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Abstract

Estudamos classes de equagoes elipticas envolvendo operadores do tipo (p,q)-Laplaciano,
considerando nao linearidades no intervalo de crescimento critico dos tipos Sobolev (quando
p < N, sendo N a dimensao do espago) e Trudinger-Moser (quando p = N). Por meio de
métodos variacionais, estabelecemos a multiplicidade de solugoes para problemas nao homogéneos,
considerando tanto casos de crescimento critico unilateral quanto bilateral. A influéncia do
expoente ¢ é analisada, destacando-se como um fator crucial na obtencao dos resultados, em

comparagao com os problemas classicos envolvendo o p-Laplaciano.

Palavras-chave: Métodos variacionais, (p, q)-Laplaciano, Problemas elipticos quasilineares,

resultado do tipo Ambrosetti-Prodi, Trudinger-Moser, Expoente critico de Sobolev.



Abstract

We studied classes of elliptic equations involving (p,q)-Laplacian operators, considering
nonlinearities within the critical growth range of the Sobolev type (for p < N, where N is the
spatial dimension) and the Trudinger-Moser type (for p = N). Using variational methods, we
established the multiplicity of solutions for nonhomogeneous problems, addressing both cases of
unilateral and bilateral critical growth. The influence of the exponent ¢ was analyzed, highlighting

its crucial role in obtaining the results, compared to classical problems involving the p-Laplacian.

Keywords: Variational methods, (p, ¢)-Laplacian, Quasilinear elliptic problems, Ambrosetti-

Prodi type result, Trudinger-Moser inequalities, Critical Sobolev exponent spaces.
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Introduction

Motivations

In this study, we investigate the existence and multiplicity of weak solutions for classes of
non-homogeneous problems using variational methods that involve partial differential equations

associated with the (p, ¢)-Laplacian operator. The problems are of the type:

—Apu —Ayu = g(z,u)+ f(x) in Q,
u=>0 on 0,

where () represents a bounded domain in R”Y, with the dimensions satisfying 1 < ¢ < p < N,
g : QxR — R is a non-linear term and f is a non-homogeneous term. The (p, ¢)-Laplacian
operator is defined by

Apu+ Agu = div ((|[Vu|P 7 + [Vu|!?)Vu) .

This kind of problem plays a crucial role in diverse fields, such as biophysics [32], reaction-diffusion
equations [25], and forms a fundamental component in the examination of quasilinear elliptic
problems. Problems related to this operator have been extensively explored in existing literature,
as demonstrated by studies by [14] BT] 35, B6], and others referenced therein. In this work we
address problems where the nonlinearity g(x, u) presents both unilateral critical growth (Chapters
1 and 3) or bilateral growth (Chapters 2 and 4). Chapters 1 and 2 focus on the case p < N,
addressing critical growth of the polynomial type. In contrast, Chapters 3 and 4 examine the case

p = N, where the natural critical growth is of the exponential type.

Unilateral problems

Problems involving unilateral critical growth have connections to a seminal problem introduced by
A. Ambrosetti and G. Prodi in 1973 (see [I] ), which discuss the existence, multiplicity, and absence
of solutions for a specific differential equation. This problem has intrigued mathematicians for
decades, leading to the exploration of various generalizations arising from the original research.

The results of this study are based on the non-homogeneous term and the interplay between



nonlinearity and the spectrum of the operator. It was formulated as

—Au = h(u) + f(z) inQ,
u=20 on 0,

with strict conditions on h(u) and f(z). Successive studies have built upon these findings,
delving into the diverse dynamics between the data. Defining h- = lim,, o h(s)/s and
hy = lims o h(s)/s, it was assumed that 0 < h_ < Ay < hy < Ay, referencing the spectrum
under discussion. The unilateral superlinear scenarios, with, h(u) = 0 for all u < 0, h_ € (0, A;)
and h, = 400, led many researchers to variational approaches and have been analyzed, for
instance, in [3] for the case of the Laplacian and [26, [34] for the p-Laplacian case, specifically in
the context of subcritical growth for h(s). D. Figueiredo and Y. Jianfu [5] addressed the case
where p = 2 with h(u) = M+ u? 71, ie., they explored the superlinear unilateral behavior of
g(x,u) with critical growth (here 2* concerns the critical Sobolev exponent 2N/(N — 2)). They
proved the existence of two solutions for N > 6. The insights of [5] were extended by M. Calanchi
and B. Ruf [27] to include N > 6, and by incorporating a subcritical term, they also ventured
into discussions for N = 3,4 and 5. Further, [19] explored this problem through the lens of the
p-Laplacian operator, achieving results analogous to those of [0, 27]. This framework set the stage
for further exploration of the interactions between h_, h., and the spectrum. In Chapter 1 we
extend the results of [19] for the (p, ¢)-Laplacian operator with 1 < ¢ <p < N.

In this unilateral case, Chapter 3 focuses on the scenario p = N > 2, motivated by the

Pohozaev-Trudinger-Moser inequality

N
N—-1
sup / eleNIF N gy < 0,
ueWy ™ (), Vuly<1 /2

1
where ay = Nwy 7 and wy—1 is the unitary (N — 1)-dimensional sphere volume (see [20] B0]).
The two-dimensional scenario, where the critical growth of Sobolev type is substituted with a
Trudinger-Moser growth condition, was examined by Calanchi et al. [2§], considering the problem

given by:
—Au =M+ g(z,uy) + f(z) in Q
u=20 on 012,

in a bounded domain ©Q € R?, where g is a function satisfying a unilateral critical Trudinger-
Moser-type growth condition. They showed that for a specific class of functions f and A\, < A\ <
Met1,k > 1, \; being the eigenvalues of (—A, H}(f2)), there exist two solutions, one of which is
negative. This result was extended by [2] for the cases of the gradient system. One of the primary
challenges in dealing with this type of growth condition in g is establishing that the minimaz

level of the functional associated with this problem avoids non-compactness levels. An additional



assumption has been introduced to address this issue, ensuring that this level remains below a
critical constant. To achieve the appropriate level, the techniques employed require that the Moser
functions have support in a ball B, such that r > 0 is selected to be sufficiently small in the various
stages of the arguments. The results in Chapter 3 extend this discussion to the (NN, ¢)-Laplacian.
Notably, these findings are also novel for the N-Laplacian, as, to the best of our knowledge, the
unilateral growth condition in non-homogeneous problems involving this operator has not been
previously explored.

It should be noted that, as in the polynomial case, the first solution is obtained employing an
argument that relies on the fact that, under established conditions, local minima of the associated
functional in the C! topology are also local minima in the WH¥ topology. However, unlike the
polynomial cases addressed in Chapter 1, this result does not appear to be available in the current
literature for the exponential case. To address this gap, we had to establish the C' x WhV
topology result ourselves, drawing inspiration from [18], which deals with similar functionals but

under slightly different hypotheses.

Bilateral problems

For the bilateral case, it is worth mentioning the work of Tarantello [I2], who obtained two distinct

solutions of the following problem:

—Au = |[u* u+ f(z) inQ
u=>0 on 0f),

where Q) is a bounded domain in RY, N > 3, 2* = 2N /(N — 2) is the critical Sobolev exponent
and f € H~1() is non-trivial, satisfying

4 (N —2\NH N
/qudx< 5 <N+2> [Vl 22

for all w € H}(Q) and ||u||» = 1. Furthermore, we can mention [7] who extended the above

problem to the case

—Au=Au+ [ul* 2u+ f(z) inQ
u=>0 on 0,

where 0 < A < Ay, with A\; > 0 is the first Dirichlet eigenvalue of —A in €. Subsequently,
Perera [23] demonstrated the existence of py > 0 such that the aforementioned problem admits

two nontrivial solutions for all f € L2¥/(V+2)(Q)\ {0} with || f|lan/(v+2) < po provided that N =4

and A is not an eigenvalue, or for N > 5 and A > 0.



In the case of p-Laplacian, Chabrowski [16] investigated the following problem:

—Apu = |ulP" ?u+ Mul%u + f(z) inQ
u=20 on 0f),

considering A > 0, f # 0 under certain conditions, and 1 < p,q < p*,;1 < p < N and
p* = Np/(N — p) is the critical Sobolev exponent. Chabrowski showed that there exists A > 0
such that the aforementioned problem has at least two distinct solutions, establishing a negative
minimal energy solution using the Variational Principle of Ekeland. In case ¢ < p, f # 0 under
specific conditions, a solution was obtained for either large A > 0 or for a domain €2 of small

measure. Furthermore, a second solution using the method employed was inconclusive.
In Perera [23], the problem given by:

—Ayu = MulP7?u + plul?%u + [ulP" Pu+ f(z)  in Q
u=0 on 0f),

where 1 <p < N,1 <q<p*, A >0,u € R, was explored. Considering

1 A 1
B = [ (S19u = 2 = L -
o \P p q p

V—ﬂ@@¢muewﬁm)

the associated variational functional and

[[e][”

wew P @\{oy [lu

SN,p =

p
p*

the best Sobolev constant, Perera showed that there exists py > 0 such that the above problem

supports two nontrivial solutions u; and us satisfying:
E(Ul) < E(Ug),

1 .~
0 < E(up) < NSNQP

for all y € R and f € Lp*,(Q) \ {0}, with p* = £~ and |u| + ||f

p*—1

» < Mo in the following cases:
(i) N > p* and A > 0 is not a Dirichlet eigenvalue of —A,, in §;

(i) N(N —p?) > p* and A > 0.

We can continue discussing these non-homogeneous problems with the critical (p, ¢)-Laplacian
operators, given by
{ —Apu — Aqu = plu] " ?u+ |u”" u in Q 1)

u=20 on 0,



where € is a bounded domain in RV, 1 < g <p < N, u >0, N >2and 1 <r < p*. In the present
literature, we can mention that Li and Zang [9] showed that this problem possesses infinitely many
solutions when 1 < r < ¢ and p > 0 is sufficiently small. Furthermore, Yin and Yang [14] showed
that it has a non-trivial solution when p < r < p* and p > 0 is sufficiently large. Furthermore,

Marano, Candito and Perera [31] have investigated a variant of the problem, which reads:

(2)

—Apu — Agu = plul?u + MulP72u + |[ulP" "2u in Q
u=>0 on 0f),

where © € R and A > 0 are constants that interact with the spectrum of —A, and —A,,
respectively. Assuming N > p?, X € (0, A1), and 1 < p1, where A\; and y; are the first eigenvalues of
the p-Laplacian and ¢-Laplacian operators, respectively, they discovered a nontrivial nonnegative

solution in the following cases:

(i) N(p—1)/(N—p) <q<(N-p)p/N,

(i) Np—1)/(N —1) <g¢g<min{N(p—1)/(N —p),(N —p)p/N},
(iii) (1 —1/N)p*+p< N and ¢= N(p—1)/(N —1),

(iv) (p—Dp*/(N—=p)<q<N@p-1)/(N-1).

These findings establish the existence of nontrivial solutions for the critical (p, q)-Laplacian
problem under specific conditions regarding the parameters and dimensions involved.

Recently, Ho, Perera and Sim [22] provided a nontrivial solution to problem for all u > 0.
they demonstrated that the problem possesses a nontrivial weak solution for all 4 > 0 in each

of the following cases:
(i) 1<g<N@p-1)/(N-1)and N*(p—1)/(N = 1)(N —p) <7 < p",
(i) N(p—1)/(N —1) <g<pand Ng/(N —p) <r <p"

In particular, problem (1)) has a nontrivial weak solution for all > 0 when N2 —p(p+1)N +p? >
0,¢g < (N —p)p/N, and p < r < p*, and when N? — p(p + 1)N + p> > 0,q < (N — p)p/N, and
r = p. Additionally, the non-homogeneous case for the (p, ¢)-Laplacian operator was investigated

by Perera [23], where the problem was formulated as:

(3)

—Ayu —nAgu = MuP7?u + |[ulP" 2u+ f(z) inQ
u=>0 on 0S).

Here, Q is a bounded domain with a smooth boundary in RY, where 1 < ¢ < p < N, the

parameters A and 7 are positive and f € LP*I(Q). The associated variational functional can be



expressed as:

1 A 1 .
E(u) :—/ |Vul|Pde — —/ |ulPdz + Q/ |Vul|?de — —*/ |ulP dx — / fudz
pJa P Ja qJa D Ja Q

where u € W,P(Q). The author obtained two nontrivial solutions u; and wuy that satisfy
E(uy) < E(us) and 0 < E(us) < 87 /N, for all p> 0 and f € L7 (Q)\ {0} with || f

for some 19 > 0, where S is the best Sobolev constant, in the following cases:

p*/ +77 < 7707

(i) N >p?and A > 0 is not a Dirichlet eigenvalue of —A, in ,
(ii) N(N —p?) > p* and A > 0.

In Chapter 2, by introducing the term f(x), where f € i (€2), in problem (2)) and considering

higher dimensions, we identify two distinct solutions, provided that || f|| .- is sufficiently small and

-
1<qg< %. It is worth noting that problem incorporates a parameter 7 into the ¢g-Laplacian,
requiring only the condition 1 < ¢ < p < N for the exponent ¢. Interestingly, this work does not
address the case n = 1, as the parameter plays a crucial role in ensuring the existence of a solution,
which is achieved only by adjusting n to be sufficiently small. This adjustment is necessary to
manage all possibilities where 1 < ¢ < p. In our approach, we avoid using this parameter; however,

this requires imposing certain restrictions on q.

Concerning the subjects of the Chapter 4, let us begin by mentioning that, in the existing

literature, we encounter the homogeneous problem:

—Anu— Ayu = plulT%u + )\\u|N_2ue|“|N/ in Q
u=>0 on 0,

in the studies by Yang and Perera [37]. They were interested in the problem involving p € R
and A > 0, assuming % < q < N and p < py where py represents the first eigenvalue of the ¢-
Laplacian. They proved the existence of a nonnegative nontrivial solution for every A > \*, where
the existence of such A* > 0 is based on pu. Moreover, if p > uq, then there exists A\*(u) such
that the aforementioned problem possesses a nontrivial solution for all A > A*(u). Considering
the scenario where 1 < ¢ < p = N for the problem in , in Chapter 4, we replaced the term
with the exponent p* with a nonlinear term g(x,u) that demonstrates critical exponential growth
and added a nonhomogeneous term f(x) to the problem. The main motivation was working with
problems related to the (IV, ¢)-Laplacian in the same spirit as the ones we addressed in Chapter 2,
where the non-linearity was of polynomial growth type. In this context, we were able to identify

two solutions to this problem under specific conditions on ¢g and f.



Main contributions of this work

In this work, the structure is divided as follows. Chapter 1 focuses on a unilateral problem involving
the (p, ¢)-Laplacian operator, with the aim of reproducing results similar to those reported in [19].

The specific problem is formulated as:

(4)

—Ayu— Agu = MulP~2u + ¥+ g(x,uy) + f(z) in Q
u=>0 on 0f),

where € is a bounded domain with a smooth boundary in RY, 1 < ¢ < p < N, X € (0,\),
f:Q—=R" g: QxR — Rt is a function with subcritical and p-superlinear growth condition
at 4+00.This investigation explores all possible scenarios involving the dimension N. The results
presented here contribute to the understanding of unilateral superlinear critical growth for the
(p, q)-Laplacian operator, based on previous ideas provided in [35] for the subcritical case. A
significant challenge was understanding the influence of the ¢-Laplacian on estimating the upper
bounds of minimax levels for the associated functionals. This obstacle was overcome by making
some L* estimates of the Talenti functions, following the ideas of [19]. As it was proved in this
last paper, we also identify two distinct solutions, one obtained through minimization which is
negative, and the other through the Mountain Pass Theorem. It is assumed that g : Q x R — R™

is a continuous function satisfying:

(g1) g(z,t) =0, Vt<0.
(g2) There exist p < 6 < p* and C > 0 such that g(z,t) < C(1+t*~1), for all t > 0 and = € Q.

The hypothesis (g1) concerning g(x,t) corresponds to the unilateral nature of the non-linearity in
the problem, while (go) illustrates that g(z,t) serves as a subcritical perturbation. This aspect
becomes crucial when approaching cases of lower dimensions. For scenarios where g = 0, the

methodologies employed to identify a second solution are applicable to higher-dimensional cases.

Our first result in this chapter is given by the following:

Theorem 0.0.1. Suppose (g1) — (g2) holds. Assume that f € L*() and f < 0 nontrivial. Then,
for any p > 1, there exist two solutions to problem provided that,

2 p? .
N> max{p +p,p71}, ifl<p<?2
(p—1)p* +p, if p> 2.
and

(N —p)p

l<qg<
4 N

In addressing the problem in lower dimensions, we consider:

7



(g93) There exists o > 0, such that K < o < p* and
g(x,t) > Ct" ! for all (z,t) € Q2 x Ry,

where K = K(N,p,q) is given by

)
max p*—NLp,N—qp}, if1<10§]\2,—f1
K(N,p) =< max p*—NL_p,p* 1,NN—fp , if]\z,—fl<p<2

Getting our second result of this chapter, that is,

Theorem 0.0.2. Suppose that g satisfies (g1) — (g3). Assume that f € L>(Q) and f <0 in Q.
Then, there exist two solutions to the problem for every 1 < q<p< N.

Chapter 2 delves into the bilateral case, tackling a similar problem as outlined in [31], with
the addition of the non-homogeneous term f € LP*I(Q) in the equation. We consider A € (0, \)
and p € (0, 7). In this context, we have identified two solutions. One solution is derived through
the application of the Variational Principle of Ekeland, as elucidated in [T16]. The second solution
is attained by using Talenti concentration functions in the Mountain Pass geometry, following the

concepts put forth in [T9]. We studied the problem

(5)

—Apu — Agu = plul?%u + MulP~2u + [ulP" "2u + f(z) in Q
u=20 on 0.

In this chapter, we investigate a scenario in which 2 represents a bounded domain with a smooth
boundary in RY, with 1 < ¢ < p < N, A € (0,\1), u € (0,11), and f € L>®(Q). Unlike the
approach in [23], we do not introduce a parameter in the g-Laplacian. However, constraints on
the exponent ¢ are still necessary. In this analysis, we assume that f possesses a small norm.
Similarly to the methodology used in Chapter 1, we identify a second solution to this problem,
contingent upon specific restrictions on the dimension and ¢. The outcomes of this investigation

are summarized as follows:

Theorem 0.0.3. Suppose A € (0,\1), p € (0,4], f € L”*I(Q) nontrivial.  Then, for any
p > 1, there exists a constant M > 0 such that the problem has two solutions provided
that || f|| . < M,

N> { max{p® +p,p*/(p—1),(p = 1)p*/(¢—1) +p}, fl1<p<2
max{(p — 1)p* +p, (p — 1)p*/(¢ — 1) + p}, ifp>2,

8



and
1<q<(N-pp/N.

Theorem 0.0.4. Suppose A € (0,\1), u =0, f € LP*I(Q) is nontrivial. Then, for any p > 1,
there exists a constant M > 0 such that problem has two solutions provided that | f| . < M

)

N> max{p® + p,p*/(p— 1)}, ifl<p<2

and
1 <q<(N-pp/N.

In Chapter 3, we explore again the unilateral problem, but now in the scenario where p = N,
drawing inspiration from the concepts presented in [19] and [2]. Our focus lies in establishing the

existence of nontrivial solutions for a (NN, ¢)-Laplacian equation defined by:

{ —Anu— Agju = MNulN2u+ g(z,uy) + f(z) inQ (6)

u=>0 on 0,

where 2 C RY represents a bounded domain with a smooth boundary, A > 0 is a real parameter,
1<g<Nandg:Qx][0,00)—[0,00) adheres to a Trudinger-Moser growth condition uniformly
across ¢ € (). Our study has established the existence of two distinct solutions, one obtained
through minimization and being negative, and the second by using the classical Mountain Pass
Theorem.

This problem stands as a new result for both the N-Laplacian and the (N, ¢)-Laplacian. As
usual in this kind of problem, the main challenge was understanding which was the best set of
assumptions we should provide to allow the mountain pass level to lie below a specific threshold.
In this context, ¢ has a critical behavior, implying the existence of a positive constant aq such

that:

¢ 0, if a>
lim 950 _ i a>a (7)
{9400 Lot N-T +oo, if a < a,

uniformly in x € (2. Furthermore, the hypotheses put in g are

(51) g:Q xR — R is a continuous function and g(x,t) = 0 for all z € Q and ¢ < 0;

(g2) There are R, M > 0 such that

t
0 < G(x,t) = / g(x,s)ds < Mg(xz,t), VYxeQandt> R,
0



(g3) There is C' > 0 such that

N
N=

sg(x,s) > y(s)e*s™ Ve e Qand s > C,

where 7(s) is such that
lim inf 7(52 >0

S——+00 esosﬁ

for some gy > 0.

The main result of this chapter is given below.

Theorem 0.0.5. Suppose that (7)), (g1) — (g3) hold and f < 0 is nontrivial. Then, there exist two
solutions to the problem @

Finally, in Chapter 4, inspired by [37] and following the ideas of [16] and [2], we address the
bilateral case regarding the (N, ¢)-Laplacian operator given by the problem:

(8)

—Anu— Aju = MNulY2u + plu|t*u + g(z,u) + f(z) inQ
u="0 on 0f),

where € denotes a bounded domain with a smooth boundary within RY, f € L>(Q), A € (0, \,),
p € (0, 1], and g represents a nonlinearity exhibiting a critical exponential growth. Here we use
ideas analogous to Chapters 2 and 3, for the first and the second solutions, respectively. Moreover,
when g = 0, we encounter two solutions for 1 < ¢ < N and N > 2. However, if 0 < p < pq, our
analysis is limited to the scenario where 2 < ¢ < N. To be more precise, we delved into problem
(8) with the following hypotheses: g exhibits critical growth with exponent ag > 0. This means

that there exists a positive constant «q such that

lim

N
[t|——+o0 ealt| N1

g(x,t) :{ 0, if a>a

400, if a< ag,

uniformly in x € €.

(90)
_ NG(z,u)
lim sup ————
u—0~t |U|

=0
uniformly in x € §2;

(71) g: QxR — RT is continuous non-decrasing function and g(x,0) = 0 for all z € Q, g(x,u) >
0in © x [0,400) and g(z,u) < 0in  x (—o0,0];

10



(g2) There are R, M > 0 such that V¥ |u| > R

0<G(z,u) = /Oug(x,s)ds < M|g(x,u)|

for all z € (;

(g3) There exists C' >> 0 such that V |[s| > C

N
aoISINfl

sg(x,s) = 7(s)e

where ~y(s) is such that there is g > 0 with

lim inf LS)I >0

s—Fo00 ecols| V-1
for some gy > 0.
The main results of this chapter are:

Theorem 0.0.6. Suppose (dy), (go) — (g3) hold, 2 < ¢ < N, A € (0,\), p € (0, 1] and
f € L>(RQ) is nontrivial. Then there exists n > 0 such that problem has two solutions provided
that | flloc < -

The restriction on ¢ is not necessary if we remove the g-linear term from the problem. The

last main theorem of this work is as follows.

Theorem 0.0.7. Suppose (q),(go) — (g3) hold, N > 2,1 < ¢ < N, X € (0,\), p =0 and
f € L>(9Q) is nontrivial. Then there exists n > 0 such that problem has two solutions provided
that |[ flloc < -

11



Chapter 1

(p, ¢)-Laplacian equations with critical

growth and jumping nonlinearities

1.1 Introduction

In this chapter we will study the problem:

{ —Ayu— Agu = AMulP~2u + 8, '+ g(x,uy) + f(z) in Q (L.1)

u=0 on 0f),

where € is a bounded domain with a smooth boundary in RY, 1 < ¢ < p < N, X € (0, ),
wy = max{w,0}, f € L>®(Q) is non-zero, g : & x R — R* is a subcritical function with
respect to p* and p-superlinear. Here we extend the results in [19] to the (p,q)-Laplacian
operator. We established the existence of two solutions: one of them negative and the other
involving modifications to Talenti’s functions. The second solution was derived by imposing
stricter conditions on the dimension. Additionally, by introducing a more restrictive hypothesis

on the nonlinear term, it became possible to discuss solutions in the lower-dimensional cases.

1.2 Hypotheses and Main Results

Let us begin by assuming that f € L*>°(Q2) and g : © x R — R™ is continuous such that:

There exist p < 6 < p* and C > 0 such that g(z,t) < C(1+t*71) for all t > 0. (92)

The hypothesis pertaining to g(z,t) aligns with the unidirectional nature of the non-linear
component of the problem, while illustrates that g(x,t) serves as a subcritical perturbation.

This aspect becomes crucial in addressing cases of lower dimensions. In instances where g = 0,

12



the methodologies employed to identify a second solution are applicable to higher-dimensional
scenarios.

Now, fix 0 < A < A;. Then, the associated functional .J : W, ?(Q) — R is given by:
1 1 1 *
J(u) = —/ (|IVulP — Mul?) dx + —/ |Vu|ldr — — / ull dr — / G (x,uy)dr
b Ja qJa P Ja Q

— /Qf(x)ud:t

where

G(z,s) = /Osg(x,t)dt.

From these first conditions, we obtain that the associated functional J to problem (1.1)) is of

class C' with derivative given by

S = / (IVal*Vuve = MulPuv)dz + / V| VuVods / o Modz
Q Q 0

—/Qg(a:,qu)vd:c—/Qf(az)vdx

for all u and v in W,?(Q). By definition, weak solutions of the main problem are exactly the

critical points of this functional.

In W,P(Q), 1 < p < 0o we work with its usual norm

1
lollgoio = ( [ [7uPdz )"

Civen that our main framework lies in W, (), we simplify the notation by letting || - HWOLP(Q)
be represented as || - ||. Furthermore, we denote the standard norm in the LP(2) spaces as || - ||,

Furthermore, since A < \;, we introduce
1
lullx = (llull” = Allull})* .

which establishes a norm equivalent to || - || within W, (€2).

The objective of this chapter is to identify two solutions to the problem delineated in ([1.1)).
Initially, a negative solution is sought, which requires f(x) to meet specific criteria. The

formulation of this negative solution is as follows:

{ —Apu — Ayu = NMulP2u+ f(z) inQ (1.2)

u=20 on 052,

13



where the functional associated with this problem is expressed as
1 1
I(u) = —/ (IVulP — Mul?) dx + —/ |Vu|ldx — / fudzx.
P Ja qJa Q

It is important to note that if a negative solution exists for ([1.2)), then it similarly constitutes
a negative solution to our primary problem. Consequently, the forthcoming results are oriented

towards identifying such a negative solution to (|1.2)).

Lemma 1.2.1. If f € LPI(Q), then the functional I is coercive and sequentially lower
semicontinuous (s.c.i) in the weak sense. Consequently, there exists a global minimum w €

Wy (Q) for I.

Proof. By Holder’s inequality and the equivalence of norms in T/VO1 P(Q2), we have,

1
I0) = el + < lallfyyaq) = [ S@)ude
p
Lo
]—)HUH [pairaiioa)
1
> Ll = clull > +oo,
b
when |ju|] — +o0.
Let u, — u in W, 7(Q). So,
[ully < liminf [ju, |3
and
||u||;1/‘/01H(Q) S hm 1nf ||u7l||;1/‘/01;lI(Q)
Then,

1
T(w) = Sull? + —||uuq1q / f(x)udz
p
1
< - p - q _
lim inf (p”unH qHunH La(g) /Qf(x)unda;)
= liminf I (u,),

which proves that I is sequentially lower semicontinuous in the weak topology. It follows by the
Direct Method of the Calculus of Variations that there exists a global minimum for the functional
I, denoted throughout this work by w € Wy (€). O

Lemma 1.2.2. If f is nontrivial, then the global minimum w € WyP(Q) of I is nontrivial.
Moreover, if f <0, then w < 0.

Proof. The proof is obvious, since f # 0 implies that v = 0 cannot be a critical point to I.

14



Moreover, to prove that w < 0, use v = w™ as a test function in the equation I'(w)v = 0, which
is true for all v € W, ?(Q). O

Note that w is also a critical point for the functional J, what we will seek throughout this
chapter is to show that w is a local minimum of J in the topology of Wy*(Q) to obtain the
geometry of the mountain pass and then find a second solution to the problem.

To obtain w < 0, we will need a maximum principle, and for this we will use a more general

result that can be found in Pucci [33].

Consider the equation

div(A(|Vu|)Vu) — f(u) <0, u >0,
in Q C RY, a possibly unbounded domain with N > 2.

Furthermore, consider
(i) Ae C(0,00);
(17) t — tA(t) strictly increasing in (0,00) and tA(t) — 0 as t — 0;
(43) B continuous on [0, co);
(iv) B(0) =0 and S is non-decreasing on some interval [0, d), where § > 0.

Let h(t) = tA(t) for t > 0 and h(0) = 0, and define

H(t) = th(t) —/t h(s)ds, ¢ > 0.

With these conditions, the following result holds.

Proposition 1.2.3. Suppose

lim inf A(t)
t—0 th(t)

and either 3(s) =0 for s € [0,7), 7 >0, or

>0

[}t =

where B(s) = [ B(€)dE, s > 0. If u is a solution of
div(A(|Vu|)Vu) — B(u) <0, u >0 inQ,

with u(zg) = 0 for some xy € Q, then u =0 in Q.
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Notice that, by taking
Alt) =72 +1772

t >0 and 8 = 0, assumptions (i) — (iv) are satisfied. Furthermore,

h(t) =t~ + 971,

and t > 0. So,
P q —1 -1
H(t):t”+tq—t——t_:<p_)tp+(q >tq’
p g p q
and,
H{(t) (P—l) —pr—1 (q—l) o
— L= —— | (1 +t"P)y T+ | —— | (L P
th(t) D ( ) q ( )
Then,

lim inf A(t) _ (4= L > 0.
t—0  th(t) q

Considering, § =0, u = —w > 0 and f(z) < 0 nontrivial, we have

div(A([V(=w)[)V(-w)) = =div(A(|V(w)[)V(w))
= Mw[P 2w + f(z)
<0

and it follows from the above Proposition that w < 0in 2. We will now present some crucial results
to demonstrate that the global minimum point w of the functional I within the topology of W, ()
is also a local minimum point of the functional J within the same topology. Propositions [1.2.4]
and are documented in [35], while the first is an adaptation of [4, Theorem 2|. Furthermore,
the Proposition is sourced from [36], and Proposition is referenced in [21].

Proposition 1.2.4. Let u € W,*(Q) be a solution of

—Ayu— pAgu = g(x,u) in
u=>0 on 0X,

where 1 > 0 is a real parameter and g(x, s) is continuous in s € R for almost every x € Q and

for each s € R, g(x,s) is Lebesque measurable with respect to x € Q. If
|g(z,s)] < M(1+[s["),

for some 1 < r < p*, where p* = Np/(N — p), then v € CY*(Q) for some 0 < o < 1, and
Hul‘céaa(g) S C= C(M,p, q, t, Q)
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Proposition 1.2.5. For all g € L®(Q) there exists a unique solution u € Wy(Q) of

—Apu — pAgu =g inQ
u=>0 on 0f).
In addition, the mapping Q : L=(Q2) — CL(Q) defined as Q(g) = u is continuous and compact.
For the next proposition, consider H(z,¢) fo x,s)ds such that h : @ xR — R is a
Carathéodory function with growth
h(z,8)] < a(z)(1+[t)7) in QxR,
where a € L®(R) and 1 < s < p*. Consider ¢ : Wy*(2) — R as the C"! functional defined by

1 1
¢(u) = ]—?||Vu\|g+aHVu||g—/H(:c,u(x))d:c, ue Wy'(Q).
Q

Proposition 1.2.6. If ug € WyP(Q) is a local minimum of ¢ in the CL(Q) topology, then
uy € CH*(Q) for some o € (0,1), and ug is a local minimum of ¢ in the Wy () topology.

In our case, taking h(z,t) = <p _1) 772 4 g(x,ty) + 2f(x), the result above holds.

Proposition 1.2.7. Let Q be a bounded domain with a smooth boundary. If u € C'(Q)NW, ()

and
—Apu—Agu >0 inQ,
u>0 n €,
u=>0 on 052,

then < 0 on 0N), where v is the outward unit normal vector to OS).

Remark 1. Note that if u = —w , then

—Ap(—w) = Ag(—w) = —div(A(|V(-w)|)V(
= div(A(|V(w)]))V(w)
= —{Aw[""w + f(2)}
> 0.

—w))

Therefore, the result holds for u = —w, where A(t) = tP=2 + t772,

We now have sufficient conditions to state and prove the following result:

Proposition 1.2.8. Suppose f € L>*(Q) is such that the global minimum of I, denoted by w, is

negative in 2. Then, w is a local minimum of J and consequently a negative solution to problem

D).

17



Proof. We have that w € W, () is a minimum of I in the C}(Q) topology. By Propositionm
w € Cy*(Q). Moreover, by Propositionm there exists r > 0 such that u < 0 for all u € C3(Q)

with [|u — wl|c1(q) < r. Hence,
J(w) =I(w) < I(u) = J(u) where ||u—wl|ciq) <
Thus, w is also a local minimum point of J in the C}(Q) topology, and by Proposition [1.2.6] w is

a local minimum of J in the I/VO1 () topology. O

To conclude this section, let us outline the main theorems of this chapter. The subsequent

sections will be dedicated to proving these theorems.

Theorem 1.2.9. Suppose that and hold and that f < 0 is nontrivial. Then, for any
p > 1, there exist two solutions to problem (1.1) provided that,

2 . fl<p<?2
(p—1)p* +p, if p>2.
and v )
—p)p
l<g< ———.
4 N

Remark 2. It should be noted that for p = ¢ = 2, we encounter the restriction N > 6, similar
to the restriction imposed on the Laplacian in [5]. Furthermore, when p = ¢, the (p, ¢)-Laplacian
simplifies to the p-Laplacian, as addressed in [I9]. The hypotheses here are the same of those

presented in the aforementioned paper.

It is important to emphasize that the natural constraints should be N > p and ¢ < p.
Therefore, in studying the problem in lower dimensions, we follow the concepts presented in
[19, 27], where a p-superlinear growth condition is introduced to diminish the minimaz levels
of the functional J. This adjustment enables us to fill the gap in dimension /N highlighted in
the preceding theorem. What is novel here is that the exponent ¢ now plays a significant role,
rendering the problem distinct from its p-Laplacian counterpart. Consider the following additional

hypothesis:

There exists o > 0, such that K < ¢ < p* and

g(x,t) > Ct7 ! for all t > 0,
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where K = K(N,p,q) is given by

(
max p*—Npp,A],qu} 1f1<p<N+1
K(N,p,q) = max|p"— 5=,p" —1,Np} 1fN+1<p<2 (93)
max p*—NLp,p*—ﬁ,NN—qp}, if 2 <p.

\

Theorem 1.2.10. Suppose g satisfies (g1, and (g)). Assume that f € L®(Q) and f <0 in
Q. Then, there exist two solutions to the problem (1.1)) for every 1 < ¢ <p < N.

Remark 3. Condition f < 0 is imposed to ensure that there exists a negative solution which is a
local minimum for the functional, so the second solution can be found but it is not a necessary
condition. What we only need is that there exists a negative local minimum to the associated
functional, and this is possible even if f changes sign in some cases (for p = 2 it is sufficient to
ensure that f(x) = h(z) + toi(x) for sufficiently large ¢, h € L"(Q2),r > N/2 and ¢; being a

positive eigenfunction associated with Ay).

We will dedicate the next section to revisiting some preliminary results that have been discussed

in previous works.

1.3 Preliminaries

The objective of this section is to present certain results concerning norm estimates for truncations
of the Talenti functions, which can be found in [I9] and for this reason the proofs will be omitted.
These inequalities are related to the norms of L*® of these functions and are included here for the

sake of independent understanding.

Consider the best embedding constant from WP(Q) into LP"(2) given by

ull”

S:

For € > 0, we obtain a minimizing function for S given by

N—p
(Cerp-D

Uc(x) =

(N—p)

_pP_ _pP_
er-T 4 |x|p-T

where C' is chosen such that
—AU. =U" " in RV,
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Then we have,

/ \VU€|pd:c:/
RN RN

Fixing r € (0, 1) so that B(0,2r)C ©,let ¢ € C>=(RY;[0,1]) satisfy ¢(x) = 1 for all z € B(0,r)
and ¢(z) = 0 for all z € RV\B(0,2r). Now, define

ue = @UL.. (1.4)

These are the truncations of the Talenti functions that require estimation. They will serve as

directions for the functional to ensure that their associated minimaz levels remain below a certain
threshold.

Lemma 1.3.1. Taking into account 0 < e <r and 1 < p < N, the following holds:

C’ap+0<€<p 1>) ifp? < N,

ceP? < / |ucl” dx < ¢ CePlog () if p*=N
Q (N—p)
Ce oD if p* > N,

p)

U |* 1d$<CE(NP
€ = )
Q

* (N—p)
/ [ de < Ce
Q

(N-p)
ng(p—pn if p> N+1’
_C
/|Ue|d$§ ceN (2) if p:]\%—fl,
Q N?(N*P)
Ce z if1<p< N+1,
(N-p)s —p)s N
N /\u5| de < CeN~ v ifpt— <s<ph
N-—p
Forl1<y<p
CeP i N(p_l)
IVl < a7 B (15)
Cellog(d) if vy ==
where,
N—p ~ N(pfl)
-8y ={ o) Y 1N<< v (16)
N — %7 if =+ ) < v < p.

20



Remark 4. In the case where v = ]EIJ(VP__E)), we have that:

/ Vu.|"dz = / IVoU. + ¢VU.|"dx
RN RN

< 0/ |VU€|7da:+C/ U.[da
B(0,2r) B(0,2r)\B(0,7)

< O eWN=p)v/p(p—1) [t @R/l
= B(0.2r) [ep(=1)  |g|p/(=D]N/p

1
(N—p)v/p(p—1)
e /B(O 2 N\B(0,r) (PP |x[p/ (=] (N=p)y/p d.

dx

Since the second integral is uniformly bounded for € > 0, we will analyze the first integral.

1+(2— —1 N 1/(p—1
/ || (E(2=P)/ (p= )]y g < E—N’Y/(p—l)/ eNley|/(p—Dly ay
B(0.2r) [gp(pfl) + |g;|p/(p*1)]N7/p - B(0.2r/¢) [1 + ‘y’p/(pfl)]Nv/p

N—(N-1)v/(p—1)

<(1ml+ [ oy )
B(0,2r/¢)\B(0,1)

u(t)

||t (2=p)/(p= )]y
[eP(®P—1) 4 ||/ (= 1)]Nv/p
1
) [eP(P=1) 4 |x|p/ (=1 (N=p)7/p

IA
™

IN
Q

It follows that

/ ’vuspdx < Cg(Np)’Y/p(Pl)/
]RN

B(0,2r)

+ CeN=phr/p(p—1) /
B(0,2r)\B(0,r

< CeNV-R/BN-1) 1g (1) .
o €
Remark 5. Note that if
CePlog (%) < CeP for v =
B > p implies that,

(v) is as in 1) and Ce? < CeP for v < %, then

In other words, the term log (1) does not hinder because

N(p-1) 1
£

N-1 ~

1 1
—e? + el log <g> =P (—1 + &7 Plog (E))

and since the exponent 5 — p > 0, we have that the term within parentheses is negative for ¢ > 0

sufficiently small.

Lemma 1.3.2. Consider 0 <e <r and 1 <p < N. Then,

(N—p)
IVeclly = 57 +0 (s0),

l|lu PGy +O<5(PL*1>>
ellp* .
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Lemma 1.3.3. Consider 1 < p < N. Given p* — Ni_p <s<p"and K >0, we have

lus*dx = / |ue|*dx — O <5%> ,
Q. Q

withe — 0, Q. = {x € Q:u(x) > K}.
The next result can be found in [I5, Lemma A4], and it will be used in the next section.
Proposition 1.3.4. Consider 1 <p < N.

a) If p > 3, then there exists a constant C' > 0 such that

VS|

(1 + %+ 2tcos(a))* <1+ t* + pteos(a) + C(t* + 771,
for all t > 0 uniformly in o € [0, 27].

b) Ifp€2,3) and vy € [p — 1,2], then there exists C > 0 such that

[MIS]

(1+ ¢+ 2tcos(a))® < 1+ t% 4 ptcos(a) + Ct,
for allt > 0 uniformly in o € [0, 27].

c) If pe (1,2) and v € (1,p), then there exists C > 0 such that

NS

(1+ ¢ +2tcos(a))? <1+t + ptcos(a) + Ct7,

for allt > 0 uniformly in o € [0, 27].
The next results given in the next two remarks are facts extracted directly from the Lemma
1.3.1, They will be useful in the proof of the lemmas immediately below them.
Remark 6. Let 1 <y < p and 8 = 3(7) as in (L.6), then,

N—p

sz@—ﬂ

V=P

if and only if,

N(p—1)
where 1 <y < ——*. Moreover,

if and only if,



where (p 1)<7<p

Remark 7. N )
p —
—=>1
N -1
if, and only if, .
2 — —.

The following lemma will be of great importance for the next results.

Lemma 1.3.5. According to hypothesis (L.3), it is possible to choose 1 < v = ~, < p in (|L.5)
such that B, = B(7,) as in (L1.6) satisfies
By >p

Proof. Under the hypotheses of Theorem we must have N > p?. Recalling (1.6) and by
Proposition we can make the following choices:

'vpe(lap)andﬁpzN—%vp fl<p<2-—+
%E(l,%) andﬂpzz%yp if2—%<p<2, @
p—1<’yp<min(2,N]£,1>andﬁp )’yp if2<p<3, '

| w=p—1land 3, = pl)%_Npp if p> 3,

furthermore, straightforward calculations and by Remarks [6] and [7] show that it is possible to

choose 7, € (1,p) such that

2
Bp >Dp 1f1<p<N+1,andN>(ppT1),
BP>¥ if N+1<p<3
N— .
ﬁp>p(p—_li) 1fp23

In fact, if 1 <p < N +1, so by Remarks |§| and EI we can choose v such that

N(p—1) (N —p)p
<1< < — <K
N-1 = 7 N b
because v )
—PpP)p
>1
N b
if and only if
P
N
>p_1

Then,

23



2N

However, if <p<2-— %, then

N+1
N N—p
Bp=N——~
8 p" p
if, and only if,
p
p—1+ N > Tp
which happens because,
p
—14+=>1
p + N )
if and only if,
p
—>2
p+ N Y
but
P 2N 2N
P+ = > + =2,

N~  N+1 NN+1)

so, consider, 7, € (1,p -1+ %) and we will get the result.

If,2—%<p§2,so,

N(p—-1)
= >
N —1
and
N—p N-—p

&:p@—D%> p

if, and only if, 7, > p — 1, which happens because, p < 2 and 7, > 1 so,

N — 4 p—
L b

B8, >
"Top P
In analogous way, if 2 < p < 3, since
N(p—1)
l<p—1< ——-—
b N-1
we have N 0’ )
—p_pp—ptl)—p
B > > =pp—1)>p,
p p
where 7, € (p -1, %) . Finally, if p > 3, since v, > 1, we have
N-p _pp"—p+1)—p
51) > > ( ) =D
p(p—1) p(p—1)
This finishes the proof. O

As evident from this last lemma and the subsequent one, significant effort is being invested in
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making precise selections of constants v within certain estimates to ensure that their corresponding
B exceeds the values of p. These selections will be pivotal in the estimates, facilitating the choice
of € to achieve the necessary boundedness of the minimaz level. Consequently, we now must

examine the constraints on ¢ to ensure that we reach 3, = 3(¢) > p and 3,, > p.

Remark 8. Under the hypothesis (|1.3]), we have

and

(N—pp _ N(p—1)
N - N-1_

Indeed, the first inequality is obvious if 1 < p < 2, due to the fact that N > ppTQI. Furthermore,
note that,

p
p—1)p*+p>
®=1 (p—1)
if, and only if,
(p—1)7%p>1
This is obvious if p > 2, therefore
2
p
N >
p—1

for all p > 2 also, which leads to 1 < % again. To see the second inequality of this remark,

notice that N > p* + p for all p > 1 and this implies that
N(p* +p) —p* < N* —p* < N?,
which is equivalent to,
N? = N(p* +p) + N?p — N?p + p* > 0,

thus,
Np(N —1) =p*(N = 1) = N*(p - 1) > 0,

from which we have,
p(N =1)(N —p) > N*(p — 1),

therefore,
(N-plp Np-1)
N N-1"~

(N—p)p
N

N(p—1)

and ——

Note that from the above observation it makes sense to have 1 < ¢ < <q<
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(W ==L, 2 which are important cases that we need to consider in the following developments.

Lemma 1.3.6. Under hypothesis (1.3), assume that 1 < q < (N;Np)p. If B, = B(q) is defined as
in (L.6) with v = q, then B, > p. Furthermore, there exvists v, € (1,q) for which 3, > p is also
satisfied. In this case, B,, is specified in ((L.6) with v = ~,. Moreover, 4 can be chosen in [q—1,2]

if g € [2,3).

Proof. Case 1: If 1 < p <2 — <, then p € (1,2) and ¢ € (1,p) C (1,2). Thus, in this case, let

us fix 7, € (1,¢). By Remark Ij we have % < 1. Therefore, 8, = N — %yq. It follows that

B, > p if and only if,

(N —p)p
'yq<T.

Moreover, f, = N — —q > p if and only if,

(N —pp

<
4 N

Case 2: If 2 — & < p < 2, once again we have ¢ € (1,p) C (1,2), and in this case consider

7 € (1,9). Furthermore 1< (p 1) <p <2 Let’'sassume 1 < g < ]Efl),then
N-p
By=-—F"—"=9>D
oplp-1)

( )

. . 2(p—1
if and only if ¢ > %. Moreover, 7, < ¢ <

pP’(p—1)
N—p °

](Z) ﬁ)vq > p if and only if
Vg > *

By hypothesis, N > p> +pif 1 < p < 2, and N > p(p? —p+ 1) if p > 2. Note that
p(p* —p+1) > p?+pif and only if p > 2. Therefore, in the case p = 2, we also have N > p* + p.

Hence,

P p?

< —
N—-p p’+p—p

Since p € (2—%,2],\7\/6 have p —1 <1, and

p’(p—1)

< 1.
N—-p

Therefore, if g < N(p 1) , then 3, 8,, > p for v, € (1,¢) and q € (1, %} .

N(p—1)

Nl,wehaveﬁq—N——q>p1fandon1y1fq< p)p , that is,

In the case where ¢ >
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B, > p for % <q< %. Since 7, € (1,q), we only need to consider 7, € (N(p 11),q)
obtaining
N
B’Yq =N — _’Yq
N [(N—pp
>N — —
p { N

Case 3: If2<p<3—%,then1<%<2because

Np—1)
— <2
N -1
if and only if
2
33— —.

Let us suppose N > -2, so we have that (N—pp p)p > 2. Now assume that 1 < ¢ < N(p 1). Since

2 )
1 <q,< (p 1) , it follows from the definition of 3, that,

(N —p)
By = gl
oplp—1)
Moreover, 3,, > p, if and only if,
2
pi(p—1)
>
Ry
but,
2
—1
re-1) _,
N—p
because p > 2. Therefore,
Bye >
By the definition of 8, we get,
(N —p)
By =——"754> By, > D
Toplp-17
Now consider ( ) < q<2,then 3, =N — %q > p if and only if ¢ < %’, thus, B, > p for
N(p—1)
— g <2
N-1 1
Simply take 1 < v, < ( ) to obtain By, = (p 1) > p. Now let us assume ¢ € [2,p) C [2,3). We

can simply consider 7, = ¢ —1 < ﬁ to obtain 3, > p. For §,, we have % <2< q and
%:ﬂV—%q>nwﬂhq€[Z@%m)
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In the case where N < p’%, we have —(N]_Vp)p < 2, thus for 1 < ¢ < (Nz_vp)p we obtain 3, 3, > p.
Therefore, 3,, 3,, > p where 1 < ¢ < (v —p)p_

Case 4: If 3 — 2 ~ < p < 3, then (p 1) >2and 8, = p(p 1))’yq > pand 3, = %q > p where
€ (1,2).

If g €[2,p), then B, >pfor2 <gq¢< (p 1) and for Np U < g < O p , and certainly, 3, > p.

Case 5: If p = 3 we know that M > 2. Let’s assume ¢ € (1,2), then 7, < ¢ < ]Ef 11),

obtaining [, = 7= 1)7q > pand §, = p(p 1)q > p.
If ¢ € [2,p), then ¢ € [2,3). Take 7, =¢—1< Ne—1)  consequently, By, > p and f; > p for

N—-1 >
2<q< JSfpll) or N]E[pll)gq<(NNp)

N(p—1)
N-1 >

v € (1,¢). Furthermore, for N > 2 2= we have 3 < 2P p)p Consider g € [2,3) and v, = ¢ — 1,

Case 6: Finally, if p > 3, then 2 < so if ¢ € (1,2), we will have 3, ,8, > p with

follows that 3,,, 3, > p. However, 1f q € [3,p), take 7, = ¢ — 1 to obtain 3,, > p, similar to what

was obtained in the case ¢ € [2,3), we have 3, > p for 3 < ¢ < —(N;Vp)p_

If N < =, we have 2 < (p 1) < (N]_Vp)p < 3. Consider ¢ € [2,3), then £, > p with v, = ¢—1,
and 3, > p Where q € |2, M). In any case, f, > pfor 1 < ¢ < %.

N(p—1
In cases where ¢ = %, we use Remarkl O

1.4 Proof of the Main Theorems

This first proposition serves a dual purpose: first, it provides a mountain-pass geometry, and
secondly, it acts as an auxiliary result to demonstrate that the minimax levels can be controlled

by strategically selecting directions provided by truncations of the Talenti functions.

Proposition 1.4.1. Consider 1 < q¢ < p < N, g satisfying and . Then there exist

€0, Lo, t1 positive numbers such that

=2

S

J(w+ tu) < J(w) +

=

for allt € (0,ty) U (t1,00) and e € (0,ep).

Proof. We know from Lemma that,
—p)
/]Vue\pd:v—Sp —|—O( o= 1>>

Therefore, there exists €g > 0 such that ||u.| < C for all e € (0,g0). By the continuity of J at w,
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we have that for any o > 0, there exists 0 > 0 such that if ||v — w|| < J, then
|J(v) — J(w)| < o.

Taking v = w + tu., we obtain that,

N
P

J(w + tu) < J(w) +

N

Vit e (0,t) and e € (0,2¢). Now, let us prove that there exists ¢; > 0 such that J(w+tu.) < J(w)
for all ¢t € (t1,00) and € € (0,¢&p).

1 1
J(w + tu.) = ]—)/ (|V(w + tu) [P — Mw + tu.|P) dz + 5/ |V (w + tu.)|?dx
Q Q

—]%/Q(wﬂua)’fdx - /QG(:E, (w + tue) ) do —/Qf(w~|—tu,5)dx.

Since g > 0, we have

1
J(w +tu,) < /(|V(w—|—tu5)| — Mw + tu|?) dx + - /|V w + tug)|dx

——/w+tu5 da:—/fw—l—tus

Moreover, we have the equality

IV (w + tu.) P = [|[Vw]* + 2tVwVu, + £*|Vu.|] :

]Vua\) Vw Vu.

L plvel]t
Vol

|IVw| |Vu,| Vw2 |

= |Vw|? {1 +2 (t

valid for all z € Q where Vw(x) # 0. By Proposition [1.3.4] we have:

a) if p > 3, then

/ |V (w + tu)|Pde <

wlP  Vw.Vu, V| \? V| \P
P11 4¢P t C t t—— d
/WV '[‘* vop TP e T\l ) T U g

ie,

|Vu|P Vw.Vu, |Vu |\ ™
V(w + tu)Pde < | [VwP |1+ t o (22 | g,
/Qj (w + tu.)| x_/ﬂ] W [+ T P O () |

where v, € {2,p — 1}.
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b) If p € (1,2) or p € [2,3), then there exists a constant C' > 0 such that

|Vue|P Vw.Vu, (V| \"
tu)Pde < P14 / o (222 | g,
/Q|V(w-|— ue)| m_/ﬂ|Vw| [ + Yl +p Yl + Vol i

with v, € (1,p) or v, € [p — 1, 2] respectively.

c) If ¢ > 3,

|Vu|? Vw.Vu, |V |\
tu)|tde < @ (149 t C(t dz,
/Q|V(w+ ue)| x_/Q|Vw| [ + V7 +q Yl + Vo x

with v, € {2,¢ —1}.

d) If v, € (1,q) and ¢ € (1,2) or g € [2,3), then there exists a constant C' > 0 such that

|Vu,|? Vw.Vu, |Vu [\
tu.)|dz < 4|1 49 t o (#1222 | da
/Q|V(w+ Ue )| :c_/Q|Vw| [ + V7 +q Yl + Vol T

It follows from Lemma [[.3.1] that

|Vue|P Vw.Vu, 5
IPdr < N d Ctwelr,
/Q|V(w+tu)| d:v_/Q|Vw\ ( +1 VP +pt VP x + 5

where 3, = (5(,) is given in (L.6). In the same way,

|Vu.| Vw.Vu, s
Idx < (141 t d tragha,
/Q|V(w—|—tu6)| x_/ﬂ|Vw| < + Yl +q Yl x + Cthie

Here 3,, = B(7,) is chosen as in ([L.6). So,

1 |Vue|? Vw.Vu,
tu,) <= P14 t d
J(w + tu,) _p/Q|Vw| ( + Vol +p Vul? ) x

1 Vu|? Vw.V
+ —/ IVw|? {1+ tq‘ ue| +qt O VU ) qo 4+ Ot 1 Otrach
q Ja [Vwl [Vuwl[?

A P ’
__/]w—i—tugypdg;——*/ <E+u5>p da:—/f(w—l—tug)da:.
P Ja P Jo Nt + Q

Knowing that 0 = J'(w)u,., we have that

t/ ]Vw|p2Vqu€dx+t/ Vw|!*VuwVu.dz = )\t/ |w\p2wu5dl’—|—t/ fucdz,
Q Q Q Q
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and,

J(w ~+ tu.) < /|Vw]pdx+ /]Vw|qd:c+—/\Vu5|pdx—|——/|Vu€]qu

C
—l—/\t/ lw[P~ 2wuadat—|—t/fuadx+ —twebr 4 tquﬁ”q
p

——/|w+tu€|pdx——/ —l—u€ dm—/fw—i—tu5
+—/ |w|pd:c—|——/ ]uglpda:——/ |w|pd:c——/ uclPda,
P Ja P Ja P Ja P Ja

(1.8)

ie.,

J(w + tu,) / |Vu|? + / |Vue|? + )\t/ lw|P~?wu, + Ctwer
Q Q

+ CtYgha +é </ |w|p+ﬂ’/ |u€|p—/ |w+tu€|p>
p Q Q
/|u5|p——/( —i—ue) dx.

For every ¢t > 0 and p > 1 we have

/|w+tu€|pdx—/|w|pdx—tp/|u6|pdx
Q Q Q

§2p_1ptp_1/ﬂu§_1|w|dx

+2p_1pt/u€]w|p_1dx.
Q

|“;H°°, we see that

Considering Q. = {x € Q: u.(v) > Ko}, where Ko = maXe(ty,00) | 7 [loc =

*

/(E—kuey dxz/ <E—|—u€)p dxz/ uﬁ*dx—l—/
Q t + £ t + € €
—C’(/Euﬁ*_l%dxjt/gug%

_/Q 0 (7).

p*

dz

w

_— (1.9)
dx) .

From Lemma [I.3.3]

J.

Therefore,

tP ta P )
J(w + tus) <J(w) + —/ V. |Pdz + —/ V. |%dz — —*/ . (ﬁ)
P Ja q

) O(E) + 150(Pa)  (1.10)

+ C (el + 8 e [33 +
AtP

——/ luc|Pdx,
P Ja
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Now, take c¢q > 0 such that ||u. Zi > ¢y > 0 for all € > 0 sufficiently small (this can be done due
to Lemma [1.3.2)). Using the fact that (u.) is bounded in L*(Q2) for s = 1,p — 1, p* — 1, and taking

¢ > 0 sufficiently small, there exist positive constants C' and ¢ such that
* N 1 *_1
J(w+ tus) < J(w) + ct? 4 ct? — P (co -0 (ap)) + O+t T ) (111)
for all t > ty. Take e sufficiently small such that c¢g — O <5%> is positive. The result follows from

the fact that 1,7,,v,p—1,¢,p,p" —1 < p*. n

Remark 9. Tt is important to note that the inequalities established in the cases a), b), ¢) and d) are
valid for any 7, and 7, within their respective definition intervals. However, we will later use the

inequality in (1.10]), which require specific selections of 7, and =, to apply the results of Lemmas
L35 and [L3.6

Knowing that w is a local minimum for the functional J, we can also see that J exhibits the

geometry of a mountain pass.

Proposition 1.4.2. Suppose (g1))-(g2). Then the functional J € C'(WyP(Q),R) and the
following hold:

i) There exists p > 0 such that J(u) > J(w) for allu € W,P(Q) with ||u — w| = p;

i) There exist e € W, P(Q) such that ||le — w|| > p and J(e) < J(w).

Proof. Take e = w + tu,, choosing ¢ sufficiently small and ¢ sufficiently large. Item ii) will follow

from ([1.11]). O

Now, define
[:={y €C([0,1],W;"(Q)) : 7(0) = w and J(v(1)) < J(w)}.
Thus, I' is non-empty, and the mountain pass level

— inf ¢ 1.12
m i= inf max J(1(1)), (1.12)

is well-defined.

Remark 10. The existence of a (PS) sequence at level m is found in Theorems 2.8 and 2.20 of [29].

Proposition 1.4.3. Assuming that and hold, let (u,) be a (PS) sequence for J in
Wy (Q). Then (uy) is bounded.
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Proof. Let (uy) be a (PS) sequence for J € WyP(Q), that is, a sequence such that J(u,) is
bounded and ||.J'(u,)|| — 0. Thus, for any € > 0 and n sufficiently large,

/
sup |J (un)un|

<e¢
lunfiz0  |ltn]

— Y

ie.,
| () un| < €l

Hence, we have
1
J(un) — =J (up)ty < C + ||tg]]-
p

Moreover,

1 1 1
() = =7 (1)t = ]3/Q<|vunyp Ao+ /Q Y |7da — /QG(:C, (un) )

— i*/(un)lj:dx—/f(x)undx— l/ (IVun|P — Mug|P) da
P Ja Q P Ja
1 1 * 1
/\Vun|qu—|— /(un)ﬂ dx+—/g(:1:,(un)+)undx
P Ja P Ja

Yy

So,

Since % < %, f € L>(Q), and using and (jgJ)), it follows that,

(1 _ i) J ) de <€+ [ 6 o)) de+ Cll ]

p P
_¢ (1 1l —f-/ﬂG(x, (un)+)dx>

<c <1 il + ¢ (/an)ﬁ*dx):*)

with 6 < p*, so, we conclude that,

e <Ca ).
Q
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for large n. On the other hand, since LF" () — L%(Q), we have

/Qg(a:, (tn) 1 Jundr < C' + /(un)’j_*dx.

Q
So,
el < el + iy
= J (un)u, + /Q(un)ﬁ dx + /Qg (2, (un), Jundz + /Q f(x)uydz,
<O+ ).
which implies that (u,,) is bounded. O

Since we cannot guarantee that J satisfies the Palais-Smale (PS) condition, we establish
compactness properties for the functional J, provided that m defined in (1.12)) remains below

a certain threshold.

Proposition 1.4.4. Assuming (g:)-(g2) and m < J(w) + S%/N, we conclude that J possesses a

critical point u # w, obtained as the weak limit of a (PS) sequence at the level m.

Proof. Consider (u,) as a (PS) sequence for J at the level m. By Proposition there exists
u € WyP(Q) such that u, — u in Wy (Q), up to a subsequence. Therefore, using well-known

arguments due to Boccardo-Murat [24], we have

J (up)v = / (|Vtn| Vun Vo — NMug [P~ ?u,v) da + / V| *Vu, Vodr
0 Q

_ /Q " lody — /Q o, () 4 Yodar — /Q foda

— J'(u)v.

Thus, J'(u)v = 0, i.e., u is a critical point of J. Define | = liminf ||u,, — u|[P. If [ = 0, then u,, — u
in W, (Q), and thus if J(w) = m, we can choose (u,) such that ||u, —w]|| > 2 £ > 0 for all n, where
p is given in Proposition [L.4.2] (see [29, Theorems 2.8 and 2.20]), so the ch01ce of (u,) implies that
u # w and J(u) = m = J(w). However, if J(w) < m, then J(u) = m > J(w), which also implies

u # w. So, we can focus in what happens if [ > 0. It follows from the Brezis-Lieb Lemma that

[unl[” = llun = ull” + [Ju[” + on (1),
[nl[fyra9) = llun = ulliro) + lulliyoq) + on(1),
()l = e — )l 4l [+ 0 (1)
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Therefore

1 1
Tum) = (o =l + el = M) + - (=l + 0l
1
__*<H(“" )+ llp- + | / (un)+ dx—/f Jundz + 0,(1)
p Q
Since J(u,) — m, we obtain
1 P 1 q 1 p*
m+on(1) = J(u) + =[lun = ull” + =[Jun = ul[j1.4q) = = (un — )1 [l
p q p
Similarly, using the fact that J'(u,)u, — 0, we get
0n(1) = lJun — ull” + [lull” = Ml + llun = wllfro@) + 1l = I = w) 5
— [Juq zi —/g(x,u+)udx—/f(x)udx.
Q 0
Using the fact that J'(u)u = 0, we conclude that
on(1) = llun — ull” + [lun — ullfy14q) = (un = w)+ 5
So,
[m = wll” + Jlun = wllfyra@) = on(1) = [(un = w) 4[5
< |lun
< S |lun
and then,
" "
l—l—hmHun—unlq @ < S 7,
ie.,
1< S 1%
This implies that
1> 57,
Now, notice that
1 poy L q 1 P
m+on(1) = J(u) + ];Hun —ull” + gl\un = ullra) — ];H(un = u)y [

1 1 1 1
= J(u +(———> un—up+(———) Uy — wl|d )
(w) pr | | i | [ee
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And so,

|2

l S
> — > .
m_J(u)+N_J(u)+N

N
Using the assumption m < J(w)+ £2-, we must have J(u) < J(w), which implies that u # w. O

Now, the remaining task is to demonstrate that the minimaz level, as defined in (|1.12), is

below J(w) 4 SN/?/N. This is accomplished in the two final propositions of this chapter.

Proposition 1.4.5. Consider m, as defined in (1.12). Under the conditions outlined in Theorem
it holds that

N

S'p
m<J(w)+W

Proof. From Proposition [1.4.1] we know that

N

S
J(w—i—tug) < J(w)—Fw,

for all ¢ € (0,%9) U (t1,00) and € € (0,&¢). Since m < max;>o J(w + tu.), it suffices to show that

there exists sufficiently small € > 0 such that

S
J(w+tu.) < J(w) + —,
N
for all t € [to, t1]. Our starting point will be the inequality (|1.10]), which was derived in the proof
of Proposition m Notice that (1.10)) if valid for for any ¢ > ¢, and we choose 7, and 7, as in

Lemmas |1.3.5[ and [1.3.6] From Lemmas [1.3.1) and [1.3.2] using ¢ € [to, 1], we obtain

J(w + tus) <J(w) + (% - %) S% +0(h) — Cer + 0 (7 ) +0 (77)

+ Clluclly +O(e 7" ) + 0 (EL) +0 (%) + 0(c%n) )

< J(w)+ SWP — Ce? + Clluely + O (&T%) + 0 () + O(™)

+ O(ePn),

P p

Lemma We must now analyze the cases of the estimates of ||u.||; and make the appropriate

where sup, (tp — tp*) = ~, By = B(q) and ,, = B(7,) is as in (L.6) and satisfy S, 3,, > p due to

comparisons that depend on the possible values of p. Therefore, we continue by dividing the
analysis into several cases:

Case 1: Let us assume 1 < p < 22 then p € (1,2—

o ) Notice that, using the hypothesis

1
N
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N > p? + p, we obtain

N—p N—p 2N
>N — >p forl<p< ——
» - p, 1or p_N+2’
N—-—p N-—-p 1
N — > > p, fi <p<2-——.
5 5 p, for == <p N

Thus, drawing from Lemma|l1.3.1, we can extend the estimates initiated in (1.13)) to derive

N

J(w + tu.) <J(w) + SWP —CP 4+ 0 <€NJN;P)> L0 <€N;p>

S

N — CEP.

< J(w) +

Case 2: If p= ]\2,—%, then from the Lemma we obtain practically the same estimate, that is,

J(w + tuc) <J(w) + % -0’ +0 <5N_%> log(é) + 0 <5N;p>

N
g
< J(w) + Wp — CeP +o(e)
N
< J(w)+ 57 CeP
J— N .
Case 3: If ]3—5\:1 <p<2, 80 p](\;:% > % and continue the estimate in ([1.13)) to reach

N

T+ tue) ST(w) + 2~ O 40 (=#5) + 0 (77)

N
< J(w) + S]\: + —CeP + o ()
< J(w) + SW — CeP.

Case 4: If p>2 and N > p(p?> —p+ 1), we have

N—»p < N—p
plp=1) " p
Now, estimations in ([1.13]) can be continued in what follows:

2<p<

N

T+ tu) () + 52— 40 (5655 + 0 ()

N
< J(w) + i\: + —CeP 4+ o (eP)
< J(w) + S]\: — CeP.
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Therefore, in any case we will always have

N
P

S

J(w+ty,) < J(w) +

Y

=

for all ¢ € [to, t1] where € > 0 is sufficiently small. O

Incorporating hypothesis to address the gaps in N and ¢ that were not covered in the

previous proposition, we present our final proposition as follows.

Proposition 1.4.6. Assuming that hypotheses , and are satisfied and1 < g <p < N,
then

N
p

S

m < J(w) + .
() + %

Proof. Following the same steps as in the previous proposition, but now including g (we ignored
it in the proof of the estimates in Proposition [1.4.1} since it was not playing significant role and

it is positive), we have

N

J(w + tu) <J(w) + SWP — Ce? + Clucll, + O <5¥) +0 (") + O (%)

+0 (gP) — / G (z, (w+tus)y) dx

where t € [to, t;]. From condition and by (1.9) we have

/ G(z,(w+tus)y)dz > C / (w + tu.)ldx
Q Q

EC/QE (us—l—%):d:c

> o/ﬂ wdr — C(llull2=) + [lue]y).

From Lemma [1.3.3, for p* — Nl_p < s < p*, we have,

/Qg uidr = /ngd:c—O <5%> )

Taking s = ¢ and s = o — 1, note that we can use the Lemma because we have
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P — Ni_p <p*— NL_p < o < p* due to (g3). So it follows from Lemma [1.3.1] that

N

J(w ~+ tu.) <J(w) + SWP — Ce? + Clucl + O(5¥) + 0 (%) + O (™)

+0 (5&(1) + O( —(N=p)(o— 1)/p) CeN-(N=p)a/p 114

< J(w) + 20+ Cllucl +0 (£5) + 0 (%) +0 (%) +.0 (%)

— CSN_(N_p)O-/p.

for sufficiently small € > 0 and ¢ € [to, t1]. Notice that we disregarded the term e in the estimates
(1.14) because it was only beneficial in scenarios with specific dimensional restrictions on N.

N=(N=p)o/p ingtead. This approach, however,

Currently, by invoking condition , we can utilize ¢
necessitates a thorough analysis of all the exponents mentioned in . It is essential to confirm
that the exponents (N — p)/p, Bp, Bys B4,, and the exponent derived from the |ju.||; estimate,
are all greater than N — (N — p)o/p. Thus, we need to conduct estimates analogous to those in

Lemmas [1.3.5] and [1.3.6] This examination will involve studying the possible values of p and ¢

separately.

Case 1: If 1 < p < N+1’ then ¢ € (1,2) and v, € (1,¢). Since ﬁ—fl <2- —, it follows from
Remarklzlthat (p— 1) < 1, that is, ¢ > 7, > N(p 1 , implying that
N N —
I VPR VO Cl O
p b
if and only if
> Nq
o> —
By (g3, we have ¢ > max{p* — L, i p} hence 5, > N — ( N5 for q € (1,p). Similarly,
N N —
B, =N ——n, >N—MU,
p p
if and only if
Ny
o> —2L
N—p
By , we have o > Nq > NW" , hence 3, > N — (N=p) 5 for Y4 € (1,q). The choice of j, as in

gives us 3, > N — (Np L )0 Therefore from Lemma 1.3.1} we continue the estimates in (|1.14]
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to obtain

N

S'r _(N-p) N-p
ﬂw+w9§ﬂm+7v+OGN p>+0&p>+0@@M%Nﬁ)

+0 (Eﬁm;> CeN—(N=p)a/p

N
<J@0+%§_4kN4Nwwm+o@N4Mﬂwg

N
p

S
N

< J(w) +

for sufficiently small e>0andt € [ty,t].

Case 2: p = N +1 The result is analogous to the previous case, with the only difference being
_w (N-p)
the term O ( ) log(%) instead of O ( N=75 )

Case 3: p > N +1 This case must be divided also in several steps, actually. First, consider the
case N_+1 <p<2—— We have ¢ € (1,2) and v, € (1,¢), and also ( ) <1 <7, <gq. In other
words,

N N —
Bq:N——q>N—wa,
p p
if and only if o > NN—qp
By (g3)), we have o > max{p* — NLﬂD,p* -1, p} hence 8, > N — ( =) 5 for ¢ € (1,p). Similarly,
By, > N — (Npp)a for v, € (1, ).
Now, suppose2——<p<2 Then ( ) >1,q€(1,2),and v, € (1,q9). If ¢ < N]E;” 11),then
N — _
%:( mq>N_< p)
p(p—1) p
if and only if,
N — N —
N-p) _ n_{ mq
p p(p—1)
if and only if,
Ne ¢ . q

since p < 2.

Similarly, 8,, > N — Np) 5 for v € (1, 9).
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If ¢ > N(p 1) then

N N — N(p-1
/Bq:N——q>N—MUforqE(L,p>.
p P N -1

We just need to take v, € <1, fo;”) and we will have 3, > N — —(N;p)a.

If2<p<3-—2 thenl< N(p 1) < 2. Let us suppose ¢ € (1,2), then we will have v, € (1, q).
Ifqg%then
(N —p) (N —p)
fy=-—-"2q>N—-—-—"¢
toplp-1) p

because, o > p* — -1 where, p > 2. In analogous way, we obtain for 3., .
p p—1 Ya

If ¢ > st,p 11), it follows from that

N N —
p

storge (M)

N -1

We just need to take v, € <1, NJ(V? 11 ) and we will have 8, > N — (Np—p)

Now, suppose ¢ € [2,p) C [2,3), then v, € [¢ — 1,2]. Note that ¢ > (
that N
6q >~ N — ( _p)O'
p
for g € [ ]E,p 11),p) and taking 7, =¢—1 < ]S[p 11), we have 8, > N — @a.
If3—— < p < 3, then ( ) > 2, thus for ¢ € (1,2) we have v, € (1, ¢) with
N — N —
&:( P~y WN-p),
p(p—1) p
e (N —p) (N~ p)
- D - D
By, = 3V > N—-——0.
Mopp-1) p
_ : : N(p—1) _ (N-p)
If ¢ € [2,p) C [2,3), then 7, € [¢ — 1,2], implying that v, < ==+ and §,, = o) Ve >
(N—p)
N - @y
Suppose 2 < g < N]E[p_ll) or N]E/p_ll) < ¢ < p from (jg5) in an analogous way we have 5, > N — %
Finally, for p > 3, we have 2 < JS,” 11), then, if g € (1 2), we have no issues because 7, < ¢ < ]S,p 11).
If ¢ € [2,3), we take 7, = ¢ — 1 and thus 3,,8, > N — N=p) 5 1y . If ¢ > 3, then
Yq € {2,¢—1}. We simply take v, = 2 < N(p 1 ) and we will have 57 > N— (N N-p) 5 Additionally,
for q € [3, ﬁf’fﬁ) or q € [stfp 11),p> we Wlll have By > N — N=p) & by

The choice of 3, in equation gives us B, > N — (NTPO by . Therefore, from Lemma
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1.3.1), we can go back to estimates started in ((1.14)) to conclude that

N
Sw —p
J(w + tUE) SJ('UJ) + W -+ O <€(N—p)/[p(p—1)]) + O(ENP ) — CEN—(N—p)U/p
N
S? N—(N—p)o N—(N—-p)o
< J(w) + ¥ — ON-(N=p) /10_|_0(8 (N—p) /p)
S
<J
() + >
for € > 0 sufficiently small and t € [ty, t1]. Here was used in the second inequality. O

1.4.1 Proof of the main theorems

Theorem [1.2.9] is proved using Propositions [1.2.8] [1.4.4] and [1.4.5] and Theorem [1.2.10] is proved
using Propositions [1.2.8] [1.4.4] and |1.4.6{
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Chapter 2

Critical non-homogeneous problems on

the (p, q)-Laplacian

2.1 Introduction

In this chapter, we study the problem:

{ —Apu — Agu = NMulP72u + plu|%u + [ulP" "2u + f(z) in Q, @.1)

u=0 on 0f),

where 2 is a bounded domain with a smooth boundary in RV, 1 < ¢ <p < N, A € (0,\;), and
0 < p < py where \; and pq represent the first eigenvalue of the p-Laplacian and the g-Laplacian,
respectively. Our work extends the study given in [31] by incorporating the non-homogeneous
term f € LP*I(Q) into the equation. Within this framework, we establish the existence of two
solutions. The first solution is obtained using Ekeland’s Variational Principle, as described in [16],
while the second solution is found by evoking Talenti concentration functions in conjunction with
the Mountain Pass method, following the approach presented in [19].

In the homogeneous case, [3I] identified a nontrivial, nonnegative solution under various
restrictions on ¢ and p, using techniques that use Morse theory to compare critical levels and
critical points of the associated functional.

In our case, by introducing the inhomogeneous term, we demonstrate the existence of two
distinct solutions under very similar restrictions on p and ¢ as the ones given in Chapter 1,

provided that the norm of f is sufficiently small.

2.2 Hypotheses and Main Results

Consider f € LP*I(Q) non-zero. Let us define
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[Vl

)\1 ==
wewlr @0y lullp

and for the ¢-Laplacian,
[Vl

1n q
wewlr@nfoy lullg

H1 =
which are the first eigenvalues of the problems

—Apu = ANulP?u in Q
u=>0 on 02,

—Ayju = plul?u in Q
u=20 on 0f).

Our main theorems for this chapter are stated below.

Theorem 2.2.1. Suppose A € (0,A1), 0 < pu <y, f € 7 (Q) nontrivial. Then, for any p > 1,
there exists a constant M > 0 such that problem (2.1)) has two solutions provided that || f|| . < M,

N { max{p® +p,p*/(p —1),(p = 1)p*/(¢ = 1) +p}, if1<p<?2
max{(p — 1)p* +p, (p — 1)p*/(¢ — 1) + p}, ifp>2,

and
1<qg<(N-—p)p/N.
Remark 11. Notice that
(p=1p*+p=p*p—1)/(a—1)+p
if and only if
2<q,

which means that, in case ¢ > 2 we can assume the same restrictions as in Theorem [1.2.9,

Now, in case p = 0, the situation returns to Theorem [1.2.9 without any further restrictions on

q. We have the following theorem.

Theorem 2.2.2. Suppose A € (0,\), p=0, f € Lp*,(Q) non-zero. Then, for any p > 1, there
exists a constant M > 0 such that problem (2.1)) has two solutions provided that || f » <M,

N max{p? + p,p*/(p— 1)}, ifl<p<?2
max{(p — 1)p* + p}, ifp>2,

and
1<qg<(N—-p)p/N.
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As usual, we see that weak solutions of the problem ([2.1]) are critical points of the associated

functional given by:

1 A 1
:—/ |Vu]pdx——/ |u\pdx—|——/ \Vu\qu—ﬁ
D Ja b Ja qJo q

P* Ja
— / fudz
Q

and

J'(u)v:/|Vu|p_2Vqudx—)\/ |u|p_2uvdx—|—/ |Vu|"2VuVudz
Q Q Q

- u/ u| " ?uvdr — / lul?" “uvdr — / fudzx,
Q Q Q
for all u and v in W, (Q).

The objective of the remainder of this section is to show that J satisfies (PS). for some ¢ # 0,
which will allow us to find w € W, () as a solution to the problem such that J(w) < 0.
This solution will be obtained using the Variational Principle of Ekeland. Let us first prove a
standard fact regarding this scheme. As in Chapter 1, let us consider again

ul”

S =

the best constant of the embedding W, " () — L*" (Q).

Proposition 2.2.3. Consider i1 < p1. If (u,) is a (PS) sequence for the functional J in Wy P(Q),
then (u,) is bounded.

Proof. Consider (u,) a (PS). sequence of the functional J. Then we have

1 1 1 y
:-/ yvun|de+—/|vun|Q—ﬁ/ |un|de—§/ |un|p——*/|un|p da
q .Ja q Jq P Ja P Ja
/f Yupdx

=c+o(l),

and

J'(un)un:/|Vun|pd.21:+/|Vun]qu—u/]un|q—)\/|un|p—/|un|p*dx
0 Q 0 0
/f Yundz

o(1)[unll
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Therefore,

1
e+ lunl| > J(uy) — 5J'(un)un

= (2=2) vulg = sanli) + (3= 3) [ 1o
- (1_ %) /Q F(@)unda.

IVull§ = plluallg = 0,

P dx

Since p < py, we have:

and ¢ < p implies

* 1
Prdr < c+ ||u,| + (1——>/f(x)undx
D) Ja

< e+ |lunl| + CIIfI]
<c+ unll +S7Clf

(-2) -

U, || p*

p*l UnH

Therefore,

/ \un\p*dx < C (14 [Junl]) -
Q

Thus,

.
[unlX < HlunlX + [Vunll§ = pllunll§ + llunllp- — [lun

g*—i—/fundx
Q

g:—i-/funda:—/fundx
Q Q

= J (up)tn + ||tn

< O A [lunll)-

Knowing that ||u,||5 < C||u,||P because they are equivalent norms, we have

[un[[” < C A+ Jlunl])-

For the next proposition, consider the following:

o=+ (1-2)1s

p*’t.

Obviously,

sup g(t) > 0.
>0

Proposition 2.2.4. Suppose ¢ < SN/? /N — sup,s g(t). Then the functional J satisfies (PS)..
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Proof. Let (u,) be a (PS), sequence of J in W, (Q), it follows from the previous proposition that

(up) is bounded in W, (). Therefore, passing to a subsequence if necessary, we find that there

exists u € Wy P(Q) such that u, — u in Wy?(Q), u, — u in L*(Q) where 1 < s < p* and u, — u

a.e. in x € €. It follows from the weak continuity of J’ that

J'(w)v = lim J'(u,)v =0,

n—oo

for any v € W,*(€). This means that u is a weak solution of the problem (2.1)). Consider

[ = liminf ||u, — ul?.

If [ = 0 there is nothing to do. Let us then suppose that [ > 0. From the Brezis-Lieb Lemma

we have that
[unll? = [Jun — ul|” + [Jul” + 0n(1),

[nl[fyr,a0) = llun = ully 1q(g>+IIUIIW1q +on(1),

.+ on(1).

Hun * = ||un

So, using J'(uy)u, — 0 and J'(u)u = 0 we have
on(1) = J'(uy)uy,
= (llwn = ull” + [Jell” = Allullp)
+ (Jhun — uuwlq + uuu‘;m(m — plull?)
o (I /fudx+on( )

= J(wu+ fJun = ull” + fJun = ullfrq) = llun —u

p*

p*

implying that

g* +on(1) = [lup — ul|l” + |lun — UH(I]/VLq(Q)'

|t

Consequently,

[t = ull” < flun — wll” + |lup — u”%vhq(g)

—l—on(l)

= ||un

< STHun — ul|”" + 0,(1).

Applying the limit on both sides we have
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ie.,

sz

>S5

Using Brezis-Lieb, by Equation (2.2)) and Hélder’s inequality, we get

o= i [0 = 27 )

n—o0

m [ (1_ L v (11
Z 5% KP p*) e (1 p) /qu”dx}
. 1
— (1 — Z_9> /qudx

>—mm+—ggm%—mww%—w@wm+%m)

1
:NJ%@%—wmw% oy + 0a(1)) = gllluly)
1
> — lim (||u, — u||” + 0,(1)) — sup g(t
2 o lim (] I (1)) t>1039()
l
= — —su t
N t>gg()
N
> (1
—su ,
> 7 Sy

which is impossible because ¢ < SN/? /N —sup,~ g(t). Therefore, | = 0 and u,, — u in Wy (Q). O

Lemma 2.2.5. There are constants py = po(p, N, S) >0 and M = M(p, N, S) > 0 such that, for
all ||u|| = po, we have J(u) >0 7 o S M.

Proof. By Hoélder inequality and Sobolev embeddings, we have

(/ ]Vu|pdx——/ yu|P) (/ yvuyq—ﬂ/ ]u\qdm) —i/ " da
Q q Jo P Ja

)udz
</ |Vu|pdx——/|u|p) L /f Yuda
|

)\ P
1— 2 p_
> (15 )l

VSTl

p*

I
ﬁl»—‘ ’BI»—*\@I%—‘
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Considering t = ||ul|, it follows that

7p*

J(u)zl(l—i)tp—sf " — ST ||f
p

b

1 7757* . —1
Al H(2) o) e

Since p > p* and A < Ay, there exists pg > 0 such that

*

—-p

1 A S X
hip))==-(1-—2) = P > .
(po) p( A1> p py 7>

Then, choose M such that

1l < 5705 hpo) = M.

This implies that
P h(po) =S |If

20,
finishing this proof.

Lemma 2.2.6. Let py be the constant from Lemma|2.2.5 Then

inf J(u) <0.
llull<po

Proof. Consider ¢ € C§°(Q2) such that [, f(x)pdz > 0. So,

tr p P ﬁ q __ q _ﬁ p*
at0) == / (IVol? ~ MoP)dz + / (V67— lol)dz = / o) da

- od
< 0,

for all t > 0 sufficiently small. This means that

inf J(u) <0.
llull<po

]

Proposition 2.2.7. Consider p < py. Let M > 0 and py be constants determined by Lemma

and assume || f

that

J(w) = inf J(u)=c<0.

l[ull<po
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Proof. 1t follows from the Lemmas and for all |Ju|| = po that

c= inf J(v) <0< J(u).

llvll<po

Moreover, from Ekeland Variational Principle, there exists a sequence (u,,) in B(0, py) such that
J(Up,) — ¢ and J'(up, )ty — 0 when m — oo. Furthermore, from Lemma M = S%pgflh(po)

so note that without loss of generality, we can decrease py to obtain,

*

sz

s S . Lo
—supg(t) > ~ —sup{Cpg "h(po) St — W} >0>c¢

N >0 >0

for po > 0 sufficiently small. Notice that it is immediate that (u,,) is bounded in W, (£2), and
by passing to a subsequence if necessary, there exists w € Wy (Q) such that u,, — w in W,”(Q),

Uy — w em L*() where 1 < s < p* and u,, — w a.e. in z € Q a weak solution of the problem
(2.1). It follows from Proposition m that u,, — w in W, ?(Q), and thus

J(w) — J(up) — | i”n<f J(u).

Therefore,

J(w) = inf J(u).

l[ull<po

2.3 Preliminaries

In this section, we will state some results that will be very important for this chapter, some of
which were already announced in the preliminaries of the previous chapter, but for the reader’s

convenience, they will also be announced here.

Lemma 2.3.1. Considering 0 < e <r and 1 < p < N. The following estimates hold,

Ce? + O (eWN-P/?=1) jfp* < N,

ce? < / | ue [P de < CePlog(2) if p*=N, (2.3)
“ Ce(N=p)/(p=1) if p* > N,

/Q | [P da < CeNPI/P (2.4)

/Q | [P da < CeW-rl/p, (2.5)
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C'e(N=p)/p(p—1) if p>2N/(N + 1),
/'“&'d“ CeN-Wnivlog() if p=2N/(N+1),

CeN-(N=p)/p if 1 <p<2N/(N +1),
ceN(Np)S/pS/Q|u |* do < CeN™ (N=p)s/p if p* — N/(N —p) <s<p".
Forl<~y<p
8 : _ _
el < { g; log(2) Zifvvij\ff\;];p —?)//( g\f —11))
where,

{ o 1<y < R

R e = )<'y<p

Remark 12. For s = ¢ — 1 consider, 0 < € < r so,

—1
/ [ iy = - a=1/p(p-1) / 9(z)? i
Q RN |

er/(0=1) 4 ||p/(p=1)] (N=p)(g=1)/p

—1
_ N-(N-p)a-1)/p) / ¢(ex)? "
—1)1(N=p)(g=1)/p
N1+ ’x‘p/(p 1)]

< C(N,p, q)eVNIN=P)a=1)/p]

2r/
+(]€N—[(N—p)(q—1)/p]/ 6RN—l—(J\f—p)(qr—l)/(fv—l)dR
1

< C( N=[(N=p)(g=1)/p] | (N=p)(g=1)/p(p— 1))

Then,
/ ]usquld:c -0 (ENf(pr)(qfl)/p) +0 (S(pr)(qfl)/p(pfl))
Q

Lemma 2.3.2. Consider 0 <e <r and 1 <p < N. Then,
N (N—p)
IVl = 57 +0 (s0),

luclly = S5 +0 (e5°7).

The following Lemma will be important for estimates in LP"((2).

(2.6)

(2.7)

(2.9)

(2.10)

(2.11)

(2.12)

Lemma 2.3.3. Consider 1 < s < co. Then there exists a constant C' (depending on s) such that,

o+ B1° = lal* = 8| < C (lal*7 8] + |87,

YV a,peR.
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Remark 13. Consider « = w and = tu, for each t > 0, take s = p* and from the previous

ﬁ: SC(t/\w ’ u5+tp*—1/ |, p*—l\w\dx)
Q Q

2.4 Proof of the Main Theorems

Lemma we have,

—[lw + tuc ||} P+

In this section, we will prove the main result of this chapter. However, in order to do so, we will

need some auxiliary results.

2.4.1 Geometry of the Mountain Pass and estimates for the minimax

level

Lemma 2.4.1. Consider 1 < q<p < N, 0 < pu < puy. Then there exist positive constants €y, to, 11
such that

N

J(w + tu) < J(w) +
for allt € (0,t9) U (t1,00) and € € (0, o).

Proof. We know from Proposition taking v = w + tu,, that,

S
J(w + tu.) < J(w) +W

Vte (0,tg) and € € (0,e0). Furthermore, Analogously to what we did to obtain (1.8), we find
J(w+ tu.) < / |Vw|Pdz + - / |\Vw|ldz + —/ |Vue|Pdz + —/ \Vue|?dx
+ )\t/ |w|p2w.u5dx+tu/ |w|q2w.u€dx+t/ lw[P"~ w.usdx—i—t/ fu.dz
Q

C C
+ —t”ﬂgﬁp + —t”qaﬁvq - —/ |w + tu.|Pdr — —/ |w + tu|?dx
——/ lw + tu [P dx—/f w + tu.)d

we(ls) if se(12),
Vs € [5_172] Zf s € [273)7
vs €{2,s — 1} if s>3,

where,
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with s € {¢,p}. Moreover, (3, is as in (2.9)) since r € {p,v,}. From the Remark

J(w + tu.) < /|Vw|pdx+ /|Vw|qu+—/|Vu€|pdx—|——/|Vu5|qu
+)\t/ \w\p_zwugda:—l—tu/ \w|q_2wu€dx+t/ lw|P" wugda:—i—t/fugdaz
0

C C
+ —t%’sﬁp + —t”qsﬁvq - —/ |w + tu.|Pdx — —/ |w + tu|?dx

/( >+0( /|w|p Lueds + 7' /|w|up 1dx)
— [ flw+ tu.)dx

Then, adding and subtracting %fQ lwlPdz, ® [, |w|?dz, = M2 [0 |ue[Pdz and, “tq o, [ue|%dzx, we obtain

e

J(w + tu.) < /]Vw|pd:v+ /|Vw|qu+—/|Vua|pdx+—/]Vu5|qd9:
+)\t/ \w\pQwusdx—l—t,u/ \w|q2wu€dx+t/ lw|P”" 2wu.dx

C C
+ —t”?aﬁp + —t'ngﬁ”q - —/ |w + tu|Pdr — —/ |w + tu|?dx

- — (/ P / ) (t/ \w\p*_luedasttp*_l/ ]wluﬁ*_ldaz)
Q Q
A A
—/fwd:c+ /!w[%x——/[w[”dm%—ﬂ/[w!qdaﬁ M/]w]qu
)\tp
/\ue\pd:v— /|u5\pd:1:+—/|u5]qu——/|u5|qu

Arranging the terms of the equation above we obtain

J(w + tu.) < /|Vw|pdx+ /|Vw]qu——/|w|pdx——/|w|qu—/fwdx

—/ |Vu5|pdx+—/ |Vu5|qu+)\t/ |w [P~ 2w.u.dx

C C
+ t,u/ |w|??w.u.dx —i—t/ lw|P" 2wy dr + —t“”’gﬁ” + —t”qeﬁ”q

(/ |w|pd:v+tp/|u |pdx—/|w+tu5|pdx) - —
—/ ]uglpda:—l—— (/ \w|qdaz+tq/ |u€|qu—/ \w+tu5\qd:p)
0 0
Mtq *—1 *—1 *—1
|u5]qd:v+0 ]w]p usdx + t* |wlul " dx | .
0
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So,

tP 4
J(w ~+ tu.) <J(w) + E/ |Vue|Pdz + E/ \Vue|%dx + Ct||u||;
Q Q

+ Ctwelr + Ctrachn

A
+ — (/ ]w|pd;1:—|—tp/|u5|pdx—/\w+tua|pdx>
D \Ja Q Q
tP” DN t
——/|ugp ——/\ua\pda:—'u—/]uglqda:
P* Ja P Ja q Ja
B (/ |w|qu—|—tq/|u5|qd:c—/ |w+tu5|qd$)
9 \Ja Q Q
+C (t/ |w|p*_1u€dx+tp*_1/ \w\ug*_lda:).
Q Q

Since p, A\,t >0, 1 < ¢ < p, and using the estimates provided by

/|w+tu6|pd.r—/|w|pdx—tp/|u5|pdx
Q Q Q

<

2”lptpl/uﬁllw]dx—l—?’1pt/u5|w|p1d:c
Q Q
and

<

/|w+tu5\qd9§—/]w]qu—tq/|ug|qd:v
0 Q Q

Qq_lqtq_l/ug_1|w|dx+2q_1qt/u5|w|q_1d1‘,
Q Q
we reach

P dx

P 4 "
S+ tu) <Iw) + 5 [ Vupder S [ wupae -2 [,
P Ja q Ja P Ja

AtP 4
_ _/ |Ug|pd.’lf _ /JJ_\/ ‘UE‘Qd$ + t’YpO(g@J) + t'YqO(gﬁvq) (213)
b Ja q Jo

p*—1
p*—1

Using the fact that (u.). is bounded in L*(Q) for s = 1,¢ — 1,p — 1,p* — 1 < p, where ¢ > 0

+C (tllualll 0 a2y 8 e[y e

p*

sufficiently small, and taking ¢y > 0 such that [|u.||,.

> cg > 0 for all € > 0 sufficiently small,

there exist positive constants C' and ¢ such that
J(w +tu.) < J(w) +ct? + ot — cot? +C (t+ 177+ 177 477 4 4 ) (2.14)

for all t > ty. Knowing that p—1,p,q,q—1,p* — 1,1 < p* and taking € > 0 sufficiently small, the

result follows. O
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For the geometry of the Mountain Pass, consider that w is a local minimum for the functional
J found in Proposition Notice also that (2.14) shows that one can choose t large enough
such that J(w + tu.) < 0. Moreover, using Lemma [2.2.5 one readily gets

Proposition 2.4.2. Assume f € Lp*,(Q) to be such that || f
J € CHW,P(Q),R) and the following hold:

S M. Then, the functional

i) Let w and py > 0 be given in Proposition[2.2.71 Then J(w) < 0, |w| < po and J(u) > 0 for
allu € WyP(Q) with ||ul| = po.

ii) There exists e € WyP(Q) such that |le| > p and J(e) < J(w).

Now, define
I':={0 €C([0,1],Wy"(Q)) : 6(0) = w and J(A(1)) < a},
where J(w) = «. Thus, I' is non-empty and we can define the mountain pass level

= inf J(y(t
m = fnf maxJ(y(t)
The next result obtains compactness properties for the functional J as long as m is below a
specific limit.
Remember that
J(w) = inf J(u).

l[ull<po
Thus we can state the next proposition whose proof is analogous to Proposition of the

previous chapter.

N
S p
N

Proposition 2.4.3. Suppose that m < J(w) + . Then J has a critical point u # w, given by

the weak limit of a sequence (PS) at the level m

To conclude the proof of Theorem [2.2.1] we still need to analyze what happens in the interval

[to, t1]. For this purpose, we will state and prove that
m < J(w) + SNP/N,
for all ¢ € [to,t;] and sufficiently small . We will need 3, 5, 5,, > p.

Remark 14. Remember that, if, 1 <y < p and [ as in equation ([2.8)), then,

~ (N-p)
p= pp-1)" 7
if and only if,
v>p*(p—1)/(N —p),
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where 1 <y < N(p—1)/(N —1). Moreover,

N
ﬁzN—Eﬁ>p

if and only if,

(N —p)p
<
Y N )
where ]E[](ijll)) <7y <p.
Furthermore,
N(p —
(=1 _,
(N —1)
if, and only if,
1
>2— —.
b N

From Lemma [1.3.6] we have

Lemma 2.4.4. Let 1 < q < (N —p)p/N. Then, there exists v, € (1,q) such that 3y, 3,, > p
where N > max{p? + p,p*/(p— 1)} if l<p<2and N > (p—1)p*+pifp>2.

Remark 15. From the estimate below
g1 7. _ N—(N—-p)(g—1)/p (N=p)(¢—1)/p(p—1)
lu|""'de = O (e )+ 0 (e ),
Q
we have that
N—(N-p)g—1)/p>p.
Furthermore, notice also that

(N—-p)g—1)
p(p—1)

>p

if, and only if,

p*(p—1)
N>W+p.

We will need these comparisons to make the correct estimates in the next proposition.

Proposition 2.4.5. Consider A € (0,A\1), 0 < pu < py, N € N such that 1 < ¢ < (N — p)p/N

and N > max{(p — 1)p*> +p, (p — 1)p*/(q = 1) + p} if p > 2 and N > max{p® +p,p*/(p — 1), (p —
Dp*/(g—1)+p} if L <p<2. Then

N
P

S

m < J(w) +

Y

=

for sufficiently small € > 0.
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Proof. Proceeding in a similar way to what was done in Proposition [1.4.5| of Chapter 1 we will
have a similar estimate for J(w + tu.). The difference here, for ¢ € [to, tl], will be given by the
term [, |uc|?"'dz which was estimated in (2.10) , that is,

J(w + tug) <J(w) + SNP/N 4 O (eNP/=D) 4 O(eN D) 1 O(eP) — Ce? + Olucl|y
+ O(E(pr)/p) +0 (ng(pr)(qfl /p) +0 (5 pr)(qfl)/p(pfl)) +0 (gﬁp) + O(eP)
< J(w) + SN?PIN + O(%) — Ce? + Oluc|r + O(eWNP/P) 4 O (eN-N=Pla=1)/p)
+ O<8(N—p)(q—1)/p(p—1)) +0 (gﬁp) + O(ePn)

By Remark [15| and proceeding as in [19], we have

S

J(w + tus) < J(w) + i

— CEeP.

for small € > 0. O

Proposition 2.4.6. Consider p = 0, N € N such that N > (p— D)p> +p if p > 2 and
N > max{p*+p,p*/(p—1)} if l<p<2and1<qg< (N —p)p/N. Then

m<J(w)+SP

Y

=

for e > 0 small sufficiently.

Proof. 1t suffices to note that the estimates given in (2.13)) imply that

J(w ~+ tu.) <J(w /|Vu€\pdx+—/|VuE

- 7 / [weldz + C (¢l + " u| ,’1:1 + ”Hus v
Q

+t7O(eP) + 1720 (eP).

Similarly to Proposition the result follows. n

2.4.2 Proof of the main theorems

For the proof of Theorem [2.2.1] we use Propositions [2.2.7], 2.4.3 and [2.4.5, and Theorem is
completed using Propositions [2.2.7, [2.4.3] and 2.4.6]
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Chapter 3

(N, g)-Laplacian equations with critical
exponential growth and jumping

nonlinearities

3.1 Introduction

In this chapter, we establish the existence of nontrivial solutions for a (N, ¢)-Laplacian equation

characterized by:

(3.1)

—Anu— Apu = NulN2u+ g(x,uy) + f(z) inQ
u=>0 on 052,

where Q2 C RY denotes a bounded domain with a smooth boundary, N > 2, A\ > 0 is a real
parameter, 1 < ¢ < N and g : Q x R — [0, 00) satisfies a Trudinger-Moser growth condition
uniformly in x € 2. This problem is new for the N-Laplacian and also for the (N, q)-Laplacian.
Our objective as in Chapter 1 is to elucidate the effects of incorporating unilateral critical growth
and a non-homogeneous term f € L into the equation. As is widely acknowledged, one of
the primary challenges in dealing with this type of growth condition in g is to demonstrate that
the muinimum level of the associated functional stays below some constant. This requirement
is addressed in [5 27] by introducing an additional hypothesis. To achieve the desired level, the
techniques used in [27] for the case N = 2 require the Moser functions z/ to be supported within
a ball B,, where r > 0 needs to be sufficiently small. Here, similar approaches will be used, but
more intricate conditions over the choices of these radius are necessary.

Let us begin by assuming that f € L>°(2) and that g exhibits a critical growth with exponent

ap > 0. This means that there exists a positive constant o such that
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lim 9(.1) :{ 0, if a>a0 (o)

t=too V=T +oo, if a < a,

uniformly in z € 2. This condition is motivated by the Pohozaev-Trudinger-Moser Inequality (see

[20]), which state the existence of a positive constant C' = C(N) satisfying
N
ay|u|N-T
/e( W) g o C(N)[Q, (3.2)
Q

1
for all u € Wy (), N > 2, such that ||Vul|y < 1, where ay = Nw2—} and wy_; is the unitary
(N-1)-dimensional sphere volume.

Furthermore, we will consider

(51) g:9Q xR — R is a continuous function and g(z,t) = 0 for all € Q and ¢ < 0;

(g2) There are R, M > 0 such that
t p—
0 <G(a,1) := / g(x,s)ds < Mg(z,t), VzeQandt> R;
0

(g3) There is C' > 0 such that

sg(x,8) > y(s)e®" Ve e Qand s > C,

where 7(s) is such that

lim inf 7(52 >0

S§—+00 €08 N-1

for some gy > 0.

In this chapter, we will always assume that 0 < A < A\; and 1 < ¢ < N. The natural space to

deal with our equation is VVO1 ’N(Q), where we consider two equivalent norms

1/N 1/N
llu|| = (/ \Vu\Ndx) and |lul|y = (/ |VulNdz — )\/ |u\Nd:v) :
Q Q Q

The functional associated with Equation (3.1)) is J : Wy () — R given by:

J(u):%/ﬂ(|Vu|N—)\|u|N) dm—f—é/ﬂ|Vu|qu—/QG(:Jc,u+)dm—/Qf(x)udx.

By conditions (1) — (g3) and (ag]), due to (3-2), we obtain that J is of class C' with derivative
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given by

J' (u)v :/(|VU|N2VuVU — MNu|N2uw)da +/ |Vu|"2VuVudzx
Q Q

- /Q o, uy Yoda — /Q f(x)vda,

for all © and v in I/VO1 N(Q) Weak solutions to the problem (3.1)) are exactly the critical points of
this functional.

The main result of this chapter is given below.

Theorem 3.1.1. Suppose that and (§1) — (gs) hold and that f € L>() is a nontrivial
function such that f < 0. Then, there exist two solutions to the problem ({3.1]).

As we have done in Chapter 1, we will find two distinct solutions to the problem (3.1f). At

first, using minimization arguments we get a negative solution, w, for the linear problem

(3.3)

—Ayu— Aju = MulN2u+ f(z) inQ
u=>0 on 0,

which is also a solution for (3.1)), since g(z,w) = 0. After that, we prove a L estimate in
order to obtain some regularity results, and then show that a minimum for the functional J in
the C} topology is also a minimum in the VVO1 N topology. Finally, we apply the mountain pass
theorem without the Palais-Smale condition to prove the existence of a second solution for the

main problem of this chapter.

3.2 Preliminaries

The objective of this section is to present some properties that the function g has, which are

obtained as a consequence of the conditions (§;) — (g3)-
Lemma 3.2.1. Suppose that g satisfies (§1) — (g2). Then

(ga) For R >0 and M > 0 as in condition (§2), there is a constant C' > 0 such that

G(w,u) > celi), v (z,u) € Q x [R, +00);

(gs) There are S >0 and o > N such that

oG(z,u) <ug(x,u), Y (r,u)e Qx][S,+o0).
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(g6) If g also satisfies (o)), for any B > g there is a constant C = C(B) > 0 such that

g(z,u) < C’em“'N/, Vo (x,u) € QxR

Proof. By (g2), there are R, M > 0 such that
0 < G(x,t) < Mg(x,t), forallzecQandt>R.

Then,

u—R vl “g(x,t) G(x,u)
M W M —/R G(z,1) n(G(x,R) ’

implying that
G(x,u) > €$G(l‘, R) > Ceir, forall z € Qand u> R.
where C' = et min, g G(z, R) > 0. Therefore, we have (g4). To prove (gs), using (g2) we obtain,
0<0G(z,u) <OMg(x,u), Yu>Rand > 0.
Then, for all z € Q and u > S = max{R, M}, we get
ug(z,u) = 0Mg(z,u) = 0G(z,u),

which is (g5). For the last item, since g has critical growth, for each 5 > «y we see that given
¢ = 1 there exists R; > 0 such that,

g(z,u) < e’B“N/ for all, z € Q and u > R;.

Considering (z,u) € Q x [0, R,], since g is continuous in a compact set, there is K > 0 such that

0 < g(z,u) < K for all (z,u) € Q x [0, R;]. Recalling that P’ > 1 for all u > 0, we see that
g(z,u) < max{l,K}em“‘N/, V(z,u) € Q xR,

and conclude this proof. O
To establish an estimate of g from below, we need the following technical result.

Lemma 3.2.2. Consider o > 1.Then there is n: R™ — R* satisfying

(s+1) <s7+n(t)s”, foralls>1 andt >0,
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such that lim;_ o+ n(t) = 0.

Proof. For t > 0, let us denote
(s+1)7 —s°

n(t) = sup —

s>1 s7

We need to show that this supremum is finite for any ¢ > 0 and n(t) — 0 as t — 07. For any
t >0 and s > 1 we have

(s+1)7 —s" s Kl+§)g—1} [(1+§l)"—1} 7f'[(1+12”—1]7

80'71 50'71

with r =t/s € (0,t]. Now consider

(1+7r)7 -1
r

p(r) = , > 0.

We see that )
1 =iy — (1 7T 4+1
p'(r):g( +r)7r 2( )7+ > 0.
r

Defining h(r) = o(1 +7)""'r — (1 +r)? + 1, certainly h is derivable for all r > 0, 2(0) = 0 and

W(r)y=oc(c—1)(1+7r)"% >0, Vr > 0.
Then h is an increasing function and h(r) > h(0) =0, Vr > 0. Thus,
h
pr)= %r) >0, Vr >0,

and p is increasing for r > 0. Then, for s > 1 we have 0 < r = t/s < t, which implies

1+¢)7 -1
oltfs) < plt) = LE =L
Consequently,
n(t) =t-supp(t/s) =t-p(t) = (1+1)" — 1,
which means that n(t) € R and
li t)=0.
)
From the definition of n we have the result. 0

Lemma 3.2.3. Suppose that (§1) and (g3) hold. So, there are oy, Yoo and Cy > 0 such that

(s+a0)N

59(2,5) > Voo™

for all x € Q and s > Cj.
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Proof. From condition (gs), there exist C' > 0 satisfying

N/

sg(x,s) > y(s)e™® | V(x,s) € Qx][C,00)

and g9 > 0 such that
()

lim inf — > 0.
s§—+400 esosﬁ
So, there are v,, > 0 and C > 1 such that
1
Y(8) = Voo™

for all s > C. Thus, for s > Cj := max{C, C’} we have

1
N’y 20 N1

! 1 / « s
Sg(ﬂ?,S) 2 7(5)60{081\] Z ’}/0068081\771 eO[QSN _ f)/ooe 0( a0 )
From Lemma [3.2.2] for ¢ = gy/a we can choose gy > 0 such that n(oy) < € and
SN’ —|—€8N/71 > SN’ _i_n(UO)SN’fl > (S—FO’O)N/

for all s > 1. Therefore,

59(1,5) > Yaue T > o eoolsto0)™

for all s > Cy. O

3.3 L™ estimates and regularity

As in Chapter 1 we will get the first solution for as a negative solution for the problem ,
which is obtained by minimization arguments. To properly establish this first existence result,
we need to show some regularity results. The issue is that we cannot apply Theorems [1.2.4] and
[1.2.6] so it was necessary to overcome these difficulties using Lieberman’s regularity results and
an adaptation of Theorem 1.1 of [I§] for our operator.

In this section, we consider two auxiliary problems, with more general assumptions on the

nonlinear terms. The first is

—Ayu— A = f(z,u) inQ (3.4)
: :

on 0f2,

u =
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where f: Q x R — R is a Caratheodory function satisfying
1f(z,8)] < O+ )PP ae. (2,5) € Q xR, (3.5)

for some C, 3 > 0 and p > 1. For the second problem, we consider H : R — R a C! function,
which is even and satisfies H(t) < C(1 + ]t|)p+1eﬁ|t‘Nl for all ¢ € R, for some p > 1 and C, 5 > 0,
and denote h(t) = H'(t). For a fixed uy € L>(Q) N W, (Q) we will deal with

(3.6)

—An(u+ug) = Ag(u+up) = flz,u+up) + ph(u) in Q
u=>0 on 0f),

A solution for (3.6) is a pair (u,u) € R x W,V (Q). The purpose of this section is to show that if
u is a solution for (3.4) or (u,u) is a solution for (3.6)), then u € L>(Q) and belongs to C'(Q),
for some v € (0,1).

3.3.1 Boundedness of solutions

Our first step is to prove that the solutions belong to L>(€2). We observe that if u € W, (Q) is
a solution to the problem (3.4)), then (0,u) is a solution to (3.6 with ug = 0. Thus, we will deal

with the second problem.

Proposition 3.3.1. Consider (u,u) € (—o00,0] x Wy () a solution to ([B.6)), where ug = 0 or
uy € L®(Q) N Wy ™N(Q) solves [B.4). Let § > 1 and M > 0 be such that

(s uo)llzogy + I1F (- u+ uo) | ogy < M.
Then, there exists a constant d = d(N,p, M,0,Q) such that
[l < d.
Proof. For k > 0 we consider the truncation functions

s+k ifs<—k
Te(s) =< s—k ifs>k
0 if —k<s<k,

and the set
Qp ={2€Q:|u(x)| >k}

Since h is odd, we get puh(s)Ti(s) < 0 for all s € R if < 0. For (p,u) € (—00,0] x Wy () a
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solution to (3.6)), we will use
T (u) = (u + k)X (—o00, -1 (u(x)) + (U — k) X[k, +00) (u())
as a test function for (3.6). When ug = 0 we get

/|VTk(u)|Ndx:/]Vu]NQVuVTk(u)d:c
0 Q

S/|Vu]N_2VuVTk(u)dx+/|Vu|q_2VuVTk(u)dx
Q Q

_ / F(a, )T ()

If ug # 0, it is a solution for (3.4)). Using Tk (u) as test function for the solutions u and ug, we see

that
/ (IV (u + o) [V 72V (u + ug) — [Vuo|" V) VT (u)dx
Q
+ / (IV (w4 uo)|* >V (u + up) — [Vue|"*Vug) .VTi(u)dz
Q
< [ (Feut w) = Fo.00)) Tufu)ds,
Q
Taking o = N H and r = 6o, by the Holder’s inequality we obtain

/Q <f(x,u+u0) f(x, u0)> w(u)dz

< (07wl + |f<ac,w>|>9dac)é (f |Tk<u>|rdx)’1“
<M </Q ka(u)de)T [

On the other hand, since N > 2 we have a constant C; = C1(NV) such that

o / VT ()N de
Q

S /Q (|VTk(u + u0>|N_2VTk(U + Uo) — |VTk(u0)|N_2VTk(u0)) VTk(u) dx

_ / (19t + o) N2V (u + o) — |Vauo| N2V ug) .V T(u)da.
Q
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Similarly, since ¢ > 1, we get

/ (IV (w4 uo)|* >V (u + up) — |Vue|"*Vug) .VTi(u)dz
0

= / (IV T4+ 10) "V Ti(u + o) — [V T4 (o) "2V Th(up)) VTk(u)dax > 0.

Recalling the Sobolev embedding W, ™ (Q) < L7(Q), we have

|z

/Q VT (u)[Vdz > Cy ( /Q |Tk(u)|”d:v) o, (3.10)

for a constant Cy = Cy(N,r,Q) > 0. Joining (3.7)-(3.10) we get,

(/Q |T1€(u)|7’dx)]rV <M (/Q ITk(u)|de>i e

where M' = M /(C1C3). So, by definition of o and r, we obtain

r—1 [ohed a0

/ T3 ()" dar < M| 755 = MY|Qu| 5257 = M| Q|71 = M|y 71 (3.11)
Q

Since €2, C Q, for 0 < k < m, and
Th(s)| = (s + k)X (—o0,-11(8) + (8 = k) X[k, +00) (5)| = (5] = K)(1 — X(=kni(5))
for all s € R, we see that
[imrds = [ (ul=wrde= [ (= kyde > n - ki)
Q Qp Qm
Now, substituting the last estimates in (3.11)) we have,
(m — k)| Q| < M| 51, for all 0 < k < m.

Considering (k) = ||, for 0 < k < m we have

N

p(m) < M'(m — k)" (p(k)) ¥ (3.12)
Define a sequence {k,} by ko = 0 and
d
by =k — n=1,2,--- (3.13)

2n
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where d = 2V (M’)+|Q)] =07, We see that

kn:dZQ’j—)d as n — 00.

j=1

We will show by induction that
p(ky) < 20N 0(0). (3.14)
Using k, > k,—1 > 0in (3.12), we get

k) < Mk = ko) (k) P =007 () ((0)

= [P )] o = 20V

= 2"0=N(0).

Now, we have to assume that the result is valid for m. So

) M o = ) (o) 71 = 00" (5] (plh)) P

= M <2N—(m+1)(M/)%|Q|ﬁ)_T ((p(km))N*1 _ 2—7[1\[—(777,—!—1)]|g2|ﬁgp<km)m
< 2*T[N*(m+1)]*mTN‘Q‘ — 27’(m+1)(17N)g0(0),

which means that it is also valid for m + 1. Hence, (3.14) holds for any n € N. Consequently,

¢o(kn,) — 0 as n — oo. Since k, T d and ¢ is nonincreasing, we obtain
0 < p(d) = [Qa] < p(kn) = 0.
From the definition of 4, we conclude that 24| = 0 implies that
[ullz o) < d,

which finishes this proof. n

3.3.2 Regularity of solutions

From the previous result, we know that solutions for (3.6)) are bounded. So we can use Lieberman’s

regularity results (see [10] and [I1]). Let us check the assumptions. We define

pt) =tV 7t for t > 0.
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Notice that p is of class C' and we have

~/
0<cqg-1<PW N1 wiso
p(t)
Denoting
A(n) = p(|n!)% = ("2 + " ?)n and a”(n) = o (n), forneRY
J

we verify that there is a positive constant A such that
N

S i = Ve ana 3 i) < A2

i,j=1 1,j=1
for all n,& € RY. Then, [I0, Theorem 1] and [IT, Theorem 1.7]) give us the following:

Theorem 3.3.2. Let Q be a bounded domain in RN with C* boundary. If u € Wy™ () N L>®(Q)
1s a weak solution of
—divA(|Vu|) = B(x,u) n

with |u(x)| < My and |B(x,t)| < Ay forx € Q andt € [—My, My, then there is a positive constant
v =v(a, A, q, N, My) such that u is in C*7(Q). Moreover

HuHC’l’Y < C(CK A17A Q7N MO7Q)

We can apply these last results to obtain the boundedness and regularity of w, the global

minimum of the functional /. It will be presented in Proposition [3.5.1

3.4 C}x Wol’N topology

The next proposition will be important to show that a local minimizer of functional J in the
C} topology is also a local minimizer of J in the VVO1 N topology. The proof of this result uses
arguments similar to those found in [I§], where the author proved a similar result for the N-
Laplacian operator and considered a nonlinear term f such that sf(x,s) > 0in Q x R.

Firstly, we consider the functional J : VVO1 N(Q) — R associated with problem (3.4), which is

given by
1 N 1 -~
w) =— [ |Vul"de + - [ |Vu|'de — | F(z,u)dx.
N Jq qJq Q

Proposition 3.4.1. If ug € W™ (Q) is a local minimum of J in the CL(Q) topology, then
uy € CY1(Q) for some v € (0,1), and ug is a local minimum, of J in the W™ (Q) topology.
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Proof. Let ug € C3(Q) be a local minimum of J on the C}(Q) topology. By the previous sections
we know that uy € C7(Q) for some v € (0,1). We have that 0 is a local minimizer of the
functional J(- + uo) in C3(Q) and in this way we will show that 0 is a local minimizer for the
functional J(- +uo) in W™ (Q). Let us assume, by contradiction, that 0 is not a local minimizer
for the functional .J(- 4 ug). Then, there is a sequence {v, }ns1 C Wy (Q) such that

1 3 3
|lva]l < = and  J(up +v,) < J(ug), V> 1. (3.15)

3

Consider, H(s) = |s|p+162Nl5|s‘N,, forp=p>1and B=0>0asin ([3.5). Define, for each ¢ > 0,
C.i={ueWyN(Q): K(u) = |Hu)| 110 < e} (3.16)

Notice that for each € € (0, 1) there is N. € N such that v, € C. for n > N.. In fact, by (3.15))
and (3.2)) we obtain
1
N’ 2
) dx) <e

1
/H(Un)dl' < (/ ‘,Un|2(P+1)dx) (/ exp <2N/+1ﬁH,UnHN/
Q Q Q

for n > 1 large enough. This shows that C. is not empty, for any ¢ € (0,1). Clearly, K is a convex

Unp

[[on

operator, implying that C. is a convex set. Moreover, C. is closed in VVO1 N(Q) Then, C. is closed
in the weak topology of Wy (). Since f satisfies (3.5), it follows that

\F(z,t)] < C(1+ |t P, ae. e, VteR, (3.17)
Recalling that ug € L>(£2), we get

C(l + ”'U/(]HLoo(Q) —+ ‘U’)erlemquuOVV
< 1 4 ulyrries
C(1+H(u(z))) ae zeQ VteR,

where C' = C({|uol| ), p, B, N). Thus, for any u € C. it holds
/ Flo,u+up)de < C (1) + K(u) < C (12 +2) < C (12 +1).
Q

Consequently, for all u € C.

1 .
J(u~+ug) > N||u+u0||N —/F(:z:,u+uo)dx
: (3.18)

v

1
e+ wll® = (e +1),
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where C' does not depend on e € (0,1) nor u € C.. This means that J(- + ug) is bounded from
below and coercive in C.. Then, the infimum of J(- +ug) in C. is attained. Since (3.15) holds and
v, € C. for large n, we can find u. € C., u. # 0, such that
micn J(u+uo) = J(ue +up) < J(vn + o) < J(ug), Vee€(0,1), V¥n> N.. (3.19)
ucle
By (3.18) and (3.19) we have that {u.}. is bounded in Wy™(Q). Since K (u.) — 0 when ¢ — 0,
in other words, H(u.) — 0 em L'(Q) as ¢ — 0, we get H(u.) — 0 a.e. in Q as e — 0. That

way, u. — 0 a.e. in Q when £ — 0. Then, u. + ug — ug in WOI’N(Q). By (3.19) and the Lagrange
Multiplier Theorem we obtain that, for all ¢ € (0,1) there is . € R such that wu. solves:

J (ue +ug) = pK'(ue). (3.20)

We claim that p. < 0 for all € € (0,1). Let us suppose p. > 0 for some € > 0. As the right side
of (3.20) is nontrivial, we can choose ¢ € Wy (Q) such that J'(u. + ue)e < 0. So

Ly K (ue — K(u.
0> LT+ wo)p = Ky = tim K070 = Kl

Me T—0F T

and then
K(u. +71p) < K(u.) <e¢,

for small 7 > 0, that is, u.+7¢ € C. for 7 > 0 small enough. Similarly, J(ue+7p+ug) < J(ue+ug)
for 7 > 0 small enough, which contradicts (3.19). Thus, we conclude that p. < 0 for all € € (0, 1).
Now, considering h = H’, equation (3.20) implies that u. satisfies

—AN(u: + up) — Ag(ue +up) = f(x, ue + ug) + peh(ue) in €. (P.)
We deal now with two cases:
i) liminf. g pe > —o0;
ii) liminf. o p. = —o0.

If case i) occurs, there are gy € (0,1) and pg < 0 such that u. € (u,0] for all e € (0,g9). We
define

Jo(u) = J(u+ug) — pe kS (u), ue Wy (Q),

the functional associated with (PJ). By (B.20) we obtain J'(uz) = 0 for all € € (0, ). Furthermore
by (3.18) and (3.19) we have that {j‘g(ug)}a is bounded in R, so we may choose a subsequence,
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still denoted by {ja(ug)}g, such that jg(ug) — po as € — 0. So,
 llwe + woll +5HV(UE+U0)HM(Q) - QF(iﬂ,uer?m)de—us QH(Us)dl’ — po, (3:21)

and

l[ue + o || 4[|V (ue + UO)H%q(Q) - / f(x, ue + up) (e + to)dr = :ua/ h(ue)(ue + uo)dz. (3.22)
Q Q
Moreover, from (3.17)), once p > 1 and ug € L>*(Q2), for 6 = (p+1)/p € (1,2) we get

- 0 / , /
P, e+ o) < O+ Jue] + o) 0D exp (0525 (e + JuoV') )

< O 4 C ufptte? Al ae e Q.

-~ 0 1!
/ ’F(x,uE +u0)’ de < C'Q|+C K(u.) < C.
Q

Thus, F(x,u. + ug) — F(z,ug) almost everywhere in Q and it is a bounded sequence in L%(Q).

Since || < oo, it follows by Vitali’s Convergence Theorem that
/ F(z,u. +up)dr — / F(z,up)dz, ase— 0. (3.23)
Q Q

This last convergence, coupled with the fact that u. +ug — wg, {(.)}e is bounded and K (u.) — 0
imply that

po = lim iglf [j(u€ + ug) — ,uEK(uE)}
E—r
S 1 N 1 q n
= 11r511_351f [NHUE + || + 5Hu5 + uo”wg’q(m - /QF(a:, Us + uo)dx}

1

1 -
N q o
> pllwoll™ + ol AF@wwﬂ

=z

Up).

On the other hand, by (3.19), po < J(ug). Then, py = J(ug), which means

lim J (ue + ug) = hH(l) J(u2) = po = J(up),
e—

e—0

or
1 L1 ) _
N||u€+u0|| +5||u8+u0||W01q(Q) - QF([L’,UE—{—U())CZI’
= N4 Ll F d 0
- NHuOH + aHUO|’W()Lq(Q) - 0 <x7u0) Zz, as e — U.
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By (3.23)) we obtain

@ NHUOH +

NHunguoH +§HU5+U0HW5@ 5HU0HWOM(Q)-
Since u. + up — ug in Wy (), and so in W, 9(Q), we get

[ue + uol| = [luoll, as e —0.

Recalling that (Wol M), || - H) is uniformly convex, we conclude that u. + ug — o, which means

that u. — 0 in I/VO1 N(Q) Now we intend to apply Proposition in order to get the uniform
boundedness of (u.).
From ({3.5)), for 6 = (p+1)/p € (1,2), we see that

F(,ue +u0)l” < C(L+ ugl 4 Jucfp )™ 20l 4ol < o(1 4 H(w.)), ae. z €9,
where C' does not depend on ¢ nor u.. Thus, there exists M > 0 satisfying
J [1F@ )l + 1w+ w)l do < € [ (14 Hu))de < (20 +2) < 21"
Q Q

Since u,. is a solution for (PJ), we know that (u.,u.) is a solution for ([3.6). Then, it follows by
Proposition that {u.}. is bounded in L>(2), that is

sup ||ue|| o) < Co,
€€(0,e0)

for some Cy > 0. Now, considering
B.(x,t) = f(x,1) + ph(t — uo)

for we have |B.(z,t)| < Ay for (x,t) € Q x [—Cy — |Juol| (), Co + ||wo| Lo (e)]. Thus, by Theorem
we conclude that u. € C*7(Q) and

sup ||tz || o1y < 00, (3.24)
€€(0,e0)
for some v € (0,1).
At this moment, let us analyze the situation in Case ii), where liminf. o p. = —oo. In this

case, we consider a sequence &, — 0 such that p., — —oo. By definition of h = H’, we have

h(t) = [(p )P+ G2V NN ] B2V Yy e R
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and so

Sgn(t)h(t) — (p + 1)“‘? + 52N/N/‘t’N/+p eBQN’MN/
(3.25)

! |t|N/

> Cy[t[Pe?” Vt € R with [¢| > 1.

Now we fix M > 2max{||ug||z~,1}. For |s| > M we have |s — ug(x)| > M/2 > |ug(x)| almost
everywhere in €, so that |s| < |s — ug(z)| + |uo(x)| < 2|s — uo(z)|. Then, using (3.5)) and ([3.25))

we see that

N

F(2,8)] < C(1L+[s|Pe®™ < C(1+ |s — ()P 170 < Ch(s —ug(x)) - sgn(s — up(x)),

for a positive constant C' and for all s € R such that |s| > M. Thus, since u., — —o00 as n — oo,

there exists ng satisfying

sgn(s — ug(x)) [f(x, s) + peh(s — uo(:c))] <(C'+ pe,) h(s — ug(x))sgn(s — up(z)) <0,

ae. x € Q, for all n > ng. Now, we consider test functions ¢, = (u., + up — M), and

Un = (U, +up + M)_, where v_(z) = min{v(z),0}. Then, J. (u, )¢, = 0 gives us

/ (V| Nda +/ |V |ide = / IV (e, 4 uo)|N 72V (e, + uo)Vipnd
Q Q Q
—I—/ |V (ue, + uo)\q_QV(ugn + uo)Vpdr
Q

= / [f(ac, Ue, + ug) + pe, h(ue,)| pnde
Q

S Oa vn Z Ny,
because sgn(ue, (z)) = sgn(p,(x)) for ¢,(x) > 0. In an analogous way we obtain
/ |wn|Ndx+/ Vihulidz <0, Vn > no.
Q Q

Then,
[enll = [[¥nll =0, Vn = no,

which implies
lue, () + up(z)| < M, a.e. x €. (3.26)

Recalling that ||ug||z~ < M/2, we obtain the uniform boundedness for w.,,

3
[te, || 200 () < EM’ Vn > nyg.
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Now, let o > 1 be an arbitrary real number. We can use ¢,, = |u., |* 'u., as a test function.
Since J. (ue, )¢, = 0 and J'(ug)¢y, = 0, observing that V¢, = ajue,|* ' Vue,, we have

~te [ Wue oz = [ (e, + o) = Fou)loda
— /ﬂ [V (ue, + uo)|N 2V (ue, + uo) — |VuolN *Vug| Vo, dx
— /Q[\V(ugn 4+ u0) |72V (ue, + ug) — |Vue|? *Vue] Vo, dr
= [ e, + o) = Fo )l
— a/Q e, |7 (1Y (ue, + uo) |V 2V (us, + uo) — |Vuo|N*Vug) Ve, da

L / e "1V (e, + 1) 2V (e, + 119) — |Vato|" 2Vtg) Ve, dr,
(9]

for all n > ng. Since (|2]7722 — |w|"2w)(z — w) > 0 for all 2z, w € RY where o > 1, using (3.26)

we get

_/’Lfn / h(ugn)|u5n|a_1u5ndm S /[-]F(x7 ufn + UO) - f(x7 uo)]|/I’L5n|O[_1/I’I“"37'Ld'r
Q Q

< s |f@t)] /|ua|adx
Q

(2,t)€Qx [~ M, M]

SC’/ |ue|“dx,
Q

for all n > ny. On the other hand, by (3.25)) we see that h(s)s > (p+1)|s|P*! for all s € R. Then,
by Holder’s inequality we get

0+ 1) () / s, [P < —p, / Bte, ), [Vt
Q Q
< clo|e (/ |u€n|a+pdx> ,
Q
which implies

1
(=t Pt iy = e Nt Wiy < CCOL+IRD), ¥ 2
for C' > 0 independent of n and «a. Recalling that o > 1 is arbitrary and letting o — 400 we get,

(= pie )7 the, [0 0y < C(L+[9), (3.27)
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for all n > ngy. Considering
B (z,t) = f(:v, t) + pe, h(t — uo(x)),
since ||ue, + wo||pe < M and ||ue, ||pe < 3M/2 for all n > ny, from (3.25) and (3.27)) we see that

’Bn<xausn + uO)’ = \f(x,usn + UQ) + NEnh(uEn)‘

< sup |f (2, )]+ |pe, P(ue,,)|
(2,t)EQx [~ M, M]

< C'(1+ | ey lue,[”)

<Ay, ae xel)

for all n > ng. So we can apply Theorem to obtain

sup Huen“clﬁ(ﬁ) < 00,
n>ng

for some v € (0,1).
Therefore, in both cases we obtain an uniform bound for a sequence {u.,}, in C'7(Q).

Therefore, there exists a subsequence {u.,}, such that u., — 0 in C}(Q). Since (3.19) gives

us

J(Usn + 'LL(]) < J(Uo),

we have a contradiction with the local minimality of ug for J in the C}(Q) topology. This means
that u must be also a local minimum for .J in the I/VO1 N(Q) topology and we conclude this

proof. ]

3.5 A first solution

In this section we deal with problem (3.3), which is

—Anu—Aju = AMul"2u+ f(z) inQ
u=>0 on 0,

whose associated functional is I : W™ (Q) — R given by

[(u)z%/ﬁ(|VU\N—/\|u|N) dx+é/Q|Vu|qu—/Qf(x)udx.

We are now in a position to describe our first result of the existence of solutions for (3.1)) more

completely.
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Proposition 3.5.1. Suppose f € L>®(Q) a nontrivial function. Then I has a global minimum,

denoted by w, and it satisfies:
i) we Cy(Q), for some v € (0,1);
it) If f <0 then w <0 and it is a solution for problem ;
iii) If w <0 then w < 0 in Q and 32 >0 on Q.
w) w is a local minimum of J in W™ (Q).

Proof. As in Chapter 1, we see that I is a C*! functional, coercive, weakly lower semicontinuous
(see Lemma [1.2.1)). So, the direct method of the calculus of variations implies the existence of
a global minimum w € W, "™(Q) for I. This minimum is a critical point for I, which means
I'(w) = 0, and so is a weak solution to problem (3.3). For i), considering u € Wy (Q) as a
critical point for I, or a solution to problem (3.3)). We see that (0,u) is a solution for problem
B.6), with f(z,s) = Als|¥"2s + f(z) and uo = 0. Since

Als|¥ 25 + f(@)] < [Iflle) + sl V(@ s) € xR

we can apply Proposition with § = N’, to obtain u € L>®(Q). After that, we can use
Theorem m to ensure v € C37(Q). In particular, for u = w, the minimum of I in W™ (Q),

which proves 7). For ii), if we consider f < 0, using w, as a test function we get

0= (whws = [ (Fwsl =N dot [ [Vuosfids = [ flapwds = o,
Q Q Q

which implies that w; = 0 and w < 0. Observing that g(z,w) = 0, we see that w is also a critical
point for the functional J. In other words, w is also a weak solution to problem (3.1)). To prove
i1i), since w < 0, we can apply the Maximum Principle that can be found in Pucci and Serrin
[33] (see also Proposition to show that w < 0 in Q. After that, we use a version of the
Hopf Lemma for the (p, ¢)-Laplacian operator, which is found in [2I] (see also Proposition [L.2.7)),
to ensure ‘3—‘5 > 0 on 9. Finally, since w is a minimum point for I in C}(Q), and 4) implies
that —w is in the interior of the cone of positive functions in C3(2), we have I(u) = J(u) in a
neighborhood of w in the C}(Q) topology, which means w is also a local minimum for J in CZ(Q).

Thus, it follows from Propositionm that w is a local minimum of J in Wy ™ (Q). O

3.6 Proof of the Main Theorems

The next lemma provides a mountain-pass geometry and it acts as an auxiliary result to
demonstrate that the minimaz levels can be controlled by strategically selecting directions

provided by truncations.
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Lemma 3.6.1. Assume that g satisfies(aq) and (§1) — (Gs) and consider ¢ € Wy ™ (Q)\{0} to be

a continuous and nonnegative function. Then J(w + te) — —o0 when t — +00.

Proof. In fact, since (gy) is true, there are positive numbers C' and R and o > N such that
G(z,u) >u’, V (z,u) € Q x[R, ).

For a continuous function ¢, let #; €  and r > 0 be such that m, = ming, (,,) ¢(x) > 0. So, for

all t > (R + ||w|| () /m, We get

1 1
J(w+tg0):N/Q(\V(w—irtgo)lN—)\\ijt@N) d$+§/ﬂ|V(w+t<p)|qda:

—/QG(JC, (w+tp);)de —/Qf(m)(w +lp)dz
oN-1 a1

2
< (IVw¥ + tN|Ve|") de + =— [ ([Vw|? + t9|Vp|?) dz
N Q q Q

—C/( )Iw+t90|”dw+t||f||mo(m/ﬂsodw+||f||L°o<Q)||w||L1<Q>~
Br(x1

Since (6] z-(e) < lwllze(@) + |+ ti]|o(q) implies that

1t Fo i) < 277 (Jwl|Fo ) + 1w + t@l|Fo ) »

we obtain
ON—1N 20— 1¢a Ct
J(w+tg) < / VoVdz + / Vlids — S / ol7da + ] 1~ / odz
N Q q Q 2 By (z1) Q2
+

for large t > 0, where C; depends on w. Since 0 > N > ¢, this implies that J(w + tp) — —o0 as
t — +00. u

From this lemma and knowing that w is a local minimum for the functional J, we can also
see that J exhibits the mountain pass geometry. In fact, since w is a local minimum for J in
Wy N (Q), there exists p > 0 such that

J() > J(w), YoeWyN(Q) with |jv—w|<p. (3.28)

On the other hand, once w < 0, by this previous lemma, we get J((t —1)(—w)) — —o0 as t — o0.
This means that there is e € Wy (Q) such that ||e — w|| > p and J(e) < J(w). So, we can define

D= {y € C0,1], W™ (@) : 1(0) = w and J(3(1)) < J(w)}.
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We see that I' is non-empty and the mountain pass level,

co := inf max J(y(t)), (3.29)

~v€l te€l0,1]

is well-defined and satisfies ¢ > J(w).

Proposition 3.6.2. Assuming and (G1) — (G2), let {um}tm be a (PS) sequence for J in
Wy (Q). Then {up, Y is bounded.

Proof. Let {uy}m be a (PS) sequence for J in W, (Q), which means a sequence such that
{J(tm)}m is bounded and ||.J'(uyy,)|| — 0. Thus,

| ()| 4 | ()t | < C (1 + [t ])-
Moreover, it follows from (gs) in Lemma that there are S > 0 and o > N such that,
oG (z,u) <ug(z,u), VY(r,u)e N x(S,00).

So, by Holder’s inequality and the embedding W, (Q) < L'(Q) we obtain

1, 11 11
) = 2 )i = (= 5 ) Bl + (5 = 2 ) 19l

= [ 66 ) = Lot () o) a

() st
> (Tl = (750) [ s
1

_ /{|um($)|SS} {G(a:, (Um)y) — ;g(az, (um)+)(um)+] A

oc—N
> ( - ) lomll™ = Cllun]l = .

Then, it follows that

HumH > OQHUmHN - O

which implies that {u,,} is bounded in Wy~ (). O

Since we cannot guarantee that J satisfies the Palais-Smale condition, we establish some

compactness properties provided cq, defined in (3.29)), is below a certain threshold.
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Lemma 3.6.3. Let {u,,}m be a sequence in L'Y(Q) such that u,(x) — w(x) a.e. in Q, for
u € LY(Q), and let §: Q x R — R be a continuous function such that

sup/ |G(z, U )t |de < C. (3.30)
Q

meN
So §(z,uy) — glx,u) in LY(Q).

Proof. This proof is similar to the one due to Figueiredo, Miyagaki and Ruf (see [6]). At first, we

observe that

/ 3z, )| d < / 3z, )| + / 3, Ytaldr < C,
Q {lum (z)|<1}

{lum ()| 21}

for all m € N, where €' = Q| maxg, |y 4;|g(z,t)| + C. This means that {g(-, um)}n is bounded
in L'(Q) and so, Fatou’s Lemma implies that g(-,u) € L'(Q). Now we fix ¢ > 0. Since
g(-,u) € L' (), there is § > 0 such that

/ 3, w)lde < &
N 9

if A C Q is measurable and |A| < 6. On the other hand, since u € L*() there is M large enough
such that
o € O fula)| > M} <6

For C' > 0 as in (3.30]), we consider M = max {30/&, M} Then, we observe that

/ (2, )l — / G, w)lde| < I+ I+ 1y
Q Q
where
I = / (2, )|
{lum (z)|>M}
I = ] / 32, )| d — / 3, w)lde]

{lum (z)|<M} {Ju(z)|<M}

and

I = / 3z, ) do.
{|u(z)|>M}

At first, we notice that

de <

IN

=la
wlm

I, = Zan m/m
{lum (z)|>M} Um

79



Now,

Iy = /Q|§(x,um)|X{um(x)<M}dx—/Q|§(x,u)|x{u(x)|<M}d$

< /Q 19(x, um) — §(z, )| X{jum (@) <rrydz + i 1G(2, W) [ X @) <M} — X{Ju(a) <} | dz.

Considering

hon () = 19(2; tm) = §(2, 1) [X(Jupn <21}
we see that h,,(z) — 0 a.e. in 2 and,

()] < C1 + |g(,w))|

where C} = max{|j(z,t)|;z € Q,|[t| < M} and §(-,u) € L*(Q2). From the Lebesgue Dominated
Convergence Theorem we have h,,, — 0 in L'(Q2). On the other hand,

/ 9(z, u)l ’X{|um(a:)|<M} - X{\u(az)|<M}’ dr < / |g(x,u)| ‘X{\um(x)KM} = X{lu(z)|<M}| dT
Q {lu(z)|<M}

1 / 3z, )| da
{|u(z)|>M}

_ / o () + 21,
Q

with Ay, (z) = |§(z, u)] | X{Jum (@)1 <M} — X{Ju(@)<M}| X{ju@)<ry — O ae. in Q and satisfying
\hm ()| < |g(z,u)], for all m € N. Using again the Lebesgue Dominated Convergence Theorem

we have h,, — 0 in L'(Q2). So, we obtain
I < / hm(z)dx + / B (z)da 4 215 < %—i— 213 for large m.
Q Q

Finally, since M > M,

NeR Q)

I - / (2, w)lde <
{Ju(z)|>M}

Then

2
< g + 313 <¢e, forlarge m,

[ ot wlde = [ fgta,0lde

which means that
/|§(x,um)|dx — / |g(x,u)|dx, asm — oo.
Q Q

Therefore, by the Brezis Lieb Lemma we obtain the desired result. O]

Lemma 3.6.4. Let {uy}m C Wi (Q) be a (PS) sequence for J at level C'. Then there exists
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ue WyN(Q) and a subsequence, still denoted by {tm }m, such that
(1) 9(x, (um)+) = g(a,us) in LN(Q);
(it) G(z, (um)s) — G(z,uy) in L),

(ii1) g(z, (um)1)v — g(z,uy)v in LX), for any v € CX().

Proof. Consider {um,}, as a (PS)c sequence for J. Proposition [3.6.2] guarantees that {w, }, is
bounded in W, (Q) and is also bounded in W;"%(€Q). So, there exists u € Wy () such that, up
to a subsequence, U, — u in Wy (Q), tm — w in L(Q) and u,,(r) — u(z) a.e. in Q, as m — oo.
We need to show that {G(-, (um)+)(Um)+ }tm and {g(-, (Um)+)(Um)+ }m are bounded in L'(£2), so
that we could apply the previous lemma. Since {u,,},, is a (PS) sequence at level C’, we have

J(tm,) — C', which gives us

1 1
ol Sl = [ Gl e = [ f@yunde — €'

and ||J'(u,)|| — 0, which implies J'(uy,)u,, — 0. This means that
iy + el = [ 9 ()Y = [ Fa)undz 0.
0 Q Q

Because
<N fllzoelumllr < Cllfllzesl[umll < Ch,

‘ /Q F(2)umda

/QG(x, ()4 )dx < C  and /Qg(x, () ) (U ) 1 dz < C.

we see that

It remains to show that {G(, (um)+)(Um)+ tm is bounded in L'(€). Using (g2) and the continuity
of G we have
0<G(x,t) < Mg(x,t) +Cy, V(x,t) € QxR.

Then
| Gt um)dr < s |

(s 4 M [ (o, () )(wm)dr < o
Q Q

Therefore, by Lemma we obtain the results of items (i) and (ii). Now, for any v € C°()

we have

: 9@z, (um)+)v = 9(z, up o[ de < {Jol[L<llg(:; (wm)+) = g(- ug)ller =0

as m — oo, and we conclude this proof. O
Proposition 3.6.5. Assume that g satisfies (G1), (§2) and (o). If
< J(w) + L (an)"
C —_— R
0 w N )

Qg
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then J possesses a critical point u # w.

Proof. By definition of ¢y, given in , we know that ¢y — J(w) > 0. We can apply the results
in [29, Theorems 2.8 and 2.20] in order to obtain a (PS) sequence {u,}n, for J at level ¢y, and
this sequence can be chosen satisfying ||u, —w| > & > 0 for all m, if J(w) = ¢, where p is given
in ([3.28). We have ||J'(un,)|| = o(1) and J(um,) = co + o(1), which implies

o(1) [t :/Q(|Vum|N—/\|um|N) dx—i—/Q|Vum|q—/Qg(x, (um)+)umd:ﬁ—/gf(x)umdm

and

co—i-o(l):%/Q(\Vum]N—Mum\N) dx—i—é/Q\Vum]q dx—/S]G(a:,(um)Jr)d:U—/Qf(x)umdx.

By Proposition we get {tym b bounded in Wy (). So, there exists u € Wy () such

that, up to a subsequence, it holds

U, — U in Wy (Q),
U, — U in L*(2), 1 <s < o0,

um(z) = u(z) ae. in.

Consider v € C>°(2). The convergence u,, — u in L (£2) implies

/|um\N2umvdw—>/\u|N2uvdx,
0 0

and due to Lemma [3.6.4] item (iii), we have
[ st tum)dode = [ gt (w1 )ods
Using a well-known result from [24], it follows that
/Q |Vt [N 2V, Vordar + /Q (Vi |92Vt Voda — /Q |Vu|¥?VuVodz + /Q |Vu|"2VuVodz

as m — oo. Thus,
J (um)v — J' (u)v.

This implies that J'(u)v = 0 for all v € C°(€2), and so w is a critical point of J. Since we are

assuming f # 0, we get u # 0. We need to show that v # w. Let us suppose that © = w and
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consider v,, := u,, — w. It follows that

Um — 0 in WeN(Q),
U — 0 in L5(92), 1 < s < o0,

Uy — 0 a.e. in€).

It follows from the Brezis-Lieb Lemma that
|+ N[ty = Nt — ™+ ™+ et — ullfyr + ullfyrq +o(1). (3.31)
Furthermore, from Lemma we have
/G(x, () )dx — / G(z,uy)dr = / G(z,w,)dz = 0.
Q Q Q
We also have
[ 17 = wlde < |l =l =50, a5 m o
Q

Recalling that we are assuming u = w and w is a negative function, we see that

Hm) = ) = 5 (el = 10) + % (Pl = W) = 5 lnl¥ = F])
- /Q G(z, (um)+)dr — i f(z)(uy, — w)dx (3.32)
1

1
=~ lloml™ + omllia + o(1).

Now we take § > 0 such that

| —
e

g |2
N
r

CQ+25<J(M)+N

Then, from (3.32), it follows that

1 1 1 1 fay V!
ol < ol + Donla < 5 (22) -6

for m € N large enough. This implies that

N-—1 N—1
loml| 7T < ((‘;—N) - N5> (3.33)
0
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for large m. Let s > 1 and € > 0 be such that

1

o N-1 N-1
s(ag +¢) <(a—:) —N6> < ay.

So, using (gg) (see Lemmam the Pohozaev-Trundinger-Moser inequality (3.2]) and - we

obtain

/lg (Um)+)Pdz < O/ s(ao+e)|om |V dx:C«/@s(ao—i—a)HfumHN/(%)N dx
. (3.34)

By Hoélder’s inequality,

0 [ gt om) Jomds < ( / |g<x,<vm>+>\5dx) lomll < Clltmlly = 0
Q Q

when m — oco. On the other hand, using again (3.31f), we get

T ()0 = [0l + [0 1 — / 92, (V) Yo — / f (@) vmdz
et — 0llY + et [y — 0l + 0(1) — / 9(2, (Un) )Vl
+ /Qg(x, () 4 ) umdz — /Qg(x, ()2 )umdr — /Qf(x)vmdx (3.35)
— Tttt — T (w0 — / 92, (V) Yomdd + / 92, ()4 Yt + (1)

_ /Q 9(, () + Yt + 0(1).

Now, notice that

/g updr — 0, as m — oo.
Q

In fact, as in (3.34)), using (gs) and the fact of (uy,)y = (vm +w)1 < (V) 4, we have

0< / 9, () tmdc < C / eleote)m (, )+d:t:<0( / ao+s><vm+dx)s||<vm>+||sf
Q Q Q

< Cil|vm|ls — 0

Therefore, by (3.35) we have get

o(1) = J' (Vm)vm = 0wl + 0mlf1.a + 0(1)
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and this implies that

vm | + |vm ||%1e =0, as m — 4o0. (3.36)

Here we analyze these two cases: J(w) = ¢p and J(w) < ¢p. If J(w) = co, the sequence {u,,}
satisfies ||u,, — w| > p/2. In this case, if u,, — u = w we get ||v,| = ||lum — w|| > p/2,
which contradicts . So, J(w) = ¢o implies that u # w. For the second case, J(w) < ¢y, if
Uy, — u = w then estimate implies that

1 1
Sl Sl = co = Jw) £ 0.

and this also contradicts (3.36)). Therefore, we must have v # w, which means that J has a second
critical point, u € W™ (Q). O

Now, the remaining task is to demonstrate that the minimaz level ¢y, as defined in (3.29)),

N-1
is, in fact, below J(w) + ~ (%) . In order to obtain this estimate, we introduce the Moser

functions

N—
(logm) ~ if |z| < —
=1 logﬁ o1
—e i< fa[ <,
(logm) ¥ m

0 if |z > 1.

For a suitable zy € €, to be chosen later, r € (0,1) such that B(zg,7) C Q and 4, = 07 we
denote

T — X9

Zm(T) = 2 ( 5 ) , Vo eq. (3.37)

We see that the following estimates hold:
Lemma 3.6.6. For any m € N, the function z,, € Wy'™ (Q) and it holds:
a) ||zmll = 1V zmllLx = 1;

b) IVzmllis = 6N=*O(logm) ¥, for s € [1,N);

s, =0NO(logm)¥, fors € [1,00).

¢) [lzm

The control of ¢y will be done in the next proposition.

Proposition 3.6.7. Suppose that g satisfies and (§1)—(g3). Consider cq as defined in (3.29).

Then N
co < J(w) + (o h
0 N (&%) '

Proof. From Lemma [3.2.3] there are positive constants oy, v, and Cy such that
sg(z,s) > VOOGQO(SHUO)N/, V(z,s) € Q x [Coh, 00) (3.38)
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Choose and fix 7 € (0,1) and a point zy € €2 close enough to 02 such that
[wl[ Lo (B, (20)) < 00 (3.39)

For this zp and 0 < 4,, < r < 1, we consider z,, as given in (3.37). By Lemma we know
that, for any m € N, there is R,, > 0 satisfying

J(w+tzy,) < J(w), YVt>R,.
Then, there exists t,, > 0 such that

J(w+ tmzm) = max J(w ~+ tzp).

By definition of the mountain pass level ¢y we see that
cp < HtlbeJ(w +tzm) = J(w+tnzm), VYmeN.

To prove this proposition it is sufficient to show that there is m € N such that

J(w+ bz < J(w) + % @—JOV) o (3.40)

Let us assume, by contradiction, that

1 N-1
J(w+tnzm) > J(w) + = (Q—N> , Vm € N. (3.41)
N Qp

Using the results in Proposition as in Proposition [[.4.1] we obtain

/ IV (w + t2,,)|Ndx
0

V|V Vw.Vz |V 2|
< N1 tN’ m Nt 4 C t—=1 ) d
< [ 1wl [* ol Y e &V( vl )|

§/|Vw|Ndx+tN/|Vzm|Ndx+Nt/|Vw|N_2Vw.Vzmdx+C/fN (t|Vzp|) dz
0 Q 0 0

where
24+ N1 if N >3,
En(s) = N1
s if N =2,
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and we use the fact that |Vw| € L*>(Q). Similarly,

/ |V (w + tz,)|dx
0

|V 2|4 Vw.Vzy, |V 2|
< 711 + ¢4 t C t—— d
—/Q‘V“" { TS T e T\ )|

S/|Vw|qdm+tq/|Vzm|qu+qt/|Vw|q_2Vw.Vzmdm+C’/§q (t|Vzp|) dz
Q Q Q Q

where
245971 if N >q>3,

&(s) = s7 if q€]2,3), forafixedye (¢q—1,2),
s7 if qe€(1,2), fora fixedy e (1,q).

On the other hand, for every ¢ > 0 we have

/]w—i—tzm\Ndx—/\w\Nd:U—tN/]zm]Ndx
Q Q Q

< 2N_1NtN_1/(zm)N_1|w|dx—l—2N_1Nt/Zm|w|N_1dx.
Q Q

Thus, since G(x,s) > 0 and G(x,w) = 0, we get

1
J(w+tzy,) — J(w) < N/

A
(IV(w + tzm) [N = V|V dz — N/ (Jw + tzm ¥ — |w|V) dz
Q Q

1
+§/(|V(w+tzm)]q—\Vw]q)dx—/ [f(x)(w + tzm) — f(x)w] dx
0 0
tN 4
< —/ ]Vzm\Ndx—l—t/ \Vw]NQVw.Vzmdx—i-—/ V2, |Tdx
N Jo Q q Jo
—i—t/ |Vw|q_2Vw.Vzmdx+C'/£N (t|Vzm|)dx+C/§q (t|Vzm|) dz
Q Q Q
+)\QN_ltN_l/(zm)N_1|w|dx+)\2N_1t/zm|w|N_1d:17
Q Q
—t/f(x)zmd:c.
Q

Recalling that J'(w)(tz,,) = 0, we see that

O:t/ |Vw|N_2Vw.Vzmdx+t/ |Vw|'*Vw.Vz,dr
Q Q

—l—)\t/ ]w]N_lzmda:—t/f(x)zmdx, vt > 0.
Q Q
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Then

N

t t?
J(w + t2) — J(w) < —/ |Vzm|Nd:1:+—/ |Vzm\qda:+6’/§N (V2] da
N Jq q Jo Q

+G/§q (t|Vzm|)dx—I—C'tN_l/(zm)N_ldx—i—Ct/zmdx,
Q Q Q

where we use w € L*>®(Q2). At this point, from Lemma we obtain

v N—-1
J(w+ tzm) — J(w) < tﬁ +110,,710 ((logm)ﬂ + NN (D g (1ogm)—(T>)
+1%6,,7%0 <(10g m)_WQ> + 176570 <(10g m)%>
+tM1650 ((log m)f(%l)) +t60 O ((log m)%) .Vt >0,

for a suitable v € (1,q), where the term with ¢? appears only for N > 3. Since §,, € (0,1) we get

v -1
J(w + tzm) — J(w) < tﬁ +10,,710 ((log mﬁ) + NN (D0 ((log m) N ’)

4126820 <(10g m)_WQ> + 6N 0 <(10g m)%) + Y10 ((1og m)_Wl> .

Now, considering 8,, = (logm)~*/", since §¥*(logm)¥ = (logm)~', we sce that
t N-1 | 42
J(w+tzm)—J(w)§W%—logm(thrt + 0 +1), V>0, (3.42)

for large m € N. This inequality allows us to show that {¢,,},, is bounded from below by a positive
constant. Here, again, the term t? appears only if N > 3. In fact, considering t = t,,, in (3.42)), if
tm < 1 it follows from (3.41)) that

N-1 N-1
tan > (Q_N> — ¢ > 1 <a_N> 7
o logm — 2 \ ag

for m € N sufficiently large. So, t,, > min{1, (1/2) (aN/ao)%} for large values of m. Thus,

there exists ty > 0 such that
tm >to, VmeN.

Since t,, > 0 is a maximum point for ¢ — J(w + tz,,), t > 0, it follows that

d
J (W~ tmzm)(tmzm) = tmﬂj (w + t2,,) =0,
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and so

/ 9(w, (0 + tmzm) 1) (tmzm)dr = ty, / |V (w + tmzm>|N_2v(w + tm2m)Vzmdz
Q Q
+tm / IV (W + tzm)| T2V (W 4t 2m)V 2mda
Q

— )\tm/ W A+t 2|V T2 (W A+ o 2in) 2md — tm/ fzmdx.
Q Q
Since {zp }m is bounded in W, (Q) we see that

1900 % ) Y29 (0 4 bVt < [ 0+ tn)25 19 )
Q
< C (oll ¥+ 5 el Y1) lltmz

< C (tm + 1)

and, in a similar way, we get

/ |V (w + tmzm)\q_QV(w + tmzm)V(tmzm)de < C (t, + 1)),
Q

/ W + o2 |V T2 (W + tnZin) (2 )dz < C (tm + tﬁ) ,
Q

and

/ @)t} < Ciy,
Q

for all m € N. Then,
/ 9z, (W tymzm)+) (tmzm + w)dzr < Cty + 12 +tN) < CtY,  Vm. (3.43)
Q

In the last inequality we use that t,, > to > 0 for all m € N. Now, for Cy > 0 as in (3.38) we get

(tmzm + w)(x) > towd_, (logm)

N-1
N  —

|w|lee > Co,  Vz € B(xg, 6m/m),

for m sufficiently large. By (3.38) and ({3.39)), we obtain that

/ gz, w + tzm) (tmzm + w)dr > Yoo / eC0(wHtmzm+200)"
B(xo,2m) B(xo, %)

N , , (3.44)
m N

Here we observe that {t,, },» is bounded from above. Otherwise, if ¢, — +o0 for some subsequence,
then we would have NtY'(ag/an) — (N + 1) > nt)' for some > 0 and, from (3.43) and (3.44)

89



we would obtain

N+1

N
/ !/ !
Clt% > (§_m) etm (@o/an)Nlogm m Ntm logm > Nt ’

m — mN(logm)N

for large values of m, which is an absurd for ¢,, — oo. Thus, we obtain the boundedness of {¢,, }.,-

Going back to (3.41]) and (3.42)) we get

ap \ V! c
(—0) tN>1- : (3.45)
ay logm

for some positive constant ¢, for large m. Now, using the Taylor expansion, we see that for any

a,b > 0 there exists 6 € (0, 1) satisfying
(a+ b)Y =aV + NaV o+ N'(N = 1)(a+60b)N 2> a™ + NaV' .
So, recalling that ¢,, > ¢y and using (3.45)), for some ko > 0 we get

_ / N’ !’ _ _ / (Nl_l)
oo (tmle_/iV(log m)l/N + 00> > qy (t% le_/lN ! logm + N'og (tmle_/fV(log m)l/N ) >
> | () (ao/an)¥ )Y Nlogm + ko(logm) /|

> (1 — c(logm)~")N logm + ko(log m)l/N)
> Nlogm + ko(logm)Y™ — ¢N,

for m sufficiently large. Then, by ([3.43) and (3.44]) it follows that

5N ekg(logm)l/N
OQtN > _m 6N10gm+k0(logm)1/N—cN — e—cN(;Nekg(logm)l/N _ 6_CN
m = m

miN

Y

logm

for large m, where the right side tends to +oo but the left side is bounded. This contradiction
ensures (3.40)) and concludes this proof. O

3.6.1 Proof of the main theorem

The main result of this chapter, Theorem [3.1.1, has been proved in some steps. Initially,
Proposition ensures the existence of a first solution w for problem (3.1)) and shows that
w is a local minimum for J in I/VO1 N(Q) Then we obtain a mountain pass geometry for this
functional and Propositions [3.6.5 and [3.6.7] imply the existence of critical point u # w for .J,

which means a second solution for problem (3.1)).
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Chapter 4

Critical nonhomogeneous problems on

the (N, g)-Laplacian

4.1 Introduction

In this chapter, we establish the existence of nontrivial solutions for a (N, ¢)-Laplacian equation

characterized by:

(4.1)

—Anu — Aju = MNulN2u + plu|t%u + g(x,u) + f(z) in Q
u=20 on 0f),

where © denotes a bounded domain with a smooth boundary within R, the parameters satisfy
1 < ¢ < N, and g is a C'(Q) function in [0,00) x [0,00) satisfying a Trudinger-Moser growth
condition uniformly in z € €2. Analogously to chapters 2 and 3 we find two distinct solutions, one
by the Ekeland Variational Principle as long as f has a sufficiently small norm and the other by
using cuts in the Moser functions so the minimaz level of the associated functional is a critical

level. This problem was inspired by [37].

4.2 Hypotheses and Main Results

Let us begin by assuming that f € L*(2) and ¢ exhibits critical growth with exponent ay > 0.

This means that there exists a positive constant ag such that

lim =

N
[t| =00 ealt| V-1

lg(x,t)] { 0, if a>a

400, if a< ag,
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uniformly in = € €. This condition is motivated by the Pohozaev-Trudinger-Moser Inequality (see

[20]), which state the existence of a positive constant C' = C'(N) satisfying

/ﬂe(aNMJV]Vl)dx < (N, (4.2)

1

for all u € Wy (Q), N > 2, such that ||Vu|y < 1, where ay = Nwl-} and wy_; is the unitary

(N — 1)-dimensional sphere volume.

(90)
_ NG(z,u)
lim sup ————
u—0t |U|

=0
uniformly in x € §2;

(71) g: QxR — R is continuous non-decrasing function and g(z,0) = 0 for allz € Q, g(x,u) > 0
in Q x [0, 400) and g(z,u) < 0in Q x (—o0,0];

(g2) There are R, M > 0 such that V |u| > R

0<G(z,u) = /Oug(x,s)ds < Mlg(z,u)|

for all z € ;

(g3) There is C' > 0 such that V |s| > C

|N71

sg(x,s) = y(s)e™l”

where ~y(s) is such that there is g > 0 with

lim inf LS)I >0

s—Foo e€0|3\ﬁ

for some gq > 0.
The next lemma can be proved following the same steps as in Lemma [3.2.3]

Lemma 4.2.1. Suppose that (g1) and (g3) hold. So, there are og, Voo and Cy > 0 such that

89(1’,8) Z ,yooeao(|s\+00)1w

for all x € Q and |s| > Cy.

Now, let us fix that
[Vl

wewlr @0y lullp

)\1:
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and
[Vul|

wew 0oy lullg

M1 =

the first eigenvalues of the problems

—Apu = ANulP~?u in Q
u=>0 on 0,

—Ayu = plu|??u in Q
u=>0 on 0f),

respectively. Consider now the associated functional .J : W™ (Q) — R, which is given by:
Jw) == [ (IVul" = Au") dz+ = [ (|Vu]? — plu|?)dz
N Jo qJa

—/QG(x,u)dm—/Qf(:p)udx
where

G(z,s) = / g(z, t)dt.
0
From these first conditions, we obtain that the associated functional J to problem (4.1)) is of
class C* with derivative given by

J (u)v = /(|VU|N_2VUVU — MNu|N2uw)dz
Q

—i—/(\Vu\qQVqu—u]u\q2uv)dw—/g(m,u)vdm—/f(x)vdx
Q Q Q

for all  and v in Wy"™ (). By definition, weak solutions of the main problem are critical points

of this functional.

In W,*(Q), we work with its usual norm

1
ol = ( [ 1Vular)

Given that our main framework resides in W, (), we simplify notation by letting || - HWOI,N @

be represented as || - ||. The main results of this chapter are stated below.

Theorem 4.2.2. Suppose that (), (go) — (g3) hold, 2 < ¢ < N, X € (0,\1), p € (0, 1] and
f € L*>(Q) is non-trivial. Then there exists n > 0 such that problem (4.1)) has two solutions
provided that || f]le < 7.

This restriction ¢ > 2 can be suppressed if we avoid working with the g-linear term |u|7"?u in
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the problem, which means, if we put g = 0. This is the subject of the next theorem.

Theorem 4.2.3. Suppose that (cp),(go) — (g3) hold, N > 2,1 < g < N, A € (0,\), u =0
and f € L>*(Q) is non-trivial. Then there exists n > 0 such that problem (4.1)) has two solutions
provided that || f]le < 7.

4.3 Preliminaries

The objective of this section is to find a solution for problem (4.1) by Ekeland’s Variational
Principle and display some important properties such as norm estimates for truncations of the
Moser functions. First we will recall some consequences of the properties placed in g, proceeding
as in Chapter 3 we see that if g has critical growth with the exponent oy (see hypothesis ),
then V 8 > «ay, there is a constant C' > 0 such that
Mo

gz, u)] < CeP™D)

V(z,u) € QxR

The next lemma has already been demonstrated in Chapter 3 and for convenience we will state

it, as these are properties that help with calculations throughout this chapter.
Lemma 4.3.1. (go) — (g3) implies that:

(ga) Theres is a C' > 0 constant such thatV x € Q and |u| > R

G(x,u) > Celarm),

(gs) There are S >0 and 0 > N such that ¥V z € Q and |u| > S we have

oG (z,u) < ug(z,u).

(gs) There are K >0 and r > N constants such that

/G(x,u)dxﬁi/ ]u|Ndx+K/ |u|"ePlH
0 N Ja Q

for all B > ay and € > 0.

Ydx

N
N=—

The next proposition is a standard argument, which was also established in all previous

chapters, with their respective frameworks.

Proposition 4.3.2. Assuming (Go) — (g2) hold, let (un,) be a (PS) sequence for J in W™ (Q).
Then (u,;,) is bounded.
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Proof. Let (u,) C Wol’N(Q) a PS sequence at a certain level ¢, so,

1
x (/ |Vt [N — /\|um|N) dr + - (/ |V, |? — )\|um|q) dx—/G(x,um)dx—/f(x)umdx —c
N \Ja 7 \Ja Q Q

and

(/ V[N — )\|um\N> da (/ (Va7 — )\|um|q> dx—/ g(:v,um)umdac—/ F@)tmde < l[um]).
Q Q Q Q

Consider o from (gs), then,

C + ellumll > o J(um) — J' (um )t
o
=(=-1 AN = M|V d Z 1 19— Au,,|?) d
(5= 1) [ 05l Ay o+ (2= 1) [ (9l Nl o
- / (0G(x,Up) — g(z, U )Up) dx — (0 — 1) / f(z)uydx
Q Q
> Cillum|™ = Colluml.
This last inequality shows that (u,,) is bounded. O

The next two lemmas will give the necessary geometry to find the first solution, which will be

a local minimum for the functional.

Lemma 4.3.3. Suppose that (go) — (g2) holds. Then, there are constants n > 0 and pg > 0 such
that, for all u € Wy (Q) with ||u = po, we have J(u) > 0, provided | f|ls < 7.

Proof. Let 5 > ap and 7 > N. So by (gs) and using Lemma and Sobolev embeddings, we

obtain
1
J(u) = %/Q (|VU|N —)\|u|N) dx+5/Q(|Vu|q—,u|u|q)dx—/QG(x,u) dx—/ﬂf(x)uda:

Sy SRR WL / u|Vdz — K / P d — C|l flloollul
- N A1 N Jq Q

By Holder inequality,

e () )

where % + % = 1. Take p > 1 such that

pBllul 7 < a. (4.3)
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Then, by Pohozaev-Trudinger-Moser inequality we get
Mot
[ ture ™ o < .
Q

Therefore,

1 A €
>_ 1__ N__ N _ r_
1mo_N( Al)uuu = [ 1al¥dz = Cljulr = I el

_ i _/\‘1“5 N-1 _ r—1
— {5 (1= 2555) bt = = = €l }.

Consider pg such that

1 A

(1Y N N ot
h(po) N( )\1>Po O~ 7o Cpy >0

for ¢ > 0 small enough. Then choose 1 > || || so that J(u) > 0 for all |jul| = po.

Lemma 4.3.4. Suppose that (go) — (g2) hold. Then

inf J(u) <0

l[ull<p

where p > 0 is small enough.

Proof. Consider ¢ € C§°(£2) such that ||| =1 and [, fedz > 0. So,

tN e
J(tp) = N/Q (VoY = MY dz + " /Q(!VM" — ple|?)dx

—/Qc;(x,up) dx—t/gf(m)apdx

and

d _ B _
-—ﬂwwzﬂl—kwIMﬂ%+ﬁllkaP—Mwﬂw

dt
—/QWWMM—/ﬂme
Q Q
N-1 qg—1 q o o
<t [Veptds - [ glatoedo - [ fla)od.

Since g(x,0) = 0 and g(z,.) is continuous, there is p > 0 small enough such that for 0 < ¢t < p we

have
iJ (tp) < 0.
dt
Furthermore, J(0) = 0 implies that
J(tp) <0
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for 0 <t < p. O

The last two propositions of this section will give the first solution of the problem, as a

consequence of Ekeland’s Variational Principle.

Proposition 4.3.5. Let (u,,) be a (PS) sequence for J in Wy'™ (Q) such that
&
lim inf [[uy]| < (O‘—N) .

Then there exists a subsequence of (u,,) that converges to a solution of (4.1]).

Proof. Let (uyn,) be a sequence (PS) for .J in Wy (), so (u,) is bounded and using the Lemma
we find that there is w € Wy (Q) a solution of (&.1)) such that u,, — w in W, (Q). Now,

consider

Wy = W — Uy,

Then, w, — 0 in Wy (), w,, — 0 in L5(Q) with 1 < s < oo, furthermore, by Brezis-Lieb

Lemma and Lemma [B.6.3] we obtain

o(1) = J (Up) U,

= (Il + ool = Mwl¥) + (Il a0 + leoml.o = slwls)
—/g(x,um)umdx+/g(x,um)wdz—/g(x,um)wdx—/fwdx+o(1)
Q Q Q Q

:J’(w>w+|ywm|yN+|\me‘;Vl,q+/g(x,um)wmdx+o<1).
0 Q

Since
a
lim inf ||u,,| < <—N) ,
m—o0 ao
we can choose a subsequence still denoted as (u,,) and a ¢ > 1 such that

lim oa||um|| ¥ < .
m—00

From Holder and Pohozaev-Trudinger-Moser inequalities we have

/Qg(x Y dr < (/ (s de> </ |wm|"dx)
([ ([

< Kljwpllor =0,

1
o/

1
o/
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with K > 0 being a constant. Therefore,

. N q
0= lim_(lfwml™ + wnll?..)

ie.,

[wml]] =0

when m — oo. O

By Lemmas {4.3.3[ and |4.3.4] and knowing that J(u) is continuous, let us define

—00 < ¢p = inf{J(u);u € Wy (), |Jul| < po} < 0. (4.4)
Proposition 4.3.6. Consider (go) — (g3). Let n > 0 and py be constants determined by Lemma
and assume || f||lse < n. Then there exists w € Wy (Q) solution of (1)) at level cq.

Proof. Consider py from (4.3]) in Lemma m Notice that it was chosen in such a way that

N-1
aN N
Qo

From Lemma {4.3.4) we can apply the Ekeland variational principle to find that there exists a
sequence (u,,) in B(0, pg) such that J(un,) — co and J'(up ), — 0 when m — oo. Therefore,
using Proposition [£.3.5], we have a solution. O

4.4 Proof of the Main Theorems

This section provides a mountain-pass geometry and acts as an auxiliary result to demonstrate
that minimaz levels can be controlled by strategically selecting directions provided by truncations
of Moser functions. The first lemma, together with the fact that w is a local minimum to J,

provides the required geometric properties.

Lemma 4.4.1. Assume that g satisfies and (Go) — (§2) and consider o € Wy (O\{0} as a

continuous, nontrivial and nonnegative function. Then J(w + tp) — —oo when t — 400.

Proof. Since (g4) holds, there are positive numbers C' and R and o > N such that

G(z,u) >u’, V (x,u) € Qx[R,c0).
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Let z; € Q and r > 0 be such that m, = ming, (5,) p(x) > 0. So, for all t > (R + ||w||p~)/m,, we
get

1
J(w +tp) = N/Q (|V(w—|—tgo)|N —)\|w+tg0|N) dx

1
41 / (IV(w + )| — pho + to]?)da
Q

q
—/G(x,w—irt(p)dx—/f(x)(w+tg0)d:z:
Q Q
2Nt N |, 4N N 2971
< ([Vw|Y + tYVe|Y) do + =— | ([Vw|?+ t*|Vp|?) dz
N QO q Q

e / w4+ tolde + t]) | / o+ ||l e 0]l .
By (z1) Q
Since ||ty < ||w||re + ||w + to||L- implies that

ltellze < 277" (wllZe + lw + tellZo)

we obtain
ON—14N 20— 1¢a cte
J(w+ tg) < / VeNdz + / Vlids — S / ol7de + ] 1~ / odz
N Q q Q 2 By (z1) Q
+

for large t > 0, where C depends on w. Since 0 > N > ¢ > 1, we must have J(w + tp) — —o0
as t — +o00. O

The following definition and subsequent lemma are identical to those presented in Chapter 3.
However, we repeat them here to ensure a smoother reading experience throughout this chapter.

Let us define

N—-1

(logm) ™~ if |z| < £

~ %1 logﬁ e 1

Zm(l’> = Wxn_1 m if m S |ZL‘| S 1,
0 if |z > 1.

For suitable zy € Q, §,,, < r and r > 0 satisfying B(x,,r) C 2, all of them to be chosen later, we

denote
r — X9

Zm(T) = Zp, ( 5 ) , Vo e (4.5)

Following the work in [I7], we obtain the estimates:
Lemma 4.4.2. For any m € N, the functions z, € Wy (Q) and it holds:

a) |[zmll = [Vzm|[py = 1;
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b) [IV 2]

. =0N=50(logm) ¥, for s € (1, N);

s, =06NO(logm) ¥, for s € [1,00).

c) ”Zm

Now, being w is a local minimum for J and considering ¢ = z,, in Lemma [4.4.1] it follows

that J has the Mountain Pass Geometry:

Proposition 4.4.3. Suppose (ao)), (go) — (2). Then the functional J € Wy N(Q),R) and
the following hold:

i) There exists p > 0 such that J(u) > J(w) for allu € W, P (Q) with ||u — w| = p;

i) There exist e € Wy (Q) such that |le — wl|| > p and J(e) < J(w).

Define
D= {y €C(0,1], Wy™(Q)) : 7(0) = w and J(v(1)) < J(w)},
and
¢ = inf mmax J (v(t))- (4.6)

N-1
Proposition 4.4.4. Assuming (go) —(g2) and ¢; < co—l—% (a—N> , we conclude that J possesses

@Q

a critical point u # w, obtained as the weak limit of a sequence (PS) at the level ¢;.

Proof. Let us begin by recalling that J(w) = ¢o. By Proposition we know that is possible to
obtain a (PS) sequence {uy,}n,, for J at the level ¢;. By definition of ¢1, we have ¢; > ¢y. Notice

that, in case ¢ = ¢y, this sequence can be chosen satisfying ||u,, —w| > & for all m, where py is
given in (4.4). It follows that

oMol = J (um)v

— /Q (V| N 2V, Vo = NN u0) do
+ /Q (V" VU Vo — piltm |2 umv) d
— / g(x, up )vdr — / fodx
Q Q
Vv e Cie(Q2). In particular,

o(D)lum|| = J' (tm) i,

:/ (|Vum|N —/\|um|N) dx+/ (IVum|* — plum,|?) de
Q Q

Q Q
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and
1 +o(l) = J(up)

1 1
= —/ (V| = At |Y) dx+—/ (|Vum|? — plunm,|?) dx
N Q qJq

—/QG(:v,um)d:v—/qumdm.

By Proposition m, (t,) is bounded. Then, there exists u € Wy () such that, up to a
subsequence,

Uy — u in Wy N (Q),

Um = u in L*(Q),1 < s < oo,

Uy, — U a.e. In x € Q.

By Lemma [3.6.3 and following the same steps in the proof of Proposition [3.6.5] we see that u is a
critical point of J. Notice that f # 0 gives u # 0.

Now, consider v, = u,, — w. So,
. 1N
Uy — 0 in Wy (92),

U — 0 in L5(2),1 < s < o0,

v, — 0 ae. inx €.

Furthermore,
/ Gz, up)dr — / G(z,u)dr = / G(z,w)dz.
Q Q Q
Then,
1
() = J(w) = < (lwm ™ = [l = Allum|[x + Mlw])
1
= (o) = Nty = pllumll + sl
(4.7)
— / G(z, up)dr + / G(z,w)dz
Q Q
- / f(z)(uy, —w)dx.
0
It follows from Brezis-Lieb Lemma that
Y 2 e+ 1) = i) = T (w)
N g "M@ R (4.8)
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On the other hand, in a similar way to what was done in Proposition |3.6.5, we get

J%vmm%lz|meN——Aw%m%-+uva;Lqm-—uuwﬂw-—/Qg@avmm%¢Mr—]chwvmdx
= J (upm)ty, — J' (w)w — / 9(x, vy ) Vpdx + / g(x, U ) Uy de — / g(x, w)wdz + o(1)
Q Q

Q
— [ 9o vmunde + [ gl wnunds + o)
Q Q

=o(1).
(4.9)

Then, we obtain

ol + ol gy = 0 (4.10)

as m — +o00. Now supose that ¢; = J(w), then the sequence {up, }, is such that |ju,, —w| > 2,
that is, ||[v,,|| > % contradicting (4.10)). In the case where ¢; > co, then by (4.8) we get

1 N 1 g
ol ol +0(1) = 1 = >0
contradicting (4.10]) again. This finishes the proof of this proposition. O

Now, the remaining task is to demonstrate that the minimaz level ¢;, as defined in (4.6)), is in
N-1
fact below J(w) + + (O‘—N> :

N \ «ag
Proposition 4.4.5. Suppose that g satisfies and (§1) — (g3). Consider ¢y as defined in (4.6)),
2<q< N and pu € (0,11]. Then

1 fan\ V!
01<J(w)+ﬁ<a—0) .

Proof. Tt suffices to show that there exists sufficiently large m such that

1 fay\ V!
J(w+tzm)<J(w)+N(a—o) ;
for all ¢ > 0. From Lemma [4.2.T] for each k& > 0, there are op > 0 and Cj > 0 such that
sg(z,s) > ke("O('SH%O)N,, (4.11)
for all z €  and |s| > C}. Choose and fix r > 0 and zy € Q2 close enough to 02 such that

[wl|2oo(B, (z0)) < 0 (4.12)

Now, for some 0 < §,, <7 <1 (to be chosen later) and xy, we consider z,, as given in (4.5)). By
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Lemma we know that, for any m € N, there is R,, > 0 satisfying
J(w+tz,) <0, Vt>R,.
Then, there exists t,, > 0 such that
J(w+ tmzy) = r%%x J(w+tzy).

Let us assume, by contadiction, that

1 N-1
J(w~+ tmzm) > J(w) + — (Q—N> Vm e N. (4.13)
N (&7))

Using the results in Proposition as in Proposition [T.4.1] we obtain

/ |V (w + t2,)|Ndx
0

V|V Vw.Vz |V 2|
< [ Ivwl"N |1 tN| m Nt "4 t—" )| d
—/Q' ! [* Vol T e §N( vl )]

g/\vw|Ndx+tN/ vam|Nd:c+Nt/ |Vw|N2Vw.Vzmd:c+C/£N (t|Vzm|) dx
Q Q Q Q

where
24 N1 if N >3,
En(s) = .
s7 if N =2, fora fixedye(1,2)

and we use the fact that |Vw| € L*>(Q). Similarly,

/ |V (w + tz,)|dx
0

|V 2|9 Vw.Vzy, |V 2|
< 701 4+ ¢ t C t—— d
—/Q‘V“” { TSl P wep T o) )| P

S/|Vw|qdm—|—tq/|Vzm|qu+qt/|Vw|q_2Vw.Vzmdm—|—C’/fq (t|Vzm|) dz
Q Q Q Q

where
£.(5) s2 4571 if N >q>3,
S) =
! 57 if q€12,3), forafixedye€ (q—1,2).

On the other hand, for every ¢ > 0 we have

/|w—|—tzm|Ndx—/|w|Ndm—tN/|zm]Ndx
Q Q Q

< oN—L N1 / () w|dee + 2V Nt / e[Sz
Q Q
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Similarly, for every ¢ > 0

/|w+tzm|qu—/|w|qu—tN/|zm|qu
Q Q Q

< 2q_1qtq_1/(zm)q_1|w|dx+2q_lqt/zm|w|q_1dx.
Q Q

We know that
J(w+tz,) = / (IV(w + tzp) |V = Aw + tz,,|V) do
Q
1
+ 5/ (IV(w 4 tzm)|? — plw + tz,]9) dx
Q

—/QG(x,w—i-tzm)dx—/Qf(w—i—tzm)dx.

Thus, we get

J(w+t2m)—J(w):%/Q(|V(w+tzm)|]\f_|vw|N> dx—%/ﬂ(|w+tzm|]\’_|w|1\/) dx
! 7 — [Vwl? x—ﬁ w + tz,|? — |w|?)dz
w2 [ (90 )l =Vl de =2 [ (ot o, =
—/[G(x,w+tzm)—G(x,w)] dx—/[f(x)(w—l—tzm)—f(x)w] dx
Q

Q
tV 4
< —/ |Vzm|Ndx+t/ |Vw|N_2Vw.Vzmdx+—/ |V 2| dx
N Jo Q q Ja
+t/ wa\q—2Vw.vadx+0/§N (t\v2m|)da:+c/§q (t|Vzm|) dx
Q 0 Q
ANV / (2 ¥ | dae + A2Vt / el N
Q Q
+,u2q_1tq_1/(zm)q_1|w|dx—|—u2q_1t/zm|w|q_1dx
Q Q
—/[G(x,w+tzm)—G(x,w)] dx—t/f(x)zmdx.
Q 0

Knowing that 0 = J'(w)tz,,, we see that

t/ |Vw|N_2Vw.Vzmd:E+t/ |Vw|q_2Vw.Vzmdx—t/fzmdx:
Q Q Q

)\t/ |w|N_2w.zmd:B~|—ut/ |w|q_2w.zmdx+t/g(a:,w)zmdx.
0 0 Q
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It follows from the above equation and the fact that w € L>(Q2) that,

N q
T(w + t2) — J(w) < t—/ |Vzm|Ndx+t—/ |Vzm|qu+0/§N (1|V 2] d
N Jq q Jo Q

+C/§q (t]Vszdx—i-th1/(zm)q1]w|dx+CtN1/(zm)N1d:U
0 0

_ /Q G(z,w+tzy) — G(x,w) — g(z,w)tz,] dx

+Ct/zmdx.
Q

Using that ¢ is non-decreasing by (g;), it follows from Mean Value Theorem that

N q
J(w+tzy) — J(w) < t—/ ]Vzm|Nd:1:+t—/ |Vzm\qda:+0/§N (t|Vzp|) dz
N Ja q Jo Q

+C / &, (t{Vzm|) dz + Ot~ / (2n) T Yw|da + CHN / (z0)VNda
Q Q

Q
+ Ct/ Zmdz, ¥Vt > 0.
Q

It follows from Lemma [B.6.6] that

N
J(w+ tmzm) — J(w) < tﬁ + 110N (logm) ¥ + t2CON"2(logm) ™
—(N

+ V1O~ =D (log m) A CSN " (logm) ™
+ 117N~ (log m)_(gv_l) +tC6N " (log m)_Wl, vt > 0,

since v € (1,q) suitable and v € (0,1). Here, the exponent ¢* appears in case N > 3. Now,

considering 6,, = (logm)~'/V, since 6¥~*(logm)~ = (logm)~!, we see that
(4.14)

tN C
J tzm) — J(w) < — N 2 ), YE>0
(et t2m) = J(w) < T b s (4T 1T 1) :

for large m € N, where the term t? appears only if N > 3. This inequality allows us to show
that {¢,,}m is bounded from below by a positive constant. In fact, considering t = ¢, in (4.14)), if

tm < 1 it follows from (4.13) that

N> (2 ¢
™\ ap logm

> 1 (a_N>N_1,
-2 (7))

for m € N sufficiently large. So, t,, > min{1, (1/2) (an/ae)" '} for large values of m. Thus,
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there exists g > 0 such that
tm > to, VYm e N.

Since t,,, > 0 is a maximum point for ¢ — J(w + tz,,), it follows that
/ d
J(w A+ bz ) (tn2m) = tm%‘] (W + tzm) =0,

and so
/Qg(a;, W+t zm) (tmzm)da = t, /Q IV (W + trmzm) [V 2V (W + t2m)V Zmda
+ tm/Q IV (W + tim2m) |72V (W + t2m)V 2 da
— M /Q(w + timzm) |V (W + tn2m) ZmdT
— pty, /Q(w + tonzm) |92 (W + toZm) Zmd — / famdz.

Since {2} is bounded in Wy ™ (Q) we see that

/ V(W + tzm) Y 72V (W + b zm) V(Enzm)dz < [V (0 + tpzm) |V IV (Enzm) || oy

< C(lwl™ "+t lzml1¥ ) [tz

<C (tm + 1),

and, in a similar way, we get

/ IV (W + tzm) |72V (W0 + tin2m)V (tmzm)dz < O (t, +19)
Q

/ 0+ bz V20 + o) () < C (b + ) |
Q

/ 0 + £ 2| T2 + ) (b ) < C (£ + 1)
Q

and

/ |f(@)|(tmzm)dz < Ct,y,,

for all m € N. Then,
/ Gz, W+t zm) (tmzm + w)de < C(ty + 19 +tN) < O, ¥m, (4.15)
0

because 0 < ty < t,,, for all m € N. Then, from this point, we follow the exact same steps as given
in Proposition after inequality (3.45)) to arrive at a contradiction, finishing this proof. O
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The last case is given when p = 0, which becomes simpler since there is no interference of the

g-linear part.

Proposition 4.4.6. Suppose that g satisfies and (§1) — (g3). Consider ¢y as defined in (4.6)),

1<qg< N and p=0. Then
1 fay\"!
Cl<J(w)+N(a_o) .
Proof. Reproducing the proofs of the previous proposition, we observe that the term with exponent
qg—1in will not appear. So, we do not need to worry about the estimates on 2% ! when
q € (1,2). That is, we will obtain the estimate:
N

_ <
J(w+tzy,) — J(w) < Nt Togm

B+t N 20 1), VE> 0,

for large m € N (noticing that ¢* will only appear if N > 3). The result follows in a similar way

to the previous proposition. O

4.4.1 Proof of the main theorems

Theorem is proved using Propositions [£.3.6] [£.4.4] and [£.4.5] Moreover, Theorem is
proved using Propositions |4.3.6| 4.4.4] and |4.4.6|
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