
Federal University of Paraíba
Graduate Program of the Departament of Mathematics

Ph.D in Mathematics

Applications of geometric identities to rigidity problems

by
Murilo Chavedar de Souza Araújo

João Pessoa - PB
2025



Applications of geometric identities to rigidity problems

by

Murilo Chavedar de Souza Araújo

under supervision of:

Prof. Dr. Allan George de Carvalho Freitas

and co-supervision of:

Prof. Dr. Marcio Silva Santos

Thesis submitted to the Graduate Program of the Departa-
ment of Mathematics of the Federal University of Paraíba
(UFPB), in partial fulfillment of the necessary requirements
for the degree of Ph.D in Mathematics .

João Pessoa - PB
2025



A663a Araújo, Murilo Chavedar de Souza.
         Applications of geometric identities to rigidity
      problems / Murilo Chavedar de Souza Araújo. - João
      Pessoa, 2025.
         74 f. : il.

         Orientação: Allan George de Carvalho Freitas.
         Coorientação: Marcio Silva Santos.
         Tese (Doutorado)  - UFPB/CCEN.

         1. Matemática. 2. Problemas de rigidez. 3.
      Identidades integrais. 4. Identidade de Reilly. 5.
      Problemas sobredeterminados. I. Freitas, Allan George
      de Carvalho. II. Santos, Marcio Silva. III. Título.

UFPB/BC                                           CDU 51(043)

Catalogação na publicação
Seção de Catalogação e Classificação

Elaborado por Walqueline da Silva Araújo - CRB-15/514



Murilo Chavedar de Souza Araújo

Applications of geometric identities to rigidity problems

Thesis submitted to the Graduate Program of
the Departament of Mathematics of the Federal
University of Paraíba (UFPB), in partial fulfill-
ment of the necessary requirements for the de-
gree of Ph.D in Mathematics .

Trabalho aprovado. João Pessoa - PB, 21 fevereiro de 2025:

João Pessoa - PB
2025



Agradecimentos

Considero que a elaboração de um trablho acadêmico é um produto coletivo, embora
sua redação, responsabilidade e estres sejam predominantemente individuais. Este trabalho é
fruto de um esforço coletivo, e cada pessoa mencionada aqui desempenhou um papel essencial
nessa realização e para que este trabalho chegasse a bom termo. Várias outras pessoas não
mencionadas também tem sua parcela de contribuição. A todos, manifesto minha gratidão.

Primordialmente, agradeço a Deus, uno e trino, fonte e destino de todas as graças que
recebi durante cada momento de todas as fases da minha vida. Foi Ele quem me concedeu paz,
saúde, fé e perseverança, dons que senti intensamente a cada dia e que me sustentaram em todos
os desafios e realizações.

Agradeço também à Mãe de Deus e nossa, Nossa Senhora, a Virgem das Graças e Mãe
Aparecida, cuja presença senti de forma tangível em cada momento e em todas as minhas ações.
Assim como em minhas orações diárias, "não desprezou as súplicas que, em minha necessidade,
vos dirigi, mas sempre me livrou de todos os perigos, ó Virgem gloriosa e bendita." Por suas
mãos maternais, entrego este trabalho e todos os esforços dedicados a ele, para a maior glória
de Deus.

A minha família, dedico minha mais profunda gratidão. Aos meus pais, que me ensinaram
desde cedo o valor da educação e do esforço, e a minha irmã, sobrinha e demais familiares, que
sempre estiveram ao meu lado mesmo a milhares de quilometros de distância. Cada passo dessa
caminhada foi iluminado pela certeza de que vocês acreditavam em mim.

Ao meus orientadores, Professor Dr. Allan Freitas e Professor Dr. Marcio Santos, ex-
presso meu sincero reconhecimento. Suas orientações criteriosas, genrosidade, paciência e dedi-
cação à minha formação acadêmica foram fundamentais para o desenvolvimento deste trabalho.
Mais do que guias no campo científico, vocês foram exemplos de ética e excelência, pelos quais
sou profundamente grato.

Expresso minha mais profunda gratidão aos membros da banca de avaliação por sua
atenta leitura, criteriosa análise e valiosas contribuições à minha tese de doutorado. Suas obser-
vações, correções e sugestões de aprimoramento foram importantes para o enriquecimento deste
trabalho, elevando sua qualidade acadêmica e ampliando minha compreensão sobre o tema. A
generosidade intelectual e o compromisso com a excelência científica demonstrados por cada um
são verdadeiramente inspiradores, e sinto-me honrado por ter contado com suas contribuições
neste percurso.

Ciente que o doutorado não é um caminho isolado, mas sim o resultado de um processo
contínuo de formação, construído ao longo dos anos com o conhecimento, a inspiração e o
incentivo de diversos profissionais de várias instituições manifesto minha gratidão aos professores,
técnicos administrativos e funcionários terceirizados que fizeram parte desta caminhada. Aos
professores, pela transmissão generosa de conhecimento e inspiração constante ao longo da minha
trajetória acadêmica. Aos técnicos e funcionários, pelo trabalho indispensável que garante o
funcionamento de nossa universidade, criando um ambiente propício ao aprendizado e à pesquisa.



Aos meus colegas, de curso e fora dele, agradeço pela parceria ao longo desses anos.
Foram inúmeras as conversas, debates e momentos de colaboração que enriqueceram minha
trajetória acadêmica. Cada troca de ideia e cada experiência compartilhada foi essencial para o
meu crescimento pessoal e profissional.

Aos meus colegas de trabalho na UFAPE, agradeço pelo apoio e compreensão durante
meu afastamento para me dedicar integralmente ao doutorado. Sou grato por terem colaborado
para que eu seguisse este caminho com foco total, sem o qual não teria sido possível concluir
esta etapa tão importante da minha vida.

Ao Professor Dr. Pedro Hinojosa, expresso minha gratidão pelos valiosos conselhos e
pela orientação contínua ao longo de muitos anos. Suas palavras de sabedoria e seu apoio foram
faróis que me guiaram em momentos de indecisão e desafios. Sua generosidade em compartilhar
conhecimento ficará para sempre como exemplo e inspiração.

Ao Dr. Ricarod Arruda e toda sua equipe de profissionais da saúde, deixo um agradec-
imento especial por cuidarem com tanta dedicação da minha saúde durante essa jornada. Seu
trabalho foi essencial para que eu pudesse enfrentar os desafios acadêmicos com força e dis-
posição, mesmo nos momentos mais difíceis.

Com a conclusão dessa sonhada etapa da vida profissional hoje compreendo que cada
grande realização na vida estabelece novos e maiores sonhos. Compreendo que cada etapa tem
um tempo certo para acontecer e que cada pessoa com quem caminhamos junto tem uma lição
para ensinar. Com esta etapa concluída, permito-me desejar, com a força que vem de Deus,
novas conquistas que se tornarão propósito e luz na minha trajetória. Essas vitórias serão vividas
e compartilhadas com a presença das pessoas especiais que fizeram parte dessa jornada.

A todos, meu mais sincero obrigado.



Resumo
Nesta tese, exploramos as aplicações de identidades integrais, como por exemplo identidade do
tipo Reilly e do tipo Pohozaev, em diversos contextos geométricos, destacando seus papéis na
obtenção de desigualdades e resultados de rigidez para classes específicas de variedades Rieman-
nianas.

Primeiramente, consideramos o contexto de variedades V -estáticas, que são variedades Rie-
mannianas com bordo, curvatura escalar constante e uma métrica que é um ponto crítico do
funcional de volume com uma métrica fixa no bordo. Nesse contexto, empregamos a nossa
identidade do tipo Reilly para estabelecer desigualdades de Heintze-Karcher e Minkowski para
domínios limitados. Além disso, examinamos os fenômenos de rigidez associados a essas de-
sigualdades, especialmente nos casos em que a igualdade é atingida, iluminando a estrutura
geométrica dessas variedades. Além disso, obtemos uma desigualdade para domínios em var-
iedades m-quasi Einstein junto a uma caracterização de rigidez. Tal desigualdade é motivada
pela estabilidade da energia de Wang-Yau.

Por fim, direcionamos nossa atenção para problemas sobredeterminados ponderados em var-
iedades Riemannianas com densidade. Ao estudar um problema de Poisson associado ao Lapla-
ciano ponderado, obtemos uma desigualdade de Heintze-Karcher e um teorema do tipo "Soap
Bubble" que caracterizam bolas geodésicas nesses espaços ponderados. Ao impor condições de
fronteira de Dirichlet e Neumann, estabelecemos ainda um resultado do tipo Serrin em cones
generalizados e cones convexos do espaço Euclidiano, identificando bolas métricas como as unicas
soluções para o problema sobredeterminado subjacente.

Palavras-chave: Problemas de rigidez, identidades integrais, identidade de Reilly, problemas
sobre-determinados



Abstract
In this thesis, we explore the applications of integral identities, such as the Reilly-type and
Pohozaev-type identities, in various geometric contexts, highlighting their roles in obtaining
inequalities and rigidity results for specific classes of Riemannian manifolds.

First, we consider the context of V -static manifolds, which are Riemannian manifolds with
boundary, constant scalar curvature, and a metric that is a critical point of the volume functional
with a fixed boundary metric. In this context, we employ our Reilly-type identity to establish
Heintze-Karcher and Minkowski inequalities for bounded domains. Furthermore, we examine
the rigidity phenomena associated with these inequalities, especially in cases where equality is
achieved, shedding light on the geometric structure of these manifolds. Additionally, we obtain
an inequality for domains in m-quasi Einstein manifolds along with a rigidity characterization.
This inequality is motivated by the stability of the Wang-Yau energy.

Finally, we turn our attention to weighted overdetermined problems on Riemannian manifolds
with density. By studying a Poisson problem associated with the weighted Laplacian, we derive
a Heintze-Karcher inequality and a Soap Bubble-type theorem that characterize geodesic balls
in these weighted spaces. By imposing Dirichlet and Neumann boundary conditions, we also es-
tablish a Serrin-type result in generalized cones and convex cones of Euclidean space, identifying
metric balls as the unique solutions to the underlying overdetermined problem.

Keywords: Rigidity problem, integral identities, Reilly’s identity, Overdetermined Problem
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1

1 Introduction

Integral identities in Riemannian geometry have been an important tool for studying
various analytical and geometric problems in geometric analysis and mathematical physics,
especially those that involve the so-called rigidity results, this is, classifying solutions of some
elliptic system from one known model. Despite the simplicity of such an idea, this approach
yields many relevant results.

The Reilly identity is an important geometric identity that has been used to study rigidity
problems, such as the well-known Alexandrov (Soap Bubble) theorem. The Pohozaev identity
is another example of a geometric identity that has been applied to analyze rigidity problems,
including the Serrin problem. These examples of integral identities and rigidty problems will be
detailed in the following, are motivating for the work developed in this thesis.

In this scenario, this thesis investigates the role of geometric identities, such as those
involving the Laplacian, Hessian, and divergence, in understanding the structure of Riemannian
manifolds and solving rigidity problems. Integral identities like Reilly’s identity and Pohozaev
identity, in a generalized format, are used to reveal critical relationships between intrinsic and ex-
trinsic properties of manifolds, providing tools to address classical and modern rigidity problems
by imposing constraints that stabilize geometric structures, which encapsulate key information
about curvature, volume, and boundary behavior, as well as their applications.

Our contributions are presented essentially in two parts. The first of these parts, pre-
sented in chapter 3, is motivated by classical results such as Alexandrov’s theorem. The second
part of our contributions, presented in Chapter 4, is motivated by the study of overdetermined
problems in weight manifolds and it is motivated by Serrin’s problem.

Alexandrov’s (Soap Bubble) theorem [1], a widely recognized rigidity result in Rieman-
nian geometry, asserts that:

Let Mn be a closed and embedded hypersurface with constant mean curvature in
Euclidean space Rn+1, then Mn is a round sphere.

Although the initial proof by Alexandrov employed a reflection method in partial dif-
ferential equations, numerous alternative proofs have emerged over time. Notably, Reilly-Ros
provided an elegant proof of Alexandrov’s theorem, by using Reilly’s identity, which is a central
component of the work presented here.

Reilly’s identity, obtained in [2], says that if (Mn, g) is a smooth Riemannian manifold
and Ω ⊂ M is a smooth domain with boundary ∂Ω, then for any f ∈ C∞(Ω), the following
integral identity is verified:∫

Ω

[
(∆f)2 −

∣∣∣∇2f
∣∣∣2]

dv =
∫

∂Ω

(
h(∇z, ∇z) + 2u∆z + Hu2

)
da +

∫
Ω

Ric(∇f, ∇f)dv, (1.1)

where ∆ and ∇2 are the Laplacian and the Hessian in g, z = f |∂Ω, u = ⟨∇f, ν⟩ , and ν denotes
the outward-pointing unit normal vector. ∇ and ∆ indicate the gradient and the Laplacian of
the induced metric g in ∂Ω. Furthermore, h, H are the second fundamental form and the mean
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curvature of ∂Ω respectively, and Ric is the Ricci curvature of (M, g). A sample examination
in the proof shows this identity is obtained by integrating another relevant geometric identity
(Bochner’s formula) plus the divergence theorem.

Ros’ proof of Alexandrov’s theorem [3] relies crucially on the Reilly [2] and Hsiung-
Minkowski [4] identities.

Starting from Reilly’s identity (1.1), [3] chooses a suitable function f , which is the
solution of a Dirichlet’s problem

∆f = −1 in Ω, f = 0 on ∂Ω, (1.2)

and proves the named Heintze-Karcher inequality: if Ω is a compact domain in Rn+1, then

n − 1
n

∫
∂Ω

1
H

da ≥ V ol(Ω). (1.3)

Moreover, equality in (1.3) holds if and only if Ω is isometric to a Euclidean ball. If, in particular,
H is constant, Hsiung-Minkowski’s identity ensures that (1.3) is an equality, which implies that
∂Ω is an n-dimensional sphere.

Furthermore, Reilly’s identity can be applied to obtain a sharp lower bound for the first
eigenvalue of the Laplacian and demonstrate an Obata-type theorem for manifolds with a bound-
ary (see [5], [2], [6], [7], and [3] for these and further applications). The study of Heintze-Karcher
inequalities and related rigidity results in more general Riemannian (and pseudo-Riemannian)
spaces are intriguing and have motivated significant efforts see, for example, [8], [9], [10], [11],
and [12].

The versatility of Reilly’s identity serves as a motivating force to pursue extensions of
this foundational work into more general ambient spaces. Following the paradigm set by Reilly-
Ros, our aim is to derive new geometric inequalities and Alexandrov-type results for domains
situated in broader contexts. A notable avenue of exploration involves extending these ideas to
domains within static or substatic manifolds, a class of manifolds with wide-ranging applications
in General Relativity. These manifolds naturally arise in the study of static spacetimes satisfying
the Null Energy Condition, as observed in prior work such as [13], [14], and [10], and further
discussed in [15].

We remember that a Riemannian triple (M, g, f) is said to be substatic if

fRic + (∆f)g − ∇2f ≥ 0, (1.4)

and, in this case, the function f ∈ C∞(M) is the potential function. When the left-hand side
of (1.4) vanishes, the triple is said static. Noteworthy contributions in this direction include
the work by Li and Xia in [14], where a generalized Reilly’s identity is established for general
two-tensors. This formula, after a suitable choice of tensors, plays a crucial role in addressing
the case of substatic manifolds with multiple boundary components, as outlined in Theorem 3.1
of [14] or Theorem 3.1.6 here.

Despite the resemblance of the last definition to (1.4) with a reversed inequality, it holds
distinct importance as a variational problem, as elucidated below and rooted in the seminal
work [16]. Let γ be a smooth metric on ∂M , and define Mγ as the set of all metrics in M such
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that g
∣∣∣
T (∂M)

= γ. Fixing a constant K, consider the set MK
γ comprising all metrics g ∈ Mγ with

a scalar curvature R equal to K. In [16], it is demonstrated that a metric g ∈ MK
γ possessing

the property that the first Dirichlet eigenvalue of (n − 1)∆g + K is positive serves as a critical
point for the volume functional V ol : MK

γ → R. Importantly, this criticality condition is met if
and only if there exists a smooth function V on M that satisfies Definition (3.1.1). Moreover,
the existence of such a V -static potential yields significant geometric behaviors on the manifold
and its boundary, such as constant scalar curvature and the regular level set V −1(0) being a
totally umbilical hypersurface, as detailed in [16, Theorem 3.2]. This equation and its geometric
consequences will be invoked multiple times in the course of this work. Classical examples of
V -static manifolds include geodesic balls in space forms, see [16, Theorem 6], and certain warped
products, see [17, Section 3].

The exploration of the V -static ambient is particularly intriguing, driven by its close
connection to Besse’s conjecture, a significant and as-yet-unsolved problem known as the Critical
Point Equation (CPE) problem, see [18, page 128]. The conjecture regards to critical points
of the Hilbert-Einstein functional subject to the constraints of unit volume and constant scalar
curvature. The interplay between the CPE problem and V -static metrics is detailed in works
such as [19] and [20].

In short, integral identities obtained through the classical divergence theorem, together
with the derivative properties of geometric tensors, have served as a powerful tool for deriving
inequalities and rigidity results in this setting. With this main idea and motivated by the works
highlighted above, the first objective of this thesis is to derive a Reilly-type identity applicable
to V -static ambient. To achieve this, following what was presented in [21], we adopt a tensorial
framework from the prior work of Li and Xia, to our context (cf. Theorem 3.1.8). This tensorial
choice is instrumental in establishing a Heintze-Karcher inequality for domains featuring multiple
boundary components within V -static ambient (see Theorem 3.1.16). Notably, this result holds
for domains properly contained in V -static manifolds as follows.

Theorem 1.0.1 Let (Mn, g, V ) be an n-dimensional V -static Riemannian triple. Consider
Ω ⊂ Mn a bounded domain properly contained in int(M) such that the smooth boundary ∂Ω is
strictly mean convex. Then we have

n

∫
Ω

(
V − n

n − 1f
)

dv ≤ (n − 1)
∫

∂Ω

V

H
da, (1.5)

where f is a solution of the Dirichlet’s problem{
∆f + R

n−1f = −1 in Ω
f = 0 on ∂Ω.

(1.6)

Furthermore, if the equality is verified in (1.5), then ∂Ω is umbilic.

This same problem leads to another noteworthy application of Reilly’s identity in order
to derive a generalized form of the classical Minkowski inequality. This is achieved by chosing a
solution f for a suitable Neumann problem, specifically:{

∆f = −1 in Ω,

fν = c on ∂Ω.
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where c = − V ol(Ω)
Area(∂Ω) , Reilly [22] applies his formula (1.1) to establish an inequality for domains

Ω ⊂ (Mn, g), where (Mn, g) is a manifold with non-negative Ricci curvature. To be precise, if
∂Ω is convex (indicating that the second fundamental form is positive definite, i.e., h ≥ 0), a
straightforward computation in (1.1) yields the following isoperimetric inequality:

Area(∂Ω)2 ≥ n

n − 1V ol(Ω)
∫

∂Ω
H da,

where equality holds if and only if Ω is isometric to a Euclidean ball. Generalizations of this
inequality for domains in more general ambient spaces have been an active area of research,
with advancements made by considering (Mn, g) as a space form [23], a warped product [8], a
substatic manifold [14], and in the context of spacetime [15].

Using our Reilly-type identity, we derive the following Minkowski-type inequality for
domains within V -static manifolds, see [21]:

Theorem 1.0.2 Let (Mn, g, V ) be an n-dimensional V -static Riemannian triple and Ω ⊂ Mn

be a bounded domain with connected smooth boundary ∂Ω where V > 0. Suppose the second
fundamental form of ∂Ω satisfies

hαβ − V,ν

V
gαβ ≥ 0. (1.7)

The following inequality then holds

n − 1
n

( ∫
∂Ω

V da
)2

≥
∫

Ω

(
V − n

n − 1f
)

dv

∫
∂Ω

V H da +
∫

∂Ω
V dv

∫
∂Ω

f dv. (1.8)

Here f is a solution of the PDE{
∆f + R

n−1f = −1 in Ω
V f,ν − V,νf = cV on ∂Ω,

where c is a suitable constant1. Furthermore, if there is a point in ∂Ω at which occurs the strict
inequality in (1.7) and the equality in (1.8) is verified, then ∂Ω is umbilic and of constant mean
curvature.

Furthermore, as discussed in section 3.2, Reilly’s identity serves as a powerful tool for
studying problems applied to General Relativity and quasi-local masses. In this direction, Miao,
Tam, and Xie [24] looked at the relation between two quasi-local masses: the Brown-York and
Wang-Yau masses. In [24, Theorem 1.1], they find conditions under which the Brown-York
mass of a compact, time-symmetric, spacelike hypersurface Ω in a time-oriented spacetime N4

be a strict local minimum for the Wang–Yau quasi-local energy. For this purpose, it is crucial to
develop the second variation for Wang-Yau Energy [24, Proposition 2.1]. This goal, for example,
leads the authors to demonstrate the following integral inequality for compact Riemannian
manifolds with non-negative Ricci curvature, see [24, Proposition 3.1], a consequence of Reilly’s
identity (1.1):
1 The choice of c is linked with the existence of solution for the underlying Neumann Problem.
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Theorem 1.0.3 [24] Let (Ω, g) be a compact Riemannian manifold of dimension n ≥ 3. Sup-
pose Ω has smooth boundary Σ which has positive mean curvature H. Let H and h be the mean
curvature and the second fundamental form of Σ with respect to the outward normal, respectively.
If g has non-negative Ricci curvature, then∫

Σ

[
(∆η)2

H
− h(∇η, ∇η)

]
da ≥ 0 (1.9)

for any smooth function η defined in Σ. ∇ and ∆ are the gradient and Laplacian intrinsic to Σ,
respectively. Moreover, equality in (1.9) holds for some η if and only if η is the boundary value
of some smooth function u which satisfies ∇2u = 0 and Ric(∇u, ∇u) = 0 in Ω.

Besides being an interesting integral inequality with a rigidity statement, this result has
a link with the abovementioned discussion. When Ω is a bounded domain in R3 and Σ is convex,
the left side of (1.9) is the second variation along η of the Wang-Yau quasi-local energy at the
2-surface Σ in a time-symmetric slice of the Minkowski spacetime. In this case, the above result
can be viewed as a stability result for this energy. We also observe that the equality case of the
Theorem produces a strong rigidity result because a particular coordinate function is the only
case when this occurs. We also remark that a crucial step to obtaining this inequality is Reilly’s
identity, cited at the beginning.

In order to study this type of inequality in more general ambient spaces, Kwong and
Miao [25] generalized Theorem 1.0.3 to the case of hypersurfaces that are the boundary of a
bounded domain contained in a static manifold. Just to give a physical motivation for the study
of these manifolds, it is well-known that the existence of such a solution of

(∆V )g + V Ric − ∇2V = 0

in a 3-dimensional manifold allows to construct a space-time satisfying the vacuum Einstein
equations (with cosmological constant), whose properties, physically interpreted, justify the
terminology static, see, for example, [19, Proposition 2.7]. In this scenario, they proved the
following result:

Theorem 1.0.4 [25, Theorem 3] Let (Mn, g, V ) be a compact n-dimensional static Riemannian
manifold with boundary Σ and static potential V > 0 on M. Denote by h and H the second
fundamental form and the mean curvature respectively of Σ on M. If H > 0, then∫

Σ
V

[(∆η + (n − 1)kη)2

H
− h(∇η, ∇η)

]
da ≥

∫
Σ

∇νV
[
|∇η|2 − (n − 1)kη2

]
da

for any function η in Σ. Here k ≤ 0 is a non-positive constant such that the Ricci tensor
Ric ≥ (n − 1)kg. Moreover, equality holds only if

1. k = 0 and η is the boundary value of the function u at (Ω, g) satisfying ∇2u = 0,

or

2. k < 0, g is Einstein, i.e., Ric = (n − 1)kg, and η is the boundary value of the function u

at (Ω, g) satisfying ∇2u + kug = 0.
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An interesting point to note in this theorem also use a generalization of Reilly’s identity
in its proof, see [13, Theorem 1.1].

The purpose of Section 3.2 is to extend this last result in the context of m-quasi-Einstein
manifolds (possibly with a non-empty boundary), additionally exploring the characterization of
the equality case. More precisely, we will present our contribution for this topic by means of
Theorem 1.0.5, stated below, which is part of the paper [26].

In the same direction as said for static metrics, one crucial motivation to approach the
m-quasi-Einstein metrics is studying Einstein manifolds that have a structure of warped product.
In fact, if m > 1 is an integer, (Mn, g, V ) is an m-quasi-Einstein triple if and only if there is a
smooth (n + m)-dimensional warped product Einstein metric having M as the base space (see
[27] and [28]). From this observation, the study of warped product Einstein manifolds reduces
to the study of the m-quasi-Einstein equation on the lower-dimensional base space.

In [27], the authors treat the non-empty boundary case and consider, for the case m > 1,
the following quantity:

ρ(x) = 1
m − 1 [(n − 1)λ − R] ,

where R is the scalar curvature of (Mn, g). With this notation, we may present our result.

Theorem 1.0.5 Let (Mn, g, V ) be a m-quasi Einstein triple, m > 1, and Ω ⊂ M be a compact
domain, with boundary Σ and m-quasi Einstein potential V > 0 on Ω. Denote by h, H and R the
second fundamental form, the mean curvature and the scalar curvature of Σ in Ω, respectively.
If H > 0 and (n − 1)k ≤ Ric ≤ ρg, where k is a non-positive constant, then∫

Σ
V

[(∆η + (n − 1)kη)2

H
− h(∇η, ∇η)

]
da ≥

∫
Σ

∇νV
[
|∇η|2 − (n − 1)kη2

]
da (1.10)

where η is any function in Σ.

Moreover, equality holds only if

1. k = 0 and η is the boundary value of a function f at (Ω, g) satisfying ∇2f = 0, and them
(Mn, g, V ) is the Riemannian product (M, g)×(R, g0) of a complete Riemannian manifold
(M, g) and the real line (R, g0), where g0 denotes the canonical metric of R.

or

2. k < 0, g is Einstein, i.e., Ric = (n − 1)kg, and η is the boundary value of a function f at
(Ω, g) satisfying ∇2f + kfg = 0. In addition, if ∂M is not empty then M is isometric to(

[0, ∞) × N, dt2 +
√

−k cosh2(
√

kt)gSn−1 , C sinh
√

−kt
)

where N is an Einstein metric with negative Ricci curvature, and C is an arbitrary positive
constant. If ∂M is empty, then M is isometric to either(

Hn, dt2 +
√

−k sinh2(
√

−kt)gSn−1 , C cosh(
√

−kt)
)

or (
R × F, dt2 + e2

√
−ktgF , Ce2

√
−kt

)
,

where F is Ricci flat and C is an arbitrary positive constant.
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The second portion of our contributions, detailed in Chapter 4, is driven by the investi-
gation of overdetermined problems in weighted manifolds.

An interesting connection between the first part of the work, presented in Chapter 3,
and the second part, examined in Chapter 4, lies in the study of the existence of a solution
for (1.6), which is discussed in Lemmas 3.1.13 and 3.1.14. We emphasize that the investigation
of domains satisfying the Dirichlet problem (1.6) is closely related to a Serrin-type problem in
the Riemannian setting, similar to those studied in [29] and [30], for example. In fact, in those
papers, the authors have studied the rigidity for the problem

∆u + nku = −1 in Ω
u = 0 on ∂Ω
uν = −c on ∂Ω

where Ω is a domain in a space form, or more generally, in a manifold with Ricci bounded below.
Furthermore, for a specific problem in a V -static ambient, we refer to [31, Theorem 1 and 2] for
further discussions.

An important and famous type of overdetermined problem is presented in [32] when
Serrin proved the following celebrated result:

If there exists a positive solution u ∈ C2(Ω) to the overdetermined problem:
∆u = −1 in Ω
u = 0 on ∂Ω
uν = −c on ∂Ω

(1.11)

where Ω ⊂ Rn is a bounded domain with boundary ∂Ω of class C2, ν denotes the
unit normal to ∂Ω and uν denote the normal derivative of u, then Ω must be a ball
and u is radially symmetric.

The classical radial solution of the Serrin’s problem (1.11) on the Euclidean ball centered
at the origin O with radius R, denoted by BR(O), is given by

u(x) = R2 − |x|2

2n
, (1.12)

where |x| denotes the Euclidean norm of x ∈ Rn and R = cn.
An “overdetermined problem” refers to a partial differential equation (PDE) in which

“too many” boundary conditions are assigned, such as both the Dirichlet and Neumann con-
ditions, as indicated in (1.11). This means that the system of conditions is “overdetermined”
relative to the degrees of freedom in the PDE. Also, it is remarkable that there exists an inter-
esting connection between the mean curvature of ∂Ω and the normal derivative uν , see [33]; this
link (1.2) with overdetermined Serrin’s problem, see [32] and [30].

The existence of “too many” boundary conditions are common in physical contexts, like
fluid dynamics (see also [34] and [35, Section 2]), where the overdetermined nature of the problem
can significantly impact the behavior of the system. In this context, (1.11) has its roots in the
following physical problem (proposed by Fosdick, as stated by Serrin in [32, Page 1]):
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“Consider a viscous incompressible fluid moving in straight parallel streamlines through
a straight pipe of given cross sectional form Ω. If we fix rectangular coordinates in space with
the z axis directed along the pipe, it is well known that the flow velocity u is then a function of
x, y alone satisfying the Poisson differential equation

∆u = −A,

where A is a constant related to the viscosity and density of the fluid and to the rate of change
of pressure per unit length along the pipe. Supplementary to the differential equation one has
the adherence condition

u = 0 on ∂Ω.

Finally, the tangential stress per unit area on the pipe wall is given by the quantity µuν where
µ is the viscosity. Our result states that the tangential stress on the pipe wall is the same at all
points of the wall if and only if the pipe has a circular cross section.”

For more rigorous physical interpretations of Serrin’s problem, we refer to [36] and [35,
Section 2]. Serrin proved his result using a method developed by Alexandrov [1]: the moving
plane method. In this direction, Serrin’s proof indicate the intrinsic relation of this problem with
one of the most celebrated result in Differential geometry, Alexandrov’s Soap Bubble Theorem.

Within these parameters, Alexandrov’s theorem offers a significant physical interpre-
tation: constant mean curvature (CMC) hypersurfaces are intrinsically associated with the
geometry of liquid drops and “soap bubbles”. For a comprehensive review of this topic, refer to
[37]. Additionally, there is a variational characterization of CMC surfaces and their connection
to the isoperimetric problem, see, for example, [37, Section 2.1]. To further understand the
relationship between Serrin and Alexandrov’s symmetry problems, see [38], [39], see also [40,
Appendix D].

An additional point of convergence between Alexandrov’s problem and Serrin’s problem
is the existence of an intriguing alternative proof that employs integral techniques. In the same
edition of Serrin’s paper, Weinberger [41] provided a simpler proof based on a method that is
now known as the P -function approach. Briefly, Weinberger defines a sub-harmonic function
P (u) associated with the solution of (1.11) and applies the classical strong maximum principle
to demonstrate that this function is constant, thereby proving the rigidity result. A key step
in proving this constancy is the classical Pohozaev identity for Euclidean domains (for further
details, see the comprehensive survey [42, Section 1.2]).

Continuing the study of the Serrin’s problem, we investigate these types of results within
the framework of weighted manifolds, defined in Chapter 4 and presented here for convenience
of the reader. A weighted manifold is defined as a triple (M, ⟨ , ⟩ , w dv), where (M, ⟨ , ⟩ =: g)
is a Riemannian manifold with Riemannian measure dv, w : M → R is a smooth function, and
dvw = wdv is the weighted measure. The geometry of weighted manifolds is characterized by the
weighted metric structure, which affects the measures of intrinsic metric objects (e.g., weighted
length of curves and weighted volume of metric balls).

Weighted manifolds provide a natural framework for understanding and generalizing
classical results in geometric probability, including isoperimetric inequalities and concentration
of measure phenomena. These results have significant implications across various fields, such
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as statistical mechanics, information theory, diffusion processes, and optimal transport. For an
extensive overview see the comprehensive survey by Morgan [43], see also [44], [45] and [46].

In the direction of proving Alexandrov-type results using integral identities, a crucial
step is to obtain a Heintze-Karcher inequality. In [47], the authors derived such an inequality
(linked with a rigidity statement) for spaces with nonnegative α-Bakry-Émery-Ricci tensor. In
this context, we consider the following weighted Poisson problem:

∆wu + k(n + α)u = −1 in Ω
u > 0 in Ω
u = 0 on ∂Ω

(1.13)

to establish a Heintze-Karcher inequality for manifolds with α-Bakry-Émery-Ricci tensor bounded
below (see Theorem 4.0.7). For the existence and positivity of solutions to (1.13), we refer to
[48, Lemma 3.10]. See also the recent discussion in the setting of weighted manifolds and the
relation between solutions and the first eigenvalue in [49].

A crucial step in direction to obtain the Heintze-Karcher inequality in Theorem 4.0.7 is
getting a Reilly-type identity that can be adapted to our context (see Proposition 4.0.3). Within
this goal, we also establish the Soap Bubble’s Theorem 1.0.6. In the following result, we consider
the value

c = 1
Areaw(∂Ω)

[
Volw(Ω) + (n + α)k

∫
Ω

u dvw

]
. (1.14)

While, in general, it is expected that c depends on the solution u, the case k = 0 is particularly
meaningful and provides a parallel with [33, Theorem 2.2], see Remark 4.0.10 and [26]:

Theorem 1.0.6 Let Ω be a bounded domain in an n-dimensional Riemannian manifold (M, ⟨·, ·⟩, w dvol)
with Ricα

w ≥ k(n + α − 1)g for some k ∈ R, α > 0 and a smooth positive function w. Suppose u

is a solution of the PDE (1.13). Then,∫
Ω

(H0 − Hw)u2
ν dvw ≥ 0,

where equality holds if and only if Ω is a metric ball and u is a radial function. Here, Hw denotes
the weighted mean curvature of ∂Ω with respect to ν, H0 = n+α−1

(n+α)c , and c is the constant given
by (1.14). In particular, if Hw ≥ H0, then Ω is a metric ball.

In Section 4.0.3, we study the rigidity problem (1.13) which is motivated by an overde-
termined condition. More specifically, we deal with the problem

∆wu + k(n + α)u = −1 in Ω
u = 0 on ∂Ω

|∇u| = c on ∂Ω,

(1.15)

We observe that the use of the same notation for the constant c in (1.14) and (1.15) is not a
coincidence: the overdetermined condition |∇u| = −uν = c on ∂Ω establishes this equivalence;
see (4.14). In [50], the authors study this problem for domains in Euclidean space (in this case,
k = 0) and a homogeneous weight w of degree α > 0, which means that ⟨∇w, x⟩ = αw, where
x is the position vector. Following Weinberger’s approach, we define a suitable P -function
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associated with (1.15) and establish a Pohozaev-type identity for manifolds endowed with a
closed conformal vector field, which is of interest in its own right (see Proposition 4.0.13 and
Section 4.0.2 for underlying definitions).

In order to extend previous results established in the Euclidean setting, we work with
the following structure. Let (N, gN ) be a connected (n − 1)-dimensional Riemannian manifold.
Consider (0, ∞) × N a product manifold endowed with a warped metric given by

g = dr ⊗ dr + r2gN .

We denote such warped product as M = (0, ∞) ×r N and call it by a generalized cone. When
N = Sn−1, M = Rn \ {0}, and, more generally, when D is a smooth region of Sn−1, M is a solid
conical region. Beyond the work of [50] in the Euclidean space, a large class of rigidity results
associated with overdetermined problems in convex cones has emerged (see [51], [52], [53], [54],
for example). In the following result, we consider the such warped structure in order to obtain
a rigidity result related with the overdetermined problem (1.15):

Theorem 1.0.7 Let (Mn = (0, ∞) ×r Nn−1, ⟨ , ⟩ , w dvol) be a generalized cone such that
Ricα

w ≥ k(n + α − 1)g, where k is a nonnegative constant, and w is a homogeneous smooth
function of degree α > 0. If u is a positive solution of (1.15), then Ω is a metric ball and u is
a radial function.

In Section 4.0.4 we focus our attention on the weighted Serrin’s problem for convex cones
of the Euclidean space. Again work [50] is an important motivation.

Under this context, considering the open cone Σ = {tx; x ∈ ω, t ∈ (0, ∞)} in Rn, where
ω is an open connected domain on the unit sphere Sn−1, it is worth to note (as observed in [55])
that (1.12) also is a solution for the following partially overdetermined problem

∆u = −1 in BR(o) ∩ Σ,

u = 0 on ∂BR(o) ∩ Σ,

uν = −c on ∂BR(o) ∩ Σ,

uν = 0 on BR(o) ∩ ∂Σ.

As in Serrin’s classical result (1.11), it is natural to investigate symmetry characteri-
zations, both for the domains and the solutions, in the sense of sector-like domains, which, in
this specific characterization, can be viewed as intersections between a ball and a cone. These
domains will be defined below in a quite general way (see Definition 1.0.8).

In this setting, Pacella and Tralli [56], as well as Ciraolo and Roncoroni [55], have ex-
tended the study of rigidity characterizations for partially overdetermined problems by employ-
ing integral methods. While [56] focus on the partially overdetermined problem in a sector-like
domain in the Euclidean space, [55] consider more general operators than the Laplacian in
the Euclidean space, including possibly degenerate operators, and also addressing analogous
problems in space forms, the hyperbolic space and the (hemi)sphere. See also [57] for related
overdetermined problems concerning cones in spheres.
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Under these circumstances and motivations, if we denote O the pole of the model, we
define an open cone Σ ⊂ Rn with vertex at {O} as the set Σ := {tx; x ∈ ω, t ∈ I} , for some open
domain ω ⊂ Sn−1 and I ⊂ (0, ∞) an interval.

Moreover, we say that a cone Σ is convex if its second fundamental form is nonnegative
at every point x ∈ ∂Σ. Here, if ν denotes the outward unit normal vector field, the second
fundamental form is given by A(X, Y ) = g(∇Xν, Y ), where X and Y are tangent vector fields
to ∂Σ. In the same way as [55] and [56] we have the concept of sector-like domain that we define
below and illustrated in figure (1).

Definition 1.0.8 Let Σ be an open cone as described above, such that ∂Σ \ {O} is smooth. A
domain Ω ⊂ Σ is called a sector-like domain if

Γ = ∂Ω ∩ Σ and Γ1 = ∂Ω \ Γ,

are such that the (n − 1)-Hausdorff measures satisfy Hn−1(Γ) > 0, Hn−1(Γ1) > 0, and Γ is a
smooth (n−1)-dimensional manifold, while ∂Γ = ∂Γ1 ⊂ ∂Ω\{O} is a smooth (n−2)-dimensional
manifold.

Figure 1 – A sector-like domain Ω inside Σ

Motivated by the findings in [50], we study the overdetermined problem

∆wu = −1 in Ω
u = 0 on Γ
uν = −c on Γ
uν = 0 on Γ1 \ {O}

∇2 log w(∇u, ∇u) + ⟨∇ log w, ∇u⟩2

α
≤ 0 in Ω

(1.16)

in a sector-like domain Ω contained in a convex cone Σ ⊂ Rn and obtaining the following result.

Theorem 1.0.9 Let Σ a convex open cone in Rn such that Σ \ {O} is smooth and Ω ⊂ Σ a
sector-like domain. If f is a homogeneous weight of degree α > 0 and there exists a solution
u ∈ C1(Ω ∪ Γ ∪ Γ1 \ {O}) ∩ W 1,∞(Ω) ∩ W 2,2(Ω) to the problem (1.16), then Ω = Σ ∩ Br(x0)
where Br(x0) is a ball and u = r2−|x−x0|2

2(n+α) .
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This thesis is systematically organized and next we present a overview of the text. Chap-
ter 2 introduces foundational concepts of Riemannian geometry, including the Levi-Civita con-
nection, curvature and operators like the gradient and Laplacian and some integrals identities
related to these operators. In the following chapters we present our contributions to solving
the problems mentioned above. More specifically, Chapter 3 delves into Reilly’s generalized
identity and its applications, beginning with V-static manifolds in Section 3.1, which contribute
a generalized Reilly-type identity and extensions of Heintze-Karcher and Minkowski inequalities
[21]. Section 3.2 explores m-quasi-Einstein manifolds, generalizing Einstein metrics, with re-
sults from [26]. Chapter 4 examines overdetermined problems in weighted manifolds and convex
cones, presenting the Soap Bubble Theorem 1.0.6, Theorem 4.0.7, Theorem 1.0.7 and Theorem
1.0.9 as extensions of classical rigidity results, supported by [58] and [59].
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2 Notations, basic concepts and classical
results

This chapter provides a brief review of some basic concepts in Riemannian Geometry,
as well as some fundamental results that will be used in this text. In section 2.1 we introduce
the concepts of connections, Riemannian metrics, and curvatures: Riemannian curvature (Rm),
sectional curvature (K), Ricci curvature (Ric), and scalar curvature (R). Most results will not
be proven here; the reader may find more comprehensive material in the references [60], [61]and
[62]. The section 2.2 introduces the key operators like the gradient, divergence, and Laplacian.

For a better understanding and ease of reading we organize below the main notations
used throughout the thesis. The gradient, the Laplacian, and the Hessian on (M, g = ⟨ , ⟩)
will be denoted by ∇, ∆, and ∇2, respectively. Taking Ω ⊂ M a bouded domain with smooth
boundary ∂Ω the induced metric, gradient, Laplacian, and Hessian on ∂Ω will be denoted by g,
∇, ∆, and ∇2, respectively.

Let ν denote the normal unit outward vector on ∂Ω. We define h(X, Y ) = g(∇Xν, Y ) as
the second fundamental form and H = trgh as the mean curvature (with respect to −ν) of ∂Ω.

Let dv and da denote the canonical measures on (M, g) and ∂Ω, respectively. The Ricci
curvature and the scalar curvature of (M, g) will be denoted by Ric and R, respectively.

We will use a subscript index to denote covariant derivatives with respect to the metric
g, and a comma together with a subscript index to denote covariant derivatives with respect to
the metric g. For example, fα = ∇αf and R,i = ∇iR.

We will adopt Einstein’s summation convention, which omits explicit summation symbols
for repeated indices within the same term, along with the convention that indices written in
Latin letters range over the set {1, . . . , n}, and indices written in Greek letters range over the
set {1, . . . , n − 1}.

2.1 Fundamentals of Riemannian geometry

Unless stated otherwise, (M, g) will denote a smooth Riemannian manifold of dimension
n with a smooth metric g. At a point p ∈ M , we denote by TpM the tangent space of M at p,
and by X(M) the space of all smooth vector fields on M .

Recall that a differentiable manifold M of dimension n is a topological manifold (a
Hausdorff topological space locally homeomorphic to an open subset of Rn) with a connected
structure endowed with a maximal C∞ atlas.

If M is a differentiable manifold of dimension n, a Riemannian metric g on M is a
differentiable mapping g, such that for every p ∈ M , g(p) is an inner product on TpM . A
Riemannian manifold of dimension n is a pair (M, g), where M is a differentiable manifold of
dimension n, and g is a Riemannian metric on M . Conveniently, we will denote gp(Xp, Yp) by
⟨Xp, Yp⟩p, and we will omit the subscripts when no confusion arises.
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If (U, ϕ) is a local chart of M , then in this local chart, the Riemannian metric g is
represented by a positive-definite symmetric matrix (gij(p))1≤i,j≤n, satisfying gij = gji for all
i, j = 1, . . . , n, and

n∑
i,j=1

gijxixj > 0 for all x = (x1, . . . , xn) ̸= 0,

where gij = ⟨ ∂
∂xi , ∂

∂xj ⟩ depends smoothly on p ∈ M .

Levi-Civita Connection

An affine connection on a differentiable manifold M is a mapping

D : X(M) × X(M) → X(M),

(X, Y ) 7→ DXY,

that satisfies the following properties:

• DfX+gY Z = fDXZ + gDY Z (linearity in the first variable);

• DX(Y + Z) = DXY + DXZ (additivity in the second variable);

• DX(fY ) = fDXY + X(f)Y (Leibniz rule),

where X, Y, Z ∈ X(M) and f, g ∈ C∞(M). The term DXY is read as the "covariant derivative
of Y in the direction of X."

If the affine connection additionally satisfies:

• X⟨Y, Z⟩ = ⟨DXY, Z⟩ + ⟨Y, DXZ⟩ (compatibility with the metric);

• DXY − DY X = [X, Y ] (symmetry),

then it is called a Riemannian connection (or Levi-Civita connection). Note that an affine
connection is R-linear in the second variable, i.e., if a, b ∈ R, then

DX(aY + bZ) = aDXY + bDXZ.

Recall that [X, Y ] = XY − Y X is a vector field called the Lie bracket of X and Y . It
satisfies the following properties:

1. [X, Y ] = −[Y, X],

2. [aX + bY, Z] = a[X, Z] + b[Y, Z],

3. [[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0 (Jacobi identity),

4. [fX, gY ] = fg[X, Y ] + fX(g)Y − gY (f)X.

From [60, Theorem 3.6] we have that, given a Riemannian manifold M , there exists a
unique affine connection D on M that is symmetric and compatible with the Riemannian metric.
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Intrinsic Geometry

We define the Riemannian curvature of (M, g), denoted by Rm, as the correspondence
that associates to each pair X, Y ∈ X(M) an operator

Rm(X, Y ) : X(M) → X(M),

given by

Rm(X, Y )Z = DXDY Z − DY DXZ − D[X,Y ]Z,

where Z ∈ X(M) and D denotes the Riemannian connection of M . The Riemannian
curvature tensor, a rank-4 tensor also denoted by Rm, is defined as

Rm(X, Y, Z, W ) = g(Rm(X, Y )Z, W ),

for X, Y, Z, W ∈ X(M).
The Riemannian curvature field Rm has the following properties:

1. Rm is trilinear;

2. Rm(X, Y )Z = −Rm(Y, X)Z;

3. Rm(X, Y )Z + Rm(Y, Z)X + Rm(Z, X)Y = 0 (first Bianchi identity).

From a tensorial perspective, these properties are expressed as:

1. Rm(X, Y, Z, W ) + Rm(Y, Z, X, W ) + Rm(Z, X, Y, W ) = 0;

2. Rm(X, Y, Z, W ) = −Rm(Y, X, Z, W );

3. Rm(X, Y, Z, W ) = −Rm(X, Y, W, Z);

4. Rm(X, Y, Z, W ) = Rm(Z, W, X, Y ).

It is convenient to express the above in a coordinate system (U, x) in a neighborhood of p ∈ M .
Let {X1, . . . , Xn} be an orthonormal basis in TpM . Then,

Rm(Xi, Xj)Xk =
n∑

l=1
Rl

ijkXl,

and
Rm(Xi, Xj , Xk, Xl) = g(Rm(Xi, Xj)Xk, Xl) = Rijkl,

where
Rijkl =

n∑
m=1

glmRm(Xl, Xm)Rm
ijk.

Given p ∈ M and π ⊂ TpM , a two-dimensional plane, the **sectional curvature** of π

at p is defined as
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K(π) = Rm(X, Y, X, Y )
g(X, X)2g(Y, Y )2 − g(X, Y )2 ,

where {X, Y } is a basis for π. The definition of sectional curvature is independent of the
chosen basis.

Since rank-4 tensors are complex, simpler tensors that summarize the information con-
tained in the Riemannian curvature tensor are often considered. The most significant of these
is the Ricci curvature tensor.

At a fixed p ∈ M , let {e1, . . . , en} be an orthonormal basis of TpM . The Ricci curvature
of (M, g), denoted by Ric, is a rank-2 tensor defined as:

Ric(X, Y ) :=
n∑

k=1
Rm(X, ek, Y, ek)

= −
n∑

k=1
Rm(ek, X, Y, ek)

= −
n∑

k=1
g(Rm(ek, X)Y, ek)

= −traceg(Rm(ek, X)Y, ek).

The scalar curvature, denoted by R, is a smooth function on M defined by

R(x) =
n∑

k=1
Ric(ek, ek)(x) = trace(Ric(ek, ek)(x)).

Extrinsic Geometry

Let (Mn, gM ) and (M̄n+k, gM̄ ) be Riemannian manifolds of dimension n and n + k,
respectively. Suppose M is an oriented manifold, possibly with boundary.

Consider an immersion φ : M → M̄ , i.e., φ is a differentiable mapping such that for each
p ∈ M , the differential dφp : TpM → Tφ(p)M̄ is injective. In other words, φ is a map of constant
rank n = dim M for all p ∈ M .

The metric of M̄ naturally induces a metric on M as follows: for v1, v2 ∈ TpM , define

gM (v1, v2) = gM̄ (dφp(v1), dφp(v2)).

Thus, φ defines an isometric immersion of M into M̄ .
By the rank theorem, since φ is an immersion, φ is locally an inclusion modulo coordinate

changes. More precisely, for each p ∈ M , there exists a neighborhood U ⊂ M of p such that
φ(U) ⊂ M̄ is a submanifold of M̄ .

At each p ∈ M , the inner product in TpM̄ decomposes TpM̄ as the direct sum

TpM̄ = TpM ⊕ (TpM)⊥,

where (TpM)⊥ is the orthogonal complement of TpM in TpM̄ . We write
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v = vT + v⊥ ∈ TpM ⊕ (TpM)⊥.

Thus, we can consider the tangent and normal bundles of M , denoted by T (M) and
N(M), respectively.

Let D̄ be the Riemannian connection on M̄ . For X, Y ∈ X(M), we can consider local
extensions X, Y ∈ X(M̄) of X and Y , respectively, and define

DXY = (D̄XY )T ,

as the Riemannian connection relative to the induced metric of M .
In particular, we can define the second fundamental form of the immersion φ : M → M̄ ,

h : T (M) × T (M) → N(M),

as the symmetric bilinear map given by

h(X, Y ) = D̄XY − DXY = (D̄XY )⊥,

where X, Y are local extensions of X, Y to M̄ .
The mean curvature vector of φ at p ∈ M is the normal vector defined by

H(p) =
n∑

j=1
h(Xj , Xj),

where {X1, . . . , Xn} is an orthonormal basis of TpM .
We associate the symmetric bilinear map h with a self-adjoint linear operator Sη : TpM →

TpM , called the shape operator of φ at p ∈ M with respect to η ∈ (TpM)⊥, defined by

gM (SηX, Y ) = gM̄ (h(X, Y ), η),

for all X, Y ∈ TpM .
Moreover, we have

Sη(X) = (D̄XN)T ,

where N is a local extension of η ∈ (TpM)⊥ to M̄ , and X ∈ TpM .
Therefore,

gM̄ (H, η) = tr(Sη),

for any η ∈ (TpM)⊥. In particular, the mean curvature vector H above does not depend on the
choice of the orthonormal basis.

Some Important Identities

Below are some important identities used throughout the text. In all cases, we con-
sider (Mn, g) as a Riemannian manifold with Riemannian curvature tensor Rm. Additionally,
X, Y, Z, W ∈ X(M).
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First Bianchi Identity

Rm(X, Y )Z + Rm(Z, X)Y + Rm(Y, Z)X = 0.

For a proof of this result, see [60, Proposition IV.2.4]. Similarly, the first Bianchi identity can
be expressed as:

Rm(X, Y, W, Z) + Rm(Y, W, X, Z) + Rm(W, X, Y, Z) = 0.

In coordinates:
Rijkl + Rjkil + Rkijl = 0.

Second Bianchi Identity

(DZRm)(X, Y )W + (DXRm)(Y, Z)W + (DY Rm)(Z, X)W = 0.

For a proof of this result, see [62, Proposition 3.1.1]. Similarly, the second Bianchi identity can
be written as:

(DU Rm)(V, W, X, Y ) + (DV Rm)(W, U, X, Y ) + (DW Rm)(U, V, X, Y ) = 0.

In coordinates:
DpRijkl + DiRjpkl + DjRpikl = 0.

Contracted Second Bianchi Identity

gimDmRijkl = (divgRm)jkl = DkRjl − DlRjk.

For a proof of this result, see [62, Proposition 3.1.5].
Twice Contracted Second Bianchi Identity

gimDmRik = DmRmk = 1
2DkR.

Gauss Equation Let (Mn, g) be a Riemannian manifold and Σn−1 ⊂ M a hypersurface. Then:

Rm(X, Y, Z, W ) = RmΣ(X, Y, Z, W ) − h(X, W )h(Y, Z) + h(X, Z)h(Y, W ),

where h denotes the second fundamental form. For a proof of this result, see [62, Proposition
3.2.4 (Tangential Curvature Equation)] or [60, Proposition VI.3.1].
Twice Contracted Gauss Equation

Taking the double trace of the Gauss Equation, we have:

R − 2Ric(ν, ν) = RΣ − H2 + ∥h∥2,

where Ric(ν, ν) is the Ricci curvature evaluated in the normal direction to Σ, H is the mean
curvature, and ∥h∥ denotes the norm of the second fundamental form.
Ricci Identity

f,ijj = (∆f),i + Rijf,j ,

where f is a smooth function on M .
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2.2 Differentiable operators in Riemannian manifolds

Next we introduces fundamental concepts in the analysis of smooth functions and vector
fields on Riemannian manifolds. It explores operators such as the gradient, divergence, Lapla-
cian, and Hessian, which are essential tools for studying the interplay between geometry and
analysis also delves into key identities and properties of these operators, such as the divergence
theorem and relations between the Hessian and Laplacian. These results provide a founda-
tion for applications in geometric analysis, including integral formulas, curvature relations, and
boundary behavior, which are central to the study of Riemannian geometry.

Definition 2.2.1 Let f : Mn → R be a smooth function. The gradient of f is the smooth vector
field ∇f , defined on M , such that:

⟨∇f, X⟩ = X(f),

for all X ∈ X(M). For each p ∈ M , we can also write:

⟨∇f(p), Xp⟩ = Xp(f) = dfp(Xp).

From the definition, it follows that the gradient of a smooth function is uniquely determined by
the condition above. Let f, g : Mn → R be smooth functions. Two importants propriety are

(i) ∇(f + g) = ∇f + ∇g,

(ii) ∇(fg) = g∇f + f∇g.

Definition 2.2.2 Let X be a smooth vector field on Mn. The divergence of X is the smooth
function div : Mn → R, defined for each p ∈ M by

(divX)(p) = tr{v 7→ (∇vX)(p)},

where v ∈ TpM , and tr denotes the trace of the linear operator within braces.

If X, Y are smooth vector fields on Mn, and f : Mn → R is a smooth function, we have
the following two importants propriety

(i) div(X + Y ) = divX + divY.

(ii) div(fX) = fdivX + ⟨∇f, X⟩ .

Definition 2.2.3 Let f : Mn → R be a smooth function. The Laplacian of f is the function
∆f : Mn → R given by

∆f = div(∇f).

In this context, given smooth functions f, g : Mn → R, we have

∆(fg) = g∆f + f∆g + 2 ⟨∇f, ∇g⟩ .

In particular,
1
2∆(f2) = f∆f + |∇f |2.
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Definition 2.2.4 Let f : Mn → R be a smooth function. The Hessian of f is the field of linear
operators (Hess f)p : TpM → TpM, defined for v ∈ TpM by (Hess f)p(v) = ∇v∇f.

It follows from the properties of the Riemannian connection that if X is any extension
of v to a neighborhood of p in M, then (Hess f)p(v) = (∇X∇f)(p). We also use the notation
∇2f to denote the Hessian of the smooth function f : Mn → R when there is no need to specify
the point p ∈ M or the vector v ∈ TpM. In this sense, if f : Mn → R is a smooth function and
p ∈ M, then (Hess f)p : TpM → TpM is a self-adjoint linear operator and ∆f = tr(Hess f).

From the work done so far, given f ∈ C∞(M), we can consider the operator Hess f :
X(M) → X(M). Associated with this operator, we can consider the Hessian form of f, which
is a bilinear, symmetric, self-adjoint form denoted by Hess f : X(M) × X(M) → C∞(M) and
given by

(X, Y ) 7→ Hess f(X, Y ) = ⟨Hess f(X), Y ⟩ (by definition of the Hessian form)
= ⟨∇X∇f, Y ⟩ (by definition of the Hessian operator)
= X(Y (f)) − (∇XY )f (connection is compatible with the metric)

The following are some classic results that will be used throughout the text.

Theorem 2.2.5 (Divergence Theorem) Let Mn be a compact oriented Riemannian manifold
and X ∈ X(M). If the boundary of M is equipped with the orientation and metric induced by
the inclusion j : ∂M → M and ν denotes the outward unit normal to M along ∂M , then∫

M
(divX)dv =

∫
∂M

⟨X, ν⟩ da,

where the term on the right-hand side should be interpreted as zero if ∂M = ∅.

Corollary 2.2.6 Let (Mn, g) be a compact Riemannian manifold with boundary ∂M. Denote
by g the metric induced on ∂M and ν the outward normal vector along ∂M. Given f ∈ C∞(M)
and X ∈ X(M), we have the following "integration by parts formula":∫

M
⟨∇f, X⟩ dv =

∫
∂M

f ⟨X, ν⟩g da −
∫

M
(fdivX) dv.

Corollary 2.2.7 Let Mn be a compact and oriented Riemannian manifold with boundary ∂M

equipped with the orientation and metric induced by the inclusion j : ∂M → M (possibly ∂M =
∅). If f : M → R is a smooth function and ν denotes the unit outward normal to M along ∂M ,
then:

(a) ∫
M

∆f dv =
∫

∂M

∂f

∂ν
da,

(b) (1st Green’s identity) ∫
M

(
⟨∇f, ∇g⟩ + f∆g

)
dv =

∫
∂M

f
∂g

∂ν
da.
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(c) (2nd Green’s identity)∫
M

(
f∆g − g∆f

)
dv =

∫
∂M

(
f

∂g

∂ν
− g

∂f

∂ν

)
da.

where ∂f

∂ν
= ⟨∇f, ν⟩ is the normal derivative of f along ∂M, and the integral over the

boundary is to be interpreted as zero if ∂M = ∅.

We end this section with a result that will be used repeatedly throughout the text.

Lemma 2.2.8 Let V be an n-dimensional real vector space equipped with an inner product. If
T : V → V is a self-adjoint linear operator, then

|T |2 ≥ 1
n

(tr T )2,

with equality if and only if T is a multiple of the identity operator.
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3 Reilly’s generalized identity and ap-
plications

This chapter focuses on Reilly’s generalized identity and its applications, exploring its
versatility in deriving inequalities and rigidity results within various geometric contexts. The
chapter begins by analyzing V-static manifolds, defined by a specific criticality condition for
the volume functional under fixed boundary metrics. Using a tensorial framework, the work
establishes new integral identities, including generalized versions of the Heintze-Karcher and
Minkowski inequalities. These results highlight the conditions under which boundary compo-
nents exhibit geometric rigidity, such as being umbilic or possessing constant mean curvature.

The chapter further extends the analysis to m-quasi-Einstein manifolds. Rigidity results
and integral inequalities are derived, emphasizing their implications for warped product struc-
tures. The use of Reilly-type identities underpins the chapter’s contributions, offering a unified
approach to addressing classical and modern geometric problems.

3.1 V-static case

The results presented here are part of [21]. This paper explores the extension and appli-
cations of a generalized Reilly-type identity within the context of V-static manifolds. The study
builds upon existing integral formulas, particularly those developed by [14], and adapts then
to the V-static framework. This adaptation allows the derivation of new geometric inequalities
and rigidity results that generalize classical results in differential geometry.

The Reilly-type identity specifically adapted for V-static manifolds allows us to study
the domain properties, boundary conditions, mean curvature, and Ricci curvature, providing
a comprehensive framework for analyzing geometric inequalities. In the chapter we use this
identity to extend the Heintze-Karcher and Minkowski inequalities to bounded domains within
V-static manifolds, in Sections (3.1.3) and (3.1.4), respectively.

The generalized Heintze-Karcher inequality relates the volume of a domain to surface
integrals over its boundary’s curvatures. In this setting, the inequality holds for domains with
mean convex boundaries. When equality is achieved, it is shown that the boundary must be
umbilic. Similarly, the generalized Minkowski inequality establishes a connection between the
integrals of the second fundamental form, mean curvature, and domain volume. The equality
case in this inequality also leads to rigidity results, requiring that the boundary exhibit constant
mean curvature.

For a clear and precise display of the results will be presented a detailed analysis of the
conditions under which equality is achieved in these inequalities. The rigidity results demon-
strate that specific geometric constraints, such as umbilicity or constant boundary mean curva-
ture, are necessary for equality to hold. These findings are supported by a robust mathematical
framework that incorporates extensions of Bochner’s formula, variational principles, and integral
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techniques leveraging divergence theorems and eigenvalue problems.

3.1.1 V-static metrics

Most results will not be proven here; the reader may find more comprehensive material
in the references [16], [17] e [19].

Definition 3.1.1 Let (Mn, g) be an n-dimensional Riemannian manifold (n ≥ 3) that is com-
plete and connected, with boundary ∂M (possibly disconnected). We say that g is a V-static
metric if there exists a smooth (non-trivial) solution V on Mn that satisfies the overdetermined
elliptic system:

L∗
g(V ) = −(∆V )g + ∇2V − V Ric = g in M

V > 0 on int(M)
V = 0 on ∂M

where int(M) denotes the interior of M , and Ric, ∆, ∇2 represent the Ricci tensor, the Laplace
operator, and the Hessian on (Mn, g), respectively. Equivalently, we refer to the metric g as
V-static with potential V-static V . The triple (Mn, g, V ) is called a V-static triple.

It is worth noting that L∗
g is the formal 1 L2-adjoint of the linearization of the scalar

curvature operator Lg, that is, if h is a symmetric (0, 2) tensor on M , the linearization Lg of
the scalar curvature map R : M → R is given by:

Lg(h) = −∆g(trgh) + divgdivgh − hRic(g)

and by convention, ∆gf = trg(∇2
gf), and we denote that M is the cone of the Riemannian metric

on M . For further details, see [18, cf. Eq. (1.183), page 64] ad [19].
Let γ be a smooth metric on ∂M , and let Mγ be the set of all metrics on M such that

g
∣∣∣
T (∂M)

= γ. We define the set Mγ ⊂ M. By [16, Lemma 2.1], the scalar curvature map R

is smooth. Let g0 ∈ Mγ , and suppose the scalar curvature of g0 is constant and equal to K.
If 0 is not an eigenvalue of the Dirichlet operator (n − 1)∆g0 + K, then, by [16, Lemma 2.2],
MK

γ = {g ∈ Mγ | R(g) = K} is a submanifold of Mγ . Miao and Tam [16] showed that the
critical metric defined in (3.1.1) is related to the study of critical points of the volume functional
on MK

γ . For details, see Section 2 and Theorem 2.1 in [16]. Another approach is due to [19,
Theorem 2.3]. In both approaches, it is assumed that 0 is not an eigenvalue of the Dirichlet
operator (n − 1)∆g0 + K, i.e., the first eigenvalue of (n − 1)∆g0 + K is positive.

Next, we consider V ≥ 0, V −1(0) = ∂M , and the first eigenvalue of (n − 1)∆g0 +
K is positive. In this context, Cruz and Santos [63], in Theorem A, showed an important
characterization for the V -static metric in Mc,0 = {g ∈ Mk,2 ⊂ W k,2 | Rg = c and Hg = 0}, the
variety of Riemannian metrics with prescribed curvature. A similar characterization was used
by Cruz and Nunes [64] for the study of V -static manifolds in dimension 3.

For examples of V -static manifolds, see [19] (Examples 1.3, 1.4, and 1.5), and for exam-
ples of compact V -static manifolds, see [16] in Theorem 3.1 and [17] in Theorems 4.1 and 4.2.
See also [63] in Section 2.
1 For a definition of the formal adjoint, see [18, Appendix E, page 460].
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In next, we will present details of some of these examples that will be used later.

Example 3.1.2 (Geodesic ball in Rn) Let (Rn, g) be the Euclidean space with the canonical
metric g. Consider Br ⊂ Rn a geodesic ball of radius r with the induced metric g. Let

V (x) = r2

2(n − 1) − |x|2

2(n − 1) .

Under these conditions, we have Ric = 0 and

∇2V = − 1
n − 1g, ∆f = − n

n − 1 .

Thus,

−∆V g + ∇2V − V Ric = n

n − 1g − 1
n − 1g

= g.

Note also that V −1(0) = ∂(Br), because

0 = V (x)

= r2

2(n − 1) − |x|2

2(n − 1)
= r2 − |x|2.

Thus, |x|2 = r2 and V −1(0) = ∂(Br). Therefore, we conclude that (Br, g, V ) is a V -static triple.

Example 3.1.3 (Geodesic ball in Hn) Consider the Minkowski space Rn+1
1 = (Rn+1, g), where

g = dx2
1 + dx2

2 + . . . + dx2
n − dt2

and the hyperbolic space given by

Hn = {(x1, x2, . . . , xn, t) ∈ Rn+1 ; x2
1 + x2

2 + . . . + x2
n − t2 = −1, t ≥ 1}

embedded in Rn+1
1 and the induced metric in Hn by g. Therefore, g is a Riemannian metric.

Fixing the point p = (0, 0, . . . , 1) ∈ Hn, consider Br ⊂ Hn a geodesic ball of radius r. Let

V (x1, x2, . . . , xn, t) = 1
n − 1

(
1 − cosh r

cosh r

)
,

where r is the geodesic distance from the point x to p and t = cosh r is the height function.
Therefore,

∇2V = − ∇2(t)
(n − 1) cosh r

= − t

(n − 1) cosh r
g

and

(∆V )g = − nt

(n − 1) cosh r
g.
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Since Ric = −(n − 1)g, we have

−∆V g + ∇2V − V Ric = nt

(n − 1) cosh g
g − t

(n − 1) cosh r
g + 1

n − 1
(
1 − t

cosh r

)
(n − 1)g

= nt − t + (n − 1) cosh r − (n − 1)t
(n − 1) cosh r

g

= g.

Moreover, V −1(0) = ∂(Br). Thus, (Br, g, V ) is a V -static triple.

Example 3.1.4 (Geodesic ball in Sn) Consider Sn the canonical sphere in the Euclidean space
Rn+1 and the point p = (0, 0, . . . , 1) ∈ Sn. Let Br ⊂ Sn be the geodesic ball centered at p with
radius r < π

2 , g the induced metric on Br, and

V (x1, x2, . . . , xn, t) = 1
n − 1

(cos r

cos r
− 1

)
where r is the geodesic distance from (x1, x2, . . . , xn, t) to p. Since t = cos r is the height function,
we have

∇2V = ∇2(t)
(n − 1) cos r

g

= − t

(n − 1) cos r
g

and

∆V g = − nt

(n − 1) cos r
g.

Since Ric = (n − 1)g, we have

−∆V + ∇2V − V Ric = nt

(n − 1) cos r
g − t

(n − 1) cos r
g − 1

n − 1
( t

cos r
− 1

)
(n − 1)g

= nt − t − (n − 1)t + (n − 1) cos r

(n − 1) cos r
g

= g.

Moreover, V −1(0) = ∂(Br). Thus, (Br, g, V ) is a V -static triple.

The following results provide some properties of a Riemannian manifold (Mn, g) with a
potential function V .

Theorem 3.1.5 [16, Theorem 3.2] Consider (Mn, g, V ) a V-static triple. Then, (Mn, g, V ) has
the following properties:

1. ∆V = − R
n−1V − n

n−1 .

2. The scalar curvature of g is constant.

3. We have that |∇gV |(x) ̸= 0, for all x ∈ ∂M.

4. |∇gV | is constant along each connected component of ∂M.
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5. The boundary ∂M is a totally umbilical hypersurface

6. If M is compact, with a smooth boundary (possibly disconnected) Σ such that V = 0 on Σ
and the first Dirichlet eigenvalue of (n − 1)∆ + R is non-negative, where R is the scalar
curvature of g, then along each connected component Σi of Σ, the Gauss equation leads us
to obtain that at each point of Σ the relation 2Ric(ν, ν) + RΣ = R + n−2

n−1H2, where RΣ is
the scalar curvature of Σ and H is the mean curvature of Σ.

3.1.2 General integral formula

In this section, inspired by the results of [13] and [14] in the context of static and sub-
static manifolds, respectively, we obtain an integral formula to be applied in bounded domains
contained in V -static manifolds.

In such a work was obtained the following result.

Theorem 3.1.6 [14, Theorem 3.1] Let (Mn, g) be a smooth Riemannian manifold and Ω ⊂ M

a smooth domain with a smooth boundary ∂Ω. Let Pij be a smooth symmetric (0, 2)-tensor in
Ω, and let P be the trace of Pij with respect to g. Define Aij(f) := f,ij + 1

n−1Pfgij − fPij,
and its trace with respect to g, denoted by A(f) = ∆f + P

n−1f . Then, for every smooth function
V, f ∈ C∞(Ω,R), we have the following identity:∫

Ω
V

[
A(f)2 − |Aij(f)|2

]
dv

=
∫

∂Ω

[
V h(∇z, ∇z) + 2V u∆z + V Hu2 + V,ν |∇z|2

]
da

+
∫

∂Ω

[
2V zf,iPiν − z2V,iPiν − z2V Pνi,i

]
da

+
∫

Ω

[
(V,ij) − ∆V gij − V Pij + V (Rij − Pij)

]
f,if,j dv

+
∫

Ω

[
Pij(V,ij + 1

n − 1PV gij − V Pij) + V Pij,ji + 2ViPij,j

]
f2 dv.

Here, ν denotes the unit normal vector pointing outward, z = f |∂Ω, u = ∇νf , V,ν = ∇νV , and
h, H are the second fundamental form and the mean curvature (sum of the principal curvatures)
of ∂Ω, respectively.

First, we recall that Theorem 3.1.6 is a generalized Reilly formula, i.e., if Pij = 0 and V = 1,
we obtain the classical Reilly’s identity [2]. For the proof of this version of Theorem 3.1.6,
the central idea is to establish an integral identity for a smooth function V on Ω, with the
assumption that the ratio ∇2V

V is continuous up to the boundary. This identity involves both
integrals in Ω and boundary integrals on ∂Ω. The key points are:

• Choosing the Tensor Pij : The proof starts by choosing an appropriate tensor Pij , specifi-
cally designed to satisfy the conditions from a previous theorem. This tensor is expressed
in terms of the second derivatives of V , as:

Pij = 1
V

(V,ij − ∆V gij) ,
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which is a symmetric tensor. The choice of this tensor ensures the structure needed for
the rest of the proof. The trace of this tensor gives the expression

P = −n − 1
V

∆V,

which is used later in the proof.

• Computation of Aij(f): Using the chosen tensor Pij , the expression for Aij(f) is derived,
which involves the second derivatives of f and V . It turns out that this computation leads
to:

Aij(f) = f,ij − V,ij

V
f,

and the trace of Aij(f) gives the expression:

A(f) = ∆f − ∆V

V
f.

This expression plays a key role in simplifying the integrals that appear in the identity.

• Boundary Integrals and use of the Ricci Identity: Boundary integrals involve terms that
can be written in terms of the second fundamental form h, the mean curvature H, and
other boundary data. A key step is to simplify the boundary terms by using the identity
of Ricci curvature and the second fundamental form. In particular, it is shown that the
boundary terms can be written as:∫

∂Ω

[
2z∇2V (∇z, ν) − 2zu(∆V + HVν)

]
da,

where z = f |∂Ω, u = ∇νf , and ν is the outward normal vector. These terms are carefully
derived using integration by parts, the properties of the normal vector, and the decompo-
sition of the Ricci tensor.

The next result is a particlar case of Theorem 3.1.6 and will be important in Section 3.2.1
where an application in the context of m-quasi Einstens will be presented. This last application
is part of paper [26].

Theorem 3.1.7 [13, Theorem 1.1] Let (Ωn, g) be an n-dimensional compact Riemannian man-
ifold with smooth boundary ∂Ω. Consider V : Ω → R and f : Ω → R as smooth functions and
K as a constant. The following relation holds:∫

Ω
V

[
(∆f + Knf)2 − |∇2f + Kfg|2

]
dv

=
∫

Ω

[
∇2V − (∆V )g − 2(n − 1)KV g + V Ric

]
(∇f, ∇f) dv

+ (n − 1)K
∫

Ω
(∆V + nKV )f2 dv +

∫
∂Ω

∇νV
[
|∇z|2 − (n − 1)Kz2

]
da

+
∫

∂Ω
V

[
2f,ν∆z + H(f,ν)2 + h(∇z, ∇z) + 2(n − 1)Kf,νz

]
da.

Here, ν denotes the outward-pointing unit normal vector, z = f |∂Ω, u = ∇f , V,ν = νV , h( , )
represents the second fundamental form, and H is the mean curvature (sum of the principal
curvatures) of ∂Ω.
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Now, we make a choice of P in Theorem 3.1.6 that works for our purpose to establish a
Reilly-type identity for V -static manifolds. In this direction, we consider

Pij = 1
V

(
V,ij − (∆V + 1)gij

)
. (3.1)

Note that

Qij = Rij − Pij

= 1
V

[V Rij − V,ij + (∆V + 1)gij ] (3.2)

is a tensor that vanishes in the case of V -static manifolds. The next result and, mainly, its
consequences will be the main tool of this work. Its proof follows the same line of Theorem 1.1
in [14].

Theorem 3.1.8 Let (Mn, g) be an n-dimensional Riemannian manifold and Ω ⊂ Mn a bounded
domain with smooth boundary ∂Ω. Let V ∈ C∞(Ω) be a smooth function such that P defined by
(3.1) is continuous up to ∂Ω. Then, for all f ∈ C∞(Ω), we have∫

Ω
V

[(
∆f − 1

V
(∆V + n

n − 1)f
)2

−
∣∣∣∇2f − 1

V
(∇2V + 1

n − 1g)f
∣∣∣2]

dv

=
∫

∂Ω

[
V h(∇z, ∇z) + 2V u∆z + V Hu2 + V,ν |∇z|2 + 2z∇2V (∇z, ν)

]
da

−
∫

∂Ω

[
2zu(∆V + HV,ν + 1) + z2 ∇2V − (∆V + 1)g

V
(∇V, ν)

]
dv

+
∫

Ω

[
|∇f |2 + 1

V

(
∆V + n

n − 1
)
f2

]
dv

+
∫

Ω
V Qij(V f,i − V,if)(V f,j − V,jf) dv.

Here, ν denotes the outward-pointing unit normal vector, z = f |∂Ω, u = ∇νf, V,ν = ∇νV, h(·, ·), H

are the second fundamental form and the mean curvature of ∂Ω, respectively.

Proof: By considering the trace of Pij in the metric g

P = −
[(n − 1)∆V + n

V

]
,

and returning to the definition of Aij in Theorem 3.1.6, we get

Aij(f) = f,ij + 1
n − 1Pfgij − fPij

= f,ij − 1
n − 1

[(n − 1)∆V + n

V

]
fgij − f

1
V

(V,ij − (∆V + 1)gij)

= f,ij − 1
V

(V,ij + 1
n − 1gij)f,

and
A(f) = tr(Aij(f)) = ∆f − 1

V

(
∆V + n

n − 1
)
f.

Furthermore, by straightforward calculations

V,ij + 1
n − 1PV gij + 1

n − 1gij − V Pij = 0, (3.3)
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and

∆V + 1
n − 1PV + n

n − 1 = 0.

Next, we are going to obtain two identities that will be used in the sequence of the proof
by taking covariant derivatives from (3.2) and (3.3). In the following, the Ricci Identity (namely
f,ijj = (∆f),i + Rijf,j) and the second (contracted) Bianchi identity (namely, 2Rij,i = R,j) will
be used.

Statement 1:

QijV,ji + 1
2RjV,j = 2Pji,iV,j + V Pij,ji (3.4)

By (3.3), we have

0 =
[
V,ij + 1

n − 1PV gij − V Pij + 1
n − 1gij

]
,ji

=
[
V,ijj + 1

n − 1(PV ),i − V,jPij − V Pij,j + 1
n − 1gij,j

]
,i

=
[
(∆V ),i + RijV,j + 1

n − 1(PV ),i − V,jPij − V Pij,j

]
,i

=
[
RijV,j − V,jPij − V Pij,j

]
,i

= (Rij − Pij)V,ji + Rij,iV,j − 2Pij,iV,j − V Pij,ji

= QijV,ji + 1
2R,jV,j − 2Pji,iV,j − V Pij,ji.

Statement 2:

V,jQij,i − 1
2V,jR,j + 1

V
QijV,iV,j = 0. (3.5)

By taking the covariant derivative of (3.2), see that

V Qij,i + V,iQij =
[
V Qij

]
,i

= (∆V + 1),j − V,iji + V,iRij + V Rij,i

= (∆V + 1),j − (∆V ),j − RijV,i + V,iRij + V Rij,i

= 1
2V R,j .

Now, we analyse in Theorem 3.1.6 the second integral on ∂Ω, which is∫
∂Ω

[
2V ff,iPiν − f2V,iPiν − f2V Pνi,i

]
da

=
∫

∂Ω

[
2V ff,iPiν − f2(V Piν),i

]
da

=
∫

∂Ω

[
2ff,i(V,iν − (∆V + 1)giν) − f2(V,iνi − (∆V ),igiν − ∆V giν,i)

]
da

=
∫

∂Ω

[
2ff,i(V,iν − (∆V + 1)giν) − f2

(
(∆V ),ν + RiνV,i − (∆V ),igiν

)]
da

=
∫

∂Ω

[
2ff,i(V,iν − (∆V + 1)giν) − f2RiνV,i

]
da

=
∫

∂Ω

[
2z∇2V (∇z, ν) − 2zu(∆V + HVν + 1) − f2RiνV,i

]
da. (3.6)
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where, in the last identity we have used ∆V = ∆V + ∇2V (ν, ν) + HVν .
Returning to Theorem 3.1.6, we analyse the two integrals in Ω. Using (3.3), (3.4), (3.5)

and integration by parts, we have

∫
Ω

[
V,ij − ∆V gij − V Pij + V (Rij − Pij)

]
f,if,j dv

+
∫

Ω

[
Pij(V,ij + 1

n − 1PV gij − V Pij) + V Pij,ji + 2V,iPij,j

]
f2 dv

=
∫

Ω

[
gij + V Qij

]
f,if,j dv +

∫
Ω

[
Pij(− 1

n − 1gij) + QijV,ij + 1
2R,jV,j

]
f2 dv

=
∫

Ω

[
|∇f |2 + V Qijf,if,j

]
dv +

∫
Ω

[1
2R,jV,jf2 − 1

n − 1Pf2
]

dv +
∫

Ω
QijV,jif

2 dv

=
∫

Ω

[
|∇f |2 + V Qijf,if,j + 1

2R,jV,jf2 + 1
V

(∆V + n

n − 1)f2
]

dv +
∫

∂Ω
V,jf2Qjν da

−
∫

Ω

[
V,jf2Qij,i + 2V,jQijff,i

]
dv

=
∫

Ω

[
|∇f |2 + V Qijf,if,j + 1

V
(∆V + n

n − 1)f2
]

dv

+
∫

∂Ω
V,jf2Qjν da +

∫
Ω

[ 1
V

QijV,iV,jf2 − 2V,jQijff,i

]
dv (3.7)

Replacing (3.6) and (3.7) in Theorem 3.1.6, we obteined that∫
Ω

V
[(

∆f − 1
V

(∆V + n

n − 1)f
)2

−
∣∣∣∇2f − 1

V
(∇2V + 1

n − 1g)f
∣∣∣2]

dv

=
∫

∂Ω

[
V h(∇z, ∇z) + 2V u∆z + V Hu2 + V,ν |∇z|2

]
da

+
∫

∂Ω

[
2z∇2V (∇z, ν) − 2zu(∆V + HV,ν + 1) + z2(V,jQjν − RiνV,i)

]
da

+
∫

Ω

[
|∇f |2 + 1

V

(
∆V + n

n − 1
)
f2

]
dv

+
∫

Ω

1
V

Qij(V f,i − V,if)(V f,j − V,jf) dv

=
∫

∂Ω

[
V h(∇z, ∇z) + 2V u∆z + V Hu2 + V,ν |∇z|2

]
da

+
∫

∂Ω

[
2z∇2V (∇z, ν) − 2zu(∆V + HV,ν + 1) − z2 ∇2V − (∆V + 1)g

V
(∇V, ν)

]
da

+
∫

Ω

[
|∇f |2 + 1

V

(
∆V + n

n − 1
)
f2

]
dv

+
∫

Ω

1
V

Qij(V f,i − V,if)(V f,j − V,jf) dv

=
∫

∂Ω

[
V h(∇z, ∇z) + 2V u∆z + V Hu2 + V,ν |∇z|2

]
da

+
∫

∂Ω

[
2z∇2V (∇z, ν) − 2zu(∆V + HV,ν + 1) − z2 ∇2V − (∆V + 1)g

V
(∇V, ν)

]
da

+
∫

Ω

[
|∇f |2 + 1

V

(
∆V + n

n − 1
)
f2

]
dv

+
∫

Ω
V · Q

(
∇f − ∇V

V
f, ∇f − ∇V

V
f

)
dv,
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which concludes our result. □

Suppose that (Mn, g, V ) is a V -static triple. Therefore, there is V ∈ C∞(M) such that
V is nonnegative and V · Q = 0. Furthermore, the tensor Pij = Rij is clearly continuous up to
∂Ω. This allows the following consequence

Corollary 3.1.9 Let (Mn, g, V ) be a V -static triple and Ω ⊂ M a bounded domain. Then, for
all f ∈ C∞(Ω), ∫

Ω
V

[(
∆f − 1

V
(∆V + n

n − 1)f
)2

−
∣∣∣∇2f − 1

V
(∇2V + 1

n − 1g)f
∣∣∣2]

dv

=
∫

∂Ω

[
V h(∇z, ∇z) + 2V u∆z + V Hu2 + V,ν |∇z|2 + 2z∇2V (∇z, ν)

]
da

+
∫

∂Ω
2zuV Ric(ν, ν) da −

∫
∂Ω

z2Ric(∇V, ν) da

+
∫

Ω

[
|∇f |2 + 1

V

(
∆V + n

n − 1
)
f2

]
dv.

Here ν denotes the outward-pointing unit normal vector, z = f |∂Ω, u = ∇νf, V,ν = ∇νV, h(·, ·), H

are the second fundamental form and the mean curvature of ∂Ω respectively.

Proof: The proof is the direct application of Theorem 3.1.8 with the observation that

(∆V + 1)g(ν, ν) + HV,ν = (∆V + 1)g(ν, ν) − ∇2V (ν, ν) = −V Ric(ν, ν).

□

Remark 3.1.10 V -static Equation (3.1.1) could be used to give a more geometric point of view
of the right-hand side of Corollary 3.1.9. Indeed,

• 1
V (∆V + n

n−1) = − R
n−1

• 1
V (∇2V + 1

n−1g) = Ric − R
n−1g.

3.1.3 Heintze-Karcher type inequality

This section is devoted to proving a version of the Heintze-Karcher type inequality (1.5)
to domains on V -static manifolds. First, we establish some previous conditions in treating
domains with multiple boundaries, including connected components that intersect ∂M . This
hypothesis was inspired by the sub-static case, see [14].

Definition 3.1.11 Let (Mn, g, V ) be a V -static triple and Ω ⊂ Mn be a domain with smooth

boundary ∂Ω = Σ ⋃ ( τ⋃
l=1

Nl

)
. We say that Ω satisfies V -static boundary condition if the following

conditions hold:

(H1) the components Nl are contained in ∂M ;

(H2) Σ ⊂ int(M) is strictly mean convex (this means H > 0);
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(H3) In each Nl,

RNl ≥ R + n − 2
n − 1H2, (3.8)

where RNl denote the scalar curvature in Nl, and H its mean curvature.

Remark 3.1.12 1. Condition (H1) implies that all the boundary components Nl are umbili-
cal, smooth, closed (n − 1)-dimensional Riemannian submanifolds in M, see [16, Theorem
3.2]. This result also implies that the right-hand side of (3.8) is a constant.

2. A motivation for the condition (H3) comes from the V −static equation that could control
one term in the integral identity of Corollary 3.1.9. In fact, by (3.1.1) and Gauss equation

−∇2V (ν, ν) + ∆V + 1
V

= −Ric(ν, ν) = 1
2

(
RNl − R − n − 2

n − 1H2
)
.

Figure 2 – Illustration of the definition (3.1.11).

Next, we choose a special solution for the Schrodinger operator, which appears on the
left-hand side of Corollary 3.1.9. In this direction, it is important to prove that the first Dirichlet
eigenvalue of the operator ∆ − q in Ω is positive where q := 1

V

(
∆V + n

n−1

)
. Note that in case

that Mn is a V -static manifold
1
V

(
∆V + n

n − 1
)

= − R

n − 1 ,

where R denote the scalar curvature. Recall the first eigenvalue for a bounded domain Ω is
defined as, see [7, Section 3.2]

λ1(∆ − q, Ω) = inf
f∈H1

0 (Ω), ||f ||2
L2(Ω)=1

∫
Ω

(
|∇f |2 + qf2

)
dv.

In the following two lemmas we will study the signal of the first eigenvalue λ1(∆ − q, Ω)
for a bounded domain Ω of the operator ∆−q and the applications of this signal in the existence
of a solution to our problem.

Lemma 3.1.13 Suppose V ∈ C∞(int(M)) and V > 0 in int(M). Let q := 1
V

(
∆V + n

n−1

)
. If

Ω ⊂ int(M) is a bounded domain, then λ1(∆ − q, Ω) > 0.
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Proof: To prove the first statement, we only need to show that∫
Ω

(|∇f |2 + qf2) dv ≥ 0,

for any f ∈ C∞
c (Ω) with ||f ||2L2(Ω) = 1. By integration-by-parts and using the relation

∆V

V
f2 = div

(∇V

V
f2

)
− 2 f

V
⟨∇f, ∇V ⟩ +

∣∣∣∇V

V
f

∣∣∣2,

we obtain∫
Ω

(
|∇f |2 + 1

V

(
∆V + n

n − 1
)
f2

)
dv =

∫
Ω

(
|∇f |2 + ∆V

V
f2

)
dv + n

n − 1

∫
Ω

f2

V
dv

>

∫
Ω

(
|∇f |2 + ∆V

V
f2

)
dv

=
∫

Ω

∣∣∣∇f − ∇V

V
f

∣∣∣2 dv ≥ 0

with this we conclude that λ1(∆ − q, Ω) ≥ 0.

To prove the last statement, we recall the fact that if one bounded domain is strictly con-
tained in another one, e.g., Ω ⊊ Ω′, then, by [65, Lemma 1], λ1(Ω) > λ1(Ω′). If Ω ̸= int(M), then
there exists a bounded domain Ω′ ⊂ int(M) which strictly contains Ω, i.e., Ω ⊊ Ω′ ⊂ M, then
combining with the initial statement, we have λ1(Ω) > λ1(Ω′) ≥ 0. Therefore, since Ω ⊂ int(M),
λ1(∆ − q, Ω) > 0. □

The following result discusses the signal of such a solution; see [10, Theorem 2.3] for a
discussion in the sub-static case. A slight change in the proof of this result gives the following
existence result.

Lemma 3.1.14 Let (M, g, V ) be a V -static triple, q = 1
V

(
∆V + n

n−1

)
and Ω ⊂ M be a bounded

domain with smooth boundary such that ∂Ω = Σ ∪
τ⋃

l=1
Nl and satisfies the condition (H1) and

(H2) of Definition 3.1.11. Then, there exists only one smooth solution f to
∆f − qf = −1 in Ω

f = 0 on Σ,

f = cl on Nl, l = 1, . . . , τ,

given cl > 0 constants. Moreover, f > 0 in Ω and Σ = {f = 0} is a regular level set of f .
Furthermore, ∂f

∂ν (x) < 0 at any x ∈ Σ, and ν is unit normal to Σ in x pointing outside of Ω. In
particular, ν = − ∇f

|∇f | .

Next, we choose some suitable constants cl to treat with the Schrodinger operator de-
scribed above. Let

c̃l = max
{(∆V − ∇2V (ν, ν))(z) + 1

V (z) ; z ∈ Nl

}
, cl =

{
n−1
nc̃l

, if c̃l ̸= 0
0 if c̃l = 0.

(3.9)

By (H3) of Definition 3.1.11 we have cl ≥ 0 for all l = 1, . . . , τ.
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Remark 3.1.15 We observe if we have cl = 0 in a non empty component Nl then Ric(ν, ν) ≥ 0
in this component. With additional condiction (H3) of the Definition 3.1.11 we have Ric(ν, ν) =
0.

Theorem 3.1.16 Let (Mn, g, V ) be an n-dimensional V -static Riemannian triple and consider

Ω ⊂ Mn a bounded domain such that ∂Ω = Σ ⋃ ( τ⋃
l=1

Nl

)
satisfies (H1) − (H3). Then, we have

( ∫
Ω

(
V − n

n − 1f
)

dv −
τ∑

l=1
cl

∫
Nl

V,νNl
da

)2

≤ n − 1
n

[ ∫
Ω

(
V − n

n − 1f
)

dv −
τ∑

l=1
cl

∫
Nl

(
V,νNl

+ n

n − 1u
)

da
] ∫

Σ

V

H
da, (3.10)

where f is a solution of the PDE
∆f + R

n−1f = −1 in Ω
f = 0 on Σ,

f = cl on Nl, l = 1, . . . , τ.

(3.11)

If the equality is verified in (3.10), then Σ is umbilic.

Proof: Consider a solution of (3.11), where cl are given by (3.9) and whose existence is verified
by Lemma 3.1.14. We use the integral identity obtained in Corollary 3.1.9 applied such solution
f .

First, by Cauchy-Schwarz inequality∣∣∣∇2f − 1
V

(∇2V + 1
n − 1g)f

∣∣∣2 ≥
(
∆f − 1

V
(∆V − n

n − 1)f
)2 1

n
(3.12)

and then, ∫
Ω

V
[(

∆f − 1
V

(∆V + n

n − 1)f
)2

−
∣∣∣∇2f − 1

V
(∇2V + 1

n − 1g)f
∣∣∣2]

dv

≤
∫

Ω
V

[(
∆f − 1

V
(∆V + n

n − 1)f
)2

− 1
n

(
∆f − 1

V
(∆V + n

n − 1)f
)2]

dv

=
∫

Ω
V

[
1 − 1

n

]
dv

= n − 1
n

∫
Ω

V dv. (3.13)

Since f = 0 in Σ, V = 0 in Nl and f = cl in Nl, the restriction z = f |∂Ω is such that
∇z = 0 on ∂Ω. Then,∫

∂Ω

[
V h(∇z, ∇z) + 2V u∆z + V Hu2 + V,ν |∇z|2 + 2z∇2V (∇z, ν)

]
da =

∫
∂Ω

V Hu2 da.

(3.14)

In addition, on the components Nl,

∆V + 1 + HV,ν = ∆V + 1 − ∇2V (ν, ν)
= −V Ric(ν, ν)
= 0,
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what implies ∫
∂Ω

[
2zu(∆V + HV,ν + 1) + z2 ∇2V − (∆V + 1)g

V
(∇V, ν)

]
da

=
∫

Σ

[
2zu(∆V + HV,ν + 1) + z2 ∇2V − (∆V + 1)g

V
(∇V, ν)

]
da

+
∫

Nl

[
2zu(∆V + HV,ν + 1) + z2 ∇2V − (∆V + 1)g

V
(∇V, ν)

]
da

= −c2
l

∫
Nl

V,νNl

[(∆V + 1)g − ∇2V ](νNl
, νNl

)
V

da

≤ −c2
l

∫
Nl

V,νNl
max

Nl

[(∆V + 1)g − ∇2V ](νNl
, νNl

)
V

da

≤ −n − 1
n

cl

∫
Nl

V,νNl
da (3.15)

since (3.11), the definition of cl and the fact that V,νNl
< 0, which follows from the fact that

V = 0 in each Nl while V > 0 in Ω.

Since
f∆f + R

n − 1f2 = −f,

we use integration by parts

−
∫

Ω
f dv =

∫
Ω

f∆f dv + R

n − 1

∫
Ω

f2 dv

=
∫

∂Ω
fu da −

∫
Ω

|∇f |2 dv + R

n − 1

∫
Ω

f2 dv

=
∫

Σ
fu da +

τ∑
l=1

∫
Nl

fu da −
∫

Ω
|∇f |2 dv + R

n − 1

∫
Ω

f2 dv

=
τ∑

l=1
cl

∫
Nl

u da −
∫

Ω
|∇f |2 dv + R

n − 1

∫
Ω

f2 dv

=
τ∑

l=1
cl

∫
Nl

u da −
∫

Ω

[
|∇f |2 + 1

V

(
∆V + n

n − 1
)
f2

]
dv,

and, then ∫
Ω

[
|∇f |2 + 1

V

(
∆V + n

n − 1
)
f2

]
dv =

∫
Ω

f dv −
τ∑

l=1
cl

∫
Nl

u da. (3.16)

Replacing (3.13), (3.14), (3.15) and (3.16) into Corollary 3.1.9, we have

n − 1
n

[ ∫
Ω

(
V − n

n − 1f
)

dv −
τ∑

l=1
cl

∫
Nl

(
V,νNl

− n

n − 1u
)

da
]

≥
∫

Σ
V Hu2 da. (3.17)

Using integration by parts again and (3.11), we see thar

−
∫

Ω
V dΩ =

∫
Ω

(
V ∆f − f∆V − n

n − 1f
)

dv

=
∫

Ω

(
V ∆f − f∆V

)
dv − n

n − 1

∫
Ω

f dv

=
∫

Σ
V u da −

τ∑
l=1

cl

∫
Nl

V,νNl
da − n

n − 1

∫
Ω

f dv,
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what implies ∫
Ω

(
V − n

n − 1f
)

dv −
τ∑

l=1
cl

∫
Nl

V,νNl
da = −

∫
Σ

V u da. (3.18)

Combining (3.17), (3.18) and using Hölder’s inequality

( ∫
Ω

(
V − n

n − 1f
)

dv −
τ∑

l=1
cl

∫
Nl

V,νNl
da

)2
=

(
−

∫
Σ

V u da
)2

≤
∫

Σ
V Hu2 da

∫
Σ

V

H
da

≤ n − 1
n

[ ∫
Ω

(
V − n

n − 1f
)

dv −
τ∑

l=1
cl

∫
Nl

(
V,νNl

− n

n − 1u
)

da
] ∫

Σ

V

H
da,

which proves (3.10).
Equality in (3.10) implies that (3.12) is a equality, and then

∇2f − 1
V

(∇2V + 1
n − 1g)f = − 1

n
g. (3.19)

Constraining (3.19) to (the level set) Σ and remembering that f |Σ = 0 we conclude that Σ is
umbilic. □

The last result has an interesting application to the particular case in which the boundary
of the domain is properly contained in int(M). In this case, ∂Ω = Σ and Nl = ∅.

Proof of Theorem 1.0.1:

Since Ω is properly contained in int(M), we have that ∂Ω = Σ, this is, ∪Nl = ∅.
Repeating the steps of the proof of Theorem 3.1.16, we have the integral inequality[ ∫

Ω

(
V − n

n − 1f
)

dv
]2

≤ n − 1
n

[ ∫
Ω

(
V − n

n − 1f
)

dv
] ∫

Σ

V

H
da. (3.20)

Lemma 3.1.14 applied to (3.18) implies
∫

Ω

(
V − n

n−1f
)

dv > 0. We simplify the relation
(3.20) to conclude the inequality. Equality case is done as the early result.

□

3.1.4 Minkowski-type inequality

This section is devoted to proving a Minkowski-type inequality for domains in V -static
manifolds. First, we will rearrange the boundary terms in the integral formula of Corollary 3.1.9
that deals with our purpose.
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Corollary 3.1.17 Let (M, Ω, V ) and f as in Corollary 3.1.9. If Σ is a connected component
of ∂Ω such that V > 0 then∫

Ω

[
V

(
∆f − 1

V

(
∆V + n

n − 1
)
f

)2
− V

∣∣∣∇2f − 1
V

(
∇2V + 1

n − 1g
)
f

∣∣∣2]
dv

=
∫

∂Ω

[
V

[
h − V,ν

V
g

](
∇z − ∇V

V
z, ∇z − ∇V

V
z
)]

da

+
∫

∂Ω

[
V H

(
u − V,ν

V
z
)2

+ 2V
(
u − V,ν

V
z
)(

∆z − (∆V + 1)
V

z
)

− z2

V
V,ν

]
da

+
∫

∂Ω\Σ

[
V h(∇z, ∇z) + 2V u∆z + V Hu2 + V,ν |∇z|2

]
da

+
∫

∂Ω\Σ

[
2z∇2V (∇z, ν) − 2zu(∆V + 1 + HV,ν)

]
da

+
∫

∂Ω\Σ
z2 ∆V + 1)g − ∇2V

V
(∇V, ν) da

+
∫

Ω

(
|∇f |2 + 1

V
(∆V + n

n − 1)f2
)

dv.

Proof: Using Gauss-Weingarten formula on ∂Ω, this is

V,αν = ∇αV,ν − hαβV,β,

we focus our attention only on the boundary integrals in Corollary 3.1.9. Since

(∆V + 1)g(ν, ν) + HV,ν = (∆V + 1)g(ν, ν) − ∇2V (ν, ν) = −V Ric(ν, ν),

we have ∫
Σ

(
V h(∇z, ∇z) + 2V u∆z + V Hu2 + V,ν |∇z|2

)
da

+
∫

Σ

(
2z∇2V (∇z, ν) − 2zu(∆V + 1 + HV,ν) − z2 ∇2V − (∆V + 1)g

V
(∇V, ν)

)
da

=
∫

Σ

(
V h(∇z, ∇z) + 2V u∆z + V Hu2 + V,ν |∇z|2

)
da

+
∫

Σ

(
2zu − z2 V,ν

V

)(
− (∆V + 1) − HV,ν

)
da

+
∫

Σ

(
2zzα − z2 Vα

V

)
(∇αV,ν − hαβVβ) da (3.21)

Furthermore, since ∂Σ = ∅, we use integration by parts to get∫
Σ

(
2zzα − z2 Vα

V

)
∇αV,ν da =

∫
Σ

〈
2z∇z − z2

V
∇V, ∇V,ν

〉
da

=
∫

Σ

〈
∇z2, ∇V,ν

〉
da −

∫
Σ

〈
z2

V
∇V, ∇V,ν

〉
da

= −
∫

Σ
V,νdiv(∇z2) da

+
∫

Σ
V,νdiv

(z2

V
∇V

)
da

= −
∫

Σ
V,ν2(z∆z + |∇z|2) da

+
∫

Σ

(z2

V
∆V + 2z

V

〈
∇z, ∇V

〉
− z2

V 2 |∇V |2
)
Vν da (3.22)
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We replace (3.22) in (3.21), and complete squares in the above identity to get the result. In
more detail, first we have∫

Σ

(
V h(∇z, ∇z) + 2V u∆z + V Hu2 + V,ν |∇z|2

)
da

+
∫

Σ

(
z2 V,ν

V
− 2zu

)(
∆V + 1 + HV,ν

)
da

+
∫

Σ

(
2zzα − z2 Vα

V

)
(∇αV,ν − hαβVβ) da

=
∫

Σ

(
V h(∇z, ∇z) + 2V u∆z + V Hu2 + V,ν |∇z|2

)
da

+
∫

Σ

(
z2 V,ν

V
− 2zu

)(
∆V + 1 + HV,ν

)
da

−
∫

Σ
hαβVβ

(
2zzα − z2 Vα

V

)
da

+
∫

Σ
V,ν

(z2

V
∆V + 2z

V
zαVα − z2

V 2 |∇V |2 − 2z∆z − 2|∇z|2
)

da.

We notice that,

V h(∇z, ∇z) − hαβVβ(2zzα − z2 Vα

V
) = V h(∇z, ∇z) − 2zhαβzαVβ + z2

V
hαβVαVβ

= V h(∇z, ∇z) − 2zh(∇z, ∇V ) + z2

V
h(∇V, ∇V )

= V
(
h(∇z, ∇z) − 2z

V
h(∇z, ∇V ) + z2

V 2 h(∇V, ∇V )
)

= V
(
h(∇z, ∇z) − 2h(∇z,

z

V
∇V ) + h( z

V
∇V,

z

V
∇V )

)
= V h

(
∇z − z

V
∇V, ∇z − z

V
∇V

)
,

and

V,ν

(
− |∇z|2 + 2z

V
zαVα − z2

V 2 |∇V |2
)

= V,ν

(
− |∇z|2 + 2z

V

〈
∇z, ∇V

〉
− z2

V 2 |∇V |2
)

= −V,νg
(
∇z − z

V
∇V, ∇z − z

V
∇V

)
.

Furthermore,

V h(∇z, ∇z) − hαβVβ

(
2zzα − z2

V
Vα

)
+ V,ν

(
− |∇z|2 + 2z

V
zαVα − z2

V 2 |∇V |2
)

= V h
(
∇z − z

V
∇V, ∇z − z

V
∇V

)
− V,νg

(
∇z − z

V
∇V, ∇z − z

V
∇V

)
= V

(
h − V,ν

V
g

)(
∇z − z

V
∇V, ∇z − z

V
∇V

)
. (3.23)

Since

V Hu2 +
(
z2 V,ν

V
− 2zu

)
HV,ν = V H

(
u2 + z2

V 2 V 2
,ν − 2 z

V
uV,ν

)
= V H

(
u − z

V
V,ν

)2
,
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and

2V u∆z +
(
z2 V,ν

V
− 2zu

)
(∆V + 1) − 2zV,ν∆z + z2

V
V,ν∆V

= 2V u∆z − 2zu∆V + 2z2

V
V,ν∆V − 2zV,ν∆z + z2

V
V,ν − 2zu

= 2V
(
u∆z − z

V
u∆V + z2

V 2 V,ν∆V − z

V
V,ν∆z

)
+ z2

V
V,ν − 2zu

= 2V
(
∆z(u − z

V
V,ν) − ∆V

V
z(u − z

V
V,ν)

)
+ z2

V
V,ν − 2zu

= 2V
(
∆z − ∆V

V
z
)(

u − z

V
V,ν

)
+ z2

V
V,ν − 2zu,

we have

V Hu2 +
(
z2 V,ν

V
− 2zu

)
HV,ν + 2V u∆z +

(
z2 V,ν

V
− 2zu

)
(∆V + 1) − 2zV,ν∆z + z2

V
V,ν∆V

= V H
(
u − z

V
V,ν

)2
+ 2V

(
∆z − ∆V

V
z
)(

u − z

V
V,ν

)
+ z2

V
V,ν − 2zu

= V H
(
u − z

V
V,ν

)2
+ 2V

(
∆z − ∆V

V
z
)(

u − z

V
V,ν

)
+ 2z2

V
V,ν − 2zu − z2

V
V,ν

= V H
(
u − z

V
V,ν

)2
+ 2V

(
∆z − ∆V

V
z
)(

u − z

V
V,ν

)
− z

V
2
(
u − z

V
V,ν

)
− z2

V
V,ν

= V H
(
u − z

V
V,ν

)2
+ 2V

(
∆z − (∆V + 1)

V
z
)(

u − z

V
V,ν

)
− z2

V
V,ν . (3.24)

We get the desired result by integrating relations (3.23) and (3.24). □

We can demonstrate the main result of this section.

Proof of Theorem 1.0.2: Consider Neumann’s problem div(V 2∇w) =
(

n
n−1f − V

)
in Ω

V 2∇νw = cV on ∂Ω,
(3.25)

where f is a smooth function on M and c =

∫
Ω

(
n

n−1f − V
)

dv∫
Σ V da

.

By direct calculation, it is easy to see that (3.25) is equivalent to{
∆f + R

n−1f = −1 in Ω
V f,ν − V,νf = cV on Σ,

(3.26)

by the correspondence f = wV.

The existence and uniqueness (up to an additive αV ) of the solution to (3.26) is due to
the Fredholm alternative. For a version of Fredholm’s alternative helpful in this situation, see,
for example, [66, Theorem 5.1].

Now, we consider the integral formula of Corollary 3.1.17 applied to f solution of (3.26).
First, by Cauchy-Schwarz inequality∣∣∣∇2f − 1

V

(
∇2V + 1

n − 1g
)
f

∣∣∣2 ≥
[
∆f − 1

V

(
∆V + n

n − 1
)]2 1

n
(3.27)
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what implies∫
Ω

V
[(

∆f − 1
V

(
∆V + n

n − 1
)
f

)2
−

∣∣∣∇2f − 1
V

(
∇2V + 1

n − 1g
)
f

∣∣∣2]
dv ≤ n − 1

n

∫
Ω

V dv

Then, by Corollary 3.1.17, we have

n − 1
n

∫
Ω

V dv ≥
∫

Σ

[
V

[
h − V,ν

V
g

](
∇z − ∇V

V
z, ∇z − ∇V

V
z
)]

da

+
∫

Σ

[
V H

(
u − V,ν

V
z
)2

+ 2V
(
u − V,ν

V
z
)(

∆z − (∆V + 1)
V

z
)

− z2

V
V,ν

]
da

+
∫

Ω

(
|∇f |2 + 1

V
(∆V + n

n − 1)f2
)

dv

≥
∫

Ω

(
|∇f |2 + 1

V
(∆V + n

n − 1)f2
)

dv (3.28)

+
∫

Σ

[
V H

(
u − V,ν

V
z
)2

+ 2V
(
u − V,ν

V
z
)(

∆z − (∆V + 1)
V

z
)

− z2

V
V,ν

]
da

(by hypothesis (1.7))

=
∫

Ω

(
|∇f |2 + 1

V
(∆V + n

n − 1)f2
)

dv

+
∫

Σ
V Hc2 da +

∫
Σ

[
2c(V ∆z − z(∆V + 1)) − z2

V
V,ν

]
da

(
by (3.26)

)
=

∫
Ω

(
|∇f |2 + 1

V
(∆V + n

n − 1)f2
)

dv + c2
∫

Σ
V H da

− 2c

∫
Σ

z da −
∫

Σ

z2

V
V,ν da (by Divergence Theorem)

Using a similar argument to one done in (3.16), we have∫
Ω

[
|∇f |2 + 1

V

(
∆V + n

n − 1
)
f2

]
dv =

∫
Ω

f dv +
∫

Σ
zu da.

Therefore

n − 1
n

∫
Ω

V dv ≥
∫

Ω
f dv +

∫
Σ

zu da + c2
∫

Σ
V H da

− 2c

∫
Σ

z da −
∫

Σ

z2

V
V,ν da

=
∫

Ω
f dv + c2

∫
Σ

V H da − 2c

∫
Σ

z da +
∫

Σ

z

V
(V f,ν − fV,ν) da

=
∫

Ω
f dv + c2

∫
Σ

V H da − 2c

∫
Σ

z da + c

∫
Σ

z da

=
∫

Ω
f dv + c2

∫
Σ

V H da − c

∫
Σ

z da.

So,

n − 1
n

∫
Ω

(
V − n

n − 1f
)

dv ≥ c2
∫

Σ
V H da − c

∫
Σ

z da

=

( ∫
Ω

(
n

n−1f − V
)

dv
)2

( ∫
Σ V da

)2

∫
Σ

V H da −

∫
Ω

(
n

n−1f − V
)

dv∫
Σ V da

∫
Σ

z da,
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what implies

n − 1
n

( ∫
Σ

V da
)2 ∫

Ω

(
V − n

n − 1f
)

dv ≥
( ∫

Ω

(
V − n

n − 1f
)

dv
)2 ∫

Σ
V H da

+
∫

Σ
V da

∫
Ω

(
V − n

n − 1f
)

dv

∫
Σ

z da.

(3.29)

To simplify this expression, we intend to control the signal of
∫

Ω

(
V − n

n−1f
)

dv. We use the
minimum principle in this direction as in [10, Theorem 2.2]. Indeed, the function w = f

V ,
solution of (3.25), satisfies

Lw = ∆w + 2
V

⟨∇w, ∇V ⟩ − 1
V

( n

n − 1
)
w = − 1

V
< 0,

where h = − n
(n−1)V < 0. In particular, w is subject to a Hopf’s principle in Ω (see, for example,

[67, Theorem 3.71]) what implies

0 >
∂w

∂ν
(x) = c

V
,

for any x ∈ Σ. Since V > 0 in Ω, it follows that c < 0 and∫
Ω

(
V − n

n − 1f
)

dv > 0,

what permits simplify (3.29) and proves (1.8).
Treating the equality case is similar to one done in [14], and we make some comments

here just to completeness. Supposing that there is a point in Σ at which inequality in (1.7) is
strict, we consider the set S := {x ∈ Σ ; (hαβ − V,ν

V gαβ)(x) > 0} that is non-empty. This is
clearly an open set and, for each p ∈ S, there exists a connected neighborhood Np ⊂ Σ of p such
that (hαβ − V,ν

V gαβ)(x) > 0. Since, by equality in (3.28),(
h − Vν

V
g

) (
∇

(
f

V

)
, ∇

(
f

V

))
= 0 in Σ,

from which f = αV in Np for some α ∈ R.
Furthermore, equality in (1.8) implies that (3.27) is a equality, and then,

f,ij − 1
V

(
V,ij + 1

n − 1gij

)
f = 1

n
gij in Ω.

The function f̃ := f − αV satisfies

f̃,ij − 1
V

(
V,ij + 1

n − 1gij

)
f̃ =

(
f − αV

)
,ij

− 1
V

(
V,ij + 1

n − 1gij

)
(f − αV )

= f,ij − αV,ij − 1
V

(
V,ij + 1

n − 1gij

)
f + α

(
V,ij + 1

n − 1gij

)
= f,ij − 1

V
(V,ij + 1

n − 1gij)f + α

n − 1gij

= 1
n

gij + α

n − 1gij

= n(α + 1) − 1
n(n − 1) gij .
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in Ω.

Then f̃,ij = λgij on Np, where λ = n(α+1)−1
n(n−1) . Since f̃ = 0 on Np, we conclude hαβ =

− λ
|∇f̃ |gαβ in Np. Therefore, S is closed by connectedness S = Σ. By the same argument applied

in Σ, we can prove that Σ is umbilic of constant mean curvature.

□

Remark 3.1.18 Considering one additional boundary condition that becomes the last one in
an overdetermined problem (strongly related to Serrin’s problem, see [32]),

∆f + R
n−1f = −1 in Ω

f,ν = c on Σ
f = 0 on Σ

we obtain the following weighted inequality

n − 1
n

( ∫
Σ

V da
)2

≥
∫

Ω

(
V − n

n − 1f
)

dv

∫
Σ

V H da, (3.30)

and when the equality holding in (3.30), then Σ is umbilical.

3.2 m-quasi Einstein case

This section focuses on the study of m-quasi-Einstein manifolds, a generalization of
Einstein metrics incorporating a potential function V , an additional parameter m > 0, and a
scalar constant λ. We now remember this concept.

Definition 3.2.1 Let (Mn, g) be an n−dimensional (n ≥ 3), complete and connected Rieman-
nian manifold. We say that g is a m-quasi-Einstein metric if there is a smooth (nontrivial)
solution V on Mn satisfying the overdetermined system

m∇2V − V Ric + λV g = 0 in M (3.31)
V > 0 on int(M)

In the case where the manifold M has a (possibly disconnected) boundary ∂M , the additional
condition V = 0 on ∂M is considered. Here, 0 < m < ∞ is a integer constant and λ is a
smooth real function on M. We call V of m-quasi-Einstein potential and the triple (Mn, g, V )
of a m-quasi-Einstein triple.

This framework arises naturally in mathematical physics, particularly in the context of
warped product structures and static spacetimes.

Here we derive integral inequalities and rigidity results using a generalized Reilly-type
identity, emphasizing the connection between analytic properties and geometric structures. The
main contribution, Theorem 1.0.5, establishes constraints on curvature and boundary geometry,
leading to rigidity in certain cases. These results, rooted in the work of [26], illustrate how
m-quasi-Einstein metrics extend classical results and offer new insights into geometric analysis.
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3.2.1 An integral inequality

The results presented here are part of the [26] and it’s focuses on generalizing an integral
inequality previously established for static manifolds by [25] to the context of m-quasi-Einstein
manifolds. It also examines the rigidity of these manifolds under equality conditions.

Integral identities, such as Reilly’s identity, play a crucial role in geometric analysis by
providing tools to derive inequalities and rigidity results. Our technique extend these methods
to the broader class of m-quasi-Einstein metrics, which are closely related to warped product
Einstein metrics.

The main result here is an integral inequality for a compact domain Ω within an m-
quasi-Einstein manifold (Mn, g, V ). Assuming certain conditions on the Ricci curvature and
boundary properties, the inequality links the geometry of Ω to its boundary. Specifically, for a
smooth function η defined on Ω, the inequality involves terms like the mean curvature H, the
second fundamental form h, and the gradient ∇η. It also incorporates the Ricci curvature and
a non-positive constant k.

In the equality case, the inequality provides a rigidity characterization of the manifold.
Two scenarios emerge: if k = 0, the boundary function η corresponds to a harmonic function,
while for k < 0, the manifold is Einstein, with Ric = (n − 1)kg, and η corresponds to a function
satisfying a specific elliptic equation. In both cases, the geometry of the manifold is determined,
with precise characterizations of its isometry to warped product spaces or hyperbolic spaces
depending on whether the boundary is empty.

Our contribution related to this theme and presented here, see also [26], extends prior
results on static manifolds and provides new insights into m-quasi-Einstein manifolds, which
are important in the study of Einstein metrics and mathematical physics. Applications include
understanding stability in quasi-local energy, such as Wang–Yau energy, and contributing to
the classification of Einstein and quasi-Einstein manifolds. The results demonstrate the strong
interplay between analytic properties (integral identities) and geometric structures (curvature
and boundary conditions).

In the same direction as said for static metrics, one crucial motivation to approach the
m-quasi-Einstein metrics is studying Einstein manifolds that have a structure of warped product.
In fact, if m > 1 is an integer, (Mn, g, V ) is an m-quasi-Einstein triple if and only if there is a
smooth (n + m)-dimensional warped product Einstein metric having M as the base space, see
[27] and [28]. From this observation, the study of warped product Einstein manifolds reduces
to the study of the m-quasi-Einstein equation on the lower-dimensional base space.

In [27] the authors treat the non-empty boundary case and consider, for the case m > 1,

the following quantity

ρ(x) = 1
m − 1[(n − 1)λ − R], (3.32)

where R is the scalar curvature of (Mn, g).

Next, inspired by the aforementioned works, we carry out the same scope of ideas and
applications of general Reilly’s Identity as a way to obtain new results for the case of m-quasi
Einstein manifolds. Along the proof, we use the following version of Reilly’s Identity due Qiu
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and Xia, see [13, Theorem 1.1] and Theorem 3.1.7.
From now on, we aim to demonstrate Theorem 1.0.5 by analysing the integrals mention

above.
Proof of Theorem 1.0.5: First, by considering a domain Ω contained in an m-quasi-Einstein
manifold, we introduce the following 2-tensor

P = Ric − ρg. (3.33)

From (3.31), (3.32) and (3.33),

∇2V − ∆V g − 2(n − 1)kV g + V Ric = [∇2V − ∆V g − V Ric] + 2V [Ric − (n − 1)kg]

= V

m

(
(1 − m)Ric − (λ + R − nλ)g

)
+ 2V [Ric − (n − 1)kg]

= (1 − m) V

m

(
Ric + R − λ(n − 1)

m − 1 g
)

+ 2V [Ric − (n − 1)kg]

= (1 − m) V

m

(
Ric − ρg

)
+ 2V [Ric − (n − 1)kg]

= −(m − 1) V

m
P + 2V [Ric − (n − 1)kg]. (3.34)

Furthermore, a straightforward calculation shows that

(n − 1)k(∆V + nkV ) = (n − 1)k
( V

m
(R − nλ) + nkV

)
= (n − 1)k V

m
(R − nλ + mnk)

= (n − 1)k V

m
[R − n(λ − mk)]. (3.35)

Now, since k ≤ 0, given η a non-trivial function on Σ, the problem{
∆f + nkf = 0 in Ω

f = η on Σ

has a unique solution.
Thus, from (3.1.7), (3.34) and (3.35)∫

Ω
V

[
(∆f + Knf)2 − |∇2f + Kfg|2

]
dv

=
∫

Ω

(
− (m − 1) V

m
P + 2V [Ric − (n − 1)kg]

)
(∇f, ∇f) dv

+ (n − 1)k
∫

Ω

V

m
[R − n(λ − mk)]f2 dv +

∫
Σ

∇νV
[
|∇z|2 − (n − 1)Kz2

]
da

+
∫

Σ
V

[
2f,ν∆z + H(f,ν)2 + h(∇z, ∇z) + 2(n − 1)Kf,νz

]
da.

Since, by hypothesis, P ≤ 0 and Ric ≥ (n − 1)kg, i.e.,

(n − 1)kg ≤ Ric ≤ ρg = 1
m − 1

(
(n − 1)λ − R

)
g,

from which follows

n(n − 1)k ≤ R ≤ n(n − 1)
m + n − 1λ,
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and then λ ≥ (m + n − 1)k. We also have, R − n(λ − mk) ≤ 0.

Therefore

−
∫

Σ
V

[
2z,ν∆z + H(z,ν)2 + h(∇z, ∇z) + 2(n − 1)kz,νz

]
da

≥
∫

Ω
V |∇2f + kfg|2 dv +

∫
Σ

∇νV
[
|∇z|2 − (n − 1)kz2

]
da. (3.36)

Since by hypothesis H > 0, we have

V
[√

Hz,ν + ∆z + (n − 1)kz√
H

]2
= V

[
H(z,ν)2 + 2z,ν∆z + 2(n − 1)kzz,ν + (∆z + (n − 1)kz)2

H

]
and then

V
[(∆z + (n − 1)kz)2

H
− h(∇f, ∇f)

]
= V

[√
Hz,ν + ∆z + (n − 1)kz√

H

]2
− V

[
2z,ν∆z + H(z,ν)2 + h(∇z, ∇z) + 2(n − 1)kz,νz

]
.

(3.37)

Therefore, using (3.37), we can rewrite the relation (3.36) as follows∫
Σ

V
[(∆z + (n − 1)kz)2

H
− h(∇f, ∇f)

]
da

=
∫

Σ
V

[√
Hz,ν + ∆z + (n − 1)kz√

H

]2
da

−
∫

Σ
V

[
2f,ν∆z + H(z,ν)2 + h(∇z, ∇z) + 2(n − 1)kz,νz

]
da

≥
∫

Ω
V |∇2f + kfg|2 dv +

∫
Σ

∇νV
[
|∇z|2 − (n − 1)kz2

]
da

and then∫
Σ

V
[(∆z + (n − 1)kz)2

H
− h(∇f, ∇f)

]
da ≥

∫
Σ

∇νV
[
|∇z|2 − (n − 1)kz2

]
da

Now, let us assume that the equality holds in (1.10). Thus,

k[R − n(λ − mk)] = 0 (3.38)
∇2f + kfg = 0
Hz,ν + ∆z + (n − 1)kz = 0

From the relation (3.38) we have k = 0 or R − n(λ − mk) = 0.

If k = 0 we have ∇2f = 0 and the conclusion follows by [68, Theorem B].
In the later case, since R = n(λ − mk) and R ≤ n(n−1)

m+n−1λ, we have λ = (m + n − 1)k and
it follows that R = n(n − 1)k. Since Ric ≥ (n − 1)kg, we have Ric = (n − 1)kg and (Ω, g) is
Einstein. Since g is analytic, see [27, Proposition 2.4], we conclude that (M, g, V ) is Einstein.

In addition, since λ < 0, we use [27, Proposition 3.1] and [69, Proposition 4.2] to
conclude that
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• If ∂M is not empty then M is isometric to(
[0, ∞) × N, dt2 +

√
−k cosh2(

√
kt)gSn−1 , C sinh

√
−kt

)
where N is is an Einstein metric with negative Ricci curvature, and C is an arbitrary
positive constant.

• If ∂M is empty then M is isometric to either(
Hn, dt2 +

√
−k sinh2(

√
−kt)gSn−1 , C cosh(

√
−kt)

)
or (

R × F, dt2 + e2
√

−ktgF , Ce2
√

−kt
)

where F is Ricci flat and C is an arbitrary positive constant.

This concludes the proof. □
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4 Overdetermined problems in
weighted manifolds

As presented in the introduction 1, the classical Serrin’s problem (1.11) has important
connections in different contexts. Next we explores Serrin’s problem within the context of
weighted Riemannian manifolds, focusing on generalizations of classical symmetry and rigidity
results.

Utilizing tools such as the weighted Laplacian and weighted mean curvature, we establish
rigidity results in generalized cones, showing that under specific curvature conditions, solutions
to overdetermined problems exhibit unique symmetry properties. we derive a weighted version
of the Heintze-Karcher inequality and establish the Soap Bubble Theorem, demonstrating that
solutions are symmetric under specific curvature conditions. Moreover, we develop Pohozaev-
type identities for weighted manifolds, which serve as critical analytical tools in this framework.
In this context we findings generalize well-known geometric and analytical results to weighted
spaces, providing new insights into symmetry and rigidity in non-Euclidean settings. The chapter
ends with a study of the weighted Serrin’s problem for convex cones of the Euclidean space. The
results presented here can be found in [58] and [59].

4.0.1 Heintze-Karcher type inequality and Soap Bubble Theorem

In this section, we consider Σn−1 as a hypersurface immersed in a weighted Riemannian
manifold (Mn, g, w dv), where ∇ and ∆ denote the gradient and the laplacian with respect to
the metric of Mn, and ∇ and ∆ indicate the gradient and the Laplacian of the induced metric
g on Σ. Let Ω ⊆ M be a domain such that ∂Ω = Σ. Furthermore, ν is the unit outward normal
with respect to Σ, and fν = g(∇f, ν). Also, let h(X, Y ) = g(∇Xν, Y ) and H = trgh be the
second fundamental form and the mean curvature (with respect to −ν) of Σ, respectively.

The weighted volume of a bounded domain Ω ⊂ M and the weighted area of a smooth
hypersurface Σ ⊂ M are defined as

Volw(Ω) :=
∫

Ω
dvw =

∫
Ω

w dv, Areaw(Σ) :=
∫

Σ
daw =

∫
Σ

w da,

where dv and da represent the Riemannian volume and area elements, respectively.
Associated to a weighted manifold (M, g, dvw) there is a natural divergence form second-

order diffusion operator: the weighted Laplacian (or w-Laplacian). This operator is defined
by

∆wu = ∆u + ⟨∇ log w, ∇u⟩ , (4.1)

where u ∈ C2(M). The α-Bakry-Émery-Ricci tensor is given by

Ricα
w = Ric − ∇2 log w − 1

α
d log w ⊗ d log w,

where α ∈ R \ {0} and Ric is the Ricci tensor of (M, ⟨ , ⟩).
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In this setting, we define a notion of mean curvature in the weighted context as follows:

Hw = H + ⟨ν, ∇ log w⟩. (4.2)

This is known as the weighted mean curvature.
Similar to the standard case, there is a relationship between the intrinsic and extrin-

sic drift Laplacians, as stated in the following result, which we include here for the sake of
completeness.

Lemma 4.0.1 Let Σn−1 be an hypersurface immersed in Mn and f ∈ C∞(M) a smooth func-
tion. Then

∆wf = ∆wf + Hwfν + ∇2f(ν, ν),

where w is a smooth positive function.

Proof: First, we have the classical formula

∆f = ∆f + Hfν + ∇2f(ν, ν).

Now, we simply use the formulas for the weighted Laplacian (4.1) and the weighted mean
curvature (4.2):

∆wf = ∆f + ⟨∇ log w, ∇f + fνν⟩

= ∆f + Hfν + ∇2f(ν, ν) + ⟨∇ log w, ∇f⟩ + fν⟨∇ log w, ν⟩

= ∆wf + Hwfν + ∇2f(ν, ν).

□

Additionally, a combination of the classical Bochner identity, the Cauchy-Schwarz in-
equality, and the Bergström inequality yields the following Bochner-type inequality for such
weighted operators, as stated in [70, Appendix A] (see [71, Section 1.5] for an elementary proof
of this result).

Lemma 4.0.2 Let (Mn, g, w dvol) be a Riemanninan manifold u ∈ C∞(M), α > 0 is real and
w a smooth positive function. Then

1
2∆w|∇u|2 ≥ (∆wu)2

n + α
+ ⟨∇u, ∇∆wu⟩ + Ricα

w(∇u, ∇u)

where equality holds if and only if

∇2u = ∆u

n
g

∆u

n
= ⟨∇ log w, ∇u⟩

α
= ∆wu

n + α
.

The next result provides a useful Reilly’s type theorem for weighted manifolds (see [2]
for the classical case). Let us denote dvw and daw the weighted measures related with M and
its boundary ∂M , respectively.
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Proposition 4.0.3 Let (M, g, w dvol) be an n-dimensional compact Riemannian manifold with
boundary ∂M , u ∈ C∞(M), α > 0 and w a smooth positive function. Then(n + α − 1

n + α

) ∫
M

(∆wu)2 dvw ≥
∫

M
Ricα

w(∇u, ∇u) dvw

+
∫

∂M

[
2uν∆wz + Hwu2

ν + h(∇z, ∇z)
]

daw, (4.3)

where z = f |∂Ω and ν is the unit outward normal vector field to ∂M . Furthermore the equality
holds in (4.3) if and only if

∇2u = ∆u

n
g, and

∆u

n
= ⟨∇ log w, ∇u⟩

α
= ∆wu

n + α
.

Proof: Integrating the inequality of Lemma 4.0.2 we have

1
2

∫
M

∆w|∇u|2 dvw ≥
∫

M

[(∆wu)2

n + α
+ ⟨∇u, ∇∆wu⟩ + Ricα

w(∇u, ∇u)
]

dvw. (4.4)

Using the divergence theorem
1
2

∫
M

∆w|∇u|2 dvw = 1
2

∫
∂M

〈
∇|∇u|2, ν

〉
daw

=
∫

∂M
∇2u(ν, ∇u) daw. (4.5)

⟨∇(∆wu), ∇u⟩ = divw(∆wu∇u) − (∆wu)2,

we have ∫
M

⟨∇(∆wu), ∇u⟩ dvw =
∫

∂M
uν∆wu daw −

∫
M

(∆wu)2 dvw. (4.6)

By replacing (4.5) and (4.6) in (4.4) follows(n + α − 1
n + α

) ∫
M

(∆wu)2 dvw ≥
∫

M
Ricα

w(∇u, ∇u) dvw +
∫

∂M

[
uν∆wu − ∇2u(ν, ∇u)

]
daw. (4.7)

Applying Lemma 4.0.1, in the immersion ∂M ↪→ M , we have

uν(∆wu) = uν

(
∆wu + Hwuν + ∇2u(ν, ν)

)
. (4.8)

In addition, since ∇u = ∇u + uνν, we conclude

∇2u(ν, ∇u) = ∇2u(ν, ∇u + uνν)
=

〈
∇∇u(∇u + uνν), ν

〉
+ uν∇2u(ν, ν)

= −h(∇u, ∇u) +
〈
∇u, ∇uν

〉
+ uν

〈
∇∇uν, ν

〉
+ uν∇2u(ν, ν)

= −h(∇u, ∇u) +
〈
∇u, ∇uν

〉
+ uν∇2u(ν, ν) (4.9)

where in the last equalities we use the definition of the second fundamental form and that
⟨ν, ν⟩ = 1. From (4.8) and (4.9) we have

uν∆wu − ∇2u(ν, ∇u)
= 2uν∆wu − divw(uν∇u) + Hwu2

ν + h(∇u, ∇u). (4.10)
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Replacing (4.10) in (4.7), using again the divergence theorem and since ∂(∂M) = ∅ the result
follows. The equality in (4.4) implies rigidity as established by Lemma 4.0.2. □

From now on, we consider a smooth function u as a solution to (PDE) (1.13). For
such a class of functions, we can apply the Reilly’s-type inequality obtained earlier to derive
an inequality that characterizes rigidity for metric balls. Before presenting this result, for the
convenience of the reader, we recall an important Obata-type result due to Farina-Roncoroni:

Lemma 4.0.4 Let (Mn, g, w dvol) be an n-dimensional Riemannian manifold (not necessarily
complete) and let Ω be a domain in M such that Ω is compact. Assume that there exists a
function u : Ω → R such that u ∈ C0(Ω) ∪ C2(Ω) and is a solution to

∇2u = −
(

1
n+α + ku

)
g in Ω

u > 0 in Ω
u = 0 on ∂Ω

where k ∈ R and α > 0 is real. Then Ω is a metric ball and u is a radial function, i.e. u depends
only on the distance from the center of the ball.

The proof of the Lemma 4.0.4 is an adaptation of the argument presented in [72, Lemma
6] to the setting of weighted manifolds.

In this setting, we have the following result.

Proposition 4.0.5 Let (M, g, w dvol) be an n-dimensional Riemannian manifold such that w

is a smooth positive function. Let Ω ⊂ M be a bounded domain, k ∈ R, α > 0 and u ∈ C∞(Ω)
a solution of (1.13), then

−
∫

∂Ω
uν

[
Hwuν +

(
n + α − 1

n + α

)]
daw ≥

∫
Ω

(Ricα
w − k(n + α − 1)g) (∇u, ∇u)dvw

where equality holds if and only if Ω is a metric ball and u is a radial function.

Proof: Since u = 0 on ∂Ω, then ∇u = 0 and ∆wu = 0 on ∂Ω.
Furthermore, since u is a solution of (1.13), we can use the divergence theorem to obtain∫

Ω
(∆wu)2 dvw =

∫
Ω

∆wu
[

− 1 − k(n + α)u
]

dvw

= −
∫

Ω
∆wu dvw − k(n + α)

∫
Ω

u∆wu dvw

= −
∫

∂Ω
uν daw − k(n + α)

[ ∫
∂Ω

uuν daw −
∫

Ω
⟨∇u, ∇u⟩ dvw

]
= −

∫
∂Ω

uν daw + k(n + α)
∫

Ω
⟨∇u, ∇u⟩ dvw,

where in the last equality we use that u = 0 at the boundary. Thus, the result follows directly
from Proposition 4.0.3 and Lemma 4.0.4. □
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Corollary 4.0.6 Let (M, g, w dvol) be an n-dimensional Riemannian manifold and w a smooth
positive function. Let Ω ⊂ M be a bounded domain and u ∈ C∞(Ω) a solution of the PDE
(1.13). Assume that Hw = 1

uν
· n+α−1

(n+α)(n−1) , Ricα
w ≥ k(n + α − 1)g, where k ∈ R and α > 0. Then

Ω is a metric ball and u is a radial function.

Proof: Since Hw = 1
uν

· n+α−1
(n+α)(n−1) and Ricα

w ≥ k(n + α − 1)g, we obtain that equality holds in
Proposition 4.0.5 and, therefore, we have the desired result. □

The next result is a Heintze-Karcher type inequality for the weighted mean curvature
and Ricα

w.

Theorem 4.0.7 (Heintze-Karcher type inequality) Let (M, g, w dvol) be an n-dimensional Rie-
mannian manifold and w a smooth positive function. Let Ω ⊂ M be a bounded domain where
weighted mean curvature Hw of ∂Ω is positive and u ∈ C∞(Ω) a solution of the PDE (1.13). If
Ricα

w ≥ k(n + α − 1)g, where α > 0 and k ∈ R, then(
n + α − 1

n + α

)2 ∫
∂Ω

1
Hw

daw ≥ n + α − 1
n + α

V olw(Ω) + (n + α − 1)k
∫

Ω
u dvw

where equality holds if and only if Ω is a metric ball and u is a radial function.

Proof: Since

−uν

[
Hwuν + n + α − 1

n + α

]
= − 1

Hw

[
Hwuν + n + α − 1

n + α

]2
+

(
n + α − 1

n + α

)
uν + 1

Hw

(
n + α − 1

n + α

)2
(4.11)

and ∫
∂Ω

uν daw =
∫

Ω
∆wu dvw

= −V olw(Ω) − (n + α)k
∫

Ω
u dvw, (4.12)

we replace (4.11) and (4.12) in Proposition 4.0.5 to get

(
n + α − 1

n + α

)2 ∫
∂Ω

1
Hw

daw ≥
∫

Ω
(Ricα

w − k(n + α − 1)g) (∇u, ∇u)dvw

+
∫

∂Ω

1
Hw

[
Hwuν + n + α − 1

n + α

]2
daw

+
(

n + α − 1
n + α

) (
V olw(Ω) + (n + α)k

∫
Ω

u dvw

)
.

Since Ricα
w ≥ k(n + α − 1)g and Hw > 0, the result follows. The equality case follows again

from Lemma 4.0.4. □

As an application of the last result, we can obtain an Alexandrov-type result for the
weighted mean curvature in the space of solid cones. Following [73], we define a solid cone in
Rn as the manifold

C := {tp; t ≥ 0, p ∈ D} ,
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where D is a smooth region of the unit sphere Sn−1. When C is endowed with a α-homogeneous
density w (which means that w(tp) = tαw(p), for any t > 0 and p ∈ C \ {0}), it is possible to
prove the following Minkowski’s identity (see [73, Proposition 5.1]):∫

Σ
[(n + α − 1) − Hw⟨x, ν⟩]daw = 0,

where Σ is a smooth, closed, orientable hypersurface embedded in C \ {0}, ν is the exterior unit
normal along the hypersurface, and x is the position vector in Rn. A consequence of the same
[73, Proposition 5.1] is the following: when Hw is constant and α ̸= −n,

(n + α − 1)Areaw(Σ) = (n + α)HwV olw(Ω), (4.13)

where Ω is the bounded domain such that ∂Ω = Σ.

Remark 4.0.8 We emphasize that [73, Proposition 5.1] is stated in a more general way, al-
lowing the free-boundary case, where ∂Σ = Σ ∩ ∂M ̸= ∅, and Σ meets ∂M orthogonally at the
points of ∂Σ. However, the divergence theorem used in that proof could be easily applied in our
situation, where ∂Σ = ∅.

Corollary 4.0.9 Let C ⊂ Rn be a solid cone endowed with a α-homogeneous density w, α > 0.

Suppose that Ricα
w ≥ 0 in C. If Σ is a smooth, compact, embedded, orientable hypersurface in

C \ {0} with Hw constant, then Σ is a (n − 1)-sphere.

Proof: Let Ω be a bounded domain such that ∂Ω = Σ. Let us consider a solution of the problem{
∆wu = −1 in Ω,

u = 0 on ∂Ω.

If Hw is constant, we can use (4.13) to see that(
n + α − 1

n + α

) ∫
∂Ω

1
Hw

daw =
(

n + α − 1
n + α

) 1
Hw

Areaw(∂Ω) = V olw(Ω).

Since equality holds in Theorem 4.0.7, we conclude the result. □

For more general ambient spaces, we can prove a limitation for the weighted mean
curvature in order to get the Soap Bubble type stated in Theorem 1.0.6.
Proof of Theorem 1.0.6:

First note that, since H0 = n+α−1
(n+α)c ,∫

∂Ω
Hwu2

ν daw = H0

∫
∂Ω

u2
ν daw +

∫
∂Ω

(Hw − H0)u2
ν daw

= H0

∫
∂Ω

(uν + c)2 daw − 2(n + α − 1)
n + α

∫
∂Ω

uν daw

−(n + α − 1)c
n + α

Areaw(∂Ω) +
∫

∂Ω
(Hw − H0)u2

ν daw.

Then,

−
∫

∂Ω
uν

[
Hwuν − n + α − 1

n + α

]
daw

= −H0

∫
∂Ω

(uν + c)2daw + n + α − 1
n + α

[∫
∂Ω

uν daw + cAreaw(∂Ω)
]

+
∫

∂Ω
(H0 − Hw)u2

νdaw
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We observe that the constant c defined in (1.14) satisfies

c = −

∫
∂Ω

uν daw

Areaw(∂Ω) . (4.14)

Then, we use Proposition 4.0.5 to conclude that∫
∂Ω

(H0 − Hw)u2
νdaw ≥ H0

∫
∂Ω

(uν + c)2daw +
∫

Ω
(Ricα

w − k(n + α − 1)g) (∇u, ∇u)dvw.

Since Ricα
w ≥ k(n + α − 1)g we conclude the result. Again, the equality case is approached by

using Lemma 4.0.4. □

Remark 4.0.10 We note that, in comparison with [33], the results presented in this section
may depend on u. For instance, the constant H0 in Theorem 1.0.6 depends on c, which, in turn,
depends on u. This dependency is expected in problems involving the genesis of curvature (see
analogous results in the Riemannian setting in [30, Theorem 1, Theorem 4]).

In any case, we highlight that the case k = 0, where there is no dependence on u, is
particularly intriguing. Under the hypothesis Ricα

w ≥ 0, an inequality similar to the one in
Theorem 1.0.6 holds, and the constant H0 is given explicitly by

H0 =
(

n + α − 1
n + α

) Areaw(∂Ω)
Volw(Ω) , (4.15)

which is linked to the constant R in [33, Theorem 2.2]. Moreover, the above quantity is related
to the well-known Cheeger constant; see [74].

Remark 4.0.11 In the particular situation described in Corollary 4.0.9, if Hw is constant,
formula (4.13) guarantees that Hw = H0, see (4.15). Consequently, an alternative proof for the
Corollary 4.0.9 is given by Theorem 1.0.6. We mention that an approach to obtain a more general
Alexandrov’s theorem within this framework suggests the potential for analyzing appropriate
Minkowski-type identities.

4.0.2 A Pohozaev type identity for weighted manifolds

In this section, we provide a Pohozaev type identity addressed to weighted manifolds.
We remember that a vector field X ∈ X(M) is called closed conformal if

∇Y X = φY, for all Y ∈ X(M),

for some smooth function φ called the conformal factor. Firstly, we present some auxiliary
lemmas as follows.

Lemma 4.0.12 Let f be a smooth function on (M, g, w dvol) where w is a smooth positive
function. Then,

∆w ⟨X, ∇f⟩ = ⟨∇φ, ∇f⟩ (2 − n) + 2φ∆wf + ⟨∇∆wf, X⟩ − ∇f ⟨∇ log w, X⟩

where X is a closed conformal vector field with conformal factor φ.
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Proof: Firstly, since X is closed conformal vector field we conclude that

∆ ⟨X, ∇f⟩ = ⟨∇φ, ∇f⟩ (2 − n) + 2φ∆f + ⟨∇∆f, X⟩ ,

see [30, Lemma 2]. Thus, using the above equation and taking into account the definition of
weighted Laplacian we have

∆w ⟨X, ∇f⟩ = ∆ ⟨X, ∇f⟩ + ⟨∇ log w, ∇ ⟨X, ∇f⟩⟩

= ⟨∇φ, ∇f⟩ (2 − n) + 2φ∆f + ⟨∇∆f, X⟩ + ⟨∇ log w, φ∇f + ∇X∇f⟩ .

= ⟨∇φ, ∇f⟩ (2 − n) + 2φ(∆wf − ⟨∇ log w, ∇f⟩) + ⟨∇∆wf, X⟩

− ⟨∇X∇ log w, ∇f⟩ − ⟨∇ log w, ∇X∇f⟩ + ⟨∇ log w, φ∇f + ∇X∇f⟩ .

On another hand, since the vector field X is closed and conformal we get the following

φ ⟨∇ log w, ∇f⟩ = ⟨∇ log w, ∇∇f X⟩

= ∇f ⟨∇ log w, X⟩ − ⟨∇∇f ∇ log w, X⟩

= ∇f ⟨∇ log w, X⟩ − ⟨∇X∇ log w, ∇f⟩

From above equations we obtain the desired result. □

Now, we present a new version of the Pohozaev-type identity for weighted manifolds.
This version is based on the following problem

∆wu + k(n + α)u = −1 in Ω
u > 0 in Ω
u = 0 on ∂Ω

|∇u| = c on ∂Ω

(4.16)

where Ω is a bounded domain in (M, g, dv = w dvol) and α > 0 is constant.

Proposition 4.0.13 Let (M, g, dvw = w dvol) be a Riemannian manifold where w is a smooth
positive function, and X ∈ X(M) be a closed conformal vector field with conformal factor φ. If
u is solution of (4.16), then

2
∫

Ω
φu dvw =

∫
Ω

(c2 − u)divwX dvw +
∫

Ω
u2

(n − 2
2 ∆wφ − 2k(n + α)φ

)
dvw

−
∫

Ω
u∇u ⟨∇ log w, X⟩ dvw.

Proof: From Bochner-type identity in Lemma 4.0.12 and (4.16) we have

∆w ⟨X, ∇u⟩ = ⟨∇φ, ∇u⟩ (2 − n) + 2φ(−1 − k(n + α)u) − k(n + α) ⟨∇u, X⟩ − ∇u ⟨∇ log w, X⟩ .

Thus, multiplying this identity by u and using again (4.16), we conclude that

u∆w ⟨X, ∇u⟩ − ⟨X, ∇u⟩ ∆wu = u ⟨∇φ, ∇u⟩ (2 − n) + 2φu(−1 − k(n + α)u) + ⟨X, ∇u⟩

− u∇u ⟨∇ log w, X⟩ (4.17)
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Now, note that

u∆w ⟨X, ∇u⟩ − ⟨X, ∇u⟩ ∆wu = divw(u∇ ⟨X, ∇u⟩ − ⟨X, ∇u⟩ ∇u).

Since u = 0 along of the boundary and ν = − ∇u
|∇u| , we conclude from divergence theorem (see

[73, Lemma 2.1])∫
Ω

(
u∆w ⟨X, ∇u⟩ − ⟨X, ∇u⟩ ∆wu

)
dvw =

∫
Ω

divw(u∇ ⟨X, ∇u⟩ − ⟨X, ∇u⟩ ∇u) dvw

=
∫

∂Ω
⟨u∇ ⟨X, ∇u⟩ − ⟨X, ∇u⟩ ∇u, ν⟩ daw (by div. theorem)

= c

∫
∂Ω

⟨X, ∇u⟩ daw (by PDE (4.16))

= −c2
∫

∂Ω
⟨X, ν⟩ daw

= −c2
∫

Ω
divwX dvw (by div. theorem) (4.18)

We intend to study the integral of the right side of (4.17). First, since u = 0 on ∂Ω and
divX = nφ, we have∫

Ω
⟨X, ∇u⟩ dvw =

∫
Ω

(
divw(uX) − udivwX

)
dvw

=
∫

∂Ω
u ⟨X, ν⟩ daw −

∫
Ω

udivwX dvw (by div. theorem)

= −
∫

Ω
udivwX dvw (4.19)

Again, since u = 0 on ∂Ω, from the divergence theorem we guarantee that

0 =
∫

Ω
divw(u2∇φ) dvw =

∫
Ω

u2∆wφ dvw + 2
∫

Ω
u ⟨∇u, ∇φ⟩ dvw.

Thus, ∫
Ω

u ⟨∇φ, ∇u⟩ dvw = −1
2

∫
Ω

u2∆wφ dvw. (4.20)

Integrating (4.17) and from (4.18),(4.19) and (4.20) we get the desired result. □

Remark 4.0.14 A very important class where the last identity holds is the warped products with
one-dimensional fiber. Recall that if M = I ×ρ N is a warped product, the vector field X = ρ∂r

is a closed conformal vector field with conformal factor φ = ρ′. Moreover, manifolds endowed
with a nontrivial closed conformal vector field are locally isometric to a warped product with
a one-dimensional factor (see [75, Section 3]). In the following section, we choose a specific
warping function to describe a cone-type ambient where the rigidity for Serrin’s problem will
hold.

4.0.3 A rigidity result for domains in solid cones

Firstly, let us introduce the following P -function

P (u) = |∇u|2 + 2
n + α

u + ku2, (4.21)
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where u ∈ C2(Ω) and Ω ⊂ M is a bounded domain with smooth boundary. Motivated by [72],
we can guarantee under geometric hypothesis that P -function is subharmonic in the weighted
sense.

Lemma 4.0.15 Let (Mn, g, w dvol) be an n−dimensional Riemannian manifold such that Ricα
w ≥

k(n + α − 1)g, where k ∈ R, α > 0 and w is a smooth positive function. Let Ω ⊂ M be a domain
and let u ∈ C2(Ω) be a solution to ∆wu + k(n + α)u = −1 in Ω. Then ∆wP (u) ≥ 0 in Ω. More-
over, ∆P (u) = 0 if and only if ∇2u = −

(
1

n+α +ku
)
g in Ω and Ricα

w(∇u, ∇u) = k(n+α−1)|∇u|2

in Ω.

Proof: Notice that,

∆w|∇u|2 ≥ 2
n + α

(∆wu)2 + 2 ⟨∇u, ∇∆wu⟩ + 2Ricα
w(∇u, ∇u)

≥ 2
n + α

∆wu(−1 − k(n + α)u) + 2 ⟨∇u, ∇(−1 − k(n + α)u)⟩ + 2k(n + α − 1)|∇u|2

= − 2
n + α

∆wu − 2ku∆wu − 2k|∇u|2

= − 2
n + α

∆wu − k∆w(u2).

Hence ∆wP (u) ≥ 0. Finally, taking into account the Lemma 4.0.2, it is clear that ∆P (u) = 0 if
and only if Ricα

w(∇u, ∇u) = k(n + α − 1)|∇u|2 in Ω and

∇2u = ∆u

n
g

∆u

n
= ⟨∇w, ∇u⟩

α
= ∆wu

n + α
.

Thus, since u is a solution of ∆wu + k(n + α)u = −1 we conclude the desired resut. □

Let (N, gN ) be a connected (n−1)-Riemannian manifold. Let us consider M = (0, ∞)×N

a product manifold endowed with a warped metric given by

gM = dr ⊗ dr + r2gN .

From now on, let us denote M = (0, ∞) ×r N. Now, we are able to state and proof our main
rigidity result. We remember that, in M , a function w is homogeneous of degree α > 0 if
⟨∇w, X⟩ = αw, where X = r∂r.
Proof of Theorem 1.0.7: Firstly, taking the P -function given by (4.21), we can conclude that
P (u) = c2 on ∂Ω. Since this function is subharmonic in the weighted sense, we have that P (u)
attains its maximum in ∂Ω or P (u) is a constant function (for the strong maximum principle
applied to elliptic operators, we refer to [76, Theorem 2.4]). Now, suppose by contradiction that
P (u) < c2 in Ω. Thus

|∇u|2 + 2
n + α

u + ku2 < c2. (4.22)

Since u = 0 along the boundary, a straightforward calculation shows that
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0 =
∫

Ω
divw(u∇u) dvw

=
∫

Ω
u∆wu dvw +

∫
Ω

|∇u|2 dvw

=
∫

Ω

[
|∇u|2 − u(1 + k(n + α)u)

]
dvw.

Thus, ∫
Ω

|∇u|2 dvw =
∫

Ω
u(1 + k(n + α)u) dvw. (4.23)

Notice that, since X = r∂r ∈ X(M) is a closed conformal vector field with conformal factor
φ = 1 and w is homogeneous, we have

divwX = divX + ⟨∇ log w, X⟩

= n + ⟨∇ log w, X⟩

= n + α. (4.24)

Integrating (4.22) we have∫
Ω

|∇u|2 dvw + 2
n + α

∫
Ω

u dvw + k

∫
Ω

u2 dvw < c2V olw(Ω). (4.25)

On the other hand, since φ = 1 and (4.24), we use Proposition 4.0.13 to see that

(n + α + 2)
n + α

∫
Ω

u dvw + 2k

∫
Ω

u2 dvw = c2V olw(Ω) (4.26)

Using (4.23), and replacing (4.26) in (4.25), we get

n + α + 2
n + α

∫
Ω

u dvw + k(n + α + 1)
∫

Ω
u2 dvw <

(n + α + 2)
n + α

∫
Ω

u dvw + 2k

∫
Ω

u2 dvw,

which implies
k(n + α − 1)

∫
Ω

u2 dvw < 0.

Since k is nonnegative we reach a contradiction.
Thus, using maximum principle, P (u) ≡ c2 and, consequently, ∆wP (u) = 0. The rigidity

conclusion follows from Lemma 4.0.15 and Lemma 4.0.4. □

4.0.4 The weighted Serrin’s problem for convex cones of the Euclidean space

This section addresses Serrin’s problem in the context of convex cones within the Eu-
clidean space, focusing on the weighted Laplacian. We analyze sector-like domains within convex
cones, utilizing the weighted Laplacian to investigate rigidity results under specific boundary
and weight conditions. Building upon prior work, they emphasize the role of weighted geometric
properties and the α-Bakry-Émery Ricci tensor in our analysis.

Our key findings include characterizations of symmetry and rigidity for solutions to the
weighted Serrin-type problem. By employing techniques such as Bochner-type inequalities and
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the properties of conformal vector fields, we demonstrate how the weight function constrains the
geometry of the domain. These results, can be find in [59], highlight the interaction between
the geometry of convex cones, boundary conditions, and the influence of the weight function in
determining domain symmetry.

Throughout this section, we consider M = Rn. Recall the definition of an open cone Σ
in Rn, n ≥ 2, with vertex at the origin O: denoting by ω an open connected domain on the unit
sphere Sn, we define

Σ = {tx : x ∈ ω, t ∈ (0, +∞)} .

Furthermore, a sector-like domain Ω is a domain where the boundary components are denoted
by

Γ = ∂Ω ∩ Σ and Γ1 = ∂Ω \ Γ,

with suitable properties (recall Definition 1.0.8).
Given a positive smooth function w, the Euclidean space can modify its natural measure

according to the following rule: the new volume element and surface area are given by dvw = w dv

and daw = w da, where dv and da represent the Euclidean volume and surface area elements
for the canonical metric in Rn and (Rn, ⟨ , ⟩ , dvw) is a weighted manifold. In this setting, the
weighted Laplacian is the operator defined by (4.1) and repeated here for convenience of the
reader

∆w = ∆ + ⟨∇ log w, ∇·⟩.

In this section, we study the problem (1.16)

∆wu = −1 in Ω
u = 0 on Γ
uν = −c on Γ
uν = 0 on Γ1 \ {O}

∇2 log w(∇u, ∇u) + ⟨∇ log w, ∇u⟩2

α
≤ 0 in Ω

where ν denote the exterior unit normal to ∂Ω and w is a homogeneous function of degree
α > 0, i.e. ⟨∇w, x⟩ = αw, where x is the position vector field. As a notable example we can
take w(x) = |x|α, where α = 2 correspond to the Gaussian model. More than merely studying
a new extension of the cone problem for a weighted operator, this section extends the analysis
conducted in [50]. This, for example, explains the hypothesis imposed on the function w and
the final condition in (1.16).

For the next, we remember that a vector field X ∈ X(M) is called closed conformal if
∇Y X = φY, for all Y ∈ X(M), for some smooth function φ called the conformal factor. When
M = Rn = (0, ∞) ×t Sn−1 we have φ = t′ = 1.

Lemma 4.0.12 plays an important role in the main result of this section. As an important
particular case, we obtain the following consequence.

Corollary 4.0.16 If u is a solution of (1.16), where Ω ⊂ Rn and w is homogeneous of degree
α, then ∆w ⟨x, ∇u⟩ = −2, where x is the position vector field.
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Proof: The proof is completed by applying Lemma 4.0.12, observing that the position vec-
tor field x is a closed conformal field with φ = 1. Moreover, since w is α-homogeneous,
⟨∇ log w, x⟩ = α. □

Applying Lemma 4.0.2 to our specific problem (1.16), we obtain the following rigidity
characterization.

Corollary 4.0.17 If u is a solution of (1.16), where Ω ⊂ Rn, then

1
2∆w|∇u|2 ≥ 1

n + α
.

Furthermore, the equality holds if and only if Ω = Σ ∩ Br(x0) where Br(x0) is a ball.

Proof: Since Ric = 0 in Rn, we use (1.16) to conclude

Ricα
w(∇u, ∇u) = −∇2 log w(∇u, ∇u) − ⟨∇ log w, ∇u⟩2

α
≥ 0.

To complete the proof we just replace the solution u in Lemma 4.0.2. The conclusion of the
equality case follows from Lemma 4.0.4. □

We finish this section with the proof of its main result, Theorem 1.0.9.

Proof of Theorem 1.0.9: Since u a solution of (1.16), repeating the process of integration
by parts multiple times leads to∫

Ω
u dvw = −

∫
Ω

u∆wu dvw

= −
∫

Γ
uuν daw −

∫
Γ1

uuν daw +
∫

Ω
|∇u|2 dvw

= −
∫

Ω
|∇u|2∆wu dvw

= −
∫

Γ∪Γ1
|∇u|2uνdaw +

∫
Ω

〈
∇|∇u|2, ∇u

〉
dvw

= −
∫

Γ
|∇u|2uν daw +

∫
Ω

〈
∇|∇u|2, ∇u

〉
dvw.

= −c2
∫

Γ
uν daw +

∫
Ω

〈
∇|∇u|2, ∇u

〉
dvw.

= −c2
∫

∂Ω
uν daw +

∫
Ω

〈
∇|∇u|2, ∇u

〉
dvw.

Then, ∫
Ω

u dvw = c2V olw(Ω) +
∫

Ω

〈
∇|∇u|2, ∇u

〉
dvw. (4.27)

On other hand, using the divergence theorem,∫
Ω

〈
∇|∇u|2, ∇u

〉
dvw = −

∫
Ω

u∆w|∇u|2 dvw +
∫

∂Ω
u⟨∇|∇u|2, ν⟩ daw

≤ − 2
n + α

∫
Ω

u dvw +
∫

Γ1
u⟨∇|∇u|2, ν⟩ daw

≤ − 2
n + α

∫
Ω

u dvw,
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where, in the first inequality, we use Corollary 4.0.17, and in the second inequality, we use the
convexity of Σ. Then, (4.27) becomes(

1 + 2
n + α

) ∫
Ω

u dvw ≤ c2V olw(Ω), (4.28)

being the equality characterized by Corollary 4.0.17.
We will demonstrate that the equality always holds. Indeed, using the α-homogeneity

of w, we have that

divw(ux) = udivw(x) + ⟨∇u, x⟩

= u(div(x) + ⟨x, ∇ log w⟩) + ⟨∇u, x⟩

= un + u ⟨x, ∇ log w⟩ + ⟨∇u, x⟩

= (n + α)u + ⟨∇u, x⟩ ,

therefore ∫
Ω

(n + α)u dvw =
∫

Ω
divw(ux) dvw −

∫
Ω

⟨∇u, x⟩ dvw.

Since x is the position vector field we have ⟨x, ν⟩ = 0, so∫
Ω

divw(ux) dvw =
∫

∂Ω
u ⟨x, ν⟩ daw

=
∫

Γ
u ⟨x, ν⟩ daw +

∫
Γ1

u ⟨x, ν⟩ daw

= 0,

and we get

(n + α)
∫

Ω
u dvw = −

∫
Ω

⟨∇u, x⟩ dvw. (4.29)

Furthermore we observe that ∇2u(∇u, x) = 0 on Γ1. Indeed, note that

0 = x⟨∇u, ν⟩ (4.30)
= ⟨∇x∇u, ν⟩ + ⟨∇u, ∇xν⟩,

on Γ1. Now, given a vector field Y ∈ X(Γ1), note that

⟨∇xν, Y ⟩ = −⟨ν, ∇xY ⟩

= −⟨ν, ∇Y x + [x, Y ]⟩
= −⟨ν, Y + [x, Y ]⟩
= 0.

Thus, from above equation, we deduce that ∇xν = 0 and from (4.30) we conclude that
∇2u(∇u, x) = 0. Since ∇2u(∇u, x) = 0 on Γ1, from integration by parts, (4.29) and using
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Corollary 4.0.16, we have∫
Ω

u dvw = 1
n + α

(
−

∫
Ω

⟨x, ∇u⟩ dvw

)
= 1

n + α

( ∫
Ω

⟨x, ∇u⟩ ∆wu dvw

)
= 1

n + α

( ∫
∂Ω

⟨x, ∇u⟩ uν daw +
∫

Ω
u∆w(⟨x, ∇u⟩) dvw −

∫
∂Ω

u⟨ν, ∇⟨x, ∇u⟩⟩ daw

)
= 1

n + α

( ∫
Γ

⟨x, ∇u⟩ uν daw −
∫

Γ1
u⟨ν, ∇⟨x, ∇u⟩⟩ daw − 2

∫
Ω

u dvw

)
= 1

n + α

(
c2

∫
∂Ω

⟨x, ν⟩ daw − 2
∫

Ω
u dvw

)
= 1

n + α

(
c2

∫
Ω

divw(x) dvw − 2
∫

Ω
u dvw

)
= c2V olw(Ω) − 2

n + α

∫
Ω

u dvw

therefore occurs the equality in (4.28). This implies, by Corollary 4.0.17 that Ω = Σ ∩ Br(x0)
where Br(x0) is a ball. Now, we observe that from Lemma 4.0.2, we get ∇2u = ∆u

n g = − 1
n+αg.

Thus, after some routine calculation one arrives at u = r2−|x−x0|2
2(n+α) . □
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