

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL - MESTRADO -

EXPANSÃO URBANA EM REGIÕES METROPOLITANAS BRASILEIRAS E SEUS IMPACTOS NAS TEMPERATURAS DO AR E DA SUPERFÍCIE

Por

Victhor Brenno Farias Teixeira

Dissertação de Mestrado apresentada à Universidade Federal da Paraíba para obtenção do grau de Mestre

João Pessoa - Paraíba

Fevereiro de 2025

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL - MESTRADO -

EXPANSÃO URBANA EM REGIÕES METROPOLITANAS BRASILEIRAS E SEUS IMPACTOS NAS TEMPERATURAS DO AR E DA SUPERFÍCIE

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Civil e Ambiental da Universidade Federal da Paraíba, como parte dos requisitos para a obtenção do título de Mestre.

Victhor Brenno Farias Teixeira

Orientador: Prof. Dr. Davi de Carvalho Diniz Melo

João Pessoa - Paraíba

Fevereiro de 2025

Catalogação na publicação Seção de Catalogação e Classificação

T266e Teixeira, Victhor Brenno Farias.

Expansão urbana em regiões metropolitanas brasileiras e seus impactos nas temperaturas do ar e da superfície / Victhor Brenno Farias Teixeira. - João Pessoa, 2025.

96 f. : il.

Orientação: Davi de Carvalho Diniz Melo. Dissertação (Mestrado) - UFPB/CT.

1. Crescimento urbano. 2. LULC. 3. MODIS. 4. Sensoriamento remoto. 5. Mudanças climáticas. I. Melo, Davi de Carvalho Diniz. II. Título.

UFPB/BC CDU 911.375.1(043)

EXPANSÃO URBANA EM REGIÕES METROPOLITANAS BRASILEIRAS E SEUS IMPACTOS NAS TEMPERATURAS DO AR E DA SUPERFÍCIE

VICTHOR BRENNO FARIAS TEIXEIRA

Dissertação aprovada em 28 de fevereiro de 2025 Período Letivo: 2024.2

Prof(a). Dr(a). Davi de Carvalho Diniz Melo – UFPB Orientador(a)

Prof(a). Dr(a). Victor Hugo Rabelo Coelho – UFPB Examinador(a) Interno(a)

Prof(a). Dr(a). Bernardo Barbosa da Silva – UFCG Examinador(a) Externo(a)

João Pessoa/PB 2025

Dedico este trabalho à minha avó, Terezinha de Farias Gouveia (In Memoriam), que apesar de não poder estar ao meu lado nesta conquista, sempre foi minha inspiração de força para continuar.

AGRADECIMENTOS

Em primeiro lugar, agradeço a Deus, por todas as bençãos e pela proteção que Ele me concedeu até hoje, guiando meus passos e me concedendo força, sabedoria e perseverança para concluir esta etapa da minha vida.

Agradeço a toda a minha família, em especial à minha mãe Socorro, por todo o apoio em todos os momentos da minha vida e pelo esforço em me proporcionar um grande futuro. Mesmo diante das dificuldades, ela sempre foi meu porto seguro. Ao meu pai, Pacelli, por seu esforço diário e dedicação para com seus filhos, sendo uma referência para mim e permitindo que tivéssemos acesso a uma educação de qualidade. À minha irmã, Bárbara, por toda a ajuda ao longo da vida e durante a minha trajetória acadêmica, sempre presente com seu companheirismo e conselhos. E aos demais familiares que fazem parte do meu caminhar.

Agradeço à minha noiva, Maria Luíza, por sua compreensão e apoio ao longo da minha jornada acadêmica. Sua lealdade e incentivo foram fundamentais, especialmente nos momentos em que precisei me ausentar devido às inúmeras demandas acadêmicas. Sou grato por sua presença constante, por acreditar em mim e por ser uma grande motivação.

Aos meus amigos, com quem tive o prazer de compartilhar essa minha trajetória, expresso minha gratidão. A troca de conhecimentos, experiências e apoio ao longo do percurso tornou cada desafio mais leve e cada conquista ainda mais especial.

Agradeço aos professores que foram responsáveis por diversos ensinamentos, tanto dentro quanto fora da pesquisa. Em especial, ao meu orientador, professor Dr. Davi de Carvalho, que me proporcionou a oportunidade de realizar este trabalho, apesar dos desafios da interdisciplinaridade, contribuindo com valiosos conhecimentos, além do apoio e paciência para enfrentar as dificuldades encontradas durante o percurso. Também agradeço à amiga Mirela, com quem pude obter bons resultados e desfrutar ainda mais dessa parceria que se fortalece desde a graduação.

Agradeço também aos professores Dr. Victor Hugo e Dr. Bernardo Barbosa pelas contribuições e sugestões ao longo da construção deste trabalho, que foram essenciais para seu aprimoramento e conclusão.

Por fim, expresso minha gratidão à Universidade Federal da Paraíba, especialmente ao Programa de Pós-Graduação em Engenharia Civil e Ambiental (PPGECAM), pelo ensino de qualidade, e à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pelo apoio financeiro que viabilizou a realização desta etapa tão importante.

RESUMO

O fenômeno global da expansão urbana, com a migração da população das áreas rurais para as zonas urbanas, tem alterado paisagens e ecossistemas, impulsionado pela migração da população das áreas rurais para as zonas urbanas, levando à substituição da vegetação natural por superfícies artificiais, como o metal, asfalto e concreto. A urbanização tem influenciado mudanças climáticas locais, incluindo o efeito de ilhas de calor urbano, o aumento da emissão de gases de efeito estufa e as alterações nos parâmetros biofísicos. Assim, o objetivo deste estudo foi investigar a relação entre os processos de expansão urbana ocorridos entre os anos de 1993 e 2023 em regiões metropolitanas brasileiras e seus impactos na temperatura de superfície e do ar, considerando a influência direta na dinâmica das urbes e na saúde pública. Para isso, foram utilizados dados de temperatura do ar provenientes de estações meteorológicas, dados de temperatura de superfície obtidos por meio de produtos de sensoriamento remoto do Moderate-Resolution Imaging Spectroradiometer (MODIS), dados censitários, de poluição e produtos de mapeamento de uso e cobertura do solo do MapBiomas. A pesquisa revela um crescimento acentuado na área urbanizada das regiões metropolitanas (RM), como a RM de Goiânia, que ampliou em 133,24% sua infraestrutura urbana em detrimento de áreas de vegetação, e uma tendência de crescimento nas temperaturas de superfície, principalmente em Manaus, e do ar, no Vale do Rio Cuiabá, além de crescimentos menos expressivos em diversas regiões e estações. Destaca, assim, a necessidade de estratégias sustentáveis para mitigar os impactos ambientais associados, recomendando políticas que promovam a conservação ambiental e a preservação de ecossistemas locais, integrando o desenvolvimento urbano à sustentabilidade.

Palavras-chave: Crescimento urbano; LULC; MODIS; Sensoriamento remoto; Mudanças climáticas.

ABSTRACT

The global phenomenon of urban expansion, driven by the migration of populations from rural areas to urban zones, has altered landscapes and ecosystems, leading to the replacement of natural vegetation by artificial surfaces such as metal, asphalt, and concrete. Urbanization has influenced local climate changes, including the urban heat island effect, increased greenhouse gas emissions, and alterations in biophysical parameters. Thus, the aim of this study was to investigate the relationship between urban expansion processes that occurred between 1993 and 2023 in Brazilian metropolitan regions and their impacts on surface and air temperatures, considering the direct influence on urban dynamics and public health. For this, air temperature data from meteorological stations, surface temperature data obtained from MODIS remote sensing products, census data, pollution data, and land use and land cover mapping products from MapBiomas were used. The research reveals a marked increase in the urbanized area of metropolitan regions (RM), such as the RM of Goiânia, which expanded its urban infrastructure by 133.24% at the expense of vegetation areas, and a trend of increasing surface temperatures, particularly in Manaus, and air temperatures in the Cuiabá River Valley, as well as less pronounced growth in several regions and seasons. This highlights the need for sustainable strategies to mitigate the associated environmental impacts, recommending policies that promote environmental conservation and the preservation of local ecosystems, integrating urban development with sustainability.

Keywords: Urban growth; LULC; MODIS; Remote sensing; Climate change.

SUMÁRIO

RESUMO	7
ABSTRACT	8
LISTA DE TABELAS	11
LISTA DE QUADROS	12
LISTA DE EQUAÇÕES	12
LISTA DE FIGURAS	13
1 – INTRODUÇÃO	15
2 - OBJETIVOS	17
3 – REFERENCIAL TEÓRICO	17
3.1 – EXPANSÃO URBANA NO BRASIL	17
3.2 – MUDANÇAS CLIMÁTICAS E SENSORIAMENTO REMOTO	19
3.3 – ESTUDOS CONVERGENTES SOBRE A TEMÁTICA	20
4 – ÁREAS DE ESTUDO	21
5 – MÉTODO DE TRABALHO	23
5.1 – CRESCIMENTO POPULACIONAL	24
5.2 – MUDANÇAS NO USO E COBERTURA DO SOLO	24
5.3 – MUDANÇAS NA TENDÊNCIA DA TEMPERATURA	25
5.3.1 – Temperatura de Superfície	25
5.3.2 – Temperatura do Ar	25
5.5 – ANÁLISE DA POLUIÇÃO DO AR	30
5.6 – ANÁLISE ESTATÍSTICA DE CORRELAÇÃO E TENDÊNCIA	30
6 – RESULTADOS E DISCUSSÃO	32
6.1 – REGIÃO CENTRO-OESTE	32
6.2 – REGIÃO NORDESTE	37
6.3 – REGIÃO NORTE	49
6.4 – REGIÃO SUL	59
65 – REGIÃO SUDESTE	66

7 – CONCLUSÕES E RECOMENDAÇÕES	
REFERÊNCIAS	.83
APÊNDICE A – DADOS DE TEMPERATURA DE SUPERFÍCIE E DO AR	90

LISTA DE TABELAS

Tabela 1 - Mudança de Uso e Ocupação do Solo na RM de Goiânia	33
Tabela 2 - Mudança de Uso e Ocupação do Solo da RM do Vale do Rio Cuiabá	36
Tabela 3 - Mudança de Uso e Ocupação do Solo da RM de Salvador.	39
Tabela 4 - Mudança de Uso e Ocupação do Solo da RM de Fortaleza	42
Tabela 5 - Mudança de Uso e Ocupação do Solo da RM da Grande São Luís	44
Tabela 6 - Mudança de Uso e Ocupação do Solo da RM de João Pessoa	46
Tabela 7 - Mudança de Uso e Ocupação do Solo da RM de Natal	47
Tabela 8 - Mudança de Uso e Ocupação do Solo da RM de Manaus	50
Tabela 9 - Mudança de Uso e Ocupação do Solo da RM de Macapá	53
Tabela 10 - Mudança de Uso e Ocupação do Solo na RM de Belém.	54
Tabela 11 - Mudança de Uso e Ocupação do Solo na RM de Boa Vista	56
Tabela 12 - Mudança de Uso e Ocupação do Solo na RM de Palmas.	58
Tabela 13 - Mudança de Uso e Ocupação do Solo da RM de Londrina	60
Tabela 14 - Mudança de Uso e Ocupação do Solo da RM de Maringá	63
Tabela 15 - Mudança de Uso e Ocupação do Solo da RM de Porto Alegre	65
Tabela 16 - Mudança de Uso e Ocupação do Solo da RM da Grande Vitória	67
Tabela 17 - Mudança de Uso e Ocupação do Solo da RM de Belo Horizonte	70
Tabela 18 - Mudança de Uso e Ocupação do Solo da RM do Rio de Janeiro	72
Tabela 19 - Mudança de Uso e Ocupação do Solo da RM de Ribeirão Preto.	73
Tabela 20 - Mudança de Uso e Ocupação do Solo da RM de São Paulo.	75
Tabela 21 – Resumo de Emissões de CO2 por Regiões Metropolitanas.	78
Tabela 22- Tendência e Correlação da LST das Regiões Metropolitanas	80
Tabela 23 - Tendência e Correlação da Temperatura do Ar das Regiões Metropolitanas	80

LISTA DE QUADROS

Quadro 1- Especificação da área de estudo por Estados	21
Quadro 2 - Estações meteorológicas por Região Metropolitanas (RM).	26
LISTA DE EQUAÇÕES	
Equação 1	30
Equação 2	31
Equação 3	31
Equação 4	31

LISTA DE FIGURAS

Figura 1- Regiões Metropolitanas por Regiões do Brasil	22
Figura 2- Fluxograma do trabalho	23
Figura 3 - Crescimento demográfico na Região Centro-Oeste nas RMs de a) Goiânia e b)	Vale do
Rio Cuiabá	32
Figura 4 - Mudança de Uso e Ocupação na RM de Goiânia	33
Figura 5 - Mapa do Uso e Ocupação das RMs no Centro-Oeste.	34
Figura 6 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na	RM de
Goiânia	35
Figura 7 - Mudança de Uso e Ocupação na RM do Vale do Rio Cuiabá	36
Figura 8 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM	do Vale
do Rio Cuiabá	37
Figura 9 - Crescimento demográfico na Região Nordeste nas RMs de a) Salvador, b) Forta	aleza, c)
Grande São Luís, d) João Pessoa e e) Natal	38
Figura 10 - Mudança de Uso e Ocupação na RM de Salvador	39
Figura 11 - Mapa do Uso e Ocupação das RMs no Nordeste.	40
Figura 12 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na	RM de
Salvador.	41
Figura 13 - Mudança de Uso e Ocupação na RM de Fortaleza	42
Figura 14 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na	RM de
Fortaleza	43
Figura 15 - Mudança de Uso e Ocupação na RM da Grande São Luís	43
Figura 16 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na	RM da
Grande São Luís.	45
Figura 17 - Mudança de Uso e Ocupação na RM de João Pessoa.	45
Figura 18 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM	de João
Pessoa.	47
Figura 19 - Mudança de Uso e Ocupação na RM de Natal	48
Figura 20 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM o	
Figura 21 - Crescimento demográfico na Região Norte nas RMs de a) Manaus, b) Mao	
Belém, d) Boa Vista e e) Palmas	
Figura 22 - Mudança de Uso e Ocupação na RM de Manaus	
Figura 23 - Mapa do Uso e Ocupação das RMs no Norte.	
Figura 24 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na	
Manaus	
Figura 25 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na	
Macapá	

Figura 26 - Mudança de Uso e Ocupação na RM de Belém.	55
Figura 27 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM	M de
Belém.	55
Figura 28 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de	Boa
Vista	57
Figura 29 - Mudança de Uso e Ocupação na RM de Palmas	58
Figura 30 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM	
Palmas	
Figura 31 - Crescimento demográfico na Região Sul nas RMs de a) Londrina, b) Maringá e c) F	orto
Alegre	
Figura 32 - Mudança de Uso e Ocupação na RM de Londrina	
Figura 33 - Mapa do Uso e Ocupação das RMs no Sul.	
Figura 34 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM	
Londrina.	
Figura 35 - Mudança de Uso e Ocupação na RM de Maringá	
Figura 36 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM	
Maringá	
Figura 37 - Mudança de Uso e Ocupação na RM de Porto Alegre	
Figura 38 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de F	
Alegre	
Figura 39 - Crescimento demográfico na Região Sudeste nas RMs de a) Grande Vitória, b)	
Horizonte, c) Rio de Janeiro, d) Ribeirão Preto e e) São Paulo	
Figura 40 - Mapa do Uso e Ocupação das RMs no Sudeste	
Figura 41 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM	
Grande Vitória	
Figura 42 - Mudança de Uso e Ocupação na RM de Belo Horizonte	
Figura 43 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de	
Horizonte	
Figura 44 - Mudança de Uso e Ocupação na RM do Rio de Janeiro	
Figura 45 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM do	
de Janeiro.	73
Figura 46 - Mudança de Uso e Ocupação na RM de Ribeirão Preto.	
Figura 47 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM	И de
Ribeirão Preto.	
Figura 48 - Mudança de Uso e Ocupação na RM de São Paulo.	
Figura 49 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de	
Paulo.	

1 – INTRODUÇÃO

O processo de urbanização e suas características têm modificado o cenário de diversos países. Embora a urbanização seja um componente atrelado ao progresso econômico e social, também apresenta repercussões diversas na sociedade e no ambiente citadino, sendo benéficas ao desenvolvimento ou prejudiciais às condições naturais do espaço (Venkatraman *et al.*, 2024).

O ritmo alarmante de crescimento das cidades, impulsionado pelo movimento de migração das áreas rurais para as urbanas em busca de melhores condições de vida e oportunidades de emprego, tem gerado grande preocupação sobre os rumos tomados pela urbanização acelerada (Mahal, 2022).

Gohain *et al.* (2021) destacam que, embora a urbanização seja um fenômeno comum em todo o mundo, nos países em desenvolvimento se tornou mais intensa e dinâmica devido ao crescimento econômico acelerado. Estimativas indicam ainda que, até 2050, dois terços da população mundial viverão em áreas urbanas, e noventa por cento do crescimento urbano ocorrerá em regiões menos desenvolvidas (UN-Habitat, 2019). Assim, esse aumento populacional e o crescimento desordenado das cidades podem impactar negativamente no uso e na cobertura do solo.

Deb *et al.* (2018) reforçam ainda que as ações resultantes da atividade humana demonstram significativa mudança do meio ambiente, levando à degradação das florestas e à perturbação da integridade dos ecossistemas ricos em biodiversidade. O desenvolvimento urbano frequentemente resulta em mudanças problemáticas à superfície da Terra, uma vez que a vegetação natural é removida e substituída por superfícies artificiais que não evaporam e não transpiram, como o metal, o asfalto e o concreto (Weng, 2001).

Uma das principais consequências da alteração na cobertura do solo de áreas urbanizadas, provocadas pela redução da cobertura vegetal natural e o aumento de superfícies artificiais impermeáveis, são as modificações na temperatura de superfície terrestre e o desenvolvimento de ilhas de calor urbanas (Mohammad e Goswami, 2019). Esse aumento de temperatura e a presença das ilhas de calor afetam a sustentabilidade do ambiente urbano e a qualidade de vida dos habitantes, resultando em maior consumo de energia, aumento na emissão de poluentes atmosféricos e redução do conforto térmico (Boumans *et al.*, 2014).

Esses fatores impactam o transporte e a dispersão de poluentes, a qualidade do ar e o aumento dos Gases de Efeito Estufa (GEE). O aumento da temperatura do ar e a poluição atmosférica, associados às atividades e ao uso excessivo de combustíveis que liberam dióxido de carbano (CO₂), provocam alterações climáticas locais e regionais. Também afetam a saúde e a qualidade de vida humana, contribuindo para os impactos sociais, ambientais e econômicos nas dinâmicas urbanas (Wang *et al.*, 2007).

Diante dos efeitos provocados e das preocupações com o bem-estar da sociedade, a importância de pesquisas sobre as mudanças climáticas associadas ao desenvolvimento vertiginoso das cidades vem sendo bastante discutida.

À medida que avaliações *in loco* demandam recursos financeiros consideráveis, devido aos equipamentos necessários, tempo e mão de obra, principalmente em estudos de grandes áreas. Assim, a utilização de produtos de sensoriamento remoto tem se mostrado eficaz para identificar a variabilidade dos índices biofísicos e seus impactos nas mudanças climáticas, conforme demonstrado em estudos realizados em países como Índia, China e Nigéria (Vasanthawada *et al.*, 2023; Ullah *et al.*, 2020; Fashae *et al.*, 2020).

A existência de múltiplos sensores em diversos satélites possibilita a realização de estudos detalhados e abrangentes sobre os eventos, os fenômenos e os processos que ocorrem na superfície terrestre. A escolha do sensor mais adequado para cada pesquisa, considerando a resolução radiométrica, espectral, espacial ou temporal, é crucial para obter resultados mais precisos e próximos à realidade (Meneses, 2012).

Na quantificação dos valores de temperatura de superfície, por exemplo, é necessário utilizar uma banda específica, conhecida como banda termal, que permite captar e calcular esses valores. Assim, satélites que oferecem produtos com sensores capazes de captar essas informações com melhor resolução são os mais indicados para uso. Já a temperatura do ar, frequentemente medida por meio de sensores localizados em estações meteorológicas, reflete a temperatura próxima à superfície terrestre e ajuda a fornecer uma visão mais detalhada das condições climáticas e de seu impacto sobre o ambiente urbano.

Portanto, a presente pesquisa tem como objetivo avaliar os impactos do crescimento urbano na mudança de temperatura de superfície e do ar, considerando a influência direta na dinâmica das urbes e na saúde pública em regiões metropolitanas de diferentes escalas. A análise será feita utilizando em dados de produtos de sensoriamento remoto obtidos pelo sensor Moderate-Resolution Imaging Spectroradiometer (MODIS) e estações meteorológicas, em conjunto com dados censitários e de poluição, para avaliar as condições das regiões metropolitanas brasileiras.

Ao analisar o panorama brasileiro através de investigações em regiões metropolitanas de pequeno, médio e grande portes, e ao considerar dados de temperatura do ar em conjunto com os de superfície, esta abordagem inova em relação a trabalhos anteriores, que se concentram em casos pontuais, a exemplo das cidades de Fortaleza, Rio de Janeiro, Teresina e Manaus (Silva *et al.*, 2011; Kazay *et al.*, 2011; Feitosa *et al.*, 2011; de Souza e dos Santos, 2014), ou que avaliaram a totalidade do Brasil a partir de municípios de grande porte, com população estimada superior a 750 mil habitantes, considerando apenas a temperatura de superfície e desconsiderando as variações sazonais (Monteiro *et al.*, 2021).

Nesse sentido, embora existam abordagens como a de Patriota (2024), que buscou preencher essa lacuna ao estudar de forma contínua os impactos climáticos, essas análises ainda se restringem a cidades de grande porte, com populações acima de 1 milhão de habitantes, sem levar em conta também a avaliação dos dados de temperatura do ar. Assim, este estudo busca não apenas ampliar essa perspectiva, mas também fornecer resultados significativos que contribuam para elaboração de políticas públicas que promovam debates e planejamentos acerca das ações de controle e monitoramento dos efeitos da urbanização nas mudanças climáticas, bem como auxiliar na tomada de decisões para o desenvolvimento sustentável das cidades.

2 - OBJETIVOS

Objetivo Geral:

A pesquisa tem como objetivo geral investigar a relação entre os processos de expansão urbana ocorridos entre 1993 e 2023 em regiões metropolitanas brasileiras de pequeno, médio e grande porte e seus impactos na temperatura de superfície e do ar.

Objetivos Específicos:

- ✓ Quantificar e analisar o crescimento urbano, populacional e da poluição do ar nas últimas três décadas;
- ✓ Investigar mudanças na tendência de temperatura de superfície e do ar;
- ✓ Avaliar a correlação entre o crescimento urbano e as mudanças climáticas locais;
- ✓ Investigar, no âmbito da região metropolitana, a distribuição espacial das áreas urbanizadas conforme os biomas brasileiros;
- ✓ Apresentar sugestões de melhorias para reduzir os impactos da expansão urbana, considerando critérios ambientais.

3 – REFERENCIAL TEÓRICO

3.1 – EXPANSÃO URBANA NO BRASIL

O processo de urbanização brasileiro, assim como em muitos países em desenvolvimento, foi caracterizado por um célere crescimento das cidades de forma desordenada. Causado, inicialmente, pelo êxodo rural, perdura até os dias atuais, sendo marcado pela falta de planejamento urbano estratégico.

Essa transição rural-urbana no Brasil tem grande importância no contexto histórico, social e econômico do país, pois traz consigo consequências significativas, uma vez que os fluxos migratórios, compostos principalmente por famílias de baixa renda, direcionam-se às regiões periféricas e pouco estruturadas das cidades (De Espinola *et al.*, 2017).

Os impactos são especialmente observados em regiões metropolitanas, as quais compreendem um conjunto de diversas cidades que, ao longo do tempo, foram se integrando devido à proximidade dos limites geográficos em um processo conhecido como conurbação. Essas regiões foram instituídas a partir de 1973, reflexo de políticas nacionais de desenvolvimento urbano focada na expansão de empresas nacionais e multinacionais (Ugalde, 2013).

Segundo Silva *et al.* (2018), apesar das mudanças expressivas no perfil de migração dessa população nas grandes cidades brasileiras, ao longo do tempo, atualmente, a movimentação de pessoas das áreas rurais para as urbanas tem afetado predominantemente cidades com menos de 1 milhão de habitantes.

Conforme destacado por Lu *et al.* (2015), a urbanização é um dos processos mais relevantes que impactam o meio ambiente em escalas local, regional e global. As mudanças massivas de uso e cobertura do solo, decorrentes do aumento das áreas urbanizadas e do crescimento populacional, contribuem para o aumento do uso de materiais de baixo albedo e estão associadas à degradação ambiental, sendo esta degradação um dos principais impulsionadores das mudanças climáticas (Chen *et al.*, 2006).

Estudos recentes evidenciaram que a intensificação dos processos urbanos tem um impacto considerável no clima e no tempo, destacando a necessidade de análises contínuas sobre as relações potenciais entre o crescimento urbano e as mudanças ambientais locais, muitas vezes associadas às condições de uso e cobertura do solo. Essas análises são fundamentais para compreender as dinâmicas complexas que ocorrem nas áreas urbanas (Azevedo e Leal, 2017).

As ilhas de calor urbanas, caracterizadas pelo aumento de temperaturas visivelmente mais altas nas cidades em relação as áreas rurais circundantes, representam um desses impactos ambientais resultantes das alterações nas características do solo, uma vez que modificam condições atmosféricas próximas à superfície das cidades (Polydoros e Cartalis, 2015; Ali *et al.*, 2016).

O aumento das temperaturas nessas regiões causa impactos diversos na sociedade, incluindo o desconforto térmico na população, diretamente relacionado a problemas de saúde decorrentes do calor (Ahmed *et al.*, 2013).

Diante desse cenário, considerando a necessidade de planejamento urbano para o desenvolvimento mais sustentável das cidades e interações socioambientais das comunidades urbanas, compreender as mudanças transitórias na utilização dos espaços e prever as mudanças

futuras nas classes de uso do solo são instrumentos importantes para ações direcionadas que monitorem e mitiguem impactos prejudiciais ao meio urbano.

3.2 – MUDANÇAS CLIMÁTICAS E SENSORIAMENTO REMOTO

O avanço das mudanças climáticas globais representa um dos maiores desafios enfrentados pela humanidade. O impacto nos três pilares da sustentabilidade - econômico, social e, principalmente, ambiental - demonstra a complexidade da temática e seus desfechos.

Nesse processo, a investigação de fatores que auxiliem na compreensão da variação do clima, como a avaliação da temperatura de superfície terrestre, indica primariamente o balanço energético da Terra, e mostra-se de extrema importância, pois envolve a análise sobre a vegetação, o uso e ocupação, bem como a quantidade de água no solo, fatores que influenciam os valores de temperatura de superfície e fornecem informações significativas sobre o funcionamento dos vários sistemas ambientais (Peng *et al.*, 2018; Rashid *et al.*, 2022).

Como a temperatura de superfície terrestre é um parâmetro indicativo das condições térmicas da superfície, possui significativa interferência na temperatura do ar, apesar de variar conforme a presença e direção do vento, insolação e características da superfície (Zhou *et al.*, 2017). Além disso, está diretamente relacionado à formação de ilhas de calor urbano, influenciando no conforto térmico das regiões urbanizadas.

Entretanto, a utilização de dados meteorológicos para prever alterações a longo prazo na temperatura de superfície, e que contribuiria para a formulação de políticas governamentais e a melhor gestão de espaços urbanos, é um desafio (Zhou *et al.*, 2018).

Como forma de solucionar esse quadro, diversos países medem regularmente a temperatura do ar em locais pontuais, por meio de estações meteorológicas (Shreevastava *et al.*, 2019). No entanto, devido à complexidade no arranjo espacial das superfícies em áreas urbanas, torna-se difícil estimar as variações locais na temperatura de superfície com base apenas nestes mesmos dados (Hu *et al.*, 2020).

Dessa maneira, o sensoriamento remoto tem se destacado como umas das tecnologias vitais para a obtenção de informações detalhadas. Inclui análises temporais das mudanças na temperatura de superfície, bem como análise de mudanças na cobertura do solo em diversas escalas (Guha *et al.*, 2020).

Uma das principais vantagens do uso de dados provenientes de sensoriamento remoto é sua cobertura contínua das áreas urbanas. Consequentemente, a temperatura de superfície terrestre, obtida a partir de sensores remotos infravermelhos térmicos, tornou-se um indicador padrão utilizado para analisar principalmente as ilhas de calor (Shen *et al.*, 2016).

Nota-se que, apesar de dados semelhantes ou de resolução superior possam ser adquiridos usando veículos não tripulados, o custo e o tempo são alguns fatores que favorecem o uso de imagens de satélite (Li *et al.*, 2020). Além disso, os produtos de satélite permitem a aplicações de outros índices biofísicos, o que facilita a compreensão das interações urbanas em diferentes estudos.

3.3 – ESTUDOS CONVERGENTES SOBRE A TEMÁTICA

Já foram realizados diversos estudos relacionados às problemáticas causadas pela expansão urbana e sua influência na temperatura de superfície e do ar ao redor do mundo. Alguns pioneiros, buscaram identificar as características da temperatura da superfície usando dados do satélite National Oceanic Atmospheric Administration (NOAA) e do sensor Advanced Very High Resolution Radiometer (AVHRR), como realizado em diversas cidades dos Estados Unidos (Balling e Brazel, 1988; Roth *et al.*, 1989; Gallo *et al.*, 1993), encontrando resultados expressivos relacionados aos efeitos da urbanização e à presença de ilhas de calor urbano.

Com o avanço tecnológico e a disponibilidade de diferentes satélites, novos estudos têm sido conduzidos com sensores cada vez mais avançados. Segundo Weng (2001), ao trabalhar com produtos do NOAA, que possuem resolução espacial de 1,1 km, a pesquisa fica limitada ao mapeamento da temperatura urbana apenas em cidades de grande escala. Dessa forma, o autor, por meio do uso de dados Landsat TM com resolução mais alta (120 m), foi um dos precursores na tentativa de detectar mudanças na temperatura da superfície induzida por cidades ao longo do tempo em nível local, ao estudar a região do Delta de Zhujiang, no sul da China.

Outros pesquisadores buscaram investigar essa influência do crescimento urbano nas variações de temperatura do ar. Li *et al.* (2022) investigaram a cidade de Zhengzhou, na China, ao longo de 39 anos, e concluíram que a urbanização contribuiu ainda mais para o aumento das temperaturas urbanas. Embora o impacto do crescimento urbano no aumento da temperatura ainda não seja totalmente compreendido, diversos estudos relataram um aumento significativo da temperatura urbana do ar em muitas cidades de diversos países, como estudos realizados na China, Turquia e Índia (Wang *et al.*, 2014; Cinar, 2015, Kumar et al., 2021).

Atualmente, várias análises espaço-temporais da expansão urbana e seus impactos na temperatura estão sendo investigadas, principalmente em cidades de países emergentes. Estudos como os de Vohra e Tiwari (2023), Gohain *et al.* (2021) e Vasanthawada *et al.* (2023) focam em cidades da Índia, enquanto Ullah *et al.* (2020) e Li, Y. *et al.* (2023) analisam áreas urbanas na China.

Esses estudos são motivados principalmente por suas características, como crescimento urbano e econômico acelerado, vasta extensão territorial, grande biodiversidade e população

elevada. Além disso, há pesquisas de caráter mais abrangente, como o produzido por Li, L. *et al.* (2023), que analisaram a formação de ilhas de calor desde 1980 em 511 cidades do mundo, utilizando produtos da série Landsat e do MODIS Terra.

No Brasil, ocorreram processos semelhantes de urbanização, frequentemente marcados por expansões dispersas e desordenadas, impulsionadas pelo êxodo rural e pelo crescimento populacional dos municípios. Nesse contexto, foram realizados estudos para verificar os impactos históricos desse processo nas mudanças climáticas, especialmente na temperatura de superfície e na formação das ilhas de calor urbana. Dentre esses estudos, destacam-se as análises recentes realizadas na região metropolitana de Belém (Souto e Cohen, 2021), na aglomeração de Teresina-Timon (Carneiro et al., 2021) e em São Paulo (Venkatraman et al., 2024).

Além disso, avaliações abrangentes de 21 regiões metropolitanas de grande porte, investigadas por Monteiro et al. (2021) e Patriota (2024), buscaram fornecer um panorama nacional. No entanto, essas análises, muitas vezes restritas a áreas específicas ou à seleção de cidades de maior porte, podem não representar adequadamente todos os efeitos das mudanças no uso e cobertura do solo sobre as variações da temperatura de superfície, dada características heterogêneas e de importância também observadas em cidades de menor porte. Além disso, a não inclusão da análise da sazonalidade e da avaliação comparativa da temperatura do ar é um fator crucial para compreender melhor os impactos urbanos sobre o clima.

4 – ÁREAS DE ESTUDO

A pesquisa tem como áreas de estudo 20 regiões metropolitanas brasileiras, as quais foram determinadas com base na disponibilidade de dados de estações meteorológicas que abrangessem toda a escala temporal do estudo e nas características de crescimento populacional, conforme avaliação dos dados censitários. O detalhamento das regiões, agrupadas com suas respectivas unidades federativas, segundo dados do Instituto Brasileiro de Geografia e Estatística (IBGE), está representado através do Quadro 1 a seguir:

Quadro 1- Especificação das áreas de estudo por Estado (Fonte: Autoria própria, 2025).

Regiões Metropolitanas Brasileiras (RM)	Sigla da Unidade Federativa
RM de Manaus	AM
RM de Macapá	AP
RM de Salvador	BA
RM de Fortaleza	CE

RM da Grande Vitória	ES
RM de Goiânia	GO
RM da Grande São Luís	MA
RM de Belo Horizonte	MG
RM do Vale do Rio Cuiabá	MT
RM de Belém	PA
RM de João Pessoa	PB
RM de Londrina e RM de Maringá	PR
RM do Rio de Janeiro	RJ
RM de Natal	RN
RM de Boa Vista	RR
RM de Porto Alegre	RS
RM de Ribeirão Preto e RM de São Paulo	SP
RM de Palmas	ТО

Essas regiões metropolitanas estão distribuídas pelas cinco regiões brasileiras (Figura 1). A maior concentração está no Norte, Nordeste e Sudeste, cada uma com cinco regiões metropolitanas. Em seguida, vem a região Sul, com três, e, por último, a região Centro-Oeste que possui apenas duas regiões metropolitanas.



Figura 1- Regiões Metropolitanas por Regiões do Brasil (Fonte: Autoria própria, 2025).

O estudo das regiões metropolitanas é de grande importância devido às características dos fortes processos de urbanização locais e da presença de elevada densidade populacional. Essas áreas demonstram ser propensas a grandes impactos no meio ambiente e na formação de ilhas de calor.

Portanto, é de relevância significativa analisar essas zonas para verificar como o desenvolvimento urbano exacerbado impacta na temperatura de superfície e do ar nesses espaços. Além disso, vale ressaltar que boa parte das regiões metropolitanas carece de estudos acerca desse tema.

5 – MÉTODO DE TRABALHO

Para a elaboração desta pesquisa, que buscou realizar uma avaliação espaço-temporal da expansão urbana brasileira e seus impactos nas mudanças de temperatura do ar e da superfície entre os anos de 1993 e 2023, foi necessária a realização de um estudo em etapas. Essas etapas, descritas em detalhes nos próximos itens desta seção, foram agrupadas em um fluxograma (Figura 2) para orientar a pesquisa.

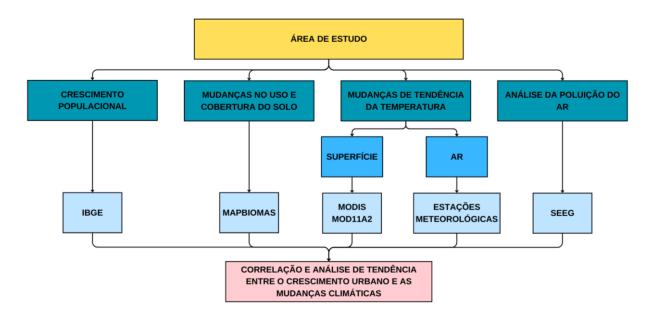


Figura 2- Fluxograma do trabalho (Fonte: Autoria própria, 2025).

Os dados utilizados para o cálculo da temperatura de superfície, que serão detalhados na próxima seção, foram obtidos a partir dos produtos coletados pelo sensor MODIS a bordo do satélite TERRA, encontrados nos *datasets* da ferramenta *Google Earth Engine* (GEE), com resolução temporal diária. A escolha da plataforma se deu devido às diversas opções de investigação e à maior facilidade de trabalhar com múltiplas imagens em comparação com outras ferramentas, além de sua eficiência e rapidez no processamento dos dados, fornecendo diagnósticos para cada elemento estudado e permitindo análises individuais e correlações entre os fatores.

5.1 - CRESCIMENTO POPULACIONAL

Inicialmente, para a realização da análise temporal do crescimento demográfico populacional, foram utilizados dados censitários do IBGE. A coleta desses dados foi feita através do banco de dados estatístico do próprio instituto, que contém os Censos de 1991, 2000, 2010 e 2022, cobrindo todo o período da pesquisa.

A análise do crescimento populacional em cada região metropolitana foi realizada utilizando codificações na linguagem de programação Python. Foram agrupadas apenas as cidades que compõem cada região e calculada a população total para cada censo. Esse processo foi necessário, devido às particularidades dos dados de cada censo e ao fato de que a população era agrupada por Estado, apresentando os dados de todos os municípios. Além disso, no censo de 1991, alguns municípios não apresentaram valores devido a problemas na coleta dos dados na época; no entanto, isso não influenciou o resultado final.

5.2 – MUDANÇAS NO USO E COBERTURA DO SOLO

Para quantificar e analisar as Mudanças no Uso e Ocupação do solo (Land Use Land Cover - LULC), foram utilizados os produtos do MapBiomas, uma iniciativa que mapeia a cobertura e uso da terra no Brasil. Utilizando imagens de satélite e técnicas de sensoriamento remoto, o MapBiomas permite visualizar e analisar a cobertura e o uso da terra anualmente, além de monitorar outros aspectos como a superfície de água e cicatrizes de fogo mensalmente, com dados desde 1985 a 2022 e resolução espacial de 30 metros. Isso oferece uma visão detalhada e dinâmica do crescimento urbano e seus impactos ambientais (MAPBIOMAS, 2024).

A aplicação do MapBiomas foi realizada por meio do *toolkit* disponível no site do MapBiomas, que possibilita sua utilização no GEE, uma plataforma de visualização e manipulação de dados geoespaciais. O GEE, por meio da criação de códigos em linguagem de programação JavaScript, demonstrou ser uma ferramenta excelente para aplicações durante esta e outras etapas do estudo, dada a vasta quantidade de informações e ao trabalho árduo que seria necessário para tratá-las manualmente, especialmente devido à longa escala temporal, o que tornou o uso de ferramentas computacionais avançadas indispensáveis.

Para obtenção dos valores, foram necessárias pequenas modificações no código para incluir as delimitações das áreas das regiões metropolitanas, e para este estudo foi escolhido o produto mais recente, o MapBiomas Collection 9.0, devido às correções realizadas. Assim, foram obtidos mapas anuais de LULC e planilhas com os dados por categorias de uso e ano para cada região. Isso

permitiu quantificar e investigar as mudanças nas áreas urbanas ao longo das três décadas, além de outros aspectos relevantes, como solo exposto, pastagens, vegetação e corpos hídricos.

5.3 – MUDANÇAS NA TENDÊNCIA DA TEMPERATURA

5.3.1 – Temperatura de Superfície

Para a análise da temperatura de superfície (LST), foram utilizados os dados obtidos entre 2000 e 2023, do produto MOD11A2 do satélite TERRA. Este satélite, com seu sensor MODIS, possui um total de 36 bandas espectrais, incluindo bandas visíveis, infravermelhas e termais, com uma resolução espacial que varia de 250 m a 1000 m. Sua utilização em estudos de análise temporal é vantajosa, pois o satélite Terra passa sobre a mesma área duas vezes por dia, aproximadamente às 10:30 e 22:30.

Assim, foram desenvolvidos códigos na plataforma GEE para a coleta dos dados MODIS de temperatura de superfície terrestre para cada região metropolitana, utilizando o produto de nível 3 (MOD11A2), que consiste na melhor composição dos melhores pixels coletados de 8 dias consecutivos de LSTs de céu limpo, com resolução espacial de 1 km². Neste estudo, foram utilizados apenas os dados diurnos, e os resultados dos cálculos realizados para obter as médias trimestrais, de acordo com as estações do ano, foram apresentados por meio de tabelas e gráficos.

5.3.2 – Temperatura do Ar

A coleta dos dados de temperatura do ar (Ta) para os anos de estudo foi obtida através das informações do Instituto Nacional de Meteorologia (INMET), órgão do Ministério da Agricultura e Pecuária responsável pelo monitoramento, análise e previsão do tempo e do clima por meio das estações meteorológicas espalhadas por todo o Brasil. O instituto possui um banco de dados meteorológicos disponível para consulta pública, com informações diárias desde 1961, obtidas por estações convencionais (três vezes ao dia) e automáticas (dados horários), embora a coleta desses dados tenha sido iniciada em 1909. Dentre as informações acerca das estações utilizadas na pesquisa (Quadro 2), verificou-se se durante o período de análise o ponto de monitoramento permaneceu rural ou urbano, ou se houve, em dado momento, a transição de rural para urbano.

Devido à quantidade de estações meteorológicas (27), conforme apresentado no Quadro 2, e à vasta extensão de dados disponíveis, foram desenvolvidos códigos em Python para cada região metropolitana para o tratamento dos dados. Isso incluiu registros horários imprecisos e inexistentes. Posteriormente, foi realizado o cálculo da média trimestral para cada ano, e os dados foram organizados em tabelas.

Quadro 2 - Estações meteorológicas por Região Metropolitanas (RM) (Fonte: Autoria própria, 2025).

, 									
		Est	tações Conven	cionais					
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
ITACOATIARA	AM	Operante	-3,13694444	-58,44277777	19,16	31/12/1926	82336	Urbana	
MANAUS	AM	Operante	-3,10333333	-60,01638888	61,25	31/12/1909	82331	Urbana	
		R	RM de Macapá	i - AP					
		Est	tações Conven	cionais					
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
MACAPA	AP	Operante	-0,04499999	-51,11	12,8	31/12/1924	82098	Urbana	
		R	M de Salvado	r - BA					
		Est	tações Conven	cionais					
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
SALVADOR (ONDINA)	BA	Operante	-13,00583333	-38,50583333	47,35	31/12/1902	83229	Rural	
		R	M de Fortalez	a - CE					
		Est	tações Conven	cionais					
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
FORTALEZA	CE	Operante	-3,81527777	-38,53777777	29,89	26/10/1919	82397	Urbana	
		RM	da Grande Vit	tória - ES					
		Est	tações Conven	cionais					
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
VITORIA	ES	Operante	-20,31583333	-40,31694443	36,2	19/11/1923	83648	Urbana	
		R	M de Goiânia	- GO					
		Est	tações Conven	cionais					
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
GOIANIA	GO	Operante	-16,67305554	-49,26388888	748,53	10/07/1937	83423	Urbana	
	ITACOATIARA MANAUS NOME MACAPA NOME SALVADOR (ONDINA) NOME FORTALEZA NOME VITORIA	ITACOATIARA MANAUS AM MANAUS AM NOME ESTADO MACAPA AP NOME ESTADO SALVADOR (ONDINA) BA NOME ESTADO FORTALEZA CE NOME ESTADO VITORIA ESTADO VITORIA ESTADO	NOME	RM de Manaus Estações Conven NOME ESTADO SITUAÇÃO LATITUDE ITACOATIARA AM Operante -3,13694444 MANAUS AM Operante -3,10333333 RM de Macapa Estações Conven NOME ESTADO SITUAÇÃO LATITUDE MACAPA AP Operante -0,04499999 RM de Salvado Estações Conven NOME ESTADO SITUAÇÃO LATITUDE SALVADOR (ONDINA) BA Operante -13,00583333 RM de Fortalez Estações Conven NOME ESTADO SITUAÇÃO LATITUDE FORTALEZA CE Operante -3,81527777 RM da Grande Vit Estações Conven NOME ESTADO SITUAÇÃO LATITUDE VITORIA ES Operante -20,31583333 RM de Goiânia Estações Conven NOME ESTADO SITUAÇÃO LATITUDE VITORIA ES OPERANTE -20,31583333 RM de Goiânia Estações Conven NOME ESTADO SITUAÇÃO LATITUDE	ITACOATIARA	RM de Manaus - AM	NOME ESTADO SITUAÇÃO LATITUDE LONGITUDE ALTITUDE INICIO DE OPERAÇÃO	RM de Manaus - AM Estações Convencionais NOME ESTADO SITUAÇÃO LATITUDE LONGITUDE ALTITUDE INICIO DE OPERAÇÃO CÓDIGO ITACOATIARA AM Operante -3,13694444 -58,44277777 19,16 31/12/1926 82336 MANAUS AM Operante -3,13694444 -58,44277777 19,16 31/12/1926 82336 MANAUS AM Operante -3,13694444 -58,44277777 19,16 31/12/1926 82336 MANAUS AM Operante -3,13694444 -58,44277777 19,16 31/12/1906 82331 ESTADO SITUAÇÃO LATITUDE LONGITUDE ALTITUDE INICIO DE OPERAÇÃO CÓDIGO MACAPA AP Operante -0,04499999 -51,11 12,8 31/12/1924 82098 ESTADO SITUAÇÃO LATITUDE LONGITUDE ALTITUDE INICIO DE OPERAÇÃO CÓDIGO SALVADOR (ONDINA) BA Operante -3,81527777	

		RM d	la Grande São	Luís - MA						
	Estações Convencionais									
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo		
SAO LUIS	MA	Operante	-2,52666666	-44,21361111	32,58	17/11/1924	82280	Rural		
	RM de Belo Horizonte - MG									
		Es	tações Conve	ncionais						
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo		
BELO HORIZONTE	MG	Operante	-19,93444444	-43,95222222	915,47	02/03/1910	83587	Urbana		
		RM do	Vale do Rio	Cuiabá - MT						
		Es	tações Conve	ncionais						
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo		
CUIABA	MT	Operante	-15,61999999	-56,10888888	157,7	31/12/1910	83361	Urbana		
		E	stações Autor	náticas						
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo		
CUIABA	MT	Operante	-15,60694444	-56,06083333	184	07/12/2002	A901	Urbana		
			RM de Belém	- PA						
		Es	tações Conve	ncionais						
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo		
BELEM	PA	Operante	-1,43583333	-48,43722221	7,13	31/10/1923	82191	Rural		
			stações Autor	náticas						
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo		
BELEM	PA	Operante	-1,411228	-48,439512	21,17	19/01/2003	A201	Urbana		
		RN	M de João Pes	soa - PB						
			tações Conve	ncionais						
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo		
JOAO PESSOA	PB	Operante	-7,09527777	-34,8486111	9,67	31/12/1911	82798	Urbana		

		R	M de Londrii	ıa - PR					
Estações Convencionais									
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
LONDRINA	PR	Operante	-23,32555554	-51,14166666	566	10/12/1953	83766	Urbana	
		F	RM de Maring	gá - PR					
		Es	stações Conve	ncionais					
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
MARINGA	PR	Operante	-23,40527777	-51,93277777	542	30/11/1953	83767	Rural	
		RM	do Rio de Jai	neiro - RJ					
		Es	stações Conve	ncionais					
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
ALTO DA BOA VISTA	RJ	Operante	-22,96583333	-43,27916666	347,1	31/05/1966	83007	Urbana	
		E	estações Autor	náticas					
RIO DE JANEIRO - VILA MILITAR	RJ	Operante	-22,86138888	-43,41138888	30,43	12/04/2007	A621	Urbana	
RIO DE JANEIRO-MARAMBAIA	RJ	Operante	-23,05027777	-43,5955555	12	07/11/2002	A602	Transição	
			RM de Natal	- RN					
		Es	tações Conve	ncionais					
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
NATAL	RN	Operante	-5,83722221	-35,20777777	47,68	31/12/1910	82598	Urbana	
		R	M de Boa Vis	ta - RR					
			stações Conve	ncionais					
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
BOA VISTA	RR	Operante	2,82944443	-60,66194444	84,18	01/01/1923	82024	Urbana	

		RM	I de Porto Ale	egre - RS					
Estações Convencionais									
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
PORTO ALEGRE	RS	Operante	-30,05361111	-51,17472221	41,18	08/12/1909	83967	Rural	
		E	estações Autor	náticas					
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
PORTO ALEGRE - JARDIM BOTANICO	RS	Operante	-30,05361111	-51,17472221	41,18	21/09/2000	A801	Rural	
		RM	de Ribeirão I	Preto - SP					
		Es	tações Conve	ncionais					
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
SAO SIMAO	SP	Operante	-21,46111111	-47,57944443	620,02	31/12/1919	83669	Urbana	
		E	estações Autor	náticas					
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
SAO SIMAO	SP	Operante	-21,46111111	-47,57944443	620	02/07/2019	A770	Urbana	
		R	M de São Pau	ılo - SP					
		Es	tações Conve	ncionais					
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
SAO PAULO (MIR,de SANTANA)	SP	Operante	-23,49638888	-46,61999999	785,16	30/11/1945	83781	Urbana	
			RM de Palma	s - TO					
		Es	tações Conve	ncionais					
NOME	ESTADO	SITUAÇÃO	LATITUDE	LONGITUDE	ALTITUDE	INICIO DE OPERAÇÃO	CÓDIGO	Tipo	
PORTO NACIONAL	ТО	Operante	-10,71083333	-48,40638888	243,28	31/12/1914	83064	Urbana	

5.5 – ANÁLISE DA POLUIÇÃO DO AR

A análise da poluição do ar foi realizada com base na variação das emissões de dióxido de carbono (CO2) ao longo dos anos. Para esta etapa, foram utilizados dados do SEEG (Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Estuda), uma ferramenta de monitoramento das emissões e remoções antrópicas de gases de efeito no Brasil. O SEEG foi desenvolvido pelo Observatório do Clima, com base nas diretrizes do IPCC e nos Inventários Nacionais Brasileiros, incorporando fatores e processos de emissão específicos do país, além de dados provenientes de diversas fontes oficiais e não oficiais (De Azevedo *et al.*, 2018).

As emissões são analisadas em cinco setores: agropecuária, energia, mudanças de uso da terra, processos industriais e resíduos. Suas coleções apresentam séries históricas desde 1970, com exceção do setor de mudança de uso do solo, cuja série tem início em 1990. Dessa maneira, os dados coletados e disponibilizados na plataforma são agrupados por estado e incluem valores individuais por município, tanto para emissão quanto para remoção, para todos os gases. Para a análise, foram desenvolvidos códigos em Python para excluir municípios que pertenciam ao estado, mas não faziam parte da região metropolitana em estudo, além de filtrar apenas os valores referentes às emissões de CO2.

5.6 – ANÁLISE ESTATÍSTICA DE CORRELAÇÃO E TENDÊNCIA

Para investigar a relação entre o crescimento urbano e as mudanças climáticas, com foco nos impactos nas temperaturas das regiões metropolitanas, foram realizados cálculos estatísticos entre as mudanças na infraestrutura urbana e as médias anuais de temperatura do ar e da superfície, utilizando a correlação de Pearson, conforme a Equação 1. Esse método tem se mostrado eficaz na determinação da relação dos impactos das mudanças de uso do solo e as variações de temperatura.

$$r = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2 \sum (Y_i - \bar{Y})^2}}$$
 (Equação 1)

Onde X_i e Y_i representam, respectivamente, os valores de uso do solo ao longo dos anos e as médias anuais para temperatura do ar e da superfície. Já \overline{X} e \overline{Y} são as médias dos valores das variáveis x e y. Dessa maneira, o cálculo baseia-se na covariância entre x e y no numerador, enquanto o denominador normaliza o valor entre -1 e 1, dividindo pelo produto dos desvios padrão das variáveis.

Assim, obtém-se a correlação entre os dados, em que valores positivos de r indicam uma correlação positiva, ou seja, o aumento da temperatura tende a acompanhar o crescimento da

infraestrutura urbana. Valores negativos indicam correlação negativa, em que o aumento de uma variável tende a estar associado à diminuição da outra; e valores próximos de zero indicam pouca ou nenhuma correlação linear entre os dados.

Além disso, para observar as tendências de variabilidade nas séries temporais históricas, foi aplicado o método sequencial e não paramétrico conhecido como teste de Mann-Kendall (Mann, 1945; Kendall, 1975), com um nível de significância de 5%, conforme a Equação 2. Esse teste avalia a presença de tendências nas variáveis de interesse, incluindo a temperatura de superfície e a temperatura do ar. O teste de Mann-Kendall é amplamente utilizado para identificar e quantificar tendências monotônicas em séries temporais sem pressupor uma distribuição específica dos dados, o que o torna particularmente útil para análises ambientais e climáticas.

$$S = \sum_{i=1}^{n-1} \sum_{j=i+1}^n sign\left(X_j - X_i\right)$$
 (Equação 2)

Onde:

$$S = sign(X_j - X_i) = \begin{cases} +1, se X_j > X_i \\ 0, se X_j = X_i \\ -1, se X_j < X_i \end{cases}$$

Em que X_j e X_i representam os valores da temperatura média para diferentes anos dentro de um trimestre. Caso S > 0, há uma tendência crescente na temperatura ao longo dos anos; se S < 0, há uma tendência decrescente; e se S = 0, não há tendência detectável. A variância de S (Var(S)) e a estatística normalizada (Z) foram calculadas pelas Equações 3 e Equação 4, respectivamente:

$$Var(S) = \frac{n(n-1)(2n+5) - \sum_{i=1}^{m} ti (ti-1)(2ti+5)}{18} (Equação 3)$$

$$Z = \begin{cases} \frac{S-1}{\sqrt{Var(S)}}, se \ S > 0 \\ 0, se = 0 \\ \frac{S+1}{\sqrt{Var(S)}}, se \ S < 0 \end{cases} (Equação 4)$$

Onde:

n: Número total de anos na série temporal (30);

m: Número de grupos com valores repetidos;

t_{i:} Número de valores empatados no grupo i.

Valores positivos para Z indicam uma tendência crescente, enquanto valores negativos indicam tendência decrescente. O p-valor correspondente também foi calculado para verificar se a

tendência é estatisticamente significativa no nível de significância adotado. Por fim, foi realizado o cálculo da inclinação de Theil-Sen (Sen, 1968) para estimar a inclinação das tendências encontradas, e gráficos foram traçados para melhor visualização dos resultados.

6 – RESULTADOS E DISCUSSÃO

6.1 – REGIÃO CENTRO-OESTE

A primeira região analisada foi a região Centro-Oeste, que apresenta a menor quantidade de regiões metropolitanas investigadas. Inicialmente, foi avaliada a região metropolitana de Goiânia, que apresenta um clima tropical e tem o Cerrado como bioma predominante. Segundo dados coletados dos censos do IBGE (Figura 3), a região apresentou um acentuado crescimento populacional durante as primeiras décadas de 1990 até meados de 2010, e atualmente o crescimento tem sido mais desacelerado. Outra análise realizada na região Centro-Oeste foi na região metropolitana do Vale do Rio Cuiabá, que também apresenta um clima tropical e possui áreas nos biomas Cerrado e Pantanal. Essa região apresentou um crescimento populacional significativo nas últimas décadas (Figura 3), ultrapassando a faixa de 1 milhão de habitantes.

O crescimento dessas regiões foi observado também na Mudança do Uso e Ocupação do Solo, como mostra a Tabela 1 para a RM de Goiânia, onde houve um aumento de mais de 133% na área de infraestrutura urbana, conforme informações obtidas do MapBiomas. O crescimento da área urbanizada ocorreu devido à mudança no uso de algumas áreas. Uma delas foi a classe de pastagem, que representava cerca de 60% do uso do solo da região e passou a representar um pouco mais de 40% (Figura 4). Essa transformação foi observada principalmente na área central da região metropolitana, como ilustrado pela Figura 5, que mostra o mapa de Uso e Ocupação do solo.

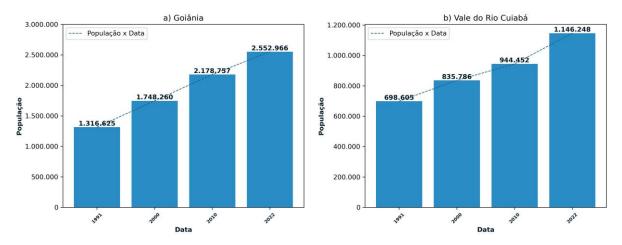


Figura 3 - Crescimento demográfico na Região Centro-Oeste nas RMs de a) Goiânia e b) Vale do Rio Cuiabá (Fonte: Autoria própria, 2025).

Tabela 1 - Mudança de Uso e Ocupação do Solo na RM de Goiânia (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)			
1 FLORESTA								
3	Formação Florestal	1289,19	1254,68	-34,51	-2,68			
4	Formação Savânica	197,74	160,49	-37,25	-18,84			
2 FORMAÇÃO NATURAL NÃO FLORESTAL								
11	Campo Alagado e Área Pantanosa	24,47	69,51	45,03	184,01			
12	Formação Campestre	27,73	27,39	-0,34	-1,22			
3 AGROPECUÁRIA								
9	Silvicultura	30,42	88,36	57,94	190,48			
15	Pastagem	4451,74	3123,36	-1328,38	-29,84			
20	Cana	0,18	22,26	22,08	12248,80			
21	Mosaico de Usos	962,15	1340,64	378,48	39,34			
39	Soja	79,83	539,29	459,45	575,50			
41	Outras Lavouras Temporárias	53,06	113,67	60,61	114,24			
46	Café	0,00	0,42	0,42	41,88			
47	Citrus	0,00	0,15	0,15	15,35			
4 ÁREA NÃO VEGETADA								
24	Infraestrutura Urbana	280,80	654,95	374,15	133,24			
25	Outras Áreas não Vegetadas	61,42	45,35	-16,07	-26,17			
30	Mineração	1,56	4,59	3,04	195,12			
5 CORPO D'ÁGUA								
33	Rio, Lago e Oceano	20,19	35,38	15,19	75,27			
ÁREA TOTAL		7480,48	km²					

O crescimento da área urbanizada ocorreu devido à mudança no uso de algumas áreas. Uma delas foi a classe de pastagem, que representava cerca de 60% do uso do solo da região e passou a representar um pouco mais de 40% (Figura 4). Essa transformação foi observada principalmente na área central da região metropolitana, como ilustrado pela Figura 5, que mostra o mapa de Uso e Ocupação do solo.

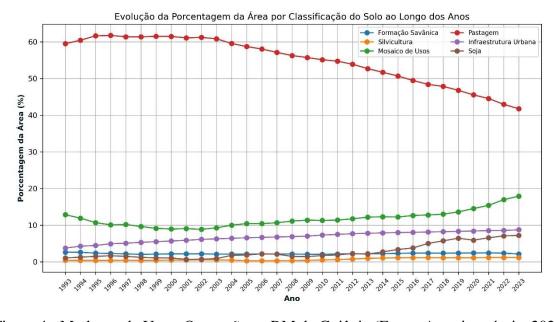


Figura 4 - Mudança de Uso e Ocupação na RM de Goiânia (Fonte: Autoria própria, 2025).

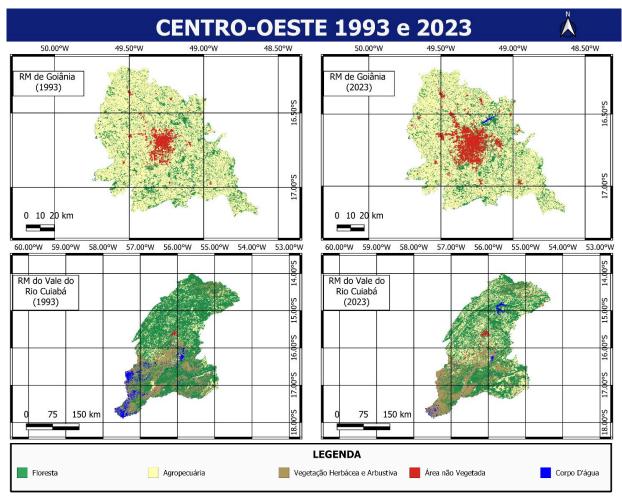


Figura 5 - Mapa do Uso e Ocupação das RMs no Centro-Oeste (Fonte: Autoria própria, 2025).

A temperatura de superfície, obtida através da captação de imagens do MODIS e agrupada por média trimestral para cada ano, apresentou valores superiores aos da temperatura do ar no mesmo período analisado (Apêndice, Figura A1). Embora a tendência seja estatisticamente significativa apenas no inverno, observa-se um leve aumento ao longo dos anos nas demais estações, exceto no outono, conforme ilustrado na Figura 6. Esse crescimento pode estar relacionado à Mudança no Uso e Ocupação do solo, embora seja prematuro afirmar isso sem a realização das correlações necessárias.

Em relação à temperatura do ar calculada através das estações do INMET, as análises dos resultados obtidos indicam tendências significativas de crescimento ao longo dos anos em todas as estações, exceto no verão. Além disso, observa-se que a primavera tem sido a estação mais quente ao longo dos anos, e os anos de 1997 e 2023 apresentaram a menor e maior média anual, respectivamente.

a) Temperatura de Superfície

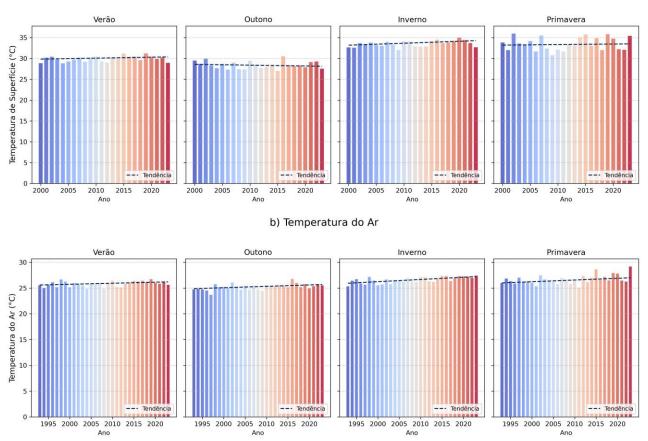


Figura 6 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de Goiânia (Fonte: Autoria própria, 2025).

Já na região metropolitana do Vale do Rio Cuiabá, a paisagem sofreu diversas variações ao longo dos anos, conforme mostrado na Figura 7. Uma redução importante ocorreu na área de floresta, embora a formação savânica ainda represente o maior uso do solo na região. Em 1993, essa formação cobria mais de 40% da área, mas passou a representar pouco mais de 33% em 2023. Essa redução, equivalente a 7.632,12 km², ocorreu principalmente na região norte (Figura 5) e está associada ao crescimento da agropecuária, incluindo a expansão da pastagem (crescimento de 125%), do cultivo de soja (crescimento de 803%) e também da infraestrutura urbana (crescimento de 62,43%), conforme apresentado na Tabela 2.

Tabela 2 - Mudança de Uso e Ocupação do Solo da RM do Vale do Rio Cuiabá (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)			
1 FLORESTA								
3	Formação Florestal	11898,71	11225,72	-673,00	-5,66			
4	Formação Savânica	32563,79	24931,67	-7632,12	-23,44			
2 FORMAÇÃO NATURAL NÃO FLORESTAL								
11	Campo Alagado e Área Pantanosa	7008,03	5252,04	-1755,99	-25,06			
12	Formação Campestre	8747,67	10000,00	1252,34	14,32			
29	Afloramento Rochoso	9,00	9,01	0,01	0,12			
3 AGROPECUÁRIA								
9	Silvicultura	0,36	136,95	136,60	38409,52			
15	Pastagem	7420,62	16725,67	9305,06	125,39			
20	Cana	0,00	1,11	1,11	110,60			
21	Mosaico de Usos	1819,59	1548,77	-270,82	-14,88			
39	Soja	203,75	1841,62	1637,87	803,87			
41	Outras Lavouras Temporárias	391,35	265,58	-125,77	-32,14			
4 ÁREA NÃO VEGETADA								
24	Infraestrutura Urbana	188,98	306,96	117,98	62,43			
25	Outras Áreas não Vegetadas	277,83	570,51	292,68	105,35			
30	Mineração	75,72	145,47	69,75	92,12			
5 C	ORPO D'ÁGUA							
33	Rio, Lago e Oceano	3528,48	1172,84	-2355,65	-66,76			
0	Não observado	0,05	0,00	-0,05	-100,00			
	ÁREA TOTAL	74133,91	km²					

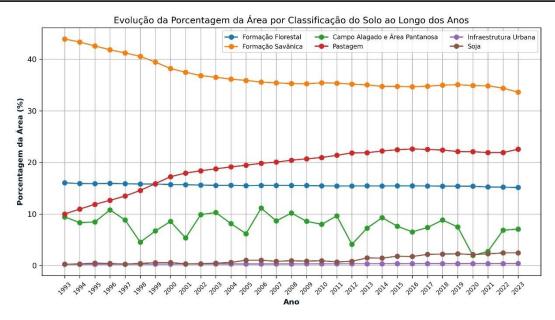


Figura 7 - Mudança de Uso e Ocupação na RM do Vale do Rio Cuiabá (Fonte: Autoria própria, 2025).

Para a temperatura de superfície, a coleta e a análise revelaram um aumento ao longo dos anos, sendo mais perceptível na primavera, e uma redução no outono, assim como na região de Goiânia, embora a tendência não tenha sido estatisticamente significativa. Os resultados de temperatura do ar para a região, obtidos a partir das duas estações meteorológicas, indicam uma tendência de aumento em todas as estações do ano, com a primavera sendo a mais afetada,

corroborando com o padrão observado no LST. A média anual foi especialmente elevada nos anos de 2020 e 2023, conforme ilustrado no gráfico de barras da Figura 8.

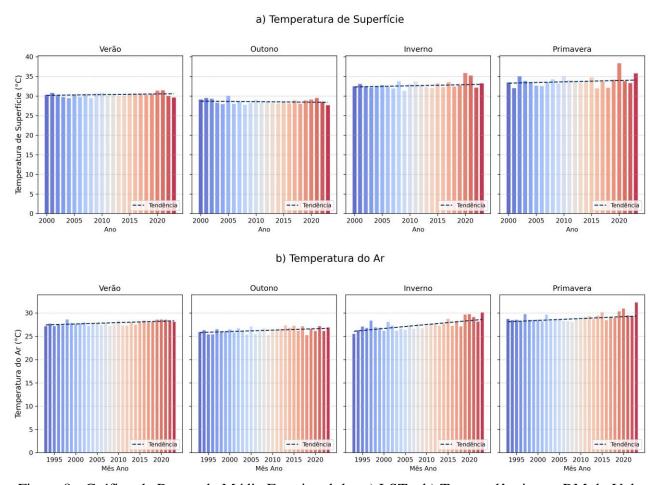


Figura 8 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM do Vale do Rio Cuiabá (Fonte: Autoria própria, 2025).

6.2 – REGIÃO NORDESTE

O estudo da região Nordeste, contemplou as regiões metropolitanas de Salvador, Fortaleza, Grande São Luís, João Pessoa e Natal. Dentre elas, Fortaleza apresenta a maior população, com aproximadamente 4,1 milhões de habitantes, tendo seu maior crescimento durante as primeiras décadas do estudo (Figura 9). Em seguida, destaca-se a região metropolitana de Salvador, apesar do baixo crescimento na última década (2,9%).

Já as regiões metropolitanas da Grande São Luís, João Pessoa e Natal, embora tenham uma população menor em comparação com as citadas anteriormente, registraram um crescimento populacional superior a 60%, entre os censos de 1991 e 2022, entre elas, a Grande São Luís apresentou a maior taxa de crescimento, atingindo 77,87%.

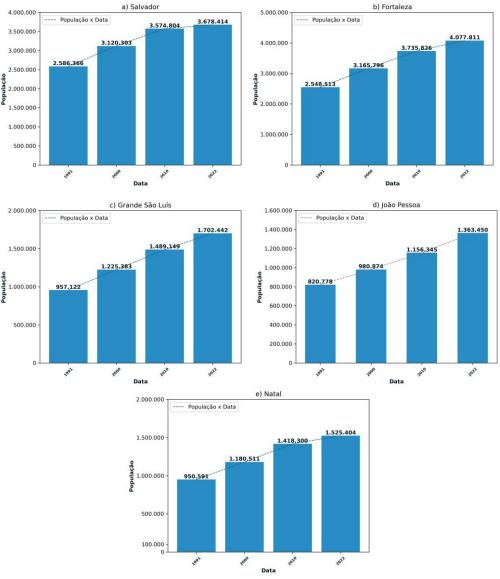


Figura 9 - Crescimento demográfico na Região Nordeste nas RMs de a) Salvador, b) Fortaleza, c) Grande São Luís, d) João Pessoa e e) Natal (Fonte: Autoria própria, 2025).

A região de Salvador, inserida no bioma Mata Atlântica e com o clima tropical úmido predominante, apresentou diversas Mudanças no Uso e Ocupação do solo ao longo dos anos. Seu crescimento populacional refletiu principalmente no aumento da área urbanizada nas áreas litorâneas e centrais da região, destacada pela cor vermelha na Figura 11, com um crescimento de cerca de 72% em relação à área ocupada por essa categoria no ano de 1993 (Tabela 3). Entretanto, as mudanças ocorridas não reduziram os valores da categoria floresta, que aumentou cerca de 30,86 km². A classe que apresentou a maior mudança foi a de Mosaico de Usos, que sofreu uma redução de aproximadamente 36%, embora ainda continue sendo a classe mais predominante da região, conforme ilustrado na Figura 10.

Tabela 3 - Mudança de Uso e Ocupação do Solo da RM de Salvador (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)
1 F	LORESTA				
3	Formação Florestal	902,29	933,15	30,86	3,42
4	Formação Savânica	1,94	1,76	-0,18	-9,16
5	Mangue	50,33	52,75	2,42	4,81
49	Restinga Arbórea	6,33	8,34	2,01	31,75
2 F	ORMAÇÃO NATURAL NÃO FI	LORESTAL			
11	Campo Alagado e Área Pantanosa	84,18	71,52	-12,66	-15,04
32	Apicum	8,63	6,61	-2,02	-23,40
3 A	GROPECUÁRIA				
9	Silvicultura	2,56	67,36	64,81	2533,02
15	Pastagem	668,99	968,10	299,10	44,71
21	Mosaico de Usos	1514,06	975,32	-538,74	-35,58
41	Outras Lavouras Temporárias	0,00	0,06	0,06	6,46
4 Á	REA NÃO VEGETADA				
23	Praia, Duna e Areal	36,96	20,84	-16,12	-43,61
24	Infraestrutura Urbana	239,99	413,29	173,30	72,21
25	Outras Áreas não Vegetadas	9,25	21,74	12,49	134,97
30	Mineração	1,15	3,07	1,92	167,54
5 C	ORPO D'ÁGUA				
31	Aquicultura	0,00	0,06	0,06	5,93
33	Rio, Lago e Oceano	824,51	807,19	-17,32	-2,10
0	Não observado	0,06	0,06	0,00	3,13
	ÁREA TOTAL	4351,22	km²		

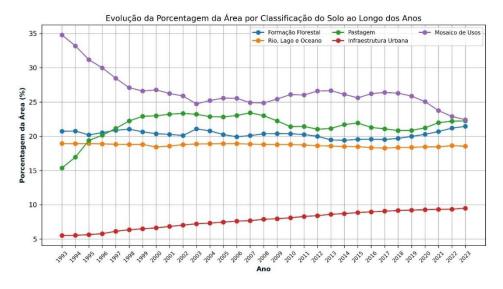


Figura 10 - Mudança de Uso e Ocupação na RM de Salvador (Fonte: Autoria própria, 2025).

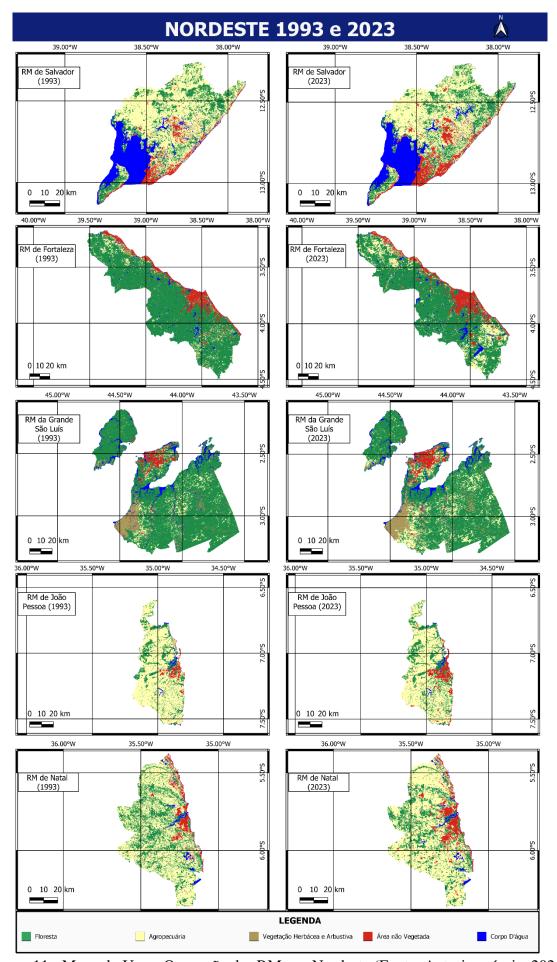


Figura 11 - Mapa do Uso e Ocupação das RMs no Nordeste (Fonte: Autoria própria, 2025).

A LST da RM de Salvador, para o período analisado, apresentou uma média mais alta no verão. Em relação à tendência ao longo dos anos, apesar da flutuação das temperaturas, não foi identificada uma tendência de crescimento ou redução nos valores. Quanto à temperatura do ar, calculada a partir das estações meteorológicas, foram encontrados dados de uma estação para essa região (Quadro 2). As análises dos resultados obtidos (Figura 12) indicam uma leve tendência de crescimento ao longo dos anos, sendo significativa na estação da primavera. Além disso, observa-se que a primavera foi a estação mais quente na região.

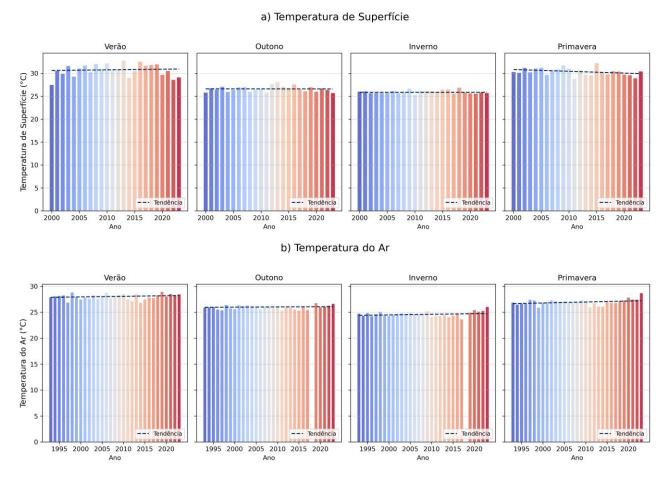


Figura 12 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de Salvador (Fonte: Autoria própria, 2025).

Já a Região Metropolitana de Fortaleza, cujo principal bioma é a Caatinga e o clima é semiárido, apresentou um desflorestamento de 397,64 km² da formação florestal e 470 km² da formação savânica ao longo dos 30 anos (Tabela 4), embora essas ainda sejam as principais formas de uso do solo na região (Figura 13). Esse desflorestamento ocorreu principalmente devido ao crescimento da área urbana, que atualmente abrange 664,05 km² (um aumento de 52,51%), e à agropecuária, incluindo áreas de pastagem e outras lavouras perenes, conforme observados no mapa na Figura 11.

Tabela 4 - Mudança de Uso e Ocupação do Solo da RM de Fortaleza (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)
1 FL	ORESTA				
3	Formação Florestal	2364,71	1967,07	-397,64	-16,82
4	Formação Savânica	3518,55	3048,55	-470,00	-13,36
5	Mangue	26,10	31,33	5,22	20,01
2 FO	RMAÇÃO NATURAL NÃO F	LORESTAL			
12	Formação Campestre	8,85	10,85	2,00	22,57
32	Apicum	4,31	3,62	-0,70	-16,15
50	Restinga Herbácea	152,02	149,02	-3,00	-1,97
3 AG	ROPECUÁRIA				
9	Silvicultura	0,00	0,01	0,01	0,71
15	Pastagem	62,64	218,83	156,19	249,34
21	Mosaico de Usos	319,61	157,76	-161,85	-50,64
41	Outras Lavouras Temporárias	1,42	177,46	176,04	12378,90
48	Outras Lavouras Perenes	141,85	600,71	458,86	323,49
4 ÁR	EA NÃO VEGETADA				
23	Praia, Duna e Areal	212,99	158,39	-54,60	-25,63
24	Infraestrutura Urbana	435,41	664,05	228,64	52,51
25	Outras Áreas não Vegetadas	24,81	3,25	-21,55	-86,88
30	Mineração	0,00	0,51	0,51	51,38
5 CO	PRPO D'ÁGUA				
31	Aquicultura	0,34	6,60	6,26	1856,54
33	Rio, Lago e Oceano	160,17	235,77	75,61	47,20
0	Não observado	0,00	0,00	0,00	0,09
	ÁREA TOTAL	7433,78	km²	·	

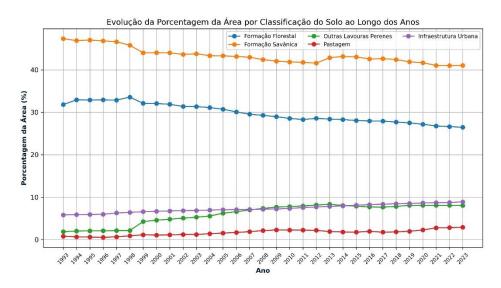


Figura 13 - Mudança de Uso e Ocupação na RM de Fortaleza (Fonte: Autoria própria, 2025).

A LST da RM de Fortaleza, para o período analisado, apresentou uma média mais alta na última estação do ano, com o valor máximo registrado no ano de 2012 (Figura 14). Em relação à tendência ao longo dos anos, apesar das variações, não foi identificada uma tendência de crescimento. Quanto à temperatura do ar, os resultados encontrados foram semelhantes aos da LST, sendo a primavera a estação mais quente, com uma média trimestral de 29,74°C no ano de 2015. No entanto, também não foi identificada uma tendência significativa.

a) Temperatura de Superfície

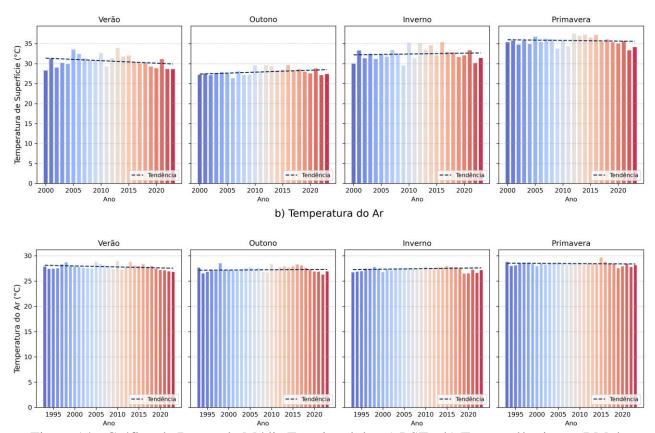
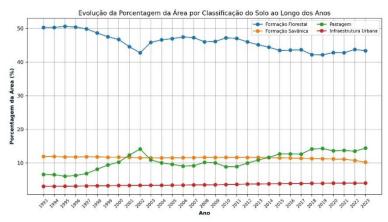
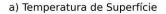


Figura 14 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de Fortaleza (Fonte: Autoria própria, 2025).

Outra região metropolitana avaliada foi a da Grande São Luís, localizada no estado do Maranhão, inserida no bioma Amazônico e com clima tropical úmido. Ao longo dos anos, suas florestas foram substituídas por outros usos do solo, principalmente no interior da região metropolitana e no litoral, como ilustrado pela Figura 11, com reduções de 561,88 km² na formação florestal e 136,66 km² da formação savânica. Em contrapartida, houve crescimento da área urbanizada (81,34 km²) e da pastagem, que aumentou cerca de 119%, conforme apresentado na Tabela 5, apesar da categoria floresta ainda ser o principal uso do solo da região (Figura 15).

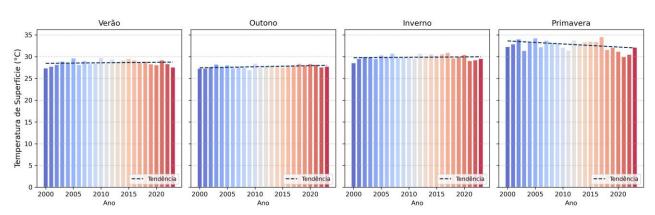

Figura 15 - Mudança de Uso e Ocupação na RM da Grande São Luís (Fonte: Autoria própria, 2025).

Tabela 5 - Mudança de Uso e Ocupação do Solo da RM da Grande São Luís (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)
1 F	LORESTA				
3	Formação Florestal	4094,68	3532,80	-561,88	-13,72
4	Formação Savânica	971,06	834,40	-136,66	-14,07
5	Mangue	863,42	867,70	4,28	0,50
6	Floresta Alagável	274,66	251,02	-23,64	-8,61
2 F	ORMAÇÃO NATURAL NÃO FI	LORESTAL			
11	Campo Alagado e Área Pantanosa	464,65	494,33	29,68	6,39
12	Formação Campestre	127,09	120,93	-6,16	-4,85
32	Apicum	65,23	56,33	-8,90	-13,64
3 A	GROPECUÁRIA				
15	Pastagem	537,37	1174,32	636,95	118,53
21	Mosaico de Usos	78,97	84,48	5,51	6,98
39	Soja	0,00	0,65	0,65	64,91
41	Outras Lavouras Temporárias	0,31	9,65	9,35	3051,13
4 Á	REA NÃO VEGETADA				
23	Praia, Duna e Areal	12,65	8,42	-4,22	-33,40
24	Infraestrutura Urbana	249,32	330,67	81,34	32,63
25	Outras Áreas não Vegetadas	0,19	8,37	8,17	4218,77
30	Mineração	7,83	25,23	17,40	222,17
5 C	ORPO D'ÁGUA				
31	Aquicultura	0,00	0,76	0,76	75,62
33	Rio, Lago e Oceano	397,80	345,19	-52,62	-13,23
0	Não observado	0,02	0,01	-0,01	-70,00
	ÁREA TOTAL	8145,26	km²		

A LST apresentou valores mais altos na primavera, semelhante a região anterior, atingindo 34,54°C em 2017. No entanto, apenas a estação do outono apresentou tendência de crescimento significativa, conforme análise pelo teste de Mann-Kendall. Quanto à temperatura do ar, foram observadas tendências de crescimento em todas as estações, exceto no verão, sendo a primavera a estação mais quente ao longo dos anos, o que corrobora com os resultados encontrados no cálculo do LST (Figura 16).

b) Temperatura do Ar

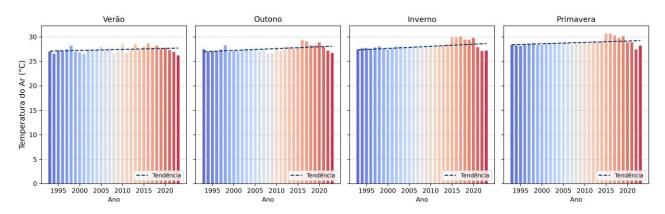
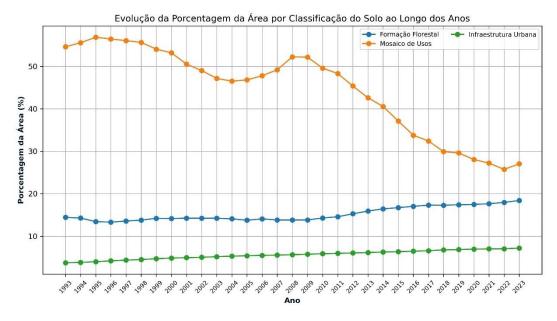
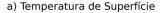


Figura 16 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM da Grande São Luís (Fonte: Autoria própria, 2025).

A quarta região investigada no Nordeste foi a de João Pessoa, inserida no bioma Mata Atlântica e com clima tropical. A região apresentou um crescimento demográfico consistente ao longo dos censos analisados, refletido no aumento da área urbanizada, conforme destacado na Figura 11, com um acréscimo de 92,20% em relação à área ocupada por essa categoria no ano de 1993 (Tabela 6). Entretanto, as mudanças ocorridas não reduziram os valores da categoria formação florestal, que aumentou cerca de 110,27 km². A classe que apresentou a maior mudança foi a de Mosaico de Usos, que sofreu uma redução de aproximadamente 50,48%, embora ainda seja a mais predominante, conforme ilustrado na Figura 17.

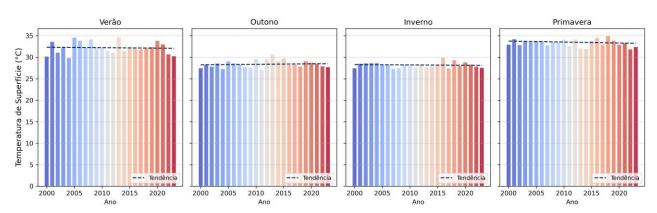

Figura 17 - Mudança de Uso e Ocupação na RM de João Pessoa (Fonte: Autoria própria, 2025).

Tabela 6 - Mudança de Uso e Ocupação do Solo da RM de João Pessoa (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)
1 FI	LORESTA				
3	Formação Florestal	402,73	513,00	110,27	27,38
4	Formação Savânica	62,47	39,72	-22,75	-36,41
5	Mangue	98,26	102,87	4,61	4,70
2 F(ORMAÇÃO NATURAL NÃO FI	LORESTAL			
11	Campo Alagado e Área Pantanosa	19,92	16,47	-3,45	-17,31
32	Apicum	3,79	1,92	-1,87	-49,29
3 A	GROPECUÁRIA				
9	Silvicultura	0,19	7,38	7,19	3820,18
15	Pastagem	2,62	48,16	45,54	1740,56
20	Cana	402,35	402,71	0,36	0,09
21	Mosaico de Usos	1522,33	753,89	-768,44	-50,48
41	Outras Lavouras Temporárias	110,99	640,82	529,84	477,39
4 Á	REA NÃO VEGETADA				
23	Praia, Duna e Areal	6,35	3,01	-3,33	-52,49
24	Infraestrutura Urbana	104,23	200,34	96,10	92,20
25	Outras Áreas não Vegetadas	0,10	9,13	9,03	8624,77
30	Mineração	1,21	2,94	1,73	142,90
5 C	ORPO D'ÁGUA				
31	Aquicultura	2,17	4,43	2,26	103,80
33	Rio, Lago e Oceano	46,18	39,24	-6,95	-15,04
0	Não observado	0,49	0,34	-0,15	-30,75
	ÁREA TOTAL	2786,39	km²		

A LST, assim como na região analisada anteriormente, apresentou uma média mais alta na quarta estação do ano (Figura 18), com diferentes variações ao longo dos anos, sem apresentar sinais de tendência. Em relação à temperatura do ar, a análise realizada ao longo do período indicou tendências de aumento nas estações de verão, outono e primavera, embora também tenham sido observadas variações de aumento nos dados no inverno. Os valores de temperatura do ar média anual mais baixas e mais altas foram registrados nos anos de 1994 (27,29°C) e 2023 (28,39°C), respectivamente.

b) Temperatura do Ar

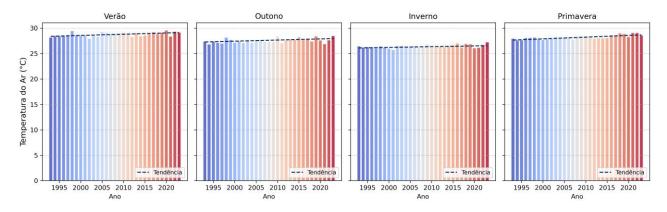


Figura 18 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de João Pessoa (Fonte: Autoria própria, 2025).

A última região nordestina analisada, localizada no estado do Rio Grande do Norte, foi a Região Metropolitana de Natal, inserida nos biomas Mata Atlântica e Caatinga e caracterizada por um clima tropical úmido. Foi a região que apresentou o maior crescimento da área urbana, com uma taxa superior a 133% (Tabela 7). Essa mudança refletiu na redução da área florestal, com a perda de 269 km², além de alterações na agropecuária da região, conforme ilustrado pela Figura 11. A classe que sofreu a maior alteração foi a do Mosaico de Usos, que reduziu cerca de 50,48%. No entanto, com aproximadamente 30% da área total, ela continua sendo a classe mais predominante da região, característica semelhante as regiões de Salvador e João Pessoa (Figura 19).

Tabela 7 - Mudança de Uso e Ocupação do Solo da RM de Natal (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)
1 FI	LORESTA				
3	Formação Florestal	183,93	195,79	11,86	6,45
4	Formação Savânica	911,85	642,84	-269,00	-29,50
5	Mangue	29,25	29,90	0,65	2,23
49	Restinga Arbórea	7,44	10,35	2,91	39,05
2 F(ORMAÇÃO NATURAL NÃO FI	LORESTAL			
11	Campo Alagado e Área Pantanosa	11,81	11,36	-0,46	-3,87
12	Formação Campestre	0,51	0,14	-0,37	-72,64
32	Apicum	4,00	4,00	0,00	0,12
50	Restinga Herbácea	33,38	43,25	9,88	29,60
3 A(GROPECUÁRIA				
9	Silvicultura	0,20	0,33	0,13	68,63
15	Pastagem	385,94	782,83	396,89	102,84
20	Cana	47,72	47,59	-0,13	-0,27
21	Mosaico de Usos	1743,21	1053,80	-689,41	-39,55
41	Outras Lavouras Temporárias	36,78	444,60	407,82	1108,93
48	Outras Lavouras Perenes	0,01	6,19	6,17	49587,53
4 Á1	REA NÃO VEGETADA				
23	Praia, Duna e Areal	86,66	46,54	-40,13	-46,30
24	Infraestrutura Urbana	113,64	265,65	152,01	133,77
25	Outras Áreas não Vegetadas	4,28	8,44	4,16	97,17
5 C	ORPO D'ÁGUA				
31	Aquicultura	4,07	14,49	10,42	255,85
33	Rio, Lago e Oceano	78,52	75,06	-3,46	-4,41
0	Não observado	0,52	0,55	0,04	6,92
	ÁREA TOTAL	3683,70	km²		

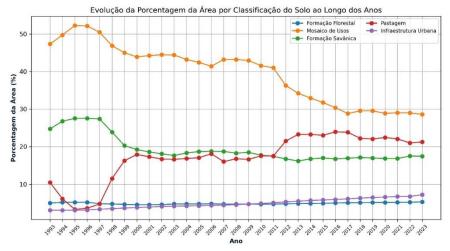


Figura 19 - Mudança de Uso e Ocupação na RM de Natal (Fonte: Autoria própria, 2025).

Os resultados encontrados para a LST apresentam-se em valores mais altos nas estações de primavera e verão, com um pico de 37,36°C registrado no verão de 2013. No entanto, nenhuma estação apresentou tendências, apesar das flutuações ao longo dos anos. A temperatura do ar seguiu tendências significativas de crescimento em todas as estações do ano, apesar das variações de temperaturas e lacunas de dados em alguns períodos. Uma inversão observada, em relação as estações mais quentes, envolve o verão, passando a ser mais quente que a primavera, comparada ao encontrado na temperatura de superfície (Figura 20).

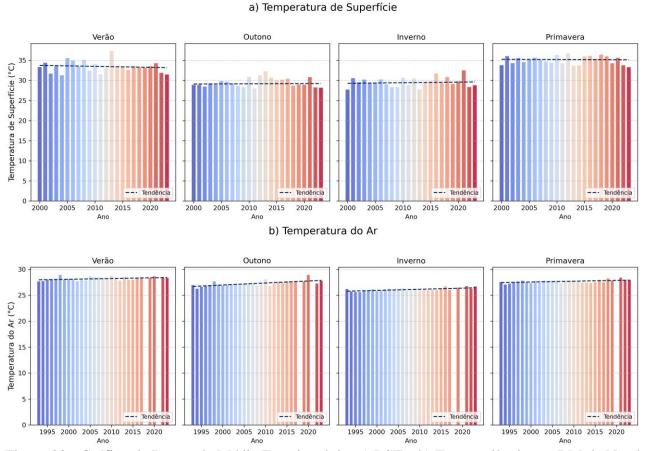


Figura 20 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de Natal (Fonte: Autoria própria, 2025).

6.3 – REGIÃO NORTE

As regiões metropolitanas analisadas no Norte foram Manaus, Macapá, Belém, a região metropolitana de Boa Vista e Palmas. Manaus apresentou um grande desenvolvimento ao longo dos 30 anos analisados, com um crescimento populacional que mais do que duplicou ao comparar o censo de 1991 com o de 2022, configurando-se como a região mais populosa da análise. Belém, por sua vez, a segunda mais populosa, teve um crescimento acelerado durante as primeiras décadas, seguido de uma estabilização na última década.

As demais regiões, embora de menor porte, também apresentaram um crescimento populacional expressivo nas últimas três décadas. A Região Metropolitana de Macapá registrou um aumento de 156% na população, enquanto a de Boa Vista cresceu 170% e a de Palmas, 218%, entre 1991 e 2022 (Figura 21).

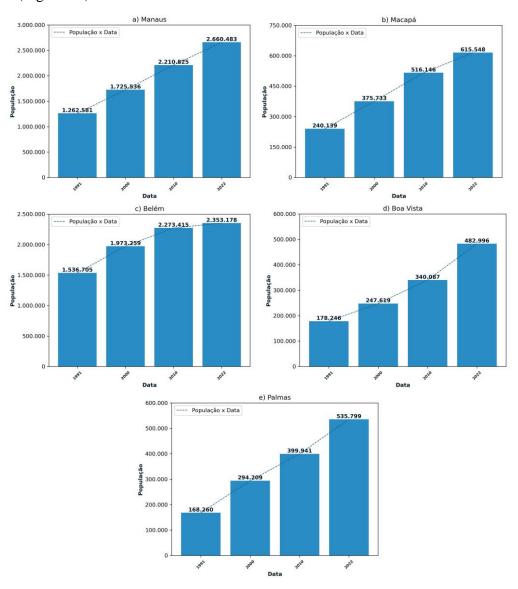


Figura 21 - Crescimento demográfico na Região Norte nas RMs de a) Manaus, b) Macapá, c) Belém, d) Boa Vista e e) Palmas (Fonte: Autoria própria, 2025).

O crescimento populacional e a expansão urbana transformaram significativamente as regiões metropolitanas analisadas no Norte. Em Manaus, a população aumentou em aproximadamente 1,4 milhão de habitantes nos últimos anos, impulsionando um crescimento de 62,43% na infraestrutura urbana (Tabela 8). Inserida no bioma Amazônico, a região possui um clima do tipo equatorial quente e úmido, com predominância da classe de formação florestal. No entanto, ao longo das décadas, a área de floresta sofreu reduções significativas, principalmente devido à expansão da área de pastagem. Ainda assim, mesmo com a perda de cerca de 1800 km², as florestas continuam cobrindo mais de 70% da região (Figura 22).

Tabela 8 - Mudança de Uso e Ocupação do Solo da RM de Manaus (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)
1 Fl	LORESTA				
3	Formação Florestal	91571,67	89817,79	-1753,89	-1,92
4	Formação Savânica	0,92	0,21	-0,71	-76,96
6	Floresta Alagável	18079,49	18164,34	84,85	0,47
2 F(ORMAÇÃO NATURAL NÃO FI	LORESTAL			
11	Campo Alagado e Área Pantanosa	2767,17	2737,88	-29,28	-1,06
12	Formação Campestre	467,07	402,23	-64,84	-13,88
3 A	GROPECUÁRIA				
15	Pastagem	1734,36	3766,91	2032,55	117,19
20	Cana	0,00	42,90	42,90	4289,53
41	Outras Lavouras Temporárias	0,00	2,51	2,51	251,48
4 Á	REA NÃO VEGETADA				
24	Infraestrutura Urbana	256,38	348,03	91,65	35,75
25	Outras Áreas não Vegetadas	0,49	19,70	19,21	3948,97
30	Mineração	32,44	62,98	30,54	94,16
5 C	ORPO D'ÁGUA				
33	Rio, Lago e Oceano	12395,77	11940,29	-455,48	-3,67
0	Não observado	0,02	0,00	-0,02	-100,00
	ÁREA TOTAL	127305,77	km²		

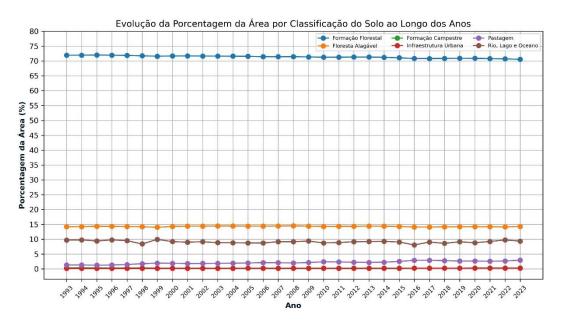


Figura 22 - Mudança de Uso e Ocupação na RM de Manaus (Fonte: Autoria própria, 2025).

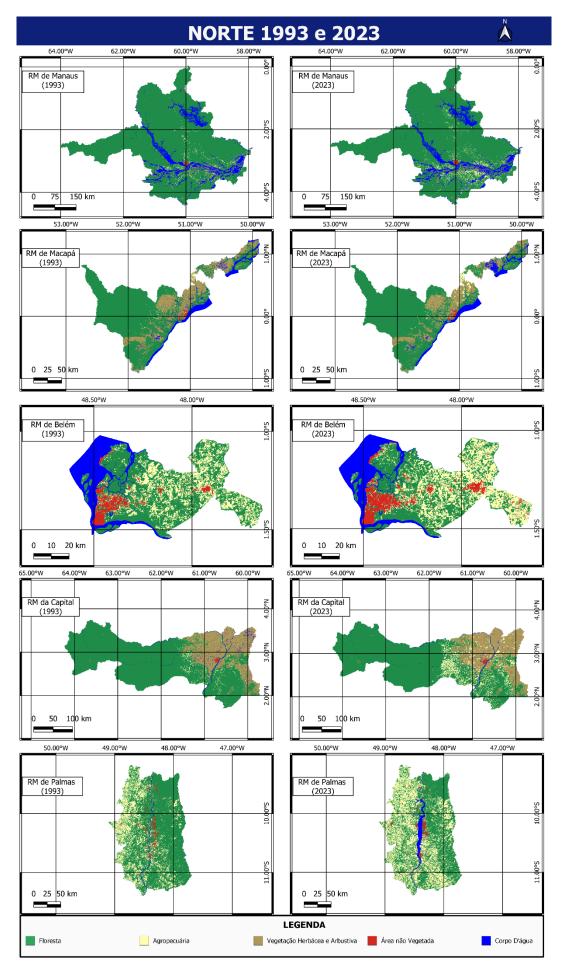
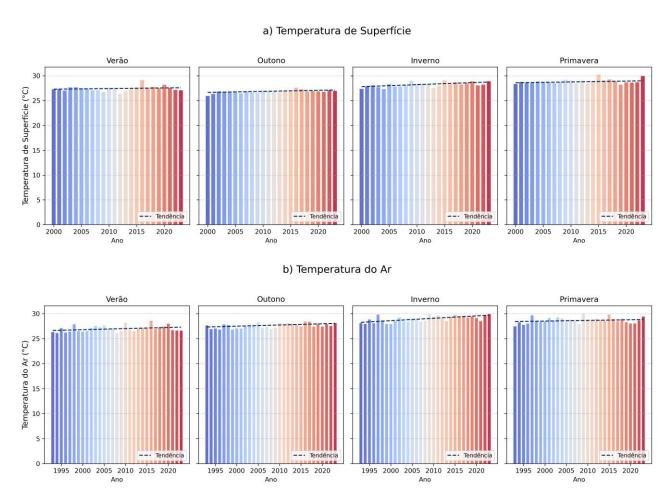
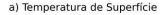


Figura 23 - Mapa do Uso e Ocupação das RMs no Norte (Fonte: Autoria própria, 2025).

Como a região possui uma grande extensão, a análise visual do mapa de Uso e Ocupação (Figura 23) não permite avaliar com precisão o impacto ocorrido do desmatamento para construções urbanas e agropecuárias. A LST em Manaus, apresentou algumas variações na média durante o verão e a primavera, mas foi no outono e no inverno que se observou um crescimento mais claro e consistente. O inverno registrou o aumento mais acentuado, principalmente nos anos mais recentes (Figura 24). Na Ta, os resultados foram semelhantes, com tendências significativas no outono e no inverno. No entanto, o maior valor registrado foi de 30,1°C, ocorrido na primavera de 2009.




Figura 24 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de Manaus (Fonte: Autoria própria, 2025).

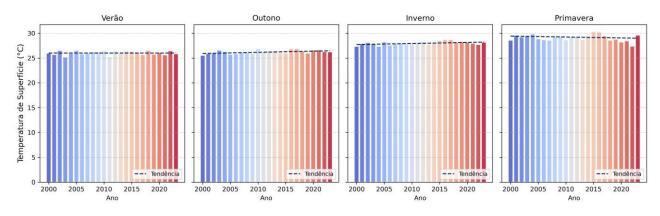

A região de Macapá, localizada no estado do Amapá, está inserida no bioma Amazônico e possui um clima equatorial úmido. Apesar do crescimento populacional acelerado, a infraestrutura urbana não sofreu uma variação expressiva, expandindo-se apenas 15,40% (Tabela 9). Em contrapartida, a expansão das atividades agropecuárias resultou na redução das áreas de campo alagado e área pantanosa, totalizando uma perda de cerca de 815 km², embora essa mudança ainda não seja tão perceptível, como ilustrado pela Figura 23.

Tabela 9 - Mudança de Uso e Ocupação do Solo da RM de Macapá (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)
1 FI	LORESTA				
3	Formação Florestal	10290,58	10275,43	-15,16	-0,15
4	Formação Savânica	1,70	1,93	0,22	13,11
5	Mangue	22,66	9,14	-13,52	-59,67
6	Floresta Alagável	4406,17	4848,90	442,73	10,05
2 F(ORMAÇÃO NATURAL NÃO FI	LORESTAL			
11	Campo Alagado e Área Pantanosa	4396,93	3582,15	-814,77	-18,53
12	Formação Campestre	406,96	497,07	90,10	22,14
3 A	GROPECUÁRIA				
9	Silvicultura	35,36	117,96	82,60	233,57
15	Pastagem	130,59	229,14	98,55	75,46
39	Soja	0,00	66,42	66,42	6642,13
41	Outras Lavouras Temporárias	0,00	34,51	34,51	3450,65
4 Á	REA NÃO VEGETADA				
24	Infraestrutura Urbana	96,72	111,62	14,90	15,40
25	Outras Áreas não Vegetadas	0,00	6,16	6,16	615,91
30	Mineração	2,47	8,60	6,12	247,51
5 C	ORPO D'ÁGUA				
33	Rio, Lago e Oceano	1589,58	1590,72	1,14	0,07
0	Não observado	0,00	0,00	0,00	0,00
	ÁREA TOTAL	21379,75	km²		

A análise da LST revelou variações ao longo dos anos e das estações, com tendências crescentes significativas no outono e inverno. O inverno e a primavera foram identificados como as estações mais quentes, conforme mostrado nos gráficos da Figura 25. Tendências também foram observadas na temperatura do ar, especialmente no outono e no inverno, que apresentaram crescimento ao longo dos anos. As variações acompanharam, de modo geral, o comportamento da temperatura de superfície nas demais estações, com picos de temperatura de 30,37°C e 29,91°C registrados na primavera e no inverno de 2023, respectivamente.

b) Temperatura do Ar

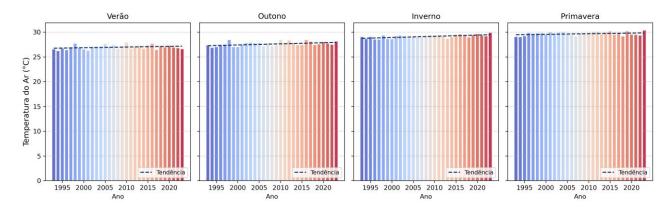


Figura 25 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de Macapá (Fonte: Autoria própria, 2025).

Na região de Belém, no estado do Pará, o clima e o bioma são semelhantes aos de Manaus. O Uso e Ocupação do solo sofreram grandes alterações, com um crescimento de aproximadamente 45% na área urbana e de 30,49% na pastagem, em detrimento das florestas. A formação florestal perdeu cerca de 358 km² (Tabela 10), principalmente no leste da região (Figura 23). Com isso, a região que anteriormente predominava com a classe de formação florestal foi perdendo espaço para a pastagem, que é atualmente a segunda mais predominante (Figura 26).

Tabela 10 - Mudança de Uso e Ocupação do Solo na RM de Belém (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)
1 FLORI	ESTA				
3	Formação Florestal	1488,31	1130,61	-357,71	-24,03
5	Mangue	26,56	26,30	-0,26	-0,97
6	Floresta Alagável	309,84	326,76	16,92	5,46
2 FORM	AÇÃO NATURAL NÃO FLORE	STAL			
11	Campo Alagado e Área Pantanosa	4,11	1,40	-2,71	-66,01
12	Formação Campestre	8,54	1,46	-7,08	-82,95
32	Apicum	0,04	0,00	-0,04	-100,00
3 AGRO	PECUÁRIA				
9	Silvicultura	0,01	0,72	0,71	11328,69
15	Pastagem	826,14	1078,01	251,87	30,49
35	Dendê	48,90	18,98	-29,92	-61,18
39	Soja	0,00	0,11	0,11	10,99
41	Outras Lavouras Temporárias	0,00	4,16	4,16	415,59
4 ÁREA	NÃO VEGETADA				
23	Praia, Duna e Areal	0,21	0,15	-0,06	-29,74
24	Infraestrutura Urbana	213,28	309,10	95,83	44,93
25	Outras Áreas não Vegetadas	0,17	30,23	30,06	17891,28
30	Mineração	0,72	4,05	3,33	462,15
5 CORP	O D'ÁGUA				
33	Rio, Lago e Oceano	639,36	634,15	-5,20	-0,81
	ÁREA TOTAL	3566,17	km²		

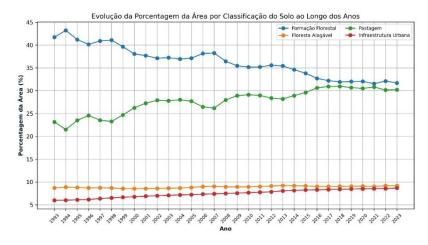


Figura 26 - Mudança de Uso e Ocupação na RM de Belém (Fonte: Autoria própria, 2025).

A análise da temperatura de superfície, através da média trimestral para cada ano, apresentou comportamento semelhante a região citada anteriormente, com tendência de crescimento significativo no outono e no inverno. As maiores médias de temperatura foram registradas no inverno e na primavera, em comparação com as demais estações. Para a temperatura do ar, os dados foram obtidos de uma estação convencional e uma estação automáticas (Quadro 2), cujos valores estão representados no gráfico de barras na Figura 27. A análise visual aponta uma forte tendência forte de crescimento das temperaturas ao longo das estações do ano, tendência essa confirmada pelo teste de Mann-Kendall, com exceção do verão, que não apresentou variações significativas.

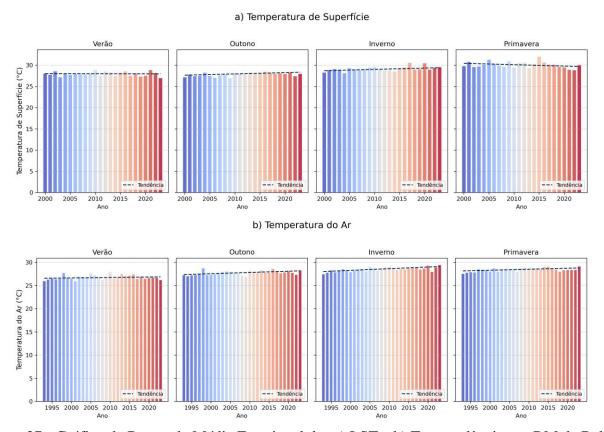


Figura 27 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de Belém (Fonte: Autoria própria, 2025).

A região metropolitana de Boa Vista, localizada em Roraima, que possui um clima tropical e está inserida no bioma Amazônico, apresentou Mudanças de Uso e Ocupação do solo semelhantes às observadas na região de Macapá, A expansão urbana foi mínima, com um acréscimo de apenas 17,28 km². Entretanto, houve um desmatamento expressivo, com a redução de 3.386,02 km² de formação florestal e 243,70 km² de floresta alagável. Esse processo ocorreu, sobretudo, devido ao avanço da agropecuária, especialmente da pastagem e do cultivo de soja (Tabela 11, Figura 23).

Tabela 11 - Mudança de Uso e Ocupação do Solo na RM de Boa Vista (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)
1 F	LORESTA				
3	Formação Florestal	42542,77	39156,75	-3386,02	-7,96
4	Formação Savânica	23,43	42,02	18,59	79,33
6	Floresta Alagável	1426,77	1183,07	-243,70	-17,08
2 F	ORMAÇÃO NATURAL NÃO FI	LORESTAL			
11	Campo Alagado e Área Pantanosa	1816,50	1813,15	-3,36	-0,18
12	Formação Campestre	11301,04	11337,67	36,63	0,32
29	Afloramento Rochoso	1,98	1,97	-0,01	-0,50
3 A	GROPECUÁRIA				
9	Silvicultura	0,00	100,82	100,82	10082,27
15	Pastagem	1085,78	3917,71	2831,93	260,82
39	Soja	0,00	717,75	717,75	71775,03
41	Outras Lavouras Temporárias	4,71	177,84	173,13	3679,56
4 Á	REA NÃO VEGETADA				
24	Infraestrutura Urbana	125,12	142,40	17,28	13,81
25	Outras Áreas não Vegetadas	7,72	5,83	-1,89	-24,53
30	Mineração	0,36	11,91	11,55	3169,61
5 C	ORPO D'ÁGUA				
33	Rio, Lago e Oceano	839,53	566,80	-272,74	-32,49
0	Não observado	0,19	0,23	0,04	20,35
	ÁREA TOTAL	59175,91	km²		

Essas mudanças impactaram as variações da temperatura de superfície e do ar ao longo dos anos. Os resultados indicam uma tendência de crescimento no inverno, visível na Figura 28. Embora as demais estações não tenham apresentado tendências significativas, os picos de temperatura ocorreram no verão de 2016, com a maior temperatura de superfície registrada (32,66°C), e na primavera de 2015, com 31,04°C. Já a temperatura do ar variou consideravelmente ao longo dos anos, sem tendências significativas. No entanto, graficamente, nota-se um aumento recente, com temperaturas elevadas de 30,26°C no inverno e 31,70°C na primavera, ambas no ano de 2023.

a) Temperatura de Superfície

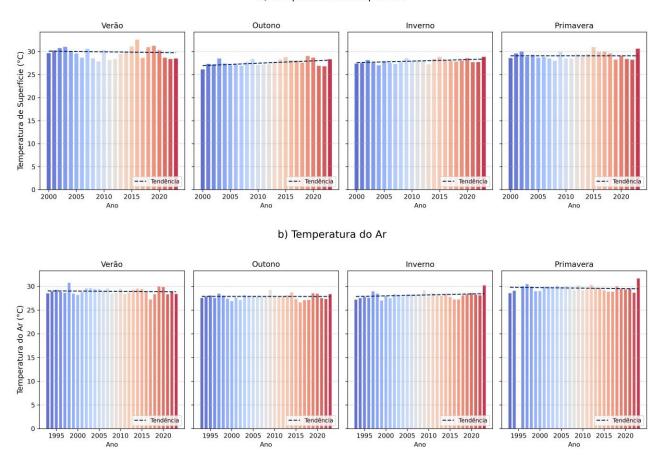


Figura 28 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de Boa Vista (Fonte: Autoria própria, 2025).

No estado de Tocantins, a região investigada foi Palmas, que está inserida no bioma Cerrado e possui um clima característico tropical semiúmido. A formação savânica sofreu uma redução significativa, com perda de 4.756,25 km² de vegetação nativa, enquanto a área urbana cresceu 54,22%, conforme apresentado na Tabela 12, acompanhando o acelerado crescimento populacional observado nas últimas três décadas. Seguindo o padrão observado nas demais regiões, houve um aumento expressivo das áreas de pastagem (+1.984,82 km²) e da soja. Apesar disso, a categoria floresta ainda ocupa a maior parte da área da região (Figura 29).

Tabela 12 - Mudança de Uso e Ocupação do Solo na RM de Palmas (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)
1 F	LORESTA				
3	Formação Florestal	4088,58	4218,89	130,32	3,19
4	Formação Savânica	14004,69	9248,44	-4756,25	-33,96
6	Floresta Alagável	0,00	0,02	0,02	2,30
2 F	ORMAÇÃO NATURAL NÃO FI	LORESTAL			
11	Campo Alagado e Área Pantanosa	122,28	138,73	16,45	13,45
12	Formação Campestre	16,53	18,57	2,04	12,32
29	Afloramento Rochoso	0,58	0,58	0,00	0,46
3 A	GROPECUÁRIA				
9	Silvicultura	5,22	129,60	124,39	2383,32
15	Pastagem	4589,49	6574,31	1984,82	43,25
20	Cana	0,00	0,78	0,78	77,55
21	Mosaico de Usos	1295,38	794,21	-501,17	-38,69
39	Soja	5,56	2307,77	2302,21	41380,94
41	Outras Lavouras Temporárias	1,57	173,85	172,28	10985,01
4 Á	REA NÃO VEGETADA				
24	Infraestrutura Urbana	149,42	230,43	81,01	54,22
25	Outras Áreas não Vegetadas	369,21	250,49	-118,72	-32,16
30	Mineração	0,44	0,63	0,19	42,43
5 C	ORPO D'ÁGUA				
33	Rio, Lago e Oceano	181,76	743,39	561,64	309,00
	ÁREA TOTAL	24830,70	km²		

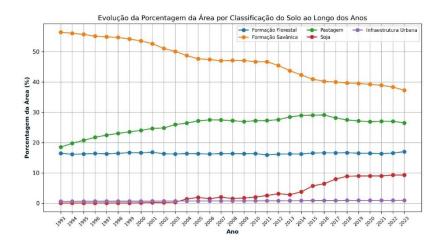


Figura 29 - Mudança de Uso e Ocupação na RM de Palmas (Fonte: Autoria própria, 2025).

A análise da temperatura de superfície na RM de Palmas indicou que as maiores médias ocorreram no inverno e primavera, atingindo 35,78°C e 34,04°C, respectivamente. Apesar das variações durante a escala temporal avaliada, não foram detectadas tendências significativas em nenhuma estação, segundo o teste de Mann-Kendall. Já na temperatura do ar, todas as estações apresentaram tendências de crescimento. O inverno continua sendo a estação mais quente, o que também foi observado na temperatura de superfície. Esses resultados foram compilados e representados por gráfico na Figura 30.

a) Temperatura de Superfície

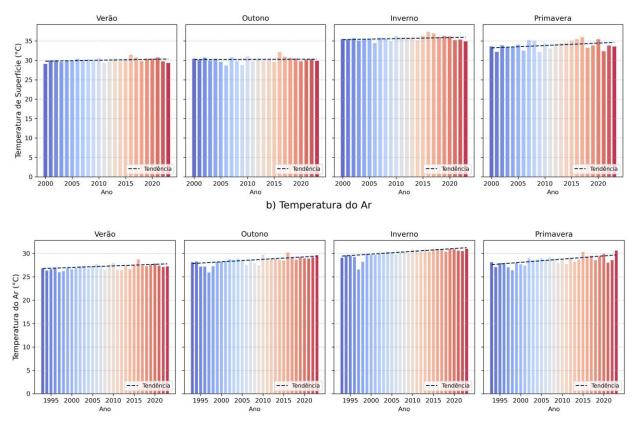


Figura 30 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de Palmas (Fonte: Autoria própria, 2025).

6.4 – REGIÃO SUL

Para a investigação na região Sul do Brasil, foram analisadas as regiões metropolitanas de Londrina e Maringá, no estado do Paraná, e a região metropolitana de Porto Alegre, no Rio Grande do Sul. O crescimento populacional dessas regiões foi heterogêneo. Em Maringá, observou-se um crescimento acelerado, com um aumento de 75,5% no número de habitantes em relação a 1991, sendo esse acréscimo mais expressivo na última década (Figura 31). Londrina manteve uma evolução populacional constante e atualmente conta com pouco mais de 1 milhão e 130 mil habitantes. Porto Alegre apresentou crescimento populacional na primeira década do estudo, mantendo-se praticamente estável nos anos mais recentes. No entanto, é a região mais populosa analisada no Sul, com mais de 4,1 milhões de habitantes.

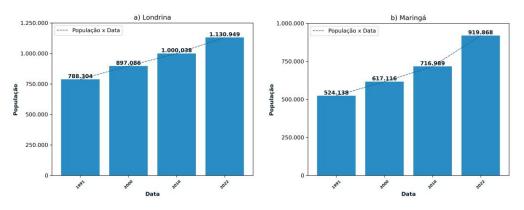


Figura 31 - Crescimento demográfico na Região Sul nas RMs de a) Londrina, b) Maringá e c) Porto Alegre (Fonte: Autoria própria, 2025).

A região metropolitana de Londrina, localizada no norte do Paraná, está inserida no bioma Mata Atlântica e apresenta um clima subtropical. Observou-se um crescimento expressivo na área de infraestrutura urbana, que passou de 129,97 km² para 272,82 km², representando um aumento de mais de 109% (Tabela 13). A agropecuária é o principal uso do solo. Houve mudanças nas classes de uso, destacando-se a substituição da classe de outras lavouras temporárias por soja, que atualmente ocupa quase 50% da área total (Figura 32). Apesar dessas transformações, a área de floresta cresceu 42,78% em comparação ao início do estudo, e as regiões onde esse crescimento ocorreu podem ser observadas no mapa da Figura 33.

Tabela 13 - Mudança de Uso e Ocupação do Solo da RM de Londrina (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)
1 F	LORESTA				
3	Formação Florestal	754,40	1077,17	322,76	42,78
2 F	ORMAÇÃO NATURAL NÃO FI	LORESTAL			
11	Campo Alagado e Área Pantanosa	2,14	2,01	-0,13	-6,08
3 A	GROPECUÁRIA				
9	Silvicultura	12,88	55,38	42,50	330,09
15	Pastagem	1835,25	541,21	-1294,03	-70,51
20	Cana	96,35	477,48	381,13	395,55
21	Mosaico de Usos	1397,54	1446,28	48,74	3,49
39	Soja	1178,22	4501,46	3323,24	282,06
41	Outras Lavouras Temporárias	3195,53	298,22	-2897,31	-90,67
46	Café	74,27	20,46	-53,81	-72,45
48	Outras Lavouras Perenes	0,33	1,51	1,19	361,59
4 Á	REA NÃO VEGETADA				
24	Infraestrutura Urbana	129,97	272,82	142,85	109,91
25	Outras Áreas não Vegetadas	2,61	8,57	5,96	228,31
5 C	ORPO D'ÁGUA				
33	Rio, Lago e Oceano	390,78	367,71	-23,07	-5,90
0	Não observado	0,06	0,04	-0,01	-25,56
	ÁREA TOTAL	9070,33	km²		

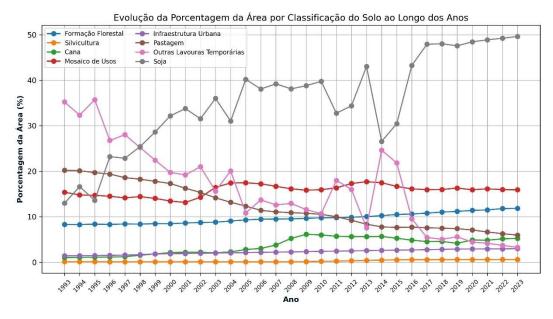


Figura 32 - Mudança de Uso e Ocupação na RM de Londrina (Fonte: Autoria própria, 2025).

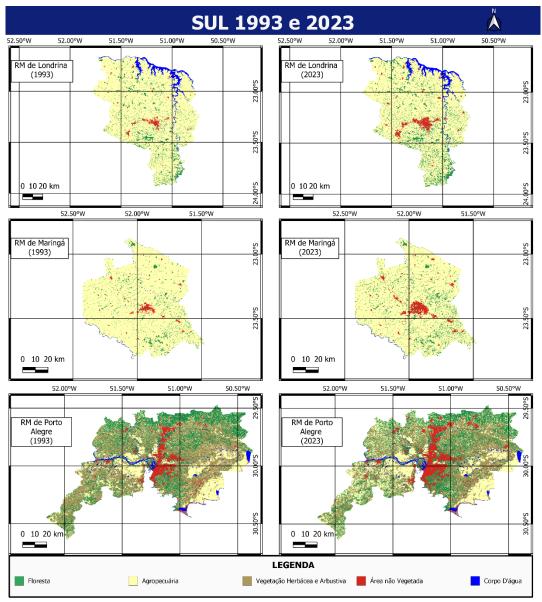


Figura 33 - Mapa do Uso e Ocupação das RMs no Sul (Fonte: Autoria própria, 2025).

A LST de Londrina apresentou um padrão de estabilidade durante o primeiro e o quarto trimestres do ano, enquanto nas demais estações foram observadas variações, sem tendência significativa (Figura 34). Em relação à temperatura do ar, os dados foram obtidos de apenas uma estação convencional, mas que contempla toda a escala temporal do estudo (Quadro 2). A análise desses dados indicou um padrão sazonal de variação, com temperaturas mais baixas no outono e inverno e temperaturas mais elevadas no final do ano. Além disso, foram identificadas tendências de crescimento nas médias trimestral do outono, inverno e primavera.

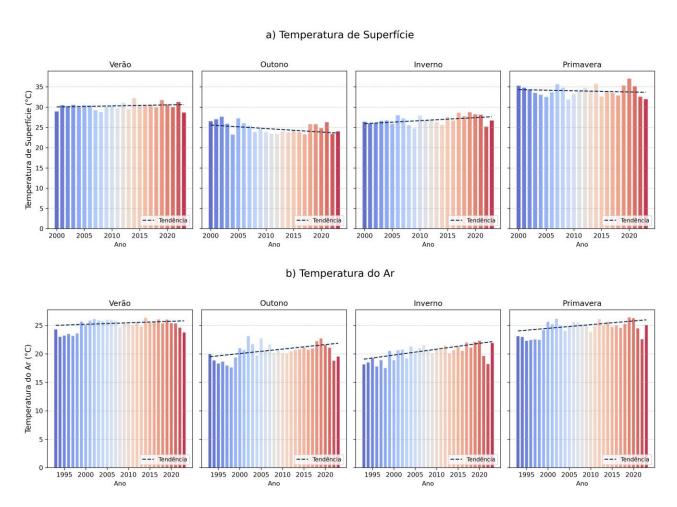


Figura 34 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de Londrina (Fonte: Autoria própria, 2025).

Já a região metropolitana de Maringá, também inserida no bioma Mata Atlântica e com clima subtropical, revelou uma intensa ocupação humana e um crescimento urbano significativo, de aproximadamente 134%, especialmente na área central da região (Figura 33). Esse crescimento ocorreu à custa da redução de áreas de pastagem e outras lavouras temporárias, embora também tenha sido observado um aumento na área de formação florestal, conforme detalhado na Tabela 14. Apesar dessa redução na categoria de agropecuária, essa atividade ainda representa a maior porcentagem da área da região metropolitana (Figura 35).

Tabela 14 - Mudança de Uso e Ocupação do Solo da RM de Maringá (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)
1 F	LORESTA				
3	Formação Florestal	331,59	524,72	193,13	58,24
2 F	ORMAÇÃO NATURAL NÃO FI	LORESTAL			
11	Campo Alagado e Área Pantanosa	0,11	0,27	0,15	135,25
3 A	GROPECUÁRIA				
9	Silvicultura	8,76	33,72	24,96	284,77
15	Pastagem	1569,22	514,81	-1054,42	-67,19
20	Cana	61,38	559,86	498,48	812,17
21	Mosaico de Usos	695,95	959,92	263,96	37,93
39	Soja	1393,94	2864,62	1470,68	105,50
41	Outras Lavouras Temporárias	1723,32	235,22	-1488,10	-86,35
46	Café	73,87	32,97	-40,90	-55,36
48	Outras Lavouras Perenes	1,17	2,78	1,61	137,57
4 Á	REA NÃO VEGETADA				
24	Infraestrutura Urbana	96,83	226,50	129,67	133,91
25	Outras Áreas não Vegetadas	0,58	6,54	5,96	1024,10
5 C	ORPO D'ÁGUA				
33	Rio, Lago e Oceano	23,27	18,08	-5,19	-22,32
	ÁREA TOTAL	5980,02	km²		

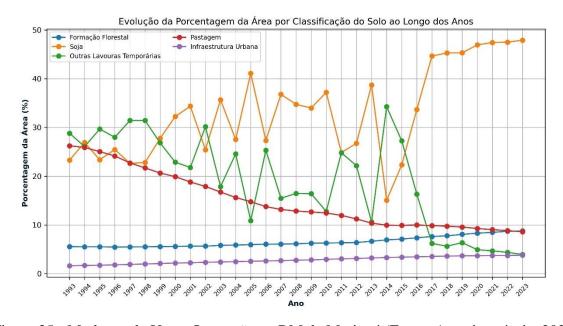


Figura 35 - Mudança de Uso e Ocupação na RM de Maringá (Fonte: Autoria própria, 2025).

A análise da LST (Figura 36) revela uma tendência de temperaturas mais baixas durante o outono e inverno, com uma variação de crescimento expressivo no inverno, confirmado pelo teste de tendência. Já a temperatura do ar, com base em dados de estação meteorológica, apresentou variações sazonais semelhantes, embora algumas lacunas de dados tenham sido observadas em determinados anos. No entanto, nenhuma estação registrou uma tendência estatisticamente significativa.

a) Temperatura de Superfície

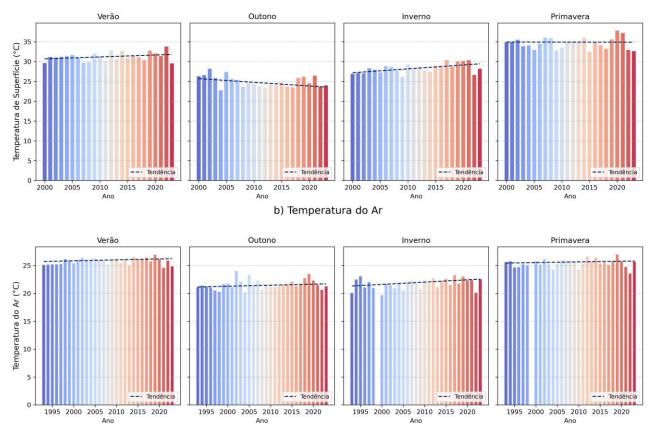
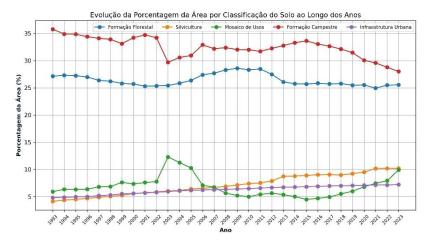


Figura 36 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de Maringá (Fonte: Autoria própria, 2025).

Em Porto Alegre, que possui a maior população da região Sul, foram identificadas Mudanças no Uso e Ocupação do solo. A área urbana aumentou em 250,14 km², enquanto a área de formação florestal sofreu um desflorestamento de aproximadamente 164 km², embora continue sendo o segundo uso mais predominante (Figura 37). Porto Alegre é a única região avaliada inserida no bioma Pampa e, apesar de apresentar um clima semelhante às demais regiões estudadas do Sul, também registrou crescimento nas áreas destinadas à agropecuária, especialmente na silvicultura e no mosaico de usos (Tabela 15).



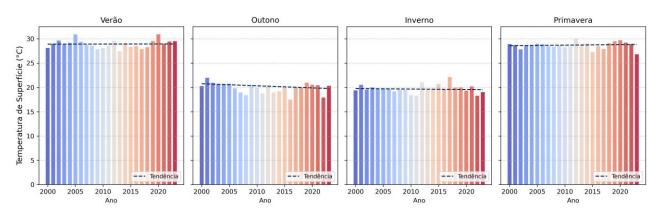

Figura 37 - Mudança de Uso e Ocupação na RM de Porto Alegre (Fonte: Autoria própria, 2025).

Tabela 15 - Mudança de Uso e Ocupação do Solo da RM de Porto Alegre (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)		
1 F	1 FLORESTA						
3	Formação Florestal	2808,10	2644,17	-163,94	-5,84		
49	Restinga Arbórea	87,95	121,84	33,89	38,53		
2 F	ORMAÇÃO NATURAL NÃO F	LORESTAL					
11	Campo Alagado e Área Pantanosa	269,73	284,94	15,21	5,64		
12	Formação Campestre	3701,97	2897,82	-804,16	-21,72		
29	Afloramento Rochoso	3,27	3,04	-0,23	-7,04		
50	Restinga Herbácea	17,78	24,67	6,90	38,79		
3 A	GROPECUÁRIA						
9	Silvicultura	426,86	1055,30	628,44	147,22		
15	Pastagem	85,91	90,86	4,95	5,76		
21	Mosaico de Usos	611,72	1024,82	413,10	67,53		
39	Soja	317,63	250,43	-67,20	-21,16		
40	Arroz	384,59	541,86	157,27	40,89		
41	Outras Lavouras Temporárias	739,77	294,51	-445,26	-60,19		
4 Á	4 ÁREA NÃO VEGETADA						
23	Praia, Duna e Areal	3,84	2,89	-0,94	-24,60		
24	Infraestrutura Urbana	497,53	747,67	250,14	50,28		
25	Outras Áreas não Vegetadas	99,14	87,15	-12,00	-12,10		
30	Mineração	0,31	2,70	2,40	785,33		
5 C	ORPO D'ÁGUA						
33	Rio, Lago e Oceano	269,60	265,43	-4,17	-1,55		
0	Não observado	18,66	4,26	-14,40	-77,17		
	ÁREA TOTAL	10344,35	km²	·			

Os resultados da análise da temperatura de superfície e do ar indicam valores mais baixos durante o outono e inverno, o que é uma característica marcante nas regiões avaliadas no Sul do Brasil. Apesar de algumas variações em interanuais, a temperatura de superfície manteve-se relativamente constante ao longo do período analisado, sem apresentar tendência significativa (Figura 38). Já a temperatura do ar, mostrou um crescimento visível nos anos mais recentes do estudo, com uma tendência de crescimento estatisticamente significativa no nível de significância adotado apenas no verão.

a) Temperatura de Superfície

b) Temperatura do Ar

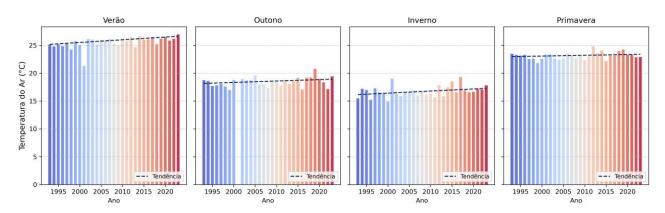
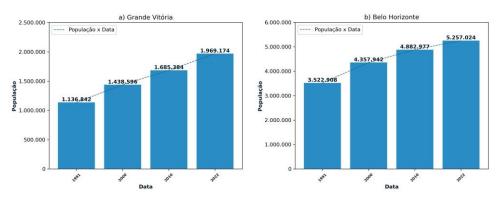



Figura 38 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de Porto Alegre (Fonte: Autoria própria, 2025).

6.5 – REGIÃO SUDESTE

A última região estudada foi a Sudeste, abrangendo as regiões metropolitanas da Grande Vitória, Belo Horizonte, Rio de Janeiro, Ribeirão Preto e São Paulo. Atualmente, essa região apresenta as áreas mais populosas do Brasil, como a Região Metropolitana de São Paulo. Embora não seja a maior em extensão territorial, é a mais populosa do país, com quase 22 milhões de habitantes, além de possuir grande importância econômica e financeira. Essa região apresentou um crescimento populacional constante ao longo das décadas (Figura 39), sendo seguida pelo Rio de Janeiro, que é a segunda região metropolitana mais populosa. No entanto, essa última teve um rápido crescimento demográfico nas primeiras décadas analisadas, seguido de uma estabilização.

As demais regiões, apesar de terem menor população, registraram grandes evoluções ao longo das três décadas. Belo Horizonte teve um aumento de quase 1,8 milhão de habitantes, crescimento que ocorreu principalmente entre 1991 e 2000. Já as regiões de Ribeirão Preto e Grande Vitória também apresentaram taxas elevadas de crescimento urbano, com valores de aproximadamente 49,8% e 73,21%, respectivamente, ao longo dos quatro censos investigados.

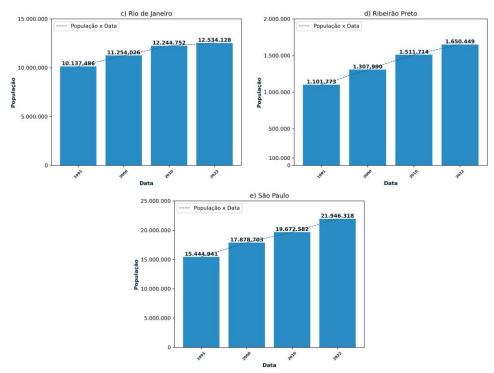


Figura 39 - Crescimento demográfico na Região Sudeste nas RMs de a) Grande Vitória, b) Belo Horizonte, c) Rio de Janeiro, d) Ribeirão Preto e e) São Paulo (Fonte: Autoria própria, 2025).

A primeira região avaliada foi a Grande Vitória, no Espírito Santo, que possui clima tropical úmido e bioma Mata Atlântica. Apesar de sua pequena extensão territorial de 2.312,44 km² (Tabela 16), houve mudanças significativas no uso do solo, com reduções na formação florestal e na área de pastagem devido ao crescimento de 67,51 km² da área de infraestrutura urbana, principalmente na área litorânea da região (Figura 40). No mosaico de usos, os avanços foram de 120,93 km², relacionados ao crescimento populacional ocorrido.

Tabela 16 - Mudança de Uso e Ocupação do Solo da RM da Grande Vitória (Fonte: Autoria própria, 2025)

2023).					
ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)
1 FL	ORESTA				
3	Formação Florestal	669,41	647,25	-22,16	-3,31
5	Mangue	23,85	26,83	2,97	12,46
49	Restinga Arbórea	41,34	46,96	5,62	13,60
2 FO	RMAÇÃO NATURAL NÃO FI	LORESTAL			
11 (Campo Alagado e Área Pantanosa	59,63	58,01	-1,61	-2,70
29	Afloramento Rochoso	4,43	4,26	-0,16	-3,64
32	Apicum	4,53	1,99	-2,54	-56,03
3 AG	GROPECUÁRIA				
9	Silvicultura	20,78	25,50	4,71	22,68
15	Pastagem	758,36	584,87	-173,49	-22,88
21	Mosaico de Usos	362,24	483,17	120,93	33,38
46	Café	37,46	33,10	-4,36	-11,63
48	Outras Lavouras Perenes	2,81	4,13	1,32	47,18
4 ÁR	REA NÃO VEGETADA				
23	Praia, Duna e Areal	2,68	1,16	-1,53	-56,91
24	Infraestrutura Urbana	268,34	335,84	67,51	25,16
25	Outras Áreas não Vegetadas	10,87	17,76	6,89	63,45
5 CC	DRPO D'ÁGUA				
31	Aquicultura	0,00	0,08	0,08	7,56
33	Rio, Lago e Oceano	45,70	41,49	-4,21	-9,21
0	Não observado	0,01	0,03	0,02	400,27
	ÁREA TOTAL	2312,44	km²	_	_

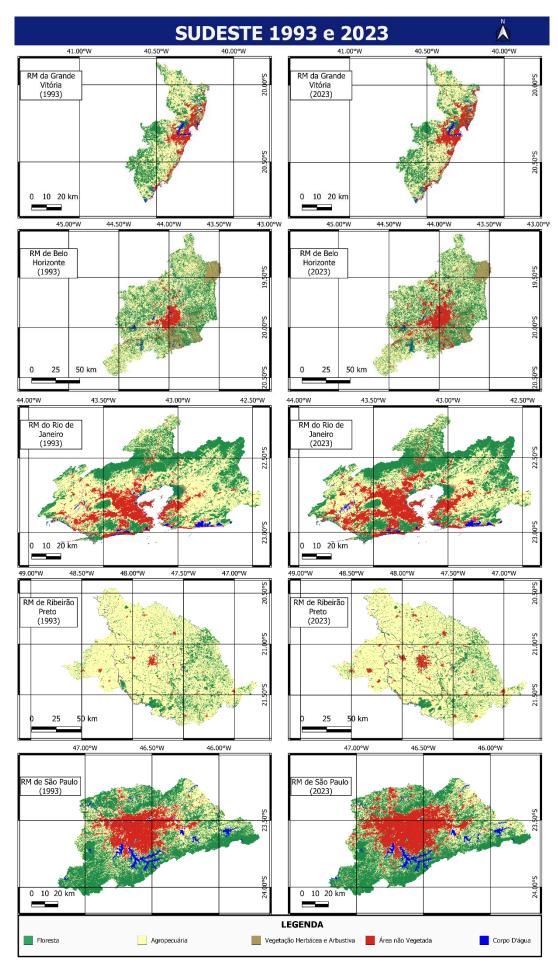


Figura 40 - Mapa do Uso e Ocupação das RMs no Sudeste (Fonte: Autoria própria, 2025).

A temperatura de superfície mostrou padrões sazonais claros: o 1° e 4° trimestres tendem a apresentar temperaturas mais altas, enquanto os outros dois frequentemente exibem valores mais baixos ou moderados (Figura 41). No entanto, não foram encontradas tendências significativas ao longo dos anos avaliados. Os valores de temperatura do ar não apresentaram grandes variações durante o período de estudo, com o inverno mostrando uma característica de resfriamento. Além disso, assim como na temperatura de superfície, não foram identificas tendências significativas nos dados analisados.

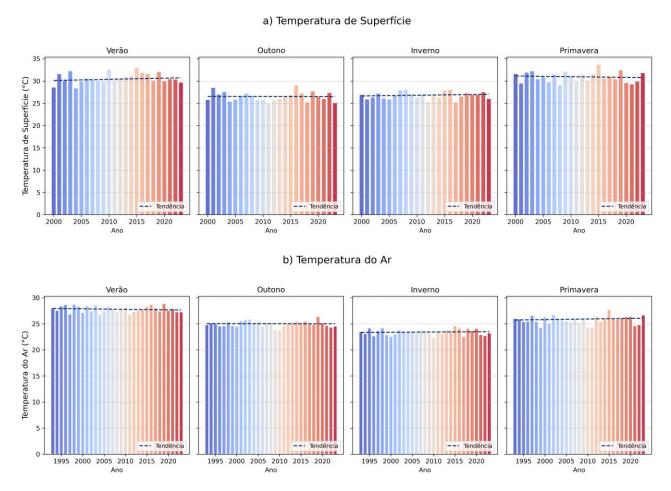


Figura 41 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM da Grande Vitória (Fonte: Autoria própria, 2025).

Em Belo Horizonte, inserida no bioma Cerrado, mas com áreas de transição para a Mata Atlântica e clima tropical de altitude, houve um grande aumento da área urbana, com crescimento de quase 90% em relação a 1993, principalmente na área central da região (Figura 40). Esse crescimento está associado ao aumento populacional e à redução de 45,09 km² da formação florestal e de 932,43 km² da área de pastagem (Tabela 17). Apesar disso, essas categorias ainda representam o principal uso do solo na região. Embora, a pastagem passou a corresponder a apenas 28,12% da área total, sendo ultrapassada pela formação florestal, que agora representa 31,82% (Figura 42).

Tabela 17 - Mudança de Uso e Ocupação do Solo da RM de Belo Horizonte (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)		
1 FLORESTA							
3	Formação Florestal	3058,88	3013,79	-45,09	-1,47		
4	Formação Savânica	247,19	260,61	13,42	5,43		
2 FO	2 FORMAÇÃO NATURAL NÃO FLORESTAL						
11 (Campo Alagado e Área Pantanosa	94,34	110,04	15,71	16,65		
12	Formação Campestre	536,53	491,75	-44,78	-8,35		
29	Afloramento Rochoso	328,46	323,88	-4,57	-1,39		
3 AG	GROPECUÁRIA						
9	Silvicultura	54,66	151,10	96,44	176,42		
15	Pastagem	3596,39	2663,96	-932,43	-25,93		
21	Mosaico de Usos	886,78	1248,33	361,55	40,77		
39	Soja	0,00	2,82	2,82	282,44		
41	Outras Lavouras Temporárias	3,57	41,61	38,04	1066,06		
46	Café	10,69	6,66	-4,03	-37,69		
48	Outras Lavouras Perenes	0,23	0,44	0,21	91,60		
4 ÁR	4 ÁREA NÃO VEGETADA						
24	Infraestrutura Urbana	490,72	931,96	441,24	89,92		
25	Outras Áreas não Vegetadas	23,35	25,51	2,15	9,22		
30	Mineração	50,49	130,25	79,76	157,98		
5 CC	DRPO D'ÁGUA						
33	Rio, Lago e Oceano	88,48	68,03	-20,45	-23,11		
0	Não observado	0,00	0,01	0,01	0,59		
	ÁREA TOTAL	9470,76	km²				

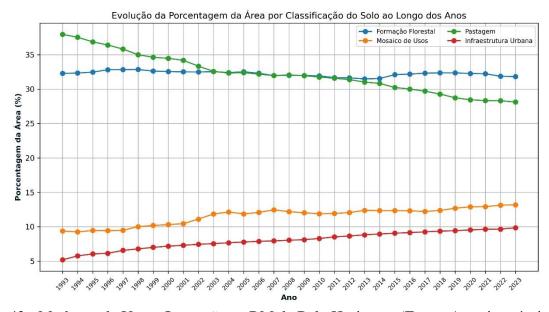


Figura 42 - Mudança de Uso e Ocupação na RM de Belo Horizonte (Fonte: Autoria própria, 2025).

Os resultados de temperatura de superfície indicam médias mais elevadas na primavera, com o maior registro em 2015 (31,82°C). Porém, houve grande variação ao longo do período, sem tendências significativas em nenhuma estação. Para os dados da estação meteorológica, foi identificada uma tendência de aumento de temperatura do ar apenas no inverno, ainda que apresentando variações semelhantes às do LST. O maior valor registrado foi de 26,66°C na primavera de 2023.

a) Temperatura de Superfície

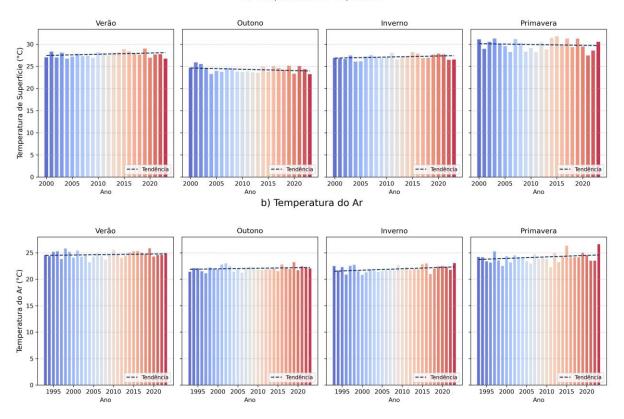


Figura 43 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de Belo Horizonte (Fonte: Autoria própria, 2025).

O Rio de Janeiro, predominantemente coberto pelo bioma Mata Atlântica e com clima tropical úmido, semelhante à Grande Vitória, apresentou redução nas áreas de agropecuária, pastagem (queda de 23,17%) e mosaico de usos (redução de 12,52%) ao longo dos anos, conforme detalhado na Tabela 9 e ilustrado pelo mapa na Figura 40. Esse processo está relacionado ao crescimento da área de infraestrutura urbana, que aumentou em 369,59 km². Anteriormente responsável por 14% da área total da região, a área urbanizada agora representa cerca de 20% (Figura 44). Além disso, houve um pequeno crescimento de 8,85% na área vegetal.

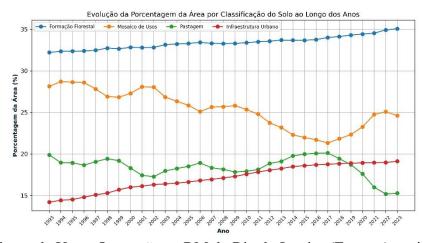


Figura 44 - Mudança de Uso e Ocupação na RM do Rio de Janeiro (Fonte: Autoria própria, 2025).

Tabela 18 - Mudança de Uso e Ocupação do Solo da RM do Rio de Janeiro (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)		
1 F	1 FLORESTA						
3	Formação Florestal	2425,32	2640,03	214,71	8,85		
5	Mangue	72,78	86,55	13,77	18,92		
49	Restinga Arbórea	81,37	102,64	21,27	26,13		
2 F	2 FORMAÇÃO NATURAL NÃO FLORESTAL						
11	Campo Alagado e Área Pantanosa	72,93	55,22	-17,71	-24,29		
29	Afloramento Rochoso	39,39	39,17	-0,21	-0,54		
32	Apicum	12,92	6,98	-5,94	-45,96		
3 A	GROPECUÁRIA						
9	Silvicultura	0,00	0,49	0,49	49,46		
15	Pastagem	1497,32	1150,45	-346,87	-23,17		
21	Mosaico de Usos	2118,71	1853,36	-265,35	-12,52		
39	Soja	0,00	2,18	2,18	217,73		
41	Outras Lavouras Temporárias	0,00	2,22	2,22	221,80		
4 Á	REA NÃO VEGETADA						
23	Praia, Duna e Areal	10,35	7,68	-2,67	-25,80		
24	Infraestrutura Urbana	1069,97	1439,56	369,59	34,54		
25	Outras Áreas não Vegetadas	17,97	31,80	13,83	76,96		
30	Mineração	2,02	9,49	7,47	370,71		
5 CORPO D'ÁGUA							
31	Aquicultura	2,40	9,23	6,84	285,38		
33	Rio, Lago e Oceano	104,98	91,30	-13,68	-13,03		
0	Não observado	0,04	0,12	0,07	166,97		
	ÁREA TOTAL	7528,45	km²				

A temperatura de superfície também mostrou padrões sazonais claros, com temperaturas mais altas no 1° e 4° trimestre, enquanto os outros dois trimestres frequentemente exibem valores mais baixos ou moderados (Figura 45). Após a aplicação do teste de Mann-Kendall, não foram encontradas tendências significativas, embora tenha sido observado uma tendência de decréscimo no outono, com valor próximo da significância. Os valores de temperatura do ar não apresentaram grandes variações no período analisado, embora algumas estações tenham registrando temperaturas mais baixas. Apesar disso, após os cálculos de tendência e dispersão, essa tendência foi confirmada apenas no inverno.

b) Temperatura do Ar

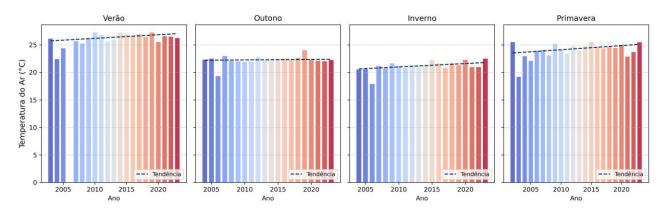


Figura 45 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM do Rio de Janeiro (Fonte: Autoria própria, 2025).

Em Ribeirão Preto, o clima é similar ao encontrado na região de Belo Horizonte, com predominância do bioma Mata Atlântica. A região, que possui uma área total de 14.788,23 km², registrou um aumento expressivo de 119% na área urbanizada, superando a taxa de crescimento populacional no mesmo período. Esse processo resultou na redução de 173,49 km² da formação florestal e de 71,07% da área de pastagem, além de 19,07% no mosaico de usos (Tabela 19). Outra mudança significativa foi o crescimento da área de plantação de cana, que passou a ocupar 50% do território, aumentando ainda mais sua influência na área total da região (Figura 46).

Tabela 19 - Mudança de Uso e Ocupação do Solo da RM de Ribeirão Preto (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)
1 F	LORESTA				
3	Formação Florestal	2102,62	1929,12	-173,49	-8,25
4	Formação Savânica	86,20	104,62	18,42	21,37
2 F	ORMAÇÃO NATURAL NÃO FI	LORESTAL			
11	Campo Alagado e Área Pantanosa	265,10	289,31	24,21	9,13
12	Formação Campestre	6,70	21,46	14,76	220,44
3 A	GROPECUÁRIA				
9	Silvicultura	336,57	548,67	212,10	63,02
15	Pastagem	2129,96	616,13	-1513,83	-71,07
20	Cana	5711,83	7363,46	1651,64	28,92
21	Mosaico de Usos	3002,48	2429,92	-572,56	-19,07
39	Soja	484,04	603,13	119,09	24,60
41	Outras Lavouras Temporárias	258,36	70,64	-187,72	-72,66
46	Café	23,06	112,63	89,57	388,48
47	Citrus	46,06	142,65	96,59	209,71
48	Outras Lavouras Perenes	8,26	31,36	23,09	279,45
4 Á	REA NÃO VEGETADA				
24	Infraestrutura Urbana	182,81	400,48	217,68	119,07
25	Outras Áreas não Vegetadas	25,50	34,42	8,92	34,97
30	Mineração	0,99	3,03	2,04	206,80
5 C	ORPO D'ÁGUA				
33	Rio, Lago e Oceano	117,65	87,14	-30,51	-25,93
0	Não observado	0,05	0,06	0,00	9,19
	ÁREA TOTAL	14788,23	km²		

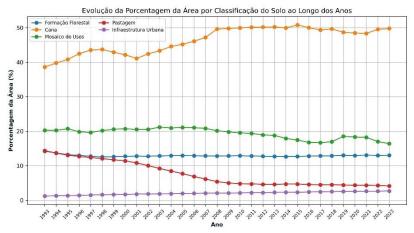


Figura 46 - Mudança de Uso e Ocupação na RM de Ribeirão Preto (Fonte: Autoria própria, 2025).

A temperatura de superfície indicou um leve padrão de crescimento ao longo dos anos (Figura 47), mas os testes estatísticos não apresentaram tendências significativas em nenhuma estação, apesar da declividade positiva na reta de tendência. Já a temperatura do ar, apesar da falta de dados no inverno e primavera de 1994, mostrou tendências de crescimento significativo em todas as estações do ano, exceto a primavera, apesar de registrar a maior média trimestral (25,79°C).

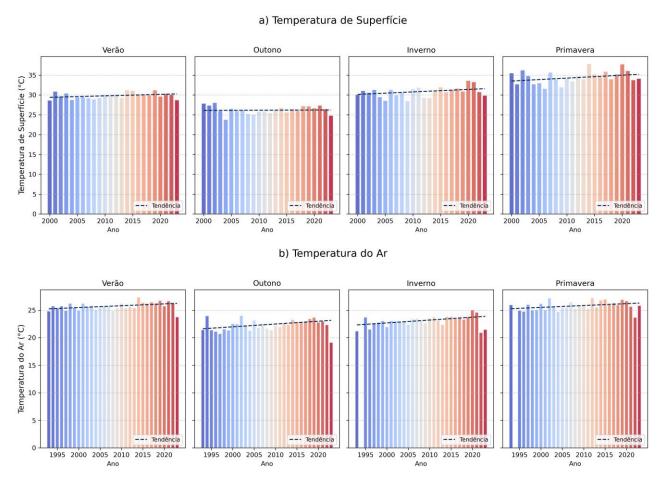


Figura 47 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de Ribeirão Preto (Fonte: Autoria própria, 2025).

As principais modificações no Uso e Ocupação do solo da região metropolitana de São Paulo, que possui um clima subtropical úmido e o bioma Mata Atlântica, incluem o crescimento da área urbanizada, que aumentou em 492,40 km², conforme observado no mapa na Figura 40. Houve também uma redução nas áreas florestais, agropecuária, de pastagem e de mosaico de usos (Tabela 10). Atualmente, a área de infraestrutura urbana é a segunda maior em termos de cobertura, representando cerca de 25% (Figura 48).

Tabela 20 - Mudança de Uso e Ocupação do Solo da RM de São Paulo (Fonte: Autoria própria, 2025).

ID	Classes	Área 1993 (km²)	Área 2023 (km²)	Mudança de Área(km²)	Porcentagem(%)
1 F	LORESTA				
3	Formação Florestal	3710,08	3522,36	-187,71	-5,06
2 F	ORMAÇÃO NATURAL NÃO FI	LORESTAL			
11	Campo Alagado e Área Pantanosa	0,11	0,14	0,03	29,55
12	Formação Campestre	8,06	7,73	-0,33	-4,05
29	Afloramento Rochoso	1,41	1,64	0,23	16,70
3 A	GROPECUÁRIA				
9	Silvicultura	16,27	211,10	194,83	1197,48
15	Pastagem	441,55	220,72	-220,83	-50,01
20	Cana	0,00	0,01	0,01	1,15
21	Mosaico de Usos	1922,55	1509,37	-413,17	-21,49
39	Soja	0,54	7,17	6,63	1229,47
41	Outras Lavouras Temporárias	59,08	189,14	130,06	220,13
46	Café	0,56	0,94	0,38	67,65
48	Outras Lavouras Perenes	0,02	0,09	0,07	326,07
4 Á	REA NÃO VEGETADA				
24	Infraestrutura Urbana	1467,11	1959,51	492,40	33,56
25	Outras Áreas não Vegetadas	33,17	42,05	8,88	26,79
30	Mineração	12,10	24,79	12,69	104,88
5 C	ORPO D'ÁGUA				
31	Aquicultura	0,00	0,07	0,07	6,57
33	Rio, Lago e Oceano	274,31	250,05	-24,26	-8,84
0	Não observado	0,00	0,01	0,01	1,07
-	ÁREA TOTAL	7946,91	km²		

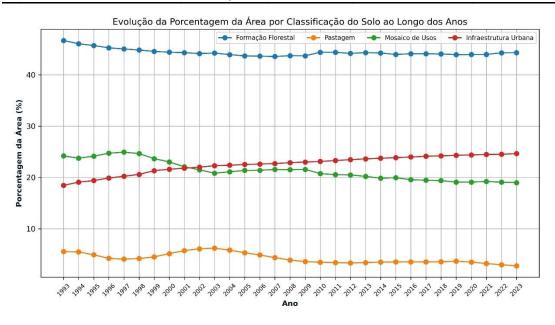


Figura 48 - Mudança de Uso e Ocupação na RM de São Paulo (Fonte: Autoria própria, 2025).

Na análise das temperaturas, os resultados de superfície obtidos por sensoriamento remoto e da temperatura do ar, medidos por estações meteorológicas, estão apresentados na Figura 49. A temperatura de superfície apresentou flutuações ao longo do período, com valores consistentemente mais altas no 4º trimestre, embora tenha havido uma leve diminuição a partir de 2021. A temperatura do ar, apesar da ausência de dados em alguns meses de 2020, mostrou visualmente uma tendência de aumento, especialmente no inverno. Porém, não foram encontradas tendências estatisticamente significativas para nenhuma das temperaturas analisadas ou para suas respectivas estações.

Figura 49 - Gráfico de Barras da Média Estacional das a) LST e b) Ta e tendências na RM de São Paulo (Fonte: Autoria própria, 2025).

6.6 – EVOLUÇÕES DAS EMISSÕES DE CO2

As intensas alterações no uso e cobertura do solo transformam propriedades físicas da superfície quando associadas às diversas atividades humanas. Nas áreas metropolitanas, o consumo de energia, os processos industriais e a utilização de diferentes transportes, não apenas provocam mudanças climáticas, mas também afetam a dispersão de poluentes, a qualidade do ar e contribuem significativamente para o aumento dos gases de efeito estufa. Essa ação impacta a saúde e a

qualidade de vida, no que se refere ao estresse térmico e à exposição a esses poluentes, de forma que a investigação desses fenômenos torna-se essencial para contextualiza-los no que se refere ao desenvolvimento da população.

Quanto às alterações climáticas, maiores volumes de emissão de dióxido de carbono desempenham um papel fundamental nas variações de temperatura da superfície e do ar, pois intensificam o efeito estufa, resultando no aumento da retenção de calor na atmosfera. Em áreas urbanizadas, onde a substituição da vegetação por superfícies impermeáveis altera o balanço térmico, esse efeito é potencializado, favorecendo o surgimento de ilhas de calor urbanas.

Além disso, fontes antrópicas, como veículos e indústrias, não apenas elevam a concentração de gases de efeito estufa, como também liberam calor diretamente no ambiente, intensificando as variações térmicas. Dessa forma, o acúmulo de gás carbônico na atmosfera contribui para o aumento das temperaturas e a deterioração da qualidade do ar, tornando essencial a compreensão dessas relações para o desenvolvimento de estratégias de mitigação voltadas à sustentabilidade urbana.

Os resultados encontrados de emissão de CO2 (em mega toneladas), compilados na Tabela 21, mostram mudanças que podem ser agrupadas em três vertentes. A primeira abrange as regiões com redução nas emissões de dióxido de carbono, observadas nas regiões metropolitanas de Grande São Luís, Vale do Rio Cuiabá e, com maior redução (46,91%) a de Boa Vista, localizada em Roraima. Apesar do seu crescimento populacional nas últimas décadas, a região ainda apresenta uma densidade populacional baixa, sendo a menor população entre as estudadas. Em relação ao aumento moderado das emissões, destacam-se as regiões de Belém, com um crescimento de aproximadamente 3,68%, que apresenta certa estabilidade populacional nas últimas décadas, além de Ribeirão Preto e Palmas, que registraram aumentos de 40,65% e 58,28%, respectivamente, apesar das reduções nas emissões observada em 2006.

Por fim, as regiões que mostraram sinais alarmantes de aumento nas emissões de gás carbônico e que demandam mais planejamento e mudanças nas dinâmicas urbanas estão principalmente no Sudeste. Das cinco regiões metropolitanas avaliadas, quatro apresentaram aumento superior a 1000%, com os piores resultados observados em Grande Vitória, que teve um crescimento de aproximadamente 4304% ao longo dos anos avaliados. Também se destaca Fortaleza, que apesar de não estar nessa região, passou de 0,33 Mt em 1993 para 5,92 Mt, embora tenha reduzido em relação ao ano de 2015 (11,44 Mt), ainda apresenta um crescimento excessivo nas emissões antropogênicas de CO2.

Tabela 21 – Resumo de Emissões de CO2 por Regiões Metropolitanas (Fonte: Autoria própria, 2025).

						Emi	ssão de	CO2 (Mt) nas Regi	ões Mo	etropoli	tanas po	r Ano							
A o	Manana	Masamá	Caluadan	Fantalana	Grande	Goiânia	Grande	Belo	Vole de Die		Loão	•		Rio de	Matal	Boa	Porto	Ribeirão	São	Dolmos
Ano	Manaus	Macapa	Sarvador	Fortaleza	Vitória	Gorania		Horizonte	Cuiabá	Belém	Pessoa	Londrina	Maringa	Janeiro	Natal	Vista	Alegre	Preto	Paulo	Palmas
1993	8,21	0,28	1,47	0,33	0,30	1,09	5,59	1,23	8,62	2,64	0,51	0,72	0,34	0,62	0,31	11,41	2,50	2,50	0,95	2,71
1994	8,67	0,21	0,91	0,28	0,34	1,02	4,20	1,05	9,53	1,56	0,36	1,10	0,55	0,72	0,47	8,54	2,23	3,15	2,76	3,14
1995	6,77	0,41	1,58	0,53	0,35	0,90	3,30	0,96	9,81	3,80	0,91	0,40	0,26	0,68	0,20	7,55	1,85	3,29	1,56	2,85
1996	8,72	0,72	1,02	0,20	0,31	0,82	4,07	0,71	8,63	2,22	0,36	0,57	0,37	0,70	0,01	9,88	2,36	2,34	1,84	2,78
1997	10,90	0,12	0,82	0,48	0,66	0,61	3,63	1,08	8,26	1,80	0,14	0,52	0,34	0,64	0,59	8,41	2,48	2,23	1,13	2,21
1998	19,02	0,31	0,75	0,43	0,46	0,54	5,54	0,89	8,64	1,96	0,15	0,59	0,31	0,52	1,16	9,49	1,70	1,99	1,13	2,07
1999	13,35	0,24	1,23	3,70	0,30	0,53	5,43	0,89	9,82	2,45	0,22	0,43	0,30	0,71	1,02	12,52	2,76	1,22	1,68	2,30
2000	9,63	0,07	2,66	0,94	0,57	0,58	5,76	2,18	10,24	2,38	0,25	0,49	0,29	2,78	0,36	11,32	3,62	1,45	1,55	2,90
2001	6,99	0,09	2,96	0,52	0,31	0,42	8,07	2,10	7,29	1,83	0,24	0,46	0,26	2,88	0,30	12,72	3,05	1,32	1,46	2,59
2002	9,65	0,34	2,89	0,95	0,37	0,54	6,66	2,15	8,10	1,69	0,19	0,38	0,27	2,92	0,19	9,97	2,43	1,39	1,46	2,04
2003	10,75	0,03	2,71	0,34	0,19	0,48	1,78	2,23	8,81	1,90	0,21	0,49	0,33	2,92	0,21	11,53	5,49	1,15	1,34	3,18
2004	7,12	0,02	3,26	0,75	0,29	0,61	2,62	2,18	7,93	1,68	0,19	0,34	0,25	2,92	0,08	11,23	2,44	1,10	1,60	3,90
2005	9,81	0,04	4,41	1,26	0,21	0,55	2,28	2,22	6,26	1,08	0,36	0,30	0,25	4,14	0,28	9,84	2,97	1,13	3,91	3,49
2006	10,85	0,07	4,45	1,40	0,18	0,44	2,39	2,38	4,95	1,18	0,12	0,29	0,18	3,95	0,26	7,69	2,82	1,04	3,22	2,04
2007	12,39	1,09	7,26	3,16	2,40	2,65	4,07	15,06	5,43	3,76	1,19	1,50	1,12	11,52	1,24	10,88	7,05	4,00	19,68	2,45
2008	11,94	1,22	7,34	3,21	1,83	2,64	5,31	16,80	6,24	4,55	0,78	1,56	1,06	11,56	1,20	13,21	7,24	4,31	20,44	2,12
2009	15,54	1,15	6,26	3,14	1,74	2,63	3,44	14,28	5,45	3,53	0,79	1,47	1,00	11,21	1,08	5,87	7,42	3,72	19,37	2,11
2010	23,40	1,19	7,11	4,78	10,16	2,87	3,56	10,54	4,97	3,45	1,08	1,57	1,16	14,87	1,56	5,08	8,12	3,87	19,96	2,19
2011	10,84	1,24	7,18	4,41	10,62	3,12	5,15	17,37	5,73	3,10	1,14	1,73	1,23	18,15	1,52	3,93	8,17	3,71	21,15	2,51
2012	12,83	1,73	8,44	5,04	10,27	3,65	6,63	14,54	8,19	3,10	1,55	1,91	1,38	21,20	1,78	5,13	9,06	3,86	23,85	3,95
2013	12,46	1,50	11,65	8,51	11,84	3,98	7,64	13,23	9,15	3,48	1,70	1,86	1,47	23,74	1,90	9,92	10,33	3,97	23,90	4,90
2014	14,80	1,71	11,92	11,19	11,26	4,53	8,30	12,61	9,60	3,53	2,71	1,83	1,41	23,65	2,03	11,95	9,12	4,03	23,76	4,70
2015	20,49	1,37	9,55	11,44	13,02	3,58	8,56	10,79	8,97	3,67	4,92	1,75	1,39	22,82	1,82	11,85	8,99	3,46	22,31	4,70
2016	29,10	2,50	7,66	9,90	14,24	3,09	6,37	13,15	6,82	4,01	5,02	1,65	1,38	19,52	1,53	10,25	8,35	3,46	20,64	3,41
2017	12,54	1,15	7,48	10,56	14,30	3,17	6,08	13,81	6,58	2,96	5,17	1,66	1,44	20,14	1,53	10,22	8,26	3,56	21,67	3,42
2018	13,04	0,76	6,78	8,44	14,25	2,86	7,84	13,12	5,69	2,98	4,51	1,62	1,35	17,97	1,37	10,33	8,00	3,53	19,65	3,09
2019	16,75	0,92	6,39	8,90	13,13	2,92	6,36	15,00	7,10	2,93	3,65	1,72	1,34	17,26	1,39	13,47	7,97	3,38	19,60	3,34
2020	14,45	0,65	6,10	5,44	12,83	2,81	4,78	14,37	6,79	2,72	3,47	1,66	1,33	14,52	1,18	9,35	7,33	3,56	16,59	3,09
2021	17,20	0,61	6,46	8,59	15,22	3,10	5,25	17,11	5,87	3,01	4,16	1,85	1,54	18,23	1,40	11,97	7,94	3,62	20,44	2,80
2022	15,01	2,37	6,38	3,72	13,95	3,05	5,13	16,25	6,52	2,65	2,96	1,80	1,54	14,91	1,30	5,32	7,23	4,04	21,11	2,97
2023	15,14	1,03	6,32	5,92	13,35	3,18	4,53	17,62	7,21	2,74	3,44	1,83	1,58	14,82	1,48	6,06	7,33	3,52	21,98	4,29
Mudança (%)	84,38	265,76	331,57	1.712,24	4.304,13	191,03	-19,09	1.329,34	-16,3	3,68	578,52	154,64	363,04	2.287,32	374,8	-46,91	192,64	40,65	2.214,65	58,28

6.7 – ANÁLISE DE TENDÊNCIAS E CORRELAÇÕES

Os resultados de tendência e correlações obtidas, detalhados nos tópicos anteriores por região, foram agrupados nas Tabelas 22 e 23, a fim de proporcionar um panorama geral da análise de toda a área de estudo e dos impactos da expansão urbana nas mudanças climáticas. Em relação à temperatura de superfície, foram encontradas apenas tendências de crescimento (+) nas estações outono e inverno, embora haja variações consideráveis em outras estações do ano, que, no entanto, não são significativas.

Na análise estatística dos dados de temperatura do ar, foram observadas tendências mais significativas, abrangendo todas as estações, com destaque para o crescimento observado principalmente no outono e inverno, corroborando com os resultados obtidos no LST. Destacam-se as regiões do Vale do Rio Cuiabá, na região Centro-Oeste, Natal, no Nordeste, e Palmas, no Norte do país, que apresentaram tendências de crescimento em todas as estações, com aumento mais acentuado no inverno, conforme evidenciado pelos valores encontrados de declividade.

Em termos de correlação entre a temperatura de superfície e o crescimento urbano, apresentada pela coluna Correlação de Pearson, obtida pela variação de temperatura ao longo dos anos e pelas mudanças nas áreas de infraestruturas urbanas da região, vale ressaltar a Região Metropolitana de Manaus, que apresentou uma correlação de 0,63, resultado do crescimento urbano de 91,65 km² e das mudanças na temperatura média anual.

Já a correlação entre a temperatura do ar e as Mudanças de Uso do Solo indicou correlações positivas mais fortes, com diversas regiões apresentando valores de correlação superiores a 0,50, como João Pessoa, Belém e Londrina, o que indica que o aumento das áreas urbanizadas é um fator crucial para o aumento das temperaturas do ar nessas regiões. Esses resultados sugerem que a expansão urbana, com as substituições de áreas verdes por materiais de baixo albedo, tem um impacto direto nas condições térmicas locais. Embora na Região Metropolitana de Fortaleza tenha sido observada correlação negativa e em São Paulo, pouca ou nenhuma correlação linear.

Tabela 22- Tendência e Correlação da LST das Regiões Metropolitanas (Fonte: Autoria própria, 2025).

D: ~ -	Temperatura de Superfície									Correlação			
Região		Verão			Outono In			Inverno]	Primavera		de Pearson
Metropolitana	Tendência	p-valor	Declive	Tendência	p-valor	Declive	Tendência	p-valor	Declive	Tendência	p-valor	Declive	r
Goiânia	Não	0,15	0,02	Não	0,57	-0,02	+	0,04	0,05	Não	0,78	0,01	0,24
Vale do Rio Cuiabá	Não	0,25	0,02	Não	0,64	-0,01	Não	0,36	0,03	Não	0,30	0,03	0,31
Salvador	Não	0,80	0,01	Não	0,96	0,00	Não	0,88	0,00	Não	0,10	-0,04	0,03
Fortaleza	Não	0,29	-0,06	Não	0,12	0,05	Não	0,59	0,02	Não	0,71	-0,02	0,00
Grande São Luís	Não	0,66	0,01	+	0,03	0,03	Não	0,52	0,01	Não	0,10	-0,07	-0,05
João Pessoa	Não	0,82	-0,01	Não	0,49	0,01	Não	0,82	-0,01	Não	0,39	-0,02	-0,01
Natal	Não	0,41	-0,02	Não	0,82	0,01	Não	0,71	0,02	Não	0,73	0,00	0,01
Manaus	Não	0,35	0,01	+	0,00	0,02	+	0,01	0,04	Não	0,15	0,02	0,63
Macapá	Não	1,00	0,00	+	0,02	0,02	+	0,03	0,02	Não	0,44	-0,02	0,28
Belém	Não	0,88	0,00	+	0,01	0,03	+	0,05	0,03	Não	0,19	-0,03	0,33
Boa Vista	Não	0,64	-0,02	Não	0,11	0,05	+	0,03	0,03	Não	1,00	0,00	0,27
Palmas	Não	0,19	0,02	Não	0,86	0,00	Não	0,22	0,03	Não	0,18	0,06	0,35
Londrina	Não	0,35	0,03	Não	0,10	-0,09	Não	0,08	0,07	Não	0,73	-0,03	0,00
Maringá	Não	0,17	0,05	Não	0,09	-0,09	+	0,01	0,10	Não	0,96	0,00	0,17
Porto Alegre	Não	0,94	0,00	Não	0,16	-0,04	Não	0,67	-0,01	Não	0,60	0,01	-0,14
Grande Vitória	Não	0,39	0,03	Não	0,98	0,00	Não	0,60	0,02	Não	0,71	-0,02	0,08
Belo Horizonte	Não	0,43	0,03	Não	0,37	-0,03	Não	0,32	0,02	Não	0,75	-0,02	0,02
Rio de Janeiro	Não	0,37	0,02	Não	0,05	-0,05	Não	0,98	0,00	Não	0,54	-0,02	-0,01
Ribeirão Preto	Não	0,19	0,04	Não	0,98	0,00	Não	0,10	0,06	Não	0,16	0,07	0,34
São Paulo	Não	0,47	0,02	Não	0,33	-0,03	Não	0,39	0,02	Não	0,60	0,01	0,10

Tabela 23 - Tendência e Correlação da Temperatura do Ar das Regiões Metropolitanas (Fonte: Autoria própria, 2025).

Dania.						Tempera	tura do Ar						Correlação
Região Metropolitana		Verão			Outono			Inverno]	Primavera		de Pearson
Wietropolitana	Tendência	p-valor	Declive	Tendência	p-valor	Declive	Tendência	p-valor	Declive	Tendência	p-valor	Declive	r
Goiânia	Não	0,08	0,02	+	0,01	0,03	+	0,00	0,04	+	0,04	0,03	0,63
Vale do Rio Cuiabá	+	0,00	0,03	+	0,02	0,03	+	0,00	0,08	+	0,00	0,04	0,71
Salvador	Não	0,32	0,01	Não	0,63	0,00	Não	0,32	0,01	+	0,05	0,02	0,28
Fortaleza	Não	0,15	-0,02	Não	0,59	0,01	Não	0,28	0,01	Não	0,52	-0,01	-0,08
Grande São Luís	Não	0,11	0,02	+	0,01	0,04	+	0,00	0,04	+	0,00	0,03	0,50
João Pessoa	+	0,01	0,02	+	0,02	0,02	Não	0,06	0,01	+	0,00	0,03	0,71
Natal	+	0,04	0,01	+	0,00	0,04	+	0,00	0,02	+	0,01	0,02	0,66
Manaus	Não	0,06	0,02	+	0,01	0,02	+	0,00	0,05	Não	0,18	0,01	0,60
Macapá	Não	0,16	0,01	+	0,02	0,02	+	0,00	0,02	Não	0,13	0,01	0,56
Belém	Não	0,26	0,01	+	0,01	0,03	+	0,00	0,04	+	0,04	0,02	0,61
Boa Vista	Não	0,68	-0,01	Não	1,00	0,00	Não	0,10	0,02	Não	0,62	-0,01	0,10
Palmas	+	0,00	0,03	+	0,00	0,05	+	0,00	0,06	+	0,00	0,07	0,63
Londrina	Não	0,18	0,03	+	0,21	0,08	+	0,00	0,10	+	0,03	0,07	0,60
Maringá	Não	0,18	0,02	Não	0,14	0,02	Não	0,06	0,04	Não	0,48	0,01	0,26
Porto Alegre	+	0,00	0,05	Não	0,11	0,03	Não	0,07	0,04	Não	0,28	0,01	0,62
Grande Vitória	Não	0,48	-0,01	Não	0,95	0,00	Não	0,73	0,00	Não	0,61	0,01	0,02
Belo Horizonte	Não	0,45	0,01	Não	0,32	0,01	+	0,02	0,03	Não	0,20	0,03	0,37
Rio de Janeiro	Não	0,09	0,07	Não	0,67	0,01	+	0,01	0,06	Não	0,16	0,08	0,38
Ribeirão Preto	+	0,01	0,03	+	0,02	0,05	+	0,01	0,05	Não	0,06	0,03	0,27
São Paulo	Não	0,87	0,00	Não	0,45	0,02	Não	0,16	0,02	Não	0,54	0,02	0,00

7 – CONCLUSÕES E RECOMENDAÇÕES

A análise integrada das regiões metropolitanas do Brasil revela um quadro complexo e multifacetado das transformações urbanas e suas implicações nas temperaturas de superfície e do ar. Em muitas dessas regiões, o crescimento urbano acelerado e a expansão da agropecuária têm sido os principais motores das mudanças no uso do solo, com um impacto direto na dinâmica térmica. O êxodo rural e a migração para centros urbanos, que se intensificaram nas últimas décadas, têm causado uma urbanização crescente, com aumento da infraestrutura e da ocupação de áreas antes dominadas por vegetação nativa, como florestas e mangues.

Em diversas regiões, como Goiânia, Belém, Ribeirão Preto e Manaus, a urbanização tem sido acompanhada de aumento nas temperaturas de superfície, especialmente nas estações mais quentes, como primavera e verão. Embora muitas das tendências observadas não tenham sido estatisticamente significativas, os dados indicam uma correlação entre a expansão urbana, a perda de vegetação e o aumento das temperaturas. O processo de urbanização, muitas vezes associado à transformação de áreas rurais em centros urbanos ou agropecuários, altera o equilíbrio térmico das regiões, contribuindo para a intensificação do calor urbano.

O êxodo rural, aliado ao crescimento populacional nas áreas urbanas, tem impulsionado o processo de metropolização, o que reflete em mudanças no uso do solo, especialmente no caso de áreas anteriormente ocupadas por vegetação nativa. A perda dessas áreas, com a substituição por áreas urbanizadas ou destinadas à agricultura e pecuária, tem gerado efeitos no microclima das cidades, aumentando a pressão sobre os ecossistemas urbanos e rurais.

Em termos de tendências climáticas, as regiões metropolitanas analisadas têm mostrado um aumento nas temperaturas do ar, especialmente em períodos de maior calor, como no caso de João Pessoa, Londrina e Palmas, refletindo o impacto das mudanças no uso do solo. No entanto, as variações nas temperaturas de superfície não foram tão evidentes, o que indica a necessidade de um aprofundamento nas análises, considerando a complexidade das interações entre o crescimento urbano, as mudanças climáticas e as práticas de uso da terra.

Estudos futuros podem, então, explorar o potencial dessas análises para avaliação em outras regiões brasileiras ou mundiais, a fim de obter resultados significativos sobre as condições encontradas nas áreas de avaliação e, com isso, investigar potenciais adaptações e processos que busquem atenuar esses fenômenos. Também utilizar outras fontes de dados, como satélites com melhor resolução espacial, como o Landsat, dados de temperatura do ar por meio de reanálise e a avaliação de dados noturnos, os quais não foram foco deste trabalho.

Em conclusão, o estudo das transformações nas regiões metropolitanas do Brasil destaca a importância de estratégias de planejamento urbano sustentável, que integrem a preservação

ambiental e o controle da expansão urbana, com foco na mitigação do aumento das temperaturas e na adaptação às mudanças climáticas. Nesse sentido, a implementação de estratégias de aumento do albedo urbano, como o uso de telhados frios e pavimentos refletivos, pode reduzir as temperaturas locais, contribuindo para um ambiente urbano mais saudável. Além disso, a expansão das áreas verdes, com a introdução de corredores verdes, ruas arborizadas e telhados verdes, pode ajudar a amenizar o calor urbano, melhorar a qualidade do ar e promover o bem-estar da população. A utilização de pavimentos permeáveis também se mostra essencial para reduzir o impacto das chuvas e minimizar o aquecimento das superfícies urbanas.

Outro aspecto crucial é o planejamento da ocupação urbana, que deve ser feito de maneira estratégica para garantir que as áreas verdes sejam preservadas e as novas construções sigam critérios de eficiência energética e baixo impacto ambiental. Para isso, é necessário um incentivo à arquitetura sustentável e à adaptação climática, com a implementação de estruturas que favoreçam a ventilação natural e a redução do uso de materiais que absorvem calor. Isso pode incluir desde a instalação de painéis solares até o uso de materiais recicláveis e de baixo impacto ambiental.

Além disso, a promoção do transporte público eficiente e a criação de redes de mobilidade sustentável, como ciclovias e sistemas de transporte por bicicletas, não só diminuem a emissão de gases poluentes, como também ajudam a reduzir as emissões de calor antropogênico, contribuindo para um ambiente mais fresco e saudável. Medidas que incentivem o uso de carros elétricos e a melhoria do transporte coletivo também são essenciais para o enfrentamento das questões climáticas nas regiões urbanas.

A educação ambiental nas escolas e nas comunidades, com a conscientização da população sobre a importância de práticas sustentáveis e da preservação dos recursos naturais, é fundamental para fomentar uma mudança de mentalidade e incentivar comportamentos mais responsáveis e alinhados com a sustentabilidade.

A relação entre o crescimento urbano, a expansão agropecuária, o aumento das emissões de gases de efeito estufa e o aquecimento, com variações cada vez maiores das temperaturas, exigem uma abordagem mais aprofundada para a implementação de políticas públicas eficientes, capazes de conciliar o desenvolvimento urbano com a conservação dos ecossistemas e a qualidade de vida nas áreas metropolitanas. Portanto, o futuro das cidades brasileiras depende de um planejamento integrado que contemple tanto as necessidades de infraestrutura quanto a preservação do meio ambiente, assegurando que as próximas gerações possam viver em um ambiente equilibrado, saudável e resiliente às mudanças climáticas.

REFERÊNCIAS

AHMED, B. et al. Simulating land cover changes and their impacts on land surface temperature in Dhaka, Bangladesh. **Remote sensing**, v. 5, n. 11, p. 5969-5998, 2013.

ALI, J. M.; MARSH, S. H.; SMITH, M. J. Modelling the spatiotemporal change of canopy urban heat islands. **Building and Environment**, v. 107, p. 64-78, 2016.

AZEVEDO, I.; LEAL, V. M. S. Methodologies for the evaluation of local climate change mitigation actions: A review. **Renewable and Sustainable Energy Reviews**, v. 79, p. 681-690, 2017.

BALLING, R. C.; BRAZEL, S. W. High-resolution surface temperature patterns in a complex urban terrain. **Photogrammetric Engineering & Remote Sensing**, v. 54, n. 9, p. 1289-1293, 1988.

BARSI, J. A. et al. Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. **Remote Sensing**, v. 6, n. 11, p. 11607-11626, 2014.

BOUMANS, R. J. M. et al. Developing a model for effects of climate change on human health and health–environment interactions: Heat stress in Austin, Texas. **Urban Climate**, v. 8, p. 78-99, 2014.

CARNEIRO, E.; LOPES, W.; ESPINDOLA, G. Linking urban sprawl and surface urban heat island in the Teresina–Timon conurbation area in Brazil. **Land**, v. 10, n. 5, p. 516, 2021.

CHANDER, G.; MARKHAM, B. L.; HELDER, D. L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. **Remote sensing of environment**, v. 113, n. 5, p. 893-903, 2009.

CHEN, X. L.; ZHAO, H. M.; LI, P. X.; YIN, Z. Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. **Remote sensing of environment**, v. 104, n. 2, p.133-146, 2006.

CINAR, İ. Assessing the correlation between land cover conversion and temporal climate change—a pilot study in coastal Mediterranean City, Fethiye, Turkey. **Atmosphere**, v. 6, n. 8, p. 1102-1118, 2015.

DE AZEVEDO, Tasso Rezende et al. SEEG initiative estimates of Brazilian greenhouse gas emissions from 1970 to 2015. **Scientific data**, v. 5, n. 1, p. 1-43, 2018.

DE ESPINDOLA, G. M.; DA COSTA CARNEIRO, E. L. N.; FAÇANHA, A. C. Four decades of urban sprawl and population growth in Teresina, Brazil. **Applied Geography**, v. 79, p. 73-83, 2017.

DE SOUZA, Diego Oliveira; DOS SANTOS ALVALÁ, Regina Célia. Observational evidence of the urban heat island of Manaus City, Brazil. **Meteorological Applications**, v. 21, n. 2, p. 186-193, 2014.

DEB, S. et al. Anthropogenic impacts on forest land use and land cover change: modelling future possibilities in the Himalayan Terai. **Anthropocene**, v. 21, p. 32-41, 2018.

PATRIOTA, Eduardo Gonçalves et al. Analysis of patterns, drivers, and trends of Surface Urban Heat Islands (SUHIS) in Brazil. 2024.

FASHAE, O. A. et al. Land use/land cover change and land surface temperature of Ibadan and environs, Nigeria. **Environmental monitoring and assessment**, v. 192, p. 1-18, 2020.

FEITOSA, S. M. R. et al. Consequências da urbanização na vegetação e na temperatura da superfície de Teresina-Piaui. **Revista da Sociedade Brasileira de Arborização Urbana**, v. 6, n. 2, p. 58-75, 2011.

GALLO, K. P. et al. The use of NOAA AVHRR data for assessment of the urban heat island effect. **journal of applied meteorology and climatology**, v. 32, n. 5, p. 899-908, 1993.

GOHAIN, K. J.; MOHAMMAD, P.; GOSWAMI, A. Assessing the impact of land use land cover changes on land surface temperature over Pune city, India. **Quaternary International**, v. 575, p. 259-269, 2021.

GUHA, S., GOVIL, H., DEY, A.; GILL, N. A case study on the relationship between land surface temperature and land surface indices in Raipur City, India. **Geografisk Tidsskrift-Danish Journal of Geography**, v. 120, n. 1, p.35-50, 2020.

HABITAT, U. N. The strategic plan 2020-2023. 2019.

HU, D., MENG, Q., ZHANG, L.; ZHANG, Y. Spatial quantitative analysis of the potential driving factors of land surface temperature in different "Centers" of polycentric cities: A case study in Tianjin, China. **Science of the total environment**, v. 706, p.135244, 2020.

HUTCHESON, G. D. Ordinary least-squares regression. L. Moutinho and GD Hutcheson, The SAGE dictionary of quantitative management research, p. 224-228, 2011.

KAZAY, D. F. et al. Mudança no uso e cobertura do solo e sua influência na temperatura da superfície: um estudo na Região Metropolitana do Rio de Janeiro. **XV Simpósio Brasileiro de Sensoriamento Remoto**, p. 752-759, 2011.

KENDALL, M. G. Rank correlation methods. London: Griffin, 1975. 202 p.

KUMAR, A. et al. Evaluating long-term variability in precipitation and temperature in eastern plateau region, India, and its impact on urban environment. **Environment, Development and Sustainability**, v. 23, n. 3, p. 3731-3761, 2021.

LI, L. et al. Divergent urbanization-induced impacts on global surface urban heat island trends since 1980s. **Remote Sensing of Environment**, p. 113650, 2023.

LI, X. et al. A novel UAV-enabled data collection scheme for intelligent transportation system through UAV speed control. **IEEE Transactions on Intelligent Transportation Systems**, v. 22, n. 4, p. 2100-2110, 2020.

LI, Y. et al. Biophysical impact of multiple surface forcings on land surface temperature over eastern China. **Journal of Geophysical Research: Atmospheres**, v. 128, n. 20, 2023.

LU, D. et al. The effect of urban expansion on urban surface temperature in Shenyang, China: An analysis with landsat imagery. **Environmental Modeling & Assessment**, v. 20, p. 197-210, 2015.

MAHAL, S. H.; AL-LAMI, A. M.; MASHEE, F. K. Assessment of the impact of urbanization growth on the climate of baghdad province using remote sensing techniques. **Iraqi Journal of Agricultural Sciences**, v. 53, n. 5, p. 1021-1034, 2022.

MANN, H. B. Nonparametric tests against trend. **Econometrica: Journal of the econometric society**, p. 245-259, 1945.

MAPBIOMAS. Projeto MapBiomas –Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. Disponível em: https://brasil.mapbiomas.org/o-projeto/. Acesso em: 05 de julho 2024.

MENESES, P. R.; DE ALMEIDA, T. Introdução ao processamento de imagens de sensoriamento remoto. **Universidade de Brasília, Brasília,** 2012.

MOHAMMAD, P.; GOSWAMI, A. Temperature and precipitation trend over 139 major Indian cities: An assessment over a century. **Modeling Earth Systems and Environment**, v. 5, p. 1481-1493, 2019.

MONTEIRO, F. et al. Assessment of Urban Heat Islands in Brazil based on MODIS remote sensing data. **Urban Climate**, v. 35, p. 100726, 2021.

PENG, J.; MA, J.; LIU, Q.; LIU, Y.; LI, Y.; YUE, Y. Spatial-temporal change of land surface temperature across 285 cities in China: An urban-rural contrast perspective. **Science of the Total Environment**, v. 635, p. 487-497, 2018.

POLYDOROS, A. CARTALIS, C. Assessing the impact of urban expansion to the state of thermal environment of peri-urban areas using indices. **Urban Climate**, v. 14, p. 166-175, 2015.

RASHID, N. et al. Impact of landuse change and urbanization on urban heat island effect in Narayanganj city, Bangladesh: A remote sensing-based estimation. **Environmental Challenges**, v. 8, p. 100571, 2022.

ROTH, M.; OKE, T. R.; EMERY, W. J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. **International Journal of Remote Sensing**, v. 10, n. 11, p. 1699-1720, 1989.

SEN, Pranab Kumar. Estimates of the regression coefficient based on Kendall's tau. **Journal of the American statistical association**, v. 63, n. 324, p. 1379-1389, 1968.

SHEN, H. et al. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China. **Remote Sensing of Environment**, v. 172, p. 109-125, 2016.

SHREEVASTAVA, A., et al. Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes. **Scientific reports**, v. 9, n. 1, p.19681, 2019.

SILVA, J. S.; DA SILVA, R. M.; SANTOS, C. A. G. Spatiotemporal impact of land use/land cover changes on urban heat islands: A case study of Paço do Lumiar, Brazil. **Building and Environment**, v. 136, p. 279-292, 2018.

SILVA, M. T.; SILVA, R.V.; COSTA, S. C. E. Impactos da urbanização na temperatura e no balanço de radiação à superfície no município de Fortaleza-CE com base em imagens espectrais do TM/Landsat 5. XV Simpósio Brasileiro de Sensoriamento Remoto, Curitiba-PR, Brasil. Anais São José dos Campos—SP: INPE, p. 0917-0924, 2011.

SOUTO, J. I. de O.; COHEN, Julia Clarinda Paiva. Spatiotemporal variability of urban heat island: Influence of urbanization on seasonal pattern of land surface temperature in the Metropolitan Region of Belém, Brazil. **Urbe - Revista Brasileira de Gestão Urbana**, v. 13, 2021.

UGALDE, C. M. D. *Movimento e hierarquia espacial na conurbação: o caso da Região Metropolitana de Porto Alegre*, 2013, p. 475, 2013. Tese de Doutorado em Planejamento Urbano e Regional – Universidade Federal do Rio Grande do Sul, 2013.

ULLAH, M.; LI, J.; WADOOD, B. Analysis of urban expansion and its impacts on land surface temperature and vegetation using RS and GIS, a case study in Xi'an City, China. **Earth Systems and Environment**, v. 4, p. 583-597, 2020.

VASANTHAWADA, S. R. S.; PUPPALA, H.; PRASAD, P. R. C. Assessing impact of land-use changes on land surface temperature and modelling future scenarios of Surat, India. **International Journal of Environmental Science and Technology**, v. 20, n. 7, p. 7657-7670, 2023.

VENKATRAMAN, S. et al. Assessment of urban heat island using remote sensing and geospatial application: A case study in Sao Paulo city, Brazil, South America. **Journal of South American Earth Sciences**, v. 134, p. 104763, 2024.

VOHRA, R.; TIWARI, K. C. Analysis of land use and land cover changes and their impact on temperature using landsat satellite imageries. **Environment, Development and Sustainability**, v. 25, n. 8, p. 8623-8650, 2023.

WANG, X. et al. A numeric study of regional climate change induced by urban expansion in the Pearl River Delta, China. **Journal of Applied Meteorology and Climatology**, v. 53, n. 2, p. 346-362, 2014.

WANG, X. M. et al. A numerical study of influences of urban land-use change on ozone distribution over the Pearl River Delta region, China. **Tellus B: Chemical and Physical Meteorology**, v. 59, n. 3, p. 633-641, 2007.

WENG, Q. A remote sensing? GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. **International journal of remote sensing**, v. 22, n. 10, p. 1999-2014, 2001.

ZHOU, B.; RYBSKI, D.; KROPP, J. P. The role of city size and urban form in the surface urban heat island. **Scientific reports**, v. 7, n. 1, p. 4791, 2017.

ZHOU, D., et al. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. **Remote Sensing**, v. 11, n. 1, p. 48, 2018.

APÊNDICE A – DADOS DE TEMPERATURA DE SUPERFÍCIE E DO AR

Figura A1 até A20: Dados da Média Trimestral da temperatura de superfície e do ar por região metropolitana.

Temperatura de Superfície									
Mês Ano	Verão	Outono	Inverno	Primavera					
2000	28.92	29.56	32.73	33.88					
2001	30.25	28.76	32.66	32.06					
2002	30.48	30.00	33.72	36.01					
2003	29.82	28.33	33.33	33.64					
2004	28.91	27.72	33.85	33.33					
2005	29.35	28.75	33.25	34.24					
2006	29.78	27.38	33.07	31.71					
2007	30.28	29.06	34.08	35.58					
2008	29.27	27.47	33.43	32.43					
2009	30.31	27.41	32.09	30.86					
2010	30.50	29.53	34.18	32.19					
2011	29.37	28.61	34.17	31.71					
2012	29.06	27.82	32.99	33.38					
2013	30.28	28.03	32.87	33.15					
2014	29.95	28.24	32.91	35.10					
2015	31.24	27.06	34.16	35.86					
2016	30.47	30.57	34.56	33.12					
2017	30.50	28.44	33.74	34.92					
2018	29.68	28.19	33.94	32.06					
2019	31.29	28.40	34.28	35.87					
2020	30.48	27.93	35.08	34.81					
2021	29.97	29.18	34.47	32.28					
2022	30.28	29.35	33.76	32.13					
2023	29.02	27.61	32.75	35.48					

Temperatura do Ar									
Mês Ano	Verão	Outono	Inverno	Primavera					
1993	25.58	24.78	25.38	26.04					
1994	25.07	24.88	26.49	26.89					
1995	25.69	24.79	26.77	26.39					
1996	26.17	24.57	25.94	25.90					
1997	25.21	23.73	25.71	27.07					
1998	26.72	25.80	27.20	26.20					
1999	26.31	25.19	26.51	26.34					
2000	25.20	25.28	25.57	26.08					
2001	26.00	25.05	25.73	25.40					
2002	25.84	26.12	26.74	27.53					
2003	25.56	25.25	25.82	26.78					
2004	24.91	24.69	26.58	26.58					
2005	25.89	25.53	26.42	26.26					
2006	25.74	24.70	26.28	25.82					
2007	26.09	25.55	27.00	27.01					
2008	24.90	24.81	26.40	26.47					
2009	25.96	24.50	26.21	25.83					
2010	26.49	25.61	27.22	26.42					
2011	25.29	25.38	27.17	25.15					
2012	25.16	25.32	26.33	27.38					
2013	25.85	25.59	26.23	26.17					
2014	26.08	25.40	26.76	27.02					
2015	26.42	25.18	27.36	28.68					
2016	26.32	26.81	27.39	26.66					
2017	26.47	26.05	26.41	27.23					
2018	26.22	25.23	26.94	26.52					
2019	26.76	25.81	27.35	27.97					
2020	26.06	24.99	27.31	27.84					
2021	25.87	25.40	27.24	26.49					
2022	26.17	25.79	27.00	26.29					
2023	25.67	25.55	27.45	29.21					

Figura A1: Média Trimestral da Temperatura de Superfície e do Ar na RM de Goiânia

	Temperatura de Superfície									
Mês Ano	Verão	Outono	Inverno	Primavera						
2000	30.36	29.17	32.53	33.52						
2001	30.83	29.54	33.13	32.06						
2002	30.31	29.34	32.50	35.06						
2003	29.79	28.33	32.22	33.90						
2004	29.50	27.98	32.52	33.59						
2005	30.44	30.11	32.85	32.67						
2006	29.83	28.07	32.38	32.58						
2007	30.55	28.59	32.00	33.51						
2008	29.52	27.82	33.82	34.35						
2009	30.75	28.29	31.40	33.25						
2010	30.91	29.10	33.07	35.08						
2011	30.05	28.42	33.80	34.11						
2012	30.29	28.61	32.82	33.86						
2013	30.02	28.27	32.31	33.52						
2014	30.19	28.15	32.11	33.63						
2015	30.43	28.47	33.31	34.82						
2016	30.62	28.20	32.33	32.03						
2017	30.66	28.93	33.59	33.70						
2018	30.39	28.12	32.44	32.13						
2019	30.62	28.92	32.75	34.20						
2020	31.44	29.18	35.91	38.39						
2021	31.53	29.56	35.29	33.85						
2022	30.11	28.62	32.19	33.36						
2023	29.68	27.71	33.29	35.82						

	Ten	nperatura	a do Ar	
Mês Ano	Verão	Outono	Inverno	Primavera
1993	27.20	25.94	25.56	28.77
1994	27.78	26.36	26.34	28.54
1995	27.24	25.45	27.15	28.60
1996	27.56	25.46	26.86	28.25
1997	27.41	26.57	28.44	29.81
1998	28.67	25.91	27.02	28.56
1999	27.88	26.08	26.87	28.56
2000	27.66	26.51	26.23	28.63
2001	27.86	25.85	28.12	28.30
2002	28.06	26.79	27.38	29.70
2003	27.28	26.16	26.26	28.37
2004	27.68	25.42	26.69	28.57
2005	27.97	27.19	26.42	28.69
2006	27.41	25.56	27.49	28.37
2007	27.96	26.03	26.68	28.31
2008	27.29	26.79	27.81	28.12
2009	27.57	25.34	26.77	28.87
2010	28.38	26.19	27.23	28.56
2011	27.39	26.49	27.74	29.10
2012	27.35	26.61	27.79	29.38
2013	28.05	27.39	27.35	28.73
2014	27.55	26.87	27.74	29.49
2015	28.12	27.30	28.78	30.21
2016	28.43	26.26	27.26	28.52
2017	28.04	27.22	28.34	29.17
2018	28.13	25.30	27.17	28.97
2019	28.61	26.64	29.71	30.39
2020	28.64	26.20	29.81	31.01
2021	28.60	27.24	29.19	29.56
2022	28.22	26.18	28.21	29.36
2023	28.15	26.94	30.16	32.31

Figura A2: Média Trimestral da Temperatura de Superfície e do Ar na RM do Vale do Rio Cuiabá

	Tempe	eratura d	e Superfí	cie
Mês Ano	Verão	Outono	Inverno	Primavera
2000	27.51	25.85	26.03	30.32
2001	30.56	26.77	26.12	30.15
2002	29.94	26.48	25.72	31.24
2003	31.65	27.11	25.74	30.25
2004	29.31	25.97	25.70	31.10
2005	31.11	26.42	25.74	31.24
2006	31.72	26.99	26.17	29.71
2007	30.25	27.04	25.70	30.61
2008	32.07	26.03	25.82	30.93
2009	30.85	26.46	26.75	31.77
2010	32.21	26.72	25.34	31.09
2011	30.70	25.87	26.23	28.84
2012	30.88	27.71	26.25	30.91
2013	32.79	28.12	26.20	29.72
2014	29.01	27.11	26.04	29.64
2015	30.51	26.74	26.52	32.27
2016	32.60	27.66	26.52	30.15
2017	31.71	26.49	25.64	29.83
2018	31.86	26.16	26.92	30.54
2019	32.01	27.02	25.88	30.44
2020	29.73	26.03	25.69	29.80
2021	30.56	26.74	25.61	29.63
2022	28.61	26.44	25.83	28.96
2023	29.16	25.74	25.75	30.48

	Temperatura do Ar								
Mês Ano	Verão	Outono	Inverno	Primavera					
1993	27.93	25.96	24.77	26.89					
1994	28.10	25.99	24.31	26.52					
1995	28.21	26.03	24.86	26.69					
1996	28.29	25.58	24.26	26.64					
1997	26.89	25.41	24.64	27.42					
1998	28.88	26.46	25.08	27.31					
1999	27.92	25.81	24.43	25.92					
2000	27.51	25.66	24.34	26.83					
2001	27.84	26.43	24.52	26.93					
2002	27.67	26.25	24.75	27.38					
2003	28.30	26.36	24.89	27.21					
2004	27.62	26.13	24.50	27.06					
2005	28.03	26.04	24.95	27.23					
2006	28.78	25.59	24.59	26.83					
2007	27.82	26.02	24.50	26.88					
2008	28.05	26.11	24.55	26.86					
2009	28.33	25.84	25.26	27.33					
2010	28.58	26.09	24.11	27.03					
2011	27.53	25.37	24.33	26.01					
2012	27.22	25.95	24.31	26.76					
2013	28.49	25.87	24.44	26.12					
2014	26.86	25.58	24.09	26.12					
2015	27.53	25.36	24.37	27.18					
2016	27.91	26.10	24.66	26.87					
2017	27.77	25.49	23.68	26.83					
2018	28.26	-	-	27.12					
2019	28.96	26.82	24.95	27.31					
2020	28.08	26.00	25.44	27.86					
2021	28.55	26.11	25.16	27.47					
2022	28.31	26.29	25.29	27.46					
2023	28.49	26.67	26.06	28.73					

Figura A3: Média Trimestral da Temperatura de Superfície e do Ar na RM de Salvador

Temperatura de Superfície									
Mês Ano	Verão	Outono	Inverno	Primavera					
2000	28.34	27.25	30.05	35.43					
2001	31.29	27.58	33.35	35.82					
2002	29.06	27.20	31.42	34.83					
2003	30.27	27.74	32.50	35.81					
2004	29.93	27.89	31.21	34.98					
2005	33.59	27.56	32.37	36.83					
2006	32.48	26.41	31.80	35.50					
2007	31.35	28.13	33.43	36.26					
2008	30.77	27.24	32.58	36.16					
2009	30.89	27.31	29.62	33.83					
2010	32.74	29.66	35.28	35.99					
2011	29.39	27.98	31.42	34.36					
2012	31.47	29.68	35.22	37.56					
2013	34.00	29.40	33.51	37.00					
2014	31.81	28.38	34.65	37.32					
2015	32.09	28.53	32.13	36.56					
2016	30.52	29.71	35.45	37.24					
2017	30.19	28.27	33.00	35.53					
2018	30.32	28.68	32.88	36.11					
2019	29.35	28.02	31.73	35.44					
2020	28.93	27.61	32.14	35.12					
2021	31.17	28.83	33.41	35.74					
2022	28.73	27.17	30.21	33.40					
2023	28.69	27.47	31.49	34.21					

	Temperatura do Ar					
Mês Ano	Verão	Outono	Inverno	Primavera		
1993	27.93	27.70	26.79	28.84		
1994	27.48	26.58	26.93	28.03		
1995	27.50	26.88	27.03	28.17		
1996	27.59	27.15	27.51	28.53		
1997	28.36	27.08	27.34	28.51		
1998	28.78	28.59	27.87	28.71		
1999	27.99	27.22	27.50	28.42		
2000	27.94	27.24	26.83	28.00		
2001	27.85	27.16	27.34	28.56		
2002	27.68	27.14	27.19	28.29		
2003	27.61	27.34	27.55	28.64		
2004	27.55	27.56	27.35	28.45		
2005	28.85	27.77	27.55	28.76		
2006	28.47	27.18	27.60	28.57		
2007	28.15	27.69	27.45	28.25		
2008	27.78	26.89	27.49	28.66		
2009	27.49	26.76	27.26	28.35		
2010	29.00	28.41	27.96	28.72		
2011	27.31	27.15	27.42	28.22		
2012	27.76	27.77	27.65	28.47		
2013	28.85	27.98	27.76	28.57		
2014	28.13	27.75	27.72	28.42		
2015	28.04	27.98	28.04	29.74		
2016	28.39	28.36	27.83	28.89		
2017	27.88	28.12	27.84	28.58		
2018	28.02	27.65	27.56	28.52		
2019	27.54	27.32	26.51	27.63		
2020	27.25	26.94	26.57	27.98		
2021	27.19	26.92	27.31	28.47		
2022	26.98	26.34	26.66	27.86		
2023	26.85	26.97	27.23	28.21		

Figura A4: Média Trimestral da Temperatura de Superfície e do Ar na RM de Fortaleza

	Tempe	eratura de	e Superfí	cie
Mês Ano	Verão	Outono	Inverno	Primavera
2000	27.37	27.30	28.55	32.29
2001	27.77	27.28	29.54	32.89
2002	28.18	27.64	29.94	34.02
2003	28.91	28.24	29.86	31.39
2004	28.58	27.64	29.53	33.25
2005	29.66	28.06	30.31	34.28
2006	28.13	27.41	29.82	32.23
2007	29.09	27.70	30.74	33.75
2008	28.34	27.52	29.73	33.19
2009	28.47	26.98	29.81	33.09
2010	29.75	28.46	29.89	32.12
2011	28.39	27.48	29.56	31.47
2012	29.42	27.77	30.74	33.82
2013	28.86	27.93	29.94	32.76
2014	29.20	27.67	30.58	33.42
2015	29.56	27.55	30.18	33.52
2016	29.19	27.96	30.61	33.43
2017	28.66	28.00	30.92	34.54
2018	28.90	28.39	29.65	31.61
2019	28.30	28.05	29.96	32.14
2020	28.12	28.34	30.42	31.21
2021	29.20	28.18	29.07	29.97
2022	28.35	27.57	29.25	30.51
2023	27.56	27.76	29.54	32.12

	Temperatura do Ar					
Mês	Verão	Outono	Inverno	Primavera		
Ano 1993	27.01	27.52	27.45	28.44		
1993	26.61	27.52	27.45	28.44		
1995	27.29	27.03	27.70	28.25		
1995	27.29	27.17	27.60	28.54		
1996	27.48	27.12	27.90			
1997	28.26	28.33	28.11	28.67 28.78		
1999 2000	27.02	27.02	27.61	28.43 28.40		
	26.89	27.22	27.50			
2001	26.61	27.11	27.79	28.82		
2002	27.45	27.36	28.10	28.79		
2003	27.29	27.62	28.13	28.84		
2004	27.26	27.59	27.73	28.62		
2005	28.01	27.65	27.94	28.82		
2006	27.58	27.18	28.16	28.86		
2007	27.59	27.54	27.92	28.52		
2008	26.69	26.75	27.92	28.86		
2009	27.03	26.75	28.09	28.81		
2010	28.67	27.90	28.18	28.89		
2011	26.75	27.22	27.99	28.71		
2012	27.64	28.01	28.30	29.20		
2013	28.57	28.04	28.32	28.95		
2014	27.40	27.62	28.58	29.11		
2015	28.01	27.97	29.99	30.75		
2016	28.74	29.40	29.93	30.75		
2017	27.85	29.14	30.16	30.33		
2018	28.23	28.34	29.50	29.78		
2019	27.67	28.29	29.44	30.18		
2020	27.82	28.92	29.84	28.95		
2021	27.37	28.01	27.96	28.98		
2022	26.98	27.27	27.18	27.49		
2023	26.28	26.77	27.25	28.27		

Figura A5: Média Trimestral da Temperatura de Superfície e do Ar na RM da Grande São Luís

Temperatura de Superfície					
Mês Ano	Verão	Outono	Inverno	Primavera	
2000	30.24	27.53	27.49	32.98	
2001	33.64	28.34	28.57	34.28	
2002	31.14	27.88	28.67	32.87	
2003	32.26	28.64	28.73	33.79	
2004	29.87	27.29	28.76	33.55	
2005	34.61	29.08	28.19	33.76	
2006	33.89	28.64	28.29	33.73	
2007	32.28	28.41	27.33	32.82	
2008	34.19	27.82	27.52	33.58	
2009	32.27	27.55	28.23	33.47	
2010	32.18	29.59	28.10	34.16	
2011	31.56	27.09	27.67	32.59	
2012	31.04	29.60	28.42	34.22	
2013	34.69	30.67	27.75	32.11	
2014	31.47	29.09	27.95	31.93	
2015	32.30	29.80	28.24	33.84	
2016	32.07	28.24	29.92	34.53	
2017	31.90	28.35	27.46	32.99	
2018	32.12	27.91	29.36	34.96	
2019	32.44	29.17	28.04	33.89	
2020	33.86	28.81	28.89	32.94	
2021	33.05	28.53	28.35	33.35	
2022	30.74	27.95	27.87	31.91	
2023	30.30	27.78	27.60	32.46	

Temperatura do Ar					
Mês	Verão	Outono	Inverno	Primavera	
Ano	Verau	Outono	ilivellio	Filliaveia	
1993	28.21	27.43	26.44	27.96	
1994	28.48	26.85	26.19	27.63	
1995	28.45	27.38	26.35	27.67	
1996	28.48	27.15	26.23	28.11	
1997	28.52	27.03	26.06	28.16	
1998	29.47	28.18	26.45	28.20	
1999	28.59	27.73	26.21	27.94	
2000	28.59	27.16	26.01	27.71	
2001	28.57	27.48	25.76	27.88	
2002	27.95	27.13	26.55	27.94	
2003	28.57	27.68	26.58	28.19	
2004	28.35	27.18	26.33	28.13	
2005	29.33	27.62	26.39	28.17	
2006	29.18	27.72	26.56	28.22	
2007	28.94	27.37	26.14	27.82	
2008	28.95	27.32	26.25	28.17	
2009	28.76	27.30	26.78	28.41	
2010	29.18	28.41	26.18	28.38	
2011	28.87	27.10	26.21	28.17	
2012	28.31	27.62	26.32	27.98	
2013	29.12	27.86	26.29	28.07	
2014	28.46	27.76	26.44	28.04	
2015	28.60	28.27	26.65	28.08	
2016	28.87	27.70	27.02	28.64	
2017	29.25	28.01	26.23	28.62	
2018	28.88	27.43	26.97	29.05	
2019	29.18	28.44	26.87	28.89	
2020	29.59	27.63	26.08	28.30	
2021	28.39	26.92	26.18	29.12	
2022	29.35	27.65	26.72	29.12	
2023	29.17	28.51	27.26	28.63	

Figura A6: Média Trimestral da Temperatura de Superfície e do Ar na RM de João Pessoa

	Tempe	eratura de	e Superfí	cie
Mês Ano	Verão	Outono	Inverno	Primavera
2000	33.43	28.96	27.82	33.87
2001	34.49	28.97	30.61	36.12
2002	31.77	28.54	29.58	34.38
2003	33.63	29.31	30.27	35.63
2004	31.36	29.02	29.32	34.62
2005	35.61	29.89	29.49	35.26
2006	35.00	29.76	30.34	35.73
2007	33.53	29.29	29.09	35.16
2008	35.20	28.72	28.37	34.78
2009	32.48	28.37	28.43	34.51
2010	34.16	30.97	30.76	36.41
2011	31.62	28.11	28.96	34.37
2012	33.12	31.40	30.55	36.79
2013	37.36	32.37	27.86	33.74
2014	33.38	30.76	29.43	33.83
2015	33.57	30.14	29.81	36.06
2016	32.72	30.24	31.80	36.17
2017	33.65	30.51	29.44	35.48
2018	33.26	28.77	30.89	36.51
2019	33.25	29.07	29.23	36.04
2020	33.62	28.99	29.83	34.37
2021	34.35	30.89	32.57	35.69
2022	31.96	28.34	28.42	33.85
2023	31.55	28.28	28.87	33.36

	Ten	nperatura	a do Ar	
Mês	Verão	Outono	Inverno	Primavera
Ano	27.74	26.00	26.26	27.50
1993	27.74	26.99	26.26	27.58
1994	27.80	26.32	25.77	27.11
1995	28.07	26.67	25.69	27.27
1996	28.05	26.84	25.67	27.60
1997	28.08	26.87	25.89	27.67
1998	28.97	27.73	26.02	27.88
1999	28.04	27.11	26.17	27.53
2000	28.21	26.92	25.85	27.39
2001	28.12	27.04	25.92	27.79
2002	27.77	27.10	26.20	27.49
2003	28.03	27.22	26.30	27.84
2004	27.89	26.96	26.14	27.68
2005	28.77	27.31	26.23	27.79
2006	28.59	27.27	26.41	27.81
2007	28.49	27.25	25.94	27.38
2008	28.32	26.85	25.92	27.76
2009	28.19	27.11	26.38	27.79
2010	28.82	28.13	26.03	27.85
2011	28.16	26.83	26.08	27.65
2012	27.86	27.30	26.03	27.48
2013	28.57	27.66	26.07	27.49
2014	28.01	27.42	26.05	27.43
2015	28.02	27.77	26.39	27.58
2016	28.29	27.54	26.77	28.03
2017	28.49	27.66	26.09	27.56
2018	-	-	-	28.30
2019	28.37	27.70	26.53	27.89
2020	28.72	28.93	-	-
2021		-	26.80	28.46
2022	28.39	27.31	26.31	27.88
2022	28.38	27.31	26.73	28.02

Figura A7: Média Trimestral da Temperatura de Superfície e do Ar na RM de Natal

Temperatura de Superfície					
Mês Ano	Verão	Outono	Inverno	Primavera	
2000	27.31	25.98	27.40	28.39	
2001	27.37	26.40	27.89	28.80	
2002	27.06	26.88	28.12	28.63	
2003	27.73	26.85	27.75	28.60	
2004	27.79	26.75	27.39	28.90	
2005	27.49	26.83	28.40	28.72	
2006	27.41	26.51	27.88	28.78	
2007	27.16	26.90	27.87	28.60	
2008	27.14	26.68	28.16	28.83	
2009	26.80	26.67	28.99	29.24	
2010	27.53	27.11	28.44	29.07	
2011	27.55	27.06	28.33	28.56	
2012	26.42	26.92	28.28	29.09	
2013	27.02	26.73	27.59	28.51	
2014	27.37	26.91	28.06	28.95	
2015	27.69	26.90	29.15	30.27	
2016	29.17	27.66	28.33	29.12	
2017	27.64	27.36	28.77	29.34	
2018	27.81	26.89	28.32	28.95	
2019	27.57	26.99	28.54	28.25	
2020	28.24	26.92	28.97	28.74	
2021	27.62	26.83	28.12	28.67	
2022	27.24	27.17	28.28	28.74	
2023	27.12	27.00	28.97	30.01	

		nperatura			
Mês Ano	Verão	Outono	Inverno	Primavera	
1993	26.40	27.70	28.18	27.51	
1994	26.17	26.96	28.02	28.33	
1995	27.14	27.08	28.89	27.84	
1996	26.30	26.88	28.13	28.08	
1997	26.46	27.91	29.88	29.72	
1998	27.96	27.80	28.70	28.51	
1999	26.58	26.88	28.03	28.45	
2000	26.47	27.09	27.99	28.49	
2001	26.57	27.10	28.56	29.22	
2002	27.17	27.55	29.28	28.63	
2003	27.60	27.74	28.53	29.33	
2004	27.34	27.76	28.44	29.11	
2005	27.69	28.33	29.01	28.44	
2006	26.98	27.19	28.97	28.90	
2007	27.12	27.49	28.47	28.56	
2008	26.21	26.98	28.61	27.98	
2009	26.61	27.29	29.97	30.10	
2010	28.30	28.14	29.44	28.90	
2011	26.82	27.84	29.71	28.62	
2012	26.56	28.14	28.99	29.00	
2013	27.02	28.05	28.57	28.78	
2014	27.19	27.80	29.44	28.64	
2015	27.10	27.53	29.84	29.90	
2016	28.64	28.50	29.33	28.99	
2017	26.99	28.48	29.63	28.54	
2018	27.33	27.46	29.28	29.04	
2019	27.49	28.03	29.48	28.34	
2020	28.08	27.48	29.22	28.10	
2021	26.80	27.96	28.57	28.10	
2022	26.71	27.58	29.76	28.73	
2023	26.66	28.20	29.98	29.48	

Figura A8: Média Trimestral da Temperatura de Superfície e do Ar na RM de Manaus

	Temperatura de Superfície						
Mês Ano	Verão	Outono	Inverno	Primavera			
2000	25.93	25.51	27.34	28.58			
2001	25.66	25.86	27.89	29.54			
2002	26.51	25.98	28.10	29.20			
2003	25.17	26.57	27.86	29.49			
2004	25.89	26.27	27.32	29.79			
2005	26.50	25.73	28.22	28.84			
2006	25.83	25.84	27.58	28.66			
2007	25.93	26.12	27.84	28.58			
2008	26.20	26.14	27.95	29.21			
2009	26.22	25.90	27.84	29.30			
2010	26.44	26.86	27.84	28.64			
2011	25.29	26.13	27.99	29.21			
2012	26.42	26.44	28.25	29.24			
2013	25.91	26.51	27.75	28.69			
2014	26.41	26.00	27.96	29.38			
2015	26.34	25.97	28.49	30.25			
2016	26.14	26.87	28.73	30.21			
2017	25.65	26.86	28.67	29.48			
2018	26.50	26.36	28.12	28.57			
2019	25.76	25.95	28.28	28.74			
2020	26.10	26.59	28.17	28.21			
2021	25.59	26.62	27.96	28.44			
2022	26.45	26.28	27.69	27.36			
2023	25.82	26.23	28.15	29.58			

	Temperatura do Ar					
Mês Ano	Verão	Outono	Inverno	Primavera		
1993	26.55	27.37	29.03	29.07		
1994	26.23	26.89	28.65	29.03		
1995	26.74	27.03	29.07	29.22		
1996	26.41	27.29	28.54	29.85		
1997	26.83	27.50	28.52	29.50		
1998	27.71	28.45	29.35	29.77		
1999	26.80	27.04	28.64	29.77		
2000	26.57	27.03	28.61	29.49		
2001	26.29	27.49	29.26	30.02		
2002	27.03	27.86	29.35	29.65		
2003	27.05	27.95	29.10	29.95		
2004	26.98	27.77	28.80	30.09		
2005	27.66	27.89	29.03	29.53		
2006	27.15	27.19	28.99	29.41		
2007	27.49	27.76	28.95	29.17		
2008	26.71	27.21	29.22	29.82		
2009	27.08	27.38	29.42	29.79		
2010	27.96	28.47	29.33	29.63		
2011	26.71	27.78	29.43	30.07		
2012	27.01	28.38	29.08	30.11		
2013	27.27	27.91	28.68	29.57		
2014	26.70	27.44	29.02	29.97		
2015	27.33	27.45	29.49	30.21		
2016	27.73	28.45	29.59	29.50		
2017	26.43	28.12	29.46	29.78		
2018	27.17	27.43	28.99	29.15		
2019	26.96	27.59	29.46	30.19		
2020	27.29	28.07	29.67	29.53		
2021	26.95	27.75	29.37	29.51		
2022	26.81	27.49	29.21	29.35		
2023	26.59	28.13	29.91	30.37		

Figura A9: Média Trimestral da Temperatura de Superfície e do Ar na RM de Macapá

Temperatura de Superfície					
Mês Ano	Verão	Outono	Inverno	Primavera	
2000	28.09	27.21	28.30	29.81	
2001	27.78	27.87	28.91	30.83	
2002	28.62	27.46	29.14	29.61	
2003	27.21	27.56	29.01	29.75	
2004	27.98	28.32	28.16	30.10	
2005	27.74	27.54	29.35	31.37	
2006	28.00	27.10	29.02	30.36	
2007	27.89	27.64	28.88	29.92	
2008	27.89	27.90	29.11	29.68	
2009	27.99	26.93	29.53	30.95	
2010	28.89	28.12	29.68	29.47	
2011	27.57	28.01	29.00	30.58	
2012	28.61	27.94	28.85	30.68	
2013	28.35	28.37	28.84	29.36	
2014	27.57	27.99	28.54	30.32	
2015	28.28	28.16	29.31	32.06	
2016	28.62	28.50	29.48	30.70	
2017	27.60	28.27	30.61	30.18	
2018	28.19	28.01	29.03	30.19	
2019	27.37	28.14	29.09	29.65	
2020	27.57	28.00	30.51	29.57	
2021	28.90	28.31	29.00	28.96	
2022	28.23	27.46	29.38	28.88	
2023	27.01	28.03	29.59	30.05	

Temperatura do Ar					
Mês Ano	Verão	Outono	Inverno	Primavera	
1993	25.99	27.26	27.49	27.57	
1994	26.34	27.07	27.80	27.81	
1995	26.55	27.23	28.33	27.94	
1996	26.39	27.29	27.90	27.88	
1997	26.49	27.55	28.22	28.57	
1998	27.76	28.74	28.56	28.43	
1999	26.74	27.29	28.29	28.29	
2000	26.56	27.39	27.93	28.08	
2001	25.94	27.46	28.27	28.78	
2002	26.93	27.58	28.48	28.03	
2003	26.85	28.00	28.61	28.57	
2004	26.70	28.12	28.09	28.54	
2005	27.60	27.98	29.05	28.49	
2006	27.23	27.65	28.78	28.42	
2007	26.95	27.67	28.27	27.94	
2008	26.29	27.22	28.77	28.87	
2009	26.61	27.00	29.02	28.91	
2010	27.94	28.25	29.10	28.66	
2011	26.50	27.96	28.73	28.78	
2012	26.72	27.86	28.39	28.74	
2013	27.59	28.32	28.61	28.48	
2014	27.08	27.81	28.53	29.09	
2015	27.21	27.85	28.84	29.16	
2016	27.48	28.64	28.89	28.61	
2017	26.49	28.04	28.90	28.48	
2018	26.93	27.70	28.49	28.02	
2019	26.53	27.88	28.72	28.35	
2020	26.69	28.15	29.36	28.39	
2021	26.75	27.77	27.99	28.38	
2022	26.73	27.36	28.95	28.37	
2023	26.22	28.31	29.46	29.17	
1 0	C	•	1 4	D.1	

Figura A10: Média Trimestral da Temperatura de Superfície e do Ar na RM de Belém

Temperatura de Superfície					
Mês Ano	Verão	Outono	Inverno	Primavera	
2000	29.74	26.20	27.48	28.66	
2001	30.31	27.42	27.59	29.66	
2002	30.83	27.30	28.24	30.10	
2003	31.12	28.59	27.62	28.93	
2004	30.19	27.48	27.12	29.39	
2005	29.69	27.13	27.99	28.74	
2006	28.74	27.28	27.62	28.91	
2007	30.69	27.00	27.36	28.59	
2008	28.60	27.78	27.73	28.12	
2009	27.92	28.47	28.69	30.06	
2010	30.44	27.17	28.05	28.59	
2011	28.21	27.29	28.19	28.56	
2012	28.47	27.34	28.05	29.57	
2013	29.56	27.83	27.32	29.01	
2014	30.17	28.39	28.52	29.54	
2015	31.16	28.86	28.95	31.04	
2016	32.66	28.20	28.34	30.00	
2017	28.71	28.14	28.01	30.08	
2018	31.03	27.67	27.91	29.66	
2019	31.34	29.13	28.12	28.34	
2020	30.35	28.79	28.67	29.19	
2021	28.75	26.98	27.76	28.49	
2022	28.48	26.89	27.82	28.30	
2023	28.57	28.41	28.94	30.70	

Temperatura do Ar				
Mês Ano	Verão	Outono	Inverno	Primavera
1993	28.58	27.60	27.23	28.60
1994	28.99	27.90	27.57	29.12
1995	29.32	28.13	27.84	-
1996	28.88	27.61	27.64	30.05
1997	28.66	28.50	29.00	30.50
1998	30.79	28.09	28.54	30.02
1999	28.49	27.45	27.05	29.04
2000	28.24	26.96	28.00	29.06
2001	28.82	27.69	27.57	29.97
2002	29.60	27.19	28.42	29.95
2003	29.70	28.23	28.03	29.67
2004	29.56	27.95	27.79	30.19
2005	29.51	27.98	28.38	29.88
2006	29.00	27.87	28.39	30.07
2007	29.68	27.80	28.18	29.52
2008	28.53	28.01	28.16	29.25
2009	28.66	29.28	29.22	30.25
2010	29.55	27.72	27.97	29.16
2011	28.41	27.78	28.64	29.43
2012	28.72	27.91	28.11	30.38
2013	29.39	28.19	28.03	29.70
2014	29.57	28.76	28.50	29.71
2015	29.46	27.41	27.81	29.20
2016	28.85	26.67	27.29	28.92
2017	27.27	27.14	27.28	28.91
2018	28.37	27.18	28.16	30.05
2019	29.99	28.60	28.35	29.54
2020	29.89	28.51	28.63	29.40
2021	28.39	27.58	28.29	29.61
2022	28.95	27.37	28.15	28.71
2023	28.44	28.40	30.26	31.70

Figura A11: Média Trimestral da Temperatura de Superfície e do Ar na RM de Boa Vista

Temperatura de Superfície					
Mês Ano	Verão	Outono	Inverno	Primavera	
2000	29.17	30.49	35.59	33.64	
2001	30.04	30.23	35.45	32.28	
2002	30.14	30.78	35.75	33.95	
2003	29.63	30.02	35.15	33.38	
2004	30.07	30.48	35.58	33.53	
2005	29.81	29.72	35.61	34.12	
2006	30.50	28.74	34.50	32.58	
2007	30.20	30.87	35.92	35.31	
2008	30.31	29.88	35.58	35.16	
2009	29.91	28.84	35.01	32.27	
2010	30.63	31.13	36.37	34.47	
2011	29.44	29.80	35.99	33.20	
2012	29.71	30.56	36.00	34.42	
2013	30.59	29.97	35.71	34.55	
2014	29.81	30.12	35.25	34.71	
2015	30.09	29.67	36.42	35.18	
2016	31.53	32.17	37.40	35.53	
2017	30.81	31.02	37.04	36.05	
2018	29.87	30.70	36.12	33.32	
2019	30.49	30.57	36.37	33.91	
2020	30.50	29.84	36.22	35.52	
2021	30.82	30.30	35.31	32.40	
2022	29.83	30.40	35.43	33.91	
2023	29.39	29.93	34.97	33.65	

Temperatura do Ar				
Mês	Verão	Outono	Inverno	Primavera
Ano 🔪	veruo			
1993	26.83	28.17	29.13	28.18
1994	26.37	28.30	29.65	27.13
1995	26.67	27.25	29.55	27.98
1996	27.00	27.26	29.28	27.90
1997	26.03	25.97	26.61	27.08
1998	26.29	27.32	28.28	26.45
1999	26.89	28.27	29.98	28.00
2000	26.69	28.28	29.73	27.74
2001	26.90	28.42	29.75	27.44
2002	27.35	28.84	30.07	28.97
2003	27.39	28.60	29.94	28.55
2004	26.85	28.93	30.38	28.70
2005	27.36	28.51	30.24	29.07
2006	27.76	27.62	29.83	28.72
2007	27.44	28.69	30.41	29.31
2008	26.58	28.02	30.29	28.92
2009	27.49	27.49	30.13	28.00
2010	28.00	29.76	30.88	28.72
2011	26.52	28.63	30.74	27.81
2012	26.49	28.88	30.33	29.15
2013	27.40	28.96	30.93	28.27
2014	26.73	28.66	30.47	28.77
2015	27.61	28.52	30.94	30.39
2016	28.79	30.26	30.95	29.33
2017	27.42	29.30	31.02	29.54
2018	27.32	28.73	30.42	28.64
2019	27.60	29.25	30.98	29.36
2020	27.87	28.99	30.95	29.95
2021	27.45	28.93	30.65	28.09
2022	27.16	29.21	30.57	28.65
2023	27.27	29.66	31.03	30.66

Figura A12: Média Trimestral da Temperatura de Superfície e do Ar na RM de Palmas

	Temperatura de Superfície					
Mês Ano	Verão	Outono	Inverno	Primavera		
2000	29.01	26.59	26.47	35.37		
2001	30.54	27.05	26.03	34.85		
2002	30.28	27.72	26.17	34.38		
2003	30.63	25.96	26.64	33.57		
2004	30.03	23.30	26.78	33.11		
2005	30.46	27.31	25.94	32.59		
2006	30.49	26.07	28.06	33.73		
2007	29.32	25.45	27.24	35.75		
2008	28.85	23.88	25.64	34.88		
2009	30.14	24.81	24.85	31.92		
2010	30.34	23.94	27.97	33.32		
2011	29.80	23.52	26.80	33.99		
2012	31.17	23.45	26.92	34.88		
2013	29.59	24.06	26.41	34.15		
2014	32.28	23.81	25.67	35.84		
2015	30.35	24.38	27.66	32.68		
2016	30.39	23.92	26.78	34.01		
2017	30.68	23.36	28.71	33.58		
2018	30.03	25.84	27.84	32.93		
2019	31.80	25.86	28.80	35.38		
2020	30.74	24.86	28.28	37.08		
2021	30.05	26.36	28.21	35.20		
2022	31.34	23.48	25.25	32.62		
2023	28.74	24.07	26.75	32.01		

	Temperatura do Ar					
Mês	Vorão	Outono	Invorno	Primavera		
Ano	verao	Outono	iliverilo	Pilliaveia		
1993	24.33	20.02	18.19	23.15		
1994	23.03	18.87	18.53	23.01		
1995	23.25	18.35	19.27	22.33		
1996	23.53	18.66	17.80	22.47		
1997	23.20	17.99	18.93	22.58		
1998	23.64	17.64	17.54	22.48		
1999	25.69	19.40	20.54	24.23		
2000	25.08	21.02	18.92	25.66		
2001	25.88	20.68	20.66	25.23		
2002	26.17	23.14	20.76	26.21		
2003	25.92	21.75	19.27	25.00		
2004	25.79	19.75	21.31	24.08		
2005	26.05	22.73	20.03	24.88		
2006	26.02	20.65	21.03	25.63		
2007	25.87	21.72	21.58	25.56		
2008	24.74	20.17	20.61	25.21		
2009	25.37	20.68	20.10	25.00		
2010	25.32	20.17	20.82	23.88		
2011	25.11	20.05	20.74	24.83		
2012	25.67	20.49	21.48	26.16		
2013	24.81	20.75	20.10	25.05		
2014	26.36	20.86	20.68	25.70		
2015	25.48	21.15	21.37	24.79		
2016	25.68	20.77	20.55	25.05		
2017	26.08	20.98	22.06	24.59		
2018	25.40	22.28	21.15	25.30		
2019	26.04	22.73	22.11	26.43		
2020	25.43	21.62	22.33	26.29		
2021	25.38	21.11	19.65	24.51		
2022	24.65	18.84	18.23	22.61		
2023	23.80	19.56	21.96	25.10		

Figura A13: Média Trimestral da Temperatura de Superfície e do Ar na RM de Londrina

Temperatura de Superfície					
Mês Ano	Verão	Outono	Inverno	Primavera	
2000	29.71	26.37	26.94	34.95	
2001	31.25	26.65	27.18	35.04	
2002	31.11	28.27	27.12	35.59	
2003	31.27	25.96	28.35	33.96	
2004	31.44	22.81	28.03	34.15	
2005	31.72	27.45	27.36	33.04	
2006	31.09	25.67	28.91	34.56	
2007	29.79	25.45	28.74	36.13	
2008	29.92	23.73	27.79	36.05	
2009	32.08	24.70	26.23	32.87	
2010	31.39	24.44	29.39	33.63	
2011	30.22	23.86	28.08	34.97	
2012	32.90	23.59	28.80	35.19	
2013	30.74	24.32	27.87	34.91	
2014	32.75	24.09	27.49	36.13	
2015	30.93	24.78	28.95	32.51	
2016	31.43	23.74	28.65	35.02	
2017	31.18	23.58	30.46	34.24	
2018	30.45	25.97	28.77	33.31	
2019	32.82	26.24	30.17	35.67	
2020	32.13	24.58	30.26	37.88	
2021	31.49	26.54	30.42	37.29	
2022	33.87	23.69	26.71	33.01	
2023	29.62	24.07	28.29	32.73	

Temperatura do Ar				
Mês Ano	Verão	Outono	Inverno	Primavera
1993	25.17	21.15	20.14	25.64
1994	25.21	21.43	22.51	25.81
1995	25.26	21.26	23.10	24.70
1996	25.25	21.08	21.09	24.75
1997	25.32	20.57	22.08	25.25
1998	26.21	20.33	21.05	25.08
1999	25.95	21.68		
2000	25.44	21.76	19.73	25.80
2001	26.08	21.14	21.75	25.21
2002	26.46	24.07	21.52	26.21
2003	26.05	22.15	20.96	25.25
2004	26.11	20.19	21.96	24.35
2005	26.37	23.36	20.60	25.29
2006	25.98	21.43	22.04	25.96
2007	25.96	22.37	22.36	25.92
2008	25.23	20.81	21.87	25.90
2009	25.98	21.58	20.88	25.80
2010	26.10	21.21	22.34	24.30
2011	25.49	21.17	21.88	25.37
2012	26.23	21.35	22.76	26.66
2013	25.12	21.52	21.17	25.73
2014	26.55	21.55	22.21	26.47
2015	26.20	22.18	22.67	25.42
2016	26.11	21.33	21.60	25.59
2017	26.46	21.64	23.31	25.14
2018	25.78	22.79	21.80	25.76
2019	26.98	23.51	23.05	27.01
2020	26.17	22.35	22.38	25.74
2021	24.61	21.54	22.40	24.79
2022	25.91	20.69	20.15	23.59
2023	24.89	21.31	22.60	25.78

Figura A14: Média Trimestral da Temperatura de Superfície e do Ar na RM de Maringá

	Temperatura de Superfície					
Mês Ano	Verão	Outono	Inverno	Primavera		
2000	28.16	20.34	19.46	28.97		
2001	29.01	22.03	20.59	28.75		
2002	29.69	21.00	19.62	27.90		
2003	28.83	20.66	20.08	28.62		
2004	29.20	20.79	19.68	28.67		
2005	30.96	20.80	19.83	29.02		
2006	29.47	19.85	19.81	28.92		
2007	28.76	19.02	19.21	28.54		
2008	28.64	18.47	19.62	28.41		
2009	27.93	20.58	19.56	28.64		
2010	28.15	19.97	18.46	28.27		
2011	28.63	18.80	18.37	28.50		
2012	29.67	20.45	21.12	30.10		
2013	27.47	19.00	19.51	28.78		
2014	29.17	19.27	19.72	29.08		
2015	28.37	19.97	20.74	27.31		
2016	28.55	17.51	19.61	28.53		
2017	27.92	20.19	22.19	27.94		
2018	28.33	19.94	20.01	29.15		
2019	29.61	21.03	20.08	29.56		
2020	30.97	20.58	19.38	29.76		
2021	29.04	20.50	20.25	29.29		
2022	29.50	17.96	18.34	28.95		
2023	29.57	20.36	19.09	26.87		

		ratura de	Superfíci	e
Mês Ano	Verão	Outono	Inverno	Primavera
1993	25.18	18.79	15.50	23.50
1994	24.83	18.63	17.24	23.31
1995	25.21	17.73	17.02	23.18
1996	24.89	17.85	15.26	23.33
1997	25.43	18.08	17.33	22.57
1998	24.25	17.61	16.56	22.64
1999	25.74	17.02	16.40	21.84
2000	25.08	18.81	14.96	22.59
2001	21.30	-	19.06	23.37
2002	26.14	18.98	16.35	23.41
2003	26.05	18.78	15.91	22.63
2004	25.11	18.82	16.72	22.42
2005	25.98	19.61	16.63	22.65
2006	25.88	18.03	16.96	23.54
2007	26.23	17.98	16.06	23.15
2008	25.40	17.36	16.81	22.70
2009	25.08	18.44	16.16	23.03
2010	26.25	18.44	16.40	22.38
2011	25.73	17.84	15.71	23.02
2012	26.44	18.84	17.87	24.87
2013	24.70	18.12	15.88	23.64
2014	26.58	18.59	17.51	24.10
2015	26.03	19.20	18.53	22.20
2016	26.12	17.13	16.63	23.17
2017	26.51	19.25	19.33	23.16
2018	25.22	19.26	16.95	24.03
2019	26.22	20.79	16.57	24.28
2020	26.54	19.01	16.71	23.32
2021	25.88	18.38	17.20	23.34
2022	26.19	17.18	17.11	22.86
2023	26.97	19.47	17.85	22.93

Figura A15: Média Trimestral da Temperatura de Superfície e do Ar na RM de Porto Alegre

	Temperatura de Superfície					
Mês Ano	Verão	Outono	Inverno	Primavera		
2000	28.61	25.83	26.95	31.65		
2001	31.63	28.53	25.94	29.49		
2002	30.08	27.01	26.36	31.94		
2003	32.25	27.60	27.27	32.25		
2004	28.40	25.43	26.12	30.47		
2005	29.92	25.85	25.92	30.95		
2006	30.61	26.60	26.71	29.79		
2007	30.22	27.22	27.92	31.57		
2008	30.04	26.73	28.08	29.12		
2009	29.94	25.71	27.14	32.14		
2010	32.68	25.90	26.33	31.26		
2011	30.18	25.06	27.17	29.98		
2012	30.65	25.82	25.33	31.58		
2013	31.04	26.04	26.75	30.04		
2014	31.24	26.52	26.32	31.67		
2015	33.05	26.89	27.95	33.72		
2016	31.87	29.04	28.07	30.58		
2017	31.64	27.25	25.24	30.96		
2018	30.13	25.27	26.57	30.46		
2019	32.04	27.73	27.30	32.47		
2020	30.02	26.54	26.96	29.61		
2021	30.46	26.02	26.92	29.29		
2022	30.39	27.38	27.55	29.94		
2023	29.72	25.14	26.04	31.85		

Temperatura do Ar					
Mês Ano	Verão	Outono	Inverno	Primavera	
1993	28.02	24.81	23.49	25.99	
1994	27.56	25.14	23.11	25.92	
1995	28.39	24.99	24.16	25.41	
1996	28.68	24.56	22.67	25.47	
1997	26.86	24.59	23.66	26.60	
1998	28.69	25.32	24.18	25.38	
1999	28.32	24.66	22.88	24.27	
2000	27.14	24.49	22.57	26.26	
2001	28.43	25.55	23.01	25.09	
2002	27.44	25.76	23.82	26.75	
2003	28.66	25.87	23.42	25.95	
2004	26.74	24.91	23.35	25.63	
2005	27.47	25.39	23.56	25.54	
2006	28.43	24.49	23.21	25.29	
2007	27.95	25.40	23.70	26.15	
2008	27.25	25.31	23.55	25.21	
2009	27.77	23.80	23.31	25.93	
2010	28.18	23.85	22.42	24.35	
2011	26.84	24.65	23.42	24.24	
2012	27.33	25.06	23.15	26.44	
2013	27.58	25.09	23.73	25.41	
2014	27.80	25.45	23.62	26.08	
2015	28.29	25.10	24.59	27.70	
2016	28.67	25.51	24.13	25.90	
2017	28.03	25.02	22.54	25.87	
2018	27.42	24.86	24.10	26.11	
2019	28.85	26.35	23.69	26.33	
2020	27.53	25.12	24.10	26.37	
2021	27.90	24.67	22.92	24.59	
2022	27.26	24.31	22.70	24.80	
2023	27.26	24.52	23.22	26.68	

Figura A16: Média Trimestral da Temperatura de Superfície e do Ar na RM da Grande Vitória

	Temperatura de Superfície					
Mês Ano	Verão	Outono	Inverno	Primavera		
2000	27.10	24.77	26.96	31.16		
2001	28.40	25.95	26.84	29.01		
2002	27.05	25.61	26.70	30.59		
2003	28.17	24.58	27.51	31.35		
2004	26.81	23.33	26.15	30.15		
2005	27.26	24.03	26.23	29.63		
2006	27.89	23.82	27.25	28.29		
2007	27.36	24.71	27.62	31.22		
2008	27.47	24.59	27.17	30.30		
2009	27.00	23.88	26.94	28.36		
2010	28.31	23.78	27.22	29.20		
2011	28.13	23.95	28.12	28.33		
2012	27.52	23.72	26.61	30.50		
2013	28.18	23.59	27.12	28.92		
2014	28.25	25.02	27.17	31.50		
2015	28.96	23.88	28.29	31.82		
2016	28.42	25.10	27.95	29.68		
2017	27.98	24.68	26.92	31.30		
2018	27.75	24.19	26.99	29.39		
2019	29.06	25.21	27.72	31.31		
2020	26.98	23.38	27.93	29.54		
2021	27.74	25.14	27.74	27.53		
2022	27.82	24.42	26.53	28.62		
2023	26.81	23.29	26.62	30.61		

Temperatura do Ar				
Mês Ano	Verão	Outono	Inverno	Primavera
1993	24.62	21.44	22.54	24.24
1994	24.40	22.13	21.68	24.19
1995	25.21	22.09	22.33	23.43
1996	25.33	21.56	20.92	23.18
1997	23.86	21.17	22.56	25.29
1998	25.85	22.24	22.77	23.60
1999	25.21	22.05	21.55	22.56
2000	24.11	21.90	20.86	24.37
2001	25.47	22.80	21.34	23.21
2002	24.30	23.04	21.93	24.58
2003	24.58	22.51	21.57	24.20
2004	23.25	21.46	21.41	23.93
2005	24.28	22.00	21.58	23.42
2006	24.96	21.28	21.70	23.03
2007	24.38	22.21	21.83	24.77
2008	23.76	22.40	21.79	23.81
2009	24.60	21.97	22.70	24.12
2010	25.56	21.76	21.76	23.86
2011	24.76	21.80	22.36	22.28
2012	24.09	21.90	21.77	24.97
2013	24.51	21.87	21.98	23.26
2014	25.10	22.10	21.92	24.40
2015	25.34	21.57	22.89	26.37
2016	25.39	22.83	23.01	24.16
2017	25.09	22.25	21.00	24.22
2018	24.77	21.99	22.05	24.19
2019	25.91	23.26	22.46	25.05
2020	24.31	21.75	22.54	24.57
2021	24.65	22.47	22.39	23.55
2022	24.65	22.16	21.83	23.54
2023	24.99	22.06	23.10	26.66

Figura A17: Média Trimestral da Temperatura de Superfície e do Ar na RM de Belo Horizonte

	Temperatura de Superfície					
Mês Ano	Verão	Outono	Inverno	Primavera		
2000	28.99	25.62	26.67	31.73		
2001	31.28	26.37	26.62	31.19		
2002	30.57	26.33	25.91	31.68		
2003	30.44	25.22	26.25	30.36		
2004	28.77	23.57	25.93	29.76		
2005	29.06	25.72	25.97	30.48		
2006	29.93	24.65	26.73	30.30		
2007	30.71	25.22	26.74	30.85		
2008	29.26	24.62	25.69	29.60		
2009	29.88	24.71	25.69	29.68		
2010	31.42	24.14	26.72	30.25		
2011	30.80	24.04	26.64	30.64		
2012	30.38	24.56	26.13	31.23		
2013	29.28	24.24	25.60	30.14		
2014	32.13	24.45	26.16	33.16		
2015	31.49	24.87	27.84	32.44		
2016	30.74	24.92	27.04	30.77		
2017	31.02	24.59	26.36	32.12		
2018	29.63	25.47	26.12	30.42		
2019	31.42	25.76	26.23	31.16		
2020	29.46	24.73	27.23	30.91		
2021	30.91	24.33	26.15	29.16		
2022	30.18	24.23	24.76	29.57		
2023	29.27	23.88	26.36	30.41		

Temperatura de Superfície					
Mês	Verão	0	1	Primavera	
Ano	verao	Outono	Inverno	Primavera	
2002	-	-	-	25.56	
2003	26.17	-	-	19.22	
2004	22.47	22.35	20.56	22.99	
2005	24.44	22.55	20.61	22.12	
2006	-	19.38	17.96	23.97	
2007	25.72	23.02	21.22	24.17	
2008	25.27	22.13	20.8	23.12	
2009	26.18	22.03	21.67	25.25	
2010	27.29	21.97	21.24	24.1	
2011	26.88	21.95	20.78	23.42	
2012	25.6	22.78	21.32	24.79	
2013	26.02	22.27	21.05	23.95	
2014	27.27	22.33	21.19	24.73	
2015	26.98	22.47	22.26	25.54	
2016	26.74	22.6	21.66	24.66	
2017	26.98	22.24	20.87	24.44	
2018	26.44	22.72	21.7	24.65	
2019	27.3	24.06	21.34	24.48	
2020	25.59	22.29	22.32	25.02	
2021	26.64	22.14	21.01	22.91	
2022	26.52	22.08	21.01	23.74	
2023	26.26	22.3	22.55	25.51	

Figura A18: Média Trimestral da Temperatura de Superfície e do Ar na RM do Rio de Janeiro

	Temperatura de Superfície					
Mês Ano	Verão	Outono	Inverno	Primavera		
2000	28.64	27.86	30.12	35.51		
2001	30.90	27.37	31.08	32.75		
2002	29.65	28.08	30.59	36.24		
2003	30.44	25.99	31.33	34.84		
2004	28.77	23.80	29.49	32.76		
2005	29.42	26.53	28.58	33.00		
2006	29.55	26.00	31.37	31.57		
2007	29.24	26.23	29.98	35.73		
2008	28.96	25.25	30.61	33.97		
2009	29.29	25.07	28.50	31.97		
2010	30.14	25.83	31.51	34.13		
2011	29.74	25.95	31.88	33.48		
2012	30.21	25.52	29.26	34.81		
2013	29.30	26.09	29.27	34.07		
2014	31.24	26.81	31.10	37.82		
2015	31.08	25.65	31.96	35.21		
2016	30.11	26.47	30.75	34.56		
2017	30.17	26.08	31.35	35.89		
2018	29.92	27.24	31.65	34.03		
2019	31.23	27.19	30.93	35.24		
2020	29.66	26.70	33.65	37.76		
2021	30.36	27.36	33.28	36.10		
2022	30.07	26.44	30.79	33.77		
2023	28.74	24.82	29.90	34.15		

	Temperatura do Ar				
Mês Ano	Verão	Outono	Inverno	Primavera	
1993	24.82	21.42	21.20	25.98	
1994	25.74	23.97	-	-	
1995	25.33	21.39	23.71	24.94	
1996	25.76	21.15	21.54	24.78	
1997	24.91	20.73	22.66	26.01	
1998	26.23	21.57	22.76	25.00	
1999	25.49	21.33	23.08	25.06	
2000	24.95	22.54	21.95	26.21	
2001	26.21	22.50	23.07	25.06	
2002	25.65	24.01	22.99	27.18	
2003	25.84	22.26	22.79	25.67	
2004	25.04	21.30	22.99	24.69	
2005	25.48	23.17	22.41	25.39	
2006	25.74	21.84	23.37	25.48	
2007	25.73	22.57	23.49	26.47	
2008	24.88	21.65	23.03	25.34	
2009	25.36	21.37	22.69	25.81	
2010	26.21	22.16	23.55	25.70	
2011	25.38	21.95	23.80	25.26	
2012	25.61	22.64	23.17	27.22	
2013	25.42	22.38	22.38	25.52	
2014	27.33	23.29	23.84	26.80	
2015	26.38	22.87	23.82	26.98	
2016	26.23	22.92	23.44	25.98	
2017	26.46	22.98	23.73	26.30	
2018	26.24	23.43	23.33	25.95	
2019	26.76	23.68	23.80	26.92	
2020	25.76	22.83	25.01	26.67	
2021	26.66	22.95	24.61	25.67	
2022	26.23	22.34	20.94	23.68	
2023	23.77	19.14	21.49	25.84	

Figura A19: Média Trimestral da Temperatura de Superfície e do Ar na RM de Ribeirão Preto

Temperatura de Superfície					
Mês Ano	Verão	Outono	Inverno	Primavera	
2000	26.94	22.38	23.23	28.83	
2001	28.33	23.32	23.58	28.26	
2002	27.65	23.44	22.91	29.76	
2003	28.41	21.81	23.88	28.95	
2004	26.63	20.30	23.09	28.57	
2005	27.49	23.22	22.97	27.73	
2006	27.85	21.45	23.59	27.96	
2007	27.95	21.97	23.26	28.86	
2008	27.45	21.21	22.45	28.99	
2009	28.07	21.65	23.18	28.34	
2010	28.64	21.31	23.82	28.24	
2011	28.09	20.99	23.86	28.75	
2012	28.08	21.24	22.95	29.91	
2013	27.48	21.78	22.98	28.84	
2014	29.59	21.29	22.99	29.93	
2015	28.16	21.79	24.88	29.41	
2016	28.42	21.89	23.99	28.94	
2017	28.02	21.35	23.62	29.02	
2018	27.78	22.87	24.07	28.38	
2019	28.93	22.64	22.88	29.38	
2020	27.72	22.32	24.99	29.00	
2021	27.89	21.46	23.50	28.05	
2022	27.97	21.43	22.08	28.31	
2023	27.33	21.11	23.64	28.79	

Temperatura do Ar				
Mês Ano	Verão	Outono	Inverno	Primavera
1993	23.63	19.71	18.30	23.11
1994	23.62	19.66	19.29	22.98
1995	23.81	19.60	20.22	21.53
1996	23.86	19.54	17.40	22.10
1997	23.36	19.21	19.89	23.32
1998	24.66	19.31	19.15	21.41
1999	24.00	18.78	18.60	20.76
2000	23.05	20.04	17.85	23.07
2001	24.86	20.39	19.23	22.08
2002	23.97	21.66	19.22	24.01
2003	24.30	20.55	18.46	21.98
2004	22.15	19.29	19.44	21.40
2005	23.22	21.19	19.08	21.78
2006	24.27	19.22	19.61	22.23
2007	24.48	20.36	19.58	22.37
2008	22.96	19.49	19.14	21.87
2009	23.54	17.88	19.09	23.02
2010	24.49	19.54	19.50	21.83
2011	24.00	19.31	19.12	21.85
2012	23.56	19.77	20.13	23.50
2013	23.13	20.00	19.00	22.55
2014	25.62	20.44	19.66	23.27
2015	24.62	20.01	20.69	23.45
2016	24.24	20.24	19.30	22.54
2017	24.21	19.87	19.81	22.55
2018	23.72	20.80	19.53	22.43
2019	24.27	21.75	19.48	22.97
2020	23.10	-	-	-
2021	22.55	15.55	18.73	20.14
2022	22.97	17.75	17.55	21.78
2023	24.11	20.32	21.24	24.05

Figura A20: Média Trimestral da Temperatura de Superfície e do Ar na RM de São Paulo