

UNIVERSIDADE FEDERAL DA PARAÍBA PROGRAMA DE DOUTORADO EM DESENVOLVIMENTO E MEIO AMBIENTE ASSOCIAÇÃO PLENA EM REDE

UM OLHAR PARA A AGRICULTURA FAMILIAR: RELEVÂNCIA DURANTE A PANDEMIA DE COVID-19, PERCEPÇÃO DOS AGRICULTORES E SEU PAPEL NA MANUTENÇÃO DA DIVERSIDADE DE ABELHAS NO SEMIÁRIDO DO PIAUÍ, NORDESTE DO BRASIL

MILENA ALMEIDA VAZ

MILENA ALMEIDA VAZ

UM OLHAR PARA A AGRICULTURA FAMILIAR: RELEVÂNCIA DURANTE A PANDEMIA DE COVID-19, PERCEPÇÃO DOS AGRICULTORES E SEU PAPEL NA MANUTENÇÃO DA DIVERSIDADE DE ABELHAS NO SEMIÁRIDO DO PIAUÍ, NORDESTE DO BRASIL

Tese apresentado ao Programa de Doutorado em Desenvolvimento e Meio Ambiente (PRODEMA), Associação Plena em Rede, da Universidade Federal da Paraíba (UFPB) como requisito para obtenção do título de Doutora em Desenvolvimento e Meio Ambiente.

Orientador:

Profa. Dra. Denise Dias da Cruz

Coorientador:

Prof. Dr. Milton César Ribeiro

©Todos os direitos estão reservados à Universidade Federal da Paraíba (UFPB) O conteúdo desta obra é de inteira responsabilidade do (a) autor (a), sendo o mesmo, passível de sanções administrativas ou penais, caso sejam infringidas as leis que regulamentam a Propriedade Intelectual, respectivamente, Patentes: Lei nº 9.279/1996, e Direitos Autorais: Lei nº 9.610/1998. O conteúdo desta obra tornar-se-á de domínio público após a data de defesa e homologação da sua respectiva ata, exceto as pesquisas que estejam vinculas ao processo de patenteamento. Esta investigação será base literária para novas pesquisas, desde que a obra e seu (a) respectivo (a) autor (a) seja devidamente citado e mencionado os seus créditos bibliográficos.

Catalogação na publicação Seção de Catalogação e Classificação

```
V393o Vaz, Milena Almeida.
         Um olhar para a agricultura familiar : relevância
      durante a pandemia de Covid-19, percepção dos
      agricultores e seu papel na manutenção da diversidade
      de abelhas no semiárido do Piauí, Nordeste do Brasil /
      Milena Almeida Vaz. - João Pessoa, 2025.
         128 f. : il.
         Orientação: Denise Dias da Cruz.
         Coorientação: Milton César Ribeiro.
         Tese (Doutorado) - UFPB/CCEN.
         1. Desenvolvimento sustentável. 2. Ecologia de
      paisagens. 3. Agricultura sustentável. 4. Consumo e
      produção responsáveis. I. Cruz, Denise Dias da. II.
      Ribeiro, Milton César. III. Título.
UFPB/BC
                                           CDU 502.131.1(043)
```

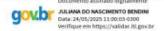
Elaborado por Walqueline da Silva Araújo - CRB-15/514

MILENA ALMEIDA VAZ

UM OLHAR PARA A AGRICULTURA FAMILIAR: RELEVÂNCIA DURANTE A PANDEMIA DE COVID-19, PERCEPÇÃO DOS AGRICULTORES E SEU PAPEL NA MANUTENÇÃO DA DIVERSIDADE DE ABELHAS NO SEMIÁRIDO DO PIAUÍ, NORDESTE DO BRASIL

Tese apresentada ao Programa de Doutorado em Desenvolvimento e Meio Ambiente (PRODEMA), Associação Plena em Rede, da Universidade Federal da Paraíba (UFPB), como requisito para obtenção do título de Doutora em Desenvolvimento e Meio Ambiente.

Linha de Pesquisa: Relações sociedade natureza e sustentabilidade. Sublinha: Biodiversidade, serviços ecossistêmicos e etnobotânica na agricultura sustentável


Defendida em: 28 /03/ 2025

BANCA EXAMINADORA

COV. DE DENISE DIAS DA CRUZ

Denise Dias da Cruz, Prof. Dr. (UFPB) Presidente - Orientador

Reinaldo Farias Paiva de Lucena, Prof. Dr. (UFPB) Examinador — Representante local do PRODEMA

Juliana dos Nascimento Bendini, Prof. Dr. (UFPI) Examinadora — Representante da Rede PRODEMA

GOV.DY FERNANDO FERREIRA DE MORAIS
Data: 29/05/2025 10:41:56-0300
Verifique em https://volidar.iti.gov.br

Fernando Ferreira de Moraes Drº (UFPB) Examinador - Representante de instituição externa a Rede PRODEMA

GOV.DY THAYANE NOGUERA ARAUJO Data: 26/05/2025 10:25:20-0300 Verifique em https://validar.idi.gov.br

Thayane Nogueira Araújo Drª Em Entomologia FLCLRP/USP Examinadora- Representante Externa a Rede PRODEMA

AGRADECIMENTOS

A jornada da construção desta tese foi desafiadora, mas também enriquecedora. Muitas pessoas trabalharam direta e indiretamente para que este trabalho fosse realizado, e a elas expresso meu profundo agradecimento.

Acredito, assim como Einstein ao referir-se ao Deus de Spinoza, que há uma ordem e uma harmonia no universo que se manifestam de formas sutis em nossas vidas. Foi essa harmonia que me guiou até aqui, por meio de oportunidades, desafios e aprendizados.

Começo expressando minha gratidão a quem me deu a vida e me ensinou tudo o que um ser humano precisa saber para viver de forma digna e honesta neste mundo: meus pais, Antônio Vaz Sousa Filho e Raimunda Nonata da Conceição Almeida. agradeço também aos meus irmãos, Mirella Almeida Vaz, Miriam Almeida Vaz e Rogério Almeida Vaz, e à nova geração da família, meus sobrinhos e sobrinhas: Tamylla, Mariza, Barony, Melinda, Maria Clara, Marcelo e Jhon. Minha gratidão especial à minha tia Eva, que sempre esteve ao nosso lado.

Agradeço de forma muito especial ao meu companheiro Hermeson dos Santos Vitorino por fazer parte desse projeto do começo ao fim, sem ele a jornada teria sido muito mais difícil, agradeço ao Alfredo Vaz Vitorino por ser esse "Cãopanheiro" de todos os momentos, sua companhia nas longas manhãs e tardes no escritório me trouxeram conforto e alegria.

Agradeço, ainda, às minhas professoras que me ensinaram a ler e escrever, abrindo as portas do conhecimento: Maria Edna de Jesus (Dona Graça), Dona Raimundinha (*in memoriam*) e a professora Ivanilde. Minha gratidão também à minha amiga Joelma Batista, pessoa fundamental em minha trajetória, e aos meus professores do ensino fundamental e médio, que contribuíram imensamente para minha formação: Hilton Carlos, Elke, Ivoneide, Ironeide, Antonia e Shyrlei. Agradeço também ao professor Flávio Crespo meu pai acadêmico e amigo de longas datas, e que me mostrou o que é Agroecologia, a Tia Fátima Crespo uma mulher incrível e sábia aprendi e aprendo muito com vocês.

Aos meus orientadores, Denise Dias da Cruz e Milton César Ribeiro, pelo apoio, paciência, ensinamentos e pela dedicação em guiar-me neste processo. Suas contribuições foram essenciais para a construção deste trabalho e para o meu crescimento acadêmico e profissional. Aos colegas de pesquisa e amigos do Laboratório de Ecologia Terrestre da UFPB, Natacha Sousa, Jéssica Aretz, Hugo Herminio, Eduarda (Dudinha), pelo ambiente colaborativo, pelas trocas de conhecimento e pelo incentivo em cada etapa desta jornada e não poderia deixar de agradecer ao Jean Miguel pela identificação das abelhas e pelo apoio do pessoal do Laboratório de Zoologia da Universidade Federal da Paraíba, ao Felipe Martello por ter contribuído com bastante tranquilidade na análise dos dados.

Agradeço imensamente aos agricultores e agricultoras que me receberam com tanto carinho e generosidade. Um agradecimento especial a Dona Francisca, da Chapada do Mucambo, uma mulher inspiradora; ao seu Dedê, pela companhia e paciência em me levar até a casa de cada agricultor e agricultora que participou da pesquisa; e a Joanita e Santinha, pelo acolhimento e pelas ricas conversas sobre a natureza e a produção de alimentos. Agradeço a professora Tamariz da UFPI pela colaboração e parceria.

Sou grato também à Universidade Federal da Paraíba, ao Programa de Desenvolvimento e Meio Ambiente (PRODEMA) e, especialmente, à Fundação de Pesquisa da Paraíba, que me concedeu uma bolsa de estudo, tornando possível a realização desta pesquisa. O apoio dessas instituições foi essencial para viabilizar cada etapa do trabalho, garantindo infraestrutura, acesso a dados e a oportunidade de divulgação.

Por fim, a todos que, direta ou indiretamente, participaram para esta conquista, meu sincero muito obrigada.

"Há escolas que são gaiolas e há escolas que são asas. Escolas que são gaiolas existem para que os pássaros desaprendam a arte do voo. Pássaros engaiolados são pássaros sob controle. Engaiolados, o seu dono pode levá-los para onde quiser. Pássaros engaiolados sempre têm um dono. Deixaram de ser pássaros. Porque a essência dos pássaros é o voo. Escolas que são asas não amam pássaros engaiolados. O que elas amam são pássaros em voo. Existem para dar aos pássaros coragem para voar. Ensinar o voo, isso elas não podem fazer, porque o voo já nasce dentro dos pássaros. O voo não pode ser ensinado. Só pode ser encorajado."

(Rubem Alves)

Guarás- Delta do Parnaíba-PI, foto Chico Rasta

SUMÁRIO

RE	SUMO GERAL	12
GE	ENERAL ABSTRACT	14
INTRODUÇÃO GERAL		
2	OBJETIVOS E HÍPOTESES	21
3	REVISÃO DE LITERATURA	23
3.1	AGRICULTURA FAMILIAR: GERAÇÃO DE ALIMENTOS E SUPORTE PAR A SOCIEDADE	
3.2	IMPORTANCIA DOS SERVIÇOS ECOSSISTÊMICOS PARA A PRODUTIVIDADE AGRÍCOLA	24
3.3	A POLINIZAÇÃO E SUA RELAÇÃO COM A HETEROGENEIDADE DA PAISAGEM	27
3.4	PERCEPÇÃO DOS AGRICULTORES SOBRE OS SERVIÇOS ECOSSISTÊMICOS	30
3.5	AMEAÇA A SEGURANÇA ALIMENTAR EM TEMPO DE CATÁTROFES AMBIENTAI: O CASO DA PANDEMIA DA COVID-19	32
RE	CFERÊNCIAS	36
CA	APÍTULO I	49
DΓ	VERSIFICAÇÃO DE CULTIVOS E SEGURANÇA ALIMENTAR: O PAPEL D AGRICULTURA FAMILIAR NA PANDEMIA DE COVID-19	
RE	CSUMO	49
AB	SSTRACT	50
1	INTRODUÇÃO	51
2	MATERIAL E MÉTODOS	53
2.1	ÁREA DE ESTUDO	53
3	RESULTADOS E DISCUSSÃO	55
	CONCLUSÕES	
RE	CFERÊNCIAS	65
CA	APÍTULO II	72
FA	MILY FARMERS' ENVIRONMENTAL PERCEPTION OF ECOSYSTEM SERVICES IN THE BRAZILIAN SEMI-ARID REGION	72
RE	CSUMO	72
FA	MILY FARMERS' ENVIRONMENTAL PERCEPTION OF ECOSYSTEM SERVICES IN THE BRAZILIAN SEMI-ARID REGION	73
IN	TRODUÇÃO	74
	ATERIAL E MÉTODOS	
ÁR	REA DE ESTUDO	76

RESULTADOS	78
DISCUSSÃO	82
CONCLUSÃO	86
REFERÊNCIAS	87
CAPÍTULO III	95
HETEROGENEIDADE DA PAISAGEM E A IMPORTÂNCIA DA AGRICULTURA FAMILIAR PARA A COMUNIDADE DE ABELHAS (HYMENOPTERA: APOIDEA) NO SEMIÁRIDO BRASILEIRO	95
RESUMO	
ABSTRACT	
INTRODUÇÃO	97
1 MATERIAL E MÉTODOS	100
2 RESULTADOS	104
3 DISCUSSÃO	
4 CONCLUSÃO	112
REFERÊNCIAS	
ANEXO I	119
APÊNDICE I	129

RESUMO GERAL

UM OLHAR PARA A AGRICULTURA FAMILIAR: RELEVÂNCIA DURANTE A PANDEMIA DE COVID-19, PERCEPÇÃO DOS AGRICULTORES E SEU PAPEL NA MANUTENÇÃO DA DIVERSIDADE DE ABELHAS NO SEMIÁRIDO DO PIAUÍ, NORDESTE DO BRASIL

> Autor: Milena Almeida Vaz Orientador: Profa. Dr. Denise Dias da Cruz Co- Orientador: Prof. Dr. Milton César Ribeiro Programa de Doutorado em Desenvolvimento e Meio Ambiente João Pessoa-PB, março de 2025.

Paisagens diversificadas suportam maior biodiversidade e serviços ecossistêmicos, como polinização e controle de insetos. No entanto, a forma como a expansão e a intensificação da agricultura são conduzidas globalmente comprometem os serviços ecossistêmicos em todo o mundo. O objetivo desta tese foi avaliar a relevância da agricultura familiar, considerando sua contribuição para a segurança alimentar, a percepção dos serviços ecossistêmicos e a manutenção da abundância e diversidade de abelhas no semiárido piauiense. Os dados foram obtidos por meio de entrevistas, análise do fluxo de comercialização de alimentos e coletas de abelhas utilizando *pan traps*. Foram selecionadas 16 paisagens delimitadas por um buffer de 1 km, com pontos de coleta definidos via Google Maps e validados em campo, complementados por imagens de drones. O mapeamento foi realizado no QGIS (escala 1:5000), identificando oito unidades de uso e ocupação do solo: Água, Savana, Agricultura Familiar, Assentamento Humano, Floresta, Solo Exposto, Pastagem Nativa e Área Urbana. Além disso, o NDVI foi utilizado para avaliar a variação da cobertura vegetal entre os períodos seco e chuvoso, e três métricas de paisagem foram calculadas (densidade de fragmentos, porcentagem de paisagem e índice de Shannon) em quatro escalas espaciais (250, 500, 750 e 1000 m) para investigar a escala de efeito. Do ponto de vista social, os agricultores desempenham um papel importante para a segurança alimentar local, destacando-se a diversidade dos produtos alimentícios, a produção contínua da maioria dos itens, a organização em associação, o uso de tecnologias como redes sociais e as parcerias estabelecidas, que foram fundamentais em momentos de crise para garantir a distribuição e a venda dos produtos agrícolas. Os pontos fracos estão relacionados principalmente à falta de assistência técnica. Do ponto de vista ambiental, os resultados indicam que a composição e abundância de abelhas no semiárido piauiense são influenciadas pela estrutura da paisagem. Assentamentos humanos favoreceram a abundância

em escalas de 750 a 1000 m, possivelmente por fornecerem recursos florais. A riqueza de abelhas variou com a densidade de fragmentos de Savana e o NDVI, refletindo a sazonalidade. Em relação à percepção ambiental, os agricultores demonstraram uma compreensão abrangente das categorias de serviços ecossistêmicos, valorizando principalmente os de provisão e cultural, uma vez que dependem dos recursos naturais para seu sustento e lazer.

Palavras-Chave: Ecologia de paisagens; Desenvolvimento sustentável; semiárido **Objetivos de Desenvolvimento Sustentável:** Agricultura Sustentável; #03 - Saúde e Bemestar; #12 - Consumo e Produção Responsáveis;

GENERAL ABSTRACT

A LOOK AT FAMILY FARMING: RELEVANCE DURING THE COVID-19PANDEMIC, FARMERS' PERCEPTIONS AND THEIR ROLE IN MAINTAINING BEE DIVERSITY IN THE SEMI-ARID REGION OF PIAUÍ, NORTHEASTERN BRAZIL

Author: Milena Almeida Vaz Advisor: Prof. Dr. Denise Dias da Cruz Co-advisor: Prof. Dr. Milton César Ribeiro Doctoral Program in Development and Environment João Pessoa-PB, March 2025.

Diverse landscapes support greater biodiversity and ecosystem services, such as pollination and insect control. However, the way in which the expansion and intensification of agriculture is conducted globally is compromising ecosystem services worldwide. The aim of this thesis was to assess the relevance of family farming, considering its contribution to food security, the perception of ecosystem services and the maintenance of bee abundance and diversity in the semi-arid region of Piauí. The data was obtained through interviews, analysis of the flow of food sales and collecting bees using pan traps. Sixteen landscapes were selected, delimited by a 1 km buffer, with collection points defined via Google Maps and validated in the field, complemented by drone images. Mapping was carried out in QGIS (scale 1:5000), identifying eight land use and occupation units: Water, Savannah, Family Farming, Human Settlement, Forest, Exposed Soil, Native Grassland and Urban Area. In addition, the NDVI was used to assess the variation in vegetation cover between the dry and rainy periods, and three landscape metrics were calculated (fragment density, landscape percentage and Shannon index) at four spatial scales (250, 500, 750 and 1000 m) to investigate the scale of effect. From a social point of view, farmers play an important role in local food security, highlighting the diversity of food products, the continuous production of most items, the organization in associations, the use of technologies such as social networks and the partnerships established, which have been fundamental in times of crisis to guarantee the distribution and sale of agricultural products. The weak points are mainly related to the lack of technical assistance. From an environmental point of view, the results indicate that the composition and abundance of bees in the semi-arid region of Piauí are influenced by the structure of the landscape. Human settlements favored abundance at scales of 750 to 1000 m, possibly because they provided floral resources. Bee richness varied with the density of savannah fragments and NDVI, reflecting seasonality. With regard to environmental perception, the farmers demonstrated a comprehensive understanding of the categories of ecosystem services, valuing mainly those of provision and culture, since they depend on natural resources for their livelihoods and leisure.

Keywords: Landscape ecology; Sustainable development; Semi-arid region

Sustainable Development Goals: Sustainable Agriculture; 03 - Health and Well-being; #12 -

Responsible Consumption and Production

INTRODUÇÃO GERAL

A sobrevivência e o bem-estar humano dependem da biodiversidade e é necessário que sejam tomadas ações bem-organizadas e estruturadas para obter êxitos na conservação dos recursos e dos serviços ecossistêmicos (SE)¹ (Diaz *et al.*, 2019). Quando as áreas florestais são suprimidas, diversos SE desaparecem, incluindo o fornecimento, a regulação e o suporte desses serviços essenciais para o bem-estar humano, como o controle de erosão, a regulação climática e o fornecimento de água (Bongers e Tennigkeit, 2010; Sunderland e Pottinger, 2011).

Os seres humanos são beneficiados por diversos serviços ecossistêmicos (MEA, 2005). Especialmente as famílias rurais de baixa renda, que são inteiramente dependentes desses serviços em praticamente todos os contextos (Hansen et al., 2015; Adger et al., 2018a), assim como os países em desenvolvimento, que dependem fortemente dos recursos e dos serviços que os ecossistemas naturais fornecem (Pedroso et al., 2020; Sarkodie et al., 2020). Por exemplo, estudo realizado com agricultores no Ceará, Brasil, demonstrou que os SE desempenham um papel importante na manutenção do modo de vida e na soberania alimentar da comunidade (Costa et al., 2023). Da mesma forma, pesquisa realizada em comunidades locais em Serra Norte de Oaxaca, no Mexico, utilizam de seu conhecimento tradicional para acessar localmente os seus recursos, bem como suas potencialidades latentes; desde a coleta na natureza até a criação de sistemas agrícolas baseados em conhecimento tradicional. Essas são fontes importante para garantir o sustento da comunidade e de sua segurança alimentar (Pascual-Mendonza et al., 2021). Nesse contexto, esse vínculo entre conhecimento tradicional e sustentabilidade é reforçado pelos beneficios diretos que a agricultura recebe de serviços ecossistêmicos, como a polinização, a irrigação, o controle biológico de proteção, a sombra e o abrigo (Stallman, 2011; Zhang et al., 2007).

Nesse sentido, muitos agricultores familiares de base agroecológica adotam uma estratégia de múltiplo uso de recursos naturais, criando mosaicos de paisagens ricas em diversidade biológica (Altiere; Toledo, 2011), menor uso de insumos industriais e a preservação do patrimônio genético (Figueiredo, 2017). Esse tipo de agricultura tende a não usar áreas extensivas de plantio e possibilita a existência de mais fragmentos naturais, como visto no estudo realizado em Mianmar, onde a agricultura de base familiar foi associada à preservação de fragmentos florestais e ao uso sustentável do *habitat* (Savini *et al.*, 2021). Vale ressaltar que,

¹ Os serviços ecossistêmicos (SE) são os benefícios que as pessoas obtêm dos ecossistemas direta e indiretamente e podem ser classificados em quatro categorias: suporte, regulação, provisão e cultural (MA, 2005).

mesmo a agricultura familiar sendo menos extensiva e usando de estratégias de manejo sustentável, sua produção tem grande relevância, pois é o principal ramo da atividade que realmente fornece alimento para a mesa do brasileiro (IBGE, 2017.).

Nessa perspectiva, os agricultores constituem um grupo muito diverso de atores (Torquebiau *et al.*, 2012) e com diferentes percepções sobre os SE, por exemplo um estudo realizado no Brasil com agricultores familiares agroecológicos, agricultores em grande escala e e agricultores convencionais os autores concluíram que os agricultores familiares agroecológicos mostraram uma percepção mais complexa sobre SE, que está associada a agroecossistemas mais diversificados e autônomos. Tanto os agricultores familiares agroecológicos quanto os convencionais tinham uma forte identidade camponesa, reconhecendo mais serviços ecossistêmicos culturais do que os agricultores em grande escala e dependiam mais da produção para consumo (Teixeira *et al.*,2018)

Um explicação proposta por Van der Ploeg (2008) sobre a diferença nas percepções entre agricultores familiares e agricultores em grande escala seria a forte distinção entre agricultura camponesa e agricultura capitalista, pois o modo de agricultura camponesa é caracterizado por uma copodruçõ com a natureza, construído sob uma base de recursos na qual estratégias de diversidifcação aumentam a entrega de SE, aumentam a resiliência dos agroecossistemas, reduzem a dependência de insumos externos, gerando uma variedade de flucos de renda de múltiplas culturas e aumentam a soberania alimentar (Van der Ploeg, 2010; Bennett *et al.*, 2015). Nesse sentido, a agricultura, por exemplo beneficia-se diretamente de serviços ecossistêmicos como a polinização, controle biológico de pragas, sombra e abrigo (Stallman, 2011; Zhang *et al.*, 2007). Contudo, as perdas de habitats naturais prejudicam os processos ecossistêmicos e seu funcionamento, reduzindo a capacidade da natureza de fornecer serviços ecossistêmicos (Díaz *et al.* 2019).

Portanto, a vegetação nativa, especialmente em margens de campo e áreas não cultivadas, desempenha um papel importante na promoção do controle biológico ao aumentar a diversidade de plantas e criar uma paisagem complexa (Atakan, 2010; Pluess *et al.*, 2010; Rouabah *et al.*, 2015). Além disso, faixas de vegetação não agrícola aumentam tanto a abundância quanto a diversidade de comunidades de predadores naturais (Amaral *et al.*, 2016; Ditner *et al.*, 2013; Gurr *et al.*, 2016).

As mudanças na composição da vegetação nativa, como a conversão de áreas naturais ou seminaturais em campos agrícolas, intensificam os processos erosivos (Zheng, 2006). Isso resulta na perda de nutrientes essenciais ao crescimento das plantas, como nitrogênio e fósforo, o que, por sua vez, leva à queda da produtividade agrícola (Lal, 2015). Além disso, a vegetação

nativa é fundamental para manter a abundância e a diversidade de polinizadores em áreas cultivadas (Boreux *et al.*, 2013; Romero *et al.*, 2013; Landaverde-González *et al.*, 2017).

A polinização é considerada um dos serviços ecossistêmicos de maior contribuição para biodiversidade e para a produção de alimentos (Gallai, 2009; Potts *et al.*, 2016). Nesse contexto, um estudo global realizado em mais de 1.500 campos agrícolas distribuídos por seis continentes constatou que a escassez de polinizadores impacta significativamente a produtividade de culturas em diferentes regiões do mundo. Além disso, a falta de polinizadores está limitando a produção agrícola de forma preocupante em diversas localidades do mundo (Touro *et al.*, 2024).

O principal agente envolvido na prestação do serviço ecossistêmico da polinização são as abelhas. Elas são consideradas os principais responsáveis por polinizar cerca de 85% das plantas com flores das matas e florestas e 70% das culturas agrícolas dependem em algum grau desses polinizadores (Imperatriz Fonseca et al., 2012). Entretanto, as abelhas estão em processo gradativo de ameaça a extinção (Kremen et al., 2002; Biesmeijer et al., 2006; Barbosa et al., 2017a). A causa está atrelada à combinação de fatores, como variações climáticas (Barbosa et al., 2017b), o uso de pesticidas, doenças causadas por parasitas e a perda e fragmentação de habitats (Kearns et al., 1998, Whitehorn et al., 2012). A supressão da vegetação nativa causada pela antropogenização e a modificação de paisagens são umas das causas principais para o declínio de polinizadores, afetando diretamente na diminuição de recursos alimentares e locais de nidificação para diversos animais (Butchart et al., 2010; Johnson et al., 2017; Dudley e Alexander, 2017). Esses efeitos podem diminuir os serviços ecossistêmicos promovidos pelos polinizadores e aqueles envolvidos em controle biológico (Connelly et al., 2015; Grab et al., 2018).

Por outro lado, o aumento da diversidade de ambientes na paisagem está positivamente relacionado com o aumento da polinização por abelhas de várias espécies de plantas (Machado et al., 2020; Soares et al., 2022). As paisagens heterogêneas com ambientes bem diversificados e amigáveis aos polinizadores favorecem a manutenção e o aumento de suas populações (Viana et al., 2012; Ferreira et al., 2015). No entanto os efeitos da heterogeneidade da paisagem na diversidade biológica de uma comunidade nem sempre são positivos. Por exemplo, um estudo realizado na Mata Atlântica no Brasil, demonstrou que a heterogeneidade composicional da paisagem sem uma cobertura florestal afetou negativamente a diversidade de abelhas (Nery et al., 2018). Percebe-se, então, que as características da paisagem podem ter efeito direto na produtividade agrícola (Saturni et al., 2016; Hipólito et al., 2018). Desse modo, estudos sobre conservação e ecologia da paisagem são essenciais para o entendimento dos efeitos primários

resultantes da fragmentação desses ambientes naturais (Laurance *et al.*, 2011; Garibaldi *et al.*, 2019).

A relação da paisagem com a oferta de serviços ecossistêmicos já foi observada em diferentes ecossistemas, como nas Planícies Centrais da China onde um estudo indicou que a urbanização desordenada resultou em uma queda constante nos serviços ecossistêmicos (ESV) de 2000 a 2018. Os autores ressaltam que o planejamento paisagístico, com foco em elementos como a densidade de bordas e a conectividade, é essencial para mitigar os impactos negativos da urbanização (Zhao *et al.*, 2024). Estudo realizado em áreas urbanas de Curitiba no Brasil enfatiza que manter e melhorar a qualidade de áreas verdes, tanto em ambientes urbanos quanto em ambientes rurais, podem atuar como refúgio para as abelhas promovendo melhoria dos serviços ecossistêmicos referentes a polinização (Graf *et al.*, 2020)

Em outro exemplo, um estudo conduzido em uma fazenda localizada em uma região montanhosa e de terras íngremes na Nova Zelândia, os autores concluíram que a estrutura da paisagem nesse tipo de terreno afeta significativamente o fornecimento de serviços ecossistêmicos (SE), como a produtividade de pastagens, o controle da erosão e o suprimento de água (Tram *et al.*, 2022).

Diante desse contexto, estudos sobre serviços ecossistêmicos e a biodiversidade reconhecem cada vez mais que a manutenção de fragmentos naturais depende também da importância do conhecimento diversificado e da percepção das pessoas (IPBS, 2019; Noble *et al.*, 2015). O conhecimento ecológico local das comunidades sobre a natureza contribui para uma gestão mais eficaz dos serviços ecossistêmicos e da biodiversidade (MEA- Millennium Ecosystem Assessment *et al.*, 2005; Tagliari *et al.*, 2023; Teixeira *et al.*, 2018; Lescourret *et al.*, 2015).

No entanto, é importante deixar claro que essa percepção envolve interpretar o que é observado e a importância atribuída a um determinado recurso (Tan *et al.*, 2024). Por exemplo, estudos realizados no cerrado brasileiro concluíram que a participação ativa dos agricultores em iniciativas de conservação, gestão e restauração está positivamente correlacionada com o conhecimento ecológico local (Evangelista *et al.*, 2024). Esta participação pode promover uma maior ligação e motivação dos membros da comunidade (Jellinek *et al.*, 2019), aumento do envolvimento voluntário dos agricultores (Bennett, 2017) e facilitar a gestão dos ecossistemas (Tengo *et al.*, 2017; Teixeira *et al.*, 2018).

Nesse sentido, a participação da população local é fundamental para orientar ações que associem suas atividades produtivas com práticas de conservação, pois essas comunidades possuem percepções únicas sobre o ambiente em que vivem (Silva, Cândido e Freire, 2009;

Lopes, Ramos e Almeida, 2017; Pedrosa *et al.*, 2019). Quando o agricultor compreende a importância de um ambiente conservado para a sustentabilidade de suas atividades, a conservação dos serviços ecossistêmicos é favorecida, garantindo não apenas o sucesso produtivo, mas também a segurança alimentar dessas comunidades (Adger *et al.*, 2018b).

No entanto,pesquisas indicam que o extermínio da biodiversidade pela humanidade como antecedente das condições ideiais para o surgimento de novos vírus e doenças (Vidal, 2020; Jones *et al.*, 2008a) Os animais estão perdendo seus habitats naturais deviso á extensa mudança na paisagem, consequentimente aglorerando-os e aumentando sua interação com os humanos, 75% de doenças novas ou emergentes em humanos origina-se de animais não humanos (Jones et al., 2008b; CDC,2020). Por exemplo a floresta amazônica, um dos ecossistemas mais biologicamente e culturalmente diversos do mundo, tem sofrido um rápido estgotamento ambiental e altas desigualdades sociais (Castro *et al.*,2020)

Com todos esses elementos citados, uma séria situação de crise ambiental vista recentemente foi a Pandemia de COVID-19, com as medidas de isolamente que foram tomadas para diminuir a contaminação pelo vírus, agravou consideravelmente a pobreza e intensificou a insegurança alimentar, impactando de forma mais acentuada as comunidades locais, especialmente as mais vulneráveis (Harison *et al.*, 2024). Essas doenças emergentes estão aumentando em todos os lugares, à medida que os humanos perturbam os ecossistemas e exploram os habitats dos animais em todo o mundo (Tobias e D'Angelo, 2020).

Para mitigar os efeitos em meio à crise da COVID-19, várias pessoas reforçaram a agricultura urbana como uma importante alternativa sustentável para aumentar a segurança alimentar em um planeta urbanizado, onde 60% da população mundial vive em cidades, incluindo 56% dos pobres do mundo e 20% dos subnutridos (Bon *et al.*,2009). A produção urbana de frutas frescas, vegetais e alguns produtos animais perto dos consumidores pode melhorar a segurança alimentar e a nutrição local, especialmente em comunidades carentes (Smit *et al.*, 2001). É nesse cenário que se destaca a importância de um sistema de produção inserido em ambientes mais equilibrados e fornecedores de serviços ecossistêmicos adequados.

2 OBJETIVOS E HIPÓTESES

Considerando a importância da agricultura familiar, o objetivo geral dessa tese foi avaliar a relevância da agricultura familiar em duas dimensões: social, com foco na segurança alimentar e na geração de renda para os agricultores e; ambiental, focando nos fatores que afetam a riqueza, a abundância e a diversidade de abelhas e em como os agricultores percebem esse serviço ecossistêmico.

A pesquisa foi realizada em uma região de floresta seca no nordeste brasileiro, mais especificamente em quatro municípios: São José do Piauí, Santana do Piauí, Picos e Sussuapara pertencentes ao estado do Piauí, semiárido nordestino do Brasil. Nesse contexto, nossos objetivos específicos e as hipóteses norteadoras foram:

1. Caracterizar a produção e a relevância da produção familiar, destacando sua importância durante a pandemia de COVID-19, um momento de séria crise ambiental.

HIPÓTESE: Embora os pequenos agricultores familiares no semiárido piauiense tenham sido impactados economicamente de maneira negativa pelo isolamento social imposto pela necessidade de se evitar a propagação do vírus SARS COV 2, sua produção foi essencial para garantir a sua segurança alimentar e da comunidade em geral.

2. Investigar a percepção dos agricultores(as) familiares sobre os serviços ecossistêmicos presentes em uma comunidade rural no semiárido do nordeste do Brasil.

HIPÓTESE: Os agricultores(as) familiares percebem os serviços ecossistêmicos de provisão com mais frequência, associando a água da chuva como a principal fonte de abastecimento para a produção de alimentos e modificação da paisagem. Esperamos que a maioria dos agricultores familiares desenvolvam uma agricultura dependente da água da chuva, que, devido à sua irregularidade na região, tem provocado perdas de safra (Anjos e Melo, 2019, p. 172).

3. Avaliar a influência da heterogeneidade da paisagem na abundância, na riqueza e na diversidade de abelhas (Himenoptera: Apoidea).

HIPÓTESE: A heterogeneidade da paisagem está associada ao aumento da riqueza, da abundância e da diversidade de abelhas em uma área rural com cultivos caracterizados na tipologia de agricultura familiar.

A tese está organizada em duas partes, a primeira parte contempla a introdução e fundamentação teórica e a segunda parte é formada por diferentes capítulos que exploram os objetivos específicos e que foram escritos de maneira independente para serem submetidos a periódicos diferentes de alto impacto.

O Capítulo I tem como objetivo avaliar produtividade e a importância da produção familiar durante a pandemia de COVID-19 nas comunidades "Engano dos Rodrigues" e "Lagoa Seca", no município de Santana do Piauí. Especificamente, buscou-se definir o perfil socioeconômico, o calendário produtivo e os fatores que influenciam a vulnerabilidade e o fortalecimento da atividade agrícola local. Esse artigo está publicado na Revista Brasileira de Ciências Ambientais (ISSN 2176-9478) - https://doi.org/10.5327/Z2176-94782090.

O capítulo II teve como objetivo principal avaliar a percepção dos agricultores(as) familiares sobre os serviços ecossistêmicos presentes em uma comunidade rural no semiárido do nordeste do Brasil. Esse foi aceito e está em fase de edição para publicação na Revista Journal of Agriculture, Food Systems and Community Development (ISSN: 2152-0801).

O Capítulo III visa compreender como a heterogeneidade da paisagem pode influenciar a comunidade de abelhas, principal grupo de polinizadores agrícolas em diferentes paisagens no semiárido do Piauí, Nordeste do Brasil. Esse artigo está em fase de fechamento e deverá ser submetido para a Environmental Conservation (ISSN 1469-4387).

3 REVISÃO DE LITERATURA

3.1 AGRICULTURA FAMILIAR: GERAÇÃO DE ALIMENTOS E SUPORTE PARA A SOCIEDADE

A agricultura familiar desempenha um importante papel na produção de alimentos, sendo responsável por cerca de 80% da produção mundial de alimentos, e mantendo ocupação de 85% das terras cultivadas na Ásia, 83% das Américas do Norte e Central, 68% do continente Europeu, 62% da África e 18% da América do Sul (FAO, 2018). No Brasil, mais de 80% das explorações agrícolas são do tipo familiar e esse cenário coloca o Brasil como o 8º produtor de alimentos nesse seguimento (SEAD, 2018).

Segundo a Lei nº 11.326 de julho de 2006 (BRASIL, 2006), considera-se agricultor familiar aquele que desenvolve atividades econômicas no meio rural e que atende alguns requisitos básicos, tais como: não possuir propriedade rural maior que 4 módulos fiscais; utilizar predominantemente mão de obra da própria família nas atividades econômicas de propriedade; e possuir a maior parte da renda familiar proveniente das atividades agropecuárias desenvolvidas no estabelecimento rural.

De um modo geral, para um conjunto de autores, está consolidado que a agricultura familiar significa dizer que a família detém uma relação de apropriação com o estabelecimento rural, dos meios de produção e é a responsável pelo trabalho produtivo, ou pela maior parte realizado na propriedade (Veiga, 1991; Abramovay, 1992; Lamarche 1993-1997; Wanderley, 1999; Blum, 1999)

Entretanto, o conceito de agricultura familiar, abrange diversos outros segmentos, contemplando uma grande diversidade de grupos sociais e de formas de organização socioeconômica (Wanderley, 1999). Nesse sentido, a agricultura familiar apresenta multiplicidades de perspectivas e de atores sociais que vão muito além de questões produtivas, abrangendo laços sociais de ligação entre indivíduos e suas organizações (Abramovay, 2003).

Dessa maneira, além de sua diversidade socioeconômica e organizacional, a agricultura familiar desempenha um papel central na economia do Brasil, pois a agricultura familiar é responsável por empregar 67% do total de pessoas ocupadas no setor agropecuário, representando cerca de 10,1 milhões de trabalhadores. Essa força de trabalho está distribuída principalmente nas regiões Nordeste, Sudeste e Sul, com menos participação no Centro-Oeste e no Norte (IBGE, 2017b).

O valor da produção oriunda da agricultura familiar é de aproximadamente R\$ 107 bilhões. Ainda, segundo dados do IBGE (2017d), 70% de todo alimento de consumo direto no Brasil é produzido pelos agricultores familiares. Dessa forma, a agricultura familiar consolida-

se como a via fundamental na garantia do acesso a uma ampla variedade de produtos alimentícios, essenciais para a saúde e o bem-estar das populações envolvidas (CONSEA, 2004) e da sociedade em geral.

Uma das características principais da Agricultura Familiar é a diversificação de cultivos, por exemplo, um estudo realizado em Cametá região da Amazônia no Brasil, os autores concluíram que a diversificação de cultivos em áreas de agricultura familiar proporciona melhoria da qualidade de vida, garantia de ocupação e renda, bem como a preservação do meio ambiente e estabilidade da família na propriedade (Santos *et al.*, 2023). Alguns estudos mostram que a diversificação de culturas previne a pobreza, reduz a persistência da pobreza e aumenta a renda de agricultores (Loison, 2015; Birthal *et al.*, 2015; Kasem e Thapa, 2011; Michler e Josephson, 2017; Makate *et al.*, 2016; Perz, 2004).

Portanto, a produção diversificada na agricultura familiar constitui uma característica desse setor e abrange o cultivo de alimentos, criação de animais e outras atividades relacionadas que, por sua vez, promove a segurança alimentar da população ao atender às necessidades locais e regionais (Castro *et al.*, 2013).

3.2 IMPORTANCIA DOS SERVIÇOS ECOSSISTÊMICOS PARA A PRODUTIVIDADE AGRÍCOLA

Os serviços ecossistêmicos (SE) são os benefícios que as pessoas obtêm dos ecossistemas direta e indiretamente e podem ser classificados em quatro categorias: suporte, regulação, provisão e cultural (MA, 2005). O conceito de SE promoveu uma melhor concepção em todo o mundo sobre a importância e a dependência que a humanidade tem dos serviços da natureza e como a conservação desses serviços é instrumento importante para sustentabilidade das atividades (Wu *et al.*, 2014; Kumer *et al.*, 2011).

Com o aumento da população global e a intensificação das atividades humanas, os SE estão fortemente ameaçados pelo uso acelerado dos recursos naturais, sendo associados à poluição ambiental e à perda da biodiversidade, ocasionando assim o esgotamento desses recursos (William, 1992). Os diferentes modelos de agricultura impactam de maneira diferente na manutenção dos serviços ecossistêmicos. A agricultura extensiva e a intensificação agrícola são os principais impulsionadores da perda de biodiversidade e homogeneização biótica em todo o mundo (Kehoe *et al.*, 2017). Isso não apenas compromete as metas globais de conservação, mas também prejudica o fornecimento de muitos serviços ecossistêmicos dos quais a própria comunidade agrícola, principalmente, a agricultura familiar e a sociedade em geral dependem (Bommarco *et al.*, 2013, Global Biodiversity, 2020).

Por exemplo, um estudo realizado por Fang *et al.* (2024) utilizando-se de metanálise, revelou que a rápida conversão de terras com coberturas naturais em terras agrícolas durante o processo de crescimento econômico resultou em uma expressiva perda de SE, incluindo perda de biodiversidade, aumento de CO₂, erosão do solo, mudanças climáticas, poluição do ar e poluição da água (Fang *et al.*, 2024).

Nesse contexto, para mitigar esses efeitos, Provost *et al.* (2023) estudando as pastagens agrícolas europeias destacam como a biodiversidade, tanto ao nível local quanto em escalas maiores, desempenham um papel importante no fornecimento de SE culturais e reguladores. Os autores observaram que, embora os SE de provisionamento e regulação abaixo do solo sejam fortemente afetados pelo manejo agrícola, a biodiversidade circundante promove diretamente SE culturais e reguladores acima do solo, indicando que a perda de biodiversidade associada ao uso intensivo da terra ameaça diretamente os SE.

Isso sugere que um sistema agrícola mais heterogêneo e biodiverso pode proporcionar serviços de regulação, como controle de pragas, doenças e ervas daninhas, contribuir para a fertilidade do solo, promover a ciclagem de nutrientes, controlar a erosão e, ainda assim, proporcionar o serviço de provisão de alimentos (Power, 2010). Os sistemas agrícolas diversificados ainda promovem e melhoram os serviços ecossistêmicos que fornecem insumos críticos para a produtividade e resiliência dos sistemas agrícolas em meio a mudanças climáticas (Altieri, 2004; Koohafkan *et al.*, 2011).

Dentre os diversos serviços ecossistêmicos proporcionados por sistemas agrícolas biodiversos, a polinização se destaca como um dos mais importantes para a produção de alimentos, pois a maioria (70%) das plantas cultivadas utilizadas na produção de alimento são dependentes da polinização (Klein *et al.*, 2007). Nesse contexto, as abelhas formam o grupo mais importante de visitantes florais em culturas dependentes de polinizadores (Rader, *et al.* 2015), sendo repsonsável por 62% das visitas às flores das culturas alimentícias. Os outros 38% são realizados por outros grupos de insetos, como moscas, mariposas, vespas e besouros (Buchmann e Nabhan, 1997; Klein *et al.*, 2007; Rader *et al.*, 2015).

Portanto, esse elevado grau de importância para a reprodução das plantas, para produção de alimentos e para a manutenção da rede de interações entre animais e plantas, constitui assim um importante serviço ecossistêmico (Cunha *et al.*, 2014). Por exemplo, no Brasil, as abelhas, representam 87% das espécies de polinizadores que garantem a riqueza da alimentação brasileira (Gianini *et al.*, 2014). No entanto, apesar de serem consideradas prestadoras de um serviço ecossistêmico importante, os processos de expansão das áreas de produção e

intensificação da agricultura tem ameaçado a biodiversidade desses insetos, sendo considerado um problema para a manutenção de seus *habitats* naturais (Garibaldi *et al.*, 2011).

Alguns estudos demonstram o declínio de espécies de abelhas em algumas regiões do mundo (por exemplo, na Europa e América do Norte) (Girão *et al.*, 2007; Cameron *et al.*, 2011; Dupont *et al.*, 2011; Becher *et al.*, 2013). Dentre os fatores que afetam o declínio dos polinizadores estão: fatores antropogênicos como o uso de pesticidas, agentes patogênicos introduzidos, alterações climáticas e principalmente as mudanças no uso da terra (Potts *et al.*, 2010; Goulson *et al.*, 2015) Ainda esses efeitos podem ser potencializados pela substituição de áreas naturais por plantações de monocultivos (Scheper *et al.*, 2013; Blaauw *et al.*, 2014). Essas mudanças na paisagem causadas pela conversão de áreas naturais para atividades humanas colocam em risco a biodiversidade e impactam severamente a estrutura e estabilidade do ecossistema (Fahrig, 2003).

Portanto, a redução de ecossistemas nativos pode ocasionar desequilíbrio ambiental, impactando fortemente na manutenção dos insetos que prestam os mais variados serviços ecossistêmicos como a ciclagem de nutrientes, polinização e controle biológico (Schwartz *et al.*, 2000; Garratt *et al.*, 2018; Wyckhuys *et al.*, 2018). Muitas evidencias apontam que a redução no número de polinizadores também pode ameaçar a biodiversidade global, a produtividade das colheitas e em última análise, a estabilidade do ecossistema (Klein *et al.*, 2007; Ollerton *et al.*, 2011; Sluijs eVaage, 2016; Ratto *et al.*, 2018; Patel *et al.*, 2020).

Por sua vez, a sustentação dos serviços ecossistêmicos, como a polinização depende da manutenção de ambientes *habitat* ricos em recursos florais, como demonstrado no estudo realizado por Jachula *et al.* (2021) em paisagens não cultiváveis próximas a paisagens agrícolas na Polônia, este estudo concluiu que as áreas não cultivadas (com vegetação lenhosa, margens de estradas e campos e áreas em pousio) desempenham um papel crucial na oferta de recursos de néctar para paisagens agrícolas intensificadas, contribuindo significativamente para a alimentação de abelhas e outros polinizadores (Jachula *et al.*, 2021).

No Brasil, pelo menos 144 espécies de abelhas estão associadas às principais culturas agrícolas, sendo 56% dessas espécies de abelhas solitárias (Giannini *et al.*, 2020). Por isso, o declínio na diversidade e na abundância dessas abelhas pode gerar impactos econômicos diretos para o país, com prejuízos estimados entre 4,86 e 14,56 bilhões de dólares por ano para as 29 culturas alimentares mais relevantes, representando de 6,46% a 19,36% do PIB brasileiro (Novais *et al.*, 2018).

De acordo com Klein et al. (2020), entre as espécies de abelhas associadas à polinização de culturas agrícolas no Brasil, destacam-se: Apis melífera, Trigona spinipes,

Xylocopa frontalis, Bombus morio, Exomalopsis analis, Eulaema nigrita, Xylocopa grisescens, Centris tarsata, Centris flavifrons, Centris aenea, Xylocopa cearenses, Paratrigona lineata, Trigona fuscipennis, Centris fuscata, Oxaea flavescens, Tetragonisca angustula, Eulaema cingulata, Bombus atratus, Melipona quadrifasciata e Centris sponsa.

Contudo, apesar das abelhas serem fundamentais para a prestação de serviços ecossistêmicos que podem aumentar e melhorar a produção agrícola, muito se tem questionado o formato da agricultura praticada no Brasil. Por exemplo, o uso de compostos agrotóxicos, como o glifosato um herbicida amplamente utilizado na agricultura brasileira possui forte indícios científicos de supostamente causar mudanças comportamentais na abelha, *Apis mellifera* (Herbert *et al.*, 2014) Além disso, o Brasil é considerado o líder mundial no consumo de pesticidas, como o glifosato, sendo utilizado em 25 culturas diferentes (MAPA, 2016). Esse modelo de produção e intensificação da agricultura tem ameaçado a biodiversidade, sendo considerado um grave problema para a manutenção desses insetos em seu *habitat* natural (Garibalde *et al.*, 2011).

Em estudos realizados por Kevan (1999), foi identificado que as populações de abelhas silvestres têm sido reduzidas drasticamente, em razão da eliminação de suas fontes de alimento e locais de nidificação, pela ocupação intensiva da terra para agricultura e urbanização e pela intoxicação com pesticidas. Ainda os pesticidas são classificados como impulsionadores "importantes" no declínio de polinizadores em todas as regiões do globo com maior confiança na Europa e Ásia (Lynn, 2020). Portanto, a ampla exposição das abelhas a alguns desses produtos químicos podem ter efeitos sinérgicos, potencializando a toxicidade quando combinados com outros agrotóxicos, parasitas ou patógenos que afetam essas populações (Pettis *et al.*, 2016; Kessler *et al.*, 2015).

3.3 A POLINIZAÇÃO E SUA RELAÇÃO COM A HETEROGENEIDADE DA PAISAGEM

A paisagem, conforme proposto por Metzger (2001), é definida como um mosaico heterogêneo formado por unidades interativas. Essa heterogeneidade é reconhecida em relação a pelo menos um fator, dependendo do observador e da escala de observação. Na abordagem ecológica, Metzger (2001) considera o mosaico como um conjunto de *habitats* que apresentam condições variáveis, mais ou menos favoráveis para as espécies ou comunidades estudadas.

Assim, ao considerar uma paisagem como um mosaico heterogêneo (Metzger, 2001), é importante entender como essa diversidade se manifesta em diferentes níveis. A heterogeneidade da paisagem é classificada em dois tipos: composicional e configuracional (Fahring e Nutte, 2005). A heterogeneidade composicional é caracterizada por uma variedade

maior de tipos de cobertura do solo, refletindo um número maior e uma proporção mais equitativa entre as diferentes formas de uso do solo. Por outro lado, a heterogeneidade configuracional apresenta um padrão espacial mais complexo, englobando especificamente o transbordamento e a dinâmica metapopulacional.

Além disso, a heterogeneidade da paisagem desempenha um papel essencial em paisagens modificadas pelo ser humano, oferecendo uma variedade de recursos indispensáveis para as espécies com grande capacidade de voo (Tscharntke *et al.*, 2012), como muitos insetos. Com isso, a heterogeneidade contribui para a riqueza e a abundância de espécies de abelhas e vespas (Steckel *et al.*, 2014; Papanikolaou *et al* 2017; Flores e Araújo, 2018; Coutinho *et al.*, 2020).

A expansão da agricultura em larga escala associada à homogeneização da paisagem passou a ser um ponto-chave para várias discussões no campo científico (Johnson *et al.*, 2017; Newbold *et al.*, 2014), pois muitos estudos, tem sido realizados para entender como a heterogeneidade da paisagem determina os padrões de distribuição das espécies e modifica a composição da comunidade nos *habitats* naturais que permanecem, bem como nas matrizes antropogênicas circundantes (Harlio *et al.*, 2019; Loos *et al.*, 2014; Santana *et al.*, 2017).

Nesse sentido, ao se considerar o meio rural, a agricultura de base sustentável é uma estratégia que integra objetivos ambientais, sociais e econômicos, valorizando aspectos como: conservação dos recursos naturais, solo, água, biodiversidade, diversificação de práticas agrícolas, saúde do solo, minimização do uso de insumos externos, promoção da equidade social e econômica para os agricultores (Pretty, 2008).

Entre os fatores importante que compõem a sustentabilidade agrícola a estrutura da paisagem é um elemento que deve ser considerado, por exemplo, o aumento da diversidade de ambientes da diversidade dos tipos de ambientes (ou seja, heterogeneidade composicional) e a continuidade entre áreas de um mesmo tipo do ponto de vista das abelhas (ou seja, conectividade funcional da paisagem) facilitam o acesso desses insetos a variedade de recursos naturais disponíveis para eles (Boscolo *et al.*, 2017). Além disso, a maior diversidade ambiental na paisagem está associada a um aumento no sucesso da polinização realizada por abelhas de diferentes espécies vegetais (Machado *et al.*, 2020a; Soares *et al.*, 2022b).

Por exemplo, pesquisas realizadas em regiões tropicais demonstram a importância da vegetação e da regeneração de florestas nativas para a abundância e diversidade de polinizadores em áreas cultivadas (Boreux *et al.*, 2013; Romero *et al.*, 2013.; Landaverde-González *et al.*, 2017, Medeiros *et al.*, 2019). Adicionalmente, Moreira *et al.* (2017) concluíram que a abundância das abelhas Euglossini está fortemente relacionada com o tamanho de *habitat*

nas paisagens circundantes. Portanto, paisagens com ambientes diversificados e amigáveis aos polinizadores podem favorecer a manutenção e o aumento de suas populações por meio da oferta de recursos tróficos e de locais para nidificação, garantindo a estabilidade do serviço de polinização (Viana *et al.*, 2012; Ferreira *et al.*, 2015). Essas características da paisagem têm, portanto, efeito direto na produtividade agrícola (Saturni *et al.*, 2016; Hipólito *et al.*, 2018).

Por outro lado, um estudo realizado em uma região semiárida no estado do Ceará, Brasil, concluiu que a heterogeneidade da paisagem tem efeitos distintos sobre abelhas, vespas e seus parasitóides em ambientes semiáridos. A configuração da paisagem (ou seja, o arranjo espacial das diferentes unidades de vegetação) mostrou ter um impacto maior do que a composição (tipos de vegetação) (Flores *et al.*, 2019).

A fragmentação da paisagem é caracterizada pela descontinuidade de uma unidade da paisagem, que antes se apresentava de forma contínua passando a existir parcelas menores com características diferentes das existentes no ambiente original, tornando-se áreas desconectadas (Metzger, 2000). Assim, os fragmentos passam a funcionar como ilhas de diversidade cercadas por áreas não florestadas (Debinski e Holt, 2000). Dessa forma, a fragmentação de *habitat* é considerada uma das principais causas do declínio global da biodiversidade ocasionada por pressões antrópicas nos ecossistemas naturais (Butchart *et al.*, 2012; IPBES, 2018).

A fragmentação de *habitats* podem ter impactos negativos nas populações de abelhas e esse parâmetro é um dos fatores que tem mais frequentemente influenciado na riqueza e abundância de espécies em paisagens fragmentadas (Rosenzweig, 1995; Krauss *et al.*, 2009; Hodgson *et al.*, 2011; Hopfenmüller *et al.*, 2014). Nesse sentido, uma combinação de grandes manchas de alta qualidade e paisagens heterogêneas mantém alta riqueza de espécies de abelhas e comunidades com composição de características diversificada. Essas comunidades diversas podem estabilizar os serviços de polinização fornecidos às plantações e plantas selvagens em escalas locais e de paisagem (Hopfenmüller *et al.*, 2014). Por sua vez, o tamanho do *habitat*, a conectividade e o manejo podem influenciar as populações de abelhas e seus recursos de nidificação (Hopfenmüller *et al.*, 2020).

Algumas espécies de insetos polinizadores mantêm alta conectividade genética em paisagens urbanizadas, como observado nas abelhas *Bombus lapidarius* (Theodorou *et al.*, 2018) e *Xylocopa virginica* (Ballare e Jha, 2021). Por outro lado, paisagens alteradas pelo ser humano dificultam o fluxo gênico em outras espécies, como a abelha *Bombus vosnesenskii* (Jha, 2015). Existe, portanto, uma necessidade de investigações abrangentes sobre as respostas específicas das espécies a paisagens modificadas (Chaulk e Keyghobadi, 2022; Prendergast *et al.*, 2022).

A degradação da estrutura das florestas tem impactos negativos sobre a biodiversidade endêmica e as funções dos ecossistemas, como demonstrado em Madagascar (Rindrasoa *et al.*, 2024). De maneira semelhante, em pastagens calcárias da Europa Central, foi demonstrado que a fragmentação do *habitat* e a diversidade da paisagem influenciam a especialização das redes de interações planta-polinizador (Felipe *et al.*, 2024). Assim, a restauração e a manutenção de terras naturais são as formas mais importantes de sobrevivência da maioria das espécies raras e ameaçadas, que são geralmente susceptíveis às perturbações antropogênicas (Kremen, 2015; Brodie *et al.*, 2023)

As mudanças na paisagem causadas pela conversão da vegetação natural em campos agrícolas intensivamente manejados, como a simplificação da paisagem e a perda do ambiente nativo, estão entre os fatores mais críticos para explicar a perda da diversidade de polinizadores (Stein *et al.*, 2014). Por outro lado, os efeitos na estrutura da paisagem na diversidade de espécies polinizadoras nem sempre são diretos, com resultados diversificados presentes na literatura (Williams *et al.*, 2010; Coutinho *et al.*, 2018).

Em estudo realizado na Chapada Diamantina, no estado da Bahia, Brasil, Coutinho *et al.* (2021) concluíram que as mudanças na estrutura da paisagem e nas características ambientais locais tem o potencial de impactar significativamente as comunidades de abelhas em agroecossistemas. Nesse sentido é importante entender como essas mudanças na paisagem podem aumentar ou diminuir a diversidade de polinizadores em diferentes contextos.

3.4 PERCEPÇÃO DOS AGRICULTORES SOBRE OS SERVIÇOS ECOSSISTÊMICOS

Conhecer e compreender quais ações são praticadas pelos agricultores a partir de suas percepções sobre os serviços ecossistêmicos torna-se importante para traçar estratégias de desenvolvimento sustentável (Giansanti, 1998). É importante a divulgação de ações sobre as diferentes formas de cultivos de base ecológica, no sentido de complementar e ajustar o conhecimento dos agricultores sobre a forma de produção de base sustentável (Matos *et al.*, 2021), pois eles são os principais gestores e vítimas da degradação dos SE (Martín-López *et al.*, 2012).

As percepções são afetadas por fatores socioeconômicos-culturais e mudam em função do gênero (Zoderer, 2016; Paudayel *et al.*, 2018), escolaridade (Mass *et al.*, 2021a.), experiências (Osório *et al.*, 2024), dentre outros fatores. Percepções diferenciadas muito provavelmente diferem entre as pessoas que vivem em diferentes paisagens e essas diferenças estão baseadas em aspectos cognitivos da recepção de estímulos visuais, experiência das pessoas sobre a natureza e o ambiente circundante (Arias-Arévalo *et al.*, 2018).

Estudos com agricultores e cientistas ambientais na Alemanha e na Áustria, concluíram que existe uma lacuna significativa nas percepções sobre biodiversidade, serviços ecossistêmicos e processos de tomada de decisão entre agricultores e cientistas ambientais. Enquanto os cientistas dão maior importância às informações científicas para a tomada de decisões agrícolas, os agricultores valorizam mais as informações provenientes do governo e do setor agrícola. Além disso, os agricultores do sexo feminino, orgânicos e mais bem-educados tendem a ter percepções mais positivas em relação à biodiversidade, o que aponta oportunidades para uma promoção mais direcionada de práticas de conservação nesses grupos (Mass *et al.*, 2021b).

Outro estudo, realizado em uma região semiárida da Índia, revelou que os agricultores associam as mudanças climáticas desfavoráveis principalmente ao atraso no início das chuvas, à irregularidade nos padrões de precipitação, às variações na quantidade e intensidade das chuvas, além do aumento na frequência das secas (Singha *et al.*, 2023). Observações semelhantes também feitas por agricultores na Nigéria e Gana (Região Semiárida), onde os agricultores tiveram uma nítida percepção sobre associar as chuvas à dependência da produção de alimentos (Aniah *et al.*, 2023).

Por outro lado, estudos realizados em uma região Semiárida da Nigéria, concluíram que os serviços de regulação e apoio, importantes para a agricultura e o bem-estar humano, foram geralmente pouco percebidos. Os agricultores desconheciam na maioria dos serviços prestados pelos insetos benéficos (tais como polinizadores e inimigos naturais) e a sua susceptibilidade aos pesticidas químicos ou a dependência de *habitats* naturais na paisagem (Zhanga *et al.*, 2016). Dado que esse conhecimento é normalmente adquirido nas aulas de biologia nas escolas secundárias na Nigéria e muitos agricultores abandonaram a escola antes disso (60% dos inquiridos nessa pesquisa), a falta da educação formal pode ter ajudado na manutenção da ignorância sobre a polinização (Munyuli, 2011). Isso demonstra como o nível de educação também pode influenciar no reconhecimento e importância dos SE (Mass *et al.*, 2021b).

Da mesma forma, é possível observar diferenças de percepção entre pessoas de áreas urbanas e rurais, como visto no estado da Paraíba, Brasil, onde as pessoas em contato direto com o ambiente natural perceberam melhor os SE em relação àquelas sem o contato (Osório *et al.*, 2024). Nesse sentido, conhecer e compreender quais ações são praticadas pelos agricultores a partir de suas percepções sobre os serviços ecossistêmicos torna-se importante para traçar estratégias de desenvolvimento sustentável (Giansanti, 1998).

3.5 AMEAÇA A SEGURANÇA ALIMENTAR EM TEMPO DE CATÁSTROFES AMBIENTAI: O CASO DA PANDEMIA DA COVID-19

Mudanças ambientais de larga escala podem afetar a forma de vida e de produção da humanidade. Alterações de larga escala em parâmetros ambientais podem provocar mudanças significativas. Um exemplo, são as mudanças climáticas atualmente observadas: dentre os muitos impactos que as alterações climáticas podem causar, podemos destacar o seu efeito na segurança alimentar global. Alterações variáveis climáticas como a oscilação de temperaturas, mudanças na frequência e intensidade de precipitações, seca, salinidade dos solos e elevação do nível do mar, podem impactar negativamente a produção agrícola nas próximas décadas (Raza et al., 2021; Ullah et al., 2021).

Por exemplo, diversos relatórios científicos evidenciaram fatos concretos sobre os impactos das mudanças climáticas, no qual mostram que a temperatura da superfície da Terra vem se aquecendo mais rapidamente desde o início do século XIX (Böhm *et al.*, 2010; Hansen *et al.*, 2010; Rohde *et al.*, 2013; Hegerl *et al.*, 2019; Carton *et al.*, 2021). Nesse contexto, os agricultores serão muito afetados, pois a produção de alimentos será mais difícil (IPCC, 2012). Esses eventos ainda podem gerar custos sociais adversos significativos (Edger, 2006). Esses eventos têm o potencial de perturbar as cadeias de abastecimento globais e afetar as perspectivas de desenvolvimento sustentável das nações mais vulneráveis (Newman *et al.*, 2023; Hochman *et al.*, 2022).

Além das ameaças representadas pelas mudanças climáticas, as doenças infecciosas emergentes (DIEs) são um fardo significativo para as economias globais e a saúde pública (Marcus *et al.*, 2004; Mark *et al.*, 2003; Sue *et al.*, 1999). Acredita-se que seu surgimento seja impulsionado em grande parte por fatores socioeconômicos, ambientais e ecológicos (Peter *et al.*, 2000; Stylor *et al.*, 2001; Woolhouse *et al.*, 2005).

Por exemplo, o surto de COVID-19 ocasionou o isolamento social e trouxe como consequência fome a milhões de pessoas ao redor do mundo (Paslakis *et al.*, 2021). As estratégias, como distanciamento físico, fechamento de escolas, restrições comerciais e bloqueio de países para controlar a pandemia, aumentaram os desafios nutricionais ao redor do mundo, especialmente em países de baixa e média renda (LMICs) com as maiores populações (Aborode *et al.*, 2021; Chang *et al.*, 2021).

A Pandemia de COVID-19 com as medidas de segurança que foram utilizadas agravou consideralvelmente a pobreza e intensificou a insegurança alimentar, impactando de forma mais acentuada as comunidades locais, especialmente as mais vulneráveis (Harison *et al.*, 2024). Além disso, as medidas de contingenciamento durante a pandemia de COVID-19 expuseram

vulnerabilidades no sistema alimentar que se baseia na agricultura industrial e predatória (Altieri e Nicholls, 2020).

Nesse período, houve um aumento significativo de desabastecimento e fome em uma grande parte da população humana (Ahmed *et al.*, 2020), especialmente entre os mais pobres (Zurayk, 2020). Os produtores que eram integrados em cadeias agroindustriais e aqueles conectados a circuitos curtos de produção e abastecimentos tiveram menores perdas (FAO, 2020). Por outro lado, setores da agricultura familiar que não tiveram esse apoio foram os mais afetados (Schmidhuber e Qiao, 2020).

Por sua vez os estudos sobre os efeitos do isolamento social imposto durante a pandemia da COVID-19 na agricultura familiar apontam dificuldades de manutenção da dinâmica produtiva e comercial; impactos nos volumes de produção; efeitos nos preços recebidos e queda na renda dos agricultores familiares (IICA, 2020; Salazar *et al.*, 2020; BID, 2020). Conforme observado por Sampaio *et al.*, (2021), em uma revisão sistemática, 81% dos estudos indicavam impacto negativo da COVID-19 na agricultura familiar e entre os impactos mais mencionados foram: diminuição na produção, escassez de mão de obra e dificuldades no acesso ao crédito. Apesar disso, alguns agricultores relataram um aumento nas vendas, tanto online quanto presencialmente (Zollet *et al.*, 2021; Hutchins *et al.*, 2021; Gascón, 2021).

No Brasil, a situação observada não foi muito diferente do resto do mundo. A pandemia da COVID-19 intensificou a insegurança alimentar, sendo que aproximadamente 125,2 milhões de pessoas (58,7% da população) conviveu com a insegurança alimentar em algum grau - leve, moderado ou grave. Além disso, mais de 33 milhões de pessoas (15,5%) estavam em situação de privação e fome (VIGISAN, 2022). Assim, baseado nesse referencial, ficaram claro as fragilidades nos sistemas alimentares globalmente, diante dos impactos da COVID-19 que expuseram a insegurança alimentar em diversas regiões do mundo

No Brasil, existem duas políticas públicas essenciais na Política de Segurança Alimentar e Nutricional (SAN): Programa de aquisição de Alimentos (PAA) e o Programa Nacional de Alimentação Escolar (PNAE), conforme a Lei n.º 11.346/2006 e o Decreto n.º 7.272/2010. Esses dois programas promovem o Direito Humano à Alimentação Adequada e a inclusão social da agricultura familiar, em colaboração com associações de agricultores e Conselhos Sociais, como o Conselho de Alimentação Escolar (CAE).

A Resolução FNDE n.º 6/2020 determina que, no mínimo, 30% dos recursos do FNDE sejam destinados à compra de alimentos da agricultura familiar, assegurando alimentação saudável para os alunos de escolas públicas. O PAA, criado pela Lei nº 10.696/2003 e alterado

pela Lei n.º 12.512/2011, permite a compra de alimentos da agricultura familiar, sem licitação, para atender pessoas em situação de insegurança alimentar e nutricional.

Nesse contexto, as políticas públicas se mostraram como uma das soluções essenciais no setor agrícola para enfrentar os gargalos resultantes da pandemia, sobretudo para os agricultores familiares como sujeitos mais afetados. As políticas públicas existentes, como PAA e PNAE, puderam garantir a este setor expansão de renda e melhorias em relação ao crédito rural e ao seguro agrícola (Grisa e Niderele, 2020). Além disso, o PNAE pode ser considerado uma das políticas públicas mais exitosas do país, pois a um custo de pouco mais de cem reais por ano por estudante, beneficia diretamente, com uma ou mais refeições diárias, mais de 40 milhões de escolares (Amorin *et al.*, 2020).

No entanto, durante o momento de enfrentamento da pandemia da COVID-19, o PNAE enfrentou um grande desafio para prosseguir com o fornecimento da alimentação escolar. Com o isolamento social e consequentemente a suspensão das aulas nas escolas públicas, observou-se uma paralisação ou instabilidade do acesso à alimentação por parte dos estudantes (Amorim *et al.*, 2020).

Em resposta a esse desafio, foi necessário um ajuste no PNAE em alguns locais do Brasil. Visto isso, a solução para esse contexto foi a criação da Lei n.º 13.987, de 7 de abril de 2020, que permitiu a distribuição de alimentos adquiridos através do PNAE aos pais ou responsáveis dos alunos das escolas públicas de educação básica, como forma de garantia da cota de 30% destinada à agricultura familiar que, nesse caso, visa 80 mil agricultores familiares. Já no PAA se estabeleceu a medida provisória n.º 957/2020, de 27 de abril de 2020, que abriu crédito extraordinário para que a segurança alimentar e nutricional fosse atendida com mais ênfase nessa situação e para que se comprasse produtos oriundos da agricultura familiar (BRASIL, 2020).

Essas iniciativas evidenciam como as políticas públicas para a agricultura familiar, foram essenciais no fortalecimento dessa categoria para garantir o abastecimento alimentar (Lobato e Andrioli, 2022). A gestão desses programas, como políticas públicas, tem condições de garantir o abastecimento de alimentos e segurança alimentar, bem como a renda aos produtores rurais, durante e após a crise causada pela pandemia (Vieira Filho, 2020).

Mesmo algumas políticas públicas, como o PAA e PANAE sendo consideradas importante para mitigar os efeitos da insegurança alimentar, um estudo realizado com agricultores familiares de diversas cidades do Paraná no Brasil, constatou que os programas federais do PNAE e do PAA atenderam de forma muito precária e tardiamente a demanda dos agricultores familiares durante a pandemia da COVID-19. Apesar da importância do Governo

Federal em liderar e coordenar as políticas nacionais voltadas para os agricultores familiares, esse resultado foi reflexo da redução drástica do orçamento desses programas desde 2019 (Araújo *et al.*, 2019).

Por outro lado, estudos realizados no município de Turmalina, em Minas Gerais, Brasil, evidenciaram uma grande diversidade de produtos comercializados pela agricultura familiar para o PNAE, destacando a valorização da produção local, o que resultou no fortalecimento da produção regional e da segurança alimentar (Santos e Galizone, 2021). De forma semelhante, confirmou-se que os programas PAA e PNAE no munícipio de Rubim–MG no Brasil impulsionaram o aumento da produção, a valorização dos produtos e do trabalho das unidades familiares, além de colaborar para o aumento da diversidade na produção.

Também ficou evidente a importância dos programas para os beneficiários consumidores, os quais acessam diversos alimentos produzidos de forma saudável (Sousa *et al.*, 2022). Diante dessas evidências citadas, fica claro que, embora os programas PAA e PNAE tenham enfrentado desafios significativos durante a pandemia, eles desempenharam um papel crucial no fortalecimento da agricultura familiar e na promoção da segurança alimentar resiliente.

Mesmo com todos esses fatores mencionados, ficou evidenciado a importância da agricultura familiar, portanto, o fortalecimento dessa categoria é necessário para garantir o abastecimento global de alimentos, ao mesmo tempo, é importante reconhecer a contribuição para ampliação do desenvolvimento sustentável e segurança alimentar (Sampaio *et al.*, 2021a).

REFERÊNCIAS

ABORODE, A. T.; OGUNSOLA, S. O.; ADEYEMO, A. O. Uma crise dentro de uma crise: COVID-19 e fome em crianças africanas. **The American Journal of Tropical Medicine and Hygiene**, v. 104, n. 1, p. 30-31, 2021. DOI: <10.4269/ajtmh.20-1213.

ABRAMOVAY, R. Paradigmas do capitalismo agrário em questão. São Paulo: Hucitec, 1992.

. O futuro das regiões rurais. Porto Alegre: UFRGS, 2000.

ADGER, W. N.; BROWN, I.; SURMINSKI, S. Advances in risk assessment for climate change adaptation policy. **Philosophical Transactions of the Royal Society** *A*, v. 376, 2018. DOI: http://dx.doi.org/10.1098/rsta.2018.0106.

ADGER, W. Neil. Vulnerabilidade. Mudança Ambiental Global, v. 16, n. 3, p. 268-281, 2006.

AGUIAR, A. P. D. *et al.* Cenários de emissões de mudanças no uso da terra: antecipando um processo de transição florestal na Amazônia brasileira. **Global Change Biology**, v. 22, n. 5, p. 1821–1840, 2016. DOI: https://doi.org/10.1111/gcb.13134.

AIZEN, M. A. *et al.* Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. **Global Change Biology**, v. 25, p. 3516–3527, 2019.

ALTIERI, M. A. Unindo ecologistas e agricultores tradicionais na busca por uma agricultura sustentável. **Frente Ecológica e Meio Ambiente**, v. 2, p. 35–42, 2004.

ALTIERI, M. A.; TOLEDO, V. M. The agroecological revolution in Latin America: rescuing nature, ensuring food sovereignty and empowering peasants. **Journal of Peasant Studies**, v. 38, n. 3, p. 587-612, 2011.

AMORIM, A. L. B. DE; RIBEIRO JUNIOR, J. R. S.; BANDONI, D. H. Programa Nacional de Alimentação Escolar: estratégias para enfrentar a insegurança alimentar durante e após a COVID-19. **Revista De Administração Pública**, v. 54, n. 4, p. 1134–1145, 2020. Disponível em: https://doi.org/10.1590/0034-761220200349.

AMORIM, A. L. B. DE; RIBEIRO JUNIOR, J. R. S.; BANDONI, D. H. Programa Nacional de Alimentação Escolar: estratégias para enfrentar a insegurança alimentar durante e após a COVID-19. **Revista De Administração Pública**, v. 54, n. 4, p. 1134–1145, 2020. Disponível em: https://doi.org/10.1590/0034-761220200349.

ARAÚJO, A. L. et al Agricultura familiar e o impacto do COVID-19 aos programas de políticas públicas - PNAE e PAA. **Extensão Rural**: Práticas e pesquisas para o fortalecimento da agricultura familiar. Disponível em: https://doi.org/10.37885/210303576.

ARAUJO, L. R. S. *et al.* Alimentação escolar e agricultura familiar: análise de recursos empregados na compra de alimentos. **Cadernos de Saúde Pública**, v. 35, p. 00004819, 2019.

AZADI, H.; HO, P.; HASFIATI, L. Motoristas de conversão de terras agrícolas: uma comparação entre países menos desenvolvidos, em desenvolvimento e desenvolvidos. Land

Degradation e Development, v. 22, n. 6, p. 596–604, 2011. DOI: https://doi.org/10.1002/ldr.1037.

BALLARE, K. M.; JHA, S. Genetic structure across urban and agricultural landscapes reveals evidence of resource specialization and philopatry in the eastern carpenter bee, Xylocopa virginica L. **Evolutionary Applications**, v. 14, n. 1, p. 136–149, 2021. DOI: https://doi.org/10.1111/eva.13078.

BARBOSA, D. et al. As abelhas e seu serviço ecossistêmico de polinização. **Revista Eletrônica Científica da UERGS**, v. 3, n. 4, p. 694-703, 2017(a). DOI: http://dx.doi.org/10.21674/2448-0479.34.694-703. Acesso em: 28 jan. 2024.

BARBOSA, D. et al. As abelhas e seu serviço ecossistêmico de polinização. **Revista Eletrônica Científica da UERGS,** v. 3, n. 4, p. 694-703, 2017(b). DOI: http://dx.doi.org/10.21674/2448-0479.34.694-703. Acesso em: 28 jan. 2024.

BENNETT, EM et al. Ligando biodiversidade, serviços ecossistêmicos e bem-estar humano: três desafios para projetar pesquisas para a sustentabilidade. **Current Opinion in Environmental Sustainability**, v. 14, p. 76-85, 2015. Disponível em: https://www.sciencedirect.com/science/article/pii/S1877343515000366 . Acesso em: 10 mar. 2025.

BIESMEIJER, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. **Science**, v. 313, n. 5785, p. 351-354, 2006.

BINDER, S. et al. Doenças infecciosas emergentes: questões de saúde pública para o século XXI. Science, v. 284, p. 1311-1313, 1999. DOI: <10.1126/science.284.5418.1311>.

BIRTHAL, P. S.; ROY, D.; NEGI, D. S. Assessing the impact of crop diversification on farm poverty in India. **World Development**, v. 72, p. 70-92, 1 ago. 2015. Disponível em: https://www.sciencedirect.com/science/article/pii/S0305750X15000480. DOI: https://doi.org/10.1016/j.worlddev.2015.02.015.

BLAAUW, B. R.; ISAACS, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. **Journal of Applied Ecology**, v. 51, n. 4, p. 890–898, 2014.

BLUM, R. Agricultura Familiar: estudo preliminar da definição, classificação e problemática. In: TEDESCO, J. C. (Org.). **Agricultura familiar: realidades e perspectivas**. Passo Fundo: Editora da UPF, 1999. p. 57-103.

BÖHM, R.; JONES, P. D.; HIEBL, J.; FRANK, D.; BRUNETTI, M.; MAUGERI, M. O viés instrumental inicial do aquecimento: uma solução para uma longa série de temperaturas da Europa Central 1760–2007. **Climatic Change**, v. 101, p. 41–67, 2010. DOI: <10.1007/s10584-009-9649-4>.

BOMMARCO, R.; KLEIJN, D.; POTTS, S. G. Intensificação ecológica: Aproveitando os serviços ecossistêmicos para segurança alimentar. **Trends in Ecology & Evolution**, v. 28, p. 230–238, 2013.

BONGERS, F.; TENNIGKEIT, T. (Eds.). Degraded Forests in Eastern Africa: Management and Restoration. 1. ed. Routledge, 2010. Disponível em: https://doi.org/10.4324/9781849776400. Acesso em: 10 mar. 2025.

Brasil. Lei nº 11.346, de 15 de setembro de 2006. Cria o Sistema Nacional de Segurança Alimentar e Nutricional - SISAN com vistas em assegurar o direito humano à alimentação adequada e dá outras providências. *Diário Oficial da União* 2006; 18 set

BRODIE, J. F. *et al.* Landscape-scale benefits of protected areas for tropical biodiversity. **Nature**, v. 620, n. 7975, p. 807–812, 2023.

BUCHMANN, S. L.; NABHAN, G. P. The Forgotten Pollinators. Island Press, 1997.

BUTCHART, S. H. M. et al. Global Biodiversity: Indicators of Recent Declines. **Science**, v. 328, p. 1164-1168, 2010. Disponível em: http://dx.doi.org/10.1126/science.1187512. Acesso em: 10 mar. 2025.

BUTCHART, S.H. M. *et al.* Protecting important sites for biodiversity contributes to meeting global conservation targets. **PLoS ONE**, v. 7, n. 3, 2012. DOI: 10.1371/journal.pone.0032529.4.

CALVET-MIR, L.et al. Seed exchange as an agrobiodiversity conservation mechanism: um estudo de caso em Vall Fosca, Pirineus Catalães, Península Ibérica. **Ecology and Society**, v. 17, p. 29, 2012.

CARTON, W.; LUND, J. F.; DOOLEY, K. Desfazendo a equivalência: repensando a contabilidade de carbono para apenas a remoção de carbono. **Frontiers in Climate**, v. 3, p. 30, 2021. DOI: <10.3389/FCLIM.2021.664130>.

CASTRO, et al. Juventude rural, agricultura familiar e políticas de acesso à terra no Brasil. Brasília: Ministério do Desenvolvimento Agrário, 2013.

CASTRO, F. de; LOPES, GR; BRONDIZIO, ES A Amazônia Brasileira em tempos de COVID-19: da crise à transformação? **Ambiente e Sociedade**, v. 23, 2020, e0123.

CENTROS DE CONTROLE E PREVENÇÃO DE DOENÇAS (CDC). 2020. Disponível em: https://www.cdc.gov/pandemic-recursos/index.htm . Acesso em: 18 conjuntos. 2020.

CHANG, H.-H.; MEYERHOEFER, C. D. COVID-19 e a demanda por serviços de compras de alimentos on-line: evidências empíricas de Taiwan. **American Journal of Agricultural Economics,** v. 103, n. 2, p. 448-465, 2020. DOI: <10.1111/ajae.12170>.

CHAULK, A.; KEYGHOBADI, N. Insect Landscape Genomics. In: Population Genomics. Cham: **Springer**, 2022. DOI: https://doi.org/10.1007/13836 2022 106.

CLAUSSEN, M.; BROVKIN, V.; GANAPOLSKI, A. Biogeophysical versus biogeochemical feedbacks of large-scale land cover. **Geophysical Research Letters**, v. 28, n. 6, p. 1011-1014, 2001.

Convenção sobre Biodiversidade. Global Biodiversity Outlook 4: A Mid-Term Assessment of Progress toward the Implementation of the Strategic Plan for Biodiversity 2011–2020; Secretariado da Convenção sobre Diversidade Biológica: Montréal, QC, Canadá, 2014;

Disponível online: https://www.cbd.int/gbo/gbo4/publication/gbo4-en.pdf (acessado em 21 de março de 2023).

CROWDER, D. W.; NORTHFIELD, T. D.; STRAND, M. R.; SYNDER, W. E. A agricultura orgânica promove uniformidade e controle natural de pragas. **Nature**, v. 466, n. 7302, p. 109–112, 2010. DOI: <10.1038/nature09183>.

CUNHA, D. A. *et al* . Insetos polinizadores em sistemas agrícolas. Ensaios e Ciência: Ciências Biológicas, **Agrárias e da Saúde**, v. 18, n. 4, p. 185-194, 2014.

DASZAK, P. *et al.*,Doenças infecciosas emergentes da vida selvagem – ameaças à biodiversidade e à saúde humana. **Science**, v. 287, p. 443-449, 2000. DOI: <10.1126/science.287.5452>.

DE BON, H.; PARROT, L.; MOUSTIER, P. Urban agriculture and sustainable development. **Agronomy for Sustainable Development**, v. 30, p. 21-32, 2010.

DEBINSKI, D. M., HOLT, R. D. A survey and overview of *habitat* fragmentation experiments. **Conservation Biology**, v. 14, n. 2, p. 342-355. 2000.

DÍAZ, S. *et al.* O declínio generalizado da vida causado pelo homem na Terra aponta para a necessidade de transformação mudança. **Science.** p. 366, Doi: 10.1126 / science.aax3100, 2019.

DUDLEY, N.; ALEXANDER, S. Agriculture and biodiversity: a review. **Biodiversity**, v. 18, n. 2–3, p. 45–49, 2017. Disponível em: https://doi.org/10.1080/14888386.2017.1351892. Acesso em: 10 mar. 2025.

FANG, X. *et al.* Agricultural land conversion and ecosystem services loss: a meta-analysis. Environment, **Development and Sustainability**, v. 26, p. 23215–23243, 2024. DOI: https://doi.org/10.1007/s10668-023-03597-z.

FAO – Food and Agricultural Organization. El trabajo de la FAO en la Agricultura Familiar: Prepararse para el Decenio Internacional de Agricultura Familiar (2019-2028) para alcanzar los ODS. Nova York, Estados Unidos: FAO, 2018. Disponível em: http://www.fao.org/3/ca1465es/CA1465ES.pdf. Acesso em: 10 mar. 2025.

FELICIANO, D. Uma revisão sobre a contribuição da diversificação de culturas para o Objetivo de Desenvolvimento Sustentável 1 "Nenhuma pobreza" em diferentes regiões do mundo. **Desenvolvimento Sustentável**, v. 27, p. 795–808, 2019. Disponível em: https://doi.org/10.1002/sd.1923.

FERREIRA, A. S.; COSTA, M. I. E.; CASIMIRO FILHO, F. Contribuições dos serviços ecossistêmicos para a qualidade de vida no contexto do desenvolvimento sustentável. **Contribuciones a las Ciencias Sociales**, São José dos Pinhais, v. 7, p. 7649-7668, 2023. DOI: <10.55905/revconv.16n.7-206>.

Food and Agriculture Organization of the United Nations (FAO). International Fund for Agricultural Development (IFAD). The United Nations Children's Fund (UNICEF). World Food Programme (WFP). World Health Organization (WHO). The state of food security and nutrition in the world 2018. Building climate resilience for food security and nutrition. Roma: FAO; 2018.

- GALLAI, N.; SALLES, J.-M.; SETTELE, J.; VAISSIÈRE, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. **Ecological Economics**, v. 68, n. 3, p. 810-821, 2009. DOI: <10.1016/j.ecolecon.2008.06.014>.
- GARIBALDI, L. A. *et al.* Stability of pollination services decreases with isolation from natural areas despite honeybee visits. **Ecology Letters**, v. 14, p. 1062-1072, 2011. DOI: 10.1111/j.1461-0248.2011.01669.x.
- GARIBALDI, L. A. *et al.* Stability of pollination services decreases with isolation from natural areas despite honeybee visits. **Ecology Letters**, v. 14, p. 1062-1072, 2011. DOI: 10.1111/j.1461-0248.2011.01669.x.
- GARIBALDI, L.A. *et al.* Stability of pollination services decreases with isolation from natural areas despite honey bee visits. **Ecology Letters**, v.14, p.1062-1072, 2011. DOI: 10.1111/j.1 461-0248.2011.01669.x.
- GARRATT, M. P. D. *et al.* Insect pollination as an agronomic input: strategies for oilseed rape production. **Journal of Applied Ecology**, v. 55, n. 6, p. 2834–2842, 2018.
- GIANNINI, T. C *et al.* The dependence of crops for pollinators and the economic value of pollination in Brazil. **Journal of Economic Entomology**, v. 108, n. 3, p. 849-857, 2015. DOI: https://doi.org/10.1093/jee/tov093
- GIANNINI, T. C. *et al.* Desvendando a contribuição dos polinizadores de abelhas para as culturas brasileiras com implicações para o manejo de abelhas. **Apidologie**, v. 51, p. 406–421, 2020. DOI: https://doi.org/10.1007/s13592-019-00727-3.
- GONÇALVES, M. C.*et al.* Agricultura tradicional e soberania alimentar: conhecimento quilombola e manejo de culturas alimentares. **Revista de Etnobiologia**, v. 42, n. 2, p. 241-260, 2022. Disponível em: https://doi-org.ez15.periodicos.capes.gov.br/10.2993/0278-0771-42.2.241.
- GOULSON, D.; NICHOLLS, E.; BOTÍAS, C.; ROTHERAY, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. **Science**, v. 347, n. 6229, p. 1255957, 2015. DOI: <10.1126/science.1255957>. PMID: 25721506.
- GRAB, H.; POVEDA, K.; DANFORTH, B.; LOEB, G. O contexto da paisagem muda o equilíbrio de custos e beneficios das bordas de flores silvestres em múltiplos serviços ecossistêmicos. **Proceedings of the Royal Society B: Biological Sciences**, v. 285, 2018. DOI: 10.1098/rspb.2018.1102.
- GRAF, L. V. Influência da estrutura da paisagem urbana sobre a assembleia de abelhas, seus grupos funcionais e propriedades da rede mutualística. 2020. 155 f. Tese (Doutorado em Entomologia) Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, 2020. Orientador: Rodrigo Barbosa Gonçalves.
- HEGERL, G. C.; BRÖNNIMANN, S.; COWAN, T.; FRIEDMAN, A. R.; HAWKINS, E.; ILES, C. et al. Causas da mudança climática ao longo do registro histórico. **Environmental Research Letters**, v. 14, p. 123006, 2019. DOI: <10.1088/1748-9326/AB4557>.

HERBERT, L. T.; VÁZQUEZ, D. E.; ARENAS, A.; FARINA, W. M. Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. **Journal of Experimental Biology**, v. 217, p. 3457–3464, 2014. DOI: <10.1242/jeb.109520>. PMID: 25063858.

HIPÓLITO, J.; BOSCOLO, D.; VIANA, B. F. Landscape and crop management strategies to conserve pollination services and increase yields in tropical coffee farms. **Agriculture**, **Ecosystems & Environment**, v. 256, p. 218–225, 2018.

HOCHMAN, A. *et al.* Clima extremo e impactos sociais no Mediterrâneo oriental. **Dinâmica do Sistema Terrestre**. Copernicus GmbH; 2022. p. 749–777. DOI: https://doi.org/10.5194/esd-13-749-2022.

HODGSON, J. A. *et al.* Área de *habitat*, qualidade e conectividade: encontrando o equilíbrio para uma conservação eficiente. **Journal of Applied Ecology**, v. 48, n. 1, p. 148-152, 2011.

HOPFENMÜLLER, S. *et al.* Effects of grazing intensity, *habitat* area and connectivity on snailshell nesting bees. **Biological Conservation**, v. 242, 108406, 2020. DOI: https://doi.org/10.1016/j.biocon.2020.108406.

HOPFENMÜLLER, S.; STEFFAN-DEWENTER, I.; HOLZSCHUH, A. Respostas específicas de características de comunidades de abelhas selvagens à composição da paisagem, configuração e fatores locais. **PLoS ONE**, v. 9, n. 8, e104439, 2014. DOI: https://doi.org/10.1371/journal.pone.0104439.

HOPFENMÜLLER, S.; STEFFAN-DEWENTER, I.; HOLZSCHUH, A. Respostas específicas de características de comunidades de abelhas selvagens à composição da paisagem, configuração e fatores locais. **PLoS ONE**, v. 9, n. 8, e104439, 2014. DOI: https://doi.org/10.1371/journal.pone.0104439.

IMPERATRIZ-FONSECA, V. L.; CANHOS, D. A. L.; ALVES, D. A.; SARAIVA, A. M. Polinizadores no Brasil: contribuição e perspectivas para a biodiversidade, uso sustentável, conservação e serviços ambientais. São Paulo: EDUSP, 2012.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. (IPCC) Gerenciando os riscos de eventos extremos e desastres para promover a adaptação às mudanças climáticas. Genebra: IPCC, 2012. DOI: <10.1017/cbo9781139177245>.

IPBES. 2018. The IPBES assessment report on land degradation and restoration. L. Montanarella R. Scholes & A. Brainich (Eds.), Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany: p. 744.

JHA, S. Contemporary human-altered landscapes and oceanic barriers reduce bumble bee gene flow. **Molecular Ecology**, v. 24, n. 5, p. 993–1006, 2015. DOI: https://doi.org/10.1111/mec.13090.

JONES, K. et al. Tendências globais em doenças infecciosas emergentes. *Natureza*, v. 451, pág. 990-993, 2008a. Disponível em: https://doi.org/10.1038/nature06536. Acesso em: 10 mar. 2025.

JONES, K. et al. Tendências globais em doenças infecciosas emergentes. *Natureza*, v. 451, pág. 990-993, 2008b. Disponível em: https://doi.org/10.1038/nature06536. Acesso em: 10 mar. 2025.

KEARNS, C. A.; INOUYE, D. W.; WASER, N. M. Endangered mutualisms: The Conservation of Plant-Pollinator Interactions. **Annual Review of Ecology and Systematics**, v. 29, p. 83–112, 1998.

KESSLER, et al. Bees prefer foods containing neonicotinoid pesticides. **Nature**, v.521, p.74-76, 2015. DOI: 10.1038/nature14414.

KEVAN, P. Pollinators as bioindicators of the state of the environment: species activity and diversity. **Agriculture Ecosystems and Environment**, v. 74, p. 373-393, 1999.

KLEIN ALEXANDRA-MR. *et al.* A Polinização Agrícola por Insetos no Brasil. 1.ed. Albert-Ludwigs University Freiburg, **Nature Conservation and Landscape Ecology** Ano 2020.

KLEIN, A.-M.; VAISSIERE, B. E.; CANE, J. H.; STEFFAN-DEWENTER, I.; CUNNINGHAM, S. A.; KREMEN, C. et al. Importance of pollinators in changing landscapes for world crops. **Proceedings of the Royal Society B: Biological Sciences**, v. 274, p. 303–313, 2007. Disponível em: https://doi.org/10.1098/rspb.2006.3721. PMID: 1716419.

KOOHAFKAN, P.; ALTIERI, M. A.; GIMENEZ, E. H. Agricultura verde: Fundações para sistemas agrícolas biodiversos, resilientes e produtivos. **International Journal of Agricultural Sustainability**, v. 10, p. 61–75, 2011.

KRAUSS, J.; ALFERT, T.; STEFFAN-DEWENTER, I. A área do *habitat*, mas não a idade do *habitat*, determina a riqueza de abelhas selvagens em pedreiras de calcário. Journal of Applied Ecology, v. 46, p. 194-202, 2009. https://doi.org/10.1111/j.1365-2664.2008.01582.

KREMEN, C. Reformulando o debate sobre economia de terras/compartilhamento de terras para a conservação da biodiversidade. **Annals of the New York Academy of Sciences**, v. 1355, n. 1, p. 52–76, 2015.

KREMEN, C.; WILLIAMS, N. M.; THORP, R. W. Crop pollination from native bees at risk from agricultural intensification. **Proceedings of the National Academy of Sciences**, v. 99, n. 26, p. 16812-16816, 2002.

KUMAR, P. The Economics of Ecosystems and Biodiversity: **Ecological and economic foundations**. Routledge: London, UK, 2011.

LAL, R. Restoring Soil Quality to Mitigate Soil Degradation. *Sustainability*, v. 7, p. 5875-5895, 1 maio 2015. DOI: <10.3390/su7055875>.

LAMARCHE, H. A agricultura familiar: comparação internacional — uma realidade multiforme. Campinas: Fundação de Desenvolvimento da UNICAMP, 1993-1997. v. 1.

_____. Agricultura familiar: comparação internacional – do mito à realidade. Campinas: Ed. da Unicamp, 1993-1997. v. 2.

LE PROVOST, G. *et al.* O fornecimento de múltiplos serviços ecossistêmicos requer biodiversidade em escalas espaciais. **Nature Ecology e Evolution**, v. 7, p. 236–249, 2023. DOI: https://doi-org.ez15.periodicos.capes.gov.br/10.1038/s41559-022-01918-5.

LIBRÁN-EMBID, F. *et al.* Meta-redes flor-abelha versus pólen-abelha em paisagens fragmentadas. **Proceedings of the Royal Society B: Biological Sciences**, v. 291, p. 20232604, 2024. DOI: http://doi.org/10.1098/rspb.2023.2604.

LOBATO, CAMILA CARNEIRO; ANDRIOLI, ANTÔNIO INÁCIO. Agricultura familiar, políticas públicas e os impactos frente à pandemia do coronavírus (COVID-19): o caso da Cooperativa Agroindustrial 8 de Junho - Coperjunho. **Revista Brasileira de Agroecologia**, v. 17, n. 1, 2022. DOI: https://doi.org/10.33240/rba.v17i1.23539.

LYNN, D. A *et al.* Global assessment of drivers and risks assiciated with pollinator decline.**Nature.** p. 21, 2020.

MACHADO, T.; VIANA, B. F.; DA SILVA, C. I. et al. Como a composição da paisagem afeta a coleta de pólen por abelhas sem ferrão? **Landscape Ecology**, v. 35, p. 747–759, 2020. DOI: https://doi.org/10.1007/s10980-020-00977-y.

MALERBO-SOUZA, D. T.; HALAK, A. L. Agentes polinizadores e produção de grãos em cultura de café arábica cv. "Catuaí Vermelho". **Científica**, v. 40, n. 1, p. 1–11, 2012.

MAPA – Ministério da Agricultura, Pecuária e Abastecimento. Sistema de Agrotóxicos Fitossanitários. 2016. Disponível em: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Acesso em: 10 mar. 2025.

MARTA-PEDROSO, C.; LAPORTA, L.; SANTOS SILVA, C. ECOPOL: Internalização da narrativa funcional do Montado na formulação, acompanhamento e avaliação das políticas de Desenvolvimento Rural. Estudo financiado pelo PDR2020 (anúncio n.º 1/ operação 20.2.3/2018). Coordenadores: DOMINGOS, T.; GONÇALVES FERREIRA, A.; SILVEIRA, P.; TENREIRO, P. Lisboa e Coruche: Instituto Superior Técnico & UNAC, 2020.

MICHLER, J. D.; JOSEPHSON, A. L. To specialize or diversify: Agricultural diversity and poverty dynamics in Ethiopia. **World Development**, v. 89, p. 214-226, 1 jan. 2017. Disponível em: https://www.sciencedirect.com/science/article/pii/S0305750X15308275. DOI: https://doi.org/10.1016/j.worlddev.2016.08.011.

MILLENNIUM ECOSYSTEM ASSESSMENT. *Ecosystems and Human Well-Being; Biodiversity Synthesis.* Washington, DC: World Resources Institute, 2005.

MOREIRA, E. F. *et al.* Influência da estrutura da paisagem na composição de Euglossini em ambientes de vegetação aberta. **Biota Neotropica**, v. 17, n. 1, e20160294, 2017. Disponível em: http://dx.doi.org/10.1590/1676-0611-BN-2016-0294.

MORENS, D.; FOLKERS, G.; FAUCI, A. O desafio das doenças infecciosas emergentes e reemergentes. *Nature*, v. 430, p. 242–249, 2004. DOI: https://doi.org/10.1038/nature02759.

NERY, L. S.; TAKATA, J. T.; DE CAMARGO, B. B.; CHAVES, A. M.; FERREIRA, P. A.; BOSCOLO, D. Respostas da diversidade de abelhas à floresta e áreas abertas em Mata Atlântica

heterogênea. *Sociobiology*, v. 65, n. 4, p. 686–695, 2018. DOI: https://doi.org/10.13102/sociobiology.v65i4.3472.

NEWMAN, R.; NOY, I. Os custos globais do clima extremo que são atribuíveis às mudanças climáticas. **Nature Communications**, v. 14, n. 1, p. 6103, 2023. DOI: https://doi.org/10.1038/s41467-023-41888-1.

NOVAIS, S. M. A. *et al.* Correção: Efeitos de uma possível crise de polinizadores na produção de alimentos no Brasil. **PLoS ONE**, v. 13, n. 5, 2018. DOI: https://doi.org/10.1371/journal.pone.0197396.

OLLERTON, J.; WINFREE, R.; TARRANT, S. How many flowering plants are pollinated by animals? **Oikos**, v. 120, n. 3, p. 321–326, 2011.

OLLERTON, J.; WINFREE, R.; TARRANT, S. How many flowering plants are pollinated by animals? **Oikos**, v. 120, n. 3, p. 321–326, 2011.

Organização da Nações Unidas para a Alimentação e a Agricultura (FAO). Organização Pan-Americana da Saúde (OPAS). América Latina e Caribe. Panorama da Segurança alimentar e nutricional. Sistemas Alimentares sustentáveis para acabar com a fome e a má nutrição. Santiago: FAO; 2017. https://olheparaafome.com.br/wp-content/uploads/2022/06/Relatorio-II-VIGISAN

PASCUAL-MENDOZA, S.; SAYNES-VÁSQUEZ, A.; PÉREZ-HERRERA, A. Traditional knowledge of edible plants in an indigenous community in the Sierra Norte of Oaxaca, Mexico. **Plant Biosystems-An International Journal Dealing with All Aspects of Plant Biology**, v. 156, p. 515-527, 2021. Disponível em: https://doi.org/10.1080/11263504.2021.188795. Acesso em: 28 jan. 2025.

PASLAKIS, G.; DIMITROPOULOS, G.; KATZMAN, D. K. Um chamado à ação para abordar a insegurança alimentar global induzida pela COVID-19 para prevenir a fome, a desnutrição e a patologia alimentar. **Nutrition Reviews**, v. 79, n. 1, p. 114–116, 2021. DOI: https://doi.org/10.1093/nutrit/nuaa069.

PBES (2019). Relatório de avaliação global sobre biodiversidade e serviços ecossistêmicos da plataforma intergovernamental de política científica sobre biodiversidade e serviços ecossistêmicos.

PENG, J.; ZHAO, H.; LIU, Y. Urban ecological corridors constructions: a review. **Acta Ecologica Sinica**, v. 37, n. 1, p. 23-30, 2017.

PETTIS, J.S. *et al.* Crop pollination exposes honey bees to pesticides which alters their **Pesquisa Agropecuária brasileira**. Brasília, v.51, n.5, p.422-442, 2016. DOI: 10.1590/S0100-204X2016000500003.

POTTS, S. G.; BIESMEIJER, J. C.; KREMEN, C.; NEUMANN, P.; SCHWEIGER, O.; KUNIN, W. E. Global pollinator declines: trends, impacts and drivers. **Trends in Ecology & Evolution**, v. 25, n. 6, p. 345–353, 2010.

POWER, ALISON G. Ecosystem services and agriculture: tradeoffs and synergies. Philosophical Transactions of the Royal Society B: **Biological Sciences**, v. 365, n. 1554, p. 2959-2971, 2010. Disponível em: https://doi.org/10.1098/rstb.2010.0143.

PRENDERGAST, K. S.; DIXON, K. W.; BATEMAN, P. W. A global review of determinants of native bee assemblages in urbanised landscapes. **Insect Conservation and Diversity**, v. 15, n. 4, p. 385–405, 2022. DOI: https://doi.org/10.1111/icad.12569.

PRETTY, J. Agricultural sustainability: concepts, principles and evidence. *Philosophical Transactions of the Royal Society B: Biological Sciences*, v. 363, n. 1491, p. 447-465, 2008.

RADER, R.; BARTOMEUS, I.; GARIBALDI, L. A.; GARRATT, M. P. D.; HOWLETT, B. G.; WINFREE, R. et al. Non-bee insects are important contributors to global crop pollination. **Proceedings of the National Academy of Sciences of the United States of America**, v. 113, p. 146–151, 2016. DOI: https://doi.org/10.1073/pnas.1517092112. PMID: 26621730.

RAJAONARIMALALA, R. *et al.* Complex stands in forested tropical landscapes harbor more endemic biodiversity and ecosystem functions. **Global Ecology and Conservation**, v. 54, e03154, 2024. DOI: https://doi.org/10.1016/j.gecco.2024.e03154.

RAKOTO HARISON, H.; HERRERA, J. P.; RAKOTONARIVO, O. S. Compounding impacts of COVID-19, cyclone and price crash on vanilla farmers' food security and natural resource use. *PLoS ONE*, v. 19, n. 10, e0311249, 2024. DOI: https://doi.org/10.1371/journal.pone.031124.

RAMALHO DE SOUZA, D.; SOUTO SILVA, T.; ARAÚJO DE SOUZA, D. Efeitos dos programas governamentais de aquisição de alimentos sobre a agricultura familiar no município de Rubim - MG. Recital - **Revista de Educação, Ciência e Tecnologia** Almenara/MG, v. 4, n. 3, p. 104–123, 2023. DOI: 10.46636/recital.v4i3.332.

RASMUSSEN, L. V. *et al.* Benefícios ambientais e sociais conjuntos da agricultura diversificada. **Science**, v. 384, p. 87–93, 2024. DOI: 10.1126/science.adj1914.

RAZA, A.; TABASSUM, J.; KUDAPA, H.; VARSHNEY, R. K. Os ômicos podem fornecer culturas prontas para o cultivo resistentes à temperatura? Critical Reviews in Biotechnology, v. 41, p. 1209–1232, 2021. DOI: <10.1080/07388551.2021.1898332>.

REDE PENSSAN. Vigilância da Segurança Alimentar e Nutricional (VIGISAN) (2022). Insegurança alimentar e Covid-19 no Brasil: Inquérito Nacional sobre Insegurança Alimentar no contexto da Pandemia da Covid-19 no Brasil. Rede Bras. de Pesq. em Sob. Alim. e Nut.41

ROHDE, R.; MULLER, R.; JACOBSEN, R.; PERLMUTTER, S.; MOSHER, S. Processo de média de temperatura da Terra de Berkeley. **Geoinformatics & Geostatistics: An Overview**, v. 1, n. 2, 2013. DOI: <10.4172/2327-4581.1000103.

ROUABAH, A.; VILLERD, J.; AMIAUD, B.; PLANTUREUX, S.; LASSERRE-JOULIN, F. Response of carabid beetles diversity and size distribution to the vegetation structure within differently managed field margins. **Agriculture, Ecosystems & Environment**, v. 200, p. 21-32, 2015. Disponível em: https://doi.org/10.1016/j.agee.2014.10.011. Acesso em: 10 mar. 2025.

- SANTOS, Luan Alberto Odorizzi dos. Contribution of marginal non-crop vegetation and seminatural habitats to the regulation of insect pests populations by their natural enemies. 2017. Tese (Doutorado em Ciências Agrícolas) Université d'Avignon; Universidade de São Paulo, 2017. Disponível em: https://tel.archives-ouvertes.fr/tel-01824804. Acesso em: 10 mar. 2025.
- SANTOS, O. N. dos; SANTOS JUNIOR, C. F. dos; ROCHA, A. C. de O.; MARTINS, N. P.; PARREIRA, M. C. Práticas de diversificação produtiva na agricultura familiar: estudo de caso na Amazônia Tocantina. **Revista Agroecossistemas**, v. 15, n. 1, p. 85-103, 2023. ISSN 2318-0188. DOI: http://dx.doi.org/10.18542/ragros.v15i1.13823.
- SATURNI, F. T.; JAFFÉ, R.; METZGER, J. P. Landscape structure influences bee community and coffee pollination at different spatial scales. **Agriculture, Ecosystems & Environment**, v. 235, p. 1-12, 2016. DOI: <10.1016/j.agee.2016.10.008>.
- SAVINI, T.; NAMKHAN, M.; SUKUMAL, N. Conservation status of Southeast Asian natural habitat estimated using Galliformes spatio-temporal range decline. **Global Ecology and Conservation**, v. 29, e01723, 2021. Disponível em: https://doi.org/10.1016/j.gecco.2021.e01723. Acesso em: 10 mar. 2025.
- SCHEPER, J.; HOLZSCHUH, A.; KUUSSAARI, M.; POTTS, S. G.; RUNDLÖF, M.; SMITH, H. G.; KLEIJN, D. Environmental factors driving the effectiveness of European agrienvironmental measures in mitigating pollinator loss—a meta-analysis. **Ecology Letters**, v. 16, n. 7, p. 912–920, 2013. DOI: <10.1111/ele.12128>. PMID: 23714393.
- SCHWARTZ, M. W. *et al.* Linking biodiversity to ecosystem function: implications for conservation ecology. **Oecologia**, v. 122, p. 297–305, 2000.
- SECRETARIA ESPECIAL DE AGRICULTURA FAMILIAR E DO DESENVOLVIMENTO AGRÁRIO. Agricultura familiar do Brasil é 8ª maior produtora de alimentos do mundo. 2018. Disponível em: http://www.mda.gov.br/sitemda/noticias/agricultura-familiar-do-brasil-maior-produtora-de-alimentos-do-mundo. Acesso em: 10 mar. 2025.
- SHWE, N. M.; SUKUMAL, N.; OO, K. M.; DOWELL, S.; BROWNE, S.; SAVINI, T. Importance of isolated forest fragments and low-intensity agriculture for the long-term conservation of the green peafowl **Pavo muticus. Oryx**, v. 55, n. 2, p. 311-317, 2021. DOI: 10.1017/S0030605319000267.
- SMIT, J.; NASR, J.; RATTA, A. Agricultura urbana: alimentos, empregos e cidades sustentáveis. 2. ed. Washington, DC: The Urban Agriculture Network, 2001.
- SMOLINSKI, M. S.; HAMBURG, M. A.; LEDERBERG, J. (Eds.). Committee on Emerging Microbial Threats to Health in the 21st Century. Washington, DC: National Academies Press, 2003. Disponível em: http://www.nap.edu/catalog/10636.html. Acesso em: 10 mar. 2025.
- SOARES, R. G. S.; FERREIRA, P. A.; BOSCOLO, D. et al. A cobertura florestal e a heterogeneidade da paisagem não florestal modulam a polinização de plantas do sub-bosque tropical. Landscape Ecology, v. 37, p. 393–409, 2022. DOI: https://doi.org/10.1007/s10980-021-01356-x.

- STALLMAN, H. R. Ecosystem services in agriculture: Determining suitability for provision by collective management. *Ecological Economics*, v. 71, p. 131-139, 2011. Disponível em: https://doi.org/10.1016/j.ecolecon.2011.08.016. Acesso em: 10 mar. 2025.
- STUPAK, N. et al. O papel da compreensão da natureza pelos agricultores na formação de sua adoção de medidas de proteção da natureza. *Ecological Economics*, v. 157, p.https://www.sciencedirect.com/science/article/pii/S092180.
- TAYLOR, L. H.; LATHAM, S. M.; HOUSE, M. E. J. Fatores de risco para o surgimento de doenças humanas. **Philosophical Transactions of the Royal Society** *B: Biological Sciences*, v. 356, p. 983–989, 2001. DOI: http://doi.org/10.1098/rstb.2001.0888.
- THEODOROU, P. *et al.* Genome-wide single nucleotide polymorphism scan suggests adaptation to urbanization in an important pollinator, the red-tailed bumblebee (Bombus lapidarius L.). **Proceedings of the Royal Society B: Biological Sciences**, v. 285, 20172806, 2018. DOI: https://doi.org/10.1098/rspb.2017.2806.
- TOBIAS, J.; D'ANGELO, C. A destruição ambiental nos trouxe a COVID-19. O que ela traz a seguir pode ser muito pior. *HuffPost*, 2020. Disponível em: https://www.huffpost.com/entry/emerging-disease-environmental-ruction_n_5e9db58fc5b63c5b58723afd
- TRAN, D. X. *et al.* Quantifying spatial non-stationarity in the relationship between landscape structure and the provision of ecosystem services: An example in the New Zealand hill country. **Science of The Total Environment**, v. 808, 2022, p. 152126. ISSN 0048-9697. DOI: https://doi.org/10.1016/j.scitotenv.2021.152126.
- TURO, K. J.; REILLY, J. R.; FIJEN, T. P. M.; MAGRACH, A.; WINFREE, R. Insufficient pollinator visitation often limits yield in crop systems worldwide. **Nature Ecology e Evolution**, v. 8, n. 9, p. 1612-1622, 2024. DOI: <10.1038/s41559-024-02460-2>. Epub 3 jul. 2024. PMID: 38961256.
- TWINE, T. E. Effects of Land Cover Change on the Energy and Water Balance of the Mississippi River Basin. **Journal of Hydrometeorology**, v. 5, p. 640-655, 2004.
- ULLAH, A.; BANO, A.; KHAN, N. Mudanças climáticas e efeitos da salinidade nas culturas e comunicação química entre plantas e microrganismos promotores do crescimento vegetal sob estresse. **Frontiers in Sustainable Food Systems**, v. 5, p. 618092, 2021. DOI: <10.3389/FSUFS.2021.618092>.
- VAN DER PLOEG, JD Os camponeses do século XXI: o debate sobre a mercantilização revisitada. *Revista de Estudos Camponeses*, v. 37, n. 1, pág. 1-30, 2010.
- VAN DER PLOEG, JD Os novos campesinatos: lutas pela autonomia e sustentabilidade numa era de império e globalização . 1. ed. Rohttps://doi.org/10.4324/9781849773. VIDAL, J. O habitat destruído cria as condições perfeitas para o surgimento do coronavírus. 2020.
- WANDERLEY, M. N. B. Raízes históricas do campesinato brasileiro. In: TEDESCO, J. C. (Org.). **Agricultura familiar: realidades e perspectivas**. Passo Fundo: Editora da UPF, 1999. p. 23-56.

WHITEHORN, P. R. et al. Neonicotinoid pesticide reduces bumblebee colony growth and queen production. **Science**, v. 336, p. 351-352, 2012.

WILLIAM, T. L. The earth as transformed by human action: global and regional changes in the biosphere over the past 300 years. **Global Environmental Change**, v. 2, p. 71–72, 1992

WOOLHOUSE, M.; GOWTAGE-SEQUERIA, S. Faixa de hospedeiros e patógenos emergentes e reemergentes. **Emerging Infectious Diseases**, v. 11, n. 12, p. 1842-1847, 2005. DOI: https://doi.org/10.3201/eid1112.050997.

WU, J. Urban ecology and sustainability: state-of-the-science and future directions. **Landscape** and **Urban Planning**, v. 125, p. 209–221, 2014.

WYCKHUYS, K. A. G. *et al.* Continental-scale suppression of an invasive pest by a host-specific parasitoid underlines both environmental and economic benefits of arthropod **Biological Control.** v. 6, p. e5796, 2018.

ZHANG, W.; RICKETTS, T. H.; KREMEN, C.; CARNEY, K.; SWINTON, S. M. Ecosystem services and dis-services to agriculture. *Ecological Economics*, v. 64, p. 253–260, 2007.

ZHONG, M. Impact of landscape patterns on ecosystem services in China: a case study of the central plains urban agglomeration. **Frontiers in Environmental Science**, v. 12, p. 1285679, 2024. DOI: 10.3389/fenvs.2024.1285679.

ZOE, L.; WALKER, I.; GREEN, M.; PRICE, J. Linkages between ecosystem services and human wellbeing: a Nexus Webs approach. **Ecological Indicators**, v. 93, p. 658–668, 2018. DOI: https://doi.org/10.1016/j.ecolind.2018.05.052.

CAPÍTULO I

DIVERSIFICAÇÃO DE CULTIVOS E SEGURANÇA ALIMENTAR: O PAPEL DA AGRICULTURA FAMILIAR NA PANDEMIA DE COVID-19²

RESUMO

Dada a importância da produção familiar, nosso objetivo foi caracterizar a produtividade e a importância da produção familiar durante a pandemia da COVID-19 nas comunidades de Engano dos Rodrigues e Lagoa Seca, no município de Santana do Piauí. Os dados foram coletados por meio de monitoramento da produção e das vendas, entrevistas e análise da matriz SWOT. Os pontos fortes da atividade estão na diversidade dos produtos alimentícios e na produção contínua da maioria dos itens, na organização em uma associação e nas parcerias recebidas, que foram cruciais em um momento de crise para garantir a distribuição e a venda dos produtos agrícolas. Os pontos fracos estão relacionados principalmente à falta de assistência técnica. A compreensão da dinâmica da produção familiar de base agroecológica em tempos de crise destaca a importância do apoio institucional e da educação continuada, para a resiliência e o desenvolvimento sustentável das comunidades rurais. Ressaltamos ainda a importância de pesquisas futuras que foquem no impacto das políticas públicas na agricultura familiar no semiárido, assim como na eficácia de diferentes estratégias de comercialização e cooperação entre os agricultores.

Palavras-Chave: Semiárido; crise; agroecologia.

² Versão em português do artigo publicado na Revista Brasileira de Ciências Ambientais (ISSN 2176-9478) - https://doi.org/10.5327/Z2176-94782090. Texto formatado segundo as normas da revista.

DIVERSIFICATION OF CROPS AND FOOD SECURITY THE ROLE OF FAMILY FARMING IN THE COVID-19 PANDEMIC

ABSTRACT

Given the importance of family production, our objective was to characterize the productivity and importance of family production during the COVID-19 pandemic in the communities of Engano dos Rodrigues and Lagoa Seca, in the municipality of Santana do Piauí. Data was collected through production and sales monitoring, interviews and SWOT matrix analysis. The strengths of the activity lie in the diversity of food products and the continuous production of most of the items, the organization in an association and the partnerships obtained, which were crucial in a time of crisis to guarantee the distribution and sale of agricultural products. The weaknesses are mainly related to the lack of technical support. Understanding the dynamics of agroecological family production in times of crisis highlights the importance of institutional support and training for the resilience and sustainable development of rural communities. We also stress the importance of future research focusing on the impact of public policies on family farming in the semi-arid region, as well as the effectiveness of different marketing and cooperation strategies among farmers.

Keywords: semi-arid region; crisis; agroecology

1 INTRODUÇÃO

A sustentabilidade agrícola é compreendida como a capacidade de um agroecossistema se manter produtivo ao longo do tempo, mesmo na presença de repetidas restrições ecológicas e pressões socioeconômicas (Altieri,1989, pp.37-46). Portanto, esses agroecossistemas devem ser produtivos e ricos em biodiversidade funcional, integrados a uma complexa matriz criadora de barreiras ecológicas (Tobias e D'Angelo, 2020). Mesmo com isso bem estabelecido, a população humana baseia sua sobrevivência em apenas três principais espécies de cultivos: trigo, arroz e milho, que fornecem 50% das calorias consumidas globalmente (United Nations System Standing Committee On Nutrition — UNCSN, 2020).

Em períodos de crise, como a pandemia de COVID 19, as medidas de contingenciamento durante as primeiras fases da circulação do vírus revelaram a fragilidade do sistema alimentar global, que se baseia na agricultura industrial e predatória (Altieri e Nicholls, 2020). No Brasil, o primeiro registro de COVID-19 ocorreu em 20 de fevereiro de 2020 (Rodriguez-Morales *et al.*, 2020) e, até 26 de março de 2020, o país contava com 2.915 casos confirmados e 77 óbitos (Ministério da Saúde, 2020) Nesse período, houve um aumento significativo de desabastecimento e fome em uma grande parte da população humana (Ahmed *et al.*, 2020), especialmente entre os mais pobres (Zurayk, 2020).

Essa crise provocou uma reflexão sobre as consequências do modelo agrícola atual, baseado em uma produção extensiva (Lösch *et al.*, 2022). Por exemplo, uma análise global das redes de comércio de fertilizantes mostrou que os fertilizantes orgânicos tiveram maior demanda durante a COVID-19, pois ofereciam uma alternativa diante do aumento dos custos (Gutierrez-Moya *et al.*, 2023).

A pandemia de COVID-19 também foi um momento oportuno para o reconhecimento dos impactos das escolhas alimentares sobre a saúde humana, ambiental e planetária (Pinheiro, 2020). Embora algumas avaliações rápidas tenham sido conduzidas relacionando os efeitos da COVID-19 sobre o desempenho agrícola e segurança alimentar, ainda faltam análises profundas dos efeitos causais e implicações dentro de diversos grupos socioeconômicos (Agamile, 2022; Samad *et al.*, 2022; Kansiime *et al.*, 2021).

Dessa forma, ao considerar a vulnerabilidade do sistema alimentar global e os impactos desiguais da pandemia sobre diferentes populações, este estudo busca caracterizar a produtividade e a importância da produção familiar durante a pandemia de COVID-19 nas comunidades Engano dos Rodrigues e Lagoa Seca, no município de Santana do Piauí. Especificamente, buscou-se definir o perfil socioeconômico, o calendário produtivo e os fatores que influenciam a vulnerabilidade e o fortalecimento da atividade agrícola local. Nossa

hipótese está embasada na ideia de que embora os pequenos agricultores familiares no semiárido tenham sido impactados economicamente de maneira negativa pelo COVID, sua produção foi essencial para garantir a sua segurança alimentar e da comunidade em geral.

2 MATERIAL E MÉTODOS

2.1 ÁREA DE ESTUDO

A pesquisa foi realizada em uma região semiárida do Piauí, especificamente nas comunidades de Engano dos Rodrigues e Lagoa Seca, situadas no município de Santana do Piauí, localizado na região nordeste do Brasil (6°57'03.3"S 041°28'25.01"W) As comunidades estão situadas a 326 km de Teresina, a capital do estado. A região apresenta um clima Bsh semiárido, caracterizado por altas temperaturas e baixa precipitação, com temperatura média anual de 27,2°C e precipitação anual de 684 mm, concentrada nos meses de dezembro a abril (Koopen e Geiger, 1929).

A área de estudo está inserida no domínio xeromorfo intertropical, caracterizado pela vegetação da Caatinga, uma formação vegetal complexa classificada por Romariz (1996). A Caatinga é uma floresta tropical seca, adaptada a condições de baixa disponibilidade hídrica, e apresenta uma diversidade de plantas com características como herbáceas anuais, suculência, acúleos e espinhos, que permitem sua sobrevivência em ambientes áridos (Andrade-Lima,1981).

Os solos da região, são resultados da alteração de arenitos, siltitos e conglomerados. Eles são de textura média, pouco desenvolvidos, e variam de rasos a muito rasos, muitas vezes com uma fase pedregosa, influenciando diretamente as condições de desenvolvimento das espécies adaptadas a esse ambiente (Jacomine *et al.*, 1986).

A secretaria de Agricultura informa que essas comunidades são compostas por 36 agricultores afiliados à associação de moradores e agricultores. Todos esses agricultores obtêm sua renda principal de atividades agrículas (Secretaria de Agricultura do Município de Santana do Piauí, dados não publicados, 2023).

2.1.1 Coleta de dados e análises

Foram empregados três métodos distintos de coleta. Para a caracterização dos indicadores básicos da comunidade, foram utilizados documentos fornecidos pela Secretaria de Agricultura do município de Santana do Piauí. Foram coletadas informações sobre a quantidade de agricultores nas comunidades Engano dos Rodrigues e Lagoa Seca, bem como a participação desses agricultores em programas governamentais voltados para a comercialização de alimentos.

Para coleta junto às comunidades, foi realizada uma entrevista com um roteiro préestabelecido com questões abertas e fechadas. Foram entrevistados nove agricultores, representando 25% dos agricultores locais (Apêndice 1 - esse apêndice não está no artigo). O questionário foi estruturado com 41 itens, divididos em três seções: (1) identificação pessoal dos agricultores, (2) aspectos econômicos e (3) gerenciamento da produção. As entrevistas tiveram duração média de 15 a 20 minutos, gravadas com a função gravador do celular. As respostas foram transcritas usando a plataforma Reshape Transcription.

Em seguida, foi realizada uma síntese das informações para a construção da matriz SWOT (forças, fraquezas, oportunidades e ameaças). Essa técnica foi utilizada porque ela permite identificar, analisar e classificar as características dos agricultores em relação a fatores internos (forças e fraquezas) e fatores externos (oportunidades e ameaças) (Ferrell *et al.*, 2000, p. 67). A ferramenta de análise SWOT facilita a formulação de estratégias que otimizem os pontos fortes e as oportunidades, atenuem os pontos fracos e contornem as ameaças. Além disso, a análise SWOT permite a identificação das limitações e das áreas que precisam ser superadas para alcançar o sucesso (Kaplan e Norton, 2008)

O terceiro método envolveu a análise dos registros de produção e venda de alimentos de 15 agricultores (41,6% do total de agricultores locais) ao longo de um período de 21 meses (2020/2021). Esses dados foram obtidos por meio de uma parceria com o projeto "Feira livre no espaço Universitário: aproximando a agricultura familiar/campesina ao ambiente acadêmico" da Universidade Federal do Piauí, *campus* Senador Helvídio Nunes de Barros, Picos, PI. O projeto forneceu acesso a dados detalhados sobre a produção e comercialização de alimentos produzidos nas comunidades de Lagoa Seca e Engano dos Rodrigues.

As informações foram disponibilizadas em tabelas no formato Excel e foram analisadas com ênfase na sazonalidade da produção, nos valores de venda dos alimentos e potencial de venda. Os dados foram analisados de modo a determinar o calendário de produção e o impacto de produção e financeiro da pandemia de COVID para os agricultores. As imagens foram feitas no Canva e no programa RStudio usando o pacote ggplot2 (Wickham, 2017, pp.1-13).

Esta pesquisa foi submetida e aprovada pelo Comitê de Ética da Universidade Federal da Paraíba, Protocolo n. 5.432.561 (CE/CCS/UFPB), através da Plataforma Brasil CAAE n. 58670122.5.0000.5188.

3 RESULTADOS E DISCUSSÃO

Perfil socioeconômico e análise SWOT

A faixa etária dos entrevistados varia de 35 a 73 anos, com uma média de 45 anos, o que é coerente com a maioria dos agricultores familiares brasileiros, tanto homens quanto mulheres (IBGE, 2017a). Dos nove entrevistados, sete eram mulheres (77,8%), que além de comercializarem seus produtos em feiras, também são encarregadas de gerenciar a lavoura, a logística e a comercialização dos alimentos. Essa constatação ressalta a importância do papel das mulheres na agricultura familiar (Loli *et al.*, 2022).

O número de propriedades familiares gerenciadas por mulheres no Brasil aumentou em 18,6%, o que significa haver aproximadamente um milhão de mulheres envolvidas na produção de alimentos (IBGE, 2017b) As famílias estudadas eram compostas por duas a cinco pessoas, com uma média de quatro pessoas por residência e todos os membros envolvidos na produção ou venda de alimentos. Quatro agricultores (44%) trabalham em terras alugadas, enquanto cinco (56%) são proprietários das terras onde tem a produção. Todos usam água de poço para o consumo e irrigação das lavouras. Adicionalmente, todos têm acesso ao centro de saúde, que presta assistência médica uma vez por semana.

Do ponto de vista educacional, houve uma mudança na oferta da educação nas comunidades rurais. Enquanto os mais velhos (cerca de 42 a 72 anos) têm apenas o ensino básico ou incompleto devido à falta de condições de educação no passado, essa realidade tem mudado com políticas públicas voltadas para a melhoria da educação rural. A interiorização das universidades públicas, iniciada em 2003, proporcionou melhorias sociais significativas nos municípios considerados periféricos do Brasil (Bizerril, 2020).

essa tendência de maior acesso à educação no início do século XXI também é observada em outras zonas agrícolas do mundo (Charlton *et al.*, 2020).

A organização e o suporte de projetos governamentais ou da sociedade civil são diferenciais importantes para o desenvolvimento de atividades como a agricultura familiar (Freitas *et al.*, 2019). A participação dos entrevistados na associação de moradores evidencia isso. Apesar das dificuldades, associações e cooperativas fortalecem a comercialização e a distribuição de alimentos. Nesse processo, políticas públicas, como o Programa de Aquisição de Alimentos (PAA) e o Programa Nacional de Alimentação Escolar (PNAE) são fundamentais, especialmente durante a pandemia, para manter a produção, evitar perdas e garantir a renda dos agricultores (Nogueira e Marcelino, 2021).

Segundo informações da Secretaria de Agricultura, todos os agricultores das comunidades em estudo também foram beneficiados com políticas públicas do Governo Federal

por meio da associação (como o PAA e o PNAE). Essa política pública tem servido como uma alternativa para reduzir os impactos socioeconômicos, proporcionando acesso aos alimentos em quantidade e em qualidade para populações em estado de vulnerabilidade, podendo garantir melhor condição social e econômica para os agricultores familiares (Sambuichi *et al.*, 2020).

O investimento em políticas públicas voltadas para os agricultores mais vulneráveis é importante para eliminar problemas com o mercado (Alves e Souza, 2015). Além das políticas públicas, organizações em grupos como associações e cooperativas também pode ser uma alternativa para diversas restrições na cadeia produtiva do mercado (Charles *et al.*, 2019), pois favorecem a melhoria na infraestrutura produtiva e de serviços nas comunidades rurais (Silva *et al.*, 2007).

Dessa forma, os agricultores organizados das comunidades Lagoa Seca e Engano dos Rodrigues ganham estímulos e estrutura básica para a estruturação e o fortalecimento da sua atividade. Os agricultores também contaram com o apoio da Universidade, que foi decisivo para a venda dos alimentos durante a pandemia. Todos estão vinculados ao projeto de extensão "Feira livre no espaço Universitário" da Universidade Federal do Piauí, *campus* Senador Helvídio Nunes de Barros, em Picos–PI.

Esse projeto foi essencial no período mais crítico da COVID-19, pois viabilizou a comercialização de praticamente toda a produção agrícola. Assim, a Universidade se destaca como uma aliada no desenvolvimento de ações extensionistas, orientando os agricultores na organização socioprodutiva, na cooperação, e incentivando o comportamento coletivo e empreendedor, além de promover o comércio justo de produtos saudáveis (Pasin *et al.*, 2018).

O suporte recebido pelas comunidades estudadas foi crucial para o sucesso da comercialização de seus produtos. A parceria com a Universidade foi particularmente importante, oferecendo o suporte para plataformas de divulgação e venda, além de viabilizar uma feira de base agroecológica semanal em suas instalações. Espaços de venda dedicados, como as feiras orgânicas em Curitiba entre 2015 e 2017, demonstraram ser fundamentais para alcançar os consumidores, promovendo soberania e segurança alimentar, além de oferecer alimentos saudáveis de forma democrática (Carvalho *et al.*, 2022).

A agricultura nas comunidades Lagoa Seca e Engano dos Rodrigues tem mais pontos positivos do que negativos (mais forças e oportunidades do que fraquezas e ameaças). Uma força muito importante é a diversificação dos alimentos produzidos e a contínua produção anual da maioria deles (Quadro 1). A agricultura familiar é reconhecida pela sua diversidade na produção de alimentos (Deimling *et al.*, 2015).

Quadro 1 - Análise das forças, fraquezas, oportunidades e ameaças (SWOT-Strenghs, Weaknesses, Opportunities and Threats) da agricultura familiar das comunidades Lagoa Seca e Engano dos Rodrigues, elaborada a partir de uma síntese das informações obtidas por meio de entrevistas com os agricultores. Santana do Piauí-PI, Brasil, no período da pandemia Covid-19 2020/2021.

Forças (Strengths)	Fraquezas (Weakness)
Acesso facilitados a educação Assistência médica Participação em organizações sociais Manejo de pragas e doenças sem uso de agrotóxicos Aproveitamento dos excedentes de alimentos Diversidade da produção ao longa de todo ano	Problemas de saúde (postural) Pouca diversidade de lazer Falta de conhecimento sobre manejo de pragas e doenças Não possuem um controle financeiro em relação aos gastos na propriedade
Oportunidades (Opportunities)	Ameaças (Threats)
Participação de projetos que auxiliam na venda da produção Comercialização dos alimentos em feiras e na Universidade Diversificação dos canais de distribuição por meio do <i>WhatsApp</i> e <i>site</i> próprio Circuito curtos de produção	Dependência de recursos do governo, sujeito a instabilidade Risco de doenças e pragas que podem acometer os cultivos Dificuldade de venda da produção dos alimentos durante crises, como a COVID-19

Fonte: Próprios autores, 2024

Um importante fator de força que precisa ser ressaltado é que toda a produção é aproveitada, incluindo o que não é vendido. Todos afirmaram que os excedentes são usados para alimentação dos animais: dois entrevistados (22%) fazem doação na comunidade e sete (78%) produzem polpa de fruta, doces e molhos.

Sistema similar foi observado em comunidades amazônicas no Brasil, onde a produção diversificada, voltada principalmente para o autoconsumo de agricultores familiares, mostrouse como forma de garantia da manutenção desses agricultores, por permitir a disponibilidade básica de alimentos (Soares *et al.*, 2018). O fortalecimento da produção para autoconsumo em propriedades familiares estimula os produtores porque gera segurança alimentar (Gazolla, 2006, pp.32-39).

As estratégias de manejo e produção adotadas pelos produtores em ambas as comunidades são fundamentais para a atividade. Os agricultores evitam o uso de substâncias químicas no manejo de insetos e doenças, mantendo o sistema produtivo alinhado aos princípios de base agroecológica.

As fraquezas identificadas estão associadas a questões sociais, como problemas de saúde, falta de oportunidades para lazer e insuficiência de capacitação técnica para o manejo

eficiente de pragas e doenças nas plantas (Quadro 1). Conforme o IBGE (2017c), 94% dos agricultores no Nordeste do Brasil não recebem assistência técnica, o que agrava esses desafios. Outra fraqueza observada foi a falta de controle financeiro em relação aos gastos na propriedade, com a produção de alimentos e sobre as sobras da feira. Dessa forma, é importante que os agricultores tenham um controle financeiro de suas atividades, que pode contribuir para a mensuração do desempenho da atividade rural como mecanismo de melhoria no planejamento e controle da produção. Com planejamento é possível traçar metas de médio e longo prazo, considerando as variáveis do mercado para o planejamento financeiro das atividades (Marion, 2014):

Entre os fatores externos identificados como ameaça está a dependência de recursos do governo (Quadro 1). Apesar desse mesmo fator ser visto como uma força por garantir um aporte financeiro extra e mais tranquilidade para lidar com as variações da agricultura, por outro lado, os benefícios estão sujeitos à instabilidade e mudanças de governo (com exceção da aposentadoria, garantida por lei). Dessa forma, o agricultor não deveria contar apenas com esse recurso nos seus planos.

De modo geral, as medidas restritivas impostas pela pandemia de COVID-19 ocasionaram mudanças na dinâmica de produção, comunicação e comercialização dos agricultores familiares. Passou a haver atrasos no transporte, bloqueios de estradas, fechamento de mercados e feiras, entre outros, que causaram acúmulo, produção, perda de qualidade de produtos, principalmente daqueles perecíveis, devido às medidas restritivas para diminuir a disseminação do vírus (FAO, 2020a).

No caso dos (as) agricultores pesquisados, esses dificultadores puderam ser contornados pelas parcerias que possuíam (e possuem) entre si e com outras instituições, como a de Ensino Superior já mencionada. Portanto, esse foi um momento crucial para demonstrar a capacidade de se recriar e investir em outras estratégias de produção, divulgação e comercialização. Grandes e pequenos agricultores precisaram se adaptar para manter em atividade a cadeia de suprimentos do país e garantir a continuidade e manutenção da agricultura, frente ao período de crise do coronavírus (Vieira Filho, 2020).

Com o fechamento do comércio, os agricultores tiveram seus pontos de venda na feira fechados. O alcance nas vendas no auge da pandemia só foi possível porque os agricultores aderiram ao uso de plataformas digitais como *Instagram* e *WhatsApp* e contaram com o apoio da Universidade para a criação de um *site* de venda dos alimentos. Nesse sentido, as ferramentas digitais, o uso de redes sociais, sites, aplicativos de mensagens são consideradas uma boa oportunidade na articulação de venda dos alimentos, sendo utilizados como um instrumento de

comunicação, articulação e mediação entre os diferentes atores que participam diretamente da agricultura familiar (Zuñiga *et al.*, 2020). Por outro lado, o acesso ou a habilidade na operacionalização dessas tecnologias não é factível para todos os agricultores familiares do Brasil. A exclusão ou atraso digital que, infelizmente, é uma realidade do nosso país, é um reflexo da extrema desigualdade econômica, social e educacional (Costa e Neto, 2023).

Outro elemento identificado como oportunidade para a agricultura regional nas comunidades de Lagoa Seca e Engano dos Rodrigues está relacionado à promoção dos circuitos curtos de produção na venda dos alimentos na Universidade. Os agricultores da área de estudo afirmaram que não utilizam intermediários na venda e comercialização dos alimentos, gerindo diretamente esses espaços, o que pode contribuir para melhorias no emprego e aumento da lucratividade (Ramos, 2020a). Esse tipo de venda proporciona uma estreita relação entre os agricultores e operadores de pequenas escalas em áreas rurais (Antúnez e Ferreira 2016). Além disso, pode facilitar a comunicação direta com os consumidores sobre a produção de alimentos e seus benefícios nutricionais, contribuindo para a segurança alimentar (Franco Crespo *et al.*, 2023).

Os circuitos curtos de produção permitem interações mais próximas baseadas na confiança e na oferta de alimentos saudáveis a um preço justo para os consumidores e agricultores (Contreras *et al.*, 2017), sendo uma oportunidade para modificar a prática de consumo, sustentabilidade e democratizar o acesso aos alimentos de origem agroecológica, além de criar um mercado mais estável e sustentável (Ramos, 2020b).

Nesse contexto, pesquisas realizadas com agricultores familiares no semiárido nordestino constataram que, mesmo diante de dificuldades técnicos-produtivos, eles (as) foram propensos às inovações e experimentações de novas práticas agrícolas, sobretudo as de base agroecológica (Nunes *et al.*, 2018). Partindo desse pressuposto, os agricultores das comunidades estudadas também demonstraram serem propensos a mudanças na forma de venda e distribuição dos alimentos em períodos de crise, como a da Covid-19.

Calendário produtivo: diversificação da produção

O calendário produtivo das comunidades estudadas indica uma produção estável ao longo de todo ano. Mesmo em meio à crise do Covid-19, os agricultores mantiveram seu processo produtivo (Figura 1). Das 65 culturas, 46 (71%) são produzidas ao longo de, pelo menos, 10 meses e apenas 19 (29%) são produzidas em períodos específicos do ano.

A programação da produção é uma estratégia interessante para garantir épocas de plantios racionais e eficientes no planejamento de cultivo dos agricultores. Com as mudanças

climáticas, o conceito de calendário produtivo foi aprimorado para estudar a produtividade de culturas agrícolas, especialmente em áreas com ambiente instável e condições climáticas desfavoráveis (Kotera *et al.*, 2014; Yegbemey *et al.*, 2014), características da região semiárida onde as comunidades estão instaladas.

Nesse sentido, o ajuste de épocas de plantio e a aplicação de tecnologias de cultivo baseado em um calendário produtivo podem reduzir os riscos de perdas da produtividade devido à variabilidade climática (Apriyana *et al.*, 2021). Nas comunidades estudadas foi possível identificar algumas culturas que não são cultivadas no período com maior intensidade de chuvas (janeiro, fevereiro, março) ou possuem a produção diminuída, como a salsinha e espinafre, sendo a melhor época de plantio de abril a junho (Amaro *et al.*, 2007, p.16)

Um exemplo de espécie que tem a produção afetada pela sazonalidade é o tomate e isso se dá por dois motivos principais: possibilidade de doenças e pelas técnicas de manejo adotadas. Nas comunidades estudadas, o tomate costuma ser plantado em março, assim como observado nos tabuleiros litorâneos no Piauí, Brasil, onde concluíram que a melhor época para o cultivo de tomate seria iniciar a semeadura em março e a colheita em julho, para evitar o período de maiores precipitações (Sousa, 1992), excesso de água no solo (Lopes e Santos, 1994) e o aumento de insetos e doenças associados à cultura (Silva *et al.*, 1990).

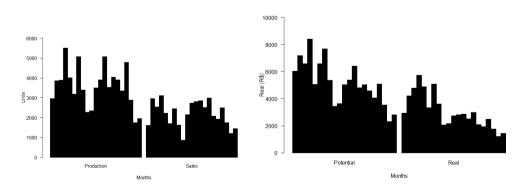
Portanto, como eles não usam substâncias químicas para controle, é preferível esperar passar os meses com maior incidência de insetos para só assim iniciar o plantio da cultura. Essa lógica vai de encontro aos conceitos e princípios da agroecologia, no qual enfatiza o desenvolvimento de uma metodologia que valoriza a participação dos agricultores, uso do conhecimento tradicional e a adaptação das explorações agrícolas às necessidades locais e as condições socioeconômicas (Altieri, 2002). Essa diversificação ainda é considerada uma estratégia de adaptação e de redução de riscos para a agricultura familiar (Simonetti *et al.*, 2013), redução da pobreza (Michler e Josephson, 2017) e no melhoramento da segurança alimentar dos agricultores (Waha *et al.*, 2018).

No auge da pandemia de Covid-19, todos os agricultores mantiveram os valores de venda dos alimentos sem aumento. Ofertando alimentos à aproximadamente 300 consumidores. Essa atitude demonstrou ser uma abordagem diferenciada na forma de comercialização, "evitando a elitização do consumo desses alimentos" (Meirelles, 2004, pp.11-14), incorporando um dos objetivos da agroecologia, que "não busca apenas contribuir para uma produção mais sustentável, nem se limita a encontrar vagas nos mercados de produtos "verdes" no âmbito das políticas da globalização-ecológica" (Leff, 2003, p.44). Além disso, pode amenizar impactos

relacionados à insegurança alimentar e problemas ligados à saúde da população (Leddy *et al.*; 2020), além da pobreza e exclusão social (Adhikari *et al.*, 2021).

Figura 1 Calendário de produção dos cultivos de hortaliças e folhosas das comunidades lagoa seca e engano dos rodrigues, localizadas no município Santana do Piauí, Piauí, Brasil

O Brasil possui a Política de Segurança Alimentar e Nutricional (Decreto nº 7.272/2010), que assinala a relevância da agricultura familiar como uma estratégia para o desenvolvimento da segurança alimentar e nutricional. Essa lei tem como finalidade desenvolver uma economia sustentável, equitativa e de inclusão social, no qual estimula o cultivo diversificado ampliando a capacidade de consumo de alimentos e de outros bens pelas


famílias rurais e para comercialização (CONSEA, 2004). O cenário estudado nas comunidades Lagoa Seca e Engano dos Rodrigues no Piauí revela que os pequenos produtores familiares podem ter um protagonismo importante nesse processo, garantindo alimento de qualidade e se reinventando para garantir a distribuição da sua produção.

Produção, venda de alimentos e potencial de produção dos agricultores durante a Pandemia do COVID-19

As comunidades estudadas tiveram uma produção estável no ano de 2020, enquanto 2021 obteve uma diminuição na média de produção e aumento na média de vendas (32,98%), sugerindo uma melhoria no desempenho das vendas, embora possuindo uma maior flutuação mensal. Essa variação pode estar relacionada ao período de adaptação dos agricultores ao novo método de venda dos alimentos (Figura 2A).

Ainda é observado que os agricultores possuem um potencial de venda que ainda precisa ser explorado (Figura 2B). Nossos dados indicam que, em ambos os anos, os agricultores não atingiram seu pleno potencial de venda (2020 foi de 69,6% e 2021 foi de 66,3%). Contudo, apesar de este potencial não ser explorado comercialmente, é relevante ressaltar que todos os alimentos produzidos fazem parte da dieta alimentar da família, contribuindo para a melhoria da qualidade de vida e segurança alimentar dessas famílias. Além de contribuir para a alimentação da família, os alimentos são transformados em polpas, doces e molhos, e, por fim, os que não são consumidos são destinados à alimentação animal.

Figure 2 (A) Production and sale of food and income considering the production potential of farmers in the communities of Lagoa Seca and Engano dos Rodrigues, located in the municipality of Santana do Piauí, Piauí, Brazil, during the COVID-19 pandemic.

Embora os agricultores façam o autoconsumo e utilização do que não foi vendido, é necessário destacar que o potencial de venda poderia ter sido maior, no entanto, por conta do fechamento das feiras e problemas na distribuição dos alimentos, esse potencial não foi

atingido. Alguns estudos apontam que durante a pandemia de Covid-19, houve grande perda de alimentos frescos, devido à incapacidade dos agricultores ou entidades agrícolas de realizarem a logística desses alimentos(Aldaco *et al.*, 2020; Diesner, 2020; Naughton, 2020) Consequentemente, diminuem-se os meios de subsistência dos agricultores familiares, bem como a produção e disponibilidade de alimentos para a população (FAO, 2020b).

.

4 CONCLUSÕES

Com base nos resultados obtidos, fica evidente a relevância da produção familiar durante a pandemia de COVID-19 em cultivos de base familiar na cidade de Santana do Piauí, estado do Piauí, semiárido nordestino do Brasil. Os pontos destacados ressaltam a importância da organização em associação e das parcerias recebidas, que foram cruciais no momento de crise ao garantir a distribuição e venda dos produtos agrícolas. Além disso, foi enfatizada a necessidade premente de educação e capacitação, preparando os agricultores para enfrentar novos episódios de crise com resiliência e adaptabilidade.

Destacou-se, ainda, a relevância da contínua produção de base agroecológica, que assegurou a renda e o autoconsumo das famílias agricultoras, fortalecendo as relações na comunidade e promovendo a segurança alimentar localmente e nos arredores. Esses resultados oferecem contribuições significativas para o entendimento das dinâmicas da produção agrícola familiar em tempos de crise, reforçando a importância do apoio institucional, da educação continuada e da valorização dos sistemas de base agroecológica como pilares fundamentais para a resiliência e o desenvolvimento sustentável das comunidades rurais.

Dessa forma, nossa hipótese foi parcialmente corroborada, porque os agricultores familiares não foram impactados economicamente de maneira negativa pelo COVID 19. Isso se deu porque tiveram o apoio de órgãos governamentais e não governamentais e aderiram a novas tecnologias para venda. A produção dessas famílias foi essencial para sua própria segurança alimentar e da comunidade em geral.

Nesse sentido, pesquisas futuras que foquem no impacto das políticas públicas na agricultura familiar no semiárido, assim como na eficácia de diferentes estratégias de comercialização e cooperação entre os agricultores podem elucidar questões mais detalhadas da estruturação desse sistema e garantir que bons modelos para outras comunidades.

REFERÊNCIAS

AGAMILE, P. COVID-19 Lockdown and exposure of households to food insecurity in Uganda: Insights from a national high frequency phone survey. **European Journal of Development Research**, v. 34, p. 3050–3075, 2022. DOI: https://doi.org/10.1057/s41287-022-00510-8.

AHMED, N.; PISSARIDES, C.; STIGLITZ, J. Why inequality could spread COVID-19. The **Lancet Public Health**, v. 5, p. 240, 2020. DOI: https://doi.org/10.1016/S2468-2667(20)30085-2.

ALTIERI, M. A. Agroecology: A new research and development paradigm for world agriculture. **Agriculture, Ecosystems and Environment**, v. 27, n. 1–4, p. 37–46, 1989.

ALTIERI, M. A. Agroecología: principios y estrategias para diseñar sistemas agrarios sustentables. In: SARANDÓN, S. J. (Ed.). **Agroecología: El camino hacia una agricultura sustentable.** La Plata: Ediciones Científicas Americanas, 2002. p. 49–56.

ALTIERI, M. A.; NICHOLLS, C. I. Agroecology and the emergence of a post COVID-19 agriculture. **Agriculture and Human Values**, v. 37, n. 3, p. 525–526, 2020. DOI: https://doi.org/10.1007/s10460-020-10043-7.

ALVES, E.; GERALDO, S. S. Pequenos estabelecimentos também enriquecem? Pedras e tropeços. **Revista de Política Agrícola**, p. 7–21, 2015.

ALDACO, R.; HOEHN, D.; LASO, J.; MARGALLO, M.; RUIZ-SALMÓN, J.; CRISTOBAL, J.; KAHHAT, R.; VILLANUEVA-REY, P.; BALA, A.; BATLLE-BAYER, L.; FULLANA-I-PALMER, P.; IRABIEN, A.; VAZQUEZ-ROWE, I. Food waste management during the COVID-19 outbreak: a holistic climate, economic and nutritional approach. **Science of The Environment**, v. 742, p. 140524, 2020. DOI: https://doi.org/10.1016/j.scitotenv.2020.140524.

AMARO, G. B.; SILVA, D. M.; MARINHO, A. G.; NASCIMENTO, W. M. Recomendações técnicas para o cultivo de hortaliças em agricultura familiar. Circular Técnica N° 47. Embrapa Hortaliças, v. 47, n. 1, p. 16, 2007.

ANDRADE-LIMA, D. The caatinga dominium. **Revista Brasileira de Botânica**, v. 4, p. 149–153, 1981.

ANTÚNEZ, S. V. I.; FERRERA, C. M. El enfoque de cadenas productivas y la planificación estratégica como herramientas para el desarrollo sostenible en Cuba. RIPS **Revista de Investigaciones Políticas e Sociológicas**, v. 15, p. 99–130, 2016.

APRIYANA, Y.; SURMAINI, E.; ESTININGTYAS, W.; PRAMUDIA, A.; RAMADHANI, F.; SUCIANTINI, S.; SUSANTI, E.; PURNAMAYANI, R.; SYAHBUDDIN, H. The integrated cropping calendar information system: A coping mechanism to climate variability for sustainable agriculture in Indonesia. **Sustainability**, v. 13, n. 11, p. 6495, 2021. DOI: https://doi.org/10.3390/su13116495.

BIZERRIL, M. X. A. O processo de expansão e interiorização das universidades federais brasileiras e seus desdobramentos. **Revista Tempos e Espaços em Educação** v. 13, n. 32, p. 1–15, 2020. DOI: https://doi.org/10.20952/revtee.v13i32.13456.

BRASIL. Política Nacional de Segurança Alimentar e Nutricional - PNSAN, estabelece o parâmetro para a elaboração do Plano Nacional de Segurança Alimentar e Nutricional e dá outras providências. **Decreto n. 7.272, de 25 de agosto de 2010**. Regulamenta a Lei n. 11.346, de 15 de setembro de 2006. **Diário Oficial da União, Brasília.**

BRASIL. Ministério da Saúde (MS). Ministério da Saúde declara transmissão comunitária nacional. Brasília: MS, 2020. Acessado em: 22 de março de 2020. Disponível em: https://www.saude.gov.br/noticias/agencia-saude/46568-ministerio-da-saude-declara-transmissao-comunitaria-nacional.

CARVALHO, S. M. de; BEZERRA, I.; RIGON, S. do A.; CASSARINO, J. P. Feiras orgânicas enquanto política de abastecimento alimentar e promoção da saúde: um estudo de caso. **Saúde Debate**, v. 45, p. 542–554, 2022. DOI: https://doi.org/10.1590/0103-11042022E236. CHARLES, T.; BATTESE, G. E.; VILLANO, R. A. Family farms plus cooperatives in China: Technical efficiency in crop production. **Journal of Asian Economics**, v. 64, p. 101–129, 2019.

CHARLTON, D.; TAYLOR, J. E. Acesso escolar rural e a transformação agrícola. **Agricultural Economics**, v. 51, n. 5, p. 641–654, 2020. International Association of Agricultural Economists. DOI: https://doi.org/10.1111/agec.12583.

CONTRERAS, D. J.; PAREDES, C. M.; TURBAY, C. S. Circuitos curtos de comercialización agroecológica en el Ecuador. **Idesia**, v. 35, n. 3, p. 71–80, 2017. DOI: https://doi.org/10.4067/S0718-34292017005000302.

CONSELHO NACIONAL DE SEGURANÇA ALIMENTAR E NUTRICIONAL – CONSEA. Mesa de controvérsias sobre os impactos dos agrotóxicos na soberania e segurança alimentar e nutricional e o direito humano à alimentação adequada: relatório final. Brasília: Presidência da República, 2014. Disponível em: https://www.planalto.gov.br/ccivil_03/%5C_Ato2007-2010/2010/Decreto/D7272.htm. Acesso em: 20 jul. 2020.

COSTA, C. L.; NETO, J. da C. G. Em busca da cidadania digital brasileira: Análise das políticas públicas federais para o enfrentamento à exclusão digital. **Revista Argumenta**, n. 39, p. 377–395, 2023.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS – FAO; WORLD FOOD PROGRAM - WFP. Impacts of COVID-19 on food security and nutrition: developing effective policy responses to address the hunger and malnutrition pandemic. **HLPE issues paper**,. September, p. 1–24, 2020a. Disponível em: https://doi.org/10.4060/cb1000en Acesso em: 29 fev. 2024.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS – FAO; WORLD FOOD PROGRAM - WFP. Impacts of COVID-19 on food security and nutrition: developing effective policy responses to address the hunger and malnutrition pandemic. **HLPE issues paper**, n. September, p. 1–24, 2020b. Disponível em: https://doi.org/10.4060/cb1000en. Acesso em: 29 fev. 2024.

FERRELL, O. C.; HARTLINE, M. D.; SILVA, M. C.; GALMAN, R. Estratégias de Marketing. São Paulo: Pioneira Thomson, 2005. 681 p.

FREITAS, A. F. de; FERREIRA, M. A. M.; FREITAS, A. F. de. A trajetória das organizações de agricultores familiares e a implementação de políticas públicas: um estudo de dois casos. **Revista de Economia e Sociologia Rural**, v. 57, n. 1, p. 9–28, 2019. DOI: https://doi.org/10.1590/1234-56781806-94790570101.

FRANCO-CRESPO, C.; CORDERO-AHIMAN, O. V.; VANEGAS, J. L.; GARCÍA, D. Circuitos curtos de comercialização e desenvolvimento produtivo de agricultores agroecológicos na área rural andina do Equador. **Sustainability**, v. 15, n. 8, p. 6944, 2023. DOI: https://doi.org/10.3390/su15086944.

GAZOLLA, M. O processo de mercantilização do consumo de alimentos na agricultura familiar. In: SCHNEIDER, S. (Org.). A diversidade da agricultura familiar. Porto Alegre: Editora da UFRGS, 2006. p. 32–39.

GUTIÉRREZ-MOYA, E.; LOZANO, S.; ADENSO-DÍAZ, B. A pre-pandemic analysis of the global fertiliser trade network. **Resources Policy**, v. 85, 103859, 2023. DOI: https://doi.org/10.1016/j.resourpol.2023.103859.

FIGUEIREDO, N. R. M. Análise dos efeitos do programa nacional de alimentação escolar sobre o território da agricultura camponesa na Paraíba. **Boletim DataLuta**, n. 109, Artigo do mês: janeiro de 2017. ISSN 2177-4463. João Pessoa-PB.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **Manual do Recenseador Censo** Agro 2017. Rio de Janeiro: IBGE, 2017a. Disponível em: http://biblioteca.ibge.gov/index.php/biblioteca-catalogo>. Acesso em: 29 fev. 2024.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **Manual do Recenseador Censo** Agro 2017. Rio de Janeiro: IBGE, 2017b. Disponível em: http://biblioteca.ibge.gov/index.php/biblioteca-catalogo. Acesso em: 29 fev. 2024.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **Manual do Recenseador Censo** Agro 2017. Rio de Janeiro: IBGE, 2017c. Disponível em: http://biblioteca.ibge.gov/index.php/biblioteca-catalogo>. Acesso em: 29 fev. 2024.

JACOMINE, P. K. T. Levantamento exploratório – reconhecimento de solos do Estado do Piauí. Rio de Janeiro: EMBRAPA-SNLCS/SUDENE-DRN, 1986. 782 p.

KANSIIME, M. K.; TAMBO, J. A.; MUGAMBI, I.; BUNDI, M.; KARA, A.; OWUOR, C. COVID-19 implications on household income and food security in Kenya and Uganda: Findings from a rapid assessment. **World Development**, v. 137, 105199, 2021. DOI: https://doi.org/10.1016/j.worlddev.2020.105199.

KAPLAN, R. S.; NORTON, D. P. The Execution Premium: Linking Strategy to Operations for Competitive Advantage. Boston: Harvard Business Press, 2008. 321 p.

KÖPPEN, W. Das geographische System der Klimate. In: KÖPPEN, W.; GEIGER, G.; GEBR.

KOTERA, A.; NGUYEN, K. D.; SAKAMOTO, T. A modeling approach for assessing rice cropping cycle affected by flooding, salinity intrusion, and monsoon rains in the Mekong Delta, Vietnam. **Paddy Water Environ**, v. 12, p. 343–354, 2014. DOI: https://doi.org/10.1007/s10333-013-0386-y.

LÖSCH, E. L.; BRICARELLO, P. A.; GAIA, M. C. de M. Agroecologia e segurança alimentar em tempos de pandemia de Covid-19. **Revista Katálysis**, v. 25, n. 3, p. 551–559, 2022. DOI: https://doi.org/10.1590/1982-0259.2022.e86559.

LEFF, E. Pensar a complexidade ambiental. In: LEFF, E. (Org.). A Complexidade Ambiental. São Paulo, 2003. 344 p.

LEDDY, A. M.; WEISER, S. D.; PALAR, K.; SELIGMAN, H. A conceptual model for understanding the rapid COVID-19—related increase in food insecurity and its impact on health and healthcare. **The American Journal of Clinical Nutrition**, v. 112, n. 5, p. 1162–1169, 2020. DOI: https://doi.org/10.1093/ajcn/nqaa226.

LOPES, C. A.; SANTOS, J. R. M. dos. **Doenças do tomateiro**. Brasília: Embrapa-CNPH/Embrapa-SPI, 1994. 67 p.

MARION, J. C. Contabilidade Rural. 14. ed. São Paulo: Atlas, 2014. p. 04.

MEIRELLES, L. Soberania alimentar, agroecologia e mercados locais. **Revista Agriculturas**: experiências em agroecologia, v. 1, p. 11–14, 2004.

MICHLER, J. D.; JOSEPHSON, A. L. To specialize or diversify: Agricultural diversity and poverty dynamics in Ethiopia. **World Development**, v. 89, p. 214–226, 2017. DOI: https://doi.org/10.1016/j.worlddev.2016.08.011.

NAUGHTON, C. Will the COVID-19 pandemic change waste generation and composition? The need for more real-time waste management data and systems thinking. **Resources, Conservation**, and Recycling, n. 162, p. 105050, 2020. DOI: https://doi.org/10.1016/j.resconrec.105050.

NUNES, E. M.; MEDEIROS DE FRANÇA, A. R.; SOARES DE LIMA, J. S.; SILVA DE MEDEIROS, L. Novidades na Agricultura Familiar e sua associação com a agroecologia na produção de hortifrutigranjeiros no Território Sertão do Apodi (RN). REDES: **Revista do Desenvolvimento Regional**, v. 23, n. 1, p. 213–236, 2018. DOI: https://doi.org/10.17058/redes.v23i1.9292.

NOGUEIRA, V. G. de C.; MARCELINO, M. Q. dos S. Covid-19: impactos e estratégias para a comercialização de alimentos da agricultura familiar no DF. **Revista de Política Agrícola**, v. 1, n. 1, p. 117, 2021. Disponível em: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1131983.

PINHEIRO, A. R. O. Agroecologia, Alimentação Saudável e Redes de Abastecimento. Portal de Notícias da Universidade de Brasília, 2020. Disponível em: https://noticias.unb.br/artigos-main/4077-agroecologia-alimentacao-saudavel-e-redes-de-abastecimento Acesso em: 2 jan. 2024.

PASIN, L. E. V.; CHAVES, D. J. R.; CARNEIRO, L. G.; SOUZA MEDEIROS, J. P. Universidade e sua atuação para estimular. **Revista Extensão e Sociedade** - PROEX/UFRN, 2018. Edição Especial do 8º Congresso Brasileiro de Extensão Universitária, p. 113–120.

RAMOS, P. S. Circuitos Curtos de Comercialização Alimentária: Análise de Experiências da Região de Valparaíso, Chile. **Psicoperspectivas: Individuo y Sociedad**, v. 19, p. 32–43, 2020a. DOI: https://dx.doi.org/10.5027/psicoperspectivas-Vol19-Issue2-fulltext-1914.

RAMOS, P. S. Circuitos cortos de comercialización alimentaria: Análisis de experiencias de la Región de Valparaíso, Chile. **Psicoperspectivas - Individuo y sociedad**, v. 19, n. 0717–7798, p. 2–15, 2020b. DOI: https://dx.doi.org/10.5027/psicoperspectivas-Vol19-Issue2-fulltext-1914.

RODRIGUEZ-MORALES, A. J.; GALLEGO, V.; ESCALERA ANTEZANA, J. P.; MÉNDEZ, C. A.; ZAMBRANO, L. I.; FRANCO PAREDES, C.; SUÁREZ, J. A.; RODRIGUEZ ENCISO, H. D.; BALBÍN RAMÓN, G. J.; SACIO LARRIERA, E.; RISQUEZ, A.; CIMERMAN, S. COVID-19 in Latin América: The implications of the first confirmed case in Brasil.**Travel Medicine and Infectious Disease**, v. 35, p. 101613, 2020. DOI: https://doi.org/10.1016/j.tmaid.2020.101613.

ROMARIZ, D. de A. Aspectos da vegetação do Brasil. 2. ed. São Paulo: Ed. da Autora/Liv. Biociências Ltda, 1996.

SAMBUICHI, R. H. R. *et al.* O Programa de Aquisição de Alimentos (PAA) como estratégia de enfrentamento aos desafios da COVID-19. **Revista de Administração Pública**, v. 54, n. 4, p. 1079-1096, 2020. DOI: https://doi.org/10.1590/0034-761220200258.

SOARES, K. R.; FERREIRA, E. E. da S.; SEABRA JUNIOR, S.; NEVES, S. M. A. da S. Extrativismo e produção de alimentos como estratégia de reprodução de agricultores familiares

do assentamento seringal, Amazônia Meridional. **Revista de Economia e Sociologia Rural**, v. 56, n. 4, p. 645–662, 2018. DOI: https://doi.org/10.1590/1234-56781806-94790560406.

SAMAD, R.; RAHMAN, A.; YEASMIN, S. M.; MAHFUJ, S.; RAHMAN, H.; SULTANA, F.; HOSSAIN, Y. Implications of COVID-19 on oxbow lake (Baors) fisher community, Bangladesh: Resilience to food security against probable natural calamities. **Heliyon** v. 8, p. e11226, 2022.

SILVA, A. A. G.; NOGUEIRA, L. C.; OLIVEIRA, V. H. de. **Boletim Agrometeorológico.** Parnaíba: Embrapa-CNPAI, 1990. 46 p.

SILVA, L. G. T.; XIMENES, T.; HOMMA, A. K. O. Sustentabilidade da Agricultura Familiar em Assentamentos no Sudeste Paraense. Fortaleza, CE: **Embrapa Agroindústria Tropical**, 2007.

SILVEIRA, V. G.; LAGASSI, V. Agrotóxicos: uma lesão aos direitos fundamentais. **Revista do Curso de Direito da Facha**, Rio de Janeiro, v. 5, n. 3, p. 62-81, 2015. Disponível em: https://aluno.facha.edu.br/pdf/revista-direito-5/artigo4.pdf.

SIMONETTI, D.; PERONDI, M. A.; KIYOTA, N.; VILLWOCK, A. P. S. Diversificação da renda de agregação de valor na agricultura familiar: lições a partir de uma comunidade rural. **Extensão Rural**, v. 2, p. 132-144, 2013.

SOUZA, V. A. B. de. Avaliação de cultivares de tomateiro industrial sob irrigação por aspersão no Baixo Parnaíba - Período Chuvoso. Parnaíba: **Embrapa-CNPAI**, 1992. 5 p.

TOBIAS, J.; D'ANGELO, C. Environmental destruction brought us COVID-19. What it brings next could be far worse. 2020. Disponível em: https://www.huffpost.com/entry/emerging-disease-environmental-destruction_n_5e-9db58fc5b63c5b58723afd. Acesso em: 14 abr. 2020.

UNITED NATIONS SYSTEM STANDING COMMITTEE ON NUTRITION - UNCSN. The COVID-19 pandemic is disrupting people's food environments. 2020. Disponível em: https://www.unscn.org/en/news-events/recent-news?idnews=2039 Acesso em: 13 jun. 2020.

WAHA, K. *et al.* Diversificação agrícola como uma estratégia importante para alcançar a segurança alimentar na África. **Global Change Biology**, v. 24, p. 3390–3400, 2018. https://doi.org/10.1111/gcb.14158.

WICKHAM, H. Ggplot2: elegant graphics for data analysis. 1. ed. **Springer-Verlag**, 2017. p. 77.

YEGBEMEY, R. N.; KABIR, H.; AWOYE, O. H. R.; YABI, J. A.; PARAÍSO, A. A. Managing the agricultural calendar as coping mechanism to climate variability: A case study of maize farming in northern Benin, West Africa. **Climate Risk Management**, v. 3, p. 13-23, 2014. ISSN 2212-0963. https://doi.org/10.1016/j.crm.2014.04.001.

ZURAYK, R. Pandemic and Food Security: A View from the Global South. **Journal of Agriculture**, Food Systems, and Community Development, v. 3, p. 1-5, 2020.

ZUÑIGA, E. C. C.; ZUÑIGA, N. C.; MONTILLA, I. A. L. Agricultura familiar e plataformas digitais no contexto da COVID-19. **Boletim Covid-19**, n. 15, p. 1-8, 2020. Disponível em: https://www.unicamp.br/unicamp/sites/default/files/2020-

CAPÍTULO II

FAMILY FARMERS' ENVIRONMENTAL PERCEPTION OF ECOSYSTEM SERVICES IN THE BRAZILIAN SEMI-ARID REGION

RESUMO

Rural populations whose economies are based on agriculture and livestock depend on ecosystem services. Therefore, the aim of this study was to assess family farmers' environmental perceptions of ecosystem services and their importance. The study was conducted in two communities in the semi-arid region of Piauí, northeastern Brazil. Data were collected through non-participant observation and semi-structured interviews, and analysed using word clouds, Likert scales and semantic networks. Farmers have a broad perception of the categories of ecosystem services, recognising and valuing mainly provisioning and cultural services. It is evident that nature plays a fundamental role in the activities of these communities. Farmers depend on natural resources for their livelihoods and leisure.

Key words: Agriculture; gender; caatinga; cultural; provision.

FAMILY FARMERS' ENVIRONMENTAL PERCEPTION OF ECOSYSTEM SERVICES IN THE BRAZILIAN SEMI-ARID REGION

Rural populations whose economies are based on agriculture and livestock depend on ecosystem services. Therefore, the aim of this study was to assess family farmers' environmental perceptions of ecosystem services and their importance. The study was conducted in two communities in the semi-arid region of Piauí, northeastern Brazil. Data were collected through non-participant observation and semi-structured interviews, and analysed using word clouds, Likert scales and semantic networks. Farmers have a broad perception of the categories of ecosystem services, recognising and valuing mainly provisioning and cultural services. It is evident that nature plays a fundamental role in the activities of these communities. Farmers depend on natural resources for their livelihoods and leisure.

Key words: Agriculture; gender; caatinga; cultural; provision.

INTRODUÇÃO

Populações rurais que costumam ter uma economia baseada na agricultura e pecuária são grupos dependentes dos serviços ecossistêmicos, logo, suas atividades costumam estar relacionadas e, até dependentes, das paisagens circundantes (Fagerholm *et al.*, 2012). Os serviços ecossistêmicos (SE) representam os benefícios que as pessoas obtêm dos ecossistemas, tanto de forma direta quanto indireta e são classificados em quatro categorias: suporte, onde estão incluídos os processos de formação do solo, ciclagem de nutrientes e ciclagem da água, regulação, envolve a manutenção da qualidade do ar, regulação do clima e da água, provisão, abrange os alimentos, fibras, combustível e água doce e cultural, dizem respeito a diversidade cultural, ecoturismo, recreação, valores estéticos) (MA, 2005).

A agricultura, por exemplo beneficia-se diretamente de serviços ecossistêmicos como a polinização, controle biológico de pragas, sombra e abrigo (Stallman, 2011; Zhang *et al.*, 2007). Contudo, as perdas de habitats naturais prejudicam os processos ecossistêmicos e seu funcionamento, reduzindo a capacidade da natureza de fornecer serviços ecossistêmicos (Díaz et al. 2019).

A agricultura extensiva e a intensificação agrícola, por exemplo, são os principais impulsionadores da perda de biodiversidade e homogeneização biótica em todo o mundo (Kehoe *et al.*, 2017). Isso não apenas compromete as metas globais de conservação, mas também prejudica o fornecimento de muitos serviços ecossistêmicos dos quais a própria comunidade agrícola, principalmente, a agricultura familiar, e a sociedade em geral dependem (Bommarco *et al.*, 2013, Global Biodiversity, 2020). Além disso, essa rápida conversão de terras com coberturas naturais em terras agrícolas resulta em uma expressiva perda de SE, incluindo perda de biodiversidade, aumento de CO₂, erosão do solo, poluição do ar, poluição da água e mudanças climáticas (Fang *et al.*, 2024).

No Semiárido brasileiro essa realidade é ainda mais preocupante uma vez que essa região já se destaca como com uma das regiões mais vulneráveis do mundo, por combinar fatores como irregularidade das chuvas, aumento da temperatura, processos de degradação dos solos e desertificação (Marengo e Alves, 2017). Essas condições afetam principalmente os agricultores, que dependem das chuvas para os cultivos de sequeiro (Angelotti *et al.*, 2011; Marengo *et al.*, 2011). Desse modo, os Serviços Ecossistêmicos são fundamentais no apoio do bem-estar humano, sendo considerado um componente importante da sustentabilidade (Summers e Smith, 2012; Wang *et al.*, 2017). Paisagens compostas por terras agrícolas e florestais são essenciais para fornecer um pacote completo de SE para uma população (Martín López *et al.*, 2012). No entanto, o manejo dessas paisagens deve ser focado em uma agricultura

que estabeleça práticas de manejo com menor impacto, como a policultura e cultivo de espécies em consórcio que podem elevar a diversidade de um agroecossistema (Gliessman, 2001). Estudos realizados na Caatinga, floresta tropical sazonal seca no Brasil, concluíram que é importante incluir os SE em áreas de restauração ecológica, levando em consideração a população humana vulnerável em regiões secas e sua demanda por recursos naturais (Costa et al., 2021).

Apesar de uma base crescente de estudos relacionados aos Serviços ecossistêmicos, existe uma falta de compreensão da percepção dos agricultores sobre Serviços Ecossistêmicos e como isso está relacionado à gestão dos ambientes naturais (Teixeira et al., 2018). Conhecer essas percepções contribuem para traçar estratégias de desenvolvimento sustentável Giansanti, 1998) e na formulação de políticas públicas (Dominati et al., 2021)

Por exemplo, estudos realizados na Colômbia destacaram a necessidade de considerar as percepções locais ao avaliar quais serviços ecossistêmicos os agricultores valorizam, a fim de orientar na tomada de decisões políticas com dados concretos (Leroy et al., 2021). Nesse sentido, diversos estudos afirmam que essas percepções podem variar amplamente conforme o contexto e as condições ambientais, como evidenciados na Indonésia (Muhamad et al., 2014), Alemanha (Lisa Küchen et al., 2023), Quênia (Miller et al., 2021) e Brasil (Osório et al., 2024).

Assim, é importante deixar claro que as percepções muito provavelmente diferem entre as pessoas que vivem em diferentes paisagens e essas diferenças estão baseadas em aspectos cognitivos da percepção de estímulos visuais e das experiências das pessoas sobre a natureza e do ambiente circundante (Arias-Arévalo *et al.*, 2018), assim como de fatores sociais, como o nível educacional (Mass et al., 2021). Nesse sentido, estar em contato com um ambiente mais seco (região semiárida) pode influenciar a percepção de agricultores, como observado em agricultores na Nigéria e Gana, onde a produção de alimentos é muito dependente de água da chuva (Aniah *et al.*, 2023a).

Nesse contexto, o objetivo deste estudo foi analisar como os agricultores familiares de duas comunidades no semiárido brasileiro percebem os serviços ecossistêmicos. Nossa pesquisa está baseada na hipótese de que os agricultores(as) familiares da nossa amostra priorizam os serviços ecossistêmicos de provisão, preferencialmente os associados ao uso da água da chuva, devido à sua relevância para a produção agrícola em regiões semiáridas (Anjos e Melo, 2019, p. 172).

disponível.

MATERIAL E MÉTODOS

ÁREA DE ESTUDO

O estudo foi conduzido nas comunidades Fornos e Pau D'Arco, situadas na Chapada do Mucambo, no município de Picos, sudeste do estado do Piauí, nordeste do Brasil. De acordo com a Associação de Pequenos Produtores Rurais das comunidades Fornos e Pau D'Arco, a população total dessas comunidades é de 212 habitantes. A região está localizada a 307,3 km da capital Teresina e apresenta um clima predominantemente seco e semiárido, com chuvas concentradas nos meses de dezembro, janeiro e fevereiro (Medeiros *et al.*, 2012).

Nossa área de estudo está inserida na Caatinga, floresta Sazonal Brasileira (Pennington et al., 2009; Santos et al., 2011), presente na região Nordeste e que ocupa uma área de 912.529 km² (Silva et al. 2018). Possui biodiversidade rica e variada, com elevado número de espécies endêmicas (Prado, 2003; Rito et al., 2017). Os solos dessa região são provenientes da alteração de arenitos, siltitos e conglomerados, sendo solos litólicos, álicos e distróficos, de textura média, pouco desenvolvidos, rasos a muito rasos, com fase pedregosa (Jacomine *et al.*, 1986).

As comunidades Fornos e Pau D'arco possuem a agricultura familiar de sequeiro como fonte de renda e alimentar, destacando-se a produção de milho, mandioca, feijão e os quintais produtivos para alimentação humana (Projeto Viva Semiárido, dados não publicados 2021). Os quintais produtivos são compostos por uma ampla diversidade de espécies alimentícia no qual são produzidas e manejadas o ano todo, contribuindo assim para o autoconsumo (Sousa *et al.*, 2023). A comunidade utiliza água de poço e água armazenada em cisternas, não tendo abastecimento público. Visando definir um grupo representativo dos agricultores da região, a pesquisa foi realizada com os agricultores da Associação de Pequenos Agricultores Rurais Fornos e Pau Darco. Dos 79 associados, 29 agricultores participaram da pesquisa.

Delineamento amostral e métodos de análises

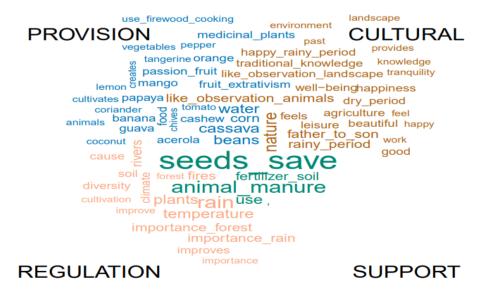
Inicialmente, foram realizadas visitas em todas as residências dos agricultores explicando o objetivo do trabalho. As coletas foram realizadas por meio de entrevistas semiestruturadas. O formulário de entrevista continha 42 perguntas focando em questões sobre as quatro categorias de SE: provisão, regulação, suporte e cultural. Uma parte do questionário continha questões abertas, de modo que o entrevistado pudesse desenvolver seu pensamento ou citar exemplos e outra parte continha questões com as respostas organizadas segundo a escala Likert, metodologia adaptada (Likert, 1932).

Essa escala possui categorias de valoração e tem como principal objetivo obter do entrevistado o quanto concorda ou discorda de certas afirmações (Allen; Seaman, 2007). No presente estudo, adaptou-se a escala Likert para analisar o grau de percepção dos agricultores sobre a importância dos serviços ecossistêmicos com cinco possibilidades de respostas: 01 (muito ruim), 02 (ruim), 03 (regular), 04 (bom), 05 (muito bom). As entrevistas foram gravadas utilizando-se um celular e posteriormente transcritas na plataforma Reshape transcription.

Para analisar a percepção dos agricultores sobre os serviços ecossistêmicos foram realizadas uma nuvem de palavras e a uma rede semântica. A nuvem de palavras é uma análise que ranqueia as palavras mais importantes (o tamanho das palavras mencionadas destaca sua frequência de citação). Para uma análise qualitativa mais refinada, foi realizada a rede semântica, uma análise que demonstra as conexões percebidas entre os diferentes elementos.

As áreas que são mais densamente conectadas podem indicar uma maior interdependência ou um impacto mais significativo entre os elementos sobre a percepção dos agricultores. Os dados coletados nas entrevistas foram analisados no programa R Studio 4.2.1 com os seguintes pacotes: *quanteda*, *textplots*, *ggalluvial*, *ggplot* e *igraph* (Benoit *et al.*, 2018; Brunson, 2017; Csárdi, 2020; Wickham, 2016).

Esta pesquisa foi submetida e aprovada pelo Comitê de Ética da Universidade Federal da Paraíba, Protocolo n. 5.432.561 (CE/CCS/UFPB), através da Plataforma Brasil CAAE n. 58670122.5.0000.5188.


RESULTADOS

Dos entrevistados, 85% são do sexo feminino e 14,3% do sexo masculino, com uma média de idade de 49,5 anos. No que diz respeito ao nível de escolaridade, 78,3% possuem ensino fundamental incompleto. Os agricultores mencionaram serviços em todas as quatro categorias de serviços ecossistêmicos: provisão, suporte, regulação e cultural. A categoria mais citada foi a de provisão, representando 56,38% do total, seguida pela categoria cultural com 19,88%. Os serviços de regulação receberam 16,91% das respostas, enquanto a categoria de suporte foi a menos citada, com 6,82% das menções.

Os principais serviços citados para a categoria de provisão têm relação direta com a agricultura, sendo a produção de milho, feijão e mandioca e o uso da água os serviços mais visíveis (Figura 1). Essas são as principais culturas plantadas pelos agricultores e a água recebe destaque pela importância que tem no cultivo desses alimentos.

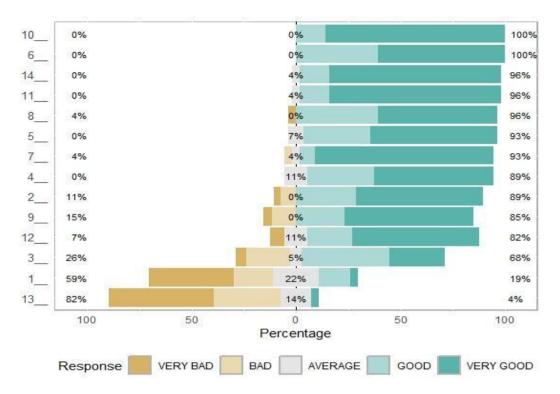
Diversos serviços foram citados na categoria cultural, no entanto, todos parecem receber o mesmo grau de importância, uma vez que há pouca diferença no tamanho das palavras, sem um destaque específico. Os agricultores valorizam momentos de lazer em contato direto com a natureza, única palavra com um sutil destaque nessa nuvem (Figura 2).

Figura 1 Nuvem de palavras sobre a percepção dos agricultores em relação aos Serviços Ecossistêmicos nas comunidades Fornos e Pau Darco Picos, PI, nordeste do Brasil.

Fonte: própria autora (2024)

A categoria de regulação demonstra que os agricultores percebem a mata como reguladora da manutenção de água no ambiente e, menos evidente, do solo (Figura 2). Os

serviços citados têm relação mais direta com o ciclo da água e indicam que os agricultores percebem as mudanças climáticas.


A categoria de suporte foi a que menos recebeu citações, mas teve como grande importância a prática de guardar sementes. Os agricultores associados guardam em garrafas *pet* as melhores sementes da safra. As principais sementes são as de milho, feijão e abóbora. As sementes são armazenadas em uma casa reservada na comunidade somente para o "banco de sementes". Outros dois elementos dentro da categoria de suporte, fertilização do solo e esterco animal, também apareceram com certo destaque, demonstrando a importância dessas práticas para a sustentabilidade e produtividade agrícola da região.

Além de perceberem muito bem os serviços de provisão e cultural (Figura 2), os agricultores também valorizam muito esses serviços (Figura 3). Essas foram as categorias que receberam mais avaliações boas na escala Likert, indicando que eles tem uma dependência grande tanto na obtenção de recursos quanto nas opções de lazer no ambiente natural. Também são compreendidos como importantes serviços, a qualidade do solo e a disponibilidade de recursos hídricos (Figura 3), certamente, por estarem relacionados diretamente com a atividade da agricultura.

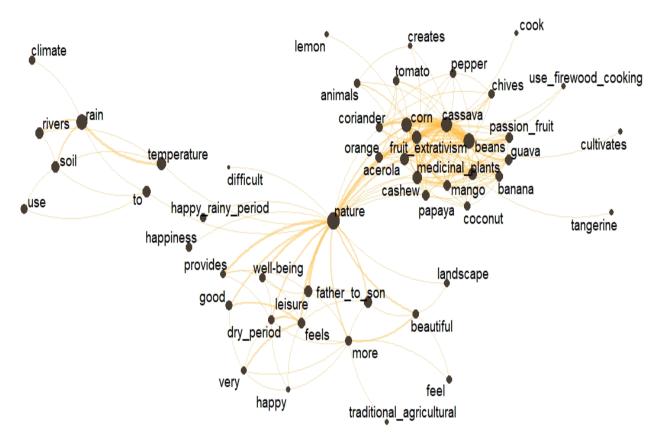
Por outro lado, os insetos e a caça receberam as pontuações mais baixas, refletindo assim uma percepção negativa sobre o papel dos insetos na agricultura e no ambiente como um todo. Os insetos foram citados como sinônimo de pragas agrícolas, sendo desconsiderado os importantes papeis que eles exercem para a polinização, controle biológico, entro outros serviços. Também houve uma desaprovação a caça de animais (Figura 2).

Outros SE que também demonstraram ser importante foram relacionados às plantas, tanto em termos de diversidade quanto para o uso medicinal (Figura 3). A observação de animais e o interesse pelos animais nativos também foram bem avaliados, assim como as atividades ao ar livre, a coleta de frutas e as caminhadas na natureza, indicando assim um forte interesse em interagir com a natureza (Figura 2).

Figura 2. Grau de importância na escala likert que os agricultores atribuem a alguns serviços ecossistêmicos em comunidades do semiárido estado do Piauí. Serviços representados por números o eixo y: 1 - insetos, 2 - diversidade de plantas, 3 - importância dos animais nativos, 4 - importância da mata, 5 - importância dos rios, 6 - importância do solo, 7 - caminhar na natureza, 8 - observar animais, 9 - banho de rio, 10 - eventos ao ar-livre, 11 - coleta de frutos na natureza, 12 - coleta de madeira para fazer lenha, 13 - caça de animais, 14 - plantas medicinais.

Tradução: Muto baixa importância, baixa importância, importância moderada, alta importância, muito alta importância.

Fonte: própria autora (2024)


A análise da rede semântica permitiu identificar que os três grandes grupos de SE percebido pelos agricultores estão relacionados diretamente com o termo natureza, indicando que os agricultores consideram a natureza um elemento importante no seu dia a dia (Figura 4). Os serviços ecossistêmicos de provisão, como cassava, beans, corn, medicinal plants e fruit extrativism estão bem interconectados. Ainda nessa categoria, destacam-se os serviços de animals e firewood cooking. Essas conexões indicam que os agricultores consideram esses elementos importante para o seu sustento (Figura 3).

Os serviços ecossistêmicos culturais well-being, happiness, leisure, father to son and traditional agricultural aparecem claramente interconectados a nature, o que demonstra a importância da natureza na promoção do bem-estar, felicidade e lazer, além da transmissão de conhecimentos e práticas tradicionais passadas de pai para filhos (Figura 3).

Outro serviço interessante associado a natureza está relacionado a happy rainy period, pois por ser uma região semiárida, os agricultores associam esse período chuvoso à felicidade e aumento da produção, por conta da abundância de água. Portanto, a relação entre esses termos sugere que os agricultores valorizam a natureza não apenas pelos recursos que ela proporciona, mas também pelos benefícios culturais e emocionais. Os serviços ecossistêmicos de regulação,

como climate, rain, temperature, soil and rivers estão relacionados à ideia de regulação ambiental (Figura 3).

Figura 3. Rede semântica sobre a percepção dos agricultores em relação aos serviços ecossistêmicos em comunidades do semiárido estado do Piauí, nordeste do Brasil.

Fonte: própria autora (2024

DISCUSSÃO

Nossos resultados indicam que os agricultores possuem percepção ambiental sobre as quatro categorias de SE: provisão, suporte, cultural e regulação. No entanto, os SE que tiveram mais menções foram os de provisão e cultural. Nessa mesma perspectiva, estudos realizados com agricultores da zona rural da Nigéria em ambientes de savana semiárida e floresta tropical concluíram que os agricultores estavam coletivamente cientes de uma ampla gama de SE: culturais, biocombustíveis, água doce, espécies usadas na medicina natural e vida selvagem (Zhang *et al.*, 2016).

Nas regiões semiáridas de Gana, os agricultores também percebem uma ampla gama de oferta e disponibilidade de serviços ecossistêmicos de provisão, como frutas e vegetais silvestres comestíveis, materiais de construção, peixe, caça e plantas medicinais. No entanto, esses agricultores tem a percepção de que esses serviços diminuíram significativamente na última década. Esse declínio na oferta e disponibilidade de serviços ecossistêmicos resultou em um aumento da insegurança nos meios de subsistência, levando à deterioração do bem-estar dos habitantes (Aniah *et al.*, 2023b). De forma semelhante ao observado em nosso estudo, a importância da natureza para a produção de alimentos e o fornecimento de lenha são serviços altamente valorizados. Nesse sentido, parece que em comunidades pobres de regiões semiárida, o impacto da sazonalidade hídrica pode criar um padrão para dinâmicas de cultivos e influenciar na percepção ambiental.

Além dos SE de provisão serem os mais percebidos pelos agricultores das comunidades estudadas, esses são também os que receberam grau de importância mais elevado. Os agricultores atribuíram maiores notas para plantas medicinais, uso da água, coleta de frutos na natureza (extrativismo), observação de animais na natureza e solo, sendo que este último está diretamente relacionado à produção de alimentos.

Agricultores ao longo de um gradiente rural na Península Ibérica também atribuíram maior importância aos serviços de provisionamento, além de atribuírem maior valor de importância em comparação com a população urbana, que classificou os serviços de regulação como sendo os mais importantes (Martin-Lopez *et al.*, 2012b) ou os serviços culturais (Fagerholm *et al.*, 2019). Esse resultado também pode estar relacionado com o profundo conhecimento experimental que os agricultores possuem ao longo de suas vidas, fazendo com que esses SE sejam gerenciados de forma direta e indireta (Teixeira *et al.*, 2018). Além disso, os serviços de provisão citados e mais valorados fazem parte do dia a dia dos agricultores das comunidades estudadas, sendo importantes fontes de renda e alimentação.

Em nosso estudo, o SE cultural recebeu grande maior importância pelos agricultores, assim como para agricultores do nordeste do Pará no Brasil (Almeida *et al.*, 2023a), agricultores de Vall Fosca, nos Pirineus Catalães, Nordeste da Espanha (Calvet_Mir *et al.*, 2012), agricultores da região semiárida Múrcia na Espanha (Martinez-Paz *et al.*, 2022) e para os moradores de áreas urbanas e rural no Estado da Paraíba, Brasil (Osório *et al.*, 2024b). Estudos já demonstraram que fatores socioculturais, gênero, nível de educação e hobbies na natureza, podem explicar melhor a variabilidade na percepção da importância dos serviços ecossistêmicos (Kross *et al.*, 2018; Mass *et al.*, 2021b) e no nosso sistema de estudo, a renda e o gênero parecem ser um diferencial.

Nesse sentido, o perfil sócioeconômico pode ser um fator de influência na percepção em relação aos serviços culturais. Muitas vezes, o contato com a natureza é a única opção de lazer (ou a mais acessível) que essas pessoas possuem, como no caso das comunidades estudadas no presente trabalho. Comunidades que tenham renda baixa ou muito baixa, tendem que aproveitar mais os espaços naturais e sem custo, o que permite o acesso a momentos de lazer e diversão. Nesse sentido, regiões de terras áridas permitem que esses ecossistemas ofereçam uma variedade de SE culturais singulares, tais como: valores estéticos, recreação e turismo, conhecimento e educação, senso de lugar, valores espirituais e religiosos (Palacio-Prieto *et al.*, 2016).

Além disso, atribuir importância aos serviços culturais pode ter relação direta com o gênero dos agricultores, visto que em nosso estudo 89% dos entrevistados foram mulheres e mulheres tendem a valorizar mais os serviços de provisão e os serviços culturais (Zoderer, 2016; Paudayel *et al.*, 2018). É importante ressaltar que os serviços culturais tendem a ser negligenciados, enquanto os SE de provisão são considerados os serviços prioritários em tomadas de decisões pelas agências responsáveis pelo desenvolvimento, regulação, definição de políticas públicas e promoção de restauração profissional (Milcu *et al.*, 2013). No entanto, os serviços culturais devem ser vistos como um dos fundamentais para os agricultores, uma vez que eles valorizam as atividades na natureza.

Os agricultores perceberam poucos serviços de regulação e, menos ainda, serviços de suporte, atribuindo também menor importância aos insetos. Agricultores do nordeste do Pará no Brasil, também atribuem pouca importância aos insetos (Almeida *et al.*, 2023b), assim como agricultores de regiões semiáridas e florestas tropicais da Nigéria desconheciam em grande parte os serviços benéficos prestados pelos insetos, tais como polinizadores e inimigos naturais, devido ao baixo nível de escolaridade dos agricultores (Zhang *et al.*, 2016b).

Portanto, nossos resultados, mais uma vez, parecem estar relacionados ao nível de escolaridade. No entanto, identificamos um fator no nosso sistema que estudo que também pode fazer diferença, que é a falta de assistência técnica aos agricultores das comunidades, uma vez que 78% dos agricultores entrevistados não possuem o ensino fundamental completo, nesse sentido, estudos indicam que agricultores com ensino superior costumam atribuir uma importância significativamente maior à biodiversidade e aos serviços ecossistêmicos em comparação àqueles com apenas o ensino fundamental (Mass *et al.*, 2021c) e 98% não recebem assistência técnica rural, o Nordeste brasileiro é o estado mais carente de assistência técnica para o agricultor familiar (IBGE/SIDRA, 2019).

De um modo geral, os agricultores veem a natureza como um elemento de valor e que interliga diferentes tipos de SE - nas falas analisadas, o termo natureza está sempre conectado aos serviços identificados e é repetido um grande número de vezes. Isso vai de encontro com diversos estudos que sugerem que os pequenos produtores agrícolas valorizam a natureza (Burgess *et al.*, 2000; Harrison *et al.*, 1998; Gullien e Barnes, 2013; Stupakÿ *et al.*, 2019).

No entanto, trabalhos na Europa (Estônia, Transilvânia, Inglaterra, Romênia, Suíça, Espanha e Portugal) também demonstram opiniões contrastantes dos agricultores sobre o valor da biodiversidade e da natureza. Um grupo considera que a natureza atua como fornecedora de serviços ecossistêmicos e que pode ser utilizada como instrumento para aumentar a produtividade e garantir a segurança alimentar. Em contraste, outro grupo de agricultores percebe a biodiversidade como um valor inerente e universal da natureza, dos ecossistemas e de todas as espécies vivas independente da sua utilidade para os seres humanos (Klebl *et al.*, 2024).

As percepções podem ser variadas e a realidade local certamente influencia nesse processo. Considerando a realidade do semiárido e nosso sistema de estudo, a natureza é vista como uma importante fonte de recursos e local de bem-estar. Apesar dos agricultores terem percebido um número menor dos SE de regulação, termos como chuva, temperatura e solo estão interconectados.

Os agricultores parecem identificar as chuvas como um fator de regulação da temperatura e qualidade do solo, podendo ser refletido na qualidade da produção de alimentos. Agricultores que praticam agricultura de sequeiro em regiões semiáridas da Índia também identificam as chuvas como elemento importante na produção de alimentos, uma vez que, sem as chuvas, a produção de alimentos seria amplamente impactada com reduções no rendimento das colheitas, diminuição da fertilidade do solo, biodiversidade e uma elevada frequência de eventos de seca (Singha *et al.*, 2023). Os agricultores das comunidades Fornos e Pau D'Arco no semiárido do

Piauí identificam a natureza como provedora de serviços essenciais, no entanto, não veem a natureza apenas como caminho ou fonte para ganhos econômicos, mas também como fonte de bem-estar e lazer. Muitos estudos afirmam que os interesses econômicos não são os únicos determinantes do comportamento dos agricultores (Burton *et al.*, 2008; Hammes *et al.*, 2016; Shenk *et al.*, 2007; Siebert *et al.*, 2006). Desse modo, um estudo na Alemanha sugere que a compreensão dos agricultores sobre a natureza e sua proteção é importante em todas as etapas do raciocínio do produtor sobre a adoção de medidas de proteção a natureza (Stupakÿ *et al.*, 2019). Nesse sentido, conhecer como os agricultores percebem e como eles valorizam os serviços pode ajudar na definição de estratégias de manejo e políticas públicas para esse segmento.

Considerações para Pesquisa, Política e Prática de Sistemas Alimentares Baseados na Comunidade

Nossos dados demonstraram que os agricultores possuem uma percepção abrangente sobre vários SE, reconhecendo e valorizando os serviços em todas as categorias, no entanto, com maior destaque para provisão e cultural. Entender o perfil dessa percepção é fundamental e deve estar presente nas decisões de políticas públicas e/ou na tomada de decisões locais da própria comunidade, fundamentando medidas de alívio imediato com soluções sustentáveis de longo prazo. Nesse sentido, para melhorar o entendimento dos agricultores em relação à percepção sobre os serviços ecossistêmicos na região estudada, apresentamos três recomendações para facilitar o entendimento dos agricultores:

- 1) Implementação de políticas públicas efetivas para melhorar a qualidade de vida dos agricultores, baseando-se nos serviços de provisão e serviços culturais, pois esses foram os serviços mais percebidos pelos agricultores;
- 2) Os agricultores percebem pouco sobre os serviços de regulação, portanto seria interessante desenvolver pesquisas para entender com mais detalhes como eles lidam com esses serviços e quais ações usam para lidar com as mudanças climáticas;
- 3) É fundamental que haja trabalhos de Educação Ambiental para ajudar na mudança da percepção e sensibilização quanto aos serviços ecossistêmicos, sejam projetos voltados para adultos, como para as crianças. É importante trabalhar, por exemplo, questões sobre a importância dos insetos para a agricultura ou a importância das florestas para regulação climática e disponibilidade hídrica.

CONCLUSÃO

Nossos resultados corroboraram, parcialmente a nossa hipótese. Nossa hipótese previa que os agricultores familiares perceberiam os serviços ecossistêmicos de provisão com mais frequência, associando a água da chuva como a principal fonte de abastecimento para a produção de alimentos e modificação da paisagem.

Apesar dos serviços de provisão terem sido os mais frequentes e mais importantes, é importante destacar que a grande importância que eles atribuíram aos serviços culturais. A natureza foi elemento central onde todas as atividades de produção de alimentos e lazer, demonstrando que eles estão intimamente conectados à natureza. Ficou claro também que os agricultores precisam de suporte e mais informação sobre a importância da biodiversidade em geral, de modo a valorizar mais o papel de insetos e, até enxergar outras formas de manejo sustentável, como o uso de insetos para o controle biológico. Além disso, as áreas naturais podem ser mais bem cuidadas e mantidas para que sejam áreas de lazer mais acessíveis e com qualidade de uso por parte da população.

REFERÊNCIAS

Allen, I., & Seaman, C. (2007). Likert scales and data analysis. Quality progress. Retrieved from http://asq.org/quality-progress/2007/07/statistics/likert-scales-and-data-analyses.html

Almeida, Áurea S., Ferreira, J. N., & Coudel, E. S. (2023). Percepção de serviços ecossistêmicos por agricultores familiares no município de Irituia/PA, Amazônia oriental: subsídios para a restauração florestal. *Desenvolvimento E Meio Ambiente*, 62. https://doi.org/10.5380/dma.v62i0.84539

Almeida, Áurea S., Ferreira, J. N., & Coudel, E. S. (2023). Percepção de serviços ecossistêmicos por agricultores familiares no município de Irituia/PA, Amazônia oriental: subsídios para a restauração florestal. *Desenvolvimento E Meio Ambiente*, 62. https://doi.org/10.5380/dma.v62i0.84539

Aniah, P., & Bawakyillenuo, S. (2024). Gender vulnerability and coping strategies to changing provisioning ecosystem services in Bongo and Kassena-Nankana West districts in the Upper East Region of Ghana. *Environment*, 29(11), 1421–1435. https://doi.org/10.1080/13549839.2024.2391041

Aniah, P., & Bawakyillenuo, S. (2024). Gender vulnerability and coping strategies to changing provisioning ecosystem services in Bongo and Kassena-Nankana West districts in the Upper East Region of Ghana. *Environment*, 29(11), 1421–1435. https://doi.org/10.1080/13549839.2024.2391041

Baggethun, E., Martín-López, B., & Pérez-Rincón, M. (2018). Ampliando o espaço avaliativo para serviços ecossistêmicos: Uma taxonomia de valores plurais e métodos de avaliação. *Valores Ambientais*, v. 27, p. 29-53. https://doi.org/10.3197/096327118X15144698637513

Benoit, K. (2018). Quanteda: An R package for the quantitative analysis of textual data. Journal Open Source Software, v. 30, n. 3.

Brunson, JCG (2017) Galluvial. layered grammar for alluvial plots. Journal of Open-Source Software, n. 5, v. 49.

Burgess, J., Clark, J., & Harrison, CM (2000). Knowledges in action: an actor network analysis of a wetland agri-environment scheme. **Ecological Economics**, v. 35, n. 1, p. 119–132. https://doi.org/10.1016/S0921-8009(00)00172-5.

Burton, RJ, Kuczera, C., & Schwarz, G. (2008). Exploring farmers' cultural resistance to voluntary agri-environmental schemes. *Sociology Rurales*, v. 48, n. 1, p. 16-37.

Calvet-Mir, L., Gómez-Baggethun, E., & Reyes-García, V. (2012). Beyond food production: Ecosystem services provided by home gardens. A case study in Vall Fosca, Catalan Pyrenees, Northeastern Spain. *Ecological Economics*, v. 74, p.153-160,2012. https://ideas.repec.org/a/eee/ecolec/v74y2012icp153-160.html.

Csárdi, G. Igraph: network analysis and visualization., v.1, n.16. 2020.

Diaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A, et al. (2019) Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366:1–10 DOI: 10.1126/science.aax3100

Dominati, E., Patterson, M., & Mackay, A. (2010). framework for classifying and quantifying the natural capital and ecosystem services of soils. *Ecological Economics*, v. 69, n. 9, p. 1858-1868. https://doi.org/10.1016/j.ecolecon.2010.05.002.

Fagerholm, N., Käyhkö, N., Ndumbaro, F., & Khamis, M. (2012). Community stakeholders' knowledge in landscape assessments Mapping indicators for landscape services. *Ecological Indicators*, v. 18, p. 421-433, https://doi.org/10.1016/j.ecolind.2011.12.004.

Fagerholm, N., et al. (2019). Cross-site analysis of perceived ecosystem service benefits in multifunctional landscapes. *Global Environmental Change*, v. 56, p. 134-147, 2019. Disponível em: https://doi.org/10.1016/j.gloenvcha.2019.04.002.

Fang, X., Ghazali, S., Azadi, H. et al. (2024). Agricultural land conversion and loss of ecosystem services: a meta-analysis *Environ Dev Sustain* 26, 23215-23243 (2024). https://doi.org/10.1007/s10668-023-03597-z

Giansanti, R. O desafio do desenvolvimento sustentável. São Paulo: Atual, 1998.

Gliessman, S. R. *Agroecologia: processos ecológicos em agricultura sustentável*. 2001. Guillem, E. E.; Barnes, (2013). A. Farmer perceptions of bird conservation and farming management at a catchment level. *Land Use Policy*, v. 31, p. 565-575. https://doi.org/10.1016/j.landusepol.2012.09.002.

Hammes, V., Eggers, M., Isselstein, J., & Kayser, M. (2016). The attitude of grassland farmers towards nature conservation and agri-environment measures A survey-based analysis. *Land Use Policy*, v. 59, p. 528-535, . https://doi.org/10.1016/j.landusepol.2016.09.023.

Harrison, CM, Burgess, J., & Clark, J. (1998). Discounted knowledges: farmers' and residents' understandings of nature conservation goals and policies. **Journal of** *Environmental Management*, v. 54, n. 4, p. 305-320.: https://doi.org/10.1006/jema.1998.0242.

Jacomine, PKT (1986). Levantamento exploratório reconhecimento de solos do Estado do Piauí. Rio de Janeiro: EMBRAPA-SNLCS/SUDENE-DRNKLEBL, F.; FEINDT, P.

Klebl, F., Feindt, PH, & Piorr, A. (2024) Farmers' behavioural determinants of on-farm biodiversity management in Europe: a systematic review. *Agriculture and Human Values*, v. 41, p. 831-861. https://doi.org/10.1007/s10460-023-10505-8

Kross, SM, Ingram, KP, Long, RF, & Niles, MT (2018) Perceptions and behaviors of farmers related to wildlife and conservation actions on the farm. *Conservation Letters*, v. 11, p. e12364. https://doi.org/10.1111/conl.12364.

Küchen, L., et al. (2023). Where and why is landscape considered valuable? Societal actors' perceptions of ecosystem services across Bavaria (Germany). *Ecosystems and People*, v. 19, n. 1, p. 2192813, 2023. http://doi.org/10.1080/26395916.2023.2192813.

Leroy, D., & Barrasa García, S. (2021). Quais serviços ecossistêmicos são realmente integrados à cultura local? Percepções dos agricultores sobre os Páramos colombianos e venezuelanos. *Hum Ecol* 49, 385–401. https://doi.org/10.1007/s10745-021-00251-y

Maas, B., Fabian, Y., Kross, SM, & Richter, A. (2021a). Divergent farmer and scientist perceptions of agricultural biodiversity, ecosystem services and decision-making. *Biological Conservation*, v. 256, 109065 https://doi.org/10.1016/j.biocon.2021.109065.

Maas, B., Fabian, Y., Kross, SM, & Richter, A. (2021b). Divergent farmer and scientist perceptions of agricultural biodiversity, ecosystem services and decision-making. *Biological Conservation*, v. 256, 109065 https://doi.org/10.1016/j.biocon.2021.109065

Maas, B., Fabian, Y., Kross, SM, & Richter, A. (2021c). Divergent farmer and scientist perceptions of agricultural biodiversity, ecosystem services and decision-making. *Biological Conservation*, v. 256, 109065 https://doi.org/10.1016/j.biocon.2021.109065

Marengo, JA, Torres, RR, & Alves, LM (2017). Seca no Nordeste do Brasil passado, presente e futuro. *Climatologia Teórica e Aplicada*, 129, 1189–1200. https://doi.org/10.1007/s00704-016-1840-80

Marengo J.; Alves L.; Beserra E.; Lacerda F. (2011). Variabilidade e mudanças climáticas no semiárido brasileiro.

Martínez-Paz, JM, Albaladejo García, JA, & Alcon, F. (2022). When cultural services and biodiversity matter most: Gaining a deeper insight into badlands ecosystem services preferences. *Land Degradation e Development*. 34 (2), 545–557 https://doi.org/10.1002/ldr.4478.

Martín-López, B., Iniesta-Arandia, I., García-Llorente, M., Palomo, I., Casado-Arzuaga, I., Del Amo, DG, Gómez-Baggethun, E., Oteros-Rozas, E., Palacios-Agundez, I., Willaarts, B., González, JA, Santos-Martín, F., Onaindia, M., López-Santiago, C., & Montes, C. (2012a). Uncovering ecosystem service bundles through social preferences. *PLoS ONE*, v. 7, n. 6, e38970. https://doi.org/10.1371/journal.pone.0038970.

Martín-López, B., Iniesta-Arandia, I., García-Llorente, M., Palomo, I., Casado-Arzuaga, I., Del Amo, DG, Gómez-Baggethun, E., Oteros-Rozas, E., Palacios-Agundez, I., Willaarts, B., González, JA, Santos-Martín, F., Onaindia, M., López-Santiago, C., & Montes, C.

(2012b). Uncovering ecosystem service bundles through social preferences. *PLoS ONE*, v. 7, n. 6, e38970.https://doi.org/10.1371/journal.pone.0038970

Medeiros, RM, Tavares, AL, Kassar, CB, Silva, JAS, & Silva, VPR (2012).. Metodologias de cálculo da temperatura média diária do ar: aplicação para os municípios de Parnaíba, Picos e Gilbués, PI. *Revista Brasileira de Agricultura Irrigada*, v. 6, n. 4, p. 283-295. https://www.sbagro.org/files/biblioteca/2516.pdf

Melo, R. F. de; Voltolini, T. V. (2019) (editores técnicos). *Agricultura familiar dependente de chuva no Semiárido*. 467 p. Il. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/204569/1/Agricultura-familiar-dependente-de-chuva-no-semiarido-2019.pdf

Milcu, AJ, Hanspach, J., Abson, D., & Fischer, J. (2013) Cultural ecosystem services: A literature review and prospects for future research. **Ecology and Society,** v. 18, n. 3, p. 344. http://dx.doi.org/10.5751/ES-05790-180344

MILLENNIUM ECOSYSTEM ASSESSMENT. *Ecosystems and Human Well-Being; Biodiversity Synthesis*. Washington, DC: World Resources Institute, 2005.

Miller, E. F. et al. (2021). Spatial distribution and perceived drivers of provisioning service values across an East African montane forest landscape. *Landscape and Urban Planning*, v. 207, p. 103995. https://doi.org/10.1016/j.landurbplan.2020.103995

Muhamad, D., Okubo, S., Harashina, K., Parikesit, Gunawan, B., & Takeuchi, K. (2014). Living close to forests enhances people's perception of ecosystem services in a forest–agricultural landscape of West Java, Indonesia. *Ecosystem Services*, v. 8, p. 197-206. https://doi.org/10.1016/j.ecoser.2014.04.003.

Osório de Sousa, L. M., Barbosa de Melo, D. ., Marques Rocha Ferreira, L. ., & Molozzi, J. . (2024a). The rural and urban community perceptions of ecosystem goods and services in the semi-arid reservoirs landscape. *Ethnobiology and Conservation*, 13. https://doi.org/10.15451/ec2024-07-13.18-1-11

Osório de Sousa, L. M., Barbosa de Melo, D. ., Marques Rocha Ferreira, L. ., & Molozzi, J. . (2024b). The rural and urban community perceptions of ecosystem goods and services in the

semi-arid reservoirs landscape. *Ethnobiology and Conservation*, 13. https://doi.org/10.15451/ec2024-07-13.18-1-11

Palacio-Prieto, JL, et al. (2016). Erosion, culture and geoheritage; the case of Santo Domingo Yanhuitlán, Oaxaca, México. *Geo heritage*, v. 8, p. 359–369. https://doi.org/10.1007/s12371-016-0175-2. Paudyal, K., Baral, H., & Keenan, RJ (2018) Assessing social values of ecosystem services in the Phewa Lake Watershed, Nepal. *Forest Policy and Economics*, v. 90, p. 67–81. https://doi.org/10.1016/j.forpol.2018.01.011.

Pennington, RT, Lavin, M., & Oliveira-Filho, A. (2009) .Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical for ests. Annual Review of *Ecology, Evolution, and Systematics* 40:437–45. https://doi.org/10.1146/annurev.ecolsys.110308.120327

Prado, D. E. (2003). As caatingas da América do Sul. In: Leal, I. R.; Tabarelli, M. & Silva, J. M. C. (eds.). Ecologia e conservação da caatinga. Ed. Universitária da UFPE, Recife. Pp. 3-73.

Rito KF, Arroyo-Rodríguez V, Queiroz RT, Leal IR, Tabarelli M (2017) A precipitação medeia o efeito da perturbação antrópica na vegetação da Caatinga brasileira. *J Eco* 105:828–838. https://doi.org/10.1111/1365-2745.127121

Schenk, A., Hunziker, M., & Kienast, F. (2007). Factors influencing the acceptance of nature conservation measures a qualitative study in Switzerland. *Journal of Environmental Management*, v. 83, n. 1, p. 66-79. https://doi.org/10.1016/j.jenvman.2006.01.010

Silva, J.M.C.; Leal, I.R. & Tabarelli, M. (2017). Caatinga: The largest tropical dry forest region in South America. Editora Springer

Siebert, R., Toogood, M. e Knierim, A. (2006), Factors affecting the participation of European farmers in biodiversity policies. *Rural Sociology*, 46: 318-340. https://doi.org/10.1111/j.1467-9523.2006.00420.x

Singh, NP, Ranjith, PC, Anand, B., & Kavitha, K. (2023). Comparative assessment of farmers perceptions on climate change: Experiences from semi-arid tropics of India. *Indian Journal of Traditional Knowledge*, v. 22, n. 4. https://doi.org/10.56042/ijtk.v22i4.7241

Sousa, M., Sousa Júnior, J., Neto, E., & Monteiro, J. (2025). Characterization of useful plants cultivated in productive homegardens in a rural community in the semi-arid region of northeastern Brazil. *Agroforestry Systems*. 99. 1-19. 10.1007/s10457-024-01122-3.

Stupak, N., Sanders, J., & Heinrich, B. (2019). The role of farmers' understanding of nature in shaping their uptake of nature protection measures. *Ecological Economics*, v. 157, p. 301-311, 2019. https://doi.org/10.1016/j.ecolecon.2018.11.022.

Summers, JK, & Smith, LM (2014) The role of social and intergenerational equity in making changes in human well-being sustainable. *A Journal of Environment and Society*, v. 43, p. 718-728.https://doi.org/10.1007/s13280-013-0483-6.

Tallman, HR (2011). Ecosystem services in agriculture: determining suitability for provision by collective management. *Ecological Economics*, v. 71, p. 131-139 https://doi.org/10.1016/j.ecolecon.2011.08.016.

Teixeira, HM, Vermue, A., Cardoso, IM, & Peña-Claros, M. (2018). Farmers show complex and contrasting perceptions on ecosystem services and their management. *Ecosystem Services*, v. 33, p. 44-58. http://doi.10.1016/j.ecoser.2018.08.006

Wang, B., Tang, H., & Xu, Y. (2017). Integrating ecosystem services and human well-being into management practices: insights from a mountain-basin area, China. *Ecosystem Services*, v. 27, p. 58-69. https://doi.org/10.1016/j.ecoser.2017.07.018

Wickham, H. Ggplot2: elegant graphics for data analysis. Springer-Verlag, v. 77, p. 1-13, 2017.

Zhang, W., et al. (2016). Awareness and perceptions of ecosystem services in relation to land use types: Evidence from rural communities in Nigeria. *Ecosystem Services*, v. 22, p. 150-160. https://doi.org/10.1016/j.ecoser.2016.10.011

Zhang, W., et al. (2007). Ecosystem services and dis-services to agriculture. *Ecological Economics*, v. 64, n. 2, p. 253-260, 2007. https://doi.org/10.1016/j.ecolecon.2007.02.024

Zoderer, BM, Tasser, E., Erb, K.-H., Stanghellini, PS, & Tappeiner, U. (2016). Identificando e mapeando a percepção dos turistas sobre os serviços ecossistêmicos culturais: Um estudo de caso de uma região alpina. *Land Use Policy*, v. 56, p. 251–261. https://doi.org/10.1016/j.landusepol.2016.05.004

CAPÍTULO III

HETEROGENEIDADE DA PAISAGEM E A IMPORTÂNCIA DA AGRICULTURA FAMILIAR PARA A COMUNIDADE DE ABELHAS (HYMENOPTERA: APOIDEA) NO SEMIÁRIDO BRASILEIRO

RESUMO

A homogeneização das paisagens agrícolas em larga escala pode reduzir a diversidade de polinizadores e comprometer os serviços ecossistêmicos de polinização. Este estudo avaliou o efeito da heterogeneidade da paisagem sobre a assembléias de abelhas em uma região semiárida do estado do Piauí, Nordeste do Brasil. A área de estudo abrange os municípios de Santana do Piauí, São José do Piauí, Sussuapara e Picos. Os pontos de coleta foram definidos por imagens de satélite e validados em campo, incluindo o uso de drones para analisar a heterogeneidade da paisagem. Foram delimitadas 16 paisagens com um buffer de 1 km, onde foram instaladas 96 armadilhas do tipo pan trap (seis por ponto de coleta). O mapeamento foi realizado no QGIS, classificando o uso e ocupação do solo em oito categorias: Água, Savana, Agricultura Familiar, Assentamento Humano, Floresta, Solo Exposto, Pastagem Nativa e Área Urbana. Além disso, foi utilizado o Índice de Vegetação Normalizada (NDVI) para avaliar a variação sazonal da cobertura vegetal. As métricas de paisagem calculadas incluíram densidade de fragmentos (patch density), porcentagem da paisagem e índice de diversidade de Shannon, analisadas em quatro escalas espaciais (250, 500, 750 e 1000 metros). Foram coletadas 432 abelhas das famílias Apidae, Halictidae, Rophitinae e Megachilidae, sendo Apidae a mais abundante, com destaque para Trigona spinipes (128 indivíduos), Melitoma cf segmentaria (46) e Melitoma sp (55). Os resultados indicam que a composição e abundância das abelhas são influenciadas pela estrutura da paisagem. Assentamentos humanos tiveram uma relação positiva com a abundância de abelhas em escalas de 750 a 1000m, sugerindo maior oferta de recursos florais. A riqueza de espécies variou sazonalmente, influenciada pelo patch density da Savana e pelo NDVI, reforçando a importância da heterogeneidade da paisagem para a conservação de polinizadores.

Palavras-chave: Policultivos; caatinga, ecologia; serviços ecossistêmicos

LANDSCAPE HETEROGENEITY AND THE IMPORTANCE OF FAMILY FARMING FOR THE BEE COMMUNITY (HYMENOPTERA: APOIDEA) IN THE BRAZILIAN SEMI-ARID REGION

ABSTRACT

The large-scale homogenization of agricultural landscapes can reduce pollinator diversity and compromise pollination ecosystem services. This study evaluated the effect of landscape heterogeneity on the bee taxocenosis in a semi-arid region of the state of Piauí, northeastern Brazil. The study area covers the municipalities of Santana do Piauí, São José do Piauí, Sussuapara and Picos. The collection points were defined by satellite images and validated in the field, including the use of drones to analyze the heterogeneity of the landscape. Sixteen landscapes were delimited with a buffer of 1 km, where 96 pan traps were installed (six per collection point). Mapping was carried out in QGIS, classifying land use and occupation into eight categories: Water, Savannah, Family Farming, Human Settlement, Forest, Exposed Soil, Native Grassland and Urban Area. In addition, the Normalized Vegetation Index (NDVI) was used to assess the seasonal variation in vegetation cover. The landscape metrics calculated included patch density, landscape percentage and Shannon diversity index, analyzed at four spatial scales (250, 500, 750 and 1000 meters). A total of 432 bees from the Apidae, Halictidae, Rophitinae and Megachilidae families were collected, with Apidae being the most abundant, especially Trigona spinipes (128 individuals), Melitoma cf segmentaria (46) and Melitoma sp (55). The results indicate that the composition and abundance of bees are influenced by the structure of the landscape. Human settlements had a positive relationship with bee abundance at scales of 750 to 1000m, suggesting a greater supply of floral resources. Species richness varied seasonally, influenced by Savannah patch density and NDVI, reinforcing the importance of landscape heterogeneity for pollinator conservation.

Keywords: Polycultures; caatinga, ecology; ecosystem services

INTRODUÇÃO

As paisagens agrícolas ocupam 87% das terras mundiais (Poore e Nemecek, 2018) e a configuração desses ambientes de cultivo, seja mais heterogênea ou mais homogênea, influencia vários aspectos ecológicos, como o movimento dos animais, a persistência populacional, a interação entre as espécies e a oferta dos serviços ecossistêmicos (Fahring, 2007; Loyett *et al.*, 2005). Por ex., em paisagens com grandes extensões agrícolas, como em monoculturas, observa-se uma riqueza maior de espécies de animais à medida que aumenta sua proximidade de áreas naturais (Aviron *et al.*, 2005; Tscharntke *et al.*, 2005; Billeter *et al.*, 2008).

Nesse contexto, a heterogeneidade da paisagem é entendida como a diversidade de composição e configuração dos elementos da paisagem e possui grande influência na diversidade de tipos de ambientes disponíveis (Ryser *et al.*, 2021). Assim, o aumento da heterogeneidade da paisagem, quando acompanhado de quantidades suficientes de ambientes naturais disponíveis, afetará positivamente a diversidade de seres vivos de uma comunidade, porque paisagens heterogêneas nessas condições aumentam a diversidade de recursos (Stein, Gerstner, Kreft, 2014).

Por outro lado, com o aumento da homogeneização das paisagens agrícolas em grandes escalas pode promover a perda da diversidade de polinizadores (Moreira *et al.*, 2018). Essa homogeneização, causada principalmente pela intensificação agrícola (Tscharntke et al., 2005), pode ser um sério problema quando se considera que, em ecossistemas tropicais, 94% das plantas dependem, em algum grau, de polinizadores para a adequada produção de sementes e frutos (Ollerton *et al.*, 2011), sendo essa atividade realizada principalmente por abelhas (Klein *et al.*, 2007; Ollerton *et al.*, 2011).

Portanto, paisagens ricas em recursos florais, como fontes de néctar ou pólen, recursos para a nidificação, como ocos de madeira e solo, e materiais necessários para a construção dos ninhos, como pétalas, óleos, folhas, resinas e madeira, devem estar presentes na composição da paisagem para acomodar uma alta diversidade de abelhas (Michener, 2007; Freitas e Alves, 2009)

Dessa forma, enriquecer monoculturas com ilhas vegetais, variando em complexidade estrutural da vegetação, pode promover comunidades ecológicas únicas acima e abaixo do solo e, assim, favorecer a diversidade multitaxa na escala da paisagem (Sanchez *et al.*, 2022). Por outro lado, o aumento da fragmentação da paisagem pode favorecer poucas espécies generalistas em detrimento da diversidade de assembleias de abelhas (Brown Paxton, 2009; Metzger *et al.*, 2019). estudo realizado na região semiárida do Ceará, no Brasil, constatou que

algumas espécies de abelhas podem apresentar respostas diferentes quanto à estrutura da paisagem, em comparação com aquelas encontradas em outras regiões (Flores *et al.*, 2019).

A região semiárida ocupa em torno de 11% do território brasileiro, caracterizada pela predominância do bioma Caatinga, uma floresta sazonal brasileira (Prado, 2003; Pennington et al., 2009). Embora a Caatinga seja um dos biomas de características semiáridas com maior biodiversidade do mundo (Hauff, 2010), apenas 2% de sua vegetação natural estão dentro de áreas protegidas e 27% de toda a sua cobertura terrestre foi convertida em uso agrícola (Castelletti *et al.*, 2003). O uso desenfreado de seus recursos naturais vem causando danos irreversíveis à diversidade da Caatinga (Schober, 2002), alterando sua vegetação natural para pastos herbáceos, culturas de ciclo curto, extração de lenha, culturas de subsistência (mandioca, milho) e pecuária (Perez-Marin *et al.*, 2013; Fernandes *et al.*, 2015).

Por outro lado, a forte sazonalidade nas precipitações pluviométricas na região resulta em uma variação na abundância de flores e na diversidade e abundância de abelhas. No entanto, muitas espécies solitárias apresentam registro de adultos ativos durante a estação seca, implicando em ausência de diapausa obrigatória (Zanella, 2008). Além disso, inventários rápidos para caracterização da apifauna em duas áreas do Leste da Paraíba reforçaram a interpretação de maior abundância de abelhas e sazonalidade menos marcada em locais com menor estresse hídrico (Zanella; Martins, 2005).

Nesse contexto, nosso objetivo foi avaliar o efeito da heterogeneidade da paisagem sob a taxocenose de abelhas em uma região semiárida do estado do Piauí, nordeste do Brasil. Mais especificamente, procuramos responder como a variação na paisagem afeta a diversidade, a abundância e a riqueza de abelhas. Esta é a primeira tentativa de analisar a heterogeneidade da paisagem no semiárido piauiense, e nosso estudo está baseado na seguinte hipótese: a maior heterogeneidade da paisagem está associada a um aumento na diversidade de espécies de abelhas (Figura 1).

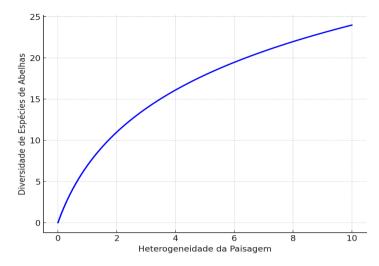


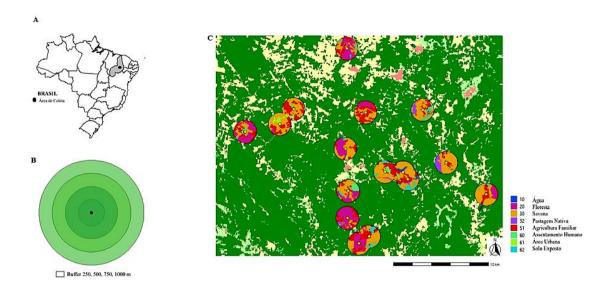
Figura 1. Efeitos esperados da heterogeneidade da paisagem associados a um aumento na diversidade de espécies de abelhas. espera-se que tenha um aumento da diversidade de abelhas à medida que a heterogeneidade da paisagem aumenta, visto que a heterogeneidade aumenta a riqueza e a abundância de espécies de abelhas (Steckel *et al.*, 2014; Papanikolaou *et al.*, 2017; Angel-Coca *et al.*, 2020).

1 MATERIAL E MÉTODOS

Região de estudo

A região de estudo está localizada nos municípios de Santana do Piauí, São José do Piauí, Sussuapara e Picos, Nordeste do Brasil (Figura 2). Essa região apresenta dois períodos bem definidos: um período chuvoso e um período seco, sendo este último mais prolongado, com duração de 7 a 8 meses ao ano (Aguiar e Gomes, 2004). No estado do Piauí, a Caatinga ocupa uma área de 252.378 km², representando 37% do território estado.

A vegetação da região é classificada como floresta seca sazonal (Prado, 2003; Pennington et al., 2009; Santos et al., 2011). Com a cobertura de vegetação xeromorfa composta por florestas de porte baixo, com dossel geralmente descontínuo, folhagem decídua na estação seca e árvores e arbustos comumente armados com espinhos ou acúleos. Entre as famílias botânicas mais comuns estão Fabaceae, Euphorbiaceae, Malvaceae, Asteraceae e Cactaceae (Coe e Sousa, 2014).


Seleção de paisagens, métricas das paisagens e seleção da escala de efeito

Os pontos de coleta foram inicialmente definidos com base em imagens de satélite (Google Maps), considerando aspectos visuais de uso do solo. Posteriormente, visitas de campo foram realizadas para validação em campo e seleção das áreas com base em acessibilidade e autorização dos proprietários, uma vez que todas as coletas ocorreram em propriedades privadas.

Para complementar a caracterização da paisagem, foram obtidas imagens aéreas com o drone DJI Mavic Pro, equipado com câmera de 12 MP (sensor CMOS 1/2.3"), Lente: FOV 78.8°, 28 mm (equivalente em 35 mm), f/2.2 Tipo de imagem: JPEG / DNG (RAW). Os voos foram realizados a uma altura padronizada de 79 metros, com cobertura média de 84 × 63 metros por imagem e resolução espacial estimada entre 2,2 e 2,5 cm/pixel. Essas imagens foram utilizadas para refinar a classificação do uso do solo e identificar elementos estruturais da paisagem não captados nas imagens de satélite.

Foram selecionadas 16 paisagens (Figura 2), delimitadas por buffers circulares de 1 km de raio. Inicialmente, considerou-se a aplicação de buffers de 2000 metros; no entanto, essa configuração gerou sobreposição entre áreas amostradas. Para evitar essa sobreposição e garantir a independência espacial entre as unidades amostrais, optou-se por buffers com raio máximo de 1000 metros. Dentro desse limite, foram testadas quatro escalas espaciais (250, 500, 750 e 1000 metros) para avaliar o efeito da paisagem sobre as comunidades de abelhas.

Figura 2. Mapa de uso e cobertura do solo das 16 paisagens com 1 km de raio estudadas nas regiões de São José do Piauí, Santana do Piauí, Sussuapara e Picos, Nordeste do Brasil.

Para o mapeamento foi feito com o software QGIS 3.22, utilizando classificação visual supervisionada. As classes foram definidas com base nas categorias do MapBiomas (Coleção 8), adaptadas à realidade local, com as seguintes categorias: Água (Classe 10), Savana (30), Agricultura Familiar (51), Assentamento Humano (60), Floresta (20), Solo Exposto (62), Pastagem Nativa (32) e Área Urbana (61). Adicionalmente, considerando que a Caatinga tem uma sazonalidade muito marcada, foi utilizado o índice de vegetação da diferença normalizada (NDVI) para avaliar a variação da cobertura vegetal em dois períodos distintos (Seco e Chuvoso).

Foram calculadas as seguintes métricas: densidade de fragmentos (patch density), porcentagem da paisagem (percentage of landscape) e o índice de diversidade de Shannon, com uso do pacote landscapemetrics no RStudio. O índice de Shannon foi aplicado com base na proporção das diferentes classes de uso do solo em cada buffer, quantificando a diversidade de tipos de cobertura dentro de cada paisagem. Foram testadas quatro escalas espaciais (250, 500, 750 e 1000 metros) para avaliar o efeito da paisagem sobre as comunidades de abelhas. Inicialmente, os buffers foram definidos com raio de 2000 metros, mas houve muita sobreposição entre as áreas. Para evitar essa sobreposição e garantir a independência entre as paisagens amostradas, optou-se por limitar o raio máximo a 1000 metros, definindo as escalas analisadas dentro desse limite

Monitoramento, coleta e identificação das abelhas

Para o monitoramento da fauna de abelhas, foram realizadas coletas nas 16 paisagens selecionadas (Figura 2). As coletas foram realizadas utilizando armadilhas tipo *pan traps*, um método de coleta passivo baseando-se na atração por recipientes coloridos, que permite amostrar diferentes áreas simultaneamente. Foram utilizados recipientes (18,0 cm de diâmetro x 9,0 cm de altura) com água e algumas gotas de detergente, pintados com tinta UV *spray* nas cores amarela, azul e branca (cor original), cores mais atrativas para abelhas (Cane *et al.*, 2000) (Figura 3).

As coletas foram realizadas a cada dois meses, abrangendo os períodos da estação seca (junho, agosto, outubro) e da estação chuvosa (dezembro, fevereiro, abril). Em cada contexto de paisagem, foram implantadas seis *pan traps*: três na área limítrofe do buffer e três na área internas do buffer de 1 km, totalizando 96 armadilhas. As armadilhas foram instaladas a uma altura de 1,5 m do solo, inseridas com parafusos em suportes de PVC e espaçadas a 20 m entre si (Figura 3). Cada armadilha ficou exposta por 24 horas (Lebuhn *et al.*, 2009).

As abelhas coletadas foram colocadas em tubos de plástico e, em seguida, levadas ao laboratório de Biologia da Universidade Estadual do Piauí, em Picos-PI, onde foram triadas e alfinetadas. A identificação das abelhas foi realizada até o menor nível taxonômico possível (as identificações chegaram ao nível de espécie e gênero). Para a confirmação das espécies, utilizou-se a coleção de abelhas nativas do Laboratório de Zoologia da Universidade Federal da Paraíba e todas as abelhas foram depositadas na coleção de Zoologia da Universidade Federal da Paraíba/*Campus* I.

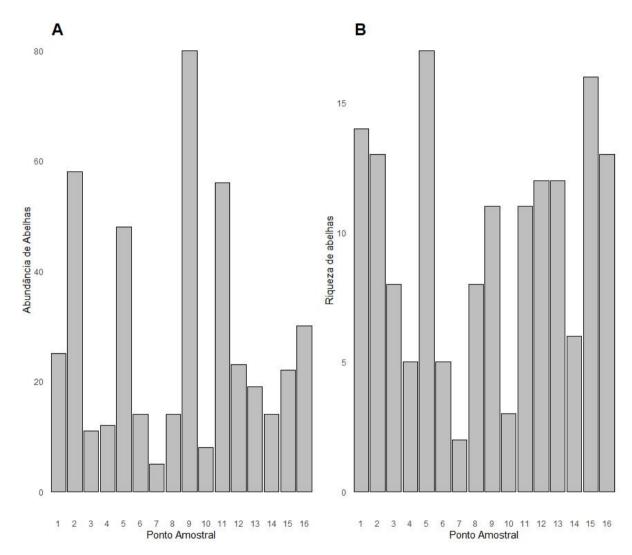
Figura 3. Locais de coletas de abelhas. Região Semiárida, Piauí, Nordeste do Brasil (A) Armadilha dentro do fragmento, (B) Armadilha em áreas cultiváveis, (C) Armadilhas na borda da mata, (E) Área de colete em período seco, (F e G) Área de coleta em período chuvoso

Análises estatísticas

As variáveis resposta usadas nas análises foram a riqueza, a abundância e a diversidade dos visitantes nos diferentes pontos de coleta. Estimamos a diversidade de abelhas usando o índice de Shannon–Wiener (Hÿ) calculado com o pacote vegan (Oksanen *et al.*, 2017). Os dados de abundância e riqueza foram transformados em log para aplicação nos modelos. As variáveis preditoras (patch density, percentage of landscape, landscape diversity index), considerando as diferentes escalas de efeito extraídas, foram testadas por meio de regressões lineares para avaliar o seu efeito sob as variáveis resposta. As análises foram realizadas no R (R Core Team, 2024) com o auxílio do R Studio (RStudio Team, 2020).

2 RESULTADOS

Durante o período de junho de 2022 a abril de 2023 foram coletadas 432 abelhas, o levantamento registrou espécies de abelhas das famílias Apidae, Halictidae incluindo a subfamília Rophitinae) e Megachilidae. Apidae apresentou a maior riqueza e abundância, com destaque para *Trigona spinipes* (128 indivíduos, fevereiro, junho, agosto, outubro e dezembro), *Melitoma cf segmentaria* (46 indivíduos) e *Melitoma sp* (55 indivíduos). *Apis mellifera* (36 indivíduos, abril, junho, agosto, outubro) Entre as Halictidae, *Augochlora oxystoglossella cf modica* foram registradas (nove indivíduos, outubro e dezembro), seguida por *Augochlora oxystoglossella cf tenax* (oito indivíduos) e *Dialictus eff opacus* (11 indivíduos). A subfamília Rophitinae, pertencente à família Halictidae, teve um único registro de Ceblurgus longipalpis (4 indivíduos). Em Megachilidae, a única espécie registrada foi Lithurgus huberi, com 14 indivíduos. A **Tabela 1** detalha todas as espécies e gêneros coletados, bem como os meses de ocorrência.


Tabela 1. Espécies e gêneros de abelhas coletadas nas regiões de Santana do Piauí, Sussuapara, São José, e Picos-PI entre junho de 2022 e abril 2023.

Famíla	Género/Espécies	Abundância	Meses de coletas
Apidae	Ancyloscelis sp	1	Ago.
	Ancyloscelis apiformis (Fabricius,		Fev./Abr./Jun./Dez.
	1793)	23	
	Apis mellifera Linnaeus, 1758	35	Abr./Jun./Ago./Out.
	Trigona Sp	1	Out.
	Trigona fuscipennis	3	Fev.
	Trigona spinipes	128	Fev/Jun/Ago/Out/Dez.
	Xylocopa grisescens	2	Ago./Out.
	Melitoma cf Osmioides.sp1	1	Abr.
	Melitoma cf Apomearium	1	Abr.
	Melitomella sp.1	6	Fev/Abr/Dez
	Ptilothrix plumata	1	Dez.
	Ptilothrix sp	1	Ago.
	Ceratina cf maculifrons Smith, 1854	2	Fev.
	Ceratina maculifrons Smith, 1854	8	Ago/Out/Dez
	Diadasina sp	1	Fev
	Exomalopsis sp	1	Dez
	Epicharis bicolor (Smith,1854)	1	Jun

	Euglossa sp. Centris aenea Lepeletier, 1841	1	Fev
		1	Out
	Covativa an	1	Ago
	Ceratina sp	46	Jun/Ago/Fev.
	Melitoma segmentária	20	Fev/Abr
	Melitoma cf segmentaria	1	Fev
	Melitoma cf osmioides	55	Abr/Fev/Jun/Dez
	Melitomella sp	2	Ago.
	Plebeia sp	1	Ago
	Scaptotrigona eff depilis	2	Fev
	Scaptotrigona depilis	1	Dez
	Partamona sp	2	Fev
Halictidae	Leiopodus sp		Ago
	Augochlora oxystoglossella sp	1	
	Auglochlora augochlora sp 2	6	Jun/Dez
	Augochlora augochlora sp 1	4	Out
	Augochloropsis sp	2	Jun.
	Augochloropsis sp1	1	Fev.
	Augochlora oxystoglossella cf esox	4	Fev
	Augochlora oxystoglossella cf		Out/Dez
	modica	12	
	Augochlora oxystoglossella cf		Jun/Ago/Dez
	tenax	8	
	Augochlorella sp	5	
	Augochloropsis sp2	2	Jun/Out
	Augochlora esox	4	Ago/Dez
	Pseudaugochlora graminea	1	Out
	Pseudaugochlora pandora (Smith,		Dez
	1853)	2	
Halictidae: Rophitinae	Ceblurgus longipalpis Urban &	1	Dez
	Moure, 1993	4	
Halictinae	Dialictus eff opacus (Moure, 1940)	11	Jun/Ago/Dez
Halictinae	Dialictus sp1	2	Out/Dez
Megachilidae	Lithurgus huberi	14	Abr/Jun
Total		432	•

Riqueza e abundância entre os pontos amostrais

A riqueza de espécies variou entre as 16 paisagens amostradas (buffers de 1 km de raio), oscilando de 2 a 20 espécies. As maiores riquezas foram registradas nas paisagens 5 e 15, enquanto a menor foi observada na paisagem 7. A abundância também apresentou grande variação, com os maiores valores nas paisagens 9 e 11 (>80 indivíduos) e o menor na paisagem 7 (<10 indivíduos). As características ambientais e de uso do solo de cada uma dessas paisagens estão detalhadas no Material Suplementar (Tabela S1).

igura 4. A) Abundância e B) riqueza de abelhas por ponto amostral em áreas de cultivo de agricultura familiar e fragmentos de caatinga nos municípios de São José no Piauí, Picos, Sussuapara e Santana do Piauí, região semiárida do estado do Piauí Brasil

Relação com variáveis da Paisagem

Poucas variáveis preditoras demonstraram exercer efeito sobre as variáveis dependentes. No entanto, os efeitos foram percebidos em escalas de 250 a 1000m, dependendo da relação considerada. A abundância de abelhas foi positivamente influenciada pela

porcentagem de paisagens ocupadas por assentamento humano nas escalas espaciais de 750m (P = 0,012) e 1000m (P = 0,006) (Figuras 5A e 5B). Por outro lado, a riqueza foi influenciada por duas variáveis: o patch density de área de Savana e pelo NDVI. O patch density de áreas de Savana afetou positivamente a riqueza de abelhas em um raio de 500 metros (P = 0.047) e de maneira marginal em um raio de 250 metros (P = 0.0575) (Figuras 5C e D).

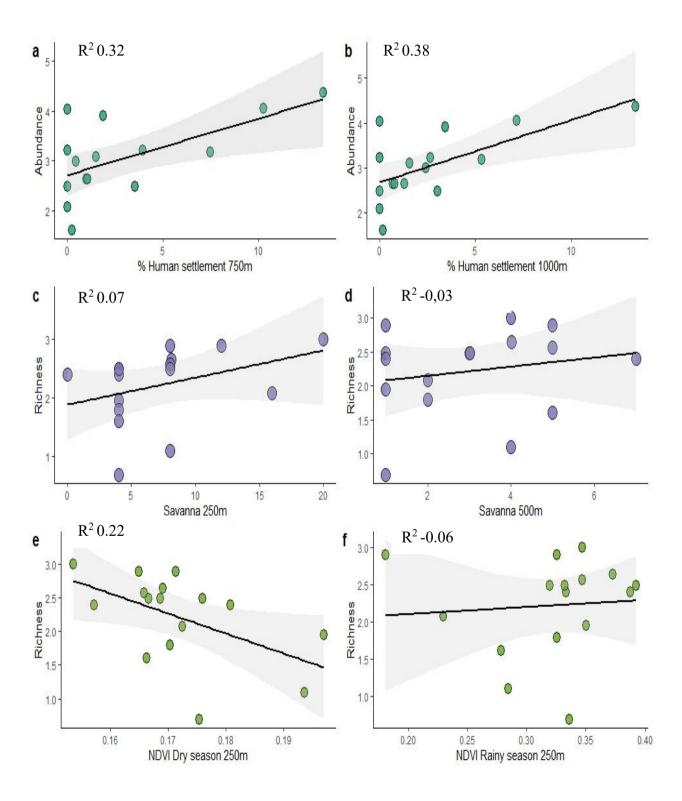


Figura 5. Relação entre métricas de paisagem e a assembléia de abelhasem região semiárida do estado do Piauí, Nordeste do Brasil. Efeito da porcentagem de assentamento humano sobre a abundância de abelhas em um raio de A) 750 metros (P=0,012) e B) 1000 metros (P=0,006); efeito do patch de Savanna sobre a riqueza de abelhas em um raio de C) 250 metros (P=0,0575) e D) 500 metros (P=0,047); e efeito do NDVI 250m sobre a riqueza em E) período seco (P=0.0391) e em F) período chuvoso (P=0,0768).

O NDVI também foi um fator de influência sobre a riqueza de abelhas quando considerado um raio de 250 metros, porém com respostas diferentes quando se considerou a sazonalidade. Em período de seca, o NDVI tem efeito negativo sob a riqueza (P= 0.0391)), enquanto na estação chuvosa, o efeito não foi significativo (P= 0,768). (Figuras 5E e F).

3 DISCUSSÃO

Nossos resultados mostram um efeito positivo da porcentagem de área ocupada por assentamentos humanos sobre a abundância de abelhas, nas escalas espaciais de 750 metros (P = 0,012) e 1000 metros (P = 0,006). Essa tendência pode estar associada às atividades desenvolvidas nesses assentamentos, especialmente no que se refere ao uso da terra e ao manejo agrícola. A maior parte dessas áreas são composta por unidades de agricultura familiar, onde predominam práticas de policultivo, como quintais produtivos (Sousa et al., 2025b), além de hortas e roças (Vaz et al., 2024a).

Policultivos tendem a sustentar uma comunidade de polinizadores mais diversa, promovendo uma ampla variedade de recursos florais (pólen, néctar), que atraem tanto espécies generalistas quanto especialistas (Sciligo et al., 2022; Bonner et al., 2015; Guzman et al., 2019). Por exemplo, sistemas consorciados de milho com abóbora, feijão, quiabo e batata-doce — todas culturas observadas nas comunidades estudadas (Vaz et al., 2024b) podem proporcionar uma oferta floral diversificada para as abelhas (Vides-Borrell et al., 2019).

Em nossas áreas de estudo, os quintais produtivos são elementos frequentes da paisagem e incluem o cultivo de abóbora, tomate-cereja, goiaba, quiabo, maxixe, pimentas e pimentão. Essas culturas, geralmente irrigadas com água de cisterna ou de poço, podem funcionar como ilhas de sobrevivência para as abelhas durante períodos de escassez de água e alimento.

A composição da comunidade de abelhas na área de estudo reforça a relação entre assentamentos humanos e a disponibilidade de recursos florais. *Trigona spinipes* foi a espécie mais abundante e já foi observado na Caatinga que essa espécie possui um amplo espectro de plantas visitadas (Lorenzo et al., 2003a). Esta espécie possui boa adaptação em habitats perturbados, como áreas urbanas e rurais, onde possui maiores densidades de ninhos em comparação com áreas florestais. Esta adaptabilidade a ambientes abertos e modificados pelo homem sustentam sua presença generalizada (Giannini *et al* 2015; Valadares *et al.*, 2021).

A presença das espécies como *Melitomella*, *Lithurgus huberi* e *Ancyloscelis* está relacionada ao período de preferência de certas plantas durante a estação chuvosa. Um estudo realizado na Caatinga revelou que três espécies simpátricas de *Convolvulaceae* que florescem nesse período agrupam seu pólen quase exclusivamente com abelhas oligoléticas. No estudo, *Melitoma segmentaria*, *M. osmioides* e *Melitomella murihirtaam* utilizam pólen de *Ipomoea bahiensis*, *Lithurgus huberi*, *I. nil*, e *Ancyloscelis apiformis*, junto com outras espécies utilizam pólen de *Merremia aegyptia* (Pick *et al.*, 2011). Embora não tenhamos realizado levantamento botânico na área de estudo, é possível que o padrão de florescimento observado em outras regiões semiáridas ajude a explicar a ocorrência dessas espécies. De modo geral, na Floresta

Tropical Seca Brasileira, os recursos florais estão mais concentrados nos períodos chuvosos, que costumam ser curtos e irregulares, com duração de 2 a 5 meses (Prado, 2003; Andrade et al., 2017).

Apis mellifera foi uma das espécies abundantes em nosso estudo, a presença dessa espécie pode estar relacionada à importância da apicultura no Piauí, que ocupa uma posição de destaque no cenário nacional. O estado do Piauí evidencia-se por ser o maior produtor de mel do Nordeste, apresentando-se na terceira posição entre os estados brasileiros (IBGE, 2020) Um exemplo significativo é o município de Picos, onde parte de nossa pesquisa foi realizada. Em 2023, Picos produziu 672,8 toneladas de mel, registrando um crescimento de 181,5% e subindo para a 9ª posição entre os maiores produtores do país (IBGE, PPM,2023). outro aspecto relevante é a sua capacidade adaptação a diferentes ambientes, podendo resistir em áreas simplificadas desfavoráveis para outras abelhas (Giannini et al., 2015; Magrach et al., 2017).

O ambiente de savana, mais preservado, parece ser importante para a riqueza de espécies, pois oferece recursos diferenciados de alimentação. Observamos que o patch density de áreas de savana influenciou positivamente a riqueza de abelhas na escala de 500 metros (P = 0.047), com efeito marginal na escala de 250 metros (P = 0.0575).

Caatinga, possui vegetação com diferenças sazonais de florescimento, uma estação chuvosa com alta diversidade de espécies floríferas, em contraste com a estação seca. Essa variação na disponibilidade de recursos gera um padrão sazonal de intenso forrageamento pelas abelhas na estação chuvosa seguida de queda significativa na seca (Martins 1994; Viana *et al.*, 1997; Aguiar *et al.*, 1995).

Essa variação na oferta de recursos florais gera um padrão sazonal de atividade das abelhas, caracterizado por intenso forrageamento no período chuvoso e queda significativa na seca (Martins, 1994; Viana et al., 1997; Aguiar et al., 1995). Esse comportamento acompanha o período de maior diversidade floral na região semiárida, que ocorre majoritariamente na estação chuvosa (Aleixo et al., 2014; Bendini et al., 2021).

Esse regime sazonal influencia diretamente a diversidade, distribuição e abundância das abelhas (Michener et al., 2007; Abrahamczyk et al., 2011), o que foi refletido nos nossos dados, que demosntraram um efeito negativo do NDVI sobre a riqueza durante a estação seca (P = 0,0391), e ausência de efeito no período chuvoso (P = 0,768).Por exemplo, um estudo realizado na Caatinga, especificamente na Serra da Capivara concluiu que, durante a estação chuvosa, ocorre uma sucessão de florações de diversas espécies (69 plantas), criando uma heterogeneidade temporal na oferta de recursos. Em contrapartida, na estação seca, a vegetação

perde suas folhas e reduz a produção floral, limitando a disponibilidade de recursos e resultando em apenas 11 espécies de plantas que mantêm a florada (Lorenzo *et al.*, 2003)

Esse padrão sazonal pode explicar a relação observada entre o NDVI e a riqueza de abelhas nos períodos chuvoso e seco. O NDVI mede a biomassa verde, e na estação chuvosa, onde há maior produtividade primária, espera-se que a comunidade de abelhas seja mais diversa. Isso ocorre porque a abundância de recursos sustenta uma maior diversidade de espécies. Por exemplo, estações chuvosas irregulares na caatinga podem afetar a atividade de voo de *Ceblurgus longipalpis*, uma espécie que depende principalmente de *Cordia leucocephala* para forragear (Aguiar e Martins, 1994)

4 CONCLUSÃO

Nossos resultados demonstram que a composição e abundância da comunidade de abelhas no semiárido piauiense estão diretamente influenciadas pela estrutura da paisagem. A presença de assentamentos humanos mostrou uma relação positiva com a abundância de abelhas em escalas espaciais de 750 a 1000m, sugerindo que essas áreas podem fornecer recursos florais ao longo do ano. Além disso, a riqueza de abelhas foi influenciada pelo *patch density* de áreas de Savana e pelo NDVI, com variações sazonais. A relação negativa entre NDVI e riqueza de abelhas na estação seca demosntrando que a disponibilidade de recursos florais é um fator importante para a manutenção da biodiversidade. Esses resultados reforçam a importância dos sistemas agrícolas diversificados, como os policultivos, na conservação de polinizadores, uma vez que garantem maior oferta de recursos florais ao longo do ano.

REFERÊNCIAS

AGUIAR, C.; MARTINS, C. Fenologia e preferência alimentar de *Ceblurgus longipalpis* Urban e Moure. **Revista Nodestina de Biologia**,(1994)

ANDRADE, EM; AQUINO, DN; CHAVES, LCG; LOPES, FB A água como capital e seus usos na Caatinga. In: SILVA, JMC; LEAL, IR; TABARELLI, M. (organizador). Caatinga - a maior região de floresta tropical seca da América do Sul . Cham: Springer, **2017** . pág. 281–302.

ALEIXO, D. L. et al. Mapeamento da flora apícola arbórea das regiões polos do estado do Piauí. **Revista Verde de Agroecologia e Desenvolvimento Sustentável**, v. 9, n. 4, p. 262–270, 2014.

AVIRON, S., BUREL, F., BAUDRY, J. E SCHERMANN, Carabid assemblages in agricultural landscapes: impacts of habitat features, landscape context at different spatial scales and farming intensity. **Agric. Ecosyst. Environ.**, **108**, 205–217. 2005.

BENEVIDES, C. R.; GAGLIANONE, M. C.; HOFFMANN, M. Visitantes florais do maracujáamarelo (Passiflora edulis f. flavicarpa Deg. Passifloraceae) em áreas de cultivo com diferentes proximidades a fragmentos florestais na região Norte Fluminense, RJ. **Revista Brasileira de Entomologia**, v. 53, n. 3, p. 415–421, 2009.

BENDINI, JN; SOUZA, DC; BARROS, RFM et al. Mapeamento da flora apícola em áreas produtoras de mel da microrregião do Alto Médio Canindé, Piauí, Brasil. **Revista Agro@ambiente On-line,** v. 15, p. 1-14, 2021.

BILLETER, R., LIIRA, J., BAILEY, D., BUGTER, R., ARENS, P., AUGENSTEIN, I.et al.(2008). Indicators for biodiversity in agricultural landscapes: a pan-European study. *J. Appl. Ecol.*, 45, 141–150.

BOESING, A. L., NICHOLS, E., METZGER, J. P. Efeitos da estrutura paisagística nos serviços de controle de pragas de insetos mediados por aviários: Uma Revisão. **Ecologia Paisagística**, 32, 931–944. (2017).

BONNER, C.; REBEK, E.; COLE, J.; KAHN, B.; STEETS, J. Intercalar plantas de recursos florais com plantas vegetais aumenta a abundância de artrópodes benéficos em um jardim

doméstico. **Registro de plantas nativas de Oklahoma**, v. 31-48, 2015. Disponível em: https://doi.org/10.22488/OKSTATE.17.100113.

BROWN, MJF; PAXTON, RJ .A conservação das abelhas: uma perspectiva global. *Apidologie* , v. 410–416, 2009. Disponível em: https://doi.org/10.1051/apido/2009019

CANE, J. H.. Habitat fragmentation and native bees: a premature verdict Conservation Ecology. 2001

CARNEIRO, M. G. R. *et al.* Quintais produtivos: contribuição à segurança alimentar e ao desenvolvimento sustentável local na perspectiva da agricultura familiar (O caso do assentamento Alegre, município de Quixeramobim/CE. **Revista Brasileira de Agroecologia**, n.8, v.2, 2013.

COE H.H.G.; SOUSA L.O.F. a The Brazilian "Caatinga": Ecology and Vegetal Biodiversity of a Semiarid Region. In: GREER, F. E. (Ed.). Dry Forests: Ecology, Species Diversity and Sustainable Management . 1. New York: **Nova Science**, p. 81

D. BOSCOLO, P.M. Tokumoto, P.A. Ferreira, J.W. Ribeiro, J.S. Santos Positive responses of flower visiting bees to landscape heterogeneity depend on functional connectivity levels **Perspectives in Ecology and Conservation**, 15 (1) pp. 18-24, 2008. 2017

FAHRIG, L. (2007), Non-optimal animal movement in human-altered landscapes. Functional Ecology, 21: 1003-1015. https://doi.org/10.1111/j.1365-2435.2007.01326.x

FERREIRA,PA; BOSCOLO, D.; CARVALHEIRO, LG et al. Respostas de abelhas à perda de habitat em paisagens fragmentadas da Mata Atlântica brasileira. **Ecologia da Paisagem**, v. 30, p. 2067–2078, 2015. Disponível em: https://doi.org/10.1007/s10980-015-0231-3

FLORES, LMA; ZANETTE, LRS; BOSCOLO, D.; ARAÚJO, FS Efeitos da estrutura da paisagem em conjuntos de abelhas e vespas em uma zona de amortecimento semiárida. **Paisagem Online**, n. 76, 2019. Disponível em: https://doi.org/10.3097/LO.201976

FREITAS, BM et al. Diversidade, ameaças e conservação das abelhas nativas na região Neotropical. *Apidologie*, v. 3, pág. 332-346, 2009.

GIANNINI, T. et al. Espécies de abelhas supergeneralistas nativas e não nativas têm efeitos diferentes nas redes planta-abelha. *PLoS ONE*, v. 10, 2015. Disponível em: https://doi.org/10.1371/journal.pone.0137198

GOVERNO DO PIAUÍ. O Piauí comercializa mel de abelha de alta qualidade no mercado nacional e internacional. 2023. Disponível em: https://www.pi.gov.br/piaui-comercializa-mel-de-abelha-de-alta-qualidade-no-mercado-nacional-e-internacional-1/. Acesso em: 28 fev. 2025.

GUZMAN, A.; CHASE, M.; KREMEN, C. Diversificação na fazenda em uma paisagem dominada pela influência agrícola certamente polinizadores especialistas. *Fronteiras em Sistemas Alimentares Sustentáveis*, 2019. Disponível em: https://doi.org/10.3389/fsufs.2019.00087

IBGE - Instituto Brasileiro de Geografía e Estatística. Pesquisa da pecuária municipal. Ano 2020. Disponível em: . Acessado em: 02 jan. 2022.

IBGE. Instituto Brasileiro de Geografia e Estatística. Censo Demográfico 2010. 2010. Disponível em http://cidades.ibge.gov.br.Acesso em abr. 2017

KLEIN, AM et al. Importância dos polinizadores na mudança de paisagens para as culturas mundiais. **Proceedings of the Royal Society B: Biological Sciences**, v. 274, p. 303–313, 2007.

LANDAVERDE-GONZÁLEZ P, et al. Sweat bees on hot chillies: provision of pollination services by native bees in traditional slash-and-burn agriculture in the Yucatán Peninsula of tropical Mexico. **J App Ecol.** (2017) doi:10.1111/1365-2664.12860

LORENZON, MCA; MATRANGOLO, CAR; SCHOEREDER, JH Flora visitada por abelhas eussociais (Hymenoptera, Apidae) na Serra da Capivara, na Caatinga do sul do Piauí. **Entomologia Neotropical**, v. 32, n. 1, pág. 27-36, 2003.

LOVETT, G.M., Jones, C.G., Turner, M.G. & Weathers, K.C. Ecosystem Function in Heterogeneous Landscapes. **Springer-Verlag**, New York, 2005.

MAIA-SILVA, C. et al. Abelhas sem ferro (*Melipona subnitida*) superam eventos de seca severa na floresta tropical seca brasileira optando por fontes alimentares de alto lucro.

Entomologia Neotropical , v. 49, p. 595-603, 2020. Disponível em: https://doi.org/10.1007/s13744-019-00756-8 .

METZGER, JP *et al*. Por que o Brasil precisa de suas Reservas Legais. **Perspectives in Ecology and Conservation**, v. 17, n. 3, p. 91-103, 2019. Disponível em: https://doi.org/10.1016/j.pecon.2019.07.002.

Michener CD The bees of the world. Johns Hopkins University Press, Baltimore .2007

MOREIRA, EF; BOSCOLO, D.; VIANA, BF Além do bem e do mal: efeitos dependentes do contexto da agricultura sobre as comunidades de polinizadores e suas interações. **Oecologia Australis**, v. 22, n. 4, p. 489–502, 2018. DOI: 10.4257/oeco.2018.2204.11

OLLERTON, J.; WINFREE, R.; TARRANT, S. Quantas plantas com flores são polinizadas por animais? **Oikos**, v. 321-326, 2011. Disponível em: https://doi.org/10.1111/j.1600-0706.2010.18644.x.

PENNINGTON, RT; LAVIN, M.; OLIVEIRA-FILHO, A. Diversidade, evolução e ecologia de plantas lenhosas nos trópicos: perspectivas de florestas tropicais sazonalmente secas. *Annual* **Review of Ecology, Evolution, and Systematics**, v. 40, p. 437-457, 2009.

PICK, RA; SCHLINDWEIN, C. Partição de pólen de três espécies de *Convolvulaceae* entre abelhas oligoléticas na Caatinga do Brasil. **Sistemática e Evolução Vegetal**, v. 293, p. 147–159, 2011. Disponível em: https://doi.org/10.1007/s00606-011-0432-4

POORE, J.; NEMECEK, T. Reducing food's environmental impacts through producers and consumers. **Science**, Washington, v. 360, n. 6392, p. 987-992, 2018. Disponível em: https://www.science.org/doi/10.1126/science.aaq0216. Acesso em: 19 out. 2024.

PRADO, D. As Caatingas da América do Sul. In: LEAL, IR; TABARELLI, M.; SILVA, JMC (org.). **Ecologia e conservação da Caatinga** . Recife: Editora Universitária UFPE, 2003. p. 3–73.

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.

RYSER, Remo *et al.* Landscape heterogeneity buffers biodiversity of simulated meta-foodwebs under global change through rescue and drainage effects. **Nature Communications**, v. 12, n. 1, p. 4716, 2021.

SCILIGO, A.; M'GONIGLE, L.; KREMEN, C. A diversificação local aumenta a visitação de polinizadores ao morango e pode melhorar a polinização e a comercialização. Frontiers in Sustainable Food Systems, v. 6, 2022. Disponível em: https://doi.org/10.3389/fsufs.2022.941840.

SOUSA, M.; SOUSA JÚNIOR, J.; NETO, E.; MONTEIRO, J. Caracterização de plantas úteis cultivadas em quintais produtivos em uma comunidade rural do semiárido nordestino. **Sistemas Agroflorestais**, v. 99, p. 1-19, 2025. DOI: 10.1007/s10457-024-01122-3 .Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17(7):866–880

TSCHARNTKE, T., KLEIN, A.M., KRUESS, A., STEFFAN-DEWENTER, I. E THIES, C. Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management. **Ecol.Lett.**, **8**, 857–874(2005).

TSCHARNTKE, T., KLEIN, A.M., KRUESS, A., STEFFAN-DEWENTER, I. E THIES, C. Landscape perspectives on agricultural intensification and biodiversity: ecosystem service management. **Ecol.Lett.**, **8**, 857–874(2005).

VALADARES, E.; CARVALHO, A.; MARTINS, C. Densidade de ninhos, distribuição espacial e bionomia de *Trigona spinipes* (Apidae: Meliponini). **Revista de Pesquisa** Apicultura, v. 62, p. 680-691, 2021. DOI: 10.1080/00218839.2021.1917861.

VAZ, MA et al. Diversificação de culturas e segurança alimentar: o papel da agricultura familiar na pandemia da COVID-19. **Revista Brasileira de Ciências Ambientais**, v. 60, e2090, 2024. Disponível em: https://doi.org/10.5327/Z2176-94782090.

VIDES-BORRELL, E.; PORTER-BOLLAND, L.; FERGUSON, B.; GASSELIN, P.; VACA, R.; VALLE-MORA, J.; VANDAME, R. Policulturas, pastagens e monoculturas: efeitos da intensidade do uso da terra na diversidade de abelhas selvagens em paisagens tropicais do

sudeste do México. **Conservação Biológica** , v. 236, pág. 269-280, 2019. DOI: 10.1016/j.biocon.2019.04.02 .

ZANELLA, F. C. V. Dinâmica temporal e espacial de abelhas solitárias no semi-árido do Nordeste do Brasil. In: ENCONTRO SOBRE ABELHAS, 8., 2008, Ribeirão Preto. Anais... Ribeirão Preto: FUNPEC, 2008. p. 284-291.

ZANELLA, F. C. V.; MARTINS, C. F. Abelhas (Hymenoptera, Apoidea, Apiformes) da área do Curimataú, Paraíba. In: ARAÚJO, F. S.; RODAL, M. J. N.; BARBOSA, M. R. V. (Org.). Análise das variações da biodiversidade do bioma Caatinga: suporte a estratégias regionais de conservação. Brasília, DF: Ministério do Meio Ambiente, 2005. p. 379-391.

ANEXO I

PROGRAMA DE PÓS-GRADUAÇÃO EM DESENVOLVIMENTO E MEIOAMBIENTE – MESTRADO- PRODEMA

INSTRUMENTO DE PESQUISA QUESTIONÁRIO

ARTIGO: DIVERSIFICAÇÃO DE CULTIVOS E SEGURANÇA ALIMENTAR: O PAPEL DA AGRICULTURA FAMILIAR NA PANDEMIA DE COVID-19

DATA:/ Entrevistador:	
	O DECCOAL CEDAL
•	O PESSOAL – GERAL
1. Idade:	2. Sexo: [] F [] M
	Estado Civil []
	Casado (a) []solteiro (a) [] União estável
3. Estado: []Piauí [] 4. Município:	
5. Local/Comunidade:	
6- Há quantos ano mora na comunidade?	
7- Quantos anos trabalha como agricultor (a)	
8- Escolaridade: [] não alfabetizado [] alfabetizado	[] Ensino fundamental [] Ensino médio
[] Ensino técnico [] Superior	3.70
9- Tem facilidade de acesso a educação? [] sim []	Não
10- Quantos membros compõem a família? []	
11- Tem assistência médica? [] sim [] não]	[]
12- O terreno que você trabalha é seu? [] sim [] Não 13 Tem alguma dessas doenças? [] postural [] respirat	
14- Tem acesso a lazer? [] Sim [] Não	oria [] outras
15- Possui documentos, quais:	
•	le eleitor []Cartão SUS
16 Participa de Organização social?	
[] Não [] Sim. Qual: [] Colônia de Pesca [] Associa	ação []STTR
Aspectos Econômicos e Mar	nejos de Produção
17 Possui quais beneficios	
[]N - 1 []D - 1 C (1'] D 0	
[]Nenhum []Bolsa família: R\$	[]Aposentadoria: R\$_[] Outro: Qual
18- Recebeu auxilio emergencial? [] sim [] Não	
19- Faz parte de algum programa do Governo Federa? []	Sim [] Não Qual?

20 Atividades que executa [] Agricultura
21 Atividades que executa fora da agricultura [] Comércio [] Outra:
22- Onde é vendido os alimentos produzidos ? [] Feira livre [] Porta em porta Supermercado []
23- Utiliza algum meio tecnológico para vender e divulgar os alimentos? Se sim quais? [] Sim [] Não
24 Participa de algum projeto que auxilia na comercialização dos alimentos? Se sim, qual? [] sim [] Não
25- Saberia dizer quanto que é gasto com a aquisição de insumos, sementes, adubos ? Se sim, quanto? [] sim [] Não
26- Como você avalia a qualidade de sua produção? [] Boa Regular [] ruim [] Insuficiente
27- Existe alguma época do ano que você considera ruim para a produção de alimentos? Se sim qual e porque? []sim [] Não
28- O Seu sistema de cultivo tem certificação? [] Sim [] Não
29- Como você classifica o seu sistema de produção? [] Ecológico [] Agroecológico [] Orgânico [] Não sei
30- Como é realizado o manejo de pragas e doenças em sua propriedade?
31- Você utiliza algum tipo de agrotóxico para combater os insetos que prejudicam a cultura? [] Não Sim []
32- Como é realizado o planejamento de escoamento da produção?

33- Qual transporte é utilizado para o trasporte dos alimentos? [] carro [] moto [] bicicleta
34- O que é feito com o alimento que não é vendido na feira?
35- 1- Quais alterações foram percebidas em sua atividade produtiva, em relação à disponibilidade de
insumos, assistência técnica, mão-de-obra, prestadores de serviço, transporte durante a crise do COVID-19?
36-2-Houve alterações no volume de vendas da produção durante a crise do COVID-19?
37Houve alterações da forma de acesso ao mercado?
38-Quais os canais de comercialização foram mais utilizados no período de crise do COVID-19?
39- Houve alterações nas fontes de renda da família?
[] Sim Não [] 40- No caso de alteração da renda familiar, a que se deveu essa alteração?
41Houve alteração no preço dos alimentos para venda no período de crise do COVID 19?

INSTRUMENTO DE PESQUISA – QUESTIONÁRIO

ARTIGO: PERCEPÇÃO AMBIENTAL DOS AGRICULTORES SOBRE OS SERVIÇOS ECOSSISTÊMICOS NO SEMIÁRIDO

DATA:/ Entrevistador:			
I – IDENTIFICAÇÃO	O PESSOAL – GERAL		
1. Idade: 2. Sexo: [] F [] M			
1. Idade.	Estado Civil []		
	Casado (a) []solteiro (a) [] União		
	estável		
3. Estado: []Piauí [] 4. Município: 4- Posui casa própria? [] sim [] Não [] Alugada 5- Há quantos ano mora na comunidade? 6- Quantos anos trabalha como agricultor (a) 7- Escolaridade: [] não alfabetizado [] alfabetizado [] Ensino fundamental [] Ensino médio [] Ensino técnico [] Superior 8- Tem facilidade de acesso a educação? [] sim [] Não 9- Quantos membros compõem a família? [] 10- Qual a origem da água que consome ? [] cisterna (captação de chuva) [] cacimba (poço raso) [] rio [] poço artesiano [] poço tubular 11- Qual o destino do lixo da sua casa? [] queima ! [] no quintal [] fora de casa [] enterra ! [] no quintal [] fora de casa [] - Tem assistência médica? [] sim [] não 13- O terreno que você trabalha é seu? [] sim [] Não [] arrendado [] Tamanho do Terreno 14 Tem alguma doença? [] Sim [] Não Qual?			
15 Participa de Organização social?[] Não [] Sim. Qual: [] Colônia de Pesca [] Associa	ação []Cooperativa []STTR		
ASPECTOS ECONÔMICOS E MAI	NEJOS DE PRODUÇÃO		
16- Recebeu auxilio emergencial? [] sim [] Não			
17- Faz parte de algum programa do Governo Federal? [] Sim [] Não Qual?		
Quantas pessoas na sua casa contribiuem para a renda mense pessoas?	al? Qual a fonte de renda prinicpal dessas		
18-Atividades que executa [] Agricultura [] Comérci	io [] Pecuária [] Outros		
19- Cria animais? Quais?			
20- Caça animais? quais? qual o objetivo?			

21-Onde você cultiva os alimentos? Roça () quintal ()
22- Poderia citar o nome das plantas que são cultivadas?
23- Como você planeja seu plantio?
24 Participa de algum projeto que auxilia na comercialização dos alimentos? Se sim, qual? [] sim [] Não
25- Quais adubos são utilizados em sua ára de cultivo? Saberia dizer quanto que é gasto com a aquisição de insumos, sementes, adubos ?
26- Qual a origem das sementes utilizadas em sua área de cultivo?
27- Você consegue sobreviver somente com seu trabalho na agricultura? O quanto da agricultura é responsável pela sua renda? Pode avaliar com: Menos da metade da renda mensal Metade da renda mensal Mais da metade da renda mensal
28- Onde é vendido os alimentos produzidos ? [] Feira livre [] Porta em porta Supermercado [] [] Outros
29- Como é realizado o manejo de pragas e doenças em sua propriedade?
30- Você recebe algum suporte técnico, como orientação de agrônomos ou outro técnico?
PERCEPÇÃO AMBIENTAL DOS AGRICULTORES (AS)
31- Com quem você aprendeu a trabalhar na roça? [] Pai [] Mãe [] Avó [] Avô () Outro
32- Como era realizado o preparo da terra e plantio dos cultivos? E atualmente como você prepara sua área de cultivo?

33- Você gostaria que seus filhos/netos continuem trabalhando com agricultura? Por quê?
34 Já participou de alguma atividade de proteção à natureza? [] Sim [] Não
Qual (is)? Quem promoveu as atividades?
35- Você percebe problemas ambientais em sua comunidade e região? [] Sim [] Não. Se sim, quais?_
36-Você faz algo para mudar ou evitar problemas ambientais? [] Sim [] Não. Se sim, o que? Se não, gostaria de fazer algo?
PERCEPÇÃO SOBRE OS SERVIÇOS ECOSSISTÊMICOS (avaliar na escala Likert)
37- Como você avalia a importância de diferentes tipos de animais e plantas para a Agricultura? Insetos Diversidade de plantas na paisagem, (diferentes tipos de plantas perto da roça ou quintal) (Ajuda como? Desenvolver diálogo) Controle biológico (mudar termo na hora da pergunta) Animais nativos
38 -Qual a importância da mata (natureza) para as chuvas que caem aqui? Temperatura Rios Solo
39- Como você avalia a importância da natureza para o seu bem-estar e lazer? Caminhar, correr ou andar de bicicleta - Observação de animais - Passeios de carro ou moto - Banho de rio Eventos ao ar livre Outros que você queira listar (Numerado, usando também a escala likert) 40-Como você avalia a importância da natureza para o seu sustento familiar? Coleta de frutas Coleta de madeira para lenha Coleta de madeira para outros usos Pesca
Caça

Plantas medicinais	
- Outros que você queira listar (Numerado)	
41- Como você avalia a natureza? (Boa, ruim ou neutra)	

- 42- Você gostaria de identificar algum outro benefício ou problema quando você está em seu local de trabalho!
- 43- Como você avalia o período chuvosos e o período seco na Caatinga? Em qual desses períodos você se sente mais feliz?

Imagens dos agricultores e agricultoras que participaram da pesquisa e ambiente de coletas

Todas as imagens são de autoria da própria autora: Milena Almeida Vaz

APÊNDICE I

Quadro 1. Informações sobre a composição das 16 áreas de coletas de abelhas localizadas nos municípios de Sussuapara, São José do Piauí, Santa do Piauí e Picos-PI. Brasil, 2022.

Áreas	Ambiente	Composição da área	
01	Agricultura Familiar (Sistema de produção Agroecológica PAES) Comunidade Engano dos Rodrigues (Santana do Piauí)	Cultivos de hortaliças e folhosas (abóbora, quiabo, maxixe, coentro, cebolinha, alface, pimenta, pimentão, etc.) e frutiferas (manga, caju, abacaxi, limão, laranja, acerola, etc). Dentro dessa propriedade passa um rio perene, os agricultores possuem água o ano todo, além dos cultivos existe a criação de animais (galinhas e bovinos). Ainda possui pastagens naturais e plantadas. Toda a propriedade é circundada por plantas nativas, arbusto e árvores de porte médio e grande.	
02	Agricultura familiar Comunidade Lagoa Seca (Santana do Piauí)	porte. Tamanho aproximado da área 2ha. Cultivos de hortaliças e folhosas (abóbora, quiabo, maxixe, coentro, cebolinha, alface, pimenta, pimentão, etc.) e frutíferas (manga, caju, abacaxi, limão, laranja, acerola, maracujá, etc.). Não possui fonte de água permanente. Além dos cultivos, existe a criação de animais (porco, galinhas, bovinos). A propriedade não é totalmente circunda por áreas nativas, e fica localizada no povoado. Tamanho aproximado da área de 2ha.	
03	Fragmento Florestal (Santana do Piauí)	Fragmento composto por arbustos e árvores de médio e alto porte, a vegetação é uma mistura de Caatinga (<i>Cactaceae</i>) e árvores típicas do cerrado (palmeiras buriti). O ambiente em determinadas épocas fica com água armazenada e fontes naturais de água O local é verde o ano todo, ocorrendo poucas alterações na vegetação no período seco.	
04	Agricultura familiar (Comunidade Fornos, Picos-PI)	Cultivo de hortaliças e folhosas (pouco diversificado) e frutíferas (maracujá, caju) Além dos cultivos, tem a criação de animais (bovinos, galinhas). Ambiente de chapada. No período seco, os cultivos são drasticamente reduzidos pela falta de água na região. Toda a área é circundada por vegetação nativa. Tamanho da área aproximadamente 2ha.	
05	Agricultura familiar (São José do Piauí)	Cultivo de milho apenas no período chuvoso, pastagens nativas e plantadas. Ambiente antropizado circundado com áreas de vegetação de caatinga arbustiva e árvores de médio porte, solo bem pedregoso. No período seco, a maioria das árvores perdem suas folhas e o ambiente fica bem seco. Tamanho da área aproximadamente 4 ha.	

06	Agricultura familiar	Área utilizada para o plantio de mandioca
	(São José do Piauí)	(anual) e feijão e milho no período chuvoso.
	,	É todo circundado de vegetação nativa.
		Tamanho aproximado da área 3ha.
07	Agricultura familiar	Ambiente com pastagens naturais e nativas.
	(Sussuapara)	É basicamente utilizado para a criação de
		bovinos. Boa parte da propriedade é
		circundada por vegetação nativa e por
		cultivos (milho, macaxeira).
08	Agricultura Familiar	Área utilizada para o plantio de pastagens no
	(São José do Piauí)	período chuvoso e para a criação de bovinos.
		O agricultor costuma fazer o raleamento da
		área todos os anos. No período seco
		basicamente todas as árvores perdem suas
		folhas, o ambiente fica bem seco e não
		possui fonte de água. Tamanho aproximado da área 10ha e é todo circundado de
		-
09	Agricultura familiar	vegetação nativa.
09	Santana do Piauí	Cultivo de macaxeira. Circundado por fragmentos de matas bem antropizados,
	Santana do 1 ladi	pastagens nativas. Caatinga com bastante
		presença de espécies de <i>Cactaceae</i> e pouco
		arbustiva.
10	Fragmento florestal	Fragmento de mata nativa, caatinga
	(Picos-PI)	arbustiva com árvores de pequeno, médio e
		grande porte. No período seco, basicamente
		todas as árvores perdem suas folhas. A área
		não possui cultivos, mas o agricultor
		reservou uma pequena área para os animais
		pastarem (pasto nativo). Para o manejo da
		área, o agricultor faz o raleamento e deixa o
		material cortado sobre o solo, servindo assim
		de cobertura.
11	Agricultura familiar	Área de monocultivo de mandioca,
	(Picos-PI)	circundado por vegetação nativa, arbustiva
10		de alto e médio porte.
12	Fragmento Florestal	Àrea de Caatinga arbustiva, com árvores de
	(Picos-PI)	médio porte. No período seco, basicamente
		quase todas as árvores perdem suas folhas. Local próximo a um apiário. Em volta do
		fragmente possui alguns cultivos de
		mandioca.
13	Fragmento florestal	Fragmento florestal bem antropizado,
	Santana do Piauí	ambiente de Caatinga com bastante
		cactáceas e poucas árvores de médio porte,
		pastagem nativa tipo savana. No período
		seco fica um ambiente praticamente sem
		sombra e somente árvores sem folhas.
14	Agricultura familiar	Cultivo de macaxeira, feijão, abacate,
	Picos-PI	melancia, abóbora. Possui pastagens naturais
	1 1005-1 1	e criação de bovino. O agricultor não deixa
		plantas espontâneas no cultivo. O ambiente é
		circundado por plantas nativas e paredões de

		rochas com diversas cactáceas em suas	
		estruturas.	
15	Agricultura Familiar	Cultivo de milho e feijão e dentro da	
	Picos-PI	propriedade existem algumas frutíferas	
	r icos-r i	(umbu, caju, ciriguela). Ainda tem a criação	
		de bovinos. Esse ambiente fica bem próximo	
		à comunidade e possui poucos fragmentos	
		circundando a propriedade.	
16	Agricultura familiar	Cultivo de milho, feijão, criação de bovinos.	
	Picos-PI	Pastagens naturais tipos savana, a área não é	
	1100511	totalmente circundada por árvores nativas.	

SERVIÇOS ECOSSISTÊMICOS - TRADUÇÃO DA NUVEM DE PALAVRAS E REDE SEMÂNTICA

PROVISÃO	CULTURAL	REGULAÇÃO	SUPORTE	CENTRAIS
				(Várias
				Categorias)
uso_lenha_para_cozinhar	tranquilidade	regula	importância_floresta	guardar
plantas_medicinais	felicidade	melhora	temperatura	sementes
vegetais	bem-estar	causa	diversidade	animal
pimenta	cultura	importância	melhorar	esterco
tangerina	conhecimento	fertilizante_solo	plantar	plantas
laranja	observação_paisagem	uso	chuva	milho
maracujá	bonito	temperatura	solo	feijão
manga	lazer	chuva	importância_chuva	mandioca
acerola	sente-se bem			solo
banana	conhecimento_tradicional			uso
caju	período_seco			água
milho	período_chuvoso			
feijão	fornece			
mandioca	bons_sentimentos			
coco				
goiaba				
limão				
mamão				
tomate				
coentro				
cebola				
cultiva				
cria_animais				
agricultura				