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February / 2025

Dimitri M

Dimitri M

Dimitri M

Mobile User



Acknowledgments

Firstly, I thank God for His guidance, strength, and blessings throughout my
journey. My deepest gratitude goes to my family, whose unwavering support, love, and
encouragement have been my base. I dedicate this work to them.

I extend my appreciation to all the staff of my PhD program (PPGMAT - UFPB)
for their dedication and support. In particular, I am deeply grateful to my professors
Jacqueline Rojas and Ricardo Burity for their guidance and encouragement. Their
dedication to mathematics has been a role model to me. I also thank professor Andrea
Ricolfi for the very good classes in SISSA.

A special thank you to all my colleagues who shared this journey with me, making
it more pleasant. I am especially grateful to Marcos Gabriel, Geivison Ribeiro, Joyce
Sindeaux, Aiury Azeredo, and Murilo Chavedar for the nice conversations with coffee or
açaí.

To my flatmates in João Pessoa—Tony Lopes, Mariana Izabelly, Junior, and Clemerson
Menezes—thank you for making our shared space feel like home throughout these years.

I am also grateful to my colleagues from SISSA, whom I had the privilege to meet
during my exchange program. Special thanks to Leidinice Silva, Zihan Song, Ricardo,
Dan Aguero, Maria Ayub, and Samuele Giuli for making my time there unforgettable.

To my flatmates in Trieste—Mark Arildsen, Matteo Rossi, and Matteo Gaibotti—thank
you for the wonderful moments we shared and for making my stay in Italy so enjoyable.

A very special thank you to my girlfriend, Larissa Brandão, for her unwavering support,
love, and inspiration. Her presence brought me motivation and comfort when I was writing
this thesis.

I am also grateful to my thesis defense committee—Aline Andrade, Dimitri Marku-

iv



shevich, Marco Pacini, Michele Graffeo, and Ricardo Burity—for accepting the invitation
to evaluate my work and for their suggestions, which have helped to improve the quality
of this thesis.

Above all, my deepest gratitude goes to my supervisor Ugo Bruzzo, whose patience and
dedication have been essential in my academic journey. His encouragement and readiness
to help whenever I needed have shaped me as a researcher and thinker. His passion for
mathematics and commitment to his students are inspiring.

A heartfelt thank you to my English teacher, Carla Oliveira, whose classes have been
valuable to me, helping me improve my communication skills and confidence in academic
writing.

Lastly, I thank to FAPESQ for the financial support during my studies in João Pessoa
and to CAPES for the scholarship that allowed me to participate in the exchange program
in Italy.

v



Dedicatory

To my family

vi



Resumo

Seja G um subgrupo finito e abeliano de SL(n,C) e suponha que existe uma resolução
crepante ϕ:X −→ Cn/G da variedade quociente (Gorenstein) Cn/G. Nesta situação,
o conjunto excepcional de ϕ é puro de codimensão 1, isto é, quando decompomos tal
conjunto em componentes irredutíveis, Exc(ϕ) = E1 ∪ · · · ∪ Es, podemos verificar que
dim(Ei) = n − 1, para todo i. Além disso, é conhecido que Cn/G é uma variedade
tórica e que qualquer resolução crepante de tal variedade também é tórica. Usando as
ferramentas oferecidas pela geometria tórica, neste trabalho provamos que, para cada
componente irredutível Ei de Exc(ϕ), existe um subconjunto aberto Ui de X tal que
Ei ⊂ Ui e Ui é o espaço total do feixe canônico ωEi

de Ei. Além disso, X = U1 ∪ · · · ∪Us.
Em particular, quando s = 1 obtemos que a resolução X em si é um fibrado de linhas
sobre Exc(ϕ).

Palavras-chave: Resolução crepante, variedade quociente, conjunto excepcional,
geometria tórica, feixe canônico.

vii



Abstract

Let G be a finite abelian subgroup of SL(n,C), and suppose there exists a crepant
resolution ϕ : X −→ Cn/G of the (Gorenstein) quotient variety Cn/G. In this situation,
the exceptional set of ϕ is pure of codimension 1. That is, when we decompose such a set
into irreducible components, Exc(ϕ) = E1 ∪ · · · ∪Es, we can verify that dim(Ei) = n− 1,
for all i. Furthermore, it is known that Cn/G is a toric variety, and any crepant resolution
of such a variety is also toric. Using the tools provided by toric geometry, in this work
we prove that, for each irreducible component Ei of Exc(ϕ), there exists an open subset
Ui of X such that Ei ⊂ Ui, and Ui is the total space of the canonical bundle ωEi

of Ei.
Furthermore, X = U1 ∪ · · · ∪Us. In particular, when s = 1, we obtain that the resolution
X itself is a line bundle over Exc(ϕ).

Keywords: Crepant Resolution, quotient variety, exceptional set, toric geometry,
canonical bundle.
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Introduction

Quotient singularities of the form Cn/G, where G is a finite subgroup of SL(n,C), are
central objects of study in algebraic geometry due to their rich structure and numerous
applications in both mathematics and physics [7]. As G is a finite subgroup of SL(n,C),
the quotient variety Cn/G is a Gorenstein singularity [52], a desirable property which
means that the canonical sheaf of Cn/G is locally trivial. These singularities arise
naturally in invariant theory, representation theory, toric geometry, and the study of
moduli spaces [18, 13, 4].

A classical example occurs in dimension n = 2, where G is a finite subgroup of
SL(2,C). The resulting quotient singularities, known as Kleinian or Du Val singularities,
are classified by the An, Dn, and En series and exhibit a deep connection with the
representation theory of simple Lie algebras [40].

Given a resolution of singularities, f : X → Cn/G, one has the ramification formula

KX = f ∗(KCn/G) +
s∑
i=1

aiEi,

where KX is a canonical divisor of X, KCn/G is a canonical divisor of Cn/G, the divisors
E1, . . . , Es are those that appear in the exceptional locus Exc(f) of f (called of exceptional
divisors), and a1, . . . , as are integer numbers. f is said to be a crepant resolution of
singularities if ai = 0 for every i = 1, . . . , s. The existence of crepant resolutions is a
fundamental problem for quotient singularities. For n = 2, it is well-understood that
C2/G admits a unique (up to isomorphisms) crepant resolution of singularities and in
this case all the exceptional divisors are isomorphic to P1 [16]. For n = 3, the problem
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of the existence of a crepant resolution was solved first case by case [29, 30, 34, 42, 41],
since the conjugacy classes of finite subgroups of SL(3,C) were listed [9]. Although in
the 3-dimensional case, a crepant resolution is not necessarily unique, there is a canonical
resolution, as shown in [6], which is the G-orbit Hilbert scheme HilbG(C3). The G-orbit
Hilbert scheme is, by definition, the scheme parametrizing allG-invariant zero-dimensional
subschemes of A3 of length |G| (the order of G), with their structure sheaf isomorphic to
the regular representation of the group G as G-modules. This canonical crepant resolution
had already been found in the case where G is an abelian group [36], by using the tools
from algebraic geometry.

When G ⊂ SL(n,C) is abelian, Cn/G is a toric variety, and toric geometry provides
powerful tools to describe both the singularity and its resolutions [17]. The McKay
correspondence establishes a striking relationship between the geometry of a crepant
resolution and the representation theory of G. This correspondence has been extensively
studied in dimensions n = 2 [51] and n = 3 [31] and continues to motivate research in
higher dimensions [6].

Crepant resolutions of quotient singularities also appear in theoretical physics, where
they are used as “compactification” spaces in quantum field theories or string theories
in spaces possessing extra dimensions. The structure of the singularity encodes indeed
specific properties of the physical models. [2].

In this thesis, we focus on the structure and properties of Cn/G singularities, with
particular emphasis on the case where G is abelian. We explore the toric nature of
these singularities and their crepant resolutions, proving results about the geometry of
the exceptional set and its decomposition into irreducible components. Using tools from
toric geometry, we find an original result claiming that crepant resolutions of Cn/G admit
a decomposition into line bundles over their exceptional sets. Our results provide new
insights into the interplay between geometry, topology, and the junior elements of G, as
has been done, for example, in [31, 43].

Toric geometry is a powerful framework in algebraic geometry that provides a
combinatorial approach to studying varieties. These varieties, called toric varieties, are
defined as varieties containing a torus (C∗)n as a dense open subset, where the action of the
torus extends to the entire variety. In chapter 1, we introduce the basics of toric geometry,
including cones, fans, and their connection to affine and projective toric varieties, where
the main references for this chapter are [11], [17], and [38].

In chapter 2, we discuss the properties of the quotient variety Cn/G in the case where
G is a finite abelian subgroup of SL(n,C) and how to realize this variety as a toric variety.

11



Applying techniques from toric geometry, we also determine when Cn/G has terminal or
canonical singularities [39] and give a recipe for constructing minimal models of Cn/G.
Hilbert basis resolutions are also discussed. The main references in this chapter are [53],
[54], [14], and [33].

In chapter 3, we prove our original result, which is well understood in the following
context: Let {g1, . . . , gs} be the set of junior classes of G. Suppose that there is a Hilbert
basis resolution ϕ : XΞ → Cn/G = Uσ,N of the quotient variety Cn/G. The fractional
expressions ĝ1, . . . , ĝs are elements of HlbN(σ). Thus, Egi ; = V (Cone(ĝi)) is a exceptional
prime divisor of the resolution, for every i = 1, . . . , s. We prove that there is an open
toric set Ui of XΣ that contains Egi together with a torus invariant divisor Di of Egi such
that an isomorphism φ : tot(OEgi

(Di)) → Ui is found and it is the identity in the zero
section. In particular, when Cn/G admits a crepant resolution we get our main theorem:

Theorem 3.4 Let G be an abelian finite subgroup of SL(n,C) and suppose that there
exists a crepant resolution ϕ : XΞ → Cn/G = Uσ,N of the quotient variety. If g is a junior
element of G, then Eg is normally embedded in XΞ. In particular, the total space of the
canonical bundle of Eg, tot(ωEg), is isomorphic to the toric variety XΞg , and

XΞ =
⋃

ĝ∈Ĝ∩△1

XΞg

where Ξg is the fan consisting of all the faces of the cones that appear in the set

Ξg(n) := {η ∈ Ξ(n)|ρg ⪯ η}.

In particular, XΞg is open in XΞ.

The term "normally embedded" in the above theorem means that XΞg is a tubular
neighborhood of Eg (i.e. it is isomorphic to the total space of the normal bundle NEg/XΞ)
and then this result contributes to the collection of results aimed at solving the very
classical problem: determine which subvarieties of algebraic varieties have a neighborhood,
isomorphic to the neighborhood of the zero section of their normal bundle. This problem
is trivial in the category of real manifolds (see [26], Chapter 4), but it becomes highly
nontrivial in the holomorphic and algebraic geometry [35]. Many mathematicians studied
it [1], starting with the works of Grauert [19] and Van de Ven [50]. The main result of
the thesis gives a partial solution to a global version of this problem, providing a class
of examples in which the subvariety has a neighborhood isomorphic to the whole of its
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normal bundle, and not just to a neighborhood of its zero section. This is the second
main result of this thesis.
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CHAPTER 1

A glimpse of Toric geometry

This chapter discusses the main concepts and theorems about normal toric varieties. A
toric variety may be formally described as an algebraic varietyX that contains an algebraic
torus

(
C∗)n as a Zariski-dense open subset, together with a

(
C∗)n-action on X extending

the standard action of the torus on itself. Such varieties are the subject of intensive
study precisely because they unify methods from algebraic geometry, combinatorics, and
convex geometry. Normal toric varieties are closely linked to the combinatorics of rational
polyhedral fans. Each cone in a fan corresponds to an affine piece of the toric variety, and
the whole variety is obtained by gluing these affine charts along common faces. Singularity
types and their resolutions can thus be characterized purely in combinatorial terms. For
this chapter, the main references are [11], [17], and [38].

1.1 Convex polyhedral cones and fans

We start with the notion of convex cone. These objects provide the main tools for
studying toric varieties. In this work, N ∼= Zn will always denote a lattice (a free Z-
module of rank n) with dual HomZ(N,Z) denoted by M . The vector spaces N ⊗Z R
and M ⊗Z R are denoted by NR and MR, respectively. Notice that the canonical map
N → NR is injective. Thus, we can consider the points of N as points in NR. Moreover,
the canonical pairing

⟨, ⟩ :MR ×NR → R

14



is such that ⟨u, v⟩ ∈ Z whenever u ∈M and v ∈ N . Notice that the same considerations
are true when R is replaced by Q.

Definition 1.1. (a) A subset σ ⊂ NR is a rational convex polyhedral cone (rcp
cone for short) if there are v1, . . . , vs ∈ N such that

σ = {a1v1 + · · ·+ asvs|as ≥ 0}.

In this situation, σ is said to be generated by v1, . . . , vs as a cone, and the notation
σ = Cone(v1, . . . , vs) is used to mean that;

(b) The dimension of σ, denoted by dim(σ), is the dimension of the vector space
Rσ = σ + (−σ), where −σ = {−v|v ∈ σ}. A rational polyhedral convex cone σ

is said to be strongly convex if σ ∩ (−σ) = 0; The relative interior of σ is the
interior of σ in σ + (−σ), and it is denoted by Relint(σ);

(c) The dual of any subset C ⊂ NR is the set

C∨ := {u ∈MR|⟨u, v⟩ ≥ 0 for every v ∈ C};

(d) Given u ∈ MR, consider Hu := {v ∈ NR|⟨u, v⟩ = 0}. A subset τ of a rational
polyhedral convex cone σ in NR is a face if there is u ∈ σ∨ such that τ = Hu ∩ σ.

Before giving an example of a strongly convex rational polyhedral cone, we list the
main properties of such objects below.

Proposition 1.1. Let σ be a rcp cone in NR. One has the following properties:

(a) (Farkas’ theorem) (σ∨)∨ = σ and σ∨ is a rcp cone in MR;

(b) Every face of σ is also a rcp cone and every proper face is contained in a facet (a
facet is a face of dimension equal dim(σ)− 1). In particular, any proper face is the
intersection of all the facets containing it;

(c) Let τ be a face of σ and let v ∈ Relint(τ). Define τ ∗ := Hv ∩ σ∨. Then

τ ∗ = {u ∈ σ∨|⟨u,w⟩ = 0 for every w ∈ τ};

this means that the definition of the face τ ∗ of σ∨ does not depend on the choice of
u ∈ Relint(τ). Moreover, the map τ → τ ∗ is a bijection between the faces of σ and
the faces of σ∨ such that dim(τ) + dim(τ ∗) = n(= dimNR);

15



(d) If σ is strongly convex then every edge ρ of σ (an edge is a 1-dimensional face) is
a ray, i.e, a half line in NR. Moreover, there is a unique primitive element uρ ∈ N ,
called the ray generator of ρ, such that ρ = Cone(uρ).

(e) If σ is strongly convex, then σ = Cone(uρ|ρ is an edge of σ).

Proof. for (a) and (b), see [17] p.10 and p.11. For (c), see [38] p.173. For (d) and (e), see
[11] p.29. ■

In the case that σ ⊂ NR is a rcp cone of maximal dimension, its dual σ∨ is a strongly
convex rcp cone. Moreover, in this situation, there is a recipe for finding a set of generators
for σ∨ if a set of generators for σ is known: Suppose that σ = Cone(u1, . . . , us) and pick
a subset {uk1 , . . . ukn−1} of n − 1 linearly independent vectors in {u1, . . . , us} and find
w ∈ MR such that w annihilates the chosen subset. If w or −w is an element of σ∨, say
w, it means that Cone(uk1 , . . . , ukn−1) is a facet of σ and by parts (c) and (d) of the above
proposition, Cone(w) is a ray of σ. If neither w nor −w is in σ∨ then both are discarded
and another subset should be chosen. Since each facet of σ comes from a subset of n− 1

linearly independent vectors among the generators of σ, by the bijection in part (c) and
the fact that σ∨ is the sum of its rays, the set of all elements w obtained in that process
is a set of generators of σ∨.

Example 1.1. Consider N = Z3. Thus, NR = R3 and M can also be identified as Z3.
Take σ = Cone(u1, u2, u3) ⊆ NR, where u1 = (−1, 2, 0), u2 = (3,−1,−1), u3 = (0, 0, 1).
Notice that σ is a strongly convex cone and u1, u2, u3 are primitive elements of N .
Moreover, those are the ray generators of σ and dim(σ) = 3. The set {u1, u2} is annihilated
by w1 = (2, 1, 5) and ⟨w1, u3⟩ = 5, hence w1 ∈ σ∨, Cone(u1, u2) is a facet of σ, and
Cone(w1) is a ray of σ∨. In the same way, w2 = (2, 1, 0), w3 = (1, 3, 0) annihilate {u1, u3},
{u2, u3}, respectively, and both are in σ∨. Therefore, σ∨ = Cone(w1, w2, w3) ⊂MR. △

Definition 1.2. Let σ ⊆ NR be a strongly convex rational polyhedral cone.

(a) σ is smooth or regular if the set of its ray generators form part of a Z-basis of N .

(b) σ is simplicial if the set of its ray generators is linearly independent over R.

Note that the cone σ of Example 1.1 is not smooth, because {u1, u2, u3} is not a Z-
basis for Z3. However, since u1, u2, u3 are linearly independent over R, σ is a simplicial
cone.

Since σ∨ is also a rcp cone, the set Sσ,N := σ∨∩M is a subsemigroup of M . When there
is no confusion, we denote Sσ,N only by Sσ. This object is very important for studying
affine toric varieties. The main properties of such a semigroup are listed below.
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Proposition 1.2. (a) (Gordan’s Lemma). Sσ = σ∨ ∩ M is finitely generated as a
semigroup by the set D ∪ (K ∩M), where σ∨ = Cone(D) and

K =
{ ∑
m∈D

δmm
∣∣ 0 ≤ δm < 1 for all m ∈ D

}
.

(b) If σ is strongly convex then Sσ is saturated (i.e, for all k ∈ N \ {0} and m ∈ M ,
km ∈ Sσ implies m ∈ Sσ);

(c) All the faces of σ are of the type σ ∩Hu = τ for some u ∈ σ∨ ∩M . Moreover,

Sτ = Sσ + Z≥0 · (−u).

Proof. See [11] section 1.2. ■

Now, we define the objects that will be related to normal toric varieties that are not
necessarily affine.

Definition 1.3. A fan Σ in NR is a finite collection of cones σ ⊆ NR such that:

1. Every σ ∈ Σ is a strongly convex rational polyhedral cone.

2. For all σ ∈ Σ, each face of σ is also in Σ.

3. For all σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face of each (hence it is a cone in
Σ).

Furthermore, if Σ is a fan, then:

• The support of Σ is
|Σ| =

⋃
σ∈Σ

σ ⊆ NR.

• Σ(r) is the set of r-dimensional cones of Σ.

• Σ is smooth (resp. simplicial) if all of its cones are smooth (resp. simplicial).

Example 1.2. These are important examples of fans:

(a) Let σ be a strongly convex rpc cone and let Σ be the collection of cones that consists
of all the faces of σ. Then Proposition 1.1 implies that Σ is a fan.

(b) For N = Z2 and the standard basis {e1, e2} consider the cones σ1 = Cone(e1, e2),
σ2 = Cone(e2,−e1 − e2), and σ3 = Cone(−e1 − e2, e1). Let Σ be the collection of
cones that consists of all of the faces of σi, for i = 1, 2, 3, as in the following picture

17



(1, 0)

(0, 1)

(−1,−1)

σ1

σ2

σ3

this is,
Σ = {σ1, σ2, σ3,Cone(e1),Cone(e2),Cone(−e1 − e2), {0}}.

One can check that Σ is in fact a fan. Moreover, since {−e1−e2, e1} and {−e1−e2, e1}
are also bases for Z2 it follows that Σ is a smooth fan (this is the fan of the projective
space P2).

△

1.2 Toric varieties

Given an abelian algebraic group T over C, a homomorphism of algebraic groups
χ : T → C∗ is said to be a character of T , and a homomorphism of algebraic groups
λ : C∗ → T is said to be a cocharacter of T . Denote by X(T ) (resp. Y (T )) the set of
all characters (resp. cocharacters) of T . One can check that both X(T ) and Y (T ) are
groups with binary operations coming from the group operations of T and C∗. T is said
to be a algebraic torus if it is isomorphic to (C∗)n as algebraic group, for some integer
n ≥ 1.

Example 1.3. In this example, our aim is to describe the groups of characters of (C∗)n.
Note that the coordinate ring of (C∗)n is C[t1, . . . , tn]t1...,tn = C[t±1 , . . . , t±n ], that is, it is
the localization of the polynomial ring C[t1, . . . , tn] with respect to the element t1 . . . tn.
Consider the case n = 1: In this situation, a character

χ : C∗ → C∗

is an element of C[t1, t−1
1 ]. Thus, one can write χ = f

ts1
for some f ∈ C[t1] and for some

integer s ≥ 0. If f has a nonzero root, say a ∈ C∗, then χ(a) = f(a)
as

∈ C∗, which is
a contradition because f(a) = 0. Therefore, by the fundamental theorem of algebra,

18



f = tm1 for some integer m ≥ 0. This way, χ = tm−s
1 . Since every Laurent monomial tri is

a character of C∗, it follows

X(C∗) = {ts1 ∈ C[t1, t−1
1 ]|s ∈ Z} ∼= Z.

For the case n > 1, note that

Gi := {(t1, . . . , ti, . . . , tn) ∈ (C∗)n|tj = 1, if j ̸= i}

is a closed subgroup of (C∗)n such Gi
∼= C∗. This implies that for any character ξ ∈ X(Gi),

ξ(1, . . . , 1, ti, 1 . . . , 1) = tri for some integer r. Given a character χ ∈ X((C∗)n, it follows
that χ|Gi

∈ X(Gi), therefore there is an integer ri such that

χ(1, . . . , 1, ti, 1, . . . , 1) = tii.

For each element (t1, . . . , tn) ∈ (C∗), one has

χ(t1, . . . , tn) = χ(
n∏
i=1

(1, . . . , 1, ti, 1, . . . , 1))

=
n∏
i=1

χ((1, . . . , 1, ti, 1, . . . , 1))

= tr11 . . . t
ri
i . . . t

rn
n .

Since any Laurent monomial in n variables also corresponds to a character of (C∗)n, one
can conclude that

X((C∗)n) = {tr11 . . . trnn ∈ C[t±1 , . . . , t±n ]|(r1, . . . , rn) ∈ Zn} ∼= Zn.

△

From the above example, we can denote an element of X((C∗)n) by χ(r1,...,rn), which
means that χ(r1,...,rn)(t1, . . . , tn) = tr11 . . . t

rn
n . One can also check that given a cocharacter

λ ∈ Y ((C∗)n), there is a unique element (a1, . . . , an) ∈ Zn such that λ(t) = (ta1 , . . . , tan)

for every t ∈ C∗, in this case we use the notation λ = λ(a1,...,an). In particular,
Y ((C∗)n) ∼= Zn. With this notation, we have the perfect pairing

⟨ , ⟩ : X((C∗)n)× Y ((C∗)n) → X(C∗) ∼= Z,

⟨χ(r1,...,rn), λ(a1,...,an)⟩ 7→ χ(r1,...,rn) ◦ λ(a1,...,an) = χr1a1+···+rnan
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which makes X((C∗)n) and Y ((C∗)n) become dual Z-modules.
Let T ∼= (C∗)n be an algebraic torus. One can check that X(T ) ∼= X((C∗)n) and

Y (T ) ∼= Y ((C∗)n), thus both X(T ) and Y (T ) are lattices of rank n, which are dual to
each other. Normally, a lattice has a binary operation given by an addition, that is why
the following construction is commonly used. Let M be a set that has the same cardinality
as X(T ). By axiom of choice, for each element u ∈ M , we can associate it to a unique
element χu of X(T ), so that the map

η :M → X(T )

u 7→ χu

is a bijection. Given u1, u2 ∈M , we define u1+u2 = η−1(χu1χu2). Thus, (M,+) becomes
a Z-module such that η is an isomorphism. In this case M is said to be the lattice of the

characters of T . Moreover, following the same steps, we can construct the lattice (N,+)

of cocharacters of T . By construction, one has M = HomZ(N,Z). Usually, T is written
as TN to mean that it has lattice of cocharacters given by N . For example, C∗ = TZ. For
more details about algebraic groups and their groups of characters, see [27].

Definition 1.4. A toric variety is an irreducible variety W containing an algebraic
torus TN ∼= (C∗)n as an open subset, along with a algebraic action TN ×W → W that
extends the multiplication of TN .

Example 1.4. Here are some examples of toric varieties:

(a) The affine space Cn, whose torus is (C∗)n;

(b) The projective space Pn, whose torus is

{(x0 : · · · : xn)|xi ̸= 0, i = 0, . . . , n} ∼= (C∗)n;

(c) The cuspidal curve C = V (x3 − y2) ⊂ C2 which is a non-normal affine toric variety
with torus

C − 0 = {(t2, t3); t ∈ C∗} ∼= C∗;

(d) The variety V = V (xy − zw) ⊂ C4 with torus given by

V ∩ (C∗)4 = {(t1, t2, t3, t1t2t−1
3 ); ti ∈ (C∗)} ∼= (C∗)3.

△
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Any strongly convex rcp cone σ provides a normal toric variety the following way:
Denote by C[Sσ] the vector space over C with a basis given by the set of symbols
{χu|u ∈ Sσ}. This vector space has a structure of C-algebra defined as follows:

• Multiplication is given by addition in Sσ:

χu · χu′ = χu+u
′
.

• The identity 0 ∈ Sσ corresponds to the unit in C[Sσ], i.e., χ0 = 1.

If Sσ has generators {ui}, then {χui} are generators of C[Sσ] as a C-algebra. Notice
that C[Sσ] ⊂ C[M ] = C[S{0}], where {0} = Cone(0) is a face of any strongly convex
cone in NR. Moreover, since C[M ] is the coordinate ring of the algebraic torus TN ,
C[M ] ∼= C[t1, . . . , tn]t1...tn , i.e, it is isomorphic to a localization of the polynomial ring in
n = rank(N) variables. In particular, by Gordan’s lemma, C[Sσ] is a finitely generated
C-algebra which is integral. Thus, its set of maximal ideals Uσ := Specm(C[Sσ]) has a
structure of irreducible complex algebraic variety.

Given a face τ = Hu ∩ σ of σ, for some u ∈ σ∨ ∩M , the equality Sτ = Sσ + Z≥0(−u)
implies that C[Sτ ] = C[Sσ]χu . Thus, Uτ can be seen as a principal open set of Uσ. In
particular, TN is an open subset of Uσ.

Proposition 1.3. Let σ ⊂ NR ∼= Rn be a strongly convex rational polyhedral cone.

(a) Uσ is a normal toric variety of dimension n;

(b) σ is smooth if and only if Uσ is a smooth variety;

(c) σ is simplicial if and only if Uσ is a Q-factorial variety.

Proof. See [10], p. 16. ■

Example 1.5. Let N = Z2 and consider the cone σ generated by v1 = (2,−1) and
v2 = (0, 1). This cone is not smooth. In fact, the point (1, 1) is not in the integer span
of v1, v2. This way, Uσ is singular. The dual cone σ∨ is generated by u1 = (1, 0) and
u2 = (1, 2).
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v1 = (2,−1)

v2 = (0, 1)

σ u1 = (1, 0)

u2 = (1, 2)

σ∨

One can check that the semigroup Sσ = σ∨∩M is generated by u1, u2, and u3 := (1, 1).
Thus, C[Sσ] = C[χu1 , χu2 , χu3 ]. Consider the homomorphism of C-algebras

ϕ : C[t1, t2, t3] −→ C[Sσ]

from the polynomial ring in three variable to C[Sσ], such that ϕ(ti) = χui . Since
u1 + u2 = 2u3, one can check that ker(ϕ) = (t1t2 − t23). Therefore

Uσ ∼= Specm(C[t1, t2, t3]/(t1t2 − t23).

Thus, this toric variety is the affine normal cone in affine 3-space (corresponding to
a projective variety in P2), which is singular at the vertex. This variety is actually the
quotient of C2 by the group Z2 acting as (x, y) → (−x,−y). In fact, one knows from the
theory of affine quotients (see, e.g., [37]) that

C2/Z2 = SpecC[x, y]Z2 .

It is not difficult to show that the ring of Z2-invariant polynomials in x, y is generated
by x2, xy, and y2, this is, C[x, y]Z2 = C[x2, y2, xy] (for some general facts about invariant
polynomials under group actions, see [15]). The homomorphism

ψ : C[t1, t2, t3] −→ C[x, y]Z2

such that ψ(t1) = x2, ψ(t2) = y2, ψ(t3) = xy also has kernel given by (t1t2−t23). Therefore,

C2/Z2 = SpecmC[t1, t2, t3]/(t1t2 − t23),

which shows that C2/Z2 is indeed Uσ. △
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Given a strongly convex cone σ ⊂ NR, we have shown how to construct an affine normal
toric variety Uσ,N = Specm(C[Sσ,N ]). The next result says that this correspondence from
the "category" of strongly convex rpc cones with rational points in some lattice N to the
category of affine normal toric varieties is actually surjective.

Proposition 1.4. Let W be an affine toric variety with torus TN . Then the following are
equivalent:

(a) W is normal.

(b) W = Specm(C[S]), where S ⊆M is a saturated affine semigroup.

(c) W = Specm(C[Sσ])= Uσ,N , where Sσ = σ∨ ∩M and σ ⊆ NR is a strongly convex
rational polyhedral cone.

Proof. See [11], p.37. ■

In addition to the properties of a normal toric variety Uσ,N , there is a very nice bijection
between its points and the set Homsg(Sσ,C) of semigroup morphisms Sσ −→ C. Such
correspondence is defined as follows: given a point p ∈ Uσ,N , define

γp : Sσ → C

u 7→ χu(p).

This makes sense since χu ∈ C[Sσ]. One can check that γp is a semigroup homomorphism.
On the other way, let η : Sσ → C be a semigroup homomorphism. Since {χm}m∈S is a
basis of C[Sσ], η induces a surjective linear map η̂ : C[Sσ] → C which is a C-algebra
homomorphism. The kernel of η̂ is a maximal ideal and thus gives a point pη ∈ USσ . Let
mp ⊂ C[Sσ] be the maximal ideal corresponding to p ∈ Uσ. If f ∈ ker(γ̂p), then

f =
r∑
i=1

aiχ
ui

for some ai ∈ C and ui ∈ Sσ, and

0 = γ̂p(f) =
r∑
i=1

aiχ
ui(p) = f(p).

Thus, ker(γ̂p) = mp and therefore pγp = p. Conversely, if η : Sσ → C is a semigroup
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homomorphism, η̂(χu) = η(u) by definition. However, ker(γ̂) = mpη , which means that

η(u) = χu +mpη︸ ︷︷ ︸
=χu(pη)

∈ C[Sσ] ∼= C.

Hence, γpη = η. Therefore, the correspondence p→ γp is indeed a bijection.
Now we shall construct normal toric varieties associated to a fan Σ. In this situation,

such varieties are not necessarily affine, but Σ encodes the information needed to glue
together the affine toric varieties Uσ, for σ ∈ Σ, to create an abstract variety XΣ.

Given a fan Σ, let σ ∈ Σ and let τ be a face of σ. In this case, there is u ∈ Sσ such
that C[Sτ ] = C[Sσ]χu , which gives an inclusion Uτ → Uσ so that Uτ is a principal open set
of Uσ. Given σ, σ′ ∈ Σ, their intersection σ ∩ σ′ is a common face of both cones. Hence,
we get open immersions:

Uσ∩σ′ → Uσ,

Uσ∩σ′ → Uσ′ .

If we denote the images of these maps by Vσ∩σ′ and Vσ′∩σ, respectively, then we have an
isomorphism:

gσσ′ : Uσ′∩σ ∼= Uσ∩σ′ .

This provides gluing data {Uσ, Uσ′ , gσσ′} (a cocycle condition is satisfied on triple
intersections, if any), so we get the following variety.

Definition 1.5. Given a fan Σ in NR, XΣ is the abstract variety constructed using the
above gluing data.

To be more precise, XΣ is constructed from affine varieties Uσ, σ ∈ Σ, by gluing Uσ and
Uσ′ along their common open subset Uσ∩σ′ for all σ, σ′ ∈ Σ. The next result summarizes
the main properties of such varieties.

Proposition 1.5. Let Σ be a fan of cones in NR ∼= Rn.

(a) The variety XΣ is a separated normal toric variety;

(b) Σ is smooth if and only if XΣ is a smooth variety;

(c) Σ is simplicial if and only if XΣ is Q-factorial variety;

(d) |Σ| = NR if and only if XΣ is a complete variety (which also means that it is compact
in the analytic topology by [46]);
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(e) XΣ has no torus factors (i.e, XΣ cannot be equivariantly isomorphic to the product
of a nontrivial torus and a toric variety of smaller dimension) if and only if the uρ,
ρ ∈ Σ(1), span NR.

Proof. See [11], chapter 3. ■

Example 1.6. Consider the fan Σ in Z2
R
∼= R2 of Example 1.2, where

• The maximal cones are:

σ1 = Cone(e1, e2), σ2 = Cone(−e1 − e2, e1), σ3 = Cone(−e1 − e2, e1),

• The 1-dimensional cones are ρ1 = Cone(e1), ρ2 = Cone(e2), ρ3 = Cone(−e1 − e3).

• The 0-dimensional cone is the origin {0}.

In this situation, Σ is a smooth cone, such that |Σ| = R2 and its ray generators e1, e2
span R2, hence the toric variety XΣ is a complete and smooth toric variety without toric
factors. Now we shall give a description of XΣ. Such variety is covered by the affine open
sets:

Uσ1 = Spec(C[Sσ0 ]) ∼= Spec(C[x, y]),

Uσ2 = Spec(C[Sσ1 ]) ∼= Spec(C[x−1, x−1y]),

Uσ3 = Spec(C[Sσ2 ]) ∼= Spec(C[xy−1, y−1]).

Thus one can check that the gluing data on the coordinate rings is given by:

g∗σ1σ2 : C[x, y]x ∼= C[x−1, x−1y]x−1 ,

g∗σ1σ2 : C[x, y]y ∼= C[xy−1, y−1]y−1 ,

g∗σ2σ3 : C[x
−1, x−1y]x−1y

∼= C[xy−1, y−1]xy−1 .

Let (x1 : x2 : x3) be the usual homogeneous coordinates on P2. Then the mappings

x 7→ x2
x1

and y 7→ x3
x1

identify the standard affine open Ui ⊆ P2 with Uσi ⊆ XΣ. Hence, we can check that
P2 ∼= XΣ.

△
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Remark 1.1. One of the main theorems of Sumihiro states that any point x of normal
toric variety X has an affine open neighborhood that is invariant under the torus action
(see [48], corollary 2). Bearing this result in mind, one can check that any normal toric
variety can be obtained from a fan. Therefore, as in the affine case, the correspondence of
the "category" of fans of strongly convex rpc cones to the category of normal toric varieties
is surjective.

1.3 The orbit-cone correspondence

Let Σ be a fan of cones in NR. There is a correspondence between the cones in Σ and
the orbits of the variety XΣ, which is given in the following way: an orbit O corresponds
to a cone σ if and only if limt→0 λ

u(t) exists and lies in O for all u in the relative interior
of σ and the cocharacter λu ∈ TN . The following results ensure that this correspondence
is well-defined.

Proposition 1.6. With the notation as above:

(a) If τ is a proper face of σ then τ ∩ Relint(σ) = ∅;

(b) u ∈ σ is and only if limt→0 λ
u(t) exists in Uσ. Moreover, there is a unique point

γσ ∈ Uσ, such that for every u ∈ Relint(σ), one has

lim
t→0

λu(t) = γσ.

In this case γσ is said to be the distinguished point of Uσ.

Proof. For (a), see [38], appendix A. For (b), see [11], p.116 ■

The above proposition says that for every σ, σ′ ∈ Σ, γσ ̸= γσ′ , thus the correspondence
σ → O(σ) := TN .γσ between the cones of Σ and the orbits of XΣ injective, and it coincides
with the correspondence that it has been defined at the beginning of this section. The next
theorem shows that this correspondence is also surjective and provides much information
about the orbits of XΣ coming from the cones in Σ.

Proposition 1.7. (Orbit-Cone Correspondence) Let XΣ be the toric variety of the fan Σ

in NR. Then:

1. The correspondence:

{cones σ in Σ} −→ {TN -orbits in XΣ}
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σ → O(σ)

is bijective;

2. Let n = dimNR. For each cone σ ∈ Σ, dimO(σ) = n− dimσ;

3. The affine open subset Uσ is the union of orbits:

Uσ =
⋃
τ⪯σ

O(τ);

4. τ ⪯ σ if and only if O(σ) ⊆ O(τ), and

O(τ) =
⋃
τ⪯σ

O(σ),

where O(τ) denotes the closure in both the analytic and Zariski topologies.

Proof. See [17], section 3.1. ■

Example 1.7. In Example 1.6, the fan of P2 is described. For i ∈ {1, 2, 3}, the chart
Uσi of P2 has coordinates of the form (t1, t2, t2), such that ti = 1, tj ∈ C, for j ̸= i. The
torus (C∗)2 = TZ2 ⊂ P2, in this chart, is the set of points (t1, t2, t3), such that tj ̸= 0. A
similar situation occurs with the charts Uρi , but two of the coordinates should be equal
1. Given a point v = (a, b) ∈ Z2, we shall see how are the limits of the cocharacter λv(t)
with respect these charts. The limits are as in the following table:

v is in The limit is

σ1 (1, 0, 0)

σ2 (0, 1, 0)

σ3 (0, 0, 1)

ρ1 (1, 0, 1)

ρ2 (1, 1, 0)

ρ3 (0, 1, 1)

the origin (1, 1, 1)

The right side of the table describes the distinguished points. In particular, given
(1, t2, t3) ∈ TZ2 ⊂ Uσ1 , one has (1, t2, t3).(1, 0, 0) = (1, 0, 0). Therefore,

O(σ1) = TZ2 .(0, 1, 0) = {(1, 0, 0)}
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is an orbit of dimension 0, as expected. △

Given a strongly convex rcp cone σ in NR ∼= Rn, let Nσ be the Z-submodule of N
generated by σ∩N . By Gordan’s lemma, σ∩N is a finitely generated semigroup. Hence,
Nσ is a finitely generated Z -submodule of N . Therefore, Nσ is also free (see [32], p.146),
that is, Nσ is a sublattice of N . Furthermore, since σ is saturated, so is Nσ as a submodule
of N , so that the quotient N(σ) := N/Nσ is torsion-free and is therefore also a lattice.

The exact sequence
0 → Nσ → N → N(σ) → 0

splits, as N(σ) is free over Z. Tensoring the above exact sequence by C∗ and letting

TN(σ) = N(σ)⊗Z C∗

we obtain a surjective group homomorphism TN → TN(σ), so that TN acts transitively on
TN(σ).

Proposition 1.8. Let σ be a strongly convex rational polyhedral cone in NR.

1. The pairing M ×N → Z induces a non-degenerated pairing

(σ⊥ ∩M)×N(σ) → Z;

2. This pairing induces isomorphisms

O(σ) = {γ : Sσ → C | γ(m) ̸= 0 ⇐⇒ m ∈ σ⊥ ∩M}

∼= HomZ(σ
⊥ ∩M,C∗) ∼= TN(σ).

Proof. See [17], section 3.1. ■

Let Σ be a fan of cones in NR. Given τ ∈ Σ, we denote

V (τ) = O(τ).

One has that τ ⪯ σ if and only if O(σ) ⊆ V (τ), and

V (τ) =
⋃
τ⪯σ

O(σ).

The torus O(τ) = TN(τ) is an open subset of V (τ). We shall check that V (τ) is a normal
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toric variety by constructing its fan. For each cone σ ∈ Σ containing τ , let σ be the image
cone in N(τ)R under the quotient map

NR → N(τ)R.

Then
Star(τ) = {σ ⊆ N(τ)R | τ ⪯ σ ∈ Σ}

is a fan in N(τ)R .

Proposition 1.9. For any τ ∈ Σ, the orbit closure V (τ) = O(τ) is isomorphic to the
toric variety XStar(τ),N(τ).

Proof. See [11], p.121. ■

Let X be an algebraic variety. The set of singular points of X (the singular locus of
X) is denoted by Xsing. In pages 92 and 126 of [47], one can check that Xsing is a closed
subvariety of X, and if X is a normal variety, then dimXsing ≤ dimX − 2. In the case
where X is a normal toric variety, there is a relation between its singular locus and the
singular cones of the corresponding fan.

Proposition 1.10. Let XΣ be the toric variety of the fan Σ. Then:

(XΣ)sing =
⋃

σ not smooth

V (σ),

XΣ \ (XΣ)sing =
⋃

σ smooth

Uσ.

Proof. See [11] p. 514. ■

1.4 Morphisms of normal toric varieties

We define FAN as the category whose class of its objects Ob(FAN) consists of pairs
(Σ, N), where N is a lattice and Σ is a fan of strongly convex rpc cones in NR, and given
two pairs (Σ, N), (Σ′, N ′) ∈ FAN, the set of arrows between these objects, denoted by

HomFAN((Σ, N), (Σ′, N ′)),

consists of lattice morphisms ϕ : N −→ N ′ with the condition that the induced morphism
ϕR : NR −→ N ′

R satisfies the following property: given a cone σ ∈ Σ, there is a cone

29



σ′ ∈ Σ′ such that ϕR(σ) ⊂ σ′. In this case, ϕ is said to be compatible with the fans
Σ and Σ′. One can check that FAN is a locally small category with the usual map
composition (for an introduction to the language of categories, see [8], chapter 1).

Now we define NTORIC as the category such that Ob(NTORIC) consists of normal
toric varieties. Given X,X ′ ∈ Ob(NTORIC) with tori T , T ′, respectively; the set of
arrows between these objects, denoted by

HomNTORIC(X,X
′),

consists of equivariant algebraic variety morphisms η : X −→ X ′, such that η(T ) ⊂ T ′

and η|T is a homomorphism of algebraic groups. In this case, η is said to be a toric

morphism. This is also a locally small category.
From remark 1.1, it is expected that the above two categories are isomorphic. We

shall check it. Define the functor

F : FAN −→ NTORIC

such that F(Σ, N) = XΣ,N , and for ϕ ∈ HomFAN((Σ, N), (Σ′, N ′)), F(ϕ) is defined as
follows:

• If Σ consists only of the faces of a cone σ, then F(Σ, N) = Uσ,N . In this case, choose
σ′ ∈ Σ′ such that ϕR(σ) ⊂ σ′. Hence, its dual ϕ∨

R : M ′
R −→ MR is such that, for

u ∈ σ′,
ϕ∨
R(u) = u ◦ ϕR ∈ σ∨.

Thus ϕ∨
R(Sσ′) ⊂ (Sσ). This inclusion induces an algebra morphism

C[Sσ′ ] −→ C[Sσ]

which, in its turn, induces a toric morphism ϕσ : Uσ,N −→ Uσ′,N ′ (it is not
straightforward, but with some effort it can be checked by using the fact that ϕ also
induces a group morphism between T and T ′). F(ϕ) is defined as the composition
of ϕσ followed by the inclusion Uσ′,N ′ ↪→ XΣ′,N ′ .

• For the general case, let σ be a cone in Σ. Since ϕ is compatible with Σ and Σ′,
there is a cone σ′ ∈ Σ′ with ϕR(σ) ⊆ σ′. The previous step shows that ϕ induces a
toric morphism

ϕσ : Uσ,N → Uσ′,N ′ .
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Using the general criterion for gluing morphisms (see [22], chapter 2), one can check
that the ϕσ, for σ ∈ Σ, glue together to give a toric morphism

F(ϕ) : XΣ,N → XΣ′,N ′ .

Proposition 1.11. With the above notation, F : FAN −→ NTORIC is an isomorphism
of categories.

Proof. From Remark 1.1, F is essentially surjective. In [10], p. 126, one can check that
F is fully faithful. ■

The main properties of toric morphisms are summarized in the following proposition.

Proposition 1.12. Let F(ϕ) : XΣ → XΣ′ be the toric morphism corresponding to a
homomorphism ϕ : N → N ′ that is compatible with fans Σ in NR and Σ′ in N ′

R.

(a) F(ϕ) : XΣ → XΣ′ is a proper morphism if and only if ϕ−1
R (|Σ′|) = |Σ|;

(b) If XΣ′,N ′ is an affine toric variety and F is proper, then XΣ,N is quasi projective if
and only if F(ϕ) is a projective morphism.

Proof. For part (a), see [17], section 2.4. For part (b), see [11], p.330. ■

1.5 Divisors on toric varieties

Let Σ be a fan in NR. From the orbit-cone theorem, the rays of Σ correspond to the
codimension 1 orbit closures in the normal toric variety XΣ. We let

Dρ := V (ρ) = O(ρ)

denote the irreducible torus-invariant divisor corresponding to ρ ∈ Σ(1). Note that the
torus of XΣ is TN = XΣ \

⋃
ρ∈Σ(1)Dρ. Let C(XΣ) denote the field of rational funtions on

XΣ. Since XΣ is normal and Dρ is irreducible, one has that Dρ is a prime divisor and the
ring

OXΣ,Dρ = {ϕ ∈ C(XΣ) | ϕ is defined on U ⊆ X open with U ∩Dρ ̸= ∅}

is a discrete valuation ring. Its discrete valuation is denoted by

νρ : C(XΣ)
∗ −→ Z.

For f ∈ C(XΣ)
∗, νρ(f) is said to be the order of vanishing of f along Dρ.
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There is a good relationship between the divisors Dρ and the characters χm coming
from m ∈M . We can regard χm as a rational function on XΣ which is non-vanishing on
TN . Hence, the divisor of χm is supported on

⋃
ρ∈Σ(1)Dρ. Thus the order of vanishing

νρ(χ
m) is defined. By [17], Section 3.3, we have the remarkable formula

νρ(χ
m) = ⟨m,uρ⟩,

where uρ is the ray generator of ρ, for ρ ∈ Σ(1). It follows that the divisor of χu is given
by

div(χm) =
∑
ρ

⟨m,uρ⟩Dρ.

We denote by DivTN (XΣ) the subgroup of Div(XΣ) generated by the TN -invariant
prime divisors. We also define CDivTN (XΣ) := DivTN (XΣ)∩CDiv(XΣ), where CDiv(XΣ)

is the group of Cartier divisors on XΣ. Given D ∈ DivTN (XΣ), let Supp(D) be its support.
Note that TN ∩ Supp(D) = ∅, otherwise TN ⊂ Supp(D) since D in TN -invariant. Thus

Supp(D) ⊂ XΣ \ TN =
⋃

ρ∈Σ(1)

Dρ,

which means that D ∈
⊕

ρ∈Σ(1) ZDρ. Therefore, DivTN (XΣ) =
⊕

ρ∈Σ(1) ZDρ and
rank(DivTN (XΣ)) = #(Σ(1)). Furthermore, the main feature of this group is that any
Weil divisor in XΣ is linearly equivalent to one of its elements, as we can see in the
following proposition, which lists the main properties of the Class group Cl(XΣ) and the
Picard group Pic(XΣ) of XΣ.

Proposition 1.13. With the above notation, one has:

(a) There is an exact sequence:

M −→ DivTN (XΣ) −→ Cl(XΣ) −→ 0,

where the first map is m 7→ div(χm) and the second sends a TN -invariant divisor D
to its divisor class [D] in Cl(XΣ). Furthermore, we have a short exact sequence:

0 −→M −→ DivTN (XΣ) −→ Cl(XΣ) −→ 0

if and only if {uρ | ρ ∈ Σ(1)} spans NR, i.e, XΣ has no torus factors.

(b) Replacing DivTN (XΣ) by CDivTN (XΣ) and Cl(XΣ) by Pic(XΣ) in part (a), the same
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result remains true;

(c) If XΣ is affine, then Pic(XΣ) = 0;

(d) If NR ∼= Rn and Σ(n) ̸= ∅, then Pic(XΣ) is a free abelian group;

(e) Pic(XΣ) = Cl(XΣ) if and only if XΣ is smooth.

Proof. See [11], Chapter 4. ■

When a smooth toric variety XΣ is such that Σ contains at least a cone of maximal
dimension, then XΣ has no torus factors and the above proposition provides a method to
compute Pic(XΣ)(= Cl(XΣ)). In this situation, Pic(XΣ) is a free abelian group, and one
has the exact sequence

0 −→M −→ DivTN (XΣ) −→ Pic(XΣ) −→ 0.

Thus, since the groups appearing in the sequence are free, one has

rank(Pic(XΣ)) = rank(DivTN
(XΣ)− rank(M) = #(Σ(1))− dimXΣ. (1.1)

Example 1.8. Consider the fan (Σ,Z2) of P2, described in Example 1.2. Since P2 is
smooth and its fan contains cones of maximal dimension, it follows rank(Pic(P2) =

#(Σ(1))− dimP2 = 1, because Σ has 3 rays ρ1, ρ2, and ρ3 defined in Example 1.6. Note
that

div(χ(1,0)) = Dρ1 −Dρ3

div(χ(0,1)) = Dρ2 −Dρ3 .

Hence, [Dρ1 ] = [Dρ2 ] = [Dρ3 ], and Pic(P2) is generated by [Dρ3 ]. △

Remark 1.2. Note that if XΣ is smooth and projective, then its Picard group Pic(XΣ)

is not trivial. In fact, if XΣ is projective, then Σ(1) ̸= ∅, otherwise XΣ would be equal to
TN . In this case, consider ρ ∈ Σ(1) and suppose that Pic(XΣ) = 0. It follows that there
is f ∈ C(XΣ)

∗ such that div(f) = Dρ, which implies that f ∈ Γ(XΣ,OXΣ
) = C. Since f

is constant, one has νρ(f) = 0, what is a contradiction. Therefore, Pic(XΣ) ̸= 0.

Definition 1.6. Let Σ be a fan in NR.

(a) A support function is a function φ : |Σ| → R that is linear on each cone of Σ.
The set of all support functions is denoted SF(Σ).
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(b) A support function φ is integral with respect to the lattice N if

φ(|Σ| ∩N) ⊆ Z.

The set of all such support functions is denoted SF(Σ, N).

There is a nice correspondence between TN -invariant Cartier divisors of XΣ and the
support functions which are integral with respect to N , described as follows. Given

D =
∑
ρ∈Σ(1)

aρDρ ∈ CDivTN
(XΣ),

one can check that for every cone σ ∈ Σ, there exists mσ ∈ M with the following
properties:

• ⟨mσ, uρ⟩ = −aρ for all ρ ∈ σ(1);

• mσ is unique modulo M(σ) = σ⊥ ∩M ;

• If τ is a face of σ, then mσ ≡ mτ (mod M(τ)).

In this situation, D is principal in Uσ and {Uσ, χmσ}σ∈Σ is the local data for D (see [17],
p. 62). We call {mσ}σ∈Σ of the Cartier data for D. Bearing this in mind, the following
proposition provides the description of Cartier divisors in terms of support functions.

Proposition 1.14. Let Σ be a fan in NR. Then:

(a) Given D =
∑

ρ aρDρ with Cartier data {mσ}σ∈Σ, the function

φD : |Σ| → R, u 7→ φD(u) = ⟨mσ, u⟩ when u ∈ σ,

is a well-defined support function that is integral with respect to N ;

(b) φD(uρ) = −aρ for all ρ ∈ Σ(1), so that

D = −
∑
ρ

φD(uρ)Dρ;

(c) The map D 7→ φD induces an isomorphism

CDivTN (XΣ) ∼= SF(Σ, N).

34



Proof. See [11] p.184. ■

Remark 1.3. The identification of CDivT (XΣ) with SF(Σ) allows us to write the exact
sequence of Proposition 1.13 (b) in the form:

M → SF(Σ) → Pic(XΣ) → 0,

where the morphism M → SF(Σ) maps m ∈ M to the support function φ(v) = −m(v),
which is linear on the entire fan Σ. On the other hand, if a support function φ is linear,
it defines an element of M , that is, m(v) = −φ(v) for all v ∈ NR. Thus, the image of M
in SF(Σ) is the subspace of linear integral support functions. It follows that if all integral
support functions SF(Σ) are linear, then Pic(XΣ) = 0 (and XΣ is not projective).

1.6 Homogeneous coordinates

From our basic example of P2, the usual homogeneous coordinates give not only the
graded ring C[x0, x1, x2] but also the quotient construction P2 ∼= (C3 \ {0})/C∗. Given a
toric variety XΣ with no torus factors, we can generalize this as follows. For each ρ ∈ Σ(1),
introduce a variable xρ, which gives the polynomial ring

S = C[xρ : ρ ∈ Σ(1)].

We call S the total coordinate ring of XΣ. In particular, Specm(S) = CΣ(1). Given a
cone σ ∈ Σ, define the monomial

xσ̂ =
∏
ρ ̸∈σ(1)

xρ.

Thus, xσ̂ is the product of the variables corresponding to rays not in σ. Then define the
ideal

B(Σ) = ⟨xσ̂ | σ ∈ Σ⟩ ⊆ S.

B(Σ) is called the irrelevant ideal of XΣ. Note that xτ̂ is a multiple of xσ̂ whenever
τ ⪯ σ. Hence, if Σmax is the set of maximal cones of Σ with respect the inclusion, then

B(Σ) = ⟨xσ̂ | σ ∈ Σmax⟩.

Finally, define Z(Σ) as the zero locus of B(Σ) in CΣ(1). Note that a monomial
∏

ρ x
aρ
ρ
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determines a divisor
D =

∑
ρ

aρDρ,

and in this case, we will write such monomial as xD. We will grade S as follows:

The degree of a monomial xD ∈ S is deg(xD) = [D] ∈ Cl(XΣ).

Since XΣ has no torus factors, one has the exact sequence

0 −→M −→ DivTN (XΣ) −→ Cl(XΣ) −→ 0 (1.2)

from Proposition 1.13. It follows that two monomials
∏

ρ x
aρ
ρ and

∏
ρ x

bρ
ρ in S have the

same degree if and only if there is some m ∈ M such that aρ = ⟨m,nρ⟩ + bρ for all ρ.
Then, let

Sα =
⊕

deg(xD)=α

C · xD,

so that the ring S can be written as the direct sum

S =
⊕

α∈Cl(XΣ)

Sα.

Note also that Sα ·Sβ ⊆ Sα+β. The plan is that XΣ should be a quotient of CΣ(1)\Z(Σ),
with homogeneous coordinate ring given by S. The quotient is by the group G, which is
defined to be

G = HomZ(Cl(XΣ),C∗).

Note that applying HomZ(−,C∗) to (1.2) gives the exact sequence

1 → G→ (C∗)Σ(1) → TN → 1

since TN = N ⊗Z C∗ = HomZ(M,C∗). This shows that G acts naturally on CΣ(1) and
leaves Z(Σ) invariant since this subvariety consists of coordinate subspaces.

Proposition 1.15. Assume that XΣ is a toric variety with no torus factors. Then:

(a) Given a basis m1, . . . ,mn of M , we have

G = {(tρ) ∈ (C∗)Σ(1) |
∏
ρ

t⟨mi,uρ⟩
ρ = 1 for 1 ≤ i ≤ n}.
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(b) XΣ is the universal categorical quotient (CΣ(1) \ Z(Σ))/G.

(c) XΣ is a geometric quotient (CΣ(1) \ Z(Σ))/G if and only if Σ is simplicial.

(d) If XΣ is simplicial, then for every homogeneous ideal I ⊆ S one has

V (I) = {[x] ∈ XΣ | f(x) = 0 for all f ∈ I}

is a closed subvariety of XΣ, where [x] denotes the orbit of x ∈ CΣ(1) \ Z(Σ) in XΣ.

Proof. See [12]. ■

Example 1.9. For N = Z2 and σ = Cone(v1, v2), where v1 = (2,−1) and v2 = (0, 1),
we have shown in Example 1.5 that Uσ ∼= C2/Z2 by computing their coordinate rings. It
is also possible to check this using Proposition 1.15, as follows. Let Σ be the fan that
consists of σ and its faces. Thus, XΣ = Uσ is a simplicial toric variety with no torus factors.
In this case, we write the homogeneous coordinate ring of XΣ as S = C[x1, x2] where xi
corresponds to the ray ρi generated by vi. The unique maximal cone of Σ with respect the
inclusion is σ, hence B(Σ) = ⟨xσ̂⟩. However, since Σ(1) consists only of rays of σ, xσ̂ = 1.
This way, Z(Σ) = ∅ and then XΣ = C2/G, where G = HomZ(Cl(XΣ),C∗) ⊂ (C∗)2. By
part (a) of Proposition 1.15, G consists of the points (x1, x2) of (C∗)2 such thatx

⟨(1,0),(2,−1)⟩
1 x

⟨(1,0),(0,1)⟩
2 = 1,

x
⟨(0,1),(2,−1)⟩
1 x

⟨(0,1),(0,1)⟩
2 = 1.

The above equations imply that G = {(1, 1), (−1,−1)}. Furthermore, G can be identified
with Z2 acting on C2 as (x, y) → (−x,−y). Therefore, XΣ = C2/Z2. △

1.7 The canonical sheaf of a toric variety

Before describing the canonical sheaf of a toric variety, we recall some definitions
and constructions. For an affine variety Specm(R), and a R-module M , we denote the
associated sheaf associated withM by M̃ . For any sheaf F of abelian groups on topological
spaceX, Γ(X,F) denotes F(X). For any abelian groupG and connected topological space
X, we denote the constant sheaf on X with values in G by GX .

Let X be a irreducible variety over C and let G be a coherent sheaf of OX-modules
on X. Denote by C(X) the the field of rational functions on X. We shall check that
G ⊗OX

C(X)
X

is a constant sheaf. Given an affine open set U = Specm(R) of X, there
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is a finitely generated R-module M such that G|U ∼= M̃ . For p ∈ U , denote by mp the
corresponding maximal ideal in R. Since C(X) equals the fraction field of R, one has

(G ⊗OX
C(X)

X
)p = (G|U ⊗OX |U C(X)

X
)p =Mmp ⊗R C(X) =M ⊗R C(X). (1.3)

Denote M ⊗R C(X) by G. Note that

Γ(X,G|U ⊗OX |U C(X)
X
) = G

and (1.3) provides that
G|U ⊗OX |U C(X)

X
) = GU .

Given another affine open set W of X, the fact that there is p ∈ W ∩ U along with (1.3)
imply that

G|W ⊗OX |W C(X)
X
) = GW .

Hence, G ⊗OX
C(X)

X
is a locally constant sheaf and therefore it is a constant sheaf (see

[20], p. 33) with module of global sections G, which is a finitely generated vector space
over C(X).

Definition 1.7. The rank of a coherent sheaf G on a irreducible variety X (over C) is
the dimension over C(X) of Γ(X,G ⊗OX

C(X)
X
).

Remark 1.4. Note that the rank of a coherent sheaf G on a irreducible variety X is equal
to the rank of G|U on U , for every open set U of X.

We recall that a coherent sheaf G on a variety X is reflexive if the canonical map
G → G∨∨ is an isomorphism. In the context below, an open subset U in X is said to be
big if codim(X − U) ≥ 2.

Proposition 1.16. Let X be a normal variety, G a coherent sheaf on X, and U a big
subset of X. Denote by j : U ↪→ X the inclusion and j∗ the functor direct image. Then

(a) G∨ is reflexive;

(b) If G is reflexive then G ≃ j∗ (G|U);

(c) If G|U is locally free then G∨∨ ≃ j∗ (G|U).

Proof. For (a) and (b), see [23]. For (c), note that

(G∨)|U0 = (G|U0)
∨
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for any coherent sheaf G on X. This way,

F∨∨ ≃ j∗((F∨∨)|U) = j∗((F|U)∨∨) ≃ j∗(F|U),

where the first isomorphism follows from (a) and (b), and the last comes from the fact
that F|U is locally free and therefore reflexive. ■

Reflexive sheaves of rank 1 on a normal variety X have a deep connection with the
Weil divisors of such varieties, described as follows. Given a Weil divisor D in X, we
associate with it a sheaf OX(D) by letting, for every open subset U ⊂ X,

OX(D)(U) = {f ∈ C(X)∗ | (div(f) +D)|U ≥ 0} ∪ {0}.

One can check that OX(D) is a reflexive OX-module (see [45]). Since OX(D) is isomorphic
to OX away from the support of D, it has rank one, by Remark 1.4.

Proposition 1.17. Let X be a normal variety, and F a coherent sheaf on X.

(a) F is reflexive and has rank one if and only if F ∼= OX(D) for some Weil divisor D
if and only if there is an big open subset j : U ↪→ X such that L|U is a line bundle
on U , and L ∼= j∗ (L|U);

(b) If D and E are Weil divisors on X, then

(OX(D)⊗OX
OX(E))

∨∨ ∼= OX(D + E);

(c) OX(D) ∼= OX(E) if and only if D linearly equivalent to E;

(d) D is Cartier if and only if OX(D) is a line bundle.

Proof. See [45]. ■

Let X be a normal variety. In general, the cotangent sheaf Ω1
X is not locally free (it

fails to be so at the singular points of X), and in particular, the sheaf

Ωn
X = ∧nΩ1

X

may fail to be a line bundle. However, we can at least define reflexive sheaves of
"differential forms" by using the fact that the smooth locus U of X is a big subset.
We set

Ω̂p
X = (Ωp

X)
∨∨ ∼= j∗ (Ω

p
X |U) ,
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where Ωp
X = ∧pΩ1

X . The sections of Ω̂p
X are called Zariski p-forms. In particular, the

rank one reflexive sheaf
ωX = Ω̂n

X

is the canonical sheaf of X. From the previous proposition, there is a class α ∈ Cl(X),
such that D ∈ α implies ωX ∼= OX(D). Every element of α, which is generally written as
KX , is said to be a canonical divisor on X. Furthermore, X is said to be Gorenstein

if one of its canonical divisors (and hence each of them) is Cartier. In the case that X is a
toric variety, there is a very nice description of a canonical divisor on X, given as follows.

Proposition 1.18. For a normal toric variety XΣ, the canonical sheaf ωXΣ
is given by

ωXΣ
∼= OXΣ

(−
∑
ρ∈Σ(1)

Dρ).

Thus, KXΣ
= −

∑
ρDρ is a torus-invariant canonical divisor on XΣ.

Proof. See [11], p. 366. ■

Example 1.10. For any smooth variety, every Weil divisor is Cartier, and hence such
type of variety is in particular Gorenstein. However, many Gorenstein varieties are not
smooth. For instance, we have seen in Examples 1.9 and 1.5 that C2/Z2 is the affine toric
variety corresponding to the pair (Σ,Z2), where Σ consists of all the faces of the cone
σ = Cone((2,−1), (0, 1)); which is singular because {(2,−1), (0, 1)} is not a basis of Z2.
Following the notation of Example 1.9, note that

div(χ(−1,−1)) = ⟨(−1,−1), (2,−1)⟩Dρ1 + ⟨(−1,−1), (0, 1)⟩Dρ2 = −Dρ1 −Dρ2 = KC2/Z2
.

Thus, KC2/Z2
is a principal divisor and therefore C2/Z2 is a Gorenstein variety. △
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CHAPTER 2

Gorenstein abelian Quotient singularities

Let G be a finite abelian subgroup of SL(n,C). This chapter discusses the properties
of the geometric quotient Cn/G and the situations in which it admits a crepant resolution.
In addition, Hilbert resolutions are also discussed, and under which conditions such type
of resolution is crepant.

2.1 Gorenstein abelian quotient singularities Cn/G as

toric varieties

From now on, G denotes abelian finite subgroup of SL(n,C). Since G consists of
automorphisms of Cn, it acts algebraically on that affine space. Because G is finite, it
is a reductive group. In this way, the orbit space Cn/G is an algebraic variety with a
coordinate ring C[x1, . . . , xn]G and the canonical map π : Cn → Cn/G is a morphism of
affine varieties corresponding to the inclusion C[x1, . . . , xn]G ⊂ C[x1, . . . , xn]. As noted
below, Cn/G is a singular Gorenstein affine variety. In this section, we discuss how to
realize that kind of object as a toric variety, which enables us to discuss the resolution of
singularities for Cn/G by using tools from toric geometry.

Proposition 2.1. Let G be as above. Let S := {x ∈ Cn|g.x ̸= x for some g ∈ G} be
the set of points whose isotropy group is nontrivial. Then the quotient π : Cn → Cn/G

satisfies the following properties
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(a) π(S) is the set of singular points of Cn/G;

(b) Cn/G is a normal variety whose canonical sheaf is a line bundle (i.e Cn/G is a
Gorenstein variety).

Proof. See [52]. ■

Part (a) of the previous proposition says that at least the image of the origin in Cn

is a singular point of the quotient. As shown in the following, part (b) can be recovered
by the toric description of Cn/G with a stronger property: its canonical sheaf is actually
trivial.

Since G ⊂ SL(n,C) is abelian and finite, there is a matrix h ∈ GL(n,C) such that the
subgroup hGh−1 of SL(n,C) is made of diagonal matrices. Notice Cn/G ≃ Cn/hGh−1

and for this reason, throughout the present work, G is supposed to be also a group of
diagonal matrices. Let be r the order of G. If g ∈ G, then g = diag(λ1, . . . , λn) and
gr = Idn×n (Idn×n means the n× n identity matrix) so that λi is a r-th root of 1. Let ϵr
be a fixed primitive r-th root of 1. There are a1, . . . , an ∈ Z≥0 such that λi = ϵair . Since
det(g) = 1, it follows that a1 + · · ·+ an ≡ 0 mod r, and hence 1

r
(a1 + · · ·+ an) = m, for

some integer m ∈ {0, 1, . . . , n− 1}.

Definition 2.1. Let g = diag(ϵa1r , . . . , ϵ
an
r ) ∈ G as above.

(a) ĝ := 1
r
(a1, . . . , an) ∈ Qn is called the fractional expression of g. Define

Ĝ := {ĝ|g ∈ G}.

(b) The age of g is given by the number age(g) := 1
r
(a1 + · · ·+ an). If age(g) = 0 then

g = Idn×n. If age(g) = 1, then g is called a junior element of G. If age(g) > 1

then g is called a senior element of G.

Since G is finite, it can be considered an algebraic or topological group. The groups
of characters of G in both cases are the same as a group, which is HomZ(G,C∗). For
i ∈ {1, . . . , n}, let ηi : G −→ µr be the projections, i.e,

ηi(diag(ϵ
a1
r , . . . , ϵ

ai
r , . . . ϵ

an
r )) = ϵair .

The characters η′is provide the monomorphism η : G −→ µnr , defined by η(g) =

(η1(g), . . . , ηn(g)). Roughly speaking, G is a closed subgroup of (C∗)n by the the inclusions

G
η−→ µnr ⊂ (C∗)n;
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Applying the functor X(_), which takes an algebraic group to the group of its characters,
one gets the surjective group homomorphism

X((C∗)n) −→ X(G)

that is obtained by the properties of closed subgroups of algebraic groups (see [49] pg.342).
One can identify Zn with X((C∗)n) by the isomorphism that takes a n-tuple of integers
(b1, . . . , bn) to the Laurent monomial xb11 . . . xbnn , as usual in toric geometry. In this way,
from the arrow above we get the homomorphism ψ : Zn ↠ X(G) which takes a n-tuple
(b1, . . . , bn) to the character b1η1 + · · ·+ bnηn. Letting M be the kernel of this morphism
we have the exact sequence

0 −→M
i−→ Zn ψ−→ X(G) −→ 0. (2.1)

Applying the functor Hom(−,Z) to the above sequence and denotingN := Hom(M,Z),
we see that N is a lattice that contains Zn. Note that M is a sublattice of finite index in
Zn, and it is also the set of invariant monomials for the action of G on Cn.

Proposition 2.2. With the notation above, one has

N = Zn +
∑
g∈G

Zĝ and N/Zn ∼= G.

Proof. By definition, (b1, . . . , bn) ∈M if and only if b1η1 + · · ·+ bnηn = 1, and this is true
if and only if for every element g = diag((ϵa1r , . . . , ϵ

an
r ) ∈ G,

n∑
i=1

biai ≡ 0 mod r.

Thus

M = {m ∈ Zn|⟨m, ĝ⟩ ∈ Z for every ĝ ∈ Ĝ}. (2.2)

Let N ′ denote Zn +
∑

g∈G Zĝ and let M ′ be the dual of N ′. By the above description of
M , we have Zn ⊂ N ′ ⊂ N and M ⊂ M ′ ⊂ Zn. Note that every element of M ′ is in the
kernel M of ψ. Therefore, M = M ′ and N = N ′. In particular, N/Zn ∼= G where the
isomorphism assigns an element g = diag(ϵa1 , . . . , ϵan) ∈ G to the class of its fractional
expression, that is, to the class of ĝ = 1

r
(a1, . . . , an). ■

Let {e1, . . . , en} be the standard basis of Rn and σ := Cone(e1, . . . , en). It is
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straightforward to check that Cn is the toric variety Uσ,Zn := Specm(C[σ∨ ∩ Zn]). The
fact that NR = Rn implies the existence of a toric variety Uσ,N with torus TN . In the next
proposition, we show that Cn/G is, in fact, Uσ,N .

Proposition 2.3. With the above notation, we have Cn/G = Uσ,N = Specm(C[σ∨∩M ]).

Proof. Using the theory presented in Section 1.6, we will express Uσ,N in homogeneous
coordinates. Let (Σ, N) be the fan that consists of σ and its faces. Thus, XΣ,N = Uσ,N is
a simplicial toric variety with no torus factors, and in this case we can apply Proposition
1.15. Since Σ has n rays, ρ1 = Cone(e1), ρ2 = Cone(e2), . . . , ρn = Cone(en), one can
denote the total coordinate ring of XΣ,N by the polynomial ring C[x1, . . . , xn], where xi
is the variable corresponding to the ray ρi. The unique maximal cone of Σ with respect
the inclusion is σ, hence its irrelevant ideal is given by B(Σ) = ⟨xσ̂⟩. However, since Σ(1)

consists only of rays of σ, xσ̂ = 1. In this way, Z(Σ) = ∅ and then XΣ = Cn/G′, where
G′ = HomZ(Cl(XΣ),C∗) ⊂ (C∗)n. By part (a) of Proposition 1.15, G′ consists of the
points (x1, . . . , xn) of (C∗)n such that, for every m = (b1, . . . bn) ∈M ,

1 = x
⟨e1,m⟩
1 . . . x

⟨e1,m⟩
1 = xb11 . . . x

bn
n .

all of the elements of G satisfy this equation, hence G ⊂ G′. Since XΣ,N has not torus
factors, the sequence

0 −→M −→ DivTN (XΣ,N) −→ Cl(XΣ,N) −→ 0

is exact. Note that DivTN (XΣ,N) =
⊕n

i=1 ZDρi
∼= Zn, and the induced morphism M → Zn

is the inclusion of M in Zn. Thus, by (2.1), X(G) ∼= Cl(XΣ,N). Since a finite group has
the same order of its group of characters, we have

|G| = |X(G)| = |Cl(XΣ,N)| = |G′|.

Hence G = G′ and therefore Uσ,N = Cn/G. ■

From the above proposition, C[x1, . . . , xn]G = C[σ∨ ∩M ]. In particular, the canonical
morphism π : Cn → Cn/G = Uσ,N is the toric morphism coming from the inclusion
Zn ⊂ N . Moreover π((C∗)n) = (C∗)n/G = TN , and if τ is a face of σ then
π(OZn(τ)) = OZn(τ)/G = ON(τ) is the orbit in Uσ,N corresponding to τ . Another way to
see the latter reasoning is to check that the action of G on Cn commutes with the action
of the torus (C∗)n.
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Remark 2.1. Note that the pair (σ,Zn) is a smooth cone, but the pair (σ,N) is no longer
smooth, since it corresponds to the quotient variety Cn/G. However, the ray generators
e1, . . . , en of σ remain linearly independent in NR = Rn, and hence (σ,N) is simplicial.
Thus, by Proposition 1.3, Cn/G is a Q-factorial variety.

Remark 2.2. From Proposition 1.18, one has that a canonical divisor of Cn/G = Uσ,N

is given as KUσ,N
= −(Dρe1

+ · · · + Dρen ), where ρei = Cone(ei). Since the monomial
x1 . . . xn is G-invariant, m = (1, . . . , 1) ∈ σ∨∩M . The support function of KUσ,N

is given
by φKUσ,N

(u) = ⟨m,u⟩ for every u ∈ σ. In particular, KUσ,N
is a principal divisor, and

this also shows that Cn/G is, in fact, a Gorenstein variety.

The set
□ := {(α1, . . . , αn) ∈ Rn|0 ≤ αi < 1}

is a fundamental domain for the action of Zn on Rn, thus every element of G has a unique
representative in □, i.e, N ∩ □ = {ĝ|g ∈ G} := Ĝ. In particular, the junior classes of G
have their unique representations contained in the slice {(α1, . . . , αn) ∈ □|α1+ · · ·+αn =

1}.
Let Hm,1 be affine hyperplane defined by ⟨m,x⟩ = 1. Note that

Hm,1 ∩ σ = Conv(e1, . . . , en) := △

and the junior elements of G have their fractional expressions contained in △. Moreover,

N ∩△ = {ĝ ∈ Ĝ| age(g) = 1} ∪ {e1, . . . , en} := νG.

The set νG is called the junior simplex of G and the picture of the points of νG in △ is
called graph of G.

Before giving an example that illustrates the discussion above, it is important to
define a very interesting type of Gorenstein quotient singularity, which is the type that
admits the canonical Fujiki-Oka resolutions (see [43]) and singles out a class of quotient
singularities that are easier to work with.

Definition 2.2. An element 1
r
(a1, . . . , an) ∈ Ĝ is called semi-unimodular if at least

one of the a′is is 1. Suppose G is a cyclic group generated by an element g corresponding
to a semi-unimodular element of Ĝ. Up to a change of coordinates, that element can be
written as ĝ = 1

r
(1, a1, . . . , an−1). In this case, G is denoted by Zr,(1,a1,...,an−1) and Cn/G

is said to be a cyclic quotient singularity of 1
r
(1, a1, . . . , an−1)−type.
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Example 2.1. Denote by Z6,(1,2,3) the cyclic subgroup of SL(3,C) generated by the
diagonal matrix

g1 =


ϵ6 0 0

0 ϵ26 0

0 0 ϵ36

 .
In this case, C3/Z6,(1,2,3) is the toric variety Uσ,N where N = Z3 + Z1

6
(1, 2, 3) and

σ = Cone(e1, e2, e3). The junior elements of this group are gi := gi1 for i ∈ {1, 2, 3, 4}
and its unique senior element is g5 := g51. Their representations ĝ1 = 1

6
(1, 2, 3), ĝ2 =

1
6
(2, 4, 0), ĝ3 =

1
6
(3, 0, 3), ĝ4 =

1
6
(4, 2, 0) in △ provide the following picture

e1 e2

e3

ĝ1

ĝ4 ĝ2

ĝ3

which is the so called graph of Z6,(1,2,3). The singular faces of σ with respect to N are
τ1 = Cone(e1, e2), τ2 = Cone(e1, e3) and σ itself. By Proposition 1.10,

(C3/Z6,(1,2,3))sing = VN(τ1) ∪ VN(τ2) ∪ VN(σ) = π(C1) ∪ π(C2) ∪ π({0})

where C1 = {(x, y, z) ∈ C3|x = z = 0}, C2 = {(x, y, z) ∈ C3|x = y = 0}, and
π : C3 → C3/Z6,(1,2,3) is the canonical morphism. △

Note that in the previous example, the singular faces of σ are those that contain at
least a fractional expression of a junior element of Z6,(1,2,3) in their relative interior. In
the next section, it is shown that this is not a coincidence.

2.2 Crepant resolutions of Cn/G

Definition 2.3. Given an irreducible variety Y , a resolution of singularities of X is
a morphism f : X → Y such that:

(a) X is smooth and irreducible.
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(b) f is proper.

(c) f induces an isomorphism of varieties Exc(f) ∼= Y \ Ysing, where Exc(f) =

f−1(Y \ Ysing) is said to be the exceptional locus of f .

Note that if Y is normal, then the fibers of f are connected by Zariski’s main theorem
(see [21], section 4.3.)

Remark 2.3. If Y is normal and locally Q-factorial (for example, Y = Cn/G, by Remark
2.1), then every irreducible component of Exc(f) has codimension 1 in X. In fact, let
x ∈ Exc(f) and set y = f(x). Identify the quotient fields C(X) and C(Y ) via the
isomorphism induced by f , so that OY,y is a proper subring of OX,x. Let t be an element
of mX,x not in OY,y, and write its divisor as the difference of two effective divisors D′

and D′′ in Y without common components. There exists a positive integer m such that
mD′ and mD′′ are Cartier divisors, hence there are rational functions u′ and v′ defined
in a neighborhood U of y, which are invertible in a smaller open set of Y not necessarily
containing y, such that div(tm) = div(u′) − div(v′) in U . This way, we can choose u

and v ∈ OY,y such that tm = u
v

in C(Y ). Both u and v are actually in mY,y because
tm is not in OY,y (otherwise t would be, since OY,y is integrally closed), and u = tmv

because u is in mX,x ∩ OY,y = mY,y. But the equations u = v = 0 define a subscheme Z
containing y, which has codimension 2 in some neighborhood of y. It is the intersection
of the codimension-1 subschemes Supp(mD′) and Supp(mD′′), whereas f−1(Z) is defined
by tmv = v = 0. Hence by the sole equation v = 0, π−1(Z) has codimension 1 in Y ,
and is contained in Exc(f). It follows that there is a codimension-1 component of Exc(f)
through every point of Exc(f).

Hironaka proved that any irreducible variety over a algebraically closed field of
characteristic 0 has a resolution of singularities, obtained by a sequence of blow-ups
(see [25]). In the case of C3/G, we will see that toric geometry provides tools to find
toric resolutions of singularities for such a variety, by means of "toric blow-ups". We
are interested in resolutions with an extra property, described in the following discussion.
From now on, varieties are always assumed to be normal, irreducible, and over C.

Given a Gorenstein variety Y , a birational morphism f : X → Y , where X is smooth,
is said to be crepant if KX = f ∗KY , where f ∗(KY ) is the pullback of a canonical divisor
of Y . Notice that this makes sense because KY is Cartier. In general, the existence of a
crepant resolution of singularities is uncommon, so for most varieties, we haveKX ̸= f ∗KY

regardless of the resolution we use. However, we can check that the support of the
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difference of such divisors is contained in the exceptional locus of f . In fact, note that

X \ Exc(f) ∼−→ Y \ Ysing

and
ωX\Exc(f) = ωX |X\Exc(f) and ωY \Ysing = ωY |Y \Ysing .

Thus, given a canonical divisor KY of Y , there exists a canonical divisor KX of X such
that

KX |X\Exc(f) = (f |X\Exc(f))
∗(KY |Y \Ysing) = f ∗(KY )|X\Exc(f).

Therefore, we get the so called ramification formula

KX = f ∗(KY ) +
s∑
i=1

aiEi (2.3)

where ai ∈ Z and the Ei are the irreducible divisors lying in the exceptional locus Exc(f).
The divisor

∑s
i=1 aiEi is said to be the discrepancy of the difference KX−f ∗(KY ). This

difference of divisors leads to some interesting classes of singularities.

Definition 2.4. Let Y be Gorenstein variety.

(a) Y has terminal singularities if there is a resolution of singularities f : X → Y ,
such that the coefficients ai in (2.3) satisfy ai > 0 for all i.

(b) Y has canonical singularities if there is resolution of singularities f : X → Y ,
such that the coefficients ai in (2.3) satisfy ai ≥ 0 for all i.

If Y has terminal (resp. canonical) singularities, then the inequalities ai > 0 (resp.
ai ≥ 0) hold for all resolutions of singularities f : X → Y (see [28], p.108).

Definition 2.5. A minimal model of Cn/G is a Q-factorial normal variety X which
has only terminal singularities together with a crepant proper birational morphism X −→
Cn/G.

In [54] p.11, it is proven that any minimal model of Cn/G is toric. In particular,
if Cn/G admits a crepant resolution X → Cn/G, then X should be toric, because any
smooth variety has canonical singularities (see [28], p.102). In this way, following the
steps provided in [14] and in the Appendix of [33], we will give the recipe to get (toric)
minimal models for Cn/G. Especially in dimensions 2 and 3 any minimal model for such
quotient variety is a crepant resolution, as we will see.
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To begin with, we give the definition of multiplicity of a cone. Let L be a lattice.
Given a simplicial strongly convex rational polyhedral cone ξ ⊂ LR with ray generators
u1, . . . ud, let Lξ be span(ξ) ∩ L. The multiplicity of ξ in L is defined by

mult(ξ)L := [Lξ : u1Z+ · · ·+ udZ]

i.e, the index of u1Z + · · · + udZ in Lξ. The following result provides some important
relations to that number:

Proposition 2.4. With the notation above:

(a) ξ is smooth if and only if mult(ξ) = 1.

(b) mult(ξ) is the number of points in Pξ ∩ L, where

Pξ := {
d∑
i=1

αiui|0 ≤ αi < 1}.

(c) Let v1, ..., vd be a basis of Lξ and write ui =
∑d

j=1 aijvj. Then

mult(ξ) = | det[aij]|.

Proof. See [11] pg. 519. ■

Now, following the notation of the previous section, since σ = Cone(e1, . . . , en), it
follows N = Nσ and

multN(σ) = [N : Zn] = |G| = r.

Moreover, Pσ = □, thus Pσ ∩N = Ĝ.
We say that a fan (Σ′, L) refines (or subdivides) a fan (Σ, L) if |Σ′| = |Σ| and every

cone of Σ′ is contained in a cone of Σ. In this situation, the identity map id : L −→ L

induces a toric morphism F(id) : XΣ′ −→ XΣ (following the notation of Section 1.4) which
is proper by Proposition 1.12 and birational since it is the identity on TL. There is a way
to construct very nice refinements of a fan, defined as follows.

Definition 2.6. Let Ξ be a fan in LR. Given a primitive element µ ∈ |Ξ| ∩ L, the star

subdivision of Ξ at µ is the fan denoted by Ξ∗(µ) and defined as the set containing the
following cones:

(a) ξ ∈ Ξ, where µ ̸∈ ξ;
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(b) Cone(τ, µ), where µ ̸∈ τ ∈ Ξ and {µ} ∪ τ ⊂ ξ ∈ Ξ.

The main properties of the star subdivision are the following:

• The 1-dimensional cones of Ξ∗(µ) are the 1-dimensional cones of Ξ plus the cone
generated by µ;

• Ξ∗(µ) is a refinement of Ξ;

• The correspondent toric morphism XΞ∗(µ) → XΞ is projective.

• If Ξ is simplicial then Ξ∗(µ) is simplicial.

We will apply this method to find minimal models for Cn/G after some considerations.

Lemma 2.5. Suppose thatXΣ is a Gorenstein toric variety. Let φ be the support function
of the Cartier divisor KXΣ

, and let ϕ : XΣ′ −→ XΣ be the toric morphism coming from a
refinement Σ′ of Σ. Then the ramification formula becomes

KXΣ′ = ϕ∗(KXΣ
) +

∑
ρ∈Σ′(1)\Σ(1)

(
φ(uρ)− 1

)
Dρ.

Proof. Note that that KXΣ
and its pullback ϕ∗KXΣ

have the same support function. Thus

ϕ∗(KXΣ
) = −

∑
ρ∈Σ′(1)

φ(uρ)Dρ.

Hence, the required formula now follows at once, relying on the fact that φ(uρ) = 1 for
each ρ ∈ Σ(1). ■

Proposition 2.6. Let XΣ,L be a normal Gorenstein toric variety. Then XΣ has canonical
singularities.

Proof. Observe first that the support function φ associated with KXΣ
is integral along L

by virtue of XΣ being Gorenstein. Next, choose a smooth refinement Σ′ of Σ (its existence
is guaranteed by [17], p. 48). Then for each uρ ∈ Σ′(1), the following properties hold:

1. φ(uρ) ∈ Z, since uρ lies in |Σ| ∩N .

2. φ(uρ) > 0, because uρ lies in some cone σ ∈ Σ, and φ takes the value 1 on each
minimal generator of σ. It follows that φ remains strictly positive on σ.
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Hence φ(uρ) ≥ 1. By the ramification formula for toric morphisms, we conclude that XΣ

must have canonical singularities. ■

Bearing this result in mind, it follows that Cn/G has canonical singularities since it
is a Gorenstein toric variety. The next proposition give us the ideia of which points we
should choose to refine the fan of Cn/G in order to get a minimal model for it.

Proposition 2.7. Let L be a lattice and let ξ ⊂ LR be a simplicial strongly convex
rational polyhedral cone with ray generators u1, . . . ud. Define

Ψξ = Conv(0, ui|i = 1, . . . d).

If Uξ is Q-Gorenstein, then

(i) Ψξ has a unique facet not containing the origin.

(ii) Uξ,L has terminal singularities if and only if the only lattice points of Ψξ are given
by its vertices.

(iii) Uξ,L has canonical singularities if and only if the only nonzero lattice points of Ψξ

lie in the facet not containing the origin.

Proof. See [11], p.551. ■

In particular, if Uξ,L is Goreinstein and n-dimensional, and its fan has exactly rays
u1, . . . , un, with rank(L) = n then the face of Ψξ that does not contain the origin is

Tξ := Conv(u1, . . . , un), (2.4)

which is a triangle that lies in the hyperplane defined bym ∈M such thatKUξ
= Div(χm).

Applying this proposition to our case, we get Ψσ = Conv(0, e1, . . . , en) and the facet not
containing the origin is simply △ = Conv(e1, . . . , en). Since Cn/G = Uσ,N is Gorenstein
and has canonical singularities, it follows the lattice points of Ψσ are given by the set

νG = {ĝ ∈ Ĝ| age(g) = 1} ∪ {e1, . . . , en}.

Now we can understand how to find the toric minimal models of Cn/G = Uσ,N . For
every junior class g of G, φKUσ,N

(ĝ) = 1, and along with Propositions 2.4 and 2.7, it follows
that any simplicial refinement of σ such that new rays added are those ones generated
by each element of the set νG ∩ Ĝ provides a toric crepant morphism ϕ : XΣ → Cn/G,
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because of the toric ramification formula

KXΣ
= ϕ∗(KUσ,N

) +
∑

ĝ∈νG∩Ĝ

(
φKUσ,N

(ĝ)− 1
)
DCone(ĝ).

In this situation, XΣ has terminal singularities.

Remark 2.4. This type of morphism is a crepant resolution of singularities when n = 2, 3,
because every Gorenstein toric surface and every Gorenstein simplicial 3-dimensional toric
variety with terminal singularities are smooth ( see [11], p.555) .

The easiest way to obtain this type of morphism along with the property of being
projective (i.e. a minimal model) is by doing a sequence of star subdivisions in σ at each
element of νG∩ Ĝ. Performing a star subdivision of the fan that consists of σ and its faces
provides us with an n-dimensional picture. However, when such star subdivision is done
at a point ĝ ∈ νG, the picture can be simplified into the graph of G. It is reduced to a
triangulation of △ with new vertex ĝ, which we will denote by △ĝ and call of (roughly)
star subdivision of △ at ĝ. The fan associated to △ĝ is denoted by Σ∗(ĝ). Another star
subdivision of △ĝ at a point ĥ ∈ ν\{ĝ} will be denoted by △(ĝ,ĥ) (and its associated fan
by Σ∗(ĝ, ĥ)) and so on. Note that it can happen △(ĝ,ĥ) ̸= △(ĥ,ĝ), as it is shown in the next
example.

Example 2.2. Following the notation of Example 2.1, we will find two projective crepant
resolutions of C3/Z6,(1,2,3) by performing different sequences of star subdivisions of △.
Firstly, the sequence of star subdivisions that we will take is given simply by (ĝ1, ĝ2, ĝ3, ĝ4),
and the sequence of pictures correspondent is displayed in the following way:

e1 e2

e3

ĝ1

ĝ4 ĝ2

ĝ3

(ĝ1)−−→

e1 e2

e3

ĝ1

ĝ4 ĝ2

ĝ3

(ĝ1,ĝ2)−−−−→

e1 e2

e3

ĝ1

ĝ4 ĝ2

ĝ3
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(ĝ1,ĝ2,ĝ3)−−−−−→

e1 e2

e3

ĝ1

ĝ4 ĝ2

ĝ3

(ĝ1,ĝ2,ĝ3,ĝ4)−−−−−−−→

e1 e2

e3

ĝ1

ĝ4 ĝ2

ĝ3

The last graph △(ĝ1,ĝ2,ĝ3,ĝ4) has a corresponding fan Σ∗(ĝ1, ĝ2, ĝ3, ĝ4). This is a refinement
of σ and the corresponding toric morphism ϕ(ĝ1,ĝ2,ĝ3,ĝ4) : XΣ∗(ĝ1,ĝ2,ĝ3,ĝ4) −→ C3/Z6,(1,2,3) is
a minimal model and, therefore, by Remark 2.4, a crepant resolution for the quotient
singularity. On the other hand, after performing the sequence (ĝ4, ĝ3, ĝ1, ĝ2) of star
subdivisions, we get △(ĝ4,ĝ3,ĝ1,ĝ2), whose graph is

e1 e2

e3

ĝ1

ĝ4 ĝ2

ĝ3

and the corresponding fan is Σ∗(ĝ4, ĝ3, ĝ1, ĝ1). This fan provides another toric minimal
model XΣ∗(ĝ4,ĝ3,ĝ1,ĝ2) −→ C3/Z6,(1,2,3) for the singularity.

△

Now, two things should be noted. First, not all the toric minimal models of the
singularity Cn/G have a fan which is a sequence of star subdivisions of the points of
Ĝ ∩ νG. For instance, the fan related to the graph

e1 e2

e3

ĝ1

ĝ4 ĝ2

ĝ3

provides another minimal model for C3/Z6,(1,2,3). However, both fan and graph can not
be obtained by a sequence of star subdivisions of the set {ĝ1, ĝ2, ĝ3, ĝ4}. Second, suppose
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Ξ is the fan of a crepant morphism of Cn/G. In that case, the number of elements of
Ξ(m) equals the number of m-dimensional faces corresponding to the triangulation of △,
for m > 0.

Remark 2.5. If Cn/G = Uσ,N admits a toric crepant resolution ϕ : XΣ → Cn/G coming
from a simplicial refinement of σ such that new rays added are those generated by each
element of the set νG∩Ĝ, then all the irreducible components of Exc(ϕ) have codimension
1 in XΣ, by Remark 2.3. Moreover, one can check that

Exc(ϕ) =
⋃

ĝ∈νG∩Ĝ

Eg,

where Eg = V (Cone(ĝ)) ⊂ XΣ (following the notation of Section 1.3), that is, there is a
bijection between the irreducible components of Ext(ϕ), which are called of exceptional

divisors of ϕ, and the junior elements of G (see [31]). In particular, each irreducible
component of Ext(ϕ) is a smooth toric variety by Proposition 1.9. Moreover, the complete
(=compact in the analytic topology) exceptional divisors of ϕ are those that are located
in the variety ϕ−1(VN(σ)), where V (σ) = ON(σ) = ON(σ). Therefore, Eg is a complete
exceptional divisor of ϕ if and only if ĝ lies in the interior of σ (see [11], p. 521).

Example 2.3. The projective crepant resolution

ϕ(ĝ1,ĝ2,ĝ3,ĝ4) : XΣ∗(ĝ1,ĝ2,ĝ3,ĝ4) −→ C3/Z6,(1,2,3),

described in Example 2.2, has a unique complete exceptional divisor Eg1 , since ĝ1 is the
unique element that lies in the interior of σ. Using Proposition 1.9, we will compute Eg1 .
Since {ĝ1, e2, e3} is a basis of N , we can identify N with Z3 by changing the coordinates
in the following way

ĝ1 7→ (1, 0, 0), e2 7→ (0, 1, 0), e3 7→ (0, 0, 1).

In these new coordinates, we have

e1 = (6,−2,−3), ĝ2 = (2, 0,−1), ĝ3 = (3,−1,−1), ĝ4 = (4,−1,−2).
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Let ρg1 be the cone generated by ĝ1. In this case, we have

N(ρg1) = Z2,

Star(ρg1) =
{
ξ ⊆ N(ρg1)R | ρg1 ⪯ ξ ∈ Σ∗(ĝ1, ĝ2, ĝ3, ĝ4)},

Eg ∼= XStar(ρg1 ),N(ρg1 )
.

Since all the maximal cones of Σ∗(ĝ1, ĝ2, ĝ3, ĝ4) contain the ray ρg1 and e1 = (−2,−3),
ĝ2 = (0,−1), ĝ3 = (−1,−1), ĝ4 = (−1,−2), e2 = (1, 0) and e3 = (0, 1), it follows that the
fan Star(ρg1) also has 6 maximal cones, which are

ξ1 := Cone
(
e2, e3

)
, ξ2 := Cone

(
e3, ĝ3

)
,

ξ3 := Cone
(
e1, ĝ3

)
, ξ4 := Cone

(
e1, ĝ4

)
,

ξ5 := Cone
(
ĝ2, ĝ4

)
, ξ6 := Cone

(
e2, ĝ2

)
.

Thus, the representation of Star(ρg1) in R2 is given by the following picture

e1

ĝ2
ĝ3

ĝ4

e2

e3

x

y

This is a sequence of 3 star subdivisions in the fan of P2 defined in Example 1.6. It can
also be seen as a sequence of 3 blowups starting in P2, with centers at 3 points. (see [11],
p.130). In chapter 3, we show in our main result that XΣ∗(ĝ1,ĝ2,ĝ3,ĝ4) is actually a geometric
line bundle over Eg, and that explains why their fan has the same number of maximal
cones.

△

55



The method used to find crepant resolutions of C3/G (if they exist) also helps us to
find crepant resolutions for singularities that are not affine, as shown in the next example.

Example 2.4. From [5], Remark 4.4, a weighted projective space P(w0, . . . , ws) is
Gorenstein if and only if wi divides

∑s
j=0wj for any i. It follows that the n−1-dimensional

weighted projective space P(1, 1, . . . , n − 1) is Gorenstein. Our goal is to find a crepant
resoltuion for this variety. Let e1, . . . , en−1 be the canonical basis of Rn−1 = Zn−1 ⊗Z R
and

u := (
n−2∑
i=1

(−1)ei) + (−1)(n− 1)en−1.

Consider the fan Ξ, with ray generators in Zn−1, that consists of all the strongly convex
rational polyhedral cones generated by the proper subsets of {e1, . . . , en−1, u}. It is known
that P(1, 1, . . . , n− 1) is the toric variety XΞ,Zn−1 . Notice that

ξ0 := Cone(e1, . . . , en−1),

ξi := Cone
(
e1, . . . , ei, u, ei+1, . . . , en−1

)
, 1 ≤ i ≤ n− 1

are the maximal cones of Ξ. Moreover, for 1 ≤ i ≤ n− 3,∣∣det([ e1, . . . , ei, u, ei+1, . . . , en−1 ]
)∣∣ = ∣∣det([ (−1,−1), (0, 1) ]

)∣∣
= 1.

where the equality is obtained by the Laplace expansion. For i = n− 2, it can be reduced
to

| det([(−1, n− 1), (0, 1)])| = 1.

Finally, for i = n− 1, it can be reduced to

| det([(1, 0), (−1, n− 1)])| = n− 1.

This way, the unique singular maximal cone of Ξ is ξn−1, by Proposition 2.4 . Since XΞ

is Gorenstein, Uξn−1 ⊂ XΞ is also a Gorenstein toric variety. From Proposition 2.7, the
lattice points of Ψξn−1 lies in Conv(e1, . . . , en−2, u). If µ is such a point that is not a vertex,
then

µ =
(n−2∑
i=1

αi ei

)
+ αu

=
(
α1 − α, α2 − α, . . . , αn−1 − α, −(n− 1)α

)
,
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with αi, α ∈ R≥0 and (
∑n−2

i=1 αi) + α = 1. Since µ ∈ Zn−1, it implies that αi = α = 1
n−1

for any i. Therefore
µ = (0, . . . , 0,−1)

is the unique point of Conv(e1, . . . , en−2, u) that it is not a vertex. Consider the star-
subdivision Ξ∗(µ) of Ξ with the induced projective morphism f : XΞ∗(µ) → XΞ. From the
toric ramification formula, one gets

KΞ∗(µ) = f ∗(KXΞ
) + (φKXΞ

(µ)− 1))Dρ

where ρ = Cone(µ) and φKXΞ
is the support function of KXΞ

. Since µ ∈ ξn−1, it
follows that φKXΞ

(µ) = mξn−1(µ), with KXΞ
|Uξn−1

= Div(χmξn−1 ). By construction,
mξn−1(µ) = 1. Thus, f is crepant. Notice that the maximal cones of Ξ∗(µ) are
ξ0, ξ1, . . . ξn−2, and ξn−1,j := Cone(e1, . . . , ej−1, µ, ej+1, . . . , en−2, u) for 1 ≤ j ≤ n − 2,
and ξn−1,n−1 := Cone(e1, . . . , en−2, µ). All of those maximal cones of Ξ∗(µ) are smooth,
and therefore, f is a projective crepant resolution of P(1, 1, . . . , n− 1). △

In Example 2.2 , we have seen that all the exhibited resolutions of C3/Z6,(1,2,3) have a
corresponding graph with six triangles and this number is simply the order Z6,(1,2,3). The
next results show that this is not a coincidence.

Proposition 2.8. Let XΞ be a n-dimensional toric variety and let

e(XΞ) :=
2n∑
i=0

(−1)krankH i
c(XΞ,Z)

be its topological Euler number characteristic. Then e(XΞ) = |Ξ(n)|.

Proof. See [17], p.59. ■

Proposition 2.9. Let G be a finite subgroup of SL(n,C). If a crepant resolution
X → Cn/G exists, then the Euler number of X equals the number of conjugacy classes
of G.

Proof. See [3]. ■

It follows, from the previous propositions, that when G is an abelian finite subgroup
of SL(n,C) and if there exists a toric crepant resolution XΣ → Cn/G then |Σ(n)| = |G|.
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2.3 Hilbert basis resolutions

There are many examples of quotientes Cn/G that does not admit a crepant resolution.
The next result provides a big extent of such examples.

Proposition 2.10. If Cn/G admits a (not necessarily projective) crepant resolution, then
G is generated by junior elements.

Proof. See [53], p.6. ■

Thus, for example, the quotient variety C4/Z2,(1,1,1,1) does not admit crepant
resolutions because Z2,(1,1,1,1) contains only senior elements. The reciprocal of the above
proposition is not true, as we will see further. But for the cases where G is generated by
junior elements, or more generally, it is possible to find another type of resolution that
has very important properties and gives another criterion for Cn/G to have a crepant
resolution or not, described below.

Given a rational strongly convex polyhedral cone of maximal dimension ξ in LR it is
proven in [44] p.233 that ξ∩L has a unique minimal system of generators HlbL(ξ), which
is given by

HlbL(ξ) = {n ∈ ξ ∩ L|n is irreducible}

where n ∈ ξ ∩L is an irreducible element if n = n1+n2, with ni ∈ ξ ∩L, then ni = n and
nj = 0 for i ̸= j. In particular, for the our case Cn/G = Uσ,N , we have that νG ⊂ HlbN(σ).
Furthermore, since N = Zn +

∑
g∈G ĝZ, one has

HlbN(σ) ⊂ Ĝ ∪ {e1, . . . , cn}. (2.5)

In fact, by part (a) of Proposition 1.2, σ ∩ N is generated by union of the sets
νG \ Ĝ = {e1, . . . , en} and K ∩N , where

K =
{ ∑
m∈νG\Ĝ

δmm
∣∣ 0 ≤ δm < 1 for all m ∈ νG \ Ĝ

}
.

Note that K = Conv(0, e1, . . . , en). Hence, by Proposition 2.7,

K ∩N = {ĝ ∈ Ĝ| age(g) = 1}.

Therefore, νG \ Ĝ ∪ (K ∩ N) = νG and the desired inclusion follows from the fact that
HlbN(σ) is the minimal system of generators of σ ∩N .
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Definition 2.7. A subdivision Σ of σ is called a Hilbert basis resolution of σ if Σ

satisfies the following conditions:

• Σ is smooth.

• HlbN(σ) is the set of ray generators of Σ.

In particular, such subdivision provides a toric morphism XΣ → Uσ,N which is also called
Hilbert basis resolution of Uσ,N .

Example 2.5. Consider the group

G := Z7,((1,1,2,3) ⊂ SL(4,C).

In this case,
C4/G = Uσ,N ,

where
N = Z3 + Z

1

7
(1, 1, 2, 3) and σ = Cone

(
e1, e2, e3, e4

)
.

Following the established notation, one has

Ĝ = {(0, 0, 0, 0), 1
7
(1, 1, 2, 3),

1

7
(2, 2, 4, 6),

1

7
(3, 3, 6, 2),

1

7
(4, 4, 1, 5),

1

7
(5, 5, 3, 1),

1

7
(6, 6, 5, 4)}.

Defining
ĝ1 :=

1
7
(1, 1, 2, 3),

ĝ2 :=
1
7
(3, 3, 6, 2),

ĝ3 :=
1
7
(4, 4, 1, 5),

ĝ4 :=
1
7
(5, 5, 3, 1),

we can check that
HlbN(σ) = {e1, e1, e3, e4, ĝ1, ĝ2, ĝ3, ĝ4}.

The unique junior element G corresponds to ĝ1. Performing a star subdivision of σ at ĝ1,
one gets a fan Σ1 := Σ∗(ĝ1), such that

Σ1(4) = {Cone(ĝ1, e2, e3, e4),Cone(ĝ1, e1, e3, e4),Cone(ĝ1, e1, e2, e3),Cone(ĝ1, e1, e2, e3)}.

Such refinement provides a minimal model XΣ1 → Cn/G, but this is not a resolution since
Cone(ĝ1, e1, e2, e3) is not a smooth cone. Furthermore, it is not possible to get a crepant
resolution of C4/G by a sequence of star subdivisions because νG = {e1, e2, e3, e4, ĝ1}.
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Nevertheless, it is possible to get a Hilbert basis resolution by performing the star
subdivision of σ at the sequence (ĝ1, ĝ2, ĝ3, ĝ4). In this case, the resulting fan Σ is such
that

Cone(ĝ1, e2, e3, e4), Cone(ĝ1, e1, e3, e4), Cone(ĝ1, e1, e2, ĝ4), Cone(ĝ1, e1, e4, ĝ4),

Cone(ĝ1, e2, e4, ĝ4), Cone(e1, e2, e4, ĝ4), Cone(ĝ1, e1, e3, ĝ3), Cone(ĝ1, e2, e3, ĝ3),

Cone(ĝ1, ĝ3, e2, ĝ5), Cone(ĝ1, ĝ3, e1, ĝ5), Cone(ĝ1, e1, e2, ĝ5),

Cone(ĝ5, e1, e2, e3), Cone(ĝ3, e2, e3, ĝ5), Cone(ĝ3, e2, e3, ĝ5)

is the set of maximal cones of Σ, this is, |Σ(4)| = 14.
△

The next result provides a necessary condition for the existence of crepant resolutions
for an arbitrary Gorenstein quotient singularity Cn/G via Hilbert basis.

Proposition 2.11. Let Cn/G = Uσ,N be an abelian Gorenstein Quotient singularity. If
there exists a toric crepant resolution XΣ → Cn/G such that the set of ray generators of
Σ is νG then HlbN(σ) = νG.

Proof. See [14], p.30. ■

The above proposition says that whenever HlbN(σ) contains senior elements, the
quotient Cn/G = Uσ,N does not admit a crepant resolution. In particular, C4/Z7,((1,1,2,3)

in fact do not have a crepant resolution, although Z7,((1,1,2,3) is generated by a junior
element.
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CHAPTER 3

Line bundles and exceptional divisors

In this chapter, we explore the structure of Hilbert basis resolutions and toric crepant
resolutions of quotient singularities Cn/G, where G is an abelian finite subgroup of
SL(n,C). The results presented here extend the understanding of the exceptional sets
of these resolutions and their relationship to junior elements of G. We begin by proving a
connection between the deformation retracts of the exceptional divisors corresponding to
junior elements of G and specific toric varieties associated with the fan of the resolution.
More precisely, we show that if a junior element of G corresponds to a ray in the fan of a
Hilbert basis resolution of Cn/G, the associated irreducible component of the exceptional
set is a deformation retract of an open toric subvariety (Theorem 3.3). In the case
where the resolution is crepant, this result also establishes that each exceptional divisor
is normally embedded and the total space of its normal bundle is isomorphic to an open
toric subvariety of the resolution.

Furthermore, by combining these results, we describe the global structure of the
resolution. For n = 3, we identify compact junior elements of G, and show that the
minimal toric model of C3/G is a toric gluing of the total spaces of the canonical bundles
over the exceptional divisors associated with these compact junior elements (Corollary
3.5). A special case arises when there is only one compact junior element, where
the resolution itself is isomorphic to the total space of the canonical bundle over the
corresponding exceptional divisor (Corollary 3.6).

The results in this chapter highlight the interplay between the combinatorial data
of the fan, the geometry of the exceptional divisors, and the structure of the crepant
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resolution. This chapter serves as a bridge between the foundational toric tools discussed
earlier and their application to the study of quotient singularities in dimensions n = 3

and higher. The proofs of these results rely heavily on the rich combinatorial and
geometric properties of toric varieties, as well as the decomposition of the fan into subsets
corresponding to junior elements of G.

3.1 Exceptional divisors and their algebraic tubular

neighborhoods

Definition 3.1. Let X be a complex manifold and let E be a submanifold of X.

(a) E is a holomorphic neighborhood retract of X if there is a neighborhood U of
E and a holomorphic map h : U → E such that h|E = identity;

(b) E is normally embedded in X if there is a neighborhood U0 of the zero section
ZE,X of the normal bundle of E with respect to X, NE,X , and a biholomorphic map
of U0 onto a neighborhood U of E in X which is the identity on ZE,X . In this case
U is called of tubular neighborhood of E.

For more details about the above definitions see [35]. In the category of real smooth
manifolds, tubular neighborhoods always exist in the above context, with the morphisms
in this category. In the category of complex manifolds, tubular neighborhoods do not
exist in general because the normal bundle sequence

0 → TE → TX |E → NE,X → 0

does not split in general (see [1]), where TX is the tangent bundle of X and NE,X is the
normal bundle of E with respect to X.

In this section, we will prove the existence of "algebraic neighborhood retract" in the
following context. Let G be a finite abelian subgroup of SL(n,C) and let {g1, . . . , gs}
be the set of junior classes of G. Suppose that there is a Hilbert basis resolution
f : XΣ → Cn/G = Uσ,N of the quotient variety Cn/G. By Proposition 2.7, ĝ1, . . . , ĝs
are elements of HlbN(σ). Thus, Egi ; = V (Cone(ĝi)) is a exceptional prime divisor of the
resolution, for every i = 1, . . . , s. We will see that there is an open toric set Ui of XΣ

containing Egi together with a torus invariant divisor Di of Egi such that one finds an
isomorphism φ : tot(OEgi

(Di)) → Ui that is the identity in the zero section. In particular,
when f is a crepant resolution of Cn/G, we will get thatXΣ =

⋃s
i=1 Ui, OEgi

(Di) is actually

62



the normal bundle NEgi/XΣ
of Egi in XΣ, and Ui is an "algebraic" tubular neighborhood

of Egi .
As a warm-up, we will start with an example that somewhat describes what has been

said.

Example 3.1. Let G be the cyclic group Z5,(1,2,2) ⊂ SL(3,C). In this case

Ĝ = {(0, 0, 0), 1
5
(1, 2, 2),

1

5
(2, 4, 4),

1

5
(3, 1, 1),

1

5
(4, 3, 3)}

and C3/G = Uσ,N , where N = Z3+Z1
5
(1, 2, 2). Note that {1

5
(1, 2, 2), 1

5
(3, 1, 1), (0, 0, 1)} is

a basis of N and

(1, 0, 0) = −(1
5
(1, 2, 2)) + 2(1

5
(3, 1, 1)) + 0(0, 0, 1)

(0, 1, 0) = 3(1
5
(1, 2, 2)) + (−1)(1

5
(3, 1, 1)) + (−1)(0, 0, 1).

Thus, after changing the coordinates, one can assume C4/G = Uξ,Z3 , where

ξ = Cone(u1 := (−1, 2, 0), u2 := (3,−1,−1), e3).

Moreover, the junior elements of G are given as ĝ1 = e1 and ĝ2 = e2. This way, after
performing a star subdivision of ξ at the sequence (ĝ1, ĝ2) one has the following picture

u1 u2

e3

ĝ1
ĝ2

(ĝ1,ĝ2)−−−−→

u1 u2

e3

ξ5ξ1
ξ2

ξ3

ξ4

Let ϕ : XΞ −→ C3/G the corresponding crepant resolution and let ρ1 = Cone(ĝ1), ρ2 =

Cone(ĝ2), ρ3 = Cone(e3), ρ4 = Cone(u1), ρ5 = Cone(u2) be the rays of Ξ. Note that
Exc(ϕ) = Eg1 ∪ Eg2 , where Egi := Dρi = O(ρi) for i = 1, 2. Furthermore, one can check
that Eg1 ∼= P2 and Eg2

∼= H3, where H3 is the third Hirzebruch surface. Now let us
describe XΞ in homogeneous coordinates. Since XΞ is smooth and has no torus factors,
it follows that Cl(XΞ) = Pic(XΞ) is a free group and the following sequence is exact

0 // Z3 φ
//
⊕5

i=1Dρi

ψ
// Pic(XΞ) // 0 .
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Moreover,

div(χ(1,0,0)) = Dρ1 −Dρ4 + 3Dρ5

div(χ(0,1,0)) = Dρ2 + 2Dρ4 −Dρ5

div(χ(0,0,1)) = Dρ3 −Dρ5 .

Thus [Dρ1 ] = [Dρ4 ] − 3[Dρ5 ], [Dρ2 ] = −2[Dρ4 ] + [Dρ5 ], [Dρ3 ] = [Dρ5 ] in Pic(XΞ). In
particular, {[Dρ4 ], [Dρ5 ]} is basis of Pic(XΞ), and hence one can identify Pic(XΞ) ∼= Z2.
This way, the previous exact sequence can be rewritten as

0 // Z3 φ
// Z5 ψ

// Z2 // 0

where φ(m1,m2,m3) = (m1,m2,m3,−m1+2m2, 3m1−m2−m3) and ψ(n1, n2, n3n4, n5) =

(n1−2n2+n4,−3n1+n2+n3+n5). Applying the functor Hom(_,C∗) to the latter sequence,
one gets

0 // (C∗)2
ψ∗
// (C∗)5

φ∗
// (C∗)3 // 0

where ψ∗(t1, t2) = (t1t
−3
2 , t−2

1 t2, t2, t1, t2) and φ∗(q1, q2, q3, q4, q5) = (q1q
−1
4 q35, q2q

2
4q

−1
5 , q3q

−1
5 ).

Notice that ψ∗ defines a action of (C∗)2 on C5. Let S = C[x1, x2, x3, x4, x5] be total co-
ordinate ring of XΞ, where each variable xi corresponds to the ray ρi of Ξ. S is a graded
ring such that deg(xi) = [Dρi ] ∈ Pic(XΞ). Consider the monomial ideal

B(Ξ) := (x4x5, x1x5, x1x3, x3x4, x2x4)

and its zero locus Z(Ξ) := V (B(Ξ)) ⊂ C5. Given polynomial g ∈ S, denote by D(g) the
principal open set of C5 where g ̸= 0. Note that

C5\Z(Ξ) = D(x4x5) ∪D(x1x5) ∪D(x1x3) ∪D(x3x4) ∪D(x2x4)

and each principal open set that appears in this union is invariant under the action of
(C∗)2. By part (c) of Proposition 1.15 one can check that

(C5\Z(Ξ)/(C∗)2) ∼= XΞ

and each homogeneous ideal of S which is contained in B(Ξ) provides a closed subset of
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XΞ. In this situation, one has

XΞ = {[x1 : x2 : x3 : x4 : x5]|(x1, x2, x3, x4, x5) ∈ C5\Z(Ξ)}

Eg1 = {[0 : x2 : x3 : x4 : x5]|(0, x2, x3, x4, x5) ∈ D(x4x5) ∪D(x3x4) ∪D(x2x4)}

Eg2 = {[x1 : 0 : x3 : x4 : x5]|(x1, 0, x3, x4, x5) ∈ D(x4x5) ∪D(x1x5) ∪D(x1x3) ∪D(x3x4)}

XΞg1
:= {[x1 : x2 : x3 : x4 : x5]|(x1, x2, x3, x4, x5) ∈ D(x4x5) ∪D(x3x4) ∪D(x2x4)}

XΞg2
:= {[x1 : x2 : x3 : x4 : x5]|(x1, x2, x3, x4, x5) ∈ D(x4x5) ∪D(x1x5) ∪D(x1x3) ∪D(x3x4)}.

Note that each XΞgi
is an open set that contains Egi . Furthermore, the projections

πi : XΞgi
−→ Eĝ1 , given by π1([x1 : x2 : x3 : x4 : x5]) = [0 : x2 : x3 : x4 : x5], π2([x1 : x2 :

x3 : x4 : x5]) = [x1 : 0 : x3 : x4 : x5], are well defined morphisms that are the identity in
Egi . Therefore, Egi is a algebraic neighborhood retract of XΞ. △

Given Cartier divisor D =
∑

ρ∈Ξ(1) aρuρ of a toric variety XL,Ξ = XΞ, the following
construction will be important for our goals: For each τ ∈ Ξ consider the cone in LR ×R
defined by

τ̃ := Cone((0, 1), (uρ,−aρ)|uρ ∈ τ).

Note that τ̃ is a strongly convex rational polyhedral cone in LR × R. Let ΞD be the set
consisting of the cones τ̃ and their faces, for τ ∈ Ξ. This is a fan of cones in LR × R and
the projection LR×R −→ L is a compatible morphism for the fans ΞD and Ξ. Hence, we
get the toric morphism

π : XΞD
−→ XΞ.

From this construction we have the following proposition, whose proof can be found in
[11] pg 335.

Proposition 3.1. π : XΞD
−→ XΞ is a rank 1 vector bundle whose sheaf of sections is

OXΞ
(D).

In particular, this proposition implies that the total space of the line bundle
corresponding to a Cartier divisor of a toric variety is also a toric variety.

Lemma 3.2. Let {u1, . . . , un} be a basis of Rn. If bi ∈ Conv(kiu1, . . . , kiun), for
i = 1, . . . , n and ki ∈ Z>0, are such that {b1, . . . , bn} is another basis of Rn and b ∈
Conv(ku1, . . . , kun), for some k ∈ Z>0, and b = a1b1+· · ·+anbn, then k1a1+· · ·+knan = k.

Proof. One can write b =
∑n

i=1 αikui, where
∑n

i=1 αi = 1, and bj =
∑n

i=1 aijkjui,
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where
∑n

i=1 aij = 1 . The latter implies that b =
∑n

i=1(
∑n

j=1 ajkjaij)ui. Thus
αik =

∑n
j=1 kjajaij. It follows that

k =
n∑
i=1

αik = (
n∑
i=1

ai1)k1a1 + · · ·+ (
n∑
i=1

ain)knan = k1a1 + · · ·+ knan

■

Now we can prove our first important result.

Theorem 3.3. Let G be an abelian finite subgroup of SL(n,C). Suppose that there is a
Hilbert desingularization ϕ : XΞ → Cn/G = Uσ,N of the quotient variety, and for each
ĝ ∈ Ĝ ∩ HlbN(σ) denote by Eg the irreducible component of the exceptional set of ϕ,
corresponding to the ray ρg := Cone(ĝ). If age(ĝ) = 1 then Eg is a deformation retract of
the toric variety XΞg , where Ξg is the fan that consists of all the faces of the cones that
appear in the set

Ξg(n) := {η ∈ Ξ(n)|ρg ⪯ η}.

In particular XΞg is open in XΞ.

Proof. Consider the new lattice N(ĝ) = N/ĝZ ∼= Zn−1 and the set

Star(ĝ) := {η ⊆ N(ĝ)|ρg ⪯ η ∈ Ξ}.

Note that Star(g) is a fan in N(ĝ)R. By Proposition 1.9, Star(ĝ) is the fan of Eg.
Furthermore, all of the elements of Star(g)(1) are of the form Cone(ĝ, u) = Cone(u),
for some u ∈ HlbN(σ) and Cone(ĝ, u) ∈ Ξg(2). Since Eg is a smooth variety any of its
Weil divisors are Cartier. Consider the Cartier divisor

D :=
∑

Cone(u)∈Star(g)(1)

−(age(u))DCone(u),

where DCone(u) is the toric prime divisor corresponding to the ray Cone(u). Let ξ :=

Cone(ĝ, u1, . . . , un−1) be a cone in Ξ(n). This way, {u1 . . . , un−1} is a basis of N(g) and
hence {(0, 1), (u1, age(u1)), . . . , (un−1, age(un−1))} is a basis of N(g) × Z. Consider the
lattice isomorphism

f : N(g)× Z −→ N

defined by:

f(0, 1) = ĝ, f(u1, age(u1)) = u1, . . . , f(un−1, age(un−1)) = un−1.
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Let ρ be an element of Ξg(1) and denote by uρ its ray generator and kρ the age of uρ.
Note that uρ ∈ Conv(kρe1, . . . , kρen). One can write uρ = aĝ + a1u1 + · · · + an−1un−1,
hence, by Lemma 3.2,

kρ = a(age(ĝ)) + a1(age(u1)) + · · ·+ an−1(age(un−1)).

Thus, one gets

f(uρ, kρ) = f(aĝ + a1u1 + · · ·+ an−1un, a(age) + a1(age(u1)) · · ·+ an−1(age(un−1))

= af(0, 1) + a1f(u1, age(u1)) + · · ·+ an−1f(un−1, age(un−1))

= uρ.

Let η = Cone(v1, . . . , vs) be a cone in Ξg, where vi ∈ HlbN(σ). If ĝ ∈ η, then we can
suppose u1 = ĝ, and we have

n ∈ Star(g), η̂ ∈ Star(g)D,

and hence,
fR(η̂) = η.

If ĝ ̸∈ η, then ξ := ρg + η is a cone in Ξg such that η is one of its faces. In this case,

ξ̂ = Cone((0, 1), (u1, age(u1)), . . . , (un, age(un)))

is a cone in Star(g)D. Thus, its face

η′ := Cone((u1, age(u1)), . . . , (un, age(un)))

is also in Star(g)D. Moreover,
fR(η

′) = η.

The two cases analyzed above show that f is compatible with the fans Star(g)D and
Ξg, and hence, one obtains an isomorphism of toric varieties:

f : XStar(ĝ)KEg
−→ XΞg .

The last statement implies that XΞg is a line bundle over its subset Eg, and therefore,
Eg is a (strong) deformation retract of XΞg .
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■

Theorem 3.4. Let G be an abelian finite subgroup of SL(n,C) and suppose that there
is a crepant resolution ϕ : XΞ → Cn/G = Uσ,N of the quotient variety. If g is a junior
element of G, then Eg is normally embedded in XΞ. In particular, the total space of the
canonical bundle of Eg, tot(ωEg), is isomorphic to the toric variety XΞg , and

XΞ =
⋃

ĝ∈Ĝ∩△1

XΞg

where XΞg is defined in the same way as the previous theorem.

Proof. The proof is very similar to the proof of the previous theorem, but with some
adjustment. Again, one considers the lattice N(g) and the fan Star(g) of Eg. Since Eg is
a smooth variety, its canonical divisor KEg must be a Cartier divisor. Since ϕ is a crepant
morphism, the age of all the ray generators of the rays in Ξ should equal 1. This way,
one has

∑
Cone(u)∈Star(g)(1)

−(age(u))DCone(u) =
∑

Cone(u)∈Star(g)(1)

−DCone(u) = KEg .

Now consider the fan Star(g)KEg
in (N(g)×Z)R. By Proposition 3.1, XStar(g)KEg

is the to-
tal space of OEg(KEg) = ωEg . Let ξ := Cone(ĝ, u1, . . . , un−1) be a cone in Ξ(n). This way,
{u1 . . . , un−1} is a basis of N(g) and hence {(0, 1), (u1, age(u1)), . . . , (un−1, age(un−1))} is
a basis of N(g)×Z. Consider the isomorphism f : N(g)×Z −→ N of lattices defined from
f(0, 1) = g, f(u1, 1) = u1,. . . , f(un−1, 1) = un−1. Write uρ = a1g + a2v1 + · · · + anvn−1.
Since uρ, g, v1, . . . vn−1 ∈ Tσ, Lemma 3.2 guarantees a1 + · · · + an = 1. With the same
arguments of the proof of the last theorem, one gets that fR induces an isomorphism of
toric varieties f : XStar(ĝ)KEg

−→ XΞg .
Since ϕ is a crepant resolution of Cn/G then ωXΞ

∼= OXΞ
. By the adjunction formula

ωEg ≃ ωXΞ
⊗OXΞ

NEg/XΞ
,

one has that ωEg
∼= NEg/XΞ

. Therefore Eg is normally embedded in XΞ.
■

Corollary 3.5. Let G be an abelian finite subgroup of SL(3,C). Suppose G has compact
junior elements gc1 , . . . , gcs (those elements whose fractional expressions lie in Relint(σ)).
Then there is a toric minimal model XΞ of C3/G = Uσ,N such that XΞ is a toric gluing
of tot(ωEgc1

), . . . , tot(ωEgcs
).
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Proof. Since, in dimension 3, every Gorenstein toric variety with terminal singularities
is smooth, every sequence of star subdivisions at all the points of νG provides a crepant
resolution of C3/G = Uσ,N . This way, if one starts a sequence of star subdivisions at the
points ĝc1 , . . . , ĝcs , and finish with the other remaining points of νG, one gets a fan Ξ such
that any of its maximal fan contains the ray Cone(gci) for some i = 1, . . . , s. From the
previous Corollary, it follows that XΞ =

⋃s
i=1XΞgci

■

Corollary 3.6. Let G be an abelian finite subgroup of SL(3,C). Then G has only one
compact junior element g if and only if C3/G = UN,σ has a toric crepant resolution XΞ

that is isomorphic to tot(ωEg).

Proof. One way comes from the previous corollary. For the other way around, suppose
that such resolution XΞ exists. Since XΞ is a line bundle of Eg, by Poincaré duality, one
gets H4

c (XΞ,Q) ∼= H2(XΞ,Q) ∼= H2(Eg,Q) ∼= H0(Eg,Q) (see [24], for more details).
Because Eĝ is a complete toric surface, one must have dimH0(Eg,Q) = 1. Thus
dimH4

c (XΞ,Q) = 1. By [31], dimH4
c (XΞ,Q) is the number of compact junior elements of

G. ■

Example 3.2. In Example 3.1, we have seen that G = Z5,(1,2,2) has two junior elements
g1 and g2 such that ĝ1 = 1

5
(1, 2, 2) and ĝ2 = 1

5
(3, 1, 1). In particular, these elements are

compact and Eg1
∼= P2 and Eg2

∼= H3. For 0 ≤ i ≤ 6, we will compute the dimension of
the singular cohomology groups H i(XΞ,Q) of the variety XΞ obtained in the resolution
ϕ : XΞ −→ C3/G presented in Example 3.1, according to the Mckay correspondence. By
Theorem 3.4, XΞ = XΞg1

∪XΞg2
and XΞg1

∼= tot(ωP2) and XΞg2

∼= tot(ωH3). In this case,
H i(XΞg1

,Q) = H i(P2,Q) and H i(XΞg2
,Q) = H i(H3,Q) for every i. For any complete

simplicial toric variety XΣ of dimension n, one has:

• H2k+1(XΣ,Q) = 0 for every k;

• dimH2k(XΣ,Q) =
∑n

i=k(−1)i−k
(
i
k

)
|Σ(n− i)|;

• dimH2k(XΣ,Q) = dimH2n−2k(XΣ,Q).

The above identities can be seen in chapter 12 of [11]. Let Σ1 be the fan of P2, presented
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in example 1.2. One has |Σ1(2)| = 3, |Σ1(1)| = 3 and |Σ1(0)| = 1. Thus,

dimH0(XΞg1
,Q) = dimH0(P2,Q) =

2∑
i=0

(−1)i−0

(
i

0

)
|Σ1(2− i)| = 3− 3 + 1 = 1;

dimH2(XΞg1
,Q) = dimH2(P2,Q) =

2∑
i=1

(−1)i−1

(
i

1

)
|Σ1(2− i)| = 3− 2× 1 = 1;

dimH4(XΞg1
,Q) = dimH4(P2,Q) = dimH0(P2,Q) = 1;

dimH6(XΞg1
,Q) = dimH6(P2,Q) = 0;

where for any manifold M of real dimension n, dimHk(M,Q) = 0, for every k > n (see
[24], Chapter 3). The fan Σ2 of H3 is described by the following picture:

x

y

u1

u2

u3

u4

where u1 = (−1, 3), u2 = (0, 1), u3 = (1, 0), u4 = (0,−1) are the ray generators of Σ2

and Cone(u1, u2),Cone(u2, u3),Cone(u3, u4),Cone(u4, u1) are its maximal cones. In this
situation, |Σ2(2)| = 4, |Σ2(1)| = 4 and |Σ2(0)| = 1. Thus,

dimH0(XΞg2
,Q) = dimH0(H3,Q) =

2∑
i=0

(−1)i−0

(
i

0

)
|Σ2(2− i)| = 4− 4 + 1 = 1;

dimH2(XΞg2
,Q) = dimH2(H3,Q) =

2∑
i=1

(−1)i−1

(
i

1

)
|Σ2(2− i)| = 4− 2× 1 = 2;

dimH4(XΞg2
,Q) = dimH4(H3,Q) = dimH0(H3,Q) = 1;

dimH6(XΞg2
,Q) = dimH6(H3,Q) = 0.

Note that U := XΞg1
∩XΞg2

= Uξ1 ∪ Uξ2 and Uξ1 ∩ Uξ2 = Uτ , where ξ1, ξ2 are defined in
example 3.1 and τ := Cone(ĝ1, ĝ2). In general an affine toric variety Uσ,N is a deformation
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retract of the orbit ON(σ) (see [11], chapter 12). Since dim ξi = 3, it follows that Uξi is a
deformation retract of its distinguished point γξi . Thus

H i(Uξi ,Q) = H i({γξi},Q) =

Q, i = 0,

0, i ≥ 1.

Since τ is a smooth cone of dimension 2, one has N(τ) ∼= Z. By Proposition 1.8,
ON(τ) ∼= TN(τ)

∼= C∗ which is a deformation retraction of the real sphere S1. Hence

H i(Uτ ,Q) = H i(S1,Q) =

Q, i = 0, 1,

0, n ≥ 2.

Applying the Mayer–Vietoris sequence to the cover U = Uξ1 ∪ Uξ2 , we get

0 → H0(U,Q) → H0(Uξ1 ,Q)⊕H0(Uξ2 ,Q) → H0(Uτ ,Q)

→ H1(U,Q) → H1(Uξ1 ,Q)⊕H1(Uξ2 ,Q) → H1(Uτ ,Q)

→ H2(U,Q) → H2(Uξ1 ,Q)⊕H2(Uξ2 ,Q) → H2(Uτ ,Q)

→ H3(U,Q) → H3(Uξ1 ,Q)⊕H3(Uξ2 ,Q) → H3(Uτ ,Q)

→ H4(U,Q) → H4(Uξ1 ,Q)⊕H4(Uξ2 ,Q) → H4(Uτ ,Q)

→ H5(U,Q) → H5(Uξ1 ,Q)⊕H5(Uξ2 ,Q) → H5(Uτ ,Q)

→ H6(U,Q) → H6(Uξ1 ,Q)⊕H6(Uξ2 ,Q) → H6(Uτ ,Q) → · · · ,

thus dimH i(U,Q) = 0 for i > 2 and dimH2(U,Q) = 1. Since U is path-connected, one
has dimH0(U,Q) = 1 (see [24], p.109). Hence dimH1(U,Q) = 0.

Applying the Mayer-Vietoris sequence to the cover XΞ = XΞg1
∪XΞg2

, we get

0 → H0(XΞ,Q) → H0(XΞg1
,Q)⊕H0(XΞg2

,Q) → H0(U,Q)

→ H1(XΞ,Q) → H1(XΞg1
,Q)⊕H1(XΞg2

,Q) → H1(U,Q)

→ H2(XΞ,Q) → H2(XΞg1
,Q)⊕H2(XΞg2

,Q) → H2(U,Q)

→ H3(XΞ,Q) → H3(XΞg1
,Q)⊕H3(XΞg2

,Q) → H3(U,Q)

→ H4(XΞ,Q) → H4(XΞg1
,Q)⊕H4(XΞg2

,Q) → H4(U,Q)

→ H5(XΞ,Q) → H5(XΞg1
,Q)⊕H5(XΞg2

,Q) → H5(U,Q)

→ H6(XΞ,Q) → H6(XΞg1
,Q)⊕H6(XΞg2

,Q) → H6(U,Q) → · · · ,
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thus
dimH0(XΞ,Q) = 1, dimH1(XΞ,Q) = 0, dimH2(XΞ,Q) = 2,

dimH3(XΞ,Q) = 0, dimH4(XΞ,Q) = 2, dimH5(XΞ,Q) = 0,

dimH6(XΞ,Q) = 0.

Note that dimH2(XΞ,Q) is the number of junior elements of G and dimH4(XΞ,Q)

is the number of senior elements of G. These numbers were actually expected due to the
main theorem of [31]. △
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