

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA E DESENVOLVIMENTO REGIONAL DEPARTAMENTO DE TECNOLOGIA DE ALIMENTOS

FRANCISCO PAES DA SILVA NETO

CARACTERIZAÇÃO DAS SEMENTES E DOS ÓLEOS DA AMÊNDOA DA CASTANHA DE CAJU (Anacardium occidentale L.) E PISTACHE (Pistacia Vera L.)

JOÃO PESSOA

FRANCISCO PAES DA SILVA NETO

CARACTERIZAÇÃO DAS SEMENTES E DOS ÓLEOS DA AMÊNDOA DA CASTANHA DE CAJU (Anacardium occidentale L.) E PISTACHE (Pistacia Vera L.)

Trabalho de Conclusão de Curso apresentado a Coordenação do Curso de Tecnologia de Alimentos da Universidade Federal da Paraíba como requisito complementar para obtenção do título de tecnólogo de alimentos.

Orientadora: Profa. Dra. Nataly Albuquerque dos Santos

JOÃO PESSOA

Catalogação na publicação Seção de Catalogação e Classificação

S586c Silva Neto, Francisco Paes da.

Caracterização das sementes e dos óleos da amêndoa da castanha de caju (Anacardium occidentale L.) e pistache (Pistacia Vera L.) / Francisco Paes da Silva Neto. - João Pessoa, 2025.

38 f. : il.

Orientação: Nataly Albuquerque dos Santos. TCC (Graduação) - UFPB/CTDR.

1. Oleaginosas. 2. Ácidos graxos. 3. Compostos bioativos. I. Santos, Nataly Albuquerque dos. II. Título.

UFPB/CTDR

CDU 634.573:581.134

FRANCISCO PAES DA SILVA NETO

CARACTERIZAÇÃO DAS SEMENTES E DOS ÓLEOS DA AMÊNDOA DA CASTANHA DE CAJU (Anacardium occidentale L.) E PISTACHE (Pistacia Vera L.)

Trabalho de Conclusão de Curso submetido à Banca Examinadora designada pelo Curso de Graduação em Tecnologia de Alimentos da Universidade Federal da Paraíba como requisito para obtenção do título de Tecnóloga em Alimentos.

BANCA EXAMINADORA

Documento assinado digitalmente

	NATALY ALBUQUERQUE DOS SANTOS Data: 08/10/2025 12:48:06-0300 Verifique em https://validar.iti.gov.br
Assinatura:	
	Profa. Dra. Nataly Albuquerque dos Santos
	Orientadora
	Documento assinado digitalmente
	CAROLINA LIMA CAVALCANTI DE ALBUQUERQUI Data: 06/10/2025 23:24:14-0300 Verifique em https://validar.iti.gov.br
Assinatura:	Profa. Dra. Carolina Lima Cavalcanti de Albuquerque
	Examinadora
	Documento assinado digitalmente
	PENE PINTO DA SILVA Data: 07/10/2025 09:19:52-0300 Verifique em https://validar.iti.gov.br
Assinatura:	
	Dr. Rene Pinto da Silva

Examinador

Se cheguei até aqui foi pela misericórdia de DEUS e amor de Nossa Senhora que não abandona os seus. A minha mãe, irmã e todos os familiares e amigos que contribuiram direta ou indiretamente em cada paço dado da minha caminhada acadêmica, e a todos os docentes que tive e profissionais envolvidos.

AGRADECIMENTOS

Primeiramente, agradecer a DEUS e a Nossa Senhora por toda intercesão e proteção dada durante todo o meu processo de aprendizado, quando eu achei que não conseguiria eram em vocês que eu encontrava abrigo e força para continuar.

A minha mãe que é tudo em minha vida, minha irmã que tanto amo e torço pela felicidade e sucesso todos os dias, minhas tias Nice e Lourdes que foram sim meu chão muitas vezes quando eu não enxergava caminhos e meios, todos os meus familiares que eu sei que do jeito deles vibram por mim, aos amigos que nos acolhem, nos ouvem e pegam na nossa mão quando mais precisamos, vocês são parte disso e eu sou grato por tê-los em minha vida.

Aos colegas e amigos de curso, todos vocês fazem parte de uma importante fase da minha graduação, nos tornamos uma família por passarmos tanto tempo juntos, compartilhamos alegrias, tristezas, frustrações e vitórias. Aprendi muito com vocês, no meu coração levarei cada um.

Ruth e Paloma, impossível encerrar esse ciclo em minha vida sem citá-las, obrigado por serem meu ombro amigo, por acreditarem em mim, por sempre me mostrarem que eu poderia mais. Desejo sucesso na vida de vocês.

A minha professora Nataly e aos demais docentes por todos os ensinamentos, pelas trocas em salas de aulas, em aulas práticas, por todas as dúvidas sanadas, pelo o empenho em estarem sempre disponíveis e acreditem, esse olhar faz toda a diferença, eu saio com um olhar sem dúvidas profissional.

Aos técnicos, conhecidos por atuarem nos bastidores mas que estão diretamente ligados ao no nosso aprendizado. Uma gratidão em especial para Rene e Aline, obrigado pela paciência, dedicação e pelo empenho em nos fazer evoluir. Foram fundamentais para a realização deste TCC.

A todos vocês, a minha mais profunda gratidão.

"Há um tempo em que é preciso abandonar as roupas usadas que já tem a forma do nosso corpo e esquecer os nossos caminhos que nos levam sempre aos mesmos lugares".

Fernando Pessoa

RESUMO

As oleaginosas oferecem benefícios tais como, melhora na digestão, saúde cardiovascular e funções cognitivas. Podendo ser adcionadas a lanches, saladas e granolas. Entre essas, a castanha de caju (Anacardium occidentale L.) e o pistache (Pistacia vera L.) se destacam não apenas pelo sabor apreciado, mas também pelo elevado teor de lipídios de qualidade presentes em suas amêndoas. Diante disso, este trabalho teve como objetivo caracterizar as sementes e os óleos dessas oleaginosas, obtidos por extração em Soxhlet utilizando hexano como solvente, com ênfase na avaliação de propriedades físico-químicas e energéticas. Para tanto, foram realizadas análises de umidade, cinzas e acidez titulável nas sementes, bem como determinação de acidez titulável, índice de peróxido, poder calorífico superior (PCS) e curva de escoamento nos óleos extraídos. Os resultados demonstraram que a amêndoa da castanha de caju apresentou 3,18% de umidade, 2,36% de cinzas e acidez titulável de 3,94%, enquanto o pistache apresentou 4,60% de umidade, 2,89% de cinzas e acidez titulável de 9,74%, valores compatíveis com a literatura. O PCS das sementes foi de 28,94 MJ/kg para a castanha de caju e 30,46 MJ/kg para o pistache. Em relação aos óleos, o da castanha de caju apresentou acidez de 0,6% (ácido oleico) e índice de peróxido de 0,0, enquanto o óleo de pistache apresentou acidez de 2,9% (ácido oleico) e índice de peróxido também de 0,0, sendo que apenas o pistache ultrapassou o limite de acidez que é de 2,0 mg KOH/g estabelecido para óleos brutos segundo a RDC 482 (1999). O PCS dos óleos foi de 40,828 MJ/kg para a castanha de caju e 39,475 MJ/kg para o pistache. Ambos os óleos apresentaram comportamento newtoniano devido a sua regressão linear apresntada na curva de escoamento. Dessa forma, os resultados confirmam a qualidade e a autenticidade das oleaginosas estudadas, além de evidenciarem o potencial energético e a viabilidade de aproveitamento dessas matérias-primas no contexto nutricional, funcional e industrial.

Palavras-chave: Oleaginosas; Ácidos graxos; Compostos bioativos.

ABSTRACT

Nuts offer benefits such as improved digestion, cardiovascular health, and cognitive function. They can be added to snacks, salads, and granola. Among these, cashew nuts (Anacardium occidentale L.) and pistachios (Pistacia vera L.) stand out not only for their delicious flavor but also for the high content of quality lipids present in their kernels. Therefore, this study aimed to characterize the seeds and oils of these oilseeds, obtained by Soxhlet extraction using hexane as a solvent, with an emphasis on evaluating their physicochemical and energetic properties. Moisture, ash, and titratable acidity analyses were performed on the seeds, as well as titratable acidity, peroxide value, gross calorific value (SVC), and flow curve determinations for the extracted oils. The results showed that cashew kernels had 3.18% moisture, 2.36% ash, and 3.94% titratable acidity, while pistachios had 4.60% moisture, 2.89% ash, and 9.74% titratable acidity, values consistent with the literature. The PCS of the seeds was 28.94 MJ/kg for cashew nuts and 30.46 MJ/kg for pistachios. Regarding the oils, cashew nuts had an acidity of 0.6% (oleic acid) and a peroxide value of 0.0, while pistachio oil had an acidity of 2.9% (oleic acid) and a peroxide value of 0.0, with only pistachios exceeding the acidity limit established which is 2.0 mg KOH/g for crude oils according to RDC 482 (1999). The PCS of the oils was 40.828 MJ/kg for cashew nuts and 39.475 MJ/kg for pistachios. Both oils exhibited Newtonian behavior due to their linear regression shown in the flow curve. Thus, the results confirm the quality and authenticity of the oilseeds studied, in addition to highlighting the energy potential and the feasibility of using these raw materials in nutritional, functional, and industrial contexts.

Keywords: Oilseeds; Fatty acids; Bioactive compounds.

LISTA DE TABELAS

Tabela 1 - Propriedades físico-química das sementes	28
Tabela 2 - Propriedades físico-química do óleo bruto das sementes	29
Tabela 3 - Valores de Poder Calorífico Superior das sementes da amêndoa da castanha de caju e de pistacl	he.
	29

LISTA DE FIGURAS

Figura 1 - Estruturas do Caju	13
Figura 2 - Estruturas que compõem a castanha de caju (corte longitudinal)	14
Figura 3 - Crescimento efetivo da produção da castanha de caju na região nordeste, entre os anos de 2020 à	
2023.	14
Figura 4 - Partes do Pistache	16
Figura 5 - Sementes na estufa de circulação de ar	23
Figura 6 - Soxhlet.	25
Figura 7 – (A) Óleo da Amêndoa da castanha de Caju e (B) Óleo de Pistache	28
Figura 8 - Gráficos das curvas de Escoamento para os óleos de Pistache (1) e da Amêndoa da castanha de	
caju (2)	31

SUMÁRIO

1 INTRODUÇÃO	11
2 OBJETIVOS	12
2.1 OBJETIVO GERAL	12
2.2 OBJETIVOS ESPECÍFICOS	
3 FUNDAMENTAÇÃO TEÓRICA	13
3.1 CASTANHA-DE-CAJU (ANACARDIUM OCCIDENTALE L.)	13
3.2 PISTACHE (<i>PISTACIA VERA L.</i>)	16
3.3 EXTRAÇÃO DE ÓLEOS VEGETAIS	18
3.4 CARACTERÍSTICAS DOS ÓLEOS	20
3.4.1 ACIDEZ	20
3.4.2 ÍNDICE DE PERÓXIDO	20
3.4.3 PODER CALORÍFICO SUPERIOR (PCS)	21
3.4.4 REOLOGIA DE FLUIDOS ALIMENTÍCIOS	21
4 MATERIAIS E MÉTODOS	22
4.1 MÉTODO	23
4.1.1 Determinação do teor da umidade da matéria prima	23
4.1.2 Teor de cinzas	24
4.1.3 Determinação do índice de acidez Titulável	24
4.1.4 Poder Calorífico Superior (PCS)	25
4.2 Determinação do teor de óleo das oleaginosas	25
4.2.1 Determinação do índice de acidez do óleo	26
4.2.2 Determinação do índice de peróxido	26
4.2.3 Determinação da curva de escoamento de fluidos	26
5 RESULTADOS E DISCUSSÃO	27
5.1 Caracterização físico-química das sementes	27
5.2 Caracterização físico-química dos óleos brutos por extração soxhlet	28
5.3 Análises do Poder calorífico superior (PCS) das sementes e dos óleos extraídos	29
5.4 Avaliação das curvas de escoamento dos óleos obtidos	30
6. CONCLUSÃO	32
7 REFERÊNCIAS	33

1 INTRODUÇÃO

O consumo de oleaginosas tem despertado crescente interesse no campo da ciência de alimentos devido ao seu potencial nutricional e funcional. Entre essas, a castanha de caju (*Anacardium occidentale L.*) e o pistache (*Pistacia vera L.*) ocupam lugar de destaque, não apenas pelo sabor apreciado, mas também pelo elevado teor de lipídios de qualidade presentes em suas amêndoas. Esses óleos vegetais se caracterizam pela riqueza em ácidos graxos insaturados, compostos fenólicos e tocoferóis, elementos associados à promoção da saúde cardiovascular, à prevenção de processos inflamatórios e ao retardo da oxidação lipídica (LOPES *et al.*, 2010; GOLMOHAMMADI; REZAEI, 2011).

A castanha de caju possui relevante importância socioeconômica no Brasil, país que figura entre os maiores produtores e exportadores mundiais. O óleo extraído de sua amêndoa contém elevada concentração de ácido oleico e linoleico, o que o torna interessante tanto para aplicação na indústria de alimentos quanto para estudos voltados à nutrição funcional (NASCIMENTO *et al.*, 2013). Além de seu potencial alimentar, o aproveitamento integral da castanha contribui para a redução de resíduos e para o fortalecimento da cadeia produtiva do agronegócio brasileiro (FAO, 2022).

O pistache, por sua vez, tem maior expressão no cenário internacional, especialmente em países como Irã, Estados Unidos e Turquia, mas apresenta um mercado em expansão no Brasil, impulsionado pelo aumento do consumo de alimentos considerados saudáveis. Seu óleo apresenta composição semelhante ao da castanha de caju, com predominância de ácidos graxos insaturados e antioxidantes naturais, como carotenoides e fitoesteróis, o que reforça seu papel como ingrediente funcional em dietas equilibradas (DIAZ-VELA *et al.*, 2015).

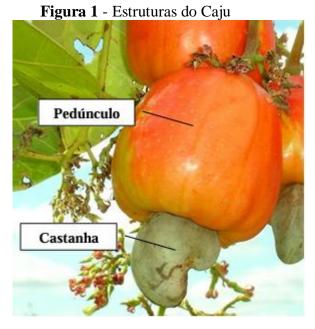
Os óleos vegetais constituem produtos de grande relevância para a indústria alimentícia, farmacêutica e cosmética, sendo obtidos principalmente a partir de sementes e frutos oleaginosos. O processo de extração desses óleos é determinante para sua qualidade final, pois influencia diretamente o rendimento, a composição química, a estabilidade oxidativa e as propriedades sensoriais do produto (NASCIMENTO et al., 2013).

Diante desse cenário, o presente trabalho teve como objetivo a caracterizar as sementes e os óleos de *Anacardium occidentale L.* e *Pistacia Vera L* obtidos por extração soxhlet.

2 OBJETIVOS

2.1 OBJETIVO GERAL

Caracterizar as sementes e os óleos de *Anacardium Occidentale L.* (Castanha de Caju) e *Pistacia Vera L.* (Pistache), obtidos por extração em soxhlet, por meio da avaliação de suas propriedades físico-químicas e energéticas.


2.2 OBJETIVOS ESPECÍFICOS

- Caracterizar as sementes de *Anacardium Occidentale L.* (Castanha de Caju) e *Pistacia Vera L.* (Pistache);
- Realizar a extração dos óleos das sementes por meio do método soxhlet e proceder sua carcaterização físico-química;
- Avaliar o comportamento reológico dos óleos por meio da análise da curva de escoamento;
- Determinar o poder calorífico superior (PCS) das materias-primas e dos óleos extraídos.

3 FUNDAMENTAÇÃO TEÓRICA

3.1 CASTANHA-DE-CAJU (ANACARDIUM OCCIDENTALE L.)

A castanha-de-caju é uma oleaginosa de grande importância nutricional, econômica e social, especialmente em regiões tropicais como o Nordeste do Brasil, considerado o berço do cajueiro. A espécie (*Anacardium occidentale L.*) é amplamente cultivada no país e desempenha papel relevante para pequenos produtores e agroindústrias, suas estruturas figura 1, sendo a amêndoa a parte mais valorizada do fruto. Trata-se de um produto rico em lipídios, proteínas e minerais, possuindo ainda uma fração oleosa de grande interesse tecnológico e alimentar (EMBRAPA, 2020).

Fonte: (Câmara, 2010).

A composição da amêndoa da castanha-de-caju, corte lobgintudinal (figura 2), é caracterizada por um teor lipídico que pode variar entre 33% e 37%, além de conter aproximadamente 22% de proteínas. Esse elevado conteúdo energético faz da castanha um alimento altamente nutritivo e versátil. O óleo extraído apresenta predominância de ácidos graxos insaturados, principalmente o ácido oleico (\approx 60%) e o linoleico (\approx 16%), acompanhados de menores proporções de ácidos saturados como palmítico e esteárico (ARAÚJO *et al.*, 2016). Essa composição lipídica confere ao óleo propriedades antioxidantes, além de benefícios comprovados para a saúde cardiovascular e metabólica.

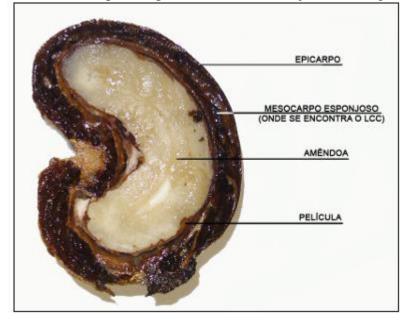
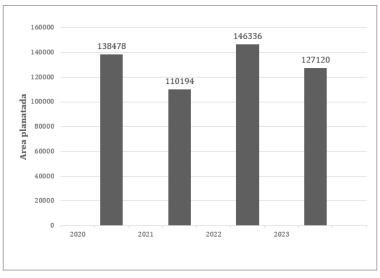



Figura 2 - Estruturas que compõem a castanha de caju (corte longitudinal)

Fonte: (Câmara, 2010).

Conforme dados do gráfico da tabela da figura 3 e segundo PAM IBGE (2025), mostra-se que a região Nordeste teve um grande efetivo na produção no ano de 2020, com cerca de 138.478 hectares de area plantada. No ano seguinte, houve uma queda na produção em 2021 decaindo para 110.190, causado pela pandemia do virus chamado de Coronavirus (covid-19), em 2022 a produtividade cresceu de forma significativa, dobrando o crescimento efetivo da area plantada nos anos anteriores. Em 2023, essa area diminuiu para 127.120 hectares.

Figura 3 - Crescimento efetivo da produção da castanha de caju na região nordeste, entre os anos de 2020 à 2023.

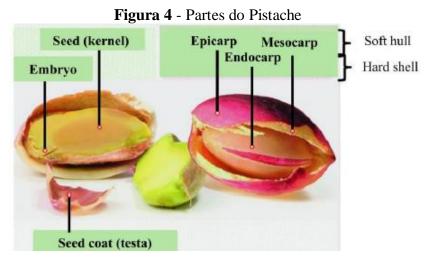
Fonte: **IBGE- PAM** (2025).

A amêndoa da castanha de caju (ACC) é um alimento de bom valor nutricional que se enquadra nos alimentos ditos secos, sendo considerada uma boa fonte de proteínas de alta qualidade, de ácidos graxos poliinsaturados, apresentando também alto valor de cinzas (SARAIVA *et al.*, 2023). Esse produto serve como uma fonte de energia importante, assim como os alimentos que são fontes de carboidratos. Em decorrência da sua grande importância na alimentação, é válido optar por um óleo vegetal que desempenha de forma eficiente suas funções no nosso organismo, como, os óleos de: girassol, soja, milho e de oliva (MORAIS, 2021).

Diversos métodos de extração são aplicados para a obtenção do óleo de amêndoa de castanha-de-caju (OACC). A prensagem a frio é a mais tradicional e preserva melhor os compostos bioativos, garantindo aroma e sabor característicos, além de elevada aceitação sensorial. No entanto, métodos alternativos, como a extração com solventes (etanol, hexano e acetato de etila) e a extração aquosa, têm sido explorados com o objetivo de aumentar os rendimentos, alcançando índices próximos a 98% em alguns estudos laboratoriais (NASCIMENTO *et al.*, 2013). Apesar disso, o uso de solventes pode comprometer a qualidade sensorial, o que reforça a preferência industrial pela prensagem ou pela extração aquosa (EMBRAPA, 2018).

A qualidade do óleo obtido depende, ainda, do tipo de amêndoa utilizado. Amêndoas quebradas, classificadas como subprodutos de baixo valor comercial, demonstraram viabilidade para extração do óleo sem prejuízos significativos às suas propriedades físico-químicas, desde que apresentem baixo índice de acidez. Estudos indicam que amêndoas inteiras ou pouco fragmentadas geram óleos com índices de acidez e peróxidos dentro dos limites estabelecidos pela legislação brasileira, que preconiza no máximo 4 mg KOH/g para óleos prensados a frio (SANTOS *et al.*, 2021).

Outro aspecto importante é a estabilidade oxidativa do óleo. Pesquisas demonstraram que o OACC apresenta boa resistência à oxidação, com valores de peróxidos inferiores aos limites aceitáveis durante o armazenamento, principalmente quando acondicionado em embalagens de vidro, que oferecem maior proteção contra a luz (COSTA *et al.*, 2015). Essa característica amplia seu potencial para aplicações em alimentos processados e como ingrediente funcional.


Além da relevância alimentar, a cadeia produtiva do caju envolve outros componentes de interesse industrial. A casca da castanha contém substâncias como o ácido anacárdico e o cardanol, utilizados na produção de resinas, cosméticos e antioxidantes industriais. No entanto, esses compostos exigem processamento adequado, pois podem ser tóxicos em contato direto

com a pele (SILVA; PEREIRA, 2019). Dessa forma, o aproveitamento integral do cajueiro agrega valor econômico e fortalece a sustentabilidade da cadeia produtiva.

A castanha-de-caju é uma importante fonte de óleo vegetal com potencial funcional e industrial. Seu aproveitamento, aliado à escolha de métodos de extração que preservem a qualidade sensorial e nutricional, contribui para a valorização de um recurso natural brasileiro e para a promoção de alimentos mais saudáveis.

3.2 PISTACHE (PISTACIA VERA L.)

O pistache figura 4, é uma oleaginosa de grande relevância no cenário internacional, cultivada principalmente em países como Irã, Estados Unidos, Turquia, Síria e Grécia, sendo o Irã e os Estados Unidos os maiores produtores mundiais. Pertencente à família Anacardiaceae, a mesma do cajueiro, o pistache apresenta elevada aceitação pelo sabor e pelas propriedades nutricionais de suas amêndoas, que são consumidas tanto *in natura* como em produtos derivados, incluindo a obtenção de óleo vegetal de qualidade superior (DIAZ-VELA *et al.*, 2015).

Fonte: (Garrido, 2023).

Do ponto de vista nutricional, a amêndoa de pistache contém aproximadamente 45 a 55% de lipídios, 20% de proteínas e uma variedade de minerais e vitaminas essenciais, como potássio, fósforo, magnésio, cálcio e vitamina E. O óleo extraído destaca-se pela composição rica em ácidos graxos insaturados, especialmente o ácido oleico (\approx 55–65%) e o linoleico (\approx 15–20%), além de apresentar quantidades relevantes de fitoesteróis e tocoferóis, compostos

bioativos que desempenham funções antioxidantes e protetoras no organismo (GOLMOHAMMADI; REZAEI, 2011).

Estudos demonstram que o consumo regular de pistache está associado a benefícios à saúde cardiovascular, à redução do colesterol LDL e ao aumento do HDL, além de auxiliar no controle glicêmico em indivíduos com risco de síndrome metabólica. A presença de antioxidantes como carotenoides e polifenóis amplia esse efeito protetor, reforçando o papel do pistache como alimento funcional (KARAMI *et al.*, 2014). O óleo extraído, por sua vez, conserva essas propriedades, tornando-se um ingrediente promissor para formulações alimentícias e suplementos (DIAZ-VELA *et al.*, 2015).

Em relação às técnicas de obtenção, o óleo de pistache pode ser extraído por prensagem a frio, extração com solventes e métodos mais avançados, como a extração com fluidos supercríticos. A prensagem a frio é considerada a mais indicada quando o objetivo é preservar compostos bioativos e características sensoriais, ainda que apresente rendimentos inferiores aos métodos químicos. A extração com solventes, como hexano, alcança maiores rendimentos, porém com risco de perda de compostos voláteis e maior custo de refino (SABATE; ANG, 2009). O método supercrítico com dióxido de carbono, apesar do alto custo tecnológico, tem ganhado destaque por aliar rendimento elevado e preservação das propriedades nutricionais (KAMAL-ELDIN, 2017).

A qualidade do óleo de pistache depende diretamente da matéria-prima utilizada, das condições de armazenamento e do método de extração. Pesquisas indicam que o óleo apresenta boa estabilidade oxidativa devido à presença natural de antioxidantes, podendo ser armazenado por períodos prolongados quando protegido da luz e do calor. Essa característica amplia seu potencial para uso industrial, tanto na formulação de alimentos funcionais como em cosméticos e produtos farmacêuticos (GOLMOHAMMADI; REZAEI, 2011).

No Brasil, o pistache ainda não é amplamente cultivado em escala comercial, sendo majoritariamente importado. Contudo, observa-se crescente demanda pelo produto, impulsionada pela valorização de dietas saudáveis e pela busca por alimentos ricos em nutrientes e compostos funcionais. Nesse contexto, o óleo de pistache representa uma alternativa promissora para a indústria de alimentos, podendo agregar valor a produtos diferenciados e de alto padrão (KARAMI *et al.*, 2014).

Dessa forma, o estudo do pistache e do óleo derivado de suas sementes é de grande relevância para o setor alimentício. A composição lipídica rica em ácidos graxos insaturados, a presença de antioxidantes naturais e as aplicações industriais reforçam o potencial dessa oleaginosa, destacando-a como um ingrediente estratégico na formulação de alimentos

saudáveis e funcionais.

3.3 EXTRAÇÃO DE ÓLEOS VEGETAIS

O método mais tradicional de obtenção é a prensagem a frio, que consiste na aplicação de pressão mecânica sobre as amêndoas ou sementes para liberação do óleo. Este processo apresenta a vantagem de preservar compostos bioativos, como tocoferóis, carotenoides e polifenóis, além de não utilizar solventes químicos, garantindo um produto considerado mais natural. Contudo, apresenta limitações em termos de rendimento, que varia entre 70% e 85% do óleo total presente na matéria-prima (FREITAS *et al.*, 2018). E formando subprodutos, como a torta.

Outro método amplamente empregado em escala industrial é a extração com solventes orgânicos, como hexano, etanol ou acetato de etila. Este processo é capaz de alcançar elevados rendimentos, chegando a 95–98% de recuperação do óleo, porém exige etapas de refino para remoção de resíduos do solvente, o que pode afetar o sabor e a qualidade sensorial. Além disso, há preocupações ambientais relacionadas ao uso de solventes derivados do petróleo, incentivando a busca por alternativas mais sustentáveis (FERREIRA *et al.*, 2019).

Entre os métodos clássicos de extração de óleos vegetais, destaca-se o Soxhlet, amplamente utilizado em laboratórios de pesquisa devido à sua eficiência na extração de lipídios. Esse método consiste em um processo contínuo, no qual um solvente volátil — geralmente hexano ou éter de petróleo — é aquecido, evaporado e posteriormente condensado, percolando repetidamente através da amostra sólida contida em um cartucho poroso. Essa recirculação permite que o solvente renove constantemente sua capacidade de solubilizar os compostos lipídicos, resultando em extrações de alto rendimento, próximas a 100% do óleo presente na matriz vegetal (BLIGH; DYER, 1959; PEREIRA *et al.*, 2017). Apesar de sua eficiência, o método Soxhlet apresenta desvantagens, como o tempo prolongado de operação e o elevado consumo de solventes orgânicos, além de não preservar compostos termossensíveis devido às condições de aquecimento. Ainda assim, é considerado um procedimento de referência em análises laboratoriais, especialmente quando o objetivo é quantificar o teor total de óleo em sementes e frutos oleaginosos (NASCIMENTO *et al.*, 2013).

A extração aquosa surge como uma alternativa de menor impacto ambiental, utilizando apenas água em condições controladas de temperatura e agitação para liberação do óleo. Embora mais segura e sustentável, apresenta rendimento inferior ao método por solvente, o que

limita sua aplicação em larga escala. No entanto, estudos demonstram que esse método mantém boas características físico-químicas e sensoriais, tornando-se interessante para a produção de óleos destinados ao consumo direto (EMBRAPA, 2018).

Nos últimos anos, tem ganhado destaque a extração com fluidos supercríticos, especialmente com dióxido de carbono (CO₂) em condições de alta pressão e temperatura. Essa técnica apresenta vantagens significativas, como a ausência de resíduos tóxicos, elevado rendimento, preservação dos compostos bioativos e possibilidade de fracionamento seletivo de diferentes componentes. Apesar disso, o alto custo operacional e a necessidade de equipamentos sofisticados ainda limitam sua aplicação em larga escala, sendo mais utilizada em produtos de alto valor agregado (KAMAL-ELDIN, 2017).

Independentemente do método empregado, a escolha da técnica de extração deve considerar fatores como o tipo de oleaginosa, o custo de produção, o destino do óleo (alimentício, farmacêutico ou industrial) e a preservação de compostos de interesse nutricional. A extração por prensagem a frio é mais indicada quando o foco é a produção de alimentos saudáveis e funcionais, ao passo que a extração com solventes ou supercrítica se torna mais vantajosa quando há demanda por maior rendimento e pureza do produto (COSTA *et al.*, 2015).

Além da preocupação com o rendimento e a qualidade do óleo, a sustentabilidade dos processos de extração tem ganhado relevância na atualidade. O uso de solventes derivados do petróleo, como o hexano, gera preocupações ambientais devido à toxicidade e ao risco de contaminação ambiental. Dessa forma, novas pesquisas têm se voltado para o desenvolvimento de métodos "verdes", como a utilização de solventes alternativos de origem renovável, incluindo o etanol e misturas etanol-água, que apresentam menor impacto ambiental e são considerados seguros para alimentos (FERREIRA *et al.*, 2019). Essas alternativas contribuem não apenas para a redução da pegada ecológica do processo produtivo, mas também para atender às demandas de consumidores que buscam produtos mais naturais e sustentáveis.

Outra tendência recente é a aplicação de técnicas combinadas de extração, como o uso de ultrassom e micro-ondas associados à extração aquosa ou ao uso de solventes. Essas tecnologias emergentes possibilitam a ruptura mais eficiente das células oleaginosas, aumentando o rendimento do processo e, ao mesmo tempo, reduzindo o tempo de extração e o consumo de energia (VIEIRA *et al.*, 2020). Assim, a integração de métodos convencionais e inovadores representa uma estratégia promissora para otimizar a produção de óleos vegetais, conciliando eficiência, qualidade e sustentabilidade.

Dessa forma, compreender os diferentes métodos de extração de óleos vegetais é essencial para direcionar sua aplicação e garantir a qualidade final do produto. A tendência atual

da indústria de alimentos aponta para processos mais sustentáveis, com menor impacto ambiental e maior valorização nutricional, o que reforça a importância da pesquisa e inovação nessa área.

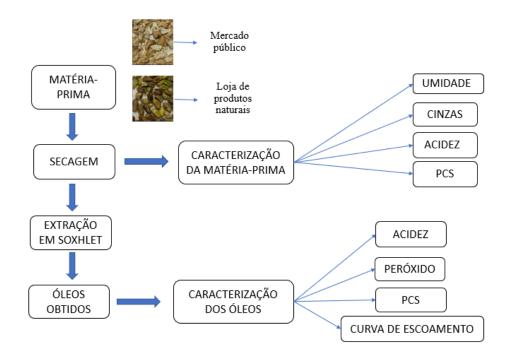
3.4 CARACTERÍSTICAS DOS ÓLEOS

3.4.1 ACIDEZ

A medição de acidez é uma ferramenta importante para avaliar as condições de conservação do óleo. Processos de degradação como hidrólise, oxidação ou fermentação, geralmente resultam na mudança de qualidade de íons de hidrogênios presentes. A deterioração dos triglicerídeos é mais rápida quando há exposição ao calor ou à luz, e essa degradação costuma estar relacionada ao aumento na quantidade de ácidos graxos livres. Essas alterações são frequentemente quantificadas pelo índice de acidez, que pode ser expresso em unidades como mililitros de solução normal por cento de óleo ou em gramas do principal ácido presente, normalmente o ácido oleico. Os padrõies técnicos geralmente preferem a expressão do índice de acidez em termos de peso do ácido principal, conforme (Instituto Adolfo Lutz ,2008).

3.4.2 ÍNDICE DE PERÓXIDO

O índice de peróxido indica o grau de oxidação inicial do óleo vegetal, sendo representado pela quantidade de hidroperóxidos presentess. Para sua determinação oficial, utiliza-se uma tiulação iodométrica, na qual o peróxido oxida o iodeto de potássio, liberando iodo. Este método é sensível apenas aos produtos primários de oxidação. O resultado obtido é apresentado em miliequivalentes de oxigênio por quilograma de óleo (AOCS, 2003; CARVALHO, 2017).


3.4.3 PODER CALORÍFICO SUPERIOR (PCS)

O poder calorífico é uma métrica relevante na avaliação de combustíveis sólidos, sendo definida como a quantidade de energia liberada duranten a queima completa de uma determinada massa de combustível. Essa medida é geralmente expressa em quilocalorias por quilo (kcal/kg) ou megajoules por quilo (MJ/kg), conforme mencionado por (Çengel, 2006). O Poder Calorifico indica a porcentagem de materiais com potencial de geração de calor, podendo ser dividido em poder calorifico superior (PCS) ou poder calorifico inferior (PCI).

3.4.4 REOLOGIA DE FLUIDOS ALIMENTÍCIOS

De acordo com o seu comportamento reológico, os fluidos alimentícios são classificados em newtonianos e não newtonianos, estes últimos ainda podem apresentar comportamento dependente ou independente do tempo. Um fluido alimentício é classificado como newtoniano quando uma relação linear entre a tensão de cisalhamento e a taxa de cisalhamento (ou gradiente de velocidade) existe, passando a reta pela origem. A viscosidade (μ), que é a constante de proporcionalidade dessa relação linear, pode ser utilizada para caracterizar o comportamento de diversas substâncias que seguem a Lei de Newton, ou seja, nas quais a relação entre a tensão de cisalhamento e o gradiente de velocidade é constante. Exemplos de fluidos que possuem esse comportamento são: água, leite, óleos, solventes orgânicos, soluções de sacarose, soluções de compostos de baixa massa molar e gases, entre outros. A viscosidade dos líquidos que apresentam comportamento newtoniano é influenciada somente pela temperatura do fluido e sua composição, conforme descrito por Tadini (2015).

4 MATERIAIS E MÉTODOS

As amêndoas de Castanha de Cajú foram obtidas em comércio localizado no mercado público do bairro de mangabeira, já o Pistache, foi obtido na loja de produtos naturais – Saúde em Grãos localizada no bairro dos bancários em João Pessoa - PB. As referidas oleaginosas foram submetidas à uma secagem a 40 °C em uma estufa com circulação e renovação de ar da TECHAL (TE- 394/2). Feito isto, as mesmas estavam preparadas para posteriores análises.

Figura 5 - Sementes na estufa de circulação de ar

4.1 MÉTODO

Foi realizada a caracterização as sementes de Anacardium Occidentale L. (Castanha de Caju) e Pistacia Vera L. (Pistache), a extração dos óleos das sementes por extração soxhlet, determinando o poder calorífico superior(PCS) bem como avaliando através de gráfico de escoamento a viscosidade desses óleos.

4.1.1 Determinação do teor da umidade da matéria prima

O teores de umidade das matérias primas foram determinados pelo método direto de secagem. Foram pesadas 100 g da Amêndoa da Castanha de caju e 100 g do Pistache em uma bandeja tarada e colacada na estufa com circulação forçada e renovação de ar da TECHAL (TE-394-/2), à temperatura de 40 °C durante 16 horas. A pesagem das matérias-primas foram feitas até atingir massa constante. O teor de umidade foi determinado em triplicata e conforme

método descrito pelo Instituto Adolfo Lutz (2008).

% Umidade =
$$\frac{100}{P}$$
 x N

N =perda de massa (g)

P = massa da amostra(g)

4.1.2 Teor de cinzas

A determinação do teor de cinzas foi realizada em triplicata e seguiu o método descrito pelo Instituto Adolfo Lutz (2008). Foram pesadas em cápsulas de porcelanas previamente aquecidas em estufa a 105 °C, esfriadas e pesadas aproximadamente 2 g da amostra, determinado em triplicata. Em seguida, a amostra foi incinerada a 500 °C durante 6 horas, em seguida, foram esfriadas no dessecador e as cápsulas foram pesadas para obtenção do resultado, seguindo a equação:

% Cinzas =
$$\frac{C \times 100}{P_a}$$

C = número de cinzas (g)

 $P_a = massa da amostra (g)$

4.1.3 Determinação do índice de acidez Titulável

A determinação da acidez foi realizada conforme a metodologia descrita pelo Instituto Adolfo Lutz (2008). Foram pesadas 5 g de amostras e tituladas com uma solução de hidróxido de sódio 0,1 M, determinadas em triplicata. O resultado do teor de acidez foi obtido através da equação:

% Acidez =
$$\frac{V \times f \times 100}{P \times c}$$

Onde:

V = Volume gasto na titulação (mL)

f = Fator de correção da solução

c = correção para solução

P = Peso da amostra (g)

4.1.4 Poder Calorífico Superior (PCS)

A análise para determinação do Poder Calorífico Superior foi determinada conforme a metodologia descrita na norma ASMT D5865-10a em uma bomba calorimétrica da IKA (C200). Foram realizados duas repetições de aproximadamente 2 g da amostra, na presença de oxigênio (O2).

4.2 Determinação do teor de óleo das oleaginosas

Por se tratar de um parâmetro importante na cadeia de produção e pesquisa, o teor de óleo das oleaginosas foi obtido pelo método de soxhlet. Seguindo metodologia do procedimento operacional padrão (POP) do laboratório de análises físico-química, com alterações na temperatura e no tempo.

Para a extração dos óleos das sementes foram pesadas 15 g devidamente pesadas em balança analítica de ambas as sementes em um cartucho soxhlet para que em seguida fosse colocado no extrator de lipídios. Foram adcionados os solventes no balão de fundo redondo e em seguida acoplado na manta aquecedora na temperatura de 90 °C. A extração ocorreu por aproximadamente 4 a 6 horas. Seguindo metodologia de Witt (2018).

Figura 6 - Soxhlet

4.2.1 Determinação do índice de acidez do óleo

A determinação da acidez foi realizado conforme metodologia descrita pelo Instituto Adolfo Lutz (2008) para determinação de acidez em óleos e gorduras:

Índice de Acidez (mg de NAOH/g) =
$$\frac{V \times M \times F \times 40}{p}$$

Converter em ácido oléico, dividir 1,99 o Índice de acidez.

Onde:

V = Volume gasto na titulação (mL)

f = Fator de correção da solução

P = Peso da amostra (g)

4.2.2 Determinação do índice de peróxido

A determinação do índice de peróxido seguiu conforme método descrito pelo Instituto Adolfo Lutz (2008), após a realização do método o índice foi calculado, conforme equação abaixo:

Índice de Peróxido =
$$\frac{V \times N \times f \times 1000}{P}$$

Onde:

V = Volume gasto na titulação (mL)

N = Normalidade da solução

f = Fator de correção da solução

P = Peso da amostra (g)

4.2.3 Determinação da curva de escoamento de fluidos

A curva de escoamento dos óleos foi determinada pelo dispositivo de medida MARS III módulo de placas paralelas P35 Ti L – 14025, seguindo metodologia adotada por Santiago (2024). A temperatura utilizada foi de 25°C, única alteração feita com relação a metodologia seguida.

5 RESULTADOS E DISCUSSÃO

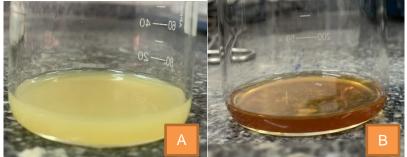
5.1 Caracterização físico-química das sementes

Conforme observado na Tabela 1 , o valor médio de umidade de ACC apresentado foi de 3,18%, tal resultado se aproxima do estudo de Silva *et al.* (2022) que encontrou valor médio de umidade para ACC de 3,35% e ambos os valores encontram-se de acordo com o que está preconizado pela legislação para comercialização da amêndoa da castanha de cajú, que estabelece valor máximo de até 5% IN 06 (2017). O teor de cinzas obtido na amostra de ACC foi de 2,36%, resultado acima do encontrado por Silva *et al.* (2022) que foi de 1,53%. Essa variação no conteúdo de cinzas se deve ao fato da influência de vários fatores como: solo, clima, origem botânica e variabilidade genética, fatores estes que influenciam na capacidade de acúmulo mineral de sua capacidade GOMES (2020).

O valor médio encontrado para umidade da semente de pistache foi de 4,60%, valores semelhantes aos encontrados por Freitas e Naves (2010) de 5,74%. Por não apresentarem grandes variações, tais valores, reduzem a probabalidade de degradação por microorganismos ou para potencial formação de compostos potencialmente tóxicos nas amostras analizadas (COSTA *et al.*, 2009). O teor de cinzas obteve valor médio de 2,89% para a semente do pistache, próximo de 3,21%, valor encontrado por Freitas e Naves (2010) em seus estudos sobre composição química de nozes e sementes comestíveis e sua relação com a nutrição e saúde. Já (GARRIDO *et al.*, 2024) encontrou para composição nutricional mínimia e máxima de pistaches de diferentes regiões, valores de (3,30% e 5,34%) de umidade e valores de (2,24% e 3,12%) quanto ao teor de cinzas. Corroborando para que os resultados estejam dentro dos apresentados pelos referidos autores.

O índice de acidez de 3,94% obtido para a amêndoa de castanha de cajú resultou em um valor acima do encontrado por (SILVA et al. 2021) que avaliou as características físico-químicas da Castanha do Brasil e da Castanha Portuguesa e obteve um valor médio de 2,00% para diferentes lotes. Segundo (SILVA et al. 2021), apesar de estarem próprias para o consumo, esta amêndoas sinalizam um grau de deterioração mediano, o que está diretamente ligado as ácidos graxos e as reações de oxidação presentes neste tipo de alimento analisado (SILVA et al. 2021).

Tabela 1 - Propriedades físico-química das sementes


PARÂMETRO	Amêndoa da Castanha de Caju	PISTACHE
Umidade	3,18±0,07	4,60±0,1
Cinzas	2,36±0,04	$2,89\pm0,2$
Acidez	3,94±0,49	9,74±0,8

Fonte: Autor, 2025.

5.2 Caracterização físico-química dos óleos brutos por extração soxhlet

Os valores encontrados para o rendimento dos óleos extraídos (figura 7), foram de 41% e 66% para a amêndoa da castanha de caju e para a semente de pistache respectivamente.

Figura 7 – (A) Óleo da Amêndoa da castanha de Caju e (B) Óleo de Pistache

Os valores obtidos para os dos índices de acidez e peróxido foram de 1,19 mg NAOH/g para ACC e 5,8 mg NAOH/g para o pistache, conforme a tabela 2. Que expressos em ácido oleico foram de 0,6% e 2,9 respectivamente. No entanto, segundo Santos, et al. (2023) a RDC nº 482 (1999), quando discutiu sobre Caracterização físico-Química dos óleos brutos e Comercial de Girassol (*HelianthuTs Annuus L.*), sinaliza para índice de acidez de óleo bruto, valor de no máximo 2,0 mg KOH/g. Portanto, apenas o pistache apresentou acidez acima do permitido por legislação.

Segundo Souza, et al. (2007) em seus estudos sobre Estabilidade Oxidativa dos óleos de Macadâmia e de Pistache, encontrou valores baixos para peróxido expressos como não

determinados no período de 0 e após 3 meses de armazenamento. O que se assemelha aos resultados encontrados nesse estudo, uma vez que estes óleos foram submetidos a pouca ou a quase nenhuma exposição ao oxigênio e a luz.

Tabela 2 - Propriedades físico-química do óleo bruto das sementes

Parâmetro	Óleo da Amêndoa da Castanha de Caju	Óleo de Pistache
Acidez	1,19 mg NAOH/g	5,8% mg NAOH/g
Índice de Peróxido	0,0	0,0

5.3 Análises do Poder calorífico superior (PCS) das sementes e dos óleos extraídos

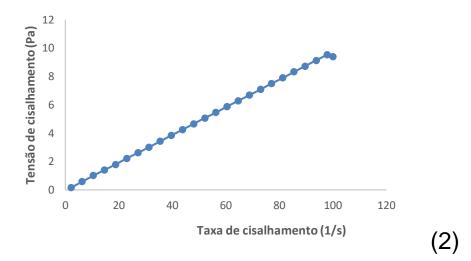
Os valores obtidos na análise calorimérica foram de 28,94 MJ/kg e 30,46 MJ/kg para as amostras ACC e pistache, respectivamente, conforme mostra a tabela 3. Segundo Silva (2018), o valor encontrado de PCS para a amêndoa de babaçu foi de 30,03 MJ/kg, considerado um resultado elevado e estando em conformidade com os encontrados nesta pesquisa. Já Souza & Silva obteve PCS de 18,26 MJ/kg para a casca da amêndoa de castanha do brasil, mostrando que tal resíduo pode ser transformado em carvão ativado e utilizados com finalidades energéticas. O PCS tem sua definição ligada diretamente a quantidade de energia liberada durante a combustão completa na forma de calor e entendemos que a eficiência do processo deve-se a quantidade de energia liberada. O que corrobora para um bom potencial energético das sementes analisadas.

De acordo com resultados apresentados na tabela 3, os óleos obtidos por extração soxhlet apresentaram valores de PCS 40,828 MJ/kg e 39,475 MJ/kg. Esses valores são semelhantes ao reportado por segundo Silva (2018), que encontrou um valor de poder calorífico superior para o óleo bruto de babaçú de 36,949 MJ/kg. Demostrando serem a partir dos valores, bons poitenciais energéticos.

Tabela 3 - Valores de Poder Calorífico Superior das sementes da amêndoa da castanha de caju

e de pistache.

Amostras	Poder Calorífico Superior (MJ/kg)
Amêndoa da Castanha de Caju	28,94
Pistache	30,46
Óleo de Caju	40,828
Óleo de Pistache	39,475


Fonte: Autor, 2025.

5.4 Avaliação das curvas de escoamento dos óleos obtidos.

Os óleos de ACC e pistache encontram-se em concordância com a classificação de fluidos newtonianos segundo Tadini (2015), onde o autor afirma que a regressão linear da curva de tensão de cisalhamento em função da taxa de cisalhamento foi obtida em uma reta passando pela origem, característica de fluidos com a viscosidade sendo constante e influenciada apenas pela temperatura e composição. Podemos incluir como exemplos a água, o leite e os óleos.

Figura 8 - Gráficos das curvas de Escoamento para os óleos de Pistache (1) e da Amêndoa da castanha de caju (2)

6. CONCLUSÃO

Com base na caracterização realizada nas amêndoas da castanha de caju e na semente de pistache, constatou-se que os resultados estão em conformidade com os valores apresentados na literatura e em legislação. Essa concordância confirma a qualidade e a autenticidade dos produtos analisados, garantindo com isso sua adequação para o consumo e comercialização.

Os índices de acidez encontrados inviabilizariam a comercialização apenas do óleo bruto da semente de pistache com base nesse parâmetro, pois se encontra acima do limite máximo estabelecido na normativa vigente. O valor zero para índice de peróxido para esses óleos é compatível com a condição de óleos recém-extraídos, obtidos por métodos controlados com a extração por soxhlet, protegidos de fatores como a exposição de luz e oxigênio ou outros fatores ambientais que promovem a oxidação lipídica. O que pode apontar para um estado inicial de preservação, o que é desejável para sua qualidade e estabilidade futura.

Os resultados obtidos para o poder calorífico superior tanto das sementes quanto dos óleos encontram-se em equivalência com os resultados encontrados na literatura, mostrando que são fontes promissoras de energia, já que o poder calorífico superior é um excelente parâmetro como por exemplo na produção de carvões ativos e na produção de biodiesel em se tratando de óleos vegetais.

As curvas de escoamento dos óleos das sementes estudadas nos permitiram identicar que ambas, possuem comportamento newtoniano devido a sua regressão linear da tensão em função da taxa de cisalhamento, característica comum em óleos, promovendo maior previsibilidade e eficiência nos processos que dependem do comportamento reológico desses materiais. Outras análises seriam necessárias para complementar a caracterização, mas esses resultados apresentados mostram grande potencial dos óleos nas possíveis aplicações sinalizadas.

7. REFERÊNCIAS

AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA (ANVISA). Instrução Normativa IN/ANVISA N° 87 DE 15/03/2021. **Estabelece a lista de espécies vegetais autorizadas, as designações, a composição de ácidos graxos e os valores máximos de acidez e de índice de peróxidos para óleos e gorduras vegetais**. Disponível em : https://www.legisweb.com.br/legislacao/?id=463823 Acesso em : 10 set. 2025.

ARAÚJO, E. S. et al. Caracterização físico-química e perfil lipídico do óleo de amêndoa de castanha-de-caju. Revista Ciência Agronômica, Fortaleza, v. 47, n. 2, p. 363-371, 2016.

BRASIL. **Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 2, de 06 de fevereiro de 2017.** Regulamento Técnico da Amêndoa da Castanha de Caju. Diário Oficial da União: seção 1, Brasília, DF, 17 fev. 2017. Disponível em: file:///C:/Users/Dell/Downloads/Avaliaodascaractersticasfsico-qumicasdaamndoadacastanhadecaju.pdf Acesso em: 05 set. 2025.

CARVALHO, A.C.O. Características físico-químicas de óleos vegetais comestíveis puros e adulterados. Goytacazes: Universidade Estadual do Norte Fluminense, Rio de Janeiro, 2017.

ÇENGEL, Y. A; CIMBALA, J. M. Mecânica dos Fluidos: fundamentos e aplicações. Porto Alegre: AMGH, 2006.

COSTA, R. G. B. et al. **Estabilidade oxidativa de óleos vegetais obtidos por diferentes métodos de extração**. Revista Brasileira de Produtos Agroindustriais, Campina Grande, v. 17, n. 3, p. 321-329, 2015.

COSTA, R. G. B. et al. Estabilidade oxidativa do óleo de amêndoa de castanha-de-caju obtido por prensagem a frio. Revista Brasileira de Produtos Agroindustriais, Campina Grande, v. 17, n. 3, p. 321-329, 2015.

COSTA, J. et al. **Avaliação físico-química e microbiológica da amêndoa da castanha de caju.** Publ. UEPG Ci. Exatas Terra, Ci Agr. Eng. V. 15, Ponta Grossa, dez, 2009. Disponível em: https://revistas.uepg.br/index.php/exatas/article/view/1102 Acesso em: 06 set. 2025.

DIAZ-VELA, J. et al. **Physicochemical characterization of pistachio oil extracted by different methods**. Journal of Food Science and Technology, v. 52, n. 4, p. 2420-2426, 2015.

EMBRAPA. Óleo da amêndoa de castanha-de-caju: métodos de extração e caracterização. Fortaleza: Embrapa Agroindústria Tropical, 2018. (Boletim de Pesquisa e Desenvolvimento, 180).

EMBRAPA. Qualidade do óleo obtido a partir de diferentes classificações de amêndoa de castanha-de-caju. Fortaleza: Embrapa Agroindústria Tropical, 2020. (Boletim de Pesquisa e Desenvolvimento, 232).

- FERREIRA, M. P. et al. Extração de óleos vegetais: tecnologias convencionais e alternativas sustentáveis. Revista Ciência Rural, Santa Maria, v. 49, n. 4, p. 1-9, 2019.
- FREITAS, J. B.; NAVES, M. V. Composição química de nozes e sementes comestíveis e sua relação com a nutrição e saúde. Revista de nutrição. Campinas, Mar. /Abr, 2010. Disponível em: https://www.scielo.br/j/rn/a/BCzvD3bYTHd3gzzgNZLSntd/abstract/?lang=pt Acesso em: 06 set. 2025.
- FREITAS, L. S. et al. **Métodos de extração de óleos vegetais e suas implicações na qualidade**. Revista Brasileira de Tecnologia Agroindustrial, v. 12, n. 1, p. 45-58, 2018.
- GARRIDO, J. et al. **Caracterização nutricional e bioativa do pistache uma revisão com foco especial na saúde.** Revista Exploração de Alimentos e Foodômica. Milão, p. 363-90. Jul, 2024. Disponível em : file:///C:/Users/Dell/Downloads/101042.pdf Acesso em : 06 set. 2025.
- GOLMOHAMMADI, A.; REZAEI, K. Physicochemical properties and oxidative stability of pistachio oil. Journal of Food Science, v. 76, n. 2, p. C241-C247, 2011.
- GOMES, T. R., et al. Farelo de castanha de caju (Anacardium occidentale L.) na alimentação de coelhos em crescimento Cashew nut meal (Anacardium occidentale L.) in the feeding of growing rabbit. Revista Ciência Animal Brasileira. Fortaleza, V. 21. p. 1-17, jul. 2020. Disponível em : https://www.scielo.br/j/cab/a/VczdPHy5sDdqNfjwyvzNLtR/?format=pdf&lang=pt Acesso em : 05 set. 2025.
- INSTITUTO ADOLFO LUTZ. **Normas analíticas do Instituto Adolfo Lutz** Normas, Métodos físico-químicos para análise de alimentos, 4a ed., Brasília, ANVISA, 2008.
- KAMAL-ELDIN, A. **Lipid oxidation pathways in foods and its prevention**. Uppsala: Uppsala University Press, 2017.
- KARAMI, Z. et al. Effects of pistachio consumption on blood lipids and glycemic control: a randomized clinical trial. Nutrition, Metabolism & Cardiovascular Diseases, v. 24, n. 12, p. 1162-1168, 2014.
- LOPES, R. M. et al. Composição química e propriedades funcionais do óleo da castanha de caju (*Anacardium occidentale L.*). Revista Brasileira de Fruticultura, v. 32, n. 2, p. 545-552, 2010.
- MORAIS, L S.Fontes de óleos vegetais na dieta de rã-touro (Lithobates catesbeianus): composição centesimal e ácidos graxos. 2021. Trabalho de Conclusão de Curso Universidade Federal da Grande Dourados, Dourados, 2021. Disponível em : https://repositorio.ufgd.edu.br/jspui/handle/prefix/4682 Acesso em : 19 set. 2025.
- NASCIMENTO, R. J. et al. **Métodos de extração e qualidade de óleos vegetais**. *Ciência Rural*, Santa Maria, v. 43, n. 1, p. 171-178, 2013.

- SABATE, J.; ANG, Y. Nuts and health outcomes: new epidemiologic evidence. *American Journal of Clinical Nutrition*, v. 89, n. 5, p. 1643S-1648S, 2009.
- SANTOS, A. F. et al. **Qualidade do óleo obtido a partir de amêndoas de castanha-de-caju de diferentes classificações**. Research, Society and Development, v. 10, n. 14, p. e188101422464, 2021.
- SANTOS, J. et al. Caracterização Físico-Química dos Óleos 'Bruto e Comercial de Girassol (HelianthuTs annuus L.). Livro Ciência e Tecnologia de Alimentos. Fortaleza, V. 1, abr, 2023. Disponível em: CARACTERIZAÇÃO FÍSICO-QUÍMICA DOS ÓLEOS BRUTO E COMERCIAL DE GIRASSOL (HelianthuTs annuus L.) Acesso em: 12 set. 2025.
- SARAIVA, M. C. et al. Expectativa de consumo com base na aparência de sorvete vegano elaborado a partir do extrato hidrossolúvel da amêndoa da castanha de caju. Research, Society and Development, v. 12, n. 2, p. e8112239929–e8112239929, 21 jan. 2023. Disponível em: file:///C:/Users/Dell/Downloads/dorlivete,+e8112239929-min%20(1).pdf Acesso em: 19 set. 2025.
- SILVA, J. P.; PEREIRA, C. S. Aplicações industriais de compostos derivados da casca da castanha-de-caju. Revista Virtual de Química, Rio de Janeiro, v. 11, n. 2, p. 414-430, 2019.
- SILVA, et al. **Avaliação das características físico-químicas da amêndoa da castanha-decaju.** All content following this page was uploaded by Schirlayne De Sousa Lima da Silva on 24 July 2023. Disponível em: file:///C:/Users/Dell/Downloads/Avaliaodascaractersticasfsico-quimicasdaamndoadacastanha-decaju.pdf Acesso em: 05 set. 2025.
- SILVA, B. et al. Avaliação das características físico-químicas da castanha do Brasil (Bertholletia Excelsa) e da castanha portuguesa (Castanea Sativa mil.). Revista Brasileira de Tecnologia Agroindustrial. Belém, V. 15, n. 2, p. 3700-3723, jul/dez. 2021. Disponível em : file:///C:/Users/Dell/Downloads/14506-59059-1-PB.pdf Acesso em : 10 set. 2025.
- SILVA, C. B. **Estudo da amêndoa de babaçu como matéria-prima para produção de biocombustiveis.** 2018. Trabalho de conclusão de curso Universidade federal do ceará, Fortaleza, 2018. Disponível em : https://repositorio.ufc.br/handle/riufc/75320 Acesso em : 20 set. 2025.
- SIDRA **Sistema IBGE de Recuperação Automática.** Disponível em: <Sistema IBGE de Recuperação Automática SIDRA>. Disponível em: https://sidra.ibge.gov.br/acervo#/S/Q Acesso em: 19 set. 2025.
- SOUZA, B. et al. **Estabilidade Oxidativa dos óleos de macadâmia e de pistache.** B.CEPPA, Curitiba, V. 25 , n. 1 , p. 1-16, jan/jun. 2007. Disponível em : file:///C:/Users/Dell/Desktop/Calend%C3% A1rio%20Suplementar/2025.1/TCC/Fazer%20ref er%C3% AAncia%20desse%20artigo%20ATENCAO.pdf Acesso em : 10 set. 2025.

- SOUZA, C. D.; SILVA, K. C. Potencial energético dos resíduos da castanha do Brasil (Bertholletia excelsa H.B.K) para produção de carvão ativado. Universidade Federal de Amazonas, Brasil, 2021. Research, Society and development, v. 10, n. 2, p. 1-12, 27 fev. 2021. Disponível em : https://www.researchgate.net/publication/349716437_Potencial_energetico_dos_residuos_da_castanha_do_Brasil_Bertholletia_excelsa_HBK_para_producao_de_carvao_ativado Acesso em : 20 set. 2025.
- VIEIRA, T. M. et al. **Técnicas emergentes para extração de óleos vegetais: ultrassom, micro-ondas e processos combinados**. Food Research International, v. 131, p. 108985
- WITT, E. P. Avaliação da estabilidade oxidativa do biodiesel B(100) comercial na presença de antioxidantes naturais da casca de romã. 2018. Mestrado Universidade Estadual do Oeste do Paraná, 2018. Disponível em: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://tede.unioeste.br/bitstream/tede/4016/2/ Elaine_Witt_2018.pdf Acesso em: 24 set. 2025.
- TADINI, C.C. **Operações Unitárias na Indústria de Alimentos.** Rio de Janeiro: LTC, 2015. E-book. p. 87. ISBN 978-85-216-3034-0. Disponível em: https://integrada.minhabiblioteca.com.br/reader/books/978-85-216-3034-0/>. Acesso em: 25 set. 2025.
- SANTIAGO, A. J. **Estudo reológico de emulsão com polpa desidratada e desengordurada de abacate** (*Persea americana*). Trabalho de conclusão de curso Universidade federal da paraíba, João Pessoa, 2024. Disponível em : https://repositorio.ufpb.br/jspui/handle/123456789/35075 Acesso em : 25 set. 2025.