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ABSTRACT 

Precipitation is one of the main components of the hydrological cycle and its accurate 

quantification is essential to provide information for understanding and predicting physical 

processes. Occurrence observations based on ground-based devices (manual and automatic 

rain gauges) are highly accurate but have limited spatial coverage. On the other hand, remote 

sensing products cover large areas but with lower precision. In this context, this study aims 

to evaluate machine learning models to create a product with better occurrence estimation, 

with lower latency than other products and without directly relying on field data. The 

methodology consists of choosing the best machine learning model (classification and 

regression) and applying it to satellite-based remote sensing data (IMERG Early Run 

product) and reanalysis-based variables (MERRA-2). The method was applied throughout 

the Brazilian territory, on monthly and daily scales, which presents a wide variety of supply 

regimes. This methodology first resulted in the development of an adjusted IMERG product 

at the monthly scale (IMERG-BraMaL) and later an improved product at the daily scale with 

a multiple machine learning technique (IMERG-BraMMaL). Compared to the original 

IMERG products (Early Run and Final Run) and global estimation products (MSWEP, 

CHIRPS and PERSIANN-CDR), IMERG-BraMaL improved the analyses evaluated 

between terrestrial and satellite data in almost all analyses. For example, the KGE (Kling-

Gupta Efficiency) went from lower values (0.70, 0.82, 0.09, 0.60 and 0.81 for IMERG Early, 

IMERG Final, PERSIANN, MSWEP and CHIRPS, respectively) to values above 0.86 in 

IMERG-BraMal at the monthly scale. On a daily scale, IMERG BraMMAL proved to be 

more efficient, presenting better results, with a CC of 0.79 compared to 0.68 for IMERG 

BraMaL. The main conclusions of the study were: (i) much faster availability to end users; 

(ii) no dependence on any field data, allowing its application in areas where rainfall data are 

not available or are of low quality; (iii) no correlation of errors with local characteristics; 

and (iv) much improved estimates in regions of Brazil where, historically, satellite-based 

products often underestimate the observed data. 

KEYWORDS: machine learning, precipitation, re-analysis data, k-nearest neighbours, 

remote sensing.
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RESUMO 

A precipitação é um dos principais componentes do ciclo hidrológico e sua quantificação 

precisa é essencial para fornecer informações para a compreensão e previsão de processos 

físicos. As observações de ocorrência baseadas em dispositivos terrestres (pluviômetros 

manuais e automáticos) são altamente precisas, mas têm cobertura espacial limitada. Por 

outro lado, os produtos de sensoriamento remoto cobrem grandes áreas, mas com menor 

precisão. Neste contexto, este estudo tem como objetivo avaliar modelos de aprendizado de 

máquina para criar um produto com melhor estimativa de ocorrência, com menor latência 

que outros produtos e sem depender diretamente de dados de campo. A metodologia consiste 

em escolher o melhor modelo de aprendizado de máquina (classificação e regressão) e 

aplicá-lo a dados de sensoriamento remoto baseados em satélite (produto IMERG Early Run) 

e variáveis baseadas em reanálise (MERRA-2). O método foi aplicado em todo o território 

brasileiro, em escalas mensais e diárias, que apresenta uma grande variedade de regimes de 

abastecimento. Esta metodologia primeiramente resultou no desenvolvimento de um produto 

IMERG ajustado na escala mensal (IMERG-BraMaL) e posteriormente um produto 

melhorado na escala diária com uma técnina de múltiplos machine leraning (IMERG- 

BraMMaL). Comparado aos produtos originais do IMERG (Early Run e Final Run) e 

produtos de estimativas globais (MSWEP, CHIRPS e PERSIANN-CDR), o IMERG-

BraMaL melhorou as análises avaliadas entre dados terrestres e de satélite em quase todas 

as análises. Por exemplo, o KGE (Eficiência Kling-Gupta) passou de valores mais baixos 

(0.70, 0.82, 0.09, 0.60 e 0.81 para IMERG Early, IMERG Final, PERSIANN, MSWEP e 

CHIRPS, respectivamente) para valores acima de 0.86 no IMERG-BraMal na escala mensal. 

Na escala diária, o IMERG BraMMAL se mostrou mais eficiente, apresentando melhores 

resultados, com CC de 0,79 comparado a 0,68 do IMERG BraMaL. As principais conclusões 

do estudo foram: (i) disponibilidade muito mais rápida para os usuários finais; (ii) não 

dependência de quaisquer dados de campo, permitindo sua aplicação em áreas onde os dados 

pluviométricos não estão disponíveis ou são de baixa qualidade; (iii) a não relação dos erros 

com as características locais; e (iv) estimativas muito melhoradas em regiões do Brasil onde, 

historicamente, os produtos baseados em satélites frequentemente subestimam os dados 

observados. 

PALAVRAS-CHAVES: Aprendizado de máquina, precipitação, dados de reanálise, k-

nearest neighbours, sensoriamento remoto.
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1 INTRODUCTION 

 

Rainfall is one of the main components of the hydrological cycle, and its accurate 

spatio-temporal quantification is essential to provide basic information for a large range of 

hydrometeorological processes and socio-economic activities (Breugem et al., 2020; Y. Du 

& Xie, 2020; Markonis et al., 2019). The temporal resolution of the rainfall data is an 

important characteristic for many hydro-meteorological applications. For instance, analyses 

of extreme events and flash floods require high-resolution data (e.g. sub-daily) (Llauca et 

al., 2021; Sadeghi et al., 2020), while low-resolution data (daily onwards) can be adequate 

for trend and climate change analysis (Bonnema et al., 2016). 

 Although crucial for many applications, achieving accurate global precipitation 

estimates (i.e. without gaps and large biases) is still challenging because some monitoring 

instruments, retrieval methods, and numerical models still present remarkable uncertainties 

(Sun et al., 2018; Wehbe et al., 2020). Also, dense precipitation measurements still remain 

a costly and laborious procedure, especially for fine temporal scales (i.e., sub-hourly) 

(Blenkinsop et al., 2018; Freitas et al., 2020).  

Rain gauges are considered to be the most accurate method for obtaining precipitation 

data (L. Xu et al., 2020). However, the global availability of rain gauges is still sparse and 

uneven  (Becker et al., 2013; Harris et al., 2014; Schneider et al., 2016; Zhang et al., 2021) 

and has geographic discontinuity and coverage limitation (Raj et al., 2022). The lack of rain 

gauges is even more prominent in developing and sizeable countries, like Brazil. When the 

rainfall data based on rain gauges are available in these countries, the users often face 

problems, such as: i) difficulty of access; ii) gaps and a lack of information; and iii) absence 

of quality control and standardisation, making the identification of problems difficult (e.g. 

recording the same amount of precipitation over longer periods) (Blenkinsop et al., 2018). 

To overcome these inherent problems with rain gauges and facilitate access to data, 

precipitation estimated from orbiting remote sensors emerged in the 1960s (Kidd & 

Huffman, 2011). The development of remote sensing techniques has provided an 

unprecedented opportunity to create products that estimate spatial precipitation continuously 

on a global scale over recent decades (Zhang et al., 2021). These products are mainly 

obtained through algorithms that combine measurements from orbiting remote sensors 

operating in the microwave and infrared bands of the electromagnetic spectrum (Kidd & 

Levizzani, 2011). 

The use of orbiting remote sensors has increased the amount of regional and global 



 

studies, enabling, among others, a better understanding of precipitation characteristics (Chen 

et al., 2020; Freitas et al., 2020; Gupta et al., 2020; Kidd & Huffman, 2011; Markonis et al., 

2019) and applications in hydrometeorological studies and monitoring (Belabid et al., 2019; 

Llauca et al., 2021; Munier et al., 2014; Pellet et al., 2019). Several satellite-based products 

are currently providing sub-daily precipitation information (Llauca et al., 2021; Ramos Filho 

et al., 2021), with different characteristics, in terms of resolutions (spatial and temporal), 

spatial coverage, latency etc (Beck, Van Dijk, et al., 2017). 

Although internationally recognised, the satellite-based precipitation data still present 

some associated inconsistencies, such as: i) temporal and spatial resolutions that may not be 

sufficient for use in some hydrological modelling (Behrangi and Wen, 2017); ii) difficulties 

in estimating light rain and detecting precipitation on snow and ice-covered surfaces (Kidd 

& Levizzani, 2011); iii) errors due to variability and uncertainties introduced by orographic 

effects (Bhuiyan et al., 2018; Bhuiyan et al., 2019; Derin & Yilmaz, 2014; Houze, 2012; Mei 

et al., 2014); iv) failures in estimating convective rainfall (Gadelha et al., 2019); v) 

inconsistencies in identifying extreme precipitation events that trigger hydrological disasters 

(Brunetti et al., 2018; Brunetti et al., 2021; Ramos Filho et al., 2021); and v) errors in 

identifying precipitation events and their properties (e.g. intensity and duration) (Freitas et 

al., 2020). 

Worldwide studies have pointed out that the inconsistencies in satellite precipitation 

estimates have been reduced since the advent of the Global Precipitation Measurement 

(GPM) mission (e.g. Bhuiyan et al., 2017; Gadelha et al., 2019; Li et al., 2017; Oliveira et 

al., 2016; Prakash et al., 2016; Satgé et al., 2019; Silva Lelis et al., 2018; Tan et al., 2018), 

due to the new dual-frequency precipitation radar (DPR). The GPM mission makes available 

three IMERG (Integrated Multi-satellitE Retrievals for GPM) products: Early Run, Late 

Run, and Final Run. The Early and Late Run products are near-real-time products, which are 

available to end-users 4 and 12 hours after observation, respectively. The Final Run product 

is available 3.5 months after observation, and, subsequently, monthly gauge observations 

from the Global Precipitation Climatology (GPCC) data, and other ancillary data, are 

incorporated to improve satellite estimations. The Final Run product shows improved 

performance in estimating precipitation when compared to the near-real-time products (Jiang 

et al., 2021; Ramadhan et al., 2022; Sungmin et al., 2017; Wang et al., 2017; Zhou et al., 

2021). However, despite the progressive reduction of the inconsistencies, it is recognised by 

the scientific community that some disagreements between the data observed by rain gauges 

and those estimated by the satellite-based products still prevail, leaving them open to further 



 

improvements (Li et al., 2017; Ma et al., 2020; Ning et al., 2017; Tang et al., 2016; R. Xu et 

al., 2017). 

In this perspective, some techniques have been used in recent years, such as: (i) the 

fusion of remote sensing estimations with ground-based rainfall data (Beck et al., 2017; Beck 

et al., 2019; Bhuiyan et al., 2017; Bhuiyan et al., 2018; Chen et al., 2022; Rafieeinasab et 

al., 2015; Rozante et al., 2018; Wang et al., 2020), and (ii) a "Bottom-up" approach that uses 

satellite-based soil moisture observations to infer or agree on land-based soil moisture 

observations, such as the SM2RAIN algorithm (e.g. Brocca et al., 2013, 2016, 2019; Pellarin 

et al., 2013; Wanders et al., 2015). Despite efforts to improve the satellite-based precipitation 

data, some issues persist, including underestimations of extreme precipitation events and 

false event estimates, which were reported in both bottom-up and fusion techniques (Brocca 

et al., 2019). Specific to bottom-up techniques, large-scale in situ soil moisture data are also 

required (Brocca et al., 2019) but dense observed networks are not available in many regions. 

Additionally, these models have low accuracy when there is dense vegetation coverage and 

complex terrain (Brocca et al., 2013). In addition, the fusion-based products need ground-

based precipitation data but, as mentioned above, the monitoring networks are not dense in 

some regions (Schneider et al., 2016; Zhang et al., 2021), which can affect the final quality 

of the product. 

In recent years, artificial intelligence (AI), such as machine learning techniques, has 

been widely used. According to Zhang et al. (2021), machine learning algorithms have 

advantages over other methods because they: (i) can effectively handle complex and 

nonlinear relationships between input and output data; (ii) do not contain any rigid 

assumptions; (iii) are highly flexible in terms of incorporating various types of explanatory 

variables; (iv) can combine field observations with multiple remote sensing products; and 

(v) are easy for implementation.  

Overall, the following machine learning algorithms have been used to enhance 

satellite-based precipitation products: i) Quantile Regression Forests (QRF) (Tyralis et al., 

2023; Y. Yang & Luo, 2014); ii) Support Vector Machine (SVM) (Kumar et al., 2019; Sehad 

et al., 2017) ; iii) Random Forests (RF) (Assiri & Qureshi, 2022; Bhuiyan et al., 2020a; 

Kumar et al., 2019; Sengoz et al., 2023; Wolfensberger et al., 2021); iv) Artificial Neural 

Networks (RNA) (Bhuiyan et al., 2020a; Sadeghi et al., 2020; Sengoz et al., 2023; Wehbe 

et al., 2020); v) Gradient boosting (GB) (Sengoz et al., 2023; Tyralis et al., 2023; R. Wang 

et al., 2023); and vi) Linear regression (LRi) (Sengoz et al., 2023; C. Wang et al., 2021). 

To our knowledge, the studies using machine learning on satellite-based precipitation 



 

products focused on the accuracy of the machine learning algorithms, comparing their results 

with the original estimation of the product to confirm the improvements (Bhuiyan et al., 

2017, 2019, 2020a; Zhang et al., 2021). However, these new precipitation products are not 

available to the scientific community. Additionally, some of these studies use specific 

regional data for the studied region, such as ground radar data (H. Chen et al., 2020; R. Wang 

et al., 2023; Wehbe et al., 2020) and gauge observations (Bhuiyan et al., 2020a; 

Papacharalampous et al., 2023c; Yu et al., 2023; Zhang et al., 2021), which may limit their 

applicability in other regions. Moreover, these studies were conducted at local scales (mostly 

at the river basin scale), without the evaluation of some available machine learning models 

(e.g. K-Nearest Neighbours, KNN). Only the study by Ma et al. (2020) generated a new 

precipitation product for Asia (namely, aIMERG) applying a new calibration approach to 

the IMERG product that included 57,835 ground-based observations from rain gauges, i.e. 

limiting its applicability to other regions with a lack, or uneven distribution, of rain gauges. 

 

1.1. Hypotheses 

Following the contextualisation above, this PhD thesis is based on the hypothesis 

that machine learning algorithms can significantly enhance the accuracy of daily and 

monthly satellite-based precipitation, without dependence on local or regional in-situ 

data. 

1.2. Main aims 

This study aims to optimise monthly and daily satellite-based precipitation estimates, 

based on machine learning techniques and reanalysis data. 

1.3. Specific aims 

•  To develop a machine learning model to obtain a satellite-based precipitation 

product with reduced latency and higher accuracy compared to the existing alternatives; 

•  To create a machine learning model to obtain a satellite-based precipitation product 

without dependency on any field data for its calibration, allowing its application in areas 

where rain gauge data are unavailable or present low quality; 

•  To build a machine learning model to obtain a satellite-based precipitation 

product whose errors are unrelated to local features (e.g. climate, precipitation regimes, 

topography); 

•  To identify the best machine learning models for classification and regression 



 

of precipitation data; 

•  To investigate the application of individual and combined machine learning 

techniques (classification/regression and stacking) to enhance daily rainfall estimates 

based on remote sensing data, aiming for more precise identification of precipitation 

events; 

•  To compare the products calibrated on monthly and daily scales to determine 

the more accurate for improving the precipitation estimate; 

•  To compare the monthly and daily precipitation data, obtained from the 

proposed products, with other global satellite-based precipitation products. 

1.4. Thesis Structure 

The thesis was divided into six major items in the following order: 1) Introduction, 

presenting a contextualisation and justification that motivated the development of this thesis; 

2) Literature review, covering conceptual and basic topics essential to better understanding 

the study; 3) Study area, presenting the characteristics of the studied area and justifying its 

selection; 4) An improved gridded monthly rainfall product; 5) Evaluation of single and 

combined machine learning models to improve daily rainfall estimations; and 6) Conclusions 

and recommendations, highlighting the main results found and proposing further studies. 



 

2 LITERATURE REVIEW 

 

2.1. Precipitation 

 

Precipitation is a fundamental component of the climate system and global water cycle, 

whose observation and measurement are crucial for human well-being (Kidd & Huffman, 

2011). Excessive and insufficient rainfall threatens lives, properties, and agriculture. 

Precipitation also holds significant economic relevance, playing a central role in water 

resource management, agribusiness (Kidd et al., 2009; Thornes et al., 2010). From an 

environmental point of view, precipitation serves as a transformative agent in the 

surrounding landscape, influencing both the sustenance of natural vegetation and erosive 

processes. Simultaneously, it plays a role in the dispersion of atmospheric pollution and the 

transport of nutrients and pollutants (Michaelides et al., 2009).  

Due to the importance of precipitation, its physical characteristics need to be 

frequently and systematically measured at a fine spatiotemporal resolution. Historically, 

quantitative precipitation measurements have been limited to a relatively short period in 

recent history (Kidd & Huffman, 2011). Although precipitation data has been available since 

the mid-1850s, early records exhibit variations in terms of accessibility, completeness, and 

consistency. Also, the availability of data at shorter intervals (i.e., daily or sub-daily) remains 

scarce (Blenkinsop et al., 2018; Freitas et al., 2020; Jones et al., 2002; New et al., 2001).  

Over the years, studies on precipitation have been continuously capitalised on by 

technological advancements to obtain more accurate measurements and fill gaps in our 

knowledge and understanding of the processes influencing precipitation. The first 

measurements were conducted using manual rain gauges, i.e. simple collectors placed on the 

earth's surface, whose reading is done by an observer daily. Over time, these instruments 

were gradually improved to more advanced versions (e.g. automatic rain gauges). The 

accumulation of data over several years has driven numerous hydrometeorological and 

climatological studies, initially locally and regionally and, subsequently, on global scale. 

Recently, technologically sophisticated devices, installed on the Earth's surface (e.g. ground-

based radars, disdrometers) or aboard space platforms (e.g. microwave and infrared sensors), 

have expanded our spatial and temporal understanding of precipitation.  

2.1.1. Ground-based measurements 

 

Manual rain gauges (Figure 1) consist of a cylindrical tube, opened at the top, which 



 

collects rainwater. The amount of precipitation is then measured by the height of the water 

accumulated inside this tube. This approach provides a direct measure of the amount of 

rainfall, making the rain gauge a valuable tool for providing accurate and reliable data on 

precipitation in a specific location (Garcez & Alvarez, 1988; Pinto et al., 1976). 

 

 

Figure 1 – Three instruments for making ground observations of precipitation. (Courtesy: Sun et al. 

2018) 

The use of rain gauges is widespread throughout the world due to their simplicity and 

effectiveness. However, rain gauges provide a point-scale measurement, which poorly 

represents the spatial variability of precipitation, ranging from a few metres to several 

kilometres. The spatial distribution of these instruments can affect the accuracy of 

precipitation estimates over large areas, as highlighted by Harris et al. (2014). In regions 

with limited rain gauge density, the spatial representation of precipitation can be 

compromised, challenging hydrological and meteorological modelling and forecasting. 

To overcome some of these challenges, automatic rain gauges, which use electronic 

sensors to measure precipitation continuously and at shorter time intervals, were developed 

(Blenkinsop et al., 2018). This type of device offers a more dynamic approach to data 

collection, allowing for a better understanding of the temporal variability of precipitation. 

Although less dynamic, manual rain gauges are the most frequent equipment to 

provide accurate precipitation data from the ground (Kidd 2001). Sub-daily precipitation 

data is an even more difficult task because sparsely covers the global landmass (Hegerl et 

al., 2015.; Lewis et al., 2019). The number of in-situ sub-daily precipitation records is even 

lower in tropical regions, probably due to the higher costs of implementing rain gauges 

capable of measuring sub-daily events, compared to those that measure on a daily time scale 

(Freitas et al., 2020; Kidd et al., 2017). 



 

Thus, new projects emerged intending to create a reliable precipitation database. The 

INTENSE project (Intelligent use of climate models to adapt to non-stationary hydrological 

extremes) is the first major international effort to focus on global extreme sub-daily 

precipitation, enabling substantial advances in quantifying observed historical changes. 

However, the INTENSE project identified, from a data collection initiative, the lowest 

availability of sub-daily precipitation data in countries in Africa and Latin America 

(Blenkinsop et al. 2018). In Brazil, CEMADEN created a sub-daily monitoring network with 

approximately 3,400 automatic rain gauges distributed over the country. This network was 

created to support the prediction and development of warning systems for precipitation-

related disasters, including floods and landslides, so most rain gauges are within the cities. 

2.1.2. Ground-based radar data 

Ground-based radars (Figure 1) can be an alternative to rain gauges, providing real-

time measurements with high temporal and spatial resolution. However, the spatial coverage 

of ground-based radars is limited only by land and is also affected by a lack of accessibility 

due to their high cost (Varma, 2018). 

The radar system consists of a transmitter producing electromagnetic microwaves that 

are backscattered by particles in the atmosphere and then converted into a measure of rainfall 

intensity (Kidd & Huffman, 2011). However, the accuracy of ground-based radar 

measurements is often low, especially for extreme precipitation magnitudes (Marra & Morin, 

2015),  since intensity is indirectly derived from radar-measured reflectivity (i.e. subject to 

multiple sources of error) rather than being a direct measurement (Ochoa-Rodriguez et al., 

2019; Pellarin et al., 2013).  

2.2. Remote sensing data 

2.2.1. Satellite-based precipitation data 

Sensors onboard satellites are currently the only instruments to provide global 

homogeneous precipitation measurements. Nowadays, many promising satellite-based 

precipitation products are available for many applications, followed by the advancement in 

the number of satellite sensors and imaging technology. Such products provide valuable 

distributed information on sub-daily precipitation data (Llauca et al., 2021; Yuan et al., 

2019). 

The sensors onboard satellites, used to estimate precipitation, can be classified into 

three categories: Visible/InfraRed sensors, passive Microwave, and active Microwave 

sensors (Michaelides et al., 2009; Prigent, 2010). Corresponding methods used to derive 



 

precipitation from electromagnetic interactions with clouds and the atmosphere have been 

developed, including the Visible/InfraRed-based methods, active and passive Microwave 

techniques, and merged Visible/InfraRed and Microwave approaches (Kidd & Levizzani, 

2011). 

The GPM IMERG is produced using passive microwave techniques, a more direct 

method of measuring precipitation than Visible/Infrared techniques, as microwave lengths 

can penetrate clouds and detect precipitation-sized particles. The most critical disadvantage 

of passive microwave precipitation estimation is its low spatiotemporal coverage (Sun et al., 

2018). 

As mentioned previously, rain gauges provide accurate measurements of precipitation 

at single points, but they are sparsely distributed across the globe and can be affected by 

sampling error (Habib et al., 2001; Kidd et al., 2017). On the other hand, satellite 

observations have homogeneous spatial coverage, but random errors and biases linked to the 

algorithms can be detected (Chen et al., 2021; Kidd et al., 2017). Therefore, merging 

different sources of information to overcome these errors and biases, by combining the 

individual advantages of specific methods, is currently the subject of several studies (Figure 

2). 

 
Figure 2 – Flowchart for the precipitation products. (Courtesy: Sun et al. 2018). 

 

 



 

2.2.2. Reanalysis datasets 

Reanalysis systems fuse irregular observations and models spanning many physical 

and dynamic processes to generate an estimate of the state of the system through a uniform 

grid, with spatial homogeneity, temporal continuity, and a multidimensional hierarchy (Sun 

et al., 2018). Many essential climate variables, resulting from reanalysis systems, can be 

obtained after short periods. A reanalysis system includes a historical prediction model and 

a data assimilation routine. 

Reanalysis generates a large variety of atmospheric, sea-state, and land surface 

parameters across a uniform grid with spatial homogeneity over long periods through data 

assimilation, a process that relies on both observations and model-based forecasts to estimate 

conditions (Dee et al., 2014; Sun et al., 2018). 

Successive generations of reanalysis products produced by various organisations have 

improved their quality, with improved models, input data, and assimilation methods. As 

examples, we can mention the two NCEP/NCAR reanalysis systems (NCEP1 and NCEP2), 

the two reanalysis systems of the European Center for Medium-Range Weather Forecasts 

(ECMWF) (ERA-40 and ERA-Interim), the Century Reanalysis (20CRv2), the Modern-Era 

Retrospective Analysis for Research and Application (MERRA) system, the NCEP Climate 

Forest System Reanalysis (CFSR) system, and the Japanese 55-Year Reanalysis (JRA-55). 

Version 2 of the MERRA system (MERRA-2) is a global atmospheric reanalysis 

product produced by the Goddard Earth Observing System Model, Version 5 (GEOS-5), at 

NASA's Goddard Space Flight Center (GSFC), which combines satellite observations, 

sounding data, and other observational data to create a three-dimensional, temporally 

consistent representation of the atmospheric state (Gelaro et al., 2017). 

2.3. Machine Learning 

2.3.1. Definition 

Over the past few decades, machine learning has played a crucial role in advancing 

artificial intelligence, providing machines with the ability to learn from data and improve 

their performance over time (Das et al., 2022; Papacharalampous et al., 2023a; Zhang et al., 

2021). This definition highlights the autonomy of learning, emphasising the importance of 

systems adaptively acquiring knowledge. 

One of the pioneers in this field was Arthur Samuel, who first introduced the term 

machine learning (Samuel, 1959). In his work, Samuel described machine learning as the 

field of study that allows computers to learn from data without being explicitly programmed. 



 

This fundamental insight still influences the contemporary understanding of machine 

learning. More recently, Bishop (2006) explored fundamental machine-learning techniques, 

highlighting the importance of pattern recognition and probabilistic inference. 

There is still confusion regarding the terms artificial intelligence, machine learning, 

and deep learning; they are often used as synonyms, but there are differences. These concepts 

represent different layers of complexity and automation in a machine's ability to learn and 

make decisions. The field of artificial intelligence seeks to develop systems capable of 

performing tasks that normally require human intelligence (McCarthy et al., 2006). Machine 

learning is a subcategory of artificial intelligence that focuses on systems that can learn from 

data (Mitchell, 1977). Deep learning is a specific machine learning approach that uses deep 

neural networks to model and solve complex problems (Hinton et al., 2006), and has played 

a significant role in expanding the boundaries of machine learning (Goodfellow et al., 2016). 

2.3.2. Brief history 

The history of machine learning began in 1950, when Alan Turing, considered the 

father of computing and artificial intelligence, published the article "Computing Machinery 

and Intelligence". In his work, Turing introduced the famous test that assessed the ability of 

a machine to exhibit behaviour indistinguishable from that of humans. In 1956, artificial 

intelligence was formally established as a field of research during the Dartmouth 

Conference, whose term was coined by John McCarthy. 

However, in the 1970s and 1980s, the field faced challenges and technological 

limitations, resulting in the so-called "Artificial Intelligence Winter." Funding for artificial 

intelligence research has declined due to unmet expectations and technical difficulties. 

The resurgence began in the 1980s and 1990s, with advances in machine learning 

algorithms, including SVM (Support Vector Machines), proposed by Vladimir Vapnik, and 

neural networks. The popularity of machine learning continued to grow, but it was from the 

2000s onwards that these techniques became more widespread. 

The advent of deep learning marked a turning point in the machine learning field, with 

contributions like "ImageNet Classification with Deep Convolutional Neural Networks" 

(Krizhevsky et al., 2017), demonstrating the effectiveness of deep neural networks. This 

period also witnessed the rise of big data, providing massive data sets to train complex 

models. 

2.3.3. Machine learning model types 

Machine learning models can be categorised into three main types, based on distinct 



 

approaches: supervised, unsupervised, and reinforcement. These categories reflect different 

learning paradigms, with specific applications and challenges. 

Supervised machine learning models are algorithms trained by a set of predictor data, 

i.e. a set of data in which the desired outputs are already known. The main objective of 

supervised models is to learn the relationship between inputs and outputs from the given 

training examples (James et al., 2013). These models are fundamental for regression and 

classification works, in which choosing the right algorithm for a specific problem and the 

use of training data are fundamental (Hastie et al., 2009). In supervised machine learning 

models, the algorithm is fed with input and output pairs and trained to learn a function that 

maps these inputs to the desired outputs. After training, the model can make predictions or 

decisions when presented with new unlabeled data. 

Unsupervised machine learning models are approaches where the algorithm is trained 

on a dataset without predictions, where the desired outputs are not provided. The main goal 

of unsupervised models is to discover intrinsic insights in data, such as natural groupings, 

relationships, or distributions. These models are often used in situations where the nature of 

the task is not known in advance or when data labelling is difficult or expensive (James et 

al., 2013). The most common unsupervised models are the k-means algorithm (MacQueen, 

1967), which is used to group data into clusters, identifying intrinsic patterns and structures 

without relying on labels; and Principal Component Analysis (PCA) (Hotelling, 1933), 

which reduces the dimensionality of the data while keeping most of the variance. 

Reinforcement models in machine learning refer to an approach in which an agent 

learns to make sequential decisions through interactions. The model is not based on input 

and output pairs but rather on feedback in terms of rewards or penalties, adjusting its 

strategies to maximise the rewards (James et al., 2013). Reinforcement models have their 

roots in the field of artificial intelligence and have stood out in practical applications, such 

as games and robotics, in which the idea of reinforcement learning was introduced, where 

an agent learns to make optimised decisions by interacting with a dynamic environment  

(Sutton & Barto, 2018). 

2.3.3.1. Classification models 

Classification machine learning models are algorithms that learn to assign labels or 

categories to data instances based on their characteristics. The main task is to map inputs to 

pre-determined categories, known as classes. These models are fundamental in situations 

aiming to make categorical predictions or determine to which class an instance belongs 



 

(James et al., 2013). 

The main classification models are: 

i) Logistic Regression (RL): a supervised ML algorithm used for binary classification 

problems (Belyadi & Haghighat, 2021). Logistic regression essentially uses a nonlinear 

logarithmic odds ratio logistic function to model a binary output variable (Tolles & 

Meurer, 2016). Logistic regression normally has a classification between 0 and 1, not 

requiring a linear relationship between input and output variables. 

ii) Support Vector Machines (SVM): their characteristic is to find the hyperplane that best 

separates the classes in the feature space, which can be linear or non-linear (Vapnik et 

al., 1995). SVM can model highly nonlinear processes without knowledge of the 

statistical distributions of classes. Another important property is its good generalisation 

performance even in the case of high-dimensional data and a small training set. Several 

works have shown the superiority of SVM classifiers over traditional statistical and 

neural classifiers (Sehad et al., 2017). 

iii) Decision Tree (DT): tree structure that makes decisions based on conditions in 

attributes, which works by dividing the data set based on characteristics, forming a set 

of decision rules (Quinlan, 1986). It consists of inner nodes representing the structures 

of the branches, representing the verdict given by the algorithm, and each leaf node 

representing an outcome. The decision node, which is used to make a decision, has 

various branches, while the leaf node is the output of decision nodes and has no further 

branches (Bansal et al., 2022). 

iv)  Random Forest: an ensemble machine learning approach that aggregates the results of 

multiple decision tree models (Breiman, 2001). This model creates several trees and 

aggregates their results to reduce overfitting (increase variance) and improve 

generalisation. 

v) Gradient boosting (GB): consists of several decision trees that are built sequentially, 

where each tree is trained to correct the errors made by the previous ones, allowing 

iterative improvement of the model's performance using relatively few trees (Friedman, 

2001). 

vi) Stochastic Gradient Descent (SGD): a widely used in training machine learning model 

due to its efficiency (Amari, 1993), whose approach is to update the model parameters 

with each training example in a stochastic way, making it o suitable for large data sets 

(Meng et al., 2019; Mu et al., 2017).  

vii) K-Nearest Neighbour (KNN): is a non-parametric supervised learning technique used 



 

in classification and regression problems, which classifies instances based on the class 

of the majority of the k nearest neighbours in the feature space (Altman, 1992). This is 

characterised by its simplicity and flexibility, as it does not require the assumption of 

specific data distributions. KNN calibration is crucial in the appropriate choice of the 

value of k, the number of neighbours considered, which directly affects the sensitivity 

of the model to specific patterns and is essential to avoid overfitting or underfitting, 

ensuring the robustness and effectiveness of the algorithm in the task at hand 

(Rajagopalan & Lall, 1999). 

viii) Artificial Neural Network (ANN): The algorithm is an information processing paradigm 

inspired by biological neural networks (Gardner & Dorling, 1998). The basic elements 

of ANN are neurons (or units), which are interconnected by weighted links. In each unit, 

the output is calculated by a transfer (or active) function of the weighted sum of the 

inputs. It has a three-layer structure (i.e. input, hidden, and output layers), which is one 

of the widely used forms of ANN algorithms. 

2.3.3.2. Regression models 

In statistics and machine learning, regression models are techniques that aim to model 

the relationship between a dependent variable and one or more independent variables 

(predictors). Regression is widely used to predict or understand how a change in the 

independent variables may affect the dependent variable (James et al., 2013). 

Some regression models have already been mentioned in the previous subitem of this 

literature review, as many of them can be used for both functions. As regression models, we 

can mention: 

i) K-Nearest Neighbour (KNN): is a non-parametric supervised learning technique used 

in classification and regression problems (Altman, 1992). Regression KNN is an 

extension of classification KNN for problems where the dependent variable is 

continuous. Instead of assigning a class to the instance based on the majority of k nearest 

neighbours, regression KNN calculates an average of the dependent variable values of 

the nearest instances (James et al., 2013). 

ii) Linear regression (LRi): is a statistical technique for modelling the relationship between 

a dependent variable and one or more independent variables (Yang & Chen, 2023). The 

essence of this method lies in the search for a line of best fit that minimises the sum of 

the squares of the differences between the predicted and observed values. 

2.3.4. Overfitting e Underffiting 



 

The concepts of overfitting and underfitting are related to the model's ability to 

generalise from training data to new data but in different contexts. Overfitting (Figure 3) 

occurs when a model overfits the training data, capturing specific patterns, even noises, 

which may not be representative of the true relationship between the input and output data, 

resulting in a model that does not generalise well for new data (James et al., 2013). When 

overfitting, complex models can get lost in high-dimensional spaces, memorising instead of 

learning patterns (BISHOP, 2006). Underfitting occurs when a model is too simple to capture 

the complexity of the training data. This results in a lack of adaptation to the standards, 

making the model ineffective to generalise, even on training data (James et al., 2013). 

Underfitting is easier to identify, as the model does not present good results even for the 

training data. Good fit is ideal, as the model can adjust to the complexity of the training data 

and can generalize well to the test data. 

 

Figure 3 – Overfitting, good fit, and underfitting in machine learning models (Raghav, 2022). 

 

 

 
 



 

3 STUDY AREA 

Brazil is a continental-sized country covering approximately 8.5 M km² between the 

latitudes 5°16′N - 33°45′S and longitudes 34°47′W – 73°59′W (Figure 4). The Brazilian 

territory is divided into five official geographic regions: South (S), Southeast (SE), Central-

West (CW), North-East (NE), and North (N). Due to its large territorial extension, Brazil 

covers different climatic zones and precipitation patterns.  According to Alvares et al. (2013), 

the Brazilian territory encompasses twelve of Köppen's climate types, divided into three 

main zones (Tropical, Semi-arid, and Humid Subtropical) (Figure 4), with a mean annual air 

temperature of approximately 10-26 °C. The annual rainfall in Brazil is characterised by high 

spatial variability, with values ranging from 380 mm (semi-arid climate in the NE) to 4,000 

mm (tropical forest in the N). According to the mean monthly precipitation distribution, the 

Brazilian territory can be divided into five regions with homogeneous characteristics 

(Rozante et al., 2018) (Table 1). 

 

 
Figure 4 – Study area showing (a) the rain gauges used in the study, identified according to the 

five homogeneous regions defined by Rozante et al. (2018), in terms of precipitation, and (b) grid 

cells obtained from rain gauges to match the IMERG Early Run 0.1°. 

 

 

 

 



 

Table 1 – Aspects of the five regions with homogeneous mean monthly rainfall characteristics in 

Brazil according to Rozante et al. (2018). 

Region 
Number of grid 

cells 

Köppen 

classification 
Climatic features 

R1 559 C 

This group is influenced by the Pre-frontal Storm 

Line (PSL) and Cold Fronts (FC) climatic 

systems (Reboita et al., 2010). The monthly and 

annual precipitation averages are around 120 and 

180 mm, respectively. The mean annual air 

temperature is around 22º C. 

R2 1530 C 

The main climatic systems influencing this group 

are the South Atlantic Subtropical Anticyclone 

(SASA) and the South Atlantic Convergence 

Zone (ZCAS) climatic systems (Reboita et al., 

2010). The annual average precipitation is around 

1,500 mm, mostly from November to February. 

The mean annual air temperature is around 22º C. 

R3 299 Bsh 

The main climatic systems influencing this group 

are the South Atlantic Subtropical Anticyclone 

(SASA) and the South Atlantic Convergence 

Zone (ZCAS) (Reboita et al., 2010). The annual 

average precipitation is around 820 mm, mainly 

from December to May. The monthly mean air 

temperature ranges between 18 and 24 °C 

throughout the year. 

R4 322 AS 

This group is influenced by the atmospheric 

systems of Instability Lines (LI) and the 

Southeast Trade Winds (SETW) (Reboita et al., 

2010). This mean annual precipitation is around 

1600 mm. The mean annual air temperature is 

above 23 °C. 

R5 211 Am and Aw 

The main atmospheric systems acting in this 

group are the Intertropical Convergence Zone 

(ITCZ), the Instability Lines (LI), the Mesoscale 

Convective Complex (MCC), the South Atlantic 

Convergence Zone, the Upper-Level Cyclonic 

Vortices (ULCV), and the Easterly Wave 

Disturbances (Lemos et al., 2023). The mean 

annual air temperature is around 26 °C. The mean 

annual precipitation reaches 2600 mm, mainly 

from January to April. 
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4 AN IMPROVED GRIDDED MONTHLY RAINFALL PRODUCT 

 

4.1.  Contextualisation 

In this chapter, we focus on the development of a more accurate monthly precipitation 

product for Brazil, the so-called IMERG BraMaL, which uses IMERG Early Run and a re-

analysis database as the input of a machine learning approach based on a regression model, 

without dependence on local or regional data. The general and transferable strategy of this 

new product would also be relevant to account for: (i) reducing the latency period for a 

satellite-based product with improved precipitation estimates (e.g. compared with the 

IMERG Final Run, which is currently available 3.5 months after observation); (ii) correcting 

well-known errors and biases in satellite-based precipitation products at monthly scale in 

some regions of Brazil (Freitas et al., 2020; Gadelha et al., 2019; Rozante et al., 2010); and 

(iii) not relying on observed data, i.e. being general enough to be applied in other larger 

regions with diverse climates, terrains, and precipitation regimes. 

4.2. Materials and methods 

The methodology proposed in this study considers estimated data from satellite-based 

(rainfall) and re-analysis (meteorological variables) products, obtained between 2014 and 

2021, as inputs to create the IMERG BraMaL product. Observed rainfall data (rain gauges) 

obtained for the same period were used to calibrate (70%) and validate (30%) the proposed 

regression model. The methodological steps detailed below, include: (a) the description of 

the observed and estimated dataset; (b) the prediction model used; and (c) the statistical 

metrics to evaluate the performance of the proposed product (Figure 5). 
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Figure 5 – Schematic representation of the prediction process to create the IMERG BraMaL 

product. 

4.2.1. Observed and estimated dataset 

4.2.1.1. Observed rainfall data 

The rainfall data used in this study were obtained from automated rain gauges operated 

by the Brazilian Centre for Monitoring and Early Warnings of Natural Disasters 

(CEMADEN, an acronym in Portuguese). The ground-based rainfall observation network of 

CEMADEN is made up of tipping bucket gauges with a 10 min temporal resolution, when 

it rains, and 60 min, when there is no rain. In this study, we aggregated this high temporal 

resolution dataset to the monthly scale. Currently, CEMADEN operates more than 4,000 

rain gauges distributed throughout Brazil, whose data are made available in UTC 

(Coordinate Universal Time) without quality control. 

This study used rainfall data from 3,039 rain gauges distributed throughout the 

Brazilian territory, containing at least one calendar year of complete data from 1 January 

2014 to 31 December 2021. Considering this monitoring period, the following number of 

rain gauges per monitoring year were available: 832 (1 year), 652 (2 years), 571 (3 years), 

411 (4 years), 301 (5 years), 206 (6 years), and 66 (7 years). The selection of these rain 

gauges resulted from a strict quality control procedure, following the steps used by Freitas 

et al. (2020), which included: (i) the analysis of the amount of data recorded by the gauges, 
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considering unsuitable rain gauges with more than 60-days of missing data in each analysed 

year; (ii) the comparison of these stations selected in the first step with their five closest 

neighbours, based on a visual analysis with a double-blind test and taking into account the 

monthly and instantaneous (10 min) precipitation data; and (iii) the checking of the range of 

values and changes over subsequent measurements to identify constant or null rainfall 

records that probably indicate gauge clogging. 

4.2.1.2. Rainfall satellite-based data 

The Global Precipitation Measurement (GPM) mission launched its Core Observatory 

in 2014, to succeed the Tropical Rainfall Measuring Mission (TRMM), which began to 

provide rainfall and snowfall information globally with better temporal (half-hour) and 

spatial (0.1° × 0.1°) resolutions, via the Integrated Multi-satellitE Retrievals for GPM 

(IMERG) products (Skofronick-Jackson et al., 2018a, 2018b, 2017). IMERG obtains 

information about precipitation in the latitude band 90° North and 90° South, with temporal 

coverage from 1 June 2000 to the present. 

This study used Version-06B of IMERG Early Run (i.e. with a latency of 4 hours to 

the end-users) as a baseline satellite rainfall product, to calibrate the proposed IMERG 

BraMaL. The gauge-calibrated IMERG Final Run (i.e. with a latency of 3.5 months), which 

performed better compared to the other two near-real-time IMERG products (Jiang et al., 

2022; Ramadhan et al., 2022; Zhou et al., 2021; Wang et al., 2017; Sungmin et al., 2017), 

was used in addition to IMERG Early Run for comparisons with the estimations of the 

IMERG BraMaL product. Additionally, the IMERG BraMaL product was compared with 

three consolidated global satellite-based products: i) Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural Networks - Climate Data Record (PERSIANN-

CDR), whose algorithm is calibrated by an artificial neural network using data from satellites 

to produce a product with 0.25º x 0.25º spatial resolution (Ashouri et al., 2015); ii) Climate 

Hazards Group InfraRed Precipitation with Station (CHIRPS), which incorporates 

interpolation techniques, satellite information of precipitation estimates, and station data to 

provides a product with grid cells of 0.05º x 0.05º (Funk et al., 2015); and iii) Multi-Source 

Weighted-Ensemble Precipitation MSWEP, which is derived from the optimal fusion of a 

series of measurement, satellite, and reanalysis estimates to provides a product with 0.1º x 

0.1º spatial resolution (Beck et al., 2019). 
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4.2.1.3. Reanalysis meteorological data 

The re-analysis meteorological dataset obtained from the Modern-Era Retrospective 

analysis for Research and Applications, version 2 (MERRA-2), was used as input data to 

calibrate the proposed IMERG BraMaL product. MERRA-2 is the latest atmospheric re-

analysis of the modern satellite era, produced by NASA's Global Modelling and Assimilation 

Office (GMAO), which uses the Goddard Earth Observing System (GEOS) model and 

analysis scheme to provide a viable ongoing climate analysis (Gelaro et al., 2017). Some 

recent studies verified the reliability of the MERRA-2 dataset, which presented a good 

overall agreement with the observed data (Huang et al., 2022; Guo et al., 2021; Zhang et al., 

2020), as shown by Reichle et al. (2017) for runoff, rainfall, and soil moisture.     

MERRA-2 provides global information with monthly temporal resolution from 1 

January 1980 to the present, using a cubed-sphere horizontal discretisation at an approximate 

resolution of 0.500° × 0.625° and 72 hybrid-eta levels from the surface to 0.01 hPa (Gelaro 

et al., 2017). The latency of the MERRA-2 product is approximately three weeks after the 

end of each month, which will constrain the latency of IMERG BraMaL to 3 weeks after the 

event. We considered for each grid cell 53 MERRA-2 monthly variables with a particular 

connection to precipitation (i.e. its formation and impacts on nature) (Table 2). These 

variables can be divided into three large groups of data: single-level variables, Earth surface 

forced variables, and radiation diagnostic variables. 

Table 2 – Variables of MERRA-2, IMERG and CEMADEN used for model calibration 

Type Data Type 
Spatial 

Resolution 

Temporal 

Resolution  
Period 

Latency 
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precipitation estimate 
0.1°  x 

0.1° 

Monthly 2000 

to 

present 
12 

hours 
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E
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precipitation estimate 
0.1°  x 

0.1° 

Monthly 2000 

to 

present 
3.5 

months 
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surface pressure; specific 

humidity*; air temperature*; total 

precipitable ice, liquid and vapor 

water; surface skin temperature; 

eastward wind**; northward 

wind**; accretion loss of cloud 

water to rain; convective source 

of cloud ice and water; 

convective production of rain 

water; vertically integrated water 

vapor tendency due to analysis, 

chemistry and dynamics; 

vertically integrated water vapor 

tendency due to moist processes, 

physics and turbulence; 

evaporation from turbulence, loss 

of cloud water and loss of 

precipitation water; eastward flux 

of atmospheric liquid water and 

water vapor; northward flux of 

atmospheric liquid water and 

water vapor;  liquid water 

convective precipitation and large 

scale precipitation; cloud area 

fraction for high, low and middle 

clouds; total cloud area fraction; 

in cloud optical thickness of low, 

middle and all clouds; cloud top 

pressure and temperature; 

height***; specific 

humidity****; air 

temperature****;  eastward and 

northward wind****; air 

temperature*****; 

0.5° x 

0.65° 
Monthly 

1980 

to 

present 

3 

weeks 

* 2 e 10 meters 

** 2, 10 e 50 meters 

*** 250, 500, 850 and 1000 hpa 

****250, 500 and 850 hpa 

*****500 and 850 hpa 

 

4.2.2. Model calibration to reduce the errors in rainfall estimates 

The model used the IMERG Early Run and MERRA-2 products for the calibration 

parameters through the k-nearest neighbours (KNN) algorithm, a non-parametric supervised 

machine learning technique (Altman, 1992). The model runs on a monthly basis to minimise 

the magnitude of the mean squared residual errors, producing the monthly IMERG BraMaL 

rainfall product. KNN is an algorithm that identifies K samples in the training dataset (whose 

independent variables are similar to the target values) and uses the average of these K 

samples to perform classifications or regressions (Alizadeh & Nikoo, 2018). 
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We used 55 variables for the model calibration, 54 inputs (53 from MERRA-2 and 1 

from IMERG Early Run) and 1 output (monthly rain gauge observations). The observed 

rainfall data was only used for the calibration of the IMERG BraMaL product, which enables 

its application in regions with sparse or unavailable rain gauge networks after this step. 

The observed point-scale rainfall was converted into grid cells to match the 0.1° × 0.1° 

IMERG Early Run grid. For grid cells containing more than one rain gauge, the average of 

the observed rainfall data was considered. In total, 1846 grid cells were used as input data, 

subdivided into training (70%) and test (30%) datasets to calibrate and validate the model, 

respectively, as performed by Zhang et al. (2021). In contrast to Zhang et al. (2021), 

however, we considered this subdivision randomly in time (monthly) and in space 

(indirectly), i.e. the same grid cell can be used for training and testing simultaneously but for 

different periods (months and years). The data model was developed using the Scikit-learn 

library: Machine Learning in Python (Pedregosa et al., 2011). Before the calibration, all input 

data were standardised and normally distributed using the following equation: 

z=(x-u)/s                                                                                                                                             (1) 

where z is the standardised value, x is the value to be standardised, and u and s are the 

mean and the standard deviation of the data, respectively. This process prevents data of 

different magnitudes from unequally influencing the determination of neighbours and 

distances calculated by the model. 

 To avoid overfitting, we attempted to extract the better calibration parameters for the 

model by testing 480 variations of the parameters, which returned the best performance with 

K=13 neighbours, the Euclidean distance, and weight points by the inverse of their distances 

for each variable. After calibration, the model scores were 0.98 and 0.81 for the training and 

testing data, respectively. The calibrated model was then evaluated. 

4.2.3. Performace evaluation metrics 

 

Four statistical metrics were used to compare the estimations of the IMERG BraMal 

product with the ground-based rainfall observations (i.e. the validation data) and the original 

IMERG products (Early and Final Run), which includes the Error, the relative error (RE), 

the mean absolute error (MAE), the mean relative absolute error (MRAE), the Pearson's 

coefficient correlation (CC), and the Kling-Gupta Efficiency (KGE):  

𝐸𝑟𝑟𝑜𝑟 = 𝐸𝑖 − 𝑂𝑖                                                                                                                                             (2) 
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                                                                                                                                (3) 
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𝐶𝐶 =  
∑ (𝑂𝑖 − 𝑂̅)(𝐸𝑖 − 𝐸̅)𝑛

𝑖=1

√∑ (𝑂𝑖 − 𝑂̅)2𝑛
𝑖=1 . √∑ (𝐸𝑖 − 𝐸̅)2𝑛

𝑖=1

                                                                                                 (6) 

𝐾𝐺𝐸 =  1 −  √ (1 − 𝐶𝐶)2 + (1 − 𝐵𝑒𝑡𝑎)2 + (1 − 𝐺𝑎𝑚𝑎)2                                                                 (7) 

𝐵𝑒𝑡𝑎 =
𝐸̅

𝑂̅
                                                                                                                                                           (8) 

𝐺𝑎𝑚𝑎 =
𝜎𝐸

𝜎𝑂
                                                                                                                                                      (9) 

where O is the rain gauge-observed rainfall data, Ō is the mean rain gauge-observed rainfall 

data, E is the rainfall data estimated by the products, Ē is the mean rainfall data estimated by 

the products, σ is the standard deviation, i is the time step, and n is the total number of 

compared pairs. MRE and MRAE measure the accuracy of the IMERG BraMaL product, 

with values close to zero indicating smaller errors. The CC ranges from -1 to +1, where 

extreme values represent total negative and positive linear correlations, respectively. The 

KGE values range from -∞ to 1, with desirable values close to 1 and negative values 

representing worse performances.  

The evaluation procedures were performed considering the following four 

perspectives: (i) an overall national-scale analysis, considering all monthly rainfall values 

for the studied period; (ii) a seasonal analysis, considering the rainfall data month by month 

throughout the analysed time series; (iii) a spatial analysis of the errors; and (iv) a group 

analysis based on regions with the homogeneous mean monthly rainfall characteristics 

defined by Rozante et al. (2018). 

4.3. Results and discussion 

4.3.1. National-scale comparison of products with field-based data 

Figure 6 shows the scatter plots considering all 1846 grid cells distributed throughout 

the country. Overall, the Early Run product presented the largest dispersion (CC = 0.69), 

followed by the Final Run product (CC = 0.86). This significantly lower dispersion observed 

in Final Run can be attributed to the product calibration incorporating observed rainfall data 
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(Sungmin et al., 2017). Both original IMERG products tended to underestimate the observed 

data, as shown by the greater number of points concentrated below the line of equality. 

Similar underestimations were also identified for the monthly analyses of the IMERG Final 

and Early Run products in the studies carried out by Wang et al. (2017) and Zhou et al. 

(2021) in China. The IMERG Early and Final run products exhibited MAE and MRAE 

values ranging from 52.21 mm (Early Run) to 33.80 mm (Final Run) and from 1.14 (Early 

Run) to 1.04 (Final Run), respectively. Previous studies also found similar differences 

between the monthly errors from the IMERG Final Run and Early Run products, compared 

to gauge observations (Chen et al., 2022; Wang et al., 2021; Guo et al., 2019).  

Overall, the IMERG BraMaL product performed better than the two original IMERG 

estimates, with the lowest errors (MAE = 29.1 mm and MRAE = 0.86) and a higher positive 

correlation (CC = 0.91). The KGE scores confirm that the BraMaL product (KGE = 0.86) 

provides a better estimation of precipitation than the Final Run (KGE = 0.82) and Early Run 

(KGE = 0.70) products, i.e. presenting the same variability magnitude of the rain gauge 

measurements and a better agreement with the observed data. Bhuiyan et al. (2020) showed 

that the modified IMERG product using ML techniques for a river basin in Bangladesh, 

presented a smoother reduction of MAE for all quartiles evaluated (from 3.75-3.25 mm) 

when compared to the IMERG Late Run product, i.e. 64% lower than the improvement for 

IMERG BraMaL. Zhang et al. (2021) revealed an improvement of the best-modified product 

created by DML techniques on the Chinese mainland, with CC increasing from 0.64 to 0.78 

and KGE from 0.54 to 0.71, compared to IMERG Early Run, i.e. lower than that reached 

with the BraMaL product. Overall, it was observed that the BraMaL product presented better 

performance than other studies in our literature review. 
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Figure 6 – Scatter plots of the grid cell precipitation values vs (a) IMERG Early Run, (b) IMERG 

Final Run and (c) IMERG BraMaL, considering the national-scale analysis. The colours represent 

the number of events, from lower (violet) to higher (yellow). 

 

Figure 7 shows the MAE and MRAE values for different monthly rainfall intervals. 

Overall, the IMERG BraMaL product exhibited lower relative and absolute errors than 

IMERG Early Run for almost all rainfall intervals, especially between 0-550 mm. The MAE 

values of the BraMaL product were similar to IMERG Final Run for monthly rainfall 

intervals lower than 200 mm and lower than the same gauge-calibrated product for overall 

monthly rainfall intervals between 200-550 mm. The values of MRAE for the IMERG 

BraMaL product are lower than the IMERG Final Run for monthly rainfall intervals between 

50-550 mm, showing that the error's magnitude of BraMaL is lower for most rainfall 
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intervals. For some monthly rainfall intervals (e.g. > 550 mm), the MAE and MRAE values 

of the two original IMERG products tend to be close to BraMaL errors. 

 

 
Figure 7 - (a) MAE and (b) MRAE values of the IMERG Early, IMERG Final and IMERG 

BraMaL products for different monthly precipitation intervals. 

4.3.2. Seasonal influence on product quality 

In this analysis, the IMERG-based products (i.e., Early Run, Final Run, and BraMal) 

were evaluated against the observed rainfall data month by month throughout the analysed 

time series (2014-2021). Figure 8 shows the scatter plots for each rainfall product against 

the observed data for each month of the year. Overall, it is possible to observe a greater 

density area of points (i.e. in yellow) concentrated close to the line of equality for all 

products, which is more explicit from February to May for IMERG BraMaL. The IMERG 

Early Run product presented more dispersed points for all months, clearly exhibiting a 

greater tendency to underestimate the gauge data, especially from June to August, where 

monthly observed precipitation close to 500 mm was not detected by the satellite-based 

estimations. Overall, the Final Run product improved the Early Run estimates, reducing the 

data dispersion, mainly between June and August. 

Figure 9 shows the values of the four statistical metrics for each product, exhibited 

month by month. The MAE values reveal that the IMERG BraMaL product presented lower 

errors than the two original IMERG products for all months, especially the Early Run 

product. Overall, the MAE values of the IMERG Early and Final Run products were 23 and 

5 mm larger than the IMERG BraMaL product, with values of MAE for the Early Run 

reaching up to 60.9 mm in March. It is worth highlighting that, in August and September, 
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the MAE for the IMERG BraMaL product presented values below 20 mm. For the MRAE 

metric, the IMERG BraMaL product presented the same superiority as in MAE, especially 

in June and July, which reached MRAE values around 160 and 260%, respectively. 

However, these higher relative values occur in months with low-magnitude precipitations, 

i.e. not interfering with the application or use of the BraMaL product. The best CC and KGE 

values were observed for IMERG BraMaL in almost all months, but mainly from June to 

August, with CC ranging from 0.50 to 0.90 and KGE varying between 0.15 and 0.82. For 

these three months, the two original products presented the worst performances, especially 

the Early Run, with KGE and CC lower than 0.2 and 0.5, respectively. Although higher for 

almost all months, the CC of IMERG BraMaL presented values similar to the IMERG Final 

Run product. However, the KGE values confirm the efficiency of the IMERG BraMaL 

product monthly, with more substantial differences for the IMERG Final compared to the 

CC.   
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Figure 8 – Scatter plots of the grid cell precipitation values vs variations of IMERG Early Run 

(first and fourth columns), IMERG Final Run (second and fifth columns), and IMERG BraMaL 

(third and sixth columns) estimates per month. The colours represent the number of events, from 

lower (violet) to higher (yellow). 
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Figure 9 – Monthly variations of (a) MAE, (b) MRAE, (c) KGE, and (d) CC for the IMERG Early 

Run, IMERG Final Run, and IMERG BraMaL products. 

Figure 10 shows the MAE and MRAE values month by month, considering different 

intervals of monthly precipitation. Overall, it is possible to observe an increase in the MAE 

and MRAE values as the monthly rainfall accumulates. Once again, the absolute and relative 

errors of IMERG Early Run were considerably greater than the two other products, 

especially from June to November. The IMERG BraMaL product presented errors slightly 

lower than IMERG Final Run, except in two months for the MAE (October and November) 

and MRAE (January and February), where the errors were similar. The remarkably better 

performance of IMERG BraMaL means that the IMERG near-real-time product was well-

corrected with the atmospheric parameters used in the calibration to produce the proposed 

product. 
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Figure 10 – Monthly variations of the IMERG Early Run, IMERG Final Run, and IMERG 

BraMaL products for different intervals of precipitation: MAE from (a) January to December (l) 

and MRAE from (m) January to (y) December. 
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4.3.3. Spatial variability of product quality 

This analysis evaluates the spatial distribution of the monthly MRAE of IMERG 

BraMaL over Brazil. Figure 11 shows that the REs are not concentrated in a specific region 

and are mostly between -50 and 50%. For instance, the studies by Rozante et al. (2018), 

Gadelha et al. (2019), and Freitas et al. (2020) identified remarkable variations in the 

performance of the IMERG Final Run product as a function of the analysed region in Brazil, 

with higher errors and biases in the N and CW regions, as well as along the Atlantic coast of 

the NE region. This indicates that the proposed model was able to correct the estimates for 

the IMERG BraMaL product across the whole of Brazil, a large country with diverse rainfall 

regimes and climates.  
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Figure 11 – Spatial distribution of RE for the IMERG BraMaL product by interval classes: (a) RE 

<  -100%, (b) -100% < RE < -50%, (c)  50% < RE < 0%, (d) 0% < RE < 50%, (e) 50%< RE < 

100%, (f) 100% < RE < 150%, (g) 150% < RE < 200%, (h) 200% < RE < 250%, (i) 250% < RE < 

300%, (j) 300% < RE < 350%, (k) 350% < RE < 400%, and (l) RE >400%. The number inside the 

parentheses identifies the quantity of grid cells. 
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Figure 12 shows that approximately 60% of the monthly precipitation values of 

IMERG BraMaL exhibit Errors smaller than 25 mm. When considering Errors smaller than 

50 mm, this percentage rises to approximately 83% of the values. Regarding the RE, 

approximately 60% of the data present under-estimation or over-estimation errors, up to 25% 

of the monthly precipitation value. By expanding the analysis to an RE of up to 50%, 

approximately 80% of the data is in this range. This indicates that around 65-80% of the 

estimated precipitation could replace the field data without a notable change in the observed 

values, considering the RE of 25 and 50%, respectively. Only 6% of the data present RE 

exceeding 300%. However, as mentioned above, when evaluating the Errors of these events, 

a small difference in the precipitation amount is observed. These high RE occur in various 

parts of the territory and are mostly associated with low monthly precipitations, with an 

average of 30 mm and a standard deviation of 39 mm. It is important to emphasise that these 

estimates do not compromise the overall quality of the product due to the low magnitude of 

the values. 

 

 

Figure 12 – Histogram of the (a) Errors (mm) and (b) Relative Errors (%) of precipitation 

estimated by the IMERG BraMaL product. 
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4.3.4. Regional scale analysis of the product quality 

In order to compare the performance of the IMERG BraMaL and the two original 

IMERG, we evaluated separately these products in the five regions with homogeneous 

monthly rainfall characteristics defined by Rozante et al. (2018). Figure 13 shows a large 

dispersion of data for the estimates of the IMERG Early Run product in almost all regions, 

except for R5, which had the least number of grid cells analysed (i.e. 1,782). A reduction of 

this dispersion is observed for IMERG Final Run, followed by an improvement in agreement 

with the observed data for the BraMaL product. Overall, the regions R1 and R2 (with 4,838 

and 10,581 grid cells analysed, respectively) present higher densities of points concentrated 

along the 1:1 line, compared to other regions. On the other hand, the region R4 (with 2,248 

grid cells analysed) exhibits several underestimations of the two original IMERG products, 

which other authors (Rozante et al., 2018; Gadelha et al., 2019; Freitas et al., 2020) attributed 

to the influence of convective clouds that occur along the Northeast coast of Brazil during 

the rainy period. These underestimations were mainly adjusted by IMERG BraMaL, 

demonstrating the robustness of the proposed product. 

The variations of four metrics for the homogeneous regions are shown in Figure 14. A 

similar order of magnitude of MRAE was observed for all products. On the other hand, the 

MAE of IMERG Early Run presented higher values (from 76 to 43 mm) than the IMERG 

Final Run (from 43 to 26 mm) and IMERG BraMaL (from 41 to 29 mm) products, which 

were similar to each other, except for region R4. For region R4, IMERG BraMaL presented 

MAE of 37 mm, while the IMERG Final Run product exhibited MAE of 43 mm, indicating 

a better overall performance of the proposed product. The other two performance metrics 

confirm that the region R4 showed improvement of BraMaL (KGE = 0.80 and CC = 0.86) 

compared to the IMERG Early (KGE = 0.19 and CC = 0.56) and Final Run (KGE = 0.57 

and CC = 0.86). This improvement in performance in R4 was mainly observed during the 

rainy season, as shown in the seasonality analysis. In contrast to the study performed by 

Bhuiyan et al. (2018) in the Iberian Peninsula, with a study period spanning 11 years, the 

results observed in the region R4 show that the machine learning-based model can 

successfully correct the precipitation data with higher values. 
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Figure 13 – Scatter plots of the monthly precipitation observed values vs IMERG Early Run (first 

column), IMERG Final Run (second column), and IMERG BraMaL (third column) by 

homogeneous regions (from the top to bottom: R1 to R5). The colours represent the number of 

events, from lower (violet) to higher (yellow). 
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Figure 14 – Statistical indexes (a) MAE, (b) MRAE, (c) KGE, and (d) CC for the IMERG Early 

Run, IMERG Final Run and IMERG BraMaL per analysed region. 

 

4.3.5. Comparison of IMERG BraMaL estimates with other global precipitation 

products 

The comparison of monthly precipitation estimates by IMERG BraMaL with the 

CHIRPS, PERDIANN-CDR, and MSWEP products for all 1846 evaluated gris cells show 

an overall lower dispersion of the data for the proposed product (CC = 0.91), especially when 

confronted with PERSIANN-CDR (CC = 0.68) (Figure 15). The PERSIANN-CDR and 

MSWEP (CC = 0.78) products presented an overall trend to underestimate the observed data, 

while CHIRPS (CC = 0.86) exhibited a better agreement with the rain gauges, with a higher 

density of points along the 1:1 line. The KGE scores attest that IMERG BraMaL (KGE = 

0.86) presents a better rainfall estimation when compared to PERSIANN-CDR (KGE = 

0.09), MSWEP (KGE = 0.60), and CHIRPS (KGE = 0.81). A similar lower agreement 

between PERSIANN-CDR and the observed data was also identified by Ramos et al. (2020) 

when evaluating the ability of 14 satellite-based precipitation products to characterise 

extreme events that trigger floods. 
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Figure 15 – Scatter plots of the monthly precipitation observed values vs (a) IMERG BraMaL, (b) 

CHIRPS, (c) PERSIANN-CDR, and (d) MSWEP. The colours represent the number of events, 

from lower (violet) to higher (yellow). 

Regarding the errors, IMERG BraMaL presented lower MAE (29.1 mm) and MRAE 

(0.86) in relation to CHIRPS (MAE = 38.16 mm and MRAE = 1.11), PERSIANN-CDR 

(MAE = 74.20 mm and MRAE = 0.87), and MSWEP (MAE = 45.21 mm and MRAE = 

0.93). Such performance metrics confirm that IMERG BraMaL better estimates the monthly 

rainfall when compared to the main global satellite-based precipitation products. For 

instance, the evaluation of 10 satellite-based products carried out by Wati et al. (2021) in 

Indonesia found lower values of error-based metrics for CHIRPS, PERSIAN-CDR, and 

MSWEP, highlighting the ability of IMERG BraMaL to estimate more accurately the 

monthly rainfall. 
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5 EVALUATION OF SINGLE AND COMBINED MACHINE LEARNING 

MODELS TO IMPROVE DAILY RAINFALL ESTIMATIONS 

5.1. Contextualisation 

Machine learning algorithms proved to be a good tool for improving satellite-based 

precipitation, as shown in Chapter 4 and some other studies (e.g. Sengoz et al., 2023; Tyralis 

et al., 2023). However, some previous studies also identified that the combination of machine 

learning models can further increase its performance. Currently, there are three different 

procedures available in the literature to combine machine learning algorithms for improving 

satellite-based precipitation data, which include: i) a combination between classification and 

regression algorithms (Zhang et al., 2021); ii) a combination and stacking of regression 

algorithms (Montero-Manso et al., 2020; Papacharalampous et al., 2023c); and iii) the use 

of hybrid algorithms (Di Nunno et al., 2022). 

Although presenting satisfactory results, the studies combining machine learning 

algorithms still present some limitations, as they: i) still rely on the use of specific regional 

ground-based data for the studied region, such as rain gauge observations (Bhuiyan et al., 

2019, 2020b; Papacharalampous et al., 2023a, 2023b); ii) use only the mean and the median 

of the model outputs to obtain the final precipitation estimations (i.e. without considering 

that each model contributes with different weights) (Papacharalampous et al., 2023c); iii) 

use predicted data in a model together with their corresponding true values as inputs for other 

models (i.e. propagating the errors for training steps) (Papacharalampous et al., 2023c); and 

iv) consider a pre-defined and limited combination of classification and regression 

algorithms (i.e. without evaluations of more appropriate algorithms) (Zhang et al., 2021). 

In this chapter, we focus on improving the IMERG BraMaL product to produce more 

accurate daily precipitation estimations for Brazil, also based on using the IMERG Early 

Run and re-analysis database as input and without dependence on ground-based local or 

regional data. The general and transferable strategy of this chapte also accounts for i) 

evaluating the performance of single and combined machine learning algorithms to improve 

these precipitation estimates, ii) testing various combinations of machine learning models 

(regression, classification, and the combining regression-classification), and iii) considering 

different weights for each model used in the combination. 

5.2. Materials and methods 

5.2.1. Observed and estimated dataset 

This study used precipitation data from 3,039 rain gauges operated by CEMADEN 
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throughout Brazil, covering the period from 01/01/2014 to 31/12/2022. The selection of such 

rain gauges involved a rigorous quality control process, ensuring the reliability of this data 

(Freitas et al., 2020), as previously detailed in section 4.2.1.1. Similarly to the monthly 

IMERG BraMaL product, Version-06B of the IMERG Early Run was also used as a baseline 

satellite precipitation product to calibrate the proposed daily IMERG BraMaL product, while 

Version-06B of the IMERG Final Run product was used for comparisons with the 

estimations of the IMERG BraMaL product (see item 4.2.1.2). Furthermore, the same 53 

meteorological variables from the MERRA-2 reanalysis product were used to provide input 

data for calibration of the daily IMERG BraMaL, similar to the monthly basis product (see 

item 4.2.1.3). 

5.2.2. Calibration of machine learning models 

Nine classification and six regression machine learning models were trained and 

evaluated. Classification models: Support Vector Machine (SVM), Logistic Regression 

(LR), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN), Artificial 

Neural Network (RNA), Stochastic Gradient Descent (SGD), Gradient Boosting (GB), and 

Xtreme Gradient Boosting (XGB). Regression models: Linear Regression (LRi), Decision 

Tree (DT), K-Nearest Neighbor (KNN), Artificial Neural Network (ANN), Stochastic 

Gradient Descent (SGD), and Gradient Boosting (GB).  

We used 61 variables for the model calibration, 60 inputs (57 from MERRA-2 and 3 

from IMERG Early Run) and 1 output (daily rain gauge observations). Similarly to the 

monthly IMERG BraMaL, the observed rainfall data was only used for the model's 

calibration, enabling its application in regions with sparse or unavailable rain gauge 

networks after this step. In addition, the observed point-scale rainfall was also converted into 

grid cells to match the 0.1° × 0.1° IMERG Early Run grid for the calibration of the daily-

based models. The average of the observed rainfall data was also considered for grid cells 

containing more than one rain gauge. For all models, 1,846 grid cells were used as input 

data, subdivided into training (70%) and test (30%) datasets to calibrate and validate the 

model, respectively (Zhang et al., 2021; Bansal et al., 2022; Nunno et al., 2022) (Erro! Fonte 

de referência não encontrada.). In contrast to Zhang et al. (2021), however, we considered 

this subdivision randomly in time (monthly) and in space (indirectly), i.e. the same grid cell 

can be used for training and testing simultaneously but for different periods (months and 

years). 

Similarly to the monthly IMERG BraMaL, the data model was developed using the 
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Scikit-learn library: Machine Learning in Python (Pedregosa et al., 2011), and all input data 

were standardised and normally distributed before the calibration (see item 4.2.2). Three 

different methods were considered to define the best daily precipitation estimation product: 

i) single machine learning (SML), based on the calibration of a single regression model, ii) 

dual machine learning (DML), combining a classification model and a regression model, and 

iii) multiple machine learning (MML), which combines many regression models. 

5.2.2.1. Calibration of the simple machine learning (SML) method 

For the SML method, six regression models (i.e. RLi, GB, DT, RNA, KNN, and SGD) 

were directly considered for the training data (Figure 16). After model calibration, the 

performance of the models was evaluated using statistical metrics applied to the test data. 

The simple regression model with the best daily precipitation estimates was selected and 

used to be further evaluated and compared to double and multiple machine learning 

techniques. 
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Figure 16 – Schematic representation of training and testing the simple, double, and multiple 

machine learning models. 

5.2.2.2. Calibration of the double machine learning (DML) method  

For DML models, calibrations were first performed for the classification models 

(Figure 16), which assigned a value of 1 for observed precipitation greater than 5 mm/day 

and a 0 for those below this threshold. This first calibration aimed to allow the identification 

of significant daily rain by the classification models, as from the analysis of the CEMADEN 

dataset used in this study, precipitation higher than 5 mm/day comprises at least 80% of 

annual rainfall. Eight classification models (i.e. SVM, RL, KNN, GB, RF, DT, SGD, and 

ANN) were tested for this first calibration. The most efficient classification model was 

selected based on a performance evaluation to separate rain and non-rain events. The rain 

events were then calibrated by seven regression models (i.e. SVM, KNN, GB, DT, ANN, 

SGD, and RLi), whose performances for daily precipitation estimates were evaluated using 
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statistical metrics. 

5.2.2.3. Calibration of the multiple machine learning (MML) method 

Similarly to DML, the MML models were calibrated into two steps (Figure 16). Firstly, 

five regression models (i.e. KNN, GB, DT, SGD, and ANN) were trained using both the 

input estimated variables (i.e. MERRA-2 and IMERG dataset) and the gauge-based 

precipitation data (i.e. CEMADEN). The precipitation estimated for the five models was 

then linearly combined and used as input data for a stacking regression model, considering 

the particularities and weights of each model.  

5.2.3. Performance evaluation of the models and methods 

Four statistical metrics divided into three main groups were used to assess the quality 

of the ML-based models and methods. The first group aimed to analyse the efficiency of the 

classification models and methods in detecting days with precipitation events (i.e. classifying 

into rainy and non-rainy days), including F1-Score, Precision, Critical Success Index (CSI), 

Accuracy, and Area under the Receiver Operating Characteristic Curve (AUC-ROC): 

F1 − score =  
2x(Precision x Recall)

Precision + Recall
                                                                                      (10) 

Precision =  
TP

TP + FP
                                                                                                                   (11) 

Recall =  
TP

TP + FN
                                                                                                                         (12) 

CSI =
TP

TP + FP + FN
                                                                                                                     (13) 

Accuracy =  
TP + TN

TP + TN + FN + FP
                                                                                              (14) 

where TP and TN represent the true positives and negatives, and FP and FN represent the 

false positives and negatives, respectively. F1-score is an evaluation metric that combines 

precision and recall to assess imbalanced classes. Precision is evaluate the amount of 

positives correctly evaluated. The Critical Success Index (CSI) is a useful metric for 

measuring the fraction of positive events correctly detected out of all FP and FN events. 

Accuracy measures the proportion of correctly classified events among the total events, 

providing an overall effectiveness. The AUC-ROC represents the area under the ROC 

(Receiver Operating Characteristics) curve, which shows the relationship between the FP 

and TP rates, and measures the discriminative power of a model at different classification 
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thresholds. The values of F1-score, Precision, CSI, and Accuracy range from -1 to 1, while 

for AUC-ROC. For all metrics, the desirable values are close to 1. 

We used a second group of metrics to analyse the errors and agreements of the daily 

precipitation estimates adjusted by the regression models for the rainy days in comparison 

to the observed data, including the Mean Error (ME), Mean Absolute Error (MAE), Mean 

Relative Error (MRE), Mean Relative Absolute Error (MRAE), Correlation coefficient (CC) 

and Kling-Gupta Efficiency Index (KGE): 

𝑀𝐸 =  
1

𝑛
∑ 𝑂𝑖 − 𝐸𝑖

𝑛

𝑖=1
                                                                                                                 (15) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑂𝑖 − 𝐸𝑖|

𝑛

𝑖=1
                                                                                                             (16) 

𝑀𝑅𝐸 =
1

𝑛
∑

𝑂𝑖 − 𝐸𝑖

𝑂𝑖

𝑛

𝑖=1
                                                                                                              (17) 

𝑀𝑅𝐴𝐸 =
1

𝑛
∑ |

𝑂𝑖 − 𝐸𝑖

𝑂𝑖
|

𝑛

𝑖=1
                                                                                                         (18) 

𝐶𝐶 =
∑ (𝑂𝑖 − 𝑂̅)(𝐸𝑖 − 𝐸̅𝑛

𝑖=1 )

√∑ (𝑂𝑖 − 𝑂̅)2𝑛
𝑖=1 √∑ (𝐸𝑖 − 𝐸̅)2𝑛

𝑖=1

                                                                                   (19) 

𝐾𝐺𝐸 = 1 − √(𝐶𝐶 − 1)2 + (𝐵𝑒𝑡𝑎 − 1)2 + (𝐺𝑎𝑚𝑎 − 1)2                                                    (22) 

𝐺𝑎𝑚𝑎 =
𝜎𝐸

𝜎𝑂
                                                                                                                                     (20) 

𝐵𝑒𝑡𝑎 =
𝐸̅

𝑂̅
                                                                                                                                       (21) 

where O is the value observed by the rain gauges (mm), Ō is the mean gauged values (mm), 

E is the value estimated by the models (mm), Ē is the mean of estimated values (mm), and 

𝜎 is the standard deviation. Values close to zero indicate smaller errors in the estimations for 

the error-based metrics, while values close to 1 indicate better agreement between estimated 

and observed data. 

5.3. Results  

5.3.1. Evaluation of SML models 

Figure 17 shows the overall mean values of the metrics used to evaluate the 

performance of the six regression models used in the SML method to estimate daily 

precipitation. Overall, the KNN model presented the best performance, with lower errors 

(MAE = 2.47 mm and MRAE = 2.25) and better agreement (KGE = 0.70), followed by GB 
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(MAE = 2.73 mm and MRAE = 2.30) and ANN (KGE = 0.64) regarding the errors and 

agreement metrics, respectively. The mean values of MRAE and ME for these three models 

by precipitation intervals (i.e. 1-5, 5-10, 10-15, 15-25, 25-50, 50-75, 75-350 mm/day) show 

that KNN exhibited better performance for precipitation intervals from 15-50 to 50-350 

mm/day, which represent only 29% of the events but correspond to 70% of depth (Figure 

S1). 

 
Figure 17 - (a) MAE (mm), (b) MRAE, and (c) KGE values of the single machine learning 

(SML) models for estimating precipitation. 

5.3.2. Evaluation of DML Models  

Figure 18 shows the overall mean values of the efficiency metrics used to evaluate the 

quality of the eight classification models in separating rain and non-rain events. The models 

SGDC, SVM, and GB performed better for the F1-score (0.61, 0.60, and 0.60, respectively) 

and AUC-ROC (0.73, 0.73, and 0.73, respectively) metrics (Fig. 19ab). These high values 

of the metrics F1-score and AUC-ROC indicate that these models can minimise false 

positive and negative precipitation events. Overall, all models exhibited high Accuracy, 

varying between 0.82 (i.e. DT) and 0.89 (i.e. SGDC), probably influenced by the imbalance 

between the rain and no-rain classes since the number of days without precipitation is 

commonly higher along the year in most regions (Fig. 19d). The models SVM, SGDC, and 

GB also presented good performances for CSI (i.e. 0.48, 0.44, and 0.42, respectively) (Fig. 

19e). These results indicate the ability of these three models to identify true positives and 

true negatives. On the other hand, an underperformance of most efficiency metrics (i.e. F1-

score, AUC-ROC, and CSI) was identified especially for RF and KNN. The analysis of the 

efficiency metrics of these three models by precipitation intervals (i.e 5-10, 10-15, 15-25, 

25-50, 50-75, 75-350 mm/day) shows that GB presented a slight superiority of ~7.5%, on 

average, when compared with SVM and SGDC for precipitation intervals from 1-5 to 5-15 

mm/day (i.e. representing 70% of precipitation events) (Figure S2). Because classifications 

tend to improve when precipitation intervals increase (i.e. correctly classifying rain events 
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with lower volumes is more challenging), models with low rates of false positives for smaller 

intervals and without a high number of false negatives for larger intervals are shown to be 

more appropriate. Therefore, GB was considered the best classification model for identifying 

rain and non-rain events. 

 

Figure 18 – Performance of the double machine learning (DML) models RL, DR, RF, KNN, SVM, 

ANN, SGD, GB and XGB to estimate rain and non-rain events based on the statistical metrics (a) 

F1-score, (b) AUC-ROC, (c) Accuracy, and (d) CSI. 

Figure 19 shows the overall mean values of the statistical indices used to evaluate the 

quality of the six regression models for estimating daily precipitation from the DML model. 

KNN presented an overall best performance, with lower errors (MAE = 11.0 and MRAE = 

17.2 mm) and higher agreement (KGE = 0.36), followed by SGDR (MAE = 11.40 mm, 

MRAE = 1.63, and KGE = 0.28) and GB (MAE = 11.51 mm, MRAE = 1.39, and KGE = 

0.22). Compared to the KNN model calibrated by the SML method, the performance of KNN 

using the DML method seems to be worse in classifying rain, with errors about 345% higher. 

However, it is worth mentioning that these index values cannot be individually compared 

since a regression procedure considering all data was used for the SML models, conversely 

to the DML models, where this regression only considered the data classified as rain. 

Furthermore, this stage aims to show the best models of each method instead of comparing 

methods. By precipitation intervals (i.e. 5-10, 10-15, 15-25, 25-50, 50-75, 75-350 mm/day), 

KNN presented lower MAE (from 15 to 350 mm) and MRAE (from 25 to 350) for ranges 

upper to 10-15 mm, which represent 52% of the events and 83% of the depths (Figure S3). 

Therefore, following the same criteria for choosing the SML model, KNN was selected for 

the DML regression. 
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Figure 19 - (a) MAE, (b) MRAE and (c) KGE statistical metrics of the double machine learning 

(DML) models to estimate precipitation. 

5.3.3. National-scale comparison of the IMERG BraMaL products with field-based 

data 

Figure 20 shows the scatterplots with the metrics comparing the similarity between 

the daily precipitation observed by the rain gauges and estimated by the products IMERG 

Final Run and the three versions of IMERG BraMaL (i.e. based on SML, DML, and MML 

models), considering the 1,846 grid cells nationwide. The lowest agreements were noticed 

for IMERG Final Run (CC = 0.68 and KGE = 0.66) and IMERG BraMaL based on the 

DML model (CC = 0.68 and KGE = 0.50), with both tending to underestimate the 

observed data, as shown by the greater number of points concentrated below the line of 

equality. Conversely, the IMERG BraMaL based on the MML model contains a cloud of 

points more concentrated close to the line of equality, with CC = 0.77 and KGE = 0.70. 

Overall, the three versions of IMERG BraMaL exhibited lower values of MAE (ranging 

from 5.27 to 6.49 mm) compared to IMERG Final Run (6.83 mm), with the version 

considering the MML model performing better. Considering the relative errors, IMERG 

Final Run presented a lower MRAE (i.e. 1.14) compared to IMERG BraMaL (ranging 

from 2.25 for MML and 2.59 for DML). These lower absolute and relative errors of 

IMERG BraMaL considering SML and MML models were noticed for almost all 

precipitation intervals, especially between 0 and 170 mm, with a slightly lower MRAE of 
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IMERG BraMaL SML for the ranges between 10 and 50 mm (Figure S4). 

 

Figure 20 – Scatter plots of the grid cell values vs (a) IMERG Final Run, (b) IMERG BraMaL 

SML, (c) IMERG BraMaL DML e (d) IMERG BraMaL MML, considering the national-scale 

analysis. The colours represent the number of events, from lower (violet) to higher (yellow). 

5.3.4. Seasonal analysis of the IMERG BraMaL products 

Figure 21 shows the scatterplots for each precipitation product against the observed 

data for each month of the year. From January to April, the products show similar behaviour, 

with a higher density of points (yellow represented) closer to the line of equality and an 

overall trend to underestimate mainly the observed data > 50 mm/day (Fig. 21 a.1- e.4). 

Visually, the IMERG BraMaL considering the SML and MML models presented a 

considerable improvement from June to September, with a lower dispersion of data and, 

consequently, with the cloud of points more adjusted to the line of equality compared with 

the IMERG Final Run product (Fig. 21 f.1 - i.4 ). The higher KGE and lower errors (MAE 

and MRAE) presented during this 4-month window for the IMERG BraMaL based on SML 

(0.84, 2.80 mm, and 1.41, respectively) and MML (0.86, 2.78 mm, and 1.58, respectively) 

models can confirm such enhancement (Figure 22), which mainly occurred for precipitation 
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intervals higher than 50 mm (Fig. S5). For instance, the IMERG Final Run product exhibited 

KGE = 0.57, MAE = 4.95 mm, and MRAE = 1.60 during the same period. From October to 

December, the products return to similar behaviour, with slight superiority of the IMERG 

BraMaL product considering SML and MML models in terms of MAE and KGE. It is 

noticeable that the DML-based product showed the worst KGE performance for all the 

months analysed. 
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Figure 21 – Scatter plots of the grid cell values vs variations of IMERG Final Run (first and fifth 

columns), IMERG BraMaL SML (second and sixth columns), IMERG BraMaL DML (third and 

seventh columns), and IMERG BraMaL MML (fourth and eighth columns) estimates per month. 
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Figure 22 – Monthly variations of (a) MAE, (b) MRAE, and (c) KGE for the IMERG Final Run 

and the IMERG BraMaL based on SML, DML, and MML models. 

5.3.5. Regional-scale analysis of the IMERG BraMaL product 

The performance evaluation of the IMERG BraMaL products by regions in Brazil with 

homogeneous monthly rainfall characteristics shows a greater dispersion of data for the 

estimations of the IMERG Final Run and IMERG BraMaL DML-based products from R1 

to R4, with KGE ranging from 0.30 to 0.43 (R4) and from 0.52 to 0.70 (R1), respectively 

(Figure 23 and Figure 24). A reduction in the dispersion and the underestimation propensity 

of data can be observed for IMERG BraMaL based on SML and MML models between R1 

and R4 when compared with the IMERG Final Run product, with the KGE values going 

from 0.70 to 0.74 (MML) and 0.76 (SML) in R1, from 0.53 to 0.61 (SML) and 0.60 (MML) 

in R2, from 0.50 to 0.57 (SML) and 0.60 (MML) in R3, and from 0.57 to 0.64 (SML) and 

0.65 (MML) in R4. The error metric MAE confirms this better performance of the IMERG 

BraMaL product based on SML and MML models, with lower values in R1 (4.57 and 4.63 

mm), R2 (5.74 and 5.67 mm), R3 (4.10 and 3.98 mm), and R4 (4.40 and 4.32 mm) compared 

with IMERG Final Run (6.68, 7.26, 5.06 and 5.95 mm, respectively). Conversely, such well-
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defined improvement of the IMERG BraMaL product considering SML and MML models 

cannot be identified by the MRAE values. 

 

Figure 23 – Scatter plots of the monthly observed values vs IMERG Final (first column), IMERG 

BraMaL SML (second column), and IMERG BraMaL DML (third column) and IMERG BraMaL 

MML(fourth column) by homogeneous regions (from the top to bottom: R1 to R5). 
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Figure 24 – Statistical indexes (a) MAE, (b) MRAE, and (c) KGE for the IMERG Final Run and 

the IMERG BraMaL based on SML, DML, and MML models per homogenous monthly rainfall 

characteristics in Brazil. 

5.3.6. Comparison of daily IMERG BraMMaL estimates with other global 

precipitation products  

As shown in the national, regional, and seasonal scale analyses, IMERG BraMaL 

based on SML and MML models presented an overall better performance in estimating daily 

precipitation, with a slight superiority of the MML-based product, which considers a linear 

combination of models that presented good results in the SML-based analyses, including 

KNN, ANN, and GB. Therefore, the MML model can be considered the best choice for the 

daily precipitation estimates of this new product, called IMERG BraMMaL (Intercalibrated 

Merged Retrievals for GPM in Brazil with Multiple Machine Learning). The comparison of 

these daily estimates by IMERG BraMMaL with the CHIRPS, PERDIANN-CDR, and 

MSWEP products for all 1846 evaluated grid cells show an overall lower dispersion of the 

data for the proposed product (KGE = 0.70), especially when confronted with PERSIAN-
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CDR (KGE = 0.05) (Figure 25). After IMERG BraMMaL, the product that presented the 

best agreement was MSWEP, with KGE = 0.54. This superiority of IMERG BraMMaL in 

estimating daily precipitation can be attested by the lower values of MAE and MRAE 

compared with CHIRPS (MAE = 0.67 mm and MRAE = 4.42), PERSIANN-CDR (MAE = 

7.76 mm and MRAE = 2.02), and MSWEP (MAE = 6.22 mm and MRAE = 3.05). The lower 

MRAE value of PERSIAN-CDR was observed because this product greatly underestimates 

the observed data, directly impacting the relative error. 

 

Figure 25- Scatter plots of the daily precipitation observed values vs (a) IMERG BraMMaL, (b) 

CHIRPS, (c) PERSIANN-CDR, and (d) MSWEP. The colours represent the number of events, 

from lower (violet) to higher (yellow). 

5.3.7. Data evaluation of the monthly accumulated IMERG BraMMaL estimates 

Daily precipitation estimations of the IMERG BraMMaL product were accumulated 

monthly and compared with estimations of the monthly IMERG BraMaL product based on 

the KNN regression model developed by Freitas et al. (2024) (Figure 26), which already 

presented better estimations compared with other global precipitation products, including 

IMERG Final Run and the three products previous analysed (i.e. CHIRPS, PERSIANN-
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CDR, and MSWEP). The IMERG BraMMaL product visually presents a much smaller data 

dispersion, with a solid yellow blotch with more than 300 pixels concentrated exactly above 

the line of equality. Compared with the early monthly IMERG BraMaL, the improved 

product also presented statistically better performance, with CC and KGE rising from 0.91 

to 0.97 and 0.86 to 0.95, respectively. This better performance of KGE was identified for the 

IMERG BraMMaL product over the months (Fig. S6). Similarly, a better performance was 

also observed for the error analyses, with values of MAE and MRAE for the IMERG 

BraMMaL product reducing from 29.10 to 13.33 mm and 0.86 to 0.28, respectively. Such 

lower MAE and MRAE values were noticed for the improved daily IMERG BraMMaL 

product over the months, especially from January to March and May to September, 

respectively (Figure S6). 

 

Figure 26 – Scatterplots of observed monthly precipitation values in the grid cell vs the values of 

the (a) monthly IMERG BraMaL product based on the KNN regression model and proposed by 

Freitas et al. (2024), and (b) IMERG BraMMaL product based on the MML model and monthly 

accumulated. 

5.4. Discussion 

5.4.1. Performance of machine learning models as tools to improve precipitation 

estimates 

The selection of machine learning models to classify rainfall events and improve 

precipitation estimates requires the consideration of their performance. The findings of this 

study were consistent with other works worldwide (e.g. Papacharalampous et al., 2023b; 

Hengel et al., 2018; Das et al. 2022), which found that the model GB performed better than 

other models (e.g. SVM and SGDC) for classifying events into rain and non-rain. Similar to 

what was pointed out by Hengel et al. (2018), we believe that such improved performance 

comes from the efficiency of GB in dealing with imbalanced classes of data, as the internal 
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decision trees are iteratively adjusted to focus on misclassified instances. Also, such decision 

trees of GB can extrapolate better beyond the training set range when compared with other 

models. Conversely, SVM and SGDC seek to find the hyperplane that best separates the 

classes in the data space and uses part of the data to adjust and update the calibration 

parameters, respectively. Although less accurate for detecting rain and non-rain when 

compared with GB, SVM and SGD also presented good performances as pointed out by Yu 

et al. (2023), Bansal et al. (2022), and (Sattari et al., 2023). 

Our results also indicated that KNN was the best regression model regarding 

performance to improve the satellite-based precipitation estimates, whether individually or 

combined with classification models, since their predictions are based directly on the training 

data, being effective for nearest neighbours that present close relationships (Liu et al., 2020). 

This result corroborates the findings by Freitas et al. (2024), which applied KNN to enhance 

the IMERG Early Run estimates at a monthly scale. This performance of KNN was closely 

followed by GB, which also performed well in the study by Papacharalampous et al. (2023b) 

in the entire contiguous United States for merging satellite and earth-observed precipitation 

data at a daily scale. Our findings diverge from the study by Bansal et al. (2022), which 

points to SVM, after a literature review and research, as rendering the best results to 

predictive analytics in real-time applications related to a multidisciplinary sphere. 

Previous studies identified substantial differences between the daily satellite-based 

estimates from the IMERG Final Run product and the rain gauge observations worldwide 

(e.g. Ramadhan et al., 2022; Sungmin et al., 2017;  Yu et al., 2021), including in Brazil 

(e.g. Freitas et al., 2020; Gadelha et al., 2019). Also, prior studies using distinct machine 

learning models to improve precipitation estimates observed different performances. For 

instance, the studies by Bhuiyan et al. (2019) and Bhuiyan et al. (2020) respectively 

identified the RF and ANN models as the best options for merging satellites and observed 

rainfall data in the Brahmaputra river basin (China Bhutan, Nepal, India, and Bangladesh) 

and over complex terrains (Peruvian and Colombian Andes in South America, and the Blue 

Nile in East Africa). At the same time, Papacharalampous et al. (2023a) pointed out that 

model Xtreme GB performed better in the United States of America. Therefore, our study 

tested the combination of machine learning models (e.g. SML, DML, and MML) to improve 

the daily precipitation estimates of the IMERG Early Run product without using observed 

data. From this combination, DML performed worst in generating the IMERG BraMaL 

product with daily precipitation estimates. This performance of a DML model diverges from 

the results found by Zhang et al. (2021), which pinpointed a better performance of a DML 
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model (RF-ANN an RF-RF) compared with an SML model (RF), mainly because of the 

greater capacity of the DML model in describing variations of precipitations, according to 

the authors. Our results point out that the SML and MML models exhibited improved 

performances, with MML being slightly greater as using a weighted average of several 

models, including KNN, the better SML used in the comparisons, corroborating the findings 

obtained by Freitas et al. (2024).  

It is worth highlighting that, conversely to the previous studies (e.g. Bhuiyan et al., 

2019, 2020b; Papacharalampous et al., 2023a, 2023b), our results were based on the test 

dataset, without directly relying on field data. Nonetheless, they significantly improved in 

reducing random and systematic errors for daily precipitation estimates. This suggests the 

model was successfully calibrated, allowing its application in other regions where gauge data 

are unavailable or present low quality (Ajiboye et al., 2015). Additionally, the model 

presented reliable results on the independent validation dataset since we used extreme 

precipitation events (lowest and highest) for the training dataset, avoiding data overfitting.  

5.4.2. Potentialities of IMERG-BraMMaL as a new estimator of daily precipitation 

The selection of satellite-based precipitation products for scientific research purposes 

and management practices requires the consideration of their performance in distinct spatial 

and temporal scales as well as the direct influence of several factors (e.g. rainfall regimes, 

climate, altitude) that can affect its agreement with the ground-based rainfall data (Bhuiyan 

et al., 2017, 2019, 2020a). For instance, the studies by Rozante et al. (2018), Gadelha et al 

(2019), Freitas et al. (2020), and Ramos Filho et al. (2022) identified considerable under and 

overestimations of satellite-based precipitation products in Brazil, which were more 

accentuated in the North, Central-West, and Northeast regions of the country. Other studies 

worldwide also observed general trends of under and overestimations of the satellite-based 

estimates, especially at short time resolutions (e.g. Beck et al., 2019; Peng et al., 2021; Wati 

et al., 2021; Xiang et al., 2021). A general trend of daily underestimation has also been found 

to occur for some global precipitation products in our analyses, especially for MSWEP and 

PERSIANN-CDR (see Fig. 25), with most values located below the 1:1 line in the 

scatterplots, which is consistent with other works (e.g. Du et al., 2023; Fallah et al., 2020); 

Guo et al., 2019). 

Conversely to other global products, IMERG BraMMaL presents smaller errors and 

better agreement with the daily observed ground-based data (Fig. 25), representing advances 

for precipitation estimates from space. Likewise to the IMERG BraMaL product, such errors 
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were much-reduced, now daily, in regions in Brazil where the IMERG Final Run largely 

underestimates the rain gauge data, as in the Northeast coast, which is associated with the 

difficulties of the passive microwave sensors in detecting warm-rain systems over land 

(Freitas et al., 2020; Gadelha et al., 2019; Rozante et al., 2018). In the challenging context 

of precisely estimating precipitation regionally, IMERG BraMMaL can be an important tool 

for providing a more reliable regional daily series, expanding the potential for hydrological 

analysis and simulations, and allowing a more accurate water balance modelling, being of 

large interest for water resource, agricultural and risk management. Compared to other main 

global products, IMERG BraMMaL also has the potential to have a higher latency (3 weeks) 

when compared, for instance, with the IMERG Final Run (3.5 months; Huffman et al., 2019) 

and PERSIANN-CDR (3 months; Ashouri et al., 2015) products, which is still lower than 

CHIRPS (<5 days; Funk et al., 2015) and MSWEP (3 hours; Beck et al., 2017). 
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6 CONCLUSIONS AND RECOMMENDATIONS 

 

This thesis proposed two precipitation products, based on machine learning techniques 

and meteorological re-analysis data (MERRA-2), to improve the satellite-based IMERG 

Early Run product. IMERG BraMaL was the first product, based on regression models to 

estimate monthly precipitation. Secondly, the IMERG BraMMaL product was proposed 

based on an evaluation of single and combined (double and multiple) machine learning 

models to improve the first product in terms of temporal resolution (i.e. from monthly to 

daily) and precipitation estimations (i.e. lower errors and better agreements compared with 

the observed data). Overall, both products presented better and more accurate daily and 

monthly precipitation estimates in Brazil compared to the IMERG Early and Final Run 

products in almost all analyses and evaluated metrics, especially IMERG BraMMaL. 

Superior performance statistics were also identified when the results of the proposed 

products were compared with other global precipitation products (CHIRPS, PERSIANN-

CDR, and MSWEP). The seven main findings of this study are summarised as follows: 

 

1. The two proposed products (IMERG BraMaL and IMERG BraMMaL)  have a higher 

latency (i.e. 3 weeks) when compared to the IMERG Early Run product due to its 

dependency on the MERRA-2 product, but a much faster availability to end users when 

compared to the IMERG Final Run product (i.e. 3.5 months latency). 

2. Once calibrated, the IMERG BraMaL and IMERG BraMMaL generation models do not 

depend on any field data, relying only on satellite-based precipitation (IMERG Early Run) 

and re-analysis (MERRA-2) data, allowing its application in areas where rain gauge data 

are unavailable or present low quality. 

3. The proposed models presented errors unrelated to any local features (e.g. climate, terrain, 

or precipitation regimes) but equally distributed throughout Brazil. This characteristic of 

the model enables its application in other regions, especially under tropical and 

subtropical climates. 

4. The IMERG BraM(M)aL products much improved the precipitation estimates in regions 

where, historically, the satellite-based products (e.g. TMPA and IMERG) largely 

underestimate the observed data (e.g. along the Northeast coast of Brazil due to the 

topographic forcing that favours warm-rain process systems which cannot be detected 

very well by passive microwave sensors over land). 
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5. The MML model performed better than the SML and DML models in most analyses, 

being chosen as the basis for the improved daily IMERG BraMMaL. 

6. The GB model was the best for classifying rain events and the KNN for the regression of 

daily rain data to generate the IMERG BraMMaL. 

7. Overall, the IMERG BraMMaL product presented more accurate daily and monthly 

precipitation estimates in Brazil compared with IMERG BraMaL.  

Based on its spatiotemporal resolution and latency, we recommend the IMERG 

BraMMaL product as an effective data that can be used for multiple applications such as 

water management, watershed rainfall-runoff modelling, water budget accounting, and 

drought analysis and forecast. For further research, aiming to improve our understanding of 

the practical problems for enhancing the satellite-based precipitation products and the 

various algorithmic solutions to this problem, we recommend: i) an investigation of spatial 

and temporal patterns of precipitation regimes since the errors of the satellite-based products 

can follow them; ii) an evaluation of the predictive performance of the various models, 

combined with the incorporation of more input data that can influence the precipitation 

phenomenon; iii) the improvement of the product to estimate precipitation on a sub-daily 

basis; and iv) the recalibration of the model with update input dataset to create updated 

versions of the IMERG BraMMaL product. 
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DATABASE 

The IMERG BraM(M)aL products are available for download as NetCDF files at 

http://imergbramal.net, along with the text files for the Brazilian territory. The calibrated 

models are also available for download at the same website and can be used for other regions.

http://imergbramal.net/


75  

REFERENCES 

 

Ajiboye, A. R., Abdullah-Arshah, R., Qin, H., & Isah-Kebbe, H. (2015). EVALUATING THE EFFECT 

OF DATASET SIZE ON PREDICTIVE MODEL USING SUPERVISED LEARNING 

TECHNIQUE. International Journal of Computer Systems & Software Engineering, 1(1), 75–84. 

https://doi.org/10.15282/ijsecs.1.2015.6.0006 
Altman, N. S. (1992). An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The 

American Statistician. 

Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L., & Sparovek, G. (2013). 

Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. 

https://doi.org/10.1127/0941-2948/2013/0507 

Amari, S.-I. (1993). Backpropagation and stochastic gradient descent method. In Neurocomputing (Vol. 

5). 

Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., & 

Prat, O. P. (2015). PERSIANN-CDR: Daily precipitation climate data record from multisatellite 

observations for hydrological and climate studies. Bulletin of the American Meteorological Society, 

96(1), 69–83. https://doi.org/10.1175/BAMS-D-13-00068.1 

Assiri, M. E., & Qureshi, S. (2022). A Multi-Source Data Fusion Method to Improve the Accuracy of 

Precipitation Products: A Machine Learning Algorithm. Remote Sensing, 14(24). 

https://doi.org/10.3390/rs14246389 

Bansal, M., Goyal, A., & Choudhary, A. (2022). A comparative analysis of K-Nearest Neighbor, 

Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in 

machine learning. Decision Analytics Journal, 3, 100071. 

https://doi.org/10.1016/j.dajour.2022.100071 

Beck, H. E., Pan, M., Roy, T., Weedon, G. P., Pappenberger, F., Van Dijk, A. I. J. M., Huffman, G. J., 

Adler, R. F., & Wood, E. F. (2019). Daily evaluation of 26 precipitation datasets using Stage-IV 

gauge-radar data for the CONUS. Hydrology and Earth System Sciences, 23(1), 207–224. 

https://doi.org/10.5194/hess-23-207-2019 

Beck, H. E., Van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., & De 

Roo, A. (2017). MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging 

gauge, satellite, and reanalysis data. Hydrology and Earth System Sciences, 21(1), 589–615. 

https://doi.org/10.5194/hess-21-589-2017 

Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., Van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., 

Pappenberger, F., Huffman, G. J., & Wood, E. F. (2017). Global-scale evaluation of 22 

precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth 

System Sciences, 21(12), 6201–6217. https://doi.org/10.5194/hess-21-6201-2017 

Beck, H. E., Wood, E. F., Pan, M., Fisher, C. K., Miralles, D. G., Van Dijk, A. I. J. M., McVicar, T. R., 

& Adler, R. F. (2019). MSWep v2 Global 3-hourly 0.1° precipitation: Methodology and 

quantitative assessment. Bulletin of the American Meteorological Society, 100(3), 473–500. 

https://doi.org/10.1175/BAMS-D-17-0138.1 

Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., Schamm, K., Schneider, U., & Ziese, M. 

(2013). A description of the global land-surface precipitation data products of the Global 

Precipitation Climatology Centre with sample applications including centennial (trend) analysis 

from 1901-present. Earth System Science Data, 5(1), 71–99. https://doi.org/10.5194/essd-5-71-

2013 

Behrangi, A., & Wen, Y. (2017). On the spatial and temporal sampling errors of remotely sensed 

precipitation products. Remote Sensing, 9(11). https://doi.org/10.3390/rs9111127 

Belabid, N., Zhao, F., Brocca, L., Huang, Y., & Tan, Y. (2019). Near-real-time flood forecasting based 

on satellite precipitation products. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030252 

Belyadi, H., & Haghighat, A. (2021). Machine Learning Guide for Oil and Gas Using Python (Vol. 1). 

Gulf Professional Publishing. 

Bhuiyan, M. A. E., Anagnostou, E. N., & Kirstetter, P. E. (2017). A Nonparametric Statistical 

Technique for Modeling Overland TMI (2A12) Rainfall Retrieval Error. IEEE Geoscience and 



76  

Remote Sensing Letters, 14(11), 1898–1902. https://doi.org/10.1109/LGRS.2017.2728658 

Bhuiyan, M. A. E., Nikolopoulos, E. I., & Anagnostou, E. N. (2019). Machine learning–based blending 

of satellite and reanalysis precipitation datasets: A multiregional tropical complex terrain 

evaluation. Journal of Hydrometeorology, 20(11), 2147–2161. https://doi.org/10.1175/JHM-D-19-

0073.1 

Bhuiyan, M. A. E., Nikolopoulos, E. I., Anagnostou, E. N., Quintana-Seguí, P., & Barella-Ortiz, A. 

(2018). A nonparametric statistical technique for combining global precipitation datasets: 

Development and hydrological evaluation over the Iberian Peninsula. Hydrology and Earth System 

Sciences, 22(2), 1371–1389. https://doi.org/10.5194/hess-22-1371-2018 

Bhuiyan, M. A. E., Yang, F., Biswas, N. K., Rahat, S. H., & Neelam, T. J. (2020a). Machine Learning-

Based Error Modeling to Improve GPM IMERG Precipitation Product over the Brahmaputra River 

Basin. Forecasting, 2(3), 248–266. https://doi.org/10.3390/forecast2030014 

Bhuiyan, M. A. E., Yang, F., Biswas, N. K., Rahat, S. H., & Neelam, T. J. (2020b). Machine Learning-

Based Error Modeling to Improve GPM IMERG Precipitation Product over the Brahmaputra River 

Basin. Forecasting, 2(3), 248–266. https://doi.org/10.3390/forecast2030014 

BISHOP, C. (2006). Pattern recognition and machine learning (Vol. 1). Springer google schola. 

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (1st ed.). Springer New York, NY. 

Blenkinsop, S., Fowler, H. J., Barbero, R., Chan, S. C., Guerreiro, S. B., Kendon, E., Lenderink, G., 

Lewis, E., Li, X.-F., Westra, S., Alexander, L., Allan, R. P., Berg, P., Dunn, R. J. H., Ekström, M., 

Evans, J. P., Holland, G., Jones, R., Kjellström, E., … Tye, M. R. (2018). The INTENSE project: 

using observations and models to understand the past, present and future of sub-daily rainfall 

extremes. Advances in Science and Research, 15, 117–126. https://doi.org/10.5194/asr-15-117-

2018 

Bonnema, M., Sikder, S., Miao, Y., ChenXiaodong, Hossain, Rahman, F., Mahbubur, I. A. P. S. M., & 

Lee, H. (2016). Water Resources Research. Water Resources Research, 10(1002), 4095–4115. 

https://doi.org/10.1111/j.1752-1688.1969.tb04897.x 

Breiman, L. (2001). Random Forests (Vol. 45). 

Breugem, A. J., Wesseling, J. G., Oostindie, K., & Ritsema, C. J. (2020). Earth-Science Reviews 

Meteorological aspects of heavy precipitation in relation to floods – An overview. Earth-Science 

Reviews, 204(January), 103171. https://doi.org/10.1016/j.earscirev.2020.103171 

Brocca, L., Filippucci, P., Hahn, S., Ciabatta, L., Massari, C., Camici, S., Schüller, L., Bojkov, B., & 

Wagner, W. (2019). SM2RAIN-ASCAT (2007-2018): Global daily satellite rainfall data from 

ASCAT soil moisture observations. Earth System Science Data, 11(4), 1583–1601. 

https://doi.org/10.5194/essd-11-1583-2019 

Brocca, L., Moramarco, T., Melone, F., & Wagner, W. (2013). A new method for rainfall estimation 

through soil moisture observations. Geophysical Research Letters, 40(5), 853–858. 

https://doi.org/10.1002/grl.50173 

Brocca, L., Pellarin, T., Crow, W. T., Ciabatta, L., Massari, C., Ryu, D., Su, C.-H., Rüdiger, C., & 

Kerr6, Y. (2016). Rainfall estimation by inverting SMOS soil moisture estimates: A comparison of 

different methods over Australia. Journal of Geophysical Research: Atmospheres RESEARCH, 

121(5), 3010–3028. https://doi.org/10.1002/2016JD025382.Received 

Brunetti, M. T., Melillo, M., Gariano, S. L., Ciabatta, L., Brocca, L., Amarnath, G., & Peruccacci, S. 

(2021). Satellite rainfall products outperform ground observations for landslide prediction in India. 

Hydrology and Earth System Sciences, 25(6), 3267–3279. https://doi.org/10.5194/hess-25-3267-

2021 

Brunetti, M. T., Melillo, M., Peruccacci, S., Ciabatta, L., & Brocca, L. (2018). How far are we from the 

use of satellite rainfall products in landslide forecasting? Remote Sensing of Environment, 210, 65–

75. https://doi.org/10.1016/j.rse.2018.03.016 

Chen, C., He, M., Chen, Q., Zhang, J., Li, Z., Wang, Z., & Duan, Z. (2022). Triple collocation-based 

error estimation and data fusion of global gridded precipitation products over the Yangtze River 

basin. Journal of Hydrology, 605. https://doi.org/10.1016/j.jhydrol.2021.127307 

Chen, H., Chen, A., Xu, L., Xie, H., Qiao, H., Lin, Q., & Cai, K. (2020). A deep learning CNN 

architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation 

resources. Agricultural Water Management, 240(April), 106303. 

https://doi.org/10.1016/j.agwat.2020.106303 



77  

Chen, H., Yong, B., Kirstetter, P. E., Wang, L., & Hong, Y. (2021). Global component analysis of errors 

in three satellite-only global precipitation estimates. Hydrology and Earth System Sciences, 25(6), 

3087–3104. https://doi.org/10.5194/hess-25-3087-2021 

Cortes, C., Vapnik, V., & Saitta, L. (1995). Support-Vector Networks Editor. In Machine Leaming (Vol. 

20). Kluwer Academic Publishers. 

Das, S., Wang, Y., Gong, J., Ding, L., Munchak, S. J., Wang, C., Wu, D. L., Liao, L., Olson, W. S., & 

Barahona, D. O. (2022). A Comprehensive Machine Learning Study to Classify Precipitation Type 

over Land from Global Precipitation Measurement Microwave Imager (GPM-GMI) Measurements. 

Remote Sensing, 14(15). https://doi.org/10.3390/rs14153631 

Dee, D. P., Balmaseda, M., Balsamo, G., Engelen, R., Simmons, A. J., & Thépaut, J. N. (2014). Toward 

a consistent reanalysis of the climate system. Bulletin of the American Meteorological Society, 

95(8), 1235–1248. https://doi.org/10.1175/BAMS-D-13-00043.1 

Derin, Y., & Yilmaz, K. K. (2014). Evaluation of multiple satellite-based precipitation products over 

complex topography. Journal of Hydrometeorology, 15(4), 1498–1516. 

https://doi.org/10.1175/JHM-D-13-0191.1 

Di Nunno, F., Granata, F., Pham, Q. B., & de Marinis, G. (2022). Precipitation Forecasting in Northern 

Bangladesh Using a Hybrid Machine Learning Model. Sustainability (Switzerland), 14(5). 

https://doi.org/10.3390/su14052663 

Du, J., Yu, X., Zhou, L., Ren, Y., & Ao, T. (2023). Precipitation Characteristics across the Three River 

Headwaters Region of the Tibetan Plateau: A Comparison between Multiple Datasets. Remote 

Sensing, 15(9). https://doi.org/10.3390/rs15092352 

Du, Y., & Xie, Z. Q. (2020). Spatial Scales of Heavy Meiyu Precipitation Events in Eastern China and 

Associated Atmospheric Processes Geophysical Research Letters. 1–9. 

https://doi.org/10.1029/2020GL087086 

Fallah, A., Rakhshandehroo, G. R., Berg, P., Sungmin, O., & Orth, R. (2020). Evaluation of 

precipitation datasets against local observations in southwestern Iran. International Journal of 

Climatology, 40(9), 4102–4116. https://doi.org/10.1002/joc.6445 

Freitas, E. da S., Coelho, V. H. R., Xuan, Y., Melo, D. de C. D., Gadelha, A. N., Santos, E. A., Galvão, 

C. de O., Ramos Filho, G. M., Barbosa, L. R., Huffman, G. J., Petersen, W. A., & Almeida, C. das 

N. (2020). The performance of the IMERG satellite-based product in identifying sub-daily rainfall 

events and their properties. Journal of Hydrology, 589. 

https://doi.org/10.1016/j.jhydrol.2020.125128 

Friedman, J. H. (2001). 999 REITZ LECTURE GREEDY FUNCTION APPROXIMATION: A 

GRADIENT BOOSTING MACHINE 1. In The Annals of Statistics (Vol. 29, Issue 5). 

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., 

Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with 

stations - A new environmental record for monitoring extremes. Scientific Data, 2. 

https://doi.org/10.1038/sdata.2015.66 

Gadelha, A. N., Coelho, V. H. R., Xavier, A. C., Barbosa, L. R., Melo, D. C. D., Xuan, Y., Huffman, G. 

J., Petersen, W. A., & Almeida, C. das N. (2019). Grid box-level evaluation of IMERG over Brazil 

at various space and time scales. Atmospheric Research, 218(August 2018), 231–244. 

https://doi.org/10.1016/j.atmosres.2018.12.001 

Garcez, L. N., & Alvarez, G. A. (1988). Hidrologia (2. ed. rev. e atual.). 

Gardner, M. W., & Dorling, S. R. (1998). ARTIFICIAL NEURAL NETWORKS (THE MULTILAYER 

PERCEPTRON)-A REVIEW OF APPLICATIONS IN THE ATMOSPHERIC SCIENCES. In 

Atmospheric Environment (Vol. 32, Issue 14). 

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, 

A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., 

Buchard, V., Conaty, A., da Silva, A. M., Gu, W., … Zhao, B. (2017). The modern-era 

retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 

30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1 

Goodfellow, I., Yoshua Bengio, & Aaron Courville. (2016). Deep learning. MIT press. 

Guo, D., Wang, H., Zhang, X., & Liu, G. (2019). Evaluation and analysis of grid precipitation fusion 

products in Jinsha river basin based on China meteorological assimilation datasets for the SWAT 

model. Water (Switzerland), 11(2). https://doi.org/10.3390/w11020253 



78  

Gupta, V., Jain, M. K., Singh, P. K., & Singh, V. (2020). An assessment of global satellite-based 

precipitation datasets in capturing precipitation extremes: A comparison with observed 

precipitation dataset in India. International Journal of Climatology, 40(8), 3667–3688. 

https://doi.org/10.1002/joc.6419 

Habib, E., Krajewski, W. F., & Kruger, A. (2001). Sampling Errors of Tipping-Bucket Rain Gauge 

Measurements. Journal of Hydrologic Engineering, 6(2), 159–166. 

https://doi.org/10.1061/(ASCE)1084-0699(2001)6:2(159) 

Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly 

climatic observations - the CRU TS3.10 Dataset. International Journal of Climatology, 34(3), 623–

642. https://doi.org/10.1002/joc.3711 

Hastie, T. , Tibshirani, R. , & Friedman, J. H. (2009). The elements of statistical learning: data mining, 

inference, and prediction (Vol. 2). New York: springer. 

Hegerl, G. C., Black, E., Allan, R. P., Ingram, W. J., Polson, D., Trenberth, K. E., Chadwick, R. S., 

Arkin, Beena Balan Sarojini, P. A., Becker, A., Durack, P. J., Easterling, D., Fowler, H. J., Kendon, 

J., Huffman, G. J., Liu, C., Marsh, R., Osborn, T. J., Stott, P. A., Vidale, P.-L., … Zhang, X. (n.d.). 

CHALLENGES IN QUANTIFYING CHANGES IN THE GLOBAL WATER CYCLE. 

https://doi.org/10.1175/BAMS-D-13-00212.2 

Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A Fast Learning Algorithm for Deep Belief Nets. 

Neural Computation, 18(7), 1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527 

Houze, R. A. (2012). Orographic effects on precipitating clouds. Reviews of Geophysics, 50(1), 1–47. 

https://doi.org/10.1029/2011RG000365 

Huffman, G. J., Bolvin, D. T., Nelkin, E. J., & Tan, J. (2019). Integrated Multi-satellitE Retrievals for 

GPM (IMERG) Technical Documentation. 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning (Vol. 

103). Springer New York. https://doi.org/10.1007/978-1-4614-7138-7 

Jiang, S., Wei, L., Ren, L., Xu, C. Y., Zhong, F., Wang, M., Zhang, L., Yuan, F., & Liu, Y. (2021). 

Utility of integrated IMERG precipitation and GLEAM potential evapotranspiration products for 

drought monitoring over mainland China. Atmospheric Research, 247. 

https://doi.org/10.1016/j.atmosres.2020.105141 

Jones, P. D., Briffa, K. R., Osborn, T. J., Moberg, A., & Bergström, H. (2002). Relationships between 

circulation strength and the variability of growing-season and cold-season climate in northern and 

central Europe. Holocene, 12(6), 643–656. https://doi.org/10.1191/0959683602hl577rp 

Kidd, C., Becker, A., Huffman, G. J., Muller, C. L., Joe, P., Skofronick-Jackson, G., & Kirschbaum, D. 

B. (2017). So, how much of the Earth’s surface is covered by rain gauges? Bulletin of the American 

Meteorological Society, 98(1), 69–78. https://doi.org/10.1175/BAMS-D-14-00283.1 

Kidd, C., & Huffman, G. (2011). Global precipitation measurement. In Meteorological Applications 

(Vol. 18, Issue 3, pp. 334–353). John Wiley and Sons Ltd. https://doi.org/10.1002/met.284 

Kidd, C., & Levizzani, V. (2011). Status of satellite precipitation retrievals. Hydrology and Earth 

System Sciences, 15(4), 1109–1116. https://doi.org/10.5194/hess-15-1109-2011 

Kidd, C., Levizzani, V., Turk, J., & Ferraro, R. (2009). Satellite precipitation measurements for water 

resource monitoring. Journal of the American Water Resources Association, 45(3), 567–579. 

https://doi.org/10.1111/j.1752-1688.2009.00326.x 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional 

neural networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386 

Kumar, A., Ramsankaran, R., Brocca, L., & Munoz-Arriola, F. (2019). A Machine Learning Approach 

for Improving Near-Real-Time Satellite-Based Rainfall Estimates by Integrating Soil Moisture. 

Remote Sensing, 11(19), 1–20. https://doi.org/10.3390/rs11192221 

Lewis, E., Fowler, H., Alexander, L., Dunn, R., Mcclean, F., Barbero, R., Guerreiro, S., Li, X. F., & 

Blenkinsop, S. (2019). GSDR: A global sub-daily rainfall dataset. Journal of Climate, 32(15), 

4715–4729. https://doi.org/10.1175/JCLI-D-18-0143.1 

Li, N., Tang, G., Zhao, P., Hong, Y., Gou, Y., & Yang, K. (2017). Statistical assessment and 

hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River 

basin. Atmospheric Research, 183, 212–223. https://doi.org/10.1016/j.atmosres.2016.07.020 

Liu, W., Wang, P., Meng, Y., Zhao, C., & Zhang, Z. (2020). Cloud spot instance price prediction using 

kNN regression. Human-Centric Computing and Information Sciences, 10(1). 



79  

https://doi.org/10.1186/s13673-020-00239-5 

Llauca, H., Lavado‐casimiro, W., León, K., Jimenez, J., Traverso, K., & Rau, P. (2021). Assessing near 

real‐time satellite precipitation products for flood simulations at sub‐daily scales in a sparsely 

gauged watershed in Peruvian andes. Remote Sensing, 13(4), 1–18. 

https://doi.org/10.3390/rs13040826 

Ma, Z., Xu, J., Zhu, S., Yang, J., Tang, G., Yang, Y., Shi, Z., & Hong, Y. (2020). AIMERG: A new 

Asian precipitation dataset (0.1°/half-hourly, 2000-2015) by calibrating the GPM-era IMERG at a 

daily scale using APHRODITE. Earth System Science Data, 12(3), 1525–1544. 

https://doi.org/10.5194/essd-12-1525-2020 

Markonis, Y., Papalexiou, S. M., Martinkova, M., & Hanel, M. (2019). Assessment of Water Cycle 

Intensification Over Land using a Multisource Global Gridded Precipitation DataSet. JGR 

Atmospheres, 124, 11175–11187. https://doi.org/10.1029/2019JD030855 

Marra, F., & Morin, E. (2015). Use of radar QPE for the derivation of Intensity-Duration-Frequency 

curves in a range of climatic regimes. Journal of Hydrology, 531, 427–440. 

https://doi.org/10.1016/j.jhydrol.2015.08.064 

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A Proposal for the Dartmouth 

Summer Research Project on Artificial Intelligence. 

Mei, Y., Anagnostou, E. N., Nikolopoulos, E. I., & Borga, M. (2014). Error analysis of satellite 

precipitation products in mountainous basins. Journal of Hydrometeorology, 15(5), 1778–1793. 

https://doi.org/10.1175/JHM-D-13-0194.1 

Meng, Q., Chen, W., Wang, Y., Ma, Z. M., & Liu, T. Y. (2019). Convergence analysis of distributed 

stochastic gradient descent with shuffling. Neurocomputing, 337, 46–57. 

https://doi.org/10.1016/j.neucom.2019.01.037 

Michaelides, S., Levizzani, V., Anagnostou, E., Bauer, P., Kasparis, T., & Lane, J. E. (2009). 

Precipitation: Measurement, remote sensing, climatology and modeling. Atmospheric Research, 

94(4), 512–533. https://doi.org/10.1016/j.atmosres.2009.08.017 

Mitchell, T. M. (1977). Machine Learning (McGraw-Hill Science). 

Montero-Manso, P., Athanasopoulos, G., Hyndman, R. J., & Talagala, T. S. (2020). FFORMA: Feature-

based forecast model averaging. International Journal of Forecasting, 36(1), 86–92. 

https://doi.org/10.1016/j.ijforecast.2019.02.011 

Mu, Y., Liu, W., Liu, X., & Fan, W. (2017). Stochastic Gradient Made Stable: A Manifold Propagation 

Approach for Large-Scale Optimization. IEEE Transactions on Knowledge and Data Engineering, 

29(2), 458–471. https://doi.org/10.1109/TKDE.2016.2604302 

Munier, S., Aires, F., Schlaffer, S., Prigent, C., Papa, F., Maisongrande, P., & Pan, M. (2014). 

Combining data sets of satellite-retrieved products for basin-scale water balance study: 2. 

Evaluation on the Mississippi basin and closure correction model. Journal of Geophysical 

Research, 119(21), 12,100-12,116. https://doi.org/10.1002/2014JD021953 

New, M., Todd, M., Hulme, M., & Jones, P. (2001). Precipitation measurements and trends in the 

twentieth century. International Journal of Climatology, 21(15), 1889–1922. 

https://doi.org/10.1002/joc.680 

Ning, S., Song, F., Udmale, P., Jin, J., Thapa, B. R., & Ishidaira, H. (2017). Error Analysis and 

Evaluation of the Latest GSMap and IMERG Precipitation Products over Eastern China. Advances 

in Meteorology, 2017(March 2014). https://doi.org/10.1155/2017/1803492 

Ochoa-Rodriguez, S., Wang, L. P., Willems, P., & Onof, C. (2019). A Review of Radar-Rain Gauge 

Data Merging Methods and Their Potential for Urban Hydrological Applications. In Water 

Resources Research (Vol. 55, Issue 8, pp. 6356–6391). Blackwell Publishing Ltd. 

https://doi.org/10.1029/2018WR023332 

Oliveira, R., Maggioni, V., Vila, D., & Morales, C. (2016). Characteristics and diurnal cycle of GPM 

rainfall estimates over the Central Amazon region. Remote Sensing, 8(7). 

https://doi.org/10.3390/rs8070544 

Papacharalampous, G., Tyralis, H., Doulamis, A., & Doulamis, N. (2023a). Comparison of Machine 

Learning Algorithms for Merging Gridded Satellite and Earth-Observed Precipitation Data. Water 

(Switzerland), 15(4). https://doi.org/10.3390/w15040634 

Papacharalampous, G., Tyralis, H., Doulamis, A., & Doulamis, N. (2023b). Comparison of Tree-Based 

Ensemble Algorithms for Merging Satellite and Earth-Observed Precipitation Data at the Daily 



80  

Time Scale. Hydrology, 10(2). https://doi.org/10.3390/hydrology10020050 

Papacharalampous, G., Tyralis, H., Doulamis, N., & Doulamis, A. (2023c). Ensemble Learning for 

Blending Gridded Satellite and Gauge-Measured Precipitation Data. Remote Sensing, 15(20). 

https://doi.org/10.3390/rs15204912 

Pellarin, T., Louvet, S., Gruhier, C., Quantin, G., & Legout, C. (2013). A simple and effective method 

for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote 

Sensing of Environment, 136(September), 28–36. https://doi.org/10.1016/j.rse.2013.04.011 

Pellet, V., Aires, F., Munier, S., Fernández Prieto, D., Jordá, G., Arnoud Dorigo, W., Polcher, J., & 

Brocca, L. (2019). Integrating multiple satellite observations into a coherent dataset to monitor the 

full water cycle - Application to the Mediterranean region. Hydrology and Earth System Sciences, 

23(1), 465–491. https://doi.org/10.5194/hess-23-465-2019 

Peng, J., Liu, T., Huang, Y., Ling, Y., Li, Z., Bao, A., Chen, X., Kurban, A., & De Maeyer, P. (2021). 

Satellite-based precipitation datasets evaluation using gauge observation and hydrological 

modeling in a typical arid land watershed of central asia. Remote Sensing, 13(2), 1–26. 

https://doi.org/10.3390/rs13020221 

Pinto, N. L. de S., Holtz, A. C. T., Martins, J. A., & Gomide, F. L. S. (1976). Hidrologia básica (Editora 

Blucher). 

Prakash, S., Mitra, A. K., Pai, D. S., & AghaKouchak, A. (2016). From TRMM to GPM: How well can 

heavy rainfall be detected from space? Advances in Water Resources, 88, 1–7. 

https://doi.org/10.1016/j.advwatres.2015.11.008 

Quinlan, J. R. (1986). Induction of Decision Trees. In Machine Learning (Vol. 1). 

Rafieeinasab, A., Norouzi, A., Seo, D. J., & Nelson, B. (2015). Improving high-resolution quantitative 

precipitation estimation via fusion of multiple radar-based precipitation products. Journal of 

Hydrology, 531, 320–336. https://doi.org/10.1016/j.jhydrol.2015.04.066 

Raghav. (2022). Data Science with Raghav. 

Https://Www.Datasciencewithraghav.Com/2022/10/28/How-to-Avoid-under-Fitting-and-over-

Fitting-While-Training-a-Neural-Network/. 

Raj, R., Saharia, M., Chakma, S., & Rafieinasab, A. (2022). Mapping rainfall erosivity over India using 

multiple precipitation datasets. Catena, 214. https://doi.org/10.1016/j.catena.2022.106256 

Rajagopalan, B., & Lall, U. (1999). A k-nearest-neighbor simulator for daily precipitation and other 

weather variables. Water Resources Research, 35(10), 3089–3101. 

https://doi.org/10.1029/1999WR900028 

Ramadhan, R., Yusnaini, H., Marzuki, M., Muharsyah, R., Suryanto, W., Sholihun, S., Vonnisa, M., 

Harmadi, H., Ningsih, A. P., Battaglia, A., Hashiguchi, H., & Tokay, A. (2022). Evaluation of 

GPM IMERG Performance Using Gauge Data over Indonesian Maritime Continent at Different 

Time Scales. Remote Sensing, 14(5). https://doi.org/10.3390/rs14051172 

Ramos Filho, G. M., Coelho, V. H. R., Freitas, E. da S., Xuan, Y., & Almeida, C. das N. (2021). An 

improved rainfall-threshold approach for robust prediction and warning of flood and flash flood 

hazards. Natural Hazards, 105(3), 2409–2429. https://doi.org/10.1007/s11069-020-04405-x 

Rozante, J. R., Moreira, D. S., de Goncalves, L. G. G., & Vila, D. A. (2010). Combining TRMM and 

surface observations of precipitation: Technique and validation over South America. Weather and 

Forecasting, 25(3), 885–894. https://doi.org/10.1175/2010WAF2222325.1 

Rozante, J. R., Vila, D. A., Chiquetto, J. B., Fernandes, A. de A., & Alvim, D. S. (2018). Evaluation of 

TRMM/GPM blended daily products over Brazil. Remote Sensing, 10(6). 

https://doi.org/10.3390/rs10060882 

Sadeghi, M., Nguyen, P., Hsu, K., & Sorooshian, S. (2020). Improving near real-time precipitation 

estimation using a U-Net convolutional neural network and geographical information. 

Environmental Modelling and Software, 134. https://doi.org/10.1016/j.envsoft.2020.104856 

Samuel, A. L. (1959). Machine learning (Vol. 1). The Technology Review. 

Satgé, F., Ruelland, D., Bonnet, M. P., Molina, J., & Pillco, R. (2019). Consistency of satellite-based 

precipitation products in space and over time compared with gauge observations and snow- 

hydrological modelling in the Lake Titicaca region. Hydrology and Earth System Sciences, 23(1), 

595–619. https://doi.org/10.5194/hess-23-595-2019 

Sattari, M. T., Avram, A., Apaydin, H., & Matei, O. (2023). Evaluation of Feature Selection Methods in 

Estimation of Precipitation Based on Deep Learning Artificial Neural Networks. Water Resources 



81  

Management, 37(15), 5871–5891. https://doi.org/10.1007/s11269-023-03563-4 

Schneider, U., Ziese, M., Meyer-Christoffer, A., Finger, P., Rustemeier, E., & Becker, A. (2016). The 

new portfolio of global precipitation data products of the Global Precipitation Climatology Centre 

suitable to assess and quantify the global water cycle and resources. Proceedings of the 

International Association of Hydrological Sciences, 374, 29–34. https://doi.org/10.5194/piahs-374-

29-2016 

Sehad, M., Lazri, M., & Ameur, S. (2017). Novel SVM-based technique to improve rainfall estimation 

over the Mediterranean region (north of Algeria) using the multispectral MSG SEVIRI imagery. 

Advances in Space Research, 59(5), 1381–1394. https://doi.org/10.1016/j.asr.2016.11.042 

Sengoz, C., Ramanna, S., Kehler, S., Goomer, R., & Pries, P. (2023). Machine Learning Approaches to 

Improve North American Precipitation Forecasts. IEEE Access, 11, 97664–97681. 

https://doi.org/10.1109/ACCESS.2023.3309054 

Silva Lelis, L. C., Duarte Bosquilia, R. W., & Duarte, S. N. (2018). Assessment of precipitation data 

generated by GPM and TRMM satellites. Revista Brasileira de Meteorologia, 33(1), 153–163. 

https://doi.org/10.1590/0102-7786331004 

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K. L. (2018). A Review of Global 

Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Reviews of Geophysics, 

56(1), 79–107. https://doi.org/10.1002/2017RG000574 

Sungmin, O., Foelsche, U., Kirchengast, G., Fuchsberger, J., Tan, J., & Petersen, W. A. (2017). 

Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data 

in southeastern Austria. Hydrology and Earth System Sciences, 21(12), 6559–6572. 

https://doi.org/10.5194/hess-21-6559-2017 

SUTTON, R. S., & BARTO, A. G. (2018). Reinforcement learning: An introduction. MIT press. 

Tan, J., Petersen, W. A., Kirchengast, G., Goodrich, D. C., & Wolff, D. B. (2018). Evaluation of global 

precipitation measurement rainfall estimates against three dense gauge networks. Journal of 

Hydrometeorology, 19(3), 517–532. https://doi.org/10.1175/JHM-D-17-0174.1 

Tang, G., Ma, Y., Long, D., Zhong, L., & Hong, Y. (2016). Evaluation of GPM Day-1 IMERG and 

TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. Journal 

of Hydrology, 533, 152–167. https://doi.org/10.1016/j.jhydrol.2015.12.008 

Thornes, J., Bloss, W., Bouzarovski, S., Cai, X., Chapman, L., Clark, J., Dessai, S., Du, S., van der 

Horst, D., Kendall, M., Kidd, C., & Randalls, S. (2010). Communicating the value of atmospheric 

services. Meteorological Applications, 17(2), 243–250. https://doi.org/10.1002/met.200 

Tyralis, H., Papacharalampous, G., Doulamis, N., & Doulamis, A. (2023). Merging Satellite and Gauge-

Measured Precipitation Using LightGBM With an Emphasis on Extreme Quantiles. IEEE Journal 

of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 6969–6979. 

https://doi.org/10.1109/JSTARS.2023.3297013 

Varma, A. K. (2018). Measurement of Precipitation from Satellite Radiometers (Visible, Infrared, and 

Microwave): Physical Basis, Methods, and Limitations. In Remote Sensing of Aerosols, Clouds, 

and Precipitation (pp. 223–248). Elsevier. https://doi.org/10.1016/B978-0-12-810437-8.00011-6 

Wanders, N., Wada, Y., & Van Lanen, H. A. J. (2015). Global hydrological droughts in the 21st century 

under a changing hydrological regime. Earth System Dynamics, 6(1), 1–15. 

https://doi.org/10.5194/esd-6-1-2015 

Wang, C., Jia, Z., Yin, Z., Liu, F., Lu, G., & Zheng, J. (2021). Improving the Accuracy of Subseasonal 

Forecasting of China Precipitation With a Machine Learning Approach. Frontiers in Earth Science, 

9. https://doi.org/10.3389/feart.2021.659310 

Wang, R., Chu, H., Liu, Q., Chen, B., Zhang, X., Fan, X., Wu, J., Xu, K., Jiang, F., & Chen, L. (2023). 

Application of Machine Learning Techniques to Improve Multi-Radar Mosaic Precipitation 

Estimates in Shanghai. Atmosphere, 14(9). https://doi.org/10.3390/atmos14091364 

Wang, Y., Kong, Y., Chen, H., & Zhao, L. (2020). Improving daily precipitation estimates for the 

Qinghai-Tibetan plateau based on environmental similarity. International Journal of Climatology, 

40(12), 5368–5388. https://doi.org/10.1002/joc.6523 

Wang, Z., Zhong, R., Lai, C., & Chen, J. (2017). Evaluation of the GPM IMERG satellite-based 

precipitation products and the hydrological utility. Atmospheric Research, 196, 151–163. 

https://doi.org/10.1016/j.atmosres.2017.06.020 

Wati, T., Hadi, T. W., Sopaheluwakan, A., & Hutasoit, L. M. (2021). Evaluation gridded precipitation 



82  

datasets in Indonesia. IOP Conference Series: Earth and Environmental Science, 893(1). 

https://doi.org/10.1088/1755-1315/893/1/012056 

Wehbe, Y., Temimi, M., & Adler, R. F. (2020). Enhancing precipitation estimates through the fusion of 

weather radar, satellite retrievals, and surface parameters. Remote Sensing, 12(8). 

https://doi.org/10.3390/RS12081342 

Wolfensberger, D., Gabella, M., Boscacci, M., Germann, U., & Berne, A. (2021). RainForest: a random 

forest algorithm for quantitative precipitation estimation over Switzerland. Atmospheric 

Measurement Techniques, 14(4), 3169–3193. https://doi.org/10.5194/amt-14-3169-2021 

Xiang, Y., Chen, J., Li, L., Peng, T., & Yin, Z. (2021). Evaluation of eight global precipitation datasets 

in hydrological modeling. Remote Sensing, 13(14). https://doi.org/10.3390/rs13142831 

Xu, L., Chen, N., Moradkhani, H., Zhang, X., & Hu, C. (2020). Improving Global Monthly and Daily 

Precipitation Estimation by Fusing Gauge Observations, Remote Sensing, and Reanalysis Data 

Sets. Water Resources Research, 56(3). https://doi.org/10.1029/2019WR026444 

Xu, R., Tian, F., Yang, L., Hu, H., Lu, H., & Hou, A. (2017). Ground validation of GPM IMERG and 

trmm 3B42V7 rainfall products over Southern Tibetan plateau based on a high-density rain gauge 

network. Journal of Geophysical Research, 122(2), 910–924. 

https://doi.org/10.1002/2016JD025418 

Yang, X., & Chen, Z. (2023). Assessing the effects of time series on precipitation forecasting 

performance from complexity perspective. Theoretical and Applied Climatology, 154(3–4), 973–

986. https://doi.org/10.1007/s00704-023-04616-9 

Yang, Y., & Luo, Y. (2014). Using the back propagation neural network approach to bias correct TMPA 

data in the arid region of northwest China. Journal of Hydrometeorology, 15(1), 459–473. 

https://doi.org/10.1175/JHM-D-13-041.1 

Yu, C., Shao, H., Hu, D., Liu, G., & Dai, X. (2023). Merging precipitation scheme design for improving 

the accuracy of regional precipitation products by machine learning and geographical deviation 

correction. Journal of Hydrology, 620. https://doi.org/10.1016/j.jhydrol.2023.129560 

Yuan, F., Zhang, L., Soe, K. M. W., Ren, L., Zhao, C., Zhu, Y., Jiang, S., & Liu, Y. (2019). 

Applications of TRMM- and GPM-era multiple- satellite precipitation products for flood 

simulations at sub-daily scales in a sparsely gauged watershed in Myanmar. Remote Sensing, 11(2). 

https://doi.org/10.3390/rs11020140 

Zhang, L., Li, X., Zheng, D., Zhang, K., Ma, Q., Zhao, Y., & Ge, Y. (2021). Merging multiple satellite-

based precipitation products and gauge observations using a novel double machine learning 

approach. Journal of Hydrology, 594. https://doi.org/10.1016/j.jhydrol.2021.125969 

Zhou, C., Gao, W., Hu, J., Du, L., & Du, L. (2021). Capability of imerg v6 early, late, and final 

precipitation products for monitoring extreme precipitation events. Remote Sensing, 13(4), 1–23. 

https://doi.org/10.3390/rs13040689 

  



83  

APPENDICES 

 

Figure S1 shows the overall mean values of MRAE and ME for the three models that 

presented the best performances (i.e. KNN, GB, and ANN), divided by seven precipitation 

intervals (i.e. 1-5, 5-10, 10-15, 15-25, 25-50, 50-75, 75-350 mm/day). GB, RNA, and ANN 

presented almost the same performance for precipitation intervals from 1-5 to 10-15 

mm/day, with GB exhibiting slight superiority. Such intervals represent 71% of the 

precipitation events but correspond only to 30% of precipitation depth. For precipitation 

intervals from 15-50 to 50-350 mm/day, KNN exhibited better performance. Conversely, 

such intervals represent only 29% of the precipitation events but correspond to 70% of 

precipitation depth. Therefore, KNN was chosen as the best SML model. 

 
Figure S1 - (a) MAE and (b) MRAE values of KNN, RNA, and GB single machine learning 

(SML) models by precipitation intervals of 1-5, 5-10, 10-15, 15-25, 25-50, 50-75, and 75-350 mm. 

The overall mean values of the efficiency metrics for the three DML models that 

presented the best performances (i.e. GB, SVM, and SGCD), divided by six precipitation 

intervals (i.e. 5-10, 10-15, 15-25, 25-50, 50-75, 75-350 mm/day), are shown in Figure S2. 

Overall, the three models performed similarly for all metrics and precipitations intervals, 

with GB presenting a slight superiority of ~7.5%, on average, when compared to SVM for 

precipitation intervals from 1-5 to 5-15 mm/day (i.e. representing 70% of precipitation 

events). On the other hand, SGDC exhibited improved performances of ~5.2%, on average, 

when compared to SVM for precipitation intervals higher than 25-50 mm/day (i.e. 30% of 

precipitation events). Unlike the previous analysis performed for regression models, which 

considers the magnitude and errors of the rain, a precise number of classifications is more 

important for DML models. As shown in Figure S2, the classifications tend to improve as 

precipitation intervals increase, meaning correctly classifying rain events with lower 

volumes is a bigger challenge. Thus, models with low rates of false positives for smaller 

precipitation intervals and without a high number of false negatives for larger precipitation 
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intervals are shown to be more appropriate. Therefore, we chose GB as the best classification 

model to identify rain and non-rain events. 

 

Figure S2 - (a) F1-score and (b) CSI values of CB, SVM, and SGD double machine learning (DML) 

models classified by precipitation intervals of 5-10, 10-15, 15-25, 25-50, 50-75, and 75-350 mm. 

The mean statistical error indices of the three DML models that performed better (i.e. 

KNN, SGDR, and GB), divided by seven precipitation intervals (i.e. 5-10, 10-15, 15-25, 25-

50, 50-75, 75-350 mm/day), show that GB presented lower MAE (4.23 and 3.80 mm) and 

MRAE (1.73 and 0.52) for shorter intervals (i.e. 1-5 and 5-10 mm) when compared to KNN 

and SGDR (Figure S3). These two shorter intervals represent 48% of the rainfall events but 

only 17% of the depth. Overall similar performance of the three methods can be observed 

for the time intervals between 10-15 and 25-50 mm, with a slight superiority of KNN. 

Conversely, these intervals correspond to 44% of rainfall events and 54% of rainfall depth. 

For rainfall intervals higher than 25-50 mm, which represent 8% of events and 29% of depth, 

KNN exhibited lower errors (e.g. MAE = 59.24 mm and MRAE = 0.58 for 75-350 mm), 

especially compared to GB (e.g. MAE = 68.31 mm and MRAE = 0.66 for 75-350 mm). 

Following the same criteria for choosing the SML model, KNN was selected for the DML 

regression since presented better results for rainfall intervals representing 52% of the events 

and 83% of the depths. 

 
Figure S3 - (a) MAE, (b) RMSE, (c) MRE, and (d) MRAE values of KNN, RNA, and GB double 

machine learning (DML) models classified by precipitation intervals of 1-5, 5-10, 10-15, 15-25, 

25-50, 50-75, and 75-350 mm. 
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The error analysis by precipitation intervals shows that IMERG BraMaL considering 

SML and MML models presented lower absolute and relative than the IMERG Final Run 

product for almost all precipitation ranges, especially between 0 and 170 mm (Figure S4). 

However, the MRAE of IMERG BraMaL based on the SML model was slightly lower for 

the precipitation intervals between 10 and 50 mm. On the other hand, the IMERG BraMaL 

product based on the DML model exhibited the worst performance for almost all 

precipitation intervals, mainly higher than 50 mm, with MRAE and MAE values superior to 

those observed for the IMERG Final Run product. 

 

Figure S4 - (a) MAE, (b) MRAE and (c) MRE values of the IMERG FInal, IMERG BraMaL SML, 

IMERG BraMaL DML and IMERG BraMaL MML products for different monthly precipitation 

intervals. 
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Figure S5 – Monthly variations of the IMERG Final Run, IMERG BraMaL SML, DML and MML 

products for different intervals of precipitation: MAE from (a) January to December (l) and MRAE 

from (m) January to (y) December. 
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Figure S6 – Monthly variations of (a) MAE, (b) MRAE, and (c) KGE for the IMERG BraMMaL 

and IMERG BraMaL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


