Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Matemática

O Grau Topológico de Brouwer e Aplicações

por

José Carlos de Albuquerque Melo Júnior

Dezembro/2010

João Pessoa - PB

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Curso de Graduação em Matemática

O Grau Topológico de Brouwer e Aplicações

por

José Carlos de Albuquerque Melo Júnior

sob orientação do

Prof. Dr. João Marcos Bezerra do Ó

Monografia apresentada ao Corpo Docente do Programa de Graduação em Matemática - CCEN - UFPB, como requisito parcial para obtenção do título de Graduado em Matemática.

Dezembro/2010

João Pessoa - PB

Catalogação na publicação Universidade Federal da Paraíba Biblioteca Setorial do CCEN

M528g Melo Júnior, José Carlos de Albuquerque

O grau topológico de Brouwer e aplicações / José Carlos de Albuquerque . – João Pessoa, 2011.

74f.: il. -

Monografía (Graduação) – UFPB/CCEN. Orientador: Prof. Dr. João Marcos Bezerra do O Inclui referências.

1. Matemática. 2. Grau topológico de Brouwer. I. Título.

BS/CCEN

CDU:51(043.2)

O Grau Topológico de Brouwer e Aplicações

por

José Carlos de Albuquerque Melo Júnior

Monografía apresentada ao Corpo Docente do Programa de Graduação em Matemática - CCEN - UFPB, como requisito parcial para obtenção do título de Graduado em Matemática.

Área de Concentração: Análise.

Aprovada por:

Prof. Dr. João Marços Bezerra do Ó -UFPB (Orientador)

Prof. Dr. Uberlandio Batista Severo - UFPB

Edwardo Gonzalvez dos Semtos.

Prof. Dr. Eduardo Gonçalves dos Santos - UFPB

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Curso de Graduação em Matemática

Dezembro/2010

Agradecimentos

- Ao Professor João Marcos Bezerra do Ó que, orientou o presente trabalho com sabedoria, multiplicando meus conhecimentos, me motivando a seguir em frente e transmitindo sua experiência de forma sábia e precisa.
- Aos meus pais José Carlos de Albuquerque Melo e Júlia Maria Gondim de Albuquerque e as minhas irmãs Juliana Gondim de Albuquerque e Jaqueline Gondim de Albuquerque, por me apoiarem incansavelmente e permitirem que tudo isto aconteça. Aos meus primos, considerados irmãos, Tenner Lísias Gondim Dias e Lívia Gondim de Oliveira, por me incentivarem e estarem comigo nos momentos mais difíceis.
- Aos meus amigos Jonnatas Evaristo dos Santos, Leonardo Costa Mitzcun, Antônio Arruda das Neves Júnior, Caio Quintino Correia, Diego Ferraz de Souza, por serem quem são e me ajudarem diretamente ou indiretamente para a conclusão deste trabalho. Agradeço especialmente ao Eudes Leite, por dedicar seu tempo em me ajudar, transmitindo seu conhecimento com paciência e precisão, tornando-se peça fundamental para a conclusão deste trabalho.
- Ao companheiro e amigo Gustavo da Silva Araújo, por estar comigo desde o início, criando um rígido alicerce que resultará em longos anos de estudo e amizade.
- Aos professores do Departamento de Matemática UFPB, por estarem sempre presentes. Especialmente ao professor Eduardo Gonçalves dos Santos, que apesar de todos os compromissos profissionais, sempre nos dedicou tempo e ajuda quando necessário.

- A Vivian Correia Arruda, por estar comigo a 3 anos, me ajudando e fortalecendo, provando cada dia que estou com a pessoa certa e sendo a principal responsável por estar onde estou. Obrigado.

Resumo

Neste trabalho, estudamos a Teoria do Grau Topológico de Brouwer. Primeiramente, estudamos alguns resultados de Análise no \mathbb{R}^n , que serão importantes ferramentas no estudo do Grau. Logo após, associamos a cada tripla (f, Ω, y) , onde $\Omega \subset \mathbb{R}^n$, $y \in \mathbb{R}^n$ e f uma função contínua em Ω , um número inteiro $d(f, \Omega, y)$. Esta função denominada grau, através de suas propriedades e consequências, nos permite encontrar respostas significativas quanto à existência, unicidade ou multiplicidade de soluções da equação f(x) = y. Sequencialmente, construímos tal função e estudamos algumas aplicações da teoria desenvolvida, dentre elas, o Teorema do Ponto Fixo de Brouwer.

Abstract

In this work, we study the Brouwer Topological Degree Theory. First, we study some results about Analysis in \mathbb{R}^n , which are important tools on the study of the degree. After that, we associate each triple (f, Ω, y) , where $\Omega \subset \mathbb{R}^n, y \in \mathbb{R}^n$ and f a continuous function in Ω , to a integer number $d(f, \Omega, y)$. This function, known as degree, through its properties and consequences, allows us to find meaningful answers about the existence, uniqueness or multiplicity of solutions for the equation f(x) = y. After that, we construct such a function and study some applications of the theory developed. Among them, the Brouwer Fixed Point Theorem.

Sumário

Notações						
In	Introdução					
Pı	relim	inares	xii			
	0.1	Aplicações Diferenciáveis	xii			
	0.2	Integrais Múltiplas	xiv			
	0.3	Resultados Diversos	xvii			
1	Uni	cidade do Grau	1			
	1.1	Valores Singulares e Regulares	1			
	1.2	Redução ao Caso Linear	6			
	1.3	O Caso Linear	9			
2	Cor	astrução do Grau	16			
	2.1	O Caso Regular	16			
	2.2	Do Caso Regular ao Singular	21			
	2.3	De $\overline{C}^2(\Omega)$ para $C(\overline{\Omega})$	23			
	2.4	Propriedades do Grau	27			
	2.5	A Fórmula Produto	29			
3	\mathbf{Apl}	icações do Grau	35			

	3.1	Ponto Fixo de Brouwer	35		
	3.2	Teorema do Ouriço	40		
	3.3	Teorema de Borsuk	42		
			46		
A - Apendice					
	A.1	Aplicações Diferenciáveis	46		
	A.2	Integrais Múltiplas	48		
Re	Referências Bibliográficas				

Notaçoes

Notações Gerais

id aplicação identidade,

gf (gf)(x) = g(f(x)),

 Ω subconjunto aberto do \mathbb{R}^n ,

 $\overline{\Omega}$ fecho de Ω ,

 $\partial\Omega$ fronteira de Ω ,

 $C(\Omega)$ conjunto das funções contínuas em Ω ,

 $C^k(\Omega)$ conjunto das funções k vezes diferenciáveis,

B(x,r) bola de centro x e raio r,

 $\overline{B(x,r)}$ bola fechada de centro x e raio r,

$$\varrho(x,\Omega)=\inf\{|x-y|:y\in\Omega\} \hspace{1cm} x\in\mathbb{R}^n \in \Omega\subset\mathbb{R}^n,$$

$$x \in \mathbb{R}^n \in \Omega \subset \mathbb{R}^n$$

$$|f|_0 = \max_A |f(x)|$$

 $f \in C(A)$ e $A \subset \mathbb{R}^n$ compacto,

sgnf

sinal da função f,

convD

fecho convexo de D,

$$\overline{C}^k(\Omega) = C^k(\Omega) \cap C(\overline{\Omega})$$

$$\overline{C}^{\infty}(\Omega) = \bigcap_{k \ge 1} C^k(\Omega)$$

$$\overline{C}^{\infty}(\Omega) = \bigcap_{k \ge 1} C^k(\Omega)$$
$$|x| = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$$

Introdução

A Teoria do grau tem sido desenvolvida como método para estudar o conjunto das soluções da equação

$$f(x) = y, (1)$$

visando obter informações significativas quanto à existência, unicidade ou multiplicidade de tais soluções. Consideremos f uma função contínua definida num subconjunto $\Omega \subset \mathbb{R}^n$ com valores em \mathbb{R}^n e y um elemento de \mathbb{R}^n . Desta maneira, associamos cada tripla (f, Ω, y) a um número inteiro $d(f, \Omega, y)$, satisfazendo as seguintes propriedades:

- (d1) $d(id, \Omega, y) = 1$, para todo $y \in \Omega$;
- (d2) $d(f,\Omega,y)=d(f,\Omega_1,y)+d(f,\Omega_2,y)$, sempre que Ω_1 e Ω_2 sejam subconjuntos abertos e disjuntos de Ω tais que $y \notin f(\overline{\Omega} \setminus (\Omega_1 \cup \Omega_2))$;
- (d3) $d(h(t,.),\Omega,y(t))$ independe de $t\in J=[0,1]$ sempre que $h:J\times\overline{\Omega}\longrightarrow\mathbb{R}^n$ e $y:J\longrightarrow\mathbb{R}^n$ forem contínuas e $y(t)\not\in h(t,\partial\overline{\Omega})$.

A propriedade (d1) é bastante natural, pois espera-se que a função f(x) = y tenha uma única solução x = y. A propriedade (d2) faz uma associação do grau no conjunto Ω em relação a dois subconjuntos Ω_1 e Ω_2 de Ω , que satisfazem determinadas condições. A propriedade (d3) nos diz que se uma função complicada f puder ser continuamente deformada em g, sem que nesse processo ocorram soluções na fron-

teira de Ω , o cálculo de $d(f,\Omega,y)$ pode ser feito por $d(g,\Omega,y)$.

Antes de iniciarmos o estudo do grau, de forma a facilitar a leitura, faremos uma seção preliminar com alguns resultados de análise no \mathbb{R}^n . No Capítulo 1, mostraremos que se existe uma função satisfazendo as propriedades enunciadas acima, então tal função é única. O Capítulo 2 é destinado à construção desta função denominada grau e às suas propriedades. O grau topológico de Brouwer tem uma ampla abordagem, sendo ilustrada em diversas aplicações, no Capítulo 3 exibimos algumas delas. Finalmente, acrescentamos um apêndice onde demonstramos alguns resultados da seção preliminar e indicamos onde encontrar as demonstrações restantes, visando ampliar o conhecimento do leitor ainda não familiarizado com a análise no \mathbb{R}^n .

Preliminares

Fazemos aqui um apanhado de resultados importantes da análise que se fazem necessários para uma leitura mais didática e compreensiva; isto porque, enunciados numa parte em especial, evitam interrupções nas demonstrações dos teoremas situados nos capítulos específicos. Os resultados mais usados e considerados mais importantes, serão comentados novamente e demonstrados no Apêndice.

0.1 Aplicações Diferenciáveis

Definição 1 Uma aplicação $f:U\longrightarrow \mathbb{R}^m$, definida no aberto $U\subseteq \mathbb{R}^n$, diz-se diferenciável no ponto $a\in U$ quando existir uma aplicação linear $T:\mathbb{R}^n\longrightarrow \mathbb{R}^m$ tal que

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - T(h)}{|h|} = 0.$$

A transformação linear T é denotada por f'(a) e é chamada a derivada de f em a. Uma aplicação $f:U\longrightarrow \mathbb{R}^m$ diz-se diferenciável no aberto $U\subset \mathbb{R}^n$ quando é diferenciável em todos os pontos de U. Em certas situações, é conveniente considerar a matriz representante de $f'(a):\mathbb{R}^n\longrightarrow \mathbb{R}^m$ relativamente as bases canônicas de \mathbb{R}^n e \mathbb{R}^m . Esta matriz é chamada de **matriz Jacobiana** de f em a e representada por $J_f(a)$.

Definição 3 Sejam $U \subset \mathbb{R}^n$ um conjunto aberto $e \ f : U \longrightarrow \mathbb{R}$ uma função. Para cada $i = 1, \dots, n$, definimos a i-ésima derivada parcial de f em $a \in U$, e denotamos por $\frac{\partial f}{\partial x_i}(a)$, pelo seguinte limite

$$\frac{\partial f}{\partial x_i}(a) = \lim_{h \to 0} \frac{f(a_1, \dots, a_i + h, \dots, a_n) - f(a_1, \dots, a_n)}{h}$$

caso exista.

Definição 4 Sejam $U \subset \mathbb{R}^n$ um aberto. Dizemos que uma aplicação $f: U \longrightarrow \mathbb{R}$ é de classe C^1 em U, se as derivadas parciais $\frac{\partial f}{\partial x_i}$, $i = 1, \dots, n$, existem e são contínuas em U.

Teorema 1 (Desigualdade do Valor Médio) $Dado\ U \subset \mathbb{R}^n$, $seja\ f: U \longrightarrow \mathbb{R}^m$ diferenciável em cada ponto do segmento de reta aberto (a, a + v) e tal que sua restrição ao segmento fechado $[a, a + v] \subset U$ seja contínua. $Se\ |f'(x)| \leq M$ para todo $x \in (a, a + v)$ então $|f(a + v) - f(a)| \leq M|v|$.

Teorema 2 (Regra da Cadeia) Sejam $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$ abertos, $f: U \longrightarrow \mathbb{R}^m$ diferenciável no ponto a, com $f(U) \subset V$, $e \ g: V \longrightarrow \mathbb{R}^p$ diferenciável no ponto f(a). Então $g \circ f: U \longrightarrow \mathbb{R}^p$ é diferenciável no ponto a, com a derivada dada por $(g \circ f)'(a) = g'(f(a)) \cdot f'(a) : \mathbb{R}^n \longrightarrow \mathbb{R}^p$.

Definição 5 Sejam U e V abertos do \mathbb{R}^n e $f:U\longrightarrow V$ uma bijeção. Dizemos que f é um difeomorfismo se f é uma bijeção diferenciável cuja inversa f^{-1} é também diferenciável. Dizemos que f é um difeomorfismo de classe C^1 se f e f^{-1} são de classe C^1 .

Teorema 3 (Teorema da Aplicação Implícita) Sejam $U \subset \mathbb{R}^{n+m}$ um conjunto aberto $e \ f : U \longrightarrow \mathbb{R}^m$ uma aplicação de classe C^1 . Suponha que $(a,b) \in U$ é tal que f(a,b) = 0 e $J_{\frac{\partial f}{\partial y}}(a,b) \neq 0$. Então existe um aberto $V \subset \mathbb{R}^n$ contendo a e uma única função $g : V \longrightarrow \mathbb{R}^m$ de classe C^1 , tal que g(a) = b e $f(x,g(x)) = 0, \forall x \in V$.

Teorema 4 Seja $\mathbb{R}^n \times \Omega \to \mathbb{R}^n$ continuamente diferenciável de forma que $h(t_0, x_0) = 0$ e $J_{h(t_0, \cdot)} \neq 0$ para algum $(t_0, x_0) \in \mathbb{R}^n \times \Omega$. Então existe um intervalo $(t_0 - r, t_0 + r)$, uma bola $B_{\delta}(x_0) \subset \Omega$ e uma função contínua $z : (t_0 - r, t_0 + r) \to B_{\delta}(x_0)$ tal que $z(t_0) = x_0$ e x(t) é a única solução de h(t, x) = 0 em $B_{\delta}(x_0)$.

Teorema 5 (Teorema da Aplicação Inversa) $Sejam\ U \subset \mathbb{R}^n\ e\ f: U \longrightarrow \mathbb{R}^m$ $uma\ aplicação\ de\ classe\ C^1$. $Se,\ para\ a \in U,\ J_f(a) \neq 0,\ então\ existem\ abertos\ V\ e$ $W,\ contendo\ a\ e\ f(a),\ respectivamente,\ tais\ que\ f\ \'e\ um\ difeomorfismo\ de\ classe\ C^1$ $entre\ V\ e\ W$. $Al\'em\ disso,\ para\ y \in W\ temos$

$$(f^{-1})'(y) = [f'(f^{-1}(y))]^{-1}.$$

0.2 Integrais Múltiplas

Um bloco m-dimensional é um produto cartesiano

$$A = \prod_{i=1}^{m} [a_i, b_i] = [a_1, b_1] \times ... \times [a_m, b_m] \subset \mathbb{R}^m$$

de m intervalos compactos. Os *vértices* do bloco A são os pontos $p=(c_1,...,c_m)$ onde, para cada i=1,2,...,m, tem-se $c_i=a_i$ ou $c_i=b_i$.

Definição 6 Uma partição do intervalo [a,b] é um subconjunto finito $P \subset [a,b]$ tal que $a = t_0 < t_1 < ... < t_n = b$.

Definição 7 Uma partição do bloco $A = \prod_{i=1}^{m} [a_i, b_i]$ é um conjunto finito do tipo $P = P_1 \times ... \times P_m$, onde cada P_i é uma partição do intervalo $[a_i, b_i]$.

Definição 8 O volume $m-dimensional\ do\ bloco\ A\ \'e\ dado\ por$

$$vol.A = \prod_{i=1}^{m} (b_i - a_i).$$

Definição 9 Sejam $A \subset \mathbb{R}^n$ um bloco, $f: A \longrightarrow \mathbb{R}$ uma função limitada e P uma partição de A. Para cada sub-bloco S de P, denotamos $m_s = \inf \{f(x); x \in S\}$ e $M_s = \sup \{f(x); x \in S\}$, e as somas superiores e inferiores de f, relativamente a partição P, respectivamente por

$$L(f;P) = \sum_{S} m_s \cdot vol(S)$$
 e $U(f;P) = \sum_{S} M_s \cdot vol(S)$,

onde vol(S) é o volume de S.

Vale observar que, $L(f; P) \leq U(f; P)$. De fato, vale ainda uma propriedade mais forte: para quaisquer partições P e Q do retângulo A, tem-se $L(f; P) \leq U(f; Q)$.

Definição 10 Dada uma função $f:A\to\mathbb{R}$, limitada no bloco A, definimos a integral inferior, que denotaremos por $\underline{\int}_A f(x) dx$ e a integral superior, denotada por $\overline{\int}_A f(x) dx$, como sendo

$$\int_{A} f(x)dx = \sup_{P} \left\{ L(f;P) \right\} \quad e \quad \overline{\int}_{A} f(x)dx = \inf_{P} \left\{ U(f;P) \right\},$$

em que o supremo e o ínfimo acima estende-se a todas as partições P do retângulo A.

Diremos que f é integrável quando a sua integral inferior for igual à sua integral superior. Definiremos então a integral de f como

$$\int_{A} f(x)dx = \int_{A} f(x)dx = \overline{\int}_{A} f(x)dx.$$

Teorema 6 A fim de que uma função limitada $f: A \to \mathbb{R}$ seja integrável no bloco $A \subset \mathbb{R}^m$, é necessário e suficiente que, para todo $\varepsilon > 0$ dado, se possa obter uma partição P de A tal que

$$U(f; P) - L(f; P) < \varepsilon$$
.

Segue como corolário deste Teorema que toda função contínua $f:A\to\mathbb{R}$ é integrável.

Teorema 7 (Teorema Fundamental do Cálculo) $Seja\ f:[a,a+h]\to\mathbb{R}^n\ um$ caminho com derivada integrável. Então

$$\int_{a}^{a+h} f'(t)dt = f(a+h) - f(a).$$

Definição 11 Diremos que um conjunto $A \subset \mathbb{R}^n$ tem medida nula, e indicamos por med.(A) = 0, quando, para todo $\epsilon > 0$ dado, existem retângulos abertos B_1, \ldots, B_k, \ldots do \mathbb{R}^n , tais que

$$A \subset \bigcup_{i=1}^{\infty} B_i \ e \ \sum_{i=1}^{\infty} vol(B_i) < \epsilon.$$

Segue três proposições sobre conjuntos de medida nula:

Proposição 1 Todo subconjunto de um conjunto de medida nula tem também medida nula.

Proposição 2 Seja $X = \{x_1, x_2, ...\} \subset \mathbb{R}^n$ um conjunto enumerável. Então X tem medida nula.

Proposição 3 Toda reunião enumerável de conjuntos de medida nula é ainda um conjunto de medida nula.

Segue um teorema que será utilizado na demonstração do Lema de Sard.

Teorema 8 Todo conjunto aberto em R^n pode ser escrito como uma união enumerável de cubos fechados que se interceptam somente e possivelmente na fronteira.

Teorema 9 Uma função $f: A \longrightarrow \mathbb{R}$, limitada no retângulo $A \subset \mathbb{R}^n$, é integrável se, e somente se, o conjunto D_f dos seus pontos de descontinuidade tem medida nula.

Teorema 10 (Teorema de Fubini) Seja $f: A \times B \longrightarrow \mathbb{R}$ integrável no produto dos blocos $A \subset \mathbb{R}^n$ e $B \subset \mathbb{R}^m$. Para todo $x \in A$, seja $f_x: B \longrightarrow \mathbb{R}$ definida por $f_x(y) = f(x,y)$ e ponhamos

$$\varphi(x) = \int_{B} f_x(y)dy, \quad \psi(x) = \int_{B} f_x(y)dy.$$

As funções $\varphi, \psi: A \longrightarrow \mathbb{R}$, assim definidas, são integráveis, com

$$\int_{A} \varphi(x)dx = \int_{A} \psi(x)dx = \int_{A \times B} f(x,y)dxdy,$$

isto é,

$$\int_{A\times B} f(x,y)dxdy = \int_{A} dx \left(\underbrace{\int_{B}} f(x,y)dy \right) = \int_{A} dx \left(\overline{\int_{B}} f(x,y)dy \right).$$

0.3 Resultados Diversos

Definição 12 Um conjunto Ω é simétrico com respeito à origem se, e somente se, $\Omega = -\Omega$, ou seja, se sempre que tivermos $x \in \Omega$ ocorrer também $-x \in \Omega$.

Definição 13 Um caminho em R^n é uma aplicação $f: I \to \mathbb{R}^n$, cujo domínio é um intervalo $I \subset \mathbb{R}$.

Definição 14 Um conjunto $X \subset \mathbb{R}^n$ é dito conexo quando admite apenas a cisão trivial, ou seja, $X = A \cup B$, com A e B disjuntos e abertos em X, implica $A = \emptyset$ ou $B = \emptyset$.

Definição 15 Sejam $x \in X$ e $X \subset \mathbb{R}^n$. A componente conexa do ponto x no conjunto X é a reunião C_x de todos os subconjuntos conexos de X que contêm o ponto x.

Definição 16 Seja $U \subset \mathbb{R}^n$ um aberto. Uma aplicação $f: U \to \mathbb{R}^m$ é dita localmente injetiva se todo ponto $x \in U$ possui uma vizinhança V tal que $f|_V$ é injetiva.

A definição abaixo é de extrema importância e será ultilizada inúmeras vezes. Ela nos diz respeito à possibilidade de deformar um caminho continuamente. Estas questões são tratadas na teoria da *homotopia*.

Definição 17 Sejam $f, g : [a, b] \to X$ caminhos no conjunto $X \subset \mathbb{R}^n$, com o mesmo domínio [a, b] e com as mesmas extremidades, isto é, f(a) = g(a) e f(b) = g(b). Uma homotopia entre f e g é uma aplicação contínua $h : [a, b] \times J \to X$, onde J = [0, 1], tal que h(s, 0) = f(s), h(s, 1) = g(s), h(a, t) = f(a) = g(a) e h(b, t) = f(b) = g(b) pra quaisquer $s \in [a, b]$ e $t \in [0, 1]$.

Apresentaremos agora um importante e útil teorema sobre extensão de funções contínuas:

Teorema 11 Seja $A \subset \mathbb{R}^n$ compacto $e \ f : A \to \mathbb{R}^n$ contínua. Então existe uma função contínua $\tilde{f} : \mathbb{R}^n \to \mathbb{R}^n$ tal que $\tilde{f}(x) = f(x)$ para $x \in A$.

$$f(x) = \begin{cases} f(x), & se \ x \in A \\ \left(\sum_{i \ge 1} 2^{-i} \varphi_i(x)\right)^{-1} \sum_{i \ge 1} 2^{-i} \varphi_i(x) f(a^i), & se \ x \not\in A \end{cases}$$

Definição 18 Seja $f: D \to D$ uma função contínua. Dizemos que $x \in D$ é um ponto fixo para f se f(x) = x.

Definição 19 Dizemos que $D \subset \mathbb{R}^n$ é um conjunto convexo, se dados $x, y \in D$, temos

$$x + \lambda(y - x) \in D \quad \lambda \in [0, 1]$$

Definição 20 O fecho convexo de $D \subset \mathbb{R}^n$ é a interseção de todos os conjuntos convexos que contêm D.

Vale observar que D é convexo se, e somente se, convD = D.

Lema 1 Seja $D \subset \mathbb{R}^n$ um conjunto qualquer e B o conjunto de todas as combinações convexas de elementos de D, isto é,

$$B = \left\{ \sum_{i=1}^{n} \lambda_{i} x_{i} : \lambda_{i} \in [0, 1], \sum_{i=1}^{n} \lambda_{i} = 1, n \in \mathbb{N} \right\}.$$

 $Nestas\ condições\ temos\ B=convD.$

Proposição 4 Sejam A uma matriz real $n \times n$ com $\det A \neq 0, \lambda_1, \ldots, \lambda_m$ os autovalores negativos de A e $\alpha_1, \ldots, \alpha_m$ suas multiplicidades como zeros de $\det(A - \lambda id)$, assumindo que A tenha tais autovalores. Então \mathbb{R}^n é soma direta de dois subespaços N e M, $\mathbb{R}^n = N \oplus M$, tais que:

- (a) $M \in N$ são invariantes por A;
- (b) $A|_N$ tem somente os autovalores $\lambda_1, \ldots, \lambda_m$ e $A|_M$ não tem autovalores negativos;
- (c) dim $N = \sum_{k=0}^{m} \alpha_k$.

Capítulo 1

Unicidade do Grau

Neste capítulo, objetivamos provar que se existe uma função d satisfazendo as propriedades (d1) - (d3), então esta função é única, para isso, faremos sucessivas reduções a casos mais simples. A primeira seção deste capítulo apresentará conceitos e ferramentas que facilitarão o processo posteriormente. Na segunda seção, reduziremos a demonstração da unicidade do grau ao caso linear. Finalmente na terceira seção, exibiremos um resultado da álgebra linear que juntamente com os resultados antecedentes, implicará na unicidade do grau.

1.1 Valores Singulares e Regulares

A primeira etapa desta seção, consiste em mostrar que a função d é unicamente determinada por seus valores em funções de classe \overline{C}^{∞} . Consideremos a seguinte proposição:

Proposição 5 (a) Sejam $A \subset \mathbb{R}^n$ compacto, $f \in C(A)$ e $\varepsilon > 0$. Então, existe uma função $g \in C^{\infty}(\mathbb{R}^n)$ tal que $|f(x) - g(x)| \le \varepsilon$ em A.

(b) Sejam
$$f \in \overline{C}^1(\Omega)$$
, $\varepsilon > 0$ $e \delta > 0$ tais que $\Omega_{\delta} = \{x \in \Omega : \varrho(x, \partial\Omega) \leq \delta\} \neq \emptyset$.

Então, existe $g \in C^{\infty}(\mathbb{R}^n)$ tal que

$$|f - g|_0 + \max_{\Omega_{\delta}} |f'(x) - g'(x)| \le \varepsilon.$$

Seja agora $f \in C(\overline{\Omega})$ e $y \notin f(\partial \Omega)$. Sendo $\partial \Omega$ compacto e f contínua, o conjunto $f(\partial \Omega)$ é compacto e, portanto, $\alpha = \varrho(y, f(\partial \Omega)) > 0$. De acordo com a Proposição 1, existe $g \in \overline{C}^{\infty}(\Omega)$ tal que $|f - g|_0 < \alpha$. Definindo $h : [0,1] \times \overline{\Omega} \longrightarrow \mathbb{R}^n$ por h(t,x) = (1-t)f(x) + tg(x), temos que h é contínua e além disso

$$|h(t,x) - y| = |(1-t)f(x) + tg(x) - y|$$

$$= |(f(x) - y) - t(f(x) - g(x))|$$

$$\ge |f(x) - y| - t|f(x) - g(x)|$$

$$\ge |f(x) - y| - |f - g|_0 > 0,$$

para todo $x \in \partial\Omega$. Assim, aplicando (d3) com $y(t) \equiv y$, temos que $d(f, \Omega, y) = d(g, \Omega, y)$, o que conclui a primeira etapa.

Agora apresentaremos alguns resultados, tendo como objetivo mostrar que se f satisfaz certas condições então o conjunto $f(S_f)$ tem medida n-dimensional nula. Para isso, precisaremos de alguns resultados preliminares.

Proposição 6 Sejam $f \in \overline{C}^{\infty}(\Omega)$ e $y \notin f(\partial \Omega)$. Se y é valor regular de f, então $f^{-1}(y)$ é um conjunto finito.

Demonstração: Dividimos a demonstração desta proposição em duas partes. Primeiramente mostraremos que os pontos de $f^{-1}(y)$ são isolados. De fato, como y é um valor regular de f, implica que $J_f(x_0) \neq 0$, portanto, pelo Teorema da Aplicação Inversa (Teorema 5), existe $U = B_{\varepsilon}(x_0)$ tal que $f|_U$ é um homeomorfismo. Logo, para cada $x_0 \in f^{-1}(y)$, podemos tomar $U = B_{\varepsilon}(x_0)$ tal que $f^{-1} \cap B_{\varepsilon}(x_0) = x_0$. Concluíndo, que todos os elementos de $f^{-1}(y)$ são isolados. Agora vamos provar que $f^{-1}(y)$ é finito, suponha que $f^{-1}(y)$ é infinito. Logo, existe uma sequência de pontos distintos $(x_n) \subset \Omega$ em $f^{-1}(y)$, e portanto $(x_n) \subset \overline{\Omega}$. Como $\overline{\Omega}$ é compacto, existe uma subsequência $(x_{n_j}) \subset (x_n)$ tal que $x_{n_j} \to x_0 \in \overline{\Omega}$. Como f é contínua, segue que $x_0 \in \overline{\Omega} \cap f^{-1}(y)$, e como $y \notin f(\partial \Omega)$, então $y \in \Omega$. Resumindo, obtemos $(x_{n_j}) \subset f^{-1}(y)$ tal que $x_{n_j} \to x_0 \in f^{-1}(y)$, o que contraria o fato de x_0 ser ponto isolado. Portanto, $f^{-1}(y)$ é finito.

Agora apresentaremos uma proposição que será muito útil posteriormente.

Proposição 7 Sejam $y_0 \in \mathbb{R}^n$ e $f \in \overline{C}^{\infty}(\Omega)$ tais que $y_0 \notin f(\partial \Omega)$. Então existe $\alpha > 0$ tal que

$$d(f, \Omega, y) = d(f, \Omega, y_0) \quad \forall y \in B(y_0, \alpha).$$

Demonstração: Seja $\alpha = \varrho(y_0, f(\partial\Omega)) > 0$. Então $B(y_0, \alpha) \cap f(\partial\Omega) = \emptyset$. Defina agora

$$h(t,x) = f(x)$$
 e $y(t) = ty_0 + (1-t)y$, com $y \in B(y_0, \alpha)$ e $t \in [0,1]$.

Temos que:

- i) h(t,x) e y(t) são contínuas;
- ii) $y(t) \notin h(t, \partial\Omega)$ para todo $t \in [0, 1]$, já que $h(t, \partial\Omega) = f(\partial\Omega), y(t) \in B(y_0, \alpha)$ e $f(\partial\Omega) \cap B(y_0, \alpha) = \emptyset$.

Assim, concluimos que $d(h(t,x),\Omega,y(t))$ independe de $t\in[0,1]$ e, por (d3), segue que

$$d(f, \Omega, y) = d(f, \Omega, y_0) \quad \forall y \in B(y_0, \alpha).$$

Finalmente provaremos o resultado mais importante desta seção.

Lema 2 (Lema de Sard) Seja $f \in C^1(\Omega)$ e S_f o conjunto dos pontos críticos de f. Então $f(S_f)$ tem medida nula.

Demonstração: Antes de provarmos de fato este importante teorema, faremos uma série de observações que facilitarão o entedimento da demonstração. Usaremos sempre o produto interno canônico do \mathbb{R}^n . Vale lembrar que todo aberto do \mathbb{R}^n pode ser escrito como uma união enumerável de cubos fechados, e a união enumerável de conjuntos de medida nula tem medida nula. Neste caso, é suficiente mostrar que se Q é um cubo fechado tal que $Q \subset \Omega$ então $f(S_f(Q))$ tem medida nula. Então, denotemos Q um cubo fechado de aresta l contido em Ω . Vamos dividir o cubo Q em m^n subcubos de aresta $\frac{l}{m}$ de modo que a união destes subcubos resulte no cubo Q original. Como a aplicação f' é uniformemente contínua em Q, temos que dado $\varepsilon > 0$, existe $\delta_1 > 0$ tal que

$$|x - \overline{x}| < \delta_1 \Longrightarrow |f'(x) - f'(\overline{x})| < \varepsilon,$$

para todo $x, \overline{x} \in Q$, existe também $m \in \mathbb{N}$ tal que $\delta = \frac{l\sqrt{n}}{m} < \delta_1$. Além disso, uma vez que Q é compacto e f' é contínua em Q, existe $c \in \mathbb{R}$ tal que $|f'(x)| \leq c$ para todo $x \in Q$. Desde que o diâmetro de um cubo de aresta $\frac{l}{m}$ é $\frac{l\sqrt{n}}{m}$, vemos que

$$|f'(x) - f'(\overline{x})| < \varepsilon,$$

para todo $x, \overline{x} \in Q_k$. Definimos agora a função $h: [0,1] \to \mathbb{R}^n$ da forma

$$h(t) = f(\overline{x} + t(x - \overline{x})),$$

e pelo Teorema Fundamental do Cálculo (Teorema 7), podemos escrever

$$h(1) - h(0) = \int_0^1 h'(t)dt = \int_0^1 f'(\overline{x} + t(x - \overline{x}))(x - \overline{x})dt.$$

A partir de

$$h(1) - h(0) = f(x) - f(\overline{x})$$

е

$$f'(\overline{x})(x-\overline{x}) = \int_0^1 f'(\overline{x})(x-\overline{x})dt,$$

obtemos

$$f(x) = f(\overline{x}) + f'(\overline{x})(x - \overline{x}) + R(x, \overline{x}),$$

onde $R(x, \overline{x}) = \int_0^1 [f'(\overline{x} + t(x - \overline{x}) - f'(\overline{x})](x - \overline{x})dt$ para todo $x, \overline{x} \in Q_k$. Podemos ainda majorar $|R(x, \overline{x})|$ como

$$|R(x,\overline{x})| \leq \int_0^1 |f'(\overline{x} + t(x - \overline{x}) - f'(\overline{x})||x - \overline{x}|dt$$

$$\leq \varepsilon \int_0^1 |x - \overline{x}|dt$$

$$\leq \varepsilon \delta.$$

Agora supomos que $Q_k \cap S_f \neq \emptyset$ e para $\overline{x} \in Q_k \cap S_f$ definimos $A = f'(\overline{x})$, $\tilde{Q}_k = Q_k - \overline{x}$ e $g: \tilde{Q}_k \to \mathbb{R}^n$ por $g(y) = f(\overline{x} + y) - f(\overline{x})$. Devemos fazer três observações, primeiro que $|y| < \delta$ para todo $y \in \tilde{Q}_k$, segundo que $f(Q_k) = g(\tilde{Q}_k) + f(\overline{x})$ e terceiro que

$$g(y) = Ay + R(y), \quad com \quad |R(y)| = |R(\overline{x} + y, \overline{x})| \le \epsilon \delta$$

para todo $y \in \tilde{Q}_k$.

Sabemos que det A = 0 pois \overline{x} é ponto crítico, portanto o conjunto $A(\tilde{Q}_k)$ está contido em um subespaço de dimensão n-1. Consideremos agora b^1 um vetor unitário do completamento ortogonal de $A(\tilde{Q}_k)$. Completando b^1 a uma base ortonormal $b^1, ..., b^n$ de R^n temos que $g(y) = \sum_{i=1}^n \langle g(y), b^i \rangle b^i$, onde este último somatório nada mais é do que a expressão de g(y) nessa nova base ortonormal. Portanto, observe que são válidas as seguintes desigualdades:

i)
$$|\langle g(y), b^1 \rangle| \leq |R(y)||b^1| \leq \varepsilon \delta$$

ii) $|\langle g(y), b^i \rangle| \leq |\langle Ay, b^i \rangle| + |\langle R(y), b^i \rangle|$
 $\leq c\delta + \varepsilon \delta$.

para i=2,...,n. As observações feitas até aqui nos permitem concluir que $g(\tilde{Q}_k)$ está contido num retângulo \tilde{J}_k dado por

$$\tilde{J}_k = [-\varepsilon\delta, \varepsilon\delta] \times [-c\delta - \varepsilon\delta, c\delta + \varepsilon\delta] \times \dots \times [-c\delta - \varepsilon\delta, c\delta + \varepsilon\delta],$$

que possui volume $vol(\tilde{J}_k) = 2\varepsilon\delta[2\delta(c+\varepsilon)]^{n-1}$. Como $f(Q_k) = g(\tilde{Q}_k) + f(\overline{x})$, concluímos que $f(Q_k)$ está contido num retângulo J_k contendo $f(\overline{x})$ e cujo volume é o mesmo de \tilde{J}_k . Finalmente, uma vez que $S_f(Q) \subset Q_1 \cup Q_2 \cup ... \cup Q_{m^n}$ temos que o conjunto dos retângulos J_k definidos acima cobre $f(S_f(Q))$, além disso,

$$\sum_{k=1}^{m^n} vol(J_k) = 2^n \varepsilon \delta^n m^n [c + \varepsilon]^{n-1} = 2^n \varepsilon (l\sqrt{n})^m [c + \varepsilon]^{n-1}.$$

Como $\varepsilon > 0$ é arbitrário concluímos que $f(S_f(Q))$ tem medida nula.

O Lema de Sard é de extrema importância no estudo da teoria do grau, pois a partir dele e da proposição 6, conclui-se que ao calcular $d(f, \Omega, y)$ podemos assumir, sem perda de generalidade, que y é um valor regular de f.

1.2 Redução ao Caso Linear

Iniciaremos esta seção apresentando um lema, decorrente de (d2), que será útil mais adiante.

Lema 3 Sejam $\Omega \subset \mathbb{R}^n$ aberto e limitado, $f \in C(\overline{\Omega})$ e $y \in \mathbb{R}^n$ tal que $y \notin f(\partial \Omega)$. Então:

- (a) $d(f, \emptyset, y) = 0$.
- (b) Se Ω_1 é um subconjunto aberto de Ω e $y \notin f(\overline{\Omega} \backslash \Omega_1)$, então $d(f, \Omega_1, y) = d(f, \Omega, y)$.
- (c) Se $f \in \overline{C}^{\infty}(\Omega)$, $y \notin f(S_f(\Omega))$ e $f^{-1}(y) = \emptyset$, então $d(f, \Omega, y) = 0$.

Demonstração:

(a) Para provar o item (a), basta considerar $\Omega_1 = \Omega$ e $\Omega_2 = \emptyset$, pois como Ω_1 e Ω_2 são subconjuntos abertos e disjuntos de Ω e $y \notin f(\overline{\Omega} \setminus (\Omega_1 \cup \Omega_2)) = f(\partial \Omega)$, temos pela propriedade (d2) que

$$d(f,\Omega,y) = d(f,\Omega_1,y) + d(f,\Omega_2,y) = d(f,\Omega,y) + d(f,\emptyset,y),$$

onde concluímos que $d(f, \emptyset, y) = 0$.

(b) Para provar o item (b), basta considerar novamente $\Omega_1 = \Omega$ e $\Omega_2 = \emptyset$, pois pela propriedade (d2)

$$d(f, \Omega, y) = d(f, \Omega_1, y) + d(f, \emptyset, y) = d(f, \Omega_1, y).$$

(c) Para provar o item (c), consideremos $\Omega_1 = \Omega_2 = \emptyset$ e note que temos $f^{-1}(y) = \emptyset$ se, e somente se, $y \notin f(\overline{\Omega})$. Portanto, pela propriedade (d2), segue que

$$d(f, \Omega, y) = d(f, \emptyset, y) + d(f, \emptyset, y) = 0.$$

Como queríamos.

Teorema 12 Sejam $f \in \overline{C}^{\infty}(\Omega)$, $y \notin f(\partial \Omega \cup S_f(\Omega))$ e $f^{-1}(y) = \{x_1, x_2, \dots, x_m\}$. Então existe r > 0 tal que

$$d(f, \Omega, y) = \sum_{i=1}^{m} d(f'(x_i), B(0, r), 0).$$

Demonstração: Como $f^{-1}(y)$ é finito, existe $\varepsilon > 0$ tal que

$$f^{-1}(y) \subset \bigcup B(x_i, \varepsilon)$$
 e $B(x_i, \varepsilon) \cap B(x_j, \varepsilon) = \emptyset$ se $i \neq j$.

A partir da fórmula de Taylor, obtemos

$$f(x) = f(x_i) + f'(x_i)(x - x_i) + r(x - x_i), \text{ onde } \lim_{x \to x_i} \frac{r(x - x_i)}{x - x_i} = 0.$$
 (1.1)

Denotando $\Omega_i = B(x_i, \varepsilon)$ temos, por extensão da propriedade (d2), que

$$d(f, \Omega, y) = \sum_{i=1}^{m} d(f, B(x_i, \varepsilon), y), \text{ pois } y \notin f(\overline{\Omega} \setminus \bigcup_{i=1}^{m} \Omega_i).$$

Nosso objetivo é mostrar que para δ suficientemente pequeno obtemos

$$d(f, B(x_i, \delta), y) = d(f'(x_i)(x - x_i), B(x_i, \delta), 0).$$

Para isso, consideremos $A = f'(x_i)$, então A é inversível pois $det A \neq 0$ e portanto

$$|x| = |A^{-1}Ax| \le |A^{-1}||Ax|,$$

e assim $|Ax| \ge c|x|$ com $c = |A^{-1}|^{-1}$. Logo, por (1.1), dado $\varepsilon' = \frac{c}{2}$, existe $\delta > 0$ tal que

$$\frac{|r(x-x_i)|}{|x-x_i|} < \frac{c}{2}$$
, sempre que $|x-x_i| < \delta$.

Assim, para $x \in B(x_i, \delta)$, definimos

$$y(t) = ty$$
 e $h(t, x) = tf(x) + (1 - t)A(x - x_i)$,

e por (1.1) temos

$$h(t,x) = ty + A(x - x_i) + tr(x - x_i).$$

É fácil ver que y(t) e h(t,x) são contínuas, o nosso objetivo agora é mostrar que para qualquer $t \in [0,1]$ temos que $y(t) \notin h(t,\partial B(x_i,\delta))$. De fato, temos que $|h(t,x)-y(t)| = |A(x-x_i) + tr(x-x_i)|$ e lembrando que $|A(x-x_i)| \ge c|x-x_i|$ obtemos

$$|h(t,x) - y(t)| = |A(x - x_i) + tr(x - x_i)|$$

$$\geq c|x - x_i| - |r(x - x_i)|$$

$$> \left(c - \frac{c}{2}\right)|x - x_i| = \frac{c}{2}\delta > 0,$$

para todo $t \in [0,1]$ e $|x-x_i| = \delta$. A partir da propriedade (d3), concluimos que

$$d(f, B(x_i, \delta), y) = d(A(x - x_i), B(x_i, \delta), 0).$$
(1.2)

Seja agora r > 0 tal que $B(x_i, \delta) \subset B(0, r)$. Como x_i é a única solução de $Ax - Ax_i = 0$, obtemos pelo item (b) do Lema 1 que

$$d(A(x - x_i), B(x_i, \delta), 0) = d(A(x - x_i), B(0, r), 0).$$
(1.3)

Considere $h:[0,1]\times B(0,r)\longrightarrow \mathbb{R}^n$ definida por $h(t,x)=A(x-tx_i)$ e y(t)=0. Naturalmente, y(t) e h(t,x) são contínuas e, como $|x_i|< r$, $A(t-tx_i)\neq 0$ para todo $x\in\partial B(0,r)$ e todo $t\in[0,1]$. Logo, $0\notin h(t,\partial B(0,r))$. Usando novamente (d3), temos

$$d(A(x-x_i), B(0,r), 0) = d(Ax, B(0,r), 0).$$
(1.4)

Portanto, de (1.2),(1.3) e (1.4) concluímos que

$$d(f, B(x_i, \delta), y) = d(f'(x_i), B(0, r), 0),$$

o que finaliza a demonstração.

1.3 O Caso Linear

Finalmente concluiremos a demonstração da unicidade da função d, mostrando a veracidade da igualdade $d(A, B(0, r), 0) = \operatorname{sgndet} A$, onde A é a matriz associada a transformação linear com $\det A \neq 0$. Para isso, usaremos fortemente a Proposição 4, enunciada na seção preliminares e algumas noções de Álgebra Linear.

Como

$$det(A - \lambda id) = (-1)^n \prod_{k=1}^m (\lambda - \lambda_k)^{\alpha_k} \prod_{j=m+1}^n (\lambda - \mu_j)^{\beta_j},$$

temos que

$$\det A = (-1)^n \prod_{k=1}^m (-\lambda_k)^{\alpha_k} \prod_{j=m+1}^n (-\mu_j)^{\beta_j}
= (-1)^n \prod_{k=1}^m |\lambda_k|^{\alpha_k} \prod_{j=m+1}^n (-\mu_j)^{\beta_j}
= (-1)^n (-1)^{n-\alpha} \prod_{k=1}^m |\lambda_k|^{\alpha_k} \prod_{j=m+1}^n (\mu_j)^{\beta_j}
= (-1)^{\alpha} \prod_{k=1}^m |\lambda_k|^{\alpha_k} \prod_{j=m+1}^n (\mu_j)^{\beta_j},$$

desta forma, sgndet $A=(-1)^{\alpha}$, onde $\alpha=\sum_{k=1}^{m}\alpha_{k}=dimN$. Observe que se A possui apenas autovalores negativos, então $\det(tA+(1-t)id)\neq 0$ em [0,1], pois se $\det(tA+(1-t)id)=0$ para algum $t\in[0,1]$, deveríamos ter $t\in(0,1)$ tal que

$$0 = det(tA + (1-t)id) = f^n \det\left(A + \frac{1-t}{t}id\right),$$

ou seja, $\frac{t-1}{t} < 0$ é autovalor de A, o que é um absurdo. Portanto, pelas propriedades do grau (d1) e (d3), temos que

$$d(A, B(0, r), 0) = d(id, B(0, r), 0) = 1 = \text{sgndet}A.$$

Denotemos então Ω o conjunto B(0,r) e consideremos apenas o caso em que $N \neq \{0\}$.

Passo 1. Suponhamos que $\alpha = \dim N$ é par. Como $\mathbb{R}^n = N \oplus M$, todo elemento x de \mathbb{R}^n tem unica representação da forma $x = P_1 x + P_2 x$, onde $P_1 x \in N$ e $P_2 x \in M$. Definimos então $P_1 : \mathbb{R}^n \to N$ e $P_2 = id - P_1 : \mathbb{R}^n \to M$. Assim, $A = AP_1 + AP_2$ é uma decomposição direta de A e pela proposição 4 temos $A(N) \subset N$ e $A(M) \subset M$. O próximo passo é mostrar que a homotopia

$$h(t,x) = tAx + (1-t)(-P_1x + P_2x),$$

é admissível, ou seja, $h(t,x) \neq 0$ em $[0,1] \times \partial \Omega$. De fato, observe que

$$h(0,x) = 0 \Longrightarrow P_1 x = P_2 x,$$

e como $P_1x=P_2x\in N\cap M=\{0\}$ segue que x=0, e portanto $x\not\in\partial\Omega.$ Se h(t,x)=0 com $t\in(0,1)$ teríamos

$$AP_1x + AP_2x = \frac{1-t}{t}P_1x - \frac{1-t}{t}P_2x,$$

denotando $\lambda = \frac{1-t}{t} > 0$ temos

$$AP_1x = \lambda P_1x$$
 e $AP_2x = -\lambda P_2x$.

Pelo item (b) da proposição 4, concluímos que x = 0 e portanto $x \notin \partial \Omega$. Se caso h(1,x) = 0 teríamos Ax = 0, implicando x = 0. Portanto, h(t,x) é uma homotopia admissível, e pela propriedade do grau (d3), temos

$$d(A, \Omega, 0) = d(-P_1 + P_2, \Omega, 0).$$

Como supomos inicialmente α par, temos que $\alpha=2p$ para algum $p\geq 1$. Se p=1, podemos encontrar uma matriz $B_{\alpha\times\alpha}$ tal que $B^2=-id|_N$, basta considerar a rotação por $\pi/2$, isto é

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
,

e para um caso geral, arranjamos p blocos semelhantes ao longo da diagonal principal, ou seja, $b_{2j-1,2j} = 1 = -b_{2j,2j-1}$ para j = 1,...,p e $b_{jk} = 0$ para os demais j,k.

Se v é um autovetor de B com autovalor λ , então

$$Bv = \lambda v \Rightarrow B^2 v = \lambda Bv \Rightarrow -i dv = \lambda^2 v \Rightarrow -v = \lambda^2 v \Rightarrow \lambda^2 = -1,$$

ou seja, B possui apenas autovalores complexos. O objetivo agora é encontrar homotopias entre

$$-P_1 + P_2 \longrightarrow BP_1 + P_2 \longrightarrow P_1 + P_2 = id$$

afim de concluir que

$$d(-P_1 + P_2, \Omega, 0) = d(BP_1 + P_2, \Omega, 0) = d(id, \Omega, 0).$$

Para a primeira homotopia, consideremos a aplicação

$$h(t,x) = tBP_1x - (1-t)p_1x + P_2x,$$

e mostremos que h é uma homotopia admissível, ou seja, $h(t,x) \neq 0$ para $(t,x) \in [0,1] \times \partial \Omega$. Se h(0,x) = 0 então temos x = 0. Se h(1,x) = 0 então $BP_1x + P_2x = 0$ implicando $P_2x = 0$ e $BP_1x = 0$. Como B é não-singular segue que $P_1x = 0$, e como as duas projeções se anulam concluímos que x = 0. Resta o caso em que h(t,x) = 0 para $t \in (0,1)$, deste modo

$$[tB - (1-t)]P_1x + P_2x = 0,$$

portanto

$$P_2 x = 0$$
 e $BP_1 x = \frac{1-t}{t} P_1 x$.

Se caso $P_1x \neq 0$ então $\frac{1-t}{t}$ seria um auto valor de B o que não é possível, pois B possui apenas autovalores complexos. Assim, $P_1x = 0$ implica x = 0 e portanto $0 \notin h(t, \partial\Omega)$ pata $t \in [0, 1]$. Logo, as aplicações $-P_1 + P_2$ e $BP_1 + P_2$ são homotópicas.

Para a segunda homotopia, consideremos a aplicação

$$h(t,x) = tP_1x + (1-t)BP_1x + P_2x.$$

Usando um raciocínio análogo ao usado na primeira homotopia, concluímos que também são homotópicas as aplicações $BP_1 + P_2$ e $P_1 + P_2$. Portanto, a partir dos resultados obtidos, concluímos

$$d(A, \Omega, 0) = d(id, \Omega, 0) = 1 = (-1)^{2p} = \text{sgndet}A.$$

Passo 2. Consideremos agora o caso em que α é impar, ou seja, $\alpha = 2p + 1$ para algum $p \geq 0$. Seja $\{v^1, v^2, ..., v^{\alpha}\}$ uma base de N, denotemos N_1 como o subespaço

gerador por v^1 e N_2 o subespaço gerado por $\{v^2,...,v^\alpha\}$. Então $N=N_1\oplus N_2$, onde $\dim N_1=1$ e $\dim N_2=2p$. Consideremos também $\tilde{Q}_1:N\to N_1$ e $\tilde{Q}_2=id|_N-\tilde{Q}_1:N\to N_2$ as projeções sobre os subespaços em questão. Assim, $P_1=\tilde{Q}_1P_1+\tilde{Q}_2P_1$. Como no caso anterior, buscamos encontrar homotopias entre

$$A \longrightarrow -P_1 + P_2 \longrightarrow -\tilde{Q}_1 P_1 + B\tilde{Q}_2 P_1 \longrightarrow -\tilde{Q}_1 P_1 + \tilde{Q}_2 P_1 + P_2$$

assim

$$d(A, \Omega, 0) = d(-Q_1 + Q_2, \Omega, 0),$$

onde $Q_1 = \tilde{Q}_1 P_1$ e $Q_2 = \tilde{Q}_2 P_1 + P_2$. Observe que Q_1 e Q_2 são as projeções referentes à decomposição $\mathbb{R}^n = N_1 \oplus (N_2 \oplus M)$. Como 0 é o único zero de $-Q_1 + Q_2$ podemos substituir $\Omega = B(0,r)$ por qualquer conjunto aberto e limitado que contenha o 0, sem mudar o valor de d. Desta forma, dado $\Omega \subset N_1$ aberto e limitado e $g: \overline{\Omega} \to N_1$ contínua com $0 \notin g(\partial \Omega)$ definimos

$$\tilde{d}(g,\Omega,0) = d(g \circ Q_1 + Q_2, \Omega + \tilde{B}(0,r), 0),$$

e pela propriedades do grau temos:

- $(\tilde{d}1)$ $\tilde{d}(id|_{N_1}, \Omega, 0) = 1$ se $0 \in \Omega$.
- $(\tilde{d}2)$ $\tilde{d}(g,\Omega,0) = \tilde{d}(g,\Omega_1,0) + \tilde{d}(g,\Omega_2,0)$ sempre que Ω_1 e Ω_2 são subconjuntos abertos disjuntos de Ω e $0 \notin g(\overline{\Omega} \setminus (\Omega_1 \cup \Omega_2))$.
- $(\tilde{d}2)$ $\tilde{d}(h(t,\cdot),\Omega,0)$ é independente de $t\in J=[0,1]$ sempre que $h:J\times\overline{\Omega}\to N_1$ é contínua e $0\not\in h(J\times\partial\Omega)$.

Passo 3. Temos que $N_1 = \{\lambda v^1 : \lambda \in \mathbb{R}\}$ e sem perda de generalidade podemos supor que $|v^1| = 1$. A partir do conjunto $\Omega = \{\lambda v^1 : \lambda \in (-2, 2)\}$ definimos

$$\Omega_1 = \{ \lambda v^1 : \lambda \in (-2, 0) \}$$
 e $\Omega_2 = \{ \lambda v^1 : \lambda \in (0, 2) \}.$

Considere também a função $f(\lambda v^1) = (|\lambda| - 1)v^1$. Como $f(0) = -v^1 \neq 0$ temos que $0 \notin f(\overline{\Omega} \setminus (\Omega_1 \cup \Omega_2))$. Daí, construímos a homotopia

$$h(t, \lambda v^1) = t(|\lambda| - 2)v^1 + v^1,$$

e observamos que como $\partial\Omega=\{-2v^1,2v^1\}$, temos que $h([0,1]\times\partial\Omega)=\{v^1\}$, implicando que $h(t,\lambda v^1)\neq 0$ em $[0,1]\times\partial\Omega$. Portanto, pelas propriedades do grau $(\tilde{d}1),(\tilde{d}2)$ e $(\tilde{d}3)$ temos que

$$0 = \tilde{d}(v^1, \Omega, 0) = \tilde{d}(f, \Omega, 0) = \tilde{d}(f, \Omega_1, 0) + \tilde{d}(f, \Omega_2, 0). \tag{1.5}$$

Observe que $f|_{\Omega_1}(\lambda v^1) = -(\lambda+1)v^1 = -id|_{N_1} - v^1$ possui um único zero $-v^1 \in \Omega_1 \subset \Omega$, de forma que

$$\tilde{d}(f,\Omega_1,0) = \tilde{d}(-id|_{N_1} - v^1,\Omega,0) = \tilde{d}(-id|_{N_1},\Omega,0), \tag{1.6}$$

onde a última igualdade segue do fato que $h(t,\lambda v^1)=-\lambda v^1-v^1\neq 0$ em $[0,1]\times\partial\Omega$. De forma análoga temos que

$$\tilde{d}(f, \Omega_2, 0) = \tilde{d}(id|_{N_1}, \Omega, 0).$$
 (1.7)

Portanto, por (1.5),(1.6) e (1.7) temos que

$$\tilde{d}(id|_{N_1}, \Omega, 0) + \tilde{d}(-id|_{N_1}, \Omega, 0) = 0,$$

portanto $\tilde{d}(-id|_{N_1},\Omega,0)=-1$. Finalmente, aplicando a proposição 4, temos que

$$d(a, \Omega, 0) = \tilde{d}(-id|_{N_1}, \Omega, 0) = -1 = (-1)^{2p+1} = \operatorname{sgndet} A,$$

como queríamos.

Agrupando todos os resultados desta seção, formulamos o seguinte teorema.

O Caso Linear CAPÍTULO 1

Teorema 13 (Unicidade do Grau) Sejam \mathcal{D} a coleção de todos os subconjuntos abertos e limitados de \mathbb{R}^n e

$$M = \{ (f, \Omega, y) : \Omega \in \mathcal{D}, f \in C(\overline{\Omega}) \ e \ y \in \mathbb{R}^n \backslash f(\partial \Omega) \}.$$

Então existe uma única função $d: M \longrightarrow \mathbb{Z}$ satisfazendo as propiedades (d1)-(d3). Além disso, tais propriedades implicam que $d(A, \Omega, 0) = sgn \det A$ para aplicações lineares A com $\det A \neq 0$ e $0 \in \Omega$.

Demonstração: Suponhamos que existem duas funções d_1 e d_2 satisfazendo as propriedades do grau topológico de Brouwer. Sejam $f \in C(\overline{\Omega})$ e $y \in \mathbb{R}^n \backslash f(\partial \Omega)$, então pelo resultado adquirido após a Proposição 5, temos que

$$d_1(f, \Omega, y) = d_1(g, \Omega, y),$$

onde $g \in \overline{C}^{\infty}(\Omega)$ e $|f - g|_0 < \sigma(y, f(\partial \Omega))$. Portanto, pelo Teorema 13 temos

$$d_1(g, \Omega, y) = \sum_{i=1}^m d_1(g'(x_i), B(0, r), 0),$$

onde $x_i \in f^{-1}(y) = \{x_1, ..., x_m\}$. Finalmente, pelos dados obtidos nesta última seção, temos que

$$\sum_{i=1}^{m} d_1(g'(x_i), B(0, r), 0) = \sum_{i=1}^{m} sgn \det g'(x_i),$$

e portanto

$$d_1(f, \Omega, y) = \sum_{i=1}^m sgn\det g'(x_i).$$

De forma análoga verificamos que

$$d_2(f, \Omega, y) = \sum_{i=1}^m sgn\det g'(x_i),$$

concluindo então que

$$d_1(f, \Omega, y) = d_2(f, \Omega, y).$$

Capítulo 2

Construção do Grau

Nesta seção definiremos o grau em três etapas. Na primeira, faremos uma definição restrita a valores regulares de $f \in \overline{C}^1(\Omega)$. Na segunda, generalizamos a primira definição para qualquer valor de $f \in \overline{C}^2(\Omega)$. Por fim, na terceira etapa, ampliaremos a definição do grau para sua forma mais genérica, definindo-o para $f \in C(\overline{\Omega})$. Comecemos então definindo o grau para valores regulares.

2.1 O Caso Regular

Iniciamos esta seção definindo o grau para valores regulares.

Definição 21 Sejam $\Omega \subset \mathbb{R}^n$ aberto e limitado, $f \in \overline{C}^1(\Omega)$ e $y \in \mathbb{R}^n \setminus f(\partial \Omega \cup S_f)$. Definimos o grau topológico de Brouwer da aplicação f em relação a Ω no ponto y como sendo:

$$d(f,\Omega,y) = \begin{cases} \sum_{x \in f^{-1}(y)} sgnJ_f(x), & se \quad f^{-1}(y) \neq \emptyset \\ 0, & se \quad f^{-1}(y) = \emptyset \end{cases}$$

onde sgn é a função definida por

$$sgn(t) = \begin{cases} 1, & se \ t > 0 \\ -1, & se \ t < 0 \end{cases}$$

O Caso Regular CAPÍTULO 2

Observação 1 Uma primeira observação que deve ser constatada a partir da definição acima é a iqualdade

$$d(f, \Omega, y) = d(f - y, \Omega, 0).$$

De fato, primeiramente temos que

$$f(x) = y \Leftrightarrow f(x) - y = 0.$$

Definindo $f(x) - y = \phi(x)$ segue que $\phi^{-1}(\{0\}) = f^{-1}(\{y\})$. Portanto,

$$d(f - y, \Omega, 0) = d(\phi, \Omega, 0),$$

e pela definição de grau

$$d(\phi, \Omega, 0) = \sum_{\eta_i \in \phi^{-1}(\{0\})} sgn[J_{\phi}(\eta_i)].$$

Como a quantidade de parcelas dos dois somatórios

$$\sum_{\eta_i \in \phi^{-1}(\{0\})} sgn[J_{\phi}(\eta_i)] \quad e \quad \sum_{x_i \in f^{-1}(\{y\})} sgn[J_f(x_i)]$$

são iguais e

$$\phi(\eta_i) = 0 \Leftrightarrow f(\eta_i) - y = 0 \Leftrightarrow f(\eta_i) = y,$$

temos que $x_i = \eta_i$. Portanto

$$d(\phi, \Omega, 0) = \sum_{x_i \in f^{-1}(\{y\})} sgn[J_f(x_i)],$$

resultando

$$d(\phi,\Omega,0)=d(f,\Omega,y)$$

como queríamos.

Agora exibiremos um exemplo prático de como calcular o grau topológico de uma função conhecida definida em um intervalo Ω .

O Caso Regular CAPÍTULO 2

Exemplo: Seja $f: \Omega \to \mathbb{R}$ uma aplicação definida por f(x) = sen(x) com $\Omega = \left(0, \frac{5\pi}{2}\right)$ e $y = \frac{\pi}{4}$. Vamos calcular o grau topológico de Brouwer de f com relação a Ω no ponto y, ou seja, $d(f, \Omega, y)$.

O primeiro passo é verificar se $d\left(f,\left(0,\frac{5\pi}{2}\right),\frac{\pi}{4}\right)$ está bem definido, para isto, devemos verificar se $y \notin f(\partial\Omega \cup S_f)$. De fato,

$$\partial\Omega = \left\{0, \frac{5\pi}{2}\right\} \Longrightarrow f(\partial\Omega) = \{0, 1\},$$

е

$$f(S_f) = \left\{ x \in \left(0, \frac{5\pi}{2}\right); \cos(x) = 0 \right\} = \left\{ \frac{\pi}{2}, \frac{3\pi}{2} \right\} \Longrightarrow f(S_f) = \{-1, 1\},$$

portanto $\frac{\pi}{4} \not \in \{-1,0,1\}.$ É fácil observar que

$$f^{-1}\left(\left\{\frac{\pi}{4}\right\}\right) = \{\eta_1, \eta_2, \eta_3\},$$

e pela definição de grau

$$d\left(f, \left(0, \frac{5\pi}{2}\right), \frac{\pi}{4}\right) = \sum_{\eta_i \in f^{-1}\left(\left\{\frac{\pi}{4}\right\}\right)} sgn(J_f(\eta_i)).$$

Logo

$$d\left(f,\left(0,\frac{5\pi}{2}\right),\frac{\pi}{4}\right) = sgn(f'(\eta_1)) + sgn(f'(\eta_2)) + sgn(f'(\eta_3)),$$

portanto

$$d\left(f, \left(0, \frac{5\pi}{2}\right), \frac{\pi}{4}\right) = 1 + (-1) + 1 = 1.$$

 \Diamond

O objetivo agora é generalizar a definição de grau inserida anteriormente, abrangendo tanto valores regulares quanto valores singulares, para isso, vamos inicialmente substituir $\sum sgn J_f(x)$ por uma integral apropriada.

O Caso Regular CAPÍTULO 2

Proposição 8 Sejam Ω , f e y como na Definição θ e $(\varphi_{\varepsilon})_{\varepsilon>0}$ a familia de funções regularizantes dada por

$$\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi_1\left(\frac{x}{\varepsilon}\right),$$

onde $\varphi_1: \mathbb{R}^n \longrightarrow \mathbb{R}$ de classe $C^{\infty}(\mathbb{R}^n)$ é dado por

$$\varphi_1(x) = \begin{cases} c \cdot exp\left(\frac{-1}{1 - |x|^2}\right), & para \quad |x| < 1\\ 0, & caso \ contrário, \end{cases}$$

 $e\ c>0\ \acute{e}\ tal\ que\ \int_{\mathbb{R}^n} \varphi_1(x) dx = 1.$ Além disso, $supp \varphi_{\varepsilon} = \overline{B(0,\varepsilon)}\ e\ \int_{\mathbb{R}^n} \varphi_{\varepsilon}(x) dx = 1$ para todo $\varepsilon>0$. Então existe $\varepsilon_0=\varepsilon_0(y,f)$ tal que

$$d(f,\Omega,y) = \int_{\Omega} \varphi_{\varepsilon}(f(x) - y) J_f(x) dx, \quad para \quad 0 < \varepsilon \le \varepsilon_0.$$

Demonstração: Dividimos a demonstração em dois casos. Primeiro supomos o caso em que $f^{-1}(y) = \emptyset$. Assim, tomamos $0 < \varepsilon < \varepsilon_0 = \varrho(y, f(\overline{\Omega}))$ para obtermos $\varphi_{\varepsilon}(f(x) - y) = 0$, resultando $d(f, \Omega, y) = 0$. Para o caso $f^{-1}(y) \neq \emptyset$, supomos $f^{-1}(y) = \{x_1, \dots, x_m\}$ e assim pelo Teorema da Aplicação Inversa (Teorema 5), existem bolas $B(x_i, \delta)$ disjuntas tais que $f|_{B(x_i, \delta)}$ é um homeomorfismo sobre uma vizinhança V_i de y e $sgn J_f(x) = sgn J_f(x_i)$ na $B(x_i, \delta)$. Tomando r > 0 tal que $B(y, r) \subset \bigcap_{i=1}^m V_i$ e denotando $U_i = B(x_i, \delta) \cap f^{-1}(B(y, r))$, existe $\beta > 0$ tal que

$$|f(x) - y| \ge \beta$$
 para todo $x \in \overline{\Omega} \setminus \bigcap_{i=1}^m U_i$.

Assim, temos que se $0 < \varepsilon < \beta$ então $\varphi_{\varepsilon}(f(x) - y) = 0$ para $x \in \overline{\Omega} \setminus \bigcap_{i=1}^{m} U_i$, e assim denotando $I_f = \int_{\Omega} \varphi_{\varepsilon}(f(x) - y) J_f(x) dx$, temos

$$I_f = \sum_{i=1}^m \int_{U_i} \varphi_{\varepsilon}(f(x) - y) J_f(x) dx$$

$$= \sum_{i=1}^m \int_{U_i} \varphi_{\varepsilon}(f(x) - y) sgn J_f(x) |J_f(x)| dx$$

$$= \sum_{i=1}^m sgn J_f(x_i) \int_{U_i} \varphi_{\varepsilon}(f(x) - y) |J_f(x)| dx.$$

Precisamos apenas mostrar que $\int_{U_i} \varphi_{\varepsilon}(f(x) - y) |J_f(x)| dx = 1$ para concluir a demonstração. Para isso, observe que

(i) $J_f(x) = J_{f-y}(x)$, pois y é mantido constante.

(ii)
$$f(U_i) - y = B(0, r)$$
.

Desta forma, tomando $\varepsilon < r$ e usando o Teorema de Mudança de Variáveis (Teorema 11), temos

$$\int_{U_i} \varphi_{\varepsilon}(f(x) - y) |J_f(x)| dx = \int_{U_i} \varphi_{\varepsilon}(f(x) - y) |J_{f-y}(x)| dx = \int_{B(0,r)} \varphi_{\varepsilon}(x) dx$$

$$= \int_{B(0,\varepsilon)} \varphi_{\varepsilon}(x) dx = 1.$$

Considerando $\varepsilon_0 = \min\{\beta, r\}$ temos que

$$I_f = \int_{\Omega} \varphi_{\varepsilon}(f(x) - y) J_f(x) dx$$

$$= \sum_{i=1}^m sgn J_f(x_i)$$

$$= \sum_{x \in f^{-1}(y)} sgn J_f(x) = d(f, \Omega, y), \quad \text{para} \quad 0 < \varepsilon \le \varepsilon_0,$$

o que conclui a demonstração.

2.2 Do Caso Regular ao Singular

O próximo passo é definir o grau também para valores singulares. Consideremos $f \in \overline{C}^2(\Omega), y_0 \notin f(\partial \Omega)$ e $\alpha = \varrho(y_0, f(\partial \Omega)) > 0$, fixemos $y_1, y_2 \in B(y_0, \alpha)$ valores regulares de f e definamos $\delta = \alpha \max\{|y_1 - y_0|, |y_2 - y_0|\}$. Desta forma, pela Proposição 8 obtemos $\varepsilon < \delta$ tal que

$$d(f, \Omega, y_i) = \int_{\Omega} \varphi_{\varepsilon}(f(x) - y_i) J_f(x) dx, \qquad i = 1, 2.$$

O objetivo agora é mostrar que as duas integrais acima são iguais, isto é,

$$\int_{\Omega} \left[\varphi_{\varepsilon}(f(x) - y_2) - \varphi_{\varepsilon}(f(x) - y_1) \right] J_f(x) dx = 0, \tag{2.1}$$

ou seja,

$$\int_{\Omega} \varphi \varepsilon (f(x) - y_1) J_f(x) dx = \int_{\Omega} \varphi \varepsilon (f(x) - y_2) J_f(x) dx.$$

Para provar a igualdade, definamos

$$w(x) = (y^1 - y^2) \int_0^1 \varphi_{\varepsilon}(x - y^1 + t(y^1 - y^2)) dt.$$

Dividiremos o processo em duas partes, primeiramente mostraremos que

$$divw(x) = \varphi_{\varepsilon}(f(x) - y_2) - \varphi_{\varepsilon}(f(x) - y_1).$$

Temos

$$\frac{\partial w_i}{\partial x_i} = \frac{\partial}{\partial x_i} \left[(y_i^1 - y_i^2) \int_0^1 \varphi_{\varepsilon}(x - y^1 + t(y^1 - y^2)) dt \right]
= \int_0^1 \frac{\partial}{\partial x_i} \left[(y_i^1 - y_i^2) \varphi_{\varepsilon}(x - y^1 + t(y^1 - y^2)) dt \right]
= \int_0^1 \varphi_{\varepsilon}'(x - y^1 + t(y^1 - y^2)) \left[e_i(y_i^1 - y_i^2) \right] dt,$$

a partir da definição de divergência temos

$$divw(x) = \sum_{i=1}^{n} \int_{0}^{1} \varphi_{\varepsilon}'(x - y^{1} + t(y^{1} - y^{2})) \left[e_{i}(y_{i}^{1} - y_{i}^{2}) \right] dt$$

$$= \int_{0}^{1} \left[\varphi_{\varepsilon}'(x - y^{1} + t(y^{1} - y^{2})) \left(\sum_{i=1}^{n} e_{i}(y_{i}^{1} - y_{i}^{2}) \right) \right] dt$$

$$= \int_{0}^{1} \left[\varphi_{\varepsilon}'(x - y^{1} + t(y^{1} - y^{2}))(y^{1} - y^{2}) \right] dt$$

$$= \int_{0}^{1} \frac{d}{dt} (\varphi_{\varepsilon}(g(t, x)) dt,$$

onde $g(t, x) = x - y^{1} + t(y^{1} - y^{2})$. Portanto

$$divw(x) = \varphi_{\varepsilon}(g(1,x)) - \varphi_{\varepsilon}(g(0,x)) = \varphi_{\varepsilon}(x-y^2) - \varphi_{\varepsilon}(x-y^1).$$

como queríamos.

Consideremos $r = \alpha - (\delta - \varepsilon)$, então supp $w(x) \subset \overline{B(y_0, r)}$. De fato, se $|x - y_0| > r$ e $t \in [0, 1]$ temos

$$|x - y_1 + t(y_1 - y_2)| \ge |x - y_0| - |y_0 - y_1 + t(y_1 - y_2)|$$

$$> r - |(1 - t)(y_0 - y_1) + t(y_0 - y_2)|$$

$$\ge r - (1 - t)|y_0 - y_1| - t|y_0 - y_2|$$

$$\ge r - \max_{i=1,2} |y_0 - y_i| = \varepsilon.$$

Assim, se $x \notin \overline{B(y_0, r)}$ temos $|x - y_1 + t(y_1 - y_2)| > \varepsilon$, isto é, $\varphi \varepsilon (x - y_1 + t(y_1 - y_2)) = 0$ para todo $t \in [0, 1]$. Logo, $\operatorname{supp} w(x) \subset \overline{B(y_0, r)}$ e portanto temos $f(\partial \Omega) \cap \operatorname{supp} w(x) = \emptyset$. Prova-se ainda que, sob estas condições, existe $v \in C^1(\mathbb{R}^n)$ tal que $\operatorname{supp} v(x) \subset \Omega$ e

$$[\varphi_{\varepsilon}(f(x) - y_2) - \varphi_{\varepsilon}(f(x) - y_1)] J_f(x) = \operatorname{div} v(x) \quad \text{em} \quad \Omega.$$
 (2.2)

Seja então a>0 tal que $\Omega\subset [-a,a]^n=Q.$ Temos, por (2.1) e (2.2), que

$$\int_{Q} \operatorname{div}v(x)dx = \int_{\Omega} \operatorname{div}v(x)dx$$

$$= \int_{\Omega} \left[\varphi_{\varepsilon}(f(x) - y_{2}) - \varphi_{\varepsilon}(f(x) - y_{1})\right] J_{f}(x)dx.$$

Por outro lado, como supp $v \subset [-a, a]^n$, temos

$$\int_{Q} \operatorname{div} v(x) dx = \sum_{i=1}^{n} \int_{-a}^{a} \dots \int_{-a}^{a} \left(\int_{-a}^{a} \frac{\partial v_{i}}{\partial x_{i}} dx_{i} \right) dx_{1} \dots dx_{i-1} dx_{i+1} \dots dx_{n} = 0.$$

Portanto,

$$d(f, \Omega, y_1) = d(f, \Omega, y_2),$$

como queríamos.

Portanto, conseguimos generalizar a definição 18, de modo a abranger tanto valores regulares como singulares, ou seja, podemos eliminar a hipótese $y \notin f(S_f)$ e introduzir a definição abaixo.

Definição 22 Sejam $\Omega \subset \mathbb{R}^n$ aberto e limitado, $f \in \overline{C}^2(\Omega)$ e $y \notin f(\partial \Omega)$. Então, definimos

$$d(f, \Omega, y) = d(f, \Omega, y^1),$$

onde y^1 é um valor regular de f tal que $|y^1-y|<\varrho(y,f(\partial\Omega))$ e $d(f,\Omega,y^1)$ é dado pela Definição 18.

2.3 De $\overline{C}^2(\Omega)$ para $C(\overline{\Omega})$

Antes de exibirmos uma definição final do grau, apresentaremos uma proposição mostrando que o grau dado pela definição 19 é o mesmo para funções $\overline{C}^2(\Omega)$ suficientemente próximas de uma função contínua dada.

Proposição 9 Sejam $f \in \overline{C}^2(\Omega)$ e $y \notin f(\partial \Omega)$. Então para $g \in \overline{C}^2(\Omega)$ existe $\delta = \delta(f, g, y) > 0$ tal que $d(f + tg, \Omega, y) = d(f, \Omega, y)$ sempre que $|t| < \delta$.

Demonstração: A demonstração será dividida em três casos distintos.

De $\overline{C}^2(\Omega)$ para $C(\overline{\Omega})$

Capítulo 2

Caso 1. Supomos $f^{-1}(y) = \emptyset$. Neste caso temos $\gamma = \min_{x \in \overline{\Omega}} |f(x) - y| > 0$, e assim para todo $x \in \overline{\Omega}$ temos

$$|f(x) - y + tg(x)| \ge |f(x) - y| - |t||g(x)| \ge \gamma - |t|M > 0,$$

qualquer que seja t tal que $|t| < \gamma/M = \delta$ e $M = \max_{x \in \overline{\Omega}} |g(x)|$.

Caso 2. Supomos agora que y é um valor regular e $f^{-1}(y) \neq \emptyset$. Deste modo, $f^{-1}(y) = \{x^1, ..., x^m\}$ com $J_f(x^i) \neq 0$ para i = 1, ..., m. Seja $h(t, x) = f_t(x) - y$ onde $f_t(x) = f(x) + tg(x)$. Observe que h é de classe C^2 , $h(0, x^i) = 0$ e $J_{h(0, \cdot)}(x^i) = J_f(x^i) \neq 0$, portanto, pelo Teorema da Aplicação Implícita (Teorema 3), obtemos funções contínuas $z^i : (-r_i, r_i) \to B_{\delta_i}(x^i)$ tais que $z^i(0) = x^i$ e $z^i(t)$ é a única solução de h(t, x) = 0 para $t \in B_{\delta_i}(x^i)$. Portanto, pela continuidade de $z^i(t)$, podemos encontrar números positivos ρ e r tais que

$$z^i:(-r,r)\to B(x^i,\rho)\ \ {
m e}\ \bigcap_{i=1}^n\overline{B(x^i,\rho)}=\emptyset.$$

Observe também que o raio ρ pode ser escolhido tal que $sgn J_f(x) = sgn J_f(x^i)$ em $\overline{B(x^i, \rho)}$. Portanto, denotando $V = \bigcup_{i=1}^n B(x^i, \rho)$, temos

$$f^{-1}(y) \cap V = \{z^1(t), ..., z^m(t)\}.$$

A partir da expressão acima, da compacidade de $\overline{\Omega}\backslash V$ e da unicidade de $z^i(t)$ como solução de h(t,x)=0, podemos encontrar $\beta>0$ tal que $|f(x)-y|>\delta$ em $\overline{\Omega}\backslash V$. Analogamente temos

$$f_t^{-1}(y) = \{z^1(t), ..., z^m(t)\},\$$

para $|t| < \delta_0 = \min\{r, \beta M^{-1}\}$. Como J_f é uniformemente contínua em $[-\delta, \delta] \times \overline{\Omega}$, temos por definição que dado $\varepsilon = \min\{|J_f(z)| : z \in \overline{\Omega}\} > 0$, existem $\delta_1, \delta_2 > 0$ tais que

$$|J_f(z^1) - J_{f_t}(z^2)| < \varepsilon$$
 onde $|t| < \delta_1$ e $|z^1 - z^2| < \delta_2$,

desta forma, podemos obter $\delta < \delta_0$ tal que

$$|J_f(x) - J_{f_t}(x)| < \min\{|J_f(z)| : z \in \overline{\Omega}\}$$
 para $x \in \overline{\Omega}$ e $|t|, \delta$,

e assim concluímos que

$$\operatorname{sgn} J_{f_t}(z^i(t)) = \operatorname{sgn} J_f(z^i(t)) = \operatorname{sgn} J_f(x^i),$$

ou seja, de acordo com a Definição 18 segue que

$$d(f_t, \Omega, y) = d(f, \Omega, y)$$
 com $|t| < \delta$.

Caso 3. Supomos y singular. Escolhemos então um valor regular $y_0 \in B_{\frac{\alpha}{3}}(y)$, onde $\alpha = \varrho(y, f(\partial\Omega))$, e assim, encontramos $\delta_0 > 0$ tal que

$$d(f_t, \Omega, y_0) = d(f, \Omega, y_0) = d(f, \Omega, y) \quad \text{para} \quad |t| < \delta_0, \tag{2.3}$$

pelo caso anterior. Desta forma, para $x \in \partial \Omega$, podemos fazer a majoração

$$|f(x) - y_0| \ge |f(x) - y| - |y - y_0| \ge \alpha - \frac{\alpha}{3} = \frac{2\alpha}{3},$$

e assim,

$$|f_t(x) - y_0| \ge |f(x) - y_0| - |t||g(x)| \ge \frac{2\alpha}{3} - |t||g(x)| > \frac{\alpha}{3},$$

tendo $|t| < \frac{\alpha}{3M}$. Portanto, temos

$$|y_0 - y| < \varrho(y_0, f_t(\partial\Omega)),$$

e pela Definição 19 segue

$$d(f_t, \Omega, y) = d(f_t, \Omega, y_0)$$
 para $|t| < \frac{\alpha}{3M}$.

Logo, juntando todos os resultados obtidos e considerando $\delta = \min\{\delta_0, \frac{\alpha}{3M}\}$, temos

$$d(f, \Omega, y) = d(f_t, \Omega, y_0) = d(f_t, \Omega, y)$$
 para $|t| < \delta$,

como queríamos.

Podemos então concluir que o grau é o mesmo para todas as funções C^2 suficientemente próximas de uma função contínua. De fato, sejam $f \in C(\overline{\Omega}), y \notin f(\partial\Omega)$ e $\alpha = \varrho(y, f(\partial\Omega))$. Consideremos duas funções $g, \tilde{g} \in \overline{C}^2(\Omega)$ tais que

$$|g - f|_0 < \alpha$$
 e $|\tilde{g} - f|_0 < \alpha$,

e definimos

$$h(t,x) = g(x) + t(\tilde{g}(x) - g(x))$$
 e $\varphi(t) = d(h(t,\cdot), \Omega, y),$

para $t \in [0,1]$. Observe que h(0,x) = g(x) e a partir das hipóteses temos $g(x) \neq y$, observe também que $h(1,x) = \tilde{g}(x)$ e de forma análoga $\tilde{g}(x) \neq y$. Temos também que

$$|g(x) - \tilde{g}(x)| = |g(x) + f(x) - f(x) - \tilde{g}(x)|$$

$$\leq |g(x) - f(x)| + |\tilde{g}(x) - f(x)|$$

$$< \alpha + \alpha = 2\alpha,$$

desta forma, para $t_0 \in (0,1)$ e $x \in \partial \Omega$ temos

$$|h(t_0, x) - y| = |(1 - t_0)g(x) + t_0\tilde{g}(x) - y|$$

$$= |(g(x) - y) - t_0(g(x) - \tilde{g}(x))|$$

$$\geq |g(x) - y| - t_0|g(x) - \tilde{g}(x)| > 0.$$

Portanto, para $t_0 \in [0,1]$ temos $y \notin h(t_0,\partial\Omega)$ e portanto $d(h(t_0,\cdot),\Omega,y)$ está bem definida. Assim, podemos aplicar a Proposição 9 na aplicação

$$h(t,x) = h(t_0,x) + (t - t_o)(\tilde{g}(x) - g(x)),$$

e concluir que $\varphi(t)$ é constante em uma vizinhança de t_0 , isto é, φ é localmente constante. Desta maneira, φ é contínua em [0,1] e, como este intervalo é um conjunto

conexo, $\varphi([0,1])$ também é conexo. Sendo $\varphi([0,1]) \subset \mathbb{Z}$ concluimos que $\varphi([0,1])$ é constituido de apenas um ponto, isto é, φ é constante em [0,1]. Em particular

$$d(g, \Omega, y) = d(\tilde{g}, \Omega, y).$$

Finalmente, exibiremos uma definição final para o grau, como consequência dos resultados expostos até o momento.

Definição 23 Sejam $f \in C(\overline{\Omega})$ e $y \in f(\partial\Omega)$. Então definimos $d(f,\Omega,y) = d(g,\Omega,y)$, em que $g \in \overline{C}^2(\Omega)$ é uma função tal que $|g - f|_0 < \varrho(y, f(\partial\Omega))$ e $d(g,\Omega,y)$ é dado pela Definição 19.

2.4 Propriedades do Grau

Exibiremos agora algumas propriedades como consequências do estudo realizado até o momento.

Teorema 14 (Propriedades do Grau) $Sejam\ M=\{(f,\Omega,y):\Omega\subset\mathbb{R}^n\ aberto\ e\ limitado,f\in C(\overline{\Omega})\ e\ y\in\mathbb{R}^n\backslash f(\partial\Omega)\}\ e\ d:M\longrightarrow\mathbb{Z}\ o\ grau\ topológico.$ Então d satisfaz:

- (d4) $d(f, \Omega, y) \neq 0$ implica $f^{-1}(y) \neq \emptyset$;
- (d5) $d(\cdot, \Omega, y)$ e $d(f, \Omega, y)$ são constantes em $\{g \in C(\overline{\Omega}) : |g f|_0 < r\}$ e $B(y, r) \subset \mathbb{R}^n$, respectivamente, onde $r = \varrho(y, f(\partial\Omega))$. Além disso, $d(f, \Omega, \cdot)$ é constante em cada componente conexa de $\mathbb{R}^n \setminus f(\partial\Omega)$;
- (d6) $d(g, \Omega, y) = d(f, \Omega, y)$ sempre que $g|_{\partial\Omega} = f|_{\partial\Omega}$;
- (d7) $d(f,\Omega,y) = d(f,\Omega_1,y)$ para todo subconjunto aberto Ω_1 de Ω tal que $y \notin f(\overline{\Omega} \backslash \Omega_1)$.

Demonstração:

(d4) Como vimos no lema 3, se $f^{-1}(y)=\emptyset$ então $d(f,\Omega,y)=0$, portanto, pela contrapositiva, se $d(f,\Omega,y)\neq 0$ então $f^{-1}(y)\neq \emptyset$.

- (d5) A propriedade (d5) é dividida em duas partes. A primeira parte é uma consequência imediata da definição do grau. Para provar a segunda parte, usaremos a propriedade (d3) e vale antes ressaltar que uma componente conexa é um conjunto conexo maximal, em relação a inclusão, comparado aos demais conjuntos conexos. Queremos provar que $d(f,\Omega,\cdot)$ é constante em cada componente conexa. De fato, $\mathbb{R}^n \backslash f(\partial\Omega)$ é um aberto, suas componentes conexas são abertos do \mathbb{R}^n , sendo portanto conexas por caminho. Portanto, se G é uma componente conexa de $\mathbb{R}^n \backslash f(\partial\Omega)$ e $y_1, y_2 \in G$, existe uma curva contínua $y:[0,1] \to G$ com $y(0) = y_1$ e $y(1) = y_2$. Logo, pela propriedade (d3), concluímos que $d(f,\Omega,y_1) = d(f,\Omega,y_2)$.
- (d6) Para esta demonstração, usaremos a propriedade (d3). Considere

$$h(t,x) = tf(x) + (1-t)g(x), \quad \text{com } t \in [0,1].$$

Observe que h(t,x) é uma função contínua, restando apenas verificar que $y \notin h(t,\partial\Omega)$ para todo $t \in [0,1]$. De fato, seja $x \in \partial\Omega$, então

$$h(t,x) = tf(x) + (1-t)g(x)$$
$$= tf(x) + (1-t)f(x)$$
$$= f(x) \neq y,$$

o que conclui a demonstração.

(d7) Consequência imediata de (d2).

2.5 A Fórmula Produto

Apresentaremos nesta seção um importante teorema que relaciona o grau de uma aplicação composta gf com o grau de g e f. Antes de enunciarmos e provarmos o teorema, faremos duas importantes observações.

Observação 2 A propriedade do grau (d5) nos diz que o número inteiro $d(f, \Omega, y)$ é o mesmo para cada y em uma mesma componente conexa K de $\mathbb{R}^m \setminus f(\partial \Omega)$. Desta forma, denotemos tal inteiro por $d(f, \Omega, K)$. Como $f(\partial \Omega)$ é compacto, temos uma componente conexa ilimitada K_{∞} de $\mathbb{R}^n \setminus f(\partial \Omega)$, se n > 1 e duas se n = 1. Neste último caso, denotaremos K_{∞} a união destas duas componentes ilimitadas.

Observação 3 Como $\mathbb{R}^n \backslash f(\partial \Omega)$ é aberto, as componentes conexas K_i são conjuntos abertos, assim, para cada $x_i \in K_i$ encontramos ε_i tal que $B_i = B_{\varepsilon_i}(x_i) \subset K_i$. Como as bolas são disjuntas duas a duas, podemos escolher um ponto y_i em cada B_i , tal que todas as suas entradas são racionais. Assim, estabelecemos uma bijeção com os racionais que é enumerável, e a união de conjuntos enumeráveis é enumerável. Provando então que o conjunto das componentes conexas K_i é um conjunto enumerável.

Teorema 15 Sejam $\Omega \subset \mathbb{R}^n$ aberto e limitado, $f \in C(\overline{\Omega})$, $g \in C(\mathbb{R}^n)$, K_i as componentes conexas limitadas de $\mathbb{R}^n \setminus f(\partial \Omega)$ e $y \notin (gf)(\partial \Omega)$. Então

$$d(gf, \Omega, y) = \sum_{i} d(f, \Omega, K_i) \cdot d(g, K_i, y),$$

onde somente uma quantidade finita de termos é diferente de zero.

Demonstração: A demonstração é bastante técnica e será dividida em três partes:

1ª Parte. A primeira parte consiste em mostrar que o somatório exibido no teorema é finito. De fato, como $f(\overline{\Omega})$ é compacto, existe r > 0 tal que $f(\overline{\Omega}) \subset B(0,r)$. Seja

 $M = \overline{B(0,r)} \cap g^{-1}(y)$. Como $y \notin (gf)(\partial\Omega)$ segue que M é compacto, por ser uma interseção de compactos, e $M \subset \mathbb{R}^n \backslash f(\partial\Omega)$. Como as componentes conexas K_i de $\mathbb{R}^n \backslash f(\partial\Omega)$ determinam uma partição de $\mathbb{R}^n \backslash f(\partial\Omega)$, podemos admitir a seguinte igualdade

$$\mathbb{R}^n \backslash f(\partial \Omega) = \dot{\bigcup}_i K_i \dot{\bigcup} K_{\infty}.$$

Portanto, como M é compacto e $M \subset \dot{\bigcup}_i K_i$, existe uma cobertura finita tal que

$$M \subset K_1 \cup K_2 \cup ... \cup K_p \cup K_{p+1}$$

onde $K_{p+1} = k_{\infty} \cap B_{r+1}(0)$.

Logo, $d(f, \Omega, K_{p+1}) = 0$ e para $j \geq 2$ temos $K_j \subset B(0, r)$ e $g^{-1} \cap K_j = \emptyset$, implicando $d(g, K_j, y) = 0$. Portando, o somatório do enunciado do teorema é finito.

2ª Parte. A segunda parte consiste em demonstrar o teorema para um caso particular. Suponhamos y regular, $f \in \overline{c}^1(\Omega)$, $g \in C^1(\mathbb{R}^n)$ e $(gf)^{-1}(y \cap S_{gf}) = \emptyset$.

A definição do grau nos diz que

$$d(gf, \Omega, y) = \sum_{x \in (gf)^{-1}(y)} J_{gf}(x),$$

observe que (gf)'(x) = g'(f(x))f'(x) implica $sgnJ_{gf}(x) = sgnJ_{g}(f(x)) \cdot sgnJ_{f}(x)$, portanto

$$\sum_{x \in (gf)^{-1}(y)} sgn J_{gf}(x) = \sum_{x \in G^{-1}(y), x \in f^{-1}(x)} sgn J_g(z) sgn J_f(x),$$

podemos então escrever o somatório acima na forma

$$\sum_{x \in G^{-1}(y), x \in f^{-1}(x)} sgn J_g(z) sgn J_f(x) = \sum_{x \in f(\Omega), z \in g^{-1}(y)} sgn J_g(z) \left[\sum_{x \in f^{-1}(z)} sgn J_f(x) \right],$$

e finalmente aplicando a definição do grau no segundo somatório, temos que

$$\sum_{x \in f(\Omega), z \in g^{-1}(y)} sgnJ_g(z) \left[\sum_{x \in f^{-1}(z)} sgnJ_f(x) \right] = \sum_{x \in f(\Omega), z \in g^{-1}(y)} sgnJ_g(z) \cdot f(f, \Omega, z).$$

Como $f(\overline{\Omega}) \subset B(0,r)$, podemos substituir $z \in f(\Omega)$ por $z \in \overline{B(0,r)} \setminus f(\partial \Omega)$, tendo em vista que $d(f,\Omega,z) = 0$ para $z \notin f(\Omega)$. Substituindo no somatório desenvolvido até o momento, temos

$$d(gf,\Omega,y) = \sum_{x \in g^{-1}, z \in \overline{B(0,r)} \backslash f(\partial\Omega)} sgn J_g(z) \cdot d(f,\Omega,z).$$

Utilizando a propriedade do grau (d2) com as componentes conexas K_i que são disjuntas, e a primeira parte desta demonstração, temos

$$\sum_{x \in g^{-1}, z \in \overline{B(0,r)} \backslash f(\partial\Omega)} sgnJ_g(z) \cdot d(f,\Omega,z) = \sum_{i=1}^p \left[\sum_{z \in K_i \cap g^{-1}(y)} sgnJ_g(z) \cdot d(f,\Omega,z) \right],$$

e aplicando a definição de grau, temos

$$\sum_{i=1}^{p} \left[\sum_{z \in K_i \cap g^{-1}(y)} sgnJ_g(z) \cdot d(f, \Omega, z) \right] = \sum_{i=1}^{p} d(f, \Omega, K_i) \sum_{z \in K_i \cap g^{-1}(y)} sgnJ_g(z).$$

Pela propriedade do grau (d5), que nos diz que o grau é o mesmo número inteiro para todo $z \in K_i$, temos

$$d(gf, \Omega, y) = \sum_{i} d(f, \Omega, K_i) \cdot d(g, K_i, y).$$

Como já provamos anteriormente, a fórmula continua válida se $(gf)^{-1}(y) \cap S_{gf} \neq \emptyset$. Concluindo a 2° parte da demonstração.

3ª Parte. Finalmente para o caso mais geral consideremos $f \in C(\overline{\Omega}), g \in C(\mathbb{R}^n)$ e denotemos

$$S_m = \{ z \in B_{r+1}(0) \backslash f(\partial \Omega) : d(f, \Omega, z) = m \}$$

e

$$N_m = \{ i \in \mathbb{N} : d(f, \Omega, K_i) = m \}.$$

Primeiramente, verifiquemos que a igualdade $S_m = \bigcup_{i \in N_m} K_i$ é verdadeira. De fato, se $z \in B_{r+1}(0) \setminus f(\partial \Omega)$ e $d(f, \Omega, z) = m$ então $d(f, \Omega, K - i) = m$, pois $z \in K_i$

para algum K_i . Portanto, se $z \in K_i$ com $i \in N_m$ segue que $z \in \bigcup_{i \in N_m} K_i$. Por outro lado, se $z \in \bigcup_{i \in N_m} K_i$ então $z \in K_i$ para algum $i \in N_m$, implicando que $d(f, \Omega, z) = m$. Como K_i é uma componente conexa limitada, temos que $K_i \subset B_{r+1} \setminus f(\partial \Omega)$, portanto $z \in S_m$, o que prova a igualdade. Portanto

$$\sum_{i} d(f, \Omega, K_i) \cdot d(g, K_i, y) = \sum_{m \in \mathbb{N}} m \left[\sum_{i \in \mathbb{N}_m} d(g, K_i, y) \right],$$

e aplicando a propriedade do grau (d2), segue que

$$\sum_{i} d(f, \Omega, K_i) \cdot d(g, K_i, y) = \sum_{m} m \cdot d(g, S_m, y).$$

O objetivo então é mostrar que

$$d(gf, \Omega, y) = \sum_{m} m \cdot d(g, S_m, y), \qquad (2.4)$$

para tanto, observe que $\partial S_m \subset f(\partial\Omega)$. Provaremos esta inclusão por contradição. De fato, suponha que exista $z \in \partial S_m$ tal que $z \notin f(\partial\Omega)$. Logo, $z \in \mathbb{R}^n \backslash f(\partial\Omega)$, então existe $i \in \mathbb{N}$ tal que $z \in K_i$, e como K_i é aberto, encontramos $\epsilon > 0$ tal que $B(z,\epsilon) \subset K_i$ e $d(f,\Omega,z') = m$ para todo $z' \in B(z,\epsilon)$. Por outro lado, como $z \in \partial S_m$ temos que $B(z,\epsilon) \cap (\mathbb{R}^n \backslash S_m) \neq \emptyset$, ou seja, existe $z' \in B(z,\epsilon)$ tal que $z' \notin S_m$. Portanto, $d(f,\Omega,z') \neq m$ com $z' \in B(z,\epsilon)$, que é uma contradição. Desta forma, $\partial S_m \subset f(\partial\Omega)$. Observe que $g(\partial S_m) \subset g(f(\partial\Omega))$, pois $g \in C(\mathbb{R}^n)$ e como provamos $\partial S_m \subset f(\partial\Omega)$. Portanto, $y \notin g(\partial S_m)$ tendo em vista que $y \notin (gf)(\partial\Omega)$. Assim, existe $g_0 \in C^1(\mathbb{R}^n)$ tal que

$$d(g_0, S_m, y) = d(g, S_m, y),$$

para todo m, além disso,

$$d(g_0 f, \Omega, y) = d(g f, \Omega, y). \tag{2.5}$$

Considere o conjunto $M_0 = \overline{B(0,r+1)} \cap g_0^{-1}(y)$. Se este conjunto é vazio então a equação (2.4) é satisfeita imediatamente. Vamos considerar então que M_0 é diferente

de vazio. Observe que $y \notin (g_0 f)(\partial \Omega)$ e observe também que M_0 é compacto, pois é interseção de compactos. Portanto, $\varrho(M_0, f(\partial \Omega)) > 0$. De fato, se $\varrho(M_0, f(\partial \Omega)) = 0$ para algum $x_0 \in M_0$, teríamos que $x_0 \in f(\partial \Omega)$, mas como $g_0(x_0) = y$, teríamos que $y \notin (g_0 f)(\partial \Omega)$, que é um absurdo.

Seja $f_0 \in \overline{C}^1(\Omega)$ tal que

$$|f - f_0| < \varrho(M_0, f(\partial\Omega))$$
 e $f_0(\overline{\Omega}) \subset B(0, r + 1)$,

e definimos

$$\tilde{S}_m = \{ z \in B(0, r+1) \setminus f_0(\partial \Omega) : d(f_0, \Omega, z) = m \}.$$

Dado $z \in M_0$ temos que

$$\varrho(z, f(\partial\Omega)) \ge \varrho(M_0, f(\partial\Omega)),$$

portanto

$$|f - f_0|_0 < \varrho(z, f(\partial\Omega)).$$

Então, pela propriedade do grau (d5) temos que

$$d(f, \Omega, z) = d(f_0, \Omega, z).$$

O próximo passo é mostrar que $S_m = \tilde{S}_m$. De fato, pelo que vimos até o momento podemos dizer que $M_0 \cap S_m = M_0 \cap \tilde{S}_m$ e portanto os dois conjuntos estão contidos em $S_m \cap \tilde{S}_m$. Observe que $y \notin g_0(\overline{S}_m \setminus (S_m \cap \tilde{S}_m))$, pois caso estivesse, existiria $z \in \overline{S}_m \setminus (S_m \cap \tilde{S}_m)$ tal que $g_0(z) = y$ o que é um absurdo pois $S_m \cap M_0 \subset S_m \cap \tilde{S}_m$. Então, pela propriedade do grau (d7), temos que

$$d(g_0, S_m, y) = d(g_0, S_m \cap \tilde{S}_m, y) = d(g_0, \tilde{S}_m, y).$$

Utilizando o resultado da 2ª parte e essas últimas observações temos que

$$d(g_0 f_0, \Omega, y) = \sum_m m \cdot d(g_0, \tilde{S}_m, y) = \sum_m m \cdot d(g_0, S_m, y) = \sum_m m \cdot d(g_0, S_m, y).$$

Resta então verificar que $d(g_0f_0,\Omega,y)=d(g_0f,\Omega,y)$. Considere então a homotopia

$$h(t,x) = g_0(f(x) + t(f_0(x) - f(x)),$$

mostraremos que $y \notin h([0,1] \times \partial \Omega)$. De fato, se para algum $(t_0, x_0) \in [0,1] \times \Omega$ tivéssemos $y \in h([0,1] \times \partial \Omega)$, existiria $z = f(x_0) + t_0(f_0(x_0) - f(x_0))$ tal que $g_0(z) = y$, implicando $z \in M_0$. Desta forma

$$\varrho(M_0, f(\partial\Omega)) \leq |z - f(x_0)| = |t(f_0(x_0) - f(x_0))|$$

$$\leq |f - f_0|_0 < \varrho(M_0, f(\partial\Omega)),$$

que é um absurdo. Portanto, basta aplicar a propriedade do grau (d3), concluindo a demonstração do teorema. ■

Capítulo 3

Aplicações do Grau

Nesta seção, apresentaremos algumas aplicações da função grau definida e construída nas seções precedentes.

3.1 Ponto Fixo de Brouwer

O Teorema do ponto fixo de Brouwer se remete à existência de pontos fixos. O Teorema é bastante útil para compreensão da topologia dos espaços euclidianos. É também o ponto de partida para a demonstração de outros teoremas como o Teorema do Ponto Fixo de Schauder e o Teorema do Ponto Fixo de Schaefer. Encontrar pontos fixos em determinadas funções, é uma tarefa de extrema importância na matemática, tendo aplicações em diversas áreas como economia e estatística.

Teorema 16 (Ponto Fixo de Brouwer) $Seja\ D \subset \mathbb{R}^n$ um conjunto compacto convexo não vazio $e\ f: D \longrightarrow D$ uma função contínua. Então f tem um ponto fixo.

Demonstração: Dividiremos a demonstração deste importante teorema em duas partes. Primeiramente, supomos $D = \overline{B(0,r)}$ tal que f não possui pontos fixos na fronteira de D. Definimos $h: [0,1] \times D \to \mathbb{R}^n$ por h(t,x) = x - tf(x). Observamos

que $0 \notin h([0,1] \times \partial D)$. De fato, suponha que $h(t_0, x_0) = 0$ para algum $t_0 \in [0,1]$ e $x_0 \in \partial D$, desta forma

$$r = |x_0| = t_0|f(x_0)| \le t_0 r \Rightarrow t_0 = 1 \Rightarrow f(x_0) = x_0,$$

o que é um absurdo, pois supomos que f não tem ponto fixo na fronteira de D. Portanto, usando a propriedade (d3), de invariância por homotopia do grau, temos que

$$d(id - f, int D, 0) = d(id, B(0, r), 0) = 1.$$

Logo, a equação x-f(x) possui pelo menos uma solução em D e esta solução é exatamente o ponto fixo que procurávamos.

Para o caso mais geral, nosso objetivo é mostrar que $\tilde{f}(\mathbb{R}^n) \subset \text{conv} f(D)$, onde \tilde{f} é a extensão da função contínua f, dada por

$$\tilde{f}(x) = \begin{cases} f(x), & \text{se } x \in D \\ \left(\sum_{i \ge 1} 2^{-i} \varphi_i(x)\right)^{-1} \sum_{i \ge 1} 2^{-i} \varphi_i(x) f(a^i), & \text{se } x \notin D \end{cases}$$

em que $\{a^1, a^2, ...\}$ é um subconjunto enumerável denso em D e

$$\varphi_i(x) = \max\left\{2 - \frac{|x-a|}{\varrho(x,D)}, 0\right\},\,$$

para $x \notin D$.

Denotemos X = conv f(D), assim se $x \in D$ temos que $\tilde{f}(x) = f(x)$ e portanto $\tilde{f}(x) \in \overline{X}$. Para o caso em que $x \notin D$, observe que $\tilde{f}(x) = \lim_{m \to \infty} S_m$, onde

$$S_m = \left[\sum_{i=1}^m 2^{-i} \varphi_i(x) \right]^{-1} \sum_{i=1}^m 2^{-i} \varphi_i(x) f(a^i).$$

Portanto, $S_m \in X$, pois S_m é a combinação convexa de $f(a^1), f(a^2), ..., f(a^m)$, que são elementos de f(D). Assim, $\tilde{f}(x)$ é limite de uma sequência de elementos de

X, portanto $\tilde{f}(\mathbb{R}^n) \subset \overline{X}$. Como $f(D) \subset D$ e D é compacto e convexo, segue que $\tilde{f}(\mathbb{R}^n) \subset D$.

Seja agora r suficientemente grande tal que $D \subset \overline{B(0,r)}$. Pela primeira parte da demonstração, sabemos que existe $x \in \overline{B(0,r)}$ tal que $\tilde{f}(x) = x$. Mas, $\tilde{f}(x) \in D$, o que mostra que $x \in D$. Portanto, $\tilde{f}(x) = f(x) = x$, isto é, f possui ponto fixo.

Observação 4 O Teorema acima permanece válido se D for somente homeomorfo a um compacto convexo. De fato, suponha que $D = h(D_0)$ com D_0 compacto convexo e h um homeomorfismo. Então, $h^{-1} \circ f \circ h : D_0 \longrightarrow D_0$ é contínua. Logo, para algum $x_0 \in D_0$ temos $h^{-1}(f(h(x_0))) = x_0$, isto é, $f(h(x_0)) = h(x_0)$.

Exibiremos agora uma proposição e duas aplicações, enfatizando este importante Teorema.

Proposição 10 Não existe função contínua $f: \overline{B(0,r)} \longrightarrow \partial B(0,r)$ que deixe fixo todos os pontos da fronteira.

Demonstração: De fato, suponha que existe uma aplicação contínua $f: \overline{B(0,r)} \to \partial B(0,r)$ tal que f(x)=x para todo $x\in \partial B(0,r)$. Considere também $g:\overline{B(0,r)}\to \partial B(0,r)$ onde g(x)=-f(x). Observe que a aplicação g satisfaz às hipóteses exigidas no Teorema do Ponto Fixo de Brouwer, pois g é contínua, $\overline{B(0,r)}$ é compacto e convexo e $g(\overline{B(0,r)})\subset \overline{B(0,r)}$. Portanto, existe $x_0\in \partial B(0,r)$ tal que

$$x_0 = g(x_0) = -f(x_0) = -x_0, |x_0| = r,$$

o que é um absurdo.

Exemplo: (Perrom-Frobenius.) Seja $A = (a_{ij})_{n \times n}$ com $a_{ij} \ge 0$. Então existe $\lambda \ge 0$ e $x = (x_1, \dots, x_n) \ne 0$ tal que $x_i \ge 0$ para todo i e $Ax = \lambda x$, isto é, A tem um autovetor não-negativo correspondente a um autovalor não-negativo.

Primeiramente, definimos o conjunto

$$D = \left\{ x \in \mathbb{R}^n : x_i \ge 0, \forall i \in \sum_{i=1}^n x_i = 1 \right\}.$$

Mostraremos que este conjunto é convexo, limitado e fechado (compacto), caindo assim nas hipóteses do Teorema do Ponto Fixo. De fato, sejam $x, y \in D$, $S = \{z \in \mathbb{R}^n : z = tx + (1-t)y, t \in [0,1]\}$ e $z_i = tx_i + (1-t)y_i$, assim:

$$\sum_{i=1}^{n} z_{i} = \sum_{i=1}^{n} tx_{i} + \sum_{i=1}^{n} (1-t)y_{i}$$

$$= t \sum_{i=1}^{n} x_{i} + (1-t) \sum_{i=1}^{n} y_{i}$$

$$= t + 1 - t = 1,$$

portanto $S \subset D$, concluindo que D é convexo. Seja $x \in D$, então $x_i \leq 1$ e assim $x_i^2 \leq 1$, implicando

$$|x| = \sqrt{\sum_{i=1}^{n} x_i^2} \le \sqrt{n},$$

concluindo que D é limitado. Finalmente, considerando a sequência $(x^m) \subset D$ tal que $x^m \to x$, temos que

$$x^m \to x \Leftrightarrow x_i^m \to x_i,$$

e como $x_i \geq 0$ e

$$1 = \sum_{i=1}^{m} x_i^m \to \sum_{i=1}^{m} x_i = 1,$$

segue que $x \in D$ e portanto D é fechado. Considere $Ax_0 = 0$ para algum $x_0 \in D$, desta forma, tomaríamos $\lambda = 0$ e teríamos o resultado pretendido, portanto, devemos supor $Ax \neq 0$, assim $\sum_{i=1}^{n} (Ax)_i \geq \alpha > 0$, para algum $\alpha \in \mathbb{R}$. Definimos então a função em D da forma

$$f(x) = \frac{Ax}{\sum_{i=1}^{n} (Ax)_i},$$

que é contínua em D. Observamos também que $f(D) \subset D$, pois se $x \in D$ e y = f(x), temos

$$0 \le y_i = \frac{(Ax)_i}{\sum_{i=1}^n (Ax)_i} \Rightarrow \sum_{j=1}^n y_j = \frac{\sum_{j=1}^n (Ax)_j}{\sum_{i=1}^n (Ax)_i} = 1.$$

Desta forma, $f(x) \in D$ e portanto, pelo Teorema do Ponto Fixo de Brouwer, a aplicação f tem um ponto fixo em D, ou seja, existe $x_0 \in D$ tal que

$$f(x_0) = \frac{Ax_0}{\sum_{i=1}^{n} (Ax_0)_i} = x_0 \Rightarrow Ax_0 = \lambda x_0,$$

onde
$$\lambda = \sum_{i=1}^{n} (Ax_0)_i$$
.

Exibiremos agora um exemplo muito interessante, onde será usado o Teorema do Ponto Fixo de Brouwer para garantir a existência de solução em um sistema de equações diferenciais ordinárias.

Exemplo: Considere o seguinte sistema de equações diferenciais ordinárias:

$$\begin{cases} \frac{du}{dt} = u' = f(t, u) \\ u(0) = x \in \overline{B(0, r)} \end{cases}$$

em que $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ é uma função de classe C^1 periódica na variável t, ou seja, f(t+w,x) = f(t,x) para algum $w \in \mathbb{R}^+$ e para todo $(t,x) \in \mathbb{R} \times \mathbb{R}^n$. O objetivo é escolher uma bola $\overline{B(0,r)}$ de forma que o problema possua solução única u(t,x) em $[0,\infty)$. Definimos então a aplicação $p_t(x) = u(t,x)$ e suponhamos que f satisfaz a seguinte condição de fronteira

$$\langle f(t,x), x \rangle = \sum_{i=1}^{n} f_i(t,x) x_i < 0,$$

para todo $t \in [0, w]$ e |x| = r. Suponha agora que num instante t, a solução do sistema atinge a fronteira da bola, neste caso

$$\frac{d}{dt}|u(t)|^2 = 2\langle u'(t), u(t)\rangle = 2f(t, u(t)) \cdot u(t) < 0,$$

ou seja, a norma de u(t) é descrescente perto do instante t, em outras palavras, quando a função atinge a fronteira da bola a mesma automaticamente volta para o interior da bola. Portanto, temos a garantia de que $P_t : \overline{B(0,r)} \to \overline{B(0,r)}$ qualquer que seja o t > 0. Segue também que a aplicação P_t é contínua, pois as soluções do sistema variam continuamente com as condições iniciais.

Agrupando todas as informações obtidas até o momento, satisfazemos as condições do Teorema do Ponto Fixo de Brouwer, e portanto, existe um ponto fixo x_w para a função P_w . Assim a equação tem uma solução com a propriedade de que $u(0, x_w) = x_w = u(w, x_w)$ e que satisfaz

$$\begin{cases} u' = f(t, u), & \text{em } (0, w) \\ u(0) = u(w) = x_w \end{cases}$$

A ideia é expandir $u(t,x_w)$ w-periodicamente. Assim, considerando $v:[0,\infty)\to\mathbb{R}^n$ dada por

$$v(t) = u(t - kw, x_w),$$

em [kw, (k+1)w], obtemos uma solução w-periódica do sistema. A conclusão é que u(t,x) é uma solução w-periódica do sistema se, e somente se, x é um ponto fixo do operador P_w . Este operador é conhecido como operador de Poincaré.

 \Diamond

3.2 Teorema do Ouriço

Teorema 17 Sejam $\Omega \subset \mathbb{R}^n$ um conjunto aberto e limitado com $0 \in \Omega$ e $f : \partial\Omega \to \mathbb{R}^n \setminus \{0\}$ contínua. Suponha também que n é impar. Então, existe $x_0 \in \partial\Omega$ tal que $f(x_0) = \lambda x_0$, para algum $\lambda \neq 0$.

Demonstração: Podemos supor sem perda de generalidade que $f \in C(\overline{\Omega})$. Como estamos considerando n ímpar, temos que o determinante da matriz identidade negativa é $(-1)^n = -1$, desta forma, $d(-id, \Omega, 0) = -1$. Dividiremos a demonstração em duas partes. Primeiro consideremos o caso em que $d(f, \Omega, 0) \neq -1$. Definimos a aplicação $h: [0,1] \times \partial \Omega \to \mathbb{R}^n \setminus \{0\}$ tal que h(t,x) = (1-t)f(x) + t(-x). Desta forma, h(0,x) = f(x) e h(1,x) = -x = -id(x). Observemos que para algum $t_0 \in (0,1)$ e $x_0 \in \partial \Omega$ temos $h(t_0,x_0) = 0$, pois caso contrário, pela propriedade do grau (d3), teríamos

$$d(h(0,.), \Omega, 0) = d(h(1,.), \Omega, 0) = -1,$$

contradizendo a hipótese. Portanto,

$$h(t_0, x_0) = (1 - t_0)f(x_0) + t_0(-x_0) \Rightarrow f(x_0) = \frac{t_0}{1 - t_0}x_0 = \lambda x_0,$$

onde
$$\lambda = \frac{t_0}{1 - t_0} \neq 0$$
.

Supomos agora que $d(f, \Omega, 0) = -1$. Neste caso, analogamente à primeira parte da demonstração, definimos uma aplicação $h: [0,1] \times \partial \Omega \to \mathbb{R}^n \setminus \{0\}$ onde h(t,x) = (1-t)f(x) + tx. Desta maneira, h(0,x) = f(x) e h(1,x) = x = id(x). Com um raciocínio análogo à primeira parte, concluímos que a aplicação h não é uma homotopia admissível entre f(x) e id(x), ou seja, para algum $t_0 \in (0,1)$ e $x_0 \in \partial \Omega$ temos $h(t_0,x_0) = 0$. Portanto,

$$h(t_0, x_0) = (1 - t_0)f(x_0) + t_0x_0 \Rightarrow f(x_0) = \frac{t_0}{t_0 - 1}x_0 = \lambda x_0,$$

onde
$$\lambda = \frac{t_0}{t_0 - 1} \neq 0$$
.

Observação 5 Um exemplo de que para n par o teorema acima não é verdadeiro, é considerar uma rotação por $\frac{\pi}{2}$ de uma esfera unitária no \mathbb{R}^2 , onde para qualquer (x_1, x_2) , tem-se $f(x_1, x_2) = f(-x_2, x_1)$. De fato, seja $\Omega = B(0, 1) \subset \mathbb{R}^2$, definimos $f: \partial\Omega \to \mathbb{R}^2$ onde

$$f(x,y) = (-y,x).$$

Afirmamos que não existe $(x_0, y_0) \in \partial \Omega$ tal que $f(x_0, y_0) = \lambda(x_0, y_0)$, para algum $\lambda \neq 0$. Supondo que existe, temos que

$$\lambda(x_0, y_0) = (-y_0, x_0),$$

 $desta\ forma$

$$\lambda x_0 = -y_0 \qquad e \qquad \lambda y_0 = x_0,$$

e portanto

$$\lambda^2 = -1$$
.

que é um absurdo.

Observação 6 Seja $\Omega = B(0,1)$, então não existe um campo contínuo de vetores tangentes que não se anule em $S = \partial B(0,1)$. De fato, supomos que na aplicação $f: S \to \mathbb{R}^n$ tenhamos $f(x) \neq 0$ e $\langle f(x), x \rangle$ para todo $x \in S$. Temos todas as hipóteses do Teorema acima satisfeitas, portanto existe $x_0 \in S$ tal que $f(x_0) = \lambda x_0$, com $\lambda \neq 0$. Mas dessa forma

$$\langle f(x_0), x_0 \rangle = \langle \lambda x_0, x_0 \rangle = \lambda |x_0|^2 = 0,$$

implicando $x_0 = 0$ o que é um absurdo, pois $x_0 \in S$ e $0 \notin S$. Logo, f se anula em algum ponto de S.

Um exemplo prático deste Teorema seria:

Exemplo: O vento na superfície da Terra é um campo contínuo de vetores tangentes à sua superfície. Desta forma, o Teorema nos diz que em cada instante do tempo em pelo menos um ponto sobre a superfície do nosso planeta não venta. ♦

3.3 Teorema de Borsuk

Exibiremos agora um Teorema de suma importância na teoria do grau. Sempre que queremos mostrar que uma equação f(x) = y possui solução num conjunto Ω ,

precisamos mostrar que $d(f, \Omega, y) \neq 0$. O Teorema seguinte será uma ferramenta útil para realizar esta tarefa.

Teorema 18 (Borsuk) Seja $\Omega \subset \mathbb{R}^n$ aberto, limitado e simétrico com respeito a origem. Seja $f \in C(\overline{\Omega})$ uma função ímpar com $0 \notin f(\partial \Omega)$. Então $d(f, \Omega, y)$ é ímpar.

Demonstração: Antes de demonstrarmos de fato o teorema, demonstraremos um caso particular, supondo inicialmente que $f \in C^1(\Omega)$ e que 0 é um ponto regular de f, isto é, $J_f(0) \neq 0$. Neste caso, é suficiente encontrar uma função $g \in C^1(\Omega)$ ímpar tal que $0 \notin g(S_g(\Omega))$ sendo g suficientemente próxma de f. De fato, aplicando a propriedade do grau (d5), temos que

$$d(f, \Omega, 0) = d(g, \Omega, 0) = sgn J_g(0) + \sum_{0 \neq x \in g^{-1}(0)} J_g(x).$$

Como supomos g uma função ímpar, ou seja, g(x) = -g(-x), temos que g(x) = 0 se, e somente se, g(-x) = 0 e também $J_g(\cdot)$ é par, concluindo então que o somatório acima é par. Como supomos também que $0 \notin g(S_g)$, temos que $sgn J_g(0) \neq 0$. Portanto, $d(f, \Omega, 0)$ é ímpar, como desejamos.

O próximo passo é definir esta função g, para isto, usaremos o princípio da indução. Consideremos $\varphi \in C^1(\mathbb{R})$, ímpar tal que $\varphi'(0) = 0$ e $\varphi(t) = 0$ se, e somente se, t = 0. Definimos, $\Omega_1 = \{x \in \Omega : x_1 \neq 0\}$ e $\tilde{f}(x) = \frac{f(x)}{\varphi(x_1)}$ para $x \in \Omega_1$. O Lema de Sard nos assegura que podemos encontrar $y^1 \notin \tilde{f}(S_{\tilde{f}}(\Omega_1))$ com $|y^1|$ tão pequeno quanto se queira. Definimos então a aplicação

$$g_1(x) = f(x) - \varphi(x_1)y^1.$$

É fácil ver que $g_1 \in C^1(\Omega)$ é uma função ímpar e próxima de f em $\overline{\Omega}$. O próximo passo é mostrar que 0 é um valor regular de g_1 em Ω_1 . Primeiro observe que podemos reescrever a função g_1 definida acima, na forma

$$g_1(x) = \varphi(x_1)(\tilde{f}(x_1)(\tilde{f}(x) - y^1),$$

para $x \in \Omega_1$. Portanto, quando derivamos obtemos

$$g_1'(x) = \varphi'(x_1)(\tilde{f}(x) - y^1) + \varphi(x_1)\tilde{f}'(x),$$

para $x \in \Omega_1$. Se $x \in \Omega_1$ é tal que $g_1(x) = 0$, temos que

$$g_1(x) = f(x) - \varphi(x_1)y^1 = 0 \Longrightarrow f(x) = \varphi(x_1)y^1 \Longrightarrow \tilde{f}(x) = y^1,$$

implicando

$$g_1'(x) = \varphi(x_1)\tilde{f}'(x),$$

para todo $x \in \Omega_1 \cap g_1^{-1}(0)$. Como temos que $\varphi(x_1) \neq 0$ e $y^1 \notin \tilde{f}(S_{\tilde{f}}(\Omega_1))$, concluímos que $g'_1(x)$ é não singular para todo $x \in \Omega_1$, tal que $g_1(x) = 0$ como queríamos.

Supomos agora que já temos uma função impar $g_k \in C^1(\Omega)$ próxima de f tal que $0 \notin g_k(S_{g_k}(\Omega_k))$ para algum k < n. Prosseguindo, definimos

$$g_{k+1}(x) = g_k(x) - \varphi(x_{k+1})y^{k+1},$$

com $|y^{k+1}|$ suficientemente pequeno e tal que 0 é um valor regular para g_{k+1} no conjunto $\{x \in \Omega : x_{k+1} \neq 0\}$. Para finalizar o processo de indução, observemos que $g_{k+1} \in C^1(\Omega)$ é ímpar e próxima de $f \in \overline{\Omega}$. Podemos concluir que $0 \notin g_{k+1}(S_{g_{k+1}}(\Omega_{k+1}))$ pois se $x \in \Omega_{k+1}$ e $x_{k+1} = 0$, desta forma $x \in \Omega_k$, $g_{k+1}(x) = g_k(x)$, $g'_{k+1}(x) = g'_k(x)$ e então $J_{g_{k+1}}(x) \neq 0$. Portanto, $g = g_n \in C^1(\Omega)$ é ímpar, próxima de f em $\overline{\Omega}$ e é tal que $0 \notin g(S_g(\Omega \setminus \{0\}))$, pois $\Omega_n = \Omega \setminus \{0\}$. Para finalizar a demonstração deste caso particular, observe que pelo passo de indução temos que $g'(0) = g'_1(0) = f'(0)$ e portanto $0 \notin g(S_g(\Omega))$.

Finalmente para o caso geral, primeiramente definimos $g_2 = \frac{1}{2}(g_1(x) - g_1(-x))$ a parte ímpar de g_1 . Aproximamos $f \in C(\overline{\Omega})$ por $g_1 \in \overline{C}^1(\Omega)$. Escolhemos um δ positivo que não seja auto valor de $g_2'(0)$. Definimos também a função $\tilde{f} = g_2 - \delta \cdot id$. Observe que $\tilde{f} \in \overline{C}^1(\Omega)$ e é ímpar. Provaremos que $J_{\tilde{f}}(0) \neq 0$. De fato, observe que

$$\tilde{f}'(0) = g_2'(0) - \delta \cdot id,$$

e como δ não é um autovalor de $g_2'(0)$, segue que

$$J_{\tilde{f}}(0) = \det(\tilde{f}(0)) = \det(g_2'(0) - \delta \cdot id) \neq 0.$$

Portanto, tomando g_1 suficientemente próxima de f e δ pequeno, teremos \tilde{f} próxima de f. Implicando,

$$d(f, \Omega, 0) = d(\tilde{f}, \Omega, 0),$$

que é impar.

Exibiremos agora um resultado que é a generalização imediata do teorema acima.

COROLÁRIO 1 Seja $\Omega \subset \mathbb{R}^n$ aberto, limitado e simétrico em relação à $0 \in \Omega$. Seja $f \in C(\overline{\Omega})$ tal que $0 \notin f(\partial \Omega)$ e $f(-x) \neq \lambda f(x)$ em $\partial \Omega$ para todo $\lambda \geq 1$. Então $d(d,\Omega,0)$ é ímpar.

Demonstração: Basta mostrar que a aplicação

$$h(t,x) = f(x) - tf(-x),$$

é uma homotopia admissível. De fato, h(0,x)=f(x) e h(1,x)=f(x)-f(-x) que é uma função ímpar. Logo, como $0\not\in f(\partial\Omega)$ temos que $h(0,x)=f(x)\neq 0$. No caso $t\neq 0$ e $x\in\partial\Omega$ temos que

$$h(t,x) = 0 \iff f(-x) = \frac{1}{t}f(x),$$

que por hipótese nunca acontece. Portanto, h(t, x) define uma homotopia admissível em $\mathbb{R}^n \setminus \{0\}$ entre a função f e uma função g ímpar, e pelo Teorema de Borsuk, temos

$$d(f, \Omega, 0) = d(g, \Omega, 0).$$

Apêndice A

- Apendice

Este apêndice destina-se a apresentar sem demonstrações alguns resultados exibidos na seção preliminar e utilizados no corpo do trabalho.

A.1 Aplicações Diferenciáveis

Teorema 19 (Regra da Cadeia) Sejam $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$ abertos, $f: U \longrightarrow \mathbb{R}^m$ diferenciável no ponto a, com $f(U) \subset V$, $e \ g: V \longrightarrow \mathbb{R}^p$ diferenciável no ponto f(a). Então $g \circ f: U \longrightarrow \mathbb{R}^p$ é diferenciável no ponto a, com a derivada dada por $(g \circ f)'(a) = g'(f(a)) \cdot f'(a) : \mathbb{R}^n \longrightarrow \mathbb{R}^p$.

Demonstração: Por hipótese, podemos escrever

$$f(a+h) = f(a) + f'(a) \cdot h + \rho(h) \cdot |h|, \text{ com } \lim_{h \to 0} \rho(h) = 0$$

е

$$g(b+k) = g(b) + g'(b) \cdot k + \sigma(k) \cdot |k|, \text{ com } \lim_{k \to 0} \sigma(k) = 0.$$

Desta forma.

$$(g \circ f)(a+h) = g(f(a) + f'(a) \cdot h + \rho(h) \cdot |h|).$$

Denotando $k = f'(a) \cdot h + \rho(h) \cdot |h|$, obtemos

$$(g \circ f)(a+h) = g(b+k)$$

$$= g(b) + g'(b) \cdot (f'(a) \cdot h) + g'(b) \cdot \rho(h) \cdot |h| + \sigma(k) \cdot |k|$$

$$= (g \circ f)(a) + [g'(b) \cdot f'(a)] \cdot h + C(h) \cdot |h|,$$

onde

$$C(h) = g(b) \cdot \rho(h) + \sigma \cdot |f'(a) \cdot \frac{h}{|h|} + \rho(h)|.$$

Se $h \longrightarrow 0$, então $k \longrightarrow 0$ e $f'(a) \cdot \frac{h}{|h|}$ é limitada. Portanto $\lim_{h \to 0} C(h) = 0$, provando o teorema.

Teorema 20 (Desigualdade do Valor Médio) $Dado\ U \subset \mathbb{R}^n$, $seja\ f: U \longrightarrow \mathbb{R}^m$ diferenciável em cada ponto do segmento de reta aberto (a,a+v) e tal que sua restrição ao segmento fechado $[a,a+v] \subset U$ seja contínua. $Se\ |f'(x)| \leq M$ para $todo\ x \in (a,a+v)$ então $|f(a+v)-f(a)| \leq M|v|$.

Demonstração: Definimos o caminho $\lambda : [0,1] \to \mathbb{R}^n$ tal que $\lambda(t) = f(a+tv)$. Observe que por hipótese este caminho é contínuo e diferenciável no intervalo aberto (0,1). Pela regra da cadeia, temos

$$\lambda'(t) = f'(a + tv) \cdot v,$$

onde

$$|\lambda'(t)| \le |f'(a+tv)| \cdot |v| \le M \cdot |v|,$$

para todo $t \in (0,1)$. Portanto, pelo Teorema do Valor Médio para caminhos (Ver [4]),

$$|\lambda(1) - \lambda(0)| = |f(a+v) - f(a)| \le M \cdot |v|.$$

Integrais Múltiplas Apendice A

Teorema 21 (Teorema da Aplicação Implícita) Sejam $U \subset \mathbb{R}^{n+m}$ um conjunto aberto $e \ f : U \longrightarrow \mathbb{R}^m$ uma aplicação de classe C^1 . Suponha que $(a,b) \in U$ é tal que f(a,b) = 0 e $J_{\frac{\partial f}{\partial y}}(a,b) \neq 0$. Então existe um aberto $V \subset \mathbb{R}^n$ contendo a e uma única função $g : V \longrightarrow \mathbb{R}^m$ de classe C^1 , tal que g(a) = b e $f(x,g(x)) = 0, \forall x \in V$.

Demonstração: Ver [7]. ■

Teorema 22 (Teorema da Aplicação Inversa) Sejam $U \subset \mathbb{R}^n$ e $f: U \longrightarrow \mathbb{R}^m$ uma aplicação de classe C^1 . Se, para $a \in U$, $J_f(a) \neq 0$, então existem abertos V e W, contendo a e f(a), respectivamente, tais que f é um difeomorfismo de classe C^1 entre V e W. Além disso, para $y \in W$ temos

$$(f^{-1})'(y) = [f'(f^{-1}(y))]^{-1}.$$

Demonstração: Ver [7].

A.2 Integrais Múltiplas

Teorema 23 A fim de que uma função limitada $f: A \to \mathbb{R}$ seja integrável no bloco $A \subset \mathbb{R}^m$, é necessário e suficiente que, para todo $\varepsilon > 0$ dado, se possa obter uma partição P de A tal que

$$U(f;P) - L(f;P) < \varepsilon.$$

Demonstração: Denotemos I o conjunto das somas inferiores e H o conjunto das somas superiores de f. Como $L \in I$ e $U \in H$ temos que $I \leq H$, implicando, $sup.I \leq sup.H$. Para que f seja integrável, ou seja, para obter sup.I = inf.H, é suficiente que, para todo $\varepsilon > 0$ existam $L(f;P) \in I$ e $U(f;Q) \in H$ tais que $U(f;Q) - L(f;P) < \varepsilon$. Por hipótese, temos a primeira implicação satisfeita. Reciprocamente, se f é integrável, dado $\varepsilon > 0$, obtemos partições P' e P'' tais que

$$U(f; P'') - L(f; P') < \varepsilon,$$

e considerando P = P' + P'', obtemos

$$U(f; P) - L(f; P) \le U(f; P'') - L(f; P') < \varepsilon,$$

como queríamos.

Proposição 11 Seja $X = \{x_1, x_2, ...\} \subset \mathbb{R}^n$ um conjunto enumerável. Então X tem medida nula.

Demonstração: Dado $\varepsilon > 0$, escolhemos um retângulo C_i tal que $x_i \subset C_i$ e $vol.(C_i) < \varepsilon/2^i$, para todo $i \in \mathbb{N}$. Desta forma, obtemos uma família de retângulos fechados que cobre X, tal que

$$\sum_{i=1}^{\infty} vol.(C_i) < \sum_{i=1}^{\infty} \frac{\varepsilon}{2^i} < \varepsilon,$$

como queríamos.

Proposição 12 Toda reunião enumerável de conjuntos de medida nula é ainda um conjunto de medida nula.

Demonstração: Seja $X = \bigcup_{i=1}^{\infty} X_i$, uma reunião enumerável de conjuntos tal que med. $X_i = 0$ para todo $i \in \mathbb{N}$. Dado $\varepsilon > 0$ podemos obter, para cada $i \in \mathbb{N}$, uma sequência de cubos abertos $C_{i1}, C_{i2}, ..., C_{ij}, ...$ tais que $X_i \subset \bigcup_{j=1}^{\infty} C_{ij}$ e $\sum_j vol.C_{ij} < \varepsilon/2^i$. Portanto, X está contido na reunião (enumerável) de todos os C_{ij} . Dado qualquer subconjunto finito $F \subset \mathbb{N} \times \mathbb{N}$ existe $k \in \mathbb{N}$ tal que se $(i, j) \in F$ então $i \leq K, j \leq k$, logo

$$\sum_{(i,j)\in F} vol.(C_{ij}) \le \sum_{j=1}^k \left[\sum_{j=1}^k vol.(C_{ij}) \right] < \sum_{i=1}^k \frac{\varepsilon}{2^i} < \varepsilon.$$

Portanto, qualquer que seja a forma de enumerar os C_{ij} , teremos $\sum_{i,j} vol.(C_{ij}) \leq \varepsilon$, implicando med.X = 0.

Integrais Múltiplas Apendice A

Teorema 24 Todo conjunto aberto em R^n pode ser escrito como uma uni \tilde{a} o enumer \tilde{a} vel de cubos fechados que se interceptam somente e possivelmente na fronteira.

Demonstração: Denotemos K_0 o conjunto de todos os cubos fechados de lado unitário cujos vértices são pontos de coordenadas inteiras. Podemos então dividir cada cubo de K_0 em 2^n subcubos fechados dividindo a aresta do cubo original ao meio e denotemos K_1 o conjunto de todos esses subcubos. Prosseguindo da mesma maneira, obtemos uma sequência de conjuntos $K_0, K_1, ...$ onde cada K_i contém cubos de aresta $1/2^i$ e cada K_i é um conjunto enumerável. Dado um aberto $\Omega \subset \mathbb{R}^n$, denotemos S_0 o conjunto de todos os cubos de K_0 que estão contidos em Ω . Analogamente, denotemos S_1 como sendo o conjunto de todos os cubos de K_1 que estão contidos em Ω com a propriedade de que nenhum cubo de S_1 é subcubo de algum cubo de S_0 . Prosseguindo da mesma maneira, obtemos uma sequência de conjuntos S_0, S_1, \dots de cubos fechados cuja união é o conjunto Ω . De fato, como Ω é aberto, dado $x \in \Omega$ existe uma vizinhança V_x de x tal que $V_x \subset \Omega$. Como podemos tomar um cubo tão pequeno quanto se queira, tomemos um cubo contendo x tal que esteja contido em V_x . Como a união enumerável de conjuntos finitos é enumerável, o teorema está demonstrado.

Teorema 25 Uma função $f: A \longrightarrow \mathbb{R}$, limitada no retângulo $A \subset \mathbb{R}^n$, é integrável se, e somente se, o conjunto D_f dos seus pontos de descontinuidade tem medida nula.

Demonstração: Ver [4]. ■

Teorema 26 (Teorema de Fubini) Seja $f: A \times B \longrightarrow \mathbb{R}$ integrável no produto dos retângulos $A \subset \mathbb{R}^n$ e $B \subset \mathbb{R}^m$. Para todo $x \in A$, seja $f_x: B \longrightarrow \mathbb{R}$ definida por $f_x(y) = f(x,y)$ e ponhamos

$$\varphi(x) = \int_{B} f_x(y)dy, \quad \psi(x) = \int_{B} f_x(y)dy.$$

As funções $\varphi, \psi: A \longrightarrow \mathbb{R}$, assim definidas, são integráveis, com

$$\int_{A} \varphi(x)dx = \int_{A} \psi(x)dx = \int_{A \times B} f(x,y)dxdy,$$

isto é,

$$\int_{A\times B} f(x,y)dxdy = \int_{A} dx \left(\underbrace{\int_{B}} f(x,y)dy \right) = \int_{A} dx \left(\overline{\int_{B}} f(x,y)dy \right).$$

Demonstração: Seja $P=P_1\times P_2$ uma partição qualquer de $A\times B$. Os retângulos de P são os produtos $B_1\times B_2$, onde $B_1\in P_1$ e $B_2\in P_2$. A soma inferior de f relativa à partição P se escreve

$$L(f; P) = \sum_{B_1 \times B_2} wol.(B_1) \cdot vol(B_2) = \sum_{B_1 \in P_1} \left(\sum_{B_2 \in P_2} m_{B_1 \times B_2} \cdot vol.(B_2) \right) vol.(B_1).$$

Para todo $x \in B_1$, $m_{B_1 \times B_2} = m_{B_1 \times B_2}(f) \le m_{B_2}(f_x)$. Logo,

$$\sum_{B_2 \in P_2} m_{B_1 \times B_2} \cdot vol.(B_2) \le \sum_{B_2 \in P_2} m_{B_2}(f_x) \cdot vol.(B_2) \le \varphi(x).$$

Como esta desigualdade vale para todo $x \in B_2$, concluímos que

$$\sum_{B_2 \in P_2} m_{B_1 \times B_2} \cdot vol.(B_2) \le m_{B_1}(\varphi).$$

Daí,

$$L(f; P) \le \sum_{B_1 \in P_1} m_{B_1}(\varphi) \cdot vol.(B_1) = L(\varphi; P_1).$$

Analogamente, prova-se a desigualdade $U(\varphi; P_1) \leq U(f; P)$. Portanto,

$$L(f; P) \le L(\varphi; P_1) \le U(\varphi; P_1) \le U(f; P),$$

para qualquer partição $P=P_1\times P_2$. Como f é integrável, decorre imediatamente que φ é integrável e que $\int_A \varphi(x)dx=\int_{A\times B} f(x,y)dxdy$. A afirmação sobre ψ se prova da mesma maneira.

Teorema 27 (Teorema da Mudança de Variáveis) $Sejam\ A \subset \mathbb{R}^n\ um\ conjunto\ aberto\ e\ g: A \longrightarrow \mathbb{R}^n\ um\ função\ bijetiva\ e\ de\ classe\ C^1\ tal\ que\ g'(x) \neq 0\ para todo\ x \in A.\ Se\ f: g(A) \longrightarrow \mathbb{R}\ \'e\ integrável,\ então$

$$\int_{g(A)} f = \int_A (f \circ g) |det.g'|$$

Demonstração: Ver [7]. ■

Referências Bibliográficas

- [1] DEIMLING, Klaus. *Nonlinear Functional Analisys*. Springer-Verlag, New York, 1980.
- [2] K. HOFFMAN e R. KUNZE. Álgebra Linear. Polígono, São Paulo, 1971.
- [3] LIMA, Elon Lages. Curso de Análise vol. 1, 12.ed. Rio de Janeiro : IMPA, 2008.
- [4] LIMA, Elon Lages. Curso de Análise vol. 2, 11.ed. Rio de Janeiro : IMPA, 2009.
- [5] LIMA, Elon Lages. Topologia dos Espaços Métricos, 4.ed. Rio de Janeiro: IMPA, 2007.
- [6] NIRENBERG, Louis. *Topics in Nonlinear Functional Analysis*. Courant Institute of Mathematical Sciences, New York, 1974.
- [7] SPIVAK, Michael. Calculus on Manifolds. Benjamim, New York, 1965.