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Abstract
In this work, we proved some Hardy-Sobolev type inequalities and, as a consequence,

obtained weighted Sobolev embeddings in the upper half-space. As applications, we

addressed some Liouville-type results for two classes of indefinite quasilinear elliptic

problems in the upper half-space. Additionally, for these classes of problems, we ob-

tained existence results using the Fibering Method.

Keywords: Hardy-Sobolev type inequality; Weighted Sobolev spaces; Sobolev trace

embedding; Liouville type results; Fibering method.
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Resumo
Neste trabalho, provamos algumas desigualdades do tipo Hardy-Sobolev e, como con-

sequência, obtivemos imersões de Sobolev com peso no semi-espaço superior. Como

aplicações, abordamos alguns resultados do tipo Liouville para duas classes de proble-

mas elípticos quasilineares indefinidos no semi-espaço superior. Além disso, para essas

classes de problemas, obtivemos resultados de existência utilizando o Fibering method.

Palavras-chave: Desigualdade do tipo Hardy-Sobolev; Espaços de Sobolev com peso;

Imersões de Sobolev no traço; Teoremas do tipo Liouville; Fibering method.
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Notation
Throughout this work, we will use the following list of mathematical symbols and

notations:

• RN
+ := {x = (x′, xN) ∈ RN : x′ ∈ RN−1, xN > 0} denotes the upper half-space;

• Br denotes the ball centered at 0 with radius r > 0 in RN ;

• B+
r = Br ∩ RN

+ denotes the half ball;

• C∞
0 (RN) denotes the space of infinitely differentiable real functions whose support

is compact in RN ;

• ↪→ denotes continuous embedding;

• → denotes strong convergence;

• ⇀ denotes weak convergence.
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Chapter 0

Introduction

The Hardy inequality has its origins in the work of the english mathematician

Godfrey Harold Hardy in 1920 (see [32]). Precisely, if p > 1 and f is a nonegative

function p− integrable then(
p− 1

p

)p ∫ ∞

0

(
1

x

∫ x

0

f(s)ds

)p

dx ≤
∫ ∞

0

f(x)pdx.

As is well-known in nowadays, the Hardy inequality is a fundamental tool in

analysis, particularly in the study of differential equations and mathematical physics

(see for instance [36] and references therein).

The Hardy inequality has since been generalized in various ways, including ex-

tensions to weighted inequalities and settings involving different domains or operators.

It has become a powerful tool in mathematical analysis, particularly in the study of

partial differential equations, where it provides insights into the regularity and inte-

grability of solutions. The inequality is named after Hardy, but its influence extends

through many areas of mathematics, including functional analysis, potential theory,

and geometric analysis. Necas in [45] established that if Ω is a bounded domain with

∂Ω sufficiently smooth, then∫
Ω

d(x)α−p|u|pdx ≤ C0

∫
Ω

d(x)α|∇u|pdx, u ∈ C∞
0 (Ω), (1)

where d(x) denote the distance of x to ∂Ω, p ≥ 1 and α ≤ p− 1.

Matskewich and Sobolevskii in [42] prove that when Ω is a open convex with

∂Ω ∈ C1, it holds∫
Ω

|u|p

d(x)p
dx ≤

(
p

p− 1

)p ∫
Ω

|∇u|pdx, ∀u ∈ C∞
0 (Ω).
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Moreover, they proved that the constant ( p
p−1

)p is optimal. In the hole space RN ,

for 1 ≤ p < N , the N - dimensional classical Hardy inequality is proved by using a

symmetrization argument(see [12]) and is states as follows∫
RN

|u|p

|x|p
dx ≤

(
p

N − p

)p ∫
RN

|∇u|pdx, ∀u ∈ C∞
0 (RN).

The constant ( p
N−p

)p is optimal and is never achieved. This inequality for p = 2 is

known as uncertain principle(see [27]). It illustrates a relationship between the norms

of a function and its gradient, establishing a connection between the function’s behavior

near the origin and its smoothness.

Hardy type inequalities in the half-space have been studied in many papers, in-

cluding [18, 21, 23, 28, 32, 50]. We emphasize that in all of the mentioned papers,

the study of Hardy inequalities in the half-space typically focuses on functions within

C∞
0 (RN

+ ), which provides a useful framework for studying elliptic problems with Dirich-

let boundary conditions.

To explore partial differential equations with different types of boundary con-

ditions, it is useful to examine inequalities for restrictions of functions in C∞
0 (RN).

In [47], Pfluger proved that for general unbounded domains the following inequality

holds: Assume that 1 < p < N and let Ω ⊂ RN be an unbounded exterior domain

with noncompact boundary. Then, there exists C > 0 such that∫
Ω

|u|p

(1 + |x|)p
dx ≤ C

(∫
Ω

|∇u|pdx+
∫
∂Ω

|x · ν|
(1 + |x|)p

|u|pdσ
)
, (2)

for all for u ∈ C∞
0 (RN), where ν is the unit outer normal to the boundary. See also

[6, 10, 15, 29, 34, 46, 52] for related results.

In the recent work [4], Felix et. al. proved inequalities in RN
+ for restrictions

of functions in C∞
0 (RN). Specifically, they proved the following Hardy-Sobolev type

inequality: If N ≥ 2 and 1 < p < ∞, then for any u ∈ C∞
0 (RN), the following

inequality holds(
p− 1

p

)p ∫
RN
+

|u|p

(1 + xN)p
dx ≤

∫
RN
+

|∇u|pdx+
∫
RN−1

|u|pdx′.

These inequalities allow us to apply a variational framework to derive results on the

existence and nonexistence of solutions for quasilinear elliptic problems with Robin

11



boundary conditions in the zero-mass case of the form −div(|∇u|p−2∇u) = f(x, u), RN
+

|∇u|p−2∇u · ν + |u|p−2u = 0, RN−1,
(3)

with 1 < p ≤ N . However, it cannot be applied to study problems with Neumann

boundary conditions in the zero mass case. For related results see also [19, 41] and

references therein.

In Chapter 1, with the aim of addressing problems with Neumann boundary

conditions, we will initially establish a weighted Hardy-Sobolev type inequality in the

upper half-space RN
+ . Specifically, for N ≥ 2 and 0 < p − 1 < γ, we will prove the

inequality

Cp
p,γ

∫
RN
+

|u|p

(1 + xN)p−γ
dx+ Cp−1

p,γ

∫
RN−1

|u|p dx′ ≤
∫
RN
+

(1 + xN)
γ|∇u|p dx, (4)

for all u ∈ C∞
0 (RN) where Cp,γ = γ−p+1

p
. We also observe that this inequality was

proven in [3] using a different approach.

In addition to producing an inequality for functions in C∞
0 (RN), we also empha-

size that we have determined the associated constants for these inequalities. Similar to

the classical Hardy and Sobolev inequalities in RN , we believe that we have obtained

the optimal values of the associated constants, in contrast to the results in [41], where

the exact constants are unknown. With this result, we obtained more precise a pri-

ori estimates for eventual solutions for elliptical problems with Neumann, and Robin

boundary conditions that we use the inequality, to obtain Liouville-type results.

The inequality (4) plays a central role in the whole work, allowing us to obtain

Sobolev and trace embedding results for a weighted Sobolev space defined on RN
+ . An

important application of inequality (4) is the following Sobolev inequality:(∫
RN
+

|u|q

(1 + xN)p−γ
dx

)p/q

≤ C0

∫
RN
+

(1 + xN)
γ|∇u|p dx, ∀u ∈ C∞

0 (RN),

whenever q ∈ [p, p∗] if 1 < p < N and q ∈ [p,∞) if N = p.

In Chapter 2, we will use this embedding results as a tools for studying problems

with Neumann boundary conditions in the upper half-space. Precisely, we will ad-

dress results of existence and nonexistence for the following class of quasilinear elliptic

problems with indefinite nonlinearity :
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−div(ρ(x)|∇u|p−2∇u) = a(x)|u|q−2u− b(x)|u|s−2u, RN
+ ,

|∇u|p−2∇u · ν = 0, RN−1,
(5)

where 1 < p ≤ N and 1 < s, q ≤ p∗ and the weight function ρ, a, b satisfy certain

growth conditions. As mentioned in [47], the operator −div(ρ(x)|∇u|p−2∇u) appears

in many nonlinear diffusion problems. Equations of the form

−div(ρ(x)|∇u|p−2∇u) = f(x, u)

appears in several areas such as differential geometry[38], astrophysics[40], population

genetics[11] and elsewhere. Problems of this type have been studied for many authors

with different boundary conditions, for instante, in [30], the authors approach the

problem −div(ρ(x)|∇u|p−2∇u) = λa(x)|u|q−2u− |u|s−2u in Ω,

ρ(x′, 0)|∇u|p−2∇u · ν + b(x′)|u|p−2 = 0, on ∂Ω,

where Ω is a exterior domain and p < s < q < p∗, and show the existence of a parameter

λ∗ such that there exists weak solutions for λ∗ ≤ λ. Similar results were obtained in

[5] for the problem in the half-space −div(|∇u|p−2∇u) = λa(x)|u|q−2u− b(x)|u|s−2u in RN
+ ,

|∇u|p−2∇u · ν + |u|p−2u = 0, on RN−1,

where the authors consider the supercritical case for s. The critical case, s = p∗,

with Neumann boundary condition was considered in [53]. The semilinear case with

a perturbation was considered in [22]. For classical references on problems involving

indefinite nonlinearity, we refer the reader to the papers [7, 9, 13, 35, 41] and references

therein. Indefinite elliptic equations appears in the study of prescribing sign-changing

scalar curvature problem, see, for instance, [17].

Our approach is inspired by the papers [35, 41], where the authors obtained

results on the existence and nonexistence of solutions for problem (5) using the Fibering

method (see [25, 48]). We emphasize that in the mentioned works the authors deal

only with the case 1 < p < N and we also consider the case p = N .
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In the trace sense, another consequence of inequality (4) we will establish a

Sobolev trace inequality.(∫
RN−1

|u|q dx′
)p/q

≤ C0

∫
RN
+

(1 + xN)
γ|∇u|p dx, ∀u ∈ C∞

0 (RN), (6)

whenever q ∈ [p, p∗] if 1 < p < N and q ∈ [p,∞) if N = p.

In Chapter 3, as an application of our trace embeddings obtained in Chapter 1, we

will address results of existence and nonexistence for the following class of quasilinear

elliptic problems in the upper half-space:−div(ρ(x)|∇u|p−2∇u) = 0 in RN
+ ,

ρ(x′, 0)|∇u|p−2∇u · ν = h(x′)|u|q−2u−m(x′)|u|s−2u, on RN−1.
(7)

For references in the study of elliptical problems with indefinite boundary conditions

we refer [51, 54].

We establish Liouville-type results proving that, under certain conditions, the size

of the constant Cp,γ, given in the Hardy-Sobolev inequality (4) along with the ratio

h/m can lead to a nonexistence scenario. We employ a similar approach to that in

[35, 41]. To this, we use the Fibering method in combination with the trace inequality

(6).

The contents of the thesis are divided as follows: In Chapter 1, we prove a Hardy

type inequality and as consequence, we obtain some weighted Sobolev and trace in-

equalities. In the second chapter we apply theses results to establish existence and

nonexistence results for problem (5) via the Fibering methods. Finally, in Chapter 3,

we use our Sobolev trace embedding to address results of existence and nonexistence

for problem (7).
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Chapter 1

Some weighted Hardy-Sobolev

embeddings

In this chapter, we will present some results that are essential for the development

of the upcoming chapters. First, we will prove a Hardy-Sobolev type inequality (4) and

introduce new weighted Sobolev spaces. As a consequence, we will derive embeddings

of these spaces into weighted Lebesgue spaces.

It is noteworthy that our embedding results, as presented in the paper [24], can

effectively be applied to investigate the existence and nonexistence of solutions via a

variational framework for a broad range of elliptic problems in a zero mass scenario with

Neumann boundary conditions in the upper half-space. Additionally, we will establish a

Sobolev trace embedding that enables us to address existence and nonexistence results

for a class of quasilinear elliptic problems with indefinite nonlinear boundary conditions

in the upper half-space.

1.1 The weighted Sobolev space

Definition 1.1 Let C∞
δ (RN

+ ) the set of the functions in C∞
0 (RN) restricted to RN

+ . For

p > 1 and γ > p − 1, let us consider the weighted Sobolev space D1,p
γ (RN

+ ) defined as

the completion of the space C∞
δ (RN

+ ) with respect to the norm

∥u∥D1,p
γ (RN

+ ) =

(∫
RN
+

(1 + xN)
γ|∇u|p dx+

∫
RN
+

|u|p

(1 + xN)p−γ
dx

)1/p

.
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Our initial purpose is to establish weighted Sobolev embeddings of the form

D1,p
γ (RN

+ ) ↪→ Lq(RN
+ , (1 + xN)

γ−p),

for some p, q > 1 and γ ∈ R. To this, we introduce the weighted Lebesgue space defined

by

Lq(RN
+ , (1+xN)

γ−p) :=

{
u : RN

+ → R measurable :

∫
RN
+

|u|q

(1 + xN)p−γ
dx <∞

}
, (1.1)

equipped with the norm

∥u∥q,p,γ :=

(∫
RN
+

|u|q

(1 + xN)p−γ
dx

)1/q

. (1.2)

1.2 A Hardy-Sobolev type inequality

We begin by stating a Hardy-Sobolev type inequality, which will play a cen-

tral role in proving our main results in this chapter and throughout all this work.

For related Hardy-type inequalities on the upper half-space, we refer to the works

[18, 21, 23, 28, 32, 50]. In the mentioned context, we are considering functions in

C∞
0 (RN), while in the aforementioned work, the inequalities are established for func-

tions in C∞
0 (RN

+ ), as seen, for instance, in [21, Theorem 6.9].

Our Hardy-Sobolev type inequality is state as follows.

Theorem 1.1 (Hardy) Let N ≥ 2 and 0 < p− 1 < γ. Then, for every u ∈ C∞
0 (RN)

it holds

Cp
p,γ

∫
RN
+

|u|p

(1 + xN)p−γ
dx+ Cp−1

p,γ

∫
RN−1

|u|p dx′ ≤
∫
RN
+

(1 + xN)
γ|∇u|p dx, (1.3)

where

Cp,γ =
γ − p+ 1

p
. (1.4)

Proof. Let p > 1 and σ be a real number to be chosen later. For any u ∈ C∞
0 (RN),

by the Fundamental theorem of calculus we obtain

(σ + 1)

∫
RN
+

(1 + xN)
σ|u|p dx+

∫
RN−1

|u|p dx′ = −
∫
RN
+

(1 + xN)
σ+1(|u|p)xN

dx.
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On the other hand,∣∣∣∣∣−
∫
RN
+

(1 + xN)
σ+1(|u|p)xN

dx

∣∣∣∣∣ ≤p
∫
RN
+

(1 + xN)
σ+1|u|p−1|∇u| dx.

For a, b ≥ 0, real numbers and ε > 0, we can use the Young inequality to get

pab ≤ ε(σ + 1)a
p

p−1 +

(
p− 1

ε(σ + 1)

)p−1

bp.

Taking into account that

p(1 + xN)
σ+1|u|p−1|∇u| = p(1 + xN)

(σ+1− γ
p
)|u|p−1(1 + xN)

γ
p |∇u|,

we obtain

p

∫
RN
+

(1 + xN)
(σ+1|u|p−1|∇u| dx ≤ε(σ + 1)

∫
RN
+

(1 + xN)
(σ+1−γ/p) p

p−1 |u|p dx

+

(
p− 1

ε(σ + 1)

)p−1 ∫
RN+

(1 + xN)
γ|∇u|p dx.

Combining the above inequalities, we get

(σ + 1)

∫
RN
+

(1 + xN)
σ|u|p dx+

∫
RN−1

|u|p dx′ ≤ ε(σ + 1)

∫
RN
+

(1 + xN)
(σ+1−γ/p) p

p−1 |u|p dx

+

(
p− 1

ε(σ + 1)

)p−1 ∫
RN
+

(1 + xN)
γ|∇u|p dx.

Next, choosing σ such that (
σ + 1− γ

p

)
p

p− 1
= σ,

we have σ = γ − p and σ + 1 = γ − p+ 1 > 0. Thus, one has

(σ + 1)(1− ε)

∫
RN
+

(1 + xN)
σ|u|p dx+

∫
RN−1

|u|p dx′

≤
(

p− 1

ε(σ + 1)

)p−1 ∫
RN+

(1 + xN)
γ|∇u|p dx,

which implies

(σ + 1)p(εp−1 − εp)

∫
RN
+

(1 + xN)
σ|u|p dx+ (σ + 1)p−1εp−1

∫
RN−1

|u|p dx′

≤ (p− 1)p−1

∫
RN+

(1 + xN)
γ|∇u|p dx.
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Since the function f(ε) = εp−1 − εp, for ε > 0 has it maximum at

ε0 =
p− 1

p
and f(ε0) = (p− 1)p−1 1

pp
,

a simple computation shows that(
σ + 1

p

)p ∫
RN
+

(1 + xN)
σ|u|p dx+

(
σ + 1

p

)p−1 ∫
RN−1

|u|p dx′ ≤
∫
RN+

(1 + xN)
γ|∇u|p dx,

and this concludes the proof.

As a consequence of Theorem 1.1, if we consider the seminorm defined by

∥u∥γ =

(∫
RN
+

(1 + xN)
γ|∇u|p dx

)1/p

,

we immediately obtained the following result that will be crucial for our purpose.

Corollary 1.2 For 0 < p− 1 < γ, ∥ · ∥γ define a norm that is equivalent to ∥.∥D1,p
γ (RN

+ )

in the Sobolev space D1,p
γ (RN

+ ).

Proof. From the definition of D1,p
γ (RN

+ ) and a density argument we see that

Cp
p,γ

∫
RN
+

|u|p

(1 + xN)p−γ
dx ≤

∫
RN
+

(1 + xN)
γ|∇u|p dx, ∀u ∈ D1,p

γ (RN
+ ). (1.5)

In fact, if u ∈ D1,p
γ (RN

+ ) there exists (un) ⊂ C∞
δ (RN

+ ) such that un → u in D1,p
γ (RN

+ ).

By Theorem 1.1 we have

Cp
p,γ

∫
RN
+

|un|p

(1 + xN)p−γ
dx ≤

∫
RN
+

(1 + xN)
γ|∇un|p dx.

Then, passing to the limit we obtain (1.5).

Clearly we have ∥u∥γ ≤ ∥u∥D1,p
γ (RN

+ ). On the other hand, from (1.5) we get

∥u∥p
D1,p

γ (RN
+ )

=

∫
RN
+

(1 + xN)
γ|∇u|p dx+

∫
RN
+

|u|p

(1 + xN)p−γ
dx

≤(1 + C−p
p,γ)

∫
RN
+

(1 + xN)
γ|∇u|p dx

=(1 + C−p
p,γ)∥u∥pγ,

and this completes the proof.
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1.3 The weighted Sobolev embedding

In this section we present some weighted Sobolev embedding, derived from the

Hardy inequality (1.3), that will be usefully in our applications.

Theorem 1.3 (Sobolev inequality) Let N ≥ 2 and 0 < p − 1 < γ. Then, there

exists a constant C0 > 0 such that(∫
RN
+

|u|q

(1 + xN)p−γ
dx

)p/q

≤ C

∫
RN
+

(1 + xN)
γ|∇u|p dx, ∀u ∈ D1,p

γ (RN
+ ),

that is

D1,p
γ (RN

+ ) ↪→ Lq(RN
+ , (1 + xN)

γ−p),

whenever q ∈ [p, p∗] if 1 < p < N and q ∈ [p,∞) if N = p.

Proof. First assume that u ∈ C∞
0 (RN) and we shall proceed with the proof in several

steps.

Step 1: Assume 1 < p < N and p− 1 < γ ≤ p.

By the classical Gagliardo-Nirenberg-Sobolev inequality(see [53, 31, 44]) we have(∫
RN
+

|v|p∗ dx

)(N−p)/N

≤ C

∫
RN
+

|∇v|p dx, ∀v ∈ C∞
0 (RN), (1.6)

which holds for every 1 ≤ p < N . Thus, for q ∈ [p, p∗], by the interpolation inequality

(A.6), there exists α ∈ [0, 1] such that q = (1− α)p+ αp∗ and(∫
RN
+

|u|q

(1 + xN)p−γ
dx

)p/q

≤

(∫
RN
+

|u|p

(1 + xN)p−γ
dx

)(1−α) p
q
(∫

RN
+

|u|p∗

(1 + xN)p−γ
dx

)α p
q

≤

(∫
RN
+

|u|p

(1 + xN)p−γ
dx

)(1−α) p
q
(∫

RN
+

|u|p∗ dx

)α p
q

.

Then by Theorem 1.1 and (1.6)(∫
RN
+

|u|q

(1 + xN)p−γ
dx

)p/q

≤C

(∫
RN
+

(1 + xN)
γ|∇u|p dx

)(1−α) p
q
(∫

RN
+

|∇u|p dx

)α p∗
q

≤C

(∫
RN
+

(1 + xN)
γ|∇u|p dx

) (1−α)p+αp∗
q

=C

∫
RN
+

(1 + xN)
γ|∇u|pdx.
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Step 2: Next, assume 1 < p < N and γ > p.

Once again, by interpolation, it is sufficient to prove that(∫
RN
+

|v|p∗

(1 + xN)p−γ
dx

)(N−p)/N

≤ C

∫
RN
+

(1 + xN)
γ|∇v|p dx, ∀v ∈ C∞

0 (RN). (1.7)

Defining v =: u/(1 + xN)
σ with u ∈ C∞

0 (RN) and using a simple computation we see

that

∇v =
1

(1 + xN)σ

(
∇u− (0′,

σu

(1 + xN)
)

)
and consequently, there exists a constant C = C(p, σ) > 0 such that

|∇v|p ≤ C

(
|∇u|p

(1 + xN)pσ
+

|u|p

(1 + xN)(σ+1)p

)
.

This, together with (1.6), implies that(∫
RN
+

|u|p∗

(1 + xN)σp
∗ dx

)(N−p)/N

≤ C

∫
RN
+

(
|∇u|p

(1 + xN)pσ
+

|u|p

(1 + xN)(σ+1)p

)
dx. (1.8)

Choosing σ < 0 such that σp∗ = p− γ we deduce that

−σp = (γ − p)(N − p)

N
< γ − p < γ

and hence (σ + 1)p > p− γ. Thus, from (1.8) we get(∫
RN
+

|u|p∗

(1 + xN)p−γ
dx

)(N−p)/N

≤C
∫
RN
+

(
|∇u|p

(1 + xN)pσ
+

|u|p

(1 + xN)(σ+1)p

)
dx

≤C
∫
RN
+

(
(1 + xN)

γ|∇u|p + |u|p

(1 + xN)p−γ

)
dx

and by the Hardy inequality (1.3) we conclude that (1.7) holds.

Step 3: Assume that p = N .

For u ∈ C∞
0 (RN), applying inequality (1.6) with p = 1 and v = |u|N

(1+xN )σ
we get(∫

RN
+

|u|N2/(N−1)

(1 + xN)
σN
N−1

dx

)(N−1)/N

≤C|σ|
∫
RN
+

|u|N

(1 + xN)σ+1
dx+ CN

∫
RN
+

|u|N−1|∇u|
(1 + xN)σ

dx.

Choosing σ + 1 = N − γ and using Young’s inequality, we obtain∫
RN
+

|u|N−1|∇u|
(1 + xN)σ

dx =

∫
RN
+

|u|N−1(1 + xN)
γ/N |∇u|

(1 + xN)σ+γ/N
dx
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≤C
∫
RN
+

(
|u|N

(1 + xN)N−γ
+ (1 + xN)

γ|∇u|N
)
dx,

where we used that (
σ +

γ

N

) N

N − 1
= N − γ. (1.9)

Since σN
N−1

≤ N − γ, using Theorem 1.1 we get(∫
RN
+

|u|N2/(N−1)

(1 + xN)N−γ
dx

)(N−1)/N

≤ C

∫
RN
+

(1 + xN)
γ|∇u|N dx. (1.10)

Thus, interpolation inequality (A.6), with θ ∈ [0, 1] such that q = (1−θ)N+θN2/(N−

1), implies(∫
RN
+

|u|q

(1 + xN)N−γ
dx

)N/q

≤

(∫
RN
+

|u|N

(1 + xN)N−γ
dx

)(1−θ)N
q
(∫

RN
+

|u|N2/(N−1)

(1 + xN)N−γ
dx

)θN
q

≤C

(∫
RN
+

(1 + xN)
γ|∇u|N dx

)(1−θ)N
q
+ N2

N−1
θ
q

=C

∫
RN
+

(1 + xN)
γ|∇u|N dx

for any q ∈ [N,N2/(N − 1)]. Since N < N + 1 < N2/(N − 1), in particular we get(∫
RN
+

|u|N+1

(1 + xN)N−γ
dx

)N/(N+1)

≤ C

∫
RN
+

(1 + xN)
γ|∇u|N dx. (1.11)

Once again, applying (1.6) with p = 1 and v = |u|N+1

(1+xN )σ
and using Young’s inequality

we have(∫
RN
+

|u|
N(N+1)

N−1

(1 + xN)
σN
N−1

dx

)(N−1)/N

≤C

(∫
RN
+

|u|N+1

(1 + xN)σ+1
dx+

∫
RN
+

|u|N |∇u|
(1 + xN)σ

dx

)
.

Using Hölder’s inequality and (1.9), we obtain∫
RN
+

|u|N |∇u|
(1 + xN)σ

dx =

∫
RN
+

|u|N(1 + xN)
γ/N |∇u|

(1 + xN)σ+γ/N
dx

≤

∫
RN
+

|u|
N2

N−1

(1 + xN)N−γ
dx

(N−1)/N (∫
RN
+

(1 + xN)
γ|∇u|N dx

)1/N

.

Thus, from (1.10) and (1.11) one has(∫
RN
+

|u|
N(N+1)

N−1

(1 + xN)N−γ
dx

)N−1
N+1

≤ C

∫
RN
+

(1 + xN)
γ|∇u|N dx
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and interpolation implies(∫
RN
+

|u|q

(1 + xN)N−γ
dx

)N/q

≤ C

∫
RN
+

(1 + xN)
γ|∇u|N dx,

for any q ∈ [N, N(N+1)
N−1

]. Reiterating this argument with k = N + 2, N + 3, . . . , we get(∫
RN
+

|u|Nk/(N−1)

(1 + xN)N−γ
dx

)(N−1)/k

≤ C

∫
RN
+

(1 + xN)
γ|∇u|N dx.

Now, given q ∈ (N,∞), we can choose k ≥ N such that q ∈ (N,Nk/(N − 1))

and by interpolation, we can conclude the desired inequality for smooth functions.

Let u ∈ D1,p
γ (RN

+ ) and (un) ⊂ C∞
0 (RN) such that un → u in D1,p

γ (RN
+ ). From the

smooth functions case, we see that(∫
RN
+

|un − um|q

(1 + xN)p−γ
dx

)p/q

≤ C

∫
RN
+

(1 + xN)
γ|∇un −∇um|p dx −→ 0,

Thus, (un) is a Cauchy sequence in Lq(RN
+ , (1 + xN)

γ−p), which is a Banach space in

view of Theorem A.1. Therefore, there exists w ∈ Lq(RN
+ , (1 + xN)

γ−p) such that

un → w in Lq(RN
+ , (1 + xN)

γ−p).

Given that un → u in Lp(RN
+ , (1 + xN)

γ−p), we have w = u. Thus, passing to the limit

in the inequality(∫
RN
+

|un|q

(1 + xN)p−γ
dx

)p/q

≤ C

∫
RN
+

(1 + xN)
γ|∇un|p dx,

and we obtain the desired result.

1.4 A Sobolev trace embedding

In this section, we present the trace embedding results that enable the treatment

of problems with nonlinear boundary conditions (see Chapter 3). To this, we will

introduce here a new weighted Sobolev space.

Definition 1.2 For p > 1 and γ > p − 1, we consider the weighted Sobolev space

E1,p
γ (RN

+ ) defined as the completion of the space C∞
δ (RN

+ ) with respect to the norm

∥u∥E1,p
γ (RN

+ ) =

(∫
RN
+

(1 + xN)
γ|∇u|p dx+

∫
RN−1

|u|p dx

)1/p

.

22



As a consequence of Theorem 1.1 we have the following result.

Corollary 1.4 Let 0 < p − 1 < γ. In the space E1,p
γ (RN

+ ), the norm ∥ · ∥E1,p
γ (RN

+ ) is

equivalent to ∥ · ∥γ. In particular we have

E1,p
γ (RN

+ ) = D1,p
γ (RN

+ ).

Proof. If 0 < p− 1 < γ, by inequality (1.3), the definition of E1,p
γ (RN

+ ) and a density

argument we see that

Cp−1
p,γ

∫
RN−1

|u|p dx ≤
∫
RN
+

(1 + xN)
γ|∇u|p dx, ∀u ∈ E1,p

γ (RN
+ ). (1.12)

In fact, if u ∈ E1,p
γ (RN

+ ), there exists (un) ⊂ C∞
δ (RN

+) such that un → u in E1,p
γ (RN

+ ).

By Theorem 1.1 we have

Cp−1
p,γ

∫
RN−1

|un|p dx ≤
∫
RN
+

(1 + xN)
γ|∇un|p dx, ∀u ∈ E1,p

γ (RN
+ ).

Thus, taking the limit we obtain (1.12). Then, for all u ∈ E1,p
γ (RN

+ ) we have

∥u∥γ ≤ ∥u∥E1,p
γ (RN

+ ) and ∥u∥E1,p
γ (RN

+ ) ≤ C∥u∥γ.

Since ∥.∥γ is equivalent to ∥.∥D1,p
γ (RN

+ ), by Theorem 1.1, we have

E1,p
γ (RN

+ ) = C∞
δ (RN

+)
∥.∥

E1,p
γ (RN+ ) = C∞

δ (RN
+ )

∥.∥γ
= C∞

δ (RN
+ )

∥.∥
D1,p
γ (RN+ ) = D1,p

γ (RN
+ ).

This fact allows us to obtain the following Sobolev trace embedding which plays

a fundamental role in our applications:

Theorem 1.5 (Trace embedding) Let N ≥ 2 and 0 < p−1 < γ. Then, there exists

a constant C0 > 0 such that(∫
RN−1

|u|q dx′
)p/q

≤ C0

∫
RN
+

(1 + xN)
γ|∇u|p dx, ∀u ∈ D1,p

γ (RN
+ ), (1.13)

which is equivalent to

D1,p
γ (RN

+ ) ↪→ Lq(RN−1),

for all q ∈ [p, p∗] if 1 < p < N and q ∈ [N,∞) if p = N .
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Proof. First, assume u ∈ C∞
δ (RN

+ ). If 1 < p < N , we can use the trace embedding

(see [26, 43]) and obtain(∫
RN−1

|u|p∗ dx′
) p

p∗
≤ C

∫
RN
+

|∇u|p dx ≤ C

∫
RN
+

(1 + xN)
γ|∇u|p dx, ∀u ∈ C∞

δ (RN
+ ).

Given q ∈ [p, p∗], by the classical interpolation inequality we have

∥u∥Lq(RN−1) ≤ ∥u∥αLp(RN−1)∥u∥
1−α
Lp∗ (RN−1)

,

with α ∈ [0, 1]. Then, by using the Hardy inequality (1.3) we obtain(∫
RN−1

|u|qdx′
)p/q

≤
(∫

RN−1

|u|pdx′
)α(∫

RN−1

|u|p∗dx′
) p(1−α)

p∗

≤

(∫
RN
+

(1 + xN)
γ|∇u|pdx

)α(∫
RN
+

(1 + xN)
γ|∇u|pdx

)1−α

=

∫
RN
+

(1 + xN)
γ|∇u|pdx.

Now, suppose that p = N , let q ≥ N and σ > 0 to be chosen later. First, we

observe that

|u(x′, 0)|q =−
∫ ∞

0

∂

∂xN

(
|u|q

(1 + xN)σ

)
dxN

≤q
∫ ∞

0

|u|q−1|∇u|
(1 + xN)σ

dxN + σ

∫ ∞

0

|u|q

(1 + xN)σ+1
dxN .

By integration, we get∫
RN−1

|u|q dx′ ≤ q

∫
RN
+

|u|q−1|∇u|
(1 + xN)σ

dx+ σ

∫
RN
+

|u|q

(1 + xN)σ+1
dx.

Choosing σ > 0 such that σN
N−1

≥ N − γ, we have that σ + 1 ≥ N − γ whenever γ ≥ 0.

Then, we can apply Theorem 1.3 to obtain a constant C0 > 0 such that∫
RN
+

|u|q

(1 + xN)σ+1
dx ≤

∫
RN
+

|u|q

(1 + xN)N−γ
dx ≤ C0

(∫
RN
+

(1 + xN)
γ|∇u|N dx

)q/N

.

On the other hand, by Hölder’s inequality, we have∫
RN
+

|u|q−1|∇u|
(1 + xN)σ

dx ≤

(∫
RN
+

|u|
(q−1)N
N−1

(1 + xN)
σN
N−1

dx

)(N−1)N (∫
RN
+

|∇u|N dx

)1/N

.

Since (q − 1)N/(N − 1) ≥ N , once again by applying Theorem 1.3, we get∫
RN
+

|u|q−1|∇u|
(1 + xN)σ

dx ≤

(∫
RN
+

|u|
(q−1)N
N−1

(1 + xN)N−γ
dx

)(N−1)N (∫
RN
+

(1 + xN)
γ|∇u|N dx

)1/N
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≤C1

(∫
RN
+

(1 + xN)
γ|∇u|N dx

)q/N

,

for some constant C1 > 0. Combining the above inequalities, we conclude the proof of

the inequality for functions in C∞
δ (RN

+).

Now, let u ∈ D1,p
γ (RN

+ ) and consider a sequence (un) ⊂ C∞
δ (RN

+ ) such that

un → u in D1,p
γ (RN

+ ).

By Corollary 1.4, we see that

un → u in E1,p
γ (RN

+ ).

By inequality (1.13) for functions in C∞
δ (RN

+ ) we have(∫
RN−1

|un − um|q dx′
)p/q

≤ C

∫
RN
+

(1 + xN)
γ|∇un −∇um|p dx −→ 0.

Then, there exists w ∈ Lq(RN−1) such that

un → w in Lq(RN−1).

By the convergence in E1,p
γ (RN

+ ) we have

un → u in Lp(RN−1),

and therefore u = w. Thus, taking the limit in the inequality(∫
RN−1

|un|q dx′
)p/q

≤ C

∫
RN
+

(1 + xN)
γ|∇un|p dx

we conclude the proof of Theorem 1.5.

1.5 Some comments

Some questions remains open with respect to the D1,p
γ (RN

+ ) theory:

• We observe that the condition γ > p− 1 is sufficient to prove the Hardy type in-

equality (1.3), which aligns with the sufficient condition proven in [39]. However,

determining a necessary condition on γ for (1.3) remains an open question.
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• If γ ≥ p, we observe that

D1,p
γ (RN

+ ) ↪→ W 1,p(RN
+ ),

resulting in bounded state solutions. Therefore, a natural question arises: what

happens in the case when p− 1 < γ < p?
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Chapter 2

Application 1: Liouville type and

Existence results for a quasilinear

elliptic problem via Fibering method

In this chapter, we present the results obtained in the paper [24]. Our discussion

focuses on Liouville-type results and the existence of solutions for the following model

of quasilinear elliptic problems:−div(ρ(x)|∇u|p−2∇u) = a(x)|u|q−2u− b(x)|u|s−2u, RN
+ ,

|∇u|p−2∇u · ν = 0, RN−1,
(P1)

where ν is the unit outer normal to the boundary ∂RN
+ := RN−1, 1 < q, s ≤ p∗ if

1 < p < N and 1 < q, s <∞ if p = N .

Throughout this chapter, we assume that ρ, a, b ∈ L1
loc(RN

+ ) and are positive

functions. For 1 < p < N , we denote by p∗ := Np/(N − p) the critical exponent for

the Sobolev embedding and p∗ = ∞ if p = N .

From a mathematical perspective, the nature of problem (P1) is described ac-

cording to the behavior of the competing terms a(x)|u|q−2u and b(x)|u|s−2u as de-

termined by the integrability properties of the ratio a(x)1/p/b(x)1/s (as discussed in

Alama-Tarantello [7, 9]). The interplay between the weight functions a(x) and b(x)

significantly impacts the existence and nonexistence of solutions to (P1) and has gar-

nered substantial attention among researchers, see, for instance, [13, 30]. We mention

that the weight functions are not necessarily spherically symmetric. Thus, we are mo-
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tivated to pursue new weighted Sobolev embeddings to enable variational frameworks

in diverse settings.

In the works [41, 35], based on a Hardy-type inequality due to K. Pflüger, [47] (see

also [34]) and the Fibering Method, it was established the existence and Liouville-type

results for a similar class of quasilinear elliptic problems with Robin boundary condition

in an unbounded domain Ω ⊂ RN with noncompact smooth boundary, 1 < p < N ,

q, s ∈ (1, p∗), ρ ∈ L∞(Ω) ∩ L∞(∂Ω) and 0 < ρ0 < ρ(x), where the potentials a and b

vanish at infinity.

It is important to mention that the approach in [41] used to treat a problem

with Robin boundary conditions cannot be used to study problems with Neumann

boundary conditions because their argument is based on K. Pflüger’s inequality, which

does not allow one to eliminate the boundary term. We also highlight that based on

a Hardy-type inequality in [2], the existence and nonexistence results for semilinear

elliptic problems with Robin boundary conditions were addressed using a variational

approach. For related results, see also [30].

Our approach here is based on a new class of Hardy-type inequalities, which allows

us to consider problems with Neumann boundary conditions. We also emphasize that

we have determined the associated constants for these inequalities. Similar to the

classical Hardy and Sobolev inequalities in RN , we believe that we have obtained the

optimal values of the associated constants, in contrast to the results in [41], where the

exact constants are unknown. Hence, we gave a partial answer to a question raised

in [41]. With these results, we obtained more precise a priori estimates for eventual

solutions of (P1) to obtain Liouville-type results. Moreover, we have incorporated the

extreme scenario where p = N into our analysis.

Henceforth, we presume that the weight function ρ adheres to the following tech-

nical hypothesis:

(H0) there are constants ρ0 > 0 and γ > p− 1 such that

ρ(x) ≥ ρ0(1 + xN)
γ a.e. in RN

+ .

First, we must introduce our variational setting to describe our results for (P1).

Let C∞
δ (RN

+ ) be the set of all functions u ∈ C∞
0 (RN) restricted to RN

+
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Definition 2.1 Assume assumption (H0). Let us consider the weighted space E de-

fined as the closure of C∞
δ (RN

+ ) with respect to the norm

∥u∥ :=

(∫
RN
+

ρ(x)|∇u|p dx

)1/p

.

Clearly, from (H0) we have the continuous embedding

(E, ∥ · ∥) ↪→
(
D1,p

γ (RN
+

)
, ∥ · ∥γ).

Here, by a weak solution of (P1) we mean a function u ∈ E such that∫
RN
+

ρ(x)|∇u|p−2∇u∇φ dx =

∫
RN
+

(a(x)|u|q−2u− b(x)|u|s−2u)φ dx, (2.1)

holds for every φ ∈ C∞
δ (RN

+ ).

2.1 Main results

Before establishing our main results, let us start by introducing some notation

that will be used throughout. We denote by

Cp,γ :=
γ − p+ 1

p

the constant given in the inequality (1.3) and

η(r, q, t) :=
(t− r)t−r

(q − r)q−r(t− q)t−q
if r < q < t. (2.2)

2.1.1 Liouville-type results

To state our nonexistence results, we shall introduce the following class of func-

tions:

K0 :=
{
k ∈ C(RN

+ , (0,∞)) : k(x)(1 + xN)
p−γ ∈ L∞(RN

+ )
}
.

Our first concern is to assert nonexistence when s < q < p.

Theorem 2.1 (p-sublinear case) Assume (H0) and suppose that b ∈ K0 ∩ L1(RN
+ ).

If 1 < s < q < p ≤ N and a/b ∈ L∞(RN
+ ) with∥∥∥a

b

∥∥∥p−s

∞

(
b0C

−p
p,γ

ρ0

)q−s

< η(s, q, p), (2.3)
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then (P1) possesses only the trivial weak solution. Hereafter, b0 > 0 denotes a constant

such that

b(x)(1 + xN)
p−γ ≤ b0 in RN

+ .

Remark 2.1 Straightforward computation shows that, for λ > 0 sufficiently small, the

functions,

a(x) =
λ(1 + xN)

γ−p

(1 + |x|)θ1
and b(x) =

(1 + xN)
γ−p

(1 + |x|)θ2
,

satisfy the assumptions of Theorem 2.1 whenever max{N,N + γ − p} < θ2 ≤ θ1.

In our second nonexistence result, we address the case where p < q < s.

Theorem 2.2 (p-superlinear case) Assume (H0) and suppose that b ∈ K0. If 1 <

p < N , p < q < s ≤ p∗ and a/b ∈ L∞(RN
+ ) with∥∥∥a

b

∥∥∥s−p

∞

(
b0C

−p
p,γ

ρ0

)s−q

< η(p, q, s), (2.4)

then (P1) possesses only the trivial weak solution. Moreover, the same result holds if

p = N and p < q < s <∞.

q

s

1

p

p∗

1 p p∗

Figure 2.1: Nonexistence of solutions for (P1)

Remark 2.2 Typical examples of functions satisfying the assumptions of Theorem 2.2

are

a(x) = λ(1 + xN)
θ1 and b(x) = µ(1 + xN)

θ2 ,

with θ1 ≤ θ2 ≤ γ − p and λ > 0 sufficiently small or µ > 0 sufficiently large.

The basic idea to prove Theorems 2.1 and 2.2 relies on refining the arguments

presented in [41] by using a specific key estimate.
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2.1.2 Existence results

To establish our existence results, it is necessary to impose additional hypotheses

on the weight functions a and b to ensure the compactness of the Sobolev embedding,

thereby enabling the application of the Fibering Method as demonstrated in papers

[35, 41]. To this end, we introduce the following class of functions:

K :=

{
k ∈ C(RN

+ , (0,∞)) such that lim
|x|→∞

k(x)(1 + xN)
p−γ = 0

}
.

We assume 1 < p ≤ N to state our existence results. Our first result considers

p−superlinear case p < s < q or when s < p < q.

Theorem 2.3 If (H0) holds, then (P1) has a nontrivial and nonnegative weak solution

when one of the following conditions occurs:

i) p < s < q < p∗ and a, b ∈ K;

ii) 1 < s < p < q < p∗, a ∈ K, and b ∈ L1(RN
+ ) ∩ K0.

On our second existence result, we treat the p−sublinear case s < q < p or when

q < p < s.

q

s

1

p

p∗

1 p p∗

Figure 2.2: Existence of nontrivial solutions for (P1)

Theorem 2.4 If (H0) holds, then (P1) has a nontrivial and nonnegative weak solution

when one of the following conditions occurs:

i) 1 < q < s < p and a, b ∈ L1(RN
+ ) ∩ K0;

31



ii) 1 < q < p < s < p∗, a ∈ L1(RN
+ ) ∩ K0 and b ∈ K.

To present our third existence result, we consider the functionals defined on E by

A(u) =

∫
RN
+

a(x)|u|q dx and B(u) =

∫
RN
+

b(x)|u|s dx. (2.5)

We note that under the assumptions of Theorem 2.2, for v ∈ E, the following key

inequality holds true (see Lemma 2.9)

A(v)s−p < η(p, q, s)B(v)q−p∥v∥p(s−q) < η(p, q, s)

(
q

p

)s−q

B(v)q−p∥v∥p(s−q).

We consider the existence of solutions for (P1) in a subset of the complementary case

of this inequality. Precisely, considering the set

D1 :=

{
u ∈ E : A(u)s−p >

(
q

p

)s−q

η(p, q, s)B(u)q−p∥u∥p(s−q)

}
, (2.6)

a counterpart of Theorem 2.2 reads as follows.

Theorem 2.5 Assume that (H0) holds. If a, b ∈ K, p < q < s < p∗, D1 ̸= ∅ and

a1/q

b1/s
∈ L

sq
s−q (RN

+ ), (2.7)

then, (P1) has a nontrivial and nonnegative weak solution.

Remark 2.3 The functions a = b = λk, with k given by

k(x) = (1 + xN)
γ−p(1 + |x|)−θ,

satisfy the assumptions of Theorem 2.5 for θ > max{N,N + γ − p} and λ sufficiently

large. In fact, first, we observe that[
a(x)1/q

b(x)1/s

] sq
s−q

= a(x) = λ(1 + xN)
γ−p(1 + |x|)−θ ∈ L1(RN

+ ),

whenever θ > N + γ − p. For u ∈ E\{0} fixed, one has

A(u)s−p/B(u)q−p = λs−q∥u∥q(s−p)

Lq(RN
+ ,k)

∥u∥s(p−q)

Ls(RN
+ ,k)

.

Since s > q, for λ sufficiently large we see that

A(u)s−p >

(
q

p

)s−q

η(p, q, s)B(u)q−p∥u∥p(s−q),

and hence D1 ̸= ∅.

32



q

s

1
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Figure 2.3: Existence of nontrivial solutions for (P1)

Finally, we obtain a existence result for the case s < q < p. Similar to the

previous existence, we assume that the set

C1 :=
{
u ∈ E : A(u)p−s >

(q
s

)p−s

η(s, q, p)B(u)p−q∥u∥p(q−s)

}
(2.8)

is nonempty. This condition, similar to the case when D1 ̸= ∅, indicates that a(x) is

sufficiently "large" relative to b(x), in contrast with the nonexistence case in Theorem

(2.1) when occurs A(u)p−s < η(s, q, p)B(u)p−q∥u∥p(q−s) for all u ∈ E\{0}. Furthermore

this combination of the exponents s, q, p we are able to prove the existence without

an extra hypothesis of integrability for the quotient a(x)1/q/b(x)1/s as (2.7) in the case

p < q < s. Our fourth, and last existence result for (P1), is the following:

q

s

1

p

p∗

1 p p∗

Figure 2.4: Existence of nontrivial solutions for (P1)

Theorem 2.6 Assume (H0), s < q < p ≤ N and a, b ∈ L1(RN
+ ) ∩ K0. If C1 ̸= ∅, then

(P1) has a nontrivial and nonnegative weak solution.
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The proofs of Theorems 2.3, 2.4, 2.5 and 2.6 are based on the classical Fibering

Method; for great references in this theory, see [25, 35, 41, 49, 48].

Remark 2.4 We finally highlight that our results for (P1) can be extended to a more

general class of problems of the form
−div(ρ(x)|∇u|p−2∇u) + λ

|u|p−2u

(1 + xN)p−γ
= a(x)|u|q−2u− b(x)|u|s−2u in RN

+ ,

ρ(x)|∇u|p−2∇u · ν + µ|u|p−2u = 0, on RN−1.

In fact, considering the norm

∥u∥pλ,µ =

∫
RN
+

ρ(x)|∇u|p dx+ λ

∫
RN
+

|u|p

(1 + xN)p−γ
dx+ µ

∫
RN−1

|u|p dx′,

and invoking Theorem 1.1, we can see that, for certain conditions on the parameters

λ, µ depending on ρ0 and Cp,γ, the norms ∥ · ∥λ,µ is equivalent to ∥ · ∥. Therefore, the

same approach can treat this more general class of problems.

It is worth mentioning that if q < s = p, the Direct Methods in the Calculus of

Variations ensure the existence of solutions to (P1). In the case that s = p < q, the

mountain-pass approach can be applied to establish the existence of solutions to (P1).

34



2.2 Proof of our Liouville-type Results

In this section, we shall focus on proving our Liouville-type results. The following

estimate is fundamental in our analysis.

Lemma 2.7 (key estimate) Assume condition (H0) and 1 < s < q < p. If b ∈

L1(RN
+ ) ∩ K0, then B is well defined in E. In addition, if a/b ∈ L∞(RN

+ ), then

A(v)p−s ≤

(∥∥∥a
b

∥∥∥(p−s)

∞

[
b0C

−p
p,γ

ρ0

]q−s
)
B(v)p−q∥v∥p(q−s), ∀v ∈ E. (2.9)

In particular, A is well-defined. Furthermore, if (2.3) holds, then

A(v)p−s < η(s, q, p)B(v)p−q∥v∥p(q−s), ∀v ∈ E\{0}. (2.10)

Proof. Since b ∈ K0, we have b(x) ≤ b0/(1 + xN)
p−γ. Thus, by Hölder’s inequality,

B(v) =

∫
RN
+

b
p−s
p bs/p|v|s dx ≤∥b∥(p−s)/s

L1(RN
+ )

(∫
RN
+

b|v|p dx

)s/p

≤bs/p0 ∥b∥(p−s)/s

L1(RN
+ )

(∫
RN
+

|v|p

(1 + xN)p−γ
dx

)s/p

,

which in finite by Theorem 1.1 and assumption (H0). Since a is nonnegative, we get

a(1 + xN)
p−γ ≤ b0a/b, which implies

∥a(1 + xN)
p−γ∥∞ ≤ b0

∥∥∥a
b

∥∥∥
∞
. (2.11)

If s < q < p we can write q = (1− α)s+ αp with α = (q − s)/(p− s) ∈ (0, 1) . Thus,

by Hölder’s inequality,

A(v) =

∫
RN
+

a|v|q dx =

∫
RN
+

(a|v|s)1−α(a|v|p)α dx ≤

(∫
RN
+

a|v|s dx

)1−α(∫
RN
+

a|v|p dx

)α

.

Using that 1− α = (p− q)/(p− s) we obtain

A(v)p−s ≤

(∫
RN
+

a|v|s dx

)p−q(∫
RN
+

a|v|p dx

)q−s

. (2.12)

Now, observe that ∫
RN
+

a|v|s dx =

∫
RN
+

a

b
(b|v|s) dx ≤

∥∥∥a
b

∥∥∥
∞
B(v).
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Thus, (2.11) and Theorem 1.1 gives∫
RN
+

a|v|p dx ≤ ∥a(1 + xN)
p−γ∥∞

∫
RN
+

|v|p

(1 + xN)p−γ
dx ≤ b0

∥∥∥a
b

∥∥∥
∞

C−p
p,γ

ρ0
∥v∥p.

Therefore, plugging the last two inequalities into (2.12), we estimate (2.9).

Throughout this chapter, we will consider the following auxiliary function:

G1(r, v) = A(v)rq−p −B(v)rs−p, r > 0 and v ∈ E. (2.13)

Lemma 2.8 Assume the assumptions in Theorem 2.1. For each fixed v ∈ E\{0} the

function G1(., v) has a unique critical point which is a maximum and is given by

r̄(v) =

(
B(v)(p− s)

A(v)(p− q)

)1/(q−s)

. (2.14)

Moreover,

G1(r̄(v), v) = max
r>0

G1(r, v) =

(
A(v)p−s

η(s, q, p)B(v)p−q

)1/(q−s)

> 0, (2.15)

where η(s, q, p) was defined in (2.2).

Proof. Note that for each v ∈ E\{0}, we have

∂G1

∂r
(r, v) = (q − p)A(v)rq−p−1 − (s− p)B(v)rs−p−1.

Thus,
∂G1

∂r
(r, v) = 0 ⇐⇒ r = r̄(v) =

(
B(v)(p− s)

A(v)(p− q)

)1/(q−s)

.

Moreover, we can see that limr→+∞G1(r, v) = 0, limr→0+ G1(r, v) = −∞ and due to

(2.14),

A(v)r̄(v)q−p =
p− s

p− q
B(v)r̄(v)s−p.

Since,

G1(r̄(v), v) = A(v)r̄(v)q−p −B(v)r̄(v)s−p

=

(
q − s

p− q

)
B(v)r̄(v)s−p

=

(
q − s

p− q

)
B(v)

(
B(v)(p− s)

A(v)(p− q)

)(s−p)/(q−s)

=

(
A(v)p−s

η(s, q, p)B(v)p−q

)1/(q−s)

> 0
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G1(r, v)
G1(r̄(v), v)

r̄(v)

Figure 2.5: Maximum of G1(., v) for s < q < p.

we can conclude that G1(., v) has a unique global maximum at r = r̄(v) > 0.

Now we are ready to present the proof of Theorem 2.1.

Proof of Theorem 2.1. Assume by contradiction that (P1) has a nontrivial weak

solution u0 ∈ E. Then, from the definition (2.1), Lemma 2.7 and a density argument

imply

∥u0∥p = A(u0)−B(u0) = G1(1, u0).

On the other hand, by estimate (2.10), we have

A(u0)
p−s < η(s, q, p)B(u0)

p−q∥u0∥p(q−s),

which combined with (2.15) gives G1(r̄(u0), u0) < ∥u0∥p. Thus, we get

G1(r̄(u0), u0) < ∥u0∥p = G1(1, u0),

which contradicts the fact that r̄(u0) is the maximum of G1(., u0) and this concludes

the proof of Theorem 2.1.

Next, we shall focus on the proof of our second Liouville-type result.

Lemma 2.9 Assume condition (H0), p < q < s ≤ p∗ for p < N and p < q < s < ∞

for p = N . If b ∈ K0, then B is well defined. In addition, if a/b ∈ L∞(RN
+ ), then

A(v)s−p ≤

(∥∥∥a
b

∥∥∥s−p

∞

[
b0C

−p
p,γ

ρ0

]s−q
)
B(v)q−p∥v∥p(s−q), ∀v ∈ E. (2.16)

In particular, A is well-defined. Furthermore, if (2.4) holds then

A(v)s−p < η(p, q, s)B(v)q−p∥v∥p(s−q), ∀v ∈ E\{0}. (2.17)
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Proof. If b ∈ K0 and v ∈ E we see that

B(v) =

∫
RN
+

b|v|s dx ≤ b0

∫
RN
+

|v|s

(1 + xN)p−γ
dx,

which is finite thanks to assumption (H0) and Theorem 1.3. Using again that b ∈ K0

and a is nonnegative we have a(1 + xN)
p−γ ≤ b0a/b, which implies

∥a(1 + xN)
p−γ∥∞ ≤ b0

∥∥∥a
b

∥∥∥
∞
.

Since p < q < s we can write q = (1 − α)p + αs with α = (q − p)/(s − p) ∈ (0, 1) .

Thus, by Hölder’s inequality we get

A(v) =

∫
RN
+

a|v|q dx =

∫
RN
+

(a|v|p)1−α(a|v|s)α dx ≤

(∫
RN
+

a|v|p dx

)1−α(∫
RN
+

a|v|s dx

)α

.

Taking into account that 1− α = (s− q)/(s− p) we obtain

A(v)s−p ≤

(∫
RN
+

a|v|p dx

)s−q(∫
RN
+

a|v|s dx

)q−p

. (2.18)

Now, thanks to Theorem 1.1 and (2.11) we get∫
RN
+

a|v|p dx ≤ ∥a(1 + xN)
p−γ∥∞

∫
RN
+

|v|p

(1 + xN)p−γ
dx ≤ b0

∥∥∥a
b

∥∥∥
∞

C−p
p,γ

ρ0
∥v∥p

and notice that ∫
RN
+

a|v|s dx =

∫
RN
+

a

b
(b|v|s) dx ≤

∥∥∥a
b

∥∥∥
∞
B(v).

Therefore, plugging the last two inequalities into (2.18), we obtain estimate (2.16).

Arguing along the same lines as in the proof of Lemma 2.8, we can obtain the

following result:

Lemma 2.10 Assume condition (H0), p < q < s ≤ p∗ for p < N and p < q < s < ∞

for p = N . If b ∈ K0 and a/b ∈ L∞(RN
+ ), then for each v ∈ E\{0} the function G1(., v)

defined by (2.13) has a unique critical point at

r̄(v) =

(
A(v)(q − p)

B(v)(s− p)

)1/(s−q)

. (2.19)

Moreover,

G1(r̄(v), v) = max
r>0

G1(r, v) =

(
A(v)s−p

η(p, q, s)B(v)q−p

)1/(s−q)

> 0. (2.20)
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Proof. With a direct calculation we have

∂G1

∂r
(r, v) = (q − p)rq−p−1A(v)− (s− p)rs−p−1B(v).

Then, we observe that 0 = ∂G1

∂r
(r, v) if, and only if,

rs−q =
q − p

s− p

A(v)

B(v)
,

which implies that the only critical point of G1(., v) is given by (2.19).

Now we observe that limr→+∞G1(r, v) = −∞, limr→0+ G1(r, v) = 0 and by (2.19)

B(v)r̄(v)s−p =
q − p

s− p
A(v)r̄(v)q−p.

Thus, since

G1(r̄(v), v) = A(v)r̄(v)q−p −B(v)r̄(v)s−p

=

(
s− q

s− p

)
A(v)r̄(v)q−p

=

(
s− q

s− p

)
A(v)

(
A(v)(q − p)

B(v)(s− p)

)(q−p)/(s−q)

=
(s− q)(q − p)

q−p
s−q

(s− p)
s−p
s−q

A(v)
s−p
s−q

B(v)
q−p
s−q

=

(
A(v)s−p

η(p, q, s)B(v)q−p

)1/(s−q)

> 0,

r

y

G1(r, v)

G1(r̄(v), v)

r̄(v)

Figure 2.6: Maximum of G1(., v) for p < q < s.

we can conclude that G1(., v) has a unique global maximum at r = r̄(v) > 0.

Now we are ready to present the proof of Theorem 2.2.
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Proof of Theorem 2.2:. Arguing by contradiction, suppose that (P1) has a non-

trivial weak solution u0 ∈ E. From the definition (2.1), Lemma 2.9 and a density

argument we have

∥u0∥p = A(u0)−B(u0) = G1(1, u0). (2.21)

On the other hand, by estimate (2.17), we have

A(u0)
s−p < η(p, q, s)B(u0)

q−p∥u0∥p(s−q).

This, together with (2.20) implies that G1(r̄(u0), u0) < ∥u0∥p. Therefore, we obtain

G1(r̄(u0), u0) < ∥u0∥p = G1(1, u0),

contradicting the fact that r̄(u0) is the maximum of G1(., u0) and this concludes the

proof.

2.3 Proof of our Existence Results

This section is devoted to proving Theorems 2.3, 2.4, 2.5 and 2.6. To this purpose,

we shall first prove a compactness result.

Lemma 2.11 Assume condition (H0) and 1 < p ≤ N .

1. If k ∈ L1(RN
+ ) ∩ K0, then the embedding

E ↪→ Lq
(
RN

+ , k(x)
)

(2.22)

is compact for all 1 < q < p ≤ N .

2. If k ∈ K and p < N , then the embedding (2.22) is continuous for q ∈ [p, p∗] and

compact for q ∈ [p, p∗). If p = N , the embedding is compact for all q ∈ [p,∞).

Proof. If k ∈ L1(RN
+ ), by Hölder’s inequality,∫

RN
+

k|u|q dx =

∫
RN
+

k
p−q
p kq/p|u|q dx ≤ ∥k∥

p−q
p

1

(∫
RN
+

k|u|p dx

)q/p

.

Also, since k ∈ K0 we have k(x) ≤ k0(1 + xN)
γ−p and by Theorem 1.1 and assumption

(H0) we obtain∫
RN
+

k|u|q dx ≤ C∥k∥
p−q
p

1

(∫
RN
+

|u|p

(1 + xN)p−γ

)q/p

≤ C∥k∥
p−q
p

1 ∥u∥q.

40



Now, if (un) ⊂ E is a bounded sequence, up to a subsequence, we can assume that

un ⇀ 0 in E. Given ε > 0 there exists R = R(ε) > 0 such that ∥k∥L1(Bc
R(0)∩RN

+ ) ≤ ε

and hence ∫
Bc

R∩RN
+

k|un|q dx ≤ Cε
p−q
p ∥un∥q ≤ C1ε

p−q
p .

To complete the proof for the first case, it is enough to use the classical Sobolev compact

embedding to obtain the compact embedding E ↪→ W 1,p(B+
R) ↪→ Lq(B+

R).

Assuming k ∈ K, we have that k(x) ≤ C0(1 + xN)
γ−p for some constant C0 > 0,

which implies that the embedding is continuous by Theorem 1.3 and the assumption

(H0) if 1 < p < N and q ∈ [p, p∗] or q ∈ [p,∞) if p = N . For R > 0, we can write∫
RN
+

k(x)|u|q dx =

∫
B+

R

k(x)|u|q dx+
∫
(B+

R)c∩RN
+

k(x)|u|q dx.

If (un) ⊂ E is a bounded sequence, up to a subsequence, un ⇀ 0 in E. Since the

embedding E ↪→ W 1,p(B+
R) ↪→ Lq(B+

R) is compact for all q ∈ [p, p∗) if 1 < p < N or

q ∈ [p,∞) if p = N , it holds∫
B+

R

k(x)|un|q dx ≤ C

∫
B+

R

|un|q dx −→ 0. (2.23)

Given ε > 0, since k ∈ K we can choose R = R(ε) > 0 large enough such that

k(x)(1 + xN)
p−γ < ε for any x ∈ Bc

R ∩ RN
+ , which implies∫

(B+
R)c∩RN

+

k(x)|un|q dx <ε
∫
(B+

R)c∩RN
+

|un|q

(1 + xN)p−γ
dx ≤ Cε∥un∥q. (2.24)

The proof of the second case follows from (2.23)-(2.24).

To prove our existence results, let us consider the functional I : E → R associated

with (P1), defined as follows:

I(u) =
1

p
∥u∥p − 1

q
A(u) +

1

s
B(u), (2.25)

where A and B are defined in (2.5).

Straightforward computation shows that I ∈ C1(E,R) and critical points of I

are weak solutions of (P1)(see [20]).

To prove that I has a critical point, we shall use the Fibering Method [25, 48].

To this end, we proceed with some basic results.

41



Lemma 2.12 Let 1 < p ≤ N and q < min{s, p} or q > max{s, p}. Then, for each

v ∈ E\{0} there exits a unique real number r(v) > 0 such that the pair (r(v), v) satisfies

the equation

∥v∥p = r(v)q−pA(v)− r(v)s−pB(v) = G1(r(v), v). (2.26)

Furthermore, the map r : E\{0} → R belongs to C1(E\{0},R) and µr(µv) = r(v) for

all µ > 0 and v ∈ E\{0}.

Proof. Existence: Consider the function f : (0,∞)× E → R defined by

f(r, v) = ∥v∥prp−q +B(v)rs−q − A(v),

and note that f(r, v) = 0 if and only if (2.26) holds. If v ∈ E\{0} and q > max{s, p}

we have lim
r→0+

f(r, v) = ∞ and lim
r→+∞

f(r, v) = −A(v) < 0.

r

y

f(r, v)−A(v)

Figure 2.7: Graph of f(., v) for q > max{s, p}.

In the case q < min{s, p}, it holds limr→0+ f(r, v) = −A(v) < 0 and limr→∞ f(r, v) =

∞.

r

y
f(r, v)

−A(v)

Figure 2.8: Graph of f(., v) for q < min{s, p}.

Thus, in any case, by the Intermediate Value Theorem, there exists r(v) > 0 such

that f(r(v), v) = 0.
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Uniqueness: Fixed v ∈ E\{0}, suppose that there are r1, r2 > 0 satisfying (2.26).

Consequently,

∥v∥prp−q
1 +B(v)rs−q

1 = A(v) = ∥v∥prp−q
2 +B(v)rs−q

2 ,

which is equivalent to

∥v∥p(rp−q
1 − rp−q

2 ) +B(v)(rs−q
1 − rs−q

2 ) = 0.

Therefore, r1 = r2 and so the map r : E\{0} → R satisfying (2.26) is well defined.

Regularity: To prove that r belongs to class C1, we observe that

∂f

∂r
(r, v) = (p− q)rp−q−1∥v∥p + (s− q)B(v)rs−q−1 ̸= 0, in (0,∞)× E\{0}.

Given v ∈ E\{0}, using the implicit function theorem(see [16]), we obtain open sets

J ⊂ R and V ⊂ E\{0} containing r(v) and v respectively, and a C1-function τ : V → J

satisfying

τ(v) = r(v) and f(τ(w), w) = 0, ∀w ∈ V.

By the uniqueness r ≡ τ in V and therefore r is a C1-function in V . Since v ∈ E\{0}

is arbitrary, we obtain r ∈ C1(E\{0},R).

Finally, given µ > 0 and v ∈ E\{0} we have that f(r(µv), µv) = 0, that is,

A(v) = µp−qr(µv)p−q∥v∥p + µs−qr(µv)q−sB(v). (2.27)

Since f(r(v), v) = 0, we have

A(v) = r(v)p−q∥v∥p + r(v)q−sB(v),

which combined with (2.27) implies

0 = (µp−qr(µv)p−q − r(v)p−q)∥v∥p + (µs−qr(µv)s−q − r(v)s−q)B(v).

Thus, (µr(µv))p−q = r(v)p−q and this concludes the proof.

Remark 2.5 Suppose that there exists an open Ω ⊂ E\{0} and r ∈ C1(Ω,R) such

that (r(v), v) satisfies (2.26) for each v ∈ Ω with r(v) ̸= 0 in Ω, that is,

∥v∥p = r(v)q−pA(v)− r(v)s−pB(v). (2.28)
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Then, we have

I(r(v)v) =
r(v)p

p
∥v∥p − r(v)q

q
A(v) +

r(v)s

s
B(v)

=

(
1

p
− 1

q

)
A(v)r(v)q +

(
1

s
− 1

p

)
B(v)r(v)s.

In particular, if r > 0 and rv is a critical point of I, it holds

⟨I ′(rv), v⟩ = 0,

which is equivalent to (2.28).

The above remark motivates us to consider the reduced functional defined by

I(v) := I(r(v)v) =

(
1

p
− 1

q

)
A(v)r(v)q +

(
1

s
− 1

p

)
B(v)r(v)s. (2.29)

Next, we shall need the following result to characterize the fibering method.

Lemma 2.13 Let H ∈ C1(E\{0},R) such that ⟨H ′(v), v⟩ ≠ 0 if H(v) = 1. If vc ∈ Ω

is a critical point of I under the constraint H(v) = 1, then u = r(vc)vc is a critical

point of I.

Proof. Let r ∈ C1(Ω,R) as in Remark 2.5, that is, for each v ∈ Ω1 ⊂ E\{0} the pair

(r(v), v) satisfies (2.26), more specifically

∥v∥p = r(v)q−pA(v)− r(v)s−pB(v).

Then we can define I : Ω → R as in (2.29) and

⟨I ′(r(v)v), v⟩ = 0,∀v ∈ Ω1. (2.30)

In fact,

⟨I ′(r(v)v), v⟩ =r(v)p−1∥v∥p − r(v)q−1A(v) + r(v)s−1B(v)

=r(v)p−1[∥v∥p − r(v)q−pA(v) + r(v)s−pB(v)] = 0

If vc is a critical point of I under the constraint H(v) = 1, by the Lagrange Multiplier

Theorem(see [37, Proposition 14.3]), there exists λ ∈ R such that

I ′(vc) = λH ′(vc). (2.31)
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On the other hand, by the definition of I and (2.30) we have

⟨I ′(v), w⟩ = r(v)⟨I ′(r(v)v), w⟩+ ⟨r′(v), w⟩⟨I ′(r(v)v), v⟩ = r(v)⟨I ′(r(v)v), w⟩ (2.32)

for all w ∈ E. Then by (2.30) and (2.31)

0 = r(vc)⟨I ′(r(vc)vc), vc⟩ = ⟨I ′(vc), vc⟩ = λ⟨H ′(vc), vc⟩.

Since ⟨H ′(vc), vc⟩ ≠ 0 we have that λ = 0 and hence, by (2.31) and (2.32),

0 = I ′(vc) = r(vc)I
′(r(vc)vc).

Therefore, r(vc)vc is a critical point of I.

Remark 2.6 We shall the spherical fibering method where we consider the constrait

S1 = {v ∈ E := ∥v∥p = H(v) = 1} and study the minimization problem

inf
v∈S1

I(v) (2.33)

It is clear that the condition ⟨H(v), v⟩ ̸= 0 is satisfied. It is noteworthy that if v0 is

a minimum of I on the sphere, then |v0| also attains this minimum. In fact, first we

observe that

∥|v|∥p = r(|v|)q−pA(|v|)− r(|v|)s−pB(|v|) ⇔ ∥v∥p = r(|v|)q−pA(v)− r(|v|)s−pB(v).

By Lemma 2.12, for q < min{s, p} or q > max{s, p}, there exists a unique r > 0 such

that ∥v∥p = rq−pA(v)− rs−pB(v). Then we have r(v) = r(|v|) and consequently

I(|v|) =
(
1

p
− 1

q

)
A(|v|)r(|v|)q +

(
1

s
− 1

p

)
B(|v|)r(|v|)s

=

(
1

p
− 1

q

)
A(v)r(v)q +

(
1

s
− 1

p

)
B(v)r(v)s

=I(v).

Thus, if v0 attains (2.33), |v0| also attains. This implies, by using Lemma 2.13, that

solutions for (P1), can be taken as nonnegative without loss of generality.

Now, we are ready to proceed with the proof of Theorems 2.3 and 2.4.

Proof of Theorem 2.3:. For each fixed v ∈ E\{0}, by Lemma 2.12, there exists

r(v) > 0 such that the pair (r(v), v) satisfies (2.26) and hence

∥v∥pr(v)p−q +B(v)r(v)s−q = A(v). (2.34)
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As a consequence, we can consider the reduced functional I as

I(v) =
(
1

s
− 1

q

)
B(v)r(v)s +

(
1

p
− 1

q

)
∥v∥pr(v)p > 0.

If S1 denotes the unity sphere in E, we can define

M := inf
v∈S1

I(v).

Now, consider a sequence (vn) such that ∥vn∥ = 1 and M = lim I(vn). Going if

necessary to a subsequence, we may assume that vn ⇀ v0 in E with ∥v0∥ ≤ 1 and by

Lemma 2.11

A(vn) → A(v0) ≥ 0 and B(vn) → B(v0) ≥ 0.

We claim that v0 ̸= 0. Indeed, suppose that v0 = 0. By Lemma 2.12, there exists a

sequence r(vn) > 0 such that

∥vn∥p = r(vn)
q−pA(vn)− r(vn)

s−pB(vn). (2.35)

Using that ∥vn∥ = 1, we get

1 = r(vn)
q−pA(vn)−B(vn)r(vn)

s−p ≤ r(vn)
q−pA(vn).

Since q > p and A(vn) → 0, we obtain r(vn) → ∞. On the other hand, we have

I(vn) =
(
1

s
− 1

q

)
B(vn)r(vn)

s +

(
1

p
− 1

q

)
r(vn)

p ≥
(
1

p
− 1

q

)
r(vn)

p.

Taking the limit above, we obtain a contradiction and hence v0 ̸= 0. From the last

inequality, up to a subsequence, we can assume that r(vn) → r0 ≥ 0 and taking to the

limit in (2.35) we obtain

rp−q
0 +B(v0)r

s−q
0 = A(v0), (2.36)

which implies that r0 > 0.

Next, we shall prove that ∥v0∥ = 1. Otherwise, there exists µ > 1 such that

∥µv0∥ = 1. From Lemma 2.12, there are r(v0) > 0 such that

∥v0∥pr(v0)p−q +B(v0)r(v0)
s−q = A(v0).

This, combined with (2.36) and the fact that µ > 1 implies

rp−q
0 +B(v0)r

s−q
0 < r(v0)

p−q +B(v0)r(v0)
s−q,
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equivalently

r(v0)
p−q

[(
r(v0)

r0

)q−p

− 1

]
+B(v0)r(v0)

s−q

[(
r(v0)

r0

)q−s

− 1

]
< 0.

Since max{s, p} < q, we have that r0 > r(v0). Now, consider the function

ψ(t) =

(
1

s
− 1

q

)
B(v0)t

s +

(
1

p
− 1

q

)
∥v0∥ptp, t > 0

and observe that ψ is strictly increasing. Thus,

M = lim inf
n→∞

I(vn) ≥
(
1

s
− 1

q

)
B(v0)r

s
0 +

(
1

p
− 1

q

)
rp0∥v0∥p =ψ(r0).

On the other hand, we have

ψ(r0) > ψ(r(v0)) = I(r(v0)v0) = I(µr(µv0)v0) = I(µv0),

which contradicts the definition of M because ∥µv0∥ = 1 and hence we concluded that

∥v0∥ = 1. From (2.36) and the uniqueness of the solution r(v0) we have r0 = r(v0) and

M = lim
n→∞

I(vn) = lim
n→∞

(
1

s
− 1

q

)
B(vn)r(vn)

s +

(
1

p
− 1

q

)
r(vn)

p

=

(
1

s
− 1

q

)
B(v0)r

s
0 +

(
1

p
− 1

q

)
rp0

=I(v0).

Since v0 is a critical point of I under S1 so is |v0| and we can assume v0 ≥ 0. Applying

Lemma 2.13 with H(v) = ∥v∥p, we conclude that u = r0v0 is a critical point of I, and

this completes the proof.

Proof of Theorem 2.4. For each fixed v ∈ E\{0}, by Lemma 2.12 there exist r(v)

such that

∥v∥pr(v)p−q +B(v)r(v)s−q = A(v), (2.37)

and hence, we can write the reduced functional I as

I(v) =
(
1

s
− 1

q

)
B(v)r(v)s +

(
1

p
− 1

q

)
∥v∥pr(v)p < 0.

If ∥v∥ = 1, we see that A and B are bounded because of our embedding results.

From (2.37), it follows that

0 < r(v)p−q ≤ r(v)p−q +B(v)r(v)s−q = A(v),
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which implies that r is bounded because p > q. Therefore, we can consider the mini-

mization problem

−∞ < M := inf
v∈S1

I(v) < 0.

Let (vn) ⊂ S1 be a minimizing sequence. Up to a subsequence, we can assume that

vn ⇀ v0 weakly in E with ∥v0∥ ≤ 1. Furthemore, by Lemma 2.11

A(vn) → A(v0) and B(vn) → B(v0).

Since (r(vn)) is bounded, up to a subsequence, we can assume that r(vn) → r0 ≥ 0.

Now observe that I is weakly lower semicontinuous and r(vn)vn ⇀ r0v0, then

I(r0v0) ≤ lim inf I(r(vn)vn) = lim inf I(vn) =M < 0

and so r0v0 ̸= 0. From (2.37), we have

∥vn∥pr(vn)p−q +B(vn)r(vn)
s−q = A(vn).

Passing to the limit and observing that ∥v0∥ ≤ 1 we obtain

∥v0∥prp−q
0 +B(v0)r

s−q
0 ≤ A(v0).

On the other hand, applying Lemma 2.12 for v0, we have

∥v0∥pr(v0)p−q +B(v0)r(v0)
s−q = A(v0),

which implies that r0 ≤ r(v0). Now, suppose by contradiction that r0 < r(v0) and

consider the function

ψ(t) := I(tv0) =
tp

p
∥v0∥p −

tq

q
A(v0) +

ts

s
B(v0), t ∈ [0, r(v0)]

and observe that ψ is strictly decreasing. Indeed, first note that ψ(0) = 0 and

ψ(r(v0)) = I(v0) < 0. In addition, we observe that ψ′(0) = 0 and for t ̸= 0,

0 = ψ′(t) = tp−1∥v0∥p−tq−1A(v0)+t
s−1B(v0) ⇔ ∥v0∥p = tq−pA(v0)−ts−pB(v0) ⇔ t = r(v0).

Consequently, ψ must be strictly decreasing on [0, r(v0)]. Thus,

M = lim inf I(r(vn)vn) ≥ I(r0v0) > I(r(v0)v0) = I(v0).
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By Lemma 2.12 we have µr(µv) = r(v) for all v ̸= 0 and taking µ = ∥v0∥−1 we have

µv0 ∈ S1 and

I(µv0) = I(µr(µv0)v0) = I(r(v0)v0) = I(v0) < M,

which is a contradiction and therefore r(v0) = r0. Then,

1 = lim
n→∞

∥vn∥p = rq−p
0 A(v0)− rs−p

0 B(v0) = ∥v0∥p.

and

M = lim
n→∞

I(vn) = lim
n→∞

(
1

s
− 1

q

)
B(vn)r(vn)

s +

(
1

p
− 1

q

)
∥vn∥pr(vn)p

=

(
1

s
− 1

q

)
B(v0)r

s
0 +

(
1

p
− 1

q

)
∥v0∥prp0

=I(v0).

Since v0 is a critical point of I under S1, it follows that |v0| is also a critical point.

Thus, we can assume without loss of generality that v0 ≥ 0. Applying Lemma 2.13, we

conclude that u = r0v0 is a critical point of I, which completes the proof.

Moving forward, we are proceeding to prove our third existence result.

Lemma 2.14 Assume the assumption of Theorem 2.5. Then for each v ∈ E\{0} the

function G1(., v) defined by (2.13) has a unique critical point at

r̄(v) =

(
A(v)(q − p)

B(v)(s− p)

)1/(s−q)

. (2.38)

Moreover,

G1(r̄(v), v) = max
r>0

G1(r, v) =

(
A(v)s−p

η(p, q, s)B(v)q−p

)1/(s−q)

> 0. (2.39)

Proof. By a direct calculation we have

∂G1

∂r
(r, v) = (q − p)rq−p−1A(v)− (s− p)rs−p−1B(v).

Then, we observe that 0 = ∂G1

∂r
(r, v) if, and only if,

rs−q =
q − p

s− p

A(v)

B(v)
,

which implies that the only critical point of G1(., v) is given by (2.38).
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Note that limr→+∞G1(r, v) = −∞, limr→0+ G1(r, v) = 0 and by (2.38)

B(v)r̄(v)s−p =
q − p

s− p
A(v)r̄(v)q−p.

Thus, since

G1(r̄(v), v) = A(v)r̄(v)q−p −B(v)r̄(v)s−p

=

(
s− q

s− p

)
A(v)r̄(v)q−p

=

(
s− q

s− p

)
A(v)

(
A(v)(q − p)

B(v)(s− p)

)(q−p)/(s−q)

=
(s− q)(q − p)

q−p
s−q

(s− p)
s−p
s−q

A(v)
s−p
s−q

B(v)
q−p
s−q

=

(
A(v)s−p

η(p, q, s)B(v)q−p

)1/(s−q)

> 0,

r

y

G1(r, v)

G1(r̄(v), v)

r̄(v)

Figure 2.9: Maximum of G1(., v) for p < q < s.

we can conclude that G1(., v) has a unique global maximum at r = r̄(v) > 0.

Under the assumptions in Theorem 2.5, we introduce the set

Ω1 := {v ∈ E\{0} : ∥v∥p < G1(r̄(v), v)},

where r̄(v) is given by (2.38).

Remark 2.7 If D1 is the set defined in (2.6), then D1 ⊂ Ω1 and hence Ω1 ̸= ∅. Indeed,

first we observe that by (2.38) we have

B(v) =

(
q − p

s− p

)
r̄(v)q−sA(v), (2.40)
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and from the definition of G, we obtain

G1(r̄(v), v) = r̄(v)q−pA(v)−
(
q − p

s− p

)
r̄(v)q−pA(v) =

(
s− q

s− p

)
A(v)r̄(v)q−p. (2.41)

If v ∈ D1, we see that

∥v∥p <
(
p

q

)
η(p, q, s)

1
q−sA(v)

s−p
s−qB(v)

p−q
s−q .

Thus, from (2.40) and (2.41), it follows

∥v∥p <
(
p

q

)
(s− q)(q − p)

q−p
s−q

(s− p)
s−p
s−q

A(v)
s−p
s−q

[(
q − p

s− p

)
r̄(v)q−sA(v)

] p−q
s−q

=
p

q

(
s− q

s− p

)
r̄(v)q−pA(v)

< G1(r̄(v), v),

and so we conclude that D1 ⊂ Ω1.

Next, we will prove some technical properties of Ω1 that play an important role

in proving Theorem 2.5.

Lemma 2.15 If p < q < s < p∗, for each v ∈ Ω1 there exists a unique real number

r(v) > r̄(v) such that the pair (r(v), v) satisfies

∥v∥p = r(v)q−pA(v)− r(v)s−pB(v) = G1(r(v), v),

and r ∈ C1(Ω1,R). Furthermore, for any v ∈ Ω1 and µ > 0, it holds µv ∈ Ω1, and as

a consequence, Ω1 ∩ S1 ̸= ∅.

Proof. If v ∈ Ω1 we have ∥v∥p < G1(r̄(v), v). Since G1(r, v) = rq−p (A(v)−B(v)rs−q)

and p < q < s, it follows that

lim
r→∞

G1(r, v) = −∞,

and so by the Intermediate Value Theorem, there exists a real number r(v) > r̄(v)

such that the pair (r(v), v) verifies ∥v∥p = G1(r(v), v). To prove that r(v) is unique,

we observe (q − p)r̄(v)q−pA(v) = (s− p)r̄(v)s−pB(v) and hence we can write

G1(r, v) = A(v)

(
rq−p − q − p

s− p
r̄(v)q−srs−p

)
.
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Consequently,

∂G1

∂r
(r, v) = (q − p)rs−p−1A(v)(rq−s − r̄(v)q−s)

= (q − p)rs−p−1A(v)

(
1

rs−q
− 1

r̄(v)s−q

)
< 0,

for all r > r̄(v), thereby implying the uniqueness of r(v).

r

y

G1(r, v)

∥v∥p
G1(r̄(v), v)

r(v)r1(v) r̄(v)

Figure 2.10: Existence of r(v) > r̄(v) for p < q < s.

To verify that the map r is a C1, by setting r = r(v), we obtain

∂G1

∂r
(r(v), v) = (q − p)r(v)p−s+1A(v)(r(v)q−s − r̄(v)q−s) < 0. (2.42)

Now, considering the function f : (0,∞)× Ω1 → R given by

f(r, v) = G1(r, v)− ∥v∥p,

by (2.42) we see that given v ∈ Ω1, ∂f
∂r
(r(v), v) < 0. Using the implicit function

theorem, we obtain open sets J ⊂ R and V ⊂ Ω1 containing r(v) and v respectively,

and a C1-function τ : V → J satisfying

τ(v) = r(v) > r̄(v) and f(τ(w), w) = 0, ∀w ∈ V.

Then, there exists a neighborhood U ⊂ V containing v such that τ = r > r̄ in U . By

the uniqueness, r ≡ τ in U and therefore r is a C1-function in U . Since v is arbitrary,

we have r ∈ C1(Ω1,R).

Now, suppose that v ∈ Ω1, that is

∥v∥p < G1(r̄(v), v) =
s− q

s− p
r̄(v)q−pA(v).
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Since, r̄(v) = µr̄(µv) for all µ > 0, we get

∥µv∥p < s− q

s− p
(r̄(µv))q−pA(µv) = G1(r̄(µv), µv),

which implies that µv ∈ Ω1 and this completes the proof.

Lemma 2.16 The following statement holds

inf
v∈Ω1∩S1

B(v) > 0.

Proof. For any v ∈ Ω1 ∩ S1, from (2.38) we get

1 = ∥v∥p < G1(r̄(v), v) =

(
s− q

s− p

)
A(v)r̄(v)q−p

=

(
s− q

s− p

)
A(v)

(
A(v)(q − p)

B(v)(s− p)

)(q−p)/(s−q)

,

which implies

η(p, q, s)B(v)q−p < A(v)s−p.

By using Hölder’s inequality, it follows

A(v) =

∫
RN
+

a|v|q dx =

∫
RN
+

a

bq/s
bq/s|v|q dx

≤

(∫
RN
+

[ a

bq/s

] s
s−q

dx

)(s−q)/s(∫
RN
+

b|v|s dx

)q/s

.

Thus, we get A(v) ≤ Ca,bB(v)q/s with

0 < Ca,b =

(∫
RN
+

[
a1/q

b1/s

] sq
s−q

dx

)(s−q)/s

,

which is finite due to assumption (2.7). By combining the above inequalities, we obtain

η(p, q, s)B(v)q−p < A(v)s−p ≤ Cs−p
a,b B(v)(s−p)q/s,

and hence 0 < η(p, q, s)Cp−s
a,b < B(v)(s−q)p/s, thereby yielding the desired result.

Lemma 2.17 If D1 is the set defined in (2.6), then D1 ∩S1 ̸= ∅, where S1 is the unit

sphere in E. Moreover,

I(v) < 0, ∀v ∈ D1. (2.43)
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Proof. If v ∈ D1, the computation in Remark 2.7 shows that

∥v∥p < p

q

(
s− q

s− p

)
r̄(v)q−pA(v), (2.44)

and for µ > 0, by (2.38) we easily obtain

µr̄(µv) = r̄(v), ∀v ∈ E\{0}.

Thus,

∥µv∥p <p
q

(
s− q

s− p

)
µp−qr̄(v)q−pA(µv) =

p

q

(
s− q

s− p

)
r̄(µv)q−pA(µv),

which implies that µv ∈ D1. In particular, choosing µ = ∥v∥−1 we conclude that

D1 ∩ S1 ̸= ∅.

To verify (2.43), since the pair (r(v), v) satisfies

B(v)r(v)s = A(v)r(v)q − ∥v∥pr(v)p,

from (2.29), the fact that r̄(v) < r(v) for each v ∈ D1 ⊂ Ω1 and inequality (2.44), we

get

I(v) =
(
1

s
− 1

q

)
A(v)r(v)q +

(
1

p
− 1

s

)
∥v∥pr(v)p

<

(
1

s
− 1

q

)
A(v)r(v)q +

(
1

p
− 1

s

)
p

q

(
s− q

s− p

)
A(v)r(v)q.

Since the last term of the inequality above is zero, this completes the proof.

Remark 2.8 If 1 < p < q < s, by Lemma 2.15, for each v ∈ Ω1 there is only a real

value r(v) such that

G1(r(v), v) = ∥v∥p and r(v) > r̄(v).

Since r(|v|) > r̄(|v|) = r̄(v) with

G1(r(|v|), v) = ∥v∥p

we must to have r(v) = r(|v|) and hence I(v) = I(|v|). Therefore, if v0 is a minimum

of I under Ω1∩S1, so is |v0|. This implies that solutions to the minimization problem,

inf
v∈Ω1∩S1

I(v),

and hence, by Lemma 2.13, solutions for (P1) in the case 1 < p < q < s, can be taken

as nonnegative without loss of generality.
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Now we are ready to prove the Theorem 2.5.

Proof of Theorem 2.5:. Let r ∈ C1(Ω1,R) be the function given by the Lemma

2.15. For v ∈ S1, we have

1 = r(v)q−pA(v)− r(v)s−pB(v),

which implies that

r(v) <

(
A(v)

B(v)

)1/(s−q)

, v ∈ S1. (2.45)

Since A is bounded in S1, by Lemma 2.16 we have that r is bounded in Ω1∩S1. Hence,

I is lower bounded in Ω1 ∩ S1 and hence in view of Lemma 2.17

M = inf
v∈Ω1∩S1

I(v) < 0. (2.46)

Let (vn) ⊂ Ω1 ∩ S1 be a minimizing sequence. Up to a subsequence, vn ⇀ v0

weakly in E with ∥v0∥ ≤ 1. Lemmas 2.11 then imply

A(vn) → A(v0) and B(vn) → B(v0).

By Lemma 2.15, the sequence (r(vn)) satisfies r(vn) > r̄(vn). Moreover, from (2.45),

the sequence (r(vn)) is bounded and, up to a subsequence, we can assume that r(vn) →

r0 ≥ 0. Thus, we obtain

0 > M = lim inf I(vn) ≥
(
1

p
− 1

q

)
A(v0)r

q
0 +

(
1

s
− 1

p

)
B(v0)r

s
0.

Considering that p < q < s, we concluded that r0 > 0. Furthermore, from (2.38), it

follows

lim
n→+∞

r̄(vn) = lim
n→+∞

(
A(vn)(q − p)

B(vn)(s− p)

)1/(s−q)

=

(
A(v0)(q − p)

B(v0)(s− p)

)1/(s−q)

= r̄(v0),

and hence r0 ≥ r̄(v0). Furthermore,

lim
n→+∞

G1(r̄(vn), vn) = G1(r̄(v0), v0).

Since vn ∈ Ω1, we get

∥v0∥p ≤ lim inf
n→∞

∥vn∥p ≤ lim inf
n→∞

G1(r̄(vn), vn) = G1(r̄(v0), v0).

Assume by contradiction that v0 ̸∈ Ω1, that is, ∥v0∥p = G1(r̄(v0), v0). Since ∥vn∥p =

G1(r(vn), vn), taking to the limit we get

G1(r̄(v0), v0) = ∥v0∥p ≤ lim inf
n→∞

∥vn∥p = lim inf
n→∞

G1(r(vn), vn) = G1(r0, v0),
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which implies that r̄(v0) = r0 because r̄(v0) is the global maximum of G1(., v0). Then,

r(vn) → r̄(v0) and from the definition of I and (2.38) we obtain

M = lim
n→∞

I(vn) =
(
1

p
− 1

q

)
A(v0)r̄(v0)

q +

(
1

s
− 1

p

)
B(v0)r̄(v0)

s

and (s− p)B(v0)r̄(v0)
s = A(v0)(q − p)r̄(v0)

q. As a consequence, we infer that

M = A(v0)r̄(v0)
q

[(
1

p
− 1

q

)
+

(
1

s
− 1

p

)
(q − p)

s− p

]
= A(v0)r̄(v0)

q (q − p)

p

(
1

q
− 1

s

)
> 0

because p < q < s, which contradicts (2.46) and hence we conclude that v0 ∈ Ω1.

Claim: r0 = r(v0).

Assuming that the claim is true, we can take the limit at

1 = ∥vn∥p = G1(r(vn), vn),

to obtain

1 = A(v0)r(v0)
q−p −B(v0)r(v0)

s−p = G1(r(v0), v0) = ∥v0∥p.

Thus, we conclude that v0 ∈ Ω1 ∩ S1 and we also have

M = lim
n→∞

I(vn) =
(
1

p
− 1

q

)
A(v0)r(v0)

q +

(
1

s
− 1

p

)
B(v0)r(v0)

s = I(v0).

Therefore, by Lemma 2.13, r(v0)v0 is a nonnegative and nontrivial critical point if I in

E. This completes the proof of Theorem 2.5.

It remains to prove r0 = r(v0). Since v0 ∈ Ω1, by Lemma 2.15, we can choose

µ0 > 0 such that µ0v0 ∈ Ω1 ∩ S1. By Lemma 2.15 we know that r(v0) > r̄(v0) and

G1(r(v0), v0) = ∥v0∥p. Taking the limit at ∥vn∥p = G1(r(vn), vn), we get ∥v0∥p ≤

G1(r0, v0). Consequently,

G1(r(v0), v0) = ∥v0∥p ≤ G1(r0, v0).

Since G1(r, v0) is decreasing for r ≥ r̄(v0) and r(v0) > r̄(v0), it follows that r0 ≤ r(v0).

In fact, we have

r̄(v0) ≤ r0 ≤ r(v0).
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Suppose by contradiction that r0 < r(v0). Since G1(r, v0) is strictly decreasing for all

r ∈ (r0, r(v0)), we see that

∥v0∥p = G1(r(v0), v0) < G1(r, v0), ∀r ∈ [r0, r(v0)).

Considering the function

h(r) = I(rv0), r ∈ (r0, r(v0)),

a straightforward computation shows that

h′(r) = rp−1 (∥v0∥p −G1(r, v0)) < 0,

which implies that h is strictly decreasing. Thus, we get

M = lim inf
n→∞

I(r(vn)vn) ≥ I(r0v0) > I(r(v0)v0) = I(r(µ0v0)µ0v0) = I(µ0v0),

with µ0v0 ∈ Ω1 ∩ S1. This contradicts the definition of M and hence r0 = r(v0).

To end this section we focus on the proof of Theorem 2.6.

Lemma 2.18 Assume the assumptions in Theorem 2.6. For each fixed v ∈ E\{0} the

function G1(., v) has a unique critical point which is a maximum and is given by

r(v) =

(
B(v)(p− s)

A(v)(p− q)

)1/(q−s)

. (2.47)

Moreover,

G1(r(v), v) = max
r>0

G1(r, v) =

(
A(v)p−s

η(s, q, p)B(v)p−q

)1/(q−s)

> 0, (2.48)

where η(s, q, p) was defined in (2.2).

Proof. By a straighfoward calculation we see that

∂G1

∂r
(r, v) = 0 ⇐⇒ r = r̄(v) =

(
B(v)(p− s)

A(v)(p− q)

)1/(q−s)

.

Furthermore, we observe that limr→+∞G1(r, v) = 0, limr→0+ G1(r, v) = −∞ and due

to (2.47),

A(v)r̄(v)q−p =

(
p− s

p− q

)
B(v)r̄(v)s−p.
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Since,

G1(r̄(v), v) = A(v)r̄(v)q−p −B(v)r̄(v)s−p

=

(
q − s

p− q

)
B(v)r̄(v)s−p

=

(
q − s

p− q

)
B(v)

(
B(v)(p− s)

A(v)(p− q)

)(s−p)/(q−s)

=

(
A(v)p−s

η(s, q, p)B(v)p−q

)1/(q−s)

> 0,

we can conclude that G1(., v) has a unique global maximum at r = r̄(v) > 0.

r

y

G1(r, v)
G1(r̄(v), v)

r̄(v)

Figure 2.11: Maximum of G1 for s < q < p.

To establish Theorem 2.6, we will explore once more the properties of the set

Ω1 = {v ∈ E\{0} : ∥v∥p < G1(r̄(v), v)}.

Remark 2.9 Let s < q < p, if C1 is the set defined in (2.8), then C1 ⊂ Ω1 and hence

Ω1 ̸= ∅, if C1 ̸= ∅. Indeed, first we observe that v ∈ C1 if, and only if,

∥v∥p <
(
s

q

) p−s
q−s
(

A(v)p−s

η(s, q, p)B(v)p−q

)1/(q−s)

=

(
s

q

) p−s
q−s

G1(r̄(v), v).

Then, since s < q < p, we have ∥v∥p < G1(r̄(v), v) and v ∈ Ω1.

Lemma 2.19 If s < q < p, for each v ∈ Ω1 there exists a unique positive real number

r(v) > r̄(v) such that the pair (r(v), v) satisfies

∥v∥p = r(v)q−pA(v)− r(v)s−pB(v) = G1(r(v), v),

and r ∈ C1(Ω1,R). Furthermore, for any v ∈ Ω1 and µ > 0, it holds µv ∈ Ω1, and as

a consequence, Ω1 ∩ S1 ̸= ∅.
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r

y

G1(r, v)
∥v∥p

r(v)r1(v)r̄(v)

Figure 2.12: Existence of r(v) > r̄(v) for s < q < p.

Proof. If v ∈ Ω1 we have ∥v∥p < G1(r̄(v), v). Since s < q < p, we have

lim
r→∞

G1(r, v) = 0,

and so by the Intermediate Value Theorem, there exists a real number r(v) > r̄(v)

such that the pair (r(v), v) verifies ∥v∥p = G1(r(v), v). To prove that r(v) is unique,

we observe that ∂G1

∂r
< 0 for all r > r̄(v). In fact, first note that by (2.47)

(q − p)A(v) = (s− p)r̄(v)s−qB(v).

Consequently,

∂G1

∂r
(r, v) = (q − p)rq−p−1A(v)− (s− p)rs−p−1B(v)

= (s− p)B(v)rq−p−1r̄(v)s−q − (s− p)rs−p−1B(v)

= (s− p)rq−p−1B(v)

(
1

r̄(v)q−s
− 1

rq−s

)
< 0,

for all r > r̄(v), thereby implying the uniqueness of r(v).

To verify that the map r is a C1, by setting r = r(v), we obtain

∂G1

∂r
(r(v), v) = (s− p)rq−p−1B(v)

(
1

r̄(v)q−s
− 1

r(v)q−s

)
< 0. (2.49)

Now, considering the function f : (0,∞)× Ω1 → R given by

f(r, v) = G1(r, v)− ∥v∥p,
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by (2.49) we see that given v ∈ Ω1, ∂f
∂r
(r(v), v) < 0. Using the implicit function

theorem, we obtain open sets J ⊂ R and V ⊂ Ω1 containing r(v) and v respectively,

and a C1-function τ : V → J satisfying

τ(v) = r(v) > r̄(v) and f(τ(w), w) = 0, ∀w ∈ V.

Then, there exists a neighborhood U ⊂ V containing v such that τ = r > r̄ in U . By

the uniqueness r ≡ τ in U and therefore r is a C1-function in U . Since v is arbitrary,

we have r ∈ C1(Ω1,R).

Now, observe that given µ > 0

µr̄(µv) = r̄(v), ∀v ∈ E\{0}. (2.50)

In fact, by (2.47) we have

r̄(µv) =

(
B(µv)(p− s)

A(µv)(p− q)

)1/(q−s)

=
µ

s
q−s

µ
q

q−s

(
B(v)(p− s)

A(v)(p− q)

)1/(q−s)

=
1

µ
r̄(v).

By (2.47) we can write

A(v) =

(
p− s

p− q

)
B(v)r̄(v)s−q

and therefore

G1(r̄(v), v) = r̄(v)q−pA(v)− r̄(v)s−pB(v) =
q − s

p− q
r̄(v)s−pB(v).

Suppose that v ∈ Ω1, that is

∥v∥p < G1(r̄(v), v) =
q − s

p− q
r̄(v)s−pB(v).

Then, using (2.50) we obtain

∥µv∥p < µp−s+s q − s

p− q
r̄(v)s−pB(v) =

q − s

p− q
r̄(µv)s−pB(µv) = G1(r̄(µv), µv),

which implies that µv ∈ Ω1. Taking µ = ∥v∥−1 we have that Ω1 ∩ S1 ̸= ∅.

Lemma 2.20 Let s < q < p. If v ∈ C1, where C1 is the set given by (2.8), we have

r̄(v) <
(q
s

) 1
q−s

r̄(v) < r(v), (2.51)

where r is the function given in Lemma 2.19. Moreover,

I(v) < 0, ∀v ∈ C1

and C1 ∩ S1 ̸= ∅.
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Proof. Since r̄(v) < r(v) and G1(r, v) is decreasing for r > r̄(v), as shown in the proof

of Lemma 2.19, to establish (2.51), it suffices to demonstrate that if v ∈ C1, then

G1

((q
s

) 1
q−s

r̄(v), v

)
> G1(r(v), v).

As verified in Remark 2.9, v ∈ C1 if, and only if, satisfies

G1(r(v), v) = ∥v∥p <
(
s

q

) p−s
q−s

G1(r̄(v), v). (2.52)

r

y

G1(r, v)
∥v∥p

r(v)r̄(v) ( q
s

) 1
q−s r̄(v)

Figure 2.13:
(
q
s

) 1
q−s r̄(v) < r(v)

Thus, since s < q < p, we have

G1

((q
s

) 1
q−s

r̄(v), v

)
=
(q
s

) q−p
q−s

r̄(v)q−pA(v)−
(q
s

) s−p
q−s

r̄(v)s−pB(v)

>
(q
s

) s−p
q−s

r̄(v)q−pA(v)−
(q
s

) s−p
q−s

r̄(v)s−pB(v)

=

(
s

q

) p−s
q−s

G1(r̄(v), v)

>G1(r(v), v),

which conclude (2.51).

To verify that I < 0 in C1, by (2.47) we write

B(v) =
p− q

p− s
r̄(v)q−sA(v).

and by (2.51)

r̄(v)q−s <
s

q
r(v)q−s.
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Therefore,

I(v) =
(
1

p
− 1

q

)
A(v)r(v)q +

(
1

s
− 1

p

)
B(v)r(v)s

=

(
q − p

pq

)
A(v)r(v)q +

(
p− s

sp

)(
p− q

p− s

)
r̄(v)q−sA(v)r(v)s

<

(
q − p

pq

)
A(v)r(v)q +

(
p− q

sp

)
A(v)

s

q
r(v)q

=
1

p
A(v)r(v)q

(
q − p

q
+
p− q

q

)
=0.

Let µ > 0, then, by (2.52) and (2.50),

∥µv∥p <µp

(
s

q

) p−s
q−s

G1(r̄(v), v)

=µp

(
s

q

) p−s
q−s

(r̄(v)q−pA(v)− r̄(v)s−pB(v))

=

(
s

q

) p−s
q−s

(µp−qµqr̄(v)q−pA(v)− µp−sµsr̄(v)s−pB(v))

=

(
s

q

) p−s
q−s

(r̄(µv)q−pA(µv)− r̄(µv)s−pB(µv))

=

(
s

q

) p−s
q−s

G1(r̄(µv), µv),

which implies that µv ∈ C1. Taking µ = ∥v∥−1 we conclude that C1 ∩ S1 ̸= ∅.

Remark 2.10 If 1 < s < q < p, by Lemma 2.19, for each v ∈ Ω1 there is only a real

value r(v) such that

G1(r(v), v) = ∥v∥p and r(v) > r̄(v).

Since r(|v|) > r̄(|v|) = r̄(v) with G1(r(|v|), v) = ∥v∥p, we have r(v) = r(|v|) and hence

I(v) = I(|v|). Therefore, if v0 is a minimum of I under Ω1 ∩ S1, so is |v0|. This

implies that solutions to the minimization problem,

inf
v∈Ω1∩S1

I(v),

and hence, by Lemma 2.13, the solutions for (P1) for 1 < s < q < p, can be taken as

nonnegative without loss of generality.
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Now we proceed with the proof of Theorem 2.6.

Proof of Theorem 2.6. Observe that r, given by Lemma 2.19 is bounded in S1. In

fact, if v ∈ S1 we have

1 = r(v)q−pA(v)− r(v)s−pB(v) ≤ r(v)q−pA(v),

then r(v) ≤ A(v)
1

p−q . Since q < p and A is bounded in S1 due to Lemma 2.11, we

conclude that r is bounded in S1. Thus, I is bounded in S1 and due to Remark 2.9

and Lemma 2.20 we have

−∞ < M = inf
v∈Ω1∩S1

I(v) < 0.

Let (vn) ⊂ Ω1 ∩ S1 a minimizing sequence. There exist v0 ∈ E such that vn ⇀ v0 in E

and by Lemma 2.11,

A(vn) → A(v0) and B(vn) → B(v0). (2.53)

Moreover, if needed, passing to a subsequence, we have r(vn) → r0 ≥ 0. In particular,

observe that r0 > 0, otherwise

0 > M = lim
n→∞

I(vn) =
(
1

p
− 1

q

)
A(v0)r

q
0 +

(
1

s
− 1

p

)
B(v0)r

s
0 = 0,

which is impossible. Furthermore, we observe that v0 ̸= 0 since

1 = r(vn)
q−pA(vn)− r(vn)

s−pB(vn) ≤ r(vn)
q−pA(vn),

which implies that 0 < r0 ≤ A(v0)
1

p−q .

Now, lets prove that v0 ∈ Ω1. First observe that by (2.47) and (2.53) we have

r̄(vn) =

(
B(vn)(p− s)

A(vn)(p− q)

)1/(q−s)

−→
(
B(v0)(p− s)

A(v0)(p− q)

)1/(q−s)

= r(v0)

and

G1(r̄(vn), vn) −→ G1(r̄(v0), v0).

Then, we get

∥v0∥p ≤ lim inf
n→∞

∥vn∥p ≤ lim inf
n→∞

G1(r̄(vn), vn) = G1(r̄(v0), v0).

Suppose that v0 /∈ Ω1, by the inequality we obtain

∥v0∥p = G1(r̄(v0), v0).
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Conversely,

∥v0∥p ≤ lim inf
n→∞

∥vn∥p = lim inf
n→∞

G1(r(vn), vn) = G1(r0, v0) (2.54)

and therefore G1(r̄(v0), v0) = ∥v0∥p ≤ G(r0, v0). Since by Lemma 2.18 r̄(v0) is the

global maximum of G1(., v0), it follows that r̄(v0) = r0. By (2.47) we can write

B(v0)r̄(v0)
s =

(
p− q

p− s

)
A(v0)r̄(v0)

q.

Thus

M =

(
1

p
− 1

q

)
A(v0)r̄(v0)

q +

(
1

s
− 1

p

)
B(v0)r̄(v0)

s

=

(
q − p

pq

)
A(v0)r̄(v0)

q +

(
p− s

sp

)(
p− q

p− s

)
A(v0)r̄(v0)

q

=
A(v0)r̄(v0)

q

p

(
q − p

q
+
p− q

s

)
>0,

which is an absurd and therefore v0 ∈ Ω1. Now, we assert that r0 = r(v0). To begin,

let µ = ∥v0∥−1. According to Lemma 2.19, it follows that µv0 ∈ Ω1 ∩ S1. Observe now

that

G1(µr(µv0), v0) =
1

µp
(r(µv0)

q−pA(µv0)− r(µv0)
s−pB(µv0))

=
1

µp
G1(r(µv0), µv0)

=
1

µp
∥µv0∥p

=∥v0∥p

=G1(r(v0), v0).

Then, given that r(v0) > r̄(v0) and µr(µv0) > r̄(µv0) = r̄(v0), by Lemma 2.19 we have

µr(µv0) = r(v0). (2.55)

Furthermore, since r̄(vn) < r(vn), taking the limit we get r̄(v0) ≤ r0 and by (2.54) we

obtain

r̄(v0) ≤ r0 ≤ r(v0).

Suppose by contradiction that r0 < r(v0) and consider the function

g(t) :=
∂

∂t
I(tv0) = tp−1(∥v0∥p −G1(t, v0)),
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for t ∈ (r0, r(v0)). Note that g(t) < 0, hence I(tv0) is decreasing on t and by (2.55)

M = lim inf
n→∞

I(r(vn)vn) ≥ I(r0v0) > I(r(v0)v0) = I(r(µv0)µv0) = I(µv0),

with µv0 ∈ Ω1 ∩ S1, which is impossible. Therefore, r0 = r(v0), consequently

1 = lim
n→∞

∥vn∥p = lim
n→∞

G1(r(vn), vn) = G1(r(v0), v0) = ∥v0∥p,

which ensures that v0 ∈ Ω1 ∩ S1, and

M = lim
n→∞

I(vn) =
(
1

p
− 1

q

)
A(v0)r(v0)

q +

(
1

s
− 1

p

)
B(v0)r(v0)

s = I(v0).

Finally, by Lemma 2.13, r(v0)v0 is a nonnegative and nontrivial critical point if I in

E.

2.4 Final comments

In this section, we explore potential future developments stemming from the

results established in this chapter.

• Our results demonstrate the existence of solutions for problems involving nonlin-

earities within the subcritical growth range in terms of new Sobolev embedding

proved in the present work. It would be interesting to explore the existence of

solutions for nonlinearities with corresponding critical growth.

• We address the case p = N with polynomial growth. It is also important to

consider scenarios where the nonlinearities exhibit exponential growth in the

fashion of Trudinger-Moser-type inequalities.
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Chapter 3

Application 2: ρ-harmonic functions

with indefinite boundary conditions

As a second application of our Hardy-type inequality (1.1), in this chapter, we will

address the existence and nonexistence of solutions for the following class of problems:

−div(ρ(x)|∇u|p−2∇u) = 0 in RN
+ ,

ρ(x′, 0)|∇u|p−2∇u · ν = h(x′)|u|q−2u−m(x′)|u|s−2u, on RN−1,
(P2)

where RN
+ = {x = (x′, xN) ∈ RN : x′ ∈ RN−1, xN > 0} standards for the upper

half-space, ν is the unit outer normal to the boundary ∂RN
+ := RN−1 and

1 < p ≤ N and 1 < q, s ≤ p∗.

Here and what follows, p∗ := (N − 1)p/(N − p) for p < N and p∗ = ∞ when p = N

denotes the critical exponent of the Sobolev trace embedding. Throughout this chapter,

we will assume that ρ, h,m are positive functions satisfying

ρ ∈ L1
loc(RN

+ ) and h,m ∈ L1
loc(RN−1).

If we assume that ρ ≡ 1, problem (P2) has been considered by many authors, see for

instance, [1, 2, 26]

3.1 Main results

We also will assume that the weight function ρ satisfy the hypothesis:
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(H0) there are constants ρ0 > 0 and γ > p− 1 such that

ρ(x) ≥ ρ0(1 + xN)
γ a.e. in RN

+ .

Here, by a weak solution of (P2) we mean a function u ∈ E such that∫
RN
+

ρ(x)|∇u|p−2∇u∇φ dx =

∫
RN−1

(h(x′)|u|q−2u−m(x′)|u|s−2u)φ dx′, (3.1)

holds for every φ ∈ C∞
δ (RN

+ ).

3.1.1 Liouville-type results

Our first nonexistence result for (P2) is established as follows.

Theorem 3.1 (p-sublinear case) Assume (H0) and suppose that m ∈ L1(RN−1) ∩

L∞(RN−1). If 1 < s < q < p ≤ N and h/m ∈ L∞(RN−1) with∥∥∥∥ hm
∥∥∥∥p−s

∞

(∥m∥∞C1−p
p,γ

ρ0

)q−s

< η(s, q, p), (3.2)

then (P2) possesses only the trivial weak solution.

Remark 3.1 Straightforward computation shows that, for λ > 0 sufficiently small, the

functions,

h(x′) =
λ

(1 + |x′|)θ1
and m(x′) =

1

(1 + |x′|)θ2
,

for x′ ∈ RN−1, satisfy the assumptions of Theorem 3.1 whenever 0 < N −1 < θ2 ≤ θ1.

In our second nonexistence result, we address the case where p < q < s.

Theorem 3.2 (p-superlinear case) Assume (H0) and suppose that m ∈ L∞(RN−1)

and 1 < p < N . If 1 < p < q < s ≤ p∗ and h/m ∈ L∞(RN−1) with∥∥∥∥ hm
∥∥∥∥s−p

∞

(∥m∥∞C1−p
p,γ

ρ0

)s−q

< η(p, q, s), (3.3)

then (P2) possesses only the trivial weak solution. Moreover, the same result holds if

p = N and p < q < s <∞.
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Figure 3.1: Nonexistence of solutions for (P2)

3.1.2 Existence results

Our existence results are established using the Fibering method. Theorem 1.5,

combined with the additional conditions on the potentials, more precisely, h,m ∈

L1(RN−1) ∩ L∞(RN−1), ensure that the embeddings

E ↪→ Lq(RN−1, h(x′)) and E ↪→ Ls(RN−1,m(x′))

are both valid and compact. Thus facilitating the application of the Fibering Method,

as shown in [35, 41].

In our first existence result we explore two combinations of the exponents. Pre-

cisely, we consider the cases 1 < s < p < q < p∗ and 1 < p < s < q < p∗.

Theorem 3.3 Assume (H0) holds and 1 < p ≤ N . If max{s, p} < q < p∗, and h,m ∈

L1(RN−1) ∩ L∞(RN−1), then (P2) has a nontrivial and nonnegative weak solution.

In our second existence result, we will consider the cases 1 < q < s < p or

1 < q < p < s < p∗.

Theorem 3.4 If (H0) holds, q < min{s, p} with s < p∗, and h,m ∈ L1(RN−1) ∩

L∞(RN−1), then (P2) has a nontrivial and nonnegative weak solution.

To present our third existence result of this chapter, we consider the functionals

defined on E by

H(u) =

∫
RN−1

h|u|q dx and M(u) =

∫
RN−1

m|u|s dx. (3.4)
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Figure 3.2: Existence of nontrivial solutions for (P2)

We note that under the assumptions of Theorem 2.2, for u ∈ E, the following

key inequality holds true (see Lemma 3.9)

H(u)s−p < η(p, q, s)M(u)q−p∥u∥p(s−q) < η(p, q, s)

(
q

p

)s−q

M(u)q−p∥u∥p(s−q).

We consider the existence of solutions for (P2) in a subset of the complementary situ-

ation of this inequality.

D2 :=

{
u ∈ E : H(u)s−p >

(
q

p

)s−q

η(p, q, s)M(u)q−p∥u∥p(s−q)

}
. (3.5)

Theorem 3.5 Let 1 < p ≤ N and assume that (H0) holds. If h,m ∈ L1(RN−1) ∩

L∞(RN−1), p < q < s < p∗, D2 ̸= ∅ and

h1/q

m1/s
∈ L

sq
s−q (RN−1), (3.6)

then, (P2) has a nontrivial and nonnegative weak solution.

Remark 3.2 The functions h = m = λw, with w given by

w(x′) =
1

(1 + |x′|)θ
,

satisfy the assumptions of Theorem 3.5 for θ > N − 1 and λ sufficiently large. In fact,

first, we observe that[
h(x′)1/q

m(x′)1/s

] sq
s−q

= h(x′) = λ(1 + |x′|)−θ ∈ L1(RN−1),
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whenever θ > N − 1. For u ∈ E\{0} fixed, one has

H(u)s−p/M(u)q−p = λs−q∥u∥q(s−p)

Lq(RN−1,w)
∥u∥s(p−q)

Ls(RN−1,w)
.

Since s > q, for λ sufficiently large we see that

H(u)s−p >

(
q

p

)s−q

η(p, q, s)M(u)q−p∥u∥p(s−q),

and hence D2 ̸= ∅. Conversely, it is easy to verify that for λ small the potentials

satisfies the condition for nonexistence, (3.3). As mentioned in [41], the condition

D2 ̸= ∅ can be interpreted as saying that h is sufficient "large" with respect to m.

q

s

1

p

p∗

1 p p∗

Figure 3.3: Existence of nontrivial solutions for (P2)

Our last existence result is derived from the consideration of the set

C2 :=
{
u ∈ E : H(u)p−s >

(q
s

)p−s

η(s, q, p)M(u)p−q∥u∥p(q−s)

}
, (3.7)

where, similar to the earlier case, we assume that h is sufficiently "large" compared to

m, expressed by the condition C2 ̸= ∅. Our fourth existence result for (P2) is stated

below:

Theorem 3.6 Assume (H0), s < q < p ≤ N and h,m ∈ L1(RN−1) ∩ L∞(RN−1). If

C2 ̸= ∅, then (P2) has a nontrivial and nonnegative weak solution.

It is important to note that if q < s = p, the Direct Methods in the Calculus of

Variations guarantee the existence of solutions to (P2). Conversely, when s = p < q,

the mountain-pass theorem can be employed to find solutions.
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Figure 3.4: Existence of nontrivial solutions for (P2)

The chapter is organized as follows: In Section 3, we present the proofs of The-

orems 1.1 and 1.5. In Section 3.2, we establish our Liouville type results, Theorems

3.1 and 3.2. In Section 3.3 we present the proofs of our existence results by proving

Theorems 3.3, 3.4, 3.5 and 3.6.

3.2 Proof of our Liouville type results

In this section, our focus is on proving Liouville-type results. The following

estimate plays a crucial role in our analysis.

Lemma 3.7 (key estimate) Assume condition (H0) and 1 < s < q < p. If m ∈

L1(RN−1)∩L∞(RN−1) then M is well defined in E. In addition, if h/m ∈ L∞(RN−1),

then

H(v)p−s ≤

(∥∥∥∥ hm
∥∥∥∥(p−s)

∞

[∥m∥∞C1−p
p,γ

ρ0

]q−s
)
M(v)p−q∥v∥p(q−s), ∀v ∈ E. (3.8)

In particular, H is well-defined. Furthermore, if (2.3) holds, then

H(v)p−s < η(s, q, p)M(v)p−q∥v∥p(q−s), ∀v ∈ E\{0}. (3.9)

Proof. First we observe that

M(v) :=

∫
RN−1

m|v|s dx =

∫
RN−1

m
p−s
p ms/p|v|s dx

≤ ∥m∥(p−s)/s

L1(RN
+ )

(∫
RN−1

m|v|p dx
)s/p
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≤ ∥m∥s/p∞ ∥m∥(p−s)/s

L1(RN
+ )

(∫
RN−1

|v|p dx
)s/p

,

which is finite by Theorem 1.1 and assumption (H0).

If s < q < p we can express q = (1− α)s+ αp with α = (q − s)/(p− s) ∈ (0, 1) .

Thus, by Hölder’s inequality,

H(v) =

∫
RN−1

h|v|q dx′ =
∫
RN−1

(h|v|s)1−α(h|v|p)α dx′

≤
(∫

RN−1

h|v|s dx′
)1−α(∫

RN−1

h|v|p dx′
)α

.

Using that 1− α = (p− q)/(p− s) we obtain

H(v)p−s ≤
(∫

RN−1

h|v|s dx′
)p−q (∫

RN−1

h|v|p dx′
)q−s

. (3.10)

Now, observe that∫
RN−1

h|v|s dx′ =
∫
RN−1

h

m
(m|v|s) dx′ ≤

∥∥∥∥ hm
∥∥∥∥
∞
M(v).

Thus, (1.12) and (H0) gives∫
RN−1

h|v|p dx′ ≤ ∥m∥∞
∥∥∥∥ hm

∥∥∥∥
∞

∫
RN−1

|v|p dx′ ≤ ∥m∥∞
∥∥∥∥ hm

∥∥∥∥
∞

C1−p
p,γ

ρ0
∥v∥p.

Therefore, plugging the last two inequalities into (3.10), we estimate (3.8).

Throughout this chapter, we will consider the following auxiliary function:

G2(r, v) = H(v)rq−p −M(v)rs−p, r > 0 and v ∈ E. (3.11)

Lemma 3.8 Assume the assumptions in Theorem 2.1. For each fixed v ∈ E\{0} the

function G2(., v) has a unique critical point which is a maximum and is given by

r̄(v) =

(
M(v)(p− s)

H(v)(p− q)

)1/(q−s)

.

Moreover,

G2(r̄(v), v) = max
r>0

G2(r, v) =

(
H(v)p−s

η(s, q, p)M(v)p−q

)1/(q−s)

> 0, (3.12)

where η(s, q, p) was defined in (2.2).
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Proof. For each v ∈ E\{0}, we have

∂G2

∂r
(r, v) = (q − p)H(v)rq−p−1 − (s− p)M(v)rs−p−1.

Thus,
∂G2

∂r
(r, v) = 0 ⇐⇒ r = r̄(v) =

(
M(v)(p− s)

H(v)(p− q)

)1/(q−s)

.

Moreover, we can see that limr→+∞G2(r, v) = 0, limr→0+ G2(r, v) = −∞ and by (3.15)

H(v)r̄(v)q−p =
p− s

p− q
M(v)r̄s−p

Thus, since

G2(r̄(v), v) =H(v)r̄(v)q−p −M(v)r̄(v)s−p

=

(
p− s

q − p
− 1

)
M(v)r̄(v)s−p

=
q − s

p− q
M(v)

(
M(v)(p− s)

H(v)(p− q)

) s−p
q−s

=
(q − s)(p− s)

s−p
q−s

(p− q)
q−p
q−s

M(v)
q−p
q−s

H(v)
s−p
q−s

=

(
H(v)p−s

η(s, q, p)M(v)p−q

)1/(q−s)

> 0,

r

y

G2(r, v)
G2(r̄(v), v)

r̄(v)

Figure 3.5: Maximum of G2 for s < q < p.

we can conclude that G2(., v) has a unique global maximum at r = r̄(v) > 0.

Now, we proceed to present the proof of Theorem 3.1.

Proof of Theorem 3.1. Assume by contradiction that (P2) has a nontrivial weak

solution u0 ∈ E. Then, from the definition (3.1), Lemma 3.7 and a density argument,
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it follows that

∥u0∥p = H(u0)−M(u0) = G2(1, u0).

On the other hand, by estimate (3.9), we have

H(u0)
p−s < η(s, q, p)M(u0)

p−q∥u0∥p(q−s),

which combined with (3.12) gives G2(r̄(u0), u0) < ∥u0∥p. Thus, we get

G2(r̄(u0), u0) < ∥u0∥p = G2(1, u0),

which contradicts the fact that r̄(u0) is the maximum of G2(., u0) and this concludes

the proof of Theorem 3.1.

Next, we turn our focus to proving our second Liouville-type result.

Lemma 3.9 Assume condition (H0), p < q < s ≤ p∗. If m ∈ L∞(RN−1), then M is

well defined in E. In addition, if h/m ∈ L∞(RN−1), then

H(v)s−p ≤

(∥∥∥∥ hm
∥∥∥∥s−p

∞

[∥m∥∞C1−p
p,γ

ρ0

]s−q
)
M(v)q−p∥v∥p(s−q), ∀v ∈ E.

In particular, H is well-defined. Furthermore, if (3.3) holds then

H(v)s−p < η(p, q, s)M(v)q−p∥v∥p(s−q), ∀v ∈ E\{0}. (3.13)

Proof. By Theorem 1.5 and (H0) we obtain

M(v) =

∫
RN−1

m|v|s dx′ ≤ ∥m∥∞
∫
RN−1

|v|s dx′ ≤ C∥v∥s.

Since p < q < s we can write q = (1 − α)p + αs with α = (q − p)/(s − p) ∈ (0, 1) .

Thus, by Hölder’s inequality we get

H(v) =

∫
RN−1

h|v|q dx′ =
∫
RN−1

(h|v|p)1−α(h|v|s)α dx′ ≤
(∫

RN−1

h|v|p dx′
)1−α(∫

RN−1

h|v|s dx′
)α

.

Taking into account that 1− α = (s− q)/(s− p) we obtain

H(v)s−p ≤

(∫
RN−1
+

h|v|p dx′
)s−q (∫

RN−1

h|v|s dx′
)q−p

. (3.14)

Moreover ∫
RN−1

h|v|s dx′ =
∫
RN−1

h

m
(m|v|s) dx′ ≤

∥∥∥∥ hm
∥∥∥∥
∞
M(v)
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and by (1.12) and (H0) we have∫
RN−1

h|v|p dx′ ≤ ∥m∥∞
∥∥∥∥ hm

∥∥∥∥
∞

∫
RN−1

|v|p dx′ ≤ ∥m∥∞
∥∥∥∥ hm

∥∥∥∥
∞

C1−p
p,γ

ρ0
∥v∥p.

Thus, plugging the last two inequalities into (3.14) we obtain

H(v)s−p ≤
(
∥m∥∞

∥∥∥∥ hm
∥∥∥∥
∞

C1−p
p,γ

ρ0
∥v∥p

)s−q (∥∥∥∥ hm
∥∥∥∥
∞
M(v)

)q−p

=

(∥∥∥∥ hm
∥∥∥∥s−p

∞

[∥m∥∞C1−p
p,γ

ρ0

]s−q
)
M(v)q−p∥v∥p(s−q),

which conclude the desired inequality. (3.13) can be derived directly by applying (3.3)

to the inequality above.

Lemma 3.10 Assume condition (H0), p < q < s ≤ p∗. If h,m ∈ L∞(RN−1), then for

each v ∈ E\{0} the function G2(., v) defined by (3.11) has a unique critical point at

r̄(v) =

(
H(v)(q − p)

M(v)(s− p)

)1/(s−q)

. (3.15)

Moreover,

G2(r̄(v), v) = max
r>0

G2(r, v) =

(
H(v)s−p

η(p, q, s)M(v)q−p

)1/(s−q)

> 0. (3.16)

Proof. For each v ∈ E\{0}, we have

∂G2

∂r
(r, v) = (q − p)H(v)rq−p−1 − (s− p)M(v)rs−p−1.

Thus,
∂G2

∂r
(r, v) = 0 ⇐⇒ r = r̄(v) =

(
H(v)(q − p)

M(v)(s− p)

)1/(s−q)

.

Now note that limr→+∞G2(r, v) = −∞, limr→0+ G2(r, v) = 0 and by (3.15)

M(v)r̄(v)s−p =
q − p

s− p
H(v)r̄(v)q−p.

Thus, since

G2(r̄(v), v) = H(v)r̄(v)q−p −M(v)r̄(v)s−p

=

(
s− q

s− p

)
H(v)r̄(v)q−p

=

(
s− q

s− p

)
H(v)

(
H(v)(q − p)

M(v)(s− p)

)(q−p)/(s−q)
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=
(s− q)(q − p)

q−p
s−q

(s− p)
s−p
s−q

H(v)
s−p
s−q

M(v)
q−p
s−q

=

(
H(v)s−p

η(p, q, s)M(v)q−p

)1/(s−q)

> 0,

r

y

G2(r, v)

G2(r̄(v), v)

r̄(v)

Figure 3.6: Maximum of G2 for p < q < s.

we conclude that the function G2(., v) has a unique global maximum at r = r̄(v) > 0.

Now we are ready to complete the proof of Theorem 3.2.

Proof of Theorem 3.2:. Arguing by contradiction, suppose that (P2) has a non-

trivial weak solution u0 ∈ E. From the definition (3.1), Lemma 3.9 and a density

argument we have

∥u0∥p = H(u0)−M(u0) = G2(1, u0).

On the other hand, by estimate (3.13), we have

H(u0)
s−p < η(p, q, s)M(u0)

q−p∥u0∥p(s−q).

This, together with (3.16) implies that G2(r̄(u0), u0) < ∥u0∥p. Therefore, we obtain

G2(r̄(u0), u0) < ∥u0∥p = G2(1, u0),

contradicting the fact that r̄(u0) is the maximum of G2(., u0) and this concludes the

proof.

3.3 Proof of our existence results

To prove our existence results, we must first establish a compactness result.
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Lemma 3.11 Assume condition (H0) and 1 < p ≤ N . If w ∈ L1(RN−1)∩L∞(RN−1),

then the embedding

E ↪→ Lq
(
RN−1, w(x′)

)
is continuous for q ∈ (1, p∗] and compact for q ∈ (1, p∗). If p = N , the embedding is

compact for all q ∈ (1,∞).

Proof. Consider p < N and let 1 < q < p. By Hölder’s inequality,∫
RN−1

w|u|q dx′ =
∫
RN−1

w
p−q
p wq/p|u|q dx′ ≤ ∥w∥

p−q
p

1

(∫
RN−1

w|u|p dx′
)q/p

.

By assumption (H0) and Theorem 1.1 we obtain∫
RN−1

w|u|q dx′ ≤ ∥w∥
q
p
∞∥w∥

p−q
p

1

(∫
RN−1

|u|p dx′
)q/p

≤
(
C1−p

p,γ

ρ0

)q/p

∥w∥
q
p
∞∥w∥

p−q
p

1 ∥u∥q.

If q ∈ [p, p∗], by Theorem 1.5 and (H0) we obtain∫
RN−1

w|u|q dx′ ≤ ∥w∥∞
∫
RN−1

|u|q dx′ ≤ C∥u∥q.

Now, if (un) ⊂ E is a bounded sequence, up to a subsequence, we can assume that

un ⇀ 0 in E. By Rellich-Kondrachov Theorem[8, Theorem 6.3]. the embedding

W 1,p(BR) ↪→ Ls(BR ∩ RN−1) (3.17)

is compact for all s ∈ [1, p∗) where BR denotes the ball of radius R in RN . Consider

then the sequence (vn) defined by

vn(x, xN) =

 un(x
′, xN), if xN > 0

un(x
′,−xN), if xN ≤ 0,

with (x′, xN) ∈ BR. Observe that vn ∈ W 1,p(BR) and ∥vn∥1,p,BR
≤ C. In fact, first we

notice that∫
BR

|∇vn|p dx = 2

∫
B+

R

|∇un|p dx and
∫
BR

|vn|p dx = 2

∫
B+

R

|un|p dx.

Applying inequality (1.5) and assumption (H0), we deduce E ↪→ W 1,p(B+
R), implying

∥vn∥p1,p,BR
= 2∥un∥p1,p,B+

R

≤ C.
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Passing to a subsequence, we have vn ⇀ 0 in W 1,p(BR) and by (3.17), it follows that

vn → 0 in Lq(BR ∩ RN−1). Since un = vn in BR ∩ RN−1, we conclude that un → 0 in

Lq(BR∩RN−1). Given ε > 0 there exists R = R(ε) > 0 such that ∥w∥L1(Bc
R(0)∩RN−1) ≤ ε.

If q < p we have ∫
BR∩RN−1

w|un|q dx′ ≤ C

∫
BR∩RN−1

|un|q dx′ < Cε

for n large. Conversely, by Hölder’s inequality,

∫
Bc

R∩RN−1

w|un|q dx′ ≤ ∥w∥
p−q
p

L1(Bc
R(0)∩RN−1)

(∫
Bc

R∩RN−1

w|un|p dx′
)q/p

≤ Cε
p−q
p ,

concluding the case, q < p. Now, if q ∈ [p, p∗), analogously we have∫
BR∩RN−1

w|un|q dx′ < Cε,

for n large. On the other hand, let α ∈ (0, 1) such that p < q/(1 − α) ≤ p∗, then, by

Hölder, Theorem 1.5 and (H0), we obtain∫
Bc

R∩RN−1

w|un|q dx′ =
∫
Bc

R∩RN−1

wαw1−α|un|q dx′

≤∥w∥αL1(Bc
R(0)∩RN−1)∥w∥

1−α
∞

(∫
Bc

R∩RN−1

|un|
q

1−α dx′

)1−α

≤Cεα

and we conclude the case p < N . The case p = N is similar.

Lemma 3.12 Let 1 < p < N and q < min{s, p} or q > max{s, p}. Then, for each

v ∈ E\{0} there exits a unique real number r(v) > 0 such that the pair (r(v), v) satisfies

the equation

∥v∥p = r(v)q−pH(v)− r(v)s−pM(v) = G2(r(v), v). (3.18)

Furthermore, the map r : E\{0} → R belongs to C1(E\{0},R) and µr(µv) = r(v) for

all µ > 0 and v ∈ E\{0}.

Proof. Existence: Consider the function f : (0,∞)× E → R defined by

f(r, v) = ∥v∥prp−q +M(v)rs−q −H(v).
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r

y

f(r, v)−H(v)

Figure 3.7: Graph of f(., v) for q > max{s, p}.

r

y
f(r, v)

−H(v)

Figure 3.8: Graph of f(., v) for q < min{s, p}.

Note that f(r, v) = 0 if and only if (3.18) holds. If v ∈ E\{0} and q > max{s, p} we

have limr→0+ f(r, v) = ∞ and limr→+∞ f(r, v) = −H(v) < 0. In the case q < min{s, p},

it holds limr→0+ f(r, v) = −H(v) < 0 and limr→∞ f(r, v) = ∞. Thus, in any case, by

the Intermediate Value Theorem, there exists r(v) > 0 such that f(r(v), v) = 0.

Uniqueness: Fixed v ∈ E\{0}, suppose that there are r1, r2 > 0 satisfying (3.18).

Consequently,

∥v∥prp−q
1 +M(v)rs−q

1 = H(v) = ∥v∥prp−q
2 +M(v)rs−q

2 ,

which is equivalent to

∥v∥p(rp−q
1 − rp−q

2 ) +M(v)(rs−q
1 − rs−q

2 ) = 0.

Therefore, r1 = r2 and so the map r : E\{0} → R satisfying (3.18) is well defined.

Regularity: To prove that r belongs to class C1, we observe that

∂f

∂r
(r, v) = (p− q)rp−q−1∥v∥p + (s− q)M(v)rs−q−1 ̸= 0, in (0,∞)× E\{0}.

Given v ∈ E\{0}, using the implicit function theorem(see [16]), we obtain open sets

I ⊂ R and V ⊂ E\{0} containing r(v) and v respectively, and a C1-function τ : V → I
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satisfying

τ(v) = r(v) and f(τ(w), w) = 0, ∀w ∈ V.

By the uniqueness r ≡ τ in V and therefore r is a C1-function in V . Since v is arbitrary

we have r ∈ C1(E\{0},R).

Finally, given µ > 0 and v ∈ E\{0} we have that f(r(µv), µv) = 0, that is,

H(v) = µp−qr(µv)p−q∥v∥p + µs−qr(µv)q−sM(v). (3.19)

Since f(r(v), v) = 0, we have

H(v) = r(v)p−q∥v∥p + r(v)q−sM(v),

which combined with (3.19) implies

0 = (µp−qr(µv)p−q − r(v)p−q)∥v∥p + (µs−qr(µv)s−q − r(v)s−q)M(v).

Thus, (µr(µv))p−q = r(v)p−q and this concludes the proof.

To obtain a weak solution in the sense of in(3.1), we will introduction of the

functional J : E → R defined by

J(u) =
1

p
∥u∥p − 1

q
H(u) +

1

s
M(u),

where

H(u) =

∫
RN−1

h|u|q dx′, M(u) =

∫
RN−1

m|u|s dx′.

Straightforward computation shows that J ∈ C1(E,R)(see [20]) and critical points of

J are weak solutions of (P2).

Remark 3.3 Suppose that there exists an open Ω ⊂ E\{0} and r ∈ C1(Ω,R) such

that (r(v), v) satisfies (3.18) for each v ∈ Ω with r(v) ̸= 0 in Ω, that is,

∥v∥p = r(v)q−pH(v)− r(v)s−pM(v). (3.20)

Then, we have

J(r(v)v) =
r(v)p

p
∥v∥p − r(v)q

q
H(v) +

r(v)s

s
M(v)

=

(
1

p
− 1

q

)
H(v)r(v)q +

(
1

s
− 1

p

)
M(v)r(v)s.
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In particular, if r > 0 and rv is a critical point of J , it holds

⟨J ′(rv), v⟩ = 0,

which is equivalent to (3.20).

The above remark motivates us to consider the reduced functional J defined by

J (v) := J(r(v)v) =

(
1

p
− 1

q

)
H(v)r(v)q +

(
1

s
− 1

p

)
M(v)r(v)s. (3.21)

To obtain a critical point of J we will need the next result.

Lemma 3.13 Let Φ ∈ C1(E\{0},R) such that ⟨Φ′(v), v⟩ ≠ 0 if Φ(v) = 1. If vc ∈ Ω is

a critical point of J under the constraint Φ(v) = 1, then u = r(vc)vc is a critical point

of J .

Proof. Let r ∈ C1(Ω,R) as in Remark 3.3 that is, for each v ∈ Ω ⊂ E\{0} the pair

(r(v), v) satisfies (2.26), more specifically

∥v∥p = r(v)q−pH(v)− r(v)s−pM(v).

Then we can define J : Ω → R as in (3.21) and

⟨J ′(r(v)v), v⟩ = 0,∀v ∈ Ω. (3.22)

In fact,

⟨J ′(r(v)v), v⟩ =r(v)p−1∥v∥p − r(v)q−1H(v) + r(v)s−1M(v)

=r(v)p−1[∥v∥p − r(v)q−pH(v) + r(v)s−pM(v)] = 0

If vc is a critical point of I under the constraint Φ(v) = 1, by the Lagrange Multiplier

Theorem(see [37, Proposition 14.3]), there exists µ ∈ R such that

J ′(vc) = λΦ′(vc). (3.23)

On the other hand, by the definition of J and (3.22) we have

⟨J ′(v), w⟩ = r(v)⟨J ′(r(v)v), w⟩+ ⟨r′(v), w⟩⟨J ′(r(v)v), v⟩ = r(v)⟨J ′(r(v)v), w⟩ (3.24)
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for all w ∈ E. Then by (3.22) and (3.23)

0 = r(vc)⟨J ′(r(vc)vc), vc⟩ = ⟨J ′(vc), vc⟩ = λ⟨Φ′(vc), vc⟩.

Since ⟨Φ′(vc), vc⟩ ≠ 0 we have that µ = 0 and hence, by (3.23) and (3.24),

0 = J ′(vc) = r(vc)J
′(r(vc)vc).

Therefore, r(vc)vc is a critical point of J .

Remark 3.4 We consider the constraint S1 = {v ∈ E : ∥v∥p = 1} and analyze the

minimization problem

inf
v∈S1

J (v). (3.25)

It is clear that for Φ = ∥.∥p, the condition ⟨Φ(v), v⟩ ≠ 0 in Lemma 3.13 is satisfied. It

is noteworthy that if v0 is a minimum of J on the sphere, then |v0| also attains this

minimum. Indeed, first we observe that

∥|v|∥p = r(|v|)q−pH(|v|)− r(|v|)s−pM(|v|) ⇔ ∥v∥p = r(|v|)q−pH(v)− r(|v|)s−pM(v).

By Lemma 3.12, for q < min{s, p} or q > max{s, p}, there exists a unique r > 0 such

that ∥v∥p = rq−pH(v)− rs−pM(v). Then we have r(v) = r(|v|) and consequently

J (|v|) =
(
1

p
− 1

q

)
H(|v|)r(|v|)q +

(
1

s
− 1

p

)
M(|v|)r(|v|)s

=

(
1

p
− 1

q

)
H(v)r(v)q +

(
1

s
− 1

p

)
M(v)r(v)s

=J (v).

Thus, if v0 attains (3.25), |v0| also attains. This implies, by using Lemma 3.13, that

solutions for (P2), can be taken as nonnegative without loss of generality.

We can now proceed with the proofs of Theorems 3.3 and 3.4.

Proof of Theorem 3.3. :For each fixed v ∈ E\{0}, by Lemma 3.12, there exists

r(v) > 0 such that the pair (r(v), v) satisfying the equation

∥v∥pr(v)p−q +M(v)r(v)s−q = H(v). (3.26)

Then is well defined the reduced functional J in (3.21) and by the inequality above we

can write

J (v) =

(
1

s
− 1

q

)
M(v)r(v)s +

(
1

p
− 1

q

)
∥v∥pr(v)p > 0.
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Define

M := inf
v∈S1

J (v).

where S1 denotes the unity sphere in E.

Now, consider (vn) a minimizing sequence. Going if necessary to a subsequence,

we may assume that vn ⇀ v0 in E with ∥v0∥ ≤ 1 and by Lemma 3.11

H(vn) → H(v0) and M(vn) →M(v0).

We claim that v0 ̸= 0. Indeed, suppose that v0 = 0. By Lemma 3.12, we have

∥vn∥p = r(vn)
q−pH(vn)− r(vn)

s−pM(vn).

Using that ∥vn∥ = 1, we get

1 = r(vn)
q−pH(vn)−M(vn)r(vn)

s−p ≤ r(vn)
q−pH(vn).

Since q > p and H(vn) → 0, we obtain r(vn) → ∞. On the other hand,

J (vn) =

(
1

s
− 1

q

)
M(vn)r(vn)

s +

(
1

p
− 1

q

)
r(vn)

p ≥
(
1

p
− 1

q

)
r(vn)

p.

By taking the limit in the previous step, we reach a contradiction, which implies that

v0 ̸= 0. From the final inequality, we can assume, up to a subsequence, that r(vn) →

r0 ≥ 0 and taking to the limit in (3.26) we obtain

rp−q
0 +M(v0)r

s−q
0 = H(v0) > 0 (3.27)

which implies that r0 > 0.

Next, we shall prove that v0 ∈ S1. Otherwise, there exists µ > 1 such that

µv ∈ S1. From Lemma 3.12, there are r(v0) > 0 such that

∥v0∥pr(v0)p−q +M(v0)r(v0)
s−q = H(v0).

This, combined with (3.27) and the fact that µ > 1 implies

rp−q
0 +M(v0)r

s−q
0 < r(v0)

p−q +M(v0)r(v0)
s−q.

Since s, p < q, we have that r0 > r(v0). Now, consider the function

ψ(t) =

(
1

s
− 1

q

)
M(v0)t

s +

(
1

p
− 1

q

)
∥v0∥ptp, t > 0
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and observe that ψ is strictly increasing. Thus,

M = lim inf
n→∞

J (vn) ≥
(
1

s
− 1

q

)
M(v0)r

s
0 +

(
1

p
− 1

q

)
rp0∥v0∥p =ψ(r0).

However, we also observe that

ψ(r0) > ψ(r(v0)) = J(r(v0)v0) = J(µr(µv0)v0) = J (µv0),

This contradicts the definition of M , given that µv0 ∈ S1. Hence we concluded that

v0 ∈ S1. From (3.27) and the uniqueness of the solution r(v0), it follows that r0 = r(v0)

and

M = lim
n→∞

J (vn) = J (v0).

Since v0 is a critical point of J under S1 so is |v0| and we can assume v0 ≥ 0. Applying

Lemma 3.13 with Φ(v) = ∥v∥p, we conclude that u = r0v0 is a critical point of J , and

this completes the proof.

Now we present the proof of Theorem 3.4.

Proof of Theorem 3.4. As in the previous result there exist r(v) such that

∥v∥pr(v)p−q +M(v)r(v)s−q = H(v), (3.28)

which ensures the reduced functional J is well-defined and can be expressed as

J (v) =

(
1

s
− 1

q

)
M(v)r(v)s +

(
1

p
− 1

q

)
∥v∥pr(v)p < 0.

Now observe that from (3.28), we deduce that

0 < r(v)p−q ≤ r(v)p−q +M(v)r(v)s−q = H(v).

By our embedding results, H and M are bounded in S1. Therefore, r is bounded given

that p > q. Consequently, we can study the minimization problem

−∞ < M := inf
v∈S1

J (v) < 0.

Let (vn) ⊂ S1 be a minimizing sequence. By considering a subsequence if necessary,

we can assume that vn ⇀ v0 weakly in E with ∥v0∥ ≤ 1. Furthemore, by Lemma 3.11

H(vn) → H(v0) and M(vn) →M(v0).
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Up to a subsequence, we can assume that r(vn) → r0 ≥ 0. Now observe that r0v0 ̸= 0,

since r(vn)vn ⇀ r0v0 and

J(r0v0) ≤ lim inf J(r(vn)vn) = lim inf J (vn) =M < 0.

From (3.28), we have

∥vn∥pr(vn)p−q +M(vn)r(vn)
s−q = H(vn).

Passing to the limit and observing that ∥v0∥ ≤ 1 we obtain

∥v0∥prp−q
0 +M(v0)r

s−q
0 ≤ H(v0).

On the other hand, applying Lemma 3.12 for v0, we have

∥v0∥pr(v0)p−q +M(v0)r(v0)
s−q = H(v0),

which implies that r0 ≤ r(v0). Now, suppose by contradiction that r0 < r(v0) and

consider the function

ψ(t) := J(tv0) =
tp

p
∥v0∥p −

tq

q
H(v0) +

ts

s
M(v0), t ∈ [0, r(v0)].

Observe that ψ is strictly decreasing on [0, r(v0)]. Thus,

M = lim inf J(r(vn)vn) ≥ J(r0v0) > J(r(v0)v0) = J (v0).

Now note that, for all µ > 0 and v ∈ E\{0},

J (µv) = J (v)

given that µr(µv) = r(v) by Lemma 3.12. Setting µ = ∥v0∥−1, we have µv0 ∈ S1 and

J (µv0) = J (v0) < M,

which is a contradiction and therefore r(v0) = r0. Then,

1 = lim
n→∞

∥vn∥p = rq−p
0 H(v0)− rs−p

0 M(v0) = ∥v0∥p.

and

M = lim
n→∞

J (vn) = lim
n→∞

(
1

s
− 1

q

)
M(vn)r(vn)

s +

(
1

p
− 1

q

)
∥vn∥pr(vn)p = J (v0).

Since v0 is a critical point of J under S1, |v0| must also be a critical point. Therefore,

we can assume without loss of generality that v0 ≥ 0. Applying Lemma 3.13, we

conclude that u = r0v0 is a critical point of J , and we complete the proof.

Now we aim to establish our third existence result.
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Lemma 3.14 Assume the assumption of Theorem 3.5. Then for each v ∈ E\{0} the

function G2(., v) defined by (3.11) has a unique critical point at

r̄(v) =

(
H(v)(q − p)

M(v)(s− p)

)1/(s−q)

. (3.29)

Moreover,

G2(r̄(v), v) = max
r>0

G2(r, v) =

(
H(v)s−p

η(p, q, s)M(v)q−p

)1/(s−q)

> 0. (3.30)

Proof. For each v ∈ E\{0}, we have

∂G2

∂r
(r, v) = 0 ⇐⇒ r = r̄(v) =

(
H(v)(q − p)

M(v)(s− p)

)1/(s−q)

.

Now note that limr→+∞G2(r, v) = −∞, limr→0+ G2(r, v) = 0 and by (3.29)

M(v)r̄(v)s−p =
q − p

s− p
H(v)r̄(v)q−p.

Thus,

G2(r̄(v), v) =

(
s− q

s− p

)
H(v)r̄(v)q−p

=

(
s− q

s− p

)
H(v)

(
H(v)(q − p)

M(v)(s− p)

)(q−p)/(s−q)

=
(s− q)(q − p)

q−p
s−q

(s− p)
s−p
s−q

H(v)
s−p
s−q

M(v)
q−p
s−q

=

(
H(v)s−p

η(p, q, s)M(v)q−p

)1/(s−q)

> 0,

and we have that G2(., v) has a unique global maximum at r = r̄(v) > 0.

r

y

G2(r, v)

G2(r̄(v), v)

r̄(v)

Figure 3.9: Maximum of G2 for p < q < s.
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To prove our third existence result for (P2) we define the set

Ω2 := {v ∈ E\{0} : ∥v∥p < G2(r̄(v), v)},

where r̄(v) is given by (3.29).

Remark 3.5 Let D2 the set defined in (3.5). We observe that ∅ ̸= D2 ⊂ Ω2. In fact,

by (3.15) we have

M(v) =

(
q − p

s− p

)
r̄(v)q−sH(v), (3.31)

and therefore

G2(r̄(v), v) = r̄(v)q−pH(v)−
(
q − p

s− p

)
r̄(v)q−pH(v) =

(
s− q

s− p

)
H(v)r̄(v)q−p. (3.32)

From the definition, for each v ∈ D2, it holds

∥v∥p <
(
p

q

)
η(s, q, p)

1
q−sH(v)

s−p
s−qM(v)

p−q
s−q .

Thus, from (3.31), (3.32) and the fact that p < q, we obtain

∥v∥p <
(
p

q

)
(s− q)(q − p)

q−p
s−q

(s− p)
s−p
s−q

H(v)
s−p
s−q

[(
q − p

s− p

)
r̄(v)q−sH(v)

] p−q
s−q

=
p

q

(
s− q

s− p

)
r̄(v)q−pH(v)

< G2(r̄(v), v),

which implies D2 ⊂ Ω2.

Next, we will establish several technical properties of Ω2, which are crucial for

proving Theorem 3.5.

Lemma 3.15 If p < q < s < p∗, for each v ∈ Ω2 there exists a unique real number

r(v) > r̄(v) such that the pair (r(v), v) satisfies

∥v∥p = r(v)q−pH(v)− r(v)s−pM(v) = G2(r(v), v),

and r ∈ C1(Ω2,R). Furthermore, for any v ∈ Ω2 and µ > 0, it holds µv ∈ Ω2, and as

a consequence, Ω2 ∩ S1 ̸= ∅.
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Proof. If v ∈ Ω2 we have ∥v∥p < G2(r̄(v), v). Since G2(r, v) = rq−p (H(v)−M(v)rs−q)

and p < q < s, it follows that

lim
r→∞

G2(r, v) = −∞,

and so by the Intermediate Value Theorem, there exists a real number r(v) > r̄(v)

such that the pair (r(v), v) verifies ∥v∥p = G2(r(v), v). To prove that r(v) is unique,

we observe (q − p)r̄(v)q−pH(v) = (s− p)r̄(v)s−pM(v) and hence we can write

G2(r, v) = H(v)

(
rq−p − q − p

s− p
r̄(v)q−srs−p

)
.

Consequently,

∂G2

∂r
(r, v) = (q − p)rs−p−1H(v)(rq−s − r̄(v)q−s) < 0,

for all r > r̄(v), thereby implying the uniqueness of r(v).

r

y

G2(r, v)

∥v∥p
G2(r̄(v), v)

r(v)r1(v) r̄(v)

Figure 3.10: Existence of r(v) > r̄(v).

To verify that r is a C1 function, let v ∈ Ω2, set r = r(v) and obtain

∂G2

∂r
(r(v), v) = (q − p)r(v)p−s+1H(v)(r(v)q−s − r̄(v)q−s) < 0. (3.33)

Now, let the function f : (0,∞)× Ω2 → R given by

f(r, v) = G2(r, v)− ∥v∥p.

From (3.33) we see that ∂f
∂r
(r(v), v) < 0. Therefore, by the implicit function theorem(see

[16]), there exists open sets I ⊂ R and V ⊂ E\{0} containing r(v) and v respectively,
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and a C1-function τ : V → I satisfying

τ(v) = r(v) > r̄(v) and f(τ(w), w) = 0, ∀w ∈ V.

Then, there exists a neighborhood U ⊂ V containing v such that τ = r > r̄ in U . By

the uniqueness, r ≡ τ in U hence r is a C1-function in U and therefore, r ∈ C1(Ω2,R).

Now, suppose that v ∈ Ω2. This means

∥v∥p < G2(r̄(v), v) =
s− q

s− p
r̄(v)q−pH(v),

where we use (3.32). Since by (3.15) µ−1r̄(v) = r̄(µv) for all µ > 0, we get

∥µv∥p < s− q

s− p
r̄(µv)q−pH(µv) = G2(r̄(µv), µv),

which implies that µv ∈ Ω2. This completes the proof. .

Lemma 3.16 Under the assumptions of Theorem 2.5 it holds

inf
v∈Ω2∩S1

M(v) > 0.

Proof. By Lemma 3.15 we have Ω2 ∩ S1 ̸= ∅. Now, given v ∈ Ω2 ∩ S1, from (3.32),

(3.15) and the fact that 1 = ∥v∥p < G2(r̄(v), v), we obtain

η(p, q, s)M(v)q−p < H(v)s−p.

By applying Hölder’s inequality, we have

H(v) =

∫
RN−1

h|v|q dx′ =
∫
RN−1

h

mq/s
mq/s|v|q dx′

≤

(∫
RN−1

[
h

mq/s

] s
s−q

dx′

)(s−q)/s(∫
RN−1

m|v|s dx′
)q/s

.

≤Ch,mM(v)q/s

where

0 < Ch,m =

(∫
RN−1

[
h1/q

m1/s

] sq
s−q

dx′

)(s−q)/s

,

which is finite by (3.6). Combining the above inequalities, we get

η(p, q, s)M(v)q−p < H(v)s−p ≤ Cs−p
h,mM(v)(s−p)q/s.

Hence

0 < η(p, q, s)Cp−s
h,m < M(v)(s−q)p/s,

and we conclude the result.
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Lemma 3.17 If D2 is the set defined in (3.5), then D2 ∩S1 ̸= ∅, where S1 is the unit

sphere in E. Moreover,

J (v) < 0, ∀v ∈ D2. (3.34)

Proof. If v ∈ D2, the computation in Remark 3.5 shows that

∥v∥p < p

q

(
s− q

s− p

)
r̄(v)q−pH(v). (3.35)

For µ > 0, by (3.15), we have

r̄(µv) = µ−1r̄(v), ∀v ∈ E\{0}.

Thus,

∥µv∥p <p
q

(
s− q

s− p

)
µp−qr̄(v)q−pH(µv) =

p

q

(
s− q

s− p

)
r̄(µv)q−pH(µv),

which implies that µv ∈ D2. In particular, choosing µ = ∥v∥−1 we conclude that

D2 ∩ S1 ̸= ∅.

To verify (3.34), since the pair (r(v), v) satisfies

M(v)r(v)s = H(v)r(v)q − ∥v∥pr(v)p,

from (3.21), the fact that r̄(v) < r(v) for each v ∈ D2 ⊂ Ω2 and inequality (3.35), we

get

J (v) =

(
1

s
− 1

q

)
H(v)r(v)q +

(
1

p
− 1

s

)
∥v∥pr(v)p

<

(
1

s
− 1

q

)
H(v)r(v)q +

(
1

p
− 1

s

)
p

q

(
s− q

s− p

)
H(v)r(v)q.

We observe that the last term of the inequality above is zero and the proof is complete.

Remark 3.6 If 1 < p < q < s, by Lemma 3.15, for each v ∈ Ω2 there is only a real

value r(v) such that

G2(r(v), v) = ∥v∥p and r(v) > r̄(v).

Since r(|v|) > r̄(|v|) = r̄(v) with

G2(r(|v|), v) = ∥v∥p
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we must to have r(v) = r(|v|) and hence J (v) = J (|v|). Therefore, if v0 is a minimum

of J under Ω2∩S1, so is |v0|. This implies that solutions to the minimization problem,

inf
v∈Ω2∩S1

J (v),

and hence, by Lemma 2.13, solutions to (P2) in the case 1 < p < q < s, can be chosen

to be nonnegative without loss of generality.

Now we can proceed with the proof of Theorem 3.5.

Proof of Theorem 3.5:. Let r ∈ C1(Ω2,R) be the function given by the Lemma

3.15. For v ∈ S1, we have

1 = r(v)q−pH(v)− r(v)s−pM(v),

which implies

r(v) <

(
H(v)

M(v)

)1/(s−q)

, v ∈ S1. (3.36)

Since H is bounded in S1, by Lemma 3.16 we have that r is bounded in Ω2∩S1. Hence,

J is lower bounded in Ω2 ∩ S1 and by Lemma 3.17, we have

M = inf
v∈Ω2∩S1

J (v) < 0. (3.37)

Let (vn) ⊂ Ω2 ∩ S1 be a minimizing sequence. Up to a subsequence, vn ⇀ v0

weakly in E with ∥v0∥ ≤ 1. Lemmas 3.11 then imply

H(vn) → H(v0) and M(vn) →M(v0).

By Lemma 3.15, the sequence (r(vn)) satisfies r(vn) > r̄(vn). Furthermore, from (3.36),

the sequence (r(vn)) is bounded. Up to a subsequence, we can assume that r(vn) →

r0 ≥ 0. Consequently, we obtain

0 > M = lim inf J (vn) ≥
(
1

p
− 1

q

)
H(v0)r

q
0 +

(
1

s
− 1

p

)
M(v0)r

s
0.

which implies that r0 > 0. In addition, from (3.15) and Lemma 3.11, it follows

lim
n→+∞

r̄(vn) = r̄(v0).

and hence

lim
n→+∞

G2(r̄(vn), vn) = G2(r̄(v0), v0).
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Since vn ∈ Ω2, we get

∥v0∥p ≤ lim inf
n→∞

∥vn∥p ≤ lim inf
n→∞

G2(r̄(vn), vn) = G2(r̄(v0), v0).

We shall now show that v0 ∈ Ω2. Assume by contradiction that v0 ̸∈ Ω2, that is,

∥v0∥p = G2(r̄(v0), v0). Since ∥vn∥p = G2(r(vn), vn), taking to the limit we get

G2(r̄(v0), v0) = ∥v0∥p ≤ lim inf
n→∞

∥vn∥p = lim inf
n→∞

G2(r(vn), vn) = G2(r0, v0),

which implies that r̄(v0) = r0 because r̄(v0) is the global maximum of G2(., v0). Then,

r(vn) → r̄(v0) and from the definition of J and (3.15) we obtain

M = lim
n→∞

J (vn) =

(
1

p
− 1

q

)
H(v0)r̄(v0)

q +

(
1

s
− 1

p

)
M(v0)r̄(v0)

s

and (s− p)M(v0)r̄(v0)
s = H(v0)(q − p)r̄(v0)

q. As a consequence, we infer that

M =M(v0)r̄(v0)
s

[
(s− p)

q − p

(
1

p
− 1

q

)
+

(
1

s
− 1

p

)]
=M(v0)r̄(v0)

s (s− p)

p

(
1

q
− 1

s

)
> 0

because p < q < s, which contradicts (3.37) and hence we conclude that v0 ∈ Ω2.

Claim: r0 = r(v0).

Assuming that the claim is true, we can take the limit at

1 = ∥vn∥p = G2(r(vn), vn),

to obtain

1 = G2(r(v0), v0) = ∥v0∥p.

Thus, we conclude that v0 ∈ Ω2 ∩ S1 and we also have

M = lim
n→∞

J (vn) =

(
1

p
− 1

q

)
H(v0)r(v0)

q +

(
1

s
− 1

p

)
M(v0)r(v0)

s = J (v0).

Therefore, by Lemma 3.13, r(v0)v0 is a nonnegative and nontrivial critical point if J

in E.

It remains to prove r0 = r(v0). Since v0 ∈ Ω2, by Lemma 3.15, we can choose

µ0 > 0 such that µ0v0 ∈ Ω2 ∩ S1. By Lemma 3.15 we know that r(v0) > r̄(v0) and

G2(r(v0), v0) = ∥v0∥p. Taking the limit at ∥vn∥p = G2(r(vn), vn), we get ∥v0∥p ≤

G2(r0, v0). Consequently,

G2(r(v0), v0) = ∥v0∥p ≤ G2(r0, v0).
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Since G2(r, v0) is decreasing for r ≥ r̄(v0) and r(v0) > r̄(v0), it follows that r0 ≤ r(v0).

In fact, we have

r̄(v0) ≤ r0 ≤ r(v0).

Suppose by contradiction that r0 < r(v0). Since G2(r, v0) is strictly decreasing for all

r ∈ (r0, r(v0)), we see that

∥v0∥p = G2(r(v0), v0) < G2(r, v0), ∀r ∈ [r0, r(v0)).

Considering the function

z(r) = J(rv0), r ∈ (r0, r(v0)),

a straightforward computation shows that

z′(r) = rp−1 (∥v0∥p −G2(r, v0)) < 0,

which implies that z is strictly decreasing. Thus, we get

M = lim inf
n→∞

J(r(vn)vn) ≥ J(r0v0) > J(r(v0)v0) = J(r(µ0v0)µ0v0) = J (µ0v0),

with µ0v0 ∈ Ω2 ∩ S1. This contradicts the definition of M and hence r0 = r(v0). This

completes the proof of Theorem 3.5.

Finally, we turn our attention for the proof of Theorem 3.6.

Lemma 3.18 Assume the assumptions in Theorem 3.6. For each fixed v ∈ E\{0} the

function G2(., v) has a unique critical point which is a maximum and is given by

r(v) =

(
M(v)(p− s)

H(v)(p− q)

)1/(q−s)

. (3.38)

Moreover,

G2(r(v), v) = max
r>0

G2(r, v) =

(
H(v)p−s

η(s, q, p)M(v)p−q

)1/(q−s)

> 0, (3.39)

where η(s, q, p) was defined in (2.2).

Proof. We start by verifying that

∂G2

∂r
(r, v) = (q − p)rq−p−1H(v)− (s− p)rs−p−1M(v).
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Then we observe that

∂G2

∂r
(r, v) = 0 ⇔ r =

(
M(v)(p− s)

H(v)(p− q)

)1/(q−s)

.

Furthermore, we observe that limr→+∞G2(r, v) = 0, limr→0+ G2(r, v) = −∞ and due

to (3.38),

H(v)r̄(v)q−p =

(
p− s

p− q

)
M(v)r̄(v)s−p.

Since,

G2(r̄(v), v) = H(v)r̄(v)q−p −M(v)r̄(v)s−p

=

(
q − s

p− q

)
M(v)r̄(v)s−p

=

(
q − s

p− q

)
M(v)

(
M(v)(p− s)

H(v)(p− q)

)(s−p)/(q−s)

=

(
H(v)p−s

η(s, q, p)M(v)p−q

)1/(q−s)

> 0,

r

y

G2(r, v)
G2(r̄(v), v)

r̄(v)

Figure 3.11: Maximum of G2 for p < q < s.

we can conclude that G2(., v) attains its unique global maximum at r = r̄(v) > 0.

As in the previous case, we need to considerate the set

Ω2 = {v ∈ E\{0} : ∥v∥p < G2(r̄(v), v)}.

Remark 3.7 Consider s < q < p and let C2 the set defined in (3.7). We observe that

C2 ⊂ Ω2 and hence Ω2 ̸= ∅. In fact, note that v ∈ C2 if, and only if,

∥v∥p <
(
s

q

) p−s
q−s
(

H(v)p−s

η(s, q, p)M(v)p−q

)1/(q−s)

=

(
s

q

) p−s
q−s

G2(r̄(v), v).
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Then, since s < q < p, we have ∥v∥p < G2(r̄(v), v) and v ∈ Ω2.

Lemma 3.19 If s < q < p, for each v ∈ Ω2 there exists a unique positive real number

r(v) > r̄(v) such that the pair (r(v), v) satisfies

∥v∥p = r(v)q−pH(v)− r(v)s−pM(v) = G2(r(v), v),

and r ∈ C1(Ω2,R). Furthermore, for any v ∈ Ω2 and µ > 0, it holds µv ∈ Ω2, and as

a consequence, Ω2 ∩ S1 ̸= ∅.

Proof. If v ∈ Ω2 we have ∥v∥p < G2(r̄(v), v). Given that s < q < p,

lim
r→∞

G2(r, v) = 0.

By the Intermediate Value Theorem, there exists a positive real number r(v) > r̄(v)

such that the pair (r(v), v) verifies ∥v∥p = G2(r(v), v). To prove that r(v) is unique,

we observe that G2 is decreasing for all r > r̄(v). In fact, first note that by (3.38)

(q − p)H(v) = (s− p)r̄(v)s−qM(v).

Consequently,

∂G2

∂r
(r, v) = (q − p)rq−p−1H(v)− (s− p)rs−p−1M(v)

= (s− p)M(v)rq−p−1r̄(v)s−q − (s− p)rs−p−1M(v)

= (s− p)rq−p−1M(v)

(
1

r̄(v)q−s
− 1

rq−s

)
< 0,

for all r > r̄(v), thereby implying the uniqueness of r(v).

Next, we will prove that r is a C1 function. In fact, given v ∈ Ω2, by setting

r = r(v), we obtain ∂G2

∂r
(r(v), v) < 0. Now, consider the function f : (0,∞)× Ω2 → R

given by

f(r, v) = G2(r, v)− ∥v∥p.

Given v ∈ Ω2, we observe that ∂f
∂r
(r(v), v) < 0. By the implicit function theorem(see

[16]), there exists open sets I ⊂ R and V ⊂ E\{0} containing r(v) and v respectively,

and a C1-function τ : V → I satisfying

τ(v) = r(v) > r̄(v) and f(τ(w), w) = 0, ∀w ∈ V.
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r

y

G2(r, v)
∥v∥p

r(v)r1(v)r̄(v)

Figure 3.12: Existence of r(v) > r̄(v) for s < q < p.

Then, there exists a neighborhood U ⊂ V containing v such that τ = r > r̄ in U . By

the uniqueness, r ≡ τ in U hence r is a C1-function in U and therefore, r ∈ C1(Ω2,R).

Now, observe that given µ > 0

µr̄(µv) = r̄(v), ∀v ∈ E\{0}. (3.40)

In fact, by (3.38) we have

r̄(µv) =

(
M(µv)(p− s)

H(µv)(p− q)

)1/(q−s)

=
µ

s
q−s

µ
q

q−s

(
M(v)(p− s)

H(v)(p− q)

)1/(q−s)

=
1

µ
r̄(v).

By (3.38) we can write

H(v) =

(
p− s

p− q

)
M(v)r̄(v)s−q

and hence

G2(r̄(v), v) = r̄(v)q−pH(v)− r̄(v)s−pM(v) =
q − s

p− q
r̄(v)s−pM(v).

Suppose that v ∈ Ω2, that is

∥v∥p < G2(r̄(v), v) =
q − s

p− q
r̄(v)s−pM(v).

Using (3.40) we obtain

∥µv∥p < µp−s+s q − s

p− q
r̄(v)s−pM(v) =

q − s

p− q
r̄(µv)s−pM(µv) = G2(r̄(µv), µv),

which implies that µv ∈ Ω2. Taking µ = ∥v∥−1 we have that Ω2 ∩ S1 ̸= ∅.
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Lemma 3.20 Let s < q < p. If v ∈ C2, where C2 is the set given by (3.7), we have

r̄(v) <
(q
s

) 1
q−s

r̄(v) < r(v), (3.41)

where r is the function given in Lemma 3.19. Moreover,

J (v) < 0, ∀v ∈ C2

and C2 ∩ S1 ̸= ∅.

Proof. As shown in the proof of Lemma 3.19, G2(r, v) is decreasing for r > r̄(v). Since

r̄(v) < r(v), to establish (3.41), it suffices to demonstrate that if v ∈ C2, then

G2

((q
s

) 1
q−s

r̄(v), v

)
> G2(r(v), v).

r

y

G2(r, v)
∥v∥p

r(v)r̄(v) ( q
s

) 1
q−s r̄(v)

Figure 3.13:
(
q
s

) 1
q−s r̄(v) < r(v).

As observed in Remark 3.7, v ∈ C2 if and only if

G2(r(v), v) = ∥v∥p <
(
s

q

) p−s
q−s

G2(r̄(v), v). (3.42)

Thus, since s < q < p, we have

G2

((q
s

) 1
q−s

r̄(v), v

)
=
(q
s

) q−p
q−s

r̄(v)q−pH(v)−
(q
s

) s−p
q−s

r̄(v)s−pM(v)

>
(q
s

) s−p
q−s

r̄(v)q−pH(v)−
(q
s

) s−p
q−s

r̄(v)s−pM(v)

=

(
s

q

) p−s
q−s

G2(r̄(v), v)
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>G2(r(v), v),

which conclude (3.41). To verify that J < 0 in C2, by (3.38) we write

M(v) =
p− q

p− s
r̄(v)q−sH(v).

and by (3.41)

r̄(v)q−s <
s

q
r(v)q−s.

Therefore,

J (v) =

(
1

p
− 1

q

)
H(v)r(v)q +

(
1

s
− 1

p

)
M(v)r(v)s

=

(
q − p

pq

)
H(v)r(v)q +

(
p− s

sp

)(
p− q

p− s

)
r̄(v)q−sH(v)r(v)s

<

(
q − p

pq

)
H(v)r(v)q +

(
p− q

sp

)
s

q
H(v)r(v)q

=
1

p
H(v)r(v)q

(
q − p

q
+
p− q

q

)
=0.

Let v ∈ C2 and µ > 0, then, by multiplying (3.42) by µp and by (3.40) we obtain

∥µv∥p <µp

(
s

q

) p−s
q−s

G2(r̄(v), v)

=µp

(
s

q

) p−s
q−s

(r̄(v)q−pH(v)− r̄(v)s−pM(v))

=

(
s

q

) p−s
q−s

(µp−qµqr̄(v)q−pH(v)− µp−sµsr̄(v)s−pM(v))

=

(
s

q

) p−s
q−s

(r̄(µv)q−pH(µv)− r̄(µv)s−pM(µv))

=

(
s

q

) p−s
q−s

G2(r̄(µv), µv),

which implies that µv ∈ C2. Taking µ = ∥v∥−1 we conclude that C2 ∩ S1 ̸= ∅.

Remark 3.8 If 1 < s < q < p, by Lemma 3.19, for each v ∈ Ω2 there is only a real

value r(v) such that

G2(r(v), v) = ∥v∥p and r(v) > r̄(v).
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Since r(|v|) > r̄(|v|) = r̄(v) with G2(r(|v|), v) = ∥v∥p, we have r(v) = r(|v|) and hence

J (v) = J (|v|). Therefore, if v0 is a minimum of I under Ω1 ∩ S1, so is |v0|. This

implies that solutions to the minimization problem,

inf
v∈Ω2∩S1

J (v),

and hence, by Lemma 3.13, the solutions for (P2) for 1 < s < q < p, can be taken as

nonnegative without loss of generality.

Now we are ready to present the proof of Theorem 3.6.

Proof of Theorem 3.6. Observe that r, given in Lemma 3.19 is bounded in S1. In

fact, if v ∈ S1 we have

1 = r(v)q−pH(v)− r(v)s−pM(v) ≤ r(v)q−pH(v),

then r(v) ≤ H(v)
1

p−q . Since 1 < q < p and H is bounded in S1 due to Lemma 3.11, we

conclude that r is bounded in S1. Thus, J is bounded in S1 and due to Remark 3.7

and Lemma 3.20 we have

−∞ < M = inf
v∈Ω2∩S1

J (v) < 0.

Let (vn) ⊂ Ω2 ∩ S1 be a minimizing sequence. There exist v0 ∈ E such that, going if

necessary to a subsequence, vn ⇀ v0 in E and by Lemma 3.11,

H(vn) → H(v0) and M(vn) →M(v0). (3.43)

Up to a subsequence, we have r(vn) → r0 ≥ 0. In particular, we see that r0 > 0,

otherwise

0 > M = lim
n→∞

J (vn) =

(
1

p
− 1

q

)
H(v0)r

q
0 +

(
1

s
− 1

p

)
M(v0)r

s
0 = 0,

which is impossible. Furthermore, we observe that v0 ̸= 0 because both H(v0) and

M(v0) cannot be 0 simultaneously. We claim that v0 ∈ Ω2. To do this, from (3.38)

and (3.43) we have

r̄(vn) =

(
M(vn)(p− s)

H(vn)(p− q)

)1/(q−s)

−→
(
M(v0)(p− s)

H(v0)(p− q)

)1/(q−s)

= r(v0)

and hence

G2(r̄(vn), vn) −→ G2(r̄(v0), v0).
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Then, we get

∥v0∥p ≤ lim inf
n→∞

∥vn∥p ≤ lim inf
n→∞

G2(r̄(vn), vn) = G2(r̄(v0), v0).

Suppose that v0 /∈ Ω2, that is,

∥v0∥p = G2(r̄(v0), v0).

Conversely,

∥v0∥p ≤ lim inf
n→∞

∥vn∥p = lim inf
n→∞

G2(r(vn), vn) = G2(r0, v0) (3.44)

and therefore G2(r̄(v0), v0) = ∥v0∥p ≤ G(r0, v0). Since by Lemma 3.18 r̄(v0) is the

global maximum of G2(., v0), it follows that r̄(v0) = r0. By (3.38) we can write

M(v0)r̄(v0)
s =

(
p− q

p− s

)
H(v0)r̄(v0)

q.

Thus,

M =

(
1

p
− 1

q

)
H(v0)r̄(v0)

q +

(
1

s
− 1

p

)
M(v0)r̄(v0)

s

=

(
q − p

pq

)
H(v0)r̄(v0)

q +

(
p− s

sp

)(
p− q

p− s

)
H(v0)r̄(v0)

q

=
H(v0)r̄(v0)

q

p

(
q − p

q
+
p− q

s

)
>0,

which is a contradiction and therefore v0 ∈ Ω2. Now, we assert that r0 = r(v0). To

begin, let µ = ∥v0∥−1. According to Lemma 3.19, it follows that µv0 ∈ Ω2 ∩ S1. Note

that

G2(µr(µv0), v0) =
1

µp
(r(µv0)

q−pH(µv0)− r(µv0)
s−pM(µv0))

=
1

µp
G2(r(µv0), µv0)

=
1

µp
∥µv0∥p

=∥v0∥p

=G2(r(v0), v0).

Then, given that r(v0) > r̄(v0) and µr(µv0) > r̄(µv0) = r̄(v0), by Lemma 3.19 we have

µr(µv0) = r(v0). (3.45)
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Furthermore, since r̄(vn) < r(vn), taking the limit we get r̄(v0) ≤ r0 and by (3.44) we

obtain

r̄(v0) ≤ r0 ≤ r(v0).

Suppose by contradiction that r0 < r(v0) and consider the function

σ(t) :=
∂

∂t
J(tv0) = tp−1(∥v0∥p −G2(t, v0)),

for t ∈ (r0, r(v0)). Note that σ(t) < 0, hence J(tv0) is decreasing on t and by (3.45)

M = lim inf
n→∞

J(r(vn)vn) ≥ J(r0v0) > J(r(v0)v0) = J(r(µv0)µv0) = J (µv0),

with µv0 ∈ Ω2 ∩ S1, which is impossible. Therefore, r0 = r(v0), consequently

1 = lim
n→∞

∥vn∥p = lim
n→∞

G2(r(vn), vn) = G2(r(v0), v0) = ∥v0∥p,

which implies that v0 ∈ Ω2 ∩ S1, and

M = lim
n→∞

J (vn) =

(
1

p
− 1

q

)
H(v0)r(v0)

q +

(
1

s
− 1

p

)
M(v0)r(v0)

s = J (v0).

Finally, by Lemma 3.13, r(v0)v0 is a nonnegative and nontrivial critical point if I in E

and this completes the proof.
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Appendix A

In this Appendix, we present some basic and very important properties of the

weighted Sobolev space D1,p
γ (RN

+ ).

A.1 Properties of the weighted Lebesgue space

The Lebesgue spaces play a central role in the Sobolev’s space theory and con-

sequently in the study of differential equations. This follows by the fact that some of

the main properties of Sobolev spaces, used in the study of this equations, derive from

the Lebesgue space theory.

First, let us recall your definition. Given p, q > 1 and γ ∈ R, we consider the

weighted Lebesgue space defined by

Lq(RN
+ , (1 + xN)

γ−p) :=

{
u : RN

+ → R measurable :

∫
RN
+

|u|q

(1 + xN)p−γ
dx <∞

}
,

(A.1)

equipped with the norm

∥u∥q,p,γ :=

(∫
RN
+

|u|q

(1 + xN)p−γ
dx

)1/q

. (A.2)

If p = q we denote

Lq(RN
+ , (1 + xN)

γ−p) = Lp
γ(RN

+ ) and ∥.∥q,p,γ = ∥.∥p,γ.

The proof of the next result is based on some ideas from [14, Theorem 4.8].

Proposition A.1 Let p, q > 1 and γ ∈ R. Then, the weighetd Lebesgue space Lq(RN
+ , (1+

xN)
γ−p) endowed with the norm ∥.∥q,p,γ is a Banach space.
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Proof. Let (un) ⊂ Lq(RN
+ , (1 + xN)

γ−p) be a Cauchy sequence and let (unk
) a subse-

quence such that

∥unk+1
− unk

∥q,p,γ ≤ 2−k.

Lets see that (unk
) converges in Lq(RN

+ , (1 + xN)
γ−p). We will denote unk

= uk. Now

consider the sequence (gn) defined by

gn =
n∑

k=1

|uk+1 − uk|.

Note that ∥gn∥q,p,γ ≤ 1 because

∥gn∥q,p,γ ≤
n∑

k=1

∥uk+1 − uk∥q,p,γ ≤
n∑

k=1

2−k ≤ 1.

Furthermore, we have g1 ≤ · · · ≤ gn ≤ · · · . Then,

|g1|q

(1 + xN)p−γ
≤ · · · ≤ |gn|q

(1 + xN)p−γ
≤ · · ·

and by Monotone convergence theorem there exists g ∈ Lq(RN
+ , (1 + xN)

γ−p) such that

gn(x) → g(x) a.e. in RN
+ . Now observe that

gm−1 = gn−1 + |un+1 − un|+ · · ·+ |um − um−1|.

Then

|um − un| ≤ |um − um−1|+ · · ·+ |un+1 − un| = gm−1 − gn−1 ≤ g − gn−1. (A.3)

It follow that (un(x)) is a Cauchy sequence and converges a.e. in RN
+ to a limit, say

u(x). Moreover, by (A.3), |u− un| ≤ g which implies that

|u− un|q

(1 + xn)p−γ
≤ |g|q

(1 + xN)p−γ
∈ L1(RN

+ ).

Therefore, by dominated convergence theorem, we conclude that un → u in Lq(RN
+ , (1+

xN)
γ−p) which complete the proof.

The proof of the next result is based on some ideas from [14, Theorem 4.10].

Proposition A.2 Let γ ∈ R and 1 < q, p < ∞. Then, the weighted Lebesgue space

Lq(RN
+ , (1 + xN)

γ−p) is reflexive.
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Proof. First, we recall that by the Millman-Pettis Theorem (see [14, Theorem 3.31])

every uniformly convex Banach space is reflexive. Then, to conclude the proposition it

is sufficient to prove that Lq(RN
+ , (1 + xN)

γ−p) is uniformly convex.

First we consider q ≥ 2. Let ε > 0 and u, v ∈ Lq(RN
+ , (1 + xN)

γ−p) such that

∥u∥q,p,γ, ∥v∥q,p,γ ≤ 1 and ∥u− v∥q,p,γ > ε. The first Clarkson inequality tells us that ,∥∥∥∥f + g

2

∥∥∥∥q
q

+

∥∥∥∥f − g

2

∥∥∥∥q
q

≤ 1

2
(∥f∥qq + ∥g∥qq), ∀f, g ∈ Lq(RN

+ ) and q ≥ 2. (A.4)

Taking f = u(1 + xN)
γ−p
q and g = v(1 + xN)

γ−p
q we have∥∥∥∥u+ v

2

∥∥∥∥q
q,p,γ

≤1

2
∥u∥qq,p,γ +

1

2
∥v∥qq,p,γ −

∥∥∥∥u− v

2

∥∥∥∥q
q,p,γ

≤1− 1

2q
∥u− v∥qq,p,γ

<1−
(ε
2

)q
,

that is ∥∥∥∥u+ v

2

∥∥∥∥
q,p,γ

<
(
1−

(ε
2

)q)1/q
.

Therefore, taking δ = 1−
(
1−

(
ε
2

)q)1/q we obtain∥∥∥∥u+ v

2

∥∥∥∥
q,p,γ

< 1− δ,

which concludes that Lq(RN
+ , (1+xN)

γ−p) is reflexive for q ≥ 2. For 1 < q ≤ 2, consider

the second Clarkson inequality, that is, for all f, g ∈ Lq(RN
+ ) and 1 < q ≤ 2 we have∥∥∥∥f + g

2

∥∥∥∥q′
q

+

∥∥∥∥f − g

2

∥∥∥∥q′
q

≤
(
1

2
∥f∥qq +

1

2
∥g∥qq

)1/(q−1)

, (A.5)

where 1/q + 1/q′ = 1. Applying this inequality for f = u(1 + xN)
γ−p
q and g = v(1 +

xN)
γ−p
q we obtain∥∥∥∥u+ v

2

∥∥∥∥q′
q,p,γ

≤
(
1

2
∥u∥qq,p,γ +

1

2
∥v∥qq,p,γ

)1/(q−1)

−
∥∥∥∥u− v

2

∥∥∥∥q′
q,p,γ

≤1− 1

2q′
∥u− v∥q′q,p,γ

<1−
(ε
2

)q′
,

thus ∥∥∥∥u+ v

2

∥∥∥∥
q,p,γ

<

(
1−

(ε
2

)q′)1/q′

.
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Taking δ = 1−
(
1−

(
ε
2

)q′)1/q′ we obtain∥∥∥∥u+ v

2

∥∥∥∥
q,p,γ

< 1− δ.

Therefore, Lq(RN
+ , (1 + xN)

γ−p) is uniformly convex and we conclude that Lq(RN
+ , (1 +

xN)
γ−p) is reflexive for 1 < q ≤ 2 and we finish the proof.

We remark that the Clarkson inequalities, (A.4) and (A.5) can be found in [33]

in the itens 15.7 and 15.8.

Proposition A.3 (Interpolation inequality) If u ∈ Lr(RN
+ , (1+xN)

γ−p)∩Ls(RN
+ , (1+

xN)
γ−p) with 1 ≤ r < s <∞, then u ∈ Lq(RN

+ , (1+ xN)
γ−p) for all, r ≤ q ≤ s, and the

following interpolation inequality holds:∫
RN
+

|u|q

(1 + xN)p−γ
dx ≤

(∫
RN
+

|u|r

(1 + xN)p−γ
dx

)1−α(∫
RN
+

|u|s

(1 + xN)p−γ
dx

)α

, (A.6)

where q = (1− α)r + αs, with α ∈ [0, 1].

Proof. Since 1 = α + (1− α) and q = (1− α)r + αs, we apply the Hölder inequality

and obtain∫
RN
+

|u|q

(1 + xN)p−γ
dx =

∫
RN
+

|u|(1−α)r

(1 + xN)(p−γ)(1−α)

|u|αs

(1 + xN)(p−γ)α
dx

≤

(∫
RN
+

|u|r

(1 + xN)p−γ
dx

)1−α(∫
RN
+

|u|s

(1 + xN)p−γ
dx

)α

.

A.2 Properties of the weighted Sobolev space

In this section, we shall prove some properties of the weighted Sobolev space

D1,p
γ (RN

+ ) that have been used throughout the thesis. The proof of the main properties

are based on the ideas from the classical theory of Sobolev spaces.

Theorem A.4 D1,p
γ (RN

+ ) is a Banach space.

Proof. Let (un) ⊂ D1,p
γ (RN

+ ) be a Cauchy sequence. In particular, (un) and ((1 +

xN)∇un) are Cauchy sequences in Lp
γ(RN

+ ) and Lp
γ(RN

+ )
N , respectively. Since they are

Banach spaces there exist u ∈ Lp
γ(RN

+ ) and ω ∈ Lp
γ(RN

+ )
N such that

un → u in Lp
γ(RN

+ ) and (1 + xN)∇un → ω in Lp
γ(RN

+ )
N .
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Now we claim that ∇u = η where η = ω/(1 + xN). In fact, if η = (η1, · · · , ηN) and

φ ∈ C∞
0 (RN

+ ), by Hölder inequality we have∣∣∣∣∣
∫
RN
+

(uφxi
− unφxi

) dx

∣∣∣∣∣ ≤
∫
RN
+

|u− un||φxi
| dx

=

∫
RN
+

|u− un|
(1 + xN)

p−γ
p

|φxi
|(1 + xN)

p−γ
p dx

≤

(∫
RN
+

|u− un|p

(1 + xN)p−γ
dx

)1/p(∫
RN
+

(1 + xN)
p−γ
p−1 |φxi

|
p

p−1 dx

) p−1
p

,

which implies ∫
RN
+

unφxi
dx −→

∫
RN
+

uφxi
dx, ∀φ ∈ C∞

0 (RN
+ ). (A.7)

On the other hand,∣∣∣∣∣
∫
RN
+

ηiφ− (um)xi
φ dx

∣∣∣∣∣ ≤
∫
RN
+

|ηi − (um)xi
||φ| dx

≤

(∫
RN
+

|ηi − (um)xi
|p(1 + xN)

γ dx

)1/p

∥φ∥ p
p−1
.

Since (1 + xN)∇um → ω in Lq(RN
+ , (1 + xN)

γ−p)N we get∫
RN
+

|ηi − (um)xi
|p(1 + xN)

γ dx =

∫
RN
+

(1 + xN)
γ

∣∣∣∣ ωi

(1 + xN)
− (um)xi

∣∣∣∣p dx

=

∫
RN
+

∣∣(1 + xN)
γ/p−1ωi − (1 + xN)

γ/p(um)xi

∣∣p dx

=

∫
RN
+

|(1 + xN)
γ−p
p ωi − (1 + xN)(um)xi

(1 + xN)
γ−p
p |p dx

=

∫
RN
+

|ωi − (1 + xN)(um)xi
|p

(1 + xN)p−γ
dx

−→0.

Thus, we have ∫
RN
+

(um)xi
φ dx→

∫
RN
+

ηiφ dx, ∀φ ∈ C∞
0 (RN

+ ). (A.8)

Therefore, by (A.7) and (A.8) we obtain∫
RN
+

uφ dx = lim
n→∞

∫
RN
+

umφ dx = − lim
n→∞

(um)xi
φ dx = −

∫
RN
+

ηiφ dx,

which implies that ∇u = η. Since D1,p
γ (RN

+ ) is closed, u ∈ D1,p
γ (RN

+ ) and hence

D1,p
γ (RN

+ )is a Banach space.
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Theorem A.5 The space D1,p
γ (RN

+ ) is reflexive.

Proof. c Consider the operator T : D1,p
γ (RN

+ ) → Lp
γ(RN

+ ) × Lp
γ(RN

+ )
N defined by

T (u) = (u, (1 + xN)∇u), where in Lp
γ(RN

+ )× Lp
γ(RN

+ )
N we consider the norm

∥(u, ω)∥p = ∥u∥pq,p,γ + ∥ω∥pq,p,γ.

It is clear that T is an isometry. Since D1,p
γ (RN

+ ) is a Banach space and, by Theorem

A.2, Lq(RN
+ , (1+xN)

γ−p) is reflexive, it follows that T (D1,p
γ (RN

+ )) is a closed subspace of

a reflexive space. Therefore, T (D1,p
γ (RN

+ )) is reflexive and hence D1,p
γ (RN

+ ) is reflexive.
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