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Resumo

Esquemas de Hilbert foram introduzidos por Grothendieck. Eles são um exemplo

fundamental da noção de espaços de moduli de estruturas geométricas. O trabalho

de Nakajima a respeito das propriedades do esquema de Hilbert de pontos no plano

complexo tem sido base para diversos trabalhos que visam entender as propriedades dos

esquemas de Hilbert de outras superfícies, assim como em dimensões mais altas. Além

disso, o esquema de Hilbert aninhado de pontos no plano complexo foi estudado por

von Flach, Jardim e Lanza. Ademais, Bartocci, Bruzzo, Lanza e Rava obtiveram uma

descrição quiver para o esquema de Hilbert de pontos do espaço total Ξn de �brados

de linha sobre a linha projetiva apropriados. Neste trabalho, nós mostramos que o

esquema de Hilbert aninhado de pontos na variedade que acabamos de mencionar,

parametrizando pares de 0-ciclos aninhados, é uma variedade de quiver associada a

um quiver com relações adequado, generalizando trabalhos prévios sobre esquemas de

Hilbert aninhados de pontos no plano complexo, em uma direção, e sobre os esquemas

de Hilbert de pontos em Ξn em outra.

Palavras-chave: Bandeiras de feixes framed, esquemas de Hilbert, superfícies de

Hirzebruch, espaços de moduli de representações de quivers.
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Abstract

Hilbert schemes were introduced by Grothendieck. They are a fundamental example

of the notion of moduli spaces of geometric structures. The work of Nakajima on the

properties of the Hilbert schemes of points of the complex plane has been the basis

of many works that try to understand the properties of Hilbert schemes of other 2-

dimensional varieties and also for higher dimensions. Furthermore, the nested Hilbert

scheme of points on the complex plane was studied by von Flach, Jardim and Lanza.

Moreover, Bartocci, Bruzzo, Lanza and Rava obtained a quiver description to the

Hilbert scheme of points of the total space Ξn of appropriate line bundles over the

projective line. In this work we show that the nested Hilbert scheme of points on the

last varieties, parameterizing pairs of nested 0-cycles, is the quiver variety associated

with a suitable quiver with relations, generalizing previous work about nested Hilbert

schemes on the complex plane, in one direction, and about the Hilbert schemes of

points of Ξn in another direction.

Keywords: Framed �ags of sheaves, Hilbert schemes, Hirzebruch surfaces, Moduli

spaces of quiver representations.
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Introduction

Hilbert schemes are quite important in modern Algebraic Geometry, as they have

a pivotal role in many areas, such as the construction of moduli spaces and deformation

theory. Introduced by Grothendieck in [20], Hilbert schemes are a fundamental example

of the notion of moduli spaces of geometric structures. They are schemes, in the

sense of Algebraic Geometry, which parameterize the closed subschemes of a scheme

X (usually, a regular quasi-projective variety) that have �xed invariants; for example,

the zero-dimensional subschemes, also known as 0-cycles, in which case they are called

Hilbert schemes of points.

When working with Hilbert schemes of points, it is quite clear that the di�culty

of the problem increases quite fast with the dimension of the space and the number

of points, so that any kind of generalization may be quite hard. For instance, even

for small values of the dimension of X and the number of points, such issues as the

characterization of the irreducible components, their smoothness, reducedness etc., may

be very challenging.

In the case where dim(X) = 1, the Hilbert scheme of n points on X is isomorphic

to the n-th symmetric product of X:

Hilbn(X) ≃ Xn

Sn
,

where Sn is the n-th group of permutations; and if X is nonsingular, then Hilbn(X) is

also nonsingular, cf. [34].

The case dim(X) = 2 was studied by such authors as Briançon in [6], Iarrobino

in [27] and Nakajima in [34], starting with the case X = C2. Nakajima in particular

obtained a description of the Hilbert scheme in terms of linear data, called ADHM

data.3

3ADHM stands for the name of the following scientists: Atiyah, Drinfeld, Hitchin and Manin,

because of their paper [1] Construction of instantons from 1978.
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Theorem (Nakajima, Theorem 1.9 in [34]). Let

H̃ := {(B1, B2, I); [B1, B2] = 0, ∄ S ⊊ Cc;B1(S), B2(S) ⊆ S and Im(I) ⊆ S},

where B1, B2 ∈ End(Cc) and I ∈ Hom(C,Cc). The group GLc(C) acts on H̃ by

g · (B1, B2, I) := (gB1g
−1, gB2g

−1, gI).

The quotient H :=
H̃

GLc(C)
is a nonsingular variety that represents the Hilbert functor

of 0-cycles on X = C2 of length c.

This was generalized by Henni and Jardim [24] who proved that Hilbc(Cn) may

be also realized as a GIT quotient. For all n ∈ N, if V and W are complex vector

spaces of dimension c and 1, respectively, then

Hilbc(Cn) ≃ (C(n, c)× Hom(V,W ))//GL(V ),

where C(n, c) is the variety of n-uples of commuting c× c matrices.

In many ways, quivers play a basic role in the study and description of Hilbert

schemes, and, more generally, of moduli spaces of framed sheaves. They are a powerful

tool for encoding by simple algebraic data the complicated structure of these spaces.

Starting from an often very simple directed graph one �rst constructs an associative

algebra, then constructs a moduli space of its representations (called a quiver variety),

and eventually discovers that this is also the moduli space of nontrivial geometric

structures. For instance, if we consider instantons, i.e., anti-self-dual connections on the

4-sphere, including degenerate con�gurations, we have a singular moduli space, whose

resolution of singularities is on the one hand the moduli space of framed torsion-free

sheaves on the complex projective plane; and on the other hand, thanks to Nakajima's

work [34], can be regarded as the moduli space of representations of the path algebra

of a quiver with relations � the ADHM quiver. Since a rank one torsion-free sheaf on

P2, framed on a line, may be identi�ed with the ideal sheaf of a 0-cycle on C2, also

the Hilbert scheme of points of C2 is a quiver variety. A geometric description of some

Nakajima quiver varieties was studied by Kuznetsov in [30]. Other examples of this

correspondence are

� moduli spaces of instantons on ALE (Asymptotically Locally Euclidean) spaces

[29];4

4ALE spaces are resolutions of singularities of quotients C2/G, where G is a �nite subgroup of

SL2(C).
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� (equivariant) Hilbert schemes of points of ALE spaces ([30] and references therein);

� the crepant resolutions of singularities C3/G, where G is a �nite subgroup of

SL3(C), are moduli spaces of structures called G-constellations (a generalization

of the G-Hilbert schemes), and are moduli spaces of representations of the McKay

quivers [14, 13]. Related constructions and results can also be found in [11, 12]

and other papers.

Another construction, very relevant to the present thesis, is described in [42, 43].

One consider framed �ags on P2, i.e., pairs (E,F ), where E and F are torsion-free

sheaves of the same rank on P2, such that E ⊂ F , F is framed on a line, and the

quotient F/E has dimension zero and is supported away from the line. The moduli

space of these pairs turns out to be a quiver variety associated with an enhanced ADHM

quiver. When rkE = rkF = 1 the moduli space is the nested Hilbert scheme of C2,

and parameterizes pairs of nested 0-cycles.

Now we shift our attention to Hirzebruch surfaces. By removing a suitable ratio-

nal curve ℓ∞ from the n-th Hirzebruch surface Σn, with n ≥ 1, one obtains the total

space of the line bundle OP1(−n), that we denote Ξn. In this case, rank 1 torsion-free

sheaves on Σn framed on ℓ∞ are ideal sheaves of 0-cycles in Ξn. Building on the de-

scription of the moduli spaces of framed sheaves on Σn that was performed in [4], in

[2, 3] it was shown that the Hilbert schemes of points Hilbc(Ξn) are quiver varieties

associated with a suitable quiver, denoted Qn. The aim of the present work is to obtain

a similar description in the case of the nested Hilbert schemes of points Hilbc
′,c(Ξn).

It is quite natural to phrase our central problem in categorical language, so that

we aim to establish an isomorphism between the functor of families of representations

of a certain quiver, and the functor of families of nested 0-cycles on Ξn), we start by

rephrasing the results of both [4, 2] and [42, 43] in full categorical language. Our main

result:

Theorem. Let Mn,fr,s
v,Θ be the moduli space of framed representations of the quiver Qenh

n

with dimension vector v = (c, c, c − c′, c − c′, 1), stable with respect to the stability

parameter Θ = (θ1, θ2, θ3, θ4), where

θ1 > 0, θ3, θ4 < 0, θ1 + θ2 + (θ3 + θ4)(c− c′) > 0, −θ1 < θ2 < −c− 1

c
θ1.

Mn,fr,s
v,Θ is isomorphic to the nested Hilbert scheme Hilbc

′,c(Ξn).

3



is proved in Chapter 4; the trick for doing that is similar to the case of the projective

plane, i.e., to regard the spaces of representations of an �enhanced� quiver as a space

of morphisms between two copies of the quiver Qn, although the present case is more

complicated and technically more involved.

Our work is divided in 5 chapters. The �rst chapter is dedicated to displaying

all our objects of study: quivers, Hilbert schemes, moduli spaces and framed �ags of

sheaves. As it was said before, our work generalizes both works on nested Hilbert

schemes of points on the projective plane and on Hilbert schemes of points on the total

space Ξn of a suitable line bundle over the projective line, so that the second and third

chapter are dedicated to obtain a sound understanding of these works and develop their

categorical approaches.

In the fourth and �nal chapter we prove our main theorem and some auxiliary

results, such as: a characterization for the stable representations of the quiver Qenh
n in

terms of the stability of the datum corresponding to Qn and an additional hypothesis.

Further developments. There are some interesting topics that we expect to

explore in future works. For instance, di�erently from [2, 3, 43], we did not succeed yet

to identify the chamber in the space of stability parameters of the quivers Qenh
n that

contains our parameter (i.e., the one that corresponds to the nested Hilbert scheme

of points of Ξn); by doing so we would open also the possibility of studying variation

of stability and wall-crossing phenomena. The double nested Hilbert scheme of Cn or

Ξn, which became an object of interest in recent works as [19] and [32], does not have

a description in terms of representations of a quiver so far, but we expect that one

can achieve this goal by suitably adapting the techniques used in this thesis. Finally,

one might also wonder if these nested Hilbert schemes are connected and irreducible;

a similar question is open (in full generality) also for Hilbc(Ct) and Quot(O⊕r
Pt , c), see

[24, 23, 21] and [16]; we do think that a quiver description may help to answer these

kind of problems.
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Notation and Terminology

� Unless the contrary is mentioned, all vector spaces are C-vector spaces.

� All schemes will be connected noetherian schemes of �nite type over C.

� All locally free sheaves will have �nite rank.

� △ denotes the end of a de�nition.

� □ denotes the end of the proof of a lemma, proposition or theorem.

� We will denote N0 := N ∪ {0}, with N = {1, 2, 3, ...}.
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Chapter 1

Preliminaries

In this chapter we present the main subjects of our work. In the �rst section

we explore the quiver world: examples of quivers, operations, representations and sub-

representations and morphisms. In the second section, we talk about Hilbert schemes

and nested Hilbert schemes. The third section is dedicated to explore some ideas on

the stability conditions for quiver representations. The fourth section is about framed

�ags of sheaves, where we de�ne one of our main objects of study for the Chapters 2

and 4. The �fth and �nal section is devoted to explore the notion of monads, to make

our work self-contained.

1.1 Quivers

In many ways, quivers play a basic role in the study and description of moduli

spaces of framed sheaves. They are a powerful tool for encoding by simple algebraic

data the complicated structure of these spaces. This section has the aim of presenting

some quiver generalities that will be useful for this work.

1.1.1 De�nitions and examples

De�nition 1.1.1. A (�nite) quiver Q is a quadruple Q = (Q0, A, s, t), where Q0 and

A are �nite sets (the set of vertices and the set of arrows, respectively) and s and t are

maps from A to Q0 that associate to each arrow its source and target, respectively.△

Example 1.1.2. The quiver composed by a single vertex and r arrows is called the

r-loop and it is denoted by Lr. The quiver composed by r + 1 vertices and r arrows

6



with a commom target is denoted by Sr. One can see the quivers L4 (left) and S4

(right) below:

•

•

• • •

•

(1.1)

Example 1.1.3. The quiver Kn is the quiver with two vertices and n arrows with the

same sources and targets. One can see K2 below.

• •

De�nition 1.1.4.

1. A representation X of a quiver Q consists of a family of vector spaces of �nite

dimension {Vi}i∈Q0 and a family of linear maps {fa : Vs(a) → Vt(a)}a∈A; we shall
write X = ({Vi}i∈Q0 , {fa}a∈A).

2. A subrepresentation Y of X is a collection of subspaces {Wi ⊆ Vi}i∈Q0 such that

fa(Ws(a)) ⊆ Wt(a), ∀a ∈ A, i.e., the family of linear maps of Y is the restriction

of the family of X to the corresponding subspaces. △

Example 1.1.5. For the quiver Q = L13, a representation of Q is composed by a �nite

dimensional vector space V and 13 elements in End(V ).

De�nition 1.1.6. A morphism u : X → Y between two representations

X = ({Vi}i∈Q0 , {fa}a∈A) and Y = ({Wi}i∈Q0 , {ga}a∈A)

is a collection of linear maps (ui : Vi → Wi)i∈Q0 such that the following diagram

commutes for every a ∈ A:

Vs(a)
fa //

us(a)

��

Vt(a)

ut(a)

��
Ws(a) ga

//Wt(a)

An isomorphism of representations is a morphism u where every ui is an isomorphism

of vector spaces. △

De�nition 1.1.7. The dimension vector of a representation X = ({Vi}i∈Q0 , {fa}a∈A)
is the vector v = (dim(Vi))i∈Q0

∈ NQ0

0 . △

Remark 1.1.8. Two isomorphic representations share the same dimension vector.

7



De�nition 1.1.9. Let Q be a quiver.

1. A path in Q is a sequence α = a1a2 · · · am of arrows such that s(ai) = t(ai+1) for

i ∈ {1, . . . ,m− 1};

2. The C-vector space CQ, whose basis is the set of all paths in Q, can be made

into a C-algebra, called the path algebra of Q, by de�ning the multiplication αα′

as the concatenation of α and α′, if the target of α′ is the source of α, and zero,

otherwise. △

Remark 1.1.10. The notation αα′ in the path algebra means α′ followed by α.

De�nition 1.1.11. A relation is a formal sum of paths that start and end at the same

vertex. A quiver with relations is a quiver together with a collection of relations. △

Remark 1.1.12. A set of relations clearly de�ne an ideal of the path algebra.

Example 1.1.13. The ADHM quiver is the quiver

• •

a

b
j

i

with the relation ab− ba+ ij.

De�nition 1.1.14. Given a quiver Q = (Q0, A, s, t) and a dimension vector v =

(vi)i∈Q0 , the space of representations of Q with dimension vector v is

Rep(Q,v) :=
⊕
a∈A

Hom(Cvs(a) ,Cvt(a)) =
⊕
a∈A

Matvt(a)×vs(a)(C). (1.2)

△

Remark 1.1.15. Rep(Q,v) is a vector space of dimension d =
∑
a:i→j

vivj.

Remark 1.1.16. Even though we have used C-vector spaces in this subsection, the

constructions can be done with k-vector spaces for any �eld k.

1.1.2 Operations

Throughout this subsection, we �x a quiver Q = (Q0, A, s, t).
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De�nition 1.1.17 (Framing). A framing of the quiver Q is a new quiver Qfr; its set of

vertices is given by Q0⊔Q′
0, where Q

′
0 is a copy of Q0 with a �xed bijection Q0

≃−→ Q′
0,

i 7→ i′.; the set of arrows is the disjoint union between A and an additional set of

arrows given by: ai : i → i′, from the vertex i to the corresponding vertex i′, for each

vertex i ∈ Q0. The maps s̄ and t̄ of the quiver Qfr are de�ned in the natural way

t̄(a) = t(a), s̄(a) = s(a) when a ∈ A, s̄(ai) = i and t̄(ai) = i′. △

Example 1.1.18. For the quiver Q = S4, one has that

Sfr
4 :

•

• •

• • • • •

•

•

De�nition 1.1.19 (Opposite quiver). The quiver Qop is obtained from Q by inverting

the direction of the arrows from A. (The set of vertices remains Q0.)

△

Example 1.1.20. Again, when Q = S4, one has

Sop
4 :

•

• • •

•

Moreover, Lop
r = Lr for all r ∈ N, since all the arrows of Lr are loops.

De�nition 1.1.21 (Double). The quiver Qdouble is derived from Q through the oper-

ation

Qdouble := Q ⊔Qop. △

Example 1.1.22. For the quiver S4, it follows from Examples 1.1.2 and 1.1.20 that

Sdouble
4 :

•

• • •

•

9



Example 1.1.23. For the r-loop quiver, one has Ldouble
r = L2r.

De�nition 1.1.24 (Generalized framing - [5]). A generalized framing of Q is a quiver

Qgfr whose set of vertices is Q0 ⊔ Q′
0, where Q

′
0 is a copy of Q0 via a �xed bijection

i 7→ i′, and whose set of arrows is composed by A plus a set of new ones:

i i′

ap(i)

a1

a2

bq(i)

b1

b2

with p(i) > 0 e q(i) ≥ 0, for all i ∈ Q0. △

Example 1.1.25. If we consider the quiver Q = K2, i.e., the quiver with two vertices

and two arrows with the same source and target, then a possible generalized framing

for Q is the following:

Kgfr
2 :

• •

• •

Remark 1.1.26. In the de�nition of Qgfr, when p(i) = 1 and q(i) = 0 for all i ∈ Q0,

we recover the standard de�nition of Qfr.

Example 1.1.27. For n ≥ 1 we de�ne the quivers Qn as the quivers

Values of n Quiver Qn

n = 1 0 1
•j

zz

a1
**

a2

��
•

c1

gg
•
∞

n ≥ 2 0 1
•

j

��

a1
**

a2

��
•

c1

jj

c2

^^

cn

SS

•
i1

;;

i2

EE

in−1

OO

∞

with the relations
a1c1a2 = a2c1a1 when n = 1,

a1cq = a2cq+1

cqa1 − cq+1a2 = iqj
for q = 1, . . . , n− 1 when n ≥ 2.

(1.3)
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Example 1.1.28. For n ≥ 1, we de�ne the quivers Qenh
n as the quivers

Values of n Quiver Qenh
n

n = 1 • φ2 //

c1

ww

•

c′′1

ww• φ1 //

a2

22

a1

77

j

��

•

a′′2

22

a′′1

77

•
n ≥ 2 • φ2 //

cn

rr

c1

ww

•

c′′n

rr

c′′1

ww• φ1 //

a2

22

a1

77

j

��

•

a′′2

22

a′′1

77

•

i1

XX

in−1

dd
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with the relations

a1c1a2 = a2c1a1

a′′1c
′′
1a

′′
2 = a′′2c

′′
1a

′′
1

φ1c1 = c′′1φ2

φ2a1 = a′′1φ1

φ2a2 = a′′2φ1

when n = 1,

a1c1 = a2c2

c1a1 + i1j = c2a2

a′′1c
′′
1 = a′′2c

′′
2

c′′1a
′′
1 = c′′2a

′′
2

φ1i1 = 0

φ2a1 = a′′1φ1

φ2a2 = a′′2φ1

φ1c1 = c′′1φ2

φ1c2 = c′′2φ2

when n = 2,

a1cq = a2cq+1 for q = 1, . . . , n− 1

cqa1 + iqj = cq+1a2 for q = 1, . . . , n− 1

a′′1c
′′
q = a′′2c

′′
q+1 for q = 1, . . . , n− 1

c′′qa
′′
1 = c′′q+1a

′′
2 for q = 1, . . . , n− 1

φ1iq = 0 for q = 1, . . . , n− 1

φ2aq = a′′qφ1 for q = 1, 2

φ1cq = c′′qφ2 for q = 1, . . . , n

when n ≥ 3.

(1.4)

1.2 Hilbert schemes

Given a quasi-projective scheme X over an algebraically closed �eld k, we can

de�ne a contravariant functor from the category of Noetherian schemes over k to the

category of sets

HilbX : Schop
k → Sets
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that, for each scheme U , is given by:

HilbX(U) =



Z is a closed subscheme,

Z ⊆ X × U ; Z

π
��

� � i // X × U

p2
��

U =
// U

π = p2 ◦ i is �at


(1.5)

and acts on morphisms as follows. If f : U → V is a morphism of schemes, then:

HilbX(f) : HilbX(V ) → HilbX(U)

Z 7→ f ∗Z ⊂ V × Z

In order for this de�nition to make sense, we have to ensure that

1. f ∗Z is a closed subscheme of X × U ; and

2. the morphism πU = pU ◦ ĩ : f ∗Z → U is �at.

In fact, (1) follows from [39, Lemma 29.2.4] and (2) is a consequence of [22, Proposition

9.2(b)] or [39, Lemma 29.25.7].

In other words, such functor associates to a scheme U the set of families of closed

subschemes of X parameterized by U.

When we consider the projection π : Z → U , OX(1) an ample line bundle over

X and an element u ∈ U , the Hilbert polynomial at u is de�ned by the formula

Pu(m) = χ(OZu ⊗OX(m)),

where Zu = π−1(u). Given a polynomial P , we de�neHilbPX as the sub-functor ofHilbX
that associates to U the set of families of closed subschemes of X parameterized by U

that have P as their Hilbert polynomial.

In 1960/61 Grothendieck proved that HilbPX is representable, i.e., there exists a

scheme HilbPX such that

HilbPX(U) ≃ Hom(U,HilbPX)

for any scheme U .

Suppose now that P is a constant polynomial. If P (m) = n, for all m ∈ Z, we

denote by X [n] the corresponding scheme HilbPX .
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De�nition 1.2.1. The scheme X [n] is the so-called Hilbert scheme of n points on X.

△

When X is smooth and dim(X) = 1, it is known that X [n] is isomorphic to the

n-th symmetric product of X, explicitly:

X [n] ≃ Xn

Sn
,

where Sn is the group of permutations of the set {1, . . . , n}.

The case where dim(X) = 2 was widely studied by authors such as (Briançon,

1977, [6]) and (Iarrobino, 1977, [27]). The particular case X = C2 was studied by

Nakajima (1999) em [34], where he obtained a description in terms of linear maps,

called ADHM data.

1.2.1 Nested Hilbert schemes

The nested Hilbert schemes are, in general terms, schemes that parameterize

pairs of 0-cycles (Z,Z ′) in such way that Z ⊆ Z ′, i.e., if X is a scheme, the scheme

Hilbn,n
′
(X) ⊆ Hilbn(X)×Hilbn

′
(X) parameterizes the pairs of 0-cycles of length n and

n′, respectively, with n ≤ n′, that satisfy

Z ⊆ Z ′.

These schemes appear in works as [37, 42, 43] and [9].

We can also consider the description from Eq. 1.5 for the nested case. In gen-

eral, we consider a quasi-projective scheme X over C, r ∈ N and a r-tuple of integer

polynomials

P(m) = (P1(m), . . . , Pr(m)) . (1.6)

For every scheme U , we de�ne HilbP(m)
X (U) as

Z1 ⊆ . . . ⊆ Zr ⊂ X × U

(Z1, · · · , Zr) ⊆ X × U ; are U − flat closed subeschemes

and Zi has Pi(m) as its Hilbert polynomial

 .

Therefore, we get a contravariant functor HilbP(m)
X : Schop → Set, called the nested

Hilbert functor.
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Theorem 1.2.2. For any r ≥ 1 and P(m) as in (1.6), the nested Hilbert functor

HilbP(m)
X is represented by a projective scheme HilbP(m)(X), called the nested Hilbert

scheme of X relative to P(m).

Proof. See [38, Theorem 4.5.1] for the representability of HilbP(m)
Pt and comments after

its proof for the general case.

Remark 1.2.3. Sometimes the nested Hilbert functor can be found in literature under

the name `�ag Hilbert functor'; in this case, the scheme that represents it is called the

�ag Hilbert scheme.

If we let the polynomial P(m) be a r-tuple of natural numbers (k1, . . . , kr) it is

usual to write Hilbk1,...,krX instead of HilbP(m)
X , so we shall write Hilbk1,...,kr(X) for the

scheme that represents that functor.

Remark 1.2.4. Notice that if we do not make the assumption of

k1,≤ k2 ≤ . . . ≤ kr,

we have the possibility of the nested Hilbert scheme/functor to be empty.

1.3 Moduli spaces

The notion of what means for points in a space to represent geometric objects is

formalized by the idea of moduli spaces. Here we explore the idea of moduli spaces of

quiver representations based on Geometric Invariant Theory, cf. [33].

1.3.1 Stability conditions, categorial and GIT quotients.

When we have a quiver Q = (Q0, A, s, t), a stability parameter for Q may be

regarded as an element θ ∈ R#Q0 . Some choices for the stability parameter give rise

to interesting moduli spaces, for instance the stability condition that appears in the

work [34] of Nakajima is equivalent to a quite simple choice of a stability parameter.

The goal of this subsection is to develop the theory concerning the stability conditions,

based on works as [28] (the �rst about this topic), [4], [34], [17], etc.

Imagine that you want to consider a space of isomorphism classes of represen-

tations of a quiver Q with a �xed dimension vector v = (vi)i∈Q0 . Geometrically, this

space should be the orbit space
Rep(Q,v)

GL(v)
,
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where GL(v) =
⊕
i∈Q0

GL(vi). However, such an orbit space, in most cases, is not well

behaved, for instance, it may not have reasonable separation properties, see [17, Section

2.1]. In order to avoid this issue, as a �rst option, we may use the space

Rep(Q,v)//GL(v) := Spec
(
C[Rep(Q,v)]GL(v)

)
, (1.7)

i.e., the spectrum of the algebra of GL(v)-invariant polynomials on the vector space

Rep(Q,v). This is an a�ne algebraic variety by de�nition, and a categorical quotient

in the sense of the de�nition below.

De�nition 1.3.1 (Categorical quotients). Given a category C, a categorical quotient

of an object X ∈ Obj(C) with a G-action ∗ : G ×X → X is a morphism π : X → Y

that satis�es the following conditions:

(1) π is invariant, i.e., π ◦∗ = π ◦p2, where p2 : G×X → X is the natural projection;

and

(2) for any morphism π′ : X → Z satisfying the condition (1) there is a unique

morphism h : Y → Z such that π′ = h ◦ π.

Another notion, sometimes used as a substitute of the usual quotient as an orbit

space, the geometric quotient, is de�ned as:

De�nition 1.3.2 (Geometric quotient). A geometric quotient of an algebraic variety

X with the action of an algebraic group G is a morphism of varieties π : X → Y such

that

1. π−1(y) is an orbit of G for all y ∈ Y ;

2. The topology of Y is the quotient topology, i.e., U ⊆ Y is open if, and only if,

π−1(U) is open;

3. For any open subset U ⊆ Y , the map π# : C[U ] → C[π−1(U)]G is an isomorphism.

△

Example 1.3.3. The canonical map π : Cr+1 \ {0} → Pr is a geometric quotient.

Example 1.3.4. If G is an algebraic group, for any closed subgroup H ⊆ G, the

canonical morphism π : G→ G/H is a geometric quotient.

Remark 1.3.5. Every geometric quotient is a categorical quotient, cf. [33, Prop. 0.1,

�2].
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When Q is a quiver with no oriented cycles, one has

C[Rep(Q,v)]GL(v) = C.

Therefore, Rep(Q,v)//GL(v) is just a point, cf. [17, Corollary 2.1.2]. This shows that

the categorical quotient may cause the loss of a lot of geometric information. With a

view to avoiding this kind of issue when studying moduli problems, one usually intro-

duces the notion of a stability parameter and replaces the orbit space Rep(Q,v)/GL(v)

or the categorical quotient Rep(Q,v)//GL(v) by a moduli space of (semi)stable repre-

sentations. This approach has been widely used and explored in literature. In general,

though, moduli spaces built in this way depend on the stability parameter.

The theory behind this construction, i.e., quotients by a reductive group action

via stability conditions, is called Geometric Invariant Theory and was �rst explored

by Mumford in [33]. Here, we are going to exhibit some constructions, de�nitions and

results, to make this work as self-contained as possible.

First, we consider an a�ne algebraic G-variety1 X, not necessarily irreducible,

where G is a reductive algebraic group. The G-action on X will be denoted by ∗. Given

a rational character, i.e., an algebraic group homomorphism χ : G → C∗, Mumford

de�nes a scheme X//χG as follows. Let G act on the product X × C through the

formula:

g · (x, z) := (g ∗ x, χ(g)−1 · z).

The coordinate ring of X ×C is the algebra C[X ×C] ≃ C[X][z] of polynomials in the

variable z with coe�cients in the coordinate ring of X. One can see that this algebra

has a natural grading, given by the degree of a polynomial. Let Aχ := C[X × C]G be

the sub-algebra of G-invariants. This algebra is a �nitely generated graded algebra,

and a polynomial f(z) =
M∑
m=0

fm · zm ∈ C[X][z] is G-invariant if and only if fm is

χm-semi-invariant for all m ∈ {0, . . . ,M}, i.e.,

fm(g
−1 ∗ x) = χ(g)m · fm(x), ∀g ∈ G, x ∈ X and m ∈ {0, . . . ,M}.

1An algebraic group is a variety equiped with a structure of group such that the multiplication and

inversion maps are morphisms of varieties. A G-variety is a variety X equiped with an action of the

algebraic group G
∗ : G×X → X

(g, x) 7→ g ∗ x
which is also a morphism of varieties.
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Let C[X]χ
m
be the vector space of χm-semi-invariant functions. Clearly one has:

Aχ = C[X × C]G =
⊕
m≥0

C[X]χ
m

,

which provides a grading for the algebra Aχ. Let

X//χG := Proj(Aχ)

be the projective spectrum of the graded algebra Aχ. The scheme X//χG is quasi-

projective and it is called the GIT quotient of X by the given G-action. In addition, if

X is reduced/irreducible, so is X//χG.

Set A>0
χ :=

⊕
m>0

C[X]χ
m

and let I be the set of proper homogeneous ideals I ⊂ Aχ

and such that A>0
χ ⊈ I. An element I ∈ I is called a maximal homogeneous ideal if

it is not contained in another element I ′ ∈ I. The closed points of the scheme X//χG

correspond to maximal homogeneous ideals.

Given a nonzero homogeneous semi-invariant f ∈ Aχ, we de�ne

Xf := {x ∈ X
∣∣f(x) ̸= 0}.

To obtain a sound understanding of the GIT quotient X//χG we recall the following

de�nition from [33].

De�nition 1.3.6.

(1) A point x ∈ X is said to be χ-semistable if there exist m ∈ N and a χm-semi-

invariant f ∈ C[X]χ
m
such that x ∈ Xf ;

(2) A point x ∈ X is said to be χ-stable if there exist m ∈ N and a χn-semi-invariant

f ∈ C[X]χ
m
such that x ∈ Xf and, moreover, one has: (i) the actionG×Xf → Xf

is a closed morphism and (ii) the isotropy group2 Gx of the point x is �nite;

(3) Two χ-semistable points x and x′ are called equivalent if, and only if,

G ∗ x ∩G ∗ x′ ̸= ∅.
△

Remark 1.3.7. Usually one writes Xss
χ and Xs

χ for the sets of semistable and stable

points, respectively. Of course, one has:

Xs
χ ⊆ Xss

χ ⊆ X.

2The isotropy group of an element x is the subgroup of G whose elements �x the point x, i.e.,

Gx = {g ∈ G| g ∗ x = x}.
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Example 1.3.8. When we consider the trivial character χ = 1, we have

Aχ = C[X]G[z].

The regular function z ∈ Aχ is a homogenenous regular function of degree one, that

does not vanish on X. Thus, we have that Xz = X and any point x ∈ X is χ-stable.

Therefore, for this choice of χ:

X//χG = Proj(Aχ) = ProjC[X]G[z] = Spec(C[X]G) = X//G.

In 1994, A. King [28] established a completely algebraic notion of stability for rep-

resentations of algebras. Furthermore, when working with quiver representations, he

also showed that his notion of stability is actually equivalent to the one proposed by

Mumford in 1.3.6; here we shall exhibit some of the constructions of King's work.

We begin with a quiver Q = (Q0, A, s, t) and �x an element θ ∈ R#Q0 . We shall

see that this choice of θ, the so-called stability parameter, is equivalent to a choice of a

character χ : G→ C∗. Let 0 ̸= V =
⊕
i∈Q0

Vi be a �nite dimensional representation of Q

of dimension vector v = dimQ0(V ) ∈ N#Q0

0 . The slope of V is de�ned by the formula

slopeθ(V ) :=
θ · dimQ0(V )

dimC(V )
, (1.8)

where dimC(V ) =
∑
i∈Q0

dim(Vi). Alternatively, one can write dimC(V ) = θ+ · dimQ0(V ),

with θ+ := (1, . . . , 1) ∈ Z#Q0 .

De�nition 1.3.9. A nonzero representation V ∈ Rep(Q,v) is said to be θ-semistable

if for any subrepresentation V ′ ⊆ V we have

slopeθ(V
′) ≤ slopeθ(V ).

A nonzero representation is called θ-stable if the strict inequality holds for any nonzero

proper subrepresentation V ′ ⊂ V. △

Example 1.3.10. Fix θ = 0. Then any representation V of Q is θ-semistable, and X is

θ-stable if, and only if, it is simple as an CQ-module, i.e., it does not admit a nonzero

proper sub-module.

Remark 1.3.11. Consider θ ∈ R#Q0 and de�ne θ′ = θ − c · θ+, where c ∈ R. One
can check that a representation of Q is θ-semistable if, and only if, it is θ′-semistable.

Furthermore, given a representation V , it is always possible to �nd c ∈ R such that

θ′ · dimQ0(V ) = 0. See [36, Proposition 3.4].
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De�nition 1.3.9 is a very special case of a more general notion, proposed by King

in [28], which applies to associative C-algebras. Consider such an algebra L and let

K(L) be the Grothendieck group3 of �nite dimensional L-modules. One can see that

the map V 7→ dimC(V ) can be extended to a group homomorphism

K(L) −→ R.

When we consider any other additive group homomorphism ϕ : K(L) → R and a

nonzero �nite dimensional A-module V , one de�nes:

slopeϕ(V ) :=
ϕ([V ])

dimC(V )
,

where [V ] means the class of V in K(L). The de�nition proposed by King reads as

follows.

De�nition 1.3.12. A �nite dimensional L-module V is ϕ-semistable if for any nonzero

L-submodule V ′ of V one has

slopeϕ(V
′) ≤ slopeϕ(V ). △

To see that this de�nition indeed generalizes De�nition 1.3.9, let us consider L := CQ.

In this case, the map [V ] 7→ dimQ0(V ) is a group homomorphism

dimQ0 : K(CQ) → Z#Q0 .

Moreover, for any θ ∈ R#Q0 one can de�ne another group homomorphism

ϕθ : Z#Q0 −→ R

x = (xi)i∈Q0 7−→
∑
i∈Q0

θixi ,

and this allows one to identify R#Q0 with Hom(Z#Q0 ,R).

Summing up, given θ ∈ R#Q0 , the composition ϕ = ϕθ ◦ dimQ0 is a group homo-

morphism

ϕ : K(CQ) → R;

with this choice, De�nition 1.3.12 of ϕ-semistability for CQ-modules turns out to be

the same as the one established in De�nition 1.3.9.
3The group K(L) is the abelian group generated by the set {[X], X ∈ L−mod} of isomorphism

classes of �nite dimensional L-modules with the relations: [M1]− [M2] + [M3] = 0 for all short exact

sequence 0 → M1 → M2 → M3 → 0 of �nite dimensional L-modules.
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Proposition 1.3.13. Given a group homomorphism ϕ : K(L) → R, the �nite dimen-

sional ϕ-semistable L-modules form an abelian category. An L-module V is ϕ-stable if,

and only if, V is a simple object of this category.

Proof. See [17, Proposition 2.3.5].

As a consequence of Proposition 1.3.13, any θ-semistable representation V of a

quiver Q has a Jordan-Hölder �ltration

0 = V0 ⊂ V1 . . . ⊂ Vm = V,

i.e., V1, . . . , Vm−1 are subrepresentations such that
Vk
Vk−1

is a θ-stable representation (i.e.,

a simple CQ-module) for any k ∈ {1, . . . ,m}. Finally, we get a graded representation

grs(V ) :=
m⊕
k=0

Vk
Vk−1

,

that does not depend (up to isomorphism) on the choice of such a �ltration.

Given a vector θ = (θi)i∈Q0 ∈ Z#Q0 , we can build a character

χθ : GL(v) −→ C∗

g = (gi)i∈Q0 7−→
∏
i∈Q0

det(gi)
−θi .

(1.9)

Remark 1.3.14. If we �x a representation V of the quiver Q of dimension vector

v = dimQ0(V ), then the character χθ is zero on the subgroup C∗ ⊆ GL(v) if, and only

if, θ · v = 0.

The relation between King's and Mumford's notions of stability comes from the

following theorem, whose proof we omit, but one can �nd in [17, Theorem 2.3.7].

Theorem 1.3.15. For any dimension vector v ∈ N#Q0

0 and any θ ∈ Z#Q0 such that

θ · v = 0, one has:

1. A representation X ∈ Rep(Q,v) is χθ-semistable (χθ-stable), according to De�-

nition 1.3.9 if, and only if, it is θ-semistable (θ-stable), according to De�nition

1.3.6.

2. A pair (V, V ′) of χθ-semistable representations are equivalent in the sense of

De�nition 1.3.6 if, and only if, grs(V ) ≃ grs(V ′).

We denote by Repssθ (Q,v) and Repsθ(Q,v) the set of semistable and stable (respec.)

representations of the quiver Q with dimension vector v. The quasi-projective variety

given by the GIT quotient Repssθ (Q,v)//χθ
GL(v) will be denoted by Rθ(Q,v).
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Remark 1.3.16. A representation V of Q is θ-semistable if, anf only if, V ∗, the

dual representation of Qop, is (−θ)-semistable. So, we have the following canonical

isomorphisms:

Repssθ (Q,v) ≃ Repss−θ(Q
op,v) and Rθ(Q,v) ≃ R−θ(Q

op,v).

1.3.2 Stability for framed representations

According to De�nitions 1.1.17 and 1.1.24, to provide a representation of Qfr,

where Q = (Q0, A, s, t) is a �xed quiver, is equivalent to providing a representation of

the quiver Q, say V =
⊕
i∈Q0

Vi, together with a collection of linear maps ji : Vi → Wi,

for i ∈ Q0, where Wi is the vector space put at the vertex i′ ∈ Q′
0; we set also

W =
⊕
i∈Q0

Wi, and we let w := dimQ0(W ) ∈ Z#Q0 denote the dimension vector of W. In

other words, a representation of Qfr may be regarded as a pair (V , (ji)i∈Q0), where V

is a representation of Q and the collection (ji)i∈Q0 is an additional collection of linear

maps ji : Vi → Wi for i ∈ Q0, as before.

The dimension vector of a representation of Qfr can be seen as an element v×w ∈

Z#Q0 × Z#Q′
0 = Z#(Q0⊔Q′

0) and we write

Rep(Qfr,v,w) := Rep(Qfr,v ×w)

to denote the space of representations (V , (ji)i∈Q0) of the quiver Qfr with dimension

vector v := dimQ0(V ) and w := dimQ0(W ).

Consider an element g ∈ GL(v) and write g = (gi)i∈Q0 . One de�nes an action

∗ : GL(v)× Rep(Qfr,v,w) −→ Rep(Qfr,v,w)

by letting

g ∗ ((fa)a∈A, (ji)i∈Q0) 7−→
(
(gt(a) ◦ fa ◦ g−1

s(a))a∈A, (ji ◦ g
−1
i )i∈Q0

)
.

So, Rep(Qfr,v,w) is a GL(v)-variety and since GL(v) can be seen as a subgroup

of

GL(v)×GL(w) =
∏
i∈Q0

GL(Vi)×
∏
i∈Q0

GL(Wi),

the action of GL(v) turns out to be the restriction of the change-of-basis action of

GL(v)×GL(w) on Rep(Qfr,v,w).
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Now, we are going to explore an idea due to Crawley-Boevey [15] that natu-

rally appears when working with the notions of stability for framed and generalized

framed representations. Suppose that we have a quiver Q and a dimension vector

w = (wi)i∈Q0 ∈ N#Q0

0 . Crawley-Boevey introduces a quiver Qw whose set of vertices is

Q0 ⊔ {∞}, where ∞ is a new additional vertex, and the set of edges of Qw is obtained

by adding to the set of arrows of Q precisely wi new arrows from the vertex i to the

vertex ∞.

Example 1.3.17. When we consider the quiver K3 with the dimension vector w =

(1, 3), one has:

Kw
3 = K

(1,3)
3 :

1 3

∞

After that, taking any dimension vector v = (vi)i∈Q0 ∈ N#Q0

0 , by putting ṽi = vi

for i ∈ Q0 and v∞ = 1 we obtain a dimension vector ṽ ∈ N#Q0+1
0 for the quiver Qw.

Clearly we have a embedding

GL(v) ↪−→ GL(ṽ)

g = (gi)i∈Q0 7−→ g̃ = ((gi)i∈Q0 , IdC)

Consequently, GL(v)
≃−→ GL(ṽ)

C∗ , and then Rep(Qw, ṽ) is a GL(v)-variety. If we let

Ṽ :=
⊕

i∈Q0⊔{∞}

Vi and W =
⊕
i∈Q0

Wi be a pair of vector spaces such that

dimQ0⊔{∞}(Ṽ ) = ṽ and dimQ0(W̃ ) = w̃.

We �rst identify V∞ with C, a one-dimensional vector space with a �xed basis; then,

for each i ∈ Q0, we �x a basis of the vector space Wi. In this way, given any collection

of wi linear maps from Vi to V∞, one can use the basis of Wi to fabricate a single linear

map ji : Vi → Wi.

Hence, we see that any element of Rep(Qw, ṽ) supported by the vector space Ṽ

generates an element of Rep(Qfr,v,w) and this assignment produces a map

Rep(Qw, ṽ) −→ Rep(Qfr,v,w). (1.10)

This map turns out to be a GL(v)-equivariant vector space isomorphism that depends

on the choice of basis for W . More details can be found in [5] and [17].
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In order to apply De�nition 1.3.6 to the case of theGL(v)-action on Rep(Qfr,v,w)

and a character χθ : GL(v) → C∗, we will use precisely the isomorphism in eq.(1.10)

to build a relation between the GIT stability of elements of Rep(Qfr,v,w) and the

stability proposed by King , cf. Def. 1.3.9, of elements in Rep(Qw, ṽ).

Consider a parameter θ = (θi)i∈Q0 ∈ R#Q0 and de�ne

θ̃ :=

(
(θi)i∈Q0 , θ∞ := −

∑
i∈Q0

θi · vi

)
.

The isomorphism in eq.(1.10) allows us to understand that the θ̃-stability in the sense

of King for the GL(ṽ)-action on Rep(Qw, ṽ) may be reinterpreted as the GIT notion

of stability of the GL(v)-action on Rep(Qfr,v,w).

Remark 1.3.18. The de�nition of θ̃ implies that θ̃ · ṽ = 0, as required by Theorem

1.3.15.

As an important result of [17], we have the following characterization of the θ+-

semistable representations of the quiver Qfr.

Proposition 1.3.19. An element of Rep(Qfr,v,w) is θ+-semistable with respect to

the GL(v)-action if, and only if, there is a nontrivial subrepresentation of the quiver

Q such that every vector subspace is contained in the kernel of the correspoding map

ji. In addition, the GL(v)-action is free on Repss(Qfr,v,w) and any θ+-semistable

representation is actually θ+-stable.

Proof. See [17, Lemma 3.2.3]

When we consider the case of a generalized framing, the construction of the

space of representations is similar to the framed one. In fact, a representation of the

quiver Qgfr amounts to a representation of the quiver Q and, for any i ∈ Q0, we have

two collections of linear maps j1, . . . , jp(i) : Vi → Wi and h1, . . . , hq(i) : Wi → Vi. By

considering a dimension vector v corresponding to the vertices of Q and a dimension

vector w corresponding to the new ones added to Q0, for an element X ∈ Rep(Qgfr,v×

w) one can write:

X =

(
V =

⊕
i∈Q0

Vi, (fa)a∈Q1 ,W =
⊕
i∈Q0

Wi, {j1, . . . , jp(i)}i∈Q0 , {h1, . . . , hq(i)}i∈Q0

)
.

The following result from [5, Lemma 3.3] authorizes us to de�ne stability for gfr-quivers

in terms of the notion proposed in 1.3.9 and the modi�cations due to Crawley-Boevey,

described before Remark 1.3.18.
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Lemma 1.3.20. For all dimension vectors (v,w) ∈ N#(Q0⊔Q′
0)

0 for the quiver Qgfr,

there exists a quiver Qw with vertex set equal to Q0 ⊔ {∞} such that there is a GL(v)-

equivariant isomorphism

Rep(Qgfr,v,w) ≃ Rep(Qw,v, 1). (1.11)

Remark 1.3.21. The quiver Qw is very similar to the one de�ned in [15], described

before Ex. 1.3.17. In this case, the set of vertices of Qw is Q0 ⊔ {∞} and we build its

set of arrows adding to A, for any i ∈ Q0, wip(i) arrows from i to ∞ and wiq(i) arrows

from ∞ to i. It is easy to see that GL(v) acts on Rep(Qw,v, 1) by change of basis and

that any stability parameter θ ∈ R#Q0 for (v,w)-dimensional representations of the

quiver Qgfr gives rise to a stability parameter θ̃ for the quiver Qw just by adding the

entry θ∞ = −θ · v (again, as in the usual framed case).

With the previous lemma in mind, we de�ne stability for representations of the

quiver Qgfr based on the stability of the corresponding quiver Qw.

De�nition 1.3.22. A (v,w)-dimensional representation of Qgfr is θ-semistable (resp.

θ-stable) if, and only if, its image through the isomorphism (1.11) is θ̃-semistable (resp.

θ̃-stable). △

When we consider the quiver Qn from Example 1.1.27, we can characterize the

(2c, 1− 2c)-semistability in a more operational way; this will appear later in this work.

1.3.3 Working with families

Let Q be a quiver; Q0 will denote the set of vertices, and A the set of arrows.

Remember that a stability parameter θ for Q may be regarded as an element in R#Q0 .

In this subsection, we introduce the notion of families of representations of quiver and

some related topics, useful in the Chapter 4.

De�nition 1.3.23. 1. A family of representations of Q parameterized by a scheme T

is, for every v ∈ Q0, a locally free sheaf Wv on T , and for any arrow a ∈ A, a sheaf

morphism ϕa : Ws(a) → Wt(a). Note that for every closed point t ∈ T by taking �bers

this induces a representation of Q in the usual sense.

2. A morphism between two families of representations (T,Wv, ϕa) and (S,Uv, ψa) is a
scheme morphism f : T → S and a collection of sheaf morphisms

{Fv : Wv → f ∗Uv, v ∈ Q0}
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such that for every arrow a ∈ A the diagram

Ws(a)

Fs(a) //

ϕa
��

f ∗Us(a)
f∗ψa

�� ��
Wt(a)

Ft(a) // f ∗Ut(a)

commutes. A morphism is an isomorphism when f and all morphisms Fv are isomor-

phisms.

3. A family of representations is θ-stable if for every closed point t ∈ T the represen-

tation corresponding to t is θ-stable. △

Remark 1.3.24. Note that if (S,Uv, ψa) is a family of representations parameter-

ized by S, and f : T → S is a scheme morphism, then (T, f ∗Uv, f ∗ψa) is a family of

representations parameterized by T .

De�nition 1.3.25 (The representation moduli functor). The functor of families of

representations of Q is the functor

RQ : Schop → Set

T 7→


isomorphism classes of families of

representations of Q parameter-

ized by T

 (1.12)

The action of this functor on morphisms is by pullbacks: if f ∈ Hom(T, S), then

Ws(a)
ϕa−→ Wt(a) is sent to f ∗Ws(a)

f∗ϕa−−−→ f ∗Wt(a). △

After �xing a dimension vector v and a stability parameter θ, one can also introduce

the subfunctor RQ,s
v,θ of θ-stable v-dimensional representations. If v is primitive4, this

functor is representable by a �ne moduli space Ms
v,θ [28, Proposition. 5.3].

1.4 Framed �ags of sheaves

We introduce now the notion of framed �ag of sheaves (of length 1). Let X be an

irreducible projective smooth surface, and D a divisor in it (for the moment we only

establish some notation, and at this level of generality we do not need to make any

additional assumptions on X and D). A framed �ag of length 1 and type (r, γ, c, ℓ) on

(X,D) is a triple (E,F, ϕ), where

4A vector v ∈ Zr is said to primitive if it is not a non-trivial multiple of another vector u ∈ Zr.
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� E and F are torsion-free sheaves on X, with E ⊂ F , r = rkE = rkF ;

� the support of F/E is 0-dimensional and is disjoint from D;

� ϕ is an isomorphism of F|D with O⊕r
D ;

� c1(F ) = γ ∈ NS(X); c = c2(F ), ℓ = c2(E)− c2(F ) = h0(X,F/E).

As a consequence, ϕ also provides an isomorphism E|D ≃ O⊕r
D . Note that c1(E) = γ

and γ ·D = 0.

We de�ne the functor FX,Dr,γ,c,ℓ of families of framed �ags of length 1 on (X,D) as

FX,Dr,γ,c,ℓ(T ) = {isomorphism classes of triples (E,F, ψ)}

where

� E, F are rank r torsion-free sheaves on X × T , �at on T , with E ⊂ F ;

� for all closed points t ∈ T , the support of (F/E)t is 0-dimensional and is disjoint

from D;

� for all closed t ∈ T , c2(Ft) = c, c2(Et)− c2(Ft) = ℓ, c1(Ft) = γ;

� ψ is an isomorphism ψ : E|D×T → O⊕r
D×T ;

� morphisms of families of framed �ags are de�ned in the obvious way;

� the functor acts on scheme morphisms by pullback.

This functor was de�ned in [42] for X = P2 and D a line, that we denote as usual ℓ∞

(note that necessarily γ = 0 in that case). Again in [42], it was proved that in that

case this functor is representable. This may be generalized as follow.

Theorem 1.4.1. Let X be a smooth, irreducible projective surface, and let D be a

smooth, irreducible, big and nef divisor in X. Then for every choice of (r, γ, c, ℓ), the

functor FX,Dr,γ,c,ℓ is representable.

Proof. According to Corollary 3.3 of [10] there exists a �ne moduli space of torsion-free

sheaves F on X, with invariants rkF = r, c1(F ) = γ, c2(F ) = c, framed on D to the

trivial sheaf. Then the proof of Proposition 1 in [42] applies verbatim.

Remark 1.4.2. This theorem can be further generalized by replacing the trivial sheaf

on D with any semistable vector bundle of rank r.

We denote by FX,D
r,γ,c,ℓ the scheme representing the functor FX,Dr,γ,c,ℓ.

27



1.5 Monads

For completeness sake, we now present the basic de�nitions and some general

results about monads. A monad M on a scheme T is a three-term complex of locally

free sheaves of OT -modules, having nontrivial cohomology only in the middle term:

M : 0 → U a−→ V b−→ W → 0. (1.13)

The cohomology of the monad will be denoted by

E(M) =
ker(b)

Im(a)
.

E(M) is a coherent sheaf of OT -modules. A morphism (or isomorphism) of monads

is just a morphism (isomorphism) of complexes. The display of the monad (1.13) is

the commutative diagram below, with exact rows and columns, where the maps are

naturally induced:

0

��

0

��
0 // U a // ker(b)

i
��

// E(M)

��

// 0

0 // U a // V
b

��

// coker(a)

��

// 0

W

��

W

��
0 0

Let S̃ = X × S, where X is a smooth connected projective variety over C and

S is a scheme. If F is an OS̃-module, we denote by Fs its restriction to the �bre of S̃

over s ∈ S.

Lemma 1.5.1. Let

M : 0 → U a−→ V b−→ W → 0

be a monad on S̃, whose cohomology sheaf we denote by E. If E is �at on S, then for

all s ∈ S the restricted complex Ms is a monad, whose cohomology is isomorphic to Es.

Proof. This is Lemma 2.2 from [4].
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Lemma 1.5.2. Consider T, S ∈ Sch and f : S → T. Let E• be a family of monads on

T̃ whose cohomology sheaves are �at over T . Then

H0 ((Id× f)∗E•) ≃ (Id× f)∗H0(E•).

This lemma is a consequence of the following results:

Lemma 1.5.3. If f : S → T is a morphism of schemes and

M : 0 → U α−→ V β−→ W → 0

is a monad on T , then there is a morphism from H0(f ∗M) to f ∗H0(M).

Proof. The sequence

0 → ker(β) → V β−→ W → 0

is exact and as W is locally free, the sequence

0 → f ∗ ker(β) → f ∗V f∗β−→ f ∗W → 0

is also exact. The morphism f ∗ ker(β) → f ∗W is the zero morphism, since f ∗ is right-

exact; by the universal property of the kernel5, we can obtain the dotted morphism on

the commutative diagram below:

f ∗ ker(β)

��

0

%%xx
0 // ker(f ∗β) // f ∗V // f ∗W // 0.

This morphism turns out to be an isomorphism since we can build the commutative

diagram below as W is locally free

0

��

0

��
0 // f ∗ ker(β)

��

f ∗ ker(β)

��

// 0

��
0 // ker(f ∗β)

��

// f ∗V

��

// f ∗W // 0

0 // f ∗W

��

f ∗W

��

// 0.

0 0

5 Check [40], p. 53-54 for more details on the universality of kernels, cokernels and images.
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Analogously, we can consider the short exact sequence

0 → Im(α) → V → Q :=
V

Im(α)
→ 0

and get a exact sequence

0 → T → f ∗Im(α) → f ∗V → f ∗Q → 0.

De�ne I ′ :=
f ∗Im(α)

T
and notice that

0 → I ′ m′
−→ f ∗V → f ∗Q → 0

is also exact. By the universal property of the image5, there exists a unique monomor-

phism Im(f ∗α)
ν−→ I ′ such that the diagram

Im(f ∗α)

��

ν // I ′

m′
{{

f ∗V

commutes. Therefore, we get a morphism

H0(f ∗M) =
ker(f ∗β)

Im(f ∗α)
→ f ∗ ker(β)

I ′

Since we have that the following exact sequences,

0 → Im(α) → ker(β) → H0(M) → 0

0 → T ′ → f ∗Im(α) → f ∗ ker(β) → f ∗H0(M) → 0

and the map f ∗α : f ∗U → f ∗V takes values in f ∗ ker(β) = ker(f ∗β) we may identify

T ′ with T . Hence,
f ∗H0(M) =

f ∗ ker(β)

I ′ .

So that we have a morphism

H0(f ∗M) → f ∗H0(M).

Lemma 1.5.4. If E• is family of monads on T̃ whose cohomology sheaves are �at over

T and f : S → T is a morphism of schemes, then (Id× f)∗E• is a monad and there is

a morphism

H0 ((Id× f)∗E•) → (Id× f)∗H0(E•),

which is an isomorphism because of Lemma 1.5.1.
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Proof. In fact, the existence of the morphism follows from Lemma 1.5.3 applied to the

morphism Id× f : S̃ → T̃ . In addition, for every s ∈ S we get from Lemma 1.5.1 that

[H0((Id×f)∗E•)]s = H0([(Id×f)∗E•]s) = H0(E•
f(s)) = [H0(E•)]f(s) = [(Id×f)∗H0(E•)]s,

so that

H0 ((Id× f)∗E•) ≃ (Id× f)∗H0(E•).
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Chapter 2

The case of the projective plane

In this chapter, we recall some results and constructions from the papers [42, 43],

recasting them in a full categorical setting, and providing additional details. This will

also provide a setting for our subsequent work on the nested Hilbert schemes of points

on the total space of the line bundles OP1(−n).

2.1 ADHM construction of framed �ags of sheaves on

the projective plane

The enhanced ADHM quiver Q̄ is the quiver

• • • ∞

b′

a′

ϕ

a

b
i

j

(2.1)

with the relations

ab− ba+ ij = 0; aϕ− ϕa′ = 0; bϕ− ϕb′ = 0; jϕ = 0; a′b′ − b′a′ = 0. (2.2)

Within the setup of Section 1.4, Jardim and von Flach in [42] prove that in the case

(X,D) = (P2, ℓ∞), for v = (ℓ, c + ℓ, r), and with a suitable choice of the stability

parameter Θ, the functors of families of stable framed representations RQ̄,fr,s
v,Θ and the

functor of families of framed �ags Fr,c,ℓ = FP2,ℓ∞
r,0,c,ℓ are isomorphic. We review here their

proof, providing some more details, especially about the categorical formalization of

the problem.
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The �rst step will be to represent Fr,c,ℓ as a functor of families of representations

of Q̄. The components of the dimension vector of this quiver list the dimensions of the

vector spaces attached to the vertexes from left to right.

The crux of the above mentioned result is the following theorem.

Theorem 2.1.1. [42, 43] Let v = (ℓ, c+ ℓ, r), and let Θ = (θ, θ′, θ∞) ∈ R3 with θ′ > 0

and θ + θ′ < 0. Let RQ̄,fr,s
v,Θ be the functor of families of framed representations of the

enhanced ADHM quiver Q̄ depicted in equation (2.1) with the relations (2.2), framed

at the vertex ∞.1 There exists a natural transformation η : RQ̄,fr,s
v,Θ → Fr,c,ℓ which is an

isomorphism of functors.

We shall also need to consider the standard ADHM quiver, which we shall denote

by Q:

• •

a

b
j

i

(2.3)

with the relation

ab− ba+ ij = 0. (2.4)

We develop now some theory which will be needed to prove Theorem 2.1.1. We intro-

duce the following categories:

� the category AQ of families of representations of the ADHM quiver Q with the

relations (2.4). An object in AQ is a collection (T,V ,W , A,B, I, J), where T is

a scheme, V and W are vector bundles on T , and

A,B ∈ End(V), I ∈ Hom(W ,V), J ∈ Hom(V ,W)

satisfying the condition

AB −BA+ IJ = 0.

Let As
Q be the full subcategory of families of representations that are stable with

respect to the standard Nakajima's stability condition from [34].

� The category KomP2 of families of complexes of coherent sheaves on P2. Objects

are given by a scheme T and a complex of coherent sheaves on T × P2; the

morphisms are the obvious ones. Kom�at

P2 is the full subcategory of families of

complexes whose cohomology sheaves are �at on T .

1Note that the vector space W corresponding to the framing vertex has dimension r.
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AQ andKomP2 are categories over the category Sch of schemes.2 Their �ber categories

over T = SpecC are the category of representations of the ADHM quiver Q (and then

V , W are just vector spaces) and the category of complexes of coherent sheaves over

P2, respectively. If T is a scheme, we denote by AQ(T ) the �ber of AQ over T , i.e., the

category of families of representations of Q parameterized by T , with a similar meaning

for KomP2(T ).

Remark 2.1.2. By Nakajima's work we know that, �xing the dimension vector v =

(r, c), the corresponding functor of families of stable representations of the quiver Q is

represented by a scheme which is isomorphic to the moduli space M(r, c) of isomor-

phism classes of torsion-free sheaves on P2, of rank r and second Chern class c, with a

framing to the trivial sheaf on a �xed line.

We introduce a functor

KQ : AQ → KomP2

of categories over Sch; this is a relative version of the �absolute� standard functor

which associates a complex with a representation of the ADHM quiver. The functor

KQ associates with a family of representations of Q parameterized by a scheme T the

corresponding family of 3-term complexes on P2×T . Note that as we are not requiring

the representations to be stable the 3-term complex may have nontrivial cohomology

in every degree, i.e., it may not be a monad. If X = (T,V ,W , A,B, I, J) is an object

in AQ, then KQ(X ) is the following complex supported in degree −1, 0 and 1, whose

terms are sheaves on T × P2:

V ⊠OP2(−1)
α−−→ (V ⊕ V ⊕W)⊠OP2

β−−→ V ⊠OP2(1)

where the morphisms α, β are given by

α =


zA+ x1V

zB + y1V

zJ

 , β =
(
−zB − y1V , zA+ x1V , zI

)

with (x, y, z) homogeneous coordinates in P2. Note that β ◦ α = 0 automatically.

A morphism ξ = (f, ξ1, ξ2) of families of representations

X = (S,V ,W , A,B, I, J)
ξ−→ X̃ = (T, Ṽ , W̃ , Ã, B̃, Ĩ, J̃)

2Actually, since they admit pullbacks, both categories are �bered categories over Sch. See [41],

De�nition 3.5, or [39], Section 4.33.
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is a morphism f : S → T and a pair of morphisms ξ1 : V → f ∗Ṽ , ξ2 : W → f ∗W̃

satisfying

ξ1 ◦ A = f ∗Ã ◦ ξ1, ξ1 ◦B = f ∗B̃ ◦ ξ1, ξ2 ◦ J = f ∗J̃ ◦ ξ1, ξ1 ◦ I = f ∗Ĩ ◦ ξ2.

The morphism KQ(ξ) : KQ(X ) → KQ(X̃ ) between the corresponding monads is given

by the diagram

V ⊠OP2(−1) α //

ξ1×Id
��

(V ⊕ V ⊕W)⊠OP2
β //

(ξ1⊕ξ1⊕ξ2)×Id
��

V ⊠OP2(1)

ξ1×Id
��

f ∗Ṽ ⊠OP2(−1)
f∗α̃ // f ∗(Ṽ ⊕ Ṽ ⊕ W̃)⊠OP2

f∗β̃ // f ∗Ṽ ⊠OP2(1)

(2.5)

Proposition 2.1.3. For every scheme T , the functor KQ(T ) : AQ(T ) → KomP2(T ) is

exact and faithful.

Proof. The proof Proposition 2.3.5 in [37] applies verbatim.

The next result requires that the representations we consider are framed and

stable. So we de�ne Afrs
Q as the subcategory of AQ whose objects are family of framed

representations of Q, stable with respect to the standard stability condition. Note that

this category is not additive, and neither it is a full subcategory as the morphisms at

the framing vertex are restricted.

Proposition 2.1.4. KQ maps the subcategory Afrs
Q to the subcategory Kom�at

P2 .

Proof. The stability of the family of representations on which we act by KQ implies

that the morphism α is injective and β is surjective. Then we may reduce to prove the

following fact: if

0 → E ′ α−−→ E β−−→ E ′′ → 0

is a complex of families of locally free coherent sheaves on T ×P2, with α injective and

β surjective, then the cohomology sheaf H = ker β/ imα is �at over T . To prove this

we �rst consider the exact sequence

0 → ker β → E → E ′′ → 0,

where E and E ′′ are �at over T , so that ker β is �at as well. Then one applies Lemma

2.1.4 in [26] to the exact sequence

0 → imα → ker β → H → 0.
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Remark 2.1.5. The image KQ(As
Q) is the subcategory of Kom�at

P2 whose objects are

families of monads for the ADHM quiver (in particular their cohomology is �at over

T ).

The following lemma will be very useful in the construction of the natural trans-

formation betwenn the suitable functors that will be de�ned later, since it provides a

characterization for the stable representations of the enhanced ADHM quiver.

Lemma 2.1.6 (Lemma 4 of [42] / Lemma 2 of [43]). Fix a triple (r, c, c′) ∈ Z3
>0, write

Θ = (θ, θ′, θ∞) and assume that θ′ > 0 and θ + c′θ′ < 0. Let

X = (W,V, V ′, A,B, I, J, A′, B′, F,G)

be a representation of the enhanced ADHM quiver with dimension vector (r, c, c′). The

following are equivalent:

(i) X is Θ-stable;

(ii) X is Θ-semistable;

(iii) X satis�es the following conditions:

(S1) F ∈ Hom(V ′, V ) is injective;

(S2) The ADHM datum (W,V,A,B, I, J) is stable, i.e., there is no proper sub-

space 0 ⊂ S ⊊ V such that A(S), B(S), Im(I) ⊂ S.

Now we construct the natural transformation η : RQ̄frs
v,Θ → Fr,c,ℓ. The trick for

doing that is to regard a representation of the enhanced ADHM quiver as a morphism

of representations of the standard ADHM quiver. Let (T,V ′,V ,W , A′, B′, A,B, I, J,Φ)

be a family of framed representations of the enhanced ADHM quiver, framed at the

vertex 0. So T a scheme, and V ′ and V are vector bundles on T of rank n and n + ℓ,

respectively. W is the trivial bundleW⊗OT for some �xed vector spaceW of dimension

r. Moreover,

A′, B′ ∈ End(V ′), A,B ∈ End(V), I ∈ Hom(W ,V),

J ∈ Hom(V ,W), Φ ∈ Hom(V ′,V).

Assume that this representation is stable as in Theorem 2.1.1. Lemma 2.1.6 implies that

Φ is injective. This de�nes a morphism of families of representations of the standard
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ADHM quiver described by the following diagram

V ′

0

A′ B′

V

A B

W

Φ

I J

(2.6)

Let V ′′ = V/Φ(V ′); note that V ′′ is locally free (of rank ℓ) as Φ is injective on every

�ber of V ′. The morphisms A, B, A′, B′, I, J induce morphisms

A′′, B′′ ∈ End(V ′′), I ′′ ∈ Hom(W ,V ′′), J ′′ ∈ Hom(V ′′,W)

which de�ne a quotient family of representations of the ADHM quiver. This is repre-

sented in the diagram

V ′

0

A′ B′

V

W

A B

Φ

I J

V ′′

W

A′′ B′′

J ′′I ′′

(2.7)

i.e., we have an exact sequence of families of representations of the standard ADHM

quiver

0 → X ′ → X → X ′′ → 0.

Here X and X ′′ are families of stable representations. Applying the exact functor KQ

we obtain an exact sequence of complexes of coherent sheaves on T × P2

0 → EX ′ → EX → EX ′′ → 0

whose nonzero terms are in degree −1, 0 and 1. This exact sequence of complexes

makes up the following commutative diagram with exact rows, whose columns are the
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complexes corresponding to X ′, X , X ′′, respectively:

0

��

0

��

0

��
0 // V ′ ⊠OP2(−1)

α′

��

// V ⊠OP2(−1)

α

��

// V ′′ ⊠OP2(−1)

α′′

��

// 0

0 // (V ′ ⊕ V ′)⊠OP2

β′

��

// (V ⊕ V ⊕W)⊠OP2

β
��

// (V ′′ ⊕ V ′′ ⊕W)⊠OP2

β′′

��

// 0

0 // V ′ ⊠OP2(1)

��

// V ⊠OP2(1)

��

// V ′′ ⊠OP2(1)

��

// 0

0 0 0

Since X and X ′′ are stable, the associated long exact cohomology sequence reduces

to

0 → H0(EX ′) → H0(EX ) → H0(EX ′′) → H1(EX ′) → 0

(note that H−1(EX ′′) = 0 as α′′ is �berwise injective, hence injective due to �atness).

We show that H0(EX ′) = ker β′/ imα′ = 0. First we note that, thinking of ℓ∞ as the

line z = 0 is P2, we may write α′, β′ restricted to T × ℓ∞ as

α′
|T×ℓ∞ =

x1V ′

y1V ′

 , β′
|T×ℓ∞ =

(
−y1V ′ , x1V ′

)
.

As a simple computation shows, one has imα′ = ker β′ on T × ℓ∞ so that H0(EX ′) is

zero on T × ℓ∞, hence it has rank 0. Then it must be zero as it injects into H0(EX )

which is torsion-free.

Moreover one has:

� F = H0(EX ′′) is a torsion-free sheaf on T × P2, with a framing ϕ to the trivial

sheaf on T × ℓ∞, where ℓ∞ is a line in P2. Moveover, for every closed point t ∈ T ,

the second Chern class of F|{t}×P2 is n.

� F and E = H0(EX ) are �at over T by Proposition 2.1.4 as X and X ′′ are stable.

� H1(EX ′) is a rank 0 coherent sheaf on T ×P2, supported away from T × ℓ∞. For

every closed point t ∈ T , the restriction of the schematic support of H1(EX ′) to

the �ber over t is a length ℓ 0-cycle in P2.

� H1(EX ′) is �at over T as it is a quotient of �at sheaves. (One can also prove this

directly as in Proposition 2.1.4.)
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Thus the triple (E,F, ϕ) is a �at family of framed �ags on P2 parameterized by the

scheme T . This de�nes the natural transformation η. One can indeed show that for

any scheme morphism f : T → S the diagram

RQ̄frs
v,Θ (S)

RQ̄frs
v,Θ (f)

//

ηS

��

RQ̄,frs
v,Θ (T )

ηT

��
Fr,c,ℓ(S)

Fr,c,ℓ(f) // Fr,c,ℓ(T )

commutes. In fact, �rst notice that the diagram

RQ,fr,s
v (S)

f∗ //

KQ

��

RQ,fr,s
v (T )

KT

��
Kom(P2 × S)

(Id×f)∗ // Kom(P2 × T )

commutes, i.e.,

(Id× f)∗ ◦ KQ = KQ ◦ f ∗. (2.8)

So that, if we consider an element in RQ̄frs
v,Θ (S), say [S,X]. We have that

[Fr,c,ℓ(f) ◦ ηS]([S,X]) = [(Id× f)∗ ◦ ηS]([S,X])

= (Id× f)∗ηS([S,X])

= (Id× f)∗(H•(KQ([S,X])))

(1.5.2)
= H•((Id× f)∗KQ([S,X]))

(2.8)
= H•(KQ(f

∗([S,X])))

= ηT (f
∗([S,X]))

= (ηT ◦ f ∗)([S,X])

= (ηT ◦RQ̄frs
v,Θ (f))([S,X]). (2.9)

Remark 2.1.7. Actually, the notation H•(KQ([S,X])) does not make much sense, but

it is written in this way to simplify the de�nition of η; we do not explicit the morphisms

because they are completely determined by the functoriality requirement.

To show that η is actually an isomorphism one constructs a natural transforma-

tion going the opposite direction which is both a right and a left inverse to η. This is

accomplished by tracing back the steps that led to the de�nition of η. Thus, given a

family of framed �ags on P2 with the required numerical invariants, one de�nes families
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of representations X , X ′′ of the standard ADHM quiver, with a surjection Ψ: X → X ′′.

Then one de�nes X ′ as the kernel of Ψ; the families X ′ and X now combine to yield a

family of representations of the enhanced ADHM quiver Q̄. This concludes the proof

of Theorem 2.1.1.

As we recalled in Section 1.4, the functor Fr,c,ℓ is representable, so that there is

a �ne moduli scheme Fr,c,ℓ for framed �ags on P2 with numerical invariants r, n, ℓ. So

we have:

Corollary 2.1.8. The moduli scheme MQ̄frs
v,Θ representing the functor RQ̄frs

v,Θ is isomor-

phic to the moduli scheme Fr,c,ℓ.

As expected, the space of stability parameters of the enhanced ADHM quiver has

a chamber structure, i.e., it can be divided into polyhedral cones whose interiors have

the property that stability and semistability are equivalent, whilst for parameters on the

faces there exist strictly semistable representations. This is a typical phenomenon when

one deals with variation of stability conditions in algebraic geometry. In literature, the

cones are called chambers, their faces are called walls, and a parameter inside a chamber

is said to be generic. The chamber considered in Theorem 2.1.1 is depicted in Fig. 2.1

below.

Figure 2.1: Stability chamber in the space of parameters for the enhanced ADHM

quiver. The chamber is the region in pink and the walls are the rays in red.

We shall see in the next chapter a di�erent chamber structure for the stability

parameters of the quiver Qn of Example 1.1.27.
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Chapter 3

The case of the Hirzebruch surfaces

3.1 Hirzebruch surfaces

The Hirzebruch surfaces Σn, with n ∈ N0, are �brations over the complex pro-

jective line P1 whose �bers are copies of P1. The formal de�nition is

Σn = P([OP1 ⊕OP1(−n)] → P1).

We can list some properties of these surfaces:

1. All of them, except Σ1, are minimal surfaces, i.e., it is not possible to contract a

curve on them without creating a singularity;

2. Σ0, P2 and Σn for n ≥ 2 are the only minimal projective surfaces that have a

dense open set isomorphic to C2, i.e., they are rational;

3. Σ0 ≃ P1 × P1;

4. Σ1 is isomorphic to the blow-up of P2 at a point;

5. Σm and Σn are not isomorphic unless m = n.

We denote by e and h the cohomology classes of the sections of the �bration Σn → P1

that square to −n and n, respectively, and by f the class of the �ber. We shall use

(h, f) as a basis of Pic(Σn) over Z, i.e.,

Pic(Σn) ≃ h · Z⊕ f · Z.

One has:

h2 = n; e = h− nf; h · f = 1; f2 = 0; e2 = −n.
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We �x a curve ℓ∞ ∈ h and call it the line at in�nity. We shall write OΣn(p, q) for

OΣn(ph+ qf), and for any sheaf E of OΣn-modules we shall write

E(p, q) := E ⊗ OΣn(p, q), for p, q ∈ Z.

We can see the n-th Hirzebruch surface immersed in P1 × P2 as a hypersurface:

Σn =
{
([y1; y2], [x1;x2;x3]) ∈ P1 × P2|x1yn1 = x2y

n
2

}
. (3.1)

In this case, the line at in�nity (ℓ∞) is cut by the equation x3 = 0.

We also let

De�nition 3.1.1. A framed sheaf on Σn is a pair (E , φ), where

1. E is a torsion-free sheaf on Σn such that

E
∣∣
ℓ∞

≃ O⊕rk(E)
ℓ∞

, (3.2)

2. φ is a �xed isomorphism φ : E
∣∣
ℓ∞

≃−→ O⊕rk(E)
ℓ∞

. △

Remark 3.1.2. The isomorphism φ is the so-called �framing at in�nity�. Sometimes

we shall use the expression �sheaf trivial at in�nity� meaning a sheaf that satis�es (3.2),

but it does not have a designated framing.

Remark 3.1.3. The condition (3.2) implies that c1(E) ∝ e. Indeed, write

c1(E) = ph+ qf,

for some p, q ∈ Z. Since E is trivial at in�nity, we have

c1(E
∣∣
ℓ∞
) = 0.

Therefore one has

(ph+ qf) · h = 0 ⇐⇒ ph2 + qf · h = 0 ⇐⇒ pn+ q = 0 ⇐⇒ q = −pn.

So,

c1(E) = ph+ qf = ph− pnf = p(h− nf) = pe.

De�nition 3.1.4. An isomorphism Υ : (E , φ) → (E ′, φ′) between two framed sheaves

is an isomorphism of sheaves Υ : E ∼−→ E ′ such that the following diagram commutes:

E
∣∣
ℓ∞

Υ

∣∣
ℓ∞ ��

φ // O⊕rk(E)
ℓ∞

E ′
∣∣
ℓ∞

φ′

;;

△
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3.2 ADHM data and Hilbert schemes as quiver vari-

eties

One de�nes Mn(r, a, c) as the moduli space parameterizing isomorphism classes

of framed sheaves (E , φ) on Σn with Chern character

ch(E) =
(
r, ae,−c− na2

2

)
, (3.3)

where r, a, c ∈ N, r ≥ 1 and 0 ≤ a ≤ r − 1. In particular, if r = 1, then a = 0 and

Mn(1, 0, c) ≃ Hilbc(Σn \ ℓ∞) = Hilbc(tot(OP1(−n))), (3.4)

where the �rst isomorphism is given by associating to E the schematic support of
E∗∗

E
.

Some properties of Mn(r, a, c) can be found in [4]. For instance:

� It has a structure of smooth algebraic variety;

� It is irreducible;

� It is nonempty if, and only if, c+
na(a− 1)

2
≥ 0;

� It is a �ne1 moduli space of framed sheaves on Σn whose universal framed sheaf

is constructed as the cohomology of a universal monad.

� dim (Mn(r, a, c)) = 2rc + (r − 1)na2. In particular, dim (Mn(1, 0, c)) = 2c does

not depend on n.2

Consider the de�nition of Σn as in (3.1) and choose c+ 1 �bers f0, . . . , fc ∈ f such that

for any [(E , φ)] ∈ Hilbc(tot(OP1(−n))

E
∣∣
fm

= Ofm .

Indeed, we choose the �bers as closed subvarieties cut in Σn by the equations

fm =

{
[y1, y2] =

[
cos

(
π

m

c+ 1

)
, sin

(
π

m

c+ 1

)]}
, m = 0, . . . , c. (3.5)

1A �ne moduli space is a scheme that represents the corresponding functor of moduli. For more

details on this, cf. Section 6 of [4].
2This is compatible with [38, Theorem 4.6.9], since we have the isomorphism (3.4).
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So, we obtain an open cover {Unc
m }m=0,...,c of Hilb

c(tot(OP1(−n)) by putting

Unc
m =

{
[(E , φ)] ∈ Hilbc(tot(OP1(−n))

∣∣ E∣∣
fm

= Ofm

}
. (3.6)

Each of these open sets is isomorphic to Hilbc(C2) [2], so that it admits a Nakajima's

ADHM description as in [34, Theorem 1.9] in terms of three matrices: b1, b2 ∈ End(Cc)

and e ∈ Hom(Cc,C), satisfying the conditions

(i) [b1, b2] = 0;

(ii) For all (z, w) ∈ C2 there is no nonzero vector v ∈ Cc such that
b1(v) = zv

b2(v) = wv

v ∈ ker(e).

Remark 3.2.1. The maps b1, b2 and e are the transposed of the ones in Nakajima's

ADHM description. Here, the condition (ii) is the so-called co-stability condition, thus

the stability condition used by Nakajima is satis�ed by the matrices (tb1,
tb2,

te). We

stress that we are considering transposed matrices. The ADHM data for the open set

Unc
m will be denoted by (b1m, b2m, em).

De�nition 3.2.2 (Stability forQn). Consider θ ∈ R2. A (v, w)-dimensional representa-

tion (V0, V1,W ) of the quiver Qn is said to be θ-semistable if, for any subrepresentation

S = (S0, S1) ⊆ (V0, V1), one has:

if S0 ⊆ ker(e), then θ · (dim(S0), dim(S1)) ≤ 0; (3.7)

if S0 ⊇ Im(fi) for i = 1, . . . , n− 1, then θ · (dim(S0), dim(S1)) ≤ θ · v. (3.8)

For n = 1 the condition in (3.8) must hold for any subrepresentation. A θ-semistable

representation is θ-stable if strict inequality holds in (3.7) whenever S ̸= 0 and in (3.8)

whenever S ̸= (V0, V1). △

We are interested in the stability parameter ϑc = (2c,−2c + 1). The following lemma

from [31], which we report here with its full proof for future use, characterizes the

representations which are ϑc-(semi)stable.

Lemma 3.2.3. An element X = (A1, A2;C1, . . . , Cn; e; f1, . . . , fn−1) ∈ Rep(Qn, v⃗c, 1)

is θc-semistable if and only if
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(Q2) for all sub-representations S = (S0, S1) such that S0 ⊆ ker(e), one has

dim(S0) ≤ dim(S1),

and if dim(S0) = dim(S1), then S = 0;

(Q3) for all sub-representations S = (S0, S1) such that S0 ⊇ Im(fi), i ∈ {1, . . . , n−1},
one has dim(S0) ≤ dim(S1); for n = 1, this must hold for any sub-representation.

Furthermore, θc-semistability and θc-stability are equivalent.

Proof. Suppose that X is θc-semistable. We shall prove that (Q2) and (Q3) hold. In

order to do that, consider a subrepresentation S = (S0, S1) of X such that S0 ⊆ ker(e).

By the θc-semistability of X, we must have:

θc · (dim(S0), dim(S1)) ≤ 0. (3.9)

Equivalently, one has:

(2c, 1−2c)·(dim(S0), dim(S1)) ≤ 0 ⇐⇒ 2c(dim(S0)−dim(S1))+dim(S1) ≤ 0. (3.10)

Thus,

dim(S0)− dim(S1) ≤ 0 ⇐⇒ dim(S0) ≤ dim(S1).

If dim(S0) = dim(S1), (3.10) provides us that dim(S0) = dim(S1) ≤ 0. Therefore,

S0 = S1 = 0 =⇒ S = 0.

For the statement (Q3), start by considering a representation S = (S0, S1) whose vector

space S0 contains Im(fi) for i ∈ {1, . . . , n− 1}. Since X is θc-semistable, one has

(2c,−2c+ 1) · (dim(S0), dim(S1)) ≤ (2c,−2c+ 1) · (c, c).

So,

2c · (dim(S0)− dim(S1)) + dim(S1) ≤ c. (3.11)

If dim(S0) > dim(S1), (3.11) gives us

2c︸︷︷︸
>0

· (dim(S0)− dim(S1))︸ ︷︷ ︸
≥1

+dim(S1)︸ ︷︷ ︸
≥0

≤ c.

This is a contradition, therefore we must have dim(S0) ≤ dim(S1).

On the other hand, assume that (Q2) and (Q3) hold. Consider a subrepresenta-

tion S = (S0, S1) such that S0 ⊆ ker(e). By (Q2) one has dim(S0) − dim(S1) ≤ 0. If

dim(S0)− dim(S1) = 0, we have that S1 = S2 = 0. In this case, we trivially obtain

θc · (dim(S0), dim(S1)) ≤ 0.
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So we may assume that dim(S0)− dim(S1) ≤ −1. So that,

θc · (dim(S0), dim(S1)) = 2c(dim(S0)− dim(S1)) + dim(S1)

≤ 2c · (−1) + c

= −2c+ c

≤ 0,

as wanted. When the subrepresentation is such that S0 ⊇ Im(fi) for i ∈ {1, . . . , n−1}.
By (Q3), we have dim(S0) ≤ dim(S1). Since 2c− 1 ≥ 0, one obtains:

(2c− 1)(dim(S0)− dim(S1)) ≤ 0.

Thus

θc · (dim(S0), dim(S1))− θc · (c, c) = 2c dim(S0) + (1− 2c) dim(S1)− c

= 2c dim(S0) + (1− 2c) dim(S1)− c

= (2c− 1)(dim(S0)− dim(S1)) + dim(S0)− c

≤ 0

Therefore,

θc · (dim(S0), dim(S1)) ≤ θc · (c, c). (3.12)

It is obvious that stability implies semistability. We show the converse. Suppose thatX

is θc-semistable. From (Q2) we have that dim(S0) < dim(S1) and dim(S0) = dim(S1)

implies S = 0. In other words, in this case, the inequality (3.9) is strict if S ̸= 0.

Additionally, if

(2c, 1− 2c) · (dim(S0), dim(S1)) = θc · (dim(S0), dim(S1)) = θc(c, c) = c. (3.13)

Then

2c(dim(S0)− dim(S1))︸ ︷︷ ︸
≤0

+dim(S1)︸ ︷︷ ︸
≤c

= c (3.14)

This means that we must have

dim(S0) = dim(S1) = c.

Thus, if S is proper, we must have the strict inequality in (3.12), i.e., θc-semistability

also implies the θc-stability, as wanted.

Remark 3.2.4. The space of stability parameters for the quiver Qn, as usual, has

a chamber structure. In particular, the notion of semistability corresponding to the

parameter θc is the same which is obtained by letting θ vary in the cone

Γc =

{
θ = (θ0, θ1) ∈ R2|θ0 > 0,−θ0 < θ1 < −c− 1

c
θ0

}
. (3.15)
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Notice that Γc is actually a chamber, meaning that one can de�ne strictly semistable

representations for parameters on the walls

R1 =
{
θ = (θ0, θ1) ∈ R2|θ0 > 0, θ0 + θ1 = 0

}
and

R2 =
{
θ = (θ0, θ1) ∈ R2|θ0 > 0, (c− 1)θ0 + cθ1 = 0

}
.

We denote by Rep(Bn,v)sΘ the space of representations of the algebra Bn with

dimension vector v, stable with respect to the stability parameterΘ. The main theorem

in [2] and Theorem 3.8 in [3] yield

Theorem 3.2.5. For every n ≥ 1 and c ≥ 1 the Hilbert scheme Hilbc(Ξn) is isomorphic

to the GIT quotient

Rep(Bn,v)fr,sΘ //Θ GLc(C)×GLc(C).
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Chapter 4

Framed �ags on Hirzebruch surfaces

and nested Hilbert schemes

The main goal of this chapter is to prove the following theorem:

Theorem. Let Mn,fr,s
v,Θ be the moduli space of framed representations of the quiver Qenh

n

with dimension vector v = (c, c, c − c′, c − c′, 1), stable with respect to the stability

parameter Θ = (θ1, θ2, θ3, θ4), where

θ1 > 0, θ3, θ4 < 0, θ1 + θ2 + (θ3 + θ4)(c− c′) > 0, −θ1 < θ2 < −c− 1

c
θ1.

Mn,fr,s
v,Θ is isomorphic to the nested Hilbert scheme Hilbc

′,c(Ξn).

This result establishes a relation between two, at �rst, unrelated worlds: the

quiver world and the framed �ags world. In the �rst section, we de�ne and characterize

the θ-stable framed representations of the quiver Qenh
n . The second is dedicated to the

�absolute� case of our main result, which means that there we prove a crucial part of

the isomorphism aforementioned. In the third section, we recall the notion of framed

�ags on Hirzebruch surfaces and after that we discuss the categorical approach of the

isomorphism in Theorem 3.2.5 and �nally we set the categorical approach for the nested

case, which allow us to �nalize the proof of our main result.

4.1 Stability for the quiver Qenh
n

The goal of this section is to de�ne and characterize the stable representations of

the quiver Qenh
n , �tting in some essential properties.

48



4.1.1 Representations of the quiver Qenh
n

We start recalling the picture of the quiver Qenh
n .

Values of n Quiver Qenh
n

n = 1 • φ2 //

c1

ww

•

c′′1

ww• φ1 //

a2

22

a1

77

j

��

•

a′′2

22

a′′1

77

•
n ≥ 2 • φ2 //

cn

rr

c1

ww

•

c′′n

rr

c′′1

ww• φ1 //

a2

22

a1

77

j

��

•

a′′2

22

a′′1

77

•

i1

XX

in−1

dd

If we �x a vector v = (v1, v2, v
′′
1 , v

′′
2 , r) ∈ N5

0. A representation X of the quiver Qenh
n

with dimension vector v can be written as

X = (V1, V2, V
′′
1 , V

′′
2 ,W, f1, f2, g1, . . . , gn; f

′′
1 , f

′′
2 , g

′′
1 , . . . , g

′′
n, ℓ, h1, . . . , hn−1, F1, F2),

where:

� V1, V2, V
′′
1 , V

′′
2 and W are C-vector spaces such that

dim(V1) = v1,

dim(V2) = v2,

dim(V ′′
1 ) = v′′1 ,

dim(V ′′
2 ) = v′′2 ,

dim(W ) = r.
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� f1, f2 ∈ Hom(V1, V2); g1, . . . , gn ∈ Hom(V2, V1); f ′′
1 , f

′′
2 ∈ Hom(V ′′

1 , V
′
2); g

′′
1 , . . . , g

′′
n ∈

Hom(V ′′
2 , V

′′
1 ); ℓ ∈ Hom(V1,W ); h1, . . . , hn−1 ∈ Hom(W,V1); F1 ∈ Hom(V1, V

′′
1 );

F2 ∈ Hom(V2, V
′′
2 ).

� The relations of Qenh
n force these maps to satisfy:

f1g1f2 = f2g1f1, f
′′
1 g

′′
1f

′′
2 = f ′′

2 g
′′
1f

′′
1 ,

F1g1 = g′′1F2, F2f1 = f ′′
1F1,

F2f2 = f ′′
2F1,

for n = 1.

f1g1 = f2g2, g1f1 + h1ℓ = g2f2, F1h1 = 0,

F2f1 = f ′′
1F1, F2f2 = f ′′

2F1, F1g1 = g′′1F2,

F1g2 = g′′2F2, f
′′
1 g

′′
1 = f ′′

2 g
′′
2 , g

′′
1f

′′
1 = g′′2f

′′
2 ,

for n = 2. And for n ≥ 3, they must satisfy

f1gt = f2gt+1, t ∈ {1, . . . , n− 1}; gtf1 + htℓ = gt+1f2, t ∈ {1, . . . , n− 1}

f ′′
1 g

′′
t = f ′′

2 g
′′
t+1, t ∈ {1, . . . , n− 1}; g′′t f

′′
1 = g′′t+1f

′′
2 , t ∈ {1, . . . , n− 1}

F2ft = f ′′
t F1, t ∈ {1, 2}; F1gt = g′′t F2, t ∈ {1, . . . , n}

F1ht = 0, t ∈ {1, . . . , n− 1}

Remark 4.1.1. For n = 1 it will be understood that there are no arrows ht.

4.1.2 Characterizing stable representations of the quiver Qenh
n

Based on Subsection 1.3.1, we can express the stability condition for as follows.

Consider a stability parameter θ = (θ1, θ2, θ3, θ4) ∈ R4 Note that the representation X

is θ-semistable if the following conditions hold.

(1) For all subrepresentations S = (S1, S2, S
′′
1 , S

′′
2 ) such that S1 ⊆ ker(ℓ), one has

θ · dim(S) := θ1s1 + θ2s2 + θ3s
′′
1 + θ4s

′′
2 ≤ 0.

(2) For all subrepresentations S = (S1, S2, S
′′
1 , S

′′
2 ) such that S1 ⊇ Im(hi), for i ∈

{1, . . . , n− 1}, one has

θ · dim(S) ≤ θ · dim(X).
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X is θ-stable if the inequalities are strict for 0 ̸= S ⊊ X. △

Now, we want to prove a very important lemma that allow us to characterize the stable

representations of the quiver Qenh
n and it is very useful to the proof of the main theorem

of this chapter.

Lemma 4.1.2 (Characterization Lemma). Let

X = (V1, V2, V
′′
1 , V

′′
2 ,W, f1, f2, g1, . . . , gn, f

′′
1 , f

′′
2 , g

′′
1 , . . . , g

′′
n, ℓ, h1, . . . , hn−1, F1, F2)

be a representation with dimension vector (c, c, c − c′, c − c′, 1) of Qenh
n and consider

θ = (θ1, θ2, θ3, θ4) ∈ R4. Suppose that

� θ1 > 0, θ3, θ4 < 0;

� θ1 + θ2 + (θ3 + θ4)(c− c′) > 0;

� (θ1, θ2) ∈ Γc, that is, −θ1 < θ2 < −c− 1

c
θ1.

Then the following statements are equivalent:

(i) X is θ-stable;

(ii) X is θ-semistable;

(iii) X satis�es the following conditions:

(C1) F1 ∈ Hom(V1, V
′
1) and F2 ∈ Hom(V2, V

′
2) are surjective;

(C2) X := (V1, V2,W, f1, f2, g1, . . . , g,ℓ, h1, . . . , hn−1) is a θc = (2c, 1 − 2c)-stable

representation of the quiver Qn.

Proof. If X is θ-stable, then X is obviously θ-semistable. We assume that X is θ-

semistable in order to prove (C1) and (C2). Notice that X̃ := (Cc,Cc, Im(F1), Im(F2))

is a subrepresentation of X such that Cc = S1 ⊇ Im(hi), for all i ∈ {1, . . . , n− 1}. By
the θ-semistability of X, we obtain:

θ1c+ θ2c+ θ3 dim(Im(F1)) + θ4 dim(Im(F2)) ≤ θ1c+ θ2c+ θ3(c− c′) + θ4(c− c′).

This inequality turns out to be

θ3 dim(Im(F1)) + θ4 dim(Im(F2)) ≤ θ3(c− c′) + θ4(c− c′).

Since we have Im(Fi) ⊆ Cc−c′ for i = 1, 2 and θ3 and θ4 are less than zero, we can also

obtain

θ3 dim(Im(F1)) + θ4 dim(Im(F2)) ≥ θ3(c− c′) + θ4(c− c′).
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By combining these inequalities, we actually have the following:

θ3 dim(Im(F1)) + θ4 dim(Im(F2)) = θ3(c− c′) + θ4(c− c′).

Consequently, we must have

dim(Im(F1)) = dim(Im(F2)) = c− c′.

In other words, F1 and F2 are surjective. Now, we want to prove (C2) still under the

hyphotesis that X is θ-semistable. Consider a nonzero subrepresentation S = (S1, S2)

of X such that S1 ⊆ ker(ℓ). Then we have that

X̃ := (S1, S2,Cc−c′ ,Cc−c′)

is a subrepresentation of X such that S1 ⊆ ker(ℓ). By the θ-semistability of X we have

θ1 dim(S1) + θ2 dim(S2) + (θ3 + θ4)(c− c′) = θ1s1 + θ2s2 + (θ3 + θ4)(c− c′) ≤ 0.

If s1 ≥ s2, we have that θ2s2 ≥ θ2s1, since θ2 < 0. Thus,

θ1s1 + θ2s2 + (θ3 + θ4)(c− c′) ≥ θ1s1 + θ2s1 + (θ3 + θ4)(c− c′)

= (θ1 + θ2)s1 + (θ3 + θ4)(c− c′)

≥ θ1 + θ2 + (θ3 + θ4)(c− c′)

> 0,

since we can assume s1 ≥ 1, because s1 = 0 implies s2 = 0 and this means S = 0. So,

s1 < s2, as wanted.

On the other hand, suppose that S = (S1, S2) is proper and S1 ⊇ Im(ht) ∀t ∈
{1, . . . , n − 1}. As before, we can consider X̃ := (S1, S2,Cc−c′ ,Cc−c′) as a representa-

tion of X, since we have the relations between the maps inherit from the path algebra.

Using the θ-semistability of X one more time, we obtain the following inequality:

θ1s1 + θ2s2 + (θ3 + θ4)(c− c′) ≤ (θ1 + θ2)c+ (θ3 + θ4)(c− c′).

Then,

θ1s1 + θ2s2 ≤ (θ1 + θ2)c.

As (θ1, θ2) ∈ Γc, we know that

θ1 + θ2 <
θ1
c
.

Then, we conclude that

θ1s1 + θ2s2 < θ1 ⇐⇒ θ1(s1 − 1) + θ2s2 < 0.

If s1 > s2, which means that s2 ≤ s1 − 1, we obtain:

(θ1 + θ2)s2 ≤ θ1(s1 − 1) + θ2s2 < 0.
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However, this cannot happen, since θ1 + θ2 > 0 and s2 ≥ 0. So, s1 ≤ s2, as wanted.

Finally, we want to prove that (iii) implies (i). For this, consider a nonzero

representation X̃ = (S1, S2, S
′′
1 , S

′′
2 ) of X, such that S1 ⊆ ker(ℓ). If (S1, S2) is a nonzero

subrepresentation of X, we obtain that s1 < s2. As we are under the hyphotesis that

(θ1, θ2) ∈ Γc, we see that
c− 1

c
< −θ2

θ1
< 1.

However, since s1 < s2 ≤ c, we can assume s1 ≤ c− 1 and s2 ≤ c. In such a way that

s1
s2

≤ c− 1

c
< −θ2

θ1
.

Consequently, we must have

θ1s1 + θ2s2 < 0. (4.1)

As θ3 and θ4 are both negative, one has

θ3s
′′
1 + θ4s

′′
2 ≤ 0. (4.2)

By adding (4.1) and (4.2) we obtain the desired inequality. In the case where s1 =

s2 = 0, it must hold that s′′i > 0 for some i ∈ {1, 2}. By using one more time the fact

that θ3 and θ4 are both negative, it is valid that

θ1s1 + θ2s2 + θ3s
′′
1 + θ4s

′′
2 = θ3s

′′
1 + θ4s

′′
2 < 0.

So, in both cases, we conclude that

θ1s1 + θ2s2 + θ3s
′′
1 + θ4s

′′
2 < 0.

Since we have the (θ1, θ2)-stability for X, the maps h1, . . . , hn−1 are zero, therefore we

have to prove that for any proper subrepresentation, we have

θ · (s1, s2, s′′1, s′′2) < θ · (c, c, c− c′, c− c′).

Using one more time the condition (C2), we obtain that s1 ≤ s2 and then θ2s2 ≤ θ2s1,

since θ2 < 0. Therefore,

θ1s1 + θ2s2 + θ3s
′′
1 + θ4s

′′
2 ≤ (θ1 + θ2)s1 + θ3s

′′
1 + θ4s

′′
2.

If s1 = c, we also have s2 = c and then we would have S = X, since F1 and F2 are

surjective. Thus, we can assume that s1 ≤ c− 1. So,

θ1s1 + θ2s2 + θ3s
′′
1 + θ4s

′′
2 ≤ (θ1 + θ2)(c− 1) + θ3s

′′
1 + θ4s

′′
2. (4.3)

We already know that

θ1 + θ2 + (θ3 + θ4)(c− c′) > 0.
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Thus

θ3s
′′
1 + θ4s

′′
2 < θ1 + θ2 + (θ3 + θ4)(c− c′),

since θ3s′′1 + θ4s
′′
2 ≤ 0. By adding (θ1 + θ2)c to both sides of this inequality, we get

(θ1 + θ2)(c− 1) + θ3s
′′
1 + θ4s

′′
2 < (θ1 + θ2)c+ (θ3 + θ4)(c− c′). (4.4)

By combining (4.3) and (4.4), we obtain the result:

θ1s1 + θ2s2 + θ3s
′′
1 + θ4s

′′
2 < (θ1 + θ2)c+ (θ3 + θ4)(c− c′).

Lemma 4.1.3. Given θ as in Lemma 4.1.2 and a θ-stable representation X of numer-

ical type (c, c, c− c′, c− c′, 1) of Qenh
n , we can construct a θc′-stable representation X of

Qn of numerical type (c′, c′, 1) in the following way:

X := (V1, V2,W, f
′
1, f

′
2, g

′
1, . . . , g

′
n, ℓ

′, h′1, . . . , h
′
n−1),

where V ′
1 = ker(F1), V

′
2 = ker(F2) and the maps f ′

1, f
′
2 ∈ Hom(V ′

1 , V
′
2), g

′
1, . . . , g

′
n ∈

Hom(V ′
2 , V

′
1), ℓ

′ ∈ Hom(V ′
1 ,W ) and h′1, . . . , h

′
n−1 ∈ Hom(W,V ′

2) are de�ned by:

f ′
i = fi|ker(F1), for i = 1, 2;

g′i = gi|ker(F2), for i = 1, . . . , n;

h′i = hi, for i = 1, . . . , n− 1;

ℓ′ = ℓ|ker(F1).

Proof. We start by noticing that these maps are well de�ned. In fact, we have that

Im(f ′
i) ⊆ ker(F2) and Im(g′i) ⊆ ker(F1), since F2fi = f ′′

i F1 for i ∈ {1, 2} and F1gi =

g′′i F2 for i ∈ {1, . . . , n}. In addition, they also satisfy all the necessary relations in a

straightforward way, for instance: take x ∈ ker(F2) and observe that

f ′
1(g

′
i(x)) = f ′

1(g1(x)) = f1(g1(x)) = f2(gi+1(x)) = f ′
2(g

′
i+1(x)).

Hence, f ′
1g

′
i = f ′

2g
′
i+1 and the other relations can be proved in a completely analogous

way. For the θc′-stability, consider a subrepresentation S = (S1, S2) of X such that

S1 ⊆ ker(ℓ′), one can see S as a subrepresentation of X (notation of Lemma 4.1.2),

since we have the natural inclusions i1 : V ′
1 = ker(F1) → V1 and i2 : V ′

2 = ker(F2) → V2,

and we also know that

S1 ⊆ ker(ℓ′) = ker(ℓ|ker(F1)) = ker(ℓ) ∩ ker(F1) ⊆ ker(ℓ).

The θc-stability of X implies that dim(S1) := s1 < s2 =: dim(S2) or s1 = s2 = 0.

In a completely analogous way, we use that h′i = hi to show that if S = (S1, S2) is a

subrepresentation of X such that S1 ⊇ Im(h′i) = Im(hi), it holds that s1 ≤ s2, by using

the θc-stability of X one more time. Therefore, X is θc′-stable by Lemma 3.2.3.
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If we set

X := Hom(V1, V2)
⊕2 ⊕ Hom(V2, V1)

⊕n ⊕ Hom(W,V1)
⊕(n−1) ⊕ Hom(V1,W )

⊕ Hom(V ′′
1 , V

′′
2 )

⊕2 ⊕ Hom(V ′′
2 , V

′′
1 )

⊕n ⊕ Hom(V1, V
′′
1 )⊕ Hom(V2, V

′′
2 ),

the group G := GL(V1)×GL(V2)×GL(V ′′
1 )×GL(V ′′

2 ) acts on X by the rule

(g1, g2, g3, g4) ∗ (Ai, Ci, hi, ℓ, A′′
i , C

′′
i , F1, F2) =

(g2Aig
−1
1 , g1Cig

−1
2 , g1hi, ℓg

−1
1 , g4A

′′
i g

−1
3 , g3C

′′
i g

−1
4 , g3F1g

−1
1 , g4F2g

−1
2 ). (4.5)

Proposition 4.1.4. The action (4.5) is free on the θ-stable points of Rep(Qenh
n ,v).

Proof. In fact, if (g1, g2, g3, g4) ∗X = X, one has the following equations:

g2Aig
−1
1 = Ai; g1Cig

−1
2 = Ci; (4.6)

g2hi = hi; ℓg−1
1 = ℓ; (4.7)

g4A
′′
i g

−1
3 = A′′

i ; g3C
′′
i g

−1
4 = C ′′

i ; (4.8)

g3F1g
−1
1 = F1; g4F2g

−1
2 = F2. (4.9)

Assume that X is θ-stable and notice that the equation ℓg−1
1 − ℓ = 0 is equivalent

to ℓ(g1 − IdV1) = 0, which is equivalent to

Im(g1 − IdV1) ⊆ ker(ℓ), (4.10)

while (g2 − IdV2)hi = 0 correspond to

Im(hi) ⊆ ker(g2 − IdV2). (4.11)

By the Characterization Lemma, we have that F1 and F2 are surjective and the repre-

sentation

X̃ = (A1, A2, C1, . . . , Cn, ℓ, h1, . . . , hn−1)

of the quiver Qn is (2c, 1− 2c)-stable. We have that

(S1, S2) := (Im(g1 − IdV1), Im(g2 − IdV2)) ⊂ (V1, V2)

is a subrepresentation of X̃ that satis�es S1 ⊆ ker(ℓ). By Lemma 3.2.3, we must

have dim(S1) ≤ dim(S2). In fact, we actually have that dim(S1) = dim(S2), since

dim(S1) < dim(S2) implies that

dim(ker(g2 − IdV2)) = c− dim(S2)

< c− dim(S1)

= dim(ker(g1 − IdV1)),

55



which contradicts Lemma 3.2.3, since

(S1, S2) := (ker(g1 − IdV1), ker(g2 − IdV2)) ⊆ (V1, V2)

is a subrepresentation of X̃ satisfying Im(hi) ⊆ S1 for all i ∈ {1, . . . , n− 1}, so that we
must have dim(S1) ≤ dim(S2). Therefore, we have that dim(S1) = dim(S2) and then

S1 = S2 = 0, again by Lemma 3.2.3. This means that g1 = IdV1 and g2 = IdV2 . By

using (4.9) and the fact that F1 and F2 are surjective, we obtain that g3 = IdV3 and

g4 = IdV4 , as wanted.

Lemma 4.1.5. Let X0 ⊂ X be subscheme de�ned by the relations in (1.4). Then X0

is preserved by the G-action de�ned in Eq. (4.5).

Proof. Consider X = (Ai, Ci, hi, ℓ, A
′′
i , C

′′
i , F1, F2) ∈ X0 and (g1, g2, g3, g4) ∈ G. One has

that

(g1, g2, g3, g4) ∗X =

= (g2Aig
−1
1 , g1Cig

−1
2 , g1hi, ℓg

−1
1 , g4A

′′
i g

−1
3 , g3C

′′
i g

−1
4 , g3F1g

−1
1 , g4F2g

−1
2 ). (4.12)

Since X satis�es (1.4), it follows that (g1, g2, g3, g4) ∗X satis�es as well. For instance,

(g3F1g
−1
1 )(g1Cig

−1
2 ) = g3F1Cig

−1
2

(1.4)
= g3C

′′
i F2g

−1
2

= (g3C
′′
i g

−1
4 )(g4F2g

−1
2 ).

Thus, (g1, g2, g3, g4)∗X ∈ X0. Since X is arbitrary, X0 is preserved by the G-action.

Remark 4.1.6. Each representation X = (Ai, Ci, hi, ℓ, A
′′
i , C

′′
i , F1, F2) of the quiver

Qenh
n corresponds to a point X ∈ X0. Furthermore, two framed representations X and

Y are isomorphic if, and only if, the corresponding points in X0 are in the same orbit. In

fact, one can write X = g ∗ Y , for some g = (g1, g2, g3, g4) ∈ G and g straightforwardly

de�nes the isomorphism X
∼−→ Y. Conversely, one just builds g with the corresponding

maps out of the isomorphism in hands.

4.2 Framed �ags on Hirzebruch surfaces

Here, we recall the notion explored in Section 1.4 to remind the reader of the

concept and to �x a better notation for the functor of framed �ags on Σn. With the

notation of Section 1.4, we are considering X = Σn, D = ℓ∞ and framed �ags of length

1 and type (1, 0, c′, c − c′), where c > c′ ∈ N, on (Σn, ℓ∞). A framed �ag with these

properties is a triple (E,F, φ), where
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� E and F are torsion-free sheaves on Σn, with E ⊂ F and 1 = rk(E) = rk(F );

� the schematic support of F/E is 0-dimensional and does not intersect ℓ∞;

� φ is an isomorphism between F
∣∣∣
ℓ∞

and Oℓ∞ ;

� c1(F ) = 0; c2(F ) = c′;

� c− c′ = c2(E)− c2(F ) = h0 (Σn, F/E) = dim (H0 (Σn, F/E)) .

Remark 4.2.1. φ also provides an isomorphism E
∣∣∣
ℓ∞

≃ Oℓ∞ and it holds that c1(E) =

0.

The functor FΣn,ℓ∞
1,0,c′,c−c′ of families of framed �ags of length 1 on (Σn, ℓ∞) is de�ned,

for T ∈ Sch, as

FΣn,ℓ∞
1,0,c′,c−c′(T ) = {isomorphism classes of triples (E,F, φ)},

where

� E and F are rank 1 torsion-free sheaves on Σn × T , �at on T , with E ⊂ F ;

� for all closed points t ∈ T , c2(Ft) = c′, c2(Et)− c2(Ft) = c− c′ and c1(Ft) = 0;

� for all closed points t ∈ T , the schematic support of (F/E)t is 0-dimensional and

does not intersect {t} × ℓ∞;

� φ is an isomorphism between F
∣∣∣
ℓ∞×T

and Oℓ∞×T .

Remark 4.2.2. Remember that morphisms of framed �ags are de�ned in the obvious

way and the functor acts on scheme morphisms by pullback.

We denote the functor FΣn,ℓ∞
1,0,c′,c−c′ by Fc′,c to simplify the notation. By Theorem 1.4.1

Fc′,c is representable by a scheme that we will denote by Fc′,c.
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4.3 The main result: a key point

Theorem 4.3.1. There is a set-theoretical bijection between the space of framed repre-

sentations of the quiver Qenh
n that are stable as in Lemma 4.1.2 and the nested Hilbert

scheme of points on Ξn (and the moduli space of framed �ags of sheaves on Σn as well)

Ψ : Repst(Qenh
n , (c, c, c− c′, c− c′, 1)) → Hilbc

′,c(Ξn).

The proof of this result is long and requires some intermediate steps. We start by

considering an element in Repst(Qenh
n , (c, c, c− c′, c− c′, 1)), where c and c′ are positive

integers and c′ < c. One can write

X = (V1, V2, V
′′
1 , V

′′
2 ,W, f1, f2, g1, . . . , gn, f

′′
1 , f

′′
2 , g

′′
1 , . . . , g

′′
n, ℓ, h1, . . . , hn−1, F1, F2).

By Lemma 4.1.2, the maps F1 and F2 are surjective and the datum referring to the

quiverQn is stable. The maps F1 and F2 can be seen as a morphism of representations of

the quiver Qn and therefore the Lemma 4.1.3 actually produces a short exact sequence

in the category of representations of the quiver Qn that is given by:

0 → Xc′
i−→ Xc

F−→ Xc−c′ → 0,

where Xc′ is θc′-stable, Xc is θc-stable and the maps i and F are given by

i = (i1, i2, IdW ) and F = (F1, F2,0).

When we consider the open cover of Hilbc(Ξn) given by the open sets exhibited in

(3.6), namely: (Unc
m ) , m = 0, . . . , c, we can provide an open cover

(
Unc′
j

)
j = 0, . . . , c

to Hilbc
′
(Ξn). In fact, as Xc is θc-stable, there exists an m ∈ {0, 1, . . . , c} such that

Xc ∈ Unc
m and then the matrix

A2m := smf1 + cmf2, where sm = sin
(
mπ
c+1

)
and cm = cos

(
mπ
c+1

)
(4.13)

is invertible by [2, Proposition 3.3]. One has

A′
2m := smf

′
1 + cmf

′
2 = smf1|ker(F1) + cmf2|ker(F1) = A2m|ker(F1); (4.14)

then A′
2m is invertible as well and we obtain an open cover of Hilbc

′
(Ξn) with c + 1

open sets, instead of c′ + 1 which is the cardinality of the one proposed by Bartocci,

Bruzzo, Lanza and Rava in [2]. Moreover, one also has that

Unc′

j ≃ Hilbc
′
(C2), ∀j ∈ {0, . . . , c}, and (4.15)

Unc
m ≃ Hilbc(C2), ∀m ∈ {0, . . . , c}. (4.16)
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By [2, Proposition 3.3], we can build a short exact sequence on the category of repre-

sentations of the transposed ADHM quiver:

0 → XADHM
c′ → XADHM

c → XADHM
c−c′ → 0. (4.17)

In this case, XADHM
c′ and XADHM

c are co-stable in the sense of Nakajima. In other

words, one can write:

0 ⃝c′

⃝0 1

b′1m b′2m

ℓ′

c⃝

⃝1

b1m b2m

Id

i1

ℓ

r⃝

b1m b2m

F1
0

(4.18)

where r = c− c′ and the endomorphisms b1m and b2m of the quotient vector space are

straightforwardly de�ned in the following lemma.

Lemma 4.3.2. One can see that the maps

bjm(x) := bjm(x), j = 1, 2

are well de�ned and [b1m, b2m] = 0.

Proof. In fact, if x = y, then x− y ∈ Im(f), i.e. x− y = f(z). Therefore,

bjm(x)− bjm(y) = bjm(x− y) = bjm(f(z)) = f(b′jm(z)) ∈ Im(f),

and this means that

bjm(x) = bjm(x) = bjm(y) = bjm(y).

On the other hand, [b1m, b2m] = 0 follows from [b1m, b2m] = 0.

Consider an element X = (b1, b2, e) ∈ End(Cc)⊕2 ⊕Hom(Cc,C). The complex on

Σn associated with X is given by [2, p. 2151] and we write it here again:

MX : 0 → OΣn(0,−1)⊕c
α−→ OΣn(1,−1)⊕c ⊕O⊕(c+1)

Σn

β−→ OΣn(1, 0)
⊕c → 0, (4.19)

where

α =


Idc(y

n
2mse) +

tb2s∞

Idcy1m + tb1y2m

0

 (4.20)
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and

β =
[
Idcy1m + tb1y2m, − (Idc(y

n
2mse) +

tb2s∞) , tes∞

]
. (4.21)

Moreover, given a morphism of ADHM representations φ : X → X̃, the corresponding

morphism of complexes is given by the vertical arrows in the commutative diagram:

0 // OΣn(0,−1)⊕c̃ α̃ //

φU

��

OΣn(1,−1)⊕c̃ ⊕O⊕(c̃+1)
Σn

β̃ //β //

φV
��

OΣn(1, 0)
⊕c̃ //

φW

��

0

0 // OΣn(0,−1)⊕c α // OΣn(1,−1)⊕c ⊕O⊕(c+1)
Σn

β // OΣn(1, 0)
⊕c // 0

(4.22)

Taking into account the structure of the maps α, β, α̃ and β̃, it will be good to express

the vertical maps in a similar structure. In order to do that, we note that:

Hom
(
OΣn(0,−1)⊕c̃,OΣn(0,−1)⊕c

)
≃ Hom

(
OΣn ,OΣn(0, 1)

⊕c̃ ⊗OΣn(0,−1)⊕c
)

≃ Mat(c̃× c,C),

i.e., the map φU can be seen as a c̃×c matrix. In a complete similar way, the morphism

φW can be seen as a c̃ × c matrix. When we try to do the same process for the map

φV , it is a litte bit more complicated, since this map does not have a matrix structure.

However, we can write φV as a matrix in blocks. The morphism φV can be written as:

φV =

 φ11
V φ12

V

φ21
V φ22

V

 ,
where:

φ11
V ∈ Hom

(
OΣn(1,−1)⊕c̃,OΣn(1,−1)⊕c

)
;

φ12
V ∈ Hom

(
OΣn(1,−1)⊕c̃,O⊕(c+1)

Σn

)
;

φ21
V ∈ Hom

(
O⊕(c̃+1)

Σn
,OΣn(1,−1)⊕c

)
;

φ22
V ∈ Hom

(
O⊕(c̃+1)

Σn
,O⊕(c+1)

Σn

)
.

Now, observe that

Hom
(
O⊕(c̃+1)

Σn
,OΣn(1,−1)⊕c

)
= Hom (OΣn ,OΣn(1,−1))⊕(c̃+1)c

= Hom (OΣn(−1, 1),OΣn)
⊕(c̃+1)c

=
[
H0(OΣn(−1, 1))

]⊕(c̃+1)c
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and H0(OΣn(−1, 1)) is zero, from [4, Lemma 3.1], so that φ21
V = 0. As before, one can

see that φ11
V ∈ Mat(c̃× c,C) and φ22

V ∈ Mat((c̃+ 1)× (c+ 1),C).

We make the choice φ12
V = 0, so that we can write

φV =

 P 0

0 T

 ,
where P ∈ Mat(c̃ × c,C) and T ∈ Mat((c̃ + 1) × (c + 1),C). We also specialize the

choice of T by writing

φV =


P 0 0

0 T 0

0 0 1

 ,
where P ∈ Mat(c̃× c,C) and T ∈ Mat(c̃× c,C). For the diagram (4.22) to commute,

we must look for matrices P and T that satisfy:

α ◦ φU = φV ◦ α̃ (4.23)

β ◦ φV = φW ◦ β̃ (4.24)

Concerning the equation (4.23), we have:

φV ◦ α̃ =


P 0 0

0 T 0

0 0 1

 ·


Idc̃(y

n
2mse) +

tb̃2s∞

Idc̃y1m + tb̃1y2m

0

 (4.25)

=


P · Idc̃(yn2mse) + P · tb̃2s∞
T · Idc̃y1m + T · tb̃1y2m

0

 (4.26)

and

α ◦ φU =


Idc(y

n
2mse) +

tb2s∞

Idcy1m + tb1y2m

0

 · A (4.27)

=


IdcA(y

n
2mse) +

tb2As∞

IdcAy1m + tb1Ay2m

0

 (4.28)
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Thus,

φV ◦ α̃− α ◦ φU =


P · Idc̃(yn2mse) + P · tb̃2s∞
T · Idc̃y1m + T · tb̃1y2m

0

−


IdcA(y

n
2mse) +

tb2As∞

IdcAy1m + tb1Ay2m

0



=


(P · Idc̃ − IdcA)(y

n
2mse) + (P · tb̃2 − tb2A)s∞

(T · Idc̃ − IdcA)y1m + (T · tb̃1 − tb1A)y2m

0

 . (4.29)

Then, φV ◦ α̃− α ◦ φU = 0 is equivalent to

P · Idc̃ − IdcA = 0 (4.30)

P · tb̃2 − tb2A = 0 (4.31)

T · Idc̃ − IdcA = 0 (4.32)

T · tb̃1 − tb1A = 0. (4.33)

On the other hand, from (4.24), we get:

β ◦ φV =
[
Idcy1m + tb1y2m, − (Idc(y

n
2mse) +

tb2s∞) , tes∞

]
·


P 0 0

0 T 0

0 0 1


=

[
Idc · Py1m + tb1 · Py2m, − (Idc · T (yn2mse) + tb2 · Ts∞) , tes∞

]
and

φW ◦ β̃ = B ·
[
Idc̃y1m + tb̃1y2m, −

(
Idc̃(y

n
2mse) +

tb̃2s∞

)
, tẽs∞

]
=

[
B · Idc̃y1m +B · tb̃1y2m, −

(
B · Idc̃(yn2mse) +B · tb̃2s∞

)
, B · tẽs∞

]
.

Again, β ◦ φV − φW ◦ β̃ = 0 is equivalent to

Idc · P −B · Idc̃ = 0 (4.34)

tb1 · P −B · tb̃1 = 0 (4.35)

B · Idc̃ − Idc · T = 0 (4.36)

B · tb̃2 − tb2 · T = 0 (4.37)

te−B · tẽ = 0. (4.38)
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Putting the equations from (4.30) to (4.33) and from (4.34) to (4.38) together, one can

see that the matrices

A = B = P = T = tφ

are a solution for all the equations, since φ : X → X̃ is a morphism of representations,

and this provides the morphism

MX̃ →MX (4.39)

between the corresponding complexes.

Now we construct the complex MXADHM
c−c′

with the datum (b1m, b2m,0(c−c′)×1), and

we have the following vanishing for the cohomology sheaves.

Lemma 4.3.3. The complex MXADHM
c−c′

given by

0 → OΣn(0,−1)⊕(c−c′) α′′
−→ OΣn(1,−1)⊕(c−c′) ⊕O⊕(c−c′)

Σn

β′′
−→ OΣn(1, 0)

⊕(c−c′) → 0,

where

α′′ =

[
Idc′−c(y

n
2mse) +

tb2ms∞

Idc′−cy1m + tb1my2m

]
(4.40)

and

β′′ =
[
Idc′−cy1m + tb1my2m, −

(
Idc′−c(y

n
2mse) +

tb2ms∞
) ]

, (4.41)

satis�es

H−1(MXADHM
c−c′

) = H0(MXADHM
c−c′

) = 0.

Proof. In fact, the restrictions y1, y2 of y1m, y2m to ℓ∞ may be regarded as homo-

geneous coordinates on ℓ∞;1 moreover, the section se has no zeroes on ℓ∞ (actually

OΣn(1,−n)
∣∣∣
ℓ∞

is trivial as e · h = 0). Omitting to write the restriction to ℓ∞, we have

α′′ =

(
Idc′−c(y

n
2 se)

Idc′−cy1 +
tb1my2

)
and

β′′ =
(
−(Idc′−cy1 +

tb1my2), Idc′−c(y
n
2 se)

)
.

So (v1, v2) ∈ ker β′′ if and only if

(y1 + y2
tb1m)v1 = yn2 sev2. (4.42)

We show that Imα′′ = ker β′′; of course we only have to check that Imα′′ ⊃ ker β′′. If

y2 ̸= 0, let (v1, v2) satisfy (4.42), and set

v =
v1
yn2 se

.

1Note that (y1m, y2m) are sections of OΣn
(0, 1), which restricted to ℓ∞ ≃ P1 is OP1(1) as h · f = 1.
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Then, taking (4.42) into account, one has α′′(v) = (v1, v2).

In the patch y1 ̸= 0 the morphism M = y1+ y2
tb1 is invertible at y2 = 0, hence it

is invertible in a neighborhood of that point. Then setting v = M−1v2 we again have

α′′(v) = (v1, v2) in that neighborhood. As this neighborhood and the neighborhood

y2 ̸= 0 cover ℓ∞ the claim follows.

On the other hand, H−1(MXADHM
c−c′

) = ker(α′′) and α′′ is injective by [2, Statement (i),

p. 2151] and this �nalizes the proof.

Therefore, we can use (4.18) and the morphism (4.39) to get a short exact se-

quence

0 →MXADHM
c−c′

→MXADHM
c

→MXADHM
c′

→ 0.

Explicitly, this exact sequence is the following diagram with exact rows:

0

��

0

��

0

��
0 // OΣn(0,−1)⊕(c−c′) φ′

U //

α′′
��

OΣn(0,−1)⊕c
φU //

α
��

OΣn(0,−1)⊕c
′

α′
��

// 0

0 // OΣn(1,−1)⊕(c−c′) ⊕O⊕(c−c′)
Σn

β′′

��

φ′
V // OΣn(1,−1)⊕c ⊕O⊕(c+1)

Σn

β

��

φV // OΣn(1,−1)⊕c
′ ⊕O⊕(c′+1)

Σn

β′

��

// 0

0 // OΣn(1, 0)
⊕(c−c′)

��

φ′
W // OΣn(1, 0)

⊕c

��

φW // OΣn(1, 0)
⊕c′

��

// 0

0 0 0

By calculating cohomology we have:

H0(MXADHM
c−c′

) → H0(MXADHM
c

) → H0(MXADHM
c′

) → H1(MXADHM
c−c′

) → H1(MXADHM
c

).

Since XADHM
c is co-stable, MXADHM

c
is a monad, so that

H−1(MXADHM
c

) = H1(MXADHM
c

) = 0.

By Lemma 4.3.3, H0(MXADHM
c−c′

) is also zero, then this exact sequence turns out to be

short:

0 → H0(MXADHM
c

) → H0(MXADHM
c′

) → H1(MXADHM
c−c′

) → 0 (4.43)

The sheaves E = H0(MXADHM
c

) and F = H0(MXADHM
c′

) are rank 1 framed torsion-free

sheaves with Chern character (1, 0,−c) and (1, 0,−c′), respectively. Moreover,

coker(β′′) = H1(MXADHM
c−c′

) ≃
H0(MXADHM

c
)

H0(MXADHM
c′

)
(4.44)
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is a rank 0 sheaf of length c− c′ supported outside ℓ∞, since the ranks of H0(MXADHM
c

)

and H0(MXADHM
c′

) are equal and they are framed. Therefore, we get a framed �ag of

sheaves on Σn, which corresponds to a point in Hilbc
′,c(Ξn), that we denote by (E,F, φ).

Now, we are going to build the correspondence in the opposite direction, by

tracing back the steps of the �rst map. We start by considering S ∈ Hilbc
′,c(Ξn). One

can write S = (Sc
′
, Sc), where Sc

′
and Sc are 0-cycles of length c′ and c, respectively.

When we consider the open cover of Hilbc(Ξn) given by the open sets given by (3.6),

namely: (Unc
m ) m = 0, . . . , c, we already know that we can provide an open cover(

Unc′
j

)
j = 0, . . . , c to Hilbc

′
(Ξn). Moreover, one also has

Unc′

j ≃ Hilbc
′
(C2), ∀j ∈ {0, . . . , c}, and (4.45)

Unc
m ≃ Hilbc(C2), ∀m ∈ {0, . . . , c}. (4.46)

So we obtain an element S̃ ∈ Hilbc
′,c(C2). By Theorem 2.1.1, there is a stable repre-

sentation of the enhanced ADHM quiver with dimension vector (r = c− c′, c, 1) �tting

in the following short exact sequence in the category of ADHM representations, where

the maps ℓ′, b′1m and b′2m are inherited by the quotient:

0 ⃝r

⃝0 0

b1m b2m

c⃝

⃝
Id

1

b1m b2m

f

ℓ

c′

ℓ

⃝

b′1m b′2m

π
0

⃝1 0 (4.47)

One can rewrite this sequence as

0 → L
f−→M

π−→ N → 0, (4.48)

where M and N are stable and dim(M) = (c, 1) and dim(N) = (c′, 1). The morphism

π :M → N is surjective and f : L→M is injective. One may use [2, Equations 3.13],
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getting

A1 = cm
tb1m + smIdc, A2 = −smtb1m + cmIdc, (4.49)

A1 = cm
tb1m + smIdc−c′ , A2 = −smtb1m + cmIdc−c′ , (4.50)

C1

...

...

Cn

 = (σn−1
m ⊗ Idc)


Idc

tb1m
...

tbn−1
1m


tb2m (4.51)


C1

...

...

Cn

 = (σn−1
m ⊗ Idc−c′)


Idc−c′

tb1m
...(

tb1m
)n−1


tb2m, (4.52)

where σn−1
m is the matrix de�ned by the condition

(smz1 + cmz2)
p(cmz1 − smz2)

n−1−p =
n−1∑
q=0

(σn−1
m )pqz

n−1−q
1 zq2,

for (z1, z2) ∈ C2, where sm, cm are the numbers de�ned in equation (4.13) and therefore

we obtain a representation of the quiver Qenh
n with dimension vector (c, c, c−c′, c−c′, 1),

let us say X, and we write:

Cc Cc−c′

Cc Cc−c′

C

tf

Cn

C2

C1 C1

Cn

C2

tf

tℓ

A1

A2

A1
A2
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Remark 4.3.4. One can check by substitution that the representation (written with-

out the vector spaces)

X = (A1, A2, C1, . . . , Cn,
tℓ, A1, A2, C1, . . . , Cn,

tf, tf)

satis�es all the necessary relations exhibited right before Remark 4.1.1.

This representation turns out to be stable. In fact, the map tf is surjective and

the Qn datum is stable, by construction. Then, the stability of X follows from Lemma

4.1.2 and we get a point in Repst(Qenh
n , (c, c, c−c′, c−c′, 1)), as required, and this �nalizes

the proof of the existence of a set-theoretical bijection between the suitable sets. This

is the �absolute� case, and now we are able to explore the categorical approach of the

problem with the aim of showing that this bijection actually yields an isomorphism of

schemes.

Remark 4.3.5. In both ways of the de�nition of the bijection from Theorem 4.3.1

there is a dependence on m ∈ {0, . . . , c}. However, the maps are still well de�ned,

since the dependence on m is �xed in one way by the item (2) of Proposition 4.4.3 and

in the other way, by the action (4.5) of the group that de�nes the moduli space.
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4.4 The categorical approach of the problem

We begin this section by revising and stating some facts about the categorical

techniques behind Theorem 3.2.5 with the purpose of proving the following result.

Theorem 4.4.1. The bijection from Theorem 4.3.1 yields an isomorphism of schemes

Repst(Qenh
n , (c, c, c− c′, c− c′, 1)) ≃ Hilbc

′,c(Ξn).

This section is divided in two subsections. The goal of the �rst subsection is

provide a sound understanding to the categorical approach of Theorem 3.2.5 and in

the second one we prove the main theorem of the present work.

4.4.1 The base case: approaching Hilbc(Ξn) categorically

In order to show that the set-theoretical bijection from Theorem 4.3.1 yields an

isomorphism of schemes, we shall work with families of representations of the quiver

Qn parameterized by schemes and, as it was done before, we shall prove the existence

of a natural transformation between the underlying functors. We shall see later on that

this scheme represents the functor of families of stable representations of the quiver

Qn. To that end we introduce:

� the category An of families of representations of the quiver Qn with the relations

(1.3). For n ≥ 2, an object of An is a collection

(T,V0,V1,W , A1, A2, B1, . . . , Bn, I1, . . . , In−1, J)

where

� T is a scheme;

� W ,V0,V1 are vector bundles on T ;

� A1, A2 ∈ Hom(V0,V1), B1, . . . , Bn ∈ Hom(V1,V0), I1, . . . , In−1 ∈ Hom(W ,V0),

J ∈ Hom(V0,W) satisfying the conditions

A1Bq = A2Bq+1, BqA1 −Bq+1A2 = IqJ, q = 1, . . . , n− 1.

For n = 1 the objects are collections (T,A1, A2, B1, J) with A1B1A2 = A2B1A1.
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� For a �xed v = (r, c0, c1), An(v) is the full subcategory of An of families of

representations of Qn with dimension vector v, i.e., rkW = r, rkV0 = c0, rkV1 =

c1.

� For a �xed stability parameter Θ, An(v)
s
Θ is the full subcategory of An(v) whose

objects are framed representations that are stable with respect to Θ.

� The category Komn of families of complexes of cohererent sheaves on the variety

Σn.

� Its full subcategory Kom�at

n whose objects are families of complexes of cohererent

sheaves on Σn whose cohomology sheaves are �at on the base scheme.

Morphisms in these categories are de�ned as in the previous Section in the case

of P2.

The next step would be to de�ne a functor An → Komn. However we are unable

to do that in full generality, and we need to restrict to representations satisfying a

kind of nondegeneracy condition, corresponding to the regularity of the pencil ν1A1 +

ν2A2, where ν = [ν1, ν2] ∈ P1 (see condition (P2) in [2], p. 2137). We consider a full

subcategory An,ν characterized by the condition that the homomorphism

Aν = ν2A1 + ν1A2

is an isomorphism. Of course this �xes the second and third components of the dimen-

sion vector to be equal.

We want to de�ne a functor

Kn,ν : An,ν → Komn

of categories over Sch.

We recall that we may represent the n-th Hirzebruch surface Σn as

Σn =
{
([y1, y2], [x1, x2, x3]) ∈ P1 × P2 | x1yn1 = x2y

n
2

}
, (4.53)

and for every ν = [ν1, ν2] ∈ P1 we introduce the additional pair of coordinates

[y1,ν , y2,ν ] = [ν1y1 + ν2y2,−ν2y1 + ν1y2] .
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The set
{
yq2,νy

h−q
1,ν

}h
q=0

is a basis forH0 (OΣn(0, h)) = H0 (π∗OP1(h)) for all h ≥ 1, where

π : Σn −→ P1 is the canonical projection. Furthermore the (unique up to homotheties)

global section se of OΣn(e) induces an injection OΣn(0, n) ↣ OΣn(1, 0), so that the set

{
(yq2,νy

n−q
1,ν )se

}n
q=0

∪ {s∞}

is a basis for H0 (OΣn(1, 0)), where s∞ is a section whose vanishing locus is ℓ∞.

We de�ne the functor Kn,ν on objects. If

X = (T,V0,V1,W , A1, A2, B1, . . . , Bn, I1, . . . , In−1, J)

is an object in An,ν , then Kn,ν(X) is the complex

0 → V∗
0⊠OΣn(0,−1)

αν−−→ V∗
0⊠OΣn(1,−1)⊕(V∗

0⊕W∗)⊠OΣn

βν−−→ V∗
0⊠OΣn(1, 0) → 0

(4.54)

with the morphisms αν , βν given by

αν =


id⊗(yn2,νse) + A∗

νB
∗
ν ⊗ s∞

id⊗y1,ν + C∗
ν(A

∗
ν)

−1 ⊗ y2,ν

−Iν ⊗ y2ν

 ,

βν =
(
id⊗y1,ν + C∗

ν(A
∗
ν)

−1 ⊗ y2,ν , −
(
id⊗(yn2,νse) + A∗

νB
∗
ν ⊗ s∞

)
, J∗ ⊗ s∞

)
,

where we have set

B∗
ν =

n∑
q=1

(
n−1
q−1

)
νn−q1 νq−1

2 B∗
q , Cν = ν1A1−ν2A2, Iν = (ν21+ν

2
2)

n−1∑
q=1

(
n−2
q−1

)
νn−q−1
1 νq−1

2 I∗q

(for n = 1 we understand that Bν = 1 and Iν = 0).

The action of Kn,ν on morphisms is de�ned as in the case of P2, see (2.5). We

omit the cumbersome but trivial details.

We see now some properties of the functor Kn,ν . Let H• denote the cohomology

sheaves of a complex on T × Σn.

Proposition 4.4.2. If X ∈ An,ν is a family of framed representations of Qn, then

H0(Kn,ν(X )) is torsion-free and H−1(Kn,ν(X )) = 0. If the dimension vector of X is

(1, c, c) for some c, and X is stable with respect to the stability parameter (2c,−2c+1),

then H1(Kn,ν(X )) = 0.
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Proof. This follows from the special case T = SpecC, in which case it is proved in the

Section A.1 of [2].

Let An,ν(c)
frs be subcategory of An,ν whose objects are families of framed repre-

sentations with rkV0 = rkV1 = c, stable with the respect to the stability parameter

Θ = (2c,−2c+ 1).

Proposition 4.4.3. 1. Kn,ν maps An,ν(c)
frs into Kom�at

n .

2. If X ∈ An,ν(c)
frs∩An,ν′(c)frs then the complexes Kn,ν(X ) and Kn,ν′(X ) are quasi-

isomorphic.

Let X → X ′′ be a surjective morphism in Afr
n,ν for a scheme T , where the di-

mensional vectors of X and X ′′ are (1, c, c) and (0, c− c′, c− c′), respectively. Assume

that X is stable with respect to the stability parameter (2c,−2c + 1). Let X ′ be the

corresponding kernel. Then:

3. X ′ ∈ An,ν(c
′)frs, with respect to the stability parameter (2c′,−2c′ + 1).

4. The sequence of morphisms of complexes of coherent sheaves on T × Σn

0 → Kn,ν(X ′′) → Kn,ν(X ) → Kn,ν(X ′) → 0 (4.55)

is exact.

Proof. 1. This goes exactly as in Proposition 2.1.4.

2. This is essentially proved in [2], albeit in a di�erent language.

3. It follows from a direct computation.

4. The sequence (4.55) can be written as a diagram with three rows and three

columns; the second and third column are complexes as in (4.54), and the �rst column

too, but with W = 0. The exactness of the rows is equivalent to the exactness of the

sequence 0 → X ′ → X → X ′′ → 0.

We conclude this section by stating and brie�y discussing the correspondence

between the functor of families of representations of the quivers Qn, and the Hilbert

scheme functor for the varieties Ξn; that is, we categorize Theorem 3.2.5.

Theorem 4.4.4. Let Rnfrs
c,Θ be the functor of families of framed representations of the

quiver with relations Qn, with dimension vector (1, c, c), stable with respect to stability

parameter Θ = (2c,−2c + 1). Let HilbcΞn
be the functor of isomorphism classes of

families of length c 0-cycles on the variety Ξn. There is a natural transformation

ηn : R
nfrs
c,Θ → HilbcΞn

which is an isomorphism of functors.
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Proof. The natural transformation ηn is de�ned by means of the functors Kn,ν , also

in view of part 1 of Proposition 4.4.3: if X is a family of representation of Qn, with

dimension vector (1, c, c), and Θ-stable, it is in A1
n,ν(c)

s
Θ for some m; then H0(Kn,ν(X ))

is a family of length c 0-cycles on Ξn. That ηn is an isomorphism of functors is just the

categorical way of stating Theorem 3.2.5, and ultimately is the main content of [2].

The version of Remark 2.1.2 in the present context is that the Hilbert scheme

Hilbc(Ξn) represents the functor R
n,fr,s
c,Θ .

4.4.2 The nested case: a complete proof of Theorem 4.4.1

In this subsection we prove the following theorem:

Theorem 4.4.5. The bijection from Theorem 4.3.1 yields an isomorphism of schemes

Repst(Qenh
n , (c, c, c− c′, c− c′, 1)) ≃ Hilbc

′,c(Ξn) ≃ Fc′,c.

Proposition 4.4.6. Let R
n,fr,s

c,c′,θ be the functor of families of framed θ-stable represen-

tations of the quiver Qenh
n of dimension vector (c, c, c − c′, c − c′, 1). For any n ≥ 1,

there exists a natural transformation

ηn : R
n,fr,s

c,c′,θ → Hilbc
′,c
Ξn
,

which is an isomorphism of functors.

The key for the construction of the natural transformation ηn : R
n,fr,s

c,c′,θ → Hilbc
′,c
Ξn

is to regard a representation of the quiver Qenh
n as a morphism of representations of the

standard quiver Qn. Let

X = (T,V0,V1,W ,V ′
0,V ′

1, A1, A2, B1, . . . , Bn, I1, . . . , In−1, J, A
′
1, A

′
2, B

′
1, . . . , B

′
n, F1, F2)

be a family of representations of the quiver Qenh
n , with T a scheme, V0,V1,W ,V ′

0,V ′
1
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vector bundles on T of rank c, c, 1, c− c′, c− c′, respectively, and

A1, A2 ∈ Hom(V0,V1),

B1, . . . , Bn ∈ Hom(V1,V0),

I1, . . . , In−1 ∈ Hom(W ,V0),

J ∈ Hom(V0,W),

A′
1, A

′
2 ∈ Hom(V ′

0,V ′
1),

B′
1, . . . , B

′
n ∈ Hom(V ′

1,V ′
0),

F1 ∈ Hom(V0,V ′
0),

F2 ∈ Hom(V1,V ′
1).

If we assume that X is stable as in Lemma 4.1.2, one has that F1 and F2 are surjective.

This de�nes a surjective morphism of families of representations of the quiver Qn.

De�ne V ′′
0 := ker(F1) and V ′′

1 := ker(F2); note that they are vector bundles on T of

rank c′. The morphisms A1, A2, B1, . . . , Bn, J induce morphisms

A′′
1, A

′′
2 ∈ Hom(V ′′

0 ,V ′′
1 ); B

′′
1 , . . . , B

′′
n ∈ Hom(V ′′

1 ,V ′′
0 ); J

′′ ∈ Hom(V ′′
0 ,W);

and that de�nes a �kernel� family of representations of the quiver Qn.

As we have natural inclusions i0 : V ′′
0 → V0 and i1 : V ′′

1 → V1 and the isomor-

phism IdW : W → W , we can actually build a short exact sequence of families of

representations of the quiver Qn parameterized by T

0 → X ′′ → X → X ′ → 0.

By Lemma 4.1.2 and Lemma 4.1.3, X ′′ and X are families of stable framed represen-

tations, so that Proposition 4.4.3 implies that

0 → Kn,ν(X ′) → Kn,ν(X ) → Kn,ν(X ′′) → 0

is exact and by taking cohomology, one has that

H0(Kn,ν(X ′)) → H0(Kn,ν(X )) → H0(Kn,ν(X ′′)) → H1(Kn,ν(X ′)) → H1(Kn,ν(X ))

(4.56)

is exact as well.
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On the other hand, H0(Kn,ν(X ′)) = 0, by Lemma 4.3.3 and H1(Kn,ν(X )) = 0,

since X is stable. Thus, (4.56) reduces to

0 → H0(Kn,ν(X )) → H0(Kn,ν(X ′′)) → H1(Kn,ν(X ′)) → 0 (4.57)

Additionally, one has:

� F := H0(Kn,ν(X ′′)) is a torsion-free coherent sheaf on T × Σn, with a framing φ

to the trivial sheaf on T × ℓ∞. Moreover, the second Chern class of F
∣∣∣
{t}×Σn

is c′

for every closed point t ∈ T.

� F and E := H0(Kn,ν(X )) are �at over T , by Proposition 4.4.3, since X and X ′

are stable.

� H1(Kn,m(X ′)) is a rank 0 coherent sheaf on T × Σn, supported away from T ×

ℓ∞. For every closed point t ∈ T , the restriction of the schematic support of

H1(Kn,ν(X ′)) to the �ber over t is a 0-cycle on Σn of length c− c′.

� H1(Kn,ν(X ′)) is �at over T, as it is a quotient of �at sheaves.

Therefore, the triple (E,F, φ) is a �at family of framed �ags of sheaves on Σn param-

eterized by the scheme T. This de�nes the natural transformation

ηn : R
n,fr,s

c,c′,θ → Hilbc
′,c
Ξn
.

To prove that ηn is indeed a natural transformation, we need to show that for any

scheme morphism f : S → T the diagram

R
n,fr,s

c,c′,θ (T )
R

n,fr,s

c,c′,θ(f) //

ηn,T

��

R
n,fr,s

c,c′,θ (S)

ηn,S

��
Fc′,c(T )

Fc′,c(f) // Fc′,c(S)

commutes.
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Indeed, if we consider an element in R
n,fr,s

c,c′,θ (T ), say [T,X]. We have that

[Fc′,c(f) ◦ ηn,T ]([T,X]) = [(Id× f)∗ ◦ ηn,T ]([T,X])

= (Id× f)∗(H•(Kn,ν([T,X])))

(1.5.2)
= H•((Id× f)∗Kn,ν([T,X]))

= H•(Kn,ν(f
∗([T,X])))

= ηn,S(f
∗([T,X]))

= (ηn,S ◦R
n,fr,s

c,c′,θ (f))([T,X]).

Notice that the same considerations as in Remark 2.1.7 work here. To show that

ηn is actually a natural isomorphism, we must construct another natural transformation

τn : Hilbc
′,c
Ξn

→ R
n,fr,s

c,c′,θ

which is both a right and left inverse to ηn. This can be done just by tracing back the

steps that conduct to the de�nition of ηn, i.e., given a family of framed �ags on Σn

with the required numerical invariants, de�ne two families of representations X ′′
ADHM

and XADHM of the transposed ADHM quiver with an injection ϕ : X ′′
ADHM → XADHM.

Then, one constructs X ′
ADHM as the quotient and we use [2, Equations 3.13] to obtain a

stable family of representations of the quiver Qenh
n with the required dimension vector

and relations, and this �nalizes the proof of Theorem 4.4.1.

Corollary 4.4.7. For any n ≥ 1, the schemes Repst(Qenh
n , (c, c, c − c′, c − c′, 1)) and

Hilbc
′,c(Ξn) are isomorphic and one can write

Repst(Qenh
n , (c, c, c− c′, c− c′, 1)) ≃ Hilbc

′,c(Ξn) ≃ Fc′,c

i.e., the nested Hilbert scheme of points in Ξn can be seen as a moduli space of stable

framed representations of a suitable quiver with relations.
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