
Instrument Recognition in Full-Length Polyphonic Songs: An
Approach Using Foundational Models

Humberto Navarro de Carvalho1,
Yuri de Almeida Malheiros Barbosa1,

Thaı́s Gaudêncio do Rêgo1

1Centro de Informática – Universidade Federal da Paraı́ba (UFPB)

humbertonavarroc@gmail.com, yuri@ci.ufpb.br, gaudenciothais@gmail.com

Resumo. A identificação de instrumentos musicais em músicas polifônicas é
uma tarefa crucial no campo da Recuperação de Informação Musical (MIR),
com impactos na catalogação, indexação e análise de música. Tradicional-
mente, a pesquisa sobre identificação de instrumentos é tipicamente limitada
à classificação de pequenos trechos de sons individuais ou mixes. No entanto,
muitas aplicações práticas requerem a detecção de instrumentos em músicas po-
lifônicas completas. Neste artigo, propomos um método para identificar instru-
mentos musicais em tais músicas, utilizando modelos fundacionais. Primeiro,
extraı́mos as caracterı́sticas das instâncias do conjunto de dados OpenMIC us-
ando modelos de áudio fundacionais. Em seguida, treinamos um perceptron
multicamadas para identificação de instrumentos em trechos de áudio. Por
último, aplicamos diferentes métodos de agregação para obter predições de in-
strumentos em músicas inteiras. Para testar o modelo, realizamos testes tanto
no nı́vel de trechos de áudio, utilizando a divisão de teste do conjunto de da-
dos OpenMIC, quanto no nı́vel de músicas, usando uma versão modificada do
conjunto de dados MoisesDB. Como as classes eram diferentes em ambos os
conjuntos de dados, foi criado um mapeamento para converter previsões do
modelo para nove classes de instrumentos. O modelo alcançou uma pontuação
F1 média macro de 0,806 para as 20 classes nos trechos e 0,772 nas músicas
de longa duração para 9 classes. Em cinco instrumentos chave (voz, guitarra,
baixo, bateria e piano), o modelo teve uma pontuação F1 de 0,91 e 0,914 nos
nı́veis de trecho e de música, respectivamente. Ao integrar uma variedade de
técnicas de agregação, nosso método oferece um avanço sobre os modelos tradi-
cionais que estão principalmente limitados à análise de segmentos curtos de
áudio, demonstrando a aplicabilidade prática do modelo em cenários do mundo
real.

Palavras-chave: Identificação de Instrumentos, Recuperação de Informação
Musical, Modelos Fundacionais, Classificação Musical, Aprendizado de
Máquina.

C331i Carvalho, Humberto Navarro de.
 Instrument recognition in full-Length polyphonic
 songs: an approach using foundational models / Humberto
 Navarro de Carvalho. - João Pessoa, 2024.
 15 f. : il.

 Orientação: Yuri Barbosa.
 Coorientação: Thaís Rêgo.
 TCC (Graduação) - UFPB/CI.

 1. Identificação de instrumentos. 2. Recuperação de
 informação musical. 3. Modelos fundacionais. 4.
 Classificação musical. 5. Aprendizado de máquina. I.
 Barbosa, Yuri. II. Rêgo, Thaís. III. Título.

UFPB/CI CDU 004.8

Catalogação na publicação
Seção de Catalogação e Classificação

Elaborado por Michelle de Kássia Fonseca Barbosa - CRB-738

Abstract. Identifying musical instruments in polyphonic music is a crucial task
in the field of Music Information Retrieval (MIR), with impacts on music cat-
aloging, indexing, and analysis. Traditionally, research on instrument identi-
fication is typically limited to the classification of short snippets of individual
sounds or mixes. However, many practical applications require the detection
of instruments in full-length, polyphonic songs. In this paper, we propose a
method for identifying musical instruments on entire polyphonic songs, by us-
ing foundational models. First, we extract the features of the instances in the
OpenMIC dataset using foundational audio models. Then, we train a multilayer
perceptron for instrument identification on snippets. Last, we apply different
aggregation methods to obtain song-level instrument predictions. To test the
model, we conducted both snippet-level tests, using the test split from the Open-
MIC dataset, and song-level tests, using a modified version of the MoisesDB
dataset. Since the classes were different on both datasets, a mapping was cre-
ated to convert predictions from the model to nine instrument classes. The model
achieved a macro-averaged F1 Score of 0.806 for the 20 classes on the snippets
and 0.772 on full-length songs for 9 classes. On the five key instruments (voice,
guitar, bass, drums and piano), the model had an F1 Score of 0.91 and 0.914
on the snippet and song level, respectively. By integrating a range of aggre-
gation techniques, our method offers an advancement over traditional models
that are primarily limited to analyzing short audio segments, demonstrating the
practical applicability of the model in real-world scenarios.

Keywords: Instrument Recognition, Music Information Retrieval, Foundational
Models, Music Classification, Machine Learning.

1. Introduction
Instrument recognition in music is a critical area within Music Information Retrieval
(MIR) with applications in music cataloging, indexing, automated music analysis, and
dataset tagging. Accurately identifying instruments in full-length polyphonic songs can
significantly improve these systems, aiding tasks such as music recommendation, playlist
curation, and interactive learning tools for musicians and producers. However, existing re-
search predominantly focuses on the classification of small polyphonic snippets of songs
or on monophonic snippets [1–15]. This narrow focus on short snippets often fails to ac-
count for the temporal continuity and the complex interactions within complete songs. In
the real world, the full-length, polyphonic nature presents a more nuanced challenge for
accurate instrument recognition, which most current research fails to consider. Therefore,
this paper has two main contributions:

(i) Training a multilayer perceptron (MLP) to predict instruments in 10-second
snippets using embeddings from foundational audio models. (ii) Extending these tech-
niques to handle full-length songs by applying various aggregation methods to consolidate
snippet-level predictions into comprehensive song-level classifications.

In addition to our main objective, we explore secondary research questions con-
cerning the effectiveness of specific aggregation methods for different instruments.

The MLP was trained and tested on the OpenMIC-2018 dataset [16], and the

model’s capability of translating these results to full-length songs was evaluated on a
modified version of the MoisesDB dataset [17], comprising entire songs with annotated
instrument presence.

Our evaluation on the MoisesDB dataset included nine different instrument
classes, providing a broad perspective on the model’s performance. For a more detailed
analysis, we also evaluate the model’s performance on just five key instruments: voice,
guitar, bass, drums, and piano. These instruments were chosen for their prominence in
contemporary popular music, and due to their essential roles in shaping a song’s structure
and feel. The human voice carries melody, emotion, and lyrics; the guitar and piano es-
tablish the harmonic foundation and define chord progressions; the bass adds depth and
rhythm, complementing the drums, which drive tempo and dynamics.

Our research focuses on addressing the gap in instrument recognition for com-
plete polyphonic songs, extending the applicability of snippet-based models to real-world
scenarios.

2. Related Works

As mentioned in the Introduction, current research in music instrument recognition pri-
marily emphasizes three distinct areas: monophonic recognition on short snippets, iden-
tifying the predominant instrument in snippets, and polyphonic recognition on short au-
dio fragments. For instance, studies on monophonic recognition focus on distinguishing
isolated instrument sounds, which simplifies the audio analysis but limits applicability
to real-world music scenarios where multiple instruments interact [1–3]. In contrast,
research on predominant instrument recognition seeks to identify the main instrument
in polyphonic audio mixes [10–12], yet often misses secondary instruments that con-
tribute to the music’s texture. Polyphonic recognition, while advancing the state of multi-
instrument analysis, typically confines itself to brief audio clips [4–9, 13–15], thereby
lacking the broader context of entire compositions. These approaches do not align with
our focus on full-length polyphonic songs.

Some studies [9, 13–15, 18] use the OpenMIC dataset and similar metrics to ours
on snippet-based recognition, allowing for performance comparison for the first half of
our work.

Closer to our approach, some works evaluate instrument prediction on full-length
songs [19–21]. However, these studies differ from ours due to them utilizing a single
model for recognition, and smaller time resolutions. [19, 20] also use a fixed threshold of
0.5 for binary predictions and a single aggregation method for predictions in full-length
songs. In contrast, we use a foundational model with a classification head to obtain pre-
dictions, five different aggregation methods and calculate unique thresholds for each in-
strument.

3. Methodology

This section outlines the datasets used, the methodology for training the MLP, the pro-
cess for aggregating model predictions from 10-second clips to full-song predictions, the
method for obtaining thresholds to convert probabilities into binary predictions, and fi-
nally, the complete pipeline for predicting instrument presence in full-length songs.

3.1. OpenMIC Dataset
The OpenMIC dataset comprises 20,000 10-second audio clips annotated with the pres-
ence of 20 different instrument classes. This dataset is ideal for our model training be-
cause of its large number of instruments and due to its snippet size ensuring the presence
of instruments throughout the entire clip – a feature not guaranteed in full songs. We used
the OpenMIC’s official train/test partition and dedicated 10% of the train data for valida-
tion, resulting in 13,424 clips for training, 1,491 for validation, and 5,085 for testing.

Annotations in the OpenMIC dataset are sourced from crowd-sourcing platforms,
where annotators assign the presence or absence of an instrument in a snippet, and the
dataset indicates the fraction of annotators who confirmed the presence of an instrument
for that snippet. For binary classification purposes, we applied a threshold of 0.5, con-
verting relevance scores to binary labels.

3.2. MoisesDB
For evaluating the methodology of identifying instruments on full-length songs, we uti-
lized a modified version of the MoisesDB dataset. The original dataset contains 240 full-
length polyphonic songs, annotated for 75 different instruments, making it highly suitable
for our experiments.

The MoisesDB dataset does not have the same instrument annotations as the
OpenMIC dataset used to train our MLP model. Therefore, we created a mapping to
convert the predictions from the 20 OpenMIC classes and the 75 MoisesDB classes to 9
unified instrument classes. This mapping was based on the parent class of each instrument
in MoisesDB, and the 9 unified classes were chosen to align with our desired use cases.
Table 1 shows the result of this mapping.

By consolidating diverse instruments into broader categories such as ”Wind” and
”Others,” we risk losing important nuances that differentiate the individual instruments.
Distinctive timbral characteristics may be overlooked, affecting the model’s ability to
accurately classify instruments within these broad categories.

Table 1. Mapping for instrument conversion between datasets.
Proposed Classes OpenMIC Classes
Bass Bass
Drums Cymbals, Drums
Guitar Guitar
Voice Voice
Piano Piano
Keys Organ, Synthesizer
Wind Trombone, Trumpet, Saxophone, Clarinet, Flute
Strings Violin, Cello
Others Banjo, Ukulele, Mandolin, Accordion, Mallet Percussion

Our goal was to accurately validate how well each instrument was detected. Using
the original MoisesDB dataset, where over 94% of the songs contain bass, guitar, drums,
and vocals, would not provide sufficient insight into the model’s performance in the ab-
sence of these instruments, since identifying false positives is crucial for determining the
model’s real-world applicability.

To address this, we utilized MoisesDB’s isolated stems to remove instruments
from specific songs, ensuring a sufficient number of false cases for each class. This
method enabled us to accurately evaluate the model’s ability to detect each instrument.
Table 2 shows the number of occurrences for each class in the modified dataset.

Table 2. Number of occurrences of each class in the 240 songs of the modified
dataset.

Classes Drums Bass Guitar Voice Piano Keys Others Strings Winds
of occurr. 161 120 120 120 110 103 101 43 22

3.3. Embedding Models and Temporal Support

To generate audio embeddings, in order to train the MLP, we employed three open-source
foundational models and compared the effectiveness of using them to train our neural
network:

• MusicFM [22], a foundational model that uses random tokenization and self-
supervised learning to create robust audio embeddings, tailored to various down-
stream MIR tasks, by capturing both token-level details and sequence-level pat-
terns;

• PaSST [23], a transformer model that applies the patchout technique to selec-
tively omit portions of audio spectrogram inputs during training, thereby reducing
computational demands and improving the model’s ability to generate robust em-
beddings for downstream tasks;

• BEATs [24], an audio pre-training model that employs an iterative framework
with acoustic tokenizers to extract semantic-rich embeddings, improving perfor-
mance across diverse audio classification tasks by prioritizing high-level semantic
abstraction over low-level feature reconstruction.

Previous research [18] has shown that subdividing audio into smaller segments
(called the Temporal Support - TS) before embedding can improve the performance of
downstream tasks, such as instrument recognition. Inspired by these results, we experi-
mented TS ∈ {1, 2, 3, 5, 10} seconds, TS being the duration of audio input considered
to extract an embedding. Each 10-second audio snippet is then divided into T fragments,
where T = 10/TS, i.e., for TS = 5 we have two fragments. Each fragment is subse-
quently embedded using the foundational models, resulting in the two embedded frag-
ments {x1,x2}. In another case, if TS = 2, for example, we would have five embedded
fragments as a result {x1,x2,x3,x4,x5}. For TS = 3, the last second is discarded, using
only the first 9 seconds of the snippet.

3.4. Multilayer Perceptron Training

Given that our input consists of polyphonic songs with multiple instrument classes, we
framed the problem as multi-label classification. To achieve our goal of predicting in-
struments from audio embeddings, we designed our MLP as follows: an input layer with
E neurons, where E is the embedding size, different for every foundational model, with
ReLU activation function. A hidden layer with 256 neurons with ReLU activation. Last,
an output layer with C neurons, where C is the number of classes, with sigmoid activation
function. These configurations were chosen based on empirical experiments. A simple

neural network was chosen as a classifier because the foundational models (more complex
architectures) already extract the audio representations that a simpler model can classify.

We train the MLP using snippets from the OpenMIC dataset. For each snippet,
only a sub-set of all instrument classes were annotated. To deal with the issue of these
partial annotations, we applied two different training methods for the MLP, to determine
which approach would yield better results.

The first method, which we called Partial Loss training, consisted in adapting the
loss formulation proposed in section 3.1 of [25]. This approach aims to only take it into
account known labels while calculating the loss, with the goal of excluding unknown
labels in each instance from the training process.

In terms of notation, we denote by C the number of instruments and
N the number of training audio snippets. We denote the training data by
D = {(I(1),y(1)), . . . , (I(N),y(N))}, where I(i) is the i-th audio snippet, y(i) =

[y
(i)
1 , . . . , y

(i)
C] ∈ Y ⊆ {−1, 0, 1}C is the label vector, and y = [y(1), . . . , y(N)] ∈

{−1, 0, 1}N×C is the label matrix for the training set. For the i-th audio snippet and
c-th instrument, y(i)C = 1 means the instrument is present with certainty, and y

(i)
C = −1

and y
(i)
C = 0 mean the instrument is absent with certainty or its presence is unknown,

respectively. Finally, f denotes our MLP model and s̄(i) = [s̄
(i)
1 , . . . , s̄

(i)
C] ∈ RC is

the average of the logits of the model across all T fragments of audio snippet I(i), i.e.,
s̄
(i)
c = 1

T

∑T
t=1 fc(xt), where fc(xt) is the c-th logit of model f for the t-th audio fragment.

The partial-BCE loss is then given by Equation (1).

L(̄s,y) = g(py)

C

C∑
c=1

[
1[yc=1] log

(
1

1 + exp(−s̄c)

)

+ 1[yc=−1] log

(
exp(−s̄c)

1 + exp(−s̄c)

)]
,

(1)

where py ∈ [0, 1] is the proportion of known labels and g(py) = αpγy + β is a normal-
ization function with hyperparameters α, β and γ. For our experiments we used the same
hyperparameters values as in [25], i.e., α = −4.45, β = 5.45, and γ = −1.

We also employed a different approach for training for the model, which we called
Yes and No Training. Each instrument was given two classes, Yes-Instrument and No-
Instrument, and the truth for each class was the definitive presence (in the Yes-Instrument
class) or the definitive absence (in the No-Instrument class), and the false values were
when we did not have information for that instrument. After making a ground truth value
according to this, the training was conducted using Binary Cross Entropy (BCE) as the
loss function, with twice as many classes as the previous method. Since the goal of the
project is to correctly identify instruments, only the Yes-Instrument classes were taken
into consideration for testing, and only for the instruments which we had full information
in the ground truth.

After conducting empirical tests with batch sizes of 8, 16, 32, 64, and 128, as
well as learning rates of 10−2, 5× 10−3, 10−3, 5× 10−4 and 10−4, we selected the Adam

optimizer with a learning rate of 10−3 and a batch size of 128. This configuration yielded
the best results, and we utilized early stopping with a patience of 3 epochs since the
validation loss did not decrease after this point.

In total, we trained 30 models (three embedding models across five temporal sup-
ports, with two different training methods each) and evaluated their performance. Each
configuration was trained five times, and their average performance on the test dataset
was recorded. We also experimented with eight other Multilayer Perceptron configura-
tions (adding one or two layers, removing a layer, decreasing the number of neurons,
increasing number of neurons, using dropout, using batch normalization and changing
the activation function), but the difference in results was not significant, so the original
network was chosen for complete testing and for the aggregation methods.

On Figure 1, we observe that the training process was efficient, with the optimal
validation loss achieved after just 5 epochs. Notably, the validation loss stabilized close
to its best value after the first epoch, indicating a rapid convergence in the MLP’s training
process. This rapid convergence allowed us to conduct numerous experiments efficiently.

Figure 1. Graph of training and validation loss over epochs.

3.5. Aggregation

To extend our model’s instrument detection capabilities from 10-second snippets to full-
length songs, we employed different aggregation strategies. Each song was divided into
continuous, non-overlapping 10-second snippets, and predictions were made for each
snippet. The following aggregation methods were tested for each instrument class:

1. Average: Calculates the mean probability of detecting an instrument across all
snippets. This approach allows for evaluating the instrument’s presence through-
out the entire song.

2. Max: Focuses on the highest probability detected among the snippets. This
method is particularly effective for highlighting instruments that may only be
played briefly within the song.

3. Harmonic Mean: Computes the harmonic mean of probabilities from all snip-
pets. This method also averages probabilities but prioritizes consistency, giving
more weight to uniformly strong probabilities throughout the song.

4. Top 3 Average: Considers the average of the three highest probabilities, ensuring
multiple snippet evaluations while emphasizing the most significant parts of the
song where the instrument is present.

5. Third Highest: Selects the third-highest probability value. It serves a similar
purpose to the Max method but reduces the potential distortion from outliers, pro-
viding a more balanced view.

These strategies aimed to find the most effective method for each instrument, en-
hancing the overall prediction accuracy.

3.6. Thresholding

To convert probability outputs into binary predictions of instrument presence, we de-
termined optimal, unique threshold values for each instrument. Various strategies were
explored, including fixed thresholds set at values like 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, and
0.5, as well as dynamic thresholds calculated using Precision-Recall and ROC curves.

Ultimately, the method using Precision-Recall Curves was selected as it produced
the highest F1 Score, effectively balancing precision and recall in binary predictions.
These thresholds were subsequently applied to the aggregated probabilities to produce
final binary predictions for each song.

3.7. Full-Length Song Instrument Prediction

The complete process for obtaining instrument predictions from full-length songs is illus-
trated in Figure 2.

In summary, the song is divided into continuous, non-overlapping 10-second snip-
pets, which are passed into the BEATs models to be converted into embeddings. Then,
the MLP model generates predictions for each snippet based on the 20 instrument classes.
Predictions for each snippet are then aggregated using multiple methods. To convert pre-
dictions from the 20 MLP classes to the 9 new classes, we selected the highest probability
value within each group as the value for the corresponding new class, for every prediction
made. Finally, the probabilities for the 9 classes are converted into binary predictions
using the previously calculated thresholds.

Figure 2. Diagram of pipeline from full-length songs to instrument predictions.

4. Results and Discussion
This section evaluates the model’s performance on both 10-second snippets and full-
length songs, employing different metrics for specific purposes. We use Mean Average

Precision (mAP) to assess the effectiveness of the model’s probability outputs for instru-
ment detection, providing insight into its performance before thresholding. For binary
classification assessment after thresholding, we utilize F1 Score, Precision, and Recall.
Additionally, we compare our results to those of previous studies.

4.1. Training Methods Results

Upon evaluating the Partial Loss Training and Yes and No Training methods across var-
ious Temporal Support (TS) values, we observed that Partial Loss consistently outper-
formed Yes and No Training for the PaSST and BEATs models (see Figure 3). Notably,
while MusicFM showed better results with Yes and No Training in certain cases, it still
underperformed compared to the other two models overall. Based on these findings, we
selected Partial Loss Training for subsequent experiments.

Figure 3. Comparison of Mean Average Precision values for the two Loss Meth-
ods, using different Embedding Models and Temporal Supports.

4.2. Results on 10 second snippets

To validate the MLP’s capability to detect instruments on 10-second snippets with various
TS, we compared our macro-averaged mean average precision (mAP) values for all TS
and embedding models with the ones reported on [18], since they also utilize TS and
embeddings from foundational models to train their model for classification on OpenMIC.
Table 3 demonstrates that our work was able to reproduce their results, confirming the
validity of our training pipeline. After analyzing these results, we selected the BEATs
model with a TS value of 10 seconds for subsequent steps.

Using this model, we evaluated its performance on the OpenMIC test split by com-
puting thresholds for each instrument from the Precision-Recall curve on the validation
set and applying these thresholds to the test set predictions. We evaluated the model’s
performance both on the 20 classes from the dataset, and on the 5 key instruments we se-
lected for our analysis (voice, guitar, bass, drums and piano), due to their overwhelming

Table 3. Comparison of mAP results between our work and [18].
TS EM This Paper [18]

1s
MusicFM 0.767

PaSST 0.847 0.851
BEATs 0.852 0.852

3s
MusicFM 0.779

PaSST 0.86 0.866
BEATs 0.863 0.862

5s
MusicFM 0.782

PaSST 0.864 0.866
BEATs 0.866 0.869

10s
MusicFM 0.779

PaSST 0.861 0.861
BEATs 0.866 0.866

presence on popular music, and their importance in the structure of a song. The results
are shown in Table 4.

Table 4. Macro-averaged results for the model on the 20 instruments of the test
set, and on the 5 key instruments.

Instruments F1 Score Precision Recall
All 20 0.806 0.773 0.858

5 Key Instruments 0.91 0.892 0.932

On the OpenMIC test set, [9] achieved an mAP of 0.853, while [13], [14], and [15]
reported macro-averaged F1 Scores of 0.81, 0.837, and 0.811, respectively. Although
our snippet-level predictions did not surpass the state-of-the-art, our results are closely
competitive, suggesting minimal impact on the model’s predictions for full-length songs.

4.3. Aggregation Results
With the model’s capabilities of detecting instruments on polyphonic songs in 10 seconds
snippets verified, we now evaluate how different aggregation methods translate these re-
sults to full-length songs. This test was conducted on 80% of the modified MoisesDB
dataset, comprising 192 polyphonic songs with 9 classes. The remaining 20% of the
dataset is reserved for calculating thresholds specific to each class.

We present the mAP results for each of the five aggregation methods. Addition-
ally, for each instrument class, we identified the best-performing aggregation method,
which is the one that achieved the highest mAP on the 20% of the dataset reserved for
validation (see Table 5). The mAP metric was chosen to determine the best aggregation
method because it does not require binary classification thresholds, which are not avail-
able for the validation set used to calculate these thresholds.

Using threshold values derived from the Precision-Recall Curve of 20% of the
modified MoisesDB dataset, we further evaluated the model’s binary prediction perfor-
mance for the presence of instruments in full-length songs, our primary goal. We com-
pared how different aggregation methods translated these into binary predictions. These

Table 5. mAP results for the different Aggregation Methods (BMfeC stands for
Best Method for each Class)

Aggregation Method mAP Results
Average 0.791

Max 0.829
Harmonic 0.705

Top 3 Average 0.821
Third Highest 0.81

BMfeC 0.829

tests were also conducted on 80% of the modified MoisesDB dataset. The results are
shown in Table 6.

Table 6. Macro-averaged results for the model on the 9 instrument classes, and
on the Top 5 instruments

Classes Method F1 Score Precision Recall

All 9

Average 0.77 0.764 0.796
Max 0.758 0.859 0.73

Harmonic 0.65 0.672 0.743
Top 3 Avg 0.772 0.812 0.783

3rd Highest 0.755 0.767 0.796
BMfeC 0.757 0.845 0.735

5 Key Instruments

Average 0.888 0.902 0.877
Max 0.914 0.924 0.905

Harmonic 0.792 0.721 0.887
Top 3 Avg 0.914 0.916 0.916

3rd Highest 0.889 0.871 0.915
BMfeC 0.913 0.924 0.904

On Figure 4, we present the F1 Scores for the top three aggregation methods
across individual instruments. The analysis of aggregation methods revealed that Top 3
Averages and Max were the most effective, highlighting the importance of focusing on
high-confidence snippets for accurate instrument detection.

We can also observe that the five key instruments — voice, guitar, bass, drums,
and piano — exhibited high F1 Scores, indicating that the model is particularly adept at
recognizing these prominently featured instruments in popular music. This success can
be attributed to their frequent presence in training data and distinct auditory signatures.
However, as previously discussed, by consolidating diverse instruments into broader cat-
egories such as ”Wind” and ”Others,” the model risks missing important nuances that
differentiate individual instruments. This generalization is reflected in the less satisfac-
tory results observed for these categories.

We are unable to directly compare our results with those outlined in [19–21], as
their research was evaluated on different datasets, with differing instrument classes from
ours.

Figure 4. Comparison of Aggregation Methods by Instrument, by F1 Score.

5. Conclusion

In this paper, we developed and evaluated a method for detecting instruments in full-
length polyphonic songs. We trained a MLP model to effectively predict instruments in
10-second snippets. We then translated these predictions to full-length songs by utilizing
several aggregation methods and calculated thresholds. The model achieved a macro-
averaged F1 Score of 0.772 for the nine proposed classes and 0.914 for the top five key
instruments using the Top 3 Averages method.

The performance on full-length songs closely matched the results observed for
10-second snippets, with a small increase in performance for the 5 Key Instruments (from
a F1 Score of 0.91 on the snippet-level to 0.914 on the song level), demonstrating that
our approach effectively scales from snippets to full songs, highlighting its applicability
in real-world scenarios.

Different aggregation methods produced varying results across instruments, with
distinct methods proving most effective for different instruments. Notably, the Top 3
Averages and Max strategies emerged as the most effective overall. This highlights the
benefits of using multiple aggregation methods together.

The developed methods offer substantial opportunities to improve music analysis
systems. They can improve recommendation engines and automatic music categorization
by providing detailed instrumentation data, allowing for personalized song suggestions
and more precise classification. Additionally, by automating dataset tagging with instru-
mental information, these methods can support various MIR tasks such as genre classi-
fication, mood detection, and music similarity analysis, thereby increasing the value and
utility of datasets for research and model development.

Our analysis showed that instruments with greater dataset representation yielded
better results than those that were less represented. To improve overall performance,
future work should focus on increasing the training data for underrepresented instruments,
achievable through data augmentation techniques or by sourcing new songs to create a

more balanced dataset.

Additionally, using a wider selection of instruments for training and testing could
address problems linked to broad classes like ”Wind” and ”Others.” Implementing a hi-
erarchical classification method may offer improvements in managing the complexity of
these categories. Finally, conducting experiments that incorporate music genre informa-
tion can assess the model’s performance across different styles, highlighting specific areas
for improvement.

References
[1] Andrew Wise, Anthony S. Maida, and Ashok Kumar. Attention augmented cnns for musi-

cal instrument identification. In 2021 29th European Signal Processing Conference
(EUSIPCO), pages 376–380, 2021.

[2] Arindam Dutta, Dibakar Sil, Aniruddha Chandra, and Sarbani Palit. Cnn based musical
instrument identification using time-frequency localized features. Internet Technol-
ogy Letters, 5(1):e191, 2022.

[3] Debdutta Chatterjee, Arindam Dutta, Dibakar Sil, and Aniruddha Chandra. Deep sin-
gle shot musical instrument identification using scalograms. In 2023 International
Conference on Artificial Intelligence in Information and Communication (ICAIIC),
pages 386–389, 2023.

[4] Dhananjay Mukhedkar. Polyphonic music instrument detection on weakly labelled data
using sequence learning models. Master’s thesis, KTH, School of Electrical Engi-
neering and Computer Science (EECS), 2020.

[5] Maciej Blaszke and Bozena Kostek. Musical instrument identification using deep learning
approach. Sensors, 22:3033, 04 2022.

[6] Maciej Blaszke, Gražina Korvel, and Bożena Kostek. Exploring neural networks for
musical instrument identification in polyphonic audio. IEEE Intelligent Systems,
pages 1–11, 2024.

[7] Lekshmi Chandrika Reghunath and Rajeev Rajan. Transformer-based ensemble method
for multiple predominant instruments recognition in polyphonic music. EURASIP
Journal on Audio, Speech, and Music Processing, 2022(1), 2022.

[8] Sally M Elghamrawy and Shehab Edin Ibrahim. Audio signal processing and musical in-
strument detection using deep learning techniques. In 2021 9th International Japan-
Africa Conference on Electronics, Communications, and Computations (JAC-ECC),
pages 146–149. IEEE, 2021.

[9] Dading Chong, Helin Wang, Peilin Zhou, and Qingcheng Zeng. Masked spectrogram
prediction for self-supervised audio pre-training. In ICASSP 2023-2023 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
1–5. IEEE, 2023.

[10] Arun Solanki and Sachin Pandey. Music instrument recognition using deep convolutional
neural networks. International Journal of Information Technology, 14(3):1659–
1668, 2022.

[11] C. R. Lekshmi and Rajeev Rajan. Predominant instrument recognition in polyphonic mu-
sic using convolutional recurrent neural networks. In Mitsuko Aramaki, Keiji Hirata,
Tetsuro Kitahara, Richard Kronland-Martinet, and Sølvi Ystad, editors, Music in the
AI Era, pages 214–227, Cham, 2023. Springer International Publishing.

[12] Dong Yu, Huiping Duan, Jun Fang, and Bing Zeng. Predominant instrument recognition
based on deep neural network with auxiliary classification. IEEE/ACM Transactions
on Audio, Speech, and Language Processing, 28:852–861, 2020.

[13] Siddharth Gururani, Mohit Sharma, and Alexander Lerch. An attention mechanism for
musical instrument recognition. arXiv preprint arXiv:1907.04294, 2019.

[14] Zhi Zhong, Masato Hirano, Kazuki Shimada, Kazuya Tateishi, Shusuke Takahashi, and
Yuki Mitsufuji. An attention-based approach to hierarchical multi-label music in-
strument classification. In ICASSP 2023 - 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1–5, 2023.

[15] Yuxian Mo, Jian Hu, Chaonan Bao, and Dawei Xiong. A novel deep learning-based
multi-instrument recognition method for polyphonic music. In 2023 3rd Inter-
national Symposium on Computer Technology and Information Science (ISCTIS),
pages 1069–1073, 2023.

[16] Eric Humphrey, Simon Durand, and Brian McFee. Openmic-2018: An open data-set for
multiple instrument recognition. In ISMIR, pages 438–444, 2018.

[17] Igor Pereira, Felipe Araújo, Filip Korzeniowski, and Richard Vogl. Moisesdb: A dataset
for source separation beyond 4-stems. arXiv preprint arXiv:2307.15913, 2023.

[18] Aurian Quelennec, Michel Olvera, Geoffroy Peeters, and Slim Essid. On the choice of the
optimal temporal support for audio classification with pre-trained embeddings. In
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 976–980. IEEE, 2024.

[19] Siddharth Gururani, Cameron Summers, and Alexander Lerch. Instrument activity de-
tection in polyphonic music using deep neural networks. In ISMIR, pages 569–576,
2018.

[20] Peter Li, Jiyuan Qian, and Tian Wang. Automatic instrument recognition in polyphonic
music using convolutional neural networks. arXiv preprint arXiv:1511.05520, 2015.

[21] Hannes Bradl, Markus Huber, and Franz Pernkopf. Transfer learning using musical/non-
musical mixtures for multi-instrument recognition. In Speech Communication; 15th
ITG Conference, pages 51–55. VDE, 2023.

[22] Minz Won, Yun-Ning Hung, and Duc Le. A foundation model for music informatics. In
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1226–1230. IEEE, 2024.

[23] Khaled Koutini, Jan Schlüter, Hamid Eghbal-Zadeh, and Gerhard Widmer. Efficient train-
ing of audio transformers with patchout. arXiv preprint arXiv:2110.05069, 2021.

[24] Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Daniel Tompkins, Zhuo Chen, and
Furu Wei. Beats: Audio pre-training with acoustic tokenizers. arXiv preprint
arXiv:2212.09058, 2022.

[25] Thibaut Durand, Nazanin Mehrasa, and Greg Mori. Learning a deep convnet for multi-
label classification with partial labels. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 647–657, 2019.

