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Agradeço aos meus amigos do programa Se Liga no Enem Paráıba, em especial Juliana, Haniel
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Apenas dê o primeiro passo.”

Martin Luther King



Abstract

Estudamos classes de equações eĺıpticas envolvendo operadores do tipo (p, q)-Laplaciano,

considerando não linearidades no intervalo de crescimento cŕıtico dos tipos Sobolev (quando

p < N , sendo N a dimensão do espaço) e Trudinger-Moser (quando p = N). Por meio de

métodos variacionais, estabelecemos a multiplicidade de soluções para problemas não homogêneos,

considerando tanto casos de crescimento cŕıtico unilateral quanto bilateral. A influência do

expoente q é analisada, destacando-se como um fator crucial na obtenção dos resultados, em

comparação com os problemas clássicos envolvendo o p-Laplaciano.

Palavras-chave: Métodos variacionais, (p, q)-Laplaciano, Problemas eĺıpticos quasilineares,

resultado do tipo Ambrosetti-Prodi, Trudinger-Moser, Expoente cŕıtico de Sobolev.



Abstract

We studied classes of elliptic equations involving (p, q)-Laplacian operators, considering

nonlinearities within the critical growth range of the Sobolev type (for p < N , where N is the

spatial dimension) and the Trudinger-Moser type (for p = N). Using variational methods, we

established the multiplicity of solutions for nonhomogeneous problems, addressing both cases of

unilateral and bilateral critical growth. The influence of the exponent q was analyzed, highlighting

its crucial role in obtaining the results, compared to classical problems involving the p-Laplacian.

Keywords: Variational methods, (p, q)-Laplacian, Quasilinear elliptic problems, Ambrosetti-

Prodi type result, Trudinger-Moser inequalities, Critical Sobolev exponent spaces.
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Introduction

Motivations

In this study, we investigate the existence and multiplicity of weak solutions for classes of

non-homogeneous problems using variational methods that involve partial differential equations

associated with the (p, q)-Laplacian operator. The problems are of the type:{
−∆pu−∆qu = g(x, u) + f(x) in Ω,

u = 0 on ∂Ω,

where Ω represents a bounded domain in RN , with the dimensions satisfying 1 < q < p ≤ N ,

g : Ω × R → R is a non-linear term and f is a non-homogeneous term. The (p, q)-Laplacian

operator is defined by

∆pu+∆qu = div
(
(|∇u|p−2 + |∇u|q−2)∇u

)
.

This kind of problem plays a crucial role in diverse fields, such as biophysics [32], reaction-diffusion

equations [25], and forms a fundamental component in the examination of quasilinear elliptic

problems. Problems related to this operator have been extensively explored in existing literature,

as demonstrated by studies by [14, 31, 35, 36], and others referenced therein. In this work we

address problems where the nonlinearity g(x, u) presents both unilateral critical growth (Chapters

1 and 3) or bilateral growth (Chapters 2 and 4). Chapters 1 and 2 focus on the case p < N ,

addressing critical growth of the polynomial type. In contrast, Chapters 3 and 4 examine the case

p = N , where the natural critical growth is of the exponential type.

Unilateral problems

Problems involving unilateral critical growth have connections to a seminal problem introduced by

A. Ambrosetti and G. Prodi in 1973 (see [1]), which discuss the existence, multiplicity, and absence

of solutions for a specific differential equation. This problem has intrigued mathematicians for

decades, leading to the exploration of various generalizations arising from the original research.

The results of this study are based on the non-homogeneous term and the interplay between
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nonlinearity and the spectrum of the operator. It was formulated as{
−∆u = h(u) + f(x) in Ω,

u = 0 on ∂Ω,

with strict conditions on h(u) and f(x). Successive studies have built upon these findings,

delving into the diverse dynamics between the data. Defining h− = lims→−∞ h(s)/s and

h+ = lims→+∞ h(s)/s, it was assumed that 0 < h− < λ1 < h+ < λ2, referencing the spectrum

under discussion. The unilateral superlinear scenarios, with, h(u) = 0 for all u ≤ 0, h− ∈ (0, λ1)

and h+ = +∞, led many researchers to variational approaches and have been analyzed, for

instance, in [3] for the case of the Laplacian and [26, 34] for the p-Laplacian case, specifically in

the context of subcritical growth for h(s). D. Figueiredo and Y. Jianfu [5] addressed the case

where p = 2 with h(u) = λu + u2
∗−1, i.e., they explored the superlinear unilateral behavior of

g(x, u) with critical growth (here 2∗ concerns the critical Sobolev exponent 2N/(N − 2)). They

proved the existence of two solutions for N > 6. The insights of [5] were extended by M. Calanchi

and B. Ruf [27] to include N ≥ 6, and by incorporating a subcritical term, they also ventured

into discussions for N = 3, 4 and 5. Further, [19] explored this problem through the lens of the

p-Laplacian operator, achieving results analogous to those of [5, 27]. This framework set the stage

for further exploration of the interactions between h−, h+, and the spectrum. In Chapter 1 we

extend the results of [19] for the (p, q)-Laplacian operator with 1 < q ≤ p < N .

In this unilateral case, Chapter 3 focuses on the scenario p = N ≥ 2, motivated by the

Pohozaev-Trudinger-Moser inequality

sup
u∈W 1,N

0 (Ω),∥∇u∥N≤1

∫
Ω

e(αN |u|
N

N−1 )dx <∞,

where αN = Nω
1

N−1

N−1 and ωN−1 is the unitary (N − 1)-dimensional sphere volume (see [20, 30]).

The two-dimensional scenario, where the critical growth of Sobolev type is substituted with a

Trudinger-Moser growth condition, was examined by Calanchi et al. [28], considering the problem

given by: {
−∆u = λu+ g(x, u+) + f(x) in Ω

u = 0 on ∂Ω,

in a bounded domain Ω ∈ R2, where g is a function satisfying a unilateral critical Trudinger-

Moser-type growth condition. They showed that for a specific class of functions f and λk < λ <

λk+1, k ≥ 1, λi being the eigenvalues of (−∆, H1
0 (Ω)), there exist two solutions, one of which is

negative. This result was extended by [2] for the cases of the gradient system. One of the primary

challenges in dealing with this type of growth condition in g is establishing that the minimax

level of the functional associated with this problem avoids non-compactness levels. An additional
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assumption has been introduced to address this issue, ensuring that this level remains below a

critical constant. To achieve the appropriate level, the techniques employed require that the Moser

functions have support in a ball Br such that r > 0 is selected to be sufficiently small in the various

stages of the arguments. The results in Chapter 3 extend this discussion to the (N, q)-Laplacian.

Notably, these findings are also novel for the N -Laplacian, as, to the best of our knowledge, the

unilateral growth condition in non-homogeneous problems involving this operator has not been

previously explored.

It should be noted that, as in the polynomial case, the first solution is obtained employing an

argument that relies on the fact that, under established conditions, local minima of the associated

functional in the C1 topology are also local minima in the W 1,N topology. However, unlike the

polynomial cases addressed in Chapter 1, this result does not appear to be available in the current

literature for the exponential case. To address this gap, we had to establish the C1 × W 1,N

topology result ourselves, drawing inspiration from [18], which deals with similar functionals but

under slightly different hypotheses.

Bilateral problems

For the bilateral case, it is worth mentioning the work of Tarantello [12], who obtained two distinct

solutions of the following problem:{
−∆u = |u|2∗−2u+ f(x) in Ω

u = 0 on ∂Ω,

where Ω is a bounded domain in RN , N ≥ 3, 2∗ = 2N/(N − 2) is the critical Sobolev exponent

and f ∈ H−1(Ω) is non-trivial, satisfying

∫
Ω

fudx <
4

N − 2

(
N − 2

N + 2

)(N+2)/4

∥∇u∥(N+2)/2
2

for all u ∈ H1
0 (Ω) and ∥u∥2∗ = 1. Furthermore, we can mention [7] who extended the above

problem to the case {
−∆u = λu+ |u|2∗−2u+ f(x) in Ω

u = 0 on ∂Ω,

where 0 < λ < λ1, with λ1 > 0 is the first Dirichlet eigenvalue of −∆ in Ω. Subsequently,

Perera [23] demonstrated the existence of µ0 > 0 such that the aforementioned problem admits

two nontrivial solutions for all f ∈ L2N/(N+2)(Ω)\{0} with ∥f∥2N/(N+2) < µ0 provided that N = 4

and λ is not an eigenvalue, or for N ≥ 5 and λ > 0.
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In the case of p-Laplacian, Chabrowski [16] investigated the following problem:{
−∆pu = |u|p∗−2u+ λ|u|q−2u+ f(x) in Ω

u = 0 on ∂Ω,

considering λ > 0, f ̸= 0 under certain conditions, and 1 < p, q < p∗, 1 < p < N and

p∗ = Np/(N − p) is the critical Sobolev exponent. Chabrowski showed that there exists λ̄ > 0

such that the aforementioned problem has at least two distinct solutions, establishing a negative

minimal energy solution using the Variational Principle of Ekeland. In case q ≤ p, f ̸= 0 under

specific conditions, a solution was obtained for either large λ > 0 or for a domain Ω of small

measure. Furthermore, a second solution using the method employed was inconclusive.

In Perera [23], the problem given by:{
−∆pu = λ|u|p−2u+ µ|u|q−2u+ |u|p∗−2u+ f(x) in Ω

u = 0 on ∂Ω,

where 1 < p < N ,1 < q < p∗, λ > 0, µ ∈ R, was explored. Considering

E(u) =

∫
Ω

(
1

p
|∇u|p − λ

p
|u|p − µ

q
|∇u|q − 1

p∗
|u|p∗ − f(x)u

)
dx, u ∈ W 1,p

0 (Ω)

the associated variational functional and

SN,p = inf
u∈W 1,p

0 (Ω)\{0}

∥u∥p

∥u∥pp∗

the best Sobolev constant, Perera showed that there exists µ0 > 0 such that the above problem

supports two nontrivial solutions u1 and u2 satisfying:

E(u1) < E(u2),

0 < E(u2) <
1

N
S
N/p
N,p

for all µ ∈ R and f ∈ Lp∗
′
(Ω) \ {0}, with p∗′ = p∗

p∗−1
and |µ|+ ∥f∥p∗′ < µ0 in the following cases:

(i) N ≥ p2 and λ > 0 is not a Dirichlet eigenvalue of −∆p in Ω;

(ii) N(N − p2) > p2 and λ > 0.

We can continue discussing these non-homogeneous problems with the critical (p, q)-Laplacian

operators, given by {
−∆pu−∆qu = µ|u|r−2u+ |u|p∗−2u in Ω

u = 0 on ∂Ω,
(1)
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where Ω is a bounded domain in RN , 1 < q < p < N , µ > 0, N ≥ 2 and 1 < r < p∗. In the present

literature, we can mention that Li and Zang [9] showed that this problem possesses infinitely many

solutions when 1 < r < q and µ > 0 is sufficiently small. Furthermore, Yin and Yang [14] showed

that it has a non-trivial solution when p < r < p∗ and µ > 0 is sufficiently large. Furthermore,

Marano, Candito and Perera [31] have investigated a variant of the problem, which reads:{
−∆pu−∆qu = µ|u|q−2u+ λ|u|p−2u+ |u|p∗−2u in Ω

u = 0 on ∂Ω,
(2)

where µ ∈ R and λ > 0 are constants that interact with the spectrum of −∆q and −∆p,

respectively. AssumingN > p2, λ ∈ (0, λ1), and µ ≤ µ1, where λ1 and µ1 are the first eigenvalues of

the p-Laplacian and q-Laplacian operators, respectively, they discovered a nontrivial nonnegative

solution in the following cases:

(i) N(p− 1)/(N − p) ≤ q < (N − p)p/N ,

(ii) N(p− 1)/(N − 1) < q < min{N(p− 1)/(N − p), (N − p)p/N},

(iii) (1− 1/N)p2 + p < N and q = N(p− 1)/(N − 1),

(iv) (p− 1)p2/(N − p) < q < N(p− 1)/(N − 1).

These findings establish the existence of nontrivial solutions for the critical (p, q)-Laplacian

problem under specific conditions regarding the parameters and dimensions involved.

Recently, Ho, Perera and Sim [22] provided a nontrivial solution to problem (1) for all µ > 0.

they demonstrated that the problem (1) possesses a nontrivial weak solution for all µ > 0 in each

of the following cases:

(i) 1 < q < N(p− 1)/(N − 1) and N2(p− 1)/(N − 1)(N − p) < r < p∗,

(ii) N(p− 1)/(N − 1) ≤ q < p and Nq/(N − p) < r < p∗.

In particular, problem (1) has a nontrivial weak solution for all µ > 0 when N2−p(p+1)N +p2 ≥
0, q ≤ (N − p)p/N , and p < r < p∗, and when N2 − p(p + 1)N + p2 > 0, q < (N − p)p/N , and

r = p. Additionally, the non-homogeneous case for the (p, q)-Laplacian operator was investigated

by Perera [23], where the problem was formulated as:{
−∆pu− η∆qu = λ|u|p−2u+ |u|p∗−2u+ f(x) in Ω

u = 0 on ∂Ω.
(3)

Here, Ω is a bounded domain with a smooth boundary in RN , where 1 < q < p < N , the

parameters λ and η are positive and f ∈ Lp∗
′
(Ω). The associated variational functional can be
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expressed as:

E(u) =
1

p

∫
Ω

|∇u|pdx− λ

p

∫
Ω

|u|pdx+ η

q

∫
Ω

|∇u|qdx− 1

p∗

∫
Ω

|u|p∗dx−
∫
Ω

fudx

where u ∈ W 1,p
0 (Ω). The author obtained two nontrivial solutions u1 and u2 that satisfy

E(u1) < E(u2) and 0 < E(u2) < S
N
p /N , for all µ > 0 and f ∈ Lp∗

′
(Ω) \ {0} with ∥f∥p∗′ + η < η0,

for some η0 > 0, where S is the best Sobolev constant, in the following cases:

(i) N ≥ p2 and λ > 0 is not a Dirichlet eigenvalue of −∆p in Ω,

(ii) N(N − p2) > p2 and λ > 0.

In Chapter 2, by introducing the term f(x), where f ∈ Lp∗
′
(Ω), in problem (2) and considering

higher dimensions, we identify two distinct solutions, provided that ∥f∥p∗′ is sufficiently small and

1 < q < N−p
p

. It is worth noting that problem (3) incorporates a parameter η into the q-Laplacian,

requiring only the condition 1 < q < p < N for the exponent q. Interestingly, this work does not

address the case η = 1, as the parameter plays a crucial role in ensuring the existence of a solution,

which is achieved only by adjusting η to be sufficiently small. This adjustment is necessary to

manage all possibilities where 1 < q < p. In our approach, we avoid using this parameter; however,

this requires imposing certain restrictions on q.

Concerning the subjects of the Chapter 4, let us begin by mentioning that, in the existing

literature, we encounter the homogeneous problem:{
−∆Nu−∆qu = µ|u|q−2u+ λ|u|N−2ue|u|

N′
in Ω

u = 0 on ∂Ω,

in the studies by Yang and Perera [37]. They were interested in the problem involving µ ∈ R
and λ > 0, assuming N

2
< q < N and µ < µ1 where µ1 represents the first eigenvalue of the q-

Laplacian. They proved the existence of a nonnegative nontrivial solution for every λ > λ∗, where

the existence of such λ∗ > 0 is based on µ. Moreover, if µ ≥ µ1, then there exists λ∗(µ) such

that the aforementioned problem possesses a nontrivial solution for all λ > λ∗(µ). Considering

the scenario where 1 < q < p = N for the problem in (2), in Chapter 4, we replaced the term

with the exponent p∗ with a nonlinear term g(x, u) that demonstrates critical exponential growth

and added a nonhomogeneous term f(x) to the problem. The main motivation was working with

problems related to the (N, q)-Laplacian in the same spirit as the ones we addressed in Chapter 2,

where the non-linearity was of polynomial growth type. In this context, we were able to identify

two solutions to this problem under specific conditions on g and f .
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Main contributions of this work

In this work, the structure is divided as follows. Chapter 1 focuses on a unilateral problem involving

the (p, q)-Laplacian operator, with the aim of reproducing results similar to those reported in [19].

The specific problem is formulated as:{
−∆pu−∆qu = λ|u|p−2u+ up

∗−1
+ + g(x, u+) + f(x) in Ω

u = 0 on ∂Ω,
(4)

where Ω is a bounded domain with a smooth boundary in RN , 1 < q < p < N , λ ∈ (0, λ1),

f : Ω → R+, g : Ω × R → R+ is a function with subcritical and p-superlinear growth condition

at +∞.This investigation explores all possible scenarios involving the dimension N . The results

presented here contribute to the understanding of unilateral superlinear critical growth for the

(p, q)-Laplacian operator, based on previous ideas provided in [35] for the subcritical case. A

significant challenge was understanding the influence of the q-Laplacian on estimating the upper

bounds of minimax levels for the associated functionals. This obstacle was overcome by making

some Ls estimates of the Talenti functions, following the ideas of [19]. As it was proved in this

last paper, we also identify two distinct solutions, one obtained through minimization which is

negative, and the other through the Mountain Pass Theorem. It is assumed that g : Ω×R→ R+

is a continuous function satisfying:

(g1) g(x, t) = 0, ∀ t ≤ 0.

(g2) There exist p < θ < p∗ and C > 0 such that g(x, t) ≤ C(1 + tθ−1), for all t > 0 and x ∈ Ω.

The hypothesis (g1) concerning g(x, t) corresponds to the unilateral nature of the non-linearity in

the problem, while (g2) illustrates that g(x, t) serves as a subcritical perturbation. This aspect

becomes crucial when approaching cases of lower dimensions. For scenarios where g ≡ 0, the

methodologies employed to identify a second solution are applicable to higher-dimensional cases.

Our first result in this chapter is given by the following:

Theorem 0.0.1. Suppose (g1)− (g2) holds. Assume that f ∈ L∞(Ω) and f ≤ 0 nontrivial. Then,

for any p > 1, there exist two solutions to problem (4) provided that,

N >

{
max{p2 + p, p2

p−1
}, if 1 < p < 2

(p− 1)p2 + p, if p ≥ 2.

and

1 < q <
(N − p)p

N
.

In addressing the problem in lower dimensions, we consider:
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(g3) There exists σ > 0, such that K < σ < p∗ and

g(x, t) ≥ Ctσ−1 for all (x, t) ∈ Ω× R+,

where K = K(N, p, q) is given by

K(N, p) =



max

{
p∗ − p

N−p
, Nq
N−p

}
, if 1 < p ≤ 2N

N+1

max

{
p∗ − p

N−p
, p∗ − 1, Nq

N−p

}
, if 2N

N+1
< p < 2

max

{
p∗ − p

N−p
, p∗ − 1

p−1
, Nq
N−p

}
, if 2 ≤ p.

Getting our second result of this chapter, that is,

Theorem 0.0.2. Suppose that g satisfies (g1) − (g3). Assume that f ∈ L∞(Ω) and f ≤ 0 in Ω.

Then, there exist two solutions to the problem (4) for every 1 < q < p < N .

Chapter 2 delves into the bilateral case, tackling a similar problem as outlined in [31], with

the addition of the non-homogeneous term f ∈ Lp∗
′
(Ω) in the equation. We consider λ ∈ (0, λ1)

and µ ∈ (0, µ1). In this context, we have identified two solutions. One solution is derived through

the application of the Variational Principle of Ekeland, as elucidated in [16]. The second solution

is attained by using Talenti concentration functions in the Mountain Pass geometry, following the

concepts put forth in [19]. We studied the problem{
−∆pu−∆qu = µ|u|q−2u+ λ|u|p−2u+ |u|p∗−2u+ f(x) in Ω

u = 0 on ∂Ω.
(5)

In this chapter, we investigate a scenario in which Ω represents a bounded domain with a smooth

boundary in RN , with 1 < q < p < N , λ ∈ (0, λ1), µ ∈ (0, µ1), and f ∈ L∞(Ω). Unlike the

approach in [23], we do not introduce a parameter in the q-Laplacian. However, constraints on

the exponent q are still necessary. In this analysis, we assume that f possesses a small norm.

Similarly to the methodology used in Chapter 1, we identify a second solution to this problem,

contingent upon specific restrictions on the dimension and q. The outcomes of this investigation

are summarized as follows:

Theorem 0.0.3. Suppose λ ∈ (0, λ1), µ ∈ (0, µ1], f ∈ Lp∗
′
(Ω) nontrivial. Then, for any

p > 1, there exists a constant M > 0 such that the problem (5) has two solutions provided

that ∥f∥p∗′ ≤M ,

N >

{
max{p2 + p, p2/(p− 1), (p− 1)p2/(q − 1) + p}, if 1 < p < 2

max{(p− 1)p2 + p, (p− 1)p2/(q − 1) + p}, if p ≥ 2,
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and

1 < q < (N − p)p/N.

Theorem 0.0.4. Suppose λ ∈ (0, λ1), µ = 0, f ∈ Lp∗
′
(Ω) is nontrivial. Then, for any p > 1,

there exists a constant M > 0 such that problem (5) has two solutions provided that ∥f∥p∗′ ≤M ,

N >

{
max{p2 + p, p2/(p− 1)}, if 1 < p < 2

(p− 1)p2 + p, if p ≥ 2,

and

1 < q < (N − p)p/N.

In Chapter 3, we explore again the unilateral problem, but now in the scenario where p = N ,

drawing inspiration from the concepts presented in [19] and [2]. Our focus lies in establishing the

existence of nontrivial solutions for a (N, q)-Laplacian equation defined by:{
−∆Nu−∆qu = λ|u|N−2u+ g(x, u+) + f(x) in Ω

u = 0 on ∂Ω,
(6)

where Ω ⊂ RN represents a bounded domain with a smooth boundary, λ > 0 is a real parameter,

1 < q < N and g : Ω× [0,∞)→ [0,∞) adheres to a Trudinger-Moser growth condition uniformly

across x ∈ Ω. Our study has established the existence of two distinct solutions, one obtained

through minimization and being negative, and the second by using the classical Mountain Pass

Theorem.

This problem stands as a new result for both the N -Laplacian and the (N, q)-Laplacian. As

usual in this kind of problem, the main challenge was understanding which was the best set of

assumptions we should provide to allow the mountain pass level to lie below a specific threshold.

In this context, g has a critical behavior, implying the existence of a positive constant α0 such

that:

lim
t→+∞

g(x, t)

eαt
N

N−1

=

{
0, if α > α0

+∞, if α < α0,
(7)

uniformly in x ∈ Ω. Furthermore, the hypotheses put in g are

(g̃1) g : Ω× R→ R is a continuous function and g(x, t) = 0 for all x ∈ Ω and t ≤ 0;

(g̃2) There are R,M > 0 such that

0 < G(x, t) :=

∫ t

0

g(x, s)ds ≤Mg(x, t), ∀x ∈ Ω and t ≥ R;
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(g̃3) There is C > 0 such that

sg(x, s) ≥ γ(s)eα0s
N

N−1
, ∀x ∈ Ω and s ≥ C,

where γ(s) is such that

lim inf
s→+∞

γ(s)

eε0s
1

N−1

> 0

for some ε0 > 0.

The main result of this chapter is given below.

Theorem 0.0.5. Suppose that (7), (g̃1)− (g̃3) hold and f ≤ 0 is nontrivial. Then, there exist two

solutions to the problem (6).

Finally, in Chapter 4, inspired by [37] and following the ideas of [16] and [2], we address the

bilateral case regarding the (N, q)-Laplacian operator given by the problem:{
−∆Nu−∆qu = λ|u|N−2u+ µ|u|q−2u+ g(x, u) + f(x) in Ω

u = 0 on ∂Ω,
(8)

where Ω denotes a bounded domain with a smooth boundary within RN , f ∈ L∞(Ω), λ ∈ (0, λ1),

µ ∈ (0, µ1], and g represents a nonlinearity exhibiting a critical exponential growth. Here we use

ideas analogous to Chapters 2 and 3, for the first and the second solutions, respectively. Moreover,

when µ = 0, we encounter two solutions for 1 < q < N and N ≥ 2. However, if 0 < µ ≤ µ1, our

analysis is limited to the scenario where 2 ≤ q < N . To be more precise, we delved into problem

(8) with the following hypotheses: g exhibits critical growth with exponent α0 > 0. This means

that there exists a positive constant α0 such that

lim
|t|→+∞

g(x, t)

eα|t|
N

N−1

=

{
0, if α > α0

+∞, if α < α0,
(ᾱ0)

uniformly in x ∈ Ω.

(ḡ0)

lim sup
u→0+

NG(x, u)

|u|N
= 0

uniformly in x ∈ Ω;

(ḡ1) g : Ω×R→ R+ is continuous non-decrasing function and g(x, 0) ≡ 0 for all x ∈ Ω, g(x, u) ≥
0 in Ω× [0,+∞) and g(x, u) ≤ 0 in Ω× (−∞, 0];

10



(ḡ2) There are R,M > 0 such that ∀ |u| ≥ R

0 < G(x, u) =

∫ u

0

g(x, s)ds ≤M |g(x, u)|

for all x ∈ Ω̄;

(ḡ3) There exists C >> 0 such that ∀ |s| ≥ C

sg(x, s) ≥ γ(s)eα0|s|
N

N−1

where γ(s) is such that there is ε0 > 0 with

lim inf
s→±∞

γ(s)

eε0|s|
1

N−1

> 0

for some ε0 > 0.

The main results of this chapter are:

Theorem 0.0.6. Suppose (ᾱ0), (ḡ0) − (ḡ3) hold, 2 ≤ q < N , λ ∈ (0, λ1), µ ∈ (0, µ1] and

f ∈ L∞(Ω) is nontrivial. Then there exists η > 0 such that problem (8) has two solutions provided

that ∥f∥∞ ≤ η.

The restriction on q is not necessary if we remove the q-linear term from the problem. The

last main theorem of this work is as follows.

Theorem 0.0.7. Suppose (ᾱ0),(ḡ0) − (ḡ3) hold, N ≥ 2, 1 ≤ q < N , λ ∈ (0, λ1), µ ≡ 0 and

f ∈ L∞(Ω) is nontrivial. Then there exists η > 0 such that problem (8) has two solutions provided

that ∥f∥∞ ≤ η.
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Chapter 1

(p, q)-Laplacian equations with critical

growth and jumping nonlinearities

1.1 Introduction

In this chapter we will study the problem:{
−∆pu−∆qu = λ|u|p−2u+ up

∗−1
+ + g(x, u+) + f(x) in Ω

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain with a smooth boundary in RN , 1 < q < p < N , λ ∈ (0, λ1),

w+ = max{w, 0}, f ∈ L∞(Ω) is non-zero, g : Ω × R → R+ is a subcritical function with

respect to p∗ and p-superlinear. Here we extend the results in [19] to the (p, q)-Laplacian

operator. We established the existence of two solutions: one of them negative and the other

involving modifications to Talenti’s functions. The second solution was derived by imposing

stricter conditions on the dimension. Additionally, by introducing a more restrictive hypothesis

on the nonlinear term, it became possible to discuss solutions in the lower-dimensional cases.

1.2 Hypotheses and Main Results

Let us begin by assuming that f ∈ L∞(Ω) and g : Ω× R→ R+ is continuous such that:

g(x, t) = 0, ∀ t ≤ 0. (g1)

There exist p < θ < p∗ and C > 0 such that g(x, t) ≤ C(1 + tθ−1) for all t > 0. (g2)

The hypothesis (g1) pertaining to g(x, t) aligns with the unidirectional nature of the non-linear

component of the problem, while (g2) illustrates that g(x, t) serves as a subcritical perturbation.

This aspect becomes crucial in addressing cases of lower dimensions. In instances where g ≡ 0,
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the methodologies employed to identify a second solution are applicable to higher-dimensional

scenarios.

Now, fix 0 < λ < λ1. Then, the associated functional J : W 1,p
0 (Ω)→ R is given by:

J(u) =
1

p

∫
Ω

(|∇u|p − λ|u|p) dx+ 1

q

∫
Ω

|∇u|qdx− 1

p∗

∫
Ω

up
∗

+ dx−
∫
Ω

G (x, u+) dx

−
∫
Ω

f(x)udx

where

G(x, s) =

∫ s

0

g(x, t)dt.

From these first conditions, we obtain that the associated functional J to problem (1.1) is of

class C1 with derivative given by

J ′(u)v =

∫
Ω

(|∇u|p−2∇u∇v − λ|u|p−2uv)dx+

∫
Ω

|∇u|q−2∇u∇vdx−
∫
Ω

up
∗−1

+ vdx

−
∫
Ω

g(x, u+)vdx−
∫
Ω

f(x)vdx

for all u and v in W 1,p
0 (Ω). By definition, weak solutions of the main problem are exactly the

critical points of this functional.

In W 1,p
0 (Ω), 1 < p <∞ we work with its usual norm

∥u∥W 1,p
0 (Ω) =

(∫
Ω

|∇u|pdx
) 1

p

.

Given that our main framework lies in W 1,p
0 (Ω), we simplify the notation by letting ∥ · ∥W 1,p

0 (Ω)

be represented as ∥ · ∥. Furthermore, we denote the standard norm in the Lp(Ω) spaces as ∥ · ∥p.
Furthermore, since λ < λ1, we introduce

∥u∥λ =
(
∥u∥p − λ∥u∥pp

) 1
p ,

which establishes a norm equivalent to ∥ · ∥ within W 1,p
0 (Ω).

The objective of this chapter is to identify two solutions to the problem delineated in (1.1).

Initially, a negative solution is sought, which requires f(x) to meet specific criteria. The

formulation of this negative solution is as follows:{
−∆pu−∆qu = λ|u|p−2u+ f(x) in Ω

u = 0 on ∂Ω,
(1.2)
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where the functional associated with this problem is expressed as

I(u) =
1

p

∫
Ω

(|∇u|p − λ|u|p) dx+ 1

q

∫
Ω

|∇u|qdx−
∫
Ω

fudx.

It is important to note that if a negative solution exists for (1.2), then it similarly constitutes

a negative solution to our primary problem. Consequently, the forthcoming results are oriented

towards identifying such a negative solution to (1.2).

Lemma 1.2.1. If f ∈ Lp′(Ω), then the functional I is coercive and sequentially lower

semicontinuous (s.c.i) in the weak sense. Consequently, there exists a global minimum w ∈
W 1,p

0 (Ω) for I.

Proof. By Hölder’s inequality and the equivalence of norms in W 1,p
0 (Ω), we have,

I(u) =
1

p
∥u∥pλ +

1

q
∥u∥q

W 1,q
0 (Ω)

−
∫
Ω

f(x)udx

≥ 1

p
∥u∥pλ − ∥f∥p′∥u∥p

≥ 1

p
∥u∥pλ − C∥u∥ → +∞,

when ∥u∥ → +∞.

Let un ⇀ u in W 1,p
0 (Ω). So,

∥u∥pλ ≤ lim inf ∥un∥pλ

and

∥u∥q
W 1,q

0 (Ω)
≤ lim inf ∥un∥qW 1,q

0 (Ω)
.

Then,

I(u) =
1

p
∥u∥pλ +

1

q
∥u∥q

W 1,q
0 (Ω)

−
∫
Ω

f(x)udx

≤ lim inf

(
1

p
∥un∥pλ +

1

q
∥un∥qW 1,q

0 (Ω)
−
∫
Ω

f(x)undx

)
= lim inf I(un),

which proves that I is sequentially lower semicontinuous in the weak topology. It follows by the

Direct Method of the Calculus of Variations that there exists a global minimum for the functional

I, denoted throughout this work by w ∈ W 1,p
0 (Ω).

Lemma 1.2.2. If f is nontrivial, then the global minimum w ∈ W 1,p
0 (Ω) of I is nontrivial.

Moreover, if f ≤ 0, then w ≤ 0.

Proof. The proof is obvious, since f ̸= 0 implies that u = 0 cannot be a critical point to I.
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Moreover, to prove that w ≤ 0, use v = w+ as a test function in the equation I ′(w)v = 0, which

is true for all v ∈ W 1,p
0 (Ω).

Note that w is also a critical point for the functional J , what we will seek throughout this

chapter is to show that w is a local minimum of J in the topology of W 1,p
0 (Ω) to obtain the

geometry of the mountain pass and then find a second solution to the problem.

To obtain w < 0, we will need a maximum principle, and for this we will use a more general

result that can be found in Pucci [33].

Consider the equation

div(A(|∇u|)∇u)− β(u) ≤ 0, u ≥ 0,

in Ω ⊂ RN , a possibly unbounded domain with N ≥ 2.

Furthermore, consider

(i) A ∈ C(0,∞);

(ii) t→ tA(t) strictly increasing in (0,∞) and tA(t)→ 0 as t→ 0;

(iii) β continuous on [0,∞);

(iv) β(0) = 0 and β is non-decreasing on some interval [0, δ), where δ > 0.

Let h(t) = tA(t) for t > 0 and h(0) = 0, and define

H(t) = th(t)−
∫ t

0

h(s)ds, t ≥ 0.

With these conditions, the following result holds.

Proposition 1.2.3. Suppose

lim inf
t→0

H(t)

th(t)
> 0

and either β(s) ≡ 0 for s ∈ [0, τ), τ > 0, or∫ δ

0

ds

H−1(B(s))
=∞

where B(s) =
∫ s

0
β(ξ)dξ, s > 0. If u is a solution of

div(A(|∇u|)∇u)− β(u) ≤ 0, u ≥ 0 in Ω,

with u(x0) = 0 for some x0 ∈ Ω, then u ≡ 0 in Ω.
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Notice that, by taking

A(t) = tp−2 + tq−2

t > 0 and β ≡ 0, assumptions (i)− (iv) are satisfied. Furthermore,

h(t) = tp−1 + tq−1,

and t > 0. So,

H(t) = tp + tq − tp

p
− tq

q
=

(
p− 1

p

)
tp +

(
q − 1

q

)
tq,

and,
H(t)

th(t)
=

(
p− 1

p

)
(1 + tq−p)−1 +

(
q − 1

q

)
(1 + tp−q)−1.

Then,

lim inf
t→0

H(t)

th(t)
=

(
q − 1

q

)
> 0.

Considering, β ≡ 0, u = −w ≥ 0 and f(x) ≤ 0 nontrivial, we have

div(A(|∇(−w)|)∇(−w)) = −div(A(|∇(w)|)∇(w))

= λ|w|p−2w + f(x)

≤ 0

and it follows from the above Proposition that w < 0 in Ω. We will now present some crucial results

to demonstrate that the global minimum point w of the functional I within the topology ofW 1,p
0 (Ω)

is also a local minimum point of the functional J within the same topology. Propositions 1.2.4

and 1.2.5 are documented in [35], while the first is an adaptation of [4, Theorem 2]. Furthermore,

the Proposition 1.2.6 is sourced from [36], and Proposition 1.2.7 is referenced in [21].

Proposition 1.2.4. Let u ∈ W 1,p
0 (Ω) be a solution of{
−∆pu− µ∆qu = g(x, u) in Ω

u = 0 on ∂Ω,

where µ > 0 is a real parameter and g(x, s) is continuous in s ∈ R for almost every x ∈ Ω and

for each s ∈ R, g(x, s) is Lebesgue measurable with respect to x ∈ Ω. If

|g(x, s)| ≤M(1 + |s|r),

for some 1 ≤ r ≤ p∗, where p∗ = Np/(N − p), then u ∈ C1,α(Ω) for some 0 < α < 1, and

∥u∥C1,α
0 (Ω) ≤ C = C(M, p, q, µ,Ω).
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Proposition 1.2.5. For all g ∈ L∞(Ω) there exists a unique solution u ∈ W 1,p
0 (Ω) of{

−∆pu− µ∆qu = g in Ω

u = 0 on ∂Ω.

In addition, the mapping Q : L∞(Ω)→ C1
0(Ω) defined as Q(g) = u is continuous and compact.

For the next proposition, consider H(x, ξ) =
∫ ξ

0
h(x, s)ds such that h : Ω × R → R is a

Carathéodory function with growth

|h(x, t)| ≤ a(x)(1 + |t|s−1) in Ω× R,

where a ∈ L∞(R) and 1 < s ≤ p∗. Consider ϕ : W 1,p
0 (Ω)→ R as the C1 functional defined by

ϕ(u) :=
1

p
∥∇u∥pp +

1

q
∥∇u∥qq −

∫
Ω

H(x, u(x))dx, u ∈ W 1,p
0 (Ω).

Proposition 1.2.6. If u0 ∈ W 1,p
0 (Ω) is a local minimum of ϕ in the C1

0(Ω) topology, then

u0 ∈ C1,α(Ω) for some α ∈ (0, 1), and u0 is a local minimum of ϕ in the W 1,p
0 (Ω) topology.

In our case, taking h(x, t) =
(

p∗−1
p∗

)
tp

∗−2
+ + g(x, t+) + 2f(x), the result above holds.

Proposition 1.2.7. Let Ω be a bounded domain with a smooth boundary. If u ∈ C1(Ω)∩W 1,p
0 (Ω)

and 
−∆pu−∆qu ≥ 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

then ∂u
∂ν
< 0 on ∂Ω, where ν is the outward unit normal vector to ∂Ω.

Remark 1. Note that if u = −w , then

−∆p(−w)−∆q(−w) = −div(A(|∇(−w)|)∇(−w))

= div(A(|∇(w)|))∇(w)

= −{λ|w|p−2w + f(x)}

≥ 0.

Therefore, the result holds for u = −w, where A(t) = tp−2 + tq−2.

We now have sufficient conditions to state and prove the following result:

Proposition 1.2.8. Suppose f ∈ L∞(Ω) is such that the global minimum of I, denoted by w, is

negative in Ω. Then, w is a local minimum of J and consequently a negative solution to problem

(1.1).
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Proof. We have that w ∈ W 1,p
0 (Ω) is a minimum of I in the C1

0(Ω) topology. By Proposition 1.2.4,

w ∈ C1,α
0 (Ω). Moreover, by Proposition 1.2.7, there exists r > 0 such that u < 0 for all u ∈ C1

0(Ω)

with ∥u− w∥C1(Ω) < r. Hence,

J(w) = I(w) ≤ I(u) = J(u) where ∥u− w∥C1(Ω) < r.

Thus, w is also a local minimum point of J in the C1
0(Ω) topology, and by Proposition 1.2.6, w is

a local minimum of J in the W 1,p
0 (Ω) topology.

To conclude this section, let us outline the main theorems of this chapter. The subsequent

sections will be dedicated to proving these theorems.

Theorem 1.2.9. Suppose that (g1) and (g2) hold and that f ≤ 0 is nontrivial. Then, for any

p > 1, there exist two solutions to problem (1.1) provided that,

N >

{
max{p2 + p, p2

p−1
}, if 1 < p < 2

(p− 1)p2 + p, if p ≥ 2.
(1.3)

and

1 < q <
(N − p)p

N
.

Remark 2. It should be noted that for p = q = 2, we encounter the restriction N > 6, similar

to the restriction imposed on the Laplacian in [5]. Furthermore, when p = q, the (p, q)-Laplacian

simplifies to the p-Laplacian, as addressed in [19]. The hypotheses here are the same of those

presented in the aforementioned paper.

It is important to emphasize that the natural constraints should be N > p and q < p.

Therefore, in studying the problem in lower dimensions, we follow the concepts presented in

[19, 27], where a p-superlinear growth condition is introduced to diminish the minimax levels

of the functional J . This adjustment enables us to fill the gap in dimension N highlighted in

the preceding theorem. What is novel here is that the exponent q now plays a significant role,

rendering the problem distinct from its p-Laplacian counterpart. Consider the following additional

hypothesis:

There exists σ > 0, such that K < σ < p∗ and

g(x, t) ≥ Ctσ−1 for all t > 0,
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where K = K(N, p, q) is given by

K(N, p, q) =



max

{
p∗ − p

N−p
, Nq
N−p

}
, if 1 < p ≤ 2N

N+1

max

{
p∗ − p

N−p
, p∗ − 1, Nq

N−p

}
, if 2N

N+1
< p < 2

max

{
p∗ − p

N−p
, p∗ − 1

p−1
, Nq
N−p

}
, if 2 ≤ p.

(g3)

Theorem 1.2.10. Suppose g satisfies (g1), (g2) and (g3). Assume that f ∈ L∞(Ω) and f ≤ 0 in

Ω. Then, there exist two solutions to the problem (1.1) for every 1 < q < p < N .

Remark 3. Condition f ≤ 0 is imposed to ensure that there exists a negative solution which is a

local minimum for the functional, so the second solution can be found but it is not a necessary

condition. What we only need is that there exists a negative local minimum to the associated

functional, and this is possible even if f changes sign in some cases (for p = 2 it is sufficient to

ensure that f(x) = h(x) + tϕ1(x) for sufficiently large t, h ∈ Lr(Ω), r > N/2 and ϕ1 being a

positive eigenfunction associated with λ1).

We will dedicate the next section to revisiting some preliminary results that have been discussed

in previous works.

1.3 Preliminaries

The objective of this section is to present certain results concerning norm estimates for truncations

of the Talenti functions, which can be found in [19] and for this reason the proofs will be omitted.

These inequalities are related to the norms of Ls of these functions and are included here for the

sake of independent understanding.

Consider the best embedding constant from W 1,p(Ω) into Lp∗(Ω) given by

S = inf
u∈D1,p(RN )\{0}

∥u∥p

∥u∥pp∗
.

For ε > 0, we obtain a minimizing function for S given by

Uε(x) =
Cε

N−p
p(p−1)[

ε
p

p−1 + |x|
p

p−1

] (N−p)
p

where C is chosen such that

−∆pUε = Up∗−1
ε in RN .
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Then we have, ∫
RN

|∇Uε|pdx =

∫
RN

|Uε|p
∗
dx.

Fixing r ∈ (0, 1) so that B(0, 2r)⊂ Ω, let ϕ ∈ C∞
c (RN ; [0, 1]) satisfy ϕ(x) = 1 for all x ∈ B(0, r)

and ϕ(x) = 0 for all x ∈ RN\B(0, 2r). Now, define

uε = ϕUε. (1.4)

These are the truncations of the Talenti functions that require estimation. They will serve as

directions for the functional to ensure that their associated minimax levels remain below a certain

threshold.

Lemma 1.3.1. Taking into account 0 < ε < r and 1 < p < N , the following holds:

cεp ≤
∫
Ω

|uε |p dx ≤


Cεp +O

(
ε

(N−p)
(p−1)

)
if p2 < N,

Cεp log
(
1
ε

)
if p2 = N,

Cε
(N−p)
(p−1) if p2 > N,∫

Ω

|uε |p−1 dx ≤ Cε
(N−p)

p ,∫
Ω

|uε |p
∗−1 dx ≤ Cε

(N−p)
p ,

∫
Ω

|uε | dx ≤


Cε

(N−p)
p(p−1) if p > 2N

N+1
,

CεN− (N−p)
p log(1

ε
) if p = 2N

N+1
,

CεN− (N−p)
p if 1 < p < 2N

N+1
,

cεN− (N−p)s
p ≤

∫
Ω

|uε |s dx ≤ CεN− (N−p)s
p , if p∗ − N

N − p
< s < p∗.

For 1 < γ < p

∥∇uε∥γγ ≤

{
Cεβ if γ ̸= N(p−1)

N−1

Cεβ log(1
ε
) if γ = N(p−1)

N−1

(1.5)

where,

β = β(γ) =

{
N−p
p(p−1)

γ if 1 < γ ≤ N(p−1)
N−1

N − N
p
γ if N(p−1)

N−1
< γ < p.

(1.6)
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Remark 4. In the case where γ = N(p−1)
(N−1)

, we have that:

∫
RN

|∇uε|γdx =

∫
RN

|∇ϕUε + ϕ∇Uε|γdx

≤ C

∫
B(0,2r)

|∇Uε|γdx+ C

∫
B(0,2r)\B(0,r)

|Uε|γdx

≤ Cε(N−p)γ/p(p−1)

∫
B(0,2r)

|x|[1+(2−p)/(p−1)]γ

[εp(p−1) + |x|p/(p−1)]Nγ/p
dx

+ Cε(N−p)γ/p(p−1)

∫
B(0,2r)\B(0,r)

1

[εp(p−1) + |x|p/(p−1)](N−p)γ/p
dx.

Since the second integral is uniformly bounded for ε > 0, we will analyze the first integral.∫
B(0,2r)

|x|[1+(2−p)/(p−1)]γ

[εp(p−1) + |x|p/(p−1)]Nγ/p
dx ≤ ε−Nγ/(p−1)

∫
B(0,2r/ε)

εN |εy|[1/(p−1)]γ

[1 + |y|p/(p−1)]Nγ/p
dy

≤ εN−(N−1)γ/(p−1)

×
(
|B1|+

∫
B(0,2r/ε)\B(0,1)

|y|−γ(N−1)/(p−1)dy

)
≤ C log

(
1

ε

)
.

It follows that∫
RN

|∇uε|γdx ≤ Cε(N−p)γ/p(p−1)

∫
B(0,2r)

|x|[1+(2−p)/(p−1)]γ

[εp(p−1) + |x|p/(p−1)]Nγ/p

+ Cε(N−p)γ/p(p−1)

∫
B(0,2r)\B(0,r)

1

[εp(p−1) + |x|p/(p−1)](N−p)γ/p

≤ CεN(N−p)/p(N−1) log

(
1

ε

)
.

Remark 5. Note that if β = β(γ) is as in (1.6) and Cεβ < Cεp for γ < N(p−1)
N−1

, then

Cεβ log
(
1
ε

)
< Cεp for γ = N(p−1)

N−1
. In other words, the term log

(
1
ε

)
does not hinder because

β > p implies that,

−εp + εβ log

(
1

ε

)
= εp

(
−1 + εβ−p log

(
1

ε

))
and since the exponent β − p > 0, we have that the term within parentheses is negative for ε > 0

sufficiently small.

Lemma 1.3.2. Consider 0 < ε < r and 1 < p < N . Then,

∥∇uε∥pp = S
N
p +O

(
ε

(N−p)
(p−1)

)
,

∥uε∥p
∗

p∗ = S
N
p +O

(
ε

N
(p−1)

)
.

21



Lemma 1.3.3. Consider 1 < p < N . Given p∗ − N
N−p

< s ≤ p∗ and K > 0, we have∫
Ωε

|uε|sdx =

∫
Ω

|uε|sdx−O
(
ε

N
p

)
,

with ε→ 0, Ωε = {x ∈ Ω : uε(x) ≥ K}.

The next result can be found in [15, Lemma A4], and it will be used in the next section.

Proposition 1.3.4. Consider 1 < p < N .

a) If p ≥ 3, then there exists a constant C > 0 such that

(
1 + t2 + 2tcos(α)

) p
2 ≤ 1 + tp + ptcos(α) + C(t2 + tp−1),

for all t > 0 uniformly in α ∈ [0, 2π].

b) If p ∈ [2, 3) and γ ∈ [p− 1, 2], then there exists C > 0 such that

(
1 + t2 + 2t cos(α)

) p
2 ≤ 1 + tp + pt cos(α) + Ctγ,

for all t > 0 uniformly in α ∈ [0, 2π].

c) If p ∈ (1, 2) and γ ∈ (1, p), then there exists C > 0 such that

(
1 + t2 + 2t cos(α)

) p
2 ≤ 1 + tp + pt cos(α) + Ctγ,

for all t > 0 uniformly in α ∈ [0, 2π].

The next results given in the next two remarks are facts extracted directly from the Lemma

1.3.1. They will be useful in the proof of the lemmas immediately below them.

Remark 6. Let 1 < γ < p and β = β(γ) as in (1.6), then,

β =
N − p
p(p− 1)

γ > p

if and only if,

γ >
p2(p− 1)

N − p
,

where 1 < γ ≤ N(p−1)
N−1

. Moreover,

β = N − N

p
γ > p

if and only if,

γ <
(N − p)p

N
,
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where N(p−1)
N−1

< γ < p.

Remark 7.
N(p− 1)

N − 1
> 1

if, and only if,

p > 2− 1

N
.

The following lemma will be of great importance for the next results.

Lemma 1.3.5. According to hypothesis (1.3), it is possible to choose 1 < γ = γp < p in (1.5)

such that βp = β(γp) as in (1.6) satisfies

βp > p

Proof. Under the hypotheses of Theorem 1.2.9 we must have N > p2. Recalling (1.6) and by

Proposition 1.3.4, we can make the following choices:

γp ∈ (1, p) and βp = N − N
p
γp if 1 < p ≤ 2− 1

N
,

γp ∈
(
1, N(p−1)

N−1

)
and βp =

N−p
p(p−1)

γp if 2− 1
N
< p < 2,

p− 1 < γp < min
(
2, N(p−1)

N−1

)
and βp =

N−p
p(p−1)

γp if 2 ≤ p < 3,

γp = p− 1 and βp =
N−p
p(p−1)

γp =
N−p
p

if p ≥ 3,

(1.7)

furthermore, straightforward calculations and by Remarks 6 and 7, show that it is possible to

choose γp ∈ (1, p) such that
βp > p if 1 < p ≤ 2N

N+1
, and N > p2

(p−1)
,

βp >
N−p
p

if 2N
N+1

< p < 3,

βp >
N−p
p(p−1)

if p ≥ 3.

In fact, if 1 < p ≤ 2N
N+1

, so by Remarks 6 and 7 we can choose γ such that

N(p− 1)

N − 1
≤ 1 < γ <

(N − p)p
N

< p,

because
(N − p)p

N
> 1,

if and only if

N >
p2

p− 1
.

Then,

βp = N − N

p
γ > p.
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However, if 2N
N+1

< p < 2− 1
N
, then

βp = N − N

p
γp >

N − p
p

if, and only if,

p− 1 +
p

N
> γp

which happens because,

p− 1 +
p

N
> 1,

if and only if,

p+
p

N
> 2,

but

p+
p

N
>

2N

N + 1
+

2N

N(N + 1)
= 2,

so, consider, γp ∈
(
1, p− 1 + p

N

)
and we will get the result.

If, 2− 1
N
< p ≤ 2, so,

N(p− 1)

N − 1
> 1

and

βp =
N − p
p(p− 1)

γp >
N − p
p

if, and only if, γp > p− 1, which happens because, p ≤ 2 and γp > 1 so,

βp >
N − p
p

>
p2 + p− p

p
= p.

In analogous way, if 2 < p < 3, since

1 < p− 1 <
N(p− 1)

N − 1

we have

βp >
N − p
p

>
p(p2 − p+ 1)− p

p
= p(p− 1) > p,

where γp ∈
(
p− 1, N(p−1)

N−1

)
. Finally, if p ≥ 3, since γp > 1, we have

βp >
N − p
p(p− 1)

>
p(p2 − p+ 1)− p

p(p− 1)
= p

This finishes the proof.

As evident from this last lemma and the subsequent one, significant effort is being invested in
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making precise selections of constants γ within certain estimates to ensure that their corresponding

β exceeds the values of p. These selections will be pivotal in the estimates, facilitating the choice

of ε to achieve the necessary boundedness of the minimax level. Consequently, we now must

examine the constraints on q to ensure that we reach βq = β(q) > p and βγq > p.

Remark 8. Under the hypothesis (1.3), we have

1 <
(N − p)p

N
,

and
(N − p)p

N
>
N(p− 1)

N − 1
.

Indeed, the first inequality is obvious if 1 < p < 2, due to the fact that N > p2

p−1
. Furthermore,

note that,

(p− 1)p2 + p ≥ p2

(p− 1)

if, and only if,

(p− 1)2p > 1.

This is obvious if p ≥ 2, therefore

N >
p2

p− 1

for all p ≥ 2 also, which leads to 1 < (N−p)p
N

again. To see the second inequality of this remark,

notice that N > p2 + p for all p > 1 and this implies that

N(p2 + p)− p2 < N2 − p2 < N2,

which is equivalent to,

N2 −N(p2 + p) +N2p−N2p+ p2 > 0,

thus,

Np(N − 1)− p2(N − 1)−N2(p− 1) > 0,

from which we have,

p(N − 1)(N − p) > N2(p− 1),

therefore,
(N − p)p

N
>
N(p− 1)

N − 1
.

Note that from the above observation it makes sense to have 1 < q < (N−p)p
N

and N(p−1)
N−1

< q <
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(N−p)p
N

, which are important cases that we need to consider in the following developments.

Lemma 1.3.6. Under hypothesis (1.3), assume that 1 < q < (N−p)p
N

. If βq = β(q) is defined as

in (1.6) with γ = q, then βq > p. Furthermore, there exists γq ∈ (1, q) for which βγq > p is also

satisfied. In this case, βγq is specified in (1.6) with γ = γq. Moreover, γq can be chosen in [q−1, 2]

if q ∈ [2, 3).

Proof. Case 1: If 1 < p ≤ 2 − 1
N
, then p ∈ (1, 2) and q ∈ (1, p) ⊂ (1, 2). Thus, in this case, let

us fix γq ∈ (1, q). By Remark 7, we have N(p−1)
N−1

≤ 1. Therefore, βγq = N − N
p
γq. It follows that

βγq > p if and only if,

γq <
(N − p)p

N
.

Moreover, βq = N − N
p
q > p if and only if,

q <
(N − p)p

N
.

Case 2: If 2 − 1
N
< p ≤ 2, once again we have q ∈ (1, p) ⊂ (1, 2), and in this case consider

γq ∈ (1, q). Furthermore, 1 < N(p−1)
N−1

< p ≤ 2. Let’s assume 1 < q ≤ N(p−1)
N−1

, then

βq =
N − p
p(p− 1)

q > p

if and only if q > p2(p−1)
N−p

. Moreover, γq < q ≤ N(p−1)
N−1

gives us βγq = N−p
p(p−1)

γq > p if and only if

γq >
p2(p−1)
N−p

.

By hypothesis, N > p2 + p if 1 < p < 2, and N > p(p2 − p + 1) if p ≥ 2. Note that

p(p2 − p+ 1) ≥ p2 + p if and only if p ≥ 2. Therefore, in the case p = 2, we also have N > p2 + p.

Hence,

p2

N − p
<

p2

p2 + p− p
= 1.

Since p ∈
(
2− 1

N
, 2
]
, we have p− 1 ≤ 1, and

p2(p− 1)

N − p
< 1.

Therefore, if q ≤ N(p−1)
N−1

, then βq, βγq > p for γq ∈ (1, q) and q ∈
(
1, N(p−1)

N−1

]
.

In the case where q > N(p−1)
N−1

, we have βq = N − N
p
q > p if and only if q < (N−p)p

N
, that is,
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βq > p for N(p−1)
N−1

< q < (N−p)p
N

. Since γq ∈ (1, q), we only need to consider γq ∈ (N(p−1)
N−1

, q),

obtaining

βγq = N − N

p
γq

> N − N

p

[
(N − p)p

N

]
= p.

Case 3: If 2 < p < 3− 2
N
, then 1 < N(p−1)

N−1
< 2 because

N(p− 1)

N − 1
< 2

if and only if

p < 3− 2

N
.

Let us suppose N > p2

p−2
, so we have that (N−p)p

N
> 2. Now assume that 1 < q ≤ N(p−1)

N−1
. Since

1 < γq <
N(p−1)
N−1

, it follows from the definition of βγq that,

βγq =
(N − p)
p(p− 1)

γq.

Moreover, βγq > p, if and only if,

γq >
p2(p− 1)

N − p
,

but,
p2(p− 1)

N − p
< 1

because p ≥ 2. Therefore,

βγq > p.

By the definition of βq we get,

βq =
(N − p)
p(p− 1)

q > βγq > p.

Now consider N(p−1)
N−1

< q < 2, then βq = N − N
p
q > p if and only if q < (N−p)p

N
, thus, βq > p for

N(p− 1)

N − 1
< q < 2.

Simply take 1 < γq <
N(p−1)
N−1

to obtain βγq =
N−p
p(p−1)

> p. Now let us assume q ∈ [2, p) ⊂ [2, 3). We

can simply consider γq = q − 1 < N(p−1)
N−1

to obtain βγq > p. For βq, we have N(p−1)
N−1

< 2 ≤ q and

βq = N − N
p
q > p, with q ∈

[
2, (N−p)p

N

)
.
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In the case where N ≤ p2

p−2
, we have (N−p)p

N
≤ 2, thus for 1 < q < (N−p)p

N
we obtain βq, βγq > p.

Therefore, βq, βγq > p where 1 < q < (N−p)p
N

.

Case 4: If 3− 2
N
≤ p < 3, then N(p−1)

N−1
≥ 2 and βγq =

(N−p)
p(p−1)

γq > p and βq =
(N−p)
p(p−1)

q > p where

q ∈ (1, 2).

If q ∈ [2, p), then βq > p for 2 ≤ q < N(p−1)
N−1

and for N(p−1)
N−1

≤ q < (N−p)p
N

, and certainly, βγq > p.

Case 5: If p = 3, we know that N(p−1)
N−1

> 2. Let’s assume q ∈ (1, 2), then γq < q < N(p−1)
N−1

,

obtaining βγq =
N−p
p(p−1)

γq > p and βq =
N−p
p(p−1)

q > p.

If q ∈ [2, p), then q ∈ [2, 3). Take γq = q − 1 < N(p−1)
N−1

, consequently, βγq > p and βq > p for

2 ≤ q < N(p−1)
N−1

or N(p−1)
N−1

≤ q < (N−p)p
N

.

Case 6: Finally, if p > 3, then 2 < N(p−1)
N−1

, so if q ∈ (1, 2), we will have βγq , βq > p with

γq ∈ (1, q). Furthermore, for N > p2

p−3
, we have 3 < (N−p)p

N
. Consider q ∈ [2, 3) and γq = q − 1, it

follows that βγq , βq > p. However, if q ∈ [3, p), take γq = q − 1 to obtain βγq > p, similar to what

was obtained in the case q ∈ [2, 3), we have βq > p for 3 ≤ q < (N−p)p
N

.

If N ≤ p2

p−3
, we have 2 < N(p−1)

N−1
< (N−p)p

N
≤ 3. Consider q ∈ [2, 3), then βγq > p with γq = q−1,

and βq > p where q ∈ [2, (N−p)p
N

). In any case, βq > p for 1 < q < (N−p)p
N

.

In cases where q = N(p−1)
N−1

, we use Remark 5.

1.4 Proof of the Main Theorems

This first proposition serves a dual purpose: first, it provides a mountain-pass geometry, and

secondly, it acts as an auxiliary result to demonstrate that the minimax levels can be controlled

by strategically selecting directions provided by truncations of the Talenti functions.

Proposition 1.4.1. Consider 1 < q < p < N , g satisfying (g1) and (g2). Then there exist

ε0, t0, t1 positive numbers such that

J(w + tuε) < J(w) +
S

N
p

N

for all t ∈ (0, t0) ∪ (t1,∞) and ε ∈ (0, ε0).

Proof. We know from Lemma 1.3.2 that,∫
Ω

|∇uε|pdx = S
N
p +O

(
ε

(N−p)
(p−1)

)
.

Therefore, there exists ε0 > 0 such that ∥uε∥ ≤ C for all ε ∈ (0, ε0). By the continuity of J at w,
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we have that for any σ > 0, there exists δ > 0 such that if ∥v − w∥ < δ, then

|J(v)− J(w)| < σ.

Taking v = w + tuε, we obtain that,

J(w + tuε) < J(w) +
S

N
p

N

∀ t ∈ (0, t0) and ε ∈ (0, ε0). Now, let us prove that there exists t1 > 0 such that J(w+ tuε) < J(w)

for all t ∈ (t1,∞) and ε ∈ (0, ε0).

J(w + tuε) =
1

p

∫
Ω

(|∇(w + tuε)|p − λ|w + tuε|p) dx+
1

q

∫
Ω

|∇(w + tuε)|qdx

− 1

p∗

∫
Ω

(w + tuε)
p∗

+ dx−
∫
Ω

G (x, (w + tuε)+) dx−
∫
Ω

f(w + tuε)dx.

Since g ≥ 0, we have

J(w + tuε) ≤
1

p

∫
Ω

(|∇(w + tuε)|p − λ|w + tuε|p) dx+
1

q

∫
Ω

|∇(w + tuε)|qdx

− 1

p∗

∫
Ω

(w + tuε)
p∗

+ dx−
∫
Ω

f(w + tuε)dx.

Moreover, we have the equality

|∇(w + tuε)|p =
[
|∇w|2 + 2t∇w∇uε + t2|∇uε|2

] p
2

= |∇w|p
[
1 + 2

(
t
|∇uε|
|∇w|

)
∇w
|∇w|

∇uε
|∇uε|

+ t2
|∇uε|2

|∇w|2

] p
2

,

valid for all x ∈ Ω where ∇w(x) ̸= 0. By Proposition 1.3.4, we have:

a) if p ≥ 3, then∫
Ω

|∇(w + tuε)|pdx ≤∫
Ω

|∇w|p
[
1 + tp

|∇uε|p

|∇w|p
+ pt
∇w.∇uε
|∇w|2

+ C

((
t
|∇uε|
|∇w|

)2

+

(
t
|∇uε|
|∇w|

)p−1
)]

dx

i.e, ∫
Ω

|∇(w + tuε)|pdx ≤
∫
Ω

|∇w|p
[
1 + tp

|∇uε|p

|∇w|p
+ pt
∇w.∇uε
|∇w|2

+ C

(
t
|∇uε|
|∇w|

)γp]
dx,

where γp ∈ {2, p− 1}.
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b) If p ∈ (1, 2) or p ∈ [2, 3), then there exists a constant C > 0 such that∫
Ω

|∇(w + tuε)|pdx ≤
∫
Ω

|∇w|p
[
1 + tp

|∇uε|p

|∇w|p
+ pt
∇w.∇uε
|∇w|2

+ C

(
t
|∇uε|
|∇w|

)γp]
dx,

with γp ∈ (1, p) or γp ∈ [p− 1, 2] respectively.

c) If q ≥ 3,∫
Ω

|∇(w + tuε)|qdx ≤
∫
Ω

|∇w|q
[
1 + tq

|∇uε|q

|∇w|q
+ qt
∇w.∇uε
|∇w|2

+ C

(
t
|∇uε|
|∇w|

)γq]
dx,

with γq ∈ {2, q − 1}.

d) If γq ∈ (1, q) and q ∈ (1, 2) or q ∈ [2, 3), then there exists a constant C > 0 such that∫
Ω

|∇(w + tuε)|qdx ≤
∫
Ω

|∇w|q
[
1 + tq

|∇uε|q

|∇w|q
+ qt
∇w.∇uε
|∇w|2

+ C

(
t
|∇uε|
|∇w|

)γq]
dx.

It follows from Lemma 1.3.1 that∫
Ω

|∇(w + tuε)|pdx ≤
∫
Ω

|∇w|p
(
1 + tp

|∇uε|p

|∇w|p
+ pt
∇w.∇uε
|∇w|2

)
dx+ Ctγpεβp ,

where βp = β(γp) is given in (1.6). In the same way,∫
Ω

|∇(w + tuε)|qdx ≤
∫
Ω

|∇w|q
(
1 + tq

|∇uε|q

|∇w|q
+ qt
∇w.∇uε
|∇w|2

)
dx+ Ctγqεβγq .

Here βγq = β(γq) is chosen as in (1.6). So,

J(w + tuε) ≤
1

p

∫
Ω

|∇w|p
(
1 + tp

|∇uε|p

|∇w|p
+ pt
∇w.∇uε
|∇w|2

)
dx

+
1

q

∫
Ω

|∇w|q
(
1 + tq

|∇uε|q

|∇w|q
+ qt
∇w.∇uε
|∇w|2

)
dx+ Ctγpεβp + Ctγqεβγq

− λ

p

∫
Ω

|w + tuε|pdx−
tp

∗

p∗

∫
Ω

(w
t
+ uε

)p∗
+
dx−

∫
Ω

f(w + tuε)dx.

Knowing that 0 = J ′(w)uε, we have that

t

∫
Ω

|∇w|p−2∇w∇uεdx+ t

∫
Ω

|∇w|q−2∇w∇uεdx = λt

∫
Ω

|w|p−2wuεdx+ t

∫
Ω

fuεdx,
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and,

J(w + tuε) ≤
1

p

∫
Ω

|∇w|pdx+ 1

q

∫
Ω

|∇w|qdx+ tp

p

∫
Ω

|∇uε|pdx+
tq

q

∫
Ω

|∇uε|qdx

+ λt

∫
Ω

|w|p−2wuεdx+ t

∫
Ω

fuεdx+
C

p
tγpεβp +

C

q
tγqεβγq

− λ

p

∫
Ω

|w + tuε|pdx−
tp

∗

p∗

∫
Ω

(w
t
+ uε

)p∗
+
dx−

∫
Ω

f(w + tuε)dx

+
λ

p

∫
Ω

|w|pdx+ λtp

p

∫
Ω

|uε|pdx−
λ

p

∫
Ω

|w|pdx− λtp

p

∫
Ω

|uε|pdx,

(1.8)

i.e.,

J(w + tuε) ≤J(w) +
tp

p

∫
Ω

|∇uε|p +
tq

q

∫
Ω

|∇uε|q + λt

∫
Ω

|w|p−2wuε + Ctγpεβp

+ Ctγqεβγq +
λ

p

(∫
Ω

|w|p + tp
∫
Ω

|uε|p −
∫
Ω

|w + tuε|p
)

− λtp

p

∫
Ω

|uε|p −
tp

∗

p∗

∫
Ω

(w
t
+ uε

)p∗
+
dx.

For every t > 0 and p > 1 we have∣∣∣∣∫
Ω

|w + tuε|pdx−
∫
Ω

|w|pdx− tp
∫
Ω

|uε|pdx
∣∣∣∣ ≤ 2p−1ptp−1

∫
Ω

up−1
ε |w|dx

+ 2p−1pt

∫
Ω

uε|w|p−1dx.

Considering Ωε = {x ∈ Ω : uε(x) ≥ K0}, where K0 = maxt∈[t0,∞) ∥wt ∥∞ = ∥w∥∞
t0

, we see that

∫
Ω

(w
t
+ uε

)p∗
+
dx ≥

∫
Ωε

(w
t
+ uε

)p∗
+
dx ≥

∫
Ωε

up
∗

ε dx+

∫
Ωε

∣∣∣∣wt
∣∣∣∣p∗dx

− C

(∫
Ωε

up
∗−1

ε

∣∣∣∣wt
∣∣∣∣dx+ ∫

Ωε

uε

∣∣∣∣wt
∣∣∣∣p∗−1

dx

)
.

(1.9)

From Lemma 1.3.3, ∫
Ωε

|uε|p
∗
dx =

∫
Ω

|uε|p
∗
dx−O

(
ε

N
p

)
.

Therefore,

J(w + tuε) ≤J(w) +
tp

p

∫
Ω

|∇uε|pdx+
tq

q

∫
Ω

|∇uε|qdx−
tp

∗

p∗

∫
Ω

|uε|p
∗
dx+

tp
∗

p∗
O
(
ε

N
p

)
+ C

(
t∥uε∥1 + tp−1∥uε∥p−1

p−1 + tp
∗−1∥uε∥p

∗−1
p∗−1

)
+ tγpO(εβp) + tγqO(εβγq )

− λtp

p

∫
Ω

|uε|pdx,

(1.10)
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Now, take c0 > 0 such that ∥uε∥p
∗

p∗ ≥ c0 > 0 for all ε > 0 sufficiently small (this can be done due

to Lemma 1.3.2). Using the fact that (uε) is bounded in Ls(Ω) for s = 1, p− 1, p∗− 1, and taking

ε > 0 sufficiently small, there exist positive constants C and c such that

J(w + tuε) ≤ J(w) + ctp + ctq − tp∗
(
c0 −O

(
ε

N
p

))
+ C

(
t+ tp−1 + tp

∗−1 + tγp + tγq
)

(1.11)

for all t ≥ t0. Take ε sufficiently small such that c0 −O
(
ε

N
p

)
is positive. The result follows from

the fact that 1, γp, γq, p− 1, q, p, p∗ − 1 < p∗.

Remark 9. It is important to note that the inequalities established in the cases a), b), c) and d) are

valid for any γp and γq within their respective definition intervals. However, we will later use the

inequality in (1.10), which require specific selections of γp and γq to apply the results of Lemmas

1.3.5 and 1.3.6.

Knowing that w is a local minimum for the functional J , we can also see that J exhibits the

geometry of a mountain pass.

Proposition 1.4.2. Suppose (g1)-(g2). Then the functional J ∈ C1(W 1,p
0 (Ω),R) and the

following hold:

i) There exists ρ > 0 such that J(u) ≥ J(w) for all u ∈ W 1,p
0 (Ω) with ∥u− w∥ = ρ;

ii) There exist e ∈ W 1,p
0 (Ω) such that ∥e− w∥ > ρ and J(e) < J(w).

Proof. Take e = w + tuε, choosing ε sufficiently small and t sufficiently large. Item ii) will follow

from (1.11).

Now, define

Γ := {γ ∈ C([0, 1],W 1,p
0 (Ω)) : γ(0) = w and J(γ(1)) < J(w)}.

Thus, Γ is non-empty, and the mountain pass level

m := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)), (1.12)

is well-defined.

Remark 10. The existence of a (PS) sequence at level m is found in Theorems 2.8 and 2.20 of [29].

Proposition 1.4.3. Assuming that (g1) and (g2) hold, let (un) be a (PS) sequence for J in

W 1,p
0 (Ω). Then (un) is bounded.
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Proof. Let (un) be a (PS) sequence for J ∈ W 1,p
0 (Ω), that is, a sequence such that J(un) is

bounded and ∥J ′(un)∥ → 0. Thus, for any ε > 0 and n sufficiently large,

sup
∥un∦=0

|J ′(un)un|
∥un∥

≤ ε,

i.e.,

|J ′(un)un| ≤ ε∥un∥.

Hence, we have

J(un)−
1

p
J ′(un)un ≤ C + ∥un∥.

Moreover,

J(un)−
1

p
J ′(un)un =

1

p

∫
Ω

(|∇un|p − λ|un|p) dx+
1

q

∫
Ω

|∇un|qdx−
∫
Ω

G(x, (un)+)dx

− 1

p∗

∫
Ω

(un)
p∗

+ dx−
∫
Ω

f(x)undx−
1

p

∫
Ω

(|∇un|p − λ|un|p) dx

− 1

p

∫
Ω

|∇un|qdx+
1

p

∫
Ω

(un)
p∗

+ dx+
1

p

∫
Ω

g(x, (un)+)undx

+
1

p

∫
Ω

f(x)un(x)dx.

So,

J(un)−
1

p
J ′(un)un ≥

(
1

q
− 1

p

)∫
Ω

|∇un|qdx+
(
1

p
− 1

p∗

)∫
Ω

(un)
p∗

+ dx

−
∫
Ω

G(x, (un)+)dx−
(
1− 1

p

)∫
Ω

f(x)undx.

Since 1
p
< 1

q
, f ∈ L∞(Ω), and using (g1) and (g2), it follows that,(

1

p
− 1

p∗

)∫
Ω

(un)
p∗

+ dx ≤ C + ∥un∥+
∫
Ω

G (x, (un)+) dx+ C∥f∥∞∥un∥

= C

(
1 + ∥un∥+

∫
Ω

G(x, (un)+)dx

)
≤ C

(
1 + ∥un∥+ c

(∫
Ω

(un)
p∗

+ dx

) θ
p∗
)

with θ < p∗, so, we conclude that, ∫
Ω

(un)
p∗

+ dx ≤ C (1 + ∥un∥) ,
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for large n. On the other hand, since Lp∗(Ω) ↪→ Lθ(Ω), we have∫
Ω

g(x, (un)+)undx ≤ C +

∫
Ω

(un)
p∗

+ dx.

So,

∥un∥pλ ≤ ∥un∥
p
λ + ∥un∥

q
W 1,q(Ω)

= J ′(un)un +

∫
Ω

(un)
p∗

+ dx+

∫
Ω

g (x, (un)+)undx+

∫
Ω

f(x)undx,

≤ C (1 + ∥un∥) .

which implies that (un) is bounded.

Since we cannot guarantee that J satisfies the Palais-Smale (PS) condition, we establish

compactness properties for the functional J , provided that m defined in (1.12) remains below

a certain threshold.

Proposition 1.4.4. Assuming (g1)-(g2) and m < J(w) + S
N
p /N , we conclude that J possesses a

critical point u ̸= w, obtained as the weak limit of a (PS) sequence at the level m.

Proof. Consider (un) as a (PS) sequence for J at the level m. By Proposition 1.4.3, there exists

u ∈ W 1,p
0 (Ω) such that un ⇀ u in W 1,p

0 (Ω), up to a subsequence. Therefore, using well-known

arguments due to Boccardo-Murat [24], we have

J ′(un)v =

∫
Ω

(
|∇un|∇un∇v − λ|un|p−2unv

)
dx+

∫
Ω

|∇un|q−2∇un∇vdx

−
∫
Ω

up
∗−1

n vdx−
∫
Ω

g(x, (un)+)vdx−
∫
Ω

fvdx

→ J ′(u)v.

Thus, J ′(u)v = 0, i.e., u is a critical point of J . Define l = lim inf ∥un−u∥p. If l = 0, then un → u

in W 1,p
0 (Ω), and thus if J(w) = m, we can choose (un) such that ∥un−w∥ ≥ ρ

2
> 0 for all n, where

ρ is given in Proposition 1.4.2 (see [29, Theorems 2.8 and 2.20]), so the choice of (un) implies that

u ̸= w and J(u) = m = J(w). However, if J(w) < m, then J(u) = m > J(w), which also implies

u ̸= w. So, we can focus in what happens if l > 0. It follows from the Brezis-Lieb Lemma that

∥un∥p = ∥un − u∥p + ∥u∥p + on(1),

∥un∥qW 1,q(Ω) = ∥un − u∥
q
W 1,q(Ω) + ∥u∥

q
W 1,q(Ω) + on(1),

∥(un)+∥p
∗

p∗ = ∥(un − u)+∥
p∗

p∗ + ∥u+∥
p∗

p∗ + on(1).
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Therefore

J(un) =
1

p

(
∥un − u∥p + ∥u∥p − λ∥u∥pp

)
+

1

q

(
∥un − u∥qW 1,q(Ω) + ∥u∥

q
W 1,q(Ω)

)
− 1

p∗

(
∥(un − u)+∥p

∗

p∗ + ∥u+∥
p∗

p∗

)
−
∫
Ω

G (x, (un)+) dx−
∫
Ω

f(x)undx+ on(1)

Since J(un)→ m, we obtain

m+ on(1) = J(u) +
1

p
∥un − u∥p +

1

q
∥un − u∥qW 1,q(Ω) −

1

p∗
∥(un − u)+∥p

∗

p∗ .

Similarly, using the fact that J ′(un)un → 0, we get

on(1) = ∥un − u∥p + ∥u∥p − λ∥u∥pp + ∥un − u∥
q
W 1,q(Ω) + ∥u∥

q
W 1,q(Ω) − ∥(un − u)+∥

p∗

p∗

− ∥u+∥p
∗

p∗ −
∫
Ω

g(x, u+)udx−
∫
Ω

f(x)udx.

Using the fact that J ′(u)u = 0, we conclude that

on(1) = ∥un − u∥p + ∥un − u∥qW 1,q(Ω) − ∥(un − u)+∥
p∗

p∗ .

So,

∥un − u∥p + ∥un − u∥qW 1,q(Ω) − on(1) = ∥(un − u)+∥
p∗

p∗

≤ ∥un − u∥p
∗

p∗

≤ S
−p∗
p ∥un − u∥p

∗

and then,

l + lim ∥un − u∥qW 1,q(Ω) ≤ S
−p∗
p l

p∗
p ,

i.e.,

l ≤ S
−p∗
p l

p∗
p .

This implies that

l ≥ S
N
p .

Now, notice that

m+ on(1) = J(u) +
1

p
∥un − u∥p +

1

q
∥un − u∥qW 1,q(Ω) −

1

p∗
∥(un − u)+∥p

∗

p∗

= J(u) +

(
1

p
− 1

p∗

)
∥un − u∥p +

(
1

q
− 1

p∗

)
∥un − u∥qW 1,q(Ω)

≥ J(u) +
1

N
∥un − u∥p.
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And so,

m ≥ J(u) +
l

N
≥ J(u) +

S
N
p

N
.

Using the assumption m < J(w)+ S
N
p

N
, we must have J(u) < J(w), which implies that u ̸= w.

Now, the remaining task is to demonstrate that the minimax level, as defined in (1.12), is

below J(w) + SN/p/N . This is accomplished in the two final propositions of this chapter.

Proposition 1.4.5. Consider m, as defined in (1.12). Under the conditions outlined in Theorem

1.2.9, it holds that

m < J(w) +
S

N
p

N
.

Proof. From Proposition 1.4.1, we know that

J(w + tuε) < J(w) +
S

N
p

N
,

for all t ∈ (0, t0) ∪ (t1,∞) and ε ∈ (0, ε0). Since m ≤ maxt≥0 J(w + tuε), it suffices to show that

there exists sufficiently small ε > 0 such that

J(w + tuε) < J(w) +
S

N
p

N
,

for all t ∈ [t0, t1]. Our starting point will be the inequality (1.10), which was derived in the proof

of Proposition 1.4.1. Notice that (1.10) if valid for for any t ≥ t0 and we choose γp and γq as in

Lemmas 1.3.5 and 1.3.6. From Lemmas 1.3.1 and 1.3.2, using t ∈ [t0, t1], we obtain

J(w + tuε) ≤J(w) +
(
tp

p
− tp

∗

p∗

)
S

N
p +O(εβq)− Cεp +O

(
ε

N
p

)
+O

(
ε

N
p−1

)
+ C∥uε∥1 +O(ε

N−p
p ) +O

(
ε

N−p
p−1

)
+O

(
εβp
)
+O(εβγq )

≤ J(w) +
S

N
p

N
− Cεp + C∥uε∥1 +O

(
ε

N−p
p

)
+O

(
εβp
)
+O(εβq)

+O(εβγq ),

(1.13)

where supt≥0

(
tp

p
− tp

∗

p∗

)
= 1

N
, βq = β(q) and βγq = β(γq) is as in (1.6) and satisfy βq, βγq > p due to

Lemma 1.3.6. We must now analyze the cases of the estimates of ∥uε∥1 and make the appropriate

comparisons that depend on the possible values of p. Therefore, we continue by dividing the

analysis into several cases:

Case 1: Let us assume 1 < p < 2N
N+1

, then p ∈
(
1, 2− 1

N

)
. Notice that, using the hypothesis
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N > p2 + p, we obtain

N − p
p
≥ N − N − p

p
> p, for 1 < p ≤ 2N

N + 2
,

N − N − p
p

>
N − p
p

> p, for
2N

N + 2
< p < 2− 1

N
.

Thus, drawing from Lemma 1.3.1, we can extend the estimates initiated in (1.13) to derive

J(w + tuε) ≤J(w) +
S

N
p

N
− Cεp +O

(
εN− (N−p)

p

)
+O

(
ε

N−p
p

)
≤ J(w) +

S
N
p

N
− Cεp.

Case 2: If p = 2N
N+1

, then from the Lemma 1.3.1, we obtain practically the same estimate, that is,

J(w + tuε) ≤J(w) +
S

N
p

N
− Cεp +O

(
εN− (N−p)

p

)
log(

1

ε
) +O

(
ε

N−p
p

)
≤ J(w) +

S
N
p

N
− Cεp + o (εp)

≤ J(w) +
S

N
p

N
− Cεp.

Case 3: If 2N
N+1

< p < 2, so N−p
p(p−1)

> N−p
p

and continue the estimate in (1.13) to reach

J(w + tuε) ≤J(w) +
S

N
p

N
− Cεp +O

(
ε

(N−p)
p(p−1)

)
+O

(
ε

N−p
p

)
≤ J(w) +

S
N
p

N
+−Cεp + o (εp)

≤ J(w) +
S

N
p

N
− Cεp.

Case 4: If p ≥ 2 and N > p(p2 − p+ 1), we have

2 ≤ p <
N − p
p(p− 1)

≤ N − p
p

.

Now, estimations in (1.13) can be continued in what follows:

J(w + tuε) ≤J(w) +
S

N
p

N
− Cεp +O

(
ε

(N−p)
p(p−1)

)
+O

(
ε

N−p
p

)
≤ J(w) +

S
N
p

N
+−Cεp + o (εp)

≤ J(w) +
S

N
p

N
− Cεp.
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Therefore, in any case we will always have

J(w + tuε) < J(w) +
S

N
p

N
,

for all t ∈ [t0, t1] where ε > 0 is sufficiently small.

Incorporating hypothesis (g3) to address the gaps in N and q that were not covered in the

previous proposition, we present our final proposition as follows.

Proposition 1.4.6. Assuming that hypotheses (g1), (g2) and (g3) are satisfied and 1 < q < p < N ,

then

m < J(w) +
S

N
p

N
.

Proof. Following the same steps as in the previous proposition, but now including g (we ignored

it in the proof of the estimates in Proposition 1.4.1, since it was not playing significant role and

it is positive), we have

J(w + tuε) ≤J(w) +
S

N
p

N
− Cεp + C∥uε∥1 +O

(
ε

N−p
p

)
+O

(
εβp
)
+O

(
εβq
)

+O
(
εβγq

)
−
∫
Ω

G (x, (w + tuε)+) dx

where t ∈ [t0, t1]. From condition (g3) and by (1.9) we have∫
Ω

G (x, (w + tuε)+) dx ≥ C

∫
Ω

(w + tuε)
σ
+dx

≥ C

∫
Ωε

(
uε +

w

t

)σ
+
dx

≥ C

∫
Ωε

uσεdx− C(∥uε∥σ−1
σ−1 + ∥uε∥1).

From Lemma 1.3.3, for p∗ − N
N−p

< s < p∗, we have,∫
Ωε

usεdx =

∫
Ω

usεdx−O
(
ε

N
p

)
.

Taking s = σ and s = σ − 1, note that we can use the Lemma 1.3.1 because we have
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p∗ − N
N−p

< p∗ − p
N−p

< σ < p∗ due to (g3). So it follows from Lemma 1.3.1 that

J(w + tuε) ≤J(w) +
S

N
p

N
− Cεp + C∥uε∥1 +O(ε

N−p
p ) +O

(
εβp
)
+O

(
εβq
)

+O
(
εβγq

)
+O

(
εN−(N−p)(σ−1)/p

)
− CεN−(N−p)σ/p

≤ J(w) +
S

N
p

N
+ C∥uε∥1 +O

(
ε

N−p
p

)
+O

(
εβp
)
+O

(
εβq
)
+O

(
εβγq

)
− CεN−(N−p)σ/p.

(1.14)

for sufficiently small ε > 0 and t ∈ [t0, t1]. Notice that we disregarded the term εp in the estimates

(1.14) because it was only beneficial in scenarios with specific dimensional restrictions on N .

Currently, by invoking condition (g3), we can utilize εN−(N−p)σ/p instead. This approach, however,

necessitates a thorough analysis of all the exponents mentioned in (1.14). It is essential to confirm

that the exponents (N − p)/p, βp, βq, βγq , and the exponent derived from the ∥uε∥1 estimate,

are all greater than N − (N − p)σ/p. Thus, we need to conduct estimates analogous to those in

Lemmas 1.3.5 and 1.3.6. This examination will involve studying the possible values of p and q

separately.

Case 1: If 1 < p < 2N
N+1

, then q ∈ (1, 2) and γq ∈ (1, q). Since 2N
N+1

< 2 − 1
N
, it follows from

Remark 7 that N(p−1)
N−1

< 1, that is, q > γq >
N(p−1)
N−1

, implying that

βq = N − N

p
q > N − (N − p)

p
σ

if and only if

σ >
Nq

N − p
.

By (g3), we have σ > max{p∗ − p
N−p

, Nq
N−p
}, hence βq > N − (N−p)

p
σ for q ∈ (1, p). Similarly,

βγq = N − N

p
γq > N − (N − p)

p
σ,

if and only if

σ >
Nγq
N − p

.

By (g3), we have σ > Nq
N−p

> Nγq
N−p

, hence βγq > N − (N−p)
p

σ for γq ∈ (1, q). The choice of βp as in

(1.7) gives us βp > N − (N−p)
p

σ. Therefore, from Lemma 1.3.1, we continue the estimates in (1.14)
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to obtain

J(w + tuε) ≤J(w) +
S

N
p

N
+O

(
εN− (N−p)

p

)
+O

(
ε

N−p
p

)
+O

(
εβp
)
+O

(
εβq
)

+O
(
εβγq

)
− CεN−(N−p)σ/p

≤ J(w) +
S

N
p

N
− CεN−(N−p)σ/p + o

(
εN−(N−p)σ/p

)
< J(w) +

S
N
p

N

for sufficiently small ε > 0 and t ∈ [t0, t1].

Case 2: p = 2N
N+1

. The result is analogous to the previous case, with the only difference being

the term O
(
εN− (N−p)

p

)
log(1

ε
) instead of O

(
εN− (N−p)

p

)
.

Case 3: p > 2N
N+1

. This case must be divided also in several steps, actually. First, consider the

case 2N
N+1

< p ≤ 2− 1
N
. We have q ∈ (1, 2) and γq ∈ (1, q), and also N(p−1)

N−1
≤ 1 < γq < q. In other

words,

βq = N − N

p
q > N − (N − p)

p
σ,

if and only if σ > Nq
N−p

.

By (g3), we have σ > max{p∗− p
N−p

, p∗−1, Nq
N−p
}, hence βq > N − (N−p)

p
σ for q ∈ (1, p). Similarly,

βγq > N − (N−p)
p

σ for γq ∈ (1, q).

Now, suppose 2− 1
N
< p < 2. Then N(p−1)

N−1
> 1, q ∈ (1, 2), and γq ∈ (1, q). If q ≤ N(p−1)

N−1
, then

βq =
(N − p)
p(p− 1)

q > N − (N − p)
p

σ

if and only if,
(N − p)

p
σ > N − (N − p)

p(p− 1)
q

if and only if,

σ >
Np

N − p
− q

(p− 1)
= p∗ − q

(p− 1)
.

Note that the above inequality holds because

σ > p∗ − 1 > p∗ − 1

p− 1
> p∗ − q

p− 1
,

since p < 2.

Similarly, βγq > N − (N−p)
N

σ for γq ∈ (1, q).
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If q > N(p−1)
N−1

then

βq = N − N

p
q > N − (N − p)

p
σ for q ∈

(
N(p− 1)

N − 1
, p

)
.

We just need to take γq ∈
(
1, N(p−1)

N−1

)
and we will have βγq > N − (N−p)

p
σ.

If 2 ≤ p ≤ 3− 2
N
, then 1 < N(p−1)

N−1
≤ 2. Let us suppose q ∈ (1, 2), then we will have γq ∈ (1, q).

If q ≤ N(p−1)
N−1

then

βq =
(N − p)
p(p− 1)

q > N − (N − p)
p

σ

because, σ > p∗ − 1
p−1

where, p ≥ 2. In analogous way, we obtain for βγq .

If q > N(p−1)
N−1

, it follows from (g3) that

βq = N − N

p
q > N − (N − p)

p
σ for q ∈

(
N(p− 1)

N − 1
, p

)
.

We just need to take γq ∈
(
1, N(p−1)

N−1

)
and we will have βγq > N − (N−p)

p
σ.

Now, suppose q ∈ [2, p) ⊂ [2, 3), then γq ∈ [q − 1, 2]. Note that q ≥ N(p−1)
N−1

, which implies by (g3)

that

βq > N − (N − p)
p

σ

for q ∈
[
N(p−1)
N−1

, p
)
and taking γq = q − 1 < N(p−1)

N−1
, we have βγq > N − (N−p)

p
σ.

If 3− 2
N
< p < 3, then N(p−1)

N−1
> 2, thus for q ∈ (1, 2) we have γq ∈ (1, q) with

βq =
(N − p)
p(p− 1)

q > N − (N − p)
p

σ

and

βγq =
(N − p)
p(p− 1)

γq > N − (N − p)
p

σ.

If q ∈ [2, p) ⊂ [2, 3), then γq ∈ [q − 1, 2], implying that γq <
N(p−1)
N−1

and βγq = (N−p)
p(p−1)

γq >

N − (N−p)
N

σ.

Suppose 2 ≤ q ≤ N(p−1)
N−1

or N(p−1)
N−1

≤ q < p from (g3) in an analogous way we have βq > N− (N−p)
N

σ.

Finally, for p ≥ 3, we have 2 < N(p−1)
N−1

, then, if q ∈ (1, 2), we have no issues because γq < q < N(p−1)
N−1

.

If q ∈ [2, 3), we take γq = q − 1 and thus βγq , βq > N − (N−p)
p

σ by (g3). If q ≥ 3, then

γq ∈ {2, q−1}. We simply take γq = 2 < N(p−1)
N−1

and we will have βγq > N − (N−p)
N

σ. Additionally,

for q ∈
[
3, N(p−1)

N−1

)
or q ∈

[
N(p−1)
N−1

, p
)
, we will have βq > N − (N−p)

N
σ by (g3).

The choice of βp in equation (1.7) gives us βp > N − (N−p)
p

σ by (g3). Therefore, from Lemma

41



1.3.1, we can go back to estimates started in (1.14) to conclude that

J(w + tuε) ≤J(w) +
S

N
p

N
+O

(
ε(N−p)/[p(p−1)]

)
+O(ε

N−p
p )− CεN−(N−p)σ/p

≤ J(w) +
S

N
p

N
− CεN−(N−p)σ/p + o

(
εN−(N−p)σ/p

)
< J(w) +

S
N
p

N

for ε > 0 sufficiently small and t ∈ [t0, t1]. Here (g3) was used in the second inequality.

1.4.1 Proof of the main theorems

Theorem 1.2.9 is proved using Propositions 1.2.8, 1.4.4 and 1.4.5, and Theorem 1.2.10 is proved

using Propositions 1.2.8, 1.4.4 and 1.4.6.
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Chapter 2

Critical non-homogeneous problems on

the (p, q)-Laplacian

2.1 Introduction

In this chapter, we study the problem:{
−∆pu−∆qu = λ|u|p−2u+ µ|u|q−2u+ |u|p∗−2u+ f(x) in Ω,

u = 0 on ∂Ω,
(2.1)

where Ω is a bounded domain with a smooth boundary in RN , 1 < q < p < N , λ ∈ (0, λ1), and

0 < µ ≤ µ1 where λ1 and µ1 represent the first eigenvalue of the p-Laplacian and the q-Laplacian,

respectively. Our work extends the study given in [31] by incorporating the non-homogeneous

term f ∈ Lp∗
′
(Ω) into the equation. Within this framework, we establish the existence of two

solutions. The first solution is obtained using Ekeland’s Variational Principle, as described in [16],

while the second solution is found by evoking Talenti concentration functions in conjunction with

the Mountain Pass method, following the approach presented in [19].

In the homogeneous case, [31] identified a nontrivial, nonnegative solution under various

restrictions on q and p, using techniques that use Morse theory to compare critical levels and

critical points of the associated functional.

In our case, by introducing the inhomogeneous term, we demonstrate the existence of two

distinct solutions under very similar restrictions on p and q as the ones given in Chapter 1,

provided that the norm of f is sufficiently small.

2.2 Hypotheses and Main Results

Consider f ∈ Lp∗
′
(Ω) non-zero. Let us define
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λ1 = inf
u∈W 1,p

0 (Ω)\{0}

∥∇u∥pp
∥u∥pp

and for the q-Laplacian,

µ1 = inf
u∈W 1,q

0 (Ω)\{0}

∥∇u∥qq
∥u∥qq

which are the first eigenvalues of the problems{
−∆pu = λ|u|p−2u in Ω

u = 0 on ∂Ω,

{
−∆qu = µ|u|q−2u in Ω

u = 0 on ∂Ω.

Our main theorems for this chapter are stated below.

Theorem 2.2.1. Suppose λ ∈ (0, λ1), 0 < µ ≤ µ1, f ∈ Lp∗
′
(Ω) nontrivial. Then, for any p > 1,

there exists a constant M > 0 such that problem (2.1) has two solutions provided that ∥f∥p∗′ ≤M ,

N >

{
max{p2 + p, p2/(p− 1), (p− 1)p2/(q − 1) + p}, if 1 < p < 2

max{(p− 1)p2 + p, (p− 1)p2/(q − 1) + p}, if p ≥ 2,

and

1 < q < (N − p)p/N.

Remark 11. Notice that

(p− 1)p2 + p ≥ p2(p− 1)/(q − 1) + p

if and only if

2 ≤ q,

which means that, in case q ≥ 2 we can assume the same restrictions as in Theorem 1.2.9.

Now, in case µ = 0, the situation returns to Theorem 1.2.9 without any further restrictions on

q. We have the following theorem.

Theorem 2.2.2. Suppose λ ∈ (0, λ1), µ = 0, f ∈ Lp∗
′
(Ω) non-zero. Then, for any p > 1, there

exists a constant M > 0 such that problem (2.1) has two solutions provided that ∥f∥p∗′ ≤M ,

N >

{
max{p2 + p, p2/(p− 1)}, if 1 < p < 2

max{(p− 1)p2 + p}, if p ≥ 2,

and

1 < q < (N − p)p/N.
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As usual, we see that weak solutions of the problem (2.1) are critical points of the associated

functional given by:

J(u) =
1

p

∫
Ω

|∇u|pdx− λ

p

∫
Ω

|u|pdx+ 1

q

∫
Ω

|∇u|qdx− µ

q

∫
Ω

|u|qdx− 1

p∗

∫
Ω

|u|p∗dx

−
∫
Ω

fudx

and

J ′(u)v =

∫
Ω

|∇u|p−2∇u∇vdx− λ
∫
Ω

|u|p−2uvdx+

∫
Ω

|∇u|q−2∇u∇vdx

− µ
∫
Ω

|u|q−2uvdx−
∫
Ω

|u|p∗−2uvdx−
∫
Ω

fvdx,

for all u and v in W 1,p
0 (Ω).

The objective of the remainder of this section is to show that J satisfies (PS)c for some c ̸= 0,

which will allow us to find w ∈ W 1,p
0 (Ω) as a solution to the problem (2.1) such that J(w) < 0.

This solution will be obtained using the Variational Principle of Ekeland. Let us first prove a

standard fact regarding this scheme. As in Chapter 1, let us consider again

S = inf
u∈D1,p(RN )\{0}

∥u∥p

∥u∥pp∗
.

the best constant of the embedding W 1,p
0 (Ω) ↪→ Lp∗(Ω).

Proposition 2.2.3. Consider µ ≤ µ1. If (un) is a (PS) sequence for the functional J in W 1,p
0 (Ω),

then (un) is bounded.

Proof. Consider (un) a (PS)c sequence of the functional J . Then we have

J(un) =
1

p

∫
Ω

|∇un|pdx+
1

q

∫
Ω

|∇un|q −
µ

q

∫
Ω

|un|qdx−
λ

p

∫
Ω

|un|p −
1

p∗

∫
Ω

|un|p
∗
dx

−
∫
Ω

f(x)undx

= c+ o(1),

and

J ′(un)un =

∫
Ω

|∇un|pdx+
∫
Ω

|∇un|qdx− µ
∫
Ω

|un|q − λ
∫
Ω

|un|p −
∫
Ω

|un|p
∗
dx

−
∫
Ω

f(x)undx

= o(1)∥un∥.
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Therefore,

c+ ∥un∥ ≥ J(un)−
1

p
J ′(un)un

=

(
1

q
− 1

p

)(
∥∇u∥qq − µ∥un∥qq

)
+

(
1

p
− 1

p∗

)∫
Ω

|un|p
∗
dx

−
(
1− 1

p

)∫
Ω

f(x)undx.

Since µ ≤ µ1, we have:

∥∇u∥qq − µ∥un∥qq ≥ 0,

and q < p implies (
1

p
− 1

p∗

)∫
Ω

|un|p
∗
dx ≤ c+ ∥un∥+

(
1− 1

p

)∫
Ω

f(x)undx

≤ c+ ∥un∥+ C∥f∥p∗′∥un∥p∗

≤ c+ ∥un∥+ S
−1
p C∥f∥p∗′∥un∥.

Therefore, ∫
Ω

|un|p
∗
dx ≤ C (1 + ∥un∥) .

Thus,

∥un∥pλ ≤ ∥un∥
p
λ + ∥∇un∥

q
q − µ∥un∥qq + ∥un∥

p∗

p∗ − ∥un∥
p∗

p∗ +

∫
Ω

fundx−
∫
Ω

fundx

= J ′(un)un + ∥un∥p
∗

p∗ +

∫
Ω

fundx

≤ C(1 + ∥un∥).

Knowing that ∥un∥pλ ≤ C∥un∥p because they are equivalent norms, we have

∥un∥p ≤ C(1 + ∥un∥).

For the next proposition, consider the following:

g(t) = −t
p∗

N
+

(
1− 1

p

)
∥f∥p∗′ t.

Obviously,

sup
t≥0

g(t) > 0.

Proposition 2.2.4. Suppose c < SN/p/N − supt≥0 g(t). Then the functional J satisfies (PS)c.
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Proof. Let (un) be a (PS)c sequence of J inW 1,p
0 (Ω), it follows from the previous proposition that

(un) is bounded in W 1,p
0 (Ω). Therefore, passing to a subsequence if necessary, we find that there

exists u ∈ W 1,p
0 (Ω) such that un ⇀ u in W 1,p

0 (Ω), un → u in Ls(Ω) where 1 ≤ s < p∗ and un → u

a.e. in x ∈ Ω. It follows from the weak continuity of J ′ that

J ′(u)v = lim
n→∞

J ′(un)v = 0,

for any v ∈ W 1,p
0 (Ω). This means that u is a weak solution of the problem (2.1). Consider

l := lim inf ∥un − u∥p.

If l = 0 there is nothing to do. Let us then suppose that l > 0. From the Brezis-Lieb Lemma

we have that

∥un∥p = ∥un − u∥p + ∥u∥p + on(1),

∥un∥qW 1,q(Ω) = ∥un − u∥
q
W 1,q(Ω) + ∥u∥

q
W 1,q(Ω) + on(1),

∥un∥p
∗

p∗ = ∥un − u∥
p∗

p∗ + ∥u∥
p∗

p∗ + on(1).

So, using J ′(un)un → 0 and J ′(u)u = 0 we have

on(1) = J ′(un)un

=
(
∥un − u∥p + ∥u∥p − λ∥u∥pp

)
+
(
∥un − u∥qW 1,q(Ω) + ∥u∥

q
W 1,q(Ω) − µ∥u∥

q
q

)
−
(
∥un − u∥p

∗

p∗ + ∥u∥
p∗

p∗

)
−
∫
Ω

fudx+ on(1)

= J ′(u)u+ ∥un − u∥p + ∥un − u∥qW 1,q(Ω) − ∥un − u∥
p∗

p∗

implying that

∥un − u∥p
∗

p∗ + on(1) = ∥un − u∥p + ∥un − u∥qW 1,q(Ω). (2.2)

Consequently,

∥un − u∥p ≤ ∥un − u∥p + ∥un − u∥qW 1,q(Ω)

= ∥un − u∥p
∗

p∗ + on(1)

≤ S
−p∗
p ∥un − u∥p

∗
+ on(1).

Applying the limit on both sides we have

l ≤ S
−p∗
p l

p∗
p ,

47



i.e.,

l ≥ S
N
p .

Using Brezis-Lieb, by Equation (2.2) and Hölder’s inequality, we get

c = lim
n→∞

[
J(un)−

1

p

〈
J ′(un), un

〉]
= lim

n→∞

[(
1

q
− 1

p

)(
∥∇un∥qq − µ∥un∥qq

)
+

(
1

p
− 1

p∗

)
∥un∥p

∗

p∗

−
(
1− 1

p

)∫
Ω

fundx

]
≥ lim

n→∞

[(
1

p
− 1

p∗

)
∥un∥p

∗

p∗ −
(
1− 1

p

)∫
Ω

fundx

]
≥
(
1

p
− 1

p∗

)(
∥u∥p

∗

p∗ + lim
n→∞

∥un − u∥p
∗

p∗

)
−
(
1− 1

p

)∫
Ω

fudx

≥ 1

N
∥u∥p

∗

p∗ +
1

N
lim
n→∞

(
∥un − u∥p + ∥un − u∥qW 1,q(Ω) + on(1)

)
−
(
1− 1

p

)
∥f∥p∗′∥u∥p∗

=
1

N
lim
n→∞

(
∥un − u∥p + ∥un − u∥qW 1,q(Ω) + on(1)

)
− g(∥u∥p∗)

≥ 1

N
lim
n→∞

(∥un − u∥p + on(1))− sup
t≥0

g(t)

=
l

N
− sup

t≥0
g(t)

≥ S
N
p

N
− sup

t≥0
g(t),

which is impossible because c < SN/p/N−supt≥0 g(t). Therefore, l = 0 and un → u inW 1,p
0 (Ω).

Lemma 2.2.5. There are constants ρ0 = ρ0(p,N, S) > 0 and M =M(p,N, S) > 0 such that, for

all ∥u∥ = ρ0, we have J(u) ≥ 0 if ∥f∥p∗′ ≤M .

Proof. By Hölder inequality and Sobolev embeddings, we have

J(u) =
1

p

(∫
Ω

|∇u|pdx− λ

p

∫
Ω

|u|p
)
+

1

q

(∫
Ω

|∇u|q − µ

q

∫
Ω

|u|qdx
)
− 1

p∗

∫
Ω

|u|p∗dx

−
∫
Ω

f(x)udx

≥ 1

p

(∫
Ω

|∇u|pdx− λ

p

∫
Ω

|u|p
)
− 1

p∗

∫
Ω

|u|p∗dx−
∫
Ω

f(x)udx

≥ 1

p

(
1− λ

λ1

)
∥u∥p − S

−p∗
p

p∗
∥u∥p∗ − S

−1
p ∥f∥p∗′∥u∥.
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Considering t = ∥u∥, it follows that

J(u) ≥ 1

p

(
1− λ

λ1

)
tp − S

−p∗
p

p∗
tp

∗ − S
−1
p ∥f∥p∗′ t

= t

{
tp−1

(
1

p

(
1− λ

λ1

)
− S

−p∗
p

p∗
tp

∗−p

)
− S

−1
p ∥f∥p∗′

}
.

Since p > p∗ and λ < λ1, there exists ρ0 > 0 such that

h(ρ0) =
1

p

(
1− λ

λ1

)
− S

−p∗
p

p∗
ρp

∗−p
0 ≥ 0.

Then, choose M such that

∥f∥p∗′ ≤ S
1
pρp−1

0 h(ρ0) =M.

This implies that

ρp−1
0 h(ρ0)− S

−1
p ∥f∥p∗′ ≥ 0,

finishing this proof.

Lemma 2.2.6. Let ρ0 be the constant from Lemma 2.2.5. Then

inf
∥u∥<ρ0

J(u) < 0.

Proof. Consider ϕ ∈ C∞
0 (Ω) such that

∫
Ω
f(x)ϕdx > 0. So,

J(tϕ) =
tp

p

∫
Ω

(|∇ϕ|p − λ|ϕ|p)dx+ tq

q

∫
Ω

(|∇ϕ|q − µ|ϕ|q)dx− tp
∗

p∗

∫
Ω

|ϕ|p∗dx

− t
∫
Ω

f(x)ϕdx

< 0,

for all t > 0 sufficiently small. This means that

inf
∥u∥<ρ0

J(u) < 0.

Proposition 2.2.7. Consider µ ≤ µ1. Let M > 0 and ρ0 be constants determined by Lemma

2.2.5 and assume ∥f∥p∗′ ≤ M . Then there exists w ∈ W 1,p
0 (Ω), a solution of problem (2.1), such

that

J(w) = inf
∥u∥<ρ0

J(u) = c < 0.
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Proof. It follows from the Lemmas 2.2.5 and 2.2.6 for all ∥u∥ = ρ0 that

c = inf
∥v∥<ρ0

J(v) < 0 ≤ J(u).

Moreover, from Ekeland Variational Principle, there exists a sequence (um) in B̄(0, ρ0) such that

J(um)→ c and J ′(um)um → 0 when m→∞. Furthermore, from Lemma 2.2.5 M = S
1
pρp−1

0 h(ρ0)

so note that without loss of generality, we can decrease ρ0 to obtain,

S
N
p

N
− sup

t≥0
g(t) ≥ S

N
p

N
− sup

t≥0

{
Cρp−1

0 h(ρ0)S
1
p t− tp

∗

N

}
> 0 > c

for ρ0 > 0 sufficiently small. Notice that it is immediate that (um) is bounded in W 1,p
0 (Ω), and

by passing to a subsequence if necessary, there exists w ∈ W 1,p
0 (Ω) such that um ⇀ w in W 1,p

0 (Ω),

um → w em Ls(Ω) where 1 ≤ s < p∗ and um → w a.e. in x ∈ Ω a weak solution of the problem

(2.1). It follows from Proposition 2.2.4 that um → w in W 1,p
0 (Ω), and thus

J(w)←− J(um) −→ inf
∥u∥<ρ0

J(u).

Therefore,

J(w) = inf
∥u∥<ρ0

J(u).

2.3 Preliminaries

In this section, we will state some results that will be very important for this chapter, some of

which were already announced in the preliminaries of the previous chapter, but for the reader’s

convenience, they will also be announced here.

Lemma 2.3.1. Considering 0 < ε < r and 1 < p < N. The following estimates hold,

cεp ≤
∫
Ω

| uε |p dx ≤


Cεp +O

(
ε(N−p)/(p−1)

)
if p2 < N,

Cεp log(1
ε
) if p2 = N,

Cε(N−p)/(p−1) if p2 > N,

(2.3)

∫
Ω

| uε |p−1 dx ≤ Cε(N−p)/p, (2.4)∫
Ω

| uε |p
∗−1 dx ≤ Cε(N−p)/p, (2.5)
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∫
Ω

| uε | dx ≤


Cε(N−p)/p(p−1) if p > 2N/(N + 1),

CεN−(N−p)/p log(1
ε
) if p = 2N/(N + 1),

CεN−(N−p)/p if 1 < p < 2N/(N + 1),

(2.6)

cεN−(N−p)s/p ≤
∫
Ω

| uε |s dx ≤ CεN−(N−p)s/p, if p∗ −N/(N − p) < s < p∗. (2.7)

For 1 < γ < p

∥∇uε∥γγ ≤

{
Cεβ if γ ̸= N(p− 1)/(N − 1)

Cεβ log(1
ε
) if γ = N(p− 1)/(N − 1)

(2.8)

where,

β = β(γ) =

{
N−p
p(p−1)

γ if 1 < γ ≤ N(p−1)
N−1

N − N
p
γ if N(p−1)

N−1
< γ < p.

(2.9)

Remark 12. For s = q − 1 consider, 0 < ε < r so,∫
Ω

|uε|q−1dx = ε(N−p)(q−1)/p(p−1)

∫
RN

ϕ(x)q−1

[εp/(p−1) + |x|p/(p−1)]
(N−p)(q−1)/p

dx

= εN−[(N−p)(q−1)/p]

∫
RN

ϕ(εx)q−1

[1 + |x|p/(p−1)]
(N−p)(q−1)/p

dx

≤ C(N, p, q)εN−[(N−p)(q−1)/p]

+ CεN−[(N−p)(q−1)/p]

∫ 2r/ε

1

RN−1−(N−p)(q−1)/(p−1)dR

≤ C
(
εN−[(N−p)(q−1)/p] + ε(N−p)(q−1)/p(p−1)

)
.

Then, ∫
Ω

|uε|q−1dx = O
(
εN−(N−p)(q−1)/p

)
+O

(
ε(N−p)(q−1)/p(p−1)

)
(2.10)

Lemma 2.3.2. Consider 0 < ε < r and 1 < p < N . Then,

∥∇uε∥pp = S
N
p +O

(
ε

(N−p)
(p−1)

)
, (2.11)

∥uε∥pp = S
N
p +O

(
ε

N
(p−1)

)
. (2.12)

The following Lemma will be important for estimates in Lp∗(Ω).

Lemma 2.3.3. Consider 1 < s <∞. Then there exists a constant C (depending on s) such that,

∣∣|α + β|s − |α|s − |β|s| ≤ C
(
|α|s−1|β|+ |α||β|s−1

)
,

∀ α, β ∈ R.
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Remark 13. Consider α = w and β = tuε for each t > 0, take s = p∗ and from the previous

Lemma we have,

−∥w + tuε∥p
∗

p∗ + ∥w∥
p∗

p∗ + tp
∗∥uε∥p

∗

p∗ ≤ C

(
t

∫
Ω

|w|p∗−1uε + tp
∗−1

∫
Ω

|uε|p
∗−1|w|dx

)

2.4 Proof of the Main Theorems

In this section, we will prove the main result of this chapter. However, in order to do so, we will

need some auxiliary results.

2.4.1 Geometry of the Mountain Pass and estimates for the minimax

level

Lemma 2.4.1. Consider 1 < q < p < N , 0 < µ ≤ µ1. Then there exist positive constants ε0, t0, t1

such that

J(w + tuε) < J(w) +
S

N
p

N

for all t ∈ (0, t0) ∪ (t1,∞) and ε ∈ (0, ε0).

Proof. We know from Proposition 1.4.1 taking v = w + tuε, that,

J(w + tuε) < J(w) +
S

N
p

N

∀ t ∈ (0, t0) and ε ∈ (0, ε0). Furthermore, Analogously to what we did to obtain (1.8), we find

J(w + tuε) ≤
1

p

∫
Ω

|∇w|pdx+ 1

q

∫
Ω

|∇w|qdx+ tp

p

∫
Ω

|∇uε|pdx+
tq

q

∫
Ω

|∇uε|qdx

+ λt

∫
Ω

|w|p−2w.uεdx+ tµ

∫
Ω

|w|q−2w.uεdx+ t

∫
Ω

|w|p∗−2w.uεdx+ t

∫
Ω

fuεdx

+
C

p
tγpεβp +

C

q
tγqεβγq − λ

p

∫
Ω

|w + tuε|pdx−
µ

q

∫
Ω

|w + tuε|qdx

− 1

p∗

∫
Ω

|w + tuε|p
∗
dx−

∫
Ω

f(w + tuε)dx,

where, 
γs ∈ (1, s) if s ∈ (1, 2),

γs ∈ [s− 1, 2] if s ∈ [2, 3),

γs ∈ {2, s− 1} if s ≥ 3,
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with s ∈ {q, p}. Moreover, βr is as in (2.9) since r ∈ {p, γq}. From the Remark 13,

J(w + tuε) ≤
1

p

∫
Ω

|∇w|pdx+ 1

q

∫
Ω

|∇w|qdx+ tp

p

∫
Ω

|∇uε|pdx+
tq

q

∫
Ω

|∇uε|qdx

+ λt

∫
Ω

|w|p−2wuεdx+ tµ

∫
Ω

|w|q−2wuεdx+ t

∫
Ω

|w|p∗−2wuεdx+ t

∫
Ω

fuεdx

+
C

p
tγpεβp +

C

q
tγqεβγq − λ

p

∫
Ω

|w + tuε|pdx−
µ

q

∫
Ω

|w + tuε|qdx

− 1

p∗

(∫
Ω

|w|p∗ + tp
∗
∫
Ω

|uε|p
∗
)
+ C

(
t

∫
Ω

|w|p∗−1uεdx+ tp
∗−1

∫
Ω

|w|up∗−1
ε dx

)
−
∫
Ω

f(w + tuε)dx.

Then, adding and subtracting λ
p

∫
Ω
|w|pdx, µ

q

∫
Ω
|w|qdx, λtp

p

∫
Ω
|uε|pdx and, µtq

q

∫
Ω
|uε|qdx, we obtain

J(w + tuε) ≤
1

p

∫
Ω

|∇w|pdx+ 1

q

∫
Ω

|∇w|qdx+ tp

p

∫
Ω

|∇uε|pdx+
tq

q

∫
Ω

|∇uε|qdx

+ λt

∫
Ω

|w|p−2wuεdx+ tµ

∫
Ω

|w|q−2wuεdx+ t

∫
Ω

|w|p∗−2wuεdx

+
C

p
tγpεβp +

C

q
tγqεβγq − λ

p

∫
Ω

|w + tuε|pdx−
µ

q

∫
Ω

|w + tuε|qdx

− 1

p∗

(∫
Ω

|w|p∗ + tp
∗
∫
Ω

|uε|p
∗
)
+ C

(
t

∫
Ω

|w|p∗−1uεdx+ tp
∗−1

∫
Ω

|w|up∗−1
ε dx

)
−
∫
Ω

fwdx+
λ

p

∫
Ω

|w|pdx− λ

p

∫
Ω

|w|pdx+ µ

q

∫
Ω

|w|qdx− µ

q

∫
Ω

|w|qdx

+
λtp

p

∫
Ω

|uε|pdx−
λtp

p

∫
Ω

|uε|pdx+
µtq

q

∫
Ω

|uε|qdx−
µtq

q

∫
Ω

|uε|qdx.

Arranging the terms of the equation above we obtain

J(w + tuε) ≤
1

p

∫
Ω

|∇w|pdx+ 1

q

∫
Ω

|∇w|qdx− λ

p

∫
Ω

|w|pdx− µ

q

∫
Ω

|w|qdx−
∫
Ω

fwdx

− 1

p∗

∫
Ω

|w|p∗dx+ tp

p

∫
Ω

|∇uε|pdx+
tq

q

∫
Ω

|∇uε|qdx+ λt

∫
Ω

|w|p−2w.uεdx

+ tµ

∫
Ω

|w|q−2w.uεdx+ t

∫
Ω

|w|p∗−2wuεdx+
C

p
tγpεβp +

C

q
tγqεβγq

+
λ

p

(∫
Ω

|w|pdx+ tp
∫
Ω

|uε|pdx−
∫
Ω

|w + tuε|pdx
)
− tp

∗

p∗

∫
Ω

|uε|p
∗

− λtp

p

∫
Ω

|uε|pdx+
µ

q

(∫
Ω

|w|qdx+ tq
∫
Ω

|uε|qdx−
∫
Ω

|w + tuε|qdx
)

− µtq

q

∫
Ω

|uε|qdx+ C

(
t

∫
Ω

|w|p∗−1uεdx+ tp
∗−1

∫
Ω

|w|up∗−1
ε dx

)
.
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So,

J(w + tuε) ≤J(w) +
tp

p

∫
Ω

|∇uε|pdx+
tq

q

∫
Ω

|∇uε|qdx+ Ct∥uε∥1

+ Ctγpεβp + Ctγqεβγq

+
λ

p

(∫
Ω

|w|pdx+ tp
∫
Ω

|uε|pdx−
∫
Ω

|w + tuε|pdx
)

− tp
∗

p∗

∫
Ω

|uε|p
∗ − λtp

p

∫
Ω

|uε|pdx−
µtq

q

∫
Ω

|uε|qdx

+
µ

q

(∫
Ω

|w|qdx+ tq
∫
Ω

|uε|qdx−
∫
Ω

|w + tuε|qdx
)

+ C

(
t

∫
Ω

|w|p∗−1uεdx+ tp
∗−1

∫
Ω

|w|up∗−1
ε dx

)
.

Since µ, λ, t > 0, 1 < q < p, and using the estimates provided by∣∣∣∣∫
Ω

|w + tuε|pdx−
∫
Ω

|w|pdx− tp
∫
Ω

|uε|pdx
∣∣∣∣ ≤
2p−1ptp−1

∫
Ω

up−1
ε |w|dx+ 2p−1pt

∫
Ω

uε|w|p−1dx

and∣∣∣∣∫
Ω

|w + tuε|qdx−
∫
Ω

|w|qdx− tq
∫
Ω

|uε|qdx
∣∣∣∣ ≤
2q−1qtq−1

∫
Ω

uq−1
ε |w|dx+ 2q−1qt

∫
Ω

uε|w|q−1dx,

we reach

J(w + tuε) ≤J(w) +
tp

p

∫
Ω

|∇uε|pdx+
tq

q

∫
Ω

|∇uε|qdx−
tp

∗

p∗

∫
Ω

|uε|p
∗
dx

− λtp

p

∫
Ω

|uε|pdx−
µtq

q

∫
Ω

|uε|qdx+ tγpO(εβp) + tγqO(εβγq )

+ C
(
t∥uε∥1 + tq−1∥uε∥q−1

q−1 + tp−1∥uε∥p−1
p−1 + tp

∗−1∥uε∥p
∗−1

p∗−1

) (2.13)

Using the fact that (uε)ε is bounded in Ls(Ω) for s = 1, q − 1, p − 1, p∗ − 1 < p, where ε > 0

sufficiently small, and taking c0 > 0 such that ∥uε∥p
∗

p∗ ≥ c0 > 0 for all ε > 0 sufficiently small,

there exist positive constants C and c such that

J(w + tuε) ≤ J(w) + ctq + ctp − c0tp
∗
+ C

(
t+ tq−1 + tp−1 + tp

∗−1 + tγp + tγq
)

(2.14)

for all t ≥ t0. Knowing that p− 1, p, q, q− 1, p∗− 1, 1 < p∗ and taking ε > 0 sufficiently small, the

result follows.
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For the geometry of the Mountain Pass, consider that w is a local minimum for the functional

J found in Proposition 2.2.7. Notice also that (2.14) shows that one can choose t large enough

such that J(w + tuε) < 0. Moreover, using Lemma 2.2.5, one readily gets

Proposition 2.4.2. Assume f ∈ Lp∗
′
(Ω) to be such that ∥f∥p∗′ ≤ M . Then, the functional

J ∈ C1(W 1,p
0 (Ω),R) and the following hold:

i) Let w and ρ0 > 0 be given in Proposition 2.2.7. Then J(w) < 0, ∥w∥ < ρ0 and J(u) ≥ 0 for

all u ∈ W 1,p
0 (Ω) with ∥u∥ = ρ0.

ii) There exists e ∈ W 1,p
0 (Ω) such that ∥e∥ > ρ and J(e) < J(w).

Now, define

Γ := {θ ∈ C([0, 1],W 1,p
0 (Ω)) : θ(0) = w and J(θ(1)) < α},

where J(w) = α. Thus, Γ is non-empty and we can define the mountain pass level

m := inf
θ ∈ Γ

max
t∈[0,1]

J(γ(t)).

The next result obtains compactness properties for the functional J as long as m is below a

specific limit.

Remember that

J(w) = inf
∥u∥<ρ0

J(u).

Thus we can state the next proposition whose proof is analogous to Proposition 1.4.4 of the

previous chapter.

Proposition 2.4.3. Suppose that m < J(w) + S
N
p

N
. Then J has a critical point u ̸= w, given by

the weak limit of a sequence (PS) at the level m

To conclude the proof of Theorem 2.2.1, we still need to analyze what happens in the interval

[t0, t1]. For this purpose, we will state and prove that

m < J(w) + SN/p/N,

for all t ∈ [t0, t1] and sufficiently small ε. We will need βp, βq, βγq > p.

Remark 14. Remember that, if, 1 < γ < p and β as in equation (2.8), then,

β =
(N − p)
p(p− 1)

γ > p

if and only if,

γ > p2(p− 1)/(N − p),
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where 1 < γ < N(p− 1)/(N − 1). Moreover,

β = N − N

p
γ > p

if and only if,

γ <
(N − p)p

N
,

where N(p−1)
(N−1)

< γ < p.

Furthermore,
N(p− 1)

(N − 1)
> 1

if, and only if,

p > 2− 1

N
.

From Lemma 1.3.6 we have

Lemma 2.4.4. Let 1 < q < (N − p)p/N . Then, there exists γq ∈ (1, q) such that βq, βγq > p

where N > max{p2 + p, p2/(p− 1)} if 1 < p < 2 and N > (p− 1)p2 + p if p ≥ 2.

Remark 15. From the estimate below∫
Ω

|uε|q−1dx = O
(
εN−(N−p)(q−1)/p

)
+O

(
ε(N−p)(q−1)/p(p−1)

)
,

we have that

N − (N − p)(q − 1)/p > p.

Furthermore, notice also that
(N − p)(q − 1)

p(p− 1)
> p

if, and only if,

N >
p2(p− 1)

(q − 1)
+ p.

We will need these comparisons to make the correct estimates in the next proposition.

Proposition 2.4.5. Consider λ ∈ (0, λ1), 0 < µ ≤ µ1, N ∈ N such that 1 < q < (N − p)p/N
and N > max{(p− 1)p2 + p, (p− 1)p2/(q− 1) + p} if p ≥ 2 and N > max{p2 + p, p2/(p− 1), (p−
1)p2/(q − 1) + p} if 1 < p < 2. Then

m < J(w) +
S

N
p

N
,

for sufficiently small ε > 0.
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Proof. Proceeding in a similar way to what was done in Proposition 1.4.5 of Chapter 1 we will

have a similar estimate for J(w + tuε). The difference here, for t ∈ [t0, t1], will be given by the

term
∫
Ω
|uε|q−1dx which was estimated in (2.10) , that is,

J(w + tuε) ≤J(w) + SN/p/N +O
(
ε(N−p)/(p−1)

)
+O(εN/(p−1)) +O(εβq)− Cεp + C∥uε∥1

+O(ε(N−p)/p) +O
(
εN−(N−p)(q−1)/p

)
+O

(
ε(N−p)(q−1)/p(p−1)

)
+O

(
εβp
)
+O(εβγq )

≤ J(w) + SN/p/N +O(εβq)− Cεp + C∥uε∥1 +O(ε(N−p)/p) +O
(
εN−(N−p)(q−1)/p

)
+O(ε(N−p)(q−1)/p(p−1)) +O

(
εβp
)
+O(εβγq )

By Remark 15 and proceeding as in [19], we have

J(w + tuε) ≤ J(w) +
S

N
p

N
− Cεp.

for small ε > 0.

Proposition 2.4.6. Consider µ = 0, N ∈ N such that N > (p − 1)p2 + p if p ≥ 2 and

N > max{p2 + p, p2/(p− 1)} if 1 < p < 2 and 1 < q < (N − p)p/N . Then

m < J(w) +
S

N
p

N
,

for ε > 0 small sufficiently.

Proof. It suffices to note that the estimates given in (2.13) imply that

J(w + tuε) ≤J(w) +
tp

p

∫
Ω

|∇uε|pdx+
tq

q

∫
Ω

|∇uε|qdx−
tp

∗

p∗

∫
Ω

|uε|p
∗
dx

− λtp

p

∫
Ω

|uε|pdx+ C
(
t∥uε∥1 + tp−1∥uε∥p−1

p−1 + tp
∗−1∥uε∥p

∗−1
p∗−1

)
+ tγpO(εβp) + tγqO(εβγq ).

Similarly to Proposition 2.4.5 the result follows.

2.4.2 Proof of the main theorems

For the proof of Theorem 2.2.1, we use Propositions 2.2.7, 2.4.3 and 2.4.5, and Theorem 2.2.2 is

completed using Propositions 2.2.7, 2.4.3 and 2.4.6.
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Chapter 3

(N, q)-Laplacian equations with critical

exponential growth and jumping

nonlinearities

3.1 Introduction

In this chapter, we establish the existence of nontrivial solutions for a (N, q)-Laplacian equation

characterized by: {
−∆Nu−∆qu = λ|u|N−2u+ g(x, u+) + f(x) in Ω

u = 0 on ∂Ω,
(3.1)

where Ω ⊂ RN denotes a bounded domain with a smooth boundary, N ≥ 2, λ > 0 is a real

parameter, 1 < q < N and g : Ω × R → [0,∞) satisfies a Trudinger-Moser growth condition

uniformly in x ∈ Ω. This problem is new for the N -Laplacian and also for the (N, q)-Laplacian.

Our objective as in Chapter 1 is to elucidate the effects of incorporating unilateral critical growth

and a non-homogeneous term f ∈ L∞ into the equation. As is widely acknowledged, one of

the primary challenges in dealing with this type of growth condition in g is to demonstrate that

the minimum level of the associated functional stays below some constant. This requirement

is addressed in [5, 27] by introducing an additional hypothesis. To achieve the desired level, the

techniques used in [27] for the case N = 2 require the Moser functions zrn to be supported within

a ball Br, where r > 0 needs to be sufficiently small. Here, similar approaches will be used, but

more intricate conditions over the choices of these radius are necessary.

Let us begin by assuming that f ∈ L∞(Ω) and that g exhibits a critical growth with exponent

α0 > 0. This means that there exists a positive constant α0 such that
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lim
t→+∞

g(x, t)

eαt
N

N−1

=

{
0, if α > α0

+∞, if α < α0,
(α0)

uniformly in x ∈ Ω. This condition is motivated by the Pohozaev-Trudinger-Moser Inequality (see

[20]), which state the existence of a positive constant C = C(N) satisfying

∫
Ω

e

(
αN |u|

N
N−1

)
dx ≤ C(N)|Ω|, (3.2)

for all u ∈ W 1,N
0 (Ω), N ≥ 2, such that ∥∇u∥N ≤ 1, where αN = Nω

1
N−1

N−1 and ωN−1 is the unitary

(N-1)-dimensional sphere volume.

Furthermore, we will consider

(g̃1) g : Ω× R→ R+ is a continuous function and g(x, t) = 0 for all x ∈ Ω and t ≤ 0;

(g̃2) There are R,M > 0 such that

0 < G(x, t) :=

∫ t

0

g(x, s)ds ≤Mg(x, t), ∀x ∈ Ω and t ≥ R;

(g̃3) There is C > 0 such that

sg(x, s) ≥ γ(s)eα0s
N

N−1
, ∀x ∈ Ω and s ≥ C,

where γ(s) is such that

lim inf
s→+∞

γ(s)

eε0s
1

N−1

> 0

for some ε0 > 0.

In this chapter, we will always assume that 0 < λ < λ1 and 1 < q < N . The natural space to

deal with our equation is W 1,N
0 (Ω), where we consider two equivalent norms

∥u∥ =
(∫

Ω

|∇u|Ndx
)1/N

and ∥u∥λ =

(∫
Ω

|∇u|Ndx− λ
∫
Ω

|u|Ndx
)1/N

.

The functional associated with Equation (3.1) is J : W 1,N
0 (Ω)→ R given by:

J(u) =
1

N

∫
Ω

(
|∇u|N − λ|u|N

)
dx+

1

q

∫
Ω

|∇u|qdx−
∫
Ω

G (x, u+) dx−
∫
Ω

f(x)udx.

By conditions (g̃1)− (g̃3) and (α0), due to (3.2), we obtain that J is of class C1 with derivative
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given by

J ′(u)v =

∫
Ω

(|∇u|N−2∇u∇v − λ|u|N−2uv)dx+

∫
Ω

|∇u|q−2∇u∇vdx

−
∫
Ω

g(x, u+)vdx−
∫
Ω

f(x)vdx,

for all u and v in W 1,N
0 (Ω). Weak solutions to the problem (3.1) are exactly the critical points of

this functional.

The main result of this chapter is given below.

Theorem 3.1.1. Suppose that (α0) and (g̃1) − (g̃3) hold and that f ∈ L∞(Ω) is a nontrivial

function such that f ≤ 0. Then, there exist two solutions to the problem (3.1).

As we have done in Chapter 1, we will find two distinct solutions to the problem (3.1). At

first, using minimization arguments we get a negative solution, w, for the linear problem{
−∆Nu−∆qu = λ|u|N−2u+ f(x) in Ω

u = 0 on ∂Ω,
(3.3)

which is also a solution for (3.1), since g(x,w) = 0. After that, we prove a L∞ estimate in

order to obtain some regularity results, and then show that a minimum for the functional J in

the C1
0 topology is also a minimum in the W 1,N

0 topology. Finally, we apply the mountain pass

theorem without the Palais-Smale condition to prove the existence of a second solution for the

main problem of this chapter.

3.2 Preliminaries

The objective of this section is to present some properties that the function g has, which are

obtained as a consequence of the conditions (g̃1)− (g̃3).

Lemma 3.2.1. Suppose that g satisfies (g̃1)− (g̃2). Then

(g̃4) For R > 0 and M > 0 as in condition (g̃2), there is a constant C > 0 such that

G(x, u) ≥ Ce(
1
M

u), ∀ (x, u) ∈ Ω× [R,+∞);

(g̃5) There are S > 0 and σ > N such that

σG(x, u) ≤ ug(x, u), ∀ (x, u) ∈ Ω× [S,+∞).
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(g̃6) If g also satisfies (α0), for any β > α0 there is a constant C = C(β) > 0 such that

g(x, u) ≤ Ceβ|u|
N′

, ∀ (x, u) ∈ Ω× R.

Proof. By (g̃2), there are R,M > 0 such that

0 < G(x, t) ≤Mg(x, t), for all x ∈ Ω and t ≥ R.

Then,
u−R
M

=

∫ u

R

1

M
dt ≤

∫ u

R

g(x, t)

G(x, t)
dt = ln

(
G(x, u)

G(x,R)

)
,

implying that

G(x, u) ≥ e
(u−R)

M G(x,R) ≥ Ce
u
M , for all x ∈ Ω and u ≥ R.

where C = e
−R
M minx∈ΩG(x,R) > 0. Therefore, we have (g̃4). To prove (g̃5), using (g̃2) we obtain,

0 < θG(x, u) ≤ θMg(x, u), ∀u ≥ R and θ > 0.

Then, for all x ∈ Ω and u ≥ S = max{R, θM}, we get

ug(x, u) ≥ θMg(x, u) ≥ θG(x, u),

which is (g̃5). For the last item, since g has critical growth, for each β > α0 we see that given

ε = 1 there exists R1 > 0 such that,

g(x, u) ≤ eβu
N′

for all, x ∈ Ω and u ≥ R1.

Considering (x, u) ∈ Ω× [0, R1], since g is continuous in a compact set, there is K > 0 such that

0 ≤ g(x, u) ≤ K for all (x, u) ∈ Ω× [0, R1]. Recalling that eβu
N′
≥ 1 for all u ≥ 0, we see that

g(x, u) ≤ max{1, K}eβ|u|N
′

, ∀(x, u) ∈ Ω× R,

and conclude this proof.

To establish an estimate of g from below, we need the following technical result.

Lemma 3.2.2. Consider σ > 1.Then there is η : R+ → R+ satisfying

(s+ t)σ ≤ sσ + η(t)sσ−1, for all s ≥ 1 and t > 0,
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such that limt→0+ η(t) = 0.

Proof. For t > 0, let us denote

η(t) = sup
s≥1

(s+ t)σ − sσ

sσ−1
.

We need to show that this supremum is finite for any t > 0 and η(t) → 0 as t → 0+. For any

t > 0 and s ≥ 1 we have

(s+ t)σ − sσ

sσ−1
=

sσ

sσ−1

[(
1 +

t

s

)σ

− 1

]
=

[(
1 + t

s

)σ − 1
]

1
s

= t · [(1 + r)σ − 1]

r
,

with r = t/s ∈ (0, t]. Now consider

ρ(r) =
(1 + r)σ − 1

r
, r > 0.

We see that

ρ′(r) =
σ(1 + r)σ−1r − (1 + r)σ + 1

r2
, r > 0.

Defining h(r) = σ(1 + r)σ−1r − (1 + r)σ + 1, certainly h is derivable for all r > 0, h(0) = 0 and

h′(r) = σ(σ − 1)(1 + r)σ−2r > 0, ∀ r > 0.

Then h is an increasing function and h(r) > h(0) = 0, ∀ r > 0. Thus,

ρ′(r) =
h(r)

r2
> 0, ∀ r > 0,

and ρ is increasing for r > 0. Then, for s ≥ 1 we have 0 < r = t/s ≤ t, which implies

ρ(t/s) ≤ ρ(t) =
(1 + t)σ − 1

t
.

Consequently,

η(t) = t · sup
s≥1

ρ(t/s) = t · ρ(t) = (1 + t)σ − 1,

which means that η(t) ∈ R and

lim
t→0+

η(t) = 0.

From the definition of η we have the result.

Lemma 3.2.3. Suppose that (g̃1) and (g̃3) hold. So, there are σ0, γ∞ and C0 > 0 such that

sg(x, s) ≥ γ∞e
α0(s+σ0)N

′

for all x ∈ Ω and s ≥ C0.
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Proof. From condition (g̃3), there exist C > 0 satisfying

sg(x, s) ≥ γ(s)eα0sN
′

, ∀(x, s) ∈ Ω× [C,∞)

and ε0 > 0 such that

lim inf
s→+∞

γ(s)

eε0s
1

N−1

> 0.

So, there are γ∞ > 0 and C̃ ≥ 1 such that

γ(s) ≥ γ∞e
ε0s

1
N−1

for all s ≥ C̃. Thus, for s ≥ C0 := max{C, C̃} we have

sg(x, s) ≥ γ(s)eα0sN
′

≥ γ∞e
ε0s

1
N−1

eα0sN
′

= γ∞e
α0

(
sN

′
+

ε0
α0

s
1

N−1

)
.

From Lemma 3.2.2, for ε = ε0/α0 we can choose σ0 > 0 such that η(σ0) < ε and

sN
′
+ εsN

′−1 ≥ sN
′
+ η(σ0)s

N ′−1 ≥ (s+ σ0)
N ′

for all s ≥ 1. Therefore,

sg(x, s) ≥ γ∞e
α0(sσ+εsσ−1) ≥ γ∞e

α0(s+σ0)N
′

,

for all s ≥ C0.

3.3 L∞ estimates and regularity

As in Chapter 1 we will get the first solution for (3.1) as a negative solution for the problem (3.3),

which is obtained by minimization arguments. To properly establish this first existence result,

we need to show some regularity results. The issue is that we cannot apply Theorems 1.2.4 and

1.2.6, so it was necessary to overcome these difficulties using Lieberman’s regularity results and

an adaptation of Theorem 1.1 of [18] for our operator.

In this section, we consider two auxiliary problems, with more general assumptions on the

nonlinear terms. The first is {
−∆Nu−∆qu = f̃(x, u) in Ω

u = 0 on ∂Ω,
(3.4)
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where f̃ : Ω× R→ R is a Caratheodory function satisfying

|f̃(x, s)| ≤ C̃(1 + |s|)p̃eβ̃|s|N
′

, a.e. (x, s) ∈ Ω× R, (3.5)

for some C̃, β̃ > 0 and p̃ > 1. For the second problem, we consider H : R → R a C1 function,

which is even and satisfies H(t) ≤ C(1 + |t|)p+1eβ|t|
N′

for all t ∈ R, for some p > 1 and C, β > 0,

and denote h(t) = H ′(t). For a fixed u0 ∈ L∞(Ω) ∩W 1,N
0 (Ω) we will deal with{

−∆N(u+ u0)−∆q(u+ u0) = f̃(x, u+ u0) + µh(u) in Ω

u = 0 on ∂Ω,
(3.6)

A solution for (3.6) is a pair (µ, u) ∈ R×W 1,N
0 (Ω). The purpose of this section is to show that if

u is a solution for (3.4) or (µ, u) is a solution for (3.6), then u ∈ L∞(Ω) and belongs to C1,γ(Ω),

for some γ ∈ (0, 1).

3.3.1 Boundedness of solutions

Our first step is to prove that the solutions belong to L∞(Ω). We observe that if u ∈ W 1,N
0 (Ω) is

a solution to the problem (3.4), then (0, u) is a solution to (3.6) with u0 ≡ 0. Thus, we will deal

with the second problem.

Proposition 3.3.1. Consider (µ, u) ∈ (−∞, 0] ×W 1,N
0 (Ω) a solution to (3.6), where u0 ≡ 0 or

u0 ∈ L∞(Ω) ∩W 1,N
0 (Ω) solves (3.4). Let θ > 1 and M > 0 be such that

∥f̃(·, u0)∥Lθ(Ω) + ∥f̃(·, u+ u0)∥Lθ(Ω) ≤M.

Then, there exists a constant d = d(N, p,M, θ,Ω) such that

∥u∥L∞(Ω) ≤ d.

Proof. For k ≥ 0 we consider the truncation functions

Tk(s) =


s+ k if s ≤ −k
s− k if s ≥ k

0 if − k < s < k,

and the set

Ωk = {x ∈ Ω : |u(x)| ≥ k}.

Since h is odd, we get µh(s)Tk(s) ≤ 0 for all s ∈ R if µ ≤ 0. For (µ, u) ∈ (−∞, 0] ×W 1,N
0 (Ω) a
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solution to (3.6), we will use

Tk(u) = (u+ k)χ(−∞,−k](u(x)) + (u− k)χ[k,+∞)(u(x))

as a test function for (3.6). When u0 ≡ 0 we get∫
Ω

|∇Tk(u)|Ndx =

∫
Ω

|∇u|N−2∇u∇Tk(u)dx

≤
∫
Ω

|∇u|N−2∇u∇Tk(u)dx+
∫
Ω

|∇u|q−2∇u∇Tk(u)dx

=

∫
Ω

f̃(x, u)Tk(u)dx.

(3.7)

If u0 ̸= 0, it is a solution for (3.4). Using Tk(u) as test function for the solutions u and u0, we see

that ∫
Ω

(
|∇(u+ u0)|N−2∇(u+ u0)− |∇u0|N−2∇u0

)
.∇Tk(u)dx

+

∫
Ω

(
|∇(u+ u0)|q−2∇(u+ u0)− |∇u0|q−2∇u0

)
.∇Tk(u)dx

≤
∫
Ω

(
f̃(x, u+ u0)− f̃(x, u0)

)
Tk(u)dx.

(3.8)

Taking σ = N+1
θ−1

and r = θσ, by the Hölder’s inequality we obtain∫
Ω

(
f̃(x, u+ u0)− f̃(x, u0)

)
Tk(u)dx

≤
(∫

Ω

(|f̃(x, u+ u0)|+ |f̃(x, u0)|)θdx
) 1

θ
(∫

Ω

|Tk(u)|rdx
) 1

r

|Ωk|
r−1−σ

r

≤M

(∫
Ω

|Tk(u)|rdx
) 1

r

|Ωk|
r−1−σ

r .

(3.9)

On the other hand, since N ≥ 2 we have a constant C1 = C1(N) such that

C1

∫
Ω

|∇Tk(u)|Ndx

≤
∫
Ω

(
|∇Tk(u+ u0)|N−2∇Tk(u+ u0)− |∇Tk(u0)|N−2∇Tk(u0)

)
∇Tk(u) dx

=

∫
Ω

(
|∇(u+ u0)|N−2∇(u+ u0)− |∇u0|N−2∇u0

)
.∇Tk(u)dx.
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Similarly, since q > 1, we get∫
Ω

(
|∇(u+ u0)|q−2∇(u+ u0)− |∇u0|q−2∇u0

)
.∇Tk(u)dx

=

∫
Ω

(
|∇Tk(u+ u0)|q−2∇Tk(u+ u0)− |∇Tk(u0)|q−2∇Tk(u0)

)
∇Tk(u)dx ≥ 0.

Recalling the Sobolev embedding W 1,N
0 (Ω) ↪→ Lr(Ω), we have

∫
Ω

|∇Tk(u)|Ndx ≥ C2

(∫
Ω

|Tk(u)|rdx
)N

r

, (3.10)

for a constant C2 = C2(N, r,Ω) > 0. Joining (3.7)-(3.10) we get,

(∫
Ω

|Tk(u)|rdx
)N

r

≤M ′
(∫

Ω

|Tk(u)|rdx
) 1

r

|Ωk|
r−1−σ

r ,

where M ′ =M/(C1C2). So, by definition of σ and r, we obtain∫
Ω

|Tk(u)|rdx ≤M ′|Ωk|
r−1−σ
N−1 =M ′|Ωk|

θσ−1−σ
N−1 =M ′|Ωk|

σ(θ−1)−1
N−1 =M ′|Ωk|

N
N−1 . (3.11)

Since Ωm ⊂ Ωk, for 0 ≤ k < m, and

|Tk(s)| = |(s+ k)χ(−∞,−k](s) + (s− k)χ[k,+∞)(s)| = (|s| − k)(1− χ[−k,k](s))

for all s ∈ R, we see that∫
Ω

|Tk(u)|rdx =

∫
Ωk

(|u| − k)rdx ≥
∫
Ωm

(|u| − k)rdx ≥ (m− k)r|Ωm|.

Now, substituting the last estimates in (3.11) we have,

(m− k)r|Ωm| ≤M ′|Ωk|
N

N−1 , for all 0 ≤ k < m.

Considering φ(k) = |Ωk|, for 0 ≤ k < m we have

φ(m) ≤M ′(m− k)−r(φ(k))
N

N−1 . (3.12)

Define a sequence {kn} by k0 = 0 and

kn = kn−1 +
d

2n
, n = 1, 2, · · · (3.13)
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where d = 2N(M ′)
1
r |Ω|

1
(N−1)r . We see that

kn = d
n∑

j=1

2−j → d as n→∞.

We will show by induction that

φ(kn) ≤ 2nr(1−N)φ(0). (3.14)

Using kn > kn−1 ≥ 0 in (3.12), we get

φ(k1) ≤M ′(k1 − k0)−r(φ(k0))
N

N−1 =M ′
(
d

2

)−r

(φ(0))
N

N−1

=M ′
[
2N−1(M ′)

1
r |Ω|

1
(N−1)r

]−r

|Ω|
N

N−1 = 2r(1−N)|Ω|

= 2r(1−N)φ(0).

Now, we have to assume that the result is valid for m. So

φ(km+1) ≤M ′(km+1 − km)−r(φ(km))
N

N−1 =M ′
(

d

2m+1

)−r

(φ(km))
N

N−1

=M ′
(
2N−(m+1)(M ′)

1
r |Ω|

1
(N−1)r

)−r

(φ(km))
N

N−1 = 2−r[N−(m+1)]|Ω|
−1

(N−1)φ(km)
N

N−1

≤ 2−r[N−(m+1)]−mrN |Ω| = 2r(m+1)(1−N)φ(0),

which means that it is also valid for m + 1. Hence, (3.14) holds for any n ∈ N. Consequently,

φ(kn)→ 0 as n→∞. Since kn ↑ d and φ is nonincreasing, we obtain

0 ≤ φ(d) = |Ωd| ≤ φ(kn)→ 0.

From the definition of Ωd, we conclude that |Ωd| = 0 implies that

∥u∥L∞(Ω) ≤ d,

which finishes this proof.

3.3.2 Regularity of solutions

From the previous result, we know that solutions for (3.6) are bounded. So we can use Lieberman’s

regularity results (see [10] and [11]). Let us check the assumptions. We define

ρ̃(t) = tN−1 + tq−1, for t > 0.
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Notice that ρ̃ is of class C1 and we have

0 < q − 1 ≤ tρ̃′(t)

ρ̃(t)
≤ N − 1, ∀t > 0.

Denoting

A(η) = ρ̃(|η|) η
|η|

=
(
|η|N−2 + |η|q−2

)
η and aij(η) =

∂Ai

∂ηj
(η), for η ∈ RN

we verify that there is a positive constant Λ such that

N∑
i,j=1

aij(η)ξiξj ≥
ρ̃(|η|)
|η|
|ξ|2 and

N∑
i,j=1

|aij(η)| ≤ Λ
ρ̃(|η|)
|η|

.

for all η, ξ ∈ RN . Then, [10, Theorem 1] and [11, Theorem 1.7]) give us the following:

Theorem 3.3.2. Let Ω be a bounded domain in RN with C1,α boundary. If u ∈ W 1,N
0 (Ω)∩L∞(Ω)

is a weak solution of

−divA(|∇u|) = B(x, u) in Ω

with |u(x)| ≤M0 and |B(x, t)| ≤ Λ1 for x ∈ Ω and t ∈ [−M0,M0], then there is a positive constant

γ = γ(α,Λ, q, N,M0) such that u is in C1,γ(Ω). Moreover

∥u∥C1,γ(Ω) ≤ C(α,Λ1,Λ, q, N,M0,Ω).

We can apply these last results to obtain the boundedness and regularity of w, the global

minimum of the functional I. It will be presented in Proposition 3.5.1.

3.4 C1
0 ×W

1,N
0 topology

The next proposition will be important to show that a local minimizer of functional J in the

C1
0 topology is also a local minimizer of J in the W 1,N

0 topology. The proof of this result uses

arguments similar to those found in [18], where the author proved a similar result for the N -

Laplacian operator and considered a nonlinear term f such that sf(x, s) ≥ 0 in Ω× R.
Firstly, we consider the functional J̃ : W 1,N

0 (Ω) → R associated with problem (3.4), which is

given by

J̃(u) =
1

N

∫
Ω

|∇u|Ndx+ 1

q

∫
Ω

|∇u|qdx−
∫
Ω

F̃ (x, u)dx.

Proposition 3.4.1. If u0 ∈ W 1,N
0 (Ω) is a local minimum of J̃ in the C1

0(Ω) topology, then

u0 ∈ C1,γ(Ω) for some γ ∈ (0, 1), and u0 is a local minimum of J̃ in the W 1,N
0 (Ω) topology.
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Proof. Let u0 ∈ C1
0(Ω) be a local minimum of J̃ on the C1

0(Ω) topology. By the previous sections

we know that u0 ∈ C1,γ(Ω) for some γ ∈ (0, 1). We have that 0 is a local minimizer of the

functional J̃(· + u0) in C1
0(Ω) and in this way we will show that 0 is a local minimizer for the

functional J̃(·+ u0) in W
1,N
0 (Ω). Let us assume, by contradiction, that 0 is not a local minimizer

for the functional J̃(·+ u0). Then, there is a sequence {vn}n≥1 ⊂ W 1,N
0 (Ω) such that

∥vn∥ ≤
1

n
and J̃(u0 + vn) < J̃(u0), ∀ n ≥ 1. (3.15)

Consider, H(s) = |s|p+1e2
N′

β|s|N′
, for p = p̃ > 1 and β = β̃ > 0 as in (3.5). Define, for each ε > 0,

Cε := {u ∈ W 1,N
0 (Ω) : K(u) = ∥H(u)∥L1(Ω) ≤ ε}. (3.16)

Notice that for each ε ∈ (0, 1) there is Nε ∈ N such that vn ∈ Cε for n ≥ Nε. In fact, by (3.15)

and (3.2) we obtain

∫
Ω

H(vn)dx ≤
(∫

Ω

|vn|2(p+1)dx

) 1
2

(∫
Ω

exp

(
2N

′+1β∥vn∥N
′
∣∣∣∣ vn∥vn∥

∣∣∣∣N ′)
dx

) 1
2

≤ ε

for n > 1 large enough. This shows that Cε is not empty, for any ε ∈ (0, 1). Clearly, K is a convex

operator, implying that Cε is a convex set. Moreover, Cε is closed in W 1,N
0 (Ω). Then, Cε is closed

in the weak topology of W 1,N
0 (Ω). Since f̃ satisfies (3.5), it follows that

|F̃ (x, t)| ≤ C(1 + |t|)p+1eβ|t|
N′

, a.e. x ∈ Ω, ∀t ∈ R. (3.17)

Recalling that u0 ∈ L∞(Ω), we get

|F̃ (x, u+ u0)| ≤ C(1 + ∥u0∥L∞(Ω) + |u|)p+1eβ|u+u0|N
′

≤ C(1 + |u|)p+1eβ2
N′−1|u|N′

≤ C (1 +H(u(x))) a.e. x ∈ Ω, ∀t ∈ R,

where C = C(∥u0∥L∞(Ω), p, β,N). Thus, for any u ∈ Cε it holds∫
Ω

F̃ (x, u+ u0)dx ≤ C (|Ω|+K(u)) ≤ C (|Ω|+ ε) ≤ C (|Ω|+ 1) .

Consequently, for all u ∈ Cε

J̃(u+ u0) ≥
1

N
∥u+ u0∥N −

∫
Ω

F̃ (x, u+ u0)dx

≥ 1

N
∥u+ u0∥N − C(|Ω|+ 1),

(3.18)

69



where C does not depend on ε ∈ (0, 1) nor u ∈ Cε. This means that J̃(· + u0) is bounded from

below and coercive in Cε. Then, the infimum of J̃(·+ u0) in Cε is attained. Since (3.15) holds and
vn ∈ Cε for large n, we can find uε ∈ Cε, uε ̸= 0, such that

min
u∈Cε

J̃(u+ u0) = J̃(uε + u0) ≤ J̃(vn + u0) < J̃(u0), ∀ε ∈ (0, 1), ∀n ≥ Nε. (3.19)

By (3.18) and (3.19) we have that {uε}ε is bounded in W 1,N
0 (Ω). Since K(uε) → 0 when ε → 0,

in other words, H(uε) → 0 em L1(Ω) as ε → 0, we get H(uε) → 0 a.e. in Ω as ε → 0. That

way, uε → 0 a.e. in Ω when ε→ 0. Then, uε + u0 ⇀ u0 in W 1,N
0 (Ω). By (3.19) and the Lagrange

Multiplier Theorem we obtain that, for all ε ∈ (0, 1) there is µε ∈ R such that uε solves:

J̃ ′(uε + u0) = µεK
′(uε). (3.20)

We claim that µε ≤ 0 for all ε ∈ (0, 1). Let us suppose µε > 0 for some ε > 0. As the right side

of (3.20) is nontrivial, we can choose φ ∈ W 1,N
0 (Ω) such that J̃ ′(uε + u0)φ < 0. So

0 >
1

µε

J̃ ′(uε + u0)φ = K ′(uε)φ = lim
τ→0+

K(uε + τφ)−K(uε)

τ

and then

K(uε + τφ) < K(uε) ≤ ε,

for small τ > 0, that is, uε+τφ ∈ Cε for τ > 0 small enough. Similarly, J̃(uε+τφ+u0) < J̃(uε+u0)

for τ > 0 small enough, which contradicts (3.19). Thus, we conclude that µε ≤ 0 for all ε ∈ (0, 1).

Now, considering h = H ′, equation (3.20) implies that uε satisfies

−∆N(uε + u0)−∆q(uε + u0) = f̃(x, uε + u0) + µεh(uε) in Ω. (Pε)

We deal now with two cases:

i) lim infε→0 µε > −∞;

ii) lim infε→0 µε = −∞.

If case i) occurs, there are ε0 ∈ (0, 1) and µ0 < 0 such that µε ∈ (µ0, 0] for all ε ∈ (0, ε0). We

define

J̃ε(u) := J̃(u+ u0)− µεK(u), u ∈ W 1,N
0 (Ω),

the functional associated with (Pε). By (3.20) we obtain J̃ ′
ε(uε) = 0 for all ε ∈ (0, ε0). Furthermore

by (3.18) and (3.19) we have that {J̃ε(uε)}ε is bounded in R, so we may choose a subsequence,
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still denoted by {J̃ε(uε)}ε, such that J̃ε(uε)→ ρ0 as ε→ 0. So,

1

N
∥uε + u0∥N +

1

q
∥∇(uε + u0)∥qLq(Ω) −

∫
Ω

F̃ (x, uε + u0)dx− µε

∫
Ω

H(uε)dx→ ρ0, (3.21)

and

∥uε + u0∥N + ∥∇(uε + u0)∥qLq(Ω) −
∫
Ω

f̃(x, uε + u0)(uε + u0)dx = µε

∫
Ω

h(uε)(uε + u0)dx. (3.22)

Moreover, from (3.17), once p > 1 and u0 ∈ L∞(Ω), for θ = (p+ 1)/p ∈ (1, 2) we get∣∣∣F̃ (x, uε + u0)
∣∣∣θ ≤ C(1 + |uε|+ |u0|)θ(p+1) exp

(
θβ2N

′−1(|uε|N
′
+ |u0|N

′
)
)

≤ C ′ + C
′′ |uε|p+1e2

N′
β|uε|N

′

, a.e. x ∈ Ω.

So ∫
Ω

∣∣∣F̃ (x, uε + u0)
∣∣∣θ dx ≤ C ′|Ω|+ C

′′
K(uε) ≤ C.

Thus, F̃ (x, uε + u0) → F̃ (x, u0) almost everywhere in Ω and it is a bounded sequence in Lθ(Ω).

Since |Ω| <∞, it follows by Vitali’s Convergence Theorem that∫
Ω

F̃ (x, uε + u0)dx→
∫
Ω

F̃ (x, u0)dx, as ε→ 0. (3.23)

This last convergence, coupled with the fact that uε+u0 ⇀ u0, {(µε)}ε is bounded and K(uε)→ 0

imply that

ρ0 = lim inf
ε→0

[
J̃(uε + u0)− µεK(uε)

]
= lim inf

ε→0

[
1

N
∥uε + u0∥N +

1

q
∥uε + u0∥qW 1,q

0 (Ω)
−
∫
Ω

F̃ (x, uε + u0)dx

]
≥ 1

N
∥u0∥N +

1

q
∥u0∥qW 1,q

0 (Ω)
−
∫
Ω

F̃ (x, u0)dx

= J̃(u0).

On the other hand, by (3.19), ρ0 ≤ J̃(u0). Then, ρ0 = J̃(u0), which means

lim
ε→0

J̃(uε + u0) = lim
ε→0

J̃ε(uε) = ρ0 = J̃(u0),

or

1

N
∥uε + u0∥N +

1

q
∥uε + u0∥qW 1,q

0 (Ω)
−
∫
Ω

F̃ (x, uε + u0)dx

→ 1

N
∥u0∥N +

1

q
∥u0∥qW 1,q

0 (Ω)
−
∫
Ω

F̃ (x, u0)dx, as ε→ 0.
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By (3.23) we obtain

1

N
∥uε + u0∥N +

1

q
∥uε + u0∥qW 1,q

0 (Ω)
→ 1

N
∥u0∥N +

1

q
∥u0∥qW 1,q

0 (Ω)
.

Since uε + u0 ⇀ u0 in W 1,N
0 (Ω), and so in W 1,q

0 (Ω), we get

∥uε + u0∥ → ∥u0∥, as ε→ 0.

Recalling that
(
W 1,N

0 (Ω), ∥ · ∥
)
is uniformly convex, we conclude that uε+u0 → u0, which means

that uε → 0 in W 1,N
0 (Ω). Now we intend to apply Proposition 3.3.1 in order to get the uniform

boundedness of (uε).

From (3.5), for θ = (p+ 1)/p ∈ (1, 2), we see that

|f̃(x, uε + u0)|θ ≤ C(1 + |u0|p+1 + |uε|p+1)e2
N′

β(|uε|N
′
+|u0|N

′
) ≤ C(1 +H(uε)), a.e. x ∈ Ω,

where C does not depend on ε nor uε. Thus, there exists M > 0 satisfying∫
Ω

[
|f̃(x, u0)|θ + |f̃(x, uε + u0)|θ

]
dx ≤ C

∫
Ω

(1 +H(uε))dx ≤ C(|Ω|+ ε) ≤M θ.

Since uε is a solution for (Pε), we know that (µε, uε) is a solution for (3.6). Then, it follows by

Proposition 3.3.1 that {uε}ε is bounded in L∞(Ω), that is

sup
ε∈(0,ε0)

∥uε∥L∞(Ω) ≤ C0,

for some C0 > 0. Now, considering

Bε(x, t) = f̃(x, t) + µεh(t− u0)

for we have |Bε(x, t)| ≤ Λ1 for (x, t) ∈ Ω× [−C0−∥u0∥L∞(Ω), C0 + ∥u0∥L∞(Ω)]. Thus, by Theorem

3.3.2 we conclude that uε ∈ C1,γ(Ω) and

sup
ε∈(0,ε0)

∥uε∥C1,γ(Ω) <∞, (3.24)

for some γ ∈ (0, 1).

At this moment, let us analyze the situation in Case ii), where lim infε→0 µε = −∞. In this

case, we consider a sequence εn → 0 such that µεn → −∞. By definition of h = H ′, we have

h(t) =
[
(p+ 1)|t|p−1t+ β2N

′
N ′|t|N ′−1+pt

]
eβ2

N′ |t|N′

, ∀t ∈ R
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and so

sgn(t)h(t) =
[
(p+ 1)|t|p + β2N

′
N ′|t|N ′+p

]
eβ2

N′ |t|N′

≥ C1|t|peβ2
N′ |t|N′

, ∀t ∈ R with |t| ≥ 1.
(3.25)

Now we fix M ≥ 2max{∥u0∥L∞ , 1}. For |s| ≥ M we have |s − u0(x)| ≥ M/2 ≥ |u0(x)| almost

everywhere in Ω, so that |s| ≤ |s − u0(x)| + |u0(x)| ≤ 2|s − u0(x)|. Then, using (3.5) and (3.25)

we see that

|f̃(x, s)| ≤ C(1 + |s|)peβ|s|N
′

≤ C(1 + |s− u0(x)|)peβ2
N′ |s−u0(x)|N

′

≤ Ch(s− u0(x)) · sgn(s− u0(x)),

for a positive constant C and for all s ∈ R such that |s| ≥M . Thus, since µεn → −∞ as n→∞,

there exists n0 satisfying

sgn(s− u0(x))
[
f̃(x, s) + µεh(s− u0(x))

]
≤ (C + µεn)h(s− u0(x))sgn(s− u0(x)) ≤ 0,

a.e. x ∈ Ω, for all n ≥ n0. Now, we consider test functions φn = (uεn + u0 − M)+ and

ψn = (uεn + u0 +M)−, where v−(x) = min{v(x), 0}. Then, J̃ ′
εn(uεn)φn = 0 gives us∫

Ω

|∇φn|Ndx+
∫
Ω

|∇φn|qdx =

∫
Ω

|∇(uεn + u0)|N−2∇(uεn + u0)∇φndx

+

∫
Ω

|∇(uεn + u0)|q−2∇(uεn + u0)∇φndx

=

∫
Ω

[
f̃(x, uεn + u0) + µεnh(uεn)

]
φndx

≤ 0, ∀n ≥ n0,

because sgn(uεn(x)) = sgn(φn(x)) for φn(x) > 0. In an analogous way we obtain∫
Ω

|∇ψn|Ndx+
∫
Ω

|∇ψn|qdx ≤ 0, ∀n ≥ n0.

Then,

∥φn∥ = ∥ψn∥ = 0, ∀n ≥ n0,

which implies

|uεn(x) + u0(x)| ≤M, a.e. x ∈ Ω. (3.26)

Recalling that ∥u0∥L∞ ≤M/2, we obtain the uniform boundedness for uεn ,

∥uεn∥L∞(Ω) ≤
3

2
M, ∀n ≥ n0.
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Now, let α > 1 be an arbitrary real number. We can use ϕn = |uεn|α−1uεn as a test function.

Since J̃ ′
εn(uεn)ϕn = 0 and J̃ ′(u0)ϕn = 0, observing that ∇ϕn = α|uεn|α−1∇uεn , we have

−µεn

∫
Ω

h(uεn)ϕndx =

∫
Ω

[f̃(x, uεn + u0)− f̃(x, u0)]ϕndx

−
∫
Ω

[|∇(uεn + u0)|N−2∇(uεn + u0)− |∇u0|N−2∇u0]∇ϕndx

−
∫
Ω

[|∇(uεn + u0)|q−2∇(uεn + u0)− |∇u0|q−2∇u0]∇ϕndx

=

∫
Ω

[f̃(x, uεn + u0)− f̃(x, u0)]|uεn|α−1uεndx

− α
∫
Ω

|uεn|α−1
(
|∇(uεn + u0)|N−2∇(uεn + u0)− |∇u0|N−2∇u0

)
∇uεndx

− α
∫
Ω

|uεn|α−1(|∇(uεn + u0)|q−2∇(uεn + u0)− |∇u0|q−2∇u0)∇uεndx,

for all n ≥ n0. Since (|z|σ−2z − |w|σ−2w)(z − w) ≥ 0 for all z, w ∈ RN , where σ > 1, using (3.26)

we get

−µεn

∫
Ω

h(uεn)|uεn|α−1uεndx ≤
∫
Ω

[f̃(x, uεn + u0)− f̃(x, u0)]|uεn|α−1uεndx

≤ sup
(x,t)∈Ω×[−M,M ]

|f̃(x, t)|
∫
Ω

|uε|αdx

≤ C

∫
Ω

|uε|αdx,

for all n ≥ n0. On the other hand, by (3.25) we see that h(s)s ≥ (p+1)|s|p+1 for all s ∈ R. Then,
by Hölder’s inequality we get

(p+ 1)(−µεn)

∫
Ω

|uεn|α+pdx ≤ −µεn

∫
Ω

h(uεn)|uεn|α−1uεndx

≤ C|Ω|
p

α+p

(∫
Ω

|uεn|α+pdx

) α
α+p

,

which implies

∥(−µεn)
1
puεn∥

p
Lα+p(Ω) = −µεn∥uεn∥

p
Lα+p(Ω) ≤ C(1 + |Ω|), ∀n ≥ n0,

for C > 0 independent of n and α. Recalling that α > 1 is arbitrary and letting α→ +∞ we get,

∥(−µεn)
1
puεn∥

p
L∞(Ω) ≤ C(1 + |Ω|), (3.27)
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for all n ≥ n0. Considering

Bn(x, t) = f̃(x, t) + µεnh(t− u0(x)),

since ∥uεn + u0∥L∞ ≤M and ∥uεn∥L∞ ≤ 3M/2 for all n ≥ n0, from (3.25) and (3.27) we see that

|Bn(x, uεn + u0)| = |f̃(x, uεn + u0) + µεnh(uεn)|

≤ sup
(x,t)∈Ω×[−M,M ]

|f̃(x, t)|+ |µεnh(uεn)|

≤ C ′(1 + |µεn||uεn|p)

≤ Λ1, a.e. x ∈ Ω,

for all n ≥ n0. So we can apply Theorem 3.3.2 to obtain

sup
n≥n0

∥uεn∥C1,γ(Ω) <∞,

for some γ ∈ (0, 1).

Therefore, in both cases we obtain an uniform bound for a sequence {uεn}n in C1,γ(Ω).

Therefore, there exists a subsequence {uεn}n such that uεn → 0 in C1
0(Ω). Since (3.19) gives

us

J̃(uεn + u0) < J̃(u0),

we have a contradiction with the local minimality of u0 for J̃ in the C1
0(Ω) topology. This means

that u0 must be also a local minimum for J̃ in the W 1,N
0 (Ω) topology and we conclude this

proof.

3.5 A first solution

In this section we deal with problem (3.3), which is{
−∆Nu−∆qu = λ|u|N−2u+ f(x) in Ω

u = 0 on ∂Ω,

whose associated functional is I : W 1,N
0 (Ω)→ R given by

I(u) =
1

N

∫
Ω

(
|∇u|N − λ|u|N

)
dx+

1

q

∫
Ω

|∇u|qdx−
∫
Ω

f(x)udx.

We are now in a position to describe our first result of the existence of solutions for (3.1) more

completely.
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Proposition 3.5.1. Suppose f ∈ L∞(Ω) a nontrivial function. Then I has a global minimum,

denoted by w, and it satisfies:

i) w ∈ C1,γ
0 (Ω), for some γ ∈ (0, 1);

ii) If f ≤ 0 then w ≤ 0 and it is a solution for problem (3.1);

iii) If w ≤ 0 then w < 0 in Ω and ∂w
∂ν
> 0 on ∂Ω.

iv) w is a local minimum of J in W 1,N
0 (Ω).

Proof. As in Chapter 1, we see that I is a C1 functional, coercive, weakly lower semicontinuous

(see Lemma 1.2.1). So, the direct method of the calculus of variations implies the existence of

a global minimum w ∈ W 1,N
0 (Ω) for I. This minimum is a critical point for I, which means

I ′(w) = 0, and so is a weak solution to problem (3.3). For i), considering u ∈ W 1,N
0 (Ω) as a

critical point for I, or a solution to problem (3.3). We see that (0, u) is a solution for problem

(3.6), with f̃(x, s) = λ|s|N−2s+ f(x) and u0 ≡ 0. Since

|λ|s|N−2s+ f(x)| ≤ ∥f∥L∞(Ω) + λ|s|N−1, ∀(x, s) ∈ Ω× R

we can apply Proposition 3.3.1, with θ = N ′, to obtain u ∈ L∞(Ω). After that, we can use

Theorem 3.3.2 to ensure u ∈ C1,γ
0 (Ω). In particular, for u = w, the minimum of I in W 1,N

0 (Ω),

which proves i). For ii), if we consider f ≤ 0, using w+ as a test function we get

0 = I ′(w)w+ =

∫
Ω

(
|∇w+|N − λ|w+|N

)
dx+

∫
Ω

|∇w+|qdx−
∫
Ω

f(x)w+dx ≥ ∥w+∥Nλ ,

which implies that w+ ≡ 0 and w ≤ 0. Observing that g(x,w) ≡ 0, we see that w is also a critical

point for the functional J . In other words, w is also a weak solution to problem (3.1). To prove

iii), since w ≤ 0, we can apply the Maximum Principle that can be found in Pucci and Serrin

[33] (see also Proposition 1.2.3) to show that w < 0 in Ω. After that, we use a version of the

Hopf Lemma for the (p, q)-Laplacian operator, which is found in [21] (see also Proposition 1.2.7),

to ensure ∂w
∂ν

> 0 on ∂Ω. Finally, since w is a minimum point for I in C1
0(Ω), and ii) implies

that −w is in the interior of the cone of positive functions in C1
0(Ω), we have I(u) = J(u) in a

neighborhood of w in the C1
0(Ω) topology, which means w is also a local minimum for J in C1

0(Ω).

Thus, it follows from Proposition 3.4.1 that w is a local minimum of J in W 1,N
0 (Ω).

3.6 Proof of the Main Theorems

The next lemma provides a mountain-pass geometry and it acts as an auxiliary result to

demonstrate that the minimax levels can be controlled by strategically selecting directions

provided by truncations.
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Lemma 3.6.1. Assume that g satisfies(α0) and (g̃1)− (g̃3) and consider φ ∈ W 1,N
0 (Ω)\{0} to be

a continuous and nonnegative function. Then J(w + tφ)→ −∞ when t→ +∞.

Proof. In fact, since (g̃4) is true, there are positive numbers C and R and σ > N such that

G(x, u) ≥ uσ, ∀ (x, u) ∈ Ω× [R,∞).

For a continuous function φ, let x1 ∈ Ω and r > 0 be such that mφ = minBr(x1) φ(x) > 0. So, for

all t > (R + ∥w∥L∞(Ω))/mφ we get

J(w + tφ) =
1

N

∫
Ω

(
|∇(w + tφ)|N − λ|w + tφ|N

)
dx+

1

q

∫
Ω

|∇(w + tφ)|qdx

−
∫
Ω

G (x, (w + tφ)+) dx−
∫
Ω

f(x)(w + tφ)dx

≤ 2N−1

N

∫
Ω

(
|∇w|N + tN |∇φ|N

)
dx+

2q−1

q

∫
Ω

(|∇w|q + tq|∇φ|q) dx

− C
∫
Br(x1)

|w + tφ|σdx+ t∥f∥L∞(Ω)

∫
Ω

φdx+ ∥f∥L∞(Ω)∥w∥L1(Ω).

Since ∥tφ∥Lσ(Ω) ≤ ∥w∥Lσ(Ω) + ∥w + tφ∥Lσ(Ω) implies that

∥tφ∥σLσ(Ω) ≤ 2σ−1
(
∥w∥σLσ(Ω) + ∥w + tφ∥σLσ(Ω)

)
,

we obtain

J(w + tφ) ≤ 2N−1tN

N

∫
Ω

|∇φ|Ndx+ 2q−1tq

q

∫
Ω

|∇φ|qdx− Ctσ

2σ−1

∫
Br(x1)

|φ|σdx+ t∥f∥L∞

∫
Ω

φdx

+ C1

for large t > 0, where C1 depends on w. Since σ > N ≥ q, this implies that J(w + tφ)→ −∞ as

t→ +∞.

From this lemma and knowing that w is a local minimum for the functional J , we can also

see that J exhibits the mountain pass geometry. In fact, since w is a local minimum for J in

W 1,N
0 (Ω), there exists ρ > 0 such that

J(v) ≥ J(w), ∀v ∈ W 1,N
0 (Ω) with ∥v − w∥ ≤ ρ. (3.28)

On the other hand, once w < 0, by this previous lemma, we get J((t−1)(−w))→ −∞ as t→∞.

This means that there is e ∈ W 1,N
0 (Ω) such that ∥e−w∥ > ρ and J(e) < J(w). So, we can define

Γ := {γ ∈ C([0, 1],W 1,N
0 (Ω)) : γ(0) = w and J(γ(1)) < J(w)}.
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We see that Γ is non-empty and the mountain pass level,

c0 := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)), (3.29)

is well-defined and satisfies c0 ≥ J(w).

Proposition 3.6.2. Assuming (α0) and (g̃1) − (g̃2), let {um}m be a (PS) sequence for J in

W 1,N
0 (Ω). Then {um}m is bounded.

Proof. Let {um}m be a (PS) sequence for J in W 1,N
0 (Ω), which means a sequence such that

{J(um)}m is bounded and ∥J ′(um)∥ → 0. Thus,

|J(um)|+ |J ′(um).um| ≤ C(1 + ∥um∥).

Moreover, it follows from (g̃5) in Lemma 3.2.1 that there are S > 0 and σ > N such that,

σG(x, u) ≤ ug(x, u), ∀(x, u) ∈ Ω× (S,∞).

So, by Holder’s inequality and the embedding W 1,N
0 (Ω) ↪→ L1(Ω) we obtain

J(um)−
1

σ
J ′(um).um =

(
1

N
− 1

σ

)
∥um∥Nλ +

(
1

q
− 1

σ

)
∥∇um∥qLq

−
∫
Ω

[
G(x, (um)+)−

1

σ
g(x, (um)+)(um)+

]
dx

−
(
1− 1

σ

)∫
Ω

f(x)umdx

≥
(
σ −N
Nσ

)
∥um∥Nλ −

(
σ − 1

σ

)∫
Ω

f(x)umdx

−
∫
{|um(x)|≤S}

[
G(x, (um)+)−

1

σ
g(x, (um)+)(um)+

]
dx

≥ C

(
σ −N
Nσ

)
∥um∥N − C∥um∥ − C1.

Then, it follows that

∥um∥ ≥ C2∥um∥N − C3

which implies that {um} is bounded in W 1,N
0 (Ω).

Since we cannot guarantee that J satisfies the Palais-Smale condition, we establish some

compactness properties provided c0, defined in (3.29), is below a certain threshold.
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Lemma 3.6.3. Let {um}m be a sequence in L1(Ω) such that um(x) → u(x) a.e. in Ω, for

u ∈ L1(Ω), and let g̃ : Ω× R→ R be a continuous function such that

sup
m∈N

∫
Ω

|g̃(x, um)um|dx ≤ C. (3.30)

So g̃(x, um)→ g̃(x, u) in L1(Ω).

Proof. This proof is similar to the one due to Figueiredo, Miyagaki and Ruf (see [6]). At first, we

observe that∫
Ω

|g̃(x, um)|dx ≤
∫
{|um(x)|≤1}

|g̃(x, um)|dx+
∫
{|um(x)|≥1}

|g̃(x, um)um|dx ≤ C ′,

for all m ∈ N, where C ′ = |Ω|maxΩ×[−1,1] |g̃(x, t)| + C. This means that {g̃(·, um)}m is bounded

in L1(Ω) and so, Fatou’s Lemma implies that g̃(·, u) ∈ L1(Ω). Now we fix ε > 0. Since

g̃(·, u) ∈ L1(Ω), there is δ > 0 such that∫
A

|g̃(x, u)|dx ≤ ε

9
,

if A ⊂ Ω is measurable and |A| ≤ δ. On the other hand, since u ∈ L1(Ω) there is M̃ large enough

such that ∣∣{x ∈ Ω; |u(x)| ≥ M̃}
∣∣ ≤ δ.

For C > 0 as in (3.30), we consider M = max
{
3C/ε, M̃

}
. Then, we observe that

∣∣∣∣∫
Ω

|g̃(x, um)|dx−
∫
Ω

|g̃(x, u)|dx
∣∣∣∣ ≤ I1 + I2 + I3

where

I1 =

∫
{|um(x)|≥M}

|g̃(x, um)|dx,

I2 =

∣∣∣∣∫
{|um(x)|<M}

|g̃(x, um)|dx−
∫
{|u(x)|<M}

|g̃(x, u)|dx
∣∣∣∣ ,

and

I3 =

∫
{|u(x)|≥M}

|g̃(x, u)|dx.

At first, we notice that

I1 =

∫
{|um(x)|≥M}

∣∣∣∣ g̃(x, um)umum

∣∣∣∣ dx ≤ C

M
≤ ε

3
, ∀m.
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Now,

I2 =

∣∣∣∣∫
Ω

|g̃(x, um)|χ{|um(x)|<M}dx−
∫
Ω

|g̃(x, u)|χ{|u(x)|<M}dx

∣∣∣∣
≤
∫
Ω

|g̃(x, um)− g̃(x, u)|χ{|um(x)|<M}dx+

∫
Ω

|g̃(x, u)|
∣∣χ{|um(x)|<M} − χ{|u(x)|<M}

∣∣ dx.
Considering

hm(x) = |g̃(x, um)− g̃(x, u)|χ{|um|<M},

we see that hm(x)→ 0 a.e. in Ω and,

|hm(x)| ≤ C1 + |g̃(x, u)|

where C1 = max{|g̃(x, t)|;x ∈ Ω, |t| ≤ M} and g̃(·, u) ∈ L1(Ω). From the Lebesgue Dominated

Convergence Theorem we have hm → 0 in L1(Ω). On the other hand,∫
Ω

|g̃(x, u)|
∣∣χ{|um(x)|<M} − χ{|u(x)|<M}

∣∣ dx ≤ ∫
{|u(x)|<M}

|g̃(x, u)|
∣∣χ{|um(x)|<M} − χ{|u(x)|<M}

∣∣ dx
+ 2

∫
{|u(x)|≥M}

|g̃(x, u)|dx

=

∫
Ω

h̃m(x)dx+ 2I3,

with h̃m(x) := |g̃(x, u)|
∣∣χ{|um(x)|<M} − χ{|u(x)|<M}

∣∣χ{|u(x)|<M} → 0 a.e. in Ω and satisfying

|h̃m(x)| ≤ |g(x, u)|, for all m ∈ N. Using again the Lebesgue Dominated Convergence Theorem

we have h̃m → 0 in L1(Ω). So, we obtain

I2 ≤
∫
Ω

hm(x)dx+

∫
Ω

h̃m(x)dx+ 2I3 ≤
ε

3
+ 2I3 for large m.

Finally, since M ≥ M̃ ,

I3 =

∫
{|u(x)|≥M}

|g̃(x, u)|dx ≤ ε

9
.

Then ∣∣∣∣∫
Ω

|g̃(x, um)|dx−
∫
Ω

|g̃(x, u)|dx
∣∣∣∣ ≤ 2ε

3
+ 3I3 ≤ ε, for large m,

which means that ∫
Ω

|g̃(x, um)|dx→
∫
Ω

|g̃(x, u)|dx, as m→∞.

Therefore, by the Brezis Lieb Lemma we obtain the desired result.

Lemma 3.6.4. Let {um}m ⊂ W 1,N
0 (Ω) be a (PS) sequence for J at level C ′. Then there exists
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u ∈ W 1,N
0 (Ω) and a subsequence, still denoted by {um}m, such that

(i) g(x, (um)+)→ g(x, u+) in L
1(Ω);

(ii) G(x, (um)+)→ G(x, u+) in L
1(Ω).

(iii) g(x, (um)+)v → g(x, u+)v in L1(Ω), for any v ∈ C∞
c (Ω).

Proof. Consider {um}m as a (PS)C′ sequence for J . Proposition 3.6.2 guarantees that {um}m is

bounded in W 1,N
0 (Ω) and is also bounded in W 1,q

0 (Ω). So, there exists u ∈ W 1,N
0 (Ω) such that, up

to a subsequence, um ⇀ u in W 1,N
0 (Ω), um → u in L1(Ω) and um(x)→ u(x) a.e. in Ω, as m→∞.

We need to show that {G(·, (um)+)(um)+}m and {g(·, (um)+)(um)+}m are bounded in L1(Ω), so

that we could apply the previous lemma. Since {um}m is a (PS) sequence at level C ′, we have

J(um)→ C ′, which gives us

1

N
∥um∥Nλ +

1

q
∥um∥qW 1,q

0

−
∫
Ω

G(x, (um)+)dx−
∫
Ω

f(x)umdx→ C ′,

and ∥J ′(um)∥ → 0, which implies J ′(um)um → 0. This means that

∥um∥Nλ + ∥um∥qW 1,q
0

−
∫
Ω

g(x, (um)+)umdx−
∫
Ω

f(x)umdx→ 0.

Because ∣∣∣∣∫
Ω

f(x)umdx

∣∣∣∣ ≤ ∥f∥L∞∥um∥L1 ≤ C∥f∥L∞∥um∥ ≤ C1,

we see that ∫
Ω

G(x, (um)+)dx ≤ C and

∫
Ω

g(x, (um)+)(um)+dx ≤ C.

It remains to show that {G(·, (um)+)(um)+}m is bounded in L1(Ω). Using (g̃2) and the continuity

of G we have

0 ≤ G(x, t) ≤Mg(x, t) + C2, ∀(x, t) ∈ Ω× R.

Then ∫
Ω

G(x, (um)+)(um)+dx ≤ C2

∫
Ω

(um)+dx+M

∫
Ω

g(x, (um)+)(um)+dx ≤ C3.

Therefore, by Lemma 3.6.3 we obtain the results of items (i) and (ii). Now, for any v ∈ C∞
c (Ω)

we have ∫
Ω

|g(x, (um)+)v − g(x, u+)v| dx ≤ ∥v∥L∞∥g(·, (um)+)− g(·, u+)∥L1 → 0

as m→∞, and we conclude this proof.

Proposition 3.6.5. Assume that g satisfies (g̃1), (g̃2) and (α0). If

c0 < J(w) +
1

N

(
αN

α0

)N−1

,
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then J possesses a critical point u ̸= w.

Proof. By definition of c0, given in (3.29), we know that c0 − J(w) ≥ 0. We can apply the results

in [29, Theorems 2.8 and 2.20] in order to obtain a (PS) sequence {um}m for J at level c0, and

this sequence can be chosen satisfying ∥um −w∥ ≥ ρ
2
> 0 for all m, if J(w) = c0, where ρ is given

in (3.28). We have ∥J ′(um)∥ = o(1) and J(um) = c0 + o(1), which implies

o(1)∥um∥ =
∫
Ω

(
|∇um|N − λ|um|N

)
dx+

∫
Ω

|∇um|q −
∫
Ω

g(x, (um)+)umdx−
∫
Ω

f(x)umdx

and

c0 + o(1) =
1

N

∫
Ω

(
|∇um|N − λ|um|N

)
dx+

1

q

∫
Ω

|∇um|q dx−
∫
Ω

G(x, (um)+)dx−
∫
Ω

f(x)umdx.

By Proposition 3.6.2 we get {um}m bounded in W 1,N
0 (Ω). So, there exists u ∈ W 1,N

0 (Ω) such

that, up to a subsequence, it holds
um ⇀ u in W 1,N

0 (Ω),

um → u in Ls(Ω), 1 ≤ s <∞,
um(x)→ u(x) a.e. inΩ.

Consider v ∈ C∞
c (Ω). The convergence um → u in LN(Ω) implies∫

Ω

|um|N−2umvdx→
∫
Ω

|u|N−2uvdx,

and due to Lemma 3.6.4, item (iii), we have∫
Ω

g(x, (um)+)vdx→
∫
Ω

g(x, (u)+)vdx.

Using a well-known result from [24], it follows that∫
Ω

|∇um|N−2∇um∇vdx+
∫
Ω

|∇um|q−2∇um∇vdx→
∫
Ω

|∇u|N−2∇u∇vdx+
∫
Ω

|∇u|q−2∇u∇vdx

as m→∞. Thus,

J ′(um)v → J ′(u)v.

This implies that J ′(u)v = 0 for all v ∈ C∞
c (Ω), and so u is a critical point of J . Since we are

assuming f ̸= 0, we get u ̸= 0. We need to show that u ̸= w. Let us suppose that u = w and
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consider vm := um − w. It follows that
vm ⇀ 0 in W 1,N

0 (Ω),

vm → 0 in Ls(Ω), 1 ≤ s <∞,
vm → 0 a.e. inΩ.

It follows from the Brezis-Lieb Lemma that

∥um∥N + ∥um∥qW 1,q = ∥um − u∥N + ∥u∥N + ∥um − u∥qW 1,q + ∥u∥qW 1,q + o(1). (3.31)

Furthermore, from Lemma 3.6.4 we have∫
Ω

G(x, (um)+)dx→
∫
Ω

G(x, u+)dx =

∫
Ω

G(x,w+)dx = 0.

We also have ∫
Ω

|f(x)(um − u)|dx ≤ ∥f∥L∞∥um − u∥L1 → 0, as m→∞.

Recalling that we are assuming u = w and w is a negative function, we see that

J(um)− J(w) =
1

N

(
∥um∥N − ∥w∥N

)
+

1

q

(
∥um∥qW 1,q − ∥w∥qW 1,q

)
− λ

N

(
∥um∥NN − ∥w∥NN

)
−
∫
Ω

G(x, (um)+)dx−
∫
Ω

f(x)(um − w)dx

=
1

N
∥vm∥N +

1

q
∥vm∥qW 1,q + o(1).

(3.32)

Now we take δ > 0 such that

c0 + 2δ < J(w) +
1

N

(
αN

α0

)N−1

.

Then, from (3.32), it follows that

1

N
∥vm∥N ≤

1

N
∥vm∥N +

1

q
∥vm∥qW 1,q ≤

1

N

(
αN

α0

)N−1

− δ,

for m ∈ N large enough. This implies that

∥vm∥
N

N−1 ≤

((
αN

α0

)N−1

−Nδ

) 1
N−1

(3.33)
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for large m. Let s > 1 and ε > 0 be such that

s(α0 + ε)

((
αN

α0

)N−1

−Nδ

) 1
N−1

≤ αN .

So, using (g̃6) (see Lemma 3.2.1), the Pohozaev-Trundinger-Moser inequality (3.2) and (3.33) we

obtain ∫
Ω

|g(x, (vm)+)|sdx ≤ C

∫
Ω

es(α0+ε)|vm|N′

dx = C

∫
Ω

es(α0+ε)∥vm∥N′
( vm
∥vm∥)

N′

dx

≤ C

∫
Ω

eαN( vm
∥vm∥)

N′

dx ≤ C1.

(3.34)

By Hölder’s inequality,

0 ≤
∫
Ω

g(x, (vm)+)vmdx ≤
(∫

Ω

|g(x, (vm)+)|sdx
) 1

s

∥vm∥ ≤ C∥vm∥s′ → 0

when m→∞. On the other hand, using again (3.31), we get

J ′(vm)vm = ∥vm∥Nλ + ∥vm∥qW 1,q −
∫
Ω

g(x, (vm)+)vmdx−
∫
Ω

f(x)vmdx

= ∥um∥Nλ − ∥w∥Nλ + ∥um∥qW 1,q − ∥w∥qW 1,q + o(1)−
∫
Ω

g(x, (vm)+)vmdx

+

∫
Ω

g(x, (um)+)umdx−
∫
Ω

g(x, (um)+)umdx−
∫
Ω

f(x)vmdx

= J ′(um)um − J ′(w)w −
∫
Ω

g(x, (vm)+)vmdx+

∫
Ω

g(x, (um)+)umdx+ o(1)

=

∫
Ω

g(x, (um)+)umdx+ o(1).

(3.35)

Now, notice that ∫
Ω

g(x, (um)+)umdx→ 0, as m→∞.

In fact, as in (3.34), using (g̃6) and the fact of (um)+ = (vm + w)+ ≤ (vm)+, we have

0 ≤
∫
Ω

g(x, (um)+)umdx ≤ C

∫
Ω

e(α0+ε)(um)N
′

+ (um)+dx ≤ C

(∫
Ω

es(α0+ε)(vm)N
′

+ dx

) 1
s

∥(vm)+∥s′

≤ C1∥vm∥s′ → 0.

Therefore, by (3.35) we have get

o(1) = J ′(vm)vm = ∥vm∥N + ∥vm∥qW 1,q + o(1)
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and this implies that

∥vm∥N + ∥vm∥qW 1,q → 0, as m→ +∞. (3.36)

Here we analyze these two cases: J(w) = c0 and J(w) < c0. If J(w) = c0, the sequence {um}
satisfies ∥um − w∥ ≥ ρ/2. In this case, if um ⇀ u = w we get ∥vm∥ = ∥um − w∥ ≥ ρ/2,

which contradicts (3.36). So, J(w) = c0 implies that u ̸= w. For the second case, J(w) < c0, if

um ⇀ u = w then estimate (3.32) implies that

1

N
∥vm∥N +

1

q
∥vm∥qW 1,q

0

→ c0 − J(w) ̸= 0,

and this also contradicts (3.36). Therefore, we must have u ̸= w, which means that J has a second

critical point, u ∈ W 1,N
0 (Ω).

Now, the remaining task is to demonstrate that the minimax level c0, as defined in (3.29),

is, in fact, below J(w) + 1
N

(
αN

α0

)N−1

. In order to obtain this estimate, we introduce the Moser

functions

z̃m(x) = ω
−1
N
N−1


(logm)

N−1
N if |x| < 1

m
log 1

|x|

(logm)
1
N

if 1
m
≤ |x| ≤ 1,

0 if |x| > 1.

For a suitable x0 ∈ Ω, to be chosen later, r ∈ (0, 1) such that B(x0, r) ⊂ Ω and δm → 0+ we

denote

zm(x) = z̃m

(
x− x0
δm

)
, ∀x ∈ Ω. (3.37)

We see that the following estimates hold:

Lemma 3.6.6. For any m ∈ N, the function zm ∈ W 1,N
0 (Ω) and it holds:

a) ∥zm∥ = ∥∇zm∥LN = 1;

b) ∥∇zm∥sLs = δN−s
m O(logm)

−s
N , for s ∈ [1, N);

c) ∥zm∥sLs = δNmO(logm)
−s
N , for s ∈ [1,∞).

The control of c0 will be done in the next proposition.

Proposition 3.6.7. Suppose that g satisfies (α0) and (g̃1)−(g̃3). Consider c0 as defined in (3.29).

Then

c0 < J(w) +
1

N

(
αN

α0

)N−1

.

Proof. From Lemma 3.2.3, there are positive constants σ0, γ∞ and C0 such that

sg(x, s) ≥ γ∞e
α0(s+2σ0)N

′

, ∀(x, s) ∈ Ω× [C0,∞) (3.38)
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Choose and fix r ∈ (0, 1) and a point x0 ∈ Ω close enough to ∂Ω such that

∥w∥L∞(Br(x0)) ≤ σ0. (3.39)

For this x0 and 0 < δm < r ≤ 1, we consider zm as given in (3.37). By Lemma 3.6.1 we know

that, for any m ∈ N, there is Rm > 0 satisfying

J(w + tzm) ≤ J(w), ∀ t ≥ Rm.

Then, there exists tm > 0 such that

J(w + tmzm) = max
t≥0

J(w + tzm).

By definition of the mountain pass level c0 we see that

c0 ≤ max
t≥0

J(w + tzm) = J(w + tmzm), ∀m ∈ N.

To prove this proposition it is sufficient to show that there is m ∈ N such that

J(w + tmzm) < J(w) +
1

N

(
αN

α0

)N−1

. (3.40)

Let us assume, by contradiction, that

J(w + tmzm) ≥ J(w) +
1

N

(
αN

α0

)N−1

, ∀m ∈ N. (3.41)

Using the results in Proposition 1.3.4, as in Proposition 1.4.1 we obtain∫
Ω

|∇(w + tzm)|Ndx

≤
∫
Ω

|∇w|N
[
1 + tN

|∇zm|N

|∇w|N
+Nt

∇w.∇zm
|∇w|2

+ CξN

(
t
|∇zm|
|∇w|

)]
dx

≤
∫
Ω

|∇w|Ndx+ tN
∫
Ω

|∇zm|Ndx+Nt

∫
Ω

|∇w|N−2∇w.∇zmdx+ C

∫
Ω

ξN (t|∇zm|) dx

where

ξN(s) =

{
s2 + sN−1 if N ≥ 3,

sN−1 if N = 2,
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and we use the fact that |∇w| ∈ L∞(Ω). Similarly,∫
Ω

|∇(w + tzm)|qdx

≤
∫
Ω

|∇w|q
[
1 + tq

|∇zm|q

|∇w|q
+ qt
∇w.∇zm
|∇w|2

+ Cξq

(
t
|∇zm|
|∇w|

)]
dx

≤
∫
Ω

|∇w|qdx+ tq
∫
Ω

|∇zm|qdx+ qt

∫
Ω

|∇w|q−2∇w.∇zmdx+ C

∫
Ω

ξq (t|∇zm|) dx

where

ξq(s) =


s2 + sq−1 if N > q ≥ 3,

sγ if q ∈ [2, 3), for a fixed γ ∈ (q − 1, 2),

sγ if q ∈ (1, 2), for a fixed γ ∈ (1, q).

On the other hand, for every t > 0 we have∣∣∣∣∫
Ω

|w + tzm|Ndx−
∫
Ω

|w|Ndx− tN
∫
Ω

|zm|Ndx
∣∣∣∣

≤ 2N−1NtN−1

∫
Ω

(zm)
N−1|w|dx+ 2N−1Nt

∫
Ω

zm|w|N−1dx.

Thus, since G(x, s) ≥ 0 and G(x,w) = 0, we get

J(w + tzm)− J(w) ≤
1

N

∫
Ω

(
|∇(w + tzm)|N − |∇w|N

)
dx− λ

N

∫
Ω

(
|w + tzm|N − |w|N

)
dx

+
1

q

∫
Ω

(|∇(w + tzm)|q − |∇w|q) dx−
∫
Ω

[f(x)(w + tzm)− f(x)w] dx

≤ tN

N

∫
Ω

|∇zm|Ndx+ t

∫
Ω

|∇w|N−2∇w.∇zmdx+
tq

q

∫
Ω

|∇zm|qdx

+ t

∫
Ω

|∇w|q−2∇w.∇zmdx+ C

∫
Ω

ξN (t|∇zm|) dx+ C

∫
Ω

ξq (t|∇zm|) dx

+ λ2N−1tN−1

∫
Ω

(zm)
N−1|w|dx+ λ2N−1t

∫
Ω

zm|w|N−1dx

− t
∫
Ω

f(x)zmdx.

Recalling that J ′(w)(tzm) = 0, we see that

0 = t

∫
Ω

|∇w|N−2∇w.∇zmdx+ t

∫
Ω

|∇w|q−2∇w.∇zmdx

+ λt

∫
Ω

|w|N−1zmdx− t
∫
Ω

f(x)zmdx, ∀t > 0.
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Then

J(w + tzm)− J(w) ≤
tN

N

∫
Ω

|∇zm|Ndx+
tq

q

∫
Ω

|∇zm|qdx+ C

∫
Ω

ξN (t|∇zm|) dx

+ C

∫
Ω

ξq (t|∇zm|) dx+ CtN−1

∫
Ω

(zm)
N−1dx+ Ct

∫
Ω

zmdx,

where we use w ∈ L∞(Ω). At this point, from Lemma 3.6.6 we obtain

J(w + tzm)− J(w) ≤
tN

N
+ tqδN−q

m O
(
(logm)

−q
N

)
+ tN−1δN−(N−1)

m O
(
(logm)−

(N−1)
N

)
+ t2δN−2

m O
(
(logm)

−2
N

)
+ tγδN−γ

m O
(
(logm)

−γ
N

)
+ tN−1δNmO

(
(logm)−

(N−1)
N

)
+ tδNmO

(
(logm)

−1
N

)
, ∀t > 0,

for a suitable γ ∈ (1, q), where the term with t2 appears only for N ≥ 3. Since δm ∈ (0, 1) we get

J(w + tzm)− J(w) ≤
tN

N
+ tqδN−q

m O
(
(logm)

−q
N

)
+ tN−1δN−(N−1)

m O
(
(logm)−

(N−1)
N

)
+ t2δN−2

m O
(
(logm)

−2
N

)
+ tγδN−γ

m O
(
(logm)

−γ
N

)
+ tδN−1

m O
(
(logm)

−1
N

)
.

Now, considering δm = (logm)−1/N , since δN−s
m (logm)

−s
N = (logm)−1, we see that

J(w + tzm)− J(w) ≤
tN

N
+

C

logm

(
tq + tN−1 + t2 + tγ + t

)
, ∀t > 0, (3.42)

for largem ∈ N. This inequality allows us to show that {tm}m is bounded from below by a positive

constant. Here, again, the term t2 appears only if N ≥ 3. In fact, considering t = tm in (3.42), if

tm ≤ 1 it follows from (3.41) that

tNm ≥
(
αN

α0

)N−1

− C

logm
≥ 1

2

(
αN

α0

)N−1

,

for m ∈ N sufficiently large. So, tm ≥ min{1, (1/2) (αN/α0)
N−1
N } for large values of m. Thus,

there exists t0 > 0 such that

tm ≥ t0, ∀m ∈ N.

Since tm > 0 is a maximum point for t 7→ J(w + tzm), t > 0, it follows that

J ′(w + tmzm)(tmzm) = tm
d

dt
J (w + tzm)


t=tm

= 0,
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and so∫
Ω

g(x, (w + tmzm)+)(tmzm)dx = tm

∫
Ω

|∇(w + tmzm)|N−2∇(w + tmzm)∇zmdx

+ tm

∫
Ω

|∇(w + tmzm)|q−2∇(w + tmzm)∇zmdx

− λtm
∫
Ω

|w + tmzm|N−2(w + tmzm)zmdx− tm
∫
Ω

fzmdx.

Since {zm}m is bounded in W 1,N
0 (Ω) we see that∫

Ω

|∇(w + tmzm)|N−2∇(w + tmzm)∇(tmzm)dx ≤ ∥∇(w + tmzm)∥N−1
LN ∥∇(tmzm)∥LN

≤ C
(
∥w∥N−1 + tN−1

m ∥zm∥N−1
)
∥tmzm∥

≤ C
(
tm + tNm

)
,

and, in a similar way, we get∫
Ω

|∇(w + tmzm)|q−2∇(w + tmzm)∇(tmzm)dx ≤ C (tm + tqm) ,

∫
Ω

|w + tmzm|N−2(w + tmzm)(tmzm)dx ≤ C
(
tm + tNm

)
,

and ∫
Ω

|f(x)|(tmzm)dx ≤ Ctm,

for all m ∈ N. Then,∫
Ω

g(x, (w + tmzm)+)(tmzm + w)dx ≤ C(tm + tqm + tNm) ≤ C̃tNm, ∀m. (3.43)

In the last inequality we use that tm ≥ t0 > 0 for all m ∈ N. Now, for C0 > 0 as in (3.38) we get

(tmzm + w)(x) ≥ t0ω
−1
N
N−1(logm)

N−1
N − ∥w∥∞ ≥ C0, ∀x ∈ B(x0, δm/m),

for m sufficiently large. By (3.38) and (3.39), we obtain that∫
B(x0,

δm
m

)

g(x,w + tmzm)(tmzm + w)dx ≥ γ∞

∫
B(x0,

δm
m

)

eα0(w+tmzm+2σ0)
N′

≥ γ∞

(
δm
m

)N
ωN−1

N
e
α0

(
tmω

−1/N
N−1 (logm)1/N

′
+σ0

)N′

.

(3.44)

Here we observe that {tm}m is bounded from above. Otherwise, if tm → +∞ for some subsequence,

then we would have NtN
′

m (α0/αN) − (N + 1) ≥ ηtN
′

m for some η > 0 and, from (3.43) and (3.44)
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we would obtain

C1t
N
m ≥

(
δm
m

)N

et
N′
m (α0/αN )N logm ≥ mN+1

mN(logm)N
eηt

N′
m logm ≥ eηt

N′
m ,

for large values of m, which is an absurd for tm →∞. Thus, we obtain the boundedness of {tm}m.
Going back to (3.41) and (3.42) we get(

α0

αN

)N−1

tNm ≥ 1− c

logm
, (3.45)

for some positive constant c, for large m. Now, using the Taylor expansion, we see that for any

a, b > 0 there exists θ ∈ (0, 1) satisfying

(a+ b)N
′
= aN

′
+N ′aN

′−1b+N ′(N ′ − 1)(a+ θb)N
′−2 ≥ aN

′
+N ′aN

′−1b.

So, recalling that tm ≥ t0 and using (3.45), for some k0 > 0 we get

α0

(
tmω

−1/N
N−1 (logm)1/N

′
+ σ0

)N ′

≥ α0

(
tN

′

m ω
−1/N−1
N−1 logm+N ′σ0

(
tmω

−1/N
N−1 (logm)1/N

′
)(N ′−1)

)
≥
[(
tNm(α0/αN)

N−1
)1/(N−1)

N logm+ k0(logm)1/N
]

≥
(
1− c(logm)−1)N logm+ k0(logm)1/N

)
≥ N logm+ k0(logm)1/N − cN,

for m sufficiently large. Then, by (3.43) and (3.44) it follows that

C2t
N
m ≥

δNm
mN

eN logm+k0(logm)1/N−cN = e−cNδNme
k0(logm)1/N = e−cN e

k0(logm)1/N

logm
,

for large m, where the right side tends to +∞ but the left side is bounded. This contradiction

ensures (3.40) and concludes this proof.

3.6.1 Proof of the main theorem

The main result of this chapter, Theorem 3.1.1, has been proved in some steps. Initially,

Proposition 3.5.1 ensures the existence of a first solution w for problem (3.1) and shows that

w is a local minimum for J in W 1,N
0 (Ω). Then we obtain a mountain pass geometry for this

functional and Propositions 3.6.5 and 3.6.7 imply the existence of critical point u ̸= w for J ,

which means a second solution for problem (3.1).
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Chapter 4

Critical nonhomogeneous problems on

the (N, q)-Laplacian

4.1 Introduction

In this chapter, we establish the existence of nontrivial solutions for a (N, q)-Laplacian equation

characterized by:{
−∆Nu−∆qu = λ|u|N−2u+ µ|u|q−2u+ g(x, u) + f(x) in Ω

u = 0 on ∂Ω,
(4.1)

where Ω denotes a bounded domain with a smooth boundary within RN , the parameters satisfy

1 < q < N , and g is a C1(Ω) function in [0,∞) × [0,∞) satisfying a Trudinger-Moser growth

condition uniformly in x ∈ Ω. Analogously to chapters 2 and 3 we find two distinct solutions, one

by the Ekeland Variational Principle as long as f has a sufficiently small norm and the other by

using cuts in the Moser functions so the minimax level of the associated functional is a critical

level. This problem was inspired by [37].

4.2 Hypotheses and Main Results

Let us begin by assuming that f ∈ L∞(Ω) and g exhibits critical growth with exponent α0 > 0.

This means that there exists a positive constant α0 such that

lim
|t|→+∞

|g(x, t)|

eα|t|
N

N−1

=

{
0, if α > α0

+∞, if α < α0,
(ᾱ0)
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uniformly in x ∈ Ω. This condition is motivated by the Pohozaev-Trudinger-Moser Inequality (see

[20]), which state the existence of a positive constant C = C(N) satisfying

∫
Ω

e

(
αN |u|

N
N−1

)
dx ≤ C(N)|Ω|, (4.2)

for all u ∈ W 1,N
0 (Ω), N ≥ 2, such that ∥∇u∥N ≤ 1, where αN = Nω

1
N−1

N−1 and ωN−1 is the unitary

(N − 1)-dimensional sphere volume.

(ḡ0)

lim sup
u→0+

NG(x, u)

|u|N
= 0

uniformly in x ∈ Ω;

(ḡ1) g : Ω×R→ R is continuous non-decrasing function and g(x, 0) ≡ 0 for all x ∈ Ω, g(x, u) ≥ 0

in Ω× [0,+∞) and g(x, u) ≤ 0 in Ω× (−∞, 0];

(ḡ2) There are R,M > 0 such that ∀ |u| ≥ R

0 < G(x, u) =

∫ u

0

g(x, s)ds ≤M |g(x, u)|

for all x ∈ Ω̄;

(ḡ3) There is C > 0 such that ∀ |s| ≥ C

sg(x, s) ≥ γ(s)eα0|s|
N

N−1

where γ(s) is such that there is ε0 > 0 with

lim inf
s→±∞

γ(s)

eε0|s|
1

N−1

> 0

for some ε0 > 0.

The next lemma can be proved following the same steps as in Lemma 3.2.3.

Lemma 4.2.1. Suppose that (ḡ1) and (ḡ3) hold. So, there are σ0, γ∞ and C0 > 0 such that

sg(x, s) ≥ γ∞e
α0(|s|+σ0)N

′

for all x ∈ Ω and |s| ≥ C0.

Now, let us fix that

λ1 = inf
u∈W 1,p

0 (Ω)\{0}

∥∇u∥pp
∥u∥pp
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and

µ1 = inf
u∈W 1,q

0 (Ω)\{0}

∥∇u∥qq
∥u∥qq

the first eigenvalues of the problems{
−∆pu = λ|u|p−2u in Ω

u = 0 on ∂Ω,

{
−∆qu = µ|u|q−2u in Ω

u = 0 on ∂Ω,

respectively. Consider now the associated functional J : W 1,N
0 (Ω)→ R, which is given by:

J(u) =
1

N

∫
Ω

(
|∇u|N − λ|u|N

)
dx+

1

q

∫
Ω

(|∇u|q − µ|u|q)dx

−
∫
Ω

G (x, u) dx−
∫
Ω

f(x)udx

where

G(x, s) =

∫ s

0

g(x, t)dt.

From these first conditions, we obtain that the associated functional J to problem (4.1) is of

class C1 with derivative given by

J ′(u)v =

∫
Ω

(|∇u|N−2∇u∇v − λ|u|N−2uv)dx

+

∫
Ω

(|∇u|q−2∇u∇v − µ|u|q−2uv)dx−
∫
Ω

g(x, u)vdx−
∫
Ω

f(x)vdx

for all u and v in W 1,N
0 (Ω). By definition, weak solutions of the main problem are critical points

of this functional.

In W 1,s
0 (Ω), we work with its usual norm

∥u∥W 1,s
0 (Ω) =

(∫
Ω

|∇u|sdx
) 1

s

.

Given that our main framework resides in W 1,N
0 (Ω), we simplify notation by letting ∥ · ∥W 1,N

0 (Ω)

be represented as ∥ · ∥. The main results of this chapter are stated below.

Theorem 4.2.2. Suppose that (ᾱ0), (ḡ0) − (ḡ3) hold, 2 ≤ q < N , λ ∈ (0, λ1), µ ∈ (0, µ1] and

f ∈ L∞(Ω) is non-trivial. Then there exists η > 0 such that problem (4.1) has two solutions

provided that ∥f∥∞ ≤ η.

This restriction q ≥ 2 can be suppressed if we avoid working with the q-linear term |u|q−2u in

93



the problem, which means, if we put µ = 0. This is the subject of the next theorem.

Theorem 4.2.3. Suppose that (ᾱ0),(ḡ0) − (ḡ3) hold, N ≥ 2, 1 ≤ q < N , λ ∈ (0, λ1), µ ≡ 0

and f ∈ L∞(Ω) is non-trivial. Then there exists η > 0 such that problem (4.1) has two solutions

provided that ∥f∥∞ ≤ η.

4.3 Preliminaries

The objective of this section is to find a solution for problem (4.1) by Ekeland’s Variational

Principle and display some important properties such as norm estimates for truncations of the

Moser functions. First we will recall some consequences of the properties placed in g, proceeding

as in Chapter 3 we see that if g has critical growth with the exponent α0 (see hypothesis (ᾱ0)),

then ∀ β > α0, there is a constant C > 0 such that

|g(x, u)| ≤ Ce(β|u|
N

N−1 )

∀ (x, u) ∈ Ω× R.

The next lemma has already been demonstrated in Chapter 3 and for convenience we will state

it, as these are properties that help with calculations throughout this chapter.

Lemma 4.3.1. (ḡ0)− (ḡ3) implies that:

(ḡ4) Theres is a C > 0 constant such that ∀ x ∈ Ω and |u| ≥ R

G(x, u) ≥ Ce(
1
M

u).

(ḡ5) There are S > 0 and σ > N such that ∀ x ∈ Ω and |u| ≥ S we have

σG(x, u) ≤ ug(x, u).

(ḡ6) There are K > 0 and r > N constants such that∫
Ω

G(x, u)dx ≤ ε

N

∫
Ω

|u|Ndx+K

∫
Ω

|u|reβ|u|
N

N−1
dx

for all β > α0 and ε > 0.

The next proposition is a standard argument, which was also established in all previous

chapters, with their respective frameworks.

Proposition 4.3.2. Assuming (ḡ0) − (ḡ2) hold, let (um) be a (PS) sequence for J in W 1,N
0 (Ω).

Then (um) is bounded.
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Proof. Let (um) ⊂ W 1,N
0 (Ω) a PS sequence at a certain level c, so,

1

N

(∫
Ω

|∇um|N − λ|um|N
)
dx+

1

q

(∫
Ω

|∇um|q − λ|um|q
)
dx−

∫
Ω

G(x, um)dx−
∫
Ω

f(x)umdx→ c

and(∫
Ω

|∇um|N − λ|um|N
)
dx

(∫
Ω

|∇um|q − λ|um|q
)
dx−

∫
Ω

g(x, um)umdx−
∫
Ω

f(x)umdx ≤ ε∥um∥.

Consider σ from (ḡ5), then,

C + ε∥um∥ ≥ σJ(um)− J ′(um)um

=
( σ
N
− 1
)∫

Ω

(
|∇um|N − λ|um|N

)
dx+

(
σ

q
− 1

)∫
Ω

(|∇um|q − λ|um|q) dx

−
∫
Ω

(σG(x, um)− g(x, um)um) dx− (σ − 1)

∫
Ω

f(x)umdx

≥ C1∥um∥N − C2∥um∥.

This last inequality shows that (um) is bounded.

The next two lemmas will give the necessary geometry to find the first solution, which will be

a local minimum for the functional.

Lemma 4.3.3. Suppose that (ḡ0)− (ḡ2) holds. Then, there are constants η > 0 and ρ0 > 0 such

that, for all u ∈ W 1,N
0 (Ω) with ∥u∥ = ρ0, we have J(u) ≥ 0, provided ∥f∥∞ ≤ η.

Proof. Let β > α0 and r > N . So by (ḡ6) and using Lemma 4.3.1 and Sobolev embeddings, we

obtain

J(u) =
1

N

∫
Ω

(
|∇u|N − λ|u|N

)
dx+

1

q

∫
Ω

(|∇u|q − µ|u|q)dx−
∫
Ω

G (x, u) dx−
∫
Ω

f(x)udx

≥ 1

N

(
1− λ

λ1

)
∥u∥N − ε

N

∫
Ω

|u|Ndx−K
∫
Ω

|u|reβ|u|
N

N−1
dx− C∥f∥∞∥u∥

By Hölder inequality,

∫
Ω

|u|reβ|u|
N

N−1
dx ≤

(∫
Ω

e[pβ∥u∥
N

N−1 ( |u|
∥u∥)

N
N−1 ]dx

) 1
p
(∫

Ω

|u|rsdx
) 1

s

where 1
p
+ 1

s
= 1. Take p > 1 such that

pβ∥u∥
N

N−1 ≤ αN . (4.3)
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Then, by Pohozaev-Trudinger-Moser inequality we get∫
Ω

|u|reβ|u|
N

N−1
dx ≤ C∥u∥rrs.

Therefore,

J(u) ≥ 1

N

(
1− λ

λ1

)
∥u∥N − ε

N

∫
Ω

|u|Ndx− C∥u∥r − C∥f∥∞∥u∥

= ∥u∥
{

1

N

(
1− λ+ ε

λ1

)
∥u∥N−1 − C∥u∥r−1 − C∥f∥∞

}
.

Consider ρ0 such that

h(ρ0) =
1

N

(
1− λ

λ1

)
ρN−1
0 − C ε

N
ρN−1
0 − Cρr−1

0 > 0

for ε > 0 small enough. Then choose η ≥ ∥f∥∞ so that J(u) ≥ 0 for all ∥u∥ = ρ0.

Lemma 4.3.4. Suppose that (ḡ0)− (ḡ2) hold. Then

inf
∥u∥<ρ

J(u) < 0

where ρ > 0 is small enough.

Proof. Consider φ ∈ C∞
0 (Ω) such that ∥φ∥ = 1 and

∫
Ω
fφdx > 0. So,

J(tφ) =
tN

N

∫
Ω

(
|∇φ|N − λ|φ|N

)
dx+

tq

q

∫
Ω

(|∇φ|q − µ|φ|q)dx

−
∫
Ω

G (x, tφ) dx− t
∫
Ω

f(x)φdx

and

d

dt
J(tφ) = tN−1 − λtN−1∥φ∥NN + tq−1

∫
Ω

(|∇φ|q − µ|φ|q) dx

−
∫
Ω

g(x, tφ)φdx−
∫
Ω

f(x)φdx

≤ tN−1 + tq−1

∫
Ω

|∇φ|qdx−
∫
Ω

g(x, tφ)φdx−
∫
Ω

f(x)φdx.

Since g(x, 0) = 0 and g(x, .) is continuous, there is ρ > 0 small enough such that for 0 < t < ρ we

have
d

dt
J(tφ) < 0.

Furthermore, J(0) = 0 implies that

J(tφ) < 0
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for 0 < t < ρ.

The last two propositions of this section will give the first solution of the problem, as a

consequence of Ekeland’s Variational Principle.

Proposition 4.3.5. Let (um) be a (PS) sequence for J in W 1,N
0 (Ω) such that

lim inf
n→∞

∥um∥ <
(
αN

α0

)N−1
N

.

Then there exists a subsequence of (um) that converges to a solution of (4.1).

Proof. Let (um) be a sequence (PS) for J in W 1,N
0 (Ω), so (um) is bounded and using the Lemma

3.6.4 we find that there is w ∈ W 1,N
0 (Ω) a solution of (4.1) such that um ⇀ w in W 1,N

0 (Ω). Now,

consider

wm = w − um.

Then, wm ⇀ 0 in W 1,N
0 (Ω), wm → 0 in Ls(Ω) with 1 ≤ s < ∞, furthermore, by Brezis-Lieb

Lemma and Lemma 3.6.3 we obtain

o(1) = J ′(um)um

=
(
∥w∥N + ∥wm∥N − λ∥w∥NN

)
+
(
∥w∥q

W 1,q
0

+ ∥wm∥qW 1,q
0

− µ∥w∥qq
)

−
∫
Ω

g(x, um)umdx+

∫
Ω

g(x, um)wdx−
∫
Ω

g(x, um)wdx−
∫
Ω

fwdx+ o(1)

= J ′(w)w + ∥wm∥N + ∥wm∥qW 1,q
0

+

∫
Ω

g(x, um)wmdx+ o(1).

Since

lim inf
m→∞

∥um∥ <
(
αN

α0

)N−1
N

,

we can choose a subsequence still denoted as (um) and a σ > 1 such that

lim
m→∞

σα0∥um∥
N

N−1 < αN .

From Hölder and Pohozaev-Trudinger-Moser inequalities we have

∫
Ω

g(x, um)wmdx ≤
(∫

Ω

|g(x, um)|σdx
) 1

σ
(∫

Ω

|wm|σ
′
dx

) 1
σ′

≤
(∫

Ω

eσα0∥um∥
N

N−1 ( |um|
∥um∥)

N
N−1

) 1
σ
(∫

Ω

|wm|σ
′
dx

) 1
σ′

≤ K∥wm∥σ′ → 0,
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with K > 0 being a constant. Therefore,

0 = lim
m→∞

(
∥wm∥N + ∥wm∥qW 1,q

0

)
i.e.,

∥wm∥ → 0

when m→∞.

By Lemmas 4.3.3 and 4.3.4 and knowing that J(u) is continuous, let us define

−∞ < c0 ≡ inf{J(u);u ∈ W 1,N
0 (Ω), ∥u∥ ≤ ρ0} < 0. (4.4)

Proposition 4.3.6. Consider (ḡ0) − (ḡ3). Let η > 0 and ρ0 be constants determined by Lemma

4.3.3 and assume ∥f∥∞ ≤ η. Then there exists w ∈ W 1,N
0 (Ω) solution of (4.1) at level c0.

Proof. Consider ρ0 from (4.3) in Lemma 4.3.3. Notice that it was chosen in such a way that

ρ0 <

(
αN

α0

)N−1
N

.

From Lemma 4.3.4 we can apply the Ekeland variational principle to find that there exists a

sequence (um) in B̄(0, ρ0) such that J(um) → c0 and J ′(um)um → 0 when m → ∞. Therefore,
using Proposition 4.3.5, we have a solution.

4.4 Proof of the Main Theorems

This section provides a mountain-pass geometry and acts as an auxiliary result to demonstrate

that minimax levels can be controlled by strategically selecting directions provided by truncations

of Moser functions. The first lemma, together with the fact that w is a local minimum to J ,

provides the required geometric properties.

Lemma 4.4.1. Assume that g satisfies (ᾱ0) and (ḡ0)− (ḡ2) and consider φ ∈ W 1,N
0 (Ω)\{0} as a

continuous, nontrivial and nonnegative function. Then J(w + tφ)→ −∞ when t→ +∞.

Proof. Since (ḡ4) holds, there are positive numbers C and R and σ > N such that

G(x, u) ≥ uσ, ∀ (x, u) ∈ Ω× [R,∞).
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Let x1 ∈ Ω and r > 0 be such that mφ = minBr(x1) φ(x) > 0. So, for all t > (R+ ∥w∥L∞)/mφ, we

get

J(w + tφ) =
1

N

∫
Ω

(
|∇(w + tφ)|N − λ|w + tφ|N

)
dx

+
1

q

∫
Ω

(|∇(w + tφ)|q − µ|w + tφ|q)dx

−
∫
Ω

G (x,w + tφ) dx−
∫
Ω

f(x)(w + tφ)dx

≤ 2N−1

N

∫
Ω

(
|∇w|N + tN |∇φ|N

)
dx+

2q−1

q

∫
Ω

(|∇w|q + tq|∇φ|q) dx

− C
∫
Br(x1)

|w + tφ|σdx+ t∥f∥L∞

∫
Ω

φdx+ ∥f∥L∞∥w∥L1 .

Since ∥tφ∥Lσ ≤ ∥w∥Lσ + ∥w + tφ∥Lσ implies that

∥tφ∥σLσ ≤ 2σ−1 (∥w∥σLσ + ∥w + tφ∥σLσ) ,

we obtain

J(w + tφ) ≤ 2N−1tN

N

∫
Ω

|∇φ|Ndx+ 2q−1tq

q

∫
Ω

|∇φ|qdx− Ctσ

2σ−1

∫
Br(x1)

|φ|σdx+ t∥f∥L∞

∫
Ω

φdx

+ C1

for large t > 0, where C1 depends on w. Since σ > N ≥ q ≥ 1, we must have J(w + tφ) → −∞
as t→ +∞.

The following definition and subsequent lemma are identical to those presented in Chapter 3.

However, we repeat them here to ensure a smoother reading experience throughout this chapter.

Let us define

z̃m(x) = ω
−1
N
N−1


(logm)

N−1
N if |x| < 1

m
log 1

|x|

(logm)
1
N

if 1
m
≤ |x| ≤ 1,

0 if |x| > 1.

For suitable x0 ∈ Ω, δm ≤ r and r > 0 satisfying B(xr, r) ⊂ Ω, all of them to be chosen later, we

denote

zm(x) = z̃m

(
x− x0
δm

)
, ∀x ∈ Ω. (4.5)

Following the work in [17], we obtain the estimates:

Lemma 4.4.2. For any m ∈ N, the functions zm ∈ W 1,N
0 (Ω) and it holds:

a) ∥zm∥ = ∥∇zm∥LN = 1;
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b) ∥∇zm∥sLs = δN−s
m O(logm)

−s
N , for s ∈ (1, N);

c) ∥zm∥sLs = δNmO(logm)
−s
N , for s ∈ [1,∞).

Now, being w is a local minimum for J and considering φ = zm in Lemma 4.4.1, it follows

that J has the Mountain Pass Geometry:

Proposition 4.4.3. Suppose (ᾱ0), (ḡ0) − (ḡ2). Then the functional J ∈ C1(W 1,N
0 (Ω),R) and

the following hold:

i) There exists ρ > 0 such that J(u) ≥ J(w) for all u ∈ W 1,p
0 (Ω) with ∥u− w∥ = ρ;

ii) There exist e ∈ W 1,p
0 (Ω) such that ∥e− w∥ > ρ and J(e) < J(w).

Define

Γ := {γ ∈ C([0, 1],W 1,N
0 (Ω)) : γ(0) = w and J(γ(1)) < J(w)},

and

c1 := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)). (4.6)

Proposition 4.4.4. Assuming (ḡ0)−(ḡ2) and c1 < c0+
1
N

(
αN

α0

)N−1

, we conclude that J possesses

a critical point u ̸= w, obtained as the weak limit of a sequence (PS) at the level c1.

Proof. Let us begin by recalling that J(w) = c0. By Proposition 4.4.3 we know that is possible to

obtain a (PS) sequence {um}m for J at the level c1. By definition of c1, we have c1 ≥ c0. Notice

that, in case c1 = c0, this sequence can be chosen satisfying ∥um − w∥ ≥ ρ0
2
for all m, where ρ0 is

given in (4.4). It follows that

o(1)∥v∥ = J ′(um)v

=

∫
Ω

(
|∇um|N−2∇um∇v − λ|um|N−2umv

)
dx

+

∫
Ω

(
|∇um|q−2∇um∇v − µ|um|q−2umv

)
dx

−
∫
Ω

g(x, um)vdx−
∫
Ω

fvdx

∀ v ∈ C∞
0 (Ω). In particular,

o(1)∥um∥ = J ′(um)um

=

∫
Ω

(
|∇um|N − λ|um|N

)
dx+

∫
Ω

(|∇um|q − µ|um|q) dx

−
∫
Ω

g(x, um)umdx−
∫
Ω

fumdx
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and

c1 + o(1) = J(um)

=
1

N

∫
Ω

(
|∇um|N − λ|um|N

)
dx+

1

q

∫
Ω

(|∇um|q − µ|um|q) dx

−
∫
Ω

G(x, um)dx−
∫
Ω

fumdx.

By Proposition 4.3.2, (um) is bounded. Then, there exists u ∈ W 1,N
0 (Ω) such that, up to a

subsequence, 
um ⇀ u in W 1,N

0 (Ω),

um → u in Ls(Ω), 1 ≤ s <∞,
um → u a.e. in x ∈ Ω.

By Lemma 3.6.3 and following the same steps in the proof of Proposition 3.6.5 we see that u is a

critical point of J . Notice that f ̸= 0 gives u ̸= 0.

Now, consider vm = um − w. So,
vm ⇀ 0 in W 1,N

0 (Ω),

vm → 0 in Ls(Ω), 1 ≤ s <∞,
vm → 0 a.e. in x ∈ Ω.

Furthermore, ∫
Ω

G(x, um)dx→
∫
Ω

G(x, u)dx =

∫
Ω

G(x,w)dx.

Then,

J(um)− J(w) =
1

N

(
∥um∥N − ∥w∥N − λ∥um∥NN + λ∥w∥NN

)
+

1

q

(
∥um∥qW 1,q(Ω) − ∥w∥

q
W 1,q(Ω) − µ∥um∥

q
q + µ∥w∥qq

)
−
∫
Ω

G(x, um)dx+

∫
Ω

G(x,w)dx

−
∫
Ω

f(x)(um − w)dx.

(4.7)

It follows from Brezis-Lieb Lemma that

1

N
∥vm∥N +

1

q
∥vm∥qW 1,q

0 (Ω)
+ o(1) = J(um)− J(w)

→ c1 − c0.
(4.8)
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On the other hand, in a similar way to what was done in Proposition 3.6.5, we get

J ′(vm)vm = ∥vm∥N − λ∥vm∥NN + ∥vm∥qW 1,q(Ω) − µ∥vm∥
q
q −

∫
Ω

g(x, vm)vmdx−
∫
Ω

f(x)vmdx

= J ′(um)um − J ′(w)w −
∫
Ω

g(x, vm)vmdx+

∫
Ω

g(x, um)umdx−
∫
Ω

g(x,w)wdx+ o(1)

=

∫
Ω

g(x, vm)vmdx+

∫
Ω

g(x, um)vmdx+ o(1)

= o(1).

(4.9)

Then, we obtain

∥vm∥N + ∥vm∥qW1,q(Ω) → 0 (4.10)

as m→ +∞. Now supose that c1 = J(w), then the sequence {um}m is such that ∥um −w∥ ≥ ρ0
2
,

that is, ∥vm∥ ≥ ρ0
2
contradicting (4.10). In the case where c1 > c0, then by (4.8) we get

1

N
∥vm∥N +

1

q
∥vm∥qW 1,q

0 (Ω)
+ o(1)→ c1 − c0 > 0

contradicting (4.10) again. This finishes the proof of this proposition.

Now, the remaining task is to demonstrate that the minimax level c1, as defined in (4.6), is in

fact below J(w) + 1
N

(
αN

α0

)N−1

.

Proposition 4.4.5. Suppose that g satisfies (ᾱ0) and (g̃1)− (g̃3). Consider c1 as defined in (4.6),

2 ≤ q < N and µ ∈ (0, µ1]. Then

c1 < J(w) +
1

N

(
αN

α0

)N−1

.

Proof. It suffices to show that there exists sufficiently large m such that

J(w + tzm) < J(w) +
1

N

(
αN

α0

)N−1

,

for all t ≥ 0. From Lemma 4.2.1 for each k > 0, there are σ0 > 0 and Ck > 0 such that

sg(x, s) ≥ keα0(|s|+2σ0)N
′

, (4.11)

for all x ∈ Ω and |s| ≥ Ck. Choose and fix r > 0 and x0 ∈ Ω close enough to ∂Ω such that

∥w∥L∞(Br(x0)) ≤ σ0. (4.12)

Now, for some 0 < δm < r ≤ 1 (to be chosen later) and x0, we consider zm as given in (4.5). By
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Lemma 4.4.1 we know that, for any m ∈ N, there is Rm > 0 satisfying

J(w + tzm) ≤ 0, ∀ t ≥ Rm.

Then, there exists tm > 0 such that

J(w + tmzm) = max
t≥0

J(w + tzm).

Let us assume, by contadiction, that

J(w + tmzm) ≥ J(w) +
1

N

(
αN

α0

)N−1

∀m ∈ N. (4.13)

Using the results in Proposition 1.3.4, as in Proposition 1.4.1 we obtain∫
Ω

|∇(w + tzm)|Ndx

≤
∫
Ω

|∇w|N
[
1 + tN

|∇zm|N

|∇w|N
+Nt

∇w.∇zm
|∇w|2

+ CξN

(
t
|∇zm|
|∇w|

)]
dx

≤
∫
Ω

|∇w|Ndx+ tN
∫
Ω

|∇zm|Ndx+Nt

∫
Ω

|∇w|N−2∇w.∇zmdx+ C

∫
Ω

ξN (t|∇zm|) dx

where

ξN(s) =

{
s2 + sN−1 if N ≥ 3,

sγ if N = 2, for a fixed γ ∈ (1, 2)

and we use the fact that |∇w| ∈ L∞(Ω). Similarly,∫
Ω

|∇(w + tzm)|qdx

≤
∫
Ω

|∇w|q
[
1 + tq

|∇zm|q

|∇w|q
+ qt
∇w.∇zm
|∇w|2

+ Cξq

(
t
|∇zm|
|∇w|

)]
dx

≤
∫
Ω

|∇w|qdx+ tq
∫
Ω

|∇zm|qdx+ qt

∫
Ω

|∇w|q−2∇w.∇zmdx+ C

∫
Ω

ξq (t|∇zm|) dx

where

ξq(s) =

{
s2 + sq−1 if N > q ≥ 3,

sγ if q ∈ [2, 3), for a fixed γ ∈ (q − 1, 2).

On the other hand, for every t > 0 we have∣∣∣∣∫
Ω

|w + tzm|Ndx−
∫
Ω

|w|Ndx− tN
∫
Ω

|zm|Ndx
∣∣∣∣

≤ 2N−1NtN−1

∫
Ω

(zm)
N−1|w|dx+ 2N−1Nt

∫
Ω

zm|w|N−1dx.
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Similarly, for every t > 0∣∣∣∣∫
Ω

|w + tzm|qdx−
∫
Ω

|w|qdx− tN
∫
Ω

|zm|qdx
∣∣∣∣

≤ 2q−1qtq−1

∫
Ω

(zm)
q−1|w|dx+ 2q−1qt

∫
Ω

zm|w|q−1dx.

We know that

J(w + tzm) =

∫
Ω

(
|∇(w + tzm)|N − λ|w + tzm|N

)
dx

+
1

q

∫
Ω

(|∇(w + tzm)|q − µ|w + tzm|q) dx

−
∫
Ω

G (x,w + tzm) dx−
∫
Ω

f(w + tzm)dx.

Thus, we get

J(w + tzm)− J(w) =
1

N

∫
Ω

(
|∇(w + tzm)|N − |∇w|N

)
dx− λ

N

∫
Ω

(
|w + tzm|N − |w|N

)
dx

+
1

q

∫
Ω

(|∇(w + tzm)|q − |∇w|q) dx−
µ

q

∫
Ω

(|w + tzm|q − |w|q)dx

−
∫
Ω

[G(x,w + tzm)−G(x,w)] dx−
∫
Ω

[f(x)(w + tzm)− f(x)w] dx

≤ tN

N

∫
Ω

|∇zm|Ndx+ t

∫
Ω

|∇w|N−2∇w.∇zmdx+
tq

q

∫
Ω

|∇zm|qdx

+ t

∫
Ω

|∇w|q−2∇w.∇zmdx+ C

∫
Ω

ξN (t|∇zm|) dx+ C

∫
Ω

ξq (t|∇zm|) dx

+ λ2N−1tN−1

∫
Ω

(zm)
N−1|w|dx+ λ2N−1t

∫
Ω

zm|w|N−1dx

+ µ2q−1tq−1

∫
Ω

(zm)
q−1|w|dx+ µ2q−1t

∫
Ω

zm|w|q−1dx

−
∫
Ω

[G(x,w + tzm)−G(x,w)] dx− t
∫
Ω

f(x)zmdx.

Knowing that 0 = J ′(w)tzm, we see that

t

∫
Ω

|∇w|N−2∇w.∇zmdx+ t

∫
Ω

|∇w|q−2∇w.∇zmdx− t
∫
Ω

fzmdx =

λt

∫
Ω

|w|N−2w.zmdx+ µt

∫
Ω

|w|q−2w.zmdx+ t

∫
Ω

g(x,w)zmdx.
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It follows from the above equation and the fact that w ∈ L∞(Ω) that,

J(w + tzm)− J(w) ≤
tN

N

∫
Ω

|∇zm|Ndx+
tq

q

∫
Ω

|∇zm|qdx+ C

∫
Ω

ξN (t|∇zm|) dx

+ C

∫
Ω

ξq (t|∇zm|) dx+ Ctq−1

∫
Ω

(zm)
q−1|w|dx+ CtN−1

∫
Ω

(zm)
N−1dx

−
∫
Ω

[G(x,w + tzm)−G(x,w)− g(x,w)tzm] dx

+ Ct

∫
Ω

zmdx.

Using that g is non-decreasing by (ḡ1), it follows from Mean Value Theorem that

J(w + tzm)− J(w) ≤
tN

N

∫
Ω

|∇zm|Ndx+
tq

q

∫
Ω

|∇zm|qdx+ C

∫
Ω

ξN (t|∇zm|) dx

+ C

∫
Ω

ξq (t|∇zm|) dx+ Ctq−1

∫
Ω

(zm)
q−1|w|dx+ CtN−1

∫
Ω

(zm)
N−1dx

+ Ct

∫
Ω

zmdx, ∀t > 0.

It follows from Lemma 3.6.6 that

J(w + tmzm)− J(w) ≤
tN

N
+ tqCδN−q

m (logm)
−q
N + t2CδN−2

m (logm)
−2
N

+ tN−1CδN−(N−1)
m (logm)

−(N−1)
N + tγCδN−γ

m (logm)
−γ
N

+ tq−1CδN−(q−1)
m (logm)

−(q−1)
N + tCδN−1

m (logm)
−1
N , ∀t > 0,

since γ ∈ (1, q) suitable and γ ∈ (0, 1). Here, the exponent t2 appears in case N ≥ 3. Now,

considering δm = (logm)−1/N , since δN−s
m (logm)

−s
N = (logm)−1, we see that

J(w + tzm)− J(w) ≤
tN

N
+

C

logm

(
tq + tq−1 + tN−1 + t2 + tγ + t

)
, ∀t > 0, (4.14)

for large m ∈ N, where the term t2 appears only if N ≥ 3. This inequality allows us to show

that {tm}m is bounded from below by a positive constant. In fact, considering t = tm in (4.14), if

tm ≤ 1 it follows from (4.13) that

tNm ≥
(
αN

α0

)N−1

− C

logm

≥ 1

2

(
αN

α0

)N−1

,

for m ∈ N sufficiently large. So, tm ≥ min{1, (1/2) (αN/α0)
N−1} for large values of m. Thus,
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there exists t0 > 0 such that

tm ≥ t0, ∀m ∈ N.

Since tm > 0 is a maximum point for t 7→ J(w + tzm), it follows that

J ′(w + tmzm)(tmzm) = tm
d

dt
J (w + tzm)


t=tm

= 0,

and so∫
Ω

g(x,w + tmzm)(tmzm)dx = tm

∫
Ω

|∇(w + tmzm)|N−2∇(w + tmzm)∇zmdx

+ tm

∫
Ω

|∇(w + tmzm)|q−2∇(w + tmzm)∇zmdx

− λtm
∫
Ω

(w + tmzm)|N−2(w + tmzm)zmdx

− µtm
∫
Ω

(w + tmzm)|q−2(w + tmzm)zmdx− tm
∫
Ω

fzmdx.

Since {zm}m is bounded in W 1,N
0 (Ω) we see that∫

Ω

|∇(w + tmzm)|N−2∇(w + tmzm)∇(tmzm)dx ≤ ∥∇(w + tmzm)∥N−1
LN ∥∇(tmzm)∥LN

≤ C
(
∥w∥N−1 + tN−1

m ∥zm∥N−1
)
∥tmzm∥

≤ C
(
tm + tNm

)
,

and, in a similar way, we get∫
Ω

|∇(w + tmzm)|q−2∇(w + tmzm)∇(tmzm)dx ≤ C (tm + tqm) ,

∫
Ω

|w + tmzm|N−2(w + tmzm)(tmzm)dx ≤ C
(
tm + tNm

)
,∫

Ω

|w + tmzm|q−2(w + tmzm)(tmzm)dx ≤ C (tm + tqm) ,

and ∫
Ω

|f(x)|(tmzm)dx ≤ Ctm,

for all m ∈ N. Then,∫
Ω

g(x,w + tmzm)(tmzm + w)dx ≤ C(tm + tqm + tNm) ≤ C̃tNm, ∀m, (4.15)

because 0 < t0 ≤ tm for all m ∈ N. Then, from this point, we follow the exact same steps as given

in Proposition 3.6.7 after inequality (3.45) to arrive at a contradiction, finishing this proof.
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The last case is given when µ = 0, which becomes simpler since there is no interference of the

q-linear part.

Proposition 4.4.6. Suppose that g satisfies (ᾱ0) and (g̃1)− (g̃3). Consider c1 as defined in (4.6),

1 < q < N and µ ≡ 0. Then

c1 < J(w) +
1

N

(
αN

α0

)N−1

.

Proof. Reproducing the proofs of the previous proposition, we observe that the term with exponent

q − 1 in (4.14) will not appear. So, we do not need to worry about the estimates on zq−1
m when

q ∈ (1, 2). That is, we will obtain the estimate:

J(w + tzm)− J(w) ≤
tN

N
+

C

logm

(
tq + tq−1 + tN−1 + t2 + tγ + t

)
, ∀t > 0,

for large m ∈ N (noticing that t2 will only appear if N ≥ 3). The result follows in a similar way

to the previous proposition.

4.4.1 Proof of the main theorems

Theorem 4.2.2 is proved using Propositions 4.3.6, 4.4.4 and 4.4.5. Moreover, Theorem 4.2.3 is

proved using Propositions 4.3.6, 4.4.4 and 4.4.6.
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[21] J.S.A. Corrêa, A.S.S. Corrêa and G.M Figueiredo, Existence of positive solution for a singular

system involving general quasilinear operators, Differ. Equ. Appl.6 (2014), 481–494.

[22] K. Ho, K. Perera and I. Sim, On the Brezis–Nirenberg problem for the (p, q)-Laplacian, Annali

di Matematica. 202 (2023), 1991–2005.

[23] K. Perera, A general perturbation theorem with applications to nonhomogeneous critical growth

elliptic problems, J. of Differential Equa. 389 (2024), 150–189.

[24] L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to

elliptic and parabolic equations, Nonlinear Anal. 19 (1992), 581—597.

[25] L. Cherfils and Y. Il’yasov, On the stationary solutions of generalized reaction diffusion

equations with p&q-Laplacian, Commun. Pure Appl. Anal. 4 (2005), 9–22.

[26] M. Arias and M. Cuesta, A one side superlinear Ambrosetti–Prodi problem for the Dirichlet

p-Laplacian, J. Math. Anal. Appl. 367 (2010), 499—507.

109



[27] M. Calanchi and B. Ruf, Elliptic equations with one-sided critical growth, Electron. J.

Differential Equations 89 (2002), 1–21.

[28] M. Calanchi, B. Ruf and Z. Zhang, Elliptic equations in R2 with one-sided exponential growth,

Commun. Contemp. Math. 6 (2004), 947–971.

[29] M. Willem, minimax Theorems. Progress in Nonlinear Differential Equations and Their

Applications, Birkh·auser, Boston. 24 (1996).

[30] N.S. Trudinger, On imbedding into Orlicz spaces and some applications, J.Math. Mech. 17

(1967), 473-484.

[31] P. Candito, S.A. Marano and K Perera, On a class of critical (p, q)-Laplacian problems,

Nonlinear Diff. Equ. Appl. 22 (2015), 1959–1972.

[32] P.C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in

Biomathematics. 28 (1979).

[33] P. Pucci, J. Serrin and H. Zou, A strong maximum principle and a compact support principle

for singular elliptic inequalities, Journal de Mathématiques Pures et Appliquées. 78 (1999),769-
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