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RESUMO 

 

Dados meteorológicos precisos são cruciais para avaliar os impactos da variabilidade espaço-

temporal das mudanças climáticas sobre hidrologia, agroecossistemas etc. Este trabalho aborda 

a importância de registros de precipitação de alta qualidade no cenário climático atual, 

enfatizando sua relevância não apenas no domínio científico e técnico, mas também para 

instituições públicas que gerenciam redes pluviométricas. O principal objetivo deste estudo é 

desenvolver grades de alta resolução (0,25° × 0,25°) de precipitação diária, utilizando dados de 

mais de 11.000 estações no período de 1961 a 2020. O conjunto de dados é proveniente da Rede 

Hidrometeorológica Nacional (RHN), submetido a um procedimento de controle de qualidade 

automático. O procedimento de controle de qualidade automático envolve duas etapas 

consecutivas: Controle de Qualidade Básico e Controle de Qualidade Absoluto. Avaliações 

mensais categorizam a qualidade das estações como Muito Baixa, Baixa, Aceitável, Boa ou 

Excelente, e posteriormente como Alta Qualidade (HQ – high quality) e Baixa Qualidade (LQ 

– low quality). A avaliação da metodologia foi conduzida utilizando um conjunto de dados 

inspecionado visualmente do CEMADEN (Centro Nacional de Monitoramento e Alertas de 

Desastres Naturais). Os resultados mostraram uma precisão de 98,4% na identificação correta 

de estações de alta qualidade. De um total de mais de 103 milhões de registros diários, 

aproximadamente 1,6% foram classificados com qualidade muito baixa ou baixa e, 

subsequentemente, descartados. O método de interpolação do Inverso da potência das distâncias 

(IDW – Inverse Distance Weighting) foi empregado nos demais 101 milhões de registros diários 

para produzir uma grade de dados de precipitação diária de alta resolução de 1961 a 2020. As 

estatísticas de validação cruzada dos dados interpolados mostraram um desempenho superior 

aos trabalhos anteriores sobre o mesmo conjunto de dados e os dados em grade representaram 

bem as duas normais climáticas de referência para o período. 

 

PALAVRAS-CHAVE: controle de qualidade, precipitação, dados diários em grade, 

interpolação 

 

 

 

 

 



 
 

 

ABSTRACT 

 

Accurate meteorological data are crucial for assessing the impacts of spatiotemporal variability 

in climate change on hydrology, agroecosystems, etc. This work addresses the significance of 

high-quality precipitation records in the current climate scenario, emphasizing their importance 

not only in the scientific and technical domains, but also for public institutions managing 

pluviometric networks. The primary objective of this study was to develop high-resolution grids 

(0.25° × 0.25°) of daily precipitation, utilizing data from more than 11,000 stations spanning 

1961 to 2020. The dataset was sourced from the Brazilian National Hydrometeorological 

Network (RHN) was subjected to an automatic quality control procedure. The automatic quality 

control procedure involves two consecutive steps: Basic Quality Control and Absolute Quality 

Control. Monthly quality assessments categorized station quality as Very Low, Low, 

Acceptable, Good, or Excellent, and later as High Quality (HQ) and Low Quality (LQ). The 

methodology was evaluated using a visually inspected dataset from the Brazilian National 

Center for Monitoring and Early Warnings of Natural Disasters (CEMADEN). The results 

showed an accuracy of 98.4% in correctly identifying high-quality stations. Out of over 103 

million daily records, approximately 1.6% were flagged as very low or low quality and 

subsequently discarded. The inverse distance weighting (IDW) interpolation method was 

employed for the remaining 101 million daily records to produce high-resolution gridded data 

of daily precipitation from 1961 to 2020. The cross-validation statistics of the interpolated data 

performed better than those of previous studies on the same dataset, and the gridded data 

estimations represented both reference climate normals well. 

 

KEYWORDS: quality control, precipitation, daily gridded data, interpolation 
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1. INTRODUCTION 

Understanding how rainfall behavior changes over time is indispensable for measuring 

its influence on other environmental parameters and processes in the water cycle, such as soil 

moisture, evapotranspiration, and groundwater recharge, and natural hazards, such as soil 

erosion, landslides, floods, and droughts. (Karoly et al., 2003; Souza et al., 2012; Lin et al., 

2020; Ghorbanian et al., 2022). In addition to natural processes, rainfall also impacts human 

activities, such as public health management, agriculture and livestock, urban drainage, public 

infrastructure design, power generation, and water resource management. (Hacker et al., 2020; 

Phosri, 2022; Romero et al., 2020; Sokolovskaya et al., 2023). 

Despite its importance, the accurate measurement of rainfall remains a challenge. 

Among the three most common methods used to measure rainfall, rain gauges are more precise 

than weather radar or orbital remote sensing estimation products (Li et al., 2017). However, the 

biggest disadvantage of rain gauges is that they can only provide spot measurements; thus, a 

dense network with well-distributed stations is required to cover large areas with adequate 

quality, increasing rainfall monitoring costs for equipment installation, maintenance, and 

operation (Villarini et al., 2008; Hofstra et al., 2009; Chen et al., 2016; Zeng et al., 2018; 

Merino et al., 2021). 

However, limited gauge coverage is commonly observed in many parts of the world, 

with low-density networks and poor quality data available, particularly in developing countries 

and sparsely populated areas such as the Brazilian countryside (Buarque et al., 2011; Xu et al., 

2013; Murara et al., 2019). An uneven distribution of gauges limits the data coverage over a 

region unless the data from station-sparse areas can be interpolated to produce a gridded 

precipitation dataset that can be used in hydrology, climate change, and meteorological studies 

(Golian et al., 2019; Harris et al., 2020; Bárdossy et al., 2021; Han et al., 2022). 

Gauges are designed to operate continuously; however, occasional failures in data 

collection, processing, and transmission can result in intermittent or unavailable recording of 

information for extended periods (Sieck et al., 2007). Gauge data can also contain anomalous, 

repetitive, missing values, and improper null values caused by a range of circumstances such 

as mechanical problems, electrical faults, power failures, power instabilities, data transmission 

interruptions, clogging, incorrect sets of time zones or reading of data time, equipment defects, 

and human errors (Robertson et al., 2015; Ribeiro et al., 2021). These errors may not be visually 

noticed in a large raw dataset and may cause significant negative interference in hydrological 

models calibrated using these rainfall datasets (Liu et al., 2018). 
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Therefore, quality control procedures (QCP) are important for identifying a wider range 

of missing values and uncertainties to ensure data quality, consistency, and reliability (Hamada 

et al., 2011; Qi et al., 2016; Yatagai et al., 2020; Jeong et al., 2021; Lewis et al., 2018; Lewis 

et al., 2021). Several researchers have developed qualitative analysis routines for rainfall data 

to generate consistent datasets. In countries with greater data availability, there are several 

studies on QCPs, but most of them focus on temporal ranges of a few decades, apply the method 

at local and regional scales, or present a method that is difficult to replicate in a data scarcity 

scenario commonly found in developing countries (Yang et al., 2006; Sciuto et al., 2009; 

Delahaye et al., 2015; Blenkinsop et al., 2017; Liu et al., 2018; Capozzi et al., 2023). 

It is necessary to simplify quality control procedures without losing much information. 

While developing countries still have deficient rainfall datasets that require high computational 

demands (Schmidt et al., 2023), rainfall extremes in those regions still need to be addressed, as 

the efficiency of applications with precipitation data as input depends on its measurement 

consistency. 

For instance, the study carried out by Blenkisop et al. (2017) in the United Kingdom 

(UK) used flags to identify dubious values (particularly extreme events) over hourly rainfall 

data. They analyzed data from approximately 1600 rain gauges from three different data 

sources. Although the study successfully built a quality-controlled dataset, two out of the three 

sources of information that they used were previously submitted to quality control procedures 

(QCP); thus, this step makes it unsuitable for countries with high-quality data scarcity. 

Lewis et al. (2018) applied a similar methodology, supplementing the previous study by 

 comparing the hourly data with those of the neighboring gauges, adding another four flags for 

this purpose. Overall, 3.4% of the hourly data were excluded after the application of this QC 

procedure; however, as in Blenkinsop’s study, many variables used for the flagging were based 

on a large amount of previous data and studies in the area, including climate UK specificities. 

In Catalonia (Northeastern Spain), Llabrés-Brustenga et al. (2019) developed a QCP for 

daily rainfall data applied to more than 1,700 stations on a yearly scale and obtained satisfactory 

results. This methodology can be divided into three steps: (1) a basic quality control for the 

detection and deletion of physically impossible values; (2) an absolute quality control where 

every single time series is tested individually for completeness, occurrence of gaps, distribution 

of gaps, outliers, etc.; and (3) a relative quality control that evaluates the quality of each daily 

rainfall value collected by a station based on its similarity to the values collected by neighboring 

stations. Estévez et al. (2022) evaluated the same methodology with fewer adaptations in the 
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semi-arid region of Andalusia (Southern Spain), a heterogeneous area of study with a 

predominant semiarid climate, but with other climate conditions as well, such as arid and dry 

subhumid. 

In Brazil, the largest daily rainfall dataset is available on the HidroWeb Portal 

(https://snirh.gov.br/hidroweb/), a web tool that offers access to a database of 

hydrometeorological data from the Brazilian National Hydrometeorological Network (RHN). 

It currently hosts data from more than 12,000 rain gauges from 1855 to the present. With a 

comprehensive description of the dataset and the application of a QCP, it is possible to 

determine which stations have the target quality for the development of a gridded dataset of 

daily rainfall data on a national scale. 

On a national scale, Meira et al. (2022) developed the first automatic QCP on a sub-

hourly scale annually applied to the dataset of the Brazilian National Center for Monitoring and 

Alerting Natural Disasters (Centro Nacional de Monitoramento e Alertas de Desastres Naturais 

– CEMADEN) with promising results, correctly identifying 93.9% of pre-defined high quality 

(HQ) data series and 79.5% of pre-defined poor quality (PQ) data series from more than 3,000 

gauges per year for a seven-year period (2014 – 2020). 

With the development of new data analysis tools, QCPs have incorporated resources 

that ensure greater reliability and agility in data processing, resulting in refined data products 

that are suitable for producing high-quality and long-term gridded datasets (Caesar et al., 2006; 

Bertoni and Tucci, 2007; Oliveira et al., 2010). 

Long-term and high-quality gridded datasets of observed rainfall data with good spatial 

and temporal scales are important for several types of hydrometeorology research, such as the 

validation of climate models and satellite-derived estimation models, detection of human 

influences on climate change, and evaluation of hydrological cycles (Chen et al., 2017; Gallant 

et al., 2018; Sun et al., 2018; Beck et al., 2019; Huang et al., 2019; Lewis et al., 2019; Pritchard 

et al., 2023). 

There are a variety of products available for precipitation, some of which are based 

solely on satellite data, others solely on ground-based data, and others combine satellite and 

ground-based data. Unlike most of the precipitation products, PRISM (Parameter-elevation 

Regressions on Independent Slopes Model) is an American model that uses ground-based data 

combined with digital elevation model and other geographical datasets to estimate monthly 

and event-based climatic parameters. It is assumed that elevation is the most important factor 

in the spatial distribution of climatic variables such as precipitation (Daly et al., 2008). 
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Liebmann and Allured (2005) published the first gridded data of daily precipitation for 

South America from 1940 to 2003 on a 1.0° by 1.0° grid based on ground-based data from 

almost 8,000 stations. Most of them were missing some observations throughout the given 

recording period; all of them were heterogeneously spatialized over the continent, only located 

east of the Andes Mountains, with the Brazilian territory having the largest quantity and the 

highest station density on the continent. Basic quality control was addressed by excluding 

missing periods, incorrectly located stations, and suspected high values that might indicate 

accumulated rain before the missing days. 

Jones et al. (2012) developed a daily precipitation grid dataset for the southernmost 

areas of South America from 1961 to 2000 on a 0.5° × 0.5° grid, focusing on quality control of 

the daily precipitation dataset, but only comprehending the catchment area of the La Plata 

Basin. More than half of the 8,000 potential station data points could not be used because they 

presented several issues, such as insufficient series, duplicated stations, or gross errors. 

For the Brazilian territory, Silva et al. (2007) analyzed gauge-only precipitation 

techniques used by the Climate Prediction Center (CPC) of the National Oceanic and 

Atmospheric Administration (NOAA) of the federal government of the United States to produce 

historical gridded daily precipitation analyses for Brazil from 2000 (1948-2000) and 2005 

datasets, where the daily gauge data passes through several types of quality control, and then a 

modified Cressman scheme is used as an interpolation method. Subsequently, station 

observations and gridded results from 12 selected stations were compared to verify accuracy, 

assess the quality control system, understand extreme precipitation events, and enhance data 

usability. 

Rozante et al. (2010) developed MERGE, a gridded dataset of daily precipitation at 

0.25° spatial resolution that consists of combining data from more than 4,00 rain gauges of 

monitoring networks operated by different Brazilian agencies with data from the GPM-

IMERG-EARLY satellite, a substitute for TRMM-TMPA after its discontinuation, although it 

now presents a higher spatial resolution of 0.1° (Rozante et al., 2020). 

Xavier et al. (2016) published a meteorological gridded dataset, including precipitation 

(pr), on high-resolution grids (0.25° × 0.25°) of 3,625 rain gauges and 735 weather stations for 

the period 1980–2013. A simple quality verification was applied to precipitation to remove 

physically impossible values, such as values lower than 0 mm and higher than 450 mm 

(Liebmann and Allured, 2005). Xavier et al. (2017) updated the precipitation variable of their 

previous work using 9,259 rain gauges and extended the range by two more years from 1980 to 
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2015. Among the two interpolation methods assessed in this updated version, Angular Distance 

Weighting (ADW) performed better than Inverse Distance Weighting (IDW). In a more recent 

paper, Xavier et al. (2022) presented the latest version of the Brazilian gridded meteorological 

dataset using observed data from 11,473 rain gauges and 1,252 weather stations from 1961 to 

2020. Among the interpolation methods evaluated in this version, Angular Distance Weighting 

(ADW) and Inverse Distance Weighting (IDW) performed better than the others. As in the first 

gridded meteorological data from 2016, they only removed physically impossible values from 

the precipitation in both updates. 

In this framework, this master’s thesis aims to develop a daily rainfall gridded dataset 

at the Brazilian territory scale based on quality-controlled data exclusively from the observed 

precipitation data available online (i.e., throughout HidroWeb). The application of a replicable 

QCP to the largest Brazilian daily rainfall dataset available for the construction of gridded daily 

data would improve the quality of hydrological information and its sub-products at a national 

level (Morbidelli et al., 2020). To achieve this objective, this research was organized along 

three research axes: (i) collection of historical rainfall data and analysis of the spatiotemporal 

evolution of the gauge network, (ii) control of data quality throughout a quality index, and (iii) 

use of this quality-controlled ground-based dataset to develop a high-resolution precipitation 

grid over Brazil. 

 

2. STUDY AREA 

This work was carried out for the whole Brazilian territory, being approximately 8.5 

million km2 and spanning between latitudes 5°16′N – 33°45′S and longitudes 34°47′W – 

73°59′W (IBGE, 2017). It is currently divided into twenty-six states and a Federal District. 

Brazil is the fifth-largest country by area in the world and the largest South American country, 

corresponding to approximately half of the continent's land.  

These large dimensions contribute to great climatic variability, which involves 

variability in the precipitation patterns. According to the Köppen climate classification (Figure 

1), three of the five main climate groups occur in Brazil: A (tropical), B (arid), and C 

(temperate), and consequently most of their subdivisions. The average annual precipitation has 

an irregular distribution throughout the territory, ranging from less than 350 mm in semi-arid 

areas to more than 3,000 mm in tropical areas, with strong seasonal variation throughout the 

year (Alvares et al., 2013). 
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Figure 1 – Köppen climate classification for Brazil. Source: Alvares et al. (2013) 

 

 

 

3. METHODOLOGY 

 

3.1 Daily Rainfall Dataset  

The daily rainfall database is available on the Hidroweb Portal, with individual data 

series from almost 12,000 stations. All the data were downloaded in January 2023 and updated 

throughout the year. HidroWeb Portal is an online tool of the Brazilian National Information 

System on Water Resources (Sistema Nacional de Informações sobre Recursos Hídricos, 

SNIRH) and provides access to a database containing all the information collected by the 

Brazilian National Hydrometeorological Network (Rede Hidrometeorológica Nacional, RHN), 

coordinated by the Brazilian National Water Agency (ANA). It is organized into river levels, 

flows, rainfall, climatology, water quality, and sediments (ANA, 2019; 2020). 

Data were collected using HydroBR, an open-source package in the Python 

programming language developed by Carvalho (2020). This package provides a direct 

connection to the hydrometeorological time series stored in the HidroWeb Portal and allows 

data to be downloaded in the form of unique files for each station, pre-processing, and plotting 
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hydrometeorological data. Raw data were automatically stored in Hierarchical Data Format 

(HDF) files, specifically designed to organize large amounts of data and to make the file reading 

process much faster than traditional file formats (Koranne, 2011). These files were used to list 

the available stations, their geographical coordinates, periods of operability, percentage of 

missing values, and years of operation without gaps. 

After collecting the individual files of precipitation data, the main data table was 

consolidated into a single two-dimensional database, totaling approximately 130 million daily 

records from 1855 to 2020. The structure of the raw data consists of three columns: (i) code, 

station code in text format; (ii) date, date of recorded data in date format; and (iii) value, daily 

precipitation value in millimeters (mm) in decimal format. Subsequently, to organize the data 

in a useful manner, a descriptive data table with additional information for each station, such 

as city, state, latitude, longitude, and responsible agency, was extracted from the database. 

Owing to the extensive size and spatial reach of the dataset, its temporal scope had to 

be refined. The number of active stations reached only 3,000 measurement points in the 1960s. 

The inaugural station of Amapá State was established in 1962. Previous studies utilizing the 

HidroWeb dataset have included data from 1961 to the present day. In alignment with this 

precedent, the current research concentrates on the period from 1961 to 2020.  

 

3.2 Automatic Quality Control Procedure 

QCPs are fundamental to creating reliable and consistent datasets. The proposed method 

applied in this study is simplified from Llabrés-Brustenga et al. (2019) and Estévez et al. 

(2022), adapting the first two major steps:  

a) Basic Quality Control: detection of physically impossible data, such as negative values, 

invalid records, and extreme daily rainfall events; 

b) Absolute Quality Control: Perform a series of procedures based on single rain gauge 

tests to assign a quality index (Q) and a quality label to each station monthly, not yearly, 

to reduce data loss. 

 

3.2.1 Basic Quality Control 

The initial phase involves the identification and elimination of specific erroneous data 

points. This refers to instances such as the occurrence of physically implausible precipitation 

quantities that include negative values and values that exceed extreme events within the study 

region. The upper limit threshold of 450.0 mm.day-1 was adopted for the whole temporal 
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coverage of the chosen dataset (1961 to 2020), the same value chosen by previous works within 

the same study domain over Brazil (Liebmann & Allured, 2005; Xavier et al., 2016; Xavier et 

al., 2017; Xavier et al., 2022).  

 

3.2.2 Absolute Quality Control 

During this phase, each series is subjected to the estimation of a quality index (Q) for 

each month according to Equation (1): 

 

Q =
P+Q1+Q2+Q3

4
      (1) 

 

This index is derived considering various factors, each of which represents common 

problems found in daily precipitation data, including the annual percentage of data coverage, 

pattern of gaps within the dataset, variation in rainfall records on different days of the week, 

and presence of outliers (Llabrés-Brustenga et al., 2019; Estévez et al., 2022). 

The parameter P (availability) represents the percentage of non-null values in an annual 

series, dividing the number of available daily data by the number of days in a year (365 days or 

366 days in leap years). 

Parameter Q1 (gap) measures the distribution of gaps around the period, penalizing 

larger gaps over smaller ones (Equation 2): 

 

Q1 = 100 − 100
(2ngap+Lgap

max)

n
 (2) 

 

where ngap is the number of null daily values, Lgap
max is the length of the largest range of null 

days and n is the number of active days per period. 

The parameter Q2 (weekday) evaluates whether the occurrence of precipitation days in 

each year is the same for each day of the week, as there is no indication that rainfall follows 

weekly patterns (Equation 3): 

 

Q2 = 100 − 100 CV (3) 

 

where CV is the ratio of the standard deviation of the occurrence of rainy days for each label 

day of the week throughout the year (how many rainy Sundays, rainy Mondays, etc.) divided 
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by its mean value (rainy days in throughout a year divided by the seven days of a week). As the 

number of rainy days for each day approaches uniformity, the CV tends toward zero. Its 

fundamental premise rests on the assumption of independence between the frequency of 

precipitation events and the respective days of the week within a given period (Manola et al., 

2019). 

Notably, a reduction in the value of this index is indicative of the detection of a particular 

day of the week experiencing notably fewer instances of rainfall than its counterparts 

throughout the observed timeframe. 

Consequently, the interpretation of the coefficient of variation assumes significance, 

wherein a diminished value connotes a homogenous distribution of rainy days across the days 

of the week, thus implying a lack of systematic errors in data recording or collection practices. 

Conversely, an elevated coefficient of variation signals heightened variability in the distribution 

pattern, warranting further scrutiny to ascertain and rectify any underlying systemic 

discrepancies or biases in the dataset (Sanchez-Lorenzo et al., 2012). 

Parameter Q3 (outlier) represents the proportion of days in which the recorded values 

did not exceed the prpre-definedhreshold for outliers relative to the total number of days. This 

assessment was conducted monthly, and the interquartile range (IQR) and quartiles were 

calculated considering the total series, not only for the given year. 

In previous studies, the threshold chosen was extreme outliers equal to three times the 

IQR above the third quartile of the rainfall distribution (Llabrés-Brustenga et al., 2019; Estévez 

et al., 2022). However, to increase the sensitivity of this parameter, the standard threshold for 

outliers was maintained at one and a half times the IQR above the third quartile of the rainfall 

distribution. 

The Quality Index (Q) of each station versus each month is the average value of the 

following components: P (availability), Q1 (gap), Q2 (weekday), and Q3 (outlier). The final 

parameters Q (quality index) and P (availability) are used to assign qualitative labels to data 

points hierarchically, such as “Excellent Quality”, “Good Quality”, “Acceptable Quality”, 

“Low Quality” and “Very Low Quality”, following the rules of Table 1, where both conditions 

must be true to get the better Qualitative Label as possible. 

The qualitative labels were grouped as High Quality (“Excellent Quality”, “Good 

Quality”, “Acceptable Quality”) and Low Quality (“Low Quality” and “Very Low Quality”) to 

establish the absolute quality of each station versus month data point. 
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Table 1 – Quality Label rules based on P (availability) and Q (quality index)  

Qualitative Labels P (availability) Q (quality index) Absolute Quality 

Excellent Quality ≥ 99 ≥ 90 High Quality 

Good Quality ≥ 95 ≥ 85 High Quality 

Acceptable Quality ≥ 90 ≥ 80 High Quality 

Low Quality - ≥ 50 Low Quality 

Very Low Quality - - Low Quality 

 

3.2.3 Quality Control Procedure Evaluation 

An independent dataset of daily precipitation from the Brazilian National Center for 

Monitoring and Early Warnings of Natural Disasters (CEMADEN) was subjected to Visual 

Inspection (REF-VI) as a reference dataset during the performance evaluation of the automatic 

QCP. The analyzed rain gauges per year (station-year series) were previously submitted for the 

validation of missing days, which removed 9,545 station-year series (41.9% of the station-year 

series) with more than 60 days of missing data from REF-VI because they were automatically 

classified as poor-quality gauges. The quality of the remaining data instances was identified in 

REF-VI by individually observing the station-year series. 

The validation process used a confusion matrix that delineated four distinct outcomes: 

1) true positives, denoting accurate predictions of the HQ gauges; 2) true negatives, denoting 

correct predictions of the LQ gauges. Additionally, errors were classified as: 3) False positives 

(type I error), when the method incorrectly misclassified a gauge as HQ; and 4) False negatives 

(type II error), representing instances when the method incorrectly misclassified a gauge as LQ. 

The other three metrics related to the confusion matrix evaluated were: 1) precision, to 

verify false positives; 2) accuracy, to test gauge classification; and 3) recall, also known as 

sensitivity, to measure the strictness of the method by incorrectly flagging many gauges. By 

applying these metrics, it is possible to evaluate the results and efficiency of the method to flag 

as many LQ gauges as possible without incorrectly flagging HQ gauges. 

 

3.3 Interpolation Method 

Xavier et al. (2016) tested six interpolation methodologies for daily precipitation from 

the same data source: (1) average inside the area of the pixel (AVERAGE), (2) natural 

interpolation (NATURAL), (3) thin-plate spline (THINPLATE), (4) inverse distance weighting 
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(IDW), (5) angular distance weighting (ADW), and (6) ordinary point kriging (OPK). The best 

overall skill scores indicated that ADW and IDW were the best interpolation methods. 

Xavier et al. (2017) used the IDW and ADW methods to develop new gridded daily 

precipitation data and found that the ADW interpolation method performed slightly better than 

the IDW interpolation method. Xavier et al. (2022), based on the same data and methodology 

as Xavier et al. (2016), also proposed to reassess both IDW and ADW methods for the 

interpolation of precipitation data. During cross-validation, it was shown that both methods had 

very similar statistics. 

IDW method was chosen to create a gridded dataset of daily and monthly values that 

covers the expanse of Brazil, with a spatial resolution set at 0.25° by 0.25° (equivalent to about 

27.75 km by 27.75 km on the Equator Line). The main advantages of IDW are its simpler 

equations and lower computational demands. The generated dataset was structured in the 

Network Common Data Form (NetCDF) format, incorporating grid coordinates, dates, and 

interpolated estimations of precipitation for each cell. 

Within the context of the IDW method, the interpolated value at a specific location is 

determined by a weighting factor (see Equation (4), denoted by Wn) that exhibits an inverse 

relationship with the distance separating the point in question from the data originating from 

the nth neighboring station (Chen et al., 2017). 

Wn =
1

dn
p (4) 

 

The variable d represents the geodesic distance between the station n and a designated 

point, where p is equal to 2 (inverse squared distance weighting), which is the same value used 

in previous studies (Dirks et al., 1998; Goovaert, 2000; Lloyd, 2005; Ahrens, 2006; Ly et al., 

2011; Xavier et al., 2016; Xavier et al., 2017; Xavier et al., 2022). The determination of the 

appropriate stations for interpolation at a point involves consideration of the five nearest 

stations. 

The IDW interpolation method is used to create a gridded dataset of daily and monthly 

values that cover the expanse of Brazil, with a spatial resolution set at 0.25° × 0.25° (equivalent 

to approximately 27.75 km × 27.75 km on the Equator Line). The generated dataset was 

structured in the Network Common Data Form (NetCDF) format, incorporating grid 

coordinates, dates, and interpolated estimations for precipitation for each cell.  
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3.4 Cross-validation 

Cross-validation is a widely employed technique to assess the accuracy of interpolation 

methods. The comparison between the observed data (X) and our interpolated estimates (Y) 

was based on the utilization of the following statistical metrics: Pearson correlation coefficient 

(R), bias, root mean square error (RMSE), mean absolute error (MAE), compound relative error 

(CRE), critical success index (CSI), and percent correct (PC) (Hofstra et al., 2008; Wilks, 2011; 

Xavier et al., 2016). 

 

R =
∑ (Xi − X̅n

i=1 )(Yi − Y̅)

∑ √(Xi − X̅)2√(Yi − Y̅)2n
i=1

 (5) 

Bias =  Y̅ − X̅ (6) 

RMSE = √
∑ (Xi − Yi)2n

i=1

n
 (7) 

MAE =
1

n
∑|Xi − Yi|

n

i=1

 (8) 

CRE =
∑ (Xi − Yi)

2n

i=1

∑ (Xi − X̅)2n

i=1

 (9) 

CSI =
a

a + b + c
 (10) 

PC =
a + d

a + b + c + d
 (11) 

 

In Equations 5 to 9, X̅ and Y̅ are the mean values of X and Y, respectively, and n is the 

number of observed daily values. For Equations 10 and 11, CSI and PC are verification 

measures for categorical forecast performance where a is the number of correct forecasts (hits), 

b is the number of forecasts not observed (false alarms), c is the number of events not forecasted 

but occurring (missed forecast), and d is the number of events that were not forecasted and did 

not occur (correct rejections) (Hofstra et al., 2008). For the definition of “wet days” or “dry 

days”, a “wet day” has a daily precipitation equal to or higher than 0.5 mm. 
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3.5 Climate Normal Validation 

The Climatological Normals were derived by calculating the averages of meteorological 

variables. Climatologists regularly employ these normals to contextualize recent weather 

conditions within a historical framework. Climate Normals are commonly featured in local 

weather news segments for comparison with daily weather conditions. 

In addition to weather and climate comparisons, normals find applications in numerous 

domains, such as regulation by energy companies, energy load forecasting, crop selection and 

planting times, construction planning, and architectural design. 

In 1992, the Brazilian National Institute of Meteorology (INMET), known as the 

National Meteorology Department of the Ministry of Agriculture and Agrarian Reform, 

initiated the publication of Climatological Normals, with the first edition covering the period 

1961-1990. 

Climatological normals from two periods (1961–1990 and 1991–2020) were extracted 

from the INMET portal (https://portal.inmet.gov.br/normais) and statistically compared with 

estimated climate normals using Gridded Data. 

 

4. RESULTS AND DISCUSSION 

4.1 Observed Data 

According to data collected from HidroWeb, the first data record of the pluviometric 

station registered in Brazil was from the “MINERAÇÃO MORRO VELHO" (station code 

01943000), located in the city of Nova Lima (Minas Gerais), which began its precipitation 

series on January 31, 1855, and continued to record data until July 31, 2018. 

Unlike Minas Gerais, as shown in Figure 2, the other Brazilian Federal Units (Unidades 

Federativas – UFs, also known as Brazilian states) took longer to start recording data from their 

monitoring networks. 

The Southeast region maintained the lead with São Paulo and Paraná states in 1888 and 

1889, respectively, followed by Rio de Janeiro state in 1900, and Paraíba state, the first UF in 

the Northeast region to start recording data, also in 1900. In 1907, Bahia became the sixth 

Brazilian state, and the second in the northeast to begin recording precipitation data. 
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Figure 2 – Year of the first registered data record by Brazilian states in the HidroWeb dataset  

 

In the 1910s and the 1920s, around a dozen states from different regions of the country 

started recording precipitation data, except for the Northern Region (Amapá state, 1962), Goiás 

state, and the Federal District, which until then did not exist as a federal unit. Excluding the 

Northern Region, the UFs that took the longest time to start recording data, as mentioned above, 

were Goiás state in 1944 and the Federal District in 1961, immediately after the foundation of 

the new Brazilian capital city, Brasília, in 1960. 

According to the historical background presented thus far, temporal coverage focuses 

on the period from 1961 to 2020. This analysis incorporates data from the remaining 11,128 

from the 11,726 original stations, resulting in a comprehensive dataset of 103,027,099 from the 

128,943,487 original records of daily precipitation. 

As shown in Figure 3, considering the temporal coverage of the study, only 46.4% (5,441) 

of the stations had more than 30 years of recorded data, which is the minimum period required 

to calculate the climatic normal for a given region (WMO, 2017).  
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Figure 3 – Distribution of stations by the number of years with data records (1961 – 2020) 

 

The spatial distribution and date series length of each gauge are displayed on the Brazilian 

state map in Figure 4. A higher density of longer precipitation series was found over the Ceará 

state, São Paulo state, Paraná state, and Federal District, all cited states were already known for 

having a good gauge density in general. 
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Figure 4 – Spatial Distribution of gauges by years of activity between 1961 to 2020 

 

As shown in Figure 5, the distribution of stations shows significant temporal variability. 

In 1976, the number of active stations exceeded 6,000, peaking at 6,127 in 1985. From 1986 

onward, the number of stations consistently declined, dropping to less than 5,000 stations at the 

end of the 1990s, less than 4,000 stations in 2016, and around 3,000 stations in 2020. As data 

from 2021 and 2022 have shown low availability, we opted for the removal of those couple 

years from the final analysis. 

 

 

Figure 5 – Number of gauges with recorded data per year of operation from 1961 to 2020 

Figure 5 also shows an increase in daily precipitation records from 1961 to 1975, followed 

by a stable period until 1985, a steady decrease until 1994, a relatively stable period until 2012 

with significant fluctuation, and sharp decreases observed after 2014 and 2018. In the last few 

years of the time series (2014-2020), there was a notable decrease in the daily precipitation 

records, reaching levels comparable to those observed in the 1990s and the 2000s. 

There is noticeable spatial variability in the distribution of stations across the national 

territory, which directly influences station density among Brazilian states. In absolute numbers, 

Brazilian states like São Paulo, Bahia, Paraná, Ceará and Minas Gerais are among the ones that 

have more than 1,000 stations with recorded data from 1961 to 2020 (Figure 6).  
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Figure 6 – Number of gauges with recorded data by Brazilian Federative Units 

 

Regarding to the count of active gauges of each responsible agency, the Department of 

Water and Electric Power (Departamento de Águas e Energia Elétrica – DAEE, São Paulo 

state), the Water and Land Institute (Instituto Água e Terra – ÁGUASPARANÁ, Paraná state), 

the Ceará Meteorology and Water Resources Foundation (Fundação Cearense de Meteorologia 

e Recursos Hídricos – FUNCEME, Ceará state), and the Executive Agency for Water 

Management (Agência Executiva de Gestão das Águas – AESA, Paraíba State) are entities that 

operate at the state level, increasing the station density in their states (Figure 7).  

 

 

Figure 7 – Number of stations with data records by responsible agency (above 200 gauges) 
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The Federal District (1 station per 69 km²) and Rio de Janeiro State (1 station per 104 

km²) ranked first and second in station density, respectively. São Paulo State (1 station per 124 

km²), Ceará State (1 station per 131 km²), Paraíba State (1 station per 167 km²), and Paraná 

State (1 station per 172 km²) ranked third, fourth, fifth, and sixth in station density, respectively. 

The second group of states has monitoring networks of independent state agencies, which 

consequently increases the total number of gauges with available data (Figure 8). 

The variation in the number of rain gauges and gauge density between the different 

Brazilian states can be attributed to a combination of geographical, climatic, and socioeconomic 

factors. Brazil is characterized by diverse ecosystems ranging from dense Amazon rainforests 

to arid regions in the northeast. States with more extensive and varied geographical features 

have a greater need for a higher density of rain gauges to capture the heterogeneity of 

precipitation patterns across different landscapes. 

Additionally, states with more developed economies and urbanization have more 

resources to invest in meteorological infrastructure. The current network may also be influenced 

by historical weather patterns, with regions prone to extreme weather events or significant 

agricultural activities requiring more extensive gauge networks. 

 

 

Figure 8 – Density of gauges by Brazilian state (area in km² per station) 
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4.2 Quality Control Evaluation 

An independent dataset from CEMADEN, which included 6,130,973 daily records for 

a period of seven years from 2014 to 2020, was used to evaluate the proposed automatic QCP. 

The CEMADEN dataset underwent automatic QCP, where the data were divided into 22,773 

station-year series to be analyzed year-by-year. 

As shown in Figure 9, in the first row, the presented matrix indicates that from the 7,345  

station-year series that belongs to the HQ class of Visual Inspection, approximately 98.4% 

(7,226 station-year series) were correctly classified by the QCP (True Positive), while only 

1.6% (119 station-year series) were incorrectly classified as LQ and would have been removed 

from the final dataset (False Negative). In the second row, from the 15,428 station-year series 

that belong to the LQ class of Visual Inspection, approximately 68.3% (10,543 station-year 

series) were correctly classified as LQ (True Negative), and 31.7% (4,885 station-year series) 

were misclassified as HQ (False Positive). The results align with the main objective of the 

proposed QCP, which aims to minimize the exclusion of HQ gauge data from the final dataset. 

 

 

Figure 9 – Confusion Matrix for the Automatic QCP applied to the daily CEMADEN’s data 

 

The discernment between True Negatives and False Positives emerged as a noteworthy 

indicator, revealing that nearly 70% of the LQ station-year series were effectively identified 

and excluded through automated processes. Only a minimal fraction of the HQ station-year 

series (approximately 1.6%) was discarded from the remaining records. 
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Meira et al. (2022) obtained better results (78,5% vs. 68,3% from the QCP) when 

correctly classifying the LQ station-year series and slightly worse results (5.8%) when 

incorrectly classifying the HQ station-year series using the same dataset, but on a subhourly 

scale. The efficacy of the QCP is in selectively targeting and maintaining superior quality rain 

gauges while simultaneously discerning and mitigating the inferior quality counterparts. 

A comparison between the scores from the confusion matrix and those from Meira et 

al. (2022) is presented in Table 2. The accuracy of 0.78 shows the overall correctness of the 

classifier, considering both true positive and true negative predictions in relation to the total 

instances. Although accuracy provides a general measure of performance, it may not be 

sufficient in cases of imbalanced datasets where one class dominates. In such instances, 

precision and recall are crucial for more nuanced evaluation. A precision of 0.60 indicates that 

when the model predicts a positive class, it is approximately 60% of the time. This metric is 

particularly useful where the cost of false positives is high, thereby emphasizing the importance 

of precise predictions. The recall, or true positive rate, is approximately 0.98, which means that 

the model successfully identifies approximately 98% of the station-year series belonging to HQ. 

Recall is particularly relevant when the cost of false negatives is high, as it gauges the model's 

ability to capture all instances of the positive class. In summary, accuracy suggests an overall 

effectiveness, whereas precision and recall offer a more nuanced understanding. 

 

  Table 2 – Comparison of classification scores with Meira et al. (2022) 

Scores Proposed A-QCP (daily) Meira et al. (2022) (subdaily) 

Accuracy 0.78 0.84 

Precision 0.60 0.69 

Recall 0.98 0.94 

 

4.3 Quality Index (Q) 

After excluding all data values lower than 0 mm and higher than 450 mm, approximately 

0.0041% of the total dataset was discarded, which corresponds to 4,222 daily data records. The 

remaining dataset contained 103,022,877 daily records. In 2023, recent extreme events of daily 

rainfall in the littoral region of São Paulo surpassed 600 mm a day, a value two times higher 

than the previous record of daily precipitation for this region, which suggests that eventual 

updates need to reassess the value of the upper limit threshold of this step (Carmona et al., 

2023). 
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Absolute Quality Control step was applied on a monthly scale (approximately 3.4 

million monthly series), with an average of 306.5 months verified for each of the 11,128 

stations, equivalent to an average of 25.5 analyzed years. 

As shown in Figure 10, the completeness index (P) and the gap index (Q1) are highly 

correlated. The Pearson correlation coefficient between these two components was equal to 

0.79, and the p-value was 0.00. In general, if the p-value is less than the chosen significance 

level (commonly 0.05), the null hypothesis is rejected, and it is concluded that there is a 

statistically significant correlation. 

 

 

Figure 10 – Monthly average quality index (Q) and its four components. 
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The Weekday Index (Q2) has a very similar fluctuation behavior to the Outlier Index 

(Q3), although they span different minimum and maximum values. The Pearson correlation 

coefficient between these two components was equal to 0.76 and the p-value equal to. Daily 

skipping of measurements can result in unexpected outliers caused by accumulation. Table 3 

shows the descriptive statistics of the quality index and its four components grouped by month.  

 

Table 3 – Descriptive Statistics of Q grouped by month (720 months, 60 years) 

Quality Index 

Component 

Min Max Mean Standard 

Deviation 

Completeness Index (P) 95.70 99.84 99.23 0.49 

Gap Index (Q1) 96.59 99.82 98.93 0.59 

Weekday Index (Q2) 60.27 91.50 72.89 7.14 

Outlier Index (Q3) 95.94 99.81 98.55 0.65 

Quality Index (Q) 0.98 0.94 92.40 2.00 

 

 

4.4 Cross-validation 

Although only the statistical results of Xavier et al. (2022) are in the time coverage used 

in the quality-controlled dataset, the cross-validation statistics of the other previous works are 

similar (Xavier et al., 2016; Xavier et al., 2017). We performed cross-validation statistics for 

each day of the period (1961 – 2020) to evaluate the temporal performance of precipitation 

estimation. Table 4 presents a comparison between the cross-validation statistics results of the 

quality-controlled dataset and those of previous studies. 

 

Table 4 – Cross-validation statistics and comparison with previous works (IDW method) 

IDW 

Statistics 

Xavier et al. 

(2016) 

[34 years] 

Xavier et al. 

(2017) 

[36 years] 

Xavier et al. 

(2022) 

[60 years] 

Quality-Controlled 

Dataset 

[60 years] 

R 0.609 0.633 0.642 0.860 

Bias 0.004 0.003 0.006 0.000 

RMSE 9.141 8.822 8.470 5.526 

CRE 0.666 0.632 0.621 0.265 

MAE 3.709 3.366 3.192 2.060 

PC 0.783 0.798 0.802 0.824 

CSI 0.534 0.530 0.529 0.585  
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Figure 11a–f shows the cross-validation statistical results and precipitation for the first 

day of each decade as examples, presenting 2D histograms for the observed precipitation versus 

their corresponding precipitation estimations for all available rain gauges on each selected day, 

providing a visual representation of the data distribution and frequency in two dimensions.  

 

   

   

    

 

Figure 11 – 2D histogram plots of observed precipitation and their estimations, where the 

diagonal line represents the ideal correlation between observed precipitation and estimated 

precipitation, and the assigned color of each cell is based on the frequency of the precipitation 

value on the first day of each decade. (a) January 1, 1961; (b) January 1, 1971; (c) January 1, 

1981; (d) January 1, 1991; (e) January 1, 2001; and (f) January 1, 2011. 
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Figure 12a–c presents the statistical results of R (correlation coefficient), Bias, and 

RMSE (root mean square error) for each day of the given period of 21,915 days from 1961 to 

2020 for each year and by day of the year in chronological order (DOY). The daily average 

value of R is 0.846, ranging from 0.378 to 0.987. The bias ranged from -0.263 to 0.312, and its 

daily average was approximately 0.003. The average value of RMSE was 4.973 mm.day-1 and 

ranges from 0.473 to 19.230. 

 

(a)       (b) 

 

(c) 

 

Figure 12 – Cross-validation statistics of daily averages for each day (main plot), each year (left 

plot), and by DOY (bottom plot) for (a) R, (b) bias, and (c) RMSE. 
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 Both R and RMSE statistics have improved over the years, while Bias has a fluctuating 

trend, alternating between positive and negative tendencies over the years. All three statistical 

results exhibit sensitivity to a seasonal pattern in the same period of the general rainy season 

from late November to early May; RMSE values reach their highest points (peak), R values 

show their lowest points (valley), and Bias values tend to exhibit extremes. 

 

4.5 Climate Normals vs. Gridded Data 

 

A comprehensive analysis comparing 60 years (1961–2020) of daily rainfall gridded 

data with two climate normals provided by the Instituto Nacional de Meteorologia (INMET). 

The first climate normal spans the period from 1961 to 1990, whereas the second encompasses 

the years from 1991 to 2020. The analysis involved assessing the Pearson Coefficient 

Correlation (R), Bias, and Root Mean Square Error (RMSE) between the two climate normals 

and the gridded data for each period separately. Gridded data were aggregated per month and 

station to generate statistical results. As shown in Table 5, both periods show similar statistics. 

 

Table 5 – Comparison of Climate Normals and Gridded Data 

 Gridded Data 

Statistics 

Climate Normal 

(1961 – 1990) 

Climate Normal 

(1991 – 2020) 

R 0.962 0.979 

Bias -2.138 mm -4.980 mm 

RMSE 24.722 mm 20.463 mm 

 

The correlation coefficient (R) between the gridded data and the reference values 

(climate normal) for both periods was high, but there was a systematic underestimation 

(negative bias). A lower RMSE value suggests that the measured rainfall data are closer to the 

reference values from the climate normals for the later period, indicating higher accuracy or 

precision, and there is less error or uncertainty associated with the measured rainfall data in the 

later period (1991-2020) compared to the earlier period (1961-1990). 

Monthly aggregated values from the gridded data presented a similar behavior to the 

climate normals over the studied period. As shown in Figure 13a–b, both monthly 

representations of the estimated data follow the same behavior as the reference data, with a 

correlation coefficient (R) virtually equal to 1. In other words, the two variables were linearly 

related, indicating a direct and strong relationship between them. 
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(a) 1961 – 1990  

 

(b) 1991 – 2020  

 

Figure 13 – Climate normals aggregated by month and gridded data estimations for the period 

of (a) 1961 to 1990 and (b) 1991 to 2020. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

This study developed a new gridded daily precipitation dataset for Brazil from a quality-

controlled dataset based on a 60-year time series from more than 11,000 stations across the 

Brazilian land, and provided it to researchers from several scientific disciplines, such as 

hydrology, water resources, environmental science, agricultural science, disaster management, 

climate change research, urban planning, ecology and conservation, and renewable energy. 

The procedures and thresholds used in the automatic QCP and QCP evaluations were 

adopted equally for the entire Brazilian territory. The automatic QCP originally sought to 

maintain as many HQ stations as in the final dataset. The results of the QCP evaluation were 

satisfactory because the confusion matrix showed that only 119 (1.6%) of the 7,345 ground-

truth HQ gauges would be removed from the testing dataset; however, to achieve this result, 

the automatic QCP could not be overly stringent. As a result, ground-truth LQ gauges (31.7%) 

would have been mistakenly kept in the testing dataset after the QCP evaluation. After applying 

the automatic QCP over the original dataset (approximately 103 million data records), the 

analysis of the Quality Index (Q) and its components revealed insightful patterns. The Weekday 

Index (Q2) demonstrated the highest sensitivity, which is crucial for confirming the accurate 

registration of data records on specific days of the week, especially on weekends.  

The IDW method was chosen to generate a new gridded precipitation dataset covering 

mainland Brazil with a daily temporal resolution and a 0.25° × 0.25° spatial resolution for the 

period of 1961 to 2020. The cross-validation method used 101,961,839 daily records from 

21,915 days of precipitation data. The cross-validation statistics, when compared with those of 

previous studies, showed favorable results, with improvements in all statistical results. The 

statistical outcomes demonstrated improvements in R (0.860) and RMSE (5.526 mm) over the 

years, while Bias (0.000 mm) exhibited a fluctuating trend, alternating between positive and 

negative tendencies. Moreover, the statistical results exhibited sensitivity to seasonal patterns, 

aligning with the general rainy season from late November to early May.  

This study not only contributes to a new quality-controlled precipitation dataset, but also 

provides a refined dataset with reliability and applicability of precipitation data for broader 

scientific research and applications. The gridded data also performed well, perfectly 

representing the behavior of the climate normals from INMET in both analyzed periods. 

Subsequent refinements and recommendations are suggested for future investigations: 

(i) divide the spatial coverage of the study area into smaller regions and implement the 

procedure in homogenous regions characterized by similar climate and rainfall regimes, thereby 
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enhancing the adjustment of thresholds for each rainfall regime; (ii) combine satellite data and 

digital elevation models into the interpolation method to increase data density and interpolation 

quality; and (iii) reassess the value of the upper limit threshold according to recent extreme 

daily rainfall events. 
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Appendix B 

Comparison of climate norms and gridded data: Statistical results aggregated by month. 

(1961 – 1990) 
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Appendix C 

Comparison of Climate Normals and Gridded Data: geospatial results 

(1961 – 1990) 
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