The maximum length car sequencing

problem

Lara di Cavalcanti Pontes

/ 4

CENTRO DE INFORMATICA
UNIVERSIDADE FEDERAL DA PARAIBA

Joao Pessoa
2024

Lara di Cavalcanti Pontes

The maximum length car sequencing problem

Monograph presented in fulfillment of the requirements
for the Bachelor’s degree in Computer Engineering, Cen-

tro de Informatica, Universidade Federal da Paraiba.

Advisor: Anand Subramanian

Joao Pessoa
2024

Cat al ogacdo na publicacéo
Secdo de Catal ogacdo e O assificacéo

P814m Pontes, Lara di Caval canti.

The maxi num | ength car sequencing problem/ Lara di

Caval canti Pontes. - Jodo Pessoa, 2024.

85 f. : il.

Ori entagdo: Anand Subranmani an.

TCC (Graduacao) - UFPB/Informatica.

1. Scheduling. 2. Assenbly line. 3. Car sequencing.
4. Conbinatorial optimzation. |. Subranmani an, Anand.
I1. Titulo.

UFPB/ Cl CDU 004: 629

El aborado por M chell e de Kassia Fonseca Barbosa - CRB-738

O
/ 4

CENTRO DE INFORMATICA
UNIVERSIDADE FEDERAL DA PARAIBA

Work titled The maximum length car sequencing problem presented in ful-
fillment of the requirements for the Bachelor’s degree in Computer Engineering, approved

by:

Documento assinado digitalmente

ub ANAND SUBRAMANIAN
Data: 22/05/2024 12:07:48-0300

Verifique em https://validar.iti.gov.br

Prof. Dr. Anand Subramanian
. . , Documento assinado digitalmente
Universidade Federal da Paraiba g V.b TEOBALDO LEITE BULHOES JUNIOR

Data: 22/05/2024 10:04:28-0300
Verifique em https://fvalidar.iti.gov.br

Prof. Dr. Teobaldo Leite Bulhoes Junior

Universidade Federal da Paraiba

Documento assinado digitalmente

“b LUCIANO CARLOS AZEVEDO DA COSTA
g Data: 22/05/2024 09:56:42-0300
Verifique em https://validar.iti.gov.br

Prof. Dr. Luciano Carlos Azevedo da Costa

Universidade Federal da Paraiba

Joao Pessoa, May 13, 2024

Centro de Informaética, Universidade Federal da Paraiba
Rua dos Escoteiros, Mangabeira VII, Joao Pessoa, Paraiba, Brasil CEP: 58058-600
Fone: +55 (83) 3216 7093 / Fax: +55 (83) 3216 7117

To my parents,

who always ensured a feasible solution space for me to pursue my objective function.

Acknowledgments

I would like to express my deepest gratitude to my advisor, Prof. Anand Subra-
manian, for first presenting me to the world of operations research and for his continuous
and attentive guidance throughout my undergraduate years. Also, I am extremely gra-
teful to my co-advisor, Prof. Maria Battarra, for the invaluable lessons and for warmly
welcoming me during my exchange period at the University of Bath. And special thanks
to my brilliant colleague Carlos Neves for his collaboration in this work. This endeavor

would not have been possible without them.

I would like to extend my sincere thanks to Prof. Teobaldo Bulhoes and Prof.
Luciano Costa for composing the examining committee and for the helpful comments,
Prof. Bruno Bruck and Prof. Thais Gaudencio for their support during my academic
pursuits, Prof. Artur Pessoa for his valuable suggestions regarding the mathematical
formulations, Dr. Yuan Sun for kindly providing the set of instances used in his study,
and the anonymous reviewers for the relevant insights that considerably improved the

quality of the work.

I cannot express enough gratitude to my parents, Soraia Pinheiro and Carlos Pon-
tes, for being my core foundation and biggest supporters. On the same note, I profoundly
thank Louise Pinheiro, Livia Pinheiro, Marina Pontes, and Glaudir Donato for always
being my truest cheerleaders, as well as my nieces for inspiring me to work towards a

better world for them.

I would like to acknowledge my peer mentor, Itamar Rocha, for giving me the
best advice and bringing me key opportunities, and my friend and classmate, Humberto

Navarro, for not leaving my side during all our courses and projects.

I would be remiss in not mentioning the Fundacao Estudar for leveraging my career
and my dreams while welcoming me into an inspiring community of Brazilians driven by

impact.

Lastly, I would like to mention all my friends and labmates, without whom this

journey would not have been nearly as rich and fun.

Resumo

Este trabalho introduz o problema do sequenciamento méximo de carros para
apoiar as operacgoes de montagem de uma multinacional automobilistica. E proposta uma
formulagao de programacao linear inteira (PLI) para sequenciar o maior niimero possivel
de carros sem violar restricoes de espacamento relacionadas a atributos especiais, como
teto solar e radio. Adicionalmente, limitantes superior e inferior, que podem ser calculados
em tempos computacionais negligenciaveis, sao apresentados, assim como algoritmos de
buscas iterativa e binaria para resolver o problema quando bons limites primais nao estao
prontamente disponiveis. Para obter solugoes de boa qualidade rapidamente, desenvolveu-
se um algoritmo de busca local iterada, cujas solugoes sao utilizadas para inicializar o
resolvedor, aumentando a performance dos métodos exatos. Resultados computacionais
demonstram gaps relativamente baixos para instancias de benchmark em um tempo limite
de 10 minutos. Além disso, foi conduzida uma anélise do espago de instancias para
identificar as caracteristicas que dificultam a resolucao do problema. Por fim, as demandas
reais da empresa foram resolvidas em menos de um segundo, e simulagoes cronoldgicas,
visando a maximizar o nimero de carros sequenciados por turno, foram conduzidas para
quatro meses de dados histéricos. Nesse caso, um novo modelo PLI foi empregado para
sequenciar os carros nao produzidos até o ultimo turno do més em uma linha dedicada,
diminuindo o ritmo da linha de producao de forma a relaxar as restricoes impostas pelos
atributos especiais. Os resultados apontaram que a linha dedicada foi necessaria em

apenas uimn dos meses.

Palavras-chave: Escalonamento, Linha de producao, Sequenciamento de carros,

Otimizacao combinatdria.

Abstract

This work introduces the maximum length car sequencing problem to support
the assembly operations of a multinational automotive company. We propose an integer
linear programming (ILP) formulation to schedule the maximum number of cars without
violating the so-called option constraints. In addition, we present valid combinatorial
lower and upper bounds, which can be calculated in less than 0.01 seconds, as well as
binary and iterative search algorithms to solve the problem when good primal bounds
are not readily available. To quickly obtain high-quality solutions, we devise an effective
iterated local search algorithm, and we use the heuristic solutions as warm start to further
enhance the performance of the exact methods. Computational results demonstrate that
relatively low gaps were achieved for benchmark instances within a time limit of ten
minutes. We also conducted an instance space analysis to identify the features that make
the problem more difficult to solve. Moreover, the instances reflecting the company’s
needs could be solved to optimality in less than a second. Finally, simulations with real-
world demands, divided into shifts, were conducted over a period of four months. In this
case, we use the proposed ILP model in all shifts except the last one of each month, for
which we employ an alternative ILP model to sequence the unscheduled cars, adjusting
the pace of the assembly line in an optimal fashion. The results pointed out that the

latter was necessary in only one of the months.

Key-words: Scheduling, Assembly line, Car sequencing, Combinatorial optimiza-

tion.

Contents

Glossary v

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Preliminaries e 1

1.2 Motivationo 3

1.3 Objectives 4

1.4 Monograph outline)

2 Context and related work 6

2.1 Description of the problems and literature positioning 6

2.2 The CSP by Bautista et al. [2008] 9

2.3 Literature review 10

3 Modeling the Max-CSP 12
3.1 Using the mathematical formulation by Bautista et al. [2008] to solve the

Max-CSP e 12

3.2 Proposed formulationo 13

4 Modeling the Slow-CSP 15

5 Exact strategies based on iterative search methods for the Max-CSP 16

6 Valid bounds for the Max-CSP 19
6.1 AvalidUB 19
6.2 AvalidLB. 21

7 Heuristic algorithm 25
7.1 Solution representation 25

7.2 Constructive procedure 25

7.3 Insertion mechanism

7.4 Perturbation mechanisms L
7.4.1 Removal
TA2 SWaD e

8 Computational experiments

8.1 Instances.

8.2 Parameter tuning

8.3 Results

8.4 Imstance space analysis Lo o

8.5 Real-world instances and operational insights

9 Concluding remarks

Bibliography

Appendices

A Instance space analysis

32
32
32
33
36
39

41

41

46

47

ACO
B&B
BFS

BS

CP

CSP

GA

ILP

ILS

ISA

LB

LNS
MATILDA
Max-CSP
MIP
SOS1

UB

VNS

Glossary

Ant colony optimization
Branch-and-bound
Breadth-first search
Beam search

Constraint programming
Car sequencing problem
Genetic algorithm
Integer linear programming
[terated local search
Instance space analysis
Lower bound

Large neighborhood search

Melbourne algorithm test instance library with data analytics

Maximum length car sequencing problem

Mixed integer programming
Special ordered set of type 1
Upper bound

Variable neighborhood search

L 3 O

Ne)

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25

26

List of Figures

Example of assembly station. L. 2

Example of a feasible sequence followed by a car that causes an option

constraint violation. 3
Example of a sequencing process. L. 8
Car interposition based on the option constraints. 22
Impact of perturbation mechanisms and tuning of parameter n. 33
Parameter tuning: Igr and I;pg.o 34
Binary distribution of heuristic performance on the instances in Set 1. . . . 37

Distribution of the maximum of option utilization in the instances in Set 1. 37

Distribution of the average of option utilization in the instances in Set 1. . 38
Distribution of the minimum of p/q ratio in the instances in Set 1. 38
Distribution of the average of p/q ratio in the instances in Set 1. 39
Binary distribution of heuristic performance on the instances in Set 1. . . . 47

Binary distribution of uninitialized F1 performance on the instances in Set 1. 48
Binary distribution of initialized F1 performance on the instances in Set 1. 49
Binary distribution of uninitialized I; performance on the instances in Set 1. 50
Binary distribution of initialized I; performance on the instances in Set 1. . 51
Binary distribution of uninitialized Ip performance on the instances in Set 1. 52
Binary distribution of initialized I, performance on the instances in Set 1. 53
Binary distribution of uninitialized Iz performance on the instances in Set 1. 54
Binary distribution of initialized Ig performance on the instances in Set 1. 55
Binary distribution of uninitialized F2 performance on the instances in Set 1. 56
Binary distribution of initialized F2 performance on the instances in Set 1. 57

Binary distribution of uninitialized F2; performance on the instances in
Set 1. . o 58

Binary distribution of initialized F2; performance on the instances in Set 1. 59

Binary distribution of uninitialized F2p performance on the instances in
Set 1. . o 60

Binary distribution of initialized F2p performance on the instances in Set 1. 61

Binary distribution of uninitialized F2p performance on the instances in

Binary distribution of initialized F2p performance on the instances in Set 1. 63
Distribution of the number of classes in the instances in Set 1. 64
Distribution of the average of option utilization in the instances in Set 1. . 65
Distribution of the maximum of option utilization in the instances in Set 1. 66

Distribution of the average number of options per car class in the instances

inSet 1. e 67
Distribution of the minimum of p/q ratio in the instances in Set 1. 68
Distribution of the average of p/q ratio in the instances in Set 1. 69

Distribution of the standard deviation of p/q ratio in the instances in Set 1. 70

Best algorithm for each of the instances in Set 1.. 71

- W

List of Tables

Comparison between combinatorial and heuristic LBs in each instance set.

Performance of different uninitialized methods on the instances in Set 1.

Performance of different initialized methods on the instances in Set 1. . . .

Performance of different uninitialized methods on the instances in Set 2.

Performance of different initialized methods on the instances in Set 2. . . .

34
35
35
40

1 Introduction

1.1 Preliminaries

Car assembly operations have been widely studied in the literature, and relevant
research focused on how product variety is necessary in the car industry even if it affects
productivity (Fisher and Ittner, 1999). Therefore, workload allocations have to guarantee
that operations of varying duration do not cause overtime on a paced assembly line.
The motivation, welfare, and satisfaction of the employees are of paramount importance.
Hence, workload assignments need to be perceived as doable and fair. An example of a
scheduling solution aimed at improving employee satisfaction can be found in Bukchin
and Masin [2004], and the need for balancing the work content on paced car assembly
lines in order to avoid overtime has been discussed, for example, in Bhattacharyya et al.
[1993].

This work is motivated by a collaboration with a large car assembly company in
Brazil. Different models of cars are sequenced in the assembly line. No more than a
maximum number of cars requiring a specific assembly operation should be scheduled in
close proximity to one another so that the workers responsible for this assembly operation
have enough time to complete the task without delaying the line. The need to quantify
the complexity of operations in assembly lines has already been discussed in Zeltzer et al.
[2017], and issues around ergonomics of diverse assembly operations were highlighted by
McClellan et al. [2009].

The scheduling of car assembly operations has attracted interest since the definition
of the car sequencing problem (CSP) by Parrello et al. [1986]. The issue of spacing
out specific operations in the assembly sequence is a common constraint among papers
focusing on this application. There seems to be consensus on modeling these constraints
using the concept of options, which correspond to additional components to be assembled
in a car, such as air-conditioning and sunroof. The stations responsible for assembling

the options have limited workload capacity.

Figure 1 illustrates the issue with an example. Let the station that assembles the
option sunroof have one worker and space for three cars at a time in the line. The cars
move continuously at a fixed pace, and the time each worker takes to complete the task
ranges from the moment the car gets into the station to the moment it leaves. Thus, if
the worker from the sunroof station is already occupied with a car (car 3) when another
one needing a sunroof (car 5) arrives, the latter will not be completed in time. For this
case, an option constraint would establish that no more than one car requiring a sunroof

should be scheduled in any subsequence of three consecutive cars.

The feasibility version of the CSP, as defined by Dincbas et al. [1988], requires

e
=

Sunroof station

A

a
v

Sunroof station

Sunroof station

Sunroof station

a a A
L4 v 7

Sunroof station -,

Figure 1: Example of assembly station.

Y L) v

Figure 2: Example of a feasible sequence followed by a car that causes an
option constraint violation.

identifying if an assembly sequence with all demanded cars exists without violating any
option constraint. The optimization version of the CSP has been formalized using many
different objective functions in the literature. However, the most common feature seems to
be accepting the violation of the option constraints by allowing delays in the production
line. The resulting optimization problem requires scheduling all cars while minimizing
a weighted combination of some penalizations. This objective and its variants will be

formalized in the following sections.

We propose a new optimization variant for the CSP, the mazimum length car
sequencing problem (Max-CSP). The maximum length refers to the number of cars sche-
duled contiguously in the assembly line, resulting in the longest sequence without option
constraint violations. Figure 2 shows an example of a feasible sequence followed by a
car that causes a violation. Even if the production demands an additional car with a
sunroof, it cannot be scheduled without violating the option constraint that limits to one
the maximum number of such cars every three consecutive positions. The motivations for
developing this variant are detailed in the next section. This work aims at introducing

and proposing solution methods for the Max-CSP.

1.2 Motivation

The partner company that motivated the definition of the Max-CSP manages its
scheduling decisions by modeling only some of the “hard sequencing rules” (see Boysen
et al., 2009). They consider a subset of the option constraints, and the options have all to
be respected, as any violation leads to a stop of the whole assembly line. The assembly
operations refer to the general assembly line (the last step before car completion), a single
line runs in the factory, and the scheduling is solved daily. It is crucial to maintain the

flow on the line smooth, fast, and without interruptions.

The management of the company explained that they would rather assemble uns-
cheduled cars in the days after the originally planned one and add a dedicated shift at the
end of the time horizon for those cars not yet assembled. Car demands have a dynamic
nature, i.e., they arrive continuously, and must typically be assembled within a month.
The cars not completed in this time frame are all scheduled during a dedicated shift, in

which the pace of the line is slowed down. For that, we devise a different mixed integer

linear programming (ILP) formulation. This subjacent problem is named the Slow-CSP.

The company, prior to our collaboration, was allocating cars manually to the paced
assembly line. This task is time-consuming, and often only solutions with option cons-
traint violations could be found. The goal of our collaboration has been to develop an
algorithm to solve this scheduling problem, identifying solutions without option violations
while maximizing the number of cars assembled in the line and handling the unscheduled
cars in the dedicated shift. The Max-CSP, as well as the Slow-CSP, are variants of the
CSP (Parrello et al., 1986). However, we are not aware it has ever been studied in any of

these forms.

The importance of this study is not only practical but also theoretical. The presen-
ted problem is complex, as it is to achieve good solutions. Thus, extensive research was
conducted to generate integrated exact and heuristic methods that solve the Max-CSP

effectively and efficiently.

1.3 Objectives

The objectives of this work are manifold and they are summarized as follows.

e Introduce a new variant of the CSP (Max-CSP), motivated by a real-life application,

and describe how the problem can be positioned in the literature.

e Present valid combinatorial lower and upper bounds, which can be calculated in less
than 0.01 seconds.

e Devise exact algorithms based on binary and iterative searches that yield good

results when good primal bounds are not readily available.

e Implement an effective iterated local search (ILS) heuristic, with efficient intensifi-
cation and diversification procedures, capable of finding high-quality solutions in a

matter of seconds.

e Introduce a subjacent variant (Slow-CSP) to adjust the pace of the assembly line

for the unscheduled cars in a dedicated shift.

e Conduct extensive computational experiments to evaluate the performance of all

proposed exact and heuristic methods.

e Perform an instance space analysis to suggest which are the characteristics that

make our problem challenging to solve.

e Simulate the scheduling decisions for a period of four months, using real-world

instances.

1.4 Monograph outline

The remainder of this work is organized as follows. Section 2 provides a formal
description of the problems and their relation with existing CSP variants, as well as a
brief literature review. Section 3 models the Max-CSP, while Section 4 models the Slow-
CSP. Section 5 describes the iterative and binary search algorithms for the Max-CSP, and
Section 6 presents valid combinatorial bounds. Section 7 describes the proposed heuristic
algorithm. Section 8 contains the results of the computational experiments. Finally,

Section 9 summarizes our findings.

2 Context and related work

2.1 Description of the problems and literature positioning

In the following, we first address the feasibility version of the CSP and compare
it with the feasibility version of the Max-CSP. We then present the most widely studied
objective functions for the optimization variants of the CSP and narrow down our analysis
to a problem variant that we can easily adapt to the Max-CSP. The optimization version
of the Max-CSP is also described within the context of our partner company, alongside a

brief discussion on the Slow-CSP, the other problem variant introduced in this work.

The feasibility version of the CSP, as introduced by Dincbas et al. [1988], consists
in sequencing D cars, where D is also the number of positions available for sequencing
them while satisfying the option constraints. An option j € C imposes that no more
than p; cars can be scheduled in any subsequence of length ¢;. It is common practice
to group cars in “classes”if they have the same set of options, as cars in the same class
can be assigned interchangeably a position in the sequence without violating any option
constraint. Classes are denoted ¢ € P, and there are d; cars in each class. If an option
J € C applies to a class of cars 7 € P, then ¢;; = 1, and 0 otherwise. For future reference,

we summarize the notation in the following bullet points.

C' the set of options, such as air-conditioning and sunroof;

P: the set of car classes;

D: the total number of cars and the corresponding number of available positions in

the assembly line;

(pj, ¢;): p; defines the maximum number of cars allowed with option j € C' in any

subsequence of g; consecutive positions;

d;: the demand for cars of class i € P;

c;i: whether or not the cars of class ¢ € P require the option j € C.

The feasibility version of the CSP has been proven to be N'P-complete in the
strong sense by Kis [2004], using a reduction from the Exact Cover by 3-sets. Note that
Estellon and Gardi [2013] proved that the CSP is A'P-hard using a reduction from the

Hamiltonian path problem with even more restrictive options.

In the Max-CSP, we study the same feasibility problem as for the CSP, considering
all options (as for the CSP), including the subset of options currently implemented by the

company, namely:

o j € C|(p; =1,q;) states that at most one car with option j can be scheduled in

any subsequence of length g;;

e j € C|(pj =qj—1,q;) states that at most ¢; —1 cars with option j can be scheduled

in any subsequence of length g;.

The feasibility version of the Max-CSP limited to these options is a special case of
the CSP. However, the complexity proofs by Kis [2004], Estellon and Gardi [2013] are valid
for this variant as well, as the options used in the transformation match those discussed
above. Hence, the feasibility version of the Max-CSP is N'P-complete in the strong sense
both in the situation in which all options are imposed, as well as in the subset described

above.

The optimization version of the CSP has attracted a lot of interest from the rese-
arch community, and many variants have been studied in the past. We summarize the
most widely studied optimization problems in this area of research, focusing on the CSP

objective functions as this is the main difference between the Max-CSP and the CSP.

In their literature review, Boysen et al. [2009] classify the CSP according to different

objective functions, which aim at minimizing:

e the number of subsequences (windows) with at least one violation of the option
constraints, using a “sliding windows”approach (e.g. Gottlieb et al., 2003, Gravel

et al., 2005, Golle et al., 2015, Yilmazlar and Kurz, 2023);

e the number of subsequences starting with a car under a violated option constraint
(e.g. Boysen and Fliedner, 2007, Fliedner and Boysen, 2008);

e the number of exceeding cars with a violated option constraint, for every window
(e.g. Bolat and Yano, 1992; Hottenrott et al., 2021);

e the value of a penalty function based on individual weights, given as input data, for
each additional option violation (e.g. Parrello et al., 1986, Smith, 1997);

e the number of empty slots necessary to generate a feasible solution (e.g. Hindi and
Ploszajski, 1994, Perron and Shaw, 2004).

Other relevant objective functions are the following.

e A lexicographic multi-objective function that considers the assembly shop (minimi-
zing the violation of priority and non-priority ratio constraints) and the paint shop
(minimizing the color changes in the line). This is the objective function presented

by Renault for the ROADEF’2005 Challenge [Solnon et al., 2008]. Wu et al. [2021]

and Zhang and Ding [2023] include a paint body storage between the paint shop

and the assembly shop, thus utilizing a multi-stage approach.

e The minimization of the exceeding cars with a violated option constraint, for every
window and including weights (denoted “upper over-assignment”), and the weighted
count of the times an option constraint is loosely satisfied (the count of how many
cars are scheduled less than the maximum requirement set by each option constraint
and for each window, denoted “upper under-assignment”). This objective function
was first proposed by Bautista et al. [2008] and further explored in later works, such
as Thiruvady et al. [2011, 2014, 2020].

e The minimization of unscheduled options in the assembly line [Souza et al., 2023], so
as to minimize overload in a subsequent day. This recent definition is the closest to
ours found in the literature. It can lead to a shorter sequence than maximizing the
scheduled cars in a given shift, which is the main objective of our partner company,

but future work may explore its performance in this industrial setting.

As for the Max-CSP, the optimization version maximizes the length of the assembly
line operation by sequencing the maximum number of cars without violating any option
constraint. In practice, if any car does not fit into the sequence (as it would violate one

or more than one option constraints), it is re-scheduled on the subsequent shift.

To better illustrate the sequencing process in a given shift, consider the following
instance. Let P = {1,2,3,4} be the set of classes, and the corresponding demands for
each class be dy = 1, dy = 2, d3 = 3, and dy = 1. The options are (p; = 1,¢; = 3) with
c12 = c14 = 1, and (p2 = 2, g2 = 3) with 93 = 94 = 1. Figure 3 shows a valid sequence for
this instance in solid lines. Since a car of class 4 was scheduled right after a car of class
3, adding another car of class 3 at the end of the sequence would violate the constraint
associated with option 2 (i.e., no more than 2 cars with option 2 can be scheduled in a
window of 3 positions). Even if it was possible to schedule such a car in that position,
appending a car of class 2 to the new solution would violate the constraint associated
with option 1 (i.e., at most 1 car with option 1 in a window of 3 positions). In that case,

the remaining cars of classes 2 and 3 would be left outside the sequence.

]

(217371374132

—

Figure 3: Example of a sequencing process.

At the end of the production time horizon (typically a month), the company runs
one additional shift at a slower pace of the line, so as to schedule the cars that did not
fit into the last shift. For the latter, we define the Slow-CSP, which finds the minimum

pace delay that loosens the option constraints just as much as it is necessary to fit all
cars. This problem is solved for a single shift within the time horizon determined by the

company, so it is not the main focus of this work. Nevertheless, it is modeled in Section
4.

More variants associated with constraints on the number of options allowed, cons-
traints on production cycles and associated options assignments, and constraints on the
number of cycles options are valid for can be reviewed in Boysen et al. [2009], but they
do not relate to the Max-CSP. Similarly, we refer the reader to Yavuz and Ergin [2018]

for a reference on papers integrating car sequencing and level scheduling problems.

One of the most popular variants of the car scheduling problem is the one studied
by Bautista et al. [2008], which is still attracting wide attention from the research com-
munity in recent years and is formalized in the following section. Benchmark instances
and recent metaheuristics are publicly available. The mathematical formulation for this

variant allows for adaptations to the Max-CSP, which will be discussed later.

2.2 The CSP by Bautista et al. [2008]

In Bautista et al. [2008], the definition of option constraints is the same as the
previous literature, however, a penalization is accounted for in the objective function if
the constraints are violated or if they are loosely satisfied. Additional notation is required
to formally introduce the objective function and the mathematical model proposed by the

authors, namely:

e the upper over-assignment is y;; = max{0, Zzzlj(t) Cjuky — min{t, p;}},Vj € C,t =
1,...,D and [;(t) = max{1l,t+1—¢;}. This term represents the positive difference
between the number of times an option appears in the subsequence [[;(t),t] and the
maximum number it should appear, p; (i.e., the number of violations of option j in

the subsequence ending in t). This value is bound to be in the interval [0, ¢; — p;).
e «j; the weight assigned to each unit of violation y;,Vj € C,t =1,...,D.

e the upper under-assignment is z;; = max{0, min{¢t, p, } _ZZ:ZJ-) Ciuk)),V € Cit =
1,...,D. This term represents the positive difference between the number of times
p; an option could appear and the number of times the option appears in the sub-
sequence [[;(t),t] (i.e., the number of times an option j in the subsequence ending

in ¢ is loosely satisfied). This value is bound to be in the interval [0, p;).
e (3 the weight assigned to each unit of z;;,Vj € C,t =1,...,D.

e 1; = 1 if a car of class ¢ € P is scheduled in position t = 1,..., D, 0 otherwise.

The objective function and the mathematical model proposed by Bautista et al.
[2008] can now be stated as

D
min Z Z(ajtyjt + Bjtzjt) (1)

t=1 jeC
subject to int =1 t=1,...,D (2)
i€P
D
> ay=d i€ P (3)
t=1
t
zjt—yjt—l—z Z cjitix = min{t, p;} jeCt=1,...,D (4)
i€EP k=lj(t)
Yjt, zjt > 0 jeCit=1,...,D (5)
2y € {0,1} icPt=1,...,D. (6

The objective function (1) minimizes the weighted combination of upper over-
assignment and upper under-assignments. Constraints (2) guarantee that every position
has exactly one car scheduled. Constraints (3) ensure the class demands are met. Option
constraints are imposed in Constraints (4), and the domain of the variables in Constraints
(5) and (6).

2.3 Literature review

We provide a brief literature review including exact and heuristic approaches pre-

viously studied for solving some of the most relevant versions of the CSP.

For the feasibility version, several methods are explored, such as a branching
scheme along with bounding algorithms [Drexl et al., 2006], pure boolean satisfiability
[Artigues et al., 2014], and constraint programming (CP) [Artigues et al., 2014, Siala
et al., 2015].

For the optimization version focused on minimizing violations in the assembly shop,
Warwick and Tsang [1995] devise a genetic algorithm (GA), Gravel et al. [2005] utilize an
ILP model and ant colony optimization (ACO), and Fliedner and Boysen [2008] describe
a branch-and-bound (B&B) algorithm.

Solnon et al. [2008] review the scientific production related to the ROADEF’2005
challenge. The winning entry, Estellon et al. [2008], integrated a very large-scale neigh-
borhood search (LNS) with an ILP formulation and fast explorations of small neighborho-
ods. Ribeiro et al. [2008] were ranked second, employing an ILS and a wariable neigh-

borhood search (VNS). The local search strategies developed by the first and second places

10

contain swap and insertion movements, which are similar to the ones presented in Section

7.

Including a buffer between the paint shop and the assembly shop, in Guerre-Chaley
et al. [1995], cars have a due date to be assembled, and the demand is processed car by
car. Wu et al. [2021] propose two metaheuristics based on tabu search and VNS, the latter
embedded in a nested partition framework. The work by Zhang and Ding [2023] has a

dynamic nature and implements a GA and a greedy algorithm.

Moya et al. [2019] introduce a robust solution for uncertain partial demand of
special vehicles in different production plans using a greedy randomized adaptive search
procedure, ACO, and VNS. Hottenrott et al. [2021] combine a B&B algorithm with an

adaptive LNS heuristic to tackle robustness against short-term sequence alterations.

Lastly, the works that refer to the formulation by Bautista et al. [2008] are dis-
cussed in the following. Bautista et al. [2008] solve instances with up to 400 cars using a
beam search (BS) algorithm. Thiruvady et al. [2011] solve instances with up to 600 cars
hybridizing BS, ACO, and CP. Thiruvady et al. [2014] conclude that a hybrid Lagrangian
relaxation ACO algorithm is the best algorithm among those tested for instances with up
to 300 cars. Moreover, Thiruvady et al. [2020] employ a VNS in which an appropriately
long subsequence of cars is re-optimized using an ILP model (and variable fixing for the
rest of the sequence). Instances with up to 500 cars are considered. This method compa-
res favorably to the literature both in terms of solution quality and CPU times. Finally,
Sun et al. [2023] identify critical features that make instances harder to solve. Their prin-
cipal component analysis investigation shows that high utilization of options and large
average number of options per car class are the critical features. Furthermore, the authors
use machine learning to choose the best method for an instance among the algorithm by
Thiruvady et al. [2014], an improved version of the VNS by Thiruvady et al. [2020], and
the ILP by Bautista et al. [2008] in which Constraints (4) are added dynamically via a
“lazy”separation procedure. The improved ILP performs best for the hardest instances,
and the ILP with lazy constraints is the best-performing method for medium-difficulty

instances.

11

3 Modeling the Max-CSP

In what follows, we present two possible ways of mathematically modeling the
Max-CSP.

3.1 Using the mathematical formulation by Bautista et al. [2008] to solve
the Max-CSP

The Max-CSP aims at maximizing the length of the sequence without any options
violation. Our first attempt at solving the Max-CSP exactly is that of adapting a model
from the literature. In particular, the Bautista et al. [2008] model can be converted to
solve the Max-CSP as follows.

Let 7* be an optimal sequence for the Max-CSP. If |7*| = D, the model of Bautista
et al. [2008] returns the optimal Max-CSP solution. However, if |7*| < D, given the
corresponding CSP solution, let ¢* be the position at which the first option violation
occurs. In other words, the number of option constraint violations in the interval [1;(t),]
is ¥y = 0 for all j € C and all t < t*, and y;» > 0 for some j € C. The partial CSP

solution from position ¢ = 1 to position t* — 1 is a feasible solution for the Max-CSP.

Proposition 1. If we set

1 ift=D

D
1+ > Y amr(@m —pm) if1<t<D
meC k=t+1

Oéjt =

and By = 0,5 € C,t = 1,...,D, an optimal solution of Bautista et al. [2008] can be

converted into an optimal solution for the Max-CSP, in which t* = |r*| + 1.

Proof. A solution of the Max-CSP is a valid CSP solution when all unscheduled cars are
appended at the end of the violation-free sequence in any given order. If a CSP solution
existed where t* > |7*| 4+ 1, this solution could be converted into a sequence with no
violations and whose length is greater than |7*|, contradicting the initial assumption that
7* is optimal for the Max-CSP. Hence, the first violation in an optimal sequence for the

CSP must occur at a position t* < 7% + 1.

To show that ¢* cannot be strictly less than |7*| + 1, note that, for any CSP

instance, the maximum value that the variable y;; may achieve forall j € C,t =1,..., D,

12

is bounded from above by ¢; — p;. As such, in any solution, the inequalities

D D
Q¢ > Z Z amk(Qm _pm) > Z Z OmiYmk

meC k=t+1 meC k=t+1

hold for all j € C, t =1,...,D. Hence, if t* < |7*| + 1, the objective value of the CSP
solution is worse than the one provided by the Max-CSP solution 7*, and thus it is not

optimal, contradicting again our hypothesis.

Since t* is neither strictly less than |7%| + 1 nor strictly greater than |7*| + 1, it

must be exactly equal to |7*| + 1.

Then, for all j € C, we define a;; as

1 ift=2D

D
1+ Y ar(@m —pm) if1<t<D
meC k=t+1

Otjt

where the maximum possible value of oy, is O([Y,,co(@m — pm)]”), and B = 0,Vj €
Ct=1,...,D.

This choice of coefficients makes any violation in an earlier position of the sequence
more costly than any violation in all the subsequent positions of the sequence (aj; >
Y mec ZkD:t 41 Ok, VE=1,..., D). Therefore, the objective function will avoid violations
in early positions, if feasible. The resulting Max-CSP solution can be obtained by retaining
all cars sequenced from position 1 until the first violation encountered in the CSP solution,

if any.
O

The exponential growth of the penalization coefficients limits the implementation
of the model by Bautista et al. [2008]. In the instances provided by the company (with six
options), the penalization coefficients could be encoded on a double variable in the mized
integer programming (MIP) solver (CPLEX) for instances with up to 250 cars. Therefore,
we propose a new formulation that does not rely on penalization coefficients, as described

in the following.

3.2 Proposed formulation

Let x;; = 1 if a car of class ¢ € P is scheduled in position t = 1,..., D, 0 otherwise.

The proposed formulation (F1) for the Max-CSP reads as follows:

13

(F1) max Z Z Tt (7)

ieP t=1
subject to int <1 t=1,...,D (8)
ieP

int+1§2$it tzl,,D—l (9)

ieP ieP

D
int <d; ieP (10)
=1

t

Z Cjillfiképj jGC,tzl,...,D (11)
(

1€P k=l;(t)

(6).

The objective function aims to maximize the number of cars scheduled. Constraints
(8) and (9) ensure that every position is associated with at most one car and that the
empty positions are at the end of the sequence, respectively. Constraints (10) guarantee
that the demand for each class is not surpassed. Lastly, option constraints are imposed
in Constraints (11).

The formulation F1 can be solved with a commercial solver. However, its perfor-
mance is highly dependent on the availability of good upper and lower bounds. Prelimi-
nary tests also showed that the feasibility version proved much easier to solve. Hence, we
tested alternative exact approaches in the spirit of Silva et al. [2023], which implemented
an iterative strategy and a binary search via feasibility checking to enhance performance
in the context of a parallel machine scheduling problem. For the Max-CSP, we developed
a branching scheme on the first option violation and iterative methods based on fixing
the number of cars scheduled in the solution. In the following, we describe the itera-
tive methods (an incremental search, a decremental search, and a binary search) and the

branching strategies (considering alternative prioritization).

14

4 Modeling the Slow-CSP

At the end of a production cycle (typically a month), some cars might not have
been scheduled. The managers schedule these cars on a dedicated shift, demanding a
feasible sequence with all cars. Therefore, the managers reduce the assembly line speed in
order to give enough time for the assembly operations to be completed without violating
any option constraint. We introduce another variable, s € R*, which sets the relative pace
decrease of the assembly line (e.g., s = 100% = 1 if the assembly line must be at half of
the original pace to allow all the operations to be done in time, as double the operations

can be performed in each station). The Slow-CSP formulation reads as follows:

min s (12)
subject to Z:pit =1 t=1,...,D (13)

ep

D
ZZL‘# = dz 1€ P (14)

=1

t
SN cimiw <pils+1) jeCt=1,....D (15)
1€P k=l;(t)

s eR” (16)

The objective function minimizes the pace decrease of the assembly line. Cons-
traints (13) guarantee that every position has exactly one car scheduled. Constraints (14)
ensure the class demands are met. Constraints (15) relax the option constraints proporti-
onally to the pace decrease. By solving this model, we obtain both the optimal pace and

the associated sequence for the slower shift.

15

5 Exact strategies based on iterative search methods for the
Max-CSP

We develop exact algorithms based on iteratively solving the feasibility CSP pro-

blem. This problem can be formulated as

(I) max 0 (17)
subject to Za:it =1 t=1,...,D" (18)
ieP

(6), (10), (11).

The optimal solution for the Max-CSP can be obtained by testing all values of
D* ={1,...,D} and picking the maximum one leading to a feasible solution. The value
of D* can be bounded from above and below, based on the availability of upper and
lower bounds to speed up the search. Furthermore, we can use alternative exploration

strategies, namely:

e [; an iterative incremental approach. As can be observed in Algorithm 1, given a
feasible solution 7', its corresponding primal bound (b, and a dual bound ub, the
algorithm iteratively checks if it is feasible to schedule one more car (Lines 3-4). If
so, the best solution is updated (Lines 5-6). In case it is not feasible, b = ub or the
time limit is reached, the main loop is interrupted, and the procedure returns the
best solution (Line 7).

e [p an iterative decremental approach. Algorithm 2 presents the steps for the de-
cremental search, which receives a primal solution 7/, its associated bound [b, and
a dual bound ub. Starting from ub, at each iteration, the feasibility must be proven
false so the decrement can be performed (Line 5). If the sequence is feasible, it is
then optimal, and the solution is returned (Lines 3-4). If no feasible solution is
found within the time limit, the primal solution passed as input is returned (Line
6).

e /g a binary search. Algorithm 3 shows the pseudocode of the binary search. The
algorithm receives as input a feasible solution 7" along with its associated primal
bound [b, as well as a valid dual bound ub. At each iteration, the binary search
takes the middle element of [b and ub, and assigns the resulting value to a variable
m (Line 2). Next, the procedure checks whether it is possible to build a feasible
sequence with exactly m cars (Line 3). If so, that becomes the new best feasible

solution, and the b is updated to m (Lines 4-6). Otherwise, ub is set to m — 1

16

(Line 8). The loop continues until the two bounds are the same or the time limit is

reached, and the best solution found is returned (Line 9).

Algorithm 1: IncrementalSearch(n’, (b, ub)

1 feasible < true
2 while feasible = true and b < ub and TimeLimitNotReached do

3 b+ Ilb+1

4 [m, feasible] <+ CheckFeasibility(Ib)
5 if feasible = true then

6 ‘ 7T

7 return 7’

Algorithm 2: DecrementalSearch(n’, 1b, ub)

1 while feasible = false and b < ub and TimeLimitNotReached do
2 [m, feasible] +— CheckFeasibility(ub)

3 if feasible = true then

4 ‘ return 7
5

6

ub+—ub—1
return 7’

Algorithm 3: BinarySearch(7’, Ib, ub)

while [b < ub and TimeLimitN ot Reached do

1

2 m <+ [(lb+ ub)/2] > middle element of b and ub, rounded up
3 [7, feasible] + CheckFeasibility(m)

a if feasible = true then

5 w7
6

7

8

9

b+ m
else
‘ ub <+ m—1
return 7’

These strategies require the implementation of ad hoc algorithms. It is possible
to use CPLEX embedded functions to explore similar strategies if we introduce a new
variable z; in formulation F1. Variable z; is equal to 1 if ¢ is the first unoccupied position

in the sequence. Thus, z; = 1ift = D+ 1, z5 = 0 otherwise. The resulting mathematical

model is:

(F2)max > (t—1)z (19)

t=2

t
subject to Y wp+ ¥z =1 t=1,...,D (20)
k=1

ieP
Y ou=1 (21)
z € {0,1} t=1,...,D+1 (22)

17

(6), (10), (11).

F2 is an alternative valid formulation for the Max-CSP, and we can take advantage
of the special ordered set of type 1 (SOS1) branching strategies embedded in CPLEX,

given Constraints (21).

The variables in SOS1 have to be assigned unique weights in CPLEX, correspon-
ding to the branching priority of each variable. Therefore, we tested F2 without SOS1
while still enforcing a higher branching priority to the z; variables, with SOS1 assigning
incremental weights to the z; variables (F2j), assigning decremental weights to the z
variables (F2p), and mimicking with weights the priorities imposed by a binary search
(F2p). Algorithm 4 presents the steps for setting these weights through a breadth-first
search (BFS).

The weights are assigned in descending order to those positions, as they are asso-
ciated with a branching priority in the corresponding variables z;. The algorithm receives
the lower and upper bounds (/&' and ub’) of the interval where the binary search would
be performed. The variables of type SOS1 within the same set in CPLEX require their
weights to be unique. Therefore, one starts assigning the smallest weights to the positions
outside the bounds of the binary search (Lines 3-5). Next, to work as a flag for the positi-
ons unvisited by the BFS, the weights inside the bounds are assigned value 0 (Lines 6-7).
Finally, the last loop of the algorithm performs the BFS (Lines 10-19), which iteratively
stores the lower and upper bounds of the search intervals in a queue. Every time a pair
of bounds is popped from the queue (Line 11), their middle element is calculated (Line
12). If the corresponding position has not been visited yet, its weight receives the next
largest value (Line 15), and the search interval is divided into two, which are pushed into
the queue (Lines 17-19). Lastly, the list of weights v is returned (Line 20).

18

Algorithm 4: SetBinaryWeights({0', ub’)

1 g+0

2 7y« list of size D + 1

s fort=1,...,0) —1,ub’ +1,D+1do
4 Mg

5 g+—g+1

6 fort=10V,...,ub do

7 ‘ ’Yt<—0

s g« D

9

queue +— enqueue(lb’, ub’)
while queue # () do
(Ib, ub) + dequeue(queue)
mid < [(lb+ ub)/2]
if Ymiq > 0 then

‘ continue
Ymid < g
g—g—1
if {b < ub then

queue < enqueue(lb, mid — 1)

19 queue < enqueue(mid, ub)
20 return vy

[e e e T =
o N O UopN W N = O

6 Valid bounds for the Max-CSP

In order to obtain the bounds necessary for the iterative methods, we describe a

combinatorial upper bound (UB) and a combinatorial lower bound (LB) for the Max-CSP.

6.1 A valid UB

For all j € C, let V; be the set of cars with option j that are not scheduled in the
optimal solution. We cannot compute a priori the values of Vj, j € C. However, we can
estimate an LB Y < |Ujce V; - By definition, S, di — Y is a valid UB,

We define the surplus of an option j as the number of cars with j that do not fit in
any feasible schedule due to the associated option constraint. This is similar to the option
utilization defined by Perron and Shaw [2004], but, instead of computing the length of
the sequence necessary to schedule a given number of cars with option j, we calculate the

number of cars with option j not fitting in a sequence of fixed length.

Given option j € C, its surplus S; is given by

S; = max {O, Z cjidi — (pj LBJ + min{p;, D mod qj}> } . (23)

ieP J

We provide a way to estimate Y by using the set of variables

19

S; ifj=1,
Z= j—1
max{0,5; — > min{Z,, Y ..pCjiCmid;}} otherwise.

m=1

Proposition 2.

Y=Y 7< .

jeC

Uv

jec

Proof. We use induction on the number [of options in C'.
For the base case, let C'= {1}. The value given by the formula is Sy < |V4].

For the induction hypothesis, we assume W1, ..., W, [= |C|, are pairwise disjoint
subsets such that for all j € C, W; C V;, Z; = |W,|. If it holds when adding an extra
option to C, the sum of the variables Z; will be

I+1 I+1 I+1
2% =Uwi| < |Uvil,
j=1 j=1 j=1

Zy+1 can be either equal to or greater than zero. In the former case, it follows that

W1 =0 C Viyy. Conversely, if Z;,1 > 0 and considering that S;y; < |Vj44], then

l
Ziy1 = Siy1 — E min{Zj, E Cl+1,icjidi}
J=1

ieP

l
< Vil =Y min{Z;,) " cicidi}. (24)
j=1

iep
Now, consider the set
!
Q= W+1 \ (U VV]) s
j=1

whose cardinality may be computed as
!
Q] = [Vieal = D [Vier N W5 (25)
j=1

Comparing (24) and (25), since Z; = |[W;| > |Vig1 N W;| and 23:1 Y iep Ci1,iCid; >
|Vign N Wy for all k = 1,...,1, it follows that Z;;1 < |€2|. Thus, there must be at least
one set Wiy C Q such that for all j=1,....0, Wa NW; =0, [Wia| = Zi4a. O

20

6.2 A valid LB

New cars may be easily added to a given feasible sequence as long as: (i) they are
given enough space between them when placed into the sequence so as to not violate their
option constraints; and (#7) their options do not conflict with those in the sequence. In

view of this, we propose a procedure to compute a valid LB iteratively. Let

G =40
Dj

We define
H; = max {c;iGj}

as a score associated with the most restrictive option of class ¢ € P. Furthermore, let @);

be the set of cars of class ¢ and

T(h): U Qi

i€P|H;=h

be the set of cars whose score is h. For the sake of simplicity, we use H with both classes
and T sets interchangeably (i.e., v € Q; € T = H; = Hr). We also denote Il =
forall o =0,...,|C| —1

(i.e., II7 is sorted in ascending order of scores). In addition, for each j € C, we have a

Ty, ..., Tic| as a permutation of sets 1" such that Hr, < Hy,,,,
set U(j) consisting of cars v €);,Vi € P, where ¢j; = 1, that is, U(j) contains the cars
that have option j. Similarly to Ilz, IIy = Ui, ..., U is a permutation of the sets U
such that Hy, = Gy,. Lastly, the spacing of the option linked to Gy, can be represented

as py, and qu,.

We compute an LB recursively by using the set of variables L,, which are calculated
as shown in Equation (26). Furthermore, in order to keep track of how many cars in set
U., v = 1,...,|C|, were added to the solution up to iteration o, we define the set of

variables A,,, which are computed as in Equation (28).

|T,|, if o =0,
L, = (26)
Lo—l + Aoo, if o > 0.

21

o—1
max{min{0(U,, Lo—1),|T,|} — > min{|T, N U,|, Ayo-1},0} ifr=o,
u=1

Ay = (28)

Ao +min{|T, N U, |, Ao} if1<r<o.

Proposition 3. Lc| is a valid LB.

Proof. The proof is based on the notion that, for each o, we can construct a new solution
7, by inserting cars from T, into it in a specific way. For that, we use induction in o. For
the base case o = 0, note that a sequence with all cars in 7, may be easily constructed by
sequencing them in any order since they have no associated option constraints. Therefore,
Lo = |Tp| is a valid LB.

For the inductive step, suppose m,_1 is a sequence with L,_; cars from Ui;(l] T,
with o > 0. Additionally, assume that for each r = 0,...,0—1, A, ,1 is an UB on the
number of cars in U, which are in 7,_;. If T, N Ui;(l) T, = (), the number of cars in T,
which may be added to m,_; by correctly spacing them according to their most restrictive

option is
min{0(U,, Lo—1), |To|}

This can be seen in Figure 4, which illustrates how to interpose cars in m,_; with the ones

in T, depending on their option constraints.

r--

L pP=2,9=5
}L:8
) p=14q=6

‘U O(U, L) =p([L/(¢—p)] +1)
=2x(|8/(5—=2)]+1)=6

e . .
o : | }L:14
} 1

U, O(U L) =1x ([14/(6—1)] +1) =3

,,,,,,,,,,,,

,,,,,,

Figure 4: Car interposition based on the option constraints.

Now, suppose there exists at least one set U, such that T, N U, # 0, r < o. This

means some cars in 7,_; may share the option from U, with cars in T,. Since at most

22

A, -1 cars in U, are in m,_1, we may safely assume that we can subtract
min{|7, N U,|, Aro-1}

from the total amount of new cars added to avoid possible conflicts. Thus, adding

o—1

Ago = max{min{0(U, Lo_1), |To|} = > min{|T, N Uy, Ayo1},0}
u=1

cars in T, to m,_1 will always lead to feasible solution.

Finally, suppose 7, is a new solution, constructed by adding A,, cars from T, to
mo—1. Clearly, for all r =0,...,0— 1, if X is the amount of cars in U, which were added
to m,_1 to construct m,, then, X < |7, NU,| and X < A,,. Hence,

Aro = Ar,ofl + Hlil’l{‘TO N Ur‘y Aoo}
is a valid UB to the number of cars in U, which were added to m,. O

A primal solution associated with the LB can be obtained by initializing 7 with
To, then inserting L, — L, 1 cars from T, in 7 for each o = 1,...,|C|, as shown in
Algorithm 5. The insertion of each car needs to be performed in specific positions to
guarantee the solution’s feasibility. First, one makes sure there are cars to be inserted
during iteration o (Lines 3-4), and then iterates over the cars in 7, (Lines 6-13). The cars
are inserted into the feasible positions of the sequence, determined by Algorithm 6 (Lines

8-11), until L, — L, is reached (Lines 12-13). Finally, the primal solution is returned.

Algorithm 5: GeneratePrimalSolution()

1w+ T

2 foro«+1,...,|C| do

3 if L,— L, 1 =0 then

4 return 7w

5 inserted < 0

6 foreach v € T, do

7 fort<«1,...,|n| do

8 if FeasibleInsertion(r,i | v € Q;,t) = true then
9 Insert car v in position t of 7
10 inserted < inserted + 1

11 break
12 if inserted = L, — L,_1 then
13 ‘ break

14 return 7w

23

Algorithm 6: FeasibleInsertion(r, i, t)

1 foreach j € C' do

2 if ¢;; = 1 and there are more than p; cars with option j in any window of ¢; positions,
from position ¢ — (¢; — 1) to position ¢t + ¢; — 2, when a car of class i is considered to
be between m;_1 and 7; then

3 return false

4 return true

24

7 Heuristic algorithm

Preliminary tests showed that the performance of both the proposed formulations
and the exact strategies could be improved by using a good primal bound. To this end,
we develop a heuristic approach based on ILS. This metaheuristic was also employed in
Ribeiro et al. [2008] for the ROADEF’2005 Challenge version of the CSP, specifically for
minimizing the violation of priority constraints. The pseudocode of our method is sum-
marized in Algorithm 7. The algorithm is multi-start and it is executed I times (Lines
2-18). At each iteration, there is a constructive procedure (Line 3) followed by intensifi-
cation and diversification steps consisting of local search (Line 9) and perturbation (Line
15) mechanisms, respectively, performed I;; g times (Lines 8-16) without improvement
(Lines 10-14). Parameter n is associated with the number of perturbation moves, as later

described in Section 7.4.

Algorlthm 7: ILSM&X-CSP([R7 IILS) n)

17— (Z)

2 for iterR <+ 1,...,Ig do

3 7 < GeneratelnitialSolution()
4 if |7| = D then

5 ‘ return w

6 T

7 iterILS < 0

8 while iterI LS < I;;s do

) 7 Insertion(7)
10 if |w| > |7'| then

11 7w =T

12 if |7'| = D then

13 ‘ return 7’

14 IterILS <0
15 7 < Perturbation(n’, n)
16 tterILS < iterILS + 1
17 if |7'| > |7*| then
18 ‘ m* 7'

19 return 7*

7.1 Solution representation

The solution is represented by a sequence 7 of cars. A car of class ¢ in a given
position ¢ of the sequence can be written as m, = i. For example, if 7 = [1,2,3,2], we
have m; = 1, my = 2, m3 = 3, and 74 = 2. Moreover, it is possible to concatenate m with

another car using the operator @, that is, 7 ® 4 = [1,2,3,2,4].

7.2 Constructive procedure

The constructive procedure is presented in Algorithm 8. P’ denotes the subset of

P containing classes with at least one unscheduled car. P’ is therefore initialized to be

25

equal to P (Line 1), because the initial solution is empty. CP is the list of candidate
classes for insertion, and this is also initialized with P’ (Line 2). While CP is not empty,
the algorithm randomly chooses a class from the list and appends one of its cars at the
end of the sequence (Lines 5-6). Next, the list CP is updated with the classes that can
still be appended at the end of the sequence after the insertion. More precisely, for each
class i present in P’, one verifies the following. For every option j € C' present on that
class, one checks if the ¢; — 1 latest scheduled positions of the current solution do not
contain more than p; — 1 cars with option j (Lines 14-15). If all options constraints are
satisfied, this class joins CP (Lines 18-19).

Algorithm 8: GeneratelnitialSolution()

1 PP+ P > collection of classes that still have unscheduled cars

2 CP « P/ > list of candidate classes for insertion

3 T 10

4 while CP # 0 do

5 i < class from CP selected at random

6 T+ mTHi > concatenate m with car of class 4

7 CP «+ 0

8 foreach i € P’ do

9 if there are d; cars of class 7 in m then

10 P+ P'\i

11 continue > move to another class since all cars from P are already in «

12 feasible < true

13 foreach j € C' do

14 if ¢j; = 1 and there are more than p; — 1 cars with option j in the last ¢; — 1
positions then

15 ‘ feasible < false

16 if feasible = false then

17 ‘ break

18 if feasible = true then

19 ‘ CP«+ CPU1

20 return 7w

7.3 Insertion mechanism

The insertion mechanism is presented in Algorithm 9. It starts at a random po-
sition beginning (Line 1) and attempts insertion in any position of the sequence, from
beginning until the end of the sequence, and then before the first car until the position
beginning (Lines 3-11). For each position ¢, one checks the feasibility (see Algorithm 6)
of inserting cars that belong to the classes in P’. As per Section 7.2, P’ is the subset of
classes with at least one unscheduled car. For each class i € P/, if the insertion of a car
of class i is feasible, it is scheduled in position ¢ (Lines 8-9). Note that beginning must

be increased by one unit if a car is inserted in a position prior to it (Lines 10-11).

26

Algorithm 9: Insertion(m)

1 beginning < value at random selected from the set {1,2,...,|n|}

2 P+ P > collection of classes that still have unscheduled cars
s for t « beginning,...,|r|,1,... beginning — 1 do

a foreach i € P’ do

5 if there are d; cars of class 7 in m then

6 P+« P'\i

7 continue > move to another class since all cars from ¢ are already in 7
8 if FeasibleInsertion(r,i,t) = true then

9 Insert car of class ¢ in position t € m
10 if t < beginning then

11 ‘ beginning < beginning + 1

12 return 7w

7.4 Perturbation mechanisms

We have implemented two perturbation mechanisms, namely, removal (Algorithm 10)
and swap (Algorithm 12). The latter is equivalent to the car exchange method presen-
ted in Ribeiro et al. [2008], yet applied during the diversification step instead of in the
intensification phase since it does not directly affect the value of our objective function
but might allow for future insertions. Also, removing a car of class ¢ during perturba-
tion and inserting a car of the same class in the following local search yields a similar
behavior to their car insertion neighborhood. The authors emphasized both procedures,
car exchange and car insertion, for having an efficient nature of quick evaluation. As
demonstrated in Section 8.2, selecting a random perturbation operator outperforms using
one of the mechanisms individually. Note that both algorithms receive the parameter n,
which determines the maximum number of times a move from the corresponding mecha-
nism is performed per perturbation call. Moreover, it is important to emphasize that our
heuristic only considers feasible sequences throughout its execution, meaning that any

acceptable change in the solution will always lead to another feasible schedule.

7.4.1 Removal

For the removal operator, we use a list of positions CT in which the car can be
removed from the sequence without violating any option constraint. This list is updated

after each removal is performed.

Algorithm 10 presents the removal perturbation procedure. First, a constant A
is defined (Line 1) to enable an efficient update of CT due to a car removal from the
solution. Such constant specifies the number of backward/forward consecutive positions
from where a car was removed that can be either added to CT or deleted from it. The
value of A is explained further in detail in Algorithm 11. Next, CT is initialized (Line 2),

one of its positions is randomly selected (Line 3) and the car scheduled in this position is

27

removed from 7 (Line 4). The loop (Lines 5-8) is responsible for the next n — 1 removals.
Before each of these removals, the interval for updating CT ranges from A positions before

and A — 1 positions after the last removal position (Line 6).

Algorithm 10: Removal(m,n)

1 A =max;ec{gj} —1 > the maximum option window of the instance
2 CT «+ UpdateCT(m,2,|7| — 1,0) > list of candidate positions for removal
3 t < position from CT selected at random

a4 Update 7 by removing car m;

s for iter + 1,...,n—1do

6 CT < UpdateCT(m, max{t — A, 2}, min{t + A — 1, |x| — 1},CT)

7 t < position from CT selected at random

8 Update 7 by removing car

9 return m

Algorithm 11: UpdateCT(m, beginning, end,CT)

1 if CT = () then

2 CT + CT U {1} > removing the first car of 7 is always feasible
3 CT + CT U {|«|} > removing the last car of 7 is always feasible
4 else

5 Update CT by decreasing one unit from the value of the positions belonging to CT

that are greater than end > a car was removed before them

6 for t < beginning,...,end do

7 feasible < true

8 foreach j € C' do

9 if there are more than p; cars with option j in any window of g; positions, from

position t — (¢; — 1) to position ¢ + ¢; — 2, disregarding ¢ then

10 feasible < false

11 break
12 if feasible = true then

13 ‘ CT «+ CT U {t}
14 else

15 ‘ CT « CT \ {¢}

16 return CT

Algorithm 11 details how CT is updated given a range of positions from beginning
to end that might have been affected by a removal. Note that removing the cars associated
with the first and the last positions of the sequence is always feasible. Hence, such
positions are directly added to CT when the list is being initialized (Lines 1-3). If CT
is not empty and therefore being updated, the candidate positions prior to beginning
remain the same, and the ones after end are decreased by one unit in CT because a car
was removed before them (Lines 4-5). Next, the positions in the given range are verified
and eventually updated (Lines 6-15). Let ¢ be a position in this range. For all options
7 € C, the procedure verifies if their associated constraints are not violated when 7, is
removed (Lines 8-11). Furthermore, in order to determine the feasibility of removing a
car in a given position ¢, one needs to check the g; — 1 positions before and after ¢ for all

j € C (Line 9). Thus, if then the removal of a car from position t affects the feasibility

28

of removing cars from positions k+ A >t | k <t,and k — A <t | k > t. This is why the
range passed to Algorithm 11 after the first removal starts at beginning = max{t — A, 2}
and terminates at end = min{t + A — 1, |7| — 1} (Algorithm 10, Line 6).

When CT is implemented as a linked list, the time complexity of the update is
O(|CT| +|C|A?), which corresponds to the number of iterations over CT to decrease one
unit from the positions after end plus the number of calls for checking the feasibility of
removing (O(|C|A)) every position inside the 2A range. As for initializing CT, we check
the feasibility of removing every position in the solution, which leads to a time complexity
of O(|n||C|A). It is worth mentioning that a trivial procedure for this perturbation move
would reinitialize CT at each new removal, thus yielding an inferior efficiency compared
to Algorithm 10.

7.4.2 Swap

For the swap mechanism, a candidate list is somewhat computationally inefficient
because it involves pairs of positions. Instead, a position ¢; from the solution is randomly
selected so one can attempt to apply a move involving the cars at ¢; and at any of the

remaining positions.

Algorithm 12 presents the swap perturbation procedure. Initially, an array of size
|7| filled with false values is defined as infeasPos (Line 1), which will store the positions
verified to be infeasible for any swap (i.e., if infeasPos, = true, car m; cannot be swapped
with any other car and result in a feasible sequence). After each swap is performed, all
values of this array are reset to false since the change in the solution could lead to
new swap possibilities including any car. An efficient update for infeasPos uses a list,
here denoted as truePos, containing the positions that have been set to true during the
perturbation. This list improves the time complexity of resetting in feasPos from O(|r|)

to O(n), considering that the maximum size of truePos is n.

At first, truePos is initialized empty (Line 2), and for each iteration (Lines 3—
15), one randomly selects a position ¢; from the solution (Line 4), which needs to satisfy
infeasPos;, = false (Lines 5-6). Position ¢; is then marked as already selected (Lines
7-8), and the search for a car to swap with 7, begins from another random position ¢,
of the solution. If infeasPos;, = false and t, contains a car that can be swapped with
T, the move is performed and all values of infeasPos are reset to false (Lines 11-15).
If no feasible swap exists involving t;, the algorithm moves on to the next iteration with
infeasPos;, = true. Note that, because there can be an iteration without any swap, at

most n swaps are performed.

Algorithm 13 describes the steps for determining whether it is feasible or not to

swap the cars scheduled in the positions t; and t,. It is necessary to iterate over the

29

Algorithm 12: Swap(m,n)

1 infeasPos < Boolean array of size || filled with false

2 truePos + ()

s for iter + 1,...,n do

a t1 < position from 7 selected at random

5 while in feasPos;, = true do

6 | t1 4 (t1 + 1) mod || > circular increment inside 7
7 infeasPosy, <+ true

8 truePos < truePos Uty

9 beginning < position from 7 selected at random
10 for ty « beginning,...,|n|,1,...,beginning — 1 do

11 if infeasPos;, = false and FeasibleSwap(w, t1,t3) = true then

12 Update 7 by swapping cars 7, and 7,

13 Update infeasPos by resetting the value false to the positions in truePos
14 truePos + ()

15 break

16 return

Algorithm 13: FeasibleSwap(, 1, ts)

1 if my, = m, then

‘ return false
3 foreach j € C' do
4 if Cjm, =1 #+ Cim, and there are more than p; cars with option j in any window of g;
positions, from position to — (g; — 1) to position t3 + ¢; — 1, when m, is considered to
be at position t5 then
5 ‘ return false

N

6 else if ¢jr, =1+ cjr, and there are more than p; cars with option j in any window
of g; positions, from position ¢; — (¢; — 1) to position ¢; + ¢; — 1, when m, is
considered to be at position ¢; then

7 ‘ return false

8 return {rue

30

options j € C to check the move feasibility (Lines 3-7). However, cars that belong to
the same class should not be swapped, because it would lead to an equivalent solution,
so the algorithm returns false immediately if this is the case (Lines 1-2). For cars that
belong to different classes, if an option is shared by both cars or neither requires it, the
constraint will not be affected by the swap. The feasibility of placing the car scheduled
at position ¢; at position ¢y is proven false if any of the conditions stated in Lines 4 and
6 are satisfied. Lastly, the procedure returns true if there is no violation of the option

constraints (Line 8).

31

8 Computational experiments

All formulations and algorithms were coded in C++ and executed on an Intel Xeon
E5-2650 Processor with 128 GB of RAM memory running Ubuntu Linux 16.04. CPLEX
22.1 was adopted as the MIP solver with the strong branching variable selection strategy.

We set a time limit of 600 seconds for each instance.

8.1 Instances

In our experiments, we categorized the instances into two sets: the literature ins-
tances (Set 1) and the real demands obtained from our partner company (Set 2). The
selection of the 247 instances in Set 1 was done by Sun et al. [2023] and is publicly
available at https://github.com/yuansuny/CSP/tree/main/testset. As for Set
2, they consist of four months of historical data from the company that motivated this
study. Each instance is named based on the corresponding month, the index of the shift
(sorted chronologically), and the number of cars. It is worth noting that all options in
these 165 instances follow either of the formats (p; = 1,q;) or (p; = ¢; — 1,¢;). We
would like to note there are certain instances in Set 2 where the number of cars devi-
ates significantly from the norm, for example, D = 1. We chose not to exclude these
instances from the dataset because they can actually make the monthly simulation more
challenging (i.e., more shift delays to assemble a car). This is because it is more li-
kely that cars unscheduled from previous shifts would not be able to fit into a schedule
with a low demand of D = 1 due to the spacing constraints imposed by the options.
In other words, there might not be a sufficient number of cars available on that given
shift to respect the required distancing. All instances used in our study are available at

https://github.com/laradicp/max-csp/tree/main/instances.

8.2 Parameter tuning

Concerning the number n of moves performed in a single perturbation, the type of
perturbation mechanism, and the main parameters Ir and I;;g, we ran several tests in

order to choose a good compromise between solution quality and CPU time.

Figure 5 introduces three different perturbation mechanisms alongside the tuning
of parameter n. The variations of the perturbation procedure are removal (using only
Algorithm 10), swap (using only Algorithm 12), and both (selecting randomly which al-
gorithm to run at each perturbation call). Given the current solution 7, the evaluated
settings for parameter n were min{|x|/2, D/50}, min{|n|/2, D/25}, min{|n|/2, D/20},
min{|r|/2, D/15}, min{|r|/2, D/10} and min{|x|/2, D/5}. We ran Algorithm 7 ten ti-

mes on each instance within the subset of instances from Set 1 that remained unsolved

32

by both formulations F1 and F2, considering Iz = 1 and I;;,s = D/2, and computed the
corresponding average gap and average CPU time of these executions. The graph shows
that the smallest gap, with still very short average CPU time, was obtained by Setting
18 (n = min {|n|/2, D/5}). Thus, this was the chosen setting.

24 6 1: removal, n = min {|x|/2, D/50}
99 © 2: removal, n = min {|r|/2, D/25}
B RREEE removal, n = min {|r|/2, D/20}
Py 1 4: removal, n = min {|x|/2, D/15}
§ 20 5 0O 5: removal, n = min {|r|/2, D/10}
- %9 6: removal, n = min {|x|/2, D/5}
< 18| e || 7: swap, n =min {|r|/2, D/50}
CD. g 8: swap, n = min {|n|/2, D/25}
5;0 16 | 13 g 10 11 9: swap, n =min{|r|/2,D/20}
< d o 10 : swap, n = min {|x|/2, D/15}
14 | 1.415 11 - | 11: swap, n = min {|r|/2, D/10}
oo 17 ° 124712, = mi
° S swap, n = min {|r|/2, D/5}
12| ¢ 18 | 13 both, n = min {||/2, D/50}
! | | 14 : both, n = min {|r|/2, D/25}
5.1072 0.1 0.15 0.2 15 : both, n = min {|r|/2, D/20}
16 : both, n = min {|=|/2, D/15}
Avg. CPU (s) 17 : both, n = min {|x|/2, D/10}
18 : both, n = min{|x|/2,D/5}
o : Dominated
e : Non-dominated

Figure 5: Impact of perturbation mechanisms and tuning of parameter n.

Next, we discuss Figure 6 in regard to the main parameters of the heuristic algo-
rithm: Iy and I;;g. The values considered for Iz were 5, 10, 15, 25 and 50, while those
for I;ps were D/2, D and 2 x D. We ran the algorithm ten times on the same subset of
instances from Set 1 unsolved by both F1 and F2 models. According to the graph, Set-
ting 12 has a relevant gap difference when compared to Setting 9, yet they are still close
enough in average CPU time. Setting 15, on the other hand, requires double the time of
Setting 12. Therefore, we decided to adopt Setting 12, with Igr = 25 and I;ps =2 x D.

8.3 Results

In the following, we first discuss the performance of the bounds presented in Section
6 and of the heuristic solutions presented in Section 7. We then test the performance of
the exact algorithms on the instances in Set 1, which are typically more challenging than

those in Set 2 and can be better used to evaluate the different methods.

We compare the combinatorial UB described in Section 6.1 with the root node
relaxation of formulation F1 given by CPLEX. When it comes to the instances in Set
2, we found an average percentage gap of 0.32% with respect to the best-known primal
solution for both the root node relaxation of CPLEX and the combinatorial UB, but the

33

1: Ir=5and I;ps =D/2
10 7& | § ﬁRiSand]ILSiD
: R75and]IL372><D
. é 4: Ig=10and I;s = D/2
§ .g 5: IRZIOandI]Ls:D
o 10 6:IR=10andIILS:2><D
< 50 7: IRZISandI[LSZD/Q
o 9r .98 103 || 8: Ix=15and I}z = D
Eb 06 15 9: Ip=15and I;g =2%x D
= ° 9 u 10: Ir =25 and Irs = D/2
° 120 11: Ir =25 and I;s = D
87 [] 15 12:IR:25andIILS:2><D
° 13: Ig =50 and I;5 = D/2
| | | | | | 14 : IR:SOandIILS:D
O 5 10 15 20 25 30 15: IR:E)OandIILS:QxD
o : Dominated
Avg. CPU (S) e : Non-dominated

Figure 6: Parameter tuning: Iz and [;;s.

CPU time of the former is on average 122.85% longer than the latter. As for the instances
in Set 1, however, the combinatorial UB yields a trivial result (i.e., the total number of
cars to be scheduled), thus suggesting that the bound does not prove effective in this
instance set. Detailed results are available at https://github.com/laradicp/max-csp

/tree/main/results.

For the LBs, we compare the performance of the combinatorial LB described in
Section 6.2 with the heuristic bound described in Section 7. This information is sum-
marized in Table 1, from which it becomes clear that the heuristic method is crucial for

attaining good primal solutions.

Table 1: Comparison between combinatorial and heuristic LBs in each ins-
tance set.

instance set | bound avg. gap (%) | avg. time (s)
Set 1 combinatorial 3829.34 < 0.01
heuristic 5.13 5.52
Set 2 combinatorial 34.22 < 0.01
heuristic 0.04 0.13

We present the results of the computational experiments for Set 1 in two tables:
Table 2 focuses on the performance of the exact methods without the heuristic initiali-
zation, and Table 3 with the heuristic initialization. The associated bound is used for
formulations I;, Ip, and Ig, and the primal solution itself is given to CPLEX as a MIP
start for formulations F1, F2, F2;, F2p, and F2g. Both tables provide the following
information: in “optimal (%)”, we have the percentage of known optimal solutions found,;
in “smallest (%)”, the percentage of instances in which the gap was the smallest; in “gap
(%)”, the average gap based on the best dual value (as in Equation (29)); in “time (s)”,

the average CPU time in seconds, considering all instances; and in “time* (s)”, the average

34

CPU time in seconds, not considering the instances that exceeded the time limit.

best Dual — primal

9aPprimal(%0) = x 100 (29)

primal

Table 2: Performance of different uninitialized methods on the instances in
Set 1.

method | avg. gap (%) | optimal (%) | smallest (%) | avg. time (s) | avg. time* (s)
F1 65.00 58.30 67.61 288.94 66.43
Iy 4.52 40.89 44.94 405.88 120.47
Ip 2300.65 58.30 58.30 290.31 68.76
Ip 3.43 49.39 53.85 350.47 90.60
F2 240.01 57.89 65.18 305.95 92.08
F2r 53.28 55.06 62.75 311.11 75.32
F2p 53.39 55.06 62.75 311.20 75.46
F2p 53.33 55.06 62.75 311.14 75.37

Table 3: Performance of different initialized methods on the instances in Set
1.

method | avg. gap (%) | optimal (%) | smallest (%) | avg. time (s) | avg. time* (s)
F1 2.08 59.51 71.26 285.47 71.51
Ir 2.53 46.96 57.09 364.03 97.50
Ip 3.42 57.09 60.73 290.94 58.57
Ip 2.54 51.82 59.92 337.16 92.78
F2 2.34 58.70 68.42 292.08 75.45
F2r 2.46 53.44 60.32 310.79 58.81
F2p 2.46 53.44 60.32 310.80 58.83
F2p 2.38 53.85 62.35 308.77 59.13

Regarding the uninitialized methods, F1, F2, and I, demonstrate strength in fin-
ding relatively high numbers of optimal solutions. However, a notable weakness is their
inconsistency due to the high gaps observed, indicating that the suboptimal solution is
poor when the optimal is not found. For example, each iteration of I, can only return an
infeasible, a time limit, or an optimal status. In the first two cases, it uses the combinato-
rial primal solution, which is very low-performing for the instances in Set 1, according to
Table 1. On the other hand, methods I; and Iz exhibit significant strengths, particularly
in achieving lower optimality gaps, especially Ig. This suggests it may be the preferred
choice when a good primal bound is unavailable to warm-start CPLEX. These methods
consistently produce good quality solutions, enhancing their reliability in the industry

scenario.

With the heuristic initialization, the weaknesses previously shown by F1, F2, and
Ip are overcome. F1 dominates all the other methods in performance, consistently finding
optimal solutions and achieving the smallest gaps. Importantly, it achieves these strengths

while maintaining efficient CPU times.

In both tables, I;, Ip, and F2 are dominated by another method. Thus, they
are not the most competitive options in terms of solution optimality and computational

efficiency. Moreover, F2;, F2p, and F2p performed similarly, suggesting that assigning

35

different weights to the variables in SOS1 does not stand out as the most critical strategy

for the problem at hand.

8.4 Instance space analysis

Sun et al. [2023] previously performed an instance space analysis (ISA) on the
CSP. An ISA is capable of generating a plot of instances based on the projection of
various features into a 2D space. Since our approach introduces a novel objective function,
and we propose new algorithms tailored to this specific context, a fresh examination of
the instance space is necessary to provide a comprehensive evaluation of our variant. We
conducted an ISA for the Max-CSP by using the Melbourne algorithm test instance library
with data analytics (MATILDA) framework [Smith-Miles et al., 2020].

MATILDA was utilized with the following settings: minimization optimization
criteria of the cost measure (here gap); absolute performance criteria of 0.0% (i.e., reaching
proven optimality); correlation threshold for feature selection of 0.4; and default settings
for other parameters. We included all uninitialized and initialized algorithms in the input
data. Additionally, we incorporated the 14 instance features defined by Sun et al. [2023]
into our analysis. From this set, seven were selected by MATILDA for the projection.

It may be necessary to analyze multiple graphs simultaneously in order to obtain
meaningful conclusions when interpreting an ISA. For example, Figure 7 shows that the
heuristic algorithm performs worse for the instances projected in the lower right half of

the 2D space, as optimality was not reached in that section.

Concurrently, Figure 8 exhibits the value of the maximum of option utilization
(max-utilization) feature in each instance. By comparing both graphs, we can infer a
positive correlation tendency between this feature and the instance difficulty. In other
words, the higher the maximum of option utilization, the harder the instance tends to be

for the heuristic algorithm to solve.

Similarly, Figure 9 suggests a positive correlation tendency between the instance
difficulty and the average of option utilization (ave-utilization), and negative correlation
tendencies with respect to the instance difficulty can be observed with the minimum of
p/q ratio (min-pg-ratio) in Figure 10 and the average of p/q ratio (ave-pg-ratio) in Figure
11.

The numbers Z; and Z5 are the coordinates of each instance in the 2D projection,
calculated by multiplying the weights obtained by the analysis with the values of the
features in the respective instance. We provide the weights used in our ISA, defined by

MATILDA, in case one wants to plot a new instance in this same space.

36

Instance Space: Distribution of H (Binary)

Z1

— boundary == likely boundary @ Good Performance Bad Performance

Figure 7: Binary distribution of heuristic performance on the instances in
Set 1.

Instance Space: Distribution of max_utilization

Figure 8: Distribution of the maximum of option utilization in the instances
in Set 1.

37

Instance Space: Distribution of ave_utilization

Figure 9: Distribution of the average of option utilization in the instances in
Set 1.

Instance Space: Distribution of min_pq_ratio

Figure 10: Distribution of the minimum of p/q ratio in the instances in Set
1.

38

Instance Space: Distribution of ave_pq_ratio

72 4

Figure 11: Distribution of the average of p/q ratio in the instances in Set 1.

[—0.081 0.4673 | T num — classes |
0.5512 0.0222 ave — utilization

Z 0.4987 —0.2672 max — utilization
Z =1 0.561 0.0951 ave — opt — class
—0.0032 0.2726 min — pq — ratio
—0.3139 0.4534 ave — pq — ratio

| —0.2575 —0.2387| | std —pq —ratio |

Please note that detailed results and graphs are provided in the appendix.

8.5 Real-world instances and operational insights

Having primarily focused on the instances in Set 1, which have demonstrated
to be more challenging, we now analyze the computational results of the instances in
Set 2, compare the performance of each method on them, and simulate the cumulative
sequencing within the monthly time horizon. The last shift of each month is solved by
the Slow-CSP formulation defined in Section 4.

First, we present Tables 4 and 5, which are similar to Tables 2 and 3, but without
the columns “optimal (%)”and “smallest (%)”since every method yielded an optimal
solution. This comparison reveals that all formulations exhibit efficient performance on
the instances in Set 2, with the exception of F1 and the uninitialized I;. The latter is an

unexpected behavior because warm starting typically enhances performance; however, it

39

appears to have the opposite effect for F1 in this particular context.

Table 4: Performance of different uninitialized methods on the instances in
Set 2.

method | avg. gap (%) | avg. time (s) | avg. time* (s)
F1 0.00 5.25 5.25
Ir 0.00 3.93 3.93
Ip 0.00 0.29 0.29
Ip 0.00 0.73 0.73
F2 0.00 0.44 0.44
F2; 0.00 0.40 0.40
F2p 0.00 0.40 0.40
F2p 0.00 0.39 0.39

Table 5: Performance of different initialized methods on the instances in Set
2.

method | avg. gap (%) | avg. time (s) | avg. time* (s)
F1 0.00 6.43 2.81
Ir 0.00 0.40 0.40
Ip 0.00 0.29 0.29
Ip 0.00 0.22 0.22
F2 0.00 0.48 0.48
F2r 0.00 0.45 0.45
F2p 0.00 0.45 0.45
F2p 0.00 0.43 0.43

Next, we discuss the monthly simulation. The dataset covers demands for four
months: January, February, March, and May of 2019. It is important to note that the
number of cars in different classes is not spread evenly across these months. All cars were
produced by the end of January, February, and May. However, in March, a total of 240
cars were left unscheduled for the dedicated shift. According to the Slow-CSP solution,
which was obtained in 0.09 seconds of CPU time, these cars could be sequenced in a
single shift if the assembly line moved at half of the usual speed. In comparison, if the
objective function by Bautista et al. [2008] was applied (considering unitary weights for
the “upper over-assignment” and zero weights for the “upper under-assignment”), a total
of 248 option constraint violations would be found within the same month of production,

leading to many delays and disruptions.

Hence, the Set 2 instances seem within the reach of our methodologies and can
be solved to optimality in less than a second. Our simulation over a few months of data
confirms that the operational choice of rolling unscheduled cars to the next shift does not
generate bottlenecks. The unscheduled cars left at the end of the production horizon can
be easily accommodated in a single shift, and this latter problem can be solved by means
of the proposed Slow-CSP.

40

9 Concluding remarks

In this paper, we investigated a newly proposed variant of the CSP, denoted as
Max-CSP, which maximizes the number of cars sequenced in the assembly line without
violating any option constraints. This different objective function was brought by a
multinational automotive partner company, in the context of their Brazilian assembly
line, with the particularity of having only “hard sequencing rules”, that is, any option
constraint violation leads to an interruption in the assembly line. The full interruption
is the least desirable outcome for the company. Thus, it is preferable that cars are left
unscheduled if they would cause a violation of the option constraints. The unscheduled
cars are then considered in the demand of the subsequent shift until they are included
in the sequencing. At the end of a monthly time horizon, the company runs a dedicated
line to schedule all remaining cars. This shift is operated at a slower pace in order to
proportionally loosen the option constraints and allow all cars to be produced. In that
context, it is crucial for the company that we provide the maximum pace of this line, for

which purpose we develop a secondary model, called the Slow-CSP.

We addressed the Max-CSP from different perspectives, more precisely, we devised:
(i) an ILP model; (ii) exact algorithms over a feasibility checking ILP model based on
iterative and binary searches; (iii) valid combinatorial lower and upper bounds; and (iv) an
ILS-based heuristic. Extensive computational experiments were carried out on instances
available in the literature. When solely relying on the combinatorial bounds to initialize
the exact algorithms, our findings suggest that the incremental iterative approach and the
binary search yielded a more consistent performance than the other settings, including the
standalone ILP model. Nevertheless, when initializing the exact methods with the high-
quality primal bounds achieved by ILS, the ILP model seemed to outperform the other
procedures in most cases. Furthermore, we conducted an ISA to identify the features
that are likely to affect the performance of the different methods. Finally, we simulated
the cumulative sequencing within the monthly time horizon by using real-world demands,
divided into shifts. We considered data from four months, and we employed the ILP
model for the Max-CSP in all shifts but the last one from every month, whereas the
mixed ILP model developed for the Slow-CSP was utilized to schedule the cars that were
left out after solving the first model. The results achieved were very promising, as it was

only necessary to solve the Slow-CSP in one of the four months.

Further research might address more complex problem features. The problem
could be extended to parallel assembly lines, in which the set of cars to be scheduled has
to be assigned to one of the assembly lines. Other objective functions, such as the one
introduced by Souza et al. [2023], could be compared and contrasted. The weight of a car

may represent, other than the number of options, its associated revenue or priority.

41

Bibliography

J. Bautista, J. Pereira, and B. Adenso-Diaz. A beam search approach for the optimization
version of the car sequencing problem. Annals of Operations Research, 159:233-244,
2008.

M.L. Fisher and C.D. Ittner. The impact of product variety on automobile assembly
operations: Empirical evidence and simulation analysis. Management Science, 45:771—
786, 1999.

J. Bukchin and M. Masin. Multi-objective design of team oriented assembly systems.
FEuropean Journal of Operational Research, 156(2):326-352, 2004.

S.K. Bhattacharyya, R. Roy, and M.J. Low. A computer simulation system for the eva-

luation of man assignments on car assembly tracks. Simulation, 61:124-133, 1993.

L. Zeltzer, E.-L. Aghezzaf, and V. Limere. Workload balancing and manufacturing com-
plexity levelling in mixed-model assembly lines. International Journal of Production
Research, 55:2829-2844, 2017.

A.J. McClellan, W.J. Albert, S.L. Fischer, F.A. Seaman, and J.P. Callaghan. Shoulder
loading while performing automotive parts assembly tasks: A field study. Occupational
Ergonomics, 8:81-90, 2009.

B.D. Parrello, W.C. Kabat, and L. Wos. Job-shop scheduling using automated reasoning:
A case study of the car-sequencing problem. Journal of Automated Reasoning, 2:1-42,
1986.

M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving the car-sequencing problem
in constraint logic programming. In Proceedings of the S8th European Conference on

Artificial Intelligence, ECAI'88, pages 290-295, USA, 1988. Pitman Publishing, Inc.

N. Boysen, M. Fliedner, and A. Scholl. Sequencing mixed-model assembly lines: Survey,
classification and model critique. FEuropean Journal of Operational Research, 192(2):
349-373, 2009.

Tamés Kis. On the complexity of the car sequencing problem. Operations Research
Letters, 32(4):331-335, 2004.

B. Estellon and F. Gardi. Car sequencing is np-hard: a short proof. Journal of the
Operational Research Society, 64(10):1503-1504, 2013.

J. Gottlieb, M. Puchta, and C. Solnon. A study of greedy, local search, and ant colony

optimization approaches for car sequencing problems. In S. Cagnoni, C. G. Johnson,

42

J. J. R. Cardalda, E. Marchiori, D. W. Corne, J.-A. Meyer, J. Gottlieb, M. Middendorf,
A. Guillot, G. R. Raidl, and E. Hart, editors, Applications of Evolutionary Computing,
pages 246-257, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

M. Gravel, C. Gagné, and W. L. Price. Review and comparison of three methods for the

solution of the car sequencing problem. Journal of the Operational Research Society,
56:1287-1295, 2005.

Uli Golle, Franz Rothlauf, and Nils Boysen. Iterative beam search for car sequencing.
Annals of Operations Research, 226(1):239-254, Mar 2015.

[. Ozan Yilmazlar and Mary E. Kurz. Adaptive local search algorithm for solving car
sequencing problem. Journal of Manufacturing Systems, 68:635-643, 2023. ISSN 0278-
6125.

N. Boysen and M. Fliedner. Comments on “solving real car sequencing problems with
ant colony optimization”. European Journal of Operational Research, 182(1):466-468,
2007. ISSN 0377-2217.

M. Fliedner and N. Boysen. Solving the car sequencing problem via Branch & Bound.
European Journal of Operational Research, 191(3):1023-1042, 2008.

A. Bolat and C.A. Yano. Scheduling algorithms to minimize utility work at a single
station on a paced assembly line. Production Planning & Control, 3(4):393-405, 1992.

Andreas Hottenrott, Leon Waidner, and Martin Grunow. Robust car sequencing for
automotive assembly. Furopean Journal of Operational Research, 291(3):983-994, 2021.
ISSN 0377-2217.

B. Smith. Suceed-first or fail-first: A case study in variable and value ordering. In Third

International Conference on the Practical Application of Constraint Technology, pages
321-330, London, 1997.

K.S. Hindi and G. Ploszajski. Formulation and solution of a selection and sequencing

problem in car manufacture. Computers & Industrial Engineering, 26(1):203-211, 1994.

L. Perron and P. Shaw. Combining forces to solve the car sequencing problem. In J.-
C. Régin and M. Rueher, editors, Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, pages 225-239, Berlin, Heidel-
berg, 2004. Springer Berlin Heidelberg.

C. Solnon, V.-D. Cung, A. Nguyen, and C. Artigues. The car sequencing problem: Over-
view of state-of-the-art methods and industrial case-study of the roadef’2005 challenge
problem. European Journal of Operational Research, 191(3):912-927, 2008.

43

Jiaxi Wu, Yongkang Ding, and Leyuan Shi. Mathematical modeling and heuristic appro-
aches for a multi-stage car sequencing problem. Computers & Industrial Engineering,
152:107008, 2021. ISSN 0360-8352.

Haida Zhang and Wensi Ding. A decomposition algorithm for dynamic car sequencing
problems with buffers. Applied Sciences, 13(12), 2023. ISSN 2076-3417.

D. R. Thiruvady, B. Meyer, and A. Ernst. Car sequencing with constraint-based aco. In
Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation,
GECCO 11, pages 163-170, New York, NY, USA, 2011. Association for Computing
Machinery.

D. Thiruvady, A. T. Ernst, and M. Wallace. A Lagrangian-ACO matheuristic for car
sequencing. EURO Journal on Computational Optimization, 2(4):279-296, 2014.

D. Thiruvady, K. Morgan, A. Amir, and A. T. Ernst. Large neighbourhood search ba-
sed on mixed integer programming and ant colony optimisation for car sequencing.
International Journal of Production Research, 58(9):2696-2711, 2020.

Filipe Souza, Diarmuid Grimes, and Barry O’Sullivan. Variable-relationship guided Ins
for the car sequencing problem. In Luca Longo and Ruairi O’Reilly, editors, Artifi-
cial Intelligence and Cognitive Science, pages 437-449, Cham, 2023. Springer Nature

Switzerland.

M. Yavuz and H. Ergin. Advanced constraint propagation for the combined car sequencing
and level scheduling problem. Computers € Operations Research, 100:128-139, 2018.

Andreas Drexl, Alf Kimms, and Lars Matthieen. Algorithms for the car sequencing and
the level scheduling problem. Journal of Scheduling, 9(2):153-176, Apr 2006. ISSN
1099-1425.

Christian Artigues, Emmanuel Hebrard, Valentin Mayer-Eichberger, Mohamed Siala, and
Toby Walsh. Sat and hybrid models of the car sequencing problem. In Helmut Simonis,
editor, Integration of AI and OR Techniques in Constraint Programming, pages 268—
283, Cham, 2014. Springer International Publishing. ISBN 978-3-319-07046-9.

Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. A study of constraint
programming heuristics for the car-sequencing problem. FEngineering Applications of

Artificial Intelligence, 38:34-44, 2015. ISSN 0952-1976.

Terry Warwick and Edward P. K. Tsang. Tackling car sequencing problems using a generic
genetic algorithm. Evolutionary Computation, 3(3):267-298, 1995.

44

B. Estellon, F. Gardi, and K. Nouioua. Two local search approaches for solving real-life
car sequencing problems. FEuropean Journal of Operational Research, 191(3):928-944,
2008. ISSN 0377-2217.

Celso C. Ribeiro, Daniel Aloise, Thiago F. Noronha, Caroline Rocha, and Sebastidn Ur-
rutia. A hybrid heuristic for a multi-objective real-life car sequencing problem with

painting and assembly line constraints. Furopean Journal of Operational Research, 191

(3):981-992, 2008. ISSN 0377-2217.

F. Guerre-Chaley, Y. Frein, and R. Bouffard-Vercelli. An efficient procedure for solving
a car sequencing problem. In Proceedings 1995 INRIA/IEEE Symposium on Emerging
Technologies and Factory Automation. ETFA’95, volume 2, pages 385-393 vol.2, 1995.

Ignacio Moya, Manuel Chica, and Joaquin Bautista. Constructive metaheuristics for
solving the car sequencing problem under uncertain partial demand. Computers €&
Industrial Engineering, 137:106048, 2019. ISSN 0360-8352.

Y. Sun, S. Esler, D. Thiruvady, A. T. Ernst, X. Li, and K. Morgan. Instance space analysis

for the car sequencing problem. Annals of Operations Research, page To appear, 2023.

J.M.P. Silva, A. Subramanian, and E. Uchoa. On time-indexed formulations for the

parallel machine scheduling problem with a common server. Engineering Optimization,
0(0):1-18, 2023.

K. Smith-Miles, M.A. Munoz, and Neelofar. Melbourne algorithm test instance library
with data analytics (matilda). Available at https://matilda.unimelb.edu.au, 2020.

45

Appendices

46

A Instance space analysis

This appendix provides visual representations of the ISA conducted during the
course of this study, generated by the MATILDA framework [Smith-Miles et al., 2020].
The primary goal is to offer a comprehensive view of how some features associated with

the instances can make the Max-CSP harder to solve.

Since the problem contains a diverse set of benchmark instances (here Set 1) in
which an ISA was already performed by Sun et al. [2023], we focus our analysis on those,

rather than on the real demands obtained from our partner company (Set 2).

The first set of graphs, Figures 12-28, illustrates the distribution of good and bad
results in the proposed algorithms. The threshold that defines a good result is reaching
proven optimality (gap 0.0%) within the time limit of ten minutes. Understanding this
binary distribution is crucial as it sheds light on the difficulty of different clusters of
instances. In that sense, it is noticeable that the lower right half of the two-dimensional
space has typically higher gaps for all algorithms, which suggests a more challenging set

of instances.

Instance Space: Distribution of H (Binary)

72

z1

— boundary == likely boundary @ Good Performance Bad Performance

Figure 12: Binary distribution of heuristic performance on the instances in
Set 1.

Following this, the set of graphs in Figures 29-35 showcases the distribution of

features within the same projection. These visualizations were instrumental in deriving

A7

Instance Space: Distribution of F1_u (Binary)

Z1

— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 13: Binary distribution of uninitialized F1 performance on the ins-
tances in Set 1.

48

Instance Space: Distribution of F1_i (Binary)

Z1

— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 14: Binary distribution of initialized F1 performance on the instances
in Set 1.

49

Instance Space: Distribution of li_u (Binary)

Z1

— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 15: Binary distribution of uninitialized I, performance on the instan-
ces in Set 1.

50

Instance Space: Distribution of li_i (Binary)

4
3
2
1
Z2 o
-1
-2
3

4 T T T T T T T T T T 1

6 5 -4 3 2 1 0 1 2 3 4 5

z1
— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 16: Binary distribution of initialized I, performance on the instances
in Set 1.

51

Instance Space: Distribution of Id_u (Binary)

Z1

— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 17: Binary distribution of uninitialized I, performance on the instan-
ces in Set 1.

52

Instance Space: Distribution of Id_i (Binary)

Z1

— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 18: Binary distribution of initialized I, performance on the instances
in Set 1.

53

Instance Space: Distribution of Ib_u (Binary)

Z1

— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 19: Binary distribution of uninitialized 1z performance on the instan-
ces in Set 1.

o4

Instance Space: Distribution of Ib_i (Binary)

Z1

— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 20: Binary distribution of initialized Iz performance on the instances
in Set 1.

55

Instance Space: Distribution of F2_u (Binary)

Z1

— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 21: Binary distribution of uninitialized F2 performance on the ins-
tances in Set 1.

56

Instance Space: Distribution of F2_i (Binary)

Z1

— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 22: Binary distribution of initialized F2 performance on the instances
in Set 1.

57

Instance Space: Distribution of F2i_u (Binary)

Z1

— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 23: Binary distribution of uninitialized F2; performance on the ins-
tances in Set 1.

58

Instance Space: Distribution of F2i_i (Binary)

Z1

— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 24: Binary distribution of initialized F2; performance on the instan-
ces in Set 1.

59

Instance Space: Distribution of F2d_u (Binary)

Z1

— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 25: Binary distribution of uninitialized F2), performance on the ins-
tances in Set 1.

60

Instance Space: Distribution of F2d_i (Binary)

Z1

— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 26: Binary distribution of initialized F2, performance on the instan-
ces in Set 1.

61

Instance Space: Distribution of F2b_u (Binary)

Z1

— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 27: Binary distribution of uninitialized F25 performance on the ins-
tances in Set 1.

62

Instance Space: Distribution of F2b_i (Binary)

Z1

— boundary == likely boundary =~ @ Good Performance Bad Performance

Figure 28: Binary distribution of initialized F25 performance on the instan-
ces in Set 1.

63

the conclusions outlined in the main report. By mapping features in this instance space,

we gained insights into their relative importance and their impact on model performance.

Instance Space: Distribution of num_classes

Figure 29: Distribution of the number of classes in the instances in Set 1.

Finally, Figure 36 confirms the results presented in Table 3 of the main report,
highlighting formulation F1 with the heuristic initialization as the most effective exact
approach. It is worth noting that no specific algorithm exhibits a clear advantage in some

of the most challenging instances, leaving space for future research.

These visual representations not only serve as a valuable complement to the quan-
titative analysis presented in the main report but also provide a more intuitive understan-
ding of the complex relationships between algorithm performance and feature distributions
within the instance space. They offer a visual narrative that further supports the findings

and conclusions drawn from the data.

Please refer to the following pages for detailed graphical representations of the

performance and feature distributions.

64

Instance Space: Distribution of ave_utilization

Z2 ¢

0.25 0.5 0.75 1

Figure 30: Distribution of the average of option utilization in the instances
in Set 1.

65

Instance Space: Distribution of max_utilization

Z2 ¢

Figure 31: Distribution of the maximum of option utilization in the instan-
ces in Set 1.

66

Instance Space: Distribution of ave_opt_class

Z2 ¢

0.25 0.5 0.75 1

Figure 32: Distribution of the average number of options per car class in the
instances in Set 1.

67

Instance Space: Distribution of min_pq_ratio

Z2 ¢

0.2 0.4 0.6 0.8

Highcharts.com

Figure 33: Distribution of the minimum of p/q ratio in the instances in Set
1.

68

Instance Space: Distribution of ave_pq_ratio

72

0.2 0.4 0.6 0.8

Highcharts.com

Figure 34: Distribution of the average of p/q ratio in the instances in Set 1.

69

Instance Space: Distribution of std_pq_ratio

Z2 ¢

z1

[| i
0 005 01 015 02 O..

Figure 35: Distribution of the standard deviation of p/q ratio in the instan-
ces in Set 1.

70

SVM Selection

Z1

® None FLi H ® Id_i F2_u F2b_i = boundary == likely boundary

Figure 36: Best algorithm for each of the instances in Set 1.

71

		2024-05-22T09:56:42-0300

		2024-05-22T10:04:28-0300

		2024-05-22T12:07:48-0300

