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Resumo

Modelos análogos fornecem uma promissora fonte de estudos para sistemas astrof́ısicos, tais

como buracos negros e objetos compactos exóticos. Ao contrário dos objetos astrof́ısicos

propriamente, os sistemas análogos podem ser adequadamente preparados para experimentos

controlados em laboratório de modo a investigar sua dinâmica. As seções de choque e outras

propriedades de espalhamento podem então ser mensuradas. Os resultados finais podem

então ser comparados com os previstos para o caso astrof́ısico, e novos insights f́ısicos podem

emergir. Nesta tese, relatamos quatro resultados distintos. Primeiro, revisamos o problema

direto da teoria de perturbação linear de buracos negros e objetos compactos exóticos sem

horizonte, tanto no cenário astrof́ısico quanto em termos de seus sistemas análogos. A partir

dáı, deduzimos as formas de onda emitidas por esses objetos perturbados. Ao confrontar

esses sinais, uma assinatura direta da refletividade do núcleo dos objetos compactos exóticos

sem horizonte é deduzida, derivando uma importante smoking-gun para distingui-los dos

buracos negros. Em segundo lugar, descrevemos um método semiclássico e não-paramétrico

que permite a reconstrução do potencial efetivo a partir do conhecimento dos coeficientes

de espalhamento. Terceiro, estendemos este método para potenciais dependentes da energia

para resolver o problema de sistemas com rotatação. Por último, aplicamos esta extensão

para estudar o problema inverso de sistemas análogos que admitem rotação e condições

de contorno dependentes de energia. Ao estender tais resultados, fornecemos uma receita

que permite relacionar espectros de transmissão ressonante com um potencial equivalente e

reconstruir a condição de contorno no núcleo da fonte de espalhamento. Para demonstrar a

precisão e o escopo do nosso método, nós o aplicamos ao vórtice de drenagem imperfeito em

rotação, que foi proposto como um sistema analogo para objetos astrof́ısicos extremamente

compactos. Conclúımos que a capacidade de reconstruir potenciais e condições de contorno

dependentes da energia pode ser de interesse para estudos experimentais de tais sistemas.
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Abstract

Analog gravity models provide an insightful source of study for the qualitative key properties

of astrophysical gravitating systems, such as black holes and exotic compact objects. Unlike

distant astrophysical compact objects, analog gravity systems can be properly prepared for

lab-controlled table-top experiments to investigate their dynamics. Cross-sections and other

scattering properties can then be assessed by careful experiments and precise measurements.

This obtained data can be compared with what was expected to be gotten from the as-

trophysical objects, and new physical insights can emerge. In this thesis, we report four

distinct results. First, we summarize the direct problem for the linear perturbation theory of

black holes and exotic horizonless compact objects, both in the astrophysical scenario and in

terms of analog gravity systems. We derive the ringdown waveform signals emitted by those

perturbed objects from that description. By confronting these signals, a direct signature of

the exotic compact horizonless objects’ core-reflectivity is detached, deriving an important

smoking gun for distinguishing them from black holes. Second, we outline a semiclassical,

nonparametric method that allows for the reconstruction of the effective scattering potential

from the knowledge of the scattering coefficients. Third, we extend this method for energy-

dependent scattering potentials to address the problem of rotating systems. Lastly, we apply

this extension to study the inverse problem of analog gravity systems which admit rotation

and energy-dependent boundary conditions. By extending our previous results, we provide a

recipe that allows one to relate resonant transmission spectra with effective WKB-equivalent

potentials and even reconstruct the boundary condition at the core of the scattering source.

To demonstrate the accuracy and scope of our method, we apply it to a rotating imperfect

draining vortex, which has been proposed as an analog system to astrophysical extreme com-

pact objects. We conclude that the capability to reconstruct energy-dependent potentials

and boundary conditions could be of interest to experimental studies of such systems.
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Chapter 1

Introduction

1.1 Introduction

In 1915, Albert Einstein published two seminal papers, “On the General Theory of Rel-

ativity”[5] and “The Field Equations of Gravitation”[6], generalizing his special theory of

relativity [7].Through the equivalence principle, relating accelerated reference frames to ref-

erence frames experiencing a gravitational field, Einstein was able to formulate a brand new

theory for the gravitational phenomenon. This theory offered a new explanation for why

objects fall into the ground when we leave them in the air and why the Earth orbits around

the Sun, among several phenomena of nature.

According to Einstein’s theory, gravity was no longer explained by the concept of force,

such as in the Newtonian theory. Instead, the dynamical effect of gravity on the movement

of bodies results from a distortion (read curvature) in spacetime. This curvature, in turn,

is caused by the presence of matter and energy near that moving body. The body keeps

following its free motion as described by a minimum path (read geodesic) in the background

spacetime, but this background spacetime, however, is curved due to the presence of a mass-

energy distribution from another massive body, readily the gravitational attractor, such as

another star or planet for example.

The first success of that new gravitational theory was its ability to explain a phenomenon

1



that the Newtonian theory failed to describe: the precession of Mercury’s orbit [8]. Never-

theless, as the history of science had already taught us at that time, for a physics fundamen-

tal theory to be the accurate scientific explanation behind any natural phenomena, it must

achieve more than only explaining already existing problems. In fact, this new theory should

also predict new features. Fortunately, this prediction indeed happened, and only four years

later. In an observation of a total solar eclipse conducted in the Brazilian city of Sobral

(situated, approximately, five hundred miles away from my university, UFPB), in 1919 [9], it

was confirmed a new phenomenon predicted by Einstein’s theory: the gravitational bending

of light. This was the first prediction of Einstein’s theory of general relativity (GR) that was

experimentally demonstrated by observations.

The general relativity theory reached some other experimental proofs in the following

years. In 1959, forty years later, an experiment proposed by Robert Pound and Glen Rebka

[10] allowed them to measure the redshift of light caused by the acceleration of a moving

rocket. The equivalence principle, the physical fundamental idea behind Einstein’s theory,

was fundamental for the explanation of this experiment’s results. Next, sensible experiments

were realized in 1976 [11], and once again in 2004 (with more accuracy) [12], confirmed

another important prediction of Einstein’s GR theory, which concerns the fact that the

Earth’s rotation warped the spacetime around the planet [13].

A few years later, recent studies on the distortion of light coming from distant galaxies

[14, 15, 16], and crossing other massive astrophysical objects on their way to Earth proved

another important prediction of General Relativity Theory: the gravitational lensing. The

image captured by NASA’s James Webb Spatial Telescope [17] in Fig. 1.1 shows us clearly

this phenomenon.

Finally, the most recent pieces of evidence, accounting for General Theory of Relativity’s

scientific validation, were the two predictions most relevant for the research purposes of this

thesis. The first one is an astrophysical object, the black Hole (BH), which is by far the

most mysterious object in nature. The second is the GR prediction, which led to one of the
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Figure 1.1: The combined mass of this galaxy cluster acts as a gravitational lens.
Image Credit: NASA, ESA, CSA, and STScI.

most important scientific discoveries of all time: the existence of gravitational waves (GW).

These waves are propagating ripples in the fabric of spacetime caused by ’violent’ processes

in the Universe. They were firstly detected in 2015 [18]. Since then, other gravitational

wave signals from the binary merger of compact objects have also been detected [19, 20, 21,

22, 23, 24, 25]. It is expected that in the upcoming years gravitational waves astronomy

will provide one of the most important tools for humankind to observe the Universe. The

perspective of a prospective laser interferometer space antenna (LISA) [26] in the next few

years reinforces this idea.

In the following, we will briefly introduce both black holes (BHs) and gravitational waves

(GWs). Then, we shall study them conceptually in further detail in the following two chap-

ters. Before that, however, we might need to emphasize their role in GTR phenomenology.

Black Holes and Gravitational Waves form the core of the phenomenological investigation

toward testing general relativity’s accuracy. We can cite, for example, the gravitational

waves from merging black hole binaries [18, 27], and the images of black holes in M87*

and Sgt A* at the center of our galaxy as important observational milestones for such

phenomenological endeavor. Although much success and convincing pieces of evidence for

GTR have been achieved by those observational breakthrough discoveries, the astronomical

limitations imposed by the large distances between our ground-based detectors and those

astrophysical sources make some key features of this theory extremely hard, if not impossible,

to assess. However, it is in the physicists’ interest to probe those effects and observe their
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signatures to further establish the validity of general relativity theory.

On the phenomenology of black holes, for example, we can cite the quasi-thermal radi-

ation emitted by those astrophysical objects. This radiation was theoretically predicted by

Hawking [28], and it is a very relevant physical phenomenon since it lies on the interface

between GR and quantum field theory, another fundamental physical theory. The study of

the scattering of matter fields around black holes is another problem that is hard to assess

with the currently available observational methods. Particularly within this theory, another

very important prediction, which is the scattering amplification of fields around spinning

black holes [29], remains missing as a fundamental piece of evidence from Einstein’s theory

of gravity. Lastly, a third and even more fundamental phenomenological window for testing

GR with black holes comes from probing their most elementary feature. Black holes are es-

sentially ’black’ due to the existence of an intrinsically limiting surface called event horizon.

This surface delimits a region of spacetime in which not even light can escape the strong

gravitational attraction from those extremely compact objects. Probing the existence of the

black hole’s event horizon means probing this object’s existence itself, which in turn means

probing general relativity.

Aiming to tackle those phenomena and accept those observational limitations, some re-

searchers have proposed a completely new approach for this endeavor. This phenomenological

alternative consists of emulating astrophysical phenomena in a laboratory setting employing

analog systems to the astrophysical ones. This brand-new field of physical investigation is

called analog gravity, and it provides exciting and complementary ways to study qualitatively

similar phenomena [30, 31, 32, 33], but based on much simpler underlying physics. Those

analog systems are physical systems with a completely different nature, which could in prin-

ciple be classical fluids [30, 34] or even mesoscopic quantum systems, such as Bose-Einstein

condensates [35, 36]. Those systems are arranged in a particular way in which they reproduce

key effects that were only expected to exist in the astrophysical scenario. Among key effects

that we previously mentioned that could not be directly measured for astrophysical black
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holes, some of them can be mimicked in analog systems. For example, we can cite: Hawking

radiation [37, 38, 39, 40, 41, 42, 43, 44]; the physical profile of wave scattering through a

black hole, including the superradiance on rotating black holes [45]; back-reaction effects

[46]; and quasinormal modes, which have been experimentally investigated in an acoustic

analog black hole setup in Ref. [47]. More than reproducing key properties of their associated

actual systems in the laboratory, analog systems must also be easy to manipulate and probe

with the available technologies.

Furthermore, in recent years, the question concerning the phenomenological signature of

the BHs’ event horizon was also formulated into the study of analog systems [48]. There

are some expectations that analog systems can also qualitatively tackle this fundamental

problem in an easier way. In order to understand how this problem is posed for analog

gravity systems, we first need to understand its formulation in the astrophysical scenario.

We know theoretically that the major part of the key properties from black holes’ scat-

tering and emission of gravitational radiation are related to their light-ring rather than its

event horizon [49]. So, the question concerning the existence of the black hole’s event horizon

surface was pointed out in literature in recent years [50, 51, 52, 53, 54, 55, 56, 57]. While

we cannot fully assert that the event horizon is indispensable for the observational findings

obtained so far, different theoretical proposals of extremely compact objects mimicking black

holes’ observational signatures have been proposed [58, 51, 59, 60, 61, 50], they are the so-

called exotic compact objects, or exotic horizonless compact objects. Among them, we can

cite the proposed models for boson stars, such as scalar stars [62, 63, 64, 65, 66] and Proca

stars [67, 68, 69]; constant density stars [70, 71, 72, 73]; and more recently, black holes with

quantum horizons [74, 75, 76, 77, 78], which are mainly motivated by quantum spacetime

theories.

In the context of analog gravity, a system with such properties has been proposed in

Ref. [48] and consists of an imperfect draining vortex. The motivation for this model came

from an analog gravity experiment with a classical fluid vortex, conducted by the Gravity
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Group from Nottingham [79]. The detection of a fundamental core reflectivity, due to non-

vorticity effects close to the vortex’s core was pointed out by Theo Torres in Ref. [80].

While Theo’s argument could naturally disqualify the bathtub draining vortex as a natural

candidate for a black hole analog gravity system, which was what it was originally meant

to, some authors [48] have proposed that this core reflectivity could promote this same

system as an analog gravity system to an exotic horizonless compact object instead. In

that framework [48], the observational consequences of such a system have been studied

for fluid perturbations. These include transmission and reflection coefficients and possible

superradiant features. That formal treatment yields what we call the “direct problem” in

the following.

This framework in Ref. [48] has added a new body to the discussion of the phenomenology

of the event horizon, but now in terms of the analog gravity systems approach. Its outlining

discussion provided the most important theoretical motivation for this thesis. Our main idea

here, however, concerns reproducing the lab results obtained from the imperfect draining

vortex and reconstructing the key properties of the analog system’s original source. For

that goal, we rely on a specific set of tools, called inverse method. If analog exotic compact

objects can be realized in laboratory experiments and transmission/reflection coefficients can

be measured, how could one use them to study their properties through the inverse problem?

The inverse method referred to here consists of a set of techniques and inverted semi-

analytical formulas that provide us with mathematical tools for reconstructing key properties

of the scattering source. In our case here, the inverse method we develop allows us to re-

obtain the associated effective scattering potentials, which produce the scattering results we

use as input. In chapters 5 and 6, we describe this inverse method for energy-independent

potentials, while in chapter 7, we present our extension of the same techniques for the case

with energy-dependent potentials, which helps us deal with cases where the scattering source

is rotating. This last application is reserved for chapter 8.

In the following section, we briefly introduce black holes and discuss the phenomeno-
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logical efforts toward their observations. We also point out challenges such as testing the

existence of their event horizons. Then, we also discuss gravitational waves. In the following

section, analog systems are introduced as a new approach to testing GTR predictions in the

laboratory. Finally, the last section discusses how we structure this thesis.

1.2 Black Holes and Exotic Compact Objects

Black Holes were first proposed theoretically by Schwarzschild in 1916 [81], when he obtained

the first analytical solution for Einstein’s field equations. These solutions described the

spacetime around a compact, static, and spherically symmetric object. The spacetime in

the neighborhood of this object had a removable singularity at a spacelike spherical surface

centered on the compact object. To the physicists surprise, the radius of this spherical surface

happened to be a very specific value. This value was later called “Schwarzschild radius” and

it defines the exact distance from the center of the massive object to which not even the

light can escape from the strong gravitational pull created by this compact object. For that

reason, this solution was later called by Wheeler [82] ’the static spherical Black Hole’, and

the spherical surface defined by Schwarzschild’s radius was called ’Event Horizon’.

Later, Robert Kerr also found a theoretical model of a rotating black hole solution for Ein-

stein’s field equation [83], which described what is called ’the rotating Black Hole’. Together

with Kerr-Newman solution [84] and Reissner-Nordstrom solution [85, 86], those mathemati-

cal solutions form the basic black hole spacetime solutions of Einstein’s field equations. They

describe the equilibrium states of black holes.

Subsequently, in 1973, J. M. Bardeen, B. Carter and S. Hawking [87] formulated the basic

four laws of black hole mechanics, describing the dynamics of black holes in terms of only

three parameters: their mass, charge, and angular momentum. The laws of transformations

for the equilibrium states of black holes were then formulated. A strong similarity between

these four laws of black hole mechanics and the four laws of thermodynamics started rais-
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ing some interest from physicists. Bekenstein [88] was the first to propose that this close

similarity was more than an analogy. According to Bekenstein, those four laws of black hole

dynamics were actually an equivalent formulation of the basic four laws of thermodynam-

ics for black holes. Two years later, this equivalency proposed by Bekenstein was formally

demonstrated by Stephen Hawking [28].

By formulating quantum field theory in the background of curved spacetimes surrounding

black holes and considering the BH’s formation process, Hawking showed in 1975 that black

holes are not completely black. They actually emit thermal radiation. The irradiation

spectrum of this thermal radiation from black holes is the same as we would have from a

common black body with temperature T coinciding with the associated black hole’s surface

gravity. Hawking also derived the entropy of black holes, which is directly and uniquely

related to their surface area.

Finally, an important line of work in theoretical physics was established: Black Hole

Physics bringing several implications for astrophysics, gravitational physics, and cosmology.

A widely studied branch in black hole physics is the Black Hole Perturbation Theory (BHPT),

which was extensively used to theoretically demonstrate some of the above-mentioned results.

A lot of important research came from this approach [82, 89]. Up to this day, this theory

still furnishes a powerful method for current theoretical investigations, and it is an important

tool for the research covered within this thesis.

On the other hand, while all those theoretical developments were being carried out

and those mathematical solutions describing black holes were starting to become very well-

established and recognized, the actual existence of black holes was still under scrutiny by the

scientific community. Scientists questioned their existence theoretically and observationally.

The first reason for the theoretical distrust in the existence of black holes was the absence

of a theoretical explanation for how those objects could naturally be formed. The General

Theory of Relativity was able to fully describe the spacetime in the neighborhood of those

massive astrophysical objects, but it was still not capable of explaining how they could be
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formed in nature. In 1939, however, Oppenheimer and his student Hartland Snyder showed

how black holes are formed by the collapse of certain classes of stars [90]. In 1965, Roger

Penrose also showed that black hole formation was a general consequence of the GTR [91].

For this insight, Penrose was awarded with part of the 2020 Nobel Prize in Physics [92].

On the observational side of the question, however, direct and even indirect evidence of

the existence of black holes was still lacking. This problem remained for a long time until

the first indirect evidence emerged. Direct evidence, however, took a much longer time to

appear finally.

The first piece of indirect evidence for black holes’ existence emerged in 1971 [93]. It

came from a binary star system within our galaxy called Cygnus X-1. The discovery of the

system was allowed by the fact that this system is one of the brightest sources of X-rays.

The evidence for the black hole nature of Cygnus X-1 came from the dynamical observations

of its stellar components. Cygnus X-1 presented a mass of several solar masses.

Later, in 1974, astronomers also discovered that there is a supermassive black hole in the

center of our galaxy. This compact object was called Sagittarius A*. This discovery was made

by Bruce Balick and Robert L. Brown [94]. They noticed a bright radio source at the center

of the Milky Way galaxy. Reinhard Genzel and Andrea Ghez were the astrophysicists who

tracked the motion of stars around this astrophysical object (Sagittarius A*) [95]. Genzel

and Ghez showed that those stars were orbiting a very massive and compact object. The

partial orbits of many stars were observed. One of the stars, S2, made a complete revolution

in an elliptical orbit around Sgr A*, which helped Genzel and Ghez estimate the mass of

this gravitational source as 4.1 ± 0.6 million solar masses [96]. Accordingly, it was finally

demonstrated that those stars were probably orbiting a supermassive black hole.

For the discovery of this supermassive black hole at the center of our galaxy, Reinhard

Genzel and Andrea Ghez were also awarded part of the 2020 Nobel Prize in Physics. Genzel

and Ghez shared this Nobel Prize with Roger Penrose [92].

In March 2022, astronomers from a global research team called Event Horizon Telescope
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Figure 1.2: The supermassive black hole at the center of our Milky Way galaxy, Sagittarius
A*, as well as the giant star S2 is shown in this near-infrared image from the ESO’s Very
Large Telescope in Chile.
Image Credit: ESO/MPE/S; Gillessen et al.

(EHT) Collaboration released the first image of this supermassive black hole at the center of

our galaxy (Sagittarius A*) [97]. The release of this image was another moment that we can

certainly call historical for science as a whole. This image provides another strong evidence

that the compact object Sagittarius A* is indeed a black hole.

Figure 1.3: The first image of the black hole at the centre of the Milky Way galaxy (Sgr
A*).
Image Credit: EHT Collaboration.

“We were stunned by how well the size of the ring agreed with predictions from Einstein’s

Theory of General Relativity [...]” said EHT Project Scientist Geoffrey Bower[98] from the

Institute of Astronomy and Astrophysics, Accademia Sinica, Taipei.

Finally, summing up all the evidence listed above, we can claim that black holes are

a very well-established scientific fact for the scientific community nowadays. As in every
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scientific case, however, even the most well-established hypothesis must always be confronted

with its possible alternatives. If there are any other theoretical proposals for extremely

compact objects reproducing similar or equivalent results to the ones currently attributed

to black holes, the theoretical predictions from those proposals must be phenomenologically

confronted with observational data until we can rule out all alternative explanations.

When it comes to black holes, the physical feature that defines their nature a priori and

distinguishes them from the other theoretically proposed extremely compact objects is their

event horizon surface. The event horizon is a particularity of black holes since it is what

defines them as black holes in the first place. No other compact objects can be as compact

and dense as black holes. In this sense, exotic compact horizonless objects (ECOs) can be

defined as extremely compact objects that are compact enough to exhibit a photosphere but

remain with a radius superior to the Schwarzschild radius’s threshold.

Accordingly, a major difficulty in confronting black holes with their possible horizonless

alternative models arises from the fact that astrophysical processes are usually insensitive to

the spacetime geometry near the horizon. As it is well known, most of the scattering prop-

erties of perturbations in a ringing black hole spacetime are determined by its photosphere

surface. Hence, the departures of the ringdown signal of extremely compact horizonless ob-

jects with a photosphere from the BHs’ associated results are expected to be hidden (at least

in principle). For example, a naive application of the usual quasinormal mode spectroscopy

(see chapter 4) to the GW ringdown strain would not, in principle, capture a relevant differ-

ence between BHs and ECOs [59].

In the last years, however, some works claimed tentative evidence of smoking-gun signs

of so-called echoes in gravitational wave data, e.g., Ref. [99]. The echo phenomenon was first

studied for ultracompact constant-density stars in Refs. [100, 101, 102, 103] and, since then,

for a variety of exotic compact objects (see Ref. [104] for a review of the topic). Although

subsequent works cannot confirm such findings and refuse claimed significance [23, 25], the

question of the existence of such objects remains intriguing.
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In this thesis, beyond our main goal of developing an inverse method for reconstructing

the scattering profile of BHs and ECOs, we also study and explicitly compare the ringdown

waveforms from black holes and exotic compact horizonless objects. We use a frequency

domain approach to demonstrate that the ECOs’ waveform can be understood either as a

superposition of echo pulses, added to a BH waveform [59, 58], or as a superposition of the

ECO’s resonant modes. In this way, we show in a straightforward way how to detach the

horizonless signature of ECOs from their waveforms. We also explicitly show how those

waveforms’ quantitative properties are intrinsically related to the ECOs’ physical features,

such as their compactivity and core-reflectivity. We further develop this discussion in chapter

4.

1.3 Gravitational Waves

Gravitational waves were theoretically predicted in 1916 [105], by Einstein himself. He

discovered that those ripples in the fabric of spacetime were a theoretical consequence of his

theory of general relativity. By considering his field equations in the vacuum, Einstein found

out that the perturbations in a gravitational field propagate as waves, carrying energy and

momentum at the speed of light. This behavior of the gravitational field is analogous to the

behavior of the electromagnetic field in a vacuum.

For a very long time, scientists had tried to propose observational methods to detect the

existence of gravitational waves, indirectly and directly. After almost a century of trying to

test this Einstein’s prediction, on September 14 of 2015, researchers from the Laser Interfer-

ometer Gravitational-Wave Observatory (LIGO), and from the Virgo Interferometer (hosted

by the European Gravitational Observatory) announced their great discovery: they had di-

rectly detected gravitational waves for the first time [18]. This finding marked one of the

most important moments in the history of science. Those gravitational waves (GW150914)

detected by LIGO and Virgo [18] were generated by the coalescence of a black hole binary
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Figure 1.4: The waveform in the time and frequency domain of the gravitational waves from
(GW150914), detected by LIGO and Virgo [18]. Notice that the GW frequency increases as
black holes spiral closer together.
Image Credit: LIGO.

system. This pair of black holes spiraled together and finally merged into a unique and

heavier black hole.

Since that first detection, LIGO and Virgo have detected a few other gravitational wave

signals, coming from different sources [106, 27, 107]. For example, they have detected gravita-

tional waves generated by the coalescence of other black hole binary systems [27](GW150914

[108], GW151012 [109], GW151226 [110], GW170608[111]), the merging of black holes and

neutron stars [106], and the collisions within binary systems of neutron stars [107].

More than providing evidence for the General Theory of Relativity, Gravitational Wave

astronomy opens a powerful new window for physicists to see the Universe. Equipped with

this new tool, in the next few years, we will be able to test models and understand new

features of the early universe and, most importantly, probe the behavior of black holes,

neutron stars, and other astrophysical objects. For example, We can already anticipate

that for every gravitational wave signal generated by an astrophysical event involving black

holes, the properties of these black holes will play an important role in the behavior of that

resulting gravitational wave signal. The amplitude, the decay rate, and also the frequency

of the gravitational waves are all affected by some properties of the merging black holes.

The black holes’ masses, charges, and angular momenta are examples of those properties.
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Additionally, it is worth mentioning that any modification in the BHs’ description will also

leave a signature in the resulting gravitational waves. These modifications in the description

of black holes may arise, for example, as a result of quantum corrections introduced by

modified theories of quantum gravity or quantum spacetimes.

Although a large window of observation has been opened by those interferometers, and

another huge one is expected to be opened by the next generation of space-based GW

interferometers [26], there is still plenty of information on the gravitational field, and about

its interaction with quantum fields that will not be assessed with the GW interferometers.

Examples of those properties are the superradiance [112, 113], predicted for rotating black

holes; the Hawking radiation [114], which is very weak quasi-thermal radiation expected to

be emitted from black holes, and a few other effects. Even the proper study of scattering

properties of black holes is hard to assess without proper control of what is being ’sent’ for

scattering through the black hole. For the goal of exploring such questions, in the last few

years, we have been trying to find analog systems to gravity systems in which such questions

can be explored in lab-controlled experiments. The following section will introduce analog

gravity systems and deepen the discussion on this topic.

1.4 Analog Gravity Systems

One of the first analog gravity systems was proposed by G. Unruh in 1980 [30], pointing out

an equivalence between the hydrodynamical equations describing the evolution of acoustic

perturbations in a classical hydrodynamical vortex, and the Klein-Gordon equation describ-

ing scalar field perturbations in an effective black hole spacetime. This model was later

called acoustic black hole [31, 32, 34], and consists of a sonic hole created by a fast rotating

and absorbing draining vortex. The idea is that the high-velocity absorption profile of this

vortex will create a spatial barrier in which acoustic perturbations at the speed of sound are

prevented from leaving after this limit. In some sense, this surface would be the acoustic
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equivalent to the event horizon in a Schwarzschild black hole or in a Kerr black hole. That

is the kinematics idea behind this model, and further details on its dynamic aspects are

left for chapter 3. The equivalence between the mathematical description of those analog

systems and their associated astrophysical systems allows us to carry out this investigation.

The development of experiments with this analog model enabled us to detect physical analog

effects that were only expected to occur in actual black hole astrophysical systems. Among

the plethora of experimental findings, some of the most important are the experimental mea-

surement of rotational superradiance in the scattering of a vortex flow [45], the experimental

occurrence of quasinormal mode oscillations in analog black hole experiments [47], and the

detection of Hawking radiation in an analog gravity experiment [115, 116].

Since 1980, a few new ideas for different analog gravity systems have arisen; one of them,

for example, proposed an analog to a black hole with a Bose-Einstein condensate [35, 36,

42, 117, 37, 38, 39, 118]. In this system, the propagation of acoustic perturbations plays the

role of ”scalar” field perturbations on their associated black hole spacetimes. Similar black

hole analog effects were also displayed in this system, such as Hawking radiation [37, 38, 39],

superradiance [119], and even the signature of the rotating effective curved spacetimes[120].

New alternatives for analog models to gravity systems have also been proposed, such as the

optical analog to black holes [121] for example.

In this framework, we focused our attention on the first and simplest tabletop experi-

ments, repeatable in ground-based laboratories, which is the analog model of a black hole

with a sonic or acoustic hole (see Fig. 1.5). We paid special attention to recent experiments

conducted on this system. Among them, we can cite the detection of quasinormal mode ring-

ing [47], the experiment that showed the superradiance in the scattering of waves around

this draining vortex [79], and a recent report pointing out the possible core reflectivity of

this analog system due to non-vorticity effects at its core [80]. Another recent experiment

that inspired our study was the recent discovery of the rotating curved spacetime signature

in the analog system consisting of a big quantum vortex [120]. This vortex was prepared by
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Figure 1.5: Scattering of waves by a draining vortex in a bathtub.
Image Credit: Gravity Group. University of Nottingham.

combining small unstable quantum vortexes in liquid helium that would later produce a final

giant vortex with macroscopic dimensions. The experiment was conducted by Nottingham’s

gravity group, and it strongly motivated the extension of our results for rotating analog

systems. We present this extension in chapter 7.

Among the most important advantages of carrying out our research with analog systems

is the availability of accurate data on their scattering properties, including, for example, the

measurement of cross-sections and reflectivity coefficients. To compute those quantities, we

need previous knowledge of the incident waves and the measurement of the scattered output.

The final scattering coefficients are obtained by normalizing the reflected and transmitted

waves with the incident ones. Such calculations are not possible in an astrophysical scenario

but are allowed for lab-controllable experimental setups. The physical identification between

the scattering of perturbations in analog systems and the propagation of field perturbations

around a black hole is then guaranteed by the mathematical equivalence between the master

equations describing them [31, 32]. Since those equations are in the form of a Schrödinger-like

wave equation, this motivates the application and extension of Wentzel–Kramers–Brillouin

(WKB) based inverse problem methods. In the following, we briefly introduce this semi-
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analytical inverse method. The more detailed derivation of the associated formulas is carried

out in Chapter 5, while its applications are discussed in chapters 6, 7, and 8.

1.5 Inverse method with semi-analytical techniques

In literature, the inversion of the WKB formulas allows one to obtain a powerful inverse

method for reconstructing effective potentials in the quantum scattering and bound state

problems [122]. The main advantage of the inverse techniques provided by those inverse semi-

analytic formulas is that they offer a parameter-free and model-agnostic inverse method based

solely on the applicability of the direct WKB method. This aspect provides an important

advantage when one compares it with model-dependent Bayesian techniques, such as MCMC

[123], and others [124]. In Chapter 5, we introduce the WKBmethod in general lines, deriving

its direct semi-analytic formulas and their corresponding inverted ones.

That inverse WKB method has been extended for the perturbation theory of wormholes

[125], constant-density stars [126, 127, 128], and other exotic compact objects [129, 130]. In

this thesis, we demonstrate that we can also apply such inverse semi-analytic formulas to

analog gravity systems [2, 3]. We considered in Chapter 6, for illustration, the application of

this inverse method for the analog model of exotic compact objects consisting of an imperfect

draining vortex in a bathtub [2]. Among the main results we achieved in that chapter, we

can mention the fact we could reconstruct the effective scattering potential associated with

the effective background geometry of the imperfect draining vortex [48]. More than that, we

could infer the reflectivity boundary parameter in the case it was a constant. Our application

in this chapter was restricted to the non-rotating scenario of analog gravity systems. The

reason for that was the fact we only have a single effective energy-independent potential

if we are in a non-rotating vortex regime. Adding the rotation to this system couples an

energy dependence for the scattering potential. Accordingly, distinct potentials are obtained

depending on the energy of the incident wave.
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In Chapter 7, and Ref. [3], however, we circumvented such difficulty in the most general

case by extending the WKB techniques for energy-dependent potentials in a wave equation.

To accomplish that goal, we proposed an energy-independent effective potential that repro-

duces the desired physical properties of the original family of energy-dependent ones. We

called this reconstructed potential ’WKB-equivalent ’ potential since it shares the same bound

states (or transmission) that we used for its reconstruction. To illustrate how the inverse

techniques would work in such cases, we considered two toy models: an energy-dependent

modified harmonic oscillator and an energy-dependent Pösch-Teller potential.

Finally, in Chapter 8, we aimed to extend our inverse method for the energy-dependent

scattering potentials produced by rotating analog gravity systems and for energy-dependent

reflectivity parameters defined at their internal boundaries. As for the applications, we

considered generalizing our results from Chapter 6 for the imperfect draining vortex with a

non-zero rotation coefficient. If this method can also infer important physical properties of

those systems, which we show to be the case, that potentially provides us with an auxiliary

tool for treating the experimental data measured by analog systems’ experiments.

1.6 Structure of this Thesis

We now briefly introduce the general structure of this thesis. In the next three chapters, we

give a general and detailed review of the theoretical background behind the direct problem

of BHs and ECOs perturbation theory, both in the astrophysical scenario and in analog

gravity systems. Then, the following three chapters cover the proposal and solutions to the

associated inverse problem.

In chapter 2 we introduce and discuss perturbation theory in GTR, focusing on linear

perturbations in the background of black hole’s and exotic compact objects’ spacetimes.

That chapter speculates the important distinction between black holes and other alternative

exotic horizonless compact objects. We propose a simple and insightful model for ECOs in
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terms of a fundamental change in the boundary conditions at the surface of these objects.

That model will be extremely relevant to the upcoming discussions carried out throughout

this thesis.

In chapter 3, we review the theoretical background behind analog gravity systems, paying

special attention to the acoustic analog black hole and analog ECO. In that chapter, we

also show the mathematical equivalence between the evolution of acoustic perturbations in a

rotating draining vortex and the evolution of scalar field perturbations in the effective curved

spacetime of a black hole-like metric.

In Chapter 4, we finally discuss how to solve the master wave equations describing the

evolution of perturbations in the two scenarios presented in the previous chapters. For this

goal, we present two main approaches; the first one consists of directly integrating those

equations in the time domain, while the second one is based on Green’s function formalism

for integrating those equations in the frequency domain. The solutions in the frequency

and time domains are connected via Fourier transformations. After presenting the methods

for obtaining those solutions, we finally consider two important applications: calculating the

ringdown waveforms for the evolution of perturbations, which allows us to relate the damped

oscillating signal measured by a distant observer with the physical properties of their relaxing

ringing sources; and also the scattering theory in these background spacetimes. We infer the

main distinct predictions for black holes and other exotic compact horizonless objects for

both applications. For the scattering theory, for example, we see that the reflecting boundary

condition at the object’s surface leads us to cavity and resonant effects. Meanwhile, for the

analysis of the ringdown signal emitted by these perturbed sources, reprocessing the waves

at their reflecting surface generates the so-called echoes in the waveform strain.

In Chapter 5, we present the semi-analytical formulas used in Nuclear physics for in-

vestigating bound states and scattering properties of quantum systems described by the

Schrödinger wave equations. Since our investigated systems are dynamically described by a

Schrödinger-like wave equation, we also demonstrate how we can invert those semi-analytical
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formulas to obtain the inverse formulas to be used in our applications.

In Chapter 6, we explain how our previously introduced inverse method is posed for

analog gravity systems to exotic compact horizonless objects. Then, we investigate how one

can reconstruct the scattering effective potential, determining the scattering of perturbations

for these systems in the non-rotating case. From this chapter onwards, our applications will

focus on analog gravity systems, specifically, the imperfect draining vortex in a bathtub.

As we also discuss in chapter 2, the rotating behavior of astrophysical and analog gravity

systems leads us to energy-dependent potentials in the master wave equations describing

the evolution of perturbations. Motivated by this fact, in Chapter 7, we extend our inverse

method to energy-dependent potentials by defining an effective ’WKB-equivalent’ potential.

We show that this effective inverse reconstructed potential reproduces the input physical

properties used for its reconstruction. This way, from an energy-independent effective poten-

tial, we obtain scattering properties quasi-equivalent to the ones obtained from the original

energy-dependent potentials. Finally, we discuss the achievements of our method and its

limitations in terms of two toy-models potentials, the energy-dependent quadratic potential

for a modified harmonic oscillator, and the energy-dependent Pöschl-Teller potential.

In Chapter 8, we use that previously developed inverse method for energy-dependent

potentials to extend the applications considered in Chapter 6 for rotating analog exotic

compact object (ECO) systems. In that chapter, we also study the inverse problem of analog

gravity systems which admit energy-dependent boundary conditions. We contrast the inverse

reconstructed effective potentials with the width-equivalent potentials and the original family

of energy-dependent potentials. Lastly, we present the reconstructed scattering coefficients

obtained from those WKB-equivalent reconstructed potentials, contrasting them with the

original scattering coefficients used as input for our method. The accuracy of our results is

discussed for different regimes of the analog ECO system.

Finally, in the last chapter 9, we finish our work by summarizing the most important

conclusions and remarks obtained throughout this thesis. Future perspectives of this work
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in terms of our current collaborations are also presented.
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Chapter 2

Perturbation Theory in General Rela-

tivity

2.1 Einstein’s Field Equations and the General Rela-

tivity Theory

While on the theoretical side, Einstein’s Field Equations have unveiled the existence of previ-

ously unknown phenomena, such as gravitational waves and black holes, on the mathematical

side, this new way of looking at the gravitational interaction has established an extremely

complicated system of non-linear coupled equations. A closer look at the full form of those

field equations quickly reveals this fact. We can summarize Einstein’s field equations as in

the following expression

Rµν −
1

2
gµνR =

8πG

c4
Tµν . (2.1)

In this equation, Rµν is the Ricci Curvature Tensor, R is the curvature scalar, gµν is the

metric tensor, and Tµν is the energy-momentum tensor. Here, Einstein’s sum convention is

implicitly used. The curvature scalar is given in terms of the Ricci curvature tensor in the

following way
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R = gµνR
µν . (2.2)

The Ricci curvature tensor, on the other hand, can be written in terms of the metric

connections

Rµν = ∂µΓ
λ
λν − ∂νΓ

λ
λµ + Γλ

µσΓ
σ
λν − Γλ

νσΓ
σ
λµ, (2.3)

where those metric connections Γα
µν , also called Christoffel symbols, are related to the metric

tensor by

Γλ
µν =

1

2
gλσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (2.4)

The energy-momentum tensor Tµν is determined by the mass-energy distribution in the

considered space-time. In field theory, we usually define the energy-momentum tensor Tµν as

the covariant class of objects that keep the associated action S invariant under the symmetry

group of transformations considered in the theory. In Einstein’s general relativistic theory,

this group of symmetry is the group of the diffeomorphism of a 4-dimensional differential

manifold with Lorentzian structure. In mathematical terms, this is equivalent to saying that

under general coordinate transformations

xµ → x
′µ(x). (2.5)

The energy-momentum tensor obeys a covariant (or contravariant) transformation law

such that

{
Tαβ(x) → T

′
µν(x

′
) = Tαβ(x)

∂xα

∂x′µ
∂xβ

∂x′ν ,

S[Tαβ] → S ′
[Tµν ] = S[Tαβ].

(2.6)

23



The 4-conservation of the energy-momentum tensor is expressed by

∇µT
µν = 0, (2.7)

where ∇µ is defined as the covariant derivative in this differential 4-dimensional manifold.

For a second-rank contravariant tensor, this derivative is written as

∇λT
µν = ∂λT

µν + Γµ
λσT

σν + Γν
λσT

µσ. (2.8)

Different mass-energy distributions define different energy-momentum tensors in the con-

sidered spacetime. For instance, if we define a spacetime embedded with an electromagnetic

field, the minimal coupling states that the energy-momentum tensor on the right-hand side

of Einstein’s field equations shall be written as

TE.M.
µν =

1

4π

(
FµρF

ρ
ν +

1

4
gµνFρσF

ρσ

)
, (2.9)

where Fµν is the electromagnetic field tensor, defined in terms of the electromagnetic four-

potential Aµ as

Fµν = ∇µAν −∇νAµ. (2.10)

On the other hand, if we consider our spacetime to be under the influence of a massive

scalar field instead, we shall obtain the expression for the energy-momentum tensor

T ϕ
µν = ∇µϕ∇νϕ− 1

2
gµν(∇ρϕ∇ρϕ−m2ϕ). (2.11)

Furthermore, if we consider our spacetime to be filled with a perfect fluid with density

ρ(x) and with an equation of state p(ρ), we have

T fluid
µν = (ρ+ p)uµuν − pgµν , (2.12)
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where uµ is the fluid 4-velocity field.

Looking at Eqs. (2.1),(2.2),(2.3),(2.4), we notice that one of the formal goals of Einstein’s

field equations is to describe how the spacetime geometry is affected by the presence of a

mass-energy distribution specified by the energy-momentum tensor Tµν . This spacetime ge-

ometry is completely determined by the metric tensor gµν . In other words, we can summarize

by saying that one of the physical goals of Einstein’s theory of relativity is solving his field

equations for the metric tensor gµν . This way, we address the second part of the famous

Wheeler’s quote:

“Spacetime tells matter how to move; matter tells spacetime how to curve” - John

Wheeler

The first part of the above quote can be addressed once the metric tensor is finally

specified gµν (once we know the structure of the spacetime geometry). Formally, this could

be equivalent, for example, to solving the geodesic equations for the movement of null test

particles

d2xµ

dλ2
+ Γµ

αβ

dxα

dλ

dxβ

dλ
= 0 (2.13)

Solving for xµ(λ), under a certain chosen parametrization λ, furnishes the cinematic

description of the particle’s movement under the influence of the gravitational field defined

in (by) this spacetime geometry.

The problem seems intuitive and clear to understand conceptually; one could even risk

claiming that it is an easy problem if it weren’t for the extremely complicated form of field

equations. As we see in Eqs. (2.3),(2.4), the equations for the metric tensor are coupled and

highly non-linear. Considering the symmetry of the metric tensor, we are led to 10 non-linear

coupled equations that could turn the easiest problems into a real nightmare! That is the

reason behind the fact we do not have many exact solutions for Einstein’s field equations. A

highly symmetric configuration must be considered if we want to obtain exact (analytical)
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solutions to these field equations. That is precisely what Schwarzschild did in 1916 [131,

132].

Considering a static and spherically symmetric configuration describing the spacetime

around a massive and spherical compact object, Schwarzschild showed that the spacetime

metric could be defined, in spherical coordinates, by the following line element

ds2 = −
(
1− 2GM

c2r

)
dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2). (2.14)

In the natural units system c = G = 1, we rewrite the equation above as

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2), (2.15)

where M is the ADM mass of the gravitational compact object and rh = 2M is what was

later called the black hole’s event horizon.

That highly symmetrical spacetime configuration describes the vacuum spacetime around

a very compact spherical object. The high symmetries of this solution explain why it was

first obtained. Schwarzschild’s metric was only extended for a stationary spacetime around

an axially-symmetric rotating black hole, with angular momentum, in 1967 by Roy Kerr

[83]. Kerr derived the spacetime metric for an axially symmetric rotating black hole. We

introduce Kerr’s solution in Sec. 2.4.3.

Any spacetime deformation of those compact objects would no longer allow us to use

Eq. (2.15), since these deformations cause us to depart from the highly symmetrical scenario.

Numerical solutions become then indispensable. In some sense, if we are willing to describe

the dynamics of spacetime analytically, we are then constrained to very symmetrical cases.

However, what if we want to consider small deformation or small departures from this highly

symmetric scenario? Is it possible that we can actually obtain an analytical or semi-analytical

framework for the spacetime dynamics if we treat this additional deformation as a small

perturbation on the (symmetrical) background spacetime? This chapter deals with these
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questions, introducing the key idea of perturbation theory in GR in the following section.

2.2 Perturbation Theory in General Relativity

To deal with small departures or small deformations of the spacetime geometry of a symmet-

rical background spacetime, we must use perturbation methods in our general relativistic

field equations (2.1). This defines what we call General Relativistic Perturbation Theory, and

it is posed in the following way: assuming that we possess the metric tensor of a previous

background spacetime geometry g0µν , we can describe the evolution of small deformations on

this background geometry by adding a metric perturbation hµν up to the desired order of

perturbation. The final perturbed metric gµν will be given as

gµν = g0µν + ϵh(1)µν + ϵ2h(2)µν + ϵ3h(3)µν +O(ϵ4). (2.16)

That perturbed metric must, once again, satisfy Einstein’s field equations (2.1) until the

desired order of perturbation. We can make this dynamical description as realistic as we

want by increasing the perturbation order considered. That comes at the cost of making the

problem formally harder to deal with. By considering second-order perturbation theory, for

example, some interesting effects such as backreaction arise, but again, we are already in a

non-linear regime with coupled partial differential equations.

The first-order perturbation regime is defined by fixing

gµν = g0µν + ϵh(1)µν +O(ϵ2), (2.17)

where from now on, we define hµν = ϵh
(1)
µν for simplifying the notation.

Although some important features are missing in the first-order regime (we also call linear

regime), some of the dynamical systems’ most important physical properties are already

attained. For some scenarios of extreme mass-ratio inspirals, the entire time evolution of such
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systems can be described in terms of a first-order perturbation regime [133]. For some other

systems, however, although the whole evolution cannot be attained by a linear perturbation

scheme, some specific regimes can be well approached by this first-order approximation of the

problem. For instance, we can cite small ratio black hole binary mergers, whose GW signals

are detected by LIGO-Virgo interferometers[19, 20, 21, 22, 23, 24, 25]. Although the merger

stage of the binary coalescence cannot be described in a perturbation theory, this theoretical

approach can provide a good description of the late-stage ringdown signal, which is emitted

by a final single perturbed black hole slowly relaxing into a final equilibrium state. In Fig. 2.1

we illustrate the relation between the gravitational waveform detected by a distant observer

in the time domain, and the corresponding stages of the coalescing black hole binary, which

is the irradiating source. In Fig. 2.2, we show the associated GW waveform generated by

the binary merger represented in Fig. 2.1. We detach the gravitational wave signal emitted

during each stage of the binary coalescence.

The initial phase, called the insparalling stage, is well described by Post-Newtonian

approximation. The second stage is where the binary merger occurs, and the two initial

black holes are mixed into a final highly perturbed black hole. This second stage can only

be properly studied in terms of a full numerical relativistic approach. Lastly, in the third

and final stage, the resulting deformed black hole slowly relaxes into a final equilibrium state

of a stationary Kerr black hole. This relaxation process is carried out by the irradiation of

gravitational waves towards spatial infinity and through the horizon of this ringing black

hole. Note that this physical source can be dominantly regarded as a single perturbed black

hole spacetime in this last stage. Accordingly, the perturbation scheme of Eq. (2.17) for this

spacetime metric can be employed to describe the irradiated gravitational waves. Lastly, the

final stage of the binary merger is a final single black hole’s equilibrium state, well described

by Kerr’s metric. The final black hole has a total mass slightly smaller than the sum of

the two initial black holes’ masses. This difference is due to the energy irradiated through

gravitational waves.
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Gravitational Waves
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Figure 2.1: The Infographic a BH binary merger. The four stages of a black hole binary
coalescence: the inspiralling initial phase, the merger, the late-ringdown phase, and the final
single black hole in an equilibrium state (a Kerr black hole).

Figure 2.2: Associated GW waveform generated by the coalescence of the black hole binary
pictured in Fig. 2.1. This waveform has the same three distinct phases, which are related
to their respective coalescence stages. The three phases are the inspiral stage, the merger,
and the ringdown phase. This waveform was generated by employing the effective-one-body
waveform model and the publicly available SEOBNRv5 code [134].
Image credit: Sebastian Völkel.

In the following sections, we will formally introduce the linear perturbation theory in

General Relativity and discuss its mathematical details and intricacies.

2.3 Linearized Einstein Field Equations

To obtain the first-order perturbation regime for Einstein’s field equations, we must linearize

those equations. For this goal, we must first perturb the considered background metric g0µν .

gµν = g0µν + hµν . (2.18)

Then, we assume that the linearized version of the resulting Einstein’s field equations is
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also satisfied by the perturbed metric above. This leads us to the following equations for the

evolution of the geometric perturbations hµν in the background spacetime metric g0µν .

□hµν + 2R0
λµνσh

λσ −R0λ
µhλν −R0λ

νhλµ = −16πTµν , (2.19)

where h is the trace of the perturbation on the spacetime of the background metric

h = hµνg0µν , □ = ∇µ∇ν is the contravariant version of the D’Alambertian operator defined

from the background metric, and R0 is background spacetime curvature.

Those are the so-called linearized Einstein field equations. These equations describe

how small perturbations in the metric propagate in the background spacetime, with Tµν =

T 0
µν + T pert.

µν , and T pert.
µν being the source of these perturbations.

Investigating those equations for different background metrics g0µν are the main goals for

this chapter. Discussing their solutions, on the other hand, is left for Chapter 4.

2.3.1 Perturbed Minkowski Spacetime: The Gravitational Waves

Solution

Firstly, let’s consider a linear perturbation over the background of Minkowski flat spacetime,

defined by the background metric in

ηµν = diag(1,−1,−1,−1). (2.20)

The linearized perturbed Einstein’s field equations (2.19), describing the evolution of

geometric perturbations hµν in this flat background spacetime yields

−1

2
□hµν +

1

2
ηµν□h− 1

2
ηαβ (∂µ∂νhαβ + ∂α∂βhµν − ∂µ∂βhνα − ∂ν∂αhµβ) = −16πTµν , (2.21)

and in the vacuum,
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−1

2
□hµν +

1

2
ηµν□h− 1

2
ηαβ (∂µ∂νhαβ + ∂α∂βhµν − ∂µ∂βhνα − ∂ν∂αhµβ) = 0, (2.22)

We have 10 coupled equations for our metric perturbations. The gauge freedom allows

us to fix a gauge choice. So consider the following gauge transformation

h̄µν = hµν −
1

2
ηµνh, (2.23)

We choose the harmonic (Lorentz) gauge by specifying the following condition

∂ν h̄
ν
µ = 0, (2.24)

The linearized Einstein’s field equations for the metric perturbations yields

□h̄µν = 0, (2.25)

By taking the trace of this equation, we obtain□h = 0, and finally, from Eqs. (2.23) (2.24),

we also obtain

□hµν = 0. (2.26)

That is a wave equation, indicating that linear perturbations evolve dynamically in this

background spacetime in terms of propagating waves. Those waves travel with velocity

c (equivalent to the electromagnetic case). In other words, in a vacuum flat spacetime,

such as in an empty region of the deep hyperspace, small metric perturbations evolve in

terms of propagating waves of gravity transmitting the spacetime perturbations through the

background flat spacetime at light speed. Therefore, there exists gravitational waves!

This was how Einstein predicted in 1916 [105] the existence of those ripples in the fabric

of spacetime. The actual observation of their existence only happened in 2016 [19] as we
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already mentioned in the first chapter of this thesis.

2.4 Linear Perturbation Theory for Schwarzschild Black

Hole Spacetimes

Extending the previous treatment from a flat background spacetime to a curved background

spacetime, such as the external neighborhood of the Schwarzschild black hole, we get

gµν = g0µνSchw.
+ hµν (2.27)

where g0µνSchw.
is the background Schwarzschild metric, given by Eq. (2.15), and hµν is

a first-order perturbation. If we input this perturbed metric into Einstein’s field equations

and then linearize the obtained result, we obtain the linearized Einstein’s field equation for

the background spacetime of Schwarzschild.

In the following, we reproduce the formal development proposed by Regge and Wheeler ,

in Ref. [135], Zerilli in Ref. [136] and Mathews in Ref. [137]. Namely, we apply a multi-polar

angular decomposition in tensorial harmonics Y m
l (θ, ϕ). After some algebra, which we refer

to Regge and Wheeler’s seminal paper [135], we obtain for a given m, l, the following matrix

form for the metric perturbations hµν and parity (−1)l+1, also called odd-parity

hµν =



0 0 −h0(t, r)(∂/ sin θ∂ϕ)Y m
l h0(t, r)(sin θ∂/∂θ)Y

m
l

0 0 −h1(t, r)(∂/ sin θ∂ϕ)Y m
l h1(t, r)(sin θ∂/∂θ)Y

m
l

sym sym h2(t, r)(∂
2/ sin θ∂θ∂ϕ− cos θ∂/(sin θ)2∂ϕ)Y m

l sym

sym sym (1/2)h2(t, r)(∂
2/ sin θ∂ϕ2 + cos θ∂/∂θ − sin θ∂2/∂θ2)Y m

l −h2(t, r) sin θ(∂2/∂ϕ2

−cotgθ∂/∂ϕ)Y m
l


.

(2.28)

For even parity perturbations, on the other hand, we are led to
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hµν =



H0(t, r)(1− 2M
r
)Y m

l H1(t, r)Y
m
l h0(t, r)(∂/∂θ)Y

m
l h0(t, r)(∂/∂ϕ)Y

m
l

H1(t, r)Y
m
l H2(t, r)(1− 2M

r
)−1Y m

l h1(t, r)(∂/∂θ)Y
m
l h1(t, r)(∂/∂ϕ)Y

m
l

sym sym r2(K(t, r) sym

+G(t, r)∂2/∂θ2)Y m
l

sym sym r2G(t, r)(∂2/∂θ∂ϕ r2[K(t, r)sin2(θ)

− cos θ∂/ sin θ∂ϕ)Y m
l +G(t, r)(∂2/∂ϕ∂ϕ

+sinθ cos θ∂/∂θ)]Y m
l



.

(2.29)

Once again, replacing this decomposition into Einstein’s linearized equations, we obtain

ten coupled differential equations that fully describe the perturbations, three equations for

odd perturbations, and seven for even perturbations. We can reduce it further to seven

equations by making use of the Gauge freedom. Indeed, the metrics above are symmetrical

under gauge transformations. This freedom allows one to choose a certain gauge. It is more

appropriate to fix the same gauge choice Regge-Wheeler established. In the Regge-Wheeler

gauge, the canonical forms for the odd type of metric perturbations are finally

hµν =



0 0 0 h0(t, r)

0 0 0 h1(t, r)

0 0 0 0

h0(t, r) h1(t, r) 0 h0(t, r)


(
sin θ

∂

∂θ

)
Pl(cos θ). (2.30)

Likewise, the canonical forms for even parity perturbations are
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hµν =



H0(t, r)(1− 2M
r
)) H1(t, r) 0 0

H1(t, r) H2(t, r)(1− 2M
r
)−1 0 0

0 0 r2K(t, r) 0

0 0 0 r2K(t, r)sin2(θ)


Pl(cos θ).

(2.31)

However, it is possible to circumvent the obtained coupled equations and combine them

further into two independent second-order differential equations, one equation for each parity.

For odd-parity, for example, Regge and Wheeler obtained that the radial equation describing

the time evolution of the metric perturbation is written as

∂2

∂r2∗
h0(r, t)−

∂2

∂t2
h0(r, t)− VRGl

(r)h0(r, t) = Sl(r, t), (2.32)

where the effective scattering potential coupled to this wave equation is given by

VRGl
(r) =

(
1− 2M

r

)[
l(l + 1)

r2
+

6M

r3

]
. (2.33)

Following Zerilli’s framework [136], we define for even parity perturbations, the wave

function Z, implicitly defined in terms of H0, H1, and K. Those functions describe the radial

part of the evolution of even perturbations. After some algebra [136, 138], the linearized

Einstein’s equations yield for even parity perturbations, a radial equation describing the time

evolution of metric perturbations identical to Eq. (2.32),

∂2

∂r2∗
Z(r, t)− ∂2

∂t2
Z(r, t)− VZl

(r)Z(r, t) = Sl(r, t), (2.34)

where this time the effective scattering potential coupling to this wave equation is defined

as

34



VZl
(r) =

2(r2 − 2Mr)

r5(Λr + 3M)2
[
Λ2(Λ + 1)r3 + 3MΛ2r2 + 9M2Λr + 9M3

]
. (2.35)

Here, l is the index of the multipolar expansion, Λ = (1/2)(l − 1)(l + 2) and the r∗

coordinate in both equations is the tortoise coordinate of Schwarzschild spacetime, defined

by the following transformation from the radial coordinate

r∗ = r + 2M log
[ r

2M
− 1
]
. (2.36)

The non-homogeneous terms Sl(r, t) in Eqs. (2.34) describe the perturbation sources,

and they are derived from the energy-momentum tensor of the external perturbation, i.e.,

the rhs. of Einstein’s linearized equations in Eq. (2.19), we refer the reader to Refs. [135,

136, 139] for their full form. For illustrations of this source term, we refer the reader to the

application’s section 4.3.2.1, where we consider the source term for the radial infall of a test

particle into a Schwarzschild black hole [139, 140].

From Eqs. (2.32),(2.34), we notice that, while the angular profile of the perturbations is

given by tensorial harmonics, the radial part, for both odd and even parities, describes a

wave-like behavior for the propagation of the perturbations. This wave behavior is governed

by those wave equations. Solving those equations determines how the external perturbations

h, forced by the source term S(t, r), dynamically evolve in this background Schwarszchild

spacetime. The effect of this background spacetime is imprinted in the effective potentials

V (r) coupled to the wave equations. The detailed solutions of those equations are presented

in Chapter 4.

Furthermore, as originally obtained in the seminal papers from Zerilli [136] and Regge-

Wheeler [135], those equations can also be formulated in the frequency domain if we apply

the usual spectral decomposition from Fourier analysis. Indeed, if we write the time-domain

signal in terms of its corresponding amplitude ϕ̃(r, ω) in the frequency domain
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ϕ(r, t) =
1√
2π

∫ +∞

−∞
ϕ̃(r, ω)eiωtdt, (2.37)

we obtain the following time-independent master wave equations for the radial part of the

perturbations

d2ϕ̃(r, ω)

dr2∗
+ (ω2 − Vl(r))ϕ̃(r, ω) = S̃(r, ω), (2.38)

where the source term S̃l(r, ω) in the frequency domain is the Fourier transformation of the

time-dependent one S(t, x), and Vl(r) is again the effective scattering potential. This general

form in Eq. (2.38) for the wave equation contemplates both Eqs.(2.34) and (2.32).

Notice that these equations have a Schrödinger-like form. This similarity is a funda-

mental fact for the upcoming analysis to be carried out in the following chapters, since

it provides us with the possibility of applying semi-analytical techniques for the study of

perturbations in BH spacetimes [141, 142]. These semi-analytic techniques are imported

from Schrödinger wave quantum mechanics and give us the theoretical background for our

semi-analytical inverse method to be developed in this thesis. For the proper application

of quantum mechanics’ semi-analytical techniques here, all we need to do is to associate

ω2 with the eigenenergy E in the Schrödinger equation, and replace the quantum potential

V (r) by the effective scattering potentials derived here. Namely, the Zirelli’s potential, in

Eq. (2.35), for even-parity perturbations, and the Regge-Wheeler’s effective potential, in

Eq. (2.33), for odd-parity perturbations. Those coupled effective potentials govern the prop-

agation and scattering properties of gravitational perturbations in the background spacetime

of the Schwarzschild black hole. They are plotted in Fig. 2.3 for cases.

The asymptotic decaying profile of the perturbation potentials in the wave-equations

(2.34),(2.38) reveals the important fact that in a Schwarzschild background spacetime, per-

turbations evolve as propagating waves that are both irradiating to infinite and falling

through the event horizon of the black holes. Furthermore, if we look at the position of
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Figure 2.3: Effective scattering potentials for both Regge-Wheeler and Zerilli potentials. We
show those potentials here for different multi-polar parameters l. Notice the asymptotic
decaying behavior of all those potentials. Furthermore, for higher multipolar numbers l, the
potentials’ maximums slowly converge to x = 0, the photosphere radius in tortoise coordinate
x.

this potential barrier’s peak, we see that the potential barrier’s center is converging to a

specific fixed location, which is approximately r = 3M for the radial coordinate. That is the

radius of a spatial surface called the photosphere. Hence, we can say that the scattering of the

perturbations in the Schwarzschild spacetime occurs mainly at the photosphere surface. The

contribution of the black hole’s photosphere to its scattering properties is the dominant one

over the entire surrounding space-time. This fact plays a major role in the phenomenology of

exotic compact horizonless objects and black holes. Exotic ultra-compact horizonless objects

are so compact that their delimiting surface is contained inside the photosphere but outside

the ’would-be’ event horizon. Accordingly, they are expected to have the same scattering

properties as black holes. Equivalently, in terms of the scattering of gravitational waves or

any other test-field perturbations, black holes are, in principle, indistinguishable from any

other exotic ultra-compact horizonless objects. That motivated physicists to propose ECOs
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as black hole mimickers in recent works [143]. In Chapter 4, however, we show how we can

distinguish black holes from their associated ECO mimickers by means of their scattering

properties and by studying their gravitational waveform ringdown signals.

2.4.1 Test Field Perturbation on Schwarzschild Black Hole Space-

times

If instead of considering gravitational perturbations in a background Schwarzschild space-

time, one is willing to consider any other test field perturbations on this background space-

time, the minimal coupling of this field with the Schwarzschild metric must be considered.

Formally, this is equivalent to transforming the usual partial derivatives into covariant deriva-

tives into their field equations.

∂µ → ∇µ. (2.39)

For Electromagnetic perturbations, for instance, we have the Maxwell equations as follows

∇µF
µν = −4πJν , (2.40)

∇µF̃
µν = 0, (2.41)

where

Fµν = ∇µAν −∇νAµ (2.42)

is Maxwell’s electromagnetic tensor in a curved spacetime.

Also, for Dirac field perturbations in a Schwarzschild background spacetime, the Dirac

equation becomes
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(iγµDµ −m)ψ = 0, (2.43)

where γµ is the tensorial form of Dirac matrices, m is the fermionic particle mass, and Dµ

is the covariant derivative acting on a Dirac field defined in a curved background spacetime.

The last one is given by

Dµ = ∂µ + Γµ. (2.44)

Where Γµ includes the contribution from the connection coefficients Γλ
µν representing the

curvature of the background spacetime.

Finally, for scalar field perturbations in a Schwarzschild background spacetime, we have

that the Klein-Gordon equation is written as

1√−g∂µ(
√−ggµν∂νϕ)−m2ϕ = 0, (2.45)

where m is the scalar mass and g is the metric tensor’s determinant.

Generally, when we consider the application of those test field equations in background

black hole spacetimes, the resulting radial part of those perturbation equations yields similar

wave equations to Eqs. (2.34) [144, 145, 146, 147]. The only difference among them is the ef-

fective coupling potential governing the scattering of those field perturbations. For instance,

in the background spacetime of Schwarzschild’s black hole, the perturbation equations for

those test fields are identical to Eq. (2.38), but with the effective potential replaced by

Vl(r) =

(
1− 2M

r

)[
l(l + 1)

r2
− 2M(1− s2)

r3

]
. (2.46)

where s is the spin of the considered field. For massless scalar test field perturbations, s = 0,

and for electromagnetic field perturbations s = 1. Furthermore, if we set s = 2 (graviton
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field), we also recover the effective potential for gravitational field perturbations of odd-

parity. For 1/2-spin perturbations, s = 1/2, but the potential in Eq. (2.46) must be replaced

by

Vκ(r) =

(
1− 2M

r

)m2

(
1− 2M

r

)
+
κ
(
κ−

√
1− 2M

r

)
r2

 , (2.47)

wherem is the fermion mass, and κ is the sum of angular momentum, namely κ = ±(l+1/2).

The discussions carried out in chapter 4 for the wave equation solution describing the

evolution of gravitational perturbations in the Schwarzschild spacetime can equivalently

contemplate the test field perturbations presented here.

2.4.1.1 The Dirac field in a quantum corrected black hole

This subsection is based on the following publication: Massless Dirac perturbations in

a consistent model of loop quantum gravity black hole: quasinormal modes and

particle emission rates.

Authors: Saulo Albuquerque, Iarley P. Lobo, Valdir B. Bezerra

DOI: 10.1088/1361-6382/ace7a8 (publication)

Published in: Class.Quant.Grav. 40 (2023) 174001

In Ref. [1], the Dirac equation was investigated for massless spinor perturbations in

the static and spherically symmetric spacetime of a quantum-corrected Schwarzschild black

hole [148]. This quantum correction consisted of an effective polymerized quantization of

Schwarzschild black hole motivated by Loop Quantum Gravity theory [149, 150, 151, 152,

153]. Its main advantage is addressing the singularity problem inside the black hole’s event

horizon by replacing the regular singularity at r = 0 with a regular bouncing space-like

surface. This bouncing spacelike transition surface topologically connects the white hole

and the black hole spacetimes. The final effective quantum corrected metric as derived in
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Refs.[148, 154] is written as

ds2 =
−4a(b)A2B2/3

λ22
dτ 2 +

λ22
4a(b)

(
1 +

1

X(b)2

)2(
dX

db

)2

db2 + b2dΩ2
2 , (2.48)

where b is the radial coordinate, dΩ2 is the line element of the two-dimensional unit sphere

S2, and λ1,2 are quantum gravity parameters of the polymerization, such that when they go

to zero, the solution reduces to the Schwarzschild spacetime. The functions of the metric

are

a(b)
.
= a(X(b)) = λ22

(
X2 + 1

2X

)2(
1− 3CD

2λ2

2X

X2 + 1

)
1

b2
, (2.49)

where

X(b)3 =
b3

2A3B
± 1

2

√
b6

(A3B)2
− 4

B
, (2.50)

for the following integration constants

AB1/3 =

[
λ1λ2MBH

2

(
MBH

MWH

)3/2
]1/4

, (2.51)

B =

(
MBH

MWH

)3

, (2.52)

C D =
2

λ1

[
2

3

(
λ1λ2
3

)3

M3
BH

(
MWH

MBH

)3/2
]1/4

. (2.53)

This metric also presents two Dirac observables, i.e., constant on-shell quantities, iden-

tified as MBH and MWH . They are the masses of the associated black hole and white hole,

respectively.

We showed that the resulting Dirac equation for massless spinor perturbations in this

background spacetime can decouple in the 2-spinor formalism of Chandrasekhar [147]. The

angular part yields
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(
1

sin θ
∂θ(sin θ∂θ) + (csc θ)2∂2ϕ +

i cot θ

sin θ
∂ϕ +

1

2
− 1

4
(cot θ)2 + λl

)
Sl,m(θ, ϕ) = 0, (2.54)

where λl is the decoupling constant.

Meanwhile, the radial part of the massless spin 1/2 field equation becomes

∂

∂b2∗
ψ(b) + [ω2 − V±(b(b

∗))]ψ(b) = 0, (2.55)

where ∂/∂b∗ denotes the derivative with respect to the tortoise coordinate b∗ in this effective

modified spacetime.

Finally, in this framework, we have demonstrated that the radial part of the Dirac

equation for massless spinor perturbations in the background spacetime of the BMM loop

quantum corrected black hole also leads to a Schrödinger-like wave equation, equivalent to

Eq. (2.38) . This time, however, the effective potential governing the scattering of perturba-

tion is written as

V±(b) =
4

λ22

[
λ1λ2MBH

2

(
MBH

MWH

) 3
2

] 1
2

(2.56)

×

(l(l + 1) + 1/4)
a(b)

b2
±
√
l(l + 1) + 1/4

(
2

λ2

)
a(b)(

1 + 1
X2(b)

)
dX
db

(√
a(b)

b

)′
 .
(2.57)

In Fig. 2.4 we compare this effective potential with Schwarzschild’s for different values of

the quantum correction parameter λ. Notice that it converges to Schwarzschild’s potential

when we consider λ→ 0
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Figure 2.4: Effective potential for massless Dirac perturbations around the quantum cor-
rected BMM black hole for different values of the quantum correction parameter λ = λ1 = λ2.
The effective potential for massless Dirac perturbations in the Schwarzschild background
spacetime is also shown in black for comparison. Notice that they converge when λ→ 0.

2.4.2 Exotic Compact Objects: Black Hole Mimickers

In recent years, the study of exotic compact objects has received much attention. As we

have already discussed, investigating these astrophysical alternatives to black holes provides

us with a prompt template for phenomenologically probing the existence and nature of black

holes’ event horizon surface.

There are many different proposals for horizonless alternatives to black holes in literature.

Among them, we can cite gravastars [155], boson stars [156], wormholes [157], fuzz balls [158],

and even quantum black holes [159, 160]. For many of those ECO models, their physical

predictions, such as the ringdown waveforms, are expected to be very similar to the black

hole’s, at least in principle. Recent works, however, have demonstrated the existence of a

smoking-gun phenomenon for differentiating those horizonless astrophysical objects from the

black holes, that is, the so-called echoes in gravitational wave data, e.g., Ref. [74]. In order

to have a better understanding of those echoes and how they help us distinguish the ECO’s

ringdown waveform from BH’s, we must first define our exotic horizonless compact object

model here, and how we describe them.

In this thesis framework, we model our exotic horizonless compact object by proposing a

parameterized reflecting boundary condition into a BH spacetime. This reflecting boundary

condition is defined at the objects’ surface radius r0, defined as r0 = rh(1 + ϵ), where 0 ⪅ ϵ.
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Indeed, when the ECO is very compact, such that this surface radius r0 satisfies

r0
2M

− 1 << 1, (2.58)

we can model our ECO by replacing the BH boundary condition at the horizon with a

reflecting boundary condition at the ECO surface x0 = r∗(r0). Namely, near the ECO’s

radius, the potential is V ≈ 0, and the perturbation field ψ in the frequency domain is a

linear combination of the incoming wave e−iω̃x and the reflected wave Reiω̃x. Therefore, near

the ECO surface x0, we must now have

ψ̃ ∝ e−iω̃(x−x0) +Ke−2iω̃x0eiω̃(x−x0), (2.59)

for some frequency-dependent reflectivity K.

That model leads us to a simple template for the ECO’s description, where we can study

wave propagation and emission using a Schwarzschild BH equipped with a different reflect-

ing boundary. In Fig. 2.5, we graphically illustrate the potential and reflective boundary

condition that conceptually represents this kinematic ECO model.

In Chapter 4, we study this ECO model and explicitly relate their ringdown waveforms

with the black holes’ waveforms. By determining their relationship in terms of the Green

function’s formalism, we find that the ECO waveform can be constructed by summing the

BH’s original waveform and a reprocessed version of the BH’s waveform observed at its

’would-be’ horizon [59]. We also show how this extra piece of the ECO waveform can be

expressed as a sum of echoes in the time domain or as a superposition of the ECO’s resonant

modes in the frequency domain.

2.4.3 Slowly Rotating Perturbed Black Holes

In General Relativity theory, the extension of Schwarzschild’s black hole solution to an axial

symmetric rotating black hole was only obtained in 1963 by Roy Kerr [83]. This metric
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Figure 2.5: Effective scattering potential for a typical ECO and its reflective boundary
condition at a certain x0 in tortoise coordinate. Notice that due to this reflective boundary
condition, a certain portion of the incoming wave is now reflected at the ECO’s core. For
the black hole case, this reflectivity is null by definition.

describes what is called Kerr spacetime, and it is given by the following line element in

Boyer-Lindquist coordinates

ds2 = −
(
1− 2Mr

ρ2

)
dt2 − 4Mar sin2(θ)

ρ2
dtdϕ (2.60)

+
ρ2

∆
dr2 + ρ2dθ2 (2.61)

+
sin2(θ)

ρ2
(
(r2 + a2)2 −∆a2 sin2(θ)

)
dϕ2 (2.62)
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where

ρ2 = r2 + a2 cos2(θ), (2.63)

∆ = r2 − 2Mr + a2. (2.64)

That line element describes the spacetime at the external neighborhood of a massive

rotating black hole, where its mass is given byM and its angular momentum per mass unity

is a. The radius that defines the outer boundary of the event horizon is given by

r+ =M +
√
M2 + a2, (2.65)

The shape of this event horizon is not a perfect sphere. Instead, it is an oblate spheroid

due to the black hole’s rotation.

Among the plethora of new physical features that Kerr spacetime description has revealed,

some of the most interesting are the frame-dragging effect (or Lense-Thirring effect) [161],

the Penrose process [162], and the superradiant scattering of perturbation fields [112, 113].

Those phenomena are not reported in Schwarzschild’s static black hole and are a physical

consequence of the spacetime ’twisting’ caused by Kerr’s black hole rotation.

The evolution of gravitational perturbations at the background spacetime of Kerr’s metric

leads to a much more complex scenario, even in linear order perturbation theory. The

description of those perturbations around a rotating black hole in the context of linearized

gravity typically involves the Teukolsky equation [144]. This equation governs the behavior

of gravitational perturbations on Kerr’s background spacetime in the frequency domain,

describing specifically the perturbations to the Weyl scalar Ψ4. The separated angular part

of this equation is given by
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[
1

sin θ

∂

∂θ

(
sin θ

∂Slm

∂θ

)
+ a2ω2 cos2 θ − m2

sin2 θ

−s2 cot2 θ − 2ms cos θ

sin2 θ
− 2amsω cos θ + s+ A

]
Slms(θ) = 0 (2.66)

Likewise, the radial profile of gravitational perturbations around a Kerr black hole is

described in the frequency domain by the following equation

[
1

∆s+1

d

dr

(
∆sdRlm

dr

)
+
K2 − 2is(r −M)K

∆
+ 4isωr − λ

]
Rlms(r) = 0 (2.67)

where

∆ = r2 − 2Mr + a2, (2.68)

K = (r2 + a2)ω − am, (2.69)

λ = a2ω2 − 2amω + A(aω), (2.70)

m = azimuthal eigenvalue, (2.71)

s = spin-weight. (2.72)

A(aω) = separation constant, (2.73)

ω = frquency, (2.74)

Rlm(r) = radial function, (2.75)

Slm(θ) = angular function, (2.76)

(2.77)

As we have done in the previous case of a static black hole, we can re-express the radial

part of the Teukolsky equation into a wave equation in a Schrödinger-like form. After some

algebra, we obtain
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d2R

dr2∗
+ F (r)R = 0, (2.78)

where and r∗ is the tortoise coordinate for Kerr’s spacetime. The effective potential F (r),

which depends on the properties of the Kerr black hole and the angular eigenvalue of the

perturbation, is expressed as

F (r) = K2 − 2i(r∗ −M)K +
∆(4irωs− λ)

(r2 + a2)2
−G2 −G,r∗ , (2.79)

where

G(r) =
s(r −M)

(r2 + a2)
+ r

∆

(r2 + a2)2
. (2.80)

Notice that this potential is complex-valued, which makes the usual analysis carried out

throughout this thesis impossible. For the specific scenario in which we can assume that the

BH’s angular momentum is small compared to its mass, an easier approximative description

is achieved [163]. Indeed, the spacetime around slowly rotating black holes can be described

in terms of a first-order expansion of Kerr’s metric in the angular momentum. In the weak

field limit, this metric yields the following line element

ds2 ≈ −
(
1− 2M

r

)
dt2 +

(
1 +

2M

r

)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
− 4a

r
sin2 θdϕdt. (2.81)

For this case, the evolution of perturbations around this black hole in the slow rotation

approximation can be obtained by expanding Teukolsky equation (2.67) and its effective

potential Eq. (2.79) in terms of a and neglecting higher order terms. In the slow rota-

tion approximation [164], the radial part of the Teukolsky equation describing gravitational

perturbations to Weyl scalar yields for the axial sector

48



d2R

dr2∗
+
[
ω2 − Veff(r)

]
R = 0, (2.82)

where

Veff(r) = V0(r) + a2V2(r), (2.83)

and

V0(r) =VRG(r) =

(
1− 2m

r

)[
l(l + 1)

r2
+

6M

r3

]
, (2.84)

V2(r) =− M2

r4
+M2

(
1− 2M

r

)[
−24(7− 6r)

(λ+ 2)3r6
− 12(47− 40r)

(λ+ 2)2r6
+

2(6r2 − 250r − 315)

(λ+ 2)r6
+

420(6− 5r)

(5 + 4λ)r6

]
−M2

(
1− 2M

r

)[
− 2(λ− 10)

(λ+ 2)(5 + 4λ)r2
ω2 + 3

6r2(4λ− 19)− 26r(λ− 13)− 231

(λ+ 2)2r10ω2

]
.

(2.85)

The effective potential is now written as an expansion, involving a zeroth order term V0

and a second order correction V2 depending explicitly on the black hole’s spin parameter a.

The effective zeroth order term corresponds to the effective potential in the Schwarzschild

spacetime (in Eq. (2.33)), and the second order term represents the corrections due to the

black hole’s rotation. Equivalently, for slowly rotating black holes, gravitational pertur-

bations are described by the Schwarzschild effective potential modified by a correction in-

duced by the rotation contribution. Notice that this correction contributes with a frequency-

dependent term. A general feature for astrophysical ultracompact objects is that the evolu-

tion of perturbations in a rotating background scenario induces energy or frequency depen-

dence for the effective scattering potential. A similar picture is achieved for analog gravity

systems, such as acoustic black holes, for example. We illustrate the last ones in the follow-

ing chapter. The consequences of the energy dependence on a semi-analytical description of

effective scattering potentials are discussed in Chapter 7.
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Chapter 3

Analog Gravity Systems: The Sonic

Black Hole

In this chapter, we describe the dynamics of an analog system to astrophysical black holes and

exotic compact objects consisting of a classical fluid in a bathtub-draining vortex. Through-

out our discussion, we highlight the similarities between the description of this simplified

physical model and its astrophysical analog systems. These similarities motivate the study

we carry out here. As we see in section 3.2 and on, our formalism is specifically chosen for

pointing out the clear equivalence between the description of acoustic perturbations evolving

around a draining vortex and the dynamics of a scalar field around an effective black hole

in 2 + 1 dimensions. When this mathematical equivalence is clear, we explicitly derive the

effective metric of this associated effective BH spacetime, which we call acoustic (or sonic)

black hole. Next, we highlight some physical properties of the effective spacetime generated

by this metric, such as its angular momentum and its acoustic horizon. Then, some remark-

able experiments carried out with these analog models are reported. From the results of

those experiments, we point out the observation of physical features that were expected to

be intrinsically related to black holes and exotic compact objects.

Furthermore, we report what physically observed phenomena [79] motivated researchers

to point out an equivalence between an imperfect draining vortex (IDV) and exotic compact

horizonless objects (ECO). Finally, the description of those ECOs in terms of the analog
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acoustic model with the IDV is introduced in section 4.3. For such a description, we employ

a cinematically modified model, and discuss the preliminary physical conditions for its exper-

imental realization. The mathematical equivalence between astrophysical ECOs and their

analog model with an imperfect draining vortex is the main motivation for the investigation

carried out throughout this thesis. In Chapter 4, a specific smoking gun effect, expected

to arise from exotic compact objects, is suggested for our ECO’s analog model. This fea-

ture is the so-called echoes in the gravitational wave signals. From Chapter 5 and on, the

main subject of this thesis, the inverse method for the scattering of exotic compact objects,

is introduced and applied to our ECO’s analog model consisting of an imperfect draining

vortex.

3.1 The Sonic Hole as an Analog to Astrophysical Black

Holes

In 1980, Unruh pointed out for the first time the mathematical equivalence between the de-

scription of a bathtub-draining vortex (DBTV) and the dynamics of an effective black hole.

This motivated the proposal of this simple classical system as an analog model to astrophys-

ical black holes. This equivalence is drawn from the mathematical similarity between the

wave equation describing acoustic perturbations around the draining vortex, and the Klein-

Gordon equation governing the evolution of scalar field perturbations in an effective black

hole spacetime. In order to demonstrate this equivalence, we need to derive these equations

first. So, let us start by defining our analog table-top system.

Consider an inviscid and barotropic fluid flowing irrotationally on a draining vortex in

a bathtub sink, as the one shown in Fig.1.5. The physical dynamics of this simple classical

system are described, in first principles, by the hydrodynamical equations [165]
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∂ρ

∂t
+∇ · (ρv) = 0, (3.1)

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p, (3.2)

∇× v = 0, (3.3)

where Eq. (3.2) is the Euler-equation governing the dynamics of a fluid of density ρ

submitted to a pressure p, and flowing with a velocity field v. Eq. (3.1) is the continuity

equation stating the conservation of matter for this fluid, and Eq. (3.3) states that the

vorticity ∇ × v of an irrotational flow is zero. Using this last equation, we can write the

fluid velocity v as the gradient of a scalar potential ψ(x, t)

v = −∇ψ (3.4)

We need to linearize the perturbed version of those equations above to obtain the wave

equations governing the propagation of perturbations around this fluid flow. We use the usual

procedure of Refs.[30], [31], [32] and [165], which consists of writing down the dynamics

of the DBTV’s as the background flow, and then adding a linear perturbation over this

zeroth order dynamics. The final result must also obey the hydrodynamic equations, namely,

Eqs. (3.1),(3.2),(3.3).

First, since the fluid is barotropic, we define the specific enthalpy h(p) as

h(p) =

∫ p

0

dp
′

ρ(p′)
(3.5)

Euler’s equation (3.2) is now reduced to Bernoulli’s equation

−∂ϕ
∂t

+
1

2
(∇ψ)2 + h = 0. (3.6)

We now perturb the basic dynamic quantities describing this fluid, namely its density,
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pressure, and velocity potential.

ρ→ ρ+ δρ, (3.7)

p→ p+ δp, (3.8)

ψ → ψ + δψ. (3.9)

In linear order, the continuity equation with those perturbations yields

∇ ·
[
ρ0
c2

(
∂δψ

∂t
+ v0 · ∇δ

)
v0 − ρ0∇δϕ

]
(3.10)

∂

∂t

[
ρ0
c2

(
∂δϕ

∂t
+ v0 · ∇δϕ

)]
= 0, (3.11)

The quantities with the subindex 0 are the zero-th order background quantities describ-

ing the non-perturbed fluid vortex. The quantity c2 describes the speed of sound by the

derivation of the equation of state.

c2 =
∂p

∂ρ
(3.12)

The remarkable connection with General Relativity resides in the fact that the Eq. (3.11)

can be rewritten as the Klein-Gordon equation in curved spacetimes

1√−g∂µ
(√−ggµν∂νδϕ

)
= 0, (3.13)

describing the evolution of a scalar field δψ perturbation on the background spacetime

of the following effective metric in 2 + 1 dimensions
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gµν =
(ρ0
c

)2 −c2 + v20 −v0

−v0 I2×2

 (3.14)

Specifying our coordinate systems as the polar coordinates in 2 spatial dimensions, the

background flow velocity of the fluid is given by

v0 = vr(t, r, ϕ)r̂ + vϕ(t, r, ϕ)ϕ̂, (3.15)

and the metric tensor is written as

gµν =
(ρ0
c

)2

−c2 + v20 −vr −vϕr

−vr 1 0

−vϕr 0 r2

 . (3.16)

The analog metric above admits a supersonic region where the fluid is faster than the

soundwaves v > c, and the vector ∂/∂t becomes spacelike. This draws a complete analogy

between this supersonic region and the ergoregion of a Kerr black hole. Accordingly, when

probing the scattering properties of this classical irrotational fluid in a bathtub-draining

vortex, such as the one modeled above, effects such as superradiant scattering could also

be measured [166, 167]. This experiment was proposed to be within the experimental reach

[168], and its realization occurred in 2016 [79]. That experiment demonstrated the super-

radiant profile of wave scattering through this rotating vortex flow. This astonishing result

showed that physical phenomena only expected to happen in astrophysical black holes could

be experimentally reproduced in terms of BHs’ analog models.

3.1.1 The Effective Acoustic Metric for an Incompressible flow

An additional result that can be derived from Eq. (3.3), i.e. from the hypothesis of an

irrotational fluid, is that the angular velocity of the background fluid is inversely proportional

to r. So
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vϕ =
C

r
. (3.17)

If we also admit that this fluid is incompressible, we must have by definition that the

background density ρ0 and the speed of sounds c are constant. Consequently, from Eq. (3.1),

the fluid’s divergence must also be zero for the background velocity

∇ · v0 = 0 (3.18)

Hence, by integrating this equation throughout the entire space, we obtain that the radial

velocity is also inversely proportional to the radial coordinate for an incompressible fluid

vr = −D
r
. (3.19)

So, the background fluid velocity is now

v0 = −D
r
r̂ +

C

r
ϕ̂, (3.20)

and the acoustic metric describing the effective background BH spacetime is defined by

the following line-element

ds2 = −
(
1− C2 +D2

r2

)
dt2 +

2D

r
drdt− 2Cdϕdt+ dr2 + r2dϕ2. (3.21)

On this effective BH spacetime, scalar field perturbations described by the Klein-Gordon

Eq. (3.13) propagate as acoustic perturbations around a DBTV. It is useful sometimes to

write this effective metric in a Boyer-Lindquist Kerr-like form, which can be achieved by

transforming the polar coordinates into a new coordinate system, (t̃, r, ϕ̃). Then, we find the

equivalent line-element

55



ds2 = −
(
1− C2 +D2

c2r2

)
c2dt̃2 +

(
1− D2

c2r2

)−1

dr2 − 2Cdϕ̃d̃t+ r2dϕ̃2. (3.22)

Notice the similarity in the form of this effective line-element with the line-element of a

slowly rotating black hole spacetime in Eq.(2.81). Moreover, from this expression, we find

that an ergoregion is located inside the ergo-sphere, whose radius is given by

re =
(C2 +D2)1/2

c
, (3.23)

This effective spacetime also admits an event horizon, as the surface on which the radial

velocity of the fluid equals the speed of sound, so

rh = D/c. (3.24)

We have now summarized the analogy between the irrotational fluid model of a draining

vortex in a bathtub and the astrophysical black hole.

3.1.2 Wave equation for acoustic perturbations in the acoustic

black hole

As demonstrated previously, the evolution and propagation of acoustic perturbations in the

background fluid flow of a draining vortex are described by the Klein-Gordon equation (3.13).

This second-order partial differential equation can be separated through the following ansatz

δψ(t, r, ϕ) = R(r)eimϕe−iωt. (3.25)

The resulting radial equation is then

d2R

dr2
+ P (r)

dR

dr
+Q(r)R = 0, (3.26)

56



where

P (r) =
d

dr
log

[
r

(
c2 − D2

r2

)]
− 2i

Dr

r2c2 −D2

(
ω − mC

r2

)
,

Q(r) =
r2

r2c2 −D2

[(
ω − mC

r2

)
− m2c2

r2

]
, (3.27)

− i

(
ω − mC

r2

)2
Dr

r2c2 −D2

d

dr
log

(
ω − mC

r2

)
. (3.28)

Here, we can implement a coordinate transformation for the radial coordinate r that

is analog to the conformal transformations in GR. The new coordinate r∗, which we call

tortoise coordinate, is related to the old radial coordinate by the following relations

dr

dr∗
=

1

r2

(
r2 − D2

r2

)
, (3.29)

r∗ =r +
D

2c
log

∣∣∣∣cr −D

cr +D

∣∣∣∣ . (3.30)

With an additional transformation on the dependent coordinate R(r) [165],

R(r) →
(
r−1/2+imC

D (c2r2 − A2)i
Dω
2c2

−imC
2D

)
ψ(r) (3.31)

we are led to a new differential equation for the radial part of the perturbation field,

namely

d2

dr2∗
ψ(r)− V̄ (r, ω)ψ(r) = 0. (3.32)

If we also normalize this equation with D by taking D → 1, the radial function V̄ (r)

yields

57



V̄ (r, ω) = −
(
ω2 − mC

r2

)2

+

(
1− 1

r2

)(
m2 − 1/4

r2
+

5

4r4

)
, (3.33)

Expanding this radial function as

V̄ (r, ω) = −ω2 − m2C2

r4
+ 2

mC

r2
ω −

(
1− 1

r2

)(
m2 − 1/4

r2
+

5

4r4

)
. (3.34)

Eq. (3.32) can then be finally rewritten as

d2

dr2∗
ψ(r)−

(
ω2 − V (r, ω)

)
ψ(r) = 0, (3.35)

where V (r, ω) is the effective potential given by

V (r, ω) = −m
2C2

r4
+ 2

mC

r2
ω −

(
1− 1

r2

)(
m2 − 1/4

r2
+

5

4r4

)
, (3.36)

In Fig. 3.1 we plot those potentials for some different values of the angular parameter m,

and in the non-rotating case c = 0.

If we compare Eqs. (3.35),(3.34) above with Eqs. (2.82),(2.83) for the wave equation

describing the evolution of gravitational perturbations around a slowly rotating black hole,

we see the strong and remarkable similarity between those equations. This demonstrates

once again the mathematical equivalence that motivates the study of astrophysical systems

such as black holes and ECOs in terms of their analog gravity systems, such as the one

we presented here. Furthermore, this mathematical equivalence allows us to study and

simultaneously obtain the wave solutions for Eqs. (3.35) in terms of the same mathematical

formalism. We introduce this formalism and we solve those master wave equations in the

following chapter.
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Figure 3.1: Effective analog scattering potentials from Eq. (3.36) with C = 0 and for different
values of the angular parameter m.

3.1.3 Experimental Findings

In the last years, a lot of experimental interest for analog gravity systems to astrophysical

compact objects has been raised, and different lab controlled experiments were conducted

by different research groups [165, 37, 118, 116, 121]. Among the many physical features

these groups have searched for, the most remarkable ones reported the discovery of physical

features in analog gravity systems that were initially predicted to exist in their correspond-

ing astrophysical systems. For the analog gravity system proposed in terms of the bathtub

draining vortex with a fluid, we could cite for example the detection of quasinormal modes

oscillations on the free surface of the hydrodynamical vortex flow at the late stages of the re-

laxation process [47], and most notably, the detection of a rotational superradiant scattering

in a vortex flow [79].

As we have already discussed, the superradiant behavior of scattering fields is a specific

and remarkable feature of rotating black holes. The superradiant scattered waves manage to
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’steal’ some energy from the black hole’s ergo-region, amplifying their amplitudes. We can

see that by looking at the following relation for the reflection coefficient

|R|2 = 1− 1

ω

(
ω − mC

r2h

)
|T |2 (3.37)

Notice that, since 0 < |T |2 < 1, superradiance, i.e. |R|2 > 1, occurs whenever the

frequency of the incident wave is sufficiently small (or the azimuthal number is sufficiently

large).

ω <
mC

r2h
(3.38)

Furthermore, considerable difficulty in detecting superradiance was imposed by the fact

that we need small frequencies (or big wavelengths) to probe it observationally. To circum-

vent this problem, the Gravity Group from Nottingham prepared a very careful experimental

set-up, where extremely sensible measurements were conducted for the final result shown in

Ref.[79].

From this same experiment and result, an additional and unexpected outcome was also

later reported. This time, it was unrelated to the scattered waves’ superradiant profile. In

Ref. [80], it was pointed out that:

“[...] while this experiment demonstrated the robustness of the superradiance

process, it still lacks a complete theoretical description due to the many effects a

a stage in the experiment. In this paper, we shine new light on this experiment

by deriving an estimate of the reflection coefficient in the dispersive regime [...]”

“[...] This estimate is used to evaluate the reflection coefficient spectrum of

counter-rotating modes in the Nottingham experiment. Our finding suggests that

the vortex flow in the superradiance experiment was not purely absorbing, contrary

to the event horizon of a rotating black hole.[...]”
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In his same words...

“[...] While this result increases the gap between this experimental vortex flow

and rotating black hole, it is argued that it is in fact this gap that is the source

of novel ideas.[...]”

Therefore, through a careful analysis using the WKB method, Torres [80] suggested that

the observations from the vortex flow experiment showed that the DBT classical vortex was

not a pure absorber at its core, analogously to an astrophysical black hole. In particular,

it was clear that the vorticity effects were relevant enough closer to the vortex core, so

dispersive effects could no longer be neglected. However, neglecting the dispersive nature

of the classical fluid is an approximation we assume a priori for defining the DBT vortex

as an analog to black holes. So finally, a direct analogy between the DBT vortex of the

Nottingham experiment [79] and a rotating black hole was impossible. While this could

represent a backlash for the proposal of probing astrophysical systems with analog gravity

systems, particularly for the DBT vortex model, Torres claimed that this gap could be a

source of new ideas [80].

Among those new ideas, one of the most relevant for this thesis was promoting the DBT

vortex to an analog model for exotic compact horizonless objects [48], rather than black

holes. The framework in Ref.[47] also encouraged this idea. In Ref. [48], it was discussed

how the quasinormal modes spectrum of scattering waves would be affected by the presence

of vorticity effects at the vortex core. In fact, the obtained result was that the resulting

quasinormal modes exhibited long-living trapped modes, also known as quasibound states.

In the next section, we introduce the idea raised in Ref. [48] of proposing the draining vortex

as an analog model to exotic compact objects. This idea will be extremely relevant for the

applications of the inverse methods that are considered throughout this thesis.
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3.2 The Imperfect Draining Vortex as an Analog to

Astrophysical Exotic Compact Objects

In our previous discussions, we pointed out that due to the large flow velocities close to

the core of a draining rotating vortex, some extra hydrodynamical effects could potentially

lead to the failure of the non-vorticity and non-dispersive assumptions. In analogy to the

astrophysical black hole, those approximations are assumed so that the draining vortex can

become a perfect absorber. Facing this fact, it has been proposed in literature an effective

model [48] of a draining vortex with a partially reflective boundary condition inside the core.

Motivated by the experimental findings in [80], suggesting that this reflection occurring

inside the core tends to assume the form of a finite reflectivity constant for some physical

scenarios, they proposed in their model that this effective boundary condition at the center

of the vortex is described by a single quantity K. Moreover, in their effective model, this

boundary condition is located at a small distance outside the analog horizon rh. So, in their

framework, they studied the scattering of waves by this imperfect draining vortex, focusing

on the signature of those core reflections.

In the following, our study will be formally carried out using the equivalence between the

mathematical description of analog gravity systems and their corresponding astrophysical

objects. Such equivalence allows us to bring the mathematical techniques already employed

in the context of compact objects’ perturbation theory and use them to describe the scat-

tering properties of their analog systems. This time, however, we can no longer rely on the

black hole description of fields scattering since our DBT vortex is not a perfect absorber.

Instead, the mathematical description to be used is equivalent to the techniques used for

exotic compact horizonless objects.

As we have previously mentioned for some exotic ultra-compact objects, their effective

boundary condition at their external surface is modeled by a reflectivity parameter defined

just beyond their ’would-be’ event horizon, see Fig. 2.5 for an illustration. This physical
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description suits well the conceptual idea behind the imperfect draining vortex in a DBT.

For this reason, we say that such vortex can now be regarded as an analog model to ECOs,

rather than black holes.

As it is for the astrophysical setting, the effective description of ECOs allows one to easily

relate their physical observables to associated quantities for the acoustic black hole case. We

use this fact to obtain the scattering properties of our analog gravity system.

Among the plethora of results obtained in Ref.[48], the most remarkable was the presence

of enhanced absorption of the waves for specific frequencies, which are visible through the

presence of spectral lines in the transmission/reflection spectrum (see Fig. 4.24 for example).

Those frequencies are the so-called resonant frequencies of the quasistationary modes of the

system.

In the following chapters, we compute those cross-section curves, point out those en-

hanced spectral lines, and discuss their physical significance. The same calculations could

be carried out for the astrophysical setting, where exotic compact objects surrounded by an

effective boundary also exhibit sharp lines in their scattering coefficients [169, 170].
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Chapter 4

The Direct Problem: Methods for Solv-

ing the Master Wave Equations

4.1 Solving the Linearized Field Perturbation Equa-

tions

As we have seen in the previous chapters, the dynamical evolution of gravitational and

test field perturbations in BH’s background spacetimes, as well as the evolution of acoustic

perturbations around an acoustic black hole, are both radially described by the following

general master wave-equation

∂2

∂r2∗
Ψ(r, t)− ∂2

∂t2
Ψ(r, t)− Vl(r)Ψ(r, t) = Sl(r, t). (4.1)

where the non-homogeneous source term Sl(r, t) specifies the perturbation profile in radial

coordinate, and V (r) is the scattering potential that couples the geometrical structure of the

background (or effective) spacetime into this wave equation. For odd-parity perturbations

in Schwarzschild spacetime, the effective potential Vl(r) is given by

VRGl
(r) =

(
1− 2M

r

)[
l(l + 1)

r2
+

6M

r3

]
, (4.2)
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For even-parity gravitational perturbations, we get Zerilli’s effective potential instead

VZl
(r) =

2(r2 − 2Mr)

r5(Λr + 3M)2
[
Λ2(Λ + 1)r3 + 3MΛ2r2 + 9M2Λr + 9M3

]
, (4.3)

Lastly, for the scattering of acoustic perturbation waves around the acoustic analog of a

black hole consisting of a bathtub draining vortex, the following effective potential is obtained

Vm(r) =

(
1− 1

r2

)[
m2 − 1/4

r2
+

5

4r4

]
+
m2C2

r4
− 2

mC

r2
ω, (4.4)

In all cases, m and l denote the angular decomposition constants.

To study the evolution of perturbations within a considered background geometry we

need to investigate and/or possibly solve this second order master wave equation. This

chapter’s main goal is to discuss and present solutions to these perturbation equations. We

can do that through two distinct approaches: we can directly integrate this equation in the

time-domain (1), evolving an initial spatial configuration for the perturbation over time; or

we can also solve it in the frequency domain, after doing a spectral decomposition in terms of

the Fourier transformation (2). For that last case, we rely on Green’s function method. We

discuss both approaches in the following sections, beginning with the time domain approach

for the associated homogeneous equation.

∂2

∂r2∗
Ψ(r, t)− ∂2

∂t2
Ψ(r, t)− Vl(r)Ψ(r, t) = 0. (4.5)

4.2 Time Domain Approach

In order to integrate Eq. (4.5) directly in the time domain, we must evolve a certain initial

configuration. Accordingly, we must specify this initial configuration at a certain initial time

t0, such as for example
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{
Ψ(x, t0) = g(x),

∂Ψ
∂t
(x, t = t0) = f(x)

, (4.6)

for some certain g(x) and f(x), and at a certain time t0. The x coordinate here is the

tortoise coordinate r∗.

We are considering here that at t0 the external perturbation S̃(x, t) gets turned off, so

we have S̃(x, t > t0) = 0. Equation (4.5) with some chosen functions g(x) and f(x) as initial

conditions provides us with the formulation of our initial value problem. In the next two

subsections, we show how we evolve these initial conditions in the direct time domain for

Schwarzschild/analog black holes. In the following subsection, we repeat the procedure, but

for their corresponding exotic compact object.

4.2.1 Evolving The Field Perturbation Equations in Time Domain

for Black Holes

Let’s consider, for example, a Gaussian pulse being sent toward the Schwarzschild or the

acoustic black hole. Our initial data consists of the incoming Gaussian wave packets written

as follows

ψ(x, t0) = Ae−
1
σ
(x−x3)2 (4.7)

with an amplitude A comparable to the maximum of the potential and widths σ compa-

rable to the width of the potential. Outgoing boundary conditions are imposed (although

boundaries are chosen at a distance such that possible reflections will not contaminate the

observer waveforms).

With our initial value problem fully specified, we now solve Eq. (4.5) numerically via a
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finite difference scheme, particularly a central in time and central in space scheme [171].

Ψi
j = 2Ψi−1

j −Ψi−2
j +

∆t2

∆x2
(Ψi−1

j+1 −Ψi−1
j +Ψi−1

j−1)−∆t2Ψi−1
j Vj. (4.8)

Here ψi
j = ψ(xi, tj), Vj = V (xj) and ∆t and ∆x are the time and space resolutions

respectively.

In Eq. (4.6), specifying the boundary conditions at a second space-like foliation of this

spacetime, Ψ(x, t0 + dt), displaced by an infinitesimal time dt, is formally equivalent to

providing the second initial condition for the derivative of Ψ(x, t0), since Ψ(x, t0 + dt) ≈

Ψ(x, t0) +
∂Ψ
∂t
(x, t0)dt. We can set the initial conditions at the two space-like foliations,

infinitesimally displaced in time, as

{
ψ(x, t0) = Ae−

1
σ
(x−x3)2 ,

ψ(x, t0 + dt) = Ae−
1
σ
(x−(x3−dt))2 ,

(4.9)

The specific mathematical form of the two initial conditions for the perturbation field in

Eqs. (4.9) can be physically interpreted as a Gaussian pulse centered in x3 at t0 that will

tend to move toward the black hole as the time increases. We can see that by noticing that

after an infinitesimally small time displacement dt, the pulse’s center will move to x3 − dt.

Here, we have fixed the natural unit system for which c = 1.

By evolving the initial conditions Eqs. (4.9) through Eq. (4.8) above, we evaluate and

obtain the perturbation field Ψ at any future time t, while we also guarantee it satisfies

the master wave equation (4.5) in every subsequent time [171]. To illustrate it, We show in

Fig.4.1 some instantaneous of the evolved perturbation field for a few different time instants

t = ti, namely t0 = 0, t1 = 10, t2 = 15, t3 = 25 and t4 = 34.

If we fix an observer at a certain distant position x2 from the source, which we represent as

the black dashed vertical line in Fig. 4.1, this observer will measure a gravitational wave signal

(or acoustic wave signal) during a certain period of time. We represent the gravitational wave
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with m = 4, and C = 0. The initial perturbation was released from x3 = 30 with σ = 1.

signal (or acoustic wave signal) measured by the observer in the graphic in Fig. 4.2 for the

Schwarzschild black hole, and in Fig. 4.3 for the analog acoustic black hole. We also call this

detected signal gravitational-wave strain, or acoustic wave strain.

We will properly analyze and study those gravitational wave signals in Sec. 4.3.2.2, where

we introduce the spectroscopy of gravitational waves from ringing perturbed black holes in

terms of their quasinormal modes.

4.2.2 Evolving The Field Perturbation Equations in Time Domain

for Static Exotic Compact Objects

For exotic compact objects, the same scheme explained above is used, with the only difference

that at a certain boundary position x0, we demand that
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Ψi
j = 2Ψi−1

j −Ψi−2
j +

∆t2

∆x2
(
Ψi−1

j+1 −Ψi−1
j + (1−K2)Ψi−1

j−1

)
−∆t2Ψi−1

j Vj, (4.10)

for xj = x0.

That will guarantee the desired reflecting behavior for the boundary condition at the

reflective surface in x0. See some examples in Figs. 4.4, 4.5, where the signals from a

Schwarzschild ECO and an analog ECO model are respectively plotted.

Notice that in all those cases, a new and more damped gravitational wave strain arises

again after a fixed time interval. Those are the echoes of gravitational waves, produced

by the reflective properties of the ECO at the boundary defined at x0. We will study in

detail those echoes in section 4.3.3.2, right after we introduce the mathematical properties

of waveforms in the frequency domain for ECOs.

4.3 Frequency Domain Approach

From now on, we focus on integrating Eq. (4.1) in the frequency domain. For that goal,

we employ Green’s function formalism. This formalism gives us the fundamental tools to

analyze waveforms emitted by perturbed black holes (Sec. 4.3.1) and exotic compact objects

(Sec. 4.3.3), both for the astrophysical scenario and for analog gravity systems. This formal-

ism also provides us with the basic mathematical foundation for investigating the scattering

problem in Sec. 4.4.

As we see throughout our study (4.3.2), the resonant modes (or the poles of Green’s

function) of the solutions in the frequency domain play an important role in the upcoming

analysis. Those modes are called quasinormal modes for the black hole case and trapped

quasinormal modes for the ECO scenario.

In order to integrate Eq. (4.1) in the frequency domain, we first need to do the usual

spectral decomposition, which is carried out in terms of a Fourier transformation on the
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wavefunction Ψ(x, t)

Ψ̃(r, ω) =
1√
2π

∫ +∞

−∞
Ψ(r, t)e−iωtdt. (4.11)

This will lead us to a time-independent wave equation for the radial profile of the per-

turbations, which is parametrized by the frequency ω.

d2Ψ̃(r, ω)

dr2∗
+ (ω2 − Vl(r))Ψ̃(r, ω) = S̃l(r, ω) (4.12)

where S̃(r, ω) is the Fourier transformation of the perturbation source term. This second-

order master equation must have two linearly independent wave solutions.

Once we solve this time-independent wave equation (4.12), we obtain the wave function

in the frequency domain, also called amplitude Ψ̃(x, ω). From this amplitude, we can obtain

the time-dependent solution Ψ(x, t) for the time evolution of the perturbations employing

the inverse Fourier transformation

Ψ(x, t) =
1√
2π

∫ +∞

−∞
Ψ̃(x, ω)eiωtdt (4.13)

Therefore, all we need to do is to solve the non-homogeneous time-independent wave

equation (4.12) for the frequency-domain amplitude Ψ̃(x, ω). That is accomplished in terms

of Green’s function formalism, which we introduce now for two distinct important cases:

perturbed black holes (and acoustic analogs) (Sec. 4.3.1); and perturbed exotic compact

objects (and analog models) (Sec. 4.3.3).

4.3.1 Green’s function formalism for the time-independent wave

equation in the black hole case

In order to obtain the general wave solution of the time-independent wave-equation (4.12),

within the Green’s function formalism, we must firstly obtain two linear-independent wave
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solutions Ψ̃1(x, ω), Ψ̃2(x, ω) of the associated time-independent homogeneous wave-equation,

readily

d2Ψ̃(r, ω)

dr2∗
+ (ω2 − Vl(r))Ψ̃(r, ω) = 0. (4.14)

As we have seen in Sec. 4.2, when we solve the wave equation (4.5) directly in the time

domain, we obtain an evolving perturbation, such that for a very distant observer in x2 >> 0,

outgoing damped-harmonic oscillations are scattered out by the potential Vl(x). The same

happens in x0 << 0, except that we now have incoming damped waves. If we look at the

potential structure in general Vl(x), we see that it vanishes at the two extremities in tortoise

coordinate x. So

Vl(x) →
{

0, x→ −∞,

0, → +∞
, (4.15)

for non-rotating cases; and (4.16)

Vl(x) →
{ −ω2

sr + 2ωωsr, x→ −∞,

0, x→ +∞,
, (4.17)

for rotating cases. (4.18)

where ωsr is the superradiance threshold frequency, which indicates the limiting superior

frequency for superradiant scattering effects. It is given by

ωsr =

{
aΩs,l, for Kerr’s black hole;

mc
r2h
, for the acoustic rotating sonic hole.

(4.19)

For Kerr’s black hole, Ωs,l depends on the perturbed field’s spin, as shown in Refs.[164,

172].
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Hence, the time-independent homogeneous wave equation (4.14) at those two extremities

x→ ±∞ is asymptotically written as

{ d2Ψ̃(x,ω)
dx2 − ω̃2Ψ̃(x, ω) = 0, x→ −∞

d2Ψ̃(x,ω)
dx2 − ω2Ψ̃(x, ω) = 0, x→ ∞

(4.20)

The homogeneous wave solutions must satisfy the following general conditions at the two

extremities

{
Ψ̃(x, ω) → e±iω̃x, x→ −∞;

Ψ̃(x, ω) → e±iωx, x→ ∞,
(4.21)

where ω̃ = ω − ωsr for rotating cases, and simply ω̃ = ω for non-rotating ones.

This motivates us to choose, as the two linearly-independent solutions of Eq. (4.14),

the pair of wave functions Ψ̃h(x, ω), Ψ̃∞(x, ω) which, by definition, satisfy the boundary

conditions

Ψ̃h(x, ω) =

{
e−iω̃x, x→ −∞,

A−
∞e

−iωx + A+
∞e

+iωx, x→ +∞,
(4.22)

and

Ψ̃∞(x, ω) =

{
A−

h e
−iω̃x + A+

h e
+iω̃x, x→ −∞,

e+iωx, x→ +∞.
(4.23)

The Wrosnkian of those two linearly-independent solutions is defined as
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WBH ≡ W (x; Ψ̃h(x, ω), Ψ̃∞(x, ω)) = Ψ̃h(x, ω)
∂Ψ̃∞

∂x
(x, ω)− Ψ̃∞(x, ω)

∂Ψ̃h

∂x
(x, ω) (4.24)

The general solution Ψ̃(x, ω) of the homogeneous associated wave equation (4.14) must

be, everywhere in x, a linear superposition of the two independent solutions above. Fur-

thermore, with this chosen pair of linearly-independent wave solutions for the homoge-

neous equation, we can also write the general solution of the NON-homogeneous time-

independent wave-equation (4.12). In the frequency domain, this is carried out employing

the Green’s function formalism. We are mainly interested in the frequency domain waveform

of the wave solution at the two extremities x → ±∞. One represents the wave amplitude

’swallowed’ by the BH’s event horizon x→ −∞, and the other represents the wave amplitude

measured by a distant observer in x → ∞. Green’s function formalism states that the gen-

eral form of the wave solution for theNON-homogeneous time-independent wave-equation

(4.12), as measured at both extremities (x→ ±∞), is

Ψ̃BH(x, ω) =

 Z̃∞
BH(ω)e

iωx , x→ ∞ ,

Z̃h
BH(ω)e

−iω̃x , x→ −∞ .
(4.25)

This is the wave amplitude in the frequency domain, representing the black hole response

at spatial infinities to the perturbation source S̃(x, ω). It describes an irradiating wave

solution for each frequency ω, and its amplitude of irradiation is given by

Z̃∞
BH(ω) =

∫ ∞

−∞
dx′

Ψ̃1(x
′, ω)S̃(x′, ω)

WBH

, (4.26)

Z̃h
BH(ω) =

∫ ∞

−∞
dx′

Ψ̃2(x
′ω)S̃(x′, ω)

WBH

. (4.27)
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And that is the black hole response for the perturbation source term S̃(x, ω) as measured

at the black hole’s horizon x → −∞ and by a distant observer in spatial infinity x → ∞.

This solution describes the wave amplitude in the frequency domain for a certain frequency

ω, and at those two extremities.

In theory, the problem is now fully posed in the frequency domain. As we have now

obtained the wave solution amplitude, we can state that we have completed the formal

procedure for solving the non-homogeneous time-independent wave equation (4.12) in the

frequency domain. If we want the time evolution of our perturbation at the distant observer

x → ∞, all we have to do now is to calculate Ψ(x → ∞, t) through the inverse Fourier

transformation

Ψ(x→ ∞, t) =
1√
2π

∫ +∞

−∞
Ψ̃(x→ ∞, ω)eiωtdt (4.28)

In the following, we consider some applications of this formalism to illustrate how it

works in practice. Before that, however, we need to pay special attention to an important

and insightful feature of those wave amplitudes in frequency domain (4.26), mainly when

it comes to calculating their inverse Fourier transformation in Eq. (4.28) for obtaining the

time evolution of those perturbations. We discuss those special features in the following

subsection.

4.3.2 Boundary Conditions for Black Hole Solutions: The Quasi-

normal Modes Ringing

Notice that in Eq. (4.26), in the definition of the frequency domain amplitude, the Wronskian

of the two L.I. homogeneous solutions appears in the denominator. Accordingly, our obtained

wave solutions might admit poles for certain frequencies ω. Those poles are essentially the

roots of the Wronskian (WBH = 0), and they may arise for certain frequency values ω.

For our case here, both in the black hole case and its analog system’s scenario, the wave
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function Ψ̃(x, ω) admits poles for a certain discrete set of complex frequencies [173]

ωn = ωRn + iωin . (4.29)

Those frequencies are called quasinormal frequencies, and the wave modes Ψ̃n(x, ωn)

associated with them are called quasinormal modes. The set of all quasinormal modes

frequencies is called quasinormal spectra. Those poles do not lie on the real axis of the

complex frequency plane [173], which is the case when we have a closed non-dissipative

system, such as a confining quantum mechanical potential, for example, or the classical

oscillations of string tied between two knots. In these two last examples, the bound states

are simply the normal modes of this potential, with an associated eigen-spectrum of real

energies (or real frequencies for the classical string).

But what are those quasinormal modes after all, how is their physical behavior? To

answer that, we need to look, first of all, at their associated wave function in the frequency

domain

Ψn(x, ωn) = Ane
iωnx. (4.30)

Since their frequencies are complex, they have a fixed oscillating frequency, defined by

the real part of ωn. Moreover, due to the additional imaginary part ωin , these quasinormal

oscillations in open systems are also damped by the spatial irradiation of those modes. This

exponential damping happens with a fixed decaying time, which is determined by the inverse

of the imaginary part of ωn.

Furthermore, for the L.I. wave solution we considered below, namely Ψ̃h(x, ω), Ψ̃∞(x, ω),

we can obtain the following demonstrable identity [59]

W (x; Ψ̃h(x, ω), Ψ̃∞(x, ω)) = 2ω̃A+
h = 2ωA−

∞ (4.31)

from where we see that for the frequencies of the quasinormal modes ωn, Eq. (4.31) yields
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ω̃nA
+
h (ωn) = ωnA

−
∞(ωn) = 0 (4.32)

So, finally, considering our homogeneous general solution Ψ̃(ω, x) as a linear combina-

tion of the two fundamental L.I. solutions Ψ̃h(ω, x) and Ψ̃∞(ω, x), we see that for those

quasinormal modes, we have the following common behavior at the two extremities.

Ψ̃n(x, ωn) ∼
{
e−iω̃nx, x→ −∞,

e+iωnx, x→ +∞.
(4.33)

Physically this can be interpreted as stating that:

Quasinormal modes are damped oscillating wave modes that are purely

outgoing in spatial infinity and purely incoming at the BH’s horizon.

The importance of the quasinormal modes for our study can be better seen when tak-

ing the inverse Fourier transformation to obtain the time evolution of the perturbations

(Eq. (4.28)). To understand this importance, we need to recall complex analysis.

In complex analysis, the Cauchy theorem states that the integration of an analytic func-

tion over a closed circle enlacing complex poles of this function is equivalent to summing

the residues of those poles. Accordingly, we transform the Fourier inverse integral, giving

us the time evolution of the perturbation in Eq. (4.13), into a Cauchy integral of the same

integrand. This integrand has its poles defined by the complex QNMs frequencies. The

integral contour is the curve C in the complex frequency plane presented in Fig. 4.6. This

Cauchy integral is now written as:

Ψ(x, t) =
1√
2π

∫
C
Ψ̃(x, ω)eiωtdt (4.34)

There are three main contributions to that Cauchy integral:
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• The integral along the quarter-circles, which is related to the prompt response , i.e.

perturbation propagating from the source directly to the observer at lightspeed [174,

175, 176, 177]. This contribution dominates the early stage of the time evolution of the

perturbation, as we see in the Fig. 4.7. We say that our template signal at this stage

is “contaminated” by our initial conditions for the perturbation. It lasts for as long

as the perturbation is “switched-on”, and ends a certain time after the perturbation is

’turned off’.;

• The branch-cut path’s contribution, which produces an effect called late-time tails, or

later time power-decay. Late-time tails are physically related to backscattering off the

background curvature. Mathematically, the branch cut arises to prevent ω = 0 from

lying inside the integration contour. This contribution dominates the latest stage of

the time evolution of the perturbation, as we see in the Fig. 4.7. This phase terminates

driving the relaxation of the previously perturbed black hole (or analog black hole)

into its final equilibrium phase. After having irradiated all of the externally produced

perturbation to spatial infinity and toward the BH horizon.;

• The contribution from the sum-over-residues at the poles (the QNMs frequencies).

That is the most important contribution in general, and it is the most relevant for

us. They represent the QNMs contribution to the response far from the source [175].

This contribution dominates the intermediate later stage of the time evolution of the

perturbation, as we see in fig. 4.7. We call this intermediate stage ringdown phase.

If we calculate the residues of the poles of the integrand in Cauchy integral (4.34), we

obtain that they are essentially the superposition of the quasinormal modes wave-functions.

In other words, the most important contribution to the Cauchy integral in Eq. (4.34) and

hence to the wave function Ψ(x, t), in time-domain, is the sum of the quasinormal modes

wave-functions. Since the Spectrum of QNMs frequencies is a discrete set of complex fre-

quencies ωn, the time evolution of the irradiated perturbation as seen by a distant observer
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in x→ ∞ is then dominated by

Ψ(x→ ∞, t) ≈
∞∑
n=0

Re
[
(AnΨ̃n(ωn, x)e

iωnt)
]
. (4.35)

In Eq. (4.35), each one of those QNMs describes a damped oscillation mode, with oscil-

lation frequency ωRn and damping time (ωin)
−1. The An are called quasinormal excitation

coefficients and they quantify the QNM content on the waveform [175]. The relative values

of those complex amplitudes An are determined by how much each mode was excited at

the perturbation stage. The quasinormal modes spectrum itself is independent of the initial

perturbation and only depends on the background geometry, i.e., the QNMs spectrum is in-

dependent of the initial perturbation. This sum over the quasinormal modes then produces

a final damped ringing response, mixing all the modes into a final signal. This signal is the

dominant strain measured by the distant observer in x→ ∞.

4.3.2.1 Black Hole Spectroscopy with Gravitational Waves and Quasinormal

Modes

Finally, summarizing the insights from the previous subsection, the evolution of the irradi-

ating perturbation measured by a distant observer in x is a combination of three different

stages. The intermediate ringdown stage is the most important one for our BH spectroscopy.

The ringdown phase is the intermediate late-time response from the black hole to the

previously externally produced perturbation. It lasts from the retarded-moment in which the

perturbation is ’turned off’ until its complete evanescence, when all perturbation is irradiated.

As we had previously discussed, that is the phase of the BH response in which the signal

is dominated by the sum over the quasinormal modes of the ringing black hole. Then, the

signal measured by the distant observer in x → ∞ evolves in time as the superposition of

the quasinormal modes ringing damped oscillations

Ψn(x, t) = Ane
−iωn(x−t) (4.36)
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As we have stated, although the complex amplitude An values are determined by how

much each of those modes were excited at the previous perturbation phase, the QNMs

spectrum is independent of the perturbation configuration. This fact is the main motivation

behind our study of BH spectroscopy here.

For most astrophysical applications, the BH response to any initial perturbation during

the late ringdown stage, and measured by a distant observer, can be approximated as a

superposition of QNMs. That motivates our study of quasinormal modes for applying it to

the spectroscopy of gravitational waves from black holes.

For example, consider the coalescence of a binary of black holes (BBH). The perturbation

scheme discussed here cannot be considered a very reliable approximation for the realistic

description of the binary merger phase. For that stage, numerical relativity is indispensable.

However, for the late-ringdown stage, the relaxing deformed black hole resulting from the

BBH merger can be well approximated as a perturbed black hole. That is when our approx-

imation for the ringdown process of the black hole is valid (see Fig. 2.1). And since linear

black hole perturbation theory dominates the description of relaxing perturbed black holes,

we can state that:

For a distant observer, the late-times response of a ringing black hole

(or analog black hole) is mainly dominated by the superposition of

its excited quasinormal modes, which are independent of the initial

perturbation and only depend on the background geometry of the

final resulting black hole.

In the following, we apply those ideas to the QNMs spectral decomposition of some

examples of ringdown signals. Those ringdown signals are measured by distant observers,

and are obtained as a response to certain perturbation source terms S̃(x, ω). For the black

hole case, we consider a head-on collision of the BH with a smaller object, which could be

another smaller black hole, or a small star, for example. For the acoustic black hole, on

the other hand, we apply our discussion for the scattering of a pulsating Gaussian source.
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In both cases, we use Green’s function formalism to derive these waveform amplitudes in

the frequency domain, and then we compute their time-domain counterpart signals using

the inverse Fourier transformation. We can apply the spectral decomposition discussed here

once we have the time-domain signal in our hands.

4.3.2.2 Applications of Spectral Decomposition

To illustrate Green’s function formalism for BH Perturbation Theory and for acoustic pertur-

bations around the analog model of a BH, we consider two simple but insightful applications

in the following. The first example describes the gravitational perturbation caused by the

plunge of a smaller mass into a larger black hole. This smaller mass follows a radial time-like

geodesic in the background static and spherically symmetric spacetime of this Schwarzschild

BH. During the plunge, the black hole absorbs the minor mass, while the perturbed gravita-

tional field around it tends to relax by ringing and emitting gravitational radiation toward

infinity. We calculate the gravitational waveform detected by a distant observer both in the

time and frequency domain. This application was considered by Zerilli in Ref.[178], still in

1970. Next, we consider Gaussian periodic pulses perturbing an acoustic analog of a black

hole. In the initial time, the source of these Gaussian pulsations is ’turned off’, and the per-

turbations evolve in this effective background spacetime by irradiating themselves to infinity

and towards the sonic hole. We also calculate the waveforms of the acoustic waves detected

by a distant observer, both in frequency and time domain. At the end, we discuss how we

can read out the excited quasinormal modes from the final waveform in the time domain.

• Head-on collision of a large black hole with a smaller mass.

In Ref.[135], Regge-Wheeler considered the very insightful problem of studying the stabil-

ity of Schwarzschild metric for odd-parity perturbations. In Ref.[136] , Zerilli, has extended

this analysis for even-parity perturbations. As a first application for this formalism, Zerilli

considered in Ref.[178] the gravitational radiation pulse given off when a small mass falls

into a black hole.
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Here, we review this problem of a small particle radially infalling in a Schwarzschild

black hole in linear perturbation theory. For this goal, we describe the infalling particle

as a δ−function source term describing a geodesic motion in the background Schwarzschild

geometry. This problem is decomposed into tensor harmonics, and each harmonic drives its

corresponding perturbation.

As in Ref. [136], the radial part of the polar perturbations of a Schwarzschild black hole

are given by Zirelli sourced equation in Eq. (4.12), where the effective scattering potential

V (r) is given by Eq. (2.35). The source term S corresponding to a test particle with mass µ

radially infalling from infinity with zero starting velocity is explicitly given by

Sl(r, ω) =µ

(
1− 2M

r

)4√5eiωT (r)
(
3ω

√
M3r − 2i

√
2ΛM + Λω

√
Mr3 + i

√
2Λr

)
rω(3M + Λr)2

(4.37)

− 2
√
10(2M − r)eiωT (r)T ′(r)

r(3M + Λr)

]
, (4.38)

where the function T (r) and its derivative, for this orbital configuration are respectively

given by [140]:

T (r) =M

(
−4

√
r

2M
− 4

3

( r

2M

)3/2
+ 2 log

(√
r

2M
+ 1√

r
2M

− 1

))
, (4.39)

and

T ′(r) = −
1√
2M
r

1− 2M
r

. (4.40)

Now, using the Green function’s formalism, we find the numerical solution for the wave-

function amplitudes Z∞
BH and Zh

BH in frequency domain given by Eq. 4.26, where here Ψ̃h

and Ψ̃∞ are the solutions of the homogeneous problem Eq. (4.14) which satisfy the correct

boundary conditions at infinity and at the horizon.
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The gravitational wave energy spectrum emitted by this gravitational plunge of a smaller

mass by a larger black hole in the frequency domain is the combination of each multipolar

contribution l

(
dE

dω

)
2l- pole

=
1

32π

(l + 2)!

(l − 2)!
ω2|ZBH

∞ (ω)|2. (4.41)

We show the energy spectrum of gravitational radiation for each multi-polar number l and

their total combination in Fig. 4.8 below. The first two modes l = 0, 1 have their multipolar

contribution gauged away [179]. The following multipolar contributions are shown in Fig. 4.8.

As theoretically expected, the quadrupolar contribution l = 2 is the dominant one and

corresponds to the major contribution to the final spectrum of irradiated energy. Further-

more, its contribution, in the frequency domain, is centered around the real value of the

fundamental quasinormal mode frequency. This result already anticipates the physical fact

that the major part of the gravitational wave signal, as detected by a distant observer, will

come as the ringing oscillation from the excitation of the fundamental quasinormal mode.

The following multipolar contributions (l = 3, 4, 5, ..), as well as their overtones’ contribu-

tions for the energy-spectrum of gravitational radiation are weaker in comparison to the

fundamental quasinormal mode of l = 2.

Finally, the time-dependent gravitational waveform can be obtained by the inverse Fourier

transformation of the amplitude. Computing the integral in Eq. (4.28), we numerically obtain

the time-domain waveform of the gravitational waves measured by a distant observer. We

show these time-domain waveforms in Fig. 4.9.

A closer look at Fig. 4.9 shows that the major part of the intermediate ringing oscillation

in the time interval is very similar to the waveform of the fundamental quasinormal mode,

i.e.

Re(Ψn=0(x→ ∞, t)) = Re(An=0e
iωn=0(t−t0)) = an=0e

−iωin=0
(t−t0) cosωRn=0(t− t0) (4.42)
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• Periodic Gaussian Pulses from a distant source in an acoustic black hole

Finally, we discuss the problem of periodic Gaussian pulsations radially injected far away

from a bathtub draining vortex. In the effective background spacetime of an acoustic black

hole, the wave equation describing the evolution of acoustic perturbations from an external

source S is, in the frequency domain, given by the same Eq. (4.12). This time, the effective

potential is V (r, ω) in Eq. (4.4), and S̃(r, ω) is the source term in the frequency domain.

We take the external source to be some radially symmetric and periodic Gaussian pulsa-

tions that are ’turned-off’ at the initial time t0 = 0.

S̃l(x, ω) = Ale
− (x−x3)

2

σ (4.43)

where x3 denotes the center of the Gaussian perturbation. This perturbation source is

plotted in Fig. 4.10 for a few different scenarios we consider here. This initial behavior for

the perturbation can be seen in Fig. 4.12 if we look at the first arcs for the initial times.

Those arcs represent the harmonic oscillatory behavior of the Gaussian pulsations before the

perturbation is ’turned-off’.

Now, we can obtain the acoustic black hole response for the perturbation source above

in the frequency domain from the Green function’s formalism. This response is given by

Eq. (4.26), where again W is the Wronskian of the two L.I. solutions for the homogeneous

associated equation.

This waveform amplitude in the frequency domain is shown in Fig. 4.11 for different

values of the Gaussian’s width parameter σ.

For the larger considered pulse width, namely σ = 2, the Gaussian packet is so wide that

it does not experience the barrier’s reflectivity. Instead, it completely passes through the

barrier, being transmitted to the acoustic hole’s interior. We can see that by looking at the

response signal measured by a distant observer in x → ∞. Its time-domain profile is dom-

inated by the initial Gaussian arcs, generated by the initial perturbation. No quasinormal
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mode oscillations are measured, and the time evolution of the perturbation quickly switches

its behavior into the late-tail decay for later times. On the other hand, as we narrow the

width of the Gaussian perturbative pulses, the relative excitation of the quasinormal mode

overtones is increased when compared to the fundamental mode. From Fig. 4.11, we notice

that narrower Gaussian pulses tend to excite higher QNMs overtones.

We can compute the time evolution of the waveform amplitudes in the frequency domain

that are presented in Fig. 4.11. For that goal, we take the inverse Fourier transformation of

those amplitudes. Indeed, in Fig. 4.12, we show the associated waveform signals in the time

domain.

Notice that when higher QNMs overtones are excited, the resulting signals tend to increas-

ingly mix more damped oscillation modes with smaller wavelengths and different decaying

times. Those additional oscillation modes are added to the waveform strain dominated by

the fundamental QNM mode oscillation, which is shown in Fig.4.12.

• Spectral Decomposition of the GW Signal into the BHs’ quasinormal modes

Finally, in this section, we aim to decompose the final time-domain waveform into its

quasinormal modes’ oscillations

Re(Ψn=0(x→ ∞, t)) = An=0e
−iωin=0

(t−t0) cosωRn=0(t− t0). (4.44)

This way, we can obtain the complex frequency values of those quasinormal modes ωn =

ωRn + iωin , and their relative excitation coefficient An.

We clarify again that the same procedure applied for the quasinormal modes’ spectroscopy

of the final wave signal is equally valid for both previous examples: the GW ringing radiation

emitted by the gravitational plunge of a small mass into a larger black hole (Fig. 4.9); and

the acoustic waves emitted by a ringing perturbed acoustic black hole (Fig. 4.12). The math-

ematical equivalence between their description is what allows for this equivalent treatment.

For simplicity, we choose the acoustic waves around the perfect draining vortex (black hole
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analog model) as the prototypical example to illustrate how this procedure works.

The main conclusion that can be drawn from this treatment is that the frequencies of the

quasinormal modes should not depend on the initial perturbation injected into our system

but only on the background effective spacetime. Hence, by determining those quasinor-

mal frequencies, we fully characterize the acoustic or astrophysical black hole background

spacetime.

To accomplish our spectral decomposition for the spectroscopy of gravitational (or acous-

tic) waves in terms of their composing quasinormal modes, a standard algorithm is usually

prescribed.

1 Firstly, we select an intermediate time interval for our analysis. We choose an interval

that better fits the features described for the second stage/ ringdown phase described

previously for the waveform signal [171]. We show one example of this time interval

in Fig. 4.13. Notice that the dominant physical behavior for the waveform within

this interval is a quasi-periodic damped oscillation, exactly as we expect from the

quasinormal modes’ dominated phase.

2 The second step consists of fitting the quasinormal modes parameter with this time

domain waveform. We start with the fundamental quasinormal mode. By fitting

the three parameters An=0, ωin=0 , and ωRn=0 , we can infer with reasonable accuracy

the complex frequency of the fundamental quasinormal mode, and its quasinormal

excitation coefficient An. We illustrate this step in Fig. 4.14.

3 Then, we subtract the resulting fundamental quasinormal mode contribution from the

full signal waveform in the time domain. With this waveform strain, we can repeat the

procedure discussed above to obtain the complex frequency of the quasinormal mode

first overtone.

5 We can continue this procedure for as long as our resolution permits. It is a widely

known fact [180] that the initial time t0 we use slightly contaminates our inferred
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quasinormal modes’ frequencies. That is one of the limitations of the gravitational

waves’ spectroscopy with quasinormal modes, as explained in Ref.[180]. We cannot

fully remove the contribution from the initial prompt signal associated with the initial

perturbation.

With this example, we have successfully illustrated how to apply gravitational wave spec-

troscopy in terms of quasinormal modes for the time domain signal of a certain gravitational

waveform. Although our injected waveforms are obtained here from the linear order per-

turbation theory of acoustic and astrophysical black holes, this procedure can be extended

to any waveform strain. This extension is guaranteed by the fact that for a final relaxing

black hole emerging from the collapse of a relativistic star or a binary merger, the late-stage

dynamics of this perturbed background BH spacetime can be successfully described by linear

perturbation theory.

4.3.2.3 Numerical and semi-analytical methods for calculating the QNMs spec-

tra

In the previous subsection, we presented an example that illustrated how we can compute

the quasinormal modes of a certain black hole by decomposing its ringdown signal into its

oscillating quasinormal modes. This procedure is very insightful from the physical point of

view, since in some sense we are emulating the observational efforts of astrophysicists when

analyzing a certain gravitational wave signal measured by the GW interferometers. On the

other hand, approaching the computation of quasinormal modes with this method adds a

large and unnecessary complexity to the problem, since now, we are not only computing

the frequency-domain waveform amplitude, but also its associated signal in time-domain.

Finally, after all of those calculations, we decomposed the final GW strain into its composing

decaying oscillations, namely the quasinormal modes. Furthermore, this approach also added

some uncertainties that can be avoided by a more direct approach. In fact, the initial

perturbation source S can still ’contaminate’ our results for the late-stage ringdown signal.
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The inference methods used for fitting the signal with its quasinormal modes are also a

source of uncertainty.

To avoid those problems, we list here some different approaches for calculating the quasi-

normal modes of a black hole spacetime or for the effective spacetime of a black hole analog

system. The first one is the numerical procedure, based on the formal definition of quasi-

normal modes derived from Green’s function formalism, which we discussed throughout this

section. The second approach is an iterative procedure, also based on the Green’s function

formalism. The third and final method presented here is a semi-analytical method based on

the WKB approximation for quantum mechanical scattering potentials. This last approach

is motivated by the Schrödinger-like form of the wave equations describing the evolution of

perturbation in those background spacetimes.

• Numerical Approach for Evaluating Quasinormal Modes

As we have introduced in Sec. 4.3.2.1, the quasinormal modes are formally defined as the

discrete set of poles of Eq. (4.26) in the frequency complex plane. For each pole, we have a

complex frequency ωn = ωRn + iωin such that the frequency domain amplitude in Eq. (4.26)

diverges. From Eq. (4.26) , we notice that those divergences are determined by the roots

of the Wronskian W . So, in other words, to find the discrete set of complex frequencies of

the QNMs ωn, we must develop a rootfinding code for the Wronskian of the two LI solutions

of the homogeneous equation. A shooting method ’s code does this trick. For that, we only

need to set the initial boundary conditions of the two wave solutions at the asymptotic

extremities, and then we look for the complex values of ω that annul W .

That numerical method provides us with one of the most reliable and accurate approaches

for finding the quasinormal modes of any black hole’s spacetime, including rotating black

holes, for example. Its main disadvantage concerns the calculating time. Depending on

the overtone order, the waiting time for finding an associated frequency can last from some

seconds (lower overtones) to some hours (higher overtones).
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• Iterative Method for Evaluating Quasinormal Modes

The Leaver method [181] is considered one of the most accurate approaches to evaluate

quasinormal modes’ frequencies. The idea consists of inputting an initial guess for the

wave solution that satisfies at the same time both the asymptotic behavior of the solution

at the singular points of the equation (Eq. (4.33))). The following step is to identify the

mathematical function that vanishes at the black hole horizon and then define a power series

of that function. By multiplying our initial guess by the obtained power series, we must get

an ansatz to be inserted in the perturbation master wave equation. We must then be able to

find a recurrence relation for the coefficients of the series, and the solution can be written in

terms of continued fractions. This method finds the frequencies of the quasinormal modes

up to any desired accuracy order.

• Semi-analytical Method for Evaluating Quasinormal Modes

Finally, our last approach for finding the frequencies of the quasinormal modes relies on

the WKB approximation for the Schrödinger equation in quantum mechanics. We can use

this approach here since our master wave equation describing the evolution of gravitation-

al/test field perturbations in the frequency domain is a Schrödinger-like equation.

To accomplish the calculation of BH’s quasinormal frequencies with the WKB method

[182], we employ a small adaptation of the method for our context here. This adaptation

of the WKB method was proposed initially by Iyer and Will [183] up to third order, and

posteriorly upgraded to sixth order by Konoplya [182]. From those frameworks, we are led to

a semianalytic technique for determining black holes’ complex quasinormal mode frequencies

for any kind of field perturbation, including gravitational ones. It already incorporates the

boundary conditions

Ψ ∼ e+iωx, x→ +∞, (4.45)

Ψ ∼ e−iωx, x→ −∞. (4.46)
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The formula for the frequencies in the sixth-order WKB method is the following

i(ω2 − V (rmax))√
−2∂2∗V |rmax

−
6∑

i=1

Λi = n+
1

2
, (4.47)

where n is the overtone number, rmax is the point at which the potential reaches its maximum

and the corrections Λi contain the derivatives of the potential avaliated at rmax up to the 12th

order and are reported in [182, 184]. This formula is an improvement over the third-order

formula obtained in [183].

With equation (4.47), we can finally evaluate the quasinormal frequencies of any pertur-

bation field for the Black Hole spacetime under investigation. For this purpose, we only need

to replace the potential V in that formula with one of the potentials derived in the previous

section. This approach provides very accurate results [184] when compared to the previously

introduced calculation procedures introduced. In Ref.[1], we considered the application of

this method for the calculation of the quasinormal modes of Dirac perturbation in the LQG

polymerized effective spacetime proposed by BMM [148, 154].

4.3.3 Boundary Conditions for Extreme Compact Objects Solu-

tions: Trapped Quasinormal Modes and Resonant Scatter-

ing Modes

In this section, we discuss how we address the solution of Eq. (4.12) in the frequency domain

for the case of perturbed exotic compact objects (ECOs). For ECOs, the boundary condi-

tions for the perturbation field at one of the extremities must be changed. Indeed, for the

reflective surface at x0, the boundary conditions must now be re-defined by adding a reflect-

ing condition for the perturbation field. In the frequency domain, the boundary conditions

that need to be incorporated at the reflective surface x0, replacing Eq. (4.25) from the black

holes, must be given by
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Ψ̃(x ≈ x0, ω) = Awall
[
e−iω̃x +Ke−2iω̃x0eiω̃x

]
, (4.48)

where ω̃ = ω − Ωs,la, for astrophysical ECOs, and ω̃ = ω − mC/r2h for the imperfect

draining vortex. The reflectivity parameter at the wall in x0 is specified by the function

K = K(ω).

The e−2iω̃x0 factor for the outgoing waves in x0 encompasses the phase-change experienced

by the reflected wave as it crosses the potential barrier and travels back and forth from the

barrier to the reflective boundary.

For spatial infinity, the boundary conditions are exactly the same as for the BHs

Ψ̃(x→ ∞, ω) = Aine−iωx + Aoute+iωx. (4.49)

In order to solve the time-independent wave equation with the specific BCs defined above

for ECOs, we must use Green’s function formalism again. Since the master wave equation

for the radial perturbation remains the same, i.e., Eq. (4.12), and the only changes are in the

boundary conditions, the two L.I. solutions of the associated homogeneous wave equation are

the same as the one obtained in the black hole case, namely Ψ̃h(x, ω) and Ψ̃∞(x, ω), defined in

Eqs. (4.22), (4.23). For the general solution, however, the waveform in the frequency domain

will be different. The presence of the reflecting boundary conditions drastically changes the

evolution of perturbation in the background spacetime. Mark et al [59] have shown that for

ECOs, the solution of Eq. (4.12) for a distant observer in x → ∞, in the freq. domain, is

given as

Ψ̃ECO(x→ ∞, ω) = Z̃∞
ECO(ω)e

iωx (4.50)
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This time, however, the amplitude in the frequency domain is given by

Z̃∞
ECO(ω) = Z̃∞

BH(ω) +K(ω)Z̃h
BH(ω) (4.51)

Where Z̃∞
BH is the asymptotic waveform amplitude for the associated BH case at infinity,

as defined in Eq. (4.26). Likewise, Z̃h
BH is the BH’s asymptotic waveform amplitude calcu-

lated at the objects’ surface, close to the associated event horizon. This ECO’s surface x0 is

where the boundary condition is expected to be defined. Hence, the ECO frequency domain

amplitude of the waveform at a distant observer is a combination of the associated black hole

response, with the black hole’s wave amplitude at its ’would-be’ horizon. This black hole’s

waveform amplitude at x0 modulates another function K of ω, for the ECO response, called

the transfer function. This function completely details our ECO model, and it is defined [59,

185, 58] as

K =
TBHRBHe

−2iωx0

1−RBHKe−2iωx0
(4.52)

where K = K(ω) is the reflectivity at x0 boundary.

Qualitatively, Eq. (4.52) states that the ECO’S waveform in the frequency domain, mea-

sured by distant observers, can be understood as the sum of the same equivalent BH’s

response, along with an additional signal KZ̃h
BH. This additional emission arises from the

reflection of the radiation that would normally enter the horizon and is reprocessed by the

transfer function K at the reflective boundary in x0.

The power of Eq. (4.51) is that it allows us to compute the total asymptotic waveform

in an ECO spacetime with the corresponding waveforms from the associated black hole

spacetime. For that, all we need to do is to specify a particular choice of K(ω), which

corresponds to a particular model of the reflectivity properties at the ECOs’s surface, and

x0, which specifies the ECO’s compactness.

The poles of this new amplitude for the ECO in the frequency domain, however, are
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different from those of the associated BH, which means that the ECOs’ QNMs will be different

from the BH’s. The additional quasinormal modes of the ECOs are the poles of the transfer

function K(ω), and we call them trapped quasinormal modes, since they obey the boundary

conditions in Eqs. (2.59). We also refer to the poles of the ECO’s waveform amplitude as

resonant modes, since they are ’quasi-bound’ by the cavity between the boundary x0 and

the potential barrier, see Fig. 2.5.

In Fig. 4.15, we plot the intrinsic ECO transfer function for a few different analog ECO

models defined by an imperfect draining vortex . If we look at the transfer function in the

frequency domain, we can see the resonant modes of the ECO as the narrow spikes. Each

peak of the transfer function K on the real frequency axis corresponds to a resonant state.

The real part of the trapped quasinormal mode is related to its peak location, while the

imaginary part is related to the width of this peak.

As we see in Fig. 4.15, by increasing the boundary reflectivity K(ω) in x0 we make

the resonant peaks narrower and more pronounced in the frequency domain. Modes with

narrower peaks have smaller frequency imaginary parts, which will in turn increase the

damping time of the resonant mode Tn = (ωn)
−1. Hence, the associated resonant modes

are longer-living. This is physically expected in a potential well created between a reflective

surface and a potential barrier. As we see in those results, increasing the reflectivity of the

reflective wall tends to amplify the lifetime of the trapped modes. Since a ’higher portion’

of the wave is being reflected by the compact object’s surface, rather than absorbed, those

waves will be trapped in the well for a longer time before they actually manage to escape

the well (being absorbed by the object, or being sent back to infinity). Therefore, larger

reflectivity on the surface of the compact object implies exponentially smaller imaginary

parts for the modes, which in turn leads to narrower widths in the transmission plots. For

the waveform amplitude of a black hole, we see that the black hole QNMs have more broad

and wide resonant “peaks” in the frequency domain. So the imaginary part is larger, and

accordingly, the BHs’s quasinormal modes decay more quickly.
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Furthermore, we can also see how the transfer function depends on x0 in Fig. 4.16. In

the frequency domain, we see that the effect of increasing x0 corresponds to reducing the

distance between each resonant mode, while also increasing the number of resonant modes.

Physically, increasing x0 corresponds to enlarging the cavity size, so we can expect a longer

time between each reflection of the transmitted waves. As a consequence, we can fit more

half-wavelengths traveling within the cavity’s size. In a Fourier analysis [59], increasing

the number of resonant modes and decreasing the frequency spacing between the resonant

modes in the freq. domain implies a larger period of time between each wave reflection. For

resonant modes with an approximately uniform frequency spacing between them, such as we

have here, this frequency spacing will be related to the period of time according to

∆ω ≈ 2π

2T
. (4.53)

Where we have here that

T = 2|x0|. (4.54)

The time period in Eq. (4.54) corresponds to a round trip of the wave from the potential

barrier to the reflective surface in x0. The derivation of those formulas is presented in the

appendix of Ref. [59].

Finally, the time evolution of the perturbation at the distant observer can be obtained

by taking the inverse Fourier transformation of the FD waveform defined in Eq. (4.50).

ΨECO(x, t) =
1√
2π

∫ ∞

−∞
Ψ̃ECO(x, ω)e

iωtdt (4.55)

However, replacing the Eq. (4.51) into Eq. (4.55), we get that

ΨECO(x→ ∞, t) = ΨBH(x→ ∞, t) + Ψreproc.(x→ ∞, t) (4.56)
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where

Ψreproc.(x→ ∞, t) =
1√
2π

∫ ∞

−∞
K(ω)Z̃h

BH(ω)e
iωtdt (4.57)

That is a key result here. It shows that the waveform both in time and frequency domain

can be seen as the sum of the usual emission in a BH spacetime, along with an additional

signal coming from KZ̃h
BH . As we discussed earlier, this additional emission arises from the

reflection of the radiation that would normally enter the BH horizon, but it is reprocessed

by the transfer function K(ω) at x0. To make this qualitative discussion of Eq. (4.56) even

more clear, we can consider in the following an application of Eqs. (4.56) and Eq. (4.51)

for a Gaussian source perturbation into an ECO analog spacetime. This example will help

us clarify what is the signature of the ECO’s reflecting boundary condition in the final

waveform detected by a distant observer. So, consider the Gaussian perturbation source

S̃(x, ω) in Eq. (4.43), into the time-independent wave equation Eq. (4.12) for an ECO from

an analog acoustic effective spacetime.

S̃l(x, ω) = Ale
− (x−x3)

2

σ2
l

We now use the Green function’s formalism, namely Eq. (4.26), to solve for the black

hole waveforms in the frequency domain. With those BHs’ waveforms, we obtain the ECO

waveform in the frequency domain through Eq. (4.51).

We divide our results into two scenarios: the regime of small cavities and large cavities.

They are represented in Fig. 4.17, where we plot an effective potential for scattering pertur-

bations around the analog ECO with two distinct scenarios for x0. The resulting waveforms

in the frequency domain, for analog acoustic black holes are shown in Figs. 4.18. In the fol-

lowing, we also present the results for the associated ECO scenarios, contrasting them with

their associated black hole case. We organize those graphics in the following way: the BH

asymptotic waveform at infinity x→ ∞ is represented by a solid black line, the BH asymp-
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totic waveform at the reflecting boundary x→ x0 is represented by a dashed black line, the

ECO waveform in FD Ψ̃ECO are shown as colored dashed lines. For all cases considered in

the following, the Gaussian perturbation source’s parameter is fixed at σ = 0.5.

4.3.3.1 Small cavities scenario

For x0 = −3, we only get a few additional ECO’s resonant modes, or additional trapped

quasinormal modes. This is expected since the cavity is too small. In Fig.4.16, we see those

extra few resonant modes contrasting with the large number of extra resonant modes arising

in a large cavity scenario x0 = −20. The waveform amplitudes in the frequency domain for

those two distinct scenarios are shown in Fig. 4.19. Their associated waveforms in the time

domain, as given by Eq.(4.57), are shown in fig. 4.20.

For the case with x0 = −3, the time evolution of the perturbation appears as a single

decaying sinusoidal wave packet. This behavior can be interpreted as the excitation of only a

few resonant modes of K̃(ω). This case is slightly similar to the BHs’ QNM ringdown, except

that it decays slower. In some sense, we can physically interpret this result as picturing the

incoming perturbation, which eventually encounters the barrier peak. While major part of

this perturbation is directly reflected by the barrier, other part transmits to inside the cavity.

Inside the small cavity, this perturbation wave will quickly bounce back and be transmitted

through the barrier again. Finally, after that, this signal will encounter the firstly major

reflected portion of the perturbation wave and they will mixture themselves into a single

final decaying sinusoidal wave packet.

4.3.3.2 Large cavities and the Echoes

For x0 = −20, we have that the cavity size and the phase factor 2ωx0 is larger. Accordingly,

the wave takes longer to travel from the potential barrier to the reflective boundary. As we

have seen, this leads to more resonant modes, and a shorter frequency-spacing between the

modes (see 4.19) . To stress special attention to the role played by a large cavity size, we fix
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its value at x0 = −20, and contrast two distinct reflectivity scenarios, one for K = 0.5 and

the other for K = 0.75. We see the associated waveforms in the frequency domain for those

two scenarios in Fig. 4.21. The time-domain associated signals are presented in Fig. 4.22.

At first sight, we see that the Z∞
BH is dominant over small frequencies, explaining why we

have the BHs’ ringdown signal dominating in small times, which is precisely where the BH’s

fundamental QNM is located (see Eq. (4.60)). That explains why the first part of the time

domain signal is very similar to the black hole’s signal in Fig. 4.22.

For intermediate and high frequencies, Zh
BH(ω) starts playing a more significant role,

modulating the transfer function into the final signal K̃. As we know, K̃ carries the trapped

quasinormal modes and all the information about the ECOs. So the ECOs’ parameter

will dictate the behavior of the waveform over intermediate and high frequencies. At this

intermediate/high-frequency regime, the ECO’s total wavefunction in the frequency domain

is composed of a group of very peaky resonant cliffs, with an approximately constant spacing

between them, given approximately by δω ≈ 2π/2x0. As we know from Fourier analysis (see

appendix of Ref. [59]) when we have a combination of equally-spaced narrow peaks, the time

domain associated signal is expected to be a periodic repetition of a damped-oscillation.

And that is why we see the following pattern for the time domain signal in Figs. 4.20 and

4.22. For large values of the cavity parameter x0, the final ECO’s waveform, as detected

by a distant observer, appears as a sum of distinct echo pulses following the first ringdown

signal.

The time decay of those echoes, similarly to a single mode in the frequency domain,

is related to the reflective parameter K, while the time periodicity of those echoes, and

equivalently the frequency-spacing between the modes, is dictated by the cavity size x0 .

Another insightful way to visualize and understand the nature of those echoes can be

achieved if we consider the time evolution of the perturbation in this ECO spacetime, given

by Eq. (4.56), and we expand the transfer function as a geometric series:
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K(ω) =
TBHRBHe

−2iωx0

1−RBHKe−2iωx0
= TBHRBHe

−2iωx0

∞∑
n=1

(RBHK)(n−1)e−2i(n−1)ωx0 . (4.58)

This shows that the additional signal takes the form of a series of terms, each reprocessing

the waves that impinge on the boundary condition with a different ’sub-transfer’ function.

The zeroth order ray is the Z̃BH term, representing the radiation that would also be

detected by the distant observer in the black hole case. Its time evolution ΨBH(x→ ∞, t) is

the same as we would obtain in the BH case. The additional terms Ψreproc. are described by

K expanded as in Eq. (4.58), which gives us

K(ω) =
TBHRBHe

−2iωx0

1−RBHKe−2iωx0
= TBHRBHe

−2iωx0

∞∑
n=1

(RBHK)(n−1)e−2i(n−1)ωx0 =

TBHRBHe
−2iωx0 + TBHRBHe

−2iωx0(RBHK)e−2iωx0 + TBHRBHe
−2iωx0(RBHK)2e−2.2.iωx0 + ...

(4.59)

As we can see in Ref. [59], this first term of the expansion is, qualitatively, the result of

the primary reflection of Ψ off of the boundary at x0, which generates the factor RBH , along

with the phase change factor e−2iωx0 . The phase change corresponds to a time delay between

the first pulse reflected by the potential barrier, with the main burst due to the pulse’s extra

round trip journey between the boundary at x0 and the potential barrier. When reaching

the angular momentum barrier, the pulse is partially transmitted by the barrier TBH , which

adds this additional term TBH . The remaining part is partially reflected inside the cavity

again, which explains an additional RBH term for the following term in the expansion. This

following term is associated with the second pulse. The successive terms are obtained by

an integer number of bounces between the potential barrier, and the reflective boundary,

each one adding a RBH and a K respectively. After that, they are all partially transmitted

through the potential barrier, which contributes with TBH . The trip back and forth of the
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wave inside the cavity adds a propagation delay described by the phase change term of

e−2iω̃x0 .

This picture of the successive echoes is made even more apparent by transforming the

FD domain waveform into its time-domain associated wave function. For a distant observer,

we have

ΨECO(x→ ∞, t) = ΨBH(x→ ∞, t) + Ψreproc.(x→ ∞, t) (4.60)

where Ψreproc. is given by

Ψreproc.(x→ ∞, t) =
1√
2π

∫ ∞

−∞
dtZ̃h

BH(ω)e
iωtTBHRBHe

−2iωx0

∞∑
n=1

(RBHK)(n−1)e−2i(n−1)ωx0 =

1√
2π

∫ ∞

−∞
dtZ̃h

BH(ω)e
iωtTBHRBHe

−2iωx0 +
1√
2π

∫ ∞

−∞
dtZ̃h

BH(ω)e
iωtTBHRBHe

−2iωx0(RBHK)e−2iωx0

1√
2π

∫ ∞

−∞
dtZ̃h

BH(ω)e
iωtTBHRBHe

−2iωx0(RBHK)2e−2.2.iωx0 + ... (4.61)

After the ΨBH time evolution contribution, each additional term corresponds to a succes-

sive echo in the time domain. We illustrate this qualitative analysis in the graphics in Fig.

4.23.

We have now finally concluded our discussion on the ringdown waveforms for ECOs, black

holes, and their analog models. We studied here their amplitudes in the frequency domain

and their time evolution as measured by a distant observer in infinity x→ ∞. This section

opened a vast range of possibilities for the phenomenology of black holes, exotic compact

objects, and analog gravity systems for compact objects. In the next sections, we will focus

on studying the scattering properties of BHs, ECOs, and analog systems in the physical

regime in which we can control the input waves.

98



4.4 The BH and ECOs Scattering of Fields

Since this thesis mainly focuses on introducing an inverse problem from the transmission

and reflection coefficients, we conclude this chapter by studying the numerical setup for

solving the direct problem of obtaining those scattering quantities numerically. The results

of the direct study then provide us with the starting point for our investigation of the

inverse problem. Our entire discussion is based on the frequency domain formalism presented

previously.

The equation describing the scattering of fields in both BHs and ECOs spacetime is

the homogeneous associated time-independent wave equation, Eq. (4.14), since we are not

considering any additional external perturbation. Accordingly, our L.I. wave solutions are,

once again, the pair Ψh(x, ω), Ψ∞(x, ω), defined in Eqs. (4.22),(4.23). The general solution,

in turn, is a linear combination of those two L.I. wave solutions, both for the BHs and ECOs

spacetimes. The main difference in the description of the scattering properties of those

distinct objects is then provided by the boundary conditions at the extremities.

For black holes, we have that

Ψ̃BH(x, ω) = Awalle−iω̃x, for x→ −∞, (4.62)

Ψ̃BH(x, ω) = Aine−iωx + Aoute+iωx. for x→ +∞ (4.63)

For exotic compact objects, on the other hand, we have

Ψ̃ECO(x, ω) = Awall
[
e−iω̃x +Ke−2iω̃x0eiω̃x

]
, for x ≈ x0, (4.64)

Ψ̃ECO(x, ω) = Aine−iωx + Aoute+iωx. for x→ +∞ (4.65)
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As we see, at spatial infinity, the boundary conditions are equally defined. The main

difference between these two cases is the core reflectivity of the ECOs’ spacetime, incorpo-

rated at their reflective surface in x0. That difference in the boundary conditions drastically

changes their scattering properties compared to the black hole case, as we later see within

this framework.

From the amplitudes (Ain, Aout), we can define the reflection and transmission coefficients

as

|T |2 = |Awall|2
|Ain|2 (1− |K|2), (4.66)

|R|2 = |Aout|2
|Ain|2 . (4.67)

They relate to each other by

|R|2 = 1− ω̃

ω
|T |2. (4.68)

We also assume the notation |T |2(E) = t(E).

By expressing our general solution Ψ decomposed into this basis of solutions Ψh(x, ω),

Ψ∞(x, ω), we can obtain the following relations between the coefficients

A+
h =

ω

ω̃
A−

∞, (4.69)

Ain

Awall
=
ω̃

ω

(
A+

h − A−
hKe

−2iω̃x0
)
, (4.70)

Awall =
ω

ω̃

(
A−

∞A
out − A+

∞A
in
)

Ke−2iω̃x0
. (4.71)

These are the basic relations that are needed for the direct scattering problem calculation

and further discussions about their derivation can be found in Ref.[48].
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Finally, for the direct problem, we first need to evaluate the set of coefficients (A+
h , A

−
h , A

+
∞, A

−
∞).

This is accomplished by numerically evolving the Ψh(x, ω) solution from the reflective sur-

face at x0 to infinity, and vice versa with the Ψ∞(x, ω) solution. With the evaluated coef-

ficients, and by using Eqs. (4.69), (4.70) and (4.71), we can then determine the coefficients

Awall, Ain, Aout and, accordingly, the transmission and reflection coefficients T and R, for

both BHs and ECOs scenarios respectively.

Finally, the transmission and reflection coefficients, calculated here by means of the direct

numerical problem, provide the starting point to study the inverse method that we consider

within this thesis. While not observationally available for astrophysical observations, in

principle, these are the observables that could be obtained through laboratory experiments

of analog gravity systems [79]. In Fig. 4.24, we show a few examples of those coefficients for

analog ECO systems.

Notice here that, analogously to the transfer function in the previous section, the trans-

mission and reflection present resonant peaks associated with the resonant modes defined by

the cavity. As we usually get in the context of extreme compact objects perturbation theory,

E0n describes the location of the peak associated with the n-th mode, while the imaginary

part E1n is proportional to its width.

To investigate the role of the wall’s reflectivity in the resulting scattering coefficients

(transmission), in Fig. 4.24 we chose some different physical scenarios to investigate by fixing

different values for our reflectivity constant associated with the reflective wall, namely (K =

0.5, 075) and two different values for the boundary condition’s location x0. Meanwhile, we

have fixed a value for the harmonic constant m (m = 4), and C = 0 for the rotation constant.

The role of the harmonic constant m, and the rotation constant C will be investigated in

Chapter 6, and Chapter 8, respectively.

As we can see in the graphics on Fig. 4.24 above, as we increase the values of the

reflectivity parameter (K), the intensity of the transmission/reflection at the resonant peaks

gets higher. On the other hand, the peaks tend to get exponentially narrower. This means
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that increasing the reflectivity of the wall amplifies the effect of the resonance, both in

the transmission/reflection, and it also increases the damping time of the trapped modes.

That is physically plausible, since those waves are being more reflected by the wall, and

hence being more strongly trapped and confined within the cavity between the wall and

the barrier, those modes tend to live longer. Moreover, the asymptotic behavior of the

transmission coefficient tends to be diminished as the wall’s reflectivity increases, since for

high energies, the transmission through the potential barrier becomes dominant over the

absorption through the wall. In Fig. 4.24 we also detach the role played by the location

of the reflective boundary x0 which mainly controls the number of resonance peaks, and

strongly impacts their spacing.

We have now finished our analysis of the direct problem in perturbation theory for both

astrophysical and analog models of black holes and ECOs. In the following chapter, we

develop our inverse method, introducing its formulas and explaining how it works. Then,

we apply this method to the transmission coefficients we shall. From now on, we will focus

on analog black hole and ECO systems, since those are the only ones we can experimentally

obtain the scattering coefficients from. As we have seen, there is a mathematical equivalence

between the description of the evolution of linear perturbations in BH/ECO’s spacetimes

and the evolution of perturbation in their analog systems. In theory, the inverse method

to be developed within this thesis could be successfully applied to both cases. The unique

availability of the experimental data for scattering coefficients in analog gravity systems

motivated us to choose those systems as the main prompt model for applying our inverse

method developed within this thesis.
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Figure 4.2: GW Strain measured by a distant observer in x2 (tortoise coordinate) from a
Schwarzschild astrophysical black hole, and generated by the prompt perturbation in (4.9).
We directly evolved this perturbation (an inwards propagating Gaussian pulse) in the time
domain via the finite difference scheme in Eq. (4.8). In the upper panel, we see a plot of
the time evolution of a gravitational wave signal measured by a distant observer in x2. In
the lower panel, we see the logarithmic plot of this same signal. Here we have considered
the Schwarzschild black hole with L = 2, and M = 1. The initial perturbation was released
from x3 = 30 with σ = 3.
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Figure 4.3: Waveform measured by a distant observer in x2 (tortoise coordinate) from the
acoustic analog to a black hole, namely the sonic hole, and generated by the prompt per-
turbation in (4.9). We directly evolved this perturbation (an inwards propagating Gaussian
pulse) in the time domain via the finite difference scheme in Eq. (4.8). In the upper panel,
we see a plot of the time evolution of a acoustic wave signal measured by a distant observer
in x2. In the lower pannel we see the logarithmic plot of this same signal. Here we have con-
sidered the analog model to a black hole with m = 4. The initial perturbation was released
from x3 = 30 with σ = 1.
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Figure 4.4: GW Strain measured by a distant observer in x2 (tortoise coordinate) from a
Schwarzschild exotic compact object, and generated by the prompt perturbation in (4.9).
We directly evolved this perturbation (an inwards propagating Gaussian pulse) in the time
domain via the finite difference scheme in Eq. (4.10). In the upper panel, we see a plot of
the time evolution of a gravitational wave signal measured by a distant observer in x2. In
the lower panel, we see the logarithmic plot of this same signal. Here we have considered
the Schwarzschild black hole with L = 2, and M = 1. The initial perturbation was released
from x3 = 30 with σ = 3. The reflective boundary was imposed at x0 = −40
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Figure 4.5: Waveform measured by a distant observer in x2 (tortoise coordinate) from the
acoustic analog to an exotic compact object, namely the imperfect draining vortex, and
generated by the prompt perturbation in (4.7). We directly evolved this perturbation (an
inwards propagating Gaussian pulse) in the time domain via the finite difference scheme in
Eq. (4.10). In the upper panel, we see a plot of the time evolution of a gravitational wave
signal measured by a distant observer in x2. In the lower panel, we see the logarithmic plot
of this same signal. Here we have considered the analog model to a black hole with m = 4.
The initial perturbation was released from x3 = 30 with σ = 1. The reflective boundary was
imposed at x0 = −30
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Figure 4.6: The integral contour C for the Cauchy integral in Eq. (4.34). The crosses are
the positions of the quasinormal frequencies in the complex plane. The hatched area is the
branch cut.
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Figure 4.7: Waveform strain measured by a distant observer far away from the source in an
analog black hole spacetime. The three different stages of the time evolution of this signal
are: perturbation stage (1), ringdown phase (2), late tail stage(3). In the upper panel, we
see the time evolution of this wave signal. In the lower panel, we see the logarithmic plot of
that same signal.

108



0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.00

0.01

0.02

0.03

0.04

0.05

0.06

h(
)

Amplitude in Freq. Domain for l = 2
Amplitude in Freq. Domain for l = 3
Amplitude in Freq. Domain for l = 4
Total Amplitude in Freq. Domain

Figure 4.8: The energy spectrum of gravitational radiation emitted by the radial infall of a
smaller mass into a larger black hole for each multipolar number l. The total combination
of all multipolar contributions is the solid black curve. Notice the difference in contribution
between each mode.
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Figure 4.9: Time domain gravitational wave signal emitted by a plunge of a small star into
a larger black hole as measured by a distant observer in x→ ∞.
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Figure 4.10: Potential versus the perturbation sources from Eq. (4.43) for a few different σ
scenarios.
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Figure 4.11: Frequency domain waveform amplitudes for Gaussian acoustic perturbations
in the background effective spacetime of an acoustic black hole for the different σ scenarios
represented in Fig. 4.10. Notice that narrower Gaussian perturbations excite higher QNMs
overtones.
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Figure 4.12: Time domain waveform signals emitted by an acoustic black hole in response
to Gaussian acoustic perturbations in Eq. (4.43). Those signals for the different σ scenarios
represented in Fig. 4.10 are measured by distant observers.
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Figure 4.13: Time domain waveform signals emitted by an acoustic black hole in response
to Gaussian acoustic perturbations in Eq. (4.43) for σ = 0.5. The upper panel represents
the direct signal in the time domain measured by a distant observer, while the lower panel
represents the logarithmic version of this signal. In those graphics, we delimited the region of
interest for our waveform spectroscopy in terms of QNMs. This region is chosen by looking
for a time interval that better represents the intermediate stage of QNM ringing oscillations.
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Figure 4.14: We contrast the waveform signal in Ref. 4.13 with the inferred fundamental
quasinormal mode whose parameters better fit the input signal
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Figure 4.15: Transfer functions for two different ECOs’ analog models, generated by x0 =
−20, and K = 0.5 (red) and K = 0.75 (purple). Notice that the frequency spacing is
equivalent, but the peaks are more pronounced for the case with the largest reflectivity.
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Figure 4.16: Transfer functions for a few different ECOs’ analog models, generated by K =
0.75, and x0 = −3, and (red) and x0 = −20 (blue). Notice that larger cavities are associated
with more resonant modes, which in turn are separated by smaller frequency spacings.
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Figure 4.17: Effective potential for the imperfect draining vortex with M = 4 and C = 0.
The reflectivity boundary location x0 yields two distinct scenarios, namely x0 = −3 (blue)
representing the regime of small cavities, and x0 = −20 (red) representing a large cavity
case.
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Figure 4.18: Waveform amplitudes in the frequency domain for acoustic perturbations gen-
erated by the Gaussian source term in Eq. (4.43) on the perfect draining vortex. Those are
the FD amplitudes at the horizon and at the infinity, respectively
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Figure 4.19: Waveform amplitudes in the frequency domain for acoustic perturbations gener-
ated by the Gaussian source term in Eq. (4.43) on the perfect and imperfect draining vortex.
At infinity r → ∞ we contrast the acoustic black hole waveform amplitude with two distinct
ECO models, one for a small cavity x0 = −3 (red-dashed) and the other for a large cavity
x0 = −20 (blue-dashed). Notice the difference in the frequency spacing between the modes.
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Figure 4.20: Waveform strain in the time domain for acoustic perturbations generated by the
Gaussian source term in Eq. (4.43) on the perfect and imperfect draining vortex. We contrast
the acoustic black hole waveform signal detected by a distant observer (black-dashed) from
those two distinct ECO models, one for a small cavity x0 = −3 (blue) and the other for a
large cavity x0 = −20 (red).
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Figure 4.21: Waveform amplitudes in the frequency domain for acoustic perturbations gen-
erated by the Gaussian source term in Eq. (4.43) on the perfect and imperfect draining
vortex. At infinity r → ∞ we contrast the acoustic black hole waveform amplitude with two
distinct large cavity (x0 = −20) ECO models, namely K = 0.5 (red-dashed) and K = 0.75
(purple-dashed). Notice that for higher reflectivities K yields narrower and higher peaks at
the resonant modes. Notice that the frequency spacing is the same, but higher reflectivities
yield higher peaks.
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Figure 4.22: Waveform strain in the time domain for acoustic perturbations generated by the
Gaussian source term in Eq. (4.43) on the perfect and imperfect draining vortex. We contrast
the acoustic black hole waveform signal detected by a distant observer (black-dashed) from
those two distinct large cavity ECO models, the one from K = 0.5 (red) and the other from
K = 0.75 (purple).
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Figure 4.23: Waveform strain in the time domain for acoustic perturbations generated by the
Gaussian source term in Eq. (4.43) on the perfect and imperfect draining vortex. We present
the acoustic black hole waveform signal detected by a distant observer (black-dashed), and
we contrast it with the time domain signal from Eq. (4.61) in two scenarios: considering only
the two first terms of this expansion, which corresponds to the BH signal and the first echo
(blue-dotted line) and the signal from the entire expansion itself (red solid line).
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Figure 4.24: Comparison between the logarithmic plot of the transmission for scenarios where
x0 = −20 and the reflectivity constant is K = 0.5, 0.75; and for the case with x0 = −3 and
K = 0.75.
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Chapter 5

The Inverse Problem: A Semi-analytical

Approach

The WKB method [186, 187, 188, 189] is the group of theoretical concepts behind the semi-

classical theory of wave quantum mechanics. It is used in general for finding approximate

solutions to linear differential equations, but it has gained a lot of notoriety for its applications

in the context of Schrödinger wave equation. Since its first presentations [190, 191, 192],

many extensions have been proposed, making this set of techniques a handy and reliable tool

for semi-analytic treatment of many other physical problems. Among them, we can cite the

application to the direct problem of linear perturbation theory of compact objects, such as

black holes [182, 193, 194, 195, 196, 197, 198, 199]. This chapter presents the most important

mathematical formulas behind the WKB method and its application for the perturbation

theory of compact objects and analog systems. In section 5.2, we introduce the formal theory

behind this semi-analytic approach and the direct equations used for such treatment.

On the other hand, the corresponding problem of starting with the radiation spectrum

or with the scattering properties of a certain physical system (possibly measured in an

experiment, for example) and then reconstructing their underlying physics is a completely

different problem. In contrast to deriving a source’s spectrum or scattering properties when

its underlying physics is known, doing the “reverse engineering” of reconstructing the source

from its spectrum/scattering properties is generally a much more difficult problem. That
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formulates what we call the inverse scattering problem [122], or simply, the inverse problem.

In terms of an exact/numerical treatment from the analytical equations describing these

systems, that inverse problem becomes extremely difficult, if not formally impossible to tackle

with the techniques currently known. For this reason, applying semi-analytic techniques by

inverting the usual WKB formulas can become very useful and might reveal important

insights concerning the underlying structure of this physical problem. These inverted WKB

formulas, which form the theoretical foundation of the inverse problem, are presented in

Sec. 5.3 of this chapter.

The inverse method we develop in this thesis consists of a novel method that is based

on a semianalytic analysis of the underlying wave equation, and that does not require the

specification of specific details of the underlying model. Formally, it embodies a set of

techniques and inverted semi-analytical formulas that provide us with a mathematical setting

for reconstructing key properties of the scattering source. In our case here, the developed

inverse method allows us to obtain the coupled effective scattering potentials that produce

the measured results we use as input for the inverse reconstruction.

Note that this is very different from standard inference approaches, in which one recon-

structs the parameters of a model using statistical tools. Instead, we show how Wentzel-

Kramers-Brillouin (WKB) theory-based results known for quasistationary states of astro-

physical exotic compact objects [200] can be extended to recover main properties of the

effective potential, as well as absorption properties at the surface of the objects.

In general, although once we specify the underlying physics of a certain scattering object,

its spectrum is uniquely determined. Formally, at least in principle, we cannot do the other

way around for the same problem and find a unique solution, but only a class of possible

solutions. That is the main goal of the inverse problem. If an additional well-motivated hy-

pothesis concerning the physical properties of the scattering source is also provided, the joint

application of this hypothesis with the inverse method can get us closer to an approximative

solution for the inverse problem. That is the line of reasoning we follow through this thesis.
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For exotic compact objects, this problem was already addressed in the literature [125,

126, 127, 128, 129, 130] employing the same semi-analytic techniques we introduce here.

Among the plethora of questions investigated, the reconstruction of perturbation scattering

potentials from exotic compact objects from their QNMs spectra was achieved for many

different cases. The question that remained was whether we would have been as lucky had

we started from the scattering properties of analog gravity systems. That problem is what

we aimed to address with this thesis. As proof of principle, in Chapter 6, we apply it to

the imperfect draining vortex model studied in Ref.[48], for which we compute the relevant

observables with standard, accurate numerical methods.

5.1 Semi-analytical treatment for the direct and in-

verse problem

As we discuss in this chapter, the application of the semi-analytic techniques based on the

WKB [186, 187, 188, 189] method allows us to obtain a powerful tool for the direct problem

of obtaining the scattering properties and the irradiated spectrum of ringing compact objects

[200]. The same can be said about their analog gravity systems [48] and the inverse problem

of using their scattering properties to reconstruct their intrinsic effective potentials.

Furthermore, we show that the problem for which the spectrum of a source or its scat-

tering properties is known, but the physical parameters that describe those sources are not,

also called inverse problem, can also be posed in terms of those semi-analytical equations in

their inverse formulations. The solution for the inverse problem might not be unique, and

since inverse problems are often not uniquely solvable, we argue how physically motivated

constraints allow one to reconstruct the relevant potential. The quality of the reconstruction,

due to its relation to WKB theory, is very good for large angular numbers. Furthermore, as

shown in the following chapters, we can also reconstruct the sources’ boundary reflectivity,

for which results become more accurate the more the object reflects incoming waves.
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In this chapter, we introduce the direct and inverse WKB method for energy-independent

potentials, applying for non-rotating analog gravity systems in chapter 6. In chapter 7, we

present our extension of the same techniques for the case with energy-dependent potentials,

which tackles cases where the scattering source is rotating. This last application is left for

chapter 8.

5.2 WKB method

We start our discussion with the time-independent Schrödinger-like wave equation in Eq.(4.14).

d2Ψ(r, E)

dx2
+ (E − V (x))Ψ(r, E) = 0. (5.1)

Where V (x) is the potential and E is the continuous or discrete set of eigenvalues for the

energy. The main approximation hypothesis behind the WKB method is that the potential

does not appreciate drastic changes when compared to the considered wavelength dimensions

in one’s desired application regime [201, 202]. That is the so-called Eikonal approximation.

The WKB theory makes the following ansatz for the wave solution of Eq. (5.1)

Ψ(x) ≈ exp
1

ϵ

∞∑
n=0

ϵnSn(x), (5.2)

where Sn(x) is the phase, and ϵ is the small expansion parameter controlling the approxi-

mation order desired. If we write the Schrödinger equation in terms of the function Q(x,E),

where

Q(x,E) = E − V (x), (5.3)

and we insert the Ansatz in Eq. (5.2), we obtain the following expansion
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(
∞∑
n=0

ϵnS
′

n(x)

)2

+ ϵ

∞∑
n=0

ϵnS”
n(x) = Q(x). for Q(x,E) ̸= 0. (5.4)

The first-order term yields the so-called Eikonal equation

S
′2

0 = Q(x,E). (5.5)

which is solved by

S0(x) = ±
∫ x√

Q(x′)dx′. (5.6)

The following order of expansion gives us the transport equation,

2S
′

0S
′

1 + S”
0 = 0, (5.7)

whose solution is

S1(x) = −1

4
lnQ(x,E) (5.8)

For terms with higher orders than n ≥ 2, we get

2S
′

0S
”
n−1 +

n−1∑
j=1

S
′

jS
′

n−j = 0. (5.9)

As reported by Bender and Orszag [203], the solutions Sn for the equations above are,

up to the 5-th order, given by the following expressions

Ψ(x) = c1Q
−1/4(x)e

1
ϵ

∫ x
a

√
Q(x′ )dx

′

+ c2Q
−1/4(x)e−

1
ϵ

∫ x
a

√
Q(x′ )dx

′

, for ϵ→ 0, (5.10)
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where c1, c2 are integration constants, and a is a fixed integration point.

We are assuming that Q(x,E) ̸= 0, therefore we cannot expect our solutions here to be

valid at the turning points. The standard approach to circumvent this limitation is splitting

the domain into three different regions. The so-called classically allowed region with E <

V (x), where the wave solution presents an oscillatory behavior, and the classically forbidden

region with E > V (x), where the wave function exponentially decays with distance. The

third region takes place around the turning point, and it consists of the overlapping region

between the classically allowed and classically forbidden regions. To approach the wave

solution around this region in our semi-analytic treatment we need to solve the Schrödinger

equation for a Taylor expansion of V (x). In the overlap interval between the two solutions,

the relations between the WKB solutions and the wave solutions obtained for the linear

expansion of the potential around the turning point are called Kramer’s matching relations

or matching conditions. The two possible cases for one turning point are illustrated in

Fig. 5.1.

The WKB solutions around these turning points (x0, x1) can be derived by considering

the linear Taylor expansion of the potential V (x) around them.

V (x) ≈ V (x0,1) +

[
dV

dx

]
x=x0,1

(x− x0,1) (5.11)

In that way, we can then obtain the solutions at the matching regions in terms of Airy

functions. After that, we match these wave solutions around the turning points with the

WKB wave solutions for the classically allowed/forbidden regions, given by Eqs. (5.10). The

final form of those matched WKB solutions is finally presented in the following, for a detailed

derivation of those results, we refer the interested reader to Ref.[200]. The WKB solutions

around the turning points are given by
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Figure 5.1: Two possible cases for the problem of one turning point. For the upper panel,
we have x0(E) and for the lower panel, we have x1(E).

ψI(x) = BI
1√
|p(x)|

exp

(
−
∫ x0

x

|p(x′)|dx′
)
, x < x0, (5.12)

ψI(x) = BI
2√
p(x)

sin

(∫ x

x0

p(x′)dx′ +
π

4

)
, x > x0, (5.13)

for x around x0 as in the upper pannel of Fig. 5.1, and
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ψI(x) = AIII
2√
p(x)

sin

(∫ x1

x

p(x′)dx′ +
π

4

)
, x < x1, (5.14)

ψIII(x) = AIII
2√
|p(x)|

exp

(
−
∫ x

x1

|p(x′)|dx′
)
, x > x1, (5.15)

for x around x1 as in the lower pannel of Fig. 5.1.

Eqs. (5.12),(5.13),(5.14),(5.15) are the so-called Kramer’s matching relations or matching

conditions. They are important for the derivation of the direct Bohr-Sommerfeld rule and

the direct Gamow formulas in the following.

5.2.1 Direct Bohr-Sommerfeld Rule

For realistic one-dimensional potentials describing physical confining systems, it is techni-

cally very difficult to find exact solutions for the energy eigenvalues and their associated

eigenfunctions in the wave equation (4.14). For such a goal, we need to directly integrate

this equation, which depending on the potential V (x) can lead to an extremely complex

mathematical problem. In such situations, WKB theory can help to find approximate solu-

tions for our problem. For a potential well with two turning points, such as the one shown

in Fig. 5.2 for example, the WKB solutions in Eqs. (5.12),(5.13),(5.14),(5.15) can be used

to derive an integral equation for the spectrum En itself, which can be computed without

knowing the eigenfunctions explicitly. That gives us the so-called Bohr-Sommerfeld rule:

∫ x1

x0

√
En − V (x)dx = π

(
n+

1

2

)
, (5.16)

where (x0, x1) are the classical turning points for an associated energy eigenvalue En.

This result is valid for potential wells in general with two classical turning points and van-

ishing asymptotic boundary conditions in the two extremes. In such a case, the spectrum of
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energies En is real-value and describes bound states.
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Figure 5.2: Potential well in a confining system. For each energy E we have two turning
points associated x0(E) and x1(E).

Deriving the Bohr-Sommerfeld rule is in principle straightforward if we use the WKB

integral equations (5.12),(5.13),(5.14),(5.15) describing the wave functions around turning

points. To accomplish this derivation, we split up the interval in Fig. 5.2 into 2 classically

forbidden regions (x < x0), (x1 < x), and one classically allowed region (x0 < x < x1).

There is an overlap region around each one of the two turning points. The WKB solutions

in the classically forbidden regions have two different constants, that will be determined by

matching the two oscillatory WKB solutions in the classically allowed region. Following the

explicit calculation in [202] we rewrite

BI
2√
p(x)

sin

(∫ x

x0

p(x′)dx′ +
π

4

)
= −BI

2√
p(x)

sin

(∫ x

x0

p(x′)dx′ +
π

4
−
[∫ x1

x0

p(x
′
)dx

′
+
π

2

])
.

(5.17)

Comparing with Eq. (5.14), we notice there is a strong similarity to the relation for the

other solution. Indeed, these equations coincide if the extra term within the square brackets

equals to πk. This implies the following
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∫ x1

x0

p(x
′
)dx

′
= π

(
n+

1

2

)
(5.18)

where we restricted the n values to be positive integers, since the integral is positive in

this range.

The classical Bohr-Sommefeld rule in Eq. (5.16) can be further improved by including

higher-order terms of the WKB method. The results are shown in [202].

5.2.2 Direct Gamow Formulas

Another important result that can be derived fromWKB formulas in Eqs. (5.12),(5.13),(5.14),

and Eq. (5.15) is the Gamow formula [204]. This formula approximates the transmission co-

efficient of a wave function through a potential barrier, and the result is given as a function

of the energy. As we have shown in chapter 3 and 4, potential barriers in the context of this

thesis appear for astrophysical and analog systems to astrophysical black holes, as well as

for exotic compact objects. In the first case, one finds a two-turning point potential barrier,

while the second one combines this potential barrier with a potential well, leading to quasi-

stationary states. That second case is very important for the goals of this thesis, and we

discussed it separately in the following subsection.

The Gamow formula describing the semi-classical approximation for transmission of waves

with energies below the barrier maximum is

T2(E) = exp

(
2i

∫ x2

x1

√
En − V (x)dx

)
, (5.19)

Between the two turning points x1 and x2, we have E < V (x) (see Fig. 5.3), so the final

transmission is real.

In the literature, the Gamow formula has been inverted in order to address the inverse

problem. For such cases, the transmission is provided and we want to find the potential
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Figure 5.3: Potential barrier in a scattering system. For each energy E we have two turning
points associated x0(E) and x1(E).

instead [205, 206, 207]. We explore the inversion of Gamow formula in Sec. 5.3.2.

Besides that, the Gamow formula is important for quasi-stationary states, which arise for

different exotic compact objects, and for their analog systems as well. This last scenario gives

rise to the most important application considered in this thesis. We explore their general

description in terms of the semi-analytic WKB method in the following subsections. Their

applications, on the other hand, are considered in Chapters 6,8.

5.2.3 Three-Point Turning Points: Quasi-Stationary States

A similar but more intricate physical scenario arises if the potential barrier considered previ-

ously possesses an additional turning point. This is the case for potentials shown in Fig. 5.4.

For such potentials, the spectrum of eigenenergies is complex-valued, and we call them

quasi-bound states or quasi-stationary states. In [208], it has been shown that it is possible

to extend the Bohr-Sommerfeld rule to describe the energy values of quasi-stationary states

located in the lower part of this potential by a higher-order correction to Eq. (5.16). This

extension is approximately written as

∫ x1

x0

√
En − V (x)dx = π

(
n+

1

2

)
− i

4
exp

(
2i

∫ x2

x1

√
En − V (x)dx

)
, (5.20)
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Figure 5.4: Potential with three turning points, respectively, x0(E), x1(E), and x2(E).

For the quasistationary states, the imaginary part of their energy eigenvalues is expo-

nentially small, so we can further expand the lhs. formula for those energies in the following

way

∫ x1

x0

√
En − V (x)dx ≈

∫ x2

x1

√
E0n − V (x)dx+

iE1n

2

∫ x1

x0

1√
E0n − V (x)

dx, , (5.21)

where

En = E0n + iE1nwith |E1n| << |E0n|. (5.22)

Similarly, for the rhs.:

π

(
n+

1

2

)
− i

4
exp

(
2i

∫ x2

x1

√
E0n + E1n − V (x)dx

)
≈ π

(
n+

1

2

)
− i

4
exp

(
2i

[∫ x2

x1

√
E0n − V (x)dx+

iE1n

2

∫ x2

x1

1√
E0n − V (x)

dx

])
(5.23)

The last term in the exponential can be neglected, since it only contributes with the ex-
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ponential of an already exponentially small term. This property is used to expand Eq. 5.23

into two equations, one for the real part and the other for the imaginary part of those equa-

tions. This leads us to the final equations shown bellow, which are going to be extensively

used throughout this thesis

∫ x1

x0

√
E0n − V (x)dx = π

(
n+

1

2

)
, (5.24)

and

E1n = −1

2
exp

(
2i

∫ x2

x1

√
E0n − V (x)dx

)(∫ x1

x0

1√
E0n − V (x)

dx

)−1

(5.25)

Here x0, x1, x2 are the classical turning points defined by E0n = V (x). Notice that

comparing this last equation with Gamow formula Eq. (5.19), we notice that the exponential

term in the rhs. of Eq. (5.25) below is the semi-analytical approximation for the transmission

through the potential barrier, between the turning points x1 and x2. That is a very important

result. Its beauty lies in the two-step approach for evaluating the real and imaginary parts

of En. While the real part is determined by the classical Bohr-Sommerfeld rule applied to

the cavity of this potential, the imaginary part is directly connected with the transmission

through the barrier of this same potential.

A further extension of this result can be considered when the wave solution is not decaying

at the classically forbidden region for x < x0. For example, if there is a partial wave

transmission at the turning point x = x0, then, we have

E1n =− 1

2
(T1(E) + T2(E))

(∫ x1

x0

1√
En − V (x)

dx

)−1

. (5.26)

where T1(E) is defined in terms of boundary conditions at the objects ’surface’ located

at x0 and discussed in Sec. 8.4.1.
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The inverse problem related to reconstructing properties of V (x) given the spectrum of

quasi-stationary states was studied in Refs. [127, 125] and is explained in more detail in

Sec. 8.4.

5.3 The Inverse WKB Formulas

Now we discuss the inversion of the different WKB formulas we derived in the previous

section. We start by deriving the inverse formula for the Bohr-Sommerfeld rule, which

allows us to reconstruct the cavity width of a certain potential well assuming we know its

spectra. Next, we derive the inverse Gamow formula, which gives us an effective method to

reconstruct the width of a potential barrier providing that we have a previous knowledge of

the transmission through this potential barrier.

5.3.1 Inverse Bohr-Sommerfeld Rule

We motivate the explicit theoretical proposal behind the inverse problem considered here by

the following question:

Can we find the potential well that yields a given spectrum of bound states?

To address this question from a semi-analytical perspective, we would need an equation

that could, in principle, work inversely as of Eq. (5.16). Instead of giving us the energies

of the bound states from a given potential well, we want it to give us some enlightening

information about this potential well, provided we already know the normal modes spectra.

This inverted version of the Bohr-Sommerfeld rule does exist, and here in this section, we

summarize how one can derive it. We refer the more interested reader to Ref. [200] for a

more detailed derivation of this formula.

We start by defining the so-called inclusion

I(E) ≡
∫ x1

x0

(E − V (x))dx, (5.27)
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which delimits the area enclosed by the horizontal line intersecting the energy-axis at the

E value, and the function that describes the potential V (x), between the two turning points

(x0, x1).

The second definition we need is the so-called excursion,

L(E) ≡
∫ x1

x0

dx = x1 − x0. (5.28)

This quantity defines the width of the potential well as a function of energy. It is the

most important quantity to be obtained from our inverse problem in terms of the inverse BS

rule.

Now, let’s assume that we could have a continuous function connecting En and the mode

number n with the following features. This function E(n) reproduces the discrete values

of En at the integer values n, while it remains defined for the real values between them.

For example, a numerical interpolation E(n) can achieve this goal. Since En is usually

monotonically connected with its mode number n for the problems we consider, we can also

invert this relation to obtain n = n(E). Finally, we can write the Bohr-Sommerfeld rule for

the continuous case

π

(
n(E) +

1

2

)
=

∫ x1

x0

√
E − V (x)dx (5.29)

Note that this interpolation n = n(E) might not be unique. The minimum Emin of the

potential well V (x) can be defined as the extrapolation where the change in the phase is

zero. This implies in

n(Emin) = −1

2
. (5.30)

The inversion of the Bohr-Sommerfeld rule connecting the inclusion, Eq. (5.27), and the

exclusion, Eq. (5.28), is then derived as follows. We multiply both sides of Eq. (5.29) with

1/(E − E ′)1/2 and integrate over E ′.
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∫ E

Emin

π(n(E) + 1/2)√
E − E ′ dE

′
=

∫ E

Emin

1√
E − E ′

(∫ x1

x0

√
E − V (x)dx

)
dE

′
(5.31)

The integral on the right-hand side can be split into two parts

∫ E

Emin

1√
E − E ′

(∫ x1

x0

√
E − V (x)dx

)
dE

′
=

∫ V (x)

Emin

1√
E − E ′

(∫ x1

x0

√
E − V (x)dx

)
dE

′

+

∫ E

V (x)

1√
E − E ′

(∫ x1

x0

√
E − V (x)dx

)
dE

′

(5.32)

The first term is identically zero, since the x integration does not contribute for E ′ <

V (x). For the second part, we can integrate explicitly noticing that the turning points

depend on E and not E ′. We obtain

∫ E

V (x)

1√
E − E ′

(∫ x1

x0

√
E − V (x)dx

)
dE

′
=
π

2

∫ x1

x0

(E − V (x))dx. (5.33)

where this last integral is the definition of inclusion as written in Eq. (5.27).

Now we must replace this result with Eq. (5.31), multiply it by 2/π, and differentiate the

final result. The result we obtain is

d

dE

∫ x1

x0

(E − V (x))dx =

(
∂

∂E
+
dx0
dE

∂

∂x0
+
dx1
dE

∂

∂x1

)∫ x1

x0

(E − V (x))dx

=

(
∂

∂E
+
dx0
dE

∂

∂x0
+
dx1
dE

∂

∂x1

)(
E(x1 − x0)−

∫ x1

x0

(V (x))dx

)
= (x1 − x0) + E

(
−dx0
dE

+
dx1
dE

)
+

(
dx0
dE

V (x0)−
dx1
dE

V (x1)

)
= (x1 − x0). (5.34)

We have used the fact that the term E − V (x1,2) vanishes on the turning points and we

136



have also taken into account the implicit dependence of the turning points on the energy.

Finally, the final result for the inversion of the Bohr-Sommerfeld rule is written as:

L(E) = x1 − x0 = 2
d

dE

∫ E

Emin

n(E) + 1/2√
E − E ′ dE

′
(5.35)

This inverse formula for the Bohr-Sommerfeld rule reveals that given a spectrum of bound

states En, it is in principle possible to reconstruct the width of the potential well L(E). This

does not mean that we reconstruct the potential V (x) itself and does not necessarily imply

a failure of our inverse method, but simply a natural limitation that asserts to us that the

connection between the spectrum of the bound states and the geometrical configuration of

a potential well is in general not unique. Infinitely different potentials can admit the same

spectrum. Eq. (5.35) tells us that all potentials sharing the same width also admit the same

spectrum. That is an important result for energy-independent potentials, since to construct

a family of isospectral potentials all we need to do is provide a valid function for one of the

two turning points. We illustrate this last fact in the following chapter.

In chapter 7, we show that for energy-dependent potentials, however, this statement that

tells us that all potentials sharing the same width admit the same spectrum no longer holds.

Indeed, when the potential also varies with the energy V (x,E), width-equivalent potentials

do not reproduce in general the same energy-spectrum of their associated energy-dependent

potentials. In such cases, although the problem becomes more complex, we show that the

inverse formulas provided in this chapter are still reliable for obtaining an associated energy-

independent effective potential, which we call WKB-equivalent potential.

5.3.2 Inverse Gamow Formulas

Finally, the inversion of the Gamow formula (Eq. (5.19)) is discussed in the following. Here,

we follow the derivation reported in Refs. [200], but summarizing some of the intermediate

steps.
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We start with the derivative of T (E) with respect to E. Using Eq. (5.19) and exchanging

the signal of the argument of the square root, we are led to

dT (E)

dE
=

(
∂

∂E
+
dx0
dE

∂

∂x0
+
dx1
dE

∂

∂x1

)
e
−2

∫ x1
x0

√
V (x)−Edx

(5.36)

=

(∫ x1

x0

1√
V (x)− E

dx− dx0
dE

√
V (x0)− E +

dx1
dE

√
V (x1)− E

)
e
−2

∫ x1
x0

√
V (x)−Edx

(5.37)

=

(∫ x1

x0

1√
V (x)− E

dx

)
e
−2

∫ x1
x0

√
V (x)−Edx

(5.38)

Similar to the previous case, terms with V (x1,2)−E vanish at the turning point. Dividing

the resulting equation with T (E) yields

1

T (E)

dT (E)

dE
=

∫ x1

x0

1√
V (x)− E

dx. (5.39)

Now, we replace E → E ′, multiply with 1/
√
E ′ − E and integrate over E ′ from E to

Emax.

∫ Emax

E

1√
E ′ − E

(
1

T ′(E)

dT (E
′
)

dE ′

)
dE

′
=

∫ Emax

E

1√
E ′ − E

(∫ x1

x0

1√
V (x)− E ′

dx

)
dE

′
.

(5.40)

Emax is the maximum of the potential barrier. Similar to the Bohr-Sommerfeld case it

has to be extrapolated. Employing physical arguments, we choose Emax to be defined as the

energy value in which

T (Emax) =
1

2
. (5.41)

As in the previous section, we can split up the E
′
integration into two intervals, the first

138



interval for E
′
< V (x), while the second goes from V (x) until Emax. The first integral does

not add any contribution for the total integral, so we obtain

∫ Emax

E

1√
E ′ − E

(∫ x1

x0

1√
V (x)− E ′

dx

)
dE

′
= π

∫ x1

x0

dx = π(x1 − x0). (5.42)

Replacing Eq. (5.42) into Eq. (5.40), we obtain that the solution to the inverse transmis-

sion problem is the following inverted Gamow formula

L(E) = (x1 − x0) =
1

π

∫ Emax

E

1√
E ′ − E

(
1

T ′(E)

dT (E
′
)

dE ′

)
dE

′
. (5.43)

It is interesting to notice the same question concerning the non-uniqueness of the solution

of our inverse problem can be raised here, in a similar fashion to the Bohr-Sommerfeld case.

Eq. (5.19) tells us that all classes of width-equivalent potential share the same transmission.

Accordingly, a given transmission T (E) cannot reconstruct a unique potential barrier. If we

are willing to determine a unique potential barrier, we need to provide an additional relation

for one of the two classical turning points. For the interesting case of a three turning points

potential consisting of a cavity merged with a subsequent potential barrier, the previous

reconstruction of the cavity already provides a relation for one of the two turning points

from the potential barrier. The second turning point is then obtained by summing the

reconstructed barrier width to the first one. We illustrate this specific case in the following

chapter.

In chapter 7, we show that the uniqueness in the relation between the transmission and the

width of a certain barrier is also lost for energy-dependent potential barriers. For a potential

varying with the energy, the transmission associated with width-equivalent potentials is

not equivalent to the actual transmission from the associated energy-dependent potentials.

Nevertheless, as for the Bohr-Sommerfeld rule, the inverted Gamow formula provided here

remains reliable for obtaining an associated energy-independent effective barrier, which we
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call WKB-equivalent potential barrier.

In the following chapters, we only consider potentials for which WKB theory is valid

and that the results in Eqs. (5.16),(5.19) are accurate enough. Due to the very nature

of approximate methods, this might imply some quantitative restrictions on the potential

shapes, but it does not affect the qualitative scope of the underlying method.
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Chapter 6

The Inverse Method for Analog Grav-

ity Systems

This Chapter is based on the following publication: Inverse problem of analog gravity

systems.

Authors: Saulo Albuquerque, Sebastian H. Völkel, Kostas D. Kokkotas, Valdir B. Bezerra

DOI: 10.1103/PhysRevD.108.124053 (publication)

Published in: Phys.Rev.D 108 (2023) 12, 124053

6.1 Introduction

In this chapter, we present our novel inverse method. This nonparametric method is based

on a semianalytic analysis of the underlying wave equation and does not require the speci-

fication of the details of the underlying model. As we show, it allows for the reconstruction

of the effective perturbation potential from the knowledge of transmission and reflection

coefficients for certain types of potentials in the Schrödinger wave equation admitting res-

onant tunneling. Note that this method differs greatly from standard inference statistical

approaches. Instead, we show how the (WKB) theory-based results known for quasistation-

ary states of astrophysical exotic compact objects [127, 125, 129] can be extended to recover

the main properties of the effective potential, as well as absorption properties at the surface
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of analog gravity systems.

We show how to use our method by applying it to an imperfect draining vortex, which

has been suggested as an analog of extreme compact objects [48]. Although the inverse

problem is, in general, not unique, choosing physically motivated assumptions and requiring

the validity of the semiclassical theory, we demonstrate that the method provides efficient

and accurate results.

In Chapters 2, 3, and 4, we outlined the fundamentals of the direct problem, introducing

the numerical methods for computing the transmission curves from our scattering problem.

Then, in Chapter 5 we presented the inversion of the WKB-based methods, and the inverse

formulas to solve the inverse problem for given transmission and reflection coefficients. In

this chapter, we finally discuss how these coefficients need to be further analyzed to provide

the input for the analysis presented in the following sections. We then apply these methods

to the imperfect draining vortex model and discuss our results in Sec. 6.5. Our conclusions

can be found in Sec. 6.6.

6.2 Outline of the direct problem

Throughout this work, the main properties of the systems we consider can be obtained by

studying the effective one-dimensional wave-equation (4.14). Here V (x) is, in general, an

energy-independent potential that captures the dynamical properties of the object under

consideration. Exotic astrophysical systems [104], as well as the analog systems we study

in Sec. 6.5 can be best described by a potential barrier with model-dependent reflection

properties on one side of the barrier. To understand the description of the inverse problem,

let us first review the key concepts of the direct one.

There are two common scenarios in which Eq. (4.14) is typically studied. One of them

is an eigenvalue problem for discrete values of En that are determined from suitably cho-

sen boundary conditions. In its most basic form, this can either give bound states (purely
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real eigenvalues of potential wells) or quasinormal modes (complex eigenvalues of potential

barriers). The second scenario is the scattering problem of transmission and reflection coef-

ficients, which is more commonly studied in quantum mechanics or in the context of black

holes for Hawking radiation calculations. Both scenarios are not independent of each other,

and in fact, our framework requires a joint analysis to address the inverse problem.

For those astrophysical or analog systems for which the outlined method here is valid, the

typical structure of the potential yields the so-called quasistationary states as an eigenvalue

problem. The spectrum ω2
n = En = E0n+iE1n of those modes is characterized by real-valued

bound states E0n, together with a very small imaginary part E1n reflecting the transmission

through the barrier and “surface” thus measuring the respective mode’s lifetime. In the

astrophysical context, these modes have first been found for ultracompact constant density

stars in Refs. [209, 210] and are also known as trapped modes. Accordingly, as we usually

have in the context of compact object perturbation theory, the real part of ωn describes the

frequency of the n th mode, while the imaginary part of ωn is inversely proportional to the

damping time of that respective mode. Therefore, exponentially small imaginary parts imply

long-living trapped modes. This is physically expected in a potential well created between

a reflective surface and a potential barrier. We show such a typical case in Fig. 6.1.

As we see later in the results, increasing the reflectivity of the reflective wall tends to

increase the lifetime of the trapped modes. Since a “larger portion” of the wave is being

reflected by the compact object’s surface, rather than being absorbed, those waves will be

trapped in the well for a longer time before they actually manage to escape the well (being

absorbed by the object, or being sent back to infinity). Therefore, larger reflectivity on the

surface of the compact object implies exponentially smaller imaginary parts for the modes,

which in turn leads to narrower widths in the transmission plots, as we discuss and illustrate

later.

A semianalytic treatment of astrophysical exotic compact objects with such properties

has been studied in Ref. [126], which combined the classical Bohr-Sommerfeld rule
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Figure 6.1: Here we show a typical potential barrier V (x) (blue) with turning points
x0(E), x1(E), and x2(E) for a given value of E (orange dot-dashed line). The location
of the reflective core’s surface coincides with x0(E) (black dotted line).
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∫ x1

x0

√
E0n − V (x)dx = π

(
n+

1

2

)
, (6.1)

and the Gamow formula

E1n =− 1

2
(T1(E) + T2(E))

(∫ x1

x0

1√
En − V (x)

dx

)−1

. (6.2)

Here x0, x1, x2 are the classical turning points defined by E0n = V (x). The semiclassical

approximations for the transmissions T2(E) through a potential barrier is given by Eq. (5.19),

while T1(E) is defined in terms of boundary conditions at the object’s surface located at x0

and given by (1−|K|2). See also Ref. [211] for a very similar approach to the direct problem.

The inverse problem related to reconstructing properties of V (x) given the spectrum of

quasistationary states was studied in Refs. [127, 125] by inverting the Bohr-Sommerfeld rule

and Gamow’s formula.

For the direct problem, we first need to evaluate the set of coefficients (A+
h , A

−
h , A

+
∞, A

−
∞)

from Eqs. (4.69). This is done by numerically evolving the Ψ̃h solution from the wall at x0

to infinity, and vice versa, with the Ψ̃∞ solution. With the evaluated coefficients, and by

using Eqs. (4.69),(4.70) and, we can then determine the coefficients (Awall, Ain, Aout), and,

accordingly, the transmission and reflection coefficients T and R, respectively.

Finally, the transmission and reflection coefficients, calculated here by means of the direct

numerical problem, provide the starting point to study the inverse method that we consider

within this framework. In principle these are the observables that could be obtained through

future laboratory experiments of analog gravity systems.
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6.3 Outline of the imperfect draining vortex model

In chapter 3, we summarized the main details of the imperfect draining vortex as an analog

of an extremely compact object. For more details, we refer the reader to Ref. [48], where

this model was outlined in more depth. The effective wave equation, which is the central

piece of our analysis, is given by Eq. (3.35).

The rotational properties of the vortex are characterized by the constant C, and m labels

the harmonic decomposition used in the derivation of the effective wave equation for the

radial part of the wave function. The latter one has a similar meaning as in the case of the

Schwarzschild black hole. Note that, as in the case of rotating black holes, the potential

becomes nontrivially ω dependent for rotating configurations (for C ̸= 0). The absorption at

the core of the vortex is modeled by defining a reflectivity K through the interface surface,

and it is defined by the boundary conditions at r = rh(1+ϵ), where ϵ is a very small number;

we normalize our acoustic horizon radius with rh = 1.

As applications for our inverse method, we have used the numerical setup described in

Chapter 4 to generate transmission curves as a function of energy. From now on, we assume

that the reflective wall is defined as the cylindrical surface (since we are in a 2+1-dimensional

scenario) with a radial distance of the center defined by the value (1 + ϵ), where ϵ = 2e−20.

According to Eq. (3.29), this implies that the tortoise coordinate is given by x0 = −9 at the

reflective wall.

In order to study different analog system realization, we choose several reflectivity values

K = [0, 0.75, 0.9, 0.99, 0.999], several harmonics m = [4, 6, 8, 10], and C = 0. To make the

impact of each parameter more clear and to avoid a plethora of various combinations, we

vary only one of the parameters at a time and set the other ones to default values. The

transmission curves for different reflectivity values are shown in Fig. 6.2. As one would

expect, the resonance peaks become more dominant for K → 1 and vanish in the limit

K → 0, but their location remains extremely similar. Varying the harmonic parameter
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m yields transmission curves provided in Fig. 6.3. Note that m changes the height of the

potential barrier, which mainly controls the number of resonance peaks, but only mildly

impacts their separation.

6.4 Outline of the inverse problem

With the numerical results for reflection and transmission coefficients available now, we

will outline the different steps of the inverse problem method. We start with a high-level

description of the main idea, and explain more specific details afterward.

The first step is to identify the location of resonance peaks as an approximation for

the energies of the quasistationary states E0n. Assuming that the Bohr-Sommerfeld rule

Eq. (5.16) is a good approximation, it is known [212, 122] that it can be used to reconstruct

the “width” L1(E) of the potential well as a function of the energy via Eqs. (6.1) Here,

however, Emin is the minimum of the potential defined by extrapolating where n(E)+1/4 = 0.

Note that the potential cannot be uniquely reconstructed, but instead there are infinitely

many potentials sharing the same width between their turning points. For this reason, a

well-motivated physical hypothesis must be additionally formulated for the turning points.

As we later see, this hypothesis corresponds to fixing x0 as a constant value.

The second step is to combine the inversion of Gamow’s formula for a two-turning point

potential barrier with the information about the potential well, which has been derived in

Ref. [127] for a single barrier next to a reflective boundary condition and in Ref. [125] for

quasistationary states trapped between two potential barriers. The inversion of the Gamow

formula allows one to connect the transmission through a single potential barrier with the

width of the barrier. This was first shown in [213, 214] and is given by Eq. (5.43). Note,

however, that T (E) in this equation here is not the same as the full measured transmission

coefficient, as the latter one includes the net result of the potential and the reflective wall

combined together.
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Figure 6.2: Here we show different aspects of the transmission T (E). Top: transmission
for different values of K = [0, 0.75, 0.9, 0.99, 0.999], C = 0 and m = 10. Bottom: same
transmissions as before (same colors), but normalized with the one for no reflectivity K = 0
denoted with T0 and in a smaller E range for better visibility of the resonance peaks.
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Figure 6.3: Here we show different aspects of the transmission T (E). Top panel: transmission
for different values of m = [4, 6, 8, 10], C = 0, and K = 0.99. The K = 0 case for each m
is shown for comparison (black lines). Bottom: same transmissions as before (same colors),
but normalized with the ones for no reflectivity K = 0 denoted with T0 and in a smaller E
range for better visibility of the resonance peaks.
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To circumvent this limitation, we developed a numerical fitting procedure that provides an

effective transmission through the potential barrier individually, which can then be used for

the reconstruction of the barrier. This numerical procedure starts from the total transmission

through the barrier and reflective wall and isolates the pure effect of the potential barrier.

The final result obtained by this procedure is what one could use as the input for the inversion

of the Gamow formula, given by Eq. (5.43) to reconstruct the barrier with the additional

information coming from the potential well. However, in order to obtain robust results, one

needs to slightly modify the transmission for energies close to the peak of the barrier, which

we outline in the sequence. Finally, although we have not faced problems from possible low-

energy inaccuracies from the WKB method, it could be a problem in other cases. In that

case, it may be useful to extrapolate the low-energy transmission with analytic functions that

do not cause so-called “overhanging cliffs” in the corresponding potentials; see Ref. [128] for

a related study on such analytic extensions.

6.4.0.1 Treatment at energies close to the barrier peak

Because of the reduced validity of the Bohr-Sommerfeld rule and Gamow formula for energies

around the peak of the barrier, we complement the close vicinity of the maximum of the

potential barrier with a parabolic approximation

Vparabolic(x) = Emax + a(x− xmax)
2. (6.3)

Here the two relevant free parameters (Emax and a) are directly obtained from fitting the

analytic form of the transmission to the numerical one; see Appendix of Ref. [129]. With the

estimate of Emax, one can now compute L2(E) to obtain width-equivalent potentials VL2(x).

Finally, we define the effective reconstructed barrier to be a smooth interpolation between
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the two potentials

Veff(x;xint, λ) =Vparabolic(x)

(
1

2
− 1

2
tanh[λ(x− xint)]

)
+VL2(x)

(
1

2
+

1

2
tanh[λ(x− xint)]

)
, (6.4)

where λ controls the “smoothness” of the transition between the two connected curves

Vparabolic(x) and VL2(x) in xint, where these two curves intersect. Directly approximating

the maximum of the potential with a parabola improves the reconstruction, because the

inversion of the Gamow formula used to derive L2(E) is only valid for energies below the

barrier peak. The choice of the matching point where the two curves shall intersect is done

by optimizing the determination of the position of the parabola maximum in x axis, while

looking for an intersection point where the functions to be matched have the same value and

same slope.

6.4.1 Analysis of the transmission

Knowing the transmission/reflection coefficients, we now outline how exactly we analyze it to

provide the necessary input for the semiclassical inversion methods. These quasistationary

states, as well as the transmission, are only related to the potential barrier and the reflective

wall.

6.4.1.1 Extracting quasistationary states from transmission

Given the numerical transmission curve as the starting point of our analysis, we need to

extract the spectrum of quasistationary modes. They are imprinted in the locations and

widths of the resonance peaks. For example, the real part of the mode energies (E0n) are

the energy values at the local center of the peaks (or the local center of the small “bumps”,

in the low-reflectivity scenario), while the imaginary parts (E1n) are related to the widths of

those peaks.
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As we will discuss later, for some cases (high-reflectivity regime), the local center of the

peaks are, with a very good approximation, the local maximum as well. For those cases, we

extract the locations using a basic peak-finder algorithm, and then numerically fit a three

parameter Lorentzian [215] in a very close vicinity to it,

f(E) =
T (Emax, n)Γ

2
n

(E − Emax, n)2 + Γ2
n

, (6.5)

where Emax, n is the location of the resonance peak and the real part of En, Γn is the half

width at half maximum, and T (Emax, n) is the peak value of the transmission at the resonant

energy. The width Γn of a certain peak will be related to the imaginary part/damping time

of its respective mode. To increase the accuracy and optimize the algorithm, we iteratively

refine the energy resolution in a more narrow region around a given peak.

For the cases where the local maximums at the peaks are not a good approximation for

the centers of the peak, a rather different approach is needed. This new approach is based

on the analysis of the slope of the transmission and its variation within the peak. When

passing through a peak/bump, the transmission’s slope reaches a local maximum and it

quickly decays into a local minimum (passing through zero, when there is a local maximum

at this peak/bump). Accordingly, at the local center of the peak, the slope is decaying at

the faster rate, so that the transmission’s second-order derivative reaches a local minimum

there. This way, we can estimate the local center of the small bumps by calculating the local

minimum of their second derivative there. We further discuss the low-reflectivity scenarios

in Sec. 6.5.1.2.

In all scenarios, we will be able to obtain the energies of the quasistationary modes

(E0n, E1n) for all different reflectivity regimes. These energies for the quasistationary states

can then be solved for n(E0), interpolated, and then used as input for Eq. (5.35).
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6.4.1.2 Defining effective transmission through the barrier

As we demonstrate explicitly in the following, one can use the transmission including the

resonance peaks to construct an “effective” transmission that only captures the transmission

through the barrier. To isolate this effective transmission from the full transmission curve

that contains the barrier and cavity effects, we need to employ a procedure we proposed. This

technique consists of taking the average of the transmission’s envelopes. For applying this

method, we first compute the envelopes connecting only the minima Tmin(E) and only the

maxima Tmax(E) of the logarithm of the transmission curve and then construct an effective

logarithmic transmission defined only by the envelopes

log(Teffective) =
1

2
(log(Tmax)(E) + log(Tmin)(E)) (6.6)

As it can be seen in Fig. 6.4, our technique furnishes a good approximation of the barrier

transmission obtained in the case of perfect absorption at the core. Accordingly, this trans-

mission will be the input for Eq. (5.43) to reconstruct the barrier width. In the following,

we analytically demonstrate the validity of Eq. (6.6) for approximating the isolated barrier

transmission.

• Demonstrating the envelopes’ average approximation for the effective bar-

rier transmission

Here, we derive Eq. (6.6) and demonstrate analytically the average envelope technique’s

validity. The proper application of this method is carried out in Sec. 6.5 of this chapter, and

in Secs.6.5 of Chapter 8.

The boundary conditions for the wave functions Ψ(x, ω) are given at the reflective bound-

ary surface by Eq. (4.64). At spatial infinity, they are given by Eq. Eq. (4.64). From the

amplitudes (Ain, Aout) previously defined, we obtained that the transmission and reflection

coefficients in terms of Eqs. (4.66). Particularly, the transmission for an imperfect draining
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vortex (or for an extremely compact object), with a general reflectivity K at the boundary

interface, can be rewritten if we rearrange Eq. (4.71) as

Awall

Ain
=
ω

ω̃

1

A+
h

1(
1− A−

h

A+
h

Ke−2iω̃x0

) , (6.7)

So now we have a relation between TECO and TBH , which is written as follows

TECO = (1− |K|2)TBH
1∣∣∣1− A−

h

A+
h

Ke−2iω̃x0

∣∣∣2 , (6.8)

where TECO = TK ̸=0, and TBH = TK=0.

The subscript K labels the reflectivity parameter K defined for the system. If we want

to consider the particular case of a perfect absorbing acoustic hole (a black hole, in the

astrophysical scenario), we need to restrict ourselves to the specific regime of K = 0. This

scenario leads us to

TBH = TK=0 =
(ω
ω̃

)2 1

|A+
h |2

. (6.9)

In other words, for a general reflective case, the transmission can be written as a prod-

uct of the transmission for the sub-case with no reflectivity (perfect absorbing boundary

conditions) with an extra term FK

TK = FKTK=0, (6.10)

where

FK =
(1− |K|2)∣∣∣1− A−

h

A+
h

Ke−2iω̃x0

∣∣∣2 . (6.11)
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That extra term FK is what we call ’normalized transmission’. It adds the cavity and

reflective boundary effects on the final transmission. Since we want to find a way to estimate

the effective barrier transmission TK=0 from the full transmission TK , we need to find a way

to isolate TK=0 from this extra term.

Studying FK in detail, we see that it is modulated by the transmission through the

reflective surface (1− |K|2), while it also oscillates according to e−2iω̃x0 , which explains the

peaks on the resonant modes. This oscillatory behavior is dictated by two times the cavity

size (−2x0), describing the phase change of the waves as they come from the barrier to

the interface, and are reflected back to the barrier; and by the complex phase of A−
h /A

+
h .

This oscillation, in turn, is modulated by K (the peaks are more pronounced for higher

reflectivity) and damped by the absolute value of the ’reflection’ term A−
h /A

+
h . It is that last

term that explains why around the Evertex, the transmission peaks tend to decay from their

’uniform’ behavior suddenly. It is known that |A−
h /A

+
h | = 1 for energies below Evertex, and it

quickly decays to zero around E ≈ Evertex. After that, |A−
h /A

+
h | → 0, and FK → (1− |K|2).

Finally, in the low energy regimes, we notice that FK oscillates uniformly between

a maximum (the peaks) and a minimum (the valleys). The maximums happen when

e(−2iω̃x0+phase(A−
h /A+

h )) = 1, and the minimums when e(−2iω̃x0+phase(A−
h /A+

h )) = −1. So we have

that for energies E < Evertex,

(1− |K|2)
|1 +K|2 < FK <

(1− |K|2)
|1−K|2 for E < Evertex (6.12)

Since we are assuming that 0 < K < 1, this implies that FK maximums are (1+K)/(1−

K), while its minimums are (1−K)/(1 +K). And then,

logFKmax = − logFKmin
, for E < Evertex (6.13)
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Therefore, taking the Log of Eq. 6.10, we get

log TK = log TK=0 + logFK . (6.14)

Finally, we can demonstrate the result we wanted from the beginning, namely, we can

show that

log TK=0 =
1

2
(log TKmax + log TKmin

), for E < Evertex (6.15)

where TKmax is the transmissions calculated at the peaks (maximums of FK) and and

TKmin
is the transmissions calculated at the valleys (minimums of FK). While TKmax defines

the superior envelope, TKmin
defines the inferior one. Equation (6.15) states that the average

of those envelopes gives the effective barrier transmission (the transmission for the purely

absorbing case) for energies below Emax.

For energies higher than Emax, however, we see that |(A−
h /A

+
h )| → 0. In Eq. 6.11, this

leads to

FK → (1− |K|2), for E > Evertex (6.16)

And since at this limit TK=0 → 1, hence, the total transmission of our system TK tends to

plateau at the finite value TK → (1− |K|2). This is exactly what we see in the transmission

curves in Fig. 6.4. Notice that (1 − |K|2) is the transmission through the reflective bound-

ary, which means that for energies higher than Emax, the waves are completely transmitted

through the effective barrier and are only reflected by the reflective interface at the boundary

x0. Here, we have achieved a natural limitation for our technique. For energies around Emax

and above it, we no longer can approach the barrier transmission with the effective transmis-
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sion Teff defined by Eq. (6.6). As for this high energy regime, however, this methodological

limitation is circumvented in this thesis by complementing the approximation of the effective

barrier transmission with the Gamow points’ information, taken from Eq. (6.2)

This way we have finally demonstrated Eq. (6.6) for the effective transmission through

the potential barrier. We have also shown the limits of this approximation, which provides

us with important insights into the asymptotic behavior of the core reflectivity in general. In

the following sections, we apply this equation and its underlined technique for reconstructing

the effective potential barriers.

6.5 Application and results

In this section, we show the results of our inverse method applied for the imperfect draining

vortex.

6.5.1 Reconstruction of potential and reflectivity

With the transmission curves of the previous section, we now apply the inverse methods

introduced in Chapter 5. We first show and discuss our results for varying the harmonic

number m in Sec. 6.5.1.1 and then study the reflectivity K in Sec. 6.5.1.2.

6.5.1.1 Dependency on harmonic m

In the following, we demonstrate the various steps that have been explained in Sec. 7.2.

We start our analysis with the transmission curves from Fig. 6.3 (for K = 0.99 and m =

[4, 6, 8, 10]). To obtain an accurate estimate for the location and widths of the resonance

peaks, we could first normalize it with the K = 0 transmission. If the K = 0 transmission is

not available, e.g., because such a case could not be realized in an experiment, it can also be

approximated with high accuracy from constructing Teffective(E) from envelopes, as discussed

in Sec. 6.4.1.2. In the following, we assume the latter is the case and do not make explicit
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use of any K = 0 knowledge. The result of the envelope construction is shown in Fig. 6.4,

which clearly demonstrates the excellent agreement between the effective transmission and

the K = 0 transmission, at least until it reaches energies close to the maximum of the

potential (E ≈ 20 ∼ 25). Using the location of the resonance peaks E0n, we can invert

the relation for n(E0n), interpolate it, and use it as input for Eq. (5.35), which then enters

Eq. (5.35). This yields the width of the cavity L1(E), which we report in the bottom panel

of Fig. 6.5, and concludes the reconstruction of the cavity properties.

Next, we use the effective transmission Teffective(E) to compute the width of the barrier

L2(E) via Eq. (5.43). Because Teffective(E) deviates from the K = 0 transmission close to

the potential maximum (depending on the value of K), we use the Gamow formula Eq. (6.2)

and the width of the resonance peaks Γn = E1n to define T2(E). The Gamow formula relates

those values with the sum of transmission T1(E) + T2(E). Note the presence of the integral

over the potential well, which can only be computed using our reconstructed width L1(E).

Because of the nonuniqueness of the reconstructed potentials from L1(E), we can construct

any potential with such a turning point relation to carry out the integration numerically.

Since the transmission is constant through the wall T1(E) = 1 −K2, and the transmission

through the barrier T2(E) is exponentially smaller for lower energies, we can assert that, in

the low-energy regime, the sum T1(E) + T2(E) tends to T1(E) + T2(E) ≈ T1(E) = 1 −K2.

This helps us infer the transmission through the wall T1(E) and its associated reflectivity

K. With these values, we can infer the behavior of T2(E) for higher energies if we use

T2(E) = T1(E) + T2(E) − (1 − K2), where T1(E) + T2(E) is obtained by Gamow formula

[Eq. (6.2)]. This procedure gives us some points slightly below the blue dots shown in

Fig. 6.4. If we interpolate those points, we obtain the green dashed line, which can be used

to properly continue the Teffective(E) in the energy domain where the envelopes’ mean failed

to approximate the transmission through the barrier TK=0(E).

Smoothing T2(E) with Teffective(E) we capture the barrier transmission for low and max-

imum energies and, finally, use it in Eq. (5.43) to obtain L2(E), which we report in the
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Figure 6.4: Here we compare the transmission TK=0.99(E) for m = 10 and C = 0 (blue
solid) with TK=0(E) (black solid line). The corresponding envelopes T envelopes

K=0.99 (E) (orange
solid line) and the average transmission T average

K=0.99(E) (red dash-dotted line) defined by the
two envelopes that are shown as well. It is evident that the average transmission is a
very accurate approximation for TK=0(E) until E ≈ 20, where it plateaus toward around
10−2 (black dotted line), which corresponds to 1 − K2. Here, the effective transmission
T effective
K=0.99 (E) (green dashed line) follows TK=0(E) closely until around the maximum of the

potential barrier (around E = 25). TGamow(E) (blue points) are the transmissions obtained
from the resonance peaks and Gamow formula, see main text. Bottom: we show the same
system as in the top, but for a smaller energy range for better visibility of details.
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bottom panel of Fig. 6.4. Because the L2(E) integration requires the knowledge of Emax,

which is not known a priori, we used the parabolic transmission (7.4) approximation to fit

T2(E) transmission in a range that can initially be estimated from where the transmission

starts to plateau.

With two relations L1(E), L2(E) for three turning points x0, x1, x2, one needs to provide

a third relation to define a specific potential. The natural choice in our problem is to assume

that the location of the reflective wall does not depend on the energy, and thus, we set

x0 to be some constant. The only freedom in choosing the constant is a coordinate shift,

which is not relevant for the underlying properties of the system. Finally, we report the

reconstructed potentials defined by this choice in Fig. 6.6. As can be seen in both figures,

the overall accuracy of the reconstruction improves with larger values of m. Because m

mostly controls the height of the barrier, and thus the number of quasistationary states

that appear as resonance peaks, one should expect the reconstruction to be more accurate

because more information can be used for the interpolation of the spectrum and effective

transmission. Furthermore, the underlying WKB-based methods are expected to be most

accurate for the quasistationary states that are located not too close to the minimum of the

potential, and not too close to the maximum of the barrier.

6.5.1.2 Dependency on reflectivity K

What remains is the reconstruction of the corresponding reflectivity parameters K. We

assume that the wall’s reflectivity K is energy independent and thus the same for all different

incident wave frequencies. In this case, the transmission through the wall is also a constant

and given by

T1(E) = 1−K2. (6.17)
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Figure 6.5: In this plot we show the exact (colored solid) and reconstructed (black dashed)
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Accordingly, as an outcome of applying the Gamow formula Eq. (6.2), one can obtain the

sum of the value above, for the transmission through the wall, with the transmission T2(E)

through the potential barrier as if the wall would be perfectly absorbing. The sum T1(E) +

T2(E) is dominated by T1(E) for low energies, because T2(E) becomes exponentially small.

This fact can be illustrated graphically in Fig. 6.4. If we look at the blue dots [the Gamow

points T1(E)+T2(E)], we can see that they start to plateau as we decrease the energy. This

plateau gives us the constant value of T1(E) = 1−K2.

We show the reconstructed values of K in Fig. 6.7. Here, the x axis labels the n −

th quasistationary state that has been used in the Gamow formula Eq. (6.2). One can

observe that for values of K close to 1, the reconstruction is very accurate. In this case

the transmission through the wall is much smaller than the one through the barrier and the

resonance peaks can be very accurately extracted. For smaller values ofK, the reconstruction

looses accuracy, and deviates from the correct injection by 10% ∼ 20% for K = 0.75. To

investigate this, we tried several improvements. First, even when the T2(E) contribution

is included in the Gamow formula (by using the effective transmission extrapolated), the

results for K = 0.75 do not change significantly, especially not for moderate values of n,

where the approximation is excellent. Second, we also checked whether fitting all resonance

peaks simultaneously can give better results, because peaks start to overlap and results

may get biased. However, also in this case we do not report improvements, as we fit the

resonance peaks in a close vicinity around the maximum, where the impact of the other peaks

is mainly absorbed by the value of the transmission at each maximum, T (Emax) Eq. (6.5),

and does not impact Γn significantly. Finally, the alternative and more direct approach

to determine K is from T (E) via Eq. (6.17) evaluated for energies beyond the maximum

of the barrier, since then the effect of the barrier becomes negligible. We note that the

latter approach is complementary to using the widths of the resonance peaks. Which of the

two approaches yields more accurate results when applied to real data with measurement

uncertainties remains for future work.
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6.6 Conclusions

Analog gravity systems may provide unique and controlled measurements of their key prop-

erties, which are not accessible from their astrophysical counterparts. The novel method that

we developed in this work is based on the extension of semiclassical methods and is tailored

to study measured transmission/reflection coefficients of analog exotic compact objects. The

outcome of the method is the reconstruction of the effective potential, which captures the dy-

namical properties of the system, as well as the reflectivity coefficient describing the internal

boundary condition. In this work, we chose the imperfect draining vortex model suggested

in Ref. [48] as one example. First, we obtained the transmission/reflection coefficients with

accurate (numerical) methods to explore different properties of the system, in particular,

the impact of the reflectivity K and different angular numbers m. These results were then

used as ideal measurements of a future experiment to demonstrate the capabilities of the

new (semiclassical) method.

Our main findings for this chapter are as follows. The reconstruction of the effective

potential becomes very accurate with increasing angular numbers m, which is expected

from the validity of the underlying WKB theory. This is also related to the fact that for

the same location of the core, increasing m yields more resonance states, and thus more

information used for the interpolation of the inclusion (5.35) that is needed to reconstruct

the width of cavity. The reconstruction of the reflectivity coefficient K through the width

of the resonance peaks becomes more accurate when it approaches unity, which corresponds

to the full reflection case. This may also be expected, because large values of the reflectivity

result in more prominent resonance peaks. Although inverse problems are often not uniquely

solvable (typically not limited by the chosen methods), we suggested physically motivated

assumptions that allow one to reconstruct the effective potential. We want to stress that

because the input of our method has been computed with accurate numerical methods, but

the reconstruction is based on semianalytic results, comparing the original potential with
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its reconstruction is not circular, but indeed self-consistent. Because of the explicit energy

dependence of the potential for rotating configurations (for C ̸= 0), we have focused on

C = 0 and leave the conceptually more involved inverse problem of the energy-dependent

potential for a separate work.

Since our method is based on modifying similar approaches for the inverse problem of

quasistationary states [127, 125] and Hawking radiation [129], we also want to briefly compare

some aspects. Although the knowledge of the transmission/reflection coefficients does not

rely on the knowledge of the spectrum of quasistationary states, our method partially relies

on identifying them indirectly. Thus, for specific model parameters that only provide very

few such states, our method is not very accurate. However, since increasing angular numbers

yields larger potential barriers, they also yield potentials with more quasistationary states.

This means, if one is experimentally able to measure transmission/reflection coefficients of

large enough angular numbers, our method can, even in such cases, always be used. In

the context of astrophysical objects, this is not easily possible, as standard binary mergers

mostly excite small angular numbers, which undermines the opportunities of studying analog

gravity systems.

We conclude this chapter with a comment on measurement uncertainties. Throughout

this work we assumed that the transmission/reflection coefficients can be provided with

pristine accuracy. However, any real experiment will come with statistical and systematic

uncertainties, which may need to be taken into account. This could, for example, be done by

repeating the reconstruction procedure for different realizations of the transmission coefficient

that represent the statistical uncertainties of the measurements. At the same time, these

uncertainties may not be relevant for all energy ranges, since the transmission varies over

many orders of magnitude.
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Chapter 7

The Inverse Method for Energy De-

pendent Potentials and the Extension

for Rotating Analog Systems

This Chapter is based on the following publication: Inverse problem in energy-dependent

potentials using semiclassical methods.

Authors: Saulo Albuquerque, Sebastian H. Völkel, Kostas D. Kokkotas

DOI: 10.1103/PhysRevD.109.096014 (publication)

Published in: Phys.Rev.D 109 (2024) 9, 096014

7.1 Inverse Method for Energy-Dependent Potentials

Energy-dependent potentials in wave equations play an important role in many different

areas of physics. They appear naturally in nuclear physics [216, 217, 218, 219, 220, 221, 222,

223, 224, 225, 226, 227, 228, 229], when studying perturbations of black holes and neutron

stars [230, 231, 232, 233], and in analog gravity [234]. One popular approach to solving the

wave equations is to use the Wentzel-Kramer-Brillouin (WKB) method. Among its most

iconic tools are the classical Bohr-Sommerfeld rule [235] for the computation of bound states

in potential wells, and the Gamow formula [236] for the computation of transmission and
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reflection coefficients.

Due to their simplicity, it is known how they can be used to infer relevant information

of the underlying potential in the inverse problem, i.e., when bound states or transmission

coefficients can be provided [212, 122, 213, 214]. Such an inversion is also possible for one,

three or four turning point potentials with quasi-stationary states [127, 125, 130]. One of

the key results is that the inversion is, in general, not unique. Instead, one can reconstruct a

family of potentials with similar properties for their classical turning points. The universal

property is that the separation of turning points must be unchanged. Thus, these potentials

may also be called width equivalent potentials. In the literature, some authors have also

coined such potentials as WKB-equivalent potentials; see Ref. [237].

To our knowledge, existing studies on the inverse problem using the Bohr-Sommerfeld

rule or Gamow formula have only considered energy-independent potentials. However, many

physical scenarios require one to work with energy-dependent potentials. Although WKB

methods to solve the direct problem of bound states or transmission function are relatively

straightforward to use, e.g., see Refs. [238, 239, 240], the energy dependence may introduce

additional degeneracy for the inverse problem.

In this chapter, we demonstrate how the standard methods for the inverse problem can be

used to construct WKB-equivalent, energy-independent potentials from the bound states and

transmission coefficients of energy-dependent potentials. As examples, we study extensions

of the quadratic potential (harmonic oscillator), and the Pöschl-Teller potential [241]. Using

numerical methods, we also quantify how accurately these potentials can represent their

energy-dependent pendants. One of our main findings is that energy-dependent, WKB-

equivalent potentials are not width-equivalent anymore. Another important finding is that

those reconstructed, energy-independent, effective potentials capture some key properties of

their associated energy-dependent ones, such as their asymptotic behavior and local behavior

around their minimum or maximum.

The rest of the chapter is organized as follows. In Sec. 7.2, we apply the semi-classical

168



methods and our numerical scheme to two energy-dependent potentials in Sec. 8.4. We

discuss our findings in Sec. 7.4, and our conclusions can be found in Sec. 8.5.

7.2 Methods

In the following, we first review some basics of the WKB method in Sec. 7.2.1 for energy-

dependent potentials. Next, we discuss the important role played by the turning points

within this framework in Sec. 7.2.2.

7.2.1 WKB method for energy-dependent potentials

The WKB method, also known as semi-classical approximation, is a widely used approxima-

tion to study linear differential equations. For energy-dependent potentials, this method is

based on the one-dimensional wave equation

d2

dx2
ψ(x) +Q(x,E)ψ(x) = 0, (7.1)

where

Q(x,E) ≡ E − V (x,E). (7.2)

Here, V (x,E) is an energy-dependent potential.

The WKB method is valid under several assumptions (see Refs. [201, 242] as standard

references for more details), and it breaks down close to classical turning points (defined

by Q(x,E) = 0, or equivalently, E = V (x,E)). To construct solutions, one can connect

exact, local solutions, e.g., described by the Airy functions, with the WKB solutions using

asymptotic matching. One convenient application of that approach is to derive so-called

quantization conditions to compute eigenvalues E = En for given boundary conditions of

a potential well or reflection/transmission coefficients through potential barriers. Although
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the WKB method is not exact, it can be an excellent approximation. Moreover, due to the

integral equations, it is also possible to study the inverse problem, in which one is interested

in reconstructing properties of the potential for given eigenvalues or transmission/reflection

coefficients. We have seen in Chapter 5 two of the most commonly used applications, namely

the Bohr-Sommerfeld Rule in Eq. (5.16) and the Gamow Formulas in Eqs. (5.19).

The Bohr-Sommerfeld rule can be inverted to study the inverse problem, in which one is

provided with some spectrum En and is interested in reconstructing the potential [212, 122].

Solutions to the inverse problem are, in general, not unique, and the problem itself may

even be ill-posed. By inverting the Bohr-Sommerfeld rule, the non-uniqueness is imprinted

in the observation that one can only reconstruct the width of the potential defined by the

separation of turning points

L1(E) = x1(E)− x0(E) =
∂

∂E
I(E), (7.3)

where I(E) is the so-called inclusion, given by Eq. (5.27).

The Gamow formula approximates the transmission T (E) through a two turning point

via Eq. (5.19). Although more accurate WKB-based results exist, the advantage of Eq. (5.19)

is that it can be inverted similarly to the Bohr-Sommerfeld rule (5.16). In Chapter 5 and in

Refs. [213, 214], it was shown that it is again the separation of turning points.

7.2.1.1 Parabolic approximation of the potential maximum

Because the Gamow formula and its inversion formula become less accurate around the po-

tential peak, we approximate this region of the reconstructed, energy-independent, potential

barriers with a parabolic approximation

Vparabolic(x) = Vmax + α(x− xmax)
2, (7.4)
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with xmax = 0. The two other free parameters (Vmax and α) are then obtained by fitting the

analytic form of the transmission to the numerical transmission obtained from the energy-

dependent potentials; see Ref. [2], and appendix of Ref. [129] for more details. In general,

we note that the value of Vmax obtained by this fitting procedure agrees well with Emax

obtained by solving T (Emax) = 1/2. Once we have estimated the two parabolic parameters,

we match our inverse potential barrier constructed with the inverse Gamow formula with

the fitted parabola around the peak via a smooth version of the Heaviside function, given

by Θ±(E;E0, κ) = 1/2 ± (1/2) tanh[κ(E − E0)]. Here, κ controls the “smoothness” of

the transition between the two connected curves, while E0 determines around where the

transition takes place. We choose E0 as the energy for which the two curves intersect.

7.2.2 Remark on turning points

Turning points of a potential, as shown in Fig. 7.1, are a concept that is well motivated

beyond WKB theory. Because they play an important role in the expected validity of the

WKB method (via Q(x,E) ≡ E − V (x,E)), it is natural to generalize the definition of

turning points xi for energy-dependent potentials to V (xi, E) = E, where the argument in

V (x,E) is the same E as used on the right-hand side.

The minimum Vmin or maximum Vmax of an energy-independent, two turning point poten-

tial can be defined as the pair of values (xcritic, Ecritic) for which Q(x,E) = 0 ⇔ V (x) = E and

dQ(x,E)/dx = 0 ⇔ dV (x)/dx = 0. Similarly, for the more general case of energy-dependent

potentials V (x,E), we define the vertex point as the pair of values (xvertex, Evertex) for which

Q(xvertex, Evertex) = 0, and dQ(xvertex, Evertex)/dx = 0. Note that another way of defining

Vmin or Vmax of a two turning point, energy-independent potential is by requesting that

the left and right turning points converge x0(Evertex) = x1(Evertex). For energy-dependent

potentials, this holds as well.

Finally, the Bohr-Sommerfeld treatment of complex-valued potentials, e.g., as they ap-

pear for perturbations of the Kerr black hole, is also possible and has been investigated in
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Figure 7.1: Potential well V (x) with the pair of turning points x0(E), x1(E) associated with
the energy E denoted as points at the intersection E = V (x).
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Ref. [199]. In this case, the turning points are, in general, also complex-valued, but both

cases share a non-trivial behavior of Q(x,E) with respect to E.

7.2.3 Numerical methods

To verify the accuracy of the WKB-based methods, we use a straight-forward shooting

method to compute the bound states and numerical integration through the potential barrier

to obtain the transmission. Later, we also present the approximate results obtained with

the Bohr-Sommerfeld rule and Gamow formula. Such a comparison allows us to determine

where the methods are reliable and where they lose accuracy.

7.2.3.1 Shooting method for bound states

The shooting method is based on numerically integrating the wave-equation for given bound-

ary conditions from both sides. For Eq. (7.1), we choose the asymptotic behavior for the

solution to be given by Eqs. (4.21), for the cases where V (x,E) asymptotically goes to con-

stant values, and for the cases where V (x,E) diverges at the two limits. The eigenvalues are

then obtained by determining the roots of the Wronskian of the numerical solutions at some

intermediate point.

7.2.3.2 Numerical integration for transmission

Similar to the shooting method, the transmission is obtained by numerical integration, but

for different boundary conditions. In this case, our ansatz for two independent solutions are

the same wave solutions which satisfy the boundary conditions in Eqs.(4.21).

From the computational point of view, the solutions described by those solutions and

ψ2 describe monochromatic plane waves numerically evolved from one end of the domain to

the other. Physically, the first solution represents incoming plane waves with an incident

amplitude A+
∞ that are scattered at the energy-dependent potential V (x,E). Those waves

are partially reflected with reflection amplitude A−
∞/A

+
∞, and partially transmitted with
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transmission amplitude 1/A−
∞. A similar interpretation can be made for ψ2. Accordingly,

the transmission coefficient can be defined as

T 2 =
1

A−
∞

2 =
1

B−
−∞

2 . (7.5)

7.3 Application and results

In the following, we apply the WKB-based methods to two types of energy-dependent poten-

tials. In Sec. 7.3.1, we study a modified quadratic potential, and in Sec. 7.3.2, we consider

a modified Pöschl-Teller potential. We first consider parameters of the potentials that yield

wells admitting bound states and then barriers for which we compute the transmissions.

In all applications, our approach can be explained in three main steps. First, for the

given energy-dependent potential, we provide the spectrum of bound states/transmission

either analytically or with the numerical method. Second, we use the spectrum/transmission

as input for the WKB-based inverse method to construct the width of a family of WKB-

equivalent, energy-independent potentials. Third, we use the numerical method to compute

the bound states/transmission of one of the reconstructed potentials Vinv(x) to quantify how

accurately they match the original ones. For comparison, we also use the numerical method

to compute the associated properties of the energy-independent, width-equivalent potential

Vwidth(x).

Therefore, we associate with a certain energy-dependent potential V (x,E), an energy-

independent, inverse potential Vinv(x), which must match the property used for its recon-

struction, at least within the validity of the WKB-approximation. This allows one to describe

properties of energy-dependent potentials more simply by constructing energy-independent

ones.
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7.3.1 Energy-dependent quadratic potential

As first example, we study an energy-dependent quadratic potential, given by

VHO(x,E) = (a+ bE)x2 + cE + V0, (7.6)

where a, b, c, V0 are real-valued constants. In the following, we consider two scenarios that

either describe potential wells in Sec. 7.3.1.1, or potential barriers in Sec. 7.3.1.2. For each

of the two scenarios, we study two distinct cases for the variation of the concavity with the

variation of the energy. The cases are defined by a/b < 0, which tends to increasingly open

the parabola with increasing E, and by a/b > 0, which tends to close it. To make the main

text more readable, but still cover comprehensive material, some of the results are reported

in the appendix 7.5.

7.3.1.1 Potential wells

The spectrum of bound states En can be computed analytically. For this we generalized

results first reported for the case c = V0 = 0 in Ref. [243]. The energy of the normal modes

are obtained by solving

En(1− c) + V0 = (2n+ 1)
√
a+ bEn. (7.7)

To test our numerical implementation of the shooting method presented in Sec. 7.2.3.1, we

have verified that it agrees with the analytic results.

Varying E yields a family of curves for the potential, whose qualitative properties depends

non-trivially on the chosen parameters. To illustrate that, we present the potential and the

results of the inverse method for a/b < 0 in Fig. 7.2, whose caption contains the numerical

values of all parameters. The top panel demonstrates that the potential curves as function

of E get increasingly more open until Elimit = −a/b. At this energy, the potential turns into
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a horizontal line at V0 − ca/b and the separation of turning points diverges. For even higher

energies, the curvature of the parabola becomes negative. Qualitatively, we therefore expect

that by approaching the energy limit of E → Elimit = −a/b, the system starts behaving as

a quasi-free particle in a constant potential, with the energy spacing of the modes becoming

increasingly smaller.

Using the bound states as input for the inverse Bohr-Sommerfeld rule (7.3) yields a

family of inverse potentials Vinv(x) sharing the same separation of turning-points. To fix one

of them, we assume that the potential is symmetric around the origin (x0(E) = −x1(E)).

From Fig. 7.2 it is evident that Vinv(x) is not the same as the width equivalent potential

Vwidth(x). On the other hand, they are asymptotically converging to the same maximum

energy for large values of x and are similar close to the minimum.

In the bottom panel of Fig. 7.2, we compare the bound states of the original poten-

tial Eq. (7.7) with the ones of the inverse potential and the width-equivalent potential, all

computed using the numerical method. The inverse potential Vinv(x) is quasi-isospectral

with the original energy-dependent potential. The asymptotic behavior of the overtones

marks the transition from an essentially discrete spectrum to a quasi-continuum one, show-

ing the increasing opening tendency of the energy-dependent potential. The bound states

of the width-equivalent potential Vwidth(x) differ quantitatively but otherwise have a similar

behavior as a function of n.

The case a/b > 0 also provides interesting, but qualitatively different applications. In-

stead of opening with higher energy values, the potential curves become progressively more

closed. We refer the reader to appendix 7.5.1 for an illustration of this scenario.
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Figure 7.2: Application of the inverse method to the energy-dependent quadratic potential
Eq. (7.6) for case a/b < 0, with parameters a = 0.5, b = −0.25, c = 0.25, V0 = 0. Top panel:
The series of curves of varying colors indicate the chosen value of E when computing the
energy-dependent potential Vorig(x,E) = VHO(x,E) starting from E = 0 to E = E ′ = 2Elimit.
The inverse potential (green dashed) is labeled as Vinv(x) and the width-equivalent potential
(red dotted dashed) is labeled as Vwidth(x). Bottom panel: Here we show the spectrum of
bound states for the original potential Eorig

n (black circles), the inverse potential Einv
n (green

cross), and the width-equivalent potential Ewidth
n (red squares).
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7.3.1.2 Potential barriers

To represent a more standard barrier, we re-define the original potential as follows

V̄HO(x,E) =

{
VHO(x,E), xi1 < x < xi2,

0, otherwise.
(7.8)

The points xi1 and xi2 are defined by where the potential is zero, by VHO(xi1,i2, E) = 0, and

are thus given by

xi1,i2 = ±
√

−V0 + cE

a+ bE
. (7.9)

As previously, the energy dependence introduces a non-trivial behavior for the family of

potential curves. The linear term cE is responsible for the vertical shift. For c ∈ (0, 1), by

increasing the energy, it will eventually reach a vertex point Evertex = V0/(1 − c) in which

the two turning points converge to a single point at the maximum of its associated parabola

V (xvertex, Evertex), just like a global maximum in an energy-independent potential. For c > 1,

however, this scenario does not occur.

The maximum of an energy-independent potential barrier with two turning points plays

an important role in the scattering of waves [142]. There the transmission changes from ex-

ponentially small values to asymptotically one. Similarly, for energy-dependent potentials,

the vertex Evertex for the turning points is exactly where the wave scattering of those poten-

tials transits from almost null absorption to full transmission. After this reference value, the

associated potential V (x,E) no longer possesses turning points, and the energy is above the

barrier. Thus Evertex characterizes a local maximum of an effective, energy-independent po-

tential barrier with similar properties. The existence of Evertex, which plays the role of Emax

in the Gamow formula, is crucial for the inverse method when applied to energy-dependent

potentials. For this reason, our discussions are limited to c ∈ (0, 1).

In the following, we apply our method to a potential with a/b > 0, and report our results
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in Fig. 7.3. It shows that the potential barrier curves tend to increasingly close their concavity

with increasing E, which is shown in the top panel of Fig. 7.3. Here we also provide the

results for the inverse potential Vinv(x) and the width-equivalent potential Vwidth(x). They

are both similar close to their vertex at Evertex = V0/(1 − c), but overall deviate. The

corresponding transmissions provided in the bottom panel demonstrate that Vinv(x) better

reproduces the original transmission. The transmission of Vwidth(x) differs substantially for

small energies, but becomes very similar around the maximum. In the appendix 7.5.1, we

provide complementary results for a potential barrier with a/b < 0.

7.3.2 Energy-dependent Pöschl-Teller potential

As the second main example of energy-dependent potentials, we introduce a modified Pöschl-

Teller potential given as follows

VPT(x,E) = (a+ bE)sech2[k(x− x0)] + cE + V0. (7.10)

The main reason for considering the Pöschl-Teller potentials is that it is widely used in

different areas of physics, including nuclear physics [244, 245], and the perturbations of

black holes and exotic compact objects [246, 247, 248].

An important difference between the energy-dependent, quadratic potential and the here

presented Pöschl-Teller potential is that the latter one converges necessarily to finite asymp-

totic values for x→ ±∞ given by V0 + cE.

7.3.2.1 Potential wells

In this subsection, we present the findings of the Pöschl-Teller energy-dependent potential

wells. Again, we differentiate between a/b > 0 and a/b < 0. Both cases provide distinct

profiles for the energy-dependent variation of the potential. We show the potentials for a

range of energy values for a/b < 0 in the top panel of Fig. 7.4. Here, we also present the
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Figure 7.3: Application of the inverse method to the energy-dependent quadratic potential
barrier Eq. (7.6) for case a/b > 0, with parameters a = −0.1, b = −0.05, c = 0.15, and
V0 = 8. Top panel: The series of curves of varying colors indicate the chosen value of E
when computing the energy-dependent potential Vorig(x,E) = V̄HO(x,E) starting from E = 0
to E = E ′ = 2Evertex. The inverse potential (green dashed) is labeled as Vinv(x) and the width
equivalent potential (red dotted dashed) is labeled as Vwidth(x). Bottom panel: Here we show
the transmission for the original potential Torig(E) (black solid line), the inverse potential
Tinv(E) (green dashed line) and the width-equivalent potential Twidth(E) (red dot-dashed
lines). 180



inverse potential and the width-equivalent potential. In the bottom panel, we report the

associated bound states. The case a/b > 0 is presented in the appendix 7.5.

We notice that Vinv(x) and Vwidth(x) agree in both cases very well at the minimum, as

well as for their asymptotic value V0/(1 − c) for large values of |x|. However, for interme-

diate energies, the two potentials differ. The bound states of the original potential agree

in both cases very well with the ones of the inverse potential, while they differ for the ones

of the width-equivalent one. As the energy approaches the asymptotic value of the poten-

tial, the energy spacing between the modes decreases, which indicates the transition to a

quasi-continuum spectrum of a quasi-free particle, as in Sec. 7.3.1.1. Note that the energy

dependence lifts the potential minimum, and thus decreases the space for bound states. The

opposite is observed in case a/b > 0, which is shown in appendix 7.5.2.

7.3.2.2 Potential barriers

Finally, we investigate Pöschl-Teller potential barriers. In the following, we consider a/b <

0, while a/b > 0 is reported in appendix 7.5. The potentials can be found in the top

panel of Fig. 7.5, while the associated transmissions are reported in the bottom panel. In

both cases, we find that Vinv(x) and Vwidth(x) agree well at their maximum value Evertex =

(a + V0)/(1 − (c + b)) , but not at intermediate energies. In the lower panel, we show the

transmissions associated with the potentials. As expected, the transmission reconstructed

from the inverse potential matches very well with the original transmission, while there are

significant differences when compared to the width-equivalent potential, at least for energies

below the maximum.
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7.4 Discussion

7.4.1 Width-equivalent is not WKB-equivalent

As stated previously, and demonstrated in our results, one key finding of our work is that

the spectra and transmissions of width-equivalent energy-dependent potentials are, in gen-

eral, not WKB-equivalent. By explicitly constructing the width-equivalent potentials and

computing their spectral properties with an accurate numerical method, it is evident that

they no longer correspond to those of the energy-dependent potential.

For the bound states En, we noticed that the deviations were typically small around n = 0

and then increased. One can explain this behavior by observing that the width equivalent

and inverse potentials agree well around their minimum. For the transmission T (E), one

finds that the agreement between both potentials is good around the maximum; also a

consequence of the local approximation of the peak, and then deviates for smaller energies.

In both cases, the spectral properties can be well understood from the local character of the

Bohr-Sommerfeld rule and Gamow formula.

7.4.2 Accuracy of inverse methods

Because the WKB method is in general not exact, using the Bohr-Sommerfeld rule and

Gamow formula for the direct problem, or their inversions for the inverse problem, can

in general only provide approximate results. This is well known for energy-independent

potentials and it also holds for the more general, energy-dependent ones. To demonstrate

this, we vary the potential properties of some of the previous cases to further investigate the

accuracy of the WKB method. We compare the WKB predictions of the bound states En and

transmission T (E) of the original potential, with the ones of the WKB-constructed inverse

potential predicted using the accurate numerical method. For the overall performance of the

WKB method for the inverse potential, as one would expect from the direct problem, the
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spectral properties of the inverse potentials should match the ones of the original potential

more accurately for higher bound states and energies below the peak of the barrier.

In Fig. 7.6, we computed the relative errors of the bound states via

δin ≡
∣∣∣∣ENum orig

n − Ei
n

ENum orig
n

∣∣∣∣ , (7.11)

where i is either using the direct WKB prediction for the original potential or the numerical

prediction for the inverse potential. For increasing bound state number n, we report that

the relative errors decrease, and that the performance of the inverse potential is clearly

correlated with the accuracy of the WKB method for the direct problem. We also find that

in most cases, the relative errors of the direct WKB computation of the original potential are

smaller than those of the numerical method of the inverse potential. Since the construction

of the inverse potential requires one to interpolate the spectrum of bound states, an overall

difference in accuracy should be expected from this additional source of imprecision.

Next we investigate the performance when computing the transmission T (E), which is

shown in Fig. 7.7. As previously, we vary k of one of the previous cases and leave all

other parameters to be the same. Our results confirm what should be expected. For wider

potential barriers (smaller values of k), the different predictions are more similar throughout

all energies. Since the inverse method does not rely on an interpolation of the transmission,

both WKB related predictions should be of similar accuracy with respect to the numerical

result of the original potential.

We conclude this part of the discussion by noting that the good agreement between

results of the numerical original potential and the numerical inverse potential are also an

independent check of the numerical method itself.
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Figure 7.6: Here we show the relative error defined by δin, where the index i stands for either
the WKB prediction for the original potential (circles) or the numerical method of the inverse
potential (crosses). The different colors represent different choices of k, which changes the
width of the well, and thus indirectly the expected accuracy of the WKB method. All other
parameters are those of Fig. 7.4.
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Figure 7.7: Here we show the transmission T (E) using the numerical method for the original
potential (solid lines), the WKB prediction for the original potential (dashed lines), and
the numerical method of the inverse potential (dotted lines). The different colors represent
different choices of k, which changes the width of the barrier, and thus indirectly the expected
accuracy of the WKB method. All other parameters are those of Fig. 7.5.
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7.5 Supplementary results

Throughout this paper, we divided our study into two main cases, the energy-dependent

quadratic potential and the energy-dependent Pöschl-Teller potential, with two scenarios

of applications for each one: the effective inverse potential wells and the effective inverse

potential barriers. In this appendix, we present complementary examples for each scenario.

7.5.1 Quadratic potential

Complementing the discussion made in Fig. 7.2, we present here an extra example of an

energy-dependent quadratic well. This second scenario is defined by a/b > 0, for which the

results and more details can be found in Fig. 7.8. As can be seen in the top panel, the

potential curves get increasingly more closed with higher values of E, until at some point,

the turning points become asymptotically fixed at a certain distance, xlimit = ±
√

(1− c)/b.

For these energies, the system behaves qualitatively like a particle in an infinite square well,

which can also be seen from the bound states in the bottom panel.

As in the previous case, we use the bound states as input for the inverse Bohr-Sommerfeld

rule (7.3) to construct Vinv(x). The width-equivalent potential Vwidth(x) is included for

comparison.

In the bottom panel of Fig. 7.8, we show the bound states for the three potentials. As in

all previous cases, the bound states of the WKB-equivalent and original potentials agree very

well. The asymptotic behavior of the overtones describes the transition from the spectrum

of a quadratic potential to the one of a particle in an infinite square well (En ∝ n2).

Finally, we complement the discussion made in Fig. 7.9 for energy-dependent quadratic

barriers by considering a/b < 0. The potential barrier curves get increasingly more open

with increasing energy, which can be seen in the top panel of Fig. 7.9. The WKB-equivalent

and width-equivalent potentials are also presented. As in the previous case in Fig. 7.3, the

difference between Vinv(x) and the width equivalent potential Vwidth(x) is apparent, although
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Figure 7.8: Application of the inverse method to the energy-dependent quadratic potential
Eq. (7.6) for case a/b > 0, with parameters a = 0.25, b = 0.0125 and c = 0.0125. Top panel:
The series of curves of varying colors indicate the chosen value of E when computing the
energy-dependent potential Vorig(x,E) = VHO(x,E) starting from E = 0 to E = E ′ = 20a/b.
The inverse potential (green dashed) is labeled as Vinv(x) and the width-equivalent potential
(red dotted dashed) is labeled as Vwidth(x). Bottom panel: Here we show the spectrum of
bound states for the original potential Eorig

n (black circles), the inverse potential Einv
n (green

cross) and width-equivalent potential Ewidth
n (red squares).
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they become similar close to Evertex. In the bottom panel of the same figure, we show the

transmission associated with each potential. In this case, they are all very similar to each

other.

7.5.2 Pöschl-Teller potential

In Fig. 7.10 and Fig. 7.11 we complement the previously introduced examples for energy-

dependent Pöschl-Teller potentials describing a potential well reconstruction, and a potential

barrier reconstruction, respectively.
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Figure 7.9: Application of the inverse method to the energy-dependent quadratic potential
barrier Eq. (7.6) for case a/b < 0, with parameters a = −0.1, b = 0.001, c = 0.2, and
V0 = 10. Top panel: The series of curves of varying colors indicate the chosen value of E
when computing the energy-dependent potential Vorig(x,E) = V̄HO(x,E) starting from E = 0
to E = E ′ = 4Evertex. The inverse potential (green dashed) is labeled as Vinv(x) and the
width equivalent potential (red dotted dashed) is labeled as Vwidth(x). Bottom panel: Here
we show the transmission for the original potential Torig(E) (black solid line), the inverse
potential Tinv(E) (green dashed line) and the width-equivalent potential Twidth(E) (red dot-
dashed lines). 191
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Figure 7.10: Application of the inverse method to the energy-dependent Pöschl-Teller po-
tential Eq. (7.10) for case a/b > 0, with parameters a = −10, b = −0.6, c = 0.3, k = 0.3,
and V0 = 10. Top panel: The series of curves of varying colors indicates the chosen value
of E when computing the energy-dependent potential Vorig(x,E) = VPT(x,E) starting from
E = 0 to E = E ′ = 2Elimit. The inverse potential (green dashed) is labeled as Vinv(x) and
the width equivalent potential (red dotted dashed) is labeled as Vwidth(x). Bottom panel:
Here we show the spectrum of bound states for the original potential Eorig

n (black circles),
the inverse potential Einv

n (green cross) and width-equivalent potential Ewidth
n (red squares).
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Figure 7.11: Application of the inverse method to the energy-dependent Pöschl-Teller po-
tential Eq. (7.10) for case a/b > 0, with parameters a = 5, b = 0.5, c = 0.2, k = 0.2,
and V0 = 0. Top panel: The series of curves of varying colors indicate the chosen value
of E when computing the energy-dependent potential Vorig(x,E) = VPT(x,E) starting from
E = 0 to E = E ′ = 2Evertex. The inverse potential (green dashed) is labeled as Vinv(x) and
the width equivalent potential (red dotted dashed) is labeled as Vwidth(x). Bottom panel:
Bottom panel: Here we show the transmission for the original potential Torig(E) (black solid
line), the inverse potential Tinv(E) (green dashed line) and the width-equivalent potential
Twidth(E) (red dot-dashed lines). 193



7.5.3 Remarks on non-uniqueness

Even without energy-dependence, the inverse problem is in general not uniquely solvable.

The WKB-equivalent potentials constructed from the inverse, semi-classical methods provide

an intuitively clear, but approximate answer. They map a one-dimensional function of

energy, n(E) or T (E), into the width L(E) of all possible potential wells or barriers. Note

that it might be possible to provide one turning point function from underlying properties

of the application, which would then uniquely determine the underlying potential, e.g.,

Refs. [127, 125].

Introducing energy dependence to V (x,E) does not translate to a family of bound states

or transmission functions, but instead, only yields another one-dimensional function of en-

ergy. This is fundamentally different from introducing a free parameter, for which a family

of bound states or transmissions could be mapped to a family of widths. A closer look into

the Bohr-Sommerfeld and Gamow integrals reveals that potentials defined by the separation

of turning points via E = V (x,E), are in general not equivalent to the reconstructed po-

tentials, which are instead isospectral to the energy-dependent potential. Future extensions

of this work could study to what extend it may be possible to infer the energy-dependent

contributions to V (x,E), e.g., if it can be treated perturbatively.

Finally, the inverse problem could in general be ill posed, and thus any inverse approach

must fail. Independent of the non-uniqueness, a typical situation in which the construction

of an inverse potential can fail when using the WKB-based methods, is when the width of

the well/barrier is not strictly monotonically increasing/decreasing as function of E. In such

a case, there are “overhanging cliffs” in the potential (see Wheeler [212]), because there is

no bijective mapping from the width to a well-defined potential. For some explicit examples,

we refer the interested reader to Ref. [128].
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7.6 Conclusions

In this chapter, we have studied the direct and inverse problem of energy-dependent poten-

tials using results from WKB theory. From the inversion of the classical Bohr-Sommerfeld

rule and the Gamow formula for energy-independent potentials, it is well known in the liter-

ature that the reconstructed potentials are not unique. Instead, there is a family of infinitely

many potentials that share a common property, which is the separation of their classical

turning points, also known as width.

Because results of the inverse method have been limited to energy-independent poten-

tials, but many physical applications require energy dependency, we have extended it to the

inversion of such potentials. Here we have focused on introducing energy-dependent terms

to the quadratic potential (harmonic oscillator) and Pöschl-Teller potentials, which serve as

examples that offer a rich phenomenology.

By applying the same inversion techniques to the bound states or transmission coeffi-

cients of energy-dependent potentials, we have explicitly demonstrated that it is possible to

construct a family of energy-independent potentials. We note that the bound states and

transmission coefficients used for the inverse method are either known analytically or have

been computed with full numerical methods, and are thus not limited to the accuracy of

the WKB method. We have also used full numerical methods to verify the accuracy of the

reconstructed potentials by computing their bound states and transmission coefficients, and

find it is comparable to the expected accuracy of the WKB method for the direct problem.

The novelty of our findings is that the widths of the reconstructed potentials are not

equivalent to the original, energy dependent ones. Thus, energy-dependent WKB equivalent

potentials are not width-equivalent anymore. We utilize these findings to extend the inverse

problem of analog gravity systems [2], shown in the previous chapter, to include the study

of rotating analog gravity systems in the following chapter.

195



Chapter 8

The Inverse Method for Rotating Ana-

log Systems

This Chapter is based on the following submission (currently under review): Inverse prob-

lem of analog gravity systems II: rotation and energy-dependent boundary con-

ditions.

Authors: Saulo Albuquerque, Sebastian H. Völkel, Kostas D. Kokkotas, Valdir B. Bezerra

e-Print: 2406.16670 [gr-qc]

8.1 Introduction

As we have seen, the pioneering idea of probing astrophysical gravitating systems with lab-

controlled analog experiments [30] has received much attention and significance in the last

twenty years. New experimental setups and analog physical systems have been proposed

together with analytical solutions [35, 36, 37, 38, 39, 249, 250, 251, 252, 42, 43, 253, 254,

255, 256], extending the horizons for state-of-the-art research within this investigation line.

In particular, much experimental interest has recently been raised for analog systems that can

be used, in principle, to better understand rotating astrophysical compact objects, mainly

black holes. Experiments conducted with acoustic analogs to black holes have detected, for

example, the analog of Hawking radiation [257, 258, 259, 260], propagation of light in optical
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fibres [261], laser pulse filaments [262] and Bose–Einstein condensates [263]. In addition,

superradiant effects for the scattering profile of acoustic incident waves have been studied

[264, 45], as widely known, superradiance is intrinsically related to black holes’ rotation

[112, 113]. Analogs of black and white hole horizons in superfluid 3He−B have been created

[265], while proposals for using analog simulations of quantum gravity with fluids have been

recently proposed [266]. Furthermore, in another recent experiment, the specific signature

of curvature effects from rotating black hole spacetimes was measured by studying a giant

rotating vortex in superfluid 4He [120].

Such experimental proposals show the rising interest of physicists in covering the quali-

tative description of rotating black holes in terms of analog systems. One general motivation

behind that comes from the claiming that probing Kerr’s hypothesis validity is one of the

routes towards probing general relativity [267, 268, 269, 270]. Compared to the static descrip-

tion of a spherically symmetric black hole [131, 132], Kerr’s metric adds rotation as one of

the two fundamental degrees of freedom for those astrophysical compact objects [83]. Hence,

probing this rotation can play an important role in gravitational physics phenomenology in

general.

This chapter, and the associated Ref. [4], are an extension of the previous study in chapter

6 and in Ref. [2], in which we have demonstrated the applicability of the semi-analytic

formulas to analog gravity systems. We considered, for illustration, the application of the

inverse method for the analog model of exotic compact objects consisting of an imperfect

draining vortex in a bathtub [48]. Our main result is the reconstruction of the effective

potential associated with the effective background geometry. Moreover, we could also infer

the reflectivity boundary parameter when it was an energy-independent constant.

Our application in chapter 6 was restricted to non-rotating systems because rotating

systems admit an energy dependence for the scattering potential. In such cases, distinct

potentials are obtained for different energies of the incident waves. In Ref. [3], we have ap-

plied the WKB techniques to energy-dependent potentials with two classical turning points.
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Our method proposes an energy-independent, effective potential that reproduces the desired

physical properties of the original family of energy-dependent ones. We called this recon-

structed potential “WKB-equivalent” potential because it shares the same bound states (or

transmission) we used for its reconstruction.

Finally, in this present chapter, we extend the inverse method for energy-dependent

scattering potentials describing rotating analog gravity systems and for energy-dependent

reflectivity parameters defined at their internal boundaries. As an application, we extend our

previous work in chapter 6 by studying the imperfect draining vortex with a non-zero rotation

coefficient. We can successfully reconstruct effective potentials admitting similar spectral

properties as the original ones. Moreover, we can robustly infer the energy dependence

of boundary conditions, which could potentially represent internal states of the core. Our

approach thus provides a novel tool for exploring the experimental data measured by suitable

types of analog gravity experiments.

In the following sections, we detail how that inverse method is formulated. We struc-

ture this study in the following way. First, we review how one can reconstruct the effective

WKB-equivalent potential in Sec. 8.2. Then, in Sec. 8.3, we discuss how one can tackle the

reconstruction of the reflectivity parameter at the boundary condition in one of the extrem-

ities. For such a goal, we discuss two effective techniques. We focus our investigation on

analog gravity rotating systems in the application section 8.4, paying special attention to

the rotating imperfect draining vortex proposed in Ref. [48] and introduced in Chapter 3. In

the results, we show how one can compute an effective energy-independent potential repro-

ducing the same physical properties as the energy-dependent original potentials, namely the

WKB-equivalent potential. We calculate their transmission coefficients in Secs. 8.4.2.1 and

8.4.2.2 to show that they are quasi-equivalent to their original input values. In Sec. 8.4.2.3

we test how the two previously introduced effective techniques perform the reconstruction

of the core reflectivity parameter at one of the boundary conditions. We contrast the results

of the two methods and discuss their systematic errors. Finally, in Sec. 8.5 we finish this
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chapter with the conclusions and final remarks.

8.2 Reconstructing the effective WKB-equivalent po-

tential

In this chapter, we follow the procedure of Chapter 6, and our framework in Ref. [2], which

starts from a transmission curve with resonances. The main steps are to identify the location

of peaks and their widths to obtain the quasi-stationary states of the cavity, and to construct

an average of two envelopes that can capture the direct transmission through the effective

potential barriers. We illustrate the calculation of the latter in Fig. 8.1. Finally, for com-

puting L2(E) from this effective barrier transmission Teffective(E), we assume Emax = Evertex

in Eq. (5.43) as proposed in the Sec. 7.5.2 of the previous chapter, or Sec. II C of Ref. [2].

Then, we merge the reconstructed cavity of width L1(E) with the effective barrier, whose

width is L2(E). Finally, we obtain the effective WKB-equivalent potentials by setting x0 as

a constant. In this way, we complete the reconstruction of the effective potentials.

8.3 Reconstructing the boundary condition

In the following, we discuss two complementary approaches for reconstructing the boundary

condition described by an energy-dependent reflectivity K(E), as defined in Eq. (4.62).

The first method is called the “envelope method”. It is related to the method used for

inferring the barrier transmission (see Fig. 8.1). In the logarithmic scaling, the transmis-

sion curves, as well as their upper and lower envelopes, can be normalized by the effective

transmission through the barrier, or similarly, by the average of the envelopes when the last

converges to T effective
K=0 . The normalized total transmission is a quasi-periodic oscillation with

narrow peaks at the resonant frequencies and local minima between them. The values of

the peaks and minima are symmetrical and uniform for energies below Emax, as shown in
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Figure 8.1: The application of the average-envelope method for obtaining the effective trans-
mission Teffective(E) (red dot-dashed line) approaching the effective potential barrier’s trans-
mission (black solid line). Notice that around Evertex the average-envelopes curve plateaus
at the transmission through the reflective barrier 1 −K2. For this high-energy regime, the
new Gamow points (green dots), obtained by subtracting 1−K2 from the original Gamow
points (red dots), give us a good approximation for the remaining barrier transmission. For
this scenario, K was assumed to be constant.

Fig. 3 in Ref. [2]. Their amplitudes are directly related to the reflectivity parameter K(E).

The analytical formula relating K(E) and this amplitude of oscillation for the normalized

transmission is given by

log(T normalized
± ) = ± log

(
1 +K(E)

1−K(E)

)
, (8.1)

for the upper (+) and lower (−) envelopes. Therefore, if we normalize the logarithmic trans-

mission by the average of its envelope, the reflectivity function can be computed by solving

the difference between these envelopes for the reflectivity parameter K(E) in Eq. (8.1).

Since the envelopes are constructed by interpolating the local maxima or minima, re-

spectively, there is an intrinsic uncertainty related to the interpolation method. As long as

K(E) is changing less drastically compared to the maxima and minima, the interpolation

error can be expected to be small. We quantify this error in Sec. 8.4.2.3.

The second method is called the “Gamow method” because it is based on the Gamow

formula Eq. (5.19) in order to connect the width of the resonance peaks with the transmis-
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sion at the boundary condition. It has previously been explained and applied in Ref. [2],

where more details can be found. Due to the underlying assumption required to derive the

Gamow formula from a more complex, generalized BS rule for three turning points [271],

the transmission through the boundary needs to be very small. This implies that 1−K(E)

needs to be small, and the accuracy of the method is expected to decrease if this condition

is violated, which was also observed in Ref. [2].

To extend the range of validity also to larger values of 1 − K(E), we construct the

following correction

Knew(E) = KGamow(E) + ∆K(E) (8.2)

≈ 1 + a(1−K(E)) + b(1−K(E))2 (8.3)

where KGamow(E) is the leading order earlier result obtained by the Gamow method, and a, b

are constants that depend on the specific case under consideration. Note that KGamow(E) is

only available at discrete values of E = En corresponding to the location of the resonance.

By identifying

KGamow(E) = 1 + a(1−K(E)), (8.4)

∆K(E) = b(1−K(E))2, (8.5)

one would expect the correction ∆K(E) to be only depending on the functional form of

K(E), not directly on the energy. Instead of predicting a, b explicitly, which is non-trivial,

we will use the envelope method to compute the correction as

∆K(E) = Kenvelope(E)−KGamow(E), (8.6)

and then numerically fit the constant b via Eq. (8.5) by assuming b does not depend on E,

and is thus the same constant for all discrete KGamow(E).
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One remark is needed. At first, it may seem circular to use one method to compute

the necessary correction of another one. However, in cases where the envelope method is

applied to rapidly changing K(E), the interpolation error can become significant in such

energy ranges but very accurate where K(E) changes slowly. The numerical fitting of b can

effectively average out such uncertainties, and thus make the “corrected” prediction Eq. (8.2)

more robust. We illustrate this in Sec. 8.4.2.3.

8.4 Application and results

8.4.1 Imperfect draining vortex model

As proposed in Ref. [48], an imperfect draining vortex can be regarded as an analog model

of an astrophysical extremely compact object. The evolution of small acoustic perturbations

in its surroundings is described by a wave equation, which can be separated into a radial

and an angular equation. The radial part can be written as in Eq. (3.34), where the effective

potential is given by

V (r, E) =− (mC)2

r4
+

(
1− 1

r2

)(
m2 − 1

4

r2
+

5

4r4

)
+ 2

mC
√
E

r2
. (8.7)

Here m is an integer number that labels the harmonic decomposition of the angular coordi-

nate (azimuthal number), while C characterizes the tangential velocity profile of the vortex.

In Eq. (3.34), x(r) is the so-called tortoise coordinate. Notice that the energy dependency

couples to the effective potential through the rotation parameter C.

To complete the physical model, we introduce an energy-dependent reflectivity K(E)

defined at the boundary surface in r0 = rh(1 + ϵ), where rh is the acoustic horizon radius

in radial coordinate, and ϵ is a very small parameter. Physically, this reflective boundary

condition is defined as a cylindrical interface radially displaced by a small radial distance ϵ
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from the horizon surface rh. From now on, we assume that ϵ = 2e−20, which implies that

the tortoise coordinate at this reflective boundary is given by x0 = x(r0) = −9. For more

details, we refer the interested reader to Ref. [48].

8.4.2 Results for inverse problem

In the following, we apply the inverse method introduced in Chapter 7 and Sec. 8.3 to the

various transmission curves of the imperfect draining vortex from Sec. 8.4.1. In Sec. 8.4.2.1,

we analyze the impact of the rotation parameter C by varying it until we reach our method’s

applicability limit. Then, in Sec. 8.4.2.2, we discuss how the value of the harmonic constantm

impacts the accuracy of the method. Finally, in Sec. 8.4.2.3, we demonstrate the performance

of our method to infer the energy-dependent reflectivity parameter K(E) by investigating a

set of non-trivial examples.

8.4.2.1 Dependency of rotation profile C

We consider different applications for varying rotational velocity profiles C. Our analysis

starts from transmission curves numerically obtained for cases with K = 0.9 and m = 10.

We report some examples of those reconstructions in Fig. 8.2, where we compare the ef-

fective reconstructed potentials with the corresponding family of energy-dependent potential

curves V (x,E) for a certain range of energy values. Furthermore, for each energy value, we

also present the associated pair of turning points x1(E) and x2(E).

As discussed in Ref. [3], the effective WKB-equivalent potentials and the width-equivalent

curves are not supposed to be similar for the method to work. While the effective WKB-

equivalent potential succeeds in approximately reproducing the physical properties used for

its reconstruction, the width equivalent potentials, obtained by continuously connecting the

turning points x1(E) and x2(E) for each energy E, do not provide similar results. However,

although those curves are increasingly different for increasing values of the rotation parameter

C, there is still a remarkable agreement between the original value of Evertex, obtained
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analytically from Eq. (8.7), with the Evertex value inferred by the turning points’ analysis

from Sec. 7.2.2.

Notice in Fig. 8.2 that, for higher rotations, e.g., C = 0.2, there is an “overhanging

cliff” [212] behavior on the width of the cavity with E, which comes from a non-monotonic

dependence of L1 with E. This problematic behavior of L1 is explained by the fact that the

inverse BS rule Eq. (5.35) is reading a n-dependence of E0n that grows faster than n2 for

low energies. The n(E0n) ∝ √
E0n corresponds to the limiting case of a second fixed wall

enclosing the cavity for a confined particle (infinite square box problem in quantummechanics

[272]). Since those reconstructed cavities with “overhanging cliffs” cannot represent physical

solutions, we constrain the applicability of our inverse method here for rotation parameters

C equal or lower than C = Ccrit, where Ccrit is the highest rotation coefficient for which the

“overhanging cliffs” behavior does not arise. That defines the range of applicability of this

method for the imperfect draining vortex with m = 10. For other m values, a different range

in C needs to be further established.

It is the first few modes that produce the non-monotonic behavior on the energy de-

pendence of the cavity width. Suppose we want to recover the monotonic behavior of the

effective reconstructed cavity. In that case, we can try repeating the inverse method, but this

time neglecting the first mode into the inverse BS rule. Depending on the rotation parameter

C, we might even need to go further and neglect a couple of first modes instead. Then, in

this way, we recover the monotonic behavior of the reconstructed cavity width, although we

lift our potential minimum Emin.

Finally, we can now test the accuracy of the reconstructed effective potentials to re-

produce the transmission curves used as input for their reconstruction and whether it can

approximately predict the same resonant peaks from the original curves. For this goal, we

use the same numerical scheme used for the original energy-dependent potentials, but now

replacing the analytical potential defined in Eq. (8.7) with the effective WKB-equivalent

potential. The results are shown in Fig. 8.3, where we compare the original transmissions
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from the energy-dependent potentials (solid lines), with the ones reconstructed from our

inverse method (dashed lines). Notice the good agreement between the transmission curves

and the reproduction of the location and width of the resonant peaks from the original

energy-dependent potential for C = 0 and C = 0.1.

For rotations above the working limit threshold of our method, such as C = 0.2 ≥ Ccrit

for instance, the curves with “overhanging cliffs” forbid us from interpolating the poten-

tials to run the reconstruction of the transmission. As discussed previously, however, we

can circumvent this problem by neglecting the first mode. This way we re-obtain a func-

tional inverse reconstructed potentials. Those potentials have their minimum Emin vertically

lifted upwards, decreasing the accuracy of their reconstruction for energies around the first

considered mode.

Since the reconstruction of higher modes also depends on the lower modes, the inaccuracy

does not go away completely for higher energy modes. To illustrate that, we present the

WKB-equivalent potentials in the bottom panel of Fig. 8.2 for m = 10 and C = 0.2. Here we

contrast the reconstructed potential possessing “overhanging cliffs” (red dashed curve) with

its regularized version obtained by inputting all modes but the fundamental one in the inver-

sion formulas (black dashed curve). Finally, we also compute the associated reconstructed

transmission for this case. This result is represented by the green dashed curve in Fig. 8.3.

We can see the accuracy loss when comparing this reconstructed transmission with the exact

one (green solid curve).

8.4.2.2 Dependency on the angular parameter m

Now, we investigate the impact of different angular momentum parameters m in our inverse

method. In Fig. 8.4, we contrast the WKB-equivalent potentials, reconstructed by employing

our inverse techniques, and the associated family of energy-dependent potentials for a certain

range of energy values. The comparison between the transmissions computed from these

energy-dependent potentials and their corresponding WKB-equivalent potentials are shown
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Figure 8.2: In the three panels, we show the WKB-equivalent potential reconstructed by
the inverse method presented in this framework for m = 10 and C = 0, C = 0.1 and
C = 0.2, respectively. The solid colored lines are the original energy-dependent potentials
from Eq. (8.7) for a range of energies from E = 0 to E = Evertex. A pair of colored dots
mark the intersection of each V (x,E) curve with the horizontal line placed at its associated
energy value E. The color scheme is defined by a green-yellow transition from the lowest
energy value to the highest. In the bottom panel, with C = 0.2, the red-dashed curve
(WKB-equiv 2) represents the reconstructed potential by taking into account all energy
modes. The regularized version of the WKB-equivalent potential (WKB-equiv 1), obtained
by dismissing the fundamental mode in the inverse reconstruction, is represented by the
black-dashed curve.
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Figure 8.3: Here we show a comparison between the original transmissions, calculated from
the energy-dependent potentials (solid colored line) in Eq. (8.7), and the reconstructed trans-
missions calculated from the WKB-equivalent potentials in Fig. 8.2 (colored dashed lines).

in Fig. 8.5.

As discussed in chapter 6 for the non-rotating case, m controls the height of the potential

barrier. Hence, a larger value of m implies a larger number of resonant quasi-stationary

modes, and accordingly, a higher overall accuracy for the reconstruction. For the more

general rotating case, a similar qualitative behavior is expected. We illustrate this in Fig. 8.4,

where one can see the impact of the absolute value of m for the height of the reconstructed

potentials (read Evertex); and in the associated number of resonant peaks for the transmission

curves in Fig. 8.5. In terms of the reconstruction’s overall quality, we see a considerable

difference in the accuracy of the reconstructed transmissions when comparing results for

m = 10 with the ones for m = 5. This is expected because the underlying WKB theory

should become more accurate for large values of m.

Furthermore, an additional analysis that can only be carried out when we consider rotat-

ing regimes concerns applying our inverse method to investigate the scattering of counter-

rotating waves, rather than co-rotating ones. For non-zero rotating parameter C, the incident

acoustic waves can be both oriented in the vortex’s rotating/absorbing direction or, oppo-

sitely, in a contrary direction. Those scenarios correspond to co-rotating and counter-rotating

waves, respectively. Co-rotating waves are represented by a positive angular momentum m,
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while counter-rotating waves have negative m. So far, we have only considered the co-

rotating regime. Considering the counter-rotating regime is interesting because it can lead

to instabilities, especially if large m modes are excited.

Looking at Eq. (8.7), we can see that the term coupling the energy dependence to the

potential consists of a linear product between m and C. In all other terms, m appears

squared, so there is no special role played by its sign. The effect of the m’s sign only concerns

the energy-dependent term, and it corresponds to two aspects; first for m > 0, increasing

the size increment of the potential barriers with E (which is also amplified for larger |m|

values); second for m < 0, “pulling down” the potential curves as the energy increases. We

illustrate this qualitative discussion in the last two panels of Fig. 8.4, where we present the

results of the inverse method’s application for two distinct scenarios for C = 0.1, namely

m = −10 (counter-rotating regime) and m = 10 (co-rotating regime).

For the first scenario, the amplification of all the potential barrier’s heights implies an

overall increase of our WKB-equivalent potential’s height. Since all Vmax are pushed upwards,

it is expected that Evertex goes in the same direction. For the second scenario, however, Evertex

is pushed down just like all the other turning points for any E. That behavior opposes the co-

rotating waves. The reconstructed transmissions associated with both scenarios discussed

here are depicted in fig. 8.5, where we compare them with their corresponding original

transmission.

8.4.2.3 Dependency of reflectivity K

Finally, we now apply the two approaches introduced in Sec. 8.3 for inferring the reflec-

tivity parameter at the boundary condition in x0. We expect in advance that both pre-

sented methods for the reconstruction of the boundary condition fail around energies close to

Emax = Evertex, which defines the range of applicability for our reconstruction. In Fig. 8.6 and

Fig. 8.7 we show the results of both approaches for reconstructing some injected reflectivity

functions K(E). The expected breakdown of our method is indicated by the orange-shaded
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Figure 8.4: In the three panels, we show the WKB-equivalent potential reconstructed by the
inverse method presented in this framework for C = 0.1 and m = 5,m = −10, and,m = 10,
respectively. They are represented as black dashed curves. The solid colored lines are the
original energy-dependent potentials from Eq. (8.7) for a range of energies from E = 0 to
E = Evertex. A pair of colored dots mark the intersection of each V (x,E) curve with the
horizontal line placed at its associated energy value E. The color scheme is defined by a
green-yellow transition from the lowest energy value to the highest.
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Figure 8.5: Here we show a comparison between the original transmissions, calculated from
the energy-dependent potentials (solid colored line) in Eq. (8.7), and the reconstructed trans-
missions calculated from the WKB-equivalent potentials in Fig. 8.4 (colored dashed lines).

area. To focus on the properties of K when applying the inverse method, we fix our model

to m = 10 and a rotation profile specified by C = 0.01. Figure 8.6 contains reflectivity

functions plateauing at two different values of K; one for low asymptotic energy and the

other one for higher asymptotic energy. The physical motivation for this step transition in

K comes from the analogy between K with the vortex’s overall behavior for the reflectivity

coefficient R. Likewise, we show in Fig. 8.7 how effectively our inference methods tackle

reflectivity functions with local valleys in the core-reflectivity. Those local valleys are physi-

cally motivated by the idea of a scattering core with intrinsic resonant tunneling properties,

in analogy with the vortex itself. All those injected reflectivities, although physically moti-

vated by general qualitative assumptions, are only models to demonstrate the capabilities of

the method. It is outside the scope of this framework to derive the core reflectivity functions

from a first-principle perspective, as this would depend on the specific physical properties of

the example.

To finish our discussion, we analyze the systematic error associated with the outlined

approaches for reconstructing the boundary reflectivity K(E). As we discussed in our earlier

analysis in Sec. 8.3, the approach based on the envelope’s average was originally more reliable

and flexible. This technique remained accurate with no regard to the rotation parameter
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Figure 8.6: In the upper panel we show the transmission for the two reflectivity cases (cases
1 and 2), including their envelopes and the average between them. The injected reflectivity
is represented in the lower panel by the solid black line. We also present the final results of
our method inference for those two reflectivities by using both the Gamow method (colored
squares) and the envelopes’ technique (colored dashed lines). These two cases considered
here consisted of two plateau-dominated models for the reflectivity, representing transitions
from a low-energy plateau to another plateau for higher energies.
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Figure 8.7: In the upper panel, we show the the transmission for the two reflectivity cases
(cases 3 and 4), including their envelopes and the average between them. The injected
reflectivity is represented in the lower panel by the solid black line. We also present the
final results of our method inference for those two reflectivities by using both the Gamow
method (colored squares) and the envelopes’ technique (colored dashed lines). These two
cases considered here consisted of reflectivity models with some local valleys due to possible
core-resonant effects.
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Figure 8.8: Here we show the deviations on the reflectivity ∆K(En) inferred by the Gamow
points for the four cases shown in Fig. 8.6 and in Fig. 8.7. Those deviations are obtained
by the difference between KGamow(En) and the reflectivity Kenvelope(E) predicted by the
envelopes approach. For each scenario, the fitting curve for the associated data with the
quadratic expansion in Eq (8.2) is shown.

and the absolute value of the reflectivity K, as long as E < Evertex. In fact, this method

even provides us with the reference values for the reflectivity K that are also used to correct

the Gamow method (see Eq. (8.6)). As we mentioned in Sec. 8.3, we exploit the systematic

error introduced by the interpolation to evaluate the systematic errors of this method. Our

results are depicted as the colored areas in Fig. 8.6 and Fig. 8.7.

Meanwhile, for the “Gamow method”, we noticed that as we decreased the value of

the injected reflectivity, it showed an approximately quadratic deviation from the values

obtained by the envelope method. This is exactly what we expected from the discussion

in Sec. 8.3. Therefore, the correction proposed by Eq. (8.2) allows us to circumvent this

limitation and refine our findings to obtain the precise reconstruction of the reflectivities we

see in Fig. 8.6 and Fig. 8.7. For each case, we have fitted the deviation data for ∆K(En)

with the quadratic correction in Eq. (8.5). The resulting fits are represented by the colored

curves plotted in Fig. 8.8. Notice the approximate convergence between all of those fitting

curves. This validates the point we made in Sec. 8.3 that the corrections would not depend

on the energy, but only on the absolute value of KGamow.
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8.5 Conclusions

In this chapter, we extended the WKB-based framework presented in Ref. [2] to study

the inverse problem of certain types of energy-dependent potentials with energy-dependent

boundary conditions. The input for the inverse method is the transmission through the

potential. If it admits resonance features, they can be related to quasi-stationary states of

a potential well, and the transmission through a potential barrier and an energy-dependent

boundary condition.

Until recently, the inverse WKB methods have been applied to energy-independent po-

tentials Refs. [212, 122, 213, 237, 214, 127, 125, 130, 129, 2] . From Ref. [3] it is known

that the construction of isospectral, energy-independent potentials can be possible from

bound states and transmissions of energy-dependent ones. This assumes the validity of the

WKB approximation in the form of the Bohr-Sommerfeld rule and Gamow formula for two

turning-point potentials, respectively.

By applying it to an imperfect draining vortex [48], we explicitly demonstrated how the

inverse method can be used to find energy-independent potentials that are isospectral (within

the validity of the WKB approximation and for three turning points), which we verified by

computing the transmission of the inverse potential numerically. Moreover, our approach

also allows the reconstruction of energy-dependent boundary conditions, which we explicitly

demonstrated. The latter is highly non-trivial in the inverse problem, because computing its

impact on the transmission relies, in general, on the knowledge of the underlying potential.

Our method can bypass this limitation by using the reconstructed potential as a placeholder.

The reconstruction of energy-dependent boundary conditions can be a very interesting

tool when applied to experimental measurements of transmissions of applicable analog grav-

ity systems. Here one might not know a priori the right boundary conditions, or simply want

to verify the experimental setup and underlying assumptions. For example, the boundary

condition could effectively describe internal degrees of freedom, e.g., absorption lines of the
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core. We have demonstrated that the model-independent reconstruction of such absorption

features can be possible.

The methods discussed here are not limited to analog gravity systems. Systems with

similar phenomenology have been suggested in a scenario with astrophysical exotic compact

objects. Such objects can, in principle, admit quasi-stationary states and could reveal them-

selves in terms of so-called gravitational wave echoes after the merger of two such objects.

Here the boundary condition is highly speculative and not well understood since different

models exist (see Ref. [104] for a review of such systems).

Finally, it has recently been suggested that the high-frequency content of the black hole

ringdown can be associated with their respective greybody factors [273, 274, 275, 276]. If

this identification is robust in measurable frequency ranges, applying the inverse method,

i.e., as presented in this work or in Ref. [129], could also be possible for gravitational wave

observations. The connection of quasi-normal modes and greybody factors within WKB

theory in this context has recently been discussed in Ref. [277].
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Chapter 9

Final Remarks

9.1 Conclusions

Throughout this thesis, we introduced the direct and the inverse problems in perturbation

theory for the scattering of astrophysical ultracompact objects and their analog systems,

focusing especially on the last ones. The availability of data from lab-controlled experiments

on the scattering study of those tabletop experiments provided the theoretical motivation

for establishing this preference. By setting up a specific model of an analog gravity system

to black holes and exotic compact objects consisting of an imperfect draining vortex in a

bathtub, we have employed a cinematic modified model for describing the core reflectivity

properties of this system. For such a goal, the usual procedure for the description of exotic

compact objects was imported from the astrophysical case, providing us with a possible and

physically well-justified analog model for ECOs. As we explained in chapter 3, this procedure

consisted of adopting a model-dependent reflectivity parameter established as a boundary

condition just above the ’would-be’ event horizon.

After introducing our cinematical model for the analog ECO, we described its acoustic

perturbation theory in linear order, and we derived some important results concerning its

direct problem in scattering theory. Among those results, some of the most important ones

were the echoes in the ringdown wave signal measured by an observer far away from this
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relaxing scattering source. Another interesting result obtained for an imperfect draining

vortex was the scattering properties of those systems, namely the cross-section and reflec-

tive coefficients. We have inferred from those results an attenuated global behavior, as a

consequence of the reflective boundary condition at their core. At the same time, we have

noticed that the cross-section presented an enhanced absorption of waves for some specific

frequencies, which are visible through the presence of narrow spectral lines in the trans-

mission spectrum. That was the core reflectivity’s signature. As we have explained, those

specific resonant frequencies are the trapped quasinormal modes, our quasibound states of

these systems.

Finally, from the cross-section coefficients, numerically obtained in the previous sections,

we have developed a novel nonparametric method that allowed us to reconstruct the effective

perturbation potential in terms of semiclassical WKB formulas. In Chapter 5, we introduced

this semianalytical method, deriving its general inverse formulas, which we used in the

following applications. In Chapter 6, we then applied this method for reconstructing the

effective perturbation potential governing the scattering properties of the non-rotating analog

IDV model.

When considering extending the application of our developed inverse method for rotating

scenarios of the analog model, we faced the difficulty imposed by the fact that the rotation

parameter couples an energy dependence to our effective scattering potential. We then ad-

dressed this problem in a general way in chapter 7, showing that we can actually apply

the same inverse WKB formulas to the scattering coefficients and the spectra of energy-

dependent potentials in some scenarios. This application led us to an effective reconstructed

and energy-independent potential, which we called ’WKB-equivalent potential’. This po-

tential reproduced the exact physical quantities that were used for its reconstruction. ¨For

example, we reconstructed an associated effective potential barrier when we started initially

with the cross-section. Meanwhile, in the case where the spectrum was the quantity provided,

we reconstructed an effective WKB-equivalent cavity. Both effective potential barriers and
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cavities reproduced the same results that were used as input for their definition in our inverse

method. We illustrated how the method worked with two insightful toy models, the modi-

fied energy-dependent quadratic potential and the modified energy-dependent Pösch-Teller

potential.

Furthermore, a physical approximation of some critical values from the energy-dependent

potentials was also discussed. For the cases of energy-dependent cavities, this critical value

was the asymptotic behavior of the potentials, while for barriers, this value consisted of

the energy level in which the energy-varying turning points encounter themselves. Both

those critical values, which we named energy vertex, were imprinted in the effective WKB-

equivalent potential reconstructed by our inverse method.

Finally, with that novel extension of the method for energy-dependent potentials, we

applied our inverse method, in chapter 8, for the effective potentials from rotating analog

models. As the main result of this application, we derived an effective WKB-equivalent

potential that reproduced with accurate precision the original cross-section curves used as

input for their reconstruction. The resonant peaks of our final approximate results agreed

well with the original ones. An additional application of our method for reconstructing

the reflective boundary condition was discussed in chapter 6 for constant core reflectivities.

This discussion was presented again in chapter 7, but this time for the more general case of

energy-dependent reflectivity parameters. Lastly, the effective potential maximum was also

comparable to the vertex of the energy-dependent potential barriers.

Finally, we can assert that the inverse method we presented in this thesis achieved a

successful application when employed for analog gravity systems, from the theoretical and

computational perspectives. From the theoretical point of view, we provided a technique

that reconstructed important dynamical information about the underlying physical systems

in terms of a set of physical observables that are, in principle, available to be obtained. The

cross-section curves and reflection coefficients are quantities measurable by lab-controlled

experiments. Meanwhile, from the computational point of view, we have derived a simple
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and cheap mathematical technique that allows us to tackle the inverse problem of scattering

with good accuracy.

From the paradigm of the physics of analog gravity systems, when we investigate these

systems, we not only tackle their specific physical intricacies but also grasp important insights

and a great deal of qualitative knowledge on the astrophysical system that motivates the

analogy. That is the main motivation behind the inverse problem for analog gravity systems

we carried out throughout this thesis.

We conclude this text by posing some future perspectives on this study. From our last

chapter, the application we considered consisted of extending the inverse method we devel-

oped for the rotating analog gravity system obtained from an imperfect draining vortex in

a bathtub. Among the many motivations for this work, a recent paper [120] on an exper-

imental result obtained by the Gravity Group from Nottingham reported the experimental

detection of the fluid analogy to the spacetime twisting effect produced by rotating black

holes. This astonishing analog effect was measured in a liquid helium fluid under extremely

low temperatures. Physically, it is impossible to approach this fluid’s description in terms of

a classical fluid approximation, since quantum effects play a major role in their dynamics.

So, in principle, although we gain an extremely better approximation for the hypothesis of

a fluid with null viscosity, we lose the description in terms of the classical hydrodynamical

equations. Accordingly, we might no longer have a linear wave equation using the WKB

method. One of our future perspectives is to tackle the problem of analog systems with

quantum vortexes in the low-temperature regime. When we are addressing this problem, we

will eventually check the possibility and the conditions for a semi-classical approximation,

for which the inverse formulas can be appropriately used. This future investigation, however,

will depend on the material conditions for its proper development.
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[51] Lúıs Felipe Longo Micchi, Niayesh Afshordi, and Cecilia Chirenti. “How loud are
echoes from exotic compact objects?” In: Phys. Rev. D 103 (4 2021), p. 044028. doi:
10.1103/PhysRevD.103.044028. url: https://link.aps.org/doi/10.1103/
PhysRevD.103.044028.

[52] Vitor Cardoso et al. “Gravitational-wave signatures of exotic compact objects and of
quantum corrections at the horizon scale”. In: Physical Review D 94.8 (Oct. 2016).
issn: 2470-0029. doi: 10.1103/physrevd.94.084031. url: http://dx.doi.org/
10.1103/PhysRevD.94.084031.

[53] Vitor Cardoso and Paolo Pani. “Testing the nature of dark compact objects: a status
report”. In: Living Reviews in Relativity 22.1 (July 2019). issn: 1433-8351. doi: 10.
1007/s41114-019-0020-4. url: http://dx.doi.org/10.1007/s41114-019-0020-
4.

[54] Vania Vellucci, Edgardo Franzin, and Stefano Liberati. “Echoes from backreacting
exotic compact objects”. In: Phys. Rev. D 107 (4 2023), p. 044027. doi: 10.1103/
PhysRevD.107.044027. url: https://link.aps.org/doi/10.1103/PhysRevD.
107.044027.

[55] Vitor Cardoso et al. “Exotic compact objects and how to quench their ergoregion
instability”. In: Physical Review D 90.12 (2014), p. 124077. doi: 10.1103/PhysRevD.
90.124077.

[56] Vitor Cardoso and Paolo Pani. “Ultra-compact objects and the fate of the light ring
instability”. In: Physical Review D 95.12 (2017), p. 124056. doi: 10.1103/PhysRevD.
95.124056.

224

https://doi.org/10.1103/PhysRevLett.125.011301
https://doi.org/10.1103/PhysRevLett.125.011301
https://arxiv.org/abs/1811.07858
https://doi.org/10.1103/PhysRevD.106.045026
https://doi.org/10.1103/PhysRevD.106.045026
https://arxiv.org/abs/2204.10139
https://doi.org/10.1038/s41550-017-0225-y
https://doi.org/10.1038/s41550-017-0225-y
https://arxiv.org/abs/1709.01525
https://doi.org/10.1088/0264-9381/33/17/174001
https://doi.org/10.1103/PhysRevD.103.044028
https://link.aps.org/doi/10.1103/PhysRevD.103.044028
https://link.aps.org/doi/10.1103/PhysRevD.103.044028
https://doi.org/10.1103/physrevd.94.084031
http://dx.doi.org/10.1103/PhysRevD.94.084031
http://dx.doi.org/10.1103/PhysRevD.94.084031
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
http://dx.doi.org/10.1007/s41114-019-0020-4
http://dx.doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1103/PhysRevD.107.044027
https://doi.org/10.1103/PhysRevD.107.044027
https://link.aps.org/doi/10.1103/PhysRevD.107.044027
https://link.aps.org/doi/10.1103/PhysRevD.107.044027
https://doi.org/10.1103/PhysRevD.90.124077
https://doi.org/10.1103/PhysRevD.90.124077
https://doi.org/10.1103/PhysRevD.95.124056
https://doi.org/10.1103/PhysRevD.95.124056


[57] Steve K. Chung and Vitor Cardoso. “Gravitational wave echoes from interacting
quantum fields”. In: Physical Review D 105.12 (2022), p. 124043. doi: 10.1103/
PhysRevD.105.124043.

[58] Elisa Maggio et al. “Ergoregion instability of exotic compact objects: Electromagnetic
and gravitational perturbations and the role of absorption”. In: Physical Review D
99.6 (Mar. 2019). issn: 2470-0029. doi: 10.1103/physrevd.99.064007. url: http:
//dx.doi.org/10.1103/PhysRevD.99.064007.

[59] Zachary Mark et al. “A recipe for echoes from exotic compact objects”. In: Physical
Review D 96.8 (Oct. 2017). issn: 2470-0029. doi: 10.1103/physrevd.96.084002.
url: http://dx.doi.org/10.1103/PhysRevD.96.084002.

[60] Elisa Maggio, Maarten van de Meent, and Paolo Pani. “Extreme mass-ratio inspirals
around a spinning horizonless compact object”. In: Phys. Rev. D 104 (10 2021),
p. 104026. doi: 10.1103/PhysRevD.104.104026. url: https://link.aps.org/
doi/10.1103/PhysRevD.104.104026.

[61] Luis Longo Micchi, Niayesh Afshordi, and Cecilia Chirenti. “Can we “hear” echoes
from Exotic Compact Objects?” In: APS April Meeting Abstracts. Vol. 2021. APS
Meeting Abstracts. Jan. 2021, S17.008, S17.008.

[62] R. Ruffini and S. Bonazzola. “Gravitational Stability of Scalar Matter”. In: Physical
Review 187.5 (1969), pp. 1767–1783. doi: 10.1103/PhysRev.187.1767.

[63] E. Seidel and W.-M. Suen. “Boson Stars: Gravitational Equilibria of Self-Interacting
Scalar Fields”. In: Physical Review Letters 66.13 (1991), pp. 1659–1662. doi: 10.
1103/PhysRevLett.66.1659.

[64] Philippe Jetzer. “Boson stars in general relativity”. In: Physics Reports 220.4 (1992),
pp. 163–227. doi: 10.1016/0370-1573(92)90123-H.

[65] Franz E. Schunck and Andrew R. Liddle. “Boson stars: Stability, formation and evo-
lution”. In: Physical Review D 56.2 (1997), pp. 762–771. doi: 10.1103/PhysRevD.
56.762.

[66] Franz E. Schunck and Eckehard W. Mielke. “New dimensions for boson stars”. In:
Classical and Quantum Gravity 20.20 (2003), R301–R356. doi: 10 . 1088 / 0264 -
9381/20/20/201.

[67] Carlos A. R. Herdeiro, Eugen Radu, and Helgi F. Rúnarsson. “Proca Stars: Gravi-
tating Bose-Einstein condensates of massive spin 1 particles”. In: Physical Review D
94.6 (2016), p. 063001. doi: 10.1103/PhysRevD.94.063001.

225

https://doi.org/10.1103/PhysRevD.105.124043
https://doi.org/10.1103/PhysRevD.105.124043
https://doi.org/10.1103/physrevd.99.064007
http://dx.doi.org/10.1103/PhysRevD.99.064007
http://dx.doi.org/10.1103/PhysRevD.99.064007
https://doi.org/10.1103/physrevd.96.084002
http://dx.doi.org/10.1103/PhysRevD.96.084002
https://doi.org/10.1103/PhysRevD.104.104026
https://link.aps.org/doi/10.1103/PhysRevD.104.104026
https://link.aps.org/doi/10.1103/PhysRevD.104.104026
https://doi.org/10.1103/PhysRev.187.1767
https://doi.org/10.1103/PhysRevLett.66.1659
https://doi.org/10.1103/PhysRevLett.66.1659
https://doi.org/10.1016/0370-1573(92)90123-H
https://doi.org/10.1103/PhysRevD.56.762
https://doi.org/10.1103/PhysRevD.56.762
https://doi.org/10.1088/0264-9381/20/20/201
https://doi.org/10.1088/0264-9381/20/20/201
https://doi.org/10.1103/PhysRevD.94.063001


[68] Richard Brito et al. “Proca stars with nonminimal coupling to curvature”. In: Physical
Review D 94.2 (2016), p. 024003. doi: 10.1103/PhysRevD.94.024003.

[69] Vitor Cardoso, Edgardo Franzin, and Paolo Pani. “Gravitational wave signatures of
exotic compact objects and of quantum corrections at the horizon scale”. In: Physical
Review D 93.10 (2016), p. 104044. doi: 10.1103/PhysRevD.93.104044.

[70] G. Y. Rainich. “Some properties of spheres of uniform density in general relativity”.
In: Physical Review 24.4 (1924), pp. 372–376. doi: 10.1103/PhysRev.24.372.

[71] S. Chandrasekhar. An Introduction to the Study of Stellar Structure. University of
Chicago Press, 1939.

[72] Steven Weinberg. Gravitation and Cosmology: Principles and Applications of the Gen-
eral Theory of Relativity. Wiley, 1972.

[73] H. A. Buchdahl. “Relativistic Stars in an Asymptotically Minkowski Space”. In: Phys-
ical Review 116.4 (1959), pp. 1027–1034. doi: 10.1103/PhysRev.116.1027.

[74] Jahed Abedi, Hannah Dykaar, and Niayesh Afshordi. “Echoes from the abyss: Evi-
dence for Planck-scale structure at black hole horizons”. In: Physical Review D 96.8
(2017), p. 082004. doi: 10.1103/PhysRevD.96.082004.

[75] Juan Carlos Bustillo, Paolo Pani, and Vitor Cardoso. “Gravitational wave echoes
from black hole area quantization”. In: Physical Review D 102.4 (2020), p. 044039.
doi: 10.1103/PhysRevD.102.044039.

[76] Elisa Maggio. Probing new physics on the horizon of black holes with gravitational
waves. 2022. arXiv: 2211.16900 [gr-qc].

[77] A. Ali et al. Quantum Characteristics Near Event Horizons. 2024. arXiv: 2401.12028
[quant-ph].

[78] Sumanta Chakraborty et al. “Implications of the quantum nature of the black hole
horizon on the gravitational-wave ringdown”. In: Phys. Rev. D 106 (2 2022), p. 024041.
doi: 10.1103/PhysRevD.106.024041. url: https://link.aps.org/doi/10.1103/
PhysRevD.106.024041.

[79] Theo Torres et al. “Observation of superradiance in a vortex flow”. In: Nature Phys.
13 (2017), pp. 833–836. doi: 10.1038/nphys4151. arXiv: 1612.06180 [gr-qc].

[80] Theo Torres. “Estimate of the superradiance spectrum in dispersive media”. In: Phil.
Trans. Roy. Soc. Lond. A 378.2177 (2020), p. 20190236. doi: 10.1098/rsta.2019.
0236. arXiv: 2003.02230 [gr-qc].

226

https://doi.org/10.1103/PhysRevD.94.024003
https://doi.org/10.1103/PhysRevD.93.104044
https://doi.org/10.1103/PhysRev.24.372
https://doi.org/10.1103/PhysRev.116.1027
https://doi.org/10.1103/PhysRevD.96.082004
https://doi.org/10.1103/PhysRevD.102.044039
https://arxiv.org/abs/2211.16900
https://arxiv.org/abs/2401.12028
https://arxiv.org/abs/2401.12028
https://doi.org/10.1103/PhysRevD.106.024041
https://link.aps.org/doi/10.1103/PhysRevD.106.024041
https://link.aps.org/doi/10.1103/PhysRevD.106.024041
https://doi.org/10.1038/nphys4151
https://arxiv.org/abs/1612.06180
https://doi.org/10.1098/rsta.2019.0236
https://doi.org/10.1098/rsta.2019.0236
https://arxiv.org/abs/2003.02230
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