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Abstract

In this work, we study two themes. First, we study a n-dimensional spacelike

mean curvature flow solitons related to the closed conformal timelike vector field K =

f(t)∂t (t ∈ I ⊂ R) which is globally defined on an generalized Robertson-Walker

(GRW) spacetime −I×fM
n+p with warping function f ∈ C∞(I) and Riemannian fiber

Mn+p, these are particular cases of trapped submanifolds, and we obtain rigidity and

non-existence results for this submanifold class via applications of suitable generalized

maximum principles and under certain constraints on f and on the curvatures of Mn+p.

Then, we work with the existence and uniqueness of free boundary constant mean

curvature hypersurfaces in rotational domains, these are domains whose boundary is

generated by a rotation of a graph. We classify the CMC free boundary hypersurfaces

as topological disks or annulus, under some conditions in the generatrix function and

a gap condition on the umbilicity tensor.

Keywords: Mean curvature flow solitons; Generalized Robertson-Walker

spacetime; CMC free boundary hypersurfaces; Rotational domains.
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Resumo

Nesse trabalho, estudamos dois temas. Primeiro, estudamos solitons do fluxo

da curvatura média de dimensão n relacionados a um campo de vetores tipo-tempo,

conforme e fechado K = f(t)∂t (t ∈ I ⊂ R) o qual é globalmente definido em um

espaço-tempo Robertson-Walker generalizado (GRW) −I ×f M
n+p com função warp-

ing f ∈ C∞(I) e fibra Riemanniana Mn+p, estes são casos particulares de subvar-

iedades trapped, e obtemos resuldados de rigidez e não-existência para esta classe de

subvariedades via aplicações de princípios do máximo generalizados adequados e cer-

tas restrições em f e nas curvaturas de Mn+p. Depois, trabalhamos com a existência

e unicidade de hipersuperfícies de fronteira livre com curvatura média constante em

domínios rotacionais, que são domínios cuja fronteira é gerada pela rotação de um grá-

fico. Classificamos hipersuperfícies de fronteira livre CMC como um disco topológico

ou um anel, sob algumas condições na função geratiz e a condição de gap no tensor de

umbilicidade.

Palavras-chave: Solitons do fluxo da curvatura média; Espaço-tempo Robert-

son-Walker generalizado; Hipersuperfície de fronteira livre CMC; Domínio

rotacional
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“O que sabemos é uma gota; o que ig-

noramos é um oceano. Mas o que seria

o oceano se não infinitas gotas? ”

Isaac Newton
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Introduction

Throughout this work, we dealt with two different contexts. First, we study

nonexistence and rigidity of an n−dimesional spacelike mean curvature flow solitons in

a GRW spacetime, and then we work with the existence and uniqueness of freeboundary

CMC hypersurfaces in rotational domains.

It is known that the spacelike mean curvature flow related to a spacelike immersion

x : Σn ↬ M
n+k in a (n+k)-dimensional Lorentzian manifold M

n+k is a one-parameter

family of smooth spacelike immersions Xt = X(t, ·) : Σn ↬ M
n+k with corresponding

images Σn
t = Xt(Σ

n) satisfying the following evolution equation
∂X

∂t
= H⃗

X(0, q) = x(q)

(1)

on some time interval, where H⃗ stands for the (non-normalized) mean curvature vector

of the spacelike submanifold Σn
t in M

n+k.

The relevance of this concept is due, for instance, to the fact that spacelike mean

curvature flow solitons, which correspond to the singularities of (1), can be regarded as

a natural way of foliating spacetimes by almost null like hypersurfaces and particular

examples may give insight into the structure of certain spacetimes at null infinity and

have possible applications in General Relativity (for more details, we recommend the

references [38, 37, 39, 50]).

More recently, Lambert and Lotay [54] proved longtime existence and convergence

results for spacelike solutions to mean curvature flow in the n-dimensional pseudo-

Euclidean space Rn
m of index m, which are entire or defined on bounded domains and

satisfying Neumann or Dirichlet boundary conditions. In [46], Guilfoyle and Klingen-

berg proved the longtime existence of mean curvature flow of a smooth n-dimensional
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spacelike submanifold of an (n + m)-dimensional manifold whose metric satisfies the

so-called timelike curvature condition.

Meanwhile, Alías, de Lira and Rigoli [9] introduced the general definition of self-

similar mean curvature flow in a Riemannian manifold M
n+1 endowed with a conformal

vector field K and establishing the corresponding notion of mean curvature flow soliton.

In particular, when M
n+1 is a Riemannian warped product of the type I ×f M

n and

K = f(t)∂t, they applied weak maximum principles to guarantee that a complete n-

dimensional mean curvature flow soliton is a slice of Mn+1. In [32], Colombo, Mari,

and Rigoli also studied some properties of mean curvature flow solitons in general

Riemannian manifolds and warped products, focusing on splitting and rigidity results

under various geometric conditions, ranging from the stability of the soliton to the

fact that the image of its Gauss map is contained in suitable regions of the sphere.

Moreover, they also investigated the case of entire mean curvature flow graphs. In [36],

de Lima, Santos, and Velásquez investigated several aspects of the geometry of mean

curvature flow solitons Σm immersed into a Riemannian warped product I ×f Mn.

They applied suitable maximum principles to guarantee that such a mean curvature

flow soliton is a slice of the ambient space and obtained nonexistence results concerning

these geometric objects. In particular, when m = n they also studied entire graphs

constructed over the fiber Mn which are mean curvature flow solitons. In [60], Mari,

Oliveira, Savas-Halilaj and et al. studied examples of conformal solitons for the mean

curvature flow in hyperbolic space Hn+1.

When the ambient space is a Lorentzian product space of the type −I × Mn,

Batista and de Lima [19] constructed new examples of rotationally symmetric spacelike

translating solitons embedded in such an ambient space when the Rimannian fiber M

has non-positive sectional curvature. For more examples of translating solitons in a

product space see ([67], [68] and [55]). When the ambient space is a warped product

space see [14].

More recently, de Lima, Gomes, Santos, et al. [35] investigated several geomet-

ric aspects of complete spacelike mean curvature flow solitons of codimension 1 in a

GRW spacetime −I ×f M
n. In addition to obtaining several uniqueness and nonexis-

tence results, they also studied the stability of spacelike mean curvature flow solitons

concerning an appropriate stability operator.
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Going a step further, here, in Part I of this work, we extend the ideas and

techniques developed in [9, 19, 32, 35] to study n-dimensional spacelike mean cur-

vature flow solitons related to the closed conformal timelike vector field K = f(t)∂t

(t ∈ I ⊂ R) which is globally defined on a generalized Robertson-Walker (GRW)

spacetime −I×f M
n+p with warping function f ∈ C∞(I) and Riemannian fiber Mn+p.

Theorems 3.0.1 and 4.3.1, for example, are extensions to higher codimension of results

in [35]. In this setting, we apply suitable maximum principles to obtain nonexistence

and rigidity concerning these spacelike mean curvature flow solitons, under certain con-

straints on f and on the curvatures of Mn+p. Furthermore, in codimension 1 (that is,

when p = 0), we also obtain new Calabi-Bernstein type results concerning the spacelike

mean curvature flow soliton equation in a GRW spacetime.

Also, it is worth pointing out another motivation for the study of spacelike mean

curvature flow solitons in a GRW spacetime: They correspond to particular cases of

trapped submanifolds, which means that the mean curvature vector is timelike (see

Proposition A). The concept of trapped submanifold was first introduced by Pen-

rose [69] to study singularities of spacetime, giving rise to some of the famous singu-

larity theorems (see [48, 49, 72]). In General Relativity, a trapped surface is a two-

dimensional embedded spatial surface such that the product of the traces of their two

future-directed null second fundamental forms is everywhere positive and its existence

indicates the presence of a black hole (see [20, 52, 73]).

The results presented in Part I of this work were obtained by the author in

collaboration with Freitas, de Lima, and Santos in [43].

In Part II of this work, we shift our focus to an n-dimensional constant mean

curvature (CMC) hypersurface Σ with a smooth boundary that is compact, oriented,

and immersed in a Riemannian manifold Mn+1 also possessing a smooth boundary ∂M .

Here, ∂Σ ⊂ ∂M , and the boundary of Σ meets the boundary of M orthogonally. In this

situation, we say that Σ is a free boundary CMC hypersurface in M . Such hypersurfaces

are stationary for the area functional for variations preserving the enclosed volume (see,

for example, [71, Section 1]). When H = 0, we say that Σ is a free boundary minimal

hypersurface. In the particular case where the domain M is the unitary ball B3 in

the Euclidean space, the simplest examples of CMC free boundary surfaces are the

equatorial disk, the critical catenoid (minimal surfaces) and the spherical caps.
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We remember that after its initial motivation by Courant [33] and preliminary de-

velopments (for example, [65], [75] and [71]), this topic has received plenty of attention,

mainly after the 2010 decade and the undeniable contributions of Fraser and Schoen

([42], [41]). These underlying works reveal, in particular, several similarities between

free boundary minimal surfaces in an Euclidean unit ball and closed minimal surfaces

in the sphere. In this sense, the classical results and strategies to obtain rigidity results

in the last one could indicate interest directions to get related developments in the free

boundary case.

In this direction, the so-called gap results in the second fundamental form give

an important characterization of CMC surfaces in the sphere. A series of contributions

from Simons [74], Lawson [56], and Chern, do Carmo and Kobayashi [30] get the

following gap result for the second fundamental form A of the immersion:

Theorem A (Chern-do Carmo-Kobayashi [30], Lawson [56], Simons [74]) Let

Σ be a closed minimal hypersurface in the unit sphere Sn+1. Assume that the second

fundamental form A on Σ satisfies

|A|2 ≤ n.

Then

1. either |A|2 = 0 and Σ is an equator;

2. or |A|2 = n and Σ is a Clifford minimal hypersurface.

In the study of CMC hypersurfaces in the sphere, Alencar and do Carmo [4] also

obtained a gap result, but now considering the umbilicity tensor ϕ = A−Hg.

Theorem B (Alencar-do Carmo [4]) Let Σ be a closed, CMC hypersurface in the

unit sphere Sn+1. If

∥ϕ∥2 ≤ CH ,

1. either ∥ϕ∥2 ≡ 0 and Σn is totally umbilical in Sn+1,

2. ∥ϕ∥2 ≡ CH and Σn is an H(r)-torus in Sn+1.

Here, CH is related to a root of a polynomial whose coefficients depend on the mean

curvature H and the dimension n3.
3For details, see the Introduction of [4].
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We could describe some contributions by starting from these two characterizations

and studying similar phenomena for free boundary CMC hypersurfaces in the ball. In

[11], Ambrozio and Nunes proved that if Σ is a compact free boundary minimal surface

in B3 and for all points x in Σ,

|A|2(x)⟨x,N(x)⟩2 ≤ 2, (2)

then Σ is a flat equatorial disk or a critical catenoid. In higher dimensions, some similar

gap results to (2) can be obtained for 2-dimensional surfaces in the ball (see [17]) and,

with a topological rigidity, in submanifolds of any codimension in higher dimensional

balls (see [18, Theorem 3.7]). Also, some gaps result just in the second fundamental

form, as that in Theorem A, was obtained in [25], [16] and [15].

The question arises: Does an analogous result hold to these in the context of free

boundary CMC non-minimal surfaces? Barbosa, Cavalvante, and Pereira answered

this question in [13]. More specifically, in this work they proved that if Σ is a compact

free boundary CMC surface in B3 and for all points x in Σ,

|ϕ|2⟨x⃗, N⟩2 ≤ 1

2
(2 +H⟨x⃗, N⟩2),

where H is the non-normalized mean curvature, then Σ is a totally umbilical disc or a

part of a Delaunay surface.

In [21], Bettiol, Piccione, and Santoro have studied the existence of CMC disks

and Delaunay annuli that are free boundary in a ball. Furthermore, in addition to

the studies involving free boundary surfaces in the unit ball, investigations of this kind

have also been conducted in other domains. For example, when the ambient space is

a wedge (López [57]), a slab (Ainouz and Souam [1]), a cone (Choe [31]) or a cylinder

(Lopez and Pyo [58]).

Regarding rigidity conclusions starting from a gap condition, Andrade, Barbosa,

and Pereira [12] established some results for balls conforming to the Euclidean ball.

More recently, when the ambient space is a strictly convex domain in a 3-dimensional

Riemannian manifold with sectional curvature bounded above, and Σ is a CMC free

boundary surface in this region, Min and Seo [63] establish a pinching condition on

the length of the umbilicity tensor on Σ. This criterion ensures that the surface is

topologically equivalent to a disk or an annulus. In the particular case where the domain

5



is a geodesic ball of a 3-dimensional space form, they concluded that Σ is a spherical cap

or a Delaunay surface. In [15], Barbosa, Freitas, Melo, et al., investigated the existence

of compact free boundary minimal hypersurfaces immersed in domains whose boundary

is a regular level set, in particular giving some gap results for free boundary minimal

hypersurfaces immersed in an Euclidean ball and a rotational ellipsoid.

Part II of this work explores some gap results for CMC free boundary surfaces in

rotation domains described below. By considering a curve α(t) = (f(t), t), where f is

a positive real-valued smooth function, we generate a hypersurface ∂Ω starting from

the revolution of this curve in an appropriate axis. In this sense, we can describe a

domain Ω such that ∂Ω ⊂ F−1(1) is a revolution hypersurface and F : Rn × I → R is

a smooth function given by

F (x, y) =
1

2

(
|x|2 − f 2(y)

)
+ 1.

Furthermore, we consider a hypersurface Σ, which is a free boundary CMC surface in

Ω and we use the following condition for the function f of the profile curve

(f ′)2 + ff ′′ + 1 ≤ 0.

Then, we get gap results for CMC free boundary surfaces in 3-dimensional rotational

domains and minimal free boundary hypersurfaces in (n + 1)-dimensional rotational

domains.

Some considerations about the inequality condition in f are necessary at this

point. The inequality condition in f has an intriguing interpretation in terms of the

principal curvatures of the profile curve, and the equality case is characterized by the

Euclidean ball (see Remarks 6.0.2 and 6.0.3). In particular, this condition implies that

the boundary of the domain is convex (see demonstration of Lemma 7.1.1). About

the existence of free boundary minimal disks in convex regions of R3, we refer Struwe

[75] when he shows that there is at least one such disk. More recently, Haslhofer and

Ketover [47] show these regions admit at least two free boundary minimal disks. On the

other hand, by studying the existence of free boundary minimal annuli inside convex

subsets of 3-dimensional Riemannian manifolds with nonnegative Ricci curvature we

refer [61] by Máximo, Nunes, and Smith.

Furthermore, we construct new examples of CMC surfaces that are free boundary

6



on the rotational ellipsoid, exploring the technique from [13]. This permits seeing

examples of catenoids, nodoids, and onduloids in this domain.

The results presented in Part II were obtained by the author with Freitas and

Santos in [44].
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Part I

Nonexistence and rigidity of spacelike

mean curvature flow solitons
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Chapter 1

Preliminaries I

1.1 Generalized Robertson-Walker spacetimes

In this part of the work, our ambient spacetime will be taken as an (n + p + 1)-

dimensional generalized Robertson-Walker (GRW) spacetime given by −I ×f Mn+p,

that is, the time-oriented warped product manifold I ×f Mn+p, where (Mn+p, ⟨ , ⟩M)

is a connected, (n + p)-dimensional, oriented Riemannian manifold, with n ≥ 2 and

p ≥ 0, I ⊂ R is an open interval and f : I → R is a positive smooth function, endowed

with the following Lorentzian warped metric

⟨ , ⟩ := −dt2 + f(t)2⟨ , ⟩M , (1.1.1)

where dt2 stands for the standard metric of I ⊂ R (cf. [10]). When Mn+p has constant

sectional curvature, −I ×f M
n+p has been known in the mathematical literature as a

Robertson-Walker (RW) spacetime, having a strong allusion to its study in the case

n = 3, where it is an exact solution of Einstein’s field equations (see, for instance, [66,

Chapter 12]).

In this setting, we will consider the closed conformal timelike vector field

K(t, y) = f(t)∂ t|(t,y), (t, y) ∈ −I ×f M
n+p, (1.1.2)

which is globally defined on −I ×f Mn+p, where ∂t = ∂
∂t

stands for the coordinate

timelike vector field tangent to I. From the relationship between the Levi-Civita con-

nections of −I×f M
n+p and those of I and Mn+p (see [66, Proposition 7.35]), it follows

9



that

∇VK = f ′(πI)V, (1.1.3)

for all V ∈ X(−I ×f Mn+p), where ∇ is the Levi-Civita connection of −I ×f Mn+p

and πI is the projection of −I ×f M
n+p onto its factor I. In fact, for every vector field

V ∈ X(−I×f M
n+p) we can write V = −a∂t+V ∗, where a = ⟨V, ∂t⟩ ∈ C∞(Mn+p) and

V ∗ ∈ X(Mn+p). Then,

∇VK = ∇(−a∂t+V ∗)f(t)∂t

= −a∇∂tf(t)∂t +∇V ∗f(t)∂t

= −af ′(t)∂t + f(t)

(
∂t(f(t))

f(t)

)
V ∗

= f ′(t)(−a∂t + V ∗) = f ′(πI)V

It follows from (1.1.2) and (1.1.3) that

∇V ∂t = ∇V

(
1

f(t)
K
)

=
1

f(t)
f ′(t)V − a∂t

(
1

f(t)

)
K + V ∗

(
1

f(t)

)
K

=
1

f(t)
f ′(t)V + a

(
∂t(f(t))

f(t)2

)
K

= − 1

f(t)2
⟨V,∇f⟩K +

1

f(t)
f ′(t)V. (1.1.4)

On the other hand, a simple computation shows that the gradient of the projection

πI(t, y) = t is given by

∇πI = −⟨∇πI , ∂t⟩∂t = −∂t. (1.1.5)

Then,

∇f = ∇(f ◦ πI) = −f ′(t)∂t.

Thus, using (1.1.4) and (1.1.5) we obtain

∇V ∂t =
f ′(πI)

f(πI)
{V + ⟨V, ∂t⟩∂t}. (1.1.6)

1.2 Spacelike mean curvature flow soliton

In what follows, we deal with a connected spacelike submanifold x : Σn ↬

−I ×f Mn+p of codimension (p + 1), which means that the induced metric on Σn

10



from the metric of −I ×f Mn+p is positive definite and there exists an orthonormal

basis {N1, . . . , Np+1} of the normal bundle X⊥(Σ) constituted by a future (resp. past)

timelike normal unit vector field Np+1, that is, ⟨Np+1, ∂t⟩ ≤ −1 (resp. ⟨Np+1, ∂t⟩ ≥ −1)

on Σn, and spacelike normal unit vector fields N1, . . . , Np.

In this section and throughout Part I of this work, we will denote by A and

H⃗ = −tr(A) the second fundamental form and the non-normalized mean curvature

vector of the spacelike submanifold x : Σn ↬ −I ×f M
n+p, respectively. Now, we are

in a position to define our object of study which is inspired in [9, Definition (1.1)] and

[32, Definition (1.1)].

Definition 1.2.1 A spacelike submanifold x : Σn ↬ −I×f M
n+p is said to be a space-

like mean curvature flow soliton with respect to K = f(t)∂t and with soliton constant

c ∈ R if its mean curvature vector H⃗ satisfies

H⃗ = cK⊥, (1.2.1)

where K⊥ stands from the orthogonal projection of K along Σn. When f ≡ 1, such

a spacelike mean curvature flow soliton is called a spacelike translation soliton with

respect to ∂t.

1.2.1 Some previous computations and basic results

Given a spacelike mean curvature flow soliton x : Σn ↬ −I ×f M
n+p, its height

function h is the restriction of the projection πI(t, y) = t to Σn, that is, h : Σn → I is

given by

h = πI |Σn = πI ◦ x. (1.2.2)

From (1.1.5) and (1.2.2), we get that the gradient of h on Σn is

∇h = (∇πI)
⊤ = −∂⊤

t = −∂t + ∂⊥
t , (1.2.3)

where ∂ t = ∂⊤
t + ∂⊥

t . Here ∂⊤
t ∈ X(Σn) and ∂⊥

t ∈ X⊥(Σn) denote, respectively, the

tangential and normal components of ∂ t with respect to Σn. Since ∂⊥
t ∈ X⊥(Σn), we

can write

∂⊥
t =

p+1∑
i=1

εiΘiNi, (1.2.4)

11



where εi = sgn(⟨Ni, Ni⟩) and Θi = ⟨Ni, ∂t⟩. Thus, from (1.2.3) and (1.2.4)

∇h = −∂t +

p+1∑
i=1

εiΘiNi. (1.2.5)

Consequently, from (1.2.5) we obtain the following relation

|∇h|2 = −1−
p+1∑
i=1

εiΘ
2
i , (1.2.6)

where | · | stands from the norm of a tangent vector field on Σn, by considering its

induced metric. Moreover, from (1.1.6) and (1.2.5) we deduce that, for any X ∈ X(Σn),

the Hessian of h in the metric ⟨ , ⟩ is given by

∇2h(X,X) = ⟨∇X∇h,X⟩

= −⟨∇X∂t, X⟩+

〈
∇X

(
p+1∑
i=1

εiΘiNi

)
, X

〉

= −f ′(h)

f(h)
{|X|2 + ⟨X,∇h⟩2} −

p+1∑
i=1

εi⟨ANi
X,X⟩Θi, (1.2.7)

where ANi
denotes the Weingarten operator with respect to Ni.

In the sequence of this manuscript, we will also consider the function

u = g(h) ∈ C∞(Σn), (1.2.8)

where g : I → R is an arbitrary primitive of the warping function f . Since g′ = f > 0,

u = g(h) can be thought as a reparametrization of the height function. In particular,

from (1.2.3) we have that the gradient of u on Σn is given by

∇u = f(h)∇h = − f(h)∂⊤
t = −K⊤, (1.2.9)

where K⊤ denotes the tangential component of the closed conformal vector field K

defined in (1.1.2).

In order to calculate the Laplacian of the function u, we consider X ∈ X(Σ) and,

using (1.2.9), we evaluate the Hessian of u

∇2u(X,X) = ⟨∇X∇u,X⟩ = ⟨∇X(f(h)∇h), X⟩ = f(h)⟨∇X∇h,X⟩+X(f(h))⟨∇h,X⟩

= f(h)∇2h(X,X) + ⟨∇(f(h)), X⟩⟨∇h,X⟩

= f(h)∇2h(X,X) + f ′(h)⟨∇h,X⟩2. (1.2.10)
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Then, replacing (1.2.7) into (1.2.10) we get

∇2u(X,X) = f(h)

(
−f ′(h)

f(h)
{|X|2 + ⟨X,∇h⟩2} −

p+1∑
i=1

εi⟨ANi
X,X⟩Θi

)
+ f ′(h)⟨∇h,X⟩2

= −f ′(h)|X|2 − f(h)

p+1∑
i=1

εi⟨ANi
X,X⟩Θi. (1.2.11)

Therefore, considering a local orthonormal frame {E1, . . . , En} in Σn, from (1.2.11),

we conclude that the standard Laplacian of u is given by

∆u =
n∑

j=1

∇2u(Ej, Ej)

= −nf ′(h)− f(h)
n∑

j=1

p+1∑
i=1

εi⟨A(Ej, Ej), Ni⟩⟨Ni, ∂t⟩

= −nf ′(h) + f(h)

p+1∑
i=1

εi⟨H⃗,Ni⟩⟨Ni, ∂
⊥
t ⟩

= −nf ′(h) + cf 2(h)

p+1∑
i=1

εi⟨∂t, Ni⟩⟨Ni, ∂
⊥
t ⟩

= −nf ′(h) + cf 2(h)⟨∂⊥
t , ∂

⊥
t ⟩

= −nf ′(h) + cf 2(h)⟨∂t +∇h, ∂t +∇h⟩

= −nf ′(h) + cf 2(h){−1 + ⟨∇h, ∂t⟩}. (1.2.12)

Now, we consider the following drift Laplacian on Σn

∆−cu(φ) = ∆φ+ ⟨∇(cu),∇φ⟩, (1.2.13)

where φ ∈ C∞(Σn). Then, since (1.2.9), (1.2.12) and (1.2.13), we have

∆−cu(u) = ∆u+ ⟨∇(cu),∇u⟩

= −nf ′(h)− cf 2(h) + cf 2(h)⟨∇h, ∂t⟩ − cf 2(h)⟨∇h, ∂t⟩ = −ζc(h), (1.2.14)

where, adopting the terminology introduced in [9] and [32], ζc(h) = nf ′(h) + cf 2(h)

is called the soliton function associated to the mean curvature flow soliton x : Σn ↬

−I ×f M
n+p.

Remark 1.2.1 It is easy to check that if the slice Mt∗ = {t∗} ×Mn+p is a spacelike

mean curvature flow soliton with respect to K = f(t)∂t then the soliton constant c is
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given by

c = −n
f ′(t∗)

f(t∗)2
. (1.2.15)

Consequently, t∗ is implicitly given by the condition ζc(t∗) = 0. In fact, in the slice

Mt∗ the height function h is constant with h = t∗, therefore u is also constant, then

∆−cuu = 0. From (1.2.14), we get ζc(h) = nf ′(t∗) + cf 2(t∗) = 0. Consequently, we

obtain (1.2.15).

Example 1 Let us consider the (n+ 1)-dimensional de Sitter space Sn+1
1 given by

Sn+1
1 = {x ∈ Rn+2

1 : ⟨x, x⟩ = 1},

where Rn+2
1 is the (n+2)-dimensional Minkowski space. From [64, Example 4.2], Sn+1

1

is isometric to the GRW spacetime −R×cosh t Sn, where Sn denotes the n-dimensional

unit Euclidean sphere endowed with its standard metric. From (1.2.15) we see that the

slices {sinh−1(−n±
√
n2−4c2

2c
)}×Sn are spacelike mean curvature flow soliton with respect

to K = cosh t ∂t and with soliton constant 0 < |c| ≤ n
2
.

Example 2 Let us consider the (n + 1)-dimensional anti-de Sitter space Hn+1
1 given

by

Hn+1
1 = {x ∈ Rn+2

2 : ⟨x, x⟩ = −1}.

Motivated by [64, Example 4.3], we will consider the open subset of Hn+1
1 which is

isometric to the GRW spacetime −(−π
2
, π
2
) ×cos t Hn. From (1.2.15) we see that the

slices {sin−1(−n±
√
n2+4c2

2c
)}×Hn are spacelike mean curvature flow solitons with respect

to K = cos t ∂t and with soliton constant c ̸= 0.

Example 3 The 4-dimensional Einstein-de Sitter spacetime −R+ ×
t
2
3
R3, where R3

stands for the 3-dimensional Euclidean space endowed with its canonical metric, is a

classical exact solution to the Einstein field equation without cosmological constant.

Here, let us consider the (n+1)-dimensional Einstein-de Sitter spacetime −R+×
t
2
3
Rn.

From (1.2.15) we conclude that the slices {(−2n
3c
)
3
5}×Rn are spacelike mean curvature

flow solitons with respect to K = t
2
3∂t and with soliton constant c < 0.

According to [69], we recall that a spacelike submanifold of a spacetime is called

trapped if its mean curvature vector is timelike.
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We have an important fact about spacelike mean curvature flow solitons in a

GRW spacetime: They correspond to particular cases of trapped submanifolds. See

the next Proposition.

Proposition A Let x : Σn ↬ −I ×f M
n+p be a spacelike mean curvature flow soliton

with respect to K = f(t)∂t and with soliton constant c ̸= 0. Then, Σn is a trapped

submanifold of −I ×f M
n+p.

Proof. Indeed, from (1.2.1) and (1.2.3) we have that

⟨H⃗, H⃗⟩ = c2f 2⟨∂⊥
t , ∂

⊥
t ⟩ = c2f 2⟨∂t − ∂⊤

t , ∂t − ∂⊤
t ⟩ = −c2f 2(1 + |∇h|2) < 0. (1.2.16)

Therefore, from (1.2.16) we conclude that H⃗ is timelike, which means that Σn is a

trapped submanifold of −I ×f M
n+p.

We close this subsection establishing the following key lemma.

Lemma 1.2.1 Let x : Σn ↬ −I ×f M
n+p be a spacelike mean curvature flow soliton

with respect to K = f(t)∂t and with soliton constant c ̸= 0. Then

⟨AH⃗X, Y ⟩+ c∇2u(X, Y ) = −cf ′(h)⟨X, Y ⟩, (1.2.17)

for all X, Y ∈ X(Σ), where AH⃗ denotes the Weingarten operator with respect to H⃗.

Furthermore,

∇|H⃗|2 = −2cAH⃗(∇u),

where |H⃗|2 := −⟨H⃗, H⃗⟩.

Proof. Considering the function u = g(h) as in (1.2.8), from (1.2.11) we get

c∇2u(X, Y ) = −cf ′(h)⟨X, Y ⟩ − cf(h)

p+1∑
i=1

εi⟨ANi
X, Y ⟩Θi, (1.2.18)

for all X, Y ∈ X(Σ).

Observe that we can write

H⃗ =

p+1∑
i=1

εiHNi
Ni,

where {N1, . . . , Np+1} is a local orthonormal frame on X⊥(Σ) and HNi
= ⟨H⃗,Ni⟩.

Thus, since H⃗ = cf(h)∂⊥
t , using (1.2.18), we conclude that

−cf ′(h)⟨X, Y ⟩ =
p+1∑
i=1

εi⟨ANi
X, Y ⟩⟨Ni, cf(h)∂t⟩+ c∇2u(X, Y )
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=

p+1∑
i=1

εi⟨ANi
X, Y ⟩HNi

+ c∇2u(X, Y )

=

p+1∑
i=1

εi⟨A(X, Y ), Ni⟩HNi
+ c∇2u(X, Y )

=

p+1∑
i=1

⟨A(X, Y ), εiHNi
Ni⟩+ c∇2u(X, Y )

= ⟨A(X, Y ), H⃗⟩+ c∇2u(X, Y )

= ⟨AH⃗X, Y ⟩+ c∇2u(X, Y )

and, hence, we obtain (1.2.17).

On the other hand, we note that

c∇̄XK = c∇̄X(f(t)∂t)

= c∇̄X(f(t)∂
⊤
t ) + c∇̄X(f(t)∂

⊥
t )

= c∇X(f(t)∂
⊤
t ) + cA(X, f(t)∂⊤

t ) + c∇̄X

(
H⃗

c

)
= c∇X(f(t)∂t)

⊤ + cA(X, f(t)∂⊤
t ) + ∇̄XH⃗.

In particular, from (1.1.3) we have

0 = (cf ′X)⊥ = (c∇̄XK)⊥ = (c∇X(f(t)∂t)
⊤ + cA(X, f(t)∂⊤

t ) + ∇̄XH⃗)⊥. (1.2.19)

Thus, from (1.2.19) we get

−cA(X,∇u) = cA(X, f(t)∂⊤
t ) = −(∇̄XH⃗)⊥.

Finally, we obtain

−c⟨AH⃗∇u,X⟩ = −c⟨A(X,∇u), H⃗⟩ = −⟨(∇̄XH⃗)⊥, H⃗⟩ = −1

2
X(⟨H⃗, H⃗⟩) = 1

2
⟨∇|H⃗|2, X⟩.

Therefore,

∇|H⃗|2 = −2cAH⃗(∇u).

1.2.2 Spacelike submanifolds contained in slices

In this subsection, we establish a necessary condition for a spacelike mean curva-

ture flow soliton to be contained in a slice of a GRW spacetime.
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Proposition B Let x : Σn ↬ −I ×f M
n+p (p > 0) be a spacelike mean curvature flow

soliton with respect to K = f(t)∂t and with soliton constant c. If there exists t ∈ I

such that x(Σn) is contained in a slice {t} × Mn+p, then ϕ := πM ◦ x : Σn ↬ Mn+p

is a minimal submanifold, where πM denotes the projection of −I ×f Mn+p onto its

Riemannian fiber Mn+p.

Proof. Let us denote by ⟨, ⟩Σ the Riemannian metric induced on Σn via ϕ. For a fixed

t ∈ I, we can consider ϕt : Σ
n ↬ −I ×f M

n+p given by

ϕt(q) = (t, ϕ(q)), ∀q ∈ Σn.

So, ϕt is a spacelike immersion of Σn into −I ×f M
n+p, with codimension p+1, which

is contained in the slice Mt = {t}×M , and such that the metric induced on Σn via ϕt

from the Lorentzian metric (1.1.1) is given by

⟨, ⟩t = ϕ∗
t (⟨, ⟩) = f 2(t)⟨, ⟩Σ. (1.2.20)

Now, our objective is to compute the second fundamental form At of the immer-

sion ϕt. Let us consider {Ni}pi=1 a local orthonormal frame of the normal bundle of ϕ.

It follows that the vector fields

ηi(ϕt(q)) =
1

f(t)
Ni(ϕ(q)), 1 ≤ i ≤ p, (1.2.21)

and

ηp+1(ϕt(q)) = ∂t|ϕt(q)

define a local orthonormal frame of normal vector fields along the immersion ϕt. Ob-

serve that the Weingarten operator Aηi of ϕt with respect to ηi is given by

AηiX =
1

f(t)
ANi

X, X ∈ X(Σ), (1.2.22)

where ANi
stands for the Weingarten operator of ϕ : Σn ↬ Mn+p with respect to the

normal direction Ni. Furthermore, it follows from (1.1.3) that

Aηp+1X = −(∇̄X∂t)
⊤ = −f ′(t)

f(t)
X, X ∈ X(Σ). (1.2.23)

Note that, given X, Y ∈ X(Σ), from (1.2.20) and (1.2.21) we get

⟨ANi
X, Y ⟩ηi = f(t)⟨ANi

X, Y ⟩ΣNi,∀ 1 ≤ i ≤ p. (1.2.24)
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Thus, from (1.2.22), (1.2.23) and (1.2.24), we have that the second fundamental form

At of the immersion ϕt is given by

At(X, Y ) =

p+1∑
i=1

εi⟨AηiX, Y ⟩ηi

=
1

f(t)

p∑
i=1

εi⟨ANi
X, Y ⟩ηi +

f ′(t)

f(t)
⟨X, Y ⟩∂t

=

p∑
i=1

εi⟨ANi
X, Y ⟩ΣNi +

f ′(t)

f(t)
⟨X, Y ⟩∂t

= Aϕ(X, Y ) +
f ′(t)

f(t)
⟨X, Y ⟩∂t, (1.2.25)

where Aϕ denotes the second fundamental form of the immersion ϕ. Taking traces in

both sides of (1.2.25) with respect to the metric ⟨, ⟩t, we see that the mean curvature

vector H⃗t of ϕt is

H⃗t =
1

f(t)2
H⃗ϕ − n

f ′(t)

f(t)
∂t, (1.2.26)

where H⃗ϕ = −tr⟨,⟩Σ(Aϕ) is the mean curvature vector of ϕ(Σ).

Since ∂t is normal to ϕt(Σ), we have that K = K⊥ = f(t)∂t along ϕt. So, from

(1.2.26) we conclude that ϕt : Σ
n ↬ −I ×f M

n+p is a mean complete curvature flow

soliton with respect to K = f(t)∂t if and only if H⃗ϕ ≡ 0, that is, ϕ := πM ◦ x : Σn ↬

Mn+p is a minimal submanifold.

1.3 Omori-Yau’s maximum principle

In this section, for the sake of completeness, we will present a Omori-Yau maxi-

mum principle due to Chen and Qiu in [28, Theorem 1].

First, let us consider the operator ∆V := ∆ − ⟨V,∇⟩ for a vector field V on a

Riemannian manifold (M, g), and denote by RicV := Ric−1
2
LV g the Bakry–Emery

Ricci tensor. In this context, Chen and Qiu established the following Omori-Yau

maximum principle.

Theorem 1.3.1 Let (Mm, g) be a complete Riemannian manifold, V a C1 vector field

on M . If RicV ≥ −F (r)g, where r is the distance function on M from a fixed point
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x0 ∈ M , F : R → R is a positive continuous function satisfying

φ(t) :=

∫ t

ρ0+1

dr∫ r

ρ0
F (s)ds+ 1

→ +∞ (t → +∞)

for some positive constant ρ0. Let f ∈ C2(M) with lim
x→∞

f(x)

φ(r(x))
= 0, then there exist

points {xj} ⊂ M , such that

lim
j→∞

f (xj) = sup f, lim
j→∞

|∇f | (xj) = 0, lim
j→∞

∆V f (xj) ≤ 0. (1.3.1)

Proof. For any u ∈ C3(M), we know that the Bochner formula holds, namely

1

2
∆|∇u|2 = |Hess(u)|2 +Ric(∇u,∇u) + ⟨∇∆u,∇u⟩.

This implies that

1

2
∆V |∇u|2 = |Hess(u)|2 +Ric(∇u,∇u) + ⟨∇∆u,∇u⟩+ 1

2

〈
V,∇|∇u|2

〉
.

Choose {e1, . . . , em} a local orthonormal frame field on M at the considered point.

Direct computation gives 〈
V,∇|∇u|2

〉
= 2V iujiuj,

∇⟨V,∇u⟩ =
(
V j
i uj + V kuki

)
ei

1

2
(LV g) (∇u,∇u) = V juiuij −

(
V iuji − uiV

j
i

)
uj = uiV

j
i uj.

Consequently,

1

2
∆V |∇u|2 =|Hess(u)|2 +Ric(∇u,∇u) + ⟨∇∆V u,∇u⟩

− ⟨∇⟨V,∇u⟩,∇u⟩+ 1

2

〈
V,∇|∇u|2

〉
=|Hess(u)|2 +Ric(∇u,∇u) + ⟨∇∆V u,∇u⟩

−
〈(
V j
i uj + V kuki

)
ei, ulϵl

〉
+ V iujiuj

=|Hess(u)|2 +RicV (∇u,∇u) + ⟨∇∆V u,∇u⟩ . (1.3.2)

If x is not on the cut locus of x0, and for r ≥ r0 (r0 is a positive constant), let

σ : [0, r] → M be a minimal unit speed geodesic with σ(0) = x0, σ(r) = x. Set φV (s) =

(∆V r) ◦ σ(s), s ∈ (0, r]. Applying the Bochner formula (1.3.2), we have

|Hess(r)|2 +RicV (∇r,∇r) + ⟨∇∆V r,∇r⟩ = 1

2
∆V |∇r|2 = 0.
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Therefore,

⟨∇∆V r,∇r⟩ ≤ −RicV (∇r,∇r)

Computing both sides of the above inequality along σ(s) gives

φ′
V (s) ≤ −RicV (σ′, σ′) ≤ F (r(σ(s))) = F (s) on (0, r]. (1.3.3)

Choosing ρ0 > 0 small enough so that the geodesic ball Bρ0 (x0) lies in the neighborhood

of the normal coordinate at x0. Let C1 = max∂Bρ0 (x0) ∆V r. Then integrating (1.3.3)

from ρ0 to r(x), we have

∆V r(x) ≤
∫ r

ρ0

F (s)ds+ C1.

For simplicity, we denote W (t) :=
∫ t

ρ0
F (s)ds+ 1, then φ(t) =

∫ t

ρ0+1
dr

W (r)
, and we have

∆V r(x) ≤ CW (r)

for some constant C > 0.

Let {εj} be a sequence of positive real numbers such that εj → 0 as j → ∞.

Define

fj(x) = f(x)− εjφ(r(x)), ∀j.

By the condition on f, fj → −∞ as x → ∞, so fj attains its maximum at some point

xj ∈ M . Consequently, we have

∇fj (xj) = 0 and ∆V fj (xj) ≤ 0.

To prove the last two conclusions in (1.3.1), if {r (xj)} is bounded, then there is a

subsequence of {xj} converging to some point x ∈ M , at which f attains its maximum,

in this case, the conclusions follow easily. Now we assume that {r (xj)} → +∞ as

j → +∞. Without loss of generality, we can suppose that xj is not on the cut locus of

x0. Otherwise, we can use Calabi’s trick to remedy it (cf. [22, 29]).

Since

φ′(t) =
1

W (t)
> 0, φ′′(t) ≤ 0, for t ∈ [ρ0,+∞) .

We obtain

|∇f | (xj) = εj|∇φ(r)| (xj) = εjφ
′(r) (xj) |∇r| (xj) → 0 as j → ∞,
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and
∆V f (xj) ≤ εj

{
φ′ (r (xj))∆V r (xj) + φ′′ (r (xj)) |∇r (xj)|2

}
≤ εjφ

′ (r (xj))∆V r (xj)

≤ εj
1

W (r (xj))
· CW (r (xj)) → 0 as j → ∞.

It remains to prove lim
j→+∞

f (xj) = sup f . If there exists a subsequence {xjk} ̸= {xj},

such that lim
k→+∞

f (xjk) = sup f , then by still denoting {xjk} as xj, the proof is com-

pleted. Otherwise, we claim that lim
j→+∞

f (xj) = sup f (if sup f = ∞, then we claim

that lim
j→+∞

sup f (xj) = ∞). Indeed, if this were not true, there would exist x̂ ∈ M and

δ > 0, such that

f(x̂) > f (xj) + δ (1.3.4)

for each j ≥ j0 sufficiently large.

Since

f (xj)− εjφ (r (xj)) = fj (xj) ≥ fj(x̂) = f(x̂)− εjφ(r(x̂)), (1.3.5)

we then have

f (xj) ≥ f(x̂) + εj (φ (r (xj))− φ(r(x̂))) .

If r (xj) → +∞ as j → +∞, then for j large enough, we have φ (r (xj)) > φ(r(x̂)),

that is f (xj) > f(x̂), which contradicts (1.3.4).

If {xj} lies in a compact set, then for some subsequence of j, xj converges to a

point x̄, so that f(x̂) ≥ f(x̄) + δ. On the other hand, we can deduce from (1.3.5) that

f(x̄) ≥ f(x̂).

This is also a contradiction. This proves (1.3.1).
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Chapter 2

Nonexistence and rigidity of spacelike

mean curvature flow solitons

2.1 Nonexistence and rigidity results via integrability

In what follows, let Σn be an oriented submanifold. So, we denote the space of

Lebesgue integrable functions on Σn by

L1(Σn) =

{
φ ∈ C∞(Σn) :

∫
Σn

|φ|dΣ ≪ +∞
}
,

where dΣ stands for the volume element induced by the metric of Σn. Furthermore,

we denote by L1
−cu(Σ

n) the set of Lebesgue integrable functions on Σn with respect to

the modified volume element

dµ = ecudΣ. (2.1.1)

It follows from (1.2.13) that

∆−cu(φ) = e−cudivΣ(e
cu∇φ), (2.1.2)

for all φ ∈ C∞(Σn), where divΣ is the standard divergence relative to the metric of

Σn. In this context, a smooth function φ on Σn is said to be (−cu)-subharmonic

(respectively, (−cu)-superharmonic) if ∆−cu(φ) ≥ 0 (respectively, ∆−cu(φ) ≤ 0) on

Σn.

Taking into account these previous considerations, it is not difficult to see that

the following extension of a result due to Yau in [78, Page 660] holds.
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Lemma 2.1.1 Let Σn be an n-dimensional complete oriented Riemannian manifold.

If φ ∈ C∞(Σn) is a (−cu)-subharmonic function (or a (−cu)-superharmonic function)

on Σn and |∇φ| ∈ L1
−cu(Σ

n), then ∆−cu(φ) = 0 on Σn.

We recall that a slab of −I ×f M
n+p is a timelike bounded region of the type

[t∗; t
∗]×Mn+p = {(t; p) ∈ −I ×f M

n+p : t∗ ≤ t ≤ t∗ and p ∈ Mn+p}.

So, we are in position to establish the following result.

Theorem 2.1.1 Let x : Σn ↬ −I ×f Mn+p be a complete spacelike mean curvature

flow soliton with respect to K = f(t)∂t and with soliton constant c ∈ R, lying in a slab

of −I ×f Mn+p and whose height function h satisfies |∇h| ∈ L1(Σn). If the soliton

function ζc(h) = nf ′(h) + cf 2(h) does not change the sign, then there exists t ∈ I such

that x(Σn) is contained in the slice {t} ×Mn+p.

Proof. Since x : Σn ↬ −I ×f Mn+p lies in a slab of −I ×f Mn+p, we have that

h is bounded on Σn and, therefore, u = g(h) is bounded on Σn and, consequently,

the same happens with the function ecu. Then, from |∇h| ∈ L1(Σn) and (2.1.1),

we get |∇h| ∈ L1
−cu(Σ

n). Therefore, |∇u| ∈ L1
−cu(Σ

n). Furthermore, from (1.2.14),

∆−cu(u) = −ζc(h) and, since ζc does not change the sign on Σn, we get that ∆−cu(u)

does not change the sign on Σn. Thus, from Lemma 2.1.1, ∆−cu(u) = 0 em Σn.

Now, we observe that

∆−cu(u
2) = 2u∆−cu(u) + 2|∇u|2 = 2|∇u|2 ≥ 0 and |∇(u2)| = 2|u||∇u| ∈ L1

−cu(Σ
n).

Hence, we can apply Lemma 2.1.1 once more to get that ∆−cu(u
2) = 0, implying that

|∇u| = 0 on Σn. Therefore, u = g(h) is constant on Σn and, since g′ = f > 0, that

is, the function g is increasing, we conclude that h is also constant, which means that

x(Σn) is contained in a slice {t} ×Mn+p, for some t ∈ I.

From Theorem 2.1.1 we obtain the following nonexistence result, when the am-

bient spacetime is a Lorentzian product space.

Corollary 2.1.1 There does not exist complete spacelike translation soliton x : Σn ↬

−I × Mn+p with respect to ∂t and with soliton constant c ̸= 0, lying in a slab of

−I ×Mn+p and such that |∇h| ∈ L1(Σn).
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Proof. Supposing that there exists such a spacelike translation soliton x : Σn ↬

−I × Mn+p, from Theorem 2.1.1 we get that there exists t ∈ I such that x(Σn) is

contained in a slice {t}×Mn+p. Since f = 1, from (1.2.15) we have that c = 0, leading

us to a contradiction.

Our next result also deals with the nonexistence of spacelike mean curvature flow

solitons.

Theorem 2.1.2 There does not exist a complete spacelike mean curvature flow soliton

x : Σn ↬ −I ×f M
n+p with respect to K = f(t)∂t with soliton constant c ∈ R, lying in

a slab of −I ×f M
n+p, whose height function h satisfies |∇h| ∈ L1(Σn) and such that

(a) cf ′(h) ≥ 0 on Σn and

(b) either c ̸= 0 or the set where f ′(h) ̸= 0 is a dense subset on Σn.

Proof. Let us suppose for the sake of contradiction the existence of such a complete

mean curvature flow soliton x : Σn ↬ −I×f M
n+p. Since x : Σn ↬ −I×f M

n+p lies in

a slab of −I ×f M
n and |∇h| ∈ L1(Σn), we conclude in the same way as in the proof

of Theorem 2.1.1 that |∇u| ∈ L1
−cu(Σ

n).

Furthermore, from item (a) we have that either c ≥ 0 and f ′(h) ≥ 0 or c ≤ 0 and

f ′(h) ≤ 0. In both cases, from (1.2.14) we get that

∆−cu(u) = −(nf ′(h) + cf 2(h)) = −ζc(h)

does not change the sign on Σn. Consequently, Lemma 2.1.1 guarantees that ∆−cu(u) =

0 em Σn.

On the other hand, item (a) jointly with one of the options in item (b) give

−ζc(h) = −(nf ′(h) + cf 2(h)) ̸= 0

in a dense subset of Σn. Therefore, from (1.2.14) we get ∆−cu(u) ̸= 0 on Σn. So, we

reach a contradiction.

Remark 2.1.1 We observe that these previous results remain valid if we assume that

c ̸= 0 and
√

|AH⃗ | ∈ L1(Σ) instead of supposing that |∇h| ∈ L1(Σn). Indeed, from

(1.2.6), (1.2.9) and (1.2.16) we have that

c2|∇u|2 = |H⃗|2 − c2f 2.
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Since |H⃗|2 ≤
√
n|AH⃗ |, we have that

c2|∇u|2 ≤
√
n|AH⃗ |.

Hence, we conclude that |∇u| ∈ L1(Σn).

2.2 Nonexistence and rigidity results via asymptotic

convergence

Let Σn be a connected, complete noncompact Riemannian manifold and let

d(·, o) : Σ → [0,+∞) stand for the Riemannian distance of Σn, measured from a

fixed point o ∈ Σn. According to [5], we say that f ∈ C0(Σ) converges to zero at

infinity if it satisfies

lim
d(x,o)→+∞

f(x) = 0.

Considering this setting, we have the following key lemma which corresponds to

[5, Theorem 2.2].

Lemma 2.2.1 Let Σn be a connected, oriented, complete noncompact Riemannian

manifold and let X ∈ X(Σ) be a vector field on Σn. Assume that there exists a non-

negative, non-identically vanishing function f ∈ C∞(Σ) converging to zero at infinity

and such that ⟨∇f,X⟩ ≥ 0. If divΣX ≥ 0 on Σn, then:

(a) ⟨∇f,X⟩ ≡ 0 on Σn;

(b) divΣX ≡ 0 on Σn \ f−1(0);

(c) divΣX ≡ 0 on Σn if f−1(0) has zero Lebesgue measure.

As an application of Lemma 2.2.1 we obtain the following result.

Theorem 2.2.1 Let x : Σn ↬ −I ×f M
n+p be a complete noncompact spacelike mean

curvature flow soliton with respect to K = f(t)∂t and with soliton constant c ∈ R.

Suppose that there exists t0 ∈ I such that x(Σn) is above (below) the slice {t0} ×

Mn+p and converges asymptotically to it at infinity. If the soliton function ζc(h) is

nonpositive, then x(Σn) is contained in the slice {t0} ×Mn+p.

25



Proof. Let us suppose for the sake of contradiction that x(Σn) is not contained in

the slice {t0} ×Mn+p. Defining on Σn the function ρ = h − t0, if x(Σn) is above the

slice {t0} × Mn+p and asymptotic to it at infinity, we have that ρ ≥ 0 and ρ is a

non-identically vanishing function converging to zero at the infinity.

Let us consider the vector field X = ecu∇u, and observe that

⟨X,∇ρ⟩ = ⟨ecu∇u,∇h⟩ = ecuf(h)|∇h|2 ≥ 0.

Furthermore, from (1.2.14) and (2.1.2) we have that

e−cudivΣX = e−cudivΣ(e
cu∇u) = ∆−cu(u) = −ζc(h).

Therefore, divΣX ≥ 0, because we are supposing that ζc(h) ≤ 0. Thus, from Lemma

2.2.1 we get ⟨X,∇ρ⟩ ≡ 0. Consequently, h is constant in Σn and, since x(Σn) is

asymptotic to slice {t0} × Mn+p at infinity, we concluded that h = t0. Therefore,

ρ ≡ 0, and we arrived at a contradiction. If x(Σn) is below the slice {t0} ×Mn+p and

asymptotic to it at infinity, we can define the function ρ = t0 − h and reason as in the

previous case.

When the ambient spacetime is a Lorentzian product space, from Theorem 2.2.1

we obtain the following consequence.

Corollary 2.2.1 There does not exist a complete noncompact spacelike mean curvature

flow soliton x : Σn ↬ −I×Mn+p with respect to K = f(t)∂t, with soliton constant c ̸= 0

and such that x(Σn) is above (below) the slice {t0}×Mn+p and converges asymptotically

to it at infinity.

From now on, in this subsection, we denote by N the future-pointing Gauss map

of Σn and will always assume such a timelike orientation for Σn. Then, ⟨N,N⟩ = −1.

Furthermore, from the inverse Cauchy-Schwarz inequality (see [66, Proposition 5.30]),

we have that ⟨N, ∂t⟩ ≤ −1, with the equality holding at a point p ∈ Σn if, and only if,

N = ∂t at p. Therefore, on Σn the hyperbolic angle Θ verifies

Θ = ⟨N, ∂t⟩ ≤ −1. (2.2.1)

Naturally attached to a spacelike mean curvature flow soliton x : Σn ↬ −I×Mn

with respect to K = f(t)∂t and with soliton constant c ∈ R, we can consider the
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support function
φK : Σn → R

q 7→ φK(q)= ⟨K(q), N(q)⟩x(q).
(2.2.2)

From (2.2.1), we have that

φK = f(h)⟨∂ t, N⟩ = f(h)Θ ≤ −f(h) < 0.

Furthermore, we have the following relationship between the gradient of the height

function h and angle Θ

∇h = −∂⊤
t = −∂t −ΘN.

Then, we get

|∇h|2 = Θ2 − 1.

From [23, Proposition 2.1] and (1.2.6) we have

∆(φK) = {Ric(N,N) + |A|2}φK − {nN(f ′)−Hf ′}+ ⟨K,∇H⟩, (2.2.3)

where ∇H is the gradient of H = ⟨H⃗,N⟩ in the metric of Σn, Ric is the Ricci tensor

of −I ×f M
n and |A| is the Hilbert-Schmidt norm of A.

Besides, we get that

N(f ′) = ⟨∇f ′(h), N⟩ = f ′′(h)⟨∇h,N⟩ = −f ′′Θ = −f ′′

f
φK. (2.2.4)

On the other hand, since N = N∗ − Θ∂ t, where N∗ = (πM)∗(N) is the orthogonal

projection of N onto Mn, it follows from [66, Corollary 7.43] that

Ric(N,N) = Ric(N∗, N∗) + Θ2Ric(∂t, ∂t)

= RicM(N∗, N∗) + ⟨N∗, N∗⟩
{
f ′′

f
+ (n− 1)

(f ′)2

f 2

}
− nf ′′

f
Θ2

= RicM(N∗, N∗)−
{
f ′′

f
+ (n− 1)

(f ′)2

f 2

}
− (n− 1)

(
f ′

f

)′

Θ2, (2.2.5)

where RicM denotes the Ricci tensor of Mn. We note that it was used the relation

⟨N∗, N∗⟩ = Θ2 − 1 in the last equality above.
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Thus, inserting (2.2.4) and (2.2.5) into (2.2.3), we get that

∆(φK) =

{
RicM(N∗, N∗) + |A|2 −

{
f ′′

f
+ (n− 1)

(f ′)2

f 2

}
− (n− 1)

(
f ′

f

)′

Θ2

}
φK

+

{
n
f ′′

f
φK +Hf ′

}
+ ⟨K,∇H⟩

=

{
RicM(N∗, N∗) + |A|2 + (n− 1)

(f ′′f − (f ′)2)

f 2
− (n− 1)

(
f ′

f

)′

Θ2

}
φK

+ Hf ′ + ⟨K,∇H⟩

=
{
RicM(N∗, N∗) + (n− 1)(lnf)′′(1−Θ2) + |A|2

}
φK +Hf ′ + ⟨K,∇H⟩

= {RicM(N∗, N∗)− (n− 1)(ln f)′′|∇h|2 + |A|2}φK +Hf ′ + ⟨K,∇H⟩.(2.2.6)

From equations (1.2.1) and (2.2.2), we have that H = c φK, and from (1.2.9)

we get ∇u = −K⊤, where u is the reparametrization of the height function h given

in (1.2.8). Consequently, we can rewrite (2.2.6) in the following way

∆(φK) = {cf ′(h)+RicM(N∗, N∗)− (n−1)(ln f)′′(h)|∇h|2+ |A|2}φK+ ⟨∇(cu),∇(φK)⟩.

(2.2.7)

Then, from (2.2.7) and (1.2.13) we conclude that the drift Laplacian ∆−cu acting

on φK = H
c

is given by

∆−cu

(
H

c

)
= {ζ̃c +RicM(N∗, N∗)− (n− 1)(ln f)′′(h)|∇h|2}H

c
, (2.2.8)

where ζ̃c ∈ C∞(Σn) is the function defined by

ζ̃c(q) = cf ′(h(q)) + |A(q)|2,

for every q ∈ Σn, which will be called the second soliton function associated to the

spacelike mean curvature flow soliton x : Σn ↬ −I ×f M
n. Such nomenclature for ζ̃c

is motivated by [9, Equation (6.11)].

In our next result, we will assume that the GRW spacetime −I ×f M
n satisfies

the null convergence condition (NCC)

RicM ≥ (n− 1)(ff ′′ − f ′2)⟨ , ⟩M , (2.2.9)

where RicM denotes the Ricci tensor of the Riemannian fiber Mn.

Theorem 2.2.2 Let −I ×f Mn be a GRW spacetime obeying the NCC (2.2.9), with

equality holding only in isolated points of I. Let x : Σn ↬ −I ×f Mn be a complete
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noncompact spacelike mean curvature flow soliton with respect to K = f(t)∂t and with

soliton constant c ∈ R. Suppose that there exists t0 ∈ I such that x(Σn) is above the

slice {t0} × Mn and converges asymptotically to it at infinity. If the second soliton

function ζ̃c = |A|2 + cf ′(h) is nonnegative and c⟨A(∇u),∇u⟩ ≤ 0, then x(Σn) is the

slice {t0} ×Mn.

Proof. Let us suppose for the sake of contradiction that x(Σn) ̸= {t0}×Mn. Defining

the function ρ = h− t0, since x(Σn) is above the slice {t0} ×Mn and asymptotic to it

at infinity, we have that ρ ≥ 0 and ρ is a non-identically vanishing function converging

to zero at the infinity.

Now, let us consider the field vector X = ecu∇(−H
c
), and observe that, by hy-

pothesis,

⟨X,∇ρ⟩ =
〈
ecu∇

(
−H

c

)
,∇ρ

〉
= −⟨ecucA(∇u),∇h⟩ = − ecu

f(h)
c⟨A(∇u),∇u⟩ ≥ 0.

Furthermore, from (2.2.9) we obtain

RicM(N∗, N∗)− (n− 1)(ln f)′′(h)|∇h|2 ≥

≥ (n− 1)(f(h)f ′′(h)− f ′(h)2)|N∗|2M − (n− 1)(ln f)′′(h)|∇h|2

= (n− 1)(f(h)f ′′(h)− f ′(h)2)|N +Θ∂ t|2M − (n− 1)

(
f ′

f

)′

(h)|∇h|2

= (n− 1)

{(
f(h)f ′′(h)− f ′(h)2

) |∇h|2

f(h)2
−
(
f(h)f ′′(h)− f ′(h)2

f(h)2

)
|∇h|2

}
= 0.

Here, we use that

|N +Θ∂t|2M = ⟨N,N⟩+ 2Θ2 +Θ2⟨∂t, ∂t⟩ = Θ2 − 1 = |∇h|2.

Then, also using the fact that the second soliton function ζ̃c is nonnegative and −H
c
> 0,

from (2.2.8) we have that

∆−cu

(
−H

c

)
= {ζ̃c +RicM(N∗, N∗)− (n− 1)(ln f)′′(h)|∇h|2}

(
−H

c

)
≥ 0. (2.2.10)

On the other hand, since

∆−cu

(
−H

c

)
= e−cudivΣ

(
ecu∇

(
−H

c

))
,

we get that divΣX = divΣ(e
cu∇(−H

c
)) ≥ 0. Then, by Lemma 2.2.1, divΣX = 0 in

Σn ∖ ρ−1(0). Therefore, ∆−cu(−H
c
) = 0 in Σn ∖ ρ−1(0). Thus, from (2.2.10) we have

29



that

ζ̃c = 0 and RicM(N∗, N∗)− (n− 1)(ln f)′′(h)|∇h|2 = 0,

in Σn ∖ ρ−1(0). But, taking into account that the equality in (2.2.9) occurs only in

isolated points of I, we obtain that |∇h| = 0 on Σn and, consequently, h is constant

on Σn ∖ ρ−1(0). Since x(Σn) is asymptotic to slice {t0} ×Mn at infinity, we conclude

that h = t0, which implies ρ ≡ 0. Hence, we arrived at a contradiction.
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Chapter 3

Higher order mean curvatures of

spacelike mean curvature flow solitons

Motivated by [34] (see also [24, 45, 53, 70]), we devote this chapter to study the

r-mean curvature of a spacelike mean curvature flow soliton in a GRW spacetime.

Let x : Σn ↬ −I ×f Mn+p be a spacelike submanifold and let {E1, . . . , En} be

a local orthonormal frame on Σn. For r ∈ {1, . . . , n}, denoting αij := A(Ei, Ej), the

r-mean curvature of Σn is defined by

Hr =

 n

r

−1

1

r!

∑
i1, . . . , ir

j1, . . . , jr

δi1,...,irj1,...,jr
⟨αi1j1 , αi2j2⟩ . . . ⟨αir−1jr−1 , αirjr⟩,

for r even, and

H⃗r =

 n

r

−1

1

r!

∑
i1, . . . , ir

j1, . . . , jr

δi1,...,irj1,...,jr
⟨αi1j1 , αi2j2⟩ . . . ⟨αir−2jr−2 , αir−1jr−1⟩αirjr ,

for r odd, where

δi1,...,irj1,...,jr
=

 0, if ik = il or jk = jl, for some k ̸= l, or if {i1, . . . , ir} ≠ {j1, . . . , jr} as sets;

sign of the permutation (i1, . . . , ir) → (j1, . . . , jr), otherwise.

We also define H0 = 1.
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Now, let {E1, . . . , En} the dual coframe of {E1, . . . , En}. The r-th Newton trans-

formation Tr, r ∈ {1, . . . , n}, is the (0, 2)-tensor given by

Tr =
∑
i,j

(Tr)ijE
i ⊗ Ej,

where

(Tr)ij =
1

r!

∑
i1, . . . , ir

j1, . . . , jr

δi,i1,...,irj,j1,...,jr
⟨αi1j1 , αi2j2⟩ . . . ⟨αir−1jr−1 , αirjr⟩,

for r even, and

(Tr)ij =
1

r!

∑
i1, . . . , ir

j1, . . . , jr

δi,i1,...,irj,j1,...,jr
⟨αi1j1 , αi2j2⟩ . . . ⟨αir−2jr−2 , αir−1jr−1⟩αirjr ,

for r odd. By convention, T0 = ⟨·, ·⟩.

Associated to each globally defined r-th Newton tensor Tr : X(Σ) → X(Σ) with

0 ≤ r ≤ n even, we consider the second-order differential operator Lr : C∞(Σ) →

C∞(Σ) given by

Lru := ⟨∇2u, Tr⟩ = div(Tr(∇u))− (divTr)(∇u).

We observe that Lr is elliptic if, and only if, Tr is positive definite. In particular, L0 is

just the Laplace-Beltrami operator ∆.

The proof of the next auxiliary lemma can be, for instance, found in [24, Lemma

3.3].

Lemma 3.0.1 If 0 ≤ r ≤ n is even, we get that

(i) tr(Tr) = k(r)Hr;

(ii)
∑

ij Tr(Ei, Ej)A(Ei, Ej) = k(r)H⃗r+1, where k(r) := (n− r)

 n

r

.

Now, we can state and proof our next result.

32



Theorem 3.0.1 Let −I ×f M
n+p be a GRW spacetime and let x : Σn ↬ −I ×f M

n+p

be a compact spacelike mean curvature flow soliton with respect to K = f(t)∂t and

with soliton constant c ̸= 0. Suppose that r ∈ {1, . . . , n} is even and the r-th Newton

transformation Tr is positive definite. If c > 0, then

min
Σ

〈
H⃗r+1

Hr

, H⃗

〉
≤ −cnf ′(h∗) and max

Σ

〈
H⃗r+1

Hr

, H⃗

〉
≥ −cnf ′(h∗),

where h∗ and h∗ are, respectively, the minimum and maximum of the height function

h on Σn. Moreover, if c < 0, then

min
Σ

〈
H⃗r+1

Hr

, H⃗

〉
≤ −cnf ′(h∗) and max

Σ

〈
H⃗r+1

Hr

, H⃗

〉
≥ −cnf ′(h∗).

Proof. Remember that Lemma 1.2.1 gives

⟨AH⃗X, Y ⟩+ c∇2u(X, Y ) = −cf ′(h)⟨X, Y ⟩.

Then, using this and considering a local orthonormal frame {E1, . . . , En} on Σn, we

get ∑
ij

⟨(Tr)ijαij, H⃗⟩+ cLru = −cf ′(h)
∑
ij

(Tr)ij⟨Ei, Ej⟩.

Therefore, from Lemma 3.0.1 we have that

k(r)⟨H⃗r+1, H⃗⟩+ cLru = −ncf ′(h)k(r)Hr.

Thus,

cLru = −ncf ′(h)k(r)Hr − k(r)⟨H⃗r+1, H⃗⟩. (3.0.1)

Let us consider c > 0 and let p0 be a point of minimum of the height function h. Since

g′ = f > 0, that is, g is strictly increasing, we have that h(p0) = h∗ is also a minimum

of the function u = g(h). Since Tr is positive definite, this implies that Lr is elliptic

and, hence, Lru(p0) ≥ 0. Then, from (3.0.1) we obtain

min
Σ

〈
H⃗r+1

Hr

, H⃗

〉
≤

〈
H⃗r+1

Hr

, H⃗

〉
(p0) = −ncf ′(h∗)−

cLru(p0)

k(r)Hr

≤ −ncf ′(h∗).

Analogously, taking a point of maximum of h, we are able to conclude that

max
Σ

〈
H⃗r+1

Hr

, H⃗

〉
≥ −ncf ′(h∗).

The proof of the case c < 0 follows the same steps of the case c > 0.

As a first consequence of Theorem 3.0.1 we obtain the following result.
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Corollary 3.0.1 Let −I ×f M
n+p be a GRW spacetime and let x : Σn ↬ −I ×f M

n+p

be a compact spacelike mean curvature flow soliton with respect to K = f(t)∂t and

with soliton constant c ̸= 0. Assume that f ′′ ≤ 0 on [h∗, h
∗], where h∗ and h∗ are,

respectively, the minimum and maximum of the height function h on Σn. If
〈

H⃗r+1

Hr
, H⃗
〉

is constant, then x(Σn) is contained in a slice {t} ×Mn+p.

Proof. Since f ′′ ≤ 0 on [h∗, h
∗], we have that f ′(h∗) ≤ f ′(h∗). From Theorem 3.0.1,

min
Σ

〈
H⃗r+1

Hr

, H⃗

〉
≤ −cnf ′(h∗) ≤ −cnf ′(h∗) ≤ max

Σ

〈
H⃗r+1

Hr

, H⃗

〉
, when c > 0,

and

min
Σ

〈
H⃗r+1

Hr

, H⃗

〉
≤ −cnf ′(h∗) ≤ −cnf ′(h∗) ≤ max

Σ

〈
H⃗r+1

Hr

, H⃗

〉
, when c < 0.

Using that
〈

H⃗r+1

Hr
, H⃗
〉

is constant, we get

f ′(h∗) = f ′(h∗) = − 1

cn

〈
H⃗r+1

Hr

, H⃗

〉
= constant.

Since f ′ is not increasing on [h∗, h
∗], we have that

f ′(h) = − 1

cn

〈
H⃗r+1

Hr

, H⃗

〉
on [h∗, h

∗].

Thus,

nf ′(h)Hr +
1

c
⟨H⃗r+1, H⃗⟩ = 0 on Σn.

Therefore, from (3.0.1)

Lr(u) = −k(r)

(
nf ′(h)Hr +

1

c
⟨H⃗r+1, H⃗⟩

)
= 0

on the compact manifold Σn, which implies that u is constant and, therefore, h is also

constant on Σn; that is, x(Σn) is contained in a slice {t} ×Mn+p.

Since the parallelism of H⃗ implies that |H⃗|2 is constant, considering r = 0 in

Corollary 3.0.1 we get:

Corollary 3.0.2 Let −I ×f M
n+p be a GRW spacetime and let x : Σn ↬ −I ×f M

n+p

be a compact spacelike mean curvature flow soliton with respect to K = f(t)∂t and

with soliton constant c ̸= 0. Assume that f ′′ ≤ 0 on [h∗, h
∗], where h∗ and h∗ are,

respectively, the minimum and maximum of the height function h on Σn. If the mean

curvature vector H⃗ is parallel, then x(Σn) is contained in a slice {t} ×Mn+p.

34



When p = 0, Theorem 3.0.1 reads as the following rigidity result.

Corollary 3.0.3 Let −I ×f Mn be a GRW spacetime and let x : Σn ↬ −I ×f Mn

be a compact spacelike mean curvature flow soliton with respect to K = f(t)∂t and

with soliton constant c ̸= 0. Assume that f ′′ ≤ 0 on [h∗, h
∗], where h∗ and h∗ are,

respectively, the minimum and maximum of the height function h on Σn. If H2 is

constant, then x(Σn) is contained in a slice {t} ×Mn.
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Chapter 4

Further rigidity and nonexistence

results

We will establish further rigidity and nonexistence results concerning spacelike

mean curvature flow solitons in a GRW spacetime under appropriate constraints on

the length of the mean curvature vector.

This chapter is motivated by the work of Chen and Qiu in [28], Batista and de

Lima in [19], and de Lima, Gomes, Santos, et al in [35].

4.1 The drift Laplacian of the length of the mean cur-

vature vector

Here we are considering the same drift Laplacian defined in (1.2.13). We start

deducing the following suitable formula.

Proposition C Let x : Σn ↬ −I ×f M
n+p be a spacelike mean curvature flow soliton

with respect to K = f(t)∂t and with soliton constant c ̸= 0. Let H⃗ be its mean curvature

vector and suppose that the Riemannian fiber Mn+p has constant sectional curvature

k. Then,

1

2
∆−cu|H⃗|2 = cf ′|H⃗|2 + ⟨AH⃗ , AH⃗⟩ − ⟨(∇̄(·)H⃗)⊥, (∇̄(·)H⃗)⊥⟩

+ (n− 1)

(
k

f 2
− 1

f 2
(f ′′f − f ′2)

)
|H⃗|2

(
−1 +

|H⃗|2

c2f 2

)
,
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where |H⃗|2 := −⟨H⃗, H⃗⟩.

Proof. From Lemma 1.2.1 we have that ∇|H⃗|2 = −2cAH⃗(∇u) = 2cAH⃗(K⊤). Then,

taking a local geodesic frame {E1, . . . , En} in Σn, we have

1

2
⟨∇Ei

∇|H⃗|2, Ej⟩ =
1

2
Ei⟨∇|H⃗|2, Ej⟩ −

1

2
⟨∇|H⃗|2,∇Ei

Ej⟩

= cEi⟨AH⃗(K
⊤), Ej⟩

= cEi(AH⃗(K
⊤, Ej))

= c[(∇Ei
AH⃗)(K

⊤, Ej) + AH⃗(∇Ei
(K⊤), Ej) + AH⃗(K

⊤,∇Ei
Ej)]

= c(∇Ei
AH⃗)(K

⊤, Ej) + cAH⃗(∇Ei
(K⊤), Ej).

We note that (1.1.3) and (1.2.1) imply

⟨∇̄Ei
H⃗, A(K⊤, Ej)⟩ = c⟨∇̄Ei

(K −K⊤), A(K⊤, Ej)⟩

= c⟨∇̄Ei
K, A(K⊤, Ej)⟩ − c⟨∇̄Ei

K⊤, A(K⊤, Ej)⟩

= cf ′⟨Ei, A(K⊤, Ej)⟩ − c⟨∇̄Ei
K⊤, A(K⊤, Ej)⟩

= −c⟨(∇̄Ei
K⊤)⊥, A(K⊤, Ej)⟩

= −c⟨A(K⊤, Ei), A(K⊤, Ej)⟩.

Here we are also denoting by Ei the extension of the field Ei to −I ×f M
n+p.

We also observe that

(∇Ei
AH⃗)(K

⊤, Ej) = Ei⟨A(K⊤, Ej), H⃗⟩ − AH⃗(∇Ei
K⊤, Ej)− AH⃗(K

⊤,∇Ei
Ej)

= ⟨∇̄Ei
A(K⊤, Ej), H⃗⟩+ ⟨A(K⊤, Ej), ∇̄Ei

H⃗⟩ − ⟨A(∇Ei
K⊤, Ej), H⃗⟩

− ⟨A(K⊤,∇Ei
Ej), H⃗⟩

= ⟨(∇̄Ei
A)(K⊤, Ej), H⃗⟩+ ⟨A(K⊤, Ej), ∇̄Ei

H⃗⟩.

Thus, using Codazzi’s equation we get

(∇Ei
AH⃗)(K

⊤, Ej)− (∇K⊤AH⃗)(Ei, Ej) = ⟨(∇̄Ei
A)(K⊤, Ej)− (∇̄K⊤A)(Ei, Ej), H⃗⟩

+ ⟨A(K⊤, Ej), ∇̄Ei
H⃗⟩ − ⟨A(Ei, Ej), ∇̄K⊤H⃗⟩

= ⟨R̄(K⊤, Ei)Ej, H⃗⟩+ ⟨A(K⊤, Ej), ∇̄Ei
H⃗⟩

− ⟨A(Ei, Ej), ∇̄K⊤H⃗⟩.

37



Therefore,

1

2
⟨∇Ei

∇|H⃗|2, Ej⟩ = c(∇Ei
AH⃗)(K

⊤, Ej) + cAH⃗(∇Ei
K⊤, Ej)

= c(∇K⊤AH⃗)(Ei, Ej) + c⟨R̄(K⊤, Ei)Ej, H⃗⟩+ c⟨A(K⊤, Ej), ∇̄Ei
H⃗⟩

− c⟨A(Ei, Ej), ∇̄K⊤H⃗⟩+ cAH⃗(∇Ei
K⊤, Ej)

= c(∇K⊤AH⃗)(Ei, Ej) + c⟨R̄(Ei,K⊤)H⃗, Ej⟩

− c2⟨A(K⊤, Ei), A(K⊤, Ej)⟩ − c⟨A(Ei, Ej), ∇̄K⊤H⃗⟩

+ cAH⃗(∇Ei
K⊤, Ej).

Hence, taking traces through the choice of a local geodesic frame {E1, . . . , En} of

Σn, we obtain

1

2
∆|H⃗|2 = 1

2

∑
i

⟨∇Ei
∇|H⃗|2, Ei⟩

= c
∑
i

(∇K⊤AH⃗)(Ei, Ei) + c
∑
i,j

gij⟨R̄(Ei,K⊤)H⃗, Ej⟩

− c2
∑
i,j

⟨A(K⊤, Ei), A(K⊤, Ej)⟩ − c
∑
i

⟨A(Ei, Ei), ∇̄K⊤H⃗⟩

+ c
∑
i,j

gijAH(∇Ei
K⊤, Ej). (4.1.1)

But, we have∑
i

(∇Ej
AH⃗)(Ei, Ei)(p) =

∑
i

(Ej(AH⃗(Ei, Ei)))(p) =
∑
i

(Ej⟨A(Ei, Ei), H⃗⟩)(p)

= Ej(|H⃗|2)(p) = ⟨Ej,∇|H⃗|2⟩(p).

Then, we get

c
∑
i

(∇K⊤AH⃗)(Ei, Ei) = c⟨K⊤,∇|H⃗|2⟩. (4.1.2)

Using once more (1.2.1), we obtain

c
∑
i,j

gij⟨R̄(Ei,K⊤)H⃗, Ej⟩ = c
∑
i,j

gij⟨R̄(Ei,K − H⃗/c)H⃗, Ej⟩ (4.1.3)

= c
∑
i,j

gij⟨R̄(Ei,K)H⃗, Ej⟩ −
∑
i,j

gij⟨R̄(Ei, H⃗)H⃗, Ej⟩.

Furthermore, we have that

−c
∑
i

⟨A(Ei, Ei), ∇̄K⊤H⃗⟩ = c⟨H⃗, ∇̄K⊤H⃗⟩
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=
1

2
c(K⊤)⟨H⃗, H⃗⟩

= −1

2
c(K⊤)(|H⃗|2)

= −1

2
c⟨K⊤,∇|H⃗|2⟩, (4.1.4)

and

c
∑
i,j

gijAH⃗(∇Ei
K⊤, Ej) = c

∑
i,j

gij⟨A(∇Ei
K⊤, Ej), H⃗⟩

= c
∑
i,j

gij⟨AH⃗(∇Ei
K⊤), Ej⟩

= −c
∑
i,j

gij⟨∇̄∇Ei
K⊤H⃗, Ej⟩

= −c
∑
i,j,l

gij⟨∇̄⟨∇Ei
K⊤,El⟩El

H⃗, Ej⟩

= −c
∑
i,j,l

gij⟨∇Ei
K⊤, El⟩⟨∇̄El

H⃗, Ej⟩

= c
∑
i,j,l

gij(AH⃗)
l
j⟨∇Ei

K⊤, El⟩. (4.1.5)

Thus, using (4.1.2), (4.1.3), (4.1.4) and (4.1.5) in (4.1.1), we get

1

2
∆|H⃗|2 = c⟨K⊤,∇|H⃗|2⟩+ c

∑
i,j

gij⟨R̄(Ei,K)H⃗, Ej⟩ −
∑
i,j

gij⟨R̄(Ei, H⃗)H⃗, Ej⟩

− c2⟨A(K⊤, ·), A(K⊤, ·)⟩ − 1

2
c⟨K⊤,∇|H⃗|2⟩+ c

∑
i,j,l

gij(AH⃗)
l
j⟨∇Ei

K⊤, El⟩

=
c

2
⟨K⊤,∇|H⃗|2⟩+ c

∑
i,j

gij⟨R̄(Ei,K)H⃗, Ej⟩+
∑
i,j

gij⟨R̄(H⃗, Ei)H⃗, Ej⟩

− c2⟨A(K⊤, ·), A(K⊤, ·)⟩+ c
∑
i,j,l

gij(AH⃗)
l
j⟨∇̄Ei

K, El⟩

−
∑
i,j,l

gij(AH⃗)
l
j⟨∇̄Ei

H⃗, El⟩

=
c

2
⟨K⊤,∇|H⃗|2⟩+ c

∑
i,j

gij⟨R̄(Ei,K)H⃗, Ej⟩+ trR̄(H⃗, ·)H⃗

− c2⟨A(K⊤, ·), A(K⊤, ·)⟩+ cf ′
∑
i,j,l

gij(AH⃗)
l
jgil +

∑
i,j,l

gij(AH⃗)
l
j⟨∇̄Ei

El, H⃗⟩.

(4.1.6)

Now, we observe that

cf ′
∑
i,j,l

gij(AH⃗)
l
jgil = cf ′

∑
l

⟨A(El, El), H⃗⟩ = cf ′|H⃗|2. (4.1.7)
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We also have that∑
i,j,l

gij(AH⃗)
l
j⟨∇̄Ei

El, H⃗⟩ =
∑
i,j,l

gij(AH⃗)
l
j⟨(∇̄Ei

El)
⊥, H⃗⟩

=
∑
i,j,l

gij(AH⃗)
l
j⟨A(Ei, El), H⃗⟩

=
∑
i,j,l

gij(AH⃗)
l
j(AH⃗)

l
i = ⟨AH⃗ , AH⃗⟩. (4.1.8)

Moreover, from (1.1.3) we get

0 = c(f ′U)⊥ = c(∇̄UK)⊥ = c(∇̄UK⊤)⊥ + c(∇̄UK⊥)⊥ = cA(K⊤, U) + (∇̄UH⃗)⊥.

Consequently,

c2⟨A(K⊤, ·), A(K⊤, ·)⟩ = ⟨(∇̄(·)H⃗)⊥, (∇̄(·)H⃗)⊥⟩. (4.1.9)

Going back to (4.1.6) using (4.1.7), (4.1.8) and (4.1.9), we reach at

1

2
∆|H⃗|2 = c

2
⟨K⊤,∇|H⃗|2⟩+ c

∑
i,j

gij⟨R̄(Ei,K)H⃗, Ej⟩+ trR̄(H⃗, ·)H⃗

− ⟨(∇̄(·)H⃗)⊥, (∇̄(·)H⃗)⊥⟩+ cf ′|H⃗|2 + ⟨AH⃗ , AH⃗⟩.

Then, we conclude that

1

2
∆−cu|H⃗|2 = 1

2
∆|H⃗|2 − c

2
⟨∇|H⃗|2,K⊤⟩

= cf ′|H⃗|2 − ⟨(∇̄(·)H⃗)⊥, (∇̄(·)H⃗)⊥⟩+ ⟨AH⃗ , AH⃗⟩

+ c
∑
i,j

gij⟨R̄(Ei,K)H⃗, Ej⟩+ trR̄(H⃗, ·)H⃗.

On the other hand, using again (1.1.3), we obtain

R̄(Ej, H⃗)K = −∇̄Ej
∇̄H⃗K + ∇̄H⃗∇̄Ej

K + ∇̄[Ej ,H⃗]K

= −∇̄Ej
f ′H⃗ + ∇̄H⃗f

′Ej + f ′[Ej, H⃗]

= −f ′∇̄Ej
H⃗ − Ej(f

′)H⃗ + f ′∇̄H⃗Ej + H⃗(f ′)Ej

+ f ′∇̄Ej
H⃗ − f ′∇̄H⃗Ej

= −⟨Ej, ∇̄f ′⟩H⃗ + ⟨H⃗, ∇̄f ′⟩Ej.

Consequently,

c
∑
i,j

gij⟨R̄(Ei,K)H⃗, Ej⟩ = c
∑
i,j

gij⟨R̄(Ej, H⃗)K, Ei⟩
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= c
∑
i,j

gij⟨−⟨Ej, ∇̄f ′⟩H⃗ + ⟨H⃗, ∇̄f ′⟩Ej, Ei⟩

= c
∑
i,j

gij⟨H⃗, ∇̄f ′⟩gij

= nc⟨H⃗, ∇̄f ′⟩.

Hence, we deduce that

1

2
∆−cu|H⃗|2 = cf ′|H⃗|2 + ⟨AH⃗ , AH⃗⟩ − ⟨(∇̄(·)H⃗)⊥, (∇̄(·)H⃗)⊥⟩+ nc⟨∇̄f ′, H⃗⟩

+ trR̄(H⃗, ·)H⃗. (4.1.10)

We observe that

∇̄f ′ = −f ′′(t)∂t = −f ′′(t)

f(t)
K.

Thus, from (1.2.1) we get

⟨H⃗, ∂t⟩ =
〈
H⃗,

K⊥

f

〉
=

1

cf
⟨H⃗, H⃗⟩ = − 1

cf
|H⃗|2. (4.1.11)

So,

c⟨∇̄f ′, H⃗⟩ = −c
f ′′

f
⟨K, H⃗⟩ = −c

f ′′

f
⟨K⊥, H⃗⟩ = f ′′

f
|H⃗|2. (4.1.12)

Furthermore, since ∂t = ∂⊤
t + ∂⊥

t , from (1.2.1) we also have equation

∂⊥
t =

1

f
K⊥ =

1

cf
H⃗.

Then,

|∂⊤
t |2 = −1 + |∂⊥

t |2 = −1 +
|H⃗|2

c2f 2
≥ 0. (4.1.13)

Now, using the properties of the curvature tensor, we have

R̄(H⃗, Ei)H⃗ = R̄(H⃗∗, E∗
i )H⃗

∗ − ⟨H⃗, ∂t⟩R̄(H⃗∗, E∗
i )∂t − ⟨Ei, ∂t⟩R̄(H⃗∗, ∂t)H⃗

∗

+ ⟨Ei, ∂t⟩⟨H⃗, ∂t⟩R̄(H⃗∗, ∂t)∂t − ⟨H⃗, ∂t⟩R̄(∂t, E
∗
i )H⃗

∗ + ⟨H⃗, ∂t⟩2R̄(∂t, E
∗
i )∂t

+ ⟨H⃗, ∂t⟩⟨Ei, ∂t⟩R̄(∂t, ∂t)H⃗
∗ − ⟨H⃗, ∂t⟩2⟨Ei, ∂t⟩R̄(∂t, ∂t)∂t, (4.1.14)

where H⃗∗ = (πM)∗(H⃗) and E∗
i = (πM)∗(Ei). But, [66, Proposition 7.42] gives

(i) R̄(H⃗∗, E∗
i )∂t = 0;
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(ii) R̄(H⃗∗, ∂t)H⃗
∗ = −R̄(∂t, H⃗

∗)H⃗∗ = ⟨H⃗∗, H⃗∗⟩f ′′

f
∂t = (−|H⃗|2 + ⟨H⃗, ∂t⟩2)f

′′

f
∂t;

(iii) R̄(H⃗∗, ∂t)∂t =
f ′′

f
H⃗∗ = f ′′

f
(H⃗ + ⟨H⃗, ∂t⟩∂t);

(iv) R̄(∂t, E
∗
i )H⃗

∗ = −⟨E∗
i , H⃗

∗⟩f
′′

f
∂t

= −(⟨H⃗, Ei⟩+ ⟨H⃗, ∂t⟩⟨Ei, ∂t⟩)
f ′′

f
∂t = −⟨H⃗, ∂t⟩⟨Ei, ∂t⟩

f ′′

f
∂t;

(v) R̄(∂t, E
∗
i )∂t = −R̄(E∗

i , ∂t)∂t = −f ′′

f
E∗

i = −f ′′

f
(Ei + ⟨Ei, ∂t⟩∂t).

Hence, we can use these items in (4.1.14) to get

R̄(H⃗, Ei)H⃗ = R̄(H⃗∗, E∗
i )H⃗

∗ − ⟨Ei, ∂t⟩(−|H⃗|2 + ⟨H⃗, ∂t⟩2)
f ′′

f
∂t

+ ⟨Ei, ∂t⟩⟨H⃗, ∂t⟩
f ′′

f
(H⃗ + ⟨H⃗, ∂t⟩∂t) + ⟨H⃗, ∂t⟩2⟨Ei, ∂t⟩

f ′′

f
∂t

− f ′′

f
⟨H⃗, ∂t⟩2(Ei + ⟨∂i, ∂t⟩∂t).

Thus, we have

⟨R̄(H⃗, Ei)H⃗, Ei⟩ = ⟨R̄(H⃗∗, E∗
i )H⃗

∗, E∗
i ⟩ − ⟨Ei, ∂t⟩⟨R̄(H⃗∗, E∗

i )H⃗
∗, ∂t⟩+ ⟨Ei, ∂t⟩2|H⃗|2f

′′

f

− ⟨Ei, ∂t⟩2⟨H⃗, ∂t⟩2
f ′′

f
+ ⟨Ei, ∂t⟩⟨H⃗, ∂t⟩⟨H⃗, Ei⟩

f ′′

f

+ ⟨Ei, ∂t⟩2⟨H⃗, ∂t⟩2
f ′′

f
+ ⟨H⃗, ∂t⟩2⟨Ei, ∂t⟩2

f ′′

f
− ⟨H⃗, ∂t⟩2|Ei|2

f ′′

f

− ⟨Ei, ∂t⟩2⟨H⃗, ∂t⟩2
f ′′

f

= ⟨R̄(H⃗∗, E∗
i )H⃗

∗, E∗
i ⟩+ ⟨Ei, ∂t⟩2|H⃗|2f

′′

f
− ⟨H⃗, ∂t⟩2|Ei|2

f ′′

f
. (4.1.15)

Moreover, we observe that

R̄(H⃗∗, E∗
i )H⃗

∗ = RM(H⃗∗, E∗
i )H⃗

∗ − ⟨∇f,∇f⟩
f 2

{⟨H⃗∗, H⃗∗⟩E∗
i − ⟨E∗

i , H⃗
∗⟩H⃗∗}

= RM(H⃗∗, E∗
i )H⃗

∗ −
(
f ′

f

)2

|H⃗|2Ei −
(
f ′

f

)2

|H⃗|2⟨Ei, ∂t⟩∂t

+

(
f ′

f

)2

⟨H⃗, ∂t⟩2Ei −
(
f ′

f

)2

⟨H⃗, ∂t⟩⟨Ei, ∂t⟩H⃗.

Consequently,

⟨R̄(H⃗∗, E∗
i )H⃗

∗, E∗
i ⟩ = ⟨RM(H⃗∗, E∗

i )H⃗
∗, E∗

i ⟩ −
(
f ′

f

)2

|H⃗|2|Ei|2
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+

(
f ′

f

)2

⟨H⃗, ∂t⟩2|Ei|2 −
(
f ′

f

)2

|H⃗|2⟨Ei, ∂t⟩2.

Returning to (4.1.15), we obtain

⟨R̄(H⃗, Ei)H⃗, Ei⟩ = ⟨RM(H⃗∗, E∗
i )H⃗

∗, E∗
i ⟩ −

(
f ′

f

)2

|H⃗|2|Ei|2 +
(
f ′

f

)2

⟨H⃗, ∂t⟩2|Ei|2

−
(
f ′

f

)2

|H⃗|2⟨Ei, ∂
⊤
t ⟩2 + ⟨Ei, ∂

⊤
t ⟩2|H⃗|2f

′′

f
− ⟨H⃗, ∂t⟩2|Ei|2

f ′′

f
.

Thus,∑
i

⟨R̄(H⃗, Ei)H⃗, Ei⟩ =
∑
i

⟨RM(H⃗∗, E∗
i )H⃗

∗, E∗
i ⟩ − n

(
f ′

f

)2

|H⃗|2 + n

(
f ′

f

)2

⟨H⃗, ∂t⟩2

−
(
f ′

f

)2

|H⃗|2|∂⊤
t |2 + |∂⊤

t |2|H⃗|2f
′′

f
− n⟨H⃗, ∂t⟩2

f ′′

f

=
∑
i

⟨RM(H⃗∗, E∗
i )H⃗

∗, E∗
i ⟩ − n

(
f ′

f

)2

|H⃗|2

− 1

f 2
(f ′′f − f ′2)(n⟨H⃗, ∂t⟩2 − |H⃗|2|∂⊤

t |2).

We also note that

⟨RM(H⃗∗, E∗
i )H⃗

∗, E∗
i ⟩ =

1

f 2
(⟨H⃗∗, H⃗∗⟩M⟨E∗

i , E
∗
i ⟩M − ⟨H⃗∗, E∗

i ⟩2M)k

=
1

f 2
(−|H⃗|2|Ei|2 − |H⃗|2⟨Ei, ∂t⟩2 + ⟨H⃗, ∂t⟩2|Ei|2)k.

Thus, ∑
i

⟨RM(H⃗∗, E∗
i )H⃗

∗, E∗
i ⟩ =

1

f 2
(−n|H⃗|2 − |H⃗|2|∂⊤

t |2 + n⟨H⃗, ∂t⟩2)k.

Hence,

trR̄(H⃗, ·)H⃗ =
∑
i

⟨R̄(H⃗, Ei)H⃗, Ei⟩

=
1

f 2
(−n|H⃗|2 − |H⃗|2|∂⊤

t |2 + n⟨H⃗, ∂t⟩2)k − n

(
f ′

f

)2

|H⃗|2

− 1

f 2
(f ′′f − f ′2)(n⟨H⃗, ∂t⟩2 − |H⃗|2|∂⊤

t |2)

= −n

(
k

f 2
+

(
f ′

f

)2
)
|H⃗|2 (4.1.16)

+

(
k

f 2
− 1

f 2
(f ′′f − f ′2)

)
(n⟨H⃗, ∂t⟩2 − |H⃗|2|∂⊤

t |2).
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Using (4.1.11), (4.1.12), (4.1.13) and (4.1.16), the two last terms in (4.1.10) can

be easily written in the following form

nc⟨∇̄f ′, H⃗⟩+ trR̄(H⃗, ·)H⃗ = n
f ′′

f
|H⃗|2 − n

(
k

f 2
+

(
f ′

f

)2
)
|H⃗|2

+

(
k

f 2
− 1

f 2
(f ′′f − f ′2)

)
(n⟨H⃗, ∂t⟩2 − |H⃗|2|∂⊤

t |2)

= −n

(
k

f 2
− 1

f 2
(f ′′f − f ′2)

)
|H⃗|2

+

(
k

f 2
− 1

f 2
(f ′′f − f ′2)

)(
n

1

c2f 2
|H⃗|4 +

(
1− |H⃗|2

c2f 2

)
|H⃗|2

)

= −(n− 1)

(
k

f 2
− 1

f 2
(f ′′f − f ′2)

)
|H⃗|2

+

(
k

f 2
− 1

f 2
(f ′′f − f ′2)

)(
(n− 1)

|H⃗|4

c2f 2

)

= (n− 1)

(
k

f 2
− 1

f 2
(f ′′f − f ′2)

)
|H⃗|2

(
−1 +

|H⃗|2

c2f 2

)
.

Therefore, we conclude that

1

2
∆−cu|H⃗|2 = cf ′|H⃗|2 + ⟨AH⃗ , AH⃗⟩ − ⟨(∇̄(·)H⃗)⊥, (∇̄(·)H⃗)⊥⟩

+ (n− 1)

(
k

f 2
− 1

f 2
(f ′′f − f ′2)

)
|H⃗|2

(
−1 +

|H⃗|2

c2f 2

)
.

When the ambient spacetime is a Lorentzian product space, Proposition C reads

as follows.

Corollary 4.1.1 Let x : Σn ↬ −I × Mn+p be a spacelike translation soliton with

respect to ∂t and with soliton constant c ̸= 0. Let H⃗ be its mean curvature vector and

suppose that the Riemannian fiber Mn+p has constant sectional curvature k. Then,

1

2
∆−cu|H⃗|2 = ⟨AH⃗ , AH⃗⟩ − ⟨(∇̄(·)H⃗)⊥, (∇̄(·)H⃗)⊥⟩+ (n− 1)k|H⃗|2

(
−1 +

|H⃗|2

c2

)
.

When a GRW spacetime −I ×f M
n+p has constant sectional curvature k̄, it fol-

lows from [66, Corollary 7.43] that the Riemannian fiber Mn+p has constant sectional

curvature k and the warping function f is a solution of the following differential equa-

tions

f ′′(h)

f(h)
=

k

f 2(h)
+

f ′2(h)

f 2(h)
= k̄. (4.1.17)
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In this case, we obtain the following consequence of Proposition C.

Corollary 4.1.2 Suppose that −I×fM
n+p is a GRW spacetime with constant sectional

curvature k̄ and let x : Σn ↬ −I ×f M
n+p be a spacelike mean curvature flow soliton

with respect to K = f(t)∂t and with soliton constant c ∈ R. Let H⃗ be its mean curvature

vector. Then,

1

2
∆−cu|H⃗|2 = cf ′|H⃗|2 + ⟨AH⃗ , AH⃗⟩ − ⟨(∇̄(·)H⃗)⊥, (∇̄(·)H⃗)⊥⟩.

4.2 Rigidity results under the strong null convergence

condition

As in [59, 77], in our next results we will assume that the second fundamental

form A of x : Σn ↬ −I ×f Mn+p is locally timelike, which means that A(U, V ) is

locally timelike, for all vector fields U, V ∈ X(Σ). We note that this hypothesis is

automatically satisfied in the case of codimension one.

Thus, considering the strong null convergence condition (SNCC)

KM ≥ sup
I
(ff ′′ − f ′2), (4.2.1)

which was introduced by Alías and Colares in [7], where KM stands for the sectional

curvature of the Riemannian fiber Mn+p, from Proposition C we get the following

rigidity result.

Theorem 4.2.1 Let −I ×f M
n+p be a GRW spacetime whose Riemannian fiber Mn+p

has constant sectional curvature k and obeying the SNCC (4.2.1), and let x : Σn ↬

−I ×f Mn+p be a compact spacelike mean curvature flow soliton with respect to K =

f(t)∂t and with soliton constant c ∈ R, whose second fundamental form A is locally

timelike. If cf ′|H⃗|2 + ⟨AH⃗ , AH⃗⟩ ≥ 0 on Σn, then −I ×f M
n+p has constant sectional

curvature, the mean curvature vector H⃗ is parallel and cf ′|H⃗|2 + ⟨AH⃗ , AH⃗⟩ = 0 on Σn.

Furthermore, if f ′′ ≤ 0 on [h∗, h
∗], where h∗ and h∗ are the minimum and maximum

of the height function h on Σn, then x(Σn) is contained in a slice {t} ×Mn+p.

Proof. If the second fundamental form A is locally timelike, we have that

−⟨(∇̄(·)H⃗)⊥, (∇̄(·)H⃗)⊥⟩ = −c2⟨A(K⊤, ·), A(K⊤, ·)⟩ ≥ 0.
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Then, from Proposition C, jointly with (4.2.1), cf ′|H⃗|2 + ⟨AH⃗ , AH⃗⟩ ≥ 0 and using that

the second fundamental form A is locally timelike, we have that

1

2
∆−cu|H⃗|2 = cf ′|H⃗|2 + ⟨AH⃗ , AH⃗⟩ − ⟨(∇̄(·)H⃗)⊥, (∇̄(·)H⃗)⊥⟩

+ (n− 1)

(
k

f 2
− 1

f 2
(f ′′f − f ′2)

)
|H⃗|2

(
−1 +

|H⃗|2

c2f 2

)
≥ 0.

Since x(Σn) is compact, we get that |H⃗|2 is constant. Then, ∆−cu|H⃗|2 = 0 and we

conclude that cf ′|H⃗|2 + ⟨AH⃗ , AH⃗⟩ = 0, −⟨(∇̄(·)H⃗)⊥, (∇̄(·)H⃗)⊥⟩ = 0 and k
f2 − 1

f2 (f
′′f −

f ′2) = 0. Then,

k

f 2
+

(
f ′

f

)2

=
f ′′

f
.

Therefore, from (4.1.17),−I ×f M
n+p has constant sectional curvature, and the mean

curvature vector H⃗ is parallel.

Furthermore, since |H⃗|2 is constant, if f ′′ ≤ 0, from Corollary 3.0.2 we conclude

that x(Σn) is contained in a slice {t} ×Mn+p.

Given an oriented Riemannian manifold Σn and q > 0, we can consider the

following space of integrable functions

Lq
−cu(Σ

n) = {φ ∈ C∞(Σn) : |φ|q ∈ L1
−cu(Σ

n)}.

As an application of [78, Theorem 3], we obtain the following criterion of integrability.

Lemma 4.2.1 Let Σn be an n-dimensional complete oriented Riemannian manifold.

If φ ∈ C∞(Σn) is a nonnegative (−cu)-subharmonic function on Σn and φ ∈ Lq
−cu(Σ

n),

for some q > 1, then φ is constant.

Next, we apply Lemma 4.2.1 to prove the following result.

Theorem 4.2.2 Let −I ×f M
n+p be a GRW spacetime whose Riemannian fiber Mn+p

has constant sectional curvature k and obeying the SNCC (4.2.1), and let x : Σn ↬

−I ×f M
n+p be a complete spacelike mean curvature flow soliton with respect to K =

f(t)∂t and with soliton constant c ∈ R, whose second fundamental form A is locally

timelike. If cf ′ ≥ 0 on Σn and |H⃗|2 ∈ Lq
−cu(Σ

n), for some q > 1, then −I×f M
n+p has

constant sectional curvature, the mean curvature vector H⃗ is parallel, ⟨AH⃗ , AH⃗⟩ = 0
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and cf ′ = 0 on Σ. Furthermore, Σn is either contained in a slice {t} × Mn+p or

isometric to a direct product V n−1×J of an (n−1)-dimensional complete Riemannian

manifold V n−1 with a straight line J .

Proof. We can reason as in the proof of Theorem 4.2.1 to get that ∆−cu|H⃗|2 ≥ 0.

Since |H⃗|2 ∈ Lq
−cu(Σ

n), from Lemma 4.2.1 we have that |H⃗|2 is constant. Following the

same ideas of the proof of Theorem 4.2.1 we also obtain that −I×f M
n+p has constant

sectional curvature, the mean curvature vector H⃗ is parallel, ⟨AH⃗ , AH⃗⟩ = 0 and cf ′ = 0

on Σn. Moreover, from equation (1.2.17) we conclude that ∇2u = 0. Consequently,

assuming that u is not constant on Σn, [76, Theorem 2] guarantees that Σn must be

isometric to a direct product V n−1×J of an (n−1)-dimensional complete Riemannian

manifold V n−1 with a straight line J .

4.3 Nonexistence results via Omori-Yau’s maximum

principle

First, we establish a suitable version of the Omori-Yau’s maximum principle for

the drift Laplacian which can be regarded as a sort of extension of [19, Theorem 3.2]

and [35, Proposition 3.15].

Proposition D Let −I ×f M
n+p be a GRW spacetime obeying the SNCC (4.2.1) and

let x : Σn ↬ −I ×f Mn+p be a complete spacelike mean curvature flow soliton with

respect to K = f(t)∂t and with soliton constant c ̸= 0, whose second fundamental form

A is locally timelike. If the function (n−1)f ′′(h)+cf(h)f ′(h)
f(h)

is bounded from below on Σn,

then the Omori-Yau’s maximum principle holds for the drift Laplacian ∆−cu, that is,

for φ ∈ C2(Σn) with supΣ φ < +∞, there exists a sequence of points {pk}k≥1 in Σn

such that

lim
k

φ(pk) = sup
k

φ, lim
k

|∇φ(pk)| = 0 and lim
k

∆−cuφ(pk) ≤ 0.

Proof. From Gauss’ equation, we have that

⟨R(X, Y )Z,W ⟩ = ⟨R̄(X, Y )Z,W ⟩+ ⟨A(X,Z), A(Y,W )⟩ − ⟨A(X,W ), A(Y, Z)⟩,

(4.3.1)
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for every tangent vector fields X, Y, Z,W ∈ X(Σn), where R and R̄ denote the curvature

tensor of Σn and −I ×f M
n+p respectively.

Let us consider X ∈ X(Σn) and take a (local) orthonormal frame {Ei}ni=1 in Σn.

It follows from (4.3.1) that the Ricci curvature Ric of Σn satisfies

Ric(X,X) =
n∑

i=1

⟨R̄(X,Ei)X,Ei⟩ −
n∑

i=1

⟨A(X,Ei), A(X,Ei)⟩ − ⟨A(X,X), H⃗⟩.

Since the second fundamental form A is locally timelike, we have that

⟨A(X,Ei), A(X,Ei)⟩ ≤ 0,

for every i = 1, . . . , n. Then,

Ric(X,X) ≥
n∑

i=1

⟨R̄(X,Ei)X,Ei⟩ − ⟨AH⃗X,X⟩. (4.3.2)

Hence, from Lemma 1.2.1 and (4.3.2) we get

Ric(X,X)− c∇2u(X,X) ≥
n∑

i=1

⟨R̄(X,Ei)X,Ei⟩+ cf ′(h)⟨X,X⟩. (4.3.3)

To estimate the first summand on the right-hand side of inequality (4.3.3), let us

consider X∗ = (πM)∗(X) and E∗
i = (πM)∗(Ei). Using the properties of the curvature

tensor, similar to what was done in Proposition C, and from (1.2.3) and [66, Proposition

7.42] we have∑
i

⟨R(X,Ei)X,Ei⟩ =
∑
i

⟨RM(X∗, E∗
i )X

∗, E∗
i ⟩+ (n− 1)((ln f)′(h))2|X|2

− (n− 2)(ln f)′′(h)⟨X,∇h⟩2 − (ln f)′′(h)|∇h|2|X|2, (4.3.4)

where RM denotes the curvature tensor of the Riemannian fiber Mn+p. Writing X∗ =

X + ⟨X, ∂t⟩∂t, we can estimate the first summand on the right-hand side of (4.3.4) as

follows∑
i

⟨RM(X∗, E∗
i )X

∗, E∗
i ⟩ = f 2(h)(|X∗|2M |E∗

i |2M − ⟨X∗, E∗
i ⟩2M)KM(X∗, E∗

i )

≥ 1

f 2(h)
((n− 1)|X|2 + |∇h2||X|2

+ (n− 2)⟨X,∇h⟩2)min
i

KM(X∗, E∗
i ). (4.3.5)
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Consequently, from (4.2.1) and (4.3.5) we have that∑
i

⟨RM(X∗, E∗
i )X

∗, E∗
i ⟩ ≥ ((n− 1)|X|2 + |∇h|2|X|2 + (n− 2)⟨X,∇h⟩2)(ln f)′′(h).

(4.3.6)

Substituting (4.3.6) into (4.3.4), we get∑
i

⟨R(X,Ei)X,Ei⟩ ≥ ((n− 1)|X|2 + |∇h|2|X|2 + (n− 2)⟨X,∇h⟩2)(ln f)′′(h)

+ (n− 1)((ln f)′(h))2|X|2 − (n− 2)(ln f)′′(h)⟨X,∇h⟩2

− (ln f)′′(h)|∇h|2|X|2

= (n− 1)
f ′′(h)

f(h)
|X|2. (4.3.7)

Hence, from (4.3.3) and (4.3.7) we obtain

Ric− c∇2u ≥
(
(n− 1)

f ′′(h)

f(h)
+ cf ′(h)

)
⟨ , ⟩.

Therefore, since the right-hand side of the above inequality is bounded from bellow,

we conclude our proof by applying Theorem 1.3.1.

Proposition D allows us to the following nonexistence result that extends Theorem

4.2 in [19] and Theorem 1.2 in [35].

Theorem 4.3.1 Let −I ×f Mn+p be a GRW spacetime obeying the SNCC (4.2.1),

whose Riemannian fiber Mn+p has constant sectional curvature k. There does not exist

complete spacelike mean curvature flow soliton x : Σn ↬ −I ×f M
n+p with respect to

K = f(t)∂t and with soliton constant c ̸= 0, whose second fundamental form A is locally

timelike, and such that cf ′(h) ≥ 0 and the function (n−1)f ′′(h)+cf(h)f ′(h)
f(h)

is bounded from

below.

Proof. Let us suppose for the sake of contradiction the existence of such a spacelike

mean curvature flow soliton. Since we are assuming that cf ′(h) ≥ 0, taking a (local)

orthonormal frame {Ei}ni=1 in Σn, from Proposition C, jointly with (4.2.1) and using

the hypothesis that the second fundamental form A is locally timelike, we obtain

1

2
∆−cu|H⃗|2 ≥ ⟨AH⃗ , AH⃗⟩ =

∑
i,l

⟨A(Ei, El), H⃗⟩2 ≥
∑
i

⟨A(Ei, Ei), H⃗⟩2

≥ 1

n

(∑
i

⟨A(Ei, Ei), H⃗⟩

)2

=
1

n

〈∑
i

A(Ei, Ei), H⃗

〉2

=
1

n
|H⃗|4.
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The third inequality follows from the Cauchy-Schwarz’s inequality. Then, observe that

∆−cu

− 1√
1 + |H⃗|2

 =

− 1√
1 + |H⃗|2

′

∆−cu|H⃗|2 +

− 1√
1 + |H⃗|2

′′

|∇|H⃗|2|2

=
∆−cu|H⃗|2

2(1 + |H⃗2)
3
2

− 3

4

|∇|H⃗|2|2

(1 + |H⃗|2) 5
2

≥ |H⃗|4

n(1 + |H⃗|2) 3
2

− 3

4

|∇|H⃗|2|2

(1 + |H⃗|2) 5
2

. (4.3.8)

Proceeding as in the proof of [28, Theorem 2], dividing both sides of (4.3.8) by√
1 + |H⃗|2 we get

|H⃗|4

n(1 + |H⃗|2)2
≤ 1√

1 + |H⃗|2
∆−cu

− 1√
1 + |H⃗|2

+
3

4

|∇|H⃗|2|2

(1 + |H⃗|2)3
. (4.3.9)

Since the second fundamental form A is locally timelike and (n−1)f ′′(h)+cf(h)f ′(h)
f(h)

is bounded from below, Proposition D enable us to apply the Omori-Yau’s maximum

principle to the function − 1√
1+|H⃗|2

and conclude that for j sufficiently large, there

exists a sequence of points {pj} ⊂ Σn such that

1√
1 + |H⃗|2

(pj) < inf

 1√
1 + |H⃗|2

+
1

j
,

|∇|H⃗|2|2

4(1 + |H⃗|2)3
(pj) <

1

j
,

∆−cu

− 1√
1 + |H⃗|2

 (pj) <
1

j
.

Combining these with (4.3.9), it follows that

|H⃗|4

n(1 + |H⃗|2)2
(pj) <

1

j

inf

 1√
1 + |H⃗|2

+
1

j

+
3

j
.

When j → ∞, 1√
1+|H⃗|2

(pj) goes to its infimum and |H⃗|2(pj) goes to its supremum.

Therefore,
(supΣ |H⃗|2)2

(1 + supΣ |H⃗|2)2
≤ 0.

Then, we have supΣ |H⃗|2 < ∞. In fact, if supΣ |H⃗|2 = ∞, we obtain that

(supΣ |H⃗|2)2

(1 + supΣ |H⃗|2)2
=

1

(1 + 1

supΣ |H⃗|2
)2

= 1,
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which cannot occur. Thus, supΣ |H⃗|2 < ∞ and it follows that |H⃗| ≡ 0, leading us to a

contradiction with the fact that Σn is a trapped submanifold from Proposition A.

Remark 4.3.1 In the case where the codimension is 1 and f = 0, the SNCC hypoth-

esis in the above theorem means that the sectional curvature of the Riemannian fiber

satisfies KM ≥ 0. However, in [19, Theorem 4.2], it is only required that the sectional

curvature is bounded from below, which is a weaker assumption than the one required

here. Therefore, from Theorem 4.2 in [19], we get that: There is no complete spacelike

translating soliton into R1 × Mn for Mn non-negatively curved. Furthermore, if we

consider the surface

Σ = {(c ln y, x, y) : y > 0} ⊂ R1 ×H2,

where the constant c ∈ R is such that 0 < |c| < 1 and H2 = {(x, y) ∈ R2 : y >

0} stands for the 2-dimensional hyperbolic space endowed with the complete metric

⟨, ⟩H2 = 1
y2
(dx2 + dy2). This is an example of a complete spacelike translating soliton

with constant men curvature H = c√
1−c2

. However, this example does not fall within

the hypotheses of the theorem 4.2 from [19]; the hypothesis that the Riemannian base

has nonnegative Ricci curvature is necessary to ensure the nonexistence result.

We note that the boundedness of the function (n−1)f ′′(h)+cf(h)f ′(h)
f(h)

is automatically

satisfied if we assume that the spacelike mean curvature flow soliton lies in a slab of the

ambient spacetime. Then, from Theorem 4.3.1 we obtain the following consequence.

Corollary 4.3.1 Let −I×f M
n+p be a GRW spacetime obeying the SNCC (4.2.1) and

whose Riemannian fiber Mn+p has constant sectional curvature k. There does not exist

complete spacelike mean curvature flow soliton x : Σn ↬ −I ×f M
n+p with respect to

K = f(t)∂t and with soliton constant c ̸= 0, whose the second fundamental form A is

locally timelike, lying in a slab of −I ×f M
n+p with cf ′(h) ≥ 0.

4.4 Nonexistence results via polynomial volume

growth

We need to quote a suitable maximum principle that will be used to prove our

nonexistence results in this subsection. Then, let Σn be a connected, oriented, complete
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noncompact Riemannian manifold. We denote by B(p, t) the geodesic ball centered at

p and with radius t. Given a polynomial function σ : (0,+∞) → (0,+∞), we say that

Σn has polynomial volume growth like σ(t) if there exists p ∈ Σn such that

vol(B(p, t)) = O(σ(t)),

as t → +∞, where vol denotes the standard Riemannian volume related to the metric

of Σn. As it was already observed in the beginning of [6, Section 2], if p, q ∈ Σn are at

distance d from each other, we can verify that

vol(B(p, t))

σ(t)
≥ vol(B(q, t− d))

σ(t− d)
.
σ(t− d)

σ(t)
.

Thus, the choice of p in the notion of volume growth is immaterial. For this reason,

we will just say that Σn has polynomial volume growth.

Keeping in mind this previous digression, we have the following key lemma, which

corresponds to a particular case of a new maximum principle due to Alías, Caminha,

and do Nascimento (see [6, Theorem 2.1]).

Lemma 4.4.1 Let Σn be a connected, oriented, complete noncompact Riemannian

manifold, and X ∈ X(Σn) be a bounded vector field on Σn, with |X| ≤ c < +∞.

Assume that f ∈ C∞(Σ) is such that ⟨∇f,X⟩ ≥ 0 on Σn and divX ≥ af on Σn, for

some constant a > 0. If Σn has polynomial volume growth, then f ≤ 0 on Σn.

Returning to the context of spacelike mean curvature flow soliton in a GRW

spacetime, we obtain the following nonexistence result.

Theorem 4.4.1 There does not exist complete noncompact spacelike mean curvature

flow soliton x : Σn ↬ −I×f M
n+p with respect to K = f(t)∂t and with soliton constant

c > 0 (c < 0), having polynomial volume growth and satisfying:

(a) supΣ ζc(h) < 0 (infΣ ζc(h) > 0);

(b) u = g(h) > 0, where g is a primitive of f ;

(c) X = ecu∇u is a bounded vector field on Σn.
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Proof. Let us suppose for the sake of contradiction the existence of such complete

noncompact spacelike mean curvature flow soliton x : Σn ↬ −I ×f M
n+p. Considering

the vector field X = ecu∇u, we observe that

⟨X,∇u⟩ = ⟨ecu∇u,∇u⟩ = ecu|∇u|2 ≥ 0.

Furthermore, using (1.2.14) and (2.1.2), we have that

e−cudivΣX = e−cudivΣ(e
cu∇u) = ∆−cuu = −ζ(h).

Now, let us assume that c > 0 and sup ζc(h) < 0. Since ecu ≥ cu, we get

divΣX = −ecuζc(h) ≥ −cuζc(h) ≥ − sup
Σ

ζc(h)u.

Then, since Σn has polynomial volume growth and X = ecu∇u is a bounded vector

field on Σn, from Lemma 4.4.1, we have that u ≤ 0 on Σn, which corresponds to a

contradiction. Similarly, when c < 0 and inf ζc(h) > 0 we have the same result.

Next, we derive a second nonexistence result from Lemma 4.4.1.

Theorem 4.4.2 Let −I ×f M
n be a GRW spacetime obeying the NCC (2.2.9). There

does not exist complete noncompact spacelike mean curvature flow soliton x : Σn ↬

−I×fM
n with respect to K = f(t)∂t and with soliton constant c ̸= 0, having polynomial

volume growth and satisfying:

(a) the second soliton function is such that infΣ ζ̃c(h) = infΣ{cf ′(h) + |A|2} > 0;

(b) infΣ{cu} > 0, where u = g(h) and g is a primitive of f ;

(c) X = ecu∇(−H
c
) is a bounded vector field on Σn.

Proof. Let us suppose for the sake of contradiction the existence of such a complete

noncompact spacelike mean curvature flow soliton x : Σn ↬ −I ×f M
n. Considering

the vector field X = ecu∇(−H
c
), we note that〈

X,∇
(
−H

c

)〉
=

〈
ecu∇

(
−H

c

)
,∇
(
−H

c

)〉
= ecu

∣∣∣∣∇(−H

c

)∣∣∣∣2 ≥ 0.

Furthermore, from (2.2.9) we obtain

RicM(N∗, N∗)− (n− 1)(ln f)′′(h)|∇h|2 ≥ 0.
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Then, taking into account that −H
c
> 0, from (2.2.8) we have that

∆−cu

(
−H

c

)
=
(
ζ̃c +RicM(N∗, N∗)− (n− 1)(ln f)′′(h)|∇h|2

)(
−H

c

)
≥ ζ̃c

(
−H

c

)
.

On the other hand, since

∆−cu

(
−H

c

)
= e−cudivΣ

(
ecu∇

(
−H

c

))
,

we concluded that

divΣX = divΣ

(
ecu∇

(
−H

c

))
≥ ecuζ̃c

(
−H

c

)
≥ (cu) inf

Σ
ζ̃c

(
−H

c

)
≥ inf

Σ
{cu} inf

Σ
ζ̃c

(
−H

c

)
.

Since Σn has polynomial volume growth and X = ecu∇
(
−H

c

)
is a bounded vec-

tor field, from Lemma 4.4.1, we have that −H
c

≤ 0 on Σn, which corresponds to a

contradiction.

When the ambient spacetime is a Lorentzian product space, Theorem 4.4.2 reads

as follows.

Corollary 4.4.1 Let −I ×Mn be a Lorentzian product space whose Riemannian fiber

Mn has nonnegative Ricci curvature. There does not exist complete noncompact space-

like translation soliton x : Σn ↬ −I ×Mn with respect to ∂t and with soliton constant

c ̸= 0, having polynomial volume growth, infΣ |A|2 > 0, infΣ{ch} > 0 and such that

X = ech∇(−H
c
) is a bounded vector field.

Proceeding, we also obtain the another nonexistence result for higher codimen-

sion.

Theorem 4.4.3 Let −I ×f M
n+p be a GRW spacetime obeying the SNCC (4.2.1) and

whose Riemannian fiber Mn+p has a constant seccional curvature k. There does not ex-

ist complete noncompact spacelike mean curvature flow soliton x : Σn ↬ −I ×f M
n+p

with respect to K = f(t)∂t and with soliton constant c ̸= 0, whose second funda-

mental form A is locally timelike, having polynomial volume growth and satisfying:

infΣ{cf ′(h)} > 0, infΣ{cu} > 0, and such that X = ecu∇|H⃗|2 is a bounded vector field.
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Proof. Let us suppose for the sake of contradiction the existence of such a complete

noncompact spacelike mean curvature flow soliton x : Σn ↬ −I ×f M
n+p. Considering

the vector field X = ecu∇|H⃗|2, we have that

⟨X,∇|H⃗|2⟩ = ⟨ecu∇|H⃗|2,∇|H⃗|2⟩ = ecu|∇|H⃗|2|2 ≥ 0.

Furthermore, from Proposition C, (4.2.1), and using the hypotheses that the second

fundamental form A is locally timelike and infΣ{cf ′} > 0, we get

1

2
∆−cu|H⃗|2 ≥ inf

Σ
{cf ′(h)}|H⃗|2.

On the other hand, since

∆−cu|H⃗|2 = e−cudivΣ(e
cu∇|H⃗|2),

we concluded that

divΣX = divΣ(e
cu∇|H⃗|2) ≥ ecu2 inf

Σ
{cf ′(h)}|H⃗|2 ≥ 2 inf

Σ
{cf ′(h)}cu|H⃗|2 ≥ a|H⃗|2,

where a = 2 infΣ{cu} infΣ{cf ′(h)} > 0.

Therefore, since Σn has polynomial volume growth, and X = ecu∇|H⃗|2 is a

bounded vector field, from Lemma 4.4.1, we conclude that |H⃗|2 ≤ 0 on Σn, leading us

to a contradiction.
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Chapter 5

The mean curvature flow soliton

equation in entire graphs

Let Ω ⊆ Mn be a connected domain, and consider z ∈ C∞(Ω) as a smooth

function such that z(Ω) ⊆ I. Then, Σn(z) will denote the (vertical) graph over Ω

determined by z, defined as follows

Σn(z) = {(z(p), p) : p ∈ Ω} ⊂ M̄n+1 = −I ×f M
n.

We say that the graph is entire if Ω = Mn. Note that h(z(p), p) = z(p), p ∈ Ω. Hence,

h and z can be identified naturally. The metric induced on Ω from the Lorentzian

metric of the ambient GRW spacetime via Σn(z) is

gz = −dz2 + f(z)2⟨ , ⟩M . (5.0.1)

The Gauss map of a graph Σn(z) over Ω is given by the vector field

N(p) =
f(z(p))√

f(z(p))2 − |Dz(p)|2M

(
∂t|(z(p),p) +

Dz(p)

f(z(p))2

)
, p ∈ Ω, (5.0.2)

where Dz stands for the gradient of z in Mn and |Dz|M its norm, both with respect

to the metric ⟨ , ⟩M . In fact, let us consider the function G : M̄n+1 → R given by

G(t, p) = t− z(p). Note that G ≡ 0 on Σn(z), so consider a curve α : (−ε, ε) → Σn(z)

such that α(0) = p and α′(0) = v ∈ TΣn(z). Then

0 =
d

d t
(G ◦ α)(t)|t=0 = α′(0)(G) = v(G) = ⟨∇̄G, v⟩.
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Since v ∈ TΣn(z) was chosen arbitrarily, ∇̄G is orthogonal to TΣn(z). On the other

hand, let us consider w = −⟨w, ∂t⟩∂t +w∗ ∈ T(t,p)M̄
n+1, where w∗ ∈ X(Mn). Then, we

obtain that

w(G) = (−⟨w, ∂t⟩+ w∗)(t− z(p))

= −⟨w, ∂t⟩∂t(t− z(p)) +
w∗(t− z(p))

f(z)2

= −⟨w, ∂t⟩ −
1

f(z(p))2
⟨Dz(p), w⟩

=

〈
w,−∂t −

1

f(z(p))2
Dz(p)

〉
.

Therefore,

∇̄G = −∂t −
1

f(z(p))2
Dz(p).

Taking N̄ = −∇̄G, we get that

⟨N̄ , N̄⟩ = ⟨∂t, ∂t⟩+ 2

〈
∂t,

1

f(z(p))2
Dz(p)

〉
+

〈
1

f(z(p))2
Dz(p),

1

f(z(p))2
Dz(p)

〉
= −1 +

1

f(z(p))2
|Dz(p)|2M .

Finally, taking N = N̄
|N̄ | we get the Gauss map given before. Furthermore, we have

that

⟨N̄ , ∂t⟩ =
〈
∂t +

1

f(z(p))2
Dz(p), ∂t

〉
= ⟨∂t, ∂t⟩ = −1 < 0,

that is, the Gauss map N is future-pointing.

Moreover, we know that a hypersurface is spacelike if and only if its normal field

is timelike. Thus, a graph Σn(z) is a spacelike hypersurface if and only if N is timelike,

in other words, if and only if N̄ is timelike, that is, if and only if

⟨N̄ , N̄⟩ = −1 +
1

f(z(p))2
|Dz(p)|2M < 0.

Then, we get that a graph Σn(z) is a spacelike hypersurface if and only if |Dz|M < f(z).

On the other hand, from [10, Lemma 3.1], regarding the scenario where Mn is a simply

connected manifold, we obtain that every complete spacelike hypersurface x : Σn ↬

−I ×f Mn such that the warping function f is bounded on Σn is an entire spacelike

graph over Mn. In particular, the same occurs for complete spacelike hypersurfaces

lying in a slab of −I×f M
n. It is noteworthy to mention that, unlike the scenario with

graphs into a Riemannian space, an entire spacelike graph Σn(z) in a GRW spacetime
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may not be complete. This implies that the induced Riemannian metric (5.0.1) on

Mn is not necessarily complete on Mn. For instance, Albujer [2, Section 3] constructed

explicit examples of noncomplete entire maximal spacelike graphs (that is, whose mean

curvature is identically zero) in the Lorentzian product space −R×H2.

From (5.0.2), we have that the Weingarten operator related to the future-pointing

Gauss map (5.0.2) is given by

AX =− 1

f(z)
√

f(z)2 − |Dz|2M
DXDz − f ′(z)√

f(z)2 − |Dz|2M
X

+

(
−⟨DXDz,Dz⟩M

f(z) (f(z)2 − |Dz|2M)
3/2

+
f ′(z)⟨Dz,X⟩M

(f(z)2 − |Dz|2M)
3/2

)
Dz,

(5.0.3)

for any vector field X tangent to Ω, where D denotes the Levi-Civita connection of

(Mn, gM). Consequently, if Σn(z) is a spacelike graph defined over a domain Ω ⊆ Mn,

it is not difficult to verify from (5.0.3) that the future mean curvature function H(z)

of Σn(z) is given by

H(z) = divM

(
Dz

nf(z)
√

f(z)2 − |Dz|2M

)
+

f ′(z)

n
√

f(z)2 − |Dz|2M

(
n+

|Dz|2M
f(z)2

)
, (5.0.4)

where divM stands for the divergence operator computed in the metric ⟨ , ⟩M .

Hence, from (1.2.1) and (5.0.4) we have that Σn(z) is a spacelike mean curvature

flow soliton with respect to K = f(t)∂t and with soliton constant c if, and only if,

|Dz|M < f(z) and z is a solution of the following nonlinear differential equation

divM

(
Dz

f(z)
√

f(z)2 − |Dz|2M

)
= − 1√

f(z)2 − |Dz|2M

{
cf(z)2 + f ′(z)

(
n+

|Dz|2M
f(z)2

)}
.

(5.0.5)

In particular, when the ambient spacetime is a Lorentzian product space −I × Mn,

equation (5.0.5) reads as follows

divM

(
Dz√

1− |Dz|2M

)
= − c√

1− |Dz|2M
. (5.0.6)

Before we proceed to our results, we need an auxiliary results.

Proposition E [3, Proposition 1] Let Mn be a complete Riemannian manifold and

Σn(z) an entire spacelike vertical graph in −I ×f M
n. If

|Dz|2M ≤ f(z)2 − β

for certain positive constant β > 0, then Σn(z) is complete.
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In this context, we obtain the following Calabi-Bernstein type result.

Theorem 5.0.1 Let −I ×f M
n be a GRW spacetime whose Riemannian fiber Mn is

complete noncompact. Let z ∈ C∞(M) be a bounded entire solution of equation (5.0.5)

for c ̸= 0, with finite C2 norm, such that |Dz|M ≤ αf(z), for some constant 0 < α < 1.

Suppose that Σn(z) is above the slice {t0} ×Mn and converges asymptotically to it at

infinity, for some t0 ∈ I. If the soliton function ζc(z) is nonpositive, then z ≡ t0.

Proof. Let z ∈ C∞(M) be such a solution of equation (5.0.5). Since z is bounded,

we have that Σn(z) is contained in a slab of Mn+1. Consequently, since we are also

assuming that |Dz|M ≤ αf(z), for some constant 0 < α < 1, we get that

|Dz|2M ≤ f(z)2 − β,

for β = (1 − α2) infΣ(z) f(z)
2. Thus, we can apply Proposition E jointly with [10,

Proposition 3.2] to conclude that Σn(z) is complete noncompact. We finish the proof

by applying Theorem 2.2.1.

From Theorem 5.0.1 we obtain the following nonexistence result.

Corollary 5.0.1 Let −I ×Mn be a Lorentzian product space whose Riemannian fiber

Mn is complete noncompact. There does not exist bounded entire solution z ∈ C∞(M)

of equation (5.0.6) for c ̸= 0, with |Dz|M ≤ α, for some constant 0 < α < 1, ζc(z) ≤ 0

and such that Σn(z) is above the slice {t0} ×Mn and converges asymptotically to it at

infinity, for some t0 ∈ I.

Proceeding, we obtain another nonexistence result from Theorem 4.4.1.

Theorem 5.0.2 Let −I ×f Mn be a GRW spacetime whose Riemannian fiber Mn

is complete noncompact with polynomial volume growth. For any constant c > 0

(c < 0), there does not exist bounded entire solution z ∈ C∞(M) of equation (5.0.5)

with |Dz|M ≤ αf(z), for some constant 0 < α < 1, and such that supΣ ζc(z) < 0

(infΣ ζc(z) > 0).

Proof. Reasoning as in the proof of [8, Corollary 5.1], it follows from (5.0.1) that

dΣ =
√
|G|dM , where dM and dΣn stand for the Riemannian volume elements of

(Mn, ⟨ , ⟩M) and (Σn(z), gz), respectively, and |G| = det(gij) with

gij = gz(Ei, Ej) = f(z)2δij − Ei(z)Ej(z).
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Here, {E1, . . . , En} denotes a local orthonormal frame with respect to the metric ⟨ , ⟩M .

So, it is not difficult to verify that

|G| = f 2(n−1)(z)(f(z)2 − |Dz|2M).

Consequently,

dΣ = fn−1(z)
√
f(z)2 − |Dz|2MdM. (5.0.7)

Hence, since we are supposing that (Mn, ⟨ , ⟩M) has polynomial volume growth and

taking into account that z is bounded, relation (5.0.7) guarantees that (Σn(z), gz) also

has polynomial volume growth.

On the other hand, the boundedness of z guarantees that we can take a primitive

g of f such that g(z) > 0. Moreover, since |Dz|M ≤ αf(z), the vector field X =

ecg(z)∇g(z) is also bounded. Therefore, since Σn(z) is complete noncompact, we are in

a position to apply Theorem 4.4.1 and conclude the proof.
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Part II

Gap results and existence of CMC

free boundary hypersurfaces in

rotational domains
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Chapter 6

Preliminaries II

Throughout this chapter and the next ones, we will consider Ω ⊂ Rn+1, with

n ≥ 2, be a rotation domain with smooth boundary ∂Ω ⊂ F−1(1) where F : Rn×I → R

is a smooth function for some interval I ⊂ R. We denote by N̄ := ∇F
|∇F | the outward

unit normal to ∂Ω. Let Σn ↪→ Ω a hypersurface with boundary such that ∂Σ ⊂ ∂Ω.

We denote N the outward unit normal to Σ and ν the outward conormal along ∂Σ in

Σ. Then, ⟨N, ν⟩ = 0. In this setting, the shape operator of Σ with respect to N at p

is the self-adjoint linear operator A : TpM −→ TpM given by A(X) = −∇XN , where

∇ stands for the Levi-Civita connection on M . The eigenvalues of A are the principal

curvatures of Σ in M and the mean curvature is given by H = trA
n

. In this scope, we

have an important definition, as follows.

Definition 6.0.1 A hypersurface Σ, as above, is called free boundary if Σ meets ∂Ω

orthogonally, there is, ν = N̄ along ∂Σ or, equivalently, ⟨N, N̄⟩ = 0 along ∂Σ.

Figure 6.1: A free boundary surface in the ball
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More specifically, for n = 2, let us consider a rotational hypersurface in the

following sense. Let α(t) = (f(t), t) be a plane curve α that is the graph of a positive

real valued smooth function f : I → R in the x1x3-plane. Let Θ be a parametrization

of the unit circle S1 in the plane x3 = 0. The surface of revolution with generatrix α

can be parametrized by

X(Θ, t) = (Θf(t), t) = (cos θf(t), sin θf(t), t).

In this scope, we study free boundary surfaces Σ in domains Ω whose boundary is a

hypersurface of revolution given above.

Let us also consider F : R2 × I → R be the smooth function defined by

F (x, y) =
1

2

(
|x|2 − f(y)2

)
+ 1, (6.0.1)

where x = (x1, x2) and y = x3, we have that Ω ⊂ F−1(1). Notice that 1 is a regular

value of F .

Observe that

∇F (x, y) = (x,−f(y)f ′(y)) = (x, y) + (0,−y − f(y)f ′(y)),

where y = ⟨(x, y), E3⟩. Then,

D2F =


1 0 0

0 1 0

0 0 −(f ′(y))2 − f(y)f ′′(y)



= Id3×3 +


0 0 0

0 0 0

0 0 −(f ′(y))2 − f(y)f ′′(y)− 1

 .

Therefore, for all X, Y ∈ T (Σ) we have

HessΣF (X, Y ) = ⟨∇̄X(∇̄F )⊤, Y ⟩

= ⟨∇̄X(∇̄F − ⟨∇̄F,N⟩N), Y ⟩

= ⟨∇̄X∇̄F, Y ⟩ − ⟨∇̄F,N⟩⟨∇̄XN, Y ⟩

= D2F (X, Y ) + ⟨∇̄F,N⟩⟨ANX, Y ⟩

= ⟨X, Y ⟩+ g(x, y)⟨ANX, Y ⟩ − ((f ′(y))2 + f(y)f ′′(y) + 1)⟨TX, Y ⟩,

(6.0.2)
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where T : T(x,y))Σ → T(x,y)Σ is given by TX = ⟨X,E⊤
3 ⟩E⊤

3 and

g(x, y) := ⟨∇̄F,N⟩ = ⟨(x, y), N⟩+ ⟨N,E3⟩(−y − f(y)f ′(y)).

Remark 6.0.1 The free boundary condition give us that ⟨∇̄F,N⟩ = 0 along ∂Σ.

Then, g(x, y) = 0 for all (x, y) ∈ ∂Σ.

It is easy to check that T is a self-adjoint operator whose E⊤
3 is an eigenvector

associated with the eigenvalue |E⊤
3 |2. Besides, we can take any nonzero vector in TΣ,

orthogonal to E⊤
3 , to verify that zero is also an eigenvalue of T . Therefore

0 ≤ ⟨TX,X⟩ ≤ |E⊤
3 |2|X|2, ∀X ∈ T(x,y)Σ. (6.0.3)

From now one, we use the following condition for the function f of the profile

curve

(f ′)2 + ff ′′ + 1 ≤ 0. (6.0.4)

Remark 6.0.2 We note that the condition (6.0.4) has an intriguing interpretation in

terms of the principal curvatures of the meridian and parallels of the profile curve.

Indeed, in dimension 3, the principal curvatures of the profile curve of ∂Ω are

− f ′′

(1 + (f ′)2)
3
2

and
1

f
√

1 + (f ′)2,

for the meridians and the parallels, respectively. Then, the inequality (f ′)2+ff ′′+1 ≤ 0

means that κ1 ≥ κ2 in Ω, where κ1 and κ2 are the principal curvatures of the meridians

and parallels, respectively. Furthermore, this makes clear that κ1 = κ2 for all s and

therefore, ∂Ω is a sphere, precisely in the equality case.

Remark 6.0.3 In an alternative way of the last remark, we observe that if (f ′)2 +

ff ′′ + 1 = 0, we get

0 = (f ′(t))2 + f(t)f ′′(t) + 1 = (t+ f(t)f ′(t))′.

Then,

t+ f(t)f ′(t) = c1,
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where c1 is a constant. Thus,

(f(t)2)′ = 2f(t)f ′(t) = 2(c1 − t) = (2c1t− t2)′.

Therefore,

f(t)2 = 2c1t− t2 + c2,

where c2 is a constant. It implies that

F (x, y) =
1

2
(|x|2 + y2 − 2c1y − c2) + 1.

Then, the set F−1(1) is the sphere

x2
1 + x2

2 + (y − c1)
2 = c2 + c21.

Now we present an auxiliary lemma, which gives us important information about

the eigenvalues of HessΣF (x, y).

Lemma 6.0.1 Suppose that (f ′)2 + ff ′′ + 1 ≤ 0. Then for each (x, y) ∈ Σ, the

eigenvalues of HessΣF (x, y) are greater of equal to

1 + k1g(x, y) and 1 + k2g(x, y),

where k1 ≤ k2 are the principal curvatures of Σ with respect to the normal vector N .

Proof. Suppose that (f ′)2 + ff ′′ + 1 ≤ 0, then using (6.0.2) and (6.0.3), we have that

HessΣF (X,X) = ⟨X,X⟩+ g(x, y)⟨ANX,X⟩ − ((f ′(y))2 + f(y)f ′′(y) + 1)⟨TX,X⟩

≥ ⟨X + g(x, y)AX,X⟩.

But, the eigenvalues of X → X + g(x, y)AX are

1 + k1g(x, y) and 1 + k2g(x, y),

where k1 ≤ k2 are the eigenvalues of A. Then, k1 and k2 are the principal curvature of

Σ and the eigenvalues λ1 ≤ λ2 of HessΣF (x, y) satisfy that

λ1 ≥ 1 + k1g(x, y) and λ2 ≥ 1 + k2g(x, y).
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Chapter 7

Gap results

This chapter aims to give a topological classification of CMC free boundary sur-

faces and minimal free boundary hypersurfaces in the rotational domains, as defined

earlier. We employ a gap condition in the umbilicity tensor and the graph function

whose rotation generates the boundary domain. We subdivide our analysis into three-

dimensional and higher-dimensional cases.

7.1 CMC Free Boundary Surfaces in 3-dimensional

rotational domains

In this section, we get a topological characterization for CMC Free Boundary

Surfaces in 3-dimensional rotational domains.

The next proposition shows that the gap condition given below implies the con-

vexity of F on Σ, and the proof of the result follows the same steps as in [13, Lemma

2.1].

Proposition F Let Σ be a compact free boundary CMC surface in Ω. Assume that

(f ′)2 + ff ′′ + 1 ≤ 0 and for all points (x,y) in Σ,

|ϕ|2g(x, y)2 ≤ 1

2
(2 + 2Hg(x, y))2, (7.1.1)

where ϕ = A−H⟨·, ·⟩ is the umbilicity tensor. Then,

HessΣF (X,X) ≥ 0,

for all (x, y) ∈ Σ and X ∈ T(x,y)Σ.
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Proof. By Lemma 6.0.1, we have that the eigenvalues λ1 ≤ λ2 of HessΣF (x, y) satisfy

that

λ1 ≥ 1 + k1g(x, y) := λ̃1 and λ2 ≥ 1 + k2g(x, y) := λ̃2,

where k1 and k2 are the principal curvatures of Σ. In order to prove HessΣF (X,X) ≥ 0,

we need to show that λ1 and λ2 are nonnegative. Using condition (7.1.1) we have

4λ̃1λ̃2 = 4(1 + k1g(x, y))(1 + k2g(x, y))

= 4 + 4k2g(x, y) + 4k1g(x, y) + 4k1k2g(x, y)
2

= 4 + 8Hg(x, y) + 2(4H2 − |A|2)g(x, y)2 (7.1.2)

= (2 + 2Hg(x, y))2 − 2|ϕ|2g(x, y)2 ≥ 0.

Then, λ̃1 and λ̃2 have the same sing. Therefore, we need to show that at least one λ̃i

is non-negative. For this, we will to show that function v defined on Σ and given by

v := λ̃1 + λ̃2 = 2 + 2Hg(x, y)

is nonnegative. Note that we can assume that Σ is not totally umbilical; otherwise,

it is obvious to check. Let us suppose that v(p) < 0 at some point p ∈ Σ. The free

boundary condition ensures that g(x, y) = 0 for all (x, y) ∈ ∂Σ (see Remark 6.0.1),

then

v = 2 + 2Hg(x, y) = 2

along ∂Σ. Choose q ∈ ∂Σ and let α : [0, 1] → Σ be a continuous curve such that

α(0) = p and α(1) = q (see Figure 7.1). Since v changes the signal along α, there

is a point p0 = α(t0), t0 ∈ (0, 1) such that v(p0) = 0. In particular g(x, y)(p0) ̸= 0.

Therefore, the condition (7.1.1) implies that

|ϕ|2(p0) = 0,

and hence p0 is an umbilical point. Since Σ is not a totally umbilical surface, we have

that p0 is an isolated point. Furthermore, there is ε > 0 such that v(α(t)) < 0, if

t ∈ [t0 − ε, t0) and v(α(t)) > 0, if t ∈ (t0, t0 + ε], or vice-versa.

Let Dr0(p0) be a geodesic disk with radius r0 centered at p0 such that p0 is the only

umbilical point of Σ on Dr0(p0). We can choose r0 and ε in such way that α(t) ∈ Dr0(p0)

for all t ∈ [t0 − ε, t0 + ε]. Choose r̄0 < r0 such that α(t0 − ε), α(t0 + ε) /∈ Dr̄0(p0). Let
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A = Dr0(p0)\Dr̄0(p0) be the annulus determined by these two discs and denote by β a

path in A joining the points α(t0 − ε) and α(t0 + ε). Again, v changes the signal along

of β, and therefore there is a point q̃ ∈ Dr0(p0) such that v(q̃) = 0. But, as above, it

implies that q̃ is another umbilical point in Dr0(p0) which is a contradiction and we

conclude that v ≥ 0 as desired.

Then, λi ≥ λ̃i ≥ 0 for all i. Therefore HessΣF (X,X) ≥ 0.

Figure 7.1: Analysis of the sign of v

Remark 7.1.1 Observe that, from (7.1.2) if we want to prove that the gap (7.1.1) is

valid, it is enough to show that λ̃i is non-negative for i = 1, 2.

Lemma 7.1.1 Suppose that (f ′)2 + ff ′′ + 1 ≤ 0. Then the Weingarten operator AR3

∂Ω

of F−1(1) = ∂Ω in R3 with respect to inward unit normal satisfies

⟨AR3

∂ΩX,X⟩ ≥ k1|X|2 > 0, ∀X ∈ T∂Ω, x ̸= 0.

Proof. We claim that both eigenvalues k1 ≤ k2 of AR3

∂Ω are positive. Let U ⊂ R2 be

an open set and x : U ⊂ R2 → V ⊂ ∂Ω the immersion

x(θ, t) = (cos θf(t), sin θf(t), t), (θ, t) ∈ U.
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A straight forward calculation shows that the inward unit normal is given by

N̄ =
1√

1 + (f ′)2
(− cos θ,− sin θ, f ′)

and the coefficients of the first and second fundamental forms are given by

E = f 2, F = 0 and G = (f ′)2 + 1

and

e =
f√

1 + (f ′)2
, f = 0 and g = − f ′′√

1 + (f ′)2
.

Therefore, the Gaussian curvature of ∂Ω at x(θ, t) is

K(θ, t) =
eg − f 2

EG− F 2
= − ff ′′

(1 + (f ′)2)2f 2
> 0.

Hence, K is strictly positive on ∂Ω. In particular, k1 and k2 have the same sign.

Furthermore, a simple calculation gives us

H =
eG+ gE

2EG
=

1 + (f ′)2 − ff ′′

2f(1 + (f ′)2)
3
2

> 0.

Therefore k2 > 0 and k1 > 0. Thus, for all X ∈ T∂Ω with X ̸= 0,

⟨AR3

∂ΩX,X⟩ ≥ k1|X|2 > 0.

Now, we are in conditions to prove the following gap result for CMC surfaces in

3-dimensional rotational domains. The argument follows the ideas of [11].

Theorem 7.1.1 Let Σ2 be a compact CMC surface with a free boundary in F−1(1). If

(f ′)2 + ff ′′ + 1 ≤ 0 and

|ϕ|2g(x, y)2 ≤ 1

2
(2 + 2Hg(x, y))2

on Σ, then Σ is homeomorphic to a disk or an annulus.

Proof. vFirst, we claim that the geodesic curvature kg of ∂Σ in Σ is positive. In fact,

given X, Y ∈ T∂Σ, we have on ∂Σ that

∇R3

X Y = ∇∂Ω
X Y + ⟨AR3

∂ΩX, Y ⟩N̄ = ∇∂Σ
X Y + ⟨A∂Ω

∂ΣX, Y ⟩N + ⟨AR3

∂ΩX, Y ⟩N̄
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and

∇R3

X Y = ∇Σ
XY + ⟨AR3

Σ X, Y ⟩N = ∇Σ
XY + ⟨AΣ

∂ΣX, Y ⟩N̄ + ⟨AR3

Σ X, Y ⟩N.

Then, we will have AΣ
∂Σ = AR3

∂Ω on ∂Σ, where ∂Ω = F−1(1). Hence, if X ∈ T∂Σ is

unitary, it follows from Lemma 7.1.1 that

kg = ⟨AΣ
∂ΣX,X⟩ = ⟨AR3

∂ΩX,X⟩ > 0. (7.1.3)

Now, observe that if either Σ is totally umbilical or Σ has nonnegative Gaussian

curvature everywhere, then Σ is homeomorphic to a disk. In fact, if Σ is totally

umbilical, we have that the Gaussian curvature KΣ of Σ satisfies

KΣ = H2 ≥ 0.

Then, in any case, Σ has nonnegative Gaussian curvature everywhere. From the Gauss-

Bonnet theorem and (7.1.3) , it follows∫
Σ

KΣ +

∫
∂Σ

kg = 2πX (Σ) > 0,

which shows that

X (Σ) = 2− 2ĝ − r > 0,

where ĝ and r are respectively the genus and quantity connected components of Σ.

Then, ĝ = 0 and r = 1. Therefore, X (Σ) = 1, Σ is orientable and has exactly one

boundary component. Thus, Σ is homeomorphic to a disk.

Therefore, from now on, let us assume that Σ is not a totally umbilical surface

and has negative Gaussian curvature at some point of Σ.

Consider

C = {p ∈ Σ;F (p) = min
x∈Σ

F (x)}.

Given p, q ∈ C, let γ : [0, 1] → Σ be a geodesic such that γ(0) = p and γ(1) = q. It

follows from Proposition F HessΣF ≥ 0 on Σ. Then,

d2

dt2
(F ◦ γ) = HessΣF

(
dγ

dt
,
dγ

dt

)
≥ 0

for all t ∈ [0, 1]. Since p, q ∈ C, we have

d

dt
(F ◦ γ)(0) = d

dt
(F ◦ γ)(1) = 0,
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which implies that F is constant on γ by the maximum principle. Then, we conclude

that (F ◦γ)(t) ≡ minΣF. Therefore, γ([0, 1]) ⊂ C and C must be a totally convex subset

of Σ. In particular, totally convex property of C also assures that γ([0, 1]) ⊂ C for all

geodesic loop γ : [0, 1] → Σ, based at a point p ∈ C. Moreover, we assure that each

geodesic γ which connect two points in C is completely inside of Σ, that is, the trace of

γ does not have points of ∂Σ. In fact, if the trace of γ has a point in ∂Σ, from (7.1.3),

we have kg(γ) > 0 in a neighborhood of this point which is absurd, because geodesics

have zero geodesic curvature. Hence, C is contained in the interior of Σ.

Finally, we claim that Σ is homeomorphic to either a disk or an annulus. To see

this, we divide into two cases:

Case 1: C consists of a single point.

Case 2: C contains more than one point.

For Case 1, let p ∈ Σ\∂Σ be the only point of C. Suppose that there is a non-trivial

homotopy class [α] ∈ π1(Σ, p), then we can find a geodesic loop γ : [0, 1] → Σ, γ(0) =

γ(1) = p with γ ∈ [α]. But, since C is totally convex, γ([0, 1]) ⊂ C and, in particular, C

has more than one point, which is a contradiction. This implies that π1(Σ, p) is trivial.

Thus, Σ is simply connected, and we conclude that Σ is homeomorphic to a disk.

For Case 2, we may assume that Σ is not homeomorphic to a disk. Given p ∈ C

we can find a geodesic loop γ : [0, 1] → Σ, γ(0) = γ(1) = p belonging to a non-trivial

homotopy class [α] ∈ π1(Σ, p). The totally convexity of C ensures that γ([0, 1]) ⊂ C.

We claim that γ is a regular curve. Indeed, if γ′(0) ̸= γ′(1), we can choose ε0 > 0 small

and for each ε < ε0 consider the minimizing geodesic γ̃ε joining γ(1− ε) and γ(0 + ε).

Since C is totally convex and γ ⊂ C, we conclude that γ̃ε ⊂ C. Now, we can choose an

nonempty open set U ⊂ {γ̃ε}ε<ε0 of C. Thus, for any geodesic β(t) ∈ U ,

0 =
d2

dt2
(F ◦ β) = HessΣF

(
dβ

dt
,
dβ

dt

)
≥ 0,

Therefore, HessΣF
(
dβ
dt
, dβ
dt

)
= 0 in U . In particular, if β is such that β′(0) = ei by the

proof of Lemma 6.0.1 and the proof of Proposition F

0 = HessΣF (ei, ei) ≥ 1 + ⟨∇̄F,N⟩ki = λ̃i ≥ 0.
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Then,

1 + ⟨∇̄F,N⟩k1 = 1 + ⟨∇̄F,N⟩k2 = 0,

and we get that k1 = k2 in U . Thus, the open subset U is totally umbilical, which

shows that Σ must be totally umbilical which is a contradiction. Therefore C has to

be equal to the unique closed geodesic γ. Since [α] was chosen to be arbitrary, this

implies that π1(Σ, p) ≈ Z, and hence Σ is homeomorphic to an annulus.

Remark 7.1.2 We note that Theorem 7.1.1 is equivalent to [11] and [13, Theorem

1.3] when Ω is a ball (in this case, we have g(x, y) = ⟨(x, y), N⟩). In fact, the rigidity

statement in these last ones is expected: the free boundary CMC disks in the ball

are totally umbilical (by Nitsche’s result [65]). However, not all free boundary CMC

annuli in the ball are catenoids or Delaunay surfaces: this is proved in recent papers

by Fernandez-Hauwirth-Mira ([40]) and Cerezo-Fernandez-Mira ([26]). In this sense,

in the ball case, it shows that there exist free boundary minimal and CMC annuli that

do not satisfy the gap inequality.

7.2 Minimal Free Boundary hypersurfaces

in (n + 1)-dimensional rotational domains

In this section, let us consider a rotational hypersurface in the following sense.

Let α(t) = (f(t), t) be a plane curve α that is the graph of a positive real valued

smooth function f : I → R in the x1xn+1-plane. Let Θ be a parametrization of the

n−dimensional unit sphere in the hyperplane xn+1 = 0. The hypersurface of revolution

with generatrix α can be parametrized by

X(Θ, t) = (Θf(t), t).

In this scope, we study minimal free boundary surfaces in domains Ω whose boundary

is a hypersurface of revolution given above. Let us denote x = (x1, x2, ..., xn) and

y = xn+1. Let F : Rn+1 = Rn × R → R be the smooth function defined by

F (x, y) =
1

2

(
|x|2 − f(y)2

)
+ 1,
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we have that ∂Ω ⊂ F−1(1). Observe that, analogous to what was done in the previous

section for dimension 3, denoted by Σ a minimal free boundary surface in Ω, we have

∇F (x, y) = (x,−f(y)f ′(y)) = (x, y) + (0,−y − f(y)f ′(y)),

where y = ⟨(x, y), En+1⟩. Then, for all X, Y ∈ T (Σ) we have

HessΣF (X, Y ) = ⟨X, Y ⟩+ g(x, y)⟨ANX, Y ⟩ − ((f ′(y))2 + f(y)f ′′(y) + 1)⟨TX, Y ⟩,

where T : T(x,y))Σ → T(x,y)Σ is given by TX = ⟨X,E⊤
n+1⟩E⊤

n+1 and

g(x, y) = ⟨∇̄F,N⟩ = ⟨(x, y), N⟩+ ⟨N,En+1⟩(−y − f(y)f ′(y)).

We can write

HessΣF (X,X) = ⟨X,X⟩+ ⟨A(X,X), (∇F )⊥⟩ − ((f ′(y))2 + f(y)f ′′(y) + 1)⟨TX, Y ⟩,

(7.2.1)

It is easy to check that T is a self-adjoint operator whose E⊤
n+1 is an eigenvector

associated with the eigenvalue |E⊤
n+1|2. Besides, we can take any nonzero vector in TΣ,

orthogonal to E⊤
n+1, to verify that zero is also an eigenvalue of T . Therefore

0 ≤ ⟨TX,X⟩ ≤ |E⊤
n+1|2|X|2, ∀X ∈ T(x,y)Σ.

Before presenting the results of this section, let us introduce an auxiliary lemma

given by Chen in [27].

Lemma 7.2.1 [27, Lemma 4.1] Let a1, ..., an and b be real numbers. If

n∑
i=1

a2i ≤
(
∑n

i=1 ai)
2

n− 1
− b

n− 1
, (7.2.2)

then 2aiaj ≥ b
n−1

for every i, j ∈ {1, ..., n}.

Proof. Let a1, ..., an be a sequence of numbers satisfying
n∑

i=1

a2i ≤
(
∑n

i=1 ai)
2

n− 1
− b

n− 1
.

It follows that

(n− 2)a2n − 2(
n−1∑
i=1

ai)an + n
n−1∑
i=1

a2i −

(
n−1∑
i=1

ai

)2

+ b ≤ 0.
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This is a quadratic inequality on an. Therefore, its discriminant is non-negative, that

is:

4

(
n−1∑
i=1

ai

)2

− 4(n− 2)(n− 1)
n−1∑
i=1

a2i + 4(n− 2)

(
n−1∑
i=1

ai

)2

− 4(n− 2)b ≥ 0.

Equivalently,
n−1∑
i=1

a2i ≤
(
∑n−1

i=1 ai)
2

n− 2
− b

n− 1
.

This inequality is of the same type as (7.2.2). Continuing the same process (n − 1)

times, we obtain that 2aiaj ≥ b
n−1

for every i, j ∈ {1, ..., n}. Then, we conclude the

poof of the lemma.

The next proposition shows that the gap condition given bellow implies the con-

vexity of F on Σ.

Proposition G Let Σn be a minimal free boundary hypersurface n-dimensional in Ω,

with n ≥ 3. Assume that (f ′)2 + ff ′′ + 1 ≤ 0. If

|A(x, y)|2g(x, y)2 ≤ n

n− 1
, (7.2.3)

for every (x, y) ∈ Σn. Then,

HessΣF (X,X) ≥ 0,

for all (x, y) ∈ Σ and X ∈ T(x,y)Σ.

Proof. Suppose that (f ′)2 + ff ′′ + 1 ≤ 0, then using (7.2.1) we get

HessΣF (X,X) ≥ ⟨X,X⟩+ ⟨A(X,X), (∇F )⊥⟩. (7.2.4)

Let {e1, ..., en} be an orthonormal basis of eigenvectors of HessΣF at (x, y) ∈ Σ with

respective eigenvalues λ1, ..., λn. We want to show that λi ≥ 0 for every i. By (7.2.4),

λi ≥ λ̃i := 1 + ⟨A(ei, ei), (∇F )⊥⟩ and joining with (7.2.3) we get

n∑
i=1

λ̃i
2
= n+ 2

n∑
i=1

⟨A(ei, ei), (∇F )⊥⟩+
n∑

i=1

⟨A(ei, ei), (∇F )⊥⟩2

= n+
n∑

i=1

⟨A(ei, ei), (∇F )⊥⟩2

≤ n+ |∇F⊥|2
n∑

i=1

|A(ei, ei)|2
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≤ n+ |∇F⊥|2|A|2

≤ n+
n

n− 1
=

n2

n− 1
.

On the other hand, we have that (
∑n

i=1 λ̃i)
2 = n2 since Σn is minimal. Then

n∑
i=1

λ̃i
2 ≤ (

∑n
i=1 λ̃i)

2

n− 1
.

By Lemma 7.2.1, where λ̃i = ai and b = 0, we get that 2λ̃iλ̃j ≥ 0. Consequently, the

eigenvalues λ̃i, i = 1, ..., n, have all the same sign. Since
∑n

i=1 λ̃i = n, we conclude that

λ̃i ≥ 0 for every i. Therefore, λi ≥ λ̃i ≥ 0 for every i. Then

HessΣF (X,X) ≥ 0,

for all (x, y) ∈ Σ and X ∈ T(x,y)Σ.

Now, we can prove the following result for minimal free boundary hypersurfaces.

Theorem 7.2.1 Let Σn be a n-dimensional free boundary minimal hypersurface in a

domain Ω with boundary ∂Ω ⊂ F−1(1). Assume that (f ′)2 + ff ′′ + 1 ≤ 0. If

|A|2g(x, y)2 ≤ n

n− 1
,

for every (x, y) ∈ Σn, then one of the following is true:

1. Σn is diffeomorphic to a disk Dn.

2. Σn is diffeomorphic to S1 × Dn−1 and C(Σn) is a closed geodesic.

Proof. Firstly, let us define C = {p ∈ Σ : F (p) = minΣF}. From Proposition G,

HessΣF (X,X) ≥ 0,

for all p ∈ Σ and X ∈ TpΣ. The convexity of HessΣF strongly restricts the set C and

the topology of Σ. As in the proof of Theorem 7.1.1, the convexity of HessF restricted

to Σ implies that the set C is a totally convex set of Σ.

From now on, the proof follows the same line as in [18, Theorem 3.7] that uses

standard Morse’s theory. We divide into two cases:

Case 1: C consists of a single point.
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Case 2: C contains more than one point.

If C = {p0}, for some p0 ∈ Σ, then F has only one critical point p0 ∈ Σ and by

standard Morse theory (see Milnor [62]), we conclude that Σ is diffeomorphic to a disk

Dn.

If C contains more than one point we can show that dim(C) = 1 and C is a

geodesic. In fact, let us consider p1 and p2 two distinct points in C. Since C is totally

convex, we can find a minimizing geodesic joining p1 and p2 contained in C. Let γ be

the maximal geodesic extending this minimizing geodesic segment and still contained

in C. If there exists a point q ∈ C \ γ, we conclude that C contains the cone obtained

by the union of all geodesic segments with extremities in q and in γ. Then, we get that

dim(Ker(HessΣF ) ≥ 2 for every point in this cone. Proceeding again as in the proof of

Theorem 7.1.1, we get that

1 + ⟨A(e1, e1),∇F⊥⟩ = 1 + ⟨A(e2, e2),∇F⊥⟩ = 0.

Therefore, by the Cauchy-Schwarz inequality we obtain

|A(ei, ei)|2|∇F⊥|2 ≥ 1.

Then, from (7.2.3)

n

n− 1
≥ |∇F⊥|2|A|2 ≥

(
|A(e1, e1)|2 + |A(e2, e2)|2

)
|∇F⊥|2 ≥ 2.

As this is a contradiction when n ≥ 3, we conclude that C has to be equal to the

geodesic γ and dim(C) = 1. In this case, C is not a closed geodesic (what would imply

that Σ is diffeomorphic to a disk) or is a closed geodesic (what would force Σ to be

diffeomorphic to S1 × Dn−1, from standard Morse theory).
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Chapter 8

Examples of CMC free boundary

surfaces in the rotational ellipsoid

In this section, we show that there are a catenoid and some portions of Delaunay

surfaces that are free boundary surfaces on the rotational ellipsoid

a2x2 + a2y2 + b2z2 = R2, (8.0.1)

with a2 ≤ b2 and some constant R2, and satisfy the pinching condition (7.1.1).

Remark 8.0.1 Let us consider

f(y) =
b

a

√(
R

b

)2

− y2,

in (6.0.1), where a2 ≤ b2 and R is a constant. Then, we obtain the rotational ellipsoid

given by (8.0.1). In this case, the hypothesis (f ′)2 + ff ′′ + 1 ≤ 0 is automatically

satisfied. In fact, we have

f ′(y) = − yb

a
√(

R
b

)2 − y2

and

f ′′(y) = − R2

ab
((

R
b

)2 − b2
) 3

2

.

Therefore,

(f ′)2 + ff ′′ + 1 = − y2b2

a2
((

R
b

)2 − y2
) +

b
√(

R
b

)2 − y2

a

− R2

ab
((

R
b

)2 − b2
) 3

2

+ 1
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=
(a2 − b2)

((
R
b

)2 − y2
)

a2
((

R
b

)2 − y2
) =

a2 − b2

a2
≤ 0.

First, let us consider a smooth curve parametrized by arc length in the xz-plane

β(s) = (x(s), 0, z(s)), with x(s) > 0 and denote by Σ the surface obtained by rotation

of β around the z-axis.

We start presenting a lemma with sufficient conditions for a general rotational

surface to satisfy the pinching condition (7.1.1) in the rotational ellipsoid.

Lemma 8.0.1 Suppose that the curve β satisfies the following conditions

−1 ≤ x′′(s)

(
x(s)− x′(s)

z′(s)
z(s)

b2

a2

)
, if z′(s) ̸= 0, (8.0.2)

−1 ≤ z(s)z′′(s)
b2

a2
, if z′(s) = 0, (8.0.3)

−x(s)x′(s)2 ≤ z′(s)x′(s)z(s)
b2

a2
, (8.0.4)

with a2 ≤ b2. Then, Σ satisfies the pinching condition

|ϕ|2g(x, y)2 ≤ 1

2
(2 + 2Hg(x, y))2,

on the rotational ellipsoid given in (8.0.1).

Proof. From Remark 7.1.1 , it suffices to show that

λ̃1 = 1 + k1g(x, y) ≥ 0 and λ̃2 = 1 + k2g(x, y) ≥ 0.

Let us consider X : [s1, s2]× S1 → R3 given by

X(s, θ) = (x(s) cos(θ), x(s) sin(θ), z(s)),

obtained by rotation of β around the z-axis. Therefore,

Xs(s, θ) = (x′(s) cos(θ), x′(s) sin(θ), z′(s))

and

Xθ(s, θ) = (−x(s) sin(θ), x(s) cos(θ), 0).
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Then, a straight forward computation shows that

N = (−z′(s) cos(θ),−z′(s) sin(θ), x′(s)).

Thus,

⟨(x, y), N⟩ = −x(s)z′(s) cos2(θ)− x(s)z′(s) sin2(θ) + x′(s)z(s)

= −x(s)z′(s) + x′(s)z(s). (8.0.5)

From (8.0.5) and Remark 8.0.1, we get

g(x, y) = ⟨∇̄F,N⟩

= ⟨(x, y), N⟩ − ⟨N,E3⟩(y + f(y)f ′(y))

= −x(s)z′(s) + x′(s)z(s)− x′(s)

(
z(s)− b2

a2
z(s)

)
= −x(s)z′(s) + x′(s)z(s)

b2

a2
. (8.0.6)

A straight forward computation shows that the coefficients of the first and second

fundamental forms are given by

E = 1, and G = x(s)2

and

e = −x′′(s)z′(s) + z′′(s)x′(s) and g = x(s)z′(s).

Then, we get that

k1 =
e

E
= x′(s)z′′(s)− x′′(s)z′(s) and k2 =

g

G
=

z′(s)

x(s)
. (8.0.7)

Since β is parametrized by arc length, we have ⟨β′(s), β′′(s)⟩ = 0. Thus, we get that

z′(s)z′′(s) = −x′(s)x′′(s). (8.0.8)

If z′(s) ̸= 0, using (8.0.8) we can write

k1(s) = (x′(s)z′′(s)− x′′(s)z′(s))
z′(s)

z′(s)

=
x′(s)z′′(s)z′(s)− x′′(s)z′(s)2

z′(s)

=
−x′′(s)x′(s)2 − x′′(s)z′(s)2

z′(s)
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= −x′′(s)(x′(s)2 + z′(s)2)

z′(s)

= −x′′(s)

z′(s)
. (8.0.9)

Then, using (8.0.6) and (8.0.2)

λ̃1 = 1 + k1g(x, y)

= 1− x′′(s)

z′(s)

(
−x(s)z′(s) + x′(s)z(s)

b2

a2

)
= 1 + x′′(s)

(
x(s)− x′(s)

z′(s)
z(s)

b2

a2

)
≥ 0.

If z′(s) = 0, since the curve is parameterized by the arc length, then x′(s)2 = 1. Using

(8.0.6) and (8.0.3), we get

λ̃1 = 1 + k1g(x, y)

= 1 + (x′(s)z′′(s)− x′′(s)z′(s))

(
−x(s)z′(s) + x′(s)z(s)

b2

a2

)
= 1 + z′′(s)z(s)

b2

a2
≥ 0.

Finally, using again that the curve is parameterized by the arc length, together with

(8.0.6) and (8.0.4), we obtain

λ̃2 = 1 + k2g(x, y)

= 1 +
z′(s)

x(s)

(
−x(s)z′(s) + x′(s)z(s)

b2

a2

)
=

x(s)− x(s)z′(s)2 + z′(s)x′(s)z(s) b
2

a2

x(s)

=
x(s)x′(s)2 + z′(s)x′(s)z(s) b

2

a2

x(s)
≥ 0.

Therefore, λ̃1(s) ≥ 0 and λ̃2(s) ≥ 0 as desired.

The function

ρ(s) = x(s)− x′(s)

z′(s)
z(s)

b2

a2
. (8.0.10)

that appears in (8.0.2) has an important geometric meaning. In fact, if ρ(s0) = 0, then

we can proof that Σ is orthogonal to the rotational ellipsoid E given by

a2x2 + a2y2 + b2z2 = R2,

where R2 := a2x(s0)
2 + b2z(s0)

2. In particular we have the following lemma.
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Lemma 8.0.2 Assume that β(s) is defined for s ∈ [c, d] and consider Z = {s ∈

[c, d]; z′(s) = 0}. Let us consider a and b positive real numbers, such that a2 ≤ b2 and

define the function ρ : [c, d] \ Z → R by

ρ(s) = x(s)− x′(s)

z′(s)
z(s)

b2

a2
.

Let s1 < s2 be two values in [c, d] such that:

(i) ρ(s1) = ρ(s2) = 0,

(ii) a2x(s1)
2 + b2z(s1)

2 = a2x(s2)
2 + b2z(s2)

2 := R2 and

(iii) a2x(s)2 + b2z(s)2 < R2 for all s ∈ (s1, s2).

Then, the rotation of β|[s1,s2] produces a free boundary surface Σ inside the rotational

ellipsoid E given by

a2x2 + a2y2 + b2z2 = R2. (8.0.11)

Proof. The ellipsoid given in (8.0.11) can be parametrized by

X̄(s, θ) =

(
R

a
cos(s) cos(θ),

R

a
cos(s) sin(θ),

R

b
sin(s)

)
.

A straight calculation show that

N̄ =
(1
b
cos(s) cos(θ), 1

b
cos(s) sin(θ), 1

a
sin(s))√

cos2(s)
b2

+ sin2(s)
a2

.

Now, observe that if ρ(s1) = ρ(s2) = 0, then

0 = ρ(si) = x(si)−
x′(si)

z′(si)
z(si)

b2

a2
.

We have z(si) ̸= 0. In fact, if z(si) = 0, we conclude that x(si) = 0, what does not

happen. Thus, we can write

x′(si) =
a2

b2
x(si)

z(si)
z′(si),

i = 1, 2. Therefore,

β′(si) =

(
a2

b2
x(si)

z(si)
z′(si), 0, z

′(si)

)
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=
z′(si)

z(si)

a

b

(
a

b
x(si), 0,

b

a
z(si)

)
On the other hand, using (ii) we have that the curve β intersects the ellipsoid at the

points β(si). The normal at these points is given by

N̄(β(si)) =

(
a
b
x(si), 0,

b
a
z(si)

)
R

√
cos2(s)

b2
+ sin2(s)

a2

.

Then,

β′(si) =
z′(si)

z(si)

a

b
R

√
cos2(s)

b2
+

sin2(s)

a2
N̄(β(si)).

Thus, the rotation of β|[s1,s2] is orthogonal to the ellipsoid in (8.0.11). As by hypothesis

we have a2x(s)2 + b2z(s)2 < R2 for all s ∈ (s1, s2), we get that Σ ⊂ E.

Before presenting examples of CMC free boundary surfaces, let us introduce an

example in the case where H = 0, that is, a minimal free boundary surface in the

rotational ellipsoid.

Example 4 Consider Σ the catenoid obtained by revolving the curve

β(s) = (cosh(s), 0, s)

around the z-axis. Parameterizing by arc length we obtain the curve

β̄(s) = (cosh(sinh−1(s)), 0, sinh−1(s)).

Taking a2 = 1 and b2 = 2 in (8.0.10), we get that ρ(s) = 0 if and only if

1

2 sinh−1(s)
= tanh(sinh−1(s)).

Solving the equation we get that s1 = −0, 755... and s2 = 0, 755... are such that ρ(si) = 0

for i = 1, 2. The parity of the functions cosh(s) and sinh−1(s) ensures that

(cosh(sinh−1(s1))
2 + 2(sinh−1(s1))

2 = (cosh(sinh−1(s2)))
2 + 2(sinh−1(s2))

2,

once s1 = −s2. Then, let us define

R2 := (cosh(sinh−1(s1))
2 + 2(sinh−1(s1))

2 = (cosh(sinh−1(s2)))
2 + 2(sinh−1(s2))

2.

This way, the degrowth and growth of cosh(s) in (s1, 0) and (0, s2), respectively, and the

fact that sinh−1(s) is increasing guarantee that (cosh(sinh−1(s))2 + 2(sinh−1(s))2 < R2

for all s ∈ (s1, s2). Then, Σ is a free boundary surface in the ellipsoid E given by

x2 + y2 + 2z2 = R2.
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Furthermore, with some calculations we get that

−1− x′′(s)

(
x(s)− x′(s)

z′(s)
z(s)

b2

a2

)
= −1− 1

(1 + s2)
3
2

(
cosh(sinh−1(s))− 2s sinh−1(s)

)
≤ 0

and

−x(s)x′(s)2 − z′(s)x′(s)z(s)
b2

a2
= − s

1 + s2
(
s cosh(sinh−1(s)) + 2 sinh−1(s)

)
≤ 0,

for all s ∈ [s1, s2]. Then, from Lemma 8.0.1, Σ satisfies the condition

|ϕ|2g(x, y)2 ≤ 1

2
(2 + 2Hg(x, y))2.

Figure 8.1: Catenoid free boundary in the elipsoid

Now, let us consider a smooth curve parametrized by arc length in the xz-plane

β(s) = (x(s), 0, z(s)), with x(s) > 0, where

x(s) =
1

H

√
1 +B2 + 2B sin

(
Hs+

3π

2

)
(8.0.12)

and

z(s) =

∫ s+ 3π
2H

3π
2H

1 +B sin(Ht)√
1 +B2 + 2B sin(Ht)

dt (8.0.13)

are given by the solution of Kenmotsu [51, Section 2, Equation (11)], where B,H ∈ R,

with H > 0, B ≥ 0 and B ̸= 1. Let denote by Σ the surface obtained by rotation of β

around the z-axis.

From Delaunay’s Theorem, we know that any complete surface of revolution with

constant mean curvature is a sphere, a catenoid, or a surface whose generating curve

is given by β.
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A surface whose generating curve is given by β is called a Delaunay surface, with

parameters H and B, which can be of different types. If B = 0 we get right cylinders.

If 0 < B < 1, Delaunay surfaces are embedded and they are called unduloids. If B > 1

they are only immersed and called nodoids.

Observe that the components of the velocity vector of the curve β(s) in the xz-

plane are given by

x′(s) =
B cos(Hs+ 3π

2
)√

1 +B2 + 2B sin(Hs+ 3π
2
)

and z′(s) =
1 +B sin(Hs+ 3π

2
)√

1 +B2 + 2B sin(Hs+ 3π
2
)
.

And the acceleration components are given by

x′′(s) =
−BH(B + sin(Hs+ 3π

2
))(B sin(Hs+ 3π

2
) + 1)

(1 +B2 + 2B sin(Hs+ 3π
2
))

3
2

(8.0.14)

and

z′′(s) =
HB2 cos(Hs+ 3π

2
)(B + sin(Hs+ 3π

2
))

(1 +B2 + 2B sin(Hs+ 3π
2
))

3
2

.

Let us assume that 0 < B < 1. The key observation in this case is that the

function z satisfies z′(s) > 0 for all s. In fact,

z′(s) =
1 +B sin(Hs+ 3π

2
)√

1 +B2 + 2B sin(Hs+ 3π
2
)

=
1 +B(sin(Hs) cos 3π

2
+ sin 3π

2
cos(Hs))√

1 +B2 + 2B sin(Hs+ 3π
2
)

=
1−B cos(Hs)√

1 +B2 + 2B sin(Hs+ 3π
2
)
> 0

since 1−B cos(Hs) ≥ 1−B > 0.

Let s0 be the smaller positive value such that x′′(s0) = 0. One can easily check

that s0 = s0(H,B) = 1
H
sin−1(−B) + π

2H
, where sin−1 : [−1, 1] → [−π

2
, π
2
]. Indeed, if

s0 =
1
H
sin−1(−B) + π

2H
, we get

sin

(
Hs0 +

3π

2

)
= −B and cos

(
Hs0 +

3π

2

)
=

√
1 +B2.

Then, from (8.0.14) we get

x′′(s0) =
−BH(B −B)(−B2 + 1)

(1−B2)
3
2

= 0.
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Furthermore, we have x′′(s) > 0 for all s ∈ (−s0, s0). In fact, we have B+sin
(
Hs+ 3π

2

)
<

0 for all s ∈ (−s0, s0) and 1 +B sin
(
Hs+ 3π

2

)
> 0. Then,

x′′(s) =
−BH(B + sin(Hs+ 3π

2
))(B sin(Hs+ 3π

2
) + 1)

(1 +B2 + 2B sin(Hs+ 3π
2
))

3
2

> 0

for all s ∈ (−s0, s0).

Thus, given s ∈ (−s0, s0) we have z′(s) > 0 and x′′(s) > 0.

Remark 8.0.2 In this case, we only have x′ = 0 at point 0, so the tangent is only

vertical at this point. Therefore, we only have one wave of the unduloid inside the

ellipsoid.

Now, let us see some properties of the function ρ that we will need later.

Lemma 8.0.3 Fix 0 < B < 1, H > 0, and consider the function ρ : [−s0, s0] → R

given by (8.0.10). Then,

i) ρ(0) > 0.

ii) ρ′(0) = 0 and ρ′(s0) ≤ 0.

iii) ρ is increasing in (−s0, 0) and decreasing in (0, s0).

Proof. Observe that i) follows directly. In fact, we have

ρ(0) = x(0)− x′(0)

z′(0)
z(0)

b2

a2
=

1−B

H
> 0

since x′(0) = 0. To proof ii), we observe that, since β is parametrized by arc length,

we get

ρ′(s) = x′(s)− b2

a2
((x′(s)z(s))′z′(s)− x′(s)z(s)z′′(s))

z′(s)2

= x′(s) +
b2

a2
x′(s)z(s)z′′(s)− x′′(s)z(s)z′(s)− x′(s)z′(s)2

z′(s)2

=

(
1− b2

a2

)
x′(s) +

b2

a2
z(s)

(
x′(s)z′′(s)− x′′(s)z′(s)

z′(s)2

)
=

(a2 − b2)

a2
x′(s)− b2

a2
z(s)

(
x′(s)

z′(s)

)′

.

As x′(0) = 0 and z(0) = 0 it follows that ρ′(0) = 0. On the other hand, using the

expressions for k1 given in (8.0.7) and (8.0.9) we get

ρ′(s) =
(a2 − b2)

a2
x′(s)−

(
−x′(s)z′′(s) + x′′(s)z′(s)

z′(s)2

)
z(s)

b2

a2
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=
(a2 − b2)

a2
x′(s) +

k1(s)

z′(s)2
z(s)

b2

a2

=
(a2 − b2)

a2
x′(s)− x′′(s)

z′(s)3
z(s)

b2

a2
.

Then, since x′′(s0) = 0 we have that

ρ′(s0) = (a2 − b2)x′(s0)

=
(a2 − b2)

a2
B cos(Hs0 +

3π
2
)√

1 +B2 + 2 sin(Hs0 +
3π
2
)

=
(a2 − b2)

a2
B
√
1−B2

√
1−B2

=
(a2 − b2)

a2
B ≤ 0

because a2 ≤ b2 and B > 0. Finally, as x′′(s) > 0 and x′(0) = 0 we get that x′(s) > 0

for all s ∈ (0, s0) and x′(s) < 0 for all s ∈ (−s0, 0). In the same way, we have z(s) > 0

in (0, s0) and z(s) < 0 in (−s0, 0), then we obtain

ρ′(s) =
(a2 − b2)

a2
x′(s)− x′′(s)

z′(s)3
z(s)

b2

a2
> 0

in (−s0, 0), and

ρ′(s) =
(a2 − b2)

a2
x′(s)− x′′(s)

z′(s)3
z(s)

b2

a2
< 0

in (0, s0). Therefore, ρ is increasing in (−s0, 0) and decreasing in (0, s0).

The next lemma gives us conditions to have an unduloid that is a free boundary

surface on the rotational ellipsoid.

Lemma 8.0.4 Fix 0 < B < 1, H > 0, and set z0 = 1−B2

HB
. If z(s0) ≥ z0, then ρ(s̄) = 0

for some s̄ ∈ (0, s0]. In particular, the surface obtained by rotation of β|[−s̄,s̄] is a free

boundary CMC surface inside the rotational ellipsoid E given by

a2x2 + a2y2 + b2z2 = R̄2,

where R̄2 := a2x(s̄)2 + b2z(s̄)2.

Proof. If z(s0) ≥ z0, then we get

ρ(s0) = x(s0)−
x′(s0)

z′(s0)
z(s0)

b2

a2
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≤ x(s0)−
x′(s0)

z′(s0)
z0
b2

a2

=
(a2 − b2)

a2

√
1−B2

H
≤ 0.

By assertion i) of Lemma 8.0.3, ρ(0) > 0, and then by continuity there is s̄ ∈ (0 s0]

such that ρ(s̄) = 0. Using the parity of functions sin(Ht+ 3π
2
) and sin(Ht), we get

x(−s) = x(s), x′(−s) = −x′(s), z(−s) = −z(s) and z′(−s) = z′(s),

and thus,

ρ(−s̄) = ρ(s̄) = 0.

Moreover, x′(0) = 0 and x′′(s) > 0 imply that x′(s) > 0 for all s ∈ (0, s̄]. Therefore,

x′(s) > 0 and z′(s) > 0 in (0, s̄), and it ensures a2x2(s) + b2z2(s) < R̄2 := a2x2(s̄) +

b2z2(s̄) for all s ∈ (0, s̄]. Because the curve β is symmetric with respect to x-axis we

get a2x2(s) + b2z2(s) ≤ R̄2 for all s ∈ [−s̄, s̄] and we conclude that the surface is free

boundary by Lemma 8.0.2.

Example 5 Fix B = 0, 9 and H = 0, 1, so we have z0 = 1−B2

HB
= 2, 111... and s0 =

10 sin−1(−0, 9) + 5π ≈ 4, 51026. Then, we get

z0(s0) =

∫ 4,51026+15π

15π

(
1 + (0, 9) sin(0, 1t)√

1 + (0, 9)2 + (1, 8) sin(0, 1t)

)
dt ≈ 2, 71697.

Therefore, z(s0) ≥ z0. From Lemma 8.0.4, there is s̄ ∈ (0, s0] such that the surface

obtained by rotation of β|[−s̄,s̄] is a free boundary CMC surface inside the rotational

ellipsoid E given by

a2x2 + a2y2 + b2z2 = R̄2, (8.0.15)

where R̄2 := a2x(s̄)2 + b2z(s̄)2.

87



Figure 8.2: Unduloid free boundary in the elipsoid

The next example says essentially that there are portions of unduloids that are

free boundary in the ellipsoid given by (8.0.15) and satisfy the conditions of Lemma

8.0.1, there is, satisfy

|ϕ|2g(x, y)2 ≤ 1

2
(2 + 2Hg(x, y))2,

on Σ.

Example 6 Fix 0 < B < 1 and H > 0 and consider β(s) = (x(s), 0, z(s)) as above

and set z0 = 1−B2

HB
. Let s0 be the smaller positive value such that x′′(s0) = 0, in

other words, s0 = 1
H
sin−1(−B) + π

2H
. Suppose z(s0) ≥ z0. From Lemma (8.0.4), the

surface Σ obtained by rotation of β|[−s̄,s̄], for some s̄ ∈ (0, s0], is a free boundary CMC

surface inside the rotational ellipsoid E given by (8.0.11). Moreover, in this case, for

all s ∈ [−s̄, s̄] we have

(i) x′′(s) ≥ 0. In fact, we have [−s̄, s̄] ⊂ [−s0, s0], where s0 was chosen to be the

largest neighborhood of 0 where x′′(s) ≥ 0.

(ii) ρ(s) := x(s) − x′(s)
z′(s)

z(s) b
2

a2
≥ 0. Indeed, from Lemma 8.0.4, ρ(s̄) = 0. From

Lemma 8.0.3, ρ is increasing in (−s0, 0) and decreasing in (0, s0). Therefore, ρ(s) ≥ 0.

(iii) z(s)x′(s) ≥ 0. In fact, since z′(s) > 0 and x′′(s) > 0 in (−s0, s0), we get that

z and x′ are both growing in (−s0, s0). Since z(0) = x′(0) = 0, we conclude that x′ and

z has the same sing.
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The items (i), (ii) and (iii) guarantee that the inequalities in Lemma 8.0.1 are

satisfied. In fact, from (i) and (ii) we get (8.0.2). Since z′ > 0, we do not need to show

the validity of (8.0.3). Using that x > 0 and (iii) we get (8.0.4). Therefore,

|ϕ|2g(x, y)2 ≤ 1

2
(2 + 2Hg(x, y))2,

on Σ.

Now, let us assume that B > 1. Let r0 be the smaller positive value such that

z′(r0) = 0. We can check that r0 = r0(H,B) = 1
H
sin−1

(
− 1

B

)
+ π

2H
, where sin−1 :

[−1, 1] → [−π
2
, π
2
]. Indeed, if r0 = 1

H
sin−1

(
− 1

B

)
+ π

2H
, we get that sin

(
Hr0 +

3π
2

)
= − 1

B
.

Then,

z′(r0) =
1 +B

(
− 1

B

)
√
B2 − 1

= 0.

In this case, we have z′(r) < 0 and x′′(r) > 0 for all r ∈ (−r0, r0). In fact, we have

1−B cos(Hr) ≤ 1−B < 0. Then,

z′(r) =
1 +B sin(Hr + 3π

2
)√

1 +B2 + 2B sin(Hr + 3π
2
)

=
1 +B(sin(Hr) cos 3π

2
+ sin 3π

2
cos(Hr))√

1 +B2 + 2B sin(Hr + 3π
2
)

=
1−B cos(Hs)√

1 +B2 + 2B sin(Hs+ 3π
2
)
< 0.

Furthermore, we have B + sin
(
B + sin(Hr + 3π

2

)
≥ B − 1 > 0. Therefore,

x′′(r) =
−BH(B + sin(Hr + 3π

2
))(B sin(Hr + 3π

2
) + 1)

(1 +B2 + 2B sin(Hr + 3π
2
))

3
2

> 0

for all r ∈ (−r0, r0).

Remark 8.0.3 In this case, since z′ ̸= 0 for all r ∈ (−r0, r0), we do not have horizontal

tangents. Therefore, the node of the nodoids does not lie inside the ellipsoid.

In the next Lemma we are going to show that there are portions of nodoids that

are free boundary in the ellipsoid given by (8.0.15) and satisfy the conditions of Lemma

8.0.1, there is, satisfy

|ϕ|2g(x, y)2 ≤ 1

2
(2 + 2Hg(x, y))2,

on Σ.
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Lemma 8.0.5 Fix B > 1 and H > 0 and consider β(r) = (x(r), 0, z(r)), with x and z

given in (8.0.12) and (8.0.13), respectively. Let r0 as above, then, there is r̄ ∈ (−r0, r0)

such that ρ(r̄) = 0 and the surface obtained by rotation of β|[−r̄,r̄] is a free boundary

CMC surface inside the rotational ellipsoid E given by

a2x2 + a2y2 + b2z2 = R̄2,

where R̄2 := a2x(s̄)2 + b2z(s̄)2. Furthermore, we have

|ϕ|2g(x, y)2 ≤ 1

2
(2 + 2Hg(x, y))2

on Σ.

Proof. In fact, we have that

ρ(0) = x(0)− x′(0)

z′(0)
z(0)

b2

a2
=

|1−B|
H

> 0,

and ρ(r) → −∞ when r → r0. Then, by continuity there is r̄ ∈ (0, r0) such that

ρ(r̄) = 0. Using the parity of function ρ we have

ρ(r̄) = ρ(−r̄) = 0.

Moreover, x′(0) = 0 and x′′(r) > 0 imply that x′(r) < 0 for all r ∈ (−r̄, 0). Therefore,

x′(r) < 0 and z′(r) < 0 in (−r̄, 0), and it ensures a2x2(r)+ b2z2(r) < R̄2 := a2x2(−r̄)+

b2z2(−r̄) for all r ∈ (−r̄, 0). Because the curve β is symmetric with respect to x-axis

we get a2x2(r) + b2z2(r) ≤ R̄2 for all r ∈ [−r̄, r̄] and we conclude that the surface is

free boundary by Lemma 8.0.2. Furthermore, in this case, for all r ∈ [−r̄, r̄] we have

(i) ρ(r) ≥ 0. Indeed, as already calculated in Lemma 8.0.3, we have

ρ′(r) =
(a2 − b2)

a2
x′(r)− x′′(r)

z′(r)3
z(r)

b2

a2
.

Since x′′(r) > 0 and x′(0) = 0 we get that x′(r) < 0 for all r ∈ (−r0, 0) and x′(r) > 0

for all r ∈ (0, r0). Similarly, we have z(r) > 0 in (−r0, 0) and z(r) < 0 in (0, r0), then

we obtain ρ′(r) > 0, ∀r ∈ (−r̄, 0), and ρ′(r) < 0, ∀r ∈ (0, r̄). Therefore, ρ is increasing

in (−r0, 0) and decreasing in (0, r0). Since ρ(0) > 0, we conclude that ρ(r) ≥ 0, for all

r ∈ [−r̄, r̄].
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(ii) x′(r)z(r) ≤ 0. In fact, since x′′(r) > 0 and z′(r) < 0 in (−r0, r0), we get that

x′ is growing in (−r0, r0) and z is descending in (−r0, r0). Since z(0) = x′(0) = 0, we

conclude that x′ and z have opposite signs.

The items (i), (ii) and (iii) guarantee that the inequalities in Lemma 8.0.1 are

satisfied. In fact, from x′′(r) > 0 and (i) we get (8.0.2). Since z′ < 0, we do not need

to show the validity of (8.0.3). Using that x > 0 and (ii) we get (8.0.4). Therefore,

|ϕ|2g(x, y)2 ≤ 1

2
(2 + 2Hg(x, y))2,

on Σ.

Example 7 Fix B = 1, 1 and H = 0, 1. Then, we have r0 ≈ 10 sin−1(−0.91) + 5π ≈

4, 297.... Therefore, z′(r0) = 0 and from Lemma 8.0.5, there is r̄ ∈ (0, r0] such that

the surface obtained by rotation of β|[−r̄,r̄] is a free boundary CMC surface inside the

rotational ellipsoid E given by

a2x2 + a2y2 + b2z2 = R̄2,

where R̄2 := a2x(r̄)2 + b2z(r̄)2.

Figure 8.3: Nodoid free boundary in the elipsoid
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