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“La mente umana e inchinata naturalmente co' sensi a vedersi fuori nel corpo, e con

molta difficulta per mezzo della riflessione ad intendere se medesima. ”

“A mente humana é naturalmente inclinada pelos sentidos a revelar-se fora no corpo, e

com muita dificuldade, por meio da reflexdo, a compreender-se a si mesma”

Giambattista Vico, Scienzia Nuova
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RESUMO

A leishmaniose, classificada como uma Doenga Tropical Negligenciada (NTD),
representa um desafio significativo para a satde publica nas Américas. A forma clinica
cuténea (CL) da doenca tem um impacto consideravel na América do Sul, com Brasil,
Col6émbia e Peru figurando entre os nove paises que relatam 85% dos casos anuais em
todo o mundo. O Brasil também enfrenta uma carga significativa de Leishmaniose
Visceral (VL), a forma mais letal da doenga. Apesar dos esforcos de controle
implementados nos Gltimos anos, a transmissdo persiste em regiGes pobres com
condigBes precarias de higiene, facilitando o contato com os vetores da doenga. Os
tratamentos atuais, como compostos antimoniais, isetionato de pentamidina, miltefosina
e anfotericina B liposomal, oferecem opgdes terapéuticas, mas ndo conseguem erradicar
a infeccdo e apresentam diversos eventos adversos. Nesse contexto, surge a necessidade
de desenvolver novas quimioterapias contra as diferentes formas clinicas da
leishmaniose. Considerando a rica biodiversidade de Coldmbia e Brasil, a busca por
metabolitos secundarios com propriedades leishmanicidas se torna relevante. A familia
botanica Asteraceae, com sua abundancia de espécies (mais de 32.000) e uma ampla
gama de metabolitos secundarios, incluindo terpenoides e flavonoides, se apresenta
como uma fonte promissoria de moléculas bioativas. Atualmente, a selegdo de
moléculas com potencial atividade bioldgica é apoiada por ferramentas computacionais,
demonstrando beneficios substanciais em termos de custo e tempo em comparagao com
abordagens classicas, como a triagem em larga escala (High-throughput Screening).
Esse enfoque permite uma exploracdo mais eficiente de compostos naturais para o
desenvolvimento de novos tratamentos contra a leishmaniose.

Assim, este trabalho buscou realizar estudos quimioinformaticos da familia Asteraceae
para encontrar novas estruturas com potencial terapéutico contra as diversas formas
clinicas da leishmaniose. O estudo comec¢a com um capitulo dedicado aos paradigmas
da descoberta de medicamentos com base nas estruturas do alvo terapéutico. Em
sequida, no capitulo 11, é realizada uma revisdo de varios estudos que utilizaram
ferramentas computacionais para examinar diversos compostos identificados na familia
Asteraceae na busca por possiveis candidatos a medicamentos contra Leishmania,
destacando o uso de bancos de dados como uma ferramenta-chave na busca por
potenciais moléculas leishmanicidas. Os capitulos subsequentes focam em estudos
computacionais, utilizando diferentes abordagens de triagem virtual, utilizando diversas
classes de metabdlitos secundarios presentes na Asteraceae para selecionar potenciais
leishmanicidas. O capitulo 11l utiliza um banco de sesquiterpenlactonas presentes no
SistematX para a selecdo de potenciais leishmanicidas, empregando uma abordagem
combinada de triagem virtual baseada na estrutura do ligante assim como do receptor,
identificando estruturas com potencial inibitério para multiplos alvos. O capitulo 1V,
dividido em duas partes, avalia a inibi¢do da Pteridina redutase 1 (PTR1) e diidrofolato
redutase — timidilato sintase (DHFR-TS), duas enzimas cruciais para o0 metabolismo
desses parasitas tripanosomatideos. Dois compostos com atividade inibidora dual para
multiplas espécies de Leishmania foram identificados partindo de um banco composto
por 360 diterpenoides. Finalmente, no capitulo V, foram selecionadas lignanas do tipo
butirolactona hibrida C6C3 como inibidores da LmDHFR-TS entre um banco de 314
derivados de é&cido cinamico, validando os modelos computacionais construidos
mediante ensaios in-vitro com a enzima recombinante de DHFR-TS.

Palavras-chave: Asteraceae, triagem virtual, Leishmania, metabolitos secundarios,
aprendizado de maquina, doencas tropicais negligenciadas, acoplamento molecular.



ABSTRACT

Leishmaniasis, classified as a Neglected Tropical Disease (NTD), poses a significant
challenge to public health in the Americas. The cutaneous form (CL) of the disease has
a considerable impact in South America, with Brazil, Colombia, and Peru among the
nine countries reporting 85% of annual cases worldwide. Brazil also faces a significant
burden of Visceral Leishmaniasis, the most lethal form of the disease. Despite control
efforts in recent years, transmission persists in impoverished regions with poor hygiene
conditions, facilitating contact with disease vectors. Current treatments, such as
antimonial compounds, pentamidine isethionate, miltefosine, and liposomal
amphotericin B, offer therapeutic options but fail to eradicate the infection and present
various adverse events. In this context, there is a need to develop new chemotherapies
against the different clinical forms of leishmaniasis. Considering the rich biodiversity of
Colombia and Brazil, the search for secondary metabolites with leishmanicidal
properties becomes relevant. The botanical family Asteraceae, with its abundance of
species (over 32,000) and a wide range of secondary metabolites, including terpenoids
and flavonoids, emerges as a promising source of bioactive molecules. Currently, the
selection of molecules with potential biological activity is supported by computational
tools, demonstrating substantial benefits in terms of cost and time compared to classical
approaches like High-throughput Screening. This approach allows for a more efficient
exploration of natural compounds for the development of new treatments against
leishmaniasis. This doctoral work aimed to conduct chemoinformatics studies of the
Asteraceae family to find new structures with therapeutic potential against the various
clinical forms of leishmaniasis. The study begins with a chapter dedicated to the
paradigms of drug discovery based on the structures of the therapeutic target. Next, in
Chapter II, a review of various studies that used computational tools to examine
compounds identified in the Asteraceae family in the search for potential drug
candidates against Leishmania is conducted, highlighting the use of databases as a key
tool in the search for potential leishmanicidal molecules. Subsequent chapters focus on
computational studies, using different virtual screening approaches and various classes
of secondary metabolites present in Asteraceae to select potential leishmanicidal
compounds. Chapter Il uses a library of sesquiterpene lactones from SistematX to
select potential leishmanicidal compounds, employing a combined virtual screening
approach based on ligand and receptor structure, identifying structures with inhibitory
potential for multiple targets. Chapter IV, divided into two parts, evaluates the
inhibition of Pteridine reductase 1 (PTR1) and dihydrofolate reductase-thymidylate
synthase (DHFR-TS), two crucial enzymes for the metabolism of these trypanosomatid
parasites. Two compounds with dual inhibitory activity for multiple Leishmania species
were identified from a library of 360 diterpenoids. Finally, in Chapter V, hybrid C6C3
butyrolactone lignans were selected as inhibitors of LmDHFR-TS from a library of 314
cinnamic acid derivatives, validating the computational models through in vitro assays
with the recombinant DHFR-TS enzyme.

Keywords: Asteraceae, virtual screening, Leishmania, secondary metabolites, machine
learning, neglected tropical diseases, molecular docking.
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1. Introdugéo

As doengas tropicais negligenciadas (NTDs) constituem um grupo de 20
condi¢bes que predominam em é&reas tropicais, afetando principalmente populagdes
empobrecidas e tendo um impacto desproporcional em mulheres e criangas [1]. A
incidéncia global padronizada por idade e 0 nimero de casos de NTDs aumentaram
entre 1990 e 2019 [2]. Para o periodo de 2020-2021, foi relatado que 1,65 bilhdo de
pessoas precisavam de tratamento em massa ou individual e cuidados para as NTDs,
experimentando uma leve reducdo diretamente relacionada a pandemia de Covid-19.
Essa emergéncia alterou tanto as cifras quanto o monitoramento desse grupo de
doencas. Por exemplo, no Brasil, observou-se uma queda significativa nas consultas de
casos de leishmaniose visceral (LV) em 2020 [3]. No entanto, o percentual da
populacdo mundial que poderia ser afetado por essas doencas permanece alto, gerando
consequéncias sociais e econdmicas para cerca de 20% da populacéo global, indicando
que as NTDs continuam sendo um significativo problema de saude publica global [4,5].

Um dos principais desafios para o controle e eliminagédo desse grupo de doencas
é a falta de atencdo da maioria das empresas farmacéuticas, pois a pesquisa e producgéo
de novos medicamentos para o tratamento delas ndo representariam um lucro
significativo [6]. Os tratamentos atuais tém mdaltiplas limitagdes, como baixa eficacia,
alta toxicidade e duracGes prolongadas. Desde a década de 1950, compostos antimoniais
pentavalentes tém sido usados como tratamento principal para leishmanioses visceral
(LV) e cutanea (LC), pois apresentam um melhor indice terapéutico do que
medicamentos de segunda linha como anfotericina B, pentamidina e outros. Apesar de
sua alta eficécia, os compostos antimoniais pentavalentes muitas vezes estdo associados
a altas frequéncias de efeitos adversos, como dor musculoesquelética, distarbios
gastrointestinais, dor de cabeca e anorexia, além de efeitos graves como toxicidade
cardiaca, hepatica e pancreatica [7,8].

Portanto, o desenvolvimento de novos medicamentos contra esse grupo de
doencas é crucial, sendo os produtos naturais uma das melhores alternativas para buscar
estruturas potencialmente ativas contra essas NTDs. O numero de medicamentos
derivados de produtos naturais (PNs) no total de lancamentos de medicamentos no
mercado ao longo de quatro décadas representa uma fonte significativa de novas

entidades farmacoldgicas. Atualmente, mais de 80% dos novos medicamentos
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aprovados pela FDA (Food and Drug Administration) estdo diretamente ou
indiretamente relacionados a produtos naturais [10].

Uma das familias mais interessantes a ser estudada nesse campo, devido a sua
diversidade, é Asteraceae (Compositae). Muitas plantas na familia Asteraceae tém
importancia econdmica, medicinal e ornamental [11]. E a maior familia de plantas com
flores, com mais de 1.690 géneros e 32.000 espécies relatadas em todo o mundo
(principalmente nas Ameéricas) [12, 13]. As atividades parasitérias de algumas espécies
de Asteraceae foram demonstradas anteriormente, com a artemisinina, uma lactona
sesquiterpénica de Artemisia annua, sendo notavel. Foi aprovada para o tratamento da
malaria devido as suas propriedades de endoperoxideo, e seu descobridor recebeu o
Prémio Nobel de Fisiologia ou Medicina em 2015 [14, 15].

Vaérias espécies de Asteraceae demonstraram forte atividade antioxidante, anti-
inflamatoria e antimicrobiana, além de propriedades diuréticas e cicatrizantes. Seus
efeitos farmacoldgicos podem ser atribuidos a uma variedade de compostos
fitoquimicos, incluindo polifenois, acidos fendlicos, flavonoides, acetilenos e triterpenos
[16]. Cerca de 5.500 compostos lactonas sesquiterpénicas (SLs), diversificados em 40
tipos estruturais, predominantemente exibindo esqueletos basicos de germacranolideo,
eudesmanolideo e guaianolideo, foram identificados [17].

De 2000 a 2023, cerca de 9.000 espécies da familia Asteraceae foram
descobertas [12, 13]. Com esse crescimento na quantidade de dados sobre produtos
naturais, que geralmente séo registrados separadamente em inimeros artigos e livros, a
selecdo de informacBes para pesquisa muitas vezes é desafiadora. Portanto, um
procedimento adequado para armazenar e sistematicamente organizar informacdes de
dados de metabolitos secundarios recuperados € essencial, com bancos de dados
emergindo como ferramentas-chave em estudos de quimica medicinal [18].

Dois exemplos-chave contendo informacBes sobre Asteraceae foram
desenvolvidos no Brasil: o software SistematX (http://sistematx.ufpb.br), um exemplo
de banco de dados de produtos naturais desenvolvido pela Universidade Federal da
Paraiba para fornecer informacfes para estudos quimiossistematicos, desreplicacdo e
correlagdes botanicas. Tem sido utilizado com sucesso em varios estudos in silico [18].
Por outro lado, o AsterDB (http://www.asterbiochem.org/asterdb) e o banco de dados
interno Aster-BioChem, que contém centenas de estruturas quimicas relatadas apenas
em espécies de Asteraceae. O AsterDB é o primeiro banco de dados a fornecer acesso

gratuito e é dedicado especificamente a essa familia botanica [19].
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Esse fortalecimento de bancos de dados nas ultimas duas décadas permitiu que
estudos computacionais emergissem como uma boa alternativa em quimica medicinal
para ajudar a estabelecer o design experimental, encontrar novos medicamentos e
comparar a estrutura molecular e a atividade por meio de uma das ferramentas mais
importantes nessa area, a relacdo quantitativa estrutura-atividade (QSAR), gerando
resultados bem-sucedidos a baixo custo em curto espaco de tempo [20, 21].

O design de medicamentos assistido por computador (CADD) oferece a
possibilidade de projetar novos medicamentos in silico, o que, combinado com
estratégias convencionais em laboratério, permite que os pesquisadores desenvolvam
tratamentos eficazes em tempos mais curtos e a custos mais baixos. Especificamente,
modelos de relagcdo quantitativa estrutura-atividade (QSAR) podem ser usados para
identificar padrdes moleculares que podem ser modificados em um motivo molecular
para maximizar a atividade. A metodologia de ancoragem molecular também pode ser
usada para explorar os comportamentos de pequenas moléculas no local de ligacdo de
uma proteina alvo [19].

Neste trabalho, serdo realizados diversos estudos de quimioinformatica da
familia Asteraceae, incluindo triagem virtual baseada em estrutura de ligante e receptor,
modelos QSAR, simulagdes de dinamica molecular, entre outros. Esses estudos visam
identificar estruturas potencialmente ativas contra leishmanioses, usando trés diferentes
bancos de dados de metabolitos secundarios presentes em Asteraceae, divididos em trés
grandes classes: lactonas sesquiterpénicas, diterpenos do tipo caurano e estruturas
derivadas do acido cindmico, em busca de moléculas com potencial atividade multialvo.
Além disso, as moléculas selecionadas com potencial atividade serdo testadas in vitro

para validar todos os calculos computacionais realizados.
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2.

Objetivos

2.1 Objetivo geral

Realizar estudios quimioinformaticos da familia Asteraceae para encontrar novas

estruturas com um potencial terapéutico contra Leishmanioses, uma das principais

doengas parasitérias negligenciadas.

2.2 Objetivos especificos.

Construir bancos de metabdlitos secundarios da familia Asteraceae usando o

software SistematX.

Criar modelos de relacgdo estrutura-atividade quantitativos (QSAR) para predizer

a atividade de metabolitos secundarios da familia Asteraceae.

Selecionar enzimas alvo involucradas no metabolismo dos parasitas do género

Leishmania, entendendo o mecanismo de acéo de essas proteinas.

Combinar as diversas aproximacdes de triagem virtual para a selecdo de
moléculas com potencial atividade contra as principais doencas parasitarias

negligenciadas.

Avaliar termodinamicamente os complexos entre enzimas do parasita e as

estruturas selecionadas mediante simula¢des de dinamica molecular.

Verificar mediante ensaios in vitro, a atividade inibitéria dos hits selecionados

nos estudos computacionais.
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O planejamento de farmacos auxiliado por computador, CADD (Computer-
Aided Drug Design), tem sido significativo nos dltimos anos para identificar moléculas
com potencial atividade contra diversas doengas, incluindo as denominadas doencas
tropicais negligenciadas, NTDs (Neglected Tropical Diseases). Esses métodos in silico
tornaram-se uma alternativa viavel, auxiliando na formulacdo de projetos experimentais,
na descoberta de novos medicamentos e na andlise comparativa de estruturas e
atividades moleculares [1].

Dentro das metodologias de CADD, os métodos de desenho de medicamentos
baseados em estrutura, SBDD (Structure-based Drug Design), incluindo docking
molecular, simula¢6es de dindmica molecular e desenho De novo, estdo entre oS mais
amplamente utilizados para a selecdo de moléculas promissoras. Houve casos bem-
sucedidos que resultaram no desenvolvimento de medicamentos disponiveis
comercialmente, incluindo Amprenavir, Raltitrexed e Zanamivir [2].

Essas técnicas oferecem diversas vantagens dentro das ferramentas
quimioinformaticas, como a reducdo no tempo e custo envolvidos na triagem de
milhdes de pequenas moléculas. Além disso, a avaliagio computacional pode ser
realizada antes da sintese fisica da molécula, e ha uma variedade de ferramentas
disponiveis para auxiliar em SBDD, tanto licenciadas quanto de acesso livre, facilitando
seu uso [3]

No entanto, assim como todas as metodologias computacionais, algumas
limitacbes estdo associadas ao uso dessas ferramentas. Primordialmente, a
especificidade para seu uso e a dificuldade em prever com preciséo a posicao correta de
ligacdo e classificacdo de compostos devido a complexidade das interacGes de ligante-
receptor sdo fatores a serem considerados para obter resultados confiaveis.

Devido a importancia desse tipo de ferramentas na selecdo de potenciais
moléculas bioativas, no Capitulo 1 deste trabalho, foi realizada uma revisao abrangente
das principais técnicas de SBDD, com foco nos fundamentos dessas técnicas,
algoritmos de amostragem e pontuacédo, algumas vantagens e desvantagens associadas a
essas metodologias, com énfase em dois aspectos-chave: a identificacdo do alvo e do

local de ligacao.
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Abstract: Target-based drug discovery tools have been used with success in the
pharmaceutical industry. They have become the fundamental methodologies for
discovering new drugs in recent years, with two main advantages over the traditional
methodologies: increased speed and greater economic efficiency. The improved
computational capacities and new software packages have allowed the diversification
and strengthening of these procedures. This chapter describes the main concepts related
to target-based drug discovery, including two key steps, target and binding site
identification, as well as the main features and limitations of the most common target-
based methodologies: de novo drug discovery, molecular docking, and molecular

dynamics.
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1. Introduction

Computer-aided drug design (CADD) has become the fundamental approach for
the discovery, development, and analysis of structures with potential activity against
many diseases in recent years. Two main types of approaches in CADD have been
reported: ligand-based virtual screening (LBSS) and structure-based drug design
(SBDD). These two approaches offer versatility and synergy, both in academia and
industry [1]. SBDD, also known as target-based drug discovery, has as its main
characteristic the use of computational methods and the three-dimensional (3D)
structural information of the protein target to investigate the underlying molecular
interactions involved in ligand—protein binding and thus interpret experimental results at
an atomic level of detail [2].

Advances in structural resolution techniques such as X-ray crystallography,
nuclear magnetic resonance (NMR), and cryogenic electron microscopy (cryo-EM)
have allowed the development and strengthening of SBDD techniques [3]. Currently,
the number of macromolecular structures registered in the Protein Data Bank (PDB) is
close to 180,000 [4], significantly increasing the structural information about key
macromolecular drug targets [1]. This evolution also drove the development of
sophisticated software packages, facilitating in silico calculations of inhibitors into their
predicted binding sites as well as the computational analysis of inhibitor binding and
information on further enhancements [5].

Various examples of commercially available drugs developed from target-based
drug design studies can be identified, including Amprenavir (Figure 1), which acts
against two targets of human immunodeficiency virus (HIV), thymidylate synthase.
Molecular dynamics calculations were used to explain the experimental observation that
the P1’ amide NH of substrate sequences was not required for binding and productive
catalysis. From these results, and supported by in silico modeling, the N,N-dialkyl
sulfonamide moiety was chosen to bind to the flap water molecule and to act as a
scaffold for the P1" and P2’ groups [6].

Other successful uses of SBDD include supporting the development of new
drugs include Raltitrexed and Zanamivir (Figure 1). Raltitrexed acts against thymidylate
synthase of the HIV [7]. Zanamivir was the first neuraminidase inhibitor to be marketed
for the treatment of influenza. Using the GRID program, it was predicted that in the

active site of the target, replacing the hydroxyl group at the 4-position of the ring by an
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amine will improve the interactions with two neighboring glutamic acid residues, which

identified this potent inhibitor of the neuraminidase enzyme (Ki = 0.2 nM) [6].

Replacement
suggested
by GRID N

(o]

NH,

Figure 1. Examples of drugs commercially available that were developed from target-
based drug design. Left: Amprenavir. Center: Zanamivir - GRID program predicted that
the replacement of the hydroxyl group at the 4-position of the ring by an amine, would
be improved the interaction with two neighboring glutamic acid (E) residues of the

target (neuraminidase) [6]. Right: Raltitrexed.

In summary, the workflow of the SBDD process begins with target
identification, which is supported by genetics, molecular biology, and bioinformatics
methodologies. Next, protein extraction and purification are carried out. A structural
determination of the target is performed, mainly using NMR, X-ray crystallography, and
Cry-EM; for those proteins whose crystal structure is not defined, homology models are
built in specialized software. Then, the biological assay is performed through different
methodologies (Figure 2). The main three SBDD approaches are molecular docking,
molecular dynamics, and de novo drug design. The small molecules to be evaluated in
structure-based virtual screening (VS) methodologies are typically selected from
databases of active compounds. Finally, the top hits are synthesized, and in-vitro tests

are performed to identify the best structures.[7, 8]
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Databases

Target Structure Molecular docking Biological assay
identification determination and SBVS

Figure 2. General workflow of the structure-based drug design (SBDD) [8].

This chapter reviews the main concepts in target-based drug design and
describes the two key steps in these studies: identifying the target and the binding site.
Also, we summarize the three main SBDD methodologies: molecular docking,
molecular dynamics, and de novo drug design, discussing the basic concepts and
classifications, as well as the algorithms and functions using for the calculations and the

limitations of these methods.

2. Target Identification

When a research group proposes developing a new drug for a given disease, the
first step is to understand the physiological and pathological processes of the disease.
This study completed, it is possible to visualize possible molecular targets that are
components of the human body or a particular pathogen. The main targets are proteins,
such as enzymes, metabotropic or ionotropic receptors, antibodies, and nucleic acids,
including nuclear and mitochondrial DNA in addition to messenger RNA. Protein
targets are the most abundant since they mediate several important metabolic processes
[9-11].

Drugs that act on enzymatic targets are mostly inhibitors; however, some can act
as allosteric activators. In contrast, the drugs that act on membrane receptors can be
agonists (when mimicking the effect of the endogenous substance) or antagonists (when
blocking the signal promoted by the endogenous substance). That is, the mode of
interaction determines the type of signal that will be transmitted to effectors located on
the cytosolic side of the membrane. These effectors can be enzymes, ion channels, or

sites for binding intracellular proteins. Examples of signal transduction pathways are
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those in which the receptors are coupled to G proteins that in turn activate other
enzymes that catalyze the conversion of triphosphate nucleotides into their cyclic
variants that will act as second messengers. In other ways, these messengers can
activate other enzymes and ion channels. Sometimes the channel itself can be the target,
either through an allosteric receptor site located on the same protein or through direct
interaction with the ion transport pore, which usually involves blocking the ion channel
[12, 13].

Drugs that interact with nucleic acids can be obtained in two ways: i) by
planning molecules that have the ability for direct interaction, that is, by forming
covalent bonds or cleaving bonds, as well as by intercalation; ii) indirectly, through
proteins that regulate gene replication and expression. These pathways are important for
designing drugs to combat diseases caused by disorders in regulating the cell cycle, such
as cancer [7, 11].

For the development of the SBDD, it is necessary to know the topological
arrangement of the molecular targets and, for that, detailed 3D data of the
macromolecule, obtained through X-ray crystallography techniques, NMR
spectroscopy, and cryo-EM, is used. Such structures, when determined, are deposited in
public databases that can be accessed freely. The most popular and widespread such
databases are the PDB, InterPro, EXPASYy, and Relibase [7, 10].

It is also possible to perform SBDD when the specific structure of a given
macromolecule is not known using homology modeling. This method uses in silico
methods, where it is possible to model a 3D structure from a homologous protein with a
known structure. The three most well-known methods of predicting structures are
comparative modeling, threading, and ab initio modeling, which are reliable and
possible to validate. The first step in this process is to determine the registration or
alignment of the target sequence that allows insertions and deletions in the experimental
structure, which can be accomplished with several dynamic programming algorithms.

In the second stage, mutations are made to the amino acid residues of the
experimental structure so that they correspond to those of the target protein. This
strategy can also be used when more than one experimental structure is available,
allowing the creation of a model with a hybrid structure that is closer to the structure of
the target protein. The final step is to refine and examine the structure to ensure that it is

reasonable and validates the model [14-16].

36



In the process of refining the model, one of the steps is the alignment of the
structures, where identities and similarities are verified, the conserved regions are
observed, and common amino acid residues in the active site are identified. A detailed
investigation of these similarities allows the planning of new drugs more likely to be
effective against the pathology under study.

There are tools available for the validation stage, such as the Ramachandran
plot, which is useful because it defines the residues found in the most energetically
favorable and unfavorable regions and guides the evaluation of the quality of the
theoretical or experimental models of the proteins. This graph represents all possible
combinations of the dihedral angles ¥ versus ¢ for each amino acid, except for glycine,
which has no side chain. For the model to be considered reliable, at least 90% of the
amino acids in the regions favorable to the study must be similar [17, 18].

The next step of SBDD is identifying the binding site on the macromolecular
target and identifying the types of interactions necessary for the micromolecule to
interact effectively and trigger a useful biological response. In this process, information
about the free energy of the complex can be obtained, and the types of interactions
between the atoms can be observed, leading to the identification of the best
pharmacophores for the new ligand.

These binding sites are determined experimentally by X-ray crystallography
techniques, including co-crystallization. The data obtained from the co-crystallized
structures provide robust information about the binding sites and are very useful in
understanding the interaction between the micro- and macromolecules. In some
situations, only the macromolecule structures are deposited in the databases, without the
presence of a ligand. There is no information about the connection site in such cases, so
servers and online tools must be used to identify the sites.

Some examples of servers that can assist are DoGSite Scorer [19], CASTp [20],
NSiteMatch [21], Metapocket [22], DEPTH [23], LISE [24], and MSpocket [25]. After
the connection site has been identified, the volume of the connection pocket can be
assessed using the tools TRAPP [26] and POVME [27]. More specifically, the residues
in the macromolecules that favor an optimal interaction to trigger a biological response
are identified. Therefore, it is necessary to know the interaction energies, van der Waals
(vdW) forces, to obtain an optimal mapping of the connection site.

There are several methods for this purpose, one of which is Q-SiteFinder [28],

which calculates the vdW interaction energies with a methyl probe. This method allows
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the retention and grouping of those sites with more favorable energies based on their
total interaction energies. From this knowledge, simulating the binding of various
library compounds or compounds designed de novo in the active site of the protein
allows the potential identification of novel drug candidates [7].

3. Binding site identification

Once the target protein has been identified and its biological effect has been
confirmed, the next challenge in any SBDD research is identifying and validating the
sites in the structure of the protein that will be more likely to interact with ligands.
These binding sites, or cavities, can be classified into two different categories. If the
interaction between the ligand and the target protein occurs in the catalytic site of the
protein, it is called an orthosteric site; if the interaction takes place in a different region
where the interaction produces changes in the protein conformation and the structure of
the catalytic site, it is called an allosteric site [29].

Regardless of the type, understanding the cavity structure and its interaction
energies with ligands is of great importance to any SBDD process. Therefore, several
strategies have been developed to identify these binding sites in the target protein. These
involve methods and algorithms that make use of information such as similarities of
residues between functionally related proteins (evolutionary methods), structural
features of the protein (geometrical methods), and interaction energy with probe

molecules (energy-based methods) [30, 31].

3.1. Evolutionary methods

Based on the idea that homologous proteins (proteins that have a common
ancestry) have some conserved residues, it is possible to assume that important regions
of those proteins, such as those involved in biological or enzymatic activity, have
functionally relevant sequences of residues that are conserved among different
organisms to avoid malfunction in their physiological processes [32]. According to this
assumption, information related to the cavities in a protein can be used in an
evolutionary method to find the binding sites of any homologous or functionally related
protein by comparing the residue sequence of their primary structures. Table 1 lists

different algorithms based on this method.
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Table 1. Examples of binding site identification software classified according to the

type of algorithm used for the prediction [31, 33].

Evolutionary Methods Geometrical Methods Energy-based Methods
ConSurf LIGSITE GRID
Rate4Site CAST DrugSite

GarLig SURFNET QsiteFinder
PocketPicker MCSS
VOIDOO
KVFinder

The main drawback of this type of algorithm is the necessity of prior knowledge
and the availability of information related to the sequences of existing proteins, which is
practically impossible considering the huge number and diversity of proteins that exist
in different organisms and species. Additionally, a low degree of similarity between the
sequences of the target protein and the reported protein will lead to deficient cavity

prediction results, interfering with the success of the SBDD study [30, 32].

3.2. Geometrical methods

Cavities are usually conceived as regions of large surface area in the protein and
displayed as hole-shaped concave sections in the structure of the protein [33].
Geometry-based methods use the 3D structure of proteins and locate binding sites by
considering their size, shape, and chemical properties (e.g., ionizability, intermolecular
interaction tendency, and covalent bonding sites) [34]. In these methods, the protein
structure and surface are analyzed using probe objects, typically spheres, that fit in the
protein cavities, depending on their size [31, 34]. Other geometric techniques involve
tessellation and 3D gridding of the protein structure to identify voids of a significant
size on the protein surface. Thus, geometry-based methods can be classified as grid
system scanning, probe sphere filling, and alpha-shape modeling [35].

Geometrical methods are the most frequently used for cavity detection in
different software and algorithms [31]. Their greatest advantage is that these methods
depend only on the availability of the 3D structure of the protein, and no additional prior
information is needed. Since these algorithms use crystal structures from databases like
the PDB, the protein structure is treated as static, disregarding its intrinsic flexibility and

plasticity [36]. The most significant disadvantages for this category of methods come
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from: i) the freedom and randomness considering the tessellation and griding
parameters that are needed to probe the protein surface, and ii) the inaccuracies that may

arise from protein orientation effects and conformational changes that may occur [33].

3.3. Energy-based methods

As stated previously, to study the interaction energy of the molecules and the
target protein, it is essential to predict their bonding probability and, consequently, to
predict if the ligand will be an eligible potential drug candidate. Hence, another family
of methods has been proposed to identify binding sites in target proteins, which is
related to evaluating the interaction energy between different regions of the protein and
some small molecules.

Energy-based methods identify cavities using only energetic criteria. In these
algorithms, the vdW interaction energy, the hydrogen bond energy, or the Lennard-—
Jones potentials of a probe (a small molecule or fragment, such as water or a methyl
group) and the target protein are evaluated [28, 35, 36]. These methods are usually more
computationally demanding, which is a considerable disadvantage because of the

interest in reduced calculation times in SBDD research [36].

4.. Target-based methodologies
4.1. Molecular docking

Molecular docking is the most common target-based drug discovery
methodology. More than 52,000 papers related to target-based drug discovery have been
published recently; more than 50% of them have been published in the last five years
(2017-2021), (Web of Science, Copyright Clarivate 202). Molecular docking
techniques aim to predict the binding mode of a ligand that best matches a
macromolecular partner (i.e., proteins). These methodologies aim to accurately predict
the structure of a ligand within the constraints of a receptor binding site and correctly
estimate the strength of binding [37]. In protein—-ligand docking, the process consists of
generating several possible conformations and orientations, also called poses, of the
ligand within the protein binding site [38].

Identifying the most likely binding conformations requires two steps: first, the
exploration of a large conformational space representing the various potential binding
modes; second, the accurate prediction of the interaction energy associated with each of

the predicted binding conformations. All docking programs perform these two steps
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through a cyclical process, in which the ligand conformation is evaluated by specific
scoring functions until the results converge to a solution having minimum energy [1].

There are three types of molecular docking techniques, categorized by the
flexibility of the molecules involved in the molecular docking calculations:

¢ Rigid docking: Both the ligand and the protein are considered rigid entities, and
only the three translational and three rotational degrees of freedom are
considered during sampling [38].

e Semi-flexible docking: One of the molecules, the ligand, is flexible, while the
protein is rigid. Thus, the conformational degrees of freedom of the ligand are
sampled, in addition to the six translational and rotational degrees of freedom
[38].

e Flexible docking: The protein is not a passive rigid entity during binding, and
both the ligand and the protein are considered flexible counterparts [38].

A molecular docking program has two essential components: sampling the
conformations of the ligand in the active site of the protein and ranking these
conformations via a scoring function [39, 40]. Sampling describes the generation of
putative ligand-binding orientations and conformations near a binding site of the
protein. Sampling can be further divided into two aspects, ligand sampling, and protein
flexibility. Scoring explains the prediction of the binding tightness for individual ligand
orientations and conformations using a physical or empirical energy function [41]. The
computational cost required in the docking calculations increases according to the
number of degrees of freedom. For this reason, both sampling and scoring should be

optimized to give a good balance between accuracy and speed [38].

4.1.1. Sampling algorithms

Sampling algorithms evaluate the capability of each docking program to predict
the ligand-binding poses [42]. Sufficient sampling of ligand and protein states in
docking is essential, as well as accurate evaluation of the binding energies of potential
protein—ligand complexes. A key issue is whether the docking program samples the
possible states sufficiently and how increased sampling relates to improved scoring and
outcomes. This includes sampling the internal degrees of freedom within the ligand, as
well as sampling the poses between the ligand and the protein receptor [43]. The

sampling algorithms are classified into three main categories (Table 2) [42]:
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i) Shape matching: These approaches consider the geometrical overlap between

the two molecules. These algorithms can predict docking conformations

rapidly; however, their accuracy is lower [44].

i) Systematic search: These approaches explore all ligand degrees of freedom

during the search [45].

iii) Stochastic search algorithms: These approaches randomly change all the

degrees of freedom of

the ligand (translational,

rotational,

and

conformational) at each step, generating very diverse solutions. However,

multiple independent runs of the algorithm are required to maximize the

probability of finding the global energy minimum [45].

Table 2. Summary of the most common sampling algorithms for molecular docking.

Algorithm Description Examples Ref.
Consider the geometrical overlap between two molecules.
Shape ] ] ] o ZDOCK
) being able to predict docking conformations in fast speed, [44]
matching SYSDOCK
however at lower accuracy rate
Systematic search
Explore the values of each degree of freedom in a
Exhaustive | combinatorial manner, rotating all dihedral angles of the Glide (45]
search ligand according to a predetermined range of values and a eHiTS
set of initial restraints
The ligand is separated in smaller fragments, followed by
the selection, and docking of a base fragment into the
Fragmentation | receptor binding site. The ligand is then reconstructed FlexX [45]
incrementally by covalently linking the other fragments
to the base group
Conformation | Rigidly docks a set of previously generated ligand| DOCK 4.0
ensemble conformations into the binding site. FLOG 1431
Stochastic search
The method involves applying random cartesian moves to ) )
Monte-Carlo |the system and accepting or rejecting the move based on HigandFit [46]
a Boltzmann probability "Dock
Genetic Evaluating the evolution of a population of possible rDock
algorithm solutions via genetic operators to a final population,| AutoDock el
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optimizing a predefined fitness function. Degrees of GOLD
freedom are encoded into genes or binary strings and the
collection of genes, or chromosome, being assigned a

fitness based on a scoring function.

An iterative procedure designed to obtain solution of

optimization problems. The technique is defined as a
Tabu search

each individual particle also keeps record of its own best

solution.

thod Meta-Heuristic methodology that can move from a| PSI-DOCK [44]
methods
solution to another being able to save in memory the
already visited solutions
In each iteration, a particle moves based on the
knowledge of other particles and its own experience to
Swarm . )
L speculate about the promising region to explore. One| PLANTS
optimization o . [47]
global best solution is kept updated by all particles and | PSO-VINA
methods

4.1.2. Scoring algorithms

In the molecular docking calculations, the scoring functions are responsible for
distinguishing the correct poses (binders) from the incorrect poses (inactive compounds)
in a reasonable computation time. The scoring functions estimate the binding affinity
between the protein and the ligand by adopting various assumptions and simplifications
[39].

Two theoretical aspects of these functions dominate their operational
performance. The first is the degree to which a scoring function has a global extremum
within the ligand pose landscape at the proper location. The second is the degree to
which the magnitude of the function at the extremum is accurate [48].

In the docking process, the scoring algorithms have three aims:

i) Pose prediction: The scoring function should be able to distinguish the
experimental binding modes from all other modes explored through the
searching algorithm [46].

i) Virtual screening: The capacity to classify active and inactive ligands [45].

iil) Binding affinity estimation: Prediction of the affinity constants and correctly

rank several compounds according to their potency [45].
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The scoring functions are commonly classified into three general groups:
force fields (FF), knowledge-based and empirical. Recently, a fourth group has
appeared and become relevant, machine learning-based functions (Table 3) [7].
Force field scoring functions: These employ energy functions from classical
molecular mechanics (MM), which is the binding free energy of protein—ligand
complexes defined by the sum of the vdW forces and the electrostatic
interactions. The solvation is determined as a distance-dependent dielectric
function, and the nonpolar contributions are assumed to be proportional to the
solvent-accessible surface area [49].

Knowledge-based scoring functions: These are based on the inverse Boltzmann
statistic principle, which assumes that the frequency of different pairs of atoms
at different distances is related to the interaction of the two atoms and converts
their frequency into the distance-dependent potential of the mean force.
Knowledge-based scoring functions have great advantages of reduced
computing cost and predictive accuracy relative to other types of scoring
functions [50].

Empirical scoring functions: These functions compute the fitness of a
protein—ligand binding by summing up the contributions of a number of
individual terms, each representing an important energetic factor in
protein—ligand binding. Multivariate linear regression (MLR) or partial least-
squares (PLS) analysis is used in these empirical functions to determine the
different related factors that affect the final binding score [51].

Machine learning-based functions: dynamic techniques for constructing and
optimizing models to predict a binding pose and affinity [7]. These functions
have emerged in the last few years as potential rescoring tools for structure-
based VS. The machine learning-based approaches can implicitly learn the
function form from the training data and use adjustable parameters to improve
performance further, thus offering higher performance flexibility and greater
convenience [52]. The most common machine learning algorithms used as
scoring functions are the support, vector machine, random forest, neural
network, and deep learning algorithms [50].

Consensus scoring. None of the four types of scoring functions mentioned above

have general applicability or are perfectly accurate. Consensus scoring is used to

44



improve the probability of finding correct solutions by combining the scores
from multiple scoring functions, using the advantages of the scoring functions
while reducing the limitations. Suitable selection of the individual scores is
fundamental to the design of the consensus analysis [53].

Table 3. Examples of the scoring functions in molecular docking calculations [53-56].

Force field-based Empirical Knowledge-based Machine learning-
based
AutoDock ICM-Score ICM-PMF RF-Score
DOCKI/FF SYBYL/F-Score SYBYL/PMF-Score3 | RF-IChem
SYBYL/G-Score SYBYL/ChemScore DrugScore SVM-IChem
SYBYL/D-Score LUDI
X-Score

4.1.3. Molecular docking limitations

Although molecular docking calculations have been a fundamental tool in target-
based drug discovery and many successful cases have been reported, several limitations
are still present that mainly affect the accuracy of the calculations and their
computational cost [57]. The ability to computationally predict the thermodynamics of
these molecular recognition processes has been relatively poor until recently [58]
because of a lack of confidence in the scoring functions used to provide accurate
binding energies [1].

The majority of docking studies have been performed using rigid conformations
of the protein due to the high computational cost added by increasing the flexibility of
the macromolecules; therefore, although the development of computers with greater
calculation power has improved performance in flexible systems, integration of
conformational changes with the scoring functions is still a problem to be solved [59].

Additionally, in molecular docking calculations, the solvation phenomenon is
not explicitly considered, impeding the estimation of the desolvation energies. Water
molecules have an important role in the ligand—target binding process because they are
necessary to correct the free energy of binding associated with the ligand displacement
of water molecules. Although some docking software such as Autodock4 and GOLD
have implemented some approaches, solvation is an important challenge to resolve in

the currently available docking scoring functions [1, 59].
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The algorithms based on quantum mechanics (QM) and mixed methodologies
such as the semiempirical and QM/MM methods have emerged as alternatives for
improving the accuracy of binding energy calculations. The development of graphics
processing units (GPUs) has supported an increase in the use of these types of
techniques [59]. In general terms, QM-based scoring functions are better able to predict
ligand affinities than MM-based functions. However, this is not observed in all cases:
the agreement between experimentally measured activities and calculated binding
energies is highly dependent on the chemical series under study [60].

Finally, the limitations related to the X-ray crystallographic data, which is the
basis of the molecular docking calculations, are very important. Uncertainties in the
atomic model can have significant consequences when this model is used as the basis
for manual design, docking, scoring, and VS efforts [61]. The redocking procedure,
where a known ligand is docked to the “induced-fit” form of the target [62], is often the
only method of validating the docking parameters used; it is important to develop
additional validation procedures, especially those that include biological information, in
order to decrease potential errors related to the X-ray crystallographic data and improve

the robustness of the molecular docking calculations.

4.2. Molecular dynamics simulations

One of the main limitations of the molecular docking calculations is related to
the flexibility of the targets. A high percentage of protein—ligand systems evaluated by
docking require rigid conditions to test a large number of molecules quickly with low
computational cost by VS. To evaluate the physical movements of these systems,
molecular dynamics (MD) simulations are used. MD is an in silico technique, Which
aims to derive statements about the structural, dynamical, and thermodynamical
properties of the molecular systems [63].

Leimkuhler and Matthews define the MD method as developing quantitative
predictions of molecular size and shape, flexibilities, interactions with other molecules,
behavior under pressure, and the relative frequency of one state or conformation
compared to another [64]. Historically, MD was developed in the early 1950s and has
evolved constantly since then. Rahman and Verlet [65, 66] refined the technique by
implementing the method for all states of matter. Part of the evolution and relevance of
these techniques is related to the foundation of powerful programs found by Martin

Karplus, Michael Levitt, and Arieh Warshel that were used to understand and predict
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chemical processes. These three researchers were recognized with the Nobel Prize in
Chemistry in 2013 for the development of multiscale models for complex chemical
systems [67]. Currently, more than 20,000 papers related to MD are published annually,
with close to 6% annual growth in the number of works from 2016 to 2020 (Web of
Science, Copyright Clarivate 202).

4.2.1 Algorithms in molecular dynamics simulations.

For a MM system, MD consists of iterations of the instant forces present and the
consequent movements of that system. The MM system is described as a set of particles
that move in response to their interactions according to Newton’s equations of motion,
and the MD simulation computes the movements of atoms with time by integrating
these equations, given below [38, 68]:

dri(t) _ Fi(t)
dt? m;

where Fi(t) is the force exerted on atom i at time t, ri(t) is the vector position of the atom

i at time t, and m; is the mass of the atom [38].

The essential function of the MD algorithms is to derive Newton’s equations in a

time differential (dt) for each atom of the system [38].
e Position: r; (t) = (x; (t),y; (t),z; (t)
e Velocity: v; (t) = drdi—t(t)

2 . .
e Acceleration: a; (t) = Y ;Qﬁt) = f;f-t)
i

av(r(t
o Force: f; (t) = _—dr('rgti)

e Potential Energy: V (r(t))
Where, Xi, yi and z; are the coordinates of the i atom in the time (t).
The algorithms used in MD are classified into five types: integrators, short-range

interaction, long-range interaction, parallel computing, and ab initio (Table 4).
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Table 4. Main classification of the most common MD algorithms

Short-range Large-range Integrators Paralleling Ab initio [72]
interaction [69] | interaction [70] [68] computing [71]
Verlet Cell- Ewald summation | SHAKE Point-centered Car-Parrinello
linked List PME Beeman’s domain
(VCL) P3M Verlet-Stoermer | decomposition
MSM Leapfrog

Two types of algorithms depend on the type of nonbonded interactions
evaluated, short-range and large-range interactions. The short-range algorithms are
based on the Lennard—Jones potential that represents the van der Waals interactions.
Meanwhile, the large-range algorithms are based on the treatment of the long-range
electrostatic potentials [70]. In the ab initio algorithms, the interactions between ions
and electrons are treated fully by QM, and the ions are moved using the classical
Newton equations of motion. Carr—Parrinello is one of the most common ab initio
algorithms, which was developed to calculate the ab initio forces on the ions and keep
the electrons close to the Born—Oppenheimer surface while the atoms move [72]. In
parallel computing, MD simulations are performed on parallel computers: the molecular
system is divided into clusters assigned to individual processors [71]. Finally,
integrators consist of different algorithms to integrate the equations of motion. Many of
these are difference methods, in which the integration is partitioned into small steps,
each separated by a defined period because the continuous potentials describing atomic
interaction preclude an analytical solution. Among the most common MD integrator

algorithms identified are Verlet, Leapfrog, and Beeman [68].

4.2.2. Force field in Molecular dynamics simulations.

As observed previously in Molecular docking calculations, MM techniques use a
force field to describe the dependence of the energy on the atomic coordinates of the
system [73]. In MD, the accuracy of the force field is critical to the validity and stability
of the simulations of proteins and, in fact, all macromolecules [68]. The main FFs used
in MD include MM2, MM3, MM4, CHARMM, AMBER, GROMOS, OPLS, and
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COMPASS. Many versions of these force fields exist to perform MD simulations, such
as GROMOS96, GROMOS45A3, and GROMOS53A5 [73].

The formal expression of a force field is divided into two groups of terms,
bounded and nonbounded. The bonded interactions account for the stretching of bonds,
the bending of valence angles, and the rotation of dihedral angles. The nonbonded
interactions capture electrostatics, dispersion, and the Pauli exclusion forces [74].

ETotal = EBonded + Enonbonded + Eothers

Fvondea = ). Kob—b) + D Ko(0-6,+ > Kyll+ cos(nx—o)]

Bonds angles dihedrals

12 6
(Rmin,ij> o <Rmin,ij> 4 q:9;
rij Tl']' rij

The first part of the energy equation is related with the bonded interactions and

Enonbondeda = ( &ij
nonbonded

pairs ij

has three terms. The first describes the stretching of bonds, where b is the interatomic
distance (bond length) and Ky and bo are the parameters describing the stiffness and the
equilibrium length of the bond, respectively. In agreement with the assumption in MM
treating the bonded interactions as springs, this term also has a quadratic form known as
Hooke’s Law. For the calculation of the second term, the involvement of three atoms is
necessary to describe the bending of angles, where 0 is the angle formed by the two
bond vectors; Ko and 6o are the parameters describing the stiffness and equilibrium
geometry of the angle, respectively. These parameters are similar to the terms for bond
stretching, Ky and bo. The last term is related to the energy associated with the rotation
of dihedral angles defined by four atoms, where y is the dihedral value, Ky is the
energetic parameter that determines the barrier heights, n is the periodicity or
multiplicity, and o is the phase [38, 74].

Nonbonded interactions have two terms. The first is known as the Lennard—
Jones equation. The second term relates the models of attractive dispersion and
repulsive Pauli exclusion interactions and is commonly referred to as the van der Waals
term [38, 74]. Calculating these nonbonded interactions in biomolecular simulations is a
key issue and one of the main challenges in the area [75].

Since the early 1980s, when the most common protein FFs, Amber, CHARMM,

and OPLS, were developed, protein FFs have continuously evolved and improved [76].
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Currently, protein FFs are highly advanced, even with respect to other macromolecules.
Guvench and Mackerell performed a comparison among the most common protein FFs
for MD and found that all the studied force fields (Amber, CHARMM, GROMOQOS, and
OPLS-AA) treat proteins at an often satisfactory level of accuracy [74]. Developments
in these methods have produced multi-microsecond simulations of two proteins,
ubiquitin and Protein G, using a number of different FFs. Four FFs (CHARMMZ22*,
CHARMMZ27, Amber ff99SB-ILDN, and Amber ff99SB*-ILDN) showed a good
agreement between NMR data and MD simulations [77].

4.2.3. Limitations of Molecular dynamics simulations.

Gonzalez chose an interesting definition of the utility of the MD simulations: the
aim is not to reproduce an experimental result but to understand the microscopic origin
of the physical properties observed or to predict qualitatively the behavior expected at
conditions that cannot be accessed experimentally [73]. In protein FFs, the constant
evolution has allowed a high level of accuracy in the predictions. However, the same
level of accuracy is not observed for other macromolecules since only a few specialized
force fields are regularly used today for sugars, nucleic acids, and lipids [75]. For
example, Ricci performed a comparison of FF and terminal nucleotide definitions
because, despite the importance of DNA as a target for several proteins and drugs,
molecular dynamics simulations with nucleic acids still face many challenges, such as
the reliability of the chosen force fields [78].

The computational cost is one of the main limitations of MD simulations. The
conformational sampling of biological systems is in many cases limited by the
capabilities of the computational hardware [79]. Even though other techniques have
been developed to overcome the limitations of MD, such as enhanced sampling MD
simulations, in classical molecular dynamics, a low computational cost requires some
approximations, which decrease the accuracy of the predictions. Ab initio methods
produce more realistic simulations of complex molecular systems and processes but are
computationally complex. To overcome this difficulty, electronic interactions are
approximated with an effective pseudopotential, and the orbitals are expressed in terms
of a suitable functional basis. Hybrid QM/MM methods follow a similar approach [80].

Moreover, the size of the biological system is a key factor in MD simulations.
Some biomolecular processes, including ligand binding and conformational change,

often take place on timescales longer than those accessible with a classical all-atom MD
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simulation. For some systems with about 50,000 atoms, one GPU takes a few days to
simulate a single microsecond [81]. Through Markov State Models (MSMs), these
limitations have been overcome. MSMs are based on an ensemble view of the
dynamics, from which statistical properties, such as the probability of a state being
occupied and the probability of jJumping from one state to another, are computed [38].

4.3. De novo drug design

The development of new molecular structures and entities with therapeutical
uses is an enormous challenge in producing new drugs for commercial use.
Consequently, different strategies have been proposed to find and design new
candidates to fulfill this demand. Considering the gigantic amount of information
available to explore the extant chemical space associated with different diseases, it is
possible to approach the drug design task, where this information is valuable and
convenient, by proposing new molecular entities from small molecular fragments
assembled to maximize the interaction of the ligand with the active site, by means of
using computational growth algorithms, through a method called de novo drug design
(DNDD) [82].

De novo design can be defined as a method where a molecule is designed to
satisfy the constraints and characteristics needed to achieve the required biological or
therapeutical activity [83]. There are two useful ways to start a de novo methodology.
First, in the structure-based approach, the construction of the molecules can be started
using the knowledge acquired from the structure of the active site: the 3-D structure and
the possible interaction sites are known. The second approach is the ligand-based
approach, in which the construction of molecules is started from a known active ligand,
but the active site information is unavailable and hard to obtain [82]. Once the
methodology has been chosen, the next step is to build and evaluate the molecules that
satisfy the established restrictions [82, 83]. Some popular software for these approaches

is shown in Table 5 and classified according to the methodology used.
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Table 5. Examples of De novo software classified according to the type of
methodology used to construct and score molecules [82, 84].

Fragment-based Software

Ligand-based Structure-based
LUDI X
SPROUT X
Chemical Genesis X X
PRO_LIGAND X X
TOPAS X
ADAPT X

Atom-based Software

Ligand-based Structure-based
Diamond Lattice X
LEGEND X
MCDNLG X
DLD X
RASSE X

4.3.1. Sampling, Scoring and Optimization

To assemble a list of candidate molecules, there are two possible methodologies.
First, in the atom-based methodology, the transformation of the molecules is achieved
by modifying one atom into another to explore the molecular possibilities. This is a very
intuitive method, which results in a wider ensemble of novel structures. However, it
suffers from the possibility of creating new molecules with unfavorable structures,
unstable hetero—hetero atomic bonds, or difficult synthetic accessibility [82, 85, 86].
Second, in the fragment-based approach, the design of the molecules is achieved by the
mutation of pre-defined molecular fragments, which causes a vast reduction of the
possibilities within the chemical space, is less time-consuming, and the chemical
feasibility of the proposed molecules is higher (see Table 5) [85, 86].

During the construction of the molecules, they are scored according to a set of
suitable molecular descriptors to determine their druggability using different algorithms.
If the study is done using a structure-based methodology, the algorithm calculates the
score based on the interaction of the fragments with the active site by docking

procedures, and those fragments are then used as seeds to build the rest of the molecule.
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In contrast, in ligand-based approaches, molecules or fragments are compared to a
reference ligand by considering its similarity to their descriptors.

Optimization processes are typically based on evolutionary computation, which
is inspired by biological evolution, involving mutation, crossover, and selection of the
candidates more likely to “survive” based on their performance in the defined biological
function. Evolutionary computation is divided into four categories: genetic algorithms,
genetic programming, evolution strategies, and evolutionary programming [82, 87]. In
general, all of these algorithms begin with a population of candidates, within which the
most promising molecules are selected, finally proposing a new generation of
candidates to replace the initial one, and then the algorithm restarts. The main
advantages of these algorithms are their simplicity, adaptability, and efficacy in
exploring the chemical space [87].

4.3.2. Machine Learning in De novo drug design

Regarding the vast amount of information available about existing compounds
and their biological activity in databases such as ChEMBL, COCONUT [88], and
ZINC, several methods have been developed to analyze and predict the chemical
behavior of these bioactive compounds, causing a considerable reduction in time and
allowing a more efficient exploration of the chemical space in de novo studies [89]. In
particular, due to the advances achieved in machine learning, the possibility of allowing
computers to learn to select a promising molecule by starting from chemical and
biological information, as well as giving them the ability to find structural fingerprints
that can lead to the identification of the most important characteristics of molecules to
enhance their activity, has had a remarkable effect on de novo methodologies.

Deep Learning (DL) [90-92], Reinforcement Learning (RL) [93, 94], Deep
Reinforcement Learning (DRL) [95] and Reinforcement Learning for Structural
Evolution (ReLeaSE) [96] are some of the machine learning methods developed to
assist with de novo design of molecules in the last decade [82, 96]. For all these
methods, it is necessary to start from molecular information, usually in the SMILES
format, and the biological activity measurements of the selected target. The main
differences between these methods are the type of architecture developed for data

analysis and evaluation and the evaluated molecular properties.
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4.3.3. Limitations in De novo drug design

Despite all the advantages of de novo methodologies, especially the possibility
of extensively exploring the chemical space for lead structure identification, some
existing disadvantages and limitations exist. The most relevant limitation is related to
the accuracy of the scoring functions. De novo software does not consider the
conformational modifications that may take place in the structure of the target protein
(particularly in the active site) or the entropic effects caused by the solvent-ligand
interaction, which limits the calculation of the ligand—pocket interaction energy and thus
reduces the accuracy of the molecular design [97].

Additionally, de novo designed molecules might have good predicted
selectivities and interaction energies with targets; however, these methodologies do not
allow the prediction of other important physicochemical properties of the designed
structures (e.g., solubility, permeability to cells, and affinity to transport proteins)
involved in pharmacokinetic studies and relevant to choosing the most promising
therapeutical candidates [82, 84]. These limitations need to be overcome in order to
increase the success of de novo methodologies in the design of effective drug

molecules.

5. Conclusions and future directions

In this chapter, we reviewed the main aspects of target-based drug design to
explain the development and importance of these types of techniques in drug discovery.
Various structures have been successfully discovered through this class of methods, but
it is still necessary to overcome some existing limitations of these methodologies.

The constantly growing and updated databases are the main source of structures
for methodologies such as VS and online software for molecular docking calculations
present a promising future of target-based drug design. However, for the continued
growth of these databases to be useful, the correct use of these techniques is necessary,
which begins with understanding the main concepts of the methodologies.

For the molecular docking calculations, the development of scoring functions is
critical for flexible receptor docking to improve the energy prediction and the correct
spatial position of the ligands. In the same way, it is fundamental to develop new
scoring algorithms to improve the accuracy, such as those based on QM or mixed
methodologies, including the semiempirical and QM/MM methods and the

corresponding validation procedures of the calculations.
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Moreover, the importance of MD simulations as a key technique in the drug
development process is likely to grow substantially with increasing computer power and
advances in the development of FFs and enhanced MD methodologies [63]. In addition,
improving and developing the FF for macromolecules such as sugars, nucleic acids, and
lipids is vital to expand the applications of the MD simulations in biological systems.

In all cases, the main challenges in target-based drug design methodologies are
related to improving the accuracy of the predictions while reducing the computational
cost of the calculations.
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CAPITULO II




O século XXI tem sido chamado de era da big data. Até o ano de 2020, o volume
de dados atingiu 59 zettabytes (ZB), esperando-se alcangar 149 ZB em 2024 (um ZB
equivale a 1x10M12 gigabytes) [1]. Na area da quimica medicinal, essa situacdo ndo é
muito diferente; a informacdo sobre produtos naturais e seus metabdlitos secundarios,
como ponto de partida para o desenvolvimento de novos tratamentos para indmeras
doencas, aumenta exponencialmente, sendo fundamental o desenvolvimento de bancos de
dados - entre eles ZINC, PubChem e ChEMBL, que possuem milhdes de estruturas - para o
correto armazenamento dessas informagoes [2].

A Asteraceae é uma das familias botanicas com maior diversidade no mundo,
possuindo mais de 32.000 espécies identificadas pertencentes a 1.900 géneros [3, 4].
Vaérias espécies desta familia demonstraram forte atividade antioxidante, anti-inflamatoria
e antimicrobiana, além de propriedades diuréticas e cicatrizantes. Seus efeitos
farmacologicos podem ser atribuidos a uma variedade de compostos fitoquimicos,
incluindo polifendis, acidos fenolicos, flavonoides, acetilenos e triterpenos [5].

Com tanta variedade e quantidade de informacOes, a classificacdo sistematica
destas por meio de bancos de dados torna-se cada vez mais relevante para estudos futuros
com a Asteraceae, e ferramentas especificas como SistematX e AsterDB, desenvolvidas no
Brasil, tornam-se essenciais para o desenvolvimento de estudos quimioinformaticos,
favorecendo a obtencéo de informacdes relevantes e ndo redundantes [2].

As familias de plantas mais promissoras para identificar compostos com potencial
atividade leishmanicida sdo Asteraceae e Lamiaceae [6]. No entanto, varias classes de
metabolitos secundarios, assim como alvos terapéuticos, ainda ndo foram estudadas em
profundidade. Para direcionar os estudos computacionais observados nos proximos
capitulos do presente trabalho, fizemos esta revisao de literatura, procurando a maior parte
dos estudos que utilizaram ferramentas computacionais para examinar varios compostos
identificados na familia Asteraceae na busca por possiveis candidatos a medicamentos
contra Leishmania, enfatizando as possiveis bases de dados que podem ser utilizadas,

assim como as principais espécies e alvos terapéuticos usados.
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Abstract: Leishmaniasis is a complex disease caused by over 20 Leishmania species that
primarily affect populations with poor socioeconomic conditions. Currently available drugs
for leishmaniasis treatment include amphotericin B, paromomycin, and pentavalent
antimonials, which have been associated with several limitations, such as low efficacy, the
development of drug resistance, and high toxicity. Natural products are an interesting
source of new drug candidates. The Asteraceae family includes more than 23,000 species
worldwide. Secondary metabolites that can be found in species from this family have been
widely explored as potential new treatments for leishmaniasis. Recently, computational
tools have become more popular in medicinal chemistry to establish experimental designs,
identify new drugs, and compare the molecular structures and activities of novel
compounds. Here, we review various studies that have used computational tools to
examine various compounds identified in the Asteraceae family in the search for potential

drug candidates against Leishmania.
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1. Introduction

Leishmaniasis is a general term used to describe more than 20 diseases caused by
protozoans of the genus Leishmania (31 species are known to be mammalian parasites, of
which 20 species are pathogenic in humans), which are transmitted by various species of
phlebotomine sandflies (Diptera and Psychodidae) [1,2]. These diseases are categorized as
neglected tropical diseases (NTDs) and represent a huge challenge for developing countries
due to their economic and social impacts. The risk of infection and disease severity are
associated with the socioeconomic conditions of the population, including the sanitation
and nutritional conditions of a community, environmental or climate changes, and the
response of the host immune system to the infection [2]. Leishmaniasis can be classified
according to the severity of the infection as visceral (VL), cutaneous (CL), and
mucocutaneous (MCL) leishmaniasis [3,4].

Similar to other NTDs, leishmaniasis does not attract much attention from most
pharmaceutical companies because the research and production of new medicines to treat
these diseases are unlikely to result in significant profit [5]. This situation has prompted the
cooperation between governments, global organizations, and research institutions to
address these diseases, which represent public health challenges in several countries [6,7].

In attempts to identify low-cost medicines for the treatment of leishmaniasis, many
researchers have focused their investigations on natural products, which, in contrast to
conventional chemotherapeutic drugs, can offer high efficacy and low toxicity [8].
Currently, more than 50% of all new drugs approved by the United States Food and Drug
Administration (US FDA) are associated with natural products [9]. In recent decades,
extracts and fractions of plants in the Asteraceae, Lamiaceae, Apiaceae, and other families
have been used in traditional medicine approaches to treat leishmaniasis, showing high
activity and selectivity [10]. Asteraceae is one of the most well-studied plant families for
the treatment of parasite-associated diseases [8]. For instance, artemisinin, a sesquiterpene
lactone (SL) derived from Artemisia annua, has been approved for the treatment of malaria
due to its endoperoxidase properties [11,12].

The high variability of Leishmania strains and their strong resistance to currently
available drugs are currently the biggest obstacles to the search for new antileishmanial
treatments. Since the 1950s, anti-Leishmania treatments have primarily been based on
pentavalent antimonial compounds (SbY), including meglumine antimoniate
(Glucantime®) and sodium stibogluconate (Pentostam®), although the efficacy of these

two ShY treatments has declined of six decades of use, and multiples studies have reported
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several complications associated with these two drugs, such as high toxicity, parasite
resistance, prolonged treatments, and multiple side effects [8,13,14]. More recent
chemotherapies that have been developed against different types of Leishmania, including
amphotericin B, miltefosine, and paromomycin, have been reported to present similar
problems [15,16]. Therefore, understanding the mechanism of action through which
available drugs exert leishmanicidal effects and the mechanism through which parasites
develop antibiotic resistance is extremely important. The discovery of new antibiotic
targets would facilitate the identification of more effective and selective leishmanicidal
drugs [8,17].

Computer-aided drug design (CADD) offers the possibility to design new drugs in
silico, which, combined with conventional wet-lab strategies, allows researchers to develop
effective treatments in shorter times and at lower costs. Specifically, quantitative structure-
activity relationship (QSAR) models can be used to identify molecular patterns that can be
modified in a molecular motif to maximize activity [18]. Molecular docking methodology
can also be used to explore the behaviors of small molecules at the binding site of a target
protein [19].

This review summarizes existing databases (DBs) associated with Asteraceae and
explores the reported results of studies that have used in silico methodologies (particularly
machine learning and molecular docking calculations) to identify new structures with
potential anti-Leishmania activities, based on secondary metabolites found in Asteraceae

species.

2. Databases as key tools for cheminformatic studies exploring Asteraceae
components.
Asteraceae is one of the more-studied plant families in the world. Asteraceae are
highly distributed worldwide, including 1,000 genera and 25,000-30,000 species [20].
More than 22 million georeferenced reports have been identified (Figure 1)) [21].
Additionally, secondary metabolites derived from members of this family have
successfully demonstrated antiparasitic activity, such as artemisinin (Artemisia annua), an
SL with antimalarial activity that received the Nobel Prize in Medicine in 2015 and has

been approved for treatment against malaria caused by Plasmodium falciparum [11,12].
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Figure 1. Asteraceae is highly distributed worldwide. More than 23,000 species and 22

million georeferenced reports are registered in the Global Biodiversity Information Facility
(GBIF) [21].

Due to the large amounts of existing data for Asteraceae, the systematic storage and
retrieval of information regarding identified metabolites in this family are important.
Natural products DBs [22,23], allow data to be classified according to chemical structures,
trade names, systematic names, synonyms, molecular formulae, and a wide range of
calculated and/or experimental data [24].

Currently, natural product DBs are key tools for CADD studies, including
Dictionary of Natural Products [25], NUBBEdb [26], Super Natural 11 [27], NAPRALERT
[28], KNApSAcK Family Databases [29], among others.

DNP is one of the most complete natural product DBs currently available,
providing chemical, physical, and structural data for over 190,000 natural products
organized into more than 43,000 entries; however, DNP is a commercial DB and is
relatively expensive to access, which limits its use as a research tool [30,31]. KNApSAcK
Metabolomics contains more than 10,000 structures, allowing metabolites to be searched
according to mass spectrometry (MS) peaks, molecular weights, molecular formulas, and
species [29].

SuperNatural 1l, a free, web-based natural product DB, contains approximately
326,000 molecules. NUBBEdb, another web-based DB, has registered a variety of
secondary metabolite classes from among the biodiversity in Brazil, including botanical,
chemical, pharmacological, and toxicological compound data [26]. NAPRALERT was
developed by the University of Illinois at Chicago and is described as a relational DB of
natural products, including ethnomedical and pharmacological/biochemical data for
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extracts tested in a variety of organisms using in vitro, in situ, and in vivo studies, in
addition to studies performed in humans, such as case reports, non-clinical trials, and
clinical studies [28].

None of the above-mentioned DBs are specifically focused on the Asteraceae
family. In that past decade, two natural products DBs have been introduced, containing
data for a large number of secondary metabolites from Asteraceae: SistematX and
AsterDB. Studies using the compounds registered in these two DBs have recently been
published, including a combined virtual screening approach aiming to identify antichagasic
structures [23] and a fingerprinting metabolomics study of tropical mistletoes that grow on
aluminum-accumulating and aluminum-excluding hosts [32].

SistematX (http://sistematx.ufpb.br) was developed in the cheminformatics
laboratory of the Federal University of Paraiba, whose interface includes the following
aspects: (a) the ability to search by structure, SMILES (Simplified Molecular-Input Line-
Entry System) code, compound name, and species; (b) the ability to save chemical
structures identified during searches; (c) compound data results, including important
natural products chemical characteristics, such as spectrometric data; and (d) the ability to
identify specific information regarding the taxonomic rank (from family to species) of the
plant from which each compound was isolated, the searched-for molecule, spectroscopy
data, bibliographic references, and Global Positioning System (GPS) coordinates.
SistematX includes more than 1,300 SLs and 850 flavonoids and chalcones that are
associated with more than 4,000 botanical occurrences in Asteraceae [22].

AsterDB (http://www.asterbiochem.org/asterdb) is the AsterBioChem in-house DB,
which contains hundreds of chemical structures that have only been reported in Asteraceae
species. AsterDB is the first DB to provide free access and is dedicated specifically to this
botanical family. At this time, AsterDB has registered 2,500 unique chemical structures of
terpenoids, flavonoids, trans-cinnamic acid derivatives, and other minor chemical classes

of natural products, including more than 1,000 structures of SLs [33].

3. Computational studies against Leishmania.

For Leishmania, compounds from diverse plant sources and their modified analogs
have been tagged with nanoparticles to explore potential mechanisms to increase the
delivery, efficacy, and bioavailability of these compounds [34]. The leishmanicidal activity
of Asteraceae has been widely studied, including multiple ethanol extracts [35], SLs

(which are characteristic Asteraceae chemomarkers) [8], flavonoids [36,37], tannins and
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steroids. Some secondary metabolites found to efficiently treat experimental leishmaniasis
include ferulic acid, rosmarinic acid, and ursolic acid [38].

In this section, we summarized key computational studies that have been based on
compounds identified in Asteraceae species and used to identify new structures with
potential activity against various Leishmania species (Figure 2). These results are divided
into two groups: those that used machine learning methodologies and those that were based
on the structure of a target protein from Leishmania (Table 1), primarily through the
application of molecular docking calculations.

3.1. Machine learning studies.

Hologram QSAR (HQSAR) is a technique that employs specialized fragment
fingerprints (called molecular holograms) as variables for the prediction of biological
activities or other structurally related data [39]. Trossini et al. built HQSAR models using
16 series of fragment distinctions and fixed fragment sizes (4—7 atoms) based on 40 SLs
that were identified in several species of Asteraceae and showed antiprotozoal activity
against four NTDs, including Leishmania donovani, and cytotoxicity against L6 rat skeletal
myoblasts. Cross-validation (leave-one-out and leave-n-out) and external validation, using
different latent variables, were used to test the biological activity prediction capabilities of
these models [40].

The best HQSAR models for activity against L. donovani (Q> = 0.775) and
cytotoxicity (Q? = 0.647) showed that SL activities against L. donovani and L6 cytotoxicity
are clearly influenced by stereoselectivity and H-bond interactions because these models
were constructed using only these two parameters. The authors also observed that the
oxygen atom of the oxirane group contributes negatively to the L. donovani HQSAR model
and that the o, B-unsaturated groups are fundamental to the biological activity of SLs
[40,41].

The antileishmanial activity of seventeen SLs, isolated from five species of the tribe
Vernonieae, were tested in vitro using the parasitic promastigote forms of Leishmania
braziliensis and Leishmania amazonensis. Isodeoxyelephantopin (1, half-maximal
inhibitory concentration (ICsp): 1.45 uM) and deoxyelephantopin (2, 1Cso: 1.34 uM), two
germacranolides that were previously isolated from Elephantopus carolinianus [42] were
identified as the most active structures against L. braziliensis, whereas centratherin, with an

ICso value of 1.45 uM, had the highest activity against L. amazonensis [43] (Figure 2).
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To establish the structural features associated with the observed ICso values, various
molecular descriptors were calculated using the PaDel-Descriptor software [44]. The
constructed QSAR models showed that descriptors related to the partition coefficient
(LogP) and polarizability (bpol) were the best-correlated descriptors with determination
coefficients (R?), with R? values greater than 0.77 for L. braziliensis and greater than 0.81
for L. amazonensis. Validation data for the QSAR models were not shown. The analysis of
these QSAR models showed an optimal range for LogP, at the point where the hydrophilic
and lipophilic properties are balanced, which was correlated with an increase in the
biological activity. The three most active molecules had the lowest polarizability, based on
bpol values, which is associated with the ability of these molecules to penetrate the cellular
membrane and may affect the van der Walls interactions involved in ligand—receptor
recognition.

In a study reported by Tasdemir et al., the antileishmanial activity of a series of 105
flavonoid aglycones and glycosides was tested against L. donovani axenic amastigotes. The
majority of the tested metabolites presented considerable leishmanicidal potential, with
fisetin (compound 3), luteolin (compound 4), 3-hydroxyflavone (compound 5), and
quercetin (compound 6) representing the most potent anti-L. donovani structures, with 1Csg
values of 2.1, 2.8, 2.9, and 3.3 uM, respectively [45]. Compounds 4, 5, and 6 had only
slight or no toxicity in mammalian cells, with selectivity index (SI) values from 20 to 64.
These three molecules have been reported as common flavonoids found in the Asteraceae
family, which display antiparasitic activity [46].

Using Molecular Operating Environment (MOE) software [47], 241 molecular
descriptors were calculated using the lowest-energy conformer of each compound, and a
partial-least squares (PLS) analysis was performed. A low correlation value for L.
donovani was obtained. The authors proposed three possibilities to explain these results,
including that a common structure-activity relationship (SAR) may not exist for the studied
compounds, that the range of biological data (the difference between the most and least
active was relatively small for L. donovani) may have been too small, and that the
structural factors underlying these biological effects may not be represented by the chosen
molecular descriptions. Despite these contradictory results, this study presented a good
computational approximation for establishing a relationship between the in vitro and in
silico studies of some flavonoids (although most studies are performed using SLs) found in
the Asteraceae family and served as a starting point for the rational design of quercetin

(compound 6) derivatives as potent leishmanicidal agents [45].
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Chibli et al. performed two studies involving Leishmania major dihydroorotate
dehydrogenase (LmDHODH) and in silico methods to explore natural products from
Asteraceae [48,49]. LmDHODH is a flavoenzyme that catalyzes the stereoselective
oxidation of (S)-dihydroorotate to orotate in the fourth of the six conserved, enzymatic
reactions involved in the de novo pyrimidine biosynthetic pathway, which is a protein
involved in vital cellular functions [50].

The in vitro inhibition of LmDHODH, including cross-validation against human
DHODH (HsDHODH), was examined for 57 natural products, including 48 that have
previously been reported in Asteraceae species. 1Cso values ranging from 27 to 1,200 uM
were obtained against LmDHODH, and the inhibition was found to be highly selective, as
no relevant inhibitory effect was observed against HSDHODH [49].

A QSAR model based on molecular descriptors and a pharmacophore-based 3D-
QSAR were performed in MOE software [47]. Variable selection, with a genetic algorithm
(GA) and multiple linear regression (MLR), followed by partial least squares (PLS)
regression were performed, which were validated by calculating R?, Q?cv, and Q%xr. In the
first QSAR model, a set of 21 SLs were used to build the model, and both 2-dimensional
(2D, n = 198) and 3-dimensional (3D, n = 126) molecular descriptors were calculated for
each molecule. The 21 SLs were divided into a training set (15 SLs) and a test set (6 SLs).
The results showed validation parameters for R? of 0.83, Q%cv of 0.69, and Q%xr of 0.66
for the best linear model obtained. The descriptors that influence the model are associated
with the presentation of hydrophobic regions across the molecular surface, in addition to
the increased width and lower hydrophobicity of the molecules (Only 3D descriptors,
vsurf_ID8 explain 58% of the variance in activity values) [49].

Two of the most-active SLs (both present in Asteraceae), 2-oxo-8b-tigloyloxy-
guaia-1(10),3,11(13)-trien-6a,12-olide (compound 7, ICso = 27 mM) and glaucolide B
(compound 8, ICso = 31 mM) were examined in a pharmacophore-based QSAR model.
Using this method, the SLs were aligned based on the most important pharmacophore
descriptors, including cyclopentenone, tigloyl, the carbonyl oxygen of cyclopentenone, and
the ester carbonyl oxygen of tigloyl moieties for compound 7, and the acetyl group at CH»-
13, acetyl, the ester carbonyl oxygen of the acetyl group at CH>-13, and the acetyl groups
for compound 8. The best 3D-QSAR models obtained using the pharmacophore descriptors
(R% 0.72; Q%v: 0.50 and Q%xr: 0.62) confirmed the importance of the correct ligand
orientation and the molecular surface features to induce stronger inhibition, which

suggested shared properties for a putative common binding site [49].
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Figure 2 Asteraceae secondary metabolites were identified as hits based on in silico

methodologies.
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In a metabolomic study, ICso values against LmDHODH were determined for
extracts from 59 Asteraceae species, which ranged from 0.148 mg/mL to 9.4 mg/mL.
Using SIMCA-P+ Software (v.13.0, Umetrics, Umea, Sweden), unsupervised principal
component analysis (PCA) and supervised orthogonal projections to latent structures
discriminant analysis (OPLS-DA) were performed to discover structures with inhibitory
capabilities against LmDHODH. Classification labels of active (ICsg less than 500 pg/mL)
and inactive (ICso greater than 500 ug/mL) were assigned to separate the extracts, which
resulted in a clear differentiation into two clusters, indicating significant differences in the
chemical compositions of these two groups. The dereplication of the metabolic fingerprints
for the active extracts resulted in the identification of 48 metabolites, including one
belonging to the quinic acids class: 4,5-di-O-E-caffeoylquinic acid (compound 9, 1Csg 73
HMM), which demonstrated inhibitory capacity against LmDHODH [48].

A second OPLS-DA model was built based on the previously described model to
predict the LmDHODH inhibitory potential of extracts that were not tested in this study.
The model was validated with a training set (44 extracts) and a test set (15 extracts). The
results showed validation parameters of R?: 0.96, Q?: 0.72, and RMSEcy: 0.24, with a 60%
correct prediction rate for the test set. The good predictability of this model suggests that it
may represent a useful tool for identifying active extracts against this protein in
Leishmania and may serve as a good starting point for the development of leishmanicidal
treatments [48].

Recently, promising enzyme-targeting, antileishmanial SLs from SistematX that
may act against L. donovani were identified in a combined approach, based on two
different virtual screening (VS) methods. A ChEMBL dataset, including 3,159 and 1,569
structures that were previously tested against L. donovani amastigotes and promastigotes in
vitro, respectively, was used to develop two random forest models, which performed with
greater than 74% accuracy in both the cross-validation and test sets [51].

A ligand-based VS assay was performed against the 1,306 SistematX-registered
SLs. In parallel, using the crystal structures of three L. donovani target proteins, N-
myristoyltransferase (PDB ID: 2WUU) [52], ornithine decarboxylase (PDB ID: 2000)
[53], and mitogen-activated protein kinase 3 (PDB ID: 402Z), and a homology model of
pteridine reductase 1 were used to perform a structure-based VS (molecular docking) of the
entire SistematX SL dataset. The consensus analysis of these two VS approaches resulted
in the normalization of probability scores and identified 13 promising, enzyme-targeting,
antileishmanial SLs from SistematX that may act against L. donovani [51]. Despite this,
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the work is exploratory, since in vitro tests showing leishmanicidal activity of these
molecules were not performed. Further studies validating experimentally the obtained

results are necessary.

3.2. Molecular docking studies.

Bernal and Coy-Barrera performed a molecular docking study examining 123
sesquiterpene-related compounds that possess in vitro antiparasitic activity within the
active sites of four targets (Table 1): L. major pteridine reductase-1 [PTR1, Protein Data
Bank (PDB) IDL 2QHX] [54], cysteine synthase (CS, PDB ID: 4AIR) [55], trypanothione
synthetase (TS, PDB ID: 2VOB) [56] and L. donovani (NMT, PDB: ID 2WUU) [52]. All
calculations were performed using AutoDock/Vina (1.1.2). After, PCA analysis, the drug-
like properties were calculated from the best-docked sesquiterpenes, using R software and
ChemBio3D (Cambridge Soft Corporation, Cambridge, MA, USA) [57]. For all ligands,
molecular energy minimization was performed using Merck Molecular Force Field
(MMFF94) included in the Spartan ‘14 software with a limit of 500 conformers.
Energetically lowest stable conformers within a 6 kcal/mol energy range were
geometrically optimized using the semi-empirical AM1 parametrization.

The docking results showed that dimeric xanthanolide compounds, including
pungiolide A (compound 10) and pungiolide B (compound 11), exhibited the best affinity
values (—10.6 kcal/mol) for L. major PTR1, with even lower values than that for the
redocked ligand (DB07765, —10.2 kcal/mol). Compound 10 was also one of the best-
docked structures within L. major CS, with an affinity value of —10.6 kcal/mol, which
indicated a higher affinity for this target than the inhibitor used as a control
(ZINC01690699, —9.6 kcal/mol). Two germacranolides, 8B-hydroxy-9a-isovaleroyloxy-
calyculatolide (compound 12, —8.7 kcal/mol) and neurolenin B (compound 13, —8.5
kcal/mol) were the best-docked secondary metabolites from Asteraceae for L. major TS,
with similar values as those identified for the control ligand (DDD66604, —8.2 kcal/mol).

L. donovani NMT1 was the most restrictive protein of the four tested, with none of
the 123 sesquiterpenoids displaying higher affinity than the control ligand (DDD64558;
—8.0 kcal/mol). However, 20,3a-2,3-dihydro caleurticolide-isovalerate (compound 14),
together with compounds 10 and 11, were three of the ten-best docked sesquiterpenoids,
with affinity values close to —6.4 kcal/mol [57]. Compounds 10 and 11 interacted within
the active site of L. major PTR1 at the same residues, establishing two H-bonds with the
side chain of R17 and two H-bonds with the amino acid backbone of S111 and S227. The
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a,B-unsaturated groups, such as 2-methylen-y-lactone, were able to interact with the
residues of the pocket, satisfying the structural requirements for a possible Michael
addition. Through PCA analysis, the vina scores for L. major PTR1 and CS and L.
donovani NMT were found to be highly correlated, and compounds 10 and 11 were
differentiated compared with the other sesquiterpenoids, demonstrating poor affinity for L.
major TS but good results for the other three targets. Finally, compound 14 presented one
of the best lead-like properties. These screening results indicated that this method could be
used to identify ligands with potential activity against Leishmania. However, only
structures with promising docking scores were identified, in vitro tests were not performed
[57].

Ogungbe and Setzer performed a study with the aim of identifying potential
Leishmania biochemical targets among known plant-derived isoprenoids that have
exhibited in vitro antiparasitic activity. For this purpose, molecular docking calculations
were performed in Molegro Virtual docker (v.5.0. Molegro ApS, Aarhus, Denmark), using
29 PDB crystal structures for targets from different species of Leishmania: L. major (12
proteins), L. mexicana (8 proteins), L. donovani (4 proteins), and L. infantum (5 proteins)
Each ligand structure was built using Spartan 10 for Windows and the structures were
geometry optimized using the MMFF force field [58]. Within the group of tested natural
products, which can be found in the Asteraceae family, monoterpenoids were found to
selectively dock with L. infantum nicotinamidase (PDB ID: 3R2J) [59], L. major uridine
diphosphate-glucose pyrophosphorylase (PDB ID: 20EF and 20EG) [60] and methionyl t-
RNA synthetase (PDB ID: 3KFL) [61]; germacranolides sesquiterpenoids docked with L.
major methionyl t-RNA synthetase (PDB ID: 3KFL) [61] and dihydroorotate
dehydrogenase (PDB ID: 3MHU) [62]; diterpenoids docked with L. mexicana glycerol-3-
phosphate dehydrogenase (PDB ID: 1IN1E) [63], and triterpenoids docked with L. infantum
sterol 14a-demethylase (CYP51, PDB ID: 3L4D) [64].

Geranial (compound 15), a monoterpene found in the essential oils derived from
several species of Asteraceae [65,66] exhibited the lowest docking energies for L. major
uridine diphosphate-glucose pyrophosphorylase (—=76.9 kJ/mol) and L. major methionyl t-
RNA synthetase (—76.8 kJ/mol). Piperitone (compound 16), found in the essential oils of
several common species of Asteraceae, such as White wormwood (Artemisia herba alba)
[67] and Chamomile (Matricaria chamomilla) [68] also showed a high affinity for L.
major uridine diphosphate-glucose pyrophosphorylase (—68.0 kcal/mol) and L. infantum
nicotinamidase (—73.0 kJ/mol). Together with a-thujone (compound 17, —74.5 kJ/mol) and
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carvone (compound 18, —73.6 kJ/mol), these molecules presented docking energies even
less than that of the co-crystalized ligand, nicotinic acid, which had a docking energy of
—65.5 kcal/mol [58].

Among the sesquiterpenes, 16,17-dihydrobrachycalyxolide (compound 19), was the
strongest-docking germacranolide, with the lowest energies against L. major methionyl t-
RNA synthetase (—152.9 kJ/mol) and dihydroorotate dehydrogenase (—129.1 kJ/mol). This
energy docking was lower than that for the PDB ligand, 5-nitroorotic acid (—102.2 kJ/mol).
Additionally, 4a,5p-epoxy-8-epi-inunolide (compound 20), which is found in multiple
Asteraceae species, such as in the aerial segments of Stevia ovata [69], showed docking
selectivity toward both L. major methionyl t-RNA synthetase (—99.1 kJ/mol) and
dihydroorotate dehydrogenase (—100.5 kJ/mol). 8B-[4-Hydroxy-5-(5-
hydroxytigloyloxy)tigloyl]santamarin  (compound 21) was the strongest-docking
eudesmanolide, presenting docking selectivity for L. major methionyl t-RNA synthetase
(—153.1 kJ/mol) [58].

The most selective targets for diterpenoids and triterpenoids were L. mexicana
glycerol-3-phosphate dehydrogenase and L. infantum sterol 14a-demethylase, respectively.
Kaurane diterpenoids were docked to this target, especially ent-15p-senecioyloxy-16,17-
epoxy-kauran-18-oic acid (compound 22), which was the best-docked kaurane (—128.9
kJ/mol). Compound 22 can be found in Asteraceae species and was initially isolated during
a bioactivity-guided fractionation of the total crude extract of Aspilia pruliseta [70].
Finally, triterpenes and steroids demonstrated significant docking preferences for L.
infantum CYP51, with a range of energy values from (=120 to —110 kJ/mol), which
highlighted molecules that are reported in Asteraceae plants such as [-sitosterol
(compound 23) and stigmasterol (compound 24) [71].

So, from the fact that this study uses molecules that have previously been shown to
have in vitro activity, this research is an advance looking for alternative chemotherapies
against Leishmania parasites, establishing a possible mechanism of action for these

secondary metabolites obtained from species of Asteraceae
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Table 1. Enzymes from different Leishmania species were studied by molecular docking,

using secondary metabolites from Asteraceae.

Species Enzyme PDB ID Resolution [A] Reference
) Homologue
Cathepsin B -
model
. 2HAQ [72] 1.97
Cyclophilin A Ogungbe et al. [58]
3EQV [73] 2.60
Dihydroorotate
3C61 1.80
dehydrogenase
Mitogen-activated
protein kinase 3 - 4027 2.71
_ MPK3
L. donovani __ Herrera-Acevedo
Ornithine
2000 [53] 1.90 et al. [61]
decarboxylase
o Homologue
Pteridine reductase 1 -
model
Bernal, Coy-Barrera
. [57]
N-Myristoyl
2WUU [52] 1.42 Ogungbe et al. [58]
transferase
Herrera-Acevedo
etal. [51]
Warfield, et al. [74]
14-alpha demethylase Souza-Melo et al.
3L4D [64] 2.75
(CYP51) [75]
Ogungbe et al. [58]
2P1E [76] 1.90
Glyoxalase Il
2P18 [76] 1.80
L. infantum Nicotinamidase 3R2J [59] 2.68 Ogungbe et al. [58]
Thiol-dependent
4AGS [77] 2.30
reductase |
4APN [78] 3.20
Trypanothione 4APN [78] 3.20 Shah, et al. [80]
Reductase 2YAU [79] 2.50 Ogungbe et al. [58]
4ADW [78] 3.61
) ) Homologue
L. major Cathepsin B - Ogungbe et al. [58]
model
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Bernal,

Cysteine synthase 4AIR [55] 1.80
Coy-Barrera.[57]
Deoxyuridine 2YAY [81] 1.86
triphosphate
] 2YBO0 [81] 2.28
nucleotidohydrolase
Ogungbe et al. [58]
3GYE [82] 2.00
Dihydroorotate
3MJY [83] 1.96
dehydrogenase
3MHU [62] 1.85
Leishmanolysin - GP63 | 1LML [84] 1.86 Shah, et al [80].
Methionyl-tRNA
3KFL [61] 2.00
synthetase
) 2WSA [85] 1.60
N-myristoyltransferase
3H5Z [85] 1.49
NMT
4A30 [86] 1.50
) 3NGS [87] 1.80 Ogungbe et al. [58]
Nucleoside
) ) 3NGT [87] 2.57
diphosphate kinase b
3NGU [87] 2.29
Nucleoside hydrolase, 1EZR [88] 2.50
Oligopeptidase B, 2XE4 [89] 1.65
Phosphodiesterase 1 2R8Q [90] 1.50
1E7W [91] 1.75 Ogungbe et al. [58]
1WO0C [92] 2.60 Ogungbe et al. [58]
Pteridine reductase 1 2BF7 [93] 2.40
3H4V [54] 2.40
Bernal,
2QHX [54] 2.61
Coy-Barrera. [57]
Trypanothione
2VOB [56] 2.30
synthetase
Tyrosyl-tRNA 3POH [94] 3.00
Ogungbe et al. [58]
synthetase, 3P0J [94] 2.89
Uridine diphosphate- 20EF [60] 2.40
lucose Ogungbe et al. [58
J 20EG [60] 2.30 Jtng (=8}
pyrophosphorylase
Glyceraldehyde-3- 1A7K [95] 2.80
) phosphate
L. mexicana 1GYP [96] 2.80 Ogungbe et al. [58]
dehydrogenase
Glycerol-3-phosphate 1EVZ [97] 2.80
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dehydrogenase 1M66 [98] 1.90

IN1E [63] 1.90

IN1G [98] 2.50

Phosphoglucose 1Q50 [99] 2.60
isomerase, 1T10[99] 2.35

1PKL [100] 2.35

Pyruvate kinase, 3HQP [101] 2.30

3PP7 [102] 2.35

2154 [103] 2.10

Phosphomannomutase,

2155 [103] 2.90

Triosephosphate 2V XN [104] 0.82
isomerase 2Y61 [105] 0.99

) ) ) Homologue Mercado-Camargo,
L. panamensis | Leishmanolysin - GP63 -
model et al. [106]

Based on the results of the study, using the crystal structure of L. infantum CYP51
(PDB ID: 3L4D) [64], Warfield et al. used molecular docking calculations performed in
Molegro Virtual docker (v.5.0. Molegro ApS, Aarhus, Denmark) to test a series of
antiparasitic sterol-like compounds and their structural congeners, attempting to identify
potential antiprotozoal drugs [74]. Some of these compounds can be found in Asteraceae
species, especially in the Taraxacum genus [107-109]. Docking calculations were validated
using ketoconazole and docking calculations were validated using ketoconazole and N-1-
(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadi-azol-2-
yl)benzamide, which showed redocking scores of —148.25 kcal/mol and —128.63 kcal/mol,
respectively [74].

Interestingly, epi-oleanolic acid (compound 25) and its derivates presented high
docking affinities for L. infantum CYP51 compared with the other sterols evaluated in this
study, with a docking score of —105.7 kcal/mol. These docking results showed that epi-
oleanolic acid derivates with hydroxycinnamoyl groups interacted more at the active site of
CYP51, establishing a hydrogen bond (H-bond) with A290 and steric interactions with the
heme-cofactor. The best-ranked derivates also interacted with L355, M459, F48, V356,
and M357, a critical amino acid that interacts with lanosterol. Therefore, the inhibitory
capacity of compound 25 and its derivates was validated experimentally against CYP51.

This study represents an interesting starting point for the identification of new therapies
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against Leishmania, however only shows promising docking scores and further studies are
necessary [74].

Oleanolic acid (compound 26, 3p-hydroxyolean-12-en-28-oic acid), a pentacyclic
triterpenoid compound that has been isolated from several species of the Asteraceae
family, including Aspilia africana, Taraxacum officinale, Calendula officinalis, and
Baccharis uncinella, among others [110-112]. Souza Melo et al., using L. infantum CYP51
(PDB ID: 3L4D) [74], evaluated the antileishmanial activity of compound 26, using
promastigotes and amastigotes from three Leishmania species: L. braziliensis, L.
amazonensis, and L. infantum. They reported 1Cso values ranging from 30.5 uM to 68.8
MM, with low cytotoxicity against mouse peritoneal macrophages. Molecular docking
calculations were performed to establish the possible mechanism of action for compound
26 against CYP51 protein and to establish the molecular properties of this triterpenoid
[75].

Molecular property calculations were studied in Spartan ‘14 software. Similar
values were observed between compound 26 and lanosterol for van der Walls volume and
the area; however, compound 26 showed a higher hydrophobic character (CLogP: 8.17)
compared with lanosterol (CLogP: 7.10) and three times the polar surface area (PSA), with
49.241 A2 compared with 17.950 A2 for lanosterol. The energetic calculations suggested
that compound 26 contains an additional region that is not present in lanosterol that is
capable of interacting strongly with a hypothetical target [75].

Molecular docking was performed using GOLD software (v 4.1, CCDC Software
Limited), and the crystal structure of L. infantum CYP51 (PDB ID: 3L4D) was obtained
with fluconazole (PDB ID: TPF) as the ligand [64]. All of these in silico calculations were
compared with those for lanosterol, a triterpenoid that is structurally like compound 26 and
is a known, natural CYP51 substrate. For lanosterol, a strong interaction was observed with
M357, in addition to the hydrophobic pocket, interacting with the residues Y102, M105,
F109, V113, T115, and M283. Additionally, the methyl moiety of carbon-14 in lanosterol
interacts with the heme-cofactor. In contrast, compound 26 did not establish any
interactions with M357 or any residues of the hydrophobic pocket. The pentacyclic system
of compound 26 establishes a similar spatial disposition in the pocket as the
cyclopentanoperhydrophenanthrene in lanosterol. Finally, the authors highlighted the
coordination of the carboxyl group in compound 26 (which has a similar orientation as the
methyl moiety of carbon-14 in lanosterol) with the heme-cofactor. From these results,

compound 26 shows leishmanicidal activity with low cytotoxicity against mouse peritoneal
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macrophages might be a good candidate for the development of new leishmanicidal drugs,
being established that acts against CYP51 through a different method than lanosterol [75].
Ssitosterol (compound 23) is a phytosterol (a steroid subgroup) that has presented
multiple pharmacological activities and is distributed in diverse genera of Asteraceae, such
as Achillea, Cichorium, and Aspilia, among others [71,113,114].

Shah et al. isolated compound 23 from Ifloga spicata and evaluated its in vitro anti-
leishmanial activity against L. tropica promastigotes. Compound 23 showed an 1Cs value
of 22.2 uM, whereas the control drug (glucantime) presented an ICso value of 14.6 uM.
Molecular docking calculations were performed in MOE using the crystal structures of L.
major leishmanolysin (GP63, PDB: 1LML) [84] and L. infantum trypanothione reductase
(TR, PDB ID: 4APN) [78] receptors [80].

The docking results showed that compound 23 interacted with TR and GP63, with
binding energies of —61.54 kcal/mol and —33.24 kcal/mol, respectively. No redocking
results were reported. The presence of the hydroxyl group in compound 23 may be
responsible for the activity of the compound at the active site of TR, as the OH moiety of
compound 23 establishes two H-bonds with G16 and A159, and this same OH group
interacts at the active site of GP63 with D134 to establish a unique H-bond. Additionally,
an H-m interaction with T226 was also observed [%°l. Although these results are promising
for compound 23, proteins for L. tropica were not used in this study, and similarity results
between the TR and GP63 structures for L. tropica were not reported.

Recently, Mercado-Camargo et al., using the same GP63 target (PDB: 1LML) as a
template and built an L. panamensis GP63 homolog model using the SWISS-MODEL web
server [115]. A series of biflavonoids were tested using AutoDock Vina in PyRx 0.8 [116].
In vitro tests were not performed. Among the 24 biflavonoids, quercitrin (compound 27)
was identified, which has been isolated from the Asteraceae genera Solidago and Tagetes
[117]. Compound 27 shows moderate docking values of —8.2 kcal/mol for L. major and
—7.5 kcal/mol for the homolog model of L. panamensis GP63. Amphotericin B was used as
a control, which achieved docking values lower than —10.7 kcal/mol for GP63 in both
species. Biflavonoids from the Lanariaceae and Podocarpaceae were the best-docked

molecules in this study [106].

4. Conclusions
In recent years, cheminformatics tools have been widely used to identify safer and

more effective treatments against Leishmania, which has included but was not limited to
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the identification of new hits, the modification of existing molecules, and to better
understand the parasitic life cycle. Vast numbers of secondary metabolites from Asteraceae
have demonstrated antiparasitic activities, both in vitro and in vivo. Asteraceae, due to its
broad distribution worldwide, represents an interesting source of potential new drug
candidates against Leishmania.

Several studies that have used in silico methodologies to study compounds from
Asteraceae have been published. Therefore, strengthening the specialized DBs for
Asteraceae compounds represents an important step for better classifying and
systematizing the large diversity of chemicals found in this family, to facilitate the
performance of new computational structure-based and ligand-based virtual screening
studies that allow a great number of molecules to be processed, with the aim of discovering
new drug candidates against Leishmania at lower costs and with fewer side effects.

However, from this review, we identified the absence of in vitro results to verify
the potential predicted activity in computational studies for secondary Asteraceae
metabolites. The development of these assays is essential to advance in the search for new
chemotherapies against the Leishmania parasites. This work presented the current

panorama regarding this issue and seeks to be a starting point for future studies.
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CAPITULO III




A leishmaniose visceral (LV) também conhecida como Calazar, é uma doenca
causada por L. infantum e L. donovani, sendo a segunda doenca tropical e subtropical mais
letal e a sétima em perda de anos de vida ajustados por incapacidade [1]. E transmitido pela
picada de um flebotomineo infectado e pode afetar pessoas de todas as idades, embora em
areas endémicas sua incidéncia seja maior em criangas devido a imunidade adquirida por
adultos [2].

Os parasitas Leishmania sdo organismos dimorficos que vivem e se replicam no
intestino dos fleb6tomos na forma flagelada (promastigota) ou como formas aflageladas
(amastigotas) nas células de mamiferos. No hospedeiro mamifero, esses parasitas
preferencialmente infectam células fagociticas, principalmente macrofagos e células
dendriticas [3]. Cada uma dessas formas parasitarias apresenta caracteristicas Unicas que
desempenham um papel crucial no ciclo de vida e na patogenicidade da Leishmania
donovani.

Na busca por novas quimioterapias contra o parasita Leishmania, as
sesquiterpenlactonas, metabdlitos secundarios vegetais com ocorréncia especialmente
generalizada na familia de plantas Compositae/Asteraceae, emergiram como compostos
promissores [4]. A Asteraceae é uma das familias que se destaca na busca por novas
moléculas bioativas, especialmente aquelas com atividade antiparasitaria [5].

Especificamente, respeito a Leishmania donovani, Schmidt et al. relataram as
bioatividades in vitro de 40 sesquiterpenlactonas (SLs). Duas SLs de Xanthium brasilicum,
4,15-dinor-1,11(13)-xanthadiene-3,53:12,83-diolide e 8-epixanthatin 1p,5p-epoxide, foram
as mais seletivas [6]. Em outro estudo, trés SLs de Anthemis auriculata apresentaram
atividade contra amastigotas de L. donovani, com valores de 1Cso de 3,27, 8,18 e 12,5
mg/mL, respectivamente [7].

No entanto, tenham sido identificados varias SLs promissorias, a maior parte destes
estudos relatados estdo focados em um Unico alvo. Recentemente, o conceito de hits
multialvo ganhou relevancia na pesquisa de doencas parasitarias como a leishmaniose. O
desenvolvimento de medicamentos que podem interagir simultaneamente com varios alvos
é uma abordagem promissora para o tratamento de doencas complexas. Em comparacéo
com o uso de combinagfes de medicamentos de alvo Unico, os medicamentos multialvo
tém vantagens em termos de maior eficacia, perfil de seguranca aprimorado e
administracdo mais simples [8].

Assim, no presente capitulo, utilizando métodos de triagem virtual em lactonas

sesquiterpénicas (SLs), o estudo empregou abordagens baseadas em ligantes e em
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estrutura, incluindo a analise de proteinas-alvo, para buscar compostos multitarget contra

quatro proteinas de Leishmania donovani. Uma andlise de consenso identificou 13 SLs

potenciais contra a leishmaniose a partir do banco de dados SistematX, mostrando agentes

promissorios direcionados a maltiplas enzimas de L. donovani. O estudo demonstra uma

abordagem estratégica para a descoberta de medicamentos no combate a leishmaniose.
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Abstract: Leishmaniasis refers to a complex of diseases, caused by the intracellular
parasitic protozoans belonging to the genus Leishmania. Among the three types of disease
manifestations, the most severe type is visceral leishmaniasis, which is caused by
Leishmania donovani, and is diagnosed in more than 20,000 cases annually, worldwide.
Because the current therapeutic options for disease treatment are associated with several
limitations, the identification of new potential leads/drugs remains necessary. In this study,
a combined approach was used, based on two different virtual screening (VS) methods,
which were designed to select promising antileishmanial agents from among the entire
sesquiterpene lactone (SL) dataset registered in SistematX, a web interface for managing a
secondary metabolite database that is accessible by multiple platforms on the Internet.
Thus, a ChEMBL dataset, including 3,159 and 1,569 structures that were previously tested
against Leishmania donovani amastigotes and promastigotes in vitro, respectively, was
used to develop two random forest models, which performed with greater than 74%
accuracy in both the cross-validation and test sets. Subsequently, a ligand-based virtual
screening assay was performed against the 1,306 SistematX-registered SLs. In parallel, the
crystal structures of three Leishmania donovani target proteins, N-myristoyltransferase,

ornithine decarboxylase, and mitogen-activated protein kinase 3, and a homology model of
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pteridine reductase 1 were used to perform a structure-based virtual screening, using
molecular docking, of the entire SistematX SL dataset. The consensus analysis of these two
virtual screening approaches resulted in the normalization of probability scores and
identified 13 promising, enzyme-targeting, antileishmanial SLs from SistematX that may

act against Leishmania donovani.

Keywords: Leishmania donovani; Sesquiterpene lactones; Ligand-based virtual screening;
Structure-based virtual screening; Machine learning; SistematX database.

1. Introduction

Leishmaniasis refers to a complex of diseases, caused by the intracellular parasitic
protozoans of the genus Leishmania, a representative of the order Kinetoplastida and the
family Trypanosomatidae [1]. These organisms are heteroxenous parasites that require two
hosts to complete their life cycle, a vertebrate and an invertebrate, and commonly infect the
hematophagous dipterans, more commonly known as sandflies, belonging to the genus
Phlebotomus, of the order Diptera in the subfamily Phlebotominae (family Psychodidae)
[2,3]. Sandflies become infected when they bite an infected individual, ingesting host-
infected macrophages or free amastigotes from the blood or tissues. Upon reaching the
insect's midgut, amastigotes develop into promastigotes. These flagellar forms, after rapid
multiplication, become infective, and migratory promastigotes are regurgitated and
introduced into the skin of the next host when the insect takes a new blood meal [4].

The clinical manifestation of leishmaniasis depends on the complexity of the
interaction between the host's immune system and the protozoan type, with four recognized
disease presentations: cutaneous, cutaneous mucosal, diffuse cutaneous, and, visceral
leishmaniasis (VL), which is the most severe [5,6]. The number of VL cases, annually, is
estimated at 20,000, worldwide, caused by Leishmania donovani, and VL can be fatal
without treatment [7,8]. VL is a chronic, systematic disease, with marked clinical
manifestations, including fever, hepatomegaly, splenomegaly, cutaneous/mucosal pallor,
diarrhea, and weight loss [9]. In addition, a canine form of visceral-cutaneous
leishmaniasis develops a clinical manifestation that resembles the presentation in humans
[10].

Currently available therapeutic drugs are associated with prolonged treatment times
and intense side-effects, which often result in patients abandoning treatment; therefore, the

identification of new drugs or lead structures is urgently necessary; however, leishmaniasis
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is considered to be a Neglected Tropical Disease, due to a lack of research and the poor
development of new drugs over many decades [11-14]. Many classes of chemicals,
including natural products, have provided interesting leads for the treatment of parasites,
particularly sesquiterpene lactones (SLs) [11,15]. Several studies have evaluated the
leishmanicidal activity of SLs as potential anti-Leishmania drugs [16]. Schmidt et al.
reported the in vitro bioactivities of 40 SLs against L. donovani and other parasites and
their cytotoxicities against L6 rat skeletal myoblasts. Two SLs, 4,15-dinor-1,11(13)-
xanthadiene-3,5p3:12,8p-diolide and 8-epixanthatin 10,5-epoxide, which were isolated
from Xanthium brasilicum, were identified as the most selective SLs against L. donovani
[17]. In another study, three irregular, linear SLs derived from Anthemis auriculata, 4-
hydroxyanthecotulide, anthecotulide, and 4-acetoxyanthecotulide, showed activity against
L. donovani amastigotes, with half-maximal inhibitory concentration (ICso) values of 3.27,
8.18, and 12.5 mg/mL, respectively [18].

Enzymes and metabolites that are present in the parasite but absent from their
mammalian hosts are considered ideal targets for rational drug design [19]. Several
potential enzymatic targets have been explored during the development of new
leishmaniasis treatment drugs, which aim to utilize natural products as enzymatic
inhibitors. Ornithine decarboxylase (ODC, E.C. 4.1.1.17) is a key enzyme involved in
polyamine biosynthesis in L. donovani, catalyzing the conversion of ornithine to
putrescine, which is a precursor of other polyamines. The inhibition of ODC depletes the
parasite of trypanothione, causing an imbalance in redox metabolism and increasing
reactive oxygen species [20-23].

N- myristoyltransferase (NMT, E.C. 2.3.1.97) is a ubiquitous enzyme that catalyzes
the attachment of myristic acid (a 14-carbon saturated fatty acid) to the amino-terminal
glycine residue of a subset of eukaryotic proteins [24,25]. Mitogen-activated protein
(MAP) kinase 3 (MPK3, E.C. 2.7.11.25) is a component of signal transduction pathways
and an important regulator of cell differentiation and cell proliferation in eukaryotic cells.
Thus far, ten MAP kinases have been identified in Leishmania mexicana [26]. Pteridine
reductase 1 (PTR1, E.C. 1.5.1.33), an NADPH-dependent short-chain reductase, is
responsible for the unusual salvage of pterin in Leishmania and acts as a metabolic bypass
for drugs that target dihydrofolate reductase [27].

In this study, two virtual screening (VS) approaches were utilized to examine the
potential activity of 1,306 SLs against L. donovani, from the compounds registered in the

SistematX database. Initially, a ligand-based VS approach was developed, using random
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forest (RF) models constructed against the two parasitic forms, amastigotes and
trypomastigotes. Subsequently, using a homolog model of L. donovani PTR1 and the
crystal structures of three enzymes expressed by this Leishmania species, a structure-based
VS approach was also applied to the SistematX SL dataset. Finally, a combined approach,
using both VS approaches, was performed to identify SLs with potential activity against L.

donovani, and to establish potential mechanisms of action for the identified compounds.

2. Material and methods
2.1. Database

From the ChEMBL database (https://www.ebi.ac.uk/chembl/), we selected a
diverse set of structures that were initially classified according to their predicted activity
against the two L. donovani parasitic forms: amastigote (5,500 structures) and promastigote
(2,045 structures). These compounds were classified according to plCso values [-loglCso
(mol/L)]; therefore, we stratified them into active (pICso > 4.7) and inactive (pICso < 4.7)
structures. Due to the variability of experimental protocols used by the ChEMBL database,
a qualitative pattern was used, to partially minimize the differences in activity values
associated with different experimental protocols and strains. ICso values represent the
concentration required to inhibit 50% of parasite growth. For each ChEMBL dataset, 35
amastigote-associated and six promastigote-associated SL structures, which were not
included in the dataset used for the ligand-based VS, and their respective plCso values were
added, to increase the representativeness of the generated models with regard to the
chemical space of this class of secondary metabolites.

The applicability domain (APD), based on Euclidean distances, was used to
identify those compounds in the test set for which predictions may be unreliable;
compounds were considered unreliable if they had APD values higher than d + Zo, where d
was the average Euclidian distance and ¢ was the standard deviation of the set of samples
in the training set with lower than average Euclidian distance values relative to all samples
in the training set. The parameter Z is an empirical cut off value, and 0.5 was used as the
default value [28]. Structures with plCso values ranging from 4.6 to 4.7 (range of 0.1 units)
were excluded, to avoid edge effects and improve the predictive capacity of the models.
Excluding these structures minimized the differences in activity values resulting from
errors and differences in experimental protocols [29].

Data curation of the datasets was performed, according to the suggested procedures
in the literature [30-32]. Standardizer software [Jchem, version 16.11.28 (2016),
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calculation module developed by ChemAxon, http://www.chemaxon.com/] was used to
canonize all simplified molecular-input line-entry system (SMILES) codes. After duplicate
structures were removed, those with higher plCso values were eliminated. The use of only
those compounds with lower activity values facilitated the generation of more restrictive
models.

After dataset curation, 3,159 structures for amastigotes (1,564 active and 1,595
inactive) and 1,569 structures for promastigotes (756 active and 813 inactive) were
included in the analysis. An SL dataset was obtained from the SistematX database
(http://sistematx.ufpb.br), and a total of 1,306 molecules from this dataset were used in this
study.

For predictions, those SL structures that were also included in the ChEMBL dataset
were excluded for each parasitic form. For all structures, SMILES codes were used as the
input data in Marvin [ChemAXxon, version 16.11.28 (2016), calculation module developed
by ChemAxon, http://www.chemaxon.com/]. We used standardizer software [Jchem,
version 16.11.28 (2016), calculation module developed by ChemAxon,
http://www.chemaxon.com/]. ChemAxon was used to canonize the structures, add
hydrogens, perform aromatic form conversions, and clean molecular graphs in three
dimensions. This software was used to generate and optimize conformers for the initial
structure (represented by the root node in the tree). Those molecules that presented
structural problems during the three-dimensional (3D) generation were manually corrected

using Marvin.

2.2. Volsurf+ descriptors

The 3D structures of the identified molecules, in special data file (SDF) format,
were used as input data in Volsurf+, v. 1.0.7 [33] and were subjected to molecular
interaction fields (MIFs), to generate descriptors, using the following probes: N1 (amide
nitrogen—hydrogen-bond donor probe), O (carbonyl oxygen—hydrogen-bond acceptor
probe), OH> (water probe) and DRY (hydrophobic probe). Additional non-MIF-derived
descriptors were generated, resulting in a total of 128 descriptors [33]. One of the main
advantages of using VolSurf descriptors is the relatively low influence of conformational

sampling and averaging on these descriptors [34].
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2.3 RF models

Knime 3.1.0 software (KNIME 3.1.0 the Konstanz Information Miner Copyright,
2003-2014, www.knime.org) [35] was used to perform all of the following analyses.
Initially, the descriptors calculated in the Volsurf+ program were imported, in comma-
separated value (CSV) format, and the “Partitioning” node in the stratified sampling option
was used to classify 80% of the initial dataset as the training set and the remaining 20% as
the test set. The model was generated by employing the modeling set and the RF algorithm,
with a “5-fold external validation” procedure, using WEKA nodes. In the 5-fold cross-
validation procedure, the dataset is divided five times into a modeling set (80%—20%).

After this modeling set (which was used to build and validate models) is divided
additionally into multiple training (80%) and test sets (20%) [32,36]. The parameters
selected for the RF models included the following: number of trees to build = 200; seed for
random number generator = 1; and Gini Index, as a split criterion, for both the training and
internal cross-validation sets.

From the confusion matrix, the internal and external performances of the selected
models were analyzed, using the following parameters: sensitivity (true-positive rate),
specificity (true-negative rate), and accuracy (overall predictability). In addition, to
describe the true performance of the model with more clarity than can be obtained from
accuracy alone, the receiver operating characteristic (ROC) curve was employed, using a
“ROC curve” node, which uses the sensitivity and specificity parameters. The plotted ROC
curve shows the true-positive (active) rate versus the false-positive rate (1 - specificity)
[37].

In this representation, when a variable of interest cannot be distinguished between
the two groups, the ROC area under the curve (AUC) value is 0.5, whereas the perfect
separation between the values of the two groups, with no distribution overlap, results in a
ROC AUC value of 1. Matthew’s correlation coefficient (MCC) was also calculated,
wherein a value of 1 represents a perfect prediction, a value of 0O represents a random
prediction, and a value of —1 represents total disagreement between the prediction and the

observation [38].

2.4 False positive remover

To detect false-positive structures among the SLs that were classified as active in
the two RF models, the substructure filter for the removal of pan assay interference
compounds (PAINS) was used [39]. All SMILES codes for SLs classified as active were
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submitted to PAINS removal (http://www.cbligand.org/PAINS/), and those structures that
were classified as false-positives were excluded from the final analysis.

2.5 Homology model of LAPTR1

2.5.1. Homolog identification of target sequences, the selection of a protein
template, and the alignment of the template and target sequences.

The target protein sequence was obtained from the National Center for
Biotechnology Information (https://www.ncbi.nlm.nih.gov/pubmed) [40]. The selection of
a template protein was performed using the Basic Local Alignment Search Tool (BLAST,
https://blast.ncbi.nlm.nih.gov/Blast.cgi) [28] The RCSB Protein Data Bank (PDB,
https://www.rcsb.org/pdb/home/home.do) [41] was used to obtain the protein structure.
The template protein that was selected was LmPTR1 (PDB ID: 1E7W) [42]. The alignment
of multiple sequences was performed using FASTA
(http://www.ebi.ac.uk/Tools/sss/fasta/), and the following values were obtained for the
comparisons between L. donovani PTR1 (LdPTR1) and Leishmania major PTR1
(LmPTR1): 91.0% identity and 97.2% similarity

2.5.2. Construction and validation of the model

The LAPTR1 model was constructed using the homology molecular modeling
method, using MODELLER 9.18 software [43], which is based on spatial-constraint
satisfaction modeling. Five models were generated, and the lowest energy model was
chosen.

The stereochemical qualities of the model were evaluated with PROCHECK [44],
which evaluated several stereochemical parameters, such as the torsional angles of the
main chain, the torsional angles of the side chain, bad contacts or steric impediments, and
planarity. PROCHECK generated a Ramachandran graph [45] , which verified the allowed
and unallowed regions of the main amino acid chain.

The structural quality was evaluated in VERIFY 3D software
(http://services.mbi.ucla.edu/SAVES/), which analyzes the compatibility of the protein
sequence with its 3D structure, according to the chemical environment, and WHAT IF
(http://swift.cmbi.ru.nl/servers/ntml/index.html), which analyzes various structural
parameters, such as the atomic contacts between residues. The software Discovery Studio

Visualizer [46] was used to visualize the modeled protein.

106



2.6 Molecular docking

In addition to a homology model of PTR1, the structures of three L. donovani
proteins, ODC (PDB ID: 2000) [47], NMT (PDB ID: 2WUU) [48], and MPK3 (PDB ID:
402Z), in complex with their respective inhibitors: pyridoxal-5'-phosphate (PDB ID: PLP),
2-oxopentadecyl-CoA (PDB ID: NHW), and 5-{[6-(acetylamino)pyrimidin-4-ylJoxy}-N-
{4-[(4-methylpiperazin-1-yl)methyl]-3(trifluoromethyl)phenyl}-2,3-dihydro-1H-indole-1-
carboxamide (PDB ID: 046), were downloaded from PDB. Using Molegro 6.0.1 software,
all water compounds were deleted from the enzyme structures, and the enzyme/compound
structures were prepared using the same default parameter settings, in the same software
package (Score function: MolDock Score; Ligand evaluation: Internal ES, Internal HBond,
Sp2-Sp2 Torsions, all checked; Number of runs: 10 runs; Algorithm: MolDock SE;
Maximum Interactions: 1500; Max. population size: 50; Max. steps: 300; Neighbor
distance factor: 1.00; Max. number of poses returned: 5).

The docking procedure was performed using a grid, with a 15-A radius and a 0.30-
A resolution, to cover the ligand-binding site for the four enzyme structures. All SMILES
codes of the SLs classified as active in molecular docking calculations were submitted to
PAINS removal (http://www.cbligand.org/PAINS/), and those structures that the filter

classified as false-positive were excluded from the final analysis [36,39].

2.7 Molecular dynamics simulations

Protein-ligand complexes for the best-ranked molecules identified by the three VS
approaches were each subjected to a 20-ns molecular dynamics (MD) simulation, using
GROMACS 5.0, with the GROMOS 43al force field (FF) [49,50]. Using the webserver
PROGRG26 topology generator (http://davapcl.bioch.dundee.ac.uk/cgi-
bin/prodrg/submit.html) [51], the topologies for the six analyzed ligands were generated.
The same FF was used to prepare the topology of the homology model, LdAPTR1. A 100-ps,
restrained equilibration and a 1-ns MD simulation were performed, to refine the model
prior to the evaluation of protein-ligand complexes.

The MD simulations were performed using an SPC water model of point load,
extended in a dodecahedral box. Na* and CI" ions were added to neutralize the overall
charge on the system. The system was also balanced in 300 K, using the V-rescale

algorithm, at 100 ps, represented by NVT (constant number of particles, volume, and
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temperature), followed by equilibrium at 1 atm of pressure, using the Parrinello-Rahman
algorithm of NPT (constant pressure, number of particles, and temperature), at 100 ps.

The root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF),
and radius of gyration (RoG) plots were generated in Grace software (http://plasma-
gate.weizmann.ac.il/Grace/), and the proteins and ligands were visualized using UCSF
Chimera [52]. The molecular mechanics Poisson—Boltzmann surface area (MM/PBSA)
method was used to calculate binding free energies, using the trajectories calculated by the
MD simulations [53].

3. Results and discussion

Following the good practices established for quantitative structure-activity
relationship (QSAR) and molecular docking studies [54,31,55], a combined ligand-based
and structure-based VS study was performed, using a databank containing 1,306 SLs that
was stored in SistematX, a database developed at the Laboratory of Cheminformatics of
the Federal University of Paraiba, which contains a wealth of useful information regarding
natural products, including the locations of the species from which the indexed compounds
were isolated [56]. Ligand-based VS was performed starting with a ChEMBL database
(https://www.ebi.ac.uk/chembl/), which contained structures with previously demonstrated
in vitro activity against L. donovani.

Data were curated from these datasets according to the procedures suggested in the
literature [30,32]. Afterward, Volsurf+ descriptors (Volsurf+ program v. 1.0.7) [33,34]
were calculated, using the 3D structures generated using ChemAxon JChem, v. 16.11.28
(2016), a calculation module developed by ChemAxon (http://www.chemaxon.com/).
Using Knime 3.1.0 software (KNIME 3.1.0 the Konstanz Information Miner Copyright,
2003-2014, http://www.knime.org) [35], two RF models were generated and validated for
their abilities to determine the activity probabilities for the entire SL dataset (Figure 1).

In parallel, using the homologous protein LdPTR1, which based on the crystal
structure of L. major PTR1 (LmPTR1) [42] and three crystal structures for potential target
enzymes expressed by L. donovani, ODC [47], NMT [48] and MPK3, molecular docking
was performed in Molegro virtual docker, 6.0.1 using the SL dataset. Finally, using the
active probability values that were obtained from these two methodologies, a consensus
analysis was performed to select those molecules with the best-combined values (Figure 1).

MD simulations were also performed to refine and validate the LAPTR1 homology model
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and to evaluate the formation of protein-ligand complexes between LdPTR1 and the best-

ranked SLs, over time.
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Figure 1. The VS methodology used in this study. Solid blue lines represent the two sets of
compounds used to generate and validate the RF model for L. donovani amastigotes and
promastigotes (clear blue line represents the external test set). The red dotted lines
represent the SLs from Asteraceae, obtained from SistematX (in-house database). The
black dash-dot line represents both datasets (ChEMBL and SistematX). The yellow dashed
line represents the three L. donovani protein structures extracted from the Research
Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB), (PDB ID:
2WUU, 2000 and 402Z) and the homologous protein, LAPTR1. The dash-dot border
delimits the process performed in KNIME software.
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3.1 Ligand-based virtual screening

Volsurf+ descriptors (128) were calculated for two ChEMBL datasets: promastigote
(1,628 structures) and amastigote (3,259 structures), which were classified as either active
or inactive (binary classification), using a cut-off value of plCso > 4.7, which allowed the
maximum representation of the chemical space for each class of structure (active and
inactive). Subsequently, VolSurf+ descriptor values, together with their respective binary
classifications, were used as input data, to generate two RF models in the Knime program.
All 128 Volsurf+ descriptors were used to build the RF models. Several models were
evaluated to minimize the false-positive rate of the models. Finally, for both models, 200
trees and the Gini Index, as a split criterion, were selected. Structures with pICso values
between 4.6 and 4.7 (range of 0.1 units) were excluded, to avoid edge effects and improve
the predictive capacity of the models, by minimizing potential activity differences due to
errors and different experimental protocols. A 5-fold cross-validation procedure was
performed, splitting the dataset five times into a modeling set (80%—-20%). Only the
modeling set, which was additionally divided into multiple training and test sets (80%—
20%) was used to build and validate the models. [32,36].

Table 1. Summary of cross-validation and 5-fold external validation results, which were
obtained using the RF algorithm on the total set of 3,159 compounds for L. donovani

amastigotes, and 1,569 compounds for L. donovani promastigotes

Model Outcome Cross-validation | 5-fold external validation
(%) (%)
Active 73.7 72.8
Amastigote Inactive 78.0 76.8
Total 76.8 74.8
Active 72.1 74.8
Promastigote Inactive 78.9 77.3
Total 75.6 76.1

For the training sets used in both RF models, the match percentage values approached
100%. For the cross-validation and test sets, values above 72.8% were obtained. In all
cases, the inactive values (from 77.3% to 78.9%) were greater than the active values (from
72.1% to 74.8%), demonstrating that the obtained models were highly restrictive, which is
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a fundamental requirement for this type of study, as restrictive models minimize the
probability of obtaining false-positive structure selection and prevents inactive molecules
from being predicted as active.

Sensitivity and specificity are two key parameters for the selection of RF models.
Specificity, which is defined as the true-negative rate, was higher for promastigote models
(78.9% and 77.3%) than for amastigote models (78.0% and 76.8%), for both the internal
validation and test sets, respectively. Similarly, sensitivity, which is defined as the true-
positive rate, showed that the percentage of predicted true-positive compounds was higher
for the amastigote model (73.7%) than for the promastigote model, during cross-validation.
For the test set, the promastigote model achieved a slightly higher specificity (74.8%) than
the amastigote model.

The ROC curve is a quality parameter that plots the true-positive rate (sensitivity)
against the false-positive rate (1 - specificity), and the values for the AUC of a ROC plot
can range between 0 and 1 [37]. The maximum value is achieved when the perfect
separation occurs between the values of two groups, whereas an AUC equal to 0.5
indicates that the variable of interest cannot be distinguished between the two groups
(Figure 2, gray line).

The L. donovani RF models achieved AUC values greater than 0.82, demonstrating a
high degree of differentiation between the active and inactive compounds in the ChEMBL
dataset. AUC values for the amastigote model (Figure 2a), of 0.84 and 0.82 for the internal
cross-validation and 5-fold external validation, respectively, were minimally lower than
those for the promastigote model (Figure 2b), of 0.84 and 0.83.

Additionally, MCC, which is a quality parameter, was determined for the two models,

using all values in the confusion matrix, based on Equation 1.

o= (TP x TN) - (FP x FN)
J(TP+FP) (TP+FN) (TN+FP) (TN+FN)

(Equation 1)

where TP is the true-positive rate, TN is the true-negative rate, FP is the false-positive
rate, and FN is the false-negative rate [38]. An MCC value equal to 1 indicates a perfect
correlation, a value of O indicates a random prediction, and a value of —1 indicates total
disagreement between the prediction and the observation [38]. Here, similar MCC values
were observed for both models, with a slightly higher MCC value for the amastigote model
(0.52) in the 5-fold external validation. In contrast, the promastigote model achieved a
major MCC value during cross-validation.
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Figure 2. ROC plot, sensitivity versus (1 - specificity), generated by the selected RF model
for cross-validation and 5-fold external validation of the (a) promastigote and (b)
amastigote models. AUC = value of the Area Under the Curve; MCC = Matthews’s
Correlation Coefficient.

To identify any compounds in the test sets for both models and the SL dataset for which
the predictions may be unreliable, the domain of applicability was calculated. Only one
molecule, out of 630 structures in the test set, was classified as unreliable for the
amastigote model. For the promastigote model, and for the SL dataset used for VS, all
structures were classified as reliable.

Ligand-based VS was performed to predict which structures may potentially be active
against the two parasitic forms of Leishmania, using the entire set of 1,306 SLs registered
in SistematX. For the amastigote model, 712 molecules were classified as active, with
active probability (LB) values ranging between 0.50 and 0.87. Two types of skeletons were
observed among the five best-ranked structures: four pseudoguaianolides (Figure 3,
structures 1 and 3-5) and a germacranolide (structure 2). Some specific structural features
were observed among this group, specifically the presence of alkyl esters moieties in all
hits, such as the two cis-related acetyl groups in the most active germacranolide and the

most active SL, cumanin-diacetate (structure 1), which is a secondary metabolite
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commonly identified in plants from the Ambrosia genus (A. psilostachya and A.
acanthicarpa) [57].

Similarly, an a-methylene-y-lactone was observed in three of the five best-ranked
structures (structures 1, 3, and 4), the presence of this moiety has been associated with
interactions between this type of metabolite and the sulfhydryl group of cysteine, through a
Michael addition [58].

Interestingly, arnicolide C (structure 3, Figure 3) and arnifolin (structure 4), two SLs
that are typically found in Arnica montana L., also known as mountain arnica [59],
presented high LB-values during the ligand-based VS as two of the best-ranked molecules
for the amastigote parasitic form. Structurally, these two molecules are
pseudoguaianolides, with similar molecular weights, that only differ by the substitution of
an isobutyrate group at C-6 in arnicolide C (structure 3) and an angelate group (in addition
to the presence of the a-methylene-y-lactone system in C-11) in arnifolin (structure 4).

For the promastigote model, only 14 of 1,306 screened SLs were classified as active. A
different structural pattern was observed among the five best-ranked SLs for promastigotes
compared with those identified for amastigotes. In all five cases, SLs with high molecular
weights presented the highest LB values, including SL dimers of structures 1-4. Bedfordia
symmetric dimeric lactone (structure 6, Figure 3), a secondary metabolite isolated from
Bedfordia salicina, which is a species commonly found in Tasmania, reached an LB value
of 0.66. This SL is composed of two eremophilanolide units, which are linked through a

covalent bond between the carbon 8 of both structures (structure 7, Figure 3).
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Figure 3. Potentially active sesquiterpene lactones (five best-ranked), identified using

ligand-based VS, for the two-parasitic forms of L. donovani. LB = active probability value.
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Similarly, carpedilactone G (structure 6) also presented a high LB value against
promastigotes and, similar to structure 7, features an eremophilanolide skeleton.
Additionally, two dimers isolated from Inula japonica, japonicone V (structure 8) and
japonicone U (structure 9), which achieved LB values of 0.60, were classified by the
ligand-based VS as potential antileishmanial structures against promastigotes. Previously,
dimeric SLs from this plant have been reported to have anti-inflammatory and cytotoxic
activities [60].

To examine the results for false-positive molecules, the entire set of 712 (amastigote)
and 14 (promastigote) SLs that were classified as potentially active by the ligand-based VS
were tested using the PAINS remover web tool [38]. All of the molecules that were
classified as active against the promastigote parasitic form passed through the filter,
whereas among the 712 molecules with LB values above 0.5 from the amastigote RF
model, two structures, Neurolobatin B (LB = 0.508) and 3-chlorodehydroleucodin (LB =

0.544) did not pass the filter and were classified as false-positives.

3.2. Structure-based virtual screening

3.2.1. Homology model of LAPTR1

Molecular modeling was performed for the L. donovani PTR1 protein, based on
homology with L. major PTR1 [42]. A good template for LAPTR1 was obtained due to the
high level of similarity between the target sequence (LdPTR1) and the template sequence
(LmPTR1). To verify and validate the reliability and stereochemical qualities of the
modeled protein, data from Ramachandran, VERIFY 3D, and WHAT IF graphs were
considered. The Ramachandran plot showed that the main possible chain conformations
included 88.3% with residues in the most favored regions, 11.7% with residues in allowed
regions, and 0% outliers (Supplementary Figure S1). Because no residues were found in
the outlier region, the generated model was considered satisfactory, and all residues in the
active site were analyzed against the template sequence and found to be conserved [42].
The G factors, which indicate the quality of the covalent distance and the bond angle, were
0.15 for dihedrons and 0.09 for phi/psi. Positive, or non-negative, values indicate a model
with good stereochemistry. According to the VERIFY 3D results, 85.07% of residues had
mean 3D/1D scores > 0.2, which indicated a reliable model because more than 80% of
amino acids had values of 0.2 in the 3D/1D profile. The quality of atomic contacts between

the atoms of each residue was analyzed, using the Fine Packing Quality Control module of
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WHAT IF, which compares the distribution of atom positions around each residue. The
mean score of all wastes was -0.687. A score of less than -5.0 for a residue indicates poor
or unusual atomic contacts. Finally, MD simulations (1 ns) were performed to refine and
validate the homology model.

3.2.2. Molecular docking

In addition to LAPTR1, three L. donovani target proteins, whose crystal structures
were obtained from the PDB databank, were analyzed by molecular docking: ODC (E.C.
4.1.1.17), NMT (E.C. 2.3.1.97), and MPK3 (E.C. 2.7.11.25). Initially, the methodology
was validated by performing redocking with the ligand reported in the PDB crystal
structure for each of the three L. donovani proteins used in this study. These values were
not obtained for LAPTR1. The docking scores and their respective RMSD values are listed
in Table 2.

Using the same parameters, a binding VS for the entire set of 1,306 SLs was
performed. Based on the binding energy values, all tested molecules were ranked, using the
following probability calculation.

SB = L

— if E; < E}jgana(Equation 2)
where SB is the structure-based probability; E; is the docking energy of compound i, where
i ranges from 1 to 1,306 (SL dataset); Emin is the lowest energy value of the dataset; and

Eligand IS the ligand energy from protein crystallography

This equation was proposed used to normalize the scores obtained from the
molecular docking analyses during the structure-based VS and to generate values that were
comparable to the active probability values obtained during the ligand-based VS.
Structures that presented structure-based probability values (SB) above 0.5 were classified
as active. An additional applied criterion was defined to select those structures with
energies below that obtained for the ligand used in the crystallography study. This criterion
was not applied to LAPTR1 and, instead, SLs were only ranked according to the minimum
docking energy value [61].

The analysis of the NMT protein identified 528 compounds with SB values above
0.5; however, only 490 of these had binding energy values lower than that for the PDB
ligand, 2-oxopentadecyl-CoA (PDB ID: NHW), which was -50.4 KJ/mol. For MPK3 and

ODC, the numbers of SLs with SB values > 0.5 were 243 and 8, respectively. For both
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enzymes, only two structures (structures 13-14 for MPK3 and structures 14-15 for ODC)
had lower energies than the respective inhibitors reported in the crystal structures. Finally,
for LAPTR1, 346 molecules showed SB values greater than the cut-off value; however, no
reference ligand was used for this homologous protein. To produce the probability of
selecting molecules with high SB but without real activity against Leishmania (false-
positives), all SLs that were classified as being active by the structure-based VS were
filtered using the PAINS. For NMT only 1 of the 490 structures classified as active was
identified as being a false-positive (Neurolobatin A); for PTR1 two structures with SB
values higher than 0.5 were filtered out by PAINS (Neurolobatin A and B); for ODC and
MPK3, no molecules were identified as being false-positive.

The best-ranked molecules for each enzyme are listed in Table 2 and Figure 4. All binding

energy values can be found in the supporting information

Table 2. The docking energy (kJ/mol) for the best-ranked SLs, according to the structure-
based approach, for each of the four L. donovani proteins studied. Ligand = docking energy
(kJ/mol) for the PDB ligand.

L. donovani protein  SL-1 SL-2 Ligand Redocking RMSD
NMT 11 (-98.8) 12 (-98.1) (-50.4) 1.77
oDC 13 (-92.1) 14 (-83.7) (-72.0) 0.14
MPK3 14 (-128.5) 15(-114.4)  (-112.6) 0.29
LdPTR1 16 (-76.7) 17 (-76.3) - -

Guaianolide skeletons were predominant among the seven SLs that presented the
highest SB values for the four enzymes studied, and structures 12, 13, 15, and 17 (Figure
4) all belonged to this group of substructures. Similarly, two germacranolides, structures 11
and 16, displayed very low docking energy values for NMT and LdPTRL, respectively.
Structure 14, an SL extracted from Picradeniopsis woodhousei, was classified as a
disecoeudesmanolide and was the only compound identified by the structure-based VS
associated with high scores for two L. donovani proteins (Table 2), MPK3 (-128.5 kJ/mol)
and ODC (-83.7 kJ/mol).
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5-sarracinate-eucannabinolide Pannonicoside 15-acetoxy-1p-hydroxy-8-(2a- Disecoeudesmanolide 3A
acetoxyethyl)acrylate-rupicolin A

/

15 16 17
Crepidiaside B 15-acetoxy-8p-2-isovaleryloxy-14-  (1S,5R,6R,7S,8R,9R,10S5)-2,9-Diacetoxy-10-hydroxy-8-
oxo-4-5-cis-acanthospermolide (isovaleryloxy)-guaia-3,11(13)-dien-6,12-olide

Figure 4. Best-ranked antileishmanial SLs from the structure-based virtual screening.

Figure 5. Hydrogen-bonding interactions (blue dotted lines) and steric interactions (green
dotted lines) between (a) pyridoxal-5'-phosphate (PDB ID: PLP) and (b)
disecoeudesmanolide 3A (structure 14) at the active site of L. donovani ODC protein. ()
An inhibitor reported in the PDB for MPK3 (PDB 1D:046) and (d) disecoeudesmanolide
3A (structure 14), in the active site of MPK3 protein. Common H-bond interactions are

highlighted in yellow.
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Hydrogen-bonding (H-bond) interactions between disecoeudesmanolide 3A
(structure 14) and ODC residues are shown in Figure 5b. Six residues of the ODC active
site interact with this SL: K69, D88, E274, S200, G276, and Y389. S200, G276, and Y389
also interacted with the inhibitor reported for the PDB crystal structure, pyridoxal-5'-
phosphate (PDB ID: PLP, Figure 5a). In addition to the H-bond interactions between the
disecoeudesmanolide 3A ester group and residues S200, G276, and Y389 of ODC, an
interaction between the oxygen of the pyranose ring and Y389 was also observed. Six
steric interactions, which adversely contributed to the docking energy values, were
identified for structure 14, with H197, Y331, A393, and G237; a similar steric interaction
also was identified with PLP.

Similarly, structure 14 also interacts with MPK3 primarily through H-bonds and
steric interactions with specific residues of the active site. Four H-bond interactions formed
between E94 and D193, primarily with hydroxyl groups of the monosaccharide and the
oxygen in the pyranose ring. Interestingly, two critical residues, M133 and T130, were
found to form H-bonds with disecoeudesmanolide 3A (structure 14) and with the inhibitor
reported in the PDB for this protein (PDB ID: 046, Figure 5¢). The interaction between the
inhibitor compound and these two MPK3 residues occurs through carbonyl groups. Unlike
the interactions observed for ODC, the carbonyl group of the disecoeudesmanolide 3A
lactone ring interacts with MPK3, specifically at residue M133. Four steric interactions
that unfavorably influence the molecular binding energy were identified for structure 14,
with the non-polar amino acids, P131, L132, and 1192, which interact with the a-
methylene-y-lactone system of the SL; however, the docking score for this molecule is

primarily associated with H-bonds that form with the glycoside moiety.
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Figure 6. Docking formations between (a) 5-sarracinate-eucannabinolide (structure 11),
(b) pannonicoside (structure 12) and (c) 2-oxopentadecyl-CoA (PDB ID: NHW) at the
active site of L. donovani NMT. Labels: H-bonds (blue), steric interactions (gray),

electrostatic interactions (yellow), and critical interactions (red).
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The two best-ranked molecules for NMT were identified as 5-sarracinate-
eucannabinolide (structure 11, Figure 4) and pannonicoside (structure 12). Figure 6 shows
the primary interactions for these two SLs and NMT. Structures 11 and 12 contain a
similar number of H-bonds, which may be associated with the obtained docking energy
values of —98.8 and —98.1 kJ/mol, respectively. Similarly, some NMT residues were
highlighted in these interactions, including F14, E177, and R179 (also establishes an
electrostatic interaction with NMT), which were identified in interactions with both
structures 11 and 12 and with the PDB inhibitor, 2-oxopentadecyl-CoA (PDB ID: NHW).
For the two SLs, some steric interactions were also identified which may have unfavorable
effects on the docking score, especially P182, which interacts with both structures. For
NHW, a higher number of steric interactions were identified in the docking site for the
aliphatic moiety (oxopentadecyl group). This type of interaction was not identified for the
most polar region of NHW, which interacts with the L. donovani NMT pocket, where

electrostatic interactions occur with H12 and R179.

3.3 Combined approach Structure-Based VS and Ligand-Based VS

Consensus analysis of the two methodologies used in this study (structure- and
ligand-based VS) was performed, to verify potentially active molecules and their possible
mechanisms of action, facilitating the identification of potential multitarget compounds. A
new score (CA, Equation 3) was calculated, to combine the probability scores of both VS
approaches and the true-negative rate of the RF model and minimize the probability of

selecting false-positive compounds (Equation 3).

SB +(1+TN) x LB
2+TN

CA = (Equation 3)

where CA is the combined probability; SB is the structure-based probability; TN is the
true-negative rate, and LB is the ligand-based probability

Different weights were assigned to the structure-based VS (SB, weight = 1) and
ligand-based VS (LB, weight = 1+TN) probabilities because the structure-based
probabilities were based only on interactions between proteins and ligands, whereas the
ligand-based VS used pICso experimental values and molecular descriptors to generate the
RF model. Therefore, to diminish the false-positive rate (an increment of the TN),
Equation 3 associated the TN rate from the internal cross-validation set with the LB values

obtained by the SLs in each model. Minimizing the probability of selecting inactive
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molecules as active molecules (false-positive) is very important for these types of studies
because the selection of false-positive molecules can result in significant costs in the forms
of wasted time and money [61].

Some structures that did not present with the highest scores for either of the two VS
approaches appeared in the consensus analysis, as potential leishmanicidal drug structures
(structures 18-23, Figure 7). Disecoeudesmanolide 3A (structure 14) emerged as a potential
multitarget structure that may act against two target enzymes in L. donovani (Table 3) and
was the only SL in the entire data set to demonstrate high CA scores for both parasitic
forms against a specific protein, ODC (third-best-ranked compound for the amastigote

parasitic form).

. 7 $
18 19

9a-linolenoyloxy-8B-(2-methylbutyryloxy)-  Hiyodorilactone A Chichorioside B
15-hydroxy-14-oxo-acanthospermolide

23

2B-[5'-hydroxyangeloyloxy]-83 - 9a-linoloyloxy-8B-(2-methylbutyryloxy)- Taurin
hydroxy-10p3-H eremophilanclide 15-hydroxy-14-oxo-acanthospermolide

Figure 7. Representation of the best-ranked structures for each parasitic form, identified

using a combined ligand-based and structure-based virtual screening approach.
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Table 3. Summary of the best-ranked structures, identified using a combined ligand- and
structure-based virtual screening approach; LB = active probability value in ligand-based
VS; SB = active probability value in structure-based VS. CA = combined probability value

Amastigote Promastigote
Protein Structure LB SB CA Structure LB SB CA
18 0.71 | 0.79 | 0.74 22 0.50 | 0.79 | 0.60
NMT
19 0.75 | 0.68 | 0.73 10 0.58 | 0.61 | 0.59
13 0.61 | 1.00 | 0.75 14 0.43*| 091 | 0.60
oDC
20 0.61 | 0.74 | 0.66 - - - -
14 0.51 | 1.00 | 0.82 23 0.53 | 0.58 | 0.55
MPK3
15 0.54 | 0.89 | 0.76 - - - -
21 0.65 | 0.96 | 0.76 7 0.64 | 0.66 | 0.65
LdPTR1
2 0.78 | 0.67 | 0.74 22 0.50 | 0.56 | 0.52

Additionally,9a-linoloyloxy-8B-(2-methylbutyryloxy)-15-hydroxy-14-oxo-
acanthospermolide (structure 22, Figure 7), similar to SL structure 14, presented high
combined probability values for two targets in L. donovani promastigotes (NMT and
LdPTR1) and was classified as active using both VS methodologies, in this study. Structure
22, together with structure 18, which were identified as potentially active compounds
against NMT in amastigotes, are both characteristic secondary metabolites of
Acanthospermun hispidium, a plant native to Central and South America [62], and both
contain a germacranolide skeleton, bound to linoleic and linolenic fatty acid ester,
respectively.

For both parasitic forms, the best-ranked structures for LAPTR1, which achieved
CA values above 0.70, also previously presented high probability values during the ligand-
based VS: (cis, cis)-3a-acetoxy-8B-acetoxy-costunolide (structure 2), for amastigotes, and
Bedfordia symmetric dimeric lactone (structure 7), for promastigotes. Nine compounds
were classified as active using this combined approach for the promastigote parasitic form;
however, only four of these SLs were also classified as active using the either of the two
VS methodologies because the RF models were highly restrictive.

MD studies were performed to validate the constructed homology model and to
evaluate the protein-ligand stabilities of five of the best-ranked structures identified for
LdPTRL, using the various approaches in this study. Because PTR1 catalyzes the NADPH-

dependent reversible reduction of oxidized pterins into dihydrobiopterin (DHB) and the
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reduction of tetrahydrobiopterin (THB) and folates into 7,8-dihydrofolate (DHF) and
5,6,7,8-tetrahydrofolate (THF), the molecule 7, 8-dihydrobiopterin was used as a reference
ligand for LAPTR1 [63].
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Figure 8. (a) Root mean square differentiation (RMSD), (b) root mean square fluctuation
(RMSF), and (c) radius of gyration (RoG) values within the LdPTR1 binding site, obtained
after molecular dynamics simulations using five of the best-ranked SLs, identified using
various VS approaches. LAPTR1 (yellow); DHB: LdPTR1 complex (Sky blue); structure 2:
LdPTR1 (light green); structure 7: LAPTR1 (dark green); structure 17: LAPTR1 (red);
structure 21: LAPTR1 (Orange); structure 22: LdAPTR1 (dark blue).
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RMSD values were used to evaluate the structural stability of the receptor frame,
by measuring the distance between different positions (in nm) that a set of atoms exhibited
over time [64]. During the first 5 ns of the simulation, similar behaviors were observed
among the 5 SLs, and LdPTR1, without the ligand (the apoenzyme), was less perturbed
over time (Figure 8a) than the enzyme in complex with any of the other six test molecules.
Starting at 7 ns, structures 2 and 22 demonstrated increased stability compared with the
other SLs and the DHB ligand, whereas the LdPTR1 apoenzyme evolved continuously and
did not reach a clear stability timeframe during the 20-ns simulation.

Structure 2, (cis, cis)-3a-acetoxy-8p-acetoxy-costunolide, which was the best-
ranked molecule in the consensus analysis between the two VS methodologies, exerted
more stability on the complex with LdPTR1, and the RMSD value for this complex was
almost constant (approximately 0.15), starting at 12 ns. For the structures 7, 17, and 21, the
respective ligand—enzyme complexes showed similar conformational change evolutions,
resulting in RMSD values of approximately 0.45, which are comparable to that obtained
for LAPTR1 alone (approximately 0.5).

Then, the RMSF values were analyzed, by examining fluctuations in each LAPTR1
residue. The most variable regions were observed for the LAPTR1 loops. For the section
formed between A64 and T84, the ligand-LdPTR1 complexes presented lower values than
that for the apoenzyme (Figure 8b). Interestingly, structure 2 promoted reduced flexibility,
in both the A64 and T84 loop region (RMSF approximately 0.35 vs. 0.75 for unbound
LdPTR1) and the loop formed from N109 to R133 (RMSF approximately 0.7 vs. 0.3 for
unbound LAPTR1 RMSF ca), which were lower RMSF values to those for the other four
SLs and DHB.

These results indicated that this compound has a better affinity for LAPTR1 than the
other molecules. Similarly, slight differences in the RMSF values were observed for the
LdPTR1 active site, except for the residues K16, S112, K198, L226, and S227, which
demonstrated decreased RMSF values for the five tested SLs. Interestingly, structure 2
showed the lowest RMSF values for the whole active site, for with either LAPTR1 or DHB:
LdPTR1, further supporting that this SL has the highest affinity with LAPTR1 among all of
the SLs examined.

Among the SL- LdPTR1 complexes examined (Figure 8c), fluctuations in the
tertiary structure of the LAPTR1 protein were observed (the RoG of LAPTR1 was
approximately 4.31 nm), and the complexes between LdPTR1 and the structures 7, 17, and

22 appeared to be stably folded after the MD simulation (RoG of approximately 4.33 nm).
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These three structures showed no differences in RoG values compared with the complex
formed between DHB and LdPTRL. For structure 2, a slightly major effect on LdPTR1
folding was observed, during the interval from 13 to 16 ns (RoG of approximately 4.36
nm); however, this fluctuation did not represent a protein deformation because the RoG
values after this time (16 ns) remained similar to those for DHB and the other SLs
(approximately 4.33 nm), except structure 21, for which the MD simulation generated an
unfolded protein starting at 12 ns, representing the loss LdPTR1 stability (RoG of
approximately 4.40 nm).

Based on these MD simulations, structure 2 appears to have a better affinity for
LdPTR1 than the other studied structures. Structural stability may be associated with the
germacranolide skeleton and the presence of the a-methylene-y-lactone moiety because the
RMSD values for structures 2 and 22 (which is also a germacranolide with the same a, B-
unsaturated carbonyl system) were the lowest among all examined molecules. A similar
trend was observed in the structure-based VS, in which the highest SB value was achieved
by structure 16, which has a similar skeleton, suggesting that this type of SL should be

examined in future studies attempting to identify potential antileishmanial leads.

Table 4. Binding free energies (kJ/mol) from the MM/PBSA calculations for five of the
best-ranked structures identified for LAPTRL.

Energies 2 7 17 21 22 Ligand

S0l Electrostatic -18.3 -14.4 -80.1 -46.5 -27.8 -90.9

olar

Polar solvation | 80.1 78.1 158.2 145.6 167.0 171.1

Van der Waals | -209.9 | -235.2 | -272.2 | -236.5 | -338,5 | -113.8

Unpolar

SASA -16.6 -17.9 -22.2 -19.0 -27.8 -13.1

Binding energy -164.7 | -189.4 | -216.3 | -156.4 | -227.1 | -46.7

The binding free energies of the corresponding components can be observed in

Table 4. The MM/PBSA method was used to calculate the binding free energies of the five
structures that were previously analyzed by MD simulations [53]. All complexes formed
with the examined SLs presented negative binding free energies, with lower values than
that for the DHB-LAPTR1 complex. For all studied compounds, electrostatic and van der
Waals interactions and the solvent-accessible surface area (SASA) contributed negatively
to the binding free energies, and only polar solvation showed a positive contribution to the
total energy value. DHB demonstrated a different behavior compared with the examined
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SLs, with the increased contribution of polar parameters (polar solvation and electrostatic
interactions) to the total binding free energy value.

In complexes with SLs, van der Waals interactions shoed the highest energetic
contributions, which were much stronger for structure 22 than those observed for the other
four SLs, which is directly related to the presence of a very hydrophobic group, such as
linoleic acid. This germacranolide presented the lowest binding energy value (-227.1
kJ/mol), confirming that it represents a promising multitarget hit against L. donovani.
Interestingly, structure 17, obtained a similar binding free energy value as that for structure
22, showing that the energy calculations performed by this method are not influenced by
the molecular sizes of the analyzed molecules, which is a common problem for docking

calculations.

4. Conclusions

In this study, two different VS approaches were performed to identify structures
with promising antileishmanial activity, from a dataset of 1,306 SLs, obtained from
SistematX. For the ligand-based VS, two RF models, with accuracies above 71%, were
constructed for both L. donovani parasitic forms. Some structural features were identified,
including germacranolide and guaianolide skeletons, as the most common features among
the active structures for amastigotes; in contrast, for promastigotes, dimeric molecules had
the highest p-values. In the structure-based VS, using three PDB crystal structures and a
homology model of L. donovani PTR1, SLs with lower docking scores than the reported
inhibitors were identified. Finally, through a consensus analysis, the probability scores of
the two VS approaches were normalized to identify 13 promising leishmanicidal SLs that
were classified as being active by both VS approaches. Disecoeudesmanolide 3A (structure
14) and 9a-linoloyloxy-15-hydroxy-83-(2-methylbutyryloxy)-14-oxo-acanthospermolide
(structure 22), appear to be promising, multitarget, antileishmanial SLs. MD simulations
also showed that germacranolides with a-methylene-y-lactone moieties, such as structures
2 and 22, have better affinities with LAPTR1 than other structures.

Therefore, the combined use of two VS approaches was able to preliminarily
identify potentially active SLs against the two parasitic forms of L. donovani, from an in-
house dataset. The combination of probability scores generated by the ligand- and
structure-based VS approaches represents a novel methodology for these types of studies,
facilitating the identification of promising molecules and their possible mechanisms of

action.
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CAPITULO IV




A diidrofolato redutase-timidilato sintase (DHFR-TS) é uma enzima crucial no
metabolismo do folato, dependendo do NADPH para sua funcdo. Desempenha um papel
fundamental na geragéo de tetraidrofolato a partir do folato ou diidrofolato e facilita a
conversdao de monofosfato de deoxiuridina (dUMP) em monofosfato de deoxitimidina
(dTMP) [1]. Simultaneamente, a enzima PTR1, com uma funcdo semelhante a DHFR,
desempenha um papel chave na regulacdo do equilibrio redox e na homeostase dos niveis
de folato, contribuindo para contornar a inibicdo metabolica da DHFR convertendo
diidrofolato (DHF) em tetraidrofolato (THF). Esse mecanismo leva a ineficacia de
medicamentos contra Leishmania e ao desenvolvimento de resisténcia medicamentosa no
parasita [2].

Foi relatado que a inibicdo da diidrofolato redutase-timidilato sintase (DHFR-TS)
faz com que a Pteridina redutase 1 (PTR1) forneca folato suficiente para garantir a
sobrevivéncia do parasita. Portanto, ambas as enzimas, DHFR-TS e PTR1, devem ser
consideradas como potenciais alvos terapéuticos na busca por tratamentos mais eficazes
contra a leishmaniose [3]. No entanto, essa teoria ainda € debatida, uma vez que a
eliminacédo do gene ptrl provou ser letal para o parasita, indicando o papel crucial de PTR1
no crescimento e na metaciclogénese do parasita devido a producdo reduzida de pterina
[4].

Este capitulo busca a selecdo de potenciais inibidores de PTR1 e DHFR-TS em
diferentes espécies de Leishmania causadoras de Leishmaniose cutanea (CL), a partir de
um banco de moléculas in-house composto por 360 cauranos. Em todo o mundo,
aproximadamente, 20 diferentes espécies de Leishmania sdo responsaveis pela transmissao
de CL, incluindo L. tropica, L. major, L. aethiopica, L. infantum e L. donovani, sendo que
L. major representa o organismo causador mais comum [5]. No Novo Mundo (do sul dos
Estados Unidos a América Latina e América do Sul), L. mexicana, L. venezuelensis, L.
amazonensis, L. braziliensis, L. panamensis, L. guyanensis e L. peruviana sao as principais
espécies causadoras de CL [6,7].

O capitulo estd dividido em duas partes. Na primeira, é criado um modelo
classificatorio de random forest para a selecdo de potenciais inibidores contra L. major
PTR1. O modelo foi validado por meio de ensaios in vitro usando a enzima recombinante
L. major PTR1. Adicionalmente, considerando que a maioria dos casos de CL na América
Latina € causada por L. amazonensis, L. braziliensis e L. panamensis, foram realizados

calculos computacionais, incluindo docking molecular e simulagbes de dinamica
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molecular, para avaliar a capacidade desses cauranos de inibir em diferentes espécies do
parasita.

A segunda parte do capitulo buscou avaliar se 0os compostos selecionados contra
PTR1 também podem ter uma capacidade multialvo, sendo também inibidores de DHFR-
TS. Foram realizados ensaios in vitro dos cauranos previamente selecionados, e foi
encontrada uma potencial capacidade inibitéria dupla DHFR-TS/PTR1 para 0s compostos:
acido 3-p-cumaroiloxi-ent-caur-16-eno-19-oico e acido 3-cinamoiloxi-ent-caur-16-eno-19-

oico.
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Abstract: The current treatments against Leishmania parasites present high toxicity and
multiple side effects, which makes the control and elimination of leishmaniasis
challenging. Natural products constitute an interesting and diverse chemical space for the
identification of new antileishmanial drugs. To identify new drug options, an in-house
database of 360 kauranes (tetracyclic diterpenes) was generated, and a combined ligand-
and structure-based virtual screening (VS) approach was performed to select potential
inhibitors of Leishmania major (Lm) pteridine reductase | (PTR1). The best-ranked
kauranes were employed to verify the validity of the VS approach through LmPTR1
enzyme inhibition assay. The half-maximal inhibitory concentration (ICso) values of
selected bioactive compounds were examined using the random forest (RF) model (i.e., 23-
hydroxy-menth-6-en-5-yl ent-kaurenoate (135) and 3a-cinnamoyloxy-ent-kaur-16-en-19-
oic acid (302)) were below 10 uM. A compound similar to 302, 3a-p-coumaroyloxy-ent-
kaur-16-en-19-oic acid (302a), was also synthesized and showed the highest activity

against LmPTR1. Finally, molecular docking calculations and molecular dynamics
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simulations were performed for the VS-selected, most-active kauranes within the active
sites of PTR1 hybrid models, generated from three Leishmania species that are known to
cause cutaneous leishmaniasis in the new world (i.e., L. braziliensis, L. panamensis, and L.
amazonensis) to explore the targeting potential of these kauranes to other species-
dependent variants of this enzyme.

Keywords: Leishmania; Natural products; Kauranes; Asteraceae; Virtual screening;
Machine learning; Molecular docking

1. Introduction

Leishmaniasis refers to a group of anthroponotic and zoonotic diseases that affect
between 700,000 and 1 million people worldwide, causing between 20,000 and 30,000
deaths each year, primarily among populations found in tropical and subtropical areas.
Leishmaniasis has been classified as a neglected tropical disease (NTD) due to a lack of
research and the poor development of new drugs over many decades. [1-3]. Leishmaniasis
is caused by approximately 20 protozoan parasite species of the genus Leishmania, which
are transmitted to humans by more than 30 different species of phlebotomine sandflies [4].
The distinct species of Leishmania cause at least four separate syndromes: visceral
leishmaniasis (VL, also known as kala-azar), post-kala-azar dermal leishmaniasis (PKDL),
cutaneous leishmaniasis (CL), and mucocutaneous leishmaniasis (MCL) [5].

The CL subtype is typically characterized by localized, diffuse, or disseminated
skin lesion[6]. In the old world (southern Europe, the Middle East, southwest Asia, and
Africa), approximately 20 different Leishmania species are responsible for the transmission
of CL, including L tropica, L. major, L. aethiopica, L. infantum, and L. donovani, with L.
major representing the most common causative organism [7]. In the new world (from the
southern United States through Latin America to South America), L. mexicana, L.
venezuelensis, L. amazonensis, L. braziliensis, L. panamensis, L. guyanensis, and L.
peruviana are the primary causal species of CL [8, 9]. In Colombia, the overall
leishmaniasis incident rate is 26.2 cases per 100,000 population (including 98.6% of the
cases related to CL), and in Brazil, autochthonous cases of CL have been reported in all
states. Colombia and Brazil represent the new world countries with the most frequently
reported CL clinical manifestation [10, 11].

Starting in the 1950s, pentavalent antimonial compounds were introduced as

treatments against Leishmania species; however, these drugs are associated with several
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adverse events and are becoming increasingly ineffective due to the development of
resistance [12, 13].

Other drugs used to treat leishmaniasis include amphotericin B in a liposomal
formulation, which significantly reduced the side effects and treatment duration associated
with amphotericin B in the free form but is very expensive; and paromomycin and
miltefosine, which are associated with high toxicity (particularly renal toxicity), increased
resistance, and teratogenic and abortifacient effects [4, 12]. Therefore, alternative
chemotherapies must be developed to improve the control and elimination of this group of
diseases. Natural products, which have always been an important source of bioactive
compounds, are commonly used as the starting material for new drug development [14-16].

Recently, computational studies using natural products have been reported in the
continuous search for new leishmanicidal drugs or lead compounds. In particular, machine
learning and molecular docking calculations have been used to identify new structures with
potential anti-Leishmania activities, based on secondary metabolites found in Asteraceae
species [17, 18], especially sesquiterpenoids [19, 20], triterpenes [21] and phytosterols [22]
. However, anti-Leishmania studies examining the effects of diterpenoids, a common class
of secondary metabolites found in Asteraceae (more than 1,200 structures have been
identified), are rare [23]

Thus, in this study, an in silico approach, combining both structure- and ligand-
based virtual screening (VS), was used to select structures with potential activity against
pteridine reductase 1 (PTR1) from L. major (LmPTR1) from an in-house database
containing 360 kauranes. PTR1 (E.C. 1.5.1.33), is an NADPH-dependent short-chain
reductase, is responsible for the unusual salvage of pterin in Leishmania and acts as a
metabolic bypass for drugs that target dihydrofolate reductase [24]

Subsequently, the in silico results were verified through in vitro assays, determining
the half-maximal inhibitory concentrations (I1Cso) for the structures 135, 301, and 302. In
addition, two derivatives structures (301a and 302a) were synthesized, and their 1Cso
values were also calculated. Finally, molecular docking and molecular dynamics
simulations were performed to identify potential kauranes against PTR1 of various

Leishmania species known to cause CL in the new world.
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2. Results and discussion

2.1 A combined ligand-/structure-based virtual screening approach using LmPTR1.
2.1.1. Ligand-based VS

The ChEMBL dataset (https://www.ebi.ac.uk/chembl/) was classified as either
active or inactive (binary classification), using a cutoff value of plCso > 5.0 (pICso = log
ICs0). This value was selected according to the range of plCso values observed for the
entire dataset (657 structures) to obtain the maximum representation of the chemical space
for each class of structure (active and inactive). Structures with pICso values between 4.9
and 5.0 (range of 0.1 units) were excluded to avoid edge effects and improve the predictive
capacity of the models by minimizing potential activity differences associated with errors
and different experimental protocols. 1Cso values describe the concentration of a given
substance required to inhibit 50% of parasite growth [20].

Subsequently, VolSurf+ descriptors (128) were calculated for the remaining
molecules, including 298 inactive (46.9%) and 338 active (53.1%) molecules. All
VolSurf+ descriptors [25, 26] together with their respective binary classifications were
used to build a random forest (RF) model in Knime software (KNIME 3.1.0 the Konstanz
Information Miner Copyright, 2003-2014, www.knime.org) [27], A model with 200 trees
was selected, and the Gini Index was used as a split criterion, which has the lowest false-
positive rate. A five-fold cross-validation procedure was performed, splitting the dataset
five times into a modeling set (80%/20%). Only the modeling set, which was additionally
divided into multiple training and test sets (80%/20%), was used to build and validate the
models [28].

For the training set used in the RF model, the match percentage values approached
100%. Sensitivity (true-positive rate) values of 78.1% and 82.6 % and specificity (true-
negative rate) values of 72.7% and 73.7%, were obtained for the cross-validation and test
sets, respectively. Two parameters were calculated to evaluate the quality of the RF model:
the receiver operating characteristic (ROC) curve and Matthews’s correlation coefficient
(MCC). The area under the ROC curve (AUC) plots the true-positive rate (sensitivity)
against the false-positive rate (1 — specificity), and the MCC correlates all values in the
confusion matrix [29, 30].

For the L. major RF model, AUC values of 0.85 and 0.87 were obtained for the

internal cross-validation and five-fold external validation datasets, respectively. When
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calculating the MCC parameter, a value of 1 represents a perfect prediction, a value of 0
represents a random prediction, and a value of —1 represents total disagreement between
the prediction and the observation. Our L. major RF model returned values of 0.51 (cross-
validation) and 0.57 (five-fold external validation) [30], The slightly higher MCC value
obtained for the five-fold external validation (0.57) demonstrates a high degree of
differentiation between the active and inactive compounds identified in the ChEMBL
dataset.

The applicability domain (APD) was used to assess the reliability of the predictions
for the samples in the test and SL sets, and the calculation of the APD is based on the
molecular interactions determined by the VolSurf+ descriptors [14, 20]. For the L. major
RF model set, more than 98.4% of molecules were classified as reliable, with only 8
molecules classified as unreliable. When the RF models were applied to the kaurane
dataset, more than 94.2% of molecules were classified as reliable in each model, with only

20 molecules classified as unreliable. Unreliable molecules were removed.

ID R, R, R, LB

135 H ’Q) H 0.57
H

A1 0.55

134 H ,@)
302 @/\\)Lo)‘
298 m Y H H 0.53

Figure 1: Potentially active kauranes, identified using RF model (ligand-based VS), for L.

H 0.54

major. LB active probability value.

A ligand-based VS was performed on the remaining 340 kauranes was performed.
Only 7 of the 340 structures were classified as active (ligand-based probability value [LB]
> (.5), with structures 134 and 135 representing the two best-ranked kauranes, with LB
values of 0.57 and 0.55, respectively (Figure 1). These two diterpenoids are found in
Wedelia chinensis, a species of Asteraceae [31]. Structurally, these two kauranes are

characterized by the presence of (1S,4R,5R)-2-Methyl-5-propan-2-ylcyclohex-2-ene-1,4-
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diol, linked through an ester bound to the kaurenoic acid. The LB values for these two
kauranes are almost identical, indicating that the activity of these two compounds is likely
associated with the presence of this monoterpenoid and the pi-bond in the structure
between C9 and C11.

Additionally, two additional kauranes isolated from Wedelia trilobata, structures
298 and 302, also presented LB values greater than 0.5. Cinnamoyl (302) and 2-
phenylacetic (298) esters are established with the carboxyl group of the kaurenoic acid
(Figure 1) [32]. ]. In these two structures, the functional groups present in R3 were also
found to play key roles, as structure 301, which also includes a cinnamoyl ester, was
classified as inactive (LB = 0.48). The presence of a hydroxyl moiety in R3 represents the
unique structural difference between structures 301 and the active structure 302.
2.1.2. Structure-based VS

A structure-based VS (molecular docking) was performed to explore the
mechanism of action of the kauranes dataset against the crystal structure of PTR1 (E.C.
1.5.1.33), an NADPH-dependent short-chain reductase that is responsible for the unusual
salvage of pterin in Leishmania and acts as a metabolic bypass for drugs that target
dihydrofolate reductase [24]. The docking scores and the respective deviation values for
the best-ranked structures are reported in Table 1 (all binding energy values can be found
in Supplementary Material, Table S3). All tested molecules were ranked using the
following probability calculation (Equation 1), as previously reported by Herrera-Acevedo
et al. [14, 20]. Those kauranes that presented structure-based probability values (SB) above

0.5 were classified as active.

SB = (Ei/Emin) > 0.5 and Ei < Eiigand Equation 1

where SB is the structure-based probability; Eiis the docking energy of compound i, where
i ranges from 1 to 360 (Kauranes dataset); Emin is the lowest energy value of the dataset;

and Eiigand IS the ligand energy from protein crystallography.

The docking results showed that all 360 compounds obtained SB values above 0.5;
however, relative to the PTR1 inhibitors that were used as controls, 252 structures and 359
structures had lower docking scores than 7,8-dihydro-L-biopterin (DHB) and
pyrimethamine (PMA), respectively. The Protein Data Bank (PDB) ligand for LmPTRL,
methotrexate (PDB ID: MTX) [33], has a calculated docking score of —560.4 kJ/mol..
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Table 1: Docking energies of the best-ranked structures from the structure-based VS for
L. major PTR1. SD = Standard Deviation; RMSD values = Root Mean Square Deviation
and SB = Structure-based probability.

Ligand Docking Score (kJ/mol) | SD RMSD SB
101 -449.5 2.8 15 1.00
270 -437.6 7.4 1.6 0.97
302 -423.0 94 1.3 0.94
299 -422.7 9.2 1.3 0.94
175 -421.8 18.0 1.0 0.94
298 -420.2 20.1 1.6 0.93
174 -419.9 9.7 14 0.93
173 -419.7 7.4 1.3 0.93
135 -416.7 9.1 11 0.93

MTX -560.4 17.6 0.4 -

Structures 135 and 302 (Figure 1), which were predicted to have high LB
probability values based on the RF model, also showed high SB values and were two of the
ten best-ranked kauranes identified, with SB values of —423.0 kJ/mol and —416.7 kJ/mol,
respectively. Spatially, in the active site of LmPTR1, structures 135 and 302 adopted an L-
shaped conformation, similar to that observed for the ligand methotrexate (Figure 2a).
Base on the two-dimensional analysis, common interactions were identified for these two
kauranes compared with methotrexate, highlighting the m-alkyl interaction with M233 and
the van der Waals interactions with S112, Y191, K198, and G225 (Figure 2).

Methotrexate achieved a docking score of —560.4 kJ/mol in the active site of
LmPTR1, and the formation of two H-bond interactions with S111 and N118 were
observed (Figure 2b). Structure 302 also formed two H-bonds between S227 and the
carboxylic group of C-19. Additionally, the aromatic ring of F113 interacted with both 135
and 302, in addition to methotrexate, through n—n and n—alkyl interactions. Two steric
interactions that unfavorably influenced the molecular binding energy were identified for
the structures 135 (R17 and D232) and 302 (S111 and L226), as shown in Figure 2c and d,

respectively.
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Figure 2: a) Docking conformations of Structure 135 (green), 302 (red) and MTX
(yellow) in the active site of LmPTR1; 2D-residual interaction diagrams of (b)
methotrexate (MTX), (c) structure 135 and (d) structure 302. Interacting residues are
shown as colored circles depending on the interactions (as colored dashed lines): H-bond
(lime), Van der Waals (green), n- © (purple) and m-alkyl (pink), unfavorable (red) and

Carbon H-bond (teal) interactions.

2.1.3. Consensus analysis of the two VS approaches.

To verify the potentially active kauranes and their possible mechanisms of action, a
combined approach using both structure- and ligand-based VS was performed. An equation
was used to combine the probability scores of both VS approaches with the true-negative
rate from the RF model to minimize the probability of selecting false-positive compounds
(Equation 2) [14, 20].

CAm=[SB + (1+TN)xLB]/[2 + TN] Equation 2

144



where CALm = combined-approach probability, SB = structure-based probability, TN = true-
negative rate, and LB = ligand-based probability.

Equation 2 is based on the fact that the ligand-based VS uses pICso experimental
values; thus, the LB score has a high weight with respect to the SB score, which only
relates interactions between the protein and ligand. The ligand-based VS seeks to reduce
the probability of selecting inactive molecules as active compounds (false positive);
therefore, in Equation 2, the LB is associated with an increment of TN,

Table 2: Kauranes classified as active using an approach combining ligand-based and
structure-based VS.

Kaurane SB LB CALm
135 0.93 0.57 0.70
101 1.00 0.51 0.69
302 0.94 0.54 0.68
134 0.90 0.55 0.68
298 0.93 0.53 0.68

Table 2 shows the results for the five kauranes that were classified as active using
the combined approach and the two VS methodologies. Four of the five structures that
previously displayed a high active probability value in the ligand-based VS (Figure 1)
emerged as interesting potential anti-Leishmania structures that might act on the LmPTR1
protein.

In addition, fischericin F (structure 101), extracted from Ligularia fischeri, a
species of the Ligularia genus (Asteraceae) [34], was also classified as potentially active in
the combined approach (CALm = 0.69). Although this kaurane did not present the highest
scores from the ligand-based VS, it emerged as the best-ranked structure from the
structure-based VS approach. Structurally, 101 has ferulic acid as the main feature, bound
to the ent-kaurane skeleton through an ester bond at C14.

Through this combined approach, based on two different VS methodologies, five
kauranes from various Asteraceae species were identified as having promising
antileishmanial activity against LmPTR1 from a dataset of 360 kauranes, with structures
302 and 135 indicated as having high probability values based on both the ligand-based
and structure-based V'S approaches.
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2.2. In vitro enzymatic activity inhibition for VS-selected kauranes against LmPTRL.

To verify the results obtained from the combined approach using the two VS
methodologies, the in vitro enzymatic inhibitory activities of structures 135 and 302
(actives) and structure 301 (inactive) were examined. In addition, two kauranes, structures
301a and 302a (in which the cinnamoyloxy group was replaced by a coumaroyloxy group),
were also tested against LmPTR1. The diterpenes 135, 301, and 302 were synthesized for
use in an in vitro enzymatic activity inhibition assay. This aim was oriented to identify
appropriate precursors, as such compounds are not commercially available. Therefore, a
phytochemical study was initially performed focusing on the fruits of Xylopia frutescens,
an annonaceous plant that is rich in kaurane-type diterpenes [35].

This procedure led to the isolation of various diterpenes, but interest was focused
on ent-kaurenoic acid (A), 3a-hydroxy-ent-kaur-16-en-19-oic acid (B), and 3a,9p-
dihydroxy-ent-kaur-16-en-19-oic acid (C) because these structures are fully elucidated by
spectroscopic data interpretation, and comparisons are possible with data available in the
literature [36, 37], Therefore, these compounds were considered suitable precursors to
initiate the synthesis of target compounds. Thus, compound 135 was obtained from the
commercially available (R)-(-)-carvone (D) (Figure 3), which was first transformed into
5B-hydroxy-(R)-carvone (E) by chemoselective monohydroxylation and subsequently
reduced to 2-oxo-menth-6-en-5B-0l (F) by selective hydrogenation using the Wilkinson’s
catalyst [38].

Diterpenic acid A esterified with F under mild conditions via Steglich esterification
[39] to produce 2-oxo-menth-6-en-5B-yl ent-kaurenoate (G). This monoterpene/diterpene
ester adduct was finally converted into 2B-hydroxy-menth-6-en-5p-yl ent-kaurenoate (135)
through the selective 1,2 reduction of a,B-unsaturated ketones using Luche conditions [40],
in which the Re face of the enone in G favored the desired B-epimer (68% epimeric
excess).

4 1. Cu-Al Ox, O,, J OH

- t-BuOK, EtOH, rt, "
(39%) (to produce E)
g 4 1. DMAP, CH,Cl,,

b 2. G, RhCI(PPhy); (5 mol %) F DCC, 1t,

H, (1 atm), toluene o
2 ( ) . (79%) (to produce G) /

00—

2. G, NaBH,, CeCl;.7H,0O
MeOH, 20 °C
(82%) HO

Figure 3. Synthetic route to produce monoterpene/diterpene ester adduct 135.

(91%)

135

HO—
(@]

A
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Steglich esterification was also exploited to obtain the other two selected diterpenes
(Figure 4). Isolated compounds B and C were separately esterified with cinnamic acid (H),
yielding the phenylpropanoid/diterpene ester adducts 301 and 302, respectively, with good
yields (78%-79%). Additionally, the scope of this reaction was expanded to produce
compounds 301a and 302a, using the same diterpene precursors (B and C) condensed with
p-coumaric acid (I) to observe the influence of the p-hydroxyl group at the
phenylpropanoid moiety in the subsequent enzymatic study.

WOH DMAP, CH,Cl,, o
DCC, rt, A
R! . 0 Hon - O
‘a . J—OH
© (69-78%) R 4
R'=H (H) RE=H (B) 1 i
R'=OH (1) R2=OH (C) R!'=H; R?=0H (301)

R'=H; R?=H (302)
R!=OH; R? = OH (301a)
R'=OH; R?=H (302a)

Figure 4. Synthetic route to produce phenylpropanoid/diterpene ester adducts 301, 302,
301a, and 302a.

The selected synthetic diterpene esters 135, 301, 302, 301a, and 302a were tested in
vitro to experimentally determine their abilities to inhibit the enzymatic activity of
LmPTR1 as an extension of the results provided by the in silico screening. Recombinant
LmPTR1 was kinetically assessed, as previously reported [40], to ensure the appropriate
enzymatic features, resulting in a consistent substrate Km of 5.6 puM. After testing
LmPTR1 inhibition, the selected diterpenes exhibited inhibitory properties at different
levels, following a concentration-response behavior within the 0.1-128 uM range. The ICso
was then calculated for the tested diterpenes, and these values were used to calculate the
apparent inhibitory constant (Ki®”®) (Table 3) using the Cheng-Prusoff equation, assuming
reversible competitive inhibition and 1:1 stoichiometry [41]. PMA, a known PTR1
inhibitor, was used as a positive control.

Among the three VS-selected diterpenes, 135 was found to be the most potent
inhibitor, whereas 301 exhibited the lowest Ki?*?. Remarkably, the inhibitory activity was
improved by approximately 60% if a 3a-p-coumaroyloxy group was present in 302 instead
of a 3a-cinnamoyloxy substituent, as 302a exhibited a lower Ki#®? value than 302. No

similar effect was observed for 301, as 301a showed a slightly lower inhibitory activity
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than 301. Therefore, a reasonable inference based on this small set of compounds is that
the presence of a p-hydroxyl group at the phenylpropanoid moiety might favor inhibitory
activity, whereas a 9B-hydroxyl group at the diterpene moiety has a negative influence on
LmPTR1 inhibition.

Finally, although the test diterpenes were found to be less active than the positive
control, the concentration-response behavior and the consequently calculated Ki#? (<5
M) of the selected diterpenes demonstrated the validity of the designed VS approach for
the selection of bioactive compounds against PTR1 and the computationally-studied
binding modes of these selected compounds within the active site of LmPTR1, which is
associated with the development of CL. These selected compounds can be considered
important leads that can be used to obtained additional active PTR1 inhibitors.

Table 3: Results for VS-selected diterpenes as inhibitors of LmPTR1

Compound 135 302 301 302a 30la PMA
1Cs0 (LM) 8.6 9.6 21.2 6.1 23.2 1.11
Confidence
9.4-7.9 | 10.7-8.6 | 23.4-189 | 7.1-5.2 | 26.3-20.4 | 1.20-1.01
Interval (95%)
KiaPp 1.88 2.10 4.64 1.33 5.08 0.24

2.3.Molecular docking calculations for the kaurane dataset using hybrid models of
La, Lb, and LpPTR1

The structures 135, 302, and 302a displayed in vitro activity against L. major,
which is one of the species responsible for most CL cases in the Mediterranean littoral, the
Middle East, the Indian subcontinent, and central Asia [42]. However, in the American
continent, other Leishmania species, such as L. amazonensis (La), L. braziliensis (Lb), and
L. panamensis (Lp), are associated with great clinical diversity, associated particularly with
CL and MCL [43]. Therefore, the potential activity of kauranes against PTR1 from these
three species must also be examined, despite the absence of crystal structure for these

species.

2.3.1. Hybrid models of La, Lb, and LpPTR1
Hybrid models were built in YASARA software (YASARA (18.4.24) Vienna,
Austria: YASARA Biosciences GmbH; 2018) [44] from sequences of three Leishmania

species, Lp, La, and Lb. To verify and validate the reliability and stereochemical qualities
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of the modeled protein, data from Ramachandran, WHAT IF, and VERIFY 3D plots and
the quality Z-scores of dihedrals were determined for the built models, which describes
how many standard deviations separate the model quality from the average high-resolution
X-ray structure [45]. Higher values are better, and negative values indicate that the
homology model looks worse than a high-resolution X-ray structure [46, 47]. The
Ramachandran plot showed that the main possible chain conformations included more than
88.7% of residues in the most favored regions for the three hybrid models, with close to
10.0% of residues in allowed regions. Only the Lp model showed two residues (0.8%) in
disallowed regions (outliers; Supplementary Material, Figure S2). Because the percentage
of residues found in the outlier region was low or absent, the generated models were
considered satisfactory. Eleven residues in the active site were analyzed against the
template sequence and were found to be conserved [33].

According to the VERIFY 3D results (https://services.mbi.ucla.edu/SAVES/),
87.1% (Lp), 86.1% (Lb), and 80.0% (La) of residues had mean 3D/1D scores > 0.2, which
indicated a reliable model because more than 80% of amino acids had values of 0.2 in the
3D/1D profile. The verification of dihedral quality was classified as optimal for the three
models, with values above 0.913. The quality of atomic contacts between the atoms of each
residue was analyzed using the Coarse Packing Quality Control module of WHAT IF
(https://swift.cmbi.ru.nl/servers/html/index.html), which compares the distribution of atom
positions around each residue. The mean scores of all wastes were —0.334, —0.488, and
—0.667, for Lb, La, and Lp, respectively. A score of less than —5.0 for a residue indicates

poor or unusual atomic contacts.

2.3.2. Molecular docking calculations for kauranes dataset.

Molecular docking calculations for the 360 kaurane dataset plus the two derivative
compounds, 301a and 302a, were obtained using the Autodock/Vina algorithm for the
three generated Leishmania hybrid models (Lp, Lb, and La) to evaluate whether the
kauranes that showed in vitro activity against L. major have the potential to display
multispecies activity. Equation 3 combines the SB probability scores obtained from the

docking calculations of all three models, and DHB and PMA were used as references.

CA =[(LaSB +LbSB + LpSB) /3]>0.5 Equation 3
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where LbSB is the structure-based probability score for L. braziliensis, LpSB is the
structure-based probability score for L. panamensis, and LaSB is the structure-based
probability score for L. amazonensis. CA is the consensus analysis for all three species.

Table 4: Kauranes classified as active using an approach combining ligand-based and

structure-based VS.

Kaurane Lb SB Lp SB La SB CA
302a 0.87 1.00 1.00 0.96
30la 0.86 0.97 0.98 0.94

175 0.90 0.95 0.92 0.92
69 0.93 0.94 0.88 0.92
135 1.00 0.88 0.82 0.90
134 0.93 0.80 0.87 0.87
302 0.85 0.89 0.82 0.86

Therefore, a CA value equal to or greater than 0.5 is classified as active. Among the
362 structures tested, only 274 were classified as active, and 301a and 302a were the best-
ranked molecules, with CA values of 0.96 and 0.94, respectively. The kauranes (135 and
302) that demonstrated in vitro activity against L. major also showed high CA values
(above 0.86) and were among the ten best-ranked molecules (Table 4).

DHB showed more affinity for PTR1 from the three Leishmania species than PMA.
Lower docking scores than the two control structures were obtained for 100%, 81%, and
99% of the tested kauranes for Lb, Lp, and La, respectively.

Docking poses for structure 302 in the active site of the three Leishmania PTR1
models and the interacting residues for 302, DHB, and PMA are displayed in Figure 5 and
Table 5, respectively. A Vina score of —9.73 kcal/mol was calculated for Lp,
predominantly due to van der Waals interactions, with five common interactions identified
between DHB and PMA (L19, S112, Y194, L.226, and S227). A critical common 7-anion
interaction was observed between D181 and the aromatic ring of the cinnamoyl group. No
H-bond interactions are observed for this kaurane in the active site of LpPTRL.

Similarly, the structure of 302 achieved a Vina score of —11.1 kcal/mol in the active
site of LbPTR1, exhibiting some common van der Waals interactions with DHB and PMA
(S112, S227, and L228. An H-bond interaction was established between G225 and the
carboxylic group of C-19. G225 did not interact with DHB and PMA, which establish three
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H-bonds (L19 and N110 were common between these two molecules). Interestingly, an
alkyl interaction with L19 was observed for the structures 302 and 135, which was the
best-ranked molecule for LbPTR1 (Vina score of —13.07 kcal/mol).

For structure 302, in the active site of LaPTR1, two H-bond interactions were
observed with A15 and K16, and K16 was also observed in the complex between LaPTR1
and DHB, identified as a critical amino acid for the binding. For both the kaurene 302 and
the two controls (PMA and DHB), a higher number of van der Waals interactions were
exhibited than any other type of intermolecular interaction, although only the interaction
with Y193 was common among all three of these structures. Finally, an alkyl interaction
with P223 was identified for the structures 302 and PMA.

Table 5: VINA scores and interactions of structure 302, PMA and DHB with aminoacid
residues of LpPTR1, LbPTR1 and LaPTR1. Critical interactions are highlighted in bold

font.
_ _ VINA score : :
Protein Ligand Interacting residues
(kcal/mol)
Van der Waals: Al14, G20, L19, N110, S112, Y114, M179,
Structure 973 1180, Q186, P187, Y194, G225, L226, S227, L228, F229,
302 ' Y283; Carbon H-bond: K198; Alkyl: R18, L19; z-alkyl:
M183; z-sigma: L188; z-anion: D181.
LoPTRI H-bond N110, 1180; Van der Waals: R18, L19, S112, M179,
P PMA -7.92 Y194, K198, G225, L226, S227, L228; n-alkyl: Y114, F229;
m- T-shaped: Y114; z-anion: D181.
H-bond: M179, D181, K198, G224; Van der Waals: L19,
DHB -8.33 S112, Y194, P224, L226, S227, F229; Carbon H-bond:
1180; z-7 T-shaped: Y114 n-anion: D181.
H-bond G225 ; Van der Waals: K17, R18, N110, S112, Y114
Structure
202 -11.1 1180, D181, L188, Y194, K198, S227, L228, F229, P230,
Y241; z-sigma: M233, L226; Alkyl: L19
H-bond: R14, L19, N110; Van der Waals: G20, C21, A111,
LbPTR1
PMA -7.41 S112, S227, L228;
m-alkyl: R18, Y194; z-sigma: Y114.
DHE - H-bond: L19, N110, P224; Van der Waals: Al4, K17, R18,
' G20, C21, S112,1179, 1180, D181, A182, Y194, S227, L228.
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H-bond: A15, K16; Van der Waals: T12, G13, Al4, R17,
-9.87 L18, H36, Y37, H38, R39, S40, N109, S111, S146, Y193,
K197; Alkyl: P223 =z-alkyl: A110, L66.

Structure
302

H-bond: G224; Van der Waals: S111, M178, V179, A181,
LaPTR1 PMA -7.19 Y193, L228, M232; m-alkyl: P223; Alkyl: F113, L187, L225,
Y240 z-anion: D180.

H-bond: K16, R17, N109; Van der Waals: G13, G19, M178,
DHB -7.61 V179, D180, A181, Y193, K197, P223, G224, L225; z-alkyl:
R17, L18.

Figure 5. Docking formations between a structure 302 in the active site of a) LpPTRL; b)
LbPTR1 and c) LaPTR1. Labels: H-bonds (green), n- alkyl interactions (purple).
2.4. Molecular dynamics simulations

L. braziliensis is the causative agent of human CL and MCL in various countries of
the American continent, including Colombia, Brazil, Nicaragua, and Ecuador, among
others [43, 48, 49]. Thus, to validate the hybrid model constructed for LbPTR1 and to
evaluate the protein—ligand stabilities of the structures 135, 302, and 302a, molecular
dynamics (MD) studies were performed using DHB and PMA as reference ligands.

Root-mean-square deviation (RMSD) values were used to evaluate the structural
stability of the receptor frame by measuring the distance between different positions (in
nm) that a set of atoms exhibited over time [50]. In the first half of the simulation time (0—
25 ns), the structures 135, 302, 302a, DHB, PMA, and the apoenzyme of LbPTR1
(apoLbPTR1, protein without ligand) showed a similar grade of perturbation, with RMSD
values ranging from approximately 0.35 to 0.65 nm. After 25 ns, all ligands exhibited
reduced perturbations relative to that observed for apoLbPTR1, which suggests increased
stability exerted by the inhibitors on the complex with LbPTR1. RMSD values for the
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protein—kaurane complexes of approximately 0.5 nm were observed, except for the
reference ligand, DHB, which showed a slightly higher RMSD value (approximately 0.55
nm). In contrast, apoLbPTR1 exhibited values approaching 0.7 nm (Figures 6a).

RMSD (nm)

50 0 36 72108 144 180 216 252 288 10
Residue

Figure 6. a) Root-mean-square deviation (RMSD), b) root-mean-square-fluctuation
(RMSF), and c) radius of gyration (RoG) values within the LbPTR1 binding site, obtained
after molecular dynamics simulations using three of the best-ranked structures in molecular
docking calculations. apoLbPTR1 (blue); DHB: LbPTR1 complex (light green); PMA:
LbPTR1 complex (sky blue); structure 135: LbPTR1 complex (pink); structure 302:
LbPTR1 complex (yellow); structure 302a: LbPTR1 complex (dark green);

The fluctuations for each LbPTR1 residue were analyzed by calculating root-mean-
square fluctuation (RMSF) values. Kauranes, DHB, and PMA in complex with LbPTR1
presented lower values than the apoenzyme, and the LbPTR1 loops were identified as the
most variable regions. In the sections of LbPTR1 with defined tertiary structures (helical or
B-sheets), the fluctuation of residues for both the apoenzyme and the complexes formed
with DHB, PMA, and kauranes (135, 302, and 302a) was less than 0.25 nm. For most of
the residues in the active site, the RMSF values decreased when LbPTR1 was in complex
with structure 302.

In the loop region, from A65 to S85, structure 302a showed the highest RMSF
value (approximately. 0.9 nm) compared with structures 135 and 302a, which reached
RMSF values lower than 0.6 nm. This behavior might be due to differences in the spatial
conformation of 302a within the active site of LbPTR1 compared with those for structures
135 and 302; consequently, the molecular docking values are justified. The analysis of the
loop section between N110 to T135 showed that inhibitors (structures 135, 302, and 302a,
DHB, and PMA) in complex with LbPTR1 reached RMSF values approaching 1.0 nm; in
contrast, the apoenzyme exhibited a value above 1.65 nm (Figure 6b), indicating that these

structures stabilized the protein following the formation of an LbPTR1-kaurane complex.
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The diterpenes showed similar RMSF values as DHB; however, in this loop region, PMA
has a lower RMSF value (approximately 0.8 nm).

The evolution of the LbPTR1 packing level was observed through the radius of
gyration (RoG) values. The diterpene-LbPTR1 complexes showed no differences in RoG
values compared with the complex formed between DHB and LbPTR1 (RoG of
approximately 2.00 nm), with fluctuations in the tertiary structure lower than 0.10 nm. The
RoG values for PMA were slightly different (approximately 2.05), demonstrating a
different behavior throughout the 50 ns test period than the other structures analyzed
(Figure 6c). ApoLbPTR1, during the initial 25 ns, showed a higher RoG than the
complexes, with an RoG value approaching 2.05 nm. However, in the second half of the
simulation, a decrease in the RoG value was observed, reaching a value similar to those
observed for the complexes formed with diterpenes and DHB (RoG of approximately 1.95
nm). Based on these results, the structures 135, 302, and 302a appeared to be stably folded
after the MD simulation.

According to the MD simulations, the binding free energies for structures 135, 302,
302a, PMA, and DHB were calculated through the MM/PBSA method. The diterpenes
135, 302, and 302a presented binding free energy values of —132.7 kJ/mol, —121.4 kJ/mol,
and —138.3 kJ/mol, respectively, which were all lower energy values than those measured
for DHB and PMA in complex with LbPTR1, which presented free energy values of
—107.4 kJ/mol and —110.0 kJ/mol, respectively. These differences in energetic

contributions were associated with structural differences (Table 6).

Table 6: Binding free energies (kJ/mol) from the MM/PBSA calculations for three of the
best-ranked structures identified for LbPTR1; DHB and PMA were used as reference

ligands

135 302 302a PMA DHB

Energy
o kJ/mol | SD | kd/mol | SD | kJ/mol | SD | kJd/mol |SD | kd/mol | SD
contribution

Van der Waals -210.7 |6.0| -170.8 |7.9| -208.6 | 7.6 | -138.8 |1.7| -121.3 | 3.0
Electrostatic -29 |15 -26.7 |3.4| 9.7 |3.0|-145.0 |2.5|-194.6 |10.3
Polar solvation 103.6 |{4.1] 955 |9.9| 100.7 |13.1| 186.4 |5.9| 221.4 |12.0
SASA -22.7 (05| -194 (09| -206 | 04 | -12.7 (04| -129 | 0.3

Binding energy -132.7 |7.6| -121.4 |6.1| -138.3 | 9.3 | -110.0 |4.2| -107.4 | 6.1
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In the three kauranes, van der Waals interactions showed the highest negative
contributions to the binding free energy, which supported the previously observed docking
results. The solvent-accessible surface area (SASA) and electrostatic parameters
contributed negatively, but to a lesser degree, to the binding free energies in similar
proportions (except for the electrostatic parameter of 302, which displayed a higher
contribution to total binding energy).

The reference inhibitor (PMA) and the native ligand (DHB) demonstrated different
behaviors from those observed for the three diterpenes, with a higher contribution of
electrostatic interactions to the total binding free energy value, which represented the
energy parameter with the highest negative energetic contribution. For all molecules, the
polar solvation had a positive contribution to the total energy value, with larger
contributions to the complexes DHB-LbPTR1 and PMA-LbPTR1.

3. Materials and Methods
3.1. Database

From the ChEMBL database (https://www.ebi.ac.uk/chembl/), we selected a
diverse set of 1,085 structures that were initially classified according to their predicted
activity against L. major. These compounds were classified according to their plCso values
[~logICso (mol/L)]; therefore, we stratified them into active (pICso > 5.0) and inactive
(pICso < 5.0) structures.

The APD, based on Euclidean distances, was used to identify those compounds in
the test set for which predictions may be unreliable; compounds were considered unreliable
if they had APD values higher than d + Zo, where d is the average Euclidian distance, and
o is the standard deviation of the set of samples used as the training set, with lower-than-
average Euclidian distance values relative to all samples in the training set. The parameter
Z is an empirical cutoff value, and 0.5 was used as the default value [51].

Structures with plCso values ranging from 4.9 to 5.0 (range of 0.1 units) were
excluded to avoid edge effects and improve the predictive capacity of the models.
Excluding these structures minimized the differences in activity values resulting from
errors and differences in experimental protocols [52]. Data curation was performed for the
datasets according to procedures suggested in the literature [53-55]. Standardizer software
[JChem, wversion 16.11.28 (2016), calculation module developed by ChemAxon,
https://www.chemaxon.com/] was used to canonize all simplified molecular-input line-

entry system (SMILES) codes. After duplicate structures were removed, those with higher
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plCso values were eliminated, facilitating the generation of more restrictive models.
Finally, 638 structures for L. major (338 active and 300 inactive structures) were included
in the analysis,

The kaurane dataset was built in-house, and a total of 360 molecules from this
dataset were used in this study. For all structures, SMILES codes were used as the input
data in Marvin [ChemAXxon, version 16.11.28 (2016), calculation module developed by
ChemAXxon, https://www.chemaxon.com/]. We used standardizer software [JChem, version
16.11.28 (2016), calculation module developed by ChemAXxon,
https://www.chemaxon.com/]. ChemAxon was used to canonize the structures, add
hydrogens, perform aromatic form conversions, and clean molecular graphs in three

dimensions.

3.2. Volsurf+ descriptors

The three-dimensional (3D) structures of the identified molecules, in special data
file (SDF) format, were used as the input data for VolSurf+, v. 1.0.7 [25] and were
subjected to molecular interaction fields (MIFs) to generate descriptors using the following
probes: N1 (amide nitrogen—hydrogen bond donor probe), O (carbonyl oxygen—hydrogen
bond acceptor probe), OH2 (water probe), and DRY (hydrophobic probe). Additional non-
MIF-derived descriptors were generated, resulting in a total of 128 descriptors [25]. One of
the main advantages of using VolSurf descriptors is the relatively low influence of

conformational sampling and averaging on these descriptors [26].

3.3. RF models

Knime 3.1.0 software (KNIME 3.1.0 the Konstanz Information Miner Copyright,
2003-2014, www.knime.org) [27] was used to perform all of the following analyses.
Initially, the descriptors calculated in the VolSurf+ program were imported in comma-
separated value (CSV) format, and the “Partitioning” node in the stratified sampling option
was used to classify 80% of the initial dataset as the training set and the remaining 20% as
the test set.

The model was generated by employing the modeling set and the RF algorithm,
with a five-fold external validation procedure, using WEKA nodes. In the five-fold cross-
validation procedure, the dataset is divided five times into a modeling set (80%/20%). The
modeling set (which was used to build and validate the models) was further divided into
training (80%) and test sets (20%) [28, 53]. The parameters selected for the RF models
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included the following: number of trees to build = 200; seed for random number generator
= 1; and Gini Index, as a split criterion, for both the training and internal cross-validation
sets.

From the confusion matrix, the internal and external performances of the selected
models were analyzed, using the following parameters: sensitivity (true-positive rate),
specificity (true-negative rate), and accuracy (overall predictability). In addition, to
describe the true performance of the model with more clarity than can be obtained from
accuracy alone, the ROC curve was employed, using a “ROC curve” node, which uses the
sensitivity and specificity parameters. The plotted ROC curve shows the true-positive
(active) rate versus the false-positive rate (1 — specificity) [29].

In this representation, when a variable of interest cannot be distinguished between
the two groups, the AUC value is 0.5, whereas a perfect separation between the values of
the two groups, with no distribution overlap, results in an AUC value of 1. The MCC was
also calculated, for which a value of 1 represents a perfect prediction, a value of 0
represents a random prediction, and a value of —1 represents a total disagreement between

the prediction and the observation [30].

3.4. False-positive remover

To detect false-positive structures among the SLs that were classified as active in
the two RF models, the substructure filter for the removal of pan assay interference
compounds (PAINS) was used [56]. All SMILES codes for SLs classified as active were
submitted to PAINS removal (https://www.cblig and.org/PAINS/), and those structures

that were classified as false-positives were excluded from the final analysis.

3.5 Synthesis of VVS-selected diterpenes
3.5.1. Materials and reagents

Optical rotations and UV data were recorded using a Jasco P-2000ST digital
polarimeter and a Thermo Fisher Scientific Genesys 10S spectrophotometer, respectively.
1H and 13C Nuclear magnetic resonance experiments were recorded in a Bruker
Avance400 spectrometer using CDCls as solvent. All shifts are given in & (ppm) using the
signal of TMS as reference. All coupling constants (J) are given in Hz. HRESIMS data
were obtained on a Bruker micro-QToF Il spectrometer, respectively. Thin-layer
chromatography (TLC) using silica gel 60 F254 TLC plates (Merck) and mobile phases

comprising solvent mixtures of n-hexane, EtOAc, and MeOH were used. Plates after TLC
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development were observed under UV light (254 and 365 nm) and derivatized using 12
vapor and Hannessian’ s reagent (aqueous solution of ammonium molybdate, cerium
sulphate and H2SO4). Silica gel (SiO2) 60 (0.04-0.063 mm) (Merck) was used for flash
chromatography (flash CC). Cinnamic acid, p-coumaric acid, (R)-(-)-carvone and other
reagents and solvents for synthesis and enzyme inhibition assay were acquired from
Sigma-Aldrich.

3.5.2. Isolation of compounds A-C.

Fruits (325 g) of Xylopia frutescens (Annonaceae) were extracted with ethanol 96%
and a portion of the resulting crude extract (25.5 g) was fractionated by CC over SiO2 in
gradient elution (n-hexane to methanol) affording twenty-five different fractions. Fractions
7, 8, 11 and 13 were independently depurated by flash CC on SiO2, yielding compounds
ent-kaurenoic acid (A) (75.6 mg) [37] 3a-hydroxy-ent-kaur-16-en-19-oic acid (B) (52.3
mg) [36] and 3a,9B-dihydroxy-ent-kaur-16-en-19-oic acid (C) (42.6 mg), using mixtures of
n-hexane:EtOAc:MeOH 9:1.5:0.5; 8:1:1, 7:2:1 and 6:2:2, respectively.

30,9p-dihydroxy-ent-kaur-16-en-19-oic acid (C): Oil; [a]o® = -61.8 (c = 0.1,
CHCls); *H NMR (400 MHz, CHCl3) 84.78 (br s, 1H), 4.67 (br s, 1H), 4.63 (dd, J = 12.0,
5.0 Hz, 1H), 2.65 (br s, 1H), 2.63 (br d, J = 13.5 Hz, 1H), 2.49-2.44 (m, 1H), 2.31 (dd, J =
11.0, 1.3 Hz, 1H), 2.16-2.10 (m, 2H), 2.07-2.03 (m, 1H), 1.88-1.85 (m, 1H), 1.82-1.76 (m,
2H), 1.73-1.67 (m, 1H), 1.65-1.55 (m, 4H), 1.48-1.44 (m, 2H), 1.35-1.33 (m, 1H), 1.29 (s,
3H), 1.15 (s, 3H); 3C NMR (100 MHz, CHCIl3) & 180.1, 156.8, 104.4, 78.6, 76.9, 50.3,
49.4, 48.5, 48.5, 43.6, 42.1, 39.6, 35.2, 34.5, 30.5, 29.6, 24.3, 24.2, 20.9, 17.4; HREIMS
[M+H]* m/z 335.2203 (calcd for CaoHs3104, 335.2222).

3.5.3. Synthesis of 2[3-hydrohy-menth-6(1)-en-5(3-yl ent-kaurenoate (135)
The synthesis of the top-ranked ester 135 was accomplished following the next four

synthetic steps:

3.5.3.1. Synthesis of 5B-hydroxy-(R)-carvone (E)

Compound G was synthesized as previously reported [38]. Briefly, Cu-Al Ox
catalyst (168 mg) was placed into a 100-mL round-bottom flask (RBF) containing absolute
EtOH (30 mL). The resulting mixture was stirred at room temperature (rt) for 10 min.
Subsequently, (R)-(-)-carvone (D) (450 mg, 3.0 mmol, 1.0 equiv) and t-BuOK (168 mg,

1.5 mmol, 0.5 equiv) were added, and this reaction mixture was further stirred at rt for 30
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h. After completion, the mixture was filtered through celite, rinsing with MeOH (15 mL).
The filtrate was concentrated under reduced pressure, and the residue was purified by flash
CC on SiO2 (10% EtOAc in n-hexane) to afford compound E (194 mg, 39% yield). Qil;
[a]p?® +65.2 (c 0.1, CHCI3); *H NMR (400 MHz, CDCl3) § 6.85 (br d, J = 9.7 Hz, 1H),
5.05 (br s, 2H), 4.48 (dd, J = 9.7, 1.9 Hz, 1H), 3.29 (ddd, J = 6.5, 2.6, 1.9 Hz, 1H), 2.65
(dd, J = 11.8, 2.6 Hz, 1H), 2.29 (dd, J = 11.8, 6.5 Hz, 1H), 1.79 (s, 3H), 1.77 (s, 3H); 13C
NMR (100 MHz, CDClIs) 198.5, 147.7, 437, 135.3, 114.6, 68.4, 52.7, 40.5, 19.1, 15.3;
HREIMS [M+H]" m/z 167.1055 (calcd for C10H1502, 167.1072).

3.5.3.2. Synthesis of 2-ox0-menth-6-en-5-ol (F)

Compound F was prepared as previously reported [38]. Briefly, RhCl (PPh3)s (46.2
mg, 0.05 mmol, 5 mol %) was added to a 25-mL RBF containing a stirred solution of E
(166 mg, 1.0 mmol, 1.0 equiv) in dry toluene (10 mL) under nitrogen. This flask was
sealed with a rubber septum, headspace evacuated, and hydrogen flushed. The reaction
mixture was stirred at rt for 14 h. After completion, the solvent was removed under
reduced pressure and the residue was purified by flash CC on SiO. (5% EtOAc in n-
hexane) to afford compound F (153 mg, 91% yield). Oil; [a]o® = -62.1 (¢ = 0.3, CHClI5);
'H NMR (400 MHz, CHClIs) § 6.83 (dd, J = 9.0, 1.3 Hz, 1H), 4.31 (d, J = 9.5 Hz, 1H), 2.48
(dd, J = 15.5, 3.6 Hz, 1H), 2.13-2.09 (m, 3H), 2.01-1.87 (m, 1H), 1.75 (s, 3H), 0.95 (d, J =
7.1 Hz, 3H), 0.88 (d, J = 7.0 Hz, 3H); *C NMR (100 MHz, CHCls3) § 200.5, 148.8, 135.1,
69.5, 50.8, 37.2, 26.6, 20.5, 16.6, 15.5; HREIMS [M+H]* m/z 169.1211 (calcd for
C10H1702, 169.1229).

3.5.3.3.Synthesis of 2-oxo-menth-6-en-5B-yl ent-kaurenoate (G)

Compound G was obtained by Steglich esterification [39] from A and F. Briefly,
ent-kaurenoic acid (A) (30.2 mg, 0.1 mmol, 1.0 eq), compound F (16.6 mg, 0.1 mmol, 1.0
eq), and dimethylaminopyridine (DMAP) (2.5 mg, 0.02 mmol, 0.2 eq) were mixed within a
10-mL RBF. This flask was sealed with a rubber septum, inner air evacuated, and nitrogen
flushed. Anhydrous CHCI> (3 mL) was added, followed by 1 M dicyclohexylcarbodiimide
(DCC) in CHCIl2 (110 pL, 0.11 mmol, 1.10 eq). The resulting mixture was stirred
overnight then filtered through Celite. The filtrate was concentrated under reduced pressure
and the residue was purified by flash CC on SiO2 (20% EtOAc in n-hexane) to afford
compound G (35.7 mg, 79% yield). Oil; [a]o®® = -58.5 (¢ = 0.2, CHCIs); *H NMR (400
MHz, CDCI3) 4 6.79 (br d, J = 9.4 Hz, 1H), 5.21 (dd, J = 9.4, 1.7 Hz, 1H), 4.78 (br s, 1H),
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4.72 (br s, 1H), 2.76-2.68 (m, 2H), 2.65-2.60 (m, 2H), 2.17 (br d, J = 13.0 Hz, 1H), 2.08-
2.03 (m, 2H), 1.88 (dd, J = 11.4, 1.1 Hz, 1H), 1.16 (dd, J = 11.4, 4.7 Hz, 1H), 1.91-1.83 (m,
5H), 1.78 (s, 3H), 1.47-1.40 (m, 1H), 1.59-1.51 (m, 6H), 1.16 (s, 3H), 1.08-1.05 (m, 1H),
1.05-1.03 (m, 1H), 1.02 (d, J = 6.7 Hz, 3H), 1.01-0.97 (m, 1H), 0.97 (d, J = 6.7 Hz, 3H),
0.88 (s, 3H), 0.76 (m, 1H); 13C NMR (100 MHz, CHCls) § 200.6, 177.9, 155.5, 140.1,
134.4, 102.4, 71.5, 57.8, 55.2, 49.5, 45.6, 44.7, 44.4, 43,5, 41.4, 40.2, 39.4, 38.9, 37.7,
37.3, 33.5, 28.6, 26.8, 21.5, 20.3, 19.1, 18.8, 16.7, 15.9, 15.7; HREIMS [M+H]* m/z
453.3345 (calcd for C30H4503, 453.3369).

3.5.3.4. Synthesis of 2f-hydroxy-menth-6-en-54-yl ent-kaurenoate (135)

Compound 135 was obtained from G, through Luche reduction using a reported
procedure [57]. Briefly, compound G (27.1 mg, 0.06 mmol, 1.0 eq), CeCl3.7H.0O (5.6 mg,
0.015 mmol, 0.25 eq), and MeOH (3 mL) was mixed into a 10-mL RBF by stirring at 0 °C.
A 1 M NaBHjs solution (0.06 mL, 0.06 mmol) in MeOH was then added. Reaction mixture
was allowed to warm to 20 °C and then stirred at this temperature for 1 h. After
completion, reaction was quenched with 2M HCI (2 mL) and extracted with CH.Cl, (3 x 2
mL). The separated CH>Cl. extract was washed with 10% NaCl (2 x 3 mL), dried over
MgSOs, filtered, and concentrated under reduced pressure. The resulting residue was
purified by flash CC on SiO2 (20% EtOAc in n-hexane) to afford 135 (22.4 mg, 82% yield)
(wedelobatin A) [58]. Oil; [0]p?° —92.6 (c 0.2, CHCI3); *H NMR (400 MHz, CDCly) § 5.44
(brs, 1H), 5.17 (br d, J = 8.5 Hz, 1H), 4.77 (br s, 1H), 4.75 (br s, 1H), 4.03 (t, J = 3.2 Hz,
1H), 2.63 (br s, 1H), 2.19 (br d, J = 13.3 Hz, 1H), 2.06-2.02 (m, 2H), 1.93 (dd, J=11.1,1.2
Hz, 1H), 1.14 (dd, J = 11.1, 5.0 Hz, 1H), 1.87-1.81 (m, 7H), 1.79 (s, 3H), 1.46-1.41 (m,
2H), 1.60-1.50 (m, 6H), 1.19 (s, 3H), 1.07-1.05 (m, 1H), 1.03-1.01 (m, 1H), 1.00-0.97 (m,
1H), 0.95 (d, J = 6.8 Hz, 3H), 0.90 (s, 3H), 0.81 (d, J = 6.8 Hz, 3H), 0.78 (m, 1H); *C
NMR (100 MHz, CHCIs) 8 177.5, 155.4, 139.4, 124.4, 101.9, 71.6, 67.4, 57.2, 55.6, 48.8,
44.2,43.9, 43.4, 41.1, 41.2, 40.1, 40.1, 39.4, 37.7, 33.0, 30.2, 29.2, 26.2, 22.2, 21.1, 20.2,
19.2,18.2,17.2, 16.0; HREIMS [M+H]" m/z 455.3511 (calcd for C3oH4703, 455.3525).

3.5.4. Synthesis of 3a-cinnamoyloxy-9p-hydroxy-ent-kaur-16-en-19-oic acid (301) 3a-
cinnamoyloxy-ent-kaur-16-en-19-oic acid (302), 3a-p-coumaroyloxy-9p-hydroxy-ent-
kaur-16-en-19-oic acid (301a), 3a-p-coumaroyloxy-ent-kaur-16-en-19-oic acid (302a).
Separated reaction, following the same procedure as described for compound H
(Steglich esterification [39]) of cinnamic acid (H) (7.4 mg, 0.05 mmol, 1.0 eq) with B (15.9
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mg, 0.05 mmol, 1.0 eq) or C (16.7 mg, 0.05 mmol, 1.0 eq) afforded the top-ranked
compounds 301 (17.9 mg, 77%) and 302 (17.5 mg, 78%), respectively. Additionally,
separated reaction of p-coumaric acid (1) (8.2 mg, 0.05 mmol, 1.0 eq) with B (15.9 mg, 0.5
mmol, 1.0 eq) and C (16.7 mg, 0.5 mmol, 1.0 eq) afforded compounds 301a (17.0 mg,
71%) and 302a (16.0 mg, 69%), respectively.

301: Oil; [a]p?® -56.3 (c 0.05, CHCI3); *H NMR (400 MHz, CDCls) § 7.68-7.66
(m, 2H), 7.65 (d, J = 15.3 Hz, 1H), 7.40-7.37 (m, 3H), 6.49 (d, J = 15.3 Hz, 1H), 4.82 (br s,
1H), 4.77 (br s, 1H), 4.68 (dd, J = 12.2, 4.5 Hz, 1H), 2.71 (br d, J = 14.7 Hz, 1H), 2.59 (br
s, 1H), 2.53-2.50 (m, 1H), 2.28 (dd, J = 10.5, 1.8 Hz, 1H), 2.16-2.09 (m, 2H), 2.04-2.00 (m,
1H), 1.93-1.80 (m, 3H), 1.74-1.70 (m, 1H), 1.67-1.55 (m, 3H), 1.51 (dd, J = 10.5, 5.3 Hz,
1H), 1.48-1.43 (m, 2H), 1.30-1.27 (m, 1H), 1.26 (s, 3H), 1.12 (s, 3H); *C NMR (100 MHz,
CHCIs) 6 179.7, 166.7, 157.9, 145.1, 134.7, 130.1, 128.7, 128.2, 118.6, 105.8, 78.5, 75.4,
52.3, 52.1, 49.8, 49.3, 43.7, 42.3, 38.9, 38.5, 34.6, 30.7, 27.3, 25.5, 24.3, 20.5, 17.8;
HREIMS [M+H]" m/z 465.2623 (calcd for C29H370s, 465.2641).

302: Qil; [a]p®® —41.2 (¢ 0.03, CHCIs); *H NMR (400 MHz, CDCl3) § 7.69 (d, J =
15.1 Hz, 1H), 7.65-7.62 (m, 2H), 7.47-7.43 (m, 3H), 6.54 (d, J = 15.1 Hz, 1H), 4.81 (br s,
1H), 4.75 (br s, 1H), 4.64 (dd, J = 12.1, 4.7 Hz, 1H), 2.66 (br s, 1H), 2.36-2.32 (m, 1H),
2.07-2.03 (m, 2H), 1.96 (d, J = 11.1 Hz, 1H), 1.93-1.90 (m, 1H), 1.84-1.81 (m, 1H), 1.68-
1.62 (m, 3H), 1.55-1.50 (m, 3H), 1.47-1.42 (m, 2H), 1.13-1.07 (m, 2H), 1.05 (br s, 1H),
1.01 (d, J = 9.3 Hz, 1H), 1.21 (s, 3H), 0.97 (s, 3H); 13C NMR (100 MHz, CHCl3) & 180.2,
166.8, 155.1, 145.3, 134.6, 130.3, 128.8, 128.1, 118.5, 103.1, 79.1, 56.5, 55.1, 48.6, 48.3,
43.8, 43.5, 41.3, 39.6, 39.5, 38.8, 33.3, 24.3, 23.7, 21.5, 18.5, 15.5; HREIMS [M+H]" m/z
449.2678 (calcd for C29H3704, 449.2692).

301a: Oil; [0]p?® —43.7 (¢ 0.03, CHCI3); *H NMR (400 MHz, CDCl3) § 7.71 (d, J =
15.0 Hz, 1H), 7.48 (d, J = 8.3 Hz, 2H), 6.91 (d, J = 8.3 Hz, 2H), 6.38 (d, J = 15.0 Hz, 1H),
4.84 (br s, 1H), 4.71 (br s, 1H), 4.66 (dd, J = 11.9, 4.9 Hz, 1H), 2.69 (d, J = 14.5 Hz, 1H),
2.57 (br s, 1H), 2.55-2.51 (m, 1H), 2.26 (dd, J = 10.8, 1.6 Hz, 1H), 2.20-2.17 (m, 1H),
2.15-2.11 (m, 1H), 2.03-1.98 (m, 1H), 1.91-1.80 (m, 3H), 1.78-1.76 (m, 1H), 1.69-1.63 (m,
2H), 1.58-1.55 (m, 1H), 1.53 (dd, J = 10.6, 5.1 Hz, 1H), 1.49-1.44 (m, 2H), 1.29-1.26 (m,
1H), 1.24 (s, 3H), 1.13 (s, 3H); 3C NMR (100 MHz, CHCl3) 5 181.1, 166.1, 158.1, 156.6,
144.2,129.1, 127.1, 118.3, 117.9, 107.1, 78.5, 75.4, 52.3, 52.1, 49.6, 49.5, 43.4, 41.8, 38.7,
38.4, 34.5, 30.7, 27.6, 25.7, 24.3, 20.4, 17.9; HREIMS [M+H]" m/z 481.2577 (calcd for
C29H370s, 481.2590).

161



302a: Oil; [a]o?° —36.5 (¢ 0.01, CHCI3); *H NMR (400 MHz, CDCls) & 7.76 (d, J =
15.2 Hz, 1H), 7.51 (d, J = 8.1 Hz, 2H), 6.87 (d, J = 8.1 Hz, 2H), 6.45 (d, J = 15.2 Hz, 1H),
4.85 (brs, 1H), 4.77 (br s, 1H), 4.62 (dd, J = 12.0, 4.9 Hz, 1H), 2.67 (br s, 1H), 2.38-2.34
(m, 1H), 2.10-2.06 (m, 2H), 1.97 (d, J = 11.4 Hz, 1H), 1.94-1.90 (m, 1H), 1.85-1.81 (m,
1H), 1.69-1.65 (m, 2H), 1.61-1.53 (m, 4H), 1.49-1.44 (m, 2H), 1.17-1.13 (m, 1H), 1.09-
1.07 (m, 1H), 1.04 (br s, 1H), 1.02 (d, J = 9.5 Hz, 1H), 1.21 (s, 3H), 0.97 (5, 3H); 3C NMR
(100 MHz, CHCls) & 180.5, 166.3, 158.3, 155.7, 144.8, 129.5, 127.7, 118.5, 117.4, 103.1,
79.1, 56.7, 55.5, 48.7, 48.1, 44.2, 43.8, 41.1, 40.3, 39.3, 39.3, 33.2, 24.5, 23.4, 21.5, 18.7,
15.4; HREIMS [M+H]* m/z 465.2628 (calcd for CagHszOs, 465.2641).

3.6. LmPTR1 enzyme inhibition assay

Recombinant LmPTR1 enzyme was obtained, purified, and kinetically
characterized, as reported previously [59]. The in vitro assessment of selected diterpenes
(i.e., 135, 301, 302, 301a, and 302a) for LmPTR1 inhibitory activity was performed
through the spectrophotometric monitoring of the enzymatic activity under balanced
conditions: LmPTR1 (30 pug), 7,8-dihydro-L-biopterin (DHB, 20 uM), sodium citrate
buffer (20 mM, pH 6.0), 30 °C, and a final assay volume of 600 uL. Each reaction was
started by the addition of 250 uM NADPH. Absorbance was monitored at 340 nm (i.e.,
oxidation of NADPH to NADP+) for 240 s, and the resulting profile was used to measure
the initial reaction rate (IRR) through the respective slope by linear regression.

All recordings were performed in triplicate. PMA was used as the positive control.
The resulting IRR values were used to calculate the % inhibition, as 100 — (Ri / Rc % 100),
where Ri is the IRR in the presence of the inhibitor and Rc is the IRR in the absence of
inhibitors (1% DMSO v/v final concentration). The % inhibition for at least five
concentrations (range: 0.1-128 uM) for each test compound (diterpenes and PMA) were
calculated, and concentration-response curves (% inhibition vs. Log[inhibitor]) were
obtained by non-linear regression to determine the ICso using GraphPad Prism 5.0
(GraphPad, San Diego, CA, USA). Finally, Ki#® values were calculated using the Cheng-
Prusoff equation for competitive inhibition, assuming a 1:1 stoichiometry and that he
inhibitor-binding reactions are reversible [41]: Ki®® = 1Cso/ (1 + [S] / Km), where [S] is the
substrate (DHB) concentration and Km is the Michaelis constant. The substrate Km was

calculated during the kinetic characterization of purified, recombinant LmPTR1.
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3.7. Hybrid models of L .braziliensis, L. panamensis and L. amazonensis

Hybrid models for Lb, Lp, and LaPTR1 were constructed using YASARA software
(YASARA (18.4.24) Vienna, Austria: YASARA Biosciences GmbH; 2018) based on the
FASTA sequences of LbPTR1 (A4HCP1), LpPTR1 (AOA088SA10), and LaPTR1
(009352), which were obtained from the UniProt database (https://www.uniprot.org/). The
stereochemical qualities of the models were evaluated with PROCHECK [60], which
Molecular Diversity evaluated several stereochemical parameters, such as the torsional
angles of the main chain, the torsional angles of the side chain, bad contacts or steric
impediments, and planarity. PROCHECK generated a Ramachandran graph [45], which
verified the allowed and unallowed regions of the main amino acid chain.

The structural quality was evaluated in VERIFY 3D software
(https://services.mbi.ucla.edu/SAVES/), which analyzes the compatibility of the protein
sequence with its 3D structure, according to the chemical environment, and WHAT IF
(https://swift.cmbi.ru.nl/servers/html/index.html), which analyzes various structural
parameters, such as the atomic contacts between residues. The software Discovery Studio

Visualizer was used to visualize the modeled protein [61].

3.8. Molecular docking calculations

The LmPTRL1 crystal structure (PDB ID: 1E7W), in complex with its respective
inhibitor, methotrexate (PDB ID: MTX), was downloaded from PDB [33]. Using Molegro
6.0.1 software, all water compounds were deleted from the enzyme structures, and the
enzyme/compound structures were prepared using the same default parameter settings, in
the same software package (Score function: MolDock Score; Ligand evaluation: Internal
ES, Internal H-Bond, Sp2-Sp2 Torsions, all checked; Number of runs: 10 runs; Algorithm:
MolDock SE; Maximum Interactions: 1500; Max. population size: 50; Max. steps: 300;
Neighbor distance factor: 1.00; Max. number of poses returned: 5). The docking procedure
was performed using a grid with a 15-A radius and a 0.30-A resolution to cover the ligand-
binding site for the four enzyme structures [14, 20].

The docking procedures for hybrid models of Leishmania (Lb, Lp, and La) were
performed with the Autodock/Vina (1.1.2) plug-in for PyMOL (1.3r2), under a Python
2.5.2 environment for Windows. Docking calculations were then performed between the
minimized ligand through a cube (dimensions 22.5 A x 22.5 A x 22.5 A, grid spacing
0.375 A) located in the geometric center of the binding pocket (coordinates Lb: 18.75,
—13.1, 10.25; Lp: 18.1, 12.6, 8.0; and La: 20.1, 19.6, 7.8), which was identified through
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cavities analysis in Molegro 6.0.1. Flexible residues in the binding site were selected for
each model. Lb: L19, H39, R40, N110, S112, D181, and S227; Lp: K17, L19, S112, M179,
and 1180; and La: R18, L19, H38, L188, M233, K244, and Y283. Docking poses were
classified according to their docking scores (such as the free energy or affinity). Each
calculation was performed in three replicates. Two known PTR1 ligands (DHB and PMA)
were used as controls. The two-dimensional (2D)-residual interaction diagrams were
visualized on Discovery Studio 2016 Visualizer Client (Biovia, San Diego, CA, USA)
[61].

3.9. Molecular dynamics simulations

MD simulations were run in Gromacs 5.0.5 on Ubuntu 12.04 server [62, 63].
Structures 135, 302, and 302a displayed the best poses from docking, and the DHB and
PMA structures, as well as the hybrid model of LbPTR1, were employed as the inputs for
the MD simulations. The five ligands were prepared by adding hydrogen atoms and the
corresponding charges using the AMI1-BCC charge scheme in UCSF Chimera.
Subsequently, ligand topologies were generated automatically with ACPYPE script.
Protein topologies were obtained in Gromacs using the Amber 99SB force field, and the
TIP3P water model was implemented. Solvation was performed in a triclinic box using a
margin distance of 1.0 nm. The addition of 0.1 M NaCl to complexes and proteins was
performed by randomly replacing water molecules until neutrality was achieved [20, 50].

The systems were energy-minimized by 2,000 steps using the steepest descent
method. Systems were subjected to NVT equilibration was performed at 310 K for 50 ps,
followed by NPT equilibration for 500 ps, using the Parrinello—Rahman method at 1 bar as
a reference, using position restraints. Finally, the solute position restraints were released,
and a production run for 5 ns was performed. The temperature and pressure were
maintained constant at 310 K and 1 bar, respectively. Coordinates were recorded in a 1 fs
time step. Electrostatic forces were calculated using the particle-mesh Ewald method.
Periodic boundary conditions were used in all simulations, and covalent bond lengths were
constrained by the LINCS algorithm. The molecular mechanics Poisson—-Boltzmann
surface area (MM/PBSA) method was used to calculate binding free energies, using the

trajectories calculated by the MD simulations [20, 50].
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4. Conclusions

Structures 135 and 302 are two kauranes that were identified as hits for anti-
leishmanicidal activity, with ICso values against L. major below 10 uM. These two
structures were selected from an in-house database comprising 360 kauranes through an in
silico approach combining machine learning and molecular docking methodologies. Only 5
structures from Asteraceae were classified as active by both methodologies. The in vitro
results allowed the successful verification of the RF classification model, which predicted
that structures 135 and 302 would be active (pICso > 5.0) and that structure 301 would be
inactive (pICso> 5.0), which was observed experimentally.

Additionally, the inhibitory activity was improved by approximately 60% when a
3a-p-coumaroyloxy group was used in 302 in place of the 3a-cinnamoyloxy substituent,
with 302a exhibiting a lower Ki®® value. Although the tested diterpenes were found to be
less active than the positive control, the validity of the designed VS approach for the
selection of bioactive molecules against PTR1 was demonstrated, and the computationally-
studied binding mode of these selected compounds within the active site of LmPTRIL,
which causes CL, was explored. These selected compounds can be considered important
leads that can be used to obtain more active PTR1 inhibitors.

Finally, because throughout the American continent, other Leishmania species are
responsible for the clinical diversity of CL and MCL, including L. amazonensis (La), L.
braziliensis (Lb), and L. panamensis (Lp), molecular docking calculations and MD
simulations were performed for the entire set of kauranes (including 301a and 302a), and
the compounds 135, 302, and 302a were identified as potential multispecies agents.
Therefore, this study describes a valuable screening approach for the identification of lead
compounds in natural products, which can contribute to the further development of

alternative chemotherapies against this group of diseases.
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Abstract: The bifunctional enzyme Dihydrofolate reductase-thymidylate synthase (DHFR-
TS) plays a crucial role in the survival of the Leishmania parasite, as folates are essential
cofactors for purine and pyrimidine nucleotide biosynthesis. However, DHFR inhibitors
are largely ineffective in controlling trypanosomatid infections, largely due to the presence
of Pteridine reductase 1 (PTR1). Therefore, the search for structures with dual inhibitory
activity against PTR1/DHFR-TS is crucial in the development of new anti-Leishmania
chemotherapies. In this research, using the Leishmania major DHFR-TS recombinant
protein, enzymatic inhibitory assays were performed on four kauranes and two derivatives
that were previously tested against LmPTR1. The structure 302 (6.3 uM) and its derivative
302a (4.5 uM) showed the lowest ICso values among the evaluated molecules. To evaluate

the mechanism of action of these structures, molecular docking calculations and molecular
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dynamics simulations were performed using a DHFR-TS hybrid model. Results showed
that hydrogen bond interactions are critical for the inhibitory activity against LnDHFR-TS,
as well as the presence of the p-hydroxyl group of the phenylpropanoid moiety of 302a.
Finally, additional computational studies were performed on DHFR-TS structures from
Leishmania species that cause cutaneous and mucocutaneous leishmaniasis in the New
World (L. braziliensis, L. panamensis, and L. amazonensis) to explore the targeting
potential of these kauranes in these species. It was demonstrated that structures 302 and
302a are multi-Leishmania species compounds with dual DHFR-TS/PTR1 inhibitory
activity.

Keywords: kauranes; Leishmania; Asteraceae; machine learning; DHFR-TS; diterpenes;

natural products.

1. Introduction

Leishmaniasis is a neglected tropical disease (NTD) caused by Leishmania
parasites, a type of trypanosomatid protozoa [1]. The disease affects 15 million people
globally, presenting in three forms: cutaneous (CL), mucocutaneous (ML), and visceral
(VL) [2,3]. Despite the public health concerns and need for control, current treatments,
including pentavalent antimony salts as the first-line drugs or amphotericin B, pentamidine,
miltefosine, or paromomycin as second-line drugs, are frequently toxic, expensive, and
only marginally effective with increasing resistance outbreaks [3-5]. Although attempts to
discover more effective and safe alternatives through drug discovery [1,2,6], limited
progress has been made, making the search for new antileishmanial chemotherapies
necessary [7].

A metabolic pathway that is traditionally considered a crucial target against
trypanosomatid parasites involves the inhibition of dihydrofolate reductase (DHFR) in the
biosynthesis of folate-like cofactors [8]. DHFR (EC 1.5.1.3) catalyzes the NADPH-
dependent reduction of 7,8-dihydrofolates (H2Fs) to 5,6,7,8-tetrahydrofolates (H4Fs) [9],
which are necessary for maintaining adequate intracellular folate concentrations [8,9]. In
trypanosomatids, a single, fused gene encodes a bifunctional enzyme that has both the
DHFR domain and the thymidylate synthase (TS) domain [10]. This bifunctional enzyme
is crucial for the parasite's survival because folates are essential cofactors for the
biosynthesis of purine and pyrimidine nucleotides. As a result, inhibition of this single

polypeptide can affect two steps of this essential pathway [11]. In contrast, humans have
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separate mono-functional polypeptides for DHFR and TS, leading to structural differences
and unique roles in human folate production [8]. This makes the DHFR-TS combination an
attractive molecular target for the development of antimicrobial agents. In fact, antifolate-
based antimicrobial drugs such as methotrexate (MTX), trimethoprim, and pyrimethamine
are already in use [8,11].

However, Leishmania parasites are auxotrophic for folate, meaning they have a
sophisticated metabolic pathway for acquiring folate from the host and incorporating it into
intermediate or alternative metabolism through the action of pteridine reductase (PTR1)
[12]. PTR1 (EC 1.5.1.33) transforms conjugated and non-conjugated pterins, including the
reduction of biopterin to dihydrobiopterin, and then to tetrahydrobiopterin. This catalytic
role is crucial for maintaining vital intracellular levels of tetrahydropterin and has been
shown to be an essential component of growth in vivo through gene expression studies
[13]. Since PTR1 is less sensitive to the effect of MTX and catalyzes folate reduction, this
explains the therapeutic failures of antifolate drugs against trypanosomatid parasites
[12,14,15]. Thus, an appropriate strategy would involve searching for dual inhibitors of
PTR1 and DHFR as antileishmanial agents [16], and natural compounds are still
considered a vast source of bioactive agents [2].

In this context, a class of bioactive naturally-occurring compounds known as
Kaurane-type diterpenes has been shown to exhibit antileishmanial activity at various
levels [17-19]. Based on this evidence, a previous in silico and in vitro study was
performed on a custom-made library of 360 compounds to select Kaurane-type diterpenes
against Leishmania major PTR1 (LmPTR1). The top-ranked compounds and two semi-
synthetic derivatives were found to have half-maximal inhibitory concentrations (ICso) less
than 10 pg/mL. Given these results and with the aim of exploring dual inhibitors of
DHFR/PTRL, the present study investigated the selection of kauranes with activity against
L. major DHFR-TS.

2. Results and discussion

2.1. Kauranes 302 and its derivative 302a have dual in vitro enzymatic activity against
L. major PTR1/DHFR-TS

The potential dual enzymatic activity of L. major PTR1/DHFR-TS for the diterpene
esters 135, 301, 302, 301a, and 302a (which have already been evaluated against L. major

PTR1 [20], as shown in Figure 1a), along with structure 4, which was synthesized from the
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kaurane 148 (ent-kaurane-3-oxo-16a,17-diol, shown in Figure 1b), a compound isolated
from Euphorbia gracilis Jacg. (Euphorbiaceae), was evaluated using spectrophotometric
monitoring of enzymatic activity under a standard DHFR assay. This was done with a
range of test compound concentrations (0.1-128 uM), and methotrexate was used as a
positive control.

The 1Cso values were calculated based on the concentration-response behavior
within the range of 0.1-128 uM, resulting in values ranging from 4.5 to 11.2 uM (pICso
values ranging from 4.95 to 5.35). Then, using the Cheng—Prusoff equation and assuming
reversible competitive inhibition and a 1:1 stoichiometry [21], the apparent inhibitory
constant (Kiapp) was calculated for the selected kauranes using the I1Csgo results, as shown
in Table 1.

(a)

(MeO),CMe, (5 eq), THEF,
p-TsOH.H,O (5 mol %),
010 20 °C. 18 h (96%)

R!=H; R? = OH (301)
R!=T1; R?=H (302)
R!=0OH; R?= OH (301a)
R!=OH; R?=H (302a)

Figure 1. (a) Synthesis of compound 4. (b) Structures of selected kaurane-type diterpenes
(135, 301, 302) and their derivatives (301a and 302a)

Table 1. Results of enzymatic activity against L. major dihydrofolate reductase (LmMDHFR)

for selected kaurane-type diterpenes.

Compound 4 135 302 301 302a 301a MTX
I1Cs0 (LM) 7.6 11.2 6.3 8.8 45 7.9 1.4
Confidence
6.9-8.1 [10.2-12.1{5869(8.099(3.9-52(7.1-84|1.1-1.8
Interval (95%)
KijarpP 0.81 1.20 0.68 0.94 0.48 0.85 0.15
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The evaluated structures showed similar 1Cso values. Among the six tested
diterpenes, structure 135 was the least active, which was contrary to what was observed
with PTR1. Structure 301, which was classified as inactive against PTR1, showed a
different behavior against DHFR-TS with a plCso value above 5.0, and was classified as
active against this enzyme, according to the cutoff value used to build the machine learning
model of L. major (pICso = -log 1Cso) [20].

Using MolpredictX, a recent web tool developed in the Laboratory of
Cheminformatics at the Federal University of Paraiba, which provides predictions for 27
different biological activities, including L. major, the structures 301 and 30la were
classified as active. This tool provides qualitative predictions of molecule activity (active
or inactive) and a quantitative probability of activity based on molecular descriptors. [22].

For DHFR-TS, the kaurane-type diterpenes 301, 302, 30l1a, and 302a showed
similar pICso values above 5.0, indicating that the 9-hydroxyl group at the diterpene moiety
is not relevant to the inhibitory activity as observed with PTR1, and suggesting different
mechanisms of action for these two enzymes in Leishmania. Additionally, the p-hydroxyl
group has a favorable influence on the inhibitory activity of the evaluated kauranes,
reducing the inhibitory constant (Kiapp) values by 10-30% for 301a and 302a, respectively,
compared to the kauranes 301 and 302, which do not have this hydroxyl group present in
their structures.

The structures 302 and 302a showed the lowest Kiap values among the six tested
structures against DHFR-TS (despite both having Kiapp values that are higher than MTX).
These two structures also displayed a similar behavior with lower Kiapp values in previous
enzymatic assays against L. major PTR1 [20], which indicates that these two structures
have dual in vitro enzymatic activity against L. major PTR1/DHFR-TS, with the 9-
hydroxyl group at the diterpene moiety being the critical structural feature for the observed

dual action against these targets.

2.2. Hybrid Model of L. major DHFR-TS and Molecular Docking Calculations.

To examine the mechanism of action of the tested kauranes and determine whether
the kauranes that previously showed inhibitory activity against pteridine reductase 1
(PTR1) also act against dihydrofolate reductase-thymidylate synthase (DHFR-TS), a
molecular docking study was conducted using a LmDHFR-TS hybrid model built in the
YASARA software (YASARA Biosciences GmbH, Vienna, Austria; 2018). The model's

reliability and stereochemical qualities were evaluated through Ramachandran, WHAT IF,

177



and VERIFY 3D plots, as well as Z-scores of dihedrals, which describe the deviation of the
model's quality from the average high-resolution X-ray structure. The Ramachandran plot
showed that 96.9 of residues were in the most favored regions, with 99.5% in allowed
regions and only 0.5% (corresponding to five amino acids) in the outlier region, indicating
that the LmDHFR-TS model was satisfactory (Supplementary Material).

The VERIFY 3D (https://services.mbi.ucla.edu/SAVES/) results showed that
92.6% of residues had an averaged 3D-1D score of >0.2, indicating a reliable model. The
Coarse Packing Quality Control of the LmDHFR-TS model, evaluated using WHAT IF,
showed a mean score of -0.594, with only 1.7% of residues (8 of 520 amino acids) scoring
-5.0 or lower. The dihedral quality was classified as optimal for the LmDHFR-TS hybrid
model, with values above 1.085 [24].

Molecular docking calculations for the selected kaurane dataset and derivatives
301a and 302a were performed using Molegro 6.0 software and the previously validated L.
major DHFR-TS hybrid model. The docking energy values ranged from -62.85 to -81.43
kJ/mol, with all structures showing higher values than the positive control MTX (-107.60
kJ/mol). Interestingly, kaurane 302 (-76.53 kJ/mol) and its derivative 302a (-81.43 kJ/mol),
which showed the highest inhibitory activity against L. major DHFR-TS in the enzymatic
assay, had the lowest docking scores among the evaluated molecules. The analysis of the
docking conformations revealed that the phenylpropanoid moiety of these two molecules
adopted a similar conformation in the active site of L. major DHFR-TS, with the p-
hydroxyl group identified as a crucial feature for the observed inhibitory activity (Figure
2h).

Table 2. Docking energies of six tested structures and MTX for L. major DHFR-TS. SD =

standard deviation; RMSD values = root mean square deviation.

Structure | Docking score (kJ/mol) | RMSD (A) SD
4 -70.25 0.68 5.7

135 -62.85 1.23 8.6
301 -713.34 1.09 10.3
302 -76.53 1.13 4.9
301a -12.26 0.89 9.8
302a -81.43 1.29 6.4
MTX -107.60 0.24 5.9
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Using a two-dimensional analysis, critical interactions with active site amino acid
residues of the enzyme were identified. It was observed that hydrogen bond interactions
are directly related to the 1Cso values obtained in the enzymatic assay. Structures 302 and
302a, which had the lowest 1Cso values, showed two hydrogen bond interactions involving
residues 145 and S86 for 302 and W47 for 302a, and the carbon-19 of these two kauranes
(Figure 2d-f). The interaction with residue S86 was also observed for structure 301, which
had a moderate I1Cso value among the tested structures, with the only hydrogen bond
interaction being observed in this kaurane (Figure 2c¢). This behavior was also observed in
structure 4 (Figure 2a), which only interacted with residue A32 through hydrogen bonds.

The positive control, MTX, showed three hydrogen bond interactions with residues
D52, K57, and V30. The interaction with V30 potentially having a crucial role in the
inhibition of DHFR-TS. This interaction was only observed in the derivative 302a, which
had the highest inhibitory activity among the tested molecules. Interestingly, this hydrogen
bond interaction was formed with the p-hydroxyl group of the phenylpropanoid moiety of
302a, reinforcing the importance of this structural feature in the dual L. major
PTR1/DHFR-TS inhibitory activity.

Residue F56 also plays a key role in the inhibition of L. major DHFR-TS when it
interacts with aromatic regions in the kaurane series, as the most active molecules
exhibited a m—x interaction between the phenyl group of the amino acid and the pteridine
ring and phenylpropanoid moiety of MTX and structure 302a, respectively. A different
behavior was observed for structure 302 and the derivative 301a, which had intermediate
inhibitory activity against DHFR-TS. These two molecules, along with structure 135,
showed a n—o interaction with the hydrogens of the kaurane region. Structure 302a was the
only structure that showed an unfavorable interaction with residue M53, which is important

for MTX, with a n—sulfur interaction being established (Figure 2f-g).

2.3. Kaurane 302 and its derivative 302a may have the potential to inhibit DHFR-TS
in different species of Leishmania from the New World.

Leishmaniasis contracted in North and South America is referred to as "new world
leishmaniasis™ [25]. Studying this type of species is crucial for the control and elimination
of the disease, as there is a high diversity of Leishmania species in the Americas, with high
concentrations of different species found in countries such as Brazil and Colombia, leading
to a significant disease burden [26]. Some of the main new world Leishmania species

include: Leishmania panamensis, which is the primary cause of cutaneous leishmaniasis
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(CL) in Panama and has been found to infect both anthropophilic vectors and mammalian
reservoirs [27]; Leishmania braziliensis, a pathogenic agent of CL and mucocutaneous
leishmaniasis (MCL), primarily distributed in South and Central America [25-28]; and
Leishmania amazonensis, an etiological agent of diffuse CL and tegumentary leishmaniasis
(TL) [29]. In previous research, molecular docking calculations and MD simulations using
PTR1 hybrid models of L. braziliensis, L. amazonensis, and L. panamensis have identified
the kauranes 135, 302, and its derivative 302a as potential multi-species agents [20].
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Figure 2. Two-dimensional residual interaction diagrams of (a) Structure 4, (b) structure
135, (c) Structure 301, (d) Structure 302, (e) Structure 301a, (f) Structure 302a and (Q)

Methotrexate (MTX). Interacting residues are shown as colored circles depending on the
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interactions (as colored dashed lines): H-bond (lime), Van der Waals (green), n—c (purple),
n— alkyl (pink), n— = (fuchsia), unfavorable (red), and carbon H-bond (teal) interactions. (h)
Docking conformations of structure 302 (purple) and its derivative 302a (pink) in the
active site of L. major DHFR-TS (green).

To evaluate their potential dual inhibitory activity against PTR1 and DHFR-TS,
hybrid models of DHFR-TS for these three Leishmania species were built, and molecular
docking calculations and MD simulations were performed using the four kauranes and two
derivatives, which were previously tested against the DHFR-TS recombinant. The
Ramachandran plot of these three hybrid models showed that the main possible chain
conformations included more than 97.2% of residues in the most favored regions for the
three hybrid models, with 99.7% of residues in allowed regions. All models showed three

residues (0.3%) in disallowed regions (outliers; Supplementary Material).

Table 3. The VINA score values for six tested structures and MTX (methotrexate) for
dihydrofolate reductase-thymidylate synthase (DHFR-TS) of Leishmania brazilensis,
Leishmania panamensis, and Leishmania amazonensis. SD = standard deviation; RMSD

values = root mean square deviation.

L. braziliensis L. panamensis L. amazonensis
Structure [ vINA Score VINA Score VINA Score
(kcal/mol) D |RMSD (kcal/mol) D |RMSD (kcal/mol) D |RMSD

4 -10.70 |0.05| 0.13 -10.96 [0.07| 0.46 -10.68 |0.04| 0.11
135 -10.50 0 | 021 -10.19 [0.03| 0.31 -10.52 |0.06| 0.25
302 -10.90 |0.05| 0.55 -10.44 0.05| 2.73 -10.55 |0.15| 0.86
3022 -11.17 ]0.13| 0.61 -12.55 10.28| 0.56 -10.60 |0.08| 0.61
301 -10.40 |0.10| 0.92 -10.84 [0.07| 1.68 -10.85 |0.05| 0.64
3012 -10.66 |0.20| 0.45 -12.54 10.08| 0.86 -11.14 |0.15| 0.79
MTX -9.64 |0.07| 1.87 -945 |0.15| 1.48 -9.54 |0.07| 1.71

The analysis of the docking results showed that for L. braziliensis, the tested
structures had similar VINA score values, except for derivative 302a, which presented the
lowest affinity value (-11.17 kcal/mol). All structures had lower docking values compared
to MTX (-9.64 kcal/mol), as seen in Table 3.
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Figure 3. Best pose of structure 302 (orange) and MTX (red) in the active site of (a-d) L.
amazonensis (b-e) L. brazilensis and (c-f) L. panamensis DHFR-TS (green). Flexible

aminoacids are marked in pink.

By analyzing the interactions between the tested kauranes and the flexible residues
of the active site of L. braziliensis DHFR-TS, it was found that the unsaturation of carbon-
17 is crucial for the inhibition of 301, 302, and their derivatives 301a and 302a with the
enzyme, via w-alkyl interactions with Y91 and M53. This interaction was also observed in
MTX through a =m-sulfur interaction with the thiol group of methionine. In addition, the
potential inhibitory activity observed for structure 4 was related to a hydrogen bond
interaction between Q48 and the carbonyl group of carbon-3, as well as the presence of a
1,3-dioxolane group. Neither structure 301 nor 302 interacted with the phenylpropanoid
moiety of their structures, which was different from what was previously observed with L.
major DHFR-TS.

For L. panamensis, both derivative structures 301a and 302a presented the lowest
VINA score values, -12.55 kcal/mol and -12.54 kcal/mol, respectively, showing a higher
inhibitory activity compared to the four kauranes and the control, MTX (Table 3).
Structures 301 and 302 did not show any m-alkyl interaction with Y91 (Figure 3b), with
mainly Van der Waals forces observed with flexible residues such as V31, V49, and V156.
Kaurane 301 established a hydrogen bond between the carboxylic group of Carbon 4 and
residue Q48. This interaction was also observed for MTX, however, a Negative-Negative

unfavorable interaction with D52 affected the affinity value for this compound. A common
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alkyl interaction between V31 and the unsaturation of carbon-17 of structure 135, and
between V31 and the 1,3-dioxolane group of structure 4, was also observed.

In the same manner, L. amazonensis exhibited a behavior similar to that of L.
brazilensis with VINA score values ranging from -10.52 to -11.14 kcal/mol, all of which
showed lower affinity values compared to MTX (-9.54 kcal/mol). The latter only showed
three interactions with the flexible residues in the active site of the enzyme, including two
Van der Waals interactions with V49 and Q48 and a m-sulfur interaction between the
sulthydryl group of M53 and the pteridine ring. Structures 301 and 302 displayed the same
interactions, which were classified into three groups: w-alkyl with M53 and Y91, alkyl with
V87, and Van der Waals with Q49, V31, and V156. On the other hand, Structure 4 was the
only kaurane that exhibited a hydrogen bond interaction with Q48, which might explain the
slight difference in its affinity value.

Figure 3 displays the complex between the best-docked pose of structure 302, the
potential multispecies dual DHFR-TS/PTR1 inhibitor, and each of the three DHFR-TS
hybrid models built in this study. For the L. brazilensis and L. amazonensis species (Figure
3a and 3b), similar poses and intermolecular interactions were observed, highlighting, the
n-alkyl interactions of Y91 and M53 with the double bond of carbon-17.

In contrast, L. panamensis showed a different three-dimensional conformation in
the active site of DHFR-TS, with a different spatial position for the phenylpropanoid
moiety compared to the other two species of Leishmania. Additionally, residue Y91, which
was a key residue in the interaction of the evaluated structures with the enzyme in L.
amazonensis and L. brazilensis species (Figure 3a and 3b), did not interact with the
unsaturation of carbon-17. This same pattern was also observed for MTX, where Y91 did

not appear to be a relevant amino acid for the inhibitory activity.

2.4. Molecular dynamics simulations for L. major and L. brazilensis DHFR-TS
interacting with 302 and MTX.

To validate the hybrid models built for the different Leishmania species used in this
study and evaluate the protein-ligand stability of structure 302 and its derivative 302a,
molecular dynamics (MD) studies were performed on L. major and L. brazilensis DHFR-
TS using MTX as a reference ligand.

Initially, Root-mean-square deviation (RMSD) analyses were conducted to assess
the structural stability of the receptor frame. These analyses measured the distance between

different positions of a set of atoms over time (in nm) [30]. For L. major DHFR-TS, during
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the first 30 ns, similar levels of perturbation were observed, with RMSD values ranging
from 0.15 to 0.30 nm for structures 302, 302a, MTX, and the apoenzyme (apoLmDHFR-
TS, the protein without the ligand).

After 30 ns, the protein in complex with structure 302 and its derivative 302a
showed increased stability, with lower RMSD values compared to apoLmDHFR-TS
(Figure 4a). The same pattern was observed for L. brazilensis, as apoLbDHFR-TS showed
a constant increase in RMSD values (from 0.20 to 0.40 nm) during the 50 ns, while the
complexes LbDHFR-TS:302 and LbDHFR-TS:MTX had values ranging from 0.20 to 0.25
nm (Figure 4b). This indicates that structure 302 increases the stability of the complex with

DHFR-TS in both Leishmania species, similar to the stability exerted by MTX.
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Figure 4. (a-b) Root-mean-square deviation (RMSD), (c-d) root-mean-square-fluctuation
(RMSF), and (e-f) radius of gyration (RoG) values within the L. major DHFR-TS and L.
braziliensis DHFR-TS binding site, obtained after molecular dynamics simulations.
Apoenzyme (blue); DHFR-TS:MTX complex (yellow); DHFR-TS:302 complex (pink);

DHFR-TS:302a complex (light green).
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Afterward, we analyzed the flexibility of residues with different ligands using root-
mean-square fluctuations (RMSF) values. Similar patterns were found in both L. major and
L. brazilensis during the entire dynamic simulations (Figure 4c and 4d). Regions with
defined tertiary structures (a-helices or f-sheets) showed similar RMSF values (0.1 to 0.2
nm) for structure 302 and its derivative 302a in complex with L. major DHFR-TS, as well
as for the apoenzyme.

However, the control compound MTX presented higher RMSF values, particularly
in loop regions of the protein. On analyzing the RMSF values in L. brazilensis DHFR-TS,
the LbDHFR-TS:302 and the apoenzyme showed similar behaviors over the simulation
time, while structure 302 had higher fluctuations in loop regions than MTX and the
uncomplexed protein, especially in the region from A113 to T121, where values ranging
from 0.30 nm to 0.63 nm were observed. Despite this, in regions with defined tertiary
structure, both MTX and the kaurane 302 showed RMSF values lower than 0.20 nm, which
indicates low flexibility in L. major DHFR-TS when complexed (Figure 4d).

In addition, we observed the evolution of the packing level of L. major and L.
brazilensis DHFR-TS through the radius of gyration (RoG) values. For L. major, the
complexes with structure 302 and its derivative 302a showed no difference in RoG values
compared with the control MTX and apoLmDHFR-TS (ranging from 2.65 nm to 2.70 nm),
indicating high stability and low fluctuations in the tertiary structure (Figure 4e).

For L. brazilensis, the RoG values for DHFR-TS were different for the two
evaluated complexes compared to the apoLbDHFR-TS. During the first 30 ns of the
simulation, no differences in RoG values were observed (RoG of approximately 2.68 nm).
However, after this time, the complexes LbDHFR-TS:302 and LbDHFR-TS:MTX
demonstrated different behaviors, with a reduction in the RoG value (approximately 2.64
nm). This indicates that structure 302 stably folded after the simulation, compared to the

apoenzyme, which remained at a constant value during the 50 ns test period (Figure 4f).

2.5 Free energy calculations by the Molecular Mechanics - Poisson Boltzmann
Surface Area approach (MM/PBSA) method.

After the molecular dynamic simulations were completed, the binding free energies
for the complexes of structures 302 and 302a, and MTX with L. major DHFR-TS, as well
as the complexes of structure 302 and MTX with L. brazilensis DHFR-TS, were calculated
using the MM/PBSA method. The kaurane 302 and its derivative 302a in complex with L.
major DHFR-TS reached binding free energy values of -105.8 kJ/mol and -118.2 kJ/mol,
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respectively, which were both higher than the value measured for the complex LmDHFR-
TS: MTX, which was -127.4 kJ/mol. Conversely, the complex LbDHFR-TS:302 (-137.2
kJ/mol) reached a lower binding free energy value compared to the complex LbDHFR-TS:
MTX (-93.9 kJ/mol). Nevertheless, for both Leishmania species, similar energetic
contributions were observed, which were linked to the structural features of the evaluated

molecules (Table 4).

Table 4. Binding free energies (kJ/mol) from the MM/PBSA calculations for structure 302
and its derivative 302a for L. major DHFR-TS and Structure 302 for L. brazilensis DHFR-

TS; In both proteins MTX was used as reference ligand.

Leishmania major

Structure Van der Waals | Electrostatic | Polar solvation SASA Binding energy
(kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol) (kJ/mol)
302 -211.1+69 | -26.4+3.2 1516+8.1 | -19.8+16 | -105.8+5.0
302a -219.2+5.2 | -27.6+3.0 1485+8.6 | -199+10 | -118.2+45
MTX -2339+74 | -56.3+5.2 1924 +95 | -221+22 | -1274+6.1
Leishmania brazilensis

302 -230.1+6.0 | -20.6 £1.5 137.2+75 | -24.0+0.2 | -137.2+6.6
MTX -206.4+54 | -548+45 | 189.6+100 | -21.3+04 | -93.3+49

For the complexes with 302 in both Leishmania species, Van der Waals,
Electrostatic, and solvent-accessible surface area (SASA) parameters showed negative
contributions to the binding free energy. The Van der Waals parameter had the highest
negative contribution, and these results are directly related to the molecular docking
calculations, where in L. major and mainly in new world Leishmania species, this type of
interaction is fundamental for the stability of the DHFR-TS-diterpenoid complexes.
Electrostatic parameter also contributed negatively to the binding free energies; however,
its contribution was close to 50% for structure 302 and its derivative 302a, compared to the
contribution observed for MTX, which had a higher contribution to the total binding
energy. Finally, for all molecules, polar solvation had a positive contribution to the total
energy value, with larger contributions to the complexes with MTX in both evaluated

Leishmania species.
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3. Materials and Methods

3.1. LmDHFR-TS enzyme inhibition assay

Purification and kinetic characterization of the recombinant LmDHFR-TS protein
was performed according to the previously reported procedures [31,32]. The in vitro
evaluation of selected diterpenoids (i.e., 4, 135, 301, 302, 301a, and 302a) for inhibitory
activity against LmDHFR-TS was conducted using a spectrophotometric assay under
standard DHFR conditions. The assay consisted of LmDHFR (2.7 nM), bovine serum
albumin (BSA, 1 mg/mL), N-[tris(hydroxymethyl)-methyl]-2-aminoethanesulfonic acid
(TES) buffer (100 mM, pH 7.0, 150 mM p-mercaptoethanol, 2 mM
ethylenediaminetetraacetic acid (EDTA)), and nicotinamide adenine dinucleotide
phosphate (NADPH, 100 uM) with varying concentrations of the test compounds (0.1-128
uM).

The reaction was initiated by adding the substrate (7,8-dihydrofolate (H2F), 20 uM)
and was monitored for 360 seconds at 340 nm (i.e. oxidation of NADPH to NADP+) to
determine the initial reaction rate (Vo) through linear regression analysis of the resulting
absorbance profile. All measurements were performed in triplicate and MTX was used as a
positive control. The resulting Vo values were used to calculate the % inhibition, as 100 -
(Ri / Rc x 100), where Ri is the Vo in the presence of the inhibitor and Rc is the Vo in the
absence of inhibitors (1% DMSO v/v final concentration).

The % inhibition was measured for at least five concentrations (0.1-128 uM) for
each test compound (diterpenoids and MTX), and concentration-response curves (%
inhibition vs. Log[inhibitor]) were constructed using non-linear regression to determine the
ICso using GraphPad Prism 7.0 (GraphPad, San Diego, CA, USA). The Kiapp values were
finally calculated using the Cheng-Prusoff equation for competitive inhibition with a 1:1
stoichiometry and reversible inhibitor-binding reactions: Kiap = ICs0 / (1 + [S] / Km),
where [S] is the substrate (H2F) concentration and Km is the Michaelis constant. The
substrate  Km was calculated during the Kinetic characterization of the purified,
recombinant LmDHFR-TS and was determined to be 2.4 £+ 0.7 uM.

3.2. Isolation of compound 148

Kaurane-type diterpene 148 was isolated from Euphorbia graminea Jacqg.
(Euphorbiaceae), which was propagated under greenhouse conditions from commercially
available seeds (Swallowtail Garden Seeds, Santa Rosa, CA, USA). The aerial part (128 g)
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of two-month-old plants of E. graminea was extracted with 96% ethanol, and the raw
extract (11.2 g) was purified by column chromatography (CC) using a gradient elution of
n-hexane to methanol, yielding fifteen fractions. The purification of fraction 7 was then
performed independently by flash column chromatography on SiO using a mobile phase
of a 7:3 mixture of n-hexane and ethyl acetate, which resulted in the isolation of diterpene
148 (35.6 mg). Its spectroscopic data, including NMR and HRMS, were found to match
those of the previously isolated compound ent-kaurane-3-0xo-16a,17-diol [33]

3.3. Synthesis of 16R,17-isopropylidenedioxy-ent-kauran-3-one (4)

Compound 4 was synthesized from 148 using a previously reported procedure [34].
Briefly, compound 148 (24 mg, 0.075 mmol) and tetrahydrofuran (THF) (4 mL) were
mixed in a 10-mL round-bottom flask by stirring at 0 °C. Then, 2,2-dimethoxypropane (46
pL, 0.375 mmol) and p-toluenesulfonic acid monohydrate (0.75 mg, 0.375 pmol) were
added. The reaction mixture was stirred at 0 °C for 2 hours, allowed to warm to 20 °C, and
then stirred at this temperature for 16 hours.

The reaction was then quenched with saturated NaHCO3 (3 mL) and extracted with
CHCI> (3 x 3 mL). The CH2Cl> extract was separated, washed with 10% NaCl (2 x 3 mL),
dried over MgSOy, filtered, and concentrated under reduced pressure to obtain the structure
4 (26 mg, 96%); [a]p?® —41.8 (c 0.04, CHCI3); *H NMR (400 MHz, CDCl3) 8 4.22 (d, J =
8.3 Hz, 1H), 3.61 (d, J=10.5 Hz, 1H), 2.41 (dd, J = 8.1, 6.3 Hz, 2H), 2.33-2.28 (m, 1H),
1.85 (dd, J = 10.4, 3.6 Hz, 1H), 1.76-1.72 (m, 1H), 1.68-1.65 (m, 2H), 1.64-1.61 (m, 1H),
1.52-1.47 (m, 1H), 1.47-1.44 (m, 1H), 1.37 (s, 3H), 1.33 (s, 3H), 1.27-1.25 (m, 3H), 1.24-
1.23 (m, 1H), 1.23-1.19 (m, 3H), 1.14-1.11 (m, 1H), 0.99 (s, 3H), 0.91 (s, 3H), 0.88 (s,
3H), 0.82 (d, J = 8.4 Hz, 1H); *C NMR (100 MHz, CHCls3) §¢c 217.6, 193.0, 109.3, 79.6,
69.5, 55.2, 54.7, 52.3, 47.4, 44.1, 40.6, 40.4, 37.8, 37.3, 37.2, 34.5, 27.6, 27.4, 27.2, 26.7,
20.3, 19.4, 17.8; HREIMS [M+H]" m/z 361.2724 (calcd. for C23H3703, 361.2743).

3.4. Hybrid models of Leishmania DHFR-TS

Hybrid models of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) of
different Leishmania species were constructed using YASARA software (YASARA
18.4.24, Vienna, Austria: YASARA Biosciences GmbH, 2018). The FASTA sequences of
L. major DHFR-TS (P07382), L. brazilensis DHFR-TS (A4H4P8), L. panamensis DHFR-
TS (S5M3K7), and L. amazonensis DHFR-TS (P16126) were obtained from the UNIPROT

database (https://www.uniprot.org/). The constructed hybrid models were validated

188



through stereochemical quality assessment using PROCHECK [35]. PROCHECK
evaluated molecular diversity through several stereochemical parameters, including the
torsional angles of the main chain, side chain torsional angles, bad contacts or steric
impediments, and planarity.

PROCHECK generated a Ramachandran graph [23], which verified the allowed
and prohibited regions of the main amino acid chain. The structural quality was evaluated
using VERIFY 3D software (https://services.mbi.ucla.edu/SAVES/, accessed on January 3,
2023) and WHAT IF (https://swift.cmbi.ru.nl/servers/html/index.html, accessed on January
5, 2023). VERIFY 3D software analyzes the compatibility of the protein sequence with its
3D structure based on the chemical environment, while WHAT IF analyzes various
structural parameters, such as atomic contacts between residues. The Discovery Studio
Visualizer (BIOVIA, Dassault Systémes, Discovery Studio Visualizer, v21.1.0.20298, San
Diego: Dassault Systemes, 2020) was used to visualize the modeled protein [20].

3.5. Molecular docking calculations

The hybrid model of L. major DHFR-TS in complex with methotrexate (PDB ID:
MTX) was used for the molecular docking calculations of the six kaurane-type diterpenes
using the Molegro 6.0.1 software. All water molecules were removed from the enzyme
structures and both the enzyme and compound structures were prepared with the same
default parameters in the same software package. The MolDock Score function was used
as the score function, and the internal ES, internal H-bond, Sp2-Sp2 Torsions were all
checked as the ligand evaluation criteria. The molecular docking procedure was run 10
times, using the MolDock SE algorithm, with a maximum of 1500 interactions, a
maximum population size of 50, a maximum of 300 steps, a neighbor distance factor of
1.00, and a maximum of 5 poses returned. A grid with a 15 A radius and 0.30 A resolution
was used to cover the ligand-binding site for the enzyme structure [36, 37].

For L. brazilensis, L. panamensis, and L. amazonensis DHFR-TS, the docking
calculations were performed using the Autodock/Vina (1.1.2) plug-in for PyMOL (1.3r2)
under a Python 2.5.2 environment for Windows. The minimized structure was located in a
cube with dimensions of 22.5 A x 22.5 A x 22.5 A and a grid spacing of 0.375 A at the
geometric center of the binding pocket (coordinates for L. brazilensis: 43.01, 23.70, 1.67,
L. panamensis: 43.64, 24.00, 1.50; and L. amazonensis: 43.49, 24.96, 1.95), which was
identified through cavities analysis in Molegro 6.0.1. Flexible residues in the binding site

were selected for each model: L. brazilensis and L. amazonensis: 130, V31, Q48, V49,
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M53, V87, and V156; L. panamensis: 130, V31, Q48, V49, D52, M53, S86, and VV87. The
docking poses were classified based on their docking scores, such as the free energy or
affinity, and each calculation was performed in three replicates. Methotrexate (MTX) was
used as a control. The two-dimensional residual interaction diagrams were visualized on
the Discovery Studio Visualizer (BIOVIA, Dassault Systemes, Discovery Studio
Visualizer, v21.1.0.20298, San Diego: Dassault Systemes, 2020) [20].

3.6. Molecular dynamics simulations

Molecular dynamics simulations were carried out using Gromacs 5.0.5 on an
Ubuntu 12.04 server [38,39]. The structures 302, its derivative 302a, MTX, and the hybrid
models of L. brazilensis, L. panamensis, and L. amazonensis DHFR-TS were used as
inputs for the simulations. [40] The hydrogen atoms and corresponding charges for the
ligands were added using the AM1-BCC charge scheme in UCSF Chimera, and the ligand
topologies were generated automatically with the ACPYPE script.

The protein topologies were obtained in Gromacs using the Amber 99SB force field
and the TIP3P water model. Solvation was performed in a triclinic box with a margin
distance of 1.0 nm and 0.1 M NaCl was added to the complexes and proteins by randomly
replacing water molecules until neutrality was achieved [30, 37-39].

The systems were energy-minimized for 2,000 steps using the steepest descent
method. Then, NVT equilibration was performed at 310 K for 50 ps followed by NPT
equilibration for 500 ps, using the Parrinello-Rahman method at 1 bar with position
restraints. The solute position restraints were then released, and a production run was
performed for 5 ns while maintaining constant temperature and pressure at 310 K and 1
bar, respectively.

The coordinates were recorded in a 1 fs time step, and electrostatic forces were
calculated using the particle-mesh Ewald method. All simulations used periodic boundary
conditions and covalent bond lengths were constrained by the LINCS algorithm. The
binding free energies were calculated using the molecular mechanics Poisson-Boltzmann
surface area (MM/PBSA) method based on the trajectories obtained from the molecular

dynamics’ simulations [37-39].

4. Conclusions
This study identified compounds 302 (3a-cinnamoyloxy-ent-kaur-16-en-19-oic
acid) and 302a as potential inhibitors of both PTR1 and DHFR-TS in L. major, building
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upon previous findings of PTR1 inhibition [20]. Both 302 and 302a displayed in vitro
inhibitory activity against L. major DHFR-TS, with ICsp values of 6.3 and 4.5 pM,
respectively. Additionally, other kaurane-type diterpenes, such as synthesized structure 4,
also inhibited DHFR-TS in vitro with an ICso value of 7.6 pM. Structures 301 and 301a,
which were previously classified as inactive against PTR1, also showed inhibitory activity
against DHFR-TS, verifying the results obtained from MolpredictX. Furthermore,
molecular docking calculations using a hybrid model of L. major DHFR-TS allowed
evaluation of the mechanism of action of the tested kauranes. The p-hydroxyl group of the
phenylpropanoid moiety of structure 302a was found to play a crucial role in the inhibition
of DHFR-TS.

Additionally, hybrid models for three Leishmania species with high incidence in
Central and South America were constructed. The best docked results for structure 302 and
its derivative 302a in the three hybrid models showed a correlation between the affinity
values obtained from the molecular docking and some structural features of the kauranes,
such as the presence of an unsaturation at carbon-17 that interacts with the amino acids of
DHFR-TS through n-alkyl interactions, making these two structures potential multispecies
inhibitors. Furthermore, molecular dynamics’ simulation, in addition to validating the
hybrid models, confirmed the results previously obtained from the molecular docking
calculations. So, this study presented a valuable approach for identifying potential dual
PTR1/DHFR-TS inhibitors, contributing to the development of alternative chemotherapy

strategies against these diseases.
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CAPITULO V




O é4cido cindmico é um acido organico presente naturalmente em plantas, sendo
caracterizado por baixa toxicidade e amplo espectro de atividades bioldgicas. Na busca por
compostos farmacologicamente ativos, os derivados de &cido cindmico sdo considerados
importantes e promissores, com grande potencial para o desenvolvimento de medicamentos
[1]. Quimicamente, nos &acidos cindmicos, a funcionalidade do &cido 3-fenil acrilico
oferece trés principais sitios reativos: substituicdo no anel fenilico, adi¢do na insaturacao-a,
B e reacdes da funcionalidade do &cido carboxilico [2]. Derivados de acido cindmico,
incluindo flavonoides e lignanas, apresentam notével potencial leishmanicida, tornando-os
candidatos promissores no combate a infecgdes por Leishmania.

Encontrado em muitas plantas, o acido cindmico e seus derivados sao
frequentemente avaliados por sua atividade farmacoldgica [3]. Gouri et al. relatam alguns
inibidores naturais contra amastigotas de Leishmania, como luteolina (ICso = 3,12 uM),
quercetina (ICso = 10,5 uM), crisina (ICso = 13 uM), apigenina, miricetina, &cido cindmico
(ICs0 = 0,25 uM) e licocalcona A (ICso = 0,9 uM), que podem desempenhar um papel
importante na descoberta de medicamentos [4]. Por outro lado, Peixoto et al. avaliaram a
atividade bioldgica de 25 derivados de &cido cindmico contra amastigotas de Leishmania
braziliensis, obtendo resultados promissores e observando que anéis aromaticos com
oxigénio como heterodtomo tiveram um efeito benéfico em termos de atividade contra
Leishmania [5].

Flavonoides derivados do é&cido cinamico tém mostrado notavel atividade
leishmanicida. Compostos como quercetina [6], kaempferol [7] e naringenina [8],
originados da via do 4&cido cinamico, possuem propriedades anti-Leishmania. Sua
capacidade de modular o estresse oxidativo e interferir em processos celulares essenciais
no parasita os torna valiosos no combate a infecc¢@es por Leishmania.

Lignanas, outra classe de derivados do acido cindmico, exibem atividades
leishmanicidas promissoras. A nirantina, uma lignana isolada das partes aéreas da planta
Phyllanthus amarus, apresenta amplo espectro de atividades farmacologicas, incluindo um
potente efeito antileishmanial [9]. Secoisolariciresinol [10] e matairesinol [11], derivados
do acido cindmico, demonstraram eficacia contra parasitas da Leishmania. Essas lignanas
podem interferir nos mecanismos de crescimento e sobrevivéncia do parasita, tornando-as
candidatas potenciais para o desenvolvimento de medicamentos.

Este capitulo foca na identificacdo de potenciais inibidores da diidrofolato redutase-
timidilato sintase (DHFR-TS) da Leishmania major, essencial para a sintese de DNA.

Utilizando um banco de dados com 314 metabdlitos secundarios derivados do &cido
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cindmico na familia Asteraceae, uma triagem virtual identificou hits promissores, incluindo
acido litospérmico, diarctigenina e isolappaol A. Simula¢bes de dindmica molecular
validaram sua estabilidade, e ensaios in vitro demonstraram inibigéo efetiva da LmDHFR-
TS. Notavelmente, duas lignanas exibiram seletividade superior em relagéo ao metotrexato,
indicando seu potencial no combate a leishmaniose. Pesquisas continuas nessas lignanas
hibridas butirolactonas C6C3 podem oferecer uma perspectiva mais promissora para
combater essa doenga tropical negligenciada.
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Abstract: The critical enzyme dihydrofolate reductase-thymidylate synthase in
Leishmania major (LmDHFR-TS) serves a dual-purpose role and is essential for DNA
synthesis, a cornerstone of the parasite’s reproductive processes. Consequently, the
development of inhibitors against LmDHFR-TS is crucial for the creation of novel anti-
Leishmania chemotherapies. In this study, we employed an in-house database containing
314 secondary metabolites derived from cinnamic acid that occurred in the Asteraceae
family. We conducted a combined ligand/structure-based virtual screening to identify

potential inhibitors against LMDHFR-TS. Through consensus analysis of both approaches,
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we identified three compounds, i.e., lithospermic acid (237), diarctigenin (306), and
isolappaol A (308), that exhibited a high probability of being inhibitors according to both
approaches and were consequently classified as promising hits. Subsequently, we
expanded the binding mode examination of these compounds within the active site of the
test enzyme through molecular dynamics simulations, revealing a high degree of structural
stability and minimal fluctuations in its tertiary structure. The in silico predictions were
then validated through in vitro assays to examine the inhibitory capacity of the top-ranked
naturally occurring compounds against LmDHFR-TS recombinant protein. The test
compounds effectively inhibited the enzyme with 1Cso values ranging from 6.1 to 10.1 uM.
In contrast, other common cinnamic acid derivatives (i.e., flavonoid glycosides) from the
Asteraceae family, such as hesperidin, isovitexin 4’-O-glucoside, and rutin, exhibited low
activity against this target. The selective index (SI) for all tested compounds was
determined using HsDHFR with moderate inhibitory effect. Among these hits, lignans 306
and 308 demonstrated the highest selectivity, displaying superior Sl values compared to
methotrexate, the reference inhibitor of DHFR-TS. Therefore, continued research into the
anti-leishmanial potential of these C6C3-hybrid butyrolactone lignans may offer a brighter

outlook for combating this neglected tropical disease.

Keywords: Leishmania; Asteraceae; DHFR-TS; lignans; flavonoids; natural products;

machine learning

1. Introduction

Leishmaniasis is a neglected tropical disease (NTD) caused by protozoan parasites
of the genus Leishmania, which are transmitted by the bite of infected sandflies. This
disease affects millions of people worldwide, particularly in developing countries with
poor health infrastructure. The primary clinical forms of the disease are visceral,
cutaneous, and mucocutaneous. According to the World Health Organization (WHO), the
global burden of leishmaniasis is estimated to be around 700,000 to 1 million new cases
each year, with 90% of the cases occurring in just six countries: Afghanistan, Algeria,
Brazil, Colombia, Iran, and Syria [1,2]. The sandflies that transmit leishmaniasis are most
active at night and breed in wet soil, organic matter, or animal burrows [3]. In Colombia,
10 out of the 20 species that can infect both humans and other living beings are present.
The cutaneous leishmaniasis (CL) form is the most frequent (98-99%), with the population

under five years old and immunocompromised individuals being the most affected [4,5].
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The number of CL cases reported in Colombia in 2022 was 4906, with the departments of
Amazonas, Boyaca, Caqueta, Cesar, Cérdoba, Cundinamarca, Putumayo, Santander, and
Sucre being the most affected areas [6].

Since the late 1980s, Leishmania-HIV co-infection has been reported in 35
countries, and there have also been other cases of Leishmania-Malaria co-infection, which
are associated with the worsening of the clinical condition of patients with leishmaniasis.
This co-infection type has increased the disease’s burden due to the greater difficulty of
clinical treatment [7,8]. Currently, antimonial compounds are the primary treatment for
leishmaniasis; however, they present high toxicity and resistance in some endemic regions.
To address these challenges, alternative drugs have been developed, such as liposomal
amphotericin B, which significantly reduces the side effects and treatment duration
associated with free amphotericin B but is expensive [9,10]. Other drugs, such as
paromomycin and miltefosine, have been associated with high toxicity, resistance, and
teratogenic and abortive effects, promoting the discovery and development of low-cost,
highly effective drugs with low toxicity [11]. Furthermore, it is worth noting that while
Leishmania is a parasitic disease mainly affecting humans, it also affects animals such as
dogs and rodents, which can serve as reservoirs for the parasite and increase the risk of
transmission to humans [12,13].

Therefore, efforts to develop effective treatments and control measures must be
considered. High-throughput screening (HTS) has been used since the early 1990s to test
the activity of large numbers of molecules against different diseases and thereby identify
potential hits for drug development [14]. However, the uncertainty of success, as well as
the time and screening costs, limit the use of this technique [15]. In recent years,
chemoinformatics tools (e.g., molecular docking, machine learning) have been utilized to
conduct in silico studies that can predict the interactions between a protein and a ligand,
reducing the number of actual laboratory experiments and accelerating the drug discovery
process more efficiently and cost-effectively [14,16]. The different research conducted in
this field has led to the development of increasingly efficient and better classifying models,
which take advantage of large compound databases, opening the possibility of studying
diseases that mainly affect poorer populations (NTD), which are not attractive to large
industries and big pharma [17].

Leishmaniasis is commonly treated with plants from the Asteraceae family in
traditional medicine. Given the diversity of this family (32,913 species) and the wide range

of phytochemicals they contain, including alkaloids, coumarins, flavonoids, benzofurans,

201



sterols, and terpenoids, they are considered a promising source of new leishmanicidal
compounds [18]. Some secondary metabolites studied in this family have been
sesquiterpenoids [19,20], triterpenes [21], phytosterols [22], and kauranes [23]. However,
although they have shown activity to inhibit the disease, their plCso is not large enough,
and compounds that are effective at low concentrations and selective against the parasite
are preferred. A group of compounds that has not yet been studied, with records reporting
promising in vitro activity, is the derivatives of cinnamic acid belonging to the Asteraceae
family [24-26].

Gouri et al. report some natural inhibitors against Leishmania amastigotes, such as
luteolin (ICso = 3.12 uM), quercetin (ICso = 10.5 uM), chrysin (ICso = 13 uM), apigenin,
myricetin, cinnamic acid (ICso = 0.25 uM), and licochalcone A (ICso = 0.9 uM), which can
play an important role in drug discovery [24]. Peixoto et al., on the other hand, evaluated
the biological activity of 25 cinnamic acid derivatives against Leishmania braziliensis
amastigotes, obtaining promising results and finding that aromatic rings with oxygen as a
heteroatom had a beneficial effect in terms of activity against Leishmania [25].
Considering that heterocyclic compounds have been of great importance for drug
development in the pharmaceutical industry, derivatives of cinnamic acid, which is an
aromatic carboxylic acid commonly substituted in the trans position by an acrylic acid
group, represent an interesting starting point for directing studies in the search for possible
hits against different species of leishmaniasis [27]. Although some of these compounds
have already been studied, many more remain to be analyzed.

Some cinnamic acid derivatives, such as indole-based inhibitors with a Michael
acceptor cinnamic ester head, have been tested against human coronaviruses,
demonstrating ECsp values of 9.14 uM and 10.1 uM [28]. Another area in which their
potential has been demonstrated is as antitumor agents. In this context, it has been found
that brefeldin A 4-O-(4)-dimethylaminocinnamate improves aqueous solubility and
exhibits strong cytotoxic activity against HepG2 and BEL-7402 cell lines, with 1Cso values
0f 0.29 and 0.84 uM, respectively [29].

Additionally, the compound (E)-N-(2-(dimethylamino)ethyl)-3-(1H-indol-3-yl)-N-
(pyridin-2-yl) acrylamide has shown promise as a focal adhesion kinase (FAK) inhibitor
for the intervention in metastatic triple-negative breast cancer. It potently inhibits the
proliferation, invasion, and migration of TNBC cells in vitro, with an 1Cso of 8.37 uM [30].
Additionally, these types of compounds have been proven to be potential anti-

inflammatory agents by inhibiting Akt/NF-xB and MAPK signaling pathways. Among
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them, ursodeoxycholic acid—cinnamic acid hybrids showed the best inhibitory activity,
with an 1Csp of 7.70 uM and no significant toxicity [31].

In the present study, a computational approach was undertaken to identify potential
inhibitors of the bifunctional enzyme dihydrofolate reductase-thymidylate synthase
(DHFR-TS) of Leishmania major given its crucial role in the synthesis of DNA in
trypanosomatids, which is essential for the parasite’s reproduction [32]. To accomplish
this, a custom-made, in-house library containing 314 specialized metabolites derived from
cinnamic acid was virtually screened.

Initially, a ligand-based predictive classification model was developed using
experimental information on the ICso values retrieved from in vitro assays of reported
compounds against Leishmania. Simultaneously, employing a hybrid LmDHFR-TS model
constructed based on its amino acid sequence [33], a structure-based ranking through
molecular docking calculations was performed using the investigated specialized
metabolite database. Through a consensus analysis, molecules with the highest probability
of being inhibitors by both approaches were classified as possible hits.

These secondary metabolites were further evaluated through in vitro assays using the
recombinant LmDHFR-TS, and ADMET properties were calculated to determine their

pharmacokinetic properties.

2. Results and Discussion

2.1. Combined Ligand-/Structure-Based Virtual Screening Approach Using
LmDHFR-TS.

2.1.1. Ligand-Based Virtual Screening

Initially, a compilation of compounds exhibiting inhibitory activity against
LmDHFR-TS was assembled from the ChEMBL database. These compounds underwent
classification as either active or inactive, a determination based on their reported 1Cso
values. A cutoff point of plCso = 5.0 was employed for this classification. The choice of
this threshold was grounded in the range of ICso values documented in the ChEMBL
database, with an effort to strike a balance between the number of active and inactive
compounds. This specific value aims to optimize the representation of chemical space for
both active and inactive structure classes while concurrently minimizing the false positive

rate of the model.
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To refine the dataset, duplicate molecules were eliminated during the data curation
process, ensuring the creation of a virtual screening model characterized by high prediction
efficiency. Additionally, molecules with an ICs value falling within 0.1 of the cut-off
point were included in the analysis. Ultimately, a total of 790 molecules were chosen for
model training. Within this set, 378 were identified as inactive (47.8%), while 412 were
recognized as active (52.2%).

In the ligand-based process, VolSurf+ (128) and AlvaDesc (more than 4000)
molecular descriptors were calculated from the three-dimensional representation of each
compound in the database. For AlvaDesc molecular descriptors, a feature selection was
conducted before model training. This process involved removing all constant variables,
variables with only one unique value, variables that had at least one sample with a missing
value or exhibited autocorrelation greater than 0.95. After this process, 523 molecular
descriptors were used for the model construction.

These descriptors were then utilized to construct the random forest (RF) model in
Knime software (KNIME 4.5.0, the Konstanz Information Miner, Copyright 2003—-2014,
www.knime.org (accessed on 2 February 2023)), which comprised 200 decision trees. The
Gini index was employed as the split criterion in the RF model to reduce the number of
false positive results. The dataset underwent a five-fold cross-validation strategy, where it
was divided into five subsets, each containing an 80% modeling set and a 20% validation
set. The modeling set was exclusively used for model construction and further subdivided
into multiple training and test sets, maintaining an 80%/20% split ratio. These procedures
were conducted following the approach described by Fourches et al. [34].

Molecular descriptors play a crucial role in drug discovery and development,
serving as representations of the molecular and chemical properties of the compounds
under investigation. In this study, the selected descriptors proved to be instrumental.
VolSurf+ generates three-dimensional (3D) molecular descriptors based on the distribution
of molecular electrostatic potentials and hydrophobicity, encapsulating molecular surface
properties, such as size, shape, and electrostatic potential distribution [35,36]. On the other
hand, AlvaDesc provides a diverse array of descriptor types, encompassing constitutional
descriptors (detailing the number and type of atoms, bonds, and functional groups in the
molecule), topological descriptors (representing molecular shape, size, and complexity),
electrostatic descriptors (conveying molecular polarity and charge distribution), and
guantum mechanical descriptors (pertaining to the electronic structure and properties of the
molecule) [37,38].
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The performance of the RF model was assessed to compare the efficacy of the two
types of descriptors. This assessment included calculating classification precision, recall,
F1-score, and Matthew’s correlation coefficient (MCC). Additionally, receiver operating
characteristic (ROC) curves were analyzed, and the area under the ROC curve (AUC) was
calculated (Figure 1). These evaluation metrics are commonly utilized to gauge the
effectiveness of binary classification models. ROC curves and their AUCs are frequently
employed to evaluate the performance of models that generate continuous output scores or
probabilities. AUC serves as a scalar measure of the model’s overall ability to distinguish

between positive and negative cases [37,39].
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Figure 1. ROC curve comparison for the RF model using AlvaDesc and VolSurf
descriptors for (a) test sets and (b) cross-validation. Performance evaluation of RF using
(c) AlvaDesc and (d)VolSurf descriptors. (e) Precision-recall (PR) curves for cross-
validation. (f) Scatter plots depicting the results of the PCA analysis conducted on the

training and test datasets.
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According to the parameters presented in Figure 1, it is evident that the MCC and
AUC values for both the test sets and cross-validation are higher for AlvaDesc descriptors
compared to those obtained for VolSurf descriptors. However, considering that a higher
AUC value indicates a more remarkable classification ability of the model and that MCC is
expressed in a range of —1 to 1 (where a high value close to 1 suggests a strong correlation
between the predicted class and the true class), good values were obtained for both
AlvaDesc (AUC: 0.863 and 0.906, MCC: 0.554 and 0.645) and VolSurf (AUC: 0.855 and
0.884, MCC: 0.539 and 0.598) descriptors.

Regarding precision, recall, and F1 score, good and similar values were obtained
for both models, except for the recall for inactive compounds in the model created using
VolSurf descriptors, which was low, with a value of 0.69. Sensitivity and specificity
measures were also calculated to assess the performance of the RF model. For AlvaDesc,
the values were 0.807 and 0.752, while for VolSurf, the values were 0.843 and 0.690,
respectively. These results indicate a tendency to have few false negatives, a higher value
of true negatives, and a lower false positive rate for both descriptors.

The precision-recall (PR) curves, closely related to the ROC curve, were
constructed as an evaluation tool for binary classification, enabling the visualization of
performance across various thresholds [40]. The results revealed an area under the PR
curve of 0.934 for AlvaDesc and 0.885 for VolSurf molecular descriptors, indicating a
high-quality model and balanced datasets.

The reliability of the regression model was systematically verified by assessing its
applicability domain, ensuring the capability to generate trustworthy predictions. The
applicability domain (APD) determination relied on molecular interactions. Results for the
training set indicated high reliability rates, reaching 98.1% and 98.4% for the AlvaDesc
and VolSurf descriptors, respectively.

Similarly, the test set demonstrated substantial reliability, boasting rates of 96.1%
and 100% for the AlvaDesc and VolSurf descriptors, respectively. These results emphasize
the model’s dependability in predicting outcomes. In the specific context of cinnamic acid
derivatives, the APD calculation yielded a noteworthy 80% of structurally reliable
outcomes. This analysis further attests to the model’s robustness in diverse chemical
scenarios.

To enhance insights from the APD and visually represent the chemical space
distribution, principal component analysis (PCA) was conducted on the datasets employed

in this study. This analysis, performed using the training set, projected the results of the
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test set onto the distribution observed for the training set (Figure 1f). Remarkably, the
chemical space of the training set encompassed that of the test set, incorporating molecules
classified as both active and inactive.

Regarding the model constructed with AlvaDesc molecular descriptors, those
demonstrating greater relevance are those associated with the last eigenvector of the
Barysz matrix. This can be achieved either by calculating the average of its coefficients
(VE2sign_Dz(p)) or by summing them, with the resulting value weighted by the
molecule’s polarizability (VE2sign Dz(p)) or by Van der Waals volumes
(VE2sign_Dz(v)). Additionally, descriptors AVS_B(m) and AVS_B(v) utilize the charge
matrix, summing the elements of a specific row or column, and weighting them by mass or
Van der Waals volumes, respectively. Furthermore, descriptors based on extended
topochemical atom (ETA) indices are considered, specifically those related to hydrogen
bond donor atoms (ETA_D_epsiD) [37]. The obtained results regarding the relevance of
molecular descriptors are presented in Table S1.

The same analysis, evaluating the relevance of molecular descriptors, was also
conducted for VolSurf. The two descriptors with the highest accuracy values were
associated with the partition coefficient between 1-octanol and water, namely LgD6 and
LgD5, which ranked highest. These descriptors calculate the logarithm of the partition
coefficient between 1-octanol and water by summing the logP and the fraction of each
species at pH 5 and 6, respectively (Table S1).

Additionally, the LogP n-oct descriptor emerges as one of the most relevant in
model construction, along with LdS5, which computes the logarithm of the partition
coefficient between 1-octanol and water through a linear equation derived by fitting GRID-
derived atom types to experimental data on n-octanol/water partition coefficients. Finally,
DD1 appears, measuring the difference between the maximum hydrophobic volumes and
the hydrophobic volumes of the imported 3D structure calculated at the first level of
energy [35,36].

Ligand-based virtual screening (VS) was utilized to predict the potential inhibitory
activity of 314 compounds derived from cinnamic acid in the Asteraceae family, as
documented in the literature. Figure 2 showcases the structure and probability of the five
best compounds classified using AlvaDesc descriptors. These compounds were (E)-2-
hydroxy-3',6’-dimethoxychalcone (103) [41], apigenin 7-O-(6"-caffeoyl)-glucoside (235)
[42], montamine (63) [43], 3-O-p-coumaroyl-betulinic acid (150) [44], and cordoin (202)
[45]. Additionally, Figure 2 presents the top five compounds predicted using VolSurf

207



descriptors:  6,8-di-C-p-glucopyranosylchrysin  (242) [46], montamine (63) [43],
dihydrocubebin (305) [47], prebalanophonin (312) [48], and 4-O-feruloyl 5-O-
caffeoylquinic acid (96) [49].

AlvaDesc Molecular descriptors
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Figure 2. Chemical structures of the five top-ranked cinnamic acid derivatives using a
ligand-based virtual screening (LB) with AlvaDesc and VolSurf+ descriptors; P g =active

probability value.

Among all the tested compounds, 116 were classified as active using AlvaDesc
molecular descriptors, with probability values ranging from 0.50 to 0.71. On the other
hand, 93 compounds were considered active with VolSurf molecular descriptors, and their
probability values ranged from 0.50 to 0.86. Some of these molecules were previously
reported to exhibit various activities, such as analgesic activity (305), antimalarial activity
(150), cytotoxic activity (63), acting as anticancer agents (202), and demonstrating
antiproliferative properties (312) [43,45-47,50-52].
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Regarding the best compounds, only one contains nitrogen in its structure (63). The
rest have various oxygen atoms, forming heterocycles or containing carbonyl groups,
ethers, and alcohols. Additionally, one of them is a steroid (150), and another is

glycosylated (242).

2.1.2. Structure-Based Virtual Screening

Structure-based virtual screening (VS) was conducted using a hybrid homology
model of LmDHFR-TS [33], a bifunctional enzyme with a critical role in the metabolic
pathway of Leishmania parasites as well as several protozoa species. The Leishmania
genus is autotrophic for folate and unconjugated pteridines, with the enzyme DHFR-TS
playing a pivotal role in the reduction of dihydrofolate to tetrahydrofolate, a cofactor in the
biosynthesis of thymine in nucleotide metabolism [53,54].

The LmDHFR-TS hybrid model was constructed in YASARA software v.19.12.14
and subjected to thorough evaluation for reliability and stereochemical qualities through
Ramachandran, WHAT IF, and VERIFY 3D analyses. The Ramachandran plot indicated
that 96.9% of residues were in favored regions, confirming model satisfaction (Figure S1).
VERIFY 3D results, with 92.6% of residues having a reliable 3D-1D score, and WHAT IF
evaluation, showing a mean score of —0.594, substantiated the model’s quality. Dihedral
assessment revealed optimal values above 1.085, affirming the robustness of the LmDHFR-
TS hybrid model [33].

To assess the potential inhibitory capability of cinnamic acid derivatives against
LmDHFR-TS, molecular docking calculations were carried out using Molegro software.
The results were validated by redocking the co-crystallized ligand, i.e., ethyl 4-(5-{[(2,4-
diaminoquinazolin-6-yl)methylJamino}-2-methoxyphenoxy)butanoate (DQ1), along with
the reference inhibitor methotrexate (MTX) (Figure 3).
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Figure 3. (A) Chemical structures of reference ligands: Methotrexate (MTX) and ethyl 4-
(5-{[(2,4-diaminoquinazolin-6-yl)methyl]Jamino}-2-methoxyphenoxy)butanoate ~ (DQ1).
Redocking results of (B) MTX and (C) DQ1 in the active site of LmDHFR-TS. The
original ligand conformation is highlighted in red, while the best pose found in the

molecular docking procedure is shown in green.

The compounds were ranked based on the predicted docking binding energy using
the probability calculation shown below (Equation (1)), as previously reported by Herrera-
Acevedo et al. [19,20]. The ten compounds exhibiting the highest probability of being
active are presented in Table 1. Ranked compounds that did not previously show high
ligand-based probability values but appeared among the best-ranked derivatives through a
structure-based approximation are represented in Figure 4 along with their respective

structure-based probability (Psg) values.

Psg = (Ei/Emin) > 0.5 and E; < Eligand 1)

where Psp is the structure-based probability; E; is the docking energy of compound i,
where i ranges from 1 to 314 (cinnamic acid derivatives dataset); E,,;, is the lowest energy

value of the dataset; and Ej; 4474 is the ligand energy from the co-crystalized inhibitor.
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The results showed that the energy-based scoring values were lower for the
cinnamic acid derivatives compared to the reference ligands. This suggests that the studied
compounds exhibit a higher affinity with the LmDHFR-TS active site in the molecular
recognition process. Furthermore, the docking results revealed that 24.5% of the 314
cinnamic acid derivatives dataset had Psg values above 0.5, and among these top-ranked
compounds, 64 had a lower docking score than methotrexate, which achieved —114.15

kJ/mol.
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Figure 4. Chemical structure of six of the best-ranked cinnamic acid derivatives that
appear as active in the structure-based virtual screening with their respective probability to

be active. Psg = active probability value.

Three of the top-ranked molecules predicted to have high ligand-based probability
values based on the RF model also demonstrated high structure-based probability values.
Specifically, Compound 242, ranked fourth in the structure-based classification (Table 1),
was the best classified in the ligand-based VS model with VVolSurf descriptors. Compounds
235 and 63, positioned among the top ten compounds in structure-based VS with docking
scores of —161.4 kJ/mol and —160.1 kJ/mol, respectively, also showed high ligand-based
probabilities. Compound 235 was predicted to be the second-best structure with high
potential for inhibition using the model built with AlvaDesc descriptors, while Compound
63 was classified in the top three for both RF models (AlvaDesc and VolSurf molecular

descriptors).
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Table 1. Chemical structure of six of the best-ranked cinnamic acid derivatives that appear

as active in the structure-based virtual screening with their respective probability to be

active. Psg = active probability value.

Rank Ligand Docking Score (kJ/mol) SD RMSD

1 241 —182.8 5.4 1.0

2 164 —175.6 7.1 1.8

3 21 -175.5 11.2 1.0
4 242 —169.6 1.9 1.2
5 140 —-167.0 3.3 0.4
6 283 —165.4 4.8 1.7
7 165 -161.8 7.4 1.2
8 235 -161.4 5.9 0.9
9 285 -160.9 8.8 1.2
10 63 -160.1 5.2 11
Redocking MTX —114.2 2.2 0.3
DQ1 —134.4 2.5 0.3

The analysis of residues for the best poses in the top three compounds revealed that
the residues responsible for ligand binding (Val30, Val31, Ala32, lle45, Trp47, Asp52,
Met53, Phe56, Val87, Pro88, Fhe9l, Leu94, Vall56, Tyrl62, and Thr180) have been

previously reported in the literature as part of the active site [55]. Certain characteristics of

these residues, such as accessibility and charge distribution, enable selective drug design

against these protozoans without affecting human enzymes [55]. The interaction diagrams

in Figure 5 illustrate that the compound with the highest docking score (Compound 241,

Figure 5C) possesses heterocyclic rings like the reference ligands, with oxygen atoms

replacing the nitrogen atoms present in the reference ligands. However, due to the similar

electronegativities of nitrogen and oxygen, these atoms favor nearly identical interactions

with the enzyme’s active site.
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(A)

(D)

Figure 5. Residual interaction diagrams of (A) compound 241, (B) compound 164, (C)
compound 21, (D) DQ1, and (E) methotrexate. Interacting residues are shown in colored
circles and dashed lines depending on the type of interaction: H-bond (lime), van der
Waals (green), n—mn (purple), m—alkyl (pink), unfavorable (red), carbon H-bond (light
green), m—anion (orange), n—sulfide (yellowish orange). (F) structural conformations of the
coupling between the LmDHFR-TS enzyme and the ligands: DQ1 (red), Compound 241
(green), Compound 164 (pink), Compound 21 (blue).

Compounds 164 and 21 lack heterocyclic rings but contain benzene rings, which
participate in m—7m and m—alkyl interactions. Additionally, these compounds exhibit a
relevant number of oxygen-containing groups, such as esters, ethers, and carboxylic acids,
facilitating interactions with both residues within the active site and other residues.
Specifically, the carboxylic moiety facilitates van der Waals interactions, crucial as they
occur with the amino groups in the reference ligands and appear to be important since they
are present in the three top-ranked molecules. On the other hand, Compounds 242 and 140,
containing only hydroxyl groups, are less favorable in this binding mode. Although both
compounds are isomeric, Compound 164 has few favorable interactions (8 interactions),
and Compound 21 has more interactions (25 interactions).

All ligands adopted a U-shaped conformation like the reference ligands DQ1 and
MTX (Figure 5F), and most of them formed robust hydrogen bonding interactions with the
enzyme (Vall156, Val30, Lys95, Met53, Phe91, and Arg97), which are crucial determinants
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for binding [53]. To delve deeper into this behavior, a topological polar surface area
(TPSA) map was constructed for both the reference ligands and the best-ranked
compounds (Figure 6).

(A)g
© (D) (E)
| y

Figure 6. Topological polar surface area (TPSA) map of (A) DQ1, (B) methotrexate, (C)
Compound 241, (D) Compound 164, and (E) Compound 21. The arrows show the

electron-deficient region of the molecule.

The results of the TPSA maps confirmed a similar spatial distribution among the
three top-ranked compounds concerning DQ1 and MTX. An electron-deficient region was
identified at the top of the molecule (Figure 6, blue area), which is consistently present in
all evaluated molecules, including the two reference ligands. This observation rationalized
the similar binding behavior within the active site of LmDHFR-TS, particularly with Met53
as a common crucial contact for these test compounds.

The molecular lipophilic potential (MLP) was also analyzed for both ligands and
the protein (2). The results obtained from both TPSA and MLP concerning the active site
of LmDHFR-TS show that the active site ends are highly polar, explaining the observed
charge distribution in cinnamic acid derivatives.

The lipophilic areas of the pocket predominate in the center of the active site,
justifying the charge distribution depicted in Figure 6. Additionally, these calculations
revealed a pattern of distribution for polar charges for DQ1, MTX, and the three top-
ranked structures. However, this was not observed in the lipophilic regions determined in
the MLP. The structure 241 exhibits a pattern like MTX, while Ligands 146 and 21 present
lipophilic potential like DQ1 (Figure S2).
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2.1.3. Consensus Analysis of the Two VS Approaches

A combined approach was employed to determine the potential activity of cinnamic
acids against the LmDHFR-TS enzyme and to mitigate the selection of false positive
compounds. This approach incorporated probability scores derived from both structure-
based and ligand-based virtual screening (VS) methods in conjunction with the true
negative rate obtained from the RF model (Equation (2)) [19].

The design of this approach aimed to assign a higher weight to the ligand-based
probability scores (considering their reliance on experimental plCso values), in contrast to
the structure-based probability scores, which are founded on protein—ligand interactions.
This weighting scheme significantly reduces the risk of incorrectly classifying inactive
molecules as active (false positives) [23].

A = [PSB + ((1 + TNLB(AD))xPLB(AD) + (1 + TNLB(VS))XPLB(VS))]
o [3 + TNypap) + TNLB(VS)]

@)

where CA;,, = combined-approach probability, P¢z = structure-based probability, TN =
true-negative rate, and P,z = ligand-based probability (AD = AlvaDesc descriptors and VS
= VolSurf descriptors).

Table 2 presents the results of the best-ranked compounds calculated from the
consensus analysis equation. The compounds ranked among the top five for each method
are highlighted in bold. Except for 235, all compounds were classified as potentially active
in all virtual screening approximations used in this study. The consensus analysis identified
110 compounds with combined-approach probability values greater than 0.5; however,
only 47% of these compounds (52) were classified as active through the three in silico
models used in this study (Table S2). Compound 63 (montamine) was the top-ranked
compound. Montamine is an indole alkaloid that has been isolated from Asteraceae
species, such as Centaurea schischkinii and Centaurea montana. Previous studies have
reported its anticancer properties [43,56], but its efficacy against Leishmania has not been

investigated.
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Table 2. Cinnamic acid derivatives are classified as active by combining ligand-based and
structure-based VS. The numbers in italics represent those compounds classified as active
in all three in silico models, but they were not previously identified as the best-ranked

compounds in any approach.

Rank | Ligand | Pigap) | Pusvs) Pss CALm
1 63 0.68 0.83 0.88 0.78
2 242 0.52 0.86 0.93 0.74
3 96 0.55 0.73 0.77 0.67
4 241 0.53 0.55 1.00 0.64
5 39 0.57 0.64 0.77 0.64
6 237 0.61 0.55 0.84 0.64
7 306 0.63 0.53 0.83 0.63
8 165 0.53 0.60 0.88 0.63
9 140 0.59 0.51 0.91 0.63
10 308 0.57 0.59 0.81 0.63

The second best-ranked compound was 6,8-di-C-B-glucopyranosylchrysin (242), a
derivative of chrysin obtained from Lychnophora ericoides (Asteraceae). Compared to
Compounds 69 (chrysin) and 231 (techtochrysin), classified as inactive, the glycosylated
derivative 242 has more hydroxyl groups, enabling interactions with the enzyme’s active
site. In previous studies, chrysin was biofunctionalized with gold particles due to its low
bioavailability, poor absorption, and rapid excretion issues, aiming to neutralize
Leishmania parasites through its activity against the kinase—3 enzyme [57]. However,
Compound 242 could represent an alternative due to its hydrophilic character resulting
from the glycosyl groups, potentially inhibiting Leishmania parasites by interacting with
LmDHFR-TS.

The third- and fourth-best-ranked compounds were 4-O-feruloyl-5-O-
caffeoylquinic acid (96) and lucenin-2, 6,8-di-C-B-glucopyranosylluteolin (241),
respectively, both extracted from the genus Lychnophora—specifically, Lychnophora
ericoides [46] and Lychnophora salicifolia [49], respectively. Additionally, apigenin 7-O-
rutinoside (39), lithospermic acid (237), diarctigenin (306), and isolappaol A (308)—four
cinnamic acid derivatives that previously exhibited moderate values in both RF models and

the molecular docking calculations (all classified as active)—appeared among the top ten
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ranked compounds in the combined approach (Figure 7). Hence, these compounds emerge
as interesting antileishmanial candidates, as they exhibit activity across all models and
maintain consistency in their probability values. Notably, consensus scoring methods are
known to enhance hit rates by diminishing the likelihood of false positives [53-58].
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Figure 7. Cinnamic acid derivatives as potential inhibitors of LmDHFR-TS were identified
using an approach that combines ligand-based and structure-based virtual screening (VS).
CAvLn represents the combined probability value.

The compounds 4-(3,4-dihydroxybenzyl)-2-(3,4-dihydroxyphenyl)tetrahydrofuran-
3-carboxy-O-B-d-glucopyranoside (306) and 7-(3,4-dihydroxyphenyl)-3’,4'-dihydroxy-
7,8,7',8'-tetrahydronaphtho [8,8'-c]furan-1(3H)-one (308) are two lignans found in certain
species of Asteraceae. Notably, Hypochaeris radicata (native to Europe, northern Asia,
and parts of North Africa) and Arctium lappa (native to Europe and Asia) have been
reported as natural sources of these compounds. However, A. lappa is widely disseminated
in America, and H. radicata has also become invasive in regions as far-flung as New
Zealand and Chile [59].

Conversely, compound 237, lithospermic acid, is a common polycyclic phenolic
carboxylic acid that has been isolated from species of multiple botanical families, including
Lamiaceae and Asteraceae. It has demonstrated a wide range of beneficial properties,
acting against cardiovascular diseases and hepatitis. It allows endothelium-dependent

vasodilatation, lowers blood pressure, and produces antioxidant effects [60,61].

2.2. Molecular Dynamics Simulations

Conducting molecular dynamics (MD) studies aimed at evaluating protein—ligand
stabilities involved considering various factors such as solvent, ions, pressure, and
temperature for Compounds 237, 306, and 308. These three compounds emerged as
potential inhibitors of LMDHFR-TS based on the consensus analysis of the methodologies

employed in this study. Methotrexate (MTX) served as the reference ligand.
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The assessment of structural stability was accomplished through root mean square
deviation (RMSD) measurements. Over the simulated period of 100 ns, all tested
compounds exhibited comparable behavior in relation to the apoenzyme of LmDHFR-TS
(apoLmDHFR-TS, the protein without a ligand) and the LmDHFR-TS -"MTX complex.
Upon detailed examination of Figure 8A, it becomes evident that during the initial 30 ns of
the simulation, the complexes formed by LmDHFR-TS with the three analyzed ligands
exhibit behavior like that of the complex with MTX and apoLmDHFR-TS. However, after
the 40 ns mark, derivatives 237 and 308 display a higher level of disturbance, with RMSD
values fluctuating between 0.10 and 0.15 nm (Figure 8A).

Structure 306, in contrast, maintains behavior like the LmDHFR-TS---MTX
complex throughout the entire 100 ns simulation, with a minor RMSD variation (close to
0.10 nm) compared to the other two analyzed derivatives. This suggests favorable stability
of the protein, as the apoLmMDHFR-TS experiences a variation of 0.15 nm, with a minimum
observed at 40 ns and an increase in RMSD values reaching a maximum near 85 ns of the
simulation.

Concerning RMSF values (Figure 8B), all examined compounds displayed similar
behavior, although specific cases revealed distinct characteristics. Residues Glu218 and
Thr410, situated in the protein’s loop regions, exhibited the highest fluctuations for the
apoenzyme, with Glu218 showing approximately twice the RMSF value compared to the
complexes with MTX and the tested cinnamic acid derivatives.

Among the selected compounds, Compound 237 demonstrated higher fluctuations
in the loop regions than the other derivatives and MTX, with Gly118, Arg254, and Arg380
being the most variable amino acids. Compounds 306 and 308 exhibited a similar behavior
throughout the simulation, showcasing reduced flexibility when complexed.

The critical amino acid residues involved in binding to LmDHFR-TS- exhibited
relatively stable behavior, with RMSF values ranging from 0.10 to 0.20 nm throughout the
simulation. Among these residues, Phe91 and Lys95 demonstrated higher variation,
exceeding 0.20 nm. In contrast, Arg97 and Vall56 exhibited minimal fluctuation, with
values close to 0.10 nm. Notably, Val156 in apoLmDHFR-TS and the MTX complex
displayed lower fluctuation (approximately 30%) compared to the three analyzed cinnamic

acid derivatives.

218



0.40
0.35
0.30
0.25] 41,

0.20

0.15 ;

RMSD (nm)

0.10

0.05

0.0

0 10 20 30 40 50 60 70 80 90 100
Time (ns)

0.7 (B)

0.6 ‘

RMSF (nm)

0 100 200 300 400 500

RoG (nm)
>

N
N
N

2.62

2.60
0 10 20 30 40 50 60 70 80 90 100

Time (ns)
Figure 8. (A) Root mean square deviation (RMSD), (B) root mean square fluctuation
(RMSF), and (C) radius of gyration (RoG) values within the LmDHFR-TS binding site
obtained after molecular dynamics simulations. Apoenzyme (blue); DHFR-TS---MTX
complex (cyan); DHFR-TS-237 complex (light green); DHFR-TS---306 complex (yellow)
and DHFR-TS---308 complex (pink).
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Conversely, Arg97 displayed values between 0.09 and 0.12 nm. Structure 306
achieved a remarkable value of 0.09 nm, even lower than observed for the MTX complex,
while Structures 237 and 208 showed values like those of the apoprotein. Throughout the
simulation, the LmDHFR-TS complex with Structure 306 consistently promoted protein
stability, evidenced by lower RMSF values in this complex, except for residues Leul45
and Lys90.

The structural compactness and mobility of the protein—ligand complexes were
assessed throughout the simulation using the radius of gyration (RoG) plot (Figure 8C)
[23]. In the initial half of the 50 ns simulation, complexes with cinnamic acid derivatives
displayed RoG values indistinguishable from those of the control MTX and apoLmDHFR-
TS, ranging from 2.64 nm to 2.70 nm.

This indicates a high level of stability and low fluctuations in the tertiary structure.
However, after 60 ns, Compounds 237, 306, and 308 exhibited similar behavior (varying
between 2.64 nm and 2.70 nm) with increased perturbation compared to the DHFR-
TS*MTX complex and the apoenzyme, maintaining a consistent mean value with
fluctuations ranging from 2.62 to 2.64 nm.

Following molecular dynamic simulations, binding free energies for complexes
involving Compounds 237, 306, 308, and the control (MTX) with LmDHFR-TS were
determined using the MM/PBSA method. The complexes of benzylbutyrolactone-type
lignans (306 and 308) and the polyphenolic acid (compound 237) with LmDHFR-TS
showed binding free energies of —111.1 kJ/mol, —81.0 kJ/mol, and —91.6 kJ/mol,
respectively. In all cases, the energy was higher than the —124.5 kJ/mol observed for the
complex of MTX with LmDHFR-TS (Table 3).
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Table 3. Binding free energies (kJ/mol) from the MM/PBSA calculations for Compounds
237, 306, and 308 in the active site of LmDHFR-TS; MTX was used as the reference
ligand.

237 306 308 MTX
Energy Contribution| kJ/mol | SD | kJ/mol | SD | kJ/mol | SD | kd/mol | SD
van der Waals -218.3 | 6.2 | —209.7 |46 | 2176 |6.2| —239.5 |8.2
Electrostatic -31.3 (41| -38.0 (39| —290 |46| 573 |43
Polar solvation 1815 |65| 1576 |6.3| 1856 |65| 1946 |85
SASA -236 [18| 210 |19| —200 |12| —-224 |22
Binding energy -916 |4.7| -111.1 (42| -81 |46| —1245 |58

All complexes under evaluation, including the MTX reference, exhibited a
consistent contribution pattern characterized by negative energy values arising from van
der Waals, electrostatic, and solvent-accessible surface area (SASA) parameters
influencing the binding free energy. The van der Waals parameter, displaying the most
substantial negative contribution, registered values lower than —209 kJ/mol. This finding
implies that non-polar electrostatic interactions play a pivotal role in the molecular
recognition of the LmMDHFR-TS binding site by the tested compounds.

Concerning polar solvation, all compounds made positive contributions to the total
binding energy, with similar values observed for Compounds 237, 308, and MTX.
Conversely, diarctigenin (306) exhibited a lesser contribution to this parameter.
Additionally, electrostatic interactions negatively influenced the binding free energies, with
MTX showing a more significant negative contribution of —57.3 kJ/mol. Meanwhile, the
impact of electrostatic interactions for the evaluated cinnamic acid derivatives ranged from

35% to 50% relative to the reference ligand.

2.3. In Vitro Enzymatic Activity Inhibition for Selected Cinnamic Acid Derivatives
(Compounds 237, 306, and 308) against LmDHFR-TS and HsDHFR

To validate the outcomes of our combined approach utilizing two virtual screening
(VS) methodologies, we conducted in vitro enzymatic inhibition assays on five compounds
sourced from our in-house library. Compounds 237, 306, and 308, identified as active in all
approaches, were selected, along with hesperidin (140), a notable flavonoid recognized for

its reported antileishmanial activity through apoptosis induction and sterol C-24 reductase
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inhibition [62]. Isovitexin 4'-O-glucoside and rutin, demonstrating moderate levels of
activity and categorized as inactive in one of the three approaches, were also assessed
against LmDHFR-TS, with methotrexate serving as the positive control.

The determination of 1Cso values involved analyzing concentration-response curves
within the 0.1-128 uM range, employing spectrophotometric monitoring of enzymatic
activity in a standard DHFR assay. This investigation yielded a spectrum of values ranging
from 6.1 to 53.2 uM, corresponding to pICso values between 4.27 and 5.21. Notably,
Compounds 237, 306, and 308 demonstrated the highest activity against LmDHFR-TS.
Hesperidin (ICso = 21.6 uM) exhibited substantial activity against the target among the
three evaluated flavonoids, with ICso values of 53.2 uM and 41.7 uM for isovitexin 4'-O-
glucoside and rutin, respectively (Table 4).

Table 4. Results of enzymatic activity against LmDHFR-TS and HsDHFR for selected

cinnamic acid derivatives. Cl = confidence interval (95%). Sl = selectivity index.

Compound LmDHFR-TS HsDHFR .

ICs0 (UM) | CI1(95%) | ICs0 (UM) | CI (95%)
hesperidin 21.6 20.2-23.1 86.5 82.3-87.2 4.0
lithospermic acid (237) 7.5 6.8-7.9 22.6 21.3-24.7 3.0
diarctigenin (306) 6.1 5.7-6.4 27.9 26.8-28.6 | 4.6
isolappaol A (308) 10.1 9.7-10.3 44.8 424-459 | 44
isovitexin 4’-O-glucoside 53.2 51.1-54.1 125.7 122.8-127.8| 2.4
rutin 41.7 40.3-43.1 188.9 186.2-190.6 | 4.5
MTX 1.4 1.1-15 4.9 4.7-5.1 3.5

Structurally, we sought to establish a correlation between the inhibitory activity
against LmDHFR-TS and the interaction of hydrogen bond acceptors and donors,
particularly carbonyl and hydroxyl groups. Among the lignans—306 and 308—the
presence of the y-butyrolactone moiety highlighted that the most active compound (306)
possessed a higher number of carbonyl groups compared to 308—a feature shared with
lithospermic acid (237). However, the glycosylated flavonoids (hesperidin, isovitexin 4'-O-
glucoside, and rutin) exhibited low inhibitory activities, suggesting that the abundant
hydroxyl groups may negatively impact inhibitory activity.

Following this, we calculated the selectivity index (SI) based on the results
obtained from in vitro tests using the recombinant protein of Homo sapiens (Hs) DHFR.
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The I1Cso values against HsDHFR revealed a distinct pattern, implying different
mechanisms of action for these two proteins. Moderate S| values were observed, with both
benzylbutyrolactone-type lignans (Compounds 306 and 308) exhibiting the highest Sl
values—4.6 and 4.4, respectively. Notably, both lignans demonstrated higher SI values
than MTX, employed as a positive control (Table 4)

2.4. Pharmacokinetic Properties Predictions

The pharmacokinetic  properties, encompassing absorption, distribution,
metabolism, excretion, and toxicity (ADMET), of Compounds 237, 306, and 308 were
predicted using ADMETIlab 2.0 and OSIRIS DataWarrior 5.5.0 [63,64]. Multiple
approaches were employed to evaluate oral bioavailability, yielding mixed results. While
all compounds adhered to Lipinski’s “rule of five” [65], none met the criteria set by Pfizer
[66] and GSK [67], suggesting potential challenges in oral bioavailability (Table S3).

Regarding cytochrome P450 (CYP) and its isoenzymes, compound 237 exhibited a
significant probability of inhibiting CYP2C9. Similarly, Compounds 306 and 308
demonstrated potential inhibition of CYP2C19, CYP2C9, and CYP3A4, indicating
potential impacts on the metabolism of other drugs. Conversely, Compound 237 was
predicted to act as a substrate for CYP2C9, while Compounds 306 and 308 were associated
with CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4, suggesting that they could be
metabolized by these isoenzymes. Furthermore, none of the studied compounds exhibited
mutagenic, tumorigenic, reproductive, or irritant effects. Identifying potential hERG
channel blockers is crucial for assessing the risk of cardiotoxicity [68], and for the three

structures, the probabilities of hERG blocking were at most 0.212.

3. Materials and Methods

3.1. Cinnamic Acid Derivatives In-House Dataset

A custom-made, in-house virtual library of 314 distinct cinnamic acid derivatives
was built from 76 scientific articles using various search criteria, including keywords such
as Asteraceae, Cinnamic Acid Derivatives, Lignans, Polyphenols, Flavonoids, and others.
ChemAxon MarvinSketch (ChemAxon, version 21.18.0 (2021), a calculation module
developed by ChemAxon, https://www.chemaxon.com/, accessed on 12 January 2023) was

used to design all the structures.
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The three-dimensional (3D) structures for the entire set were generated using
Standardizer software (JChem, version 21.18.0 (2021), a calculation module developed by
ChemAxon, https://www.chemaxon.com/, accessed on 12 January 2023). This software
standardized the structures, added hydrogens, performed aromatic form conversions, and
refined molecular graphs in three dimensions. The process employs a divide-and-conquer
strategy, wherein the structure is partitioned into smaller fragments. These fragments are
then organized into a tree based on connectivity information. Conformers generated for the
initial structure, represented by the root node in the tree, undergo optimization. The tree-
building process incorporates a proprietary extended version of the Dreiding force field

[69]. The final dataset was saved in special data file (.sdf) format.

3.2. Classificatory Machine Learning Models

The analyses described below utilized Knime 4.5.0 software (KNIME 4.5.0, the
Konstanz Information Miner, Copyright 2003-2014, www.knime.org (accessed on 2
February 2023)) [70]. The process commenced with importing those descriptors generated
by the Volsurf+ [35,36] and AlvaDesc [37,38] programs in CSV format.

Subsequently, these descriptors underwent segmentation via the “Partitioning”
node, implementing the stratified sampling option, with 80% of the initial dataset
designated as the training set and the remaining 20% composing the test set. Random splits
were also explored while maintaining consistent ratios for both training and test sets.

The model’s creation processes entailed utilizing the modeling set and the RF
algorithm, executed through a five-fold cross-validation procedure employing WEKA
nodes. This approach provides a robust and efficient means to evaluate a model’s
performance by partitioning the data into five subsets for testing and training, facilitating
model selection and generalization assessment [23].

The applicability domain was assessed through Euclidean distances, targeting
compounds in the test set with potentially unreliable predictions. A compound was
considered unreliable if its applicability domain value exceeded d + Zo, where d represents
the average Euclidean distance, and o is the standard deviation of the samples in the
training set. These samples exhibited Euclidean distance values lower than the average
when compared to all training set samples, with Z serving as an empirical cutoff value set
at 0.5 by default [20,71].

To complement these findings and provide a more comprehensive visualization of

the chemical space within the datasets used for model construction, principal component
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analysis was conducted on the four datasets, encompassing both active and inactive
structures for both the training and test sets. This analysis was executed using Unscrambler
X (The Unscrambler® X v10.3 User Manual Version 1.0 CAMO SOFTWARE AS, Oslo,
Norway).

The RF models were fine-tuned with 200 trees and a random number generator
seed of 1, and the Gini index was utilized as the split criterion for both the training and
cross-validation sets. These parameter choices were informed by a thorough evaluation of
relevant hyperparameters for the machine learning model. The “number of trees” parameter
was explored across a range from 100 to 1000, with 200 trees identified as the optimal
selection for achieving the best quality parameters. Subsequently, the Gini index was
meticulously chosen as the preferred split criterion (Table S4).

Performance analysis of the selected models encompassed an evaluation of both
internal and external aspects, incorporating parameters such as sensitivity (true-positive
rate), specificity (true-negative rate), and accuracy (overall predictability), derived from the
confusion matrix. To offer a more comprehensive understanding of the model’s
performance beyond accuracy, the ROC curve was employed. Generated through an “ROC
curve” node, this curve relies on sensitivity and specificity. The AUC values derived from
the ROC curve range from 0.5, indicating an inability to distinguish between the two
groups, to 1, signifying perfect separation without overlap [72]. Additionally, the Matthews
correlation coefficient (MCC) was calculated, in which a value of 1 represents perfect
prediction, 0 denotes random prediction, and -1 indicates complete disagreement between
prediction and observation [73].

Moreover, a performance evaluation of the RF model using AlvaDesc and
VolSurf+ descriptors was conducted. This evaluation included precision, recall, and F1

score metrics for both active and inactive sets.

3.3. Molecular Docking Calculations

Molecular docking calculations involved the hybrid model of LmDHFR-TS bound
to methotrexate (MTX) [33] and the three-dimensional structures of the cinnamic acid
derivatives. We conducted these calculations using Molegro 6.0.1 software.

To ensure consistency, we removed all water molecules from both the enzyme and
compound structures, and we prepared them to use the software’s default settings. The
MolDock scoring function was utilized, considering internal ES, internal H-bond, and

Sp2-Sp2 torsions as criteria for evaluating the ligands.
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The molecular docking process was executed through 10 runs utilizing the
MolDock SE algorithm. It allowed for a maximum of 1500 interactions, maintained a
population size of 50, included up to 300 steps, employed a neighbor distance factor of
1.00, and returned a maximum of 5 poses. To cover the enzyme’s ligand-binding site, we
established a grid with a 15 A radius and 0.30 A resolution [23,33].

Our results were categorized according to docking scores, reflecting the free energy
or affinity of the interactions. Each calculation was repeated three times to ensure
reliability. For comparison, we employed methotrexate (MTX) as a control.

Topological polar surface area (TPSA) maps were calculated using Spartan 14 for
Windows Spartan’14 (Wavefunction Inc., Irvine, CA, USA) [74]. Molecular lipophilic
potential (MLP) maps for ligands were calculated in Molinspiration (Molinspiration,
Cheminformatics free web services, https://www.molinspiration.com (accessed on 24
November 2023), Slovensky Grob, Slovakia). For LmDHFR-TS, MLP and TPSA were
calculated using ChimeraX [75]. The visualization of two-dimensional residual interaction
diagrams was accomplished using Discovery Studio Visualizer v21.1.0.20298 (BIOVIA,
Dassault Systemes, San Diego, CA, USA) [23,33].

3.4. Molecular Dynamics Simulations

Molecular dynamics (MD) simulations were conducted in YASARA Structure v.
19.12.14 [76], employing the AMBER14 force field to model the enzyme and ligand—
enzyme systems. Before the simulations, each protein underwent hydrogen bond
optimization, and chloride (CI") and (Na*) ions were added to the model systems through
the transferable intermolecular potential 3-point (TIP3P) employing 0.997 g/L density for
solvating the simulation cell. Acid dissociation constant values (pKa) were calculated for
enzymes’ titratable amino acids with the H-bonding network and the side-chain placement
using a rotamer library (SCWRL) algorithm. Periodic boundary conditions were applied to
facilitate the simulations, involving a cell size set 10 A larger than the protein’s size in all
instances.

An initial 5000-cycle energy minimization step was carried out using the steepest
gradient approach. MD simulations used the particle-mesh Ewald (PME) method to
account for long-range electrostatic interactions (8-A cut-off distance). The simulations
were performed under physiological conditions at 298 °K, pH 7.4, and 0.9% NaCl.

Temperature control was maintained using a Berendsen thermostat while keeping the
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pressure constant. A multiple-time step algorithm with a time step of 2.00 fs was
employed.

Finally, MD simulations were run for 100 ns under constant pressure, and the
Berendsen thermostat, with snapshots saved at intervals of 100 ps, used the YASARA
macro (md_run.mcr) for all simulation phases. Subsequent analyses were also carried out
using the default YASARA macro scripts. The molecular mechanics Poisson—Boltzmann
surface area (MM-PBSA) method was employed to calculate the binding free energies of
apoenzyme and enzyme-ligand complexes from the resulting MD trajectories using the
g_mmpbsa tool in Gromacs 5.0.5 (open source, http://www.gromacs.org (accessed on 17
May 2023)) [77] on an Ubuntu 12.04 server, using NPT and periodic boundary conditions,
as previously reported [33,78].

3.5. LmMDHFR-TS and HsDHFR Enzymatic Inhibition Assays

Purification and kinetic characterization of the recombinant LmDHFR-TS protein
were performed according to the previously reported procedures [33,79,80], while
HsDHFR protein was obtained from the commercial assay kit (CS0340, Merck KGaA,
Darmstadt, Germany). Thus, the in vitro evaluation of the top-ranked selected compounds
(237, 306, 308, hesperidin, rutin, and isovitexin 4'-O-glucoside) for inhibitory activity
against LmDHFR-TS and HsDHFR was conducted using a spectrophotometric assay under
standard DHFR conditions.

These tested compounds were available from our in-house compound library.
Rutin, lithospermic acid, and rutin were commercially purchased (>98%, Merck KGaA,
Darmstadt, Germany). Isolappaol and diarctigenin were isolated from a commercial A.
lappa powdered root extract (Prescribed For Life, Fredericksburg, TX, USA) through
successive column chromatography, whose spectroscopic data was identical to those of
previous reports [81,82].

The assay was conducted with either LmDHFR-TS or HsSDHFR (2.7 nM), bovine
serum albumin (BSA, 1 mg/mL), N-[tris(hydroxymethyl)-methyl]-2-aminoethanesulfonic
acid (TES) buffer (100 mM, pH 7.0, 150 mM B-mercaptoethanol, 2 mM
ethylenediaminetetraacetic acid (EDTA)), and nicotinamide adenine dinucleotide
phosphate (NADPH, 100 uM), along with varying concentrations of the test compounds
(0.1-128 uM). The reaction was initiated by adding the substrate (7,8-dihydrofolate (H2F),
20 uM) and monitored for 360 s at 340 nm, measuring the oxidation of NADPH to
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NADP+. This allowed the determination of the initial reaction rate (Vo) through linear
regression analysis of the resulting absorbance profile.

All measurements were conducted in triplicate, and methotrexate (MTX) served as
a positive control [33]. The resulting Vo values were utilized to calculate the % inhibition,
expressed as 100 — (Ri/Rc x 100), where Ri is the Vo in the presence of the inhibitor, and
Rc is the Vo in the absence of inhibitors (1% DMSO v/v final concentration). % inhibition
was measured for at least five concentrations (0.1-128 puM) for each test compound
(cinnamic acid derivatives and MTX), and concentration-response curves (% inhibition vs.
Log[inhibitor]) were constructed using non-linear regression in GraphPad Prism 7.0
(GraphPad, San Diego, CA, USA). [33].

3.6. Pharmacokinetic Properties Predictions

The ADMET parameters for Compounds 237, 306, and 308 were calculated using
ADMETlIab 2.0, an integrated online platform for predicting ADMET properties [63].
Additionally, drug toxicity predictions were conducted using OSIRIS DataWarrior v.5.2.1,
considering parameters such as mutagenicity, tumorigenicity, reproductive effects, and
irritability [64].

4. Conclusions

This study identified three cinnamic acid derivatives, lithospermic acid (237),
diarctigenin (306), and isolappaol A (308), as potential inhibitors of LmDHFR-TS using a
combined virtual screening approach (structure/ligand-based). Two random forest models
were built using different molecular descriptors. Sensitivity and specificity measures were
obtained to evaluate the RF model’s performance. The models classified 116 (AlvaDesc)
and 93 compounds (VolSurf) as active, showing a tendency to minimize false negatives.

Molecular docking revealed that 24.5% of the 314 cinnamic acid derivatives had
values above 0.5, with 64 of them having a lower docking score than methotrexate, the
reference ligand. A consensus analysis combining the RF models with molecular docking
identified 110 compounds with combined-approach probability values greater than 0.5.
From them, 47% were classified as active through the in silico models, identifying some
compounds with potential leishmanicidal activity that a single approach had not previously
highlighted. Lithospermic acid (237), diarctigenin (306), and isolappaol A (308) were
among the top-ranked compounds, and their binding mode was evaluated using molecular

dynamics. Finally, in vitro assays using recombinant LmDHFR-TS validated the
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computational results, with 237, 306, and 308 exhibiting significant activity against
LmDHFR-TS. However, moderate selective indices (SIs) were observed when assays were
performed using HsSDHFR. Despite this finding, higher SI values than MTX were
observed. Thus, these three tested compounds emerged as an interesting alternative as hits
against LmDHFR-TS; however, specific assays against the parasitic forms of Leishmania

major are required to extend a clearer prospect for fighting this neglected tropical disease.
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Concluséo

O primeiro capitulo deste trabalho fornece perspectivas sobre o design de
medicamentos baseado na estrutura do alvo, enfatizando sua importancia e as estruturas
bem-sucedidas descobertas. Reconhece as limitacOes e destaca o potencial dos bancos de
dados constantemente atualizados e os softwares de docking molecular. O
desenvolvimento de fungbes de pontuacdo, especialmente para docking flexivel de
receptores, e avangos em simulagdes de dindmica molecular sdo cruciais para a preciséo.
Adicionalmente menciona os desafios para a melhoria da precisdo dessas metodologias
para um design eficaz de medicamentos baseado em alvos.

Na revisdao do capitulo Il, foi constatado que a utilizacdo de ferramentas de
quimioinformética para a pesquisa sobre Leishmania, com foco particular nos metabolitos
secundarios de Asteraceae, tem mostrado promessa na identificagdo de potenciais
candidatos a medicamentos. Embora essas abordagens in silico oferecam perspectivas
valiosas, a auséncia de resultados in vitro correspondentes representa um branco critico.
Estudos futuros devem priorizar validagbes experimentais para avangar no
desenvolvimento de quimioterapias eficazes e seguras contra parasitas da Leishmania.

O capitulo 111 empregou duas abordagens distintas de triagem virtual (VS) para
identificar compostos potenciais leishmanicidas partindo de um conjunto de 1306 lactonas
sesquiterpénicas (SLs) obtidas do SistematX. A VS baseada em ligantes, usando dois
modelos de random forest (RF), alcancou precisdes acima de 71%, revelando
caracteristicas estruturais associadas a amastigotas e promastigotas. A VS baseada em
estrutura, usando estruturas cristalinas e um modelo de homologia, identificou SLs com
pontuacdes de docking favoraveis. Uma andlise de consenso normalizou as pontuacdes de
probabilidade, revelando 13 potenciais SLs leishmanicidas. Notavelmente, a
disecoeudesmanolideo 3A e a 9a-linoloyloxi-15-hidroxi-8p-(2-metilbutiroyloxi) -14-oxo-
acantospermolideo surgiram como potenciais compostos leishmanicidas multialvo.
Simulacdes de dinamica molecular apoiaram as afinidades com LAPTR1 encontradas. Essa
abordagem combinada de VS oferece uma metodologia inovadora para identificar
moléculas promissoras e entender seus mecanismos de acao contra L. donovani.

Na primeira parte do capitulo IV, os cauranos 135 e 302 surgiram como
promissores agentes leishmanicidas contra L. major, validados por ensaios in vitro. Esses
compostos foram identificados a partir de um banco de dados de 360 cauranos usando uma
abordagem de aprendizado de méaquina e docking molecular. O estudo demonstrou a

precisdo da abordagem de triagem virtual (VS) e explorou os modos de ligagdo no local

239



ativo de LmPTR1. Os compostos também exibiram potencial atividade multiespécies
contra outras espécies de Leishmania, destacando sua importancia como compostos lideres
para quimioterapias alternativas.

A segunda parte do capitulo identificou os compostos cauranos 3-p-cumaroiloxi-
ent-caur-16-eno-19-oico e 4cido 3-cinamoiloxi-ent-caur-16-eno-19-oico como potenciais
inibidores duplos de PTR1 e DHFR-TS em L. major, expandindo as descobertas anteriores
de inibicdo de PTR1. Ambos compostos exibiram atividade inibitéria in vitro contra L.
major DHFR-TS, com valores de ICso de 6,3 e 4,5 uM, respectivamente. O docking
molecular e as simulages de dindmica confirmaram seu potencial como inibidores
multiespécies, oferecendo uma abordagem valiosa para a quimioterapia alternativa contra
doencas da Leishmania.

Finalmente, no capitulo V, foram identificados o acido litospérmico, diarctigenina e
isolappaol A como potenciais inibidores de LmDHFR-TS por meio de uma abordagem
combinada de triagem virtual. Os célculos de docking molecular e a anélise de consenso
revelaram candidatos promissores, com ensaios in vitro validando atividade significativa
contra LmDHFR-TS. Apesar dos indices seletivos moderados nos ensaios com HsDHFR,
esses compostos mostraram valores de SI superiores ao metotrexato, sugerindo seu
potencial como hits contra LmDHFR-TS. Pesquisas adicionais com ensaios especificos

contra as formas parasitarias de Leishmania major sdo essenciais
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Abstract: Background: Natural products are useful agents for the discovery of new lead-
-compounds and effective drugs to combat coronaviruses (CoV).

Objective: The present work provides an overview of natural substances, plant extracts,
and essential oils as potential anti-SARS-CoV agents. In addition, this work evaluates
their drug-like properties which are essential in the selection of compounds in order to ac-
celerate the drug development process.

Metheds: The search was carried out using PubMed, ScienceDirect and SciFinder. Arti-
cles addressing plant-based natural products as potential SARS-CoV or SARS-CoV-2
agents within the last seventeen years were analyzed and selected. The descriptors for
Chemometrics analysis were obtained in alvaDesc and the principal component analysis
(PCA) was carried out in SIMCA version 13.0.

ARTICLE HISTORY

Received: Angust 18, 2020
Revised: December 06, 2020
Accepted: December 15, 2020

bor.

10.21740929807328000210125113935 Resylts: Based on in vitro assays and computational analyses, this review covers twenty--
nine medicinal plant species and more than 300 isolated substances as potential anti-coro-
navirus agents. Among them, flavonoids and terpenes are the most promising compound
classes. In silico analyses of drug-like properties corroborate these findings and indicate

promising candidates for in vitro and in vivo studies to validate their activity.
Conclusion: This paper highlights the role of ethnopharmacology in drug discovery and
suggests the use of integrative (in silico/ in vitro) and chemocentric approaches to
strengthen current studies and guide future research in the field of antiviral agents.

Keywords: Natural products, drug discovery, SARS-CoV, SARS-CoV-2, COVID-19, in silico, in vitro.

1. INTRODUCTION

The ongoing severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) pandemic, in combina-
tion with the previous severe acute respiratory syn-
drome (SARS) and the Middle East respiratory syn-
drome (MERS) outbreaks, has shed light on how devas-
tating and life-threatening these emerging viral infec-
tions can be [1]. The SARS-CoV-2 outbreak (colloquia
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lly COVID-19) was first reported in Wuhan, China, in
December 2019. It spreads globally at unprecedented
rates, and the World Health Organization (WHO) de-
clared it an international public health crisis on April
05, 2020.

The emergence of SARS-CoV-2 was markedly sim-
ilar to the 2003 SARS-CoV outbreak that affected 26
countries and resulted in more than 8,000 cases [2].
Both viruses emerged during the winter, transpired
from exposure to live animals, and etiological origins
in phylogenetically related betacoronaviruses [3]. Simi-
larly, MERS-CoV was a worldwide health concern in
2012 [2]; its high mortality rate affected more than

© 2021 Bentham Science Publishers
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Abstract

Alzheimer’s disease is the most common form of dementia, representing 60-70% of dementia cases. The enzyme acetylcho-
linesterase (AChE) cleaves the ester bonds in acetylcholine and plays an important role in the termination of acetylcholine
activity at cholinergic synapses in various regions of the nervous system. The inhibition of acetylcholinesterase is frequently
used to treat Alzheimer’s disease. In this study, a merged BindingDB and ChEMBL dataset containing molecules with
reported half-maximal inhibitory concentration (ICs() values for AChE (7032 molecules) was used to build machine learning
classification models for selecting potential AChE inhibitors from the SistematX dataset (8593 secondary metabolites). A
total of seven fivefold models with accuracy above 80% after cross-validation were obtained using three types of molecular
descriptors (VolSurf, DRAGON 5.0, and bit-based fingerprints). A total of 521 secondary metabolites (6.1%) were classi-
fied as active in this stage. Subsequently, virtual screening was performed, and 25 secondary metabolites were identified as
potential inhibitors of AChE. Separately, the crystal structure of AChE in complex with (-)-galantamine was used to perform
molecular docking calculations with the entire SistematX dataset. Consensus analysis of both methodologies was performed.
Only eight structures achieved combined probability values above 0.5. Finally, two sesquiterpene lactones, structures 15
and 24, were predicted to be able to cross the blood-brain barrier, which was confirmed in the VolSurf+ quantitative model,
revealing these two structures as the most promising secondary metabolites for AChE inhibition among the 8593 molecules
tested.
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directly or indirectly related to such compounds. State-of-the-art,
curated, integrated, and frequently updated databases of secondary
metabolites are thus highly relevant to drug discovery. The SistematX
Web Portal, introduced in 2018, is undergoing development to
address this need and documents crucial information about plant
secondary metabolites, including the exact location of the species
from which the compounds were isolated. SistematX also allows
registered users to log in to the data management area and gain access to administrative pages. This study reports recent updates and
modifications to the SistematX Web Portal, including a batch download option, the generation and visualization of 'H and “C
nuclear magnetic resonance spectra, and the calculation of physicochemical (drug-like and lead-like) properties and biological

new drugs, as many current treatments for numerous diseases are
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activity profiles. The SistematX Web Portal is freely available at http://sistematx.ufpb.br.

1. INTRODUCTION

Computational approaches have played an increasingly
prominent role in natural product (NP)-based drug discovery.
For example, the development and use of NP databases allow
access to numerous chemical, biological, pharmacological,
toxicological, and structural NP data.* Sorokina et al. recently
reviewed currently available NP databases, citing greater than
120 examples, and noted that access to information was
limited, and only a few of the databases were sustainably
managed and continually developed.” Nevertheless, many NP
databases are constantly growing and being updated and are
regularly employed in drug design, eg, ZINC," which is
composed of over 80000 entries, and SuperNatural II,” the
largest NP database currently available.™*

Free, open NP databases (e.g, the COlleCtion of Open
Natural prodUcTs (COCONUT), comprising 406 076 unique,
“flat” (lacking stereochemistry) NPs and 730 441 stereochemi-
cally preserved NPs) have emerged as important online
research tools, facilitating access to NP databases and
addressing the limitations observed in many of these
computational tools.” Such NP databases allow for bulk
downloads, enabling their use for in silico research, such as
virtual screening. Other features, such as the geographical
origin of secondary metabolites, have also become increasingly
common in NP databases.’

SistematX (http://sistematxufpb.br) is a web portal of
natural products developed at the Federal University of
Paraiba, PB, Brazil and originally introduced in 2018. It is an
open-access database of secondary metabolites available to any

@ XXXX American Chemical Society

< ACS Publications

research group. The database initially comprised approximately
2150 secondary metabolites noted across 4000 botanical
occurrences of the Asteraceae family, approximately 500
botanical occurrences of the Apocynaceae family, and several
terpenes and alkaloids of the Annonaceae family corresponding
to greater than 800 botanical occurrences.” SistematX has
emerged as a promising tool that connects a large number of
molecular properties to the reporting literature, facilitates the
use and visualization of these properties, and provides
information for chemosystematic studies, compound derepli-
cation, and taxonomic correlations. These goals are achieved
through the following features: (a) chemical retrieval by
structure, simplified molecular-input line-entry system
(SMILES) code, compound name, and plant species; (b)
inclusion of chemical structures and characteristics important
for NP chemistry in search results; and (c) storage of search
results according to the best practices in the field, including
curated chemical structures, taxonomy of the plant from which
the compound was isolated, bibliographic reference(s), and
Global Positioning System coordinates.”

Received:  January 29, 2021
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Abstract: Background: Sclective and reversible types of MAO-B inhibitors have emerged as
promising candidates for the management of neurodegenerative discases. Several functionalized
chalcone derivatives were shown to have potential reversible MAO-B inhibitory activity, which
have recently been reported from our laboratory.

Methods: With the experimental results of about 70 chalcone derivatives, we further developed a
pharmacophore modelling, and 2D and 3D- QSAR analyses of these reported chalcones for MAO-
B inhibition.

Results: The 2D-QSAR model presented four variables (MATS7v, GATS li and 3i, and C-006)
from 143 Dragon 7 molecular descriptors, with a * value of 0.76 and a le for cross-validation
equal to 0.72. An external validation also was performed using 11 chalcones, obtaining a Q%
value of 0.74. The second 3D-QSAR model using MLR (multiple linear regression) was built
starting from 128 Volsurf+ molecular descriptors, being identified as 4 variables (Molecular
descriptors): D3, CW1 and LgS11, and L2LGS. Adetermination coefficient (r:) value of 0.76 and a
ch\ for cross-validation equal to 0.72 were obtained for this model. An external validation also
was performed using 11 chalcones and a Q% value of 0.74 was found.

Conclusion: This report exhibited a good correlation and satisfactory agreement between
experiment and theory.

Keywords: Chalcones, MAO-B, 2D-QSAR, 3D-QSAR, pharmacophore modeling, Qleute

1. INTRODUCTION

Designing a new class of inhibitors against Monoamine
oxidases (MAOs) is a promising drug design strategy for
various neurodegenerative disorders [1]. The enzyme is
found in two isoforms, viz.,, MAO-A, and MAO-B, which
metabolize amines in the brain and peripheral tissues [2].
During the oxidative deamination process of biogenic
amines catalysed by MAOs, the hydrogen peroxide
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by-product is formed which can further initiate the Reactive
Oxygen Species (ROS) formation. The generation of these
reactive free radicals promotes oxidative damage in the
neuronal tissues [3]. Many of the clinical studies evidenced
that elevated expression of MAO-B can manipulate
neurotoxicity, which leads to Parkinson’s Diseases (PD),
Alzheimer’s Disease (AD) efc., which are commonly known
as neurodegenerative diseases [4]. The first line class of
MAO-B inhibitors like deprenyl and rasagiline are
irreversible in nature, making covalent bond interaction with
flavin unit of MAO-B and propargyl group of drugs [5].
These suicidal inhibitors show poor pharmacokinetic
profile, target disruption, and immunogenicity of enzyme-
inhibitor adducts [6].

Some works have been performed using QSAR models
and MAO-B. A description of ligand-based models to

© 2022 Bentham Science Publishers
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Abstract: Here we report the development of MolPredictX,
an innovate and freely accessible web interface for bio-
logical activity predictions of query molecules. MolPredictX
utilizes in-house QSAR models to provide 27 qualitative
predictions (active or inactive), and quantitative probabil-
ities for bioactivity against parasitic (Trypanosoma and
Leishmania), viral (Dengue, Sars-CoV and Hepatitis C),

Keywords: MolPredictX - Online web-based tool - biological activity

1 Introduction

Quantitative Structure Activity Relationship (QSAR) model-
ing is a cheminformatics method that establishes a relation-
ship between a molecules biological activity and its
structure.* Studies by Hammet in 1937 and 1940""
initiated our understanding of molecular properties of
organic compounds by establishing a linear relationship
between varying substituent groups and the impact on
biological properties. Subsequently, this relationship be-
came known as the Hammet equation.

Decades later, Hansch and Fujita laid the foundations
for QSAR/QSPR studies.®” In their pioneering study in 1962,
Hansch and Fujita demonstrated that biological activity
could be linearly correlated with different physicochemical
parameters, related to hydrophobic, steric and electronic
effects.® Providing scientific support for the modeling of a
biochemical property.

Over 60 years later, these models are still being
developed®'” using the principle that the molecular
structure of a compound contains information about
physical, chemical, and biological properties; in other
words, similar chemical structures will have similar
properties.*'” Machine learning-based QSAR models are
based on this same principle’” and have been extremely
useful in to guide synthesis efforts and aid in early drug
design.""'? The use of these models also save time and
decrease the costs associated with experimental
procedures."'*?* However, like all computational methods,
it is extremely important that QSAR models are properly
validated before being used to interpret and predict the
biological responses of compounds.”"

In recent years, several web servers have emerged to
develop and apply Quantitative Structure Activity Relation-

Wiley Online Library © 2022 Wiley-VCH GmbH

pathogenic yeast (Candida albicans), bacterial (Salmonella
enterica and Escherichia coli), and Alzheimer disease
enzymes. In this article, we introduce the methodology and
usability of this webtool, highlighting its potential role in
the development of new drugs against a variety of diseases.
MolPredictX is undergoing continuous development and is
freely available at https://www.molpredictx.ufpb.br/.

« Qualitative prediction - Drug development

ship (QSAR) models using the Predictive Model Markup
Language (PMML) format. Chembench, developed by
Capuzzi, et al.,, in 2017? is an integrated cheminformatics
portal that automatically executes the complete QSAR
process. Chembench uses five available machine learning
algorithms (random forest (RF), support vector machine
(SVM), k-nearest neighbors (kNN), genetic algorithm (GA)
and simulated annealing (SA)) to perform ligand-based
virtual screening. In the Chembench portal, it is also
possible to use the QSAR MuDRA model, developed by
Alves etal., 2018, which is conceptually related to the
well-known kNN approach, but uses different types of
chemical descriptors simultaneously for similarity assess-
ment, providing a powerful alternative to consensus QSAR
modeling.

[a] M. Tullius Scotti, C. Herrera-Acevedo, R. P. Barros de Menezes,
A. ltalo de Souza Silva, E. Faustino Albuquerque, L. Ferreira Calado,
L. Scotti.
Programa de Pés-Graduagao de Produtos Naturais e Sintéticos
Bioativos, Universidade Federal da Paraiba, 58051-900 Jodo Pes-
soa-PB, Brazil
E-mail: mtscotti@gmail.com

[b] C. Herrera-Acevedo
Department of Chemical Engineering, Universidad ECCI, Carrera 19
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[c] H.-J. Martin, E. N. Muratov
Laboratory for Molecular Modeling, Division of Chemical Biology
and Medicinal Chemistry, UNC Eshelman School of Pharmacy,
University of North Carolina, Chapel Hill, NC, 27599, USA

[d] E. Coy-Barrera
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Abstract: The World Health Organization classifies Leishmania as one of the 17 “neglected diseases”
that burden tropical and sub-tropical climate regions with over half a million diagnosed cases each
year. Despite this, currently available anti-leishmania drugs have high toxicity and the potential to be
made obsolete by parasite drug resistance. We chose to analyze organoselenides for leishmanicidal
potential given the reduced toxicity inherent to selenium and the displayed biological activity of
organoselenides against Leishmania. Thus, the biological activities of 77 selenoesters and their N-
aryl-propanamide derivatives were predicted using robust in silico models of Leishmania infantum,
Leish ia amazonensis, Leish
28 compounds with >60% probability of demonstrating leishmanicidal activity against L. infantum,
and likewise, 26 for L. amazonesis, 25 for L. braziliensis, and 23 for L. major. The in silico prediction

ia major, and Leishmania (Viannia) braziliensis. The models identified

of ADMET properties suggests high rates of oral absorption and good bioavailability for these
compounds. In the in silico toxicity evaluation, only seven compounds showed signs of toxicity in
up to one or two parameters. The methodology was corroborated with the ensuing experimental
validation, which evaluated the inhibition of the Promastigote form of the Leishmania species under
study. The activity of the molecules was determined by the ICs value (uM); IC5) values < 20 uM
indicated better inhibition profiles. Sixteen compounds were synthesized and tested for their activity.
Eight molecules presented ICsy values < 20 uM for at least one of the Leishmania species under
study, with compound NC34 presenting the strongest parasite inhibition profile. Furthermore, the
methodology used was effective, as many of the compounds with the highest probability of activity
were confirmed by the in vitro tests performed.

Keywords: leishmaniasis; N-aryl-propanamides; selene-ethylenelactamides; CADD; organic synthesis

1. Introduction

The World Health Organization classifies Leishmania as one of the 17 “neglected dis-
eases” that, burden primarily tropical and sub-tropical climate regions [1]. These neglected
diseases are caused by parasitic agents and are considered endemic in low-income popula-
tions. To date, they have been identified in 149 countries and are responsible for anywhere
between 500,000 and 1,000,000 cases annually [2].

This infectious pathology comes from the Trypanosomatidae Leishmania sp protozoa [34]
being transmitted to humans through the bite of infected female sand flies [5]. Among
the existing Leishmania species, Leishmania infantum is a flagellated protozoan that causes

Pathogens 2023, 12, 136. https:/ /doi.org/10.3390/ pathogens12010136
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Abstract: Major depressive disorder is a severe mood disorder characterized by different emo-
tions and feelings. This study investigated the antidepressant activity of the phenylpropanoid
methyleugenol (ME) in adult female mice exposed to a stress model induced by dexamethasone. The
animals were randomly divided into groups containing eight animals and were pre-administered
with dexamethasone (64 ng/kg subcutaneously). After 165 and 180 min, they were treated with ME
(25, 50 and 100 mg/kg intraperitoneally) or imipramine (10 mg/kg intraperitoneally) after 45 min and
30 min, respectively; they were then submitted to tests which were filmed. The videos were analyzed
blindly. In the tail suspension test, ME (50 mg/kg) increased latency and reduced immobility time. In
the splash test, ME (50 mg/kg) decreased grooming latency and increased grooming time. In the open
field, there was no statistical difference for the ME groups regarding the number of crosses, and ME
(50 mg/kg) increased the number of rearing and time spent in the center. Regarding in silico studies,
ME interacted with dopaminergic D1 and «1 adrenergic pathway receptors and with tryptophan
hydroxylase inhibitor. In the in vivo evaluation of the pathways of action, the antidepressant potential
of ME (50 mg/kg) was reversed by SCH23390 (4 mg/kg intraperitoneally) dopaminergic D1 receptor,
Prazosin (1 mg/’kg intraperitoneally) ol adrenergic receptor, and PCPA (4 mg/kg intraperitoneally)
tryptophan hydroxylase inhibitor. Our findings indicate that ME did not alter with the locomotor
activity of the animals and shows antidepressant activity in female mice with the participation of the
D1, x1 and serotonergic systems.

Keywords: phenylpropanoid; dopaminergic; «1 adrenergic; serotonergic; in vivo; in silico

1. Introduction

Major depressive disorder (MDD) is a mood disturbance influenced by different
emotions and feelings. Typically, MDD may feature feelings of sadness and helplessness,
reduced or lost interest in daily activities (anhedonia), lack of motivation, depressed mood,
irritability, and even suicidal ideation [1,2].

The World Health Organization (WHO) reported that in 2017 there were about 322 mil-
lion people with depression worldwide (World Health Organization, 2017). The first year
of the COVID-19 pandemic intensified the prevalence by 25% and the records show that,

Pharmaceuticals 2023, 16, 1408. https:/ /doi.org/10.3390/ph16101408
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Abstract

The emergence of antimicrobial resistance has generated global concerns regarding many pathogenic microorganisms, such
as methicillin-resistant Staphylococcus aureus. The inhibition of microbial molecular targets by natural products has led to
the discovery of new paths capable of reverting resistance to classical antimicrobial agents. Neocalyptrocalyx longifolium
(Mart.) Cornejo & Iltis, Capparaceae, is a Brazilian medicinal plant indicated for the treatment of skin and respiratory tract
bacterial infections. Nevertheless, few studies have investigated its chemical composition. In view of the current develop-
ment of pathogenic microorganism resistance, the isolation and identification of efflux pumps inhibitors from the roots of
N. longifolium is described herein. In addition, the elements that contribute to substrate binding and inhibition of the MsrA
protein, an ABC-type transporter, were analyzed based on in silico experiments. Five substances were isolated and character-
ized by NMR and HRMS. Four of them exhibited interesting structural features, composed of 1,3-oxazolidine-2-thione and
1,3-oxazolidine-2-one cores. 5-Methyl-5-ethyl-oxazolidine-2-one, an undescribed natural product, inhibited the activity of
the MsrA transporter and, therefore, the potency of erythromycin was increased. Docking analysis revealed specific hydrogen
interactions for this inhibitor at the MsrA ATP binding site.

Keywords Antimicrobial resistance - Caatinga - Erythromycin - Modulatory activity - Multidrug resistance - Oxazolidinone

Introduction Wylam 2020) by decreasing the intracellular concentration

of therapeutical antibiotics, clinical drugs, and other xeno-

Methicillin-resistant Staphylococcus aureus (MRSA) causes
severe infections in hospitals and communities. In recent
decades, it has become a public health concern worldwide.
Among MRSA’s mechanisms of resistance, efflux pumps
(EFPs) play a pivotal role because they act as the first-line
defense mechanism against antimicrobials (Chalmers and
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biotics (Huang et al. 2022).

Efflux pump inhibitors, the so-called “magic bullets”,
have become an important frontline to circumvent bacterial
resistance. Natural products have shown substantial potential
against EFPs in Gram-positive bacteria. Regarding MRSA,
approximately 30 EFPs have been identified (Schindler and
Kaatz 2016), with many studies focusing on the inhibition
of major facilitator superfamily (MFS) transporters, such
as NorA (Lira-Ricdrdez and Pereda-Miranda 2020). How-
ever, few papers have reported natural substances that are
active against the MsrA protein (Pinheiro et al. 2022). First
described in the 1990s, MsrA is a transmembrane protein with
two ATP binding motifs and 488 amino acids. This EFP is
responsible for resistance to macrolides and streptogramines,
both of which are important agents for treating Gram-positive
bacterial infections in humans (Svetlov et al. 2021).

Oxazolidinethione and oxazolidinone are 5-member
heterocyclic rings widely used in organic synthesis. The
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Within the framework of a regional cooperation (Brazil-Colombia) between ResNet NPND members, a
series of studies in cheminformatics have been performed, looking for terpenoid-based hits against
leishmaniasis, a group of neglected tropical diseases that affect more than one million people
worldwide [1]. Initially, an in-house database of 360 kauranes (tetracyclic diterpenes) was generated,
and a combined ligand- and structure-based virtual screening (VS) approach was performed to select
potential inhibitors of Leishmania major (Lm) pteridine reductase | (LmPTR1). For the ligand-based
virtual screening, a machine learning classification model was built from the ChEMBL dataset (657
structures) which was classified as either active or inactive (binary classification). Sensitivity values of
78.1% and 82.6 % and specificity values of 72.7% and 73.7%, were obtained for the cross-validation
and test sets, respectively. Only 7 from 360 structures were classified as active (ligand-based
probability value [LB] 2 0.5), with structures 135 (2B-hydroxy-menth-6-en-5B-yl ent-kaurenoate) and
302 (3a-cinnamoyloxy-ent-kaur-16-en-19-oic acid) representing two of the best-ranked kauranes, with
LB values of 0.57 and 0.54, respectively. These two kauranes were employed to verify the validity of
the VS approach through LmPTR1 enzyme inhibition assay. The half-maximal inhibitory concentration
(ICso) values of selected bioactive compounds were below 10 uM, as predicted in the classification
model. A compound structurally related to 302, 3a-p-coumaroyloxy-ent-kaur-16-en-19-oic acid (302a),
was also synthesized and showed the highest activity against LmPTR1. Finally, molecular docking
calculations and molecular dynamics simulations were performed for the VS-selected, most-active
kauranes within the active sites of PTR1 hybrid models, generated from three Leishmania species that
are known to cause cutaneous leishmaniasis in the new world (i.e., L. braziliensis, L. panamensis, and
L. amazonensis) [2,3] to explore the targeting potential of these kauranes to other species-dependent
variants of this enzyme.

[1] Lopez-Arencibia, A.; Bethencourt-Estrella, C. J.; Freijo, M. B.; Reyes-Batlle, M.; Sifaoui, |.; San Nicolas-Hernandez, D.; et al.
New phenalenone analogues with improved activity against Leishmania species. Biomedicine & Pharmacotherapy 2020, 132,
110814. doi: 10.1016/j.biopha.2020.110814

[2] Sanchez-Suarez, J.; Bernal, F. A.; Coy-Barrera, E., Colombian Contributions Fighting Leishmaniasis: A Systematic Review on
Antileishmanials Combined with Chemoinformatics Analysis. Molecules 2020, 25, (23), 5704. doi:
10.3390/molecules25235704

[3] Anversa, L.; Tiburcio, M. G. S.; Richini-Pereira, V. B.; Ramirez, L. E., Human leishmaniasis in Brazil: a general review. Revista
da Associacdo Médica Brasileira 2018, 64, (3), 281-289. doi: 10.1590/1806-9282.64.03.281
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Graphical Abstract Abstract. The dedes aegypti mosquito belongs
to the order Diptera and is one of the main vectors
of transmission of etiological agents that cause
several diseases. This mosquite can transmit
diseases such as dengue. yellow fever, Zika
chilungunya, among others. The aim of this study
was combining structore-based and ligand-based

virtnal screening (VS) techmiques to select
E potentially larvicidal active molecules against de.
J aegypii from in-house secondary metabolite
dataset (SistematX). From the ChEMBL
database., we selected a set of 161 chemical
structures with larvicidal activity agamst Ae
aeg)ypii to create random forest models with an
accuracy value higher than 82% for cross-
validation and test sets. Afterward, the ligand-
based virtmal screen selected 38 secondary
metabolites. In addition, a structure-based virtual
screening  was  also performed for the 38
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Graphical Abstract Abstract.

Schistosomiasis is an acute and chronic parasitic
disease, caused by blood flukes (trematode
womms) of the genus Schistosoma. For 2019, the
World Health Organization estimated that close
to 240 mullion people required preventive
treatment against this disease. mainly poor
communities without access to safe drinking
water and adequate sanitation. Similarly, to
others Neglected Tropical Diseases (NTDs) the
treatments against this disease are limited. and
new chemotherapies are necessary to the control
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