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"I think it is not an exaggeration to say that the (...) clarification of the quantum
description of single objects have been at the root of a second quantum revolution, and that
John Bell was its prophet. And it may well be that this once purely intellectual pursuit will

also lead to a new technological revolution.”
(Alain Aspect)






Abstract

The promotion of efficient population inversion in single quantum systems is a useful
tool in quantum information and quantum computation sciences, since it allows for the
precise preparation of states and the construction of logical gates such as the Hadamard.
In this work we present a protocol to accelerate the population inversion in three-level
atomic systems, by using the time rescaling (TR) shortcut to adiabaticity to speed up
the STIRAP (Stimulated Raman Adiabatic Passage) protocol. We also show that the TR
method follows the same path as the reference protocol, meaning that, if the reference
protocol is an adiabatic dynamics, the shortcut to adiabaticity obtained via the TR
method is transitionless, similar to the one obtained from the Counterdiabatic method.
This introduces simplifications in our evaluation. Finally, we discuss the fidelity and

thermodynamic cost of the protocol.

Keywords: STIRAP; shortcuts to adiabaticity; time rescaling method; population inver-

sion; quantum dynamics; transitionless driving;






Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

List of Figures

Transporting a pendulum inside a box very slowly, allows to maintain
it oscillating in the same amplitude. ‘The slowness’ is a tool for control.
This is the idea behind the adiabatic theorem. Image extracted from
(GRIFFITHS, 2019). . . . . . . . . e 26
Populations of the levels |1) (blue), |2) (black) and |3) (red) of an
atomic system during a process of population transfer through the
(a) reference protocol in non-adiabatic time, and (b) counterdiabatic
protocol. Extracted from (LI; CHEN, 2016). . . . . ... ... ... .. 30
Semi-classical model of interaction between a molecular system and
an external (pump) radiation field of frequency v,. (a) Stokes Raman
scattering: energy is absorbed from the pump and, upon emission, part
is kept in form of vibrational energy, so that v, < v,. (b) Rayleigh
(elastic) scattering: no energy is retained by the molecule, v = v,. (c)
Anti-Stokes Raman scattering: energy is absorbed from the pump and,
upon emission, part of the original vibrational energy is lost to the
exiting radiation (Vs > 1p). . . . . ..o 34
Conceptual schematics of a A three-level atomic system, under the
influence of external Stokes and pump laser pulses of respective Rabi
frequencies Q4(t) and €,(¢). The solid lines represent the undisturbed
atomic energy levels, while dashed lines represent the virtual levels. The
detuning of the Stokes and the pump fields with respect to the real
atomic levels are given by Agand A. . . . .. ... L. 36
Time behavior of: (a) the pump (blue) and stokes (red) pulses given
by equations (4.34) and (4.35), and (b) the populations of the atomic
levels |1) (blue), |2) (purple) and |3) (red), with the initial state given
by |no(0)) ~ |1). The parameters used are specified in the text. . . . . . 48
Time behavior of a general reference process, a = 1, and the designed
TR processes for a = 2 and a = 10. The route followed by the quantum
system from the initial state |¢;) to the final state |¢);) through the
Hilbert space is the same in all cases. However, the time necessary to
reach any state [¢,) of the route can be made shorter with increasing a. 53
Behavior of the new pump (blue) and stokes (red) pulses, with the
contraction parameter assuming the values of (a) a =2 and (b) a = 10.
The same parameters of fig. 5 were used. Although the plots closely
resemble Gaussian shapes, they are modulated as given in equations
(5.14a) and (5.14b). . . . . . ... 58



Figure 8 —

Figure 9 —

Figure 10 —

Figure 11 —

Time evolution of the populations of levels |1) (blue), |2) (dashed purple)
and [3) (red) for the TR passage protocol with the initial state given
by |1), and the contraction parameter assuming the values (a) a = 2
and (b) a = 10. In both cases we observe that the population inversion
occurs at least a times faster than in the reference (a = 1) protocol,
shown in fig. 5. The same parameters of fig. 5 were considered. . . . . .
Probability transfer to state |3) as a function of the delay between
pulses, for pulse areas of (a) 5, (b) 107, (¢) 157 and (d) 207. Gaussian
pulses in the form described in eqgs. (4.34) and (4.35) were used, with
A = 0. Observe that in all cases, there is a wide plateau within which
the protocol is performed with high fidelity, regardless of changes in the
delay. Image taken from (SHORE, 2017). . . . . . ... ... ... ...
Behavior of the fidelity of the TR STIRSAP (blue) and counterdiabatic
STIRSAP (red) against errors in the separation time between pulses.
We used the same parameters of fig. 5, with the exception of the original
to of the counterdiabatic protocol, taken as ¢ty = t;/8 for optimization. .
Behavior of the fidelity of the TR STIRSAP (blue), counterdiabatic
STIRSAP (red) and direct two-level population inversion via 7 pulse
(black) for (a) variations in the amplitude of the pulses and (b) variations

in the one-photon detuning. The same parameters of fig. 10 were used.

62

63



2.1
2.2

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6

5.1
51.1
51.2
5.2
5.3
54
54.1
542

Contents

INTRODUCTION . . . . . . e e e e e e e e e e 13
THEORETICAL FOUNDATIONS . ... ... ... ... ...... 17
Quantum Dynamics . . . . . . . ... .. 17
Semi-classical Model for Light-Matter Interaction . . . . . . . . . .. 19
SHORTCUTS TO ADIABATICITY . ... ... .. ... 23
Adiabatic Theorem . . . . . . . . . . ... ... ... ... 23
Shortcuts to Adiabaticity . . . . . . . . . ... ... L. 26
Counterdiabatic Driving . . . . . . . . .. ... ... ... ... .. 27
Time-rescalingasa STA. . . . . . . . . ... ... ... ... ..., 30
STIRAP PROTOCOL . . . . . . . . e e e e e e e e e e 33
Raman Scattering . . . . . . .. ... 33
General idea of the STIRAP Protocol . . . . . . . .. ... ... ... 35
Rotating Wave Approximation Hamiltonian . . . . . . . . . . .. .. 35
Eingenvalues and Eigenstates . . . . . . . . ... ... ... ... ... 39
Special Conditions for the STIRAP . . . . . . .. ... ... ..... 43
Performing the STIRAP . . . . . . . . .. ... .. ... . ...... 46
RESULTS . . . . . . . e e e e e e e e e e e e e e 51
Transitionless Proof . . . . . . . .. .. ... ... ... ... 51
Analysis of the Evolution created by the TR Hamiltonian . . . . . . . . .. 51
Transitionless Proof via the Adiabatic Theorem . . . . . . ... ... ... 53
Performing the STIRSAP . . . . . . . .. . ... ... ... ...... 55
Stability Against Errors . . . . . . .. ... 59
Thermodynamic Cost . . . . . . . . ... ... ... ... ....... 63
Two-point Measurement Method . . . . . . . . . ... ... ... ..... 63
Evaluation of Cost for Reference and TR Protocols . . . . . . . ... ... 67
CONCLUSION . . . . . e e e e e e e s e e e 69

BIBLIOGRAPHY . . . . . . e e e 71






13

1 Introduction

One of the great revolutions in quantum mechanics was the development of tech-
niques to manipulate individual quantum systems in a controlled way (CHEN; WANG;
ZHOU, 2021; RAIMOND; BRUNE; HAROCHE, 2001). This, in turn, resulted in the
emergence of several technologies, the most important of which, perhaps, is quantum
computing. The operation of a quantum computer requires several controlled processes,
such as the preparation of qubits (VOLYA; MISHRA, 2024), the construction of gates
(SANTOS; D.; SARANDY, 2016) and the transport of information through qubit chains
(YONEDA et al., 2021).

Among these techniques, adiabatic protocols are of particular interest. These
protocols obey the adiabatic theorem, which guarantees (as it will be shown in section 3.1),
that if the associated Hamiltonian varies sufficiently slow, the quantum system evolves in
time while preserving certain properties. Specially, if the system is initially prepared in
one of the eingenstates of this Hamiltonian, it remains in this same eingenstate throughout
the process. This can be useful, for example, in moving ion traps, where keeping the
system in its ground state at all times results in optimal transport, since excitation may
lead atoms to escape the trap (COUVERT et al., 2008; FuRST et al., 2014). Moreover,
quantum computation can be performed entirely through adiabatic evolutions, the so-called
“Adiabatic quantum computing (AQC)”, which was shown to be polynomially equivalent

to the traditional circuit model of quantum computation (FARHI et al., 2000).

In spite of their importance, adiabatic protocols suffer from an inconvenient setback:
they need to be executed in a long period of time, the adiabatic theorem is perfectly
satisfied as the time of the protocol goes to infinity. This, in turn, allows for a prolonged
interaction between the system and its environment, the result of which is decoherence, or
the loss of its useful quantum properties (SANTOS et al., 2023) before the desired process
is completed. As a rough example, in 2022 IBM announced a new 127-qubits quantum
processor named Eagle, whose coherence time! was about 400us (DIAL, 2022). If we
were to execute individual operations such as population inversions (NOT gates) in this
computer through adiabatic protocols, and each of them took only a few microseconds to
run (WANG et al., 2013), this computer would be able to perform less than one hundred

operations before loosing its optimal coherence. This is a derisory amount when compared

1 Coherence time is defined as the average time during which the system preserves its coherence (HECHT,

2017).
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to the number of operations required to execute useful algorithms 2.

To solve this impasse, several paths could be taken: for once, one could search for
methods to better isolate the system, so that the coherence time would increase. Another
way would be to seek for protocols that preserve the useful properties of the adiabatic
dynamics, but without the same limitation of long time duration. This is the inspiration
behind the creation of a series of techniques called “shortcuts to adiabaticity”, or STAs.
Their general implementation involves a modification in the adiabatic Hamiltonian (by
adding or modulating the original fields), so that the system is forced to remain at, or is
brought back to the same final state as it would be by the associated adiabatic protocol

(also called ‘reference’ protocol), but at necessarily faster times.

This work will make use of a particular STA, the so-called time rescaling (TR)
method (BERNARDO, 2020). The main idea, as better explained in section 3.4, is to rescale
the time parameter, turning it into a function ¢ = f(7). This results in a modification of
the reference Hamiltonian which allows to speed up the reference protocol, in principle,
as much as one wishes, by changing a time contraction parameter, a. From the many
advantages of the time rescaling, such as not requiring a previous knowledge of the
instantaneous eingenstates of the reference Hamiltonian, or being applicable to any type of
reference protocol, not only adiabatic, it seemed until now to suffer from a disadvantage.
Although guaranteeing that a system starting at a given eigenstate would be brought back
to that same eingenstate, its route in Hilbert space during the evolution was unknown.
The knowledge of the route is of paramount importance for properly understanding the
dynamics of system; for example, it may allow for an analytic evaluation of the probabilities
of finding the system in different eigenstates overtime. In contrast, a STA such as the
counterdiabatic method (CD) has a known route - it guarantees the permanence of the
system in that original eingenstate throughout the process. Protocols like the CD have
transitionless routes. In this work we shall demonstrate which route is followed by

systems driven by TR base protocols, and show that it belongs to this transionless class of
STAs.

The TR method will be used here as a STA to accelerate the Stimulated Raman
Adiabatic Passage (STIRAP) protocol, an adiabatic technique used to promote population
inversion between two-levels of a three-level system (SHORE, 2017). This technique was
originally conceived to perform controlled population transfer between the vibrational
energy levels of molecules (KUKLINSKI et al., 1989), but was soon extended to a wide
variety of three-level systems (VITANOV et al., 2001; VITANOV et al., 2017). Here, we

shall be concerned with the case of a three-level atomic system in a A linkage pattern, as

2 To use Shor’s algorithm to factor a 1024-bit number, for example, we would need to execute about

~ 10! operations (YAMAGUCHI et al., 2023).
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explained in section 4.2. The advantages of exploring this problem are both theoretical

and practical.

From the theoretical standpoint, the TR method was already applied to the study
of the two-level population inversion with considerable success (ANDRADE; FRANGA;
BERNARDO, 2022), and hence it seems a natural progression to explore the capacity of
this approach in more complicated systems. For example, while in the two-level case, only
one type of laser pulse is involved, in the execution of the STIRAP we have two lasers
pulses, which must obey certain joint conditions such as proper ordering and separation
time. Hence, by studying the acceleration of this protocol through the TR STA, we
develop a bigger understanding of its capabilities and prepare to tackle even more complex

problems.

From the practical standpoint, achieving population inversion in a two-level system
model is not particularly used, due to the need to fight against spontaneous emission from
the excited state. Hence, although interesting as a conceptual model, it is hardly used
experimentally; the preference being for three or four-level systems (AGNESI; REALI
2024). Also, certain direct transitions between two-levels are forbidden by selection rules
(GRIFFITHS, 2019), an impediment that can be circumvented through the choice of a
three-level system. Hence, by proposing a method to accelerate the STIRAP through the
TR approach, we offer to the experimentalist a possible new and simple form of achieving
feasible population inversions in a shorter time interval. This could potentially lead to
the creation of more efficient single-qubit gates in ion or neutral atom-based quantum
computers (BENENTT et al., 2019).

This work is divided in six chapters. The first, this introduction, offers a general
contextualization of the problem being treated, and its importance. The second discusses
some useful theoretical foundations, mostly associated with the semi-classical model
of light-matter interaction. The third chapter concerns the adiabatic theorem, whose
proof is presented in detail, as well as the concept of STA, two of which will be better
explained: the counterdiabatic method and the time rescaling method. The fourth chapter
presents a detailed description of the STIRAP protocol. In the fifth chapter, the results
of this dissertation are presented. First, we prove by two different ways, that the time
rescaling method is transitionless. This important result is applied next, by performing
an acceleration of the STIRAP protocol and showing how the transitionless argument
simplifies the assessment of the population inversion throughout the process. We discuss
the differences of the accelerated protocol in terms of the reference one. The fidelity and
thermodynamic cost to perform it, are also evaluated. We finish with chapter six, the
conclusion, which makes a simple abridgment of what was discussed, and points out to

future inquires.
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2 Theoretical Foundations

This chapter is dedicated to present certain fundamental theoretical tools that will
be useful in subsequent chapters, but which would not fit well as subsections or digressions
of the material being presented. They concern, mainly, with the semi-classical treatment

of the interaction between matter and radiation under Schrodinger’s formalism.

2.1 Quantum Dynamics

We consider an initial situation of a system under a time-independent Hamiltonian

f[o, whose eigenvalues, F,, and eigenstates, |n), are known and obey the relation,

Hy|n) = E, |n). (2.1)

Now, let us suppose that a time-dependent Hamiltonian, V(t), which acts as a
perturbation in the system, is turned on. The new Hamiltonian generating the time

evolution is now,
H(t)=H,+ V() (2.2)
and if the general state is originally defined as,

) =D caln) e, (2.3)

with &,’s being phases to be determined later, the evolution state can still be written
in terms of {|n)}, since it forms a complete set. The amplitudes, however, now become
functions of time (ZWIEBACH, 2018; SHANKAR, 1994),

() =D ealt) In) e, (2.4)

The effect of the perturbation will be, then, to allow ‘transitions’ between the
eigenstates (COURTEILLE, 2023; GRIFFITHS, 2019). The application of equation (2.4)
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in the Schrodinger equation yields,

gy | a1} ) = [+ VO] ety

h [Z Cn(t) In) “#nlt) _ Z cn(t el ] Z cn(t) By In) e —in(t)

’ (2.5)
-|—ch t) V t)|n) e_zg"(t).
Now, applying (m| on both sides, we get
[P (£) 4 B (1) (1) ]8O = ¢ () Epe™m® 4 Z cn(t) (m| V(1) |n) e~ %),
ihésn (1) + R (£)6(1) = en(t) B+ 3 e () (ml V(t) |n) ' O=En 0l
and finally, we obtain the following coupled equations,
iR (t) = [Em — B (t) 4 Vim (2 )+ D en(t) Vinn (t)elomO=En0L, (2.6)

n#m

Since our interest will be in three-level systems, it is useful to write down equation

(2.6) for this case. In matrix form, it is written as

¢ (t) o Ey — Fbél (t) + Vh(lf) Vlge_i(f?—fl) {/13e—i(§3—£1) ¢

e(t) | = - Vypeil€2—€1) By — hés(t) + Vas(t) Vyze—il6s—62) o

es(?) Vye!®=€) Vipe &) By — nés(t) + Vis(1)) \es
(2.7)

Equation (2.7) describes the time evolution of the amplitudes of the the general
state, whose solution depends on the specific Hamiltonian involved. The square modulus
of these amplitudes yield the time-dependent probabilities of finding the system in each of
the eingenstates of the undisturbed Hamiltonian or, for an ensemble of equally prepared

systems, the populations of each of the three levels as a function of time,

Pi(t) = |ei(t), (2.8a)
Py(t) = |ea(t) P, (2.8b)
Py(t) = |es(t)]*. (2.8¢)
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2.2 Semi-classical Model for Light-Matter Interaction

To solve the dynamical equations of the previous section, the interaction Hamilto-
nian must be determined. Since our focus will be in atomic systems, we start considering
that, without perturbations, a hydrogen-like atom would have a Hamiltonian which depends

only on the position and momentum of the electron with respect to the nucleus,

Hy(r) = Qf;n +U(r), (2.9)

with U(r) being the Coloumb electric potential. The spectrum of energy and respective
eigenstates for such system are well known! (SHANKAR, 1994). Now, if an external
perturbation V(t), in the form of electromagnetic radiation, is “turned on”, we have a
change in the Hamiltonian, which becomes (JACKSON, 1998)

A(r,t) = an[f) b eA(r )2 — ed(r, 1) + U(r), (2.10)

with e being the electric charge, and A(r,t) and ®(r,¢) the vector and scalar potentials,
respectively. We also make some impositions: i) the Weyl gauge (HAYASHI; KUGO,
1979) (® = 0), and ii) under the dipole approximation?, A(r,t) = A(t) (BOSSMANN;
GRUMMT; MARTIN, 2018). Equation (2.10), then, becomes

Ar,t) = Zin[fo + AP + Ur). (2.11)

It is important now to notice that in the electromagnetic theory, the true observable
quantities are the electric and magnetic fields, so that the potentials can be transformed
(gauge transformations), as long as the fields are maintained invariant. By means of the
transformation (GENES, 2007)

x(r,t) = —A(t).r, (2.12)

we obtain the new scalar and vector potentials,

even in the case of many-electrons’ systems, the energy corrections only depend on the coordinates.
In interactions between atoms and radiation, since we restrict our problem to situations where
A > Ratom, We can assume that the spatial part of the electric field function (and of the associated
potential functions) are real amplitudes of constant value.
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' (r, ) = B(r, 1) — 8Xg;’ D _ v E), (2.13a)
and,
A'(r,t) = A(r,t) + Vx(r,t) = 0. (2.13b)
The new Hamiltonian is then
H(r t) = 2;[lf) +eA'(r, )] + U(r) — e®'(r, ), (2.14)
-9

H(r,t) = [2pm + U(r)] — er.E(t). (2.15)

If we compare equations (2.15) and (2.9), we obtain
V(t) = —d.E(t), (2.16)

where d is the electric dipole moment, defined as d = er.

So far, we have been using implicitly a semi-classical model to describe the light-
matter interaction. This means that the atomic observables are quantized, but the radiation

fields are treated classically. In this model, the electric field can be written as

E(t) = — (™' + e )¢, (2.17)

o | On

£ being the amplitude of the field, w its angular frequency of oscillation, and €, the
polarization unit vector. Also, since neutral atoms have no permanent electric dipole
moment (GENES, 2007), the diagonal elements of the electric dipole matrix are null. The
off-diagonal terms can be different from zero, however, and this ‘remanescent’ dipole can
couple with the electric field of the external radiation to promote transitions between
states. This particular kind of dipole only exists in quantum mechanics, and is called
‘transition dipole moment’ (BRASLAVISKY, 2007).

Now, by applying (2.17) into (2.16), the elements of the interaction matrix are

obtained as,

A,

@ V(©)5) = = GldEQ@) [7) =
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L hefd.é, ., it 1
= — (i §T(€ "eTN ),
1Y) S RS iw —iw
(V) 1) = Vig(t) = (™ + 7). (2.18)

The term €2;; introduced above will be of great importance to the subsequent discussions.

It is called ‘Rabi frequency’, which is defined as

e€ ...
Q; :—%<’L|d.€|j>. (2.19)
The origin of the term is associated to the fact that, when treating two-level atomic
systems in a semi-classical Rabi model, 2;; is the frequency that the electron oscillates

between levels 7 and j.

Before ending this section, it is important to strengthen the physical understanding
behind the mathematical developments made so far. When an atom is in a lower energy
level |7), it can absorb the necessary (E; — E;) energy from the external radiation field
to be promoted to a higher energy level, |j). Once in this level, it can be stimulated to
release energy in the same quantity to the field, and return to the lower level, |i). From
quantum theory, the probability of absorption and stimulated emission are equal (FOX,
2006).These transitions are possible due to the coupling of the transition dipole moment
of the atom with the electric field of the external radiation. This model is of particular
importance, since it allows the use of external radiation fields (such as lasers) to precisely

prepare atomic systems in a given configuration.
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3 Shortcuts to Adiabaticity

In this section we shall discuss the recently developed protocols known as shortcuts
to adiabaticity, or STAs. As the name suggests, the aim of these protocols is to produce
time-evolution in quantum systems that conserve the properties of an adiabatic dynamics,
but faster. We begin by exposing the ‘adiabatic theorem’, and what are the benefits of an
adiabatic dynamics. We then introduce the formal concept of STA, with some examples.
The counterdiabatic driving, which is arguably the most famous STA method, is then
explored in some detail, followed by the time-rescaled dynamics, which is the STA approach

to be used in subsequent sections.

3.1 Adiabatic Theorem

The adiabatic theorem (BORN; FOCK, 1928; KATO, 2021) is one of the most
useful approximation methods in quantum mechanics. To understand its importance, we
begin by considering a time-dependent Hamiltonian, whose instantaneous eigenvalues and

eigenstates are given by the eigenvalue equation (GRIFFITHS, 2019),

H(t) [n(t)) = Ea(t) In(t)) - (3.1)

A general state representing a N-level quantum system can be described by a

surperposition of these eigenstates,

[9(t)) = D calt) In(t)) e, (3.2)

where 0,,() the so called called “dynamical phase', which is given by

0, (t) = —; / " E()dr. (3.3)

The evolution of the state in equation (3.2) is given by the Schrodinger equation,

such that, by applying equation (3.2) to it, we obtain

zhjt (Zn: cn(t) In(t)) e“’"t> =y (; cn(t) In(t)) ei@’”) ;
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From which we find,

th (C” )+ cn(t) (1)) + cn(t) [n(t)) 0 ) nt ch E,(t) |n(t)) e,
(3.4)

with |72(¢)) = 4 |n(t)). The last term of the left-hand side of (3.4), becomes, by using
equation (3.3),

in iea(t) In(r)) et = ( / E(t)dt') = 3 cult) In(0) Ea ()™,
which cancels out with the right-hand side of equation (3.4). Hence, we are left with

D e (t) n(t)) et = Z cn(t ) et (3.5)

By applying (m(t)| on both sides of equation (3.5), we obtain the series of coupled

equations,

S ult) (m(B)|n (1)) €0 = 6, (D™ = = 3 e, (1) (m(t) (1)) €,

which provides,

En(t) = = (1) (m(®) (1) — D7 ealt) (m(t)|a(t)) e 0. (3.6)
To proceed further, the inner products of the second term of the right-side of

equation (3.6) can be re-written in a convenient manner, by differentiating equation (3.1),
then applying (m(t)| (m # n) on both sides to obtain

A

Hin(t)) + Hi(t)) = B, [n(t) + Eq [i(t))
(m(®)| H [n(0)) + (m(t)| T [in(t)) = (m(t)] Ba () + (m(@)] E, (1)

(m(®)| H [n()) + En (m(®)[n(t)) = B, (m(6)|n() + Ey (m(0)li(2)
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and consequently,

(m(@)|n(t)) = : (3.7)

where we made use of the ortogonality of the eingenstates and the Hermiticity of the

Hamiltonian operator. By using equation (3.7) to reorganise equation (3.6), we arrive at,

(m(?)|
En

[n(¢)) oi(On—0m) (3.8)

Cm(t) = —cm(t) (M) (t)) — > E.

n#m

This development is, so far, exact. We now impose the adiabatic approximation

(SAKURAI; NAPOLITANO, 2021): if,

: (3.9)

|<m<t>| ! 1n<t>>‘ 1 . En
E,—FE, h

the second term in the right-side of equation (3.8) can be discarded, with equation (3.8)

becoming,
Cm(t) &= —cm(t) (mlm) (3.10)
and
Cm(t) = e (0)e™ ), (3.11)

with (3.11), v, (t) = i fy (m(#')|r(t')) dt’, the so-called ‘geometric phase’. This final result

summarizes the adiabatic theorem, that follows:

“[If] the time scale t' for changes in the Hamiltonian [is] very large compared with
the inverse natural frequency of the associated eingenstate phase factor(...) a system that

starts out in an eigenstate [n(0)) of H(0), remains in the eingenstante |n(t)) of H(t).
(SAKURAI; NAPOLITANO, 2021).

From the above statement, we observe that the adiabatic theorem establishes a

powerful tool for the control of the dynamics of arbitrary quantum systems. A classical
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analogy to this is that of transport of a pendulum inside a box, made very slowly, in order
to keep it moving with the same amplitude (figure 1). Its usefulness is attested in several
areas, such as efficient population transfer in atoms and molecules, eletronic transport,
manipulation of atomic traps, among others (DEMIRPLAK; RICE, 2009; MALINOVSKY;
KRAUSE, 2001; POGGIANI G. Z. LI; TESTERA; WERTH, 1991; AVRON; SEILLER;
YAFFE, 1987).

)
9

-

0

-

Figure 1 — Transporting a pendulum inside a box very slowly, allows to maintain it
oscillating in the same amplitude. ‘The slowness’ is a tool for control. This is
the idea behind the adiabatic theorem. Image extracted from (GRIFFITHS,
2019).

3.2 Shortcuts to Adiabaticity

In the previous subsection, the adiabatic theorem was presented as a tool for
controlling the dynamics of a quantum system through a slow-varying Hamiltonian.
Although notably useful, there are certain limitations associated to its application: the long
process times required to perform any adiabatic protocol also permit a longer interaction
between the system and its environment, resulting in undesirable effects such as noise,
decoherence, dephasing and particle loss (SCHLOSSHAUER, 2007; SANTOS et al., 2023;
SUTER; ALVAREZ, 2016).

To counter these undesirable effects, a series of methods collectively called Shortcuts
to Adiabaticity (or STAs) were recently proposed (CHEN et al., 2010). STA protocols
are dynamics which preserve the desirable properties of adiabatic transformations, but
performed in a much shorter time (GUERY-ODELIN et al., 2019; YIN et al., 2022). This

can be done in a variety of ways, and among the many examples of STAs in the literature,
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we mention the Counterdiabatic or transitionless quantum driving (CD) (DEMIRPLAK;
RICE, 2009; BERRY, 2009), the fast-forward protocol (TORRONTEGUI et al., 2013),
the tunable-Hamiltonian method (FRAN¢A; ANDRADE; BERNARDO, 2022) and the
time rescaling dynamics (TR) (BERNARDO, 2020). Both the CD and TR methods will

be discussed in detail in the next subsections.

It is important to mention that, although primarily focused on speeding up the
adiabatic dynamics of certain quantum mechanical systems, applications of the STAs were
extended to several other areas of physics such as optical devices, classical mechanical
systems, and even some posing questions in engineering (GUERY-ODELIN et al., 2019;
LAKEHAL; MAAMACHE; CHOI, 2016; TORRONTEGUI, 2017).

3.3 Counterdiabatic Driving

The counterdiabatic or transitionless quantum driving (abbreviated as CD) was
the first proposed STA protocol, and currently the most widely used. As such, it is natural
that any subsequent protocols appearing in the literature will be compared to it in terms
of robustness and efficiency. Hence, it becomes important to discuss it here in some detail,

before turning to the actual method to be applied in this work.

There are two main formulations of the CD protocol: one by Demirplak and Rice
(DEMIRPLAK; RICE, 2009), and an independent one by Berry (BERRY, 2009). Our
presentation here follows the later. We begin by considering a reference Hamiltonian ]:Io(t),

which can be written as

Ho(t) = - Ba(t) In(t)) (n(t)], (3.12)

n
in the basis of its instateneous eingenstates. Now, if the initial state of the system is

|1(0)) = |n(0)), the adiabatic theorem discussed in section 3.1 guarantees that, to a slowly
varying ﬁo(t), the state of the system evolves to

(1) & e |n(t)) (3.13)

meaning that it remains approximately in the same instantaneous eingenstate, apart from
a phase factor o, (t) = 0,,(t) + .(%).
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Now, the counterdiabatic protocol consists in adding an auxiliary Hamiltonian
(or CD Hamiltonian), Hep(t), to ‘force’ the system to remain (and consequently arrive)
precisely in the final state of (3.13), regardless of how fast the evolution of the Hamiltonian

occurs. This means that the new Hamiltonian H (t) must satisfy the Schrodinger equation,

iho [0(t) = H(t)[9(t)). (3.14)

Since the time-evolution of a closed quantum state can be described in terms of a unitary®

time-evolution operator /(t), satisfying

(1)) = U(t) [(0)) (3.15)

we can re-write equation (3.14) as,

L0
in () [6(0))

H(OU(L) [(0))

ih=U(t) = HOU(L).

Now, we apply the hermitian adjoint of the time evolution operator I/ (1), Z;[T(t), on both

sides, to obtain

H(t) =ih [Zfl(t)] ui(t). (3.16)

From equation (3.15), the time-evolution operator can be represented by

Uty =3 e n(t) (n(0) (3.17)

and by applying equation (3.17) into equation (3.16), we obtain

H(t) = ih (Z ¢ (1)) (n(0)] + ida(t) In(t)) <n(0)|> > e m(0)) (m(t)] =

n

~>

1 A unitary operator A has the property that AAT = AtA =
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ZEZZ el O7en @l ([ (t)) (n(0)|m(0)) (m(t)] + idn(t) In(t)) (n(0)[m(0)) (m(t)]) =

=ih Y ([n(6)) (n(t)] + 6w (t) In(t)) (n(t)])

Deriving o,(t),

() = i 5 [l (r(0)] + (=5 Balt) 1 (a0 1(0)) 1n(0) (o)

n

=D _lih[(t)) (n(t)] + En In()) (n(t)] — ik (n(&)[A(8)) In(t)) (n(B)]].  (3.18)

From equation (3.12), the second term in equation (3.18) is simply I:Io(t). Hence,

A

H(t) = Ho(t) + Hep(t), (3.19)
with

Hep(t th [I7() — (n(@®)n(6) [n(8)) (n(®)]] (3.20)

The determination of the counterdiabatic Hamiltonian in equation (3.20) requires
the knowledge of the instantaneous eigenstates of the reference Hamiltonian, which is not
usually an easy task to realize. In spite of this, the counterdiabatic protocol has been
applied in a wide variety of systems with considerable success, from promoting population
transfer in atomic and molecular systems (CHEN et al., 2010; CHEN; MUGA, 2012) to the
generation of large entangled states (CHEN et al., 2021) and the realisation of quantum
state transfer in long spin chains (ZHOU et al., 2019).

To finish with an example, we show in figure 2 the population inversion between two
fundamental energy levels |1) and |3), assisted by a higher energy level |2), in a three-level
atomic model, performed by two different protocols. The details of how this process can
happen will be presented in chapter 4. In the first image, we observe the execution via a
reference protocol, called Stimulated Raman Adiabatic Passage, or STIRAP, in a time
much smaller than that required to be adiabatic, so that population inversion is not
achieved. In the second image, the second protocol, which is a counterdiabatic acceleration
of the STIRAP, is applied with the same amount of time, and the inversion is complete
(LI; CHEN, 2016).
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Figure 2 — Populations of the levels |1) (blue), |2) (black) and |3) (red) of an atomic system
during a process of population transfer through the (a) reference protocol in
non-adiabatic time, and (b) counterdiabatic protocol. Extracted from (LI;

CHEN, 2016).

3.4 Time-rescaling as a STA

The time-rescaling protocol (TR protocol), proposed by B. L. Bernardo in 2020,
is a considerably simple method to perform a STA through the modification of the time
parameter ¢, from which a new Hamiltonian is determined. This is the chosen STA protocol

to be used in subsequent parts of this work.

It is known that a closed quantum system evolves in time through a unitary

time-evolution operator U (ts,to), which is a solution to the Schrodinger equation,
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z‘hgtzf{(tf,to) = H(t)U(ty, to). (3.21)

Here, H (t) is the reference, time-dependent Hamiltonian that generates the original time

evolution of the system. This equation (3.21) can be solved to yield

A

U(ty) = Teap Ha / v H(t)dt} , (3.22)

where we set ty = 0 for convenience.

We now develop the time-rescaling method. Its essence is to redefine (or rescale)
the time variable as a function of a new variable 7, so that t = f(7). By applying this to

equation (3.22), we obtain

u [ffl(tf)} = Texp [—;/ff:;jf) H[f(1)] f(T)dT] ,

or

- . )
U(ty) = Texp l_; /f_l(o)f 7—[(7’)(17’] ; (3.23)

and the new Hamiltonian, 7:[(7'), called TR Hamiltonian, is given by

A

H(r) = H[f(r)] (7). (3.24)

It is important to observe that both equations (3.22) and (3.23) represent the same
evolution. Hence, a system at state |¢)(0)) will end up at state |¢(tf)) through both the
reference and TR protocols. However, while the reference evolution will be generated by
the Hamiltonian H(t), and takes a time At = ts to occur, the TR evolution is generated
by the H(r) Hamiltonian, which takes a time A7 = f~'(t;) — f(0) to occur. If the
reference protocol is adiabatic and A7 < At, then the TR protocol acts as a shortcut to

adiabaticity.

To guarantee that the TR protocol indeed acts as a STA, we impose certain
conditions: (i) f~1(0) = 0 and f~'(t;) < tf, and (ii) H(r) = H(t) at the initial and
final times. The first condition ensures that the new protocol is faster than the reference
one. The second ensures that the initial and final Hamiltonian of the reference and TR
dynamics are identical. This is important to guarantee that the system will be in a stable

(stationary) state of the Hamiltonian at the beginning and in the end of the TR process,
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as it is in the reference one. The first condition is easy to satisfy; the second is realizable
by choosing a rescaling function f(7) such that f[f~*(0)] = f[f~'(t;)] = 1. The possibility
to use the TR protocol as a STA becomes, then, a matter of choosing a suitable rescaling

function.

In principle, there might be many different functions satisfying these conditions.
Here, we choose to use the following one: (BERNARDO, 2020)

t 2
f(r)=ar — ﬁ(a — 1) sin (ZfCLT)’ (3.25)
where a is a real constant. From equation (3.25), we observe that f~!'(0) = 0 and

f7'ty) = ty/a. If a > 1, the TR protocol takes less time than the reference one, and
becomes an STA protocol (satisfying the first condition). For this reason, a was named

contraction parameter. From equation (3.25) we also obtain,

F(7) = a—(a—1)cos (2”7> (3.26)

ty

from which we obtain that f'(0) = f'(t;/a) = 1. Hence, the second condition is also
satisfied.

In practice, the TR protocol works by modifying the original Hamiltonian in terms
of the rescaling function, and then performing the process between t = 0 and ¢t = t4/a.
Depending on the system of interest, this modification may include introducing changes
such as time-dependent magnetic fields or extra laser pulses. The protocol drives the
system to the same final state generated by the reference (adiabatic) process, but at a
shorter time duration (if @ > 1). During its application, tough, no adiabatic properties are
conserved, in principle. In mathematical terms, the protocol is quite simple, as well as
state-independent (the initial state does not have to be an eingenstate of the Hamiltonian,
and no knowledge of the instantaneous eingenstates and eingenvalues of the reference
Hamiltonian are required). It has also a wider range of applications - we supposed a
situation where the reference protocol is adiabatic, but such condition is not required: any

reference protocol can be accelerated through the TR method.

The time-rescaling protocol has already been applied in certain problems such as the
parametric oscillator, the transport of a particle in a trap and the population inversion in
two-level atomic systems (BERNARDO, 2020; ANDRADE; FRAN¢A; BERNARDO, 2022)
with considerable success. Application of the method has also achieved success in quantum
relativistic problems, such as the dynamics of Weyl semimetals (ROYCHOWDBURY;
DEFFNER, 2021).
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4 STIRAP Protocol

In this chapter we discuss the STIRAP method to perform controlled population
transfer in three-level systems. We begin with a discussion about Raman scattering, a
phenomenon whose elements are used in performing the STIRAP. Then, we give a general
view of the protocol, followed by two subsections of mathematical details. The following
section presents some particular characteristics or conditions of the STIRAP protocol. The

final subsection explains how the protocol is performed in practice.

4.1 Raman Scattering

Light scattering is a group of phenomena associated to the interactions of light
with a given medium, or the individual interactions (normally treated as collisions) of
photons with other particles. The first type of light scattering to be described was the
Raleigh scattering, discovered in the nineteenth century by Lord Rayleigh (STRUTT,
1871). At the beginning of the twentieth century, Mie scattering was discovered by Gustav
Mie (MIE, 1908). A common characteristic of these two is that they are both elastic: the
photon conserves its energy, so that only changes in phase result from the interaction
(Rayleigh scattering happens when light interacts with particles much smaller than its
wavelength, while Mie scattering when the interaction is with particles of about the same
size as the wavelength). Then, in 1928, C. V. Raman and his coworker, K. S. Krishnan,
reported the discovery of a new type of scattering of light in molecules, which is inelastic.
It was later named “Raman scattering” (RAMAN, 1928).

Raman scattering can be understood through a semi-classical model as follows
(KERESZTURY, 2002): radiation from an exciting source (named pump) is absorbed by a
molecule at a given initial state, which is then excited to a virtual energy level. It then
spontaneously emits, transitioning to a lower, real level. If the final level is higher than
the initial one, part of the energy of the incident radiation was captured in the form of
vibrational energy by the molecule; this is the Stokes Raman scattering, and the exiting
radiation is named likewise, Stokes. If the final level is lower than the initial one, vibrational
energy of the molecule was lost to the exiting radiation; this is called “anti-Stokes Raman

scattering”, the exiting radiation being equally named. Mathematically,
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AEvib
h )

Vsjas = Vp T (4.1)

with v/, being the Stokes/anti-Stokes radiation frequency, v, the pump frequency, AE,
the energy difference between the real vibrational energy levels involved and h, the Planck
constant. The process can be pictured as in figure 3. The collection of Stokes and anti-
Stokes spectral lines, pertaining to the various transitions between vibrational levels are

called Raman spectrum.
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Figure 3 — Semi-classical model of interaction between a molecular system and an external
(pump) radiation field of frequency v,. (a) Stokes Raman scattering: energy is
absorbed from the pump and, upon emission, part is kept in form of vibrational
energy, so that v, < v,. (b) Rayleigh (elastic) scattering: no energy is retained
by the molecule, v = v,. (c) Anti-Stokes Raman scattering: energy is absorbed
from the pump and, upon emission, part of the original vibrational energy is
lost to the exiting radiation (v4s > v).

It is important to observe that only about 0.0001% of the incident radiation
experiences Raman scattering; hence, the observation of a distinct spectrum requires the
use of strong radiation sources, normally achieved by high-quality lasers (GARDINER;
GRAVES, 1989). Also, the intensity rate between Stokes and anti-Stokes Raman scattering
will depend on the populations of the different vibrational levels, which in turn depend on
the temperature of the sample. Since (except at an infinite temperature), lower levels are

more populated, we have that the ratio of the intensities normally obeys I/l < 1.

Raman scattering has a wide range of applications, specially in the characterization
of the vibrational and rotational properties of molecules and solids. It is one of the most

useful phenomena within molecular spectroscopy (MCCREERY, 2000).
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4.2 General idea of the STIRAP Protocol

The spontaneous emission resulting in Raman scattering can create an entire
spectrum, due to the many possible realisable transitions. If the decay is stimulated,
however, it is possible, in principle, to control the decay of the molecule into a desired
state. Further yet, such stimulated passage could allow population transfers between two
states of any kind of three-level system. This is the basis of the STIRAP protocol, to be

presented in this section.

STIRAP, Stimulated Raman Adiabatic Passage, is a technique developed from
1989 onward by K. Bergmann and others, to perform adiabatic population transfer in
three-level systems (KUKLINSKI et al., 1989; VITANOV et al., 2001; DJOTYAN et
al., 2000; SHORE, 2017). Calling these states |1),]2) and |3), the idea is to move the
population from |1) — |3), with the help of state |2), but having no significant population
in this second level at any moment of the process. Although it was, at first, mainly focused
in transfers between vibrational states of molecules, it soon became applicable in a wide
variety of physical systems (VITANOV et al., 2017; BERGMANN et al., 2017).

Our focus here will be the case of a three-level A atomic system - meaning that
both states |1) and |3) have lower energy than |2). Their representation is given in figure 4.
Just as in the case of the Raman scattering, two radiation fields will be involved: a pump
field, to excite the atomic system from state |1) to |2), and a Stokes field, to stimulate
decay from |2) to |3). The details on how these fields promote transitions in the atomic

system were discussed in section 2.2 of the previous chapter.

It is important to point out that the arrangement is such that the pump and Stokes
fields are only significant on their effect over the desired energy levels: |1) — |2) and
|2) — |3), respectively. Hence, any direct transitions between |1) and |3), as well as the
existence of probability loss (transitions to levels other than the three-level approximation),

can be considered null.

4.3 Rotating Wave Approximation Hamiltonian

Before discussing the STIRAP protocol in itself, it is important to write the system’s

Hamiltonian in a convenient manner. Consider the Schrodinger equation applied to the
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Figure 4 — Conceptual schematics of a A three-level atomic system, under the influence of
external Stokes and pump laser pulses of respective Rabi frequencies (¢) and
2,(t). The solid lines represent the undisturbed atomic energy levels, while
dashed lines represent the virtual levels. The detuning of the Stokes and the
pump fields with respect to the real atomic levels are given by A, and A.

three-level atomic system just discussed. It can be written from equation (2.7), that

¢1 E1 — FL£1 (t) ‘/12672'(527&) 0 C1
ih| | = | Vinel©@ =€) By — h&y(t) Vige &80 | | ¢y |, (4.2)
ég 0 ‘/zgei(§3_£2) Eg — hfg(t) C3

in the {|1),]2),]3)} basis. Here, the E;’s are the energies of the atomic levels, ¢;’s are
arbitrary phases to be conveniently chosen and, V;; the elements of the matrix of the

Hamiltonian of interaction (7,5 = 1,2,3). The terms V;; = 0, from equation (2.18).

The external electric field acting on the system can be written as,

B(t) = ; E(1) (70" + 1) + £,E,(8) (€7 4 ¢ (4.3)

with €; as the polarization unit-vectors, & the amplitudes of the fields, and w; the frequencies
(¢ = p, s). From the last chapter, section 2.2, the elements of the Hamiltonian of interaction
are given by Vi; = — (i|d.E(t) |j), and from the definition of the Rabi frequencies in
equation (2.19),

Q,(t) = — (1|r.2)2), (4.42)

Q,(t) = — (2| r.2]3) (4.4D)
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we find that,

Vis = V31 =0, (4.5a)
— _ FLQP —iwpt twpt
Vig = Vor = " (7t 4 1) (4.5b)
nO, .
‘/13 = ‘/31 = (e—zwst + ezwst) . (45C)

From now on, the explicit time dependence of the Rabi frequencies (and other time

dependent functions) might be omitted in the future, for economy.

Now, the phases &; are chosen. For a A system, an appropriate choice (KEYLON;
DEPOALA, 2015; ASSEMAT, 2013) would be

§2 — &1 = wpl — &=6 + Wp, (4.6a)

G- & =—wit = & =& —w, (4.6b)

Applying equations (4.5a),(4.5b), (4.5¢), (4.6a) and (4.6b) into equation (4.2), we obtain

E; — hé(t) By (it 4 giwpt) g=iiost 0
H = % (e7nt 4 eiwrt) giwrt Ey — h& — huw, % (e=iwst 4 giwst) giwst
0 Bl (e7! ety et By — hé) — huwy + T,

(4.7)

Simplifying the entries of the above matrix and choosing & = E; /h for convenience, we

can write

0 Lf;p (6—2iwpt + 1) 0
H= |21+ B— B —hw, i (14 esh) : (4.8)
0 % (6_2iwst + ].) E3 — E1 - hwp + ﬁws

Below we point out some important definitions:
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1. The one-photon detuning is defined as the difference between the Bohr frequency,
wij = (E; — E;)/h, and the frequency of the external radiation field. In our case, we

have two one-photon detunings of importance,

A = wy — wp, (4.9a)

As = Wa3 — Ws. (49b)

2. The two-photon detuning is defined as the difference between the detunings created

by the two radiation fields on the respective energy levels, here given by

§=A— A, (4.10)

By adding and subtracting Es in the element (3, 3) of equation (4.8), we obtain precisely
equation (4.10). We also apply the definitions of equations (4.9a) and (4.9b) and put the

h/2 term in evidence, to obtain,

. 0 Qp (G—inpt + 1) 0
H =5 | Q1+ e 24 Q (L+ et | (4.11)
0 Q (72t 4 1) 26

Finally, we apply the rotating wave approximation (RWA), which consists in
eliminating terms that rotate “fast” in the chosen frame of reference. In our case, the
particular frame is determined by the phase factors chosen within the interaction picture.
Observe in eq. (4.11) that these phase factors allow to re-write the electric fields of the
external radiation in terms of a stationary term (called rotating term), plus a term rotating
with frequency 2w, s (counter-rotating term). Now, the dynamics of the atomic system

is given by the time evolution operator (eq. (3.22)), which to be obtained requires to

integrate this Hamiltonian. The integration of a phase factor like €™ yields,
ty ' 1 .
metdr = — (et — 1 4.12
/0 ‘ inw (6 ) ’ (4.12)

which is < 1 if the product nw is considerably large and the field intensities (and as
a consequence, the Rabi frequencies) are sufficiently low. For the characteristics of our
problem, this approximation is applicable (FUJII, 2017). Hence, we eliminate the terms

e?“r.st from eq. (4.11), which becomes,
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[0 % 0
H=7|a 23, 9. (4.13)
0 Q 26

4.4 Eingenvalues and Eigenstates

From equation (4.13), we proceed by imposing a special condition to perform the
STIRAP protocol: the two-photon detuning must be zero (6 = 0). The reason for that will

be justified in the next section. Hence, the Hamiltonian becomes
0 Q, 0

. h
H=39, 20 Q] (4.14)
0 Q 0

The energy eigenvalues can be calculated through the characteristic equation,

det(H — E,I) =0, (4.15)
yielding,
—-E, Q, 0
h
det 5 Qp 2/ — En Qs = 0,
0 Q,  —E,

which implies,

This is satisfied for

E? —2AE, —O* =0,

with Q = |/Q2 4+ Q2. We solve the second (quadratic) equation to obtain the roots
E.(t) = g (A + VA% + QQ>. Hence, the eigenvalues this Hamiltonian are,
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E. (t) = Z (A+VAZ+ ), (4.16a)
Ey(t) =0, (4.16b)
E_(t) = Z (A - VAT + ). (4.16¢)

To continue the analysis, we introduce two “mixing angles” 0 and ¢, defined as
tan 0(t) = Q,(t)/Q(t) and tan 2¢(t) = Q(t)/A (BERGMANN; VITANOV; SHORE, 2015),
and then transform equations (4.16a), (4.16b) and (4.16¢). First,

2
AEVA2Z+ Q2 =0Q éi (é) +1| =

>2+1 :Qlcos@qﬁ)i 1 ]:

e
~ 7 | tan (2¢) tan (2¢) sin (2¢) ~ sin (2¢)

Q l‘%] | (4.17)

From now on, we may omit the explicit time dependency “(t)” of the mixing angles,
eigenenergies and eigenstates, for economy. Now, sin2¢ = 2sin¢cos¢, and for E(y,
we use the identity cos2¢ = 2cos? ¢ — 1 in equation (4.17), and for E(_,, the identity
cos2¢ = 1 — 2sin? (¢), to obtain,

Q
E, = 712 cot ¢, (4.18a)
Ey =0, (4.18b)

Q
E_ = —h2 tan ¢. (4.18c¢)

1 The term ‘mixing’ angles comes from the fact that they are the angles, in the respective Hilbert

space, between the orthogonal eigenvectors of the undisturbed H Hamiltonian. Hence, they are used to
construct states which are a ‘mix’ of those.
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Having the eigenenergies, it is possible to obtain the eigenstates through the
eigenvalue equation (3.1). Writting |n(t)) = ¢1 |1) + ¢2|2) + ¢33), with ¢, ¢o, c3 being

complex numbers, we obtain:

o For Ej,
0 Qp 0 C1 QpCQ = 0,
Qp 2A Q C | = 0 — qu + 2ACQ + Q3 = 0,
0 QS 0 Cs QSCQ = 07

from which ¢o = 0 and ¢z = —(92,/Qs)c1 = —tan (0)c;. The amplitude ¢; can be

determined through the normalization condition,

e + [eaf” + Jes]® = 1,

(tan? 6 + 1)|c > = 1,

lc1|* = cos® 0,

c1 = cos b,

where we considered ¢y as real, for convenience. Hence,

Ino(t)) = cosB(t) |1) —sinb(t)|3) . (4.19)
o For B,
0 Q, 0 c1 £ c1 Qpco = Qcot ey,
5 Q, 2A Q| |ea| = > cotg |ca| — Qper + 2Ac0 + Qe = Q cot pea,
0 Q 0 C3 C3 Qgco = Q cot ¢cs.

In the above relations we have that ¢, = (€,/)tan¢ca = sin (0) tan ¢ and
c3 = (2s/Q) tan ¢pca = cos b tan ¢cy. The amplitude ¢ can be determined through

the normalization condition,

lea* + |eal? + Jes]* = 1,

[sin @ tan® ¢ + cos® O tan® ¢ + 1)]|co|* = 1,
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[tan? ¢ + 1)]|e1|* = 1,

|02|2 = cos? ¢,

Cy = COS ¢,

where we considered ¢y as real, for convenience. Hence,

|ny(t)) = sinO(t) sin p(t) |1) + cos ¢(t) |2) + cos O(t) sin p(t) |3) . (4.20)
e For E_,
; 0o 9, 0 c1 50 c1 Q,co = —Qtan ¢cy,
5 Q, 2A Q of=-% tang [ co [ — Qper + 2Ac; + Qye3 = —Q tan ¢y,
0 Q. O C3 C3 Qo = —Q tan ¢cs,
from which ¢; = — sin @ cot ¢cs and c¢3 = — cos 0 cot pcs. Again, the amplitude ¢y can

be determined through the normalisation condition,

|Cl|2 + |CQ|2 + |63|2 = 1,

[sin @ cot® ¢ + cos® O cot® ¢ + 1)]|co|* = 1,

[cot? ¢ + 1)]|es]* = 1,

|62\2 = sin? ¢,

Cy = sin ¢,

2

b

where, again, we considered ¢ as real, for convenience. Hence

|n_(t)) = sinO(t) cos ¢(t) |1) — sin @(t) |2) + cosO(t) cos ¢(t) |3) . (4.21)

2 An overall negative sign was applied for convenience, without changing the result, since global phases

have no physical importance.
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4.5 Special Conditions for the STIRAP

In this subsection we discuss some special conditions necessary to perform the
STIRAP protocol. The first condition was already imposed in the previous subsection:
there must not exist two-photon detuning. The reason for that has now become clear -
one of the eingenstates of the Hamiltonian under the 6 = 0 condition, |ny(t)), is the so
called “dark state” (DAVIS; METCALF; PHILLIPS, 1979; DOERY et al., 1995). If the
system remains in this state while it evolves, the population transfer can occur from |1) to
13), without reference to state |2). This prevents probability loss from that state, through

spontaneous emission.

The second condition is not necessary, but has been historically accepted for
convenience (VITANOV et al., 2001; SHORE, 2017; VITANOV et al., 2017): the one-
photon detuning, A, is set as a constant value. The third condition imposes the adiabaticity

of the protocol, and is divided into two parts:

1. Local adiabatic condition. The adiabatic theorem discussed in section 3.1 shows that
the system remains in a given eigenstate of the Hamiltonian (apart from a gain of

phase), if the condition in equation (3.9) is satisfied,

Em
< = (4.22)

This leads to a local adiabatic condition. Since we decided to study the STIRAP, the
the system is originally prepared in the |ng(t)) eigenstate (as we shall see in the next
section), we evaluate the adiabatic theorem effect in the possible transitions between
|no(t)) <> [ny(t)) and |ng(t)) <> [n_(t)). First, we obtain the time-derivative of the

Hamiltonian given in equation (4.13),

0 Q 0

X h|. .

H=319, 0 O, (4.23)
0 Q 0

and by applying equations (4.23), (4.16a), (4.16b), (4.16¢), (4.19), (4.20) and (4.21)
in equation (4.22), we find that
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. . : o
DI H ¢ 2 cos ¢ (cos €2, — sin OS2, 1
(e 0)) 1 Ino) | _ |05 (cos 09, <« lowts, o
E+ — E() §Q Cot¢ 2
and
. . : o
(DI H ¢ 2 cos ¢ (cos €2, — sin OS2 1
(n_()] H [no(t)) = |2 ( - : ) < =Qtan ¢. (4.24b)
E_ — E() 59 tan¢ 2
Now, from the definition of the mixing angle 6(t),
d d (Q
—tanf = — | =2
at Tt (Q) ’
1. Q% Q,0, — Q.0
0= 0(t)=-2>">_~>7F
cos?f Q2 ®) Q2 ’
and since sinf = €2,,/2 and cos 6 = €2;/€2, we have that
. Q,0, — Q0
0(t) = W (4.25)

By substitution of equation (4.25) into equations (4.24a) and (4.24b) and organizing

them, we obtain,

sin ¢ - 1
| ( COS¢> 0| < 59, (426&)
and
cos @?\ . 1
‘( e ) 0‘ < 59 (4.26b)

It is important to evaluate two regimes of particular importance: (i) the resonance
(A = 0) and (ii) at large detunings (A > Q). Since ¢(t) is defined by tan 2¢(t) = Q/A,
for the first case we have that tan 2¢ — oo, so that 2¢ = 7, and ¢ = 7, which results
in sin?¢ = 1/2 and cos ¢ = v/2/2. These values turn both condition (4.26a) and

condition (4.26b) into the same expression:

0] < Q(1). (4.27)

For the second regime, tan 2¢p — 0, allowing for the approximations tan 2¢ ~ sin 2¢ ~
2¢ and cos2¢ = 2cos $? — 1 ~ 1, so that cos ¢ ~ 1, and the conditions in equations
(4.26a) and (4.26b) become:
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0%\ . 1
and
2A\ . 1
(22)4 <l o

The second condition becomes more restrictive, so we continue only with it. Since

both A and €2 are positive, we obtain that
. 1 9
RS yile (4.29)

Equations (4.27) and (4.29) are, in their respective regimes, the “local conditions for

adiabaticity”, since they must be satisfied at all times.

It is common in the literature to consider a “worst case scenario” (SHORE, 2017;
VITANOV et al., 2001): if the pulses have the same peak value, {2y, and if they are
both sufficiently smooth, then €(¢) has an upper bound, Q(t) < v/2Qq. The worst

case scenario, then, imposes the local adiabatic conditions in the limit,

0] < Qo, (4.30a)
) 1,
RS 7% (4.30D)

2. Global Adiabatic Condition. This condition comes simply from the integration of
equations (4.27) and (4.29). Since the purpose of the STIRAP is to perform total
population transfer from |1) — [3), the angle 6 in |ng(t)), must go from 0 to /2.

Hence,

tr . w/2
/fe(t)dt :/ o ="
0 0 2

With that, we obtain that

t
/f O(t)dt > g (4.31a)
0
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and

t
/ " Q2(t)dt > 247 (4.31b)
0

The time integration of a Rabi frequency is called in the literature as the temporal
area pulse of the radiation field, ©(t) (FOX, 2006).

If we consider these global conditions for the worst case scenario, we obtain an

important criteria to choose the total execution time of the protocol. Equations
(4.31a) and (4.31b) therefore become

finally obtaining,

for the A <« €2 regime, and

for the A > Q) regime.

4.6 Performing the STIRAP

Qot; > g (4.32a)
Qgty > 2mA, (4.32D)
s
tr> —— 4.
f >> 2907 ( 33&)
2 A
ty> ", (4.33b)
2

We now use the results of the previous subsections to determine how the STIRAP

protocol is to be performed in practice. The atomic system is initially (£ = 0) prepared in

state |1). This means it is in the eigenstate |ng(t)), for # = 0. From the definition of the

mixing angles, this requires the pump pulse to be negligibly small at this moment. Then,

both pulses are slowly changed over time, obeying the conditions for adiabaticity, until
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0 = m/2 at t = t;. Since we follow an adiabatic dynamics, the system remained in the
eigenstate |ng(t)), which at the end is equal to state |3), and total population transfer is
complete. Again, recurring to the definition of the mixing angles, we see that the Stokes
pulse will have to be negligibly small at this final moment. Hence, first the Stokes pulse is
sent, then the pump pulse, without total overlap. This is often called ‘counterintuitive

ordering” (KUKLINSKI et al., 1989; VITANOV et al., 2001; SHORE, 2017).

We conveniently choose Gaussian shapes for the pump and Stokes pulses, since
they are a preferred shape for experimental implementation (VITANOV et al., 2001). We
use the particular form presented in (LI; CHEN, 2016),

() = Qo exp [— (t=ty/2 = tO)Q], (4.34)

o2

(4.35)

Qu(t) = o exp l_ (t—tp/2+ to)j’

o2

where 2t is the separation time between the maxima of the pulses, €2y the amplitude, and
o the pulse width. These pulses are plotted in fig. 5(a). Here we choose Qy = 27 x 3M H z,
ty = 10us, to = t¢/10 and o = t;/6. These parameters are set to correspond to existing
experimental realisations of the protocol (DU et al., 2016).

Here we choose to work in the resonance condition (A = 0), a choice of no particular
importance here, but that will become clear in the next chapter. It is important to point
out that we sometimes find in the literature the same parameters, but a one-photon
detuning of A = 27 x 2.5Ghz, and therefore (A > Q) (CHEN et al., 2010; LI; CHEN,
2016). This is normally done so that certain simplifications (such as effective Hamiltonians
of lower dimensionality) can be used when the associated accelerated protocol is performed.
However, for STIRAP itself, this regime is clearly non-adiabatic (from equation (4.33b),
2rA/Q% = 100us, which is not much smaller than ¢y = 400us), and therefore total
population inversion cannot be achieved, as seen in fig. 2 (c) of (LI; CHEN, 2016). A
working STIRAP would require increasing the total duration of the protocol or reducing
A, and we opted for the latter.

Once the value of the one-photon detuning is established, it is easy to check that
the value of the other parameters are appropriate. First, eq. (4.33a) establishes a relation
between )y and 7, which can be seen as somewhat vague (at what point do we consider
something as “much greater than” some other thing?). Vitanov (VITANOV et al., 2001)
improves this requirement by informing that, when working with coherent pulses, it is
sufficient to guarantee that oty > 10. In our choice, their product is 1007, considerably

surpassing the criteria. Also, there is no particular requirements for the value of o, and a
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wide range for the choice of %y, the restrictions being that the pulses remain counterintuitive,

and not completely separated.
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Figure 5 — Time behavior of: (a) the pump (blue) and stokes (red) pulses given by equations
(4.34) and (4.35), and (b) the populations of the atomic levels |1) (blue), |2)
(purple) and |[3) (red), with the initial state given by |ng(0)) =~ [1). The
parameters used are specified in the text.

To confirm that total population transfer is achieved through this process, we
analyze the behavior of the probability functions. Since the system remains at the eigenstate

|no(t)) throughout the process, the value of the populations in time is given by,

Pi(t) = | (1|no(t)) |* = cos® O(t), (4.36a)

Py(t) = [ {(2lno(t)) > = 0, (4.36b)
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Py(t) = | (3|no(t)) |* = sin® (1), (4.36¢)

which are plotted in figure 5(b). With this, we conclude the presentation of our reference
protocol. One of the tasks of the next chapter is to show how the same results can be

obtained faster, through the time-rescaling method.
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5 Results

In this chapter we present the results obtained in the this work. First, an important
proof about the “transitionless” nature of the TR protocol. Then, we propose the actual
realization of the speed up of the STIRAP, or STIRSAP (Stimulated Raman Shorcut-to-
adiabatic passage), through the time-rescaling method. The fidelity and thermodynamic

cost are also evaluated.

5.1 Transitionless Proof

In section 3.4, it was shown that the TR method can speed up a reference, adiabatic
protocol, taking the system from an eingenstate of the Hamiltonian at ¢ = 0 and delivering
it back to that eingenstate, at ¢t = ty/a. However, so far, there were no investigations
on the nature of the dynamics of the system during the application of the TR process,
meaning we did not know the route that the system would take in the Hilbert space
between initial and final states. This lack of knowledge had particular down side, since, for
example, when tracking the populations of the atomic levels in time, one would have to
solve a sometimes complicated Schrodinger equation, generally by computational means
(ANDRADE; FRAN¢A; BERNARDO, 2022). On the other hand, an accelerated protocol
with a known route allows for the use of a simpler analytic evaluation, such as in (4.36a),
(4.36b) and (4.36¢).

In what follows, we propose a simple proof that, actually, the TR protocol drives the
system through an evolution route which not only has the same properties of the reference
protocol being accelerated (as it was observed in certain applications (BERNARDO, 2020;
ANDRADE; FRAN¢A; BERNARDO, 2022)), but is indeed the same route. In particular,
if the reference is adiabatic, we show that the associated TR protocol is transitionless.
This proof can be obtained by means of two independent manners, (i) by a consideration
on the nature of the evolution generated by the TR Hamiltonian and (ii) by modifying

the proof of the adiabatic theorem, presented in section 3.1.

5.1.1 Analysis of the Evolution created by the TR Hamiltonian
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As we have seen in section 3.4, a reference, q (t) Hamiltonian generates a unitary
time evolution in a closed quantum system, given by eq. (3.22). In the case of the TR
Hamiltonian H(7), the evolution of the system is given by the evolution operator in eq.
(3.23). Since the difference here is a simple change of variables (¢t = f(7)), these evolutions

produce the same result, and a system initially prepared in state |¢;), would arrive at the
final state [¢5), both by [¢5) = Ures(ty) [1:) and by [v5) = Urr(f 7 (t7)) [¢:)-

Consider now re-writting eq. (3.22) in terms of a 7 parameter, such that

A

U(yts) = Texp {—;_l /[:tf H(t)dt} . (5.1)

If we allow « to vary continuously between 0 and 1, this time evolution operator will
transform the initial state |¢;) into all possible states [¢,) in the path' to [¢;). For the

time rescaled evolution, this re-writting similarly produces

U(f () = Texp [—;L / fl(vt")ﬁ(f)m} | (5.2)

Again, since the difference between the two evolutions is simply the change of variables
t — 7, they both produce same state [¢,) when applied to the initial state, |¢;). It is
important to observe that changing of t; — vt in eq. (3.25) creates a new rescaling
function that fulfills the boundary conditions at ¢ = 0 and ¢ = v¢;. The conclusion is that
the parameter v characterizes a state which is common both to the reference and the
TR processes, which, in turn, means that both evolutions comprise of the same group of
intermediate states, or the same path. The difference is merely in the speed in which the
system reaches a given state: for the reference, |1,) is reached at ¢t = vt¢, and for the TR
case, at t = f1(yt;). In fig. 6, we plot the changes of a system between [¢;) and [¢;),
supposing a reference process (a = 1) and the TR processes with a = 2 and a = 10, where

the rescaling function in eq. (3.25) was used.

We can now explore the transitionless nature of the TR protocol. This property is
associated with the adiabatic theorem: a system initially prepared in one of the eigenstates
of its Hamiltonian, will remain in this eingenstate throughout an adiabatic process. If
this eigenstate is |n), the path followed by the system in this situation is given by the set
{In(yt£))}, 0 < v < 1. Now, we consider the commutability between the reference and
TR Hamiltonian: since their difference is a change of variables and a scalar function, they

must commute:

1 By “path” we mean the time-trajectory of the state of the system, or the particular sequence of states

in the associated Hilbert space that the system follows between the initial and final states.
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state
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|¢¢>0/ - \ R ts
10(7ty) % fa_zlg(’)/tf) ty time

Figure 6 — Time behavior of a general reference process, a = 1, and the designed TR
processes for a = 2 and a = 10. The route followed by the quantum system
from the initial state |¢;) to the final state |¢)f) through the Hilbert space is
the same in all cases. However, the time necessary to reach any state |¢,) of
the route can be made shorter with increasing a.

(), 1 (@)]] =o. (5.3)

As a consequence, they share a simultaneous set of eigenstates - the set {|n(vts))} being
also eingenstates of the TR Hamiltonian. Hence, if the reference protocol is transitionless
(the system passes only through the same eingenstate of the reference Hamiltonian in
different moments of time), the TR protocol evolution, which shares the same path, will
promote an evolution where the system remains in the a certain eingenstate of the TR

Hamiltonian: the time rescaling protocol is also transitionless.

5.1.2 Transitionless Proof via the Adiabatic Theorem

In this second proof, we follow the same path taken in section 3.1 to arrive at the
adiabatic theorem, but this time considering a time-rescaled state [¢)(7)), evolving under
the 7 () Hamiltonian.
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Consider a closed system in state |1)(7)), which evolves in time through the influence
of the time-rescaled Hamiltonian, 7:[(7) This evolution must obey the Schrodinger equation,

which can be re-written as (3.6),

En(T) = — (m()rin(7)) = 3 eulr) (m(7) (7)) OO, (5.4)

with ¢, (7) = (n(7)|¥(7)). The |n(7)) states are eigenstates of a reference Hamiltonian,

given by (3.1),
H(r)|n(r)) = Eu(7) In(7)). (5.5)

where t was changed to 7 with no loss of generality. These are also eigenstates of the TR
Hamiltonian, since by definition H(7) = H(7)f(7), yielding

H(r) In(r) = Ba(r) f(7) |n(7)) . (5.6)

Now, as it was done in 3.1, the inner products in the second term of (5.4) can be

re-written conveniently if we derive equation (5.6),

H(r) f(r) In(0) + A7) In()) + A (1) f(7) (7)) =
En(1)£(7) In(7)) + Ea(7) f(7) (7)) + Enu(7) f(7) I0(7)) ,
and apply (m(t)| (m # n) on both sides

F) [ H(7) [0(7) + En(r) (m(n)]i(7)) | == F@)Ealr) (m(r)lin(r)),  (5.7)

and since f(7) multiplies both sides, it will be cancelled. Hence, equation (5.7) becomes
equivalent to that obtained if the time evolution was produced through the reference

Hamiltonian, and the inner products,

Hence, equation (5.4) becomes

Cm(T) = —Cm(7) (m(T)1in(7)) —

n#m
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How can this result be interpreted? If only the first term in (5.9) existed, then ¢, (t)
would remain the same as ¢, (0) (apart from a global phase). Then, all possible transitions
are quantified within the second term. That is the same for both the TR and reference
protocols. Then, the evolution driven by the TR Hamiltonian conserve the same properties

as that of the reference one. In particular, if H(t) obeys the adiabatic theorem,

(m(r)| H(7) n(7)) .
LT < ) | (5.10)
then eq. (5.9) turns into,
Cm(T) = = (T) (m(7) (7)) , (5.11)
and
em(T) = (0)em (7). (5.12)

If the system starts in one of the eigenstates of H (t), it will remain in this eigenstate
throughout the application of the TR protocol, which means that, if the TR protocol

accelerates an adiabatic one, it will be transitionless.

5.2 Performing the STIRSAP

We are now able to apply the TR method (including the proof of its transitionless
feature) to the STIRAP protocol and produce a new type of STIRSAP, or stimulated
Raman shortcut-to-adiabatic passage. To do so, we simply follow the steps described in
section 3.4. First, we rescale the time variable ¢ in all relevant equations of the STIRAP;

they now become functions of the variable 7, with the relation given by equation (3.25):

2ma

t=ar— 2tf(a —1)sin <t7>. (5.13)

ma f

Next, the Hamiltonian of the STIRAP in equation (4.14) is modified to become the
TR Hamiltonian, following equations (3.24) and (3.26). Since the reference Hamiltonian is

composed of three elements, the two pulses §2,(¢), €25(¢) and the one-photon detuning A, it
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is enough to obtain their transformation to create the new Hamiltonian. From equations
(4.34), (4.35), we obtain

~ U (a—1)sin (Zm9r) —t;/2 — )
3 at — 5L (a sin T 0 9
Q,(t) = Qoexp { 2 Ug b ) d } [a — (a—1) cos (;;CZTN :

(5.14a)

~ U (g — 1)sin (2197) — t/2 4+ to]

s at — 5 (a sin (277 9

Q,(t) = Qo exp { 2 gtf ) d 0} la—(a—l)cos (TT)],
g !

(5.14b)

and

A(t) = ?8 [a — (a—1)cos <2;T:T>] : (5.14c)

with the TR Hamiltonian, then, becoming

. 0 H(T) 0
A(r) =5 | Q(r) 2A(r) Q)| (5.15)
0 Qr) 0

In practical terms, the change requires no additional fields - merely the modulation
of the pump and Stokes pulses, as well as adding a time-dependency on the one-photon
detuning. This is an important feature to point out, since in the counterdiabatic method,
the addition of the Hep(t) Hamiltonian into the reference one generally results in the need
of extra coupling fields. In reference (LI; CHEN, 2016), for example, a new pulse of Rabi
frequency €2, is introduced, besides the pump and Stokes. In this particular work, certain
special tricks were used to circumvent this necessity and perform the accelerated protocol
only in terms of two, modified pulses. However, this may not be the general case, specially
when treating more complex systems. In the TR method, however, the requirement of no
adittional fields in a built-in feature. The manipulation of the amplitude of the pulses is a
straightforward laboratory process, obtained by a variety of methods and devices such as
the acousto-optic modulator (MEYER et al., 2003).

In order to avoid the extra experimental requirement of (sometimes) fast time-
modulation in the one-photon detuning, imposed in eq.(5.14c), we chose to set A = 0 in

chapter 4, which provides A = 0. Moreover, we shall see in the next section that this
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resonance condition retains high fidelity in performing population inversion, even when

the actual detuning is incresed (or decreased) in several MHz.

An important quantity in this new scheme is the contraction parameter a, a
measure of how fast we accelerate the STIRAP, and consequently, of how the fields must
be modulated. We plot a comparison of the new pulses for the values of a« =2 and a = 10
in figure 7. Observe that the peak of the rescaled pulses are no longer a constant ), but
vary linearly with a. Comparing equations (5.14a) and (5.14b) with equations (4.34) and
(4.35) at their peak values, we obtain that,

QP — 0y (2a — 1). (5.16)

peak —

Hence, although there is no specific theoretical time limitations given by the TR method
itself 2, there will certainly be practical restrictions associated with the limitations of
producing increasingly more intense pulses. For example, given the reference amplitude of
Qo = 2w x 3 MHz used in the previous chapter, we have that the new, modulated pulses
will arrive peak amplitudes of Qo ~ 1 GHz for a > 27, which become increasingly more
complicated to be produced in laboratory (HUBER et al., 2011; SHIMADA et al., 2023).

In order to confirm that total population transfer was achieved at the time ¢;/a,
we must evaluate the time evolution of the populations of the atomic levels. Until now,
this would require to solve the Schrodinger equation for the Hamiltonian given in equation
(5.15), and then obtain the population functions as explained in section 2.2, through
equations (2.8a), (2.8b) and (2.8¢), which would have to be done numerically. Now, this is
not difficult to do when working with a three-level system. However, as it was explained in
the introduction, one of the purposes of this work is to explore the performance of the TR
method as we progress to more complicated systems, and we expect increasingly difficulty

to solve these equations as we progress to treat larger, N-body problems.

The proof presented in section 5.1, may present some aid in this situation, since
we now understand that the application of the TR protocol introduces no transitions.
Hence, if the system is initially prepared in the eigenstate |ny(0)) = |1) of the reference
Hamiltonian, it will remain in |ng(7)) at all times. The population of the levels over time
may be accessed, then, in a way similar to that of section 4.6, equations (4.36a), (4.36b)
and (4.36¢), with the difference that the mixing angle 6(¢) needs to be rescaled to become
0(r), defined as tan 0(t) = Q, /€. These new population functions are,

Py(t) = cos*[0(7)], (5.17a)

2 Besides, of course, a possible limitation imposed by the quantum speed limit (THAKURIA et al., 2024;

UHLMANN, 1992), which was not investigated here.
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Figure 7 — Behavior of the new pump (blue) and stokes (red) pulses, with the contraction
parameter assuming the values of (a) a = 2 and (b) a = 10. The same
parameters of fig. 5 were used. Although the plots closely resemble Gaussian
shapes, they are modulated as given in equations (5.14a) and (5.14b).

Py(t) =0, (5.17b)

Ps(t) = sin®[0(7)], (5.17¢)

which are plotted in fig. 8. As desired, total population is achieved without ocuppying the

level |2) at any moment.
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Figure 8 — Time evolution of the populations of levels |1) (blue), |2) (dashed purple) and
|3) (red) for the TR passage protocol with the initial state given by |1), and the
contraction parameter assuming the values (a) a = 2 and (b) a = 10. In both
cases we observe that the population inversion occurs at least a times faster
than in the reference (a = 1) protocol, shown in fig. 5. The same parameters of
fig. 5 were considered.

5.3 Stability Against Errors

As discussed before, the main objective of any STA is to accelerate a reference,
adiabatic protocol, in order to avoid unwanted effects such as decoherence. The reference
protocols are expected to be considerably robust against systematic errors, i.e., once the
conditions for adiabaticity are met, small changes in experimental parameters do not
alter significantly the dynamics of the system thorugh one of the eingenstates of the
Hamiltonian. Specially in the case of STIRAP, errors in parameters such as the one-photon

detuning, the pulse area and the separation time between pulses, do not significantly alter
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the fidelity of the population transfer, as long as the counterintuitive ordering and the

conditions of section 4.5 are respected (SHORE, 2017). An example is given in figure 9.
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Figure 9 — Probability transfer to state |3) as a function of the delay between pulses, for
pulse areas of (a) b, (b) 107, (c¢) 157 and (d) 207. Gaussian pulses in the form
described in egs. (4.34) and (4.35) were used, with A = 0. Observe that in all
cases, there is a wide plateau within which the protocol is performed with high
fidelity, regardless of changes in the delay. Image taken from (SHORE, 2017).

Hence, in attempting to perform an accelerated protocol, care must be taken so
that an increase in speed does not come at the cost of loss of robustness. In other words,
no considerable decrease in fidelity should occur due to small changes in the parameters
involved - a consequence of the unavoidable errors in experimental manipulation. This
section is dedicated to analyze the fidelity of the TR-based STIRSAP with the change of
certain parameters. We shall compare its results to those of the counterdiabatic method,

in order to see which approach provides a more robust protocol.

First of all, it is important to explain that, in the literature, fidelity is defined as

a measure of “similarity” between the desired and the achieved states, being given by
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(BENENTI et al., 2019),

F= <¢de| Pob |¢de> ) (5~18)

where [14.) denotes the desired state and p,, is the density matrix of the state obtained at
the end of the process. In the present case, the desired state is evidently |3). The STIRSAP
process produced by the time rescaling method delivers the final state |ng(tf/a)), with
associated density matrix po, = |no(ts/a)) (no(ty/a)|. Therefore, eq. (5.18) becomes,

F = (3Ino(ty/a)) (no(ts/a)l3) = | (3lno(ts/a)) |*, (5.19)
and from eq. (5.17¢),

F = Py(ts/a). (5.20)

A last remark must be made on how the comparisons with the counterdiabatic
method will be done. We shall consider the general Hamiltonian of the STIRAP protocol
given by eq. (4.14), but with modified pump and Stokes pulses as provided by the CD
method, analogously to what we did with the TR method. For the resonance condition,
our regime of choice, we can use the modified pulses provided by equations (21) and (22)
of reference (LI; CHEN, 2016),

el = /02 4402, (5.21a)

Qled) = Q, — 24D (1), (5.21b)

with €2, s given by egs. (4.34) and (4.35), Q, = é(t), with 6 given by eq. (4.25), and ¢V =
arctan [2€,/€2,]. We then numerically solve the Schrodinger equation for this Hamiltonian,
using the ParametricNDSolve built-in function from Mathematica to specifically obtain
the probability amplitudes for the three energy levels at the final desire time. Then, we
just take the square modulus of the amplitude of level |3), and obtain F' = Ps(t}). We set
t} = ts/a to compare these results with those obtained from the TR method through eq.

(5.20). Once these general definitions are presented, we can now proceed to the evaluations.

The first parameter against which fidelity is analyzed is the separation time (or

delay) between the pump and Stokes pulses. Knowing that ., = 2ty, we simply assume
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the change ty — to(1 + €), with € being the error parameter. The behavior of F' against
€ is plotted in figure 10. We observe that the time-rescaling STIRASP holds maximum
fidelity for the whole range, outperforming the counterdiabatic method in the region of

smaller delay.
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Figure 10 — Behavior of the fidelity of the TR STIRSAP (blue) and counterdiabatic
STIRSAP (red) against errors in the separation time between pulses. We used
the same parameters of fig. 5, with the exception of the original ¢ty of the
counterdiabatic protocol, taken as ¢ty = t;/8 for optimization.

We now analyze how fidelity is affected by errors in the amplitude of the pulses.
This is simply done by allowing the change Q,, — Q, (1 + ), with 8 being the error
parameter. The behavior of F' against [ is plotted in figure 11(a). In addition to the TR
and counterdiabatic accelerated inversions, we also plot the fidelity of a direct population
inversion between |1) — |3), performed by a 7 pulse. Again, the TR STIRSAP maintains
total fidelity throughout the range of error, outperforming the counterdiabatic method
for both increasing or decreasing values of amplitude, as well as the 7 pulse. In both the

amplitude and delay evaluations, the resonance condition was considered for all methods.

We finally analize how fidelity changes when we relax the resonance condition
(A = 0), for the TR method, counterdiabatic method and the application of 7 pulse.
This time, we consider not a error parameter, but a variation in the absolute value of the
one-photon detuning of dA. Figure 11(b) shows F' against A, where we again see the
superiority of the TR STIRSAP in comparison with the other methods.
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Figure 11 — Behavior of the fidelity of the TR STIRSAP (blue), counterdiabatic STIRSAP
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detuning. The same parameters of fig. 10 were used.

5.4 Thermodynamic Cost

5.4.1 Two-point Measurement Method

Besides speed and fidelity, a third important feature of a good STA is to have the
least additional thermodynamic cost to be performed, when compared to the reference
protocol. Differences in cost can be an important factor when considering which STA to

use in a particular experiment.

Here we shall calculate the average and standard deviation of the work cost of
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performing any given protocol through the framework of a “two-point measurement”
(TPM) (CAMPISI; HANGGI; TALKNER, 2011), following the steps given in (RIBEIRO;
LANDI; SEMIAO, 2016). Since we are working with a closed system, this turns out to be

the total thermodynamic cost.

Consider a system which is initially (¢ = 0) in thermal equilibrium with a heat

bath at temperature T, such that its initial state is a Gibbs thermal state given by,

¢—BFi,

pO) =2 ——Im{nl, (5.22)

with Z = 3, e #P4 being the partition function, 3 = 1/k,T (ks is the Boltzmann constant)
and E’ and |n) being the eigenvalues and eigenstates of the initial Hamiltonian, that

satisfies
H;|n) = E' |n). (5.23)

The first step consists in performing an energy measurement in this initial state, which
will yield one of the eigenvalues E! with probability P! = (n| 5(0) |n) = e=#Fn/Z. After

the measurement, the state of the system collapses in the associated eigenstate, |n).

Next, we isolate the system from the heat bath and apply the desired protocol, so
that the system evolves according to a evolution operator U (tf). At the end of the process
(t =ts), we perform a second energy measurement, the result being one the eigenvalues

E/J of the final Hamiltonian, H 7, satisfying,
Hy|m) = EJ, [m), (5.24)

with probability P/ = | (m|U(t;)|n) |*. Again, after the measurement the state of the
system collapses in the associated eigenstate, |m). Since the whole protocol was applied
while the system was isolated from its environment, the first law of thermodynamics tells
us that,

W = AU,

W=F/ -E. (5.25)

It is important to notice that, given the existence of intrinsic quantum fluctuations
(and possible thermal fluctuations), work must also be a fluctuating quantity. In other

words, equally performed experiments will result in different possible values of work. Since
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work becomes a random variable, we can derive some statistically useful information, such
as its average and standard deviation.. To do so, we first associate to the spectrum of

possible results of eq. (5.25), a probability distribution function given by,
Z PP, S[W — (B}, - E,)), (5.26)

with 0(z) being the Dirac delta function. We then take the Fourier transform of eq. (5.26),

which is easier to work with:

X@q::/+mf«moewwdmf:<a”Vy (5.27)

—00

The application of eq. (5.26) in (5.27) provides,
-3 [ PR o — (B, - B aw,

r) =Y Pl pierEL-EL)
n,m

—6E"

3 2 (€ " irEl  _irE!
= Sl 0 ) (5 ) ershee,

~ o ~ i e_ﬁEiL
) = 3 (1) ) D (S5 N 529

n,m

By considering equations (5.22), (5.23), and (5.24), eq. (5.28) becomes

X(r) =Y (n T (t)e™™s fm) (m| U (ty)e™""p(0) |n)

n,m

X(r) =37 (0| Ut (t)e™ 10 (15)e " p(0) [n)

n

X(r) = Tr{Ut(t5)e™ U (1)~ p(0)}. (5.29)

To proceed, we observe that the last term in eq. (5.27) allows us to re-write x(r)

in terms of the statistical moments of W, obtaining,

2

X(r) =1+ ir (W) = = (W2) + O(*). (5.30)
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We can also expand the exponential terms in eq. (5.29),

A A 2 A

¢l =1 +irf; — %H]% +O(r?), (5.31a)
- L2

e =1 —irfl; — S HE + O(°), (5.31b)

and insert them into eq. (5.29) to obtain,

A

2
x(r) = Tr{0 (1 +irH; — %H? + ) U (1 —irH; — %Hf + ) p(0)},

X(r) = Tr{U'0p(0)} + Tr{U" (irHy) Up(0)} + Tr{U'T (=irf;) p(0)} + Tr{Ut(ir H ;)T

(<)) + Tr (O (=5 3 ) 090 + (010 (=2 0+ .

Since the operation of trace remains invariant under cyclical permutations, we can re-

arrange the terms in the second and fifth terms to obtain,

_r
2
+Tr{UTUA?p(0)} — 20+ {UTH;UH;p(0)}] + O(®).

\(r) = Tr{TTp(0)} + ir{Tr{ B, Up0)01} — TH{TTO H,(0)}] — S [Tr{E20p(0)01}+

Considering that p(t) = Up(0)UT and (A) = Tr{Ap} (SAKURAI; NAPOLITANO, 2021),

we have that

2 A

S [(H7),

5 (D), — 20 {U H U H;p(0)}]+O(r*), (5.32)

x(r) = V+irl(Hp),, — (), ] - f

where ()

;, means the average taken at ¢t = ¢;, with p = p(t;).
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By comparing equations (5.29) and (5.32), we obtain,

(W) = (Hy),, = (Hi)y (5.33)

which is the average work cost, and

(W2 = (H}), + (H?), —2Tr{UHUH;5(0)}. (5.34)

ty ?
Now, since the standard deviation is defined by
AW =\ (W2) — (W)?, (5.35)

we obtain from equations (5.33) and (5.34) that,

5.4.2 Evaluation of Cost for Reference and TR Protocols

In section 3.4 we showed that one of the necessary features to construct the TR
Hamiltonian is that it coincides with the reference Hamiltonian at the beginning and
at the end of the protocol. Also, in section (5.1), we showed that the time evolutions
associated with the reference and TR protocols are equivalent. Analyzing egs. (5.33) and
(5.36) under this light allows us to conclude, then, that

W= W)es s (5.37)
and

AWrg = AW, (5.38)
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Hence, there is no extra thermodynamic cost in performing a TR accelerated protocol,
when compared to the reference one. These are general results, applicable to any protocol
designed via the time-rescaling method. They were first demonstrated in (ANDRADE;
FRAN¢A; BERNARDO, 2022).

It is important to connect these results with our object of study - the acceleration of
the STIRAP. First, although the Hamiltonian of the STIRAP comprizes atom + external
radiation, the measurements are only performed in the system, so that eqs. (5.33) and
(5.36) must be evaluated according to the undisturbed Hamiltonian of the atom. From eq.

(4.7), and considering the two-photon resonance condition,

E, 0 O
[A{atom = 0 E2 0 . (539)
0 0 FEs

Next, we cannot work with an initial thermal state. Hence, upon realizing the first
energy measurement in an ensemble of equally prepared systems, we can only use those
whose measurement results are 0 - meaning that the post-measurement state (and our
initial state to apply the protocol) is |1) = |ng(0))® (see section 4.4). Also, at the end
of the protocol, the state obtained is pure and an eingenstate of the final Hamiltonian,
meaning that there is only one possible value for the second energy measurement: Fj

(since |ng(ty)) = |3)). The lack of quantum uncertainty results in,
AWrpres = 0. (5.40)
From this and from equation (5.33), we conclude simply that,
(W)gpees =W = By — i, (5.41)

or, in terms of the frequencies of the external pump and Stokes radiation fields exerting

work in the system,

W = h(w, — ws). (5.42)

3 Since level |1) has the lowest energy, working at low temperatures increases the probability of obtaining

it upon first measurement (see equation (5.22)).
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6 Conclusion

The adiabatic theorem is a useful tool of control in quantum dynamics. Once it is
satisfied, it guarantees that a system starting in a given eingenstate of its Hamiltonian,
will be kept in this same eingenstate throughout the process, a feature desirable in
several protocols. However, the large times required to follow the adiabatic protocol,
result in undesirable effects such as decoherence. In this lies the usefulness of Shortcuts
to adiabaticity, methods which allow the preservation of useful adiabatic properties, but

acting during much shorter time periods.

In this work we analyzed in more detail the time-rescaling (TR) protocol. It is
a considerably simple method to perform a STA, since it requires no knowledge of the
instantenous eingesntates of the reference Hamiltonian, but merely its modification through
a suitable rescaling function. An apparent complication of this method was that, if the
system started in an eigenstate of the reference Hamiltonian, it guaranteed that it would
return to that same eingenstate at the end of the process, but not that it would remain in
the eingenstate throughout the process. This could give rise to possible transitions along
the process, which would require solving the sometimes complicated Schrédinger equation

when attempting to obtain the behavior of the system during the protocol.

Our first important result was to show that such complication is not real. Through
the transitionless proof in section 5.1, it was shown that the system follows, through
a TR-driven dynamics, the same path as the reference protocol and more, that if this
reference obeyed the adiabatic theorem, there were no transitions between eingesntates
during the application of the TR-based protocol. This allows us not only to know the
route of the system in Hilbert space, but also the time behavior of the population of the
states during the protocol in simpler ways, such as known probability functions obtained
in the reference case. This seems to be the last piece to show that the TR method has no
down-sides when compared to the counterdiabatic method, and is a viable and competitive

approach to generate different types of accelerated dynamics.

The second important result was to successfully apply the machinery of the TR
dynamics to speed up the STIRAP protocol, the most efficient method to adiabatically
perform total population inversion in three-level systems. We showed that such realization
requires a simple modulation of the laser pulses of the reference protocol, and a modulation
of the one-photon detuning (becoming even experimentally simpler by choosing to work in
the resonance condition, A = 0). Since the amplitudes of the new pulses increase with the
contraction parameter a, there is a practical restriction on how fast the protocol can be

performed, tied with the intensity achievable in lasers. However, this restriction becomes
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important only for values of a up to 30, when the protocols reach an operation time of a

few nanoseconds.

We also analyzed two important characteristics of this new speed up protocol:
the fidelity and thermodynamic cost. For the fidelity, it was shown to remain high upon
systematic errors in experimental parameters such as the delay between pulses, the pulses’
amplitudes and variations of detuning, provided that the counterintuitive ordering and
adiabatic conditions (for the reference protocol) were preserved. By comparing it with the
counterdiabatic case and the direct inversion via 7 pulse, the TR protocol was shown to be
the most robust among them. The brief discussion of thermodynamic cost made use of the
two-point measurement technique, and showed that both the TR and the counterdiabatic
STIRSAPs have the same average work than the reference protocol, being equivalent when

choosing which protocol to use based on energetic cost.

These results warrant concluding that fast, total population inversion can be
achieved with high fidelity, no additional fields and no additional thermodynamic cost
through a TR dynamics. The method, then, becomes one of the available tools in the
literature to generate controlled population changes in atomic systems, a fundamental
feature in preparing qubit states or constructing logical gates in quantum computers.
Further, we added to the simplicity of the TR method, the additional feature of being

transitionless.

Apart from the merits in its own results, it is expected that this work can motivate
further investigations into the properties of the TR method, as well as its application in
more complex problems, where no (or harder) solutions to promote accelerated controlled
dynamics exist. The article resulting from this work was submitted for publication under
the title “Shortcuts to adiabaticity designed via time-rescaling follow the same transitionless
route”; and is currently available in Preprint (FERREIRA et al., 2024).



71

Bibliography

AGNESI, A.; REALIL G. Encyclopedia of Condensed Matter Physics. 2. ed. [S.1]: Elservier,
2024. v. 4. Citado na pagina 15.

ANDRADE, J. S.; FRAN¢A, A. F. S.; BERNARDO, B. L. Shortcuts to adiabatic
population inversion: stability and thermodynamic cost. Sci. Re p., v. 12, n. 11538, 2022.
Citado 4 vezes nas paginas 15, 32, 51, and 68.

ASSEMAT, E. Hamiltonian singularities in the stirap process. Presentation at Weizmann
Institute of Science, n. 3-5, 2013. Citado na pagina 37.

AVRON, J. E.; SEILLER, R.; YAFFE, L. G. Adiabatic theorems and applications to the
quantum hall effect. Comm. Math. Phsy, v. 110, n. 33-49, 1987. Citado na pagina 26.

BENENTI, G. et al. Principles of Quantum Computation and Information: A
Comprehensive Textbook. 2. ed. [S.1.]: World Scientific Publishing Company, 2019. v. 1.
Citado 2 vezes nas paginas 15 and 61.

BERGMANN, K. et al. Roadmap on stirap applications. J. Phys. B: Ato. Mol. Phys.,
v. 52, n. 202001, 2017. Citado na pagina 35.

BERGMANN, K.; VITANOV, N. V.; SHORE, B. W. Perspective: stimulated raman
adiabatic passage, the status after 25 years. J. Chem. Phys., v. 142, n. 170901, 2015.
Citado na péagina 40.

BERNARDO, B. L. Time-rescaled quantum dynamics as a shortcut to adiabaticity. Phys.
Rev. Res., v. 2, n. 013133, 2020. Citado 4 vezes nas paginas 14, 27, 32, and 51.

BERRY, M. V. Transitionless quantum driving. J. Phys. A: Math. Theo., v. 42, n. 36,
2009. Citado na pagina 27.

BORN, M.; FOCK, V. Proof of the adiabatic theorem. Zei. fir Phy., v. 51, n. 165-180,
1928. Citado na pagina 23.

BOSSMANN, L.; GRUMMT, R.; MARTIN, K. On the dipole aprroximation with error
estimates. Lett. Math. Phys., v. 108, p. 185-193, 2018. Citado na pagina 19.

BRASLAVISKY, E. Glossary of Terms Used in Photochemistry. 1. ed. [S.1.]: TUPAC, 2007.
Citado na péagina 20.

CAMPISI, M.; HANGGI, P.; TALKNER, P. P. colloquium: Quantum fluctuation relations:
Foundations and applications. Rev. Mod. Phys, v. 83, n. 771-791, 2011. Citado na pagina
64.

CHEN, B.; WANG, J.; ZHOU, Y. Quantum control and its application: A brief
introduction. J. Phys.: Conf. Ser, v. 1802, n. 022068, 2021. Citado na pagina 13.

CHEN, X. et al. Shortcut to adiabatic passagem in two and three-level atoms. Phys. Rewv.
Lett., v. 105, n. 12003, 2010. Citado 2 vezes nas paginas 29 and 47.



72 Bibliography

CHEN, X.; MUGA, J. G. Engineering of fast population transfer in three-level systems.
Phys. Rev. A, v. 86, n. 033405, 2012. Citado na pagina 29.

CHEN, X. et al. Fast optimal frictionless atom cooling in harmonic traps: Shortcuts to
adiabaticity. Phys. Rev. Lett., v. 104, n. 6, 2010. Citado na pagina 26.

CHEN, Y. et al. Shortcuts to adiabaticity for the quantum rabi model: efficient generation
of giant entangled cat states via parametric amplification. Phys. Rev. Lett., v. 126, n. 2,
2021. Citado na pagina 29.

COURTEILLE, P. W. Atom-light interaction and basic applications. Lecture Notes,
ICTP-SAIFR School on Interaction of Light with Cold Atoms, p. 7-10, 2023. Citado na
pagina 17.

COUVERT, A. et al. Optimal transport of ultracold atoms in the non-adiabatic regime.
Furophys. Lett., v. 83, n. 13001, 2008. Citado na pagina 13.

DAVIS, W. A.; METCALF, H. J.; PHILLIPS, W. D. Vanishing electric dipole transition
moment. Phys. Rev. A, v. 19, n. 700, 1979. Citado na pagina 43.

DEMIRPLAK, M.; RICE, S. A. Adiabatic population transfer with control fields. J. Phys.
Chem. A, v. 107, n. 46, 2009. Citado 2 vezes nas paginas 26 and 27.

DIAL, O. Eagle’s quantum performance progress. 2022. Disponivel em: <https:
//www.ibm.com/quantum /blog/eagle-quantum-processor-performance,22 April2024>.
Citado na pagina 13.

DJOTYAN, G. P. et al. Population transfer in three-level A atoms with doppler-broadened
transition lines by a single frequency-chirped short laser pulse. Jour. J. Opt. Soc. Am. B.,
v. 17, n. 107-113, 2000. Citado na pagina 35.

DOERY, M. R. et al. Population accumulation in dark states and subrecoil laser cooling.
Phys. Rev. A, v. 52, n. 2295, 1995. Citado na pagina 43.

DU, Y. et al. Experimental realization of stimulated raman shortcut-to-adiabatic passage
with cold atoms. Nat. Commun., v. 7, n. 12479, 2016. Citado na péagina 47.

FARHI, E. et al. Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106,
2000. Citado na péagina 13.

FERREIRA, J. L. M. et al. Shortcuts to adiabaticity designed via time-rescaling follow
the same transitionless route. arXiw:2406.07433 [quant-ph/, 2024. Citado na pagina 70.

FOX, M. Quantum Optics, An Introduction. 1. ed. [S.1.]: Oxford University Press, 2006.
Citado 2 vezes nas péaginas 21 and 46.

FRANcA, A. F. S.; ANDRADE, J. S.; BERNARDO, B. L. Speeding up quantum
dynamics by adding tunable time-dependent hamiltonians. Quant. Inf. Proc., v. 21, n. 171,
2022. Citado na péagina 27.

FUJII, K. Introduction to the rotating wave approximation: two coherent oscillations.
Jour. Mod. Phys., v. 48, n. 12, 2017. Citado na pagina 38.

FaRST, H. A. et al. Controlling the transport of an ion: classical and quantum mechanical
solutions. N. Jou. Phys., v. 16, n. 075007, 2014. Citado na pagina 13.


https://www.ibm.com/quantum/blog/eagle-quantum-processor-performance, 22 April 2024
https://www.ibm.com/quantum/blog/eagle-quantum-processor-performance, 22 April 2024

Bibliography 73

GARDINER, D. J.; GRAVES, P. R. Practical Raman Spectroscopy. 1. ed. [S.1.]:
Springer-Verlag, 1989. Citado na pagina 34.

GENES, C. Quantum physics of light-matter interactions. Lectures for FAU, Max Planck
Institute for the science of light, p. 10-11, 2007. Citado 2 vezes nas paginas 19 and 20.

GRIFFITHS, D. J. Introduction to Quantum Mechanics. 3. ed. [S.1.]: Pearson Prentice
Hall, 2019. Citado 5 vezes nas paginas 9, 15, 17, 23, and 26.

GUéRY-ODELIN, D. et al. Shortcuts to adiabaticity: concepts, methods and applications.
Rev. Mod. Phys., v. 91, n. 045001, 2019. Citado 2 vezes nas paginas 26 and 27.

HAYASHI, K.; KUGO, T. Everything about weyl’s gauge field. Prog. Theor. Phys., v. 61,
n. 1, p. 334-346, 1979. Citado na pagina 19.

HECHT, E. Optics. 5. ed. Harlow, England: Pearson, 2017. 588-609 p. Citado na pagina
13.

HUBER, B. et al. Ghz rabi flopping to rydberg states in hot atomic vapor cells. Phys.
Rev. Lett., v. 107, n. 243001, 2011. Citado na pagina 57.

JACKSON, J. D. Classical Electrodynamics. 1. ed. [S.1.]: Wiley, 1998. Citado na pagina
19.

KATO, T. On the adiabatic theorem of quantum mechanics. Jour. Phy. Soc. Jap., v. 6,
n. 435, 2021. Citado na péagina 23.

KERESZTURY, G. Handbook of vibrational spectrocopy. 1. ed. [S.1.]: Wiley, 2002. Citado
na pagina 33.

KEYLON, D. C.; DEPOALA, D. Coherent excitation. Lectures Notes, REU program,
KSU, n. 4-6, 2015. Citado na pagina 37.

KUKLINSKI, K. R. et al. Adiabatic population transfer in a three-level system driven by
delayed laser pulses. Phys. Rev. A, v. 40, n. 11, 1989. Citado 3 vezes nas paginas 14, 35,
and 47.

LAKEHAL, H.; MAAMACHE, M.; CHOI, J. Novel quantum description for nonadiabatic
evolution of light wave propagation in time-dependent linear media. Sci. Rep., v. 6, n.
19860, 2016. Citado na pagina 27.

LI, Y.; CHEN, X. Shortcut to adiabatic population transfer in quantum three-level
systems: effective two-level problems and feasible counterdiabatic driving. Phys. Rev. A,
v. 94, n. 063411, 2016. Citado 6 vezes nas paginas 9, 29, 30, 47, 56, and 61.

MALINOVSKY, V. L.; KRAUSE, J. L. General theory of population transfer by adiabatic
rapid passage with intensed, chirped laser pulses. Fur. Phys. J. D., v. 14, n. 147-155, 2001.
Citado na péagina 26.

MCCREERY, R. L. Raman spectroscopy for chemical analysis. 1. ed. [S.1.]: Jon Wiley and
Sons, 2000. Citado na pagina 34.

MEYER, A. et al. Tailoring ultrasonic beams with optoacoustic holography. Proc. SPIFE,
n. 4969, 2003. Citado na pagina 56.



74 Bibliography

MIE, G. On the absorption of elecromagnetic waves. Ann. der Phys., v. 330, n. 3, 1908.
Citado na pagina 33.

POGGIANI G. Z. LI, R.; TESTERA, G.; WERTH, G. Adiabatic cooling of ions in the
penning trap. Phy. Ato. Mol. Clus., v. 22, n. 375-382, 1991. Citado na pagina 26.

RAIMOND, J. M.; BRUNE, M.; HAROCHE, S. Manipulating quantum entanglement
with atoms and photons in a cavity. Rev. Mod. Phys., v. 73, n. 565, 2001. Citado na
pagina 13.

RAMAN, C. V. A new radiation. Ind. Jour. Phys., v. 2, n. 387-398, 1928. Citado na
pagina 33.

RIBEIRO, W. L.; LANDI, G. T.; SEMIAO, F. L. Quantum thermodynamics and work
fluctuations with applications to magnetic resonance. Am. J. Phys., v. 84, n. 948-957,
2016. Citado na péagina 64.

ROYCHOWDBURY, A.; DEFFNER, S. Time-rescaling of dirac dynamics: Shortcuts to
adiabaticity in ion traps and weyl semimetals. Entropy, v. 23(1), n. 81, 2021. Citado na
pagina 32.

SAKURAL J. J.; NAPOLITANO, J. Modern Quantum Mechanics. 3. ed. [S.1.]: Cambridge
University Press, 2021. Citado 2 vezes nas paginas 25 and 66.

SANTOS, A. C.; D., S. R.; SARANDY, M. S. Shortcut to adiabatic gate teleportation.
Phys. Rev. A, v. 93, n. 012311, 2016. Citado na pagina 13.

SANTOS, A. F. d. et al. Influence of polarization and the environment on wave—particle
duality. Quan. Inf. Proces., v. 22, n. 63, 2023. Citado 2 vezes nas paginas 13 and 26.

SCHLOSSHAUER, M. Decoherence and the Quantum-To-Classical Transition. 1. ed. [S.L]:
Springer, 2007. Citado na péagina 26.

SHANKAR, R. Principles of Quantum Mechanics. 1. ed. [S.1.]: Kluwer Academic/ Plenum
Publishers, 1994. Citado 2 vezes nas paginas 17 and 19.

SHIMADA, K. et al. Spectrum shuttle for producing spatially shapable ghz burst pulses.
Adv. Pho. Nex., v. 3, n. 016002, 2023. Citado na pagina 57.

SHORE, B. W. Picturing stimulated raman adiabatic passage: a stirap tutorial. Adv. Opt.
Phot., v. 9, n. 563-719, 2017. Citado 7 vezes nas paginas 10, 14, 35, 43, 45, 47, and 60.

STRUTT, J. W. On the light from the sky, its polarization and colour. The Lon. Edim.
and Dub. Phylo. Mag. and Jour. Sci., v. 41, n. 271, 1871. Citado na pagina 33.

SUTER, D.; ALVAREZ, G. A. Protecting quantum information against environmental
noise. Rev. Mod. Phys., v. 88, n. 041001, 2016. Citado na pagina 26.

THAKURIA, D. et al. Generalised quantum speed limit for arbitrary time-continuous
evolution. J. Phys. A: Math. Theor., v. 57, n. 025302, 2024. Citado na pagina 57.

TORRONTEGUI, E. Energy consumption for shortcuts to adiabaticity. Phys. Rev. A,
v. 96, n. 022133, 2017. Citado na pagina 27.



Bibliography 75

TORRONTEGUI, E. et al. Shortcuts to adiabaticity: Fast-foward approach. Phys. Rev. A,
v. 86, n. 013601, 2013. Citado na pagina 27.

UHLMANN, A. An energy dispersion estimate. Phy. Lett. A, v. 161, n. 329, 1992. Citado
na pagina 57.

VITANOV, N. V. et al. Coherent manipulation of atoms and molecules by sequential laser
pulses. Adv. Atom. Mol. Opt. Phys., v. 46, 2001. Citado 5 vezes nas paginas 14, 35, 43,
45, and 47.

VITANOV, N. V. et al. Stimulated raman adiabatic passage in physics, chemistry and
beyond. Rev. Mod. Phys., v. 89, n. 015006, 2017. Citado 3 vezes nas paginas 14, 35,
and 43.

VOLYA, D.; MISHRA, P. State preparation on quantum computers via quantum steering.
Trans. Quan. Eng., v. 5, n. 3100714, p. 1-14, 2024. Citado na pagina 13.

WANG, Y. et al. Realization of population inversion between 7sy/, and 6ps/, levels
of cesium for four-level active optical clock. Sci. China Phys. Mech. Astron., v. 56, n.
1107-1110, 2013. Citado na pagina 13.

YAMAGUCHI, J. et al. Estimation of shor’s circuit for 2048-bit integers based on
quantum simulator. Cryptology ePrint Archive, n. 2023/092, 2023. Citado na péagina 14.

YIN, Z. et al. Shortcuts to adiabaticity for open systems in circuit quantum
electrodynamics. Nat. Comm., v. 13, n. 188, 2022. Citado na pagina 26.

YONEDA, J. et al. Coherent spin qubit transport in silicon. Nat. Comm., v. 12, n. 4114,
2021. Citado na péagina 13.

ZHOU, H. et al. Floquet-engineered quantum state transfer in spin chains. Sci. Bul.,
v. 64, n. 13, 2019. Citado na pagina 29.

ZWIEBACH, B. Lectures on quantum physics iii. MIT Open Course Ware, p. 7377, 2018.
Citado na péagina 17.



	b5dc283ced0174c3cadaac16772d79ee61c38b002f7884bdead6042b19e58185.pdf
	Time Rescaling as a Shortcut to Adiabatic Population Transfer in Quantum Three-level Systems
	47775b297e254a197f70d71794b698bfb3631ac34f369a23262709b85de14626.pdf

	Ao  x do ano 2007, às x  horas, na sala de reuniões do Departamento de Física do Centro de Ciências Exatas e da Natureza da Universidade Federal da Paraíba, reuniram-se os membros da Banca Examinadora constituída para examinar o candidato ao grau de Mest
	b5dc283ced0174c3cadaac16772d79ee61c38b002f7884bdead6042b19e58185.pdf

