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Abstract

This thesis investigates the existence of a positive harmonic function uϵ defined in

the rescaled domain Ωϵ = ϵ−1Ω, subject to a nonlinear boundary condition, where ϵ > 0,

and Ω is a bounded domain in Rn, with n ≥ 3. In the case where ϵ→ 0, corresponding

to expanding domains, it is established that there exists a constant ϵ0 > 0 such that

for all ϵ ∈ (0, ϵ0), the principal problem admits a nonconstant, positive least energy

solution uϵ. Moreover, it is demonstrated that uϵ exhibits a power-type decay and an

exponential decay in the first n− 1 variables.

Furthermore, in the case where ϵ→ 0, it is shown that the points where uϵ attains

its maximum concentrate around a point of maximum for the mean curvature of ∂Ω.

In contrast, in the case where ϵ → ∞, corresponding to contracting domains, it is

proven that there exists a constant ϵ∗ > 0 such that for each ϵ > ϵ∗, the unique positive

solution uϵ of the principal problem is constant.

To conduct the analysis developed in Chapter 2, it is essential to investigate the

existence of a ground state solution for the limit problem. Chapter 1 is dedicated to this

study, addressing the problem of the existence and nonexistence of harmonic functions

in the upper half-space, subject to an indefinite nonlinear boundary condition. The

existence of a ground state solution is established, which is radially symmetric and

exhibits exponential decay in the first n− 1 variables.

Furthermore, in Chapter 1, an investigation is carried out on the existence and

nonexistence of weak solutions in alternative cases that are not directly related to the

problem considered in Chapter 2. In one such case, variational minimization techniques

are employed to demonstrate the existence of a nontrivial weak solution. Additionally,

a theorem is presented that characterizes the nonexistence of solutions under certain

conditions.
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Resumo

Esta tese investiga a existência de uma função harmônica positiva uϵ definida no

domínio Ωϵ = ϵ−1Ω, sujeita a uma condição de contorno não linear, onde ϵ > 0 e Ω é

um domínio limitado em Rn. No caso em que ϵ → 0, correspondente a domínios em

expansão, estabelece-se que existe uma constante ϵ0 > 0 tal que, para todo ϵ ∈ (0, ϵ0),

o problema principal admite uma solução de menor energia positiva não constante uϵ.

Além disso, demonstra-se que uϵ exibe decaimento do tipo potência, e um decaimento

exponential nas primeiras n− 1 variáveis.

Além disso, no caso onde ϵ → 0, mostra-se que os pontos onde uϵ atinge seu

máximo concentram-se em torno de um ponto de máximo para a curvatura média de

∂Ω. No caso em que ϵ → ∞, correspondendo a domínios que se contraem, prova-se

que existe ϵ∗ > 0 tal que para cada ϵ > ϵ∗ a única solução positiva uϵ do problema

principal é constante.

Para conduzir a análise desenvolvida no Capítulo 2, é essencial investigar a ex-

istência de uma solução do estado fundamental para o problema limite. O Capítulo 1 é

dedicado a esse estudo, abordando o problema da existência e inexistência de funções

harmônicas no semi-espaço superior, sujeitas a uma condição de contorno não linear e

indefinida. A existência de uma solução do estado fundamental é estabelecida, sendo

esta radialmente simétrica e exibindo decaimento exponencial nas primeiras n− 1 var-

iáveis.

Além disso, no Capítulo 1, é realizada uma investigação sobre a existência e inex-

istência de soluções fracas em casos alternativos que não estão diretamente relacionados

ao problema considerado no Capítulo 2. Em um desses casos, técnicas de minimização

variacional são empregadas para demonstrar a existência de uma solução fraca não

trivial. Adicionalmente, é apresentado um teorema que caracteriza a inexistência de

soluções sob determinadas condições.
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Introduction

Let Ω be a bounded domain in Rn, where n ≥ 3, with a smooth boundary ∂Ω,

and let ν denote the unit outward normal to ∂Ω. Consider the following singularly

perturbed nonlinear boundary value problem: ∆u = 0 in Ω

ϵ∂νu+ u = |u|q−2 u− |u|r−2 u on ∂Ω,
(SP )

where 2 < r < q < 2∗ = 2(n− 1)/(n− 2), and ϵ > 0 is a parameter. The primary ob-

jective of the present work is to investigate the existence of a nonconstant least-energy

solution to Problem (SP ), as well as the asymptotic behavior of such a solution. It can

be proved through a scaling argument that there exists a one-to-one correspondence

between the solutions of Problem (SP ) and the solutions of the following problem: ∆u = 0 in Ωϵ

∂νu+ u = |u|q−2 u− |u|r−2 u on ∂Ωϵ,
(Pϵ)

where 2 < r < q < 2∗,

Ωϵ = ϵ−1Ω =
{
ϵ−1z : z = (x, t) ∈ Ω

}
,

and ϵ > 0 is a parameter. Given the smoothness of the domain Ωϵ and the regular

character of the boundary nonlinearity, the classical results in elliptic regularity theory

(see [20, Theorems 6.30 and 6.31]) guarantee that every weak solution to Problem (Pϵ)

belongs to C∞ (Ωϵ

)
. Furthermore, it is asserted that these solutions are strictly one-

signed. In fact, suppose, for the sake of contradiction, that u is a nontrivial solution to

Problem (Pϵ) that changes sign in Ωϵ; that is, there exist points x1, x2 ∈ Ωϵ such that

u (x1) < 0 and u (x2) > 0. By continuity, there exists x0 ∈ Ωϵ such that u (x0) = 0.

Since u is harmonic in Ωϵ, the strong maximum principle implies that u cannot attain

1



a nontrivial maximum or minimum in the interior unless it is constant. Therefore, the

extremal values of u must be attained on the boundary ∂Ωϵ.

Now consider the boundary condition:

∂νu+ u = |u|q−2 u− |u|r−2 u =: f (u) on ∂Ωϵ,

where 2 < r < q < 2∗. For u > 0, the function f (u) = uq−1 − ur−1 satisfies f (u) < 0

for 0 < u < 1 and f (u) > 0 for u > 1. Consequently, if u attains a sufficiently large

positive maximum on the boundary, then f (u) − u > 0, implying ∂νu > 0. However,

this contradicts the classical Hopf boundary point lemma, which asserts that ∂νu < 0

at a boundary maximum. A similar contradiction arises if u attains a sufficiently large

negative minimum on the boundary.

Hence, a sign-changing solution with large boundary extrema cannot satisfy the

boundary condition consistently with the Hopf lemma. This contradiction implies that

any nontrivial solution to Problem (Pϵ) must be strictly one-signed in Ωϵ. Therefore,

it is assumed throughout this work that the solutions of Problem (Pϵ) are positive in

Ωϵ.

It can be verified that for every ϵ > 0, Problem (Pϵ) admits a unique positive

constant solution. To establish the existence of a nonconstant positive solution, this

work relies on the study of the associated limit problem, namely, the problem ∆u = 0 in Rn
+

∂ηu+ u = λ |u|q−2 u− |u|r−2 u on ∂Rn
+,

(Pλ)

where Rn
+ := {z = (x, t) ∈ Rn : x ∈ Rn−1, t > 0}, with n ≥ 3, denotes the upper-half

space, 2 < r < q < 2∗, and η denoting the unit outward normal to the boundary

∂Rn
+ = Rn−1. It is observed that, by selecting a point on the boundary ∂Ωϵ and taking

the limit as ϵ → 0, the domain approaches a half-space, which, after an appropriate

rotation and translation, may be assumed to be Rn
+.

In Chapter 1, it is shown that for all λ > 0 and 2 < r < q < 2∗, Problem (Pλ)

admits a ground state solution uλ, which is proven to be radially symmetric with respect

to the first n−1 variables through the use of the classical moving plane method [6,7,32].

Additionally, uλ and its derivatives exhibit exponential decay with respect to the first

n− 1 variables. These properties are employed to derive an upper bound estimate for

2



the minimax level cq,r (Ωϵ), which enables the proof that the mountain-pass solution uϵ

of (Pϵ) is a positive, nonconstant least energy solution of (Pϵ), for sufficiently small ϵ.

Furthermore, it is shown that uϵ exhibits power-type decay and exponential decay in the

first n−1 variables. To conclude the results in the case ϵ→ 0, it is established that the

point at which uϵ attains its maximum is located on the boundary ∂Ω, concentrating

at the point of maximal mean curvature H (z) on ∂Ω.

It is also noteworthy that in Chapter 1, the analysis of the existence and nonex-

istence of solutions to Problem (Pλ) is conducted, considering the interplay between

the exponents q and r and the values of λ. As demonstrated in Section 1.2, in the

case where λ > 0 and 2 < r < q < 2∗, a ground state solution is established through

the application of a min-max argument. In Section 1.3, for the case where λ > 0 and

2 < q < r < 2∗, the existence of a nontrivial weak solution is ensured by employing

a classical variational approach. In Section 1.4, a Pohozaev-type identity, along with

an elementary mathematical argument, is utilized to investigate the nonexistence of

solutions in some instances involving q and r.

The thesis concludes with the analysis of the case where ϵ is large, corresponding

to contracting domains. In this setting, it is demonstrated that there exists ϵ∗ > 0 such

that Problem (Pϵ) admits only a positive constant solution for all ϵ > ϵ∗.

Motivations

An extensive body of literature exists in the field of partial differential equations

concerning Neumann problems associated with second-order semilinear elliptic equa-

tions. In the present context, those who have made significant contributions to the

development of the present work are highlighted. In the works [24, 29], the authors

examined the following problem:d∆u− u+ up = 0 in Ω

∂νu = 0 on ∂Ω,
(P )

where d is a positive constant, and p satisfies 1 < p < n/(n − 2), where n ≥ 3, with

the understanding that 1 < p < +∞ if n = 2. This problem may be regarded as a

model or a reduced version of the activator-inhibitor system proposed by Gierer and

Meinhardt [19] as a model of biological pattern formation. Moreover, this problem is

3



related to the simplified model used by Keller and Segel in the study of the chemotactic

interaction of amoebas, as described in [22].

From a mathematical perspective, in [29], the authors derived a priori estimates

for positive solutions to Problem (P ) as functions of d and showed that if d is sufficiently

large, no nonconstant positive solution exists for (P ). In [27, 28], the same authors

applied the mountain pass lemma [8] to establish the existence of a least energy solution

ud for (P ). A detailed description of the shape of ud was provided, and it was proven

that when d is sufficiently small, ud exhibits only a local maximum over Ω. Moreover, it

was shown that the maximum is achieved at exactly one point Pd on the boundary (ud

exhibits a "point-condensation phenomena" as d→ 0). Additionally, it was established

that H (Pd), the mean curvature of ∂Ω at Pd, approaches the maximum of H (P )

over ∂Ω as d → 0. In [14], Del Pino and Felmer showed that the results in [27, 28]

hold without some delicate technical nondegeneracy-uniqueness assumptions, thereby

significantly broadening the class of nonlinearities under consideration. The following

limit problem was utilized throughout the work:
∆w − w + f (w) = 0 in Rn

+

w > 0 in Rn
+, w (0) = max∂Rn

+
w,

lim|x|→∞w (x) = 0, ∂ηu = 0 on ∂Rn
+.

(Q)

Together with the cited works previously, many others have demonstrated the signifi-

cance of considering the knowledge of a ground state solution of the limiting problem

when analyzing the existence of least energy solutions (see for example [5, 9, 15]).

Concerning problems involving more general boundary terms, it can be high-

lighted that the model studied in 1902 by Steklov in [33] is particularly relevant for

Mathematical Physics, namely, the model

∆v = 0, in S, ∂ηv = hv + f on ∂S, (S)

where S is a convex surface, f is a given function, continuous on ∂S, and h is a

parameter. This problem presents a linear boundary term. Consider a more general

situation. As described in [38, Example 5], the temperature u(x, t) of a body at position

x and time t satisfies the heat conduction equation

c (x) ρ (x)ut − div (k (x, u)∇u) = F (x, t) ,

4



where c(x) and ρ(x) denote the specific heat and density of the substance, respectively,

k(x, u) is the internal thermal conductivity, and F (x, t) is the heat source density. In

the case of a homogeneous and isotropic material, the coefficients c(x), ρ(x), and k(x, u)

reduce to constants, so the equation simplifies to

ut = (k/cρ)∆u+ F (x, t)/cρ.

When a heat flux q is specified on the boundary ∂Ω, the corresponding boundary

condition is given by Fourier’s law:

∂ηu = q/k,

where η denotes the outward unit normal vector. On the other hand, Newton’s law

of cooling models the heat exchange between the body and the surrounding environ-

ment. According to this law, the heat flux through the boundary is proportional to the

difference between the external and internal temperatures:

q = α(u1 − u),

where α > 0 is the heat transfer coefficient, and u1 represents the temperature of the

surrounding medium.

Equating the expressions for the heat flux from Fourier’s and Newton’s laws yields

the nonlinear Robin boundary condition:

(k/α)∂ηu+ u = u1 on ∂Ω.

Consider the external temperature u1 = |u|q−2 u− |u|r−2 u on ∂Ω, where 2 < r <

q < 2∗. This leads to the steady-state boundary value problem ∆u = 0 in Ω,

(k/α)∂ηu+ u = |u|q−2 u− |u|r−2 u on ∂Ω,

where ϵ = k/α is a small parameter representing the ratio between internal and external

thermal conductivities.

As ϵ → 0, the problem exhibits a concentration phenomenon. From a physical

perspective, this regime corresponds to highly efficient heat exchange with the sur-

rounding medium. Mathematically, it leads to solutions whose temperature profile

5



concentrates around a unique point on the boundary ∂Ω, which, as will be seen later

(see Theorem J), corresponds to the point where the mean curvature of the boundary

attains its maximum.
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Figure 1: The figure illustrates the concentration phenomenon associated with the
physical problem under consideration. As the parameter ϵ → 0, the rescaled domain
Ωϵ expands. The points marked with a red X indicate the locations on the boundary
∂Ωϵ where the temperature uϵ attains its maximum value. In the limit as ϵ → 0, the
heat becomes concentrated near a single point on the boundary ∂Ω. It will be shown
later (see Theorem J) that this concentration occurs precisely at the point where the
mean curvature reaches its maximum on the ∂Ω.

Continuing to consider the works that address a singularly perturbed problem

involving a nonlinear boundary condition, the work of Del Pino and Flores [15] is par-

ticularly notable. In this work, the authors studied the relationship between the ex-

tremals of the best constant for the Sobolev trace embedding of H1 (Ω) into Lp+1 (∂Ω),
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where 1 < p < n/(n− 2), for n ≥ 3, and the solutions of the Euler-Lagrange equation∆uλ − uλ = 0 in Ωλ

∂νuλ = |uλ|p−1 uλ on ∂Ωλ,
(DF)

where

Ωλ = λΩ = {λx : x ∈ Ω} ,

and λ→ ∞. It is mentioned that, after applying a suitable scaling argument, Problem

(DF) transforms into ϵ
2∆u− u = 0 in Ω

∂νu = up on ∂Ω,

where ϵ = 1/λ. One of the main results of the work states that the extremals uλ form

a single bump at the boundary, whose shape is asymptotically that of an extremal for

the half-space embedding. This bump is centered (in the Ω-coordinate) around a point

of maximum mean curvature of ∂Ω.

The class of problems described by (Pλ) represents a special case of the broader

model:

∆u = 0, in Ω, ∂νu = g(x, u) on ∂Ω, (S)

where Ω ⊂ Rn is an open set. This model has been extensively studied in the litera-

ture. Steklov’s work [33] focused on a linear perturbation g(x, u). Since then, several

types of perturbations have been considered [11, 12, 30, 31], some of which are related

to Physical, Electrochemistry, Geometrical, and other areas of study [33,39,40]. From

a mathematical standpoint, Cabré and Solà-Morales [11] considered the perturbation

g(x, u) = f(u), where f is a C1,α function defined on the half-space Rn
+. Their work

investigates the existence, uniqueness, symmetry, variational properties, and asymp-

totic behavior of a class of solutions to Problem (S), commonly referred to as Layer

solutions. Notably, it has been observed that the problem investigated in the half-

space arises naturally through a blow-up process during the analysis of solutions to the

following problem:  ∆u = 0 in Ω

ϵ∂νu = f (z, u) on ∂Ω,
(CSM)
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where Ω ⊂ Rn is a smooth bounded domain, z ∈ ∂Ω, and ϵ > 0 is a parameter. In the

case where ϵ → 0, and under certain conditions imposed on f , the problem naturally

leads to the problem in the half-space and the concept of a layer or increasing solution.

More recently, intending to investigate combined concave-convex effects, Furtado

et al [18] analyzed the perturbation

g(x, u) = a(x)|u|p−2u+ µb(x)|u|q−2u, on ∂Ω,

where Ω ⊂ Rn is a bounded domain, 1 < q < 2 < p < 2∗, 2∗ = 2(n− 1)/(n− 2), with

a and b being weighted functions satisfying certain integrability conditions. Results

concerning the multiplicity of solutions were obtained. Taking the perturbation

g(x, u) = |u|p−2u− u, 2 < p < 2∗, on ∂Rn
+,

into consideration, Abreu et al [2] established the existence of a ground state solution

w = w (x1, . . . , xn−1, t), which is radially symmetric and exhibits exponential decay in

the first n−1 variables. Additionally, it was shown that w exhibits a power-type decay

in the variable t.

The present work examines the Problem (Pλ), where the perturbation is defined

as

g(x, u) = λ |u|q−2 u− |u|r−2 u− u, on ∂Rn
+.

A significant aspect of this perturbation is the presence of the exponents q and r

in conjunction with the parameter λ. From a mathematical standpoint, this allows

for examining both the existence and nonnexistence of solutions to Problem (Pλ),

particularly by exploring the interactions among the exponents q, r, and λ. This

enhances the interest in the problem, given the application of several methods and the

derivation of distinct properties of the solutions examined in each case.

Main results

The presentation of the primary results commences with the findings outlined in

Chapter 1. The first theorem establishes that, for the case where 2 < r < q < 2∗ =

2(n− 1)/(n− 2) and for all λ > 0, a ground state solution to Problem (Pλ) is obtained

through the application of a variational approach [8].
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Theorem A Assume 2 < r < q < 2∗. Then, for all λ > 0, Problem (Pλ) admits a
ground state solution uλ.

For all λ > 0, the Moser iteration method [26] is applied to establish that uλ ∈

L∞(Rn
+) and, in the trace sense, uλ|Rn−1 ∈ L∞(Rn−1). Moreover, by employing a

Harnack-type inequality, it is shown that uλ exhibits a power-type decay. Finally, a

regularity for uλ is derived. These findings are summarized in the following theorem.

Theorem B Let uλ be a weak solution of Problem (Pλ), where λ > 0 and 2 < r < q <

2∗. Then, in the trace sense, uλ|Rn−1 ∈ L∞ (Rn−1) and uλ ∈ L∞ (Rn
+

)
. Furthermore,

if uλ is a nonnegative weak solution of Problem (Pλ), then uλ ∈ C2,α
loc

(
Rn

+

)
∩C∞ (Rn

+

)
and it has a power-type decay, more precisely,

uλ (z) = O
(
|z|2−n) , as |z| → ∞.

Inspired by [32], the classical moving plane method [6, 7] is applied to establish

that uλ exhibits radial symmetry with respect to the variable x. Furthermore, it is

shown that uλ is monotone decreasing in the ρ-direction, where ρ = |x|.

Theorem C If uλ is a nonnegative weak solution of Problem (Pλ), where λ > 0 and
2 < r < q < 2∗, then uλ is radially symmetric with respect to variable x, that is,

uλ (x, t) = uλ (ρ, t) if ρ = |x| .

Moreover, uρ (ρ, t) < 0 in (0,+∞)× [0,+∞).

With the assistance of Theorem C, it can be demonstrated that uλ exhibits ex-

ponential decay with respect to the variable x. Additionally, a lower power-type decay

with respect to the variable t is derived. These findings are summarized in the following

theorem.

Theorem D Let uλ be a nonnegative weak solution of Problem (Pλ), where λ > 0 and
2 < r < q < 2∗. Then, there exist positive constants c1 and c2 such that

uλ (x, t) ≤ c1 exp (−c2 |x|)
1

(1 + t2)(n−2)/2
, for all (x, t) ∈ Rn

+.

In the case where 2 < q < r < 2∗ and λ > 0, the minimization of lower semicon-

tinuous functionals, as outlined by D.G. De Figueiredo in [13], is applied to demonstrate

the following theorem.
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Theorem E Let 2 < q < r < 2∗ and λ > 0. Then, there exists Λ > 0 such that
Problem (Pλ) possesses a nontrivial weak solution for all λ > Λ.

To conclude the results of Chapter 1, motivated by [1, 21], the nonexistence of

solutions to Problem (Pλ) is analyzed for specific values of the exponents q and r, as

well as the parameter λ. The subsequent theorem is proven by adapting a Pohozaev-

type identity from [1, Proposition 5.1], along with the development of an elementary

mathematical argument.

Theorem F Let uλ be a weak solution of Problem (Pλ). Then uλ ≡ 0 if one of the
conditions hold:

1. If λ ≤ 0 and r, q ∈ (2, 2∗) ∪ (2∗,+∞);

2. If λ > 0, q ∈ (2∗,+∞), and 2 < r < q.

Furthermore, if λ > 0 and 2 < q < r < 2∗, then uλ ≡ 0 for all λ ∈ (0, λ∗), where

λ∗ =
1[(

q−2
r−2

) q−2
r−2
(
r−q
r−2

)] r−q
r−2

.

The principal results of Chapter 2 are presented herein. Throughout the chapter,

it is assumed that 2 < r < q < 2∗. The first result establishes the existence of a

nonconstant positive least energy solution uϵ to Problem (Pϵ) in the case where ϵ→ 0,

corresponding to expanding domains.

Theorem G There exists a constant ϵ0 > 0 such that Problem (Pϵ) admits a noncon-
stant positive least energy solution uϵ for all ϵ ∈ (0, ϵ0).

By applying the Moser iteration method [26], an L∞ estimate for the weak solu-

tions of Problem (Pϵ) is derived. This leads to the proof that uϵ exhibits uniform decay

at infinity. Furthermore, with respect to decay, the second result establishes that a

power-type decay can be derived for uϵ.

Theorem H Let uϵ ∈ C∞ (Ωϵ) ∩ C1,β
(
Ωϵ

)
be a positive solution of Problem (Pϵ).

Then, there exists a positive constant C0 independent of ϵ such that

uϵ (z) ≤
C0(

1 + |z|2
)(n−2)/2

, for all z ∈ Ωϵ.

Building upon the ideas presented in [3], it is proven that uϵ exhibits exponential

decay.
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Theorem I There exists c > 0 such that

uϵ (x, t) ≤ ce−α|x|
(

1

1 + t2

)(n−2)/2

,

for all |x| ≥ 1, and t ≥ 0.

Let cq,r (Ωϵ) and cq,r
(
Rn

+

)
denote the least energy levels associated with IΩϵ and the

least energy level of the functional associated with Problem (Pλ), respectively. If H (z)

represents the mean curvature of the boundary at the point z ∈ ∂Ω, the following

concentration result can be stated.

Theorem J Assume that n ≥ 3, and let uϵ be the least energy solution of (Pϵ), as
obtained in Theorem G. If zϵ ∈ ∂Ωϵ is a point where uϵ attains its maximum value,
then

H (ϵzϵ) → max
z∈∂Ω

H (z) , as ϵ→ 0.

Moreover, for ϵ→ 0, it follows that

cq,r (Ωϵ) = cq,r
(
Rn

+

)
− ϵγmax

z∈∂Ω
H (z) + o (ϵ) ,

where γ = γ (q, r, n) is a positive constant.

The thesis concludes with the analysis of Problem (Pϵ) for large values of ϵ. The

following nonexistence result is established.

Theorem K There exists ϵ∗ > 0 such that for each ϵ > ϵ∗, the unique solution of
Problem (Pϵ) is constant.

Outline

The thesis is organized as follows. Chapter 1 is dedicated to the study of the

limit problem (Pλ). Section 1.1 presents the central problem studied in Chapter 1, as

well as the appropriate space for the development of the results, inner product, and

norm. Furthermore, the crucial definition of weak solution of Problem (Pλ) is provided

in this section. This section will play a significant role throughout the entire work. In

Section 1.2, the case 2 < r < q < 2∗, λ > 0 is considered. This section is divided into

the following subsections: Subsection 1.2.1 presents some auxiliary results that will be

of great utility throughout the section; Subsection 1.2.2 establishes the existence of a
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positive ground state solution uλ; Subsection 1.2.3 presents the important relationship

between the best constant for the Sobolev embedding studied in Chapter 1 and the

concept of least energy solution. Subsection 1.2.4 focuses on the regularity of uλ and

the derivation of its appropriate power-type decay; In Subsection 1.2.5, it is shown

that, for all λ > 0, uλ is radially symmetric with respect to the variable x, leading to

an exponential decay with respect to x. Section 1.3 addresses the case 2 < q < r < 2∗,

λ > 0. Section 1.4 concludes the chapter with a nonexistence result for Problem (Pλ).

In Chapter 2, the principal problem in expanding domains is studied. Section 2.1

presents the fundamental results that underpin the analysis throughout the chapter.

Section 2.2 summarizes the results related to the limit problem (Pλ), which are utilized

in the thesis. In section 2.3, an upper bound estimate is derived, which plays a crucial

role in the proof of Theorem G. Section 2.4 is dedicated to the proofs of Theorem H

and Theorem I. Section 2.5 provides a lower bound estimate and completes the proof

of Theorem J. Finally, Section 2.6 concludes the chapter with the presentation of a

nonexistence result for the case where ϵ is large (Theorem K).
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Notations

• Rn
+ := {z = (x, t) ∈ Rn : x ∈ Rn−1, t > 0} , n ≥ 3, is the Euclidean upper half-

space;

• C∞
0 (Rn) is the space of infinitely differentiable functions with compact support

on Rn; the space of test functions;

• C1 (E;R) is the space of continuously differentiable functions from E to R;

• cq,r
(
Rn

+

)
= inf

γ∈Γ
max
t∈[0,1]

Iλ (γ (t)) is the minimax level associated to the functional

Iλ;

• H1 (Ω) = W 1,2 (Ω) is a Sobolev space;

• N =
{
u ∈ E \ {0} : I

′

λ(u)u = 0
}

is the Nehari manifold associated to Iλ.

• The Big-O notation: g = O(f), as x→ x0, for x0 ∈ [−∞,+∞], if lim supx→x0
(g/f)(x) <

∞;

• The little-o notation: g = o(f), as x→ x0, for x0 ∈ [−∞,+∞], if limx→x0(g/f)(x) =

0;

• X ↪→ Y denotes that X is continuous embedded in Y ;

• Dj = ∂
∂xj

is the partial derivative with respect to the variable xj;

• C2,α
loc

(
Rn

+

)
, where 0 < α < 1, is a Hölder space.

• C∞ (Rn
+

)
is the set of all functions defined on the upper half-space Rn

+ that are

infinitely differentiable (i.e., have continuous derivatives of all orders) on Rn
+;

• cq,r (Ωϵ) = inf
γ∈Γ

max
t∈[0,1]

IΩϵ (γ (t)) > 0 is the minimax level associated to the func-

tional IΩϵ ;
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• Nϵ =
{
v ∈ H1 (Ωϵ) \ {0} : ∥v∥2τ =

∫
∂Ωϵ

(v+)
q
dσ −

∫
∂Ωϵ

(v+)
r
dσ
}

is the Nehari

manifold associated to IΩϵ ;

• Bρ (z) is a ball centered in z with radius ρ;

• H (z) is the mean curvature of the boundary at the point z ∈ ∂Ω;

• D2G (x) is the Hessian matrix of G at x;

• u is the average of u over ∂Ω;
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Chapter 1

The Problem in the Upper Half-Space

The study of the limit problem (Pλ) is of considerable significance in this work.

In this chapter, this problem will be analyzed, not only to yield results that contribute

to the development of Chapter 2 but also to investigate the existence and nonexistence

of solutions to the problem, independently of Problem (Pϵ).

The chapter is structured into two primary parts. The first part concentrates

on deriving results that will be directly applicable in Chapter 2, placing particular

emphasis on radial symmetry and exponential decay in the first n− 1 variables of the

ground-state solution. The second part focuses on the examination of the existence

and nonexistence of solutions in contexts that are distinct from Chapter 2.

It is noteworthy that classical methods, including the Moser iteration method,

the moving planes method will be employed to achieve these results.

1.1 Preliminaries

Consider the nonlinear boundary value problem ∆u = 0 in Rn
+

∂νu+ u = λ |u|q−2 u− |u|r−2 u on ∂Rn
+,

(Pλ)

where Rn
+ := {z = (x, t) ∈ Rn : x ∈ Rn−1, t > 0} , n ≥ 3, is the Euclidean upper half-

space, λ is a real parameter, 2 < q, r < ∞, and ν is the unit outward normal to the

boundary ∂Rn
+ = Rn−1.

Let the subspace of D1,2
(
Rn

+

)
be defined as follows:

E :=
{
u ∈ D1,2(Rn

+) : u|Rn−1 ∈ L2(Rn−1)
}
,
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where

D1,2(Rn
+) := C∞

0 (Rn)
∥·∥

D1,2(Rn+) , with ∥u∥D1,2(Rn
+) :=

(∫
Rn
+

|∇u|2 dz

)1/2

,

and u|Rn−1 is understood in the trace sense. An inner product on the space E is defined

by

⟨u, v⟩E :=

∫
Rn
+

∇u · ∇v dz +

∫
Rn−1

uv dx,

and the associated norm is given by

∥u∥2E :=

∫
Rn
+

|∇u|2 dz +
∫
Rn−1

|u|2 dx.

It can be verified that E is a Hilbert space. Furthermore, since C∞
0 (Rn) is dense in

D1,2
(
Rn

+

)
, combined with the fact that the trace operator is a bounded linear operator

fromD1,2
(
Rn

+

)
to L2 (Rn−1), it can be concluded that the restrictions to Rn

+ of functions

in C∞
0 (Rn) are dense in E.

A function u ∈ E is said to be a weak solution of Problem (Pλ) if∫
Rn
+

∇u∇φ dz +

∫
Rn−1

uφ dx =

∫
Rn−1

(
λ |u|q−2 u− |u|r−2 u

)
φ dx, (1)

for all φ ∈ C∞
0 (Rn). It is observed that the functions u (x, t) = at+ b, where a, b ∈ R,

satisfying the condition −a+ b = λbq−1 − br−1, are classical solutions to Problem (Pλ),

but are not weak solutions to (Pλ) in E. Indeed, if u were a weak solution of (Pλ) in E,

the condition u|Rn−1 ∈ L2 (Rn−1) would be satisfied. However, the trace of u is simply

the constant value b, which does not belong to L2 (Rn−1) unless b = 0.

In the case where λ > 0 and 2 < r < q < 2∗, this work is devoted to the

demonstration of the existence of a ground state solution of (Pλ), that is, a nontrivial

weak solution uλ = uλ (x, t) defined on E, whose energy is minimal among the energy

of all nontrivial weak solutions of (Pλ) in E.

1.2 The Case 2 < r < q < 2∗, λ > 0.

1.2.1 Auxiliary Results

To establish the existence of a ground state solution for Problem (Pλ) for all

λ > 0 and 2 < r < q < 2∗, variational methods, particularly those derived from
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variants of the minimax theorem, are employed. In this context, it is pertinent to

study the corresponding energy functional Iλ : E → R, which is defined by

Iλ(u) :=
1

2

∫
Rn
+

|∇u|2 dz + 1

2

∫
Rn−1

|u|2 dx+ 1

r

∫
Rn−1

(
u+
)r

dx− λ

q

∫
Rn−1

(
u+
)q

dx,

where u+ (x) = max {u (x) , 0}.

Lemma 1.2.1 For all 2 ≤ q ≤ 2∗, the Sobolev embedding

E ↪→ Lq
(
Rn−1

)
is continuous.

Proof. With the aid of the interpolation inequality and the trace embedding theorem,

for 0 < θ < 1, it follows that∫
Rn−1

|u|q dx ≤
(∫

Rn−1

|u|2 dx
)θq/2(∫

Rn−1

|u|2∗ dx
)(1−θ)q/2∗

,

≤ C

(∫
Rn−1

|u|2 dx
)θq/2

(∫
Rn
+

|∇u|2 dz

)(1−θ)q/2

≤ C ∥u∥θqE ∥u∥(1−θ)q
E ,

where C is a positive constant. This concludes the proof.

As a consequence of Lemma 1.2.1, it is established that the functional Iλ is well-

defined on E. Furthermore, by applying standard arguments, it can be shown that

Iλ ∈ C1 (E,R), with

I
′

λ (u)φ =

∫
Rn
+

∇u∇φ dz +

∫
Rn−1

uφ dx−
∫
Rn−1

[
λ
(
u+
)q−1 −

(
u+
)r−1

]
φ dx, (2)

for all φ ∈ C∞
0 (Rn). Additionally, it can be observed that u ∈ E is a critical point of

Iλ if and only if it is a weak solution to Problem (Pλ). The following lemma establishes

a geometric property of the energy functional Iλ.

Lemma 1.2.2 If λ > 0 and 2 < r < q < 2∗, the functional Iλ possesses the geometrical
mountain-pass structure on the space E.

Proof. To establish the lemma, following the strategy outlined in [16], it suffices to

verify the following three assertions:

1. Iλ(0) = 0.
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2. There exist ρ > 0 and α > 0 such that Iλ (u) ≥ α for all u ∈ ∂Bρ (0).

3. There exists e ∈ E with ∥e∥E > ρ such that Iλ(e) < 0.

Item 1 is immediate. Using Lemma 1.2.1, it holds that

Iλ(u) ≥
1

2
∥u∥2E − λ

q

∥∥u+∥∥q
Lq(Rn−1)

≥ ∥u∥2E
(
1

2
− λC

q
∥u∥q−2

E

)
,

where C is a positive constant. Set ρ = ∥u∥E sufficiently small such that(
1

2
− λC

q
ρq−2

)
=: c (ρ) > 0.

Consequently, it can be concluded that

Iλ(u) ≥ ρ2c(ρ) > 0,

which completes the proof of Item 2. To prove Item 3, let φ ∈ C∞
0 (Rn) \ {0}, and let

t > 0. It can be observed that

Iλ(tφ) =
t2

2
∥φ∥2E +

tr

r

∫
Rn−1

(
φ+
)r

dx− λtq

q

∫
Rn−1

(
φ+
)q

dx,

and it is clear that Iλ(tφ) → −∞ as t → ∞, since 2 < r < q. Therefore, the proof of

Item 3 is complete, thereby concluding the proof of Lemma 1.2.2.

As a consequence of Lemma 1.2.2, the minimax level cq,r
(
Rn

+

)
, defined as

cq,r
(
Rn

+

)
= inf

γ∈Σ
max
t∈[0,1]

Iλ (γ (t)) ,

is strictly positive, where

Σ = {γ ∈ C ([0, 1] ;E) : γ (0) = 0 and Iλ (γ (1)) < 0} .

Therefore, there exists a Palais-Smale sequence (in short (PS)) (um) ⊂ E at level

cq,r
(
Rn

+

)
for the functional Iλ, that is,

Iλ (um) → cq,r
(
Rn

+

)
and I

′

λ (um) → 0.
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The following lemma proves that a (PS) sequence is necessarily bounded in E.

Lemma 1.2.3 If (um) ⊂ E is a (PS) sequence at the level cq,r
(
Rn

+

)
, then (um) is

bounded, and there exists a constant b > 0 such that∥∥u+m∥∥Lq(Rn−1)
≥ b > 0,

for sufficiently large m.

Proof. Let (um) ⊂ E be a (PS) sequence at the minimax level cq,r
(
Rn

+

)
. For suffi-

ciently large values of m, and for all λ > 0, it can be verified that(
1

2
− 1

q

)
∥um∥2E +

(
1

r
− 1

q

)∥∥u+m∥∥rLr(Rn−1)
= Iλ (um)−

1

q
I

′

λ (um)um

≤ cq,r
(
Rn

+

)
+
ϵ

q
∥um∥E .

Since 2 < r < q < 2∗, this implies that (um) is bounded. Furthermore, for sufficiently

large values of m, it can be concluded that

0 <
cq,r
(
Rn

+

)
2

≤ Iλ (um)−
1

2
I

′

λ (um)um < λ

(
q − 2

2q

)∥∥u+m∥∥qLq(Rn−1)
.

Therefore, the proof of Lemma 1.2.3 is complete.
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1.2.2 Existence of a Ground State Solution

This subsection is dedicated to proving Theorem A. To this end, consider the

following definitions of balls centered at y ∈ Rn−1 with radius ρ:

B+
ρ (y) =

{
z ∈ Rn

+ : |z − (y, 0)| < ρ
}
, Γρ (y) =

{
x ∈ Rn−1 : |x− y| < ρ

}
,

where (y, 0) lies on the boundary of Rn
+.

Lemma 1.2.4 For each q ∈ [2, 2∗] and y ∈ Rn−1, there exists a positive constant
C = C(n, q) such that

∥u∥Lq(Γ(y)) ≤ C
(
∥∇u∥2

L2(B+
1 (y)) + ∥u∥2L2(Γ1(y))

)1/2
, u ∈ E.

Proof. By applying the trace embedding theorem H1
(
B+

1 (y)
)
↪→ Lq

(
∂B+

1 (y)
)

and

Friedrich’s inequality (see [1]), it follows that for all u ∈ E,

∥u∥Lq(Γ(y)) ≤ C
(
∥∇u∥2L2(B+

1 (y)) + ∥u∥2L2(B+
1 (y))

)1/2
≤ C

(
∥∇u∥2

L2(B+
1 (y)) + ∥u∥2L2(Γ1(y))

)1/2
,

where C is a positive constant. This completes the proof.

Next, before proceeding with the proof of Theorem A, an essential lemma is

demonstrated.

Lemma 1.2.5 If (um) ⊂ E is a (PS) sequence, then there exists a positive constant
C = C (n, r, q) such that

sup
y∈Rn−1

∫
Γ1(y)

(
u+m
)2

dx ≥ C.

Proof. The proof is divided into three distinct cases.

Case 1: Consider θ ∈ (0, 1) fixed such that 1/r = (1− θ)/2 + θ/q. Interpolation

and Lemma 1.2.4 imply that

∥∥u+m∥∥rLr(Γ1(y))
≤

∥∥u+m∥∥(1−θ)r

L2(Γ1(y))

∥∥u+m∥∥θrLq(Γ1(y))

≤ C
∥∥u+m∥∥(1−θ)r

L2(Γ1(y))

(∥∥∇u+m∥∥2L2(B+
1 (y)) +

∥∥u+m∥∥2L2(Γ1(y))

)θr/2
.

It is noted that

1

r
=

1− θ

2
+
θ

q
⇐⇒ θ =

q (r − 2)

r (q − 2)
.
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Moreover,

2n >
(2− q)

r − q
r ⇒ 2n (r − q) ≥ r (2− q) , n ≥ 3.

Adding the term nrq to the last inequality, and through straightforward calculations,

it can be deduced that

2n

n− 1
≥ 2r (q − 2)

q (r − 2)
.

By choosing r = 2n/(n − 1) ∈ (2, r), it follows that θr ≥ 2. Thus, the following

inequality holds:

∥∥u+m∥∥rLr(Γ1(y))
≤ C

(
sup

y∈Rn−1

∫
Γ1(y)

∣∣u+m∣∣2 dx
)(1−θ)r/2 ∥∥u+m∥∥θr−2

H

∥∥u+m∥∥2B+
1 ,Γ1,y

,

where

∥∥u+m∥∥B+
1 ,Γ1,y

=
(∥∥∇u+m∥∥2L2(B+

1 (y)) +
∥∥u+m∥∥2L2(Γ1(y))

)1/2
.

Covering Rn−1 by a family of balls (Γ(y))y∈Rn−1 such that each point of Rn−1 is contained

in at most n balls. Summing up this inequality over this family, it can be concluded

that

0 < br <
∥∥u+m∥∥rLr(Rn−1)

≤ C

(
sup

y∈Rn−1

∫
Γ1(y)

∣∣u+m∣∣2 dx
)(1−θ)r/2 ∥∥u+m∥∥θrE .

Therefore, this inequality, in conjunction with Lemma 1.2.3, completes the proof of

case 1.

Case 2: Let r ∈ (r, q) and τ ∈ (0, 1) be fixed such that 1/r = (1 − τ)/2 + τ/r.

It is observed that τ = r (r − 2) /r (r − 2). Again, by interpolation and Lemma 1.2.4,

it holds that

∥∥u+m∥∥rLr(Γ1(y))
≤

∥∥u+m∥∥(1−τ)r

L2(Γ1(y))

∥∥u+m∥∥τrLr(Γ1(y))

≤ C

(
sup

y∈Rn−1

∫
Γ1(y)

∣∣u+m∣∣2 dx
)(1−τ)r/2 ∥∥u+m∥∥τr/2B+

1 ,Γ1,y
,

where C is a positive constant. Through straightforward calculations, it can be con-

cluded that τr ≥ 2. Thus, by applying the same reasoning as in Case 1, the conclusion

for Case 2 is obtained.
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Case 3: Finally, let q ∈ (q, 2∗) and β ∈ (0, 1) be such that 1/q = (1−β)/r+β/q.

By interpolation and Lemma 1.2.4, it follows that

∥∥u+m∥∥qLq(Γ1(y))
≤

∥∥u+m∥∥(1−β)q

Lr(Γ1(y))

∥∥u+m∥∥βqLq(Γ1(y))

≤
∥∥u+m∥∥(1−τ)(1−β)q

L2(Γ1(y))

∥∥u+m∥∥τ(1−β)q

Lr(Γ1(y))

∥∥u+m∥∥βqLq(Γ1(y))

≤ C

(
sup

y∈Rn−1

∫
Γ1(y)

∣∣u+m∣∣2 dx

)(1−τ)(1−β)q/2 ∥∥u+m∥∥(τ−βτ+β)q/2

B+
1 ,Γ1,y

,

where r ∈ (r, q), τ = r (r − 2) /r (r − 2) ∈ (0, 1) with τr > 2, and β = q (r − q) /q (r − q).

Through straightforward calculations, it can be inferred that q (τ − τβ + β) ≥ 2.

Therefore, by applying the reasoning from Case 1, the proof of Case 3 is concluded,

thus completing the proof of Lemma 1.2.5.

At this point, the proof of Theorem A can be established.

Proof of Theorem A. Let (um) ⊂ E be a (PS) sequence at the level cq,r
(
Rn

+

)
. In

light of Lemma 1.2.5, there exists a sequence of points (ym) ⊂ Rn−1 such that∫
Γ1(ym)

(
u+m
)2

dx ≥ C

2
,

where C = C (n, q, r) > 0. Defining wm(x) = um (x+ ym), it can be inferred that∫
Γ1(0)

(
w+

m

)2
dx ≥ C

2
, Iλ(wm) → cq,r

(
Rn

+

)
and I

′

λ(wm) → 0 (3)

(see [25, Lemma I.1]). As a consequence of Lemma 1.2.3, (wm) is bounded and, up to

a subsequence, wm ⇀ w weakly in E and wm → w in Ls
loc (Rn−1) for all 2 ≤ s < 2∗.

It is observed that, by (3), w is nontrivial. Furthermore, by taking φ = w− as a test

function in (1), it follows that∫
Rn
+

∇w∇w− dz +

∫
Rn−1

ww− dx =

∫
Rn−1

(
λ
(
w+
)q−1

w− −
(
w+
)r−1

w−
)

dx = 0,

which implies that w− = 0, thereby ensuring that w is positive. It is hereby claimed

that

Iλ(w) = cq,r
(
Rn

+

)
and I

′

λ(w) = 0.

Indeed, given that E is a Hilbert space, the weak convergence wm ⇀ w implies that∫
Rn
+

∇wm · ∇φ dz +

∫
Rn−1

wmφ dx→
∫
Rn
+

∇w · ∇φ dz +

∫
Rn−1

wφ dx,

22



for all φ ∈ C∞
0 (Rn). Furthermore, since wm → w in Ls

loc (Rn−1) and (wm) is bounded

in E, it can be concluded from Vitali’s convergence theorem and the continuity of the

map t 7−→ (t+)
θ−1 that

(
w+

m

)r−1
⇀
(
w+
)r−1 in Lr/r−1

(
Rn−1

)
,

and

(
w+

m

)q−1
⇀
(
w+
)q−1 in Lq/q−1

(
Rn−1

)
.

As a result, for any φ ∈ Ls (Rn−1), the following holds:∫
Rn−1

(
w+

m

)r−1
φ dx −→

∫
Rn−1

(
w+
)r−1

φ dx,

and ∫
Rn−1

(
w+

m

)q−1
φ dx −→

∫
Rn−1

(
w+
)q−1

φ dx.

Hence, it can be deduced that

I
′

λ (wm)φ→ I
′

λ (w)φ,

for all φ ∈ E and, according to (3), it holds that I ′

λ (w) = 0. Invoking this fact, along

with the weak lower semicontinuity of the norm in E, yields the validity of the following

estimate:

Iλ(w) = Iλ(w)−
1

q
I

′

λ(w)w

≤ lim
m→∞

(
1

2
− 1

q

)
∥wm∥2E +

(
1

r
− 1

q

)∥∥w+
m

∥∥r
Lr(Rn−1)

≤ lim
m→∞

(
Iλ (wm)−

1

q
I

′

λ (wm)wm

)
= cq,r

(
Rn

+

)
.

Thus,

Iλ(w) ≤ cq,r
(
Rn

+

)
.

Furthermore, by [16, Theorem 1.8], it can be inferred that

cq,r
(
Rn

+

)
= inf

v∈N
Iλ(v),
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where N =
{
v ∈ E \ {0} : I

′

λ(v)v = 0
}

is the Nehari manifold associated to Iλ. Since

w ∈ N , it can be concluded that

cq,r
(
Rn

+

)
≤ Iλ(w).

Therefore, Iλ(w) = cq,r
(
Rn

+

)
. Consequently, w is a positive ground state solution of

Problem (Pλ) for all λ > 0, thus completing the proof of Theorem A.

1.2.3 The Best Constant for the embedding E ↪→ Lp
(
Rn−1

)
If n ≥ 3, it was established in Lemma 1.2.1 that, for all 2 ≤ p ≤ 2∗, the Sobolev

embedding E ↪→ Lp (Rn−1) is continuous. It was also demonstrated that this embed-

ding is of significant utility, particularly in ensuring the well-definition of the energy

functional Iλ. This subsection presents an alternative approach to this embedding,

specifically by exploring its connection with the concepts of best constant and ex-

tremals.

Initially, it can be observed that, for all u ∈ E and for all 2 ≤ p ≤ 2∗, this

embedding implies that the following Sobolev inequality is valid:

S

(∫
Rn−1

|u|p dx

)2/p

≤
∫
Rn
+

|∇u|2 dz +

∫
Rn−1

|u|2 dx,

for some positive constant S. The best constant for this inequality is defined by

Sp

(
Rn

+

)
= inf

u∈E\{0}

∫
Rn
+
|∇u|2 dz +

∫
Rn−1 |u|2 dx(∫

Rn−1 |u|p dx
)2/p .

An important question concerns the existence of extremals for this embedding, namely,

functions u at which the infimum is attained. The Euler-Lagrange associated with

inequality (1.2.3) is given by∆w = 0 in Rn
+

∂ηw = |w|p−2w − w on ∂Rn
+,

(ADM)

where η is the unit outward normal to the boundary ∂Rn
+, and 2 < p < 2∗ (see [2]). In

order to address this question, let the Nehari manifold be defined as follows:

N = {u ∈ E \ {0} : J ′ (u)u = 0} ,
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where

J (u) =
1

2

∫
Rn
+

|∇u|2 dz +
1

2

∫
Rn−1

u2 dx− 1

p

∫
Rn−1

(
u+
)p

dx

is the energy functional associated with (ADM). Let

cp
(
Rn

+

)
= inf

u∈N
J(u)

be the least energy level of J associated with (ADM). The subsequent lemma is

established.

Lemma 1.2.6 The best constant Sp and the least-energy level satisfy the following
relation:

cp
(
Rn

+

)
=
p− 2

2p

(
Sp

(
Rn

+

))p/(p−2)
.

Proof. If u ∈ N , it follows that∫
Rn
+

|∇u|2 dz +

∫
Rn−1

|u|2 dx =

∫
Rn−1

|u|p dx,

which implies

Sp

(
Rn

+

)
≤

(∫
Rn
+

|∇u|2 dz +

∫
Rn−1

|u|2 dx

)(p−2)/p

.

Conversely, it can be observed that

J (u) =
p− 2

2p

(∫
Rn
+

|∇u|2 dz +

∫
Rn−1

|u|2 dx

)
.

Thus, it holds that
p− 2

2p

(
Sp

(
Rn

+

))p/(p−2) ≤ J (u) .

Since the preceding inequality holds for an arbitrary u ∈ N , and that cp
(
Rn

+

)
the least

energy level of the functional J satisfies cp
(
Rn

+

)
= infu∈N J (u), it can be concluded

that
p− 2

2p

(
Sp

(
Rn

+

))p/(p−2) ≤ cp
(
Rn

+

)
. (1.2.1)

Now, suppose that u ∈ E\{0} is an extremal for the embedding studied in this section.

It is claimed that the function s 7→ J (su) has a maximum s = s > 0, which is its unique

critical point. Indeed, set

f (s) = J (su) =
s2

2

(∫
Rn
+

|∇u|2 dz +

∫
Rn−1

|u|2 dx

)
− sp

p

∫
Rn−1

|u|p dx.
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Then, it is noted that

f ′ (s) = 0 ⇐⇒ sp−2 =

∫
Rn
+
|∇u|2 dz +

∫
Rn−1 |u|2 dx∫

Rn−1 |u|p dx
. (6)

One can see that the equation (6) has a solution s = s > 0. Moreover,

f ′′ (s) =

(∫
Rn
+

|∇u|2 dz +

∫
Rn−1

|u|2 dx

)
(2− p) < 0,

since p > 2. Thus, f (s) = J (su) is a maximum value, which implies that su ∈ N .

Hence, it follows that

Sp

(
Rn

+

)
=

(∫
Rn
+

|∇u|2 dz +

∫
Rn−1

|u|2 dx

)(p−2)/p (
s2
)(p−2)/p

. (1.2.2)

Using (1.2.2), it can be concluded that

cp
(
Rn

+

)
≤ J (su) =

(
p− 2

2p

)
s2

(∫
Rn
+

|∇u|2 dz +

∫
Rn−1

|u|2 dx

)
=

p− 2

2p

(
Sp

(
Rn

+

))p/(p−2)
,

that is,

cp
(
Rn

+

)
≤ p− 2

2p

(
Sp

(
Rn

+

))p/(p−2)
. (1.2.3)

Finally, from (1.2.1) and (1.2.3), the result can be deduced.

1.2.4 Regularity and Power-Type Decay

This subsection is dedicated to the proof of Theorem B. To this end, the following

auxiliary nonlinear boundary value problem will be considered: ∆v = 0 in Rn
+

∂ηv + v = λa(x) |v|σ−1 v − b(x) |v|τ−1 v on Rn−1,
(AP )

where λ > 0, a, b ∈ L∞ (Rn−1), b > 0, and 1 < τ < σ < 2∗ − 1. Let v be a weak

solution of (AP ), that is,∫
Rn
+

∇v∇φ dz +

∫
Rn−1

vφ dx =

∫
Rn−1

[
λa (x) |v|σ−1 v − b (x) |v|τ−1 v

]
φ dx, (5)

for all φ ∈ C∞
0 .

Initially, the Moser iteration method is applied to establish a L∞ estimate.
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Proposition A Let v be a weak solution of (AP ). Then, v ∈ L∞ (Rn
+

)
, and its trace

v|Rn−1 belongs to L∞ (Rn−1).

Proof. Let v be a weak solution of Problem (AP ). By modifying the test function,

it can be assumed, without loss of generality, that v is nonnegative. For each k ∈ N,

define

φk = v
2(β−1)
k v and wk = vvβ−1

k , β > 1,

where vk = min {v, k}, and β to be determined later. It is observed that

0 ≤ vk ≤ v, ⟨∇vk,∇v⟩ ≥ 0 and |∇vk| ≤ |∇v| .

The choice of φk as a test function in (5) implies that∫
Rn
+

v
2(β−1)
k |∇v|2 dz + 2 (β − 1)

∫
Rn
+

vv
2(β−1)−1
k ∇vk∇v dz +

∫
Rn−1

v
2(β−1)
k v2 dx

= λ

∫
Rn−1

a (x) vσ+1v
2(β−1)
k dx−

∫
Rn−1

b (x) vτ+1v
2(β−1)
k dx,

from which it can be inferred that∫
Rn
+

v
2(β−1)
k |∇v|2 dz ≤ λ |a|∞

∫
Rn−1

v
2(β−1)
k vσ+1dx

≤ C

∫
Rn−1

vσ−1w2
k dx,

where C is a positive constant. It follows from the classical trace embedding theorem

and the preceding inequality that(∫
Rn−1

w2∗
k dx

)2/2∗

≤ c1

∫
Rn
+

|∇wk|2 dz

≤ 2c1

∫
Rn
+

v
2(β−1)
k |∇v|2 + (β − 1)2 v2v

2(β−2)
k |∇vk|2 dz

≤ 2c1

∫
Rn
+

v
2(β−1)
k |∇v|2 + (β − 1)2 v

2(β−1)
k |∇v|2 dz

≤ c2β
2

∫
Rn
+

v
2(β−1)
k |∇v|2 dz

≤ c3β
2

∫
Rn−1

vσ−1w2
k dx,

where the inequality 1 + (β − 1)2 ≤ β2, with β ≥ 1, has been applied. By applying

Hölder’s inequality with p = 2∗/(σ − 1) and s = 2∗/(2∗ − (σ − 1)), 1/p+ 1/s = 1, the
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following inequality holds:∫
Rn−1

vσ−1w2
k dx ≤

(∫
Rn−1

v2∗dx

)σ−1
2∗
(∫

Rn−1

w
22∗

2∗−σ+1

k dx

) 2∗−σ+1
2∗

.

Thus, it can be concluded that(∫
Rn−1

w2∗
k dx

)2/2∗

≤ c3β
2

(∫
Rn−1

v2∗dx

)σ−1
2∗
(∫

Rn−1

w
22∗

2∗−σ+1

k dx

) 2∗−σ+1
2∗

≤ c3β
2

(∫
Rn−1

v2∗dx

)σ−1
2∗
(∫

Rn−1

v
β22∗

2∗−σ+1dx

) 2∗−σ+1
2∗

,

where the inequality |wk| ≤ |v|β has been applied. Let β = (2∗−σ+1)/2. It is observed

that β > 1. With the application of Lemma 1.2.1, the following holds:(∫
Rn−1

w2∗
k dx

)2/2∗

≤ c3β
2

(∫
Rn−1

v2∗dx

)σ−1
2∗
(∫

Rn−1

v2∗dx

) 2β
2∗

≤ c4β
2 ∥v∥σ−1

E ∥v∥2β
Lβα∗ (Rn−1)

,

where α∗ = (22∗)/(2∗ − σ + 1). Furthermore, the Dominated Convergence Theorem

implies that

lim
k→0

(∫
Rn−1

|wk|2∗ dx
)2/2∗

=

(∫
Rn−1

|v|2∗β dx
) 2β

2∗β

.

Consequently, it can be deduced that

∥v∥L2∗β(Rn−1) ≤
(
c5β

2 ∥v∥σ−1
E

) 1
2β ∥v∥Lβα∗ (Rn−1) .

Next, let β0 = β, and define βm+1α∗ = 2∗βm inductively for m = 0, 1, 2, . . .. By

employing the preceding process for β1, the inequality above leads to the following:

∥v∥L2∗β1 (Rn−1) ≤
(
c5β

2
1 ∥v∥

σ−1
E

) 1
2β1 ∥v∥Lβ1α∗ (Rn−1)

≤
(
c5β

2
1 ∥v∥

σ−1
E

) 1
2β1
(
c5β

2 ∥v∥σ−1
E

) 1
2β ∥v∥Lβα∗

≤
(
c6 ∥v∥σ−1

E

) 1
2β1

+ 1
2β β

1
β β

1
β1
1 ∥v∥L2∗ (Rn−1) .

Furthermore, it can be noted that βm =
(

2∗
α∗

)m
β, m = 1, 2, . . .. Thus, by iteration, it

can be inferred that

∥v∥Lβm2∗ (Rn−1) ≤
(
c6 ∥v∥σ−1

E

) 1
2βm

+...+ 1
2β1

+ 1
2β β1/ββ1/β1 . . . β1/βm

m ∥v∥L2∗ (Rn−1)

=
(
c6 ∥v∥σ−1

E

) 1
2β

∑m
k=0(

α∗
2∗ )

k

β
1
β

∑m
k=0(

α∗
2∗ )

k
(
2∗
α∗

) 1
β

∑m
k=0(

α∗
2∗ )

k

∥v∥L2∗ (Rn−1) .
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Taking the limit as m→ ∞, and observing that

lim
m→∞

1

2β

m∑
k=0

(
α∗

2∗

)k

=
1

2∗ − σ − 1
> 0,

it can be concluded that

∥v∥L∞(Rn−1) ≤ c7
(
∥v∥σ−1

E

) 1
2∗−σ ∥v∥E <∞.

Therefore, v ∈ L∞ (Rn−1). Now, for each k ∈ N, define the set

Ω (k) =
{
z = (x, t) ∈ Rn

+ : v(z) > k
}
.

It is observed from the integral formulation of Chebyshev’s inequality that Ω (k) has

finite Lebesgue measure, as v ∈ L2∗
(
Rn

+

)
, and its trace v|Rn−1 belongs to L2 (Rn−1).

Thus, the function

φ (z) =

(v − k) (z) , if z ∈ Ω (k)

0, if z ∈ Rn
+ \ Ω (k) ,

belongs to the space E, and ∇φ = ∇v in Ω (k). Given that v ∈ L∞ (Rn−1), there exists

a constant M > 0 such that

∥v∥L∞(Rn−1) ≤M.

Consequently, by taking k > M , it follows that φ (x, 0) = 0 for all x ∈ Rn−1, since

(x, 0) ∈ Rn
+ \Ω (k). Hence, by choosing φ as a test function in (5), it can be concluded

that∫
Rn
+

∇v · ∇φ dz +

∫
Rn−1

vφ dx =

∫
Rn−1

[
λa (x) |v|σ−1 v − b (x) |v|τ−1 v

]
φ dx = 0.

This implies that ∫
Ω(k)

|∇v|2 dz = 0,

so that v is constant in Ω (k) or |Ω (k)| = 0. Therefore, v ∈ L∞ (Rn
+

)
.

Remark 1.2.1 1. Nonnegative weak solutions of Problem (Pλ) are positive in Rn
+

by Proposition A and Harnack inequality.
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2. From Proposition A and regularity results established in [23, 36], it follows that
weak solutions of Problem (Pλ) belong to C1,α

loc (Rn
+), for some 0 < α < 1. Further-

more, by applying a maximum principle from Vasquez [37], it can be concluded
that u > 0 in Rn

+.

Next, a Harnack-type inequality is established (see [20, Chapter 8]). To this end,

let y ∈ Rn−1 and 0 < s < ρ be fixed. Consider B+
s ⊂ B+

ρ and Γ+
s ⊂ Γ+

ρ . To simplify

the notation, B+
ρ (y) is abbreviated as B+

ρ and Γρ (y) is abbreviated as Γρ.

Lemma 1.2.7 Let u be a weak solution of Problem (Pλ) satisfying 0 < u ≤M in B+
3ρ.

Then, there exist constants C = C (n,M) > 0 and θ0 > 1 such that

max
B+

ρ

u+max
Γρ

u ≤ Cρ−(n−1)/θ0

(
ρ−1 ∥u∥θ0

Lθ0(B+
2ρ)

+ ∥u∥θ0
Lθ0 (Γ2ρ)

)1/θ0

.

In particular, it holds

lim
|z|→+∞

u (z) = 0, for all z ∈ Rn
+.

Proof. Let it be given that u ≥ ϵ > 0 on Rn
+ ∩B+

3ρ. Define the function φ as

φ = η2uβ,

where β > 1, 0 ≤ η (z) ≤ 1, η ∈ C1 (B3ρ) and sup (η) ⊂ B+
ρ . By applying the chain

and product rules, the gradient of φ is given by

∇φ = η2βuβ−1∇u+ 2uβη∇η.

As a consequence of the choice of φ as a test function in (1), the following holds:∫
B+

ρ

η2βuβ−1 |∇u|2 dz +
∫
B+

ρ

2uβη (∇u · ∇η) dz = λ

∫
Γρ

η2uβuq−1dx

−
∫
Γρ

η2uβur−1dx−
∫
Γρ

η2uuβdx.

This implies that∫
B+

ρ

η2βuβ−1 |∇u|2 dz ≤ λM q−2

∫
Γρ

η2uβ+1dx+ 2

∫
B+

ρ

uβη |∇u| |∇η| dz,

where the inequality −∇u · ∇η ≤ |∇u| |∇η| has been used. Considering the Young’s

inequality

cd ≤ 1

2
ϵ2c2 +

1

2
ϵ−2d2,
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with

c = ηu
β−1
2 |∇u| and d = u

β+1
2 |∇η| ,

the second integral on the right-hand side of the previous inequality can be estimated

in the following manner:

2

∫
B+

ρ

uβη |∇u| |∇η| dx ≤ ϵ2
∫
B+

ρ

η2uβ−1 |∇u|2 dx+ ϵ−2

∫
B+

ρ

uβ+1 |∇η|2 dx.

Thus, the use of this estimate provides that(
β − ϵ2

) ∫
B+

ρ

η2uβ−1 |∇u|2 dz ≤ λM q−2

∫
Γρ

η2uβ+1dx+ ϵ−2

∫
B+

ρ

uβ+1 |∇η|2 dz,

which implies that∫
B+

ρ

η2uβ−1 |∇u|2 dz ≤ λM q−2

(β − ϵ2)

∫
Γρ

η2uβ+1dx+
ϵ−2

(β − ϵ2)

∫
B+

ρ

uβ+1 |∇η|2 dz

= C

(
1− ϵ2

β

)−1

β−1

(
ϵ−2

∫
B+

ρ

uβ+1 |∇η|2 dz +
∫
Γρ

η2uβ+1dx

)
.

By choosing β large enough and defining v = us, where 2s = β + 1, the following is

valid:

1

s2

∫
B+

ρ

(η |∇v|)2 dz =

∫
B+

ρ

η2uβ−1 |∇u|2 dz

≤ Cβ−1

(∫
B+

ρ

(v |∇η|)2 dz +
∫
Γρ

(ηv)2 dx

)
.

By adding the term
(∫

Γρ
(ηv)2 dx

)
to both sides of the preceding inequality, the fol-

lowing inequality is deduced:(
1

s

)2

∥η |∇v|∥2
L2(B+

ρ ) + ∥ηv∥2L2(Γρ)
≤
(
cβ−1 + 1

)
∥ηv∥2L2(Γρ)

+ cβ−1 ∥v |∇η|∥2
L2(B+

ρ ) .

This implies that(
∥η |∇v|∥2

L2(B+
ρ ) + ∥ηv∥2L2(Γρ)

)1/2
≤ sC

(
1 + β−1

)1/2 (∥v |∇η|∥2
L2(B+

ρ ) + ∥ηv∥2L2(Γρ)

)1/2
.

Let η (z) = 1 in Br2 and η (z) = 0 outside Br1 , where 1 ≤ r2 < ρ ≤ r1 ≤ 2, |∇η| ≤
2

(r1−r2)
, 2γ = 2∗, and (1 + β−1) < C. From the preceding inequality, it can be inferred

that (
∥∇v∥2

L2(B+
r2)

+ ∥v∥2
L2(Γr2)

)1/2
≤

(
∥η |∇v|∥2

L2(B+
ρ ) + ∥ηv∥2L2(Γρ)

)1/2
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≤ 2sC

(r1 − r2)

(
∥v∥2

L2(B+
r1)

+ ∥v∥2
L2(Γr1)

)1/2
.

Through the application of Hölder’s inequality, in conjunction with Lemma 1.2.4, it

can be concluded that(
∥v∥2∗

L2∗(B+
r2)

+ ∥v∥2∗
L2∗(Γr2)

)1/2∗

≤ C
(
∥∇v∥2

L2(B+
r2)

+ ∥v∥2
L2(Γr2)

)1/2
≤ 2sC

(r1 − r2)

(
∥v∥2

L2(B+
r1)

+ ∥v∥2
L2(Γr1)

)1/2
.

Given that v = us, it can be deduced that(∫
B+

r2

|u|s2∗ dz +
∫
Γr2

|u|s2∗ dx

)1/2∗

≤ 2sC

(r1 − r2)

(∫
B+

r1

|u|2s dz +
∫
Γr1

|u|2s dx

)1/2

.

Now, let

ϕ (l, t) =

(∫
B+

t (y)

|u|l dz +
∫
Γt(y)

|u|l dx

)1/l

,

where l, t > 0. By choosing the s-th root of the preceding inequality and setting θ = 2s,

it can be inferred that

ϕ (θγ, r2) ≤
(
Cθ (r1 − r2)

−1)2/θ ϕ (θ, r1) .
Next, for some θ0 > 0, define

θm = γmθ0, rm = 1 + 2−m, m = 0, 1, 2, . . .

The choice of θ0 will be such that θm ̸= 1. Then, from the preceding inequality, it can

be concluded that

ϕ (θm+1, rm+1) ≤
(
Cγmθ0 (rm − rm+1)

−1) 2
(γmθ0) ϕ (θm, rm)

≤
(
C2/θ0

)∑ γ−m (
(2γ)2/θ0

)∑mγ−m

ϕ (θ0, 2) .

Since γ > 1, by taking the limit in the preceding inequality, it can be deduced that

max
B+

1

u+max
Γ1

u = ϕ (+∞, 1) ≤ Cϕ (θ0, 2) .

Finally, by choosing θ0 > 1 and defining z = ρz with z ∈ B+
2 , and x = ρx with x ∈ Γ2,

the proof is concluded.

It is now possible to establish a power-type decay for the weak solutions to Prob-

lem (Pλ).
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Lemma 1.2.8 If uλ is a nonnegative weak solution of Problem (Pλ), with λ > 0, then
it has a power-type decay in Rn

+, more precisely,

uλ (z) = O
(
|z|2−n) as |z| → ∞.

Proof. Let uλ be a weak solution of Problem (Pλ), and let A > 0 be a constant to be

chosen later. Consider the function ϕ : Rn
+ → R defined by ϕ = (Auλ − v)+, where

v (x, t) =

(
µ

(µ+ t)2 + |x|2

)(n−2)/2

, µ > 0.

It is noted that

∂v

∂xi
(z) =

(2− n)µ(n−2)/2xi[
(µ+ t)2 + |x|2

]n/2 , i = 1, . . . , n− 1;
∂v

∂t
(z) =

(2− n)µ(n−2)/2 (µ+ t)[
(µ+ t)2 + |x|2

]n/2 ;

∂2v

∂x2i
(z) =

(2− n)µ(n−2)/2[
(µ+ t)2 + |x|2

]n/2 +
n (n− 2)µ(n−2)/2x2i[
(µ+ t)2 + |x|2

]1+n/2
, i = 1, . . . , n− 1;

and

∂2v

∂t2
(z) =

(2− n)µ(n−2)/2[
(µ+ t)2 + |x|2

]n/2 +
n (n− 2)µ(n−2)/2 (µ+ t)2[

(µ+ t)2 + |x|2
]1+n/2

.

Thus, v is a positive solution to the problem∆v = 0 in Rn
+

∂ηv = (n− 2)v2∗−1 on Rn−1.

By applying Lemma 1.2.7, it follows that uλ (z) → 0 as |z| → ∞. Next, choose A > 0

such that ϕ ≡ 0 if |z| ≤ R. Let−∆(Au− v) = 0 in Rn
+

∂η (Au− v) = A
(
λuq−1 − ur−1 − u

)
− (n− 2) v2∗−1 on Rn−1.

By choosing ϕ = (Auλ − v)+ as a test function for this problem, the following holds:∫
|z|≥R

|∇ϕ|2 dz =

∫
|x|≥R

(
λAuq−1 − Aur−1 − Au

)
ϕ dx− (n− 2)

∫
|x|≥R

v2∗−1ϕ dx

≤
∫
|x|≥R

(
λAuq−1 − Aur−1 − Au

)
ϕ dx

≤ 0.

Thus, ϕ ≡ 0 in Rn
+. As a result, it follows that uλ ≤ Cv in Rn

+, which yields the

power-type decay as desired.

The regularity of solutions to Problem (Pλ) is now examined. First, the following

lemma is established.
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Lemma 1.2.9 Let uλ be a nonnegative weak solution of Problem (Pλ) for λ > 0. Then,
for each i = 1, . . . , n, it holds that Diuλ ∈ H1

(
Rn

+

)
.

Proof. Consider the ith-difference quotient of size h defined as

Dh
i u(z) =

u(x+ hei, t)− u(x, t)

|h|
,

for 1 ≤ i < n− 1, and h ∈ R \ {0}, where {e1, . . . , en−1} is the canonical base of Rn−1

(for more details, see [17]). The choice of φ = D−h (Dhu) as a test function in (1)

indicates that ∫
Rn
+

∇u · ∇ (D−h (Dhu)) dz +

∫
Rn−1

u (D−h (Dhu)) dx

=

∫
Rn−1

(
λ |u|q−2 u− |u|r−2 u

)
D−h (Dhu) dx.

Using the definition of Dhu, this expression will be rewritten in a more convenient form

as follows. Initially, it can be noted that

∇u · ∇ (D−h (Dhu)) =
1

|h|
∇u (x+ hei, t) · ∇ (Dhu (x− hei, t))

− 1

|h|
∇u (x+ hei, t) · ∇ (Dhu)

− ∇ (Dhu) · ∇ (Dhu (x− hei, t)) + |∇ (Dhu)|2 .

Rewriting the first expression on the right-hand side above as

1

|h|
∇u (x+ hei, t) · ∇ (Dhu (x− hei, t))

= ∇ (Dhu) · ∇ (Dhu (x− hei, t)) +
1

|h|
∇u · ∇ (Dhu (x− hei, t)) ,

it follows that

∇u · ∇ (D−h (Dhu)) =
1

|h|
∇u · ∇ (Dhu (x− hei, t))−

1

|h|
∇u (x+ hei, t) · ∇ (Dhu)

+ |∇ (Dhu)|2 .

Next, it can be observed that

u (D−h (Dhu)) =
1

|h|
u (x+ hei, t)Dhu (x− hei, t)

− 1

|h|
u (x+ hei, t)Dhu− (Dhu) (Dhu (x− hei, t)) + |Dhu|2 .
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Rewriting the first expression on the right-hand side above as

1

|h|
u (x+ hei, t)Dhu (x− hei, t) =

1

|h|
u ·Dhu (x− hei, t)

+ (Dhu) (Dhu (x− hei, t)) ,

it holds that

u (D−h (Dhu)) =
1

|h|
u ·Dhu (x− hei, t)−

1

|h|
u (x+ hei, t) (Dhu) + |Dhu|2

Furthermore, it can be observed that(
λuq−1 − ur−1

)
D−h (Dhu) =

[
λ

|h|
uq−1 (Dhu (x− hei, t))−

λ

|h|
uq−1Dhu

]
−

[
1

|h|
ur−1 (Dhu (x− hei, t))−

1

|h|
ur−1Dhu

]
.

Hence, the following holds:

1

|h|

∫
Rn
+

∇u · ∇ (Dhu (x− hei, t)) dz −
1

|h|

∫
Rn
+

∇u (x+ hei, t) · ∇ (Dhu) dz

+

∫
Rn
+

|∇ (Dhu)|2 dz +
1

|h|

∫
Rn−1

u (Dhu (x− hei, t)) dx

− 1

|h|

∫
Rn−1

u (x+ hei, t) (Dhu) dx+

∫
Rn−1

|Dhu|2 dx

=
λ

|h|

∫
Rn−1

uq−1 (Dhu (x− hei, t)) dx−
λ

|h|

∫
Rn−1

uq−1Dhu dx

− 1

|h|

∫
Rn−1

ur−1 (Dhu (x− hei, t)) dx+
1

|h|

∫
Rn−1

ur−1Dhu dx,

which implies that∫
Rn
+

|∇ (Dhu)|2 dz +
∫
Rn−1

|Dhu|2 dx

=
1

|h|

∫
Rn
+

∇u (x+ hei, t) · ∇ (Dhu) dz +
1

|h|

∫
Rn−1

u (x+ hei, t) (Dhu) dx

− 1

|h|

∫
Rn−1

(
λuq−1 − ur−1

)
Dhu dx

=
1

|h|

∫
Rn−1

(
λuq−1 (x+ hei, t)− ur−1 (x+ hei, t)

)
Dhu dx

− 1

|h|

∫
Rn−1

(
λuq−1 (x, t)− ur−1 (x, t)

)
Dhu dx

≤ λ

∫
Rn−1

|uq−1 (x+ hei, 0)− uq−1 (x, 0)|
|h|

|Dhu| dx

+

∫
Rn−1

|ur−1 (x+ hei, 0)− ur−1 (x, 0)|
|h|

|Dhu| dx.
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Given that for each a, b ∈ (0,+∞) fixed, there exists θ ∈ (0, 1) such that∣∣ap−1 − bp−1
∣∣ = (p− 1) (θa+ (1− θ) b)p−2 |a− b| .

This implies that

∥Dhu∥2E ≤ λ (q − 1)

∫
Rn−1

(θu (x+ hei, 0) + (1− θ)u (x, 0))q−2 |Dhu|2 dx

+ (r − 1)

∫
Rn−1

(τu (x+ hei, 0) + (1− τ)u (x, 0))r−2 |Dhu|2 dx,

where τ ∈ (0, 1). For fixed Γ1 := ΓR1 (0) ⊂ Rn−1 and Γ2 := ΓR2 (0) ⊂ Rn−1, it can be

observed that ∫
Rn−1

(θu (x+ hei, 0) + (1− θ)u (x, 0))q−2 |Dhu|2 dx

+

∫
Rn−1

(τu (x+ hei, 0) + (1− τ)u (x, 0))r−2 |Dhu|2 dx

≤ 2q−2

∫
Rn−1

(
(u (x+ hei, 0))

q−2 + (u (x, 0))q−2) |Dhu|2 dx

+ 2r−2

∫
Rn−1

(
(u (x+ hei, 0))

r−2 + (u (x, 0))r−2) |Dhu|2 dx

≤ 2q−2

[
∥u∥q−2

L∞(Γ1)

∫
Γ1

|Dhu|2 dx+ ∥u∥q−2
L∞(Γc

1)

∫
Γc
1

|Dhu|2 dx

]

+ 2r−2

[
∥u∥r−2

L∞(Γ2)

∫
Γ2

|Dhu|2 dx+ ∥u∥r−2
L∞(Γc

2)

∫
Γc
2

|Dhu|2 dx

]
,

which implies that

∥Dhu∥2E ≤ λ (q − 1) 2q−2

[
∥u∥q−2

L∞(Rn−1)

∫
Γ1

|Dhu|2 dx+ ∥u∥q−2

L∞(Γc
1)

∫
Rn−1

|Dhu|2 dx
]

+ (r − 1) 2r−2

[
∥u∥r−2

L∞(Rn−1)

∫
Γ2

|Dhu|2 dx+ ∥u∥r−2

L∞(Γc
2)

∫
Rn−1

|Dhu|2 dx
]
.

By Lemma 1.2.9, it is possible to choose Γ1 and Γ2 such that

∥u∥q−2

L∞(Γc
1)

≤ 1

λ (q − 1) 2q−1
and ∥u∥r−2

L∞(Γc
2)

≤ 1

(r − 1) 2r−1
.

Hence, it can be inferred that

∥Dhu∥2E ≤ C
(
r, q, ∥u∥L∞(Rn−1)

)(∫
Γ1

|Dhu|2 dx+
∫
Γ2

|Dhu|2 dx
)
.

Furthermore, since u ∈ C1,α (Γ), it can be concluded that∫
Rn
+

|∇ (Dhu)|2 dz +
∫
Rn−1

|Dhu|2 dx ≤ C. (6)
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Let Dj = ∂
∂xj

for 1 ≤ j ≤ n. Given any φ ∈ C∞
0 (Rn), the definition of weak derivative,

in conjunction with (6), implies that∣∣∣∣∣
∫
Rn
+

u ·D−h

(
Djφ

)
dz

∣∣∣∣∣ =

∣∣∣∣∣
∫
Rn
+

u

(
Djφ (x− hei, t)−Djφ (x, t)

|h|

)
dz

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rn
+

(
Dju (x, t)−Dju (x+ hei, t)

|h|

)
φ (x, t) dz

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rn
+

Dh

(
Dju

)
φ dz

∣∣∣∣∣
≤

∥∥Dh

(
Dju

)∥∥
L2(Rn

+)
∥φ∥L2(Rn

+)

≤ C ∥φ∥L2(Rn
+)
.

By taking the limit as |h| → 0, it can be inferred that∣∣∣∣∣
∫
Rn
+

u ·Di
(
Djφ

)
dz

∣∣∣∣∣ ≤ C ∥φ∥L2(Rn
+)
, (7)

for all 1 ≤ i < n− 1 and 1 ≤ j ≤ n. Finally, selecting φ ∈ C∞
0 (Rn) as a test function

in (1) and applying the inequality∣∣∣∣∣
∫
Rn
+

u ·Dn (Dnφ) dz

∣∣∣∣∣ =

∣∣∣∣∣
∫
Rn
+

Dnu ·Dnφ dz

∣∣∣∣∣
≤

n−1∑
i=1

∣∣∣∣∣
∫
Rn
+

u ·Di,iφ dz

∣∣∣∣∣
≤ C ∥φ∥L2(Rn

+)
,

the result follows by invoking [10, Proposition 9.3].

The following lemma states that the derivatives of a nonnegative weak solution

uλ of Problem (Pλ) exhibit decay. This result is fundamental to the development of

the present study.

Lemma 1.2.10 If uλ ∈ E is a nonnegative weak solution of Problem (Pλ), where
λ > 0, then for each 1 ≤ i ≤ n, it holds that

lim
|z|→∞

∣∣Diuλ(z)
∣∣ = 0, for all z ∈ Rn

+.

Proof. Let 1 ≤ i ≤ n− 1. For each φ ∈ C∞
0 (Rn), the choice of Diφ as a test function

in (1) indicates that∫
Rn
+

∇u · ∇
(
Diφ

)
dz +

∫
Rn−1

u Diφ dx =

∫
Rn−1

(
λuq−1 − ur−1

)
Diφ dx.
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As a consequence of the definition of weak derivative, it can be inferred that∫
Rn
+

∇
(
Diu

)
· ∇φ dz +

∫
Rn−1

(
Diu

)
φ dx =

∫
Rn−1

λ (q − 1)uq−2
(
Diu

)
φ dx

−
∫
Rn−1

(r − 1)ur−2
(
Diu

)
φ dx.

Hence, v = Diu is a weak solution of Problem (AP ), where σ = τ = 1, a = (q − 1)uq−2,

and b = (r − 1)ur−2. Therefore, by Proposition A, Diu ∈ L∞ (Rn
+

)
, and its trace

belongs to L∞ (Rn−1). Now, by choosing φ = η (Diu)
β
± as a test function in (1),

where η ∈ C∞
0 (Rn) and β > 1, the argument follows as in the proof of Lemma 1.2.7,

completing the case 1 ≤ i ≤ n− 1. For the case where i = n, it is noted that

∂

∂ν
(u (x, 0)) = −ut ⇒ ut = −λuq−1 + ur−1 + u ⇒ ∆ut = 0,

that is, ut is a harmonic function. Furthermore,

∂

∂ν
(ut) = −λ (q − 1)uq−2 ∂u

∂ν
+ (r − 1)ur−2 ∂u

∂ν
+
∂u

∂ν

= λ (q − 1)uq−2ut − (r − 1)ur−2ut − ut,

that is,

∂

∂ν
(ut) + ut = λ (q − 1)uq−2ut − (r − 1)ur−2ut.

This implies that∫
Rn−1

φ
∂

∂ν
(ut) dx+

∫
Rn−1

φut dx = λ (q − 1)

∫
Rn−1

(
uq−2ut

)
φ dx

− (r − 1)

∫
Rn−1

(
ur−2ut

)
φ dx.

Since ut is harmonic, it can be deduced that∫
Rn
+

∇φ · ∇ut dz +
∫
Rn−1

utφ dx =

∫
Rn−1

(
λ (q − 1)uq−2ut − (r − 1)ur−2ut

)
φ dx.

Therefore, ut is a weak solution of Problem (AP ), and the proof is concluded.

Corollary 1.2.1 If uλ is a nonnegative weak solution of Problem (Pλ), where λ > 0,
then uλ ∈ C2,α

loc

(
Rn

+

)
∩ C∞ (Rn

+

)
.

Proof. Since uλ is a harmonic function, it is concluded that uλ ∈ C∞ (Rn
+

)
. By Propo-

sition A and regularity results established in [23], it can be inferred that weak solutions
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of Problem (Pλ) belong to C1,α
loc

(
Rn

+

)
. According to Lemma 1.2.9, if v = Diu, then

v is a weak solution of Problem (AP ), which implies that v = Diu ∈ L∞ (Rn
+

)
, with

its trace belonging to L∞ (Rn−1). Moreover, the case i = n was addressed in Lemma

1.2.9. By applying the results from [23], it can be deduced that Diu ∈ C∞ (Rn
+

)
,

thereby concluding the proof.

1.2.5 Symmetry and Exponential Decay

This subsection is dedicated to the proof of Theorem C and Theorem D. The

proof of Theorem C relies on the classical moving plane method, as presented in [32]

(see also [21, 35,40] for related results).

Proof of Theorem C. Let θ > 0 be a real number. Define

Eθ =
{
z ∈ Rn

+ : x1 > θ
}
, Tθ =

{
z ∈ Rn

+ : x1 = θ
}
,

and consider the reflection

z = (x1, . . . , xn−1, t) 7−→ zθ = (2θ − x1, x2, . . . , xn−1, t) ,

where z ∈ Eθ. Let the function wθ be given by

wθ (z) = u
(
zθ
)
− u (z) .

It is observed that if z ∈ Tθ, then u
(
zθ
)
= u (z). It is asserted that there exists θ > 0

such that

wθ (z) > 0 for all z ∈ Eθ. (8)

Indeed, since u (z) → 0 as |z| → ∞, it is possible to choose a sufficiently large θ such

that

wθ (2θ, x2, . . . , t) = u (0, x2, . . . , t)− u (2θ, x2, . . . , t) > 0. (9)

It will be established that (8) holds for this choice of θ. Suppose, for the sake of

contradiction, that there exists zθ ∈ Eθ such that wθ (zθ) ≤ 0. In particular, it is

possible to choose

wθ (zθ) = inf
{
wθ (z) : z ∈ Eθ

}
≤ 0.
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It is claimed that zθ ∈ Rn−1∩Eθ. Otherwise, zθ ∈ Rn
+∩Eθ, and thusB (zθ, 2δ) ⊂ Rn

+∩Eθ

for some δ > 0 sufficiently small. Defining vθ (z) = wθ (z) − wθ (zθ), it follows that

vθ (zθ) = 0, and ∆vθ = 0 in B (zθ, δ)

vθ ≥ 0 in B (zθ, δ) .

By applying Harnack’s inequality, it is obtained that supB(zθ,δ)
vθ = 0. Moreover,

since vθ is harmonic in B (zθ, δ), the strong maximum principle implies that vθ ≡ 0 in

B (zθ, δ). Using unique continuation methods for elliptic equations, it can be concluded

that vθ ≡ 0 in Eθ. Consequently, wθ is a non-positive constant in Eθ, which contradicts

(9). Hence, wθ (z) > 0 for all z ∈ Rn
+ ∩ Eθ, implying that

wθ (z) ≥ 0 ∀z ∈ Eθ ∩ Rn−1.

As a result, zθ ∈ Rn−1 ∩ Eθ and wθ (zθ) = 0. Furthermore, by selecting a ball B ⊂

Rn
+ ∩ Eθ such that zθ ∈ ∂B, the following holds:∆wθ = 0 in B

wθ > 0 in B.

This, in conjunction with Hopf’s lemma, implies that
(

∂wθ

∂ν

)
(zθ) < 0, which leads to a

contradiction with

0 >
∂wθ

∂ν
(zθ) =

∂u

∂ν

(
zθ
)
− ∂u

∂ν
(zθ)

= λ
(
uq−1

(
zθ
)
− uq−1 (zθ)

)
−
(
ur−1

(
zθ
)
− ur−1 (zθ)

)
−
(
u
(
zθ
)
− u (zθ)

)
= 0.

Now, let

θ0 := inf {θ > 0 such that (8) holds} .

It will be proven that θ0 = 0. Suppose, for the sake of contradiction, that θ0 > 0. It is

observed that wθ0 ≡ 0 on Tθ0 and∆wθ0 = 0 in Eθ0

wθ0 > 0 in Eθ0 .
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As a consequence of Hopf’s lemma, it can be concluded that

2ux1 (θ0, x) = −
(
wθ0
)
x1
(θ0, x) < 0, (10)

where x = (x2, . . . , t). Thus, there exists ϵ > 0 such that

2 (θ0 − ϵ)− x1 < θ0 − ϵ < x1 < θ0,

and

wθ0−ϵ (x1, x) = u (2 (θ0 − ϵ)− x1, x)− u (x1, x) > 0.

Consequently, for each (θ0, x) ∈ Tθ0 , there exists δ > 0 such that

wθ0−ϵ (z) > 0 for all z ∈ B ((θ0, x) , δ) ∩
(
Rn

+ \ Eθ0

)
. (11)

It is asserted that there exists ϵ > 0 such that

wθ0−ϵ (z) > 0 for all x ∈ Eθ0−ϵ. (12)

If this were not the case, there exist sequences (θk) ⊂ R+ and (zk) ⊂ Eθk such that

θk → θ0, and

wθk (zk) < 0 with dist (zk, Tθ0) → 0.

The following two cases are examined:

Case 1: There exists a subsequence (zkl) such that zkl → z0 ∈ Tθ0 , which is

impossible due to (11).

Case 2: (zk) satisfies ∥zk∥ → ∞. In this case, by (11), it can be assumed,

without loss of generality, that

wθk (zk) = inf
{
wθk (z) : z ∈ Eθk

}
.

Given that vθk (z) := wθk (z)− wθk (zk), it holds that vθk (zk) = 0, and∆vθk = 0 in B (zk, δk)

vθk > 0 in B (zk, δk) .

As a consequence of the Harnack inequality, vθk ≡ 0 in B (zk, δk). Combined with

unique continuation methods for elliptic equations, this implies that wθk is constant

41



in Eθk , leading to a contradiction with wθk ∈ E. Consequently, the assertion (12)

contradicts the choice of θ0 for θ0 > 0. Thus, it must be that θ0 = 0, and it can be

concluded that

u (−x1, . . . , t) ≥ u (x1, . . . , t) in Rn
+.

An analogous argument establishes that

u (−x1, . . . , t) ≤ u (x1, . . . , t) in Rn
+.

Thus, u is symmetric with respect to the plane T0, and ux1 = 0 on T0. This argument

remains valid after any rotation of coordinate axes in the variables x2, . . . , xn−1.

Finally, by defining u (x, t) = v (ρ, t), where ρ = |x|, it will be demonstrated that

vρ (ρ, t) < 0 for all (ρ, t) ∈ (0,∞) × [0,∞). To this end, it is noted that since u is

symmetric in Rn−1, the reasoning used to derive (10) similarly applies to x2, . . . , xn−1

and all θ > 0. Let x0 ∈ Rn−1 be such that x0 = (x1,0, . . . , xn−1,0) with xi,0 > 0. Noting

that

vρ (ρ0, t) =
n−1∑
i=1

∂u

∂xi
(x0, t) ·

xi,0
|x0|

< 0, ρ0 = |x0| ,

and given that u is symmetric, it follows that vρ (ρ, t) < 0 for all (ρ, t) ∈ (0,+∞) ×

(0,+∞). To complete the proof, it remains to demonstrate that vρ (ρ, 0) < 0 for all

ρ > 0. Suppose, for the sake of contradiction, that vρ (r0, 0) = 0 for some ρ0 > 0. Since

u ∈ C2,α
loc

(
Rn

+

)
∩ C∞ (Rn

+

)
, it can be verified that∆vρ = 0 in B+ (ρ0)

vρ < 0 in B+ (ρ0) ,

where B+ (ρ0) = Bδ (ρ0, 0) ∩ Rn
+ for some δ > 0. By applying Hopf’s lemma, the

following holds:

0 <
∂vρ
∂η

(ρ0, 0) = − (vρ)t (ρ0, 0)

= − (vt)ρ (ρ0, 0)

= − ∂

∂ρ

(
−λvq−1 + vr−1 + v

)
(ρ0, 0)

= vρ (ρ0, 0)
[
λ (q − 1) vq−2 − (r − 1) vr−2 − 1

]
= 0,
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which leads to a contradiction, thereby concluding the proof.

An additional result must be established prior to presenting the demonstration

of the exponential decay of uλ, where λ > 0.

Lemma 1.2.11 Let uλ be a nonnegative weak solution of Problem (Pλ), where λ > 0.
Then, for each s > 0, there exists a constant ci = ci (s) > 0 such that, for every
i = 1, . . . , n− 1, the following holds:

uλ (x1, . . . , xi, . . . , t) ≤ ci
∣∣Diuλ (x1, . . . , xi, . . . , t)

∣∣ , |xi| ≥ s.

Proof. Let i ∈ {1, . . . , n− 1} be fixed, and let s > 0. For each z ∈ Rn
+, define the

function

Di
su (z) :=

D
iu (x1, . . . , xi + s, . . . , t) , xi > 0

Diu (x1, . . . ,−xi + s, . . . , t) , xi ≤ 0.

As a consequence of Theorem C, Diu = uρ · xi

ρ
< 0 for all xi > 0. By combining the

results from Theorem B, it is possible to choose R > 0 and Ai1 := Ai1 (R, s) > 0 such

that

uq−2 (z) ≤ 1

2λ (q − 1)
, for all z ∈ Rn

+, with |z| ≥ R,

and

φi :=
(
Ai1u+Di

su
)
+
≡ 0, for all z ∈ Rn

+, with |z| ≤ R.

Furthermore, the choice of φi as a test function in the problem

−∆
(
Ai1u+Di

su
)
= 0 in Rn

+

with

− ∂

∂t

(
Ai1u+Di

su
)

= λAi1u
q−1 + λ (q − 1)uq−2Di

su−
(
Ai1u

r−1 + (r − 1)ur−2Di
su
)

−
(
Ai1u+Di

su
)

on Rn−1,

results in∫
Rn
+

|∇φi|2 dz =

∫
Rn−1

φi

[
λAi1u

q−1 + λ (q − 1)uq−2Di
su
]
dx

−
∫
Rn−1

φi

[
Ai1u

r−1 + (r − 1)uq−2Di
su
]
dx−

∫
Rn−1

(
Ai1u+Di

su
)
φi dx.
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This implies that∫
Rn
+

|∇φi|2 dz +
∫
Rn−1

φ2
i dx = λ

∫
Rn−1

(
Ai1u

q−1 + (q − 1)uq−2Di
su
)
φi dx

−
∫
Rn−1

(
Ai1u

r−1 + (r − 1)ur−2Di
su
)
φi dx

≤ λ (q − 1)

∫
Rn−1

uq−2
(
Ai1u+Di

su
)
φ dx

−
∫
Rn−1

ur−2
(
Ai1u+Di

su
)
φi dx,

from which it is deduced that∫
Rn
+

|∇φi|2 dz +
∫
Rn−1

φ2
i dx ≤ 1

2

∫
Rn−1

φ2
i dx.

Thus, it can be inferred that

φi ≡ 0 in Rn
+.

Hence, the following inequality holds:

u (x1, . . . , xi, . . . , t) ≤ A−1
i1

(
−Diu (x1, . . . , xi + s, . . . , t)

)
.

Given that Diu (x1, . . . , xi, . . . , t) < 0 for xi > 0, it can be concluded that

u (x1, . . . , xi + s, . . . , t) < u (x1, . . . , xi, . . . , t) ≤ A−1
i1

(
−Diu (x1, . . . , xi + s, . . . , t)

)
.

(13)

Now, for every z ∈ Rn
+, consider the function

Di
−su (z) :=

D
iu (x1, . . . , xi − s, . . . , t) , xi < 0

Diu (x1, . . . ,−xi − s, . . . , t) , xi ≥ 0.

Again, by Theorem C, it is obtained that Diu = uρ · xi

ρ
> 0 for all xi < 0, which, in

conjunction with Theorem B, implies the existence of R > 0 and Ai2 := Ai2 (R, s) > 0

such that

uq−2 (z) ≤ 1

2λ
, for all z ∈ Rn

+, with |z| ≥ R,

and

ϕi :=
(
Ai2u−Di

−su
)
+
≡ 0 for all z ∈ Rn

+, with |z| ≤ R.
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As a consequence of the choice of ϕi as a test function in the problem

−∆
(
Ai2u−Di

−su
)
= 0 in Rn

+,

with

− ∂

∂t

(
Ai2u−Di

−su
)

=
(
λAi2u

q−1 − λ (q − 1)uq−2Di
−su
)

−
(
Ai2u

r−1 − (r − 1)ur−2Di
−su
)

−
(
Ai2u−Di

−su
)

on Rn−1,

the following holds:∫
Rn
+

|∇ϕi|2 dz +

∫
Rn−1

ϕ2
i dx =

∫
Rn−1

(
λAi2u

q−1 − λ (q − 1)uq−2Di
−su
)
ϕi dx

−
∫
Rn−1

(
Ai2u

r−1 − (r − 1)ur−2Di
−su
)
ϕi dx.

Therefore, by applying the same reasoning as in the preceding argument, it is concluded

that ϕi ≡ 0 in Rn
+, which implies that

u (x1, . . . , xi, . . . , t) ≤ A−1
i2
Diu (x1, . . . , xi − s, . . . , t) .

Since Diu (x1, . . . , xi, . . . , t) > 0 for xi < 0, it can be inferred that

u (x1, . . . , xi − s, . . . , t) < u (x1, . . . , xi, . . . , t) ≤ A−1
i2
Diu (x1, . . . , xi − s, . . . , t) (14)

for xi < 0. Thus, by applying inequalities (13) and (14), the desired conclusion is

established.

Proof of Theorem D. Let xi > 0 (1 ≤ i ≤ n− 1). As a consequence of Lemma

1.2.11, the following holds:

∂

∂xi
(ln (u (x1, . . . , xi + s, . . . , t))) =

Diu (x1, . . . , xi + s, . . . , t)

u (x1, . . . , xi + s, . . . , t)
≤ −c−1

i .

By integrating the preceding expression, the following result is obtained:

ln (u (x1, . . . , xi + s, . . . , t))− ln (u (x1, . . . , s, . . . , t)) ≤ −c−1
i xi,

which leads to the inequality

u (x1, . . . , xi + s, . . . , t) ≤ u (x1, . . . , s, . . . , t) exp
(
−c−1

i |xi|
)
, xi > 0. (15)
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Once more, applying Lemma 1.2.11, it is established that

∂

∂xi
(ln (u (x1, . . . , xi − s, . . . , t))) =

Diu (x1, . . . , xi − s, . . . , t)

u (x1, . . . , xi − s, . . . , t)
≥ c−1

i , xi < 0.

As a result of integrating the preceding expression, the following holds

ln (u (x1, . . . ,−s, . . . , t))− ln (u (x1, . . . , xi − s, . . . , t)) ≥ c−1
i (−xi) ,

which implies that

u (x1, . . . , xi − s, . . . , t) ≤ u (x1, . . . ,−s, . . . , t) exp
(
−c−1

i |xi|
)
, xi < 0. (16)

Therefore, from (15)-(16) and Theorem B, it can be concluded that

u (x1, . . . , xi, . . . , t) ≤ c1 ·
1

(1 + t2)(n−2)/2
exp (−c2 |xi|) , |xi| ≥ s > 0.

Thus, the proof is complete.

This section concludes by establishing the lower power-type decay with respect

to the variable t.

Proposition B Let uλ be a nonnegative weak solution of Problem (Pλ), where λ > 0.
For each x ∈ Rn−1 fixed, there exist positive numbers c1, c2 and t0 such that

c1
tn

≤ u (x, t) ≤ c2

(1 + t2)(n−2)/2
for all t ≥ t0.

Proof. By applying the mean value theorem for harmonic functions, it follows that

u (x, t) =
1

wnRn

∫
B((x,t),R)

u (z) dz, for all B ((x, t) , R) ⊂ Rn
+,

where z =
(
x, t
)
, and wn denotes the volume of the unit ball in Rn. It can be assumed

that t > 1. By choosing R = t, the following is obtained:

u (x, t) =
1

wntn

∫
B((x,t),t)

u (z) dz ≥ 1

wntn

∫
B((x,1),1)

u (z) dz =
C(x)

tn
,

for all t ≥ 1. The proof is completed by combining Theorem D with the preceding

results.
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1.3 The Case 2 < q < r < 2∗, λ > 0

In this section, a minimization argument is employed to demonstrate Theorem

E. Let F be a subspace of E defined as:

F :=

{
u ∈ E :

∫
Rn−1

|u|r dx <∞
}
,

endowed by the norm

∥u∥F :=
(
∥u∥2E + ∥u∥2Lr(Rn−1)

)1/2
.

It can be noted that F is a reflexive Banach space, and that the set of the restrictions

to Rn
+ of functions in C∞

0 (Rn) is dense in F . These facts facilitate the establishment of

a natural correspondence between the definition of weak solutions to Problem (Pλ) in

F and the definition provided in (1). In light of Lemma 1.2.1, it can be inferred that

the embedding

F ↪→ Ls
(
Rn−1

)
, 2 ≤ s ≤ 2∗ (17)

is continuous. This implies that the functional Iλ is well-defined in F . Furthermore, it

holds that Iλ ∈ C1 (F ;R).

The development of this section relies on the classical variational theory presented

in [13] (see also [4] for related results). Initially, the following fundamental property of

the energy functional Iλ is demonstrated.

Lemma 1.3.1 Let 2 < q < r < 2∗ and λ > 0. Then there exist ρ > 0 and α > 0 such
that

Iλ (u) ≥ α > 0, for ∥u∥F = ρ.

Proof. Without loss of generality, it can be assumed that

∥u∥2E + ∥u∥2Lr(Rn−1) = ∥u∥2F = ρ2 < 1.

Using Lemma 1.2.1 and (17), it follows that

Iλ (u) ≥ 1

2
∥u∥2E − c1λ

q
∥u∥qE

≥ c2 ∥u∥2F
(
1

2
− c1λ

q
∥u∥q−2

F

)
= c2ρ

2

(
1

2
− c1λ

q
ρq−2

)
,
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where c1 and c2 are positive constants. Hence, it can be concluded that

Iλ (u) > c(ρ)ρ2 > 0.

This leads to the desired result.

The following lemma establishes a significant property associated with the energy

functional Iλ.

Lemma 1.3.2 Let 2 < q < r < 2∗ and λ > 0. Then, there exists Λ > 0 such that

−∞ < inf
∥u∥F≤ρ

Iλ (u) < 0, ∀λ > Λ. (18)

Proof. Let

Λ := inf
∥u∥F≤ρ

{
q

2
∥u∥2E +

q

r
∥u∥rLr(Rn−1) :

∫
Rn−1

|u|q dx = 1

}
.

It is stated that Λ > 0. Indeed, suppose, for the sake of contradiction, that there exists

a sequence (uk) satisfying ∥uk∥F ≤ ρ, such that

q

2
∥uk∥2E +

q

r
∥uk∥rLr(Rn−1) = ok (1) and

∫
Rn−1

|uk|q dx = 1,

where ok (1) → 0 as k → ∞. Consequently, by applying (17), it can be concluded that

1 =

∫
Rn−1

|uk|q dx ≤ c ∥uk∥qF = ok (1) ,

which leads to a contradiction. On the other hand, if λ > Λ, it follows from the

definition of Λ that there exists uλ, satisfying ∥uλ∥F ≤ ρ and
∫
Rn−1 |uλ|q dx = 1, such

that

λ >
q

2
∥uλ∥2E +

q

r
∥uλ∥rLr(Rn−1) .

This implies that

Iλ (uλ) =
1

2
∥uλ∥2E +

1

r
∥uλ∥rLr(Rn−1) −

λ

q

∫
Rn−1

|uλ|q dx < 0,

and consequently, (18) holds.

Lemma 1.3.3 Let 2 < q < r < 2∗ and λ > 0. The energy functional Iλ is weakly
lower semicontinuous in F .
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Proof. Consider a sequence (uk) ⊂ F such that uk ⇀ u weakly in F . The objective is

to establish that

Iλ(u) ≤ lim inf
k→∞

Iλ(uk).

Since the norm ∥ · ∥E arises from an inner product, the map

u 7→ 1

2
∥u∥2E =

1

2

∫
Rn
+

|∇u|2 dz + 1

2

∫
Rn−1

|u|2 dx

is convex and weakly lower semicontinuous in E, and therefore also in F . Hence,

1

2
∥u∥2E ≤ lim inf

k→∞

1

2
∥uk∥2E.

Regarding the nonlinear positive term, it is observed that the function s 7→ (s+)r, where

r ≥ 1, is convex and continuous on R. This implies that the associated functional

u 7→
∫
Rn−1

(
u+
)r

dx

is convex on Lr (Rn−1). Moreover, due to the continuity of the trace embedding F ↪→

Lr(Rn−1), this functional is well-defined and bounded on F , with uk ⇀ u also weakly

in Lr (Rn−1). Consequently, by the weak lower semicontinuity of convex and lower

semicontinuous functionals on reflexive Banach spaces (see [10]), it follows that

1

r

∫
Rn−1

(u+)r dx ≤ lim inf
k→∞

1

r

∫
Rn−1

(u+k )
r dx.

For the last term, it is observed that the embedding F ↪→ Lq(Rn−1) is compact since

q < r < 2∗, which implies strong convergence in Lq. Therefore, u+k → u+ strongly in

Lq(Rn−1), and thus ∫
Rn−1

(u+k )
q dx→

∫
Rn−1

(u+)q dx,

yielding

lim
k→∞

λ

q

∫
Rn−1

(u+k )
q dx =

λ

q

∫
Rn−1

(u+)q dx.

Combining the above estimates gives

lim inf
k→∞

Iλ(uk) ≥ Iλ(u),

which establishes the weak lower semicontinuity of Iλ in F .
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Proof of Theorem E. In accordance with Lemmas 1.3.2, 1.3.3, and [13, Theorem

1.1], there exists uλ ∈ Bρ (0) such that

−∞ < inf
u∈Bρ(0)

Iλ (u) = Iλ (uλ) , for all λ > Λ.

In addition, since Lemma 1.3.1 holds, it follows from [13, Corollary 3.2] that Iλ has a

nontrivial weak solution uλ ∈ Bρ (0) with Iλ (uλ) < 0, for all λ > Λ.

1.4 Nonexistence of solution

This section is dedicated to the proof of Theorem F. The initial segment of the

proof involves adapting a Pohozaev-type identity, as presented in [1, Proposition 5.1],

to validate items 1 and 2. To complete the proof of the theorem, an elementary

mathematical argument is developed, which specifically establishes, for the case where

λ > 0 and 2 < q < r, an interval within which the solution to the problem is the trivial

solution. Following this, a comparison with Theorem E can be made.

Proof of Theorem F. Let uλ be a weak solution of Problem (Pλ). By selecting

ϕ = uλ as a test function in (1), the following expression is obtained:∫
Rn
+

|∇uλ|2 dz +

∫
Rn−1

|uλ|2 dx =

∫
Rn−1

(λ |uλ|q − |uλ|r) dx. (19)

This implies that the inequality

λ ∥uλ∥qLq(Rn−1) ≥ ∥uλ∥rLr(Rn−1) . (20)

is valid. Consequently, if λ ≤ 0, it follows that uλ ≡ 0, thereby proving the validity

of item 1. Consider λ > 0. From this point onward, the notation uλ will be simplified

to u. Through the application of [1, Proposition 5.1], with p = 2, f = 0, and g(s) =

λ |s|q−2 s− |s|r−2 s− s, it can be inferred that

n− 2

2

∫
Rn
+

|∇u|2 dz = (n− 1)

∫
Rn−1

[
λ
|u|q

q
− |u|r

r
− |u|2

2

]
dx. (21)

Incorporating (19) into (21), yields that

λ

(
n− 2

2
− (n− 1)

q

)
∥u∥qLq(Rn−1) +

(
n− 1

r
− (n− 2)

2

)
∥u∥rLr(Rn−1) +

1

2
∥u∥2L2(Rn−1) = 0,
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which implies that

λ

(
n− 1

2
− (n− 1)

q

)
∥u∥qLq(Rn−1) ≤

(
n− 2

2
− (n− 1)

r

)
∥u∥rLr(Rn−1) . (22)

Thus, by applying (20) and (22), item 2 follows. To complete the proof of Theorem F,

consider 2 < q < r < 2∗. Define

A (u) =

∫
Rn−1

|u|q dx and B (u) =

∫
Rn−1

|u|r dx.

It can be noted that expression (19) can be written as

∥u∥2E = λA (u)−B (u) . (23)

By employing interpolation and Lemma 1.2.1, it follows that for q = 2 (1− θ)+θr, the

following is valid:

A (u) =

(∫
Rn−1

|u|2 dx
)(1−θ)(∫

Rn−1

|u|r dx
)θ

≤ ∥u∥2(1−θ)
E (B (u))θ , θ ∈ (0, 1) .

It is observed that

q = 2 (1− θ) + θr ⇒ θ =
q − 2

r − 2
∈ (0, 1) .

This implies that

(A (u))r−2 ≤ ∥u∥2(r−q)
E (B (u))q−2 . (24)

Next, by using (23), it can be deduced that

∥u∥2E = λtq−2A (u)− tr−2B (u) .

Letting G (t, u) = λtq−2A (u)− tr−2B (u), it follows that

lim
t→0+

G (t, u) = lim
t→0+

tq−2
(
λA (u)− tr−qB (u)

)
= 0.

Furthermore, since

Gt (t, u) = λ (q − 2) tq−3A (u)− (r − 2) tr−3B (u) ,

it can be concluded that

Gt (t, u) = 0 ⇐⇒ t =

(
λ
(q − 2)A (u)

(r − 2)B (u)

)1/(r−q)

.
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Set t =
(
λ (q−2)A(u)

(r−2)B(u)

)1/(r−q)

. By applying (24), the following holds:

G
(
t, u
)

= λ
r−2
r−q

(A (u))
r−2
r−q

(B (u))
q−2
r−q

[(
q − 2

r − 2

) q−2
r−q

−
(
q − 2

r − 2

) r−2
r−q

]

≤ λ
r−2
r−q

[(
q − 2

r − 2

) q−2
r−q
(
r − q

r − 2

)]
∥u∥2E .

Thus, by selecting λ
r−2
r−q

[(
q−2
r−2

) q−2
r−q
(
r−q
r−2

)]
< 1, it can be deduced that

G
(
t, u
)
< ∥u∥2E = G (1, u) ,

which is a contradiction, since G
(
t, u
)

is a maximum value of G. It can be concluded

that if

λ <
1[(

q−2
r−2

) q−2
r−2
(
r−q
r−2

)] r−q
r−2

,

Problem (Pλ) admits only the trivial solution, thereby completing the proof.

Figure 1.1 presents a summary of the results discussed in Chapter 1 concerning

the existence and nonexistence of solutions to Problem (Pλ).
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q q = r

r
2 2*

2

2*

1. Only the trivial solution uλ ≡ 0 for all λ ∈(0, λ*), where:    

2. Nontrivial weak solution for λ > Λ.    

Positive ground state solution for all λ > 0. 

Only the trivial solution uλ ≡ 0 for all λ > 0.   

Figure 1.2: Summary - Chapter 1
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Chapter 2

Existence and Concentration of
Positive Harmonic Functions with
Nonlinear Boundary Condition in
Expanding Domains

This chapter presents the findings pertinent to the principal problem addressed

in this work, namely Problem (Pϵ). As outlined in the introduction, this problem

constitutes a concentration problem as ϵ → 0. The primary objective of this chap-

ter is to establish the framework that leads to the proof of Theorem J, which is the

concentration theorem.

Initially, a result concerning the existence of solutions is established, followed by

a comprehensive analysis of the asymptotic behavior of these solutions. It is essential

to note that these results are a crucial part of what is required for the proof of Theorem

J. The chapter will conclude by exploring the scenario in which the domain contracts,

demonstrating that, under these circumstances, the only solution is a constant function.

The chapter commences with an exposition of the fundamental results that es-

tablish a rigorous foundation for subsequent analysis.

2.1 Preliminaries

Let the Hilbert space H1 (Ωϵ) endowed with the inner product

⟨u, v⟩ =
∫
Ωϵ

[∇u∇v + uv] dz,
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and the corresponding norm

∥u∥H1(Ωϵ)
=

(∫
Ωϵ

[
|∇u|2 + |u|2

]
dz

)1/2

.

Consider the energy functional associated with Problem (Pϵ), defined on H1 (Ωϵ) and

denoted by IΩϵ , as follows:

IΩϵ (u) =
1

2

∫
Ωϵ

|∇u|2 dz + 1

2

∫
∂Ωϵ

|u|2 dσ +
1

r

∫
∂Ωϵ

(
u+
)r

dσ − 1

q

∫
∂Ωϵ

(
u+
)q

dσ,

where u+ = max {u, 0}. As a consequence of the Sobolev trace embedding

H1 (Ω) ↪→ Ls (∂Ω) , 1 ≤ s ≤ 2∗, (1)

it can be shown that the functional IΩϵ is well-defined in H1 (Ωϵ). In addition, IΩϵ is

continuous Fréchet differentiable, i.e., C1, and

I
′

Ωϵ
(u)φ =

∫
Ωϵ

∇u∇φ dz +

∫
∂Ωϵ

uφ dσ −
∫
∂Ωϵ

[(
u+
)q−1 −

(
u+
)r−1

]
φ dσ, (2)

for any φ ∈ H1 (Ωϵ). Through standard arguments, it can be demonstrated that the

weak solutions of Problem (Pϵ) correspond to critical points of IΩϵ , and vice versa

(see [34]).

Throughout this chapter, the following equivalent norm on H1 (Ωϵ) is employed:

∥u∥2τ :=

∫
Ω

|∇u|2 dz +
∫
∂Ω

u2dσ.

In accordance with (1), the following result can be established for all 2 ≤ s ≤ 2∗.

Lemma 2.1.1 For some positive constant S = S (Ω), the inequality

S

(∫
∂Ω

|u|s dσ
)2/s

≤
(∫

Ω

|∇u|2 dz +
∫
∂Ω

u2dσ

)
(3)

holds, for all u ∈ H1 (Ω).

Proof. By applying the Sobolev trace embedding and the Poincaré inequality, it

follows that for every u ∈ H1 (Ω),(∫
∂Ω

|u|s dσ

)2/s

≤ c1 ∥u∥2H1(Ω) ≤ c2

(∫
Ω

|∇u|2 dz +

∫
∂Ω

u2 dσ

)
,

where c1 and c2 are positive constants .

In the subsequent lemma, a geometric property of the energy functional IΩϵ is

derived.
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Lemma 2.1.2 For 2 < r < q < 2∗, the functional IΩϵ admits the geometrical mountain-
pass structure on the space H1 (Ωϵ).

Proof. As is [16, Lemma 2.1], it is sufficient to demonstrate that IΩϵ satisfies the

following conditions:

1. IΩϵ(0) = 0;

2. There exist ρ > 0 and α > 0 such that I∂Bρ(0) ≥ α;

3. There exists e ∈ H1 (Ωϵ), with ∥e∥H1(Ωϵ)
> ρ, such that IΩϵ(e) < 0.

Item 1 is evident. To demonstrate item 2, it is observed that for u ∈ H1(Ωϵ),

IΩϵ (u) ≥ ∥u∥2τ
(
1

2
− c

q
∥u∥q−2

τ

)
.

Choose ρ = ∥u∥τ sufficiently small such that the expression(
1

2
− c

q
∥u∥q−2

τ

)
is positive. Thus, it follows that

IΩϵ (u) ≥ ρ2c (ρ) > 0,

and the item 2. is proved. Finally, to prove item 3, it is noted that for u ∈ H1 (Ωϵ)

and t > 0,

IΩϵ (tu) = tq
[
t2−q

2

(∫
Ωϵ

|∇u|2 dx+
∫
∂Ωϵ

|u|2 dσ
)
+
tr−q

r

∫
∂Ωϵ

|u|r dσ − 1

q

∫
∂Ωϵ

|u|q dσ
]
,

which implies that

lim
t→∞

IΩϵ (tu) = −∞,

since 2 < r < q. This validates item 3 and concludes the proof of Lemma 2.1.2.

The following lemma provides a proof that the functional IΩϵ satisfies the well-

known Palais-Smale (PS) condition.

Lemma 2.1.3 Let 2 < r < q < 2∗. Then, any sequence (uk) ⊂ H1 (Ωϵ) such that

IΩϵ (uk) → c and I
′

Ωϵ
(uk) → 0, (4)

has a convergent subsequence.
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Proof. First, it can be observed that

IΩϵ (uk)−
1

q
I

′

Ωϵ
(uk)uk ≥

(
1

2
− 1

q

)
∥u∥2τ .

On the other hand, it is noted that

IΩϵ (uk)−
1

q
I

′

Ωϵ
(uk)uk ≤ |IΩϵ (uk)|+

1

q

∥∥∥I ′

Ωϵ
(uk)

∥∥∥ ∥uk∥H1(Ωϵ)

≤ c+
ϵ

q
∥uk∥τ , k ≥ k0.

Hence, the following inequality holds:(
1

2
− 1

q

)
∥uk∥2τ ≤ ϵ

q
∥uk∥τ + c,

which implies that (uk) is bounded in H1 (Ωϵ). Then, up to a subsequence, uk ⇀ u

weakly in H1 (Ωϵ) and uk → u in Ls (∂Ωϵ), 2 ≤ s < 2∗. Now, it can be observed that

Hölder’s inequality and (4) can be applied to obtain the following:

ok (1) =
(
I

′

Ωϵ
(uk)− I

′

Ωϵ
(u)
)
(uk − u) =

∫
Ωϵ

|∇uk −∇u|2 dz +
∫
∂Ωϵ

|uk − u|2 dσ

−
∫
∂Ωϵ

((
u+k
)q−1 −

(
u+
)q−1

)
(uk − u) dσ

+

∫
∂Ωϵ

((
u+k
)r−1 − (u)r−1

)
(uk − u) dσ

=

∫
Ωϵ

|∇uk −∇u|2 dz +
∫
∂Ωϵ

|uk − u|2 dσ + ok (1) ,

where ok (1) → 0 as k → ∞. Therefore, it follows that

∥uk − u∥τ = ok (1) ,

so that uk → u in H1 (Ωϵ). This concludes the proof.

Given Lemmas 2.1.2 and 2.1.3, and proceeding as in [5], the following proposition

is proved.

Proposition C For each ϵ > 0, the functional IΩϵ has a positive critical point uϵ ∈
H1 (Ωϵ) at the minimax level

cq,r (Ωϵ) = inf
γ∈Γ

max
t∈[0,1]

IΩϵ (γ (t)) > 0,

where

Γ :=
{
γ ∈ C

(
[0, 1] ;H1 (Ωϵ)

)
: γ (0) = 0, γ (1) = e

}
,

with e ∈ H1 (Ωϵ) \ {0}, and IΩϵ (e) ≤ 0.
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Proof. By applying Lemmas 2.1.2, 2.1.3, and the mountain pass lemma [8], uϵ is

obtained. Furthermore, it can be stated that uϵ is nonnegative in Ω. In fact, by

choosing φ = u−ϵ as a test function, the following holds:∫
Ωϵ

∣∣∇u−ϵ ∣∣2 dz + ∫
∂Ωϵ

(
u−ϵ
)2

dσ =

∫
∂Ωϵ

[(
u+ϵ
)q−1

u−ϵ −
(
u+ϵ
)r−1

u−ϵ

]
dσ = 0.

Thus, u−ϵ ≡ 0. Finally, by standard elliptic regularity and maximum principle, it can

be concluded that uϵ > 0 in Ωϵ.

Proposition C demonstrates that Problem (Pϵ) admits a positive mountain-pass

solution. Henceforth, the chapter focuses on establishing that this solution is the

nonconstant least-energy solution.

Let Nϵ be the Nehari manifold associated with IΩϵ , defined by

Nϵ =
{
v ∈ H1 (Ωϵ) \ {0} : I

′

Ωϵ
(v) v = 0

}
.

It is observed that if v ∈ Nϵ, then v+ ̸= 0. Furthermore, it is stated that the function

s 7→ IΩϵ (sv) has a maximum sϵ = sϵ (v) > 0, which is its unique critical point. In fact,

define the function f as follows:

f (s) = IΩϵ (sv) =
s2

2
∥v∥2τ +

sr

r

∫
∂Ωϵ

|v|r dσ − sq

q

∫
∂Ωϵ

|v|q dσ.

It is noted that

f ′ (s) = 0 ⇐⇒ Asq−2 −Bsr−2 = C, (5)

where

A =

∫
∂Ωϵ

|v|q dσ, B =

∫
∂Ωϵ

|v|r dσ, C = ∥v∥2τ .

It can be verified that the equation (5) has a unique solution sϵ = sϵ (v) > 0. Moreover,

f ′′ (s) = (2− q)C + (r − q)B (s)r−2 < 0.

Thus, f (sϵ) = IΩϵ (sϵv) is a maximum value, which implies that sϵv ∈ Nϵ, that is, for

any v ∈ H1 (Ωϵ) \ {0}, there exists a unique sϵ = sϵ (v) > 0 such that sϵv ∈ Nϵ, and

max
s>0

IΩϵ (sv) = IΩϵ (sϵv) .

Given that every admissible path in Γ must intersect Nϵ, it can be inferred that

cq,r(Ωϵ) = inf
v∈Nϵ

IΩϵ(v).

58



Therefore, it can be concluded that the minimax level cq,r (Ωϵ) can be characterized as

follows:

cq,r (Ωϵ) = inf
v∈H1(Ωϵ)\{0}

max
s>0

IΩϵ (sv) .

This characterization aligns more effectively with the objectives of this work. Fur-

thermore, for every nonnegative v ∈ H1 (Ωϵ) \ {0} there exists a unique positive value

sϵ = sϵ (v) such that

cq,r (Ωϵ) ≤ IΩϵ (sϵv) = max
s>0

IΩϵ (sv) . (6)

2.2 The Limit Problem

A fundamental element in the proof that the mountain-pass solution obtained

in Proposition C is nonconstant relies on the knowledge of the existence of a positive

solution to Problem (Pλ), where 2 < r < q < 2∗, with λ = 1. This section addresses

this problem, taking into account the developments made in Chapter 1, Section 1.2.

The definitions introduced in the aforementioned chapter, along with the findings, will

be utilized, adapted to the case λ = 1, which is directly related to Problem (Pϵ). In

this context, the following proposition is formulated.

Proposition D Problem (Pλ), with λ = 1, has a positive solution w ∈ C∞ (Rn
+

)
∩

C2,α
(
Rn

+

)
∩ E such that

1. w = w (x, t) is radially symmetric with respect to the variable x ∈ Rn−1, that is,
w (x, t) = w (ρ, t) if ρ = |x|. Moreover, wρ (ρ, t) < 0 in (0,+∞)× [0,+∞).

2. w has exponential decay in the variable x and lower power-type decay in the
variable t, that is, there exist c1, c2 > 0 such that

w (x, t) ≤ c1
e−c2|x|

(1 + t2)(n−2)/2
,

for all (x, t) ∈ Rn
+.

3. The derivatives of w has exponential decay in the variable x and lower power-type
decay in the variable t, that is, there exist c1, c2 > 0 such that

|∇w (x, t)| ≤ c1
e−c2|x|

(1 + t2)(n−2)/2
,

for all (x, t) ∈ Rn
+.
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Proof. For the proof of items 1 and 2, see Chapter 1. At this point, the proof of item

3 will be presented. The idea of the proof is to show that there exists C > 0 such that

|wρ|+ |wt| ≤ Cw,

and thereby apply item 2. Consider the function v = wρ + Aw, where A is a positive

constant to be chosen later. It is observed that v is a solution to the problem ∆v = 0 in Rn
+

∂ηv + v = wq−2 [(q − 1)wρ + Aw]− wr−2 [(r − 1)wρ + Aw] on Rn−1.
(7)

Let φ1 = (wρ + Aw)− = max {0,− (wρ + Aw)}. Given that w exhibits uniform decay,

it is possible to choose ρ0 > 0 such that

wq−2 (ρ, 0) ≤ 1

2
if ρ ≥ ρ0. (8)

By employing the fact that wρ (ρ, t) < 0 for all (ρ, t) ∈ (0,+∞)× [0,+∞), it is possible

to choose A > 0 sufficiently large such that φ1 ≡ 0 if |(ρ, t)| ≤ R. Then, by choosing

φ1 as a test function to the problem (7) and applying the estimate (8), the following

holds:∫
|z|≥R

|∇φ1|2 dz +
∫
|x|≥R

|φ1|2 dx = −
∫
|x|≥R

φ1

[
wq−2 ((q − 1)wρ + Aw)

]
dx

+

∫
|x|≥R

φ1

[
wr−2 ((r − 1)wρ + Aw)

]
dx

≤ −(r − 1)

2

∫
|x|≥R

|φ1|2 dx+
1

2

∫
|x|≥R

|φ1|2 dx

≤ 1

2

∫
|x|≥R

|φ1|2 dx,

which implies that φ1 ≡ 0 in Rn
+. Hence, it follows that

0 ≤ −wρ (ρ, t) ≤ Aw (ρ, t) . (9)

Now, the decay of the derivative of w with respect to the variable t is established. Let

v = wt − Ãw, where Ã is a positive constant to be chosen later. It is observed that v

is a solution to the problem∆v = 0 in Rn
+

v = wr−1 − wq−1 − w
(
Ã− 1

)
on Rn−1.

(10)
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Since w (ρ, 0) → 0 as ρ→ ∞, it can be concluded that

wt (ρ, 0)− Ãw (ρ, 0) = w (ρ, 0)
[
wr−2 (ρ, 0)− wq−2 (ρ, 0)−

(
Ã− 1

)]
< 0,

where ρ ≥ R1, and Ã > 0 is sufficiently large. Thus, Ã > 0 can be chosen such that

φ2 ≡ 0, for all ρ ≥ 0. By choosing φ2 as a test function for the problem (10), it follows

that ∫
Rn
+

∇
(
wt − Ãw

)
∇φ2 dz =

∫
Rn−1

∂

∂η

(
wt − Ãw

)
φ2 dσ = 0,

which implies that φ2 ≡ 0 on Rn
+, so that wt ≤ Ãw on Rn

+. In particular, the following

inequality holds:

(wt)
+ (ρ, t) ≤ w (ρ, t) , ∀ (ρ, t) ∈ [0,∞)× [0, t) . (11)

Now, let B > 0 be fixed. Set v = −wt −Bw. It is noted that v satisfies the problem∆v = 0 in Rn
+

v = wq−1 − wr−1 − (B + 1)w on Rn−1.
(12)

Again, since w (ρ, 0) → 0 as ρ→ ∞, for any B > 0, it can be deduced that

w (ρ, 0)
[
wq−2 (ρ, 0)− wr−2 (ρ, 0)− (B + 1)

]
< 0, ρ ≥ R2,

which implies that v ≤ 0 for ρ ≥ R2. Thus, it is possible to choose B > 0 sufficiently

large such that

φ3 (ρ, 0) = (−wt (ρ, 0)−Bw (ρ, 0))+ = 0, ρ ≥ 0.

By choosing φ3 as a test function for the problem (12), it follows that∫
Rn
+

∇ (−wt −Bw)∇φ3 dz =

∫
Rn−1

φ3
∂

∂η
(−wt −Bw) dx = 0,

which implies that φ3 ≡ 0 on Rn
+. Hence, the following inequality holds:

(wt)
− ≤ Bw on Rn

+. (13)

Therefore, (9), (11), (13), and item 2 provide evidence.
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2.3 Upper Bound Estimate to cq,r (Ωϵ)

To demonstrate that the mountain-pass solution uϵ is nonconstant for ϵ > 0

sufficiently small (Theorem G), an upper bound estimate to the minimax level cq,r (Ωϵ)

is established. The idea is to consider a positive solution w of Problem (Pλ), where

2 < r < q < 2∗, with λ = 1 and, based on this, construct an appropriate function

vϵ in order to compare the least-energy level cq,r (Ωϵ) with maxs>0 IΩϵ (svϵ) using the

characterization given in (6). To simplify the discussion, it is assumed from this point

forward that Ω is a strictly convex domain. Let w be a positive solution of Problem

(Pλ), where 2 < r < q < 2∗, with λ = 1, and let z0 ∈ ∂Ω be fixed. After an

appropriate rotation and translation of the coordinate system, it is assumed that z0

is the origin and the inner normal to Ω at z0 points in the direction of the positive

t-axis. Furthermore, a C2-function G : Bρ0 → R is found, defined on the ball Bρ0 =

{x = (x1, . . . , xn−1) ∈ Rn−1 : |x| < ρ0}, such that G (0) = 0 and ∇G (0) = 0. Given

that Ω is strictly convex, the following cylinder in Rn is considered:

U = {(x, t) ∈ Rn : |x| ≤ ρ0 and 0 ≤ t ≤ t0} ,

where t0 = min|x|=ρ0 G (x) > 0. It can be observed that

∂Ω ∩ U = {(x, t) : t = G (x)} , and Ω ∩ U = {(x, t) : t > G (x)} ,

that is, Ω ∩ U is the epigraph of the smooth function G. Using the minimax charac-

terization of cq,r (Ωϵ) given in (6) with

vϵ (x, t) = w (ϵ (x, t)− z0) ,

and denoting by H (z) the mean curvature of the boundary at the point z ∈ ∂Ω, the

following proposition can be stated.

Proposition E There exists a positive constant γ, depending on n, q and r, such that

cq,r (Ωϵ) ≤ cq,r
(
Rn

+

)
− ϵγmax

z∈∂Ω
H (z) + o (ϵ) , as ϵ→ 0, (14)

where cq,r
(
Rn

+

)
is the least energy level from the associated functional to Problem (Pλ).

An auxiliary result is first established to prove Proposition E. Let

g (x) := ⟨D2G (0)x, x⟩, x ∈ Rn−1, R1 (ϵ) :=

∫
Ωϵ

|∇w|2 dz −
∫
Rn
+

|∇w|2 dz,
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and

R2 (ϵ) :=

∫
∂Ωϵ

[
w2

2
−
(
wq

q
− wr

r

)]
dσ −

∫
Rn−1

[
w2

2
−
(
wq

q
− wr

r

)]
dx,

where 2 < r < q < 2∗, and let sϵ > 0 be such that

max
s>0

IΩϵ (svϵ) = IΩϵ (sϵvϵ) .

The following lemma may be established.

Lemma 2.3.1 The following estimates hold as ϵ→ 0,

R1 (ϵ) = −ϵ
∫
Rn−1

|∇w (x, 0)|2 g (x) dx+ o (ϵ) ,

R2 (ϵ) = ϵ

∫
Rn−1

w2
t (x, 0) g (x) dx+ o (ϵ) .

Moreover, it follows that
sq−r
ϵ = 1 +O (ϵ) . (15)

Proof. Let the following set be considered:

Uϵ = {(x, t) ∈ Rn : |ϵx| ≤ ρ0 and 0 ≤ ϵt ≤ t0} ,

where t0 = min|x|=ρ0 G (x) > 0. It is observed that

−R1 (ϵ) =

∫
Rn
+\Ωϵ

|∇w|2 dz

=

∫
Rn
+\Uϵ

|∇w|2 dz +
∫
Uϵ\(Ωϵ∩Uϵ)

|∇w|2 dz −
∫
Ωϵ∩(Rn

+\Uϵ)
|∇w|2 dz

= A1 (ϵ) + A2 (ϵ) + A3 (ϵ) .

By Proposition D, there exists a positive constant C = C (n) such that

A1 (ϵ) :=

∫
Rn
+\Uϵ

|∇w|2 dz ≤ C

∫
Rn
+\Uϵ

e−2c2|x|

(1 + t2)n−1dz

≤ C

[∫ ϵ−1ρ0

0

e−2c2ρρn−2dρ

∫ +∞

ϵ−1t0

1

(1 + t2)n−2dt

]

+ C

[∫ +∞

ϵ−1ρ0

e−2c2ρρn−2dρ

∫ +∞

0

1

(1 + t2)n−2dt

]
≤ C

∫ +∞

ϵ−1t0

1

t2n−4
dt+ C

∫ +∞

ϵ−1ρ0

e−2c2ρρn−2dρ

= o (ϵ) .
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Given that
(
Ωϵ ∩

(
Rn

+ \ Uϵ

))
⊂ Rn

+ \ Uϵ, the preceding estimate implies that

A2 (ϵ) := −
∫
Ωϵ∩(Rn

+\Uϵ)
|∇w|2 dz = o (ϵ) .

Let Dϵ = {(x, t) : |ϵx| ≤ ρ0, t0 ≤ ϵt ≤ G (ϵx)} ⊂ Rn
+ \ Uϵ. It is noted that

A3 (ϵ) :=

∫
Uϵ\(Ωϵ∩Uϵ)

|∇w|2 dz

=

∫
|ϵx|≤ρ0

∫ ϵ−1G(ϵx)

0

|∇w (x, t)|2 dtdx−
∫
Dϵ

|∇w|2 dz

=

∫
|ϵx|≤ρ0

∫ ϵ−1G(ϵx)

0

|∇w (x, t)|2 dtdx+ o (ϵ) .

In accordance with the Mean Value Theorem, there exists c ∈ (0, t) such that

|∇w (x, t)|2 = |∇w (x, 0)|2 + 2⟨∇w (x, c) ,∇wt (x, c)⟩t.

Given that G is a C2-function, the Taylor expansion of G around the point 0 can be

written as:

G (x) = G (0) +∇G (0) · x+ 1

2
⟨D2G (0)x, x⟩+R (x) ,

where R (x) represents the remainder term. Since G (0) = 0 and ∇G (0) = 0, and given

that the remainder term R (x) is of the order o
(
|x|2
)

as x approaches 0, it follows that

G(x) can be expressed as G (x) = g (x) + o
(
|x|2
)

. Thus, the following holds:

A3 (ϵ) =

∫
|ϵx|≤ρ0

∫ ϵ−1G(ϵx)

0

|∇w (x, 0)|2 + 2⟨∇w (x, c) ,∇wt (x, c)⟩t dtdx

=

∫
|ϵx|≤ρ0

(
|∇w (x, 0)|2 + ⟨∇w (x, c) ,∇wt (x, c)⟩

) (
ϵg (x) + ϵo

(
|x|2
))

dx

= ϵ

∫
|ϵx|≤ρ0

|∇w (x, 0)|2 g (x) dx+ o (ϵ)

= ϵ

∫
Rn−1

|∇w (x, 0)|2 g (x) dx− ϵ

∫
|ϵx|≥ρ0

|∇w (x, 0)|2 g (x) dx+ o (ϵ) .

By following the procedure used in obtaining the estimate for A1 (ϵ), it can be concluded

that ∫
|ϵx|≥ρ0

|∇w (x, 0)|2 g (x) dx = o (ϵ) ,

which implies that

R1 (ϵ) = −ϵ
∫
Rn−1

|∇w (x, 0)|2 g (x) dx+ o (ϵ) . (16)
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To establish the estimate for R2 (ϵ), it is first expressed as R2 (ϵ) = I2 (ϵ)+Ir (ϵ)−Iq (ϵ),

where

2I2 (ϵ) =

∫
∂Ωϵ

w2 dσ −
∫
Rn−1

w2 dx,

rIr (ϵ) =

∫
∂Ωϵ

wr dσ −
∫
Rn−1

wr dx, and qIq (ϵ) =

∫
∂Ωϵ

wq dσ −
∫
Rn−1

wq dx.

Set Γϵ = ∂Ωϵ ∩ Uϵ. It is observed that

2I2 (ϵ) =

∫
Γϵ

w2 dσ +

∫
∂Ωϵ\Γϵ

w2 dσ −
∫
|ϵx|≤ρ0

w2 (x, 0) dx−
∫
|ϵx|≥ρ0

w2 (x, 0) dx.

The exponential decay of w (x, t) with respect to the variable x leads to the conclusion

that ∫
|ϵx|≥ρ0

w2 (x, 0) dx ≤ c1

∫
|ϵx|≥ρ0

e−2c2|x|dx = c1

∫ +∞

ϵ−1ρ0

e−2c2ρρn−2 dρ = o (ϵ) .

Consider Ω̃ϵ = Ωϵ \ (Ωϵ ∩ Uϵ). It can be deduced from the trace embedding theorem

that ∫
∂Ωϵ\Γϵ

w2 dσ ≤
∫
∂Ω̃ϵ

w2 dσ ≤ S
(
Ω̃ϵ

)
∥w∥2

H1(Ω̃ϵ) ,

where S
(
Ω̃ϵ

)
is bounded, and independent of ϵ. Since

∥w∥2
H1(Ω̃ϵ) =

∫
Ωϵ\(Ωϵ∩Uϵ)

w2 dz +

∫
Ωϵ\(Ωϵ∩Uϵ)

|∇w|2 dz,

the same approach used in the proof of the estimate R1 (ϵ) can be applied to derive

the estimate ∫
∂Ωϵ\Γϵ

w2 dσ = o (ϵ) .

Consequently, the following conclusion can be drawn:

2I2 (ϵ) =

∫
Γϵ

w2 dσ −
∫
|ϵx|≤ρ0

w2 (x, 0) dx+ o (ϵ) .

Let fϵ (s) = w2 (x, sϵ−1G (ϵx))
√
1 + s2 |∇G (ϵx)|2. By employing the mean value the-

orem, it follows that

2I2 (ϵ) =

∫
|ϵx|≤ρ0

w2
(
x, ϵ−1G (ϵx)

)√
1 + |∇G (ϵx)|2 − w2 (x, 0) dx+ o (ϵ)
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=

∫
|ϵx|≤ρ0

[fϵ (1)− fϵ (0)] dx+ o (ϵ)

=

∫
|ϵx|≤ρ0

f
′

ϵ (sϵ) dx+ o (ϵ)

= 2

∫
|ϵx|≤ρ0

w
(
x, sϵϵ

−1G (ϵx)
)
wt

(
x, sϵϵ

−1G (ϵx)
)
ϵ−1G (ϵx)

√
1 + s2ϵ |∇G (ϵx)|2

+ o (ϵ) ,

where 0 < sϵ < 1. Then, by applying the Dominated Convergence Theorem, the

following holds:

I2 (ϵ) = ϵ

∫
Rn−1

w
(
x, sϵϵ

−1G (ϵx)
)
wt

(
x, sϵϵ

−1G (ϵx)
)√

1 + s2ϵ |∇G (ϵx)|2g (x)χ{|ϵx|≤ρ0}

+ o (ϵ)

= ϵ

∫
Rn−1

w (x, 0)wt (x, 0) g (x) dx+ o (ϵ) .

By using an approach entirely analogous to that employed in obtaining the estimate

for I2 (ϵ), the following estimates for Ir (ϵ) and Iq (ϵ) are derived:

Ir (ϵ) = ϵ

∫
Rn−1

w (x, 0)wt (x, 0) g (x) dx+ o (ϵ)

and

Iq (ϵ) = ϵ

∫
Rn−1

wq−1 (x, 0)wt (x, 0) g (x) dx+ o (ϵ) .

Given that w is a solution of Problem (Pλ), it can be concluded that

R2 (ϵ) = ϵ

∫
Rn−1

[
w (x, 0) + wr−1 (x, 0)− wq−1 (x, 0)

]
wt (x, 0) g (x) dx+ o (ϵ)

= ϵ

∫
Rn−1

w2
t (x, 0) g (x) dx+ o (ϵ) .

In order to complete the proof, it is necessary to establish the estimate for sϵ. First, it

is noted that

0 = I
′

Ωϵ
(sϵw) (sϵw)

= s2ϵ

∫
Ωϵ

|∇w|2 dz + s2ϵ

∫
∂Ωϵ

w2dσ − sqϵ

∫
∂Ωϵ

wqdσ + srϵ

∫
∂Ωϵ

wrdσ

that is,

sq−2
ϵ

∫
∂Ωϵ

wqdσ − sr−2
ϵ

∫
∂Ωϵ

wrdσ =

∫
Ωϵ

|∇w|2 dz +
∫
∂Ωϵ

w2dσ. (17)
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On the other hand, since w is a solution of Problem (Pλ), it follows that∫
Ωϵ

|∇w|2 dz +
∫
∂Ωϵ

w2dσ = R1 (ϵ) +

∫
Rn−1

wqdx−
∫
Rn−1

wrdx+ 2I2 (ϵ) . (18)

Furthermore, the following expressions can be written:

sq−2
ϵ

∫
∂Ωϵ

wqdσ = sq−2
ϵ qIq (ϵ) + sq−2

ϵ

∫
Rn−1

wqdx (19)

and

sr−2
ϵ

∫
∂Ωϵ

wrdσ = sr−2
ϵ rIr (ϵ) + sr−2

ϵ

∫
Rn−1

wrdx. (20)

By utilizing the identities (18)-(20), the identity (17) can be expressed in the following

manner:

(
sq−2
ϵ − 1

) ∫
Rn−1

wqdx−
(
sr−2
ϵ − 1

) ∫
Rn−1

wrdx = R1 (ϵ)+2I2 (ϵ)+s
r−2
ϵ rIr (ϵ)−sq−2

ϵ qIq (ϵ)

(21)

Therefore, it can be concluded that

sq−r
ϵ = 1 +O (ϵ) ,

as was intended to be demonstrated.

Proof of Proposition E. Assuming z0 = 0, the estimate provided by (6), with

vϵ (x, t) = w (ϵ (x, t)), indicates that

cq,r (Ωϵ) ≤ IΩϵ (sϵw)

=
s2ϵ
2

[∫
Rn
+

|∇w|2 dz +
∫
Ωϵ

|∇w|2 dz −
∫
Rn
+

|∇w|2 dz

]

+
s2ϵ
2

[∫
Rn−1

w2dx+

∫
∂Ωϵ

w2dσ −
∫
Rn−1

w2dx

]
− sqϵ

q

[∫
Rn−1

(
w+
)q

dx+

∫
∂Ωϵ

(
w+
)q

dσ −
∫
Rn−1

(
w+
)q

dx

]
+

srϵ
r

[∫
Rn−1

(
w+
)r

dx+

∫
∂Ωϵ

(
w+
)r

dσ −
∫
Rn−1

(
w+
)r

dx

]
.

The application of the estimates derived in Lemma 2.3.1, along with the fact that w

is a positive solution of Problem (Pλ), where 2 < r < q < 2∗, with λ = 1, leads to the

conclusion that

cq,r (Ωϵ) ≤ cq,r
(
Rn

+

)
+
R1 (ϵ)

2
+R2 (ϵ) + o (ϵ)
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= cq,r
(
Rn

+

)
− ϵ

∫
Rn−1

(
|∇w (x, 0)|2

2
− w2

t (x, 0)

)
g (x) dx+ o (ϵ) .

Now, some ideas presented in the appendix of [3] are employed. First, it is observed

that

g (x) = ⟨D2G (0)x, x⟩ =
n−1∑
i=1

λix
2
i ,

where λi, i = 1, . . . , n− 1, are the eigenvalues of D2G (x), the Hessian matrix of G at

x. As in [20], the mean curvature of ∂Ω at z = (x, t) is given by

H (z) =
1

n− 1

n−1∑
i=1

λi =
1

n− 1
∆G (x) ,

whenever ∇G (x) = 0. Following the approach in [14], the restricted energy density of

w is defined as

E (w, x) =
|∇w (x, 0)|2

2
− w2

t (x, 0) .

Combining these facts, it can be deduced that∫
Rn−1

E (w, x) g (x) =
n−1∑
i=1

∫
Rn−1

λix
2
iE (w, x) dx.

In accordance with the definition of the mass moment of inertia, the moment of inertia

about the xi-axis, i = 1, . . . , n − 1, and the polar moment of inertia are defined,

respectively, by

Ixi
=

∫
Rn−1

x2iE (w, x) dx, and I0 =
n−1∑
i=1

Ixi
=

n−1∑
i=1

∫
Rn−1

x2iE (w, x) dx.

Using the fact that E (w, x) is a symmetric function, it can be infered that Ix1 = ... =

Ixn−1 , which implies that I0 = (n− 1) Ix1 . Thus, it follows that∫
Rn−1

E (w, x) g (x) dx = Ix1

n−1∑
i=1

λi

= I0
1

n− 1

n−1∑
i=1

λi

=

(∫
Rn−1

E (w, x) |x|2 dx

)
H (z) .

Therefore, the following inequality holds:

cq,r (Ωϵ) ≤ cq,r
(
Rn

+

)
− ϵγH (z) + o (ϵ) ,
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where

γ =

∫
Rn−1

(
|∇w (x, 0)|2

2
− w2

t (x, 0)

)
|x|2 dx.

To conclude the proof of Proposition E, it must be shown that γ is positive. The

procedure used here follows the one in [5, Lemma 8.2]. It is noted that integration by

parts and the fact that w is a solution of Problem (Pλ), where 2 < r < q < 2∗, with

λ = 1, indicate that

0 =

∫
Rn
+

∇w∇φ dz −
∫
Rn−1

φ (−wt) dx.

By choosing φ (x, t) = |x|2wte
θtw+

t , the preceding identity implies that

−
∫
Rn−1

|x|2w2
t dx =

∫
Rn
+

∇w∇φ dz,

where

∇w · ∇φ =

(
|x|2 ∂

∂t

(
|∇w|2

2

))
eθtw

+
t

+
(
2wtx · ∇xw + θ |x|2wt

(
t∇xw∇xw

+
t + wt

(
w+

t + tw+
tt

)))
eθtw

+
t ,

and the notations w+
t = (wt)

+ and w+
tt =

(
w+

t

)
t

are used in the weak sense. Conse-

quently, the following is valid:

γ =

∫
Rn−1

(
|∇w|2

2
− w2

t

)
|x|2 dx

≥
∫
Rn
+

|x|2 ∂
∂t

(
|∇w|2

2

)
eθtw

+
t dz

+

∫
Rn
+

[
2wtx · ∇xw + θ |x|2wt

(
t∇xw∇w+

t + wt

(
w+

t + tw+
tt

))]
eθtw

+
t dz.

Furthermore, by using integration by parts, it can be observed that∫
Rn
+

|x|2 eθtw
+
t
∂

∂t

(
|∇w|2

2

)
dz =

∫
Rn−1

|x|2 |∇w|
2

2
dx−

∫
Rn
+

|x|2 |∇w|
2

2

∂

∂t

(
eθtw

+
t

)
dz

=

∫
Rn
+

∂

∂t

(
|x|2 |∇w|

2

2

)
eθtw

+
t dz.

Hence, it follows that

γ ≥
∫
Rn
+

|x|2∇w · ∇w+
t e

θtw+
t dz +

∫
Rn
+∩{wt<0}

2wtx · ∇xw dz
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+

∫
Rn
+

[
2wtx · ∇xw + θ |x|2wt

(
t∇xw∇w+

t + wt

(
w+

t + tw+
tt

))]
eθtw

+
t dz

=

∫
Rn
+∩{wt<0}

2wtx · ∇xw dz + o (θ) as θ → −∞.

In conclusion, given that x · ∇xw = ρwρ < 0, it can be deduced that γ > 0. This

finding effectively concludes the proof of Proposition E.

Proof of Theorem G. By combining Propositions C and E, it can be concluded that

Theorem G holds.

2.4 Estimates on the Decay of Solutions for Problem
(Pϵ)

This section is dedicated to the formal proof of Theorems H and I. The analysis

commences with the application of the Moser iteration method [26] to establish the

following result concerning the L∞ estimate for solutions of Problem (Pϵ).

Proposition F There exists a constant ϵ0 > 0 and a positive constant C = C (Ω, q, n)

such that for all nonnegative mountain-pass solutions uϵ of Problem (Pϵ) with ϵ ∈
(0, ϵ0), it holds that

1 < sup
Ω

uϵ
(
ϵ−1z

)
≤ C.

Proof. Initially, the first inequality is proven. Let zϵ be such that uϵ = maxΩ uϵ (z). By

applying Hopf’s lemma and using the assumption that uϵ is a nonnegative mountain-

pass solutions uϵ of Problem (Pϵ), it follows that

0 <
∂uϵ
∂η

(zϵ) = uq−1
ϵ (zϵ)− ur−1

ϵ (zϵ)− uϵ (zϵ) .

This implies that uϵ (zϵ) > 1, thereby validating the first inequality. Now, the second

inequality will be established. The procedure applied in the proof is based on the same

ideas used in the proof of Proposition A, Chapter 1. The main steps are as follows.

For each k ∈ N and β > 1, define ϕk = uu
2(β−1)
k , where uk = min {|u| , k}. The choice

of ϕk as a test function in (2) indicates that∫
Ωϵ

u
2(β−1)
k |∇u|2 dz = −2 (β − 1)

∫
Ωϵ

u
2(β−1)−1
k u∇u∇uk dz −

∫
∂Ωϵ

u
2(β−1)
k u2dσ

−
∫
∂Ωϵ

u
2(β−1)
k

(
u+
)r

dσ +

∫
∂Ωϵ

u
2(β−1)
k

(
u+
)q

dσ.
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This implies that ∫
Ωϵ

|uk|2(β−1) |∇u|2 dz ≤
∫
∂Ωϵ

u
2(β−1)
k uq dσ. (22)

By applying the trace embedding theorem, inequality (22), and Holder’s inequality

with exponents 2∗/(q − 2) and 2∗/(2∗ − q + 2), the following holds:[∫
∂Ωϵ

(
uu

(β−1)
k

)2∗
dσ

]2/2∗
≤ c

∫
Ωϵ

∣∣∣∇(uuβ−1
k )

∣∣∣2 dz
≤ cβ2

∫
Ωϵ

u
2(β−1)
k |∇u|2 dz

≤ cβ2

∫
∂Ωϵ

uqu
2(β−1)
k dσ

≤ cβ2

∫
∂Ωϵ

uq−2u2βdσ

≤ cβ2

(∫
∂Ωϵ

u2∗ dσ

) q−2
2∗
(∫

∂Ωϵ

u
22∗β

2∗−q+2 dσ

) 2∗−q+2
2∗

,

where c = c (n) is a constant. By choosing β = (2∗−q+2)/2 and α = (22∗)/(2∗ − q + 2),

it can be concluded that[∫
∂Ωϵ

(
uuβ−1

k

)2∗
dσ

] 2
2∗

≤ cβ2

[∫
∂Ωϵ

u2∗ dσ

] q−2
2∗
[∫

∂Ωϵ

uαβ dσ

] 2β
αβ

≤ cβ2 ∥u∥q−2
L2∗ (∂Ωϵ)

∥u∥2β
Lαβ(∂Ωϵ)

.

It follows from Fatou’s Lemma that

∥u∥L2∗β(∂Ωϵ)
≤ c

(
β2 ∥u∥q−2

L2∗ (∂Ωϵ)

)1/(2β)
∥u∥Lαβ(∂Ωϵ)

. (23)

Given the choice of β0 = β and β1α = 2∗β0 in (23), it follows that

∥u∥L2∗β1 (∂Ωϵ)
≤

(
cβ2

1 ∥u∥
q−2
L2∗ (∂Ωϵ)

) 1
2β1 ∥u∥Lαβ1 (∂Ωϵ)

≤ β
1
β1
1

(
c ∥u∥q−2

L2∗ (∂Ωϵ)

) 1
2β1

(
cβ2

0 ∥u∥
q−2
L2∗ (∂Ωϵ)

) 1
2β0 ∥u∥L(αβ0)(∂Ωϵ)

≤
(
c ∥u∥q−2

L2∗ (∂Ωϵ)

)(1/(2β1)+1/(2β0))

β
1
β1
1 β

1
β0
0 ∥u∥L2∗ (∂Ωϵ)

.

Define βm = (2∗/α)
m β0, m = 1, 2, . . .. By applying an approach similar to the one

employed previously, with the assistance of an iteration process, it can be inferred that

∥u∥L(2∗βm)(∂Ωϵ)

≤
(
c ∥u∥q−2

L2∗ (∂Ωϵ)

) 1
2β0

∑m
i=0(

2∗
α )

−i

β
1
β0

∑m
i=0(

2∗
α )

−i

0

(
2∗
α

) 1
β0

∑m
i=0(

2∗
α )

−i

∥u∥L2∗ (∂Ωϵ)
.
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It is noted that

1

β0

∞∑
i=0

(
2∗
α

)−i

=
2

2∗ − q
,

since

2∗
α

=
2∗(2∗ − q + 2)

22∗
= β > 1.

Consequently, by letting m→ ∞, it can be concluded that

∥u∥L∞(∂Ωϵ)
≤
(
c ∥u∥q−2

L2∗ (∂Ωϵ)

) 1
2∗−q

β
2

2∗−q

0

(
2∗
α

) 2
2∗−q

∥u∥L2∗ (∂Ωϵ)
.

Therefore, u ∈ L∞(∂Ωϵ). Now, let M > 0 be such that ∥u∥L∞(∂Ωϵ)
≤ M . For each

k ∈ N, consider the set

Ωϵ
k =

{
z = (x, t) ∈ Ωϵ : |u(z)| > k

}
.

Given that u ∈ L2∗ (∂Ωϵ), it is observed that

∞ >

∫
Ωϵ

k

|u|2∗ dz ≥
∫
Ωϵ

k

k2∗dz = k2∗ |Ωϵ
k| ,

which implies that Ωϵ
k has finite Lebesgue measure. Define the function ψ as follows:

ψ (z) =

u(z)− k, if z ∈ Ωϵ
k

0, if z ∈ Ωϵ − Ωϵ
k.

It is observed that ∇ψ = ∇u in Ωϵ
k. Furthermore, given the choice of k > M , it can

be deduced that ψ ≡ 0 in ∂Ωϵ. The choice of ψ as a test function implies that∫
Ωϵ

∇u∇ψ dz +

∫
∂Ωϵ

uψ dσ =

∫
∂Ωϵ

[(
u+
)q−1 −

(
u+
)r−1

]
ψ dσ = 0,

from which it can be inferred that∫
Ωϵ

k

|∇u|2 dz = 0.

Thus, u is constant in Ωϵ
k or |Ωϵ

k| = 0. Therefore, it can be concluded that uϵ ∈ L∞ (Ωϵ

)
.

Remark 2.4.1 An important conclusion can be drawn from Proposition F. Let u = c

be an arbitrary constant positive solution to Problem (Pϵ). It is observed that cq−2 −
cr−2 = 1 on the boundary ∂Ωϵ. Through the application of fundamental mathematical
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reasoning, it can be inferred that c > 1. Furthermore, referencing the initial part of the
proof of Proposition F, it can be inferred that

uϵ (zϵ) > 1 and uq−2
ϵ (zϵ)− ur−2

ϵ > cq−2 − cr−2,

where 2 < r < q < 2∗. This leads to the conclusion that uϵ > c. In summary, all non-
negative mountain-pass solutions uϵ of Problem (Pϵ) with ϵ ∈ (0, ϵ0) are nonconstant.

The following lemma establishes that uϵ exhibits uniform decay at infinity. For instruc-

tional purposes, the notation defined next will be introduced:

JA (u) =
1

2

∫
A

|∇u|2 dz + 1

2

∫
∂A

u2 dσ +
1

r

∫
∂A

(
u+
)r

dσ − 1

q

∫
∂A

(
u+
)q

dσ,

where A ⊂ Rn is an open set.

Lemma 2.4.1 For every β > 0, there exists a constant R > 0 such that

uϵ (z) < β whenever |z − zϵ| > R,

where zϵ denotes any maximum point of uϵ in Ωϵ.

Proof. Arguing by contradiction, it is assumed that for some β > 0, there exist

sequences ϵk → 0 and zk ∈ Ωϵk such that∣∣zk − zϵk
∣∣→ ∞ and uϵk

(
zk
)
≥ β. (24)

In this case, it can be asserted that

2cq,r
(
Rn

+

)
≤ lim inf JΩϵk

(uϵk) . (25)

However, this leads to a contradiction, as Proposition E implies that

lim sup JΩϵk
(uϵk) ≤ cq,r

(
Rn

+

)
.

Thus, to complete the proof, it is sufficient to verify the validity of inequality (25).

Given that (uϵk) is uniformly bounded in C1,α
(
Ωϵk

)
, by the application of the Arzelà-

Ascoli theorem, it can be assumed, up to a subsequence that

uϵk (z
ϵk + z) → u (z)

uniformly over compacts subsets of Rn
+. Furthermore, u satisfies the problem ∆u = 0 in Rn

+

∂ηu+ u = uq−1 − ur−1 on Rn−1.
(26)
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Since u (0) = limk→∞ uϵk (z
ϵk) ≥ β, it follows that u ≥ 0, and the maximum principle

ensures that u > 0. Considering that u is a nontrivial solution of (26), it can be

concluded that

cq,r
(
Rn

+

)
≤ JRn

+
(u) = JBR(0)∩Rn

+
(u) + JBc

R(0)∩Rn
+
(u) .

By applying the following identities

lim
R→∞

JBc
R(0)∩Rn

+
(u) = 0 and lim

k→∞
JBR(0)∩Rn

+
(uϵk) = JBR(0)∩Rn

+
(u) ,

and given δ > 0, for sufficiently large values of R, the subsequent estimate is valid:

lim
k→∞

JBR(zϵk )∩Ωϵk
(uϵk) ≥

cq,r
(
Rn

+

)
2

− δ.

Similarly, it can be deduced that

lim
k→∞

JBR(zk)∩Ωϵk
(uϵk) ≥

cq,r
(
Rn

+

)
2

− δ.

Consider R > 0 and a smooth cut-off function φk
R such that 0 ≤ φk

R ≤ 1 and
∣∣∇φk

R

∣∣ ≤
C, where C is independent of R and k, and φk

R satisfies the following conditions:

φk
R = 0 on BR−1 (z

ϵk) ∩BR−1

(
zk
)

and

φk
R ≡ 1 on Rn

+ \
(
BR (zϵk) ∪BR

(
zk
))
.

By choosing wϵk = φk
Ruϵk as a test function in the equation J ′

Ωϵk
(uϵk) = 0, and defining

the set

Ak
R :=

{
z ∈ Ωϵk : R− 1 < |z − zϵk | < R or R− 1 <

∣∣z − zk
∣∣ < R

}
,

it follows that

0 = J
′

Ωϵk
(uϵk)wϵk

= J
′

Ωϵk
∩Ak

R
(uϵk)wϵk + J

′

Ωϵk
\(BR(zϵk )∪BR(zk))

(uϵk)wϵk

= J
′

Ωϵk
∩Ak

R
(uϵk)wϵk + 2JΩϵk

\(BR(zϵk )∪BR(zk)) (uϵk)− 2JΩϵk
\(BR(zϵk )∪BR(zk)) (uϵk)

+ J
′

Ωϵk
\(BR(zϵk )∪BR(zk))

(uϵk)wϵk .
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By employing the definitions of JA and J
′
A, the terms outlined previously may be

expressed in the following manner:

J
′

Ωϵk
∩Ak

R
(uϵk)wϵk =

∫
Ωϵk

∩Ak
R

∇uϵk∇
(
φk
Ruϵk

)
dz +

∫
∂Ωϵk

∩Ak
R

φk
Ru

2
ϵk

dσ

−
∫
∂Ωϵk

∩Ak
R

φk
Ru

q
ϵk

dσ +

∫
∂Ωϵk

∩Ak
R

φk
Ru

r
ϵk

dσ;

−2JΩϵk
\(BR(zϵk )∪BR(zk)) (uϵk) = −2

r

∫
∂Ωϵk

\(BR(zϵk )∪BR(zk))
urϵk dσ

+
2

q

∫
∂Ωϵk

\(BR(zϵk )∪BR(zk))
uqϵk dσ;

J
′

Ωϵk
\(BR(zϵk )∪BR(zk))

(uϵk)wϵk = −
∫
∂Ωϵk

\(BR(zϵk )∪BR(zk))
uq−1
ϵk

wϵk dσ

+

∫
∂Ωϵk

\(BR(zϵk )∪BR(zk))
ur−1
ϵk

wϵk dσ.

Consequently, considering these facts, the following is valid:

0 = Ẽϵk + 2JΩϵk
\(BR(zϵk )∪BR(zk)) (uϵk)

+

(
2

q
− 1

)∫
∂Ωϵk

\(BR(zϵk )∪BR(zk))
uqϵk dσ +

(
1− 2

r

)∫
∂Ωϵk

\(BR(zϵk )∪BR(zk))
urϵk dσ

≤ Ẽϵk −
∫
∂Ωϵk

∩Ak
R

φk
Ru

q
ϵk

dσ + 2JΩϵk
\(BR(zϵk )∪BR(zk)) (uϵk)

+ 2
(r − q)

rq

∫
∂Ωϵk

\(BR(zϵk )∪BR(zk))
uqϵk dσ,

where

Ẽϵk =

∫
Ωϵk

∩Ak
R

∇uϵk∇
(
φk
Ruϵk

)
dz +

∫
∂Ωϵk

∩Ak
R

φk
Ru

2
ϵk

dσ +

∫
∂Ωϵk

∩Ak
R

φk
Ru

r
ϵk

dσ

−
∫
∂Ωϵk

∩Ak
R

φk
Ru

q
ϵk

dσ.

Given that 2 < r < q, the following statement holds:

0 ≤ Ẽϵk + 2JΩϵk
\(BR(zϵk )∪BR(zk)) (uϵk) .

Furthermore, it can be observed that Ẽϵk → 0. Thus, it follows that

JΩϵk
\(BR(zϵk )∪BR(zk)) (uϵk) ≥ −δ.
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Conversely,

JΩϵk
(uϵk) = JΩϵk

∩BR(zϵk ) (uϵk) + JΩϵk
∩BR(zk) (uϵk) + JΩϵk

\(BR(zϵk )∪BR(zk)) (uϵk)

≥ 2cq,r
(
Rn

+

)
− δ,

which implies estimate (25). Therefore, the proof is complete.

In order to prove Theorem H, it is necessary to introduce a function U , which

will be defined as follows:

U (z) =
(
1 + |z|2

)(2−n)/2
.

It can be observed that

−∆U = n (n− 2)U (n+2)/(n−2) in Rn.

Proof of Theorem H. Consider the function Wϵ (z) =
uϵ(z)
U(z)

in Ωϵ. The aim of the

proof is to show that Wϵ (z) is uniformly bounded, meaning that for ϵ > 0, there exists

a constant M > 0 such that

|uϵ (z)| ≤MU (z) ,

and this leads to the conclusion that

uϵ (z) ≤
M(

1 + |z|2
)n−2

2

.

Initially, it can be observed that

∂Wϵ

∂zi
(z) =

1

U (z)

∂uϵ
∂zi

− 1

U (z)

∂U

∂zi
Wϵ (z) ,

and

∂2Wϵ

∂z2i
(z) =

U (z) ∂2uϵ

∂z2i
− ∂uϵ

∂zi

∂U
∂zi

U2 (z)

−

U (z)
[
∂2U
∂zi
Wϵ (z) +

∂U
∂zi

∂Wϵ

∂zi

]
− ∂U

∂zi
Wϵ (z)

∂U
∂zi

U2 (z)

 .

This implies that

−∆Wϵ (z) =
1

U2 (z)

n∑
i=1

∂uϵ
∂zi

∂U

∂zi
+

1

U (z)
Wϵ (z)∆U +

1

U (z)

n∑
i=1

∂U

∂zi

∂Wϵ

∂zi
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− Wϵ (z)

U2 (z)

n∑
i=1

(
∂U

∂zi

)2

.

Given that

1

U2 (z)

n∑
i=1

∂uϵ
∂zi

∂U

∂zi
=

1

U (z)

n∑
i=1

∂U

∂zi

∂Wϵ

∂zi
+
Wϵ (z)

U2 (z)

n∑
i=1

(
∂U

∂zi

)2

,

it follows that

−∆Wϵ =
1

U (z)

n∑
i=1

∂U

∂zi

∂Wϵ

∂zi
+

1

U (z)
∆UWϵ (z) +

1

U (z)

n∑
i=1

∂U

∂zi

∂Wϵ

∂zi
,

which can be rewritten as

−∆Wϵ −
n∑

i=1

bi (z)
∂Wϵ

∂zi
+ a (z)Wϵ (z) = 0,

where

bi (z) =
2

U (z)

∂U

∂zi
= −2 (n− 2) zi

1 + |z|2
, i = 1, 2, . . . , n

and

a (z) = − ∆U

U (z)
=

n (n− 2)(
1 + |z|2

)2 , z ∈ Ωϵ.

Furthermore, it is noted that

∂ηWϵ =
1

U (z)
∂ηuϵ −

1

U (z)
Wϵ (z) ∂ηU

=
1

U (z)

(
uq−1
ϵ − ur−1

ϵ − uϵ
)
−
(

1

U (z)
∂ηU

)
Wϵ (z) ,

which can be written as

∂ηWϵ + g1 (z)Wϵ (z)− g2 (z)W
q−1
ϵ + g3 (z)W

r−1
ϵ = 0,

where

g1 (z) = 1 +
1

U (z)
∂ηU, g2 (z) = U q−2 (z) and g3 (z) = U r−2 (z) .

Thus, Wϵ is a solution of the problem
−∆Wϵ −

n∑
i=1

bi (z)
∂Wϵ

∂zi
+ a (z)Wϵ = 0 in Ωϵ

∂ηWϵ + g1 (z)Wϵ − g2 (z)W
q−1
ϵ + g3 (z)W

r−1
ϵ = 0 on ∂Ωϵ,

(27)
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where

bi (z) = −2 (n− 2) zi

1 + |z|2
(i = 1, . . . , n) , a (z) =

n (n− 2)(
1 + |z|2

)2 , z ∈ Ωϵ,

|g1 (z)| =
∣∣∣∣1 + 1

U (z)
∂ηU

∣∣∣∣ ≤
(
1 +

n− 2(
1 + |z|2

) |z|) , g2 (z) = U q−2 (z) ,

and

g3 (z) = U r−2 (z) .

It can be observed that there exists a constant C > 0, independent of ϵ, such that

∥a∥L∞(Ωϵ)
, ∥bi∥L∞(Ωϵ)

, ∥gj∥L∞(Ωϵ)
≤ C, j = 1, 2, 3,

for all i = 1, 2, . . . , n. Suppose, for the sake of contradiction, that there exists a

sequence zϵ ∈ Ωϵ such that Wϵ (zϵ) → ∞. In accordance with the weak maximum

principle, it can be assumed that zϵ ∈ ∂Ωϵ for all ϵ > 0. Define Mϵ = Wϵ (zϵ). Two

cases need to be considered:

Case 1 (zϵ) is bounded. In this scenario, consider

W̃ϵ (z) =
Wϵ (zϵ +Mα

ϵ z)

Mϵ

, z ∈ Ω̃ϵ :=M−α
ϵ (Ωϵ − zϵ) , α =

2− q

2
.

Since
∥∥∥W̃ϵ

∥∥∥
L∞(Ωϵ)

≤ C, (independent of ϵ), it can be derived from a regularity result

established by Lieberman [23] that∥∥∥W̃ϵ

∥∥∥
C1,β(Ω̃ϵ)

≤ C, (28)

for some 0 < β < 1 and C being a positive constant independent of ϵ. Straightening

the boundary in a neighborhood of zϵ, it can be shown that Ω̃ϵ → Rn
+ as ϵ→ 0. Using

(28) and the Arzela-Ascoli theorem, it follows that there exists a nonnegative function

W̃ ∈ C1,β/2
(
Rn

+

)
such that

lim
ϵ→0

W̃ϵ (z) = W̃ (z) ≥ 0 and W̃ (0) = 1. (29)

Given that the sequence (zϵ) is bounded, it can be assumed that limϵ→0 zϵ = 0 ∈ ∂Ω.

Thus, it can be deduced that the following statements hold on any compact subset of

Rn
+:

lim
ϵ→0

a (zϵ +Mα
ϵ z) = a (0) , lim

ϵ→0
bi (zϵ +Mα

ϵ ) = bi (0) , i = 1, 2, . . . , n (30)
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and

lim
ϵ→0

gj (zϵ +Mα
ϵ z) = gj (0) , j = 1, 2, 3. (31)

By applying (27)-(31)), it can be verified that the limit function W̃ , which is nonneg-

ative, satisfies the following limit problem∆W̃ − n (n− 2) W̃ = 0 in Rn
+

W̃ q−1 = 0 on Rn−1.

This leads to a contradiction with (29).

Case 2. There exists a sequence (zϵk) such that |zϵk | → ∞. In this scenario,

consider

vϵk (z) =
Wϵk (zϵk + z)

Mϵk

, z ∈ Ω̃ϵk = Ωϵk − zϵk ,

where Mϵk = Wϵk (zϵk) =
uϵk(zϵk)
U(zϵk)

. It can be inferred that Mϵk → ∞ and ∥vϵk∥L∞(Ω̃ϵk)
≤

1. Furthermore, it is noted that vϵk satisfies the problem
−∆vϵk −

n∑
i=1

bi (zϵk + z)
∂vϵk
∂zi

+ a (zϵk + z) vϵk (z) = 0, in Ω̃ϵk

∂ηvϵk + g1 (zϵk + z) vϵk (z)−
[
uq−2
ϵk

(zϵ + z)− ur−2
ϵk

(zϵk + z)
]
vϵk (z) = 0, on ∂Ω̃ϵk .

As a result of uθ−2
ϵk

(zϵk + z) → 0 (where θ = r or q), an analogous approach to the one

previously used leads to the conclusion that

vϵk → v ∈ C1,β/2
(
Rn

+

)
, lim

k→∞
vϵk (z) = v (z) , v (0) = 1,

and −∆v = 0 in Rn
+

∂ηv = −v on Rn−1.

Conversely, by applying Hopf’s lemma at z0 = 0, it can be concluded that

0 < ∂ηv = −v < 0,

which leads to a contradiction. Therefore, the proof is complete.

To conclude the section, the proof of Theorem I is presented. An auxiliary func-

tion v is used, and its definition is given by:

v (x, t) = φ0 (x)ψ0 (t) ,
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where

φ0 (x) := e−α|x| and ψ0 (t) :=

(
1

1 + t2

)(n−2)/2

,

with α being a positive constant that will be chosen later.

Proof of Theorem I. Initially, it can be verified that

∂v

∂xi
(x, t) =

(
−α xi

|x|

)
v (x, t) ,

∂v

∂t
(x, t) =

(
(2− n)t

1 + t2

)
v (x, t) ,

∂2v

∂x2i
(x, t) =

[
(−α)
|x|

+ α
x2i
|x|3

+ α2 x
2
i

|x|2

]
v (x, t) ,

and

∂2v

∂t2
(x, t) =

[
(2− n)

1 + t2
+ n(n− 2)

t2

(1 + t2)2

]
v (x, t) ,

where i = 1, . . . , n− 1 and t ∈ R. Thus, it can be concluded that

−∆v + c (x, t) v = 0, x ∈ Rn−1 \ {0} , t ∈ R,

where

c (x, t) = −α(n− 2)

|x|
+ α2 +

(n− 2)

(1 + t2)2
[
(n− 1) t2 − 1

]
.

Next, consider Vϵ = uϵ/v. It is observed that

∂Vϵ
∂xi

=
1

v

∂uϵ
∂xi

− 1

v

∂v

∂xi
Vϵ,

∂Vϵ
∂t

=
1

v

∂uϵ
∂t

− 1

v

∂v

∂t
Vϵ,

∂2Vϵ
∂x2i

=
1

v

∂2uϵ
∂x2i

− 1

v2
∂uϵ
∂xi

∂v

∂xi
− 1

v

∂2v

∂x2i
Vϵ −

1

v

∂v

∂xi

∂Vϵ
∂xi

+
1

v2

(
∂v

∂xi

)2

Vϵ,

and

∂2Vϵ
∂t2

=
1

v

∂2uϵ
∂t2

− 1

v2
∂uϵ
∂t

∂v

∂t
− 1

v

∂2v

∂t2
Vϵ −

1

v

∂v

∂t

∂Vϵ
∂t

+
1

v2

(
∂v

∂t

)2

Vϵ.

Consequently, the following statement holds:

−∆Vϵ −
1

v
∇v · ∇Vϵ − c (x, t)Vϵ =

1

v2
∇uϵ · ∇v −

1

v2
Vϵ

n∑
i=1

(
∂v

∂zi

)2

. (32)

Given that

1

v2
∇uϵ · ∇v =

∇v · ∇Vϵ
v

+
1

v2
Vϵ |∇v|2 ,
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it can be concluded by (32) that

−∆Vϵ − 2
∇v · ∇Vϵ

v
− c (x, t)Vϵ = 0, Ωϵ \ {0} ,

that is,

−∆Vϵ + 2α
n−1∑
i=1

xi
|x|

∂Vϵ
∂xi

+
2 (n− 2) t

1 + t2
∂Vϵ
∂t

− c (x, t)Vϵ = 0, Ωϵ \ {0} .

Define the set

Aϵ =
{
(x, t) ∈ Rn

+ : |x| ≥ 1, t ≥ 0
}
∩ Ωϵ.

It is claimed that there exists C > 0 independent of ϵ such that

∥Vϵ∥L∞(Aϵ)
≤ C. (33)

Assume, for the sake of contradiction, that the inequality (33) is not valid. It means

that there exists yϵ = (xϵ, tϵ) ∈ Aϵ such that Vϵ (yϵ) → ∞. From Theorem H, it can be

deduced that |yϵ| → +∞. Let ηϵ = (η1 (ϵ) , ..., ηn−1 (ϵ) , ηtϵ) ∈ Rn be the unit outward

normal to ∂Ωϵ at (xϵ, tϵ). As a result of applying Hopf’s lemma, it is concluded that

∂ηϵVϵ (yϵ) > 0. Conversely, for sufficiently small positive ϵ, the following statement

holds:

∂ηϵVϵ (yϵ) =
1

v

[
∇uϵ · ηϵ −

uϵ
v
(∇v · ηϵ)

]
≤ 0, (34)

which leads to a contradiction. Therefore, to conclude the proof of the theorem, it

suffices to verify that the inequality (34) holds. It is noted that

∂ηϵVϵ (yϵ) =
1

v

[
∂ηϵuϵ −

uϵ
v
(∇v · ηϵ)

]
=

1

v

[(
uq−1
ϵ − ur−1

ϵ − uϵ
)
+ uϵ

(
α

n−1∑
i=1

xi,ϵ
|xϵ|

ηi (ϵ) +
(n− 2)tϵ
1 + t2ϵ

ηtϵ

)]

≤ Vϵ

[
uq−2
ϵ − 1 + α + (n− 2)

tϵ
1 + t2ϵ

ηtϵ

]
.

Since Ω is strictly convex, it follows that tϵ → ∞ as ϵ → 0. Thus, it is possible to

select a sufficiently small α > 0 such that

uq−2
ϵ − 1 + α + (n− 2)

tϵ
1 + t2ϵ

ηtϵ ≤ −1

2
(35)

which completes the proof of inequality (34). Therefore, the proof of Theorem I is

complete.
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2.5 Lower Bound Estimate

This section is devoted to completing the proof of Theorem J. For this pur-

pose, a critical estimate concerning the minimax level cq,r (Ωϵ) will be established in

Proposition G, presented below. The discussion commences with the introduction of

appropriate notation.

For any sequence ϵk → 0, consider uk = uϵk the solution of (Pϵk) as given in

Proposition C. Let zk := zϵk ∈ ∂Ωϵk be chosen such that

uk (zk) = max
z∈Ωϵk

uk (z) .

Given that uk is harmonic in Ωϵk , the maximum principle implies that the maximum

of uk in Ωϵk must occur on ∂Ωϵk . With these notations, the following estimate can be

derived.

Proposition G There exists k0 such that, for all k ≥ k0, the following holds

cq,r (Ωϵk) ≥ cq,r
(
Rn

+

)
− ϵkγH (ϵkzk) + o (ϵk) . (38)

Proof. Let the sequence yk = ϵkzk. Based on the considerations presented at the

beginning of the section, it can be assumed, up to a subsequence, that there exists

z ∈ ∂Ω such that yk → z. Define uk (y) = uϵk (y + yk) , y ∈ Ωϵk \ {yk}. Following the

approach in [3] (see also [15]), after applying suitable rotation and translation, it can

be assumed that z = 0 and Ω ⊂ Rn
+ can be described in a fixed neighborhood U of z as

the set {(x, t) : t > Gk (x)} with Gk smooth, Gk (0) = 0, and ∇Gk (0) = 0. Moreover,

Gk can be chosen such that it converges in C2
loc-topology to G, the corresponding

parametrization of ∂Ω at z. Let Ωk = Ωϵk and Uk = ϵ−1
k U , and define

Vk := {(x, t) ∈ Rn : |ϵkx| ≤ ρ0 and 0 ≤ ϵkt ≤ tk} ⊂ Uk,

where tk = min|x|=ρ0 Gk (x) > 0. In view of the fact that

cq,r (Ωk) = IΩk
(uk) ≥ IΩk

(suk) ,

for all s > 0, and considering

IVk
(uk) =

1

2

∫
Vk∩Ωk

|∇uk|2 dz +
1

2

∫
Γk

|uk|2 dσ +
1

r

∫
Γk

|uk|r dσ − 1

q

∫
Γk

|uk|q dσ,
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where Γk = Vk ∩ ∂Ωk, it can be observed that

IVk∩Ωk
(suk) = IΩk

(suk)− IΩk\(Ωk∩Vk) (suk) ≤ cq,r (Ωk)− IΩk\(Ωk∩Vk) (suk) .

By employing the decay of uk, it can be concluded that

cq,r (Ωk) ≥ IVk∩Ωk
(suk) + o (ϵk) ,

for all s > 0. Next, let uk (x, t) denote the extension of uk to Vk, defined as follows:

uk (x, t) = uk (x, t) if ϵkt ≥ Gk (ϵkx) ,

and

uk (x, t) = uk
(
x, ϵ−1

k Gk (ϵkx)
)
+ (Gk (ϵkx)− ϵkt) [u

q
k (x,Gk (ϵkx))− uk (x,Gk (ϵkx))]

+ (Gk (ϵkx)− ϵkt) [u
r
k (x,Gk (ϵkx))− uk (x,Gk (ϵkx))] ,

if ϵkt < Gk (ϵkx). By the same reasoning as before, applying the decay of uk, the

following inequality holds:

cq,r (Ωk) ≥ IVk
(suk)− IVk\(Vk∩Ωk) (suk) + o (k) .

Passing to a subsequence, it can be assumed that uk → w in H1, where w is a least-

energy solution to Problem (Pλ), where 2 < r < q < 2∗, with λ = 1. Let sk > 0 be

such that

IVk
(skuk) = sup

s>0
IVk

(suk) .

By employing the definition of supremum and the definition of IVk
, it follows that(

s2k/2− sqk/q + 1/q − 1/2

s2k/2− srk/r + 1/r − 1/2

)∫
∂Vk

|uk|q dσ ≥
∫
∂Vk

|uk|r dσ,

which leads to the conclusion that sk → 1. Additionally, it is observed that IVk
(skuk) ≥

cq,r
(
Rn

+

)
+ o (k). From these facts, it follows that

cq,r (Ωk) ≥ cq,r
(
Rn

+

)
−R1 (k) +R2 (k) + o (ϵk) , (39)

where

R1 (k) :=
1

2

∫
Vk\(Vk∩Ωk)

|∇uk|2 dz,
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and

R2 (k) :=
1

q

∫
Γk

|skuk|q dσ − 1

r

∫
Γk

|skuk|r dσ − 1

2

∫
Γk

|skuk|2 dσ.

Thus, the same approach as in the proof of Lemma 2.3.1 can be followed to obtain the

estimates

R1 (k) = −ϵk
∫
Rn−1

|∇w (x, 0)|2 g (x) dx+ o (ϵk) ,

R2 (k) = ϵk

∫
Rn−1

w2
t (x, 0) g (x) dx+ o (ϵk) ,

which, together with (39), implies that estimate (38) holds. Hence, it follows that

cq,r (Ωk) ≥ cq,r
(
Rn

+

)
− ϵk

∫
Rn−1

[
|∇w (x, 0)|2

2
− w2

t (x, 0)

]
g (x) dx+ o (ϵk) ,

and by proceeding as in the proof of Proposition E, the following inequality holds:

cq,r (Ωk) ≥ cq,r
(
Rn

+

)
− ϵkγH (ϵkzϵk) + o (ϵk) ,

which completes the proof.

To conclude the section, the proof of Theorem J is presented.

Proof of Theorem J. The propositions E and G establish that

cq,r (Ωϵ) ≤ cq,r
(
Rn

+

)
− ϵγmax

z∈∂Ω
H (z) + o (ϵ) , as ϵ→ 0

and

cq,r (Ωϵk) ≥ cq,r
(
Rn

+

)
− ϵkγH (ϵkzk) + o (ϵk) , as ϵk → 0.

Furthermore, in Proposition G, it was shown that there exists z ∈ ∂Ω such that

yk = ϵkzk → z. It is stated that H (z) ≥ H (z), for all z ∈ ∂Ω. In fact, since γ > 0, the

following holds:

cq,r (Ωϵ) ≤ cq,r
(
Rn

+

)
− ϵγmax

z∈∂Ω
H (z) + o (ϵ)

≤ cq,r
(
Rn

+

)
− ϵγH (z) + o (ϵ)

≤ cq,r (Ωϵ) + ϵγH (z)− ϵγH (z) + o (ϵ) ,

which implies that H (z) ≥ H (z), for all z ∈ ∂Ω. Therefore, it can be concluded that

H (ϵkzk) → max
z∈∂Ω

H (z) ,

which, combined with propositions E and G, completes the proof of Theorem J.
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2.6 Nonexistence Result

This section is dedicated to proving Theorem K. Let u denote the average of u

over ∂Ω, which is defined by the expression:

u =
1

|∂Ω|

∫
∂Ω

u dσ.

The following Poincaré inequality can be established.

Lemma 2.6.1 There exists a constant C, depending only on n, such that

∥u− u∥L2(∂Ω) ≤ C ∥∇u∥L2(Ω) , ∀u ∈ H1 (Ω) .

Proof. Define the function v = u− u. It can be noted that∫
∂Ω

v dσ =

∫
∂Ω

u dσ − u |∂Ω| = u |∂Ω| − |∂Ω| = 0.

By applying the classical Poincaré inequality, the following inequality holds:

∥v∥L2(Ω) ≤ C ∥∇v∥L2(Ω) .

Furthermore, since v = u − u, it follows that ∇v = ∇u. Hence, by employing the

Sobolev trace inequality, it can be concluded that

∥u− u∥L2(∂Ω) = ∥v∥L2(∂Ω) ≤ C ∥v∥H1(Ω) ≤ C ∥∇u∥L2(Ω) ,

for all u ∈ H1 (Ω). This completes the proof.

Using the previous lemma, the proof of Theorem K is established.

Proof of Theorem K. The function u is decomposed as u = u+ v, where

u =
1

|∂Ω|

∫
∂Ω

u dσ and
∫
∂Ω

v dσ = 0.

It can be observed that

us−1 − us−1 = (s− 1)

[∫ 1

0

(u+ tv)s−2 dt

]
v, (40)

where s > 2. By choosing φ as a test function in (2) and applying (40), the following

inequality holds:

ϵ2
∫
Ω

|∇v|2 dz +

∫
∂Ω

v2 dσ ≤ λ (q − 1)

∫
∂Ω

[∫ 1

0

(u+ tv)q−2 dt

]
v2 dσ.
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Furthermore, by Proposition F, it follows that

ϵ2
∫
Ω

|∇v|2 dz ≤ C

∫
∂Ω

v2 dσ,

which, in combination with Lemma 2.6.1, implies that

ϵ2
∫
Ω

|∇v|2 dz ≤ C

∫
Ω

|∇v|2 dz.

Thus, for sufficiently large ϵ, v must be constant. Consequently,

0 =

∫
∂Ω

v dσ = |∂Ω| v.

Therefore, v ≡ 0, which concludes the proof of Theorem K.
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