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Abstract

In this work, we study questions related to the existence of ground state and nontrivial

solution for some classes of strongly inde�nite problems with exponential growth in the

plane. Firstly, we study Hamiltonian systems, which have been widely addressed in

the last years in the mathematical study of standing wave solutions in nonlinear optics.

Secondly, we deal with a class of periodic Schrödinger equations involving exponential

critical growth, in which we do not use the classic Ambrosetti-Rabinowitz condition. In

order to obtain our results, we use variational methods, namely, a reduction method and

linking theorems.

Keywords: Hamiltonian systems, Schrödinger equations, Exponential growth,

Trudinger-Moser inequality
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Resumo

Neste trabalho, estudamos questões relacionadas à existência de soluções não-triviais

e de energia mínima para algumas classes de problemas fortemente inde�nidos com

crescimento exponencial no plano. Primeiramente, estudamos sistemas Hamiltonianos,

os quais tem sido amplamente abordados nos últimos anos no estudo de soluções do tipo

ondas estacionárias em óptica não-linear. Em seguida, analisamos uma classe de equações

de Schrödinger periódicas envolvendo crescimento crítico exponencial e sem considerar a

condição clássica de Ambrosetti-Rabinowitz. A �m de obter nossos resultados, usamos

métodos variacionais, mais especi�camente, um método de redução e teoremas de linking.

Palavras-chave: Sistemas Hamiltonianos, Equações de Schrödinger, Crescimento

Exponential, Desigualdade de Trudinger-Moser
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Introduction

In this work, we study the existence of solutions for two classes of strongly inde�nite

problems. Firstly, we deal with classes of Hamiltonian systems in the plane, namely

−∆u+ V (x)u = Hv(x, u, v), x ∈ R2,

−∆v + V (x)v = Hu(x, u, v), x ∈ R2,
(1)

where V ∈ C(R2, (0,∞)), H ∈ C1(R2 × R2,R), Hu, Hv denote the partial derivatives of

H with respect to the variables u and v, respectively, z = (u, v) and Hz = (Hu, Hv).

Secondly, we study the existence of solutions for the following Schrödinger equation:

−∆u+ V (x)u = f(x, u), x ∈ R2,

u ∈ H1(R2),
(2)

where V ∈ C(R2,R) and f ∈ C(R2×R,R). Throughout the work, we will have additional

hypotheses about the functions V , H and f .

Hamiltonian systems have been widely addressed in the last years, for instance, in

the mathematical study of standing wave solutions and in nonlinear optics (see [21]), in

models of population dynamics (see [51]) and in the study of Bose�Einstein condensates,

see [19], etc.

In view of its applications, many researchers have investigated the existence of solution

for systems of type (1). In bounded domains of RN , with N ≥ 3, see for example

[12, 22, 23, 40] and the papers [10, 15, 33, 65] in the whole space. We can cite the work

[14] for a broad survey about Hamiltonian systems.

Since the energy functional associated to (1) is strongly inde�nite and there is a lack

of compactness in unbounded domains, various techniques and methods are employed to

treat with those problems, for example, the Strauss' lemma in the radially symmetric
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function space [31], the concentration compactness principle of Lions [49], the dual

variational method [56], the Orlicz space approach [27] and a reduction method, see [13].

In the particular situation when Hv(x, u, v) = |v|p−1v, (p ≥ 1) and Hu(x, u, v) =

|u|q−1u, (q ≥ 1), all the results mentioned above impose that the exponents p and q must

be below the critical hyperbola, that is,

1

p+ 1
+

1

q + 1
>

N

N + 2
.

This fact is a consequence from the Pohoºaev identity [63] and Sobolev embedding

theorem. In dimension two, we can get more information on the growth range of the

exponents p and q, once we know that H1(R2) ↪→ Ls(R2) for all s ∈ [2,∞). Nonetheless,

H1(R2) ̸↪→ L∞(R2). In this situation, the maximal growth which allows us to treat (1)

variationally in H1(R2) is motivated by the Trudinger�Moser inequality. When Ω is a

bounded domain of R2, this inequality asserts that eαu
2 ∈ L1(Ω), for all α > 0 and

u ∈ H1
0 (Ω). Moreover, it is known that

sup
u∈H1

0 (Ω) : ∥∇u∥2≤1

∫
Ω

eαu
2 ≤ Cµ(Ω), for all α ≤ 4π,

for some constant C = C(Ω) > 0, where µ(Ω) denotes the Lebesgue measure of Ω. The

above inequality is optimal in the following sense: for any growth eαu
2
, with α > 4π, the

correspondent supremum is in�nite (see [50, 62]). For a version of the Trudinger-Moser

inequality in H1(R2), see Lemma 1.11.

Inspired by (), de Figueiredo et al. [26] introduced the notion of subcritical and critical

exponential growth. More precisely, a function f : R → R has subcritical exponential

growth at +∞ if for all α > 0 it holds

lim
s→+∞

f(s)

eαs2
= 0

and f(s) has critical exponential growth at +∞ if there exists α0 > 0 such that

lim
s→+∞

f(s)

eαs2
=

 0, for all α > α0,

+∞, for all α < α0.

Currently, many researchers have addressed elliptic systems involving exponential
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growth. For example, in [29], the authors obtained results on the existence of solution for

semilinear equations and systems. Moreover, de Figueiredo et al. [28] have studied the

existence of nontrivial weak solution for Hamiltonian systems of the form
−∆u = g(v), in Ω,

−∆v = f(u), in Ω,

u = v = 0, on ∂Ω,

where Ω ⊂ R2 is a bounded domain and the functions f, g : R → R have subcritical or

critical exponential growth.

In [38], the authors established the existence of nontrivial solution for Hamiltonian

systems of the form −∆u+ V (x)u = g(x, v), x ∈ R2,

−∆v + V (x)v = f(x, u), x ∈ R2,
(3)

when the potential V (x) is neither bounded away from zero, nor bounded from above.

The nonlinear terms f(x, u) and g(x, v) have subcritical or critical exponential growth

and it was imposed that the potential V (x) satis�es the assumption

lim
R→+∞

νs(R2 \BR) = +∞, for some s ∈ [2,∞),

where νs is de�ned by

νs(Ω) = inf
u∈H1

0 (Ω) : ∥u∥s=1

∫
Ω

(|∇u|2 + V (x)u2), for an open Ω ⊂ R2 and νs(∅) = +∞.

Generally, the conditions imposed on the potential V (x) are in order to overcome the loss

of compactness of the Sobolev embedding H1(R2) ↪→ Ls(R2) for s ∈ [2,∞).

In the paper [32], the authors studied the Hamiltonian system

−∆u+ u = g(v), x ∈ R2,

−∆v + v = f(u), x ∈ R2,

where f, g : R → R have critical exponential growth. By using a suitable variational

framework based on the generalized Nehari manifold method and the concentration

compactness principle of Lions, they established the existence of a ground state solution.
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More recently, in the paper [52], the authors consider system (3) with V (x), f(x, u) and

g(x, v) periodic in x1, x2 and f, g with critical exponential growth. They established

similar results to ones obtained in [37] without the Ambrosetti-Rabinowitz condition.

In Chapter 1, we study the existence of ground state solutions for the Hamiltonian

system (1). We consider the case where V and H are periodic or asymptotically periodic.

Our main assumption on V is the following:

(V0) V ∈ C(R2,R), V (x) = V (x1, x2) is positive in R2 and 1-periodic in the variables

x1, x2.

With respect to the function H, we assume the following conditions:

(H0) H ∈ C1(R2 × R2,R) and H(x1, x2, z) is 1-periodic in the variables x1, x2;

(H1) for any α > 0, it holds

lim
|z|→∞

|Hz(x, z)|
eα|z|2

= 0, uniformly in x ∈ R2;

(H2) Hz(x, z) = o(|z|) as |z| → 0, uniformly in x ∈ R2;

(H3) H(x, z)/|z|2 → +∞ as |z| → ∞, uniformly in x ∈ R2;

(H4) there exists g : R2 × R+ → [0,∞) increasing in the second variable such that

Hz(x, z) = g(x, |z|)z, for each (x, z) ∈ R2 × R2.

Our �rst result is stated as follows.

Theorem 0.1. Suppose that conditions (V0) and (H0)− (H4) are satis�ed. Then, system

(1) possesses a ground state solution.

For the nonperiodic case, that is, when the functions V and H are not necessarily

periodic in x1, x2, the function

Ĥ(x, z) :=
1

2
Hz(x, z) · z −H(x, z), for (x, z) ∈ R2 × R2,

4



will play an important role. In order to make precise the meaning of being asymptotically

periodic, we are going to introduce the class of functions

F := {φ ∈ C(R2) ∩ L∞(R2) : for any ε > 0, µ({x ∈ R2 : |φ(x)| ≥ ε}) <∞},

where µ(A) denotes the Lebesgue measure of a mensurable subset A ⊂ R2. Now, we

require the following hypotheses:

(V1) There exist a constant a1 > 0 and a function V∞ ∈ C(R2,R), 1-periodic in x1, x2,

such that V∞ − V ∈ F and

V∞(x) ≥ V (x) ≥ a1, for all x ∈ R2;

(H5) There exists r0 > 0 such that

inf{Ĥ(x, z) : x ∈ R2, |z| ≥ r} =: q(r) > 0, for any r ∈ (0, r0);

(H6) lim sup
|z|→∞

|z||Hz(x, z)|
Ĥ(x, z)

< +∞, uniformly in x ∈ R2;

(H7) There exists a function h : R2 → R with subcritical exponential growth, φ ∈ F ,

R0 > 0 and H∞ ∈ C1(R2 × R2,R) such that

(i) H∞ satis�es (H0)− (H4);

(ii) H(x, z) ≥ H∞(x, z) for each (x, z) ∈ R2 × R2;

(iii) |Hz(x, z)−H∞,z(x, z)| ≤ φ(x)h(z) for each x ∈ R2 and |z| ≥ R0.

Condition (H6) is technical and is important to show that Cerami sequences associated

to the energy functional are bounded.

The main theorem in the asymptotically period case is the following:

Theorem 0.2. Assume conditions (V1), (H2) and (H5)− (H7). Then, system (1) has a

nonzero solution.

For our approach, it was necessary to prove a vector version (see Lemma 1.12) for

the Trudinger-Moser inequality presented in Lemma 1.11. We emphasize that all the

works mentioned above, involving Hamiltonian systems in dimension two and exponential
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growth, only consider nonlinear terms of the form f(x, u) and g(x, v). The hypotheses

of exponential growth are required separately on f and g. As far as the authors know,

this the �rst work that treats Hamiltonian systems in the plane, with nonlinear terms

having exponential growth and depending on u and v at the same time. Moreover, we

also consider the case that V and H are asymptotically periodic, which has not been yet

studied in the literature for this type of systems in the plane involving exponential growth,

even in the case where the system is of the form (3). Thereby, we complemented all the

works involving Hamiltonian systems in dimension two. This chapter was published in

[57].

In Chapter 2, we continue to study the existence of ground state solutions for System

(1) with V satisfying condition (V0) from Chapter 1, but now we assume that the

nonlinearity has an exponential growth of the critical type.

With respect to the function H, we assume the following conditions:

(H0) H ∈ C1(R2 × R2,R) and H(x1, x2, z) is 1-periodic in the variables x1, x2;

(H1) (Critical exponential growth) there exists α0 > 0 such that

lim
|z|→∞

|Hz(x, z)|
eα|z|2

=

 0, if α > α0,

+∞, if α < α0,

uniformly in x ∈ R2;

(H2) Hz(x, z) = o(|z|) as |z| → 0, uniformly in x ∈ R2;

(H3) there exists g : R2 × R+ → [0,∞) increasing in the second variable such that

Hz(x, z) = g(x, |z|)z, for each (x, z) ∈ R2 × R2;

(H4) there exists R0,M0 > 0 such that

0 < H(x, z) ≤M0|Hz(x, z)|, for all x ∈ R2 and |z| ≥ R0;

6



(H5) lim sup
|z|→∞

|z||Hz(x, z)|
Ĥ(x, z)

=: β < +∞, uniformly in x ∈ R2, where

Ĥ(x, z) :=
1

2
Hz(x, z) · z −H(x, z), for (x, z) ∈ R2 × R2.

Denoting ∥V ∥∞ = maxx∈R2 V (x), the main result of this chapter is stated as follows:

Theorem 0.3. Suppose that conditions (V0) and (H0) − (H5) are satis�ed. In addition,

we assume that there exists p > 2 such that

H(x, z) ≥ λ0|z|p, for all (x, z) ∈ R2 × R2,

where

λ0 ≥
8(p− 2)

p−2
2 (βα0)

p−2
2 (4 + ∥V ∥∞)

p
2

p
p
2

if β > 0 and λ0 > 0 if β = 0.

Then, system (1) has a ground state solution.

This chapter is a continuation of the work in Chapter 1. As said before, the existence

of nontrivial solutions in the critical growth range in R2 has been studied before (see

[32, 42]). However, as far as we know, these works usually require the hypothesis of critical

exponential growth separately on f and g. The main novelty here is that H depends on

u and v simultaneously and does not satisfy the Ambrosetti-Rabinowitz condition. In

our arguments, we continue to use the reduction method by Szulkin-Weth [59, 60], which

allows us to prove that minimizers of the energy functional, on the generalized Nehari

manifold, are critical points of the unconstrained functional. The new hypothesis (H5)

and (2.1) will be crucial to our analysis of the Palais-Smale sequences.

Chapter 3 is devoted to the study of the existence of nontrivial solutions for the

following class of Hamiltonian systems:

−∆u+ V (x)u = Q(x)g(v), x ∈ R2,

−∆v + V (x)v = Q(x)f(u), x ∈ R2,
(4)

where V and Q decay to zero at in�nity as (1 + |x|α)−1 with α ∈ (0, 2), and (1 + |x|β)−1

with β ∈ [2,+∞), respectively.

7



In the paper [58], motivated by a version of the Trudinger-Moser inequality in R2 due

to Cao [16] (see Lemma 1.11), the author has considered the existence of solution for

singular Hamiltonian systems of the form


−∆u+ V (x)u =

g(v)

|x|a
, x ∈ R2,

−∆v + V (x)v =
f(u)

|x|a
, x ∈ R2,

where a ∈ [0, 2), V : R2 → R is a positive continuous potential, which is bounded away

from zero and can be �large� at in�nity. Precisely, it was assumed that 1/V ∈ L1(R2) and

the functions f, g : R → R have subcritical or critical exponential growth.

In [3], Albuquerque et al. proved that the system

−∆u+ V (|x|)u = Q(|x|)g(v), x ∈ R2,

−∆v + V (|x|)v = Q(|x|)f(u), x ∈ R2,

has a nontrivial solution, by supposing appropriate conditions on the radial potentials

V (r) and Q(r) at the origin and at in�nity. Under these conditions, they used a version

of the Trudinger-Moser inequality and certain compact embedding in weighted Lebesque

spaces.

In [44], the authors were interested in studying the system

−∆u+ V (x)u = g(v), x ∈ R2,

−∆v + V (x)v = f(u), x ∈ R2,

for the critical exponential case, when the potential V is a radially symmetric positive

function and can vanish at in�nity.

We also refer to [17, 43, 45] for some related papers in the context of Lorentz�Sobolev

spaces and [46, 64] where the authors also considered the existence and asymptotic

behavior of solutions for Hamiltonian systems and planar elliptic equations.

In this chapter, we assume that for some α and β in the range

α ∈ (0, 2) and β ∈ [2,∞) (5)

the following decay conditions hold:

8



(V ) V ∈ C(R2), there exist α, a > 0 such that

a

1 + |x|α
≤ V (x),

and V (x) ∼ |x|−α as |x| → ∞;

(Q) Q ∈ C(R2), there exist β, b > 0 such that

0 < Q(x) ≤ b

1 + |x|β
,

and Q(x) ∼ |x|−β as |x| → ∞;

For the functions f and g we assume the following:

(h0) f, g : R× R → R are continuous;

(h1) f(s) = o(|s|) and g(s) = o(|s|) at the origin;

(h2) there exists θ > 0 such that


0 < θF (s) := θ

∫ s

0

f(t)tdt ≤ sf(s)

0 < θG(s) := θ

∫ s

0

g(t)tdt ≤ sg(s)

for all s ∈ (0,∞);

(h3) there exists constants M0 > 0 and s1 > 0 such that

0 < θF (s) ≤M0f(s)

0 < θG(s) ≤M0g(s)
for all s ∈ [s1,∞).

We denote by Lp
w(R2) the weighted Lp-space consisting of all measurable functions

u : R2 → R satisfying
∫
R2 w(x)|u|pdx <∞, and introduce the weighted Sobolev space

H1
V (R2) :=

{
u ∈ L2

V (R2) : |∇u| ∈ L2(R2)
}
,

with norm ∥u∥2 := ∥∇u∥22 +
∫
R2 V (x)u2.

First, we prove a Trudinger-Moser-type inequality with an alternative proof to the

ones presented in [4, 35, 37].
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Theorem 0.4. Suppose that (V ) and (Q) hold with α and β satisfying (5). For any γ > 0

and u ∈ H1
V (R2), we have

Q(·)(eγu2 − 1) ∈ L1(R2).

Moreover, for any 0 < γ < 4π,

sup
u∈H1

V (R2),∥u∥≤1

∫
R2

Q(x)(eγu
2 − 1)dx <∞.

Moreover, we can prove that the embedding H1
V (R2) ↪→ Lp

Q(R2), with α and β in the

range (5), is compact for any p ∈ [2,∞). Equipped with this and inspired by [28, 38], our

�rst main result is the subcritical case:

Theorem 0.5 (Subcritical case). Suppose f(s) has subcritical or critical exponential

growth, g(s) has subcritical exponential growth, (V ), (Q) and (h0) − (h3) are satis�ed.

Then (4) possesses a nontrivial weak solution (u, v) ∈ H1
V (R2)×H1

V (R2).

For the next result, we assume that there exists γ0 > 0 such that the functions f, g

satisfy

lim inf
|s|→∞

sf(s)

eγ0s2
, lim inf

|s|→∞

sg(s)

eγ0s2
=: β0 >M, (6)

where M := inf
r>0

4e1/2r
2Vmax,r

γ0r2Qmin,r

, Vmax,r := max
|x|≤r

V (x) > 0 and Qmin,r := min
|x|≤r

Q(x) > 0.

Theorem 0.6 (Critical case). Suppose f(s) and g(s) has critical exponential growth,

(V ), (Q), (h0)− (h3) and (6) are satis�ed. Then (4) possesses a nontrivial weak solution

(u, v) ∈ H1
V (R2)×H1

V (R2).

The vanishing behavior of the potential V makes exponential integrability impossible

unless we introduce some suitable weight in the target space, that is, for a certain weight

Q we need to prove that H1
V (R2) ↪→ Lp

Q(R2) for at least some p ≥ 1. Exploiting the

behavior of the functions V and Q, we have showed a Trudinger-Moser-type inequality

with an distinct proof to the ones presented in [35, 37], in which we do not use Besicovitch's

Covering Lemma. We were inspired by the result presented in [4], where Albuquerque

et al. have shown such Trudinger-Moser-type inequality for γ > 0 in the range (0, γ∗)

where γ∗ ∈ (0, 4π). Another problem when dealing with this system is that, since the

associated energy functional is strongly inde�nite and de�ned in an in�nite-dimensional
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space, no suitable linking theorem is available. Inspired by the works [28, 38, 58], we

use a Galerkin method, that is, we approximate problem (4) with a sequence of �nite

dimensional problems. Such approximation-type argument was �rst used by Rabinowitz

[54]. Moreover, we believe that the originality of this chapter comes from the the fact

that potentials V and Q are not radially symmetric and in the use of hypothesis (6) to

estimate the minimax level.

In Chapter 4, we study the existence of ground state solutions for the following

Schrödinger equation:

−∆u+ V (x)u = f(x, u), x ∈ R2,

u ∈ H1(R2),
(2)

where V is a 1-periodic function with respect to x, 0 lies in the gap of the spectrum of

−∆+ V and the nonlinear term f(x, s) has critical exponential growth.

When f(x, u) = f(u), do Ó-Ruf [36] show the existence of a nontrivial solution,

assuming the Ambrosetti-Rabinowitz condition, that is, there exists µ > 0 such that

0 ≤ µF (s) := µ

∫ s

0

f(t)dt ≤ sf(s), s ∈ R.

Their approach is to prove that for each k ∈ N su�ciently large, there is a nontrivial

solution uk which is k-periodic in x1 and x2. The existence of uk follows from a version

of an generalized mountain-pass theorem without the Palais-Smale condition. Then, they

prove that, up to a subsequence, the limit of uk as k → ∞ converges to a solution u.

Also using an approximation argument and the Ambrosetti-Rabinowitz condition,

Chen-Tang [20] are able to �nd a nontrivial solution for (2).

In [60], the authors study the equation ∆u + V (x)u = f(x, u) in RN , where f is

a superlinear, subcritical nonlinearity, and V and f are periodic in x. They obtained

a ground state solution using a method that consists of the reduction of the inde�nite

variational problem to a de�nite one.

Using a similar approach, Alves et al. [7] study the problem

−∆u+ (V (x)−W (x))u = f(x, u), x ∈ RN

u ∈ H1(RN),

11



whereN ≥ 2, V,W : RN → R are continuous functions verifying some technical conditions

and f has critical exponential growth. They proved that the problem has a ground state

solution, if the condition

F (x, t) :=

∫ t

0

f(x, s)ds ≥ λ|t|q0 , q0 > 2,

has λ > 0 su�ciently large.

In this chapter, our main assumption on V is the following:

(V ) V (x) = V (x1, x2) is continuous, 1-periodic in the variables x1, x2 and 0 ̸∈ σ(−∆+V ),

the spectrum of σ(−∆+ V ).

With respect to the function f , we assume the following conditions:

(F0) f ∈ C1(R2 × R2,R) and f(x1, x2, u) is 1-periodic in the variables x1, x2;

(F1) (Critical exponential growth) there exists α0 > 0 such that

lim
|u|→∞

|f(x, u)|
eα|u|2

=

 0, if α > α0,

+∞, if α < α0,

uniformly in x ∈ R2;

(F2) f(x, u) = o(u) as |u| → 0, uniformly in x ∈ R2;

(F3) f(x, t)/|t| is stricly increasing in (−∞, 0) and (0,∞) for every x ∈ R2;

(F4) there exist R0,M0 > 0 such that

0 < F (x, u) ≤M0|f(x, u)|, for all x ∈ R2 and |u| ≥ R0;

(F5) lim sup
|u|→∞

|u||f(x, u)|
F̂ (x, u)

=: β ≤ 2, uniformly in x ∈ R2, where

F̂ (x, u) :=
1

2
f(x, u)u− F (x, u), for (x, u) ∈ R2 × R2.
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For the main result of this chapter, we need the following hypothesis, presented by

Chen-Tang in [20]. We assume that there exists γ0 > 0 such that the function f satisfy

lim inf
|s|→∞

sf(x, s)

eγ0s2
=: β0 >M, uniformly on x ∈ R2, (7)

where M =:
4

γ0ρ2
e16πC

2
0 and ρ > 0 satis�es 4π(4 + ρ)ρC2

0 < 1 and C0 > 0 is an embedding

constant in (4.46).

Theorem 0.7. Suppose that conditions (V ) and (F0) − (F5) are satis�ed. In addition,

we assume that there exists γ0 > 0 such that the function f satisfy (7). Then, equation

(2) has a ground state solution.

When (V ) holds, the associated functional on H1(R2) for problem (2) is strongly

inde�nite near the origin. Moreover, by the fact that f has a critical exponential growth,

we have a lack of compactness of the embeddingH1(R2) ↪→ Lp(R2) and it becomes di�cult

to apply the standard methods to prove that J (u) =
∫
R2 F (x, u) is weakly sequentially

continuous on H1(R2), and thus use a linking theorem. We try to avoid this problem

by applying the reduction method by Szulkin-Weth [59]. The main contribuition in this

chapter is that the authors are not aware of any work that proves the existence of ground

state solutions for this class of problems and do not use the classic Ambrosseti-Rabinowitz

condition.

In order not to resort to the Introduction and to make the chapters independent, we

will state again, in each chapter, the main results, as well as the hypotheses about the

potentials and nonlinearities.
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Chapter 1

Hamiltonian systems involving

subcritical exponential growth in R2

The main objective of this chapter is to study ground state solution for the class of

Hamiltonian systems

−∆u+ V (x)u = Hv(x, u, v), x ∈ R2,

−∆v + V (x)v = Hu(x, u, v), x ∈ R2,
(1)

where V ∈ C(R2, (0,∞)), H ∈ C1(R2 × R2,R), Hu, Hv denote the partial derivatives of

H with respect to the variables u and v, respectively, z = (u, v) and Hz = (Hu, Hv).

Here, |y| will denote the Euclidian norm of y ∈ R2 or the absolute value of y ∈ R.

The dot · will denote the canonical inner product in R2. In our �rst result, we consider

the periodic problem. In this case, our main assumption on V is the following:

(V0) V ∈ C(R2,R), V (x) = V (x1, x2) is positive in R2 and 1-periodic in the variables

x1, x2.

With respect to the function H, we assume the following conditions:

(H0) H ∈ C1(R2 × R2,R) and H(x1, x2, z) is 1-periodic in the variables x1, x2;

(H1) for any α > 0, it holds

lim
|z|→∞

|Hz(x, z)|
eα|z|2

= 0, uniformly in x ∈ R2;
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(H2) Hz(x, z) = o(|z|) as |z| → 0, uniformly in x ∈ R2;

(H3) H(x, z)/|z|2 → +∞ as |z| → ∞, uniformly in x ∈ R2;

(H4) there exists g : R2 × R+ → [0,∞) increasing in the second variable such that

Hz(x, z) = g(x, |z|)z, for each (x, z) ∈ R2 × R2.

The condition (H1) is motivated by a version of the Trudinger-Moser type inequality,

see Lemma 1.12. Note that if H(x, z) behaves as e|z|
σ
, σ ∈ (0, 2), for |z| large,

then conditions (H1) and (H3) are satis�ed. The superlinear condition (H3) is more

general than the well-known Ambrosetti-Rabinowitz condition introduced in the paper

[2]. Hypothesis (H4) is a kind of monotonicity condition, which is generally used in the

Nehari approach.

The weak solutions of system (1) will be seen as critical points of the energy functional

I(z) =

∫
R2

(∇u · ∇v + V (x)uv)dx−
∫
R2

H(x, z)dx

de�ned on a convenient Banach space E, which will be introduced later. The function

w0 ∈ E is a ground state solution of (1) whenever

I(w0) = inf{I(w) : w ∈ E\{0} is a weak solution of (1)}.

Hence, our �rst result is stated as follows.

Theorem 1.1. Suppose that conditions (V0) and (H0)− (H4) are satis�ed. Then, system

(1) possesses a ground state solution.

Since the functional I is strongly inde�nite, for the proof of this theorem, we adapt

some ideas contained in [33] and we have applied the treatment developed in Szulkin and

Weth [59], which is based on a reduction method. For this, we had to get a version of the

Trundinger-Moser inequality for the working space E de�ned in Section 2.

For the nonperiodic case, that is, when the functions V and H are not necessarily

periodic in x1, x2, the function

Ĥ(x, z) :=
1

2
Hz(x, z) · z −H(x, z), for (x, z) ∈ R2 × R2,

15



will play an important role. In order to make precise the meaning of being asymptotically

periodic, we are going to introduce the class of functions

F := {φ ∈ C(R2) ∩ L∞(R2) : for any ε > 0, µ({x ∈ R2 : |φ(x)| ≥ ε}) <∞},

where µ(A) denotes the Lebesgue measure of a mensurable subset A ⊂ R2. Now, we

require the following hypotheses:

(V1) There exist a constant a1 > 0 and a function V∞ ∈ C(R2,R), 1-periodic in x1, x2,

such that V∞ − V ∈ F and

V∞(x) ≥ V (x) ≥ a1, for all x ∈ R2;

(H5) There exists r0 > 0 such that

inf{Ĥ(x, z) : x ∈ R2, |z| ≥ r} =: q(r) > 0, for any r ∈ (0, r0);

(H6) lim sup
|z|→∞

|z||Hz(x, z)|
Ĥ(x, z)

< +∞, uniformly in x ∈ R2;

(H7) There exists a function h : R2 → R with subcritical exponential growth, φ ∈ F ,

R0 > 0 and H∞ ∈ C1(R2 × R2,R) such that

(i) H∞ satis�es (H0)− (H4);

(ii) H(x, z) ≥ H∞(x, z) for each (x, z) ∈ R2 × R2;

(iii) |Hz(x, z)−H∞,z(x, z)| ≤ φ(x)h(z) for each x ∈ R2 and |z| ≥ R0.

Condition (H6) is technical and is important to show that Cerami sequences associated

to the energy functional are bounded.

The main theorem in the asymptotically period case is the following:

Theorem 1.2. Assume conditions (V1), (H2) and (H5)− (H7). Then, system (1) has a

nonzero solution.

For the proof of this result, in order to obtain a Cerami sequence for the associated

functional, we invoke a linking theorem due to Li and Szulkin [47]. We highlighted

that as in [52] the Ambrosetti-Rabinowitz condition is not used in our arguments and
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this makes the task of proving the boundedness of the Cerami sequence more delicate

and the demonstration requires a careful analysis in the face of this new scenario with

nonlinearities Hu(x, u, v) and Hu(x, u, v) having exponential growth.

After proving that the Cerami sequence is bounded, we deduce that its weak limit is a

solution of (1) and the main di�culty is to conclude that this weak limit is nontrivial. For

this, by using similar arguments as in [33], we exploit a local version of the linking theorem

(see [33, Theorem 2.3]). It is clear that, in our case, the situation is more delicate due to

the exponential growth of the nonlinearity and some new di�culties in our analysis must

be overcome, for example, the veri�cation of that the Fréchet derivative of the functional

J (z) =
∫
R2 H(x, z) is weakly sequentially continuous.

Remark 1.3. The existence of nontrivial solution for system (1) when |Hz(x, z)| has an

critical exponential growth, that is, behaves like eα0|z|2 at in�nite, for some α0 > 0, is an

open problem and very interesting, mainly in the asymptotically periodic case. We believe

that the main di�cult is in the control of the minimax levels of the functional in order to

restore the compactness, and to show that the derivative of J (z) :=
∫
R2 H(x, z) is weakly

sequentially continuous.

Example 1.4. Let a ∈ C(R2,R) positive and 1-periodic in x1, x2 and de�ne the function

H∞ by

H∞(x, z) := a(x)|z|3(e|z| − 1), for (x, z) ∈ R2 × R2.

It is not di�cult to see that H∞ satis�es (H0)− (H4). Moreover, considering

H(x, z) = a(x)(e−|x|2 + 1)|z|3(e|z| − 1), for (x, z) ∈ R2 × R2

we can see H satis�es (H5) − (H7), with φ(x) = a(x)e−|x|2 ∈ F and h(z) = |z|2[3(e|z| −

1) + |z|e|z|].

Throughout this chapter on(1) denotes a sequence that converges to 0 as n→ ∞. The

norm in Lp(R2) (1 ≤ p <∞) and L∞(R2) will be denoted respectively by ∥ ·∥p and ∥ ·∥∞.

We shall use C,C0, C1, C2, . . . to denote positive constants possibly di�erent.

This chapter is organized as follows: in the forthcoming section, we establish some

notations and de�nitions, and we present the abstract theorems that are used to prove
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our main results. In Section 1.2, we treat the periodic case, including the proof of a vector

version of the Trudinger-Moser inequality. Section 1.3 is devoted to the asymptotically

periodic case, where we prove Theorem 1.2.

1.1 Preliminaries

In order to make the text more explanatory, in this section we introduce the abstract

theorems that will be applied to prove Theorems 1.1 and 1.2. From now on we will use

the following notations and terminologies: E is a real Hilbert space with inner product

⟨·, ·⟩ and its correspondent norm is ∥ · ∥. We are going to suppose that there exists an

orthogonal decomposition E = E+⊕E− so that each z ∈ E is uniquely decomposed, that

is, z = z+ + z− with z± ∈ E±. For r > 0, we consider the following sets:

� Nr = {z ∈ E+ : ∥z∥ = r} and S+ = {z ∈ E+ : ∥z∥ = 1};

� for z ∈ E, E(z) = Rz⊕E− ≡ Rz+ ⊕E− and Ê(z) = (R+)z⊕E− ≡ (R+)z
+ ⊕E−.

Assume that I ∈ C1(E,R) is a functional ful�lling the conditions

(N1) I has the following form

I(z) =
1

2
∥z+∥2 − 1

2
∥z−∥2 − J (z), (1.1)

with J ∈ C1(E,R) weakly lower semicontinuous, J (0) = 0 and, for each z ̸= 0,

there holds

J ′(z)z > 2J (z) > 0;

(N2) for each z ∈ E\E− = {z ∈ E : z+ ̸= 0}, I|Ê(z) has a unique nonzero critical point

m̂(z), which is a global maximum point of I|Ê(z).

Now, we de�ne the generalized Nehari manifold associated to I by

N = {z ∈ E\E− : I ′(z)z = 0 and I ′(z)w = 0 for all w ∈ E−}.
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Remark 1.5. Note that N contains all nonzero critical points of I, because if z ̸= 0 is a

critical point of I, by (N1) we have

I(z) = I(z)− 1

2
I ′(z)z =

1

2
J ′(z)z − J (z) > 0

and therefore we must have z+ ̸= 0, that is, z ∈ E\E−.

In view of this remark, using condition (N2) and the de�nition of N , we can de�ne

the map m̂ : E\E− → N by

m̂(z) = {the unique global maximum point of I|Ê(z)}.

With these concepts, we require a third hypothesis (N3) on I, namely,

(N3) there exists δ > 0 such that ∥m̂(z)+∥ ≥ δ, for each z ∈ E\E−. Moreover, if

W ⊂ E\E− is compact, then there exists cW such that ∥m̂(z)∥ ≤ cW , for all z ∈ W .

Moreover, we are going to denote by m the restriction of the map m̂ to S+, that is,

m = m̂|S+ .

The following result presents the main properties related to I, m̂ and m (see proof in

[59]).

Lemma 1.6. If I ∈ C1(E,R) satis�es (N1)− (N3), then

(i) m̂ is continuous and m : S+ → N is a homeomorphism;

(ii) the application Ψ̂ : E+\{0} → R de�ned by Ψ̂(z) = I(m̂(z)) is of class C1.

Moreover, Ψ := Ψ̂|S+ is also of class C1 and it holds the equality

Ψ′(z)w = ∥m(z)+∥I ′(m(z))w, for all w ∈ Tz(S
+) = {v ∈ E+ : ⟨z, v⟩ = 0};

(iii) infS+ Ψ = infN I;

(iv) if (zn) ⊂ S+ is a Palais-Smale sequence1 ((PS) sequence for short) for Ψ , then

(m(zn)) ⊂ N is a (PS) sequence for I. If (wn) ⊂ N is a bounded (PS) sequence for

I, then (m−1(wn)) ⊂ S+ is a (PS) sequence for Ψ.

1(zn) ⊂ S+ is Palais-Smale sequence for Ψ, if Ψ(zn) is bounded and Ψ′(zn) → 0.
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In order to better understand the linking theorem used in the asymptotically periodic

case, it is introduced a new topology in the space E. For this, let (ek)k ⊂ E− be a total

orthonormal sequence and de�ne the following norm on E:

∥z∥τ = max

{
∥z+∥,

∞∑
k=1

1

2
|⟨z−, ek⟩|

}
, z ∈ E.

We call τ -topology the topology induced by this norm.

Remark 1.7. In bounded sets, the τ -topology coincides with the usual topology of E that

is weak on E− and strong on E+. Thus, for a bounded sequence (zn) ⊂ (E, τ), we have

zn
τ→ z in E if, and only if z+n → z+ and z−n ⇀ z− weakly in E. For details, see for

instance [41].

De�nition 1.8. Given a set M ⊂ E, a homotopy h : [0, 1] × M → E is said to be

admissible if

(i) h is τ -continuous, that is, if tn → t and zn
τ→ z then h(tn, zn)

τ→ h(t, z);

(ii) for each (t, z) ∈ [0, 1] ×M , there exists a neighborhood U of (t, z) in the product

topology [0, 1]× (E, τ) such that the set {w − h(t, w) : (t, w) ∈ U ∩ ([0, 1]×M)} is

contained in a �nite dimensional subspace of E.

Now, we de�ne the following class of admissible applications:

Γ := {h ∈ C([0, 1]×M,E) : h is admissible, h(0, ·) = IdM ,

I(h(t, z)) ≤ max{I(z),−1} for all, (t, z) ∈ [0, 1]×M}.

The next result was proved in [47, Theorem 2.1]:

Theorem 1.9 (Linking Theorem). Assume that I ∈ C1(E,R) ful�lls the hypotheses

(L1) the functional I can be given as in (1.1) with J being bounded from below, weakly

sequentially lower semicontinuous and J ′ weakly sequentially continuous;

(L2) there exist z0 ∈ E+\{0}, ρ > 0 and R > r > 0 such that

inf
z∈Nr

I(z) ≥ ρ, sup
z∈∂M

I(z) ≤ 0,

20



where M = M(z0, R) stands for M := {z = tz0 + z− : z− ∈ E−, ∥z∥ ≤ R, t ≥ 0}

and ∂M denotes the boundary of Rz0 ⊕ E−. If we de�ne

c∗ := inf
h∈Γ

sup
z∈M

I(h(1, z)), (1.2)

then there exists (zn) ⊂ E such that

I(zn) → c∗ ≥ ρ and (1 + ∥zn∥)∥I ′(zn)∥ → 0,

that is, (zn) ⊂ E is a Cerami sequence for I at level c∗ ((Ce)c∗ sequence for short).

We can not directly invoke Theorem 1.9 to prove Theorem 1.2. For this, we shall use

the following local version, as proved in [33, Theorem 2.3]:

Theorem 1.10. Assuming the same hypotheses of Theorem 1.9 and additionally that

there exists h0 ∈ Γ such that

c = sup I(h0(1,M)),

then the functional I has a nonzero critical point z ∈ h0(1,M) satisfying I(z) = c∗.

1.2 Proof of Theorem 1.1

In this section, via a minimization argument and Lemma 1.6 we shall obtain a ground

state for problem (1). According to condition (V0), there exist constants a0, b0 > 0 such

that

a0 ≤ V (x) ≤ b0, for all x ∈ R2. (1.3)

Hereafter, we are going to consider H1(R2) endowed with the norm

∥u∥V :=

(∫
R2

[|∇u|2 + V (x)u2]

)1/2

,

which is equivalent to its usual norm in view of (1.3). Now, we introduce the Hilbert

space E = H1(R2)×H1(R2) endowed with the inner product

⟨(u, v), (φ, ψ)⟩ =
∫
R2

(∇u · ∇φ+ V (x)uφ) +

∫
R2

(∇v · ∇ψ + V (x)vψ),
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whose correspondent norm is given by

∥(u, v)∥ = (∥u∥2V + ∥v∥2V )1/2.

Next, we establish a Trudinger�Moser type inequality on the space E = H1(R2) ×

H1(R2), where E is endowed with the above norm. For this, we will use the following

version of the Trundinger-Moser inequality in H1(R2) (see [16, 34]):

Lemma 1.11. If α > 0 and u ∈ H1(R2), then

∫
R2

(eαu
2 − 1) <∞.

Moreover, if 0 < α < 4π and M > 0, then there exists a constant C = C(α,M) > 0 such

that ∫
R2

(eαu
2 − 1) ≤ C(α,M),

for all u ∈ H1(R2) with ∥∇u∥L2(R2) ≤ 1 and ∥u∥L2(R2) ≤M .

Hence, we can prove the following result:

Lemma 1.12 (Trudinger-Moser inequality). If α > 0 and (u, v) ∈ E, then

∫
R2

(eα|(u,v)|
2 − 1) <∞.

Moreover, if 0 < α < 4π then

sup
(u,v)∈E, ∥(u,v)∥≤1

∫
R2

(eα|(u,v)|
2 − 1) = C(α, a0) <∞. (1.4)

Proof. Let α > 0 and (u, v) ∈ E. If p, q > 1 and 1/p + 1/q = 1 then Young's inequality

provides

xy − 1 ≤ 1

p
(xp − 1) +

1

q
(yq − 1), for all x, y ≥ 0. (1.5)

Thus, for p = q = 2 and by applying Lemma 1.11 one has

∫
R2

(eα|(u,v)|
2 − 1) ≤ 1

2

∫
R2

(e2αu
2 − 1) +

1

2

∫
R2

(e2αv
2 − 1) <∞
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and the �rst part is proved. To prove (1.4), it is su�cient to show that

sup
(u,v)∈E, ∥(u,v)∥=1

∫
R2

(eα|(u,v)|
2 − 1) =: C <∞, (1.6)

because if 0 < α < 4π and 0 < ∥(u, v)∥ < 1 then

∫
R2

(eα|(u,v)|
2 − 1) =

∫
R2

(
eα∥(u,v)∥

2| (u,v)
∥(u,v)∥ |

2

− 1

)
≤
∫
R2

(
eα|

(u,v)
∥(u,v)∥ |

2

− 1

)
≤ C,

since ∥(u, v)/∥(u, v)∥∥ = 1. Thus, let 0 < α < 4π and (u, v) ∈ E with ∥(u, v)∥2 =

∥u∥2V + ∥v∥2V = 1. Note that if ∥u∥V = 0 then ∥v∥2V = 1 and therefore

∥∇v∥L2(R2) ≤ 1 and
∫
R2

V (x)v2 ≤ 1

and the second inequality implies that ∥v∥2L2(R2) ≤ 1/a0. Hence, by invoking Lemma 1.11,

we obtain (1.6). The same conclusion holds if ∥v∥V = 0. Now, suppose that ∥u∥V ̸= 0 and

∥v∥V ̸= 0. By considering p = 1/∥u∥2V > 1 and q = 1/∥v∥2V > 1, we have 1/p + 1/q = 1

and by virtue of (1.5) and Lemma 1.11 we conclude

∫
R2

(eα|(u,v)|
2 − 1) =

∫
R2

(eαu
2

eαv
2 − 1)

≤ 1

p

∫
R2

[e
α
(

u
∥u∥V

)2

− 1] +
1

q

∫
R2

[e
α
(

v
∥v∥V

)2

− 1]

≤ 1

p
C(α, a0) +

1

q
C(α, a0) = C(α, a0)

and the lemma is proved. ■

In order to exploit Lemma 1.6, we consider the following subspaces of E:

E+ := {(u, u) : u ∈ H1(R2)} and E− := {(u,−u) : u ∈ H1(R2)}.

Note that E+ and E− are orthogonal in E and for z = (u, v) ∈ E, if

z+ :=

(
u+ v

2
,
u+ v

2

)
and z− :=

(
u− v

2
,
v − u

2

)
,

then z± ∈ E± and we have z = z+ + z−. Thus, E = E+ ⊕E− and a simple computation
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shows that ∫
R2

(∇u · ∇v + V (x)uv) =
1

2
(∥z+∥2 − ∥z−∥2). (1.7)

By using (H1) and (H2) we can see that, given ε > 0, α > 0 and q ≥ 0, there exists

C = C(ε, α, q) > 0 such that

max{|H(x, z)|, |Hz(x, z) · z|} ≤ ε|z|2 + C|z|q(eα|z|2 − 1), for all (x, z) ∈ R2 × R2. (1.8)

In view of (1.8) and Lemma 1.12, the energy functional associated to (1), given by

I(z) =
1

2
(∥z+∥2 − ∥z−∥2)− J (z) (1.9)

where J (z) :=
∫
R2 H(x, z), is well de�ned. Furthermore, I ∈ C1(E,R) with

I ′(z)w = ⟨z+, w+⟩ − ⟨z−, w−⟩ −
∫
R2

Hz(x, z) · w, for z, w ∈ E.

Hence, the critical points of I correspond to weak solutions of problem (1).

In order to apply Lemma 1.6, we are going to show that conditions (N1) − (N3) are

satis�ed by I. For this, initially we present four lemmas, whose proofs are similar to ones

in [33]. We include them for completeness.

Lemma 1.13. Suppose that H satis�es (H2) and (H4). Then, for each z ̸= 0 we have

1

2
Hz(x, z) · z > H(x, z) > 0.

Moreover, J (0) = 0 and J is weakly lower semicontinuous.

Proof. By (H2) we get H(x, 0) = 0 and therefore J (0) = 0. Given z ̸= 0, it follows from

(H4) that

H(x, z) =

∫ t

0

d

dt
[H(x, tz)]dt =

∫ 1

0

Hz(x, tz) · zdt = |z|2
∫ 1

0

g(x, t|z|)tdt > 0. (1.10)

This identity, (H4) and the monotonicity of g(x, ·) imply that

1

2
Hz(x, z) · z −H(x, z) = |z|2

(∫ 1

0

[g(x, |z|)− g(x, t|z|)]tdt
)
> 0

Let's verify that J is weakly lower semicontinous. Let (zn) ⊂ E such that zn ⇀ z in
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E. Up to a subsequence, zn(x) → z(x) a.e. in R2. Since H is nonnegative, Fatou's lemma

provides

lim inf J (zn) = lim inf

∫
H(x, zn) ≥

∫
H(x, z) = J (z).

■

The next lemmas are necessary to show condition (N2).

Lemma 1.14. Assume (H2) − (H4). Let s ≥ −1 and v, z ∈ R2 with w = sz + v ̸= 0.

Then, for all x ∈ R2, we have

Hz(x, z) ·
[
s
(s
2
+ 1
)
z + (s+ 1)v

]
+H(x, z)−H(x, z + w) < 0.

Proof. Let y = y(s) := w + z = (1 + s)z + v and de�ne, for s ≥ −1,

β(s) = Hz(x, z) ·
(
s
(s
2
+ 1
)
z + (s+ 1)v

)
+H(x, z)−H(x, z + w).

If z = 0, it follows from (H2) and lemma 1.13 that β(s) = −H(x, y) < 0. Hence, we

can suppose z ̸= 0 and consider the following distinct cases:

Case 1: z · y ≤ 0.

Notice that, by (H4), Hz(x, z)y = g(x, |z|)z ·y ≤ 0. Thus, recaling that v = y−(1+s)z,

using Lemma 1.13 and s ≥ −1, we obtain

β(s) = −
(
s2

2
+ s+ 1

)
Hz(x, z) · z + (s+ 1)Hz(x, z) · y +H(x, z)−H(x, y) (1.11)

< −1

2
(s+ 1)2Hz(x, z) · z + (s+ 1)Hz(x, y) · y −H(x, y) < 0.

Case 2: z · y > 0.

By Lemma 1.13,

β(−1) = −1

2
Hz(x, z) · z +H(x, z)−H(x, y) < −H(x, y) < 0.

It follows from (H4) that Hz(x, z) · z = g(x, |z|)|z|2 > 0. Hence, using (1.11), we have

lims→∞ β(s) = −∞. Therefore, β attains its maximum at some point s0 ∈ [−1,∞). If
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s0 = −1 the result follows from the above inequality. If s0 > −1,

0 = β′(s0) = Hz(x, z) · y −Hz(x, z) · z.

By (H4), g(x, |z|)z · y = g(x, |z|)z · z, hence |z| = |y|. It follows from (1.10) that

H(x, z) = H(x, y). Moreover,

Hz(x, z) · y = g(x, |z|)z · y ≤ g(x, |z|)|z|2 = Hz(x, z) · z,

hence

β(s) = −s
2

2
Hz(x, z) · z + (s+ 1)(Hz(x, z) · y −Hz(x, z) · z)

≤ −s
2

2
Hz(x, z) · z < 0.

■

Lemma 1.15. Assume conditions (H1) − (H2). There exists R > 0 such that I(w) ≤ 0

for w ∈ Ê(z)\BR(0), where BR(0) := {z ∈ E : ∥z∥ < R}.

Proof. We argue by contradiction. Suppose there exists a sequence (wn) ⊂ Ê(z) such

that ∥wn∥ → ∞ and I(wn) > 0. Setting zn :=
wn

∥wn∥
, we can assume that zn ⇀ z0 in E.

If z0 ̸= 0, by Fatou's Lemma and (H3), we have

0 ≤ I(wn)

∥wn∥2
=

1

2
∥z+n ∥2 −

1

2
∥z−∥ −

∫
R2

H(x,wn)

|wn|2
|zn|2

≤ 1

2
∥z+n ∥2 −

1

2
∥z−∥2 −

∫
BR

H(x,wn)

|wn|2
|zn|2 → ∞,

which is an absurdo, thus z0 = 0.

Since H ≥ 0, by the above estimate, we can obtain ∥z+n ∥ ≥ ∥z−n ∥. Therefore, recalling

that ∥zn∥ = 1, we can conclude that ∥z+n ∥ ≥ 1√
2
.

Since z ∈ S+, we can use the last inequality to write z+n = snz, with
1√
2
≤ sn ≤ 1.

Up to a subsequence, z+n → sz, with s > 0, which contradicts zn ⇀ 0. ■

Lemma 1.16. Suppose that H satis�es (H1)− (H4). If z ∈ N then for any w ̸= 0 such

that z + w ∈ Ê(z), we have I(z + w) < I(z).
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Proof. Let z ∈ N and w ̸= 0 with z + w ∈ Ê(z). By de�nition, we can write

z + w = (1 + s)z + v with s ≥ −1 e v ∈ E−.

Since z ∈ N , we de�ne φ := s
(s
2
+ 1
)
z + (s+ 1)v ∈ E(z), then we have

0 = I ′(z)φ = s
(s
2
+ 1
)
(∥z+∥2 − ∥z−∥2)− (s+ 1)⟨z−, v⟩ −

∫
Hz(x, z) · φ.

Therefore,

I(z + w)− I(z)

= s
(s
2
+ 1
)
(||z+||2 − ∥z−∥2)− (s+ 1)⟨z−, v⟩ − 1

2
∥v∥2 +

∫
[H(x, z)−H(x, z + w)]

= −1

2
∥v∥2 +

∫
[Hz(x, z) ·

(
s
(s
2
+ 1
)
z + (s+ 1)v

)
H(x, z)−H(x, z + w)].

Since w ̸= 0, it follows from Lemma 1.14 that I(z + w) < I(z). ■

Lemma 1.17. Suppose that (H1)− (H4) are satis�ed. Then,

(i) for any z ∈ N , I|Ê(z) admits a unique maximum point that is precisely z;

(ii) for any z ∈ E\E−, the set Ê(z) intersects N at exactly one point m̂(z), which is

the unique global maximum point of I|Ê(z).

Proof. Firstly we will show (i). Given tz + y ∈ Ê(z)\{z}, it is enough to consider

w = (t− 1)z + y to obtain tz + y = z +w. Note that, if w = 0 then t = 1 and y = 0, but

this can not occur because tz + y ̸= z. Hence, w ̸= 0 and by Lemma 1.16 we conclude

that I(tz + y) < I(z).

To prove (ii), by the previous item, it is su�cient to show that N ∩ Ê(z) ̸= ∅ for each

z ∈ E\E−. Moreover, since Ê(z) = Ê (z+/∥z+∥), we can assume z = (u, u) ∈ E+ and

∥z∥ = 1. By Lemma 1.15, there exists R > 0 such that I(w) ≤ 0 if w ∈ Ê(z)\BR(0) and

if ∥w∥ ≤ R then I(w) ≤ R2/2 and so supÊ(z) I <∞.

On the other hand, by using (1.8), for any ε > 0 and α > 0 there exists C > 0 such

that

H(x, z) ≤ ε|z|2 + C|z|3(eα|z|2 − 1), z ∈ R2. (1.12)
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From (1.12), Lemma (1.12) and by choosing 0 < ε < 1/(4
∫
R2 |z|2), we have

I(tz) =
t2

2
∥z∥2 −

∫
R2

H(x, tz) ≥ t2

2
− εt2

∫
R2

|z|2 − Cεt
3

∫
R2

|z|3(eαt2|z|2 − 1)

≥ t2

4
− Ct3

(∫
R2

|z|6
)1/2 [∫

R2

(e2αt
2|z|2 − 1)

]1/2
> 0,

for t > 0 su�ciently small. Consequently, supÊ(z) I > 0.

Now, let wn = (w1
n, w

2
n) = tnz + (hn,−hn) ∈ Ê(z) be a maximizing sequence

for supÊ(z) I. Since supÊ(z) I > 0, we can suppose that ∥wn∥ ≤ R. Hence, up

to a subsequence, wn ⇀ w0 weakly in E. We can see, up to a subsequence, that

tn → t0 ≥ 0 and hn ⇀ h0, w1
n ⇀ w1

0, w
2
n ⇀ w2

0 weakly in H1(R2) and therefore

w0 = (w1
0, w

2
0) = t0z + (h0,−h0) ∈ Ê(z). Recalling that z ∈ E+, we can write

I(wn) =
t2n
2
∥z∥2 − 1

2
∥hn∥2 −

∫
R2

H(x,w1
n, w

2
n),

from where it follows, according to the weak lower semicontinuous of the norm and Fatou's

lemma, that

sup
Ê(z)

I = lim
n→∞

I(wn) =
t20
2
∥z∥2 + lim sup

n→∞

[
−1

2
∥hn∥2 −

∫
R2

H(x,w1
n, w

2
n)

]
≤ I(w0).

Thus, I(w0) = supÊ(z) I and therefore w0 is a critical point of I|Ê(z), showing that

w0 ∈ N ∩ Ê(z) and the proof is complete. ■

As an immediate consequence of this lemma, we obtain the following equality:

Corollary 1.18.

inf
η∈N

I(η) = inf
z∈E\E−

max
w∈Ê(z)

I(w).

Lemma 1.19. Assume (H1)− (H2) and let

c = inf
z∈N

I(z).

Then, c > 0 and ∥z+∥ ≥ max{∥z−∥,
√
2c} for all z ∈ N .

Proof. For a > 0 we recall that S+
a := {z ∈ E+ : ∥z∥ = a} and (R+)z = {tz : t ≥ 0}.
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Since Ê(z) = Ê(z+) for any z ∈ E\E−, from Corollary 1.18, for any a > 0, it follows that

c = inf
z∈E\E−

max
w∈Ê(z)

I(w) = inf
z∈E+\{0}

max
w∈Ê(z)

I(w) = inf
z∈S+

a

max
w∈Ê(z)

I(w) ≥ inf
z∈S+

a

max
w∈(R+)z

I(w).

Let z = (u, u) be in S+
a and α > 0 such that 2αa2 < 4π. By Lemma 1.12, there exists a

constant C > 0 such that

∫
R2

(e2α|z|
2 − 1) =

∫
R2

(e2αa
2(|z|/∥z∥)2 − 1) ≤ C.

Then, by using (1.12) we get

max
w∈(R+)z

I(w) ≥ I(z) = ∥u∥2V −
∫
R2

H(x, u, u) ≥ ∥u∥2V − ε

∫
R2

|z|2 − Cε

∫
R2

|z|3(eα|z|2 − 1)

≥ (1− 2ε)∥u∥2V − Cε

(∫
R2

|z|6
)1/2

≥ (1− 2ε)∥u∥2V − C1∥u∥3V ,

where we have used the continuous embedding H1(R2) ↪→ L6(R2). Hence, taking ε = 1/4

and a > 0 su�ciently small so that 1/2 − C1∥u∥V = 1/2 − C1a/
√
2 ≥ 1/4, we conclude

that

max
w∈(R+)z

I(w) ≥ ∥u∥2V
(
1

2
− C1∥u∥V

)
≥ a2

8
> 0, for all z = (u, u) ∈ S+

a

and consequently c > 0. Next, for any z ∈ N we have

c ≤ 1

2
(∥z+∥2 − ∥z−∥2)−

∫
R2

H(x, z) ≤ 1

2
(∥z+∥2 − ∥z−∥2),

which implies that ∥z+∥ ≥ max{∥z−∥,
√
2c} and the proof is done. ■

Lemma 1.20. Suppose that (H1)− (H2) are satis�ed. If W ⊂ E\E− is a compact subset,

then there exists CW > 0 such that ∥m̂(z)∥ ≤ CW , for all z ∈ W.

Proof. De�ning δ =
√
2c, by Lemma 1.19 and noting that m̂(z) ∈ N for any z ∈ E\E−,

we have ∥m̂(z)+∥ ≥ δ. Moreover, since m̂(z) = m̂ (z+/∥z+∥) for any z ∈ E\E−, without

loss of generality, we can assume that W ⊂ S+. It follows from Lemma 1.17 that there

29



exists CW > 0 such that

I ≤ 0 on Ê(z)\BCW (0) for all z ∈ W ,

where BCW (0) = {w ∈ E : ∥z∥ ≤ CW}. Recalling that I(m̂(z)) ≥ c > 0 for all z ∈ E\E−,

we get

∥m̂(z)∥ =

∥∥∥∥m̂( z+

∥z+∥

)∥∥∥∥ ≤ CW for any z ∈ W .

■

Lemma 1.21. If (H1) − (H3) are satis�ed, then I is coercive on N . In particular, any

(PS)c sequence (zn) ⊂ N for I is bounded.

Proof. Suppose, by contradiction, that there exists (zn) ⊂ N satisfying limn→∞ ∥zn∥ =

+∞ with I(zn) ≤ d for all n ∈ N, for some d > 0. Setting wn = zn/∥zn∥, up to a

subsequence, we have wn ⇀ w weakly in E and wn(x) → w(x) a.e. in x ∈ R2.

Firstly, we claim that w = 0. Indeed, if w ̸= 0 and Ω := {x ∈ R2 : w(x) ̸= 0} then

µ(Ω) > 0 and |zn(x)| = ∥wn∥|wn(x)| → +∞ a.e. in x ∈ Ω. Since

0 <
c

∥zn∥2
≤ I(zn)

∥zn∥2
=

1

∥zn∥2

[
1

2
∥z+n ∥2 −

1

2
∥z−n ∥2 −

∫
R2

H(x, zn)

]
≤ 1

2
−
∫
Ω

H(x, zn)

|zn|2
|wn|2,

in view of (H3) and Fatou's lemma, we get a contradiction and therefore we must have

w = 0.

Next, we claim that

w+
n ̸→ 0 in Lp(R2)× Lp(R2) for some p ∈ (2,∞). (1.13)

In fact, arguing by contradiction, suppose that w+
n → 0 in Lp(R2) × Lp(R2) for all

p ∈ (2,∞). By (1.8), for ε > 0, s > 0 and α > 0 we have∫
R2

H(x, sw+
n ) ≤ εs2∥w+

n ∥22 + Cεs

∫
R2

|w+
n |(es

2α|w+
n |2 − 1)

≤ εs2∥w+
n ∥22 + Cεs

(∫
R2

|w+
n |q
)1/q [∫

R2

(es
2αq′|w+

n |2 − 1)

]1/q′
,

(1.14)

where q ∈ (2,∞) and q′ = q/(q−1). Fixing s > 2
√
d and taking α > 0 so that s2αq′ < 4π,
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by Lemma 1.12 we conclude that

∫
R2

(es
2αq′|w+

n |2 − 1) ≤ C,

for some constant C > 0. Once ε > 0 is arbitrary, from (1.14) it follows that

∫
R2

H(x, sw+
n ) → 0.

Since sw+
n ∈ Ê(zn), by Lemma 1.16 we have

d ≥ I(zn) ≥ I(sw+
n ) ≥

1

4
s2 −

∫
R2

H(x, sw+
n ) =

1

4
s2 + on(1)

and passing to the limit as n → ∞ we reach d ≥ s2/4 which is an absurd and (1.13) is

proved. Thus, we can use Lions' lemma [49, Lemma I.1] to obtain β > 0 and a sequence

(yn) ⊂ R2 satisfying ∫
B1(yn)

|w+
n |2 ≥ β. (1.15)

We may assume, without lost of generality, that (yn) ⊂ Z2. Moreover, doing a translation,

if necessary, we can suppose that (yn) is bounded. Hence, there exists R > 0 such that

B1(yn) ⊂ BR and by (1.15) we get

∫
BR

|w+
n |2 ≥ β.

Taking the limit we conclude that w+ ̸= 0, which is a contradiction and the proof of the

lemma is done. ■

Now, we are ready to prove our main theorem of this section.

Proof of Theorem 1.1. By the previous lemmas, the functional I ful�lls conditions (N1)−

(N3). Thus, according to Lemma 1.6, let (wn) ⊂ S+ be such that Ψ(wn) → infS+ Ψ. By

Ekeland's Variational Principle, we can suppose Ψ′(wn) → 0. Thus, by (iii) of Lemma

1.6 we have I ′(zn) → 0 where zn = m(wn) ∈ N . By Lemma 1.21, up to a subsequence,

zn ⇀ z in E and zn(x) → z(x) a.e. in x ∈ R2. Next, we have the following claim:

Claim 1: z is a critical point of I.

Indeed, by the density of C∞
0 (R2) × C∞

0 (R2) in E, just to conclude that I ′(z)η = 0
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for all η ∈ C∞
0 (R2) × C∞

0 (R2). Then, let η ∈ C∞
0 (R2) × C∞

0 (R2), K = supp η and

M > 0 is a constant to be chosen later. De�ning Ω1 = K ∩ {x; |zn(x)| ≤ M} and

Ω2 = K ∩ {x; |zn(x)| > M}, by (H1) and (H2), given α > 0 we obtain C > 0 such that

|Hz(x,w)| ≤ |w|+ C(eα|w|2 − 1) for all (x,w) ∈ R2 × R2

and hence

|Hz(x, zn(x)) · η(x)| ≤ ∥η∥∞|zn(x)|+ C1(e
α|zn(x)|2 − 1)

≤ ∥η∥∞M + C1(e
αM2 − 1) a.e. in x ∈ Ω1.

Since Hz(x, zn) · η → Hz(x, z) · η a.e. in Ω1, it follows from the Lebesgue Dominated

Convergence Theorem that

∫
Ω1

[Hz(x, zn)−Hz(x, z)] · η → 0 (1.16)

Now, we take α > 0 so that 2α∥zn∥2 < 4π. Thus, by Lemma 1.12 and Hölder's inequality,

we reach ∣∣∣∣∫
Ω2

[Hz(x, zn)−Hz(x, z)] · η
∣∣∣∣

≤ ∥η∥∞
M

∫
Ω2

|Hz(x, zn)−Hz(x, z)||zn|

≤ ∥η∥∞
M

[
∥zn∥22 + ∥zn∥2∥z∥2 + C1

(∫
R2

[e2α|zn|
2 − 1]

) 1
2

∥zn∥2

+ C1

(∫
R2

[e2α|z|
2 − 1]

) 1
2

∥zn∥2
]

≤ ∥η∥∞C
M

(1.17)

for some C > 0 independent of M . Hence, given δ > 0 we can consider M > 0 so that∣∣∣∣∫
Ω2

[Hz(x, zn)−Hz(x, z)] · η
∣∣∣∣ < δ, for all n ∈ N. (1.18)

Therefore, by (1.16) and (1.18) we obtain

lim sup
n→∞

∣∣∣∣∫
K

[Hz(x, zn)−Hz(x, z)] · η
∣∣∣∣ ≤ lim sup

n→∞

∣∣∣∣∫
Ω1

[Hz(x, zn)−Hz(x, z)] · η
∣∣∣∣+ δ = δ
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and once δ > 0 is arbitrary, we conclude that

∫
R2

[Hz(x, zn)−Hz(x, z)] · η → 0. (1.19)

Once

I ′(zn)η − I ′(z)η = ⟨zn − z, η⟩ −
∫
R2

[Hz(x, zn)−Hz(x, z)] · η

and according to (1.19) we reach

I ′(z)η = lim
n→∞

[
I ′(zn)η − ⟨zn − z, η⟩+

∫
R2

[Hz(x, zn)−Hz(x, z)] · η
]
= 0,

and Claim 1 is proved.

Now, let us suppose that zn → 0 in Lp(R2)× Lp(R2) for some p ∈ (2,∞). In view of

(1.8), given ε > 0 and α > 0, there exists C1 > 0 such that∣∣∣∣∫
R2

Hz(x, zn) · zn
∣∣∣∣ ≤ ε

∫
R2

|zn|2 + C1

∫
R2

|zn|(eα|zn|
2 − 1)

≤ ε∥zn∥22 + C1

(∫
R2

|zn|p
)1/p [∫

R2

(eαp
′∥zn∥2|zn/∥zn∥|2 − 1)

]1/p′
.

Taking α > 0 so that αp′∥zn∥2 < 4π for all n ∈ N, by Lemma 1.12 the last integral is

bounded. Moreover, we know that
∫
R2 |zn|p → 0 and therefore

∫
R2

Hz(x, zn) · zn → 0. (1.20)

Similarly, we also conclude that
∫
R2 Hz(x, zn) · z−n → 0. From this and since zn ∈ N we

have

0 = I ′(zn)z
−
n = −∥z−n ∥2 −

∫
R2

Hz(x, zn) · z−n ,

which shows that ∥z−n ∥2 → 0. On the other hand, we also have

0 = I ′(zn)zn = ∥z+n ∥2 − ∥z−n ∥2 −
∫
R2

Hz(x, zn) · zn

and by using (1.20) it follows that z+n → 0. But this contradicts Lemma 1.19 and therefore
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zn ̸→ 0 in Lp(R2)× Lp(R2). Again by Lions' lemma

∫
B1(yn)

|zn|2 ≥ β > 0,

for some β > 0 and (yn) ⊂ Z2. Once I is invariant by integer translations, the sequence

z̃n := zn(· − yn) ⇀ z̃ in E and again we can show that z̃ is a critical point of I. We

observe that by the last inequality z̃ ̸= 0 and since I does not have nonzero critical points

in E−, we have z̃ ∈ N and so I(z̃) ≥ c = infN I. Now, let us to prove that I(z̃) ≤ c and

thus we can conclude that c = I(z̃) = infN I. In fact, we know that

I(z̃n) → c, I ′(z̃n) → 0 and z̃n → z̃ a.e. in R2.

Hence, it follows from Lemma 1.13 and Fatou's lemma that

c+ on(1) = I(z̃n)−
1

2
I ′(z̃n)z̃n =

∫
R2

Ĥ(x, z̃n) ≥ I(z̃)− 1

2
I ′(z̃)z̃ + on(1) = I(z̃) + on(1),

which implies that I(z̃) ≤ c and the proof of Theorem 1.1 is concluded. ■

1.3 Proof of Theorem 1.2

In this section, we study the situation when V and H are asymptotically periodic.

First, we de�ned the functional I∞ : E → R by

I∞(z) :=
1

2
∥z+∥2 − 1

2
∥z−∥2 −

∫
R2

H∞(x, z),

where H∞ is the approximation of the function H according to hypothesis (H7). Once

H∞ ful�lls (H0) − (H4) and V∞ satis�es (V0), we can invoke Theorem 1.1 to get a least

energy solution z∞ ∈ E of the periodic system−∆u+ V∞(x)u = H∞,v(x, u, v), x ∈ R2,

−∆v + V∞(x)v = H∞,u(x, u, v), x ∈ R2.
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Therefore, taking the solution z∞, we de�ne our link set in the following way:

MR,z0 := {z = tz0 + z− : z− ∈ E−, ∥z∥ ≤ R, t ≥ 0},

where R > 0 and z0 := z+∞. By virtue of MR,z0 ⊂ Ê(z0) = Ê(z∞), it follows from Lemma

1.17 that

sup
z∈MR,z0

I∞(z) ≤ I∞(z0). (1.21)

With the aim of �nding a solution for problem (1), it su�ces to get a nonzero critical

point for the functional I de�ned in (1.9). Since we do not require an exponential growth

for H, we must guarantee that the functional I is well de�ned.

Lemma 1.22. Suppose that H satis�es (H2) and (H7). Then, for any ε > 0, q ≥ 1 and

α > 0, there exists C = C(ε, q, α) > 0 such that

|Hz(x, z)| ≤ ε|z|+ C|z|q−1(eα|z|
2 − 1) and |H(x, z)| ≤ ε|z|2 + C|z|q(eα|z|2 − 1), (1.22)

for each (x, z) ∈ R2 × R2.

Proof. Given ε > 0, we can use (H2) to obtain δ > 0 such that

|Hz(x, z)| ≤ ε|z|, for all x ∈ R2, |z| ≤ δ. (1.23)

Now, if |z| ≥ δ then, by using (H7), given q ≥ 1 and α > 0 we obtain

|Hz(x, z)| ≤ |H∞,z(x, z)|+ C1|φ(x)|(eα|z|
2 − 1) ≤ C|z|q−1(eα|z|

2 − 1), (1.24)

for some C = C(ε, q, α) > 0. Hence, (1.23) and (1.24) prove the �rst inequality in (1.22).

The second inequality follows from the Mean Value Theorem. ■

1.3.1 Linking geometry

In this subsection, we are going to guarantee that the functional I satis�es the linking

structure of Theorem 1.9 (condition (L2)).

According to condition (V1), we can work with the same space E. The linking geometry

is proved in the next lemma.
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Lemma 1.23. Suppose that H satis�es (H2), (H5)− (H7). Then,

(i) there exist r, ρ > 0 such that I|Nr≥ ρ;

(ii) there exists R > r such that I|∂MR,z0
≤ 0.

Proof. The item (i) is a consequence of (H2) and Lemma 1.22. Indeed, given z = (u, u) ∈

Nr, α > 0, ε > 0 and q > 2, by Lemma 1.22 we get

|H(x, z)| ≤ ε|z|2 + Cε|z|q(eα|z|
2 − 1). (1.25)

By using Hölder's inequality, the continuous embedding E ↪→ Lt(R2) × Lt(R2) for any

t ≥ 2 and Lemma 1.12, we get

∫
R2

|z|q(eα|z|2 − 1) ≤
(∫

R2

|z|2q
)1/2 [∫

R2

(e2r
2α|z/r|2 − 1)

]1/2
≤ C∥z∥q = Crq,

where we have considered r > 0 so that 2r2α < 4π. Hence, according to (1.25) we reach

I(z) ≥ 1

2
r2 − ε

∫
R2

|z|2 − Crq ≥
(
1

2
− εC1

)
r2 − Crq.

Taking 0 < ε < 1/(2C1), we can obtain r > 0 so that (1/2 − εC1)r
2 − Crq =: ρ > 0.

Therefore, there exist r, ρ > 0 such that I(z) ≥ ρ whenever ∥z∥ = r.

For item (ii), let z = tz0 + z− ∈ ∂MR,z0 . If ∥z∥ ≤ R and t = 0 then z = z− ∈ E− and

we can use (H7) to obtain

I(z) = I(z−) = −1

2
∥z−∥2 −

∫
R2

H(x, z−) ≤ 0.

Now, we consider the case ∥z∥ = R and t > 0. We argue by contradiction. Suppose that

there exists a sequence (zn) such that zn = tnz0 + z−n , with tn > 0, ∥zn∥ = Rn → ∞ and

I(zn) > 0. Thus,

0 <
I(zn)

∥zn∥2
=

1

2

(
t2n∥z0∥2

∥zn∥2
− ∥z−n ∥2

∥zn∥2

)
−
∫
R2

H(x, zn)

|zn|2
|zn|2

∥zn∥2
. (1.26)

Once H is nonnegative, we must have tn∥z0∥ > ∥z−n ∥. Observing that

t2n∥z0∥2

∥zn∥2
+

∥z−n ∥2

∥zn∥2
= 1,
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we can see that

1√
2∥z0∥

≤ tn
∥zn∥

≤ 1

∥z0∥
and

z−n
∥zn∥

is bounded.

Hence, since E− is weakly closed, up to a subsequence, we can assume that

tn
∥zn∥

→ ρ0 > 0,
z−n
∥zn∥

⇀ w ∈ E− and
z−n (x)

∥zn∥
→ w(x) a.e. in x ∈ R2,

As ∥zn∥ → ∞ we have tn → ∞ and therefore

lim
n→∞

|zn(x)| = ∞ a.e. in Ω := {x ∈ R2 : ρ0z0(x) + w(x) ̸= 0}.

In view of ρ0 > 0 and w ∈ E−, Ω has positive Lebesgue measure. Hence, taking the limit

in (1.26), using Fatou's lemma and (H7), we reach

0 ≤ 1

2
(ρ20∥z0∥2 − ∥w∥2)−

∫
Ω

lim inf
n→∞

H(x, zn)

|zn|2
|zn|2

∥zn∥2
= −∞,

which is an absurd and this concludes the proof. ■

1.3.2 Behavior of Cerami Sequences

In this subsection, we get some crucial results related to Cerami sequences for the

functional I.

In the proof of the next lemma, we shall use the following inequality, whose proof can

be found in [28, Lemma 2.4]:

st ≤


(et

2 − 1) + |s|(log |s|)1/2, t ∈ R and |s| ≥ e1/4;

(et
2 − 1) +

1

2
s2, t ∈ R and |s| ≤ e1/4.

(1.27)

Lemma 1.24. Assume conditions (H2) and (H5)− (H7). If (zn) ⊂ E is a (Ce)c sequence

for I, then it is bounded in E.

Proof. If (zn) ⊂ E is a (Ce)c sequence for I, then

c+ on(1) = I(zn)−
1

2
I ′(zn)zn =

∫
R2

Ĥ(x, zn). (1.28)
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Suppose by contradiction that, up to a subsequence, ∥zn∥ → +∞. Thus,

on(1) =
I ′(zn)(z

+
n − z−n )

∥zn∥2
= 1−

∫
R2

Hz(x, zn) · (z+n − z−n )

∥zn∥2
.

Setting wn := zn/∥zn∥, we get

lim
n→∞

∫
R2

Hz(x, zn) · (w+
n − w−

n )

∥zn∥
= 1. (1.29)

Recalling that q(r) = inf{Ĥ(x, z) : x ∈ R2, |z| ≥ r} and noting that q is nondecreasing in

r > 0, we can use (H5) to conclude that q(r) > 0 for all r > 0. Moreover, in view of (H6),

(H7)(i) and (H7)(ii), it follows that Ĥ(x, z) → +∞ as |z| → ∞ uniformly in x ∈ R2.

Consequently, q(r) → ∞ as r → ∞.

For 0 ≤ a < b ≤ ∞ and n ∈ N, we set

Ωn(a, b) := {x ∈ R2 : a ≤ |zn(x)| < b}.

Using (1.28) and for 0 < r < R <∞, we obtain

c+ on(1) =

∫
Ωn(0,r)

Ĥ(x, zn) +

∫
Ωn(r,R)

Ĥ(x, zn)

|zn|2
|zn|2 +

∫
Ωn(R,∞)

Ĥ(x, zn)

≥
∫
Ωn(0,r)

Ĥ(x, zn) +
q(r)

R2

∫
Ωn(r,R)

|zn|2 + q(R)µ(Ωn(R,∞))

and therefore there exists C1 > 0 such that

max

{∫
Ωn(0,r)

Ĥ(x, zn),
q(r)

R2

∫
Ωn(r,R)

|zn|2, q(R)µ(Ωn(R,∞))

}
≤ C1. (1.30)

In particular,

µ(Ωn(R,∞)) ≤ C1/q(R) for each n ∈ N. (1.31)

Now, let C3 > 0 be such that ∥z∥22 ≤ C3∥z∥2 for each z ∈ E and consider ε > 0. By (H2),

there exists rε > 0 such that |Hz(x, z)| ≤ ε|z|/C3 for each |z| ≤ rε. By the de�nition of
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wn and since |w+
n − w−

n | = |wn|, for any n ∈ N we get

∫
Ωn(0,rε)

Hz(x, zn) · (w+
n − w−

n )

∥zn∥
≤
∫
Ωn(0,rε)

|Hz(x, zn)|
|zn|

|w+
n − w−

n ||wn|

≤ ε

C3

∫
Ωn(0,rε)

|wn|2 ≤ ε∥wn∥2 = ε.

(1.32)

Now, let Rε > rε to be chosen later. De�ne A1 = Ωn(Rε,∞)∩ {x ∈ R2 : |Hz(x, zn)| ≤

e1/4} and A2 = Ωn(Rε,∞) ∩ {x ∈ R2 : |Hz(x, zn)| ≥ e1/4}. Taking t = |wn| and

s = |H(x, zn)| in (1.27), we get

∫
Ωn(Rε,∞)

Hz(x, zn) · (w+
n − w−

n )

∥zn∥
≤ 1

∥zn∥

∫
Ωn(Rε,∞)

|Hz(x, zn)||wn|

≤ 1

∥zn∥

∫
A2

|Hz(x, zn)|(log |Hz(x, zn)|)1/2

+
1

∥zn∥

∫
A1

1

2
|Hz(x, zn)|2 +

2

∥zn∥

∫
R2

(e|wn|2 − 1).

(1.33)

By (1.31), we have µ(A1) ≤ µ(Ωn(Rε,∞)) ≤ C1/q(Rε) and consequently

∫
A1

|Hz(x, zn)|2 ≤
C1e

1/2

q(Rε)
, for all n ∈ N.

By Lemma 1.12, the integral
∫
R2(e

|wn|2 − 1) is bounded. Moreover, given α > 0, by (H1)

there exists R1 > 0 such that

|Hz(x, z)| ≤ eα|z|
2

for all x ∈ R2 and |z| ≥ R1.

In view of (H6), there exists c1 > 0 such that

|Hz(x, z)||z| ≤ c1Ĥ(x, z) for all x ∈ R2 and |z| ≥ R1.

Taking Rε > R1, from the two last estimates and (1.28), it follows that

∫
A2

|Hz(x, zn)|(log |Hz(x, zn)|)1/2 ≤ α1/2

∫
A2

|Hz(x, zn)||zn| ≤ α1/2c1

∫
R2

Ĥ(x, zn) ≤ C,
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for some constant C > 0. Thus, in view of (1.33), we �nd n0 ∈ N satisfying

∫
Ωn(Rε,∞)

Hz(x, zn) · (w+
n − w−

n )

∥zn∥
< ε, for all n ≥ n0. (1.34)

According to (H7), given α > 0, we obtain Cα > 0 such that, for all x ∈ Ωn(rε, Rε), we

have
|Hz(x, zn)| ≤ |Hz,∞(x, zn)|+ Cα|φ(x)||zn|(eα|zn|

2 − 1)

≤ Cε|zn|+ Cα∥φ∥∞(eαR
2
ε − 1)|zn|.

From this estimate and (1.30), recalling the de�nition of wn and |w+
n − w−

n | = |wn|, we

reach

∫
Ωn(rε,Rε)

Hz(x, zn) · (w+
n − w−

n )

∥zn∥

≤ Cε

∫
Ωn(rε,Rε)

|zn||w+
n − w−

n |
∥zn∥

+ Cα∥φ∥∞(eαR
2
ε − 1)

∫
Ωn(rε,Rε)

|zn||w+
n − w−

n |
∥zn∥

≤ C6

∥zn∥2

∫
Ωn(rε,Rε)

|zn|2

≤ C7

∥zn∥2
R2

ε

q(rε)
< ε, for all n ≥ n1,

for some n1 ∈ N. This estimate, (1.32) and (1.34) show that

∫
R2

Hz(x, zn) · (w+
n − w−

n )

∥zn∥
dx ≤ 3ε, for all n ≥ max{n0, n1}.

But this contradicts (1.29) since ε > 0 is arbitrary, and the proof is done. ■

Lemma 1.25. Suppose that (H2), (H6) and (H7) are ful�lled. Let c > 0 and (zn) ⊂ E

be a (Ce)c sequence for I. If zn ⇀ 0 weakly in E, then there exists a sequence (yn) ⊂ R2,

R > 0 and β > 0 such that |yn| → ∞ and

lim sup
n→∞

∫
BR(yn)

|zn|2 ≥ β > 0.

Proof. Suppose by contradiction that the result is not valid. Thus, for each R > 0, one

has

lim
n→∞

sup
y∈R2

∫
BR(y)

|zn|2 = 0,

and by invoking Lions' lemma zn → 0 in Ls(R2) × Ls(R2) for each s > 2. In view of
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(1.22), we have
∫
R2 H(x, zn) → 0 as n → ∞. Similarly,

∫
R2 Hz(x, zn) · zn → 0. On the

other hand,

c = lim
n→∞

[
I(zn)−

1

2
I ′(zn)zn

]
= lim

n→∞

∫
R2

(
1

2
Hz(x, zn) · zn −H(x, zn)

)
= 0,

and this contradicts the fact that c > 0, concluding the proof. ■

For Ψ ∈ F , ε > 0 and R > 0, we set Dε(R) = {x ∈ R2 : |Ψ(x)| ≥ ε, |x| ≥ R}. Fixed

Ψ ∈ F and ε > 0, by de�nition of the class F , a simple argument guarantees that

µ(Dε(R)) → 0 as R → ∞. (1.35)

In fact, since Ψ ∈ F , we have µ(Dε(R)) → 0 < ∞ for all ε > 0. To prove the lemma,

we have to verify that

lim
m→∞

µ(Dε ∩ (R2\BRm)) = 0

for each sequence (Rm) ⊂ R such that Rm → ∞. Consider the function f : R2 → R given

by f(x) = χDε(x), that is,

f(x) =

1, for x ∈ Dε,

0, for x ̸∈ Dε.

Then f ∈ L1(R2) and |f |1 =
∫
R2 |f | = µ(Dε). De�ning the sequence of functions

fm : R2 → R by fm(x) = χDε∩(R2\BRm )(x), it follows that |fm| ≤ |f |. Since fm → 0 almost

everywhere in R2 as m→ ∞, our claim follows from Lebesgue's Dominated Convergence

Theorem. (for details, see Lemma 2.6 of [48]).

By conditions (H2) and (H7)(iii), given σ > 0 and α > 0 there exist C = C(σ, α) > 0

such

|H∞,z(x, z)−Hz(x, z)| ≤ σ|z|+ C|φ(x)|(eα|z|2 − 1) for all (x, z) ∈ R2 × R2. (1.36)

The next two results are technical and the proofs can be done arguing along the same

lines of [48, Lemmas 5.1 and 5.2], respectively.

Lemma 1.26. Assume that (H2), (H7) and (V1) are satis�ed. Let (zn) ⊂ E be a bounded
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sequence and wn(x) = w(x− yn), with w ∈ E and (yn) ⊂ R2. If |yn| → ∞ then

∫
R2

|[H∞,z(x, zn)−Hz(x, zn)] · wn| → 0 and

∫
R2

|[V∞(x)− V (x)]zn · wn| → 0.

Proof. We know that w ∈ L2(R2) × L2(R2). Thus, given δ > 0, we can �nd 0 < ε < δ

such that for each measurable subset A ⊂ R2 satisfying µ(A) < ε, we have
∫
A
|w|2 < δ.

Once φ ∈ F , for this ε > 0 we de�ne

Dε(R) = {x ∈ R2 : |φ(x)| ≥ ε, |x| ≥ R}

and by virtue of (1.35) there exists Rε > 0 such that µ(Dε(Rε)) < ε. Therefore,∫
Dε(Rε)

|w|2 < δ. Taking α > 0 so that 2α∥zn∥2 < 4π for all n ∈ N and σ = 1 in

(1.36), by Lemma 1.12 we get∫
R2\BRε (0)

|H∞,z(x, zn)−Hz(x, zn)||wn|

≤
∫
Dε(Rε)

|zn||wn|+ C1

∫
(R2\BRε (0))∩{|φ(x)|<ε}

|φ(x)|(eα|zn|2 − 1)|wn|

≤ ∥zn∥2
(∫

Dε(Rε)−yn

|w|2
)1/2

+ εC1

(∫
R2

(e2α∥zn∥
2|zn/∥zn∥|2 − 1)

)1/2(∫
R2

|w|2
)1/2

≤ C2δ
1/2 + C3δ.

On the other hand,

∫
BRε (0)

|H∞,z(x, zn)−Hz(x, zn)||wn|

≤
∫
BRε (0)

|zn||wn|+ C1

∫
BRε (0)

|φ(x)|(eα|zn|2 − 1)|wn|

≤ ∥zn∥22

(∫
BRε (−yn)

|w|2
)1/2

+ C1∥φ∥∞
(∫

R2

(e2α|zn|
2 − 1)

)1/2
(∫

BRε (−yn)

|w|2
)1/2

≤ C4

(∫
BRε (−yn)

|w|2
)1/2

and since w ∈ L2(R2)× L2(R2) e |yn| → ∞, there exists n0 ∈ N such that

∫
BRε (0)

|H∞,z(x, zn)−Hz(x, zn)||wn| ≤ δ1/2, for all n ≥ n0.
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Therefore, once δ > 0 is arbitrary, the �rst convergence is proved. The second one is more

simple and similar. Thus, the lemma is proved. ■

We �nalize this subsection presenting the following result, which will be useful in the

sequel.

Lemma 1.27. Suppose Ψ ∈ F and s ≥ 2. If wn ⇀ w in E, then

lim
n→∞

∫
R2

Ψ|wn|s =
∫
R2

Ψ|w|s.

Proof. It is analogous to the proof of Lemma 2.6 of [48] and we omit it. ■

1.3.3 Conclusion of the proof of Theorem 1.2

Here, we complete the proof of the second main result of our paper. For this, we shall

need of the next lemma.

Lemma 1.28. Suppose that H satis�es (H2) and (H7). Then, the functional J : E → R

given by

J (z) =

∫
R2

H(x, z)

is weakly sequentially lower semicontinuous and J ′ is weakly sequentially continuous.

Proof. Let (zn) be in E such that zn ⇀ z in E. Thus, (zn) is bounded in E and by virtue

of the continuous embedding E ↪→ Lt(R2)×Lt(R2) for any t ≥ 2, (∥zn∥t) is also bounded

and, up to a subsequence, zn → z a.e. in R2. According to (H7) and Lemma 1.13, we

have H(x, z) ≥ H∞(x, z) ≥ 0 and therefore by Fatou's lemma we reach

lim inf
n→∞

J (zn) = lim inf
n→∞

∫
R2

H(x, zn) ≥
∫
R2

H(x, z) = J (z)

and the �rst part is done. For the second part, once E is re�exive we must prove that if

zn ⇀ z in E then

J ′(zn)w =

∫
R2

Hz(x, zn) · w →
∫
R2

Hz(x, z) · w = J ′(z)w, for each w ∈ E. (1.37)

Initially, from the proof of Claim 1 in the periodic case, we knows that (1.37) is valid

for w ∈ C∞
0 (R2)× C∞

0 (R2).
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Now, given w ∈ E, by the density of C∞
0 (R2)×C∞

0 (R2) in E, given δ > 0 there exists

η ∈ C∞
0 (R2) × C∞

0 (R2) such that ∥w − η∥ < δ. By exploiting the same arguments used

in (1.17), we can conclude that

∥Hz(x, zn)−Hz(x, z)∥22 ≤ C, for all n ∈ N,

for some constant C > 0. Thus,∣∣∣∣∫
R2

[Hz(x, zn)−Hz(x, z)] · w
∣∣∣∣ ≤ ∥Hz(x, zn)−Hz(x, z)∥2∥w − η∥2

+

∣∣∣∣∫
R2

[Hz(x, zn)−Hz(x, z)] · η
∣∣∣∣

≤ C1∥w − η∥+
∣∣∣∣∫

R2

[Hz(x, zn)−Hz(x, z)] · η
∣∣∣∣

and consequently

lim sup
n→∞

∣∣∣∣∫
R2

[Hz(x, zn)−Hz(x, z)] · w
∣∣∣∣ ≤ C1δ,

which proves the lemma. ■

In view of Lemma 1.28 and Lemma 1.23, the conditions (L1) and (L2) of Theorem 1.9

are satis�ed. Thus, by invoking Theorem 1.9, we obtain a (Ce)c sequence (zn) ⊂ E for I

at level c ≥ ρ > 0. By Lemma 1.24, up to a subsequence, zn ⇀ z weakly in E. Now, for

η ∈ E we have

I ′(zn)η − I ′(z)η = ⟨zn − z, η⟩ −
∫
R2

[Hz(x, zn)−Hz(x, z)] · η

and according to (1.37) we reach

I ′(z)η = lim
n→∞

[
I ′(zn)η − ⟨zn − z, η⟩+

∫
R2

[Hz(x, zn)−Hz(x, z)] · η
]
= 0,

that is, z is a critical point of I. If z ̸= 0, the proof is �nished. Thus, suppose that z = 0.

By Lemma 1.25, there exists a sequence (yn) ⊂ R2, R > 0 and β > 0 such that |yn| → ∞

as n→ ∞ and

lim sup
n→∞

∫
BR(yn)

|zn|2 ≥ β > 0. (1.38)

Without lost of generality, we can suppose (yn) ⊂ Z2. Setting z̃n(x) := zn(x + yn) and
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noticing that ∥z̃n∥ = ∥zn∥, up to a subsequence, we have z̃n ⇀ z̃ weakly in E. By estimate

(1.38), we have z̃ ̸= 0.

Next, we claim that I ′∞(z̃) = 0. Indeed, for w ∈ E let wn(x) = w(x − yn). By using

change of variable, the periodicity of H∞ and arguing as above, we can see that

I ′∞(zn)wn = I ′∞(z̃n)w = I ′∞(z̃)w + on(1).

On the other hand, by Lemma 1.26, we have

I ′∞(zn)wn = I ′(zn)wn +

∫
R2

[V∞(x)− V (x)]zn · wn −
∫
R2

[Hz(x, zn)−H∞,z(x, z)] · wn

= I ′(zn)wn + on(1)

and the claim follows from the fact that (zn) is a Cerami sequence for I.

De�ning

Ĥ∞(x, z) =
1

2
H∞,z(x, z) · z −H∞(x, z),

in view of (1.36), given σ > 0 and α > 0 so that 2α∥zn∥2 < 4π, we obtain

|Ĥ(x, zn)− Ĥ∞(x, zn)| ≤
1

2
|Hz(x, zn)−H∞,z(x, zn)||zn|

+

∫ 1

0

|Hz(x, tzn)−H∞,z(x, tzn)||zn|dt

≤ σ

2
|zn|2 +

C

2
|φ(x)||zn|(eα|zn|

2 − 1) +
σ

2
|zn|2

+ C

∫ 1

0

|φ(x)|(eαt2|zn|2 − 1)|zn|dt

≤ σ|zn|2 + C1|φ(x)||zn|(eα|zn|
2 − 1).

This estimate, Lemma 1.12 and Lemma 1.27 ensure that

lim inf
n→∞

∫
R2

Ĥ(x, zn) ≥ lim inf
n→∞

[∫
R2

Ĥ∞(x, zn)− σ

∫
R2

|zn|2 − C1

∫
R2

|φ(x)||zn|(eα|zn|
2 − 1)

]
≥ lim inf

n→∞

[ ∫
R2

Ĥ∞(x, zn)− σC

− C1

(∫
R2

|φ(x)||zn|2
) 1

2
(∫

R2

(e2α|zn|
2 − 1)

) 1
2
]

≥ lim inf
n→∞

∫
R2

Ĥ∞(x, zn)− σC
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and consequently the arbitrarity of σ > 0 and Fatou's lemma show that

lim inf
n→∞

∫
R2

Ĥ(x, zn) ≥
∫
R2

Ĥ∞(x, z).

Thus,

c∗ = lim
n→∞

[
I(zn)−

1

2
I ′(zn)zn

]
= lim inf

n→∞

∫
R2

Ĥ(x, zn)

≥
∫
R2

Ĥ∞(x, z̃) = I∞(z̃)− I ′∞(z̃)z̃ = I∞(z̃).

By the de�nition of c∗, (V1), (H7)(ii) and (1.21), we obtain

c∗ ≤ sup
z∈MR,z0

I(z) ≤ sup
z∈MR,z0

I∞(z) ≤ I∞(z0) ≤ I∞(z̃) ≤ c∗.

Hence, if we de�ne h0 : [0, 1] ×MR,z0 → E by h0(t, z) = z for any (t, z) ∈ [0, 1] ×MR,z0 ,

the above inequality implies that

sup
z∈MR,z0

I(h0(1, z)) = c∗ > 0.

It follows from Theorem 1.10 that I has a nonzero critical point and the proof is �nished.
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Chapter 2

Hamiltonian systems involving critical

exponential growth in R2 with general

nonlinearities

This chapter is a continuation of the work on Chapter 1. We study the existence of

ground state solution for the same class of Hamiltonian systems:

−∆u+ V (x)u = Hv(x, u, v), x ∈ R2,

−∆v + V (x)v = Hu(x, u, v), x ∈ R2,
(1)

where V ∈ C(R2, (0,∞)), H ∈ C1(R2×R2,R). Here, our intention is to deal with system

(1) when V and H are periodic in x = (x1, x2). Moreover, H is allowed to have a critical

exponential growth and depends on u and v simultaneously.

Our main assumption on V is the following:

(V0) V (x) = V (x1, x2) is positive and 1-periodic in the variables x1, x2.

With respect to the function H, we assume the following conditions:

(H0) H ∈ C1(R2 × R2,R) and H(x1, x2, z) is 1-periodic in the variables x1, x2;

(H1) (Critical exponential growth) there exists α0 > 0 such that

lim
|z|→∞

|Hz(x, z)|
eα|z|2

=

 0, if α > α0,

+∞, if α < α0,
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uniformly in x ∈ R2;

(H2) Hz(x, z) = o(|z|) as |z| → 0, uniformly in x ∈ R2;

(H3) there exists g : R2 × R+ → [0,∞) increasing in the second variable such that

Hz(x, z) = g(x, |z|)z, for each (x, z) ∈ R2 × R2;

(H4) there exists R0,M0 > 0 such that

0 < H(x, z) ≤M0|Hz(x, z)|, for all x ∈ R2 and |z| ≥ R0;

(H5) lim sup
|z|→∞

|z||Hz(x, z)|
Ĥ(x, z)

=: β < +∞, uniformly in x ∈ R2, where

Ĥ(x, z) :=
1

2
Hz(x, z) · z −H(x, z), for (x, z) ∈ R2 × R2.

Remark 2.1. We observe that we do not require the well-known Ambrosetti-Rabinowitz

condition:

(AR) there exists θ > 2 such that, for each x ∈ R2 and z ∈ R2\{0}, there holds

0 < θH(x, z) ≤ Hz(x, z) · z,

which is often used in Hamiltonian systems involving critical exponential growth.

Next, let us consider the Banach space E := H1(R2)×H1(R2). We say a pair (u, v) ∈ E

is a weak solution of system (1) if the equality

∫
R2

(∇u · ∇φ+ V (x)uφ) +

∫
R2

(∇v · ∇ψ + V (x)vψ) =

∫
R2

(Hv(x, u, v)φ+Hu(x, u, v)ψ)

is valid for all (φ, ψ) ∈ E. The energy functional associated to (1) is given by

I(z) =

∫
R2

(∇u · ∇v + V (x)uv)dx−
∫
R2

H(x, z)dx, z = (u, v) ∈ E.

As we will see in Section 2.1, this functional is of class C1 and critical points of I

corresponds to weak solutions of Problem (1).
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We say that z0 ∈ E is a ground state solution of (1) if

I(z0) = inf{I(z) : z ∈ E\{0} is a weak solution of (1)}.

Denoting ∥V ∥∞ = maxx∈R2 V (x), the main result of this article is stated as follows:

Theorem 2.2. Suppose that conditions (V0) and (H0) − (H5) are satis�ed. In addition,

we assume that there exists p > 2 such that

H(x, z) ≥ λ0|z|p, for all (x, z) ∈ R2 × R2, (2.1)

where

λ0 ≥
8(p− 2)

p−2
2 (βα0)

p−2
2 (4 + ∥V ∥∞)

p
2

p
p
2

if β > 0 and λ0 > 0 if β = 0. (2.2)

Then, system (1) has a ground state solution.

We observe that as a consequence of condition (2.1), we have

lim
|z|→∞

H(x, z)

|z|2
= +∞, uniformly in x ∈ R2. (2.3)

As said before, an obstacle in studying Hamiltonian elliptic systems like (1) in

dimension two through variational methods is dealing with the lack of compactness,

stemming from the unboundedness of the domain and the noncompactness of the

Trudinger�Moser functional. Furthermore, here the Nehari manifold is not of class C1

and we cannot apply the Ekeland Variational Principle. To overcome this di�culty we

used arguments introduced by Szulkin and Weth in [59, 60] (see also [32, 33, 52, 57]),

which relates this minimizing process on the Nehari manifold with a similar one on a

C1-manifold (see Lemma 1.6). As we are not using the Ambrosetti-Rabinowitz condition

and by imposing a critical exponential growth on a general nonlinearity, our argument

requires a delicate analysis of the Palais�Smale sequences that converge to the in�mum

of the functional on the Nehari manifold.

Example 2.3. It is not di�cult to check that the function H : R2 × R2 → R given by

H(x, z) = |z|3(e|z|2 − 1) + λ0|z|3,
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with λ0 ful�lling (2.2), satis�es conditions (H0)− (H5) and (2.1).

In the forthcoming section, our objective is to apply Lemma 1.6, so we restate some

de�nitions and results, and prove the ones that need some modi�cation due to the critical

exponential growth. In Section 2.2, we prove our main result.

2.1 Preliminaries

In this section we present some results that will be used to prove Theorem 2.2. In

order to exploit Lemma 1.6, we consider the following subspaces of E:

E+ := {(u, u) : u ∈ H1(R2)} and E− := {(u,−u) : u ∈ H1(R2)}.

Note that E+ and E− are orthogonal in E and for z = (u, v) ∈ E, if

z+ :=

(
u+ v

2
,
u+ v

2

)
and z− :=

(
u− v

2
,
v − u

2

)
,

then z± ∈ E± and we have z = z+ + z−. Thus, E = E+ ⊕E− and a simple computation

shows that ∫
R2

(∇u · ∇v + V (x)uv) =
1

2
(∥z+∥2 − ∥z−∥2). (2.4)

By using (H1) and (H2) we can see that, given ε > 0, α > α0 and q ≥ 1, there exists

C = C(ε, α, q) > 0 such that

max{|H(x, z)|, |Hz(x, z)||z|} ≤ ε|z|2 + C|z|q(eα|z|2 − 1), for all (x, z) ∈ R2 × R2. (2.5)

In view of (2.5) and Lemma 1.12, the energy functional associated to (1), given by

I(z) =
1

2
(∥z+∥2 − ∥z−∥2)− J (z), (2.6)

where J (z) :=
∫
R2 H(x, z), is well de�ned. Furthermore, it is not di�cult to show that

I ∈ C1(E,R) with

I ′(z)w = ⟨z+, w+⟩ − ⟨z−, w−⟩ −
∫
R2

Hz(x, z) · w, for z, w ∈ E.

Hence, the critical points of I correspond to weak solutions of Problem (1).
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In order to apply Lemma 1.6, we need to show that I satis�es conditions (N1)− (N3).

Some of these lemmas are already in Chapter 1, we restate them and prove the ones where

the critical growth hypothesis is used.

Lemma 2.4. Assuming conditions (H1)− (H3), for each z ̸= 0 we have

1

2
Hz(x, z) · z > H(x, z) > 0.

Furthermore, J (0) = 0 and J is weakly lower semicontinuous.

By the previous lemma, condition (N1) is satis�ed. The next result is necessary in

order to show condition (N2).

Lemma 2.5. Suppose that H satis�es (H1) − (H3). If z ∈ N then for any w ̸= 0 such

that z + w ∈ Ê(z), we have I(z + w) < I(z).

Lemma 2.6. Assume conditions (H1)− (H3) and (2.1). For each z ∈ E\E−, there exists

R = R(z) > 0 such that I(w) ≤ 0 for all w ∈ Ê(z)\BR(0), where BR(0) := {z ∈ E :

∥z∥ < R}.

The next lemma guarantees that condition (N2) is valid.

Lemma 2.7. Suppose that H satis�es (H1)− (H3) and (2.1).

(i) for any z ∈ N , I|Ê(z) admits a unique maximum point which is precisely at z.

(ii) for any z ∈ E\E−, the set Ê(z) intersects N at exactly one point m̂(z), which is

the unique global maximum point of I|Ê(z).

Proof. Firstly we will show (i). Given tz + y ∈ Ê(z)\{z}, it is enough to consider

w = (t − 1)z + y to obtain tz + y = z + w. Note that, if w = 0 then t = 1 and

y = 0, but this can not occur because tz + y ̸= z. Hence, w ̸= 0 and by Lemma 1.16 we

conclude that I(tz + y) < I(z).

To prove (ii), by the previous item, it is su�cient to show that N ∩ Ê(z) ̸= ∅ for each

z ∈ E\E−. Moreover, since Ê(z) = Ê (z+/∥z+∥), we can assume z = (u, u) ∈ E+ and

∥z∥ = 1. By Lemma 1.15, there exists R > 0 such that I(w) ≤ 0 if w ∈ Ê(z)\BR(0) and
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if ∥w∥ ≤ R then I(w) ≤ R2/2 and so supÊ(z) I < ∞. On the other hand, by using (1.8),

for ε > 0 and α′ > α0 there exists Cε > 0 such that

H(x, z) ≤ ε|z|2 + Cε|z|3(eα
′|z|2 − 1), z ∈ R2. (2.7)

From (1.12), Lemma 1.12 and by choosing 0 < ε < 1/(4
∫
R2 |z|2), we have

I(tz) =
t2

2
∥z∥2 −

∫
R2

H(x, tz) ≥ t2

2
− εt2

∫
R2

|z|2 − Cεt
3

∫
R2

|z|3(eα′t2|z|2 − 1)

≥ t2

4
− Ct3

(∫
R2

|z|6
)1/2 [∫

R2

(e2α
′t2|z|2 − 1)

]1/2
> 0,

for all 0 < t <
√

2π/α′ su�ciently small. Consequently, supÊ(z) I > 0.

Now, let wn = (w1
n, w

2
n) = tnz + (hn,−hn) ∈ Ê(z) be a maximizing sequence

for supÊ(z) I. Since supÊ(z) I > 0, we can suppose that ∥wn∥ ≤ R. Hence, up

to a subsequence, wn ⇀ w0 weakly in E. We can see, up to a subsequence, that

tn → t0 ≥ 0 and hn ⇀ h0, w1
n ⇀ w1

0, w
2
n ⇀ w2

0 weakly in H1(R2). Therefore,

w0 = (w1
0, w

2
0) = t0z + (h0,−h0) ∈ Ê(z). Recalling that z ∈ E+ and ∥z∥ = 1, we

can write

I(wn) =
t2n
2
− 1

2
∥hn∥2 −

∫
R2

H(x,w1
n, w

2
n),

from where it follows, according to the weak lower semicontinuous of the norm and Fatou's

lemma, that

sup
Ê(z)

I = lim
n→∞

I(wn) =
t20
2
+ lim sup

n→∞

[
−1

2
∥hn∥2 −

∫
R2

H(x,w1
n, w

2
n)

]
≤ I(w0).

Thus, I(w0) = supÊ(z) I and therefore w0 is a critical point of I|Ê(z), showing that

w0 ∈ N ∩ Ê(z) and the proof is complete. ■

As an immediate consequence of this lemma, we obtain the following characterization

to the minimal level for I on the generalized Nehari manifold N :

Corollary 2.8.

c∗ := inf
η∈N

I(η) = inf
z∈E\E−

max
w∈Ê(z)

I(w).
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Lemma 2.9. Suppose that H satis�es (H1)− (H3) and (2.1). Then, c∗ > 0 and

∥z+∥ ≥ max{∥z−∥,
√
2c∗} for all z ∈ N .

Proof. For a > 0, we recall that S+
a := {z ∈ E+ : ∥z∥ = a} and (R+)z = {tz : t ≥ 0}.

Since Ê(z) = Ê(z+) for any z ∈ E\E−, from Corollary 2.8, for any a > 0, it follows that

c∗ = inf
z∈E\E−

max
w∈Ê(z)

I(w) = inf
z∈E+\{0}

max
w∈Ê(z)

I(w) = inf
z∈S+

a

max
w∈Ê(z)

I(w) ≥ inf
z∈S+

a

max
w∈(R+)z

I(w).

Let z = (u, u) be in S+
a and α > α0. We take a > 0 so that 2αa2 < 4π. By virtue of

Lemma 1.12, we reach

∫
R2

(e2α|z|
2 − 1) =

∫
R2

(e2αa
2(|z|/∥z∥)2 − 1) ≤ C,

for some C > 0. Thus, by using (1.12) we get

max
w∈(R+)z

I(w) ≥ I(z) = ∥u∥2V −
∫
R2

H(x, u, u) ≥ ∥u∥2V − ε

∫
R2

|z|2 − Cε

∫
R2

|z|3(eα|z|2 − 1)

≥
(
1− 2ε

a0

)
∥u∥2V − Cε

(∫
R2

|z|6
)1/2

≥
(
1− 2ε

a0

)
∥u∥2V − C1∥u∥3V ,

where we have used the continuous embedding H1(R2) ↪→ L6(R2). Hence, taking ε = a0/4

and 0 < a <
√

2π/α su�ciently small so that 1/2− C1∥u∥V = 1/2− C1a/
√
2 ≥ 1/4, we

conclude that

max
w∈(R+)z

I(w) ≥ ∥u∥2V
(
1

2
− C1∥u∥V

)
≥ a2

8
> 0, for all z = (u, u) ∈ S+

a

and consequently c∗ > 0. Now, for any z ∈ N we have

c∗ ≤
1

2
(∥z+∥2 − ∥z−∥2)−

∫
R2

H(x, z) ≤ 1

2
(∥z+∥2 − ∥z−∥2),

which implies that ∥z+∥ ≥ max{∥z−∥,
√
2c∗} and the proof is done. ■

Condition (N3) can be now proved in the following lemma:

Lemma 2.10. Suppose that H satis�es (H1)−(H3) and (2.1). If W ⊂ E\E− is compact,
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then there exists CW > 0 such that ∥m̂(z)∥ ≤ CW , for all z ∈ W.

2.2 Proof of Theorem 2.2

The generalized manifold N is not necessarily of class C1 and thus the Ekeland

Variational Principle can not be applied directly to obtain a Palais-Smale sequence

for I on N . However, in view of item (iv) of Lemma 1.6 and Lemma 2.9, one has

infS+ Ψ = infN I = c∗ > 0. Since S+ is a submanifold of class C1 of E+, it follows from

the Ekeland Variational Principle that there exists (wn) ⊂ S+ such that

Ψ(wn) → c∗ and ∥Ψ′(wn)∥∗ → 0 as n→ ∞.

Let zn = m(wn) ∈ N . By items (ii)-(iv) of Lemma 1.6, we reach

I(zn) → c∗ and ∥I ′(zn)∥ → 0 as n→ ∞. (2.8)

In the next lemma, we shall guarantee that the above sequence (zn) ⊂ N is bounded.

For this, we shall use the following inequality, whose proof can be found in [28, Lemma

2.4]:

st ≤


(et

2 − 1) + |s|(log |s|)1/2, t ∈ R and |s| ≥ e1/4;

(et
2 − 1) +

1

2
s2, t ∈ R and |s| ≤ e1/4.

(1.27)

Lemma 2.11. Suppose that (H0) − (H5) are satis�ed. Any Palais-Smale sequence

(zn) ⊂ N for I is bounded.

Proof. Let (zn) ⊂ N be a Palais-Smale sequence for I at level c. Hence,

c+ on(1) = I(zn)−
1

2
I ′(zn)zn =

∫
R2

Ĥ(x, zn). (2.9)

Suppose by contradiction that, up to a subsequence, ∥zn∥ → ∞. Thus,

on(1) =
I ′(zn)(z

+
n − z−n )

∥zn∥2
= 1−

∫
R2

Hz(x, zn) · (z+n − z−n )

∥zn∥2
.
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Setting wn := zn/∥zn∥, it follows that

lim
n→∞

∫
R2

Hz(x, zn) · (w+
n − w−

n )

∥zn∥
= 1. (2.10)

In what follows, we claim that the function Q : (0,∞) → R de�ned by

Q(r) = inf
x∈R2, |z|≥r

Ĥ(x, z)

has the following properties:

Q(r) > 0 for all r > 0 and Q(r) → +∞ as r → ∞. (2.11)

Indeed, by Lemma 2.4 we have Ĥ(x, z) > 0 for all x ∈ R2 and z ̸= 0. Moreover, by

using (H1), with 0 < α′ < α0, and (H5) we can deduce that Ĥ(x, z) → +∞ as |z| → ∞,

uniformly in x ∈ R2. Therefore, by the de�nition of Q, one has Q(r) → +∞ as r → ∞.

From this fact and by the periodicity of Ĥ(x, z) in x, for each r > 0 there exists Mr > r

such that

Q(r) = inf
x∈R2, |z|≥r

Ĥ(x, z) = min
x∈[0,1]×[0,1], r≤|z|≤Mr

Ĥ(x, z) = Ĥ(x0, z0) > 0

and the claim is proved.

For 0 ≤ a < b ≤ ∞ and n ∈ N, we set

Ωn(a, b) := {x ∈ R2 : a ≤ |zn(x)| < b}.

Using (2.9) and for 0 < r < R <∞, we obtain

c+ on(1) =

∫
Ωn(0,r)

Ĥ(x, zn) +

∫
Ωn(r,R)

Ĥ(x, zn)

|zn|2
|zn|2 +

∫
Ωn(R,∞)

Ĥ(x, zn)

≥
∫
Ωn(0,r)

Ĥ(x, zn) +
Q(r)

R2

∫
Ωn(r,R)

|zn|2 +Q(R)|Ωn(R,∞)|

and therefore there exists C1 > 0 such that

max

{∫
Ωn(0,r)

Ĥ(x, zn),
Q(r)

R2

∫
Ωn(r,R)

|zn|2, Q(R)|Ωn(R,∞)|
}

≤ C1. (2.12)
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In particular,

|Ωn(R,∞)| ≤ C1/Q(R) for each n ∈ N. (2.13)

Now, let C3 > 0 be such that ∥z∥22 ≤ C3∥z∥2 for each z ∈ E and consider ε > 0. By

(H2), there exists rε > 0 such that |Hz(x, z)| ≤ ε|z|/C3 for each |z| ≤ rε and x ∈ R2. By

the de�nition of wn and since |w+
n − w−

n | = |wn|, from (2.12) with r = rε, for any n ∈ N

we get ∫
Ωn(0,rε)

Hz(x, zn) · (w+
n − w−

n )

∥zn∥
≤
∫
Ωn(0,rε)

|Hz(x, zn)|
|zn|

|w+
n − w−

n ||wn|

≤ ε

C3

∫
Ωn(0,rε)

|wn|2 ≤ ε∥wn∥2 = ε.

(2.14)

Now, let R = Rε > rε to be chosen later. De�ne A1 = Ωn(Rε,∞) ∩ {x ∈ R2 :

|Hz(x, zn)| ≤ e1/4} and A2 = Ωn(Rε,∞) ∩ {x ∈ R2 : |Hz(x, zn)| ≥ e1/4}. Taking t = |wn|

and s = |Hz(x, zn)| in (1.27), we get

∫
Ωn(Rε,∞)

Hz(x, zn) · (w+
n − w−

n )

∥zn∥
≤ 1

∥zn∥

∫
Ωn(Rε,∞)

|Hz(x, zn)||wn|

≤ 1

∥zn∥

∫
A2

|Hz(x, zn)|(log |Hz(x, zn)|)1/2

+
1

∥zn∥

∫
A1

1

2
|Hz(x, zn)|2 +

2

∥zn∥

∫
R2

(e|wn|2 − 1).

(2.15)

By (2.13), we have |A1| ≤ |Ωn(Rε,∞)| ≤ C1/Q(Rε) and consequently

∫
A1

|Hz(x, zn)|2 ≤
C1e

1/2

Q(Rε)
, for all n ∈ N.

By Lemma 1.12, the integral
∫
R2(e

|wn|2 − 1) is bounded. Moreover, given α > α0 by (H1)

there exists R1 > 0 such that

|Hz(x, z)| ≤ eα|z|
2

for all x ∈ R2 and |z| ≥ R1.

In view of (H5), there exists c1 > 0 such that

|Hz(x, z)||z| ≤ c1Ĥ(x, z) for all x ∈ R2 and |z| ≥ R1
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Taking Rε > R1, from the two last estimates and (2.9) it follows that

∫
A2

|Hz(x, zn)|(log |Hz(x, zn)|)1/2 ≤ α1/2

∫
A2

|Hz(x, zn)||zn| ≤ α1/2c1

∫
R2

Ĥ(x, zn) ≤ C,

for some constant C > 0. Thus, in view of (2.15), we �nd n0 ∈ N satisfying

∫
Ωn(Rε,∞)

Hz(x, zn) · (w+
n − w−

n )

∥zn∥
< ε, for all n ≥ n0. (2.16)

According to (H1) and (H2), given α > α0 we obtain Cα > 0 such that, for all

x ∈ Ωn(rε, Rε), we have

|Hz(x, zn)| ≤ |zn|+ Cα(e
αR2

ε − 1)|zn|

From this estimate and (2.12), recalling the de�nition of wn and |w+
n − w−

n | = |wn|, we

reach

∫
Ωn(rε,Rε)

Hz(x, zn) · (w+
n − w−

n )

∥zn∥
≤ C2

∫
Ωn(rε,Rε)

|zn||w+
n − w−

n |
∥zn∥

≤ C2

∥zn∥2

∫
Ωn(rε,Rε)

|zn|2

≤ C3

∥zn∥2
R2

ε

Q(rε)
< ε, for all n ≥ n1,

for some n1 ∈ N. This estimate, (2.14) and (2.16) show that

∫
R2

Hz(x, zn) · (w+
n − w−

n )

∥zn∥
dx ≤ 3ε, for all n ≥ max{n0, n1}.

But this contradicts (2.10) because ε > 0 is arbitrary and the proof is done.

■

Once the sequence (zn) ⊂ N satisfying (2.8) is bounded, it follows that there exists

z0 = (u0, v0) ∈ E such that, up to a subsequence, zn ⇀ z0 in E and zn → z0 a.e. in R2 as

n→ ∞. Our intention is to prove that z0 is a nonzero critical point of I and to conclude

that z0 is a ground state solution. This will be done in the next propositions and lemmas.

Proposition 2.12. The weak limit z0 of the sequence (zn) ⊂ N is a critical point of I.

Proof. By the density of C∞
0 (R2) × C∞

0 (R2) in E, it is enough just to deduce that
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I ′(z0)η = 0 for all η ∈ C∞
0 (R2) × C∞

0 (R2). Then, let η ∈ C∞
0 (R2) × C∞

0 (R2) and

K := supp η. By (H5), there exist M > 0 and c1 > 0 such that

|Hz(x, zn)||zn| ≤ c1Ĥ(x, zn), for all |z| ≥M.

De�ning Ω1 = K ∩{x; |zn(x)| ≤M} and Ω2 = K ∩{x; |zn(x)| > M}, by (H1) and (H2),

given α > α0 we obtain C > 0 such that

|Hz(x,w)| ≤ |w|+ C(eα|w|2 − 1) for all (x,w) ∈ R2 × R2

and hence

|Hz(x, zn(x)) · η(x)| ≤ ∥η∥∞|zn(x)|+ C1∥η∥∞(eα|zn(x)|
2 − 1)

≤ ∥η∥∞[M + C1(e
αM2 − 1)] a.e. in x ∈ Ω1.

Since Hz(x, zn) · η → Hz(x, z0) · η a.e. in x ∈ Ω1, it follows from the Lebesgue

Dominated Convergence Theorem that

∫
Ω1

[Hz(x, zn)−Hz(x, z0)] · η → 0 (2.17)

Now, observe that by (H5), (2.9) and Hölder's inequality, we reach∣∣∣∣∫
Ω2

[Hz(x, zn)−Hz(x, z0)] · η
∣∣∣∣

≤ ∥η∥∞
M

∫
Ω2

|Hz(x, zn)−Hz(x, z0)||zn|

≤ ∥η∥∞
M

∫
Ω2

[|Hz(x, zn)||zn|+ |Hz(x, z0)||zn|]

≤ ∥η∥∞
M

[
c1

∫
R2

Ĥ(x, zn) + C1

(∫
R2

[e2α|z0|
2 − 1]

) 1
2

∥zn∥2

]

≤ ∥η∥∞C
M

,

(2.18)

for some C > 0 independent of M . Hence, given δ > 0 we can take M > 0 so that∣∣∣∣∫
Ω2

[Hz(x, zn)−Hz(x, z0)] · η
∣∣∣∣ < δ, for all n ∈ N. (2.19)
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Therefore, by (2.17) and (2.19) we obtain

lim sup
n→∞

∣∣∣∣∫
K

[Hz(x, zn)−Hz(x, z0)] · η
∣∣∣∣ ≤ lim sup

n→∞

∣∣∣∣∫
Ω1

[Hz(x, zn)−Hz(x, z0)] · η
∣∣∣∣+ δ = δ

and once δ > 0 is arbitrary, we conclude that

∫
R2

[Hz(x, zn)−Hz(x, z0)] · η → 0. (2.20)

Since

I ′(zn)η − I ′(z0)η = ⟨zn − z0, η⟩ −
∫
R2

[Hz(x, zn)−Hz(x, z0)] · η

and according to (2.20) we reach

I ′(z0)η = lim
n→∞

[
I ′(zn)η − ⟨zn − z0, η⟩+

∫
R2

[Hz(x, zn)−Hz(x, z0)] · η
]
= 0,

and the claim is proved.

■

A key result in the proof that the weak limit z0 of the sequence (zn) ⊂ N is nontrivial

is the following estimate:

Proposition 2.13. The minimal energy level c∗ de�ned in Lemma 2.9 satis�es

βc∗ < 4π/α0,

where β ≥ 0 is given in (H5).

Proof. If β = 0 then the above inequality is automatically valid. Assume now β > 0. Let

φ ∈ C∞
0 (R2) be such that 0 ≤ φ ≤ 1 in R2, supp(φ) = B2, φ ≡ 1 in B1 and |∇φ| ≤ 2

in R2. By item (ii) of Lemma 1.17, Ê((φ, φ)) intersects N at exactly one point, which is

the unique global maximum point of I|Ê((φ,φ)), that is, there exists an unique t0 > 0 and

(v,−v) ∈ E− such that η := t0(φ, φ) + (v,−v) = (t0φ+ v, t0φ− v) ∈ N . Hence,

I(η) = t20∥φ∥2V − ∥v∥2V −
∫
R2

H(x, t0φ+ v, t0φ− v)

≤ t20∥φ∥2V −
∫
C1(v)

H(x, t0φ+ v, t0φ− v)−
∫
C2(v)

H(x, t0φ+ v, t0φ− v),
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where C1(v) = {x ∈ R2 : v(x) ≥ 0} and C2(v) = {x ∈ R2 : v(x) < 0}. Consequently, by

(2.1),

I(η) ≤ t20∥φ∥2V − λ0

[∫
C1(v)

|(t0φ+ v, t0φ− v)|p
]
− λ0

[∫
C2(v)

|(t0φ+ v, t0φ− v)|p
]

≤ t20∥φ∥2V − λ0

[∫
C1(v)

[max{t0φ+ v, t0φ− v)}]p
]
− λ0

[∫
C2(v)

[max{t0φ+ v, t0φ− v}]p
]

≤ t20∥φ∥2V − λ0

∫
C1(v)

|t0φ|p − λ0

∫
C2(v)

|t0φ|p

< t20∥φ∥2V − tp0λ0

∫
B1

|φ|p

≤ t20(4 + ∥V ∥∞)4π − tp0λ0π

≤ πmax
t≥0

[
4(4 + ∥V ∥∞)t2 − λ0t

p
]
.

Calculating the maximum and according to (2.2) we reach

βc∗ = β inf
N
I ≤ βI(η) < βπ

(p− 2)2
2

p−2 [4(4 + ∥V ∥∞)]
p

p−2

p
p

p−2λ
2

p−2

0

≤ 4π

α0

,

and the proof is done. ■

For the next lemma, we will exploit the inequality

st ≤ t2(et
2 − 1) + s(log s)1/2, for t ≥ 0 and s ≥ e1/

3√4. (2.21)

The proof of (2.21) can be seen in [38, Lemma 4.1].

Lemma 2.14. Let zn = (un, vn) ∈ N be a sequence satisfying (2.8). Then, there exists

R > 0 such that

lim
n→∞

sup
y∈R2

∫
BR(y)

(u2n + v2n) > 0. (2.22)

Proof. First, by Proposition 2.13, we can choose δ > 0 so that βc∗ ∈ [0, 4π/α0 − δ).

Assume by contradiction that (2.22) does not occur, that is,

lim
n→∞

sup
y∈R2

∫
BR(y)

(u2n + v2n) = 0 for all R > 0, (2.23)
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which implies by Lions' lemma (see [49]) that

un → 0 and vn → 0 strongly in Ls(R2) for any s > 2. (2.24)

Now, we claim that ∫
R2

H(x, zn) =

∫
R2

H(x, un, vn) → 0. (2.25)

In view of (H4) and (H5), there exists c1 > 0 such that

H(x, z) ≤M0|Hz(x, z)| and |Hz(x, z)||z| ≤ c1Ĥ(x, z) for all x ∈ R2 and |z| ≥ R0.

On the other hand, by (H5), (2.9) and for any K > R0, we deduce that∫
{|zn|>K}

H(x, zn) ≤M0

∫
{|zn|>K}

|Hz(x, zn)|

≤ M0

K

∫
{|zn|>K}

|Hz(x, zn)||zn| ≤
M0c1
K

∫
R2

Ĥ(x, zn) ≤
M0C

K
,

where C > 0 does not depend on K. Given any ε > 0, we can take K > 0 large enough

so that ∫
{|zn|>K}

H(x, zn) ≤ ε. (2.26)

By (2.12), for α > α0 we know that

H(x, zn) ≤ ε|zn|2 + Cε|zn|4(eα|zn|
2 − 1)

and thus ∫
{|zn|≤K}

H(x, zn) ≤ ε

∫
{|zn|≤K}

|zn|2 +
∫
{|zn|≤K}

|zn|4(eα|zn|
2 − 1)

≤ εC + 2(eαK
2 − 1)(∥un∥44 + ∥vn∥44).

(2.27)

Therefore, from this inequality, (2.24) and (2.26), it follows that

lim sup
n→∞

∫
R2

H(x, zn) = lim sup
n→∞

[∫
{|zn|≤K}

H(x, zn) +

∫
{|zn|>K}

H(x, zn)

]
≤ (1 + C)ε

and convergence (2.25) is proved.

61



Since I(zn) → c∗, by convergence (2.25) we reach

lim
n→∞

∫
R2

(∇un∇vn + V (x)unvn)dx = c∗. (2.28)

If zn → 0 strongly in E as n → ∞, then by (2.25) and (2.28) we get that c∗ = 0,

which is not possible. Therefore, we can assume that ∥zn∥ ≥ b > 0 for all n ∈ N. Once

⟨I ′(zn), zn⟩ = on(1)∥zn∥, we have

∥zn∥2 =
∫
R2

Hz(x, zn) · zn + on(1)∥zn∥.

In view of (H0)− (H1), given ε > 0 there exists Cε > 0 such that

|Hz(x, z)| ≤ Cεe
(α0+ε)|z|2 for all (x, z) ∈ R2 × R2. (2.29)

Setting

zn = (4π/α0 − δ)1/2
zn
∥zn∥

,

where δ > 0 was chosen at the beginning of the proof, we can write

(4π/α0 − δ)1/2∥zn∥ ≤
∫
R2

|Hz(x, un, vn)||zn|+ on(1)

=
Cε√
α0

∫
R2

|Hz(x, un, vn)|
Cε

√
α0|zn|+ on(1) =: In.

(2.30)

De�ning

Γn =
{
x ∈ R2 : |Hz(x, un, vn)|/Cε ≥ e1/

3√4
}

and Λn = R2\Γn,

by using inequality (2.21) with s = |Hz(x, un, vn)|/Cε and t =
√
α0|zn| we can estimate

In ≤ Cε√
α0

∫
Γn

|Hz(x, un, vn)|
Cε

[
log

(
|Hz(x, un, vn)|

Cε

)]1/2
+ on(1)

+

∫
Λn

|Hz(x, un, vn)||zn|+ Cε

√
α0

∫
R2

|zn|2
(
eα0|zn|2 − 1

)
.
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Thus, by (2.29) we get

In ≤
√
α0 + ε

α0

∫
Γn

|Hz(x, un, vn)||zn|+ Cε

√
α0

∫
R2

|zn|2
(
eα0|zn|2 − 1

)
+

∫
Λn

|Hz(x, un, vn)||zn|+ on(1)

≤
√
α0 + ε

α0

∫
R2

|Hz(x, un, vn)||zn|+ I1,n + I2,n + on(1),

(2.31)

where

I1,n := Cε

√
α0

∫
R2

|zn|2
(
eα0|zn|2 − 1

)
and I2,n :=

∫
Λn

|Hz(x, un, vn)||zn|.

Now, we can take p > 1 close to 1 such that pα0(4π/α0−δ) < 4π. Since ∥zn∥2 = 4π/α0−δ,

Lemma 1.12 and (2.24) imply that

I1,n ≤ C1

√
α0

[∫
R2

|zn|2q
]1/q [∫

R2

(
epα0|zn|2 − 1

)]1/p
≤ C2

√
α0

(4π/α0 − δ)

b2

[∫
R2

|zn|2q
]1/q

−→ 0,

where 1/p+1/q = 1. Next, according to (H0)− (H2), for any ρ > 0, there exists Cρ,ε > 0

such that

|Hz(x, zn(x))| ≤ ρ|zn(x)|+ Cρ,ε|zn(x)|2, for all x ∈ Λn. (2.32)

Hence,

I2,n ≤
∫
Λn

(ρ|zn|+Cρ,ε|zn|2)|zn| ≤

[
ρ

(∫
R2

|zn|2
)1/2

+ Cρ,ε

(∫
R2

|zn|4
)1/2

](∫
R2

|zn|2
)1/2

.

Once ∥zn∥ is bounded and zn → 0 strongly in L4(R2)× L4(R2), we reach

lim sup
n→∞

I2,n ≤ Cρ,

for some C > 0 independent of ρ. Thus, we conclude that I1,n = on(1) and I2,n = on(1).

Therefore, (2.30) and (2.31) provide

(4π/α0 − δ)1/2∥zn∥ ≤ on(1) +

(
1 +

ε

α0

)1/2 ∫
R2

|Hz(x, zn)||zn|. (2.33)
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By virtue of (H5), given δ > 0 there exists M > 0 such that |Hz(x, z)||z| ≤ (β+ δ)Ĥ(x, z)

for all |z| > M . Hence, by using (2.9) with c = c∗ one has∫
R2

|Hz(x, zn)||zn| ≤ (β + δ)

∫
R2

Ĥ(x, zn) +

∫
{|zn|≤M}

|Hz(x, zn)||zn|

≤ βc∗ + on(1) +

∫
{|zn|≤M}

|Hz(x, zn)||zn|.

By virtue of (2.5) and arguing as in (2.27), we can show that

∫
{|zn|≤M}

|Hz(x, zn)||zn| → 0.

and consequently ∫
R2

|Hz(x, zn)||zn| ≤ βc∗ + on(1).

Hence, since βc∗ ∈ [0, 4π/α0 − δ), according to (2.33) we have

∥zn∥ ≤ on(1) +

(
1 +

ε

α0

)1/2(
4π

α0

− δ

)−1/2

βc∗ ≤
(
4π

α0

− δ̂

)1/2

, (2.34)

for some 0 < δ̂ < δ and for n su�ciently large. On the other hand, choose p1 > 1 close

to 1 and α > α0 close to α0 satisfying p1α(4π/α0 − δ̂) < 4π, from (2.34) it follows that

p1α∥un∥2 < 4π for n su�ciently large. Once zn → 0 strongly in Lq1(R2)×Lq1(R2), where

1/p1 + 1/q1 = 1, by invoking Lemma 1.12 we obtain

∫
R2

(
eα|zn|

2 − 1
)
|zn| ≤ C1

(∫
R2

|zn|q1
) 1

q1

[∫
R2

(
ep1α|zn|

2 − 1
)] 1

p1

≤ C2

(∫
R2

|zn|q1
) 1

q1

→ 0.

From this convergence and again by using (1.8), we get

∫
R2

|Hz(x, zn)||zn| → 0,

which together with (2.33) implies that zn → 0 strongly in H1(R2)×H1(R2). Thus, again

it follows from (2.28) that c∗ = 0, which is a contradiction and proof of the lemma is

complete. ■

Finalizing Proof of Theorem 2.2. Once (2.22) is valid, we can get a sequence (yn) ⊂ R2
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and ν > 0 satisfying ∫
BR(yn)

(u2n + v2n) ≥ ν.

Now, we introduce the following sequences:

ũn(·) := un(·+ yn) and ṽn(·) := vn(·+ yn).

In view of (V0) and (H0), we can see that z̃n := (ũn, ṽn) ∈ N and also satis�es I(z̃n) → c∗,

I ′(z̃n) → 0 and

lim inf
n→∞

∫
BR0

(0)

(ũ2n + ṽ2n)dx ≥ ν, (2.35)

Observe that, by Lemma 1.21, (z̃n) is also bounded in E and, up to a subsequence, we

assume z̃n ⇀ z̃ weakly in E for some z̃ = (ũ, ṽ) and z̃n → z̃ a.e. in R2. From Proposition

2.12 it follows that I ′(z̃) = 0. Moreover, in view of (2.35) we have z̃ ̸= 0 and Remark 1.5

guarantee that z̃ ∈ N , implying that c∗ ≤ I(z̃). By invoking Fatou's Lemma, we deduce

that

c∗ = lim inf
n→∞

I(z̃n) = lim inf
n→∞

[
I(z̃n)−

1

2
I ′(z̃n)z̃n

]
= lim inf

n→∞

∫
R2

[
1

2
Hz(x, z̃n) · z̃n −H(x, z̃n)

]
≥
∫
R2

[
1

2
Hz(x, z̃) · z̃ −H(x, z̃)

]
= I(z̃)− 1

2
I ′(z̃)z̃

= I(z̃).

Therefore, I(z̃) = c∗, which shows that z̃ is a ground state for (1) and the theorem is

proved.

■
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Chapter 3

Hamiltonian systems in the plane

involving vanishing potentials

In this chapter, we establish the existence of nontrivial solutions for the class of

Hamiltonian systems

−∆u+ V (x)u = Q(x)g(v), x ∈ R2,

−∆v + V (x)v = Q(x)f(u), x ∈ R2,
(4)

where V and Q decay to zero at in�nity as (1+|x|α)−1 with α ∈ (0, 2), and (1+|x|β)−1 with

β ∈ [2,+∞), respectively. The nonlinear terms f(s) and g(s) have subcritical or critical

exponential growth. We show an alternative proof of a weighted Trudinger-Moser-type

inequality and combine with a Galerkin approximation method and a linking theorem.

Hamiltonian systems where the nonlinearity H(x, u, v) has polynomial growth at

in�nity have been considered in the literature before, see for example [22, 25, 40]. For

problems with a exponential growth in dimension two, see [3, 38, 44].

Here, we shall consider the following assumptions:

(V ) V ∈ C(R2), there exist α, a > 0 such that

a

1 + |x|α
≤ V (x),

and V (x) ∼ |x|−α as |x| → ∞;
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(Q) Q ∈ C(R2), there exist β, b > 0 such that

0 < Q(x) ≤ b

1 + |x|β
,

and Q(x) ∼ |x|−β as |x| → ∞.

In particular, we restrict our attention to the case when α and β satisfy

α ∈ (0, 2) and β ∈ [2,∞]. (5)

With respect to the functions f, g, we assume the following conditions:

(h0) f, g : R× R → R are continuous;

(h1) f(s) = o(|s|) and g(s) = o(|s|) at the origin;

(h2) there exists θ > 0 such that


0 < θF (s) := θ

∫ s

0

f(t)tdt ≤ sf(s)

0 < θG(s) := θ

∫ s

0

g(t)tdt ≤ sg(s)

for all s ∈ (0,∞);

(h3) there exists constants M0 > 0 and s1 > 0 such that

0 < θF (s) ≤M0f(s)

0 < θG(s) ≤M0g(s)
for all s ∈ [s1,∞).

We say f(s) and g(s) have subcritical growth if

lim
s→+∞

f(s)

eµs2
= 0,

lim
s→+∞

g(s)

eνs2
= 0

for all µ, ν > 0.

We say f(s) and g(s) have critical growth if there exists critical exponents µ0, ν0 > 0
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such that

lim
s→+∞

f(s)

eµs2
=

 0, for all µ > µ0;

+∞, for all µ < µ0,

lim
s→+∞

g(s)

eνs2
=

 0, for all ν > ν0;

+∞, for all ν < ν0.

Let Lp
w(R2) denote the weighted Lp-space consisting of all measurable functions

u : R2 → R satisfying ∫
R2

w(x)|u|pdx <∞.

We introduce the weighted Sobolev space

H1
V (R2) :=

{
u ∈ L2

V (R2) : |∇u| ∈ L2(R2)
}
,

with norm

∥u∥2 := ∥∇u∥22 +
∫
R2

V (x)u2.

Remark 3.1. By the continuous embedding

H1
V (R2) ↪→ H1

loc
(R2),

the de�nition of Cauchy sequences and Fatou Lemma, we are able to show that (H1
V (R2), ∥·

∥) is complete.

Remark 3.2. The space C∞
0 (R2) of smooth compactly supported functions is dense in

(H1
V (R2), ∥ · ∥).

Let us denote by E := H1
V (R2)×H1

V (R2) equipped with the inner product

⟨(u, v), (φ, ψ)⟩E =

∫
R2

[∇u∇v + V (x)uφ+∇u∇ψ + V (x)vψ]dx,

for all (u, v), (φ, ψ) ∈ E, to which corresponds the norm

∥(u, v)∥E = ⟨(u, v), (u, v)⟩1/2E .
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We say that weak solutions of (4) are functions (u, v) ∈ E such that

∫
R2

[∇u∇v + V (x)uφ+∇u∇ψ + V (x)vψ]dx−
∫
R2

Q(x)f(u)φdx−
∫
R2

Q(x)g(v)ψdx = 0

for all (ψ, φ) ∈ E.

Now, we state our existence results.

Theorem 3.3 (Subcritical case). Suppose f(s) has subcritical or critical exponential

growth, g(s) has subcritical exponential growth, (V ), (Q) and (h0) − (h3) are satis�ed.

Then (4) possesses a nontrivial weak solution (u, v) ∈ E.

For the next result, we assume that there exists γ0 > 0 such that the functions f, g

satisfy

lim inf
|s|→∞

sf(s)

eγ0s2
, lim inf

|s|→∞

sg(s)

eγ0s2
=: β0 >M, (3.1)

where

M =: inf
r>0

4e1/2r
2Vmax,r

γ0r2Qmin,r

, Vmax,r := max
|x|≤r

V (x) > 0 and Qmin,r := min
|x|≤r

Q(x) > 0.

Theorem 3.4 (Critical case). Suppose f(s) and g(s) has critical exponential growth, (V ),

(Q), (h0) − (h3) and (3.1) are satis�ed. Then (4) possesses a nontrivial weak solution

(u, v) ∈ E.

The original characteristics of the class of problems we study in this chapter are that

both V and Q vanish at in�nity and are not necessarily radially symmetric. Some of the

di�culties to study these problems continue to be the lack of compactness of the Sobolev

embedding since the domain R2 is unbounded and the nonlinearities f and g have critical

growth. We also know that the energy functional associated with system (4) is strongly

inde�nite and the nonlinear term Ψ(u, v) =
∫
R2 Q(x)[F (u) +G(v)]dx is not weakly lower

semi-continuous. Here, we adapt some arguments presented in [58].

This chapter is organized as follows: �rst, we show a alternative proof to a weighted

Trudinger-Moser-type inequality. On Section 3.2, we check the variational framework and

the linking geometry for the associated functional. We prove the boundness of the Palais-

Smale sequence on Section 3.3. Lastly, we show the main results for the subcritical and

critical cases on Section 3.5 and Section 3.4, respectively.
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3.1 Preliminaries

In this section we prove a Trudinger-Moser-type inequality with an distinct proof to

the ones presented in [35, 37], in which we do not use Besicovitch's Covering Lemma.

We were inspired by the proof presented in [4], where Albuquerque et al. have shown a

Trudinger-Moser-type inequality for γ > 0 in the range (0, γ∗) where γ∗ ∈ (0, 4π).

Theorem 3.5. Suppose that (V ) and (Q) are satis�ed with α ∈ (0, 2) and β ∈ [2,∞).

For any γ > 0 and u ∈ E, we have

Q(·)(eγu2 − 1) ∈ L1(R2).

Moreover, for any 0 < γ < 4π,

sup
u∈E,∥u∥≤1

∫
R2

Q(x)(eγu
2 − 1)dx <∞.

The proof of this Trudinger-Moser inequality is a direct consequence of the following

proposition.

Theorem 3.6. There exists an constant Cγ > 0 such that

∫
R2

Q(x)(eγu
2 − 1)dx ≤ Cγ∥u∥2,

for all 0 < γ < 4π and ∥u∥ ≤ 1.

Proof. Let 0 < γ < 4π and u ∈ H1
V (R2) with ∥u∥ ≤ 1. First, take δ > 0 such that

(1 + δ)γ < 4π. Since α < 2 and β ≥ 2, let us �x R > 0 su�ciently large such that

64

R2

(
1 +

(
5
2
R
)α

a

)
≤ δ and

b

a

(
1 + 2αRα

Rβ

)
≤ 1 + δ. (3.2)

Now, set φ ∈ C∞
0 (B2R) satisfying

φ ≡ 1 in BR, φ ≤ 1 in R2 and |∇φ| ≤ 4

R
in B2R.
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Hence φu ∈ W 1,2
0 (BR) and∫

B2R

|∇(φu)|2dx =

∫
B2R

|∇φu+ φ∇u|2dx

=

∫
B2R

u2|∇u|2dx+ 2

∫
B2R

uφ∇u∇φdx+
∫
B2R

φ|∇u|2dx

≤ (1 + δ)

∫
B2R

|∇u|2dx+
(
1 +

1

δ

)
16

R2

∫
B2R

u2dx

≤ (1 + δ)

∫
B2R

|∇u|2dx+
(
1 +

1

δ

)
16

R2

1 + (2R)α

a

∫
B2R

V (x)u2dx.

Considering (3.2), we have that

∫
B2R

|∇(φu)|2dx ≤ (1 + δ)

∫
B2R

(|∇u|2 + V (x)u2)dx. (3.3)

Let v :=
φu√
1 + δ

. By (3.3), it follows that

∫
B2R

|∇v|2dx ≤ ∥u∥2 ≤ 1.

Therefore, applying a Trudinger-Moser type inequality by Adachi-Tanaka [1], we

obtain

∫
B2R

(eγ(1+δ)v2 − 1)dx ≤ C1

∫
B2R

v2dx

≤ C1
1 + (2R)α

(1 + δ)a

∫
B2R

V (x)(φu)2dx

≤ C1
1 + (2R)α

a

∫
B2R

(|∇u|2 + V (x)u2)dx.

By the above inequality

∫
BR

(eγu
2 − 1)dx =

∫
BR

(
e
γ(1+δ)

(
φu√
1+δ

)2

− 1

)
dx

≤
∫
B2R

(eγ(1+δ)v2 − 1)dx

≤ C1
1 + (2R)α

a

∫
B2R

(|∇u|2 + V (x)u2)dx. (3.4)
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For the next step, we introduce the sets

Aj,R := {x ∈ R2 : 2jR < |x| < 2j+1R}, j = 0, 1, 2, ...

and

Âj,R :=

{
x ∈ R2 : 2j

R

2
< |x| < 2j+15R

2

}
, j = 0, 1, 2, ....

Our objective is to estimate the integral
∫
Aj,R

Q(x)(eγu2 − 1). Let us �x j ∈ N ∪ {0}

and let y := 2−jx. Thus, if uj(y) := u(2jy) = u(x), we obtain

∫
Aj,R

Q(x)(eγu
2 − 1)dx ≤

∫
Aj,R

b

1 + |x|β
(eγu

2 − 1)dx

≤ b

1 + 2jβRβ

∫
Aj,R

(eγu
2 − 1)dx

≤ b

1 + 2jβRβ
22j
∫
A0,R

(eγu
2
j − 1)dy. (3.5)

Consider φR ∈ C∞
0 (Â0,R) such that

0 ≤ φR(x) ≤ 1, for all x ∈ Â0,R, φR ≡ 1 in A0,R and |∇φR| ≤
8

R
in Â0,R.

Using the Adachi-Tanaka inequality once more, we obtain the following

∫
A0,R

(eγu
2
j − 1)dy =

∫
A0,R

(eγu
2
j − 1)dy

≤
∫
Â0,R

(e
γ(1+δ)

(
φuj√
1+δ

)2

− 1)dy

≤ C1

∫
Â0,R

(
φuj√
1 + δ

)2

dy ≤ C1

∫
Â0,R

u2jdy =
C1

22j

∫
Âj,R

u2dx

≤ C1

22j

(
1 +

(
2j 5

2
R
)2

a

)∫
Âj,R

V (x)u2dx

≤
2C1R

α
(
5
2

)α
a

∫
Âj,R

V (x)u2dx.

Therefore, using (3.5), we have

∫
Aj,R

Q(x)(eγu
2 − 1)dx ≤

22j+1C1R
α
(
5
2

)α
b

(1 + 2jβRβ)a

∫
Âj,R

(V (x)u2 + |∇u|2)dx.
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Observe that

∫
Bc

R

Q(x)(eγu
2 − 1)dx ≤

∞∑
j=0

∫
Aj,R

Q(x)(eγu
2 − 1)dx

≤
∞∑
j=0

22j+1C1R
α
(
5
2

)α
b

(1 + 2jβRβ)a

∫
Âj,R

(|∇u|2 + V (x)u2)dx.

Now, we a�rm that
∑∞

j=0 χÂj,R
(x) ≤ 5, for all x ∈ R2. Indeed, let x ∈ Âj,R. This

implies that x ̸∈ Âj+3,R and x ̸∈ Âj−3,R, for all j = 0, 1, 2, 3.... In fact, if x ∈ Âj,R, then

2j
R

2
< |x| < 2j

5R

2
< 2j+3R

2
,

thus x ̸∈ Âj−3,R. The same way we get that x ̸∈ Âj+3,R.

Therefore,

∫
Bc

R

Q(x)(eγu
2 − 1)dx ≤

8C1R
α
(
5
2

)α
b

(2βRβ)a

∞∑
j=0

∫
R2

(|∇u|2 + V (x)u2)χ
Âj,R

dx

≤
40C1R

α
(
5
2

)α
b

(2βRβ)a
∥u∥2. (3.6)

Since β > α,

lim
R→∞

40C1R
α
(
5
2

)α
b

(2βRβ)a
= 0.

Thus, from (3.4) and (3.6), we conclude the proof.

■

A important consequence is the following compactness result:

Proposition 3.7. If (V ) and (Q) hold with α ∈ (0, 2) and β ∈ [2,+∞). Then, for all

p ∈ [2,+∞), the embedding

H1
V (R2) ↪→ Lp

Q(R
2) (3.7)

is continuous. In particular, since β > α, the above embedding is compact.

Proof. Set u ∈ H1
V (R2) and observe that by condition (Q) we have

(∫
BR

Q(x)|u|pdx
)1/q

≤
(∫

BR

b

1 + |x|β
|u|pdx

)1/q

≤ b1/q∥u∥Lp(BR). (3.8)
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By the embedding H1(BR) ↪→ Lp(BR) for all p ∈ [1,+∞), we get

∥u∥Lp(BR) ≤ C1∥u∥H1(BR) = C1

[∫
BR

(|∇u|2 + u2)dx

]1/2
≤ C1

[∫
BR

(
|∇u|2 +

(
1 +Rα

a

)
V (x)u2

)
dx

]1/2
≤ CR

[∫
BR

(|∇u|2 + V (x)u2)dx

]1/2
, (3.9)

because V (x) ≥ a

1 + |x|α
≥ a

1 +Rα
. Thus, for each R > 0, it follows from (3.8) and (3.9)

that ∫
BR

Q(x)|u|pdx ≤ bCp
R

[∫
BR

(|∇u|2 + V (x)u2)dx

]p/2
≤ bCp

R∥u∥
p. (3.10)

For each p ∈ [2,+∞), there is Cp > 0 such that

|s|p ≤ Cp(e
s2 − 1), for all s ∈ R.

Proceeding as in the proof of Theorem 3.5, we have

∫
Bc

R

Q(x)|u|pdx ≤ Cp

∫
Bc

R

Q(x)(eγu
2 − 1)dx ≤

8C1R
α
(
5
2

)α
b

(2βRβ)a

∞∑
j=0

∫
R2

V (x)u2χ
Âj,R

dx.

We conclude ∫
Bc

R

Q(x)|u|pdx ≤
40C1R

α
(
5
2

)α
b

(2βRβ)a
∥u∥2. (3.11)

Now, if (um) ⊂ E is such that um → 0 in E, then by (3.10) and (3.11), we get

∫
R2

Q(x)|um|pdx =

∫
BR

Q(x)|um|pdx+
∫
Bc

R

Q(x)|um|pdx→ 0 as m→ ∞

and the continuity of the embedding is proved for all p ∈ [2,+∞).

Suppose that (um) ⊂ E such that um ⇀ 0 in E. Since β > α,

lim
R→∞

40C1R
α
(
5
2

)α
b

(2βRβ)a
= 0.

Thus, for all ε > 0, there exists m0 > 0 such that

∫
Bc

R

Q(x)|um|pdx ≤ ε,
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for all m ≥ m0, that is um → 0 in Lp
Q(B

c
R).

■

3.2 Linking geometry

If f(x, s) and g(x, s) have subcritical growth, then for each µ > 0 and ν > 0, given

ε > 0 and q ≥ 1, there exists a constant C = C(ε, q) > 0 such that for all s ∈ [0,∞),

|f(s)| ≤ ε

2
|s|+ C|s|q−1(eµs

2 − 1),

|g(s)| ≤ ε

2
|s|+ C|s|q−1(eνs

2 − 1),

for any s ∈ R. Hence, by the Ambrosetti-Rabinowitz condition (h3) we have

|F (s)| ≤ ε

2
|s|2 + C|s|q(eµs2 − 1), (3.12)

|G(s)| ≤ ε

2
|s|2 + C|s|q(eνs2 − 1), (3.13)

for any s ∈ R.

Therefore, given u ∈ H1
V (R2), we obtain the estimate

∫
R2

Q(x)F (u)dx ≤ ε

2

∫
R2

Q(x)|u|2dx+ C

∫
R2

Q(x)|u|q(eµ|u|2 − 1)dx

≤ ε

2

∫
R2

Q(x)|u|2dx

+ C

(∫
R2

Q(x)|u|qpdx
)1/p(∫

R2

Q(x)(eµp
′|u|2 − 1)dx

)1/p′

, (3.14)

where we used Hölder's inequality with p > 1 and
1

p
+

1

p′
= 1. By the continuous

embedding (3.7) and the Trudinger-Moser inequality, we have

∫
R2

Q(x)F (u)dx < +∞ for any u ∈ H1
V (R2).

Therefore, it follows that the functional

I(u, v) :=

∫
R2

[∇u∇v + V (x)uv]dx−
∫
R2

Q(x)F (u)dx−
∫
R2

Q(x)G(v)dx

75



is well de�ned on (E, ∥ · ∥). We also can see that I ∈ C1(E,R) with

I ′(u, v)(φ, ψ) =

∫
R2

[∇u∇v + V (x)uφ+∇u∇ψ + V (x)vψ]dx

−
∫
R2

Q(x)f(u)φdx−
∫
R2

Q(x)g(v)ψdx

for all (φ, ψ) ∈ E.

Using the notation

E+ = {(u, u) ∈ E} and E− = {(v,−v) ∈ E},

we can see that E = E+ ⊕ E−.

In the following lemmas, we establish the geometry of the Linking Theorem.

Lemma 3.8. There exists ρ, σ > 0 such that I(z) ≥ σ, for z ∈ S := ∂Bρ ∩ E+.

Proof. Using (3.14), the continuous embedding (3.7) and the Trudinger-Moser inequality,

we have that for any ε > 0,

∫
R2

Q(x)F (u)dx ≤ C
ε

2
∥u∥2 + C(µ, q, ε)∥u∥q,

for any u ∈ H1
V (R2) with ∥u∥ = ρ̃, where ρ̃ > 0 satis�es µp′ρ̃2 < 4π.

By the same argument,

∫
R2

Q(x)G(u)dx ≤ C
ε

2
∥u∥2 + C(ν, q, ε)∥u∥q,

for any u ∈ H1
V (R2) with ∥u∥ = ρ, where ρ > 0 satis�es µp′ρ2 < 4π.

Thus, choosing ρ > 0 conveniently,

I(u, u) =

∫
R2

[
|∇u|2 + V (x)u2

]
−
∫
R2

Q(x)F (u)−
∫
R2

Q(x)G(u)

≥ ∥u∥2 − ε

∫
R2

Q(x)|u|2 − C1∥u∥q.

By (3.7), there exists Cε > 0 such that

I(u, u) ≥ (1− Cε)∥u∥2 − C1∥u∥q.
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Therefore, for ε > 0 su�ciently small, we can �nd ρ, σ > 0 such that I(u, u) ≥ σ > 0,

whenever ∥u∥ = ρ.

■

Let y ∈ H1
V \{0} be a �xed nonnegative function and

Qy =
{
r(y, y) + w : w ∈ E−, ∥w∥ ≤ R0 and 0 ≤ r ≤ R1

}
,

where the constants R0 and R1 will be chosen in the following lemma.

Lemma 3.9. There exists positive constants R0, R1, which depends on y, such that

I(z) ≤ 0 for all z ∈ ∂Qy.

Proof. The boundary of the set Qy in R(y, y)⊕ E− is composed of three parts:

� z ∈ ∂Qy ∩ E−. For all z = (u,−u) ∈ E−, we have

I(z) = −∥u∥2 −
∫
R2

Q(x)[F (u) +G(−u)]dx ≤ 0.

� z ∈ B1 := {R1(y, y) + (u,−u) ∈ ∂Qy with ∥(u,−u)∥E ≤ R0}. We have

I(z) = R2
1∥y∥2 − ∥u∥2 −

∫
R2

Q(x)[F (x,R1y + u) +G(x,R1y − u)]dx.

It follows from (h3) that for all δ > 0, there exists C1 = C1(δ) > 0 such that

F (x, s), G(x, s) ≥ C1s
θ − δs2,

for all (x, s) ∈ R2 × [0,∞). Thus, there exists C1 = C1(y) > 0 such that

I(z) ≤ R2
1∥y∥2 + C1(R

2
1 −Rθ

1).

Taking R1 = R1(y) su�ciently large, we have I(z) ≤ 0.

� z ∈ B2 := {r(y, y) + (u,−u) ∈ ∂Qy with ∥(u,−u)∥E = R0 and 0 ≤ r ≤ R1}. We

77



have

I(z) = r2∥y∥2 − ∥u∥2 −
∫
R2

Q(x)[F (ry + u) +G(ry − u)]dx

≤ R2
1∥y∥2 −

1

2
R2

0.

If
√
2R1∥y∥ ≤ R0, we have I(z) ≤ 0.

■

3.3 Behaviour of Palais-Smale sequences

For this section, we shall use the inequality (1.27), whose proof can be found in [28,

Lemma 2.4]:

st ≤


(et

2 − 1) + |s|(log |s|)1/2, t ∈ R and |s| ≥ e1/4;

(et
2 − 1) +

1

2
s2, t ∈ R and |s| ≤ e1/4.

(1.27)

Proposition 3.10. Supose (V ), (Q) and (h0)− (h3) are satis�ed. Let (um, vm) ∈ E such

that

(I1) I(um, vm) = c+ δm, where δm → 0 as m→ ∞;

(I2) |I ′(um, vm)(φ, ψ)| ≤ εm∥(φ, ψ)∥E, for φ, ψ ∈ E, where εm → 0 as m→ ∞.

Then

∥um∥ ≤ C, ∥vm∥ ≤ C,∫
R2

Q(x)f(um)umdx ≤ C,

∫
R2

Q(x)g(vm)vmdx ≤ C∫
R2

Q(x)F (um)dx ≤ C,

∫
R2

Q(x)G(um)dx ≤ C.

Proof. Choosing (φ, ψ) = (um, vm) in (I2) yields∣∣∣∣2 ⟨um, vm⟩E −
∫
R2

Q(x)f(um)umdx−
∫
R2

Q(x)g(vm)vmdx

∣∣∣∣ ≤ εm∥(um, vm)∥.
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By (I1) and (h3), we obtain∫
R2

Q(x)[f(um)um + g(vm)vm]dx

≤ 2

∫
R2

Q(x)[F (um) +G(vm)]dx+ 2c+ 2δm + εm∥(um, vm)∥

≤ 2

θ

∫
R2

Q(x)[f(um)um + g(vm)vm]dx+ 2c+ 2δm + εm∥(um, vm)∥,

which implies

∫
R2

Q(x)[f(um)um + g(vm)vm]dx ≤ θ

θ − 2
(2c+ 2δm + εm∥(um, vm)∥).

Taking (φ, ψ) = (vm, 0) and (φ, ψ) = (0, um) in (I2),

∥vm∥2 − εm∥vm∥ ≤
∫
R2

Q(x)f(um)vmdx

∥um∥2 − εm∥um∥ ≤
∫
R2

Q(x)g(vm)umdx.

Setting Um =
um

∥um∥
and Vm =

vm
∥vm∥

, we have

∥vm∥2 ≤
∫
R2

Q(x)f(um)Vmdx+ εm (3.15)

∥um∥2 ≤
∫
R2

Q(x)g(vm)Umdx+ εm. (3.16)

Now we estimate (3.15). Let us de�ne

Im =

∫
{x∈R2:f(um)(x)≤e1/4}

Q(x)f(um)Vmdx,

Jm =

∫
{x∈R2:f(um)(x)≥e1/4}

Q(x)f(um)Vmdx,

such that ∫
R2

Q(x)f(um)Vmdx ≤ Im + Jm.
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By Young's Inequality,

Im ≤ 1

2

∫
{x∈R2:f(um)(x)≤e1/4}

Q(x)
(
(f(um))

2 + V 2
m

)
dx

=
1

2

∫
{x∈R2:f(um)(x)≤e1/4}

Q(x)(f(um))
2dx

+
1

2

∫
{x∈R2:f(um)(x)≤e1/4}

Q(x)V 2
mdx. (3.17)

Since ∥Vm∥ = 1, by the continuous embedding (3.7),

∫
{x∈R2:f(um)(x)≤e1/4}

Q(x)V 2
m ≤ C. (3.18)

By (h0)− (h1), there exists constants c > 0 and s0 > 0 such that

|f(s)| ≤ c|s| for s ∈ [0, s0].

We also have

|f(s)| ≤ e1/4

s0
s, for s ∈ (s0,∞).

Therefore,

∫
{x∈R2:f(um)(x)≤e1/4}

Q(x)(f(um))
2dx ≤ C

∫
{x∈R2:f(um)(x)≤e1/4}

Q(x)f(um)umdx. (3.19)

From (3.17), (3.18) and (3.19), it follows that

Im ≤ C +

∫
R2

Q(x)f(um)umdx. (3.20)

Observe that if f(s) has subcritical growth, for each µ > 0, there exists a constant

C > 0 such that for all s ∈ [0,∞),

f(s) ≤ Ceµs
2

. (3.21)

Similarly, if f(s) has critical growth with critical exponent µ0 > 0, for each µ > µ0, there

exists C > 0 such that we obtain the same estimate.
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Choosing δ > 0 small enough such that δ < 4π, by Lemma 3.30, we obtain

Jm =
C

δ

∫
{x∈R2:f(um)(x)≥e1/4}

Q(x)
f(um)

C
δVmdx

≤ δC

∫
R2

Q(x)(eδ
2V 2

m − 1)dx

+
1

δ

∫
{x∈R2:f(um)(x)≥e1/4}

Q(x)f(um)

[
log

(
f(um)

C

)]1/2
dx. (3.22)

First, we have that ∫
R2

Q(x)(eδ
2V 2

m − 1)dx ≤ C. (3.23)

By (3.21),

∫
{x∈R2:f(um)(x)≥e1/4}

Q(x)f(um)

[
log

(
f(um)

C

)]1/2
dx ≤ C

∫
R2

Q(x)f(um)umdx.

By this estimate, together with (3.22) and (3.23), we have

Jm ≤ C +

∫
R2

Q(x)f(um)umdx. (3.24)

Thus, by (3.20) and (3.24), we get

∫
R2

Q(x)f(um)Vmdx ≤ C1 + C2

∫
R2

Q(x)f(um)umdx.

Combining this estimate with (3.15) implies

∥vm∥ ≤ C1 + C2

∫
R2

Q(x)f(um)umdx.

By the same argument above, we reach

∥um∥ ≤ C1 + C2

∫
R2

Q(x)g(vm)vmdx.

We obtain

∥(um, vm)∥ ≤ C(C1 + δm + εm∥(um, vm)∥+ εm),

which implies that ∥(um, vm)∥ ≤ C.

■
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By the boundedness of (un, vn)n in (E, ∥·∥), we may assume that un ⇀ u0 and vn ⇀ v0

in H1
V (R2).

In view of Proposition 3.10, we may apply [26, Lemma 2.1]:

Q(x)f(un) → Q(x)f(u0),

Q(x)g(vn) → Q(x)g(v0),

in L1
loc(R2).

Using this, we can prove that (u0, v0) is a weak solution of (4). To prove that this

solution is nontrivial we will prove the following result:

Lemma 3.11. If (um, vm) ⊂ E is a sequence such that I(um, vm) → c, I ′(um, vm) → 0

and (u0, v0) is its weak limit, then

∫
R2

Q(x)F (um) →
∫
R2

Q(x)F (u0),∫
R2

Q(x)G(vm) →
∫
R2

Q(x)G(v0).

Proof. From (h3) and (h4), it follows

0 ≤ lim
|s|→∞

F (s)

sf(s)
≤ lim

|s|→∞

M0

|s|
= 0,

thus, for any ε > 0 there exists s0 = s0(ε) > 0 such that

F (x, s) ≤ εsf(s) for any s ∈ [s0,∞].

Since (u0, v0) ∈ E and recalling Proposition 3.10, we obtain

∫
R2

Q(x)f(u0)u0dx ≤ C and
∫
R2

Q(x)g(vn)vndx ≤ C,

for any n ≥ 1, for some constant C > 0.

Therefore, for a �xed ε > 0, we have

∫
{|u0|≥s0}

Q(x)F (u0)dx ≤ ε

∫
{|u0|≥s0}

Q(x)f(u0)u0dx ≤ Cε
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and ∫
{|un|≥s0}

Q(x)F (un)dx ≤ ε

∫
{|un|≥s0}

Q(x)f(un)undx ≤ Cε.

Now, we de�ne

hn(x) := Q(x)χ{|un|<s0}F (un) and h(x) := Q(x)χ{|u0|<s0}F (u0).

Then (hn) is a sequence of measurable functions and

hn(x) → h(x) a.e. for x ∈ R2.

Using (3.12) with µ > µ0, q = 2 and ε > 0, we obtain for any |s| ≤ s0

|F (s)| ≤ ε|s|2 + C(µ, ε)|s|2(eµ|s|2 − 1) ≤ C(µ, ε, s0)|s|2.

Now, we let

ζn(x) := C(µ, ε, s0)Q(x)u
2
n and ζ(x) := C(µ, ε, s0)Q(x)u

2
0.

This yields 0 ≤ hn(x) ≤ ζn(x), x ∈ R2. Note that (ζn)n is a sequence of measurable

functions, ζn(x) → ζ(x) a.e. in R2, and by the compact embedding 3.7,

lim
n→∞

∫
R2

ζn(x)dx =

∫
R2

ζ(x).

Thus, applying the generalized Lebesgue dominated convergence theorem, we get

lim
n→∞

∫
R2

hn(x)dx =

∫
R2

h(x).
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Therefore, for any �xed ε > 0, we have∣∣∣∣∫
R2

Q(x)F (un)dx−
∫
R2

Q(x)F (u0)dx

∣∣∣∣
≤
∫
{|un|≥s0}

Q(x)F (un)dx+

∫
{|u0|≥s0}

Q(x)F (u0)dx

+

∣∣∣∣∫
{|un|<s0}

Q(x)F (un)dx−
∫
{|u0|<s}

Q(x)F (x, u0)dx

∣∣∣∣
≤ 2Cε+

∣∣∣∣∫
R2

hn(x)dx−
∫
R2

h(x)dx

∣∣∣∣
Since ε > 0 is arbitrary, we complete the proof.

■

3.4 Finite dimensional problem

Associated with the eigenvalues 0 < λ1 < λ2 ≤ · · · ≤ λj → ∞ of (−∆+V (x), H1
V (R2)),

there exists an orthonormal basis {φ1, φ2, . . . } corresponding eigenfunctions in H1
V (R2).

We set

E+
n = span{(φi, φi) : i = 1, . . . , n},

E−
n = span{(φi,−φi) : i = 1, . . . , n},

En = E+
n ⊕ E−

n .

Let y ∈ H1
V (R2) be a �xed nonnegative function and

Qn,y = {r(y, y) + w : w ∈ E−
n , ∥w∥E ≤ R0 and 0 ≤ r ≤ R1},

where R0 and R1 are given in Lemma 3.9.

We establish the following notation

Hn,y = R(y, y)⊕ En, H+
n,y = R(y, y)⊕ E+

n , H−
n,y = R(y, y)⊕ E−

n ,

de�ne the class of mappings

Γ = {h ∈ C(Qn,y, Hn,y) : h(z) = z on ∂Qn,y}
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and set

cn,y = inf
h∈Γn,y

max
z∈Qn,y

I(h(z)).

Using the intersection theorem due [53, Proposition 5.9], we have

h(Qn,y ∩ (∂Bρ ∩ E+
n ) ̸= ∅, for all h ∈ Γn,y,

which in combination with Lemma 3.9, implies that cn,y ≥ σ > 0. An upper bound for the

min-max level cn,y comes from the fact that since the identity mapping I : Qn,y → Hn,y

belongs to Γn,y, we have for z = r(y, y) + (u,−u) ∈ Qn,y that

I(z) = R2
1∥y∥2 − ∥u∥2 −

∫
R2

Q(x)[F (R1y + u) +G(R1y − u)]dx ≤ R2
1∥y∥2.

Thus, we have 0 < σ ≤ cn,y ≤ R2
1∥y∥2.

We denote by In,y the functional I restricted to the �nite-dimensional subspace Hn,y.

By the lemmas 3.8 and 3.9, the geometry of the linking theorem holds, thus applying the

linking theorem for In,y yields a (PS)-sequence, which is bound by Proposition 3.10. Since

Hn,y is �nite-dimensional, we get the following result.

Proposition 3.12. For each n ∈ N and for each y ∈ H1
V a �xed nonnegative function,

the functional In,y has a critical point at level cn,y. More precisely, there is a zn,y ∈ Hn,y

such that

In,y(zn,y) = cn,y ∈ [σ,R2
1∥y∥2] and (In,y)

′(zn,y) = 0.

Furthermore, ∥zn,y∥ ≤ C.

3.5 The subcritical case

Theorem 3.13. Suppose f(s) and g(s) have subcritical exponential growth. Then (4)

possesses a nontrivial weak solution (u, v) ∈ E.

Proof. Let y ∈ H1
V (R2) be a nonnegative function. By Proposition 3.12, we have a
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sequence zn,y = (un,y, vn,y) ∈ Hn,y such that ∥zn,y∥ ≤ C and

In,y(zn,y) = cn,y ∈ [σ,R2
1∥y∥2],

(In,y)
′(zn,y) = 0, (3.25)

(un,y, vn,y)⇀ (u0, v0) in E.

By Proposition 3.10, we get

∫
R2

Q(x)f(un,y)un,ydx ≤ C and
∫
R2

Q(x)g(vn,y)vn,ydx ≤ C∫
R2

Q(x)F (un,y)dx ≤ C and
∫
R2

Q(x)G(un,y)dx ≤ C.

Substituting the test function (0, ψ) and (φ, 0) in (3.25), where ψ, φ ∈ C∞
0 (R2) are

arbitrary functions, we reach

∫
R2

(∇un,y∇ψ + V (x)un,yψ)dx =

∫
R2

Q(x)g(vn,y)ψdx∫
R2

(∇vn,y∇φ+ V (x)vn,yφ)dx =

∫
R2

Q(x)f(un,y)φdx.

Taking the limit and using the fact that C∞
0 (R2) is dense in H1

V (R2), we have

∫
R2

(∇u0∇ψ + V (x)u0ψ)dx =

∫
R2

Q(x)g(v0)ψdx for all ψ ∈ H1
V (R2),∫

R2

(∇v0∇φ+ V (x)v0φ)dx =

∫
R2

Q(x)f(u0)φdx for all φ ∈ H1
V (R2).

Now we prove u0 and v0 are nontrivial. Assume by contradiction that u0 ≡ 0, which

implies that v0 ≡ 0. Since g has subcritical growth, we see that for all ν > 0, there exists

C1, C2 > 0 such that

g(x, s) ≤ C1s+ C2s
2(eνs

2 − 1) for all s ∈ [0,∞).

Combining Holder inequality and Lemma 3.5, and choosing ν > 0 and q > 1 su�ciently
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close to 1 such that νq∥vn,y∥2 < 4π and s > 2,

∫
R2

Q(x)g(vn,y)un,ydx ≤
∫
R2

Q(x)vn,yun,y + C2Q(x)v
2
n,yun,y(e

νv2n,y − 1)

≤ C1∥vn,y∥L2
Q(R2)∥un,y∥L2

Q(R2)

+ C2

(∫
R2

Q(x)(eqν∥vn,y∥2(vn,y/∥vn,y∥)2 − 1)dx

)1/q

∥un,y∥L2s
Q (R2)∥vn,y∥2L2s

Q (R2)

≤ C1∥vn,y∥L2
Q(R2)∥un,y∥L2

Q(R2) + C∥un,y∥L2s
Q (R2)∥vn,y∥2L2s

Q (R2).

Thus, ∫
R2

(|∇un,y|2 + V (x)|un,y|2)dx =

∫
R2

Q(x)g(vn,y)un,y → 0,

since vn,y → 0 and un,y → 0 in Lp
Q(R2) for all p ≥ 2. Consequently, un,y → 0 in H1

V (R2).

This implies that ∫
R2

(∇un,y∇vn,y + V (x)un,yvn,y)dx→ 0.

Using this and the fact that (In,y)′(un,y, un,y) = 0, we reach that

∫
R2

Q(x)f(un,y)un,y → 0 and
∫
R2

Q(x)g(vn,y)vn,y → 0.

By these limits and (h3), we get∫
R2

Q(x)F (un,y)dx→ 0 and
∫
R2

Q(x)G(vn,y)dx→ 0.

Therefore, we see that cn,y = 0, which is a contradiction.

■

3.6 The critical case

3.6.1 Proof of Theorem 3.4

Next, we assume that f and g have critical growth with critical exponent µ0. By

Lemma 3.14, there is δ > 0 such that

cn := cn,u ≤ 4π

µ0

− δ,
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where cn,u is de�ned in Proposition 3.12.

By Propositions 3.10 and 3.12, we obtain a sequence zn := zn,u = (un, vn) ∈ Hn,u such

that ∥(un, vn)∥ ≤ C and

In,u(un, vn) = cn ∈
[
σ,

4π

µ0

− δ

)
, (3.26)

(In,u)
′(un, vn) = 0, (3.27)

(un, vn)⇀ (u0, v0) weakly in E.

By Proposition 3.10 and arguing as in the subcritical case

∫
R2

(∇u0∇ψ + V (x)u0ψ)dx =

∫
R2

Q(x)g(v0)ψdx for all ψ ∈ H1
V ,∫

R2

(∇v0∇φ+ V (x)v0φ)dx =

∫
R2

Q(x)f(u0)φdx for all φ ∈ H1
V .

Now, we prove by contradiction that u0 and v0 are nontrivial. Assume that u0 ≡ 0,

which implies that v0 ≡ 0. If ∥un∥ → 0, we get ⟨un, vn⟩ → 0, a contradiction. Thus, we

assume that un ≥ b > 0 for all n ∈ N and consider

∥un∥2 =
∫
R2

Q(x)g(vn)undx. (3.28)

By (h0), for any �xed ε > 0, there exists Cε > 0 such that

|g(t)| ≤ Cεe
(µ0+ε)t2 , for t ∈ R2. (3.29)

De�ne un =
(

4π
µ0

− δ
)1/2

un

∥un∥ . Applying the following inequality, which was proved in

[38, Lemma 4.1],

st ≤ t2(et
2 − 1) + |s|(log)1/2, for all t ≥ 0 and s ≥ e1/

3√4. (3.30)

Applying (3.30) with s = g(vn)/µ0 and t =
√
µ0un and arguing as in Proposition 3.10,
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we get

(
4π

µ0

− δ

)1/2

∥un∥ =

∫
R2

g(vn)undx (3.31)

=
1

√
µ0

∫
R2

Q(x)g(vn)
√
µ0undx

≤
∫
{x∈R2:g(vn(x))/µ0≤e1/4}

Q(x)

[
(eµ0u2

n − 1) +
1

2

[g(vn)]
1/2

µ0

]
dx

+

∫
{x∈R2:g(vn(x))/µ0≥e1/4}

Q(x)

[
(eµ0u2

n − 1) +
g(vn)√
µ0

[
log

(
g(vn)√
µ0

)]1/2]
dx

= J1,n + J2,n + J3,n,

where

J1,n =

∫
R2

Q(x)(eµ0u2
n − 1)dx,

J2,n =
1

2

∫
{x∈R2:g(vn(x))/µ0≤e1/4}

Q(x)
[g(vn)]

1/2

µ0

dx

J3,n =

∫
{x∈R2:g(vn(x))/µ0≥e1/4}

Q(x)
g(vn)√
µ0

[
log

(
g(vn)√
µ0

)]1/2
dx.

Let us estimate these integrals. Since ∥un∥2 = 4π
µ0

− δ, by Theorem 3.6, we obtain that

J1,n → 0.

Using (h1)− (h3), there exists a constant C > 0 such that

(g(vn))
2 ≤ C|vn|2 in

{
x ∈ R2 : g(vn(x)) ≤ e1/4

}
.

By the compact embedding, we get J2,n → 0.

Using the critical growth hypothesis, we can estimate J3,n. Observe that

J3,n ≤ 1
√
µ0

∫
R2

Q(x)g(vn)(µ0 + ε)1/2vndx

≤
(
1 +

ε

µ0

)1/2 ∫
R2

Q(x)g(vn)vndx

Substituting this in (3.31), we get

(
4π

µ0

− δ

)1/2

∥un∥ ≤ on(1) +

(
1 +

ε

µ0

)1/2 ∫
R2

Q(x)g(vn)vndx. (3.32)
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Using the same argument

∥vn∥2 =
∫
R2

Q(x)f(un)vndx,

we see that

(
4π

µ0

− δ

)1/2

∥vn∥ ≤ on(1) +

(
1 +

ε

µ0

)1/2 ∫
R2

Q(x)f(un)undx. (3.33)

By (3.26),

∫
R2

[∇un∇vn + V (x)unvn]−
∫
R2

Q(x)[F (un) +G(vn)] ≤
4π

µ0

− δ,

and since ∫
R2

Q(x)F (un) → 0 and
∫
R2

Q(x)G(vn) → 0,

we obtain

|⟨un, vn⟩| ≤ on(1) +
4π

µ0

− δ,

By (3.27),

∫
R2

[∇un∇vn + V (x)unvn]−
∫
R2

Q(x)[F (un) +G(vn)] = 0,

and this implies

∫
R2

Q(x)f(un)undx+

∫
R2

Q(x)g(vn)vndx ≤ on(1) + 2

(
4π

µ0

− δ

)
So, combining (3.32) and (3.33), we get

∥un∥+ ∥vn∥ ≤ on(1) + 2

(
1 +

ε

µ0

)1/2(
4π

µ0

− δ

)

for ε > 0 su�ciently small and n su�ciently large.

Therefore, without loss of generality, we can assume that there is a subsequence of

(vn) such that

∥vn∥ ≤
(
4π

µ0

− δ

)1/2

.
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Consequently, ∫
R2

Q(x)g(vn)vndx→ 0. (3.34)

Hence,

⟨un, vn⟩ → 0,

which implies cn = 0, which is a contradiction. This completes the proof.

3.6.2 Level estimate

For the next result, we assume that there exists γ0 > 0 such that the functions f, g

satisfy

lim inf
|s|→∞

sf(s)

eγ0s2
, lim inf

|s|→∞

sg(s)

eγ0s2
=: β0 >M,

where M =: inf
r>0

4e1/2r
2Vmax,r

γ0r2Qmin,r

, Vmax,r := max
|x|≤r

V (x) > 0 and Qmin,r := min
|x|≤r

Q(x) > 0.

For �xed r > 0, we consider the Moser sequence

w̃n(x) :=
1√
2π



√
log n, if |x| ≤ r/n,

log r/|x|√
log n

, if r/n ≤ |x| ≤ r,

0, if |x| ≥ r.

It is well known that w̃n ∈ H1
0 (Br) ⊂ H1

V (R2) and it is possible to prove that

1 ≤ ∥w̃n∥2 ≤ 1 +
dn(r)

log n
Vmax,r,

where dn(r) := r2/4 + on(1) and on(1) → 0 as n→ ∞.

Let wn := w̃n/∥w̃n∥ ∈ H1
0 (Br) ⊂ H1

V (R2). We have ∥wn∥ = 1 and for |x| ≤ r/n

w2
n(x) =

1

2π
log n

(
1

∥w̃n∥2

)
≥ 1

2π

(
log n− dn(r)Vmax,r

∥w̃n∥2

)
≥ 1

2π
(log n− dn(r)Vmax,r)

(3.35)

Lemma 3.14. There exists a nonnegative function u ∈ H1
V such that

sup
η∈R+(u,u)⊕E−

I(η) <
4π

γ0
. (3.36)
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We prove by contradiction. Suppose that for all k ∈ N

sup
η∈R+(u,u)⊕E−

I(η) ≥ 4π

γ0
. (3.37)

Thus, for all �xed k ≥ 1, there exists a nonnegative sequence ζkn → 0 as n → ∞ and a

sequence

ηn,k = τn,k(wk, wk) + (un,k,−un,k), un,k ∈ H1
V (R2),

such that I(η) ≥ 4π

γ0
− ζkn.

Observe that if h : [0,∞) → R is a function such that h(t) = I(tη). Since h(0) = 0

and limt→0 h(t) = −∞, there exists a maximum point tn,k, that is,

I(tn,kηn,k) ≥ I(ηn,k) ≥
4π

γ0
− ζkn and I ′(tn,kηn,k) = 0.

Renaming tn,kηn,k := ηn,k, we may assume, without loss of generality, that tn,k = 1.

This means that

τ 2n,k∥wk∥2 − ∥un,k∥2 −
∫
R2

Q(x)F (τn,kwk + un,k)dx−
∫
R2

Q(x)G(τn,kwk − un,k)dx

≥ 4π

γ0
− ζkn (3.38)

and

τ 2n,k∥wk∥2 − ∥un,k∥2 =
∫
R2

Q(x)f(τn,kwk + un,k)(τn,kwk + un,k)dx

−
∫
R2

Q(x)g(τn,kwk − un,k)(τn,kwk − un,k)dx. (3.39)

Hence,

τ 2n,k ≥
4π

γ0
− ζkn (3.40)

and

τ 2n,k ≥
∫
R2

Q(x)f(τn,kwk + un,k)(τn,kwk + un,k)dx

−
∫
R2

Q(x)g(τn,kwk − un,k)(τn,kwk − un,k)dx. (3.41)

Set β0 > 0 such that the condition (3.1) is satis�ed. Thus, given ε > 0, there exists
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Rε > 0 such that

tf(t), tg(t) ≥ (β0 − ε)eγ0t
2

, for all t ≥ Rε. (3.42)

Choosing k su�ciently large, there exists k0 > 0 such that

τn,k

√
log k

2π
≥ Rε, for allk ≥ k0.

Since

wk(x) =

√
log k

2π
for all x ∈ Br/k,

we get

max{τn,kwk + uk, τn,kwk − uk} ≥ τn,kwk ≥ Rε, for all x ∈ Br/k.

Let xk ∈ Br/k be the minimum point of the weight Q on Br/k, that is,

Q(xk) := min
|x|≤r/k

Q(x) ≥ Qmin,r. (3.43)

Observe that limk→∞Q(xk) = Q(0) > 0. Therefore, using (3.41), (3.42) and (3.35),

we get

τ 2n,k ≥
∫
R2

Q(x)f(τn,kwk + un,k)(τn,kwk + un,k)dx

−
∫
R2

Q(x)g(τn,kwk − un,k)(τn,kwk − un,k)dx

≥ (β0 − ε)

∫
Br/k

Q(x)eγ0(τn,kwk)
2

dx

≥ (β0 − ε)Qmin,r

( r
k

)2
e

γ0
2π

τ2n,k[log k−dk(r)Vmax,r],

when |x| ≤ r/k.

Setting sn,k := τ 2n,k −
4π

γ0
, we have

sn,k +
4π

γ0
≥ (β0 − ε)Qmin,rr

2e
γ0
2π

sn,k[log k−dk(r)Vmax,r]e−2dk(r)Vmax,r . (3.44)

This inequality implies that {sn,k}n is bounded for each k ≥ k0. Thus, there exists

sk ∈ R2 such that lim supn→∞ = sk. By (3.40), we have that sk ≥ 0. Observe that sk → 0
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as k → ∞. In fact, taking the lim supn→∞, we have

sk

e
γ0
2π

sk[log k−dk(r)Vmax,r]
+

4π

γ0

1

e
γ0
2π

sk[log k−dk(r)Vmax,r]
≥ (β0 − ε)Qmin,rr

2e−2dk(r)Vmax,r .

If sk → ρ > 0, as k → ∞, we have (β0 − ε)Qmin,rr
2e−

r2

2
Vmax,r ≤ 0, which is an absurd.

Now, we observe two cases:

sk log k → +∞ or sk log k → ρ > 0 as k → +∞.

If sk log k → +∞, since (3.44), we get a contradiction. If sk log k → ρ > 0, we have

4π

γ0
≥ (β0 − ε)Qmin,rr

2e
γ0
2π

ρe−
r2

2
Vmax,r ≥ (β0 − ε)Qmin,rr

2e−
r2

2
Vmax,r

and this contradicts (3.1), since ε > 0 is arbitrary.
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Chapter 4

Periodic Schrödinger equations with

exponential growth without the

Ambrosetti-Rabinowitz condition

In this chapter, we establish the existence of nontrivial solutions for the following

Schrödinger equation −∆u+ V (x)u = f(x, u),

u ∈ H1(R2),
(2)

where V is a 1-periodic function with respect to x, 0 lies in the gap of the spectrum of

−∆+ V and the nonlinear term f(x, s) has critical exponential growth.

In the two dimensional case, when f(x, u) has exponential growth on u and V (x) is

a positive potential bounded away from zero (i.e. the de�nite case), motivated by the

Moser�Trudinger inequality, the existence of nontrivial solutions to has been studied by

many authors (see, [8, 9, 16, 26, 28, 30, 39, 42]).

However, let σ(S) be the spectrum of the operator −∆+ V de�ned in L2(R2). When

V is continuous and periodic, it is known that σ(S) is purely continuous, bounded from

below and is the union of disjoint closed intervals (see [55, Theorem XIIL 100]). In this

chapter, we study the case where 0 lies in the spectral gap, precisely,

(V ) V (x) = V (x1, x2) is continuous, 1-periodic in the variables x1, x2 and

λ := sup[σ(S) ∩ (−∞, 0)] < 0 < Λ := inf[σ(S) ∩ (0,∞)].
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This way, when (V ) holds and the operator −∆+V has a purely continuous spectrum

consisting of closed disjoint intervals, we have the inde�nite case. We can reference [6] for

a study with a subcritical exponential growth and [7, 20, 36] concerning the existence of

nontrivial solutions for (2) with a exponential growth of the critical type.

With respect to the function f , we assume the following conditions:

(F0) f ∈ C1(R2 × R2,R) and f(x1, x2, u) is 1-periodic in the variables x1, x2;

(F1) (Critical exponential growth) there exists α0 > 0 such that

lim
|u|→∞

|f(x, u)|
eα|u|2

=

 0, if α > α0,

+∞, if α < α0,

uniformly in x ∈ R2;

(F2) f(x, u) = o(u) as |u| → 0, uniformly in x ∈ R2;

(F3) f(x, t)/|t| is stricly increasing in (−∞, 0) and (0,∞) for every x ∈ R2;

(F4) there exists R0,M0 > 0 such that

0 < F (x, u) ≤M0|f(x, u)|, for all x ∈ R2 and |u| ≥ R0;

(F5) lim sup
|u|→∞

|u||f(x, u)|
F̂ (x, u)

=: β ≤ 2, uniformly in x ∈ R2, where

F̂ (x, u) :=
1

2
f(x, u)u− F (x, u), for (x, u) ∈ R2 × R2.

Remark 4.1. We observe that we do not require the well-known Ambrosetti-Rabinowitz

condition:

(AR) there exists θ > 2 such that, for each x ∈ R2 and u ∈ R2\{0}, there holds

0 < θF (x, u) ≤ f(x, u)u.

Also, the critical exponential growth condition implies the following

lim
|t|→∞

F (x, t)

|t|2
, uniformly in x ∈ R2. (4.1)
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For the main result of this chapter, we need the following hypothesis, presented by

Chen-Tang in [20]. We assume that there exists γ0 > 0 such that the function f satisfy

lim inf
|s|→∞

sf(x, s)

eγ0s2
=: β0 >M, uniformly on x ∈ R2 (4.2)

where M :=
4

γ0ρ2
e16πC

2
0 and ρ > 0 satis�es 4π(4+ ρ)ρC2

0 < 1 and C0 > 0 is the embedding

constant in (4.3).

Theorem 4.2. Suppose that conditions (V ) and (F0) − (F5) are satis�ed. In addition,

we assume that there exists γ0 > 0 such that the function f satisfy (4.2). Then, equation

(2) has a ground state solution.

Example 4.3. Let a ∈ C(R2,R) positive and 1-periodic in x1, x2 and de�ne the function

f by

F (x, t) := a(x)t3(et
2 − 1).

Observe that

f(x, t) := a(x)t2(et
2

(2t2 + 3)− 3).

It is not di�cult to see that f satis�es (F0)− (F5) and (4.2).

The present chapter is organized as follows: in the forthcoming section, we introduce

some notations and results regarding the function space setting in which we work. In

Section 4.2, we prove our main theorem and in Section 4.3 we present the proof of a level

estimate established by [20].

4.1 Preliminaries

In this section we present the function space setting in which we develop our variational

approach and some results about it.

We denote by S the selfadjoint operator −∆ + V acting on L2(R2) with domain

D(S) := H2(R2). Let {E(λ) : L2(R2) → L2(R2)}λ∈R be the spectral family of S and

E− = E(0−)E, E+ = [id− E(0)]E.
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By (V ), we have E = E− ⊕ E+. For any u ∈ E, we can write u = u− + u+, where

u− := E(0−)u ∈ E−, u+ := [id− E(0)]u ∈ E+, (4.3)

and

Su− = −|S|u−, Su+ = |S|u+, ∀u ∈ E ∩ D(S). (4.4)

The spaces E− and E+ are S-invariants. Moreover, if u ∈ E− and v ∈ E+, then u

and v are both orthogonal with respect to ⟨·, ·⟩2 and ⟨·, ·⟩. By de�nition, |S|u = Su if

u ∈ E+ and |S|u = −Su if u ∈ E−. Thus, |S| : E → E is a positive self-adjoint operator.

Therefore, we can de�ne the square root of |S|, which is also a self-adjoint operator. We

can veirfy that (
|S|1/2

)2
u = |S|u,∀u ∈ D(S).

If we consider the Hilbert space E := D(|S|1/2) with the inner product

⟨u, v⟩ := ⟨|S|1/2u, |S|1/2v⟩L2 , (4.5)

and the corresponding norm

∥u∥ := ||S|1/2u|2, (4.6)

The next lemma proves the equivalence between norms of E and H1(R2). For the

proof, see [11, 61].

Lemma 4.4. Assume V . Then E = E− ⊕E+, ∥ · ∥ is equivalent to ∥ · ∥H1 on E and for

any u = u− + u+ ∈ E, it holds ⟨u+, u−⟩ = ⟨u+, u−⟩2 = 0. Moreover,

⟨Su, u⟩2 = −∥u∥2 ≤ λ∥u∥22, u ∈ E− (4.7)

and

⟨Su, u⟩2 = ∥u∥2 ≥ λ∥u∥22, u ∈ E+. (4.8)

Remark 4.5. It follows from Lemma 4.4 that ∥u∥2 = ∥u−∥2 + ∥u+∥2 and for any

p ∈ [2,∞) the embedding E ↪→ Lp(R2) is continuous.
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Now, consider the bilinear form B : E × E → R,

B(u, v) =

∫
RN

(∇u∇v + V (x)uv)dx.

We obtain

B(u, v) =

∫
RN

(∇u∇v + V (x)uv)dx

= ⟨Su, v⟩2

= ⟨Su− + Su+, v⟩2

= ⟨Su+, v⟩2 + ⟨Su−, v⟩2

= ⟨|S|u+, v+⟩2 + (|S|u−, v−⟩2

= ⟨|S|1/2u+, |S|1/2v+⟩2 + ⟨|S|1/2u−, |S|1/2v−⟩2

= ⟨u+, v+⟩ − ⟨u−, v−⟩

= ⟨u+, v⟩ − ⟨u−, v⟩.

In particular,

B(u, u) = ∥u+∥2 − ∥u−∥2. (4.9)

We know the energy functional associated to (2) is given by

I(u) =
1

2

∫
R2

(|∇u|2 + V (x)u2)dx−
∫
R2

F (x, u)dx, u ∈ H1(R2),

where F is the primitive of f . This functional is of class C1 and critical points of I

corresponds to weak solutions of Problem (2).

In view of (4.9), we have

I(u) =
1

2
(∥u+∥2 − ∥u−∥2)−

∫
R2

F (x, u)dx, u = u− + u+ ∈ E− ⊕ E+. (4.10)

4.2 Proof of Theorem 4.2

In this section, we prove our main theorem. Our intention is to apply Lemma 1.6 and

a minimization argument to obtain a ground state for problem (2). Some of these results

were already proved in Chapter 1, Chapter 2 and by Szulkin-Weth [60], so we present
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them without proof.

In order to exploit Lemma 1.6, we consider the spectral decomposition of −∆ + V

with respect to the positive and negative part of the spectrum, given by E = E+ ⊕ E−,

where u = u+ + u− ∈ E+ ⊕ E−.

By using (F1) and (F2) we can see that, given ε > 0, α > α0 and q ≥ 1, there exists

C = C(ε, α, q) > 0 such that

max{|F (x, u)|, |f(x, u)||u|} ≤ ε|u|2 + C|u|q(eα|u|2 − 1), for all (x, u) ∈ R2 × R2. (4.11)

In view of (4.11) and Lemma 1.12, the energy functional associated to (2), given by

I(u) =
1

2
(∥u+∥2 − ∥u−∥2)− J (u), (4.12)

where J (u) :=
∫
R2 F (x, u), is well de�ned. Furthermore, it is not di�cult to show that

I ∈ C1(E,R) with

I ′(u)w = ⟨u+, w+⟩ − ⟨u−, w−⟩ −
∫
R2

f(x, u)w, for u,w ∈ E.

Hence, the critical points of I correspond to weak solutions of Problem (2).

In order to apply Lemma 1.6, we are going to show that I satis�es conditions

(N1)− (N3). For this, initially we present some lemmas.

Lemma 4.6. Assuming conditions (F1)− (F3), for each u ̸= 0 we have

1

2
f(x, u)u > F (x, u) > 0.

Furthermore, J (0) = 0 and J is weakly lower semicontinuous.

By the previous lemma, condition (N1) is satis�ed. The next result is necessary in

order to show condition (N2) and its proof is contained in Lemma 2.3 of [60] and therefore

we omit it.

Lemma 4.7. Suppose that H satis�es (F1) − (F3). If z ∈ N then for any w ̸= 0 such

that u+ w ∈ Ê(u), we have I(u+ w) < I(u).
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Lemma 4.8. Assume conditions (F1)− (F3) and (4.2). For each u ∈ E\E−, there exists

R = R(u) > 0 such that I(w) ≤ 0 for all w ∈ Ê(u)\BR(0), where BR(0) := {u ∈ E :

∥u∥ < R}.

Proof. Suppose that the result is not valid. Then, for some u0 ∈ E\E− there exists a

sequence (wn) ⊂ Ê(u0) such that ∥wn∥ → ∞ and I(wn) > 0. De�ning un = wn/∥wn∥,

we can assume that un ⇀ w0 in E. If w0 ̸= 0 and Ω0 := {x ∈ R2 : |w0(x)| > 0}, then by

Fatou's Lemma and (4.1), we have

0 <
I(wn)

∥wn∥2
=

1

2
∥u+n ∥2 −

1

2
∥u−n ∥2 −

∫
R2

F (x,wn)

|wn|2
|un|2

≤ 1

2
∥u+n ∥2 −

1

2
∥u−n ∥2 −

∫
Ω0

F (x,wn)

|wn|2
|un|2 → −∞,

which is a contradiction and thus w0 = 0. Moreover, since H is nonnegative by the

previous inequality we also have ∥u+n ∥ ≥ ∥u−n ∥. Once ∥un∥ = 1 we deduce that

∥u+n ∥ ≥ 1/
√
2.

Now, as Ê(u0) = Ê(u+0 /∥u+0 ∥) we can assume u0 ∈ S+, that is, ∥u0∥ = 1. Thus, we

can write u+n = snu0 with 1/
√
2 ≤ sn ≤ 1 for all n ∈ N. Indeed, one has wn = rnu0 + w−

n

with rn ≥ 0 and w−
n ∈ E−. Hence,

1√
2
≤ ∥u+n ∥ =

∥w+
n ∥

∥wn∥
=

rn
∥wn∥

∥u0∥ =
rn

∥wn∥
=: sn

and sn = rn/
√
r2n + ∥w−

n ∥2 ≤ 1. Therefore, up to a subsequence, sn → s for some s > 0.

From this, we deduce that u+n → su0 strongly in E. On the other hand, we have ∥u−n ∥ ≤ 1

and so, up to a subsequence, u−n ⇀ w with w ∈ E−. Thus, un = snu0+u
−
n ⇀ su0+w. By

the uniqueness of the weak limit, it follows that su0 + w = 0, which implies that u0 = 0.

This is a contradiction and the lemma is proved.

■

The next lemma guarantees that condition (N2) is valid.

Lemma 4.9. Suppose that F satis�es (F1)− (F3) and (4.2).

(i) for any u ∈ N , I|Ê(u) admits a unique maximum point which is precisely at u.
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(ii) for any u ∈ E\E−, the set Ê(u) intersects N at exactly one point m̂(u), which is

the unique global maximum point of I|Ê(u).

Proof. Firstly we will show (i). Given tu + y ∈ Ê(u)\{u}, it is enough to consider

w = (t− 1)u+ y to obtain tu+ y = u+ w.

Note that, if w = 0 then t = 1 and y = 0, but this can not occur because tz + y ̸= u.

Hence, w ̸= 0 and by Lemma 1.16 we conclude that I(tu+ y) < I(u).

To prove (ii), by the previous item, it is su�cient to show that N ∩ Ê(u) ̸= ∅ for

each u ∈ E\E−. Moreover, since Ê(u) = Ê (u+/∥u+∥). By Lemma 1.15, there exists

R > 0 such that I(w) ≤ 0 if w ∈ Ê(u)\BR(0) and if ∥w∥ ≤ R then I(w) ≤ R2/2 and so

supÊ(u) I <∞.

On the other hand, by using (1.8), for ε > 0 and α′ > α0 there exists Cε > 0 such that

F (x, u) ≤ ε|u|2 + Cε|u|3(eα
′|u|2 − 1), u ∈ R2. (4.13)

From (1.12), Lemma 1.12 and by choosing 0 < ε < 1/(4
∫
R2 |u|2), we have

I(tu) =
t2

2
∥u∥2 −

∫
R2

F (x, tu) ≥ t2

2
− εt2

∫
R2

|u|2 − Cεt
3

∫
R2

|u|3(eα′t2|u|2 − 1)

≥ t2

4
− Ct3

(∫
R2

|u|6
)1/2 [∫

R2

(e2α
′t2|u|2 − 1)

]1/2
> 0,

for all 0 < t <
√

2π/α′ su�ciently small. Consequently, supÊ(u) I > 0.

Now, let wn == tnu + hn,∈ Ê(u) be a maximizing sequence for supÊ(u) I. Since

supÊ(u) I > 0, we can suppose that ∥wn∥ ≤ R. Hence, up to a subsequence, wn ⇀ w0

weakly in E. We can see, up to a subsequence, that tn → t0 ≥ 0 and hn ⇀ h0, wn ⇀ w0

weakly in H1(R2). Therefore, w0 = t0u+h0 ∈ Ê(u). Recalling that u ∈ E+ and ∥u∥ = 1,

we can write

I(wn) =
t2n
2
− 1

2
∥hn∥2 −

∫
R2

F (x,wn),

from where it follows, according to the weak lower semicontinuous of the norm and Fatou's

lemma, that

sup
Ê(u)

I = lim
n→∞

I(wn) =
t20
2
+ lim sup

n→∞

[
−1

2
∥hn∥2 −

∫
R2

F (x,wn)

]
≤ I(w0).

Thus, I(w0) = supÊ(u) I and therefore w0 is a critical point of I|Ê(u), showing that
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w0 ∈ N ∩ Ê(u) and the proof is complete.

■

As an immediate consequence of this lemma, we obtain the following characterization

to the minimal level for I on the generalized Nehari manifold N :

Corollary 4.10.

c∗ := inf
η∈N

I(η) = inf
u∈E\E−

max
w∈Ê(u)

I(w).

Lemma 4.11. Suppose that F satis�es (F1)− (F3). Then, c∗ > 0 and

∥u+∥ ≥ max{∥u−∥,
√
2c∗} for all u ∈ N .

Proof. For a > 0, we recall that S+
a := {u ∈ E+ : ∥u∥ = a} and (R+)u = {tu : t ≥ 0}.

Since Ê(u) = Ê(u+) for any u ∈ E\E−, from Corollary 1.18, for any a > 0, it follows

that

c∗ = inf
u∈E\E−

max
w∈Ê(u)

I(w) = inf
u∈E+\{0}

max
w∈Ê(u)

I(w) = inf
u∈S+

a

max
w∈Ê(u)

I(w) ≥ inf
u∈S+

a

max
w∈(R+)u

I(w).

Let u ∈ S+
a and α > α0. We take a > 0 so that 2αa2 < 4π. By virtue of Lemma 1.12,

we reach ∫
R2

(e2α|u|
2 − 1) =

∫
R2

(e2αa
2(|u|/∥u∥)2 − 1) ≤ C,

for some C > 0. Thus, by using (1.12) we get

max
w∈(R+)u

I(w) ≥ I(u) = ∥u∥2V −
∫
R2

F (x, u) ≥ ∥u∥2V − ε

∫
R2

|u|2 − Cε

∫
R2

|u|3(eα|u|2 − 1)

≥
(
1− 2ε

a0

)
∥u∥2V − Cε

(∫
R2

|u|6
)1/2

≥
(
1− 2ε

a0

)
∥u∥2V − C1∥u∥3V ,

where we have used the continuous embedding H1(R2) ↪→ L6(R2). Hence, taking ε = a0/4

and 0 < a <
√

2π/α su�ciently small so that 1/2− C1∥u∥V = 1/2− C1a/
√
2 ≥ 1/4, we

conclude that

max
w∈(R+)u

I(w) ≥ ∥u∥2V
(
1

2
− C1∥u∥V

)
≥ a2

8
> 0, for all u ∈ S+

a
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and consequently c∗ > 0. Now, for any u ∈ N we have

c∗ ≤
1

2
(∥u+∥2 − ∥u−∥2)−

∫
R2

F (x, u) ≤ 1

2
(∥u+∥2 − ∥u−∥2),

which implies that ∥u+∥ ≥ max{∥u−∥,
√
2c∗} and the proof is done.

■

Condition (N3) can be now proved in the following lemma:

Lemma 4.12. Suppose that F satis�es (F1)− (F3). If W ⊂ E\E− is compact, then there

exists CW > 0 such that ∥m̂(u)∥ ≤ CW , for all z ∈ W.

Proof. Setting δ =
√
2c∗, by Lemma 1.19 and noting that m̂(u) ∈ N for any u ∈ E\E−,

we have ∥m̂(u)+∥ ≥ δ. Once m̂(u) = m̂ (u+/∥u+∥) for any u ∈ E\E−, without loss of

generality, we can assume that W ⊂ S+. By the compactness of W and from Lemma

1.15, we can see that there exists CW > 0 such that

I ≤ 0 on Ê(u)\BCW (0) for all u ∈ W ,

where BCW (0) = {w ∈ E : ∥w∥ ≤ CW}. Recalling that I(m̂(u)) ≥ c∗ > 0 for all

u ∈ E\E−, we get that ∥m̂(u)∥ = ∥m̂ (u+/∥u+∥)∥ ≤ CW for any u ∈ W and the result is

proved.

■

The generalized manifold N is not necessarily of class C1 and thus the Ekeland

Variational Principle can not be applied directly to obtain a Palais-Smale sequence

for I on N . However, in view of item (iv) of Lemma 1.6 and Lemma 1.19, one has

infS+ Ψ = infN I = c∗ > 0. Since S+ is a submanifold of class C1 of E+, it follows from

the Ekeland Variational Principle that there exists (wn) ⊂ S+ such that

Ψ(wn) → c∗ and ∥Ψ′(wn)∥∗ → 0 as n→ ∞.

Let un = m(wn) ∈ N . By items (ii)-(iv) of Lemma 1.6, we reach

I(un) → c∗ and ∥I ′(un)∥ → 0 as n→ ∞. (4.14)
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In the next lemma, we shall guarantee that the above sequence (un) ⊂ N is bounded.

For this, we shall use the following inequality, whose proof can be found in [28, Lemma

2.4]:

st ≤


(et

2 − 1) + |s|(log |s|)1/2, t ∈ R and |s| ≥ e1/4;

(et
2 − 1) +

1

2
s2, t ∈ R and |s| ≤ e1/4.

(4.15)

Lemma 4.13. Suppose that (F0) − (F5) are satis�ed. Any Palais-Smale sequence

(un) ⊂ N for I is bounded.

Proof. Let (un) ⊂ N be a Palais-Smale sequence for I at level c. Hence,

c+ on(1) = I(un)−
1

2
I ′(un)un =

∫
R2

F̂ (x, un). (4.16)

Suppose by contradiction that, up to a subsequence, ∥un∥ → ∞. Thus,

on(1) =
I ′(un)(u

+
n − u−n )

∥un∥2
= 1−

∫
R2

f(x, un) · (u+n − u−n )

∥un∥2
.

Setting wn := un/∥un∥, it follows that

lim
n→∞

∫
R2

f(x, un) · (w+
n − w−

n )

∥un∥
= 1. (4.17)

In what follows, we claim that the function Q : (0,∞) → R de�ned by

Q(r) = inf
x∈R2, |u|≥r

F̂ (x, u)

has the following properties:

Q(r) > 0 for all r > 0 and Q(r) → +∞ as r → ∞. (4.18)

Indeed, by Lemma 1.13 we have F̂ (x, u) > 0 for all x ∈ R2 and u ̸= 0. Moreover, by

using (F1), with 0 < α′ < α0, and (4.1) we can deduce that F̂ (x, u) → +∞ as |u| → ∞,

uniformly in x ∈ R2. Therefore, by the de�nition of Q, one has Q(r) → +∞ as r → ∞.

From this fact and by the periodicity of F̂ (x, u) in x, for each r > 0 there exists Mr > r

such that

Q(r) = inf
x∈R2, |u|≥r

F̂ (x, u) = min
x∈[0,1]×[0,1], r≤|u|≤Mr

F̂ (x, u) = F̂ (x0, z0) > 0
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and the claim is proved.

For 0 ≤ a < b ≤ ∞ and n ∈ N, we set

Ωn(a, b) := {x ∈ R2 : a ≤ |un(x)| < b}.

Using (4.16) and for 0 < r < R <∞, we obtain

c+ on(1) =

∫
Ωn(0,r)

F̂ (x, un) +

∫
Ωn(r,R)

F̂ (x, un)

|un|2
|un|2 +

∫
Ωn(R,∞)

F̂ (x, un)

≥
∫
Ωn(0,r)

F̂ (x, un) +
Q(r)

R2

∫
Ωn(r,R)

|un|2 +Q(R)|Ωn(R,∞)|

and therefore there exists C1 > 0 such that

max

{∫
Ωn(0,r)

F̂ (x, un),
Q(r)

R2

∫
Ωn(r,R)

|un|2, Q(R)|Ωn(R,∞)|
}

≤ C1. (4.19)

In particular,

|Ωn(R,∞)| ≤ C1/Q(R) for each n ∈ N. (4.20)

Next, let C3 > 0 be such that ∥u∥22 ≤ C3∥u∥2 for each u ∈ E and consider ε > 0. By

(F2), there exists rε > 0 such that |f(x, u)| ≤ ε|u|/C3 for each |u| ≤ rε and x ∈ R2. By

the de�nition of wn and since |w+
n − w−

n | = |wn|, from (4.19) with r = rε, for any n ∈ N

we get ∫
Ωn(0,rε)

f(x, un) · (w+
n − w−

n )

∥zn∥
≤
∫
Ωn(0,rε)

|f(x, un)|
|un|

|w+
n − w−

n ||wn|

≤ ε

C3

∫
Ωn(0,rε)

|wn|2 ≤ ε∥wn∥2 = ε.

(4.21)

Now, let R = Rε > rε to be chosen later. De�ne A1 = Ωn(Rε,∞) ∩ {x ∈ R2 :

|f(x, un)| ≤ e1/4} and A2 = Ωn(Rε,∞) ∩ {x ∈ R2 : |f(x, un)| ≥ e1/4}. Taking t = |wn|

and s = |f(x, un)| in (4.29), we get

∫
Ωn(Rε,∞)

f(x, un) · (w+
n − w−

n )

∥un∥
≤ 1

∥un∥

∫
Ωn(Rε,∞)

|f(x, un)||wn|

≤ 1

∥un∥

∫
A2

|f(x, un)|(log |f(x, un)|)1/2

+
1

∥un∥

∫
A1

1

2
|f(x, un)|2 +

2

∥un∥

∫
R2

(e|wn|2 − 1).

(4.22)
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By (4.20), we have |A1| ≤ |Ωn(Rε,∞)| ≤ C1/Q(Rε) and consequently

∫
A1

|f(x, un)|2 ≤
C1e

1/2

Q(Rε)
, for all n ∈ N.

By Lemma 1.12, the integral
∫
R2(e

|wn|2 − 1) is bounded. Moreover, given α > α0 by (F1)

there exists R1 > 0 such that

|f(x, u)| ≤ eα|u|
2

for all x ∈ R2 and |u| ≥ R1.

In view of (F5), there exists c1 > 0 such that

|f(x, u)||u| ≤ c1F̂ (x, u) for all x ∈ R2 and |u| ≥ R1

Taking Rε > R1, from the two last estimates and (4.16) it follows that

∫
A2

|f(x, un)|(log |f(x, un)|)1/2 ≤ α1/2

∫
A2

|f(x, un)||un| ≤ α1/2c1

∫
R2

F̂ (x, un) ≤ C,

for some constant C > 0. Thus, in view of (4.22), we �nd n0 ∈ N satisfying

∫
Ωn(Rε,∞)

f(x, un) · (w+
n − w−

n )

∥un∥
< ε, for all n ≥ n0. (4.23)

According to (F1) and (F2), given α > α0 we obtain Cα > 0 such that, for all

x ∈ Ωn(rε, Rε), we have

|f(x, un)| ≤ |un|+ Cα(e
αR2

ε − 1)|un|

From this estimate and (4.11), recalling the de�nition of wn and |w+
n − w−

n | = |wn|, we

reach

∫
Ωn(rε,Rε)

f(x, un) · (w+
n − w−

n )

∥un∥
≤ C2

∫
Ωn(rε,Rε)

|un||w+
n − w−

n |
∥un∥

≤ C2

∥un∥2

∫
Ωn(rε,Rε)

|un|2

≤ C3

∥un∥2
R2

ε

Q(rε)
< ε, for all n ≥ n1,
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for some n1 ∈ N. This estimate, (4.21) and (4.23) show that

∫
R2

f(x, un) · (w+
n − w−

n )

∥un∥
dx ≤ 3ε, for all n ≥ max{n0, n1}.

But this contradicts (4.17) because ε > 0 is arbitrary and the proof is done.

■

Once the sequence (un) ⊂ N satisfying (4.14) is bounded, it follows that there exists

u0 ∈ E such that, up to a subsequence, un ⇀ u0 in E and un → u0 a.e. in R2 as n→ ∞.

Our intention is to prove that u0 is a nonzero critical point of I and to conclude that u0

is a ground state solution. This will be done in the next propositions and lemmas.

Proposition 4.14. The weak limit u0 of the sequence (un) ⊂ N is a critical point of I.

Proof. By the density of C∞
0 (R2) in E, it is enough just to deduce that I ′(u0)η = 0 for

all η ∈ C∞
0 (R2). Then, let η ∈ C∞

0 (R2) and K := supp η.

By (F6), there exist M > 0 and c1 > 0 such that

|f(x, un)||un| ≤ c1F̂ (x, un), for all |u| ≥M.

De�ning Ω1 = K ∩ {x; |un(x)| ≤ M} and Ω2 = K ∩ {x; |un(x)| > M}, by (F1) and

(F2), given α > α0 we obtain C > 0 such that

|f(x,w)| ≤ |w|+ C(eα|w|2 − 1) for all (x,w) ∈ R2 × R2

and hence

|f(x, un(x)) · η(x)| ≤ ∥η∥∞|un(x)|+ C1∥η∥∞(eα|un(x)|2 − 1)

≤ ∥η∥∞[M + C1(e
αM2 − 1)] a.e. in x ∈ Ω1.

Since f(x, un) · η → f(x, u0) · η a.e. in x ∈ Ω1, it follows from the Lebesgue Dominated

Convergence Theorem that

∫
Ω1

[f(x, un)− f(x, u0)] · η → 0 (4.24)
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Now, observe that by (F6), (4.16) and Hölder's inequality, we reach∣∣∣∣∫
Ω2

[f(x, un)− f(x, u0)] · η
∣∣∣∣

≤ ∥η∥∞
M

∫
Ω2

|f(x, un)− f(x, u0)||un|

≤ ∥η∥∞
M

∫
Ω2

[|f(x, un)||un|+ |f(x, u0)||un|]

≤ ∥η∥∞
M

[
c1

∫
R2

F̂ (x, un) + C1

(∫
R2

[e2α|u0|2 − 1]

) 1
2

∥un∥2

]

≤ ∥η∥∞C
M

,

(4.25)

for some C > 0 independent of M . Hence, given δ > 0 we can take M > 0 so that∣∣∣∣∫
Ω2

[f(x, un)− f(x, u0)] · η
∣∣∣∣ < δ, for all n ∈ N. (4.26)

Therefore, by (1.16) and (1.18) we obtain

lim sup
n→∞

∣∣∣∣∫
K

[f(x, un)− f(x, u0)] · η
∣∣∣∣ ≤ lim sup

n→∞

∣∣∣∣∫
Ω1

[f(x, un)− f(x, u0)] · η
∣∣∣∣+ δ = δ

and once δ > 0 is arbitrary, we conclude that

∫
R2

[f(x, un)− f(x, u0)] · η → 0. (4.27)

Since

I ′(un)η − I ′(u0)η = ⟨un − u0, η⟩ −
∫
R2

[f(x, un)− f(x, u0)] · η

and according to (4.27) we reach

I ′(u0)η = lim
n→∞

[
I ′(un)η − ⟨un − u0, η⟩+

∫
R2

[f(x, un)− f(x, u0)] · η
]
= 0,

and the claim is proved.

■

The next lemma have been proved by [20]. The proof is presented in Section 4.3.
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Lemma 4.15. There exists n ∈ N such that

max
s≥0,v∈E−

I(v + swn) <
2π

γ0
. (4.28)

Now, our objective is to prove that the weak limit u0 of the sequence (un) ⊂ N is

nontrivial.

For the next lemma, we will exploit the inequality

st ≤ t2(et
2 − 1) + s(log s)1/2, for t ≥ 0 and s ≥ e1/

3√4. (4.29)

The proof of (4.29) can be seen in [38, Lemma 4.1].

Lemma 4.16. Let (un) ∈ N be a sequence satisfying (4.14). Then, there exists R > 0

such that

lim
n→∞

sup
y∈R2

∫
BR(y)

u2n > 0. (4.30)

Proof. First, by Proposition 4.15, we can choose δ > 0 so that c∗ ∈ [0, 2π/α0 − δ/2).

Assume by contradiction that (4.30) does not occur, that is,

lim
n→∞

sup
y∈R2

∫
BR(y)

u2n = 0 for all R > 0, (4.31)

which implies by Lions' lemma (see [49]) that

un → 0 strongly in Ls(R2) for any s > 2. (4.32)

Now, we claim that ∫
R2

F (x, un) → 0. (4.33)

In view of (F4) and (F5), there exists c1 > 0 such that

F (x, u) ≤M0|f(x, u)| and |f(x, u)||u| ≤ c1F̂ (x, u) for all x ∈ R2 and |u| ≥ R0.
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On the other hand, by (F5), (4.16) and for any K > R0, we deduce that∫
{|un|>K}

F (x, un) ≤M0

∫
{|un|>K}

|f(x, un)|

≤ M0

K

∫
{|un|>K}

|f(x, un)||un| ≤
M0c1
K

∫
R2

F̂ (x, un) ≤
M0C

K
,

where C > 0 does not depend on K. Given any ε > 0, we can take K > 0 large enough

so that ∫
{|un|>K}

F (x, un) ≤ ε. (4.34)

By (1.8), for α > α0 we know that

F (x, un) ≤ ε|un|2 + Cε|un|4(eα|un|2 − 1)

and thus ∫
{|un|≤K}

F (x, un) ≤ ε

∫
{|un|≤K}

|un|2 +
∫
{|un|≤K}

|un|4(eα|un|2 − 1)

≤ εC + 2(eαK
2 − 1)∥un∥44.

(4.35)

Therefore, from this inequality, (4.32) and (4.34), it follows that

lim sup
n→∞

∫
R2

F (x, un) = lim sup
n→∞

[∫
{|un|≤K}

F (x, un) +

∫
{|un|>K}

F (x, un)

]
≤ (1 + C)ε

and convergence (4.33) is proved. Since I(un) → c∗, by convergence (4.33) we reach

lim
n→∞

∫
R2

(|∇un|2 + V (x)u2n)dx = 2c∗. (4.36)

If un → 0 strongly in H1(R2) as n → ∞, then by (4.33) and (4.36) we get that c∗ = 0,

which is not possible. Therefore, we can assume that ∥un∥ ≥ b > 0 for all n ∈ N.

Once ⟨I ′(un), un⟩ = on(1)∥un∥, we have

∥un∥2 =
∫
R2

f(x, un)un + on(1)∥un∥.
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In view of (F0)− (F1), given ε > 0 there exists Cε > 0 such that

|f(x, u)| ≤ Cεe
(α0+ε)|u|2 for all (x, u) ∈ R2 × R2. (4.37)

Setting

un = (4π/α0 − δ)1/2
un

∥un∥
,

where δ > 0 was chosen at the beginning of the proof, we can write

(4π/α0 − δ)1/2∥un∥ ≤
∫
R2

|f(x, un)||un|+ on(1)

=
Cε√
α0

∫
R2

|f(x, un)|
Cε

√
α0|un|+ on(1) =: In.

(4.38)

De�ning

Γn =
{
x ∈ R2 : |f(x, un)|/Cε ≥ e1/

3√4
}

and Λn = R2\Γn,

by using inequality (4.29) with s = |f(x, un)|/Cε and t =
√
α0|un| we can estimate

In ≤ Cε√
α0

∫
Γn

|f(x, un)|
Cε

[
log

(
|f(x, un)|

Cε

)]1/2
+ on(1)

+

∫
Λn

|f(x, un)||un|+ Cε

√
α0

∫
R2

|un|2
(
eα0|un|2 − 1

)
.

Thus, by (4.37) we get

In ≤
√
α0 + ε

α0

∫
Γn

|f(x, un)||un|+ Cε

√
α0

∫
R2

|un|2
(
eα0|un|2 − 1

)
+

∫
Λn

|f(x, un)||un|+ on(1)

≤
√
α0 + ε

α0

∫
R2

|f(x, un)||un|+ I1,n + I2,n + on(1),

(4.39)

where

I1,n := Cε

√
α0

∫
R2

|un|2
(
eα0|un|2 − 1

)
and I2,n :=

∫
Λn

|f(x, un)||un|.

Now, we can take p > 1 close to 1 such that pα0(4π/α0 − δ) < 4π. Since
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∥zn∥2 = 4π/α0 − δ, Lemma 1.12 and (4.32) imply that

I1,n ≤ C1

√
α0

[∫
R2

|un|2q
]1/q [∫

R2

(
epα0|un|2 − 1

)]1/p
≤ C2

√
α0

(4π/α0 − δ)

b2

[∫
R2

|un|2q
]1/q

−→ 0,

where 1/p+ 1/q = 1. Next, according to (F0)− (F2), for any ρ > 0, there exists Cρ,ε > 0

such that

|f(x, un(x))| ≤ ρ|un(x)|+ Cρ,ε|un(x)|2, for all x ∈ Λn. (4.40)

Hence,

I2,n ≤
∫
Λn

(ρ|un|+Cρ,ε|un|2)|un| ≤

[
ρ

(∫
R2

|un|2
)1/2

+ Cρ,ε

(∫
R2

|un|4
)1/2

](∫
R2

|un|2
)1/2

.

Once ∥un∥ is bounded and un → 0 strongly in L4(R2), we reach

lim sup
n→∞

I2,n ≤ Cρ,

for some C > 0 independent of ρ. Thus, we conclude that I1,n = on(1) and I2,n = on(1).

Therefore, (4.38) and (4.39) provide

(4π/α0 − δ)1/2∥un∥ ≤ on(1) +

(
1 +

ε

α0

)1/2 ∫
R2

|f(x, un)||un|. (4.41)

By virtue of (F5), given δ > 0 there exists M > 0 such that |f(x, u)||u| ≤ (β + δ)F̂ (x, u)

for all |u| > M . Hence, by using (4.16) with c = c∗ one has∫
R2

|f(x, un)||un| ≤ (β + δ)

∫
R2

F̂ (x, un) +

∫
{|un|≤M}

|f(x, un)||un|

≤ βc∗ + on(1) +

∫
{|un|≤M}

|f(x, un)||un|.

By virtue of (4.19) and arguing as in (4.35), we can show that

∫
{|un|≤M}

|f(x, un)||un| → 0.
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and consequently ∫
R2

|f(x, un)||un| ≤ βc∗ + on(1).

Hence, since βc∗ ∈ [0, 4π/α0 − δ), according to (4.41) we have

∥un∥ ≤ on(1) +

(
1 +

ε

α0

)1/2(
4π

α0

− δ

)−1/2

βc∗ ≤
(
4π

α0

− δ̂

)1/2

, (4.42)

for some 0 < δ̂ < δ and for n su�ciently large. On the other hand, choose p1 > 1

close to 1 and α > α0 close to α0 satisfying p1α(4π/α0 − δ̂) < 4π, from (4.42) it follows

that p1α∥un∥2 < 4π for n su�ciently large. Once un → 0 strongly in Lq1(R2), where

1/p1 + 1/q1 = 1, by invoking Lemma 1.12 we obtain

∫
R2

(
eα|un|2 − 1

)
|un| ≤ C1

(∫
R2

|un|q1
) 1

q1

[∫
R2

(
ep1α|un|2 − 1

)] 1
p1

≤ C2

(∫
R2

|un|q1
) 1

q1

→ 0.

From this convergence and again by using (1.8), we get

∫
R2

|f(x, un)||un| → 0,

which together with (4.41) implies that un → 0 strongly in H1(R2). Thus, again it follows

from (4.36) that c∗ = 0, which is a contradiction and proof of the lemma is complete.

■

Finalizing Proof of Theorem 4.2. Once (4.30) is valid, we can get a sequence (yn) ⊂ R2

and ν > 0 satisfying ∫
BR(yn)

u2n ≥ ν.

Now, we introduce the following sequence:

ũn(·) := un(·+ yn).

In view of (V ) and (F0), we can see that ũn ∈ N and also satis�es I(ũn) → c∗,

I ′(ũn) → 0 and

lim inf
n→∞

∫
BR0

(0)

ũ2ndx ≥ ν. (4.43)

Observe that, by Lemma 1.21, (ũn) is also bounded in E and, up to a subsequence,
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we assume ũn ⇀ ũ weakly in E for some ũ and ũn → ũ a.e. in R2. From Proposition

4.14 it follows that I ′(ũ) = 0. Moreover, in view of (4.43) we have ũ ̸= 0 and Remark 1.5

guarantee that ũ ∈ N , implying that c∗ ≤ I(ũ). By invoking Fatou's Lemma, we deduce

that

c∗ = lim inf
n→∞

I(ũn) = lim inf
n→∞

[
I(ũn)−

1

2
I ′(ũn)ũn

]
= lim inf

n→∞

∫
R2

[
1

2
f(x, ũn) · ũn − F (x, ũn)

]
≥
∫
R2

[
1

2
f(x, ũ) · ũ− F (x, ũ)

]
= I(ũ)− 1

2
I ′(ũ)ũ

= I(ũ).

Therefore, I(ũ) = c∗, which shows that ũ is a ground state for (2) and the theorem is

proved.

■

4.3 Proof of Lemma 4.15

Here, for completeness, we present the proof made by Chen-Tang [20]. The following

lemma is very important and crucial, which has been proved in [18, 20].

Lemma 4.17. Assume that V ∈ L∞(R2). Then for any µ > 0 there exists two constant

K0 > 0 and Kµ > 0 such that

∥∇u∥∞ + ∥u∥∞ ≤ K0∥u∥2, ∀u ∈ E(0)E = E− (4.44)

and

∥u∥∞ ≤ Kµ∥u∥2, ∀u ∈ E(µ)E. (4.45)

Applying Lemma 4.17, we deduce that

∥∇u∥∞ + ∥v∥∞ ≤ C0∥v∥, ∀v ∈ E−. (4.46)

We may assume that V (0) < 0. By (V ), we can choose a constant ρ ∈ (0, 1/2) ∩
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(0, 4/∥V ∥∞) such that

4πC0(4 + ρ)ρ < 1 and V (x) ≥ 0, |x| ≤ ρ. (4.47)

Now, we consider Moser's sequence of functions

w̃n(x) :=
1√
2π



√
log n, if |x| ≤ ρ/n,

log ρ/|x|√
log n

, if ρ/n ≤ |x| ≤ ρ,

0, if |x| ≥ ρ.

(4.48)

We have

∥w+
n ∥2 − ∥w−

n ∥2 =
∫
R2

(|∇wn|2 + V (x)w2
n)dx ≤

∫
Bρ

|∇wn|2dx = 1. (4.49)

Proof. Assume by contradiction that the lemma is false, that is,

max
s≥0,v∈E−

I(v + swn) ≥
2π

γ0
, n ∈ N. (4.50)

Let vn ∈ E− and sn > 0 such that I(vn+ snwn) = maxs≥0,v∈E− I(v+ swn). Then we have

I(vn + snwn) ≥ 2π/α0 and ⟨I ′(vn + snwn), vn + snwn⟩ = 0,

that is,
1

2
(s2n∥w+

n ∥2 − ∥vn + snw
+
n ∥2)−

∫
R2

F (x, vn + snwn)dx ≥ 2π

α0

(4.51)

and

s2n∥w+
n ∥2 − ∥vn + snw

−
n ∥2 =

∫
R2

f(x, vn + snwn)(vn + snwn)dx. (4.52)

From (4.3), (4.5), (4.46) and (4.48), we have

|⟨w−
n , vn⟩| = |⟨wn, vn⟩| =

∣∣∣∣ ∫
R2

[∇wn∇vn + V (x)wnvn]dx

∣∣∣∣
≤ ∥∇vn∥∞

∫
R2

|∇wn|dx+ ∥V ∥∞∥vn∥∞
∫
R2

|wn|dx

≤
√
2πC0ρ√
log n

∥vn∥. (4.53)
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Hence, it follows from (4.3), (4.5), (4.6), (4.49) and (4.53) that

s2n∥w+
n ∥2 − ∥vn + snw

−
n ∥2 = s2n(∥w+

n ∥2 − ∥w+
n ∥2)− ∥vn∥2 − 2sn⟨vn, w−

n ⟩

≤ s2n − ∥vn∥2 +
2
√
2πC0ρsn√
log n

∥vn∥. (4.54)

Combining (4.51), (4.52) with (4.54), we have

4π

α0

≤ s2n − ∥vn∥2 +
2
√
2πC0ρsn√
log n

∥vn∥ ≤ s2n

(
1 +

2πC2
0ρ

2

log n

)
(4.55)

and

s2n

(
1 +

2πC2
0ρ

2

log n

)
≥ s2n − ∥vn∥2 +

2
√
2πC0ρsn√
log n

∥vn∥

≥
∫
R2

f(x, vn + snwn)(vn + snwn)dx. (4.56)

Moreover, (4.55) implies

s2n ≥ 4π

α0

(
1 +

2πC2
0ρ

2

log n

)
,

∥vn∥
sn

≤ 1 +
2
√
2πC0ρ√
log n

. (4.57)

Let Mn =
1√
2π

√
log n. By (4.46), (4.48) and (4.57), we have

vn(x) + snwn(x) ≥ −∥vn∥∞ + snMn

≥ −C0∥vn∥+ snMn

≥ (1− 2C0/Mn)snMn, x ∈ Bρ/n. (4.58)

By (4.2), we can choose ε > 0 such that

κ− ε

1 + ε
>>

4e16πC
2
0

α0ρ2
. (4.59)

Note that ∫ t

0

s2f(x, s)ds = s2F (x, s)

∣∣∣∣t
0

− 2

∫ t

0

sF (x, s)ds
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Then,

lim inf
|t|→∞

t2F (x, t)

eα0t2
≥ lim inf

|t|→∞

∫ t

0
s2f(x, s)ds

eα0t2
= lim inf

|t|→∞

tf(x, t)

2α0

eα0t2 =
κ

2α0

. (4.60)

It follows from (4.2) and (4.60) that there exists tε > 0 such that

tf(x, t) ≥ (κ− ε)eα0t2 , t2F (x, t) ≥ κ− ε

2α0

eα0t2 , ∀x ∈ R2, |t| ≥ tε. (4.61)

From now on, in the sequel, all inequalities hold for large n ∈ N. By (4.56), (4.58) and

(4.61), we have

s2n

(
1 +

2πC2
0ρ

2

log n

)
≥
∫
R2

f(x, vn + snwn)(vn + snwn)dx

≥ (κ− ε)

∫
Bρ/n

eα0(vn+snwn)2

≥ π(κ− ε)ρ2

n2
eα0s2nM

2
n(1−2C0/Mn)2

≥ π(κ− ε)ρ2

n2
exp

[
α0s

2
n log n

2π

(
1− 4C0

Mn

)]
≥ π(κ− ε)ρ2 exp

{
2 log n

[
α0s

2
n

4π

(
1− 4C0

Mn

)
− 1

]}
,

which implies that there exists a constant

2 log n

[
α0s

2
n

4π

(
1− 4C0

Mn

)
− 1

]
≤ A,

that is,

s2n ≤ 4π

α0

(
1− 4C0

Mn

)−1(
1 +

A

log n

)
. (4.62)
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Hence, from (4.10), (4.48), (4.54), (4.58) and (4.61), we obtain

I(vn + snwn)

=
1

2
(s2n∥w+

n ∥2 − ∥vn + snw
−
n ∥2 −

∫
R2

F (x, vn + snwn)dx

≤ s2n
2

− 1

2
∥vn∥2 +

√
2πC0ρsn√
log n

∥vn∥ −
∫
R2

F (x, vn + snwn)dx

≤ s2n
2

− 1

2
∥vn∥2 +

√
2πC0ρsn√
log n

∥vn∥ −
κ− ε

2α0

∫
Bρ/n

eα0(vn+snwn)2

(vn + snwn)2

≤ s2n
2

− 1

2
∥vn∥2 +

√
2πC0ρsn√
log n

∥vn∥ −
(κ− ε)πρ2eα0(−C0∥vn∥+snMn)2

2α0n2(−C0∥vn∥+ snMn)2
. (4.63)

Both (4.57) and (4.62) show that 4π
α0
(1− ε) ≤ s2n ≤ 4π

α0
(1 + ε).

There are three cases to distinguish.

Case i) 4π
α0
(1−ε) ≤ s2n ≤ 4π

α0
. It follows from (4.55) that ∥vn∥ ≤ 2πC0snMn/ log n. Then

(4.63) leads to

I(vn + snwn)

≤ s2n
2

− 1

2
∥vn∥2 +

√
2πC0ρsn√
log n

∥vn∥ −
(κ− ε)πρ2eα0(−C0∥vn∥+snMn)2

2α0n2(−C0∥vn∥+ snMn)2

≤ s2n
2

(
1 +

2πC2
0ρ

2

log n

)
− (κ− ε)ρ2eα0s2nM

2
n(1−2C0∥vn∥/snMn)

8n2(1 + ε)M2
n

≤ s2n
2

(
1 +

2πC2
0ρ

2

log n

)
− (κ− ε)πρ2e

α0s
2
n

2π
(logn−4πC2

0)

4n2(1 + ε)M2
n

(4.64)

Let us de�ne a function φn(s) as follows:

φn(s) =
s2

2

(
1 +

2πC2
0ρ

2

log n

)
− (κ− ε)πρ2e

α0s
2
n

2π
(logn−4πC2

0)

4n2(1 + ε)M2
n

Set ŝn > 0 such that φ′
n(ŝn) = 0. Then

ŝn =
4π

α0

[
1 +

8πC2
0 + log 4(1 + ε)− log(α0(κ− ε)ρ2)

2(log n− 4πC2
0)

]
+O

(
1

log2 n

)
(4.65)

and

φn(sn) ≤ φn(ŝn) =
1 +

2πC2
0ρ

2

logn

2
ŝ2n −

π
(
1 +

2πC2
0ρ

2

logn

)
α0(log n− 4πC2

0)
. (4.66)
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Using (4.65), we have

(
1 +

2πC2
0ρ

2

log n

)
ŝ2n

=
4π

α0

(
1 +

2πC2
0ρ

2

log n

)[
1 +

8πC2
0 + log 4(1 + ε)− log(α0(κ− ε)ρ2)

2(log n− 4πC2
0)

]
+O

(
1

log2 n

)
≤ 4π

α0

[
1 +

2πC2
0ρ

2

log n
+

8πC2
0 + log 4(1 + ε)− log(α0(κ− ε)ρ2)

2(log n− 4πC2
0)

]
+O

(
1

log2 n

)
(4.67)

Hence, from (4.47), (4.59), (4.64), (4.66) and (4.67), we derive

I(vn + snwn) ≤ φn(sn)

=
1 +

2πC2
0ρ

2

logn

2
ŝ2n −

π
(
1 +

2πC2
0ρ

2

logn

)
α0(log n− 4πC2

0)

≤ 4π

α0

[
1

2
− 1− 4πC2

0ρ
2

4 log n
+

8πC2
0 + log 4(1 + ε)− log(α0(κ− ε)ρ2)

4(log n− 4πC2
0)

]
+O

(
1

log2 n

)
≤ 4π

α0

[
1

2
− 1− 4πC2

0ρ
2

4 log n

]
+O

(
1

log2 n

)
.

This contradicts with (4.50) due to (4.47).

Case ii) 4π
α0
(1 + 2πC0∥vn∥/snMn) ≤ s2n ≤ 4π

α0
(1 + ε).

Then (4.55), (4.56), (4.58), (4.59), (4.61) and (4.62) yield

4π

α0

(1 + ε) ≥ s2n

(
1 +

2πC2
0ρ

2

log n

)
≥
∫
R2

f(x, vn + snwn)(vn + snwn)dx

≥ (κ− ε)

∫
Bρ/n

eα0(vn+snwn)2dx

≥ π(κ− ε)ρ2

n2
eα0(−C0∥vn∥+snMn)2

≥ π(κ− ε)ρ2

n2
eα0s2nM

2
n(1−2C0∥vn∥/snMn)

≥ π(κ− ε)ρ2

n2
e2 logn(1−C2

0∥vn∥2/s2nM2
n)

≥ π(κ− ε)ρ2e−16πC2
0∥vn∥2/s2n

≥ 4π

α0

(1 + ε)e15πC
2
0 ,
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which yields a contradiction.

Case iii) 4π
α0

≤ s2n ≤ 4π
α0
(1 + 2C0∥vn∥/snMn). Then it follows from (4.55) that

∥vn∥2 −
2
√
2πC0ρsn
log n

∥vn∥ ≤ 8πC0∥vn∥
α0snMn

=
8π

√
2πC0

α0sn
√
log n

∥vn∥,

which, together with (4.57) and (4.62), implies that

∥vn∥
sn

≤ 2
√
2πC0(1 + ρ)√

log n
. (4.68)

It follows from (4.63) and (4.68) that

I(vn + snwn)

≤ s2n
2

− 1

2
∥vn∥2 +

√
2πC0ρsn√
log n

∥vn∥ −
(κ− ε)πρ2eα0(−C0∥vn∥+snMn)2

2α0n2(−C0∥vn∥+ snMn)2

≤ s2n
2

(
1 +

2πC2
0ρ

2

log n

)
− (κ− ε)ρ2eα0(−C0∥vn∥+snMn)2

8n2(1 + ε)M2
n

≤ s2n
2

(
1 +

2πC2
0ρ

2

log n

)
− (κ− ε)ρ2eα0s2nM

2
n(1−2C0∥vn∥/snMn)

8n2(1 + ε)M2
n

≤ s2n
2

(
1 +

2πC2
0ρ

2

log n

)
− (κ− ε)πρ2e

α0s
2
n

2π
[logn−8π(1+ρ)C2

0 ]

4n2(1 + ε) log n
. (4.69)

Setting

ψn(s) =
s2

2

(
1 +

2πC2
0ρ

2

log n

)
− (κ− ε)πρ2e

α0s
2
n

2π
[logn−8π(1+ρ)C2

0 ]

4n2(1 + ε) log n
.

Let s̃n > 0 such that ψ′
n(s̃n) = 0. Then

s̃2n =
4π

α0

[
1 +

16πC2
0(1 + ρ) + log 4(1 + ε)− log(α0(κ− ε)ρ2)

2[log n− 8π(1 + ρ)C2
0 ]

]
+O

(
1

log2 n

)
(4.70)

and

ψn(s) = ψn(s̃n) =
1 +

2πC2
0ρ

2

logn

2
s̃2n −

π
(
1 +

2πC2
0ρ

2

logn

)
α0[log n− 8π(1 + ρ)C2

0 ]
. (4.71)
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Combining (4.70) with (4.71), we have

(
1 +

2πC2
0ρ

2

log n

)
s̃2n

=
4π

α0

(
1 +

2πC2
0ρ

2

log n

)[
1 +

16πC2
0(1 + ρ) + log 4(1 + ε)− log(α0(κ− ε)ρ2)

2[log n− 8π(1 + ρ)C2
0 ]

]
(4.72)

+O

(
1

log2 n

)
≤ 4π

α0

{
1 +

2πC2
0ρ

2

log n
+

16πC2
0(1 + ρ) + log 4(1 + ε)− log(α0(κ− ε)ρ2)

2[log n− 8π(1 + ρ)C2
0 ]

}
(4.73)

+O

(
1

log2 n

)
(4.74)

Hence, from (4.47), (4.71) and (4.72), we deduce

ψn(s) ≤
1 +

2πC2
0ρ

2

logn

2
s̃2n −

π
(
1 +

2πC2
0ρ

2

logn

)
α0[log n− 8π(1 + ρ)C2

0 ]

≤ 4π

α0

{
1

2
− 1− 4πC2

0ρ
2

4 log n
+

16πC2
0(1 + ρ) + log 4(1 + ε)− log(α0(κ− ε)ρ2)

4[log n− 8π(1 + ρ)C2
0 ]

}
+O

(
1

log2 n

)
≤ 4π

α0

[
1

2
− 1− 4πC2

0ρ(4 + ρ)

4 log n

]
+O

(
1

log2 n

)

It follows from (4.69) that

I(vn + snwn) ≤ ψn(sn) ≤
4π

α0

[
1

2
− 1− 4πC2

0ρ(4 + ρ)

4 log n

]
+O

(
1

log2 n

)
.

and this contradicts (4.50) in view of (4.47). The above three cases show that there exists

ñ ∈ N such that (4.28) holds and the proof is done.
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