
The maximum length car sequencing

problem

Lara di Cavalcanti Pontes

CENTRO DE INFORMÁTICA

UNIVERSIDADE FEDERAL DA PARAÍBA

João Pessoa

2024

Lara di Cavalcanti Pontes

The maximum length car sequencing problem

Monograph presented in fulfillment of the requirements

for the Bachelor’s degree in Computer Engineering, Cen-

tro de Informática, Universidade Federal da Paráıba.

Advisor: Anand Subramanian

João Pessoa

2024

P814m Pontes, Lara di Cavalcanti.
 The maximum length car sequencing problem / Lara di
 Cavalcanti Pontes. - João Pessoa, 2024.
 85 f. : il.

 Orientação: Anand Subramanian.
 TCC (Graduação) - UFPB/Informática.

 1. Scheduling. 2. Assembly line. 3. Car sequencing.
 4. Combinatorial optimization. I. Subramanian, Anand.
 II. Título.

UFPB/CI CDU 004:629

Catalogação na publicação
Seção de Catalogação e Classificação

Elaborado por Michelle de Kássia Fonseca Barbosa - CRB-738

CENTRO DE INFORMÁTICA

UNIVERSIDADE FEDERAL DA PARAÍBA

Work titled The maximum length car sequencing problem presented in ful-

fillment of the requirements for the Bachelor’s degree in Computer Engineering, approved

by:

Prof. Dr. Anand Subramanian

Universidade Federal da Paráıba

Prof. Dr. Teobaldo Leite Bulhões Júnior

Universidade Federal da Paráıba

Prof. Dr. Luciano Carlos Azevedo da Costa

Universidade Federal da Paráıba

João Pessoa, May 13, 2024

Centro de Informática, Universidade Federal da Paráıba

Rua dos Escoteiros, Mangabeira VII, João Pessoa, Paráıba, Brasil CEP: 58058-600

Fone: +55 (83) 3216 7093 / Fax: +55 (83) 3216 7117

To my parents,

who always ensured a feasible solution space for me to pursue my objective function.

Acknowledgments

I would like to express my deepest gratitude to my advisor, Prof. Anand Subra-

manian, for first presenting me to the world of operations research and for his continuous

and attentive guidance throughout my undergraduate years. Also, I am extremely gra-

teful to my co-advisor, Prof. Maria Battarra, for the invaluable lessons and for warmly

welcoming me during my exchange period at the University of Bath. And special thanks

to my brilliant colleague Carlos Neves for his collaboration in this work. This endeavor

would not have been possible without them.

I would like to extend my sincere thanks to Prof. Teobaldo Bulhões and Prof.

Luciano Costa for composing the examining committee and for the helpful comments,

Prof. Bruno Bruck and Prof. Tháıs Gaudencio for their support during my academic

pursuits, Prof. Artur Pessoa for his valuable suggestions regarding the mathematical

formulations, Dr. Yuan Sun for kindly providing the set of instances used in his study,

and the anonymous reviewers for the relevant insights that considerably improved the

quality of the work.

I cannot express enough gratitude to my parents, Soraia Pinheiro and Carlos Pon-

tes, for being my core foundation and biggest supporters. On the same note, I profoundly

thank Louise Pinheiro, Ĺıvia Pinheiro, Marina Pontes, and Glaudir Donato for always

being my truest cheerleaders, as well as my nieces for inspiring me to work towards a

better world for them.

I would like to acknowledge my peer mentor, Itamar Rocha, for giving me the

best advice and bringing me key opportunities, and my friend and classmate, Humberto

Navarro, for not leaving my side during all our courses and projects.

I would be remiss in not mentioning the Fundação Estudar for leveraging my career

and my dreams while welcoming me into an inspiring community of Brazilians driven by

impact.

Lastly, I would like to mention all my friends and labmates, without whom this

journey would not have been nearly as rich and fun.

Resumo

Este trabalho introduz o problema do sequenciamento máximo de carros para

apoiar as operações de montagem de uma multinacional automobiĺıstica. É proposta uma

formulação de programação linear inteira (PLI) para sequenciar o maior número posśıvel

de carros sem violar restrições de espaçamento relacionadas a atributos especiais, como

teto solar e rádio. Adicionalmente, limitantes superior e inferior, que podem ser calculados

em tempos computacionais negligenciáveis, são apresentados, assim como algoritmos de

buscas iterativa e binária para resolver o problema quando bons limites primais não estão

prontamente dispońıveis. Para obter soluções de boa qualidade rapidamente, desenvolveu-

se um algoritmo de busca local iterada, cujas soluções são utilizadas para inicializar o

resolvedor, aumentando a performance dos métodos exatos. Resultados computacionais

demonstram gaps relativamente baixos para instâncias de benchmark em um tempo limite

de 10 minutos. Além disso, foi conduzida uma análise do espaço de instâncias para

identificar as caracteŕısticas que dificultam a resolução do problema. Por fim, as demandas

reais da empresa foram resolvidas em menos de um segundo, e simulações cronológicas,

visando a maximizar o número de carros sequenciados por turno, foram conduzidas para

quatro meses de dados históricos. Nesse caso, um novo modelo PLI foi empregado para

sequenciar os carros não produzidos até o último turno do mês em uma linha dedicada,

diminuindo o ritmo da linha de produção de forma a relaxar as restrições impostas pelos

atributos especiais. Os resultados apontaram que a linha dedicada foi necessária em

apenas um dos meses.

Palavras-chave: Escalonamento, Linha de produção, Sequenciamento de carros,

Otimização combinatória.

Abstract

This work introduces the maximum length car sequencing problem to support

the assembly operations of a multinational automotive company. We propose an integer

linear programming (ILP) formulation to schedule the maximum number of cars without

violating the so-called option constraints. In addition, we present valid combinatorial

lower and upper bounds, which can be calculated in less than 0.01 seconds, as well as

binary and iterative search algorithms to solve the problem when good primal bounds

are not readily available. To quickly obtain high-quality solutions, we devise an effective

iterated local search algorithm, and we use the heuristic solutions as warm start to further

enhance the performance of the exact methods. Computational results demonstrate that

relatively low gaps were achieved for benchmark instances within a time limit of ten

minutes. We also conducted an instance space analysis to identify the features that make

the problem more difficult to solve. Moreover, the instances reflecting the company’s

needs could be solved to optimality in less than a second. Finally, simulations with real-

world demands, divided into shifts, were conducted over a period of four months. In this

case, we use the proposed ILP model in all shifts except the last one of each month, for

which we employ an alternative ILP model to sequence the unscheduled cars, adjusting

the pace of the assembly line in an optimal fashion. The results pointed out that the

latter was necessary in only one of the months.

Key-words: Scheduling, Assembly line, Car sequencing, Combinatorial optimiza-

tion.

Contents

Glossary v

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Preliminaries . 1

1.2 Motivation . 3

1.3 Objectives . 4

1.4 Monograph outline . 5

2 Context and related work 6

2.1 Description of the problems and literature positioning 6

2.2 The CSP by Bautista et al. [2008] . 9

2.3 Literature review . 10

3 Modeling the Max-CSP 12

3.1 Using the mathematical formulation by Bautista et al. [2008] to solve the

Max-CSP . 12

3.2 Proposed formulation . 13

4 Modeling the Slow-CSP 15

5 Exact strategies based on iterative search methods for the Max-CSP 16

6 Valid bounds for the Max-CSP 19

6.1 A valid UB . 19

6.2 A valid LB . 21

7 Heuristic algorithm 25

7.1 Solution representation . 25

7.2 Constructive procedure . 25

7.3 Insertion mechanism . 26

7.4 Perturbation mechanisms . 27

7.4.1 Removal . 27

7.4.2 Swap . 29

8 Computational experiments 32

8.1 Instances . 32

8.2 Parameter tuning . 32

8.3 Results . 33

8.4 Instance space analysis . 36

8.5 Real-world instances and operational insights 39

9 Concluding remarks 41

Bibliography 41

Appendices 46

A Instance space analysis 47

Glossary

ACO : Ant colony optimization

B&B : Branch-and-bound

BFS : Breadth-first search

BS : Beam search

CP : Constraint programming

CSP : Car sequencing problem

GA : Genetic algorithm

ILP : Integer linear programming

ILS : Iterated local search

ISA : Instance space analysis

LB : Lower bound

LNS : Large neighborhood search

MATILDA : Melbourne algorithm test instance library with data analytics

Max-CSP : Maximum length car sequencing problem

MIP : Mixed integer programming

SOS1 : Special ordered set of type 1

UB : Upper bound

VNS : Variable neighborhood search

List of Figures

1 Example of assembly station. 2

2 Example of a feasible sequence followed by a car that causes an option

constraint violation. 3

3 Example of a sequencing process. 8

4 Car interposition based on the option constraints. 22

5 Impact of perturbation mechanisms and tuning of parameter n. 33

6 Parameter tuning: IR and IILS. 34

7 Binary distribution of heuristic performance on the instances in Set 1. . . . 37

8 Distribution of the maximum of option utilization in the instances in Set 1. 37

9 Distribution of the average of option utilization in the instances in Set 1. . 38

10 Distribution of the minimum of p/q ratio in the instances in Set 1. 38

11 Distribution of the average of p/q ratio in the instances in Set 1. 39

12 Binary distribution of heuristic performance on the instances in Set 1. . . . 47

13 Binary distribution of uninitialized F1 performance on the instances in Set 1. 48

14 Binary distribution of initialized F1 performance on the instances in Set 1. 49

15 Binary distribution of uninitialized II performance on the instances in Set 1. 50

16 Binary distribution of initialized II performance on the instances in Set 1. . 51

17 Binary distribution of uninitialized ID performance on the instances in Set 1. 52

18 Binary distribution of initialized ID performance on the instances in Set 1. 53

19 Binary distribution of uninitialized IB performance on the instances in Set 1. 54

20 Binary distribution of initialized IB performance on the instances in Set 1. 55

21 Binary distribution of uninitialized F2 performance on the instances in Set 1. 56

22 Binary distribution of initialized F2 performance on the instances in Set 1. 57

23 Binary distribution of uninitialized F2I performance on the instances in

Set 1. 58

24 Binary distribution of initialized F2I performance on the instances in Set 1. 59

25 Binary distribution of uninitialized F2D performance on the instances in

Set 1. 60

26 Binary distribution of initialized F2D performance on the instances in Set 1. 61

27 Binary distribution of uninitialized F2B performance on the instances in

Set 1. 62

28 Binary distribution of initialized F2B performance on the instances in Set 1. 63

29 Distribution of the number of classes in the instances in Set 1. 64

30 Distribution of the average of option utilization in the instances in Set 1. . 65

31 Distribution of the maximum of option utilization in the instances in Set 1. 66

32 Distribution of the average number of options per car class in the instances

in Set 1. 67

33 Distribution of the minimum of p/q ratio in the instances in Set 1. 68

34 Distribution of the average of p/q ratio in the instances in Set 1. 69

35 Distribution of the standard deviation of p/q ratio in the instances in Set 1. 70

36 Best algorithm for each of the instances in Set 1. 71

List of Tables

1 Comparison between combinatorial and heuristic LBs in each instance set. 34

2 Performance of different uninitialized methods on the instances in Set 1. . 35

3 Performance of different initialized methods on the instances in Set 1. . . . 35

4 Performance of different uninitialized methods on the instances in Set 2. . 40

5 Performance of different initialized methods on the instances in Set 2. . . . 40

1 Introduction

1.1 Preliminaries

Car assembly operations have been widely studied in the literature, and relevant

research focused on how product variety is necessary in the car industry even if it affects

productivity (Fisher and Ittner, 1999). Therefore, workload allocations have to guarantee

that operations of varying duration do not cause overtime on a paced assembly line.

The motivation, welfare, and satisfaction of the employees are of paramount importance.

Hence, workload assignments need to be perceived as doable and fair. An example of a

scheduling solution aimed at improving employee satisfaction can be found in Bukchin

and Masin [2004], and the need for balancing the work content on paced car assembly

lines in order to avoid overtime has been discussed, for example, in Bhattacharyya et al.

[1993].

This work is motivated by a collaboration with a large car assembly company in

Brazil. Different models of cars are sequenced in the assembly line. No more than a

maximum number of cars requiring a specific assembly operation should be scheduled in

close proximity to one another so that the workers responsible for this assembly operation

have enough time to complete the task without delaying the line. The need to quantify

the complexity of operations in assembly lines has already been discussed in Zeltzer et al.

[2017], and issues around ergonomics of diverse assembly operations were highlighted by

McClellan et al. [2009].

The scheduling of car assembly operations has attracted interest since the definition

of the car sequencing problem (CSP) by Parrello et al. [1986]. The issue of spacing

out specific operations in the assembly sequence is a common constraint among papers

focusing on this application. There seems to be consensus on modeling these constraints

using the concept of options, which correspond to additional components to be assembled

in a car, such as air-conditioning and sunroof. The stations responsible for assembling

the options have limited workload capacity.

Figure 1 illustrates the issue with an example. Let the station that assembles the

option sunroof have one worker and space for three cars at a time in the line. The cars

move continuously at a fixed pace, and the time each worker takes to complete the task

ranges from the moment the car gets into the station to the moment it leaves. Thus, if

the worker from the sunroof station is already occupied with a car (car 3) when another

one needing a sunroof (car 5) arrives, the latter will not be completed in time. For this

case, an option constraint would establish that no more than one car requiring a sunroof

should be scheduled in any subsequence of three consecutive cars.

The feasibility version of the CSP, as defined by Dincbas et al. [1988], requires

1

Figure 1: Example of assembly station.

2

Figure 2: Example of a feasible sequence followed by a car that causes an
option constraint violation.

identifying if an assembly sequence with all demanded cars exists without violating any

option constraint. The optimization version of the CSP has been formalized using many

different objective functions in the literature. However, the most common feature seems to

be accepting the violation of the option constraints by allowing delays in the production

line. The resulting optimization problem requires scheduling all cars while minimizing

a weighted combination of some penalizations. This objective and its variants will be

formalized in the following sections.

We propose a new optimization variant for the CSP, the maximum length car

sequencing problem (Max-CSP). The maximum length refers to the number of cars sche-

duled contiguously in the assembly line, resulting in the longest sequence without option

constraint violations. Figure 2 shows an example of a feasible sequence followed by a

car that causes a violation. Even if the production demands an additional car with a

sunroof, it cannot be scheduled without violating the option constraint that limits to one

the maximum number of such cars every three consecutive positions. The motivations for

developing this variant are detailed in the next section. This work aims at introducing

and proposing solution methods for the Max-CSP.

1.2 Motivation

The partner company that motivated the definition of the Max-CSP manages its

scheduling decisions by modeling only some of the “hard sequencing rules”(see Boysen

et al., 2009). They consider a subset of the option constraints, and the options have all to

be respected, as any violation leads to a stop of the whole assembly line. The assembly

operations refer to the general assembly line (the last step before car completion), a single

line runs in the factory, and the scheduling is solved daily. It is crucial to maintain the

flow on the line smooth, fast, and without interruptions.

The management of the company explained that they would rather assemble uns-

cheduled cars in the days after the originally planned one and add a dedicated shift at the

end of the time horizon for those cars not yet assembled. Car demands have a dynamic

nature, i.e., they arrive continuously, and must typically be assembled within a month.

The cars not completed in this time frame are all scheduled during a dedicated shift, in

which the pace of the line is slowed down. For that, we devise a different mixed integer

3

linear programming (ILP) formulation. This subjacent problem is named the Slow-CSP.

The company, prior to our collaboration, was allocating cars manually to the paced

assembly line. This task is time-consuming, and often only solutions with option cons-

traint violations could be found. The goal of our collaboration has been to develop an

algorithm to solve this scheduling problem, identifying solutions without option violations

while maximizing the number of cars assembled in the line and handling the unscheduled

cars in the dedicated shift. The Max-CSP, as well as the Slow-CSP, are variants of the

CSP (Parrello et al., 1986). However, we are not aware it has ever been studied in any of

these forms.

The importance of this study is not only practical but also theoretical. The presen-

ted problem is complex, as it is to achieve good solutions. Thus, extensive research was

conducted to generate integrated exact and heuristic methods that solve the Max-CSP

effectively and efficiently.

1.3 Objectives

The objectives of this work are manifold and they are summarized as follows.

• Introduce a new variant of the CSP (Max-CSP), motivated by a real-life application,

and describe how the problem can be positioned in the literature.

• Present valid combinatorial lower and upper bounds, which can be calculated in less

than 0.01 seconds.

• Devise exact algorithms based on binary and iterative searches that yield good

results when good primal bounds are not readily available.

• Implement an effective iterated local search (ILS) heuristic, with efficient intensifi-

cation and diversification procedures, capable of finding high-quality solutions in a

matter of seconds.

• Introduce a subjacent variant (Slow-CSP) to adjust the pace of the assembly line

for the unscheduled cars in a dedicated shift.

• Conduct extensive computational experiments to evaluate the performance of all

proposed exact and heuristic methods.

• Perform an instance space analysis to suggest which are the characteristics that

make our problem challenging to solve.

• Simulate the scheduling decisions for a period of four months, using real-world

instances.

4

1.4 Monograph outline

The remainder of this work is organized as follows. Section 2 provides a formal

description of the problems and their relation with existing CSP variants, as well as a

brief literature review. Section 3 models the Max-CSP, while Section 4 models the Slow-

CSP. Section 5 describes the iterative and binary search algorithms for the Max-CSP, and

Section 6 presents valid combinatorial bounds. Section 7 describes the proposed heuristic

algorithm. Section 8 contains the results of the computational experiments. Finally,

Section 9 summarizes our findings.

5

2 Context and related work

2.1 Description of the problems and literature positioning

In the following, we first address the feasibility version of the CSP and compare

it with the feasibility version of the Max-CSP. We then present the most widely studied

objective functions for the optimization variants of the CSP and narrow down our analysis

to a problem variant that we can easily adapt to the Max-CSP. The optimization version

of the Max-CSP is also described within the context of our partner company, alongside a

brief discussion on the Slow-CSP, the other problem variant introduced in this work.

The feasibility version of the CSP, as introduced by Dincbas et al. [1988], consists

in sequencing D cars, where D is also the number of positions available for sequencing

them while satisfying the option constraints. An option j ∈ C imposes that no more

than pj cars can be scheduled in any subsequence of length qj. It is common practice

to group cars in “classes”if they have the same set of options, as cars in the same class

can be assigned interchangeably a position in the sequence without violating any option

constraint. Classes are denoted i ∈ P , and there are di cars in each class. If an option

j ∈ C applies to a class of cars i ∈ P , then cji = 1, and 0 otherwise. For future reference,

we summarize the notation in the following bullet points.

• C: the set of options, such as air-conditioning and sunroof;

• P : the set of car classes;

• D: the total number of cars and the corresponding number of available positions in

the assembly line;

• (pj, qj): pj defines the maximum number of cars allowed with option j ∈ C in any

subsequence of qj consecutive positions;

• di: the demand for cars of class i ∈ P ;

• cji: whether or not the cars of class i ∈ P require the option j ∈ C.

The feasibility version of the CSP has been proven to be NP-complete in the

strong sense by Kis [2004], using a reduction from the Exact Cover by 3-sets. Note that

Estellon and Gardi [2013] proved that the CSP is NP-hard using a reduction from the

Hamiltonian path problem with even more restrictive options.

In the Max-CSP, we study the same feasibility problem as for the CSP, considering

all options (as for the CSP), including the subset of options currently implemented by the

company, namely:

6

• j ∈ C | (pj = 1, qj) states that at most one car with option j can be scheduled in

any subsequence of length qj;

• j ∈ C | (pj = qj−1, qj) states that at most qj−1 cars with option j can be scheduled

in any subsequence of length qj.

The feasibility version of the Max-CSP limited to these options is a special case of

the CSP. However, the complexity proofs by Kis [2004], Estellon and Gardi [2013] are valid

for this variant as well, as the options used in the transformation match those discussed

above. Hence, the feasibility version of the Max-CSP is NP-complete in the strong sense

both in the situation in which all options are imposed, as well as in the subset described

above.

The optimization version of the CSP has attracted a lot of interest from the rese-

arch community, and many variants have been studied in the past. We summarize the

most widely studied optimization problems in this area of research, focusing on the CSP

objective functions as this is the main difference between the Max-CSP and the CSP.

In their literature review, Boysen et al. [2009] classify the CSP according to different

objective functions, which aim at minimizing:

• the number of subsequences (windows) with at least one violation of the option

constraints, using a “sliding windows”approach (e.g. Gottlieb et al., 2003, Gravel

et al., 2005, Golle et al., 2015, Yilmazlar and Kurz, 2023);

• the number of subsequences starting with a car under a violated option constraint

(e.g. Boysen and Fliedner, 2007, Fliedner and Boysen, 2008);

• the number of exceeding cars with a violated option constraint, for every window

(e.g. Bolat and Yano, 1992; Hottenrott et al., 2021);

• the value of a penalty function based on individual weights, given as input data, for

each additional option violation (e.g. Parrello et al., 1986, Smith, 1997);

• the number of empty slots necessary to generate a feasible solution (e.g. Hindi and

Ploszajski, 1994, Perron and Shaw, 2004).

Other relevant objective functions are the following.

• A lexicographic multi-objective function that considers the assembly shop (minimi-

zing the violation of priority and non-priority ratio constraints) and the paint shop

(minimizing the color changes in the line). This is the objective function presented

by Renault for the ROADEF’2005 Challenge [Solnon et al., 2008]. Wu et al. [2021]

7

and Zhang and Ding [2023] include a paint body storage between the paint shop

and the assembly shop, thus utilizing a multi-stage approach.

• The minimization of the exceeding cars with a violated option constraint, for every

window and including weights (denoted “upper over-assignment”), and the weighted

count of the times an option constraint is loosely satisfied (the count of how many

cars are scheduled less than the maximum requirement set by each option constraint

and for each window, denoted “upper under-assignment”). This objective function

was first proposed by Bautista et al. [2008] and further explored in later works, such

as Thiruvady et al. [2011, 2014, 2020].

• The minimization of unscheduled options in the assembly line [Souza et al., 2023], so

as to minimize overload in a subsequent day. This recent definition is the closest to

ours found in the literature. It can lead to a shorter sequence than maximizing the

scheduled cars in a given shift, which is the main objective of our partner company,

but future work may explore its performance in this industrial setting.

As for the Max-CSP, the optimization version maximizes the length of the assembly

line operation by sequencing the maximum number of cars without violating any option

constraint. In practice, if any car does not fit into the sequence (as it would violate one

or more than one option constraints), it is re-scheduled on the subsequent shift.

To better illustrate the sequencing process in a given shift, consider the following

instance. Let P = {1, 2, 3, 4} be the set of classes, and the corresponding demands for

each class be d1 = 1, d2 = 2, d3 = 3, and d4 = 1. The options are (p1 = 1, q1 = 3) with

c12 = c14 = 1, and (p2 = 2, q2 = 3) with c23 = c24 = 1. Figure 3 shows a valid sequence for

this instance in solid lines. Since a car of class 4 was scheduled right after a car of class

3, adding another car of class 3 at the end of the sequence would violate the constraint

associated with option 2 (i.e., no more than 2 cars with option 2 can be scheduled in a

window of 3 positions). Even if it was possible to schedule such a car in that position,

appending a car of class 2 to the new solution would violate the constraint associated

with option 1 (i.e., at most 1 car with option 1 in a window of 3 positions). In that case,

the remaining cars of classes 2 and 3 would be left outside the sequence.

2 3 1 3 4 3 2

Figure 3: Example of a sequencing process.

At the end of the production time horizon (typically a month), the company runs

one additional shift at a slower pace of the line, so as to schedule the cars that did not

fit into the last shift. For the latter, we define the Slow-CSP, which finds the minimum

8

pace delay that loosens the option constraints just as much as it is necessary to fit all

cars. This problem is solved for a single shift within the time horizon determined by the

company, so it is not the main focus of this work. Nevertheless, it is modeled in Section

4.

More variants associated with constraints on the number of options allowed, cons-

traints on production cycles and associated options assignments, and constraints on the

number of cycles options are valid for can be reviewed in Boysen et al. [2009], but they

do not relate to the Max-CSP. Similarly, we refer the reader to Yavuz and Ergin [2018]

for a reference on papers integrating car sequencing and level scheduling problems.

One of the most popular variants of the car scheduling problem is the one studied

by Bautista et al. [2008], which is still attracting wide attention from the research com-

munity in recent years and is formalized in the following section. Benchmark instances

and recent metaheuristics are publicly available. The mathematical formulation for this

variant allows for adaptations to the Max-CSP, which will be discussed later.

2.2 The CSP by Bautista et al. [2008]

In Bautista et al. [2008], the definition of option constraints is the same as the

previous literature, however, a penalization is accounted for in the objective function if

the constraints are violated or if they are loosely satisfied. Additional notation is required

to formally introduce the objective function and the mathematical model proposed by the

authors, namely:

• the upper over-assignment is yjt = max{0,Pt
k=lj(t)

cj,u(k) −min{t, pj}}, ∀j ∈ C, t =

1, . . . , D and lj(t) = max{1, t+1− qj}. This term represents the positive difference

between the number of times an option appears in the subsequence [lj(t), t] and the

maximum number it should appear, pj (i.e., the number of violations of option j in

the subsequence ending in t). This value is bound to be in the interval [0, qj − pj).

• αjt the weight assigned to each unit of violation yjt, ∀j ∈ C, t = 1, . . . , D.

• the upper under-assignment is zjt = max{0,min{t, pj}−
Pt

k=lj(t)
cj,u(k)}, ∀j ∈ C, t =

1, . . . , D. This term represents the positive difference between the number of times

pj an option could appear and the number of times the option appears in the sub-

sequence [lj(t), t] (i.e., the number of times an option j in the subsequence ending

in t is loosely satisfied). This value is bound to be in the interval [0, pj).

• βjt the weight assigned to each unit of zjt, ∀j ∈ C, t = 1, . . . , D.

• xit = 1 if a car of class i ∈ P is scheduled in position t = 1, . . . , D, 0 otherwise.

9

The objective function and the mathematical model proposed by Bautista et al.

[2008] can now be stated as

min
DX

t=1

X

j∈C
(αjtyjt + βjtzjt) (1)

subject to
X

i∈P
xit = 1 t = 1, . . . , D (2)

DX

t=1

xit = di i ∈ P (3)

zjt − yjt +
X

i∈P

tX

k=lj(t)

cjixik = min{t, pj} j ∈ C, t = 1, . . . , D (4)

yjt, zjt ≥ 0 j ∈ C, t = 1, . . . , D (5)

xit ∈ {0, 1} i ∈ P, t = 1, . . . , D. (6)

The objective function (1) minimizes the weighted combination of upper over-

assignment and upper under-assignments. Constraints (2) guarantee that every position

has exactly one car scheduled. Constraints (3) ensure the class demands are met. Option

constraints are imposed in Constraints (4), and the domain of the variables in Constraints

(5) and (6).

2.3 Literature review

We provide a brief literature review including exact and heuristic approaches pre-

viously studied for solving some of the most relevant versions of the CSP.

For the feasibility version, several methods are explored, such as a branching

scheme along with bounding algorithms [Drexl et al., 2006], pure boolean satisfiability

[Artigues et al., 2014], and constraint programming (CP) [Artigues et al., 2014, Siala

et al., 2015].

For the optimization version focused on minimizing violations in the assembly shop,

Warwick and Tsang [1995] devise a genetic algorithm (GA), Gravel et al. [2005] utilize an

ILP model and ant colony optimization (ACO), and Fliedner and Boysen [2008] describe

a branch-and-bound (B&B) algorithm.

Solnon et al. [2008] review the scientific production related to the ROADEF’2005

challenge. The winning entry, Estellon et al. [2008], integrated a very large-scale neigh-

borhood search (LNS) with an ILP formulation and fast explorations of small neighborho-

ods. Ribeiro et al. [2008] were ranked second, employing an ILS and a variable neigh-

borhood search (VNS). The local search strategies developed by the first and second places

10

contain swap and insertion movements, which are similar to the ones presented in Section

7.

Including a buffer between the paint shop and the assembly shop, in Guerre-Chaley

et al. [1995], cars have a due date to be assembled, and the demand is processed car by

car. Wu et al. [2021] propose two metaheuristics based on tabu search and VNS, the latter

embedded in a nested partition framework. The work by Zhang and Ding [2023] has a

dynamic nature and implements a GA and a greedy algorithm.

Moya et al. [2019] introduce a robust solution for uncertain partial demand of

special vehicles in different production plans using a greedy randomized adaptive search

procedure, ACO, and VNS. Hottenrott et al. [2021] combine a B&B algorithm with an

adaptive LNS heuristic to tackle robustness against short-term sequence alterations.

Lastly, the works that refer to the formulation by Bautista et al. [2008] are dis-

cussed in the following. Bautista et al. [2008] solve instances with up to 400 cars using a

beam search (BS) algorithm. Thiruvady et al. [2011] solve instances with up to 600 cars

hybridizing BS, ACO, and CP. Thiruvady et al. [2014] conclude that a hybrid Lagrangian

relaxation ACO algorithm is the best algorithm among those tested for instances with up

to 300 cars. Moreover, Thiruvady et al. [2020] employ a VNS in which an appropriately

long subsequence of cars is re-optimized using an ILP model (and variable fixing for the

rest of the sequence). Instances with up to 500 cars are considered. This method compa-

res favorably to the literature both in terms of solution quality and CPU times. Finally,

Sun et al. [2023] identify critical features that make instances harder to solve. Their prin-

cipal component analysis investigation shows that high utilization of options and large

average number of options per car class are the critical features. Furthermore, the authors

use machine learning to choose the best method for an instance among the algorithm by

Thiruvady et al. [2014], an improved version of the VNS by Thiruvady et al. [2020], and

the ILP by Bautista et al. [2008] in which Constraints (4) are added dynamically via a

“lazy”separation procedure. The improved ILP performs best for the hardest instances,

and the ILP with lazy constraints is the best-performing method for medium-difficulty

instances.

11

3 Modeling the Max-CSP

In what follows, we present two possible ways of mathematically modeling the

Max-CSP.

3.1 Using the mathematical formulation by Bautista et al. [2008] to solve

the Max-CSP

The Max-CSP aims at maximizing the length of the sequence without any options

violation. Our first attempt at solving the Max-CSP exactly is that of adapting a model

from the literature. In particular, the Bautista et al. [2008] model can be converted to

solve the Max-CSP as follows.

Let π∗ be an optimal sequence for the Max-CSP. If |π∗| = D, the model of Bautista

et al. [2008] returns the optimal Max-CSP solution. However, if |π∗| < D, given the

corresponding CSP solution, let t∗ be the position at which the first option violation

occurs. In other words, the number of option constraint violations in the interval [lj(t), t]

is yjt = 0 for all j ∈ C and all t < t∗, and yjt∗ > 0 for some j ∈ C. The partial CSP

solution from position t = 1 to position t∗ − 1 is a feasible solution for the Max-CSP.

Proposition 1. If we set

αjt =





1 if t = D

1 +
P
m∈C

DP
k=t+1

αmk(qm − pm) if 1 ≤ t < D

and βjt = 0, ∀j ∈ C, t = 1, . . . , D, an optimal solution of Bautista et al. [2008] can be

converted into an optimal solution for the Max-CSP, in which t∗ = |π∗|+ 1.

Proof. A solution of the Max-CSP is a valid CSP solution when all unscheduled cars are

appended at the end of the violation-free sequence in any given order. If a CSP solution

existed where t∗ ≥ |π∗| + 1, this solution could be converted into a sequence with no

violations and whose length is greater than |π∗|, contradicting the initial assumption that

π∗ is optimal for the Max-CSP. Hence, the first violation in an optimal sequence for the

CSP must occur at a position t∗ ≤ |π∗|+ 1.

To show that t∗ cannot be strictly less than |π∗| + 1, note that, for any CSP

instance, the maximum value that the variable yjt may achieve for all j ∈ C, t = 1, . . . , D,

12

is bounded from above by qj − pj. As such, in any solution, the inequalities

αjt >
X

m∈C

DX

k=t+1

αmk(qm − pm) >
X

m∈C

DX

k=t+1

αmkymk

hold for all j ∈ C, t = 1, . . . , D. Hence, if t∗ < |π∗| + 1, the objective value of the CSP

solution is worse than the one provided by the Max-CSP solution π∗, and thus it is not

optimal, contradicting again our hypothesis.

Since t∗ is neither strictly less than |π∗| + 1 nor strictly greater than |π∗| + 1, it

must be exactly equal to |π∗|+ 1.

Then, for all j ∈ C, we define αjt as

αjt =





1 if t = D

1 +
P
m∈C

DP
k=t+1

αmk(qm − pm) if 1 ≤ t < D

where the maximum possible value of αjt is O([
P

m∈C(qm − pm)]
D), and βjt = 0, ∀j ∈

C, t = 1, . . . , D.

This choice of coefficients makes any violation in an earlier position of the sequence

more costly than any violation in all the subsequent positions of the sequence (αjt >P
m∈C

PD
k=t+1 αmk, ∀t = 1, . . . , D). Therefore, the objective function will avoid violations

in early positions, if feasible. The resulting Max-CSP solution can be obtained by retaining

all cars sequenced from position 1 until the first violation encountered in the CSP solution,

if any.

The exponential growth of the penalization coefficients limits the implementation

of the model by Bautista et al. [2008]. In the instances provided by the company (with six

options), the penalization coefficients could be encoded on a double variable in the mixed

integer programming (MIP) solver (CPLEX) for instances with up to 250 cars. Therefore,

we propose a new formulation that does not rely on penalization coefficients, as described

in the following.

3.2 Proposed formulation

Let xit = 1 if a car of class i ∈ P is scheduled in position t = 1, . . . , D, 0 otherwise.

The proposed formulation (F1) for the Max-CSP reads as follows:

13

(F1) max
X

i∈P

DX

t=1

xit (7)

subject to
X

i∈P
xit ≤ 1 t = 1, . . . , D (8)

X

i∈P
xit+1 ≤

X

i∈P
xit t = 1, . . . , D − 1 (9)

DX

t=1

xit ≤ di i ∈ P (10)

X

i∈P

tX

k=lj(t)

cjixik ≤ pj j ∈ C, t = 1, . . . , D (11)

(6).

The objective function aims to maximize the number of cars scheduled. Constraints

(8) and (9) ensure that every position is associated with at most one car and that the

empty positions are at the end of the sequence, respectively. Constraints (10) guarantee

that the demand for each class is not surpassed. Lastly, option constraints are imposed

in Constraints (11).

The formulation F1 can be solved with a commercial solver. However, its perfor-

mance is highly dependent on the availability of good upper and lower bounds. Prelimi-

nary tests also showed that the feasibility version proved much easier to solve. Hence, we

tested alternative exact approaches in the spirit of Silva et al. [2023], which implemented

an iterative strategy and a binary search via feasibility checking to enhance performance

in the context of a parallel machine scheduling problem. For the Max-CSP, we developed

a branching scheme on the first option violation and iterative methods based on fixing

the number of cars scheduled in the solution. In the following, we describe the itera-

tive methods (an incremental search, a decremental search, and a binary search) and the

branching strategies (considering alternative prioritization).

14

4 Modeling the Slow-CSP

At the end of a production cycle (typically a month), some cars might not have

been scheduled. The managers schedule these cars on a dedicated shift, demanding a

feasible sequence with all cars. Therefore, the managers reduce the assembly line speed in

order to give enough time for the assembly operations to be completed without violating

any option constraint. We introduce another variable, s ∈ R∗, which sets the relative pace

decrease of the assembly line (e.g., s = 100% = 1 if the assembly line must be at half of

the original pace to allow all the operations to be done in time, as double the operations

can be performed in each station). The Slow-CSP formulation reads as follows:

min s (12)

subject to
X

i∈P
xit = 1 t = 1, . . . , D (13)

DX

t=1

xit = di i ∈ P (14)

X

i∈P

tX

k=lj(t)

cjixik ≤ pj(s+ 1) j ∈ C, t = 1, . . . , D (15)

s ∈ R∗ (16)

(6).

The objective function minimizes the pace decrease of the assembly line. Cons-

traints (13) guarantee that every position has exactly one car scheduled. Constraints (14)

ensure the class demands are met. Constraints (15) relax the option constraints proporti-

onally to the pace decrease. By solving this model, we obtain both the optimal pace and

the associated sequence for the slower shift.

15

5 Exact strategies based on iterative search methods for the

Max-CSP

We develop exact algorithms based on iteratively solving the feasibility CSP pro-

blem. This problem can be formulated as

(I) max 0 (17)

subject to
X

i∈P
xit = 1 t = 1, . . . , D∗ (18)

(6), (10), (11).

The optimal solution for the Max-CSP can be obtained by testing all values of

D∗ = {1, . . . , D} and picking the maximum one leading to a feasible solution. The value

of D∗ can be bounded from above and below, based on the availability of upper and

lower bounds to speed up the search. Furthermore, we can use alternative exploration

strategies, namely:

• II an iterative incremental approach. As can be observed in Algorithm 1, given a

feasible solution π′, its corresponding primal bound lb, and a dual bound ub, the

algorithm iteratively checks if it is feasible to schedule one more car (Lines 3–4). If

so, the best solution is updated (Lines 5–6). In case it is not feasible, lb = ub or the

time limit is reached, the main loop is interrupted, and the procedure returns the

best solution (Line 7).

• ID an iterative decremental approach. Algorithm 2 presents the steps for the de-

cremental search, which receives a primal solution π′, its associated bound lb, and

a dual bound ub. Starting from ub, at each iteration, the feasibility must be proven

false so the decrement can be performed (Line 5). If the sequence is feasible, it is

then optimal, and the solution is returned (Lines 3–4). If no feasible solution is

found within the time limit, the primal solution passed as input is returned (Line

6).

• IB a binary search. Algorithm 3 shows the pseudocode of the binary search. The

algorithm receives as input a feasible solution π′ along with its associated primal

bound lb, as well as a valid dual bound ub. At each iteration, the binary search

takes the middle element of lb and ub, and assigns the resulting value to a variable

m (Line 2). Next, the procedure checks whether it is possible to build a feasible

sequence with exactly m cars (Line 3). If so, that becomes the new best feasible

solution, and the lb is updated to m (Lines 4–6). Otherwise, ub is set to m − 1

16

(Line 8). The loop continues until the two bounds are the same or the time limit is

reached, and the best solution found is returned (Line 9).

Algorithm 1: IncrementalSearch(π′, lb, ub)

1 feasible ← true
2 while feasible = true and lb ≤ ub and TimeLimitNotReached do
3 lb ← lb+ 1
4 [π, feasible] ← CheckFeasibility(lb)
5 if feasible = true then
6 π′ ← π

7 return π′

Algorithm 2: DecrementalSearch(π′, lb, ub)

1 while feasible = false and lb < ub and TimeLimitNotReached do
2 [π, feasible] ← CheckFeasibility(ub)
3 if feasible = true then
4 return π

5 ub ← ub− 1

6 return π′

Algorithm 3: BinarySearch(π′, lb, ub)

1 while lb < ub and T imeLimitNotReached do
2 m ← ⌈(lb+ ub)/2⌉ ▷ middle element of lb and ub, rounded up
3 [π, feasible] ← CheckFeasibility(m)
4 if feasible = true then
5 π′ ← π
6 lb ← m

7 else
8 ub ← m− 1

9 return π′

These strategies require the implementation of ad hoc algorithms. It is possible

to use CPLEX embedded functions to explore similar strategies if we introduce a new

variable zt in formulation F1. Variable zt is equal to 1 if t is the first unoccupied position

in the sequence. Thus, zt = 1 if t = D+1, z0 = 0 otherwise. The resulting mathematical

model is:

(F2)max
D+1X

t=2

(t− 1)zt (19)

subject to
X

i∈P
xit +

tX

k=1

zk = 1 t = 1, . . . , D (20)

D+1X

t=1

zt = 1 (21)

zt ∈ {0, 1} t = 1, . . . , D + 1 (22)

17

(6), (10), (11).

F2 is an alternative valid formulation for the Max-CSP, and we can take advantage

of the special ordered set of type 1 (SOS1) branching strategies embedded in CPLEX,

given Constraints (21).

The variables in SOS1 have to be assigned unique weights in CPLEX, correspon-

ding to the branching priority of each variable. Therefore, we tested F2 without SOS1

while still enforcing a higher branching priority to the zt variables, with SOS1 assigning

incremental weights to the zt variables (F2I), assigning decremental weights to the zt

variables (F2D), and mimicking with weights the priorities imposed by a binary search

(F2B). Algorithm 4 presents the steps for setting these weights through a breadth-first

search (BFS).

The weights are assigned in descending order to those positions, as they are asso-

ciated with a branching priority in the corresponding variables zt. The algorithm receives

the lower and upper bounds (lb′ and ub′) of the interval where the binary search would

be performed. The variables of type SOS1 within the same set in CPLEX require their

weights to be unique. Therefore, one starts assigning the smallest weights to the positions

outside the bounds of the binary search (Lines 3–5). Next, to work as a flag for the positi-

ons unvisited by the BFS, the weights inside the bounds are assigned value 0 (Lines 6–7).

Finally, the last loop of the algorithm performs the BFS (Lines 10–19), which iteratively

stores the lower and upper bounds of the search intervals in a queue. Every time a pair

of bounds is popped from the queue (Line 11), their middle element is calculated (Line

12). If the corresponding position has not been visited yet, its weight receives the next

largest value (Line 15), and the search interval is divided into two, which are pushed into

the queue (Lines 17–19). Lastly, the list of weights γ is returned (Line 20).

18

Algorithm 4: SetBinaryWeights(lb′, ub′)

1 g ← 0
2 γ ← list of size D + 1
3 for t = 1, . . . , lb′ − 1, ub′ + 1, D + 1 do
4 γt ← g
5 g ← g + 1

6 for t = lb′, . . . , ub′ do
7 γt ← 0

8 g ← D
9 queue ← enqueue(lb′, ub′)

10 while queue ̸= ∅ do
11 (lb, ub) ← dequeue(queue)
12 mid ← ⌈(lb+ ub)/2⌉
13 if γmid > 0 then
14 continue
15 γmid ← g
16 g ← g − 1
17 if lb < ub then
18 queue ← enqueue(lb,mid− 1)
19 queue ← enqueue(mid, ub)

20 return γ

6 Valid bounds for the Max-CSP

In order to obtain the bounds necessary for the iterative methods, we describe a

combinatorial upper bound (UB) and a combinatorial lower bound (LB) for the Max-CSP.

6.1 A valid UB

For all j ∈ C, let Vj be the set of cars with option j that are not scheduled in the

optimal solution. We cannot compute a priori the values of Vj, j ∈ C. However, we can

estimate an LB Y ≤
���
S

j∈C Vj

���. By definition,
P

i∈P di − Y is a valid UB.

We define the surplus of an option j as the number of cars with j that do not fit in

any feasible schedule due to the associated option constraint. This is similar to the option

utilization defined by Perron and Shaw [2004], but, instead of computing the length of

the sequence necessary to schedule a given number of cars with option j, we calculate the

number of cars with option j not fitting in a sequence of fixed length.

Given option j ∈ C, its surplus Sj is given by

Sj = max

(
0,
X

i∈P
cjidi −

pj

$
D

qj

%
+min{pj, D mod qj}

!)
. (23)

We provide a way to estimate Y by using the set of variables

19

Zj =





Sj if j = 1,

max{0, Sj −
j−1P
m=1

min{Zm,
P

i∈P cjicmidi}} otherwise.

Proposition 2.

Y =
X

j∈C
Zj ≤

�����
[

j∈C
Vj

����� .

Proof. We use induction on the number l of options in C.

For the base case, let C = {1}. The value given by the formula is S1 ≤ |V1|.

For the induction hypothesis, we assume W1, . . . ,Wl, l = |C|, are pairwise disjoint

subsets such that for all j ∈ C, Wj ⊆ Vj, Zj = |Wj|. If it holds when adding an extra

option to C, the sum of the variables Zj will be

l+1X

j=1

Zj =

�����
l+1[

j=1

Wj

����� ≤
�����
l+1[

j=1

Vj

����� .

Zl+1 can be either equal to or greater than zero. In the former case, it follows that

Wl+1 = ∅ ⊆ Vl+1. Conversely, if Zl+1 > 0 and considering that Sl+1 ≤ |Vl+1|, then

Zl+1 = Sl+1 −
lX

j=1

min{Zj,
X

i∈P
cl+1,icjidi}

≤ |Vl+1|−
lX

j=1

min{Zj,
X

i∈P
cl+1,icjidi}. (24)

Now, consider the set

Ω = Vl+1 \

l[

j=1

Wj

!
,

whose cardinality may be computed as

|Ω| = |Vl+1|−
lX

j=1

|Vl+1 ∩Wj|. (25)

Comparing (24) and (25), since Zj = |Wj| ≥ |Vl+1 ∩ Wj| and
Pl

j=1

P
i∈P cl+1,icjidi ≥

|Vl+1 ∩Wk| for all k = 1, . . . , l, it follows that Zl+1 ≤ |Ω|. Thus, there must be at least

one set Wl+1 ⊆ Ω such that for all j = 1, . . . , l, Wl+1 ∩Wj = ∅, |Wl+1| = Zl+1.

20

6.2 A valid LB

New cars may be easily added to a given feasible sequence as long as: (i) they are

given enough space between them when placed into the sequence so as to not violate their

option constraints; and (ii) their options do not conflict with those in the sequence. In

view of this, we propose a procedure to compute a valid LB iteratively. Let

Gj =
qj − pj

pj
.

We define

Hi = max
j∈C

{cjiGj}

as a score associated with the most restrictive option of class i ∈ P . Furthermore, let Qi

be the set of cars of class i and

T (h) =
[

i∈P |Hi=h

Qi

be the set of cars whose score is h. For the sake of simplicity, we use H with both classes

and T sets interchangeably (i.e., v ∈ Qi ∈ T =⇒ Hi = HT). We also denote ΠT =

T0, . . . , T|C| as a permutation of sets T such that HTo < HTo+1 , for all o = 0, . . . , |C| − 1

(i.e., ΠT is sorted in ascending order of scores). In addition, for each j ∈ C, we have a

set U(j) consisting of cars v ∈ Qi, ∀i ∈ P , where cji = 1, that is, U(j) contains the cars

that have option j. Similarly to ΠT , ΠU = U1, . . . , U|C| is a permutation of the sets U

such that HTo = GUo . Lastly, the spacing of the option linked to GUo can be represented

as pUo and qUo .

We compute an LB recursively by using the set of variables Lo, which are calculated

as shown in Equation (26). Furthermore, in order to keep track of how many cars in set

Ur, r = 1, . . . , |C|, were added to the solution up to iteration o, we define the set of

variables Aro, which are computed as in Equation (28).

Lo =




|To|, if o = 0,

Lo−1 + Aoo, if o > 0.
(26)

θ(U,L) = pU

 $
L

qU − pU

%
+ 1

!
(27)

21

Aro =




max{min{θ(Uo, Lo−1), |To|}−

o−1P
u=1

min{|To ∩ Uu|, Au,o−1}, 0} if r = o,

Ar,o−1 +min{|To ∩ Ur|, Aoo} if 1 ≤ r < o.

(28)

Proposition 3. L|C| is a valid LB.

Proof. The proof is based on the notion that, for each o, we can construct a new solution

πo by inserting cars from To into it in a specific way. For that, we use induction in o. For

the base case o = 0, note that a sequence with all cars in T0 may be easily constructed by

sequencing them in any order since they have no associated option constraints. Therefore,

L0 = |T0| is a valid LB.

For the inductive step, suppose πo−1 is a sequence with Lo−1 cars from
So−1

r=0 Tr,

with o > 0. Additionally, assume that for each r = 0, . . . , o − 1, Ar,o−1 is an UB on the

number of cars in Ur which are in πo−1. If To ∩
So−1

r=0 Tr = ∅, the number of cars in To

which may be added to πo−1 by correctly spacing them according to their most restrictive

option is

min{θ(Uo, Lo−1), |To|}.

This can be seen in Figure 4, which illustrates how to interpose cars in πo−1 with the ones

in To depending on their option constraints.

L = 8

L = 14

p = 1, q = 6

p = 2, q = 5

⇓

⇓

θ(U,L) = p(⌊L/(q − p)⌋+ 1)

= 2× (⌊8/(5− 2)⌋+ 1) = 6

θ(U,L) = 1× (⌊14/(6− 1)⌋+ 1) = 3

Figure 4: Car interposition based on the option constraints.

Now, suppose there exists at least one set Ur such that To ∩ Ur ̸= ∅, r < o. This

means some cars in πo−1 may share the option from Ur with cars in To. Since at most

22

Ar,o−1 cars in Ur are in πo−1, we may safely assume that we can subtract

min{|To ∩ Ur|, Ar,o−1}

from the total amount of new cars added to avoid possible conflicts. Thus, adding

Aoo = max{min{θ(Uo, Lo−1), |To|}−
o−1X

u=1

min{|To ∩ Uu|, Au,o−1}, 0}

cars in To to πo−1 will always lead to feasible solution.

Finally, suppose πo is a new solution, constructed by adding Aoo cars from To to

πo−1. Clearly, for all r = 0, . . . , o− 1, if X is the amount of cars in Ur which were added

to πo−1 to construct πo, then, X ≤ |To ∩ Ur| and X ≤ Aoo. Hence,

Aro = Ar,o−1 +min{|To ∩ Ur|, Aoo}

is a valid UB to the number of cars in Ur which were added to πo.

A primal solution associated with the LB can be obtained by initializing π with

T0, then inserting Lo − Lo−1 cars from To in π for each o = 1, . . . , |C|, as shown in

Algorithm 5. The insertion of each car needs to be performed in specific positions to

guarantee the solution’s feasibility. First, one makes sure there are cars to be inserted

during iteration o (Lines 3–4), and then iterates over the cars in To (Lines 6–13). The cars

are inserted into the feasible positions of the sequence, determined by Algorithm 6 (Lines

8–11), until Lo − Lo−1 is reached (Lines 12–13). Finally, the primal solution is returned.

Algorithm 5: GeneratePrimalSolution()

1 π ← T0

2 for o ← 1, . . . , |C| do
3 if Lo − Lo−1 = 0 then
4 return π

5 inserted ← 0
6 foreach v ∈ To do
7 for t ← 1, . . . , |π| do
8 if FeasibleInsertion(π, i | v ∈ Qi, t) = true then
9 Insert car v in position t of π

10 inserted ← inserted+ 1
11 break

12 if inserted = Lo − Lo−1 then
13 break

14 return π

23

Algorithm 6: FeasibleInsertion(π, i, t)

1 foreach j ∈ C do

2 if cji = 1 and there are more than pj cars with option j in any window of qj positions,

from position t− (qj − 1) to position t+ qj − 2, when a car of class i is considered to

be between πt−1 and πt then

3 return false

4 return true

24

7 Heuristic algorithm

Preliminary tests showed that the performance of both the proposed formulations

and the exact strategies could be improved by using a good primal bound. To this end,

we develop a heuristic approach based on ILS. This metaheuristic was also employed in

Ribeiro et al. [2008] for the ROADEF’2005 Challenge version of the CSP, specifically for

minimizing the violation of priority constraints. The pseudocode of our method is sum-

marized in Algorithm 7. The algorithm is multi-start and it is executed IR times (Lines

2–18). At each iteration, there is a constructive procedure (Line 3) followed by intensifi-

cation and diversification steps consisting of local search (Line 9) and perturbation (Line

15) mechanisms, respectively, performed IILS times (Lines 8–16) without improvement

(Lines 10–14). Parameter n is associated with the number of perturbation moves, as later

described in Section 7.4.

Algorithm 7: ILSMax-CSP(IR, IILS, n)

1 π∗ ← ∅
2 for iterR ← 1, . . . , IR do
3 π ← GenerateInitialSolution()
4 if |π| = D then
5 return π
6 π′ ← π
7 iterILS ← 0
8 while iterILS < IILS do
9 π ← Insertion(π)

10 if |π| > |π′| then
11 π′ ← π
12 if |π′| = D then
13 return π′

14 IterILS ← 0

15 π ← Perturbation(π′, n)
16 iterILS ← iterILS + 1

17 if |π′| > |π∗| then
18 π∗ ← π′

19 return π∗

7.1 Solution representation

The solution is represented by a sequence π of cars. A car of class i in a given

position t of the sequence can be written as πt = i. For example, if π = [1, 2, 3, 2], we

have π1 = 1, π2 = 2, π3 = 3, and π4 = 2. Moreover, it is possible to concatenate π with

another car using the operator ⊕, that is, π ⊕ 4 = [1, 2, 3, 2, 4].

7.2 Constructive procedure

The constructive procedure is presented in Algorithm 8. P ′ denotes the subset of

P containing classes with at least one unscheduled car. P ′ is therefore initialized to be

25

equal to P (Line 1), because the initial solution is empty. CP is the list of candidate

classes for insertion, and this is also initialized with P ′ (Line 2). While CP is not empty,

the algorithm randomly chooses a class from the list and appends one of its cars at the

end of the sequence (Lines 5–6). Next, the list CP is updated with the classes that can

still be appended at the end of the sequence after the insertion. More precisely, for each

class i present in P ′, one verifies the following. For every option j ∈ C present on that

class, one checks if the qj − 1 latest scheduled positions of the current solution do not

contain more than pj − 1 cars with option j (Lines 14–15). If all options constraints are

satisfied, this class joins CP (Lines 18–19).

Algorithm 8: GenerateInitialSolution()

1 P ′ ← P ▷ collection of classes that still have unscheduled cars
2 CP ← P ′ ▷ list of candidate classes for insertion
3 π ← ∅
4 while CP ̸= ∅ do
5 i ← class from CP selected at random
6 π ← π ⊕ i ▷ concatenate π with car of class i
7 CP ← ∅
8 foreach i ∈ P ′ do
9 if there are di cars of class i in π then

10 P ′ ← P ′ \ i
11 continue ▷ move to another class since all cars from P are already in π

12 feasible ← true
13 foreach j ∈ C do
14 if cji = 1 and there are more than pj − 1 cars with option j in the last qj − 1

positions then
15 feasible ← false

16 if feasible = false then
17 break

18 if feasible = true then
19 CP ← CP ∪ i

20 return π

7.3 Insertion mechanism

The insertion mechanism is presented in Algorithm 9. It starts at a random po-

sition beginning (Line 1) and attempts insertion in any position of the sequence, from

beginning until the end of the sequence, and then before the first car until the position

beginning (Lines 3–11). For each position t, one checks the feasibility (see Algorithm 6)

of inserting cars that belong to the classes in P ′. As per Section 7.2, P ′ is the subset of

classes with at least one unscheduled car. For each class i ∈ P ′, if the insertion of a car

of class i is feasible, it is scheduled in position t (Lines 8–9). Note that beginning must

be increased by one unit if a car is inserted in a position prior to it (Lines 10–11).

26

Algorithm 9: Insertion(π)

1 beginning ← value at random selected from the set {1, 2, . . . , |π|}
2 P ′ ← P ▷ collection of classes that still have unscheduled cars
3 for t ← beginning, . . . , |π|, 1, . . . , beginning − 1 do
4 foreach i ∈ P ′ do
5 if there are di cars of class i in π then
6 P ′ ← P ′ \ i
7 continue ▷ move to another class since all cars from i are already in π

8 if FeasibleInsertion(π, i, t) = true then
9 Insert car of class i in position t ∈ π

10 if t < beginning then
11 beginning ← beginning + 1

12 return π

7.4 Perturbation mechanisms

We have implemented two perturbation mechanisms, namely, removal (Algorithm 10)

and swap (Algorithm 12). The latter is equivalent to the car exchange method presen-

ted in Ribeiro et al. [2008], yet applied during the diversification step instead of in the

intensification phase since it does not directly affect the value of our objective function

but might allow for future insertions. Also, removing a car of class i during perturba-

tion and inserting a car of the same class in the following local search yields a similar

behavior to their car insertion neighborhood. The authors emphasized both procedures,

car exchange and car insertion, for having an efficient nature of quick evaluation. As

demonstrated in Section 8.2, selecting a random perturbation operator outperforms using

one of the mechanisms individually. Note that both algorithms receive the parameter n,

which determines the maximum number of times a move from the corresponding mecha-

nism is performed per perturbation call. Moreover, it is important to emphasize that our

heuristic only considers feasible sequences throughout its execution, meaning that any

acceptable change in the solution will always lead to another feasible schedule.

7.4.1 Removal

For the removal operator, we use a list of positions CT in which the car can be

removed from the sequence without violating any option constraint. This list is updated

after each removal is performed.

Algorithm 10 presents the removal perturbation procedure. First, a constant ∆

is defined (Line 1) to enable an efficient update of CT due to a car removal from the

solution. Such constant specifies the number of backward/forward consecutive positions

from where a car was removed that can be either added to CT or deleted from it. The

value of ∆ is explained further in detail in Algorithm 11. Next, CT is initialized (Line 2),

one of its positions is randomly selected (Line 3) and the car scheduled in this position is

27

removed from π (Line 4). The loop (Lines 5–8) is responsible for the next n−1 removals.

Before each of these removals, the interval for updating CT ranges from ∆ positions before

and ∆− 1 positions after the last removal position (Line 6).

Algorithm 10: Removal(π, n)

1 ∆ = maxi∈C{qj}− 1 ▷ the maximum option window of the instance
2 CT ← UpdateCT(π, 2, |π|− 1, ∅) ▷ list of candidate positions for removal
3 t ← position from CT selected at random
4 Update π by removing car πt

5 for iter ← 1, . . . , n− 1 do
6 CT ← UpdateCT(π,max{t−∆, 2},min{t+∆− 1, |π|− 1},CT)
7 t ← position from CT selected at random
8 Update π by removing car πt

9 return π

Algorithm 11: UpdateCT(π, beginning, end,CT)

1 if CT = ∅ then
2 CT ← CT ∪ {1} ▷ removing the first car of π is always feasible
3 CT ← CT ∪ {|π|} ▷ removing the last car of π is always feasible

4 else
5 Update CT by decreasing one unit from the value of the positions belonging to CT

that are greater than end ▷ a car was removed before them
6 for t ← beginning, . . . , end do
7 feasible ← true
8 foreach j ∈ C do
9 if there are more than pj cars with option j in any window of qj positions, from

position t− (qj − 1) to position t+ qj − 2, disregarding t then
10 feasible ← false
11 break

12 if feasible = true then
13 CT ← CT ∪ {t}
14 else
15 CT ← CT \ {t}
16 return CT

Algorithm 11 details how CT is updated given a range of positions from beginning

to end that might have been affected by a removal. Note that removing the cars associated

with the first and the last positions of the sequence is always feasible. Hence, such

positions are directly added to CT when the list is being initialized (Lines 1–3). If CT

is not empty and therefore being updated, the candidate positions prior to beginning

remain the same, and the ones after end are decreased by one unit in CT because a car

was removed before them (Lines 4–5). Next, the positions in the given range are verified

and eventually updated (Lines 6–15). Let t be a position in this range. For all options

j ∈ C, the procedure verifies if their associated constraints are not violated when πt is

removed (Lines 8–11). Furthermore, in order to determine the feasibility of removing a

car in a given position t, one needs to check the qj − 1 positions before and after t for all

j ∈ C (Line 9). Thus, if then the removal of a car from position t affects the feasibility

28

of removing cars from positions k+∆ ≥ t | k < t, and k−∆ < t | k > t. This is why the

range passed to Algorithm 11 after the first removal starts at beginning = max{t−∆, 2}
and terminates at end = min{t+∆− 1, |π|− 1} (Algorithm 10, Line 6).

When CT is implemented as a linked list, the time complexity of the update is

O(|CT|+ |C|∆2), which corresponds to the number of iterations over CT to decrease one

unit from the positions after end plus the number of calls for checking the feasibility of

removing (O(|C|∆)) every position inside the 2∆ range. As for initializing CT, we check

the feasibility of removing every position in the solution, which leads to a time complexity

of O(|π||C|∆). It is worth mentioning that a trivial procedure for this perturbation move

would reinitialize CT at each new removal, thus yielding an inferior efficiency compared

to Algorithm 10.

7.4.2 Swap

For the swap mechanism, a candidate list is somewhat computationally inefficient

because it involves pairs of positions. Instead, a position t1 from the solution is randomly

selected so one can attempt to apply a move involving the cars at t1 and at any of the

remaining positions.

Algorithm 12 presents the swap perturbation procedure. Initially, an array of size

|π| filled with false values is defined as infeasPos (Line 1), which will store the positions

verified to be infeasible for any swap (i.e., if infeasPost = true, car πt cannot be swapped

with any other car and result in a feasible sequence). After each swap is performed, all

values of this array are reset to false since the change in the solution could lead to

new swap possibilities including any car. An efficient update for infeasPos uses a list,

here denoted as truePos, containing the positions that have been set to true during the

perturbation. This list improves the time complexity of resetting infeasPos from O(|π|)
to O(n), considering that the maximum size of truePos is n.

At first, truePos is initialized empty (Line 2), and for each iteration (Lines 3–

15), one randomly selects a position t1 from the solution (Line 4), which needs to satisfy

infeasPost1 = false (Lines 5–6). Position t1 is then marked as already selected (Lines

7–8), and the search for a car to swap with πt1 begins from another random position t2

of the solution. If infeasPost2 = false and t2 contains a car that can be swapped with

πt1 , the move is performed and all values of infeasPos are reset to false (Lines 11–15).

If no feasible swap exists involving t1, the algorithm moves on to the next iteration with

infeasPost1 = true. Note that, because there can be an iteration without any swap, at

most n swaps are performed.

Algorithm 13 describes the steps for determining whether it is feasible or not to

swap the cars scheduled in the positions t1 and t2. It is necessary to iterate over the

29

Algorithm 12: Swap(π, n)

1 infeasPos ← Boolean array of size |π| filled with false
2 truePos ← ∅
3 for iter ← 1, . . . , n do
4 t1 ← position from π selected at random
5 while infeasPost1 = true do
6 t1 ← (t1 + 1) mod |π| ▷ circular increment inside π

7 infeasPost1 ← true
8 truePos ← truePos ∪ t1
9 beginning ← position from π selected at random

10 for t2 ← beginning, . . . , |π|, 1, . . . , beginning − 1 do
11 if infeasPost2 = false and FeasibleSwap(π, t1, t2) = true then
12 Update π by swapping cars πt1 and πt2

13 Update infeasPos by resetting the value false to the positions in truePos
14 truePos ← ∅
15 break

16 return π

Algorithm 13: FeasibleSwap(π, t1, t2)

1 if πt1 = πt2 then
2 return false

3 foreach j ∈ C do
4 if cjπt1

= 1 ̸= cjπt2
and there are more than pj cars with option j in any window of qj

positions, from position t2 − (qj − 1) to position t2 + qj − 1, when πt1 is considered to
be at position t2 then

5 return false

6 else if cjπt2
= 1 ̸= cjπt1

and there are more than pj cars with option j in any window
of qj positions, from position t1 − (qj − 1) to position t1 + qj − 1, when πt2 is
considered to be at position t1 then

7 return false

8 return true

30

options j ∈ C to check the move feasibility (Lines 3–7). However, cars that belong to

the same class should not be swapped, because it would lead to an equivalent solution,

so the algorithm returns false immediately if this is the case (Lines 1–2). For cars that

belong to different classes, if an option is shared by both cars or neither requires it, the

constraint will not be affected by the swap. The feasibility of placing the car scheduled

at position t1 at position t2 is proven false if any of the conditions stated in Lines 4 and

6 are satisfied. Lastly, the procedure returns true if there is no violation of the option

constraints (Line 8).

31

8 Computational experiments

All formulations and algorithms were coded in C++ and executed on an Intel Xeon

E5-2650 Processor with 128 GB of RAM memory running Ubuntu Linux 16.04. CPLEX

22.1 was adopted as the MIP solver with the strong branching variable selection strategy.

We set a time limit of 600 seconds for each instance.

8.1 Instances

In our experiments, we categorized the instances into two sets: the literature ins-

tances (Set 1) and the real demands obtained from our partner company (Set 2). The

selection of the 247 instances in Set 1 was done by Sun et al. [2023] and is publicly

available at https://github.com/yuansuny/CSP/tree/main/testset. As for Set

2, they consist of four months of historical data from the company that motivated this

study. Each instance is named based on the corresponding month, the index of the shift

(sorted chronologically), and the number of cars. It is worth noting that all options in

these 165 instances follow either of the formats (pj = 1, qj) or (pj = qj − 1, qj). We

would like to note there are certain instances in Set 2 where the number of cars devi-

ates significantly from the norm, for example, D = 1. We chose not to exclude these

instances from the dataset because they can actually make the monthly simulation more

challenging (i.e., more shift delays to assemble a car). This is because it is more li-

kely that cars unscheduled from previous shifts would not be able to fit into a schedule

with a low demand of D = 1 due to the spacing constraints imposed by the options.

In other words, there might not be a sufficient number of cars available on that given

shift to respect the required distancing. All instances used in our study are available at

https://github.com/laradicp/max-csp/tree/main/instances.

8.2 Parameter tuning

Concerning the number n of moves performed in a single perturbation, the type of

perturbation mechanism, and the main parameters IR and IILS, we ran several tests in

order to choose a good compromise between solution quality and CPU time.

Figure 5 introduces three different perturbation mechanisms alongside the tuning

of parameter n. The variations of the perturbation procedure are removal (using only

Algorithm 10), swap (using only Algorithm 12), and both (selecting randomly which al-

gorithm to run at each perturbation call). Given the current solution π, the evaluated

settings for parameter n were min{|π|/2, D/50}, min{|π|/2, D/25}, min{|π|/2, D/20},
min{|π|/2, D/15}, min{|π|/2, D/10} and min{|π|/2, D/5}. We ran Algorithm 7 ten ti-

mes on each instance within the subset of instances from Set 1 that remained unsolved

32

by both formulations F1 and F2, considering IR = 1 and IILS = D/2, and computed the

corresponding average gap and average CPU time of these executions. The graph shows

that the smallest gap, with still very short average CPU time, was obtained by Setting

18 (n = min {|π|/2, D/5}). Thus, this was the chosen setting.

5 · 10−2 0.1 0.15 0.2

12

14

16

18

20

22

24

1

234
5

6

7

8
9

10

11

12

13

14
1516

17
18

Avg. CPU (s)

A
v
g.

G
ap

(%
)

1 : removal, n = min {|π|/2, D/50}
2 : removal, n = min {|π|/2, D/25}
3 : removal, n = min {|π|/2, D/20}
4 : removal, n = min {|π|/2, D/15}
5 : removal, n = min {|π|/2, D/10}
6 : removal, n = min {|π|/2, D/5}
7 : swap, n = min {|π|/2, D/50}
8 : swap, n = min {|π|/2, D/25}
9 : swap, n = min {|π|/2, D/20}
10 : swap, n = min {|π|/2, D/15}
11 : swap, n = min {|π|/2, D/10}
12 : swap, n = min {|π|/2, D/5}
13 : both, n = min {|π|/2, D/50}
14 : both, n = min {|π|/2, D/25}
15 : both, n = min {|π|/2, D/20}
16 : both, n = min {|π|/2, D/15}
17 : both, n = min {|π|/2, D/10}
18 : both, n = min {|π|/2, D/5}

: Dominated

: Non-dominated

Figure 5: Impact of perturbation mechanisms and tuning of parameter n.

Next, we discuss Figure 6 in regard to the main parameters of the heuristic algo-

rithm: IR and IILS. The values considered for IR were 5, 10, 15, 25 and 50, while those

for IILS were D/2, D and 2×D. We ran the algorithm ten times on the same subset of

instances from Set 1 unsolved by both F1 and F2 models. According to the graph, Set-

ting 12 has a relevant gap difference when compared to Setting 9, yet they are still close

enough in average CPU time. Setting 15, on the other hand, requires double the time of

Setting 12. Therefore, we decided to adopt Setting 12, with IR = 25 and IILS = 2×D.

8.3 Results

In the following, we first discuss the performance of the bounds presented in Section

6 and of the heuristic solutions presented in Section 7. We then test the performance of

the exact algorithms on the instances in Set 1, which are typically more challenging than

those in Set 2 and can be better used to evaluate the different methods.

We compare the combinatorial UB described in Section 6.1 with the root node

relaxation of formulation F1 given by CPLEX. When it comes to the instances in Set

2, we found an average percentage gap of 0.32% with respect to the best-known primal

solution for both the root node relaxation of CPLEX and the combinatorial UB, but the

33

0 5 10 15 20 25 30

8

9

10
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Avg. CPU (s)

A
v
g.

G
ap

(%
)

1 : IR = 5 and IILS = D/2

2 : IR = 5 and IILS = D

3 : IR = 5 and IILS = 2×D

4 : IR = 10 and IILS = D/2

5 : IR = 10 and IILS = D

6 : IR = 10 and IILS = 2×D

7 : IR = 15 and IILS = D/2

8 : IR = 15 and IILS = D

9 : IR = 15 and IILS = 2×D

10 : IR = 25 and IILS = D/2

11 : IR = 25 and IILS = D

12 : IR = 25 and IILS = 2×D

13 : IR = 50 and IILS = D/2

14 : IR = 50 and IILS = D

15 : IR = 50 and IILS = 2×D

: Dominated

: Non-dominated

Figure 6: Parameter tuning: IR and IILS.

CPU time of the former is on average 122.85% longer than the latter. As for the instances

in Set 1, however, the combinatorial UB yields a trivial result (i.e., the total number of

cars to be scheduled), thus suggesting that the bound does not prove effective in this

instance set. Detailed results are available at https://github.com/laradicp/max-csp

/tree/main/results.

For the LBs, we compare the performance of the combinatorial LB described in

Section 6.2 with the heuristic bound described in Section 7. This information is sum-

marized in Table 1, from which it becomes clear that the heuristic method is crucial for

attaining good primal solutions.

Table 1: Comparison between combinatorial and heuristic LBs in each ins-
tance set.

instance set bound avg. gap (%) avg. time (s)

Set 1
combinatorial 3829.34 < 0.01
heuristic 5.13 5.52

Set 2
combinatorial 34.22 < 0.01
heuristic 0.04 0.13

We present the results of the computational experiments for Set 1 in two tables:

Table 2 focuses on the performance of the exact methods without the heuristic initiali-

zation, and Table 3 with the heuristic initialization. The associated bound is used for

formulations II , ID, and IB, and the primal solution itself is given to CPLEX as a MIP

start for formulations F1, F2, F2I , F2D, and F2B. Both tables provide the following

information: in “optimal (%)”, we have the percentage of known optimal solutions found;

in “smallest (%)”, the percentage of instances in which the gap was the smallest; in “gap

(%)”, the average gap based on the best dual value (as in Equation (29)); in “time (s)”,

the average CPU time in seconds, considering all instances; and in “time∗ (s)”, the average

34

CPU time in seconds, not considering the instances that exceeded the time limit.

gapprimal(%) =
bestDual − primal

primal
× 100 (29)

Table 2: Performance of different uninitialized methods on the instances in
Set 1.

method avg. gap (%) optimal (%) smallest (%) avg. time (s) avg. time∗ (s)
F1 65.00 58.30 67.61 288.94 66.43
II 4.52 40.89 44.94 405.88 120.47
ID 2300.65 58.30 58.30 290.31 68.76
IB 3.43 49.39 53.85 350.47 90.60
F2 240.01 57.89 65.18 305.95 92.08
F2I 53.28 55.06 62.75 311.11 75.32
F2D 53.39 55.06 62.75 311.20 75.46
F2B 53.33 55.06 62.75 311.14 75.37

Table 3: Performance of different initialized methods on the instances in Set
1.

method avg. gap (%) optimal (%) smallest (%) avg. time (s) avg. time∗ (s)
F1 2.08 59.51 71.26 285.47 71.51
II 2.53 46.96 57.09 364.03 97.50
ID 3.42 57.09 60.73 290.94 58.57
IB 2.54 51.82 59.92 337.16 92.78
F2 2.34 58.70 68.42 292.08 75.45
F2I 2.46 53.44 60.32 310.79 58.81
F2D 2.46 53.44 60.32 310.80 58.83
F2B 2.38 53.85 62.35 308.77 59.13

Regarding the uninitialized methods, F1, F2, and ID demonstrate strength in fin-

ding relatively high numbers of optimal solutions. However, a notable weakness is their

inconsistency due to the high gaps observed, indicating that the suboptimal solution is

poor when the optimal is not found. For example, each iteration of ID can only return an

infeasible, a time limit, or an optimal status. In the first two cases, it uses the combinato-

rial primal solution, which is very low-performing for the instances in Set 1, according to

Table 1. On the other hand, methods II and IB exhibit significant strengths, particularly

in achieving lower optimality gaps, especially IB. This suggests it may be the preferred

choice when a good primal bound is unavailable to warm-start CPLEX. These methods

consistently produce good quality solutions, enhancing their reliability in the industry

scenario.

With the heuristic initialization, the weaknesses previously shown by F1, F2, and

ID are overcome. F1 dominates all the other methods in performance, consistently finding

optimal solutions and achieving the smallest gaps. Importantly, it achieves these strengths

while maintaining efficient CPU times.

In both tables, II , ID, and F2 are dominated by another method. Thus, they

are not the most competitive options in terms of solution optimality and computational

efficiency. Moreover, F2I , F2D, and F2B performed similarly, suggesting that assigning

35

different weights to the variables in SOS1 does not stand out as the most critical strategy

for the problem at hand.

8.4 Instance space analysis

Sun et al. [2023] previously performed an instance space analysis (ISA) on the

CSP. An ISA is capable of generating a plot of instances based on the projection of

various features into a 2D space. Since our approach introduces a novel objective function,

and we propose new algorithms tailored to this specific context, a fresh examination of

the instance space is necessary to provide a comprehensive evaluation of our variant. We

conducted an ISA for the Max-CSP by using the Melbourne algorithm test instance library

with data analytics (MATILDA) framework [Smith-Miles et al., 2020].

MATILDA was utilized with the following settings: minimization optimization

criteria of the cost measure (here gap); absolute performance criteria of 0.0% (i.e., reaching

proven optimality); correlation threshold for feature selection of 0.4; and default settings

for other parameters. We included all uninitialized and initialized algorithms in the input

data. Additionally, we incorporated the 14 instance features defined by Sun et al. [2023]

into our analysis. From this set, seven were selected by MATILDA for the projection.

It may be necessary to analyze multiple graphs simultaneously in order to obtain

meaningful conclusions when interpreting an ISA. For example, Figure 7 shows that the

heuristic algorithm performs worse for the instances projected in the lower right half of

the 2D space, as optimality was not reached in that section.

Concurrently, Figure 8 exhibits the value of the maximum of option utilization

(max-utilization) feature in each instance. By comparing both graphs, we can infer a

positive correlation tendency between this feature and the instance difficulty. In other

words, the higher the maximum of option utilization, the harder the instance tends to be

for the heuristic algorithm to solve.

Similarly, Figure 9 suggests a positive correlation tendency between the instance

difficulty and the average of option utilization (ave-utilization), and negative correlation

tendencies with respect to the instance difficulty can be observed with the minimum of

p/q ratio (min-pq-ratio) in Figure 10 and the average of p/q ratio (ave-pq-ratio) in Figure

11.

The numbers Z1 and Z2 are the coordinates of each instance in the 2D projection,

calculated by multiplying the weights obtained by the analysis with the values of the

features in the respective instance. We provide the weights used in our ISA, defined by

MATILDA, in case one wants to plot a new instance in this same space.

36

Figure 7: Binary distribution of heuristic performance on the instances in
Set 1.

Figure 8: Distribution of the maximum of option utilization in the instances
in Set 1.

37

Figure 9: Distribution of the average of option utilization in the instances in
Set 1.

Figure 10: Distribution of the minimum of p/q ratio in the instances in Set
1.

38

Figure 11: Distribution of the average of p/q ratio in the instances in Set 1.

"
Z1

Z2

#
=




−0.081 0.4673

0.5512 0.0222

0.4987 −0.2672

0.561 0.0951

−0.0032 0.2726

−0.3139 0.4534

−0.2575 −0.2387




T 


num− classes

ave− utilization

max− utilization

ave− opt− class

min− pq − ratio

ave− pq − ratio

std− pq − ratio




Please note that detailed results and graphs are provided in the appendix.

8.5 Real-world instances and operational insights

Having primarily focused on the instances in Set 1, which have demonstrated

to be more challenging, we now analyze the computational results of the instances in

Set 2, compare the performance of each method on them, and simulate the cumulative

sequencing within the monthly time horizon. The last shift of each month is solved by

the Slow-CSP formulation defined in Section 4.

First, we present Tables 4 and 5, which are similar to Tables 2 and 3, but without

the columns “optimal (%)”and “smallest (%)”since every method yielded an optimal

solution. This comparison reveals that all formulations exhibit efficient performance on

the instances in Set 2, with the exception of F1 and the uninitialized II . The latter is an

unexpected behavior because warm starting typically enhances performance; however, it

39

appears to have the opposite effect for F1 in this particular context.

Table 4: Performance of different uninitialized methods on the instances in
Set 2.

method avg. gap (%) avg. time (s) avg. time∗ (s)
F1 0.00 5.25 5.25
II 0.00 3.93 3.93
ID 0.00 0.29 0.29
IB 0.00 0.73 0.73
F2 0.00 0.44 0.44
F2I 0.00 0.40 0.40
F2D 0.00 0.40 0.40
F2B 0.00 0.39 0.39

Table 5: Performance of different initialized methods on the instances in Set
2.

method avg. gap (%) avg. time (s) avg. time∗ (s)
F1 0.00 6.43 2.81
II 0.00 0.40 0.40
ID 0.00 0.29 0.29
IB 0.00 0.22 0.22
F2 0.00 0.48 0.48
F2I 0.00 0.45 0.45
F2D 0.00 0.45 0.45
F2B 0.00 0.43 0.43

Next, we discuss the monthly simulation. The dataset covers demands for four

months: January, February, March, and May of 2019. It is important to note that the

number of cars in different classes is not spread evenly across these months. All cars were

produced by the end of January, February, and May. However, in March, a total of 240

cars were left unscheduled for the dedicated shift. According to the Slow-CSP solution,

which was obtained in 0.09 seconds of CPU time, these cars could be sequenced in a

single shift if the assembly line moved at half of the usual speed. In comparison, if the

objective function by Bautista et al. [2008] was applied (considering unitary weights for

the “upper over-assignment” and zero weights for the “upper under-assignment”), a total

of 248 option constraint violations would be found within the same month of production,

leading to many delays and disruptions.

Hence, the Set 2 instances seem within the reach of our methodologies and can

be solved to optimality in less than a second. Our simulation over a few months of data

confirms that the operational choice of rolling unscheduled cars to the next shift does not

generate bottlenecks. The unscheduled cars left at the end of the production horizon can

be easily accommodated in a single shift, and this latter problem can be solved by means

of the proposed Slow-CSP.

40

9 Concluding remarks

In this paper, we investigated a newly proposed variant of the CSP, denoted as

Max-CSP, which maximizes the number of cars sequenced in the assembly line without

violating any option constraints. This different objective function was brought by a

multinational automotive partner company, in the context of their Brazilian assembly

line, with the particularity of having only “hard sequencing rules”, that is, any option

constraint violation leads to an interruption in the assembly line. The full interruption

is the least desirable outcome for the company. Thus, it is preferable that cars are left

unscheduled if they would cause a violation of the option constraints. The unscheduled

cars are then considered in the demand of the subsequent shift until they are included

in the sequencing. At the end of a monthly time horizon, the company runs a dedicated

line to schedule all remaining cars. This shift is operated at a slower pace in order to

proportionally loosen the option constraints and allow all cars to be produced. In that

context, it is crucial for the company that we provide the maximum pace of this line, for

which purpose we develop a secondary model, called the Slow-CSP.

We addressed the Max-CSP from different perspectives, more precisely, we devised:

(i) an ILP model; (ii) exact algorithms over a feasibility checking ILP model based on

iterative and binary searches; (iii) valid combinatorial lower and upper bounds; and (iv) an

ILS-based heuristic. Extensive computational experiments were carried out on instances

available in the literature. When solely relying on the combinatorial bounds to initialize

the exact algorithms, our findings suggest that the incremental iterative approach and the

binary search yielded a more consistent performance than the other settings, including the

standalone ILP model. Nevertheless, when initializing the exact methods with the high-

quality primal bounds achieved by ILS, the ILP model seemed to outperform the other

procedures in most cases. Furthermore, we conducted an ISA to identify the features

that are likely to affect the performance of the different methods. Finally, we simulated

the cumulative sequencing within the monthly time horizon by using real-world demands,

divided into shifts. We considered data from four months, and we employed the ILP

model for the Max-CSP in all shifts but the last one from every month, whereas the

mixed ILP model developed for the Slow-CSP was utilized to schedule the cars that were

left out after solving the first model. The results achieved were very promising, as it was

only necessary to solve the Slow-CSP in one of the four months.

Further research might address more complex problem features. The problem

could be extended to parallel assembly lines, in which the set of cars to be scheduled has

to be assigned to one of the assembly lines. Other objective functions, such as the one

introduced by Souza et al. [2023], could be compared and contrasted. The weight of a car

may represent, other than the number of options, its associated revenue or priority.

41

Bibliography

J. Bautista, J. Pereira, and B. Adenso-Dı̀az. A beam search approach for the optimization

version of the car sequencing problem. Annals of Operations Research, 159:233–244,

2008.

M.L. Fisher and C.D. Ittner. The impact of product variety on automobile assembly

operations: Empirical evidence and simulation analysis. Management Science, 45:771–

786, 1999.

J. Bukchin and M. Masin. Multi-objective design of team oriented assembly systems.

European Journal of Operational Research, 156(2):326–352, 2004.

S.K. Bhattacharyya, R. Roy, and M.J. Low. A computer simulation system for the eva-

luation of man assignments on car assembly tracks. Simulation, 61:124–133, 1993.

L. Zeltzer, E.-L. Aghezzaf, and V. Limère. Workload balancing and manufacturing com-

plexity levelling in mixed-model assembly lines. International Journal of Production

Research, 55:2829–2844, 2017.

A.J. McClellan, W.J. Albert, S.L. Fischer, F.A. Seaman, and J.P. Callaghan. Shoulder

loading while performing automotive parts assembly tasks: A field study. Occupational

Ergonomics, 8:81–90, 2009.

B.D. Parrello, W.C. Kabat, and L. Wos. Job-shop scheduling using automated reasoning:

A case study of the car-sequencing problem. Journal of Automated Reasoning, 2:1–42,

1986.

M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving the car-sequencing problem

in constraint logic programming. In Proceedings of the 8th European Conference on

Artificial Intelligence, ECAI’88, pages 290–295, USA, 1988. Pitman Publishing, Inc.

N. Boysen, M. Fliedner, and A. Scholl. Sequencing mixed-model assembly lines: Survey,

classification and model critique. European Journal of Operational Research, 192(2):

349–373, 2009.

Tamás Kis. On the complexity of the car sequencing problem. Operations Research

Letters, 32(4):331–335, 2004.

B. Estellon and F. Gardi. Car sequencing is np-hard: a short proof. Journal of the

Operational Research Society, 64(10):1503–1504, 2013.

J. Gottlieb, M. Puchta, and C. Solnon. A study of greedy, local search, and ant colony

optimization approaches for car sequencing problems. In S. Cagnoni, C. G. Johnson,

42

J. J. R. Cardalda, E. Marchiori, D. W. Corne, J.-A. Meyer, J. Gottlieb, M. Middendorf,

A. Guillot, G. R. Raidl, and E. Hart, editors, Applications of Evolutionary Computing,

pages 246–257, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

M. Gravel, C. Gagné, and W. L. Price. Review and comparison of three methods for the

solution of the car sequencing problem. Journal of the Operational Research Society,

56:1287–1295, 2005.

Uli Golle, Franz Rothlauf, and Nils Boysen. Iterative beam search for car sequencing.

Annals of Operations Research, 226(1):239–254, Mar 2015.

I. Ozan Yilmazlar and Mary E. Kurz. Adaptive local search algorithm for solving car

sequencing problem. Journal of Manufacturing Systems, 68:635–643, 2023. ISSN 0278-

6125.

N. Boysen and M. Fliedner. Comments on “solving real car sequencing problems with

ant colony optimization”. European Journal of Operational Research, 182(1):466–468,

2007. ISSN 0377-2217.

M. Fliedner and N. Boysen. Solving the car sequencing problem via Branch & Bound.

European Journal of Operational Research, 191(3):1023–1042, 2008.

A. Bolat and C.A. Yano. Scheduling algorithms to minimize utility work at a single

station on a paced assembly line. Production Planning & Control, 3(4):393–405, 1992.

Andreas Hottenrott, Leon Waidner, and Martin Grunow. Robust car sequencing for

automotive assembly. European Journal of Operational Research, 291(3):983–994, 2021.

ISSN 0377-2217.

B. Smith. Suceed-first or fail-first: A case study in variable and value ordering. In Third

International Conference on the Practical Application of Constraint Technology, pages

321–330, London, 1997.

K.S. Hindi and G. Ploszajski. Formulation and solution of a selection and sequencing

problem in car manufacture. Computers & Industrial Engineering, 26(1):203–211, 1994.

L. Perron and P. Shaw. Combining forces to solve the car sequencing problem. In J.-

C. Régin and M. Rueher, editors, Integration of AI and OR Techniques in Constraint

Programming for Combinatorial Optimization Problems, pages 225–239, Berlin, Heidel-

berg, 2004. Springer Berlin Heidelberg.

C. Solnon, V.-D. Cung, A. Nguyen, and C. Artigues. The car sequencing problem: Over-

view of state-of-the-art methods and industrial case-study of the roadef’2005 challenge

problem. European Journal of Operational Research, 191(3):912–927, 2008.

43

Jiaxi Wu, Yongkang Ding, and Leyuan Shi. Mathematical modeling and heuristic appro-

aches for a multi-stage car sequencing problem. Computers & Industrial Engineering,

152:107008, 2021. ISSN 0360-8352.

Haida Zhang and Wensi Ding. A decomposition algorithm for dynamic car sequencing

problems with buffers. Applied Sciences, 13(12), 2023. ISSN 2076-3417.

D. R. Thiruvady, B. Meyer, and A. Ernst. Car sequencing with constraint-based aco. In

Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation,

GECCO ’11, pages 163–170, New York, NY, USA, 2011. Association for Computing

Machinery.

D. Thiruvady, A. T. Ernst, and M. Wallace. A Lagrangian-ACO matheuristic for car

sequencing. EURO Journal on Computational Optimization, 2(4):279–296, 2014.

D. Thiruvady, K. Morgan, A. Amir, and A. T. Ernst. Large neighbourhood search ba-

sed on mixed integer programming and ant colony optimisation for car sequencing.

International Journal of Production Research, 58(9):2696–2711, 2020.

Filipe Souza, Diarmuid Grimes, and Barry O’Sullivan. Variable-relationship guided lns

for the car sequencing problem. In Luca Longo and Ruairi O’Reilly, editors, Artifi-

cial Intelligence and Cognitive Science, pages 437–449, Cham, 2023. Springer Nature

Switzerland.

M. Yavuz and H. Ergin. Advanced constraint propagation for the combined car sequencing

and level scheduling problem. Computers & Operations Research, 100:128–139, 2018.

Andreas Drexl, Alf Kimms, and Lars Matthießen. Algorithms for the car sequencing and

the level scheduling problem. Journal of Scheduling, 9(2):153–176, Apr 2006. ISSN

1099-1425.

Christian Artigues, Emmanuel Hebrard, Valentin Mayer-Eichberger, Mohamed Siala, and

Toby Walsh. Sat and hybrid models of the car sequencing problem. In Helmut Simonis,

editor, Integration of AI and OR Techniques in Constraint Programming, pages 268–

283, Cham, 2014. Springer International Publishing. ISBN 978-3-319-07046-9.

Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. A study of constraint

programming heuristics for the car-sequencing problem. Engineering Applications of

Artificial Intelligence, 38:34–44, 2015. ISSN 0952-1976.

Terry Warwick and Edward P. K. Tsang. Tackling car sequencing problems using a generic

genetic algorithm. Evolutionary Computation, 3(3):267–298, 1995.

44

B. Estellon, F. Gardi, and K. Nouioua. Two local search approaches for solving real-life

car sequencing problems. European Journal of Operational Research, 191(3):928–944,

2008. ISSN 0377-2217.

Celso C. Ribeiro, Daniel Aloise, Thiago F. Noronha, Caroline Rocha, and Sebastián Ur-

rutia. A hybrid heuristic for a multi-objective real-life car sequencing problem with

painting and assembly line constraints. European Journal of Operational Research, 191

(3):981–992, 2008. ISSN 0377-2217.

F. Guerre-Chaley, Y. Frein, and R. Bouffard-Vercelli. An efficient procedure for solving

a car sequencing problem. In Proceedings 1995 INRIA/IEEE Symposium on Emerging

Technologies and Factory Automation. ETFA’95, volume 2, pages 385–393 vol.2, 1995.

Ignacio Moya, Manuel Chica, and Joaqúın Bautista. Constructive metaheuristics for

solving the car sequencing problem under uncertain partial demand. Computers &

Industrial Engineering, 137:106048, 2019. ISSN 0360-8352.

Y. Sun, S. Esler, D. Thiruvady, A. T. Ernst, X. Li, and K. Morgan. Instance space analysis

for the car sequencing problem. Annals of Operations Research, page To appear, 2023.

J.M.P. Silva, A. Subramanian, and E. Uchoa. On time-indexed formulations for the

parallel machine scheduling problem with a common server. Engineering Optimization,

0(0):1–18, 2023.

K. Smith-Miles, M.A. Muñoz, and Neelofar. Melbourne algorithm test instance library

with data analytics (matilda). Available at https://matilda.unimelb.edu.au, 2020.

45

Appendices

46

A Instance space analysis

This appendix provides visual representations of the ISA conducted during the

course of this study, generated by the MATILDA framework [Smith-Miles et al., 2020].

The primary goal is to offer a comprehensive view of how some features associated with

the instances can make the Max-CSP harder to solve.

Since the problem contains a diverse set of benchmark instances (here Set 1) in

which an ISA was already performed by Sun et al. [2023], we focus our analysis on those,

rather than on the real demands obtained from our partner company (Set 2).

The first set of graphs, Figures 12–28, illustrates the distribution of good and bad

results in the proposed algorithms. The threshold that defines a good result is reaching

proven optimality (gap 0.0%) within the time limit of ten minutes. Understanding this

binary distribution is crucial as it sheds light on the difficulty of different clusters of

instances. In that sense, it is noticeable that the lower right half of the two-dimensional

space has typically higher gaps for all algorithms, which suggests a more challenging set

of instances.

Figure 12: Binary distribution of heuristic performance on the instances in
Set 1.

Following this, the set of graphs in Figures 29–35 showcases the distribution of

features within the same projection. These visualizations were instrumental in deriving

47

Figure 13: Binary distribution of uninitialized F1 performance on the ins-
tances in Set 1.

48

Figure 14: Binary distribution of initialized F1 performance on the instances
in Set 1.

49

Figure 15: Binary distribution of uninitialized II performance on the instan-
ces in Set 1.

50

Figure 16: Binary distribution of initialized II performance on the instances
in Set 1.

51

Figure 17: Binary distribution of uninitialized ID performance on the instan-
ces in Set 1.

52

Figure 18: Binary distribution of initialized ID performance on the instances
in Set 1.

53

Figure 19: Binary distribution of uninitialized IB performance on the instan-
ces in Set 1.

54

Figure 20: Binary distribution of initialized IB performance on the instances
in Set 1.

55

Figure 21: Binary distribution of uninitialized F2 performance on the ins-
tances in Set 1.

56

Figure 22: Binary distribution of initialized F2 performance on the instances
in Set 1.

57

Figure 23: Binary distribution of uninitialized F2I performance on the ins-
tances in Set 1.

58

Figure 24: Binary distribution of initialized F2I performance on the instan-
ces in Set 1.

59

Figure 25: Binary distribution of uninitialized F2D performance on the ins-
tances in Set 1.

60

Figure 26: Binary distribution of initialized F2D performance on the instan-
ces in Set 1.

61

Figure 27: Binary distribution of uninitialized F2B performance on the ins-
tances in Set 1.

62

Figure 28: Binary distribution of initialized F2B performance on the instan-
ces in Set 1.

63

the conclusions outlined in the main report. By mapping features in this instance space,

we gained insights into their relative importance and their impact on model performance.

Figure 29: Distribution of the number of classes in the instances in Set 1.

Finally, Figure 36 confirms the results presented in Table 3 of the main report,

highlighting formulation F1 with the heuristic initialization as the most effective exact

approach. It is worth noting that no specific algorithm exhibits a clear advantage in some

of the most challenging instances, leaving space for future research.

These visual representations not only serve as a valuable complement to the quan-

titative analysis presented in the main report but also provide a more intuitive understan-

ding of the complex relationships between algorithm performance and feature distributions

within the instance space. They offer a visual narrative that further supports the findings

and conclusions drawn from the data.

Please refer to the following pages for detailed graphical representations of the

performance and feature distributions.

64

Figure 30: Distribution of the average of option utilization in the instances
in Set 1.

65

Figure 31: Distribution of the maximum of option utilization in the instan-
ces in Set 1.

66

Figure 32: Distribution of the average number of options per car class in the
instances in Set 1.

67

Figure 33: Distribution of the minimum of p/q ratio in the instances in Set
1.

68

Figure 34: Distribution of the average of p/q ratio in the instances in Set 1.

69

Figure 35: Distribution of the standard deviation of p/q ratio in the instan-
ces in Set 1.

70

Figure 36: Best algorithm for each of the instances in Set 1.

71

		2024-05-22T09:56:42-0300

		2024-05-22T10:04:28-0300

		2024-05-22T12:07:48-0300

