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ABSTRACT

Precipitation is one of the main components of the hydrological cycle and its accurate
quantification is essential to provide information for understanding and predicting physical
processes. Occurrence observations based on ground-based devices (manual and automatic
rain gauges) are highly accurate but have limited spatial coverage. On the other hand, remote
sensing products cover large areas but with lower precision. In this context, this study aims
to evaluate machine learning models to create a product with better occurrence estimation,
with lower latency than other products and without directly relying on field data. The
methodology consists of choosing the best machine learning model (classification and
regression) and applying it to satellite-based remote sensing data (IMERG Early Run
product) and reanalysis-based variables (MERRA-2). The method was applied throughout
the Brazilian territory, on monthly and daily scales, which presents a wide variety of supply
regimes. This methodology first resulted in the development of an adjusted IMERG product
at the monthly scale (IMERG-BraMaL) and later an improved product at the daily scale with
a multiple machine learning technique (IMERG-BraMMaL). Compared to the original
IMERG products (Early Run and Final Run) and global estimation products (MSWEP,
CHIRPS and PERSIANN-CDR), IMERG-BraMaL improved the analyses evaluated
between terrestrial and satellite data in almost all analyses. For example, the KGE (Kling-
Gupta Efficiency) went from lower values (0.70, 0.82, 0.09, 0.60 and 0.81 for IMERG Early,
IMERG Final, PERSIANN, MSWEP and CHIRPS, respectively) to values above 0.86 in
IMERG-BraMal at the monthly scale. On a daily scale, IMERG BraMMAL proved to be
more efficient, presenting better results, with a CC of 0.79 compared to 0.68 for IMERG
BraMaL. The main conclusions of the study were: (i) much faster availability to end users;
(i) no dependence on any field data, allowing its application in areas where rainfall data are
not available or are of low quality; (iii) no correlation of errors with local characteristics;
and (iv) much improved estimates in regions of Brazil where, historically, satellite-based

products often underestimate the observed data.

KEYWORDS: machine learning, precipitation, re-analysis data, k-nearest neighbours,

remote sensing.



RESUMO

A precipitacdo é um dos principais componentes do ciclo hidroldgico e sua quantificacéo
precisa é essencial para fornecer informagdes para a compreensao e previsdo de processos
fisicos. As observacbes de ocorréncia baseadas em dispositivos terrestres (pluviémetros
manuais e automaticos) sdo altamente precisas, mas tém cobertura espacial limitada. Por
outro lado, os produtos de sensoriamento remoto cobrem grandes areas, mas com menor
precisdo. Neste contexto, este estudo tem como objetivo avaliar modelos de aprendizado de
maquina para criar um produto com melhor estimativa de ocorréncia, com menor laténcia
que outros produtos e sem depender diretamente de dados de campo. A metodologia consiste
em escolher o melhor modelo de aprendizado de maquina (classificacdo e regressdo) e
aplicé-lo a dados de sensoriamento remoto baseados em satélite (produto IMERG Early Run)
e variaveis baseadas em reanalise (MERRA-2). O método foi aplicado em todo o territério
brasileiro, em escalas mensais e diarias, que apresenta uma grande variedade de regimes de
abastecimento. Esta metodologia primeiramente resultou no desenvolvimento de um produto
IMERG ajustado na escala mensal (IMERG-BraMaL) e posteriormente um produto
melhorado na escala diaria com uma técnina de maultiplos machine leraning (IMERG-
BraMMaL). Comparado aos produtos originais do IMERG (Early Run e Final Run) e
produtos de estimativas globais (MSWEP, CHIRPS e PERSIANN-CDR), o IMERG-
BraMaL melhorou as analises avaliadas entre dados terrestres e de satélite em quase todas
as andlises. Por exemplo, o KGE (Eficiéncia Kling-Gupta) passou de valores mais baixos
(0.70, 0.82, 0.09, 0.60 e 0.81 para IMERG Early, IMERG Final, PERSIANN, MSWEP e
CHIRPS, respectivamente) para valores acima de 0.86 no IMERG-BraMal na escala mensal.
Na escala diéria, o IMERG BraMMAL se mostrou mais eficiente, apresentando melhores
resultados, com CC de 0,79 comparado a 0,68 do IMERG BraMaL. As principais conclusdes
do estudo foram: (i) disponibilidade muito mais rapida para os usuarios finais; (ii) ndo
dependéncia de quaisquer dados de campo, permitindo sua aplicacdo em areas onde os dados
pluviométricos ndo estdo disponiveis ou séo de baixa qualidade; (iii) a ndo relacdo dos erros
com as caracteristicas locais; e (iv) estimativas muito melhoradas em regides do Brasil onde,
historicamente, os produtos baseados em satélites frequentemente subestimam os dados

observados.

PALAVRAS-CHAVES: Aprendizado de maquina, precipitacdo, dados de reanalise, k-
nearest neighbours, sensoriamento remoto.
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1 INTRODUCTION

Rainfall is one of the main components of the hydrological cycle, and its accurate
spatio-temporal quantification is essential to provide basic information for a large range of
hydrometeorological processes and socio-economic activities (Breugem et al., 2020; Y. Du
& Xie, 2020; Markonis et al., 2019). The temporal resolution of the rainfall data is an
important characteristic for many hydro-meteorological applications. For instance, analyses
of extreme events and flash floods require high-resolution data (e.g. sub-daily) (Llauca et
al., 2021; Sadeghi et al., 2020), while low-resolution data (daily onwards) can be adequate
for trend and climate change analysis (Bonnema et al., 2016).

Although crucial for many applications, achieving accurate global precipitation
estimates (i.e. without gaps and large biases) is still challenging because some monitoring
instruments, retrieval methods, and numerical models still present remarkable uncertainties
(Sun et al., 2018; Wehbe et al., 2020). Also, dense precipitation measurements still remain
a costly and laborious procedure, especially for fine temporal scales (i.e., sub-hourly)
(Blenkinsop et al., 2018; Freitas et al., 2020).

Rain gauges are considered to be the most accurate method for obtaining precipitation
data (L. Xu et al., 2020). However, the global availability of rain gauges is still sparse and
uneven (Becker et al., 2013; Harris et al., 2014; Schneider et al., 2016; Zhang et al., 2021)
and has geographic discontinuity and coverage limitation (Raj et al., 2022). The lack of rain
gauges is even more prominent in developing and sizeable countries, like Brazil. When the
rainfall data based on rain gauges are available in these countries, the users often face
problems, such as: i) difficulty of access; ii) gaps and a lack of information; and iii) absence
of quality control and standardisation, making the identification of problems difficult (e.g.
recording the same amount of precipitation over longer periods) (Blenkinsop et al., 2018).

To overcome these inherent problems with rain gauges and facilitate access to data,
precipitation estimated from orbiting remote sensors emerged in the 1960s (Kidd &
Huffman, 2011). The development of remote sensing techniques has provided an
unprecedented opportunity to create products that estimate spatial precipitation continuously
on a global scale over recent decades (Zhang et al., 2021). These products are mainly
obtained through algorithms that combine measurements from orbiting remote sensors
operating in the microwave and infrared bands of the electromagnetic spectrum (Kidd &
Levizzani, 2011).

The use of orbiting remote sensors has increased the amount of regional and global



studies, enabling, among others, a better understanding of precipitation characteristics (Chen
et al., 2020; Freitas et al., 2020; Gupta et al., 2020; Kidd & Huffman, 2011; Markonis et al.,
2019) and applications in hydrometeorological studies and monitoring (Belabid et al., 2019;
Llauca et al., 2021; Munier et al., 2014; Pellet et al., 2019). Several satellite-based products
are currently providing sub-daily precipitation information (Llauca et al., 2021; Ramos Filho
et al., 2021), with different characteristics, in terms of resolutions (spatial and temporal),
spatial coverage, latency etc (Beck, Van Dijk, et al., 2017).

Although internationally recognised, the satellite-based precipitation data still present
some associated inconsistencies, such as: i) temporal and spatial resolutions that may not be
sufficient for use in some hydrological modelling (Behrangi and Wen, 2017); ii) difficulties
in estimating light rain and detecting precipitation on snow and ice-covered surfaces (Kidd
& Levizzani, 2011); iii) errors due to variability and uncertainties introduced by orographic
effects (Bhuiyan et al., 2018; Bhuiyan et al., 2019; Derin & Yilmaz, 2014; Houze, 2012; Mei
et al., 2014); iv) failures in estimating convective rainfall (Gadelha et al., 2019); v)
inconsistencies in identifying extreme precipitation events that trigger hydrological disasters
(Brunetti et al., 2018; Brunetti et al., 2021; Ramos Filho et al., 2021); and v) errors in
identifying precipitation events and their properties (e.g. intensity and duration) (Freitas et
al., 2020).

Worldwide studies have pointed out that the inconsistencies in satellite precipitation
estimates have been reduced since the advent of the Global Precipitation Measurement
(GPM) mission (e.g. Bhuiyan et al., 2017; Gadelha et al., 2019; Li et al., 2017; Oliveira et
al., 2016; Prakash et al., 2016; Satgé et al., 2019; Silva Lelis et al., 2018; Tan et al., 2018),
due to the new dual-frequency precipitation radar (DPR). The GPM mission makes available
three IMERG (Integrated Multi-satellitE Retrievals for GPM) products: Early Run, Late
Run, and Final Run. The Early and Late Run products are near-real-time products, which are
available to end-users 4 and 12 hours after observation, respectively. The Final Run product
is available 3.5 months after observation, and, subsequently, monthly gauge observations
from the Global Precipitation Climatology (GPCC) data, and other ancillary data, are
incorporated to improve satellite estimations. The Final Run product shows improved
performance in estimating precipitation when compared to the near-real-time products (Jiang
et al., 2021; Ramadhan et al., 2022; Sungmin et al., 2017; Wang et al., 2017; Zhou et al.,
2021). However, despite the progressive reduction of the inconsistencies, it is recognised by
the scientific community that some disagreements between the data observed by rain gauges

and those estimated by the satellite-based products still prevail, leaving them open to further



improvements (Li et al., 2017; Ma et al., 2020; Ning et al., 2017; Tang et al., 2016; R. Xu et
al., 2017).

In this perspective, some techniques have been used in recent years, such as: (i) the
fusion of remote sensing estimations with ground-based rainfall data (Beck et al., 2017; Beck
et al., 2019; Bhuiyan et al., 2017; Bhuiyan et al., 2018; Chen et al., 2022; Rafieeinasab et
al., 2015; Rozante et al., 2018; Wang et al., 2020), and (ii) a "Bottom-up" approach that uses
satellite-based soil moisture observations to infer or agree on land-based soil moisture
observations, such as the SM2RAIN algorithm (e.g. Brocca et al., 2013, 2016, 2019; Pellarin
etal., 2013; Wanders et al., 2015). Despite efforts to improve the satellite-based precipitation
data, some issues persist, including underestimations of extreme precipitation events and
false event estimates, which were reported in both bottom-up and fusion techniques (Brocca
et al., 2019). Specific to bottom-up techniques, large-scale in situ soil moisture data are also
required (Brocca et al., 2019) but dense observed networks are not available in many regions.
Additionally, these models have low accuracy when there is dense vegetation coverage and
complex terrain (Brocca et al., 2013). In addition, the fusion-based products need ground-
based precipitation data but, as mentioned above, the monitoring networks are not dense in
some regions (Schneider et al., 2016; Zhang et al., 2021), which can affect the final quality
of the product.

In recent years, artificial intelligence (Al), such as machine learning techniques, has
been widely used. According to Zhang et al. (2021), machine learning algorithms have
advantages over other methods because they: (i) can effectively handle complex and
nonlinear relationships between input and output data; (ii) do not contain any rigid
assumptions; (iii) are highly flexible in terms of incorporating various types of explanatory
variables; (iv) can combine field observations with multiple remote sensing products; and
(v) are easy for implementation.

Overall, the following machine learning algorithms have been used to enhance
satellite-based precipitation products: i) Quantile Regression Forests (QRF) (Tyralis et al.,
2023; Y. Yang & Luo, 2014); ii) Support Vector Machine (SVM) (Kumar et al., 2019; Sehad
et al., 2017) ; iii) Random Forests (RF) (Assiri & Qureshi, 2022; Bhuiyan et al., 2020a;
Kumar et al., 2019; Sengoz et al., 2023; Wolfensberger et al., 2021); iv) Artificial Neural
Networks (RNA) (Bhuiyan et al., 2020a; Sadeghi et al., 2020; Sengoz et al., 2023; Wehbe
et al., 2020); v) Gradient boosting (GB) (Sengoz et al., 2023; Tyralis et al., 2023; R. Wang
et al., 2023); and vi) Linear regression (LRi) (Sengoz et al., 2023; C. Wang et al., 2021).

To our knowledge, the studies using machine learning on satellite-based precipitation



products focused on the accuracy of the machine learning algorithms, comparing their results
with the original estimation of the product to confirm the improvements (Bhuiyan et al.,
2017, 2019, 2020a; Zhang et al., 2021). However, these new precipitation products are not
available to the scientific community. Additionally, some of these studies use specific
regional data for the studied region, such as ground radar data (H. Chen et al., 2020; R. Wang
et al., 2023; Wehbe et al., 2020) and gauge observations (Bhuiyan et al., 2020a;
Papacharalampous et al., 2023c; Yu et al., 2023; Zhang et al., 2021), which may limit their
applicability in other regions. Moreover, these studies were conducted at local scales (mostly
at the river basin scale), without the evaluation of some available machine learning models
(e.g. K-Nearest Neighbours, KNN). Only the study by Ma et al. (2020) generated a new
precipitation product for Asia (hamely, alMERG) applying a new calibration approach to
the IMERG product that included 57,835 ground-based observations from rain gauges, i.e.

limiting its applicability to other regions with a lack, or uneven distribution, of rain gauges.

1.1. Hypotheses

Following the contextualisation above, this PhD thesis is based on the hypothesis
that machine learning algorithms can significantly enhance the accuracy of daily and
monthly satellite-based precipitation, without dependence on local or regional in-situ
data.

1.2. Main aims

This study aims to optimise monthly and daily satellite-based precipitation estimates,

based on machine learning techniques and reanalysis data.

1.3. Specific aims

e To develop a machine learning model to obtain a satellite-based precipitation
product with reduced latency and higher accuracy compared to the existing alternatives;

e To create a machine learning model to obtain a satellite-based precipitation product
without dependency on any field data for its calibration, allowing its application in areas
where rain gauge data are unavailable or present low quality;

e To build a machine learning model to obtain a satellite-based precipitation
product whose errors are unrelated to local features (e.g. climate, precipitation regimes,
topography);

¢ To identify the best machine learning models for classification and regression



of precipitation data;

e To investigate the application of individual and combined machine learning
techniques (classification/regression and stacking) to enhance daily rainfall estimates
based on remote sensing data, aiming for more precise identification of precipitation
events;

e To compare the products calibrated on monthly and daily scales to determine
the more accurate for improving the precipitation estimate;

e To compare the monthly and daily precipitation data, obtained from the

proposed products, with other global satellite-based precipitation products.

1.4. Thesis Structure

The thesis was divided into six major items in the following order: 1) Introduction,
presenting a contextualisation and justification that motivated the development of this thesis;
2) Literature review, covering conceptual and basic topics essential to better understanding
the study; 3) Study area, presenting the characteristics of the studied area and justifying its
selection; 4) An improved gridded monthly rainfall product; 5) Evaluation of single and
combined machine learning models to improve daily rainfall estimations; and 6) Conclusions

and recommendations, highlighting the main results found and proposing further studies.



2 LITERATURE REVIEW

2.1. Precipitation

Precipitation is a fundamental component of the climate system and global water cycle,
whose observation and measurement are crucial for human well-being (Kidd & Huffman,
2011). Excessive and insufficient rainfall threatens lives, properties, and agriculture.
Precipitation also holds significant economic relevance, playing a central role in water
resource management, agribusiness (Kidd et al., 2009; Thornes et al., 2010). From an
environmental point of view, precipitation serves as a transformative agent in the
surrounding landscape, influencing both the sustenance of natural vegetation and erosive
processes. Simultaneously, it plays a role in the dispersion of atmospheric pollution and the
transport of nutrients and pollutants (Michaelides et al., 2009).

Due to the importance of precipitation, its physical characteristics need to be
frequently and systematically measured at a fine spatiotemporal resolution. Historically,
quantitative precipitation measurements have been limited to a relatively short period in
recent history (Kidd & Huffman, 2011). Although precipitation data has been available since
the mid-1850s, early records exhibit variations in terms of accessibility, completeness, and
consistency. Also, the availability of data at shorter intervals (i.e., daily or sub-daily) remains
scarce (Blenkinsop et al., 2018; Freitas et al., 2020; Jones et al., 2002; New et al., 2001).

Over the years, studies on precipitation have been continuously capitalised on by
technological advancements to obtain more accurate measurements and fill gaps in our
knowledge and understanding of the processes influencing precipitation. The first
measurements were conducted using manual rain gauges, i.e. simple collectors placed on the
earth's surface, whose reading is done by an observer daily. Over time, these instruments
were gradually improved to more advanced versions (e.g. automatic rain gauges). The
accumulation of data over several years has driven numerous hydrometeorological and
climatological studies, initially locally and regionally and, subsequently, on global scale.
Recently, technologically sophisticated devices, installed on the Earth's surface (e.g. ground-
based radars, disdrometers) or aboard space platforms (e.g. microwave and infrared sensors),

have expanded our spatial and temporal understanding of precipitation.

2.1.1. Ground-based measurements

Manual rain gauges (Figure 1) consist of a cylindrical tube, opened at the top, which



collects rainwater. The amount of precipitation is then measured by the height of the water
accumulated inside this tube. This approach provides a direct measure of the amount of
rainfall, making the rain gauge a valuable tool for providing accurate and reliable data on

precipitation in a specific location (Garcez & Alvarez, 1988; Pinto et al., 1976).

Rain Gauge Disdrometer Radar

Figure 1 — Three instruments for making ground observations of precipitation. (Courtesy: Sun et al.
2018)

The use of rain gauges is widespread throughout the world due to their simplicity and
effectiveness. However, rain gauges provide a point-scale measurement, which poorly
represents the spatial variability of precipitation, ranging from a few metres to several
kilometres. The spatial distribution of these instruments can affect the accuracy of
precipitation estimates over large areas, as highlighted by Harris et al. (2014). In regions
with limited rain gauge density, the spatial representation of precipitation can be
compromised, challenging hydrological and meteorological modelling and forecasting.

To overcome some of these challenges, automatic rain gauges, which use electronic
sensors to measure precipitation continuously and at shorter time intervals, were developed
(Blenkinsop et al., 2018). This type of device offers a more dynamic approach to data
collection, allowing for a better understanding of the temporal variability of precipitation.

Although less dynamic, manual rain gauges are the most frequent equipment to
provide accurate precipitation data from the ground (Kidd 2001). Sub-daily precipitation
data is an even more difficult task because sparsely covers the global landmass (Hegerl et
al., 2015.; Lewis et al., 2019). The number of in-situ sub-daily precipitation records is even
lower in tropical regions, probably due to the higher costs of implementing rain gauges
capable of measuring sub-daily events, compared to those that measure on a daily time scale
(Freitas et al., 2020; Kidd et al., 2017).



Thus, new projects emerged intending to create a reliable precipitation database. The
INTENSE project (Intelligent use of climate models to adapt to non-stationary hydrological
extremes) is the first major international effort to focus on global extreme sub-daily
precipitation, enabling substantial advances in quantifying observed historical changes.
However, the INTENSE project identified, from a data collection initiative, the lowest
availability of sub-daily precipitation data in countries in Africa and Latin America
(Blenkinsop et al. 2018). In Brazil, CEMADEN created a sub-daily monitoring network with
approximately 3,400 automatic rain gauges distributed over the country. This network was
created to support the prediction and development of warning systems for precipitation-
related disasters, including floods and landslides, so most rain gauges are within the cities.

2.1.2. Ground-based radar data

Ground-based radars (Figure 1) can be an alternative to rain gauges, providing real-
time measurements with high temporal and spatial resolution. However, the spatial coverage
of ground-based radars is limited only by land and is also affected by a lack of accessibility
due to their high cost (Varma, 2018).

The radar system consists of a transmitter producing electromagnetic microwaves that
are backscattered by particles in the atmosphere and then converted into a measure of rainfall
intensity (Kidd & Huffman, 2011). However, the accuracy of ground-based radar
measurements is often low, especially for extreme precipitation magnitudes (Marra & Morin,
2015), since intensity is indirectly derived from radar-measured reflectivity (i.e. subject to
multiple sources of error) rather than being a direct measurement (Ochoa-Rodriguez et al.,
2019; Pellarin et al., 2013).

2.2. Remote sensing data
2.2.1. Satellite-based precipitation data

Sensors onboard satellites are currently the only instruments to provide global
homogeneous precipitation measurements. Nowadays, many promising satellite-based
precipitation products are available for many applications, followed by the advancement in
the number of satellite sensors and imaging technology. Such products provide valuable
distributed information on sub-daily precipitation data (Llauca et al., 2021; Yuan et al.,
2019).

The sensors onboard satellites, used to estimate precipitation, can be classified into
three categories: Visible/InfraRed sensors, passive Microwave, and active Microwave

sensors (Michaelides et al., 2009; Prigent, 2010). Corresponding methods used to derive



precipitation from electromagnetic interactions with clouds and the atmosphere have been
developed, including the Visible/InfraRed-based methods, active and passive Microwave
techniques, and merged Visible/InfraRed and Microwave approaches (Kidd & Levizzani,
2011).

The GPM IMERG is produced using passive microwave techniques, a more direct
method of measuring precipitation than Visible/Infrared techniques, as microwave lengths
can penetrate clouds and detect precipitation-sized particles. The most critical disadvantage
of passive microwave precipitation estimation is its low spatiotemporal coverage (Sun et al.,
2018).

As mentioned previously, rain gauges provide accurate measurements of precipitation
at single points, but they are sparsely distributed across the globe and can be affected by
sampling error (Habib et al., 2001; Kidd et al., 2017). On the other hand, satellite
observations have homogeneous spatial coverage, but random errors and biases linked to the
algorithms can be detected (Chen et al., 2021; Kidd et al., 2017). Therefore, merging
different sources of information to overcome these errors and biases, by combining the
individual advantages of specific methods, is currently the subject of several studies (Figure
2).
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Figure 2 — Flowchart for the precipitation products. (Courtesy: Sun et al. 2018).



2.2.2. Reanalysis datasets

Reanalysis systems fuse irregular observations and models spanning many physical
and dynamic processes to generate an estimate of the state of the system through a uniform
grid, with spatial homogeneity, temporal continuity, and a multidimensional hierarchy (Sun
et al., 2018). Many essential climate variables, resulting from reanalysis systems, can be
obtained after short periods. A reanalysis system includes a historical prediction model and
a data assimilation routine.

Reanalysis generates a large variety of atmospheric, sea-state, and land surface
parameters across a uniform grid with spatial homogeneity over long periods through data
assimilation, a process that relies on both observations and model-based forecasts to estimate
conditions (Dee et al., 2014; Sun et al., 2018).

Successive generations of reanalysis products produced by various organisations have
improved their quality, with improved models, input data, and assimilation methods. As
examples, we can mention the two NCEP/NCAR reanalysis systems (NCEP1 and NCEP2),
the two reanalysis systems of the European Center for Medium-Range Weather Forecasts
(ECMWF) (ERA-40 and ERA-Interim), the Century Reanalysis (20CRv2), the Modern-Era
Retrospective Analysis for Research and Application (MERRA) system, the NCEP Climate
Forest System Reanalysis (CFSR) system, and the Japanese 55-Year Reanalysis (JRA-55).

Version 2 of the MERRA system (MERRA-2) is a global atmospheric reanalysis
product produced by the Goddard Earth Observing System Model, Version 5 (GEOS-5), at
NASA's Goddard Space Flight Center (GSFC), which combines satellite observations,
sounding data, and other observational data to create a three-dimensional, temporally

consistent representation of the atmospheric state (Gelaro et al., 2017).
2.3. Machine Learning
2.3.1. Definition

Over the past few decades, machine learning has played a crucial role in advancing
artificial intelligence, providing machines with the ability to learn from data and improve
their performance over time (Das et al., 2022; Papacharalampous et al., 2023a; Zhang et al.,
2021). This definition highlights the autonomy of learning, emphasising the importance of
systems adaptively acquiring knowledge.

One of the pioneers in this field was Arthur Samuel, who first introduced the term
machine learning (Samuel, 1959). In his work, Samuel described machine learning as the

field of study that allows computers to learn from data without being explicitly programmed.



This fundamental insight still influences the contemporary understanding of machine
learning. More recently, Bishop (2006) explored fundamental machine-learning techniques,
highlighting the importance of pattern recognition and probabilistic inference.

There is still confusion regarding the terms artificial intelligence, machine learning,
and deep learning; they are often used as synonyms, but there are differences. These concepts
represent different layers of complexity and automation in a machine's ability to learn and
make decisions. The field of artificial intelligence seeks to develop systems capable of
performing tasks that normally require human intelligence (McCarthy et al., 2006). Machine
learning is a subcategory of artificial intelligence that focuses on systems that can learn from
data (Mitchell, 1977). Deep learning is a specific machine learning approach that uses deep
neural networks to model and solve complex problems (Hinton et al., 2006), and has played

a significant role in expanding the boundaries of machine learning (Goodfellow et al., 2016).
2.3.2. Brief history

The history of machine learning began in 1950, when Alan Turing, considered the
father of computing and artificial intelligence, published the article "Computing Machinery
and Intelligence”. In his work, Turing introduced the famous test that assessed the ability of
a machine to exhibit behaviour indistinguishable from that of humans. In 1956, artificial
intelligence was formally established as a field of research during the Dartmouth
Conference, whose term was coined by John McCarthy.

However, in the 1970s and 1980s, the field faced challenges and technological
limitations, resulting in the so-called "Artificial Intelligence Winter." Funding for artificial
intelligence research has declined due to unmet expectations and technical difficulties.

The resurgence began in the 1980s and 1990s, with advances in machine learning
algorithms, including SVM (Support Vector Machines), proposed by Vladimir Vapnik, and
neural networks. The popularity of machine learning continued to grow, but it was from the
2000s onwards that these techniques became more widespread.

The advent of deep learning marked a turning point in the machine learning field, with
contributions like "ImageNet Classification with Deep Convolutional Neural Networks"
(Krizhevsky et al., 2017), demonstrating the effectiveness of deep neural networks. This
period also witnessed the rise of big data, providing massive data sets to train complex

models.
2.3.3. Machine learning model types

Machine learning models can be categorised into three main types, based on distinct



approaches: supervised, unsupervised, and reinforcement. These categories reflect different
learning paradigms, with specific applications and challenges.

Supervised machine learning models are algorithms trained by a set of predictor data,
i.e. a set of data in which the desired outputs are already known. The main objective of
supervised models is to learn the relationship between inputs and outputs from the given
training examples (James et al., 2013). These models are fundamental for regression and
classification works, in which choosing the right algorithm for a specific problem and the
use of training data are fundamental (Hastie et al., 2009). In supervised machine learning
models, the algorithm is fed with input and output pairs and trained to learn a function that
maps these inputs to the desired outputs. After training, the model can make predictions or
decisions when presented with new unlabeled data.

Unsupervised machine learning models are approaches where the algorithm is trained
on a dataset without predictions, where the desired outputs are not provided. The main goal
of unsupervised models is to discover intrinsic insights in data, such as natural groupings,
relationships, or distributions. These models are often used in situations where the nature of
the task is not known in advance or when data labelling is difficult or expensive (James et
al., 2013). The most common unsupervised models are the k-means algorithm (MacQueen,
1967), which is used to group data into clusters, identifying intrinsic patterns and structures
without relying on labels; and Principal Component Analysis (PCA) (Hotelling, 1933),
which reduces the dimensionality of the data while keeping most of the variance.

Reinforcement models in machine learning refer to an approach in which an agent
learns to make sequential decisions through interactions. The model is not based on input
and output pairs but rather on feedback in terms of rewards or penalties, adjusting its
strategies to maximise the rewards (James et al., 2013). Reinforcement models have their
roots in the field of artificial intelligence and have stood out in practical applications, such
as games and robotics, in which the idea of reinforcement learning was introduced, where
an agent learns to make optimised decisions by interacting with a dynamic environment
(Sutton & Barto, 2018).

2.3.3.1. Classification models

Classification machine learning models are algorithms that learn to assign labels or
categories to data instances based on their characteristics. The main task is to map inputs to
pre-determined categories, known as classes. These models are fundamental in situations

aiming to make categorical predictions or determine to which class an instance belongs



(James et al., 2013).

i)

i)

vi)

The main classification models are:
Logistic Regression (RL): a supervised ML algorithm used for binary classification
problems (Belyadi & Haghighat, 2021). Logistic regression essentially uses a nonlinear
logarithmic odds ratio logistic function to model a binary output variable (Tolles &
Meurer, 2016). Logistic regression normally has a classification between 0 and 1, not
requiring a linear relationship between input and output variables.
Support Vector Machines (SVM): their characteristic is to find the hyperplane that best
separates the classes in the feature space, which can be linear or non-linear (Vapnik et
al., 1995). SVM can model highly nonlinear processes without knowledge of the
statistical distributions of classes. Another important property is its good generalisation
performance even in the case of high-dimensional data and a small training set. Several
works have shown the superiority of SVM classifiers over traditional statistical and
neural classifiers (Sehad et al., 2017).
Decision Tree (DT): tree structure that makes decisions based on conditions in
attributes, which works by dividing the data set based on characteristics, forming a set
of decision rules (Quinlan, 1986). It consists of inner nodes representing the structures
of the branches, representing the verdict given by the algorithm, and each leaf node
representing an outcome. The decision node, which is used to make a decision, has
various branches, while the leaf node is the output of decision nodes and has no further
branches (Bansal et al., 2022).

Random Forest: an ensemble machine learning approach that aggregates the results of
multiple decision tree models (Breiman, 2001). This model creates several trees and
aggregates their results to reduce overfitting (increase variance) and improve
generalisation.
Gradient boosting (GB): consists of several decision trees that are built sequentially,
where each tree is trained to correct the errors made by the previous ones, allowing
iterative improvement of the model's performance using relatively few trees (Friedman,
2001).
Stochastic Gradient Descent (SGD): a widely used in training machine learning model
due to its efficiency (Amari, 1993), whose approach is to update the model parameters
with each training example in a stochastic way, making it o suitable for large data sets
(Meng et al., 2019; Mu et al., 2017).

vii) K-Nearest Neighbour (KNN): is a non-parametric supervised learning technique used



in classification and regression problems, which classifies instances based on the class
of the majority of the k nearest neighbours in the feature space (Altman, 1992). This is
characterised by its simplicity and flexibility, as it does not require the assumption of
specific data distributions. KNN calibration is crucial in the appropriate choice of the
value of k, the number of neighbours considered, which directly affects the sensitivity
of the model to specific patterns and is essential to avoid overfitting or underfitting,
ensuring the robustness and effectiveness of the algorithm in the task at hand
(Rajagopalan & Lall, 1999).

viii) Artificial Neural Network (ANN): The algorithm is an information processing paradigm
inspired by biological neural networks (Gardner & Dorling, 1998). The basic elements
of ANN are neurons (or units), which are interconnected by weighted links. In each unit,
the output is calculated by a transfer (or active) function of the weighted sum of the
inputs. It has a three-layer structure (i.e. input, hidden, and output layers), which is one
of the widely used forms of ANN algorithms.

2.3.3.2. Regression models

In statistics and machine learning, regression models are techniques that aim to model
the relationship between a dependent variable and one or more independent variables
(predictors). Regression is widely used to predict or understand how a change in the
independent variables may affect the dependent variable (James et al., 2013).

Some regression models have already been mentioned in the previous subitem of this
literature review, as many of them can be used for both functions. As regression models, we
can mention:

1) K-Nearest Neighbour (KNN): is a non-parametric supervised learning technique used
in classification and regression problems (Altman, 1992). Regression KNN is an
extension of classification KNN for problems where the dependent variable is
continuous. Instead of assigning a class to the instance based on the majority of k nearest
neighbours, regression KNN calculates an average of the dependent variable values of
the nearest instances (James et al., 2013).

i) Linear regression (LRIi): is a statistical technique for modelling the relationship between
a dependent variable and one or more independent variables (Yang & Chen, 2023). The
essence of this method lies in the search for a line of best fit that minimises the sum of
the squares of the differences between the predicted and observed values.

2.3.4. Overfitting e Underffiting



The concepts of overfitting and underfitting are related to the model's ability to
generalise from training data to new data but in different contexts. Overfitting (Figure 3)
occurs when a model overfits the training data, capturing specific patterns, even noises,
which may not be representative of the true relationship between the input and output data,
resulting in a model that does not generalise well for new data (James et al., 2013). When
overfitting, complex models can get lost in high-dimensional spaces, memorising instead of
learning patterns (BISHOP, 2006). Underfitting occurs when a model is too simple to capture
the complexity of the training data. This results in a lack of adaptation to the standards,
making the model ineffective to generalise, even on training data (James et al., 2013).
Underfitting is easier to identify, as the model does not present good results even for the
training data. Good fit is ideal, as the model can adjust to the complexity of the training data

and can generalize well to the test data.
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Figure 3 — Overfitting, good fit, and underfitting in machine learning models (Raghav, 2022).



3 STUDY AREA

Brazil is a continental-sized country covering approximately 8.5 M km?2 between the
latitudes 5°16'N - 33°45'S and longitudes 34°47'W — 73°59'W (Figure 4). The Brazilian
territory is divided into five official geographic regions: South (S), Southeast (SE), Central-
West (CW), North-East (NE), and North (N). Due to its large territorial extension, Brazil
covers different climatic zones and precipitation patterns. According to Alvares et al. (2013),
the Brazilian territory encompasses twelve of Kdppen's climate types, divided into three
main zones (Tropical, Semi-arid, and Humid Subtropical) (Figure 4), with a mean annual air
temperature of approximately 10-26 °C. The annual rainfall in Brazil is characterised by high
spatial variability, with values ranging from 380 mm (semi-arid climate in the NE) to 4,000
mm (tropical forest in the N). According to the mean monthly precipitation distribution, the
Brazilian territory can be divided into five regions with homogeneous characteristics
(Rozante et al., 2018) (Table 1).
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Figure 4 — Study area showing (a) the rain gauges used in the study, identified according to the
five homogeneous regions defined by Rozante et al. (2018), in terms of precipitation, and (b) grid
cells obtained from rain gauges to match the IMERG Early Run 0.1°.



Table 1 — Aspects of the five regions with homogeneous mean monthly rainfall characteristics in
Brazil according to Rozante et al. (2018).

Region

Number of grid Koppen

cells

classification

Climatic features

R1

R2

R3

R4

R5

559

1530

299

322

211

Bsh

AS

Am and Aw

This group is influenced by the Pre-frontal Storm
Line (PSL) and Cold Fronts (FC) climatic
systems (Reboita et al., 2010). The monthly and
annual precipitation averages are around 120 and
180 mm, respectively. The mean annual air
temperature is around 22° C.

The main climatic systems influencing this group
are the South Atlantic Subtropical Anticyclone
(SASA) and the South Atlantic Convergence
Zone (ZCAS) climatic systems (Reboita et al.,
2010). The annual average precipitation is around
1,500 mm, mostly from November to February.
The mean annual air temperature is around 22° C.

The main climatic systems influencing this group
are the South Atlantic Subtropical Anticyclone
(SASA) and the South Atlantic Convergence
Zone (ZCAS) (Reboita et al., 2010). The annual
average precipitation is around 820 mm, mainly
from December to May. The monthly mean air
temperature ranges between 18 and 24 °C
throughout the year.

This group is influenced by the atmospheric
systems of Instability Lines (LI) and the
Southeast Trade Winds (SETW) (Reboita et al.,
2010). This mean annual precipitation is around
1600 mm. The mean annual air temperature is
above 23 °C.

The main atmospheric systems acting in this
group are the Intertropical Convergence Zone
(ITCZ), the Instability Lines (L1), the Mesoscale
Convective Complex (MCC), the South Atlantic
Convergence Zone, the Upper-Level Cyclonic
Vortices (ULCV), and the Easterly Wave
Disturbances (Lemos et al., 2023). The mean

annual air temperature is around 26 °C. The mean

annual precipitation reaches 2600 mm, mainly
from January to April.




4 AN IMPROVED GRIDDED MONTHLY RAINFALL PRODUCT

4.1. Contextualisation

In this chapter, we focus on the development of a more accurate monthly precipitation
product for Brazil, the so-called IMERG BraMaL, which uses IMERG Early Run and a re-
analysis database as the input of a machine learning approach based on a regression model,
without dependence on local or regional data. The general and transferable strategy of this
new product would also be relevant to account for: (i) reducing the latency period for a
satellite-based product with improved precipitation estimates (e.g. compared with the
IMERG Final Run, which is currently available 3.5 months after observation); (ii) correcting
well-known errors and biases in satellite-based precipitation products at monthly scale in
some regions of Brazil (Freitas et al., 2020; Gadelha et al., 2019; Rozante et al., 2010); and
(iii) not relying on observed data, i.e. being general enough to be applied in other larger

regions with diverse climates, terrains, and precipitation regimes.

4.2. Materials and methods

The methodology proposed in this study considers estimated data from satellite-based
(rainfall) and re-analysis (meteorological variables) products, obtained between 2014 and
2021, as inputs to create the IMERG BraMaL product. Observed rainfall data (rain gauges)
obtained for the same period were used to calibrate (70%) and validate (30%) the proposed
regression model. The methodological steps detailed below, include: (a) the description of
the observed and estimated dataset; (b) the prediction model used; and (c) the statistical
metrics to evaluate the performance of the proposed product (Figure 5).
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Figure 5 — Schematic representation of the prediction process to create the IMERG BraMaL
product.

4.2.1. Observed and estimated dataset
4.2.1.1. Observed rainfall data

The rainfall data used in this study were obtained from automated rain gauges operated
by the Brazilian Centre for Monitoring and Early Warnings of Natural Disasters
(CEMADEN, an acronym in Portuguese). The ground-based rainfall observation network of
CEMADEN is made up of tipping bucket gauges with a 10 min temporal resolution, when
it rains, and 60 min, when there is no rain. In this study, we aggregated this high temporal
resolution dataset to the monthly scale. Currently, CEMADEN operates more than 4,000
rain gauges distributed throughout Brazil, whose data are made available in UTC
(Coordinate Universal Time) without quality control.

This study used rainfall data from 3,039 rain gauges distributed throughout the
Brazilian territory, containing at least one calendar year of complete data from 1 January
2014 to 31 December 2021. Considering this monitoring period, the following number of
rain gauges per monitoring year were available: 832 (1 year), 652 (2 years), 571 (3 years),
411 (4 years), 301 (5 years), 206 (6 years), and 66 (7 years). The selection of these rain
gauges resulted from a strict quality control procedure, following the steps used by Freitas

et al. (2020), which included: (i) the analysis of the amount of data recorded by the gauges,
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considering unsuitable rain gauges with more than 60-days of missing data in each analysed
year; (ii) the comparison of these stations selected in the first step with their five closest
neighbours, based on a visual analysis with a double-blind test and taking into account the
monthly and instantaneous (10 min) precipitation data; and (iii) the checking of the range of
values and changes over subsequent measurements to identify constant or null rainfall

records that probably indicate gauge clogging.

4.2.1.2. Rainfall satellite-based data

The Global Precipitation Measurement (GPM) mission launched its Core Observatory
in 2014, to succeed the Tropical Rainfall Measuring Mission (TRMM), which began to
provide rainfall and snowfall information globally with better temporal (half-hour) and
spatial (0.1° x 0.1°) resolutions, via the Integrated Multi-satellitE Retrievals for GPM
(IMERG) products (Skofronick-Jackson et al., 2018a, 2018b, 2017). IMERG obtains
information about precipitation in the latitude band 90° North and 90° South, with temporal
coverage from 1 June 2000 to the present.

This study used Version-06B of IMERG Early Run (i.e. with a latency of 4 hours to
the end-users) as a baseline satellite rainfall product, to calibrate the proposed IMERG
BraMaL. The gauge-calibrated IMERG Final Run (i.e. with a latency of 3.5 months), which
performed better compared to the other two near-real-time IMERG products (Jiang et al.,
2022; Ramadhan et al., 2022; Zhou et al., 2021; Wang et al., 2017; Sungmin et al., 2017),
was used in addition to IMERG Early Run for comparisons with the estimations of the
IMERG BraMaL product. Additionally, the IMERG BraMaL product was compared with
three consolidated global satellite-based products: i) Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks - Climate Data Record (PERSIANN-
CDR), whose algorithm is calibrated by an artificial neural network using data from satellites
to produce a product with 0.25° x 0.25° spatial resolution (Ashouri et al., 2015); ii) Climate
Hazards Group InfraRed Precipitation with Station (CHIRPS), which incorporates
interpolation techniques, satellite information of precipitation estimates, and station data to
provides a product with grid cells of 0.05° x 0.05° (Funk et al., 2015); and iii) Multi-Source
Weighted-Ensemble Precipitation MSWEP, which is derived from the optimal fusion of a
series of measurement, satellite, and reanalysis estimates to provides a product with 0.1° x
0.1° spatial resolution (Beck et al., 2019).

33



4.2.1.3. Reanalysis meteorological data

The re-analysis meteorological dataset obtained from the Modern-Era Retrospective
analysis for Research and Applications, version 2 (MERRA-2), was used as input data to
calibrate the proposed IMERG BraMaL product. MERRA-2 is the latest atmospheric re-
analysis of the modern satellite era, produced by NASA's Global Modelling and Assimilation
Office (GMAO), which uses the Goddard Earth Observing System (GEOS) model and
analysis scheme to provide a viable ongoing climate analysis (Gelaro et al., 2017). Some
recent studies verified the reliability of the MERRA-2 dataset, which presented a good
overall agreement with the observed data (Huang et al., 2022; Guo et al., 2021; Zhang et al.,
2020), as shown by Reichle et al. (2017) for runoff, rainfall, and soil moisture.

MERRA-2 provides global information with monthly temporal resolution from 1
January 1980 to the present, using a cubed-sphere horizontal discretisation at an approximate
resolution of 0.500° x 0.625° and 72 hybrid-eta levels from the surface to 0.01 hPa (Gelaro
et al., 2017). The latency of the MERRA-2 product is approximately three weeks after the
end of each month, which will constrain the latency of IMERG BraMaL to 3 weeks after the
event. We considered for each grid cell 53 MERRA-2 monthly variables with a particular
connection to precipitation (i.e. its formation and impacts on nature) (Table 2). These
variables can be divided into three large groups of data: single-level variables, Earth surface

forced variables, and radiation diagnostic variables.

Table 2 — Variables of MERRA-2, IMERG and CEMADEN used for model calibration

Spatial Temporal . Latency
Type  Data Type Resolution Resolution Period
= A 10 min 2014
[«5)
cg <> to
85 E Gauges Gauge present 1 day
@) (@)
Monthly 2000
o o to
e recipitation estimate 0.1 x 12
g < = precip 0.1° present  hours
o
?3 o Monthly 2000
3 0 g recipitation estimate 0.1 x 0 3.5
ST precip 0.1° present  months
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surface pressure; specific
humidity*; air temperature™; total
precipitable ice, liquid and vapor
water; surface skin temperature;
eastward wind**; northward
wind**; accretion loss of cloud
water to rain; convective source
of cloud ice and water;
convective production of rain
water; vertically integrated water
vapor tendency due to analysis,
chemistry and dynamics;

water vapor; northward flux of
atmospheric liquid water and
water vapor; liquid water
convective precipitation and large
scale precipitation; cloud area
fraction for high, low and middle
clouds; total cloud area fraction;
in cloud optical thickness of low,
middle and all clouds; cloud top
pressure and temperature;
height***; specific
humidity****; air
temperature****; eastward and
northward wind****; air
temperature*****;

[3+]

R vertically integrated water vapor

S tendency due to moist processes,

i) physics and turbulence;

% o evaporation from turbulence, loss 1980

S < of cloud water and loss of 0.5° x 3
o o e Monthly to

2 o precipitation water; eastward flux 0.65° resent weeks
> S of atmospheric liquid water and P

g

©

c

58]

[5)

@

* 2 e 10 meters

** 2,10 e 50 meters

*** 250, 500, 850 and 1000 hpa
***%250, 500 and 850 hpa
*****500 and 850 hpa

4.2.2. Model calibration to reduce the errors in rainfall estimates

The model used the IMERG Early Run and MERRA-2 products for the calibration
parameters through the k-nearest neighbours (KNN) algorithm, a non-parametric supervised
machine learning technique (Altman, 1992). The model runs on a monthly basis to minimise
the magnitude of the mean squared residual errors, producing the monthly IMERG BraMaL
rainfall product. KNN is an algorithm that identifies K samples in the training dataset (whose
independent variables are similar to the target values) and uses the average of these K

samples to perform classifications or regressions (Alizadeh & Nikoo, 2018).
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We used 55 variables for the model calibration, 54 inputs (53 from MERRA-2 and 1
from IMERG Early Run) and 1 output (monthly rain gauge observations). The observed
rainfall data was only used for the calibration of the IMERG BraMaL product, which enables
its application in regions with sparse or unavailable rain gauge networks after this step.

The observed point-scale rainfall was converted into grid cells to match the 0.1° x 0.1°
IMERG Early Run grid. For grid cells containing more than one rain gauge, the average of
the observed rainfall data was considered. In total, 1846 grid cells were used as input data,
subdivided into training (70%) and test (30%) datasets to calibrate and validate the model,
respectively, as performed by Zhang et al. (2021). In contrast to Zhang et al. (2021),
however, we considered this subdivision randomly in time (monthly) and in space
(indirectly), i.e. the same grid cell can be used for training and testing simultaneously but for
different periods (months and years). The data model was developed using the Scikit-learn
library: Machine Learning in Python (Pedregosa et al., 2011). Before the calibration, all input
data were standardised and normally distributed using the following equation:

z=(x-u)/s (1)

where z is the standardised value, x is the value to be standardised, and u and s are the
mean and the standard deviation of the data, respectively. This process prevents data of
different magnitudes from unequally influencing the determination of neighbours and
distances calculated by the model.

To avoid overfitting, we attempted to extract the better calibration parameters for the
model by testing 480 variations of the parameters, which returned the best performance with
K=13 neighbours, the Euclidean distance, and weight points by the inverse of their distances
for each variable. After calibration, the model scores were 0.98 and 0.81 for the training and

testing data, respectively. The calibrated model was then evaluated.

4.2.3. Performace evaluation metrics

Four statistical metrics were used to compare the estimations of the IMERG BraMal
product with the ground-based rainfall observations (i.e. the validation data) and the original
IMERG products (Early and Final Run), which includes the Error, the relative error (RE),
the mean absolute error (MAE), the mean relative absolute error (MRAE), the Pearson's
coefficient correlation (CC), and the Kling-Gupta Efficiency (KGE):

Error = E; - 0; (2)
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where O is the rain gauge-observed rainfall data, O is the mean rain gauge-observed rainfall
data, E is the rainfall data estimated by the products, E is the mean rainfall data estimated by
the products, o is the standard deviation, i is the time step, and n is the total number of
compared pairs. MRE and MRAE measure the accuracy of the IMERG BraMaL product,
with values close to zero indicating smaller errors. The CC ranges from -1 to +1, where
extreme values represent total negative and positive linear correlations, respectively. The
KGE values range from -oo to 1, with desirable values close to 1 and negative values
representing worse performances.

The evaluation procedures were performed considering the following four
perspectives: (i) an overall national-scale analysis, considering all monthly rainfall values
for the studied period; (ii) a seasonal analysis, considering the rainfall data month by month
throughout the analysed time series; (iii) a spatial analysis of the errors; and (iv) a group
analysis based on regions with the homogeneous mean monthly rainfall characteristics
defined by Rozante et al. (2018).

4.3. Results and discussion
4.3.1. National-scale comparison of products with field-based data

Figure 6 shows the scatter plots considering all 1846 grid cells distributed throughout
the country. Overall, the Early Run product presented the largest dispersion (CC = 0.69),
followed by the Final Run product (CC = 0.86). This significantly lower dispersion observed

in Final Run can be attributed to the product calibration incorporating observed rainfall data
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(Sungmin et al., 2017). Both original IMERG products tended to underestimate the observed
data, as shown by the greater number of points concentrated below the line of equality.
Similar underestimations were also identified for the monthly analyses of the IMERG Final
and Early Run products in the studies carried out by Wang et al. (2017) and Zhou et al.
(2021) in China. The IMERG Early and Final run products exhibited MAE and MRAE
values ranging from 52.21 mm (Early Run) to 33.80 mm (Final Run) and from 1.14 (Early
Run) to 1.04 (Final Run), respectively. Previous studies also found similar differences
between the monthly errors from the IMERG Final Run and Early Run products, compared
to gauge observations (Chen et al., 2022; Wang et al., 2021; Guo et al., 2019).

Overall, the IMERG BraMaL product performed better than the two original IMERG
estimates, with the lowest errors (MAE = 29.1 mm and MRAE = 0.86) and a higher positive
correlation (CC = 0.91). The KGE scores confirm that the BraMaL product (KGE = 0.86)
provides a better estimation of precipitation than the Final Run (KGE = 0.82) and Early Run
(KGE = 0.70) products, i.e. presenting the same variability magnitude of the rain gauge
measurements and a better agreement with the observed data. Bhuiyan et al. (2020) showed
that the modified IMERG product using ML techniques for a river basin in Bangladesh,
presented a smoother reduction of MAE for all quartiles evaluated (from 3.75-3.25 mm)
when compared to the IMERG Late Run product, i.e. 64% lower than the improvement for
IMERG BraMaL. Zhang et al. (2021) revealed an improvement of the best-modified product
created by DML techniques on the Chinese mainland, with CC increasing from 0.64 to 0.78
and KGE from 0.54 to 0.71, compared to IMERG Early Run, i.e. lower than that reached
with the BraMaL product. Overall, it was observed that the BraMaL product presented better

performance than other studies in our literature review.
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Figure 6 — Scatter plots of the grid cell precipitation values vs (a) IMERG Early Run, (b) IMERG
Final Run and (c) IMERG BraMalL, considering the national-scale analysis. The colours represent
the number of events, from lower (violet) to higher (yellow).

Figure 7 shows the MAE and MRAE values for different monthly rainfall intervals.
Overall, the IMERG BraMaL product exhibited lower relative and absolute errors than
IMERG Early Run for almost all rainfall intervals, especially between 0-550 mm. The MAE
values of the BraMaL product were similar to IMERG Final Run for monthly rainfall
intervals lower than 200 mm and lower than the same gauge-calibrated product for overall
monthly rainfall intervals between 200-550 mm. The values of MRAE for the IMERG
BraMaL product are lower than the IMERG Final Run for monthly rainfall intervals between

50-550 mm, showing that the error's magnitude of BraMaL is lower for most rainfall
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intervals. For some monthly rainfall intervals (e.g. > 550 mm), the MAE and MRAE values
of the two original IMERG products tend to be close to BraMaL errors.
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Figure 7 - (a) MAE and (b) MRAE values of the IMERG Early, IMERG Final and IMERG
BraMaL products for different monthly precipitation intervals.

4.3.2. Seasonal influence on product quality

In this analysis, the IMERG-based products (i.e., Early Run, Final Run, and BraMal)
were evaluated against the observed rainfall data month by month throughout the analysed
time series (2014-2021). Figure 8 shows the scatter plots for each rainfall product against
the observed data for each month of the year. Overall, it is possible to observe a greater
density area of points (i.e. in yellow) concentrated close to the line of equality for all
products, which is more explicit from February to May for IMERG BraMaL. The IMERG
Early Run product presented more dispersed points for all months, clearly exhibiting a
greater tendency to underestimate the gauge data, especially from June to August, where
monthly observed precipitation close to 500 mm was not detected by the satellite-based
estimations. Overall, the Final Run product improved the Early Run estimates, reducing the
data dispersion, mainly between June and August.

Figure 9 shows the values of the four statistical metrics for each product, exhibited
month by month. The MAE values reveal that the IMERG BraMaL product presented lower
errors than the two original IMERG products for all months, especially the Early Run
product. Overall, the MAE values of the IMERG Early and Final Run products were 23 and
5 mm larger than the IMERG BraMaL product, with values of MAE for the Early Run
reaching up to 60.9 mm in March. It is worth highlighting that, in August and September,
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the MAE for the IMERG BraMaL product presented values below 20 mm. For the MRAE
metric, the IMERG BraMaL product presented the same superiority as in MAE, especially
in June and July, which reached MRAE values around 160 and 260%, respectively.
However, these higher relative values occur in months with low-magnitude precipitations,
I.e. not interfering with the application or use of the BraMaL product. The best CC and KGE
values were observed for IMERG BraMaL in almost all months, but mainly from June to
August, with CC ranging from 0.50 to 0.90 and KGE varying between 0.15 and 0.82. For
these three months, the two original products presented the worst performances, especially
the Early Run, with KGE and CC lower than 0.2 and 0.5, respectively. Although higher for
almost all months, the CC of IMERG BraMaL presented values similar to the IMERG Final
Run product. However, the KGE values confirm the efficiency of the IMERG BraMaL
product monthly, with more substantial differences for the IMERG Final compared to the
CC.

41



Observed Data (mm) Observed Data {mm) Observed Data (mm) Observed Data (mm) Observed Data (mm)

Observed Data (mm)

250 500

250 500

250 500
APR

250 500
APR

250 500
MAI

200 400
MAI

200 400

200 400

0 200 400
IMERG Early (mm)

100 200 300
IMERG Final (mm)

o 200 400
IMERG BraMaL (mm)

200 400
IMERG Early (mm)

200 400
IMERG BraMaL (mm)

IMERG Final (mm)
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(third and sixth columns) estimates per month. The colours represent the number of events, from
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Figure 9 — Monthly variations of (a) MAE, (b) MRAE, (c) KGE, and (d) CC for the IMERG Early
Run, IMERG Final Run, and IMERG BraMaL products.

Figure 10 shows the MAE and MRAE values month by month, considering different
intervals of monthly precipitation. Overall, it is possible to observe an increase in the MAE
and MRAE values as the monthly rainfall accumulates. Once again, the absolute and relative
errors of IMERG Early Run were considerably greater than the two other products,
especially from June to November. The IMERG BraMaL product presented errors slightly
lower than IMERG Final Run, except in two months for the MAE (October and November)
and MRAE (January and February), where the errors were similar. The remarkably better
performance of IMERG BraMaL means that the IMERG near-real-time product was well-
corrected with the atmospheric parameters used in the calibration to produce the proposed

product.
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Figure 10 — Monthly variations of the IMERG Early Run, IMERG Final Run, and IMERG
BraMaL products for different intervals of precipitation: MAE from (a) January to December (I)

and MRAE from (m) January to (y) December.
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4.3.3. Spatial variability of product quality

This analysis evaluates the spatial distribution of the monthly MRAE of IMERG
BraMaL over Brazil. Figure 11 shows that the RESs are not concentrated in a specific region
and are mostly between -50 and 50%. For instance, the studies by Rozante et al. (2018),
Gadelha et al. (2019), and Freitas et al. (2020) identified remarkable variations in the
performance of the IMERG Final Run product as a function of the analysed region in Brazil,
with higher errors and biases in the N and CW regions, as well as along the Atlantic coast of
the NE region. This indicates that the proposed model was able to correct the estimates for
the IMERG BraMaL product across the whole of Brazil, a large country with diverse rainfall

regimes and climates.
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Figure 11 — Spatial distribution of RE for the IMERG BraMaL product by interval classes: (a) RE
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parentheses identifies the quantity of grid cells.
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Figure 12 shows that approximately 60% of the monthly precipitation values of
IMERG BraMaL exhibit Errors smaller than 25 mm. When considering Errors smaller than
50 mm, this percentage rises to approximately 83% of the values. Regarding the RE,
approximately 60% of the data present under-estimation or over-estimation errors, up to 25%
of the monthly precipitation value. By expanding the analysis to an RE of up to 50%,
approximately 80% of the data is in this range. This indicates that around 65-80% of the
estimated precipitation could replace the field data without a notable change in the observed
values, considering the RE of 25 and 50%, respectively. Only 6% of the data present RE
exceeding 300%. However, as mentioned above, when evaluating the Errors of these events,
a small difference in the precipitation amount is observed. These high RE occur in various
parts of the territory and are mostly associated with low monthly precipitations, with an
average of 30 mm and a standard deviation of 39 mm. It is important to emphasise that these

estimates do not compromise the overall quality of the product due to the low magnitude of

the values.
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Figure 12 — Histogram of the (a) Errors (mm) and (b) Relative Errors (%) of precipitation
estimated by the IMERG BraMaL product.

47



4.3.4. Regional scale analysis of the product quality

In order to compare the performance of the IMERG BraMaL and the two original
IMERG, we evaluated separately these products in the five regions with homogeneous
monthly rainfall characteristics defined by Rozante et al. (2018). Figure 13 shows a large
dispersion of data for the estimates of the IMERG Early Run product in almost all regions,
except for R5, which had the least number of grid cells analysed (i.e. 1,782). A reduction of
this dispersion is observed for IMERG Final Run, followed by an improvement in agreement
with the observed data for the BraMaL product. Overall, the regions R1 and R2 (with 4,838
and 10,581 grid cells analysed, respectively) present higher densities of points concentrated
along the 1:1 line, compared to other regions. On the other hand, the region R4 (with 2,248
grid cells analysed) exhibits several underestimations of the two original IMERG products,
which other authors (Rozante et al., 2018; Gadelha et al., 2019; Freitas et al., 2020) attributed
to the influence of convective clouds that occur along the Northeast coast of Brazil during
the rainy period. These underestimations were mainly adjusted by IMERG BraMal,
demonstrating the robustness of the proposed product.

The variations of four metrics for the homogeneous regions are shown in Figure 14. A
similar order of magnitude of MRAE was observed for all products. On the other hand, the
MAE of IMERG Early Run presented higher values (from 76 to 43 mm) than the IMERG
Final Run (from 43 to 26 mm) and IMERG BraMaL (from 41 to 29 mm) products, which
were similar to each other, except for region R4. For region R4, IMERG BraMaL presented
MAE of 37 mm, while the IMERG Final Run product exhibited MAE of 43 mm, indicating
a better overall performance of the proposed product. The other two performance metrics
confirm that the region R4 showed improvement of BraMaL (KGE = 0.80 and CC = 0.86)
compared to the IMERG Early (KGE = 0.19 and CC = 0.56) and Final Run (KGE = 0.57
and CC = 0.86). This improvement in performance in R4 was mainly observed during the
rainy season, as shown in the seasonality analysis. In contrast to the study performed by
Bhuiyan et al. (2018) in the Iberian Peninsula, with a study period spanning 11 years, the
results observed in the region R4 show that the machine learning-based model can

successfully correct the precipitation data with higher values.
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homogeneous regions (from the top to bottom: R1 to R5). The colours represent the number of

events, from lower (violet) to higher (yellow).
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Figure 14 — Statistical indexes (a) MAE, (b) MRAE, (c) KGE, and (d) CC for the IMERG Early
Run, IMERG Final Run and IMERG BraMaL per analysed region.

4.3.5. Comparison of IMERG BraMalL estimates with other global precipitation
products

The comparison of monthly precipitation estimates by IMERG BraMaL with the
CHIRPS, PERDIANN-CDR, and MSWEP products for all 1846 evaluated gris cells show
an overall lower dispersion of the data for the proposed product (CC =0.91), especially when
confronted with PERSIANN-CDR (CC = 0.68) (Figure 15). The PERSIANN-CDR and
MSWEP (CC =0.78) products presented an overall trend to underestimate the observed data,
while CHIRPS (CC = 0.86) exhibited a better agreement with the rain gauges, with a higher
density of points along the 1:1 line. The KGE scores attest that IMERG BraMaL (KGE =
0.86) presents a better rainfall estimation when compared to PERSIANN-CDR (KGE =
0.09), MSWEP (KGE = 0.60), and CHIRPS (KGE = 0.81). A similar lower agreement
between PERSIANN-CDR and the observed data was also identified by Ramos et al. (2020)
when evaluating the ability of 14 satellite-based precipitation products to characterise

extreme events that trigger floods.
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Regarding the errors, IMERG BraMaL presented lower MAE (29.1 mm) and MRAE
(0.86) in relation to CHIRPS (MAE = 38.16 mm and MRAE = 1.11), PERSIANN-CDR
(MAE = 74.20 mm and MRAE = 0.87), and MSWEP (MAE = 45.21 mm and MRAE =
0.93). Such performance metrics confirm that IMERG BraMaL better estimates the monthly
rainfall when compared to the main global satellite-based precipitation products. For
instance, the evaluation of 10 satellite-based products carried out by Wati et al. (2021) in
Indonesia found lower values of error-based metrics for CHIRPS, PERSIAN-CDR, and
MSWEP, highlighting the ability of IMERG BraMaL to estimate more accurately the

monthly rainfall.
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5 EVALUATION OF SINGLE AND COMBINED MACHINE LEARNING
MODELS TO IMPROVE DAILY RAINFALL ESTIMATIONS

5.1. Contextualisation

Machine learning algorithms proved to be a good tool for improving satellite-based
precipitation, as shown in Chapter 4 and some other studies (e.g. Sengoz et al., 2023; Tyralis
etal., 2023). However, some previous studies also identified that the combination of machine
learning models can further increase its performance. Currently, there are three different
procedures available in the literature to combine machine learning algorithms for improving
satellite-based precipitation data, which include: i) a combination between classification and
regression algorithms (Zhang et al., 2021); ii) a combination and stacking of regression
algorithms (Montero-Manso et al., 2020; Papacharalampous et al., 2023c); and iii) the use
of hybrid algorithms (Di Nunno et al., 2022).

Although presenting satisfactory results, the studies combining machine learning
algorithms still present some limitations, as they: i) still rely on the use of specific regional
ground-based data for the studied region, such as rain gauge observations (Bhuiyan et al.,
2019, 2020b; Papacharalampous et al., 2023a, 2023b); ii) use only the mean and the median
of the model outputs to obtain the final precipitation estimations (i.e. without considering
that each model contributes with different weights) (Papacharalampous et al., 2023c); iii)
use predicted data in a model together with their corresponding true values as inputs for other
models (i.e. propagating the errors for training steps) (Papacharalampous et al., 2023c); and
iv) consider a pre-defined and limited combination of classification and regression
algorithms (i.e. without evaluations of more appropriate algorithms) (Zhang et al., 2021).

In this chapter, we focus on improving the IMERG BraMaL product to produce more
accurate daily precipitation estimations for Brazil, also based on using the IMERG Early
Run and re-analysis database as input and without dependence on ground-based local or
regional data. The general and transferable strategy of this chapte also accounts for i)
evaluating the performance of single and combined machine learning algorithms to improve
these precipitation estimates, ii) testing various combinations of machine learning models
(regression, classification, and the combining regression-classification), and iii) considering

different weights for each model used in the combination.
5.2. Materials and methods
5.2.1. Observed and estimated dataset

This study used precipitation data from 3,039 rain gauges operated by CEMADEN
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throughout Brazil, covering the period from 01/01/2014 to 31/12/2022. The selection of such
rain gauges involved a rigorous quality control process, ensuring the reliability of this data
(Freitas et al., 2020), as previously detailed in section 4.2.1.1. Similarly to the monthly
IMERG BraMaL product, Version-06B of the IMERG Early Run was also used as a baseline
satellite precipitation product to calibrate the proposed daily IMERG BraMaL product, while
Version-06B of the IMERG Final Run product was used for comparisons with the
estimations of the IMERG BraMaL product (see item 4.2.1.2). Furthermore, the same 53
meteorological variables from the MERRA-2 reanalysis product were used to provide input
data for calibration of the daily IMERG BraMaL, similar to the monthly basis product (see
item 4.2.1.3).

5.2.2. Calibration of machine learning models

Nine classification and six regression machine learning models were trained and
evaluated. Classification models: Support Vector Machine (SVM), Logistic Regression
(LR), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN), Artificial
Neural Network (RNA), Stochastic Gradient Descent (SGD), Gradient Boosting (GB), and
Xtreme Gradient Boosting (XGB). Regression models: Linear Regression (LRi), Decision
Tree (DT), K-Nearest Neighbor (KNN), Artificial Neural Network (ANN), Stochastic
Gradient Descent (SGD), and Gradient Boosting (GB).

We used 61 variables for the model calibration, 60 inputs (57 from MERRA-2 and 3
from IMERG Early Run) and 1 output (daily rain gauge observations). Similarly to the
monthly IMERG BraMaL, the observed rainfall data was only used for the model's
calibration, enabling its application in regions with sparse or unavailable rain gauge
networks after this step. In addition, the observed point-scale rainfall was also converted into
grid cells to match the 0.1° x 0.1° IMERG Early Run grid for the calibration of the daily-
based models. The average of the observed rainfall data was also considered for grid cells
containing more than one rain gauge. For all models, 1,846 grid cells were used as input
data, subdivided into training (70%) and test (30%) datasets to calibrate and validate the
model, respectively (Zhang et al., 2021; Bansal et al., 2022; Nunno et al., 2022) (Erro! Fonte
de referéncia ndo encontrada.). In contrast to Zhang et al. (2021), however, we considered
this subdivision randomly in time (monthly) and in space (indirectly), i.e. the same grid cell
can be used for training and testing simultaneously but for different periods (months and
years).

Similarly to the monthly IMERG BraMaL, the data model was developed using the
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Scikit-learn library: Machine Learning in Python (Pedregosa et al., 2011), and all input data
were standardised and normally distributed before the calibration (see item 4.2.2). Three
different methods were considered to define the best daily precipitation estimation product:
i) single machine learning (SML), based on the calibration of a single regression model, ii)
dual machine learning (DML), combining a classification model and a regression model, and
iii) multiple machine learning (MML), which combines many regression models.

5.2.2.1. Calibration of the simple machine learning (SML) method

For the SML method, six regression models (i.e. RLi, GB, DT, RNA, KNN, and SGD)
were directly considered for the training data (Figure 16). After model calibration, the
performance of the models was evaluated using statistical metrics applied to the test data.
The simple regression model with the best daily precipitation estimates was selected and
used to be further evaluated and compared to double and multiple machine learning

techniques.
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Figure 16 — Schematic representation of training and testing the simple, double, and multiple
machine learning models.

5.2.2.2. Calibration of the double machine learning (DML) method

For DML models, calibrations were first performed for the classification models
(Figure 16), which assigned a value of 1 for observed precipitation greater than 5 mm/day
and a 0 for those below this threshold. This first calibration aimed to allow the identification
of significant daily rain by the classification models, as from the analysis of the CEMADEN
dataset used in this study, precipitation higher than 5 mm/day comprises at least 80% of
annual rainfall. Eight classification models (i.e. SVM, RL, KNN, GB, RF, DT, SGD, and
ANN) were tested for this first calibration. The most efficient classification model was
selected based on a performance evaluation to separate rain and non-rain events. The rain
events were then calibrated by seven regression models (i.e. SVM, KNN, GB, DT, ANN,

SGD, and RLi), whose performances for daily precipitation estimates were evaluated using
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statistical metrics.
5.2.2.3. Calibration of the multiple machine learning (MML) method

Similarly to DML, the MML models were calibrated into two steps (Figure 16). Firstly,
five regression models (i.e. KNN, GB, DT, SGD, and ANN) were trained using both the
input estimated variables (i.e. MERRA-2 and IMERG dataset) and the gauge-based
precipitation data (i.e. CEMADEN). The precipitation estimated for the five models was
then linearly combined and used as input data for a stacking regression model, considering

the particularities and weights of each model.
5.2.3. Performance evaluation of the models and methods

Four statistical metrics divided into three main groups were used to assess the quality
of the ML-based models and methods. The first group aimed to analyse the efficiency of the
classification models and methods in detecting days with precipitation events (i.e. classifying
into rainy and non-rainy days), including F1-Score, Precision, Critical Success Index (CSlI),
Accuracy, and Area under the Receiver Operating Characteristic Curve (AUC-ROC):

2x(Precision x Recall)

F1 —score = Precision + Recall (10)
o TP

Precision = TP+ TP (11)
TP

Recall = m (12)
TP

S = PN (13)

TP + TN
Accuracy = (14)

TP + TN + FN + FP

where TP and TN represent the true positives and negatives, and FP and FN represent the
false positives and negatives, respectively. F1-score is an evaluation metric that combines
precision and recall to assess imbalanced classes. Precision is evaluate the amount of
positives correctly evaluated. The Critical Success Index (CSI) is a useful metric for
measuring the fraction of positive events correctly detected out of all FP and FN events.
Accuracy measures the proportion of correctly classified events among the total events,
providing an overall effectiveness. The AUC-ROC represents the area under the ROC
(Receiver Operating Characteristics) curve, which shows the relationship between the FP

and TP rates, and measures the discriminative power of a model at different classification
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thresholds. The values of F1-score, Precision, CSI, and Accuracy range from -1 to 1, while
for AUC-ROC. For all metrics, the desirable values are close to 1.

We used a second group of metrics to analyse the errors and agreements of the daily
precipitation estimates adjusted by the regression models for the rainy days in comparison
to the observed data, including the Mean Error (ME), Mean Absolute Error (MAE), Mean
Relative Error (MRE), Mean Relative Absolute Error (MRAE), Correlation coefficient (CC)
and Kling-Gupta Efficiency Index (KGE):

1 n
ME = —Z Oi - Ei (15)
Niaij=1
1 n
n i=1
1~n 0; —E,
MRE = —Z S (17)
niai-1 0;
MRAE = > Zn 0i— Ei| (18)
Cndai—q | 0
" (0, —0)(E;—E
CC — 1_1( l )( l ) (19)
ngl(oi — 0y Jzzl:l(Ei —b)?
KGE =1 —/(CC— 1) + (Beta — 1) + (Gama — 1)2 (22)
G _oE 20
ama = 0_0 ( )
Beta = E 21
eta = (21)

where O is the value observed by the rain gauges (mm), O is the mean gauged values (mm),
E is the value estimated by the models (mm), E is the mean of estimated values (mm), and
o is the standard deviation. VValues close to zero indicate smaller errors in the estimations for
the error-based metrics, while values close to 1 indicate better agreement between estimated

and observed data.
5.3. Results
5.3.1. Evaluation of SML models

Figure 17 shows the overall mean values of the metrics used to evaluate the
performance of the six regression models used in the SML method to estimate daily
precipitation. Overall, the KNN model presented the best performance, with lower errors

(MAE = 2.47 mm and MRAE = 2.25) and better agreement (KGE = 0.70), followed by GB
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(MAE = 2.73 mm and MRAE = 2.30) and ANN (KGE = 0.64) regarding the errors and
agreement metrics, respectively. The mean values of MRAE and ME for these three models
by precipitation intervals (i.e. 1-5, 5-10, 10-15, 15-25, 25-50, 50-75, 75-350 mm/day) show
that KNN exhibited better performance for precipitation intervals from 15-50 to 50-350
mm/day, which represent only 29% of the events but correspond to 70% of depth (Figure
S1).
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Figure 17 - (a) MAE (mm), (b) MRAE, and (c) KGE values of the single machine learning
(SML) models for estimating precipitation.

5.3.2. Evaluation of DML Models

Figure 18 shows the overall mean values of the efficiency metrics used to evaluate the
quality of the eight classification models in separating rain and non-rain events. The models
SGDC, SVM, and GB performed better for the F1-score (0.61, 0.60, and 0.60, respectively)
and AUC-ROC (0.73, 0.73, and 0.73, respectively) metrics (Fig. 19ab). These high values
of the metrics F1-score and AUC-ROC indicate that these models can minimise false
positive and negative precipitation events. Overall, all models exhibited high Accuracy,
varying between 0.82 (i.e. DT) and 0.89 (i.e. SGDC), probably influenced by the imbalance
between the rain and no-rain classes since the number of days without precipitation is
commonly higher along the year in most regions (Fig. 19d). The models SVM, SGDC, and
GB also presented good performances for CSI (i.e. 0.48, 0.44, and 0.42, respectively) (Fig.
19e). These results indicate the ability of these three models to identify true positives and
true negatives. On the other hand, an underperformance of most efficiency metrics (i.e. F1-
score, AUC-ROC, and CSI) was identified especially for RF and KNN. The analysis of the
efficiency metrics of these three models by precipitation intervals (i.e 5-10, 10-15, 15-25,
25-50, 50-75, 75-350 mm/day) shows that GB presented a slight superiority of ~7.5%, on
average, when compared with SVM and SGDC for precipitation intervals from 1-5 to 5-15
mm/day (i.e. representing 70% of precipitation events) (Figure S2). Because classifications
tend to improve when precipitation intervals increase (i.e. correctly classifying rain events
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with lower volumes is more challenging), models with low rates of false positives for smaller
intervals and without a high number of false negatives for larger intervals are shown to be
more appropriate. Therefore, GB was considered the best classification model for identifying

rain and non-rain events.
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Figure 18 — Performance of the double machine learning (DML) models RL, DR, RF, KNN, SVM,
ANN, SGD, GB and XGB to estimate rain and non-rain events based on the statistical metrics (a)
F1-score, (b) AUC-ROC, (c) Accuracy, and (d) CSI.

Figure 19 shows the overall mean values of the statistical indices used to evaluate the
quality of the six regression models for estimating daily precipitation from the DML model.
KNN presented an overall best performance, with lower errors (MAE = 11.0 and MRAE =
17.2 mm) and higher agreement (KGE = 0.36), followed by SGDR (MAE = 11.40 mm,
MRAE = 1.63, and KGE = 0.28) and GB (MAE = 11.51 mm, MRAE = 1.39, and KGE =
0.22). Compared to the KNN model calibrated by the SML method, the performance of KNN
using the DML method seems to be worse in classifying rain, with errors about 345% higher.
However, it is worth mentioning that these index values cannot be individually compared
since a regression procedure considering all data was used for the SML models, conversely
to the DML models, where this regression only considered the data classified as rain.
Furthermore, this stage aims to show the best models of each method instead of comparing
methods. By precipitation intervals (i.e. 5-10, 10-15, 15-25, 25-50, 50-75, 75-350 mm/day),
KNN presented lower MAE (from 15 to 350 mm) and MRAE (from 25 to 350) for ranges
upper to 10-15 mm, which represent 52% of the events and 83% of the depths (Figure S3).
Therefore, following the same criteria for choosing the SML model, KNN was selected for

the DML regression.
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Figure 19 - (a) MAE, (b) MRAE and (c) KGE statistical metrics of the double machine learning
(DML) models to estimate precipitation.

5.3.3. National-scale comparison of the IMERG BraMaL products with field-based
data

Figure 20 shows the scatterplots with the metrics comparing the similarity between
the daily precipitation observed by the rain gauges and estimated by the products IMERG
Final Run and the three versions of IMERG BraMaL (i.e. based on SML, DML, and MML
models), considering the 1,846 grid cells nationwide. The lowest agreements were noticed
for IMERG Final Run (CC = 0.68 and KGE = 0.66) and IMERG BraMaL based on the
DML model (CC = 0.68 and KGE = 0.50), with both tending to underestimate the
observed data, as shown by the greater number of points concentrated below the line of
equality. Conversely, the IMERG BraMaL based on the MML model contains a cloud of
points more concentrated close to the line of equality, with CC = 0.77 and KGE = 0.70.
Overall, the three versions of IMERG BraMaL exhibited lower values of MAE (ranging
from 5.27 to 6.49 mm) compared to IMERG Final Run (6.83 mm), with the version
considering the MML model performing better. Considering the relative errors, IMERG
Final Run presented a lower MRAE (i.e. 1.14) compared to IMERG BraMaL (ranging
from 2.25 for MML and 2.59 for DML). These lower absolute and relative errors of
IMERG BraMaL considering SML and MML models were noticed for almost all

precipitation intervals, especially between 0 and 170 mm, with a slightly lower MRAE of

60




IMERG BraMaL SML for the ranges between 10 and 50 mm (Figure S4).
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Figure 20 — Scatter plots of the grid cell values vs (a) IMERG Final Run, (b) IMERG BraMaL
SML, (c) IMERG BraMaL DML e (d) IMERG BraMaL MML, considering the national-scale
analysis. The colours represent the number of events, from lower (violet) to higher (yellow).

5.3.4. Seasonal analysis of the IMERG BraMaL products

Figure 21 shows the scatterplots for each precipitation product against the observed
data for each month of the year. From January to April, the products show similar behaviour,
with a higher density of points (yellow represented) closer to the line of equality and an
overall trend to underestimate mainly the observed data > 50 mm/day (Fig. 21 a.1- e.4).
Visually, the IMERG BraMaL considering the SML and MML models presented a
considerable improvement from June to September, with a lower dispersion of data and,
consequently, with the cloud of points more adjusted to the line of equality compared with
the IMERG Final Run product (Fig. 21 f.1 - i.4 ). The higher KGE and lower errors (MAE
and MRAE) presented during this 4-month window for the IMERG BraMaL based on SML
(0.84, 2.80 mm, and 1.41, respectively) and MML (0.86, 2.78 mm, and 1.58, respectively)

models can confirm such enhancement (Figure 22), which mainly occurred for precipitation
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intervals higher than 50 mm (Fig. S5). For instance, the IMERG Final Run product exhibited
KGE = 0.57, MAE = 4.95 mm, and MRAE = 1.60 during the same period. From October to
December, the products return to similar behaviour, with slight superiority of the IMERG
BraMaL product considering SML and MML models in terms of MAE and KGE. It is
noticeable that the DML-based product showed the worst KGE performance for all the
months analysed.
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Figure 22 — Monthly variations of (a) MAE, (b) MRAE, and (c) KGE for the IMERG Final Run
and the IMERG BraMaL based on SML, DML, and MML models.

5.3.5. Regional-scale analysis of the IMERG BraMaL product

The performance evaluation of the IMERG BraMaL products by regions in Brazil with
homogeneous monthly rainfall characteristics shows a greater dispersion of data for the
estimations of the IMERG Final Run and IMERG BraMaL DML-based products from R1
to R4, with KGE ranging from 0.30 to 0.43 (R4) and from 0.52 to 0.70 (R1), respectively
(Figure 23 and Figure 24). A reduction in the dispersion and the underestimation propensity
of data can be observed for IMERG BraMaL based on SML and MML models between R1
and R4 when compared with the IMERG Final Run product, with the KGE values going
from 0.70t0 0.74 (MML) and 0.76 (SML) in R1, from 0.53 to 0.61 (SML) and 0.60 (MML)
in R2, from 0.50 to 0.57 (SML) and 0.60 (MML) in R3, and from 0.57 to 0.64 (SML) and
0.65 (MML) in R4. The error metric MAE confirms this better performance of the IMERG
BraMaL product based on SML and MML models, with lower values in R1 (4.57 and 4.63
mm), R2 (5.74 and 5.67 mm), R3 (4.10 and 3.98 mm), and R4 (4.40 and 4.32 mm) compared

with IMERG Final Run (6.68, 7.26, 5.06 and 5.95 mm, respectively). Conversely, such well-
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defined improvement of the IMERG BraMaL product considering SML and MML models
cannot be identified by the MRAE values.
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5.3.6. Comparison of daily IMERG BraMMaL estimates with other global
precipitation products

As shown in the national, regional, and seasonal scale analyses, IMERG BraMaL
based on SML and MML models presented an overall better performance in estimating daily
precipitation, with a slight superiority of the MML-based product, which considers a linear
combination of models that presented good results in the SML-based analyses, including
KNN, ANN, and GB. Therefore, the MML model can be considered the best choice for the
daily precipitation estimates of this new product, called IMERG BraMMaL (Intercalibrated
Merged Retrievals for GPM in Brazil with Multiple Machine Learning). The comparison of
these daily estimates by IMERG BraMMaL with the CHIRPS, PERDIANN-CDR, and
MSWEP products for all 1846 evaluated grid cells show an overall lower dispersion of the
data for the proposed product (KGE = 0.70), especially when confronted with PERSIAN-
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CDR (KGE = 0.05) (Figure 25). After IMERG BraMMaL, the product that presented the
best agreement was MSWEP, with KGE = 0.54. This superiority of IMERG BraMMaL in
estimating daily precipitation can be attested by the lower values of MAE and MRAE
compared with CHIRPS (MAE = 0.67 mm and MRAE = 4.42), PERSIANN-CDR (MAE =
7.76 mm and MRAE = 2.02), and MSWEP (MAE = 6.22 mm and MRAE = 3.05). The lower
MRAE value of PERSIAN-CDR was observed because this product greatly underestimates

the observed data, directly impacting the relative error.
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Figure 25- Scatter plots of the daily precipitation observed values vs (a) IMERG BraMMalL, (b)
CHIRPS, (c) PERSIANN-CDR, and (d) MSWEP. The colours represent the number of events,
from lower (violet) to higher (yellow).

5.3.7. Data evaluation of the monthly accumulated IMERG BraMMalL estimates

Daily precipitation estimations of the IMERG BraMMaL product were accumulated
monthly and compared with estimations of the monthly IMERG BraMaL product based on
the KNN regression model developed by Freitas et al. (2024) (Figure 26), which already
presented better estimations compared with other global precipitation products, including
IMERG Final Run and the three products previous analysed (i.e. CHIRPS, PERSIANN-
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CDR, and MSWEP). The IMERG BraMMaL product visually presents a much smaller data
dispersion, with a solid yellow blotch with more than 300 pixels concentrated exactly above
the line of equality. Compared with the early monthly IMERG BraMaL, the improved
product also presented statistically better performance, with CC and KGE rising from 0.91
t0 0.97 and 0.86 to 0.95, respectively. This better performance of KGE was identified for the
IMERG BraMMaL product over the months (Fig. S6). Similarly, a better performance was
also observed for the error analyses, with values of MAE and MRAE for the IMERG
BraMMaL product reducing from 29.10 to 13.33 mm and 0.86 to 0.28, respectively. Such
lower MAE and MRAE values were noticed for the improved daily IMERG BraMMaL
product over the months, especially from January to March and May to September,

respectively (Figure S6).
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Figure 26 — Scatterplots of observed monthly precipitation values in the grid cell vs the values of
the (a) monthly IMERG BraMaL product based on the KNN regression model and proposed by
Freitas et al. (2024), and (b) IMERG BraMMaL product based on the MML model and monthly

accumulated.

5.4. Discussion

5.4.1. Performance of machine learning models as tools to improve precipitation
estimates

The selection of machine learning models to classify rainfall events and improve
precipitation estimates requires the consideration of their performance. The findings of this
study were consistent with other works worldwide (e.g. Papacharalampous et al., 2023b;
Hengel et al., 2018; Das et al. 2022), which found that the model GB performed better than
other models (e.g. SVM and SGDC) for classifying events into rain and non-rain. Similar to
what was pointed out by Hengel et al. (2018), we believe that such improved performance

comes from the efficiency of GB in dealing with imbalanced classes of data, as the internal
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decision trees are iteratively adjusted to focus on misclassified instances. Also, such decision
trees of GB can extrapolate better beyond the training set range when compared with other
models. Conversely, SVM and SGDC seek to find the hyperplane that best separates the
classes in the data space and uses part of the data to adjust and update the calibration
parameters, respectively. Although less accurate for detecting rain and non-rain when
compared with GB, SVM and SGD also presented good performances as pointed out by Yu
et al. (2023), Bansal et al. (2022), and (Sattari et al., 2023).

Our results also indicated that KNN was the best regression model regarding
performance to improve the satellite-based precipitation estimates, whether individually or
combined with classification models, since their predictions are based directly on the training
data, being effective for nearest neighbours that present close relationships (Liu et al., 2020).
This result corroborates the findings by Freitas et al. (2024), which applied KNN to enhance
the IMERG Early Run estimates at a monthly scale. This performance of KNN was closely
followed by GB, which also performed well in the study by Papacharalampous et al. (2023b)
in the entire contiguous United States for merging satellite and earth-observed precipitation
data at a daily scale. Our findings diverge from the study by Bansal et al. (2022), which
points to SVM, after a literature review and research, as rendering the best results to
predictive analytics in real-time applications related to a multidisciplinary sphere.

Previous studies identified substantial differences between the daily satellite-based
estimates from the IMERG Final Run product and the rain gauge observations worldwide
(e.g. Ramadhan et al., 2022; Sungmin et al., 2017; Yu et al., 2021), including in Brazil
(e.g. Freitas et al., 2020; Gadelha et al., 2019). Also, prior studies using distinct machine
learning models to improve precipitation estimates observed different performances. For
instance, the studies by Bhuiyan et al. (2019) and Bhuiyan et al. (2020) respectively
identified the RF and ANN models as the best options for merging satellites and observed
rainfall data in the Brahmaputra river basin (China Bhutan, Nepal, India, and Bangladesh)
and over complex terrains (Peruvian and Colombian Andes in South America, and the Blue
Nile in East Africa). At the same time, Papacharalampous et al. (2023a) pointed out that
model Xtreme GB performed better in the United States of America. Therefore, our study
tested the combination of machine learning models (e.g. SML, DML, and MML) to improve
the daily precipitation estimates of the IMERG Early Run product without using observed
data. From this combination, DML performed worst in generating the IMERG BraMaL
product with daily precipitation estimates. This performance of a DML model diverges from

the results found by Zhang et al. (2021), which pinpointed a better performance of a DML
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model (RF-ANN an RF-RF) compared with an SML model (RF), mainly because of the
greater capacity of the DML model in describing variations of precipitations, according to
the authors. Our results point out that the SML and MML models exhibited improved
performances, with MML being slightly greater as using a weighted average of several
models, including KNN, the better SML used in the comparisons, corroborating the findings
obtained by Freitas et al. (2024).

It is worth highlighting that, conversely to the previous studies (e.g. Bhuiyan et al.,
2019, 2020b; Papacharalampous et al., 2023a, 2023b), our results were based on the test
dataset, without directly relying on field data. Nonetheless, they significantly improved in
reducing random and systematic errors for daily precipitation estimates. This suggests the
model was successfully calibrated, allowing its application in other regions where gauge data
are unavailable or present low quality (Ajiboye et al., 2015). Additionally, the model
presented reliable results on the independent validation dataset since we used extreme
precipitation events (lowest and highest) for the training dataset, avoiding data overfitting.

5.4.2. Potentialities of IMERG-BraMMal as a new estimator of daily precipitation

The selection of satellite-based precipitation products for scientific research purposes
and management practices requires the consideration of their performance in distinct spatial
and temporal scales as well as the direct influence of several factors (e.g. rainfall regimes,
climate, altitude) that can affect its agreement with the ground-based rainfall data (Bhuiyan
et al., 2017, 2019, 2020a). For instance, the studies by Rozante et al. (2018), Gadelha et al
(2019), Freitas et al. (2020), and Ramos Filho et al. (2022) identified considerable under and
overestimations of satellite-based precipitation products in Brazil, which were more
accentuated in the North, Central-West, and Northeast regions of the country. Other studies
worldwide also observed general trends of under and overestimations of the satellite-based
estimates, especially at short time resolutions (e.g. Beck et al., 2019; Peng et al., 2021; Wati
etal., 2021; Xiang et al., 2021). A general trend of daily underestimation has also been found
to occur for some global precipitation products in our analyses, especially for MSWEP and
PERSIANN-CDR (see Fig. 25), with most values located below the 1:1 line in the
scatterplots, which is consistent with other works (e.g. Du et al., 2023; Fallah et al., 2020);
Guo et al., 2019).

Conversely to other global products, IMERG BraMMaL presents smaller errors and
better agreement with the daily observed ground-based data (Fig. 25), representing advances

for precipitation estimates from space. Likewise to the IMERG BraMaL product, such errors
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were much-reduced, now daily, in regions in Brazil where the IMERG Final Run largely
underestimates the rain gauge data, as in the Northeast coast, which is associated with the
difficulties of the passive microwave sensors in detecting warm-rain systems over land
(Freitas et al., 2020; Gadelha et al., 2019; Rozante et al., 2018). In the challenging context
of precisely estimating precipitation regionally, IMERG BraMMaL can be an important tool
for providing a more reliable regional daily series, expanding the potential for hydrological
analysis and simulations, and allowing a more accurate water balance modelling, being of
large interest for water resource, agricultural and risk management. Compared to other main
global products, IMERG BraMMaL also has the potential to have a higher latency (3 weeks)
when compared, for instance, with the IMERG Final Run (3.5 months; Huffman et al., 2019)
and PERSIANN-CDR (3 months; Ashouri et al., 2015) products, which is still lower than
CHIRPS (<5 days; Funk et al., 2015) and MSWEP (3 hours; Beck et al., 2017).
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6 CONCLUSIONS AND RECOMMENDATIONS

This thesis proposed two precipitation products, based on machine learning techniques
and meteorological re-analysis data (MERRA-2), to improve the satellite-based IMERG
Early Run product. IMERG BraMaL was the first product, based on regression models to
estimate monthly precipitation. Secondly, the IMERG BraMMaL product was proposed
based on an evaluation of single and combined (double and multiple) machine learning
models to improve the first product in terms of temporal resolution (i.e. from monthly to
daily) and precipitation estimations (i.e. lower errors and better agreements compared with
the observed data). Overall, both products presented better and more accurate daily and
monthly precipitation estimates in Brazil compared to the IMERG Early and Final Run
products in almost all analyses and evaluated metrics, especially IMERG BraMMaL.
Superior performance statistics were also identified when the results of the proposed
products were compared with other global precipitation products (CHIRPS, PERSIANN-

CDR, and MSWEP). The seven main findings of this study are summarised as follows:

1. The two proposed products (IMERG BraMaL and IMERG BraMMaL) have a higher
latency (i.e. 3 weeks) when compared to the IMERG Early Run product due to its
dependency on the MERRA-2 product, but a much faster availability to end users when
compared to the IMERG Final Run product (i.e. 3.5 months latency).

2. Once calibrated, the IMERG BraMaL and IMERG BraMMaL generation models do not
depend on any field data, relying only on satellite-based precipitation (IMERG Early Run)
and re-analysis (MERRA-2) data, allowing its application in areas where rain gauge data
are unavailable or present low quality.

3. The proposed models presented errors unrelated to any local features (e.g. climate, terrain,
or precipitation regimes) but equally distributed throughout Brazil. This characteristic of
the model enables its application in other regions, especially under tropical and
subtropical climates.

4. The IMERG BraM(M)aL products much improved the precipitation estimates in regions
where, historically, the satellite-based products (e.g. TMPA and IMERG) largely
underestimate the observed data (e.g. along the Northeast coast of Brazil due to the
topographic forcing that favours warm-rain process systems which cannot be detected

very well by passive microwave sensors over land).
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5. The MML model performed better than the SML and DML models in most analyses,
being chosen as the basis for the improved daily IMERG BraMMalL.

6. The GB model was the best for classifying rain events and the KNN for the regression of
daily rain data to generate the IMERG BraMMalL.

7. Overall, the IMERG BraMMaL product presented more accurate daily and monthly
precipitation estimates in Brazil compared with IMERG BraMaL.

Based on its spatiotemporal resolution and latency, we recommend the IMERG
BraMMaL product as an effective data that can be used for multiple applications such as
water management, watershed rainfall-runoff modelling, water budget accounting, and
drought analysis and forecast. For further research, aiming to improve our understanding of
the practical problems for enhancing the satellite-based precipitation products and the
various algorithmic solutions to this problem, we recommend: i) an investigation of spatial
and temporal patterns of precipitation regimes since the errors of the satellite-based products
can follow them; ii) an evaluation of the predictive performance of the various models,
combined with the incorporation of more input data that can influence the precipitation
phenomenon; iii) the improvement of the product to estimate precipitation on a sub-daily
basis; and iv) the recalibration of the model with update input dataset to create updated
versions of the IMERG BraMMaL product.
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DATABASE

The IMERG BraM(M)aL products are available for download as NetCDF files at

http://imergbramal.net, along with the text files for the Brazilian territory. The calibrated

models are also available for download at the same website and can be used for other regions.
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APPENDICES

Figure S1 shows the overall mean values of MRAE and ME for the three models that
presented the best performances (i.e. KNN, GB, and ANN), divided by seven precipitation
intervals (i.e. 1-5, 5-10, 10-15, 15-25, 25-50, 50-75, 75-350 mm/day). GB, RNA, and ANN
presented almost the same performance for precipitation intervals from 1-5 to 10-15
mm/day, with GB exhibiting slight superiority. Such intervals represent 71% of the
precipitation events but correspond only to 30% of precipitation depth. For precipitation
intervals from 15-50 to 50-350 mm/day, KNN exhibited better performance. Conversely,
such intervals represent only 29% of the precipitation events but correspond to 70% of

precipitation depth. Therefore, KNN was chosen as the best SML model.
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Figure S1 - (a) MAE and (b) MRAE values of KNN, RNA, and GB single machine learning
(SML) models by precipitation intervals of 1-5, 5-10, 10-15, 15-25, 25-50, 50-75, and 75-350 mm.

The overall mean values of the efficiency metrics for the three DML models that
presented the best performances (i.e. GB, SVM, and SGCD), divided by six precipitation
intervals (i.e. 5-10, 10-15, 15-25, 25-50, 50-75, 75-350 mm/day), are shown in Figure S2.
Overall, the three models performed similarly for all metrics and precipitations intervals,
with GB presenting a slight superiority of ~7.5%, on average, when compared to SVM for
precipitation intervals from 1-5 to 5-15 mm/day (i.e. representing 70% of precipitation
events). On the other hand, SGDC exhibited improved performances of ~5.2%, on average,
when compared to SVM for precipitation intervals higher than 25-50 mm/day (i.e. 30% of
precipitation events). Unlike the previous analysis performed for regression models, which
considers the magnitude and errors of the rain, a precise number of classifications is more
important for DML models. As shown in Figure S2, the classifications tend to improve as
precipitation intervals increase, meaning correctly classifying rain events with lower
volumes is a bigger challenge. Thus, models with low rates of false positives for smaller

precipitation intervals and without a high number of false negatives for larger precipitation
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intervals are shown to be more appropriate. Therefore, we chose GB as the best classification

model to identify rain and non-rain events.
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Figure S2 - (a) F1-score and (b) CSl values of CB, SVM, and SGD double machine learning (DML)
models classified by precipitation intervals of 5-10, 10-15, 15-25, 25-50, 50-75, and 75-350 mm.

The mean statistical error indices of the three DML models that performed better (i.e.
KNN, SGDR, and GB), divided by seven precipitation intervals (i.e. 5-10, 10-15, 15-25, 25-
50, 50-75, 75-350 mm/day), show that GB presented lower MAE (4.23 and 3.80 mm) and
MRAE (1.73 and 0.52) for shorter intervals (i.e. 1-5 and 5-10 mm) when compared to KNN
and SGDR (Figure S3). These two shorter intervals represent 48% of the rainfall events but
only 17% of the depth. Overall similar performance of the three methods can be observed
for the time intervals between 10-15 and 25-50 mm, with a slight superiority of KNN.
Conversely, these intervals correspond to 44% of rainfall events and 54% of rainfall depth.
For rainfall intervals higher than 25-50 mm, which represent 8% of events and 29% of depth,
KNN exhibited lower errors (e.g. MAE = 59.24 mm and MRAE = 0.58 for 75-350 mm),
especially compared to GB (e.g. MAE = 68.31 mm and MRAE = 0.66 for 75-350 mm).
Following the same criteria for choosing the SML model, KNN was selected for the DML
regression since presented better results for rainfall intervals representing 52% of the events
and 83% of the depths.
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Figure S3 - (a) MAE, (b) RMSE, (c) MRE, and (d) MRAE values of KNN, RNA, and GB double
machine learning (DML) models classified by precipitation intervals of 1-5, 5-10, 10-15, 15-25,
25-50, 50-75, and 75-350 mm.
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The error analysis by precipitation intervals shows that IMERG BraMaL considering
SML and MML models presented lower absolute and relative than the IMERG Final Run
product for almost all precipitation ranges, especially between 0 and 170 mm (Figure S4).
However, the MRAE of IMERG BraMaL based on the SML model was slightly lower for
the precipitation intervals between 10 and 50 mm. On the other hand, the IMERG BraMaL
product based on the DML model exhibited the worst performance for almost all
precipitation intervals, mainly higher than 50 mm, with MRAE and MAE values superior to
those observed for the IMERG Final Run product.
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Figure S4 - (a) MAE, (b) MRAE and (c) MRE values of the IMERG FlInal, IMERG BraMaL SML,
IMERG BraMaL DML and IMERG BraMaL MML products for different monthly precipitation
intervals.
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Figure S5 — Monthly variations of the IMERG Final Run, IMERG BraMaL SML, DML and MML
products for different intervals of precipitation: MAE from (a) January to December (I) and MRAE
from (m) January to (y) December.
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