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Abstract

This thesis investigates the existence of a positive harmonic function u, defined in
the rescaled domain Q. = ¢1Q), subject to a nonlinear boundary condition, where € > 0,
and 2 is a bounded domain in R”, with n > 3. In the case where ¢ — 0, corresponding
to expanding domains, it is established that there exists a constant ¢y > 0 such that
for all € € (0,¢), the principal problem admits a nonconstant, positive least energy
solution u.. Moreover, it is demonstrated that u. exhibits a power-type decay and an
exponential decay in the first n — 1 variables.

Furthermore, in the case where e — 0, it is shown that the points where u, attains
its maximum concentrate around a point of maximum for the mean curvature of 0f2.
In contrast, in the case where ¢ — oo, corresponding to contracting domains, it is
proven that there exists a constant €* > 0 such that for each ¢ > ¢*, the unique positive
solution u, of the principal problem is constant.

To conduct the analysis developed in Chapter 2, it is essential to investigate the
existence of a ground state solution for the limit problem. Chapter 1 is dedicated to this
study, addressing the problem of the existence and nonexistence of harmonic functions
in the upper half-space, subject to an indefinite nonlinear boundary condition. The
existence of a ground state solution is established, which is radially symmetric and
exhibits exponential decay in the first n — 1 variables.

Furthermore, in Chapter 1, an investigation is carried out on the existence and
nonexistence of weak solutions in alternative cases that are not directly related to the
problem considered in Chapter 2. In one such case, variational minimization techniques
are employed to demonstrate the existence of a nontrivial weak solution. Additionally,
a theorem is presented that characterizes the nonexistence of solutions under certain

conditions.



Keywords: Least energy solution, Exponential decay, Concentration problem, Exis-

tence and Nonexistence of solutions.
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Resumo

Esta tese investiga a existéncia de uma funcao harmonica positiva u, definida no
dominio Q. = €71, sujeita a uma condicao de contorno nao linear, onde € > 0 e Q é
um dominio limitado em R™. No caso em que ¢ — 0, correspondente a dominios em
expansao, estabelece-se que existe uma constante ¢y > 0 tal que, para todo € € (0, €),
o problema principal admite uma solugao de menor energia positiva nao constante wu,.
Além disso, demonstra-se que u, exibe decaimento do tipo poténcia, e um decaimento
exponential nas primeiras n — 1 variaveis.

Além disso, no caso onde ¢ — 0, mostra-se que os pontos onde u, atinge seu
maximo concentram-se em torno de um ponto de maximo para a curvatura média de
09). No caso em que € — oo, correspondendo a dominios que se contraem, prova-se
que existe € > 0 tal que para cada € > ¢* a tnica solugao positiva u, do problema
principal é constante.

Para conduzir a analise desenvolvida no Capitulo 2, é essencial investigar a ex-
isténcia de uma solucao do estado fundamental para o problema limite. O Capitulo 1 é
dedicado a esse estudo, abordando o problema da existéncia e inexisténcia de fungoes
harmonicas no semi-espaco superior, sujeitas a uma condi¢ao de contorno nao linear e
indefinida. A existéncia de uma solucao do estado fundamental é estabelecida, sendo
esta radialmente simétrica e exibindo decaimento exponencial nas primeiras n — 1 var-
i4veis.

Além disso, no Capitulo 1, é realizada uma investigagao sobre a existéncia e inex-
isténcia de solugoes fracas em casos alternativos que nao estao diretamente relacionados
ao problema considerado no Capitulo 2. Em um desses casos, técnicas de minimizagao
variacional sao empregadas para demonstrar a existéncia de uma solucao fraca nao
trivial. Adicionalmente, é apresentado um teorema que caracteriza a inexisténcia de

solugoes sob determinadas condigoes.
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Introduction

Let Q be a bounded domain in R"™, where n > 3, with a smooth boundary 02,
and let v denote the unit outward normal to 0€). Consider the following singularly
perturbed nonlinear boundary value problem:

Au =0 in €

(5P)

edyu+u=|u"%u—|u " u on 09,

where 2 <r < ¢g<2,=2(n—1)/(n—2), and € > 0 is a parameter. The primary ob-
jective of the present work is to investigate the existence of a nonconstant least-energy
solution to Problem (SP), as well as the asymptotic behavior of such a solution. It can
be proved through a scaling argument that there exists a one-to-one correspondence
between the solutions of Problem (SP) and the solutions of the following problem:
Au=0 in Q.
(Fe)

du+u=|ul"?u— |u" " u on 08,

where 2 < r < ¢ < 2,,
Qe =e'Q={c"2: 2= (2,1) € Q},

and € > 0 is a parameter. Given the smoothness of the domain €2, and the regular
character of the boundary nonlinearity, the classical results in elliptic regularity theory
(see |20, Theorems 6.30 and 6.31]) guarantee that every weak solution to Problem (P.)
belongs to C*° (ﬁg) Furthermore, it is asserted that these solutions are strictly one-
signed. In fact, suppose, for the sake of contradiction, that u is a nontrivial solution to
Problem (FP,) that changes sign in §); that is, there exist points x1,zs € Q. such that
u(z1) < 0 and w(zy) > 0. By continuity, there exists xy € {2, such that u (zy) = 0.

Since v is harmonic in €2, the strong maximum principle implies that v cannot attain



a nontrivial maximum or minimum in the interior unless it is constant. Therefore, the
extremal values of u must be attained on the boundary 0f)..

Now consider the boundary condition:
dutu = |uf'Pu—|ul"Pu=:f(u) on O,

where 2 < r < ¢ < 2,. For u > 0, the function f (u) = u?! —u"! satisfies f (u) <0
for 0 <u <1 and f(u) > 0 for v > 1. Consequently, if u attains a sufficiently large
positive maximum on the boundary, then f (u) —w > 0, implying d,u > 0. However,
this contradicts the classical Hopf boundary point lemma, which asserts that d,u < 0
at a boundary maximum. A similar contradiction arises if v attains a sufficiently large
negative minimum on the boundary.

Hence, a sign-changing solution with large boundary extrema cannot satisfy the
boundary condition consistently with the Hopf lemma. This contradiction implies that
any nontrivial solution to Problem (P.) must be strictly one-signed in Q.. Therefore,

it is assumed throughout this work that the solutions of Problem (P,) are positive in

Q..

It can be verified that for every e > 0, Problem (P.) admits a unique positive
constant solution. To establish the existence of a nonconstant positive solution, this
work relies on the study of the associated limit problem, namely, the problem

(P)

Oyu+u=\u|"u— |u"u on ORY,

where R := {z = (z,t) e R": z € R*!, ¢ > 0}, with n > 3, denotes the upper-half
space, 2 < r < q < 2,, and n denoting the unit outward normal to the boundary
OR? = R"'. It is observed that, by selecting a point on the boundary 92, and taking
the limit as € — 0, the domain approaches a half-space, which, after an appropriate
rotation and translation, may be assumed to be R}.

In Chapter 1, it is shown that for all A > 0 and 2 < r < ¢ < 2, Problem (P))
admits a ground state solution uy, which is proven to be radially symmetric with respect
to the first n—1 variables through the use of the classical moving plane method [6,7,32].
Additionally, u) and its derivatives exhibit exponential decay with respect to the first

n — 1 variables. These properties are employed to derive an upper bound estimate for



the minimax level ¢, (£2), which enables the proof that the mountain-pass solution u,
of (P,) is a positive, nonconstant least energy solution of (F,), for sufficiently small e.
Furthermore, it is shown that u, exhibits power-type decay and exponential decay in the
first n — 1 variables. To conclude the results in the case € — 0, it is established that the
point at which u. attains its maximum is located on the boundary 02, concentrating
at the point of maximal mean curvature H (z) on 0.

It is also noteworthy that in Chapter 1, the analysis of the existence and nonex-
istence of solutions to Problem (P)) is conducted, considering the interplay between
the exponents ¢ and r and the values of \. As demonstrated in Section 1.2, in the
case where A > 0 and 2 < r < g < 2,, a ground state solution is established through
the application of a min-max argument. In Section 1.3, for the case where A > 0 and
2 < q<r <2, the existence of a nontrivial weak solution is ensured by employing
a classical variational approach. In Section 1.4, a Pohozaev-type identity, along with
an elementary mathematical argument, is utilized to investigate the nonexistence of
solutions in some instances involving ¢ and 7.

The thesis concludes with the analysis of the case where € is large, corresponding
to contracting domains. In this setting, it is demonstrated that there exists € > 0 such

that Problem (F,) admits only a positive constant solution for all € > €*.

Motivations

An extensive body of literature exists in the field of partial differential equations
concerning Neumann problems associated with second-order semilinear elliptic equa-
tions. In the present context, those who have made significant contributions to the
development of the present work are highlighted. In the works [24,29], the authors

examined the following problem:

dAu —u+uP =0 in €
(P)
o,u=0 on 0f),

where d is a positive constant, and p satisfies 1 < p < n/(n — 2), where n > 3, with
the understanding that 1 < p < 400 if n = 2. This problem may be regarded as a
model or a reduced version of the activator-inhibitor system proposed by Gierer and

Meinhardt [19] as a model of biological pattern formation. Moreover, this problem is

3



related to the simplified model used by Keller and Segel in the study of the chemotactic
interaction of amoebas, as described in [22].

From a mathematical perspective, in [29], the authors derived a priori estimates
for positive solutions to Problem (P) as functions of d and showed that if d is sufficiently
large, no nonconstant positive solution exists for (P). In [27,28], the same authors
applied the mountain pass lemma [8] to establish the existence of a least energy solution
uq for (P). A detailed description of the shape of uy was provided, and it was proven
that when d is sufficiently small, 14 exhibits only a local maximum over 2. Moreover, it
was shown that the maximum is achieved at exactly one point P, on the boundary (u,
exhibits a "point-condensation phenomena" as d — 0). Additionally, it was established
that H (P,), the mean curvature of J§2 at P,;, approaches the maximum of H (P)
over 0X2 as d — 0. In [14], Del Pino and Felmer showed that the results in [27, 28]
hold without some delicate technical nondegeneracy-uniqueness assumptions, thereby
significantly broadening the class of nonlinearities under consideration. The following

limit problem was utilized throughout the work:

Aw—w+ f(w)=0 in R}
w>0 in R}, w(0)=maxsr: w, (@)

limpg e w (x) =0, Gpu=0 on OR].

Together with the cited works previously, many others have demonstrated the signifi-
cance of considering the knowledge of a ground state solution of the limiting problem
when analyzing the existence of least energy solutions (see for example [5,9, 15]).
Concerning problems involving more general boundary terms, it can be high-
lighted that the model studied in 1902 by Steklov in [33] is particularly relevant for

Mathematical Physics, namely, the model
Av=0, in S, Ov=hv+f on 05, (S)

where S is a convex surface, f is a given function, continuous on 0S5, and h is a
parameter. This problem presents a linear boundary term. Consider a more general
situation. As described in [38, Example 5|, the temperature u(z, t) of a body at position

x and time ¢ satisfies the heat conduction equation
c(z)p(x)uy — div (k (z,u) Vu) = F (z,t),

4



where ¢(x) and p(z) denote the specific heat and density of the substance, respectively,
k(x,u) is the internal thermal conductivity, and F'(z,t) is the heat source density. In
the case of a homogeneous and isotropic material, the coefficients c(z), p(z), and k(x, u)

reduce to constants, so the equation simplifies to
ur = (k/cp) Au+ F(z,t)/cp.

When a heat flux ¢ is specified on the boundary 0f2, the corresponding boundary

condition is given by Fourier’s law:
Oyu = q/k,

where 7 denotes the outward unit normal vector. On the other hand, Newton’s law
of cooling models the heat exchange between the body and the surrounding environ-
ment. According to this law, the heat flux through the boundary is proportional to the

difference between the external and internal temperatures:
q=a(u; —u),

where a > 0 is the heat transfer coefficient, and u; represents the temperature of the
surrounding medium.
Equating the expressions for the heat flux from Fourier’s and Newton’s laws yields

the nonlinear Robin boundary condition:

(k/a)0yu+u=mu; on OS.

|T‘72

Consider the external temperature uy = |u|? > u — |u|"">u on 99, where 2 < 1 <

q < 2,. This leads to the steady-state boundary value problem

Au =0 in Q,

(k/a)Oyu +u = |u|"u — |u] "> u on 09,

where € = k/a is a small parameter representing the ratio between internal and external
thermal conductivities.

As ¢ — 0, the problem exhibits a concentration phenomenon. From a physical
perspective, this regime corresponds to highly efficient heat exchange with the sur-

rounding medium. Mathematically, it leads to solutions whose temperature profile



concentrates around a unique point on the boundary 02, which, as will be seen later
(see Theorem J), corresponds to the point where the mean curvature of the boundary

attains its maximum.

Final Enhanced Visualization: Heat Concentration and maxH(z) as -0

Q1
Qc=0s
Qe=o025
Qe=01

Qe=0.05
Heat Concentration

-20 20.0

[ Refined Visualization: max#(z) and Heat Concentration )

Figure 1: The figure illustrates the concentration phenomenon associated with the
physical problem under consideration. As the parameter ¢ — 0, the rescaled domain
Q. expands. The points marked with a red X indicate the locations on the boundary
0f2, where the temperature u. attains its maximum value. In the limit as e — 0, the
heat becomes concentrated near a single point on the boundary 9€2. It will be shown
later (see Theorem J) that this concentration occurs precisely at the point where the

mean curvature reaches its maximum on the 0f2.

Continuing to consider the works that address a singularly perturbed problem
involving a nonlinear boundary condition, the work of Del Pino and Flores [15] is par-
ticularly notable. In this work, the authors studied the relationship between the ex-

tremals of the best constant for the Sobolev trace embedding of H' () into L™ (9Q),



where 1 < p < n/(n — 2), for n > 3, and the solutions of the Euler-Lagrange equation

A’LL)\ —uy=20 in Q)\
(DF)

('l,u,\ = ‘U)\’p_l Uy on (‘99,\,

where

L =X2={ x: zeQ},

and A — oo. It is mentioned that, after applying a suitable scaling argument, Problem
(DF) transforms into
EAu—u=0 in
o,u = u? on €,

where € = 1/X. One of the main results of the work states that the extremals u, form
a single bump at the boundary, whose shape is asymptotically that of an extremal for
the half-space embedding. This bump is centered (in the Q-coordinate) around a point
of maximum mean curvature of 0f2.

The class of problems described by (P)) represents a special case of the broader
model:

Au =0, in Q, dyu=g(x,u) on 09, (9)

where 2 C R™ is an open set. This model has been extensively studied in the litera-
ture. Steklov’s work [33] focused on a linear perturbation g(x,u). Since then, several
types of perturbations have been considered [11,12,30,31], some of which are related
to Physical, Electrochemistry, Geometrical, and other areas of study [33,39,40]. From
a mathematical standpoint, Cabré and Sola-Morales [11] considered the perturbation
g(x,u) = f(u), where f is a C'* function defined on the half-space R’. Their work
investigates the existence, uniqueness, symmetry, variational properties, and asymp-
totic behavior of a class of solutions to Problem (S), commonly referred to as Layer
solutions. Notably, it has been observed that the problem investigated in the half-
space arises naturally through a blow-up process during the analysis of solutions to the

following problem:
Au =0 in
(CSM)
cdyu = f(z,u) on 0,



where €2 C R" is a smooth bounded domain, z € 02, and € > 0 is a parameter. In the
case where ¢ — 0, and under certain conditions imposed on f, the problem naturally
leads to the problem in the half-space and the concept of a layer or increasing solution.

More recently, intending to investigate combined concave-convex effects, Furtado

et al [18] analyzed the perturbation
gz, u) = a(@)[ul"*u + pb(x)|ul"u,  on 09,

where Q C R" is a bounded domain, 1 < ¢ <2 <p <2, 2, =2(n—1)/(n—2), with
a and b being weighted functions satisfying certain integrability conditions. Results

concerning the multiplicity of solutions were obtained. Taking the perturbation
glx,u) = ulP?u—u, 2<p<2, on OR,

into consideration, Abreu et al [2] established the existence of a ground state solution
w=w (xy,...,2,_1,t), which is radially symmetric and exhibits exponential decay in
the first n — 1 variables. Additionally, it was shown that w exhibits a power-type decay
in the variable ¢.

The present work examines the Problem (P,), where the perturbation is defined

as

glz,u) = Nu|"?u—|u]"u—u, on  OR].

A significant aspect of this perturbation is the presence of the exponents ¢ and r
in conjunction with the parameter A. From a mathematical standpoint, this allows
for examining both the existence and nonnexistence of solutions to Problem (P)),
particularly by exploring the interactions among the exponents ¢, r, and A. This
enhances the interest in the problem, given the application of several methods and the

derivation of distinct properties of the solutions examined in each case.

Main results

The presentation of the primary results commences with the findings outlined in
Chapter 1. The first theorem establishes that, for the case where 2 < r < ¢ < 2, =
2(n—1)/(n—2) and for all A > 0, a ground state solution to Problem (P,) is obtained

through the application of a variational approach [8|.

8



Theorem A Assume 2 < r < q < 2,. Then, for all A\ > 0, Problem (Py) admits a

ground state solution uy.

For all A > 0, the Moser iteration method [26] is applied to establish that uy €
L>*°(R") and, in the trace sense, uy|gn—1 € L*(R™'). Moreover, by employing a
Harnack-type inequality, it is shown that u), exhibits a power-type decay. Finally, a

regularity for u, is derived. These findings are summarized in the following theorem.

Theorem B Let uy be a weak solution of Problem (Py), where A >0 and 2 <r < q <
2.. Then, in the trace sense, uy|gn—1 € L (R"™') and uy € L™ (R%}). Furthermore,
if uy is a nonnegative weak solution of Problem (Py), then uy € c>e (JRT};) NnC> (Ri)

loc

and it has a power-type decay, more precisely,

uy(2) =0 (\z|2_n) . as  |z| = .

Inspired by [32], the classical moving plane method [6,7] is applied to establish
that u, exhibits radial symmetry with respect to the variable x. Furthermore, it is

shown that u) is monotone decreasing in the p-direction, where p = |z|.

Theorem C If uy is a nonnegative weak solution of Problem (P)), where X > 0 and

2 <r<q<2 then uy is radially symmetric with respect to variable x, that is,

uy (z,t) =ur(p,t) if p=lz].

Moreover, u, (p,t) < 0 in (0,400) x [0, +00).

With the assistance of Theorem C, it can be demonstrated that u, exhibits ex-
ponential decay with respect to the variable x. Additionally, a lower power-type decay
with respect to the variable ¢ is derived. These findings are summarized in the following

theorem.

Theorem D Let uy be a nonnegative weak solution of Problem (Py), where A > 0 and

2 <r<q<2 Then, there exist positive constants ¢, and co such that

1

W, fOT CL” ([E, t) € M

ux (2,1) < crexp (—cz |z])

In the case where 2 < g <7 < 2, and A > 0, the minimization of lower semicon-
tinuous functionals, as outlined by D.G. De Figueiredo in [13], is applied to demonstrate

the following theorem.



Theorem E Let 2 < g < r < 2, and A > 0. Then, there exists A > 0 such that

Problem (Py) possesses a nontrivial weak solution for all X > A.

To conclude the results of Chapter 1, motivated by [1,21], the nonexistence of
solutions to Problem (P,) is analyzed for specific values of the exponents ¢ and r, as
well as the parameter A\. The subsequent theorem is proven by adapting a Pohozaev-
type identity from [1, Proposition 5.1|, along with the development of an elementary
mathematical argument.

Theorem F Let uy be a weak solution of Problem (P\). Then uy = 0 if one of the

conditions hold:
1. IfA<0andr, g€ (2,2,) U (2, +00);
2. IfA>0, g€ (2,+), and 2 < r < q.

Furthermore, if A >0 and 2 < g < r < 2,, then uy =0 for all X € (0, \*), where
1

()% (=]

The principal results of Chapter 2 are presented herein. Throughout the chapter,

A=

it is assumed that 2 < r < ¢ < 2,. The first result establishes the existence of a
nonconstant positive least energy solution u. to Problem (P.) in the case where € — 0,

corresponding to expanding domains.

Theorem G There exists a constant g > 0 such that Problem (FP.) admits a noncon-

stant positive least energy solution u. for all € € (0, ¢€p).

By applying the Moser iteration method [26], an L estimate for the weak solu-
tions of Problem (P,) is derived. This leads to the proof that u. exhibits uniform decay
at infinity. Furthermore, with respect to decay, the second result establishes that a

power-type decay can be derived for wu,.

Theorem H Let u, € C* () N CY (Q) be a positive solution of Problem (P.).

Then, there exists a positive constant Cy independent of € such that

ue (2) < Co for all z¢€Q,.

- (1+ |Z|2)(”—2)/2’

Building upon the ideas presented in [3], it is proven that u. exhibits exponential

decay.
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Theorem I There exists ¢ > 0 such that

for all |x| > 1, and t > 0.

Let cg, (Q) and ¢4, (R”) denote the least energy levels associated with Io, and the
least energy level of the functional associated with Problem (P,), respectively. If H (z)
represents the mean curvature of the boundary at the point z € 012, the following

concentration result can be stated.

Theorem J Assume that n > 3, and let u. be the least energy solution of (P.), as
obtained in Theorem G. If z. € 0S). is a point where u,. attains its maximum value,
then

H(ez) > maxH (z), as e—0.
2€0Q

Moreover, for e — 0, it follows that

Car () = ¢4 (R}) —eymax P (z) +o(e),

where v = 7y (q,,n) s a positive constant.

The thesis concludes with the analysis of Problem (P.) for large values of e. The

following nonexistence result is established.

Theorem K There exists € > 0 such that for each € > €*, the unique solution of

Problem (P.) is constant.

Outline

The thesis is organized as follows. Chapter 1 is dedicated to the study of the
limit problem (P)). Section 1.1 presents the central problem studied in Chapter 1, as
well as the appropriate space for the development of the results, inner product, and
norm. Furthermore, the crucial definition of weak solution of Problem (P,) is provided
in this section. This section will play a significant role throughout the entire work. In
Section 1.2, the case 2 < r < g < 2,, A > 0 is considered. This section is divided into
the following subsections: Subsection 1.2.1 presents some auxiliary results that will be

of great utility throughout the section; Subsection 1.2.2 establishes the existence of a

11



positive ground state solution wuy; Subsection 1.2.3 presents the important relationship
between the best constant for the Sobolev embedding studied in Chapter 1 and the
concept of least energy solution. Subsection 1.2.4 focuses on the regularity of u, and
the derivation of its appropriate power-type decay; In Subsection 1.2.5, it is shown
that, for all A\ > 0, u, is radially symmetric with respect to the variable z, leading to
an exponential decay with respect to x. Section 1.3 addresses the case 2 < ¢ < r < 2,
A > 0. Section 1.4 concludes the chapter with a nonexistence result for Problem (P)).

In Chapter 2, the principal problem in expanding domains is studied. Section 2.1
presents the fundamental results that underpin the analysis throughout the chapter.
Section 2.2 summarizes the results related to the limit problem (P)), which are utilized
in the thesis. In section 2.3, an upper bound estimate is derived, which plays a crucial
role in the proof of Theorem G. Section 2.4 is dedicated to the proofs of Theorem H
and Theorem I. Section 2.5 provides a lower bound estimate and completes the proof
of Theorem J. Finally, Section 2.6 concludes the chapter with the presentation of a

nonexistence result for the case where € is large (Theorem K).

12



Notations

o R? :={z=(z,t) eR": z € R, ¢t >0}, n> 3, is the Euclidean upper half-

space;

e C5° (R™) is the space of infinitely differentiable functions with compact support

on R™; the space of test functions;
e C'(E;R) is the space of continuously differentiable functions from E to R;

e ¢ (R%) = inf max I, (y(¢)) is the minimax level associated to the functional
' ~€er teo,1]
I;

o H'(Q) =Wh2(Q) is a Sobolev space;

e N={ue E\{0}: I,(u)u=0} is the Nehari manifold associated to Iy.

e The Big-O notation: g = O(f), as x — x, for 2y € [—00, +o0], if limsup, _,, (9/f)(z) <
00;

e The little-o notation: g = o(f), asz — xg, for zg € [—o0, +00], if lim, ., (g/f)(z) =
0;

e X — Y denotes that X is continuous embedded in Y

o DI = % is the partial derivative with respect to the variable z;;
J

o« O (R7), where 0 < a < 1, is a Hélder space.

loc

o (™ (Ri) is the set of all functions defined on the upper half-space R that are

infinitely differentiable (i.e., have continuous derivatives of all orders) on RY;

° ¢, (Q) = in£ m[(a)mx] Ig, (v (t)) > 0 is the minimax level associated to the func-
yel te[o,1

tional Iq_;
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N, = {v € H' (Q)\ {0} : [[v]? = [, (v1)" do— [o (vF) da} is the Nehari

manifold associated to Iq_;

B, (#) is a ball centered in z with radius p;

H (z) is the mean curvature of the boundary at the point z € 9€;
D?G (x) is the Hessian matrix of G at x;

u is the average of u over 0f€);
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Chapter 1

The Problem in the Upper Half-Space

The study of the limit problem (P,) is of considerable significance in this work.
In this chapter, this problem will be analyzed, not only to yield results that contribute
to the development of Chapter 2 but also to investigate the existence and nonexistence
of solutions to the problem, independently of Problem (P,).

The chapter is structured into two primary parts. The first part concentrates
on deriving results that will be directly applicable in Chapter 2, placing particular
emphasis on radial symmetry and exponential decay in the first n — 1 variables of the
ground-state solution. The second part focuses on the examination of the existence
and nonexistence of solutions in contexts that are distinct from Chapter 2.

It is noteworthy that classical methods, including the Moser iteration method,

the moving planes method will be employed to achieve these results.

1.1 Preliminaries

Consider the nonlinear boundary value problem

Au=0 in RY )
A

dutu=\u""u—|uu on ORY,

where R? = {z = (z,t) e R": z € R"!, ¢t >0}, n > 3, is the Euclidean upper half-
space, A is a real parameter, 2 < ¢, < oo, and v is the unit outward normal to the
boundary IR} = R™ 1.

Let the subspace of D*? (R") be defined as follows:

E:={ueD"?RY}): ulgp— € L*(R" )},

15



where
1/2
]Vu|2 dz) ,

and u|gn-1 is understood in the trace sense. An inner product on the space F is defined

by

—”H 1,2 (grn .
Dl,Q(RQL.) = Cé)o (R") D (R+)’ with ”’LLHDLQ(Ri) = </R

n
+

(u, V) := Vu - Vo dz +/ uv dz,

R R7—1

and the associated norm is given by

)%, ::/ \Vu|2dz+/ |u|® dz.
R Rn—1

It can be verified that E is a Hilbert space. Furthermore, since C§° (R") is dense in
D2 (R’}r), combined with the fact that the trace operator is a bounded linear operator
from D*? (R%) to L? (R™1), it can be concluded that the restrictions to R". of functions
in C§° (R™) are dense in E.

A function u € F is said to be a weak solution of Problem (P)) if

VuVep dz + /

R

up dr = / (A lul" % u — |u|""? u) ¢ dz, (1)
n—1 Rn—1

RY
for all p € Cg° (R™). It is observed that the functions u (z,t) = at 4+ b, where a,b € R,
satisfying the condition —a +b = A\b?~! — b1 are classical solutions to Problem (P),
but are not weak solutions to (P,) in F. Indeed, if u were a weak solution of (P,) in F,
the condition v, , € L? (R™1) would be satisfied. However, the trace of u is simply
the constant value b, which does not belong to L? (R™!) unless b = 0.
In the case where A > 0 and 2 < r < ¢ < 2,, this work is devoted to the
demonstration of the existence of a ground state solution of (P), that is, a nontrivial
weak solution uy = uy (z,t) defined on E, whose energy is minimal among the energy

of all nontrivial weak solutions of (P,) in E.

1.2 The Case 2 <r < g < 24, A > 0.

1.2.1 Auxiliary Results

To establish the existence of a ground state solution for Problem (P,) for all

A>0and 2 < r < ¢ < 2,, variational methods, particularly those derived from

16



variants of the minimax theorem, are employed. In this context, it is pertinent to

study the corresponding energy functional I, : E — R, which is defined by

1 1 1 .
=g [ vepase g [ pfared [ @y -2 [ s

where u™ () = max {u (x),0}.

n
+

Lemma 1.2.1 For all 2 < q < 2,, the Sobolev embedding
E < L7 (R")

1S continuous.

Proof. With the aid of the interpolation inequality and the trace embedding theorem,
for 0 < @ < 1, it follows that

q/2 (1—6)q/2.
/ lu|?dx < (/ \u]zdx> (/ |l dx> :
Rn—1 Rn—1 Rn—1
6q/2 (1-6)/2
< C (/ |u|2dx) (/ |Vu|2dz>
Rn—1 n

0 1-6
< Ol 50,

where C' is a positive constant. This concludes the proof. [
As a consequence of Lemma 1.2.1, it is established that the functional I, is well-

defined on E. Furthermore, by applying standard arguments, it can be shown that

I, € C' (B, R), with

I (u)p = VuVe dz + /

R? R7—1

up dr — /Rn—l [/\ (u+)q71 - (u+)7ﬂ71] e dr, (2)

for all p € C§° (R™). Additionally, it can be observed that u € E is a critical point of
I if and only if it is a weak solution to Problem (Py). The following lemma establishes

a geometric property of the energy functional 7.

Lemma 1.2.2 [fA > 0 and2 < r < q < 2., the functional Iy possesses the geometrical

mountain-pass structure on the space E.

Proof. To establish the lemma, following the strategy outlined in [16], it suffices to

verify the following three assertions:
1. I1,(0) = 0.

17



2. There exist p > 0 and « > 0 such that I (u) > o for all u € 9B, (0).
3. There exists e € E with ||e||; > p such that I,(e) < 0.

Item 1 is immediate. Using Lemma 1.2.1, it holds that

1 2 )\ + q 2 1 )\C q_2
Iv(u) = 5 Jlullg = 4 gy 2 el { 5 = i lullz ™ )
where C' is a positive constant. Set p = ||u||, sufficiently small such that
1 XC
— 12 = > 0.
(5-200) =)

which completes the proof of Item 2. To prove Item 3, let ¢ € C§° (R™) \ {0}, and let
t > 0. It can be observed that

t? tr r Atd
Do) = Slels+ = [ () ae= [ (o) e,

and it is clear that I)(tp) — —oo as t — oo, since 2 < r < g. Therefore, the proof of
Item 3 is complete, thereby concluding the proof of Lemma 1.2.2. [ ]

As a consequence of Lemma 1.2.2, the minimax level ¢, (Ri), defined as
~ (RY) = inf I t)),
¢qr (R}) = inf max I, (v (1))
is strictly positive, where

Y={yeC(0,1];E):7(0) =0 and I\(y(1)) <0}.

Therefore, there exists a Palais-Smale sequence (in short (PS)) (un,) C E at level
cqr (R7) for the functional I, that is,

I (um) — ¢4 (Rﬁ) and I:\ () — 0.
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Mountain Pass Geometry Visualization

m— Path y(t)
X y(0) (zero energy)
X v(1) (negative energy)
X Mountain pass level ¢

Energy IA(u)

Figure 1.1: Mountain-pass geometry. Generated by Al using Mathplotlib.

The following lemma proves that a (PS) sequence is necessarily bounded in FE.
Lemma 1.2.3 If (u,) C E is a (PS) sequence at the level cq, (RY), then (uy,) is
bounded, and there exists a constant b > 0 such that

||u7_’T_lHLq(Rn71) 2 b > 0,

for sufficiently large m.

Proof. Let (u,) C E be a (PS) sequence at the minimax level ¢,, (R%). For suffi-

ciently large values of m, and for all A > 0, it can be verified that

]_ ]_ 2 ]_ ]. + T 1 !
(5 - 5) a3, + (; - 5) el sy = Cm) = & Lo Gt i

< opr (R2) + g [

Since 2 < r < q < 2,, this implies that (u,,) is bounded. Furthermore, for sufficiently

large values of m, it can be concluded that

¢ (R” 1, —2
0 < LIV (2 +) <1, (Um) - 5 I)\ (um) Uy < A <qw> ||u;7'_1Hj11‘1(R”*1)'

Therefore, the proof of Lemma 1.2.3 is complete.
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1.2.2 Existence of a Ground State Solution

This subsection is dedicated to proving Theorem A. To this end, consider the

following definitions of balls centered at y € R"~! with radius p:

Bf (y)={2€RL: [z=(5,0)| <p}, T,(y)={zecR"": [z—y|l<p},

where (y,0) lies on the boundary of R}.

Lemma 1.2.4 For each q € [2,2,] and y € R"!, there exists a positive constant
C = C(n,q) such that

) ) 1/2
ull oy < C <||VUHL2(Bi"(y)) + H“”L?(Fl(y))) , UER.

Proof. By applying the trace embedding theorem H'! (B;r (y)) — L9 (anL (y)) and
Friedrich’s inequality (see [1]), it follows that for all u € E,

2 2 1
[ull Loy < C(\IVUHLQ(B;@WH“HLQ(Bl*(y)))

) ) 1/2
S C (HVUHL2(BiF(y)) + ”uHLZ(Fl(y))) )

where C' is a positive constant. This completes the proof. [
Next, before proceeding with the proof of Theorem A, an essential lemma is
demonstrated.

Lemma 1.2.5 If (u,,) C E is a (PS) sequence, then there exists a positive constant
C =C(n,r,q) such that

sup / (u;rl)Q dx > C.
yER"—l I (y)
Proof. The proof is divided into three distinct cases.

Case 1: Consider ¢ € (0,1) fixed such that 1/r = (1 —6)/2+ 6/q. Interpolation

and Lemma 1.2.4 imply that

e,

e oy Nl
L2(T1(y La(T1(y))

L™ (T1(y)) —
< Ollut + +]2 o
< Clu ||m1 N R [ R

It is noted that

i
[a—y
|
>
K| D
—
|
(N}
N—



Moreover,

9 _
2n>wr = 2n(r—q)>r(2-q), n=>3.

r—q
Adding the term nrq to the last inequality, and through straightforward calculations,
it can be deduced that

2n >2T(q—2)
n—17 q(r—2)"

By choosing 7 = 2n/(n — 1) € (2,r), it follows that 7 > 2. Thus, the following

inequality holds:

(1-0)r/2
L™ (T1(y)) =C (ysup /1“1(1/) ’qudx) H +H9T 2 H ;HzvaFlvy’

eRn-1

[y
where

1/2
il vy = (1900 )+ o)

Covering R"! by a family of balls (I'(y)) yern—1 Such that each point of R"~! is contained

in at most n balls. Summing up this inequality over this family, it can be concluded

(1-6)r/2
Lr (Rt <C| sup / |um2dx Hu:;”g
)~ yeR? =1 JT (y)

Therefore, this inequality, in conjunction with Lemma 1.2.3, completes the proof of

that

0<t < ||

case 1.

Case 2: Let 7 € (r,q) and 7 € (0,1) be fixed such that 1/r = (1 —7)/2 + 7/T.
It is observed that 7 =7 (r — 2) /r (F — 2). Again, by interpolation and Lemma 1.2.4,
it holds that

H“ ’LT Ti(y) = ||U+HL2(F1(y) ” +‘LT(F1(y))

(1-7)7/2 /
C + 2 d + [|7TT 2 7
(y:§£1 /1“1(y) ‘um‘ :B) HumHBlﬂrl,y

where C' is a positive constant. Through straightforward calculations, it can be con-

IN

cluded that 77 > 2. Thus, by applying the same reasoning as in Case 1, the conclusion

for Case 2 is obtained.
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Case 3: Finally, let § € (¢,2.) and 5 € (0,1) be such that 1/¢ = (1—5)/r+ /7.
By interpolation and Lemma 1.2.4, it follows that

||“+HLq Ti(y) = [Ju +|LT(F1 )H wm(rl(y))
7(1-8)
< u +||L2(F1(y)) q” +‘LT1(F1(yq) |u +HLq (T'1(»))
(1-7)(1-B)g/2 -
< C +12 d + BT+B)q :
< (y:’ﬁlﬁl/pl(y)‘um‘ x) [ [

where7 € (r,q), =7 (r—2) /r(F—2) € (0,1) with77 > 2, and 8 =G (r — q) /q (r — q).

Through straightforward calculations, it can be inferred that g(r — 75+ ) > 2

Therefore, by applying the reasoning from Case 1, the proof of Case 3 is concluded,

thus completing the proof of Lemma 1.2.5. ]
At this point, the proof of Theorem A can be established.

Proof of Theorem A. Let (u,) C E be a (PS) sequence at the level ¢, (R7). In

light of Lemma 1.2.5, there exists a sequence of points (y,,) C R"! such that
C

/ (u;)Qdm > —
Fl(ym) 2

where C'= C'(n, q,r) > 0. Defining w,,(x) = uy, (z + ym), it can be inferred that

C

/r o (w;)de > 2 I\(wp,) = cqr (Ri) and I;\(wm) —0 (3)
1

(see [25, Lemma I.1]). As a consequence of Lemma 1.2.3, (w,,) is bounded and, up to

a subsequence, w,, — w weakly in E and w,, — w in Lj  (R"™!) for all 2 < s < 2,.

loc

It is observed that, by (3), w is nontrivial. Furthermore, by taking ¢ = w™ as a test

function in (1), it follows that

VwVw™ dz + / ww~ dr = / ()\ (’LUJr)q_l wo — (w*)?ﬂ_1 w’) dz =0,
Ri Rn—1 Rn—1
which implies that w™ = 0, thereby ensuring that w is positive. It is hereby claimed
that

L(w) =¢gr (R}) and I, (w) = 0.
Indeed, given that E' is a Hilbert space, the weak convergence w,, — w implies that

Vw,, -V dz—l—/ W dr — Vw -V dz—l—/ wep dz,

R" Rn-1 R" Rn-1
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for all p € C§° (R"). Furthermore, since w,, — w in Lj . (R"') and (w,,) is bounded

loc

in F, it can be concluded from Vitali’s convergence theorem and the continuity of the

map t —s (¢7)"! that

i) = ) ),
and

()™ = @) g @),
As a result, for any o € L* (R"1), the following holds:

/ (w;;)r_l o dr — (w*)r_l v dz,
Rn—1

Rn—1

and
/R B (w;;)q_l o dr — (w*)q_l @ dx.
Hence, it can be deduced that
I (wn) @ = I (w) ¢,

for all » € E and, according to (3), it holds that I; (w) = 0. Invoking this fact, along

with the weak lower semicontinuity of the norm in F, yields the validity of the following

estimate:
1
L(w) = L(w) - p I (w)w
< nll_lgo (5 - a) meHE + (; - 5) me| Lr(Rn—1)
1.,
<  lim (I)\ (wm) — —I)\ (wm) wm)
m—00 q
= Cqﬂ« (Ri) .
Thus,

I)\(w) < Cq,r (Ri) .
Furthermore, by [16, Theorem 1.8|, it can be inferred that

cqr (RY) = viélf/[,\(v),
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where N = {v € E\ {0} : I (v)v =0} is the Nehari manifold associated to I,. Since
w € N, it can be concluded that

cor (RY) < Iy(w).

Therefore, I)(w) = ¢, (]R’}r) Consequently, w is a positive ground state solution of

Problem (Py) for all A > 0, thus completing the proof of Theorem A. [ ]

1.2.3 The Best Constant for the embedding E — L? (R”_l)

If n > 3, it was established in Lemma 1.2.1 that, for all 2 < p < 2,, the Sobolev
embedding F < L? (R"™!) is continuous. It was also demonstrated that this embed-
ding is of significant utility, particularly in ensuring the well-definition of the energy
functional I,. This subsection presents an alternative approach to this embedding,
specifically by exploring its connection with the concepts of best constant and ex-
tremals.

Initially, it can be observed that, for all v € E and for all 2 < p < 2,, this

embedding implies that the following Sobolev inequality is valid:

2/p
S </ lul? dx) g/ |Vu|? dz—l—/ lul” dz,
Rn—1 R7 Rn—1

for some positive constant S. The best constant for this inequality is defined by

Jan IVu|? dz + [pus lul*> da
Sy (Rﬁ) = inf + 5

ueE\{0} (fRn—l |U|P d$> /p
An important question concerns the existence of extremals for this embedding, namely,
functions w at which the infimum is attained. The Euler-Lagrange associated with

inequality (1.2.3) is given by

Aw =0 in RY

(ADM)

Ayw = w7 w — w on ORY,

where 7 is the unit outward normal to the boundary OR, and 2 < p < 2, (see [2]). In

order to address this question, let the Nehari manifold be defined as follows:

N={ue E\{0}: J (u)u=0},
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where

1 1 1
J(u):§/Rn V| dz+§/ﬂ£1u2dx—5/ﬂ%l(u+)p dx
+

is the energy functional associated with (ADM). Let

¢ (R}) = Jg{[ J(u)

be the least energy level of J associated with (ADM). The subsequent lemma is
established.

Lemma 1.2.6 The best constant S, and the least-energy level satisfy the following

relation: 5
n b— n -
o (R}) =75 (5, (R )7/

Proof. If u € NV, it follows that

/ |Vu|? dz—l—/ Jul® dx:/ lul” dz,
Ri Rn—1 Rn—1
(r=2)/p
Sy (RY) < (/ |Vaul|? dz+/ |u® d.iE) .
R Rn-1

Conversely, it can be observed that
-2
Ty =22 (/ Vu? dz+/ u? d:c).
2p R Rr-1
Thus, it holds that
p—2 n\\P/(P—2)
% (S, (R))P77 < T (u).

Since the preceding inequality holds for an arbitrary u € N, and that ¢, (Rﬁ) the least

which implies

n
+

n
+

energy level of the functional J satisfies ¢, (Ri) = inf,en J (u), it can be concluded
that

-2 .
% (S, (R2)”" < ¢, (R) . (1.2.1)

Now, suppose that u € E'\ {0} is an extremal for the embedding studied in this section.

It is claimed that the function s — J (su) has a maximum s = § > 0, which is its unique

p
|Vau|? dz—l—/ Jul® dx) — %/ lul” dz.
Rn—1 Rn—1
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f(S)ZJ(SU)=S;(/R
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Then, it is noted that

fRi \Vul® dz + [poy [u]* dz
B S |uf” da

One can see that the equation (6) has a solution s =35 > 0. Moreover,

1) = (/R

since p > 2. Thus, f(5) = J (Su) is a maximum value, which implies that su € N.

fl(s)=0 <= "2

Vu|? dz+/ |ul? dx) (2—p) <0,
Rn—1

n
+

Hence, it follows that

5, () = (/

Using (1.2.2), it can be concluded that

-2
¢, (RY) < J (5u) = (%) 5 (/R Vuf? dz+/Rn1 u? da:)
+

(r—2)/p
IVl dz+/ Juf? dm) ()27 (1.2.2)
Rn—l

n
+

- I (s )
that is,
o (1) < 22 (5, (R2))"0 (123
Finally, from (1.2.1) and (1.2.3), the result can be deduced. n

1.2.4 Regularity and Power-Type Decay

This subsection is dedicated to the proof of Theorem B. To this end, the following

auxiliary nonlinear boundary value problem will be considered:

(AP)
Ay +v = Aa(x) || v —b(x) ] v on R"
where A > 0, a,b € L*(R"™!), b > 0,and 1 < 7 < 0 < 2, — 1. Let v be a weak
solution of (AP), that is,
VoV dz —|—/

Rn—1

vp dr = /Rnl [Aa (z) w|” o —b(x) v v] o dz, (5)

R
for all p € C§°.

Initially, the Moser iteration method is applied to establish a L> estimate.
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Proposition A Let v be a weak solution of (AP). Then, v € L™ (Rﬁ), and its trace
v|gn-1 belongs to L (R™1).

Proof. Let v be a weak solution of Problem (AP). By modifying the test function,
it can be assumed, without loss of generality, that v is nonnegative. For each k € N,

define
Y = vi(ﬁ_l)v and w, = vvﬁ_l, b6>1,
where v, = min {v, k}, and § to be determined later. It is observed that

0<wv<w, (Vu,Vu)y>0 and |Vug| <|Vy|.

The choice of ¢ as a test function in (5) implies that

/Ri

= )\/ a(x) v"“vz(ﬂ_l) dz —/ b(z) UTHvi('B_l) dz,
Rn—1 Rn—1

OV [Ty dz 42 (8 — 1)/

v P Vo dz +/ v 0? dg
R

n n—1
n R

from which it can be inferred that

/ vi(ﬂfl) Vo*dz < )\|a\oo/ vi(ﬁfl)v"*ldx
R™ Rn-1

< C/ vt} da,
Rn—1

where C' is a positive constant. It follows from the classical trace embedding theorem

and the preceding inequality that

2/2.
</ wi*dx) < 01/ |Vawy|? dz
Rn—1 R

n
< 201/ vz(ﬁ_l) IVol* + (6 —1)° U2U2(5_2) |Vug|? dz
n
< 201/ vi(ﬁ_l) IVol” + (3 — 1)21),3(5_1) |Vol* dz
R}
< 62/82/ vz(ﬁfl) IVo|* dz
R

< C3ﬁ2/ ,Ugilwl% dﬂf,
Rn—1

where the inequality 1 + (8 —1)° < 2, with 8 > 1, has been applied. By applying
Holder’s inequality with p = 2,/(c — 1) and s = 2,/(2. — (0 — 1)), 1/p+1/s =1, the
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following inequality holds:

2x—0o+1

UT_*I 22x 2%
/ vt dr < / v de / w7 da
Rnfl Rnfl Rnfl

Thus, it can be concluded that

o—1 24 —0o+1

2/2. o 224 P
(/ we* da:) < ey </ U2*dx) </ w,j*“’“dx)
Rn—1 Rn—1 Rn—1

24 —o+1

o—1
2% 225 2%
< ey v@de v2—otidy ,
Rnfl Rnfl

where the inequality |wg| < |v]” has been applied. Let 8 = (2, —o+1)/2. It is observed

that > 1. With the application of Lemma 1.2.1, the following holds:

2/2.
< / wi*dx)
]Rn—l

where a, = (22,)/(2, — o +1). Furthermore, the Dominated Convergence Theorem

2/2, —22*56
lim (/ |wi| > dx) = </ |v|*? dx) .
k—0 Rn—1 Rn—1

Consequently, it can be deduced that
1
—1\ 53
lollovsgny < (e582 (0157 ol s sy -

28
2

S .
352 (/ v2*dx) (/ v2*dx)
Rn—1 Rn—1

< B oy ol e gy

IN

implies that

Next, let Sy = B, and define B, 1, = 2,5,, inductively for m = 0,1,2,.... By

employing the preceding process for 31, the inequality above leads to the following;:

IN

1
(esB2 [Ivll ) (c562 Hvu”* )2 (0] o
1
et

+1
< (es vl ) Bﬁﬁﬁf [0ll 2 mn-1) -

[v][ 25, (Rn—1)

IN

m
Furthermore, it can be noted that 5, = (2—) B, m=1,2,.... Thus, by iteration, it

can be inferred that
ot gt as
[0 pomze@ny < (c6 ll0ll% 1)26’“ w2 BB B | e ey

(5= ) K /9 %Z?—o(%)k
o— > Lsvm (o * - *
= (o ol ) =5 gh Tio(3:) (—) ([ S—

*
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Taking the limit as m — oo, and observing that

. 12’”: a\" 1 -
im — — = —
m—00 ﬁk:O 2* 2*—0—1 ’

it can be concluded that

[0l poe g1y < ex (Il ) = ol < oo

Therefore, v € L™ (R"1). Now, for each k € N, define the set
Qk)={z=(z,t) eRT: v(z) > k}.

It is observed from the integral formulation of Chebyshev’s inequality that €2 (k) has

finite Lebesgue measure, as v € L?(R"), and its trace v|gn—1 belongs to L* (R™™').

Thus, the function
(v—"Fk)(z), if z € Q(k)
0, if zeRP\Q(k),

belongs to the space E, and Vo = Vv in Q (k). Given that v € L> (R"!), there exists

a constant M > 0 such that
||UHL0°(]R"*1) < M.

Consequently, by taking k > M, it follows that ¢ (x,0) = 0 for all x € R™"!, since
(z,0) € R\ Q (k). Hence, by choosing ¢ as a test function in (5), it can be concluded
that

J

This implies that

Vv-Vgpdz—l—/

Rn—1

vp dr = / 1 [Aa (z) )" o —b(x) " v] p dz = 0.
-

n
+

/ Vo> dz =0,
(k)

so that v is constant in Q (k) or |Q (k)| = 0. Therefore, v € L* (R?). |

Remark 1.2.1 1. Nonnegative weak solutions of Problem (Py) are positive in R

by Proposition A and Harnack inequality.
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2. From Proposition A and reqularity results established in [23, 36], it follows that

weak solutions of Problem (Py) belong to C.%(R™), for some 0 < o < 1. Further-

loc

more, by applying a mazximum principle from Vasquez [37], it can be concluded
that u > 0 n M

Next, a Harnack-type inequality is established (see [20, Chapter 8]). To this end,
let y € R"' and 0 < s < p be fixed. Consider Bf C Bf and I'f C T'}. To simplify
the notation, B (y) is abbreviated as B} and I', (y) is abbreviated as T',.

Lemma 1.2.7 Let u be a weak solution of Problem (Py) satisfying 0 < u < M in B;p.
Then, there exist constants C' = C' (n, M) > 0 and 6y > 1 such that

1/60

—(n— - 0 7
maxu + maxu < Cp (n=1)/8 (p ! ||u||L090<BQ+) + HUHLOeo(rgp)) :
P

B; Iy

In particular, it holds

lim wu(z)=0, for all z€RL

|z| >+o0
Proof. Let it be given that v > € > 0 on R} N ng. Define the function ¢ as

o =n’u,

where 3 > 1,0 < 5 (z) <1, € C'(Bs,) and sup () C BS. By applying the chain
and product rules, the gradient of ¢ is given by

Vi = n*Bu’'Vu + 2u’nVn.
As a consequence of the choice of ¢ as a test function in (1), the following holds:

/+ n?BuP =t [ Vul’ dz + /+ 2u°n (Vu - V) dz = )\/ n*uPut dx
B B

p p Ty

— /n2uﬂur_1dx—/ nuu’dz.
r, r

P

This implies that

/ n?Buf =t | Vul* dz < )\qu/
Bt

2 Tp

n?uf M dr + 2 /+ uPn |Vu| | V| dz,

BP
where the inequality —Vu - Vi < |Vu||Vn| has been used. Considering the Young’s

inequality



with

c= nu% |IVu| and d= u’T V!,
the second integral on the right-hand side of the previous inequality can be estimated
in the following manner:

2/ u’n |Vl |V77|dx§62/ 772u6_1|Vu|2dx+6_2/ uP |Vl da.
Bf Bf BY

p P

Thus, the use of this estimate provides that

(ﬁ_€2)/ n2u6—1 |VU’2 dz < )\Mq—2/ T]2U6+1dl’+€_2/ uﬁ—‘rl ’vn|2dZ,
Bf r By

P p p

which implies that

AMI—2 €2
/+ 24P VP dz < m/ n*uPdr + ) /+u5+1|V7]|2dz
B} r, B}

2\ —1
- C’(l—e—) g1 62/ u5+1]V77|2dz—|—/ ultlde | .
5 Bf Ty

By choosing [ large enough and defining v = u®, where 2s = [ + 1, the following is

valid:

1
— [ (|Vu])?dz = / 20771 |Vl dz
+ B+

82 Bp
< op! ( /
B+

P

(U\Vn])de—F/F (nv)de>.

By adding the term ( pr (nv)2 dx) to both sides of the preceding inequality, the fol-

lowing inequality is deduced:

1 2 2 2 — 2 — 2
(3) 1017000y + Iy < (0874 1) Bl + 87 10 90l

This implies that

2 1/2 1\ 1/2 2 9 1/2
(119011 gy + ol ) < 5O (1487072 (10 1Vla (51 + Imliiage,)

Let n(z) = 1 in B,, and n(z) = 0 outside B,,, where 1 <1y < p <1 <2, |Vn| <
Y 7"2) 2y = 2,, and (1 + $7') < C. From the preceding inequality, it can be inferred
that

9 9 1/2 < 9 9 1/2
1900ty + I0lae)) < (W90l iy + 0l
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280 2 2 1/2
< — —+ .
— (r1—r) <”UHL2(BT+1) ”UHL2(F7"1))

Through the application of Holder’s inequality, in conjunction with Lemma 1.2.4, it

can be concluded that

(1e

Given that v = u*, it can be deduced that

1/2. 0ol 1/2
/ |u|*> dz+/ |ul*> da < / |u|25dz—i—/ ul*® da :
B, T, (ry —72) BY Ty
Now, let
1/1
o= ([ e+ [ pfar)
B (y) Ti(y)

where [,t > 0. By choosing the s-th root of the preceding inequality and setting 6 = 2s,

1/2

2.
L2+ (B:;)

1/2.
* 2 2
<>> < C(IV0liaag) + Polisr,,))

2sC' /
(m—r) <||U||2Lz(BT+1) + ||U||2LQ(FT1)> :

+ [lv

IN

it can be inferred that
6 (0,72) < (CO(ri —12) ) 9 (0,m1).
Next, for some 6y > 0, define
Op =7"6y, T =1+2""" m=0,1,2,...

The choice of 8y will be such that 6,, # 1. Then, from the preceding inequality, it can
be concluded that

(b (eerl; rerl) S (CVmeo (Tm - 7ﬁerl)_1> 0™ %) ¢ (emu Tm)

—m

—m Smy
< (@) (@) g (00,2).
Since v > 1, by taking the limit in the preceding inequality, it can be deduced that

maxu + maxu = ¢ (+00,1) < Co (6p,2).
Bf I

Finally, by choosing 6 > 1 and defining z = pz with z € By, and T = px with x € T,
the proof is concluded. [ ]
It is now possible to establish a power-type decay for the weak solutions to Prob-

lem (P,\)
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Lemma 1.2.8 [fuy is a nonnegative weak solution of Problem (Py), with A > 0, then

it has a power-type decay in M, more precisely,
ur(2) =0 (]2]7™) as |2| = o0

Proof. Let u, be a weak solution of Problem (P,), and let A > 0 be a constant to be

chosen later. Consider the function ¢ : RT — R defined by ¢ = (Auy — v)_, where

" (n—2)/2
o(e.t) = —
It is noted that
8U o n)2u 217/27 i=1,...n—1; a—;}(z _ n)u2 (QMJQ).
T o 0 ol (2 +lef ]
20 9 _ ) (=22 n(n — 2) un=2/2,2 ,
a2 VT ( Q)u 2 T ( Q)Iu 21+”1/2’ t=L...,n—1
z (1 + )% + |2f*] [(n+ )"+ |2[*]
and
Po, o @2=n)p2 n(n=2)p D2 (it t)?

z
or? (402 + 12" [+ 1)+ |2

Thus, v is a positive solution to the problem

]1+n/2

Av =0 in RY

v = (n — 2)v* ! on R
By applying Lemma 1.2.7, it follows that uy (z) — 0 as |z| — co. Next, choose A > 0
such that ¢ = 0if |z| < R. Let

—A(Au—v) =0 in RY
O (Au—v) =AM —u"—u) — (n—2) v} on R".
By choosing ¢ = (Auy —v)_ as a test function for this problem, the following holds:
/ Vo’ dz = / (Mu'! — Aw™ — Au) ¢ dz — (n — 2)/ v o do
|z|>R |z|>R |z|>R
< / ()\Auq_l — Au"t — Au) ¢ dx
lz|>R

< 0.

Thus, ¢ = 0 in @ As a result, it follows that u), < Cwv in @, which yields the
power-type decay as desired. [ ]
The regularity of solutions to Problem (P,) is now examined. First, the following

lemma is established.
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Lemma 1.2.9 Let uy be a nonnegative weak solution of Problem (Py) for A > 0. Then,
for each i =1,...,n, it holds that D'uy € H' (R?%).

Proof. Consider the i**-difference quotient of size h defined as

u(z + he;, t) — u(x, t)

Dlu(z) = ;
I

for 1 <i<mn—1,and h € R\ {0}, where {e1,...,e, 1} is the canonical base of R"~!

(for more details, see [17]). The choice of ¢ = D_, (Dyu) as a test function in (1)

/M

= / (A u|"?u — Ju[""?u) D_j, (Dyu) da.
Rn—1

indicates that

Vu-V (D_p(Dpu))dz + / u(D_p (Dpu))dz

Rn—1

Using the definition of Dyu, this expression will be rewritten in a more convenient form

as follows. Initially, it can be noted that

Vu-V (D_p(Dpu)) = |—}1L|Vu (x + he;, t) - V (Dpu (z — he;, t))

- |—}1L|Vu (x + he;, t) - V (Dpu)
— V(Dpu) -V (Dpu (x — he;, t) + |V (Dyu)|.

Rewriting the first expression on the right-hand side above as

LVU (x + he;, t) - V (Dpu (z — he;, t))

Id
1
= V (Dpu) -V (Dpu(x — he;, t)) + WVU -V (Dpu (x — he;, t)),
it follows that
1 1
Vu-V(D_(Dpu)) = WVU -V (Dpu (x — he;, t)) — WVU (x + he;, t) - V (Dpu)
+ |V (Dhu)|2 .
Next, it can be observed that
1
u(D_p (Dpu)) = mu (x + he;, t) Dpu (x — he;, t)

1
— mu (z + he;, t) Dyu — (Dpu) (Dyu (@ — hey, t)) + | Dpul®.

34



Rewriting the first expression on the right-hand side above as

1 1
mu (x + he;, t) Dyu (x — hey, t) = Wu - Dypu (x — he;, t)

+ (Dpu) (Dpu(xz — he;,t)),

it holds that

1 1
u(D_p (Dpu)) = mu - Dypu (x — he;, t) — mu (z + he;, t) (Dpu) + | Dypul®
Furthermore, it can be observed that
-1 _ -1 A g A g
(Mt =) Doy (Dpu) = Wuq (Dpu (x — he;,t)) — Wuq Dyu

1 1
- {Wu’"_l (Dpu (z — he;,t)) — Wur_thu} :

Hence, the following holds:

1
Vu -V (Dpu(x — he;,t))dz — — Vu (z + he;,t) - V (Dpu) dz

|h R" i RY
1
+ / |V (Dpu)|* dz + — u (Dpu (x — he;, t)) dx
R? || Jrn—
1
- — u(x + he;, t) (Dpu) dw+/ |Dpul? dz
|h| Rn—1 Rn—1
A 1 A -1
= — u?™ (Dpu (x — he,t))de — — u? Dypu dx
|h| Rr—1 |h| Rn—1
1 1
- — u"! (Dpu (x — hej, t)) do + — u" ' Dyu da,
|h| Rnr—1 |h| Rn—1

which implies that

J

|V(Dhu)|2dz+/ |Dpul? dz

n Rn—1
+
1 1
= T Vu (x4 he;,t) - V (Dpu) dz + T u(x + he;, t) (Dpu) do
R Rn—1
1
— W ()\uq_l — ur_l) Dyu dzx
Rn—1
1
= T (M7 (x4 heg t) —u" (z + he;, t)) Dyu de
Rn—1
1
— W/ (Mt (z,t) —u" " (2,t)) Dpu dz
Rn—1
q—1 he. — !
< )\/ |u?™ (z + he;, 0) — u?™! (z,0)] Dyl da
R-1 ]
r—1 . o, r—1
N lur! (z + hel,yzi u ! (z,0)] Dyl
Rn—1
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Given that for each a,b € (0, +00) fixed, there exists 6 € (0, 1) such that
|t = = (p— 1) (Ba+ (1 —0)b)" *|a—D].
This implies that
Dy < Aa=1) [ Gulethe0)+ (1= 0)u (w0 Dyl do
+ (- 1)/]R (rule he0) + (1= 7)u (e, 0)) 7 Dyl do,

where 7 € (0,1). For fixed I'; :=T'p, (0) C R" ! and I'y :=T'g, (0) C R""!, it can be
observed that

/Rn ) (Ou (x + he;, 0) + (1 — 0) u (z, 0))q—2 |Dhu|2 A
" /Rnl (Tu (2 + hei, 0) + (1 = 1) u(z, O))T_z ’Dhu‘2 dx
< 27 /Rn ) ((u (x + he;, 0))‘1_2 + (u (x, 0))q—2) |Dhu|2 da

+ 272 /Rn 1 ((u(z + he;, 0)) > + (u(2,0))?) |Dhu|2dx

< 92|ty / Dyf? do + 5= / Dyl da

e = / Dy da + ull[ 2 / Dyl de ||

which implies that
IDwlly < Ma= 1027 [l [ 1Dl e ol [ Dwfas]
'y 1 Rn—

b= 2 [l [ IDwPdet g [ D]

I'>

By Lemma 1.2.9, it is possible to choose I'y and I's such that

1 L |
and Hu||LOO(F§) < (

q—2
HUH r— 1) 2r—1'

< - -
L=(rg) = A(g — 1) 241

Hence, it can be inferred that

1Dyl < € (1 g, ull sy ( / Dynfda+ | |Dhu,2dx>.

Furthermore, since u € C' (T'), it can be concluded that
/ |V (Dpu)|* dz + / |Dpul® dz < C. (6)
n Rn—1
+
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Let D7 = % for 1 < j <n. Given any ¢ € C§° (R"), the definition of weak derivative,

in conjunction with (6), implies that

: Dip (x — he;,t) — Digp (vt
/ u-D_p (DJQO) dz| = / U cp(m €is ) ‘P(Ia ) Az
R R”l
n ||

n
DJ t) — DI he;, t
_ / ( u(x,t) u(z + he;, )><p(x,t) &
o 7

= / Dy, (Dju) p dz
R

n
+

IA

| D (Dju)”L?(]Rf_) H90||L2(Ri)

< C ||90||L2(R1) :

By taking the limit as |h| — 0, it can be inferred that

/ u- D" (ngp) dz
R

n
+

< CH‘PHL?(RQ) ) (7)

forall 1 <i<mn—1and 1< j<n. Finally, selecting ¢ € C§° (R") as a test function

in (1) and applying the inequality

/ u-D" (D) dz| = D" - D"p dz
R? R
n—1
< Z / u- D% dz
=1 |/RY

< Clleliaas).

the result follows by invoking [10, Proposition 9.3]. ]

The following lemma states that the derivatives of a nonnegative weak solution
uy of Problem (P,) exhibit decay. This result is fundamental to the development of
the present study.

Lemma 1.2.10 If uy € E is a nonnegative weak solution of Problem (Py), where
A > 0, then for each 1 <1 < n, it holds that

lim |D'uy(z)| =0, for all z€RY.

|z| =00
Proof. Let 1 <i <n—1. For each p € C5° (R™), the choice of D’p as a test function
in (1) indicates that

Vu -V (Dicp) dz—l—/

u Dip do = / ()\uq_l — ur_l) D'y dz.
Rn—l Rn—l

RY
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As a consequence of the definition of weak derivative, it can be inferred that

J

V (D'u) -V dz + / (D'u) o dz = / AMg—1)u"? (Du) p da
Rn—l

n n—1
i R

- /R - (D) g da

Hence, v = D'u is a weak solution of Problem (AP), wherec =7 =1,a = (¢ — 1) u?2,
and b = (r —1)u"% Therefore, by Proposition A, D'u € L (R%), and its trace
belongs to L> (R"1). Now, by choosing ¢ = n(Diu)i as a test function in (1),
where n € Cg° (R™) and § > 1, the argument follows as in the proof of Lemma 1.2.7,

completing the case 1 < ¢ <n — 1. For the case where ¢ = n, it is noted that

0
B (u(2,0) = —u; =wu=- u"'+u" +u = Ay =0,
v

that is, u; is a harmonic function. Furthermore,

0 ou ou Ou
_ - _ o q—2 77 . r—2 7> -
ov () AMg—Du ov +(r=1u ov + ov

= AMNg—Du%u — (r — D) u" 2wy — uy,
that is,
a q—2 r—2
a(ut)jLut =A(g—1D)u"u — (r—1)u"“uy.

This implies that

0
/ ") 8_(ut> dz —i—/ oup dz = A(qg— 1)/ (u™?us) o da
Rn—1 1% Rn—1 Rn—1
- (r—=1) / (v 2uy) ¢ da.
Rn—1

Since u; is harmonic, it can be deduced that

V- Vu, dz + / upp dr = / (Mg —DuPu — (r — 1) u"*w) ¢ da.
R:LL Rn—1 Rn—1
Therefore, u; is a weak solution of Problem (AP), and the proof is concluded. [ ]

Corollary 1.2.1 If uy is a nonnegative weak solution of Problem (Py), where X\ > 0,
then uy € C>* (M) N C> (R?r)

loc

Proof. Since u, is a harmonic function, it is concluded that uy € C*° (Ri) By Propo-

sition A and regularity results established in [23], it can be inferred that weak solutions
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of Problem (P)) belong to che (R?F) According to Lemma 1.2.9, if v = D'u, then

loc

v is a weak solution of Problem (AP), which implies that v = D'u € L™ (R7}), with
its trace belonging to L> (R"~!). Moreover, the case i = n was addressed in Lemma
1.2.9. By applying the results from [23|, it can be deduced that Diu € C> (R:ﬁ),

thereby concluding the proof. [

1.2.5 Symmetry and Exponential Decay

This subsection is dedicated to the proof of Theorem C and Theorem D. The
proof of Theorem C relies on the classical moving plane method, as presented in [32]
(see also [21,35,40] for related results).

Proof of Theorem C. Let 8 > 0 be a real number. Define
EQZ{ZEMZ $1>9}, ng{zeR’}r: x1:9},

and consider the reflection

0

z2=(T1,...,xp1,t) —> 2" = (20 — x1,29,...,2,_1,1),

where z € E,. Let the function w’ be given by
w’ (2) = u (%) —u(2).

It is observed that if z € Ty, then u (2?) = u(z). It is asserted that there exists 6 > 0
such that
w’ (2) >0  for all ze€ E,. (8)

Indeed, since u (z) — 0 as |z| — oo, it is possible to choose a sufficiently large 6 such
that
w? (20,4, ..., t) = u (0,29, ..., t) —u(20,25,...,t) > 0. 9)

It will be established that (8) holds for this choice of #. Suppose, for the sake of
contradiction, that there exists 2y € Ep such that w’ (z) < 0. In particular, it is

possible to choose

w’ (z9) = inf {w’ () : 2z € Ep} <0.
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It is claimed that zgp € R" 'NEy. Otherwise, zg € R NEp, and thus B (z9,20) C RNEy
for some § > 0 sufficiently small. Defining v? (2) = w? (2) — w? (zp), it follows that

v (z9) = 0, and

Av? =0 in B (z,9)

v? >0 in B (z,9).

By applying Harnack’s inequality, it is obtained that suppg )ve = (0. Moreover,

20,0
since v? is harmonic in B (zg,d), the strong maximum principle implies that v/ = 0 in
B (zg, ). Using unique continuation methods for elliptic equations, it can be concluded
that v? = 0 in Ey. Consequently, w? is a non-positive constant in Ej, which contradicts

(9). Hence, w? (z) > 0 for all z € R” N Ej, implying that
w’ (2) >0 Vze EgnR™ L

As a result, zg € R"' N Ey and w’ (z5) = 0. Furthermore, by selecting a ball B C
R? N Ey such that zy € 0B, the following holds:

Auw? =0 in B

w? >0 in B.

This, in conjunction with Hopf’s lemma, implies that (%—“f) (z9) < 0, which leads to a

contradiction with

ow’ ou , o Ou
O>E(2’9) = %(2)—5(29)

Now, let
0p :=inf{# >0 such that (8) holds}.

It will be proven that 8y = 0. Suppose, for the sake of contradiction, that #y > 0. It is

observed that w? =0 on Ty, and

Auw® =0 in Ly,

w” > 0 in  Fp,.
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As a consequence of Hopf’s lemma, it can be concluded that
2uy, (60,7) = — (W), (60, T) <0, (10)
where T = (z3,...,t). Thus, there exists € > 0 such that
2(0p —€) —x1 < by — e <11 < by,
and
w21, Z) = u(2(0y — €) — 21,7) — u(x1,T) > 0.
Consequently, for each (0o, T) € Tp,, there exists 6 > 0 such that
W (2) >0 for all z€ B((6),T),0)N (R} \ Ep,) . (11)
It is asserted that there exists € > 0 such that
w" ¢ (2) >0 for all z € Ep_.. (12)

If this were not the case, there exist sequences (6;) C Ry and (zx) C Ep, such that

6, — 6, and
w (z,) <0 with dist (2, Ty,) — 0.

The following two cases are examined:

Case 1: There exists a subsequence (zy,) such that z,, — 2y € Tj,, which is
impossible due to (11).

Case 2: (zp) satisfies ||zx|| — oo. In this case, by (11), it can be assumed,

without loss of generality, that
w’ (z) = inf {w’ (2) : z € Ep }.
Given that v% (2) := w% (2) — w% (z), it holds that v% (2;,) = 0, and

Av? =0 in B (z,0k)

Uek >0 in B (Zk7 5k> .

As a consequence of the Harnack inequality, v% = 0 in B (z;,d;). Combined with

unique continuation methods for elliptic equations, this implies that w% is constant
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in Fp,, leading to a contradiction with w’ € E. Consequently, the assertion (12)
contradicts the choice of 8y for y > 0. Thus, it must be that 8, = 0, and it can be
concluded that

u(—zy,...,t) > u(xy,...,t) in  RL
An analogous argument establishes that
u(—x1,...,t) <u(zxy,...,t) in  RL.

Thus, v is symmetric with respect to the plane 7, and u,, = 0 on 7. This argument
remains valid after any rotation of coordinate axes in the variables xs, ..., z,_1.

Finally, by defining u (x,t) = v (p,t), where p = |z|, it will be demonstrated that
v, (p,t) < 0 for all (p,t) € (0,00) x [0,00). To this end, it is noted that since u is
symmetric in R"™! the reasoning used to derive (10) similarly applies to za, ..., z, 1
and all § > 0. Let o € R"! be such that xg = (210, ..., 2, 10) with z;0 > 0. Noting
that

—_

n

ou Zi0
Up (pO’t) = O (x()vt) : ‘$_0|
1 i

<07 p0:|$0|7

%

and given that u is symmetric, it follows that v, (p,t) < 0 for all (p,t) € (0,400) x
(0,400). To complete the proof, it remains to demonstrate that v, (p,0) < 0 for all
p > 0. Suppose, for the sake of contradiction, that v, (rg,0) = 0 for some py > 0. Since
ue Ch” (R7) NC*> (R"), it can be verified that

loc
Av, =0 in  B*(po)
v, <0 in BT (po),

where BT (pg) = Bs (po,0) N R: for some § > 0. By applying Hopf’s lemma, the
following holds:

0< %—?(Poao) = —(vp), (po,0)
= —(u),(po,0)
a q—1 r—1
= "5 (=M%t + 0"+ ) (po, 0)
= 0,(p0,0) [A(g—1) 09> = (r—1)v" > — 1]
— 0,
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which leads to a contradiction, thereby concluding the proof. [
An additional result must be established prior to presenting the demonstration

of the exponential decay of u,, where \ > 0.

Lemma 1.2.11 Let uy be a nonnegative weak solution of Problem (Py), where X\ > 0.
Then, for each s > 0, there ezists a constant ¢; = ¢;(s) > 0 such that, for every
1=1,...,n—1, the following holds:

uy (1, .., 4.0 1) Sci|Diu>\(ac1,...,x,»,...,t) . x| > s

Proof. Let i € {1,...,n— 1} be fixed, and let s > 0. For each z € R, define the

function
, Diu(zy,...,zi+8,...,t), x;>0
Diu(z) =
Du(xy,...,—xi+8,...,t), z; <0.

As a consequence of Theorem C, D'u = u,, - % < 0 for all z; > 0. By combining the
results from Theorem B, it is possible to choose R > 0 and A;, := A;, (R, s) > 0 such
that

for all ze€RY, with |z| >R,
and
@i = (Aju+ Dzu)Jr =0, for all 2€R?, with |z|<R.
Furthermore, the choice of ¢; as a test function in the problem
—A(Aju+Diu) =0 in R?}
with

—% (Ailu + D;u) = Myut P+ A (g—1)ur*Diu — (Ailur’l +(r—1) uT’ZDiu)

(Ailu + Dz,u) on R"!
results in
/ Veil'dz = / i [MyuT™ + A (g — 1) w' "’ Dou] da
R ]Rnfl

n
+

— / ©i [Ailurfl -+ (7‘ — 1) uq*QDiu] dr — / (A“u + D;u) i dzx.
Rn—1

Rn—1

43



This implies that

J

|Vg0i|2dz + / ©?dr = /\/ (Ailuq_1 +(¢g—1) uq_2Diu) ©; dx
Rn—l

n n—1
i R

- / (Aju ™"+ (r = 1)u"Dlu) ¢; da
Rn—1
< Ag-— 1)/ u™? (Aju+ Dlu) ¢ dz
Rn—1
- / u"? (Aju+ Diu) ; dz,
Rn—1

from which it is deduced that

J

Thus, it can be inferred that

1
|V<,0i|2dz—|—/ lgof dmgé/ ©? da.
Rn-

n
+

0;=0 in R7.
Hence, the following inequality holds:

w2y, ..., x, .. 1) < ACE (—Diu(xl,...,xi—I—s,...,t)).

— 11

Given that Diu (xy,..., 24, ...,t) <0 for z; > 0, it can be concluded that

—1 (—Diu(ml,...,xi+s,...,t)).

11

u(zy,y .+ 8, t) <u(xy,...,m,. .. t) < A

Now, for every z € RT}H consider the function

, Diu(zy, ...,z —8,...,t), x;<0
D! u(z) =

—S

Diu(zy,...,—x;—8,...,t), x; >0.

Again, by Theorem C, it is obtained that D'u = u, - % > 0 for all x; < 0, which, in
conjunction with Theorem B, implies the existence of R > 0 and A;, :== A;, (R,s) >0

such that

ul?(z) < for all zeR%, with |z|>R,

20
and
¢ = (Aju — D’;Su)Jr =0 for all 2€R}, with |z|<R.
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As a consequence of the choice of ¢; as a test function in the problem
—-A (Ai2u — Di_su) =0 in RY,

with

—% (Ajyu—D" u) = (Auu'' = X(g—1)uID" u)
— (Apu = (r—1)u" D" u)

- (Apu—D"u) on R",
the following holds:

/ IVs|* dz + ¢F dv = / (AMyuu?™' = X(g— 1) u’*D" u) ¢; da
R Rr—1

n n—1
n R

_ / (Apu' ™" = (r = 1) u' 2D u) ¢; dx.
Rn—1

Therefore, by applying the same reasoning as in the preceding argument, it is concluded

that ¢; =0 in RT}H which implies that
U (1, o Ty, 1) §A;Diu(xl,...,xi—s,...,t).
Since Du (z1,...,%i,...,t) > 0 for z; < 0, it can be inferred that
Uy, .,y — 8, ... t) <u(xy,...,x5,...,1t) §A;Diu(ajl,...wi—s,...,t) (14)

for z; < 0. Thus, by applying inequalities (13) and (14), the desired conclusion is
established. ]
Proof of Theorem D. Let z; > 0(1 <i<n—1). As a consequence of Lemma

1.2.11, the following holds:

9 D TSt
o (In(u(xy,...,xi+s,...,t))) = U@ it st < —c .

u(zy,. .., i+ s,...,t) —

By integrating the preceding expression, the following result is obtained:
In(u(zy,...,2+8,...,0) —In(u(zy,....s,...,1) < —c; 'y,
which leads to the inequality

w(xy, ...,z +8,...,1) Su(xl,...,3,...,t)exp(—ci_1 ]xz|), x; > 0. (15)
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Once more, applying Lemma 1.2.11, it is established that

82;- (hl(u(xl,---,xi—s,...,t))):D“(Jflw--?mi—s,...,t) o

w(xy, ...,k —8,...,t) — "

As a result of integrating the preceding expression, the following holds

In(u(zy,...,=8,...,t)) —In(u(zy,....¢2;—s,...,t) >c;" (=),

7

which implies that
w(Ty, ..., —8,...,t) §u(xl,...,—s,...,t)exp(—ci_l |xz|), x; < 0. (16)

Therefore, from (15)-(16) and Theorem B, it can be concluded that

1
U1y @y t) §C1'WGXP(—C2|%|% |zi] > s> 0.

Thus, the proof is complete. [
This section concludes by establishing the lower power-type decay with respect

to the variable t.

Proposition B Let uy be a nonnegative weak solution of Problem (P)), where X\ > 0.

For each x € R"! fized, there exist positive numbers ci,co and ty such that

Co
(1 + 752)(7%2)/2

%gu(x,t)< for all t>to.

Proof. By applying the mean value theorem for harmonic functions, it follows that

1

u(z,t) = R

/ u(z) dz, for all B((x,t),R) CRY,
B((z,t),R)

where 7 = (E, f), and w,, denotes the volume of the unit ball in R™. It can be assumed

that ¢ > 1. By choosing R = t, the following is obtained:

1 1 C
u(z,t) = / w(z) dz > / u(z) dz= C&
Wil™ JB((2,0),0) Wnl™ JB((x,1),1) t

for all t > 1. The proof is completed by combining Theorem D with the preceding

results. -
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1.3 The Case 2 <qg<r <2, A>0

In this section, a minimization argument is employed to demonstrate Theorem

E. Let F' be a subspace of E defined as:

F::{uEE:/ \u]rd:c<oo},
Rn—1

endowed by the norm

2 9 1/2
el 2=l + el rnsy)

It can be noted that F'is a reflexive Banach space, and that the set of the restrictions
to R, of functions in C§° (R") is dense in F'. These facts facilitate the establishment of
a natural correspondence between the definition of weak solutions to Problem (P,) in
F and the definition provided in (1). In light of Lemma 1.2.1, it can be inferred that
the embedding

F—L(R"), 2<s<2, (17)

is continuous. This implies that the functional I, is well-defined in F'. Furthermore, it
holds that I, € C* (F;R).

The development of this section relies on the classical variational theory presented
in [13] (see also [4] for related results). Initially, the following fundamental property of

the energy functional I is demonstrated.

Lemma 1.3.1 Let2 < q<r <2, and A\ > 0. Then there exist p > 0 and o > 0 such
that

Iy(u) >a>0, for ||uHF = p.
Proof. Without loss of generality, it can be assumed that
2 2 2
||u||E + ||u||LT(Rn—1) = ||U||F = p2 < 1.

Using Lemma 1.2.1 and (17), it follows that
1
2

1 A
2 1 -2
> alul (5 - 22 ol ?)

2 1A
Lo(u) > Slullg = —[lullp



where ¢; and ¢y are positive constants. Hence, it can be concluded that
I (u) > e(p)p® > 0.

This leads to the desired result. ]
The following lemma establishes a significant property associated with the energy

functional 1.

Lemma 1.3.2 Let 2 < g<r <2, and X\ > 0. Then, there exists A > 0 such that

—oo < inf I, (u) <0, VA>A. (18)
lull p<p
Proof. Let
. q 2 q T
A= inf < |ullm+ = ||lu Tnl:/ uquzl}.
TR LR U A

It is stated that A > 0. Indeed, suppose, for the sake of contradiction, that there exists

a sequence (uy) satisfying ||ug||» < p, such that
q q
Ll + 2 oy =or() and [ jufdo =1
T Rn—1

where oy (1) — 0 as k — oo. Consequently, by applying (17), it can be concluded that

1= [ e < et = o (1),
Rn—l

which leads to a contradiction. On the other hand, if A > A, it follows from the
definition of A that there exists uy, satisfying ||ua||p < p and [, [ur|?dz = 1, such
that

q 2 q
A > funlly + 2 fualf o

This implies that

1 1. A
I (wy) = = luallp + = Juallzr -1y — = luy|?dx < 0,
2 r q Jrn-1

and consequently, (18) holds. u

Lemma 1.3.3 Let 2 < g < r < 2, and A > 0. The energy functional I is weakly

lower semicontinuous in F'.
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Proof. Consider a sequence (uy) C F' such that uy — u weakly in F. The objective is

to establish that
I (u) < liminf I (uy).
k—oo

Since the norm || - ||g arises from an inner product, the map

1 1 1
U — §Hu\|QE = 5/ \Vu\de + 5/ |u\2dx
R Rn—1

is convex and weakly lower semicontinuous in £, and therefore also in F'. Hence,
1 1
2 L 2
—||ul|l% < lminf = ||ug||%.
N < Tmint 2 g3

Regarding the nonlinear positive term, it is observed that the function s — (s1)", where
r > 1, is convex and continuous on R. This implies that the associated functional

u - (u+)r dx
is convex on L" (R™!). Moreover, due to the continuity of the trace embedding F' <
L"(R™ 1), this functional is well-defined and bounded on F', with u; — u also weakly
in L" (R"1). Consequently, by the weak lower semicontinuity of convex and lower

semicontinuous functionals on reflexive Banach spaces (see [10]), it follows that

1 1
—/ (u™)"dz < liminf —/ (uf)" da.
Rn—1 Rn—1

r k—oo T

For the last term, it is observed that the embedding F' < L?(R""!) is compact since

q <7 < 2,, which implies strong convergence in L% Therefore, u;; — u™ strongly in

LY(R™1), and thus

/ (uf)?dz — (uh)?dz,
Rn—1 Rn—1
yielding

A A
lim — u+qu:—/ w4 dz.
tim 2 =2 )

Combining the above estimates gives

liminf Iy (ug) > Ix(u),

k—o00

which establishes the weak lower semicontinuity of I, in F. ]
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Proof of Theorem E. In accordance with Lemmas 1.3.2, 1.3.3, and [13, Theorem
1.1], there exists uy € B, (0) such that
—00 < lgf I)\(U)II)\(U)\), for all > A.
u€B,(0)
In addition, since Lemma 1.3.1 holds, it follows from [13, Corollary 3.2| that I has a

nontrivial weak solution uy € B, (0) with I) (uy) <0, for all A > A. |

1.4 Nonexistence of solution

This section is dedicated to the proof of Theorem F. The initial segment of the
proof involves adapting a Pohozaev-type identity, as presented in |1, Proposition 5.1],
to validate items 1 and 2. To complete the proof of the theorem, an elementary
mathematical argument is developed, which specifically establishes, for the case where
A > 0and 2 < g < r, an interval within which the solution to the problem is the trivial
solution. Following this, a comparison with Theorem E can be made.

Proof of Theorem F. Let u, be a weak solution of Problem (Py). By selecting

¢ = uy as a test function in (1), the following expression is obtained:

/ ‘VU)\’2 d2+/
R

ua? da = / Mual? = [un]") da. (19)
Rnfl Rnfl
This implies that the inequality

n
+

A ||u>\H%Q(Rn*1) 2 ”U/\HZT(RHA) : (20)

is valid. Consequently, if A < 0, it follows that u), = 0, thereby proving the validity
of item 1. Consider A > 0. From this point onward, the notation u, will be simplified
to u. Through the application of |1, Proposition 5.1|, with p = 2, f = 0, and g(s) =

A|s|7%s—|s|""*s —s, it can be inferred that

n—2 2 L
|Vu|” dz = (n —1) A - - dz. (21)
2 R Rn—1

q r 2
Incorporating (19) into (21), yields that

n-2 -1 n—1_(n-2) r L, 9
)\( e )||U||%4(Rn1)+( — = ) lullir @y + 5 lelli2@ny = 0,

n
+

20



which implies that

n—1 (n—1) 4 n—2 (n—1) ,
(M5 - e < ("5 - P Il @)

Thus, by applying (20) and (22), item 2 follows. To complete the proof of Theorem F,

consider 2 < ¢ < r < 2,. Define

A(u)—/R_l u?dz and B(u)—/ luf” da.

Rn—1

It can be noted that expression (19) can be written as
lullz = AA () = B (u). (23)

By employing interpolation and Lemma 1.2.1, it follows that for ¢ = 2 (1 — 6) +6r, the

Alw) = (/R |u|2dx) Y (/R |u|rdx)9

lull3 =" (B ()", 0€(0,1).

following is valid:

IN

It is observed that

-2
g=2(1-0)+6r = 022_2 € (0,1)
This implies that
(A @)% < Julla? (B (u)* . (24)

Next, by using (23), it can be deduced that
Jally, = MT2A () — 7725 (u).
Letting G (t,u) = M?72A (u) — t" 2B (u), it follows that
tlirg}r G(t,u) = tllrg}r 972 (M (u) — t"9B (u)) = 0.
Furthermore, since
Gi(t,bu) =A(qg—2)t"*A(u) — (r —2)t" 3B (u),
it can be concluded that

Gi(tbu) =0 <= t:(A%)U(H).

o1



- 1/(r—q)
Set t = <)\Eg:§§ggzg> . By applying (24), the following holds:

o - (=) ()]
< = =

= (:jg)] Jul’s

Thus, by selecting A [(g)ﬁ%q (T:—q)} < 1, it can be deduced that

G (tu) < |ully =G (1,u),

which is a contradiction, since GG (f, u) is a maximum value of G. It can be concluded

that if

A<

[(222)%F (=2)]
Problem (P)) admits only the trivial solution, thereby completing the proof. ]

Figure 1.1 presents a summary of the results discussed in Chapter 1 concerning

the existence and nonexistence of solutions to Problem (Py).
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[l 1. Only the trivial solution uy =0 for all A €(0, A*), where:

2. Nontrivial weak solution for A > A.

Positive ground state solution for all A > 0.

Only the trivial solution uy =0 for all A > 0.

Figure 1.2: Summary - Chapter 1
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Chapter 2

Existence and Concentration of
Positive Harmonic Functions with
Nonlinear Boundary Condition in

Expanding Domains

This chapter presents the findings pertinent to the principal problem addressed
in this work, namely Problem (P.). As outlined in the introduction, this problem
constitutes a concentration problem as ¢ — 0. The primary objective of this chap-
ter is to establish the framework that leads to the proof of Theorem J, which is the
concentration theorem.

Initially, a result concerning the existence of solutions is established, followed by
a comprehensive analysis of the asymptotic behavior of these solutions. It is essential
to note that these results are a crucial part of what is required for the proof of Theorem
J. The chapter will conclude by exploring the scenario in which the domain contracts,
demonstrating that, under these circumstances, the only solution is a constant function.

The chapter commences with an exposition of the fundamental results that es-

tablish a rigorous foundation for subsequent analysis.

2.1 Preliminaries
Let the Hilbert space H! () endowed with the inner product

(u,v) :/ VuVu + uv] dz,
Qe

o4



and the corresponding norm

1/2
2 2
[ull i) = (/Q [IVul” + |ul"] dz) .

Consider the energy functional associated with Problem (P.), defined on H' (€2.) and
denoted by Iq_, as follows:

1 1 1 r 1
I, (u):g/Q |Vu]2dz+§/m |ul® do—k;/@Q (u™) da—g/aQ (u)?do,

where vt = max {u,0}. As a consequence of the Sobolev trace embedding
H'(Q) — L*(0Q), 1<s<2,, (1)

it can be shown that the functional Iq, is well-defined in H' (£2,). In addition, I, is

continuous Fréchet differentiable, i.e., C!, and

Ig, (u)p = /Q VuVp dz + /BQE up do — /am [(u*)q_l — (u+)r_l} pdo, (2)

for any o € H'(Q.). Through standard arguments, it can be demonstrated that the
weak solutions of Problem (P.) correspond to critical points of I , and vice versa
(see [34)).

Throughout this chapter, the following equivalent norm on H' (€,) is employed:

lull? ::/|Vu|2dz+/ W2do.
Q o2

In accordance with (1), the following result can be established for all 2 < s < 2,.

Lemma 2.1.1 For some positive constant S = S (), the inequality

S (/m ]u‘sda>2/5 < (/Q|Vu]2dz+/mu2da> (3)

holds, for allu € H' (Q).

Proof. By applying the Sobolev trace embedding and the Poincaré inequality, it
follows that for every u € H' (Q),

2/s
([ 1 ao) < el <o ([ 9 0zt [ iao),
0N Q o

where c¢; and ¢y are positive constants . [
In the subsequent lemma, a geometric property of the energy functional I, is

derived.
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Lemma 2.1.2 For2 <r < q < 2, the functional Io, admits the geometrical mountain-

pass structure on the space H' (Q.).

Proof. As is [16, Lemma 2.1|, it is sufficient to demonstrate that I satisfies the

following conditions:
1. I, (0) = 0;
2. There exist p > 0 and a > 0 such that Ipp,0) > «;
3. There exists e € H' (), with [[e]| 41, > p, such that Io (e) < 0.
Item 1 is evident. To demonstrate item 2, it is observed that for u € H'(€,),
I, ()2 Jul? (5 - £ lz®)
Choose p = ||u||, sufficiently small such that the expression

1 & _9
(5 Ste?)
q

is positive. Thus, it follows that

Lo, (u) > p*c(p) >0,

and the item 2. is proved. Finally, to prove item 3, it is noted that for u € H' (£2,)
and t > 0,

124 tr—a 1
Io, (tu) = 19 [— (/ |Vu|2dx—|—/ |u|2da) + / uf dor — -/ |u|qda] |
2 Qe 90 T Joq. q Jos.

which implies that

lim Iq, (tu) = —o0,
t—o00
since 2 < r < q. This validates item 3 and concludes the proof of Lemma 2.1.2. [ ]

The following lemma provides a proof that the functional I_ satisfies the well-

known Palais-Smale (PS) condition.

Lemma 2.1.3 Let 2 <r < q < 2,. Then, any sequence (uy) C H' () such that
Io, (ux) — ¢ and 1;26 (ug) — 0, (4)
has a convergent subsequence.
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Proof. First, it can be observed that

1, 11\
I _ 2 S .
a. (ur) i) (ur) up > (2 q) [Jull7

On the other hand, it is noted that

1
To (us) = To, () us < |To (ue)] + |

T, ()| Nkl s,

€
< C+5||uk||7—7 kaO

Hence, the following inequality holds:

1 1 2 €
5 — = ) lluklly < = flukll, + ¢
(5 7)ol <

which implies that (uy) is bounded in H' (€).). Then, up to a subsequence, u; — u
weakly in H' (Q.) and uy — w in L* (99), 2 < s < 2,. Now, it can be observed that

Holder’s inequality and (4) can be applied to obtain the following:
op (1) = (I;26 (ug) — ];26 (u)) (up —u) = / |V, — Vul” dz + / lup —ul? do
Qe 99
= () = @) ) - o
ol
s [ () = @) - wdo
9

= / IV, — Vu|” dz —|—/ lug — ul* do + oy (1),
Q. 00,

where oy, (1) — 0 as kK — oo. Therefore, it follows that
lur = ull, = ox (1),

so that uy — u in H' (€,). This concludes the proof. ]
Given Lemmas 2.1.2 and 2.1.3, and proceeding as in [5], the following proposition

is proved.

Proposition C For each € > 0, the functional I, has a positive critical point u. €
H' (Q) at the minimazx level

Cqr (82¢) = inf max I (v (t)) > 0,

Y€l tel0,1]

where

I:={yeC([0,1];H (Q)):7(0) =0,7(1) =€},

with e € H' (Q) \ {0}, and Iq, (¢) < 0.
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Proof. By applying Lemmas 2.1.2, 2.1.3, and the mountain pass lemma [8], u, is
obtained. Furthermore, it can be stated that wu. is nonnegative in §2. In fact, by

choosing ¢ = u_ as a test function, the following holds:

/ ‘Vu;|2 dz + / (UZ)Q do = / [(uj)q_l u; — (uj)T_l u;} do = 0.

Qe 00 00

Thus, u_ = 0. Finally, by standard elliptic regularity and maximum principle, it can

be concluded that u, > 0 in €. n
Proposition C demonstrates that Problem (P.) admits a positive mountain-pass

solution. Henceforth, the chapter focuses on establishing that this solution is the

nonconstant least-energy solution.

Let N, be the Nehari manifold associated with I, defined by
N;:{UGJP(QJ\{Mﬁ,Qéwyv:O}.

It is observed that if v € N, then v* # 0. Furthermore, it is stated that the function
s — Ig, (sv) has a maximum s, = s, (v) > 0, which is its unique critical point. In fact,

define the function f as follows:

q

s2 5 8" , 5 .
f(s)=Ta (sv) = vl +— [ o] do—— [ [v] do
2 T Joq. q Joq.

It is noted that
f'(s)=0 <= As"?-Bs?=C, (5)

where

A:/ W)t do, B:/ o do, € = |Jo]]?.
00 00

It can be verified that the equation (5) has a unique solution s, = s, (v) > 0. Moreover,
f'5)=2-q)C+(r—g B *<0.

Thus, f (s.) = Iqg, (scv) is a maximum value, which implies that s.v € N, that is, for

any v € H' (Q2,) \ {0}, there exists a unique s. = s, (v) > 0 such that s.v € N, and

max Ig, (sv) = Ig, (sv).

Given that every admissible path in I" must intersect A, it can be inferred that

Cor(Qe) = inf I (v).

vEN,
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Therefore, it can be concluded that the minimax level ¢, (€2¢) can be characterized as
follows:

Cor () = UEHII(%E)\{O} max Iq, (sv).

This characterization aligns more effectively with the objectives of this work. Fur-
thermore, for every nonnegative v € H! (2.) \ {0} there exists a unique positive value
Se = Sc (v) such that

Car () < Iq, (sev) = max I (sv). (6)

s>0

2.2 The Limit Problem

A fundamental element in the proof that the mountain-pass solution obtained
in Proposition C is nonconstant relies on the knowledge of the existence of a positive
solution to Problem (P,), where 2 < r < ¢ < 2,, with A = 1. This section addresses
this problem, taking into account the developments made in Chapter 1, Section 1.2.
The definitions introduced in the aforementioned chapter, along with the findings, will
be utilized, adapted to the case A = 1, which is directly related to Problem (P.). In

this context, the following proposition is formulated.

Proposition D Problem (Py), with A\ = 1, has a positive solution w € C* (R) N
C** (R%) N E such that

1. w=w(z,t) is radially symmetric with respect to the variable x € R"™1, that is,
w(z,t) =w(p,t) if p=|x|. Moreover, w,(p,t) <0 in (0,400) x [0, +00).

2. w has exponential decay in the variable x and lower power-type decay in the
variable t, that is, there exist ¢, co > 0 such that

6702|z|

w(z,t) < C1W7
for all (z,t) € R

3. The derivatives of w has exponential decay in the variable x and lower power-type

decay in the variable t, that is, there exist ci,co > 0 such that

6—02|x\

[V (2,8)] < sy

for all (z,t) € RT.
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Proof. For the proof of items 1 and 2, see Chapter 1. At this point, the proof of item
3 will be presented. The idea of the proof is to show that there exists C' > 0 such that

’wP’ + |wt’ < CU),

and thereby apply item 2. Consider the function v = w, + Aw, where A is a positive
constant to be chosen later. It is observed that v is a solution to the problem
(7)

O +v=w"[(qg— 1w, + Aw] —w"?[(r — 1) w, + Aw] on R"

Let ¢1 = (w, + Aw)_ = max {0, — (w, + Aw)}. Given that w exhibits uniform decay,

it is possible to choose py > 0 such that

wi™? (p,0) < if  p>po. (8)

N —

By employing the fact that w, (p,t) < 0 for all (p,t) € (0,+00) x [0, 4+00), it is possible
to choose A > 0 sufficiently large such that ¢; = 0 if |(p,t)| < R. Then, by choosing
¢1 as a test function to the problem (7) and applying the estimate (8), the following
holds:

/ Vel dz + / offde = — / o1 [0 (g — 1) wy + Aw)] da
|z|>R |z|>R |z|>R

+ /xlzR 1 [wr_ (r=1)w, + Aw)} d

r—1 1
< _{ 5 )/ |901|2d90+§/ o1]* de
|z|>R lz|>R

1
S 5/ |S01’2 d.?;,
lo[>R

which implies that ¢ =0 in ]RT}r Hence, it follows that

Now, the decay of the derivative of w with respect to the variable ¢ is established. Let
v = w, — Aw, where A is a positive constant to be chosen later. It is observed that v

is a solution to the problem

_ (10)
v=w"l'—wi Tt —w (A — 1) on R L
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Since w (p,0) — 0 as p — oo, it can be concluded that

wy (p,0) — Aw (p,0) = w (p,0) |w"* (p,0) = w??(p,0) — (fl - 1)} <0,

where p > Ry, and A > 0 is sufficiently large. Thus, A > 0 can be chosen such that

w2 =0, for all p > 0. By choosing s as a test function for the problem (10), it follows

J

which implies that ¢ = 0 on ]RTQ, so that wy < Aw on M In particular, the following

that

\V4 (wt—flw> Vi dz = /Rn1 (% (wt—flw) w9 do =0,

n
+

inequality holds:
(w)" (p,t) Sw(p,t), Y(p,t)€[0,00) x[0,1). (11)
Now, let B > 0 be fixed. Set v = —w; — Bw. It is noted that v satisfies the problem

Av =0 in RY
(12)
v=uw""'—-w' = (B+1)w on R"L

Again, since w (p,0) — 0 as p — oo, for any B > 0, it can be deduced that
w (p7 0) [wq—Q (p7 0) —w'? (pa O) o (B + 1)] <0, p=Ry,

which implies that v < 0 for p > R,. Thus, it is possible to choose B > 0 sufficiently

large such that
¥3 (p70) :(_wt (p,O)—B?,U(p,O))+:0, IOZO
By choosing ¢3 as a test function for the problem (12), it follows that

0
V (—w; — Bw) Vs dz = / — (—w; — Bw) dz =0,

RY
which implies that ¢3 =0 on M Hence, the following inequality holds:
(w))” < Bw on R (13)

Therefore, (9), (11), (13), and item 2 provide evidence. |
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2.3 Upper Bound Estimate to ¢, (€2)

To demonstrate that the mountain-pass solution wu. is nonconstant for ¢ > 0
sufficiently small (Theorem G), an upper bound estimate to the minimax level ¢, (£2)
is established. The idea is to consider a positive solution w of Problem (P,), where
2 <r <gq <2, with A\ =1 and, based on this, construct an appropriate function
v in order to compare the least-energy level ¢, (€2) with max,-o I, (sv.) using the
characterization given in (6). To simplify the discussion, it is assumed from this point
forward that €2 is a strictly convex domain. Let w be a positive solution of Problem
(Py), where 2 < r < ¢ < 2,, with A = 1, and let z5 € 9 be fixed. After an
appropriate rotation and translation of the coordinate system, it is assumed that z
is the origin and the inner normal to 2 at zy points in the direction of the positive
t-axis. Furthermore, a C?-function G : B,, — R is found, defined on the ball B, =
{z = (z1,...,001) ER" 1 |z| < pg}, such that G (0) = 0 and VG (0) = 0. Given

that €2 is strictly convex, the following cylinder in R™ is considered:
U={(z,t) eR" x| < pp and 0<t<tp},
where tq = minj;—,, G (x) > 0. It can be observed that
NU ={(z,t): t =G ()}, and QNU ={(z,t): t > G ()},

that is, 2 NU is the epigraph of the smooth function G. Using the minimax charac-

terization of ¢, (€2) given in (6) with
ve (z,t) = w (e (z,t) — 20) ,

and denoting by # (z) the mean curvature of the boundary at the point z € 0€2, the

following proposition can be stated.

Proposition E There exists a positive constant vy, depending on n,q and r, such that
Car () < cgr (RY) — €y ?é%?%H (2)+o(e), as €—0, (14)

where cq , (R’}r) is the least energy level from the associated functional to Problem (Py).

An auxiliary result is first established to prove Proposition E. Let
g(z) = (D*G(0)z,z), x€R" Ry (€) := / IVauw|* dz —/ V| dz,
Q. R?
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and
2 q r 2 q r
o - (5D 55
o0, L 2 q T Rrn—1 | 2 q r
where 2 < r < q < 2,, and let s, > 0 be such that
max Io, (sve) = Iq, (Scve) .

The following lemma may be established.

Lemma 2.3.1 The following estimates hold as € — 0,

Ry (e) = —¢ /}Rn_1 IVw (z,0))* g () dz + o (e)

RQ(E):e/Rn1wt2(a:,0)g(x)dx+0(e).

Moreover, it follows that
s =140 (e).

Proof. Let the following set be considered:
U ={(z,t) e R" : |ex| < py and 0 <et <tp},

where ¢y = minj,—,, G (z) > 0. It is observed that

—Ri(e) = / IVuw|* dz
R\ Qe
= / |Vw|2dz—|—/ |Vw|2dz—/ IVwl|* dz
R™ \U \(QeNUhe) Qen (R \U)
= Al (6) + AQ (6) + A3 (E) .

By Proposition D, there exists a positive constant C' = C' (n) such that

67202\x|

Aj(e) = / Vw|® dz < C'/ ————dz
R \U R\, (1 +12)
eflpo ) ) +00 1
e 2P dp/ —————dt
/0 e 1to (1 + t2) 2

+o0o ) ) +oo 1
‘I‘ C |:/ e czppn— dp/ —ndt:|
1py o (14+)"?

too 9 +oo
C/ —4dt+0/ e~ 22l "2 dp

2n—
gy T ~po

= of(e).

C

IN

IN
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Given that (Q6 N (Ri \L{e)) C R \ U, the preceding estimate implies that

A, (e) ::—/ \Vw|*dz = o (e).
Qen(R7\U)
Let D, = {(z,t) : |ex| < po, to < et < G (ex)} C R\ Ue. It is noted that
As(e) = / \Vuw|* dz
\(Qenthe)

e 1G(ex)
- / / YV (o, 6)Fdtdz — [ [Vul?dz
lex|<po J O D.

e 1G(ex)
= / / \Vw (z,t)]* dtdz + o (¢) .
lex|<po 40O
In accordance with the Mean Value Theorem, there exists ¢ € (0,¢) such that
IV (2,t)]> = |Vw (2,0)]> + 2(Vw (z, ), Vw, (z, ¢))t.

Given that G is a C*-function, the Taylor expansion of G around the point 0 can be

written as:
G(x)=G(0)+VG(0)-z+ %(DZG(O)x,x) + R (z),

where R (x) represents the remainder term. Since G (0) = 0 and VG (0) = 0, and given
that the remainder term R (x) is of the order o (|:17|2) as = approaches 0, it follows that

G(z) can be expressed as G () =g (x) + o0 (]a:\2) . Thus, the following holds:
e 1G(ex) )
As(e) = / / |\Vw (x,0)|” + 2(Vw (z,c), Vw; (z,¢))t dtdx

lex|<po +/0O

— / (IVw (2,0)” + (Vw (,¢), Vw, (z, c))) (eg (z) + €0 (]:U\Q)) dx
lez[<po

= e/ IVw (z,0)]* g (z) dz + o (e)

lex|<po

= E/Rn_1 IV (z,0)] g () dx—e/ N |V (,0)* g (x) dz +o(e).

By following the procedure used in obtaining the estimate for A; (¢), it can be concluded

that

/||> 1V (z,0) g () dz = o(e),

which implies that
Ri(e) = —e/ YV (2,0) g (z) de+o0(c). (16)
Rn—l
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To establish the estimate for Ry (¢), it is first expressed as Rs (€) = Iz (¢)+ 1, (¢) — I, (€),

where

215 (e) = / w?® do —/ w? dr,
20 Rn—1

rl, (e) = / w" do —/ w" dz, and ql, (e) = / w? do —/ w? dz.
002 Rn-1 002 Rn—1
Set I'. = 092 NU,. It is observed that

215 (¢) = / w? d0+/ w? do —/ w? (z,0) da —/ w? (z,0) da.
e QT lex[<po lex|>po

The exponential decay of w (x,t) with respect to the variable z leads to the conclusion

that

+0o0
/ w? (2,0) dz < 01/ e~2e2lldy — 01/ e 220 "2 dp = o ().
lez|>po lez|>po e~1po

Consider Q. = Q. \ (QNU,). Tt can be deduced from the trace embedding theorem
that

/ w? do < / w? do < S <Q€> ||w||§{1(ﬁ )
90\Te o, ‘
where S (Qe> is bounded, and independent of €. Since

HwHZl(g) :/ w? dz—l—/ Vw|® dz,
Q\(QeNUe) Qe\(Qerlhe)

the same approach used in the proof of the estimate R; (¢) can be applied to derive

the estimate

/ w? do = o (e).
EIAN

Consequently, the following conclusion can be drawn:

2[2(6):/w2d0—/ w? (,0) dz +o(e).
€ |Em|SPO

Let f.(s) = w? (z, s 'G (ex)) \/1 + 52 |VG (ez)|*. By employing the mean value the-

orem, it follows that

215 () = / - w? (z,¢ G (ex)) \/1 + VG (ex)]? — w? (2,0) dz + o (e)
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_ / D= £0) do+o(@
_ /|< £ (se) da+o(e)

= 2/ w (z, sc€ "G (ex)) wy (z, 5.6 "G (ex)) € ' G (ex) \/1 + 52|VG (ex))?
lez|<po

+ of(e),

where 0 < s. < 1. Then, by applying the Dominated Convergence Theorem, the
following holds:

Ie) = E/Rnl w (2, e G (ex)) wy (2,56 (ex)) \/1 +82|VG (e2)*g (2) X{lexl<po)
+ o(e)

= e/Rnlw(x,O)wt(x,O)g(a:) dz +o(e).

By using an approach entirely analogous to that employed in obtaining the estimate

for I, (€), the following estimates for I, (¢) and I, (¢) are derived:
I(e) = e/Rnlw(:c,O) wy (2,0) g (z) dz + o ()
and
L@ =c [ T @0u @0yl dr+o(o).
Given that w is a solution of Problem (P)), it can be concluded that
Ra© = ¢ [ o)+ @0 - ur @,0] w@0)(@) doolo)
= €/Rn1 w? (2,0) g (r) dz +o/(e).

In order to complete the proof, it is necessary to establish the estimate for s.. First, it

is noted that

0 = Is/)e (sew) (scw)

2
= sf/ |Vl dz—irsf/ w2da—s‘€1/ wqu'-l-S:/ w"do
Q. o9 0. 99,

32_2/ wqda—sZ_Z/ wTdUZ/ |Vw|2dz—|—/ wdo. (17)
o s Q2 o
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On the other hand, since w is a solution of Problem (P,), it follows that

/Q |Vw|* dz + /aQ w?do = Ry (¢) + /R B wide — /]R B w'dx + 215 (€) . (18)

Furthermore, the following expressions can be written:

522/ wido = s72qlI, (€) + 522/ widz (19)
0. Rn—1
and
32_2/ w'de = 57?1l (€) + 32_2/ w'dx. (20)
20 Rn-1

By utilizing the identities (18)-(20), the identity (17) can be expressed in the following

manner:

(si72—1) / widz—(s/? = 1) / w'dz = Ry (€)+215 (€)+s.2rl, (€)—s?2ql, (¢)
Rn—1

Rnfl
(21)
Therefore, it can be concluded that
sITT=1+40 (e),
as was intended to be demonstrated. ]

Proof of Proposition E. Assuming zy = 0, the estimate provided by (6), with
ve (x,t) = w (e (x,t)), indicates that

Cq,T(Qe) < Iq, (scw)

T
— %6 / |Vw|2dz+/ |Vw|2dz—/ |Vw|2dz]
/R Q. R?
-
+ e / w2dx+/ w2d0—/ w2da:]
2 [ Jgn 0. Rn—1
-
_ e / (w*)qu—k/ (w+)qda—/ (w+)qu}
q [Jrn—1 00 Rn—1
Lo
-

| /R () e /6 () o /R (w+)*dx] |

The application of the estimates derived in Lemma 2.3.1, along with the fact that w
is a positive solution of Problem (P)), where 2 < r < g < 2,, with A = 1, leads to the
conclusion that

G (@) < e (B) + D Ry (0 100
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= ¢4 (R}) — e/Rn_l (W+O)| —w? (m,O)) g(z) dz+o(e).

Now, some ideas presented in the appendix of 3] are employed. First, it is observed

that
n—1
g(x) =(D*G(0)z,z) = > Na7,
i=1
where \;, i = 1,...,n — 1, are the eigenvalues of D?G (z), the Hessian matrix of G at

x. As in [20], the mean curvature of IQ at z = (x,t) is given by

H(z) = ! d A= ! AG (z),

whenever VG (z) = 0. Following the approach in [14], the restricted energy density of
w is defined as

|V (z,0)

E (w,z) 5

—w? (x,0).

Combining these facts, it can be deduced that

n—1
/ E(w,z)g(z) = E / Nzt B (w, x) dr.
Rn—1 i—1 Rn—1

In accordance with the definition of the mass moment of inertia, the moment of inertia
about the z;-axis, ¢+ = 1,...,n — 1, and the polar moment of inertia are defined,

respectively, by

n—1 n—1
I, = / 2F (w,r) dz, and Iy = Z I, = Z/ 2 F (w,r)dz.
Rt i=1 i=1 JR*!

Using the fact that E (w, x) is a symmetric function, it can be infered that I,, = ... =

I, ., which implies that Iy = (n — 1) I,,. Thus, it follows that

n—1
/ E(w,z)g(z) de = I, i
Rr—t i=1
1 n—1
- [On -1 ; Ai

Therefore, the following inequality holds:
Car () < cor (RY) — eyH (2) +0(e),

68



where

2
v = / (—va (;’ OF _ w? (x, 0)) |z|? da.
Rn—1

To conclude the proof of Proposition E, it must be shown that v is positive. The
procedure used here follows the one in [5, Lemma 8.2]. It is noted that integration by
parts and the fact that w is a solution of Problem (P)), where 2 < r < ¢ < 2,, with
A =1, indicate that
0= VwVe dz — / © (—wy) dx.
R7 Rr—1

By choosing ¢ (z,t) = |z|* wyef™™

—/ 2> w? dz = / VwV dz,
Rn—1 1

, the preceding identity implies that

where

2
Vu- Ve = <|x|2§<—'vg‘" ))w

+ (2w - Vaw + 0 [z w, (1Y, wV ) +w, (wi + twit))) e

and the notations w;” = (wy)" and w;} = (w;), are used in the weak sense. Conse-

quently, the following is valid:

Yuwl|?
= (' v —wf)\xf
Rnfl
> / 2 = <|V;U|>69twf+dz

- / 2wz - Vow + 6 |z w, (EV.w V! + w, (w; + twy))] el 4z,

Furthermore, by using integration by parts, it can be observed that

2 2 2
/ |I|2 e@tw?’ﬁ |vw| dz = / |$‘2 |VU}| dr _/ ’JI|2 |VU}| 2 <€0twt+) dz
i 62(: 2 Rn_l 2 1 2 at
2 |Vw| wit
/Rn - (| | ) dz.

Hence, it follows that

vo> / z|” Vw - Vw;“e‘%w:rdz + / 2w - Vyw dz
n

R” N{wy <0}
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+ / 2wz - Vw46 |z |” w, (tVowVw +w, (w + twf))] Mt 4
R

n
+

= / 2w - Vyw dz +0(0) as 0 — —oc.
Riﬂ{’wt<0}

In conclusion, given that = - V,w = pw, < 0, it can be deduced that v > 0. This
finding effectively concludes the proof of Proposition E. ]
Proof of Theorem G. By combining Propositions C and E, it can be concluded that
Theorem G holds. u

2.4 Estimates on the Decay of Solutions for Problem
(F)

This section is dedicated to the formal proof of Theorems H and I. The analysis
commences with the application of the Moser iteration method [26] to establish the

following result concerning the L estimate for solutions of Problem (F,).

Proposition F There exists a constant g > 0 and a positive constant C = C (2, q,n)

such that for all nonnegative mountain-pass solutions u. of Problem (P.) with € €

(0, €), it holds that

1 < sup u, (e_lz) <C.
Q

Proof. Initially, the first inequality is proven. Let z. be such that u. = maxgu. (z). By
applying Hopf’s lemma and using the assumption that u, is a nonnegative mountain-

pass solutions u, of Problem (F,), it follows that

0< Oue (z) = ul™ (20) — ul ™" (2e) — e (2e) .

an ‘
This implies that wu. (z.) > 1, thereby validating the first inequality. Now, the second
inequality will be established. The procedure applied in the proof is based on the same
ideas used in the proof of Proposition A, Chapter 1. The main steps are as follows.
For each k € N and 5 > 1, define ¢, = uui(ﬂ_l), where u;, = min {|u|, k}. The choice

of ¢, as a test function in (2) indicates that

/ ui(ﬁ_l) |Vu|2 dz = =2(6— 1)/ ui(ﬁ_l)_luVuVuk dz — / ui(ﬁ_l)@ﬂda
€ Qe Qe
_ / ui(ﬁ’l) (u*)T d0+/ ui(ﬁfl) (u+)q do-
Qe Qe
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This implies that
2PV | Vu? dz < / ui(ﬁ_l)uq do. (22)
Qe 99
By applying the trace embedding theorem, inequality (22), and Holder’s inequality
with exponents 2, /(¢ — 2) and 2,/(2, — ¢ + 2), the following holds:

N2 2/2.
[/ (uugff )) da} < / ’V uuk 1
0.

dz

< Cﬁ/ V1vul?dz
Qe

< cﬁQ/ uqui(ﬁfl)da
090

<

062/ w2 do
0Qe
2% —q+2

2 2 = e >
< ¢f / u” do / u2—a+2 do ,
09 09,

where ¢ = ¢ (n) is a constant. By choosing 5 = (2,—¢+2)/2 and a = (22,) /(2. — ¢ + 2),

it can be concluded that

[/mé (uu£_1>2* da] =

q—2

2% %
cf? {/ u? da] {/ u®? da}
0 0N
28
(

IN

< 652 ||u||L2*

)’
It follows from Fatou’s Lemma that

) 1/(28)
lullesiony < € (B2 Iul%200,)  Iulloscon, (23)

Given the choice of fy = 8 and [1av = 2,5y in (23), it follows that

281
el 2o on,y < (c@ 22 o)) e,

1
28q
< B (chullony) ™ (ﬁouuupm) " [l oo o

(1/(2B1)+1/(260)) ﬁ %
< (H“”Lz* ) 53 el oy -

Define 3,, = (2./a)™ By, m = 1,2,.... By applying an approach similar to the one

employed previously, with the assistance of an iteration process, it can be inferred that

HUHL(2*Bm)(8Q€)

Rol%)” g mi(3)” (2) mo(%)”

1
289 =
< (elullf?on,) ™ :

HuHLQ*(BQG) :
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It is noted that

1 /2,\ 2
E;(E> 72*—61’

since

2, 2.(2.—q+2)
e 1.
o 22, >

Consequently, by letting m — oo, it can be concluded that

ol oy < (lulfion,) ™ 87 (=) ol eeon, -

Therefore, u € L>(0€)). Now, let M > 0 be such that |lul|;«@q,, < M. For each

k € N, consider the set
Q= {z=(2,t) € Qe : |u(z)| > k}.

Given that u € L% (952,), it is observed that

00 > lu

> dz z/ k> dz = k> Q5]
Qg Q

i)
which implies that f has finite Lebesgue measure. Define the function 1 as follows:
u(z) —k, if z € Q)

0, if 2eQ —Q.

It is observed that V¢ = Vu in Q. Furthermore, given the choice of £ > M, it can
be deduced that ¥ = 0 in 9€).. The choice of 1 as a test function implies that

VuVi dz + /Q wp do = /8Q (@) = (@) v do =0,

Qe 0

from which it can be inferred that
/ |Vul>dz = 0.
&
Thus, w is constant in Qf or [Q25| = 0. Therefore, it can be concluded that u, € L> (€).

Remark 2.4.1 An important conclusion can be drawn from Proposition F. Let u = ¢
be an arbitrary constant positive solution to Problem (P.). It is observed that =% —

=2 =1 on the boundary 0Q.. Through the application of fundamental mathematical
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reasoning, it can be inferred that ¢ > 1. Furthermore, referencing the initial part of the

proof of Proposition F, it can be inferred that
Ue (z0) > 1 and — u??(z) —ul? > -2

where 2 < r < q < 2,. This leads to the conclusion that u. > c. In summary, all non-

negative mountain-pass solutions u. of Problem (P.) with € € (0,¢y) are nonconstant.

The following lemma establishes that u, exhibits uniform decay at infinity. For instruc-
tional purposes, the notation defined next will be introduced:

1 1 1 r 1
Ja (u):—/ |Vu|2dz+—/ u? da+—/ (uh) da——/ (u)?do,
2 /4 2 Joa T Joa q Joa

where A C R" is an open set.

Lemma 2.4.1 For every 8 > 0, there exists a constant R > 0 such that
ue (2) < whenever |z — 2| > R,
where z¢ denotes any mazimum point of u. in Q..

Proof. Arguing by contradiction, it is assumed that for some 5 > 0, there exist

sequences €, — 0 and 2% € Q_ such that

P 2% = o0 and  u, (2F) > B. (24)

E
In this case, it can be asserted that

2¢4r (R}) < liminf Ja., (ue,) - (25)
However, this leads to a contradiction, as Proposition E implies that

limsup Jo,, (ue,) < cqr (R}).

Thus, to complete the proof, it is sufficient to verify the validity of inequality (25).
Given that (u,) is uniformly bounded in C** (Q_ek), by the application of the Arzela-

Ascoli theorem, it can be assumed, up to a subsequence that
U, (2% +2) = u(z)
uniformly over compacts subsets of R’}. Furthermore, u satisfies the problem

Au=0 in R

Opu+u=ul"t—u" on R".
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Since u (0) = limy_ u, (%) > f, it follows that u > 0, and the maximum principle
ensures that « > 0. Considering that u is a nontrivial solution of (26), it can be

concluded that
cor (R}) < Jrr (u) = Jpro)nry (0) + Jpg0)nrn (1) -

By applying the following identities

}%i_rgo I, 0)rrr (u) =0 and ]}1_{20 Ipory (Ue,) = Ipp)nrn (1),

and given 6 > 0, for sufficiently large values of R, the subsequent estimate is valid:

Cqr (Rﬁ) —J.

lim Jpp(zon)ne., (Ue,) > 5

k—o0

Similarly, it can be deduced that

. Cq,r (Ri)
khfolo JBR(zk>ﬁQEk (ue,) > 5 J.

Consider R > 0 and a smooth cut-off function gp’fz such that 0 < @’f% <1 and ‘Vgp’f%‘ <

C, where C is independent of R and k, and ¢ satisfies the following conditions:
gplf% =0 on Bg(z*)NBgr_ (zk)
and
oh=1 on R" \ (Bg (2*) U Bg (zk)) :

By choosing w,, = p%u,, as a test function in the equation Jéek (ue,,) = 0, and defining

the set
A ={z€Qy: R—1<|z=2%<R or R—1<|z—2" <R},

it follows that

!

0 = JQek (u€k> We,
- JﬂekﬂA’lg () we, + JQek\(BR(zek)UBR(Zk)) (Uey ) we,

= JQEkmAg (Uey,) We, + 2JQEk\(BR(zEk)UBR(zk)) (Ue,) — 2JQ€k\(BR(z€k)UBR(zk)) (Uey,)

/

+ J

Qek\(BR(zek)UBR(zk)) (ufk ) w€k .
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By employing the definitions of J4 and JA, the terms outlined previously may be

expressed in the following manner:

/

JQE NAY (UE’C) We, = V’U,Ekv ((pl;%UEk) dz + Sf?lf«zuzk do
k' MR o Ak
e MR

00, NAL
k k. .
— / ) ppuld do+/ _ PRUg, do;
09, NAK, 0, NAK,

2

_2 € € -
Jﬂek\<BR(Z #)UBR(2*)) (e, T /696k\(BR(z5k)UBR<Zk)) *

2
2 .
9 J o0, \(Br(zk)UBR(2*))

’

J

Qe \(Br(z%)UBR(2+)) (te,) we, =

/agek\(BR(zek)usR(zk)) *
+ -
99, \(Br(2k)UBR(2¥))

Consequently, considering these facts, the following is valid:

0 = Eo +2Jo\(Bar)uBa(+)) (Uer)

2 2 .
+ — ugkdo—i— 1—— uekdU
q 096, \(Br(z°F)UBR(2)) 7"/ J o9 \(Br(z%)UBR(2*))

< F - k., q d 9 6 e
B * /8Q6kﬂAII“% (pRuek g + Jﬂek\(BR(z k)UBR(zk)) (U k)

+ Q(T_Q)/ u? do,
rq 90, \(Br(zk)UBR(2*))
where
Fo = [ VuV(hu)dr [ ko [ o
Qe NAY, 90, NAY, e, NAY,

k.4
- / . PRUC, do.
99, NAY

Given that 2 < r < ¢, the following statement holds:

O S Eek + 2J Ek\(BR(ZEk)UBR(Zk)) (u€k) .

Furthermore, it can be observed that ENEk — 0. Thus, it follows that

JQ€1€\<BR(Z%)UBR(Z’€)) (Uek) Z —9.
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Conversely,

Jﬂek (ug,) = JQekﬂBR(zEk) (ue,) + JQkaBR(zk) (ue,) + JQ%\(BR(zEk)UBR<zk)) (ue,)
> 2eq, (Ri) -9,

which implies estimate (25). Therefore, the proof is complete. ]
In order to prove Theorem H, it is necessary to introduce a function U, which

will be defined as follows:
Uz) = (1+])*™
It can be observed that

—AU =n (n —2) U"t+2/(n=2) in R™.

Proof of Theorem H. Consider the function W, (z) = %GT(ZZ)) in Q.. The aim of the

proof is to show that W, (z) is uniformly bounded, meaning that for € > 0, there exists

a constant M > 0 such that
ue (2)] < MU (2),

and this leads to the conclusion that

M
U (2) < ———.
(1+1]2) *
Initially, it can be observed that
oW, 1 Ou, 1 oU
- _We )
9 ()= U(z) 0z Ul(z)0x (2)
and
o U(2) 5t — 958
02} () = U2 (z)
U (2) |5EWe (2) + §25% | - W (=) &
- U2 (2)
This implies that
ou 8U 1 1 oU oW,
—AW, = - — W
(2) — 82'% U(z) () U(z) &< Z 0z; 0z;
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Given that

; 8zz (2)

8u68U 1 oU oW, W (2) i
— 821 ’

it follows that

1 ”aUaW 1 1 <= OU W,
U 2 0m 05 0@ O T 20 0m

—AW, =

which can be rewritten as

—AW, — Zb az, a(z) W, (z) =0,

where
2 oU 2(n—2)z .
bi(z) = — =———"— i=1,2,...,n
(=) U(z) 0z 1+ |z
and
A -2
a(z) = v nn=2) z € €.
U (2) (1+ || )
Furthermore, it is noted that
oW, L L w.you
e = e\Z
! Uz) " U(2) !
1

- TG R (ﬁ&ﬂ) We(z),

which can be written as
OWe+ g1 (2) We (2) = g2 (2) WETH 4 g5 (2) W1 = 0,

where

g (z)=1+ ﬁ@na g2 (2) =UT2%(2) and  g3(2) =U""%(2).

Thus, W, is a solution of the problem

—AW, — Zb 821 a(z)We.=0 in Q.

O We+ g1 (2) We — g2 (2) Wit tgs(2) Wit =0 on 0€,,

7



where

g3(2) =U""2(2).

It can be observed that there exists a constant C' > 0, independent of ¢, such that

||a’||LOO(QE)7 ||bi||L°0(Q€)7 ||gj||L00(Qe) <C, j=123,

for all © = 1,2,...,n. Suppose, for the sake of contradiction, that there exists a
sequence z. € ). such that W, (z.) — oo. In accordance with the weak maximum
principle, it can be assumed that z. € 09, for all € > 0. Define M, = W, (z.). Two
cases need to be considered:

Case 1 (z) is bounded. In this scenario, consider

T WE € M ~ _ 2
Wel) = (ZAZ D eQi=M @ -z), o200
Since HWe @) < C, (independent of €), it can be derived from a regularity result
Lo (Qe

established by Lieberman [23] that

i

for some 0 < 8 < 1 and C being a positive constant independent of €. Straightening

CLA (%) =€, (28)

the boundary in a neighborhood of z, it can be shown that Q. — R? as € — 0. Using
(28) and the Arzela-Ascoli theorem, it follows that there exists a nonnegative function

W e CgLA/2 (M) such that

HmW, (2) =W (2) >0 and W (0)=1. (29)

Given that the sequence (z.) is bounded, it can be assumed that lim._z. = 0 € 9.
Thus, it can be deduced that the following statements hold on any compact subset of
R

lima(z.+ M*2) = a(0), li_{%b,; (ze + M) =10;(0), i=1,2,....n (30)

e—0
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and
lin%gj (ze + MZ2) =g;(0), j=1,2,3. (31)
e—

By applying (27)-(31)), it can be verified that the limit function W, which is nonneg-

ative, satisfies the following limit problem
AW —n(n—2)W =0 in R"
Wil =0 on R" 1.
This leads to a contradiction with (29).

Case 2. There exists a sequence (z,) such that |z, | — oco. In this scenario,

consider

We € A
Ve, (2) = W’ 2eQ, =0, — 2,

€k

where M,, = W,, (z,) = —% (Zek). It can be inferred that M, — oo and ||vek||Loo(§~2 ) <
k

U(zek,)

1. Furthermore, it is noted that v, satisfies the problem

v, ~

—Av,, — Z bi (2e, + 2) 7, +a(zg +2)ve, (2)=0, in Q

=1

Ve, + 91 (e, + 2) Ve, (2) — [ul? (2 + 2) —ul * (2, +2)] v, (2) =0,  on Q. .

As a result of ufk_ % (2., + 2) — 0 (where 8 = r or ¢), an analogous approach to the one

previously used leads to the conclusion that

v, — v € CL2 (R%), kh—{gove’“ (2) =v(2), v (0) =1,
and
—Av =0 in R
Opv = —v on R"!

Conversely, by applying Hopt’s lemma at zy = 0, it can be concluded that
0<0p=—-v<0,

which leads to a contradiction. Therefore, the proof is complete. [ ]
To conclude the section, the proof of Theorem I is presented. An auxiliary func-

tion v is used, and its definition is given by:

v(z,t) = @o (z)1ho (1),
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where

(n—2)/2
o (z) := e~ and g (t) == !
1+¢2 ’

with a being a positive constant that will be chosen later.

Proof of Theorem 1. Initially, it can be verified that

g—;(x,t) _ <—a|”;—i|> v(z,t), %(m) — ((211’275) v (1),

92v (—a) 72 ) 1?2 }
a 9 7t - + - - 7t )
and
0*v (2 —n) t2

where s =1,...,n— 1 and t € R. Thus, it can be concluded that
~Av+c(r,t)v=0, zcR"'\{0}, teR,
where

-2
(n—2) +a+ S .2
] (1+¢2)

c(x,t) = —«

Next, consider V. = u./v. It is observed that

GVE_lﬁue_l@v OVe  10u, 1@
or; v ox; v Ot

005 o v Ve

PV. 10%u  10u dv  10% 1000V, 1(‘9”)2‘/

z? v Or?  v20r;0r; wvor? ° wdxr; 0x; w2 \Ox;

and

0%V, 10%, 10udv 10%  10wdV, 1 (az;)?V

O v Or ot or vor < vot ot 2 \dt

Consequently, the following statement holds:

BN RIS V—lvi oy’
c v . —cl(x, c =3 Ue + VU UQ&i:l -]
Given that

1 . f 1
—Vu, - Vo = Vv-VVe + V.|V,
v v v

80



it can be concluded by (32) that

_A‘/G_ZW_C(xat)‘/ezov 96\{0}’
that is,
n—1
x; OVe  2(n—2)toV. B
_A‘/E‘FQOCZZlma—%—FWE—C(x,t)V;—O; Qe\{o}

Define the set
Ac={(z,t) eR} : [z >1, t >0} NQ.
It is claimed that there exists C' > 0 independent of € such that
IVell g < © (33)

Assume, for the sake of contradiction, that the inequality (33) is not valid. It means
that there exists y. = (x,t.) € A, such that V. (y.) — oco. From Theorem H, it can be
deduced that |y.| — +oo. Let e = (n1(€) ..., n1 (€) ,m.) € R™ be the unit outward
normal to 092 at (z,t.). As a result of applying Hopf’s lemma, it is concluded that
Oy Ve (ye) > 0. Conversely, for sufficiently small positive €, the following statement
holds:
1 U
8776‘/5 (ye) = - [Vue "MNe — — (VU : ne)] < O, (34)
v v

which leads to a contradiction. Therefore, to conclude the proof of the theorem, it

suffices to verify that the inequality (34) holds. It is noted that

O Vely) = =[G == (Vv-n)]

_ ,_ Ti e n — 2)t,
[(uz 1 _ U, t— ug) + U (Oéz |$6’7h‘ (6) + %Uz;)]

=1

S |l= S| =

t
< Voluwi?-1 —2)——n, |.

Since 2 is strictly convex, it follows that . — oo as € — 0. Thus, it is possible to
select a sufficiently small o > 0 such that

_ te 1

which completes the proof of inequality (34). Therefore, the proof of Theorem I is

complete. [
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2.5 Lower Bound Estimate

This section is devoted to completing the proof of Theorem J. For this pur-
pose, a critical estimate concerning the minimax level ¢,, (£2) will be established in
Proposition G, presented below. The discussion commences with the introduction of
appropriate notation.

For any sequence €, — 0, consider uy = u,, the solution of (P.,) as given in
Proposition C. Let z; := 2z, € 0€), be chosen such that

ug (2x) = max uy (2).
z €k

Given that uy is harmonic in €2, , the maximum principle implies that the maximum
of u, in Q, must occur on 9Q,. With these notations, the following estimate can be

derived.
Proposition G There exists ko such that, for all k > ko, the following holds

Car (Qe) > Cor (]Rﬁ) — exYH (erzr) + o (ex) - (38)

Proof. Let the sequence y, = €,z;. Based on the considerations presented at the
beginning of the section, it can be assumed, up to a subsequence, that there exists
z € 0Q such that y, — Zz. Define uy, (y) = ue, (y+ k), y € Qe \ {yx}. Following the
approach in [3| (see also [15]), after applying suitable rotation and translation, it can
be assumed that Z = 0 and {2 C R} can be described in a fixed neighborhood U of 7 as
the set {(x,t) : t > Gy (x)} with Gy smooth, G, (0) = 0, and VG (0) = 0. Moreover,
G}, can be chosen such that it converges in C?

loc

and U, = e;lu , and define

-topology to G, the corresponding
parametrization of 02 at Z. Let Q) = Q,,
Vi i={(z,t) e R" : |epx| < po and 0 < et <t} C Uy,

where ¢, = minjy—,, G () > 0. In view of the fact that

Car () = Ia, (up) > Ia, (sug),

for all s > 0, and considering

1 1 1 . 1
ka (uk) = 5/ |Vuk\2 dz + 5 ‘Uk‘Z do + ; |uk| do — a |uk\q do,
ViNQ Ik Ik Ik
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where I'y =V, N 0y, it can be observed that

Lyona, (sur) = I, (sur) — Ion\ @) (Surk) < cgr () — I @y (SUr) -

By employing the decay of wuy, it can be concluded that
Cqr () = Tyyna, (sug) + o (ex)
for all s > 0. Next, let @ (z,t) denote the extension of uy to Vg, defined as follows:
g (x,t) = ug (x,t) if ext > Gy (),
and

U (z,t) = w (2,6, Gy (ex2)) + (G (exx) — ext) [uf (z, Gy, (exz)) — up (2, Gy (42))]

+ (G (exz) — et) [ug, (x, Gy, (exx)) — ug (x, G (ex))],

if €4t < Gg (exx). By the same reasoning as before, applying the decay of wy, the
following inequality holds:

Cq,r (Qk) > [Vk (Sﬂk> - IVk\(VkﬂQk) (Sﬂk) to (k> .

Passing to a subsequence, it can be assumed that u;, — w in H!, where w is a least-
energy solution to Problem (P)), where 2 < r < ¢ < 2,, with A = 1. Let s > 0 be

such that

Ivk (Skﬂk) = Sll]g ]Vk (Sﬂk) .
5>

By employing the definition of supremum and the definition of Iy, , it follows that

2/2 — sl 1/q—1/2
(BRm =Y [l doz [t ao
se/2=sp/r+1/r—=1/2) Jov, OV

which leads to the conclusion that s, — 1. Additionally, it is observed that Iy, (siux) >

cqr (R%) + 0 (k). From these facts, it follows that
Cq,?“ (Qk) Z Cq,r (Ri) — R1 (k)) + R2 (k) + o (Ek) s (39)
where

1
Ry (k) := —/ \Va,|* dz,
2 Vi \(VeNQ)
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and

1 1 1
RQ (k‘) = - |Skﬂk|qd0' — ; |Skﬂk|r do — 5 |Skﬂk|2d0'.
Ty T I

Thus, the same approach as in the proof of Lemma 2.3.1 can be followed to obtain the

estimates

R = e [ Vo)) dotoa).

Rek)=a [ wbn0)g() dotofa).
Rnfl
which, together with (39), implies that estimate (38) holds. Hence, it follows that

[M —w} (,0)| g(z) dz +o(e),

Car () > g (Ri) - 6k/

Rn—1

2
and by proceeding as in the proof of Proposition E, the following inequality holds:
Cor () > cqr (RL) — exvH (er2,) + 0 (er)

which completes the proof. [ ]
To conclude the section, the proof of Theorem J is presented.

Proof of Theorem J. The propositions E and G establish that
< ny
Car () < cqr (RY) — €y gé%?l (2)+o(e), as e—0
and
Cor (e,) > cor (R’fr) —exYH (exzi) +o(er), as € — 0.

Furthermore, in Proposition G, it was shown that there exists Z € 02 such that
Yr = €xzr — 2. 1t is stated that H (Z) > H (2), for all z € 09Q. In fact, since v > 0, the

following holds:

Cqr (€26)

VAN

cor (RY) — €y 2%%?2{% (2) +o(e)

cor (RY}) — evH (2) + 0 (€)
Car () + eYH(Z) —evH (2) +o(e),

IN

IN

which implies that H (Z) > H (z), for all z € 9Q. Therefore, it can be concluded that
H (erzr) — rréaX”H (2),

o0

which, combined with propositions E and G, completes the proof of Theorem J. [
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2.6 Nonexistence Result

This section is dedicated to proving Theorem K. Let u denote the average of u

over 02, which is defined by the expression:

1

— u do.
109 Jaq

u =

The following Poincaré inequality can be established.

Lemma 2.6.1 There exists a constant C', depending only on n, such that

lu =l 290y < ClIVUll 2y, Yu€ H ().
Proof. Define the function v = v — w. It can be noted that
/ v do = / w do — 500 = 700 — 99 = 0.
o0 o0
By applying the classical Poincaré inequality, the following inequality holds:
[0l r20) < C IVl 2y -

Furthermore, since v = u — w, it follows that Vv = Vu. Hence, by employing the

Sobolev trace inequality, it can be concluded that
[ =l 1290) = 1Vl 12(00) < Cllvllm@) < ClIVullp2qy),

for all uw € H' (Q). This completes the proof. ]
Using the previous lemma, the proof of Theorem K is established.

Proof of Theorem K. The function u is decomposed as u = u + v, where

1
109 Joq

u =

v do and / v do = 0.
a0
It can be observed that
1
w—ut = (s — 1) [/ (T + tv)* > dt] v, (40)
0

where s > 2. By choosing ¢ as a test function in (2) and applying (40), the following
inequality holds:

1
62/ Vol dz+/ v’ dag)\(q—l)/ [/ (T + tv)"? dt} v? do.
Q o0 o0 0
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Furthermore, by Proposition F, it follows that

62/ Vol szC/ v? do,
0 o0

which, in combination with Lemma 2.6.1, implies that

62/ IVol* dz < C/ Vol® dz.
0 0

Thus, for sufficiently large €, v must be constant. Consequently,

0:/ v do = |09 v.
)

Therefore, v = 0, which concludes the proof of Theorem K.
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