

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL CURSO DE ENGENHARIA CIVIL

JOSÉ VINÍCIUS FIRMINO DANTAS LEITE

COMPARAÇÃO DE PROGRAMAS COMPUTACIONAIS DE CÁLCULO ESTRUTURAL PARA DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO RETICULADAS

JOSÉ VINÍCIUS FIRMINO DANTAS LEITE

COMPARAÇÃO DE PROGRAMAS COMPUTACIONAIS DE CÁLCULO ESTRUTURAL PARA DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO RETICULADAS

Monografia apresentada ao curso de Engenharia Civil da Universidade Federal da Paraíba, como requisito da obtenção do título de Bacharel em Engenharia Civil.

Orientador: Prof. Dr. Givanildo Alves de Azeredo

JOÃO PESSOA – PB

Catalogação na publicação Seção de Catalogação e Classificação

L533c Leite, Jose Vinicius Firmino Dantas.

COMPARAÇÃO DE PROGRAMAS COMPUTACIONAIS DE CÁLCULO ESTRUTURAL PARA DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO RETICULADAS / Jose Vinicius Firmino Dantas Leite. - João Pessoa, 2023. 218 f.: il.

Orientação: Givanildo Alves de Azeredo. TCC (Graduação) - UFPB/CT.

1. Análise estrutural. 2. Dimensionamento. 3. Eberick. 4. TQS. 5. CYPECAD. 6. NBR 6118 (2023). 7. Estruturas de concreto armado. I. Azeredo, Givanildo Alves de. II. Título.

UFPB/CT/BSCT

CDU 624(043.2)

FOLHA DE APROVAÇÃO

JOSÉ VINÍCIUS FIRMINO DANTAS LEITE

COMPARAÇÃO DE PROGRAMAS COMPUTACIONAIS DE CÁLCULO ESTRUTURAL PARA DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO RETICULADAS

Trabalho de Conclusão de Curso em 08/11/2023 perante a seguinte Comissão Julgadora:

~ 00 m	MROVADO
Prof. Dr. Givanildo Alves de Azeredo Departamento de Engenharia Civil e Ambiental do CT/UFPB	
Andria Brasiliano Silva	APROVADO
Prof ^a . Dr ^a . Andrea Brasiliano Silva Departamento de Engenharia Civil e Ambiental do CT/UFPB	
si maile Florin (my	APROVADO
Prof. Dr. José Marcilio Filgueiras Cruz	
Departamento de Engenharia Civil e Ambiental do CT/UFPB	

AGRADECIMENTOS

A Deus, o grande engenheiro da vida, que me concedeu o dom de viver, edificando a minha caminhada, de fortaleza, paz, luz, sendo refúgio e amparo frente aos obstáculos e por permitir a construção e realização de um sonho de infância. A Nossa Senhora, por estar sempre ao meu lado, estendendo seu manto sagrado protetor ao longo dessa jornada.

A minha mãe, Risomar, uma mulher extraordinária, o alicerce fundamental da minha formação humana, a ela meus sinceros agradecimentos, por estar ao meu lado nessa conquista, que se tornou possível, pela sua dedicação, carinho, sabedoria, por todo incentivo, apoio e por ensinar diariamente importância da família, do amor e da fé, valores que irei levar por toda a minha vida.

Ao meu pai, José Teotônio, minha grande inspiração de homem e profissional de engenharia, o pilar essencial do meu crescimento como filho e estudante, meu muito obrigado, pelas suas palavras de coragem e incentivo, pelos seus ensinamentos de humildade, simplicidade, bondade, companheirismo, por estar presente em cada etapa dessa trajetória, mostrando um olhar muito além dos conhecimentos técnicos, de que um engenheiro não apenas calcula ou executa uma obra, mas realiza sonhos e transformam vidas.

A minha irmã, Rebeca, minha melhor amiga, por trazer cor e alegria a edificação deste sonho, gratidão, pela paciência, carinho, amizade, pela sua presença fraterna e delicada, e por ser um espelho de perseverança, luz, e esperança ao longo desses anos, em que escrevia mais um capítulo da minha história.

A todos os meus familiares, avós (in memoriam), tios, primos, aos meus amigos, em especial, Cândido Lucena e Gabriel Oliveira pela confiança, amizade, pela convivência encorajadora, e por se fazerem presente em cada etapa da minha vida.

Ao meu orientador, professor Givanildo Alves de Azeredo, uma referência como docente que por meio da sua gentileza, guia os alunos através de seus brilhantes questionamentos, transmitindo seus saberes com majestade e mansidão, nos levando a fascinante edificação da engenharia estrutural. Aceitar o desafio de orientar este trabalho foi uma prova de seu comprometimento e confiança no meu potencial e da pesquisa. A paciência incansável, a disposição para responder às minhas dúvidas, e

orientações foram inestimáveis, e sua participação é uma parte fundamental deste capítulo da minha jornada acadêmica.

Aos professores, Andreia e Marcílio, presentes nesta banca, pela participação enriquecedora na construção dessa jornada, como notáveis professores e ilustres referencias no curso de Engenharia Civil, minha gratidão por ter tido oportunidade de conhecê-los e terem aceitado o convite, para compor e fazerem parte desse momento fundamental na minha vida universitária.

"O lápis, o esquadro, o papel;
o desenho, o projeto, o número:
o engenheiro pensa o mundo justo,
mundo que nenhum véu encobre."

João Cabral de Melo Neto – O Engenheiro

RESUMO

O avanço tecnológico e a inserção dos programas computacionais nos diversos setores da sociedade, alcançou também a Engenharia Civil, se expandindo ainda especificadamente no cálculo estrutural através de aplicações como o Eberick, CYPECAD e TQS. Estes softwares atualmente se tornaram mecanismos essenciais na atuação do profissional de engenharia, dada a precisão e a celeridade em auferir resultados referentes ao cálculo estrutural, bem como, simulando e verificando a estrutura de edificações. O estudo, por sua vez, busca responder a seguinte indagação quanto às semelhanças e diferenças dos resultados provenientes da análise e dimensionamento comparativo dos programas computacionais referentes as estruturas de concreto armado reticuladas, comparando o funcionamento dos três programas. Esta pesquisa realizada através de revisão bibliográfica e método comparativo, ainda tem por escopo informar e esclarecer aos engenheiros e projetistas, as vantagens e desvantagens de cada software, considerando os critérios de eficiência computacional e segurança, corroborando o entendimento normativo atribuído pela NBR 6118 (2023), viabilizando, assim, a atividade laborativa destes profissionais.

Palavras chaves: Análise estrutural; Dimensionamento; Eberick; TQS; CYPECAD; NBR 6118 (2023); Estruturas de concreto armado.

ABSTRACT

Technological advancements and the integration of computer software have permeated various sectors of society, including Civil Engineering. In this context, applications like Eberick, CYPECAD, and TQS have gained prominence, particularly in the domain of structural calculations. These software solutions have become indispensable tools for engineering professionals, owing to their precision and speed in generating results related to structural analysis, as well as their capacity to simulate and assess building structures. This study aims to address the question of similarities and discrepancies in the results obtained from a comparative analysis and design of structural software programs, with a specific focus on reinforced concrete frame structures. It involves a comprehensive review of relevant literature and employs comparative methods to shed light on the benefits and drawbacks of each software package. Consideration is given to key criteria such as computational efficiency and safety, in alignment with the regulatory guidelines outlined in NBR 6118 (2023). This research serves to facilitate the professional activities of engineers and designers in the field.

Keywords: Structural analysis; Sizing; Eberick; TQS; CYPECAD; NBR 6118 (2023); Reinforced concrete structures.

LISTA DE FIGURAS

Figura 1 – Curva de Gauss	.22
Figura 2 – Diagrama tensão deformação do concreto com fórmula de cálculo de	
tensão	.25
Figura 3 – Quadro de equação das deformações específicas do concreto	.25
Figura 4 – Diagrama tensão-deformação para análise não linear	.26
Figura 5 – Diagrama tensão-deformação bilinear de tração	.26
Figura 6 – Diagrama tensão-deformação para aços de armaduras passivas	.28
Figura 7 – Esforço do momento fletor, compressão nas fibras superiores e tração	
nas fibras inferiores	.37
Figura 8 – Força cortante	.37
Figura 9 – Representação ilustrativa do momento torsor	.38
Figura 10 – Representação ilustrativa das tipologias estruturais	
Figura 11 – Representação ilustrativa de vigas contínuas	
Figura 12 – Representação ilustrativa de pórticos planos	
Figura 13 – Representação ilustrativa de pórticos espaciais	.42
Figura 14 – Mapa de domínios	.44
Figura 15 – Planta baixa do pavimento-tipo do edifício a ser estudado	.53
Figura 16 – Lançamento da estrutura no pavimento-tipo do edifício	.55
Figura 17 – Área de influência de pilar	
Figura 18 – Dados gerais e modelo estrutural do edifício no software TQS	.63
Figura 19 – Carregamentos e modelos de cálculo no software TQS	
Figura 20 – Dados gerais dos materiais no software TQS	.64
Figura 21 – Coeficientes ponderadores de ações no software TQS	
Figura 22 – Dados gerais de cargas provenientes do vento e coeficientes adotados	S
	.65
Figura 23 – Velocidade básicas do vento com as curvas por região no software TC)S
Figura 24 – Dados gerais para inserção de pilares no TQS	
Figura 25 – Condições de vinculação dos pilares no TQS	
Figura 26 – Dados gerais para inserção de vigas no TQS	
Figura 27 – Dados gerais de modelo e critérios de viga no TQS	.67
Figura 28 – Tipos de carregamentos alfanuméricos no TQS	
Figura 29 – Dados gerais para inserção de sapatas isoladas no TQS	.68
Figura 30 – Pré-dimensionamento dos elementos de fundação no software TQS	.69
Figura 31 – Planta baixa pavimento-tipo no software TQS	.70
Figura 32 – Modelagem da edificação 3D no TQS	.70
Figura 33 – Dados gerais da edificação no CYPECAD	.71
Figura 34 – Pisos da edificação no CYPECAD	
Figura 35 – Dados para inserção de pilares no CYPECAD	.72
Figura 36 – Dados para inserção de vigas no CYPECAD	
Figura 37 – Dados para inserção de lajes no CYPECAD	
Figura 38 – Planta baixa do pavimento-tipo após lançamento de estruturas e carga	
no CYPECAD	
Figura 39 – Modelagem 3D da edificação no CYPECAD	
Figura 40 – Dados gerais de pavimentos no Eberick	.75

Figura 41 – Dados gerais de ações e combinações no Eberick	76
Figura 42 – Dados de análise estrutural no Eberick	76
Figura 43 – Dados de dimensionamentos de pilares no Eberick	77
Figura 44 – Dados para inserção de pilares no Eberick	78
Figura 45 – Dados para inserção de vigas no Eberick	79
Figura 46 – Dados para inserção de lajes no Eberick	79
Figura 47 – Dados para inserção de cargas distribuídas no Eberick	.80
Figura 48 – Dados para inserção de cargas distribuídas no Eberick	.81
Figura 49 – Modelagem 3D da edificação no Eberick	.81
Figura 50 – Visualização em formato de grelhas dos deslocamentos das lajes no	
TQS	.87
Figura 51 – Visualização em formato de curvas dos deslocamentos das lajes no	
CYPECAD	.87
Figura 52 – Visualização dos deslocamentos das lajes em formato de grelhas no	
Eberick	.88
Figura 53 – Visualização dos diagramas de cortante, fletor, normal e torsor da viga	a 2
do segundo andar no TQS	92
Figura 54 – Visualização dos diagramas de cortante, fletor e torsor da viga 2 do	
segundo andar no Eberick	.93
Figura 55 – Visualização dos diagramas de cortante, fletor e torsor da viga 2 do	
segundo andar no CYPECAD	93
Figura 56 – Visualização do pórtico espacial no Eberick	
Figura 57 – Visualização do pórtico espacial no TQS	97
Figura 58 – Visualização do pórtico espacial no CYPECAD	97

LISTA DE TABELAS

Tabela 1 – Coeficiente de ponderação para casos especiais de redução na dimens	são
de pilar	
Tabela 2 – Nomenclaturas e resistências características	.21
Tabela 3 – Coeficientes de minoração dos materiais aço e concreto	.23
Tabela 4 – Tabela de fluência por umidade, espessura fictícia e classe de concreto	27
Tabela 5 – Categorias e coeficientes de aderência do aço	.27
Tabela 6 – Classes de agressividade ambiental	.29
Tabela 7 – Relações água/cimento e classes de concreto de acordo com a classe	de
agressividade	.29
Tabela 8 – Valores de cobrimento nominal de acordo com classe de agressividade	e e
tipo de estrutura	.30
Tabela 9 – Coeficientes de ponderações de ações γf1 e γf3	.33
Tabela 10 – Coeficientes de ponderações de ações γf2	.33
Tabela 11 – Combinações últimas e equações de cálculo das solicitações	.35
Tabela 12 – Combinações de serviço e equações de cálculo das solicitações	.36
Tabela 13 – Tabela de resumo de métodos de análise e verificação de estados	
limites	.48
Tabela 14 - Cargas consideradas no projeto	.56
Tabela 15 – Tabela de pré-dimensionamento de pilares	.59
Tabela 16 – Tabela de pré-dimensionamento de vigas	.60
Tabela 17 – Tabela de pré-dimensionamento de lajes	.61
Tabela 18 – Resultados de cargas totais das edificações na fundação	
Tabela 19 – Resultados do dimensionamento das sapatas nos softwares	.84
Tabela 20 – Resultados do dimensionamento de armaduras nas sapatas	
Tabela 21 – Resultados do dimensionamento de armaduras nas lajes no Eberick,	
CYPECAD e TQS	.86
Tabela 22 – Resultados das flechas máximas das lajes no Eberick, CYPECAD e	
TQS	.86
Tabela 23 – Resultados dos esforços solicitantes das vigas no Eberick, CYPECAD) e
TQS	
Tabela 24 – Resultados do dimensionamento das armaduras positivas das vigas n	10
Eberick, CYPECAD e TQS	
Tabela 25 – Resultados do dimensionamento das armaduras negativas das vigas	no
Eberick, CYPECAD e TQS	.91
Tabela 26 – Resultados do dimensionamento das armaduras transversais das viga	as
no Eberick, CYPECAD e TQS	.92
Tabela 27 – Resultados do dimensionamento das prumadas de pilares no Eberick,	,
CYPECAD e TQS	
Tabela 28 – Quantitativo de materiais e índice por metro quadrado no software	
CYPECAD	.94
Tabela 29 – Quantitativo de materiais e índice por metro quadrado no software	
Eberick	.95
Tabela 30 – Quantitativo de materiais e índice por metro quadrado no software TQ	(S
Tabela 31 - Resultado comparativo da orcamentação	.96

SUMÁRIO

1	INTR	ROD	UÇAO	15
2	OBJ	ETI	vos	16
2	2.1	Obje	tivo geral	16
2	2.2	Obje	tivo específico	16
3	FUN	DA	MENTAÇÃO TEÓRICA	16
3	3.1 E	Elem	entos estruturais de concreto armado presentes em um edifício	16
	3.1.1		Lajes	16
	3.1	.1.1	Lajes Maçiças	17
	3.1	.1.2	Lajes Nervuradas	17
	3.1	.1.3	Lajes Pré-Moldadas	18
	3.1.2	<u> </u>	Vigas	18
	3.1.3	3	Pilares	19
3	3.2 F	Prop	riedade dos materiais do concreto armado	20
	3.2.1		Concreto	20
	3.2.2	<u> </u>	Aço	27
3	3.3	Dura	bilidade da estrutura	28
	3.3.1		Agressividade ambiental	28
	3.3.2	<u> </u>	Qualidade do concreto de cobrimento	29
3	3.4 S	Segu	rança e estados-limites	30
	3.4.1		Estados-limites	30
	3.4.2	<u> </u>	Ações	31
	3.4	.2.1	Condições de segurança	32
	3.4	.2.2	Coeficientes de ponderação das resistências	32
	3.4	.2.3	Combinações de ações	34
3	3.5 A	٩náli	se Estrutural	36
	3.5.1		Conceitos básicos da análise estrutural	36
	3.5.2	<u> </u>	Condições da análise estrutural	38
	3.5	.2.1	Condições de equilíbrio	38
	3.5	.2.2	Condições de compatibilidade	39
	3.5	.2.3	Carregamento monotônico	39
	3.5.3	3	Tipos de estruturas e modelos estruturais	39
	3.5	.3.1	Vigas contínuas	
	3.5	.3.2	Pórticos planos	42

	3.5.3	.3 Pórticos Espaciais	42
	3.5.3	.4 Grelhas	43
	3.5.4	Métodos de análise estrutural	43
	3.5.4	.1 Análise linear	43
	3.5.4	.2 Análise linear com redistribuição	45
	3.5.4	.3 Análise não linear	46
	3.5.4	.4 Análise plástica	46
	3.5.4	.5 Análise através de modelos físicos	47
	3.5.4	6 Resumo	47
	3.5.5	Análise global da estrutura	48
	3.5.5	.1 Parâmetro Alfa	48
	3.5.5	.2 Parâmetro GamaZ	48
	3.5.6	Análise estrutural nos programas computacionais	50
	3.5.6	5.1 CYPECAD	50
	3.5.6	5.2 Eberick	50
	3.5.6	5.3 TQS	51
4	METO	DOLOGIA	51
	4.1 Pr	ojeto	51
	4.2 La	nçamento da estrutura	54
	4.3 Co	nsiderações do projeto	56
	4.4 Pr	é-dimensionamento dos elementos estruturais	57
	4.4.1	Pré-dimensionamento dos pilares	57
	4.4.2	Pré-dimensionamento de vigas	59
	4.4.3	Pré-dimensionamento de lajes	60
	4.5 M	odelagem nos programas computacionais	62
	4.5.1	TQS	62
	4.5.2	CYPECAD	70
	4.5.3	Eberick	75
5	RESU	LTADOS	82
	5.1 Fu	ndação	82
	5.2 La	jes	85
	5.3 Vi	gas	88
	5.4 Pil	ares	93
	5.5 Qu	uantitativos em Obra	94
	5.6 Pó	ortico Espacial	96

6	CONCLUSÃO	98
7	REFERÊNCIAS BIBLIOGRÁFICAS	100
8	APÊNDICE	102

1 INTRODUÇÃO

No decorrer das décadas, a sociedade vivenciou uma célere revolução tecnológica, a qual, permitiu acesso a uma extensa biblioteca de informações, bem como, ampliou a capacidade de armazenamento de dados no campo computacional. Desse modo, surgiram também programas computacionais, com o escopo de viabilizar as atividades cotidianas do homem, tornando-as mais rápidas e eficazes.

Essa modernização atingiu diversos setores da sociedade, alcançando também a Engenharia Civil, na área estrutural. Nessa linhagem, passa a emergir a substituição dos complexos e antigos cálculos, detalhados e manuais, por programas computacionais que simulam virtualmente o comportamento da estrutura, a medida em que, apresenta ainda alta precisão nos cálculos, enfatizando o grau de detalhamento dos elementos estruturais e a rapidez de sua realização.

Com isso, atualmente, todas as etapas presentes no projeto estrutural de um edifício, desde o lançamento de dados, análise estrutural, dimensionamento, detalhamento e até mesmo a plotagem do desenho são facilitadas por esses programas, demonstrando a evolução e o aprimoramento dos conceitos da Engenharia.

Tal fato, promove estudos relacionados a esses softwares como ferramentas imprescindíveis para o conhecimento e entendimento do engenheiro quanto aos benefícios e limitações. Levando ao questionamento das semelhanças e diferenças dos resultados provenientes da análise e dimensionamento comparativo dos programas computacionais referentes as estruturas de concreto armado reticuladas.

No que concerne aos softwares, estes proporcionam mecanismos de correção, podendo apresentar diferenças entre as inconsistências dos elementos estruturais, trazendo segurança e precisão dos resultados, atribuindo ao profissional de engenharia a responsabilidade de averiguar a compatibilidade com projeto estrutural.

Ao abordar esta temática, busca-se demonstrar que os programas da engenharia estrutural, tendem a gerar resultados próximos que obedecem a norma vigente, em contrapartida, apresentam distinções em relação a tópicos, a exemplo, cargas totais e orçamentação.

2 OBJETIVOS

2.1 Objetivo geral

O presente trabalho objetiva analisar as diferenças entre os principais programas computacionais de cálculo estrutural usados pelos projetistas brasileiros, são estes TQS, Eberick e CYPECAD, quanto ao seu dimensionamento, análise e detalhamento de um mesmo projeto.

2.2 Objetivo específico

Adentrando na temática de forma específica, esta pesquisa tem por intuito:

- Examinar os esforços solicitados nos elementos estruturais e o comportamento da estrutura mediante as ações permanentes e variáveis nos softwares Eberick, TQS e CYPECAD;
- Comparar o dimensionamento dos elementos estruturais do mesmo projeto nos 3 programas, adotando métodos de análises estruturais;
- Estabelecer diferenças e recursos presentes nas interfaces de cada programa quanto a inserção de dados e limitações.
- Correlacionar a semelhança entre os resultados do método manual e dos softwares;

3 FUNDAMENTAÇÃO TEÓRICA

3.1 Elementos estruturais de concreto armado presentes em um edifício

Vigas, lajes e pilares são as estruturas de concreto armado que, usualmente, compõem um edifício sendo considerados, portanto, elementos fundamentais para estabelecer o comportamento estrutural.

Sem dúvida a laje, juntamente com a viga e o pilar, são os elementos estruturais de maior destaque, desde os tempos mais remotos. (GUIMARÃES et al., 2017)

3.1.1 **Lajes**

Segundo a NBR (2023, p. 84), placas de concreto, também denominadas de lajes, são elementos de superfície plana, sujeitos principalmente a ações normais ao seu plano. Ademais, FUSCO a define como peças estruturais planas que apresentam dois comprimentos característicos de mesma ordem de grandeza (comprimento e

largura) e maior que a ordem de grandeza do terceiro comprimento característicos (espessura).

Essa estrutura é responsável por receber a maioria das cargas das edificações, sendo estas, geralmente, perpendiculares ao plano da laje e divididas em distribuídas na área, compartilhadas linearmente ou forças concentradas. Outrossim, essas ações são distribuídas para as vigas de apoio nas bordas da laje.

Além disso, as lajes podem ser classificadas de diferentes formas devido ao modelo construtivo, assim, tipifica-se, principalmente em maciças, nervuradas e prémoldadas.

3.1.1.1 Lajes Maçiças

A laje maciça é uma peça estrutural composta em maior parte do volume por concreto, contendo armaduras longitudinais e, eventualmente, armaduras transversais capazes de reagir aos esforços de flexão. Tal elemento é apoiado nas vigas ou paredes ao longo das bordas, bem como pode ocorrer de ser apoiada diretamente em pilares (dispensando a utilização de vigas), sendo denominada, por isso, como lajes lisas ou lajes cogumelos.

As lajes maciças são muito frequente em pontes e edifícios de grandes portes, não sendo recomendadas para residências e edificações de pequeno porte devido ao custo e a dificuldade de execução, quando comparada com lajes nervuradas.

3.1.1.2 Lajes Nervuradas

As lajes nervuradas, de acordo com a NBR 6118 (no item 14.7.7), são "lajes moldadas no local ou com nervuras pré-moldadas, cuja zona de tração para momentos positivos esteja localizada nas nervuras entre as quais pode ser colocado material inerte." Diante disso, a resistência e a rigidez do elemento que provêm das nervuras, unidas pela mesa, não consideradas, ainda, a resistência do material de enchimento, designado como inerte pela norma.

Assim como a laje maciça, a laje nervurada pode ser armada em uma direção (unidirecional) ou em duas direções (bidirecional), sendo as nervuras imprescindíveis para vencer grandes vãos ou altas ações verticais, o que de fato influencia na quantidade de pilares, na diminuição do consumo de concreto e na redução do tamanho das vigas.

Quanto ao material inerte, é comum no Brasil o uso de blocos cerâmicos, isopor (também chamado de EPS) e blocos de concreto.

3.1.1.3 Lajes Pré-Moldadas

As lajes pré-moldadas ou pré-fabricadas pelo próprio nome são lajes fabricadas no canteiro de obra, havendo possibilidade de ser de concreto armado ou concreto protendido, fora do local de utilização definitivo da estrutura. Tipificam-se, portanto, em pré-fabricadas unidirecional, pré-fabricadas bidirecional, pré-lajes e laje alveolar protendida.

- lajes pré-fabricada unidirecional: são as lajes constituídas por nervuras principais longitudinais uma única direção;
- lajes pré-fabricada bidirecional: laje nervurada, constituída por nervuras principais nas duas direções;
- pré-lajes: são placas com espessuras de 3 cm a 5 cm e larguras padronizadas, constituídas por concreto estrutural. Englobam total ou parcialmente a armadura inferior de tração, integrando a seção de concreto da nervura. As pré-lajes podem ser unidirecionais ou bidirecionais, e as placas podem ser de concreto armado ou de concreto protendido;
- lajes alveolares protendida: conjunto formado por painéis alveolares protendidos pré-fabricados, montados por justaposição lateral, eventual capa de concreto estrutural e material de rejuntamento.

A laje pré-moldada é muito comum em edificações baixas, lajes de piso e de cobertura (forro), sendo as lajes treliçadas mais usuais nessa modalidade de laje.

3.1.2 Vigas

A NBR 6118 (item 14.4.1) define vigas como um elemento linear, ou seja, aquele em que o comprimento longitudinal supera em pelo menos três vezes a maior dimensão da seção transversal, na qual prepondera o esforço de flexão. Ademais, são também denominadas de barras e são responsáveis por receber as ações das lajes, de paredes, de pilares e até mesmo de outras vigas, e transmiti-las para os apoios.

Os esforços atuantes nas vigas, quando perpendiculares ao eixo longitudinal, podem ser distribuídos ou concentrados, assim como, quando existem forças ortogonais a seção transversal apresenta o fenômeno de tração ou compressão. Além disso, as vigas também fazem parte do sistema de contraventamento, conquanto, é indispensável para determinar a estabilidade global da edificação.

Diante disso, a NBR 6118(2023) estabelece condições nas quais as seções transversais das vigas não podem apresentar largura inferior a 12 centímetros, havendo casos especiais nos quais obedecem aos critérios de alojamento de armaduras e interferências com armaduras de outros elementos, além das condições de lançamento e vibrações.

3.1.3 Pilares

Os pilares, de acordo com a NBR 6118 (item 14.4.1.2), são "elementos lineares de eixo reto, usualmente dispostos na vertical, em que as forças normais de compressão são preponderantes." Tais componentes têm como função principal receber as ações das vigas e transmiti-las para a fundação, deve-se salientar que, usualmente, em projetos estruturais podem existir pilares que nascem em vigas.

Os pilares são classificados quanto ao posicionamento na edificação:

- Pilares internos localizados no interior da edificação
- Pilares de extremidade localizados nos contornos do pavimento
- Pilares de canto localizados no canto do pavimento

Outrossim, os pilares são essenciais para assegurar a estabilidade global dos edifícios, relativos ao sistema de contraventamento.

Quanto às ações nos pilares, conforme mencionado, prepondera-se as forças normais de compressão, sendo indispensável notabilizar a excentricidade da força que leva a condição de incerteza e o possível desvio do eixo.

A NBR 6118(2023) apresenta limites para as seções transversais dos pilares determinando que nenhuma dimensão seja inferior a 19 centímetros e a área de seção transversal seja, para quaisquer casos, inferior a 360 cm². Não obstante, em casos especiais, pode-se reduzir a dimensão do pilar desde que haja uma ponderação dos esforços solicitantes definida pela norma pelo γn.

Tabela 1 – Coeficiente de ponderação para casos especiais de redução na dimensão de pilar

b cm	≥ 19	18	17	16	15	14
γ'n	1,00	1,05	1,10	1,15	1,20	1,25

onde

 $\gamma_{\rm n}$ = 1,95 – 0,05 b;

b é a menor dimensão da seção transversal, expressa em centímetros (cm).

NOTA O coeficiente γ_n deve majorar os esforços solicitantes finais de cálculo quando de seu dimensionamento.

Fonte: Tabela 13.1 da NBR 6118(2023)

3.2 Propriedade dos materiais do concreto armado

O concreto é uma mistura adequada de Cimento Portland, água, agregado graúdo e agregado miúdo. Esse material tem como principal característica a alta resistência a esforços de compressão, embora apresente baixa resistência a tração.

O aço é uma liga metálica, cuja principal característica é a alta resistência a tração, nos quais são subdivididos em laminados a quente e trefilação de fios máquina, tipo "A" e tipo "B", respectivamente. Assim, geralmente, se utiliza o código CA para designar à aço de concreto armado e o número indicativo relativo à tensão de escoamento.

Estes materiais compõem o concreto armado devido aos dois apresentarem coeficientes de dilatações térmicos próximos, evitando possíveis tensões internas provenientes da variação de volume. Destarte, quanto mais atrito existir entre o concreto e o aço, mais próximos estaremos de uma estrutura de concreto armado unida, onde os materiais reagem e deformam juntamente.

Uma estrutura de concreto armado é uma ligação solidária de concreto com uma estrutura resistente à tração, que, em geral, é o aço. (BOTELHO & MARCHETTI)

3.2.1 Concreto

O concreto trata-se do principal elemento responsável pela absorção dos esforços de compressão. Assim, conforme a NBR 6118 (2023), para projeto de estruturas de concreto armado aplicam-se concretos com massas específicas

compreendidas entre 2000 kg/m³ e 2800 kg/m³, quando tal valor não é conhecido adota-se para concreto simples 2400 kg/m³ e para concreto armado 2500 kg/m³.

No entanto, quando conhecido pode-se considerar acrescida ao valor de 100 kg/m³ a 150 kg/m³, têm-se então que o coeficiente de dilatação térmica do concreto, por norma, é 10-5 /°C.

Nessa seara, a NBR 8953 (2015) caracteriza o material concreto, o definindo conforme pesos específicos e classes de resistência de compressão, sendo a característica mecânica mais importante e determinada por meio de ensaios aos 28 dias.

Tabela 2 – Nomenclaturas e resistências características

Resistência característica à compressão MPa	Classe de resistência Grupo II	Resistência característica à compressão MPa	
20	C55	55	
25	C60	60	
30	C70	70	
35	C80	80	
40	C90	90	
45			
50		100	
	característica à compressão MPa 20 25 30 35 40 45	característica à compressão MPa Classe de resistência Grupo II 20 C55 25 C60 30 C70 35 C80 40 C90 45 C100	

Fonte: NBR 8953 (2015)

Isto posto, através do ensaio a compressão, a resistência do concreto está sujeita a dispersões causadas por variabilidades na composição, fabricação e cura. Com fulcro nisso, a grandeza é representada em um gráfico de dispersões, no qual na abcissa encontra-se a resistência do concreto e na ordenada a frequência que aparecem tais valores, denominado de curva de Gauss.

Figura 1 - Curva de Gauss

Fonte: Giugliani, Eduardo. Propriedades e características dos materiais

A forma da curva de Gauss é definida pela média aritmética, no caso da resistência do concreto pelo valor fcm (na figura determinada por fcj) e pelo desvio padrão da amostra s (na figura determinada por sn) que é a distância entre as abcissas dos pontos de inflexão da curva e o ponto de maior frequência.

Nesse diapasão, a média aritmética não representa verdadeiramente a resistência no concreto, haja vista a não consideração da dispersão, dessa forma, adota-se um coeficiente de segurança homogêneo denominado de resistência característica do concreto, fck.

Valor, este que é uma medida estatística que apresenta probabilidade de 95% de que a resistência do concreto seja superior a ele, por conseguinte, a NBR 12655 (2022) determina o fck por número de amostragens "n".

a) Para 6 ≤ n < 20:

$$fck = 2 \cdot \frac{f_1 + f_2 + f_3 + f_4 + \dots + f_{\frac{n}{2} - 1}}{\frac{n}{2} - 1}$$
 Eq. 1

No qual, $f_1 + f_2 + f_3 + ... + f_{n/2-1}$ são os valores das resistências dos exemplares.

b) Para n > 20:

$$fck = fcm - 1,65 \cdot Sd$$
 Eq.2

Sendo

$$Sd = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (fi - fcm)^2}$$
 Eq.3

Em que, fcm é a média aritmética dos exemplares em Mpa; Sd é o desvio padrão das amostras.

O valor de resistência característica do concreto, geralmente, é estipulado pelo projetista ou engenheiro responsável pelo dimensionamento. Com isso, após definir a resistência característica, conforme a Tabela proveniente da NBR 8953 (2022), calcula-se, segundo a NBR 6118 (2023), a resistência de cálculo, visto que essa adota um coeficiente de minoração (γ_c), definido pela norma, na resistência com o objetivo de considerar quaisquer variabilidade e diferenças oriundas da obra, sendo benéfica ao critério de segurança.

$$fcd = \frac{fck}{\gamma c}$$
 Eq.4

 Combinações
 Concreto γc
 Aço γs

 Normais
 1,4
 1,15

 Especiais ou de construção
 1,2
 1,15

Tabela 3 – Coeficientes de minoração dos materiais aço e concreto

Fonte: Tabela 12.1 da NBR 6118 (2023)

Excepcionais

Deve-se avaliar a resistência à tração do concreto, na qual de acordo com a NBR 6118 (2023) "A resistência à tração indireta $f_{ct,sp}$ e a resistência à tração na flexão $f_{ct,f}$ devem ser obtidas em ensaios realizados segundo as ABNT NBR 7222 e ABNT NBR 12142, respectivamente." Ainda de acordo com a norma, considera-se fct igual a 0,9 $f_{ct,sp}$ ou 0,7 $f_{ct,f}$, além de que na ausência de ensaios determina-se o valor característico por meio das equações 5 e 6.

$$f_{ctk,inf} = 0.7f_{ct,m}$$
 Eq. 5

1,2

1,0

$$f_{ctk,sup} = 1.3 f_{ct,m}$$
 Eq. 6

Para concretos com resistências à compressão inferiores ou iguais a 50 MPa calcula-se o fct,m por meio da equação 7, enquanto que para resistência à compressão superiores a 50 Mpa, determina-se através da equação 8.

$$f_{ct,m} = 0.3 f c k^{2/3}$$
 Eq. 7

$$f_{ct,m} = 2.2 ln[1 + 0.1(fck + 8)]$$
 Eq. 8

Outra propriedade intrínseca ao concreto é o módulo de elasticidade (Eci), parâmetro relativo à deformação do concreto quando submetido a ação de tensões, que é obtido mediante ensaios estabelecidos pelas normas NBR 8522-1 e NBR 8522-2. Quando estes não forem realizados a norma estima o módulo de elasticidade tangente inicial por meio da expressão 9 para concreto com resistência característica inferior ou igual a 50 MPa, e a expressão 10 para quando tal valor for superior a 50 MPa.

$$Eci = \alpha_E \cdot 5600 \cdot \sqrt{fck}$$
 Eq. 9

$$Eci = 21.5 \cdot 10^3 \cdot \alpha_E \cdot (\frac{fck}{10} + 1.25)^{\frac{1}{3}}$$
 Eq.10

Sendo,

 $\alpha_E = 1,2$, para basalto e diabásio

 $\alpha_E = 1.0$, para granito e gnaisse

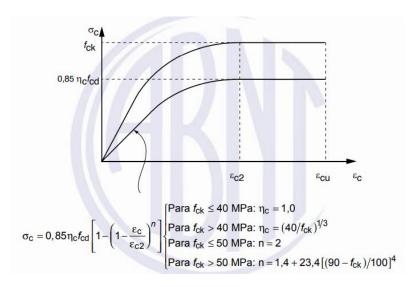
 $\alpha_E = 0.9$, para calcário

 $\alpha_E = 0.7$, para arenito

E para cálculo do módulo de elasticidade secante, determina-se por intermédio da equação 11 e 12.

$$Ecs = \alpha_i \cdot Eci$$
 Eq.11

$$\alpha_i = 0.8 + 0.2 \cdot (\frac{fck}{80}) \le 1.0$$
 Eq.12


Ainda de acordo com a NBR 6118 (2023), há o coeficiente de Poisson responsável por medir a deformação na seção transversal de um material homogêneo, adotando para casos de tensões de compressão menores que 0,5fc e tensões de

tração menores que f_{ct} o valor de 0,2, bem como o módulo de elasticidade transversal, G_c , determinado por $E_{cs}/2,4$.

Com a análise do Estado de Limite Último têm-se o diagrama tensãodeformação o qual por meio deste é possível compreender o comportamento do concreto mediante aplicações de tensões.

A figura 2 ilustra graficamente o diagrama, conforme a norma NBR 6118 (2023)

Figura 2 – Diagrama tensão deformação do concreto com fórmula de cálculo de tensão

Fonte: Item 8.2.10.1 da NBR 6118 (2023)

Os valores supracitados na figura 03, têm-se que 0,85 é o coeficiente de segurança de Rusch, proveniente da tendência da redução da resistência do concreto quando este está sob ação de carga permanente. Os parâmetros definidos pela norma ɛc2 (deformação específica de encurtamento do concreto no início do patamar plástico) e ɛcu (deformação específica de encurtamento do concreto na ruptura) são 2,0 % e 3,5 % (Figura 2), respectivamente, para concretos de classes até C50, devendo para concretos de resistência superiores obedecer às equações na figura 3.

Figura 3 – Quadro de equação das deformações específicas do concreto

$$\varepsilon_{\text{C2}} = 2.0 \% + 0.085 \% \cdot (f_{\text{ck}} - 50)^{0.53};$$

 $\varepsilon_{\text{Cu}} = 2.6 \% + 35 \% \cdot [(90 - f_{\text{ck}})/100]^4$

Fonte: Item 8.2.10.1 da NBR 6118(2023)

Em relação a análise não linear, a norma prevê, alternativamente, o diagrama de tensão-deformação para a compressão simples de curta duração, para o qual deve considerar a resistência média do concreto (fcm) igual ao fck adicionado de 8 MPa.

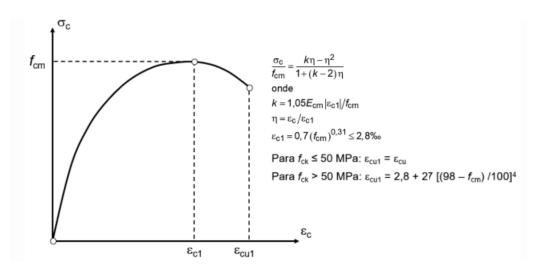


Figura 4 – Diagrama tensão-deformação para análise não linear

Fonte: Figura 8.3 da NBR 6118 (2023)

Já em relação a tração, a NBR 6118 (2023) adota um diagrama tensãodeformação bilinear de tração, como será indicado na figura 5.

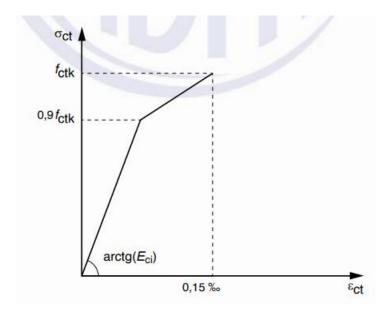


Figura 5 – Diagrama tensão-deformação bilinear de tração

Fonte: Figura 8.4 da NBR 6118 (2023)

No concernente, a fluência, fenômeno pelo qual há o aumento gradual de deformação no decorrer do tempo sob tensão constante, é especificada na tabela 04

proveniente da NBR 6118 (2023) em função da umidade média do ambiente e da espessura fictícia.

Tabela 4 – Tabela de fluência por umidade, espessura fictícia e classe de concreto

Umidade média ambiente %			40		55		75		90	
Espessura fictícia 2A _c /u cm			20	60	20	60	20	60	20	60
φ (t ∞, t 0)		5	4,6	3,8	3,9	3,3	2,8	2,4	2,0	1,9
Concreto das classes		30	3,4	3,0	2,9	2,6	2,2	2,0	1,6	1,5
C20 a C45		60	2,9	2,7	2,5	2,3	1,9	1,8	1,4	1,4
$\varphi(t_{\infty},t_0)$, 2	5	2,7	2,4	2,4	2,1	1,9	1,8	1,6	1,5
Concreto das classes	dias	30	2,0	1,8	1,7	1,6	1,4	1,3	1,1	1,1
C50 a C90		60	1,7	1,6	1,5	1,4	1,2	1,2	1,0	1,0
		5	- 0,53	3 - 0,47	- 0,48	8 - 0,43	- 0,3	36 - 0,32	- 0,18	- 0,15
ε _{cs} (<i>t</i> ∞, <i>t</i> ₀) ‰		30	- 0,44	4 - 0,45	- 0,4	1 - 0,41	- 0,3	33 - 0,31	- 0,17	- 0,15
		60	- 0,39	9 - 0,43	- 0,36	6 - 0,40	- 0,3	30 - 0,31	- 0,17	- 0,15

Fonte: Tabela 8.1 da NBR 6118 (2023)

3.2.2 Aço

Em consonância, com a NBR 6118 (2023), os aços para projetos estruturais de concreto armado são CA25, CA50 e CA60, onde CA indica aço para concreto armado e o número indica a tensão de escoamento do aço. Ainda de acordo com a norma, os fios ou barras podem ser lisos, entalhados ou providos de saliências ou mossas, de modo que tais efeitos estão totalmente relacionados com o fenômeno da aderência.

Tabela 5 – Categorias e coeficientes de aderência do aço

Categoria do aço	η1
CA-25	1,00
CA-50	2,25
CA-60	1,00

Fonte: Tabela 8.2 da NBR 6118 (2023)

Outrossim, a NBR 6118 (2023) assume que a massa específica do aço é 7850 kg/m³, e o módulo de elasticidade igual a 210 GPa. Quanto ao coeficiente de dilatação térmica do aço é 10-5 /°C.

Alinhado a isso, a norma determina a obtenção do diagrama de tensão-deformação e dos valores característicos de resistência do aço ao escoamento f_{yk} , da resistência à tração f_{stk} e da deformação de ruptura ϵ_{uk} por meio de ensaios de tração, além de definir fyk como valor de tensão correspondente a deformação permanente de 0,2%.

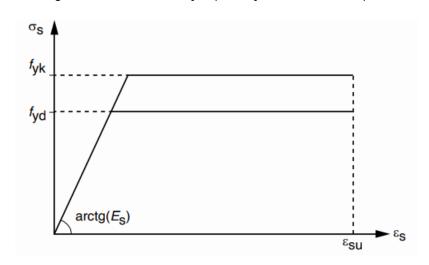


Figura 6 – Diagrama tensão-deformação para aços de armaduras passivas

Fonte: Figura 8.5 da NBR 6118 (2023)

3.3 Durabilidade da estrutura

A durabilidade das estruturas de concreto armado encontra-se intrinsecamente ligada a diversos fatores, quais sejam a agressividade ambiental, as propriedades materiais e a qualidade do concreto de cobrimento.

Corroborando esse entendimento a NBR 6118 (2023), "As estruturas de concreto devem ser projetadas e construídas de modo que, sob condições ambientais previstas na época do projeto e quando utilizadas conforme preconizado em projeto, conservem sua segurança, estabilidade e aptidão em serviço durante o prazo correspondente à sua vida útil".

3.3.1 Agressividade ambiental

A agressividade ambiental está totalmente atrelada às ações físicas e químicas que atuam na estrutura de concreto, desconsiderando efeitos mecânicos. Este evento

varia conforme localização, urbanização, clima e umidade, por isso, a norma estabelece a tabela 6.

Tabela 6 – Classes de agressividade ambiental

Classe de agressividade ambiental	Agressividade	Classificação geral do tipo de ambiente para efeito de projeto	Risco de deterioração da estrutura	
4	F	Rural	11161	
1	Fraca	Submerso	Insignificante	
II	Moderada	Moderada Urbano ^{a, b}		
	Ft-	Marinho ^a	0	
Ш	Forte	Industrial ^{a, b}	Grande	
157	Multa fasta	Industrial ^{a, c}	Elevado	
IV	Muito forte	Respingos de maré		

Pode-se admitir um microclima com uma classe de agressividade mais branda (uma classe acima) para ambientes internos (salas, dormitórios, banheiros, cozinhas e áreas de serviço de apartamentos residenciais e conjuntos comerciais ou ambientes com concreto revestido com argamassa e pintura).

Fonte: Tabela 6.1 da NBR 6118 (2023)

3.3.2 Qualidade do concreto de cobrimento

A qualidade do concreto, a espessura e qualidade no concreto de cobrimento estão intrinsecamente relacionados com a durabilidade da estrutura, haja vista o aumento no desempenho da estrutura frente a agressividade.

A NBR 6118 (2023) correlaciona a relação água/cimento, a resistência de compressão e a durabilidade e estabelece parâmetros mínimos.

Tabela 7 – Relações água/cimento e classes de concreto de acordo com a classe de agressividade

Concreto ^a	Tipo ^{b, c}	Classe de agressividade (Tabela 6.1)					
Concreto "	про	I	II	III	IV		
Relação água/cimento em massa	CA	≤ 0,65	≤ 0,60	≤ 0,55	≤ 0,45		
	CP	≤ 0,60	≤ 0,55	≤ 0,50	≤ 0,45		
Classe de concreto (ABNT NBR 8953)	CA	≥ C20	≥ C25	≥ C30	≥ C40		
	CP	≥ C25	≥ C30	≥ C35	≥ C40		

^a O concreto empregado na execução das estruturas deve cumprir com os requisitos estabelecidos na ABNT NBR 12655.

Fonte: Tabela 7.1 da NBR 6118 (2023)

Pode-se admitir uma classe de agressividade mais branda (uma classe acima) em obras em regiões de clima seco, com umidade média relativa do ar menor ou igual a 65 %, partes da estrutura protegidas de chuva em ambientes predominantemente secos ou regiões onde raramente chove.

C Ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes, indústrias químicas, elementos em contato com solo contaminado ou água subterrânea contaminada.

b CA corresponde a componentes e elementos estruturais de concreto armado.

^c CP corresponde a componentes e elementos estruturais de concreto protendido.

Conforme supracitado, o cobrimento nominal (cobrimento mínimo com acréscimo de tolerância de execução) é imprescindível para a durabilidade da estrutura.

Nessa linha, a norma estabelece o cobrimento nominal conforme o grau de agressividade ambiental e o componente ao qual será dimensionado.

Tabela 8 – Valores de cobrimento nominal de acordo com classe de agressividade e tipo de estrutura

		Classe de agressividade ambiental (Tabela 6.1)					
Tipo de estrutura	Componente ou	ı	II	III	IV c		
	elemento	Cobrimento nominal					
		mm					
Concreto armado	Laje ^b	20	25	35	45		
	Viga ^b /pilar 25		30	40	50		
	Elementos estruturais em contato com o solo ^d		30	40	50		
Concreto protendido ^a	Laje	25	30	40	50		
	Viga/pilar	30	35	45	55		

^a Cobrimento nominal da bainha ou dos fios, cabos e cordoalhas. O cobrimento da armadura passiva deve respeitar os cobrimentos para concreto armado.

Fonte: Tabela 7.2 da NBR 6118 (2023)

3.4 Segurança e estados-limites

. Para garantir a segurança das estruturas de concreto armado, é necessário atender requisitos de qualidade de modo que evitem colapsos ou comportamentos indevidos, tais como fissurações excessivas seguindo os critérios fixados pela NBR 8681 (2003) para verificação de segurança em estruturas usuais da construção civil.

Portanto, devem ser definidas as ações atuantes na estrutura, as combinações e os coeficientes de ponderação de resistência, assim como verificar os limites correspondentes à ruína e as condições de utilização e durabilidade.

3.4.1 Estados-limites

Para a face superior de lajes e vigas que serão revestidas com argamassa de contrapiso, com revestimentos finais secos tipo carpete e madeira, com argamassa de revestimento e acabamento, como pisos de elevado desempenho, pisos cerâmicos, pisos asfálticos e outros, as exigências desta Tabela podem ser substituídas pelas de 7.4.7.5, respeitado um cobrimento nominal ≥ 15 mm.

C Nas superfícies expostas a ambientes agressivos, como reservatórios, estações de tratamento de água e esgoto, condutos de esgoto, canaletas de efluentes e outras obras em ambientes química e intensamente agressivos, devem ser atendidos os cobrimentos da classe de agressividade IV.

d No trecho dos pilares em contato com o solo junto aos elementos de fundação, a armadura deve ter cobrimento nominal ≥ 45 mm.

Em conformidade com a NBR 8681(2003), os estados limites de uma estrutura são os estados a partir dos quais a estrutura apresenta desempenho inadequado às finalidades de construção. A segurança de uma edificação está diretamente relacionada aos estados limite de serviço (ELS) e último (ELU), sendo esse último correspondente à carga máxima portanto da construção (FRANCO, 2010).

Por intermédio disso, é possível afirmar que a estrutura é segura se a capacidade de resistência desta for superior as solicitações com margem de segurança estabelecidas por coeficientes de ponderação.

Correlacionando ao retromencionado, os estados limites dividem-se em estado de limite de serviço e estado de limite último, sendo, de acordo com a norma, o primeiro:

Estados que, por sua ocorrência, repetição ou duração, causam efeitos estruturais que não respeitam as condições especificadas para o uso normal da construção, ou que são indícios de comprometimento da durabilidade da estrutura (NBR 6118:2023)

E o segundo estado caracterizado pela perda de equilíbrio da estrutura e deformações excessivas, configurando a paralização da utilização da construção.

O dimensionamento estrutural baseia-se no estado de limite último, haja vista que se verifica a capacidade de resistência da estrutura em relação as ações atuantes nesta de modo que não ocorra a ruína. Quando tal verificação não gera resultados favoráveis indica que a estrutura está passível de perda de equilíbrio global ou parcial, fadiga, flambagem, instabilidade dinâmica.

Isto posto, os estados limites de serviço relacionam-se, principalmente, ao critério de conforto, funcionalidade e aparência. Nesse estado, caracteriza a ocorrência de fissuras, vibrações excessivas e deformações, ou seja, fatores associados a utilização e a durabilidade da estrutura.

3.4.2 Ações

Ação é qualquer influência, ou conjunto delas, que seja capaz de produzir estados de tensão ou de deformação na estrutura. Conforme a NBR 8681(2003), denomina-se ações:

Causas que provocam esforços ou deformações nas estruturas. Do ponto de vista prático, as forças e as deformações impostas pelas ações são consideradas como se fossem as próprias ações. As deformações impostas

são por vezes designadas por ações indiretas e as forças, por ações diretas. (NBR 8681:2003)

As ações são classificadas em permanentes, variáveis e excepcionais. As ações permanentes são aquelas que ocorrem durante praticamente toda a vida da construção com valores constantes e pequena variação. Estas são subdivididas em diretas e indiretas, sendo a primeira proveniente do peso da estrutura e dos elementos construtivos permanentes enquanto a segunda denominada indiretas provêm de protensões de cabos e retração de materiais.

Já as ações variáveis são ações com valores de disparidades significativas atuando na vida da construção, podendo ser correlacionadas a cargas acidentais e efeitos externos, como o vento, as variações de temperatura. Estas ações são ramificadas em normais, ações com grande probabilidade de ocorrência, e especiais, ações menos recorrentes, quais sejam ações sísmicas ou cargas acidentais decorrentes da natureza.

As ações excepcionais são ações com duração extremamente curta e muito baixa probabilidade de ocorrência na vida da construção, nessa modalidade de ação podem ser citados enchentes, incêndios, explosões.

3.4.2.1 Condições de segurança

Na verificação de segurança da estrutura são analisados requisitos construtivos, como o detalhamento e o controle de materiais, e requisitos analíticos, nos quais surgem na análise estrutural. De acordo com a NBR 6118 (2023), "as resistências não podem ser menores que as solicitações e devem ser verificadas em relação a todos os estados-limites e todos os carregamentos especificados para o tipo de construção considerado".

$$Rd \ge Sd$$
 Eq. 13

Em que,

Rd é o esforço resistente de cálculo;

Sd é o esforço solicitante de cálculo.

3.4.2.2 Coeficientes de ponderação das resistências

Conforme a NBR 6118(2023), as ações são majoradas pelo coeficiente de ponderação das ações. Esse coeficiente é igual ao produto dos fatores:

$$\gamma_m = \gamma_1 \cdot \gamma_2 \cdot \gamma_3$$
 Eq. 14

Em que,

γ₁ é o coeficiente correspondente a variabilidade das ações;

y₂ é o coeficiente correspondente a simultaneidade da atuação das ações;

γ₃ é o coeficiente correspondente aos possíveis erros de avaliação das ações.

Destarte, a norma estabelece:

Quando se consideram estados limites últimos, os coeficientes γ_f de ponderação das ações podem ser considerados como o produto de dois outros, γ_{f1} e γ_{f3} (o coeficiente de combinação $\psi 0$ faz o papel do terceiro coeficiente, que seria indicado por γ_{f2}) (NBR 6118:2023)

Consequentemente, admite-se para o estado limite de serviço o coeficiente γ_{f2} previsto na tabela 9, podendo γ_f ser igual a 1,0, exceto em casos de exigências da própria norma.

Tabela 9 – Coeficientes de ponderações de ações γf1 e γf3

	Ações							
Combinações de ações	Permanentes (g)		Variáveis (q)		Protensão (p)		Recalques de apoio e retração	
	D	F	G	Т	D	F	D	F
Normais	1,4 ^a	1,0	1,4	1,2	1,2	0,9	1,2	0
Especiais ou de construção	1,3	1,0	1,2	1,0	1,2	0,9	1,2	0
Excepcionais	1,2	1,0	1,0	0	1,2	0,9	0	0

onde

D é desfavorável, F é favorável, G representa as cargas variáveis em geral e T é a temperatura.

Fonte: Tabela 11.1 da NBR 6118 (2023)

Tabela 10 – Coeficientes de ponderações de ações γf2

Para as ações permanentes de pequena variabilidade, como o peso próprio das estruturas, especialmente as pré-moldadas, esse coeficiente pode ser reduzido para 1,3. Neste caso, as demais ações permanentes devem ser ponderadas conforme a ABNT NBR 8681:2003 Versão Corrigida:2004, Tabela 1.

Ações		Yf2			
		Ψ0	Ψ1 ^a	Ψ2	
Cargas de	Locais em que não há predominância de pesos de equipamentos que permanecem fixos por longos períodos de tempo, nem de elevadas concentrações de pessoas ^b	0,5	0,4	0,3	
utilização de edificações	Locais em que há predominância de pesos de equipamentos que permanecem fixos por longos períodos de tempo, ou de elevada concentração de pessoas ^c	0,7	0,6	0,4	
	Biblioteca, arquivos, oficinas e garagens	0,8	0,7	0,6	
Vento	Pressão dinâmica do vento nas estruturas em geral	0,6	0,3	0	
Temperatura	Variações uniformes de temperatura em relação à média anual local	0,6	0,5	0,3	

a Para os valores de ψ₁ relativos às pontes e principalmente para os problemas de fadiga, ver Seção 23.

Fonte: Tabela 11.2 da NBR 6118 (2023)

3.4.2.3 Combinações de ações

Classificando todas as ações atuantes na edificação em estudo e definindo os coeficientes de ponderação, é possível elaborar equações combinando-as, determinando, os tipos de carregamentos que serão atuantes na estrutura.

A vista disso, as combinações devem ser feitas de forma que possam ser determinadas os efeitos mais desfavoráveis, que deverão ser considerados na verificação de segurança as combinações últimas e de serviço.

As combinações podem ser classificadas:

1. Combinação última

- Combinação última normal: conjunto de ações formado pelas ações permanentes e pela ação variável principal, considerando as demais ações variáveis secundárias com os valores reduzidos.
- Combinação última especial: conjunto de ações formado pelas ações permanentes e pelas ações variáveis especiais, quando existentes,

b Áreas com ocupação residencial ou hospedagem e áreas de acesso restrito.

c Áreas com ocupação comercial, de escritórios, lojas, estações de passageiros, edifícios públicos e áreas de acesso público.

- determinando uma delas como principal e considerando as demais como secundária e de valores reduzidos.
- Combinação última excepcional: combinação de ações composto pelas ações permanentes e pelas ações variáveis excepcionais com redução das ações variáveis secundárias.

Conforme a NBR 6118(2023), simplifica-se a formulação na tabela 11.

Tabela 11 – Combinações últimas e equações de cálculo das solicitações

Combinações últimas (ELU)	Descrição	Cálculo das solicitações	
Normais	Esgotamento da capacidade resistente para elementos estruturais de concreto armado a	$F_{\rm d} = \gamma_{\rm g} F_{\rm gk} + \gamma_{\rm g} F_{\rm ggk} + \gamma_{\rm q} \left(F_{\rm q1k} + \Sigma \psi_{\rm 0j} F_{\rm qjk} \right) + \gamma_{\rm eq} \psi_{\rm 0e} F_{\rm eqk}$	
	Esgotamento da capacidade resistente para elementos estruturais de concreto protendido Deve ser considerada, quando necessário, a força de procomo carregamento externo com os valores $P_{kmáx}$ e P_{kmi} força desfavorável e favorável, respectivamente, conforme na Seção 9		
	Perda do equilíbrio como corpo rígido	$\begin{split} S\left(F_{sd}\right) \geq S\left(F_{nd}\right) \\ F_{sd} = \gamma_{gs} \; G_{sk} + R_{d} \\ F_{nd} = \gamma_{gn} \; G_{nk} + \gamma_{q} \; Q_{nk} - \gamma_{qs} \; Q_{s,min}, \; \text{onde:} \; Q_{nk} = Q_{1k} + \sum \psi_{0j} \; Q_{jk} \end{split}$	
Especiais ou de construção b	$F_{d} = \gamma_{g}F_{gk} + \gamma_{\epsilon g}F_{\epsilon gk} + \gamma_{q}\left(F_{q1k} + \Sigma\psi_{0j}F_{qjk}\right) + \gamma_{\epsilon q}\psi_{0\epsilon}F_{\epsilon qk}$		
Excepcionais b	$F_{\rm d} = \gamma_{\rm g} F_{\rm gk} + \gamma_{\rm g} F_{\rm ggk} + F_{\rm q1exc} + \gamma_{\rm q} \Sigma \psi_{\rm 0j} F_{\rm qjk} + \gamma_{\rm gq} \psi_{\rm 0g} F_{\rm gqk}$		

Fonte: Tabela 11.3 da NBR 6118 (2023)

2. Combinação de serviço

- Combinação quase permanentes de serviço: combinação de serviço em que as ações atuam durante grande parte do período de vida da estrutura
- Combinação frequente de serviços: conjunto de ações no estado de serviço, no qual as ações repetem-se diversas vezes durante a vida da estrutura.
- Combinação rara de serviços: combinação de serviço em que as ações podem aparecer algumas vezes na vida da estrutura.

Tabela 12 – Combinações de serviço e equações de cálculo das solicitações

Combinações de serviço (ELS)	Descrição	Cálculo das solicitações $F_{d,ser} = \Sigma F_{gi,k} + \Sigma \psi_{2j} F_{qj,k}$							
Combinações quase permanentes de serviço (CQP)	Nas combinações quase permanentes de serviço, todas as ações variáveis são consideradas com seus valores quase permanentes ψ ₂ F _{qk}								
Combinações frequentes de serviço (CF)	Nas combinações frequentes de serviço, a ação variável principal F_{q1} é tomada com seu valor frequente $\psi_1 F_{q1k}$ e todas as demais ações variáveis são tomadas com seus valores quase permanentes $\psi_2 F_{qk}$	$F_{d,ser} = \sum F_{gik} + \psi_1 F_{q1k} + \sum \psi_{2j} F_{qj}$							
Combinações raras de serviço (CR)	Nas combinações raras de serviço, a ação variável principal F_{q1} é tomada com seu valor característico F_{q1k} e todas as demais ações são tomadas com seus valores frequentes ψ1 F_{qk}	$F_{d,ser} = \sum F_{gik} + F_{q1k} + \sum \psi_{1j} F_{qjk}$							
onde		7							
F _{d,ser} é o va	alor de cálculo das ações para combinações d	e serviço;							
F _{q1k} é o va	alor característico das ações variáveis principa	ais diretas;							
ψ ₁ é o fa	ψ ₁ é o fator de redução de combinação frequente para ELS;								
ψ ₂ é o fa	é o fator de redução de combinação quase permanente para ELS.								

Fonte: Tabela 11.4 da NBR 6118 (2023)

3.5 Análise Estrutural

Fundamental para compreender o comportamento e o funcionamento da estrutura, estuda-se a análise estrutural, tal ciência é a parte da mecânica que se preocupa basicamente na determinação dos esforços e deformações as quais estão expostas a estrutura.

Assim, para definir um projeto estrutural é imprescindível entender as premissas do projeto, bem como levar em consideração o projeto arquitetônico e os critérios de resistência de cada elemento.

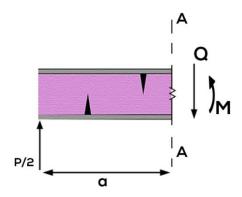
Alinhado a isso, NBR 6118(2023), o objetivo da análise estrutural é determinar os efeitos das ações em uma estrutura, com a finalidade de efetuar as verificações dos estados-limites últimos e de serviço.

3.5.1 Conceitos básicos da análise estrutural

Os princípios básicos da análise estrutural são esforços internos da estrutural, os conceitos de flexão, cisalhamento e torção, os quais condizem aos esforços proveniente do efeito de momentos fletores, momentos torsores e forças cortantes.

A. Momento fletor – Define-se como a resultante dos momentos de todas as forças e momentos de uma porção isolada sobre a outra porção transversal ao eixo da barra.

Figura 7 – Esforço do momento fletor, compressão nas fibras superiores e tração nas fibras inferiores

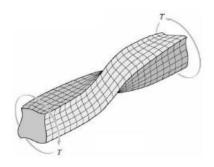


Fonte: Wikipedia

Analisando a imagem é possível visualizar que as forças externas tendem a deformar o elemento, causando uma flexão, neste caso, comprimindo as bordas superiores do elemento e tracionando as bordas inferiores deste. Tendo isto em vista, elabora-se o diagrama do momento fletor (DMF), no qual representa o comportamento da flexão geradas pelas ações ao qual o elemento está submetido.

B. Esforço cortante – Representa o efeito proveniente da força cortante que tende a "cortar", cisalhar em uma seção transversal.

Figura 8 - Força cortante



Fonte: Manual de construção de barcos (link: https://www.manualdeconstrucaodebarcos.com.br/forca-cortante-e-momento-fletor/)

Os esforços cortantes designam a tendência de cortar o elemento em determinado ponto, configurando o cisalhamento na estrutura. Diante disso, constróise o diagrama de esforço cortante (DEC) para analisar o desempenho do elemento quando submetido a ações.

C. Momento torsor – Também denominado de torque, trata-se de um momento que tende a rotacionar um elemento em torno de um eixo longitudinal.

Figura 9 – Representação ilustrativa do momento torsor

Fonte: Universidade Federal de Pelotas - Resistência II

Diferentemente do momento fletor, este "torce" o elemento desencadeando um giro na seção transversal, da mesma maneira que ocasiona um esforço cisalhante no elemento. Da mesma forma dos esforços anteriormente citados, este pode ser analisado por meio do diagrama de momento torsor (DMT).

3.5.2 Condições da análise estrutural

A análise estrutural é um processo necessário na previsão do comportamento de uma determinada estrutura utilizando-se da metodologia de cálculos matemáticos que compõem o modo formal da engenharia estrutural.

Nessa linha, a análise das estruturas segue condições básicas empregadas para o exame estrutural e combinadas a mecanismos matemáticos para análise completa de estruturas reticuladas.

3.5.2.1 Condições de equilíbrio

As condições de equilíbrio são condições nas quais garantem a estabilidade e o equilíbrio da estrutura. Estas podem ser representadas, principalmente, por três equações, quando todas as ações do corpo livre estão em um plano geométrico e todos os momentos têm vetores normais a esse plano, de acordo com William e Gere.

\sum Forças Horizontais $x=0$	Eq. 15
\sum Forças Verticais $y=0$	Eq. 16
$\sum Momento z = 0$	Eg. 17

São consideradas as equações de equilíbrio de uma estrutura em um plano. Sendo mais abrangente, quando tratamos de três dimensões:

$$\sum Fx = 0$$
; $\sum Fy = 0$; $\sum Fz = 0$; $\sum Mx = 0$; $\sum My = 0$; $\sum Mz = 0$ Eq.18

As equações da equação 18, definem, portanto, as equações de equilíbrio para quaisquer corpos livres.

3.5.2.2 Condições de compatibilidade

As condições de compatibilidade estão totalmente relacionadas à verificação dos estados-limites de modo que garantam a ductilidade adequada da estrutura, ou seja, condições necessárias de integrabilidade para o campo de deslocamentos.

As condições de compatibilidade devem ser satisfeitas em todos os pontos de apoio, onde é necessário que os deslocamentos da estrutura sejam consistentes com as condições de apoio. (WILLIAM, GERE, 1929)

3.5.2.3 Carregamento monotônico

O carregamento monotônico a luz da legislação vigente é uma condição especial da análise das estruturas, em que, respeitado o estado cíclico, não deverá haver variantes de tensão ao ultrapassar o limite de 0,5 referente a resistência característica do concreto.

A NBR 6118 (2023) aduz que:

Admite-se carregamento monotônico até o estado-limite considerado, nas estruturas usuais, desde que a resposta a ciclos de carga e descarga, em serviço, não solicite o concreto a tensões de compressão acima de $0,5\,$ f_{ck}. (NBR 6118:2023)

3.5.3 Tipos de estruturas e modelos estruturais

As estruturas que serão analisadas nesse trabalho e citadas na NBR 6118(2023), trata-se de estruturas reticuladas, as quais, de acordo com William Weaver e James Gere (1929) "consistem em elementos com longas dimensões em comparação com as dimensões de sua seção transversal".

Ante o exposto, estas estruturas podem ser divididas em categorias, tais quais são estruturas de vigas, treliça plana, treliça espacial, pórticos planos, grelhas e pórticos espaciais.

As estruturas de vigas consistem em um elemento longo no qual possuem um ou mais vínculos de suporte, além disso as forças atuam no plano, bem como os momentos atuam como um vetor normal ao plano. No que tange, as treliças planas, é um tipo de estrutura caracterizada pela interligação dos pontos no plano, tendo, semelhantemente as estruturas de vigas, as forças atuando no plano e os momentos como um vetor normal ao plano.

Não obstante, quando tais elementos são interligados em quaisquer direções no espaço trata-se de uma estrutura de treliças espaciais, bem como as forças

possuem direção arbitrária, embora que os momentos atuem perpendicular ao eixo do elemento.

Tem também, os pórticos planos, os quais consistem no modelo de estrutura composto por elementos em um único plano e com rigidez nas conexões, de modo que as forças atuam no plano e os momentos como um vetor normal ao plano. Em contrapartida, quando estes elementos e forças atuam em quaisquer direções no espaço determina-se estrutura de pórtico espacial.

Quanto as grelhas, trata-se de uma estrutura composto por elementos que se interseccionam e diferem dos pórticos planos, visto que as forças atuam como um vetor normal ao plano e os momentos atuam no plano.

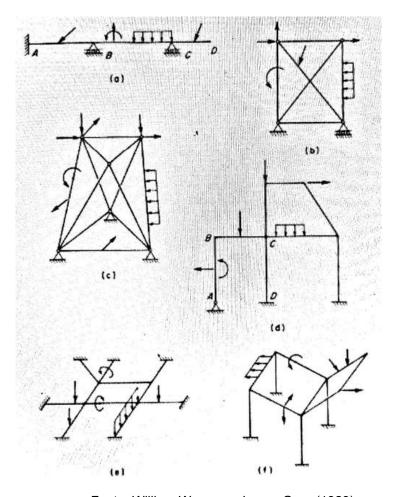


Figura 10 – Representação ilustrativa das tipologias estruturais

Fonte: William Weaver e James Gere (1929)

Em face disso, os modelos estruturais são tipos de arranjos com diversos elementos estruturais que devem contemplar os diferentes esforços que solicitam a estrutura e obedecendo as limitações em função de variáveis, tais como o tempo e custo.

Conforme FUSCO (1976), também denominado de esquema estrutural, o modelo estrutural primário representa o primeiro comportamento associado a um elemento estrutural, e que provoca os maiores esforços. Não obstante, alguns

esforços podem não aparecer e devem ser idealizados em esquemas estruturais de modo que esses esforços sejam conhecidos para assim haver o dimensionamento do elemento.

Pautado nisto, a NBR 6118(2023) estabelece o modelo de vigas contínuas, o modelo de pórticos planos, modelo de pórticos espaciais e grelhas.

3.5.3.1 Vigas contínuas

Este modelo estrutural consiste em isolar as vigas do edifício a ser dimensionado, as quais estão sujeitas as ações verticais provenientes do peso próprio, paredes, lajes.

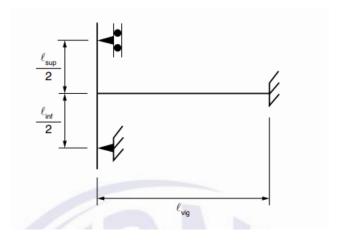
No modelo de vigas contínuas, admite-se que as cargas são aplicadas no eixo de simetria, e por estarem inseridas em um único plano não considera o torque, sendo calculados somente os momentos fletores e forças cortantes.

A NBR 6118(2023) define correções adicionais as quais são:

- a) Não podem ser considerados momentos positivos menores que os que se obteriam caso houvesse engastamento perfeito da viga nos apoios internos;
- b) Quando a viga for solitária com o pilar intermediário e a largura de apoio for maior que a quarta parte da altura do pilar, não pode ser considerado momento negativo no valor absoluto menor que o de engastamento perfeito nesse apoio;
- c) Quando for realizado o cálculo exato da influência da solidariedade dos pilares com a viga, deve ser considerado, nos apoios extremos, momento fletor igual ao momento de engastamento perfeito multiplicando pelos coeficientes estabelecidos nas equações 19, 20 e 21.

$$\frac{r_{inf} + r_{sup}}{r_{vig} + r_{inf} + r_{inf}}$$
 na viga; Eq. 19

$$\frac{r_{\text{sup}}}{r_{vig} + r_{inf} + r_{inf}}$$
 no tramo superior do pilar; Eq. 20


$$\frac{r_{inf}}{r_{vig}+r_{inf}+r_{inf}}$$
 no tramo inferior do pilar. Eq. 21

Em que,

$$r_i = \frac{I_i}{l_i}$$
 Eq. 22

ri é a rigidez do elemento i no nó considerado

Figura 11 – Representação ilustrativa de vigas contínuas

Fonte: Figura 14.8 da NBR 6118 (2023)

3.5.3.2 Pórticos planos

Os pórticos planos, admite a análise tanto as ações verticais como horizontais, constatando a existência de barras verticais que simulam pilares e barras horizontais que simulam as vigas, não havendo, por fim, a representação da laje no modelo, ponto essencial para entender os esforços horizontais proveniente, a exemplo, do vento.

Outrossim, por estar inserido no plano este não é capaz de calcular os esforços de torção, restringindo a esforços normais, cortantes e momentos fletores. Além disso, estabelece que o encontro entre vigas e pilares são chamados de nós nos quais possuem três graus de liberdade.

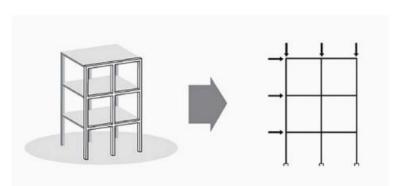
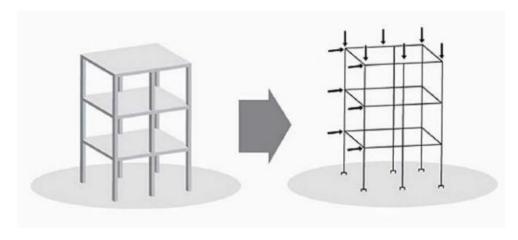


Figura 12 – Representação ilustrativa de pórticos planos


Fonte: Kimura (2007)

3.5.3.3 Pórticos Espaciais

Esse modelo estrutural assemelha-se de pórtico planos, porém engloba o cálculo de todos os esforços no espaço, assegurando, uma maior precisão nos resultados.

É imprescindível frisar que, esse esquema estrutural é muito complexo, haja vista que passa a ter seis graus de liberdade em cada nó, sendo então utilizados programas computacionais capazes de facilitar o cálculo.

Figura 13 – Representação ilustrativa de pórticos espaciais

Fonte: Kimura (2007)

3.5.3.4 Grelhas

O modelo estrutural de grelhas, consiste em dividir as lajes em vigas equivalentes nas duas direções, no qual as ligações são formadas por nós e classificadas como rígidos ou articulados possuindo estes três graus de liberdade.

Neste molde estrutural de grelhas, há enfoque quanto á rigidez a torção e a flexão da malha de barras, contudo não há análise de esforços horizontais, tais como empuxo e vento.

A NBR 6118(2023) admite uma redução a rigidez à torção das vigas por fissuração (assim como também nos pórticos espaciais), utilizando 15% da rigidez elástica, bem como permite considerar na verificação dos estados limites últimos a rigidez à torção das vigas nulas, de modo a eliminar a torção de compatibilidade da análise.

3.5.4 Métodos de análise estrutural

A NBR 6118(2023) estabelece métodos de análise estrutural que se diferenciam pelo comportamento admitido para os materiais constituintes da estrutura, não perdendo de vista em cada caso as limitações correspondentes. Os métodos são: análise linear, análise linear com redistribuição, análise plástica, análise não-linear e análise através de modelos físicos.

3.5.4.1 Análise linear

A análise linear considera o comportamento dos materiais constituintes como elástico-lineares, ou seja, possuem propriedades elásticas e deformações proporcionais a intensidade das ações externas.

No que concerne as propriedades elásticas atribui-se a tendência de o material voltar à configuração inicial após sofrer deformações, com isso, tal análise obedece a Lei de Hooke, na qual considera uma relação linear entre tensões e deformações por meio de um módulo de elasticidade.

 $\sigma = E\varepsilon$ Eq. 23

Ante o exposto, o cálculo da rigidez e das características geométricas dos elementos estruturais lineares são determinadas pela seção bruta de concreto.

Para os esforços solicitantes, a NBR 6118(2023) adota a utilização dos valores do módulo de elasticidade secante (E_{cs}), cujo valor é 85% do módulo de elasticidade tangente inicial (E_{ci}), e o coeficiente de Pousson igual a 0,2 quando apresentar tensões de compressão inferiores a 0,5 f_c e tensões de tração menores que f_{ct} .

A análise linear usualmente é empregada na verificação do estado limite de serviço (ELS), embora tal método possa ser utilizado como base do dimensionamento no estado limite último (ELU) desde que se garanta uma ductibilidade mínima nos elementos estruturais.

A ductibilidade, pode ser assegurada pelos domínios e pela limitação da posição relativa da linha neutra, x/d, junto aos apoios e em regiões de ligação entre os elementos.

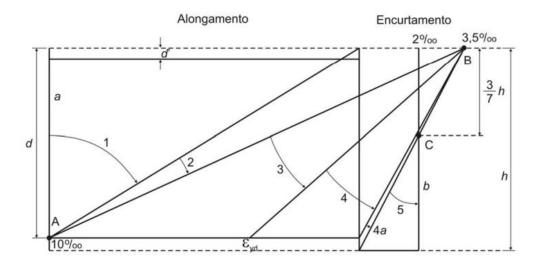


Figura 14 - Mapa de domínios

Fonte: Figura 17.1 da NBR 6118 (2023)

Quanto ao diagrama de domínio estabelecendo a linha vertical no eixo zero do diagrama, a direita da linha vertical temos os esforços de tração (alongamento) e a esquerda tem-se que os esforços de compressão (encurtamento).

Diante disso, compreende-se que o aço resistirá a tração enquanto o concreto a compressão, portanto, a deformação limite do aço para tração é de 10‰ e o encurtamento máximo do concreto é 3,5‰. Assim:

- Domínio 1: Trata-se de uma tração uniforme, ou seja, o aço está no limite de ruptura (alongamento máximo). A linha neutra é externa a seção e não há compressão do concreto.
- 2. Domínio 2: Trata-se de uma flexão simples ou composta sem ruptura do concreto por compressão, haja vista que o domínio 2 inicia sem deformação no concreto e finaliza com tal fenômeno. Assim, inicialmente, a linha neutra está fora da seção e a partir do momento que

- o concreto começa a deformar esta corta a seção transversal, sendo perceptível a má utilização do concreto, bem como o aço estando no limite de ruptura.
- 3. Domínio 3: Assim como o domínio 2 trata-se de uma flexão simples ou composta com ruptura do concreto por compressão e escoamento do aço. Nesse domínio há deformação do aço e do concreto, tendo assim a linha neutra cortando a seção transversal. O domínio 3 representa o melhor estado de aproveitação dos materiais.
- 4. Domínio 4: Trata-se de flexão simples ou composta com ruptura do concreto por compressão, no entanto, sem o escoamento do aço, enfatizando a má aproveitação da armadura. A linha neutra cruza a seção transversal.
- 5. Domínio 5: Existe apenas compressão não uniforme, sendo o aço e o concreto comprimidos, não havendo tração. A linha neutra nesse domínio não cruza a seção transversal.

Com base no narrado, CORRÊA (1991) afirma que a análise linear possibilita a superposição de efeitos e de utilização como primeira aproximação para a análise não linear. À medida que, Fontes (2005) admite que caso os esforços não ultrapassem aqueles que determinam a fissuração, os materiais aço e concreto podem ser considerados elástico-lineares, verificando as deformações no estádio I.

3.5.4.2 Análise linear com redistribuição

A análise linear com redistribuição refere-se a uma um método de análise, na qual considera o rearranjo dos esforços em virtude da variação da rigidez dos elementos estruturais sendo satisfeita obrigatoriamente as condições de equilíbrio e de ductibilidade.

Conforme a NBR 6118(2023), "Todos os esforços internos devem ser recalculados, de modo garantir o equilíbrio de cada um dos elementos estruturais e da estrutura como um todo". A norma apresenta limites para a redistribuição de momentos e condições de ductibilidade em função da posição relativa da linha neutra (x/d).

- a) $x/d \le 0.45$, para concretos com $f_{ck} \le 50$ MPa;
- b) $x/d \le 0.35$, para concretos com 50 MPa > $f_{ck} \le 90$ MPa.

Já para a redistribuição dos momentos, temos uma redução do momento fletor de M para δM em função da posição relativa da linha neutra (x/d).

- a) $x/d \le (\delta 0.44)/1.25$, para concretos com $f_{ck} \le 50$ MPa;
- b) $x/d \le (\delta 0.56)/1.25$, para concretos com $f_{ck} \le 50$ MPa.

Tendo ainda que o coeficiente δ obedecer:

- a) $\delta \ge 0.90$, para estruturas de nós móveis;
- b) $\delta \ge 0.75$, para qualquer outro caso.

Fontes (2005), em sua obra apregoa que o fenômeno da redistribuição de momentos é imprescindível visto que podemos subaproveitar as armaduras de flexão.

Sendo tal efeito, tipicamente utilizado em estruturas hiperestáticas, pois, mesmo havendo a plastificação de uma seção da estrutura, não esgota a capacidade de resistência.

3.5.4.3 Análise não linear

Ao designar uma análise não linear entende-se que o material não apresenta uma relação linear entre tensões e deformações, portanto, não obedece a Lei de Hooke. Denota-se que o concreto é um material não linear devendo considerar esse aspecto, porém é comum utilizar o método de análise linear, haja vista a simplicidade e a familiaridade dos projetistas.

Nesse cenário, a análise não linear possui alto nível de complexidade devido a geometria da estrutura requerendo cálculos iterativos, de modo que só obtemos resultados quando as iterações apresentarem resultados próximos.

Na análise não linear o fenômeno da superposição dos efeitos não é válido. Nesse tipo de não-linearidade pode-se subdividir em não-linearidade física (NFL) e não-linearidade geométrica (NGL), sendo o primeiro a relação de não linearidade entre tensão e deformação e o segundo a não linearidade proveniente entre deformações e deslocamentos.

Não obstante, a NBR 6118 (2023) estabelece que esse método de análise é permitido para verificação dos estados-limites últimos como também para as verificações dos estados-limites de serviço.

3.5.4.4 Análise plástica

Consoante a NBR 6118(2023), o método de análise plástica é, assim, denominado quando as não linearidades são consideradas admitindo um comportamento rígido-plástico perfeito ou elastoplástico perfeito. Dessa forma, não se pode falar em análise das estruturas reticuladas quando considerados os efeitos de segunda ordem global ou não houver ductibilidade suficiente para as condições adotadas.

Pautado nisso, Fontes (2005) os materiais após atingirem o limite elástico, em virtude do aumento contínuo da intensidade de cargas sobre um corpo, apresentam deformações permanentes com o alívio do carregamento, enfatizando assim a propriedade da plasticidade.

Nessa circunstância, prevê-se que a existência de tais deformações permanentes, com tensões acima do limite de escoamento, garantem melhor aproveitamento dos materiais.

A análise plástica contempla duas teorias para entender o comportamento estrutural, são as rótulas plásticas para elementos lineares e as charneiras plásticas para superfícies, a exemplos placas.

A rótula plástica ocorre quando uma seção entra no regime totalmente plástico, em outros termos, todas as fibras atingem o limite de escoamento. Diante do aumento contínuo do carregamento, há uma extensão da plastificação para dentro da seção e

um aumento plástico da curvatura, podendo atingir de duas a três vezes o valor calculado elasticamente, deve salientar que tal efeito limita-se a um comprimento de plastificação em cada lado do ponto de momento máximo.

Com isso, o momento de inércia à flexão e o módulo de elasticidade caminham para se anular e os momentos nos pontos provenientes do comprimento de plastificação tendem a estabilizar.

Ao analisar estruturas hiperestáticas, há uma reserva na capacidade resistente, dado a formação de rótulas plásticas para que construa um mecanismo de colapso.

No caso do concreto armado, o momento de plastificação provêm do estado limite último (ε), sendo necessário a ocorrência de um número de rótulas plásticas em função da verificação da capacidade de rotação destas, do grau de hiperestaticidade, das características geométricas e do carregamento atuante.

As charneiras plásticas, consistem em um método de análise de limite, no qual o mecanismo de colapso é composto por painéis separados por linhas de plastificação (ou linhas de ruptura). Infere-se, portanto, que a teoria das charneiras plásticas assume um mecanismo de colapso baseado na flexão, para estabelecer a carga de ruína são considerados apenas os momentos fletores de plastificação, não havendo garantia de que o mecanismo de colapso é o correto tornando-o contra a segurança.

3.5.4.5 Análise através de modelos físicos

A análise através de modelos físicos, alinhada NBR 6118(2023), o comportamento estrutural é determinado por ensaios realizados com modelos físicos de concreto, considerando critérios de semelhança mecânica. Posto isso, esse método estabelece objetivos, tais como demonstrar o comportamento de certas estruturas, checar a veracidade dos procedimentos analíticos utilizados e participar diretamente na concepção de estruturas.

PREECE & DAVIES (1964), assinalam que tal método tem grande importância em obras de prestígio público ou de quantidade de capital investido, servindo para aferir os resultados fundamentados no cálculo analítico. Esse tipo de análise é apropriado quando os modelos de cálculo são insuficientes ou estão fora do objetivo da norma vigente, dada a obrigatoriedade da obtenção e interpretação dos resultados nos estados limites últimos e de serviço, bem como justificadas com modelos teóricos de equilíbrio.

3.5.4.6 Resumo

Ante o exposto nessa seção de cálculo pode-se atribuir um quadro de resumo:

Tabela 13 – Tabela de resumo de métodos de análise e verificação de estados limites

Análise	Verificação					
Linear	ELU* e ELS					
Linear com redistribuição	ELU					
Plástica	ELU					
Não-Linear	ELU e ELS					
Através de Modelos Físicos	ELU e ELS					
*se garantida a dutilidade dos elementos						
estruturais						

3.5.5 Análise global da estrutura

3.5.5.1 Parâmetro Alfa

O parâmetro α, introduzido por Beck e Konig em 1967, tem o intuito de fornecer informações sobre os efeitos de segunda ordem em uma estrutura. Dessa forma, ele é usado para verificar a consideração ou não dos efeitos de segunda ordem por meio da rigidez horizontal da estrutura

Recomendado pela NBR 6118(2023) como um dos critérios para desconsideração da não linearidade geométrica global nos elementos estruturais de contraventamento, tal parâmetro é imprescindível para dispensar os efeitos de segunda ordem em estruturas simétricas e considerá-las de nós fixos, no entanto, devem seguir as expressões:

$$\alpha = H \cdot \sqrt{\frac{\sum F_{vk}}{E_{cs} \cdot I_{sec}}}$$
 Eq.24

Em que,

H é altura da edificação

Ecs é o módulo de deformação longitudinal secante do concreto

ΣFvk é o somatório de forças verticais no valor característico

Isec é o momento de inércia equivalente do sistema estrutural de contraventamento

Admite-se $\alpha 1 = 0.6$ para edifícios com número de níveis superior ou igual a 4, de modo que se o valor de α calculado seja inferior ao de $\alpha 1$ considera a estrutura com nós fixos.

3.5.5.2 Parâmetro GamaZ

Introduzido pelos engenheiros brasileiros Mário Franco e Augusto Vasconcelos (1991), o coeficiente γz mede o grau de sensibilidade da edificação de modo que majora os efeitos de primeira ordem devido as cargas horizontais, bem como julga os efeitos de segunda ordem no quesito de análise global das estruturas.

O parâmetro γz é um coeficiente de majoração que é aplicado aos esforços de primeira ordem em que se considera os efeitos de segunda ordem, com escopo de obter uma resposta estrutural mais precisa. Fato esse que justifica o sucesso de tal parâmetro nos projetos estruturais de edificações.

Formula-se parâmetro γz segundo a hipótese de que as configurações deformadas provocadas pelo carregamento vertical seguem uma progressão geométrica.

Nessa seara, à medida que a estrutura se desloca mediante a atuação das cargas verticais, novos acréscimos de momento surgem devido aos novos acréscimos de deslocamento, de modo que a estrutura pode ou não atingir o equilíbrio.

No caso de estruturas convergentes, isto é, aquelas que convergem para uma posição de equilíbrio estável, essa progressão é decrescente. Para estruturas divergentes, a progressão é crescente.

Vasconcelos (1991), destaca que esta progressão geométrica, quando decrescente, pode ser calculada como uma série cujo número de termos tende ao infinito, simbolizando cada uma das iterações. O resultado é que o momento final na fundação da estrutura pode ser calculado como um acréscimo ao momento calculado na primeira iteração.

Nessa proporção, limita-se o γz em:

- a) $\gamma z \leq \gamma z_1 = 1{,}10$ Não haverá consideração dos efeitos de segunda ordem
- b) $\gamma z_2 = 1{,}30$ Indica maior valor do γz de modo que o procedimento simplificado permite a análise estrutural
- c) $\gamma z_3 \ge 1{,}36$ Não considera o sistema de contraventamento adequado visto que atingiu o valor máximo.

Para garantir a consistência e eficiência dos dados calculados, com também para evitar que eventuais trabalhos sejam perdidos, é recomendável que a situação em questão seja resolvida duas vezes.

A primeira solução, consiste em adotar a redução para 40% da rigidez à flexão das vigas e para 80% do "Eal" dos pilares, tal como é recomendado pela NBR 6118:2014. Na segunda solução, faremos uma estimativa do coeficiente γ em função do z parâmetro e do FReq α .

A obtenção do yz, extrai-se da análise dos efeitos de primeira ordem para cada caso de carregamento em virtude da equação 25:

$$\gamma_z = \frac{1}{1 - \frac{\Delta M_{tot,d}}{M_{1,tot,d}}}$$
 Eq.25

Em que:

 ΔM é a soma da multiplicação das forças verticais atuantes na estrutura tot, d pelos deslocamentos horizontais de seus respectivos pontos de aplicação;

M é a soma dos momentos de todas as forças horizontais da combinação 1, tot, d considerada em relação à base da estrutura.

3.5.6 Análise estrutural nos programas computacionais

Comumente utilizados por engenheiros e projetistas brasileiros, os programas computacionais vem sendo cada vez mais utilizados para analisar e detalhar o comportamento das estruturas, bem como para dimensionar elementos estruturais. Partindo desse pressuposto, será realizado o exame comparativo dos programas computacionais Eberick, TQS e CYPECAD.

3.5.6.1 CYPECAD

O CYPECAD é um programa computacional concebido para realizar o projeto de edifícios com geração automática da discretização da estrutura, das ações verticais e horizontais. Esse software foi desenvolvido pela empresa espanhola Cype Ingenieros S.A. sendo sua primeira versão inaugurada em 1983.

O programa realiza a análise estrutural por meio de um modelo de pórtico espacial processado por métodos matriciais de rigidez, onde em cada nó contempla seis graus de liberdade. Diante disso, o software gera uma malha de elementos finitos para discretização da laje.

Outrossim, o CYPECAD simula as condições de engastamento através coeficientes de proporcionalidade nos apoios dos elementos estruturais. Esses coeficientes variam de 0 a 1, sendo que o zero é para simplesmente apoiado, 0,5 para semi-engastadas e 1 para totalmente engastadas.

Para mais, o software possui inúmeras normas estrangeiras e brasileiras para escolher na elaboração dos projetos, tais como a NBR 6118, NBR 14762, NBR 8800 e NBR 7190. Não obstante, limita a edição gráfica da parte arquitetônica dependendo de outros programas para posterior importação.

A versão adotada do software CYPECAD é proveniente do ano de 2017, a qual emprega a NBR 6118 (2014), sendo necessário configura-lo com coeficientes e dados provenientes da NBR 6118 (2023).

3.5.6.2 Eberick

Fundado pela Alto QI Tecnologia, o Eberick é um programa computacional com interface gráfica em CAD capaz de calcular todo um edifício de forma integrada, ou seja, abrangendo lajes, vigas, pilares e infraestruturas.

O cálculo e dimensionamento da estrutura é realizado por meio de métodos de grelha, nos casos de lajes, sendo esses esforços transferidos para as vigas nas quais apoiam este elemento. Com isso, forma-se um pórtico espacial, no qual é processado e apresentado todo o detalhamento da estrutura.

O método de análise estrutural utilizado por esse programa advém do método matricial de rigidez direta, responsável por determinar as ações solicitantes a estrutura para que possam ser feitas as verificações dos estados limites últimos e estados limites de serviço.

Essa aplicação permite verificar os deslocamentos nodais, os esforços internos e as reações nos vínculos, além de analisar o comportamento da estrutura de forma linear e não linear por meio de opções editáveis.

No concernente ao engastamento, o Eberick não permite afirmar se são simplesmente apoiadas, semi-engastadas ou totalmente engastadas, fato esse que difere dos outros softwares citados.

Neste estudo, a versão empregada do software Eberick é a versão de demonstração da AltoQI 2023, a qual está em conformidade com a NBR 6118 (2023).

3.5.6.3 TQS

O TQS é outro programa computacional voltado para elaboração de projetos estruturais em concreto armado, protendido, pré-moldado e alvenaria estrutural. O software supramencionado, desenvolvido pela TQS Informática Ltda., apresenta interface gráfica completa em relação ao Eberick, como também critérios de engastamento similares ao do CYPECAD.

O projeto no TQS é produzido por meio de etapas, nas quais inicialmente encontra-se a concepção estrutural definindo, assim, toda a geometria e características da estrutura. Por conseguinte, adentra no campo da análise estrutural, possuindo diversas opções de modelos estruturais, vigas contínuas, grelhas, pórticos espaciais e até mesmo modo manual.

Os fatores apresentados tornam possível calcular os esforços e flechas na estrutura, passando para a etapa de dimensionamento e detalhamento para assim ir para etapa de plotagem.

Sob esta ótica, o software permite a análise de estabilidade global pelo método do GamaZ e do P-Delta.

No presente estudo a versão utilizada do software TQS é a V24, versão otimizada e conforme a NBR 6118 (2023).

4 METODOLOGIA

O trabalho consiste basicamente em modelar um projeto estrutural nos programas computacionais Eberick, TQS e CYPECAD, de um edifício de 5 pavimentos e observar as semelhanças e diferenças nos processos de análise e dimensionamento, bem como comparar com o procedimento manual utilizando a NBR 6118 (2023).

4.1 Projeto

O projeto arquitetônico, no qual será utilizado como base da análise, trata-se de um edifício residencial com 3 pavimentos tipos, partindo do térreo, um pavimento

de cobertura contendo a caixa d'água e um pavimento de fundação. A planta é bem simples e simétrica, objetivando as facilidades para a análise e dimensionamento do programa evitando quaisquer erros.

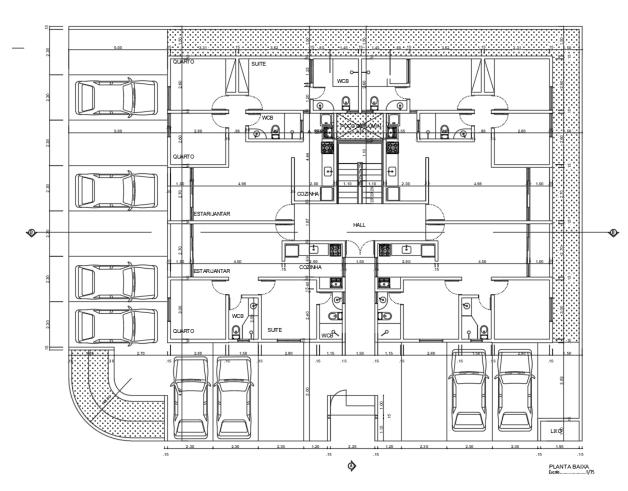


Figura 15 – Planta baixa do pavimento-tipo do edifício a ser estudado

4.2 Lançamento da estrutura

Inicialmente, atribui-se o lançamento da estrutura, parte esta que é fundamental para compatibilizar o projeto arquitetônico com o projeto estrutural, impossibilitando desencontros, como pilares dentro de quartos, pilares no meio de garagens de carros.

Para que o dimensionamento de vigas provém bastante do vão, e para evitar grandes dimensões são previstos vãos com distâncias de, no máximo, 4-5 metros.

Diante disso, realiza o lançamento da estrutura, representando pela cor azul os pilares, amarela as vigas e verde o perímetro da área de influência de cada pilar, consoante ao demonstrado na figura 16.

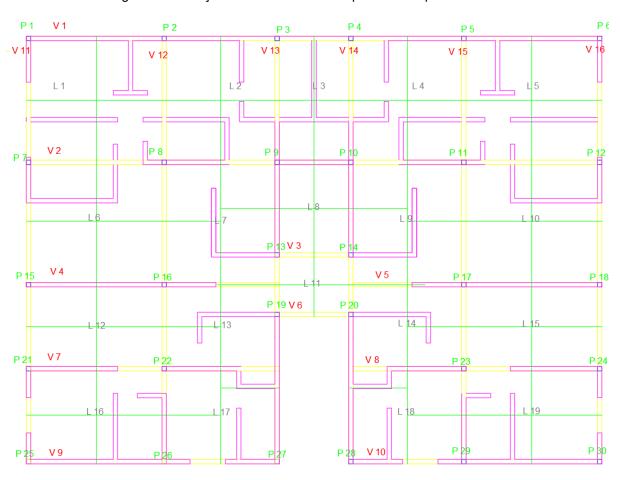


Figura 16 – Lançamento da estrutura no pavimento-tipo do edifício

4.3 Considerações do projeto

O edifício será composto por sapatas isoladas, pilares, vigas e lajes maciças, feitos com concreto C-30, cuja resistência característica a compressão, fck, é 30 MPa, classe de agressividade 2 proveniente de ambiente urbano e pressão admissível do solo igual a 2kgf/cm2. Não fará parte do trabalho o cálculo da escada, haja vista a limitação da versão do programa TQS.

Ademais, foram consideradas as cargas de parede conforme a NBR 6120 (2019), onde consideramos o peso específico do tijolo vazado de 13 KN/m3 e o peso específico da argamassa de cimento, cal e areia de 19KN/m3. Com isso, estabelecemos a espessura de reboco de 3 centímetros e a espessura do tijolo obtivemos as cargas de alvenaria. Outrossim, foram consideradas uma carga permanente nas lajes de 0,10 tf/m2 e carga acidental de 0,15 tf/m2.

Tabela 14 - Cargas consideradas no projeto

CARGAS DE PAREDE SOB VIGAS							
λTijolo (KN/m3)	13	espessura tijolo (m)	0,09				
λrevestimento (KN/m3)	19	espessura de revestimento (m)	0,03				
pé-direito (m)	2,8						
altura da viga (m)	0,45						
		Carga (KN/m)	4,09				
CARC	AS DE DA	Carga (tf/m) REDE SOB LAJES	0,41				
		espessura tijolo					
λTijolo (KN/m3)	13	(m)	0,09				
λrevestimento (KN/m3)	19	espessura de revestimento (m)	0,03				
pé-direito (m)	2,8						
altura da laje (m)	0,15						
		Carga (KN/m)	4,61				
		Carga (tf/m)	0,46				
CARGAS DE P	AREDE S	OB VIGAS - PLATIB	ANDA				
λTijolo (KN/m3)	13	espessura tijolo (m)	0,09				
λrevestimento (KN/m3)	19	espessura de revestimento (m)	0,03				
pé-direito (m)	1						
altura da laje (m)							
		Carga (KN/m)	1,74				
		Carga (tf/m)	0,17				
CARGAS DE PA		DB VIGAS ATÉ VIGA GUA					
CARGAS DE PA		DB VIGAS ATÉ VIGA GUA espessura tijolo					
λΤijolo (KN/m3) λrevestimento	D'Á	DB VIGAS ATÉ VIGA GUA espessura tijolo (m) espessura de	CAIXA				
λΤijolo (KN/m3) λrevestimento (KN/m3)	13	DB VIGAS ATÉ VIGA GUA espessura tijolo (m)	0,09				
λΤijolo (KN/m3) λrevestimento	13 19	DB VIGAS ATÉ VIGA AGUA espessura tijolo (m) espessura de	0,09				
λΤijolo (KN/m3) λrevestimento (KN/m3) pé-direito (m)	13 19 3,25	DB VIGAS ATÉ VIGA AGUA espessura tijolo (m) espessura de	0,09				
λΤijolo (KN/m3) λrevestimento (KN/m3) pé-direito (m) altura da laje (m)	13 19 3,25 0,45	DB VIGAS ATÉ VIGA (GUA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (tf/m)	0,09 0,03 4,87 0,49				
λΤijolo (KN/m3) λrevestimento (KN/m3) pé-direito (m) altura da laje (m)	13 19 3,25 0,45	DB VIGAS ATÉ VIGA AGUA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m)	0,09 0,03 4,87 0,49				
λΤijolo (KN/m3) λrevestimento (KN/m3) pé-direito (m) altura da laje (m)	13 19 3,25 0,45	DB VIGAS ATÉ VIGA (GUA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (tf/m)	0,09 0,03 4,87 0,49				
ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m) CARGAS DE PA	13 19 3,25 0,45	DB VIGAS ATÉ VIGA GUA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (tf/m) DB VIGAS ATÉ VIGA espessura tijolo	0,09 0,03 4,87 0,49 CAIXA				
λΤijolo (KN/m3) λrevestimento (KN/m3) pé-direito (m) altura da laje (m) CARGAS DE PA λΤijolo (KN/m3)	13 19 3,25 0,45 AREDE SO	DB VIGAS ATÉ VIGA (GUA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (tf/m) DB VIGAS ATÉ VIGA espessura tijolo (m) espessura de	0,09 0,03 4,87 0,49 CAIXA				
ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m) CARGAS DE PA ATijolo (KN/m3) Arevestimento (KN/m3)	13 19 3,25 0,45 REDE SC 13	DB VIGAS ATÉ VIGA (GUA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (tf/m) DB VIGAS ATÉ VIGA espessura tijolo (m) espessura de	0,09 0,03 4,87 0,49 CAIXA				
ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m) CARGAS DE PA ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m)	13 19 3,25 0,45 REDE SC 13	DB VIGAS ATÉ VIGA (GUA) espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (tf/m) DB VIGAS ATÉ VIGA espessura tijolo (m) espessura de revestimento (m)	0,09 0,03 4,87 0,49 CAIXA 0,09 0,03				
ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m) CARGAS DE PA ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m)	13 19 3,25 0,45 UREDE SC 13 19 1,9	DB VIGAS ATÉ VIGA GUA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (tf/m) BV VIGAS ATÉ VIGA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (KN/m) Carga (KN/m) Carga (KN/m) Carga (KN/m)	0,09 0,03 4,87 0,49 CAIXA 0,09				
ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m) CARGAS DE PA ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m)	13 19 3,25 0,45 REDE SC 13 19 1,9	DB VIGAS ATÉ VIGA (GUA) espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (tf/m) DB VIGAS ATÉ VIGA espessura tijolo (m) espessura de revestimento (m)	0,09 0,03 4,87 0,49 CAIXA 0,09 0,03				
ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m) CARGAS DE PA ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m)	13 19 3,25 0,45 UREDE SC 13 19 1,9	DB VIGAS ATÉ VIGA GUA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (tf/m) BV VIGAS ATÉ VIGA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (KN/m) Carga (KN/m) Carga (KN/m) Carga (KN/m)	0,09 0,03 4,87 0,49 CAIXA 0,09 0,03				
ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m) CARGAS DE PA ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m)	13 19 3,25 0,45 REDE SC 13 19 1,9	DB VIGAS ATÉ VIGA GUA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (tf/m) BV VIGAS ATÉ VIGA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (KN/m) Carga (KN/m) Carga (KN/m) Carga (KN/m)	0,09 0,03 4,87 0,49 CAIXA 0,09 0,03				
ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m) CARGAS DE PA ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m) C AREA QUANTIDADE	13 19 3,25 0,45 13 19 1,9	DB VIGAS ATÉ VIGA GUA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (tf/m) BV VIGAS ATÉ VIGA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (KN/m) Carga (KN/m) Carga (KN/m) Carga (KN/m)	0,09 0,03 4,87 0,49 CAIXA 0,09 0,03				
ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m) CARGAS DE PA ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m) CARGAS DE PA ATijolo (KN/m3) Arevestimento (KN/m3) pé-direito (m) altura da laje (m)	13 19 3,25 0,45 NREDE SO 13 19 1,9 ARGA CA 6,97 10000	DB VIGAS ATÉ VIGA GUA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (tf/m) BV VIGAS ATÉ VIGA espessura tijolo (m) espessura de revestimento (m) Carga (KN/m) Carga (KN/m) Carga (KN/m) Carga (KN/m) Carga (KN/m)	0,09 0,03 4,87 0,49 CAIXA 0,09 0,03				

4.4 Pré-dimensionamento dos elementos estruturais

Após definida a concepção estrutural do projeto, utiliza-se em que se parte do parâmetro de dimensões de cada elemento estrutural previsto no projeto (pilares, vigas e lajes maciças), ou seja, uma estimativa inicial das dimensões das seções transversais dos elementos estruturais responsáveis por resistir aos esforços solicitados.

4.4.1 Pré-dimensionamento dos pilares

"O pré-dimensionamento da seção transversal dos pilares da estrutura pode ser feito a partir do critério da área de influência de cargas (Fusco, 1981 e França, 1985)."

O procedimento, consiste em estimar o esforço normal de compressão inicial, Pik, por meio de um valor estimado de tensão a compressão em serviço do concreto, fck.

$$P_{ik} \cong A_{inf} \cdot p_m \cdot (n + \chi + \varsigma)$$
 Eq. 26

Em que,

n é igual ao número de lajes de piso da edificação (pavimentos);

pm representa o valor da carga média por unidade de área da edificação;

 χ é um coeficiente que leva em conta a diferença entre a carga vertical de um pavimento tipo e da coberta, sendo: $0.80 \le \chi \le 0.95$;

 ς é um coeficiente que leva em conta a diferença entre a carga vertical de um pavimento tipo e de uma garagem, sendo: 1,10 $\le \varsigma \le$ 1,20;

Ainf representa a área de influência de carga do pilar.

Desse modo, adota-se pm igual a 15 KN/m2 e χ igual a 0,90, nesse caso, o edifício não possui pavimento de garagem, portanto, não será levado em conta o ς .

Nesse diapasão, para determinar a área de influência de cada pilar, ou seja, a área da laje cujo carregamento está apoiado sobre determinado pilar, dividimos ao meio a distância entre dois pilares, com cada metade influenciando determinado pilar.

Ai

Figura 17 – Área de influência de pilar

Fonte: Neoipsum (link: https://neoipsum.com.br/pre-dimensionamento-da-estrutura/)

Com isso, por meio da resistência característica do concreto, fck, determinamos a tensão a compressão de cada pilar, haja vista que ela obedecerá a inequação 27, oportunidade em que, o valor de tensão a compressão atribuído de 12 MPa.

$$\frac{1}{3}f_{ck} \le \sigma_c \le \frac{1}{2}f_{ck}$$
 Eq. 27

Nesse passo, atendendo a equação básica da tensão, conseguimos atribuir a área de cada pilar na estrutura. No entanto, a NBR 6118(2023), define "A seção transversal de pilares e pilares-paredes maciços, qualquer que seja a sua forma, não pode apresentar seção inferior a 19 cm", sendo ainda considerados casos especiais que permitem as dimensões entre 14 e 19 centímetros desde que as ações solicitantes sejam multiplicadas por um coeficiente adicional, γn, como transcrito na tabela 1 do referencial teórico.

Face ao exposto, os valores de áreas são tabelados em conjunto com as respectivas pré-dimensões dos pilares no edifício residencial considerado, numerando-os da direita para esquerda e de cima para baixo e adotando como menor dimensão 20 centímetros, devido aos termos práticos de execução.

Tabela 15 – Tabela de pré-dimensionamento de pilares

Nome	Área de influência (Ainf)	Dik		base (b)	altura(h)	Área adotada
P1	5,17	302,445	252,04	20	20	400
P2	9,16	535,86	446,55	20	25	500
P3	6,88	402,48	335,40	20	20	400
P4	6,88	402,48	335,40	20	20	400
P5	9,16	535,86	446,55	20	25	500
P6	5,17	302,445	252,04	20	20	400
P7	9,74	569,79	474,83	20	25	500
P8	17,27	1010,295	841,91	20	45	900
P9	11,61	679,185	565,99	20	30	600
P10	11,61	679,185	565,99	20	30	600
P11	17,27	1010,295	841,91	20	45	900
P12	9,74	569,79	474,83	20	25	500
P13	8,16	477,36	397,80	20	20	400
P14	8,16	477,36	397,80	20	20	400
P15	8,49	496,665	413,89	20	25	500
P16	15,06	881,01	734,18	20	40	800
P17	15,06	881,01	734,18	20	40	800
P18	8,49	496,665	413,89	20	25	500
P19	8,24	482,04	401,70	20	25	500
P20	8,24	482,04	401,70	20	25	500
P21	7,13	417,105	347,59	20	20	400
P22	12,64	739,44	616,20	20	35	700
P23	12,64	739,44	616,20	20	35	700
P24	7,13	417,105	347,59	20	20	400
P25	3,92	229,32	191,10	20	20	400
P26	6,95	406,575	338,81	20	20	400
P27	5,11	298,935	249,11	20	20	400
P28	5,11	298,935	249,11	20	20	400
P29	6,95	406,575	338,81	20	20	400
P30	3,92	229,32	191,10	20	20	400

4.4.2 Pré-dimensionamento de vigas

Em termos práticos, a altura de todo vigamento deve seguir um padrão, visto que promove economia de mão-de-obra de carpintaria, evita a verificação mais detalhada quanto à cota do fundo das vigas de menor altura e permite considerável diminuição do peso de armadura utilizada, em contrapartida, apresenta maior consumo de concreto. Conforme a NBR 6118(2023), a seção transversal das vigas não pode apresentar largura menor que 12 centímetros.

Para o pré-dimensionamento das vigas, segue-se o procedimento de Veiga (1995), onde temos que a altura da viga está em função do seu vão, enfatizando para cada tipologia de viga seja contínua, seja isostática, seja em balanço (Equações 28,29,30).

Conquanto, para evitar uma possível instabilidade local, possibilitada pela ocorrência da flambagem lateral, adota-se que a base está em função da altura, por meio das equações 31 e 32.

$h=rac{l}{10}$, $para\ vigas\ isostáticas$	Eq. 28
$h=rac{l}{12}$, $para\ vigas\ contínuas$	Eq. 29
$h=rac{l}{5}$, $para\ vigas\ em\ balanço$	Eq. 30
$b \geq 0,4h, para\ vigas\ n\~{a}o\ protegidas\ lateralmente$	Eq. 31
$b \ge 0,3h, para\ vigas\ protegidas\ lateralmente$	Eq. 32

Da mesma forma estabelecemos, as vigas com as medidas segundo a tabela 15, e devido ao fator prático e executivo em obras estabelecemos a altura da viga em 45 centímetros e base com 20 centímetros, semelhante a menor dimensão dos pilares.

Tabela 16 – Tabela de pré-dimensionamento de vigas

Nome	Maior vão da viga (L)	Tipologia	base (b)	altura(h)
V1	4,60	contínua	10	38
V2	4,60	contínua	10	38
V3	2,50	isostática	10	25
V4	4,60	contínua	10	38
V5	4,60	contínua	10	38
V6	2,50	contínua	10	21
V7	4,60	contínua	10	38
V8	4,60	contínua	10	38
V 9	4,60	contínua	10	38
V10	4,60	contínua	10	38
V11	4,20	contínua	10	35
V12	4,20	contínua	10	35
V13	5,00	contínua	10	42
V14	5,00	contínua	15	42
V15	4,20	contínua	15	35
V16	4,20	contínua	15	35
		ADOTA-SE	20	45

Fonte: Elaborado pelo Autor

4.4.3 Pré-dimensionamento de lajes

Sob o prisma generalista, especifica-se como altura da avaliação inicial das lajes de piso maciças sem balanço, com lados medindo em torno de 6 m, valores entre 10 e 12 cm. No entanto, para o pré-dimensionamento das lajes, deve-se primeiramente notar em quantas direções a laje estará armada.

Este feito pode ser estabelecido conforme os comprimentos dos vãos da laje, determinado, assim, de acordo com as inequações 1 e 2.

 $Ly \le 2 \cdot Lx$, para lajes armadas em duas direções Ineq. 1

 $Ly > 2 \cdot Lx$, para lajes armadas em uma direção Ineq. 2

Em que,

Lx é o menor vão da laje

Ly é o maior vão da laje

Dessa forma, pode-se utilizar o método de Rolim (equação 33) e o método de Libânio (Eq. 34) para pré-dimensionarmos as lajes, bem como admitir os limites mínimos de espessura previsto na NBR 6118(2023).

- a) 7cm para cobertura não em balanço
- b) 8 cm para lajes de piso não em balanço;
- c) 10 cm para lajes em balanço;
- d) 10 cm para lajes que suportem veículos de peso total menor ou igual a 30 kN:
- e) 12 cm para lajes que suportem veículos de peso total maior que 30 kN;
- f) 15 cm para lajes com protensão apoiadas em vigas, com o mínimo de L/42 para lajes de piso biapoiadas e L/50 para lajes de piso contínuas;
- g) 16 cm para lajes lisas e 14 cm para lajes-cogumelo, fora do capitel.

$$h = \left(\frac{lx}{40}\right) \cdot \left(\frac{ly}{lx}\right)^{0.75}$$
, método de rolim Eq. 33

$$h = [(2.5 - 0.1n) \cdot lz] + c$$
, método de libanio Eq. 34

Em que,

n é o número de bordas engastadas

Iz é o menor valor entre lx e 0,7ly

c é o cobrimento das armaduras

Portanto, considera-se o maior valor é de 10,37 centímetros pelo método de Rolim, adotando, portanto, as lajes maciças de 15 centímetros, obtido na tabela de lajes.

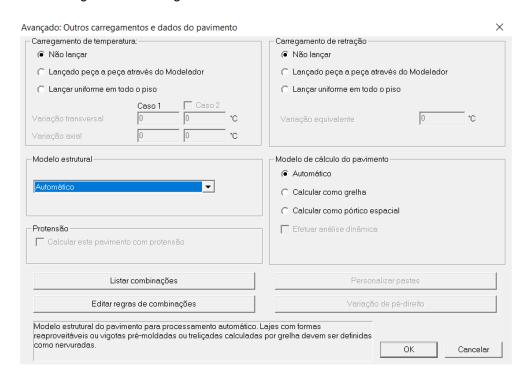
Tabela 17 – Tabela de pré-dimensionamento de lajes

						Método	do de Rolim Método Libânio			Libânio	
Nome	L1	L2	Ly	Lx	Direção	altura (h) cm	limite mínimo cm	n	menor valor (lz)	altura (h) cm	limite mínimo cm
L1	4,45	4,05	4,45	4,05	Duas direções	10,37	8	2	3,12	9,66	8
L2	3,68	4,05	4,05	3,68	Duas direções	9,41	8	3	2,84	8,74	8
L3	4,05	2,35	4,05	2,35	Duas direções	6,73	8	3	2,35	7,67	8
L4	3,68	4,05	4,05	3,68	Duas direções	9,41	8	3	2,84	8,74	8
L5	4,45	4,05	4,45	4,05	Duas direções	10,37	8	2	3,12	9,66	8
L6	4,45	4,00	4,45	4,00	Duas direções	10,27	8	3	3,12	9,35	8
L7	3,68	4,00	4,00	3,68	Duas direções	9,38	8	4	2,80	8,38	8
L8	2,35	3,00	3,00	2,35	Duas direções	6,24	8	4	2,10	6,91	8
L9	3,68	4,00	4,00	3,68	Duas direções	9,39	8	4	2,80	8,38	8
L10	4,45	4,00	4,45	4,00	Duas direções	10,27	8	3	3,12	9,35	8
L11	2,35	1,87	2,35	1,87	Duas direções	4,95	8	3	1,65	6,12	8
L12	4,45	2,70	4,45	2,70	Duas direções	7,65	8	3	2,70	8,44	8
L13	3,68	2,70	3,68	2,70	Duas direções	7,29	8	3	2,57	8,16	8
L14	3,68	2,70	3,68	2,70	Duas direções	7,29	8	3	2,57	8,16	8
L15	4,45	2,70	4,45	2,70	Duas direções	7,65	8	3	2,70	8,44	8
L16	4,45	3,00	4,45	3,00	Duas direções	8,28	8	2	3,00	9,40	8
L17	3,00	3,68	3,68	3,00	Duas direções	7,89	8	2	2,57	8,42	8
L18	3,00	3,68	3,68	3,00	Duas direções	7,89	8	2	2,57	8,42	8
L19	4,45	3,00	4,45	3,00	Duas direções	8,28	8	2	3,00	9,40	8
						10,37				9,66	

4.5 Modelagem nos programas computacionais

Com o projeto arquitetônico e o projeto do lançamento da estrutura, a modelagem tem seu início, nos programas computacionais, de modo a analisar e dimensionar os elementos, conforme os esforços, partindo do pré-dimensionamento adotado.

Os processos do projeto estrutural são os mesmos para quaisquer programas computacionais capazes de realizar cálculos e análises da estrutura, podendo diferir quanto a opções, atalhos e limitações, momento em que são definidas as particularidades de cada software.


4.5.1 TQS

Inicialmente no TQS, são estabelecidos os dados gerais de projeto como títulos e tipologia no modelo de cálculo da estrutura. Abrindo seguimento para a aba de pavimentos, nos quais são designadas as quantidades de pavimentos com os respectivos pés-direitos.

Por conseguinte, são atribuídos os tipos de materiais e cobrimento no projeto, a exemplo o fck = C30 equivalente a 30 MPa e cobrimento referente a classe urbana II.

Figura 18 – Dados gerais e modelo estrutural do edifício no software TQS

Figura 19 - Carregamentos e modelos de cálculo no software TQS

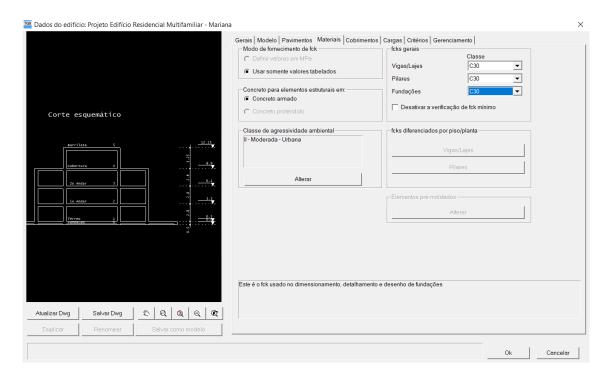
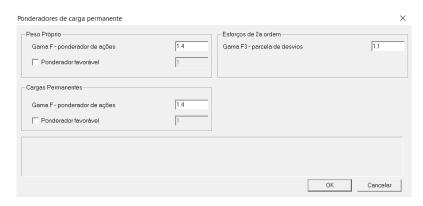



Figura 20 – Dados gerais dos materiais no software TQS

No concernente as cargas é configurar as cargas verticais quanto às cargas permanente e as sobrecargas, bem como definir os coeficientes ponderadores favoráveis de carga. Além das cargas verticais são consideradas no TQS a carga horizontal proveniente do vento, atribuindo a velocidade, as dimensões da edificação e os fatores S1, S2 e S3, conforme demonstrado nas figuras 22 e 23.

Figura 21 – Coeficientes ponderadores de ações no software TQS

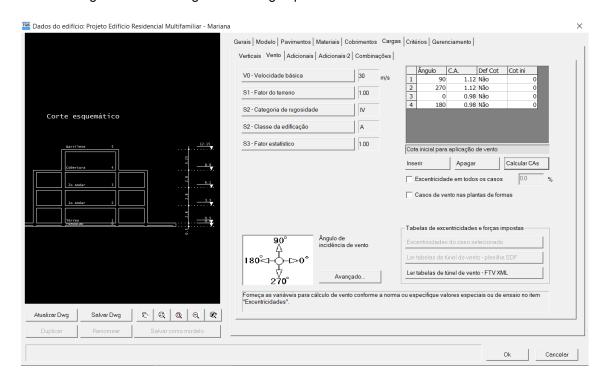
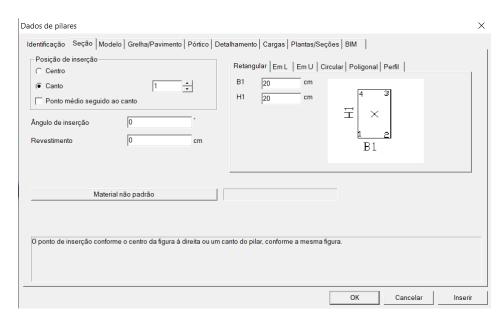


Figura 22 – Dados gerais de cargas provenientes do vento e coeficientes adotados


Figura 23 – Velocidade básicas do vento com as curvas por região no software TQS

Fonte: Elaborado pelo Autor

Notabiliza-se, que a versão V24.2 do TQS já atribui os valores e dados dos procedimentos de análise e dimensionamento, proveniente da NBR 6118 (2023). Ademais, para inserção e posicionamento dos elementos estruturais foi utilizado o arquivo de lançamento estrutural editado na ferramenta computacional AutoCad, de modo a ser uma referência ou máscara do projeto estrutural.

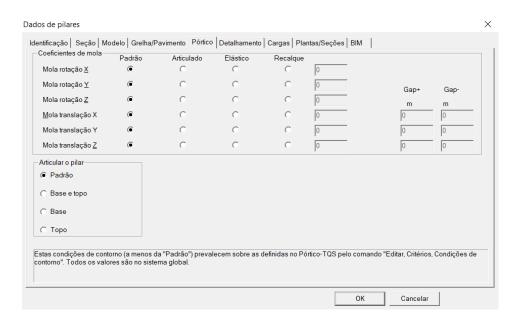

Então, para a inserção dos pilares são definidas as seções calculadas no prédimensionamento e as considerações quanto ao modelo de cálculo e as condições de vinculação, seja articulado ou elástico, estabelecendo com precisão a localização de articulação.

Figura 24 – Dados gerais para inserção de pilares no TQS

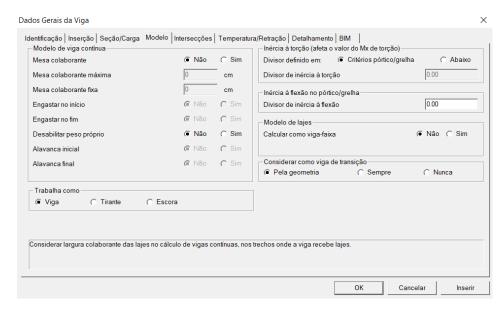
Fonte: Elaborado pelo Autor

Figura 25 - Condições de vinculação dos pilares no TQS

Fonte: Elaborado pelo Autor

A próxima etapa consiste em inserir as vigas, assim, para a configuração as seções relativas as vigas e os carregamentos distribuídos ao longo do vão. As cargas distribuídas são provenientes das paredes, nas quais o software disponibiliza cargas alfanuméricas com tijolos e blocos estruturais. No caso do projeto, adotaremos as cargas calculadas no item 4.3.

No TQS, a tipologia do modelo considerada como viga T, posto que é levada em conta a mesa da laje contribuinte, atribuindo também configurações, como desabilitar peso próprio e localizações de engaste (na versão estudantil, não são permitidas as configurações de localizações de engaste).


Além disso, no projeto de lançamento de estrutura apresenta-se casos de vigas apoiadas sobre vigas, com este feito o software alerta quanto a definição dos cruzamentos, devendo o engenheiro informar qual viga recebe a outra viga.

× Dados Gerais da Viga Identificação | Inserção | Seção/Carga | Modelo | Intersecções | Temperatura/Retração | Detalhamento | BIM Altura Rebaixo Excentricidade **▼**NV Largura DFS (cm) EXC (cm) DFS H (cm) L (cm) 20 45 0.00 tf/m Carga distribuída em todos os vãos Seção/Perfil catalogado Material não padrão Seções catalogadas NV = Nível do pavimento Seção Comentário H - Altura da seção L = Largura DFS = Rebaixo do topo 20/45 cTJVAZ15 H0 m 20/45 c0.00 tf/m EXC = Excxentricidade Largura da viga OK Cancelar Inserir

Figura 26 – Dados gerais para inserção de vigas no TQS

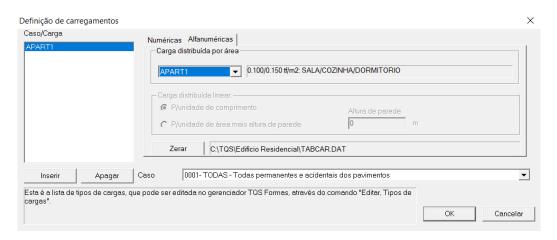

Fonte: Elaborado pelo Autor

Figura 27 – Dados gerais de modelo e critérios de viga no TQS

Após admitidas as vigas são estabelecidas as lajes maciças de altura igual a 15 centímetros e atribuímos a direção principal da viga como a direção do menor vão. Outrossim, a sobrecarga explicitada nas lajes proveniente de cozinhas, dormitórios e salas, na qual o software TQS apresenta valores alfanuméricos provenientes da NBR 6120(2019).

Figura 28 – Tipos de carregamentos alfanuméricos no TQS

Fonte: Elaborado pelo Autor

Estabelece-se ainda que as cargas distribuídas linearmente que estão sobre as lajes proveniente de paredes que estão sobre as lajes, como mostra a figura 28.

Em síntese, são atribuídas as sapatas isoladas no pavimento de fundação, considerando estas como sapatas trapezoidais com eixo da sapata coincidente com o eixo dos pilares. O software TQS apresenta ferramentas de pré-dimensionamento, em virtude da consideração da tensão admissível do solo.

Edicjão de dados de fundação

Podos de fundação

Vigos epoiam na fundação

Pilar ficticio para colculo

En Não C Sim 7

Pilar ficticio para colculo

En Não C Sim 7

Pilar ficticio para colculo

En Não C Sim 9

Pundação em colculo

Contemp poligonal

E Não C Sim Editor

Relgicio da face superior

Contemp poligonal

E Não C Sim Definir

Ler

DIMX

Altura Y do rodapé de sepeta

Altura Y do rodapé de sepeta

OK Cencelor

Figura 29 – Dados gerais para inserção de sapatas isoladas no TQS

Pré Dimensionamento Fundação X PRÉ DIMENSIONAMENTO FUNDAÇÃO Sapata O Bloco Tipo de Fundação O Entrada Manual -Tensão Admissível do Solo 2.00 kgf/cm² Arquivo de Critérios Tensão Admissível do Solo 2.00 kgf/cm² Considerar Toda a Envoltória de Forças e Momentos Considerar Apenas a Força Normal de Compressão Máxima Pré-Dimensionar

Figura 30 – Pré-dimensionamento dos elementos de fundação no software TQS

Após todos os elementos definidos, o projeto encontra-se completo para o processamento global e ajuste de possíveis erros. O TQS permite que o processamento da estrutura possa ser configurado, de modo que o engenheiro defina quais elementos estruturais o programa deve processar, gerar e considerar na análise.

Tal função é determinada por TQS Formas, TQS Fundação, TQS Pórticos, entre outras opções do software, em que há possibilidade de analisar e dimensionar individualmente cada elemento estrutural, devendo constar que esta tecnologia não existe nos outros 2 programas estudados.

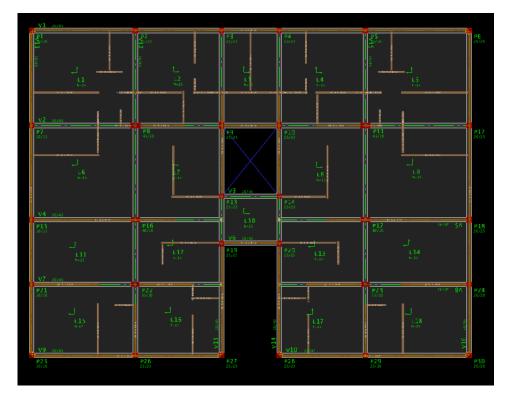
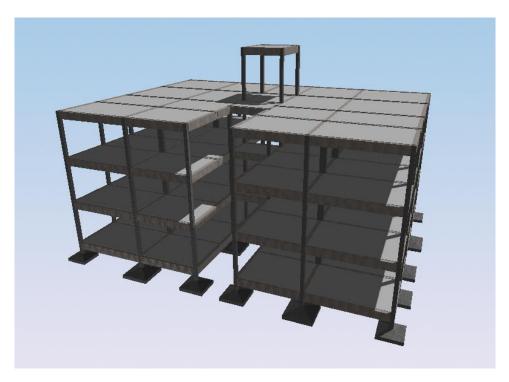



Figura 31 – Planta baixa pavimento-tipo no software TQS

Figura 32 – Modelagem da edificação 3D no TQS

O software CYPECAD apresenta etapas muito semelhantes ao TQS, entretanto, possui interface gráfica simples e opções mais simplificadas. Desse modo, inicia-se a modelagem estabelecendo os dados gerais do projeto estrutural, oportunidade em que será definida as características de cada material, a consideração de cargas provenientes do vento, ainda que podemos considerar verificação de incêndio e ações sísmicas.

O CYPECAD (mesmo na versão mais atualizada) não possui ainda os critérios da NBR 6118(2023), considerando como base a NBR 6118(2014). Não obstante, quando comparada às normas não há diferença significante no procedimento de análise estrutural e dimensionamento e cálculo quanto a edifício residencial.

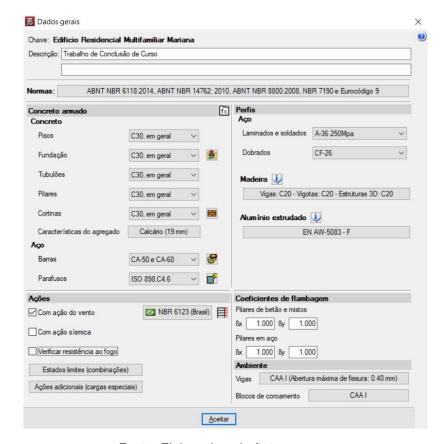


Figura 33 - Dados gerais da edificação no CYPECAD

Fonte: Elaborado pelo Autor

Estabelecidos os dados gerais de projeto, são designados os pisos ou pavimentos do projeto estrutural com respectivas alturas de pé-direito, além de, diferentemente do TQS, consentidas as cotas de cada pavimento.

Editar pisos X Cota do nível da fundação -2.80 m Nome Altura Cota 3.20 11.60 TERCEIRO PAVIMENTO 8.40 2.80 SEGUNDO PAVIMENTO 2.80 5.60 PRIMEIRO PAVIMENTO 2.80 2.80 TÉRREO 2.80 -0.00 Fundação -2.80 0 08.0 08.0 08.0 0 Aceitar Cancelar

Figura 34 - Pisos da edificação no CYPECAD

São determinadas então a referência DWG proveniente do lançamento estrutural no AutoCad como máscara para locar e posicionar os pilares. Para inserção dos pilares, denominamos em quais pavimentos o pilar "nasce" e "morre", podendo variar a seção transversal de acordo com o pavimento.

Além disso, o CYPECAD possibilita o engenheiro estabelecer os pontos fixos dos pilares, objetivando realizar o dimensionamento o pilar não expandir para os lados que interfiram no projeto arquitetônico.

Novo pilar Grupo final: TERCEIRO PAVIMENTO V Grupo inicial: Fundação Com vinculação exterior 0.0 graus Vincular rotação em tomo do eixo X Vincular rotação em tomo do eixo Y 0.00 m Desnível de apoio 4 4 Resistência do betão R Largura X (cm) Largura Y (cm) TERCEIRO PAVIMENTO 15 25 SEGUNDO PAVIMENTO 15 25 PRIMEIRO PAVIMENTO 11.60 m 25 8.40 m

Figura 35 – Dados para inserção de pilares no CYPECAD

Após a instalação dos pilares, são dispostas as vigas, nessa oportunidade, é imprescindível que o profissional de engenharia através do software especifique a família e a tipologia da viga, tais como de seção retangular, seção I, seção T entre outros.

Familia

Tipo

Larg. (b) 15 cm

Attura (a) 45 cm

Viga abaixo da laje

Acetar

Copiar de viga

Figura 36 - Dados para inserção de vigas no CYPECAD

Fonte: Elaborado pelo Autor

Alinhado a isso, são firmadas as lajes com espessura de 15 centímetros com a direção principal apontando para a direção de menor vão, fato este que viabiliza o software disponibilizar diversas formas de lajes, como lajes mistas, lajes nervuradas e lajes de vigotas.

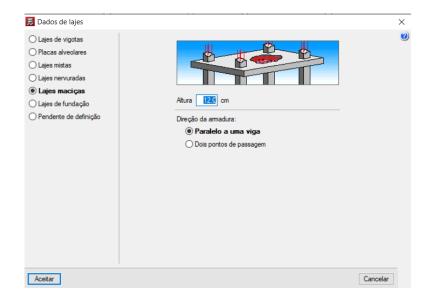
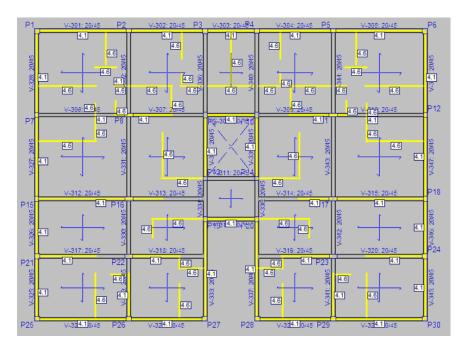


Figura 37 - Dados para inserção de lajes no CYPECAD

Com as lajes determinadas, considera-se os critérios de engastamento das vigas, nos quais atribui-se o binário/coeficiente 0 e 1 para atribuir se vigas estão engastadas ou simplesmente apoiadas.

Prosseguindo o processo, necessita-se estabelecer as cargas provenientes das paredes. Neste caso, tem-se em conta as mesmas cargas apontadas pelo TQS, onde para o tijolo vazado de 15 centímetros.


Calcula-se, então, para o pavimento tipo, as cargas das paredes sob vigas, cuja altura é 2,35 metros, e sob lajes, com altura de 2,65 metros, resultando em 6,35 KN/m e 7,16 KN/m, respectivamente.

Carga paredes sob vigas =
$$0.15 m \cdot 2.35 m \cdot 18 \frac{KN}{m^3} = 6.35 KN/m$$
 Eq. 35

Carga paredes sob lajes = 0,15 m · 2,65 m ·
$$18 \frac{KN}{m^3} = 7,16 KN/m$$
 Eq. 36

Ao final, são introduzidas as sapatas, ocasião em que o software apresenta os tipos de fundação, designando a tipologia por meio da seleção do pilar, a vista disso, o próprio CYPECAD já realiza o desenho no projeto estrutural. Diante disso, a modelagem encontra-se pronta para cálculo e possíveis verificações de erros.

Figura 38 – Planta baixa do pavimento-tipo após lançamento de estruturas e cargas no CYPECAD

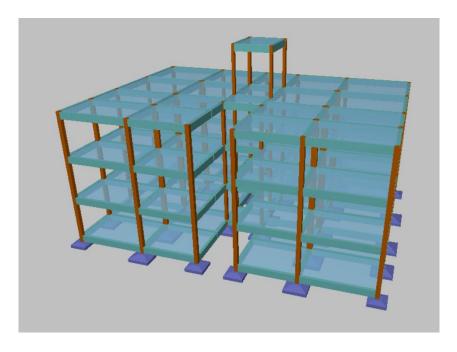


Figura 39 – Modelagem 3D da edificação no CYPECAD

4.5.3 Eberick

Assim como nos demais softwares, inicialmente no Eberick realiza-se a entrada dos dados gerais do projeto, consistindo na definição de pavimentos com respectivas cotas, materiais e durabilidades determinando o fck, os cobrimentos e a classe de agressividade, bem como fixar as ações, entre as quais encontra-se o vento. Ainda, atribui a referência proveniente do Autocad para locação dos elementos estruturais do projeto.

Nova edificação (passo 2 de 2) Φ Altura (cm) Nível (cm) Barrilete 325.00 1165.00 Terceiro Andar Φ 280.00 Segundo Andar Primeiro Andar 280.00 560.00 ...×... 280.00 280.00 280.00 0.00 1 Ţ Nível do solo (cm): 0.00 << Voltar OK Cancelar Ajuda

Figura 40 – Dados gerais de pavimentos no Eberick

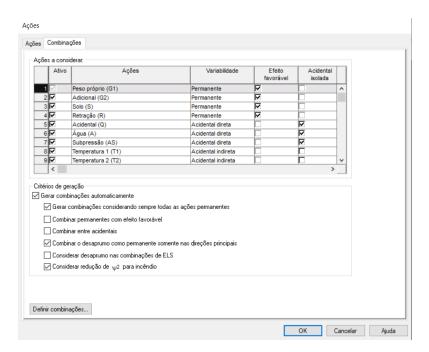
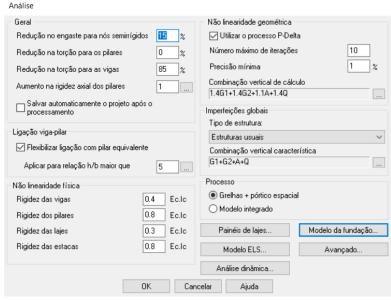



Figura 41 – Dados gerais de ações e combinações no Eberick

O Eberick também disponibiliza um menu de análise e outro de dimensionamento, os quais explicam o procedimento do roteiro de cálculo e dimensionamento de cada elemento estrutural.

Figura 42 – Dados de análise estrutural no Eberick

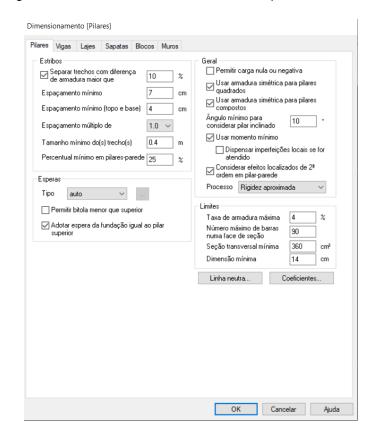


Figura 43 – Dados de dimensionamentos de pilares no Eberick

Com a inserção dos pilares o software apresenta um menu de configurações simples e de fácil compreensão, permitindo ao engenheiro informar qual tipo de vínculo (rotulado ou engastado), e as dimensões de inserção. A aplicação ainda estima, a existência de pontos fixos para que haja o ajuste ideal do pilar na planta de referência, procedimento presente também no CYPECAD.

Figura 44 – Dados para inserção de pilares no Eberick

A próxima etapa consiste no lançamento das vigas, onde por meio dos pontos fixos dos pilares são fixadas as vigas, porém antes de lançamento é preciso configurar as vigas, informando a seção transversal.

O Eberick permite diversos tipos de seção transversal, como retangular, seção T e seção L, também no caso das duas últimas invertidas. Diante do prédimensionamento adotamos a altura de 45 centímetros e base de 20 centímetros.

Viga Dados da viga Nome Modelo... Ambiente Externo Seção do trecho Tipo retangular bw 20 cm h 45 cm hf 0 Obter elevação para viga invertida Elevação 0 Lançar... Remover 0.00 kN/m Parede 0 kN/m Editar... °C Editar... Remover OK Cancelar Desenho... Ajuda

Figura 45 – Dados para inserção de vigas no Eberick

Estabelecidas as vigas, são posicionadas as lajes, oportunidade em que, utiliza-se a opção de lajes, que podem ser lajes maciças com 15 centímetros de altura e as cargas provenientes de cargas acidentais e revestimento, tanto para lajes de dormitórios, como para lajes de coberta. Ressalta-se, que diferentemente do TQS e do CYPECAD, o Eberick apresenta um menu mais detalhado e com mais ambientes existentes, auxiliando de certa forma o projetista.

Figura 46 – Dados para inserção de lajes no Eberick

Ainda é de competência do software fornecer as cargas provenientes de parede, para isso são atribuídas as cargas lineares de paredes iguais ao citado na tabela. O Eberick demonstra duas formas de inserção de cargas por dois pontos ou por vigas, no entanto, quando se tem trecho de paredes, cujo eixo é igual ao eixo da viga, que não se seguem por entre a viga, deve-se inserir uma abertura, no qual leva o eberick a recalcular a carga linear e reduzir linearmente na viga.

Parede Dimensões Nenhum Grupo Espessura 0.09 2.35 Altura m m 0.22 Carga kN/m Peso 13 kN/m³ Aberturas 1.3×2.35 Inserir Editar Excluir OΚ Ajuda Cancelar

Figura 47 – Dados para inserção de cargas distribuídas no Eberick

Fonte: Elaborado pelo Autor

Este processo, é repetido nos demais pavimentos com respectivas cargas, e, portanto, termina-se a modelagem da edificação, estando pronta para o processamento global e a análise e dimensionamento dos elementos estruturais, bem como correção quando não obedecida as verificações.

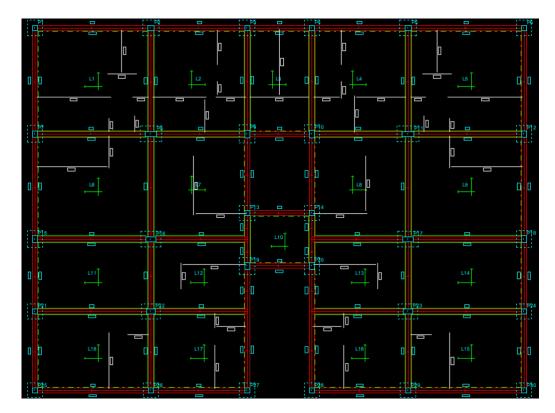


Figura 48 – Dados para inserção de cargas distribuídas no Eberick

Figura 49 – Modelagem 3D da edificação no Eberick

Fonte: Elaborado pelo Autor

4.5.4 Método comparativo manual

Empregando o método comparativo manual, o cálculo foi realizado seguindo os procedimentos da norma, a área de aço de uma laje e de uma viga, a fim de comparar se o roteiro de cálculo é obedecido pelos programas, isto posto foram escolhidas as lajes L12 e a viga V2.

Para o cálculo da laje, utilizou-se as tabelas de Bares-Czerny, em que por meio dos engastamentos e direções permitiu calcular os momentos e, considerando, a laje como uma viga de flexão simples se obteve as áreas, conquanto, através dessa tabela também foi determinada a flecha.

Enquanto o cálculo da viga, foi atribuído o diagrama de momentos fletores (DMF) do programa Eberick, bem como, foi calculado a área de aço no estado-limite último, com o objetivo de certificar que as áreas de aços calculadas manualmente condizem com a armadura calculada pelos programas.

Com isso, procede-se a análise do roteiro de cálculos nos apêndices A e B.

5 RESULTADOS

Com os cálculos realizados pelos programas computacionais e pelo roteiro de cálculo no método manual, é possível realizar a análise dos esforços e dimensionamento e comparar entre si.

5.1 Fundação

Diante dos cálculos realizados pelos programas são obtidos os valores das cargas atuantes nas fundações, o software Eberick apresentou maior carga nas fundações com 11.508,10 KN, seguida do CYPECAD com 10.818,20 KN e ao final o TQS com 10.509,60 KN.

Tabela 18 – Resultados de cargas totais das edificações na fundação

	CARGA	A PERMANENTE	E (KN)	CAR	GA ACIDENTAL ((KN)	CARGA TO	TAL (PP + ACID	TAL (PP + ACIDENTAL) (KN)	
Nome	EBERICK	CYPECAD	TQS	EBERICK	CYPECAD	TQS	EBERIC	CYPECAD	TQS	
S1	158,82	192,30	160,90	62,97	24,20	17,00	221,79	216,50	177,90	
S2	305,60	312,90	332,60	112,23	47,40	43,80	417,83	360,30	376,40	
S3	214,53	249,00	217,20	81,40	35,70	26,00	295,93	284,70	243,20	
S4	214,56	244,30	218,40	81,43	34,80	0,00	295,99	279,10	218,40	
S5	305,59	313,30	329,80	112,22	47,60	43,10	417,81	360,90	372,90	
S6	158,82	192,30	163,30	62,97	24,20	17,60	221,79	216,50	180,90	
S7	320,94	325,20	334,70	119,36	49,70	43,90	440,30	374,90	378,60	
S8	594,80	637,70	651,40	160,53	117,70	114,40	755,33	755,40	765,80	
S9	392,42	413,20	441,30	139,12	58,90	52,40	531,54	472,10	493,70	
S10	392,17	415,20	448,20	138,87	59,30	53,20	531,04	474,50	501,40	
S11	594,58	635,90	643,20	160,31	117,70	111,70	754,89	753,60	754,90	
S12	320,95	325,00	339,00	119,37	49,70	45,20	440,32	374,70	384,20	
S13	185,07	216,80	177,80	55,88	29,30	19,70	240,95	246,10	197,50	
S14	184,59	216,50	181,00	55,40	29,30	19,90	239,99	245,80	200,90	
S15	237,11	250,30	245,50	76,48	38,60	31,90	313,59	288,90	277,40	
S16	417,74	469,50	478,00	77,73	91,30	85,50	495,47	560,80	563,50	
S17	417,77	467,60	470,90	77,76	91,30	83,30	495,53	558,90	554,20	
S18	237,13	250,20	249,30	76,50	38,60	32,90	313,63	288,80	282,20	
S19	305,65	297,00	314,90	117,65	41,20	35,80	423,30	338,20	350,70	
S20	305,55	297,00	319,30	117,55	41,20	36,90	423,10	338,20	356,20	
S21	204,73	238,60	220,50	63,23	36,50	28,50	267,96	275,10	249,00	
S22	443,34	437,20	474,30	113,32	81,20	80,30	556,66	518,40	554,60	
S23	443,45	437,50	468,90	113,43	81,20	78,50	556,88	518,70	547,40	
S24	204,72	238,60	224,20	63,22	36,50	29,50	267,94	275,10	253,70	
S25	134,77	151,40	129,90	53,81	17,40	12,40	188,58	168,80	142,30	
S26	262,44	295,00	289,10	101,04	40,20	33,10	363,48	335,20	322,20	
S27	167,86	195,00	158,80	74,36	21,90	14,00	242,22	216,90	172,80	
S28	167,87	195,00	159,80	74,37	21,90	14,00	242,24	216,90	173,80	
S29	262,43	295,10	286,60	101,03	40,20	32,00	363,46	335,30	318,60	
S30	134,76	151,40	131,40	53,80	17,50	12,90	188,56	168,90	144,30	
						TOTAL	11.508,10	10.818,20	10.509,60	

Nessa seara, os softwares calcularam e dimensionaram as fundações podendo, assim, comparar as dimensões de cálculo e as armaduras por estes atribuídas.

Resta demonstrado, na tabela 18, que as sapatas no Eberick e no CYPECAD apresentam dimensões bem próximas, enquanto o TQS apresenta as maiores dimensões. Tal fato repete-se nas armaduras, onde, embora, o Eberick e o CYPECAD utilizem bitolas de aços diferentes, eles resultam em áreas de aço próximas, já o TQS atribui maiores áreas de aço por elemento de fundação.

Tabela 19 – Resultados do dimensionamento das sapatas nos softwares

EBERICI					TQS		
Nome	Dimenso		Dimens	ões (cm)	Dimensõ	es (cm)	
	В	H0	В	H0	В	H0	
	Н	H1	H	H1	H	H1	
S1	115,00	20	120,00	20	145,00	20	
	115,00	35	120,00	35	140,00	45	
S2	150,00	20	155,00	20	170,00	20	
	155,00	45	155,00	45	170,00	55	
S3	130,00	20	130,00	20	145,00	20	
	130,00	40	130,00	35	140,00	45	
S4	130,00	20	140.00	20	145,00	20	
	130,00	40	140,00	40	140,00	45	
S5	150,00	20	155.00	20	170,00	20	
	155,00	45	155,00	45	170,00	55	
S6	115,00	20	120,00	20	145,00	20	
	115,00	35	120,00	35	140,00	45	
S7	150,00	20	155,00	20	175,00	20	
- 01	155.00	45	155,00	45	175,00	55	
S8	195,00	20	205.00	35	220,00	25	
30							
S9	220,00 165,00	60 20	205,00	65 25	200,00	65 20	
08			170,00		170,00		
640	175,00	50	170,00	50	175,00	55	
S10	165,00	20	170,00	25	170,00	20	
044	175,00	50	170,00	50	175,00	55	
S11	195,00	20	205,00	35	220,00	25	
	220,00	60	205,00	65	200,00	65	
S12	150,00	20	155,00	20	185,00	20	
	155,00	45	155,00	45	185,00	60	
S13	120,00	20	120,00	20	105,00	20	
	120,00	35	120,00	35	105,00	40	
S14	120,00	20	120,00	20	115,00	20	
	120,00	35	120,00	35	110,00	40	
S15	130,00	20	145,00	20	160,00	20	
	135,00	40	145,00	45	160,00	50	
S16	165,00	20	180,00	25	185,00	20	
	185,00	50	180,00	55	170,00	55	
S17	165,00	20	180,00	25	185,00	20	
	185,00	50	180,00	55	170,00	55	
S18	130,00	20	145,00	20	155,00	20	
	135,00	40	145,00	45	155,00	50	
S19	145,00	20	145,00	20	160,00	20	
	150,00	45	145,00	45	160,00	50	
S20	145,00	20	145,00	20	170,00	20	
	150,00	45	145,00	45	170,00	55	
S21	125,00	20	135,00	20	150,00	20	
	125,00	35	135,00	40	145,00	45	
S22	175,00	20	175,00	25	180,00	20	
ULL	190,00	55	175,00	55	165,00	50	
633		20	175,00	25	175,00	20	
S23	175,00	55		55		50	
004	190,00		175,00		165,00		
S24	125,00	20	135,00	20	150,00	20	
005	125,00	35	135,00	40	145,00	45	
S25	105,00	20	110,00	20	130,00	20	
	105,00	35	110,00	30	125,00	40	
S26	135,00	20	140,00	20	165,00	20	
	135,00	40	140,00	40	160,00	50	
S27	115,00	20	120,00	20	145,00	20	
	115,00	35	120,00	35	140,00	45	
S28	115,00	20	120,00	20	145,00	20	
	115,00	35	120,00	35	140,00	45	
S29	135,00	20	140,00	20	165,00	20	
	135,00	40	140,00	40	160,00	50	
S30	105,00	20	110,00	20	135,00	20	

Tabela 20 – Resultados do dimensionamento de armaduras nas sapatas

	EBERICK		CYP	ECAD	TQS		
Nome	Armaduras	inferiores	Armadura	as inferiores	Armaduras	inferiores	
	Dir, B	Dir, H	Dir, B	Dir, H	Dir, B	Dir, H	
S1	10 ø 8,0 c/11	10 ø 8,0 c/11	5Ø10c/24	5Ø10c/24	11Ø10c/11	11Ø10c/11	
S2	15 ø 8,0 c/10	15 ø 8,0 c/10	6Ø12,5c/26	6Ø12,5c/26	15Ø10c/11	15Ø10c/11	
S3	11 ø 8,0 c/11	11 ø 8,0 c/11	8Ø10c/15	8Ø10c/15	11Ø10c/13	11Ø10c/13	
S4	11 ø 8,0 c/11	11 ø 8,0 c/11	7Ø10c/20	7Ø10c/20	11Ø10c/13	11Ø10c/13	
S5	15 ø 8,0 c/10	15 ø 8,0 c/10	6Ø12,5c/26	6Ø12,5c/26	15Ø10c/11	15Ø10c/11	
S6	10 ø 8,0 c/11	10 ø 8,0 c/11	5Ø10c/24	5Ø10c/24	11Ø10c/13	11Ø10c/13	
S7	15 ø 8,0 c/10	15 ø 8,0 c/10	6Ø12,5c/24	6Ø12,5c/24	15Ø10c/12	15Ø10c/12	
S8	18 ø 10,0 c/12	16 ø 10,0 c/12	10Ø12,5c/21	10Ø12,5c/21	15Ø12,5c/15	20Ø10c/10	
S9	12 ø 10,0 c/14	12 ø 10,0 c/14	10Ø10 c/16	10Ø10 c/16	15Ø10c/11	15Ø10c/11	
S10	12 ø 10,0 c/14	12 ø 10,0 c/14	10Ø10 c/16	10Ø10 c/16	15Ø10c/11	15Ø10c/11	
S11	18 ø 10,0 c/12	16 ø 10,0 c/12	10Ø12,5c/21	10Ø12,5c/21	15Ø12,5c/15	20Ø10c/10	
S12	15 ø 8,0 c/10	15 ø 8,0 c/10	6Ø12,5c/24	6Ø12,5c/24	17Ø10c/11	17Ø10c/11	
S13	11 ø 8,0 c/11	11 ø 8,0 c/11	5Ø10c/23	5Ø10c/23	8Ø10c/14	8Ø10c/14	
S14	11 ø 8,0 c/11	11 ø 8,0 c/11	5Ø10c/23	5Ø10c/23	9Ø10c/13	9Ø10c/13	
S15	13 ø 8,0 c/10	11 ø 8,0 c/11	7Ø10c/20	7Ø10c/20	13Ø10c/12	13Ø10c/12	
S16	14 ø 10,0 c/13	12 ø 10,0 c/14	8Ø12.5c/24	8Ø12.5c/24	15Ø10c/11	16Ø10c/11	
S17	14 ø 10,0 c/13	12 ø 10,0 c/14	7Ø12.5c/25	7Ø12.5c/25	15Ø10c/11	16Ø10c/11	
S18	13 ø 8,0 c/10	11 ø 8,0 c/11	7Ø10c/20	7Ø10c/20	13Ø10c/12	13Ø10c/12	
S19	16 ø 8,0 c/9	14 ø 8,0 c/10	7Ø10c/20	7Ø10c/20	13Ø10c/12	13Ø10c/12	
S20	16 ø 8,0 c/9	14 ø 8,0 c/10	7Ø10c/20	7Ø10c/20	15Ø10c/11	15Ø10c/11	
S21	11 ø 8,0 c/11	11 ø 8,0 c/11	7Ø10c/20	7Ø10c/20	12Ø10c/13	12Ø10c/13	
S22	14 ø 10,0 c/13	13 ø 10,0 c/13	11Ø10c/16	11Ø10c/16	13Ø10c/12	15Ø10c/12	
S23	14 ø 10,0 c/13	13 ø 10,0 c/13	11Ø10c/16	11Ø10c/16	13Ø10c/12	14Ø10c/12	
S24	11 ø 8,0 c/11	11 ø 8,0 c/11	7Ø10c/20	7Ø10c/20	12Ø10c/13	12Ø10c/13	
S25	9 ø 8,0 c/11	9 ø 8,0 c/11	4Ø10c/26	4Ø10c/26	10Ø10c/13	10Ø10c/13	
S26	12 ø 8,0 c/11	12 ø 8,0 c/11	9Ø10c/15	9Ø10c/15	13Ø10c/13	13Ø10c/13	
S27	10 ø 8,0 c/11	10 ø 8,0 c/11	5Ø10c/23	6Ø10c/20	11Ø10c/13	11Ø10c/13	
S28	10 ø 8,0 c/11	10 ø 8,0 c/11	5Ø10c/23	6Ø10c/20	11Ø10c/13	11Ø10c/13	
S29	12 ø 8,0 c/11	12 ø 8,0 c/11	9Ø10c/15	9Ø10c/15	13Ø10c/13	13Ø10c/13	
S30	9 ø 8,0 c/11	9 ø 8,0 c/11	4Ø10c/26	4Ø10c/26	10Ø10c/14	10Ø10c/14	

5.2 Lajes

Para realizar o comparativo das lajes nos programas são levados em conta o segundo andar da edificação. Em face disso, é confrontada a distribuição de armaduras nas direções X e Y e os espaçamentos. De mesma forma contrasta-se com o valor resultante de armadura do cálculo no método manual, haja vista que o esforço solicitado para estado-limite último resultou em uma área de aço inferior ao dos programas, conforme o apêndice A.

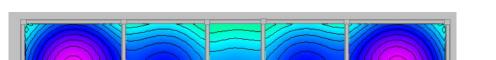
É essencial enfatizar, que quanto menor a bitola do aço, menor deve ser o espaçamento para determinada área de aço calculada.

Tabela 21 - Resultados do dimensionamento de armaduras nas lajes no Eberick, CYPECAD e TQS

		As em X		As em Y			
	EBERICK	CYPECAD	TQS	EBERICK	CYPECAD	TQS	
L1	ø6.3mm c/20	ø5mm c/13	ø6.3mm c/12.5	ø6.3mm c/20	ø5mm c/14	ø6.3mm c/12.5	
L2	ø6.3mm c/20	ø4.2mm c/16	ø6.3mm c/12.5	ø6.3mm c/20	ø5mm c/16	ø6.3mm c/12.5	
L3	ø6.3mm c/20	ø4.2mm c/20	ø6.3mm c/12.5	ø6.3mm c/20	ø5mm c/16	ø6.3mm c/12.5	
L4	ø6.3mm c/20	ø4.2mm c/16	ø6.3mm c/12.5	ø6.3mm c/20	ø5mm c/16	ø6.3mm c/12.5	
L5	ø6.3mm c/20	ø5mm c/13	ø6.3mm c/12.5	ø6.3mm c/20	ø5mm c/14	ø6.3mm c/12.5	
L6	ø6.3mm c/20	ø4.2mm c/10	ø6.3mm c/12.5	ø6.3mm c/20	ø4.2mm c/16	ø6.3mm c/12.5	
L7	ø6.3mm c/20	ø4.2mm c/14	ø6.3mm c/12.5	ø6.3mm c/20	ø4.2mm c/18	ø6.3mm c/12.5	
L8	ø6.3mm c/20	ø4.2mm c/15	ø6.3mm c/12.5	ø6.3mm c/20	ø4.2mm c/18	ø6.3mm c/12.5	
L9	ø6.3mm c/20	ø4.2mm c/10	ø6.3mm c/12.5	ø6.3mm c/20	ø4.2mm c/16	ø6.3mm c/12.5	
L10	ø6.3mm c/25	ø4.2mm c/20	ø6.3mm c/12.5	ø8mm c/20	-	ø6.3mm c/12.5	
L11	ø6.3mm c/25	ø4.2mm c/14	ø6.3mm c/12.5	ø8mm c/20	ø4.2mm c/20	ø6.3mm c/12.5	
L12	ø6.3mm c/20	ø5mm c/19	ø6.3mm c/12.5	ø6.3mm c/20	ø4.2mm c/20	ø6.3mm c/12.5	
L13	ø6.3mm c/20	ø5mm c/19	ø6.3mm c/12.5	ø6.3mm c/20	ø4.2mm c/20	ø6.3mm c/12.5	
L14	ø6.3mm c/25	ø4.2mm c/14	ø6.3mm c/12.5	ø8mm c/20	ø4.2mm c/20	ø6.3mm c/12.5	
L15	ø6.3mm c/20	ø4.2mm c/13	ø6.3mm c/12.5	ø6.3mm c/20	ø4.2mm c/17.5	ø6.3mm c/12.5	
L16	ø6.3mm c/20	ø5mm c/18	ø6.3mm c/12.5	ø6.3mm c/20	ø5mm c/18	ø6.3mm c/12.5	
L17	ø6.3mm c/20	ø5mm c/18	ø6.3mm c/12.5	ø6.3mm c/20	ø5mm c/18	ø6.3mm c/12.5	
L18	ø6.3mm c/20	ø4.2mm c/13	ø6.3mm c/12.5	ø6.3mm c/20	ø4.2mm c/17.5	ø6.3mm c/12.5	

Outrossim, foi realizada a comparação dos valores das flechas máximas nas lajes do pavimento na condição mais desfavorável, ocasião em que foram auferidos os resultados em sua totalidade são próximos nos softwares em tela, bem como todos dentro dos limites previstos pela NBR 6118(2023). Analogamento, no modelo de cálculo manual a flecha da laje L12 chega muito próximo aos dos programas sendo 0,136cm.

Tabela 22 - Resultados das flechas máximas das lajes no Eberick, CYPECAD e TQS


	FL	ECHA MÁXIMA	(cm)
	EBERICK	CYPECAD	TQS
L1	0,37	0,278	0,24
L2 L3 L4	0,2	0,184	0,15
L3	0,17	0,151	0,12
	0,19	0,186	0,14
L5	0,37	0,278	0,25
L6	0,26	0,226	0,09
L7	0,09	0,108	0,09
L8	0,09	0,107	0,18
L9	0,26	0,224	0,18
L10	0	0,003	0,01
L11	0,16	0,165	0,1
L12	0,21	0,128	0,11
L13	0,21	0,122	0,11
L14	0,16	0,163	0,1
L15	0,21	0,199	0,14
L16	0,25	0,128	0,15
L17	0,25	0,128	0,15
L18	0,21	0,2	0,14

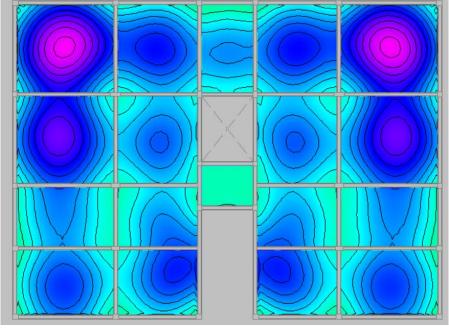

Para ilustrar melhor o funcionamento, os deslocamentos e os detalhamentos das lajes dimensionadas e calculadas os programas disponibilizam tecnologias gráficas, por intermédio das imagens, percebe-se que, para edificação estabelecida, as lajes que apresentam maiores deslocamentos e flechas são L1 e L5 para quaisquer programas.

Figura 50 – Visualização em formato de grelhas dos deslocamentos das lajes no TQS

Fonte: Elaborado pelo Autor

Figura 51 – Visualização em formato de curvas dos deslocamentos das lajes no CYPECAD

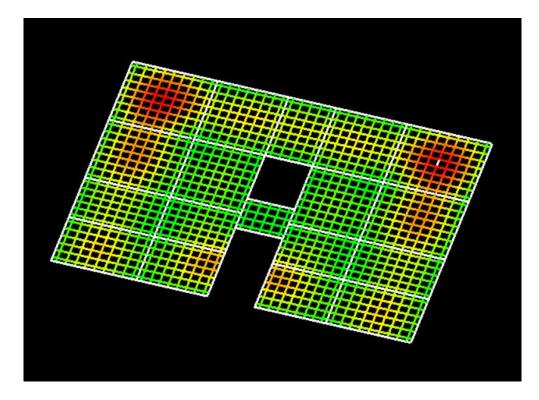


Figura 52 – Visualização dos deslocamentos das lajes em formato de grelhas no Eberick

5.3 Vigas

Para a análise comparativa das vigas considerou-se também as vigas do segundo andar, por conseguinte, foi realizado o comparativo dos momentos fletores positivos e negativos máximos, bem como a cortante máxima, a partir disso foi possível observar que os momentos são próximos nos 3 programas, principalmente, entre o Eberick e o CYPECAD.

Nota-se, ainda, que quanto aos momentos negativos o Eberick apresentou valores maiores em módulo na maioria das vigas em relação aos demais programas, sendo bem mais cauteloso e conservador. Sob esta ótica, compara-se os valores das vigas com o método manual no qual resultou em uma área de aço de 1,97 cm² para o momento positivo e 4,28 cm² para o momento negativo conforme Apêndice B, destacando de fato que o procedimento de dimensionamento do Eberick segue de fato, o roteiro de cálculo previsto em norma.

Tabela 23 – Resultados dos esforços solicitantes das vigas no Eberick, CYPECAD e TQS

		Vdmax (KN)		Md pos. máx (KNm)			Md neg. máx.(KNm)		
	EBERICK	CYPECAD	TQS	EBERICK	CYPECAD	TQS	EBERICK	CYPECAD	TQS
V1	43,22	23,98	32,40	22,48	25,5	19,25	-35,45	-26,42	-28,96
V2	110,32	95,48	55,04	34,22	42,04	26,89	-71,7	-64,35	-49,37
V3	3,53	4,80	4,80	0,94	-2,84	1,30	-3,2	-6,09	-2,27
V4	71,79	69,43	40,92	24,52	32,39	21,31	-50,53	-48,73	-38,84
V5	71,83	69,38	42,60	24,53	32,36	21,56	-50,55	-48,71	-40,37
V6	8,26	7,12	10,87	2,22	1,54	3,54	-4,25	-5,8	-3,49
V7	69,34	66,83	42,31	24,58	29,12	21,68	-52,02	-46,86	-42,8
V8	69,35	66,83	41,54	24,58	29,12	21,99	-52,03	-46,86	-42,4
V9	39,85	23,52	29,25	21,33	21,57	17,22	-31,56	-25,05	-27,04
V10	39,85	23,51	30,41	21,33	21,57	17,53	-31,56	-25,05	-27,09
V11	39,06	22,11	32,06	18,96	16,47	15,90	-31,09	-22,77	-27,3
V12	57,97	53,98	44,17	29,72	22,53	24,12	-47,04	-44,11	-38,72
V13	71,85	55,87	45,08	30,48	31,56	24,70	-51,39	-34,15	-36,28
V14	71,93	55,88	45,00	30,49	31,57	24,02	-51,39	-34,15	-34,93
V15	57,96	54,03	43,62	29,76	22,47	23,85	-46,94	-43,92	-37,84
V16	39,06	22,10	32,09	18,96	16,45	16,00	-31,09	-22,73	-27,49

Com a disposição dos diagramas dos esforços solicitantes, os programas realizam o cálculo de dimensionamento, no qual a partir da cortante máxima resultase nas armaduras transversais e por meio dos momentos máximos computa-se as armaduras longitudinais.

Tem-se então, áreas de aço extremamente próximas para os 3 programas, contudo, quando comparado ao requisito financeiro e executivo, os valores podem variar, uma vez que quanto maior a bitola do ferro, maior seu peso específico por metro e, consequentemente, maior o custo da obra.

Tabela 24 – Resultados do dimensionamento das armaduras positivas das vigas no Eberick, CYPECAD e TQS

	EBERICK	CYPECAD	TQS	EBERICK	CYPECAD	TQS	V11						
V1	EBERTION	O III E O A E	140	EBERTOR	OTT EGYLD	.00	T1	2ø10mm	2ø10mm	2ø10mm	1,57	1,57	1,57
T1	3ø8mm	2ø8mm e 2ø6.3mm	2ø10mm	1,51	1,63	1,57	T2	2ø10mm	2ø8mm e 2ø6.3mm	2ø10mm	1,57	1,63	1,57
T2	3ø8mm	2ø8mm e 2ø6.3mm	2ø10mm	1,51	1,63	1,57	Т3	2ø10mm	2ø8mm e 2ø6.3mm	2ø10mm	1,57	1,63	1,57
T3	3ø8mm	2ø6.3mm 2ø8mm e	2ø10mm	1,51	0,62	1,57	T4	2ø10mm	2ø8mm e 2ø6.3mm	2ø10mm	1,57	1,63	1,57
T4	3ø8mm	2ø6.3mm	2ø10mm	1,51	1,63	1,57	V12						
T5	3ø8mm	2ø8mm e 2ø6.3mm	2ø10mm	1,51	1,63	1,57	T1	3ø8mm	2ø8mm e 2ø6.3mm	3ø10mm	1,51	1,63	2,36
V2							T2	3ø8mm	2ø8mm e	2ø10mm	1,51	1,63	1,57
T1	4ø8mm	2ø10mm e 2ø8mm	3ø10mm	2,01	2,58	2,36	T3	3ø8mm	2ø6.3mm 2ø8mm e	2ø10mm	1,51	1,63	1,57
T2	3ø8mm	2ø8mm e 2ø6.3mm	2ø10mm	1,51	1,63	1,57	T4	3ø10mm	2ø6.3mm 2ø10mm e	2ø10mm	2,36	2,58	1,57
T3	3ø8mm	2ø6.3mm	2ø10mm	1,51	0,62	1,57		301011111	2ø8mm	291011111	2,30	2,30	1,57
T4	3ø8mm	2ø8mm e	2ø10mm	1,51	1,63	1,57	V13	4 - 2	4.2	2.12	201	201	2.26
		2ø6.3mm		- /-	,,,,	-	T1	4ø8mm	4ø8mm	3ø10mm	2,01	2,01	2,36
T5	4ø8mm	2ø10mm e 2ø8mm	3ø10mm	2,01	2,58	2,36	T2	3ø8mm	2ø8mm e 2ø6.3mm	2ø10mm	1,51	1,63	1,57
V3 T1	3ø8mm	2ø6.3mm	2ø10mm	1,51	0,62	1,57	Т3	3ø8mm	2ø8mm e 2ø6.3mm	2ø10mm	1,51	1,63	1,57
V4							T4	2ø10mm	1ø12.5mm e	3ø10mm	1,57	1,85	2,36
T1	3ø8mm	4ø8mm	3ø10mm	1,51	2,01	2,36		291011111	2ø6.3mm	391011111	1,37	1,63	2,30
T2	3ø8mm	2ø8mm e	2ø10mm	1,51	1,63	1,57	V14 T1	4ø8mm	4ø8mm	3ø10mm	2,01	2,01	2,36
V5		2ø6.3mm							2ø8mm e			-	
T1	3ø8mm	2ø8mm e	3ø10mm	1,51	1,63	2,36	T2	3ø8mm	2ø6.3mm	2ø10mm	1,51	1,63	1,57
T2	3ø8mm	2ø6.3mm 4ø8mm	2ø10mm	1,51	2,01	1,57	Т3	3ø8mm	2ø8mm e 2ø6.3mm	2ø10mm	1,51	1,63	1,57
V6				-,0-1	2,02	2,01	T4	2ø10mm	1ø12.5mm e 2ø6.3mm	3ø10mm	1,57	1,85	2,36
T1	3ø8mm	2ø8mm e 2ø6.3mm	2ø10mm	1,51	1,63	1,57	V15						
V7							T1	3ø8mm	2ø8mm e	2ø10mm	1,51	1,63	1,57
T1	3ø8mm	1ø12.5mm e 2ø6.3mm	3ø10mm	1,51	1,85	2,36	T2	3ø8mm	2ø6.3mm 2ø8mm e	2ø10mm	1,51	1,63	1,57
T2	3ø8mm	2ø8mm e 2ø6.3mm	2ø10mm	1,51	1,63	1,57	T3		2ø6.3mm 2ø8mm e		-		
V8							10	3ø8mm	2ø6.3mm	2ø10mm	1,51	1,63	1,57
T1	3ø8mm	2ø8mm e 2ø6.3mm	3ø10mm	1,51	1,63	2,36	T4	4ø8mm	2ø10mm e 2ø8mm	2ø10mm	2,01	2,58	1,57
T2	3ø8mm	1ø12.5mm e 2ø6.3mm	2ø10mm	1,51	1,85	1,57	V16 T1	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
V9		290.311111							2ø8mm e				
T1	3ø8mm	2ø8mm e 2ø6.3mm	2ø10mm	1,51	1,63	1,57	T2	3ø8mm	2ø6.3mm 2ø8mm e	2ø10mm	1,51	1,63	1,57
T2	3ø8mm	2ø8mm e	2ø10mm	1,51	1,63	1,57	Т3	3ø8mm	2ø6.3mm 2ø8mm e	2ø10mm	1,51	1,63	1,57
V10		2ø6.3mm					T4	3ø8mm	2ø6.3mm	2ø10mm	1,51	1,63	1,57
T1	3ø8mm	2ø8mm e 2ø6.3mm	2ø10mm	1,51	1,63	1,57							
T2	3ø8mm	2ø6.3mm 2ø8mm e	2ø10mm	1,51	1,63	1,57							

Tabela 25 – Resultados do dimensionamento das armaduras negativas das vigas no Eberick, CYPECAD e TQS

		As Neg			As Neg	
	EBERICK	CYPECAD	TQS	EBERICK		TQS
V1	EBERIOR	CTPECAD	103	EBERIOR	CTPECAD	TQS
P1	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P2	4ø8mm	2ø8mm e	3ø10mm	2,01	1,63	2,36
	2 - 2	2ø6.3mm	2.40		- 1	
P3	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P4	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P5	4ø8mm	2ø8mm e 2ø6.3mm	3ø10mm	2,01	1,63	2,36
P6	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
V2						
P7	4ø8mm	2ø10mm	2ø10mm	2,01	1,57	1,57
P8	4ø12.5mm	2ø12.5mm e 2ø10mm	4ø12.5mm	4,91	4,03	4,91
P9	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P10	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P11	4ø12.5mm	2ø16mm	2ø16mm	4,91	4,02	4,02
P12	4ø8mm	2ø10mm	2ø10mm	2,01	1,57	1,57
V3						
P13	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P14	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
V4						
P15	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P16	4ø10mm	1ø16mm e 2ø8mm	3ø12.5mm	3,14	3,02	3,68
V13*	3ø8mm		2ø10mm	1,51		1,57
V5						
V14*	3ø8mm		2ø10mm	1,51		1,57
P17	4ø10mm	1ø16mm e 2ø8mm	3ø12.5mm	3,14	3,02	3,68
P18	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
V6						
P19	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P20	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
V7						
P21	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P22	4ø10mm	2ø12.5mm e 1ø8mm	3ø12.5mm	3,14	2,96	3,68
V13*	3ø8mm			1,51		
V8						
P23	3ø8mm	2ø12.5mm e 1ø8mm	3ø12.5mm	1,51	2,96	3,68
P24	4ø10mm	2ø10mm	2ø10mm	3,14	1,57	1,57
V14*	3ø8mm			1,51		
V9						
P25	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P26	4ø8mm	2ø10mm	3ø10mm	2,01	1,57	2,36
P27	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
V10						
P28	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P29	4ø8mm	2ø10mm	3ø10mm	2,01	1,57	2,36
P30	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57

V11						
P25	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P21	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P15	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P7	4ø8mm	2ø10mm	3ø10mm	2,01	1,57	2,36
P1	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
V12						
P26	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P22	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P16	2ø10mm	2ø10mm	3ø10mm	1,57	1,57	2,36
P8	4ø10mm	1ø12.5mm e 2ø10mm	3ø12.5mm	3,14	2,80	3,68
P2	2ø10mm	2ø10mm	2ø10mm	1,57	1,57	1,57
V13						
P27	3ø8mm	1ø10mm e 2ø8mm	2ø10mm	1,51	1,79	1,57
P19	4ø10mm	2ø10mm e 1ø8mm	4ø10mm	3,14	2,07	3,14
P13	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P9	4ø10mm	1ø12.5mm e 2ø6.3mm	4ø10mm	3,14	1,85	3,14
P3	3ø8mm	2ø10mm e 1ø6.3mm	2ø10mm	1,51	1,88	1,57
V14						
P28	3ø8mm	1ø10mm e 2ø8mm	2ø10mm	1,51	1,79	1,57
P20	4ø10mm	2ø10mm e 1ø8mm	4ø10mm	3,14	2,07	3,14
P14	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P10	4ø10mm	2ø10mm e 1ø6.3mm	4ø10mm	3,14	1,88	3,14
P4	3ø8mm	1ø12.5mm e 2ø6.3mm	2ø10mm	1,51	1,85	1,57
V15						
P29	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P23	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P17	2ø10mm	2ø10mm	3ø10mm	1,57	1,57	2,36
P11	4ø10mm	1ø12.5mm e 2ø10mm	4ø10mm	3,14	2,80	3,14
P5	2ø10mm	2ø10mm	2ø10mm	1,57	1,57	1,57
V16						
P30	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P24	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P18	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57
P12	4ø8mm	2ø10mm	2ø10mm	2,01	1,57	1,57
P6	3ø8mm	2ø10mm	2ø10mm	1,51	1,57	1,57

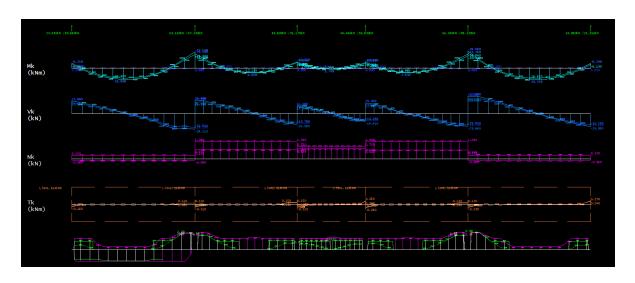
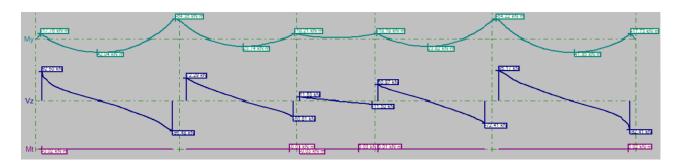

No que tange as armaduras transversais, os programas computacionais admitiram a mesma bitola do aço, porém com espaçamentos diferentes, o que acarreta para diferenças de áreas de aço. Assim, o TQS resultou com estribos de menores espaçamentos, enquanto o Eberick ficou na posição intermediária e o CYPECAD gerou maiores espaçamentos dos estribos.

Tabela 26 – Resultados do dimensionamento das armaduras transversais das vigas no Eberick, CYPECAD e TQS

		ESTRIBO	
	EBERICK	CYPECAD	TQS
V1	ø5mm c/17	ø5mm c/20	ø5mm c/15
V2	ø5mm c/17	ø5mm c/15	ø5mm c/15
٧3	ø5mm c/17	ø5mm c/20	ø5mm c/15
V4	ø5mm c/17	ø5mm c/20	ø5mm c/15
V5	ø5mm c/17	ø5mm c/20	ø5mm c/15
V6	ø5mm c/17	ø5mm c/20	ø5mm c/15
٧7	ø5mm c/17	ø5mm c/20	ø5mm c/15
V8	ø5mm c/17	ø5mm c/20	ø5mm c/15
٧9	ø5mm c/17	ø5mm c/20	ø5mm c/15
V10	ø5mm c/17	ø5mm c/20	ø5mm c/15
V11	ø5mm c/17	ø5mm c/20	ø5mm c/15
V12	ø5mm c/17	ø5mm c/20	ø5mm c/15
V13	ø5mm c/17	ø5mm c/20	ø5mm c/15
V14	ø5mm c/17	ø5mm c/20	ø5mm c/15
V15	ø5mm c/17	ø5mm c/20	ø5mm c/15
V16	ø5mm c/17	ø5mm c/20	ø5mm c/15

Os programas ainda permitem visualizar os diagramas de cada viga e entender a análise dos esforços solicitantes, como também a envoltória das cargas, ao finalizar geram relatórios de modo a informar todos os procedimentos de verificação de cálculo de cada vigamento.

Figura 53 – Visualização dos diagramas de cortante, fletor, normal e torsor da viga 2 do segundo andar no TQS



MOMENTOS FLETORES DE CÁLCULO (Mdx) [kN.m;m] VIGA: V2

-71.67
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.47
-23.

Figura 54 – Visualização dos diagramas de cortante, fletor e torsor da viga 2 do segundo andar no Eberick

Figura 55 – Visualização dos diagramas de cortante, fletor e torsor da viga 2 do segundo andar no CYPECAD

Fonte: Elaborado pelo Autor

5.4 Pilares

Por fim, os elementos estruturais dos pilares que funcionam como prumadas em todos os pavimentos, foram dimensionados igualmente pelo TQS e Eberick, enquanto no CYPECAD as seções dos pilares foram redimensionadas devido a não obediência nas verificações dos estados limites, bem como foram calculadas maiores áreas de aços na armadura longitudinal na região entre fundação e pavimento térreo.

Nesse prisma, a tabela 26 informa as armaduras longitudinais e transversais calculadas por cada software.

Tabela 27 – Resultados do dimensionamento das prumadas de pilares no Eberick, CYPECAD e TQS

		SEÇÃO		AR	MADURA PRINC	IPAL		ESTRIBO	
	EBERICK	CYPECAD	TQS	EBERICK	CYPECAD	TQS	EBERICK	CYPECAD	TQS
P1	20X20	25X25	20X20	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø6.3mm c/12*	ø5mm c/12
P2	20X25	20X25	20X25	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
Р3	20X20	25X25	20X20	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø6.3mm c/12*	ø5mm c/12
P4	20X20	25X25	20X20	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø6.3mm c/12*	ø5mm c/12
P5	20X25	20X25	20X25	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P6	20X20	25X25	20X20	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø6.3mm c/12*	ø5mm c/12
P7	20X25	20X25	20X25	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P8	20X45	20X45	20X45	6ø10mm	6ø10mm	6ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P9	20X30	20X30	20X30	4ø10mm	4ø10mm	4ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P10	20X30	20X30	20X30	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø5mm c/12*	ø5mm c/12
P11	20X45	20X45	20X45	6ø10mm	6ø10mm	6ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P12	20X25	20X25	20X25	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P13	20X20	20X20	20X20	4ø10mm	4ø10mm	4ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P14	20X20	20X20	20X20	4ø10mm	4ø10mm	4ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P15	20X25	20X25	20X25	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P16	20X40	20X40	20X40	6ø10mm	6ø10mm	6ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P17	20X40	20X40	20X40	6ø10mm	6ø10mm	6ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P18	20X25	20X25	20X25	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P19	20X25	20X25	20X25	4ø10mm	4ø10mm	4ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P20	20X25	20X25	20X25	4ø10mm	4ø10mm	4ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P21	20X20	25X25	20X20	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø6.3mm c/12*	ø5mm c/12
P22	20X35	20X35	20X35	4ø10mm	4ø10mm	4ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P23	20X35	20X35	20X35	4ø10mm	4ø10mm	4ø10mm	ø5mm c/12	ø5mm c/12	ø5mm c/12
P24	20X20	25X25	20X20	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø6.3mm c/12*	ø5mm c/12
P25	20X20	25X25	20X20	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø6.3mm c/12*	ø5mm c/12
P26	20X20	25X25	20X20	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø6.3mm c/12*	ø5mm c/12
P27	20X20	25X25	20X20	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø6.3mm c/12*	ø5mm c/12
P28	20X20	25X25	20X20	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø6.3mm c/12*	ø5mm c/12
P29	20X20	25X25	20X20	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø6.3mm c/12*	ø5mm c/12
P30	20X20	25X25	20X20	4ø10mm	4ø10mm*	4ø10mm	ø5mm c/12	ø6.3mm c/12*	ø5mm c/12

Fonte: Elaborado pelo Autor

5.5 Quantitativos em Obra

É fundamental comparar as despesas proveniente das estruturas da edificação para cada programa, visando obter o programa que gere menor custos financeiros. Dessa forma, foram comparados os valores dos índices por metro quadrado da edificação, momento em que o CYPECAD apresentou menores índice em relação ao Eberick, enquanto o TQS supera o CYPECAD apenas em formas.

Tabela 28 – Quantitativo de materiais e índice por metro quadrado no software CYPECAD

Elemento	Formas (m²)	Volume (m³)	Barras (kg)
LAJES	929.58	139.44	5829
Vigas: fundo	135.85	66.75	2691
Forma lateral	455.97		
Pilares (Sup. Formas)	224.76	13.88	1521
Total	1746.16	220.07	10041
Índices (por m²)	1.627	0.205	9.36

Tabela 29 – Quantitativo de materiais e índice por metro quadrado no software Eberick

T 1	Consumo por área						
Elemento	Concreto (m³/m²)	Forma (m²/m²)	Aço (kg/m²)				
Vigas	0.06	0.58	2.80				
Pilares	0.01	0.24	1.27				
Lajes	0.13	0.90	5.77				
Fundações	0.01	0.02	0.25				
TOTAL	0.22	1.73	10.09				

Tabela 30 – Quantitativo de materiais e índice por metro quadrado no software TQS

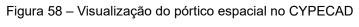
	Concreto		Fôn	mas	Aço			
Pavimento/Pasta	Consumo (m3)	Taxa (m3/m2)	Consumo (m2)	Taxa (m2/m2)	Consumo (kgf)	Taxa (kgf/m2)	Taxa (kgf/m3)	
FUNDAC	25.88	0.34	38.92	0.505	915	11.86	35.34	
Barrilete	2.63	0.28	28.58	3.089	167	18.03	63.35	
Terceiro Andar	54.90	0.20	458.74	1.692	2889	10.65	52.62	
Segundo Andar	53.87	0.20	453.46	1.716	2951	11.16	54.77	
Primeiro Andar	53.87	0.20	453.46	1.716	2953	11.18	54.82	
Térreo	50.28	0.19	389.98	1.476	2792	10.56	55.53	
Fundacao	0.47	0.30	8.28	5.308	0	0.00	0.00	
TOTAL	241.90	0.21	1831.41	1.59	12666	11.00	52.36	

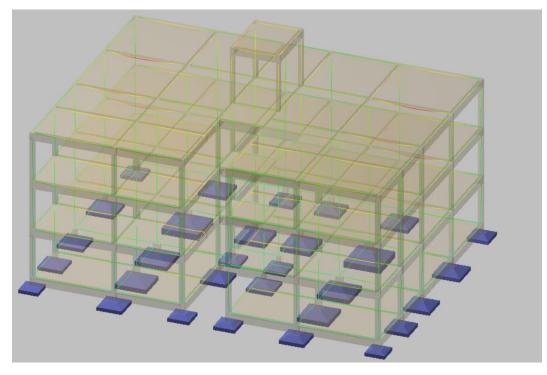
Fonte: Elaborado pelo Autor

Resume-se, portanto, com as tabelas que o maior consumo de concreto e formas foi no Eberick superando em 10% o menor índice de concreto e 8,9% em formas, enquanto o maior consumo de aço foi no TQS atingindo uma diferença de 17,52% do menor índice fato este que, pode ser justificado pelas maiores quantidades de aço contida nas fundações da edificação.

Para a orçamentação, foi multiplicado cada índice pela área total da edificação de modo a obter o total de cada insumo, e por meio da base de dados de orçamentação, SINAPI e ORSE, obteve-se a precificação estrutural em cada software. Dessa forma, pela tabela 31, resultou que o programa com menor preço é o CYPECAD (R\$286.891,09), seguido do TQS (R\$326.024,00) e por último o Eberick (R\$329.862,71).

Tabela 31 - Resultado comparativo da orçamentação


_					Quantidade Preço total					
Código	Base Orçamentária	Insumo		Preço	Eberick	TQS	CYPECAD	Eberick	TQS	CYPECAD
34494	SINAPI	Concreto usinado bombeavel, classe de resistencia c30	M3	462,17	253,32	241,9	220,07	R\$ 117.076,90	R\$ 111.798,92	R\$ 101.709,75
92443	SINAPI	Montagem e desmontagem de fôrma de pilares retangulares e estruturas similares, pé-direito simples, em chapa de madeira compensada plastificada, 18 utilizações.	M2	52,17	1992,02	1831,41	1746,16	R\$ 103.923,49	R\$ 95.544,66	R\$ 91.097,17
08000	ORSE	Aço CA-25 6,3 a 12,5 mm	kg	9,37	11618,18	12666	10041	R\$ 108.862,31	R\$ 118.680,42	R\$ 94.084,17
							TOTAL	R\$ 329.862,71	R\$ 326.024,00	R\$ 286.891,09


5.6 Pórtico Espacial

Os programas permitem ainda analisar os esforços e deslocamentos por completo, ilustrando em cores avermelhadas os maiores esforços. Diante disso, é comparado se as regiões coincidem para cada software.

Figura 56 – Visualização do pórtico espacial no Eberick

Figura 57 – Visualização do pórtico espacial no TQS

6 CONCLUSÃO

O presente trabalho apresentou os procedimentos de modelagem e limitações, através das interfaces gráficas, analisando a estrutura de um edifício de 5 pavimentos, divididas em um pavimento de fundação, três pavimentos de apartamentos e um pavimento referente a caixa d'água, nos programas Eberick, TQS e CYPECAD.

Com fulcro nisso, partindo de uma análise comparativa, entre os programas computacionais mencionados, foi possível constatar, que as diferenças entre os softwares são mínimas, tanto no método de análise estrutural, em opções extras, como também nas considerações analíticas, que devem ser estritamente observadas pelo projetista. Esta análise ainda viabiliza a reprodução da estrutura, dos relatórios de cálculo e o detalhamento dos elementos estruturais.

Os resultados obtidos no exame do questionamento desta pesquisa, explicitou a proximidade entre o método manual e os roteiros de cálculo dos softwares baseados na NBR 6118 (2023). Nessa ótica, o Eberick demonstrou um caráter cauteloso com os elementos estruturais, requerendo do engenheiro um cuidado quanto ao superdimensionamento.

Já o TQS, apresentou disparidades nos cálculos de armaduras relativos à fundação, quando correlacionado ao CYPECAD e Eberick, elevando a precificação de quilogramas de aço. Enquanto, o CYPECAD expressou uma sensibilidade dos pilares, que necessitaram serem redimensionados, para que tivessem sido obedecidas as verificações de estado-limite, fatores estes que podem interferir nos projetos arquitetônicos das edificações.

No entanto, apesar das similitudes dos resultados matemáticos e estruturais, também restou demonstrado divergências nas aplicações, no concernente aos termos de orçamentação e nas cargas totais da edificação.

Infere-se, portanto, que cada software esclarece e evidencia as distinções que devem ser observas com cautela e ponderadas pelo profissional de engenharia, com o escopo de atender aos requisitos de estados-limites previstos pelo aparato normativo brasileiro, bem como, evitar o superdimensionamento das estruturas.

Nesse cenário, esta pesquisa corrobora com a importância do conhecimento técnico e teórico para elaboração de projetos estruturais, contribuindo para a compreensão da sensibilidade da análise estrutural, de modo que a conceituação seja domínio preponderando do engenheiro, para assim possibilitar a progressão na modelagem, simulação e verificação dos cálculos, correção e manutenção das inconsistências nos programas computacionais.

7 REFERÊNCIAS BIBLIOGRÁFICAS

ASSOCIAÇÃO BRASILIERA DE NORMAS TÉCNICAS. **NBR 6123**: Forças devidas ao vento em edificações. Rio de Janeiro, 2013.

ASSOCIAÇÃO BRASILIERA DE NORMAS TÉCNICAS. **NBR 6120**: Cargas para o cálculo de estruturas de edificações. Rio de Janeiro, 2019

ASSOCIAÇÃO BRASILIERA DE NORMAS TÉCNICAS. **NBR 6118**: Projeto de estruturas de concreto. Rio de Janeiro, 2014.

KIMURA, Alio. Informática aplicada em estruturas de concreto armado: Cálculo de edifícios com o uso de sistemas computacionais. São Paulo: PINI, 2007

TRAJANO, Evilásio de Souza. Comparação entre programas computacionais para a análise de uma estrutura e verificação dos resultados de acordo com a NBR 6118:2003. Projeto Final de graduação do curso de Engenharia Civil da Escola Politécnica da Universidade Federal do Rio de Janeiro. Dezembro de 2009.

DE MORAES, José Carlos Pereira. Estudo comparativo das configurações e resultados entre os programas cypecad e eberick para dimensionamento de estrutura em concreto armado. Trabalho de Conclusão de Curso de Pós-Graduação em Engenharia Estrutural. Centro Universitário Augusto Motta, Rio de Janeiro, 2014.

FIGUEIRAS, Joaquim A; Aplicação de modelos computacionais à análise de estruturas de betão. Artigo (Ibracon, 1999) - Faculdade de Engenharia, Universidade

do Porto, 1999

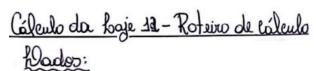
FUSCO, Péricles Brasiliense. **Estruturas de concreto**: solicitações normais e estados de limites últimos. Rio de Janeiro: Guanabara Dois S.A, 1981.

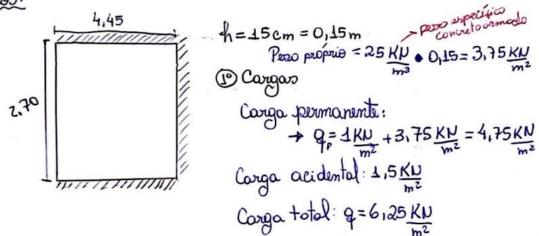
WEAVER JUNIOR, William; GERE, James M. Matrix Analysis of Framed Structures. 3. ed. New York: Van Nostrand Reinhold. 1929.

CRUZ, José Marcílio Filgueiras; FERREIRA, Enildo Tales; LUCENA, Carlos Antônio Taurino de. **A estabilidade global dos edifícios altos**. João Pessoa: Leia Livro, 2019. Livro digital.

TQS INFORMÁTICA. **Docs TQS**. Disponível em: https://docs.tqs.com.br/. Acesso em: 23 ago. 2023.

CYPE INGENIEROS (Spain). **CYPE**. Disponível em: https://info.cype.com/br/solucoes/profissionais/estruturas/. Acesso em: 23 ago. 2023.

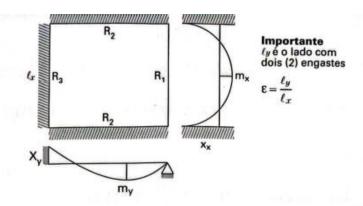

ALTOQI-A TECNOLOGIA DA CONSTRUÇÃO. **Eberick**. Disponível em: https://altoqi.com.br/eberick. Acesso em: 23 ago. 2023.


FONTES, Fernando Fernandes; PINHEIRO, Libânio Miranda. **Análise de um edifício por vários modelos estruturais**. Artigo para ANAIS do Simpósio EPUSP sobre Estruturas de Concreto. Natal, RN, Abril de 2006.

GIUGLIANI, Eduardo. **CONCRETO E AÇO**: propriedades e característica dos materiais. Rio Grande do Sul: Pontifícia Universidade Católica do Rio Grande do Sul, 2014.

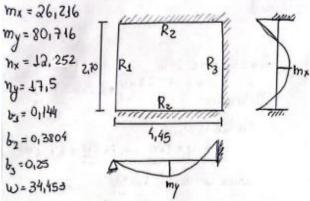
8 APÊNDICE

Apêndice A - Roteiro cálculo manual - Laje L12



Pelas tabelas de Baris - Czerny para lajes armadas em duas direção

temos:
$$\mathcal{E} = \frac{1}{2}$$
 Pado com disingustus $\mathcal{E} = \frac{4,45}{2,70} = 1,648$


Consultando a tabela e xualizando a interpolação:

$\varepsilon = \ell_y/\ell_x$	m_x	m_y	n_x	n_y	v_1	v_2	v_3	w
0,50	400,0	74,8	49,3	35,2	0,125	0,159	0,217	296,296
0,55	250,0	66,9	40,5	30,7	0,131	0,174	0,227	218.564
0,60	175,4	61,5	34,4	27,2	0,136	0,190	0,236	167,740
0,65	133,3	57,7	29,8	24,6	0,140	0,206	0,242	133,065
0,70	105,3	55,3	26,2	22,5	0,143	0,222	0,247	109,030
0,75	85,5	54,2	23,4	21,0	0,144	0,238	0,249	91,875
0,80	70,9	53,9	21,2	20,0	0,144	0,254	0,250	79,525
0,85	61,3	54,3	19,5	19,2	0,144	0,268	0,250	70,430
0,90	54,3	55,4	18,1	18,7	0,144	0,281	0,250	63,243
0,95	48,5	55,7	17,1	18,4	0,144	0,293	0,250	57,371
1,00	44,1	55,9	16,2	18,3	0,144	0,303	0,250	53,191
1,10	37,9	60,3	14,8	17,7	0,144	0,321	0,250	47,104
1,20	33,8	66,2	13,9	17,5	0,144	0,336	0,250	42,677
1,30	31,0	69,0	13,2	17,5	0,144	0,348	0,250	39,787
1,40	29,0	71,9	12,8	17,5	0,144	0,359	0,250	37,187
1,50	27,6	75,2	12,5	17,5	0,144	0,369	0,250	35,915
1,60	26,6	78,7	12,3	17,5	0,144	0,377	0,250	34,679
1,70	25,8	82,9	12,2	17,5	0,144	0,384	0,250	34,209
1,80	25,3	86,9	12,1	17,5	0,144	0,391	0,250	34,021
1,90	24,8	91,5	12,0	17,5	0,144	0,396	0,250	33,362
2,00	24,5	96,2	12	17,5	0,144	0,402	0,250	32,89

$$M_x = q \times \frac{\ell_x^2}{m_x}$$
 $M_y = q \times \frac{\ell_x^2}{m_y}$ $R_1 = v_1 \cdot q \cdot \ell_x$ $R_2 = v_2 \cdot q \cdot \ell_x$ $R_3 = v_3 \cdot q \cdot \ell_x$

	mx	my	nx	ny	v1	v2	v3	w
1,6	26,6	78,7	12,3	17,5	0,144	0,377	0,25	34,679
1,7	25,8	82,9	12,2	17,5	0,144	0,384	0,25	34,209
1,648	26,216	80,716	12,252	17,5	0,144	0,38036	0,25	34,4534

Momento meio do vão: $M_{x} = 9 \cdot \frac{Q_{x}^{2}}{26.216} = 4.74 \text{ KNm/m}$ My= 9. 12 = 6,25. 2,70 = 0,57 KNm/m

Momento no apoio:

$$X_{x} = Q \cdot \frac{l_{x}^{2}}{n_{x}} = 6.25 \cdot \frac{2.70^{2}}{12.352} = 3.72 \text{ KD m/m}$$

$$X_{y} = Q \cdot \frac{l_{x}^{2}}{n_{y}} = 6.25 \cdot \frac{2.70^{2}}{17.5} = 2.60 \text{ KD m/m}$$

Cargas nas vigas:

Sheha:

$$\oint = \frac{q \cdot l_x}{E \cdot h^3 \cdot w} = \frac{6.25 \cdot 2.70^4}{24 \cdot 10^6 \cdot 0.136 \text{ cm}} = 1,36 \cdot 10^{-3} = 0.136 \text{ cm}$$

Cálculo da armadura As:

Temos que calcular Msd: 8F:14

Meio do vão:

Hadx = 1,74 KW . 1,4 = 2,44 KNm

Mady = 0,57 · 1,4 = 0,80 Kum Momento no apoio: X sdx = 3, 72 · 1,4 = 5,21 KNm

Xsdy = 2,60 - 1,4 = 3,64 KNm

Como temos h=15 em « cobrimento 2,5º Fara classe de agressividade II d=h-c=15-2,5 = 12,5 em = 0,125 m

bu=1m, pois calcularemos para cada metro de laje.

hoogo, precisa-se determinar: KEW6 = 0,125 = 0,08 Kx , (1-0,4Kx) = 0,0107 Para Msdy = Kx -0,4 Kx 2-0,0107=0 KEELE = 0,125 = 0,14 A= 0, 9829 K,' = -b+14 = 0,010 Q14 = V = 10103 - Q8 - Kx - (1-0.4%) Domínio a Kx . (1-0,4 Kx) = 3,50.10-3 Kz=1-94Kx=0,9957 = As = 0,8.10 Kx -0,4 Kx2- 3,50.10-3=0 1-0,994 Kx = - b ± 1/2 = 0,00375 As= 0, 45 cm2 = 1,217 cm2 KE = 0, 9985

Apêndice B - Roteiro cálculo manual - Viga V12 do segundo andar

Para (iga 2:

$$Dados$$
: $d = h - \phi - C + d = 45 - 0.8 - 0.5 - 3$
 $bw = 30 cm = 0.20 m$
 $Md_{+} = 34.22 KNm$
 $Md_{-} = -71.70 KNm$

Rose Md+:

$$K_{II} \cdot olc = \frac{d}{\sqrt{\frac{14d^{3}}{bw}}} = \frac{0,414}{\sqrt{\frac{34,22}{0,2}}} = 0,0314$$

$$0.0314 = \sqrt{\frac{1}{0,85 \cdot \frac{30 \cdot 10^{3} \cdot 0,8 \cdot k_{x} \cdot (1-0,4k_{x})}{4,4}}$$

$$K_{x} \cdot (1-0,4k_{x}) = 0,0696 \ \text{Ab} \ K_{x} - 0,4k_{x}^{2} - 0,0696 = 0$$

$$K_{z=1} - 0,4k_{x}$$

$$K_{z=0,9716}$$

$$K_{z=0,9716}$$

$$K_{z=0,9716}$$

$$K_{z=0,9716}$$

$$K_{z=0,9716}$$

$$K_{z=0,9716}$$

$$K_{z=0,9716}$$

As =
$$\frac{\mathcal{H}_{0}}{K_{z} \cdot 0_{sd} \cdot d} = \frac{34,22 \cdot 10^{4}}{0,9716 \cdot 500 \cdot 10^{3}} \cdot 0,411$$

As = $\frac{1}{4},97 \text{ cm}^{2}$
 $0.8.0 = \frac{11}{4} \cdot \left(\frac{8}{10}\right)^{2} = 0,500 \text{ cm}^{2} \rightarrow \text{Toromoro}, \text{ portante}, 40.8.0 \text{ p/momento}, restante}, 40.8.0 \text{ p/momento}, restante, 40.8.0 p/momento negative.

Rara Alomento negative envidenando o modello:

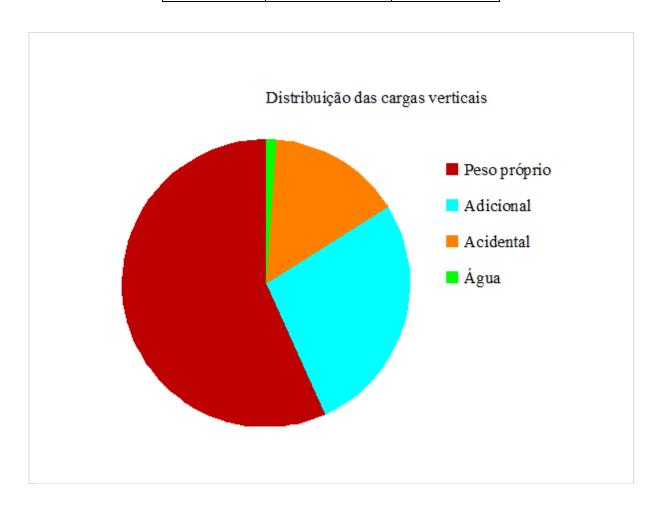
$$K_{\pm cole} = \frac{0,411}{\sqrt{\frac{21,7}{0,2}}} = 0,0217 \Rightarrow 0,0217 = \sqrt{\frac{985 \cdot 3010}{10^{4}} \cdot 0,98 \cdot \text{ke/ex}}$$

$$K_{z} = 1 \cdot 0,148 \times \text{Kx} = 0,1457 \times \text{Kx} = 0,1457 \times \text{Kx} = 0,1457 \times \text{Cm}^{2}$$

$$K_{z} = 0,938 \qquad K_{z} = 0,155 \times \text{Cm}^{2}$$

$$K_{z} = 0,938 \qquad K_{z} = 0,155 \times \text{Cm}^{2}$$

$$K_{z} = \frac{1}{10} \times 10^{4} = \frac{71,70 \cdot 10^{4}}{0,938 \cdot 500 \cdot 10^{3}} \cdot 0,1411$$


$$V_{z} = 0 = 0,50 \text{ cm}^{2} \rightarrow 94.0$$

$$V_{z} = 0,50 \text{ cm}^{2} \rightarrow 94.0$$$

Apêndice C - Diagnóstico da estrutura - EBERICK

Distribuição das cargas verticais

Ação	Carregamentos (kN)	Percentual (%)
Peso próprio	5875.34	56.7
Adicional	2817.33	27.2
Acidental	1550.55	15.0
Água	113.27	1.1
TOTAL	10356.49	100.0

Relação de carga por área

Pavimento	Carregamentos (kN)	Área (m²)	Carga/área (kN/m²)
Barrilete	233.82	7.89	29.62
Terceiro Andar	2078.33	262.37	7.92
Segundo Andar	2711.35	254.48	10.65
Primeiro Andar	2711.35	254.48	10.65
Térreo	2621.65	254.48	10.30
TOTAL	10356.49	1033.70	10.02

Estabilidade global

Parâmetro	
Gama-Z	1.06 (lim 1.10)
Deslocamento máximo dos pilares (cm)*	0.06
Deslocamento médio dos pilares (cm)*	0.06
Deslocamento máximo dos pilares* / Htotal	1/19025
Deslocamento médio dos pilares* / Htotal	1/19025

^{*} Deslocamento dos pilares do último pavimento

Parâmetro	Máximo	Direção
Deslocamento horizontal	0.05	Vento Y+
(cm)	$(\lim 0.71)$	vento Y+

Processo P-Delta - Deslocamento no topo da edificação

Carregamento	Inicial	Final	Variação
Água	0.06	0.06	1.48%
Vento X+	0.22	0.22	4.00%
Vento X-	0.22	0.22	4.00%
Vento Y+	0.25	0.27	5.25%
Vento Y-	0.25	0.27	5.25%
Desaprumo X+	0.08	0.09	4.52%
Desaprumo X-	0.08	0.09	4.52%
Desaprumo Y+	0.09	0.09	5.32%
Desaprumo Y-	0.09	0.09	5.32%

Índices de consumo de materiais

Elemento	Cor	Consumo por área			r volume de reto
Elemento	Concreto (m³/m²)	Forma (m²/m²)	Aço (kg/m²)	Forma (m²/m³)	Aço (kg/m³)
Vigas	0.06	0.58	2.80	9.70	46.84
Pilares	0.01	0.24	1.27	17.69	93.61
Lajes	0.13	0.90	5.77	6.67	42.92
Fundações	0.01	0.02	0.25	2.18	30.78
TOTAL	0.22	1.73	10.09	8.03	46.72

Espessura média do projeto 21.6 cm

Dimensionamento dos elementos

Elementos de concreto					
Pavimento Elementos Com sucesso Com avisos Com er					
	Vigas	4	0	0	
Barrilete	Lajes	1	0	0	
	Pilares	4	0	0	
Terceiro Andar	Vigas	16	0	0	

	Lajes	18	1	0
	Pilares	30	0	0
	Vigas	16	0	0
Segundo Andar	Lajes	17	1	0
	Pilares	30	0	0
	Vigas	16	0	0
Primeiro Andar	Lajes	17	1	0
	Pilares	30	0	0
	Vigas	15	1	0
Térreo	Sapatas	18	0	0
Тептео	Lajes	17	1	0
	Pilares	30	0	0

Elementos com deslocamentos excessivos

Aceitabilidade sensorial - Visual (Lajes)					
Pavimento Elemento Flecha (cm) Relação Rotação Lin					Limites
Terceiro Andar	L12 (vão X)	0.13	L/198		L/250
Segundo Andar	L12 (vão X)	0.21	L/119	-	L/250
Primeiro Andar	L12 (vão X)	0.21	L/118		L/250

Efeitos estruturais em serviço - Após a construção do piso (Lajes)					
Pavimento Elemento Flecha (cm) Relação				Rotação	Limites
Terceiro Andar	L12 (vão X)	0.07	L/358	1	L/600
Segundo Andar	L12 (vão X)	0.11	L/221	•	L/600
Primeiro Andar	L12 (vão X)	0.11	L/220	-	L/600

Efeitos em elementos não estruturais - Após a construção das paredes (Lajes)						
Pavimento	Pavimento Elemento Flecha (cm) Relação Rotação					
Cooundo Andon	I 12 (vão V)	0.16	L/154		L/500	
Segundo Andar	L12 (vão X)	0.16	L/134	-	10 mm	
Duimaina Andan	1.12 (~ V)	0.16	L/154	1	L/500	
Primeiro Andar	L12 (vão X)		L/134		10 mm	
Т/	I 12 (~ X)	0.15	I /1//		L/500	
Térreo	L12 (vão X)	X) 0.15 L/166	0.15	-	10 mm	

Apêndice D - Relatório de Resultados das Sapatas - EBERICK

Térreo	fck = 30.00 MPa	E = 26838 MPa	Peso Espec = 25.00 kN/m ³
Lance 1		cobr = 4.50 cm	

Nome	Dimensõe	s (m)	Armaduras	Armaduras superiores		
Nome	B H0 H H1		Dir. B	Dir. H	Dir. B	Dir. H
S1	115.00	0.20	10 ø 8.0 c/11	10 ø 8.0 c/11		
31	115.00	0.35	(5.03 cm^2)	(5.03 cm^2)		
S2	150.00	0.20	15 ø 8.0 c/10	15 ø 8.0 c/10		
32	155.00	0.45	(7.54 cm^2)	(7.54 cm^2)		
S3	130.00	0.20	11 ø 8.0 c/11	11 ø 8.0 c/11		
33	130.00	0.40	(5.53 cm^2)	(5.53 cm^2)		
S4	130.00	0.20	11 ø 8.0 c/11	11 ø 8.0 c/11		
34	130.00	0.40	(5.53 cm^2)	(5.53 cm^2)		
S5	150.00	0.20	15 ø 8.0 c/10	15 ø 8.0 c/10		

	155.00	0.45	(7.54 %)	(7.54 2)	1
	155.00	0.45	(7.54 cm ²)	(7.54 cm ²)	
S6	115.00	0.20	10 ø 8.0 c/11	10 ø 8.0 c/11	
	115.00	0.35	(5.03 cm ²)	(5.03 cm^2)	
S7	150.00	0.20	15 ø 8.0 c/10	15 ø 8.0 c/10	
	155.00	0.45	(7.54 cm^2)	(7.54 cm^2)	
S8	195.00	0.20	18 ø 10.0 c/12	16 ø 10.0 c/12	
50	220.00	0.60	(14.14 cm ²)	(12.57 cm^2)	
S9	165.00	0.20	12 ø 10.0 c/14	12 ø 10.0 c/14	
	175.00	0.50	(9.42 cm ²)	(9.42 cm^2)	
S10	165.00	0.20	12 ø 10.0 c/14	12 ø 10.0 c/14	
	175.00	0.50	(9.42 cm ²)	(9.42 cm ²)	
S11	195.00	0.20	18 ø 10.0 c/12	16 ø 10.0 c/12	
511	220.00	0.60	(14.14 cm ²)	(12.57 cm^2)	
S12	150.00	0.20	15 ø 8.0 c/10	15 ø 8.0 c/10	
512	155.00	0.45	(7.54 cm^2)	(7.54 cm^2)	
S13	120.00	0.20	11 ø 8.0 c/11	11 ø 8.0 c/11	
515	120.00	0.35	(5.53 cm^2)	(5.53 cm^2)	
S14	120.00	0.20	11 ø 8.0 c/11	11 ø 8.0 c/11	
517	120.00	0.35	(5.53 cm^2)	(5.53 cm^2)	
S15	130.00	0.20	13 ø 8.0 c/10	11 ø 8.0 c/11	
515	135.00	0.40	(6.53 cm^2)	(5.53 cm^2)	
S16	165.00	0.20	14 ø 10.0 c/13	12 ø 10.0 c/14	
510	185.00	0.50	(11.00 cm^2)	(9.42 cm^2)	
S17	165.00	0.20	14 ø 10.0 c/13	12 ø 10.0 c/14	
317	185.00	0.50	(11.00 cm^2)	(9.42 cm^2)	
S18	130.00	0.20	13 ø 8.0 c/10	11 ø 8.0 c/11	
516	135.00	0.40	(6.53 cm^2)	(5.53 cm^2)	
S19	145.00	0.20	16 ø 8.0 c/9	14 ø 8.0 c/10	
319	150.00	0.45	(8.04 cm^2)	(7.04 cm^2)	
S20	145.00	0.20	16 ø 8.0 c/9	14 ø 8.0 c/10	
320	150.00	0.45	(8.04 cm^2)	(7.04 cm^2)	
S21	125.00	0.20	11 ø 8.0 c/11	11 ø 8.0 c/11	
321	125.00	0.35	(5.53 cm^2)	(5.53 cm^2)	
S22	175.00	0.20	14 ø 10.0 c/13	13 ø 10.0 c/13	
322	190.00	0.55	(11.00 cm^2)	(10.21 cm^2)	
S23	175.00	0.20	14 ø 10.0 c/13	13 ø 10.0 c/13	
323	190.00	0.55	(11.00 cm^2)	(10.21 cm^2)	
S24	125.00	0.20	11 ø 8.0 c/11	11 ø 8.0 c/11	
324	125.00	0.35	(5.53 cm^2)	(5.53 cm^2)	
S25	105.00	0.20	9 ø 8.0 c/11	9 ø 8.0 c/11	
323	105.00	0.35	(4.52 cm^2)	(4.52 cm^2)	
526	135.00	0.20	12 ø 8.0 c/11	12 ø 8.0 c/11	
S26	135.00	0.40	(6.03 cm^2)	(6.03 cm^2)	
S27	115.00	0.20	10 ø 8.0 c/11	10 ø 8.0 c/11	
327	115.00	0.35	(5.03 cm^2)	(5.03 cm^2)	
020	115.00	0.20	10 ø 8.0 c/11	10 ø 8.0 c/11	
S28	115.00	0.35	(5.03 cm^2)	(5.03 cm^2)	
S29	135.00	0.20	12 ø 8.0 c/11	12 ø 8.0 c/11	
529	135.00	0.40	(6.03 cm^2)	(6.03 cm^2)	
020	105.00	0.20	9 ø 8.0 c/11	9 ø 8.0 c/11	
S30	105.00	0.35	(4.52 cm^2)	(4.52 cm^2)	
			` /	` ` `	

Apêndice E - Relatório de Cálculos das Sapatas - EBERICK

Térreo	fck = 30.00 MPa	E = 26838 MPa	Peso Espec = 25.00 kN/m ³
Lance 1		cobr = 4.50 cm	

Esforços e pressões

Nome	MB MH (kN.m)	FB FH (kN)	Carga Carga total (kN)	Pressão Sig1 (kN/m²)	Pressão Sig2 (kN/m²)	Pressão Sig3 (kN/m²)	Pressão Sig4 (kN/m²)
S1	4.75	14.08	182.09	187.68	154.33	122.18	155.53
51	4.24 7.13	11.63 20.91	204.91 358.12	$\frac{(\lim = 200.00)}{154.50}$	$\frac{(\lim = 200.00)}{179.00}$	(lim = 200.00) 188.93	(lim = 200.00) 164.44
S2	3.48	8.75	399.28	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$
S3	1.69	4.19	250.13	176.34	185.43	154.22	145.12
G.4	5.78 1.69	16.83 4.19	279.70 250.16	(lim = 200.00) 185.46	$(\lim = 200.00)$ 176.36	(lim = 200.00) 145.14	(lim = 200.00) 154.23
S4	5.78	16.83	279.73	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$
S5	7.13 3.48	20.90 8.76	358.10 399.26	164.44 (lim = 200.00)	188.92 (lim = 200.00)	178.99 (lim = 200.00)	154.50 (lim = 200.00)
S6	4.75	14.08	182.09	154.33	187.67	155.52	122.18
	4.24 8.27	11.63 25.09	204.90 376.35	$(\lim = 200.00)$ 188.59	$\frac{(\lim = 200.00)}{160.13}$	(lim = 200.00) 170.57	(lim = 200.00) 199.03
S7	3.14	4.53	417.52	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$
S8	4.86	9.45	728.87	184.14	177.20	191.05	198.00
	11.09 4.07	22.01 11.09	807.35 488.43	$\frac{(\lim = 200.00)}{173.73}$	$(\lim = 200.00)$ 181.89	(lim = 200.00) 198.74	(lim = 200.00) 190.58
S9	7.68	19.66	540.12	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$
S10	4.07 7.70	11.07 19.71	488.18 539.87	181.78 (lim = 200.00)	173.63 (lim = 200.00)	190.51 (lim = 200.00)	198.67 (lim = 200.00)
S11	4.86	9.48	728.65	198.32	191.37	177.49	184.45
311	11.09	21.99	807.12	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$
S12	8.27 3.14	25.09 4.52	376.36 417.53	160.13 (lim = 200.00)	188.59 (lim = 200.00)	199.03 (lim = 200.00)	170.58 (lim = 200.00)
S13	1.61	1.86	241.75	196.34	185.15	173.96	185.15
	1.61 1.61	3.30 1.86	266.62 241.27	$(\lim = 200.00)$ 184.82	$\frac{(\lim = 200.00)}{195.99}$	(lim = 200.00) 184.82	(lim = 200.00) 173.65
S14	1.61	3.29	266.14	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$
S15	6.33	18.95	279.80	187.64	154.35	166.16	199.45
	3.23 3.74	7.54 9.05	310.45 519.40	(lim = 200.00) 184.45	$\frac{(\lim = 200.00)}{176.22}$	$\frac{(\lim = 200.00)}{190.90}$	(lim = 200.00) 199.13
S16	6.93	8.04	574.00	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$
S17	3.72 6.93	9.00 8.06	519.43 574.03	183.95 (lim = 200.00)	175.75 (lim = 200.00)	190.39 (lim = 200.00)	$ 198.59 \\ (lim = 200.00) $
S18	6.33	18.95	279.82	154.36	187.65	199.46	166.17
510	3.23	7.54	310.47	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$
S19	2.38 6.00	2.02 15.52	356.84 395.34	193.40 (lim = 200.00)	184.38 (lim = 200.00)	169.19 (lim = 200.00)	178.22 (lim = 200.00)
S20	2.38	2.02	356.75	184.35	193.37	178.16	169.14
	6.01 5.48	15.54 16.45	395.25 242.14	$\frac{(\lim = 200.00)}{194.04}$	$\frac{(\lim = 200.00)}{160.39}$	$\frac{(\lim = 200.00)}{150.47}$	(lim = 200.00) 184.13
S21	1.98	4.49	269.15	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$
S22	3.97 6.30	9.44 4.30	539.74 599.91	170.73 (lim = 200.00)	178.15 (lim = 200.00)	190.11 (lim = 200.00)	182.69 (lim = 200.00)
622	3.97	9.43	539.85	170.26	177.66	189.58	182.18
S23	6.30	4.30	600.02	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$
S24	5.48 1.98	16.45 4.49	242.14 269.15	160.39 (lim = 200.00)	194.03 (lim = 200.00)	184.12 (lim = 200.00)	150.47 (lim = 200.00)
S25	4.55	13.33	153.83	166.73	125.29	146.74	188.19
523	2.32	5.95 4.95	172.80 304.81	$\frac{(\lim = 200.00)}{171.77}$	$(\lim = 200.00)$ 181.68	(lim = 200.00) 197.74	(lim = 200.00) 187.83
S26	3.47	4.93 9.57	336.72	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$
S27	2.92	7.99	188.81	126.76	148.61	193.29	171.44
	6.33 2.92	18.83 7.99	211.63 188.83	$\frac{(\lim = 200.00)}{148.62}$	$\frac{(\lim = 200.00)}{126.76}$	(lim = 200.00) 171.44	(lim = 200.00) 193.31
S28	6.33	18.83	211.64	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$
S29	2.03 3.47	4.95 9.56	304.80 336.71	181.68 (lim = 200.00)	171.77 (lim = 200.00)	187.82 (lim = 200.00)	197.73 (lim = 200.00)
520	4.55	13.33	153.83	125.29	166.73	188.17	146.74
S30	2.32	5.95	172.80	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$	$(\lim = 200.00)$

Estabilidade

Nome Mrd Msd (kN.m) Mrd / Msd (kN.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	d Mrd / Msd m)	Frd Fsd	Frd / Fsd	Nt	NI.
S1 4.75 (lim = 1.50) 4.24		(kN)		(kN)	Ns (kN)
4.75 (lim = 1.50) 4.24		72.67	4.21		
1 200 27 1 40 57 1 270		17.27	$\lim = (1.50)$		
S2 289.26 40.56 268. 7.13 (lim = 1.50) 3.2		141.14 21.39	6.60 $\lim = (1.50)$		
158.62 98.26 1.76		99.31	5.95		
S3 1.61 (lim = 1.50) 5.76		16.68	$\lim = (1.50)$		
S4 158.64 98.10 176.	41 30.51	99.32	5.95		
1.62 (lim = 1.50) 5.76		16.68	$\lim = (1.50)$		
S5 289.24 40.57 268.		141.13	6.60		
7.13 (lim = 1.50) 3.2 114.18 24.05 114.1		21.38 72.67	$\lim = (1.50)$ 4.21		
S6 114.18 24.03 114.1 4.75 (lim = 1.50) 4.2		17.27	$\lim_{n \to \infty} 4.21$		
301 00 37 17 323		147.35	6.08		
S7 8.12 (lim = 1.50) 323.		24.24	$\lim = (1.50)$		
787.16 162.00 740.	44 71.87	246.33	12.10		
4.86 (11m = 1.50) 10.3		20.36	$\lim = (1.50)$		
S9 404.19 99.28 427.		178.91	8.32		
4.07 (lim = 1.50) 7.6 403.98 99.34 427.		21.50 178.82	$\lim = (1.50)$ 8.30		
S10 403.98 99.34 427. (lim = 1.50) 7.79		21.53	$\lim_{n \to \infty} \frac{8.30}{1.50}$		
786.04 162.00 740		246.25	12.10		
S11		20.35	$\lim = (1.50)$		
S12 302.00 37.18 323.	58 103.17	147.36	6.08		
8.12 (lim = 1.50) 3.14		24.24	$\lim = (1.50)$		
S13 159.97 99.26 139.		85.07	25.59		
1.61 (lim = 1.50) 1.60 1.50 99.28 139.		3.33 84.90	$\lim = (1.50)$ 25.58		
S14 139.08 99.28 139.18 1.61 (lim = 1.50) 1.60		3.32	$\lim_{n \to \infty} 23.38$		
104.63 21.13 1.70		113.61	5.82		
S15 6.25 (lim = 1.50) 3.10		19.53	$\lim = (1.50)$		
S16 388.04 113.63 530.		197.55	18.70		
$3.41 (\lim = 1.50) 6.9$		10.56	$\lim = (1.50)$		
S17 388.07 114.14 530. 3.40 (lim = 1.50) 6.90		197.56 10.53	18.76		
194 64 31 13 179		113.62	$\lim = (1.50)$ 5.82		
S18 6.25 $(\lim = 1.50)$ 3.10		19.53	$\lim = (1.50)$		
286.62 120.48 257		125.82	8.60		
S19 238 (lim = 1.50) 5.7		14.63	$\lim = (1.50)$		
S20 286.55 120.48 257.		125.78	8.59		
2.38 (lim = 1.50) 5./		14.65	$\lim = (1.50)$		-
S21 162.17 29.96 144. 5.41 (lim = 1.50) 1.9		94.95 16.02	5.93 $\lim = (1.50)$		
/30.51 117.32 560		183.82	20.51		
S22 $\begin{vmatrix} 439.51 \\ 3.75 \end{vmatrix}$ $\begin{vmatrix} 117.32 \\ (lim = 1.50) \end{vmatrix}$ 6.30		8.96	$\lim = (1.50)$		
S22 439.61 117.39 570.		183.86	20.52		
3./4 (lim = 1.50) 6.3		8.96	$\lim = (1.50)$		
S24 162.17 29.97 144.		94.95	5.93		
5.41 (lim = 1.50) 1.9		16.02	$\lim = (1.50)$ 4.40		
S25 87.64 19.24 82.8 4.55 (lim = 1.50) 2.15		61.09 13.90	$\lim = (1.50)$		
198 37 106 17 220		119.50	11.84	1	<u> </u>
S26 1.87 (lim = 1.50) 3.4	7 $(\lim = 1.50)$	10.09	$\lim = (1.50)$		
S27 111.08 40.57 118.4	69 18.77	75.54	3.81		
2.74 [lim = 1.50] 6.3		19.82	$\lim = (1.50)$		<u> </u>
S28 111.08 40.56 118.		75.54	3.81		
2.74 (lim = 1.50) 6.3 198.37 106.09 220.		19.83 119.50	$\lim = (1.50)$ 11.84	-	
S29 198.37 106.09 220.3 1.87 (lim = 1.50) 3.4		10.09	$\lim_{n \to \infty} 11.84$		
S30 87.64 19.25 82.8		61.09	4.40		

4.55	$(\lim = 1.50)$	2.18	$(\lim = 1.50)$	13.89	$\lim = (1.50)$	

Dimensionamento

	Armadura	s inferiores	Armaduras superiores			
Nome	Dir. B	Dir. H	Dir. B	Dir. H		
Nome	Md (kN.m/m)	Md (kN.m/m)	Md (kN.m/m)	Md (kN.m/m)		
	As (cm ² /m)	As (cm ² /m)	A's (cm ² /m)	A's (cm ² /m)		
0.1	33.69	33.69	0.00	0.00		
S1	4.45	4.45	0.00	0.00		
~~	53.05	52.02	0.00	0.00		
S2	5.27	5.17	0.00	0.00		
	42.42	42.42	0.00	0.00		
S3	4.81	4.81	0.00	0.00		
	42.42	42.42	0.00	0.00		
S4	4.81	4.81	0.00	0.00		
	53.05	52.02	0.00	0.00		
S5	5.27	5.17	0.00	0.00		
	33.69	33.69	0.00	0.00		
S6	4.45	4.45	0.00	0.00		
	53.05	52.02	0.00	0.00		
S7	5.27	5.17	0.00	0.00		
		88.85		0.00		
S8	94.84 6.88		0.00 0.00	0.00		
	65.22	6.44 62.81	0.00	0.00		
S9						
	5.77	5.56	0.00	0.00		
S10	65.22	62.81	0.00	0.00		
	5.77	5.56	0.00	0.00		
S11	94.84	89.01	0.00	0.00		
211	6.88	6.46	0.00	0.00		
S12	53.05	52.02	0.00	0.00		
512	5.27	5.17	0.00	0.00		
S13	33.56	33.56	0.00	0.00		
515	4.43	4.43	0.00	0.00		
S14	33.56	33.56	0.00	0.00		
314	4.43	4.43	0.00	0.00		
S15	43.23	42.42	0.00	0.00		
313	4.90	4.81	0.00	0.00		
016	67.23	62.81	0.00	0.00		
S16	5.95	5.56	0.00	0.00		
017	67.23	62.81	0.00	0.00		
S17	5.95	5.56	0.00	0.00		
-10	43.23	42.42	0.00	0.00		
S18	4.90	4.81	0.00	0.00		
	53.24	52.19	0.00	0.00		
S19	5.29	5.19	0.00	0.00		
	53.24	52.19	0.00	0.00		
S20	5.29	5.19	0.00	0.00		
	33.45	33.45	0.00	0.00		
S21	4.41	4.41	0.00	0.00		
	79.00	74.79	0.00	0.00		
S22	6.30	5.96	0.00	0.00		
	79.00	74.79	0.00	0.00		
S23	6.30	5.96	0.00	0.00		
	33.45	33.45	0.00	0.00		
S24	4.41	4.41	0.00	0.00		
			0.00			
S25	33.98	33.98		0.00		
	4.48	4.48	0.00	0.00		
S26	42.26	42.26	0.00	0.00		
	4.79	4.79	0.00	0.00		
S27	33.69	33.69	0.00	0.00		
	4.45	4.45	0.00	0.00		
S28	33.69	33.69	0.00	0.00		
220	4.45	4.45	0.00	0.00		

S29	42.26	42.26	0.00	0.00
	4.79	4.79	0.00	0.00
S30	33.98	33.98	0.00	0.00
	4.48	4.48	0.00	0.00

Apêndice F - Resultados do Pilares - EBERICK Resultados do Pilar: P1

	D	ados				Resi	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 20.00	7.90 2.80	2.80 RR 2.80 RR	50.03 27.60	8.94 8.83	7.52 7.36	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L3 1:20	20.00 X 20.00	5.10 2.80	2.80 RR 2.80 RR	119.00 70.56	9.19 8.97	8.45 8.18	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L2 1:20	20.00 X 20.00	2.30 2.30	2.30 RR 2.30 RR	187.57 113.28	9.84 9.20	9.05 8.59	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 39.79
L1 1:20	20.00 X 20.00	0.00 0.95	0.95 RR 0.95 RR	254.93 156.29	12.15 6.65	9.76 5.93	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 16.43

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 25.00	7.90 2.80	2.80 RR 2.80 RR	97.52 53.38	11.99 12.13	5.38 5.22	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75
L3 1:20	20.00 X 25.00	5.10 2.80	2.80 RR 2.80 RR	233.14 136.67	13.46 13.06	6.56 6.39	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75

L2 1:20	20.00 X 25.00	2.30 2.30	2.30 RR 2.30 RR	368.62 219.88	14.63 13.98	7.06 6.85	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 31.83
L1 1:20	20.00 X 25.00	0.00 0.95	0.95 RR 0.95 RR	501.36 302.63	17.87 9.98	6.81 4.87	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 13.15

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 20.00	7.90 2.80	2.80 RR 2.80 RR	64.00 34.65	2.15 2.20	9.42 9.82	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L3 1:20	20.00 X 20.00	5.10 2.80	2.80 RR 2.80 RR	160.01 93.71	3.04 2.98	11.19 10.81	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L2 1:20	20.00 X 20.00	2.30 2.30	2.30 RR 2.30 RR	255.66 152.51	3.35 3.29	12.00 11.40	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 39.79
L1 1:20	20.00 X 20.00	0.00 0.95	0.95 RR 0.95 RR	350.10 211.72	3.23 2.36	14.38 8.09	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 16.43

	D	ados			Resultados						
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h		
L4 1:20	20.00 X 20.00	7.90 2.80	2.80 RR 2.80 RR	63.99 34.65	2.15 2.20	9.42 9.82	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44		

L3 1:20	20.00 X 20.00	5.10 2.80	2.80 RR 2.80 RR	160.02 93.72	3.04 2.98	11.19 10.82	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L2 1:20	20.00 X 20.00	2.30 2.30	2.30 RR 2.30 RR	255.68 152.53	3.35 3.30	12.00 11.40	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 39.79
L1 1:20	20.00 X 20.00	0.00 0.95	0.95 RR 0.95 RR	350.15 211.75	3.24 2.37	14.38 8.09	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 16.43

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 25.00	7.90 2.80	2.80 RR 2.80 RR	97.52 53.38	11.99 12.13	5.38 5.23	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75
L3 1:20	20.00 X 25.00	5.10 2.80	2.80 RR 2.80 RR	233.14 136.67	13.45 13.05	6.57 6.40	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75
L2 1:20	20.00 X 25.00	2.30 2.30	2.30 RR 2.30 RR	368.60 219.87	14.62 13.98	7.06 6.85	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 31.83
L1 1:20	20.00 X 25.00	0.00 0.95	0.95 RR 0.95 RR	501.33 302.61	17.86 9.98	6.81 4.87	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 13.15

	D	ados			Resultados						
Lance	Seção (cm)	Nível Altura (m)	lib vínc	Nd máx Nd mín (kN)	MBd topo	MHd topo	As b Armaduras As h	Estribo Topo Base	Esb b Esb h		

			lih vínc (m)		MBd base (kN.m)	MHd base (kN.m)	% armad total	cota	
L4 1:20	20.00 X 20.00	7.90 2.80	2.80 RR 2.80 RR	50.03 27.60	8.94 8.83	7.52 7.36	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L3 1:20	20.00 X 20.00	5.10 2.80	2.80 RR 2.80 RR	119.00 70.56	9.18 8.96	8.45 8.18	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L2 1:20	20.00 X 20.00	2.30 2.30	2.30 RR 2.30 RR	187.56 113.28	9.84 9.19	9.05 8.59	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 39.79
L1 1:20	20.00 X 20.00	0.00 0.95	0.95 RR 0.95 RR	254.92 156.29	12.14 6.65	9.76 5.93	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 16.43

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 25.00	7.90 2.80	2.80 RR 2.80 RR	100.63 54.82	14.29 14.46	3.13 2.77	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75
L3 1:20	20.00 X 25.00	5.10 2.80	2.80 RR 2.80 RR	243.11 142.23	15.15 14.91	4.91 4.68	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75
L2 1:20	20.00 X 25.00	2.30 2.30	2.30 RR 2.30 RR	385.83 229.86	16.70 15.65	5.56 5.61	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 31.83
L1 1:20	20.00 X 25.00	0.00 0.95	0.95 RR 0.95 RR	526.83 317.72	21.82 11.58	2.88 3.19	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 13.15

	D	ados				Resu	ltados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 45.00	7.90 2.80	2.80 RR 2.80 RR	203.98 104.95	5.15 5.46	19.01 15.01	1.57 2 ø 10.0 2.36 3 ø 10.0 0.5 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 21.53
L3 1:20	20.00 X 45.00	5.10 2.80	2.80 RR 2.80 RR	481.11 269.36	8.45 8.01	18.58 17.14	1.57 2 ø 10.0 2.36 3 ø 10.0 0.5 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 21.53
L2 1:20	20.00 X 45.00	2.30 2.30	2.30 RR 2.30 RR	755.63 432.86	9.15 9.01	19.25 21.05	1.57 2 ø 10.0 2.36 3 ø 10.0 0.5 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 17.68
L1 1:20	20.00 X 45.00	0.00 0.95	0.95 RR 0.95 RR	1020.22 592.08	7.10 5.56	19.37 15.50	1.57 2 ø 10.0 2.36 3 ø 10.0 0.5 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 7.30

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L5 1:20	20.00 X 30.00	11.15 3.25	3.25 RR 3.25 RR	79.54 23.04	6.31	12.02 3.15	1.57 2 ø 10.0 1.57 2 ø 10.0 0.5 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	56.23 37.48
L4 1:20	20.00 X 30.00	7.90 2.80	2.80 RR 2.80 RR	218.50 104.18	3.57 4.79	8.19 10.41	1.57 2 ø 10.0 1.57 2 ø 10.0 0.5 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 32.29
L3 1:20	20.00 X 30.00	5.10 2.80	2.80 RR 2.80 RR	372.52 199.61	7.19 7.05	16.12 15.10	1.57 2 ø 10.0 1.57 2 ø 10.0 0.5 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 32.29

L2 1:20	20.00 X 30.00	2.30 2.30	2.30 RR 2.30 RR	526.62 295.20	7.97 7.74	16.94 16.59	1.57 2 ø 10.0 1.57 2 ø 10.0 0.5 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 26.53
L1 1:20	20.00 X 30.00	0.00 0.95	0.95 RR 0.95 RR	678.14 390.26	9.12 5.68	16.11 10.72	1.57 2 ø 10.0 1.57 2 ø 10.0 0.5 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 10.96

	D	ados				Resi	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L5 1:20	20.00 X 30.00	11.15 3.25	3.25 RR 3.25 RR	79.54 23.03	6.31 3.78	12.02 3.14	1.57 2 ø 10.0 1.57 2 ø 10.0 0.5 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	56.23 37.48
L4 1:20	20.00 X 30.00	7.90 2.80	2.80 RR 2.80 RR	218.50 104.18	3.56 4.78	8.21 10.44	1.57 2 ø 10.0 1.57 2 ø 10.0 0.5 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 32.29
L3 1:20	20.00 X 30.00	5.10 2.80	2.80 RR 2.80 RR	372.41 199.53	7.18 7.04	16.15 15.13	1.57 2 ø 10.0 1.57 2 ø 10.0 0.5 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 32.29
L2 1:20	20.00 X 30.00	2.30 2.30	2.30 RR 2.30 RR	526.39 295.03	7.96 7.73	16.97 16.62	1.57 2 ø 10.0 1.57 2 ø 10.0 0.5 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 26.53
L1 1:20	20.00 X 30.00	0.00 0.95	0.95 RR 0.95 RR	677.79 390.00	9.11 5.68	16.15 10.74	1.57 2 ø 10.0 1.57 2 ø 10.0 0.5 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 10.96

	D	ados			Resultados						
Lance	Seção (cm)	Nível Altura (m)	lib vínc	Nd máx Nd mín (kN)	MBd topo	MHd topo	As b Armaduras As h	Estribo Topo Base	Esb b Esb h		

			lih vínc		MBd base	MHd base	% armad total	cota	
			(m)		(kN.m)	(kN.m)	1.57 2 ø		
L4 1:20	20.00 X 45.00	7.90 2.80	2.80 RR 2.80 RR	203.98 104.95	5.16 5.48	19.02 15.00	10.0 2.36 3 ø 10.0 0.5 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12 45	48.44 21.53
L3 1:20	20.00 X 45.00	5.10 2.80	2.80 RR 2.80 RR	481.00 269.28	8.47 8.02	18.57 17.13	1.57 2 ø 10.0 2.36 3 ø 10.0 0.5 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 21.53
L2 1:20	20.00 X 45.00	2.30 2.30	2.30 RR 2.30 RR	755.42 432.71	9.17 9.02	19.24 21.04	1.57 2 ø 10.0 2.36 3 ø 10.0 0.5 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 17.68
L1 1:20	20.00 X 45.00	0.00 0.95	0.95 RR 0.95 RR	1019.91 591.86	7.13 5.57	19.35 15.51	1.57 2 ø 10.0 2.36 3 ø 10.0 0.5 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 7.30

	D	ados				Resi	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 25.00	7.90 2.80	2.80 RR 2.80 RR	100.63 54.82	14.29 14.46	3.13 2.77	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75
L3 1:20	20.00 X 25.00	5.10 2.80	2.80 RR 2.80 RR	243.12 142.23	15.15 14.91	4.91 4.68	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75
L2 1:20	20.00 X 25.00	2.30 2.30	2.30 RR 2.30 RR	385.84 229.86	16.70 15.65	5.56 5.61	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 31.83
L1 1:20	20.00 X 25.00	0.00 0.95	0.95 RR 0.95 RR	526.85 317.73	21.82 11.58	2.88 3.18	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 13.15

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L5 1:20	20.00 X 20.00	11.15 3.25	3.25 RR 3.25 RR	74.78 22.60	5.10 3.73	7.93 5.63	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	56.23 56.23
L4 1:20	20.00 X 20.00	7.90 2.80	2.80 RR 2.80 RR	153.52 71.37	1.02 0.68	2.05 1.60	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L3 1:20	20.00 X 20.00	5.10 2.80	2.80 RR 2.80 RR	212.44 107.72	1.76 1.69	2.84 2.88	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L2 1:20	20.00 X 20.00	2.30 2.30	2.30 RR 2.30 RR	272.68 144.35	1.89 1.94	3.47 3.49	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 39.79
L1 1:20	20.00 X 20.00	0.00 0.95	0.95 RR 0.95 RR	333.85 181.90	1.15 1.35	2.13 2.22	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 16.43

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L5 1:20	20.00 X 20.00	11.15 3.25	3.25 RR 3.25 RR	74.79 22.60	5.10 3.74	7.93 5.63	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	56.23 56.23
L4 1:20	20.00 X 20.00	7.90 2.80	2.80 RR 2.80 RR	153.56 71.40	1.02 0.69	2.05 1.61	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44

L3 1:20	20.00 X 20.00	5.10 2.80	2.80 RR 2.80 RR	212.25 107.58	1.76 1.69	2.84 2.88	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L2 1:20	20.00 X 20.00	2.30 2.30	2.30 RR 2.30 RR	272.25 144.05	1.88 1.94	3.47 3.49	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 39.79
L1 1:20	20.00 X 20.00	0.00 0.95	0.95 RR 0.95 RR	333.18 181.42	1.14 1.35	2.12 2.21	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 16.43

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 25.00	7.90 2.80	2.80 RR 2.80 RR	79.13 42.74	11.90 11.37	4.33 4.19	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75
L3 1:20	20.00 X 25.00	5.10 2.80	2.80 RR 2.80 RR	184.59 106.71	11.48 11.36	6.50 6.23	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75
L2 1:20	20.00 X 25.00	2.30 2.30	2.30 RR 2.30 RR	289.08 170.25	12.79 12.02	7.33 7.32	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 31.83
L1 1:20	20.00 X 25.00	0.00 0.95	0.95 RR 0.95 RR	391.68 233.94	16.36 8.86	5.54 4.52	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 13.15

I		D	ados		Resultados						
	Lance	Seção (cm)	Nível Altura (m)	lib vínc	Nd máx Nd mín (kN)	MBd topo	MHd topo	As b Armaduras As h	Estribo Topo Base	Esb b Esb h	

			lih vínc (m)		MBd base (kN.m)	MHd base (kN.m)	% armad total	cota	
L4 1:20	20.00 X 40.00	7.90 2.80	2.80 RR 2.80 RR	156.38 80.87	5.13 4.84	11.15 6.68	1.57 2 ø 10.0 2.36 3 ø 10.0 0.6 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 24.22
L3 1:20	20.00 X 40.00	5.10 2.80	2.80 RR 2.80 RR	349.38 192.97	7.13 6.92	8.32 7.65	1.57 2 ø 10.0 2.36 3 ø 10.0 0.6 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 24.22
L2 1:20	20.00 X 40.00	2.30 2.30	2.30 RR 2.30 RR	540.77 304.66	8.25 8.24	9.00 10.60	1.57 2 ø 10.0 2.36 3 ø 10.0 0.6 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 19.89
L1 1:20	20.00 X 40.00	0.00 0.95	0.95 RR 0.95 RR	727.09 414.79	6.88 5.23	6.59 7.74	1.57 2 ø 10.0 2.36 3 ø 10.0 0.6 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 8.22

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 40.00	7.90 2.80	2.80 RR 2.80 RR	156.38 80.87	5.12 4.82	11.16 6.68	1.57 2 ø 10.0 2.36 3 ø 10.0 0.6 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 24.22
L3 1:20	20.00 X 40.00	5.10 2.80	2.80 RR 2.80 RR	349.39 192.97	7.10 6.89	8.33 7.67	1.57 2 ø 10.0 2.36 3 ø 10.0 0.6 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 24.22
L2 1:20	20.00 X 40.00	2.30 2.30	2.30 RR 2.30 RR	540.80 304.68	8.22 8.21	9.01 10.61	1.57 2 ø 10.0 2.36 3 ø 10.0 0.6 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 19.89
L1 1:20	20.00 X 40.00	0.00 0.95	0.95 RR 0.95 RR	727.14 414.82	6.84 5.20	6.60 7.76	1.57 2 ø 10.0 2.36 3 ø 10.0 0.6 6 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 8.22

	D	ados				Resi	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 25.00	7.90 2.80	2.80 RR 2.80 RR	79.13 42.74	11.90 11.37	4.33 4.19	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75
L3 1:20	20.00 X 25.00	5.10 2.80	2.80 RR 2.80 RR	184.59 106.72	11.49 11.36	6.50 6.23	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75
L2 1:20	20.00 X 25.00	2.30 2.30	2.30 RR 2.30 RR	289.10 170.26	12.79 12.02	7.33 7.32	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 31.83
L1 1:20	20.00 X 25.00	0.00 0.95	0.95 RR 0.95 RR	391.71 233.96	16.36 8.86	5.54 4.51	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 13.15

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 25.00	7.90 2.80	2.80 RR 2.80 RR	93.66 50.26	1.26 1.05	7.58 7.93	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75
L3 1:20	20.00 X 25.00	5.10 2.80	2.80 RR 2.80 RR	231.48 135.48	1.94 1.89	11.19 10.95	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75
L2 1:20	20.00 X 25.00	2.30 2.30	2.30 RR 2.30 RR	367.44 219.83	2.15 2.23	12.51 12.18	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 31.83

	D	ados				Resi	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 25.00	7.90 2.80	2.80 RR 2.80 RR	93.65 50.25	1.26 1.05	7.59 7.95	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75
L3 1:20	20.00 X 25.00	5.10 2.80	2.80 RR 2.80 RR	231.43 135.44	1.94 1.89	11.21 10.97	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 38.75
L2 1:20	20.00 X 25.00	2.30 2.30	2.30 RR 2.30 RR	367.35 219.77	2.15 2.23	12.52 12.19	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 31.83
L1 1:20	20.00 X 25.00	0.00 0.95	0.95 RR 0.95 RR	498.64 302.41	1.10 1.53	12.23 8.37	1.57 2 ø 10.0 1.57 2 ø 10.0 0.6 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 13.15

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 20.00	7.90 2.80	2.80 RR 2.80 RR	68.85 37.45	10.09 9.76	2.21 2.17	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L3 1:20	20.00 X 20.00	5.10 2.80	2.80 RR 2.80 RR	158.61 91.82	9.92 9.79	3.71 3.69	1.57 2 ø 10.0 1.57 2 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44

							0.8 4 ø 10.0		
L2 1:20	20.00 X 20.00	2.30 2.30	2.30 RR 2.30 RR	248.96 146.57	11.02 10.36	4.31 4.26	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 39.79
L1 1:20	20.00 X 20.00	0.00 0.95	0.95 RR 0.95 RR	339.00 202.09	14.23 7.67	3.24 2.77	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 16.43

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 35.00	7.90 2.80	2.80 RR 2.80 RR	153.91 80.61	5.50 5.43	4.31 1.59	1.57 2 ø 10.0 1.57 2 ø 10.0 0.4 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 27.68
L3 1:20	20.00 X 35.00	5.10 2.80	2.80 RR 2.80 RR	356.92 201.57	7.95 7.71	5.19 4.16	1.57 2 ø 10.0 1.57 2 ø 10.0 0.4 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 27.68
L2 1:20	20.00 X 35.00	2.30 2.30	2.30 RR 2.30 RR	559.02 322.38	8.68 8.46	4.54 5.97	1.57 2 ø 10.0 1.57 2 ø 10.0 0.4 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 22.74
L1 1:20	20.00 X 35.00	0.00 0.95	0.95 RR 0.95 RR	755.54 440.95	7.08 5.56	1.93 4.55	1.57 2 ø 10.0 1.57 2 ø 10.0 0.4 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 9.39

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4	20.00	7.90	2.80	153.90	5.50	4.31	1.57 2 ø	ø 5.0 c/12	48.44
1:20	X	2.80	RR	80.60	5.43	1.59	10.0	ø 5.0 c/12	27.68

	35.00		2.80 RR				1.57 2 ø 10.0 0.4 4 ø 10.0	45	
L3 1:20	20.00 X 35.00	5.10 2.80	2.80 RR 2.80 RR	356.97 201.60	7.95 7.71	5.19 4.17	1.57 2 ø 10.0 1.57 2 ø 10.0 0.4 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 27.68
L2 1:20	20.00 X 35.00	2.30 2.30	2.30 RR 2.30 RR	559.13 322.45	8.68 8.45	4.54 5.97	1.57 2 ø 10.0 1.57 2 ø 10.0 0.4 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 22.74
L1 1:20	20.00 X 35.00	0.00 0.95	0.95 RR 0.95 RR	755.70 441.06	7.07 5.55	1.94 4.54	1.57 2 ø 10.0 1.57 2 ø 10.0 0.4 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 9.39

	D	ados				Resi	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 20.00	7.90 2.80	2.80 RR 2.80 RR	68.85 37.45	10.09 9.76	2.21 2.17	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L3 1:20	20.00 X 20.00	5.10 2.80	2.80 RR 2.80 RR	158.61 91.81	9.92 9.78	3.72 3.69	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L2 1:20	20.00 X 20.00	2.30 2.30	2.30 RR 2.30 RR	248.96 146.56	11.01 10.36	4.31 4.26	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 39.79
L1 1:20	20.00 X 20.00	0.00 0.95	0.95 RR 0.95 RR	338.99 202.08	14.23 7.67	3.24 2.77	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 16.43

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 20.00	7.90 2.80	2.80 RR 2.80 RR	42.66 23.35	8.54 8.46	4.26 4.03	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L3 1:20	20.00 X 20.00	5.10 2.80	2.80 RR 2.80 RR	101.27 59.90	8.88 8.61	4.97 4.74	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L2 1:20	20.00 X 20.00	2.30 2.30	2.30 RR 2.30 RR	159.16 95.97	9.43 8.83	5.33 5.11	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 39.79
L1 1:20	20.00 X 20.00	0.00 0.95	0.95 RR 0.95 RR	215.34 132.01	11.46 6.38	4.69 3.24	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 16.43

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 20.00	7.90 2.80	2.80 RR 2.80 RR	83.24 46.34	2.58 2.63	5.28 5.33	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L3 1:20	20.00 X 20.00	5.10 2.80	2.80 RR 2.80 RR	198.53 117.63	3.57 3.51	6.53 6.35	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L2 1:20	20.00 X 20.00	2.30 2.30	2.30 RR 2.30 RR	313.99 188.80	3.97 3.85	7.33 7.11	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 39.79
L1 1:20	20.00 X 20.00	0.00 0.95	0.95 RR 0.95 RR	426.69 259.33	3.88 2.74	8.09 4.85	1.57 2 ø 10.0 1.57 2 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 16.43

			0.8 4 ø	
			10.0	

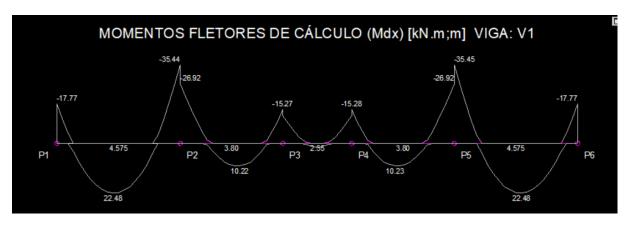
	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 20.00	7.90 2.80	2.80 RR 2.80 RR	48.01 26.80	4.97 4.97	10.59 11.06	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L3 1:20	20.00 X 20.00	5.10 2.80	2.80 RR 2.80 RR	120.46 72.88	5.70 5.49	12.35 11.97	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L2 1:20	20.00 X 20.00	2.30 2.30	2.30 RR 2.30 RR	192.50 118.82	5.99 5.70	13.39 12.62	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 39.79
L1 1:20	20.00 X 20.00	0.00 0.95	0.95 RR 0.95 RR	263.98 165.34	6.64 4.09	16.33 8.85	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 16.43

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 20.00	7.90 2.80	2.80 RR 2.80 RR	48.01 26.81	4.98 4.97	10.59 11.06	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L3 1:20	20.00 X 20.00	5.10 2.80	2.80 RR 2.80 RR	120.46 72.88	5.70 5.49	12.35 11.97	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L2 1:20	20.00 X	2.30 2.30	2.30 RR	192.51 118.83	6.00 5.70	13.39 12.62	1.57 2 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 39.79

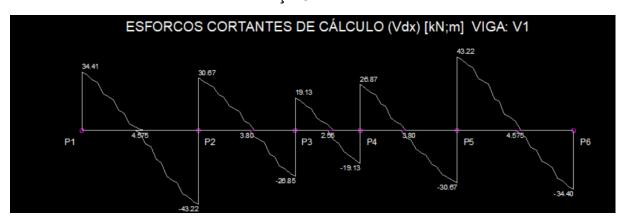
	20.00		2.30 RR				1.57 2 ø 10.0 0.8 4 ø 10.0	45	
L1 1:20	20.00 X 20.00	0.00 0.95	0.95 RR 0.95 RR	264.00 165.35	6.64 4.09	16.34 8.85	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 16.43

	D	ados				Res	ultados		
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h
L4 1:20	20.00 X 20.00	7.90 2.80	2.80 RR 2.80 RR	83.24 46.34	2.58 2.63	5.28 5.33	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L3 1:20	20.00 X 20.00	5.10 2.80	2.80 RR 2.80 RR	198.52 117.63	3.57 3.52	6.53 6.35	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L2 1:20	20.00 X 20.00	2.30 2.30	2.30 RR 2.30 RR	313.98 188.79	3.97 3.85	7.33 7.11	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 39.79
L1 1:20	20.00 X 20.00	0.00 0.95	0.95 RR 0.95 RR	426.68 259.32	3.88 2.74	8.09 4.85	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 16.43

	D	ados			Resultados							
Lance	Seção (cm)	Nível Altura (m)	lib vínc lih vínc (m)	Nd máx Nd mín (kN)	MBd topo MBd base (kN.m)	MHd topo MHd base (kN.m)	As b Armaduras As h % armad total	Estribo Topo Base cota	Esb b Esb h			
L4 1:20	20.00 X 20.00	7.90 2.80	2.80 RR 2.80 RR	42.66 23.35	8.54 8.46	4.25 4.03	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44			


L3 1:20	20.00 X 20.00	5.10 2.80	2.80 RR 2.80 RR	101.27 59.90	8.88 8.60	4.97 4.74	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	48.44 48.44
L2 1:20	20.00 X 20.00	2.30 2.30	2.30 RR 2.30 RR	159.15 95.96	9.42 8.83	5.33 5.11	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	39.79 39.79
L1 1:20	20.00 X 20.00	0.00 0.95	0.95 RR 0.95 RR	215.34 132.00	11.46 6.37	4.69 3.24	1.57 2 ø 10.0 1.57 2 ø 10.0 0.8 4 ø 10.0	ø 5.0 c/12 ø 5.0 c/12	16.43 16.43

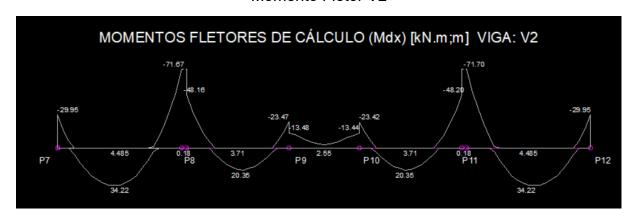
Apêndice G - Resultados das Vigas Segundo Andar - EBERICK


fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento = 3.00	Peso específico = 25.00
cm	kN/m³

	Dados					Resultados			
Pilar Trecho	Apoio 1 e 1o (m)	Seção (cm)	As Inf (cm²)	As Sup (cm²)	As esq trecho (cm²)	Asw min (cm²)	As dir trecho (cm²)	Asw Pele (cm²)	Fissura (mm)
P1	0.20			3 ø 8.0 1.35					0.05
1	4.35	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.09
P2	0.25			4 ø 8.0 2.04					0.13
2	3.58	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.02
Р3	0.20			3 ø 8.0 1.35					0.04
3	2.35	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.00
P4	0.20			3 ø 8.0 1.35					0.04
4	3.58	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.02
P5	0.25			4 ø 8.0 2.04					0.13
5	4.35	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.09
P6	0.20			3 ø 8.0 1.35					0.05

Momento Fletor V1

Esforço Cortante V1


Resultados da Viga V2

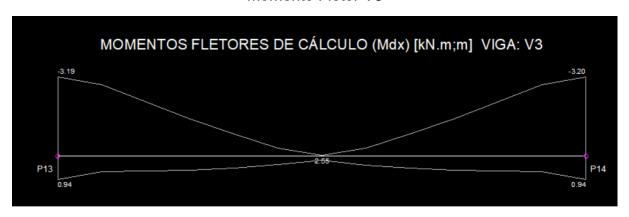
fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento = 3.00	Peso específico = 25.00
cm	kN/m³

	Dados					Resultados			
Pilar Trecho	Apoio 1 e 1o (m)	Seção (cm)	As Inf (cm²)	As Sup (cm²)	As esq trecho (cm²)	Asw min (cm²)	As dir trecho (cm²)	Asw Pele (cm²)	Fissura (mm)
P7	0.20			4 ø 8.0 1.72					0.08
1	4.25	20.00 x 45.00	4 ø 8.0 1.97			ø 5.0 c/ 17			0.12
P8	0.45			4 ø 12.5 4.30					0.12
2	3.48	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.07
Р9	0.20			3 ø 8.0 1.35					0.08
3	2.35	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.00
P10	0.20			3 ø 8.0 1.35					0.08
4	3.48	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.07

P11	0.45			4 ø 12.5 4.30			0.12
5	4.25	20.00 x 45.00	4 ø 8.0 1.97		ø 5.0 c/ 17		0.12
P12	0.20			4 ø 8.0 1.72			0.08

Momento Fletor V2

Esforço Cortante V2



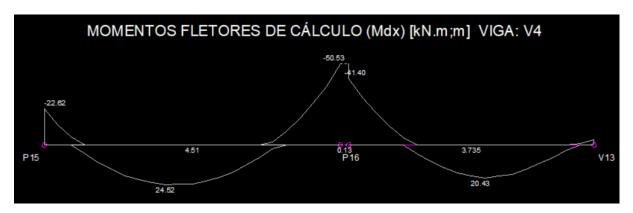
Resultados da Viga V3


fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento = 3.00	Peso específico = 25.00
cm	kN/m³

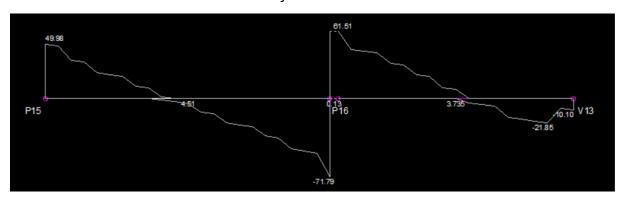
	Dados		Resultados							
Pilar Trecho	Apoio 1 e 1o (m)	Seção (cm)	As Inf (cm²)	As Sup (cm²)	As esq trecho (cm²)	Asw min (cm²)	As dir trecho (cm²)	Asw Pele (cm²)	Fissura (mm)	
P13	0.20			3 ø 8.0 1.35					0.00	
1	2.35	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.00	
P14	0.20			3 ø 8.0 1.35					0.00	

Momento Fletor V3

Esforço Cortante V3



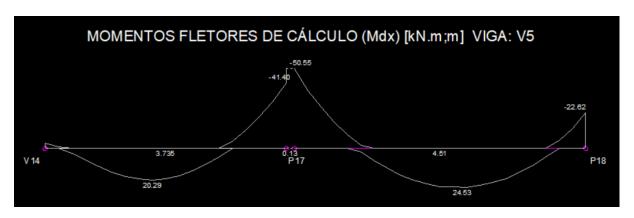
Resultados da Viga V4


fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento = 3.00	Peso específico = 25.00
cm	kN/m³

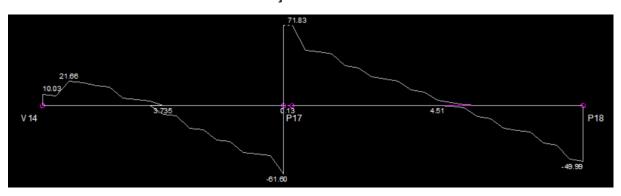
	Dados					Resultados			
Pilar Trecho	Apoio 1 e 1o (m)	Seção (cm)	As Inf (cm²)	As Sup (cm²)	As esq trecho (cm²)	Asw min (cm²)	As dir trecho (cm²)	Asw Pele (cm²)	Fissura (mm)
P15	0.20			3 ø 8.0 1.35					0.08
1	4.28	20.00 x 45.00	3 ø 8.0 1.40			ø 5.0 c/ 17			0.10
P16	0.40			4 ø 10.0 2.96					0.12
2	3.50	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.07
V13	0.20			3 ø 8.0 1.35					0.00

Momento Fletor V4

Esforço Cortante V4



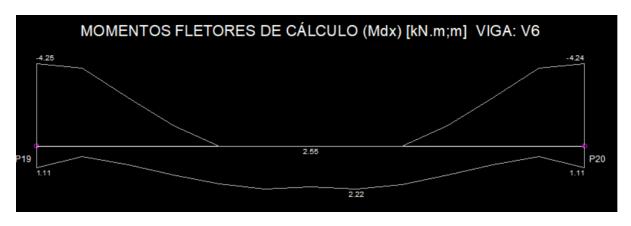
Resultados da Viga V5


fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento $= 3.00$	Peso específico = 25.00
cm	kN/m³

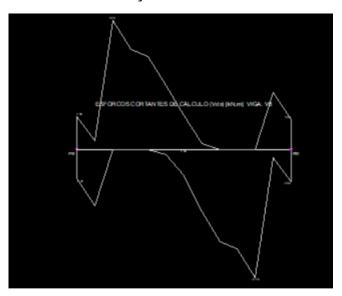
	Dados					Resultados			
Pilar Trecho	Apoio 1 e 1o (m)	Seção (cm)	As Inf (cm²)	As Sup (cm²)	As esq trecho (cm²)	Asw min (cm²)	As dir trecho (cm²)	Asw Pele (cm²)	Fissura (mm)
V14	0.20			3 ø 8.0 1.35					0.00
1	3.50	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.07
P17	0.40			4 ø 10.0 2.96					0.12
2	4.28	20.00 x 45.00	3 ø 8.0 1.40			ø 5.0 c/ 17			0.10
P18	0.20			3 ø 8.0 1.35					0.08

Momento Fletor V5

Esforço Cortante V5



Resultados da Viga V6

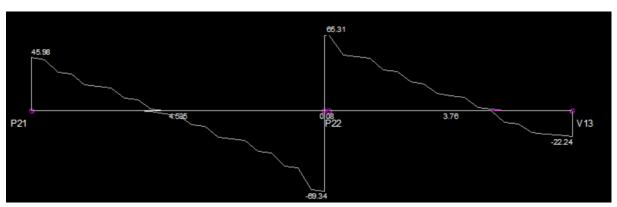

fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento = 3.00	Peso específico = 25.00
cm	kN/m³

	Dados			Resultados							
Pilar Trecho	Apoio 1 e 1o (m)	Seção (cm)	As Inf (cm²)	As Sup (cm²)	As esq trecho (cm²)	Asw min (cm²)	As dir trecho (cm²)	Asw Pele (cm²)	Fissura (mm)		
P19	0.20			3 ø 8.0 1.35					0.00		
1	2.35	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.00		
P20	0.20			3 ø 8.0 1.35					0.00		

Momento Fletor V6

Esforço Cortante V6

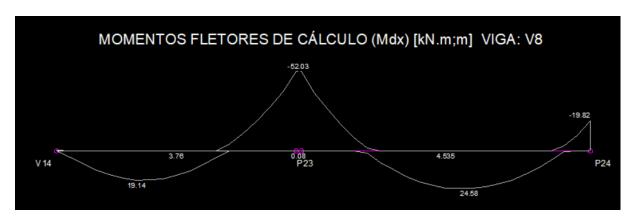
Resultados da Viga V7


fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento = 3.00	Peso específico = 25.00
cm	kN/m³

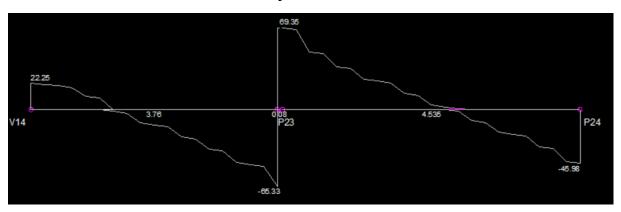
	Dados					Resultados			
Pilar Trecho	Apoio 1 e 1o (m)	Seção (cm)	As Inf (cm²)	As Sup (cm²)	As esq trecho (cm²)	Asw min (cm²)	As dir trecho (cm²)	Asw Pele (cm²)	Fissura (mm)
P21	0.20			3 ø 8.0 1.35					0.06
1	4.30	20.00 x 45.00	3 ø 8.0 1.40			ø 5.0 c/ 17			0.11
P22	0.35			4 ø 10.0 3.05					0.13
2	3.52	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.06
V13	0.20			3 ø 8.0 1.35					0.00

Momento Fletor V7

Esforço Cortante V7



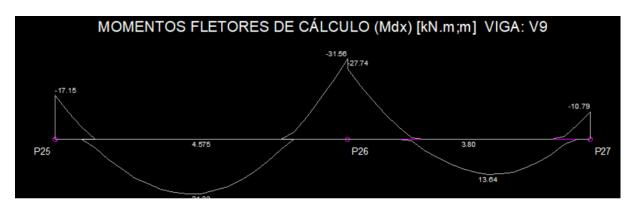
Resultados da Viga V8


fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento = 3.00	Peso específico = 25.00
cm	kN/m³

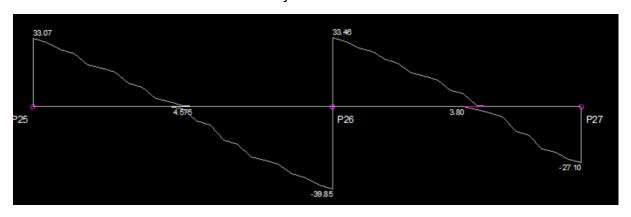
	Dados			Resultados							
Pilar Trecho	Apoio 1 e 1o (m)	Seção (cm)	As Inf (cm²)	As Sup (cm²)	As esq trecho (cm²)	Asw min (cm²)	As dir trecho (cm²)	Asw Pele (cm²)	Fissura (mm)		
V14	0.20			3 ø 8.0 1.35					0.00		
1	3.52	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.06		
P23	0.35			4 ø 10.0 3.05					0.13		
2	4.30	20.00 x 45.00	3 ø 8.0 1.40			ø 5.0 c/ 17			0.11		
P24	0.20			3 ø 8.0 1.35					0.06		

Momento Fletor V8

Esforço Cortante V8



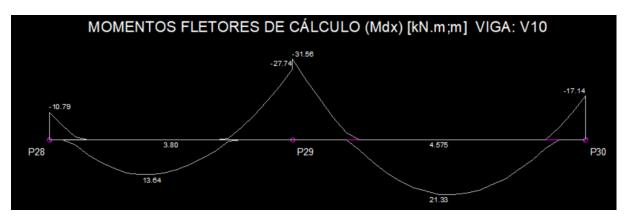
Resultados da Viga V9


fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento = 3.00	Peso específico = 25.00
cm	kN/m³

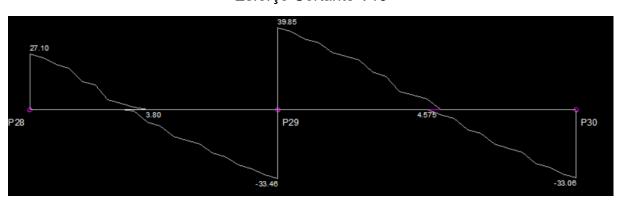
	Dados					Resultados			
Pilar Trecho	Apoio 1 e 1o (m)	Seção (cm)	As Inf (cm²)	As Sup (cm²)	As esq trecho (cm²)	Asw min (cm²)	As dir trecho (cm²)	Asw Pele (cm²)	Fissura (mm)
P25	0.20			3 ø 8.0 1.35					0.05
1	4.38	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.08
P26	0.20			4 ø 8.0 1.81					0.10
2	3.60	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.03
P27	0.20			3 ø 8.0 1.35					0.02

Momento Fletor V9

Esforço Cortante V9



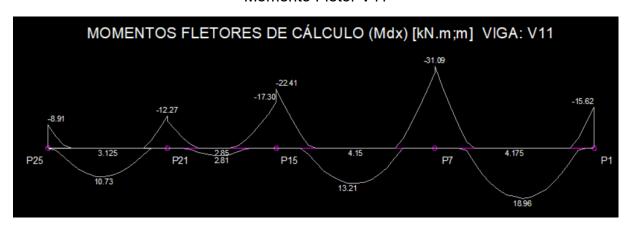
Resultados da Viga V10


fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento = 3.00	Peso específico = 25.00
cm	kN/m³

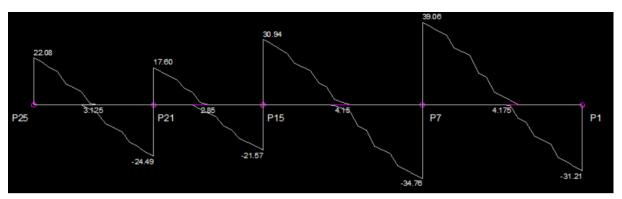
	Dados					Resultados			
Pilar Trecho	Apoio 1 e 1o (m)	Seção (cm)	As Inf (cm²)	As Sup (cm²)	As esq trecho (cm²)	Asw min (cm²)	As dir trecho (cm²)	Asw Pele (cm²)	Fissura (mm)
P28	0.20			3 ø 8.0 1.35					0.02
1	3.60	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.03
P29	0.20			4 ø 8.0 1.81					0.10
2	4.38	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.08
P30	0.20			3 ø 8.0 1.35					0.05

Momento Fletor V10

Esforço Cortante V10



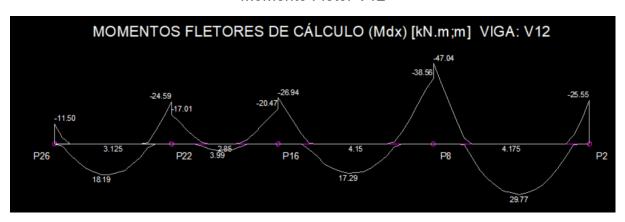
Resultados da Viga V11


fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento = 3.00	Peso específico = 25.00
cm	kN/m³

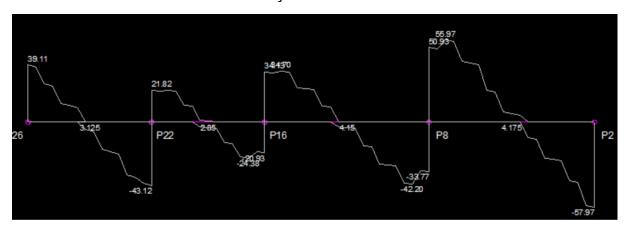
Dados			Resultados						
Pilar Trecho	Apoio 1 e 1o (m)	Seção (cm)	As Inf (cm²)	As Sup (cm²)	As esq trecho (cm²)	Asw min (cm²)	As dir trecho (cm²)	Asw Pele (cm²)	Fissura (mm)
P25	0.20			3 ø 8.0 1.35					0.01
1	2.93	20.00 x 45.00	2 ø 10.0 1.35			ø 5.0 c/ 17			0.02
P21	0.20			3 ø 8.0 1.35					0.02
2	2.63	20.00 x 45.00	2 ø 10.0 1.35			ø 5.0 c/ 17			0.00
P15	0.25			3 ø 8.0 1.35					0.08
3	3.90	20.00 x 45.00	2 ø 10.0 1.35			ø 5.0 c/ 17			0.04
P7	0.25			4 ø 8.0 1.79					0.09
4	3.95	20.00 x 45.00	2 ø 10.0 1.35			ø 5.0 c/ 17			0.08
P1	0.20			3 ø 8.0 1.35					0.04

Momento Fletor V11

Esforço Cortante V11


Resultados da Viga V12

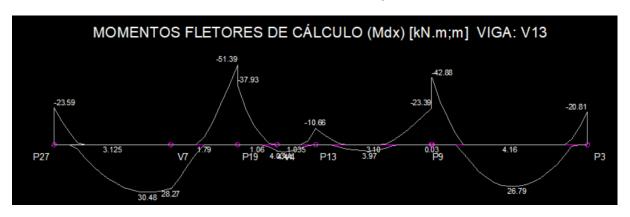
fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento = 3.00	Peso específico = 25.00
cm	kN/m³


	Dados					Resultados			
Pilar Trecho	Apoio 1 e 1o (m)	Seção (cm)	As Inf (cm²)	As Sup (cm²)	As esq trecho (cm²)	Asw min (cm²)	As dir trecho (cm²)	Asw Pele (cm²)	Fissura (mm)
P26	0.20			3 ø 8.0 1.35					0.02
1	2.93	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.06
P22	0.20			3 ø 8.0 1.40					0.10
2	2.65	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.00
P16	0.20			2 ø 10.0 1.55					0.13
3	3.95	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.05
P8	0.20			4 ø 10.0 2.75					0.11

4	3.98	20.00 x 45.00	3 ø 10.0 1.71		ø 5.0 c/ 17		0.08
P2	0.20			2 ø 10.0 1.46			0.11

Momento Fletor V12

Esforço Cortante V12


Resultados da Viga V13

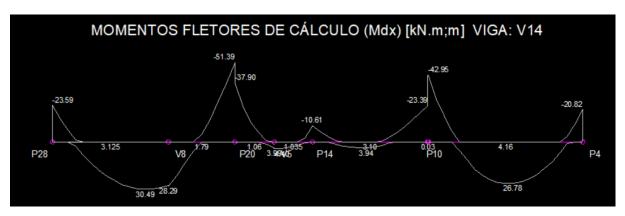
fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento = 3.00	Peso específico = 25.00
cm	kN/m³

	Dados					Resultados			
Pilar Trecho	Apoio 1 e 1o (m)	Seção (cm)	As Inf (cm²)	As Sup (cm²)	As esq trecho (cm²)	Asw min (cm²)	As dir trecho (cm²)	Asw Pele (cm²)	Fissura (mm)
P27	0.20			3 ø 8.0 1.35					0.09
1	4.69	20.00 x 45.00	4 ø 8.0 1.75			ø 5.0 c/ 17			0.10
P19	0.25			4 ø 10.0 3.02					0.13
2	1.87	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.00

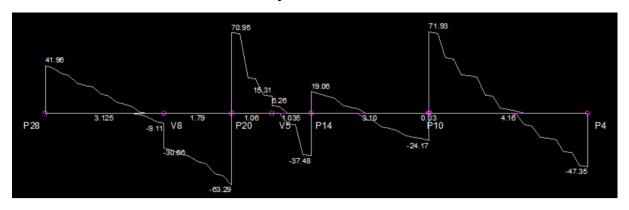
P13	0.20			3 ø 8.0 1.35			0.02
3	2.87	20.00 x 45.00	3 ø 8.0 1.35		ø 5.0 c/ 17		0.00
Р9	0.30			4 ø 10.0 2.50			0.09
4	3.93	20.00 x 45.00	2 ø 10.0 1.54		ø 5.0 c/ 17		0.15
Р3	0.20			3 ø 8.0 1.35			0.06

Momento Fletor V13

Esforço Cortante V13


Resultados da Viga V14

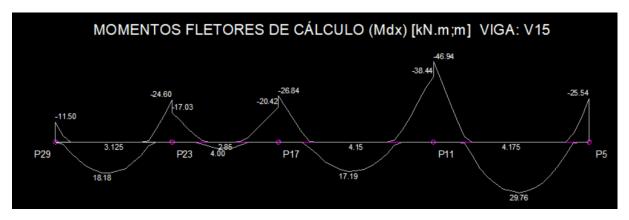
fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento = 3.00	Peso específico = 25.00
cm	kN/m³


	Dados			Resultados								
Pilar Trecho	Apoio 1 e 1o (m)	Seção (cm)	As Inf (cm²)	As Sup (cm²)	As esq trecho (cm²)	Asw min (cm²)	As dir trecho (cm²)	Asw Pele (cm²)	Fissura (mm)			
P28	0.20			3 ø 8.0 1.35					0.09			
1	4.69	20.00 x 45.00	4 ø 8.0 1.75			ø 5.0 c/ 17			0.10			

P20	0.25			4 ø 10.0 3.02		0.13
2	1.87	20.00 x 45.00	3 ø 8.0 1.35		ø 5.0 c/ 17	0.00
P14	0.20			3 ø 8.0 1.35		0.02
3	2.87	20.00 x 45.00	3 ø 8.0 1.35		ø 5.0 c/ 17	0.00
P10	0.30			4 ø 10.0 2.50		0.09
4	3.93	20.00 x 45.00	2 ø 10.0 1.54		ø 5.0 c/ 17	0.15
P4	0.20			3 ø 8.0 1.35		0.06

Momento Fletor V14

Esforço Cortante V14


Resultados da Viga V15

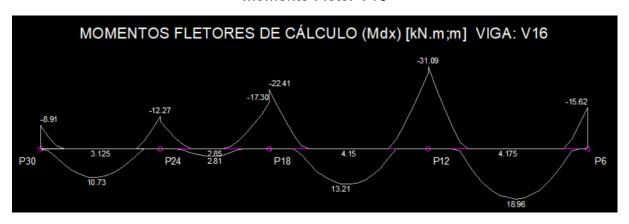
fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento = 3.00	Peso específico = 25.00
cm	kN/m³


	Dados		Resultados						
Pilar	Apoio	Seção	As Inf	As Sup	As esq	Asw min	As dir	Asw Pele	Fissura

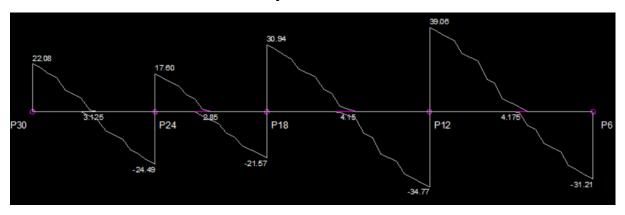
Trecho	1 e 1o (m)	(cm)	(cm²)	(cm²)	trecho (cm²)	(cm²)	trecho (cm²)	(cm²)	(mm)
P29	0.20			3 ø 8.0 1.35					0.02
1	2.93	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.06
P23	0.20			3 ø 8.0 1.41					0.10
2	2.65	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.00
P17	0.20			2 ø 10.0 1.54					0.13
3	3.95	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.05
P11	0.20			4 ø 10.0 2.74					0.11
4	3.98	20.00 x 45.00	4 ø 8.0 1.71			ø 5.0 c/ 17			0.09
P5	0.20			2 ø 10.0 1.46					0.11

Momento Fletor V15

Esforço Cortante V15



Resultados da Viga V16


fck = 30.00 MPa	Ecs = 26838 MPa
Cobrimento = 3.00	Peso específico = 25.00
cm	kN/m³

	Dados					Resultados			
Pilar Trecho	Apoio 1 e 1o (m)	Seção (cm)	As Inf (cm²)	As Sup (cm²)	As esq trecho (cm²)	Asw min (cm²)	As dir trecho (cm²)	Asw Pele (cm²)	Fissura (mm)
P30	0.20			3 ø 8.0 1.35					0.01
1	2.93	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.02
P24	0.20			3 ø 8.0 1.35					0.02
2	2.63	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.00
P18	0.25			3 ø 8.0 1.35					0.08
3	3.90	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.03
P12	0.25			4 ø 8.0 1.79					0.09
4	3.95	20.00 x 45.00	3 ø 8.0 1.35			ø 5.0 c/ 17			0.07
P6	0.20			3 ø 8.0 1.35					0.04

Momento Fletor V16

Esforço Cortante V16

APÊNDICE H - Resultados das Lajes Segundo Andar - EBERICK

Segundo Andar	fck = 30.00 MPa	E = 26838 MPa	Peso Espec = 25.00 kN/m ³
Lance 3		cobr = 2.50 cm	

Nome	Espessura (cm)	Carga (kN/m²)	Mdx (kN.m/m)	Mdy (kN.m/m)	Asx	Asy
L1	15	7.09	7.54	7.53	As = $1.51 \text{ cm}^2/\text{m}$ ($\emptyset 6.3 \text{ c}/20 - 1.56$	As = $1.53 \text{ cm}^2/\text{m}$ ($\emptyset 6.3 \text{ c}/20 - 1.56$
	1.5	5.15	4.51	6.15	cm^2/m) As = 1.51 cm ² /m	cm^2/m) As = 1.53 cm ² /m
L2	15	7.17	4.51	6.17	$(\emptyset 6.3 \text{ c/}20 - 1.56 \text{ cm}^2/\text{m})$ $As = 1.51 \text{ cm}^2/\text{m}$	$(\emptyset 6.3 \text{ c/}20 - 1.56 \text{ cm}^2/\text{m})$ $As = 1.53 \text{ cm}^2/\text{m}$
L3	15	7.40	2.82	5.66	(ø6.3 c/20 - 1.56 cm²/m)	(ø6.3 c/20 - 1.56 cm²/m)
L4	15	7.17	4.20	6.17	As = $1.51 \text{ cm}^2/\text{m}$ ($\emptyset 6.3 \text{ c}/20 - 1.56$ cm ² /m)	As = $1.53 \text{ cm}^2/\text{m}$ ($\emptyset 6.3 \text{ c}/20 - 1.56$ cm ² /m)
L5	15	7.09	7.54	7.53	As = 1.51 cm ² /m (ø6.3 c/20 - 1.56 cm ² /m)	As = 1.53 cm ² /m (ø6.3 c/20 - 1.56 cm ² /m)
L6	15	6.25	3.52	7.36	As = 1.51 cm ² /m (ø6.3 c/20 - 1.56 cm ² /m)	As = 1.53 cm ² /m (ø6.3 c/20 - 1.56 cm ² /m)
L7	15	6.53	4.84	3.67	As = 1.51 cm ² /m (ø6.3 c/20 - 1.56 cm ² /m)	As = 1.53 cm ² /m (ø6.3 c/20 - 1.56 cm ² /m)
L8	15	6.52	4.33	3.40	As = 1.51 cm ² /m (Ø6.3 c/20 - 1.56 cm ² /m)	As = 1.53 cm ² /m (ø6.3 c/20 - 1.56 cm ² /m)
L9	15	6.25	3.53	7.36	As = $1.51 \text{ cm}^2/\text{m}$ ($66.3 \text{ c}/20 - 1.56 \text{ cm}^2/\text{m}$)	As = $1.53 \text{ cm}^2/\text{m}$ ($66.3 \text{ c}/20 - 1.56 \text{ cm}^2/\text{m}$)
L10	15	5.34	0.10	1.51	As = $1.13 \text{ cm}^2/\text{m}$ ($66.3 \text{ c}/25 - 1.25$ cm ² /m)	As = $2.32 \text{ cm}^2/\text{m}$ (Ø8.0 c/20 - 2.51 cm²/m)
L11	15	5.25	0.33	5.30	As = 1.13 cm ² /m (ø6.3 c/25 - 1.25 cm ² /m)	As = $2.32 \text{ cm}^2/\text{m}$ (Ø8.0 c/20 - $2.51 \text{ cm}^2/\text{m}$)
L12	15	6.73	3.65	4.97	As = 1.51 cm ² /m (ø6.3 c/20 - 1.56 cm ² /m)	As = 1.53 cm ² /m (ø6.3 c/20 - 1.56 cm ² /m)
L13	15	6.73	3.65	4.98	As = 1.51 cm ² /m (ø6.3 c/20 - 1.56 cm ² /m)	As = 1.53 cm ² /m (ø6.3 c/20 - 1.56 cm ² /m)
L14	15	5.25	0.33	5.30	As = 1.13 cm ² /m (ø6.3 c/25 - 1.25 cm ² /m)	As = 2.32 cm ² /m (Ø8.0 c/20 - 2.51 cm ² /m)
L15	15	6.25	4.99	5.25	As = 1.51 cm ² /m (Ø6.3 c/20 - 1.56 cm ² /m)	As = 1.53 cm ² /m (ø6.3 c/20 - 1.56 cm ² /m)
L16	15	6.61	6.40	5.00	As = 1.51 cm ² /m (ø6.3 c/20 - 1.56 cm ² /m)	As = 1.53 cm ² /m (ø6.3 c/20 - 1.56 cm ² /m)
L17	15	6.61	6.40	5.00	As = $1.51 \text{ cm}^2/\text{m}$ ($\emptyset 6.3 \text{ c}/20 - 1.56$	As = $1.53 \text{ cm}^2/\text{m}$ ($6.3 \text{ c}/20 - 1.56$
L18	15	6.25	4.99	5.25	cm^2/m) As = 1.51 cm ² /m	cm^2/m) As = 1.53 cm ² /m

		(ø6.3 c/20 - 1.56	(ø6.3 c/20 - 1.56
		cm ² /m)	cm ² /m)

	D.:		A	ARMADURA N		14 . 1	
Viga	Trecho	dos Laje 1	Laje 2	Reação 1 (kN/m)	Reação 2 (kN/m)	esultados Md (kN.m/m)	As (cm²)
V12	4	L1	L2	6.92	6.51	-10.59	As = $2.25 \text{ cm}^2/\text{m}$ ($66.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V2	1	L1	L6	11.41	10.41	-13.95	As = 2.73 cm ² /m (Ø8.0 c/18 - 2.79 cm ² /m)
V13	6	L2	L3	7.20	8.05	-7.76	As = $2.25 \text{ cm}^2/\text{m}$ ($66.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V2	2	L2	L7	8.63	8.21	-11.15	As = $2.25 \text{ cm}^2/\text{m}$ ($6.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V14	6	L3	L4	8.02	7.24	-7.73	As = $2.25 \text{ cm}^2/\text{m}$ ($6.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V15	4	L4	L5	6.49	6.92	-10.58	As = $2.25 \text{ cm}^2/\text{m}$ ($6.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V2	4	L4	L8	8.60	8.22	-11.13	As = $2.25 \text{ cm}^2/\text{m}$ ($6.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V2	5	L5	L9	11.41	10.41	-13.94	As = $2.72 \text{ cm}^2/\text{m}$ (ø8.0 c/18 - 2.79 cm²/m)
V12	3	L6	L7	3.58	4.59	-9.80	As = $2.25 \text{ cm}^2/\text{m}$ ($6.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V4	1	L6	L11	6.15	5.05	-6.22	As = $2.25 \text{ cm}^2/\text{m}$ ($6.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V4	2	L7	L12	4.87	2.91	-6.87	As = $2.25 \text{ cm}^2/\text{m}$ ($6.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V13	4	L7	L10	16.41	7.10	-12.21	As = $2.38 \text{ cm}^2/\text{m}$ ($\emptyset 8.0 \text{ c}/20 - 2.51 \text{ cm}^2/\text{m}$)
V15	3	L8	L9	4.56	3.57	-9.76	As = $2.25 \text{ cm}^2/\text{m}$ ($6.3 \text{ c}/13 - 2.40$ cm ² /m)
V14	4	L8	L10	16.32	7.00	-12.01	As = $2.34 \text{ cm}^2/\text{m}$ (ø8.0 c/20 - 2.51 cm ² /m)
V5	1	L8	L13	4.88	2.90	-6.75	As = $2.25 \text{ cm}^2/\text{m}$ ($6.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V5	2	L9	L14	6.16	5.05	-6.22	As = $2.25 \text{ cm}^2/\text{m}$ ($6.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V14	3	L10	L13	14.90	18.45	-14.57	$As = 2.85 \text{ cm}^2/\text{m}$ (ø8.0 c/17 - 2.96 cm²/m)
V13	3	L10	L12	14.90	18.45	-14.55	As = 2.85 cm ² /m (ø8.0 c/17 - 2.96 cm ² /m)
V12	2	L11	L12	3.07	3.92	-9.08	As = $2.25 \text{ cm}^2/\text{m}$ ($66.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V7	1	L11	L18	4.74	6.48	-6.16	$As = 2.25 \text{ cm}^2/\text{m}$

							(ø6.3 c/13 - 2.40 cm ² /m)
V7	2	L12	L17	3.53	6.48	-5.75	As = $2.25 \text{ cm}^2/\text{m}$ ($6.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V15	2	L13	L14	3.92	3.07	-9.09	As = $2.25 \text{ cm}^2/\text{m}$ ($66.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V8	1	L13	L16	3.54	6.48	-5.75	As = $2.25 \text{ cm}^2/\text{m}$ ($6.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V8	2	L14	L15	4.74	6.48	-6.16	As = $2.25 \text{ cm}^2/\text{m}$ ($6.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m}$)
V15	1	L15	L16	6.41	5.05	-9.86	As = $2.25 \text{ cm}^2/\text{m}$ ($6.3 \text{ c}/13 - 2.40$ cm ² /m)
V12	1	L17	L18	5.05	6.41	-9.85	$As = 2.25 \text{ cm}^2/\text{m}$ (\varphi 6.3 \text{ c}/13 - 2.40 \text{ cm}^2/\text{m})

APÊNDICE I – Resultados dos Pilares - CYPECAD

		,	Resumo d	las verificaç	ões				_			
		Dimensã			Esfor	ços desf	avoráve	is			Aprov	
Pilare s	Tramo	o (cm)	Posição	Natureza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	Desfavoráve I	(%)	Estad 0
			Ext.Superior	AP, SCU, V	38.8	3.6	4.2	-5.0	4.2	N,M	12.7	Passa
	Terceiro Andar (5.15 - 7.95 m)	25x30	Ext.Inferior	AP, SCU, V	44.9	-6.2	-7.6	-5.0	4.2	Q	11.6	Passa
			LXC.IIIIeiioi	AP, SCU, V	44.0	-3.5	-8.9	-5.9	2.3	N,M	27.1	Passa
			Ext.Superior	AP, SCU, V	107.4	6.7	10.6	-9.1	5.7	Q	19.2	Passa
	Segundo Andar (2.35 - 5.15 m)	25x30	Ext. Superior	AP, SCU, V	104.5	7.8	9.9	-8.5	6.5	N,M	28.2	Passa
			Ext.Inferior	AP, SCU, V	113.5	-6.6	-10.7	-9.1	5.7	N,M	27.9	Passa
			2.35 m	AP, SCU, V	111.2	-4.8	-11.6	-9.9	4.1	Q	3.3	Passa
				AP, SCU, V	113.5	-6.6	-10.7	-9.1	5.7	N,M	27.9	Passa
	Primeiro Andar (-0.45 - 2.35 m)	25x30	Ext.Superior	AP, SCU, V	170.5	7.7	7.5	-5.1	6.4	N,M	24.1	Passa
			Ext.Inferior	AP, SCU, V	169.0	-2.2	-7.0	-7.0	2.4	Q	12.8	Passa
				AP, SCU, V	176.6	-7.4	-4.6	-5.1	6.4	N,M	20.7	Passa
			Ext.Superior	AP, SCU, V	219.7	1.5	5.3	-50.8	22.8	Q	56.9	Passa
	Térreo (-0.950.45 m)	25x30	,	AP, SCU, V	236.8	-3.4	3.0	-52.3	24.7	N,M	19.5	Passa
			Ext.Inferior	AP, SCU, V	239.0	0.1	-1.1	-56.8	24.3	Q	55.5	Passa
				AP, SCU,	236.9	-4.6	0.4	-52.3	24.7	N,M	20.1	Passa
	Fundação	25x30	Elemento de Fundação	AP, SCU,	239.0	0.1	-1.1	-56.8	24.3	Q	19.0	Passa
			Tundação	AP, SCU, V	236.9	-4.6	0.4	-52.3	24.7	N,M	20.1	Passa
Terceiro Andar (5.15 - 7.95 m)	25x30	Ext.Superior	AP, SCU, V	45.5	8.9	-2.1	2.7	10.3	Q	18.7	Passa	
P27	. ,		Ext.Inferior	AP, SCU,	51.5	-15.4	4.3	2.7	10.3	N,M	38.6	Passa
	Segundo Andar (2.35 - 5.15 m)	25x30	Ext.Superior	AP, SCU, V	132.6	19.4	-6.5	5.5	16.6	N,M	39.2	Passa
	III <i>)</i>		Ext.Inferior	AP, SCU, V	138.7	-19.5	6.4	5.5	16.6	N,M	38.9	Passa

			Resumo	das verificaç	;ões							
Pilare		Dimensã			Esfor	ços desf	1	is	1	Desfavoráve	Aprov	Estad
S	Tramo	o (cm)	Posição	Natureza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	I	(%)	0
			2.35 m	AP, SCU, V	138.7	-19.5	6.4	5.5	16.6	N,M	38.9	Passa
	Primeiro Andar (-0.45 - 2.35	25x30	Ext.Superior	AP, SCU, V	207.6	16.4	-4.4	3.0	12.4	Q	21.9	Passa
	m)	23,50	LXt.Superior	AP, SCU, V	216.5	16.0	-4.7	3.2	11.6	N,M	30.9	Passa
			Ext.Inferior	AP, SCU, V	213.6	-12.7	2.7	3.0	12.4	N,M	25.5	Passa
			Ext.Superior	AP, SCU, V	283.1	9.6	-2.2	39.3	71.1	Q	92.0	Passa
	Térreo (-0.950.45 m)	25x30	LXt.Superior	AP, SCU, V	306.8	5.2	-1.0	42.8	77.9	N,M	25.6	Passa
	Terreo (-0.930.43 III)	23830	Ext.Inferior	AP, SCU, V	306.7	-1.6	-0.3	41.8	79.0	Q	78.9	Passa
			EXC.IIIIEIIOI	AP, SCU, V	300.6	4.2	-0.3	41.8	76.7	N,M	24.7	Passa
	Fundação	25,20	Elemento de	AP, SCU, V	306.7	-1.6	-0.3	41.8	79.0	Q	26.9	Passa
	rundação	25x30	Fundação	AP, SCU, V	300.6	4.2	-0.3	41.8	76.7	N,M	24.7	Passa
			Ext.Superior	AP, SCU, V	45.5	8.9	2.1	-2.7	10.3	Q	18.7	Passa
	Terceiro Andar (5.15 - 7.95 m)	25x30	Ext.Inferior	AP, SCU, V	51.5	-15.4	-4.3	-2.7	10.3	N,M	38.6	Passa
	Segundo Andar (2.35 - 5.15		Ext.Superior	AP, SCU, V	132.6	19.4	6.5	-5.5	16.6	N,M	39.3	Passa
	m)	25x30	Ext.Inferior	AP, SCU, V	138.7	-19.5	-6.5	-5.5	16.6	N,M	38.9	Passa
			2.35 m	AP, SCU, V	138.7	-19.5	-6.5	-5.5	16.6	N,M	38.9	Passa
	Primeiro Andar (-0.45 - 2.35 m)			AP, SCU, V	207.6	16.4	4.4	-3.0	12.4	Q	21.9	Passa
		25x30	Ext.Superior	AP, SCU, V	216.5	16.0	4.7	-3.2	11.6	N,M	30.9	Passa
P28			Ext.Inferior	AP, SCU, V	213.6	-12.7	-2.7	-3.0	12.4	N,M	25.5	Passa
				AP, SCU, V	283.2	9.6	2.2	-39.3	71.1	Q	92.0	Passa
	_, ,		Ext.Superior	AP, SCU, V	306.8	5.2	1.0	-42.8	77.9	N,M	25.6	Passa
	Térreo (-0.950.45 m)	25x30		AP, SCU, V	306.7	-1.6	0.3	-41.8	79.0	Q	78.9	Passa
			Ext.Inferior	AP, SCU, V	300.6	4.2	0.3	-41.8	76.7	N,M	24.7	Passa
	~		Elemento de	AP, SCU, V	306.7	-1.6	0.3	-41.8	79.0	Q	26.9	Passa
	Fundação	25x30	Fundação	AP, SCU, V	300.6	4.2	0.3	-41.8	76.7	N,M	24.7	Passa
			Ext.Superior	AP, SCU, V	38.8	3.6	-4.2	5.0	4.2	N,M	12.7	Passa
	Terceiro Andar (5.15 - 7.95 m)	25x30		AP, SCU, V	44.9	-6.2	7.6	5.0	4.2	Q	11.6	Passa
			Ext.Inferior	AP, SCU, V	44.0	-3.5	8.8	5.9	2.3	N,M	27.1	Passa
				AP, SCU,	107.5	6.8	-10.6	9.1	5.7	Q	19.2	Passa
	Segundo Andar (2.35 - 5.15 m)	25x30	Ext.Superior	AP, SCU, V	104.6	7.8	-9.9	8.5	6.5	N,M	28.2	Passa
	m) 2		Ext.Inferior	AP, SCU,	113.5	-6.6	10.7	9.1	5.7	N,M	27.9	Passa
P30			2.35 m	AP, SCU,	113.5	-6.6	10.7	9.1	5.7	N,M	27.9	Passa
			Ext.Superior	AP, SCU,	170.6	7.7	-7.5	5.1	6.4	N,M	24.1	Passa
		25x30	_	AP, SCU,	169.0	-2.2	7.0	7.0	2.4	Q	12.7	Passa
			Ext.Inferior	AP, SCU, V	176.6	-7.4	4.6	5.1	6.4	N,M	20.7	Passa
				AP, SCU,	219.7	1.5	-5.3	50.7	22.9	Q	57.1	Passa
	Térreo (-0.950.45 m)	25x30	Ext.Superior	AP, SCU,	236.8	-3.4	-3.0	52.3	24.8	N,M	19.5	Passa

			Resumo	das verificaç								
Pilare s	Tramo	Dimensã o (cm)	Posição	Natureza	Esfor N (kN)	ços desf Mxx (kN·m	Myy (kN·m	Qx (kN)	Qy (kN)	Desfavoráve I	Aprov (%)	Estad o
				AP, SCU,	239.1	0.1	1.1	56.8	24.4	Q	55.5	Passa
			Ext.Inferior	AP, SCU, V	236.9	-4.7	-0.4	52.3	24.8	N,M	20.1	Passa
	Fundação	25x30	Elemento de	AP, SCU, V	239.1	0.1	1.1	56.8	24.4	Q	19.0	Passa
			Fundação	AP, SCU, V	236.9	-4.7	-0.4	52.3	24.8	N,M	20.1	Passa
			Ext.Superior	AP, SCU, V	52.5	-6.8	-5.9	6.9	-7.8	N,M	20.8	Passa
	Terceiro Andar (5.15 - 7.95 m)	25x30	Ext.Inferior	AP, SCU, V	58.5	11.5	10.3	6.9	-7.8	Q	18.5	Passa
				AP, SCU, V	58.3	9.9	11.2	7.5	-6.7	N,M	39.8	Passa
			Ext.Superior	AP, SCU, V	137.6	-13.6	-13.3	11.4	-11.5	N,M	42.7	Passa
	Segundo Andar (2.35 - 5.15 m)	25x30	Ext.Inferior	AP, SCU, V	143.6	13.5	13.4	11.4	-11.5	Q	28.8	Passa
				AP, SCU, V	142.7	12.1	14.4	12.2	-10.2	N,M	42.6	Passa
			2.35 m	AP, SCU, V	143.6	13.5	13.4	11.4	-11.5	Q	4.9	Passa
				AP, SCU, V	142.7	12.1	14.4	12.2	-10.2	N,M	42.6	Passa
P6	Primeiro Andar (-0.45 - 2.35 m)	25x30	Ext.Superior	AP, SCU, V	211.2	-11.9	-9.2	6.3	-9.5	Q	20.2	Passa
				AP, SCU, V	220.8	-11.1	-9.9	6.8	-8.4	N,M	32.7	Passa
			Ext.Inferior	AP, SCU, V	217.3	10.3	5.7	6.3	-9.5	N,M	26.5	Passa
	Térreo (-0.950.45 m)		Ext.Superior	AP, SCU, V	305.0	-3.9	-2.1	64.6	-48.9	Q	72.4	Passa
		25x30	•	AP, SCU, V	298.9	-6.7	-3.6	63.7	-47.6	N,M	25.8	Passa
	Terreo (0.55 0.45 m)	23,30	Ext.Inferior	AP, SCU, V	305.1	-1.5	1.1	64.6	-48.9	Q	72.4	Passa
				AP, SCU, V	299.0	-4.3	-0.4	63.7	-47.6	N,M	24.6	Passa
	Fundação	25×30	Elemento de	AP, SCU, V	305.1	-1.5	1.1	64.6	-48.9	Q	24.7	Passa
	. aaagaa	23,00	Fundação	AP, SCU, V	299.0	-4.3	-0.4	63.7	-47.6	N,M	24.6	Passa
			Ext.Superior	AP, SCU, V	52.6	-6.8	5.9	-6.9	-7.8	N,M	20.8	Passa
	Terceiro Andar (5.15 - 7.95 m)	25x30	Ext.Inferior	AP, SCU, V	58.6	11.5	-10.4	-6.9	-7.8	Q	18.5	Passa
				AP, SCU, V	58.4	9.9	-11.3	-7.5	-6.7	N,M	39.9	Passa
			Ext.Superior	AP, SCU, V	137.7	-13.6	13.3	-11.4	-11.5	N,M	42.7	Passa
	Segundo Andar (2.35 - 5.15 m)	25x30	Ext.Inferior	AP, SCU, V	143.7	13.6	-13.5	-11.4	-11.5	Q	28.9	Passa
				AP, SCU, V	142.8	12.1	-14.4	-12.3	-10.2	N,M	42.6	Passa
			2.35 m	AP, SCU, V	143.7	13.6	-13.5	-11.4	-11.5	Q	4.9	Passa
P1	Drimoiro Andor (0.45 - 2.25			AP, SCU, V	142.8	12.1	-14.4	-12.3	-10.2	N,M	42.6	Passa
		25x30	Ext.Superior	AP, SCU, V	211.4	-11.9	9.3	-6.4	-9.5	Q	20.2	Passa
				AP, SCU, V	221.0	-11.1	10.0	-6.8	-8.4	N,M	32.7	Passa
			Ext.Inferior	AP, SCU, V	217.4	10.3	-5.7	-6.4	-9.5	N,M	26.6	Passa
			Ext.Superior	AP, SCU, V	305.2	-3.9	2.1	-64.5	-49.0	Q	72.4	Passa
	Térreo (-0.950.45 m)	25x30		AP, SCU,	299.1	-6.6	3.6	-63.7	-47.7	N,M	25.8	Passa
			Ext.Inferior	AP, SCU, V	305.4	-1.4	-1.1	-64.5	-49.0	Q	72.4	Passa
			Ext.Inferior	AP, SCU, V	299.2	-4.2	0.5	-63.7	-47.7	N,M	24.6	Passa

Pilare s	Tramo	Dimensã o (cm)	Posição		Esfor	ços desf	avoráve	IS			Aprov	
	Fundação			Natureza	N (kN)	Mxx (kN·m	Myy (kN·m	Qx (kN)	Qy (kN)	Desfavoráve I	(%)	Esta 0
	Fundação		Elemento de	AP, SCU,	305.4	-1.4	-1.1	-64.5	-49.0	Q	24.7	Pass
		25x30	Fundação	AP, SCU, V	299.2	-4.2	0.5	-63.7	-47.7	N,M	24.6	Pass
		25.20	Ext.Superior	AP, SCU, V	66.4	-9.5	-0.9	1.2	-11.1	Q	19.6	Pass
	Terceiro Andar (5.15 - 7.95 m)	25x30	Ext.Inferior	AP, SCU, V	72.4	16.7	1.9	1.2	-11.1	N,M	34.7	Pas
			5.15 m	AP, SCU, V	72.4	16.7	1.9	1.2	-11.1	N,M	34.7	Pas
	Segundo Andar (2.35 - 5.15		Ext.Superior	AP, SCU, V	181.6	-20.8	-2.9	2.4	-17.7	N,M	34.3	Pas
	m)	25x30		AP, SCU, V	187.7	20.8	2.8	2.4	-17.7	Q	31.2	Pas
			Ext.Inferior	AP, SCU, V	183.2	19.2	4.5	3.9	-16.3	N,M	34.0	Pas
				AP, SCU, V	187.7	20.8	2.8	2.4	-17.7	Q	5.4	Pas
3			2.35 m	AP, SCU, V	183.2	19.2	4.5	3.9	-16.3	N,M	34.0	Pas
	Primeiro Andar (-0.45 - 2.35 m)	25x30		AP, SCU, V	277.3	-16.9	-1.8	1.2	-12.9	Q	22.6	Pas
	,		Ext.Superior	AP, SCU, V	291.5	-16.4	-1.9	1.3	-12.1	N,M	32.3	Pas
			Ext.Inferior	AP, SCU, V	283.3	13.4	1.1	1.2	-12.9	N,M	28.7	Pas
				AP, SCU, V	404.3	-3.1	-1.4	25.3	-80.2	Q	73.9	Pas
	Térreo (-0.950.45 m)	25x30	Ext.Superior	AP, SCU, V	392.7	-8.8	-1.4	25.3	-78.0	N,M	33.9	Pas
			Ext.Inferior	AP, SCU, V	404.4	0.9	-0.2	25.3	-80.2	Q	73.9	Pas
	Fundação	25x30	Elemento de Fundação	AP, SCU, V	404.4	0.9	-0.2	25.3	-80.2	N,M	32.1	Pas
			-	AP, SCU, V	81.1	4.4	1.1	-0.8	4.2	Q	15.0	Pas
			Ext.Superior	AP, SCU,	80.0	2.0	3.7	-3.8	1.6	N,M	29.4	Pas
	Barrilete (7.95 - 11.2 m)	20x20		AP, SCU,	85.0	-7.4	-1.1	-0.8	4.2	Q	15.0	Pas
			Ext.Inferior	AP, SCU,	83.9	-2.5	-6.9	-3.8	1.6	N,M	42.0	Pas
				AP, SCU,	85.0	-7.4	-1.1	-0.8	4.2	Q	2.6	Pas
			7.95 m	AP, SCU,	83.9	-2.5	-6.9	-3.8	1.6	N,M	42.0	Pas
	Terceiro Andar (5.15 - 7.95 m)	20x20	Ext.Superior	AP, V	107.8	2.5	0.2	0.0	2.0	Q	5.0	Pas
			Lxt.Superior	AP, SCU, V	154.5		0.3	0.0	2.3	N,M	36.8	Pas
			Ext.Inferior	AP, V AP, SCU,	110.1	-2.3 -1.8	0.1	0.0	1.7	Q N,M	4.6 32.8	Pas
				AP, SCU,	206.0		-0.9	0.7	1.8	Q	3.4	Pas
13			Ext.Superior	AP, SCU,	214.6		-1.0	0.8	1.2	N,M	45.7	Pas
	Segundo Andar (2.35 - 5.15 m)	20x20		AP, SCU,	209.2	-2.1	0.9	0.7	1.8	Q	3.4	Pas
"")			Ext.Inferior	AP, SCU,	211.2		1.6	1.3	0.2	N,M	45.4	Pas
				AP, V	241.7	2.1	-0.6	0.4	1.7	Q	3.1	Pas
	Primeiro Andar (-0.45 - 2.35	2020	Ext.Superior	AP, SCU, V	269.7	1.3	-0.7	0.5	1.1	N,M	56.5	Pas
	m)	20x20	Ext.Inferior	AP, V AP, SCU,	244.9	-1.9	0.3	0.4	1.7	Q	3.1	Pas
				V	266.7	-0.1	1.1	1.0	0.1	N,M	55.5	Pas
			-0.45 m	AP, V AP, SCU,	244.9	-1.9	0.3	0.4	1.7	Q N M	1.1	Pas
	Térreo (-0.950.45 m)	20x20		AP, SCU,	266.7	-0.1	1.1	1.0	0.1	N,M	55.5	Pas
			Ext.Superior	AP, SCU,	327.1	-0.8	-0.5	9.8	3.8	Q N,M	25.8 48.5	Pas

	<u> </u>		Resum	o das verificaç								
Pilare s	Tramo	Dimensã o (cm)	Posição	Natureza	N (kN)	cos desf Mxx (kN·m	Myy (kN·m	Qx (kN)	Qy (kN)	Desfavoráve I	Aprov (%)	Estad
			E 1 7 6 :	AP, SCU,	327.2	-1.3	0.0	10.2	10.4	Q	25.8	Pass
			Ext.Inferior	AP, SCU, V	348.6	-0.1	-0.5	9.8	3.8	N,M	48.5	Pass
	Fundação	20x20	Elemento de	AP, SCU, V	327.2	-1.3	0.0	10.2	10.4	Q	8.8	Pass
	. aaagaa	20%20	Fundação	AP, SCU, V	348.6	-0.1	-0.5	9.8	3.8	N,M	48.5	Pass
			Ext.Superior	AP, SCU, V	81.2	4.4	-1.1	0.8	4.2	Q	15.0	Pass
	Barrilete (7.95 - 11.2 m)	20x20		AP, SCU, V	80.0	2.0	-3.8	3.8	1.6	N,M	29.5	Pass
			Ext.Inferior	AP, SCU, V	85.0	-7.4	1.2	0.8	4.2	Q	15.0	Pass
				AP, SCU, V AP, SCU,	83.9	-2.5	6.9	3.8	1.6	N,M	42.0	Pass
			7.95 m	AP, SCU,	85.0	-7.4	1.2	0.8	4.2	Q	2.6	Pass
				AP, V	83.9 107.7	-2.5 2.5	6.9 -0.2	0.1	2.0	N,M Q	42.0 5.0	Pass
	Terceiro Andar (5.15 - 7.95 m)	20x20	Ext.Superior	AP, SCU,	154.4	2.8	-0.3	0.0	2.3	N,M	36.8	Pass
			Ext.Inferior	AP, V	110.0	-2.3	-0.1	0.1	2.0	Q	4.5	Pas
			LXL.IIIIeiloi	AP, SCU, V	161.3	-1.8	-0.2	0.0	1.7	N,M	32.7	Pass
			Ext.Superior	AP, SCU, V	205.8	2.1	0.9	-0.7	1.8	Q	3.4	Pass
	Segundo Andar (2.35 - 5.15 m)	20x20		AP, SCU, V AP, SCU,	214.3		1.0	-0.8	1.2	N,M	45.6	Pas
P14	,		Ext.Inferior	AP, SCU,	209.0	-2.1	-0.9	-0.7	1.8	Q	3.4	Pas
				AP, V	217.5	-1.3 2.1	-0.9 0.5	-0.8	1.2	N,M Q	45.3 3.1	Pass
	Primeiro Andar (-0.45 - 2.35 m)		Ext.Superior Ext.Inferior	AP, SCU,	269.2	1.3	0.7	-0.5	1.1	N,M	56.4	Pas
		20x20		AP, CCU	244.5	-1.9	-0.3	-0.4	1.7	Q	3.1	Pas
			LXLITHETIO	AP, SCU, V	267.0	1.0	-0.4	-0.5	-0.8	N,M	55.4	Pass
			-0.45 m	AP, V AP, SCU,	244.5 267.0	1.0	-0.3 -0.4	-0.4	-0.8	Q N,M	1.1 55.4	Pas
				AP, SCU,	326.6	-0.8	0.5	-10.2	10.4	Q	25.8	Pas
	Térreo (-0.950.45 m)	20x20	Ext.Superior	AP, SCU, V	348.0	0.1	1.0	-9.8	3.7	N,M	48.6	Pas
				AP, SCU, V	326.7	-1.3	0.0	-10.2	10.4	Q	25.8	Pas
			Ext.Inferior	AP, SCU, V	348.0	-0.1	0.5	-9.8	3.7	N,M	48.5	Pas
	Fundação	20x20	Elemento de	AP, SCU, V	326.7	-1.3	0.0	-10.2	10.4	Q	8.8	Pas
	Tundagao	20,20	Fundação	AP, SCU, V	348.0	-0.1	0.5	-9.8	3.7	N,M	48.5	Pass
	Terceiro Andar (5.15 - 7.95 m)	25x30	Ext.Superior	AP, SCU, V	72.9	-0.7	7.2	-8.5	-0.8	Q	15.4	Pas
P21	(3.13 7.33 m)	23,30	Ext.Inferior	AP, SCU, V	79.0	1.2	-12.9	-8.5	-0.8	N,M	33.5	Pas
			Ext.Superior	AP, SCU, V	176.3	-1.4	16.8	-14.3	-1.3	N,M	35.9	Pass
	Segundo Andar (2.35 - 5.15 m)	25x30	Ext.Inferior	AP, SCU, V	182.4	1.7	-16.9	-14.3	-1.3	Q	25.9	Pass
				AP, SCU, V	182.3		-15.8	-13.4	-4.1	N,M	35.4	Pass
			2.35 m	AP, SCU, V	182.4	1.7	-16.9	-14.3	-1.3	Q	4.4	Pass
	Primeiro Andar (-0.45 - 2.35 m)	25x30 —		AP, SCU, V	182.3	5.0	-15.8	-13.4	-4.1	N,M	35.4	Pass
	, , , , , , , , , , , , , , , , , , ,		Ext.Superior	AP, SCU, V	262.8	-1.0	12.9	-9.4	-0.7	Q	17.0	Pass
				AP, SCU, V	279.1	-1.3	13.1	-9.3	-0.9	N,M	33.7	Pas

			Resumo	das verificaç								
Pilare s	Tramo	Dimensã o (cm)	Posição	Natureza	Esford N (kN)	os desf Mxx (kN·m	Myy (kN·m	Qx (kN)	Qy (kN)	Desfavoráve I	Aprov (%)	Estad
				AP, SCU,	268.8	0.7	-9.2	-9.4	-0.7	Q	14.0	Passa
			Ext.Inferior	AP, SCU, V	285.1	0.9	-8.8	-9.3	-0.9	N,M	28.8	Passa
				AP, SCU,	387.9	-0.9	3.9	-94.8	-6.9	Q	85.8	Passa
	-/ / 0 0 - 0 4 - 0		Ext.Superior	AP, SCU, V	387.4	2.0	5.3	-93.9	-9.0	N,M	30.9	Passa
	Térreo (-0.950.45 m)	25x30	Ext Inforior	AP, SCU, V	388.1	-0.6	-0.8	-94.8	-6.9	Q	85.8	Passa
			Ext.Inferior	AP, SCU, V	387.5	2.4	0.7	-93.9	-9.0	N,M	31.0	Passa
	Fundação	25x30	Elemento de	AP, SCU, V	388.1	-0.6	-0.8	-94.8	-6.9	Q	29.3	Passa
	Tundação	23,50	Fundação	AP, SCU, V	387.5	2.4	0.7	-93.9	-9.0	N,M	31.0	Passa
	Terceiro Andar (5.15 - 7.95 m)	25v20	Ext.Superior	AP, SCU, V	97.5	-4.0	-1.4	1.7	-5.2	N,M	21.3	Passa
	Terceiro Andar (5.15 - 7.95 m)	23,20	Ext.Inferior	AP, SCU, V	101.5	8.3	2.6	1.7	-5.2	N,M	36.6	Passa
	Segundo Andar (2.35 - 5.15	25x20	Ext.Superior	AP, SCU, V	231.2	-12.3	-3.6	3.1	-10.4	N,M	58.2	Passa
	m)	23,20	Ext.Inferior	AP, SCU, V	235.2	12.3	3.7	3.1	-10.4	N,M	58.7	Passa
			Ext.Superior	AP, SCU, V	344.7	-9.4	-2.6	1.8	-6.8	Q	16.1	Passa
P2	Primeiro Andar (-0.45 - 2.35	25x20		AP, SCU, V	366.6	-9.3	-2.8	1.9	-6.7	N,M	58.6	Passa
	m)		Ext.Inferior	AP, SCU, V	348.7	6.7	1.6	1.8	-6.8	Q	11.6	Passa
				AP, SCU, V	368.4	5.2	3.1	3.1	-5.7	N,M	56.2	Passa
	Térreo (-0.950.45 m)	25x20	Ext.Superior	AP, SCU, V	507.3	-4.5	-1.7	29.3	- 114.6	Q	77.8	Passa
	,		Ext.Inferior	AP, SCU, V	507.4	1.3	-0.2	29.3	- 114.6	Q	77.8	Passa
	Fundação	25x20	Elemento de Fundação	AP, SCU, V	507.4	1.3	-0.2	29.3	- 114.6	Q	58.0	Passa
	Terceiro Andar (5.15 - 7.95 m)	25x20	Ext.Superior	AP, SCU, V	98.0	-4.0	1.3	-1.6	-5.2	N,M	21.3	Passa
	,		Ext.Inferior	AP, SCU, V	102.0	8.3	-2.5	-1.6	-5.2	N,M	36.4	Passa
	Segundo Andar (2.35 - 5.15	25x20	Ext.Superior	AP, SCU, V	231.8	-12.2	3.6	-3.1	-10.4	N,M	58.1	Passa
	m)		Ext.Inferior	AP, SCU, V	235.8	12.2	-3.6	-3.1	-10.4	N,M	58.6	Passa
			Ext.Superior	AP, SCU, V	345.3	-9.3	2.5	-1.7	-6.8	Q	16.0	Passa
P5	Primeiro Andar (-0.45 - 2.35 m)	25x20		AP, SCU, V	367.4	-9.3	2.7	-1.9	-6.7	N,M	58.5	Passa
	,		Ext.Inferior	AP, SCU, V	349.4	6.7	-1.6	-1.7	-6.8	Q	11.5	Passa
				AP, SCU, V	369.2	5.2	-3.1	-3.0	-5.7	N,M	56.2	Passa
	Térreo (-0.950.45 m)	25x20	Ext.Superior	AP, SCU, V	508.0	-4.5	1.7	-29.3	114.3	Q	77.6	Passa
			Ext.Inferior	AP, SCU, V	508.0	1.3	0.2	-29.3	114.3	Q	77.6	Passa
	Fundação	25x20	Elemento de Fundação	AP, SCU, V	508.0	1.3	0.2	-29.3	114.3	Q	57.8	Passa
	Terceiro Andar (5.15 - 7.95 m)	20x25	Ext.Superior	AP, SCU, V	100.6	0.0	4.6	-6.0	0.0	N,M	21.6	Passa
			Ext.Inferior	AP, SCU, V		0.1	-9.4	-6.0	0.0	N,M	36.6	Passa
P7	Segundo Andar (2.35 - 5.15 m)	20x25	Ext.Superior	AP, SCU, V	238.9	-0.1	13.9	-11.8	-0.1	N,M	58.6	Passa
	,		Ext.Inferior	AP, SCU, V		0.0	-13.9	-11.8	-0.1	N,M	59.1	Passa
	Primeiro Andar (-0.45 - 2.35 m)	20x25	Ext.Superior	AP, SCU, V		0.3	10.3	-7.3	0.2	Q	18.0	Passa
	,			AP, SCU, V	378.4	2.0	9.7	-6.7	1.7	N,M	59.5	Passa

			Resumo	das verificaç								
Pilare s	Tramo	Dimensã o (cm)	Posição	Natureza	N (kN)	cos desf Mxx (kN·m	Myy (kN·m	Qx (kN)	Qy (kN)	Desfavoráve I	Aprov (%)	Estad o
			Ext.Inferior	AP, SCU, V	360.2	-0.1	-7.0	-7.3	0.2	Q	12.1	Passa
			Excilinent	AP, SCU, V	382.5	-1.9	-6.0	-6.7	1.7	N,M	56.8	Passa
			Ext.Superior	AP, SCU, V	527.7	0.0	5.5	- 134.8	3.7	Q	79.5	Passa
	Térreo (-0.950.45 m)	20x25		AP, SCU, V	526.9	-1.2	6.1	- 134.2	5.3	N,M	56.3	Passa
			Ext.Inferior	AP, SCU,	527.7	-0.2	-1.2	134.8	3.7	Q	79.5	Passa
				AP, SCU, V AP, SCU,	527.0	-1.5	-0.6	134.2	5.3	N,M	56.3	Passa
	Fundação	20x25	Elemento de Fundação	AP, SCU, AP, SCU,	527.7	-0.2	-1.2	134.8	3.7	Q	65.2	Passa
			-	AP, SCU,	527.0	-1.5	-0.6	134.2	5.3	N,M	56.3	Passa
	Terceiro Andar (5.15 - 7.95 m)	20x25	Ext.Superior	AP, SCU,	100.5	0.0	-4.6	6.0	0.0	N,M	21.5	Passa
			Ext.Inferior	AP, SCU,	104.6	0.1	9.4	6.0	0.0	N,M	36.5	Passa
	Segundo Andar (2.35 - 5.15 m)	20x25	Ext.Superior	AP, SCU,	238.8	-0.1	-13.8	11.8	-0.1	N,M	58.5	Passa
			Ext.Inferior	AP, SCU,	242.9	0.0	13.9	11.8	-0.1	N,M	59.0	Passa
			Ext.Superior	AP, SCU,	355.9 378.2	2.0	-10.2 -9.7	7.3 6.7	1.7	Q N,M	17.9 59.5	Passa Passa
	Primeiro Andar (-0.45 - 2.35 n)	20x25		V AP, SCU,	360.0	-0.2	7.0	7.3	0.2	Q	12.0	Passa
P12			Ext.Inferior	AP, SCU,	382.3	-1.9	6.0	6.7	1.7	N,M	56.7	Passa
				AP, SCU,	527.4	0.0	-5.5		3.7	Q	79.4	Passa
		20x25 -	Ext.Superior	AP, SCU,	526.6	-1.2	-6.1	134.0	5.4	N,M	56.2	Passa
	Térreo (-0.950.45 m)			AP, SCU,	527.5	-0.2	1.2	134.6	3.7	Q	79.4	Passa
			Ext.Inferior	AP, SCU, V	526.7	-1.5	0.6	134.0	5.4	N,M	56.3	Passa
			Elemento de	AP, SCU, V	527.5	-0.2	1.2	134.6	3.7	Q	65.1	Passa
	Fundação	20x25	Fundação	AP, SCU, V	526.7	-1.5	0.6	134.0	5.4	N,M	56.3	Passa
				AP, SCU, V	74.4	0.9	3.8	-4.9	1.3	Q	13.9	Passa
	T Andrew (F. 15 - 7.05 as)	2025	Ext.Superior	AP, SCU, V	73.9	1.5	3.6	-4.5	2.0	N,M	18.2	Passa
	Terceiro Andar (5.15 - 7.95 m)	20X25	Ext.Inferior	AP, SCU, V	78.5	-2.0	-7.6	-4.9	1.3	Q	14.0	Passa
			LXC.IIIIeIIOI	AP, SCU, V	77.9	-3.2	-7.1	-4.5	2.0	N,M	33.0	Passa
			Ext.Superior	AP, SCU, V	181.7	3.0	10.9	-9.3	2.5	Q	26.5	Passa
	Segundo Andar (2.35 - 5.15	20x25	Lxt.Superior	AP, SCU, V	179.1	4.7	10.1	-8.6	3.9	N,M	50.0	Passa
P15	m)	20%25	Ext.Inferior	AP, SCU, V	185.7	-2.9	-10.9	-9.3	2.5	Q	26.5	Passa
				AP, SCU, V	183.1	-4.6	-10.1	-8.6	3.9	N,M	50.1	Passa
			Ext.Superior	AP, SCU, V	271.1	2.1	8.1	-5.9	1.4	Q	15.2	Passa
	Primeiro Andar (-0.45 - 2.35 m)	20x25		AP, SCU, V	283.4	3.9	7.5	-5.2	3.0	N,M	48.1	Passa
	<i> </i>		Ext.Inferior	AP, SCU,	275.1	-1.3	-5.6	-5.9	1.4	Q	10.5	Passa
				AP, SCU, V	287.5		-4.7	-5.2	3.0	N,M	44.8	Passa
	Térreo (-0.950.45 m)	20x25	Ext.Superior	AP, SCU, V	401.1		4.7	103.9	32.6	Q	77.6	Passa
				AP, SCU, V	407.7	2.8	4.7	103.9	28.1	N,M	44.0	Passa

			Resumo	das verificaç								ı.
Pilare s	Tramo	Dimensã o (cm)	Posição	Natureza	Esfore N (kN)	ços desf Mxx (kN·m	avoráve Myy (kN·m	Qx (kN)	Qy (kN)	Desfavoráve I	Aprov (%)	Estad o
		` ,		AP, SCU,	401.2	-1.3	-0.5	- 103.9	32.6	Q	77.6	Passa
			Ext.Inferior	AP, SCU, V	407.8	1.4	-0.5	- 103.9	28.1	N,M	43.6	Passa
	Fundação	20x25	Elemento de	AP, SCU, V	401.2	-1.3	-0.5	- 103.9	32.6	Q	53.7	Passa
	Tundagao	20,23	Fundação	AP, SCU, V	407.8	1.4	-0.5	- 103.9	28.1	N,M	43.6	Passa
			Ext.Superior	AP, SCU, V	74.4	0.9	-3.8	4.9	1.3	Q	13.9	Passa
	Terceiro Andar (5.15 - 7.95 m)	20x25		AP, SCU, V	73.9	1.5	-3.6	4.5	2.0	N,M	18.2	Passa
			Ext.Inferior	AP, SCU, V AP, SCU,	78.5	-2.0	7.6	4.9	1.3	Q	14.0	Passa
				AP, SCU,	77.9	-3.2	7.1	4.5	2.0	N,M	33.0	Passa
			Ext.Superior	AP, SCU,	181.6	3.0	-10.9	9.3	2.5	Q	26.5	Passa
	Segundo Andar (2.35 - 5.15 m)	20x25		AP, SCU,	179.0	4.7	10.9	9.3	3.9	N,M	49.9	Passa
			Ext.Inferior	AP, SCU,	185.6 183.1	-2.9 -4.6	10.9	8.6	3.9	Q N,M	26.5	Passa Passa
				V AP, SCU,	270.9	2.1	-8.1	5.9	1.4	Q	15.1	Passa
P18			Ext.Superior	AP, SCU,	283.3	3.9	-7.5	5.2	3.0	N,M	48.1	Passa
	Primeiro Andar (-0.45 - 2.35 m)	20x25		AP, SCU,	275.0	-1.3	5.6	5.9	1.4	Q	10.5	Passa
			Ext.Inferior	AP, SCU,	287.4	-3.1	4.7	5.2	3.0	N,M	44.8	Passa
				AP, SCU, V	400.9	0.3	-4.7	103.8	32.7	Q	77.5	Passa
	-érreo (-0.950.45 m)	20x25	Ext.Superior	AP, SCU, V	407.5	2.8	-4.7	103.8	28.1	N,M	44.0	Passa
	Terreo (-0.950.45 III)		Ext.Inferior	AP, SCU, V	401.0	-1.3	0.5	103.8	32.7	Q	77.5	Passa
			LXt.IIIIeiioi	AP, SCU, V	407.6	1.4	0.5	103.8	28.1	N,M	43.6	Passa
	Fundação	20x25	Elemento de	AP, SCU, V	401.0	-1.3	0.5	103.8	32.7	Q	53.7	Passa
			Fundação	AP, SCU, V	407.6	1.4	0.5	103.8	28.1	N,M	43.6	Passa
			Ext.Superior	AP, SCU, V	89.1	-2.5	0.0	0.1	-3.3	Q	5.9	Passa
	Terceiro Andar (5.15 - 7.95 m)	20x25		AP, SCU, V	94.9	-2.1	-0.1	0.1	-2.9	N,M	17.5	Passa
			Ext.Inferior	AP, SCU, V AP, SCU,	93.2	5.3	0.2	0.1	-3.3	N,M	19.1	Passa
			Ext.Superior	AP, SCU,	210.7	-7.8	-0.4	0.3	-6.7	Q	16.0	Passa
	Segundo Andar (2.35 - 5.15 m)	20x25		AP, SCU,	225.8	-5.0	-1.3	1.1	-4.3	N,M	41.7	Passa
			Ext.Inferior	V AP, SCU	214.7	7.9 5.1	0.4	0.3	-6.7 -4.3	Q N,M	16.0 42.5	Passa Passa
P19			Ext.Superior	AP, V AP, SCU,	221.5	-5.8	-0.1	0.1	-4.6	Q	7.7	Passa
	Primeiro Andar (-0.45 - 2.35	20x25		AP, SCU,	355.5	-5.9	-0.2	0.2	-4.4	N,M	62.9	Passa
	m)		Ext.Inferior	AP, SCU,	336.8		0.1	0.1	-5.4	Q	7.3	Passa
				AP, SCU,	359.5 470.7	-2.6	-0.2	3.5	-4.4 -67.1	N,M Q	91.0	Passa Passa
			Ext.Superior	AP, SCU,	476.3	-5.0	-0.2	3.5		N,M	57.2	Passa
	Térreo (-0.950.45 m)	20x25		AP, SCU,	470.8		0.0	3.5		Q	91.0	Passa
			Ext.Inferior	AP, SCU,	476.4		0.0	3.5	-61.5		55.9	Passa

			Kesuli	no das verificaç		ços desf	avoráve	is				
Pilare s	Tramo	Dimensã o (cm)	Posição	Natureza	N (kN)	Mxx (kN·m	Myy (kN·m	Qx (kN)	Qy (kN)	Desfavoráve I	Aprov (%)	Esta o
			Elemento de	AP, SCU,	470.8	0.7	0.0	3.5	-67.1	Q	31.1	Passa
	Fundação	20x25	Fundação	AP, SCU, V	476.4	-1.9	0.0	3.5	-61.5	N,M	55.9	Pass
			5 + C ·	AP, SCU, V	89.1	-2.5	0.0	-0.1	-3.3	Q	5.9	Pass
	Terceiro Andar (5.15 - 7.95 m)	20x25	Ext.Superior	AP, SCU, V	94.9	-2.1	0.1	-0.1	-2.9	N,M	17.5	Pass
			Ext.Inferior	AP, SCU, V	93.2	5.3	-0.2	-0.1	-3.3	N,M	19.1	Pass
			Ext.Superior	AP, SCU, V	210.7	-7.8	0.4	-0.3	-6.7	Q	16.0	Pass
	Segundo Andar (2.35 - 5.15 m)	20x25	Lxt.Superior	AP, SCU, V	225.8	-5.0	1.3	-1.1	-4.3	N,M	41.7	Pass
	,		Ext.Inferior	AP, SCU, V	214.7	7.9	-0.4	-0.3	-6.7	Q	16.0	Pass
				AP, SCU AP, V	230.3	5.1 -5.8	-0.4 0.1	-0.4 -0.1	-4.3 -4.6	N,M Q	42.5 7.7	Pass Pass
			Ext.Superior	AP, SCU,	355.5	-5.9	0.2	-0.2	-4.4	N,M	62.9	Pass
P20	Primeiro Andar (-0.45 - 2.35 m)	20x25		AP, SCU,	336.8	5.7	-0.1	-0.1	-5.4	Q	7.3	Pass
			Ext.Inferior	AP, SCU,	359.5	4.5	-0.2	-0.2	-4.4	N,M	61.9	Pass
				AP, SCU,	470.7	-2.6	0.2	-3.5	-67.1	Q	91.0	Pass
			Ext.Superior	AP, SCU,	476.4	-5.0	0.2	-3.5	-61.5	N,M	57.2	Pass
	Térreo (-0.950.45 m)	20x25		AP, SCU, V	470.8	0.7	0.0	-3.5	-67.1	Q	91.0	Pass
			Ext.Inferior	AP, SCU, V	476.5	-1.9	0.0	-3.5	-61.5	N,M	55.9	Pass
	undação	20.25	Elemento de	AP, SCU, V	470.8	0.7	0.0	-3.5	-67.1	Q	31.1	Pass
	Fundação	20x25	Fundação	AP, SCU, V	476.5	-1.9	0.0	-3.5	-61.5	N,M	55.9	Pass
			5 + C ·	AP, SCU, V	84.6	-9.9	1.5	-1.0	-8.5	Q	18.7	Pass
	Barrilete (7.95 - 11.2 m)	20x30	Ext.Superior	AP, SCU, V	85.1	-4.6	4.9	-4.7	-2.4	N,M	25.2	Pass
	,		Ext.Inferior	AP, SCU, V	90.4	14.0	-1.1	-1.0	-8.5	Q	18.7	Pass
				AP, V	64.5	1.8	-8.1	-4.5	-1.8	N,M	35.1	Pass
			7.95 m	AP, SCU, V	90.4	14.0	-1.1	-1.0	-8.5	Q	3.2	Pass
				AP, V AP, SCU, V	64.5 151.3	1.8 4.7	-8.1 -1.0	-4.5 1.1	-1.8 4.7	N,M Q	35.1 6.5	Pass
	Terceiro Andar (5.15 - 7.95 m)	20x30	Ext.Superior	AP, SCU,	222.9	4.8	-1.4	1.6	4.8	N,M	30.7	Pass
				AP, SCU,	154.8	-6.3	1.6	1.1	4.7	Q	8.5	Pass
			Ext.Inferior	AP, SCU,	235.3	-4.6	1.4	0.9	3.3	N,M	32.1	Pass
P9				AP, SCU,	344.6	10.4	-3.4	2.9	8.9	Q	12.4	Pass
	Segundo Andar (2.35 - 5.15		Ext.Superior	AP, SCU,	372.7	6.9	-2.6	2.2	6.0	N,M	50.7	Pass
	m)	20x30		AP, SCU,	349.5	-10.6	3.4	2.9	8.9	Q	12.3	Pass
			Ext.Inferior	AP, SCU,	377.5	-7.1	2.6	2.2	6.0	N,M	51.4	Pass
			5 · 6 ·	AP, SCU,	481.7	9.8	-2.5	1.7	7.7	Q	10.9	Pass
	Primeiro Andar (-0.45 - 2.35	20. 20	Ext.Superior	AP, SCU, V	513.6	8.5	-2.8	1.9	6.4	N,M	63.7	Pass
	m)	20x30	Fort Today'	AP, SCU, V	486.5	-8.2	1.6	1.7	7.7	Q	10.9	Pass
			Ext.Inferior	AP, SCU, V	518.4	-6.5	1.7	1.9	6.4	N,M	63.1	Pass
	Térreo (-0.950.45 m)	20x30	-0.45 m	AP, SCU,	486.5	-8.2	1.6	1.7	7.7	Q	3.8	Pass

			Resumo d	das verificaç	ões							
Dilara		Dimensã				os desf		is	1	Desfavoráve	Aprov	Estad
Pilare s	Tramo	o (cm)	Posição	Natureza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	l l	(%)	o 0
				AP, SCU, V	518.4	-6.5	1.7	1.9	6.4	N,M	63.9	Passa
			Ext Cuporior	AP, SCU, V	659.3	1.7	-2.9	63.5	60.6	Q	39.2	Passa
			Ext.Superior	AP, SCU, V	662.5	6.1	-2.9	63.6	56.8	N,M	62.9	Passa
			Fut Inferior	AP, SCU, V	659.4	-1.3	0.3	63.5	60.6	Q	39.2	Passa
			Ext.Inferior	AP, SCU, V	662.6	3.3	0.3	63.6	56.8	N,M	62.2	Passa
	Fundação	20x30	Elemento de	AP, SCU, V	659.4	-1.3	0.3	63.5	60.6	Q	38.6	Passa
	Fundação	20X30	Fundação	AP, SCU, V	662.6	3.3	0.3	63.6	56.8	N,M	61.8	Passa
			5.10	AP, SCU, V	84.6	-9.9	-1.5	0.9	-8.5	Q	18.7	Passa
	Barrilete (7.95 - 11.2 m)	20x30	Ext.Superior	AP, SCU, V	85.1	-4.6	-4.9	4.7	-2.4	N,M	25.1	Passa
	,		Ext.Inferior	AP, SCU, V	90.3	13.9	1.1	0.9	-8.5	Q	18.7	Passa
				AP, V	64.5	1.8	8.1	4.5	-1.8	N,M	35.0	Passa
			7.95 m	AP, SCU, V	90.3	13.9	1.1	0.9	-8.5	Q	3.2	Passa
				AP, V AP, SCU,	64.5	1.8	8.1	4.5	-1.8	N,M	35.0	Passa
	Terceiro Andar (5.15 - 7.95 m)	20x30	Ext.Superior	AP, SCU,	151.7	4.9	1.0	-1.1	4.8	Q	6.9	Passa
	, , ,			AP, SCU,	223.5	5.0	1.5	-1.6	5.0	N,M	31.0	Passa
			Ext.Inferior	AP, SCU,	155.2	-6.5	-1.6	-1.1	4.8	Q	8.9	Passa
				AP, SCU,	236.0	-4.8	-1.4	-0.9	3.5	N,M	32.3	Passa
			Ext.Superior	AP, SCU,		10.7	3.4	-2.9	9.1	Q	12.8	Passa
	Segundo Andar (2.35 - 5.15 m)	20x30 -		AP, SCU,	374.2	7.2	2.7	-2.3	6.2	N,M	51.0	Passa
			Ext.Inferior	AP, SCU,	350.7	-10.8	-3.4	-2.9	9.1	Q	12.8	Passa
P10				AP, SCU,	379.0	-7.4	-2.6	-2.3	6.2	N,M	51.7	Passa
			Ext.Superior	AP, SCU,	483.8	10.0	2.5	-1.7	7.8	Q	11.1	Passa
	Primeiro Andar (-0.45 - 2.35 m)	20x30		AP, SCU, V	515.9	8.7	2.8	-1.9	6.5	N,M	64.0	Passa
			Ext.Inferior	V	488.6	-8.3	-1.6	-1.7	7.8	Q	11.1	Passa
				AP, SCU, V	520.8	-6.6	-1.7	-1.9	6.5	N,M	63.4	Passa
			-0.45 m	AP, SCU, V	488.6	-8.3	-1.6	-1.7	7.8	Q	3.8	Passa
				AP, SCU, V	520.8	-6.6	-1.7	-1.9	6.5	N,M	64.2	Passa
	Térreo (-0.950.45 m)	20x30	Ext.Superior	AP, SCU, V	662.5	1.8	2.9	-63.6	62.2	Q	39.8	Passa
			'	AP, SCU, V	665.9	6.2	2.9	-63.7	58.4	N,M	63.2	Passa
			Ext.Inferior	AP, SCU, V	662.6	-1.3	-0.3	-63.6	62.2	Q	39.8	Passa
				AP, SCU, V	666.0	3.3	-0.3	-63.7	58.4	N,M	62.5	Passa
	Fundação	20x30	Elemento de	AP, SCU, V	662.6	-1.3	-0.3	-63.6	62.2	Q	39.2	Passa
			Fundação	AP, SCU, V	666.0	3.3	-0.3	-63.7	58.4	N,M	62.2	Passa
	Terceiro Andar (5.15 - 7.95 m)	25×20	Ext.Superior	AP, SCU, V	72.9	-0.7	-7.2	8.5	-0.8	Q	15.4	Passa
P24	10. CC. 10 Andai (3.13 - 7.33 III)	23,30	Ext.Inferior	AP, SCU, V	79.0	1.2	12.9	8.5	-0.8	N,M	33.5	Passa
r 24	Segundo Andar (2.35 - 5.15	25x30	Evt Superior	AP, SCU, V	176.3	-1.4	-16.8	14.3	-1.3	Q	25.9	Passa
	m)	23830	Ext.Superior	AP, SCU, V	176.2	-4.8	-15.6	13.4	-4.1	N,M	35.0	Passa

			Resumo	o das verificaç								
Pilare		Dimensã			Esfor	ços desf	l	is	1	Desfavoráve	Aprov	Esta
S	Tramo	o (cm)	Posição	Natureza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	I	(%)	0
			Ext.Inferior	AP, SCU, V	182.4	1.7	16.9	14.3	-1.3	Q	25.9	Pass
				AP, SCU, V	182.3	4.9	15.8	13.4	-4.1	N,M	35.4	Pass
			2.35 m	AP, SCU, V	182.4	1.7	16.9	14.3	-1.3	Q	4.4	Pass
				AP, SCU, V	182.3	4.9	15.8	13.4	-4.1	N,M	35.4	Pass
	Primeiro Andar (-0.45 - 2.35	25x30	Ext.Superior	AP, SCU, V	262.8	-1.0	-12.9	9.4	-0.7	Q	17.0	Pas
	m)			AP, SCU, V	279.1	-1.2	-13.1	9.3	-0.9	N,M	33.3	Pas
			Ext.Inferior	AP, SCU, V	268.8	0.6	9.2	9.4	-0.7	Q	14.0	Pas
				AP, SCU, V	285.1	0.9	8.8	9.3	-0.9	N,M	28.8	Pas
			Ext.Superior	AP, SCU, V	388.0	-0.9	-3.9	94.8	-6.8	Q	85.8	Pas
	Térreo (-0.950.45 m)	25x30		AP, SCU, V	387.4	1.9	-5.4	93.9	-8.9	N,M	30.9	Pas
	,		Ext.Inferior	AP, SCU, V	388.1	-0.6	0.8	94.8	-6.8	Q	85.8	Pas
				AP, SCU, V	387.5	2.4	-0.7	93.9	-8.9	N,M	31.0	Pas
	Fundação	25x30	Elemento de	AP, SCU, V	388.1	-0.6	0.8	94.8	-6.8	Q	29.3	Pas
			Fundação	AP, SCU, V	387.5	2.4	-0.7	93.9	-8.9	N,M	31.0	Pas
			Ext.Superior	AP, SCU, V	144.0	-1.7	-0.5	-0.1	-2.3	Q	2.3	Pas
	Terceiro Andar (5.15 - 7.95 m)	35x20	Lxt.Superior	AP, SCU, V	154.4	-0.8	-1.4	1.1	-1.1	N,M	17.7	Pas
			Ext.Inferior	AP, V AP, SCU,	99.3	3.1	-0.6	-0.1	-1.9	Q	3.6	Pas
				AP, V	159.7 211.7	1.6 -4.5	-2.1 1.8	-1.0 -1.5	-1.0 -3.8	N,M Q	18.4	Pas
	egundo Andar (2.35 - 5.15	35×20	Ext.Superior	AP, SCU, V	344.3	-2.3	4.2	-3.4	-2.0	N,M	39.7	Pas
	m)		Ext.Inferior	AP, V	215.7	4.5	-1.7	-1.5	-3.8	Q	5.0	Pas
			LXLITHETIO	AP, SCU, V	350.0	2.4	-3.9	-3.4	-2.0	N,M	40.2	Pas
22			Ext.Superior	AP, V AP, SCU,	454.0 543.6	-1.5 -3.7	5.3 1.3	-4.7 -0.9	-1.0 -2.9	Q N,M	4.4 61.5	Pas
22	Primeiro Andar (-0.45 - 2.35 m)	35x20		AP, V	459.7	1.0	-5.7	-4.7	-1.0	Q	4.4	Pas
			Ext.Inferior	AP, SCU, V	549.2	3.1	-0.9	-0.9	-2.9	N,M	62.1	Pas
			Ext.Superior	AP, SCU, V	728.8	-0.1	2.2	-25.5	-24.8	Q	34.3	Pas
	Térreo (-0.950.45 m)	35x20	Extiguperior	AP, SCU, V	727.4	-1.1	4.8	-24.0	-21.8	N,M	64.4	Pas
	161160 (0.55 0.15 111)	33,20	Ext.Inferior	AP, SCU, V	728.9	1.2	0.9	-25.5	-24.8	Q	34.3	Pas
			Extramento	AP, SCU, V	727.6	0.0	3.6	-24.0	-21.8	N,M	64.3	Pas
	Fundação	35x20	Elemento de	AP, SCU, V	728.9	1.2	0.9	-25.5	-24.8	Q	11.7	Pas
	Tundação	33,20	Fundação	AP, SCU, V	727.6	0.0	3.6	-24.0	-21.8	N,M	64.3	Pas
			Fort Communication	AP, SCU, V	144.0	-1.7	0.5	0.1	-2.3	Q	2.3	Pas
	Terceiro Andar (5.15 - 7.95 m)	35x20	Ext.Superior	AP, SCU, V	154.4	-0.8	1.4	-1.1	-1.1	N,M	17.7	Pas
	, , , , , , , , , , , , , , , , , , , ,		Ext.Inferior	AP, V AP, SCU,	99.3	3.1	0.6	0.1	-1.9	Q	3.6	Pas
23				AP, SCU, V AP, V	159.6 211.8	1.6	2.1	1.0	-1.0 -3.8	N,M	18.4 5.1	Pas
			Ext.Superior	AP, V AP, SCU,	344.4	-4.5 -2.3	-1.8 -4.2	3.4	-3.8	Q N,M	39.7	Pas
	Segundo Andar (2.35 - 5.15 m)	35x20		AP, V	215.8	4.5	1.7	1.5	-3.8	Q	5.0	Pas
			Ext.Inferior	AP, SCU, V	350.1	2.4	3.9	3.4	-2.0	N,M	40.2	Pas

			Resumo	das verificaç	ões							
		Dimensã				ços desf	avoráve	is			Aprov	
Pilare s	Tramo	o (cm)	Posição	Natureza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	Desfavoráve I	(%)	Estad 0
			Ext Superior	AP, V	454.2	-1.5	-5.3	4.7	-1.0	Q	4.4	Passa
	Primeiro Andar (-0.45 - 2.35	35x20	Ext.Superior	AP, SCU, V	543.8	-3.7	-1.3	0.9	-2.9	N,M	61.5	Passa
	m)	33XZU	Ext.Inferior	AP, V	459.9	1.0	5.7	4.7	-1.0	Q	4.4	Passa
			ext.illierior	AP, SCU, V	549.4	3.1	0.9	0.9	-2.9	N,M	62.1	Passa
			Ext.Superior	AP, SCU, V	729.2	-0.1	-2.2	25.4	-24.9	Q	34.4	Passa
	Támas (0.05 0.45 m)	25,20		AP, SCU, V	727.8	-1.1	-4.8	24.0	-21.9	N,M	64.5	Passa
	Térreo (-0.950.45 m)	35x20	Ext.Inferior	AP, SCU, V	729.3	1.2	-1.0	25.4	-24.9	Q	34.4	Passa
				AP, SCU, V	727.9	0.0	-3.6	24.0	-21.9	N,M	64.3	Passa
	Fundação	35x20	Elemento de	AP, SCU, V	729.3	1.2	-1.0	25.4	-24.9	Q	11.7	Passa
	Tundagao	33,20	Fundação	AP, SCU, V	727.9	0.0	-3.6	24.0	-21.9	N,M	64.3	Passa
			Ext.Superior	AP, SCU, V	153.0	0.7	-6.0	6.1	1.0	Q	7.5	Passa
	Terceiro Andar (5.15 - 7.95 m)	40v20		AP, SCU, V	165.2	0.2	-4.3	4.2	0.3	N,M	16.6	Passa
	Terceiro Alidar (5.15 - 7.95 III)	40X20	Ext.Inferior	AP, SCU, V	159.4	-1.5	8.4	6.1	1.0	Q	10.0	Passa
				AP, SCU, V	171.8	-3.1	5.5	4.1	2.0	N,M	16.9	Passa
			Ext.Superior	AP, SCU, V	345.4	2.5	-8.0	6.9	2.1	Q	7.3	Passa
	Segundo Andar (2.35 - 5.15	40x20	Ext.Superior	AP, SCU, V	375.1	2.9	-7.2	6.2	2.5	N,M	36.6	Passa
	m)			AP, SCU, V	351.9	-2.5	8.1	6.9	2.1	Q	7.3	Passa
			Ext.Inferior	AP, SCU, V	381.6	-2.9	7.5	6.2	2.5	N,M	37.3	Passa
				AP, SCU, V	536.8	1.9	-8.6	7.4	1.3	Q	7.6	Passa
P16	Primeiro Andar (-0.45 - 2.35	40x20	Ext.Superior	AP, SCU, V	584.0	2.2	-7.3	5.9	1.5	N,M	56.0	Passa
	m)	40820	Ext Inforior	AP, SCU, V	543.2	-1.1	8.7	7.4	1.3	Q	7.6	Passa
			Ext.Inferior	AP, SCU, V	590.5	-1.3	6.5	5.9	1.5	N,M	56.5	Passa
			Ext Cuporior	AP, SCU, V	784.2	0.9	0.2	-1.6	54.1	Q	47.9	Passa
	Térreo (-0.950.45 m)	40x20	Ext.Superior	AP, SCU, V	785.1	2.2	4.0	0.6	51.4	N,M	58.1	Passa
	10.100 (0.35	TONES	Ext.Inferior	AP, SCU, V	784.3	-1.8	0.1	-1.6	54.1	Q	47.9	Passa
				AP, SCU, V	785.2	-0.4	4.1	0.6	51.4	N,M	58.1	Passa
	Fundação	40x20	Elemento de	AP, SCU, V	784.3	-1.8	0.1	-1.6	54.1	Q	16.4	Passa
			Fundação	AP, SCU, V	785.2	-0.4	4.1	0.6	51.4	N,M	58.1	Passa
			Ext.Superior	AP, SCU, V	153.0	0.7	6.0	-6.1	1.0	Q	7.5	Passa
	Terceiro Andar (5.15 - 7.95 m)	40x20		AP, SCU, V	165.2	0.2	4.3	-4.2	0.3	N,M	16.6	Passa
			Ext.Inferior	AP, SCU,	159.4	-1.5	-8.4	-6.1	1.0	Q	9.9	Passa
				AP, SCU, V	171.7	-3.1	-5.4	-4.1	1.9	N,M	16.9	Passa
P17			Ext.Superior	AP, SCU,	344.5		8.0	-6.8	2.1	Q	7.3	Passa
	Segundo Andar (2.35 - 5.15 m)	40x20		AP, SCU, V AP, SCU,	374.2		7.2	-6.2	2.4	N,M	36.6	Passa
			Ext.Inferior	AP, SCU, V AP, SCU,	351.0	-2.5	-8.1	-6.8	2.1	Q	7.3	Passa
	Primeiro Andar (-0.45 - 2.35	4025	Ent Com	AP, SCU,	380.7	-2.9	-7.5	-6.2	2.4	N,M	37.2	Passa
	m)	40x20	Ext.Superior	V V	535.0	1.9	8.6	-7.4	1.3	Q	7.6	Passa

			Resumo	das verificaç								1
Pilare s	Tramo	Dimensã o (cm)	Posição	Natureza	N (kN)	ços desf Mxx (kN·m	Myy (kN·m	Qx (kN)	Qy (kN)	Desfavoráve I	Aprov (%)	Estad o
				AP, SCU,	582.2	2.2	7.3	-5.9	1.5	N,M	55.9	Passa
				AP, SCU,	541.4	-1.1	-8.7	-7.4	1.3	Q	7.6	Passa
			Ext.Inferior	AP, SCU, V	588.6	-1.3	-6.5	-5.9	1.5	N,M	56.3	Passa
				AP, SCU, V	781.4	0.9	-0.2	1.8	54.0	Q	47.8	Passa
			Ext.Superior	AP, SCU, V	782.3	2.2	-4.1	-0.4	51.3	N,M	57.9	Passa
	Térreo (-0.950.45 m)	40x20	_	AP, SCU, V	781.6	-1.8	-0.1	1.8	54.0	Q	47.8	Passa
			Ext.Inferior	AP, SCU, V	782.4	-0.4	-4.1	-0.4	51.3	N,M	57.9	Passa
			Elemento de	AP, SCU, V	781.6	-1.8	-0.1	1.8	54.0	Q	16.3	Passa
	Fundação	40x20	Fundação	AP, SCU, V	782.4	-0.4	-4.1	-0.4	51.3	N,M	57.9	Passa
				AP, SCU, V	203.7	0.9	-10.2	11.0	1.3	Q	13.3	Passa
			Ext.Superior	AP, SCU, V	222.2	1.1	-5.9	6.4	1.5	N,M	20.1	Passa
	Terceiro Andar (5.15 - 7.95 m)	45x20		AP, SCU,	210.9	-2.2	15.8	11.0	1.3	Q	19.9	Passa
			Ext.Inferior	AP, SCU,	228.4	-3.8	12.0	8.4	2.3	N,M	21.6	Passa
				AP, SCU, V	471.1	3.7	-17.0	14.6	3.2	Q	13.4	Passa
	Segundo Andar (2.35 - 5.15		Ext.Superior	AP, SCU, V	512.7	5.9	-13.4	11.7	5.0	N,M	46.2	Passa
	egundo Andar (2.33 - 3.13	45x20		AP, SCU, V	478.4	-3.8	17.3	14.6	3.2	Q	13.4	Passa
			Ext.Inferior	AP, SCU, V	519.9	-5.9	14.2	11.7	5.0	N,M	47.1	Passa
				AP, SCU, V	740.1	2.8	-16.7	13.6	1.9	Q	12.4	Passa
P8	Primeiro Andar (-0.45 - 2.35		Ext.Superior	AP, SCU, V	803.9	3.0	-15.2	11.7	2.0	N,M	70.8	Passa
	m)	45x20		AP, SCU, V	747.4	-1.6	15.3	13.6	1.9	Q	12.4	Passa
			Ext.Inferior	AP, SCU, V	811.2	-1.7	12.3	11.7	2.0	N,M	70.9	Passa
				AP, SCU, V	1055. 3	1.0	0.5	42.5	26.1	Q	43.5	Passa
			Ext.Superior	AP, SCU, V	1059. 2	1.0	-10.5	36.2	26.1	N,M	71.5	Passa
	Térreo (-0.950.45 m)	45x20		AP, SCU,	1055. 5	-0.3	2.6	42.5	26.1	Q	43.5	Passa
			Ext.Inferior	AP, SCU, V	1059. 3	-0.3	-8.7	36.2	26.1	N,M	71.3	Passa
			Elemento de	AP, SCU, V	1055. 5	-0.3	2.6	42.5	26.1	Q	14.9	Passa
	Fundação	45x20	Fundação	AP, SCU, V	1059. 3	-0.3	-8.7	36.2	26.1	N,M	71.3	Passa
				AP, SCU,	203.8	1.0	10.1	-11.0	1.3	Q	13.1	Passa
			Ext.Superior	AP, SCU, V	222.4	1.1	5.9	-6.3	1.5	N,M	20.1	Passa
	Terceiro Andar (5.15 - 7.95 m)	45x20		AP, SCU,	211.1	-2.2	-15.6	-11.0	1.3	Q	19.6	Passa
			Ext.Inferior	AP, SCU,	228.6	-3.8	-11.8	-8.3	2.3	N,M	21.6	Passa
P11				AP, SCU,	470.5	3.7	16.8	-14.4	3.2	Q	13.3	Passa
	Segundo Andar (2.35 - 5.15		Ext.Superior	AP, SCU, V	512.1	5.9	13.2	-11.6	5.0	N,M	46.1	Passa
	m)	45x20		AP, SCU,	477.7	-3.7	-17.1	-14.4	3.2	Q	13.3	Passa
			Ext.Inferior	AP, SCU,	519.3	-5.9	-14.0	-11.6	5.0	N,M	47.0	Passa
	Primeiro Andar (-0.45 - 2.35 m)	45×20	Ext.Superior	AP, SCU,	738.6	2.8	16.6	-13.5	1.9	Q	12.3	Passa

			Resumo d	las verificaç	ões							
Dila		Dimensã				i e	avoráve	is		Desfavoráve	Aprov	Ects 3
Pilare s	Tramo	o (cm)	Posição	Natureza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	l l	(%)	Estad 0
				AP, SCU, V	802.5	3.0	15.1	-11.6	2.0	N,M	70.7	Passa
			E . T C .	AP, SCU, V	745.9	-1.6	-15.2	-13.5	1.9	Q	12.3	Passa
			Ext.Inferior	AP, SCU, V	809.7	-1.7	-12.2	-11.6	2.0	N,M	70.7	Passa
				AP, SCU, V	1053. 0	1.0	-0.6	-42.1	25.7	Q	43.0	Passa
			Ext.Superior	AP, SCU, V	1056. 9	1.0	10.5	-35.7	25.6	N,M	71.3	Passa
	Térreo (-0.950.45 m)	45x20		AP, SCU, V	1053. 2	-0.3	-2.7	-42.1	25.7	Q	43.0	Passa
			Ext.Inferior	AP, SCU, V	1057. 0	-0.3	8.7	-35.7	25.6	N,M	71.2	Passa
			Elemento de	AP, SCU, V	1053. 2	-0.3	-2.7	-42.1	25.7	Q	14.7	Passa
	Fundação	45x20	Fundação	AP, SCU, V	1057. 0	-0.3	8.7	-35.7	25.6	N,M	71.2	Passa
				AP, SCU, V	85.4	6.0	-1.0	1.2	7.2	Q	12.7	Passa
	Terceiro Andar (5.15 - 7.95 m)	25x30	Ext.Superior	AP, SCU, V	90.1	5.8	-1.1	1.3	6.9	N,M	11.1	Passa
			Ext.Inferior	AP, SCU, V	91.4	-10.9	1.9	1.2	7.2	N,M	18.5	Passa
				AP, SCU, V	209.9	14.1	-2.6	2.3	11.8	Q	20.8	Passa
	Segundo Andar (2.35 - 5.15		Ext.Superior	AP, SCU, V	220.9	13.8	-2.8	2.4	11.7	N,M	27.0	Passa
	m)	25x30	_	AP, SCU, V	215.9	-13.7	2.7	2.3	11.8	Q	20.8	Passa
			Ext.Inferior	AP, SCU, V	227.0	-13.6	2.8	2.4	11.7	N,M	27.1	Passa
P26		25x30 -		AP, SCU, V	335.1	12.1	-2.0	1.4	9.5	Q	12.1	Passa
	Primeiro Andar (-0.45 - 2.35		Ext.Superior	AP, SCU, V	340.8	6.2	-2.1	1.5	3.5	N,M	33.3	Passa
	m)		_	AP, SCU, V	252.3	-8.9	0.9	1.0	8.1	Q	10.1	Passa
			Ext.Inferior	AP, SCU, V	358.1	-8.4	1.3	1.5	8.4	N,M	36.0	Passa
				AP, SCU, V	475.5	1.0	-1.2	21.7	60.5	Q	56.6	Passa
	Térreo (-0.950.45 m)	25x30	Ext.Superior	AP, SCU, V	462.8	6.7	-1.2	21.7	57.6	N,M	38.1	Passa
			Ext.Inferior	AP, SCU, V	475.6	-2.0	-0.2	21.7	60.5	Q	56.6	Passa
	Fundação	25x30	Elemento de Fundação	AP, SCU, V	475.6	-2.0	-0.2	21.7	60.5	N,M	37.9	Passa
				AP, SCU, V	85.4	6.0	1.0	-1.2	7.2	Q	12.7	Passa
	Terceiro Andar (5.15 - 7.95 m)	25x30	Ext.Superior	AP, SCU,	90.1	5.8	1.1	-1.3	6.9	N,M	11.1	Passa
			Ext.Inferior	AP, SCU,	91.4	-10.9	-1.9	-1.2	7.2	N,M	18.5	Passa
				AP, SCU,	209.9	14.1	2.6	-2.3	11.8	Q	20.9	Passa
	Segundo Andar (2.35 - 5.15		Ext.Superior	AP, SCU,	221.0	13.9	2.8	-2.4	11.7	N,M	27.0	Passa
	m)	25x30		AP, SCU,	216.0	-13.7	-2.7	-2.3	11.8	Q	20.9	Passa
P29			Ext.Inferior	AP, SCU,	227.0	-13.6	-2.9	-2.4	11.7	N,M	27.1	Passa
				AP, SCU, V	335.2	12.1	2.0	-1.4	9.5	Q	12.1	Passa
	Primeiro Andar (-0.45 - 2.35		Ext.Superior	AP, SCU, V	340.9	6.2	2.1	-1.5	3.5	N,M	33.3	Passa
	m)	25x30		AP, SCU, V	252.4	-8.9	-0.9	-1.0	8.1	Q	10.1	Passa
			Ext.Inferior	AP, SCU, V	358.2	-8.4	-1.3	-1.5	8.4	N,M	36.1	Passa
	Térreo (-0.950.45 m)	25x30	Ext.Superior	AP, SCU, V	475.7	1.0	1.2	-21.7	60.6	Q	56.7	Passa

			Resum	no das verificaç	ções							
		Dimensã			Esfor	ços desf	avoráve	is			Aprov	
Pilare s	Tramo	o (cm)	Posição	Natureza	N (kN)	Mxx (kN·m	Myy (kN·m)	Qx (kN)	Qy (kN)	Desfavoráve I	Aprov (%)	Estac 0
				AP, SCU, V	463.0	6.7	1.2	-21.7	57.7	N,M	38.1	Passa
			Ext.Inferior	AP, SCU, V	475.8	-2.0	0.1	-21.7	60.6	Q	56.7	Passa
	Fundação	25x30	Elemento de Fundação	AP, SCU, V	475.8	-2.0	0.1	-21.7	60.6	N,M	37.9	Passa
	T Andre (F. 15 - 7.05)	2520	Ext.Superior	AP, SCU, V	64.2	-9.7	1.0	-1.3	-11.5	Q	20.1	Passa
	Terceiro Andar (5.15 - 7.95 m)	25X3U	Ext.Inferior	AP, SCU, V	70.3	17.2	-2.0	-1.3	-11.5	N,M	37.0	Passa
			5.15 m	AP, SCU, V	70.3	17.2	-2.0	-1.3	-11.5	N,M	37.0	Passa
	Segundo Andar (2.35 - 5.15 m)	25x30	Ext.Superior	AP, SCU, V	177.3	-21.5	3.1	-2.6	-18.3	N,M	35.5	Passa
			Ext.Inferior	AP, SCU, V	183.4	21.5	-2.9	-2.6	-18.3	Q	32.1	Passa
			Ext.Illienor	AP, SCU, V	178.8	19.8	-4.7	-4.1	-16.8	N,M	35.3	Passa
			2.35 m	AP, SCU, V	183.4	21.5	-2.9	-2.6	-18.3	Q	5.5	Passa
P4			2.33 111	AP, SCU, V	178.8	19.8	-4.7	-4.1	-16.8	N,M	35.3	Passa
	Primeiro Andar (-0.45 - 2.35 m)	25x30	Ext.Superior	AP, SCU, V	271.4	-17.3	1.9	-1.3	-13.2	Q	23.1	Passa
			Lxt.3uperior	AP, SCU, V	285.0	-16.9	2.0	-1.4	-12.4	N,M	32.5	Passa
			Ext.Inferior	AP, SCU, V	277.5	13.6	-1.2	-1.3	-13.2	N,M	28.6	Passa
			Ext Cuporior	AP, SCU, V	356.1	-10.4	1.4	-23.7	-73.8	Q	78.6	Passa
	Térreo (-0.950.45 m)	25x30	Ext.Superior	AP, SCU, V	384.5	-9.0	1.5	-25.4	-81.4	N,M	33.4	Passa
			Ext.Inferior	AP, SCU, V	396.8	0.8	0.2	-25.4	-83.6	Q	76.8	Passa
	Fundação	25x30	Elemento de Fundação	AP, SCU,	396.8	0.8	0.2	-25.4	-83.6	N,M	31.5	Passa

6.- RELATÓRIO QUANTITATIVOS PILARES

Та	abela resum	o - Térr	eo					
	D: ~	- ^	Concreto		madu 50 e C	ras CA-60		
Pilares	Dimensõe s (cm)	Fôrma s (m²)	C30, em geral (m³)	Longitudina I Ø12.5 (kg)	Ø6. 3 (kg)	Ø10 (kg)	Total +10 % (kg)	Taxa (kg/m³)
P1, P3, P4, P6, P21, P24, P25, P26, P27, P28, P29 e P30	25x30	1.20	0.12	172.8	8.4	-	199.3	1510.00
P2 e P5	25x20	0.20	0.02	43.2	3.8	-	51.7	2350.00
P7 e P12	20x25	0.20	0.02	43.2	4.0	-	51.9	2360.00
P8 e P11	45x20	0.20	0.02	43.4	2.2	-	50.2	2280.00
P9 e P10	20x30	0.20	0.02	43.2	-	12.8	61.6	2800.00
P13 e P14	20x20	0.20	0.02	28.8	1.0	-	32.8	1490.00
P15 e P18	20x25	0.20	0.02	43.2	3.2	-	51.0	2320.00
P16 e P17	40x20	0.20	0.02	43.4	2.0	-	49.9	2270.00
P19 e P20	20x25	0.20	0.02	28.8	1.2	-	33.0	1500.00
P22 e P23	35x20	0.20	0.02	28.8	1.4	-	33.2	1510.00
Total		3.00	0.30	518.8	27. 2	12. 8	614.6	1862.6 7

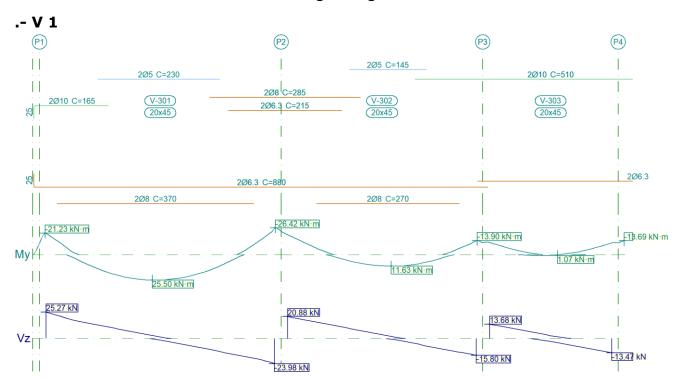
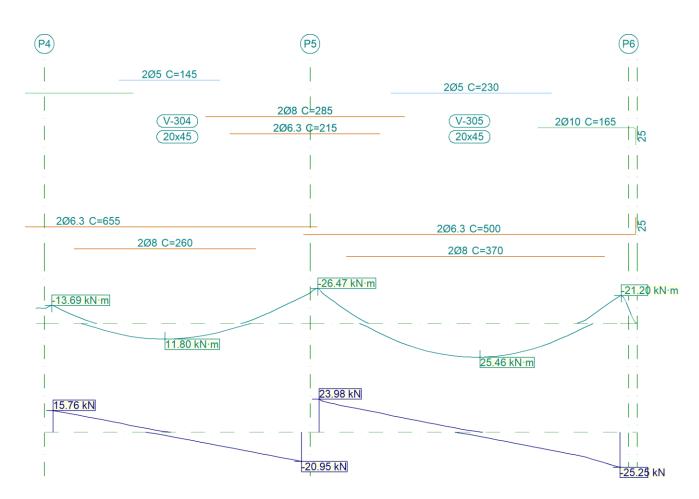
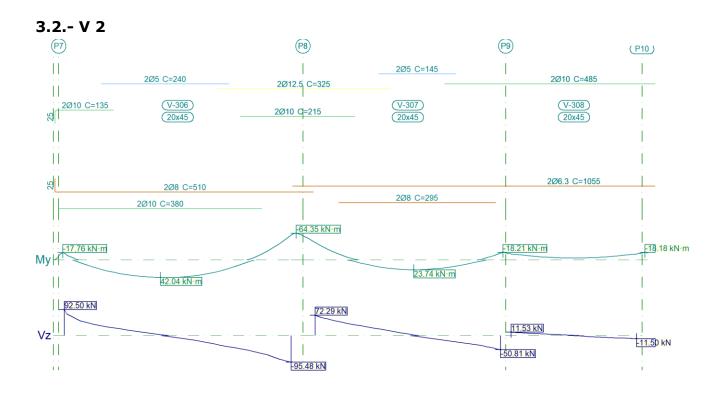

Tabela resumo	- Primeiro	Andar			
Pilares	Dimensõe s (cm)	Fôrma s (m²)	Concreto C30, em geral (m³)	Armaduras CA-50 e CA- 60 Estribos Ø6.3 (kg)	Taxa (kg/m³)
P1, P3, P4, P6, P21, P24, P25, P26, P27, P28, P29 e P30	25x30	31.08	2.16	55.2	25.56
P2 e P5	25x20	4.24	0.24	7.4	30.83
P7, P12, P15, P18, P19 e P20	20x25	12.72	0.72	22.2	30.83
P8 e P11	45x20	6.12	0.42	13.6	32.38
P9 e P10	20x30	4.70	0.28	8.2	29.29
P13 e P14	20x20	3.76	0.18	6.4	35.56
P16 e P17	40x20	5.64	0.38	12.8	33.68
P22 e P23	35x20	5.18	0.32	9.2	28.75
Total		73.44	4.70	135.0	28.72

Tabela re	esumo - Se	gundo /	Andar				
	Dimensõe	Fârmo	Concreto		naduras D e CA-6	0	Taxa
Pilares	s (cm)	s (m²)	C30, em geral (m³)	Longitudin al Ø12.5 (kg)	Estribo s Ø6.3 (kg)	Total +10 % (kg)	(kg/m³
P1, P3, P4, P6, P21, P24, P25, P26, P27, P28, P29 e P30	25x30	31.08	2.16	150.0	55.2	225.7	95.00
P2 e P5	25x20	4.24	0.24	25.0	7.4	35.6	135.00
P7, P12, P15, P18, P19 e P20	20x25	12.72	0.72	75.0	22.2	106.9	135.00
P8 e P11	45x20	6.12	0.42	37.6	13.6	56.3	121.90
P9 e P10	20x30	4.70	0.28	25.0	8.2	36.5	118.57
P13 e P14	20x20	3.76	0.18	25.0	6.4	34.5	174.44
P16 e P17	40x20	5.64	0.38	37.6	12.8	55.4	132.63
P22 e P23	35x20	5.18	0.32	25.0	9.2	37.6	106.88
Total	·	73.44	4.70	400.2	135.0	588.5	113.8 7

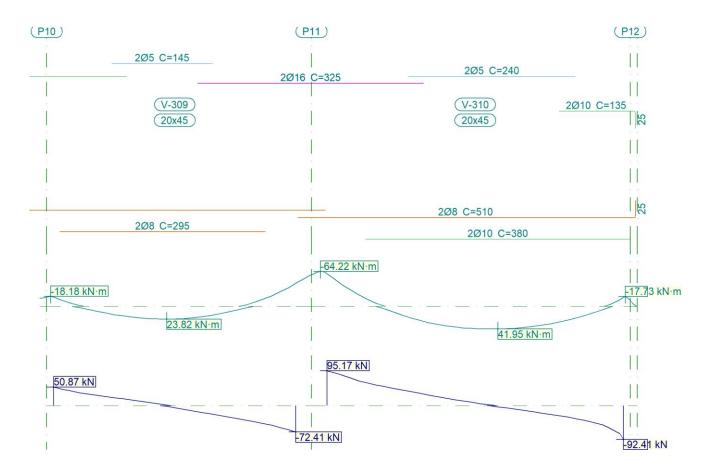
Tabela r	esumo - Te	rceiro A	Andar				
	D:	Concreto			naduras) e CA-6	0	Taxa
Pilares	Dimensõe s (cm)	s (m²)	C30, em geral (m³)	Longitudin al Ø12.5 (kg)	Estribo s Ø6.3 (kg)	Total +10 % (kg)	(kg/m³
P1, P3, P4, P6, P21, P24, P25, P26, P27, P28, P29 e P30	25x30	31.08	2.16	128.4	55.2	202.0	85.00
P2 e P5	25x20	4.24	0.24	21.4	7.4	31.7	120.00
P7, P12, P15, P18, P19 e P20	20x25	12.72	0.72	64.2	22.2	95.0	120.00
P8 e P11	45x20	6.12	0.42	32.2	13.6	50.4	109.05
P9 e P10	20x30	4.70	0.28	25.0	8.2	36.5	118.57
P13 e P14	20x20	3.76	0.18	25.0	6.4	34.5	174.44
P16 e P17	40x20	5.64	0.38	32.2	12.8	49.5	118.42
P22 e P23	35x20	5.18	0.32	21.4	9.2	33.7	95.63
Total		73.44	4.70	349.8	135.0	533.3	103.1 5


	Tabela resumo - Barrilete									
Dimensões		Fôrmas	Concreto	Arn CA-5	Taxa					
Pilares	(cm)	(m ²)	C30, em geral (m³)	Longitudinal Ø12.5 (kg)	Estribos Ø6.3 (kg)	Total +10 % (kg)	(kg/m³)			
P9 e P10	20x30	5.60	0.34	24.8	9.6	37.8	101.18			
P13 e P14	20x20	4.48	0.22	24.8	7.4	35.4	146.36			
Total	otal 10.08 0.56 49.6 17.0 73.2		118.93							

APÊNDICE J – Resultado das Vigas Segundo Andar – CYPECAD

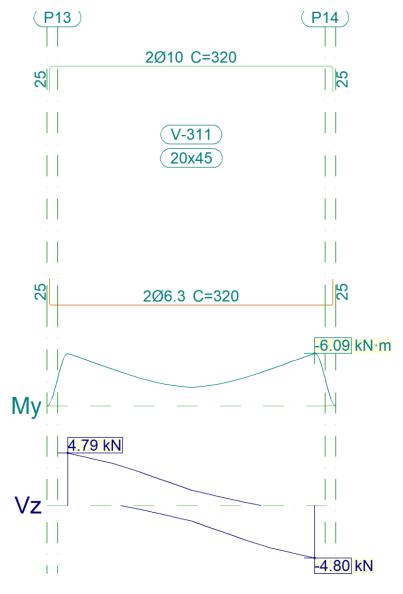

V 1		Tramo:	V-301		Tramo:	V-302		Tramo:	V-303		
Corte		20x45			20x45			20x45	20x45		
Região		1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	
Momento mín.	[kN·m]	-21.15		-26.15	-19.73		-13.77	-12.05	-1.53	-11.59	
x	[m]	0.00		4.30	0.00		3.55	0.00	0.78	2.30	
Momento máx.	[kN·m]	21.01	25.50	19.08	5.04	11.63	9.42				
x	[m]	1.38	2.00	2.88	1.08	1.95	2.45				
Esforço cortante mín.	[kN]		-7.02	-23.98		-3.92	-15.80		-6.29	-13.47	
x	[m]		2.75	4.30		2.33	3.55		1.53	2.30	
Esforço cortante máx.	[kN]	25.27	7.83		20.88	9.33		13.68	6.50		
x	[m]	0.00	1.50		0.00	1.20		0.00	0.78		
Torçor mín.	[kN]										
x	[m]										

V 1			Tramo:	V-301		Tramo:	V-302		Tramo:	V-303	
Corte			20x45			20x45			20x45		
Região	Região			2/3L	3/3L	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L
Torçor máx.	[kN]										
x	[m]										
Áwan Sum	[am 2]	Real	1.57	0.40	1.63	1.63	0.50	1.57	1.57	1.57	1.57
Área Sup.	[cm ²]	Nec.	1.55	0.00	1.55	1.55	0.00	1.55	1.55	1.55	1.55
Área Inf.	[am 2]	Real	1.63	1.63	1.63	1.63	1.63	1.63	0.62	0.62	0.62
Area IIII.	[cm ²]	Nec.	1.55	1.55	1.55	1.55	1.55	1.55	0.00	0.00	0.00
Áwan Tunnau	[am 2 /m]	Real	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Área Transv.	[CIII2/III]	Nec.	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93
F. Sobrecarga	a			m, L/58 4.30 m)	•	0.00 m	m, <l 1<br="">3.55 m)</l>	L000 (L:	0.00 m	m, <l 1<br="">2.30 m)</l>	•
F. Ativa	O.84 mm, L/5099 (L: 4.30 m)			0.17 mm, L/18527 (L: 3.13 m)			0.02 mm, L/94542 (L: 2.30 m)				
F. no tempo infinito 1.09 mm, L/3949 (L 4.30 m)			•	0.22 mm, L/14263 (L: 3.21 m)			0.03 mm, L/73977 (L: 2.30 m)				

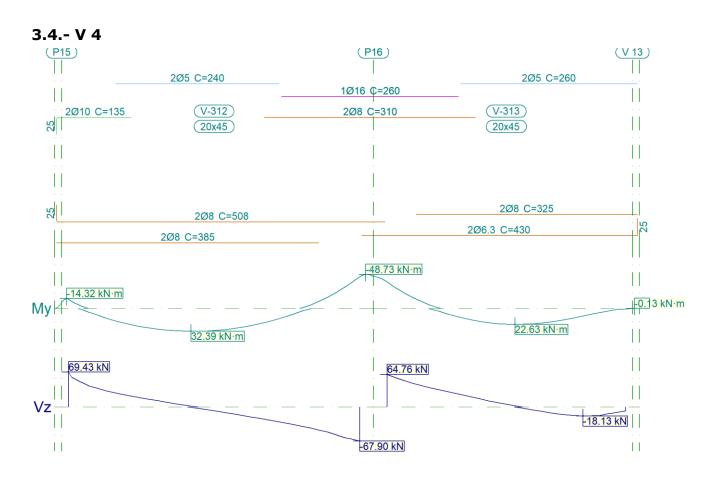


V 1		Tramo: V-3	04		Tramo: V-305			
Corte		20x45	20x45			20x45		
Região		1/3L	1/3L 2/3L 3/3L			1/3L 2/3L 3/3		
Momento mín.	[kN·m]	-13.56		-19.94	-26.20		-21.13	
x	[m]	0.00		3.55	0.00		4.30	

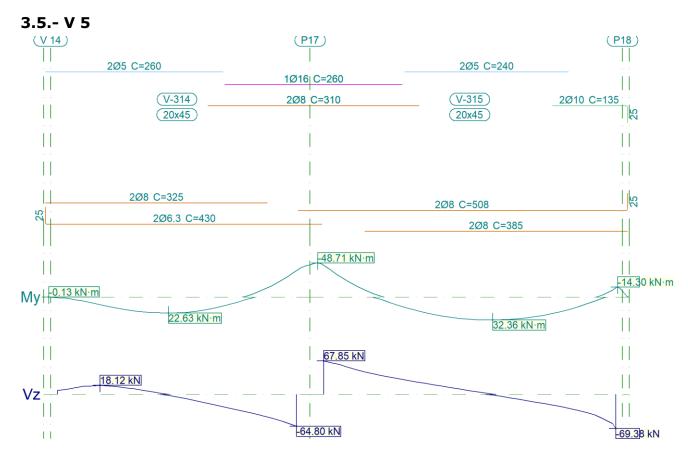
V 1			Tramo: V-3	04		Tramo: V-3	05			
Corte			20x45		20x45					
Região			1/3L	2/3L	3/3L	1/3L	2/3L	3/3L		
Momento máx.	[kN·m]		9.66	11.80	5.04	19.02	25.46	20.99		
x	[m]		1.10	1.60	2.48	1.43	2.30	2.93		
Esforço cortante mín.	[kN]			-9.39	-20.95		-7.82	-25.25		
x	[m]			2.35	3.55		2.80	4.30		
Esforço cortante máx.	[kN]		15.76	3.88		23.98	7.04	-		
x	[m]		0.00	1.23		0.00	1.55			
Torçor mín.	[kN]									
x	[m]									
Torçor máx.	[kN]									
x	[m]									
Área Sup.	[cm²]	Real	1.57	0.50	1.63	1.63	0.40	1.57		
Area Sup.	[CIII]	Nec.	1.55	0.00	1.55	1.55	0.00	1.55		
Área Inf.	[cm²]	Real	1.63	1.63	1.63	1.63	1.63	1.63		
Arca IIII	[CIII]	Nec.	1.55	1.55	1.55	1.55	1.55	1.55		
Área Transv.	[cm²/m]	Real	2.00	2.00	2.00	2.00	2.00	2.00		
Area Transtr	Nec.			1.93	1.93	1.93	1.93	1.93		
F. Sobrecarg	F. Sobrecarga			0.00 mm, <l (l:="" 1000="" 3.55="" m)<="" th=""><th colspan="4">0.07 mm, L/57977 (L: 4.30 m)</th></l>			0.07 mm, L/57977 (L: 4.30 m)			
F. Ativa	F. Ativa			, L/18019 (0.84 mm, L/5109 (L: 4.30 m)				
F. no tempo i	infinito		0.23 mm	, L/14031 (L: 3.25 m)	1.09 mm	ı, L/3958 (I	L: 4.30 m)		


V 2			Tramo:	V-306		Tramo:	V-307		Tramo:	V-308	
Corte			20x45			20x45			20x45		
Região			1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L
Momento mín.	[kN·m]		-16.75		-60.43	-42.45		-17.17	-14.91	-5.94	-14.83
x	[m]		0.00		4.25	0.00		3.48	0.00	0.80	2.35
Momento máx.	[kN·m]		37.40	42.04	25.89	13.94	23.74	19.76			
x	[m]		1.30	1.80	2.93	1.10	1.85	2.35			
Esforço cortante mín.	[kN]			-28.73	-95.48		-11.67	-50.81		-4.23	-11.50
x	[m]			2.80	4.25		2.23	3.48		1.55	2.35
Esforço cortante máx.	[kN]		92.50	13.37		72.29	22.66		11.53	4.25	
x	[m]		0.00	1.43		0.00	1.23		0.00	0.80	
Torçor mín.	[kN]										
x	[m]										
Torçor máx.	[kN]										
x	[m]										
Área Sup.	[cm²]	Real	1.57	0.40	4.02	4.02	0.80	1.57	1.57	1.57	1.57
Area Supi	[CIII]	Nec.	1.55	0.00	3.81	3.42	0.00	1.55	1.55	1.55	1.55
Área Inf.	[cm²]	Real	2.58	2.58	2.58	1.63	1.63	1.63	0.62	0.62	0.62
7.1. Gu =1111	[6]	Nec.	2.39	2.44	2.09	1.55	1.55	1.55	0.00	0.00	0.00
Área Transv.	[cm²/m]	Real		2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67
	[, , , , , , ,	Nec.	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93
F. Sobrecarga				ım, L/74 4.25 m)			m, L/60 3.42 m)			nm, L/1 L: 2.35 r	
F. Ativa				nm, L/18 4.25 m)			nm, L/69 3.48 m)		0.08 mm, L/27948 (L: 2.35 m)		
F. no tempo infinito				nm, L/10 4.25 m)		: 0.62 mm, L/5445 (L: 0.13 mm, L			m, L/18 2.35 m)		

V 2			Tramo: V-3	09		Tramo: V-3	10	
Corte			20x45			20x45		
Região			1/3L	2/3L	3/3L	1/3L	2/3L	3/3L
Momento mín.	[kN·m]		-17.14		-42.53	-60.29		-16.71
x	[m]		0.00		3.48	0.00		4.25
Momento máx.	[kN·m]		19.86	23.82	13.96	25.78	41.95	37.34
x	[m]		1.13	1.63	2.38	1.33	2.45	2.95
Esforço cortante mín.	[kN]			-22.73	-72.41		-13.31	-92.41
x	[m]			2.25	3.48		2.83	4.25
Esforço cortante máx.	[kN]		50.87	11.66		95.17	28.69	
x	[m]		0.00	1.25		0.00	1.45	
Torçor mín.	[kN]							
x	[m]							
Torçor máx.	[kN]							
x	[m]							
Área Sup.	[cm²]	Real		1.02	4.02	4.02	0.40	1.57
an cu cup.		Nec.	1.55	0.00	3.44	3.82	0.00	1.55
Área Inf.	[cm²]	Real	1.63	1.63	1.63	2.58	2.58	2.58
		Nec.	1.55	1.55	1.55	2.08	2.43	2.39
Área Transv.	[cm²/m]	Real Nec.	2.67 1.93					

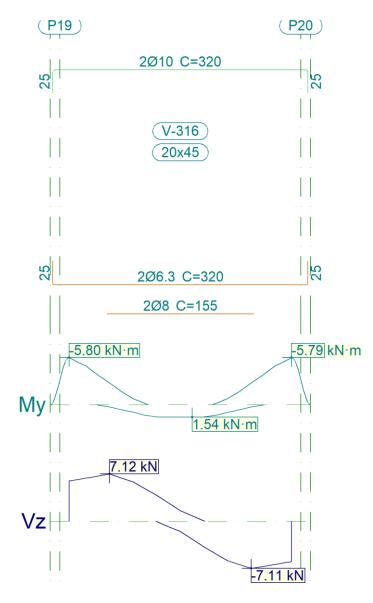

V 2	Tramo: V-3	09		Tramo: V-310			
Corte	20x45			20x45			
Região	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	
F. Sobrecarga	0.06 mm,	L/60018 (I	.: 3.42 m)	0.57 mm, L/7501 (L: 4.25 m)			
F. Ativa	0.51 mm	0.51 mm, L/6871 (L: 3.48 m)			2.25 mm, L/1887 (L: 4.25 r		
F. no tempo infinito	0.63 mm	, L/5413 (L	: 3.40 m)	2.62 mm	, L/1623 (L	: 4.25 m)	

3.3.- V 3

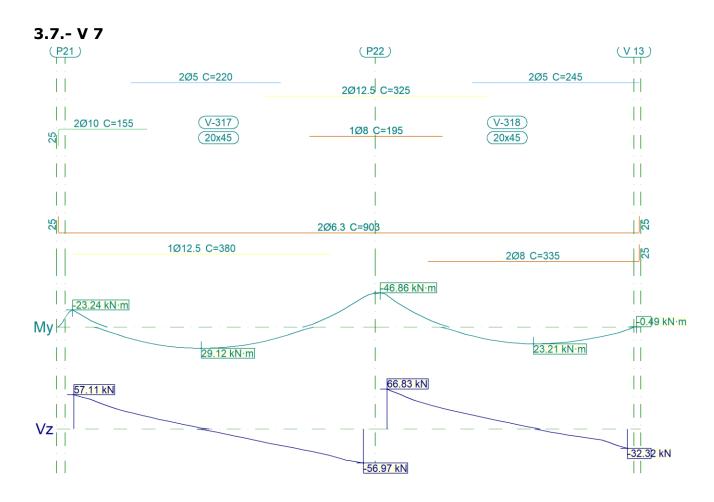


V 3		Tramo: V-311					
Corte		20x45					
Região		1/3L	3/3L				
Momento mín.	[kN·m]	-6.08	-2.84	-6.09			
x	[m]	0.00	1.55	2.35			
Momento máx.	[kN·m]						
x	[m]						

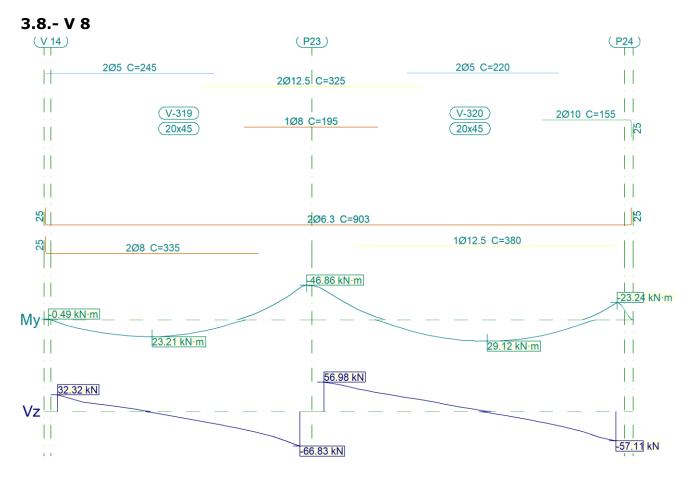
V 3			Tramo: V-311					
Corte			20x45					
Região			1/3L	2/3L	3/3L			
Esforço cortante mín.	[kN]		-0.32	-2.68	-4.80			
x	[m]		0.68	1.55	2.35			
Esforço cortante máx.	[kN]		4.79	2.67	0.32			
x	[m]		[m]		0.00	0.80	1.68	
Torçor mín.	[kN]							
x	[m]							
Torçor máx.	[kN]							
x	[m]							
Área Sup.	[cm²]	Real	1.57	1.57	1.57			
Area Sup.	[CIII-]	Nec.	1.55	1.55	1.55			
Área Inf.	[cm²]	Real	0.62	0.62	0.62			
Alea IIII.	[CIII-]	Nec.	0.00	0.00	0.00			
Áras Transii	[cm2/m]	Real	2.00	2.00	2.00			
Area Transv.	Área Transv. [cm²/m]		1.93	1.93	1.93			
Sobrecarga			0.00 mm, <l (l:="" 1000="" 2.3<="" th=""><th>35 m)</th></l>	35 m)				
F. Ativa	Ativa		0.05 mm, L/45306 (L: 2.35 m)					
F. no tempo i	nfinito			0.05 mm, L/44815 (L: 2.3	35 m)			


V 4		Tramo: V-3	12		Tramo: V-3	Tramo: V-313			
Corte			20x45			20x45			
Região			1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	
Momento mín.	[kN·m]		-13.61		-45.68	-38.07			
x	[m]		0.00		4.28	0.00			
Momento máx.	[kN·m]		30.53	32.39	18.82	13.72	22.63	19.52	
x	[m]		1.43	1.80	2.93	1.13	1.88	2.38	
Esforço cortante mín.	[kN]			-22.61	-67.90		-8.37	-18.13	
x	[m]			2.80	4.28		2.25	2.88	
Esforço cortante máx.	[kN]		69.43	9.87		64.76	19.71		
x	[m]		0.00	1.43		0.00	1.25		
Torçor mín.	[kN]								
x	[m]								
Torçor máx.	[kN]								
x	[m]								
Área Sup.	[cm²]	Real	1.57	0.40	3.02	3.02	0.40	0.40	
Area Sup.	[CIII]	Nec.	1.55	0.00	2.86	2.70	0.00	0.00	
Área Inf.	[cm²]	Real	2.01	2.01	2.01	1.63	1.63	1.63	
Arca IIII	[CIII]	Nec.	1.86	1.86	1.55	1.55	1.55	1.55	
Área Transv.	[cm²/m]	Real		2.00	2.00	2.00	2.00	2.00	
Alea Hallsvi	[[[]]	Nec.	1.93	1.93	1.93	1.93	1.93	1.93	
F. Sobrecarga			0.16 mm, L/26656 (L: 4.28 m)			0.05 mm, L/70144 (L: 3.50 m)			
F. Ativa			1.17 mn	1.17 mm, L/3653 (L: 4.28 m)			0.53 mm, L/6552 (L: 3.50 m)		
F. no tempo i	infinito		1.56 mm, L/2746 (L: 4.28 m)			0.66 mn	0.66 mm, L/5274 (L: 3.50 m)		

V 5			Tramo: V-3	314		Tramo: V-315			
Corte			20x45			20x45			
Região		1/3L	2/3L	3/3L	1/3L	2/3L	3/3L		
Momento mín.	[kN·m]				-38.07	-45.66		-13.59	
x	[m]				3.50	0.00		4.28	
Momento máx.	[kN·m]		19.51	22.63	13.74	18.79	32.36	30.51	
x	[m]		1.13	1.63	2.38	1.35	2.48	2.85	
Esforço cortante mín.	[kN]			-19.69	-64.80		-9.85	-69.38	
x	[m]			2.25	3.50		2.85	4.28	
Esforço cortante máx.	[kN]		18.12	8.38		67.85	22.60		
x	[m]		0.63	1.25		0.00	1.48		
Torçor mín.	[kN]								
x	[m]								
Torçor máx.	[kN]								
x	[m]								
Área Sup.	[cm²]	Real	0.40	0.40	3.02	3.02	0.40	1.57	
Area Sup.		Nec.	0.00	0.00	2.70	2.86	0.00	1.55	
Área Inf.	[cm²]	Real	1.63	1.63	1.63	2.01	2.01	2.01	
		Nec.	1.55	1.55	1.55	1.55	1.86	1.86	
Área Transv	[cm2/m]	Real	2.00	2.00	2.00	2.00	2.00	2.00	
Área Transv.	[cm²/m]	Nec.	1.93	1.93	1.93	1.93	1.93	1.93	


V 5	Tramo: V-314			Tramo: V-315			
Corte	20x45			20x45			
Região	1/3L	1/3L 2/3L 3/3L			2/3L	3/3L	
F. Sobrecarga	0.05 mm	0.05 mm, L/70134 (L: 3.50 m)			0.16 mm, L/26645 (L: 4.28 m)		
F. Ativa	0.53 mm	0.53 mm, L/6551 (L: 3.50 m)			1.17 mm, L/3659 (L: 4.28 m)		
F. no tempo infinito	0.66 mm	0.66 mm, L/5274 (L: 3.50 m)			1.55 mm, L/2749 (L: 4.28 m)		

3.6.- V 6

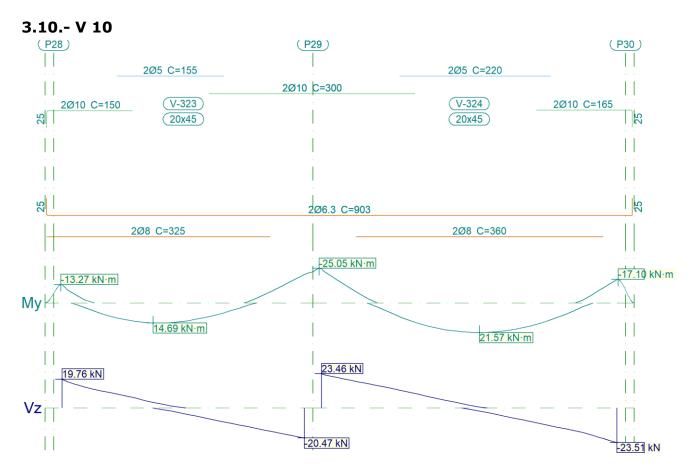


V 6		Tramo: V-316					
Corte		20x45					
Região		1/3L	2/3L	3/3L			
Momento mín.	[kN·m]	-5.80		-5.79			
x	[m]	0.00		2.35			
Momento máx.	[kN·m]		1.54				
x	[m]		1.30				

V 6		Tramo: V-316							
Corte			20x45						
Região			1/3L	2/3L	3/3L				
Esforço cortante mín.	[kN]			-4.90	-7.11				
x	[m]			1.55	1.93				
Esforço cortante máx.	[kN]		7.12	4.91					
x	[m]		0.43	0.80					
Torçor mín.	[kN]								
x	[m]								
Torçor máx.	[kN]								
x	[m]								
Área Sup.	[cm ²]	Real	1.57	1.57	1.57				
Alea Sup.	[CIII-]	Nec.	1.55	0.15	1.55				
Área Inf.	[cm²]	Real	1.63	1.63	1.63				
Alea IIII.	[CIII-]	Nec.	0.09	1.55	0.09				
Área Transv.	[and 2 /ma]	Real	2.00	2.00	2.00				
Alea Hallsv.	[[[]]	Nec.	1.93	1.93	1.93				
F. Sobrecarga			0.00 mm, <l (l:="" 1000="" 2.35="" m)<="" th=""></l>						
F. Ativa			0.01 mm, <l (l:="" 1000="" 2.35="" m)<="" th=""></l>						
F. no tempo infinito			0.00 mm, <l (l:="" 1000="" 2.35="" m)<="" td=""></l>						

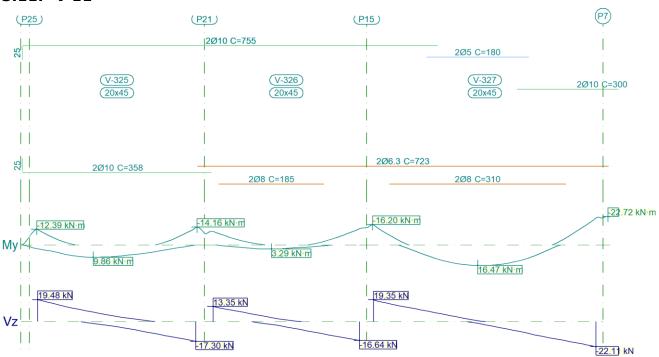


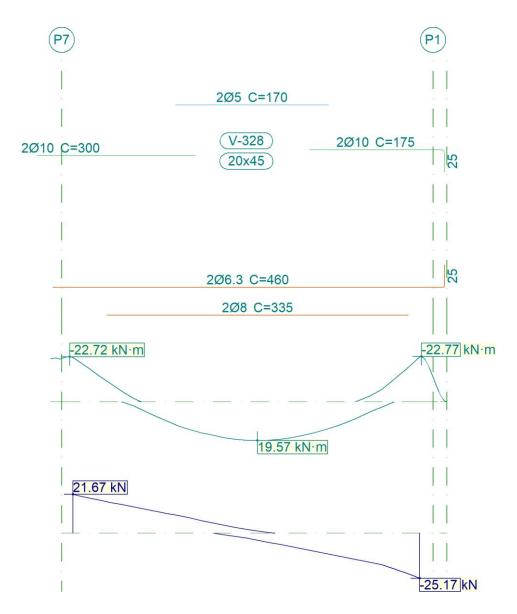
V 7		Tramo: V-3	17		Tramo: V-3	Tramo: V-318			
Corte			20x45			20x45			
Região			1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	
Momento mín.	[kN·m]		-22.69		-40.82	-43.77			
x	[m]		0.00		4.25	0.00			
Momento máx.	[kN·m]		26.12	29.12	17.82	9.81	23.21	22.64	
x	[m]		1.38	1.88	2.88	1.15	2.15	2.40	
Esforço cortante mín.	[kN]			-21.01	-56.97		-1.94	-32.32	
x	[m]			2.75	4.25		2.28	3.53	
Esforço cortante máx.	[kN]		57.11	10.24		66.83	22.74		
x	[m]		0.00	1.50		0.00	1.28		
Torçor mín.	[kN]								
x	[m]								
Torçor máx.	[kN]								
x	[m]								
Área Sup.	[cm²]	Real	1.57	0.40	2.96	2.96	0.79	0.40	
Area Sup.	[CIII]	Nec.	1.55	0.00	2.69	2.74	0.00	0.00	
Área Inf.	[cm²]	Real	1.85	1.85	1.85	1.63	1.63	1.63	
Arca IIII	[CIII]	Nec.	1.67	1.68	1.55	1.55	1.55	1.55	
Área Transv.	[cm²/m]	Real		2.00	2.00	2.00	2.00	2.00	
Al Cu Trulisvi	[[[]]	Nec.		1.93	1.93	1.93	1.93	1.93	
F. Sobrecarga			0.14 mm, L/31419 (L: 4.25 m)			0.07 mm, L/48703 (L: 3.33 m)			
F. Ativa	F. Ativa			0.94 mm, L/4515 (L: 4.25 m)			0.60 mm, L/5501 (L: 3.30 m)		
F. no tempo infinito			1.26 mm, L/3381 (L: 4.25 m)			0.73 mm, L/4498 (L: 3.27 m)			


V 8			Tramo: V-3	319		Tramo: V-3	Tramo: V-320				
Corte			20x45			20x45					
Região			1/3L	2/3L	3/3L	1/3L	2/3L	3/3L			
Momento mín.	[kN·m]				-43.77	-40.83		-22.69			
x	[m]				3.53	0.00		4.25			
Momento máx.	[kN·m]		22.64	23.21	9.81	17.82	29.12	26.13			
x	[m]		1.13	1.38	2.38	1.38	2.38	2.88			
Esforço cortante mín.	[kN]			-22.74	-66.83		-10.24	-57.11			
x	[m]			2.25	3.53		2.75	4.25			
Esforço cortante máx.	[kN]		32.32	1.94		56.98	21.01				
x	[m]		0.00	1.25		0.00	1.50				
Torçor mín.	[kN]										
x	[m]										
Torçor máx.	[kN]										
x	[m]										
Área Sup.	[cm²]	Real Nec.	0.40 0.00	0.79 0.00	2.96 2.74	2.96 2.69	0.40	1.57			
Á T	Real		1.63	1.63	1.63	1.85	1.85	1.85			
Área Inf.	[cm ²]	Nec.	1.55	1.55	1.55	1.55	1.68	1.67			
Área Transv.	[cm ² /m]	Real	2.00	2.00	2.00	2.00	2.00	2.00			

V 8		Tramo: V-3	19		Tramo: V-320				
Corte		20x45			20x45	20x45			
Região		1/3L	1/3L 2/3L 3/3L			2/3L	3/3L		
	Nec	1.93	1.93	1.93	1.93	1.93	1.93		
F. Sobrecarga	1	0.07 mm	, L/48700 (I	L: 3.33 m)	0.14 mm, L/31425 (L: 4.25 m)				
F. Ativa		0.60 mm	ı, L/5500 (L	: 3.30 m)	0.94 mm, L/4514 (L: 4.25 m)				
F. no tempo i	nfinito	0.73 mm	ı, L/4498 (L	: 3.27 m)	1.26 mm, L/3380 (L: 4.25 m)				

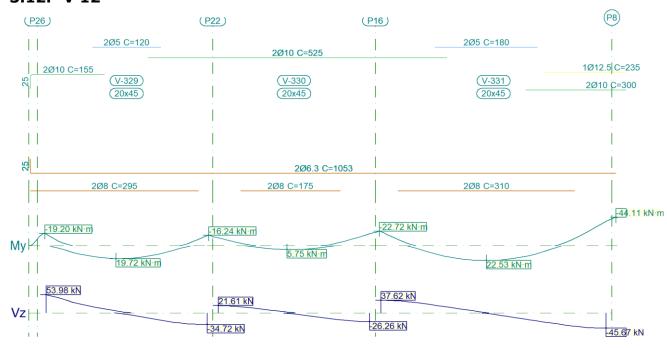
V 9		Tramo: V-3	21		Tramo: V-322			
Corte		20x45			20x45			
Região		1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	
Momento mín.	[kN·m]	-17.00		-24.74	-20.70		-13.15	
x	[m]	0.00		4.30	0.00		3.53	
Momento máx.	[kN·m]	18.08	21.57	15.17	5.67	14.69	13.64	
x	[m]	1.38	2.00	2.88	1.08	2.20	2.45	
Esforço cortante mín.	[kN]		-7.89	-23.46		-5.20	-19.75	
x	[m]		2.75	4.30		2.33	3.53	
Esforço cortante máx.	[kN]	23.52	6.84		20.48	9.14		
x	[m]	0.00	1.50		0.00	1.20		
Torçor mín.	[kN]							


V 9			Tramo: V-3	21		Tramo: V-3	22		
Corte			20x45			20x45			
Região	Região			2/3L	3/3L	1/3L	2/3L	3/3L	
x	[m]								
Torçor máx.	[kN]								
x	[m]								
Áras Sum	[cm2]	Real	1.57	0.40	1.57	1.57	0.64	1.57	
Årea Sup.	[cm ²] Nec.		1.55	0.00	1.55	1.55	0.00	1.55	
Área Inf.	[cm²]	Real	1.63	1.63	1.63	1.63	1.63	1.63	
Alea IIII.	[CIII-]	Nec.	1.55	1.55	1.55	1.55	1.55	1.55	
Área Transv.	[cm2/m]	Real	2.00	2.00	2.00	2.00	2.00	2.00	
Area Transv.	Nec.		1.93	1.93	1.93	1.93	1.93	1.93	
F. Sobrecarga			0.04 mm,	L/106391 (L: 4.30 m)	0.01 mm, L/255260 (L: 3.33 m)			
F. Ativa			0.67 mm	, L/6435 (L	.: 4.30 m)	0.27 mm, L/12390 (L: 3.35 m)			
F. no tempo i	nfinito		0.87 mm	, L/4952 (L	.: 4.30 m)	0.35 mm, L/9820 (L: 3.40 m)			

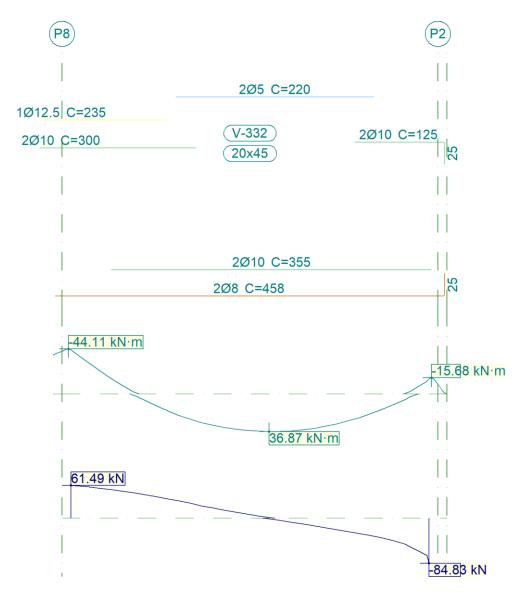

V 10		Tramo: V-3	23		Tramo: V-3	324		
Corte		20x45			20x45			
Região		1/3L	2/3L	3/3L	1/3L 2/3L 3/3L			
Momento mín.	[kN·m]	-13.16		-20.69	-24.75		-16.99	
x	[m]	0.00		3.53	0.00		4.30	
Momento máx.	[kN·m]	13.64	14.69	5.67	15.16	21.57	18.09	
x	[m]	1.08	1.33	2.45	1.43	2.30	2.93	

V 10			Tramo: V-3	23		Tramo: V-3	324		
Corte			20x45			20x45			
Região			1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	
Esforço cortante mín.	[kN]			-9.13	-20.47		-6.84	-23.51	
x	[m]			2.33	3.53		2.80	4.30	
Esforço cortante máx.	[kN]		19.76	5.21		23.46	7.90		
x	[m]		0.00	1.20		0.00	1.55		
Torçor mín.	[kN]								
x	[m]								
Torçor máx.	[kN]								
x	[m]								
Área Sup.	[cm ²]	Real	1.57	0.64	1.57	1.57	0.40	1.57	
Area Sup.	[CIII]	Nec.	1.55	0.00	1.55	1.55	0.00	1.55	
Área Inf.	[cm²]	Real	1.63	1.63	1.63	1.63	1.63	1.63	
Alea IIII.	[CIII-]	Nec.	1.55	1.55	1.55	1.55	1.55	1.55	
Área Transv.	Real		2.00	2.00	2.00	2.00	2.00	2.00	
Alea ITalisv.	Nec.		1.93	1.93	1.93	1.93	1.93	1.93	
F. Sobrecarga	F. Sobrecarga			L/255567 (L: 3.33 m)	0.04 mm,	L/106114	(L: 4.30 m)	
F. Ativa			0.27 mm,	, L/12394 (L: 3.35 m)	0.67 mm, L/6432 (L: 4.30 m)			
F. no tempo i	nfinito		0.35 mm	ı, L/9823 (L	.: 3.41 m)	0.87 mm, L/4951 (L: 4.30 m)			

3.11.- V 11

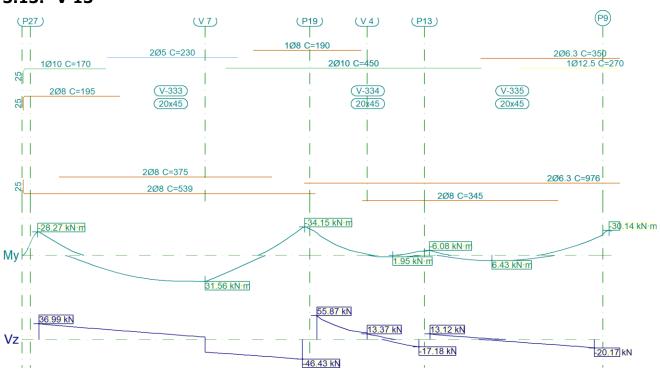

V 11			Tramo:	V-325		Tramo:	V-326		Tramo:	V-327	
Corte			20x45			20x45			20x45		
Região			1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L
Momento mín.	[kN·m]		-12.21		-13.99	-10.74		-12.95	-16.00		-21.61
x	[m]		0.00		2.78	0.00		2.58	0.00		3.90
Momento máx.	[kN·m]		9.63	9.86	6.84	2.95	3.29		12.35	16.47	10.62
x	[m]		0.85	0.98	1.85	0.78	1.03		1.20	1.83	2.70
Esforço cortante mín.	[kN]		-0.62	-8.51	-17.30	-0.60	-8.00	-16.64		-8.74	-22.11
x	[m]		0.85	1.85	2.78	0.78	1.65	2.58		2.58	3.90
Esforço cortante máx.	[kN]		19.48	8.53	1.35	13.35	4.91		19.35	5.66	
x	[m]		0.00	0.98	1.85	0.00	0.90		0.00	1.33	
Torçor mín.	[kN]										
x	[m]										
Torçor máx.	[kN]										
x	[m]										
Área Sup.	[cm²]	Real Nec.	1.57 1.55	1.57 0.12	1.57 1.55	1.57 1.55	1.57 0.22	1.57 1.55	1.57 1.55	0.40 0.00	1.57 1.55
		Real	1.57	1.57	1.57	1.63	1.63	1.28	1.63	1.63	1.63
Área Inf.	[cm ²]	Nec.	1.55	1.55	1.55	1.55	1.55	0.13	1.55	1.55	1.55
<u> </u>	F 2/ 1	Real	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Área Transv.	[cm²/m]	Nec.	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93
F. Sobrecarga			m, <l 1<br="">2.78 m)</l>	000 (L:		m, <l 1<br="">2.58 m)</l>		: 0.02 mm, L/190839 (L: 3.90 m)			
F. Ativa			0.13 mm, L/20877 (L: 2.78 m)			0.02 mm, L/112351 (L: 2.58 m)			0.37 mm, L/10607 (L: 3.90 m)		
F. no tempo infinito			0.17 mm, L/16798 (L: 0.03 mm, L/10 2.78 m) (L: 2.58 m				0.50 mm, L/7871 (L: 3.90 m)				

V 11		Tramo: V-328		
Corte		20x45		
Região		1/3L	2/3L	3/3L
Momento mín.	[kN·m]	-22.37		-22.63
x	[m]	0.00		3.85
Momento máx.	[kN·m]	12.27	19.57	15.71
x	[m]	1.18	2.05	2.68
Esforço cortante mín.	[kN]		-8.76	-25.17
x	[m]		2.55	3.85
Esforço cortante máx.	[kN]	21.67	8.58	
x	[m]	0.00	1.30	
Torçor mín.	[kN]			
x	[m]			

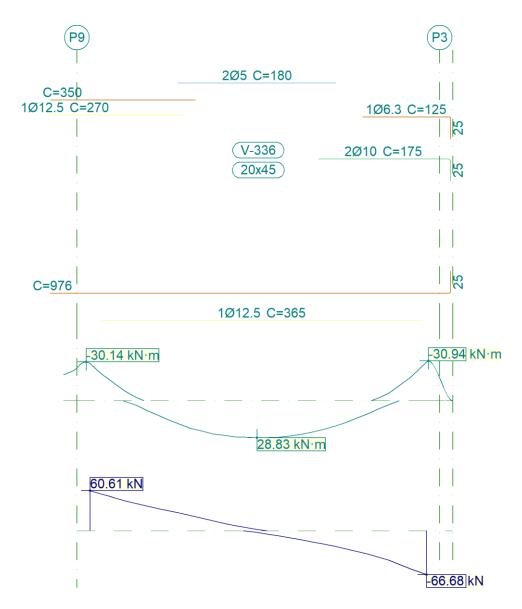

V 11			Tramo: V-328	Ггато: V-328							
Corte			20x45								
Região			1/3L	3/3L							
Torçor máx.	[kN]										
x	[m]										
Áros Sun	[cm 2]	Real	1.57	0.40	1.57						
Área Sup.	[cm ²]	Nec.	1.55	0.00	1.55						
Área Inf.	[cm²]	Real	1.63	1.63	1.63						
Alea IIII.	[CIII-]	Nec.	1.55	1.55	1.55						
Áras Transií	[cm2/m]	Real	2.00	2.00	2.00						
Área Transv.	[[[]]	Nec.	1.93	1.93	1.93						
F. Sobrecarga	a		0.03 mm, L/144536 (L: 3.85 m)								
F. Ativa			0.46 mm, L/8296 (L: 3.85 m)								
F. no tempo i	nfinito		0.58 mm, L/6620 (L: 3.85 m)								

3.12.- V 12

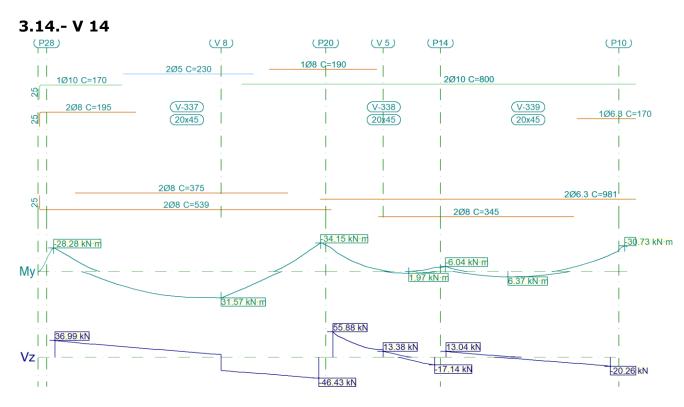
V 12	V 12			Tramo: V-329				Tramo: V-331				
Corte	Corte			20x45			20x45			20x45		
Região		1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L		
Momento mín.	[kN·m]	-18.51		-15.90	-12.51		-18.84	-22.22		-38.13		
x	[m]	0.00		2.83	0.00		2.65	0.00		3.95		
Momento máx.	[kN·m]	16.59	19.72	12.86	3.63	5.75	2.11	17.52	22.53	12.06		
x	[m]	0.85	1.23	1.98	0.83	1.20	1.83	1.23	1.85	2.73		
Esforço cortante mín.	[kN]		-16.86	-34.72		-11.60	-26.26		-20.29	-45.67		
x	[m]		1.85	2.83		1.70	2.65		2.60	3.95		


V 12			Tramo:	V-329		Tramo:	V-330		Tramo:	V-331	
Corte			20x45			20x45			20x45		
Região			1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L
Esforço cortante máx.	[kN]		53.98	13.33		21.61	7.55		37.62	13.00	
x	[m]		0.00	0.98		0.00	0.95		0.00	1.35	
Torçor mín.	[kN]										
x	[m]										
Torçor máx.	[kN]										
x	[m]										
Área Sup.	[cm²]	Real	1.57	0.40	1.57	1.57	1.57	1.57	1.57	0.40	2.80
Area Sup.	[CIII-]	Nec.	1.55	0.00	1.55	1.55	0.24	1.55	1.55	0.00	2.41
Área Inf.	[cm²]	Real	1.63	1.63	1.63	1.63	1.63	1.63	1.63	1.63	1.63
Alea IIII.	[CIII-]	Nec.	1.55	1.55	1.55	1.55	1.55	1.55	1.55	1.55	1.55
Área Transv.	[cm2/m]	Real	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Alea Italisv.	[CIII-/III]	Nec.	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93
F. Sobrecarga	ga			nm, L/1 L: 2.83 r		0.00 mm, <l (l:<br="" 1000="">2.65 m)</l>			: 0.08 mm, L/45915 (L: 3.86 m)		
F. Ativa		0.31 mm, L/9098 (L: 2.83 m)			0.03 mm, L/36031 (L: 1.08 m)			0.47 mm, L/7590 (L: 3.60 m)			
F. no tempo infinito		0.40 mm, L/7045 (L: 2.83 m)			0.03 mm, L/30414 (L: 0.91 m)			0.67 mm, L/5648 (L: 3.79 m)			

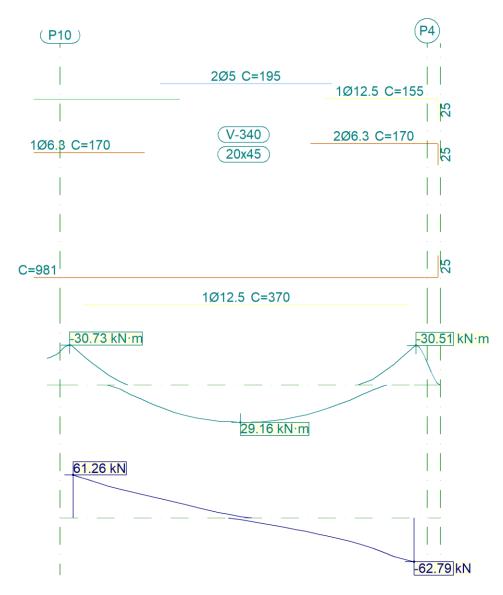
V 12		Tramo: V-332								
Corte		20x45								
Região		1/3L	2/3L	3/3L						
Momento mín.	[kN·m]	-43.14		-14.87						
x	[m]	0.00		3.98						
Momento máx.	[kN·m]	24.80	36.87	33.65						
x	[m]	1.33	2.20	2.70						
Esforço cortante mín.	[kN]		-10.84	-84.83						
x	[m]		2.58	3.98						
Esforço cortante máx.	[kN]	61.49	28.66							
x	[m]	0.00	1.33							
Torçor mín.	[kN]									
x	[m]									
Torçor máx.	[kN]									


V 12			Tramo: V-332	Tramo: V-332						
Corte			20x45							
Região			1/3L	3/3L						
x	[m]									
Áros Sun	[cm2]	Real	2.80	0.40	1.57					
Årea Sup.	[cm ²]	Nec.	2.57	0.00	1.55					
Área Inf.	[om 2]	Real	2.58	2.58	2.58					
Area Int.	[cm ²]	Nec.	1.90	2.13	2.11					
Áras Transii	[cm2/m]	Real	2.00	2.00	2.00					
Área Transv.	[[[]]	Nec.	1.93	1.93	1.93					
F. Sobrecarga	3		0.25 mm, L/15762 (L: 3.98 m)							
F. Ativa			1.43 mm, L/2777 (L: 3.98 m)							
F. no tempo i	nfinito		1.76 mm, L/2261 (L: 3.98 m)							

3.13.- V 13

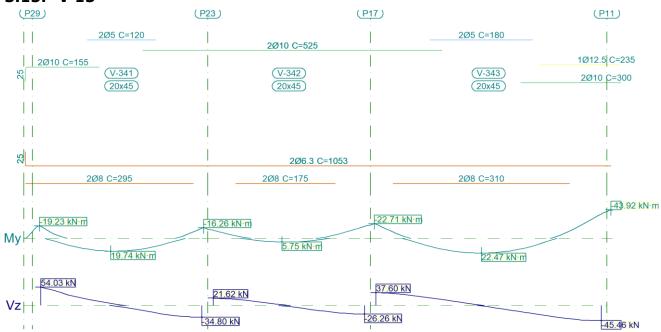

V 13		Tramo:	V-333		Tramo:	V-334		Tramo: V-335		
Corte		20x45			20x45			20x45		
Região		1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L
Momento mín.	[kN·m]	-28.01		-33.24	-26.95	-4.05	-4.84	-5.98		-20.32
x	[m]	0.00		4.64	0.00	0.71	1.80	0.00		2.89
Momento máx.	[kN·m]	22.50	31.56	22.95		1.70	1.95	5.79	6.43	2.04
x	[m]	1.48	2.93	3.23		1.09	1.34	0.84	1.09	1.97
Esforço cortante mín.	[kN]		-30.85	-46.43			-17.18		-8.93	-20.17
x	[m]		3.08	4.64			1.80		1.84	2.89

V 13			Tramo:	V-333		Tramo:	V-334		Tramo:	V-335		
Corte			20x45			20x45			20x45	20x45		
Região			1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	
Esforço cortante máx.	[kN]		36.99	19.46		55.87	18.61	3.84	13.12	2.81		
x	[m]		0.00	1.60		0.00	0.71	1.21	0.00	0.97		
Torçor mín.	[kN]											
x	[m]											
Torçor máx.	[kN]											
x	[m]											
Área Sup.	[cm²]	Real	1.79	0.40	2.07	2.07	1.66	1.57	1.57	1.21	1.85	
Alea Sup.	[CIII-]	Nec.	1.62	0.00	1.97	1.82	1.55	1.55	1.55	0.27	1.55	
Área Inf.	[cm²]	Real	2.01	2.01	2.01	0.62	1.63	1.63	1.63	1.63	1.63	
Alea IIII.	[CIII-]	Nec.	1.57	1.81	1.81	0.00	1.55	1.55	1.55	1.55	1.55	
Área Transv.	[cm2/m]	Real	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	
Alea Ilalisv.	[CIII-/III]	Nec.	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	
F. Sobrecarga	recarga			0.15 mm, L/31101 (L: 4.64 m)			0.00 mm, <l (l:<br="" 1000="">1.80 m)</l>			: 0.00 mm, <l (l:="" 1000="" 2.89="" m)<="" th=""></l>		
F. Ativa			1.37 mm, L/3382 (L: 4.64 m)			0.04 mm, L/40338 (L: 1.80 m)			0.04 mm, L/29637 (L: 1.07 m)			
F. no tempo infinito			1.68 mm, L/2760 (L: 4.64 m)			0.05 mm, L/39472 (L: 1.80 m)			0.04 mm, L/27673 (L: 1.00 m)			

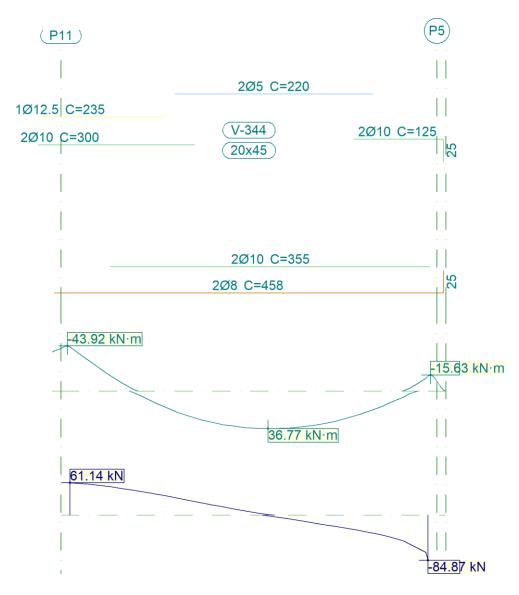

V 13		Tramo: V-336		
Corte		20x45		
Região		1/3L	2/3L	3/3L
Momento mín.	[kN·m]	-28.82		-30.21
x	[m]	0.00		3.83
Momento máx.	[kN·m]	23.64	28.83	22.38
x	[m]	1.28	1.90	2.65
Esforço cortante mín.	[kN]		-17.10	-66.68
x	[m]		2.53	3.83
Esforço cortante máx.	[kN]	60.61	18.89	
x	[m]	0.00	1.28	
Torçor mín.	[kN]			
x	[m]			

V 13			Tramo: V-336	Tramo: V-336					
Corte			20x45	20x45					
Região			1/3L	3/3L					
Torçor máx.	[kN]								
x	[m]								
Área Sup.	[cm2]	Real	1.85	0.40	1.88				
Area Sup.	[cm ²]	Nec.	1.74	0.00	1.78				
Área Inf.	[cm²]	Real 1.85		1.85	1.85				
Alea IIII.	[CIII-]	Nec.	1.61	1.66	1.56				
Áros Trongy	[cm2/m]	Real	2.00	2.00	2.00				
Area Transv.	Transv. [cm²/m] Nec		1.93	1.93	1.93				
F. Sobrecarga	а		0.12 mm, L/33069 (L: 3.83 m)						
F. Ativa			0.82 mm, L/4693 (L: 3.83 m)						
F. no tempo i	nfinito		1.05 mm, L/3631 (L: 3.83 m)						

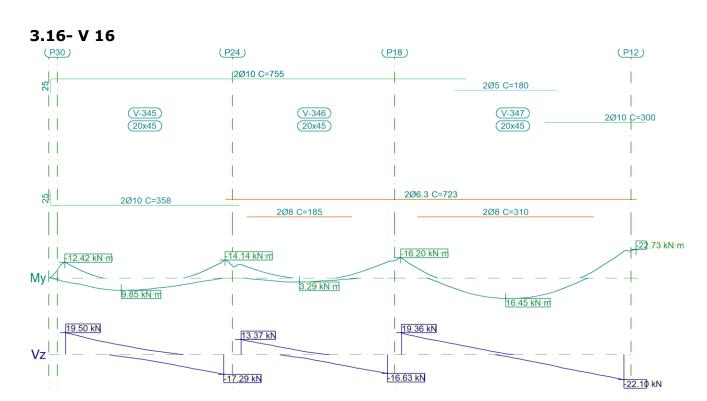
V 14	V 14		V-337		Tramo:	V-338		Tramo:	V-339	
Corte		20x45			20x45			20x45		
Região		1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L
Momento mín.	[kN·m]	-28.02		-33.24	-26.94	-4.05	-4.81	-5.95		-20.53
x	[m]	0.00		4.64	0.00	0.71	1.80	0.00		2.89
Momento máx.	[kN·m]	22.50	31.57	22.95		1.71	1.97	5.75	6.37	1.93
x	[m]	1.48	2.93	3.23		1.09	1.34	0.84	1.09	1.97
Esforço cortante mín.	[kN]		-30.85	-46.43			-17.14		-9.01	-20.26
x	[m]		3.08	4.64			1.80		1.84	2.89


V 14			Tramo:	V-337		Tramo:	V-338		Tramo:	V-339		
Corte			20x45			20x45			20x45	20x45		
Região			1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	
Esforço cortante máx.	[kN]		36.99	19.46		55.88	18.62	3.85	13.04	2.74		
x	[m]		0.00	1.60		0.00	0.71	1.21	0.00	0.97		
Torçor mín.	[kN]											
x	[m]											
Torçor máx.	[kN]											
x	[m]											
Área Sup.	[cm²]	Real	1.79	0.40	2.07	2.07	1.66	1.57	1.57	1.57	1.88	
Area Sup.	[CIII-]	Nec.	1.62	0.00	1.97	1.82	1.55	1.55	1.55	0.28	1.55	
Área Inf.	[cm²]	Real	2.01	2.01	2.01	0.62	1.63	1.63	1.63	1.63	1.63	
Alea IIII.	[CIII-]	Nec.	1.57	1.81	1.81	0.00	1.55	1.55	1.55	1.55	1.55	
Área Transv.	[cm2/m]	Real	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	
Alea Ilalisv.	[[[]]	Nec.	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	
F. Sobrecarga	brecarga						m, <l 1<br="">1.80 m)</l>	-	0.00 mm, <l (l:<br="" 1000="">2.89 m)</l>			
F. Ativa			1.37 mm, L/3382 (L: 4.64 m)			0.04 mm, L/40410 (L: 1.80 m)			0.04 mm, L/28646 (L: 1.08 m)			
F. no tempo infinito			1.68 mm, L/2760 (L: 4.64 m)			0.05 mm, L/39564 (L: 1.80 m)			0.04 mm, L/28617 (L: 1.10 m)			

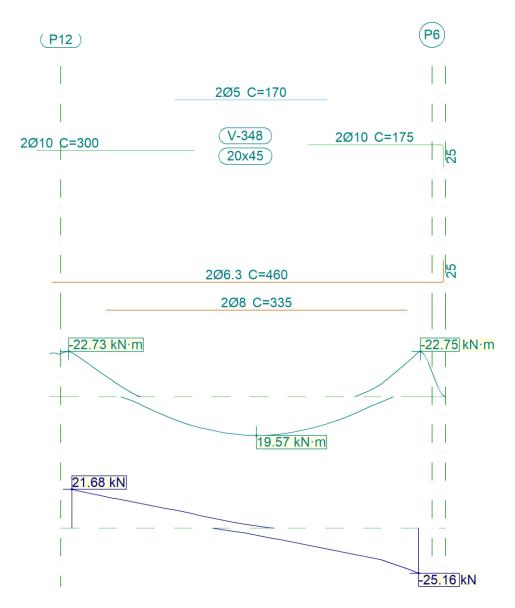
V 14		Tramo: V-340		
Corte		20x45		
Região		1/3L	2/3L	3/3L
Momento mín.	[kN·m]	-29.40		-29.84
x	[m]	0.00		3.88
Momento máx.	[kN·m]	23.70	29.16	23.24
x	[m]	1.28	1.90	2.65
Esforço cortante mín.	[kN]		-16.18	-62.79
x	[m]		2.53	3.88
Esforço cortante máx.	[kN]	61.26	15.18	
x	[m]	0.00	1.40	
Torçor mín.	[kN]			
x	[m]			
Torçor máx.	[kN]			


V 14			Tramo: V-340						
Corte			20x45	×45					
Região			1/3L	2/3L	3/3L				
x	[m]								
Áwan Sum	Γ ama 2.1	Real	1.88	0.40	1.85				
Área Sup.	[cm ²]	Nec.	1.77	0.00	1.76				
Áwan Turf	Γ ama 2.1	Real	1.85	1.85	1.85				
Área Inf.	[cm ²]	Nec.	1.62	1.68	1.60				
Áras Transv	[cm2/m]	Real	2.00	2.00	2.00				
Área Transv.	[CIII2/III]	Nec.	1.93	1.93	1.93				
F. Sobrecarga	1		0.12 mm, L/32990 (L: 3.88 m)						
F. Ativa			0.84 mm, L/4601 (L: 3.88 m)						
F. no tempo i	nfinito		1.09 mm, L/3550 (L: 3.88 m)						

3.15.- V 15


V 15		Tramo: V-341			Tramo:	V-342		Tramo: V-343			
Corte		20x45			20x45			20x45			
Região		1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	
Momento mín.	[kN·m]	-18.54		-15.92	-12.52		-18.83	-22.22		-37.95	
x	[m]	0.00		2.83	0.00		2.65	0.00		3.95	
Momento máx.	[kN·m]	16.59	19.74	12.92	3.62	5.75	2.11	17.48	22.47	12.02	
x	[m]	0.85	1.23	1.98	0.83	1.20	1.83	1.23	1.85	2.73	
Esforço cortante mín.	[kN]		-16.81	-34.80		-11.60	-26.26		-20.22	-45.46	
x	[m]		1.85	2.83		1.70	2.65		2.60	3.95	
Esforço cortante máx.	[kN]	54.03	13.36		21.62	7.55		37.60	12.97		
x	[m]	0.00	0.98		0.00	0.95		0.00	1.35		

V 15			Tramo:	V-341		Tramo:	V-342		Tramo:	V-343		
Corte			20×45			20x45	20x45			20x45		
Região	Região		1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	
Torçor mín.	[kN]											
x	[m]											
Torçor máx.	[kN]											
x	[m]											
Á C	Г 2.1	Real	1.57	0.40	1.57	1.57	1.57	1.57	1.57	0.40	2.80	
Area Sup.	[cm ²]	Nec.	1.55	0.00	1.55	1.55	0.24	1.55	1.55	0.00	2.40	
Á T	Г 2 J	Real	1.63	1.63	1.63	1.63	1.63	1.63	1.63	1.63	1.63	
Área Inf.	[cm ²]	Nec.	1.55	1.55	1.55	1.55	1.55	1.55	1.55	1.55	1.55	
Áwan Tunnau	[and 2 /ma]	Real	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	
Área Transv.	[Cm²/m]	Nec.	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	
F. Sobrecarga	Sobrecarga			0.03 mm, L/108129 (L: 2.83 m)			0.00 mm, <l (l:<br="" 1000="">2.65 m)</l>			0.08 mm, L/45777 (L: 3.86 m)		
F. Ativa			0.31 mm, L/9076 (L: 2.83 m)			0.03 mm, L/35982 (L: 1.08 m)			0.47 mm, L/7624 (L: 3.60 m)			
F. no tempo infinito			,			0.03 mm, L/30403 (L: 0.91 m)			0.67 mm, L/5668 (L: 3.79 m)			


V 15		Tramo: V-344		
Corte		20x45		
Região		1/3L	2/3L	3/3L
Momento mín.	[kN·m]	-42.95		-14.82
x	[m]	0.00		3.98
Momento máx.	[kN·m]	24.52	36.77	33.62
x	[m]	1.33	2.20	2.70
Esforço cortante mín.	[kN]		-10.73	-84.87
x	[m]		2.58	3.98
Esforço cortante máx.	[kN]	61.14	28.18	
x	[m]	0.00	1.33	
Torçor mín.	[kN]			
x	[m]			
Torçor máx.	[kN]			

V 15			Tramo: V-344							
Corte			20x45							
Região			1/3L	2/3L	3/3L					
x	K [m]									
Áros Sun	[cm 2]	Real	2.80	0.40	1.57					
Área Sup.	[cm ²]	Nec.	2.56	0.00	1.55					
Área Inf.	[cm 2]	Real	2.58	2.58	2.58					
Area IIII.	[cm ²]	Nec.	1.89	2.13	2.11					
Áras Transii	[cm2/m]	Real	2.00	2.00	2.00					
Área Transv.	[[[]]	Nec.	1.93 1.93 1.93							
F. Sobrecarga			0.24 mm, L/16231 (L: 3.98 m)							
F. Ativa			1.41 mm, L/2818 (L: 3.98 m)							
F. no tempo infinito			1.74 mm, L/2285 (L: 3.98 m)							

V 16		Tramo:	V-345		Tramo:	V-346		Tramo:	V-347	
Corte		20x45			20x45			20x45		
Região	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	
Momento mín. [kN·m]		-12.24		-13.98	-10.76		-12.94	-16.00		-21.59
x	[m]	0.00		2.78	0.00		2.58	0.00		3.90
Momento máx.	[kN·m]	9.62	9.85	6.85	2.95	3.29		12.35	16.45	10.61
x	[m]	0.85	0.98	1.85	0.78	1.03		1.20	1.83	2.70
Esforço cortante mín.	[kN]	-0.61	-8.50	-17.29	-0.59	-7.99	-16.63		-8.74	-22.10
x	[m]	0.85	1.85	2.78	0.78	1.65	2.58		2.58	3.90
Esforço cortante máx.	Esforço cortante [kN]		8.55	1.36	13.37	4.93		19.36	5.66	

V 16			Tramo:	V-345		Tramo:	V-346		Tramo: V-347			
Corte			20x45			20x45			20x45			
Região			1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	1/3L	2/3L	3/3L	
x	[m]		0.00	0.98	1.85	0.00	0.90		0.00	1.33		
Torçor mín.	[kN]											
x	[m]											
Torçor máx.	[kN]											
x	[m]											
Áras Sum	[cm²]	Real	1.57	1.57	1.57	1.57	1.57	1.57	1.57	0.40	1.57	
Área Sup.		Nec.	1.55	0.12	1.55	1.55	0.22	1.55	1.55	0.00	1.55	
Área Inf.	[cm²]	Real	1.57	1.57	1.57	1.63	1.63	1.28	1.63	1.63	1.63	
Area IIII.		Nec.	1.55	1.55	1.55	1.55	1.55	0.13	1.55	1.55	1.55	
Áras Transi	[cm2/m]	Real	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	
Área Transv.	[[[]]	Nec.	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	
F. Sobrecarga	9		0.00 mm, <l (l:<br="" 1000="">2.78 m)</l>			0.00 mm, <l (l:<br="" 1000="">2.58 m)</l>			0.02 mm, L/190707 (L: 3.90 m)			
F. Ativa		0.13 mm, L/20887 (L: 2.78 m)			0.02 mm, L/112730 (L: 2.58 m)			0.37 mm, L/10620 (L: 3.90 m)				
F. no tempo i	0.17 mm, L/16806 (L: 2.78 m)			0.03 mm, L/101996 (L: 2.58 m)			0.50 mm, L/7878 (L: 3.90 m)					

V 16		Tramo: V-348		
Corte		20x45		
Região		1/3L	2/3L	3/3L
Momento mín.	[kN·m]	-22.38		-22.62
x	[m]	0.00		3.85
Momento máx.	[kN·m]	12.27	19.57	15.72
x	[m]	1.18	2.05	2.68
Esforço cortante mín.	[kN]		-8.76	-25.16
x	[m]		2.55	3.85
Esforço cortante máx.	[kN]	21.68	8.59	
x	[m]	0.00	1.30	
Torçor mín. [kN]				
x	[m]			

V 16			Tramo: V-348						
Corte			20x45						
Região			1/3L	2/3L	3/3L				
Torçor máx.	Torçor máx. [kN]								
x	[m]								
Ároa Sun	[cm2]	Real	1.57	0.40	1.57				
Área Sup.	[cm ²]	Nec.	1.55	0.00	1.55				
Área Inf.	[cm²]	Real	1.63	1.63	1.63				
Alea IIII.		Nec.	1.55	1.55	1.55				
Área Transv.	[cm2/m]	Real	2.00	2.00	2.00				
Area Transv.	[[[]]	Nec.	1.93	1.93	1.93				
F. Sobrecarga	a		0.03 mm, L/144526 (L: 3.85 m)						
F. Ativa			0.46 mm, L/8292 (L: 3.85 m)						
F. no tempo i	nfinito		0.58 mm, L/6618 (L: 3.85 m)						

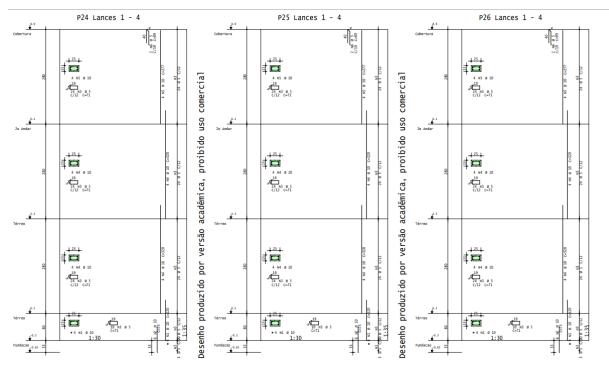
APÊNDICE K – RESULTADO DAS LAJES – CYPECAD

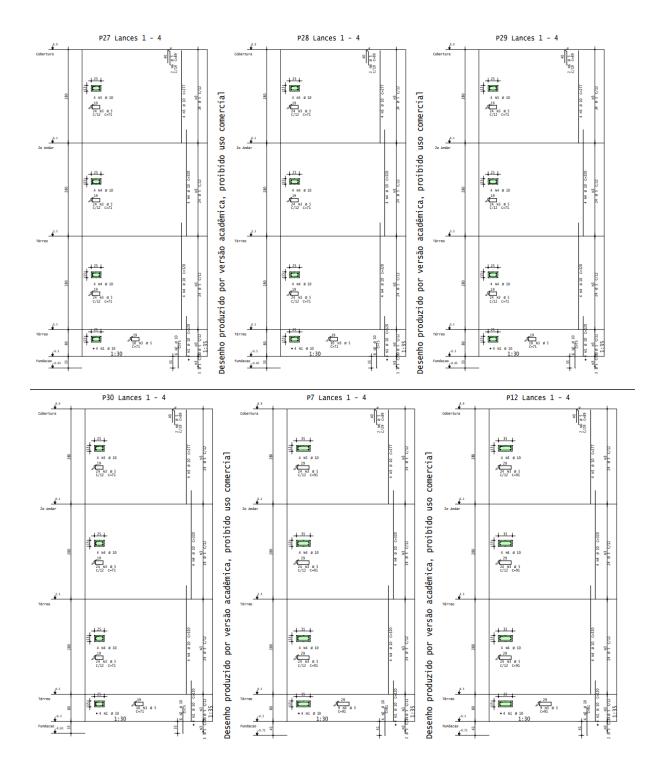
Térreo

			М	omento	S	Taxas	de Arm	adura	Arm	adura de ref	orço
Laje	Dir.	Altura	Esq.	Centro	Dir.	Esq.	Centro	Dir. Sup. Esq. Inf. Cent			Sup. Dir.
L1	Χ	0.15	0.00	4.67	8.47	0.00	1.30	2.37		Ø4.2c/10	Ø6.3c/13
	Υ		8.93	4.88	-0.00	2.50	1.36	-0.00	Ø8c/20	Ø4.2c/10	
L6	Χ	0.15	0.00	4.38	5.83	0.00	1.22	1.63		Ø5c/16	Ø6.3c/19
	Υ		5.27	2.95	8.79	1.47	0.83	2.46	,	Ø4.2c/16	Ø6.3c/12.5
L2	Χ	0.15	7.57	3.01	5.84	2.12	0.84	1.63	Ø6.3c/14	Ø4.2c/16	Ø6.3c/19
	Υ		6.36	2.88	1.06		0.80		Ø6.3c/17.5	Ø4.2c/17	Ø4.2c/20
L16	X	0.15	6.66	3.75	-0.02	1.86	1.05	-0.01	Ø6.3c/16	Ø5c/19	
	Υ		-0.00	3.26	2.91		0.91	0.81		Ø4.2c/15	Ø4.2c/17
L5	X	0.15	8.49	4.67	0.00		1.31	0.00		Ø4.2c/10	
	Υ		8.91	4.87	-0.00		1.36		Ø6.3c/12.5		
L9	X	0.15	5.80	4.38	0.00	1.62	1.22	0.00	Ø6.3c/19	Ø5c/16	
	Υ		5.25	2.94	8.76		0.82	2.45	Ø5c/13	Ø4.2c/16	Ø6.3c/12.5
L3	X	0.15	5.11	1.98	5.03	1.43	0.55	1.41	Ø5c/14	Ø4.2c/20	Ø5c/14
	Υ		0.87	2.26	1.24		0.63	0.35	-	Ø4.2c/20	Ø4.2c/20
L8	X	0.15	2.80	3.26	5.54		0.91		Ø4.2c/17.5		Ø6.3c/20
	Υ		3.94	2.79	6.45	1.10	0.78	1.80	Ø5c/18	Ø4.2c/17.5	Ø5c/11
L4	X	0.15	5.79	3.02	7.60	1.62	0.84	2.12	Ø6.3c/19	Ø4.2c/16	Ø6.3c/14
	Υ		6.35	3.68	0.00	1.77	1.03		Ø6.3c/17.5	Ø5c/19	
L15	X Y	0.15	0.00	3.74	7.34	0.00	1.05	2.05		Ø5c/19	Ø6.3c/15
		0.15	-0.00	2.63	4.86		0.74	1.36		Ø4.2c/18	Ø4.2c/10
L7	X Y	0.15	5.55	3.26	2.80	1.55	0.91	0.78	Ø6.3c/20	Ø4.2c/15	Ø4.2c/17.5
		0.15	3.94	2.79	6.44		0.78	1.80	Ø5c/18	Ø4.2c/17.5	Ø5c/11
L11	X Y	0.15	0.92	2.32	4.15	0.26	0.65	1.16		Ø4.2c/20	Ø5c/17
			3.85	0.85	4.38	1.08	0.24	1.22	Ø5c/18	Ø4.2c/20	Ø5c/16
L12	X Y	0.15	4.48	3.58	3.99	1.25	1.00	1.12 0.99	Ø4.2c/11	Ø5c/20	Ø5c/17.5
		0.15	2.62	1.41	3.55		0.39		Ø4.2c/18	Ø4.2c/20	Ø4.2c/14
L17	X Y	0.15	-0.02	3.75	6.66		1.05	1.86		Ø5c/19	Ø6.3c/16
		0.45	-0.00	3.26	2.91		0.91	0.81		Ø4.2c/15	Ø4.2c/17
L18	X Y	0.15	7.34	3.74	0.00		1.04	0.00 1.36	Ø6.3c/15	Ø5c/19	~ Ø4 2c/10
		0.15	-0.00	2.63	4.86		0.74			Ø4.2c/18	Ø4.2c/10
L13	X Y	0.15	3.99	3.58	4.48	1.12	1.00	1.25	Ø5c/17.5	Ø5c/20	Ø4.2c/11
		0.1-	2.62	1.41	3.55		0.39	0.99	•	Ø4.2c/20	Ø4.2c/14
L14	X Y	0.15	4.15	2.32	0.92	1.16	0.65	0.26	Ø5c/17	Ø4.2c/20	Ø4.2c/20
	Y		3.85	0.85	4.37	1.08	0.24	1.22	Ø5c/18	Ø4.2c/20	Ø5c/16

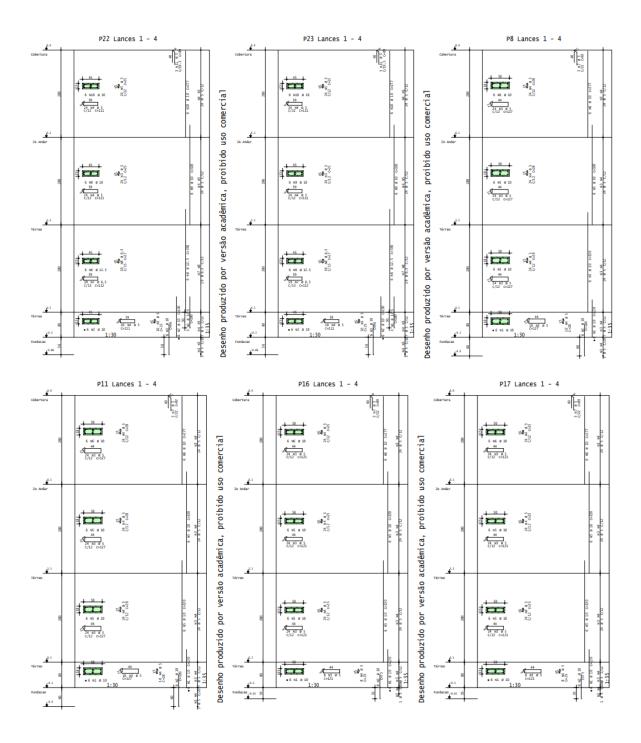
	Momentos Taxas de Armadura Armadura de reforço												
	I	1								I			
		Altura	Esq.	Centro	Dir.	Esq.	Centro	Dir.	Sup. Esq.	Inf. Centro	Sup. Dir.		
L10	X	0.15	6.10		6.09	1.70	0.17	1.70	Ø6.3c/18	Ø4.2c/20	Ø6.3c/18		
	Υ		0.41	0.52	0.50		0.15 neiro Ai	0.14	Ø4.2c/20	Ø4.2c/20 Ø4.2c/20 Ø4.2c/20			
			М	Momentos			de Arm		Arm	adura de ref	orco		
Laie	Dir.	Altura	Esq.	Centro	Dir.	Esq.	Centro	Dir.	Sup. Esq.	Inf. Centro	Sup. Dir.		
L1	X	0.15	0.00	5.14	7.83	0.00	1.44	2.19		Ø5c/13	Ø6.3c/14		
	Υ	0.20	8.49	5.10	-0.00	2.37	1.43	-0.00	Ø6.3c/13	Ø5c/14			
L6	Χ	0.15	0.00	4.66	6.55	0.00	1.30	1.83		Ø4.2c/10	Ø6.3c/17		
	Υ		4.59	2.94	8.48	1.28	0.82	2.37	Ø4.2c/10	Ø4.2c/16	Ø6.3c/13		
L2	X Y	0.15	7.16 6.62	3.00 4.26	5.60 0.00	2.00 1.85	0.84 1.19	1.57 0.00	Ø6.3c/15 Ø6.3c/16	Ø4.2c/16 Ø5c/16	Ø5c/12.5		
L16	Х	0.15	6.77	3.97	-0.03		1.11	-0.01	Ø6.3c/16	Ø5c/18			
LIO	Ŷ	0.13	0.00	4.00	2.57	0.00	1.12	0.72		Ø5c/17.5	Ø4.2c/19		
L5	Χ	0.15	7.87	5.13	0.00	2.20	1.43	0.00	Ø6.3c/14	Ø5c/13			
	Υ		8.46	5.10	-0.00	2.37	1.42	-0.00	Ø6.3c/13	Ø5c/14			
L9	Χ	0.15	6.52	4.66	0.00	1.82	1.30	0.00	Ø6.3c/17	Ø4.2c/10			
	Υ		4.58		8.45		0.82	2.36	Ø4.2c/10	Ø4.2c/16	Ø6.3c/13		
L3	X Y	0.15	5.19 -0.17	1.65 4.37	5.03 -0.00		0.46 1.22	1.41 -0.00	Ø5c/13	Ø4.2c/20 Ø5c/16	Ø5c/14		
L8	X	0.15	2.65	3.29	6.10	0.74	0.92	1.70	Ø4.2c/18	Ø4.2c/15	Ø6.3c/18		
	Y	0.13	4.19	2.62	6.90	1.17	0.73	1.93	Ø5c/17	Ø4.2c/18	Ø6.3c/16		
L4	Χ	0.15	5.48	2.99	7.21	1.53	0.84	2.01	Ø5c/13	Ø4.2c/16	Ø6.3c/15		
	Υ		6.66	4.22	-0.00	1.86	1.18	-0.00	Ø6.3c/16	Ø5c/16			
L15	X	0.15	0.00	3.80	7.29	0.00	1.06	2.04		Ø4.2c/13	Ø6.3c/15		
	Y	0.45	-0.00	2.82	4.66		0.79	1.30		Ø4.2c/17.5			
L7	X Y	0.15	6.11 4.19	3.29 2.63	2.65 6.88	1.71 1.17	0.92 0.74	0.74 1.92	Ø6.3c/18 Ø5c/17	Ø4.2c/15 Ø4.2c/18	Ø4.2c/18 Ø6.3c/16		
L11	X	0.15	0.38	3.35	5.32	0.11	0.94	1.49	Ø4.2c/20	Ø4.2c/14	Ø5c/13		
	Y	0.13	4.01	0.69	4.00	1.12	0.19	1.12	Ø5c/17.5	Ø4.2c/20	Ø5c/17.5		
L12	Χ	0.15	5.54	3.72	3.99	1.55	1.04	1.11	Ø6.3c/20	Ø5c/19	Ø5c/17.5		
	Υ		2.40	1.45	4.09		0.40	1.14	Ø4.2c/20	Ø4.2c/20	Ø4.2c/12		
L17	X	0.15	-0.03	3.97	6.77	-0.01	1.11	1.89		Ø5c/18	Ø6.3c/16		
110	Y	0.15	0.00	4.00	2.57		1.12	0.72	 ας 2α/1Ε	Ø5c/17.5 Ø4.2c/13	Ø4.2c/19		
L18	X Y	0.15	7.28 -0.00		0.00 4.66		1.06 0.79	0.00 1.30	Ø6.3c/15	Ø4.2c/13 Ø4.2c/17.5			
L13	X	0.15	3.99	3.72	5.54		1.04	1.55	Ø5c/17.5	Ø5c/19	Ø6.3c/20		
	Υ		2.40		4.09		0.40	1.14	Ø4.2c/20	Ø4.2c/20	Ø4.2c/12		
L14	Χ	0.15	5.32	3.35	0.38	1.49	0.94	0.11	Ø5c/13	Ø4.2c/14	Ø4.2c/20		
	Υ		4.01	0.69	4.00		0.19	1.12	Ø5c/17.5	Ø4.2c/20	Ø5c/17.5		
L10	X	0.15	6.25	0.53	6.24		0.15		Ø6.3c/17.5	Ø4.2c/20	Ø6.3c/17.5		
	Υ		0.88	-0.04	0.45		-0.01 Jundo A	0.13	Ø4.2c/20		Ø4.2c/20		
			М	lomento)S		de Arm		Arm	adura de ref	orco		
Laie	Dir.	Altura		Centro	Dir.	Esq.	Centro	Dir.	Sup. Esq.	Inf. Centro	Sup. Dir.		
L1	X	0.15	_		7.74		1.44	2.16		Ø5c/13	Ø6.3c/14		
	Υ		8.42		-0.00		1.43	-0.00	Ø6.3c/13	Ø5c/14			
L6	X	0.15	0.00		6.53		1.29	1.83		Ø4.2c/10	Ø6.3c/17		
	Y	· -	4.64		8.41		0.83	2.35	Ø4.2c/10	Ø4.2c/16	Ø6.3c/13		
L2	X Y	0.15	7.05 6.46		5.68 0.00		0.85	1.59 0.00	Ø5c/10 Ø5c/11	Ø4.2c/16	Ø5c/12.5		
L16	X	0.15	6.67	3.97	-0.02	1.81	1.20	-0.01	Ø5c/11 Ø6.3c/16	Ø5c/16 Ø5c/18			
	Ŷ	0.13	0.00	3.92	2.44		1.09	0.68		Ø5c/18	Ø4.2c/20		
L5	X	0.15	7.78	5.13	0.00	2.17	1.43	0.00	Ø6.3c/14	Ø5c/13			
	Υ		8.40	5.09	-0.00	2.35	1.42	-0.00	Ø6.3c/13	Ø5c/14			

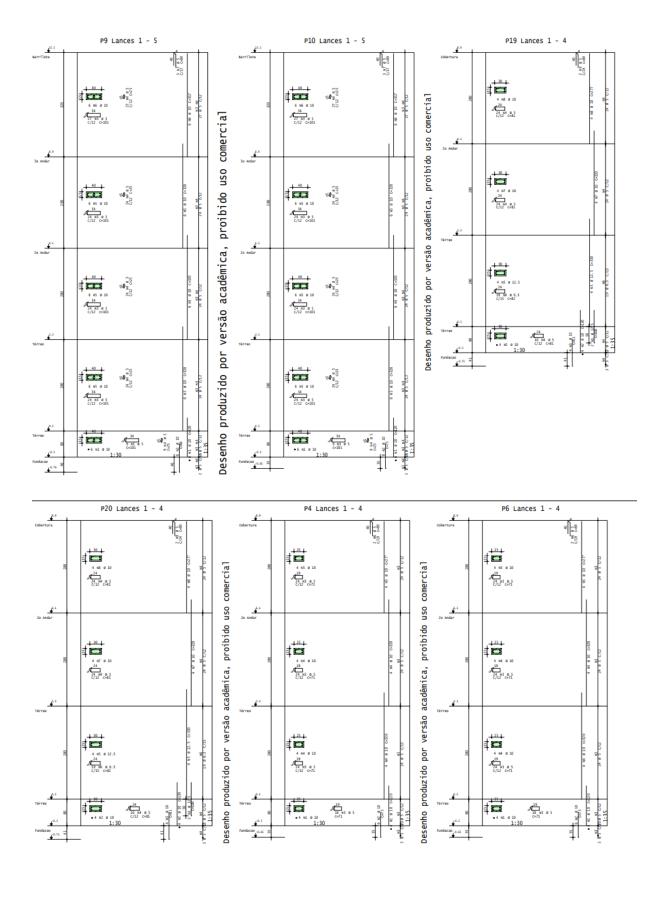
	Momentos				s	Taxas	de Arm	adura	Arm	adura de ref	orço
Laje	Dir.	Altura	Esq.	Centro	Dir.	Esq.	Centro	Dir.	Sup. Esq.	Inf. Centro	Sup. Dir.
L9	Χ	0.15	6.51	4.61	0.00	1.82	1.29	0.00	Ø6.3c/17	Ø4.2c/10	
	Υ		4.63	2.95	8.38	1.29	0.82	2.34	Ø4.2c/10	Ø4.2c/16	Ø6.3c/13
L3	Χ	0.15	5.23	1.59	5.07	1.46	0.45	1.42	Ø5c/13	Ø4.2c/20	Ø5c/14
	Υ		-0.16	4.29	-0.00	-0.05	1.20	-0.00		Ø5c/16	
L8	Χ	0.15	2.63	3.31	6.06	0.74	0.93	1.70	Ø4.2c/18	Ø4.2c/15	Ø6.3c/18
	Υ		4.18	2.63	6.73	1.17	0.73	1.88	Ø5c/17	Ø4.2c/18	Ø6.3c/16
L4	Χ	0.15	5.57	3.04	7.10	1.56	0.85	1.98	Ø6.3c/20	Ø4.2c/16	Ø5c/10
	Υ		6.50	4.26	-0.00	1.82	1.19	-0.00	Ø5c/11	Ø5c/16	
L15	Χ	0.15	0.00	3.78	7.19	0.00	1.06	2.01		Ø4.2c/13	Ø6.3c/15
	Υ		-0.00	2.81	4.62	-0.00	0.79	1.29		Ø4.2c/17.5	Ø4.2c/10
L7	Χ	0.15	6.08	3.32	2.63	1.70	0.93	0.74	Ø6.3c/18	Ø4.2c/14	Ø4.2c/18
	Υ		4.18	2.63	6.71	1.17	0.74	1.88	Ø5c/17	Ø4.2c/18	Ø6.3c/16
L11	Χ	0.15	0.39	3.32	5.21	0.11	0.93	1.46	Ø4.2c/20	Ø4.2c/14	Ø5c/13
	Υ		3.96	0.70	4.05	1.11	0.20	1.13	Ø5c/18	Ø4.2c/20	Ø5c/17.5
L12	Χ	0.15	5.42	3.70	4.21	1.52	1.04	1.18	Ø5c/13	Ø5c/19	Ø5c/16
	Υ		2.27	1.44	4.07	0.63	0.40	1.14	Ø4.2c/20	Ø4.2c/20	Ø5c/17.5
L17	Χ	0.15	-0.03	3.97	6.67	-0.01	1.11	1.86		Ø5c/18	Ø6.3c/16
	Υ		0.00	3.92	2.44	0.00	1.09	0.68		Ø5c/18	Ø4.2c/20
L18	Χ	0.15	7.19	3.78	0.00	2.01	1.06	0.00	Ø6.3c/15	Ø4.2c/13	
	Υ		-0.00	2.81	4.61	-0.00	0.79	1.29		Ø4.2c/17.5	Ø4.2c/10
L13	Χ	0.15	4.21	3.71	5.42	1.18	1.04	1.52	Ø5c/16	Ø5c/19	Ø5c/13
	Υ		2.27	1.44	4.07	0.63	0.40	1.14	Ø4.2c/20	Ø4.2c/20	Ø5c/17.5
L14	Χ	0.15	5.21	3.31	0.38	1.46	0.93	0.11	Ø5c/13	Ø4.2c/14	Ø4.2c/20
	Υ		3.96	0.70	4.04	1.11	0.20	1.13	Ø5c/18	Ø4.2c/20	Ø5c/17.5
L10	Χ	0.15	6.28	0.61	6.27	1.75	0.17	1.75	Ø6.3c/17.5	Ø4.2c/20	Ø6.3c/17.5
	Υ		1.40	-0.08		0.39	-0.02		Ø4.2c/20		

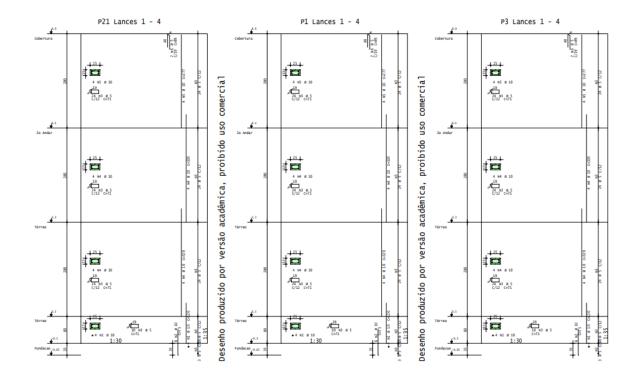

Terceiro Andar Momentos Taxas de Armadura Armadura de reforço Sup. Esq. Inf. Centro Sup. Dir. Laje Dir. Altura Esq. Centro Dir. Esq. Centro Dir. 5.43 0.00 1.52 L1 0.15 0.00 4.30 1.20 -----Ø5c/16 Ø5c/13 5.96 3.86 0.00 1.67 1.08 0.00 Ø5c/12 Ø5c/18 -----L6 0.15 -0.00 4.14 -0.00 1.44 Ø5c/17 5.16 1.16 Ø5c/13 Χ 2.46 1.12 0.69 1.70 Ø5c/17.5 Υ 4.00 6.07 Ø4.2c/20 Ø6.3c/18 L2 Χ 0.15 5.25 1.88 3.60 1.47 0.52 1.01 Ø5c/13 Ø4.2c/20 Ø5c/19 Υ 5.10 3.59 0.00 1.43 1.00 0.00 Ø5c/14 Ø5c/19 Χ 5.35 2.56 -0.021.50 0.71 -0.01 Ø5c/13 Ø4.2c/19 L17 0.15 Υ 0.00 3.40 2.02 0.00 0.95 0.56 Ø4.2c/14 Ø4.2c/20 L5 Χ 5.45 4.29 0.00 1.52 1.20 0.00 Ø5c/13 0.15 Ø5c/16 _____ Υ 5.95 3.87 0.00 1.66 1.08 0.00 Ø5c/12 Ø5c/18 -0.00 1.44 L10 Χ 0.15 5.17 4.14 1.16 -0.00 Ø5c/13 Ø5c/17 -----Υ 4.00 2.46 6.07 1.12 0.69 1.70 Ø5c/17.5 Ø4.2c/20 Ø6.3c/18 L3 Χ 0.15 3.11 0.62 2.98 0.87 0.17 0.83 Ø4.2c/15 Ø4.2c/20 Ø4.2c/16 0.79 Υ 2.95 0.00 0.82 0.00 Ø4.2c/16 Ø4.2c/17.5 2.81 Χ Ø4.2c/20 L9 0.15 3.84 1.81 4.77 1.07 0.51 1.33 Ø5c/18 Ø4.2c/10 1.44 Ø4.2c/16 Υ 3.05 1.96 5.16 0.85 0.55 Ø4.2c/20 Ø5c/13 L4 Χ 0.15 3.47 1.89 5.28 0.97 0.53 1.48 Ø4.2c/14 Ø4.2c/20 Ø5c/13 Υ 5.14 0.00 1.44 1.01 0.00 Ø5c/13 Ø5c/19 3.60 0.00 3.41 5.46 0.00 0.95 1.53 L16 Χ 0.15 Ø4.2c/14 Ø5c/13 2.28 -0.003.59 -0.00 0.64 1.00 Ø4.2c/20 Ø5c/19 L7 Χ 4.77 1.81 3.84 1.33 0.51 1.07 Ø4.2c/10 Ø4.2c/20 Ø5c/18 0.15 3.05 1.97 5.14 0.85 1.44 Ø4.2c/16 Ø5c/13 Υ 0.55 Ø4.2c/20 0.15 -0.00 3.54 -0.00 0.99 1.29 -----Ø4.2c/10 L12 Χ 4.61 Ø4.2c/14 Υ 3.44 0.75 3.72 0.96 0.21 1.04 Ø4.2c/14 Ø4.2c/20 Ø5c/19

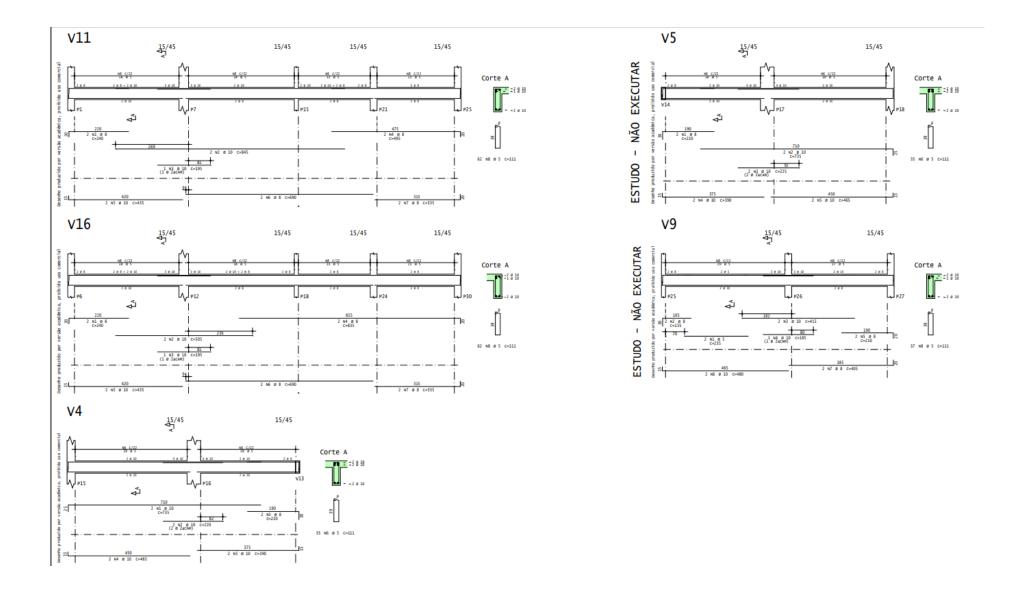

			М	omento	s	Taxas	de Arm	adura	Arma	adura de ref	orço
Laje	Dir.	Altura	Esq.	Centro	Dir.	Esq.	Centro	Dir.	Sup. Esq.	Inf. Centro	Sup. Dir.
L13	Χ	0.15	4.58	2.45	2.74	1.28	0.68	_	Ø4.2c/10	, , -	Ø4.2c/18
	Υ		1.83	1.05	3.16	0.51	0.29	0.88	Ø4.2c/20	Ø4.2c/20	Ø4.2c/15
L18	Χ	0.15	-0.02	2.56	5.35	-0.01	0.71	1.50		Ø4.2c/19	Ø5c/13
	Υ		0.00	3.40	2.02	0.00	0.95	0.56		Ø4.2c/14	Ø4.2c/20
L19	Χ	0.15	5.46	3.41	0.00	1.53	0.95	0.00	Ø5c/13	Ø4.2c/14	
	Υ		-0.00	2.28	3.59	-0.00	0.64	1.00		Ø4.2c/20	Ø5c/19
L14	Χ	0.15	2.74	2.45	4.58	0.77	0.68	_	Ø4.2c/18	, , -	Ø4.2c/10
	Υ		1.82	1.05	3.16	0.51	0.29	0.88	Ø4.2c/20	Ø4.2c/20	Ø4.2c/15
L15	Χ	0.15	4.61	3.54	-0.00	1.29	0.99		Ø4.2c/10		
	Υ		3.44	0.75	3.72	0.96	0.21	1.04	Ø4.2c/14	Ø4.2c/20	Ø5c/19
L8	Χ	0.15	2.98	0.82	2.99	0.83	0.23		Ø4.2c/16		Ø4.2c/16
	Υ		0.60	1.31	3.02	0.17	0.37	0.84	Ø4.2c/20	Ø4.2c/20	Ø4.2c/16
L11	Χ	0.15	4.43	1.09	4.43	1.24	0.30	1.24	,,	Ø4.2c/20	Ø5c/16
	Υ		1.04	-0.10	0.67	0.29	-0.03	0.19	Ø4.2c/20		Ø4.2c/20

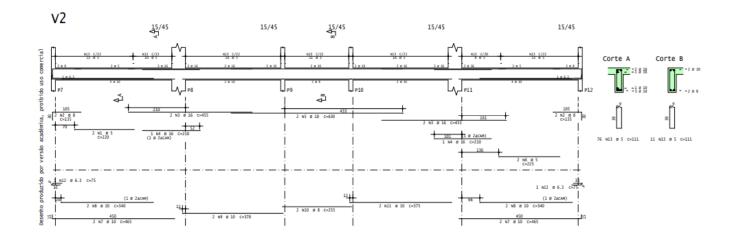
Barrilete

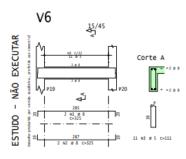

	Momentos					Taxas de Armadura			Armadura de reforço			
Laje	Dir.	Altura	Esq.	Centro	Dir.	Esq.	Centro	Dir.	Sup. Esq.	Inf. Centro	Sup. Dir.	
L1	Χ									Ø6.3c/14		
	Υ		-0.00	9.24	0.00	-0.00	2.58	0.00		Ø6.3c/12		

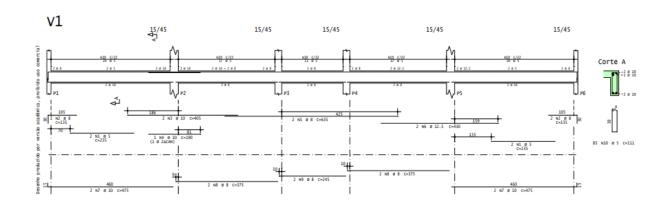

APÊNDICE L -PILARES - TQS

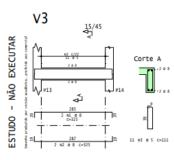


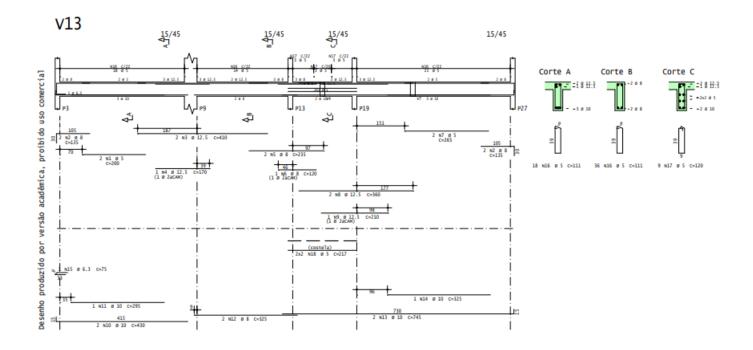


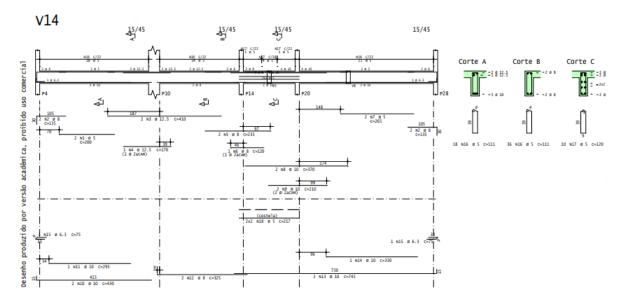


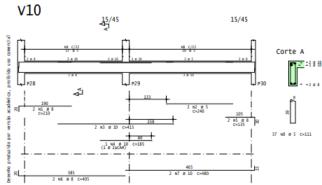


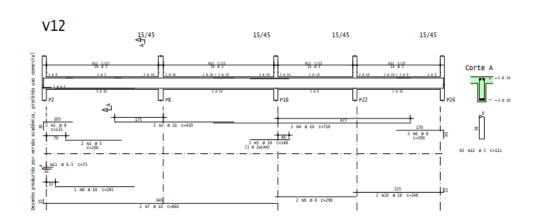


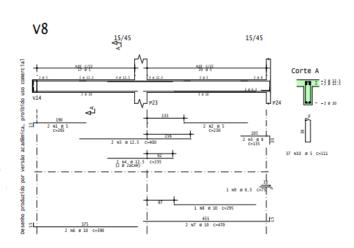

APÊNDICE M - PROJETO DAS VIGAS - TQS

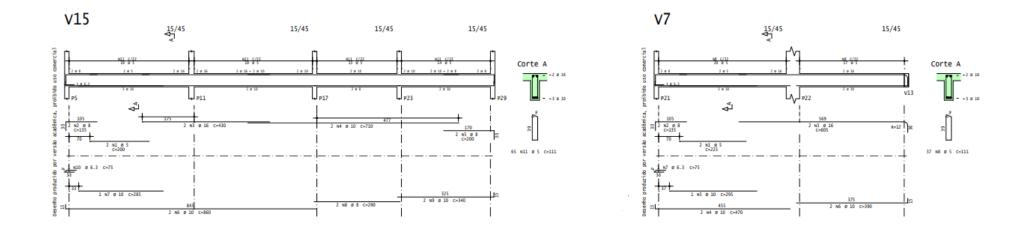


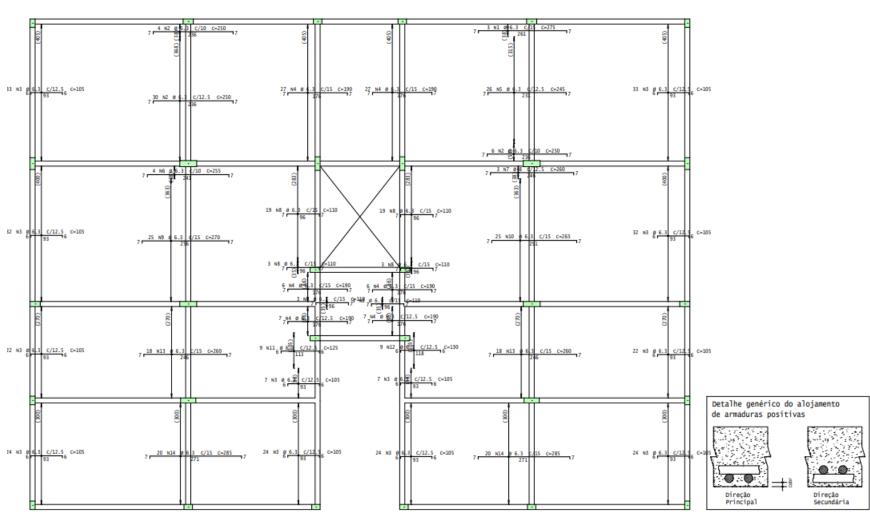




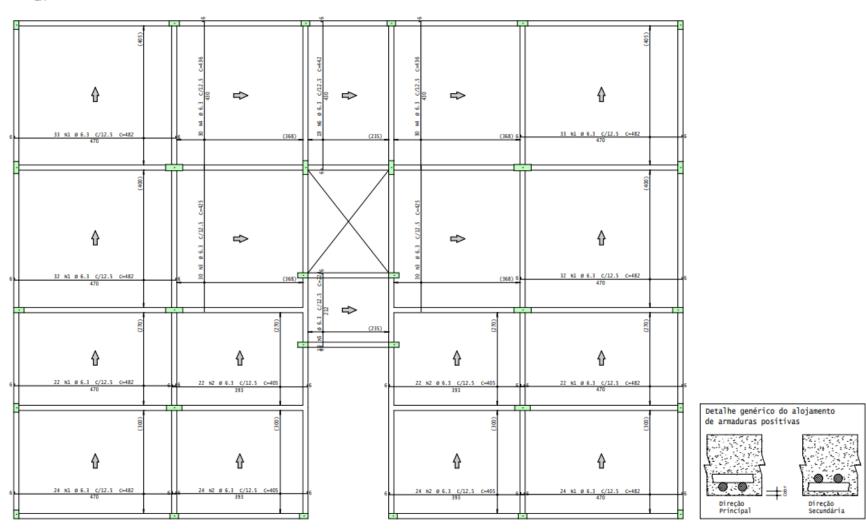




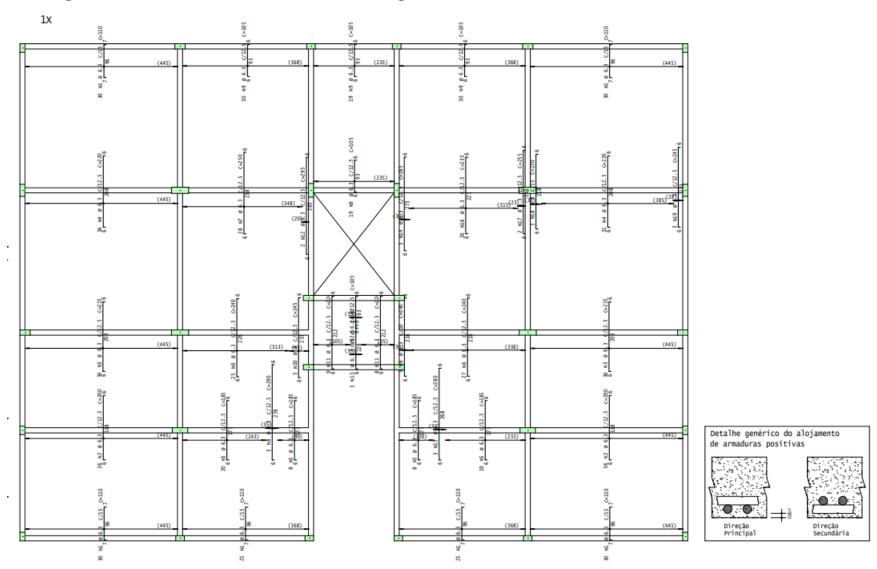




APÊNDICE N - RESULTADO DAS LAJES - TQS

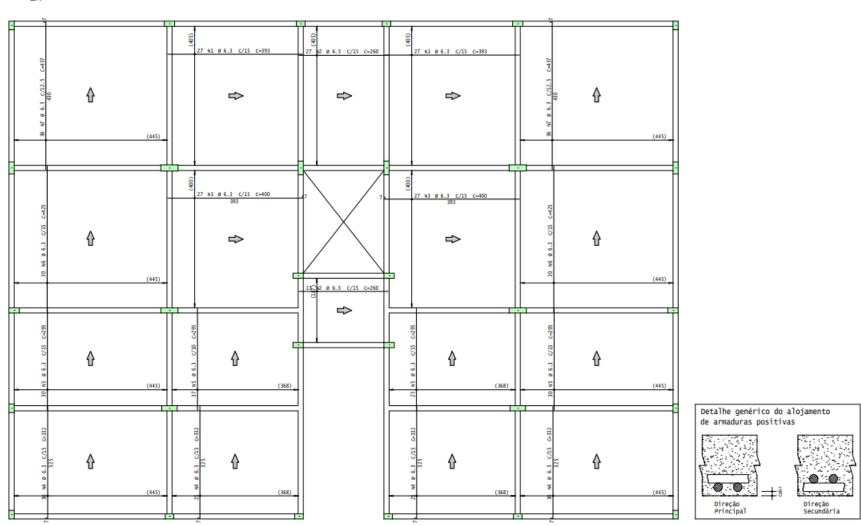

Segundo Pavimento - Armadura negativa principal

1x



Segundo Pavimento - Armadura positiva secundaria

1x



Segundo Pavimento - Armadura negativa secundaria

Segundo Pavimento - Armadura positiva principal

1x

