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Abstract

In this work, we proved some Hardy-Sobolev type inequalities and, as a consequence,
obtained weighted Sobolev embeddings in the upper half-space. As applications, we
addressed some Liouville-type results for two classes of indefinite quasilinear elliptic
problems in the upper half-space. Additionally, for these classes of problems, we ob-

tained existence results using the Fibering Method.

Keywords: Hardy-Sobolev type inequality; Weighted Sobolev spaces; Sobolev trace
embedding; Liouville type results; Fibering method.



Resumo

Neste trabalho, provamos algumas desigualdades do tipo Hardy-Sobolev e, como con-
sequéncia, obtivemos imersoes de Sobolev com peso no semi-espaco superior. Como
aplicagoes, abordamos alguns resultados do tipo Liouville para duas classes de proble-
mas elipticos quasilineares indefinidos no semi-espaco superior. Além disso, para essas

classes de problemas, obtivemos resultados de existéncia utilizando o Fibering method.

Palavras-chave: Desigualdade do tipo Hardy-Sobolev; Espacgos de Sobolev com peso;

Imersoes de Sobolev no trago; Teoremas do tipo Liouville; Fibering method.
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Notation

Throughout this work, we will use the following list of mathematical symbols and

notations:

o RY := {2z =(2/,2y) e RV : 2’ € R¥"!, 2y > 0} denotes the upper half-space;

B, denotes the ball centered at 0 with radius » > 0 in RY;

e B = B, NRY denotes the half ball;

C5°(RYN) denotes the space of infinitely differentiable real functions whose support

is compact in RY;

— denotes continuous embedding;

— denotes strong convergence;

— denotes weak convergence.



Chapter O

Introduction

The Hardy inequality has its origins in the work of the english mathematician
Godfrey Harold Hardy in 1920 (see [32]). Precisely, if p > 1 and f is a nonegative

function p— integrable then

() [ 8 o) [ e

As is well-known in nowadays, the Hardy inequality is a fundamental tool in
analysis, particularly in the study of differential equations and mathematical physics
(see for instance [36]| and references therein).

The Hardy inequality has since been generalized in various ways, including ex-
tensions to weighted inequalities and settings involving different domains or operators.
It has become a powerful tool in mathematical analysis, particularly in the study of
partial differential equations, where it provides insights into the regularity and inte-
grability of solutions. The inequality is named after Hardy, but its influence extends
through many areas of mathematics, including functional analysis, potential theory,
and geometric analysis. Necas in [45] established that if 2 is a bounded domain with

0N sufficiently smooth, then
/d(x)o‘_p|u|pd:v < C’O/ d(x)*|Vul|Pdzx, ue C(Q), (1)
Q Q

where d(z) denote the distance of x to 9, p > 1 and o <p— 1.
Matskewich and Sobolevskii in [42] prove that when  is a open convex with

o0 € O, it holds

Jul? p \" » o
i d(x)de < p— Q\Vu\ dz, Yue C5(Q).
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Moreover, they proved that the constant (-£7)? is optimal. In the hole space RN,
p
for 1 < p < N, the N- dimensional classical Hardy inequality is proved by using a

symmetrization argument(see [12]) and is states as follows

/Widx< P P/ |VulPdz, Vu e CP(RY)
wv 2P T AN —p/) Jgw ’ ’ '

The constant (NL_p)p is optimal and is never achieved. This inequality for p = 2 is
known as uncertain principle(see [27]). It illustrates a relationship between the norms
of a function and its gradient, establishing a connection between the function’s behavior
near the origin and its smoothness.

Hardy type inequalities in the half-space have been studied in many papers, in-
cluding [18, 21, 23, 28, 32, 50|. We emphasize that in all of the mentioned papers,
the study of Hardy inequalities in the half-space typically focuses on functions within
Cge (Rf ), which provides a useful framework for studying elliptic problems with Dirich-
let boundary conditions.

To explore partial differential equations with different types of boundary con-
ditions, it is useful to examine inequalities for restrictions of functions in C§°(RY).
In [47], Pfluger proved that for general unbounded domains the following inequality
holds: Assume that 1 < p < N and let 2 C RY be an unbounded exterior domain

with noncompact boundary. Then, there exists C' > 0 such that

for all for u € C$°(RY), where v is the unit outer normal to the boundary. See also
[6, 10, 15, 29, 34, 46, 52] for related results.

In the recent work [4], Felix et. al. proved inequalities in RY for restrictions
of functions in C§°(RY). Specifically, they proved the following Hardy-Sobolev type
inequality: If N > 2 and 1 < p < oo, then for any u € C{°(RY), the following

inequality holds

—1\? P
(p_) / Ldm g/ |Vu|pda:’—i—/ lu|Pda’.
p ry (1+zn)? RY RN-1

These inequalities allow us to apply a variational framework to derive results on the

existence and nonexistence of solutions for quasilinear elliptic problems with Robin

11



boundary conditions in the zero-mass case of the form

—div(|VulP"*Vu) = f(z,u), RY (3)

IVulP™2Vu - v + |[ufP"u = 0, RN,

with 1 < p < N. However, it cannot be applied to study problems with Neumann
boundary conditions in the zero mass case. For related results see also [19, 41| and
references therein.

In Chapter 1, with the aim of addressing problems with Neumann boundary
conditions, we will initially establish a weighted Hardy-Sobolev type inequality in the
upper half-space RY. Specifically, for N > 2 and 0 < p — 1 < 7, we will prove the
inequality

ng/ Ldm—i—(;@_l/ lulP da’ < / (1+zy)"|VulP dz, (4)
T ey (L+ay)r PY Jrv-n RY
for all u € C°(RY) where C,, = W_leﬂ. We also observe that this inequality was
proven in [3| using a different approach.

In addition to producing an inequality for functions in C§°(R"Y), we also empha-
size that we have determined the associated constants for these inequalities. Similar to
the classical Hardy and Sobolev inequalities in RY, we believe that we have obtained
the optimal values of the associated constants, in contrast to the results in [41]|, where
the exact constants are unknown. With this result, we obtained more precise a pri-
ori estimates for eventual solutions for elliptical problems with Neumann, and Robin
boundary conditions that we use the inequality, to obtain Liouville-type results.

The inequality (4) plays a central role in the whole work, allowing us to obtain
Sobolev and trace embedding results for a weighted Sobolev space defined on Rf . An

important application of inequality (4) is the following Sobolev inequality:

. p/q
</ L>zv—vdsc) < Oo/ (Lt ax)[VulP dz,  Vu e CFRY),
+ =

o
whenever ¢ € [p,p*] if 1 <p < N and ¢q € [p,00) if N = p.

In Chapter 2, we will use this embedding results as a tools for studying problems
with Neumann boundary conditions in the upper half-space. Precisely, we will ad-
dress results of existence and nonexistence for the following class of quasilinear elliptic

problems with indefinite nonlinearity :

12



—div(p(x)|VulP2Vu) = a(x)|u|?*u — b(z)|u|*"?u, RY, )

VulP?Vu - v =0, RN
where 1 < p < N and 1 < s,q < p* and the weight function p, a,b satisfy certain
growth conditions. As mentioned in [47], the operator —div(p(z)|Vu[P~>Vu) appears

in many nonlinear diffusion problems. Equations of the form
—div(p(a)|Vul'~*Vu) = f(z,u)

appears in several areas such as differential geometry|38|, astrophysics|40], population
genetics|11] and elsewhere. Problems of this type have been studied for many authors
with different boundary conditions, for instante, in [30], the authors approach the

problem

—div(p(z)|VulP~2Vu) = Aa(z)|u|?*u — |u|*?u in Q,
p(a’, 0)|VulP2Vu - v + b(z')[ulP~2 = 0, on 09,

where € is a exterior domain and p < s < ¢ < p*, and show the existence of a parameter
A* such that there exists weak solutions for A* < A. Similar results were obtained in

[5] for the problem in the half-space

—div(|Vul[P2Vu) = Aa(z)|[ul?*u — b(x)|u[*>u in RY,
|VulP2Vu - v+ [ufP~?u = 0, on RN,

where the authors consider the supercritical case for s. The critical case, s = p*,
with Neumann boundary condition was considered in [53]. The semilinear case with
a perturbation was considered in [22]. For classical references on problems involving
indefinite nonlinearity, we refer the reader to the papers |7, 9, 13, 35, 41| and references
therein. Indefinite elliptic equations appears in the study of prescribing sign-changing
scalar curvature problem, see, for instance, [17].

Our approach is inspired by the papers [35, 41|, where the authors obtained
results on the existence and nonexistence of solutions for problem (5) using the Fibering
method (see [25, 48]). We emphasize that in the mentioned works the authors deal

only with the case 1 < p < N and we also consider the case p = N.

13



In the trace sense, another consequence of inequality (4) we will establish a

Sobolev trace inequality.

p/q
(/ |ul? dx’) < CO/ (1+2y)"|VuPdz, VYue CP(RY), (6)
RN-1 N

RJr
whenever ¢ € [p,p.] if 1 <p < N and ¢q € [p,00) if N = p.

In Chapter 3, as an application of our trace embeddings obtained in Chapter 1, we
will address results of existence and nonexistence for the following class of quasilinear
elliptic problems in the upper half-space:

—div(p(z)|VulP~2Vu) = 0 in RY, .

p(z’,0)|VulP2Vu - v = h(2)|u|"?u — m(2)|ul*"?u, on RN g
For references in the study of elliptical problems with indefinite boundary conditions
we refer [51, 54].

We establish Liouville-type results proving that, under certain conditions, the size
of the constant C),,, given in the Hardy-Sobolev inequality (4) along with the ratio
h/m can lead to a nonexistence scenario. We employ a similar approach to that in
[35, 41]. To this, we use the Fibering method in combination with the trace inequality
(6).

The contents of the thesis are divided as follows: In Chapter 1, we prove a Hardy
type inequality and as consequence, we obtain some weighted Sobolev and trace in-
equalities. In the second chapter we apply theses results to establish existence and
nonexistence results for problem (5) via the Fibering methods. Finally, in Chapter 3,
we use our Sobolev trace embedding to address results of existence and nonexistence

for problem (7).
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Chapter 1

Some weighted Hardy-Sobolev
embeddings

In this chapter, we will present some results that are essential for the development
of the upcoming chapters. First, we will prove a Hardy-Sobolev type inequality (4) and
introduce new weighted Sobolev spaces. As a consequence, we will derive embeddings
of these spaces into weighted Lebesgue spaces.

It is noteworthy that our embedding results, as presented in the paper [24], can
effectively be applied to investigate the existence and nonexistence of solutions via a
variational framework for a broad range of elliptic problems in a zero mass scenario with
Neumann boundary conditions in the upper half-space. Additionally, we will establish a
Sobolev trace embedding that enables us to address existence and nonexistence results
for a class of quasilinear elliptic problems with indefinite nonlinear boundary conditions

in the upper half-space.

1.1 The weighted Sobolev space

Definition 1.1 Let C5°(RY) the set of the functions in C§°(RY) restricted to RY. For
p>1and vy >p—1, let us consider the weighted Sobolev space D,ly’p(Rf) defined as

the completion of the space C5°(RY) with respect to the norm

1/p
: = 14 an)"|VulPd ———d .
HUHD}/p(Rﬁ) (/RN< xn)"|Vul x—i_/nef (T an)— x

+
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Our initial purpose is to establish weighted Sobolev embeddings of the form
DyP(RY) — LYRY, (1 +zn5)7P),

for some p, ¢ > 1 and v € R. To this, we introduce the weighted Lebesgue space defined

by

- |l
LQ(Rf, (1+2y)"7P) = {u : Rﬂ\: — R measurable : /Rﬁ W

dz < oo} , (1.1)

equipped with the norm

] = / &d 1/q (1.2)
Ullgpyy *= R (1+xy)P v ' '

1.2 A Hardy-Sobolev type inequality

We begin by stating a Hardy-Sobolev type inequality, which will play a cen-
tral role in proving our main results in this chapter and throughout all this work.
For related Hardy-type inequalities on the upper half-space, we refer to the works
[18, 21, 23, 28, 32, 50|]. In the mentioned context, we are considering functions in
Cs°(RY), while in the aforementioned work, the inequalities are established for func-

tions in C§°(RY), as seen, for instance, in [21, Theorem 6.9].

Our Hardy-Sobolev type inequality is state as follows.

Theorem 1.1 (Hardy) Let N > 2 and 0 <p—1<~. Then, for every u € C°(RY)
it holds

|ul? —1/ / /
v ——d b Pdz’ < 1 K Pd 1.
& /Rf 0+ oy )P x+ O n lulP dz’ < Rf( +an)"|Vul? dz, (1.3)

where
_y—ptl

C
p7'y p

(1.4)

Proof. Let p > 1 and o be a real number to be chosen later. For any u € C§°(RY),

by the Fundamental theorem of calculus we obtain

(0+1)/ <1+$N>”|UIpdx+/ [ul? da” = _/ (L + 257" (Jul")ay da.
Rf RN-1 RN

+

16



On the other hand,

gp/ (1+ 23) uP~! | Vu| da.
RN

+

‘_/ (14 25) " (JufP)sy dz
R}

For a,b > 0, real numbers and ¢ > 0, we can use the Young inequality to get

p p—l p1
b < 1)ar-1 _ bP.

Taking into account that
p(1+ 2n) " Hul [Vl = p(1+ 23) P 7 (1 + 2y)? |Vl
we obtain

p/ (14 23) " HulPY Vu| dz <e(o + 1)/ (14 zp) P55 P da
RN

N
+ RY

p—1 \""
J 1 ol pd .
+(5(0+1>) /}RM( T o)V de

Combining the above inequalities, we get

<a+1)/ (1+3:N)”|u|pda:+/ ]u\pdx’§5(0+1)/ (14 1) 5 |y da
RY RN-1 R

N
+

p—1 \""
P — 1 ol pd .
+(5(0+1)) /Rf( +an)?|VulP do

Next, choosing ¢ such that

<0+1—1)L:0,
p)p—1

we have o =y —pand 0 +1 =7 —p+ 1> 0. Thus, one has

(a—i—l)(l—s)/

(1+2n)7|ul? dx—i—/
R

lu|P da’
1

<(L>p_l/ (14 zx)|Vul? dz
- 8<U+1) RN+ N ’

N
+

which implies

(0 + 1)P(eP™! — &P) /

N
R+

(1+ay)’|ulP dz + (o + 1)P el / JulP da’

RN-1

<(p- 1)?1/ (14 2x)|Vul” de.
RN+

17



Since the function f(g) = eP~! — &P, for € > 0 has it maximum at

p—1 1
gg=—— and f(g)=(p—1F " —,
0 (e0) = (p ) »

a simple computation shows that

1\” I
(g + ) / (14 2n)7|ul? dz+ <U * ) / lulP dz’ < / (14 2n)"|VulP dz,
p RY p RN -1 RN+

+

and this concludes the proof. [

As a consequence of Theorem 1.1, if we consider the seminorm defined by

1/p
Hu”'y:(/ (1+$N)”|VUI”dx> :
RN

+

we immediately obtained the following result that will be crucial for our purpose.

Corollary 1.2 For0 <p—1<~, |||y define a norm that is equivalent to ||.||D%,p(R$)
in the Sobolev space DP(RY).

Proof. From the definition of D}Y’p(Rf ) and a density argument we see that

P / 1p (N
P R Rl B < 1 "NV ulP DoP(RY). 1.
Con /Rf (1+an)P dr= Rf( +onfivulds, Yo e DR 1

In fact, if u € DIP(RY) there exists (u,) C C5°(RY) such that u, — u in D}P(RY).
By Theorem 1.1 we have
c;;w/ %dxg/ (1+ 28 ) [V P da.
7 ey (1 P RY
Then, passing to the limit we obtain (1.5).

Clearly we have |lull, < ||UHD;7P(R1)- On the other hand, from (1.5) we get

jul”

b = 1 7| VulP d —d
HUHDW(RQ) /Rf( +an)"|Vul x—i_/ﬂgf 1+ an) x

S(l—l—C’gﬂf)/ (14+2n)"|Vu|P dz
R}

=1+ Gl

and this completes the proof. [

18



1.3 The weighted Sobolev embedding

In this section we present some weighted Sobolev embedding, derived from the

Hardy inequality (1.3), that will be usefully in our applications.

Theorem 1.3 (Sobolev inequality) Let N > 2 and 0 < p— 1 < «. Then, there

exists a constant Cy > 0 such that

; p/q
_ful” dz <C | (1+ay)|Vufds, VueDIP(RY),
)P RN gl +
N
DIPRY) — LURY, (1+an)"7?),

whenever q € [p,p*] if 1 <p < N and q € [p,o0) if N = p.

Proof. First assume that u € C$°(RY) and we shall proceed with the proof in several
steps.

Step 1: Assume l <p< Nandp—1<~vy<p.
By the classical Gagliardo-Nirenberg-Sobolev inequality(see [53, 31, 44]) we have

(Lr

which holds for every 1 < p < N. Thus, for ¢ € [p, p*], by the interpolation inequality

(N—p)/N
r dx) < C/ |VolP dz, Vv € C5°(RY), (1.6)
RY

(A.6), there exists o € [0, 1] such that ¢ = (1 — a)p + ap* and

p* g
/ B S
oy (L 2n)r
/|up*dx :
Y

(1-a)® a%
/ (1+2zy)"|Vul|P dz / |Vul? dz
RN RN

+

r
q

(1—a)ptap*

/ (1+xn)"|VulP dx)
R

C'/ (14 zn)|VulPde.
RY

19



Step 2: Next, assume 1 < p < N and v > p.

Once again, by interpolation, it is sufficient to prove that

|Up* (N—p)/N
_ ¥ p oo (M IV
[agmte) e [ aengiein wegrE. a7
+ +

Defining v =: u/(1 + zx)’ with u € C;°(RY) and using a simple computation we see

that

and consequently, there exists a constant C' = C'(p, o) > 0 such that

|Vul? |ul?
P < )
Vol < © ((1 + zN)PT + (1 + xp)lotDp

This, together with (1.6), implies that

uf? e Vul? Jul?
/ B Ul — <C / ( _ — ) dr. (1)
ry (1+an)7 ry \(L+an)P7 (14 ay)othP

Choosing o < 0 such that op* = p — v we deduce that

(v —p)(N —p)
N

—op = <YT—=p<7

and hence (o0 + 1)p > p — ~. Thus, from (1.8) we get

[ - (N—p)/N . IVl fuf? |
—d < +
/Rf (14 xy)P & - /Rf ((1 +ay)P”  (1+ xN)(oH)p) v

|uf? )
<C 1 "NWVulp + ——— | d
< /M (( +xn)" |Vl +(1—|—:CN)P—7 T

and by the Hardy inequality (1.3) we conclude that (1.7) holds.

Step 3: Assume that p = N.

[

For v € C§°(RY), applying inequality (1.6) with p =1 and v = ey We get
(N—1)/N
N2/(N-1) N N-l|yy
/ B <clol [ I _gqpyon [ TV,
RY (14 zy) N1 ry (14 an)7* gy (L+xn)7

Choosing 0 + 1 = N — v and using Young’s inequality, we obtain

/ [l ™Vl _/ [u[ N1+ 2NVl
ry (1+an)7 gy (L+azy)rt/N

N
+

20



Jul™ N
<C ———————+ (1 +zn)"|Vu|" | dz,
RY (

14+ axy)N=7

where we used that

l) NN 1.9
(74 ) v y. (1.9)
Since Jg]_vl < N — v, using Theorem 1.1 we get

/ Sz gc/ (1 + zy)"|VulY dz. (1.10)
R RY

vy (T4 an)V

Thus, interpolation inequality (A.6), with 6 € [0, 1] such that ¢ = (1—0)N+60N?/(N —
1), implies

_oN N
fule N ful™ e V- N\
/ ————dz < / ————dz ——dx
Rﬁ (1+CIZ'N)N7'Y Rf (1—|—£EN)N7'Y R_J'\_f (1—|—$N)N*'Y

(1-0)
<C </ (1+ a:N)7|Vu|Ndx>
Y

—C/ (1+2y5)"|VulY dz
RY
for any ¢ € [N, N?/(N — 1)]. Since N < N +1 < N?/(N — 1), in particular we get

N/(N+1)
|U|N+1 N
——d <C 1 v dzx. 1.11
/M (1+an)N- ! - /Rf( Fon) [Vl de (L11)

u|N+1
(I+zn)°

Once again, applying (1.6) with p =1 and v = and using Young’s inequality

we have

(N-1)/N
ju w1 jul V41 ul¥ | Vul
—UNdilf SC —mdl' + —de .
RY (14 xy)N-1 ey (1+ ) ry (1+2n)

Using Holder’s inequality and (1.9), we obtain

N N1 /N
/ |u) ]Vu]a dx:/ |u|™( +$NZ+ /]|VVu] e
rY (L+2y) gY (T4 an)7

(N-1)/N

| |L2 1/N
uNfl

——d 1+ "VulNd .
/Rf (ELE x (/]RN< xn) | Vul :1:')

+

Thus, from (1.10) and (1.11) one has

N(N+1) NF1
/ de SC/ (1+2n5)|Vu|" do
gy (L4 zn)¥7 RN

21
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and interpolation implies

/ [ul d v < C/ (1+2n)|VulV d
——dz T U T,
ry (1+an)N7 - Jry "

N(N+1)
N—1

|u|Nk/(N71) (N=1)/k
/ T e gc/ (1+ 2n) | VulY de.
ry (1+zn)V 7 RY

Now, given ¢ € (N,00), we can choose k > N such that ¢ € (N, Nk/(N — 1))

for any ¢ € [N, ]. Reiterating this argument with k = N +2, N +3,..., we get

and by interpolation, we can conclude the desired inequality for smooth functions.
Let u € D)P(RY) and (u,) C C3°(RY) such that u, — u in D}P(RY). From the

smooth functions case, we see that

_ 4 p/q
/ de <C | (14zy)|Vu, — Vu,| de — 0,
RY (1+an)P RY

Thus, (u,) is a Cauchy sequence in LY(RY, (1 + 2)?7?), which is a Banach space in
view of Theorem A.1. Therefore, there exists w € LY(RY, (1 + )" P) such that

u, = w in  LYRY, (1+zy)"7P).

Given that u, — u in LP(RY, (1 + zy)77P), we have w = u. Thus, passing to the limit

in the inequality

p/q
|, |7 /
—d <C 1+ | Vu,|P dz,
(/M Atz ) = {1+ o) Vel de

+

and we obtain the desired result. ]

1.4 A Sobolev trace embedding

In this section, we present the trace embedding results that enable the treatment
of problems with nonlinear boundary conditions (see Chapter 3). To this, we will

introduce here a new weighted Sobolev space.

Definition 1.2 For p > 1 and v > p — 1, we consider the weighted Sobolev space
EVP(RY) defined as the completion of the space C3°(RY) with respect to the norm

1/p
lullezn ey = (/ (14 zn)7|Vul? dx+/ Wpdﬂ?) -
RN RN-1

+
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As a consequence of Theorem 1.1 we have the following result.

Corollary 1.4 Let 0 < p— 1 < 7. In the space EP(RY), the norm || - Hgé,p(Rf) is

equivalent to || - ||. In particular we have
£19(mY) = DI(RY).

Proof. If 0 < p— 1 < 7, by inequality (1.3), the definition of Ewl’p(Rﬂ\:) and a density

argument we see that

Cgﬁl/ lulP dz < / (1+an)|VulP dz, Yue EP(RY). (1.12)
RN -1 R

N
+
In fact, if u € E}P(RY), there exists (u,) C C3°(RY) such that u, — u in E7(RY).

By Theorem 1.1 we have
crt /]RN_1 |, [P de < /R_‘A_’(l +zn)"|Vu,|Pde, Yue Ei’p(]Rﬂ\:).
Thus, taking the limit we obtain (1.12). Then, for all u € £}?(RY) we have
lully < llullgrr gy and lullgre gy < Cllull;.
Since |||, is equivalent to H.H.D#,p(Ril), by Theorem 1.1, we have
eio®Y) — CrEm e _ cEmy) — cE@n e _ piogy)

]
This fact allows us to obtain the following Sobolev trace embedding which plays

a fundamental role in our applications:

Theorem 1.5 (Trace embedding) Let N > 2 and 0 < p—1 < . Then, there ezists

a constant Cy > 0 such that

p/q
(/ |u|qu') < C’O/ (1+ay)|VulPdz, Vue DIPRY), (1.13)
RN-1 RN

+
which s equivalent to

DLr(RY) — LI(RYY),

forall g € [p,p.] if 1 <p <N and q € [N,00) ifp=N.
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Proof. First, assume u € CEO(RJX). If 1 < p< N, we can use the trace embedding

(see [26, 43]) and obtain

(Lo

Given g € [p, p.], by the classical interpolation inequality we have

P dx’) " < C/ |VulP dz < C/ (1+an)|VulP dz, Vu e C3*(RY).
RY RY

HUHLQ(RN—I) < HuH%p(RNfl) ““HIL;*Q(RN—l)a

with a € [0, 1]. Then, by using the Hardy inequality (1.3) we obtain

p/q @
(/ \u]qda:') < (/ ]u\pdx’) (/ lu p*dx')
RN-1 RN-1 RN—1
o l1—a
< (/ (1 +xN)7|Vu|pdx> (/ (1 +1:N)7|Vu|pdx>
RY RY

+ +

:/ (1+ z) | VulPde.

RY

p(l—a)

Now, suppose that p = N, let ¢ > N and o > 0 to be chosen later. First, we

: > 9 ]
q_ _

< Jul [Vl /°° |ul?
< ———day+o ———— dxy.
—q/o Lran)y 0y ey
By integration, we get

-1y q
RN -1 gy (L+an)7 ry (1+an)°

Choosing o > 0 such that ]\Uf—fl > N —~, we have that 0 +1 > N — v whenever v > 0.

observe that

Then, we can apply Theorem 1.3 to obtain a constant Cy > 0 such that

s o N
7 dx < " dz < 1 MVulN d .
/Rf(l—l—xzv)"“ x_/M(lexN)N_7 I_Co(/RN( +an)"|Vul x)

+

On the other hand, by Holder’s inequality, we have

1|y | |(q];1)11v (N-1)N 1/N
/ de < / U—UN dz / |VulV da :
ey (1+zn)7 BY (1 +ay)~-1 RY

Since (¢ —1)N/(N — 1) > N, once again by applying Theorem 1.3, we get

|u|?t Vul | T (N-1)N 1N
u u wl N1

e < | | |t eIVl d

/Rf T+ay) </M (1+xy)N7 x) (/Rf< +an)"|Vul :U>
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+

a/N
<C} (/ (1 +xN)7|Vu\Nd:c> ,
RN

for some constant C; > 0. Combining the above inequalities, we conclude the proof of
the inequality for functions in C§°(RY).

Now, let u € D}P(RY) and consider a sequence (u,) C C5°(RY) such that
Up = u in D#”(Rf).
By Corollary 1.4, we see that
: (RN
U, —u in EP(RY).
By inequality (1.13) for functions in C5°(RY) we have
p/q
(/ |u, — um|qu’> <C [ (14zy)|Vu, — Vu,|’ de — 0.
RN-1 RY
Then, there exists w € LI(R¥~1) such that
u, —w in  LIRNT).
By the convergence in £}P(RY) we have
u, —u in LP(RN™Y),

and therefore u = w. Thus, taking the limit in the inequality

p/q
(/ Iun!qdw’) < C/ (14 2n)"|Vu,|P dz
RNfl RN

+

we conclude the proof of Theorem 1.5. [

1.5 Some comments

Some questions remains open with respect to the D#p(Rf ) theory:

e We observe that the condition v > p — 1 is sufficient to prove the Hardy type in-
equality (1.3), which aligns with the sufficient condition proven in [39]. However,

determining a necessary condition on «y for (1.3) remains an open question.
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e If v > p, we observe that
D (RY) — WHP(RY),

resulting in bounded state solutions. Therefore, a natural question arises: what

happens in the case when p — 1 < v < p?
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Chapter 2

Application 1: Liouville type and
Existence results for a quasilinear

elliptic problem via Fibering method

In this chapter, we present the results obtained in the paper [24]. Our discussion
focuses on Liouville-type results and the existence of solutions for the following model

of quasilinear elliptic problems:

V() VoP V) ool bl RE
P1
|VulP2Vu - v =0, RN
where v is the unit outer normal to the boundary ORY := RV 1 < ¢,s < p* if

l<p<Nandl<gqg,s<oxifp=N.

1
loc

Throughout this chapter, we assume that p, a, b € L{ (RY) and are positive
functions. For 1 < p < N, we denote by p* := Np/(N — p) the critical exponent for
the Sobolev embedding and p* = oo if p = N.

From a mathematical perspective, the nature of problem (P;) is described ac-
cording to the behavior of the competing terms a(x)|u|?%u and b(z)|u|*"?u as de-
termined by the integrability properties of the ratio a(x)Y/?/b(x)Y* (as discussed in
Alama-Tarantello |7, 9]). The interplay between the weight functions a(x) and b(z)
significantly impacts the existence and nonexistence of solutions to (P;) and has gar-
nered substantial attention among researchers, see, for instance, [13, 30]. We mention

that the weight functions are not necessarily spherically symmetric. Thus, we are mo-
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tivated to pursue new weighted Sobolev embeddings to enable variational frameworks
in diverse settings.

In the works [41, 35|, based on a Hardy-type inequality due to K. Pfliiger, [47] (see
also [34]) and the Fibering Method, it was established the existence and Liouville-type
results for a similar class of quasilinear elliptic problems with Robin boundary condition
in an unbounded domain 2 C RY with noncompact smooth boundary, 1 < p < N,
q,s € (1,p*), p € L>®(2) N L*(0N) and 0 < py < p(z), where the potentials a and b
vanish at infinity.

It is important to mention that the approach in [41] used to treat a problem
with Robin boundary conditions cannot be used to study problems with Neumann
boundary conditions because their argument is based on K. Pfliiger’s inequality, which
does not allow one to eliminate the boundary term. We also highlight that based on
a Hardy-type inequality in [2]|, the existence and nonexistence results for semilinear
elliptic problems with Robin boundary conditions were addressed using a variational
approach. For related results, see also [30].

Our approach here is based on a new class of Hardy-type inequalities, which allows
us to consider problems with Neumann boundary conditions. We also emphasize that
we have determined the associated constants for these inequalities. Similar to the
classical Hardy and Sobolev inequalities in RY, we believe that we have obtained the
optimal values of the associated constants, in contrast to the results in [41], where the
exact constants are unknown. Hence, we gave a partial answer to a question raised
in [41]. With these results, we obtained more precise a priori estimates for eventual
solutions of (P;) to obtain Liouville-type results. Moreover, we have incorporated the
extreme scenario where p = N into our analysis.

Henceforth, we presume that the weight function p adheres to the following tech-

nical hypothesis:

(Hp) there are constants pg > 0 and v > p — 1 such that

p(z) > po(l+an) ae. in RY.

First, we must introduce our variational setting to describe our results for (P;).

Let C5°(RY) be the set of all functions u € C§°(RY) restricted to RY
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Definition 2.1 Assume assumption (Hy). Let us consider the weighted space E de-

fined as the closure of C5°(RY) with respect to the norm

nwr:(éN

+

1/p
p(x)|VulP dx) :
Clearly, from (Hy) we have the continuous embedding
(B[ 1) = (D7 (RY) - [1)-
Here, by a weak solution of (P;) we mean a function u € E such that

/]RN p(2)|VulP2VuVedr = / (a(x)|u|?2u — b(x) |u|*"2u)p dz, (2.1)

N
R+

holds for every ¢ € C5°(RY).

2.1 Main results

Before establishing our main results, let us start by introducing some notation

that will be used throughout. We denote by

y—p+1
Cpy =
p

the constant given in the inequality (1.3) and

(t—r)tr
== g

n(Tchat) = ( it r< q <t. (22)

2.1.1 Liouville-type results

To state our nonexistence results, we shall introduce the following class of func-
tions:

Ko = {k € O(RY, (0,00)) : k(z)(1+zn)"™" € LOO(M)} .

Our first concern is to assert nonexistence when s < ¢ < p.

Theorem 2.1 (p-sublinear case) Assume (Hy) and suppose that b € Ko N L*(RY).
Ifl1<s<gqg<p<N anda/be L>®(RY) with

H% (bopc_:g)q—s <n(s,q,p), (2.3)

‘p_s

[e.9]
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then (P1) possesses only the trivial weak solution. Hereafter, by > 0 denotes a constant

such that
b(z)(1+zn)"" <by in RY.

Remark 2.1 Straightforward computation shows that, for A\ > 0 sufficiently small, the

functions,
a(z) = 2 TIN) T _ (Ltay)?
(14 [a[)™ (14 Jz])%

satisfy the assumptions of Theorem 2.1 whenever max{N, N + v — p} < 0y < b;.
In our second nonexistence result, we address the case where p < ¢ < s.

Theorem 2.2 (p-superlinear case) Assume (Hy) and suppose that b € Ky. If 1 <
p<N,p<q<s<p* anda/be L*(REY) with

s—p [(bgCP\ "1
7 ’ ( . pﬁ) < 77(1); q, 8)7 (24)
blloo Po

then (Py) possesses only the trivial weak solution. Moreover, the same result holds if

a

p=Nandp <qg<s<oo.

Figure 2.1: Nonexistence of solutions for (P;)

Remark 2.2 Typical examples of functions satisfying the assumptions of Theorem 2.2

are

a(z) = M1 +xx)" and b(z) = p(l + zx5)%,
with 81 < 0y < v —p and A > 0 sufficiently small or > 0 sufficiently large.
The basic idea to prove Theorems 2.1 and 2.2 relies on refining the arguments

presented in [41] by using a specific key estimate.
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2.1.2 Existence results

To establish our existence results, it is necessary to impose additional hypotheses
on the weight functions a and b to ensure the compactness of the Sobolev embedding,
thereby enabling the application of the Fibering Method as demonstrated in papers

[35, 41]. To this end, we introduce the following class of functions:

K= {k: e C(RY, (0,00)) such that lim k(z)(14 zy)P"7 = 0} .

|z|—o00

We assume 1 < p < N to state our existence results. Our first result considers

p—superlinear case p < s < g or when s < p < q.

Theorem 2.3 If (Hy) holds, then (Py) has a nontrivial and nonnegative weak solution

when one of the following conditions occurs:
i) p<s<qg<p*anda,beK;
i) 1<s<p<qg<p,ack,andbe LYRY)NK,.

On our second existence result, we treat the p—sublinear case s < ¢ < p or when

qg<p<s.
5
pl--- BN
T+ R i
1 p ptd

Figure 2.2: Existence of nontrivial solutions for (P;)

Theorem 2.4 If (Hy) holds, then (P1) has a nontrivial and nonnegative weak solution

when one of the following conditions occurs:
i) 1<qg<s<pandabe L"RY)NKy;
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i) 1<qg<p<s<p,acLl'RY)NKyandbeK.

To present our third existence result, we consider the functionals defined on F by

A(u):/RNa(:E)|u|qu and B(u):/ b(x)|ul® dz. (2.5)

Y
We note that under the assumptions of Theorem 2.2, for v € E, the following key

inequality holds true (see Lemma 2.9)

5s—q
AW <1l B < ntpas) (1) BTl

We consider the existence of solutions for (P;) in a subset of the complementary case

of this inequality. Precisely, considering the set

Dy { € B Ay > (g) 7 n(p,q,s>B<u>q-p||u||p<8-q>}7 (2.6)

a counterpart of Theorem 2.2 reads as follows.

Theorem 2.5 Assume that (Hy) holds. If a,b € K, p < q<s <p*, Dy #0 and

al/q sq

m € Ls—a (Rf), (27)

then, (P1) has a nontrivial and nonnegative weak solution.
Remark 2.3 The functions a = b = \k, with k given by
kx) = (1+an) (1 + |2]) 7,

satisfy the assumptions of Theorem 2.5 for > max{N, N + v — p} and X\ sufficiently

large. In fact, first, we observe that

[%)“ ] T (o) = AL+ ) (L o) € LR
b(l‘)l/s o

whenever § > N +~v —p. For u € E\{0} fized, one has

s(p—q)
Ls(RY k)

A(u) ™ [B(u)™ = X ul| %G ol

N
La(RY,

Since s > q, for A sufficiently large we see that
AN
A > (1) it Bl
and hence Dy # ().
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plocoa M

Tp---- R m-
1 p ptd

Figure 2.3: Existence of nontrivial solutions for (P;)

Finally, we obtain a existence result for the case s < ¢ < p. Similar to the

previous existence, we assume that the set

¢ {u B AWy > (g)’”ms,q7p>B<u>p—q||u||p<q—s>} (25)

is nonempty. This condition, similar to the case when D; # (), indicates that a(z) is
sufficiently "large" relative to b(x), in contrast with the nonexistence case in Theorem
(2.1) when occurs A(u)P~* < (s, q, p)B(u)P~||u|[P4=*) for all u € E\{0}. Furthermore
this combination of the exponents s,q,p we are able to prove the existence without
an extra hypothesis of integrability for the quotient a(z)'/7/b(z)"/* as (2.7) in the case

p < q < s. Our fourth, and last existence result for (P;), is the following:

S

A N R

Lo
1 P »q

Figure 2.4: Existence of nontrivial solutions for (7P;)

Theorem 2.6 Assume (Hp), s <q<p <N and a,be L' RY)NKo. If C; # 0, then

(P1) has a nontrivial and nonnegative weak solution.
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The proofs of Theorems 2.3, 2.4, 2.5 and 2.6 are based on the classical Fibering
Method; for great references in this theory, see [25, 35, 41, 49, 48|.

Remark 2.4 We finally highlight that our results for (Py) can be extended to a more

general class of problems of the form

—div(p(z)|VulP~2Vu) + )\% = a(z)|u|"*u — b(z)u|*?u in RY,
p(2)|VulP2Vu - v+ plulP~?u = 0, on RN™L,
In fact, considering the norm
po_ p Jul” P g
Jully, = /M p(@)|Vul? dz + )\/M e [ quraa

and invoking Theorem 1.1, we can see that, for certain conditions on the parameters
A, o depending on py and C,,, the norms || - ||x, is equivalent to || - ||. Therefore, the

same approach can treat this more general class of problems.

It is worth mentioning that if ¢ < s = p, the Direct Methods in the Calculus of
Variations ensure the existence of solutions to (P;). In the case that s = p < ¢, the

mountain-pass approach can be applied to establish the existence of solutions to (Py).
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2.2 Proof of our Liouville-type Results

In this section, we shall focus on proving our Liouville-type results. The following

estimate is fundamental in our analysis.

Lemma 2.7 (key estimate) Assume condition (Hy) and 1 < s < g < p. Ifb €
LYRY) N Ky, then B is well defined in E. In addition, if a/b € L=(RY), then

A()P < <

In particular, A is well-defined. Furthermore, if (2.3) holds, then

(p—s) |:boc p

] ) B(v)P7|v|P9), Vv e E. (2.9)
Po

[e.o]

A < (s, q.p) B ol o e E\{0}. (2.10)

Proof. Since b € Ky, we have b(x) < by/(1 4+ zx)?~7. Thus, by Holder’s inequality,

s/p
B(v):/ b7 6P| da <\|b||g’1(ﬂ;éj (/ b]v|pda:>
RY RY

+
s/p
p
<b5/P b (p—s)/s / ”U’ d
|| ||L1 RN Rf (1+$N)p7’y x )

which in finite by Theorem 1.1 and assumption (Hy). Since a is nonnegative, we get

a(l+ zn)P~7 < bya/b, which implies
a1+ 2l < bo | 5| (2.11)

If s < g <pwe can write ¢ = (1 — a)s + ap with a = (¢ — s)/(p — s) € (0,1) . Thus,
by Hélder’s inequality,

l1-a a
Av) = / alv|?dz = / (alv|*)'*(alv|P)*dz < (/ a|v|sdx> (/ alv|? dx)
RY RY RY RY

+

Using that 1 —a = (p—q)/(p — s) we obtain

Av)r= < (/RN alv]* dm) a (/RN alvl? dx) B . (2.12)

Now, observe that
[ avlan= [ ) ar< 3] B,
RN RN b b o0
+ +
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Thus, (2.11) and Theorem 1.1 gives

[ ol ar < o+ oyl [0 ar < 3] 2 e
alv|Pdz < ||a x ———dz = =2

RY a " ey Loy "l po

Therefore, plugging the last two inequalities into (2.12), we estimate (2.9). |

Throughout this chapter, we will consider the following auxiliary function:
Gi(r,v) = A()r"? = B(v)r*?, r>0 and ve€E. (2.13)

Lemma 2.8 Assume the assumptions in Theorem 2.1. For each fized v € E\{0} the

function G1(.,v) has a unique critical point which is a mazimum and is given by

7(v) = (M>l/(q3). (2.14)

A(v)(p =)
Moreover,
_ Awps \ MY
G1(7(v),v) = max Gi(r,v) = (n(S,q,p)B(v)p_q) > 0, (2.15)

where n(s, q,p) was defined in (2.2).

Proof. Note that for each v € E\{0}, we have

?007 U) = (q - p)A('U>7’q7p71 — (5 — p)B(’U)TSipil,
”
Thus,

0Gh _ (B(u)(p _ 5)) 1/(g—)

_T7U:0<1;>7":7"U: NN T .

or W= awe—0
Moreover, we can see that lim, ;. Gi(r,v) = 0, lim, ,o+ G1(r,v) = —oo and due to
(2.14),

A@)r(o)T = L2 Boyr(v)
p—9q

Since,

(=)
LD (%)w—pmq_s)
(



Gl ) o) [

Figure 2.5: Maximum of G1(.,v) for s < g < p.

we can conclude that Gi(.,v) has a unique global maximum at r = 7#(v) > 0. [ ]
Now we are ready to present the proof of Theorem 2.1.
Proof of Theorem 2.1. Assume by contradiction that (P;) has a nontrivial weak

solution ug € E. Then, from the definition (2.1), Lemma 2.7 and a density argument

imply
luollP = A(uo) — B(ug) = G1(1,uo).

On the other hand, by estimate (2.10), we have
Auo)?=* < n(s, 4, p)B(ug)’[|uo|[*~,
which combined with (2.15) gives G1(7(ug), uo) < ||uo||?. Thus, we get
G1(7(uo), uo) < [[uoll” = G1(1, uo),

which contradicts the fact that 7(ug) is the maximum of G;(.,uo) and this concludes
the proof of Theorem 2.1. [

Next, we shall focus on the proof of our second Liouville-type result.

Lemma 2.9 Assume condition (Hy), p < q<s<p* forp< N andp < q<s<
forp=N. Ifbe Ky, then B is well defined. In addition, if a/b € L*(RY), then

o= ([

In particular, A is well-defined. Furthermore, if (2.4) holds then

s—p |:b00p_’£

s—q
] ) B(v)q_pHvHP(S_q), Vv e E. (2.16)
Po

(e}

A(v)*? < (p,q,5)B(0)"?||v][**~7, Vo € E\{0}. (2.17)
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Proof. If b € Ky and v € E we see that

lv

B = blv|°de < b —d
(U) /]Rf |U’ r= O/RQ (1+$N)P—’Y Z,

which is finite thanks to assumption (Hy) and Theorem 1.3. Using again that b € Ky

and a is nonnegative we have a(1 + xy)P~7 < bypa/b, which implies

a
la(l +28)" oo < bo ||

Since p < ¢ < s we can write ¢ = (1 — a)p + as with a = (¢ — p)/(s — p) € (0,1) .
Thus, by Hoélder’s inequality we get

Aw) = /RN alv]? dz = /RN(aW)la(a\vyS)a dz < (/RN a|v|”dx> - (/RN a|v]3dx>a

+ + +

Taking into account that 1 — a = (s — q)/(s — p) we obtain

A(v)*P < (/RN a|v|pd93) </sz a]v|5d95)q_p. (2.18)

+
Now, thanks to Theorem 1.1 and (2.11) we get

s—q

. jop a G
aloldz < a(l + on ) e | Ao de <to|F ] 2Tl
R gy (14 zn)P bl po

and notice that

fyobiraa= [ oty an< ] o

Therefore, plugging the last two inequalities into (2.18), we obtain estimate (2.16). =
Arguing along the same lines as in the proof of Lemma 2.8, we can obtain the

following result:

Lemma 2.10 Assume condition (Hy), p<q<s<p*forp<N andp<q<s<
forp=N. Ifb€ Ky and a/b € L=(RY), then for each v € E\{0} the function G4(.,v)
defined by (2.13) has a unique critical point at

7(v) = (w>l/(sq). (2.19)

B(v)(s —p)
Moreover,
B A(v)*? 1/(s=q)
G1(F(v),v) = max Gi(r,v) = (77(]97 . s)B(v)qp) > 0. (2.20)
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Proof. With a direct calculation we have

L (1,) = (g — PP A) — (5~ ' B,
Then, we observe that 0 = %(r, v) if, and only if,

rs4 — q _pA(U)
s—pB(v)’

which implies that the only critical point of G(.,v) is given by (2.19).

Now we observe that lim, ., G1(r,v) = —o0, lim,_,o+ G1(r,v) = 0 and by (2.19)

S$—P
Thus, since
G(7(v),v) = A(v)r ()T = Bv)r(v)*?
s—q e
_ A q—p
(2=1) At
(s—q A)(q —p) (g—p)/(s—q)
= A(v)
s—p B(v)(s = p)
_(s—q)(g—p)* A@w)*
(s—p) B
s—p 1/(s—q)
_ ( A(v) ) -0,
n(p, q,5)B(v)r?
Y
G1(7F(v),v) p-----= ‘
1 r
r(v)
Gl(r7 ’U)
Figure 2.6: Maximum of G;(.,v) for p < ¢ < s.
we can conclude that Gy(.,v) has a unique global maximum at r = 7(v) > 0. n

Now we are ready to present the proof of Theorem 2.2.
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Proof of Theorem 2.2:. Arguing by contradiction, suppose that (P;) has a non-
trivial weak solution wy € E. From the definition (2.1), Lemma 2.9 and a density
argument we have

luo||” = A(ug) — B(ug) = G1(1, up). (2.21)
On the other hand, by estimate (2.17), we have
Aug)*™ < (p, . ) B(uo)®® [[uo|[*~.
This, together with (2.20) implies that G1(7(ug), uo) < ||uo||’. Therefore, we obtain
G1(T(uo), uo) < [luoll” = G1(1, uo),

contradicting the fact that 7(ug) is the maximum of G;(.,u¢) and this concludes the

proof. [

2.3 Proof of our Existence Results

This section is devoted to proving Theorems 2.3, 2.4, 2.5 and 2.6. To this purpose,

we shall first prove a compactness result.
Lemma 2.11 Assume condition (Hy) and 1 <p < N.
1. If k € LYRY) N Ko, then the embedding
E < L9 (RY, k(z)) (2.22)
18 compact for all 1 < g <p < N.

2. If k € K and p < N, then the embedding (2.22) is continuous for q € [p,p*] and
compact for q € [p,p*). If p = N, the embedding is compact for all q € [p, o0).

Proof. If k € L*(RY), by Hélder’s inequality,

L, a/p
/k|u|qu:/ R Rt d < (k)T /k:|u|pdx |
RY RY RY

+ +

Also, since k € Ky we have k(z) < ko(1 4+ zx)?"? and by Theorem 1.1 and assumption
(Hy) we obtain

g » a/p g
[k <l (/ ﬁ) < ORI ull.
+

+
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Now, if (u,) C E is a bounded sequence, up to a subsequence, we can assume that
up = 0in E. Given € > 0 there exists R = R(¢) > 0 such that |[k|[11 (s, 0)nry) < €

and hence
/ klua|fde < Ce'7 ||un|? < Cie'7 .
B&NRY

To complete the proof for the first case, it is enough to use the classical Sobolev compact
embedding to obtain the compact embedding £ < WP(B}) < L1(B},).

Assuming k € IC, we have that k(z) < Cy(1 + zx)?P for some constant Cy > 0,
which implies that the embedding is continuous by Theorem 1.3 and the assumption

(Hp)if 1 <p< N and ¢ € [p,p*] or q € [p,00) if p= N. For R > 0, we can write

J

If (u,) C E is a bounded sequence, up to a subsequence, u, — 0 in E. Since the

k(x)|ul?de = /+ k(x)ul|?dx +/ k(x)|u|?dz.

f 5 (BymY

embedding £ — W'P(B}) < L1(B}) is compact for all ¢ € [p,p*) if 1 <p < N or
q € [p,00) if p= N, it holds

/ k(x)|u,|?de < C/ |up|?dz — 0. (2.23)
Bh B}

R
Given ¢ > 0, since k € K we can choose R = R(e) > 0 large enough such that

k(z)(14 xn)P™7 < e for any x € B NRY, which implies

q
/ k()| u,)? d <5/ Gy < e (2.24)
(B)enRY Bh)erry (1+ay)P7
The proof of the second case follows from (2.23)-(2.24). u

To prove our existence results, let us consider the functional I/ : E — R associated

with (P;), defined as follows:

1 1 1
I(u) = ]—)Hqu - gA(u) + gB(u), (2.25)
where A and B are defined in (2.5).
Straightforward computation shows that I € C'(E,R) and critical points of I
are weak solutions of (P)(see [20]).
To prove that I has a critical point, we shall use the Fibering Method [25, 48].

To this end, we proceed with some basic results.
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Lemma 2.12 Let 1 < p < N and ¢ < min{s,p} or ¢ > max{s,p}. Then, for each
v € E\{0} there exits a unique real number r(v) > 0 such that the pair (r(v),v) satisfies
the equation

|v]]P = r(v)TPA(v) —r(v)* PB(v) = G1(r(v),v). (2.26)
Furthermore, the map r : E\{0} — R belongs to C'(E\{0},R) and pr(uv) = r(v) for
all w >0 and v € E\{0}.

Proof. Ezistence: Consider the function f : (0,00) x E' — R defined by
f(r,0) = [[olPr?= + B(v)r*™1 — A(v),
and note that f(r,v) = 0 if and only if (2.26) holds. If v € F\{0} and ¢ > max{s, p}

we have Tlg(r)lJr f(r,v) = oo and TEIEOOf(T,U) = —A(v) <O0.

Y

—A(v) p----------- o5

Figure 2.7: Graph of f(.,v) for ¢ > max{s, p}.

In the case ¢ < min{s, p}, it holds lim, ,o+ f(r,v) = —A(v) < 0 and lim,_, f(r,v) =

Q.

f(r,v)

—A(v) /

Figure 2.8: Graph of f(.,v) for ¢ < min{s, p}.

Thus, in any case, by the Intermediate Value Theorem, there exists r(v) > 0 such

that f(r(v),v) =0.
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Uniqueness: Fixed v € E\{0}, suppose that there are r,7o > 0 satisfying (2.26).
Consequently,

[olPri™ + Bv)ri™ = A(v) = [jo]|"ry™ + B(v)ry™,
which is equivalent to
[ol[P(ry™" = 57" + B(v)(ri™* = ry7") = 0.

Therefore, 71 = ry and so the map r : E\{0} — R satisfying (2.26) is well defined.

Regularity: To prove that r belongs to class C!, we observe that

of

5, (1) =(p - Q" llP + (s = ) B()r " # 0, in (0,00) x E\{0}.

Given v € E\{0}, using the implicit function theorem(see [16]), we obtain open sets
J CRand V C E\{0} containing r(v) and v respectively, and a C*-function 7 : V' — J
satisfying

7(v) =r(v) and f(r(w),w)=0, YwelV.

By the uniqueness 7 = 7 in V and therefore r is a C'-function in V. Since v € F\{0}
is arbitrary, we obtain r € C'(E\{0},R).
Finally, given p > 0 and v € E\{0} we have that f(r(uv), pv) = 0, that is,

Afv) = = (ol ol + 0 (o)1~ B(o) (2.27)
Since f(r(v),v) = 0, we have
A(v) = r()P ol + r(v)"* B(v),
which combined with (2.27) implies
0= ()™ = (@) ol + (e 0r(e0)™ = () ) B,
Thus, (pr(uv))P~? = r(v)P~% and this concludes the proof. n

Remark 2.5 Suppose that there exists an open Q C E\{0} and r € C'(Q,R) such
that (r(v),v) satisfies (2.26) for each v € Q with r(v) # 0 in Q, that is,

[o][” = ()T A(v) = r(v)* P B(v). (2.28)
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Then, we have

I(r(v)v) :T(p%)pnvnp — #:)(IA(U) + T(S)SB(U)
11 o, (1 1 s
= (1—? — 5) A(v)r(v)? + (g - 5) B(v)r(v)*.

In particular, if r > 0 and rv is a critical point of I, it holds
(I'(rv),v) =0,
which is equivalent to (2.28).

The above remark motivates us to consider the reduced functional defined by

T(v) = I(r(v)v) = (- - -) A()r(v)? + (1 - 1) B(v)r(v)°. (2.29)

s P

Next, we shall need the following result to characterize the fibering method.

Lemma 2.13 Let H € C'(E\{0},R) such that (H'(v),v) # 0 if H(v) = 1. Ifv. € Q
is a critical point of T under the constraint H(v) = 1, then u = r(v.)v. is a critical

point of I.

Proof. Let r € C'(€,R) as in Remark 2.5, that is, for each v € Q; C F\{0} the pair
(r(v),v) satisfies (2.26), more specifically

[o][ = r(0)*PA(v) = r(v)* " B(v).
Then we can define Z : 2 — R as in (2.29) and
(I'(r(v)v),v) = 0,Vv € Q. (2.30)
In fact,

(I/(r(0)0). v) =r(0) ol = (o) Aw) + () B(v)
=r (P ol = r()* P A@) + () 7B)] = 0

If v, is a critical point of Z under the constraint H(v) = 1, by the Lagrange Multiplier
Theorem(see |37, Proposition 14.3]), there exists A € R such that

T'(v) = AH'(v,). (2.31)
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On the other hand, by the definition of Z and (2.30) we have
(Z'(v),w) = r(){I"(r(v)v), w) + (' (v), w){I'(r(v)v),v) = r){I'(r(v)v),w) (2.32)
for all w € E. Then by (2.30) and (2.31)
0 = 7(ve)(I'(r(ve)ve), ve) = (T'(ve), ve) = AH(ve), ve).
Since (H'(v.),v.) # 0 we have that A = 0 and hence, by (2.31) and (2.32),
0="7"ve) =r(ve)I'(r(ve)ve).
Therefore, r(v.)v, is a critical point of I. n

Remark 2.6 We shall the spherical fibering method where we consider the constrait

St ={ve E:=|v|P = H(v) =1} and study the minimization problem

inf Z(v) (2.33)

veSt
It is clear that the condition (H(v),v) # 0 is satisfied. It is noteworthy that if vy is
a minimum of T on the sphere, then |vy| also attains this minimum. In fact, first we

observe that
[olI” = r([v)*PA(Jv]) = r([v])*"B(|v]) < [[o]|” = r(v])" " A(v) — r([v])*"B(v).

By Lemma 2.12, for ¢ < min{s, p} or ¢ > max{s,p}, there exists a unique r > 0 such
that ||v]|P = rTPA(v) — r*"PB(v). Then we have r(v) = r(|v|) and consequently

2(o) = (5 - 7 ) Aol + (5 - 3) Bebr(il)

- (3= Dawrwr+ (1= 1) Bowtor

s D

Thus, if vy attains (2.33), |ve| also attains. This implies, by using Lemma 2.13, that

solutions for (Py), can be taken as nonnegative without loss of generality.

Now, we are ready to proceed with the proof of Theorems 2.3 and 2.4.
Proof of Theorem 2.3:. For each fixed v € E\{0}, by Lemma 2.12, there exists
r(v) > 0 such that the pair (r(v),v) satisfies (2.26) and hence

|[v||Pr(v)P~ + B(v)r(v)*~1 = A(v). (2.34)
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As a consequence, we can consider the reduced functional Z as

I(v) = (1 _ 1) Blo)r(v)* + (1 - %) lollPr(v)? > 0.

p

If St denotes the unity sphere in E, we can define

M := inf Z(v).
vest
Now, consider a sequence (v,) such that ||v,|| = 1 and M = limZ(v,). Going if

necessary to a subsequence, we may assume that v, — vy in E with ||vg|| < 1 and by
Lemma 2.11
A(vn) — A(vg) >0 and  B(v,) — B(v) > 0.

We claim that vy # 0. Indeed, suppose that vo = 0. By Lemma 2.12, there exists a

sequence 7(v,) > 0 such that
|onllP = 7(v) TP A(vy) — 7(v) P B(vy,). (2.35)
Using that ||v,|| = 1, we get
1 =71(v,)TPA(vy) — B(op)r(v,)* P < r(v,) TP A(vy).

Since ¢ > p and A(v,) — 0, we obtain r(v,) — co. On the other hand, we have
1 1 1 1 1 1
I(v,) = <— — —) B(vy)r(vn)® + (— — —) r(v,)P > (— - —) (v, )P.
s g p g p g
Taking the limit above, we obtain a contradiction and hence vy # 0. From the last
inequality, up to a subsequence, we can assume that r(v,) — ro > 0 and taking to the
limit in (2.35) we obtain
o T+ Bluo)rg " = Alwo), (2.36)
which implies that r¢ > 0.
Next, we shall prove that ||vg]| = 1. Otherwise, there exists x> 1 such that

||pvo|l = 1. From Lemma 2.12, there are r(vy) > 0 such that
[[vol[Pr(vo)"™ + B(uvo)r(ve)™™* = A(v).
This, combined with (2.36) and the fact that x> 1 implies
6+ B(vg)rg T < r(vo)P~? + B(vo)r(vo)® Y,
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equivalently

() [(i{f) -1

Since max{s,p} < g, we have that ro > r(vy). Now, consider the function

+ B(vg)r(vo)*™* [(T(UO)Y_S — 1] <0.

To

1 1 1 1
W(t) = (— — —) B(vo)t® + (— — —) |lvol||Pt?, ¢ >0
s 9 p q
and observe that v is strictly increasing. Thus,
M =Timin Z() > (1~ ) Bl + (£ — = ) Bluoll” =(ro)
=liminfZ(v,) > | - — — Vo), — — — | rgllvo||? =¥ (ro).

On the other hand, we have

P(ro) > ¥ (r(vo)) = I(r(vo)vo) = I(pr(pvo)vo) = Z(prvo),

which contradicts the definition of M because ||pvg|| = 1 and hence we concluded that

|vo|l = 1. From (2.36) and the uniqueness of the solution r(vy) we have ry = r(vg) and

M = lim Z(v,) = lim (1 - 1) Blun)r(v)* + (1 _ 1) (o)

n—oo n—oo S q p q
1 1 1 1
=(-—-) B rs—l—(———>rp
(5-7) Bloors+ (5 - 2)
=Z(vo)

Since vy is a critical point of Z under S* so is |vp| and we can assume vy > 0. Applying
Lemma 2.13 with H(v) = ||v[|P, we conclude that u = rgvy is a critical point of I, and
this completes the proof. [
Proof of Theorem 2.4. For each fixed v € E\{0}, by Lemma 2.12 there exist r(v)
such that

[o][Pr(v)P~ + B(v)r(v)*™" = A(v), (2.37)

and hence, we can write the reduced functional Z as

I(v) = (1 _ 1) Blo)r(v)* + (1 - é) lollPr(v)” < 0.

p
If ||v|| = 1, we see that A and B are bounded because of our embedding results.

From (2.37), it follows that
0<r(P 1 <rP 9+ B)r(v) 1= A),
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which implies that r is bounded because p > ¢q. Therefore, we can consider the mini-
mization problem

—00 < M := inf Z(v) <O0.

veST
Let (v,) C S! be a minimizing sequence. Up to a subsequence, we can assume that

v, — vg weakly in E with |Jvg]| < 1. Furthemore, by Lemma 2.11
A(v,) = A(vg) and  B(v,) — B(v).

Since (r(v,)) is bounded, up to a subsequence, we can assume that r(v,) — ro > 0.

Now observe that I is weakly lower semicontinuous and r(v,)v, — rovg, then
I(rovo) < liminf I(r(v,)v,) = liminf Z(v,) = M <0
and so 1ovg # 0. From (2.37), we have
[[on[[P7(0n)"= + B(n)r(vn)*" 1 = Avn).
Passing to the limit and observing that ||vy|| < 1 we obtain
lvolPr6 ™" + B(vo)rg * < A(vo).-
On the other hand, applying Lemma 2.12 for vy, we have
[[volPr(vo)”™* + B(vo)r(vo)* ™ = A(vo),

which implies that ry < r(v). Now, suppose by contradiction that ro < 7(v9) and

consider the function
ot t*
Y(t) == I(tvy) = ;||vo|| - EA(UO) + ;B(vo), t € (0,7 (vo)]

and observe that v is strictly decreasing. Indeed, first note that ¢(0) = 0 and
¥(r(vo)) = Z(vg) < 0. In addition, we observe that ¢’(0) = 0 and for ¢ # 0,

0 ='(t) = ' g |P—t9 T A(vo)+tF B(wg) & ||vol|P = t7 P A(vg)—t* P B(vg) < t = ().
Consequently, 1 must be strictly decreasing on [0, 7(vg)]. Thus,

M = liminf I(r(v,)v,) > I(rouo) > I(r(ve)ve) = Z(vp).
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By Lemma 2.12 we have pr(uv) = r(v) for all v # 0 and taking g = ||vg]| ™" we have

pvg € St and
Z(pwvo) = I(pr(pwvo)vo) = I(r(vo)vo) = Z(vo) < M,

which is a contradiction and therefore (vy) = r¢. Then,
1= Tim ||v,|[” = rg " A(vo) — 5" B(vo) = [[vo[”.
n—oo

and

11 11
]W—hmI@@—hm(———)M%Wmf+(———)WN”Un
P g

n—oo n—oo S q
1 1 1 1
— _ — = B s _ p,.P
(- 7) B+ (5= 1) ks
=Z(vo)

Since vy is a critical point of Z under S?, it follows that |vg| is also a critical point.

Thus, we can assume without loss of generality that vy > 0. Applying Lemma 2.13, we

conclude that u = rgvq is a critical point of I, which completes the proof.

Moving forward, we are proceeding to prove our third existence result.

Lemma 2.14 Assume the assumption of Theorem 2.5. Then for each v € E\{0} the

function G1(.,v) defined by (2.13) has a unique critical point at
_ 1/(s—q)
F(v) = (M) _

Moreover,

(70 0) = ma (o) = (- A p)” o

n(p, q,s)B(v)7~

Proof. By a direct calculation we have

0L (1) = (g — PP A) — (5~ I B,
.
Then, we observe that 0 = %(r, v) if, and only if,

o _ 4= P A)
s —pB(v)’

which implies that the only critical point of G(.,v) is given by (2.38).
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Note that lim, o G1(r,v) = —00, lim, o+ G1(r,v) = 0 and by (2.38)

Thus, since

A s—p 1/(s—q)
( (v) ) -0,

n(p, q, s)B(v)TP

G1(T(v),v) p-----=

G1(r,v)

Figure 2.9: Maximum of G4(.,v) for p < ¢ < s.

we can conclude that G;(.,v) has a unique global maximum at r = 7(v) > 0. =

Under the assumptions in Theorem 2.5, we introduce the set
= {v e {0} : [vl|” < Gi(F(v), v)},
where 7(v) is given by (2.38).

Remark 2.7 If Dy is the set defined in (2.6), then Dy C ©y and hence 0y # (). Indeed,
first we observe that by (2.38) we have

B(v) = (q —p ) F(0)75 A(v), (2.40)

§—D

20



and from the definition of G, we obtain

S§—P §—P

G1(7(v),v) = F(v)TPA(v) — (q —P ) F(0)TPA(v) = (3 . ‘1) A(v)F(v)1P.  (2.41)

If v € Dy, we see that

' 24 p—q

lollP < (g) 10, 4.5) 7 A) 2 B(o) 2.

Thus, from (2.40) and (2.41), it follows

i< (g) - _(SQ)_(i))_;]?uA(v)iZ KZ%];) r(v)q—sA(U)] =
N § (z :;) (v)T P A(v)

< G1(7(v),v),
and so we conclude that Dy C €.

Next, we will prove some technical properties of {2; that play an important role

in proving Theorem 2.5.

Lemma 2.15 If p < ¢ < s < p*, for each v € Qy there exists a unique real number

r(v) > 7(v) such that the pair (r(v),v) satisfies
[o][” = r(v)" P A(v) = r(v)* P B(v) = G1(r(v), v),

and r € CY1(1,R). Furthermore, for any v € Qy and pu > 0, it holds pv € Qy, and as

a consequence, §; NSt #£ (.

Proof. If v € ; we have ||v||” < G1(7(v),v). Since G;(r,v) = r? P (A(v) — B(v)r*~9)

and p < q < s, it follows that

lim Gy(r,v) = —o0,
T—00

and so by the Intermediate Value Theorem, there exists a real number r(v) > 7(v)
such that the pair (r(v),v) verifies ||v||P = G1(r(v),v). To prove that r(v) is unique,

we observe (¢ — p)7(v)?PA(v) = (s — p)7(v)* PB(v) and hence we can write

Gi(r,v) = A(v) (rq—p A r(v)q—srs-p) .

§—Dp
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Consequently,
AL ) = (g = PP A — )

or
~ (0= P70 (25 - 7 ) <O

rs=e  7(v)sTa

for all » > 7(v), thereby implying the uniqueness of r(v).

Yy
Gy (f(l})7 U) iiiiiiiiii ‘
Joll b
l l l -
ri(v)  Tw) ()
Gl (7"', U)
Figure 2.10: Existence of r(v) > 7(v) for p < ¢ < s.
To verify that the map r is a C', by setting r = 7(v), we obtain
aGl —s+1 -5 = —s
5, (1), v) = (g = p)rw)" " AW)(r(v)"™ = 7)) <0. (2.42)

Now, considering the function f : (0,00) x €; — R given by
f(r,v) = Gi(r,v) — ||o||”,

by (2.42) we see that given v € €y, %(r(v),v) < 0. Using the implicit function
theorem, we obtain open sets J C R and V' C {2y containing r(v) and v respectively,

and a C'-function 7 : V — J satisfying
7(v) =r() >7(v) and f(7(w),w)=0, VYwelV.

Then, there exists a neighborhood U C V' containing v such that 7 =r > 7 in U. By
the uniqueness, » = 7 in U and therefore r is a C''-function in U. Since v is arbitrary,
we have r € C'(Qy, R).

Now, suppose that v € €1, that is

ollP < G1(7(v), v) = =—Lr(v)s P A(v).




Since, 7(v) = pr(uv) for all u > 0, we get

S —

lollP < =2 (#(0)) 1P Auw) = G (F(pv), o),

which implies that pv € €y and this completes the proof. [
Lemma 2.16 The following statement holds
inf B(v) > 0.
veQ NSt

Proof. For any v € Q; N 5!, from (2.38) we get

L= bl < Galro) o) = (221 Atwyr(oy

s—p
() (e

n(p,q, s)B(v)T™P < A(v)*7P.

which implies

By using Holder’s inequality, it follows

A(v) :/ a|v|qu:/ iI)q/$|1)|"7d:v
RY Ry bY/*

+

I (s—q)/s q/s
< / [T} T da / blv|* da :
rY LD RY

Thus, we get A(v) < Co,B(v)¥* with

g7 2% (s—q)/s

a q s—q

0 < Cap = (/ [b_/} d‘”) /
RY

which is finite due to assumption (2.7). By combining the above inequalities, we obtain

n(p, q,5)B(v)1™7 < A(v)*™ < C5 P B(v)s s,
and hence 0 < n(p, ¢, S>Cf,;5 < B(v)~9P/s thereby yielding the desired result. ]

Lemma 2.17 If D, is the set defined in (2.6), then Dy NSt # &, where S* is the unit
sphere in E. Moreover,

I(v) <0, YveD,. (2.43)

23



Proof. If v € Dy, the computation in Remark 2.7 shows that

ol < 2 (322) rtoyraw), (2.44)

g \s$—p
and for p > 0, by (2.38) we easily obtain

ur(pv) = r7(v), Yo € E\{0}.

Thus,
pfs—q —q=( \G— pP{s—q)\ -
;wp<—< >upqrvqu;w:—< )r;wqu,tw,
o <2 (222 woroyrague) = 2 (222) rluyrragu)
which implies that pgv € D;. In particular, choosing u = |[v||~' we conclude that
D,NS'+£o.

To verify (2.43), since the pair (r(v),v) satisfies
B(v)r(v)® = A(v)r(v)? — [jv][r(v)”,

from (2.29), the fact that 7(v) < r(v) for each v € Dy C Oy and inequality (2.44), we
get
1 1 1 1
2(6) = (5 - L) Ay + (5 - 3 ) lolPrcey

S q P S

< G - %) A@w)r(v) + <% _ é) : (j :;) Aw)r(v)".

Since the last term of the inequality above is zero, this completes the proof.

Remark 2.8 If1 <p < q < s, by Lemma 2.15, for each v € )y there is only a real

value r(v) such that
Gi(r(v),v) = [0l and r(v) > F(v).
Since r(jv]) > #([v]) = 7(v) with
G1(r(|v]), v) = [lv]|”

we must to have r(v) = r(|v]) and hence Z(v) = Z(|v|). Therefore, if vy is a minimum

of T under Q; NS, s0 is |vg|. This implies that solutions to the minimization problem,

and hence, by Lemma 2.13, solutions for (Py) in the case 1 < p < q < s, can be taken

as nonnegative without loss of generality.
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Now we are ready to prove the Theorem 2.5.
Proof of Theorem 2.5:. Let r € C'(Q,R) be the function given by the Lemma

2.15. For v € S, we have
1L =7r(v)"PA(v) —r(v)""B(v),

which implies that

o)\ VD
r(v) < (ggv))) , vesh (2.45)

Since A is bounded in S', by Lemma 2.16 we have that r is bounded in €, NS*. Hence,

7 is lower bounded in ©; N S* and hence in view of Lemma 2.17

M= inf Z(v)<O. (2.46)

veNINST
Let (v,) C Q1 N S! be a minimizing sequence. Up to a subsequence, v, — vy

weakly in £ with [|vg]] < 1. Lemmas 2.11 then imply
A(v,) — A(vg) and  B(v,) — B(v).

By Lemma 2.15, the sequence (r(v,)) satisfies r(v,) > 7(v,). Moreover, from (2.45),
the sequence (1(v,)) is bounded and, up to a subsequence, we can assume that r(v,) —
ro > 0. Thus, we obtain

1 1 1 1
M =liminfZ >(—-—=1]A4 a -——|B 5.
0> iminf Z(v,) > (p q) (vo)rg + <8 p) (vo)rg

Considering that p < ¢ < s, we concluded that ry > 0. Furthermore, from (2.38), it

follows

and hence ry > 7(vp). Furthermore,

lim 7(v,) = lim (

n—-+o0o n—-+00

n1—1>1:11—100 G1(7(vp),vn) = G1(7(v9), vp).
Since v,, € {21, we get

lvo]|? < liminf ||v,||? < liminf G1(7(v,), vn) = G1(7(vg), vo).
n—oo n—oo

Assume by contradiction that vy & €2y, that is, ||v||? = G1(F(vg),vp). Since |v,]|P =

G1(r(v,), vy), taking to the limit we get
G1(7(vo),v0) = [|vo]|? < liminf ||v,||” = liminf G (r(v,), v,) = G1(T0, v0),
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which implies that 7(vy) = ¢ because 7(vg) is the global maximum of G4 (.,v). Then,

r(vn) — 7(vo) and from the definition of Z and (2.38) we obtain

M = lim Z(v,) = <- _ -> Alwo) (w97 + (% _ 1) B(vo)7(vo)?

p

- [(1-2)+ (-2
_ Afvy)i(ue) L2 (3 - 1) >0

because p < g < s, which contradicts (2.46) and hence we conclude that vy € €.

Claim: 1o = r(vg).

Assuming that the claim is true, we can take the limit at
L= [Jon]|” = G (r(vn), vn),
to obtain
1= A(vo)r(vo)*™" = B(vo)r(v0)*" = G1(r(vo), vo) = [lvo]|”-
Thus, we conclude that vy € 2, NS! and we also have

M = lim Z(v,) — (1 - %) Alwo)r(v0)? + (é _ %) B(uo)r(vo)* = T(vo).

n—oo p

Therefore, by Lemma 2.13, r(vg)vp is a nonnegative and nontrivial critical point if I in
E. This completes the proof of Theorem 2.5.

It remains to prove ry = 7(vy). Since vy € 4, by Lemma 2.15, we can choose
to > 0 such that pugvy € Q1 N S By Lemma 2.15 we know that r(vg) > 7(vp) and
G1(r(vo),v9) = |lwo||P. Taking the limit at ||v,[|P = Gi(r(v,),vn), we get |vollP <

G1(r0,v0). Consequently,
G1(r(vo), vo) = [lvol” < Gi(ro, vo).-

Since Gy (r,vp) is decreasing for r > 7(vg) and r(vg) > 7(vg), it follows that ro < r(vp).
In fact, we have

7(vg) < ro < r(vp).
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Suppose by contradiction that ro < r(vg). Since G1(r,vg) is strictly decreasing for all

r € (ro,7(vo)), we see that
lvollP = G1(r(vo),v0) < Gi(r,vg), ¥r € [ro,r(vg)).
Considering the function
h(r) = I(rvg), r € (ro,r(vo)),
a straightforward computation shows that
R (r) ="~ (luo||” = Gi(r,v0)) <0,
which implies that A is strictly decreasing. Thus, we get
M = liminf I(r(v,)v,) > I(rove) > 1(r(ve)ve) = L(r(1ovo)tovo) = Z(1ovo),

n—o0

with povg € Q5 NS, This contradicts the definition of M and hence ry = r(vg). [

To end this section we focus on the proof of Theorem 2.6.

Lemma 2.18 Assume the assumptions in Theorem 2.6. For each fized v € E\{0} the

function G1(.,v) has a unique critical point which is a mazimum and is given by

o) = (B(vxp - s>>”<“> | (247)

A(v)(p —q)
Moreover,
B A(v)r—s 1/(g—=s)
G1(F(v),v) = max Gi(r,v) = (n(s,q,p)B(v)p—q) > 0, (2.48)

where (s, q,p) was defined in (2.2).

Proof. By a straighfoward calculation we see that

aG, ) (B@xp—@>”W@

—(rv) =0 <= r=71v) = —/—F—= .

or ) ) A()(p —q)
Furthermore, we observe that lim, ;. G1(r,v) = 0, lim, o+ G1(r,v) = —oo and due
to (2.47),

Av)F(v)1P = (p - 5) B(v)7(v)*?.

p—q
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Since,

q— B(U) (p . s) (s—p)/(g—3)
= B(v) | ————=
P—q A(v)(p—q)
A p—s 1/(g—s)
_ ( (v) ) -0,
n(s,q,p)B(v)r~9
we can conclude that Gi(.,v) has a unique global maximum at r = 7(v) > 0. n
)

G](f@))vv) kfiiiiiﬁ\ G1<T 1))

Figure 2.11: Maximum of G, for s < ¢ < p.

To establish Theorem 2.6, we will explore once more the properties of the set
Q ={v e E\{0} : ||v||P < G1(T(v),v)}.

Remark 2.9 Let s < q < p, if C; is the set defined in (2.8), then C; C €y and hence
O #0, if Cy # 0. Indeed, first we observe that v € Cy if, and only if,

—s

()7 () - () v

Then, since s < q < p, we have ||v]|P < G1(7(v),v) and v € Q.

Lemma 2.19 If s < g < p, for each v € Qy there exists a unique positive real number

r(v) > 7(v) such that the pair (r(v),v) satisfies
[0l[” = r(v)* P A(v) = r(v)*"B(v) = Gi(r(v),v),

and r € C1(Q1,R). Furthermore, for any v € Q1 and pu > 0, it holds pv € Qy, and as
a consequence, §; NSt #£ (.
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[v][”

G1(r,v)

Figure 2.12: Existence of r(v) > 7(v) for s < ¢ < p.

Proof. If v € Q; we have [|v]|P < G1(7(v),v). Since s < g < p, we have

lim Gy(r,v) =0,

=00

and so by the Intermediate Value Theorem, there exists a real number r(v) > 7(v)
such that the pair (r(v),v) verifies ||v|[P = G1(r(v),v). To prove that r(v) is unique,
we observe that 27t < 0 for all r > 7(v). In fact, first note that by (2.47)

(¢ —p)A() = (s — p)r(v)" " B(v).

Consequently,

%(r, v) =(q—p)r" " A() — (s — p)r" "' B(v)

= (s = p)B)r" "7 (v)" " — (s — p)r" "' B(v)

e (k- ) <o

for all r > 7(v), thereby implying the uniqueness of 7(v).

To verify that the map r is a C', by setting 7 = r(v), we obtain

%(7’(@),1}) = (s — p)ri "' B(v) < L > < 0. (2.49)

OO

Now, considering the function f : (0,00) x €; — R given by
f(TaU) = Gl(r7 U) - “vaa
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by (2.49) we see that given v € €y, %(r(v),v) < 0. Using the implicit function
theorem, we obtain open sets J C R and V' C Q containing r(v) and v respectively,

and a C'-function 7 : V — J satisfying
7(v) =r(v) >7(v) and f(r(w),w)=0, YweV.

Then, there exists a neighborhood U C V' containing v such that 7 =7 > 7 in U. By
the uniqueness r = 7 in U and therefore r is a C'-function in U. Since v is arbitrary,
we have r € C'(Qy, R).

Now, observe that given p > 0
ur(pv) = 7#(v), Yo e E\{0}. (2.50)

In fact, by (2.47) we have

Buw)(p— )\ pis (B)p )\ 1
A(pw)(p — Q)> ( )

By (2.47) we can write

() =

and therefore

— S

Gy(r(v), v) = (V)T P A(v) = 7(v)"PB(v) = ;_ q?’(v)s_”B(v)‘

Suppose that v € Qq, that is

HMP<mewﬂo=ﬁjme*w%w.

Then, using (2.50) we obtain

—stsd TS \s— qg—5s_ s— =
o] < P quT(v) "B(v) = - qr(uv) "B(pw) = Gi(r (), po),

which implies that pv € ;. Taking p = |[v||~* we have that Q; NS* £ 0. ]

Lemma 2.20 Let s < g <p. If v € Cy, where Cy is the set given by (2.8), we have

1

7(v) < (g) R (v) < r(v), (2.51)

where r is the function given in Lemma 2.19. Moreover,
I(U) <0, Ywel(
and C; N ST # 0.
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Proof. Since 7(v) < r(v) and G;(r,v) is decreasing for r > 7(v), as shown in the proof

of Lemma 2.19, to establish (2.51), it suffices to demonstrate that if v € Cy, then

el (<€> = o), v> > Gi(r(v),v).

S

As verified in Remark 2.9, v € C; if, and only if, satisfies

p—s

Cr(r(v), ) = Jo]l” < (5) 7 G (r(0), 0). (2.52)

[v]”

G1 (T, U)

Figure 2.13: (%)# m(v) < r(v)

Thus, since s < g < p, we have

() > <z>“ >—<z>2-%<v>sw<v>

which conclude (2.51).
To verify that Z < 0 in Cy, by (2.47) we write

B(v) = i — zf(v)q_sA(v).

and by (2.51)

T(v)1™° < 57"(1))‘]_8.
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Therefore,

=P (2) C(F(0)TP A(v) — F(v) P B(v))

= (2) 7 e Aw) — - rte )
-(2) = (o) Al) — ) Bw)
N (g) - Gy (F(pw), o),

which implies that pv € C;. Taking p = ||v||~' we conclude that C; N ST # (). n

Remark 2.10 If1 < s < q < p, by Lemma 2.19, for each v € € there is only a real

value r(v) such that
Gi(r(v),v) = ||v[|P and r(v) > 7(v).

Since r(|v]) > 7(|v|) = 7(v) with G1(r(|v]|),v) = ||v||P, we have r(v) = r(|v|) and hence
Z(v) = Z(Jv|). Therefore, if vy is a minimum of T under Oy N S, so is |vg|. This

implies that solutions to the minimization problem,

and hence, by Lemma 2.13, the solutions for (Py) for 1 < s < q < p, can be taken as

nonnegative without loss of generality.
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Now we proceed with the proof of Theorem 2.6.
Proof of Theorem 2.6. Observe that 7, given by Lemma 2.19 is bounded in S!. In

fact, if v € S we have
1=r()""A(v) = r(v)"?B(v) < r(v)""A(v),

then r(v) < A(v)plfq. Since ¢ < p and A is bounded in S' due to Lemma 2.11, we
conclude that r is bounded in S'. Thus, Z is bounded in S! and due to Remark 2.9

and Lemma 2.20 we have

—oo< M= inf Z(v)<D0.

veNNST
Let (v,) C ;NS a minimizing sequence. There exist vy € F such that v, — v in £

and by Lemma 2.11,
A(v,) = A(vg) and  B(v,) — B(vy). (2.53)

Moreover, if needed, passing to a subsequence, we have r(v,) — ro > 0. In particular,

observe that r¢ > 0, otherwise

1 1 1 1
0> M= lim Z(v,) = (— - 5) A(vo)rg + (g - 5) B(vo)rg =0,

n—oo p

which is impossible. Furthermore, we observe that vy # 0 since
1 =7r(vy)TPA(vy) — r(v,)  PB(vy) < 1(v,)TPA(vy),

which implies that 0 < ry < A(vo)ﬁ.

Now, lets prove that vy € §;. First observe that by (2.47) and (2.53) we have

(B =)\ Buo)(p— )\«
rlen) = (A(Un)<p - q)) — (A(vo)(p — q)) =7(v)

and

Gl(f(’l)n>, Un) — G1 (77(’00), Uo).

Then, we get
lvo]|? < liminf ||v,||P < liminf G1(7(v,), vn) = G1(7(vg), vo).
n—o0 n—oo
Suppose that vy ¢ €2y, by the inequality we obtain

[voll” = G1(7(vo), vo)-
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Conversely,
|vo|l” < liminf ||v,||? = liminf G1(r(v,,), v,) = G1(rg, vo) (2.54)
n—oo n—oo

and therefore G1(7(vg),v0) = ||vol|P < G(rp,vp). Since by Lemma 2.18 7(vg) is the

global maximum of G (., vy), it follows that 7(vy) = 9. By (2.47) we can write

B(uvo)F(vy)® = (p - q) A(w)7(vo) .

Thus o
M= (21? _ 3) Alvo)F(v0)" + (% - %) B (v0)7(vn)*
() s (5 (2
_A(Uo);"(vo)q (q ;p L ; CI)
>0,

which is an absurd and therefore vy € €. Now, we assert that ro = r(vp). To begin,
let p1 = ||vo|~*. According to Lemma 2.19, it follows that pvy € Q; N S!. Observe now
that

G1(pr(pvo), vo) I%(T(Wo)qpfl(uvo) — r(pwo)* " B(pwo))

1

:EGI (T(MUO), /wo)

1
_ p
= ol

=|lvoll”
=G (r(vo), vo).

Then, given that r(vy) > 7(vg) and pr(pve) > 7(pve) = 7(vp), by Lemma 2.19 we have

pir (o) = 7 (vo). (2.55)

Furthermore, since 7(v,,) < r(v,), taking the limit we get 7(vy) < 19 and by (2.54) we
obtain

7(vo) < ro < 7r(vp).

Suppose by contradiction that ry < r(vg) and consider the function

o(0) = 2 1(tw) = 7 (el = Gat, o)),
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for t € (ro,7(vg)). Note that g(t) < 0, hence I(twv) is decreasing on t and by (2.55)

M = liminf I(r(v,)v,) > I(rove) > 1(r(vo)ve) = I(r(pve)puve) = Z (o),
n—oo
with pvg € Q; NS, which is impossible. Therefore, 79 = 7(vy), consequently
L= lim [Junll” = Tim Gh(r(v,). 0) = Ga(r(v0),w) = [,

which ensures that vy € 2, N St and

M = lim Z(v,) = (1 _ 1) Alwy)r(v0)? + (1 - 1) B(vo)r(vo)* = T(vo).

n—oo p q S p

Finally, by Lemma 2.13, 7(vg)vo is a nonnegative and nontrivial critical point if [ in

E.

2.4 Final comments

In this section, we explore potential future developments stemming from the

results established in this chapter.

e Our results demonstrate the existence of solutions for problems involving nonlin-
earities within the subcritical growth range in terms of new Sobolev embedding
proved in the present work. It would be interesting to explore the existence of

solutions for nonlinearities with corresponding critical growth.

e We address the case p = N with polynomial growth. It is also important to
consider scenarios where the nonlinearities exhibit exponential growth in the

fashion of Trudinger-Moser-type inequalities.
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Chapter 3

Application 2: p-harmonic functions

with indefinite boundary conditions

As a second application of our Hardy-type inequality (1.1), in this chapter, we will

address the existence and nonexistence of solutions for the following class of problems:

—div(p(z)|VulP2Vu) =0 in RY,
(P2)
p(2’,0)|VulP2Vu - v = h(2))|u|*?u — m(2)|ul**u, on RN
where RY = {z = (2/,zy) € RY : 2/ € R¥"' 2y > 0} standards for the upper

half-space, v is the unit outer normal to the boundary 8Rf = RN~ and
1<p<N and 1<gq,s<p,.

Here and what follows, p, := (N — 1)p/(N —p) for p < N and p, = oo when p = N
denotes the critical exponent of the Sobolev trace embedding. Throughout this chapter,

we will assume that p, h, m are positive functions satisfying
p € Lio(RY) and  h,m € Li, (RN™).

If we assume that p = 1, problem (P:) has been considered by many authors, see for

instance, [1, 2, 26|

3.1 Main results

We also will assume that the weight function p satisfy the hypothesis:
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(Hp) there are constants py > 0 and v > p — 1 such that

p(z) > po(l+2n) ae. in RY.

Here, by a weak solution of (P;) we mean a function u € E such that
/ p(2)|VulP?VuVe dr = / (h(z")|u|?*u — m(2") |ul]*"2u)p da’, (3.1)
RY RN-1

holds for every ¢ € C5°(RY).

3.1.1 Liouville-type results

Our first nonexistence result for (P,) is established as follows.

Theorem 3.1 (p-sublinear case) Assume (Hy) and suppose that m € L*(RN=1) N
LeRNY). If1<s<qg<p<N and h/m € L=®(RN™) with

i e
m o0

Po
then (Ps2) possesses only the trivial weak solution.

) _ <n(s,q,p), (3.2)

Remark 3.1 Straightforward computation shows that, for A > 0 sufficiently small, the

functions,

A 1
- d N -
Trepn ™ )= e

for ' € RN~ satisfy the assumptions of Theorem 3.1 whenever 0 < N —1 < 0y < 0.

h(z') =

In our second nonexistence result, we address the case where p < ¢ < s.

Theorem 3.2 (p-superlinear case) Assume (Hy) and suppose that m € L>®(RN™1)
and 1 <p< N. If1<p<q<s<p.andh/me L®RN) with

E

then (Py) possesses only the trivial weak solution. Moreover, the same result holds if

o (HmHooC%;”

. )_ <n(p.q,s), (3.3)

[e.e]

p=Nandp <q<s<oo.
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Figure 3.1: Nonexistence of solutions for (P»)

3.1.2 Existence results

Our existence results are established using the Fibering method. Theorem 1.5,
combined with the additional conditions on the potentials, more precisely, h,m &

LYRN=1) N L°(RY~1), ensure that the embeddings
E— LR h(2) and E < L*(RY"' m(a'))

are both valid and compact. Thus facilitating the application of the Fibering Method,
as shown in [35, 41].
In our first existence result we explore two combinations of the exponents. Pre-

cisely, we consider the cases 1 < s<p<g<p.and 1 <p < s <q < ps.

Theorem 3.3 Assume (Hy) holds and 1 < p < N. If max{s,p} < ¢ < p., and h,m €

LYRY=YH N Lo(RYY), then (Py) has a nontrivial and nonnegative weak solution.

In our second existence result, we will consider the cases 1 < ¢ < s < p or

1<qg<p<s<p,.

Theorem 3.4 If (Hy) holds, ¢ < min{s,p} with s < p., and h,m € L'(RN1)n

L>*(RN=1), then (P2) has a nontrivial and nonnegative weak solution.

To present our third existence result of this chapter, we consider the functionals

defined on E by

H(u):/RN_lh|u|qu and M(u):/ mlul* da. (3.4)

RN-1
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Figure 3.2: Existence of nontrivial solutions for (P»)

We note that under the assumptions of Theorem 2.2, for u € E, the following

key inequality holds true (see Lemma 3.9)

5—q
5— - 5— q - 5—
H(u)*™ < n(p, g, )M () [ul =7 < n(p, q, 5) (23) M ()77 [,

We consider the existence of solutions for (P;) in a subset of the complementary situ-

ation of this inequality.

D, {u e > (1) o s)M(u)q-pnunp“—q)}- (35)

Theorem 3.5 Let 1 < p < N and assume that (Hy) holds. If h,m € LY(RY=1)n
L¥(RN"Y p<qg<s<p., Dy#0 and

hl/a s
mifs € B

(RY), (3.6)
then, (P2) has a nontrivial and nonnegative weak solution.

Remark 3.2 The functions h = m = Aw, with w given by

1

" T

satisfy the assumptions of Theorem 3.5 for 6 > N — 1 and X sufficiently large. In fact,

first, we observe that

x 1/q Ss—q

m(x/)l/s
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whenever § > N — 1. For u € E\{0} fized, one has

s(p—q)

H(u)* ™/ M )" = )\s—qHqu(s—p) [l ey

La(RN-1 )

Since s > q, for \ sufficiently large we see that

s—q

> (1) i@l
p

and hence Dy # 0. Conversely, it is easy to verify that for X small the potentials

satisfies the condition for nonezistence, (3.3). As mentioned in []1], the condition

Dy # 0 can be interpreted as saying that h is sufficient "large" with respect to m.

S
Dol ------- - gy
Pl
T RRERREEEEE
1 p P« g

Figure 3.3: Existence of nontrivial solutions for (7P»)

Our last existence result is derived from the consideration of the set

cf:{ueE:HwV*>(§YSn@qmﬂﬂw%wmwfﬂ}, (3.7)

where, similar to the earlier case, we assume that h is sufficiently "large" compared to
m, expressed by the condition Cy # ). Our fourth existence result for (P,) is stated

below:

Theorem 3.6 Assume (Hy), s < ¢ < p < N and h,m € L*(RN=1) 0 Le(RN-Y). If

Ca # 0, then (P2) has a nontrivial and nonnegative weak solution.

It is important to note that if ¢ < s = p, the Direct Methods in the Calculus of
Variations guarantee the existence of solutions to (Ps). Conversely, when s = p < g,

the mountain-pass theorem can be employed to find solutions.
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Figure 3.4: Existence of nontrivial solutions for (P»)

The chapter is organized as follows: In Section 3, we present the proofs of The-
orems 1.1 and 1.5. In Section 3.2, we establish our Liouville type results, Theorems
3.1 and 3.2. In Section 3.3 we present the proofs of our existence results by proving

Theorems 3.3, 3.4, 3.5 and 3.6.

3.2 Proof of our Liouville type results

In this section, our focus is on proving Liouville-type results. The following

estimate plays a crucial role in our analysis.

Lemma 3.7 (key estimate) Assume condition (Hy) and 1 < s < g < p. If m €
LYRN=Y) N L2(RV7Y) then M is well defined in E. In addition, if h/m € L>®(RN™1),
then

[z

wor |
m Po

q—s
] ) M(v)P~9v||P9=*), Vv e E. (3.8)
In particular, H is well-defined. Furthermore, if (2.3) holds, then

H ()P~ < n(s,q,p)M ()P~ |v|["", Vo e E\{0}. (3.9)

Proof. First we observe that

s/p
< Iy ([ mlopa)
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s/p
< Il s ([ opae)
RN-1

which is finite by Theorem 1.1 and assumption (Hp).
If s < g <pwecanexpress¢g=(1—a)s+apwitha=(¢—s)/(p—s) € (0,1) .
Thus, by Hoélder’s inequality,

)= [ blofrds = [ el ufop) o
RN-1 RN-1

11—« «
< (/ h|v|sdx/) (/ hol? dx’) |
]RN—l RN—l

Using that 1 —a = (p — ¢)/(p — s) we obtain

p—q q—s
Hy— < < / h|v|sdx’> < / h|v|pdx’) | (3.10)
RN—I ]RN—l

Now, observe that

/ hlv|* da’ = / I (m|v]*) da’ < HEH M (v).
RN-1 RN-1 TN m 0

Thus, (1.12) and (Hy) gives

h Gy P
R EE N R N o =
RN-1 m|| s
Therefore, plugging the last two inequalities into (3.10), we estimate (3.8). [ |

Throughout this chapter, we will consider the following auxiliary function:
Go(r,v) = H(v)rt*™? — M(v)r*?, r>0 and ve€ E. (3.11)

Lemma 3.8 Assume the assumptions in Theorem 2.1. For each fired v € E\{0} the

function Gy(.,v) has a unique critical point which is a maximum and is given by

7(v) = (%}?:;})) 1/(q—s) |

Moreover,

N
Go(7(v),v) = max Go(r,v) = (n(s,f]()).?%(v)f’—q) > 0, (3.12)

where (s, q,p) was defined in (2.2).
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Proof. For each v € E\{0}, we have

o) = (= P = (s = M)
Thus,
G, . (M(v)(p — %) ) 1/(g=s)
—(r,v)=0 < r=7rv)=| —F+——= '
or ) W={How—0
Moreover, we can see that lim,_, ., Go(r,v) = 0, lim, o+ G2(r,v) = —o0 and by (3.15)

Thus, since

B H(v)P~=s q—3)
B (n(s,q,p)M(v)p‘q >0

Ga(T(v), v) /”\ Ga(r,v)

Figure 3.5: Maximum of G, for s < ¢ < p.

we can conclude that Go(.,v) has a unique global maximum at r = 7(v) > 0. n
Now, we proceed to present the proof of Theorem 3.1.
Proof of Theorem 3.1. Assume by contradiction that (P) has a nontrivial weak

solution uy € E. Then, from the definition (3.1), Lemma 3.7 and a density argument,
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it follows that
luo|lP = H(up) — M(up) = Ga(1,up).

On the other hand, by estimate (3.9), we have
H(uo)"™* < n(s,q,p) M (uo)”*[luo ",
which combined with (3.12) gives G5(7(ug), ug) < ||ug||P. Thus, we get
Ga(F(uo), uo) < [luoll” = Ga(1, uo),

which contradicts the fact that 7(ug) is the maximum of Ga(.,uo) and this concludes
the proof of Theorem 3.1. [

Next, we turn our focus to proving our second Liouville-type result.

Lemma 3.9 Assume condition (Hp), p < q < s < p.. If m € L*(RN™1), then M is
well defined in E. In addition, if h/m € L®(RN"1), then

o {Ilmlloo(];,f

wores (|
m Po

r_q> M(v)47P||o|[PC=9, Vo € E.
In particular, H is well-defined. Furthermore, if (3.3) holds then
H(v)* ™ < n(p,q, )M (v)" P02, Vv e B\{0}. (3.13)
Proof. By Theorem 1.5 and (Hy) we obtain

M(v) = / mlo]* de’ < [m]ee / jof* da’ < Clo]l”.
RN—l RN—I

Since p < ¢ < s we can write ¢ = (1 — a)p + as with a = (¢ — p)/(s —p) € (0,1) .
Thus, by Hélder’s inequality we get

11—« a
H(v):/ h|v|qdm’:/ (hlo]?) = (h]o]*) de’ < (/ h|v|pdx’) (/ h|v|5dx’) .
RN—l RN—I RN—l RN—I

Taking into account that 1 — a = (s — q)/(s — p) we obtain

s a—p
H(v)? < / hlvl? dz’ (/ h|v|5dsn’) : (3.14)
Ri}—l RN-1

h h
/ hlv|® dz’ :/ — (m]v]?) da’ < H—H M (v)
RN-1 RN-1 TN mi|
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and by (1.12) and (Hy) we have
clr

h
/ h|v|"dx’sr|m||mH—H |v|pdx<||m||mH—H G .
RN-1 moo

Thus, plugging the last two inequalities into (3.14) we obtain

L) (] )

m ooCl—p s—q
{H H m} )M(v)q_pHva(s_q),

Po

() < (Il \

:<_

which conclude the desired inequality. (3.13) can be derived directly by applying (3.3)

to the inequality above.

Lemma 3.10 Assume condition (Hp), p < q¢ < s < p.. If hym € L®(RN™Y), then for

each v € E\{0} the function Gy(.,v) defined by (3.11) has a unique critical point at

 (H®(@-p) Y
T<“>‘<M<v><s—p>) '

Moreover,

)P 1/(s—q)
Go(7(v), v) = 1?33( Go(r,v) = <n(p’ 52)3\4@)%1)) > 0.

Proof. For each v € E\{0}, we have

0G,

W(r, v) = (¢ —p)H@)r" "t — (s —p)M(v)rs P 1.

Thus,

0Gy, o (H(g-p)
g V) =0 = =) = <M<v><s—p>) ‘

Now note that lim,_, o G2(r,v) = —00, lim, o+ Go(r,v) = 0 and by (3.15)

Thus, since

(3.15)

(3.16)



_ (- a)g—p)= Hw)=

(s—p)=  M@)=

- (n(p, 5 i;)j\;(i))q—p) o >0,

Go(7(v),v) p-----=

Go(r,v)

Figure 3.6: Maximum of G5 for p < ¢ < s.

we conclude that the function Gs(.,v) has a unique global maximum at r = 7#(v) > 0.
u

Now we are ready to complete the proof of Theorem 3.2.
Proof of Theorem 3.2:. Arguing by contradiction, suppose that (Ps) has a non-
trivial weak solution uy € E. From the definition (3.1), Lemma 3.9 and a density

argument we have
[uoll” = H (uo) = M(uo) = Ga(1, uo).
On the other hand, by estimate (3.13), we have
H(uo)*™ < 11(p, 4. 5)M (ug)** [[uo|[*~.
This, together with (3.16) implies that Ga(7(ug), up) < ||uo|/P. Therefore, we obtain

Ga(7(up), o) < ||uoll? = G2(1,up),

contradicting the fact that 7(ug) is the maximum of Ga(.,up) and this concludes the

proof. [ ]

3.3 Proof of our existence results

To prove our existence results, we must first establish a compactness result.
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Lemma 3.11 Assume condition (Hy) and 1 <p < N. Ifw € LY(RVN"1)n L>®(RN1),
then the embedding
E < L (RN w(2'))

is continuous for q € (1,p.| and compact for ¢ € (1,p.). If p = N, the embedding is

compact for all ¢ € (1,00).

Proof. Consider p < N and let 1 < g < p. By Holder’s inequality,

B p—q a/p
/ wlul* da’ :/ w7 w Pt da’ < o], (/ w’U\pdx/> '
RN-1 RN-1 RN-1

By assumption (Hp) and Theorem 1.1 we obtain

¢ p—q q/p Cl-p q/p g g
[ vl < ol pol? (/ |u|pda:') s(—) lol& ol fal
RN-1 RN-1 £o

If g € [p,ps], by Theorem 1.5 and (Hy) we obtain

/ it da’ < [l / [u]? da’ < Clull”.
RN—1 RN-1

Now, if (u,) C E is a bounded sequence, up to a subsequence, we can assume that

u, — 0 in E. By Rellich-Kondrachov Theorem|8, Theorem 6.3|. the embedding
WYP(Bg) < L*(BR NRN™) (3.17)

is compact for all s € [1,p,) where Bg denotes the ball of radius R in RY. Consider

then the sequence (v,,) defined by

un(2',xy), ifaxy >0
Un (2, TN) =
un(I/, _.Z'N), if N S 07

with (2/,xx) € Bg. Observe that v, € W'?(Bg) and ||v,]l1p5, < C. In fact, first we

notice that

/ ]an|pdx:2/ |Vu,|Pdz and / \vn|pdx:2/ |un,|P de.
Br B Br Bt

R

Applying inequality (1.5) and assumption (Hy), we deduce E < W'P(B}), implying

l0all 5 5, = 2lally, e < C.
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Passing to a subsequence, we have v, — 0 in W1P(Bg) and by (3.17), it follows that
v, — 0 in LY(Bgr NRY~1Y). Since u, = v, in Bg NRY~! we conclude that u,, — 0 in
LY(BRNRN"!). Given ¢ > 0 there exists R = R(e) > 0 such that |[w]| 1(gs,0)rrr-1) < €.

If ¢ < p we have

/ wlu,|?dz’ < C/ |un,|?da’ < Ce
BRQRN71 BRORN71

for n large. Conversely, by Holder’s inequality,

p—gq
Qd ,< P
/B - wlu,|?dz" < ||w||L1(B%(O)mRN71) (/B

c
R

a/p
w|u, [P dx’) < Ce'r,

N-1
©NR

concluding the case, ¢ < p. Now, if ¢ € [p, p.), analogously we have

/ wlu,|?dz’ < Ce,
BrNRN -1

for n large. On the other hand, let a € (0, 1) such that p < ¢/(1 — «) < p,, then, by
Holder, Theorem 1.5 and (Hy), we obtain

/ w|u,|? dz’ :/ w*w' ™ |u,|? da’
BgNRN -1 BgNRN-1

l1—a
— P
SHwH%l(B}%(O)ﬁRN—l)HUJH(I)Oa (/ ’unllfa dCU,)
/ BgNRN -1

<Ce”
and we conclude the case p < N. The case p = N is similar. [

Lemma 3.12 Let 1 < p < N and ¢ < min{s,p} or ¢ > max{s,p}. Then, for each
v € E\{0} there exits a unique real number r(v) > 0 such that the pair (r(v),v) satisfies

the equation

|v]|P = r(v)TPH(v) — r(v)* PM(v) = Go(r(v),v). (3.18)

Furthermore, the map r : E\{0} — R belongs to C*(E\{0},R) and pr(uv) = r(v) for
all >0 and v € E\{0}.

Proof. Eristence: Consider the function f : (0,00) x E — R defined by

f(r,0) = [lo|[Pr?=* + M (v)r*™% — H(v).
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—H@W) p-------------==-

Figure 3.7: Graph of f(.,v) for ¢ > max{s, p}.
fr,v)

nw)

Figure 3.8: Graph of f(.,v) for ¢ < min{s, p}.

Note that f(r,v) = 0 if and only if (3.18) holds. If v € E\{0} and ¢ > max{s,p} we
have lim, o+ f(r,v) = oo and lim,_, « f(r,v) = —H(v) < 0. In the case ¢ < min{s, p},
it holds lim, o+ f(r,v) = —H(v) < 0 and lim,_,o, f(r,v) = co. Thus, in any case, by
the Intermediate Value Theorem, there exists r(v) > 0 such that f(r(v),v) = 0.
Uniqueness: Fixed v € E\{0}, suppose that there are ri,ro > 0 satisfying (3.18).
Consequently,

[ol[Pry™ + M (v)ry™ = H(v) = ||v||Pr™ + M(v)ry ™,
which is equivalent to
ol =570 + M)~ =57 = 0,

Therefore, r; = ry and so the map r : E\{0} — R satisfying (3.18) is well defined.

Regularity: To prove that r belongs to class C!, we observe that

O r0) = (0= @ ol + (s — QM@ £ 0, i (0,00) x £\ {0},

Given v € E\{0}, using the implicit function theorem(see [16]), we obtain open sets

I Cc Rand V C E\{0} containing r(v) and v respectively, and a C'-function 7 : V' — I
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satisfying
7(v) =r() and f(r(w),w)=0, YweV.

By the uniqueness r = 7 in V and therefore r is a C''-function in V. Since v is arbitrary
we have r € C'(E\{0},R).
Finally, given 1 > 0 and v € E\{0} we have that f(r(uv), uv) =0, that is,

H(v) = p?~r(po)?[o]|P + p*~r (po)*™* M (v). (3.19)
Since f(r(v),v) = 0, we have
H(v) = r(@)"Jo][” + r(v)**M(v),
which combined with (3.19) implies
0= (" r(pv)’™* = r@)" )l + (u*r(po)*™ = r(v)*) M (v).

Thus, (ur(pv))?~9 = r(v)?~? and this concludes the proof. |
To obtain a weak solution in the sense of in(3.1), we will introduction of the

functional J : ' — R defined by

Hw) =l = ) + SM(w).

where
= [ s, M@= [ mapa
RN-1 RN-1
Straightforward computation shows that J € C*(E,R)(see [20]) and critical points of

J are weak solutions of (P).

Remark 3.3 Suppose that there exists an open Q C E\{0} and r € C'(Q,R) such
that (r(v),v) satisfies (3.18) for each v € Q with r(v) # 0 in Q, that is,

|v]|P = r(v)TPH(v) — r(v)*PM(v). (3.20)

Then, we have

70t0)0) =" ol = L pr0) + M a1
11 o, (1 1 s
— (5 — §> H(v)r(v)? + (g — ]—?) M(v)r(v)®.



In particular, if r > 0 and rv is a critical point of J, it holds
(J'(rv),v) =0,
which is equivalent to (3.20).

The above remark motivates us to consider the reduced functional J defined by

T(0) = J(r(v)) = <- - -) H(v)r(v)? + (3 _ 1) M()r(v)*. (3.21)

s P

To obtain a critical point of J we will need the next result.

Lemma 3.13 Let ® € C'(E\{0},R) such that (®'(v),v) #0 if ®(v) =1. Ifv. € Q is
a critical point of J under the constraint ®(v) = 1, then u = r(v.)v. is a critical point

of J.

Proof. Let r € C'(Q,R) as in Remark 3.3 that is, for each v € Q C E\{0} the pair
(r(v),v) satisfies (2.26), more specifically

[ol[" = r(v)*PH (v) = r(v)* "M (v).
Then we can define J : Q — R as in (3.21) and
(J'(r(v)v),v) =0,Yv € Q. (3.22)
In fact,

(J'(r(v)v),v) =r@)P ol —r(v)" H(v) + ()" M(v)

=r (V)" H[vll” = ()" PH (v) + r(v)*PM(v)] = 0

If v, is a critical point of Z under the constraint ®(v) = 1, by the Lagrange Multiplier
Theorem(see |37, Proposition 14.3]), there exists p € R such that

T (ve) = A’ (v,). (3.23)
On the other hand, by the definition of J and (3.22) we have

(T'(v), w) = r@){J"(r(w)), w) + (r'(v), w) {(J'(r(v)v), v) = r@){J'(r(v)v), w) (3.24)

81



for all w € E. Then by (3.22) and (3.23)
0 = 7(ve) (S (r(ve)ve), ve) = (T (ve), ve) = MP'(ve), ve).
Since (®'(v.),v.) # 0 we have that ;4 = 0 and hence, by (3.23) and (3.24),
0=J"(ve) = r(ve) J'(r(ve)ve)-
Therefore, r(v.)v. is a critical point of J. u

Remark 3.4 We consider the constraint S' = {v € E : ||[v||? = 1} and analyze the
minimaization problem

inf J(v). (3.25)
vest
It is clear that for ® = ||.||, the condition (®(v),v) # 0 in Lemma 3.13 is satisfied. It
is noteworthy that if vy is a minimum of J on the sphere, then |vy| also attains this

minimum. Indeed, first we observe that
[o[ll” = (o) PH(Jo]) = r(jo])* P M(|v]) < [[of|” = r(jo)*PH(v) = r(jv])* "M (v).

By Lemma 5.12, for ¢ < min{s,p} or q¢ > max{s,p}, there exists a unique r > 0 such
that ||v||P = rTPH(v) — r* PM(v). Then we have r(v) = r(|v|) and consequently

o) = (5 = 2 ) #lertoly + (5 = 3 ) M(obroby
_ (Zl? _ %) Hw)r(v) + (% - %) M)r(v)*
=J(v).

Thus, if vy attains (3.25), |ve| also attains. This implies, by using Lemma 3.13, that

solutions for (Ps), can be taken as nonnegative without loss of generality.

We can now proceed with the proofs of Theorems 3.3 and 3.4.
Proof of Theorem 3.3. :For each fixed v € EF\{0}, by Lemma 3.12, there exists
r(v) > 0 such that the pair (r(v),v) satisfying the equation

|v]|Pr(v)P~? 4+ M(v)r(v)*™? = H(v). (3.26)

Then is well defined the reduced functional 7 in (3.21) and by the inequality above we

can write

T(w) = (1 _ 1) M@)r(v)* + (1 _ 1) lollPr(v)? > 0.

s g p q
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Define
M = inf J(v).

veSt

where S! denotes the unity sphere in E.
Now, consider (v,) a minimizing sequence. Going if necessary to a subsequence,

we may assume that v, — vy in E with ||vg]| < 1 and by Lemma 3.11
H(v,) — H(vg) and M(v,) — M(uvp).
We claim that vy # 0. Indeed, suppose that vg = 0. By Lemma 3.12, we have
[[on|” = 7(0n)""H (vn) — 1 (vn)*"" M (vp).
Using that ||v,|| = 1, we get
1 =7r(v)TPH(vy) — M(v,)r(v,)* P < 7(v,)T PH(vy,).

Since ¢ > p and H (v,) — 0, we obtain 7(v,) — 00. On the other hand,

T = (5= 2 ) M)+ (5= )y = (G- 2) )

s g p q p q
By taking the limit in the previous step, we reach a contradiction, which implies that
vo # 0. From the final inequality, we can assume, up to a subsequence, that r(v,) —

ro > 0 and taking to the limit in (3.26) we obtain
b=+ M(vo)rg * = H(vg) >0 (3.27)

which implies that ro > 0.
Next, we shall prove that vy € S'. Otherwise, there exists ;1 > 1 such that

pv € St From Lemma 3.12, there are r(vy) > 0 such that
[[vol|Pr(vo)P ™ + M (vo)r(vo)*™* = H (vo).
This, combined with (3.27) and the fact that g > 1 implies
b+ M(vo)ry T < r(ve)P? + M (vg)r(vg)® 7.
Since s,p < g, we have that ro > r(vy). Now, consider the function

bt = (1 - g) M) + (% - g) lol?e, ¢ 0

S
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and observe that 1 is strictly increasing. Thus,

M = timint 7o) > (5 = 1) MGl + (5 = ) bl =)

n—oo S q

However, we also observe that

Y(ro) > ¥(r(vo)) = J(r(vo)vo) = J(pr(pvo)ve) = T (o),

This contradicts the definition of M, given that pvy € S'. Hence we concluded that
vp € S'. From (3.27) and the uniqueness of the solution r(vy), it follows that ro = r(v)
and

M = lim J(v,) = J(vp).

n—00

Since vy is a critical point of J under S* so is |vp| and we can assume vy > 0. Applying

Lemma 3.13 with ®(v) = ||v||", we conclude that u = rovy is a critical point of J, and

this completes the proof. [
Now we present the proof of Theorem 3.4.

Proof of Theorem 3.4. As in the previous result there exist r(v) such that
|v]|Pr(v)P~? 4+ M(v)r(v)*? = H(v), (3.28)

which ensures the reduced functional 7 is well-defined and can be expressed as

T(w) = (1 _ 1) M()r(v)* + (1 _ é) lo[[Pr(v)? < 0.

s q p

Now observe that from (3.28), we deduce that
0<r@P?<r@P 94+ Mw)r(v) = H().

By our embedding results, H and M are bounded in S'. Therefore, r is bounded given

that p > ¢. Consequently, we can study the minimization problem

—oo < M = inf J(v) <0.

veSt

Let (v,) C S be a minimizing sequence. By considering a subsequence if necessary,

we can assume that v, — vy weakly in £ with ||vg]| < 1. Furthemore, by Lemma 3.11

H(v,) — H(vg) and M(v,) — M(vp).
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Up to a subsequence, we can assume that r(v,) — 9 > 0. Now observe that rovy # 0,

since (v, )v, — roUg and
J(rovg) < liminf J(r(v,)v,) = liminf J(v,) = M < 0.

From (3.28), we have

[[on[P7(0n)?= + M (0n)r(0n)*"" = H (vn).
Passing to the limit and observing that ||vg]| < 1 we obtain

[[vol[Prg ™" + M (wo)rg ™ < H (o).

On the other hand, applying Lemma 3.12 for vy, we have

[[vo]["r(vo)"™" + M (vo)r(vo)*~* = H (vo),

which implies that 1o < r(vg). Now, suppose by contradiction that ro < r(vg) and

consider the function
(t) = J(twn) = loll” = () + SM(wo), € 0,r(wn)]
Observe that 1 is strictly decreasing on [0, 7(vg)]. Thus,
M = liminf J(r(v,)v,) > J(rove) > J(r(ve)ve) = T (vo).
Now note that, for all 4 > 0 and v € E\{0},
I (p) = J(v)
given that pr(puv) = r(v) by Lemma 3.12. Setting p = [Jug|| ™!, we have uvy € S and
J (o) = T (ve) < M,
which is a contradiction and therefore r(vg) = ro. Then,
L= lim {jv,[[" = 75" H(vo) — 14 "M (vo) = [vo]|”.
and

M = lim J(v,) = lim (1 - 1) M(v)r(wa)* + (% - é) loallPr(vn)? = T (o).

n—roo nso \ s @
Since vy is a critical point of 7 under S*, |vg| must also be a critical point. Therefore,
we can assume without loss of generality that vy > 0. Applying Lemma 3.13, we
conclude that u = rgvy is a critical point of J, and we complete the proof. ]

Now we aim to establish our third existence result.
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Lemma 3.14 Assume the assumption of Theorem 3.5. Then for each v € E\{0} the
function Gy(.,v) defined by (3.11) has a unique critical point at

1 — (H@a—p) )
o-(ioey) (5.29
Moreover,
~ H(U)sfp 1/(s—q)
Go(7(v),v) = max Go(r,v) = (n(p,q, s)M(v)‘l—p) > 0. (3.30)

Proof. For each v € E\{0}, we have

0G» ( H(v)(qg —p) ) e '

W(r,v)zo — r=r7(v) =

Now note that lim,_, o, Go(r,v) = —00, lim, o+ Ga(r,v) = 0 and by (3.29)

Thus,

q— p) > (¢—p)/(s—q)

(n(p, ci[ 5)}3\84_(2)(1—;0) o >0,

and we have that G(.,v) has a unique global maximum at r = 7(v) > 0. |

Go(7(v),v) p------

Figure 3.9: Maximum of G5 for p < ¢ < s.
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To prove our third existence result for (P) we define the set
Q= {v € E\{0} : [[v]]” < Go(7(v), )},
where 7(v) is given by (3.29).

Remark 3.5 Let Dy the set defined in (3.5). We observe that () # Dy C Qa. In fact,
by (3.15) we have

M(v) = (q —P ) F(0)T H (v), (3.31)

§—D

and therefore

Gao(7(v),v) = 7(v)IPH(v) — (q —b ) F(0) TP H (v) = (5 - q) H(v)F(v)™P. (3.32)

§—=D §—Dp

From the definition, for each v € Dy, it holds

p 1 e
ol < (5) n(s, 4,p) 7 H() 5

Thus, from (3.31), (3.32) and the fact that p < q, we obtain

[oll” < ( ) it ;Z,)Z ZH(U)ZZ K%) r(v)q—SH(v)] =
P
q
< Gy

£

(7(v),v),
which implies Dy C €)s.

Next, we will establish several technical properties of €25, which are crucial for

proving Theorem 3.5.

Lemma 3.15 Ifp < q < s < ps, for each v € )y there exists a unique real number

r(v) > 7(v) such that the pair (r(v),v) satisfies

[o][? = r(0)"PH (v) = r(v)”PM(v) = Gy(r(v), v),

and r € C1(Qy,R). Furthermore, for any v € Qy and p > 0, it holds yv € Qy, and as
a consequence, o N ST #£ ().
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Proof. If v € Qy we have [|v||P < Ga(7(v),v). Since Go(r,v) = r?? (H(v) — M(v)r*~9)

and p < g < s, it follows that

lim Gy(r,v) = —o0,
r—00

and so by the Intermediate Value Theorem, there exists a real number r(v) > 7(v)
such that the pair (r(v),v) verifies ||[v]|? = Ga(r(v),v). To prove that r(v) is unique,
we observe (¢ — p)7(v)?PH(v) = (s — p)7r(v)*PM(v) and hence we can write

Go(r,v) = H(v) (rq_p — Z%];F(v)q_srs_p) .
Consequently,

%(r’ v) = (¢ —p)r* P TH@)(r"* —7(v)7°) <0,

for all r > 7(v), thereby implying the uniqueness of 7(v).

Y

Go(T(v),v) f--------=

|
|
ol -~ - e
|
1

Go(r,v)

Figure 3.10: Existence of r(v) > 7(v).

To verify that r is a C! function, let v € s, set r = r(v) and obtain

0G,

5, (r(),v) = (g~ p)r() = H(v)(r(v)" = 7(0)77) < 0. (3.33)

Now, let the function f : (0,00) x Q3 — R given by
f(ra U) = GQ(ra U) - HUHP

From (3.33) we see that L (r(v),v) < 0. Therefore, by the implicit function theorem(see

[16]), there exists open sets I C R and V' C E\{0} containing r(v) and v respectively,
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and a C'-function 7 : V — I satisfying
T(v) =r() >7(v) and f(7(w),w)=0, YweV.

Then, there exists a neighborhood U C V' containing v such that 7 =r > 7 in U. By
the uniqueness, r = 7 in U hence r is a C''-function in U and therefore, r € C*(y, R).
Now, suppose that v € 2. This means

P fvvzs_qqu_p v
[0]|P < G2(7(v), v) S_p() H(v),

where we use (3.32). Since by (3.15) u~'7(v) = r(uv) for all u > 0, we get

S —

lolP < Z=Lr (o) P H(jw) = Ga(7(0), o),

which implies that pv € €2y. This completes the proof. [}
Lemma 3.16 Under the assumptions of Theorem 2.5 it holds
inf  M(v) > 0.
veENINST

Proof. By Lemma 3.15 we have 5 N S! # 0. Now, given v € 2y, N St from (3.32),
(3.15) and the fact that 1 = ||v||? < G2(7(v), v), we obtain

n(p,q, )M (v)*™" < H(v)*™".
By applying Hélder’s inequality, we have

h
H(v) :/ hlv|?dx’ :/ m/*|v|? dz’
RN-1 RN-1 mq/s

. (s—a)/s "
S / [W} dx/ </ 77”L|U|S d.f/) .
RN-1 | TN RN-1

SC}MmM(U)Q/S

a2 (s—q)/s
0< Ch,m = (/ |:—1/:| dx’) )
RN-1 | M*/®

which is finite by (3.6). Combining the above inequalities, we get

where

n(p, q. )M (v)7™? < H(v)*? < Cy P M (v)= P,

Hence
0 < n(p,q.s)Ch > < M(v)=9P/,

and we conclude the result. ]
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Lemma 3.17 If D, is the set defined in (3.5), then Do NS # &, where S' is the unit
sphere in E. Moreover,

J(v) <0, Yove D, (3.34)

Proof. If v € D,, the computation in Remark 3.5 shows that

ol < £ (‘9 - q) 7(0) TP H(v). (3.35)

g \s—7p
For > 0, by (3.15), we have

F(uv) = p 7 (v), Yov € E\{0}.

Thus,
pls—q —q=( NG~ ps—q\ _ _
/wp<—(—),upqrvqu/w:—< >T,qupH/w,
ol <2 (222 wreroyr o) = 2 (£ oyt (o)
which implies that puv € Dy. In particular, choosing u = |[v||~' we conclude that
Dy,NS+£ .

To verify (3.34), since the pair (r(v),v) satisfies
M(v)r(v)” = H(v)r(v)? — [[v]|Pr(v)”,

from (3.21), the fact that 7(v) < r(v) for each v € Dy C Q9 and inequality (3.35), we

get

70)= (5 - 1) e+ (5= 3) lolproy

s g p

< G - é) Hw)r(v) + (% - %) : (j :;) H(w)r(v)".

We observe that the last term of the inequality above is zero and the proof is complete.

Remark 3.6 If1 <p < q < s, by Lemma 3.15, for each v € Q) there is only a real

value r(v) such that
Go(r(v),v) = [0llP  and r(v) > F(v).
Since r(jv]) > #([v]) = 7(v) with
Ga(r(|v]), v) = |lv]]”
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we must to have r(v) = r(|v|) and hence J(v) = J(|v|). Therefore, if vy is a minimum

of J under QyNSY, so is |vg|. This implies that solutions to the minimization problem,

inf J(v),

vENLNST

and hence, by Lemma 2.13, solutions to (Ps) in the case 1 < p < q < s, can be chosen

to be nonnegative without loss of generality.

Now we can proceed with the proof of Theorem 3.5.
Proof of Theorem 3.5:. Let r € C'(Qy,R) be the function given by the Lemma

3.15. For v € S!, we have
1L =r(v)"H(v) —r(v)* "M(v),

which implies

o)\ V/a)
r(v) < (Z((U))) , veSh (3.36)

Since H is bounded in S', by Lemma 3.16 we have that r is bounded in Q,NS*. Hence,
J is lower bounded in Q5 N S! and by Lemma 3.17, we have

M= inf J(v)<0. (3.37)

vENLNST

Let (v,) C Q2 N S! be a minimizing sequence. Up to a subsequence, v, — vy

weakly in £ with ||vg|| < 1. Lemmas 3.11 then imply
H(v,) = H(vg) and M(v,) = M(vp).

By Lemma 3.15, the sequence (r(v,,)) satisfies r(v,,) > 7(v,). Furthermore, from (3.36),
the sequence (r(v,)) is bounded. Up to a subsequence, we can assume that r(v,) —
ro > 0. Consequently, we obtain

0> M = liminf J(v,) > (2% — %) H (vo)rd + (é — %) M (vo)ry.

which implies that ro > 0. In addition, from (3.15) and Lemma 3.11, it follows

ngrfoo 7(vy,) = 7(vy).

and hence

lim Go(7(vp),vn) = Ga(7(vg), vo).

n—-4o0o
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Since v,, € ()5, we get
lvo||” < liminf ||v,||P < liminf G3(7(vy,), v,) = Ga(7(vg), vo).
n—oo n—oo

We shall now show that vy € €25. Assume by contradiction that vy & €2, that is,

|vo||P = Go(7(vo), v0). Since ||v,|[P = Ga(r(vy,), v,), taking to the limit we get
Go(T(v0),v0) = ||vo||P < liminf ||v,]|” = liminf Ga(r(v,), v,) = Ga(ro, vo),
n—oo n—oo

which implies that 7(vg) = ¢ because 7(vg) is the global maximum of G(.,v). Then,
r(v,) — 7(vo) and from the definition of J and (3.15) we obtain

M = lim J(v,) = (1 - é) H (vo)7(vo)? + (% — %) M (vo)7(vo)*

n—o0 p

and (s — p)M (vg)7(vg)®* = H(vg)(q — p)7(vg)?. As a consequence, we infer that

s 5208
M () () =) <1 _ 1) >0

p qg S
because p < ¢ < s, which contradicts (3.37) and hence we conclude that vy € Qs.
Claim: 1o = r(vg).

Assuming that the claim is true, we can take the limit at
1= [onll” = Ga(r(vn), vn),

to obtain

1 = Ga(r(vo), v0) = [lvoll”.

Thus, we conclude that vy € Q2 N S* and we also have

M = Tim J(v,) = (1 _ é) H(uo)r(uo)? + G _ %) M(uo)r(vo)* = T (v).

n-so0 p
Therefore, by Lemma 3.13, 7(vg)v is a nonnegative and nontrivial critical point if .J
in E.

It remains to prove ro = r(vg). Since vy € s, by Lemma 3.15, we can choose
po > 0 such that pugvg € Q2 N S'. By Lemma 3.15 we know that r(vg) > #(vy) and
Ga(r(vg),v9) = ||vol|P. Taking the limit at ||v,|? = Ga(r(v,),vs), we get [|vo|P <

Go(r0,v9). Consequently,
G2(r(vo), v0) = [vol|” < Ga(ro, vo).
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Since Ga(r,v9) is decreasing for r > 7(vg) and r(vg) > 7(vg), it follows that rq < r(vp).
In fact, we have

7(vo) < 19 < 1(vp).

Suppose by contradiction that ro < r(vg). Since Go(r,vg) is strictly decreasing for all

r € (ro,r(vo)), we see that
lvollP = Ga(r(vo),v0) < Ga(r,vg), ¥r € [ro,r(vo)).
Considering the function
z(r) = J(rvg), 1 € (ro,r(v)),
a straightforward computation shows that
2 (r) =" ([lvo]|” — Ga(r,w)) <0,
which implies that z is strictly decreasing. Thus, we get

M = liminf J(r(v,)v,) > J(rove) > J(r(vo)ve) = J(r(povo)ove) = J (o),

n—oo

with pgvg € Q2 N ST, This contradicts the definition of M and hence ry = r(vg). This
completes the proof of Theorem 3.5. [

Finally, we turn our attention for the proof of Theorem 3.6.

Lemma 3.18 Assume the assumptions in Theorem 3.6. For each fized v € E\{0} the

function Gy(.,v) has a unique critical point which is a maximum and is given by

) = (M) 7 (339

H(v)(p—q)
Moreover,
) Hpp—s Y
Go(7(v),v) = max Go(r,v) = (7](5, q,p)M(v)P—q) > 0, (3.39)

where (s, q,p) was defined in (2.2).

Proof. We start by verifying that

2 r0) = =P () (5 — P M)
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Then we observe that

0G,

S(rv) =0 = <w>1/<q—s>.

H(v)(p —q)
Furthermore, we observe that lim, ;. Ga(r,v) = 0, lim,_,g+ Go(r,v) = —o0 and due

to (3.38),

Since,

(
B (Z = q) M(v) (%) (s)/(-9)
(”(Sa fé??\?(;)p—q) >0,

Ga(7(v),v) T Gu(rw)

Figure 3.11: Maximum of G, for p < ¢ < s.

we can conclude that Go(.,v) attains its unique global maximum at r = 7(v) > 0.

As in the previous case, we need to considerate the set
Qy = {v € E\{0} : ||v||” < Go(T(v),v)}.

Remark 3.7 Consider s < g < p and let Cy the set defined in (3.7). We observe that
Cy C Qy and hence Qo # (. In fact, note that v € Cy if, and only if,

P P

() () - () o
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Then, since s < q < p, we have ||v||P < Go(7(v),v) and v € Q.

Lemma 3.19 If s < g < p, for each v € Qs there exists a unique positive real number

r(v) > 7(v) such that the pair (r(v),v) satisfies
[o][” = r(v)TPH (v) = r(v)" " M(v) = Ga(r(v),v),

and r € C*(Qy,R). Furthermore, for any v € Qs and u > 0, it holds pv € Qs, and as
a consequence, (y N St £ ().

Proof. If v € Qs we have [|v]|P < G2(7(v),v). Given that s < ¢ < p,

lim Gy(r,v) = 0.

r—00

By the Intermediate Value Theorem, there exists a positive real number r(v) > 7(v)
such that the pair (r(v),v) verifies ||v||? = Ga(r(v),v). To prove that r(v) is unique,
we observe that G is decreasing for all r > 7(v). In fact, first note that by (3.38)

(¢ —p)H(v) = (s = p)r(v)* "M (v).

Consequently,

%(T, v) = (g —pr P H(v) — (s = p)r* P M (v)

= (s = P)M @) (0) 7 = (s = p)r M ()

= (5= MO) (7 — ) <O

r(v)e—s  ri-
for all » > 7(v), thereby implying the uniqueness of r(v).
Next, we will prove that r is a C' function. In fact, given v € Q,, by setting
r = r(v), we obtain %22 (r(v),v) < 0. Now, consider the function f : (0,00) x Qs — R
given by
f(r,v) = Ga(r,v) — |lvf”.

Given v € 9, we observe that %(r(v),v) < 0. By the implicit function theorem(see
[16]), there exists open sets I C R and V' C E\{0} containing r(v) and v respectively,

and a Cl-function 7 : V — I satisfying
T(v) =7(v) >7(v) and f(r(w),w)=0, YweV.
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[o][”

Go(r,v)

Figure 3.12: Existence of r(v) > 7(v) for s < ¢ < p.

Then, there exists a neighborhood U C V containing v such that 7 =7 > 7 in U. By
the uniqueness, r = 7 in U hence r is a C'-function in U and therefore, r € C''(Qq, R).

Now, observe that given p > 0
pur(pw) = 7(v), Vv e E\{0}. (3.40)

In fact, by (3.38) we have

M(l“})(p o S) 1/(q—s) B qus M(U)(p o 8) 1/(q—s)
H(pv)(p —q) ) ( >

By (3.38) we can write

(pv) = (

and hence

Gxdmﬂo=MMWWﬂw—mwfﬁM@o=;j§dm*Mﬂw.

Suppose that v € €2y, that is

[ol|P < Ga(F(v),v) = L7 (0)* P M (v).

pP—q
Using (3.40) we obtain
P p—stsd — S \s—p _49—s55 s—p _ =
lpo]]? < gt = (v)* P M (v) = r(pv)* P M(pv) = Ga(r(p), po),
P—9q pP—q
which implies that pv € Qy. Taking p = |[v]|~* we have that Qy N S* £ 0. u
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Lemma 3.20 Let s < g <p. If v € Cy, where Cy is the set given by (3.7), we have

1

7(v) < (2) ) < r(v), (3.41)

S

where 1 is the function given in Lemma 3.19. Moreover,

Jw) <0, Yvel

and Co N St £ 0.

Proof. Asshown in the proof of Lemma 3.19, G(r, v) is decreasing for r > 7(v). Since

7(v) < r(v), to establish (3.41), it suffices to demonstrate that if v € Cy, then

1

Gs ((9) f(v),v) > Ga(r(v), v).

S

[ eere———
l l

1

Figure 3.13: (%) r(v) < r(v).

As observed in Remark 3.7, v € Cy if and only if

p—s
q—s

Go(r(v),v) = |[v|? < (2) Gao(7(v), ). (3.42)

Thus, since s < ¢ < p, we have

G (97 ) = () st - (4 st
q




>Ga(r(v),v),

which conclude (3.41). To verify that J < 0 in Cy, by (3.38) we write

M) = L5y H (v).

p—s
and by (3.41)
P(v)T < gr(v)q—s
Therefore,
T() = (}9 - é) Hw)r(v)? + G - %) M(w)r(v)®

_ (%) H(v)r(v)? + (p S; ) <§ - Z) F(0)7 H (v)r(v)?

< (%) H(0)r(v)? + (p S_pq) gﬁ(v)r(v)q

i (52+251)

=0.

Let v € Cy and p > 0, then, by multiplying (3.42) by p” and by (3.40) we obtain

) e
N

.Q

ot <u (
p( )

= (2) Gty - o)

()

-3

which implies that yv € Cy. Taking p = ||v||~' we conclude that Co N ST # (). ]

| »

'U
u:

q—s

(0)"PH (v) = 7(0)" "M (v))

| »

S
w

—s

Q

@

p*

.Q
w

(F(p)*™PH () — 7(pv)* P M ()
Ga(7(pv), pw),

Remark 3.8 If 1 < s < ¢ < p, by Lemma 3.19, for each v € Qy there is only a real
value r(v) such that

Gao(r(v),v) = ||v||”P and r(v) > F(v).
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Since r(|v]) > 7(|v]) = 7(v) with Ga(r(|v|),v) = ||v||P, we have r(v) = r(|v|) and hence
J () = J(|v]). Therefore, if vy is a minimum of T under Q; N S, so is |vg|. This

implies that solutions to the minimization problem,

inf J(v),

vENLNST

and hence, by Lemma 3.13, the solutions for (Py) for 1 < s < q < p, can be taken as

nonnegative without loss of generality.

Now we are ready to present the proof of Theorem 3.6.
Proof of Theorem 3.6. Observe that 7, given in Lemma 3.19 is bounded in S'. In

fact, if v € S! we have
L=r(v)"PH(v) —r(v)"PM(v) < r(v)""H(v),

then r(v) < H(U)Tiq. Since 1 < ¢ < p and H is bounded in S* due to Lemma 3.11, we
conclude that 7 is bounded in S'. Thus, J is bounded in S* and due to Remark 3.7

and Lemma 3.20 we have

—o0o< M= inf J(v)<D0.

vENLNST
Let (v,) C Q5N S! be a minimizing sequence. There exist vy € E such that, going if

necessary to a subsequence, v, — vy in E and by Lemma 3.11,
H(v,) = H(vg) and M(v,) = M(vp). (3.43)

Up to a subsequence, we have r(v,) — ro > 0. In particular, we see that ry > 0,

otherwise

0> M = lim J(v,) = (1 - %) H (vo)rd + (é - ]%) M (vo)rg =0,

n—oo p

which is impossible. Furthermore, we observe that vy # 0 because both H(v) and
M (vg) cannot be 0 simultaneously. We claim that vy € . To do this, from (3.38)
and (3.43) we have

and hence



Then, we get
llvo]|P < lirllrgioglf lva]l? < ligg'g.}f Ga(7(vy), v) = Go(T(v), o).
Suppose that vy & €2, that is,
[[vo[|” = G2(7(vo), vo)-
Conversely,
l|vollP < hﬂgf |va]|P = hﬂ{}(}f Go(r(vn),vn) = Ga(r9, v0) (3.44)

and therefore Go(7(vg),v0) = ||vol|? < G(rg,vp). Since by Lemma 3.18 7(vg) is the

global maximum of Gy(.,vy), it follows that 7(vg) = 7. By (3.38) we can write

M (vo)7(wo)* = (p - q) H (vo)7(w0)".

p—S
Thus,

_ (%) H (o))’ + (pp) (224) atw)rtuny
:H(Uor(vo)q (q ;p 4P ; C]>
>0,

which is a contradiction and therefore vy € Q3. Now, we assert that ro = r(vg). To
begin, let u = |lvg|| ™. According to Lemma 3.19, it follows that pvy € Qp NS, Note
that

G (pr(pvo), vo) I%(T(Wo)qpf[(/“fo) — r(pvo)* " M (pivo))

1

:EG2(T(I~WO)7 MUO)

1
ZEHMUOHP
=llvol[”

=G (r(vg), vo).

Then, given that r(vy) > 7(vg) and pr(pve) > 7(uve) = 7#(vp), by Lemma 3.19 we have

pr(pvg) = r(vg). (3.45)
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Furthermore, since 7(v,) < r(v,), taking the limit we get 7(vg) < 7 and by (3.44) we
obtain

7(vo) < 19 < 1(vp).

Suppose by contradiction that ro < r(vp) and consider the function

(1) 1= 5T (t00) = 77 (ol = Galt, ),

for t € (ro,7(vo)). Note that o(t) < 0, hence J(tvy) is decreasing on ¢t and by (3.45)

M = liminf J(r(v,)v,) > J(rove) > J(r(ve)vo) = J(r(pvo)pve) = J (pvo),

n—oo
with pvg € Qy N SY, which is impossible. Therefore, 79 = 7(vy), consequently
L= lim [Junll” = lim Galr(v,). v.) = Ga(r(v0),w) = oo,

which implies that vy € Q5 N ST, and

M = lim J(v,) = (1 - é) H (u)r(u)" + (1 - 1) M(uo)r(v9)" = T ().

n—oo p S p

Finally, by Lemma 3.13, r(vg)vp is a nonnegative and nontrivial critical point if I in £

and this completes the proof. ]
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Appendix A

In this Appendix, we present some basic and very important properties of the

weighted Sobolev space DLP(RY).

A.1 Properties of the weighted Lebesgue space

The Lebesgue spaces play a central role in the Sobolev’s space theory and con-
sequently in the study of differential equations. This follows by the fact that some of
the main properties of Sobolev spaces, used in the study of this equations, derive from
the Lebesgue space theory.

First, let us recall your definition. Given p,q > 1 and 7 € R, we consider the

weighted Lebesgue space defined by

LYRY, (1 P =< u:RY 5 R bl ;/
(RY, (1 +an)"7) {u i measurable s (T zn)

equipped with the norm

ul? v
= —d . A2
[ ( / T o x> (A2)

If p = g we denote
LIRY, (1+2y)77) = LARY) and [ lgpy = [l llps-
The proof of the next result is based on some ideas from [14, Theorem 4.8|.

Proposition A.1 Letp,q > 1 and~y € R. Then, the weighetd Lebesgue space LY(RY, (1+

xn)"P) endowed with the norm ||.||,p~ is a Banach space.
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Proof. Let (u,) C LY(RY, (1 + zx)7""?) be a Cauchy sequence and let (u,,) a subse-
quence such that
<27

”unk+1 - unkH%P”Y —

Lets see that (u,,) converges in LY(RY, (1 + zy)7"?). We will denote w,, = u;. Now

consider the sequence (g,) defined by

n
gn = E \Ukﬂ — Ug|-
k=1

Note that ||gy,||qp~ < 1 because

3
3

Hgn“q,pn < ||uk:+1 - uk”q,pﬁ < 27" <L
k=1 k=1

Furthermore, we have g < --- < g, <---. Then,

(I4+azy)P = = (I+ay)pr —

and by Monotone convergence theorem there exists g € LY(RY, (1 +zx)?"*) such that

gn(z) = g(z) a.e. in Rf. Now observe that
Im—1 = Gn—1 + |Unt1 — Up| + -+ + |Up, — Upp—1].
Then
(U, — Un | < Uy = U | 4+ F [Ungp1 — Un| = Gm-1 — Gn1 < 9 — Gn—1. (A.3)

It follow that (u,(z)) is a Cauchy sequence and converges a.e. in RY to a limit, say

u(z). Moreover, by (A.3), |u — u,| < g which implies that

(14 2,)P7 = (1 +azn)PY

e L'(RY).

Therefore, by dominated convergence theorem, we conclude that u,, — u in L? (Rf , (14
xn)?~P) which complete the proof. n

The proof of the next result is based on some ideas from [14, Theorem 4.10].

Proposition A.2 Let v € R and 1 < q,p < co. Then, the weighted Lebesgue space
LIRY, (14 zn)77P) is reflexive.

103



Proof. First, we recall that by the Millman-Pettis Theorem (see [14, Theorem 3.31])
every uniformly convex Banach space is reflexive. Then, to conclude the proposition it
is sufficient to prove that L¢(RY, (1 4+ zy)7"?) is uniformly convex.

First we consider ¢ > 2. Let ¢ > 0 and u,v € LY(RY, (1 + 2x)?"?) such that

lwllgprys 1Vllgpy < 1 and |Ju —vllgp~ > €. The first Clarkson inequality tells us that ,

‘f+g f—g

q
A
Taking f = u(l+zy) @ and g =v(l+2y) 7 we have

q
1
< UG+ llgllg), Vfig € LARY) and g =2, (Ad)
q

2

q

u—+oll? 1 1 u—ovll?
ol <+ 2ol - [
a,pyy a0y
1
<1- %”u_v”g,p,*y

e\ 4
<1—-<—>,
2

u—+v e\ 7\ /4
<(-G))
4.0y 2

Therefore, taking 6 =1 — (1 — (%)q) Y9 we obtain

that is

U+ v
2

<1-9,

q7p7'y

which concludes that LI(RY, (1+xx)77?) is reflexive for ¢ > 2. For 1 < ¢ < 2, consider

the second Clarkson inequality, that is, for all f,¢g € LY(RY) and 1 < ¢ < 2 we have

+g]|” -
Hf g +Hf g
2 |, 2

q 1 1 1/(¢—1)
< (311 + 3laty) (A5)
q

=P

where 1/q + 1/¢" = 1. Applying this inequality for f = u(l + zy) ¢« and g = v(1l +

J=p .
xy) @ we obtain

q 1/(q—1) q
utv s(hwm%f+ﬁwmm) Yl
2 q,p,Y 2 2 2 q,p,Y
1 p
<1- ﬁ”u - UHg,p,'y

thus




N

. q 1/q .
Taking 6 =1 — <1 — ( ) ) we obtain

U+ v

<1-9.
2

9,pY

Therefore, LY(RY, (1 + zy)7?) is uniformly convex and we conclude that LI(RY, (1 +
xn)?7P) is reflexive for 1 < ¢ < 2 and we finish the proof. |

We remark that the Clarkson inequalities, (A.4) and (A.5) can be found in [33]
in the itens 15.7 and 15.8.

Proposition A.3 (Interpolation inequality) Ifu € L"(RY, (14xy)"?)NL*(RY, (1+
oy)7TP) with 1 <7 < s < oo, then u € LY(RY, (1+ay)"") for all, r < q < s, and the

following interpolation inequality holds:

11—« @
q T S
/ —|u| —dz < / —|u| —dz / —|u| —dz , (A.6)
ry (14 zn)P ry (14 zn)P ry (14 zn)P

where ¢ = (1 — a)r + as, with a € [0, 1].

Proof. Since 1 = a+ (1 —«) and ¢ = (1 — a)r + as, we apply the Holder inequality

and obtain

/ K / [u Ju]*®
S el IS P .
gy (14 an)P ry (1+ zn)P=NA=0) (1 4 ) (P=7)e

11—« «
< / _ / B
ey (11 ay)P wy (1 2y )P

A.2 Properties of the weighted Sobolev space

In this section, we shall prove some properties of the weighted Sobolev space
D#p (RY) that have been used throughout the thesis. The proof of the main properties

are based on the ideas from the classical theory of Sobolev spaces.
Theorem A.4 D)P(RY) is a Banach space.

Proof. Let (u,) C DJP(RY) be a Cauchy sequence. In particular, (u,) and ((1 +
zn)Vu,) are Cauchy sequences in L?(RY) and L?(RY)Y, respectively. Since they are

Banach spaces there exist u € L?(RY) and w € L?(RY)" such that
U, — U In L?;(]Riv) and (1+a2n)Vu, »w in Lg(Rf)N.
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Now we claim that Vu = 1 where n = w/(1 4+ zy). In fact, if n = (m1,--- ,nn) and
¢ € C°(RY), by Holder inequality we have

< / o — unllpa
]RN

+
p—1

U — Up pP—
- %mi (1+ay)'7 do
RY (1 +an) P
1/p =
|u—un|p / P—y _p_ ?
< ——dx 1+zy)r1t|p,,|r-tdx ,

/ Up Py, dT — up,, dz, Vo € C(RY). (A.7)
RY RY

dx

RY

which implies

On the other hand,

< / 17— (tt) ||| da
RN

+

1/p
§</ '”i‘(“m%i"’(”m)”dx) lill_e,.-
RY

Since (1 + zn)Vun, = w in LYRY, (14 2x5)" 7)Y we get

/ NP — (Um )z p do
RY

p

= el e = [ "

N
+ RY

m — (Um)e,

_ / 1+ ) Yy — (14 )P ()|
R

=P

—/ 0+ 2x) 7 ws — (14 23) (). (1 + 2) " P
RY

o P
:/ wi — (1 + 28) (U ), de
RN (14 zy)p
—0.
Thus, we have
/ (um)x,godx—>/ niedr, Vo€ C§°(Rf). (A.8)
RY Z RY

Therefore, by (A.7) and (A.8) we obtain

/ updr = lim Uppdr = — lm (uy,),,pde = —/ nip dx,
RY RY

n—00 RN n—00
+

which implies that Vu = 7. Since D}P(RY) is closed, u € D}P(RY) and hence

D}?(RY)is a Banach space. ]
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Theorem A.5 The space D)P(RY) is reflexive.

Proof. ¢ Consider the operator T' : D}P(RY) — LE(RY) x LZ(RY)YN defined by

T(u) = (u, (1 4+ 2y)Vu), where in LE(RY) x L2(RY)™ we consider the norm

[ Cu, P = Nlullg . + [l

p p
9,pyY apyY”

It is clear that T is an isometry. Since D#p (Rf ) is a Banach space and, by Theorem
A2, LYRY, (14+xy)77P) is reflexive, it follows that T(D}?(RY)) is a closed subspace of
a reflexive space. Therefore, T(D}?(RY)) is reflexive and hence DJP(RY) is reflexive.
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