 and 308 

demonstrated potential inhibition of CYP2C19, CYP2C9, and CYP3A4, indicating 

potential impacts on the metabolism of other drugs. Conversely, Compound 237 was 

predicted to act as a substrate for CYP2C9, while Compounds 306 and 308 were associated 

with CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4, suggesting that they could be 

metabolized by these isoenzymes. Furthermore, none of the studied compounds exhibited 

mutagenic, tumorigenic, reproductive, or irritant effects. Identifying potential hERG 

channel blockers is crucial for assessing the risk of cardiotoxicity [68], and for the three 

structures, the probabilities of hERG blocking were at most 0.212. 

 

3. Materials and Methods 

 

3.1. Cinnamic Acid Derivatives In-House Dataset 

  A custom-made, in-house virtual library of 314 distinct cinnamic acid derivatives 

was built from 76 scientific articles using various search criteria, including keywords such 

as Asteraceae, Cinnamic Acid Derivatives, Lignans, Polyphenols, Flavonoids, and others. 

ChemAxon MarvinSketch (ChemAxon, version 21.18.0 (2021), a calculation module 

developed by ChemAxon, https://www.chemaxon.com/, accessed on 12 January 2023) was 

used to design all the structures. 
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  The three-dimensional (3D) structures for the entire set were generated using 

Standardizer software (JChem, version 21.18.0 (2021), a calculation module developed by 

ChemAxon, https://www.chemaxon.com/, accessed on 12 January 2023). This software 

standardized the structures, added hydrogens, performed aromatic form conversions, and 

refined molecular graphs in three dimensions. The process employs a divide-and-conquer 

strategy, wherein the structure is partitioned into smaller fragments. These fragments are 

then organized into a tree based on connectivity information. Conformers generated for the 

initial structure, represented by the root node in the tree, undergo optimization. The tree-

building process incorporates a proprietary extended version of the Dreiding force field 

[69]. The final dataset was saved in special data file (.sdf) format. 

 

3.2. Classificatory Machine Learning Models 

  The analyses described below utilized Knime 4.5.0 software (KNIME 4.5.0, the 

Konstanz Information Miner, Copyright 2003–2014, www.knime.org (accessed on 2 

February 2023)) [70]. The process commenced with importing those descriptors generated 

by the Volsurf+ [35,36] and AlvaDesc [37,38] programs in CSV format. 

  Subsequently, these descriptors underwent segmentation via the “Partitioning” 

node, implementing the stratified sampling option, with 80% of the initial dataset 

designated as the training set and the remaining 20% composing the test set. Random splits 

were also explored while maintaining consistent ratios for both training and test sets. 

  The model’s creation processes entailed utilizing the modeling set and the RF 

algorithm, executed through a five-fold cross-validation procedure employing WEKA 

nodes. This approach provides a robust and efficient means to evaluate a model’s 

performance by partitioning the data into five subsets for testing and training, facilitating 

model selection and generalization assessment [23]. 

  The applicability domain was assessed through Euclidean distances, targeting 

compounds in the test set with potentially unreliable predictions. A compound was 

considered unreliable if its applicability domain value exceeded d + Zσ, where d represents 

the average Euclidean distance, and σ is the standard deviation of the samples in the 

training set. These samples exhibited Euclidean distance values lower than the average 

when compared to all training set samples, with Z serving as an empirical cutoff value set 

at 0.5 by default [20,71]. 

  To complement these findings and provide a more comprehensive visualization of 

the chemical space within the datasets used for model construction, principal component 
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analysis was conducted on the four datasets, encompassing both active and inactive 

structures for both the training and test sets. This analysis was executed using Unscrambler 

X (The Unscrambler® X v10.3 User Manual Version 1.0 CAMO SOFTWARE AS, Oslo, 

Norway). 

  The RF models were fine-tuned with 200 trees and a random number generator 

seed of 1, and the Gini index was utilized as the split criterion for both the training and 

cross-validation sets. These parameter choices were informed by a thorough evaluation of 

relevant hyperparameters for the machine learning model. The “number of trees” parameter 

was explored across a range from 100 to 1000, with 200 trees identified as the optimal 

selection for achieving the best quality parameters. Subsequently, the Gini index was 

meticulously chosen as the preferred split criterion (Table S4). 

  Performance analysis of the selected models encompassed an evaluation of both 

internal and external aspects, incorporating parameters such as sensitivity (true-positive 

rate), specificity (true-negative rate), and accuracy (overall predictability), derived from the 

confusion matrix. To offer a more comprehensive understanding of the model’s 

performance beyond accuracy, the ROC curve was employed. Generated through an “ROC 

curve” node, this curve relies on sensitivity and specificity. The AUC values derived from 

the ROC curve range from 0.5, indicating an inability to distinguish between the two 

groups, to 1, signifying perfect separation without overlap [72]. Additionally, the Matthews 

correlation coefficient (MCC) was calculated, in which a value of 1 represents perfect 

prediction, 0 denotes random prediction, and -1 indicates complete disagreement between 

prediction and observation [73]. 

  Moreover, a performance evaluation of the RF model using AlvaDesc and 

VolSurf+ descriptors was conducted. This evaluation included precision, recall, and F1 

score metrics for both active and inactive sets. 

 

3.3. Molecular Docking Calculations 

  Molecular docking calculations involved the hybrid model of LmDHFR-TS bound 

to methotrexate (MTX) [33] and the three-dimensional structures of the cinnamic acid 

derivatives. We conducted these calculations using Molegro 6.0.1 software. 

  To ensure consistency, we removed all water molecules from both the enzyme and 

compound structures, and we prepared them to use the software’s default settings. The 

MolDock scoring function was utilized, considering internal ES, internal H-bond, and 

Sp2–Sp2 torsions as criteria for evaluating the ligands. 
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  The molecular docking process was executed through 10 runs utilizing the 

MolDock SE algorithm. It allowed for a maximum of 1500 interactions, maintained a 

population size of 50, included up to 300 steps, employed a neighbor distance factor of 

1.00, and returned a maximum of 5 poses. To cover the enzyme’s ligand-binding site, we 

established a grid with a 15 Å radius and 0.30 Å resolution [23,33]. 

  Our results were categorized according to docking scores, reflecting the free energy 

or affinity of the interactions. Each calculation was repeated three times to ensure 

reliability. For comparison, we employed methotrexate (MTX) as a control. 

 Topological polar surface area (TPSA) maps were calculated using Spartan 14 for 

Windows Spartan’14 (Wavefunction Inc., Irvine, CA, USA) [74]. Molecular lipophilic 

potential (MLP) maps for ligands were calculated in Molinspiration (Molinspiration, 

Cheminformatics free web services, https://www.molinspiration.com (accessed on 24 

November 2023), Slovensky Grob, Slovakia). For LmDHFR-TS, MLP and TPSA were 

calculated using ChimeraX [75]. The visualization of two-dimensional residual interaction 

diagrams was accomplished using Discovery Studio Visualizer v21.1.0.20298 (BIOVIA, 

Dassault Systèmes, San Diego, CA, USA) [23,33]. 

 

3.4. Molecular Dynamics Simulations 

  Molecular dynamics (MD) simulations were conducted in YASARA Structure v. 

19.12.14 [76], employing the AMBER14 force field to model the enzyme and ligand–

enzyme systems. Before the simulations, each protein underwent hydrogen bond 

optimization, and chloride (Cl−) and (Na+) ions were added to the model systems through 

the transferable intermolecular potential 3-point (TIP3P) employing 0.997 g/L density for 

solvating the simulation cell. Acid dissociation constant values (pKa) were calculated for 

enzymes’ titratable amino acids with the H-bonding network and the side-chain placement 

using a rotamer library (SCWRL) algorithm. Periodic boundary conditions were applied to 

facilitate the simulations, involving a cell size set 10 Å larger than the protein’s size in all 

instances. 

  An initial 5000-cycle energy minimization step was carried out using the steepest 

gradient approach. MD simulations used the particle-mesh Ewald (PME) method to 

account for long-range electrostatic interactions (8-Å cut-off distance). The simulations 

were performed under physiological conditions at 298 °K, pH 7.4, and 0.9% NaCl. 

Temperature control was maintained using a Berendsen thermostat while keeping the 
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pressure constant. A multiple-time step algorithm with a time step of 2.00 fs was 

employed. 

   Finally, MD simulations were run for 100 ns under constant pressure, and the 

Berendsen thermostat, with snapshots saved at intervals of 100 ps, used the YASARA 

macro (md_run.mcr) for all simulation phases. Subsequent analyses were also carried out 

using the default YASARA macro scripts. The molecular mechanics Poisson–Boltzmann 

surface area (MM-PBSA) method was employed to calculate the binding free energies of 

apoenzyme and enzyme–ligand complexes from the resulting MD trajectories using the 

g_mmpbsa tool in Gromacs 5.0.5 (open source, http://www.gromacs.org (accessed on 17 

May 2023)) [77] on an Ubuntu 12.04 server, using NPT and periodic boundary conditions, 

as previously reported [33,78]. 

 

3.5. LmDHFR-TS and HsDHFR Enzymatic Inhibition Assays 

  Purification and kinetic characterization of the recombinant LmDHFR-TS protein 

were performed according to the previously reported procedures [33,79,80], while 

HsDHFR protein was obtained from the commercial assay kit (CS0340, Merck KGaA, 

Darmstadt, Germany). Thus, the in vitro evaluation of the top-ranked selected compounds 

(237, 306, 308, hesperidin, rutin, and isovitexin 4′-O-glucoside) for inhibitory activity 

against LmDHFR-TS and HsDHFR was conducted using a spectrophotometric assay under 

standard DHFR conditions.  

  These tested compounds were available from our in-house compound library. 

Rutin, lithospermic acid, and rutin were commercially purchased (>98%, Merck KGaA, 

Darmstadt, Germany). Isolappaol and diarctigenin were isolated from a commercial A. 

lappa powdered root extract (Prescribed For Life, Fredericksburg, TX, USA) through 

successive column chromatography, whose spectroscopic data was identical to those of 

previous reports [81,82]. 

  The assay was conducted with either LmDHFR-TS or HsDHFR (2.7 nM), bovine 

serum albumin (BSA, 1 mg/mL), N-[tris(hydroxymethyl)-methyl]-2-aminoethanesulfonic 

acid (TES) buffer (100 mM, pH 7.0, 150 mM β-mercaptoethanol, 2 mM 

ethylenediaminetetraacetic acid (EDTA)), and nicotinamide adenine dinucleotide 

phosphate (NADPH, 100 μM), along with varying concentrations of the test compounds 

(0.1–128 μM). The reaction was initiated by adding the substrate (7,8-dihydrofolate (H2F), 

20 μM) and monitored for 360 s at 340 nm, measuring the oxidation of NADPH to 
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NADP+. This allowed the determination of the initial reaction rate (Vo) through linear 

regression analysis of the resulting absorbance profile. 

  All measurements were conducted in triplicate, and methotrexate (MTX) served as 

a positive control [33]. The resulting Vo values were utilized to calculate the % inhibition, 

expressed as 100 − (Ri/Rc × 100), where Ri is the Vo in the presence of the inhibitor, and 

Rc is the Vo in the absence of inhibitors (1% DMSO v/v final concentration). % inhibition 

was measured for at least five concentrations (0.1–128 μM) for each test compound 

(cinnamic acid derivatives and MTX), and concentration-response curves (% inhibition vs. 

Log[inhibitor]) were constructed using non-linear regression in GraphPad Prism 7.0 

(GraphPad, San Diego, CA, USA). [33]. 

 

3.6. Pharmacokinetic Properties Predictions 

  The ADMET parameters for Compounds 237, 306, and 308 were calculated using 

ADMETlab 2.0, an integrated online platform for predicting ADMET properties [63]. 

Additionally, drug toxicity predictions were conducted using OSIRIS DataWarrior v.5.2.1, 

considering parameters such as mutagenicity, tumorigenicity, reproductive effects, and 

irritability [64]. 

 

4. Conclusions 

  This study identified three cinnamic acid derivatives, lithospermic acid (237), 

diarctigenin (306), and isolappaol A (308), as potential inhibitors of LmDHFR-TS using a 

combined virtual screening approach (structure/ligand-based). Two random forest models 

were built using different molecular descriptors. Sensitivity and specificity measures were 

obtained to evaluate the RF model’s performance. The models classified 116 (AlvaDesc) 

and 93 compounds (VolSurf) as active, showing a tendency to minimize false negatives. 

  Molecular docking revealed that 24.5% of the 314 cinnamic acid derivatives had 

values above 0.5, with 64 of them having a lower docking score than methotrexate, the 

reference ligand. A consensus analysis combining the RF models with molecular docking 

identified 110 compounds with combined-approach probability values greater than 0.5. 

From them, 47% were classified as active through the in silico models, identifying some 

compounds with potential leishmanicidal activity that a single approach had not previously 

highlighted. Lithospermic acid (237), diarctigenin (306), and isolappaol A (308) were 

among the top-ranked compounds, and their binding mode was evaluated using molecular 

dynamics. Finally, in vitro assays using recombinant LmDHFR-TS validated the 
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computational results, with 237, 306, and 308 exhibiting significant activity against 

LmDHFR-TS. However, moderate selective indices (SIs) were observed when assays were 

performed using HsDHFR. Despite this finding, higher SI values than MTX were 

observed. Thus, these three tested compounds emerged as an interesting alternative as hits 

against LmDHFR-TS; however, specific assays against the parasitic forms of Leishmania 

major are required to extend a clearer prospect for fighting this neglected tropical disease. 
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Conclusão 

 O primeiro capítulo deste trabalho fornece perspectivas sobre o design de 

medicamentos baseado na estrutura do alvo, enfatizando sua importância e as estruturas 

bem-sucedidas descobertas. Reconhece as limitações e destaca o potencial dos bancos de 

dados constantemente atualizados e os softwares de docking molecular. O 

desenvolvimento de funções de pontuação, especialmente para docking flexível de 

receptores, e avanços em simulações de dinâmica molecular são cruciais para a precisão. 

Adicionalmente menciona os desafios para a melhoria da precisão dessas metodologias 

para um design eficaz de medicamentos baseado em alvos. 

 Na revisão do capítulo II, foi constatado que a utilização de ferramentas de 

quimioinformática para a pesquisa sobre Leishmania, com foco particular nos metabólitos 

secundários de Asteraceae, tem mostrado promessa na identificação de potenciais 

candidatos a medicamentos. Embora essas abordagens in silico ofereçam perspectivas 

valiosas, a ausência de resultados in vitro correspondentes representa um branco crítico. 

Estudos futuros devem priorizar validações experimentais para avançar no 

desenvolvimento de quimioterapias eficazes e seguras contra parasitas da Leishmania. 

 O capítulo III empregou duas abordagens distintas de triagem virtual (VS) para 

identificar compostos potenciais leishmanicidas partindo de um conjunto de 1306 lactonas 

sesquiterpênicas (SLs) obtidas do SistematX. A VS baseada em ligantes, usando dois 

modelos de random forest (RF), alcançou precisões acima de 71%, revelando 

características estruturais associadas a amastigotas e promastigotas. A VS baseada em 

estrutura, usando estruturas cristalinas e um modelo de homologia, identificou SLs com 

pontuações de docking favoráveis. Uma análise de consenso normalizou as pontuações de 

probabilidade, revelando 13 potenciais SLs leishmanicidas. Notavelmente, a 

disecoeudesmanolídeo 3A e a 9α-linoloyloxi-15-hidroxi-8β-(2-metilbutiroyloxi) -14-oxo-

acantospermolídeo surgiram como potenciais compostos leishmanicidas multialvo. 

Simulações de dinâmica molecular apoiaram as afinidades com LdPTR1 encontradas. Essa 

abordagem combinada de VS oferece uma metodologia inovadora para identificar 

moléculas promissoras e entender seus mecanismos de ação contra L. donovani. 

 Na primeira parte do capítulo IV, os cauranos 135 e 302 surgiram como 

promissores agentes leishmanicidas contra L. major, validados por ensaios in vitro. Esses 

compostos foram identificados a partir de um banco de dados de 360 cauranos usando uma 

abordagem de aprendizado de máquina e docking molecular. O estudo demonstrou a 

precisão da abordagem de triagem virtual (VS) e explorou os modos de ligação no local 
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ativo de LmPTR1. Os compostos também exibiram potencial atividade multiespécies 

contra outras espécies de Leishmania, destacando sua importância como compostos líderes 

para quimioterapias alternativas. 

 A segunda parte do capítulo identificou os compostos cauranos 3-p-cumaroiloxi-

ent-caur-16-eno-19-oico e ácido 3-cinamoiloxi-ent-caur-16-eno-19-oico como potenciais 

inibidores duplos de PTR1 e DHFR-TS em L. major, expandindo as descobertas anteriores 

de inibição de PTR1. Ambos compostos exibiram atividade inibitória in vitro contra L. 

major DHFR-TS, com valores de IC50 de 6,3 e 4,5 μM, respectivamente. O docking 

molecular e as simulações de dinâmica confirmaram seu potencial como inibidores 

multiespécies, oferecendo uma abordagem valiosa para a quimioterapia alternativa contra 

doenças da Leishmania. 

 Finalmente, no capítulo V, foram identificados o ácido litospérmico, diarctigenina e 

isolappaol A como potenciais inibidores de LmDHFR-TS por meio de uma abordagem 

combinada de triagem virtual. Os cálculos de docking molecular e a análise de consenso 

revelaram candidatos promissores, com ensaios in vitro validando atividade significativa 

contra LmDHFR-TS. Apesar dos índices seletivos moderados nos ensaios com HsDHFR, 

esses compostos mostraram valores de SI superiores ao metotrexato, sugerindo seu 

potencial como hits contra LmDHFR-TS. Pesquisas adicionais com ensaios específicos 

contra as formas parasitárias de Leishmania major são essenciais 
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