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Abstract

In this work, we study questions related to the existence of ground state and nontrivial
solution for some classes of strongly indefinite problems with exponential growth in the
plane. Firstly, we study Hamiltonian systems, which have been widely addressed in
the last years in the mathematical study of standing wave solutions in nonlinear optics.
Secondly, we deal with a class of periodic Schrédinger equations involving exponential
critical growth, in which we do not use the classic Ambrosetti-Rabinowitz condition. In
order to obtain our results, we use variational methods, namely, a reduction method and

linking theorems.

Keywords:  Hamiltonian systems, Schrodinger equations, FExponential growth,

Trudinger-Moser inequality
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Resumo

Neste trabalho, estudamos questoes relacionadas a existéncia de solugoes nao-triviais
e de energia minima para algumas classes de problemas fortemente indefinidos com
crescimento exponencial no plano. Primeiramente, estudamos sistemas Hamiltonianos,
os quais tem sido amplamente abordados nos tltimos anos no estudo de solugoes do tipo
ondas estacionérias em Optica nao-linear. Em seguida, analisamos uma classe de equacoes
de Schrodinger periddicas envolvendo crescimento critico exponencial e sem considerar a
condigao classica de Ambrosetti-Rabinowitz. A fim de obter nossos resultados, usamos

métodos variacionais, mais especificamente, um método de reducao e teoremas de linking.

Palavras-chave: Sistemas Hamiltonianos, Equacdes de Schrodinger, Crescimento

Exponential, Desigualdade de Trudinger-Moser
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Introduction

In this work, we study the existence of solutions for two classes of strongly indefinite

problems. Firstly, we deal with classes of Hamiltonian systems in the plane, namely

—Au+V(z)u = Hy(z,u,v), z€R? )
1
—Av+V(2)v = Hy(v,u,v), z¢€R?
where V € C(R?(0,00)), H € C'(R? x R* R), H,, H, denote the partial derivatives of
H with respect to the variables u and v, respectively, z = (u,v) and H, = (H,, H,).

Secondly, we study the existence of solutions for the following Schrédinger equation:

—Au+V(2)u= f(x,u), zcR? )

u € H'(R?), 2
where V € C(R?% R) and f € C(R? xR, R). Throughout the work, we will have additional
hypotheses about the functions V', H and f.

Hamiltonian systems have been widely addressed in the last years, for instance, in
the mathematical study of standing wave solutions and in nonlinear optics (see [21]), in
models of population dynamics (see [51]) and in the study of Bose-Einstein condensates,
see [19], etc.

In view of its applications, many researchers have investigated the existence of solution
for systems of type (1). In bounded domains of RY  with N > 3, see for example
12, 22], 23, [40] and the papers |10} 15 33} 65] in the whole space. We can cite the work
[14] for a broad survey about Hamiltonian systems.

Since the energy functional associated to is strongly indefinite and there is a lack
of compactness in unbounded domains, various techniques and methods are employed to

treat with those problems, for example, the Strauss’ lemma in the radially symmetric



function space [31], the concentration compactness principle of Lions [49], the dual
variational method [56], the Orlicz space approach [27] and a reduction method, see [13].

In the particular situation when H,(z,u,v) = |[v|P"'v, (p > 1) and H,(z,u,v) =
|u|?"tu, (¢ > 1), all the results mentioned above impose that the exponents p and ¢ must

be below the critical hyperbola, that is,

1 N 1 - N
p+1 qg+1° N+2

This fact is a consequence from the Pohozaev identity [63] and Sobolev embedding
theorem. In dimension two, we can get more information on the growth range of the
exponents p and ¢, once we know that H'(R?) — L*(R?) for all s € [2,00). Nonetheless,
H'(R?)  L*°(R?). In this situation, the maximal growth which allows us to treat
variationally in H'(R?) is motivated by the Trudinger-Moser inequality. When € is a
bounded domain of R?, this inequality asserts that e*** e LY(Q), for all @ > 0 and

u € H} (). Moreover, it is known that

sup / e < Cu(Q2), forall a<dn,

weHL(Q) : || Vull2<1 JQ
for some constant C' = C'(2) > 0, where p(€2) denotes the Lebesgue measure of Q. The
above inequality is optimal in the following sense: for any growth e’ with o > 47, the
correspondent supremum is infinite (see |50} [62]). For a version of the Trudinger-Moser
inequality in H'(R?), see Lemma [L.11]

Inspired by (), de Figueiredo et al. [26] introduced the notion of subcritical and critical
exponential growth. More precisely, a function f : R — R has subcritical exponential
growth at +oo if for all o > 0 it holds

lim f(s)

2
s—+oo s

=0

and f(s) has critical exponential growth at +oo if there exists g > 0 such that

(s) 0, for all o > ay,
lim > =
s—+oo %S

400, forall o< ap.

Currently, many researchers have addressed elliptic systems involving exponential



growth. For example, in [29], the authors obtained results on the existence of solution for
semilinear equations and systems. Moreover, de Figueiredo et al. [28] have studied the

existence of nontrivial weak solution for Hamiltonian systems of the form

—Au=g(v), in Q,
—Av = f(u), in €,
u=v=0, on 01,

where 0 C R? is a bounded domain and the functions f,g : R — R have subcritical or
critical exponential growth.
In [38], the authors established the existence of nontrivial solution for Hamiltonian

systems of the form

—Au+V(z)u = g(x,v), xR )
3
~Av+V(2)v = f(z,u), x¢cR?

when the potential V' (z) is neither bounded away from zero, nor bounded from above.
The nonlinear terms f(z,u) and g(z,v) have subcritical or critical exponential growth

and it was imposed that the potential V' (z) satisfies the assumption

lim vy (R?*\ Bg) = +oo, for some s € [2,00),
R—+o00

where v, is defined by

vs(Q) = inf /Q(|Vu|2 +V(z)u?), foranopen QCR?* and wv,(0) = +oc.

uEH&(Q) ulls=1

Generally, the conditions imposed on the potential V' (x) are in order to overcome the loss
of compactness of the Sobolev embedding H'(R?) — L*(R?) for s € [2,00).

In the paper [32], the authors studied the Hamiltonian system

~Au+u=g(), =€R?
~Av+uv=f(u), z€eR%
where f,g : R — R have critical exponential growth. By using a suitable variational

framework based on the generalized Nehari manifold method and the concentration

compactness principle of Lions, they established the existence of a ground state solution.



More recently, in the paper [52], the authors consider system with V(z), f(z,u) and
g(x,v) periodic in x1,z5 and f,g with critical exponential growth. They established

similar results to ones obtained in [37] without the Ambrosetti-Rabinowitz condition.

In Chapter 1, we study the existence of ground state solutions for the Hamiltonian
system . We consider the case where V and H are periodic or asymptotically periodic.

Our main assumption on V is the following:

(Vo) V € C(R%R), V(z) = V(x1,x2) is positive in R? and 1-periodic in the variables

Ty, To.
With respect to the function H, we assume the following conditions:
(Hy) H € C'(R? x R%,R) and H(zy, s, 2) is 1-periodic in the variables z;, xs;

(Hy) for any a > 0, it holds

=0, uniformly in z € R
|z]—o0

(Hy) H,(x,z) =o0(|z]) as |z| = 0, uniformly in z € R?;
(Hs) H(x,2)/|z|* = +00 as |z| — oo, uniformly in x € R?;

(H,) there exists g : R? x R, — [0, 00) increasing in the second variable such that

H.(z,2) = g(z,|2])z, foreach (z,2)€ R*x R%

Our first result is stated as follows.

Theorem 0.1. Suppose that conditions (Vo) and (Hy) — (Hy) are satisfied. Then, system

possesses a ground state solution.

For the nonperiodic case, that is, when the functions V' and H are not necessarily

periodic in x1, xo, the function

~

1
H(z,z):= §Hz(a:,z) -z — H(z,2), for (x,z) € R*xR?



will play an important role. In order to make precise the meaning of being asymptotically

periodic, we are going to introduce the class of functions
Fi={pe CR)NL®R?: forany ¢ >0, p({x€R*:|p(z)|>¢c}) < oo},

where 1(A) denotes the Lebesgue measure of a mensurable subset A C R% Now, we

require the following hypotheses:

(V1) There exist a constant a; > 0 and a function V., € C(R?* R), 1-periodic in x1, zs,
such that V,, — V € F and

Veo(z) > V() > ay, forall =€ R?

(Hs) There exists ro > 0 such that

inf{ﬁ(x,z) 2 €R? |z| > 71} =:q(r) >0, forany r € (0,70);

H,(z, : :
(Hg) limsup M < +o00, uniformly in z € R?
|z|—00 H(LU, Z)

(H7) There exists a function h : R? — R with subcritical exponential growth, ¢ € F,
Ry > 0 and H,, € C*(R? x R* R) such that
(1) H. satisfies (Hg) — (Hy);
(i) H(z,z) > Hy(x,2) for each (z,2) € R? x R
(iil) |H.(x,2) — Hoo (1, 2)| < @(x)h(2) for each 2z € R? and |z| > Ry.
Condition (Hg) is technical and is important to show that Cerami sequences associated

to the energy functional are bounded.

The main theorem in the asymptotically period case is the following:

Theorem 0.2. Assume conditions (V1), (Hs) and (Hs) — (H7). Then, system has a

nonzero solution.

For our approach, it was necessary to prove a vector version (see Lemma [1.12]) for
the Trudinger-Moser inequality presented in Lemma We emphasize that all the

works mentioned above, involving Hamiltonian systems in dimension two and exponential

5



growth, only consider nonlinear terms of the form f(x,u) and g(z,v). The hypotheses
of exponential growth are required separately on f and g. As far as the authors know,
this the first work that treats Hamiltonian systems in the plane, with nonlinear terms
having exponential growth and depending on w and v at the same time. Moreover, we
also consider the case that V' and H are asymptotically periodic, which has not been yet
studied in the literature for this type of systems in the plane involving exponential growth,
even in the case where the system is of the form . Thereby, we complemented all the
works involving Hamiltonian systems in dimension two. This chapter was published in

57].

In Chapter 2, we continue to study the existence of ground state solutions for System
with V' satisfying condition (V) from Chapter 1, but now we assume that the
nonlinearity has an exponential growth of the critical type.

With respect to the function H, we assume the following conditions:
(Hy) H € C'(R? x R% R) and H(zy, s, 2) is 1-periodic in the variables z;, x;

(Hy) (Critical exponential growth) there exists oy > 0 such that

|H.(z,2)] 0, if a > ay,

+o00, if a < ay,

uniformly in z € R?;
(Hy) H,(x,z) = o0(|z]) as |z| = 0, uniformly in z € R?;

(Hs3) there exists g : R? x R, — [0, 00) increasing in the second variable such that

H.(z,2) = g(z,|2])z, foreach (z,2)€ R*x R

(H,) there exists Ry, My > 0 such that

0< H(x,2) < My|H,(z,2)], forall z€R? and |z| > Ry;



H
(Hs) limsup M =: B < 400, uniformly in z € R?, where
|z|—00 H(SL’, Z)

~ 1
H(z,z) = QHZ(x,z) -z —H(z,2), for (z,2)€R*xR%

Denoting [|V||eo = max,cgz V(x), the main result of this chapter is stated as follows:

Theorem 0.3. Suppose that conditions (Vo) and (Ho) — (Hs) are satisfied. In addition,

we assume that there exists p > 2 such that
H(z,2) > No|2|P, for all (x,z) € R* x R?,

where

2
2

8(p —2)"7" (Ba) "2 (4 + ||V ]|o)
p

Ao >

if 6>0 and M >0 if [5=0.

[NI4S)

Then, system has a ground state solution.

This chapter is a continuation of the work in Chapter 1. As said before, the existence
of nontrivial solutions in the critical growth range in R? has been studied before (see
[32, [42]). However, as far as we know, these works usually require the hypothesis of critical
exponential growth separately on f and g. The main novelty here is that H depends on
u and v simultaneously and does not satisfy the Ambrosetti-Rabinowitz condition. In
our arguments, we continue to use the reduction method by Szulkin-Weth [59, [60], which
allows us to prove that minimizers of the energy functional, on the generalized Nehari
manifold, are critical points of the unconstrained functional. The new hypothesis (Hs)

and (2.1) will be crucial to our analysis of the Palais-Smale sequences.

Chapter 8 is devoted to the study of the existence of nontrivial solutions for the

following class of Hamiltonian systems:

—Au+V(z)u=Q(z)g(v), xR n
4
~Av+ V() =Q(z)f(u), z¢&R?
where V and @ decay to zero at infinity as (1 + |#|%)~! with a € (0,2), and (1 + |z|?)~?

with 8 € [2,400), respectively.



In the paper [58], motivated by a version of the Trudinger-Moser inequality in R? due
to Cao [16] (see Lemma , the author has considered the existence of solution for

singular Hamiltonian systems of the form

—Au+V(x)u = %, r € R?
x

—Av+V(z)v = #, z € R?,
€T a

where a € [0,2), V : R? — R is a positive continuous potential, which is bounded away
from zero and can be “large” at infinity. Precisely, it was assumed that 1/V € L'(R?) and
the functions f, g : R — R have subcritical or critical exponential growth.

In [3], Albuquerque et al. proved that the system

—Au+ V(jz))u = Q(le)g(v), =€ R?,
—Av+ V([z)o = Q) f(u), =€ R,

has a nontrivial solution, by supposing appropriate conditions on the radial potentials
V(r) and Q(r) at the origin and at infinity. Under these conditions, they used a version
of the Trudinger-Moser inequality and certain compact embedding in weighted Lebesque
spaces.

In [44], the authors were interested in studying the system

—Au+V(z)u=gv), z€R?
—Av+V(x)v = f(u), x€R?

for the critical exponential case, when the potential V' is a radially symmetric positive
function and can vanish at infinity.

We also refer to |17, 43], 5] for some related papers in the context of Lorentz—Sobolev
spaces and [46, [64] where the authors also considered the existence and asymptotic
behavior of solutions for Hamiltonian systems and planar elliptic equations.

In this chapter, we assume that for some o and S in the range

a€(0,2) and p€[2,00) (5)

the following decay conditions hold:



(V) V € C(R?), there exist a,a > 0 such that

a

TFjap = Vi(x),
and V(z) ~ |z|7 as |z| — oo
(Q) Q € C(R?), there exist 8,b > 0 such that
0< Q) < "0
1+ |z|?

and Q(z) ~ |z|7" as |z| — oo;
For the functions f and g we assume the following:
(ho) f,g:R xR — R are continuous;
(h1) f(s) =o(|s|) and g(s) = o(]s|) at the origin;

(hs) there exists # > 0 such that

0<OF(s) = Q/Sf(t)tdt < sf(s)
for all s € (0, 00);
0 < 6G(s —6/ t)tdt < sg(s)

(h3) there exists constants My > 0 and s; > 0 such that

0<OF(s) < Myf(s)
for all s € [s1,00).

0 < 0G(s) < Myg(s)

We denote by LP (R?) the weighted LP-space consisting of all measurable functions

u: R* — R satisfying [, w(z)ulPdz < co, and introduce the weighted Sobolev space
Hy(R?) :={u € L} (R?) : |[Vu| € L*(R?)},

with norm |Jul|? := [|Vul|3 + [e V(z)u?.
First, we prove a Trudinger-Moser-type inequality with an alternative proof to the

ones presented in [4], B35l B7].



Theorem 0.4. Suppose that (V) and (Q) hold with o and 3 satisfying (). For any~y >0
and u € H{:(R?), we have

QL) —1) € L'(R?),

Moreover, for any 0 < v < 4,

sup (z)(e™ = 1)dz < oo.
ueHl (R2),|u| <1 JR2
Moreover, we can prove that the embedding Hy,(R?) — Lg)(R?), with o and § in the
range (f]), is compact for any p € 2, 00). Equipped with this and inspired by [28] 138], our

first main result is the subcritical case:

Theorem 0.5 (Subcritical case). Suppose f(s) has subcritical or critical exponential
growth, g(s) has subcritical exponential growth, (V), (Q) and (hy) — (hs) are satisfied.
Then possesses a nontrivial weak solution (u,v) € Hi,(R?) x H,(R?).

For the next result, we assume that there exists 79 > 0 such that the functions f,g

satisfy
coesf(s) L Lsg(s)
l|18r‘n_>10réf o lf?—:oréf(ﬂ? =: fp > M, (6)
461/27"2‘/“‘“"”
where M := inf —————— Vjpax, := maxV (z) > 0 and Quin, := minQ(z) > 0.

>0 Y12 Qumin |z|<r jw|<r

Theorem 0.6 (Critical case). Suppose f(s) and g(s) has critical exponential growth,
(V), (@), (ho) — (hs) and (6) are satisfied. Then () possesses a nontrivial weak solution
(u,v) € H{-(R?) x HL(R?).

The vanishing behavior of the potential V' makes exponential integrability impossible
unless we introduce some suitable weight in the target space, that is, for a certain weight
@ we need to prove that Hy(R?) — L{(R?) for at least some p > 1. Exploiting the
behavior of the functions V' and @), we have showed a Trudinger-Moser-type inequality
with an distinct proof to the ones presented in [35] 37], in which we do not use Besicovitch’s
Covering Lemma. We were inspired by the result presented in [4], where Albuquerque
et al. have shown such Trudinger-Moser-type inequality for v > 0 in the range (0, )
where v, € (0,47m). Another problem when dealing with this system is that, since the

associated energy functional is strongly indefinite and defined in an infinite-dimensional

10



space, no suitable linking theorem is available. Inspired by the works |28, B8, 58], we
use a Galerkin method, that is, we approximate problem with a sequence of finite
dimensional problems. Such approximation-type argument was first used by Rabinowitz
[54]. Moreover, we believe that the originality of this chapter comes from the the fact
that potentials V' and ) are not radially symmetric and in the use of hypothesis (@ to

estimate the minimax level.

In Chapter 4, we study the existence of ground state solutions for the following

Schrédinger equation:

— Au+V(z)u = f(z,u), x€cR?
(2)
u € H'(R?),
where V' is a 1-periodic function with respect to x, 0 lies in the gap of the spectrum of
—A 4+ V and the nonlinear term f(z, s) has critical exponential growth.
When f(z,u) = f(u), do O-Ruf [36] show the existence of a nontrivial solution,

assuming the Ambrosetti-Rabinowitz condition, that is, there exists ;> 0 such that

0 < uF(s) ::u/osf(t)dt <sf(s), seR.

Their approach is to prove that for each k£ € N sufficiently large, there is a nontrivial
solution wu; which is k-periodic in x; and x,. The existence of u,; follows from a version
of an generalized mountain-pass theorem without the Palais-Smale condition. Then, they
prove that, up to a subsequence, the limit of u; as k — oo converges to a solution w.

Also using an approximation argument and the Ambrosetti-Rabinowitz condition,
Chen-Tang [20] are able to find a nontrivial solution for (2)).

In [60], the authors study the equation Au + V(z)u = f(z,u) in RN, where f is
a superlinear, subcritical nonlinearity, and V' and f are periodic in x. They obtained
a ground state solution using a method that consists of the reduction of the indefinite
variational problem to a definite one.

Using a similar approach, Alves et al. [7] study the problem

—Au+ (V(z) = W(a))u = f(z,u), xcRY

u e HY(RY),

11



where N > 2, V,W : RY — R are continuous functions verifying some technical conditions
and f has critical exponential growth. They proved that the problem has a ground state

solution, if the condition

t
Plat)i= [ flas)ds = N, a0>2
0
has A > 0 sufficiently large.

In this chapter, our main assumption on V' is the following:

(V) V(z) =V (x1, z2) is continuous, 1-periodic in the variables x1, xo and 0 & o(—A+V),
the spectrum of o(—A + V).

With respect to the function f, we assume the following conditions:
(Fy) feCYR? x R2,R) and f(z1, o, u) is 1-periodic in the variables xy, x;

(F1) (Critical exponential growth) there exists ap > 0 such that

- |f(, u)| _ 0, if a > ay,
|u|—o00 6a|u\2 .
400, if a < ap,

uniformly in z € R?;
(Fy) f(z,u) = o(u) as |u| — 0, uniformly in x € R?
(F3) f(x,t)/|t] is stricly increasing in (—oo,0) and (0, c0) for every x € R?;
(Fy) there exist Ry, My > 0 such that

0 < F(z,u) < My|f(x,u)], forall x €R® and |u|> Ry;

Jul| f (2, w))|

(F5) limsup ———— =: 8 < 2, uniformly in z € R? where

~ 1
F(z,u) = 5f($,u)u — F(z,u), for (z,u) €R? xR

12



For the main result of this chapter, we need the following hypothesis, presented by
Chen-Tang in [20]. We assume that there exists vy > 0 such that the function f satisfy

lim inf M

2
|s|s0c0 €705

=: By > M, uniformly on z € R?, (7)

4
where M =: —2616”03 and p > 0 satisfies 47(4 + p)pCZ < 1 and Cy > 0 is an embedding
Yop

constant in (4.46]).

Theorem 0.7. Suppose that conditions (V') and (Fy) — (F5) are satisfied. In addition,
we assume that there exists vy > 0 such that the function f satisfy @ Then, equation
has a ground state solution.

When (V) holds, the associated functional on H'(R?) for problem is strongly
indefinite near the origin. Moreover, by the fact that f has a critical exponential growth,
we have a lack of compactness of the embedding H!(R?) — LP(R?) and it becomes difficult
to apply the standard methods to prove that J(u) = [i, F(z,u) is weakly sequentially
continuous on H'(R?), and thus use a linking theorem. We try to avoid this problem
by applying the reduction method by Szulkin-Weth [59]. The main contribuition in this
chapter is that the authors are not aware of any work that proves the existence of ground
state solutions for this class of problems and do not use the classic Ambrosseti-Rabinowitz

condition.

In order not to resort to the Imtroduction and to make the chapters independent, we
will state again, in each chapter, the main results, as well as the hypotheses about the

potentials and nonlinearities.
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Chapter 1

Hamiltonian systems involving

subcritical exponential growth in R?

The main objective of this chapter is to study ground state solution for the class of

Hamiltonian systems

—Au+V(z)u = H,(z,u,v), x€R? a
1
—Av+V(z)v = Hy(z,u,v), z€R?

where V € C(R?,(0,00)), H € C*(R? x R% R), H,, H, denote the partial derivatives of

H with respect to the variables u and v, respectively, z = (u,v) and H, = (H,, H,).
Here, |y| will denote the Euclidian norm of y € R? or the absolute value of y € R.

The dot - will denote the canonical inner product in R%. In our first result, we consider

the periodic problem. In this case, our main assumption on V' is the following:

(Vo) V € C(R%R), V() = V(x1,19) is positive in R? and 1-periodic in the variables

T1,T9.

With respect to the function H, we assume the following conditions:
(Hy) H € C'(R? x R% R) and H(zy, 9, 2) is 1-periodic in the variables zy, x;

(H) for any a > 0, it holds

=0, uniformly in z € R?%

14



(Hy) H.(z,z) =o0(]z|) as |z| — 0, uniformly in z € R
(Hs) H(x,2)/|z|* = +00 as |z| — oo, uniformly in x € R?

(H,) there exists g : R? x R, — [0, 00) increasing in the second variable such that

H,(z,2) = g(z,|2|)z, foreach (z,z)¢c R*x R%

The condition (H;) is motivated by a version of the Trudinger-Moser type inequality,

‘ o

see Lemma m Note that if H(z,z) behaves as e’ o € (0,2), for || large,
then conditions (H;) and (H3) are satisfied. The superlinear condition (Hj) is more
general than the well-known Ambrosetti-Rabinowitz condition introduced in the paper
[2]. Hypothesis (H,) is a kind of monotonicity condition, which is generally used in the
Nehari approach.

The weak solutions of system will be seen as critical points of the energy functional

I(z) = /R2(VU Vo + V(z)uv)de — | H(z,z)dx

RQ

defined on a convenient Banach space E, which will be introduced later. The function

wy € E is a ground state solution of whenever
I(wp) = inf{I(w) : w € E\{0} is a weak solution of (I)}.

Hence, our first result is stated as follows.

Theorem 1.1. Suppose that conditions (V) and (Hy) — (Hy) are satisfied. Then, system

possesses a ground state solution.

Since the functional [ is strongly indefinite, for the proof of this theorem, we adapt
some ideas contained in [33] and we have applied the treatment developed in Szulkin and
Weth [59], which is based on a reduction method. For this, we had to get a version of the
Trundinger-Moser inequality for the working space E defined in Section 2.

For the nonperiodic case, that is, when the functions V' and H are not necessarily

periodic in x1, xo, the function

~ 1
H(z,z):= §Hz(sc,z) -z —H(x,2), for (z,2) € R* x R?

15



will play an important role. In order to make precise the meaning of being asymptotically

periodic, we are going to introduce the class of functions
Fi={pe CR)NL®R?: forany ¢ >0, p({x€R*:|p(z)|>¢c}) < oo},

where 1(A) denotes the Lebesgue measure of a mensurable subset A C R% Now, we

require the following hypotheses:

(V1) There exist a constant a; > 0 and a function V., € C(R? R), 1-periodic in w1, zs,

such that Vo — V € F and

Veo(z) > V(2) > ay, forall x € R

(Hs) There exists o > 0 such that

inf{f[(:c,z) cx e R?, |z| >r} =:q(r) >0, forany r e (0,ry);

H,(z, : :
(Hg) limsup M < +o00, uniformly in z € R?
|z|—o00 H(LU, Z)

(H7) There exists a function h : R* — R with subcritical exponential growth, ¢ € F,
Ry > 0 and H,, € C'(R? x R? R) such that
(1) H. satisfies (Hg) — (Hy);
(i) H(x,z) > Hy(z,z) for each (x,2) € R? x R?;

(iil) |H.(x,2) — Hoo (1, 2)| < @(x)h(2) for each 2 € R? and |z| > Ry.

Condition (Hg) is technical and is important to show that Cerami sequences associated
to the energy functional are bounded.

The main theorem in the asymptotically period case is the following:

Theorem 1.2. Assume conditions (V1), (Hs) and (Hs) — (H;). Then, system has a

nonzero solution.

For the proof of this result, in order to obtain a Cerami sequence for the associated
functional, we invoke a linking theorem due to Li and Szulkin [47]. We highlighted

that as in [52] the Ambrosetti-Rabinowitz condition is not used in our arguments and
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this makes the task of proving the boundedness of the Cerami sequence more delicate
and the demonstration requires a careful analysis in the face of this new scenario with
nonlinearities H,(x,u,v) and H,(z,u,v) having exponential growth.

After proving that the Cerami sequence is bounded, we deduce that its weak limit is a
solution of and the main difficulty is to conclude that this weak limit is nontrivial. For
this, by using similar arguments as in [33], we exploit a local version of the linking theorem
(see |33, Theorem 2.3]). It is clear that, in our case, the situation is more delicate due to
the exponential growth of the nonlinearity and some new difficulties in our analysis must
be overcome, for example, the verification of that the Fréchet derivative of the functional

fR2 (z, z) is weakly sequentially continuous.

Remark 1.3. The existence of nontrivial solution for system when |H,(z, z)| has an
critical exponential growth, that is, behaves like eolz® gt infinite, for some ag > 0, is an
open problem and very interesting, mainly in the asymptotically periodic case. We believe
that the main difficult is in the control of the minimazx levels of the functional in order to
restore the compactness, and to show that the derivative of J(z fR2 (z, 2) is weakly

sequentially continuous.

Example 1.4. Let a € C(R?* R) positive and 1-periodic in xy, o and define the function
He by
Hoo(x,2) = a(x)|z (el = 1), for (z,2) € R? x R

It is not difficult to see that H, satisfies (Hy) — (Hy). Moreover, considering
H(z,2) = a(x)(e " + 1D)|2]2( = 1), for (z,2) € R? x R?

we can see H satisfies (Hs) — (Hy), with o(z) = a(z)e™ " € F and h(z) = |z|2[3(el* —
1) + [z[el].

Throughout this chapter 0,,(1) denotes a sequence that converges to 0 as n — oco. The
norm in LP(R?) (1 < p < o0) and L>®(R?) will be denoted respectively by || - ||, and || || -

We shall use C, Cy, C1, Cs, . .. to denote positive constants possibly different.

This chapter is organized as follows: in the forthcoming section, we establish some

notations and definitions, and we present the abstract theorems that are used to prove
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our main results. In Section|1.2] we treat the periodic case, including the proof of a vector
version of the Trudinger-Moser inequality. Section [I.3]is devoted to the asymptotically

periodic case, where we prove Theorem |1.2

1.1 Preliminaries

In order to make the text more explanatory, in this section we introduce the abstract
theorems that will be applied to prove Theorems |1.1| and From now on we will use
the following notations and terminologies: FE is a real Hilbert space with inner product
(-,+) and its correspondent norm is || - ||. We are going to suppose that there exists an
orthogonal decomposition £ = E* @ E~ so that each z € F is uniquely decomposed, that

is, z = 2zt + 2z~ with 2% € E*. For r > 0, we consider the following sets:
e N.={z€E":|z]|=r}and ST ={z€ E*: ||z]| = 1};

eforz€FE,E(z)=RzGE =Rzt®E and E(z)=R,)z®FE~ =R,z ®E~.

Assume that I € C*(E,R) is a functional fulfilling the conditions

(N7) I has the following form
Lo Ly e
1) = gl P = gl I~ ), (1)

with J € C'(E,R) weakly lower semicontinuous, J(0) = 0 and, for each z # 0,
there holds

T (2)z > 2T (z) > 0;

(N2) for each z € E\E™ = {2z € E: z* # 0}, I|g,) has a unique nonzero critical point

m(z), which is a global maximum point of I|,,.
Now, we define the generalized Nehari manifold associated to I by

N={2eFE\E :I'(2)2=0 and I'(z)w=0 forall we E }.
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Remark 1.5. Note that N contains all nonzero critical points of I, because if z # 0 is a

critical point of I, by (Ny) we have

I(2) = I(z) - %I/(z)z - %j’(z)z _ () >0

and therefore we must have z+ # 0, that is, z € E\E~.

In view of this remark, using condition (N,) and the definition of N, we can define

the map m : E\E~ — N by

~

m(z) = {the unique global maximum point of 1|z, }.
With these concepts, we require a third hypothesis (N3) on I, namely,
(N3) there exists 6 > 0 such that ||m(z)%| > 6, for each z € E\E~. Moreover, if

W C E\E~ is compact, then there exists ¢y such that |m(z)|| < ¢y, for all z € W.

Moreover, we are going to denote by m the restriction of the map m to ST, that is,

m = 7/7\1|5+.

The following result presents the main properties related to I, m and m (see proof in

5.
Lemma 1.6. If I € C'(E,R) satisfies (N1) — (N3), then
(i) m is continuous and m : ST — N is a homeomorphism
(ii) the application U : EX\{0} — R defined by U(z) = I(m(z)) is of class C'.

Moreover, W := W|g+ is also of class C* and it holds the equality

V' (2)w = ||m(z)"||I'(m(2))w, for allw € T,(ST)={ve E": (z,v) =0}

(7ii) infgr W = infp I;

(iv) if (2,) C S* is a Palais-Smale sequencdl] ((PS) sequence for short) for U , then
(m(zn)) C N is a (PS) sequence for I. If (w,) C N is a bounded (PS) sequence for
I, then (m™*(w,)) C ST is a (PS) sequence for V.

Y(z,) € ST is Palais-Smale sequence for U, if ¥(z,) is bounded and ¥’(z,) — 0.
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In order to better understand the linking theorem used in the asymptotically periodic
case, it is introduced a new topology in the space E. For this, let (ex)r C E~ be a total

orthonormal sequence and define the following norm on F:

o0 1 B
\|Z|!r=maX{\|z+H>Z§\<z ,ek>|}, z€E.
k=1

We call 7-topology the topology induced by this norm.

Remark 1.7. In bounded sets, the T-topology coincides with the usual topology of E that
is weak on E~ and strong on ET. Thus, for a bounded sequence (z,) C (F,T), we have
Zn — z in B if, and only if 25 — 2% and z; — 2~ weakly in E. For details, see for

instance [41).

Definition 1.8. Given a set M C E, a homotopy h : [0,1] x M — E is said to be

admissible if
(i) h is T-continuous, that is, if t, — t and z, = z then h(t,, z,) = h(t, 2);

(ii) for each (t,z) € [0,1] x M, there exists a neighborhood U of (t,z) in the product
topology [0,1] x (E,T) such that the set {w — h(t,w) : (t,w) € UN([0,1] x M)} is

contained in a finite dimensional subspace of E.
Now, we define the following class of admissible applications:
I''={h e C([0,1] x M, E) : h is admissible, h(0,-) = Idy,
I(h(t,2)) <max{I(z),—1} for all, (t,z) € [0,1] x M}.
The next result was proved in [47, Theorem 2.1]:

Theorem 1.9 (Linking Theorem). Assume that I € C*(E,R) fulfills the hypotheses

(L1) the functional I can be given as in (1.1) with J being bounded from below, weakly

sequentially lower semicontinuous and J' weakly sequentially continuous;

(Ls) there exist zo € ET\{0}, p >0 and R > r > 0 such that

inf I(z) > p, supI(z) <0,
ZENy z€EOM
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where M = M (zo, R) stands for M .= {z =tzy+ 2~ : 2= € E~,||z| < R,t > 0}
and OM denotes the boundary of Rzg @ E~. If we define

. := infsup(h(1 1.2
¢ = InfsupI(h(1, 2)), (1:2)

then there exists (z,) C E such that
I(z) = coZp and  (1+ |zl (20) ]| = O,

that is, (z,) C E is a Cerami sequence for I at level ¢, ((Ce)., sequence for short).

We can not directly invoke Theorem [1.9 to prove Theorem For this, we shall use

the following local version, as proved in [33] Theorem 2.3]:

Theorem 1.10. Assuming the same hypotheses of Theorem and additionally that
there exists hg € I' such that
c=sup I (ho(1, M)),

then the functional I has a nonzero critical point z € ho(1, M) satisfying 1(z) = c,.

1.2 Proof of Theorem [I.1]

In this section, via a minimization argument and Lemma [I.6| we shall obtain a ground
state for problem (I)). According to condition (Vj), there exist constants ag, by > 0 such
that

ap < V(z) < by, forall z € R?. (1.3)

Hereafter, we are going to consider H'(R?) endowed with the norm

iy = ([ o+ venn)

which is equivalent to its usual norm in view of ([1.3). Now, we introduce the Hilbert
space £ = H'(R?) x H'(R?) endowed with the inner product

(@) o0 = |

R2

(Vu-Vo+ V(z)up) + / (Vv -V + V(z)vy),

R2
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whose correspondent norm is given by
1w, )1 = (llullf + lo])12.

Next, we establish a Trudinger-Moser type inequality on the space £ = H!(R?) x
H'(R?), where F is endowed with the above norm. For this, we will use the following

version of the Trundinger-Moser inequality in H'(R?) (see [16, [34]):

Lemma 1.11. If a > 0 and u € H'(R?), then

/ (¢ 1) < o0,
]R2

Moreover, if 0 < a < 4w and M > 0, then there exists a constant C = C(a, M) > 0 such
that

/ (eau2 -1)< C(CY»M)v
R2
for all w € H'(R?) with ||Vul| 122y < 1 and |Jul| 2@y < M.

Hence, we can prove the following result:

Lemma 1.12 (Trudinger-Moser inequality). If a > 0 and (u,v) € E, then

/ (e _ 1) < oo,
R2

Moreover, if 0 < o < 47 then

sup / (e 1) = C(av, ag) < 0. (1.4)
R2

(uv)eE, [|(u,v)][<1

Proof. Let a > 0 and (u,v) € E. If p,g > 1 and 1/p+ 1/q = 1 then Young’s inequality
provides

1
(y?*—1), forall =,y >0. (1.5)

1
xy—1<—(2?—-1)+ -
p q

Thus, for p = ¢ = 2 and by applying Lemma [1.11| one has

1 1
[eeor -y <d [ et on g [ ey <o
R2 2 R2 2 R2
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and the first part is proved. To prove (1.4)), it is sufficient to show that

sup / (el _ 1) = €0 < o0, (1.6)
R2

(wv)€E, ||(uv)][=1

because if 0 < a < 47 and 0 < ||(u,v)|| < 1 then

2 ww) |2
/ (el _ 1) _/ (ea”w’”)"Q - 1) g/ (ea|M| . 1) <C,
R2 R2 R2

since ||(u,v)/[|(uw,v)|||| = 1. Thus, let 0 < a < 47 and (u,v) € E with ||(u,v)]|* =

(u,v)
Il Cws o)l

|ull? + ||v]|3- = 1. Note that if ||uljy = 0 then ||v||? =1 and therefore
|Vollp2@ey <1 and / Viz)w? <1
R2

and the second inequality implies that ||v||%2(R2) < 1/ag. Hence, by invoking Lemma m,
we obtain (|1.6)). The same conclusion holds if ||v]|yy = 0. Now, suppose that ||u||y, # 0 and
|v]ly # 0. By considering p = 1/||ul|?, > 1 and ¢ = 1/||v[|} > 1, we have 1/p+1/q =1
and by virtue of (1.5) and Lemma we conclude

/ (eal(uvv)|2 _ 1) — / (€OZU2€OZ7J2 o 1)
R2 R2

and the lemma is proved. [ |

In order to exploit Lemma [L.6] we consider the following subspaces of E:
Et = {(u,u) :uec H(R*} and E~ :={(u,—u):u € H(R*}.
Note that E™ and E~ are orthogonal in F and for z = (u,v) € E, if
+o_ u+v u+v —._f(u-vv-u
z.(2,2>andz.(2,2>,

then z* € E* and we have 2z = 27 4+ 2. Thus, £ = ET ® E~ and a simple computation
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shows that
1
/ (Vu- Vv + V(z)uv) = §(HZ+H2 —[I711%). (1.7)
RQ

By using (H;) and (Hy) we can see that, given ¢ > 0, « > 0 and ¢ > 0, there exists
C' = C(g,a,q) > 0 such that

max{|H(z, 2)|, | H.(z, 2) - 2|} < e|z]* + C|z|*(e**" = 1), for all (z,2) € R* x R%. (1.8)
In view of (L.8) and Lemma [1.12] the energy functional associated to (), given by
Lo+ —12
I(z) = 517 = 1=71°) = T (=) (1.9)
where J(2) := [p. H(x, 2), is well defined. Furthermore, I € C'(E,R) with
I'zw=("w") - ,w)— | H((z,2) -w, forzwekE.

R2

Hence, the critical points of I correspond to weak solutions of problem .
In order to apply Lemma [I.6] we are going to show that conditions (N;) — (N3) are
satisfied by I. For this, initially we present four lemmas, whose proofs are similar to ones

in [33]. We include them for completeness.

Lemma 1.13. Suppose that H satisfies (Hz) and (Hy). Then, for each z # 0 we have
1
EHZ(x, z)-z>H(x,z)> 0.

Moreover, J(0) =0 and J is weakly lower semicontinuous.

Proof. By (Hy) we get H(x,0) = 0 and therefore J7(0) = 0. Given z # 0, it follows from
(H4) that

t d 1 1

H(x,z):/ C1H (e, 1) :/ Ha(x,t2) - =dt :|z|2/ g(z,t2))tdt > 0. (1.10)
0 0 0

This identity, (H,) and the monotonicity of g(z,-) imply that

LH(x2) 2 H(x2) = |of ( [ stz - g<x,t|z|>1tdt) -0

Let’s verify that J is weakly lower semicontinous. Let (z,) C F such that z, — z in
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E. Up to a subsequence, z,(z) — z(z) a.e. in R%. Since H is nonnegative, Fatou’s lemma

provides

lim inf 7 (z,) = lim in / H(z, ) > / H(z,2) = J(2).

The next lemmas are necessary to show condition (Ny).

Lemma 1.14. Assume (Hs) — (Hy). Let s > —1 and v,z € R?* with w = sz +v # 0.

Then, for all © € R?, we have

H, (z,z) - [s <§+1>Z+(8+1)U] + H(z,z) — H(z,z +w) < 0.

Proof. Let y =y(s) == w+ z = (14 s)z + v and define, for s > —1,

B(s) :Hz(x,z)-(s <§+1)z+(s+1)v> + H(z,z) — H(z, z + w).

If z =0, it follows from (H;) and lemma that (s) = —H(x,y) < 0. Hence, we
can suppose z # 0 and consider the following distinct cases:
Case 1: z-y < 0.

Notice that, by (Hy), H.(x, 2)y = g(z, |2])z-y < 0. Thus, recaling that v = y—(1+5)z,
using Lemma [[.T3]and s > —1, we obtain

2
B(s) = — (5 + s+ 1) H.(x,z) - z4+ (s+ 1)H, (x,2) -y + H(z,2) — H(z,y) (1.11)
1
< _5(3 + 1)2Hz<x> Z) "zt (8 + 1)Hz<x>y) Y- H(‘Ta y) <0.

Case 2: z-y > 0.

By Lemma [T.T3]
B(—1) = —%Hz(:c,z) cz+ H(x,z) — H(x,y) < —H(z,y) <O0.

It follows from (H,) that H,(x,z) -z = g(z,|z|)|2|* > 0. Hence, using (1.11)), we have

limg o, B(s) = —oo. Therefore, § attains its maximum at some point sg € [—1,00). If
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so = —1 the result follows from the above inequality. If so > —1,
0=p"(s0) = H,(x,2) - y— H,(x,2) - 2.

By (Ha), g(z,|2))z -y = g(x,|z])z - z, hence |z| = |y|. It follows from (1.10) that
H(z,z) = H(z,y). Moreover,

Hz(x72> Y = g(%, ’ZDZ Y < g(f, ’ZD|Z|2 = HZ(:CVZ) 2

hence

S

B(s)=—=H.(x,2) - z+ (s + 1)(H.(z,2) -y — H.(x, 2) - 2)

Lemma 1.15. Assume conditions (Hy) — (Hs). There exists R > 0 such that I(w) < 0
for w € E(2)\Bg(0), where Br(0) := {z € E : ||z|| < R}.

Proof. We argue by contradiction. Suppose there exists a sequence (w,) C E(z) such

that |Jw,| — oo and I(w,) > 0. Setting z, := Hw—”H, we can assumne that z, — 2o in E.
Wnp,
If 2y # 0, by Fatou’s Lemma and (H3), we have
I(w,) 5 _ H(z,wy,),
0< ||Z+H | I = |2n]
onll® o
_ H(z,w
< Il - \ I* - 2” 2] — o0,
2 |wn]

which is an absurdo, thus zyg = 0.

|. Therefore, recalling

Since H > 0, by the above estimate, we can obtain ||z > ||z |

1
that ||z,|| = 1, we can conclude that ||zF] > 7 1
Since z € ST, we can use the last inequality to write 27 = s,2, with 7 <s, <1.
Up to a subsequence, z — sz, with s > 0, which contradicts z, — 0. [

Lemma 1.16. Suppose that H satisfies (Hy) — (Hy). If 2 € N then for any w # 0 such
that = +w € E(z), we have I(z + w) < I(z).
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Proof. Let z € N and w # 0 with z + w € E(z) By definition, we can write
z4+w=(1+s)z+v with s>—-1 e veE".

Since z € N, we define p := s (% + 1) 2+ (s+ 1)v € E(z), then we have

S

0=z =s (5 + 1) (111 = =71 = s+ D)~ [ Halz) -

Therefore,

I(z+w) —I(2)

=5 (G41) Ut = 177) = s+ D) = P + [ [He.2) = Ha,z 4 w)

=l [IH) (s (5 1) 2 (s Do) Hlw,2) = Hiwz 4 )]

Since w # 0, it follows from Lemma that I(z +w) < I(2). [
Lemma 1.17. Suppose that (Hy) — (H4) are satisfied. Then,
(i) for any z € N, I|E(z) admits a unique mazimum point that is precisely z;

(ii) for any z € E\E~, the set E(z) intersects N at exactly one point m(z), which is

the unique global mazimum point of I|E(z)-

Proof. Firstly we will show (i). Given tz +y € E(2)\{z}, it is enough to consider
w = (t — 1)z +y to obtain tz + y = z + w. Note that, if w = 0 then ¢ =1 and y = 0, but
this can not occur because tz + y # 2. Hence, w # 0 and by Lemma [1.16] we conclude
that I(tz +y) < I(2).

To prove (i), by the previous item, it is sufficient to show that N'N E(z) # () for each
z € E\E~. Moreover, since E(z) = E (2*/||z*])), we can assume z = (u,u) € E* and
|z|]| = 1. By Lemma m, there exists R > 0 such that I(w) < 0 if w € E(z)\Bg(0) and
if w| < R then I(w) < R?/2 and so supp,, I < 0.

On the other hand, by using , for any € > 0 and a > 0 there exists C' > 0 such
that

H(z,2) <elz)® + C|z[3(ea‘z|2 —1), zeR% (1.12)
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From (L.12), Lemma (1.12) and by choosing 0 < & < 1/(4 [, |2|*), we have

I(tz) = _HZH2 / H(z,tz) > — _5152/ 2|2 — Ct3/ 123 atQI e 0

t 20,2 1/2
——ct </ |z|6) {/ (21 1)} -0,
4 R2 R2

for t > 0 sufficiently small. Consequently, SUDP () I>0.

v

Now, let w, = (w,w?) = t,z + (hn,—h,) € E(z) be a maximizing sequence
for supp,I. Since supg I > 0, we can suppose that |w,|| < R. Hence, up
to a subsequence, w, — wy weakly in E. We can see, up to a subsequence, that
tn, — to > 0 and h, — hg, w} — w}, w? — w? weakly in H'(R?) and therefore

wo = (wg, w2) = toz + (ho, —ho) € E(z). Recalling that z € ET, we can write

) = S o17 = Sl — [ G2

from where it follows, according to the weak lower semicontinuous of the norm and Fatou’s

lemma, that

£ 1
supl = ILm I(w,) = 50|]z||2 + lim sup {—§||hn||2 / H(z,w}, w?) } < I(wy).
n—00 n—00

E(2)
Thus, I(wy) = supg, and therefore wy is a critical point of I\E(Z), showing that
wo € N'N E(2) and the proof is complete. [ |

As an immediate consequence of this lemma, we obtain the following equality:
Corollary 1.18.

inf 1 = inf max [(w).
inf I(n) ot max (w)

Lemma 1.19. Assume (Hy) — (Hs) and let

c= Zlgj{’/l(z)

Then, ¢ > 0 and ||z*]| > max{||z~ ||, v2¢} for all z € N.

Proof. For a > 0 we recall that S := {z € E* : ||z]| = a} and (Ry)z = {tz : t > 0}.
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Since E(z) = E(2") for any z € E\E~, from Corollary for any a > 0, it follows that

c= inf max [(w)= inf max I(w)= inf max [(w)> inf max I(w).
2€E\E~ weE(2) zEET\{0} weE(2) 2€S+ weE(2) z€SF we(Ry)z

Let 2 = (u,u) be in S and @ > 0 such that 2ca® < 47. By Lemma [1.12] there exists a
constant C' > 0 such that

/ (62a|z|2 o 1) — / (6204@2(‘Z|/||ZH)2 _ 1) S C.
R2 R2

Then, by using (1.12) we get

max I(w) > I() = ||ul}? - / H(w,u,u) > [[ul}? — ¢ / 2~ C. / 2 (e — 1)
R2 R2 R2
1/2

we(Ry)z
> (1—26)Jul - C. ( / |z|6)
R2

> (1= 2¢)[ulliy — Cullully,

where we have used the continuous embedding H'(R?) < L%(R?). Hence, taking ¢ = 1/4
and a > 0 sufficiently small so that 1/2 — Cjully = 1/2 — Cia/v2 > 1/4, we conclude
that

1 2
max [(w) > ||ull} (5 - Cl||uHV) > % >0, forall z=(u,u) €S/

we(Ry)z

and consequently ¢ > 0. Next, for any z € N we have

1 _ 1 _
e <30 =11 = [ HG2) < 50007 - 11,
R2
which implies that ||2*|| > max{]|z~||, v2¢} and the proof is done. [ |

Lemma 1.20. Suppose that (Hy)— (Hz) are satisfied. If W C E\E~ is a compact subset,
then there exists Cyy > 0 such that ||m(2)]| < Cw, for all z € W.

Proof. Defining § = v/2¢, by Lemma and noting that m(z) € N for any z € E\E~,
we have [|[m(z)"| > d§. Moreover, since m(z) = m (27 /||z7||) for any z € E\E~, without

loss of generality, we can assume that W C S™. It follows from Lemma that there
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exists Cyy > 0 such that
I <0 on E(z)\BCW(O) for all z e W,

where B¢, (0) = {w € E : ||z|| < CWw}. Recalling that I(m(z)) > ¢ > 0for all z € E\E™,
we get

lm(2)]| =

o+
7/7\1< )chw for any z € W.

(gl

Lemma 1.21. If (H,) — (H3) are satisfied, then I is coercive on N'. In particular, any
(PS). sequence (z,) C N for I is bounded.

Proof. Suppose, by contradiction, that there exists (z,) C N satisfying lim,, o ||2,]] =
+oo with I(z,) < d for all n € N, for some d > 0. Setting w, = 2,/||z.]|, up to a
subsequence, we have w, — w weakly in F and w,(x) — w(z) a.e. in x € R

Firstly, we claim that w = 0. Indeed, if w # 0 and Q := {z € R? : w(z) # 0} then

w(2) > 0 and |z, (z)| = [|wp|||w,(z)] = +00 a.e. in x € Q. Since

c I(z,) 1 |1 | 1 H(zx,z,)
2 < 2 2 5“'2:”2 - inn H2 - / H(l‘, Zn):| < 5 - —2’wn|2,
lzall® = lzall® Nl2nll R? o |l

in view of (H3) and Fatou’s lemma, we get a contradiction and therefore we must have

0<

w = 0.

Next, we claim that
w40 in LP(R?) x LP(R?) for some p € (2,00). (1.13)

In fact, arguing by contradiction, suppose that w — 0 in LP(R?) x LP(R?) for all
p € (2,00). By (1.8), for ¢ >0, s > 0 and o > 0 we have

Hiz,suy) < e[+ Cos [ fu (e~ 1
R

1/q 2 1.2 1/q/
< 532||w:||§ + C.s (/ |w:|q> {/ (es aq'lwi |2 _ 1)} ’
R2 R2

where ¢ € (2,00) and ¢ = ¢/(q—1). Fixing s > 21/d and taking a > 0 so that s?aq’ < 4,

R2

(1.14)
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by Lemma [1.12| we conclude that

/ (es2aq’\w;{|2 _ 1) <C,
R2 N
for some constant C' > 0. Once € > 0 is arbitrary, from ([1.14)) it follows that

H(x,sw') — 0.
R2

Since sw € E(z,), by Lemma we have

1 1
d>1(z,) > I(swh) > 152 —/ H(x,sw') = 152 + 0,(1)
R2

and passing to the limit as n — oo we reach d > 52/4 which is an absurd and is
proved. Thus, we can use Lions’ lemma [49, Lemma I.1] to obtain § > 0 and a sequence
(yn) C R? satisfying
/ wi]* > 8. (1.15)
Bi(yn)

We may assume, without lost of generality, that (y,,) C Z*. Moreover, doing a translation,

if necessary, we can suppose that (y,) is bounded. Hence, there exists R > 0 such that

Bi(yn) C Bg and by (L.15) we get

/ jwt* > 6.
Bpr

Taking the limit we conclude that w™ # 0, which is a contradiction and the proof of the

lemma is done. [ |
Now, we are ready to prove our main theorem of this section.

Proof of Theorem[1.1l By the previous lemmas, the functional I fulfills conditions (N;) —
(N3). Thus, according to Lemma [L.6] let (w,) C ST be such that ¥(w,) — infg+ U. By
Ekeland’s Variational Principle, we can suppose ¥/ (w,) — 0. Thus, by (iii) of Lemma
[1.6] we have I'(z,) — 0 where z, = m(w,) € N. By Lemma up to a subsequence,
z, = z in F and z,(z) — z(z) a.e. in z € R% Next, we have the following claim:
Claim 1: z is a critical point of .

Indeed, by the density of C5°(R?) x C5°(R?) in E, just to conclude that I'(z)n = 0
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for all n € C°(R?) x C§°(R?). Then, let n € C°(R?) x C°(R?), K = suppn and
M > 0 is a constant to be chosen later. Defining 0y = K N {x; |z,(z)] < M} and
Qo = KN {x; |z,(z)| > M}, by (Hy) and (Hs), given o > 0 we obtain C' > 0 such that

|H.(z,w)|] < |w|+Ce™F —1) forall (z,w) e R?xR?
and hence

(@, 20(x)) - n(@)] < [[7lloc| 20 ()] + Ca (e @F — 1)

< [0l M + C’1(€aM2 —1) ae. in z € Q.

Since H,(x,z,)-n — H,(z,z)-n a.e. in €y, it follows from the Lebesgue Dominated

Convergence Theorem that

Now, we take o > 0 so that 2a/|2,||* < 47. Thus, by Lemma and Hoélder’s inequality,

we reach

AfM%W—%@@Jﬂ

< % |Hz(xuzn)_HZ(x7Z)||Z”|

Qo

Il SR
< Bt pealilel v 01 ([ o =) e 01D
]RQ
%
wen ([ e =) ]
R2

e

<
- M

for some C > 0 independent of M. Hence, given > 0 we can consider M > 0 so that

<0, forall neN. (1.18)

/Q (Ho(2,2) — Ha,2)] -1

Therefore, by ((1.16) and ([L.18]) we obtain

lim sup

n—o0 n—o0

/ [Hz<x72n> - Hz(xa Z)] ' 7]‘ < hmsup
K

/Q H.(r.2) — Ho(2.2)] 5| +6 =6
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and once 0 > 0 is arbitrary, we conclude that

/R2 (H.(x,z,) — H,(x,2)] -n— 0. (1.19)

Once

I'(za) — T'(2)n = (20 — 201) — / H.(2,20) — Ha(2,2)] -1

R2
and according to ([1.19) we reach
n—oo

I'(z)n=lim |I'(z,)n — (20 — 2z,m) + /R2 [H.(x,z,) — H.(x,2)] -n| =0,

and Claim 1 is proved.
Now, let us suppose that z, — 0 in LP(R?) x LP(R?) for some p € (2,00). In view of
(1.8), given € > 0 and a > 0, there exists C; > 0 such that

HZ(ZL', Zn) * Zn

<e | |zlP+C | |z —1)
R2 R2

1/p - ) 1/p'
<ellal +Cx ([ Jal) | [ ettt
R2 R2

Taking o > 0 so that ap/||z,||* < 4« for all n € N, by Lemma the last integral is

RQ

bounded. Moreover, we know that [, |2,[? — 0 and therefore

H.(x,z,) 2z, — 0. (1.20)
RQ

Similarly, we also conclude that [., H.(z,z,) - z, — 0. From this and since z, € N we

have

0=I'(z)z = o — / H.(2,2) - 70
R?

which shows that ||z, |2 — 0. On the other hand, we also have

0= )z = 1P =l P = [ i) 2

and by using (1.20) it follows that z — 0. But this contradicts Lemma and therefore
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zn 7 0 in LP(R?) x LP(R?). Again by Lions’ lemma

/ 12,> > 8> 0,
Bi(yn)

for some 8 > 0 and (y,) C Z% Once I is invariant by integer translations, the sequence
Zn = zZn(- —yn) — Z in E and again we can show that Z is a critical point of 1. We
observe that by the last inequality Z # 0 and since I does not have nonzero critical points
in £, we have Z € N and so I(Z) > ¢ = infy I. Now, let us to prove that I(Z) < ¢ and

thus we can conclude that ¢ = I(2) = infy I. In fact, we know that
I(3,) =¢c, I'(2,)—0 and %, =2 ae. in R%

Hence, it follows from Lemma [I.13 and Fatou’s lemma that

1 ~ 1
c+o,(1) =1(2,) — 5]’(2n)2n = [ H(x,z,)>1(2)— 5[’(2)2 +0,(1) =1(2) 4 0,(1),
R2
which implies that I(Z) < ¢ and the proof of Theorem [1.1|is concluded. [

1.3 Proof of Theorem 1.2

In this section, we study the situation when V and H are asymptotically periodic.

First, we defined the functional /I, : £ — R by

1 1
Lo(2) = 5llz" 1P = Sl27 117 = | Hwolz,2),
2 2 B2

where H,, is the approximation of the function H according to hypothesis (H7). Once
H fulfills (Hy) — (Hy) and V, satisfies (V5), we can invoke Theorem to get a least

energy solution z,, € E of the periodic system

—Au+ Vy(z)u = Hy o(z,u,v), x € R?

—Av+ Vo(2)v = Hou(z,u,v), xR
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Therefore, taking the solution z.,, we define our link set in the following way:
Mg, ={z=tzey+2 127 € E7,||z]| <R, t >0},

where R > 0 and 2o := zZ. By virtue of Mg, C E(zo) = E(zoo), it follows from Lemma
1. 17l that
sup Ioo(2) < Io(20). (1.21)

ZEMRA,ZO
With the aim of finding a solution for problem , it suffices to get a nonzero critical
point for the functional I defined in ([1.9). Since we do not require an exponential growth

for H, we must guarantee that the functional I is well defined.

Lemma 1.22. Suppose that H satisfies (Hy) and (Hy). Then, for any e >0, ¢ > 1 and

a > 0, there ezists C = C(g,q,a) > 0 such that
|H.(z,2)| <elz| + Clz|* (e = 1) and |H(z,2)| < e|z]® + Clz|%(e** = 1), (1.22)

for each (z,2) € R* x R?%,

Proof. Given € > 0, we can use (Hs) to obtain 6 > 0 such that
|H.(z,2)] <el|z|, forall xcR? |z| <6. (1.23)
Now, if |z| > § then, by using (H7), given ¢ > 1 and o > 0 we obtain

[H.(2,2)| < |Hoo,e(w, )| + Cilip(@)| (e = 1) < 7 (e — 1), (1.24)

for some C' = C(g,q,a) > 0. Hence, (1.23)) and (|1.24) prove the first inequality in (1.22)).

The second inequality follows from the Mean Value Theorem. [ |

1.3.1 Linking geometry

In this subsection, we are going to guarantee that the functional I satisfies the linking
structure of Theorem (condition (L3)).
According to condition (V7), we can work with the same space E. The linking geometry

is proved in the next lemma.
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Lemma 1.23. Suppose that H satisfies (Hs), (Hs) — (H7). Then,

(i) there exist r,p > 0 such that I|yN,> p;

(ii) there exists R > 1 such that I|par, . < 0.
Proof. The item (i) is a consequence of (H5) and Lemma[1.22] Indeed, given z = (u,u) €
N,, a >0, >0 and ¢ > 2, by Lemma [1.22| we get

|H (z, 2)| < ]2 + C.|z]2(e?* —1). (1.25)

By using Hélder’s inequality, the continuous embedding £ — L!{(R?) x L!(R?) for any
t > 2 and Lemma [1.12] we get

1/2 1/2
|Z|Q(ea|z\2 B 1) S </ ‘Z|2q> |:/ (627~2a|z/7"|2 i 1):| S CHZHq — CTq,
R2 R2 R2

where we have considered r > 0 so that 2r?a; < 4. Hence, according to ([1.25) we reach

1 1
I(z) > 57*2 —e | |z -Crt> <§ — &?Cl) r? — Cr,

R2

Taking 0 < & < 1/(2C}), we can obtain r > 0 so that (1/2 —eCy)r? — Cr? =: p > 0.
Therefore, there exist r, p > 0 such that I(z) > p whenever ||z|| = .
For item (i7), let z =tzg+ 2~ € OMp,,. If ||z|| < Rand t =0 then z =2~ € £~ and

we can use (H7) to obtain

1) = 167) = =317 = [ H@=) <o

Now, we consider the case ||z|| = R and t > 0. We argue by contradiction. Suppose that
there exists a sequence (z,) such that z, = t,20 + 2,,, with ¢, > 0, ||z,]| = R, — oo and

I(z,) > 0. Thus,

lzall® 2 X fzll® 2l I EN N e
Once H is nonnegative, we must have ¢,||z] > ||z, ||. Observing that

£2 2 —I12
[0l , Mz ll® _

lzall® " llzall?
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we can see that

1 < tn < 1 d 2,
>~ >~ an E—
V2|20l [zl T~ [zl [ES

is bounded.

Hence, since E~ is weakly closed, up to a subsequence, we can assume that

tn - _ -
HZ||—>pO>O, n o sweE and Z”—(I)

[z [z

— w(x) a.e. in x € R?
As ||z,|| = oo we have t,, — co and therefore

lim |z,(z)] = 00 a.e. in Q:={x € R?: pozo(z) + w(x) # 0}.

n—oo

In view of pg > 0 and w € E~, Q2 has positive Lebesgue measure. Hence, taking the limit

in ([1.26]), using Fatou’s lemma and (H7), we reach

1 . . H(x; Zn) |Zn|2
0< 51l = uwl?) = [ timine - 0,
27 o oo |zl? |z
which is an absurd and this concludes the proof. [ |

1.3.2 Behavior of Cerami Sequences

In this subsection, we get some crucial results related to Cerami sequences for the
functional 1.
In the proof of the next lemma, we shall use the following inequality, whose proof can

be found in [28, Lemma 2.4]:

(e —1)+s|(log|s))?, teR and |s| > e
st < (1.27)

= 1
(" — 1)+ 532, teR and |s| < el

Lemma 1.24. Assume conditions (Hy) and (Hs) — (H;). If (2,) C E is a (Ce). sequence
for I, then it is bounded in E.

Proof. 1f (z,) C E'is a (Ce). sequence for I, then

c+0,(1) = I(2,) — %I’(zn)zn = /R H(z, z,). (1.28)
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Suppose by contradiction that, up to a subsequence, ||z,|| — 4+00. Thus,

Ho(x,20) - (20 = 2,)

n

P =)

0,(1) =
n(1) e . BAE

Setting w,, := z,/||z,||, we get

(wt —wr
i [ @) - (w —wy)

n—o0 Jgo Izl

= 1. (1.29)

Recalling that ¢(r) = inf{H (z,z) : € R, |z| > r} and noting that ¢ is nondecreasing in
r > 0, we can use (Hj) to conclude that ¢(r) > 0 for all » > 0. Moreover, in view of (Hg),
(H7)(i) and (H7)(i7), it follows that ﬁ(m,z) — +00 as |z| = oo uniformly in z € R
Consequently, ¢(r) — oo as 7 — o0.

For 0 <a<b<ooandneN, we set
Qn(a,b) == {x € R? : a < |z,(2)| < b}.
Using (1.28) and for 0 < r < R < 0o, we obtain
~ H(z, 2, .
cto= [ A+ [ AEEpe [ )
Q,(0,r) Qn(r,R) |2n| Qn (R,00)
> [ )+ B [ P e (R o)
Qn((),r) Qn(T;R)
and therefore there exists C; > 0 such that
max H(z, 2,) alr) |zal?, q(R)u(Q,(R,00)) ¢ < C (1.30)
y~n )y R2 n|l 5 4 ARy ) =~ U1. .
Qn(0,r) Qn (r,R)

In particular,

w(2,(R,00)) < Cy/q(R) for each n €N, (1.31)

Now, let C5 > 0 be such that ||z]|3 < C3|z]|* for each 2z € E and consider € > 0. By (H,),

there exists r. > 0 such that |H,(z, 2)| < ¢|z|/C3 for each |z| < r.. By the definition of
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wy, and since |w — w, | = |w,|, for any n € N we get

(T —
/ H.(r,2) - (wf —wy) _ / 20| )
Q0 (0,7¢) [l 20l Qn(0,7¢) |20

€

(1.32)

<A wa|* < eflw, || = e
Cs Ja,0r) "

Now, let R. > r. to be chosen later. Define A; = Q,(R.,00)N{z € R? : |H,(z,2,)| <
e'/*} and Ay = Q,(R.,00) N {z € R? : |H,(z,2,)| > e'/*}. Taking t = |w,| and
5 = [H(z, 2,)] in (T2, we get

H,(z,2,) - (w) —w,) 1
/ < LATESIN
Q‘IL(REvOO) ||ZnH HZTLH Qn(Rg,OO)
1
< — |Hz(x,zn)|(log|Hz(x,zn)|)1/2
HZnH Ao
1 1 2

+ —|H (z,2,)|* + (e‘w"| —1).

12nll Ja, 2 znll Jr2
(1.33)

By (1.31]), we have pu(A;) < pu(2,(R.,00)) < C1/q(R.) and consequently

1/2
/ \H, (2, 22 < Oz; 7 forall nen.
A1 qi{ie

By Lemma the integral fR2(6|w"‘2 — 1) is bounded. Moreover, given a > 0, by (H;)
there exists Ry > 0 such that

|H,(z,2)] < e forall z€R? and |z| > R;.
In view of (Hg), there exists ¢; > 0 such that
|H,(z,2)||z] < clﬁ(ﬁ,z) for all x € R* and |z| > Ry.
Taking R. > R;, from the two last estimates and , it follows that

/ (L (2, ) |(log | Ha (2, )2 < a2 /
Az

Ho (2, 20)|20] < 06, / Fi(z, ) < C,
Ao R2
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for some constant C' > 0. Thus, in view of (1.33]), we find ny € N satisfying

H, ) - (Wi —w;
/ (2, 20) - (wy = wy) <e, forall n>ny. (1.34)
Qn(Re,00)

[z

According to (H7), given o > 0, we obtain C, > 0 such that, for all z € Q,(r., R.), we

have
alzn|?
|H.(, 20)| < [Heo0(2, 20) | + Calp(@)|]za| (e — 1)

a 2
< Celzn] + Calleol|o (e e — 1)[2n].

From this estimate and (1.30]), recalling the definition of w,, and |w} — w,| = |w,|, we

reach

/ H. (2, 2,) - (wy —wy)
Qn(raRE) HZTLH

<C / ‘Zner—iL_ _w;‘ +C ||90|| (604R§ N 1)/ ’Zner—: —w;]
— € 0% (0.)
Qn(re,Re) [N Qn(re,R:) |2l

S 062/ ’Zn’2

HZn” Qn(T’e Re)

2

< HC7||2 fa) <eg, forall n>ny,

Zn||” q\Te

for some n; € N. This estimate, (1.32)) and (1.34) show that

H,(z,z,) - (w} —w;)

R2 [zl

dx < 3e, for all n > max{ng,n}.

But this contradicts ([1.29)) since £ > 0 is arbitrary, and the proof is done. [ |

Lemma 1.25. Suppose that (Hs), (Hg) and (H7) are fulfilled. Let ¢ > 0 and (z,) C E
be a (Ce). sequence for I. If z, — 0 weakly in E, then there exists a sequence (y,) C R?,
R >0 and B > 0 such that |y,| — oo and

limsup/ |za|? > B > 0.
Br(yn)

n—oo

Proof. Suppose by contradiction that the result is not valid. Thus, for each R > 0, one

has

lim sup/ |zn|> = 0,
"0 yeR? J Br(y)

and by invoking Lions’ lemma 2, — 0 in L*(R?) x L*(R?) for each s > 2. In view of
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([1.22), we have [,, H(x,2,) — 0 as n — oco. Similarly, [, H.(z,2,) - 2, = 0. On the
other hand,

1 1
c= lim |I(z,) — ill(zn)zn} = lim <§Hz(x, Zn) + 2n — H(z, zn)> =0,

n—o0 n—oo [p2

and this contradicts the fact that ¢ > 0, concluding the proof. |

For U € F,e>0and R > 0, we set D.(R) = {x € R*: |¥(z)| > ¢, |z| > R}. Fixed

U € F and € > 0, by definition of the class F, a simple argument guarantees that
w(D(R)) — 0 as R — oc. (1.35)

In fact, since ¥ € F, we have u(D.(R)) — 0 < oo for all ¢ > 0. To prove the lemma,
we have to verify that

lim p(D. N (R*\Bg,)) = 0
m—00

for each sequence (R,,) C R such that R,, — oo. Consider the function f : R* — R given

by f(x) = xp.(x), that is,

1
f(z) =
0, forx ¢ D..

, forxz e D,

Then f € L'(R?) and |f|y = [g. |f| = n(D:). Defining the sequence of functions
fm : R? = R by fin(2) = Xp.n@®2\BR,,)(¥), it follows that | f,,| <|f]. Since f,, — 0 almost
everywhere in R? as m — oo, our claim follows from Lebesgue’s Dominated Convergence
Theorem. (for details, see Lemma 2.6 of [4§]).

By conditions (H2) and (H7)(iii), given 0 > 0 and o > 0 there exist C' = C(o,a) >0

such

‘ 2

|Haoo o (2, 2) — H(z,2)| < 0|2] + Clo(x)|(e** = 1) for all (z,2) € R® x R%  (1.36)

The next two results are technical and the proofs can be done arguing along the same

lines of [48, Lemmas 5.1 and 5.2|, respectively.

Lemma 1.26. Assume that (Hy), (H7) and (V1) are satisfied. Let (z,) C E be a bounded
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sequence and w,(x) = w(z — y,), with w € E and (y,) C R%. If |y,| — oo then

[Heo 2 (2, 25) — Hy(x, 2,)] - 0| = 0 and [Veo(2) = V(2)]2 - wp| — 0.

RQ‘ R2|

Proof. We know that w € L*(R?) x L*(R?). Thus, given § > 0, we can find 0 < & < §
such that for each measurable subset A C R? satisfying p(A) < e, we have [, [w|> <.
Once ¢ € F, for this € > 0 we define

D.(R) ={z € R*: |p(z)| > &, |2 > R}

and by virtue of (1.35) there exists R. > 0 such that u(D.(R.)) < e. Therefore,

fDE(RE) |lw|? < §. Taking o > 0 so that 2al|z,||> < 47 for all n € N and 0 = 1 in

(1.36)), by Lemma we get

[ Haslen) = o)l
R*\Bg. (0)
alzn|?
<[ Jallwlea | @l = 1|
D:(Re) (R2\Bg, (0))N{l(x)|<e}

1/2 , ) 1/2 1/2
<l ([ i) ee ([ et} ()
DE(RE)*yn R2 R2

< Cy0'? 4+ 046,

On the other hand,

[ Hesloz) = Hoo )
B (0)
< [ ol +0 [ @I~ D
Br,(0) Br.(0)
1/2 12
<halg( [ ) el (@t o) ([
BRE(_yn) R2 BRE(_yn)
<cif [ qur
BRE(_yn)

and since w € L*(R?) x L*(R?) e |y,| — oo, there exists ny € N such that

1/2

/ |Hoo o (2, 20) — Ho (2, 2,)||w,| < 62, for all n > ny.
Br.(0)
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Therefore, once o > 0 is arbitrary, the first convergence is proved. The second one is more

simple and similar. Thus, the lemma is proved. [

We finalize this subsection presenting the following result, which will be useful in the

sequel.

Lemma 1.27. Suppose ¥V € F and s > 2. If w, — w in E, then

lim \I/\wn]“g:/ U|wl®.
2 R2

n—o0 R

Proof. Tt is analogous to the proof of Lemma 2.6 of [48] and we omit it. |

1.3.3 Conclusion of the proof of Theorem

Here, we complete the proof of the second main result of our paper. For this, we shall

need of the next lemma.

Lemma 1.28. Suppose that H satisfies (Hz) and (H7). Then, the functional J : E — R
given by
J(z) = | H(zz)

RQ

is weakly sequentially lower semicontinuous and J' is weakly sequentially continuous.

Proof. Let (z,) be in E such that z, — z in E. Thus, (z,) is bounded in E and by virtue
of the continuous embedding F — L!(R?) x L*(R?) for any t > 2, (||2,]|;) is also bounded
and, up to a subsequence, z, — z a.e. in R% According to (H;) and Lemma we
have H(x,z) > Hy(x,z) > 0 and therefore by Fatou’s lemma we reach

liminf J(z,) = liminf | H(z,z,) > | H(z,z)=J(2)

n— oo n—oo R2 R2

and the first part is done. For the second part, once E is reflexive we must prove that if

zp, — z In F then

J (zo)w= [ Hi (x,z,) - w— | Hi(x,z) - w=J(2)w, foreach we E. (1.37)
R? R?

Initially, from the proof of Claim 1 in the periodic case, we knows that ((1.37)) is valid
for w € C§°(R?) x Cg°(R?).
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Now, given w € E, by the density of C§°(R?) x C5°(R?) in E, given ¢ > 0 there exists
n € C°(R?) x C§°(R?) such that |jw — n|| < §. By exploiting the same arguments used

in (1.17), we can conclude that
|H.(z,2,) — H.(x,2)||5 < C, forall n€N,

for some constant C' > 0. Thus,

[ o5 = H 0| < 1o 30) el =

+

[ 12 - w20

< Cyl|lw —nl| +

[ 1oz - o))

and consequently

lim sup
n—oo

/ [H.(z,z,) — H,(2,2)] -w' < (19,
RQ
which proves the lemma. [ |

In view of Lemma and Lemma the conditions (L) and (L) of Theorem [1.9)
are satisfied. Thus, by invoking Theorem we obtain a (Ce). sequence (z,) C E for I
at level ¢ > p > 0. By Lemma up to a subsequence, z, — 2z weakly in E. Now, for

n € E we have

I'(zp)n = I'(2)n = (20 — 2,m) — / [H.(z,2,) — H.(x,2)] -

RQ

and according to ([1.37)) we reach

n—oo R2

I'(z)n = lim {]’(zn)n —(zn— 2,7) +/ [H,(x,z,) — H,(x,2)]-n| =0,

that is, z is a critical point of I. If z # 0, the proof is finished. Thus, suppose that z = 0.
By Lemma there exists a sequence (y,) C R*, R > 0 and 3 > 0 such that |y,| — oo

as n — oo and

limsup/ 2> > B > 0. (1.38)
Br(yn)

n—oo

Without lost of generality, we can suppose (y,) C Z?. Setting Z,(x) := z,(z + y,) and
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noticing that ||Z,|| = ||z.||, up to a subsequence, we have Z, — Z weakly in E. By estimate

(1.38), we have z # 0.

Next, we claim that I’ (Z) = 0. Indeed, for w € E let w,(z) = w(x — y,). By using

change of variable, the periodicity of H,, and arguing as above, we can see that
I (zn)w, = I, (Z,)w = I._(Z)w + 0,(1).
On the other hand, by Lemma [1.26] we have

I (zn)w, = I'(z,)w, +/

R2

Voo () = V()20 - Wy — / [H.(z, z,) — Heo 2 (2, 2)] - wy,

R2

= I'(zp)wy, + 0,(1)

and the claim follows from the fact that (z,) is a Cerami sequence for I.
Defining
~ 1
Hoo(z,2) = §Hoo,z(3?, 2) -z — Hoo(x, 2),

in view of (1.36)), given o > 0 and o > 0 so that 2a/|z,||* < 47, we obtain

~ ~

1
’H(CE, Zn) - Hoo(xa Zn)’ < §‘HZ(x>Zn) - HOO,Z(xazn)Hzn’

+ [ |H.(x,tz,) — Heo (2, t2,)|| 20| dt

IA
dl
N
3
T
=~

C alz, |2 o
+ S le(@)lzal (€5 = 1) 4 Dz

1
i C/ [p(@)|(e 1 — 1)z, |dt
0

< olzl® + Cilp(a) |20 (e — 1).
This estimate, Lemma and Lemma ensure that

lim inf ﬁ](x, zp) > liminf {/ f-\loo(x, Zp) — 0O 2|2 — 01/ |30($)||Zn|(€a|z”|2 B 1)}
R2 R2 R2

n—00 R2 n—00

> liminf{/ f[oo(x, zn) —oC
R

~a ([ etnir)” ([ )

> lim inf Hoo(z,2,) — 0C

n—oo R2

N
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and consequently the arbitrarity of ¢ > 0 and Fatou’s lemma show that

lim inf f[(x,zn)z/ Hoo(z,2).

n—o0 R2 R2

Thus,

n—oo n—oo R2

1 A
c, = lim {[(zn) - 5[’(271)24 = liminf | H(z,z,)

>/ Hoo(,3) = Io(3) — I'.(3)% = Io(3).

By the definition of ¢, (V1), (H7)(i7) and (1.21}), we obtain

e sup 1)< sup n(2) < L(s) < 1u(3) <
ZEMR,ZO ZE]V[R,ZO

Hence, if we define hq : [0,1] X Mg, — E by ho(t,z) = z for any (¢,z) € [0,1] X Mg,

the above inequality implies that

sup I(ho(1,2)) = ¢ > 0.

ZEMRyzO

It follows from Theorem that I has a nonzero critical point and the proof is finished.
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Chapter 2

Hamiltonian systems involving critical
exponential growth in R? with general

nonlinearities

This chapter is a continuation of the work on Chapter 1. We study the existence of

ground state solution for the same class of Hamiltonian systems:

—Au+V(x)u = Hy(x,u,v), x€R? 0
(i
—Av+V(z)v = Hy(z,u,v), z¢€R?
where V € C(R?, (0,0)), H € C'(R? x R?,R). Here, our intention is to deal with system
when V and H are periodic in x = (z1,z3). Moreover, H is allowed to have a critical
exponential growth and depends on u and v simultaneously.

Our main assumption on V is the following:

(Vo) V(x) =V (xy1,2) is positive and 1-periodic in the variables zy, xs.

With respect to the function H, we assume the following conditions:
(Hy) H € C'(R* x R?,R) and H (w1, 29, 2) is 1-periodic in the variables z;, x;

(Hy) (Critical exponential growth) there exists ap > 0 such that

- |H.(z,2)] B 0, if a > ay,
|z]—o0 6a|z|2 :
+o00, if a < ap,
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uniformly in z € R?;
(Hy) H.(z,z) =o0(]z|) as |z| = 0, uniformly in z € R

(H3) there exists g : R? x R, — [0, 00) increasing in the second variable such that

H,(z,2) = g(z,|2|)z, foreach (z,z)¢c R*x R

(H,) there exists Ry, My > 0 such that

0< H(z,2) < Mo|H.(2,2)], forall 2 €R* and |z|> Ry;

H
(Hs) limsup M =: B < 400, uniformly in z € R?, where
|z|—o00 H(SL’, Z)

A~

1
H(z,z) = éHz(x,z) -z —H(z,2), for (z,2)€R*xR%

Remark 2.1. We observe that we do not require the well-known Ambrosetti-Rabinowitz

condition:

(AR) there exists 0 > 2 such that, for each x € R* and z € R?*\{0}, there holds

0<0H(z,2) < H.((x,z) -z,

which 1s often used in Hamiltonian systems involving critical exponential growth.

Next, let us consider the Banach space E := H'(R?)x H'(R?). We say a pair (u,v) € E/

is a weak solution of system if the equality

/R2(Vu -V + V(x)up) —I—/

R2

(Vo -V + V(z)vy) = / (Hy(x,u,v)p + Hy,(z,u,v)))

R2

is valid for all (,v) € E. The energy functional associated to is given by

I(z) = /R2(Vu -Vo+V(z)uv)de — | H(z,z)dx, z=(u,v)€ E.

R2

As we will see in Section this functional is of class C' and critical points of I

corresponds to weak solutions of Problem .
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We say that zg € F is a ground state solution of if
I(z0) = inf{I(z) : z € E\{0} is a weak solution of (T])}.

Denoting ||Vl = max,egz V (), the main result of this article is stated as follows:

Theorem 2.2. Suppose that conditions (Vo) and (Ho) — (Hs) are satisfied. In addition,

we assume that there exists p > 2 such that
H(z,2) > Xo|2|P, for all (x,z) € R* x R?, (2.1)

where

jo > 02T (Ba0) T (4 + Vo)

p

if B>0 and N >0 if 5=0. (2.2)

(SIS

Then, system has a ground state solution.

We observe that as a consequence of condition ({2.1f), we have

= 400, uniformly in z € R% (2.3)

As said before, an obstacle in studying Hamiltonian elliptic systems like in
dimension two through variational methods is dealing with the lack of compactness,
stemming from the unboundedness of the domain and the noncompactness of the
Trudinger—Moser functional. Furthermore, here the Nehari manifold is not of class C*
and we cannot apply the Ekeland Variational Principle. To overcome this difficulty we
used arguments introduced by Szulkin and Weth in [59, [60] (see also [32], B3, 52, £7]),
which relates this minimizing process on the Nehari manifold with a similar one on a
Cl-manifold (see Lemma[L.6). As we are not using the Ambrosetti-Rabinowitz condition
and by imposing a critical exponential growth on a general nonlinearity, our argument
requires a delicate analysis of the Palais-Smale sequences that converge to the infimum

of the functional on the Nehari manifold.

Example 2.3. It is not difficult to check that the function H : R? x R? — R given by

H(z,2) = [2P(e = 1) + Ao| 2,
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with N fulfilling (2.2), satisfies conditions (Hy) — (Hs) and (2.1)).

In the forthcoming section, our objective is to apply Lemma [T.6] so we restate some
definitions and results, and prove the ones that need some modification due to the critical

exponential growth. In Section [2.2] we prove our main result.

2.1 Preliminaries

In this section we present some results that will be used to prove Theorem 2.2] In

order to exploit Lemma [1.6] we consider the following subspaces of E:
Et :={(u,u) :u € H(R*} and E :={(u,—u):uc H(R?]}.
Note that £ and E~ are orthogonal in E and for z = (u,v) € E, if

. u+v’u+v and o u—v’v—u ’
2 2 2 2

then 2* € E* and we have z = 27 4+ 2. Thus, £ = E* ® £~ and a simple computation

shows that
1
/ (Vu- Vv +V(z)uv) = §(HZ+H2 — [I=711%). (2.4)
RQ

By using (H;) and (Hs) we can see that, given € > 0, & > ap and ¢ > 1, there exists
C = C(g,a,q) > 0 such that

max{|H (z,2)|, | H.(z, 2)||2|} < e|z]?> + C|z|9(e** = 1), for all (z,2) € R? x R%. (2.5)
In view of (2.5) and Lemma [1.12] the energy functional associated to , given by
Lo 2 -2
I(z) = 51717 = MI=717) = T (=), (2.6)

where J(z2) := [p. H(x,2), is well defined. Furthermore, it is not difficult to show that
[ € C'(E,R) with

I'zw= (" w") - (z,w)— | HJ(z,2) -w, forzwekE.
R2

Hence, the critical points of I correspond to weak solutions of Problem .
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In order to apply Lemmall.6] we need to show that I satisfies conditions (N7) — (Ns).
Some of these lemmas are already in Chapter 1, we restate them and prove the ones where

the critical growth hypothesis is used.

Lemma 2.4. Assuming conditions (Hy) — (Hs), for each z # 0 we have
1
EHZ(x’ z)-z>H(x,z)> 0.

Furthermore, J(0) =0 and J is weakly lower semicontinuous.

By the previous lemma, condition (N7) is satisfied. The next result is necessary in

order to show condition (NNs).

Lemma 2.5. Suppose that H satisfies (Hy) — (H3). If 2 € N then for any w # 0 such
that z +w € E(z), we have I(z +w) < I(z).

Lemma 2.6. Assume conditions (Hy) — (Hs) and (2.1). For each z € E\E~, there exists
R = R(z) > 0 such that I(w) < 0 for all w € E(2)\Br(0), where Br(0) := {z € E:
2] < R}

The next lemma guarantees that condition (Ny) is valid.
Lemma 2.7. Suppose that H satisfies (Hy) — (Hs3) and (2.1).
(i) for any z € N, I|E(z) admits a unique mazimum point which is precisely at z.

(ii) for any z € E\E~, the set E(z) intersects N at ezactly one point m(z), which is

the unique global mazimum point of ]|E(z)'

Proof. Firstly we will show (i). Given tz +y € E(z)\{z}, it is enough to consider
w = (t — 1)z +y to obtain tz +y = z + w. Note that, if w = 0 then ¢ = 1 and
y = 0, but this can not occur because tz +y # 2. Hence, w # 0 and by Lemma [1.16| we
conclude that I(tz 4+ y) < I(z).

To prove (ii), by the previous item, it is sufficient to show that AN E(z) # 0 for each
z € E\E~. Moreover, since E(z) = E (2¥/||2*]|), we can assume z = (u,u) € E* and

|z|| = 1. By Lemma m, there exists R > 0 such that I(w) < 0 if w € E(z)\Bg(0) and
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if |Jw|]| < R then I(w) < R?*/2 and so Supg,) I < 00. On the other hand, by using (1.8),

for ¢ > 0 and o/ > «g there exists C. > 0 such that
H(z,2) <elz|? + Clz (e — 1), 2 e R (2.7)

From (1.12)), Lemma and by choosing 0 < e < 1/(4 [5, |2]?), we have

t2 )
e = Gl - [ 2 5o [ s -t [ e -
R2 R2
t2 1/2 . 1/2
——Ct (/ |Z’6) |:/ (eza/t |22 1>1 >0,
4 R2 R2

for all 0 < ¢t < /27 /' sufficiently small. Consequently, supp(,) L > 0.

v

Now, let w, = (w,w?) = t,z + (hn,—h,) € E(z) be a maximizing sequence
for supp,{. Since supg I > 0, we can suppose that |w,|| < R. Hence, up
to a subsequence, w, — wy weakly in E. We can see, up to a subsequence, that
tn, — to > 0 and h, — ho, wl — w}, w2 — w? weakly in H'(R?). Therefore,
wo = (wg,w?) = toz + (ho,—ho) € E(z). Recalling that z € Et and |z|| = 1, we
can write

) = %= Ll = [ G upowd)
from where it follows, according to the weak lower semicontinuous of the norm and Fatou’s

lemma, that

tQ
supl = lim I(w,) = 5—l—hmsup [——Hh 12 — / H(z,w}, w?) } < I(wp).

n—o0

Thus, I(wy) = supp ! and therefore wo is a critical point of I|z ), showing that
wo € N'N E(2) and the proof is complete. |

As an immediate consequence of this lemma, we obtain the following characterization

to the minimal level for I on the generalized Nehari manifold N:
Corollary 2.8.

¢ ;= inf I(n) = inf max I(w).
neN (77) 2€E\E~ weB(2) ( )
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Lemma 2.9. Suppose that H satisfies (Hy) — (H3) and (2.1). Then, ¢, > 0 and
|21 > max{||z"||,v2c.} forall z€N.

Proof. For a > 0, we recall that S} := {2z € ET : ||z]| = a} and (Ry)z = {tz : t > 0}.
Since E(z) = E(z*) for any z € E\E~, from Corollary for any a > 0, it follows that

¢, = inf max [(w)= inf max I(w)= inf max [(w)> inf max I(w).
Z2€E\E™ weE(2) 2€ET\{0} weE(z) 2€ST wek(z2) zeSF we(Ry)z

Let z = (u,u) be in S and o > ay. We take a > 0 so that 2aa® < 4w. By virtue of

Lemma[1.12] we reach

/Rz(ezaw 1) = /RQ(eM2<Zl/llz>2 _n<c

for some C' > 0. Thus, by using (|1.12)) we get

0622
max I(w) > I(2) = [[ulf} - / H(w,u,u) > [ull} — / PG / 23 (e — 1)
R2 R2 R2

we(Ry)z
%% ‘ 1/2
> (1= 2 )l - e ([ 1or)
0 R2

2¢e
(1 - a—) Jull?, = Crlluly
0

where we have used the continuous embedding H*(R?) — L%(R?). Hence, taking € = ag/4
and 0 < a < /27 /a sufficiently small so that 1/2 — C||lul|y = 1/2 — Cia/v/2 > 1/4, we

conclude that
, (1 a? N
max [(w) > ||ulli { = — Cillullv | > = >0, forall z=(u,u) €S,
we(Ry )z 2 8

and consequently ¢, > 0. Now, for any z € N' we have

1 1 _
5= 1) = [ H ) < 50 R = 1R
which implies that ||z7| > max{||z7||, v/2¢.} and the proof is done. [

Condition (N3) can be now proved in the following lemma:

Lemma 2.10. Suppose that H satisfies (H) — (Hs) and 2.1). If W C E\E~ is compact,
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then there exists Cyy > 0 such that ||m(2)|| < Cw, for all z € W.

2.2 Proof of Theorem 2.2

The generalized manifold A is not necessarily of class C!' and thus the Ekeland
Variational Principle can not be applied directly to obtain a Palais-Smale sequence
for I on N. However, in view of item (iv) of Lemma and Lemma one has
infg+ U = infyr I = ¢, > 0. Since ST is a submanifold of class C! of £, it follows from

the Ekeland Variational Principle that there exists (w,) C S such that
U(w,) = ¢ and ||V (w,)]|s =0 as n — oco.
Let z, = m(w,) € N. By items (ii)-(iv) of Lemma [L.6] we reach
I(z,) > ¢ and ||[I'(z,)]| =0 as n— oo. (2.8)

In the next lemma, we shall guarantee that the above sequence (2,) C N is bounded.
For this, we shall use the following inequality, whose proof can be found in |28, Lemma,
2.4]:

(e —1)+s|(log|s))?, teR and |s| > e
st < - 1, » (1.27)
(e —1)+§s, teR and |s| <e'/".

Lemma 2.11. Suppose that (Hy) — (Hs) are satisfied. Any Palais-Smale sequence
(zn) CN for I is bounded.

Proof. Let (z,) C N be a Palais-Smale sequence for I at level c. Hence,

¢+ on(1) = I(2,) — %I’(zn)zn _ | ). (2.9)

R2
Suppose by contradiction that, up to a subsequence, ||z,|| — co. Thus,

I'(zn) (20 — 2,)

n

on(1) =
! (A R? [EA s
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Setting wy, := z,/||z,||, it follows that

i (W —w
. (7, 2,) - (Wi —w,)

n—o0 Jpe Izl

= 1. (2.10)

In what follows, we claim that the function @ : (0, 00) — R defined by

A~

Q(r)= inf H(z,z2)

zERZ?, |z|>r

has the following properties:
Q(r)>0 forall »>0 and Q(r) — 400 as r — oc. (2.11)

Indeed, by Lemma we have PAI(:U,z) > 0 for all z € R? and 2z # 0. Moreover, by
using (Hy), with 0 < o/ < a, and (Hs) we can deduce that H(z,z) — 400 as |z| — oo,
uniformly in x € R?. Therefore, by the definition of @, one has Q(r) — +o00 as r — oo.
From this fact and by the periodicity of ﬁ(m, z) in z, for each r > 0 there exists M, > r
such that

~

Q(r)= inf H(z,z2)= min ?[(w,z) = f[(xo,zo) >0

Y
z€R2, |2|>r z€[0,1]x[0,1], r<|2| <M,

and the claim is proved.

For 0 <a<b<ooandnéeN, we set
Q(a,b) == {x € R? 1 a < |2,(7)| < b}.

Using (2.9) and for 0 < r < R < oo, we obtain

N Ar. s N
c+o,(1) = H(z, z,) + —(I’Z )\zn\z—l— H(z,z,)
2
Q,.(0,r) Qn(r,R) |2n] Qn(R,00)

Q(r
> [ fwa)+ D [ o)
Qn(0,7) Qn(r,R)
and therefore there exists C; > 0 such that

)

X i Q(r) > }
e {/szn<o,r)H<x’Z”)’ R /QH(TVR) [2n]”, Q(R)|Q(R, 00)] » < Ci. (2.12)
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In particular,

|2, (R, 00)| < C1/Q(R) for each n e N. (2.13)

Now, let. C5 > 0 be such that ||z]|2 < C3]|z||? for each z € E and consider € > 0. By
(Hs), there exists r. > 0 such that |H,(z, z)| < €|z|/C; for each |z| < r. and x € R?. By
the definition of w, and since |w — w, | = |w,|, from (2.12) with r = r., for any n € N

we get

. + -_ N
/ H,(x,z,) - (wf —w,) < / MW:_W;HUJ”‘
Qn(0,72) 2n(0yre)

BN 2] -_
<= jwn|? < el = e.
CS Qn(0,7¢)

Now, let R = R. > r. to be chosen later. Define A; = Q,(R.,00) N {x € R? :
|H.(z,2,)| <e'*} and Ay = Q,(R.,00) N {x € R?: |H,(z,2,)| > e'/*}. Taking t = |w,|
and s = |H,(x, z,)| in (1.27)), we get

/ < / (2, 20) [l
. Tl Tl o oo

1
<o | (o z)|(log | He (2, 2)]) '
Izall Ja,
1

znll Ja,

(el — 1),
(2.15)

1
—‘HZ(LE, Zn)|2 +
2 [2nll Jre2

By (2.13), we have |A4;| < |Q,(R., 00)| < C1/Q(R.) and consequently

0161/2
|H.(z,2,)* < , forall neN.
/.Al Q<R€)

By Lemma , the integral J“RQ(G‘“’"|2 — 1) is bounded. Moreover, given o > o by (H;)
there exists R; > 0 such that

|H,(z,2)|] < e* for all z € R? and |z| > R;.
In view of (Hs), there exists ¢; > 0 such that

|H.(z,2)||z] < c1H(z,2) forall z€R? and |2| > Ry

26



Taking R. > R;, from the two last estimates and (2.9) it follows that

[ Vol og ez < o
Az

(o)) <0 [ Az)<c
Az R2

for some constant C' > 0. Thus, in view of (2.15]), we find ny € N satisfying

Hz n)” r—wy,
/ (2, 20) - (wy = w,) <e, forall n>ny. (2.16)
QTL(RE7OO)

[z

According to (H;) and (H,), given o > ap we obtain C, > 0 such that, for all

x € Q,(re, Re), we have
|H.(z,20)] < |2n| + Ca(eaRE —1)|2y]

From this estimate and (2.12)), recalling the definition of w,, and |w} — w,| = |w,|, we

reach

/ H.(2,2,) - (wy —wy) _ 02/ |2l Wy — w,|
Qu(re.Re) (A = Joweery

< %/ |22
[EA Qn(re,Re)

Cy R
= lzall? Q(re)

AN

<eg, forall n>ny,

for some n; € N. This estimate, (2.14) and (2.16) show that

H.(r,2,) (0} —w,)

R2 Hzn”

dr < 3e, for all n > max{ngy,n;}.
But this contradicts (2.10) because € > 0 is arbitrary and the proof is done.
[

Once the sequence (z,) C N satisfying (2.8)) is bounded, it follows that there exists
20 = (ug,v9) € E such that, up to a subsequence, z, — 2 in F and z, — 29 a.e. in R? as
n — oo. Our intention is to prove that zg is a nonzero critical point of I and to conclude

that 2y is a ground state solution. This will be done in the next propositions and lemmas.
Proposition 2.12. The weak limit zy of the sequence (z,) C N is a critical point of I.
Proof. By the density of C§°(R?) x Cg°(R?) in E, it is enough just to deduce that
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I'(z0)n = 0 for all n € Cg°(R?) x C§°(R?). Then, let n € C5°(R?) x C§°(R?) and
K :=suppn. By (Hj), there exist M > 0 and ¢; > 0 such that

|H.(2, 2)||20| < c1H(z, 2,), forall |z| > M.

Defining Oy = K N{x; |z,(x)] < M} and Qo = K N{z; |z,(z)| > M}, by (H,) and (H»),

given o > oy we obtain C' > 0 such that
|H.(z,w)| < |w|+Ce™F —1) forall (z,w) e R?xR?
and hence

(2 @) @) < [llclon(o)] + Callpl(el=r — 1)
< [nfloc[M + 01(60‘M2 —1)] ae. in z € Q.

Since H,(x,z,) - n — H,(z,2) -n a.e. in x € Q, it follows from the Lebesgue

Dominated Convergence Theorem that
/ [H,(x,z,) — H,(x,2)]-n— 0 (2.17)
971

Now, observe that by (Hs), (2.9) and Hélder’s inequality, we reach

(x,2,) — H,(x, 20)|| 20|

_ I
M
’7 (a2l + (o)l ] (2.18)
3
< 7l c1 H(x zn) + Ch </ [ 2alz0l? _ 1]) ||Zn||2]
M RQ ]RQ
InllC
i M )

for some C' > 0 independent of M. Hence, given § > 0 we can take M > 0 so that

<9, forall neN. (2.19)

/Q (., 2) — Ho(220)] -1
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Therefore, by (2.17) and (2.19) we obtain

lim sup

n—00 n—oo

/ [Hz(l', Zn) - Hz(%%)] ' 77‘ < limsup
K

/Q [H.(, 2) — Ha(z, 20)] | + 6=

and once 0 > 0 is arbitrary, we conclude that

/R2 [H.(x,z,) — H.(x,20)] - p — 0. (2.20)
Since
P = 1o = o =) = [ [Halr2) = oo o)l

and according to ([2.20)) we reach

n—oo

I'(z20)n = lim |I'(z,)n — (20 — 20,7m) + /R2 [H.(z,2,) — H.(z,2)] -n| =0,

and the claim is proved.

A key result in the proof that the weak limit zy of the sequence (z,) C A is nontrivial

is the following estimate:

Proposition 2.13. The minimal energy level c. defined in Lemma[2.9 satisfies
fe. < Am/ay,

where > 0 is given in (Hs).

Proof. If = 0 then the above inequality is automatically valid. Assume now § > 0. Let
¢ € C°(R?) be such that 0 < ¢ < 1in R?, supp(p) = By, ¢ = 1 in By and |[Vp| < 2
in R%, By item (i) of Lemma E((p,¢)) intersects A at exactly one point, which is
the unique global maximum point of ‘”E((eo,w))’ that is, there exists an unique ¢, > 0 and

(v,—v) € E~ such that 1 := to(p, @) + (v, —v) = (top + v, toe — v) € N. Hence,
1) = el ~ olfy — [ Hestog+ v.tog = 0
R

< tollelly — H(z, top + v, top —v) — H(z,top + v, top — v),
01(’[}) CQ(U)
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where C}(v) = {z € R? : v(z) > 0} and Cy(v) = {x € R? : v(x) < 0}. Consequently, by

2D,

1) < 8ol = o | [ o +tap— P o | [ ((twp+ ovtag — 0P
C Ca(v)

1(v)

< 2¢l - Ao [ / [max{wﬂ,w_vmp] a [ /
C1(v) C

<@llelt = [ ltogl = 2o [ ool
C1(v) Ca(v)
< 2[lpl2 — 2, /B ol?
1

<t (4 4+ ||V oo )4 — thAom

[max{top + v, top — v}]p]
2(v)

< 2 \t?
< 7 max [4(4 + |V ]| oo)t® = Xot?] .

Calculating the maximum and according to (2.2) we reach

—92)252 [4(4 4
Be. = Binf I < BI(n) < prl2=2 z[p( i“v”c"’)] <
pPEAG @0

and the proof is done. [ ]

For the next lemma, we will exploit the inequality
st <t*(e”” — 1)+ s(logs)/?, for t>0 and s> VA (2.21)

The proof of (2.21)) can be seen in 38, Lemma 4.1].

Lemma 2.14. Let z, = (uy,v,) € N be a sequence satisfying (2.8). Then, there exists
R > 0 such that

lim sup/ (u2 +v2) > 0. (2.22)
Br(y)

n—oo y€R2

Proof. First, by Proposition we can choose 0 > 0 so that fec, € [0,47/ag — §).
Assume by contradiction that (2.22)) does not occur, that is,

lim sup / (u +v2)=0 forall R >0, (2.23)
Br(y)

n—0o0 yER2

60



which implies by Lions’ lemma (see [49]) that
u, — 0 and v, — 0 strongly in L*(R?) for any s > 2. (2.24)

Now, we claim that

H(z,z,) = | H(x,uy,v,) — 0. (2.25)

R2 R2

In view of (Hy) and (Hj), there exists ¢; > 0 such that
H(z,z) < My|H.(x,z)| and |H.(x,z)||z] < clﬁ[(a:,z) for all x € R* and |z] > Ry.

On the other hand, by (Hj), (2.9) and for any K > Ry, we deduce that

/ H(z, =) < My / (2, 2)
{lzn|>K} {lzn|>K}

MO M(]Cl/ -~ M()C
< Hz ) An n S H 5 AN S )
(o)l < S [ Bz < =

where C' > 0 does not depend on K. Given any € > 0, we can take K > 0 large enough

K S sr

so that
/ H(z,z,) <e. (2.26)
{lzn|>K}

By (2.12)), for oo > g we know that
H(J], Z’"«) < 8|Zn|2 + 05|Zn|4(ea‘zn|2 _ 1)

and thus

/ H(l’,zn) S&,/ ’Zn’2+/ ’Zn|4<€a|z7z|2 _1)
{|zn|<K} {lzn| <K} {lzn|<K} (2.27)

<eC+2(e*™ = D(Jlunll§ + [lvnll7)-

Therefore, from this inequality, (2.24]) and (2.26)), it follows that

n—00 R2 n—o00

limsup | H(zx,z,) = limsup {/ H(z,z,) +/ H(z, zn)} <(1+C)e
{lzn|<K} {lzn|>K}

and convergence ([2.25) is proved.
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Since I(z,) — ¢, by convergence (2.25) we reach
lim [ (Vu,Vu, + V(2)u,v,)dr = c,. (2.28)

n—o0 R2

If z, — 0 strongly in E as n — oo, then by (2.25) and (2.28) we get that ¢, = 0,

which is not possible. Therefore, we can assume that ||z,|| > b > 0 for all n € N. Once

(I'(z), zn) = 0n(1)]|20||, we have
laall = [ Ho20) 2+ on(Dl]
In view of (Hy) — (Hy), given € > 0 there exists C. > 0 such that
|H.(z,2)] < Coe@®t for all (z,2) € R? x R2. (2.29)

Setting

— Zn
= lnfoo =3} zall

where 0 > 0 was chosen at the beginning of the proof, we can write

(47 /g — 5)1/2“an‘ < /R? | H (2, U, Un )| [Zn| + 05 (1)

G |H. (2, un, vy))|
\/ O R2 Cg

(2.30)

Voo Zn| + on(1) =: I,.
Defining
I, = {x € R?: |H (z,up,v,)|/Ce > 61/%} and A, = R*\I',,

by using inequality (2.21) with s = |H.(z, up,v,)|/C: and t = \/ag|Z,| we can estimate

C. |H. (2, tp, vy)] |H. (2, v0) |\ 12
I, < 1 o (1
=ao Jr. C °g c +on(1)

+/ |Hz(x,un,vn)||zn|+ce./—a0/ 22 (e 1)
An R2
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Thus, by (2.29)) we get

<2 )l + Co [ [Rul? (6™~ 1)
Qo Ty R2

—I—/ |H, (2, Up, 0p)|[Z0| + 0n(1) (2.31)
An

oy + €
< % / H (2, e, 00) | 2] + Tom + T + 0n(1),
Oé() R2

where

L, = C’E\/ao/ 1Z,)? <€a0\zn\2 — 1) and Iy, ::/ |H (2, Up, vn)||Z0]-
R2 An

Now, we can take p > 1 close to 1 such that pag(47/ag—38) < 4m. Since ||Z,||* = 47 /an—0,

Lemma and (2.24) imply that

1/q . 1/p
NN
R2 R2

4 _ 1/q
< 02\/a_0<7T/(Z—(2)5) {/ |Zn|2q} — 0,
R2

where 1/p+1/q = 1. Next, according to (Hy) — (Hz), for any p > 0, there exists C,. > 0
such that
|H, (7, 2,(2))| < plzn(2)] + Coelzn(2)]?, forall z€A,. (2.32)

Hence,

1/2 1/2 1/2
B < [ a4yl < [p( / W) e ( / |zn|4) ]( / w) .
An R2 R2 R2

Once ||Z,|| is bounded and z, — 0 strongly in L*(R?) x L*(R?), we reach
limsup I, < Cp,

n—oo

for some C' > 0 independent of p. Thus, we conclude that I, ,, = 0,(1) and I5,, = 0,(1).

Therefore, (2.30) and (2.31) provide

1/2
(4m /g — 5)1/2||Zn|| <o,(1) + (1 + ai) / |H,(z, z,)]||2n]- (2.33)
0 R2
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By virtue of (Hs), given § > 0 there exists M > 0 such that |H.(z, 2)||z| < (3+6)H(x, 2)
for all |z| > M. Hence, by using (2.9) with ¢ = ¢, one has

HZ y~n n S /6+5 ﬁ »~n + HZ Pad 13 n
LGl <@ 1o [ Awz+ [zl
< Bee +o,(1) —i—/ |H.(z, zn)||2n]-

{lzn|<M}

By virtue of (2.5) and arguing as in (2.27]), we can show that

/ |H,(x, z,)||2n] — 0.
{lzn|<M}

and consequently

[ Mozl < e+ 0a(D),

Hence, since Se, € [0,47 /g — 0), according to (2.33) we have

1/2 74 —-1/2 A N\ 12
[2nll < 0n(1) + (1 + i) (1 - 5) Be, < (1 — 5) : (2.34)

(%] (&%) %)

for some 0 < & < & and for n sufficiently large. On the other hand, choose p; > 1 close
to 1 and a > ag close to «q satisfying pya(4n/ag — 5) < 4, from ([2.34)) it follows that
pra|u,]|? < 47 for n sufficiently large. Once z, — 0 strongly in L% (R?) x L% (R?), where
1/p1 + 1/¢1 = 1, by invoking Lemma we obtain

Ll -yiza (L) [L o] <o () o
R2 R2 R2 R2

From this convergence and again by using (|L.8]), we get

|H,(z, z,)||2n| = 0,
RQ

which together with (2.33)) implies that z, — 0 strongly in H'(R?) x H'(R?). Thus, again
it follows from (2.28)) that ¢, = 0, which is a contradiction and proof of the lemma is

complete. [ |

Finalizing Proof of Theorem[2.3. Once (2.22)) is valid, we can get a sequence (y,) C R?
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and v > 0 satisfying

| ez
BR(yn)

Now, we introduce the following sequences:
Un(-) = tn(- +yn) and  Tu(-) = vn(- + Yn)-

In view of (Vp) and (Hy), we can see that Z, := (u,, 0,) € N and also satisfies 1(Z,) — c,

I'(z,) — 0 and

lim inf / (a2 + 92)dx > v, (2.35)
BRQ(O)

n—oo

Observe that, by Lemma (Z,) is also bounded in F and, up to a subsequence, we
assume z, — Z weakly in E for some Z = (4, 0) and 2, — Z a.e. in R% From Proposition
it follows that I'(Z) = 0. Moreover, in view of we have Z # 0 and Remark
guarantee that Z € N, implying that ¢, < I(2). By invoking Fatou’s Lemma, we deduce
that

1 1
¢, = liminf I(Z,) = liminf |I(Z,) — 5[’(2,1),%] = lim inf/ [EHZ(x, Zn) - Zn — H(x, én)}
R2

n—oo n—oo n—oQ

> /R BHZ@,%) - H<x,z>]
= 1(2) - 5T

= I(3).

Therefore, I(Z) = c,, which shows that Z is a ground state for ([l)) and the theorem is

proved.
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Chapter 3

Hamiltonian systems in the plane

involving vanishing potentials

In this chapter, we establish the existence of nontrivial solutions for the class of

Hamiltonian systems

—Au+V(x)u = Q(x)g(v), = <€R? @
—Av+ V() =Q(z)f(u), z &R

where V and Q decay to zero at infinity as (14|z|*) ™ with a € (0,2), and (1+|z|?)~! with
f € [2,+00), respectively. The nonlinear terms f(s) and g(s) have subcritical or critical
exponential growth. We show an alternative proof of a weighted Trudinger-Moser-type
inequality and combine with a Galerkin approximation method and a linking theorem.

Hamiltonian systems where the nonlinearity H(z,u,v) has polynomial growth at
infinity have been considered in the literature before, see for example [22], 25], 40]. For
problems with a exponential growth in dimension two, see |3 [38] [44].

Here, we shall consider the following assumptions:

(V) V € C(R?), there exist a,a > 0 such that

a
<V
T o = V@)

and V(z) ~ |z|7 as |z| — oo
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(Q) Q € C(R?), there exist 8,b > 0 such that

b

0<Qe)< ——,
V) < T

and Q(x) ~ |z|7" as |x| — oco.

In particular, we restrict our attention to the case when « and [ satisfy

a€ (0,2) and S € [2,00].

&1

With respect to the functions f, g, we assume the following conditions:
(ho) f,g:R xR — R are continuous;
(h1) f(s) =o(|s|) and g(s) = o(]s|) at the origin;

(hs) there exists § > 0 such that

0<OF(s):= Q/Sf(t)tdt < sf(s)
0 for all s € (0, 00);

0 < 0G(s) := 9/08 g(t)tdt < sg(s)

(hs) there exists constants My > 0 and s; > 0 such that

0<0F(s) < Myf(s)
for all s € [s1,00).
0 < 0G(s) < Myg(s)

We say f(s) and g(s) have subcritical growth if

lim f<82) =0,
s—+oo eHs
lim 9(s) =0

2
s—+oo evs

for all p,v > 0.

We say f(s) and g(s) have critical growth if there exists critical exponents pg, vy > 0
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such that

f(s) 0, for all p > po;

+o00, for all u < py,

g(s) 0, for all v > 1y;

+o00, for all v < .

Let LP(R?) denote the weighted LP-space conmsisting of all measurable functions
u : R? — R satisfying

/ w(x)|ulPde < oo.
R2

We introduce the weighted Sobolev space
Hy(R?) :={u € L}, (R?) : |[Vu| € L*(R?)},

with norm

Jull = [l + [ Vi

Remark 3.1. By the continuous embedding
Hy (R?) = Hy,o(R?),

the definition of Cauchy sequences and Fatou Lemma, we are able to show that (Hy,(R?), ||-

) is complete.

Remark 3.2. The space C°(R?) of smooth compactly supported functions is dense in
(Hy (R?), ]| - ]])-

Let us denote by E := H},(R?) x H{,(R?) equipped with the inner product
(,0), (0, 6)) 5 = / VuVo + V(@)ugp + VuVe + V(z)o]d,

]RQ

for all (u,v), (p,®) € E, to which corresponds the norm

(s 0) |5 = ((u,v), (u,0))
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We say that weak solutions of (4)) are functions (u,v) € E such that

/}R2 [VuVu + V(z)up + VuV + V(z)vp|dr — . Qz) f(u)pdr — g Q(z)g(v)pdr =0

for all (¢, ) € E.

Now, we state our existence results.

Theorem 3.3 (Subcritical case). Suppose f(s) has subcritical or critical exponential
growth, g(s) has subcritical exponential growth, (V), (Q) and (ho) — (hs) are satisfied.

Then possesses a nontrivial weak solution (u,v) € E.

For the next result, we assume that there exists 79 > 0 such that the functions f,g

satisfy
lim inf f<82), liminfLU =: fp > M, (3.1)
[s|—o0 €709 |s|—o0 €70 0s”
where
461/2r2vma”
M=iinf————— Viax, = maxV (z) >0 and Quin, = minQ(z) > 0.

>0 Yor lenr ' |z[<r |z|<r

Theorem 3.4 (Critical case). Suppose f(s) and g(s) has critical exponential growth, (V'),
(Q), (ho) — (h3) and (3.1) are satisfied. Then possesses a nontrivial weak solution
(u,v) € E.

The original characteristics of the class of problems we study in this chapter are that
both V' and @) vanish at infinity and are not necessarily radially symmetric. Some of the
difficulties to study these problems continue to be the lack of compactness of the Sobolev
embedding since the domain R? is unbounded and the nonlinearities f and g have critical
growth. We also know that the energy functional associated with system is strongly
indefinite and the nonlinear term W(u,v) = [5, Q ) + G(v)]dx is not weakly lower
semi-continuous. Here, we adapt some arguments presented in [58].

This chapter is organized as follows: first, we show a alternative proof to a weighted
Trudinger-Moser-type inequality. On Section we check the variational framework and
the linking geometry for the associated functional. We prove the boundness of the Palais-
Smale sequence on Section Lastly, we show the main results for the subcritical and

critical cases on Section [3.5] and Section [3.4] respectively.
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3.1 Preliminaries

In this section we prove a Trudinger-Moser-type inequality with an distinct proof to
the ones presented in [35, B7], in which we do not use Besicovitch’s Covering Lemma.
We were inspired by the proof presented in [4], where Albuquerque et al. have shown a

Trudinger-Moser-type inequality for v > 0 in the range (0, v.) where 7, € (0, 47).

Theorem 3.5. Suppose that (V) and (Q) are satisfied with o € (0,2) and 5 € [2,00).

For any v > 0 and u € E, we have
Q)™ —1) € L'(R?).
Moreover, for any 0 < vy < 4,

sup (z)(e™ = 1)dz < oo.
u€E ||ul|<1 JR2

The proof of this Trudinger-Moser inequality is a direct consequence of the following

proposition.

Theorem 3.6. There exists an constant C., > 0 such that
Q) —1)dx < Cyjull?,
R2

for all 0 < v <47 and ||ul| < 1.

Proof. Let 0 < v < 47 and u € H},(R?) with ||u| < 1. First, take 6 > 0 such that
(14 d)y < 4m. Since a < 2 and > 2, let us fix R > 0 sufficiently large such that

64 (1+ (3R)" b (1+2°R*
N2 J < - | — < . .
2 ( . 0 and - ( 5 1496 (3.2)

Now, set ¢ € C5°(Bag) satisfying

4
¢=1in B, ¢ <1inR? and ]Vgp]ﬁﬁintR.
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Hence pu € W,*(Bg) and

/ ]V(gou)dez/ IVou + oVul*dx
Bar

Bar

:/ uQ\Vu|2dx+2/ ququoda:+/ ©|Vul|*dx
Bag Bar

Baor

1\ 1
< (1 —1—5)/ \Vul*dz + <1 + —) —62/ u?dzx
Bar o) R Bar

1) 161 + (2R)

< (1 2d 1+ = _ 2dz.
<( +5)/BQR|VU| x+< +5 IE " /BQRV(x)u x

Considering , we have that
/ |V (pu)|?dz < (14 96) / (|Vul|® + V(2)u®)dz. (3.3)
Bar Bar

u

V1+0

Let v := . By (3.3)), it follows that

/ (Volde < ||ul|* < 1.
Bar

Therefore, applying a Trudinger-Moser type inequality by Adachi-Tanaka [I], we

obtain

/ (67(1+6)v2 — 1)dz < 01/ V2dr
Bar Bar

1+ (2R)~ )
< Clm/BzR V(z)(pu)dx
< Clﬂ/ (|Vul* + V(z)u?)dz.

By the above inequality

/ (e — 1)dx = / (67(1+6)(\/%) - 1) dx
BR BR

< / (e —1)da
Baor

1+ (2R)~
a

<y

/B (IVul? + V(z)u?)dz. (3.4)
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For the next step, we introduce the sets
Ajp={r eR*: 2R < |z| <27"'R}, j=0,1,2,..

and

—

R . 5R
AjR = {x e R?: 2]5 <|z| < 2]“7}, j=0,1,2,...

Our objective is to estimate the integral fA'R Q(x)(e’u? — 1). Let us fix j € NU {0}
and let y := 277z. Thus, if u;(y) := u(2’y) = u(zx), we obtain

2 b 2
Qx e”“—ldxg/ ——— (™ —1)dx
[, awie —vars [ e -
b 2
< " _1)d
= 1+ 2i6RP /A],R(e Jdz

b , >
R — 45— 1) dy. 3.5
< g [ (= vy (35)

Consider pg € C§° (ZO:%) such that
—_— . 8 . —_—
0<o¢p(x)<1, forallz € Agr, ¢r=1inAgr and |Veg|< - in Ap .

Using the Adachi-Tanaka inequality once more, we obtain the following

/ (&7 — 1)dy = / (&7 — 1)dy
Ao,r Ao,r
< / (09 (7T
B Ao,r

5) 1y

<C’1 ( ) dy_C’l Au-dy:% - 2dx
ADR Ao,R 2% Aj R
Cy % .2
2C R~ (2)° / Jidr.
S o

Therefore, using (3.5)), we have

2j+1 a (5)¢
/ Q@@W—UMSQﬁcﬁ(”b/
A R

(14+28RP)a  Ji7m

(V(2)u? + |Vul*)dx
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Observe that

. Q(z)(e™ = 1)dx < Z /A | Q(z)(e™ = 1)da

00 22j+1ClRa (g)ab

< : >+ V(z)u®)de.
<> iR Aﬁ(qu! -V ()

Jj=0

Now, we affirm that 377, Xi;(x) <5, forall x € R%. Tndeed, let = € Z]\R This
implies that x &€ m and x ¢ m, for all 7 =0,1,2,3.... In fact, if x € Z;R, then

R 5R ..R
p it gt
y <l <25 <275,

thus x ¢ m The same way we get that x ¢ A/H;g

Therefore,
u? 8Cl g 2
B%Q@)(d —1)dx < P RNa Z/ (IVul? + V (2)u?)x rpde
40C1 R ()b,
S T PR [l (3.6)

Since > a,

Thus, from (3.4)) and ({3.6]), we conclude the proof.

A important consequence is the following compactness result:

Proposition 3.7. If (V) and (Q) hold with o € (0,2) and 5 € [2,+00). Then, for all
p € [2,+00), the embedding
HY(R?) — L5 (R?) (3.7)

1s continuous. In particular, since § > «, the above embedding is compact.

Proof. Set u € H{-(R?) and observe that by condition (Q) we have

1/q b 1/q 1
x)|ulPdx < ulPdx < b/ ul| e ) 3.8
([ ewiras) < ([ pmharir)  <0llom,. @9
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By the embedding H'(Bg) < LP(Bg) for all p € [1,+00), we get

1/2
lellany < Cillallnay = Co [ [ (9u +2)is
Br

< UBR <|Vu|2 + (1 +aRa) V(x)u2> dx} "

<Cp [ /B (1 + V(x)uQ)dx} " (3.9)

because V(x) >
that

. +a’ | > T Re . Thus, for each R > 0, it follows from ({3.8]) and (3.9))
€T [e%

p/2
Q(x)|uPdr < bC% {/ (|Vul* + V(m)ug)dx] < bCH||ulfP (3.10)
Br
For each p € [2,400), there is C,, > 0 such that

|s|P < Cp(e¥ — 1), for all s € R.

Proceeding as in the proof of Theorem [B.5 we have

uz SClRa >
Q(x)|ul|Pdz < C, " Qz)(e™ — 1)dx < 26}{,3 Z/ /j%dx.

We conclude
40C1 R (2)%b
(2°RP)a

Qx)|ulPdr < [l (3.11)

Now, if (u,,) C E is such that u,, — 0 in £, then by (3.10)) and (3.11)), we get
/ Q()|um |[Pdx = Q(z)|um|Pdx + Q(2)|tupm|Pdx — 0 as m — oo
R2 Br By

and the continuity of the embedding is proved for all p € [2, +00).
Suppose that (u,,) C E such that u,, = 0in E. Since 8 > «,

400, R (2)* b
lim B (5) -0
R (28RP)a

Thus, for all € > 0, there exists mg > 0 such that
Q) |up|Pdx < ¢,
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for all m > my, that is u,, — 0 in Lg)(Bg).

3.2 Linking geometry

If f(x,s) and g(x,s) have subcritical growth, then for each x> 0 and v > 0, given

e >0 and ¢ > 1, there exists a constant C' = C(g,q) > 0 such that for all s € [0, 00),

19 . 52
[f(s)] = 5lsl + Csl? et = 1),

19 _ vs2
l9(s)] < 5ls| + Cls* Her —1),

for any s € R. Hence, by the Ambrosetti-Rabinowitz condition (h3) we have

[B(s)| < Ssf* + Clsf(e = ),

G(s)| < Ssf* + Clsfr(e — 1),

for any s € R.

Therefore, given u € H{,(R?), we obtain the estimate

2)F(u)dz < = x)|ul*dx 2)|ul?(e’ = 1)dx
[ Q@rs <5 [ Q@i+ c [ Qe ~ 1)
<5 [ @@l

+C ( /R 2 Q(x)\urqux) " ( /R Qe —

1 1
where we used Holder’s inequality with p > 1 and — + — = L
p p

embedding (3.7) and the Trudinger-Moser inequality, we have
Q(z)F(u)dx < +oo for any u € Hy,(R?).
R2

Therefore, it follows that the functional

(3.12)

(3.13)

1)d:1:) b . (3.14)

By the continuous

I(u,v) := /R2 VuVov + V(z)uw]de — g Q(x)F(u)dx — g Q)G (v)dx
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is well defined on (E, || - ||). We also can see that I € C'(E,R) with

I'(u,v) (@, ) = / (VuVv + V(z)up + VuV + V(x)vp]de

RQ

- | @@stedr ~ | Q@gwyda

for all (¢,v) € E.

Using the notation
E* ={(u,u) € E} and E~ = {(v,—v) € E},

we can see that £ = ET @ E~.

In the following lemmas, we establish the geometry of the Linking Theorem.
Lemma 3.8. There exists p,o > 0 such that I(z) > o, for z € S:= 0B, N E*.

Proof. Using (3.14)), the continuous embedding (3.7)) and the Trudinger-Moser inequality,

we have that for any € > 0,
€
Q@) F(u)dz < %IIUHQ + C(p, g.€)||ull?,
R

for any u € H},(R?) with ||u|| = p, where p > 0 satisfies up'p? < 4n.

By the same argument,
€
 QE)G(u)de < CHlull” + Cw, g, &),
R

for any u € H},(R?) with ||u|| = p, where p > 0 satisfies up'p? < 4n.

Thus, choosing p > 0 conveniently,

Haw = [ 190 + V'] - [ Q@Fw - [ Q6w
>l —= [ Q@ - Cullulr,

By (3.7), there exists C. > 0 such that

I(u,u) > (1= Co)lfull* = Cufjul”.
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Therefore, for € > 0 sufficiently small, we can find p, o > 0 such that I(u,u) > o >0,

whenever |ju|| = p.

Let y € H,\{0} be a fixed nonnegative function and
Qy={ryy)+w: wekE  ||Ju|<Ryand 0 <r <Ry},

where the constants Ry and Ry will be chosen in the following lemma.

Lemma 3.9. There exists positive constants Ry, Ry, which depends on y, such that

I(z) <0 for all z € 0Q),,.

Proof. The boundary of the set (), in R(y,y) & E~ is composed of three parts:

e :c0Q,NE". Forall z=(u,—u) € E~, we have
I(z) = —|lull* — /}R2 Q) [F(u) + G(—u)ldzr < 0.
e 2z € By :={Ri(y,y) + (u,—u) € 0Q, with ||(u, —u)||g < Ry}. We have
1) = Rl = [ul? = | Q@){Ple: Ray +u) + G, Fuy — )l
It follows from (hs) that for all § > 0, there exists C; = C1(d) > 0 such that
F(x,s),G(z,s) > C1s — 552,
for all (z,s) € R? x [0,00). Thus, there exists C; = C1(y) > 0 such that
I(z) < RY|lyll* + C1(RY — RY).

Taking Ry = R;(y) sufficiently large, we have I(z) < 0.

e z € By :={r(y,y) + (u,—u) € 0Q, with ||(u, —u)||p = Rp and 0 < r < R;}. We
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have

I(z) = r*|lyll* — ull® - /RQ Q2)[F(ry +u) + G(ry — u)]dz

1
< Ryl - SR,

If V2R ||y|| < Ro, we have I(z) < 0.

3.3 Behaviour of Palais-Smale sequences

For this section, we shall use the inequality (1.27]), whose proof can be found in [28]

Lemma 2.4]:

(e —1)+]s|(log|s))/?, teR and |s| > e
st < . L » [T27)
(e —1)—1—55, teR and |s| <e”".

Proposition 3.10. Supose (V), (Q) and (hy) — (h3) are satisfied. Let (tup,vy,) € E such
that

(I) I(tm,Vm) = ¢+ O, where 6, — 0 as m — oco;

(1) |I' (U, vm) (@, V)| < emll(@, V) ||E, for v, € E, where €, = 0 as m — oo.

Then

[tm < C, [[om]| < C,

[ Q) fudr <0, [ Qg < C

R2

Q(z)F(uy,)dx < C, Q(z)G(up,)dx < C.
RQ RZ
Proof. Choosing (¢, 1) = (tm, vm) in (I2) yields

2 vads = [ Qs ~ [ Qoo

< em|| (Um, vm) |-
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By (I;) and (h3), we obtain

o Q@) [f (U )t + g(Vr )V ]d
2 5 Q()[F (um) + G(vm)]dx + 2¢ + 26, + €| (W, v ||

<2 QL) + 000 )l + 20+ 28, + 4 )]

which implies

, Q@) [f ()t + g(Vm ) vm]dr < L@C + 20m, + Eml| (Um, Vi) )

0—2

Taking (¢, ) = (vm,0) and (¢, ) = (0,u,,) in (),

Joml = emllonll < [ Q) f(um)nda
funl? = £ulunll < [ Q)gtwn e

Setting U, = Um_ and Vin — "™ we have

ol [Vm ]|’

sz/Q F () Vnd + 2

|um||2 / Q(x)g(v)Updx + €.

Now we estimate (3.15)). Let us define

m:/ Q@) () Vindr,
{weR2:f (um) (x)<e?/4}

%:/ Q) f () Vinda,
{wer2: f(um)(x)zet/4}

such that
]RZ
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By Young’s Inequality,

I, < Q) ((f (um))* + V) do

/{mERQ:f(um)(a:)Sel/‘l}

N — DN

) (f(um))*dx
/{meRQ:f(um)(m)gel/zl} Q(x)(f(um))

1
+ =

/ Q(z)V2da.
2 J{vere:f(um) () <e1/4}

Since ||V;,|| = 1, by the continuous embedding (3.7)),
/ Q(z)V2 < C.
{weRe:f(um)(@)<e1/4}
By (ho) — (h1), there exists constants ¢ > 0 and sy > 0 such that

|f(s)] < cl|s| for s € [0, so].

We also have

ol/4
|f(s)] < gatl for s € (s0,00).
0
Therefore,
/ Q) ()P < C [ Q) (e
{x€R2:f(um)(x)§el/4} {xERQ:f(um)(a:)gel/4}

From (3.17), (3.18]) and (3.19), it follows that

L, <CH+ | Q)f(um)umdz.
R2

(3.17)

(3.18)

(3.19)

(3.20)

Observe that if f(s) has subcritical growth, for each g > 0, there exists a constant

C > 0 such that for all s € [0, 00),

fs) < Cem.

(3.21)

Similarly, if f(s) has critical growth with critical exponent py > 0, for each p > g, there

exists C' > 0 such that we obtain the same estimate.
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Choosing 6 > 0 small enough such that ¢ < 47, by Lemma [3.30, we obtain

C Uy
5 =< Q)T
{oeR2: f(um) (@)2e1/4}

OV dx

<0C | Q)Y — 1)da
R2

1
4+ =

0 /{xeRZ:ﬂumxx»eW}

Q) f () [log (f (g’”))} v dz. (3.22)

First, we have that

Q(z) (Vi — 1)dx < C. (3.23)
R2

By (:21),

Q) (o) o (1) Ve < € [ Qs

[{weRQ:f(umsze”“} ¢

By this estimate, together with (3.22)) and (3.23]), we have

I < C+ | Q) f(up)upde. (3.24)
RQ

Thus, by (3.20) and (3.24), we get

Q) f () Vindr < Cy + 02/ Q(z) f (U )upmde.
R2 R2
Combining this estimate with (3.15]) implies
v < C1 + Cy Q(z) f (U )upmde.
R2

By the same argument above, we reach

ltm]l < C1 + C / Q)9 (vm)omdz.

RQ

We obtain
s 0} | < CC + B+ £l (s )| + 200,

which implies that || (tm, vm)| < C.
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By the boundedness of (u,, v,), in (E,||-]|), we may assume that u,, — uy and v,, — vy
in H{,(R?).
In view of Proposition we may apply |26, Lemma 2.1]:

Q) f(un) = Q(z) f(uo),
Q(w)g(vn) — Q(x)g(vo),

in L;OC(RQ)'
Using this, we can prove that (ug,vo) is a weak solution of . To prove that this

solution is nontrivial we will prove the following result:

Lemma 3.11. If (uy,vy) C E is a sequence such that I(wy,,vy,) — ¢, I'(Up, vy) — 0

and (ug,vo) is its weak limit, then

Q)F () > [ Q@)Plu)
R2 R2
Q@)G(en) > [ Q@)G(w0)
R2 R2
Proof. From (hs) and (hy), it follows
0 < lim ES lim %:O,
|s]—o0 8f(8> |s]—o0 |S|
thus, for any € > 0 there exists sy = so(¢) > 0 such that
F(z,s) <esf(s) for any s € [sg, 00].
Since (ug,v9) € E and recalling Proposition we obtain

Q(x) f(up)updx < C' and Q(z)g(vy)vpdx < C,
R? R?

for any n > 1, for some constant C' > 0.

Therefore, for a fixed € > 0, we have

/ Q(x)F (ug)dx < 5/ Q(x) f(up)updr < Ce
{luo|>s0}

{luol=so}
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and

/ Q(z)F(un)dr < 8/ Qx) f (up)uydr < Ce.
{lun|>s0}

{‘U'ILIZSO}

Now, we define
ho(2) = Q)X {jun|<s0} F'(Un) and h(z) 1= Q)X {juo|<so} ' (10)-
Then (h,) is a sequence of measurable functions and
hn(x) — h(z) a.e. for r € R?.
Using with u > po, ¢ = 2 and € > 0, we obtain for any |s| < sg
[F(s)] < elsl + Clu, o)ls* ("M = 1) < Clu, e, s0) s

Now, we let

Cn(@) = C(p,€, 50)Q(x)uy, and () 1= C(p, €, 50)Q()ug.

This yields 0 < h,(z) < (.(z), * € R%. Note that (¢,), is a sequence of measurable
functions, ¢,(z) — ((z) a.e. in R% and by the compact embedding [3.7]

lim [ (u(z)de= [ ((2).
R2

n—oo R2

Thus, applying the generalized Lebesgue dominated convergence theorem, we get

lim hp(z)dx = /]1@2 h(zx).

n—oo R2
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Therefore, for any fixed € > 0, we have

. Q(z)F(uy,)dx — . Q(z)F(up)dx

< z)F(u,)dz ) F(ug)dz
/ WSO}Q( VF(un)dir + /{ Q@)

’/ F(uy)dx —/ Q(x)F(x,up)dz
|un\<80} {luol<s}

/]R2 hp(x)dx — /R2 h(x)dx

Since € > 0 is arbitrary, we complete the proof.

< 2Ce +

3.4 Finite dimensional problem

Associated with the eigenvalues 0 < A\; < Ay < -+ < \; = oo of (—A+V (), H}(R?)),
there exists an orthonormal basis {1, @, ...} corresponding eigenfunctions in Hy,(R?).

We set

ET =span{(p;, ;) :i=1,...,n},
E - =span{(y;, —pi) :i=1,...,n},

Let y € H{,(R?) be a fixed nonnegative function and
Quy={r(y,y) +w:we E;,|w|p < Roand 0 <r < Ry},

where Ry and R; are given in Lemma
We establish the following notation
Huy=R(y,y) ® B, H, =R(y,y) ®E,;, H,, =R(yy eE,,

n?y

define the class of mappings

I'={h € C(Qny, Hny) : h(z) = z on 0Q,,,}
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and set

Cny = inf max I(h(2)).

hEFn,y ZEQn,y

Using the intersection theorem due [53, Proposition 5.9|, we have
hQny N (OB, NE}) #0, for all h € Ty,

which in combination with Lemma 3.9} implies that ¢, , > ¢ > 0. An upper bound for the
min-max level ¢, , comes from the fact that since the identity mapping I : Q,, — H,,

belongs to I',, ,, we have for z = r(y,y) + (u, —u) € @, that
I(z) = Rillyll* = [Jull® - / Q(@)[F(Riy +u) + G(Riy — u)ldz < Ri|ly|”
R2

Thus, we have 0 < o < ¢,, < R3[|y

We denote by I, , the functional I restricted to the finite-dimensional subspace H, ,.
By the lemmas and the geometry of the linking theorem holds, thus applying the
linking theorem for I, yields a (PS)-sequence, which is bound by Proposition [3.10] Since

H, , is finite-dimensional, we get the following result.

Proposition 3.12. For each n € N and for each y € H{: a fized nonnegative function,
the functional I, has a critical point at level ¢, ,. More precisely, there is a z,, € Hy,,

such that

Furthermore, ||z, < C.

3.5 The subcritical case

Theorem 3.13. Suppose f(s) and g(s) have subcritical exponential growth. Then

possesses a nontrivial weak solution (u,v) € E.

Proof. Let y € H{-(R?) be a nonnegative function. By Proposition we have a
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sequence 2z, = (Uny, Uny) € H,, such that ||2,,| < C and

[n,y(zn,y) =Cny € o, R%”ZUHQL
(Imy)/(zn,y) =0, (3-25)

(Un,y, Uny) = (uo,vp) in E.
By Proposition |3.10f we get

Q) f(tny)unyde < C and Q(x)g(vn,y)Unydr < C
R2 R?

Q(z)F (tp,y)dr < C and Q)G (up,y)dx < C.
R2 R2

Substituting the test function (0,%) and (¢,0) in (3.25)), where ¢, p € C5°(R?) are

arbitrary functions, we reach

/R2 (Vi Vo + V(x)u, ) de = / Q(x)g(vpy)dx

RQ

/RQ(an,sto + V(x)v, yp)de = / Q) f(uny)pde.

]RQ

Taking the limit and using the fact that C5°(R?) is dense in Hi,(R?), we have

/ (VuoVey + V(z)ugp)de = [ Q(x)g(vo)dx for all ¢ € Hy (R?),
R2 R2

/ (VooVp + V(2)vgp)de = Q(x) f(uo)edz for all p € H(R?).
R2 R2

Now we prove ug and vy are nontrivial. Assume by contradiction that ug = 0, which
implies that vy = 0. Since g has subcritical growth, we see that for all v > 0, there exists

C1,Cy > 0 such that
g(x,5) < Cus+ Cys?(e”” — 1) for all s € [0, 00).

Combining Holder inequality and Lemma|3.5, and choosing v > 0 and ¢ > 1 sufficiently
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close to 1 such that vqllv,,||*> < 47 and s > 2,

Q@)g(vny)unyde < | Q@)vnyuny + CoQ()v2 iy (€70 — 1)
R R
< Cullvnyllrz ey lunyll 2 @2)

1/q
V||Un 2 2 Un a4 Un,g, 2
+Cy Q () (e llomyl*(wm/llonylD™ _ 1) g Hun,y||L25(R2)||Un,y||%2s(R2)
R? ¢ @

< Olen,yHLzQ(R?)Hun,yHLQQ(R?) + CHUn,yHL?;(RZ)||Un,y||ig;(R2)-

Thus,
L9 + Vi@ln e = [ Qalalon)uny 0.

since vy, — 0 and u,, — 0 in L (R?) for all p > 2. Consequently, u,, — 0 in Hy (R?).
This implies that
/ (Vi y Vo, + V(@) v, )dz — 0.
R2

Using this and the fact that (1, ) (tn,y, Uny) = 0, we reach that

g Q) f (Uny)tn,y — 0 and . Q(x)g(Vny)Vny — 0.
By these limits and (hs), we get

- Q(x)F(upny)dz — 0 and g Q(z)G (v, y)dx — 0.

Therefore, we see that ¢, , = 0, which is a contradiction.

3.6 The critical case

3.6.1 Proof of Theorem 3.4

Next, we assume that f and g have critical growth with critical exponent py. By

Lemma there is 0 > 0 such that

47
Cp = Cpg < — — 0,
Mo
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where ¢, 5 is defined in Proposition [3.12]
By Propositions and [3.12] we obtain a sequence z, := 2,z = (U, v,) € Hyz such
that || (u,, v,)|| < C and

]n,ﬂ(una Un) =cCy € |:O-; 4_7T - 5) s (326)

(Inm)' (tn, vs) = 0, (3.27)

By Proposition [3.10[ and arguing as in the subcritical case

/ (VuoVy + V(z)ug)de = [ Q(x)g(vo)pdx for all ¥ € Hy.,
R2 R2

/ (VuoV + V(z)vgp)dr = Q(z) f(uo)pdz for all p € H.
R2 R2

Now, we prove by contradiction that uy and vy are nontrivial. Assume that uy = 0,
which implies that vy = 0. If ||u,|| — 0, we get (u,,v,) — 0, a contradiction. Thus, we

assume that u,, > b > 0 for all n € N and consider
= [ Q)gln)und (3.28)
R
By (ho), for any fixed € > 0, there exists C. > 0 such that

g(t)] < Ceot¥  for t € R2. (3.29)

1/2
Define u,, = (4—” — ) e Applying the following inequality, which was proved in

llunll”

[38, Lemma 4.1],
st < t2(e”” — 1) +|s|(log)"/?, for all t >0 and s > e/ VA, (3.30)

Applying (3.30) with s = g(v,)/uo and t = /1ou, and arguing as in Proposition m,
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we get

47T 1/2
(——6) fonll = [ o e (331)
Ho R2

1 .
-— / QU)o (v Fiad
1 [g(vn)]m] "

potuZ 1 <
= /{IERQ:g(vn(x))/uO<el/4} Q(l’) [(6 ) + 5 o
1/2
s _ 1) 4 S [1 <M)] ;
" [{:BGR2:9(”H(I))/M0261/4} Q(x) [(6 ) + \/m og o T

= Jl,n + JQ,n + J3,na
where

Jl,n = Q(x)(elmﬂ% - 1)d$,
R2

v,,)]/2
Jom = 5/ Q@)Md
{er:g(vn(w))/uoSel/‘l} Ho

Let us estimate these integrals. Since ||[u,|* = i—g — 0, by Theorem we obtain that

X

Jl,n — 0.

Using (hy) — (hs), there exists a constant C' > 0 such that
(9(6n))? < Cloal? in { € B2 s glua(a)) < 4]

By the compact embedding, we get J;, — 0.

Using the critical growth hypothesis, we can estimate .J;,. Observe that

1

JS,n S - = Q(x)g(vn)(ﬂo + 6)1/2vndl‘
Ho Jr2
- 1/2
< (1 n —) Qx)g(vn)vnds
Ho R2

Substituting this in (3.31]), we get

() " all < onl1) + 1+ i)m [ Q@gtvede. 332)

Ho
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Using the same argument

fonl? = | Qapflun)unde

we see that
A 1/2 S\ 12
(— — (5) lva]l < on(1) + (1 + —) () f (up)upde. (3.33)
Mo Ho R2
By (3.26),
4
[ 1900+ Vi) = [ Q@Fw) + 6 <5
R2 R2 o
and since
/ Q) F(u) =0 and | Q@)G(w) — 0,
R2 R2
we obtain
[t o) < 00(1) + 22 =,
Ho

By (3.27),
/R2 [Vu,Vu, + V(x)u,v,] — y Q(z)[F(u,) + G(v,)] =0,

and this implies

[ Q) myunde + | Q()g(wn)vudr < 00(1) +2 (i_” - 5>

So, combining (3.32) and (3.33)), we get

c 1/2 47_‘_
ltall + loall < 0n(1) +2 (1 + “_) (_ B 5)
0

for € > 0 sufficiently small and n sufficiently large.

Therefore, without loss of generality, we can assume that there is a subsequence of

4 1/2
vyl < T .
[[onl

Ho

(v,) such that
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Consequently,

/R? Q(z)g(vyp)vpdx — 0. (3.34)

Hence,

(U, Uy) — 0,

which implies ¢, = 0, which is a contradiction. This completes the proof.

3.6.2 Level estimate

For the next result, we assume that there exists 79 > 0 such that the functions f, g

satisfy
liminfL@, liminfsg(82> =: By > M,
|s|—o0 €708 |s| =00 €708
461/2r2vmax,r
where M =: inf —————— Vo, := maxV(z) > 0 and Quin, := minQ(z) > 0.

r>0 Yor2Qmin |z|<r |z|<r

For fixed r > 0, we consider the Moser sequence

Viogn, if |x| <r/n,
_ 1 logr/|z| .
n = ) f < <r,
Wy () 72\ Vioan ifr/m <|z|<r
0, if |z| > 7.

It is well known that w, € H}(B,) C H);(R?) and it is possible to prove that

dn(r)

logn

1< f|@n)* <1+

Vmax,ra

where d,(r) :=1?/4 + 0,(1) and 0,(1) — 0 as n — oo.

Let w, := w,/||w,|| € HY(B,) C H{;(R?). We have ||w,| =1 and for || < r/n

1 1 1 d, max.r 1
w?L(I> = logn ( ) Z 2 (log n— (T)V : ) > <IOgTL - dn(r)vmax,r)
v

2 [[wn |2 [wall* )~ 27
(3.35)
Lemma 3.14. There exists a nonnegative function u € Hyi, such that
4
sup () < —. (3.36)
neR, (wu)®E- Yo
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We prove by contradiction. Suppose that for all £k € N

4
sup  I(n) > -, (3.37)
neR, (w,u)DE~ Yo

Thus, for all fixed k > 1, there exists a nonnegative sequence (¥ — 0 as n — oo and a

sequence

Mnk = Tn,k(wka wk) + (un,k7 _un,k>7 Un, k € H\l/(RQ)7

4
such that I(n) > Sl ¢k,
"0
Observe that if h : [0,00) — R is a function such that h(t) = I(tn). Since h(0) = 0
and lim; o h(t) = —oo, there exists a maximum point ¢, x, that is,

47
0

Ity ktng) = I(ng) > . ¢ and  I'(tppnes) = 0.

n

Renaming t,, 0k 1= 7nk, We may assume, without loss of generality, that ¢, , = 1.

This means that

72 llwel® = llunsl® — / Q(2)F(Typwi + Un)dr — [ Q(z)G(Topwi — Un i )dT
R2 R2

> ——, (3.38)
Yo
and
o llwill® = l|unsll? :/ Q) f(Tnpwr + Un 1) (Tn kg Wk + Un g )dz
]R2
— | Q@) g(Tn Wk — Un k) (Tn kg Wk — Unk)d. (3.39)
RQ
Hence,
4
2> — (3.40)
’ Yo
and

Tew > | Q@) f(Tanwi + ) (To Wy + tni)da
R2

- ) Q(x)g<7—n,kwk - un,k)(Tn,kwk - un,k)dx (341)
R

Set By > 0 such that the condition (3.1)) is satisfied. Thus, given € > 0, there exists
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R. > 0 such that
tf (1), tg(t) > (Bo —e)e™”, forall ¢> R.. (3.42)

Choosing k sufficiently large, there exists ko > 0 such that

B L
’ 2T
Since
log k
wi(z) = 4/ OQgW for all x € By,
we get

max {7, kWi + Uk, Tn s Wk — Ug} > Topwy > Re,  forall x € B, .

Let x3, € B,/ be the minimum point of the weight ) on B, ;,, that is,

Q(xy) = min Q@) > Quinr- (3.43)

Observe that limy_, Q(xr) = Q(0) > 0. Therefore, using (3.41)), (3.42) and ([3.35)),

we get

Tz,k > Q@) f(Tn Wi + Un k) (Ty kWi + Up i) d
R?
— | Qx)9(Tn Wi — Un ) (Tnp Wi — Unj)d
RQ
>(—c) [ Qe
Br/k

T\2 202 1 _
> (B0 = &)Qming (1) eFThlmt 0,

when |z| < r/k.

47
Setting s, := 72, — —, we have
’ Yo
Sn.k _|_ 4_7T > (60 _ E)Qmin TT2€’2L9"S"’I€[10g k_dk(T)Mnax,r]6_2dk(7')vmax,r‘ (344)
b 70 - el

This inequality implies that {s, s}, is bounded for each k > ky. Thus, there exists
si € R? such that limsup,, ., = s. By (8.40)), we have that s; > 0. Observe that s, — 0
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as k — oo. In fact, taking the limsup,,,., we have

Sk 4 1 2 2d v
— > — €)Quinpr2e” 2w () Vimaxr
easkllogh—dy(r)Vimaxr] 7 ea%skllog k—di(r)Vimax,r] = (Bo )Qmin.r

7‘2 . .
If s, — p > 0, as k — 0o, we have () — &€)Quin,72e 2 Vmaxr < (), which is an absurd.

Now, we observe two cases:
splogk — +o00 or sglogk —p>0 as k — +oo.

If silog k — 400, since (3.44)), we get a contradiction. If silogk — p > 0, we have

4 w2 2
—= (60 o 6)Qminﬂ“r262ﬂpe 7 Vmaxr > (BO - €>Qmin,rr2€ 5 Vimax,r
0

and this contradicts (3.1]), since ¢ > 0 is arbitrary.
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Chapter 4

Periodic Schrodinger equations with
exponential growth without the

Ambrosetti-Rabinowitz condition

In this chapter, we establish the existence of nontrivial solutions for the following

Schrédinger equation
— Au+V(x)u= f(x,u), @
u € H'(R?),
where V' is a 1-periodic function with respect to x, 0 lies in the gap of the spectrum of
—A + V and the nonlinear term f(x,s) has critical exponential growth.
In the two dimensional case, when f(x,u) has exponential growth on u and V(z) is
a positive potential bounded away from zero (i.e. the definite case), motivated by the
Moser—Trudinger inequality, the existence of nontrivial solutions to has been studied by
many authors (see, |8 9, [16, 26], 28|, B0, B39, 42]).
However, let 0(S) be the spectrum of the operator —A + V defined in L?(R?). When
V' is continuous and periodic, it is known that ¢(S) is purely continuous, bounded from
below and is the union of disjoint closed intervals (see [55, Theorem XIIL 100]). In this

chapter, we study the case where 0 lies in the spectral gap, precisely,

(V) V(x) =V (z1,x9) is continuous, 1-periodic in the variables z, x5 and

A :=sup[o(S) N (—00,0)] <0< A :=inf[o(S) N (0, 00)].
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This way, when (V') holds and the operator —A +V has a purely continuous spectrum
consisting of closed disjoint intervals, we have the indefinite case. We can reference [6] for
a study with a subcritical exponential growth and [7, 20, B6] concerning the existence of
nontrivial solutions for with a exponential growth of the critical type.

With respect to the function f, we assume the following conditions:
(Fy) feCYR? x R2,R) and f(z1,xs,u) is 1-periodic in the variables x,, x;

(F}) (Critical exponential growth) there exists ap > 0 such that

- |f(z,u)] _ 0, if a > ap,
|u|—o00 €a|u\2 .
400, if a < ap,

uniformly in z € R?;
(Fy) f(x,u) = o(u) as |u] — 0, uniformly in z € R?;
(F3) f(x,t)/]t] is stricly increasing in (—oo,0) and (0, 00) for every z € R?;

(Fy) there exists Ry, My > 0 such that
0< F(x,u) < My|f(x,u)|, forall z€R* and |u] > Ry;

ull f(z, u)]

(F5) limsup ———— =: 8 < 2, uniformly in z € R?, where

F(z,u) = %f(ac,u)u — F(z,u), for (z,u) € R*x R

Remark 4.1. We observe that we do not require the well-known Ambrosetti-Rabinowitz

condition:

(AR) there exists 6 > 2 such that, for each x € R* and u € R*\{0}, there holds

0<OF(z,u) < f(x,u)u.

Also, the critical exponential growth condition implies the following

F(x,t)

lt—so0  [t]?

. uniformly in x € R%. (4.1)
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For the main result of this chapter, we need the following hypothesis, presented by
Chen-Tang in [20]. We assume that there exists vy > 0 such that the function f satisfy

lim infsf(xs’f) =: By > M, uniformly on z € R? (4.2)

|s|—+00 €70

4 ,
where M := —2616“03 and p > 0 satisfies 47(4+ p)pC3 < 1 and Cy > 0 is the embedding
Yop

constant in (4.3]).

Theorem 4.2. Suppose that conditions (V') and (Fy) — (F5) are satisfied. In addition,
we assume that there exists o > 0 such that the function f satisfy (4.2)). Then, equation
has a ground state solution.

Example 4.3. Let a € C(R? R) positive and 1-periodic in x1, 7o and define the function

f by
F(z,t) == a(z)t*(e” —1).

Observe that
flz,t) = a(2)t? (" (2t* + 3) — 3).
It is not difficult to see that f satisfies (Fo) — (F5) and (4.2).
The present chapter is organized as follows: in the forthcoming section, we introduce
some notations and results regarding the function space setting in which we work. In

Section we prove our main theorem and in Section [4.3] we present the proof of a level
estimate established by [20)].

4.1 Preliminaries

In this section we present the function space setting in which we develop our variational
approach and some results about it.

We denote by S the selfadjoint operator —A + V acting on L?*(R?) with domain
D(S) := H?(R?). Let {E(N) : L*(R?) — L?(R?)}\er be the spectral family of S and

E-=&(07)B, E*=id—E(0)]E.
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By (V), we have E = E~ @ E™. For any u € E, we can write u = u~ + u™, where
u =E(0-)ue B, u' = lid—E(0)]ue EY, (4.3)
and
Su” = —|Sju”, Sut =|S|u", Yue END(S). (4.4)

The spaces E~ and ET are S-invariants. Moreover, if © € E~ and v € ET, then u
and v are both orthogonal with respect to (-,-)s and (-,-). By definition, |S|u = Su if
u € Etand |Sjlu=—-Suifu € E~. Thus, |S|: E — E is a positive self-adjoint operator.
Therefore, we can define the square root of |S|, which is also a self-adjoint operator. We
can veirfy that

(1S1"2)* u = |S|u, Yu € D(S).
If we consider the Hilbert space E := D(|S|/?) with the inner product
(u,0) = (IS["*u, |S|"?0) 12, (4.5)
and the corresponding norm
lull = [ISI"2ul, (4.6)

The next lemma proves the equivalence between norms of E and H'(R?). For the

proof, see [L11, [61].
Lemma 4.4. Assume V. Then E = E- ® Et, ||+ || is equivalent to || - ||gr on E and for
anyu=u"+ut € E, it holds (u",u™) = (u",u")y = 0. Moreover,

(Su,u)o = —lull* < AJullz, v e E” (4.7)
and

(Su,upe = [[ul® > Null3, we B (4.8)

Remark 4.5. It follows from Lemma that ||lul> = |lu”||> + [[u™||* and for any

p € [2,00) the embedding E — LP(R?) is continuous.
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Now, consider the bilinear form B : E x E — R,
B(u,v) = / (VuVov + V(z)uv)de.
RN
We obtain

B(u,v) = /RN(VuVU + V(z)uwv)dz

Su,v)g
Su™ + Sut, v)y

Su™,v) + (Su,v)s

[S[V2u*, [S1Y20 ) + (|82, IS207),
ut o) = (um,v7)

ut o) — (u, ).

= {
= {
=
= (ISJu™, v )2 + (IS[u™, v7)2
= {
= {
=

In particular,

B(u,u) = [Jut||* — u||*. (4.9)

We know the energy functional associated to (2)) is given by

I(u) = %/RQ(’W V(@) de — /R Fla,u)de, ue H'(R),

where F is the primitive of f. This functional is of class C' and critical points of I
corresponds to weak solutions of Problem .

In view of (4.9), we have

1
I(u) = §(||U+||2 —|u" ) = / F(z,u)dz, u=u +u" € E-®E". (4.10)
R2

4.2 Proof of Theorem 4.2

In this section, we prove our main theorem. Our intention is to apply Lemma and
a minimization argument to obtain a ground state for problem . Some of these results

were already proved in Chapter 1, Chapter 2 and by Szulkin-Weth [60], so we present
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them without proof.

In order to exploit Lemma, [1.6] we consider the spectral decomposition of —A + V'
with respect to the positive and negative part of the spectrum, given by £ = ET @& E~,
where u =u" +u- € ET @ E~.

By using (F}) and (F3y) we can see that, given € > 0, & > o and ¢ > 1, there exists
C' = C(g,a,q) > 0 such that

max{|F(z,u)|, | f(z,w)||u|} < elul? + Clu|?(e®™* = 1), for all (z,u) € R* x R?. (4.11)
In view of (4.11)) and Lemma the energy functional associated to (2), given by
Lo+ —2
I(w) = 5(lu™I7 = l[u™]%) = T (w), (4.12)

where J(u) := [g, F(z,u), is well defined. Furthermore, it is not difficult to show that
[ € CY(E,R) with

I'ww={w"w") —(w ,w)— | flz,u)w, foru,wekE.
RQ
Hence, the critical points of I correspond to weak solutions of Problem .

In order to apply Lemma [[.6] we are going to show that I satisfies conditions

(N7) — (N3). For this, initially we present some lemmas.

Lemma 4.6. Assuming conditions (Fy) — (F3), for each u # 0 we have
1
§f(x,u)u > F(z,u) > 0.

Furthermore, J(0) = 0 and J is weakly lower semicontinuous.

By the previous lemma, condition (Nj) is satisfied. The next result is necessary in
order to show condition (/V;) and its proof is contained in Lemma 2.3 of [60] and therefore

we omit it.

Lemma 4.7. Suppose that H satisfies (Fy) — (F3). If z € N then for any w # 0 such
that u +w € E(u), we have I(u+ w) < I(u).
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Lemma 4.8. Assume conditions (Fy) — (F3) and (4.2)). For each uw € E\E~, there ezists
R = R(u) > 0 such that I(w) < 0 for all w € E(u)\Bg(0), where Br(0) := {u € E :
[ull < R}.

Proof. Suppose that the result is not valid. Then, for some uy € E\E~ there exists a
sequence (w,) C E(ug) such that ||w,|| — oo and I(w,) > 0. Defining u, = wy/|lwy||,
we can assume that u, — wg in E. If wy # 0 and Q := {x € R? : |we(z)| > 0}, then by
Fatou’s Lemma and , we have

I(w,) 1 1., F(z,wy,)
0< = L= L - / Bla,wn) 12
2 2 e wa?

[[wn |2 W

1 1 F(z. w,
< Yt = Ty - / F@w), 12 s o,
2 2 o

|wn|®

which is a contradiction and thus wy = 0. Moreover, since H is nonnegative by the

previous inequality we also have [|uf|| > |lu,||. Once ||u,]] = 1 we deduce that
luf Il > 1/v/2.
Now, as E(ug) = E(u/||lu||) we can assume ug € ST, that is, |u| = 1. Thus, we

can write u,” = s,uy with 1/\/§ < s, <1 for all n € N. Indeed, one has w,, = r,uy +w,,

with r, > 0 and w,, € E£~. Hence,

H +H _ Hw;H

= = luoll =
lwall |l nH [lwll nH

1
V2 o
and s, = 'r‘n/\/m < 1. Therefore, up to a subsequence, s, — s for some s > 0.
From this, we deduce that u,! — sug strongly in E. On the other hand, we have ||u, || <1
and so, up to a subsequence, u,, — w with w € E~. Thus, u,, = s,uo+u, — sup+w. By
the uniqueness of the weak limit, it follows that sug + w = 0, which implies that ug = 0.

This is a contradiction and the lemma is proved.

The next lemma guarantees that condition (Ny) is valid.
Lemma 4.9. Suppose that F' satisfies (F1) — (F3) and (4.2)).

(i) for any u € N, [|E(u) admits a unique mazimum point which is precisely at u.
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(ii) for any u € E\E~, the set E(u) intersects N at exactly one point m(u), which is

the unique global mazimum point of [’E(u)‘

Proof. Firstly we will show (i). Given tu +y € E(u)\{u}, it is enough to consider
w = (t —1)u+y to obtain tu +y = u + w.

Note that, if w = 0 then t = 1 and y = 0, but this can not occur because tz + y # u.
Hence, w # 0 and by Lemma [L.16] we conclude that I(tu+y) < I(u).

To prove (ii), by the previous item, it is sufficient to show that A N E(u) # () for
each u € E\E~. Moreover, since E(u) = E (u"/||u*])). By Lemma there exists
R > 0 such that I(w) < 0 if w € E(u)\Bg(0) and if ||w|| < R then I(w) < R?/2 and so
SUD () I < o0.

On the other hand, by using (1.8)), for £ > 0 and o > « there exists C. > 0 such that

F(z,u) < elul® + ClulP (e’ = 1), we R (4.13)

From (1.12)), Lemma and by choosing 0 < e < 1/(4 [g [ul?), we have

tz t2 , , /
I(tu) = 5 llull® - /R F(ztu) > o —et’ /R Juf? — C.£° /R B (e _ 1)
1/2

t2 142 2 1/2
> D op (/ |u|6> [/ (2ol _ 1)] -0,
4 RQ RQ

forall 0 <t < \/F/o/ sufficiently small. Consequently, SUD () I >0.

Now, let w, == t,u + h,, € E(u) be a maximizing sequence for SUP () L- Since
Supg, [ > 0, we can suppose that |w,|l| < R. Hence, up to a subsequence, w,, — wy
weakly in £/. We can see, up to a subsequence, that t,, — t, > 0 and h,, — hg, w, — wy
weakly in H'(R?). Therefore, wy = tou+ ho € E(u). Recalling that u € E and ||u] = 1,
we can write

21

wn) = 2 = 30all = [ Flaw),

from where it follows, according to the weak lower semicontinuous of the norm and Fatou’s

lemma, that

tg 1
sup I = lim I(w,) = 50 + lim sup {—iﬂhnﬂz —/ F(x,wn)} < I(wy).
R2

Thus, I(wy) = Supg, I and therefore wy is a critical point of []E(u), showing that
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wo € N N E(u) and the proof is complete.
[

As an immediate consequence of this lemma, we obtain the following characterization

to the minimal level for I on the generalized Nehari manifold -

Corollary 4.10.

¢ .= inf I(n) = inf max [I(w).
neN ) weE\E™ weE(u) ()

Lemma 4.11. Suppose that F satisfies (Fy) — (F3). Then, ¢, > 0 and
|lu®|| > max{||u”||,v2c.} forall ueN.

Proof. For a > 0, we recall that S := {u € E* : ||u]| = a} and (R} )u = {tu : t > 0}.
Since E(u) = E(u") for any u € E\E~, from Corollary [1.18] for any a > 0, it follows
that

¢, = inf max I(w)= inf max I(w)= inf max I(w) > inf max I(w).
w€ENE™ weF(u) u€ET\{0} weE(u) u€ST weE(u) ueST we(R4)u

Let u € S and o > . We take a > 0 so that 2aa? < 4w. By virtue of Lemma m,

/ (e2oll” _ 1) = / (e ul/lul? _ 1y < ¢
R? R2
for some C' > 0. Thus, by using (|1.12)) we get

we reach

max 7(0) > 1) = [ulfy = | P>l == [l =C. [ e =)

weRL)u R?2

2¢e 1/2
> (1= Z )l - - ([ 1)
0 R2

2¢e
> (1 - —) s = Calul
ao

where we have used the continuous embedding H'(R?) < L%(R?). Hence, taking ¢ = aq/4
and 0 < a < /27 /a sufficiently small so that 1/2 — C|jully = 1/2 — Cia/V/2 > 1/4, we

conclude that

1 2
max I(w) > u? (= —Cilully ) > % >0, forall uesS;
we(Ry)u 2 8
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and consequently ¢, > 0. Now, for any © € N we have

1 _ 1 _
e < S0t = Iy = [ P < S0t = ),
R2

which implies that ||u™|] > max{|u~||, /2¢.} and the proof is done.

Condition (/N3) can be now proved in the following lemma:

Lemma 4.12. Suppose that F' satisfies (F1)— (Fs). If W C E\E~ is compact, then there

exists Cyy > 0 such that ||m(u)|| < Cy, for all z € W.

Proof. Setting § = \/2c,, by Lemma and noting that m(u) € N for any u € E\E~,
we have ||m(u)t| > d. Once m(u) = m (ut/||u™]]) for any u € E\E~, without loss of
generality, we can assume that YW C S*. By the compactness of YW and from Lemma

[[.I5] we can see that there exists C)y > 0 such that
I <0 on E(u)\BCW(O) for all u e W,

where Be,,(0) = {w € E : ||lw|]] < Cw}. Recalling that I(m(u)) > c. > 0 for all
u € E\E~, we get that [|[m(u)|| = ||m (uT/||ut]])]| < Cw for any u € W and the result is

proved.

The generalized manifold A/ is not necessarily of class C' and thus the Ekeland
Variational Principle can not be applied directly to obtain a Palais-Smale sequence
for I on N. However, in view of item (iv) of Lemma and Lemma one has
infg+ U = infor I = ¢, > 0. Since ST is a submanifold of class C! of £, it follows from

the Ekeland Variational Principle that there exists (w,) C S* such that
U(w,) = ¢, and ||V'(w,)][s =0 as n— oo.
Let u, = m(w,) € N. By items (ii)-(iv) of Lemma we reach

I(u,) = ¢, and |[I'(u,)|| =0 as n — oo (4.14)
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In the next lemma, we shall guarantee that the above sequence (u,) C N is bounded.

For this, we shall use the following inequality, whose proof can be found in |28, Lemma

2.4]:
(e — 1) +|s|(log|s)?, teR and |s| > e/
st < 2 . (4.15)
(e — 1)+ 532, teR and |s| < e/

Lemma 4.13. Suppose that (Fy) — (Fs) are satisfied. Any Palais-Smale sequence
(un) CN for I is bounded.

Proof. Let (u,) C N be a Palais-Smale sequence for I at level c. Hence,

~

c+o0,(1) = I(u,) — %I’(un)un = / F(z,uy). (4.16)

RZ

Suppose by contradiction that, up to a subsequence, ||u,| — oo. Thus,

M) — ) [ ) ()

[[un? R2 [

Setting w,, := wu,/||u,]|, it follows that

n—oo Jpa [[un

~1. (4.17)

In what follows, we claim that the function @ : (0, 00) — R defined by

~

Q(r)= inf F(x,u)

z€ER2, |u|>r

has the following properties:

Q(r) >0 forall r>0 and Q(r) » +oco0 as r — oo. (4.18)

Indeed, by Lemma we have ﬁ(x,u) > 0 for all z € R? and u # 0. Moreover, by
using (F), with 0 < o/ < ap, and we can deduce that Fi(z,u) — +o0o as |u| — oo,
uniformly in x € R?. Therefore, by the definition of @, one has Q(r) — +o00 as r — oo.
From this fact and by the periodicity of F (z,u) in z, for each r > 0 there exists M, > r
such that

— inf F\ _ . F\ :F\
@) xGREI}'“lZT (,u IE[OJ]X[S}]IESMKMT (z,) (0, 20) > 0
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and the claim is proved.

For 0 <a<b<ooandnéeN, we set
Q(a,b) = {r € R* : a < |u,(7)| < b}.

Using (4.16) and for 0 < r < R < oo, we obtain

R Fle.u, R
¢+ on(1) = F(z,un) + Fw,un) )|un|2 n F(z,u)
2
Qn(0,r) Qn(r,R) |tn| Qn (R,00)

3 Q(r) ) 0
> /Qn(o,r) F(x,u,) + /Qn(T’R) [un|* + Q(R) | (R, 00|

R2

and therefore there exists C; > 0 such that

a Q(r)
max{/gn(w)F(x,un), 7 /Qn(r,R) lun|?, Q(R)|Q(R, oo)|} <Oy (4.19)

In particular,

1Q2,(R,00)| < Cy/Q(R) for each n € N. (4.20)

Next, let C3 > 0 be such that ||u]|2 < Cs|lu||* for each u € E and consider € > 0. By
(Fy), there exists r. > 0 such that |f(z,u)| < €|u|/Cs for each |u| < r. and x € R?. By
the definition of w, and since |w — w, | = |w,|, from (4.19) with r = r., for any n € N

n

(wt — w>
Qn(O,rs) Qn(oy'r's)

we get

4.21
c ( )

= Cs 0 (0,r2)
Now, let R = R. > r. to be chosen later. Define A, = Q,(R.,00) N {z € R? :
|f(z,u,)| < e/*} and Ay = Q,(R.,00) N {x € R? : |f(x,u,)| > e/*}. Taking t = |w,|
and s = |f(z,u,)| in [{£.29), we get

[ A i) £ (o 0]
Qn(R&OO)

[ = lunll Janre,00)
1
< |f (@, un) | (log | f (0, wa) ) (4.22)
[unll ) ay
1 1 2
S (@, w)? + (el —1).
[nll Ja, 2 [unll Jr2
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By (4.20)), we have |A;| < |Q,(R.,00)| < C1/Q(R.) and consequently

1/2
/ f (2, up)|? < %, for all n € N.
A €

By Lemma the integral f]RQ(e“""‘2 — 1) is bounded. Moreover, given a > « by (F})
there exists R; > 0 such that

flz,u)| < e forall z€R? and |u| > R.
In view of (Fj), there exists ¢; > 0 such that
|f(z,u)|[u] < eiF(z,u) forall z€R? and |u| > R

Taking R. > Ry, from the two last estimates and (4.16)) it follows that

~

[ ()| Jun| < of”cl/ F(z,u,) < C,
RQ

| f (2, un) | (log | f (2, un) )2 < a1/2/

As Az

for some constant C' > 0. Thus, in view of (4.22)), we find ny € N satisfying

T <eg, forall n>n,. (4.23)
un

/ S, un) - (wy —wy)
Qn (Re,00)

According to (Fy) and (Fy), given a > «y we obtain C, > 0 such that, for all

z € Q,(re, Re), we have
[f (@, )| < fun] + Ca(e™ = 1) un|

From this estimate and (4.11]), recalling the definition of w,, and |w} — w;| = |w,|, we

n

reach

[ fewgow) o ) 0 el
Qn (re,Re) (|2 | Qn(re,R:) |2 |
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for some n; € N. This estimate, (4.21) and (4.23)) show that

f,un) - (wy —wy)

R2 [

dr < 3e, for all n > max{ng,n;}.
But this contradicts (4.17)) because € > 0 is arbitrary and the proof is done.
[

Once the sequence (u,) C N satisfying (4.14)) is bounded, it follows that there exists
uo € E such that, up to a subsequence, u,, — uy in F and u,, — uy a.e. in R? as n — oo.
Our intention is to prove that wug is a nonzero critical point of I and to conclude that wg

is a ground state solution. This will be done in the next propositions and lemmas.
Proposition 4.14. The weak limit ug of the sequence (u,) C N is a critical point of I.

Proof. By the density of C5°(R?) in E, it is enough just to deduce that I'(ug)n = 0 for
all n € C§°(R?). Then, let n € C5°(R?) and K := supp.
By (Fg), there exist M > 0 and ¢; > 0 such that

|f(x,up)||un| < 1 F(x,u,), forall |ul > M.

Defining Q; = K N{z; |u,(z)] < M} and Qy = K N A{z; |u,(z)| > M}, by (F}) and

(F3), given o > ap we obtain C' > 0 such that
|z, w)] < |w|+ e —1) forall (z,w) € R?* x R?
and hence

1f (2, un(2)) - ()] < [nllooltn(@)] + Cullnfloc (e F — 1)

< Mllso[M + C1(e*™* = 1)] ae. in z € Q.

Since f(x,u,)-n — f(z,up)-n a.e. in x € €y, it follows from the Lebesgue Dominated

Convergence Theorem that

/Q [f (@, un) — f(z,u0)] -7 =0 (4.24)
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Now, observe that by (Fg), (4.16) and Holder’s inequality, we reach

< 100 [ 17Go) = e 0)

< 1= [ sl + o)) (125)
< H?\EOO c1 /R2 ﬁ(w,un) +C </R? [62a|u0|2 - 1]) ' ||unH2]

. nll=C

- M

for some C > 0 independent of M. Hence, given 0 > 0 we can take M > 0 so that

<0, forall neN. (4.26)

[ﬁﬂmwg—ﬂawﬂm

Therefore, by (1.16) and ([L.18]) we obtain

lim sup

n—oo n—o0

léﬁ@wﬁ—f@mm-ﬂshmwp

[ ) = ) a] + 6=
Q1

and once 0 > 0 is arbitrary, we conclude that

[ ) = sl n o (1.27)

Since

IWMM—IWMthw—umm—/PU@ww—f@mdkn

RQ

and according to (4.27) we reach

Puo)y = Jim |7y = G = o) + [ [£(o) = F(o )] 0| =0

—00 R2

and the claim is proved.

The next lemma have been proved by [20]. The proof is presented in Section
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Lemma 4.15. There exists m € N such that

2
max (v + swy) < —. (4.28)
s>0,veE— Yo

Now, our objective is to prove that the weak limit uy of the sequence (u,) C N is
nontrivial.

For the next lemma, we will exploit the inequality
st <t3(e”” —1) + s(logs)/?, for >0 and s> et VA (4.29)

The proof of (4.29) can be seen in [38, Lemma 4.1].

Lemma 4.16. Let (u,) € N be a sequence satisfying (4.14). Then, there exists R > 0
such that

lim sup / u? > 0. (4.30)
Br(y)

n—o0 yER2

Proof. First, by Proposition [4.15] we can choose 6 > 0 so that ¢, € [0,27/ag — 0/2).
Assume by contradiction that (4.30) does not occur, that is,

lim sup / u? =0 forall R >0, (4.31)
Br(y)

n—0o0 yeRQ

which implies by Lions’ lemma (see [49]) that
u, — 0 strongly in L*(R?) for any s > 2. (4.32)

Now, we claim that

/ F(z,u,) — 0. (4.33)

In view of (Fy) and (F5), there exists ¢; > 0 such that

F(z,u) < Mo|f(x,u)] and |f(z,u)||lu] < clﬁ(x,u) for all € R* and |u| > Ry.
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On the other hand, by (F5), (4.16) and for any K > R, we deduce that

/ Fla,up) < M, / (@)
{lun|>K} {lun|>K}

My
K J{un>ry

MOCl M()C

F(x,u,) < ,
/ .

where C' > 0 does not depend on K. Given any € > 0, we can take K > 0 large enough

so that
/ F(x,u,) <e. (4.34)
{lun|>K}

By (1.8)), for @ > oy we know that
F () < elunl? + Colun (P — 1)

and thus

/ F(Z’,un) SS/ ‘un‘2+/ ‘un‘4(ea|un\2 _1>
{lun|<K} {lun|<K} {lun|<K} (4.35)

< eC + 2(e*® — D)||un ||t

Therefore, from this inequality, (4.32)) and (4.34)), it follows that

hmsup/ F(z,u,) = limsup [/ F(z,u,) —i—/ F(I,un)] <(1+C)e
R? {lun|<K} {lun|>K}

n—o0 n—oo

and convergence (4.33) is proved. Since I(u,) — c., by convergence (4.33]) we reach

lim [ (|Vu,|* + V(2)ul)dz = 2c,. (4.36)

n—o0 R2

If u,, — 0 strongly in H'(R?) as n — oo, then by (#.33)) and (4.36) we get that c, = 0,
which is not possible. Therefore, we can assume that ||u,| >0 > 0 for all n € N,

Once (I'(uy), un) = 0n(1)||un]|, we have

feal? = [ £ )+ 0u (D]
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In view of (Fy) — (F1), given € > 0 there exists C. > 0 such that

|fz,u)| < Ceel®t)® for all (z,u) € R? x R2. (4.37)

Setting
un

T, = (47 /ap — 8)/2 ="
2l

where 6 > 0 was chosen at the beginning of the proof, we can write

(47 /g — 0) 2 [lun < /RQ | (2, wn ) || + 0n (1)

C. [ If(e,
Vao S C-

(4.38)

>|\/a0|ﬂnl +o,(1) =: I,,.
Defining
r, = {x eER?: |f(z,u,)|/C. > el/%} and A, = R*\T,,

by using inequality (4.29) with s = |f(z,u,)|/C: and t = \/ag|u,| we can estimate

C. [ |f(z,u)l f (2, un) [\ ]2
wage [ e (FE)] e

+/ |f($’u")||ﬂn| + CE\/Q—O/ |ﬂn|2 (eaomnI? - 1) .
An R2

Thus, by (4.37) we get

V o Tp R2

+/A | f (2, up)| | 4+ 0n(1) (4.39)

[ag + €
S 0 / ’f<x7un>Hun’ +Il,n+[2,n+0n(1)7
(&%) R2

where

L= Cov/ag / @ (5 1) and L, = / ()|l
R2 An

Now, we can take p > 1 close to 1 such that pag(4r/ag — 0) < 4m.  Since
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|Zn||? = 47/ — 0, Lemma [1.12| and (#.32)) imply that

o 1/q
< CQ\/OC_OM {/ ’un’m} — 0,
R2

where 1/p+1/q = 1. Next, according to (Fy) — (F3), for any p > 0, there exists C,. > 0
such that
|f(z,un(2))] < plun(z)| + C,clun(z)|?,  for all z € A,. (4.40)

Hence,

1/2 1/2 1/2
B < [ (plual+Coclunf? il < [p ( / |un|2) L0, ( / |un|4> ]( / w) .
An R2 R2 R2

Once ||@, || is bounded and u, — 0 strongly in L*(R?), we reach

limsup I5,, < Cp,

n—oo

for some C' > 0 independent of p. Thus, we conclude that Iy, = 0,(1) and I, = 0,(1).

Therefore, (4.38]) and (4.39) provide
2\ 12
(47 /g — 6) ||| < 0n(1) + (1 + a_> / | f (2, upn)||wn- (4.41)
0 R?

By virtue of (F5), given § > 0 there exists M > 0 such that |f(z,u)||u] < (5 + 5)1/7\(3:, u)
for all |u| > M. Hence, by using (4.16) with ¢ = ¢, one has

) un| < (B+6) | F(x,up) + )t
Ll <@ o) [ P [ il
<poto+ [ )l

{lun|<M}

By virtue of (4.19) and arguing as in (4.35]), we can show that

[ Ul o
{lun|<M}
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and consequently

17wl < e+ o).

Hence, since fSe, € (0,47 /oy — 6), according to (4.41) we have

1/2 —-1/2 . 1/2
||unus«)n<1>+(1+i) (41—5) /sc*g(“—ﬂ—(s) w4

&%) O

for some 0 < § < ¢ and for n sufficiently large. On the other hand, choose p; > 1
close to 1 and o > ay close to ay satisfying pya(4n/ay — 8) < 4m, from it follows
that pial|u,||?* < 47 for n sufficiently large. Once u,, — 0 strongly in L% (R?), where
1/p1 + 1/ = 1, by invoking Lemma we obtain

e aza(f ) [ oo 0] 20 o) o

From this convergence and again by using (|1.8]), we get

[ 1wl =0,

which together with (4.41)) implies that u,, — 0 strongly in H'(R?). Thus, again it follows
from (4.36]) that c, = 0, which is a contradiction and proof of the lemma is complete.
n

Finalizing Proof of Theorem[{.3. Once (£.30) is valid, we can get a sequence (y,) C R?

/ u? > v
Br(yn)

Now, we introduce the following sequence:

and v > 0 satisfying

Un(+) = tun( + Yn)-

In view of (V) and (Fp), we can see that @, € N and also satisfies I(,) — c,,
I'(@,) — 0 and

lim inf aidr > v. (4.43)

Observe that, by Lemma m, (@,) is also bounded in E and, up to a subsequence,
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we assume i, — @ weakly in E for some @ and @, — @ a.e. in R%. From Proposition
it follows that I’(@) = 0. Moreover, in view of (£.43)) we have @ # 0 and Remark [L.7]
guarantee that @ € A, implying that ¢, < I(@). By invoking Fatou’s Lemma, we deduce

that

n—oo n—o0 n—o0

1 1
¢, = liminf I(@,) = liminf | I(a,) — Ell(ﬁn)ﬂn} = lim inf/ [ﬁf@’ Up) - Up — F (2, ﬂn)}
R2
1
P
1
= I(u) — 5]’(&)&
= I(a).
Therefore, I(%) = c,, which shows that @ is a ground state for (2) and the theorem is

proved.

4.3 Proof of Lemma 4.15|

Here, for completeness, we present the proof made by Chen-Tang [20]. The following

lemma is very important and crucial, which has been proved in [I8, 20].

Lemma 4.17. Assume that V € L>=(R?). Then for any p > 0 there exists two constant
Ko > 0 and K, > 0 such that

IVUulloo + [|t]|eo < Kollullz, Yue€EO)E =E~ (4.44)

and

[ulloe < Kpllullz,  Vu € E(u)E. (4.45)

Applying Lemma [4.17, we deduce that
IVl + [|V]lo0 < Collv]l, YveE (4.46)

We may assume that V' (0) < 0. By (V), we can choose a constant p € (0,1/2) N
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(0,4/||V||oo) such that

ArCo(4 +p)p <1 and V(z) >0, |z|<p. (4.47)

Now, we consider Moser’s sequence of functions

Viogn, if [z] < p/n,
Tu(e) = = S it pjn < ol <, (1.48)
0, if |z| > p.
We have
ot P = s | = [ (9P Voo < [ Vufde=1. (449)

P

Proof. Assume by contradiction that the lemma is false, that is,

2
max [(v+ swy) > —7T n € N. (4.50)
s>0,0elE~ ’)/0

Let v, € E~ and s, > 0 such that I(v, + s,w,) = maxy>g,ep- L (v + swy). Then we have

I(vy + spwy) > 27/ and  (I'(v, + Spwy), vp + Spwy) = 0,

that is,
ST = o + 50 2) = [ P+ syw)de = (451)
and
[t |2 = [[vn + snws |2 = / £ 0n -+ $ntn) (U + st )d (4.52)
R

From (4.3), (4.5), (4.46) and (4.48), we have

[{wy, s on)| = [(wn, vn)| =

/ Vw, Vv, + V(x)w,v,]dx
R2

QW%M/JWMM+M%JM@AyMM

vV 27TC(),0

S Jogn [[on]]- (4.53)
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Hence, it follows from (4.3)), (4.5)), (4.6), (4.49) and (4.53]) that

sullwil? = llon + spwy [1* = sy (lwt I = lwf %) = [lvall® = 28 (vn, wy,)
20/ 21Copsnp
< sy = [loal* + ——=="lvall. (4.54)
~ Viogn
Combining (4.51)), (4.52) with (4.54), we have
4 24/ 27CopSn, 21C2 p?
= <8t ol + T e < 82 (14 T2 (4.55)
Qo Vvlogn logn
and
27C2 p? 2V 21w Copsn,
2 (14 20 2 2 = o P+ 2
logn V1o
> / f(z,v, + snwn)(vn + spwy,)d. (4.56)
RQ
Moreover, (4.55)) implies
2 2 /o~
2> 4 <1+ 2mCop ) leall | 2v27Cop. (4.57)
0 logn Sn Viogn
1
Let M, = \/?\/log n. By (4.46)), (4.48) and (4.57), we have
T
U (2) + 50 Wi (2) > —||Vp]|oo + 50 My
> —Collvn|| + sn M,
> (1—2Cy/My)spM,, z € B,/n. (4.58)
By (4.2), we can choose £ > 0 such that
. 4 167C2
nTeE R R (4.59)
l+¢ agp?

Note that
t

/t s*f(x,8)ds = s*F(x,s)| — 2 /t sF(z,s)ds
0 0

0
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Then,

2p b g2 y d
BP0 5 i jup IO gy 0D oo 5y )

lim inf ™ 5
eco [t|—o0 eaot [t|—oo 20 20

[t| =00
It follows from (4.2)) and (4.60) that there exists ¢. > 0 such that

tf(x,t) > (k5 —e)e™”, £F(x,t) > e vz eR?, |t > t.. (4.61)
Qo

From now on, in the sequel, all inequalities hold for large n € N. By (4.56)), (4.58)) and
(4.61), we have

: (1 | 20Cp?

" logn

s ) > f(z, v, + spwp)(vn + spwy)dz
RZ

Y
B

p/n

2
m(k —¢)p 0052 M2 (1-2C0 /My,)?

(K — €)p? exp aps? logn 4Cy
2 M,

2 4C
> 7(k — €)p? exp {210gn {aij;” (1 — ﬁ) - 1} } ,

which implies that there exists a constant

2
oS 4Cy
21 Pll1l—— ) -1 <A
Og”{zm( Mn> }— ’

4 4Co\ A
Ay 1 . 4.62
o= 0 ( Mn) ( +10gn> 462

that is,
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Hence, from (4.10), (4.48), (4.54), (4.58) and (4.61]), we obtain

(v, + spwy)

1

= S = ot s P = [ Pl vn+ s,w)da
RQ
21 V21 Copsy,

< %n - §||"Un||2 \/ms vl — / F(z, v, + spwy,)dx
< S?L 1 || ||2 + V 27TCOp5n || || R —& / 6a0(vn+snw")2

-  3llUn ———||Un|| —
-2 9 Viogn 200 Jg,,, (U + Spwy )2
S R T i (469

- T Zl|Un Unp, R
-2 2 Viogn 200002 (—Co||vn || + 5, M,,)?

Both (4.57) and ([#.62) show that JT(1 —¢) < s < TT(1+¢).

There are three cases to distinguish.
2\ 4w 2 4
Casei) F(1—¢) < s < 7. It follows from (4.55) that [|v,|| < 27Cys, M,/ logn. Then

(4.63) leads to

(v, + spwy)

_ s2 1” 2t w/27TC0pan - (K — &)mp2eo(~Collvnll+snMn)?
- — 5llUn Un
-2 2 V1o 20012 (—=Col|vnl| + 50 M),)?
S ﬁ m 271'03 B (/i . €>p ea052M2(1 2Co||vn |/ snMr)
2 logn 8n2(1 + ) M?
2 212 p? o ags" (log n—4mC3)
<y TCip*\ (K —e)mple (4.64)
2 logn An%(1 + ) M?
Let us define a function ¢, (s) as follows:
2 271C2 p? _ S (logn 47C2)
on(s) = (14 Cop®\  (k e)mp’e
2 logn An?(1 4 ) M?
Set 5, > 0 such that ¢/ (5,) = 0. Then
4 2 +log4(l 1 —e)p? 1
5 —Am [ 8nCo +logd(l +e) —log(ao(k —€)p") | | : (4.65)
Qg 2(logn — 47C?) log“n
and L,
pade (14 348

2 " ag(logn — 47C2)’
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Using (4.65)), we have

(1+

_47T

2mC2p?
logn

(1+

)
2mCE p?

) {1 ¥
logn

%)
47
< —

8mCa + log 4(1 + €) — log(ag(k — €)p?)

2(logn — 47C3)
+log4(1 +¢) — log(ag(k — €)p?)

21Cip*  8mC?
+7r0p+7r0
logn

&%)

i

| o

2(logn — 47C3)

Hence, from (4.47), (4.59),

(4.64), (4.66) and (4.67), we derive

I(vy, + spwn) < @n(sn)

|

1

log?n

log

1

2
n

)

) (4.67)

Lz (14592
B 2 — ap(logn — 4nC2)
A F 1 —4nCip* | 87CG +1log4(1 + ) — log(ao(k — €)p?)
~ap |2 4logn 4(logn — 4mC?)

ro

47r[
<2

_OZ()Q

log®n
11— 4xCEp?

1

)

1

log?n

[+0(im)-

4logn

This contradicts with (4.50]) due to (4.47).
Case ii) %(1 + 27Col|vn|l/$a M) < 82 < i—’;(l +e).

Then [{@55), [@56), [@.53),

(4.59), (4.61) and (4.62) yield

47

—(1+e)> 5121

O

2mC2p?
logn

()

> fz, v, + spwy)(vn + spwy,)de

RQ

e [

2
(K = €)P” ao(~Collen-+snM0)?
n2

2
Z eaO(Un+sn’wn) dx

p/n

_ 2
m(k —€)p 0052 M2(1=2Co|[vn|/sn M)
2
n

v

2
(K = €)P” stogn(1-clunl?/s2042)
n2

v

2
n

—167ng||’unH2/s

v

m(k —€)p’e

(1+ 6)615”63,
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which yields a contradiction.

Case iii) 7T < % < TT(14 2Co|va|/s,M,). Then it follows from ([@.55) that

a2 — 2\/27TCOPSn|| I < 8mCol|vn || 8mv/271Cy ol
Un n - = nills
CYOSnJ\4n agSnpV/ log n
which, together with (4.57)) and (4.62), implies that
||| 2\/27TC0( ) (1.68)
Sn Viogn
It follows from (4.63) and (4.68]) that
I(/Un + Snwn>
O I L s e
— — —||vn v, || —
) 2 2c n2( COHUnH + SnMn)2
«a Un||T8SniVin 2
< su (14 27C0tY (,fu_g)pze 0(~Collvnl+snMx)
2 logn 8n2(1 + ) M?
_Sh (14 2707 (= e)pPern Rl )
2 logn 8n2(1 + &) M?
< ﬁ 1+ 2rCip? (k- e)mple " & flog n—m(1-+0)C3) (4.69)
2 logn 4n2(1+¢)logn

Setting

2F63p2> (/i —E)ﬂ'p e L0 [logn 8m(1+p)C3]

&2
Ynls) = 2 (1 * 4n2(1 +¢€)logn

logn

Let 5, > 0 such that ¢/,(5,) = 0. Then

A 167C3(1 + p) + log 4(1 + &) — log(av (s — 6)/)2)] ( 1 )
2?2 =" 0 @) 4.70
5n o { + 2[logn — 87 (1 + p)CE] * log*n (4.70)
and ( 27C2p >
1+ 2 L+ S
~ ogn  ~9 ogn
_ _ g 2 , 471
Wn(s) = ¥n(5n) = 2 5n apl[logn — 8w (1 + p)C?] ( )
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Combining (4.70) with (4.71)), we have

(1 + 27TC§p2) 52
logn
_ A m 2mC2p? " 167C2(1 + p) + log 4(1 + €) — log(ag(k — €)p?) (4.72)
ap logn 2[logn — 87 (1 + p)C?] '

1
O -
" <log2 n>

i {1 N 2mCep? N 167C3(1 + p) + log4(1 + ) — logQ(ozo(n - 6)p2)} (4.73)
p logn 2[logn — 877(1 + p)c(]]
1
i ( : ) (4.74)
log”n

Hence, from (4.47)), (4.71) and (4.72), we deduce

27C2 p? ( 27rch2 >
wn<3) < Lt logon §2 — T\ o
- " ap[logn — 87 (1 + p)CE]
< Am {1 1 —4nCgp? N 167C2(1+ p) + log4(1 + &) — log(ao(r — 5),02)}

2 4logn 4[logn — 87 (1 + p)C3]

1
+0(—
(logzn)

_ 2
< dm (11 ArCip(4 + p) L0 12
2 4logn log”n

It follows from (4.69) that

I(vn+snwn)§¢n(sn)§i—ﬂ[%—1_4ﬂcgp(4+p)}+0( 1 )

0 4logn log*n

and this contradicts (4.50)) in view of (4.47). The above three cases show that there exists

n € N such that (4.28]) holds and the proof is done.
|
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