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Resumo

Ao longo deste estudo, nosso objetivo geral foi o que estabelecer uma re-
lagao entre as solugbes de um sistema progressivo-regressivo (forward-backward)
de equacoes diferenciais estocasticas no grupo de difeomorfismos do toro plano que
sao H%-suaves para a > 2 e que preservam volume (denotado como D%(T?)) e as
solucoes das equacoes de Navier-Stokes no plano, R2.

Nossa teoria nos capitulos 1 e 2 foi obtida tendo como base principal Shkoller
[16], do Carmo [6] e Gliklikh [10] para fornecer os conceitos bésicos sobre espagos de
Sobolev, Geometria Riemanniana e Analise Estocéstica em variedades que seriam
necessérios para o desenvolvimento dos resultados de Cruzeiro e Shamarova [4].

No capitulo 3, apresentamos o primeiro resultado principal do trabalho. Supo-
mos que existe uma solucao para Navier-Stokes equacoes no plano e, a partir
desta solucao, encontramos uma tripla de solucoes para um sistema de equagoes
diferenciais estocasticas forward-backward em D2 (T?).

Por fim, no capitulo 4, apresentamos o resultado reciproco e dada uma solugao
do sistema supracitado, nés construimos uma solucao para as equagoes de Navier-
Stokes.

Palavras-chave: Equacoes de Navier-Stokes; Sistema FBSDE; Grupo de Difeo-

morfismos no toro plano.



Abstract

Throughout this study, our general objective was to establish a relationship
between the solutions of a forward-backward system of stochastic differential equa-
tions in the group of diffeomorphisms of the flat torus that are H*-smooth for a@ > 2
which preserve volume (denoted as D¥(T?)) and the solutions of the Navier-Stokes
equations in the plane, R?.

The theory in Chapters 1 and 2 was obtained mainly by Shkoller [16], do Carmo
[6] and Gliklikh [10] to provide the basic concepts about Sobolev spaces, Rieman-
nian Geometry and Stochastic Analysis on Manifolds that would be necessary for
the development of the results of Cruzeiro and Shamarova [4].

In Chapter 3, we present the first main result of the work. We assume that
there exists a solution to the Navier-Stokes equations in the plane, and from this
solution we find a triple of solutions to a system of forward-backward stochastic
differential equations in D%(T?).

Finally, in Chapter 4, we present the converse result and given a solution of

the aforementioned system, we construct a solution to Navier-Stokes equations.

Keywords: Navier Stokes equations; FBSDE System; diffeomorphism group on
the flat torus
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Notation

Chapter 1

exp,

Exponential map at a point ¢ on a Riemannian manifold, mapping tangent

vectors to the manifold.

% Covariant derivative of a vector field V along a curve, incorporating curva-
ture effects in non-Euclidean spaces.

™ The flat n-torus.

B The o-algebra representing the information up to time ¢, often used in
stochastic processes.

B, Filtration of the o-algebra B, capturing the evolution of information over
time.

Fi Variation of the filtration notation defined in a o-algebra F, capturing the
evolution of information over time.

\Y% Covariant derivative operator, generalizing partial derivatives in curved
spaces or manifolds.

H A Hilbert space, a complete inner product space.

Chapter 2

(—A)* Fractional Laplacian operator, a generalization of A, defined as (—A)® via

Fourier transform.



A Laplace operator or Laplacian, defined as A = V - V, which measures the

divergence of the gradient of a function.

(-,-) Inner product, typically associated with a Hilbert space, which provides a

notion of angle and length.
D*(T™) Group of diffecomorphisms of the H*maps defined on the flat n-torus.

D2(T™) Group of diffeomorphisms of the H*-maps that preserve volumes defined

on the flat n-torus.

e Identity mapping on the flat n-torus T", serving as the neutral element in
the group of diffeomorphisms D%(T") and in DS(T").

H*(T™) Denote the set of Sobolev H*-mappings from T" to T" in which we have
a>3z+1

TT™ Tangent bundle of the flat n-torus.
T.T™ Tangent space at the identity element e € T™.

T,D*(T™) Tangent space at g € D(T"), defined by the composition of the vector
fields of 7, D*(T") by a function g € D*(T").

Chapters 3 e 4

Ay (0) Vector defined using the Fourier coefficients on T2, given by the decompo-

sitions into cosine series.

By.(0) Vector defined using the Fourier coefficients on T2, given by the decompo-

sitions into sine series

E[X; | Fs] Conditional expectation of X; given the o-algebra Fj, representing the

best prediction of X; based on information available up to time s.

E[X;] Expected value of the random variable X, representing the average outcome

of X; under the probability measure.



Introduction

The Navier—Stokes equations are among the famous Millennium Prize Prob-
lems and have been motivating mathematicians around the world for over two
centuries. Researchers have explored numerous theories and performed countless
hypothesis tests in an attempt to prove the existence of analytic (or smooth) so-
lutions. However, until this day, the problem remains unsolved for cases beyond
two dimensions.

Our goal in this work is not to solve the Navier-Stokes equations in full gener-
ality, but rather to outline a possible approach for finding solutions under specific
conditions by employing systems of stochastic differential equations.

The main idea of this study is to demonstrate that a solution to a system
of forward-backward stochastic differential equations on an infinite-dimensional
manifold can be used to formulate a corresponding solution to the Navier-Stokes
equations in an appropriate function space.

Conversely, given a solution to the Navier-Stokes equations, it is possible to
find the solutions of a given system of stochastic differential equations.

The main idea of this study is to demonstrate that a solution to a system
of forward-backward stochastic differential equations on an infinite-dimensional
manifold can be used to formulate a corresponding solution to the classical Navier-
Stokes equations.

More specifically, the infinite-dimensional manifold under consideration is the
set DY(T?) which is also a group with respect to the composition operation and
constitutes all volume-preserving H“-diffeomorphisms of the flat two-dimensional

torus T? to itself. Similarly, the Navier-Stokes equations are considered on the



two-dimensional Euclidean space R2.

This master’s thesis is divided into four chapters. In the first chapter, we are
introduced to the most essential and necessary concepts for what we will use in
this work on Hilbert manifolds and Stochastic Analysis of manifolds, having as
main reference the books by Gliklikh in [9], [10] and [11].

In the second chapter, we address more specific aspects related to Sobolev
Spaces and also Sobolev maps, since our diffeomorphisms will be defined under the
understanding of these spaces. We also define the metrics and other stronger results
related to stochastic analysis on manifolds focusing on diffeomorphism groups,
following Schkoller [16], Gliklikh [10] and others.

In the third chapter, we finally begin to deepen the results shown in the article
written by Cruzeiro and Shamarova [4], define the notations that we will use next
and construct the results that demonstrate that it is possible to obtain a solution
for a system of stochastic differential equations from a solution for Navier-Stokes
equations.

Finally, in the fourth chapter we have the reciprocal result and present the
second main theorem of the work, in which we address that having a solution for
the aforementioned stochastic system, we are able to construct the solution for the
Navier-Stokes equations.

The appendix presents the author’s proof of It6’s formula in Hilbert spaces

with a Brownian motion on a finite-dimensional space.



Chapter 1

Riemannian Geometry and

Stochastic Analysis

Throughout this chapter, our goal is to discuss the essential concepts related to
Riemannian Geometry and Stochastic Analysis that will be covered in the following
chapters of this work. However, it is necessary for the reader to be familiar with
the most basic notions of Differential Geometry and Measure Theory.

In this way, we will start by addressing the general concepts of Riemannian

Geometry throughout this next section.

1.1 Riemannian Geometry

1.1.1 Hilbert Manifolds

Before defining Hilbert manifolds, let us recall the definition of Hilbert space

as follows:

Definition 1.1. [Hilbert Space| We say that H is a Hilbert Space if H is a normed

vector space which satisfies two properties:

e The norm defined on H is induced by an inner product in this way: /(-,-) =



1. Riemannian Geometry and Stochastic Analysis

e Any Cauchy sequence in H converges with respect to above norm to an

element of H.

Definition 1.2. [Hilbert Manifold| A Hilbert manifold is a set M and a family of
injective mappings ¢, : U, C H — M of open sets U, of H into M such that:

) U, ¢a(Ua) = M

IT) for any pair a, 8 with ¢o(Us) N @s(Us) = W # 0, the sets ¢, (W) and ¢4

are open sets in H and the mappings gzﬁgl o ¢, are differentiable.
III) The family {(U,, ¢o}) is maximal relative to the previous conditions.

Items I) and II) described above define what we call a differentiable atlas;
condition I17) guarantees what we call a maximal atlas — that is, it cannot be
expanded without losing its differentiability conditions. Thus, a maximal atlas is
the "best" possible collection of charts from the manifold M.

Let p € ¢o(Us). Then, the pair (U,, ¢,) is called a parametrization or sys-
tem of coordinates of M at the point p; moreover, ¢, (U,) is called a coordinate
neighborhood at p.

In what follows, we will discuss properties and main results concerning Rieman-
nian manifolds; our discussion will be restricted to the case of Hilbert manifolds,

with appropriate observations.

Example 1.1. An Euclidean space R™, and a Hilbert Space H equipped with the
differentiable structure generated by the identity map is a trivial example of a
Hilbert manifold.

Example 1.2. Let M be a Hilbert manifold, any open M' of M is a Hilbert
manifold and if (ua, My )aca of a differentiable atlas for M, its restriction (uq|MyN
M’ My, NV M")gea to M’ gives a differentiable atlas for M'.

Definition 1.3. [Tangent Vector| Let M be a Hilbert manifold. A differentiable
function a : (—e,e) — M is called a differentiable curve in M. Suppose that
a(0) = m, where m € M, and let D be the set of functions on M that are
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differentiable at point m. The tangent vector to the curve a at ¢ = 0 is a function
a/(0) : D — R given by:
d
o)) = M2 pep

t=0

A tangent vector at m is the tangent vector at ¢t = 0 of some curve a(—¢, &) —
M with a(0) = m. The set of all tangent vectors to M at m will be denoted by
T M.

Definition 1.4. |Diffeomorphism| Let M; and M, be Hilbert manifolds. A map-
ping ¢ : My — M, is a diffeomorphism if it is differentiable, bijective, and its
inverse ¢! is differentiable. The map ¢ is said to be a local diffeomorphism at
p € M if there exist neighborhoods U of p and V' of ¢(p) such that ¢ : U — V is

a diffeomorphism.

Definition 1.5. [Tangent Bundle| Let M be a Hilbert manifold and let TM =
{(m,v); m € M, v € T,,M}. That is, we can define T'M as the union of all the
tangent spaces T, M of the manifold M at each of its points m € M. Moreover,
we will denote by 7 : T'M — M the natural projection of the tangent bundle on
the manifold. The set T'M will be called the Tangent Bundle of M and this space

has manifold structure as will see below.

Let {(Ua, ¢a)} be a maximal differentiable structure on a manifold M. Denote
by (zf,...,x%,...) the coordinates of U, and by {&%,..., &%,...} the associated
1 2

bases to the tangent spaces of ¢, (U,). For every a, define:

O, : U, x H— TM,

0 0
(I)a a, gy -a, Gy e ) — @ ¢ y oy Pa i)y Wi~y .0
(xl Uy T, U ) <90 (Il) Uy O ® (xz ) u axza )

1

where (uy, ..., u;,...) € H.
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In a geometric view, the above equality means that we are taking as coordi-

nates of a point (m,v) € TM the coordinates z7, ..., ¢, ... of m together with the
0 0

iy ey Bodry e (-
0x§ oz

Now, we will check that {(U, x H,®,)} is a differentiable structure on TM.
Since that |J, ¢a(Ua) = M and (dga)q(H) = Ty, (oM, we obtain:

coordinates of v in the basis {

| ®a(Ua x H) = TM,

which verifies condition I) of Definition (1.2). Now, let:
(m,v) € (I)a(Ua X H) N @ﬁ(Uﬁ X H)
Then,

(M, v) = (¢a(ga), dpa(va)) = (ps(gs), dps(vB)),

where ¢, € Uy, g3 € U, v, v3 € R". Therefore,

CDEI 0 Py (G, Vo)
:(bBl(Wa(Qa)v dipa(va))
=((¢5" ©¥a)(@a), d(¥5" © a)(va)).

Since @Elogoa is differentiable, d((pglogoa) is as well. So, it follows that @Eloq)a
is differentiable, which verifies condition I7) of Definition (1.2).

Definition 1.6. [Vector Field] A vector field X of a Hilbert manifold M is a
correspondence that associates to each point m € M a vector X (m) € T,,,M. In
terms of mappings, X is a mapping of M into the tangent bundle T'M. We say
that the field is differentiable if the mapping X : M — T'M is differentiable.

Let v : U C H — M be a parametrization. Then, any vector field X on M

can be locally expressed as

X(p) = 3 vilp) %, (1.1)

6
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where each v; : U — R is the i-th coordinate function defined by %, and {8%1},
where ¢ € N is the coordinate basis associated with ). Moreover, X is differentiable
if and only if the coordinate functions 1; are differentiable (with respect to the
coordinates given by this parametrization).

It is convenient to use the idea suggested by (1.1) above and consider a vector
field as a mapping X : D — F from the set D of differentiable functions on M to

the set F of functions on M, defined as follows:

sz axz (1.2)

where f denotes, by abuse of notation, the expression of f in the parametrization
1. The function X f obtained in equation (1.2) does not depend on the choice of

parametrization ¢.

Definition 1.7 (Riemannian Metric). We say that a Riemannian metric is given
on a manifold M if in each tangent space T,M, p € M, a inner product (-, ->p 18
specified which depends smoothly on p, that is, for any two vector fields X and Y,
the function (X (p),Y (p)), is smooth in p € M. A manifold with a Riemannian

metric is called a Riemannian manifold.

Example 1.3. Let M = R"™ with % identified with e; = (0, ..., 1,...,0). The metric
is given by the relation: (e;,e;) = ;5. The manifold R™ is called Euclidean Space
of dimension n and the Riemannian Geometry of this space is called the metric

Fuclidean Geometry.

Example 1.4 (Product Metric). Let M and N be Riemannian Manifolds and
consider the cartesian product: M x N with the product structure. Let m : M X
N — M and g : M x N — N be the natural projections. We can define on M x N

a Riemannian Metric as follows:
(U, V) = (dmy - w, dmy - V) + (dg - u, dg - V),

for all (m,n) € M X N, u,v € T ) (M x N)
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Example 1.5 (Flat Torus). As a subcase of previous example, consider the torus
S x ... x St = T" equipped with a Riemannian structure obtained by choosing
the induced Riemannian Metric of R? on the circle S* C R? and then taking the
product metric. The n-dimensional torus, denoted by T™, with this metric will be
called the flat torus.

Definition 1.8. |Lie Group| A Manifold G is called a Lie Group if there is an
algebraic operation * on G such that G is a group with respect to * and g * h is

jointly smooth in g,h € G as amap G x G — G.

Definition 1.9. [Left Action of a Lie Group| A left action of a Lie Group G on a

manifold M is defined if a certain C'*°-map
GXM— M, (g,m)—gm (1.3)

is given such that the following hypotheses hold:
(I) for any g € G, the map (1.3) is a diffeomorphism;
(IT) (g h)m = g(hm) for g,h € G,m € M.

Analogously, a right action of a Lie Group G on a manifold M is the specifica-
tion of a certain C*°-map M x G — G for g € G and m € M which satisfies (I)
and (1) defined below:

(IT) (g*h)m = h(gm) for g,h € G,m € M.

When the action is given, the notation mg for ¢ € G and m € M is used so
that m(g * h) = (mg)h. Moreover, in this work, we will denote the unit of the Lie
Group by e.

Let g € G, we will define two special maps: the right translation and the left
translation (or equivalently right shift and left shift). The right translation is the
map R, : G — G defined by R;h = h * g and, analogously, the left translation is
the map L, : G — G defined by L,h = g * h for all h € G. From definition of a
Lie Group above (1.8), we have that the maps R, and L, are smooth.
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Definition 1.10. The vector field on GG obtained by right translation of a vector
X € T.G at all points of G is called right-invariant vector field generated by X.
In this way, the vector field on G obtained by left translation of a vector X € T.G

is called left-invariant.

1.1.2 Connection

Definition 1.11. [Affine Connection| Let X' (M) be the set of C*-vector fields
on M and D(M) be the set of C*°-functions on M. A affine connection V on a

manifold M is a mapping:
V:XM)x X(M)— X(M)

such that:
D) VixigvZ = fVxZ +gVyvZ
) Vx(Y+ 2)=VxY +VxZ
) Vi (fY) = [V + X ()Y,
in which X|Y,Z € X(M) and f,g € D(M).

Remark 1.1. Throughout this work, it will be common for us to use the term
connector when referring to the map defined by a connection. In particular, when

working in local coordinates, we will call this mapping the local connector.

Proposition 1.1. Let M be a differentiable manifold with an affine connection
V. There exists a unique correspondence which associates to a vector field V along
the differentiable curve ¢ : I C R — M another vector field % along c, called the
covariant derivative of V' along ¢, such that:

I) 2(v+w)=2LL4 2%

1I) %(f‘/) = %V + f%, where V' is as vector field along ¢ and f is a differen-

tiable function on I C R.
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II1) If V is induced by a vector fieldY € X (M), in others words, V(t) = Y (c(t)),
then = vdc/th

Proof. Suppose there is a correspondence satisfying the proposition conditions.
Let ¢ : U C H — M be a system of coordinates with ¢(I) N p(U) # 0 and let
(21,22, ..., T, ...) be the local expression of the curve ¢(t), where t € I. Further-
ail. In this

more, denote by X; the derivative in the x; direction, that is, X; =
way, we can express the vector field V' locally as > ; v/ X; where v/ = vI(t) and
Xj = Xj(c(t)).

By I) and I1), we have:

Z d’UJ DXJ

By II1) e I) of the definition 1.11, we have:

DX
g = Vdelas = Vz iy X
=3
where 7 € N.
Therefore,
DV dvj dx,
= X 1.4

The above expression shows that if there is a correspondence satisfying the
conditions of the proposition, then that correspondence is unique.

To prove existence, define 2 in o(U) by 1.4. Let (W ) be another coordinate
neighborhood such that (W ) ¢(U) # 0 and we define 2 in ¢)(W) by equation
1.4. Thus, the definitions coincide at the intersection (W )ﬂgp(U ), by the unique-
ness of 2V dt in p(U). Finally, it follows from the definition that we can extend it

over the entire manifold M and this concludes the proof. n

10
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Definition 1.12 (Parallel Vector Field). Let M be a differentiable manifold with
an affine connection V. A wvector field V along a curve ¢ : I — M is called parallel

when%:(), forallt e 1.

Definition 1.13 (Connection Compatible). We say that a connection V and a
Riemannian Metric (-,-) are compatible if the metric admits a uniform Rieman-
nian atlas such that, in every chart defined on a ball Vim,r], the local connector
U (X, X) at all m’ € Vim,r| is uniformly bounded in the norm generated by the
metric, as a quadratic operator of X, by a certain constant ¢ > 0 independent of
the choice of chart and ball.

Definition 1.14 (Symmetric Connection). An affine connection V on a Hilbert

manifold M is said to be symmetric when:
VxY = VyX =[X)Y] foral XY €X(M). (1.5)

Theorem 1.1 (Levi-Civita). Given a Hilbert manifold M, there exists a unique

affine connection V on M satisfying the conditions:
1) V is symetric.
II) ¥V is compatible with the Riemannian Metric.

Proof. Suppose that exists a connection V. Then, it holds that:

XY, Z) = (VxY, Z) + (Y, Vx 2), (1.6)
Y(Z,X) = (VyZ,X) + (Z,VyX), (1.7)
ZIX,Y) = (V,X,Y) + (2, V). (1.8)

Adding equations (1.6) and (1.7) and subtracting (1.8), using the symmetry of

connection V, we obtain:

XY, Z)+Y{(Z X))+ Z(X,Y)
=([X,Z,Y)+ (Y, Z], X) + (X, Y], Z) + 2(Z, Vy X)

11
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Therefore,

(ZV@X}:%{XQCZ%+YQ1X)—Z¢KY> (1.9)

— (X, 2]Y) = ([Y, 2], X) = (X, Y], 2) }.

The expression (1.9) shows that the connection V is uniquely determined from
the metric (-,-). Hence, if it exists, it will be unique.
To prove existence, define the connection V by (1.9) and note that this con-

nection satisfies the desired conditions. O

Remark 1.2. The connection V as given by above theorem is called as the Levi-

Civita (or Riemannian) connection on M.

Now, we will partially rewrite what was shown above using a coordinate system

(U, ¢). Let be functions T'}; defined on U as follow:
Vi X; =) THX,
k

will be called the coefficients of the connection V on U or the Christoffel Symbols

of the connection. From equation (1.9), it follows that:

1 (0 0 0
TLAX, Xe) = = — (X, Xi) + — (X5, X;) — —(X;, X)) 5.
S U6 X0) = 5 { g 60+ 5 X0 — g 06X |
Since the matrix (X}, X,,) has an inverse, denoted by by (X*, X™) satisfying
(X;, X3.) (X*, X™) = ™. We obtain that:
1 0 0 0
=z — (X X))+ — (X, X)) — — (X, X)) s (XR X™. (11
5= 53 {0 000 1 51060 g1 06X e X (1)
The above equation given by (1.10) is a classical expression for the Christoffel
Symbols of the Riemannian Connection in terms of the (X;, X;) given by the

metric.

12
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As constructed above, it is clear from the Remark 1.1 that the Christofell sym-
bols are an example of a local connector, representing the connection analytically

on a given chart.

1.1.3 Geodesics

Definition 1.15 (Geodesic). A parametrized curve vy : I — M is called a geodesic
attg el if% (CCII—Z) = 0 at the point t,.

If v is a geodesic at t, for allt € I, we say that the curve v is a geodesic. If
la,b] C I and v : I — M is a geodesic, then the restriction of 7y to interval [a,b] is
called a geodesic segment joining v(a) to y(b).

If v: I — M is a geodesic, then:

d/dy dy\ _,/Ddy dyN
dt \dt dt/ “\dtdt’ dt /|

that is, the length of the tangent vector Z—Z is constant.

In what follow, we will determine the local equations satisfied by a geodesic

curve v in a system of coordinate (U, ) about ¥(to). In U, a curve ~ give by:

will be a geodesic if and only if:
D [d~ A’z e dridr;\ 0
el (i g T pk i dr; ) 9
0 dt(dt) ;<dt2 T ) ot

In this way, the second order system:

P | 5~ pe doide
dt? — Y dt dt

Z?]

(1.11)

in which £ € N yields the desired equations. To analyze the above system 1.11, it

is convenient to consider the tangent bundle 7M. This is the set of pairs (g, v),

13
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where ¢ € M and v € T,M. If (U, ) is a system of coordinates on the manifold
M, then any vector in the tangent space T,M, where q € p(U), can written as:

> 0
;yza—xz

So, considering (x1,y1, ..., i, i, ...) as coordinates of (¢,v) in TU, as we saw
previously in the Definition 1.5, T'M has differentiable structure. Note that TU =
U x H , that is, the tangent bundle is locally a product. Moreover, the canonical
projection defined as 7 : T'M — M given by 7(q,v) = q is differentiable.

This way, any differentiable curve t — 7(t) in the manifold M determines a
curve t — (y(t), % (t)) in TM. If y is a geodesic, then, on TU, the curve gives by:

t o (xl(t), dx;t(t) (), d“;it) , )

satisfies the system:

(1.12)

where k € N in terms of coordinates (x1, 41, ..., T, i, ...) on T M.
Finally, the second order system described in 1.11 on U is equivalent to the

first order system 1.12 on T'U above.

Lemma 1.1. There exists a unique vector field G on the space T M whose trajec-

tories are of the form t — (v(t),~(t)) where v is a geodesic curve on M.

Proof. Initially, we will prove the uniqueness of GG, supposing its existence. Con-
sider a system of coordinates (U, ) on the manifold M. From the hypothesis,
the trajectories of the vector field G are of the form: ¢ — (v(¢),7'(¢)), where v
is a geodesic on M. In this way, it follows that t — (y(¢),7/(t)) is a solution of
the system shown in (1.12) and results from the uniqueness of the trajectories of

a such system that if G exists, then it is unique. Now, to prove the existence,

14
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define G locally through the system (1.12) and, by uniqueness, follows that G is
well-defined on T'M. ]

Definition 1.16. Let X be a vector field on a Hilbert manifold M, and let p € M.
Then there exist a neighborhood U C M of p, an interval (—0,0), where § > 0,
and a differentiable mapping ¢ : (—=6,0) x U — M such that the curve t — ¢(t,q),
t € (—0,0) and q € U, is the unique curve which satisfies:

% = X(¢(t,q))

©(0,9) =q

The curve given by o : (—0,0) — M which satisfies the conditions o/ (t) = X (a(t))
and a(0) = q is called a trajectory of the vector field X that passes through point
q at time t = 0.

Remark 1.3. Commonly, the notation p(t, q) is used in a simplified form as ¢;(q)
when we firx a time t. The curve @y : U — M 1is called the local flow of the vector
field X.

Definition 1.17 (Geodesic Flow). The vector field G defined above is called the
geodesic field on TM and its flow is called the geodesic flow on T M.

In the following results, we will denote a geodesic 7(t, ¢, v) that depends of the
triple (¢, q,v) defined over the Cartesian product [—d, ] x U, with § > 0, in which
U is a open set in TU, where (U, ) is a system of coordinates at p € M, such that
{(g,v);q € Vv e T,M,|v| < e} with € > 0 and V is a neighborhood of p € M.

Lemma 1.2 (Homogeineity of a Geodesic). If the geodesic y(t,q,v) is defined on
the interval (—6,0), then the geodesic v(t,q,av), with a € R, a > 0, is defined on
the interval (—g, g) and

v(t, q,av) = v(at, q,v).

Proof. Define the curve:
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h(t) = ~(at, q,v)

Which we have that h(0) = v(0, ¢,v) = ¢, that is, the curve h(t) passes through
the point ¢ at time ¢ = 0. Moreover, note that:

d
W (t) = av(at, q,v) = av/(at,q,v).

Evaluating at ¢t = 0, we obtain: h'(0) = a+/(0,q,v) = av
In addition, since h'(t) = ay(at, q,v), then:

7 (0 = Garlat )

D /
=a % (’7 (ata q, U))

=a*v"(at,q,v).

Since the curve v is a geodesic, then: ~"(at,q,v) = %(7’(at,q,v)) = 0. We
extend h/(t) to a neighborhood of h(t) in M, therefore, h is a geodesic passing

through ¢ with velocity av at the instant ¢ = 0. By uniqueness, we obtain:

h(t) = ~(at, q,v) = ~(t, q,av).
O

Proposition 1.2. Given p € M there exist an open set V.C M, p € V, real
numbers § > 0 and ¢; > 0, and a C* mapping:

v (—=0,0) xU

whereU = {(q,v);q € V,v € T,M,|v| < €1}, such that the curve t — v(t,q,v) with
t € (—0,0), is the unique geodesic of M which, at the instant t = 0, passes through
point g with velocity v, for each ¢ € V' and for each v € T,M with |v| < €.

Proof. Consider p € M, by hypothesis there exists a neighborhood V' of p in M
and real numbers § > 0 and ¢ > 0 such that, for each (q,v) € U = {(¢q,v) : q €

16
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V,veT,M, |v|] < e}, we have:

7(0,q,v) = ¢,
D
ZA(t, q,v) =0
dtrY( 7Q7 /U) ]
7/(07qﬁv) == U?

where t € (—6,0).

We want to prove that the curve (¢, ¢q,v) is the only geodesic under these
conditions. By the Homogeneity Lemma 1.2, for any a > 0 such that |av| < € we
have that v(t,q,av) = y(at,q,v), where t € (—g, g)

Therefore, the initially defined map v(+) is C*°-smooth and, by its uniqueness,
for each (q,v) € U the curve t — ~(t, q,v) is the only geodesic that satisfies the

given initial conditions. O]

Proposition 1.3. Let be a Riemannian Manifold M and let p € M, there exist a
neighborhood V' of p in M, a number e > 0 and a C* mapping v : (—2,2)xU — M,
where U = {(q,w) € TM; q € V; w e T,M, |w| < €} such that t — ~(t,q,w),
t € (—2,2) is the unique geodesic of M which, at the instant t = 0, passes through
q with velocity w, for every g € V and for every w € T,M, with |w| < e.

Proof. The geodesic v(t, q,v) give by Proposition 1.2 is defined for |t| < ¢ and for
|v| < €. According the Lemma of Homogeneity 1.2, we have that the geodesic
v(t, q,%) is defined for |t| < 2.

Taking € < %!, we obtain that the geodesic (¢, ¢, w) is defined for [¢| < 2 and
lw| < e. O

The previous proposition permit us to introduce an important concept called
exponential map. Let p € M and U C T'M be an open set given by Proposition
(1.3), then the map exp : U — M given by:

v
expy (1) = explg,v) = (L, 4, v) = 7 (|v|,q, m)

where (¢,v) € U, is called the exponential map on U.

17
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In general, we will restrict of the exponential map to an open subset of the

tangent space T, M, in other words, we will define:

exp, : B[0,e] CTy;M — M

exp,(v) = exp(q, v)

where B[0, ¢] denotes the open ball with center at the origin 0 of 7, M and of radius
e. Notices that exp,(0) = ¢ and map exp, is differentiable.

In geometric terms, the exp(g, v) is a point of the manifold M which is obtained
by going out the length equal to |v|, starting in the point ¢, along a geodesic which

passes through ¢ with velocity equal to ﬁ

Proposition 1.4. Let p € M, there exists an € > 0 such that the exponential map
exp, : B[0,e] C TyuM — M is a diffeomorphism of B[0,e] onto an open subset of
M.

Proof. Initially, we will calculate the differential of the exponential map and then
we will apply the time ¢ = 0. Thus:

lexp,)o(v) = 5 (exp, 1)

= £0q )

= %(’V(t, q,v))

Evaluating at t = 0, we obtain:

d

E(’V(O? Q>U)) = 7/(07 q, U)) =v.

Thus, we have that d(exp,)o is the identity of the tangent space T, M and it follows
by the inverse function theorem that the map exp, is a local diffeomorphism in a
neighborhood of 0. O

If exp, is a diffeomorphism of a neighborhood V' of the origin in 7,M, the
neighborhood gives by exp,(V) = U C M is called a normal neighborhood or

18
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normal chart.

Definition 1.18. [Geodesic Frame| Let M be a Riemannian Manifold, let p € M
and U C M be a neighborhood of p, consider the vector fields E; € X' (U), where
i € N and orthonormal at each point of U such that, at point p, Vg, E;(0) = 0.
The family of vector fields F;, in this conditions, is called a local geodesic frame

at p.

Definition 1.19. [Divergence| Let M be a Riemannian Manifold, X € X' (M),
f € D(M) and E;, where i € N is a local geodesic frame at p € M, we define

divergence as:

divX(p) = Z Ei(fi)(p)

where X = Z szz

Next, we will define the concept of geodesic spray, which will be widely used

in the results and theorems of the next chapter.

Definition 1.20. A vector field Y (t, (m, X)) on the tangent bundle T M is called
a special vector field on T M or a second order differential equation on M if at

every point (m, X) € TM the equality:
TrY(t,(m, X)) = X,

holds where 7 : TM — M 1is the natural projection of TM onto M.

Definition 1.21. Let a connection V be given on a manifold M. Given a point
(m,X) € TM, the mapping T'w is a linear isomorphism of V(,, x) onto T}, M.

Consequently in V., x) there is a unique vector Z,, x) such that:
Tﬂ‘Z(mJ() = Xm. (1.13)
The vector field described above is called the geodesic spray of the connection V.

19
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1.2 Stochastic Analysis on Manifolds

In this section, our focus will be the Stochastic Process and their concepts
associated, having as a priority the Stochastic Process which occur in Manifolds.
Moreover, as mentioned before, we will suppose that reader is familiarized with
elementary concepts of Measure and Integration, such as random variables, con-

vergence, and others.

Definition 1.22. [Time| Let £(t), for ¢t € [0,T], be a stochastic process in R”,
defined on a probability space (€2, B, P). Then, for each ¢t € [0, T}, £(t) determines

three families of o-subalgebras of B;:

i) "past" Pf , generated by pre-images of Borel sets in R™ by all mappings
E(s): Q=R for 0 < s < t;

ii) "future" .7-"5, generated by pre-images of Borel sets in R™ by all mappings
Et): Q>R fort <s<T;

iii) present ("now") NF, generated by the mapping &(t).

We assume that all of these families of o-subalgebras are completes, that is,

contain all sets of probability P = 0.

Definition 1.23. Let B; be a filtration of the o-algebra B, a random process A(t)
is said to be adapted with respect to a filtration B, if A(t) is measurable with

respect to B, for every t.

1.2.1 Stochastic Integrals

Our objective throughout this section is to review the most essential concepts
about stochastic integrals in It6 form and in Stratonovich form, making the neces-
sary connections between these two topics with the aim of clarifying the relation-
ships that exist between stochastic differential equations in Itd6 and Stratonovich
forms, respectively.

First, consider a positive constant 7" finite. Let A : [0,7] x Q@ — L(R", H)

be a random operator function, in other words, A(¢) is a random linear operator
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from the n-dimensional space R™ to a Hilbert space H. Moreover, let us consider
a Wiener Process w(t) with respect to filtration B; with values in R".
To define the Itd Integral of A(t), choose a partition P := (0 =t; <t; < ... <

t, = T) of the time interval [0, 7] and consider the integral sum given below:

ZA(ti)(w(tiH —w(ty)). (1.14)

The limit (if it exists) of the above sum, as the length |[P| — 0, is called the
H-valued It6 Integral of A(t) and will be denoted by:

/0 A dw()

However, under certain boundedness hypothesis, the [t6 Integral does exist as
the L?(Q, H)-limit of the integral sums when we have that A(¢) is adapted with
respect to filtration By. In particular, it exists if the entries A?(t) of operator A(t)

P{wEQ

where i € N correspond to the lines of the operator A(t) (interpreted as a ma-

satisfy the equality:

/T (A7) (¢, w)dt < oo} =1 (1.15)

trix) that are indexed by natural numbers (since H has an infinite basis) and
j correspond to the columns that vary from 1 to n (since Brownian motion is
n-dimensional).

Now, considering the integral sums given by:

Z A(tiJrl);‘ Ati) (w(tig1) —w(ts)), (1.16)

=0

we have that the limit of these sums (if it exists) is the called Stratonovich Integral
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denoted as:

/tA(s) o dw (1.17)

Remark 1.4. The differentials dw and odw that appear in the previous definitions
of Itd6 and Stratonovich integrals are called the forward and symmetric differen-
tials, which refer to location of ¢ in time interval [t;, ;1] where the operator A is

evaluated.

Now, we will show a formula that relates the Itd6 and Stratonovich integrals.

By the definition of the Stratonovich integral, we get:

q q q—1
1
o= +3 D (Altir) = Alt)) (w(tir — w(t)) (1.18)
S i i=0
where Y7 is the It6 Integral sum presented in (1.14). The limit of the second sum
on the right-hand side is a second order integral in dA and dw, denoted simply by
fg dAdw. In this way, we obtain:

/0 A(F) o duw(r) = /0 A(T)dw(TH% / dA(7)dw(r) (1.19)

0

Definition 1.24. An It6 Process is a process £(t) of the form:

£(t) = £(0) +/O a(s)ds—l—/o A(s)dw(s)

where a(t) is a process with sample paths almost surely having bounded variation
and A is defined according to (1.14).

Just for simplicity, we will sometimes denote the differential dw(s) as dw; for
all s € [0, T]. The same goes for X; which will be used in some situations instead of
X(t). Next, we will present one of the most important base results for the theory

developed in this master’s thesis, the It6’s Formula.

Theorem 1.2 (Itd’s Formula). Let Hy and Hs be Hilbert Spaces, W; be a n-
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dimenstonal Brownian Motion and X; € Hy a Stochastic Process given by:

t t
X, = Xo+ / a(s)ds + / A(s)dW,
0 0
such that for each direction i € N, it is holds:
' ‘ t noot
X, =X} +/ a;(s)ds + Z/ Al(s)aw!
0 = Jo

in which a(s) is an Hy-valued Stochastic Process and A(s) is a L(R", Hy)-valued
Stochastic Process, and let F' = (F\(t, ), ..., Fy(t,z),...) be a C*([0,t] x Hy, Hy)
application, so we get for each d € N:

B 8Fd @Fd
Fy(t, X,) =F4(0, Xo) + o (s, X,)ds +Z/ axz Jai(s)ds  (1.20)

o0 n t&F
+ZZ/ T;(S,Xs)Aﬁ(s)de

Hdyyy / PRy al(s)AL(s)ds
2 4 — Ox;0xy, h

Proof. The proof is extremely extensive and has been added to the appendix. [

To simplify some representations of the integral that contains the second deriva-
tive of F'(-) (described above), it will be convenient to use the following notations

as equivalent when necessary:

trF" (A( Z F"(A(s)e, A(s)ey) (1.21)

where ey, ..., e, is an arbitrary orthonormal frame in R™. And, equivalently,

1

5/0 F”(A(s)dws,A(s)dws):/o %tTF”(A(S),A(S))dS (1.22)

A classic result in linear algebra ensures that the trace introduced above does
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not depend on the choice of orthonormal frame eq, ..., e, in R".

Definition 1.25. [Stratonovich Process| A process is called a Stratonovich Process

if it is of the form:
= + ds + A(s) o dw, .
£(t) =¢€(0) /0 a(s)ds /0 (s) o dw (1.23)

where the integral with the operator A(t) is constructed as seen in (1.17).
If F(t,z) is a smooth mapping as above, then:

F(E(t)) = F(E(0)) + /0 {aa—lszF’(a(s))] ds + / F(A(s)) odws.  (1.24)

0

Ito’s formula for the Stratonovich Process will not be demonstrated, as it is
similar to the main demonstration of It6’s Formula presented previously and left

in the appendix.

Definition 1.26. An It6 Process £(¢) is called a diffusion-type process if both a(t)
and A(t) are adapted with respect to the past filtration Pfof ¢ () and the Wiener
process w(t) is adapted to P

The diffusion type process exist as solutions of the so-called It6 diffusion type

equation as will be presented below.

1.2.2 Stochastic Differential Equations

Let on the Hilbert Manifold M a time dependent vector field a(t, z) and a time
dependent field of linear operators A(¢,x). A Stochastic Differential Equation in

the Ito6 form (or It6 SDE) is an integral equation as:

£(t) = £(0) + / ofr, £())dr + / A(r, £(r))duw, (1.25)
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where the integral with operator A(7,£(7)) on the right-hand side is a 1t6 Integral.

Usually, the equation can be written in the differential form as below:
dg(t) = a(t, £(t))dt + A(t, &(t))dw (1.26)

On the other hand, a Stochastic Differential Equation in Stratonovich form
(or equivalently Stratonovich SDE) is the integral equation presented below which

contains the Stratonovich integral:

€0 =0+ [ alngyis+ [ Amem)ods, 20
0 0
which can be written in the reduced differential form:

d¢(t) = a(t, &(t))dt + A(t, &(t)) o dwy (1.28)

Equations of the form present in (1.25) are often called diffusion equations, the

reason is clarified in the definition below that describes the diffusion coefficient.

Definition 1.27. The equation of It6 type:
de(t) = alt, £(1))dt + AL, £(t))du(t) (1.29)

is called a diffusion type stochastic differential equation.

The equation shows above in (1.29) is a reduced form to the integral expression:

s@=am+4a@aww+AA@amMg (1.30)

Notice that equation present in (1.26) is a particular case of (1.30).
Moreover, we shall often require that the mappings a(t,z(t)) and A(t,z(t))
are jointly continuous. Sometimes, it will be necessary to consider equations with

random coefficients, that is, coefficients depending on w € (2.

Definition 1.28. [Strong Solution| The equation (1.29) is said to have a strong

solution if for every Wiener Process w(t) on a probability space and a adapted to
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a filtration B;, there exists a stochastic process £(t) on the same probability space
as w(t) and adapted with respect By, such that for £(¢) and w(t) a.s. for every ¢
in some interval, the equality (1.30) is fulfilled.

Definition 1.29. [Weak Solution| The equation (1.29) is said to have a weak
solution £(t) if there exist a probability space (€2, F, P), a filtration B;, a process
£(t) in R™ adapted with respect to BB, and a Wiener Process w(t) in R™ adapted to
B; such that for £(t) and w(t) a.s. for every ¢ in some interval, the equality (1.30)
is fulfilled.

Definition 1.30. [Strongly and Weakly Unique| A strong solution is said to be
strongly unique if any two strong solutions coincide almost surely. Analogously, a
weak solution is called weakly unique if for any two weak solutions, the measures

corresponding to them on the path space coincide.

Definition 1.31. [It6 Vector Field| Let M be a Hilbert Manifold, the pair de-
scribed as (a(t,m), A(t,m)), where a(t,m) is a vector field on M and A(t,m) is a
field of linear operators A(t,m) : R" — T,,M sending a certain Euclidean Space

R™ to the tangent spaces to M is called an It6 Vector Field.

Let w(t) be a Wiener Process in R™ and (a(t,m),A(t,m)) be an Ito vector
field on the manifold M. The equation below is called a Stochastic Differential
Equation in Stratonovich Form on M given by It6 vector field (a(t,m), A(t,m)):

dé(t) = a(t, &(t))dt + A(t,&(t)) o dw(t) (1.31)

This means that in every chart on the manifold M, the solution £(t) satisfies

the equation:

£(t) = £(0) +/O a(s,&(s))ds + /0 A(s,&(s)) o dw(s) (1.32)

previously built and presented in equation (1.27).

Example 1.6. Let a filtration By of the o-algebra B, where t € [0,T] with T > 0

to which a Wiener Process w(t) in R™ is adapted, a stochastic process a(t) in a
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Hilbert Space H and a stochastic process A(t) with values in the space of linear
mappings from R"™ to H that are adapted with respect to By and having almost surely
continuous sample trajectories, and the field of linear operators E,, : R™ — T, M,
smooth in m € M. The pair given by (Ena(t), En,A(t)) on M is a random Ito

vector field and it generates the stochastic differential equation:
d&(t) = Eewya(t)dt + EepyA(t) o dw, (1.33)
Definition 1.32. The forward stochastic differential:
a(t,m)dt + A(t, m)dw(t)

at point m € M given by an Ité vector field (a,A) is the class of stochastic process
i the tangent space T,,M that consists of the solution of all stochastic differential

equations of the form:
t+s t+s ~
X(t+s)= / a(t, X (1))dr + / A(r, X(7))dw(T)

where a(t, X (7)) is a vector field on T,M; A(1,X) : R" — T,,M is a linear
operator depending on the parameters T € R and X € T,,M and the following
conditions are satisfied: a(r, X) and A(r, X) are Lipschitz continuous, are equal

to zero outside some neighborhood of the origin in T,,M and such that for T > t,
the equalities a(t,0) = a(t,m) and A(,0) = A(t,m) hold.

Moreover, since the vector fields a(7, X') and A(T, m) are Lipschitz continuous,
the process given by X (t + s) is a strong solution of the equation and it is well

defined for every Wiener Process in R"™.

Definition 1.33. A process £(t) is said to satisfy the Ité Equation in Belopolskaya-
Daletskit Form given by:

d§(t) = expey (alt, §(t))dt + AL, §(t))dw(t)) (1.34)
if for every point £(t) there exists a neighborhood of £(t) in M such that before
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E(t+s), s >0, leaves this neighborhood, £(t + s) almost surely coincides with a
process from the class expgqy(a(t, £(¢))dt + A(t, E(t))dw(t))

The term "strong" used in the Riemannian metric G(-,-) described in the fol-
lowing theorem means that G(-, ) determines that the metric || - ||z of the model

space H of the manifold M is defined on the tangent spaces to M.

Theorem 1.3. Let M be a Hilbert Manifold, ¥V be a connection on M, a(t,m)
be a vector field and A(t,m) be a field of linear operators A(t,m) : R — T,,M,
where m € M, t € [0,T] and R™ is the Euclidean space in which a Wiener process
w(t) takes values. Assume there exists a strong Riemannian metric G(-,-) on M
compatible with ¥V, with respect to which ||a(t,m)||g < C and ||A(t,m)||p < C,
where C' > 0 is a constant, for all t,m. Then, for every mog € M there exists a

strong and strongly unique solution £(t) of equation

dg (t) = expgy (a (1,€ (1)) di + A (1, (1)) duw(t)) (1.35)

with initial condition £(0) = myg, well-defined for all t € [0,T].

Proof. Let mg be a point belonging to M such that £(0) = mg. Since M is a Hilbert
manifold, for each point we can take a chart locally given by: ¢ : U C H — ¢(U) C
M, where H is a Hilbert Space. Consider B(myg,r) as the open ball with center at
myg and radius r given according to the metric induced by H , where r is a positive
real constant. From the chart, we have that ¢(V) — B(mg,r) C M, where V is
a restriction of U which is the preimage of the ball considered. Furthermore, the
chosen radius r is taken independently of the chart and the point.

By hypothesis, in each ball B(mg,r), we have that there is a positive real

constant C such that:
la(t,m)|lm <C and [|A(t,m)||r < C,

for all t € [0,7] and all m in the ball. This constant C' does not depend on the

selected point and chart.
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Now, applying the classical theorem of existence and uniqueness of strong so-
lutions in Hilbert spaces, according to [1]. By this theorem, we obtain that there
exists a strong solution in the chart with center at mg in the random interval [0, 7]
where 77 is the shortest time such that the trajectory of £(¢,w) hits the boundary
of the ball B(mg,r). That is,

7 =1inf{t >0 : {(t,w) & B(mo,r)}

and if £(¢,w) does not hit the boundary, then 7 = oco.

Similarly, define (71, w) as the initial point at time 7 and consider a open ball
centered at that point and with radius r as we did before. Similarly, this ball is
the image of an open V5 of H with respect to a chart ¢, in which the same uniform
boundedness conditions hold and, at a certain time 75, we have that £(¢,w) hits
the boundary of B({(71),7). Applying the theorem of strong solutions in Hilbert
spaces, we are able to find a strong solution locally in the time interval [y, 7).

We repeat the argument so that we cover the entire time interval [0, 7. In this

way, we obtain a sequence of stopping times:
O:T()<7'1<7'2<"',

on which a unique strong solution is defined locally.

Using estimates, we calculate the probability of the process £(t,w) hitting the
boundary of the respective ball for a small time ¢, based on the boundedness of the
SDE coefficients. It follows, then, that sup, 7, = oo which leads us to conclude
that when we construct a solution locally and patching these intervals together,
the accumulated time almost surely diverges, which guarantees a unique global

solution in the complete interval [0, 7). O

Definition 1.34. The stochastic differential (a(m), A(m)) at m € M given by
an Ité vector field (a,A) is the set of stochastic processes in T,, M formed by the

solutions of all stochastic differential equations:

X(s) = /Osd(r,X(r))d'r + /OSA(T,X(T))dwT,
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where a(s, X) is a vector field on TyM and A(s,X) : R" — T,,M is a linear
operator depending on s € R and X € T,,M. We assume a(s, X) and A(s, X) to

be Lipschitz, vanish outside a neighborhood of the origin in T,,M, and such that
a(s,0) = a(m) and A(s,0) = A(m).

Definition 1.35. Let exp be the exponential map of a fixed connection V on a

manifold M. A process £(t) is said to satisfy the equation:

d§(t) = expey (a(&(t)), A(£(1))) (1.36)

if for every t there exists a neighborhood of &(t) such that the process (t + s),
s >0, a.s. coincides with a process from the set expey(a(§(t)), A(§(t))), as long
as £(t + s) belongs to the neighborhood.

Remark 1.5. If f: M — N is a C*-map and exp on N is such that f(exp X) =
exp(Tf o X) for all X € T,,,M, then we have:

df (&(t)) = exp ey (T'f o a(f(E(2))), Tf o A(£(t)))

for any solution £(t) of (1.36).

Next, we will show three important results that will be used in future demon-

strations, especially in chapter 4.

Lemma 1.3 (Gronwall’s Inequality (Differential)). Let n(s) be a nonnegative, ab-
solutely continuous function on [0,T], which satisfies for almost everywhere the

differential inequality:

() < o()n(t) + ¥(t) (1.37)

where ¢(t) and 1(t) are nonnegative, integrable functions on [0,T]. Then,

i(0) < 500 o)+ [ wisyas]
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for all 0 <t < T. In particular, if n < ¢n on [0, T] and n(0) = 0, then: n =10 on
0, 7],

Proof. By inequality (1.37), we obtain:

d

75 (o 20 ) = e 520 3 (5) — o(s)0(s))
d

et 7f03 o(r)dr ffos o(r)dr
= (n(s) )<e v(s)

for almost everywhere 0 < s < T'. That way, for each 0 <t < T, we get:

e 500 <o)+ [ e B (s <n(0) + [ u(s)ds
0

0

And this inequality implies:

o) < 5 )+ [ o).
]

Lemma 1.4 (Gronwall’s Inequality (Integral)). Let &(t) be a nonnegative, summable
function on [0,T] which satisfies for almost everywhere (a.e.) time t the integral

imequality:
t
£ <y / £(s)ds + C (1.38)
0
for constants C7, Cy > 0. Then,
E(t) < Oy (1+ Cite™™). (1.39)

fora.e. 0 <t<T.

In particular, if:

E(t) <y /Otf(t)ds
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for a.e. 0 <t <T, then&(t) =0 a.e.

Proof. Consider a function n(t) = fot £(s)ds, then n < Cyn+ Cy almost everywhere
in [0,7]. According to the differential version of Gronwall’s lemma above, we

obtain:
1(E) < €91 (n(0) + Cat) = CteC™.
In this way, the inequality given by (1.38) results in:

£(t) < Cin(t) + Cy
=£(t) < Co(1 4 Cyte™)

]

Theorem 1.4 (Blumenthal’s Zero-One Law). Let (Q, B, (B;)i>0,P) be a filtered
probability space with a right-continuous filtration, and let X, with t > 0, be a
stochastic process adapted to By such that X is P-almost surely constant. Define

the o-subalgebra at zero as

Boy = (B

t>0

Then, for every event A € By,
P(A) € {0,1}.

Proof. The proof can be found in Rogers and Williams [15]. O

32



Chapter 2
Groups of Diffeomorphisms

In this chapter, we will address the most essential and important concepts
about Groups of Diffeomorphisms, in order to prepare for the next section that
will focus on stochastic processes that occur in these environments.

But first, we will review Sobolev Spaces and applications involving the n-

dimensional Torus, since this will be the focus of our study later on.

2.1 Sobolev Spaces

The study of Sobolev Spaces, in general, begins with the definition of Test
Functions, which are functions defined on some specified domain and that are C'*°-
differentiable and that are compactly contained in the domain. However, since our
study will be restricted to Sobolev applications on the flat n—torus, due to the
property of the flat n-torus being a closed manifold, we have that all applications
defined on it have compact support, that is, it is unnecessary to make this condition
explicit, since all diffeomorphisms naturally already satisfy this condition.

Thus, we will consider the set of all maps u defined on the n-dimensional flat
torus which are C*°-differentiable. This set will be denoted as D(T").

For u € C*(T"), we can define d,,u for each direction i, where i € {1,....,n},
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2. Groups of Diffeomorphisms

the integration by parts formula:

Ou () ¢ (x)de = — /n u(x) gqb (x)dx V¢ € D(T").

T O0; T

The right-hand side of the above equality is well-defined, whenever the function
ue L' (T").

Definition 2.1 (Multi-index). An element a € Z1, i.e., o is finite sequence of
nonnegative integers, is called a multi-index. For such an o = (o, ..., ), we

write:

o 9

D* =
dz{' Oxgn

and |o| = oq + ag + ... + .

Definition 2.2 (Weak Derivative). Let u a function such that uw € L' (T™). Then,
a function v* € L' (T") is called the a-th weak-derivative of u, written as v* =
D, if:

[ u@pstwys = (-0 [ (@)

n

for all ¢ € D(T™).

Definition 2.3. Let p € [1,00), define:
WP (T") = {u € L*(T"); Du € LP(T")}

such that the weak derivative exists and Du is the weak derivative of u.

Throughout the work, we will restrict ourselves only to the case p = 2, in which

we have:

W12(T") = {u € L*(T"); Du e L*(T")}.

This set is a Hilbert Space and we will denote simply by: H!(T") = W12(T").

The norm for this space will be introduced later.

Remark 2.1. Note that if the weak derivative exists, it is unique. To verify this,
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suppose that v; and vy are two weak derivative of © on T™. Then, it is valid that:

/n (01 — v9)pdz = 0

for all ¢ € D(T™).

So that v; = vy almost everywhere.

Definition 2.4. Let k > 0 an integer and p = 2,
WE2(T") = {u € LY(T"); D% exists and is in L*(T") for |a| <k}

Definition 2.5. Let k > 0 an integer and p = 2, for u € W*2(T"), define:

lullwraeemy = | D 1D ullF2in

lal<k
The function defined above is a norm, since it is a finite sum of L?-norms.

Definition 2.6. Let k > 0 an integer and p = 2, we define: H*(T") = Wk2(Tn).
This set H*(T™) is a Hilbert Space with inner-product give by:

(u, v) g (ny = Z (D%, D*v) p2(1n).

lof <k

Now, we will dedicate ourselves to reviewing the Fourier coefficients, a tool
that will be essential for the development of some proposed calculations in later

chapters.

Definition 2.7 (Fourier Coefficient on the n-Torus). For all w € L*(T™), the
Fourier coefficient F is defined by:

= U = L e W0y (x
Fu)k) =t =z [ utayas

where k - 0 is a inner product between k € Z and 6 € T".
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Equivalently, by Euler’s Formula e~ = cos(k - §) — isin(k - §), we obtain:

(Fu)(k) = ay = : /n (cos(k - 0) —isin(k - 0)) u(6)db

(2m)"
In the next definition, we will denote 4 := {4y}, where k € Z'} as above.

Definition 2.8. For all u € L*(T™), we define the inverse operator F* by:

in other words,in this case, the inverse operator is the Fourier series.

Example 2.1. Let u € CY(T") and j € {1,2,...,n}, then:

ou 1 ou o
.F[a—ej (k?) = (27]’)” - aeje do
_ i1\ p—ik0
=~y /n u(0)(—ik;)e”"""d6

Note that T™ is a closed manifold without boundary; in a alternative way, we
may identify T™ with the [0, 1]" with periodic boundary conditions, in other words,

with opposite faces identified.

Using the Fourier coefficients F and the Fourier series F*, over the space L?(T™)

we obtain the following applications and equivalences:

F:LA(T") — ¢  F* 02— L*(T)
F*F=1d on L*T") FF*=1Id on [(*

Definition 2.9. The inner-products on L*(T™) and (* are defined as follows. In
the L*(T™) space is given by:

(u(0),v(0)) L2(1my = (;r)" -/n u(0)v(0)do
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And in 0% space is given by:
(U, D)2 = E Up V.-
kezn

Moreover, it is holds that:

ul| L2 rmy = ||t]]e,

Definition 2.10 (Sobolev Spaces H(T")). For all multi-index o« € R*, the
Sobolev Spaces H*(T™) are defined as follows.

where the norm on H*(T") is defined as:

el = Y (1 + k™) (2.1)
kezm

The space H*(T") equipped with norm ||-|| g« (r») mentioned above is a Hilbert

Space.

Definition 2.11. Let u € L*(T") and o > 0. The fractional Laplacian on the

n-torus is given by:

(~2)"u(®) = 3 [ ape™?

kezn
2.2 Analysis on Groups of Diffeomorphisms

As seen in the previous section, throughout this master’s thesis we will be
working only with the flat n-torus T™. With this in mind, in this section we will
present in more detail the structures we will work with that are directly related to
the flat n-torus and that will form the base environment for our study in chapters
3 and 4.
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Let T™ be the n-dimensional flat torus equipped with a Riemannian metric
(,-) and its Levi-Civita connection V. The torus is an example of a compact
Riemannian manifold without boundaries, so the concepts presented in this section

are just a restriction of the more general results shown in Gliklikh [11] and [9].

2.2.1 The group and manifold structure

Definition 2.12 (Sobolev-Maps between Manifolds). We will denote by H* =
H (T™, T™) the set of Sobolev H*-mappings from T" to T™ in which we have
a> 3+ 1.

As shown in Ebin and Marsden [7], for a multi-index o > % + &, the maps
from H® are C*-smooth. Furthermore, there is an infinite-dimensional manifold
structure on H* (T, T™).

Take the identical mapping e € H*(T™, T") and consider an open neighbor-
hood D* (T™) that consists of all H®-diffeomorphisms. Furthermore, consider also
its subset DY (T™) which consists of H*-diffeomorphisms which preserve the Rie-
mannian volume.

Both these sets, D*(T") and D (T") have the structures of smooth Hilbert
Manifolds as well as multiplicative group structures through composition opera-
tion.

To prove the group structure, the verification is quite simple. We will notice
that the three properties necessary for D*(T") to be a group are satisfied. First,
note that the composition operation is closed in the set, that is, given two maps
f and g that belong to D*(T™), the composition f o g is also a diffeomorphism of
class C*, therefore, it belongs to D(T").

e Let f,g and h be maps that belong to D%(T"), note that:

(fog)oh=fogoh=fo(goh)
and this composition is a C*-diffeomorphism, so the first property is satisfied.
e The identity map, denoted by e, is a C*-diffeomorphism defined as e : T" —
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T™, such that e(m) = m, for all m € M, so it is clear that it belongs to
D (T™).

e Finally, consider any map f : T" — T" that belongs to D%(T"), since it
is a diffeomorphism, by definition, there exists a f~! : T" — T" such that
f o f~! =e. This concludes the proof.

The verification that DJ(T") is a group with respect to the composition opera-
tion is analogous, it suffices to observe that the composition of any two applications
f and g that preserve the volume results in an application f o g that also preserves
the volume. Furthermore, all volume-preserving C*-diffeomorphisms belong to
D*(T™), so the inclusion of DY(T™) in D*(T™) as a subgroup is clear.

On the other hand, to verify whether these sets are Hilbert manifolds, we need
to verify the properties as described in definition 1.2 of this work. First, let us
consider again the most general space of functions, that is, let a > 7, consider the
H“-Sobolev maps from T" to T", which are well defined. This set of maps will be
denoted by H*(T™, T™).

Consider a map g € H*(T", T™) and the set given by:

T, H (T, T") = {f € H*(T", TT") ;70 f = g}

where 7 : TT" — T" is the natural projection. Note that the set T, H*(T",T")
described above, equipped with the standard Sobolev inner product, is a Hilbert
Space. The map

Wexp : TyHO (T, T") — H(T", T")

Wexp| = expof

is defined one-to-one over a sufficiently small neighborhood of the origin in the
set T,H*(T™,T"). Thus, this neighborhood of the origin and the map given by
Wexp Can be taken as a chart at the point g € H*(T", T"). Furthermore, given
two charts, it is easy to see that the transition map between these charts is a C'*°-

differentiable map. Therefore, we obtain a structure of a C'*°-differentiable Hilbert
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manifold over H*(T", T") such that the set T, H*(T", T") is the tangent space to
H*(T™, T") at the point g.

Furthermore, note that given a > % + 1, the manifold H%(T", T") contains the
subset D*(T™) which consists of all H*maps that are C'-diffeomorphisms. Since
D*(T™) is an open in H*(T™, T™), then it is a Hilbert submanifold. Looking at
e as point of the manifold D* (T"), we can define the tangent space 7,D* (T")
which is the space of all vector fields on T™ belonging to H*. The tangent space
T.D*(T") is the space of all H*-vector fields on T™. Moreover, the whole tangent
bundle TD*(T™) can be identified as the subset of H*(T™, TT") which consists of
maps that, when composed with the natural projection 7 : TT" — T", result in

elements of D*(T"). So, in particular, we have:
T,D(T") = {f € H(T", TT") | 7o f = g} = {X 0g | X € T.D"(T")}

Given the maps g and h in H®, note that the composition h o ¢ may not
belong to H<, however, since a > 5 + 1 and g is a local diffeomorphism, then
the composition h o g belongs to H®, since that h is a H*map. The proof that
D (T™) is a Hilbert manifold is analogous. Moreover, the T,DS(T™) is the space
of all divergent-free vector fields on T™ belonging to H®.

Furthermore, it will be important to describe two new spaces that will be of
great use in the future which are related to the manifold D%(T"). The tangent
space 1,D5(T"), where g € D(T") and that consists of the compositions of the
fields from tangent space T.D%(T") with g. In symbols, that is:

T,Dy(T") ={Xog| X € T.Dy(T")}.

This means that given a vector field Y € T,DJ(T"), Y : T" — T'T" is a map
such that 7Y (m) = g(m), where w : TT" — T™ is the natural projection. On the
other hand, for X € T,DJ(T"), we have that 7X(m) = m.

Lemma 2.1 (a-lemma). Let T™ be the flat n-torus, g € D*(T") and h € H*(T",T"),
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in which h s a function as described above. Consider the map given by:

a, - H* (T, T") — H (T", T")
ag(f)=fog.

The map oy is C*°-smooth and its derivative is also of the form ay.

Lemma 2.2 (w-lemma). Let T™ be the flat n-torus, let r € H*(T", T") and h €

H(T™,T"), in which h is a function as described above. Consider the map given

by:

wy, : D (T™) — H* (T", T")

wp(r) =hor.

The map wy, s continuous. If h € H™* wy, : D*(T") — H*(T",T") is a C*-
mapping with derivative of the form wr,. In particular, if h € C*, wy is C*°-

smooth.

Proof. The proofs of the w-lemma and the a-lemma can be found in Ebin and
Marsden [7]. O

The right translation defined as:
R, : Dy (T") — Dy (T")
Rgon=mnog

where 7, f € DY(T™) are C*°-smooth and, in this way, can be considered an right-
invariant vector fields on DJ(T"). The tangent map TR, restricted to the tangent
space 1,,D*(T") is defined by the formula:

TR, : T,D*(T") — T,,,D(T"),
X—=Xog.

for X € TD(T™). For the Hilbert manifold D*(T"), the properties are analogous.
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Remark 2.2. Note that we will consider the map: T'R, given above for all  and
g € DY(T") as a right action of DY (T") on TDS(T™).

Theorem 2.1. Let X € T,D*(T") be a vector field on T" and X be the corre-
sponding right-invariant vector field on D*(T") denoted by X, = X og. The vector
field X on D*(T") is C*-smooth if and only if the vector field X on T" belongs to
the class H™*. In particular, X is C* smooth if and only if X is C*-smooth.

Proof. Consider the vector field X € H***(T") and its respective right-invariant
vector field given by X, = X o g. Since the composition operation o preserves
differentiability, let h = X and g € H*(T"), by the w-lemma we have that:

WX(Q) =Xog

is a function of class C* if and only if X belongs to H*%(T™).
Furthermore, let X be a C'*°-smooth vector field and g € H*(T") as before,

again by the w-lemma, the result follows. O

The same property presented by the previous theorem is satisfied for the case
of the Hilbert Manifold D%(T"™), it suffices to remember that every diffeomorphism

that preserves volume belongs to D*(T™) and the verification is immediate.

2.2.2 Metrics on Group of Diffeomorphisms

Next, we will define some essential concepts for various theorems and results
which will be addressed throughout the work, respectively: the Riemannian Metric
(I), the Levi-Civita Connection with connector (II) and the exponential mapping

exp (III) are defined as follow:

I) Let g € D*(T") and the tangent space T,D*(T"). We will define an inner
product (-,-) in T,D*(T") by:

(1), = [ CEOLY O)) aye(a) (2.2)

where X,Y € T,D*(T") and v is the Riemannian volume form.
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IT) Let K : TTT™ — TT™ the connector of Levi-Civita Connection V on T", we
will define the mapping: K : TTD(T") — TD*(T") by the equality:

KY)=KoY. (2.3)

IIT) Let T.D*(T™) the tangent space of D*(T") in the point e € D, by general

properties of smooth exponential mapping, we can define the exponential

mapping:
exp: U C T.,.D*(T") - V C D(T")

which sends a neighborhood U of zero vector field of 7.D%(T™) onto a neigh-
borhood V of e in D*(T").

The metric described above in equation (2.2) is called a weak metric.

Theorem 2.2. The connector K is invariant with respect to right translations on
the manifold D*(T™).

Proof. First, K is the connector of a connection V. Moreover, is the Levi-Civita
connection of the metric (2.2) (for more details, see Gliklikh [11]).

Consider vector fields X and Y on the manifold D*(T™) and a vector field X (¢)
along a certain smooth curve ¢(t) in D*(T"). For these vector fields, define the

covariant derivatives VxY and thX (t), respectively:
VxY =KoTY(X)=KoTY(X)

and

D _d d

EX@ =Ko—X(t)=Ko EX(t) (2.4)
On the space D%(T") with connection V, a vector field X along a curve c(t) is

parallel if dQ;X(t) = 0, according Definition 1.12. The curve ¢(t) is a geodesic if it

satisfies the equation th (Le(t)) =0.
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The geodesic spray Z of the connection V is give by:
Z(X)=Z0X (2.5)

for X € TD*(T™), where Z is the geodesic spray of the connection V on T".
Since the geodesic spray Z is C*°-smooth, according the w-lemma (2.2), it

follows that Z is C*-smooth on TD*(T"). By the equality given by (2.5), it is

clear that Z is D*(T")-right invariant. O

Remark 2.3. In particular, we will consider the exponential map exp : TD*(T") —

D*(T™) as corresponding to Z.

Theorem 2.3. The geodesic spray S of the Levi-Civita connection N of the metric
(2.2) on DI(T™) is a C*°-smooth right-invariant vector field on TDS(T") of the
form:

S=TP(Z)
where Z is the geodesic spray according (2.5) on TD*(T").

Proof. We have that P and Z are D% (T")-right-invariant and C*-smooth on the
space TDY(T"), then we have that S = TP(Z) is also C*®-smooth and D2(T")-
right-invariant.

Now, we will denote by exp the corresponding exponential map of a neighbor-
hood of the 0 in TD(T™) onto D (T™). The constructed geodesic spray defines
the flow ¢, : DY(T™) — DI(T") is smooth and right-invariant, and since the ex-
ponential map is a particular case defined for a fixed time ¢ = 0 of this flow, it is

also smooth and right-invariant. O

Theorem 2.4 (Neighborhood of unit). There exists a neighborhood W of the
unite e in DG (T™) that is covered by the image of T. D (T™) under the exponential
mapping of the Levi-Civita connection of DY (T™).

Proof. According to the previous theorem 2.3, the geodesic spray S = TP(Z) is a

C*°-smooth right-invariant vector field on TDJ(T™) and furthermore the geodesic
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spray defines the exponential map given by:
exp: Uy C TDY(T") — DY (T"),

which is C*°-smooth and right-invariant.

In particular, consider the exponential map restriction given below:
exp: U C T.Dy(T") — Dy (T"),

where U is a neighborhood of the zero vector in the manifold 7,Dg(T™).

Since the map exp is a smooth local diffeomorphism at 0, by the inverse function
theorem, then there exists a neighborhood U of zero in which expU will be a
diffeomorphism onto its image, which we will denote by W.

Therefore, since W = expU is an open neighborhood of the identity e €
D(T™), then the theorem is proved. O

Definition 2.13. [Strong Riemannian Metric|] Let T" be the n-dimensional flat
torus, g € D*(T"), X, and Y, € T,D*(T"), which X, = X og and Y, = Y o g such
that X,Y € T.D*(T"). Introduce on the tangent space 7,D*(T") a strong inner
product (-, ), by the formula:

(XY = [ 0,0 YO0 + | (=2)EX,(6). (~8) 37, (0)) ot

n

(X, Y) = / (X (0), (1+ (A1), (0)) 010

where (—A)* is the Laplacian presented in Definition 2.11.

Furthermore, we shall also use another strong right-invariant Riemannian Met-

ric, given by the formula:

(X, Vi) = (TR, Xy, TR,Y,)™. (2.7)

g»+9/g
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2. Groups of Diffeomorphisms

2.3 Stochastic Analysis on Groups of Diffeomor-
phisms

In this section, our goal is to present results that guarantee the existence and
uniqueness of SDE solutions specifically associated with the group of diffeomor-
phisms of the flat n—torus. It is worth mentioning that although the theorems
presented here are for this case, it is possible to find more general results in the
literature, as we can see in Gliklikh [11], in chapter 10. For this, it would be
necessary to consider the most general version of the strong metric, introduced
in definition 2.13 which would be understood in any finite-dimensional manifold
M. However, it would also be necessary to extend the concepts related to Sobolev
presented earlier in this work, which can be found in Shkoller [16].

Consider the flat n-dimensional torus T", as described before, and note that
we can also represent it as T" = R"/Z" and from this we obtain that the metric
on the manifold T™ can be induced through the Euclidean space R™ as described
in Example 1.5. In this case, T" = R"/Z™ means that in R" the points whose
coordinates differ by an integer in each entry are considered equivalent and are
therefore identified.

Furthermore, there is a canonical identification of the tangent bundle TT" with
T™ x R™, which is also inherited from TR"™ = R" x R".

Definition 2.14 (Maps on the n-Torus). Consider the n-dimensional flat-torus

as presented previously, define the operators:
(I) B:TT" — R", the projection onto the second factor in T™ x R™.

(II) A(m) : R* — T,,T", the inverse to B sending R™ onto the tangent space
T, T of T at m € T".

(III) Qg : A(g(m)) o B, the linear isomorphism Q4 : T,,T" — Tym)T", where
g € D% and m € T"™.

Consider a positive constant o, a(t,m) an H%vector field over T", where ¢ €

[0,7] and v > s is an integer. Let us denote by a(t, g) the right-invariant vector
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field over D*(T™) generated by a(t, m) as a vector belonging to the tangent space
T.D>(T™).
Furthermore, consider a map A described according to the definition 2.14 above.

For any vector x € R", the vector field A(z) on T" is constant, which means that

0
0 B

particular, this implies that A(x) is C*°-smooth and divergence-free.

Let A : DY(T") x R® — TD*(T") where A, : R* — T,D%(T") is given by the
expression A, (z) = A(x) and for g € D*(T"), we have that the mapping A, : R™ —
T,D°(T") is constructed from A by the right shift A (z) : TR,A.(z) = (Ao g)(x).
Since the map A is C*°-smooth, it follows by Theorem 2.1 that the map A is also
C*-smooth on xz € R"™ and g € D*(T™). That is, for all z € R", the right-invariant
vector field A(z) over D*(T") is C*-smooth.

The pair given by (a@,A) is an It6 vector field on D%(T"). Consider a Wiener

its coordinates with respect to the basis given by a%, are constant. In

process w(t) in R™ given on a probability space (2, F,P).

Theorem 2.5. For every g € D (T") there exists a unique strong solution &9 (t)
of equation:

4E(t) = eTpgg, (alt, &)t + oA(t, (1)) du (1)) (28)

with initial condition £9(0) = g which is well-defined for all t € [0,T], where T > 0

1s an arbitrary a priori specified real number.

Proof. Using the exponential map exp, consider the normal chart in a neighbor-
hood of the point e on the manifold D%(T") and note that at each point of this
chart, the local connector (2.3) equals zero, this is because the connection is gen-
erated by the Euclidean connection on the n-Torus T".

Thus, take a strong right-invariant Riemannian Metric on D*(T™). We say,
generated by (2.7).

Since, the normal chart is a open set, there exists a positive real number r such
that the ball with radius r (with respect to the strong Riemannian distance on
D*(T™)) and with center at e, denoted by Ble, r|, is contained in this neighborhood.

Then, in a neighborhood of each point g € D*(T"), applying the right shift

R, to the ball Ble,r], we determine an chart. So, in this way, we obtain an atlas
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on D*(T") that is uniformly Riemannian for the strong metric, and in each chart
of this atlas considered, the local connectors for connection 2.3 equal zero, this
occurs because the connection is right-invariant according to Theorem 2.2.
Therefore, the right-invariant Ito vector field (@, oA) is uniformly bounded with
respect to the strong Riemannian metric, so, the Theorem 1.3 can be applied to

equation.

dE(t) = expgyy (a (t,€(t)) dt 4+ oA(t, E(t))dw(t)) .
O

Remark 2.4. Later, in chapters 3 and 4, it will be common to use superscript
indices such as: X%¢(s) to highlight that at time s = ¢, the initial condition is
X(t) = e. This detail will be very useful when we work with different initial
conditions caused by the right shift and it will make it common for notations such

as X and X% to be used simultaneously.
Now, denote £°(t) by &(t) only for simplicity. Since the equation

dE(t) = expgyy (a (¢, E(t)) dt + oA(t, E(t))dw(t))

is right-invariant, it follows that: £9(t) = £(t) o g. So, &£(t) is the general solution

of the stochastic differential equation on T" described below:
d§(t) = expey) (alt, §(t))dt + oAdw(t)) (2.9)

In other words, for every point m in the n-dimensional torus T", the stochastic
process £™(t) is a solution of above equation 2.9, with initial condition m at time
t=0onT".

Remark 2.5. In the equations previously described in (2.8) and (2.9), we used
the general notation of Ito’s Equations in Belopolskaya-Daletskii form. But, since
that the connection of the manifold D*(T™) is generated by the flat connection on
the torus, the corresponding exponential map is like that on a linear space. In this
way, we can employ the same notation that is used for It6’s Equations in linear

spaces.
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Theorem 2.6. Let o > 0 be a real constant:

(1) Foreveryw € Q andt € [0,T] the vector field A (cw(t,w)) on T", where w (t)
is a Wiener process in R", is divergence-free, i.e. A (ow (t)) is a stochastic
process in T, DY (T™).

(1) For every w € Q and t € [0,T], the mapping:
W) (t) = exp A (ow(t,w)) : T" — T"

is a volume-preserving H®-diffeomorphism of T, i.e., W7 (t) is a stochastic

process in DS (T™).
Proof. Regarding (I), let w € Q and ¢ € [0,77, so the vector field A(cw(t,w)) on

T™ has constant coordinates with respect to the basis 8%1, e % and so it is C*°
and divergence-free.

In respect to (II), the mapping W7 (¢) sends m € T" to exp,, A(w(t,w)), where
exp,, : ImT" — T™ is the exponential mapping of the flat torus n-dimensional T".
That means that all points of the manifold T" under the mapping Wi (t) perform
the same shift as that generated by the shift of the space R" by cw(t,w). The

application Wi (t) is clearly volume-preserving. ]

Theorem 2.7. For every g € DY(T™) there ezists a unique strong solution £09(¢)

of

4E(t) = epgqy (alt. E0)dt + oAt (1) duw (1)) (2.10)
with initial condition 50’9(0) = g which is well-defined for all t € [0,1].

Proof. We begin introducing on D%(T") the strong Riemannian Metric, according
to formula (2.6), and remember that this metric is right-invariant. On the manifold
D(T™), consider a neighborhood U around the point e, according to Theorem 2.4,
this neighborhood is covered by the exponential mapping exp, ., where exp, denote
the exponential map of a neighborhood of the 0 in 7"D3(T") onto DS (T™).
Consider the normal chart at e in U. The strong norm of the local connector,
denoted by I', (-, -), being a quadratic operator, is a continuous function of n € U

in this chart.
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In this way, at e, we obtain I';(-,-) = 0. Hence, there exists an open V' C U
such that at each point, the norm (above-mentioned) is less than a priori given
positive constant C. Since V' is an open, so it contains the ball centered at e and
radius r > 0 with respect to the strong Riemannian distance on DY (T™) generated
by the strong metric described in (2.6), which will be denoted by Ble, r].

Now, we will define a chart at a neighborhood of each point g € DY (T") through
the right shift of the normal chart U at ¢. In this way, the atlas constructed is
uniformly Riemannian with respect to strong metric (2.6).

Moreover, consider the balls B[g,r|, in other words, the balls with center in
each point g € DY(T") and radius r with respect to the Riemannian metric above-
mentioned. On this balls in the charts of the atlas constructed, the norm of
the local connector I' of Levi-Civita Connection of the metric (2.2) on Dg(T")
is bounded by constant C', since the connection is right-invariant, according the
Theorem 2.2.

So, the right-invariant It6 Vector field (@, A) on D¥(T") is bounded with respect
to the metric (2.6). Thus, the equation 2.10 satisfies the conditions of Theorem

1.3 and therefore it has a strong solution. O]
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Chapter 3

Navier-Stokes Equations and a
system of FBSDE

3.1 Navier-Stokes Equations

We will begin this chapter by presenting the Navier-Stokes equations. Our main
results in this work will be developed involving the solutions of these equations and
their relations with the solutions of a Forward Backward Stochastic Differential
Equations system described later.

The classical Navier-Stokes Equations are described as:
au@a IL') = _(ua V)U(t, .1') + VAu<t7 m) - VP<t7 m),
divu =0,

u(0,z) = —ugp(x),

(3.1)

where ug(z) is a divergence-free smooth vector field.
Fixing a time interval [0, 7], we can rewrite equations (3.1) with respect to the

function
u(t,z) = —u(T —t, z).
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3. Navier-Stokes Equations and a system of FBSDE

So, the problem (3.1) is equivalent to the following:

~g1
=
=

|

|
\.gl
4
N

(t,x) — vAu(t,z) — Vp(t, ),

diva = 0, (3.2)

where p(t,z) = p(T —t, ).

The above system (3.2) will be referred to as the backward Navier-Stokes Equa-
tions.

In what follows, for the development of our calculations, we will use the follow-
ing notation. Initially, we established the set given by: Z2 = {(k1, k2) € Z? : ky >
0 or ky =0, ky > 0}, that is, Zi will be the set of ordered integers pairs k; and ko
such that one of them is necessarily positive and k; is strictly non-negative.

Moreover, let k = (ky, kq) € Zi an arbitrary element, we will denote its norm
as |k| = \/k? + k2. And through it, we can define a new vector k that will be
orthogonal to k denoted by k = (ko, —k;). Indeed, we see that k and k are
orthogonal to each other, since: (k,k) = 0.

Furthermore, the element § € T? will correspond to the pair (;,6,) where
0; € Si, 1 € {1,2}, since the flat 2-torus can be interpreted as T? = S; x S; as
seen before. Thus, using the notation established above, the product k - 6 will
correspond to: k-0 = k101 + kof>.

Finally, define the following gradient vector:
g 0
V= (o575,

- 0 0
(k‘,V) == k28_01 - k18—02

Using the Fourier coefficients in the T?, we will define the vectors described

from which we obtain:
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3. Navier-Stokes Equations and a system of FBSDE

below:

A(0) = W%cos(k-&) [ kz] ,

Ky

i

Let {Ax(9), B(g)} with k € Z2 U {0}, be the right-invariant vector fields on
D*(T?) generated by {4y, Bk}keziu{o}a ie.

Bu(t) = fsy sin(h - 0) [ " ] ,

s and Bo =
0

Ai(9) = Agog, Bilg)=Brog, g€ D*(T?,
Ay = Ay, Bo= Bo.

According to the w-lemma 2.2, A and B, are C*°-smooth vector fields on
D(T?).

Now, let us define some lemmas that will be important for the discussions
presented throughout this chapter. These lemmas describe, in general, the con-
struction of the bases of the tangent spaces T,D%(T?) and T,D%(T?), and also

important properties about the right-invariant vector fields.

Lemma 3.1. The vectors Ay(g), Bi(g), k € Z2 U{0} in which g € D(T?), form
an orthogonal basis of the tangent space T,D(T?) with respect to both the weak
and the strong inner products in T,DY(T?). In particular, the vectors Ay, By,
k € Z2 J{0}, form an orthogonal basis of the tangent space T, DS(T?). Moreover,
the weak (2.2) and the strong (2.6) norms of the basis vectors are bounded by the

same constant.

Proof. Proving this lemma for the strong norm given in (2.6) is sufficient, since

a strong norm induces the weak norm (2.2). Let us calculate the operator A®

applied to the vector A, as follows. First, note that the normalized vectors £ and

! i B
% form an orthonormal basis of R?, where k = (ki, ko) and k = (ko, —ky) € Z3 as
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3. Navier-Stokes Equations and a system of FBSDE

described at the beginning of this chapter.
Also, note that:

(=25 0) = (-3)° [ o0 |—’,j|
= i (=) eos(i-0)] 7
— e (ke costi )
— 1k|* cos(k 9)%
k[ (W cos(k - 0) %)
— [k A(6)

With this last equality and the volume-preserving property of the map ¢ €
D% (T?). We have the following results for Ay, and B,,, where k,m € Z3:

(Bm(9), Ak(9))a = (Bm, Ak)a
(1+ |k|2a) (Bm, Ak‘)LQ

= ) [ Bu0)- Aufo) as

(1+[&[*) -0
0.

Moreover, we obtain:

1Ak (@115 = 1A
= (L4 [K[*) [1Ax]IZ,

= (U k) - [ 1A b9

1
= (1 + |k5|2a) / WCOS2(k . 9) do
TQ
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3. Navier-Stokes Equations and a system of FBSDE

1
= (1 + |k|20‘) . —|k|20‘ (27%).

=271 (|k|7>* + 1)

where || - ||o is the norm corresponding to the scalar product (-,-),. Therefore,
272 < | A(g)II2 < 4.
The same argumentation applies to the directional vectors described as By,

from which we obtain the same for || By(g)]|>. O

As seen in the first chapter, the weak Riemannian metric has the Levi-Civita
connection, geodesics, the exponential map and the geodesic spray. Then, let V
and V be the covariant derivatives of the Levi-Civita connection with respect to
the weak metric (2.2) on the Hilbert manifolds D*(T?) and D%(T?) respectively.
The following equality holds:

V=PoV

where the map P : TD%(T?) — TD(T?) is defined in the following way: on each
tangent space T, D%, we have that P = P, where Py = TR,0 P.oTR,1, TR, and
TR, are tangent maps, and P, : T,D*(T?) — D2(T?) is the defined projection
of the first space into the second.

Next, we will have two similar results, the first addresses the understanding of
right invariance in the manifold D%(T?), while the second brings the same result
in DY(T?).

Lemma 3.2. Let U be the right-invariant vector field on D*(T?) generated by an
H M _yector field U on T2, and let V be the right-invariant vector field on D*(T2)

generated by an H%-vector field V on T?. Then vVU 18 the right-invariant vector
field on D*(T?) generated by the H*-vector field VyU on T2

Proof. The proof follows from the right-invariance of covariant derivatives on
D*(T?) and D(T?), according to [9]. O

Lemma 3.3. Let U be the right-invariant vector field on DY(T?) generated by a

divergence-free Ho ' -vector field U on T2, and let V be the right-invariant vector
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3. Navier-Stokes Equations and a system of FBSDE

field on D*(T?) generated by a divergence-free H*-vector field V' on T?. Then
@VU is the right-invariant vector field on DY(T?) generated by the divergence-free
H%-vector field P,VvyU on T?.

Proof. The proof of the theorem can be done in two ways. The first way consists in
observing D%(T?) as a submanifold of D*(T?), then the result of lemma 3.2 can be
simply restricted to divergent-free vectors due to embedding map: i : D%(T?) —
D(T?). The second way would be to simply repeat the same argumentation of
the proof of 3.2 adapting it to the Hilbert manifold D (T?). O

Remark 3.1. The basis { A, Bk}kezju{o} of T,D%(T?) can be extended to a basis
of the entire tangent space T,D(T?).

Indeed, let us introduce the vectors:

A(0) = T cos(h-0) H ,

k2
and
- 1. kq
Bk(e) = ‘]{‘TH Sln(k’ . 8) [k2]

where k € Z .

The system Ay, By, in which k € Z§ U {0} and A By in which k € Zj, form
an orthogonal basis of T,D*(T?). Further let A; and By, denote the right-invariant
vector fields on D¥(T?) generated by Ay and B.

3.2 The FBSDE on group of diffeomorphisms

In this section, we will present the system of stochastic differential equations
that we will study in this work, which will be composed by a forward SDE and a
backward SDE. First, let us define the vector fields and Brownian motion that we

will consider in the system.
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3. Navier-Stokes Equations and a system of FBSDE

Let h : T? — R? be a divergence-free H*"!-vector field on the manifold T? and
let h be the right-invariant vector field on D*(T?) generated by h.

Moreover, consider the function given by V (s, -) such that there exists a func-
tion p : [t,T] — H*"(T? R?) satisfying V(s,-) = Vp(s,-) for all s in the time
interval [t,T]. For each s € [t,T], V(s,-) denotes the right-invariant vector field
on D%(T?) generated by V(s,-) € H*(T?, R?).

Now, consider E as a Euclidean space spanned on an orthonormal, relative to
the scalar product in E, system of vectors: {ej}, ef, ef',ef} which k € Z2,|k| < N
and the indices A and B are related to the directions of the vectors A, and By,

seen in the previous section.

Consider the mapping:

Alg)= D Alg)@el+Bilg)®ey, g€ DT,

kez? u{0},
|k|<N

that is, A(g) is a linear operator E — T,D*(T?) for each g € D*(T?). More

specifically, if @ = > rez2 Loy, aiel + aPel € E, then
|k|<N

Algla= D aAlg) + a; Bi(g).
kez? u{o},
|k|<N

Let (2, F,P) be a probability space and W, where s € [t,T], be an E-valued

Brownian motion defined as:
W= (Bl (s)er + B (s)ef)
k

in which {37, 88} is a sequence of independent Brownian motions with index
k € Z2 U {0} such that |k| < N.

Finally, we shall consider the following system of forward and backward stochas-
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tic differential equations (FBSDE):

dzbe(s) =YY" (s)ds + e A(Z"¢(s))dWs,
dY'e(s) = —V(s, Z"(s))ds + X"¢(s)dWs, (3.3)

Zte(t)  =e¢; Yte(T) = h(Z5(T)).
The first line of the above system is the forward SDE (which will be denoted as
FSDE throughout the work) and it is an SDE on D2(T?), where D(T?) is regarded
as a Hilbert manifold, as we saw before. Moreover, the stochastic integral in the

FSDE can be explicitly written as follows:
/ AZ ()W, = / Ap(Z () dBA) + Bo(Z(r))dBE (). (3.4)
t — Jt

which k& € Z2 U {0} and we have that |k] < N.
Let us consider the backward SDE (BSDE) given as follows:

Yte(s) = h(Z"(T)) + / Vr, 21 (r))dr — / Xte(r)dW,.  (3.5)

Note that the processes

A

V(s, Z"¢(s)) = V(s,-) o Z"(s)

and
h(Z5(T)) = h o Z4(T)

are H%-maps as discussed in the 2.2.1 section, since they are compositions of H“-
maps and H*-vector fields

In this way, BSDE (3.5) will be interpreted as a BSDE in the Hilbert space
H*(T?,R?). Let F, = o(W,,r € [0, s]) be a filtration, our objective is to find an F,-
adapted triple of adapted processes (Z¢(s), Y"¢(s), X*¢(s)) solving FBSDEs (3.3)
in the following sense: for each s € [t,T] and w € Q, we have that Z%¢(s) € D%(T?)
and Y"¢(s) € Tyre(y D (T?) and, moreover, Y¢(s) is an H*-vector field.
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We notice that the forward SDE is well-posed on both Hilbert manifolds D*(T?)
and D(T?) and can be written in the Dalecky-Belopolskaya form:

dZ"(s) = expue(o {Y " (s)ds + eA(Z"(s))dW,} or
dZ"(s) = éﬁzt,c(s){Yt’e(s)ds + e A(Z5(s))dW,}

where exp and exp are respectively the exponential maps of the Levi-Civita con-
nection of the weak Riemannian metrics (2.2) on D*(T?) and DY (T?); see Section
1.1.2. In what follows, we will show that using either of these representations leads
to the same solution of FBSDEs (3.3).

Finally, the stochastic process X"¢(s) takes values in the space of linear oper-
ators L(E, H*(T? R?)), that is,

XM (s) =Y XM(s) @ eff + XM (s) @ ¢f (3.6)

where the processes X*4(s) and X*?(s) take values in H*(T? R?) and k € Z2U{0}
is such that |[k| < N.

3.3 Constructing a solution of the FBSDESs

In this section, our goal will be to study the Forward and the Backward equa-
tions separately and then establish results about the solution of the system of

Forward Backward Stochastic Differential Equations shown in (3.3)

3.3.1 The forward SDE

First, let us consider the backward Navier-Stokes Equations in R? given as:

y(s,0) = h(0) + / [Vp(r, 0) + (y(r, 9), V)y(r, 0) + vAy(r, 9)}d7’,

div y(s,0) =0

(3.7)
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where s € [t,T], § € T?, while A and V are the Laplacian and the gradient in R?,

respectively.

Assumption 3.1. Let us assume that on the interval [t,T] there exists a solu-
tion (y(s,-),p(s,-)) to the backward Navier-Stokes Equations (3.7) such that the
functions p : [t,T] — H*™(T?* R?) and y : [t,T] — H*"'(T? R?) are continuous.

Since y(s, -) is divergence-free, then y(s,-) € T.D%(T?). According to Lemma
3.1 and Remark 3.1, we can represent the function y(s, -) with respect to the basis
{ Ay, By} of tangent space T,DY(T?) using the coordinates: {Y%k4(s), YE+B(s)},
where k € Z3 U {0}. In other words,

y(s,0) =) Y (5) A(0) + Y (5) Bi(0).
k

in which k € Z3 U {0}.

Let Y (s, ) denote the right-invariant vector field on D%(T?) generated by the
solution y(s,-), that is, Y(s,g) = y(s,-) 0 g. On each tangent space T,D%(T?),
the vector Y(s, g) can be represented by a serie converging with respect to the

H%norm as follows:

Y(s,9) =Y Y (s)Aulg) + Y5 (5) Bi(g). (3.8)

with & € Z2 U {0}.
First, we will study the SDE

dZb(s) = Y (s, Z%%(5))ds + e A(Z5(s))dWs. (3.9)

where € > 0 is a constant.

Later, in Theorem 3.6, we will show that the solution Z"¢(s) to (3.9) and the
process Y%¢(s) = Y (s, Z"(s)) are the first two processes in the triple (Z%¢(s),
Y*e(s), X"¢(s)) that solves the system of FBSDEs (3.3).

Theorem 3.1. There exists a unique strong solution Z"“¢(s), where s € [t,T], to
(3.9) on the Hilbert Manifold D(T?), with the initial condition Z"¢(t) = e.
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Proof. First, let us check whether the hypotheses of the Theorem 1.3 are satisfied.
Analyzing the stochastic integral using the representation given by (3.4), we obtain
two cases:

Case 1: If the sum (3.4) representing the stochastic integral [” A(Z"¢(s))dW,
contains only the terms Ag(34'(s) — 3(t)) and Bo(BE(s) — BF(t)), in other words,
informally speaking, if the Brownian motion runs only along the constant vectors
Ap and By, then the result follows from Theorem 2.7.

Case 2: On the other hand, if sum (3.4) contains also terms with Ay and
By, where k € Zi, or, informally, when the Brownian motion runs also along
non-constant vectors Ay and By, then the hypotheses of Theorem 1.3 require the
boundedness of vector A, and By with respect to the strong norm. However, this
fact is assured by Lemma 3.1.

Therefore, all the hypotheses of Theorem 1.3 are satisfied. Therefore, exists
a unique strong solution Z"¢(s) to (3.9) with the initial condition Z“¢(t) = e.
Indeed, the proof of Theorem 2.7 shows that the Levi-Civita connection of the
Weak Riemannian Metric given as (2.2) on D%(T?) is compatible in the sense of

Definition 1.13 with the Strong Riemannian metric (2.6). The map:
Alg) =) Anlg)®el + Bilg) @ ef
k

where k € Z2 U {0} such that |k| < N, is C*-smooth since A;, and By, are C>°-
smooth. Furthermore, according to Lemma 3.1, A(g) is bounded on D2(T?).
Since y : [t,T] — H*T(T? R?) is continuous, then y(s) is also bounded with
respect to the H*norm. In this way, the generated right-invariant vector field
Y (s, g) is bounded in s € [t, T] with respect to the strong metric (2.6), and it is at
least C''-smooth in g € D¥(T"). The boundedness of Y (s) in g follows from the

volume-preserving property of g. ]

Now, we will present a similar result in which we verify the existence of a solu-
tion to the Forward Stochastic Differential Equation 3.9 on the manifold D*(T#)

and we establish an equivalence between the solutions on D*(T?) and D2(T?).
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Theorem 3.2. There exists a unique strong solution Z%¢(s), where s € [t,T], to
FSDE (3.9) on the Hilbert manifold D*(T?), with the initial condition Z"¢(t) = e.
This solution coincides with the solution to FSDE (3.9) on DY(T?).

Proof. Consider the identical embedding defined as:
i : D(T) — D(T?).

According to Remark 1.5, the stochastic process i(Z"¢(s)) = Z"¢(s), where s €
[t, T, is a solution to SDE (3.9) on the manifold D%(T?), that is, with respect to the
exponential map exp. This follows from the fact that T : TD(T?) — TD(T?),
where T' is the tangent map, is the identical embedding, and that i(exp(X)) =
exp(Tio X).

Therefore, the solution Z"¢(s) to FSDE (3.9) on D*(T?) is unique. This state-
ment follows from the uniqueness theorem for FSDE (3.9) considered on the man-
ifold D*(T?) equipped with the weak Riemannian metric.

Indeed, A(g) and Y (s, g) are bounded with respect to the weak metric (2.2)
since the functions Ay, By, where k € Z2 U {0}, are bounded on T?, and y(-,-) is
bounded on [t, T] x T2. Moreover, the vector field A(g) is C*-smooth and Y (s) is
at least C'-smooth on D*(T?). O

In the following result, we will show that there is a unique strong solution Z¢(s)
for the FSDE if we consider that it takes values in a Hilbert space H*(T?, R?) and,
furthermore, that this solution coincides with the solutions described in the two

previous theorems.

Theorem 3.3. There exists a unique strong solution Z“(s) to the H*(T? R?)-
valued FSDE (3.9) on time interval [t,T], with the initial condition Z"(t) = e

where e is the identity of DY(T?). This solution coincides with the solution to
FSDE (3.9) on manifolds D%(T?) or D*(T?).

Proof. The proof is slightly similar to the proof of the previous theorem. First,
according to Theorem 3.1, FSDE (3.9) on the manifold D¥(T?) has a unique strong
solution Z%¢(s) on [t, T].
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3. Navier-Stokes Equations and a system of FBSDE

Let us prove that the solution Z"¢(s) to (3.9) solves this FSDE considered as
an FSDE in Hilbert Space H*(T? R?). Consider the identical embedding given
by:

f: Dy(T%) — H(T*, R?),

flg) = g.

Applying 1t6’s formula to the embedding f(-) and taking into account that:

Ar(9)f(g) = V4,009 =Ax(g)

and that
Ar(9)Ar(9)f(9) = Ax(g9)Ar(g) = 0,

we obtain that the solution Z"¢(s) to equation (3.9) on the manifold D%(T?) solves
the H*(T?, R?)-valued FSDE (3.9).

Furthermore, by the uniqueness theorem for SDEs in Hilbert spaces, the FSDE
(3.9) can have only one solution in the space Ly(T? R?).

This proves the uniqueness of its solution in H%(T? R?) as well. Finally, this
concludes that the solutions to (3.9) on D%(T?), D*(T?), and in H*(T? R?) coin-
cide. ]

Now, our objective is to find the representations of FSDE (3.9) in normal
coordinates on D%(T?) and D (T?). But, first, it is necessary to prove the following

lemma.

Lemma 3.4. The following equality holds:

/t A2 () o AW, = /t A2 ()W,

In other words, instead of the It6 stochastic integral in equation (3.9) we can write
the Stratonovich stochastic integral denoted by [ A(Z%(r)) o dW,.
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3. Navier-Stokes Equations and a system of FBSDE

Proof. We have the following equality:
A(Z"(r)) 0 dW, = A(Z"(r))dW, + Y _ dAx(Z"(r))dB; (r)
k

+ Y dB(Z5(r))dBP (r)

in which k € Z2 U {0} is such that |k] < N.

In this way, our objective is to prove that:
dAL(Z5(r)dBi(r) =0 and  dBy(Z%(r))dBP(r) =0

For simplicity of notation, we use the notation C; for both of the vector fields
Ay, and By, and the notation C; for Ay and By, k € Z2 U {0}.

We will also simplify the notation of Brownian motion and use: (;(s) for the
Brownian motions {3;'(s), 37 (s)} where k € Z2 U {0} is such that |[k| < N.

So, we obtain:

d(C;o Z"(s)) = Y (s, (Cy o Zt’e(s))dt + Z Ci(Z%(s)) (C”i o Zt’e(s)) o dB;(s)

J
Multiplying dg;(s) on both sides, we get:

d(C; 0 Z"(s)) - dfi(s)
—Y*¢ (s, (Cy 0 Z4%(s))dt - dBi(s +ZC (Z4(s))(Ci 0 Z4%(s)) o dB;(s)d - Bi(s)

= Ci(7%(5))(Cio0 2'(s))dt

which vanish by the identity (k, V) cos(k - 0) = (k, V)sin(k - §) = 0 or by differen-

tiating of constant vector fields. m

Now, we will bring up a result in which we can represent the Forward Stochas-
tic Differential Equation (3.9) in local coordinates. For this, consider: Z*(s) =
{Z8+4(s), Z1*B(s)} which k € Z% U {0} be the vector of local coordinates of the
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solution Z"¢(s) to (3.9) on D¥(T?), in other words, the vector of normal coordi-
nates provided by the exponential map exp : T,D¥(T?) — DY(T?). Let U, be the

canonical chart of the map exp.

Theorem 3.4 (FSDE (3.9) in local coordinates). Consider the stopping time T
given by:

T =inf{s € [t,T] : Z"(s) ¢ U.}. (3.10)

On the interval [t, 7], the FSDE (3.9) has the following representation in local

coordinates:

7445 nm) = [ YR 4 e (505 A7) - B0
! (3.11)

Z4B(s A7) = / v YR (r)dr + 0pe (B (s A ) = B (1)),
t

where 6, = 1 if |k| < N, and 0, =0 if |k| > N.

Proof. Let g = {¢g**, g"*P} where k € Z% U {0} be local coordinates in the neigh-
borhood U, provided by the map exp : T,DY(T?) — D(T?).

Let f € C®(D%(T?)), and let f : T.D*(T?) — R be such that f = f o exp.
Since exp is a C™-map (see |7]), then f € C*°(U), where Uy = exp ' U..

Note that 5%xf(3) = Ax(9)f(9) and 395 f(3) = Bi(9)f(9). Applying Ito’s

formula, we obtain:

f(Z(s A7) = f(e)
=f(Z"°(s A 7)) = F(0)

SAT o r 3 . SAT )
= /t ag{A(Zt(r))Yt’kA(r)erreZ / Sk 3 {:A(
k

+Z/s T 8f Zt )Yth< dT—FEZ/ 5k @f (Zt< ))Yth( )Odﬂk()

Z'(r))Y" 4 (r) o dBy!(r)

= Z/t (YA AR(Z5(r)) F(Z5(r)) + YFB(r) By (Z94(r)) F(Z5(r)) ) dr
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el | 0 )£ 0) 0 dB) + BUZHZ(0) 0 dBE)).

where k € Z% U {0}.
Using the representation of the process Y"¢(s) in the coordinates of the space
D%(T?) given by 3.8 and the representation of the stochastic integral as a summa-

tion given by 3.4, we obtain:

f(Z"(s AT)) = fle)
:/t 17(7", Z5(r)) f(Z5¢(r))dr + e/t A(ZY(r)) f(Z54(r)) o dW,.

This shows that the process given by:

exp {Z ZWRA (s AT Ay + Z9FB (s A T)Bk}
k

where k € Z% U {0} solves the Forward SDE (3.9) on the time interval [t,7]. [

Now, we will show a result similar to this theorem, however, instead of working
with the group of volume-preserving diffeomorphisms D (T?), we will work with

the group of diffeomorphisms D*(T?). In this way, consider
ét(s) — {th;kA(S)’ th;kB(S), Zt;kA(S)’ Zt;kB(S), Zt;OA(S)’ Zt;OB(S)}

where k € Z2 be the vector of local coordinates of the solution Z"(s) to Forward
SDE (3.9) on D*(T?). That is, the vector of normal coordinates provided by the
exponential map exp : T,D%(T?) — D(T?). Furthermore, let U, be the canonical
chart of the map exp.

Theorem 3.5. Let 7 be a stopping time given by:
F=inf{s € [t,T]: Z"(s) ¢ U.}.
Then, a.s. T = T, where the stopping time T is defined by (3.10), and on [t, 7],
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3. Navier-Stokes Equations and a system of FBSDE

we have the following equalities: Z%F4(s) = ZWFA(s), Z8FB(s) = Z5%B(s) for all
k€72 Uu{0} and Z8-A(s) = Z8B(s) = 0 for all k € Z2, a.s.

Proof. Let us introduce additional local coordinates ¢4, g*8, k € ZZ . In this way,
consider: g = {g", g*%, g™, g*B, ¢°4, "} where k € Z2 U {0} be local coordi-
nates in the neighborhood U, provided by the map exp mentioned above.

Since the proof follows in a similar way to the previous case proved in 3.4, we

will omit it, making only the necessary observations that Y*4(s) = Y*5(s) = 0 for

all k € 72,

along divergence-free and constant vector fields.

and that the components of the Brownian motion are non-zero only

So, we obtain that the coordinate process given by th(5) verifies the Forward
SDE in local coordinates (3.11) and the equations Z%%4(s) = Z5¥8(s) = 0, where
kelZ?. O

3.3.2 The Backward SDE and the solution of the FBSDE

Finally, in this subsection, our goal will be to establish a relationship between
the solution of Backward Navier-Stokes Equations presented in (3.7) and the solu-
tion of the system of forward and backward stochastic differential equations shown
in (3.3).

The most important result of this subsection is the theorem described as follow:

Theorem 3.6. Let Y(s) be the right-invariant vector field generated by the solution
y(s,-) to the backward Navier-Stokes equations (3.7). Moreover, let Z"¢(s) be the
solution to SDE (3.9) on DY(T?). Then there exists an € > 0 such that the triple

of stochastic processes given by:

Zh(s), (3.12)
Yhe(s) = Y(s, 2"(s)),
Xte(s) = e A(Z5¢(5))Y (s, Z0¢(s)).

solves the system of FBSDEs (3.3) on the interval [t,T].
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3. Navier-Stokes Equations and a system of FBSDE

However, before proving this theorem, we need some lemmas and results that

we will show below.

Remark 3.2. The expression A(Z"¢(s))Y (s, Zt¢(s)) shown above means the fol-

lowing:

A(Z(5)¥ (5, 2%(5)) = 32 A2 (.25 © ¢ + 3 BU(Z)Y (5, 21) @ f

k k

where k € Z2 U {0} is such that |k] < N and Y (s,-) is regarded as a function

D2(T?) — H*(T?,R?) in which s € [t, T] and Ax(g)Y (s, g) means differentiation of

Y(s,-) : D*(T2) — H*(T2,R?) along the vector field A, at the point g € D*(T?2).
Let v(€) be the geodesic on the D¥(T?) such that v(0) = e and v/(0) = Aj.
We obtain:

¥ (s, (4(€) 0 9)(0)) |

£=0
¥(s.1(¢(0)))]

€=0

Remember that Y (s,g) = y(s,-) o g, where ¢ € D*(T?) and, furthermore,
7(0) = e. Then,

d -~
Ry d—gY(S,’V(é(@)))

Therefore,

Ar(9)Y (5.9)(0) = V.Y (5,9(6)) (3.13)
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Thus, we can represent the process X"¢(s) as:

X"e(s) =€ Z [Viy(s,)® en + Vg yls, ) ® ekB] o Z"¢(s), (3.14)
ko

where k € Z% U {0} is such that |k| < N. Moreover, the stochastic integral
presented in BSDE (3.5) can be represented as:

| xemaw, =3 [ Vaytn o 2asie)
+ EZ/ Vi, y(r,-) o Z4(r)dBP (r).
k/' S

With £ under the conditions described above.

In particular, if N = 0, we have:

T T
0
/ X5 (r)dW, = 6/ 3_«91?4(7“, ) 0 Z4<(r)dpg (r)
T
9,

FTRAGRA ZM(r)dy (r).

+ €

s

In next lemma, & is an integer which is not necessary equal to «.

Lemma 3.5 (The Laplacian of a right-invariant vector field). Let V be the right-
invariant vector field on DY(T?) generated by an HY%-vector field V' on T?. Fur-

thermore, let € > 0 be a constant such that:

€ 1 1
14 = —
: ( *2?%\%) -

where k € 22, |k| < N. Then for all g € D*(T?), the following equality holds:

2
€ — — _ _ A
5 > (VaVa, +V5Vs) Vig) =vAVoy. (3.15)
k

where k € Z3 U{0},]k] < N.
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Proof. According to Lemma 3.2, due to right-invariance of the vector fields V4, V., 1%
and Vg, V BkV, it is sufficient to show that the equation (3.15) is satisfied for the
case g = e.

We observe that

(k,V)cos(k - 0) = (k,V)sin(k - 0) = 0.

Indeed, both expressions contain the scalar product (k, k) = 0.
Then, for k € Z% and 0 € T?, we have:

Va,VaVie) ) = Tk cos(k - 0)(k, V) [cos(k - 0)(k, V)V (6)]
= W—QH cos“ (k- 0)(k, V)=V (0).
Analogously,
Ve, Vs Vie) () == —]k];a” sin(k - ) (k, V) [sin(k - 0)(k, V)V (0)]
Lo o v o2
— W—aﬁsm (k-0)(k, V)V ().
Hence, for each k € Z2,
(vAk?Ak + ?Bk?Bk) V(e) (9) (316)
= T o8 (k- 0)(k, V)2V (6) + !k!?—a”sm (k- 0)(k, V)V ().
ke (cos?(k - 0) + sin®(k - 6)) (k, V)2V (6).
L oy
— W—O‘”(lﬁV) V(0).

Note that for each k € Zi, either k or —k is in Zi, and

(k,V)* + (k,V)? = |k]*A. (3.17)
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Indeed, the equality follows as below:

2
0? 0?

2N /1.2 2\ .

|k|A—( k‘l—l—k2) (66’%—1_89%)

0? 0?
_ 2 AN -~

o2 o2 i o2
= kg 962 " e 962 " K 55 962 " ks 508 062
o2 o2 o2 G 9 9 9 9
_ 1.2 2
=Higg + kgt Hgm + Kggm + (W@ael a0, R0, 392)
o2 9 9 o2 o2 9 9 5?
_ 1.2 2 2 2
= R — 2hkagg e+ M g T K 562 e T ke gg ap, T k2 562 062

0 o \?* 0 o \?>
(%91 ka?) (k1891+k28_92)

= (k,V)* + (k, V).

Summation over k € Z2, such that |k < N, in (3.16), coupling the terms
numbered by k and k (or —k) and using equality (3.17), we get:

1 -
W—QH(’C, V)?V ()

1 | )
= EZW—QH - [k[AV(6)
k
1 1
-5 i AV0)

Z(?Ak?Ak + ?Bk?Bk)V(e> (0) =

k

where k € Z2%, |k| < N.
Let be k = 0. Note that (V4,Va, + V5, Vg, )V (e)(8) = AV (8).

Therefore, we obtain:

Z (vAkvAk + kaka) V( ) (1 + 3 Z |k|20‘> )

kez3 u{0}, keZ2
|k|<N |k|<N

The lemma is proved. O
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Corollary 3.1. Let the function ¢ : T? — R? be C?*-smooth. Furthermore, let
Ap(g)[e o g] and Bi(g)p o g|, such that k € Z5, mean the differentiation of the
function DY(T?) — Ly(T?,R?), g — @ o g along Ay and respectively By,. Then for
all g € D*(T?),

§ > (Ax(9)Ax(9) + Bi(9)Br(9)) [po gl = vApoyg. (3.18)

where k € 22 U {0}, |k| < N.

Proof. The proof of this corollary follows two steps performed in previous results.
The first is to calculate the derivative of the composite function ¢ o g in the
directions A and By,.

To calculate Ag(g)[¢og] and By(g)[p o g] we follow as done in 3.13, from where

we get:

An(g)lpog) = [ﬁ cosh - 0)(F, vwﬂ og.

and

Bula)lp ool = | sinlh - 0)(R )0 o .

Now, the second step is to repeat the proof of the previous Lemma 3.5 to obtain
the equation (3.18). In other words, we differentiate A; and By, a second time and
sum all Ax(g9)Axr(g)[¢ o g] and Bi(g)Bk(g)[p o g] as we did in (3.16).

With this, it is noted that the terms sin®(k - §) and cos?(k - §) are simplified to
1 and we perform the substitution made by (3.17), obtaining the equation:

1 1
5 zk: ‘k|2a A[gpog]

where k € Z% is such that |k| < N.
The parcels Ay and By in which k = 0 are obtained in a manner analogous to

the previous lemma. Finally, we do the summation over all k£ and we arrive at the
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equation (3.18). O

Lemma 3.6. Let o(r), r € [t,T] in which t € [0,T), be an H*(T? R?)-valued
stochastic process whose trajectories are integrable and let ¢(T) be an H*(T? R?)-
valued random element so that both ¥(r) and ¢(T) possess finite expectations. Then
there exists an Fy-adapted H(T? R?) x L(E, He(T?, R2)) -valued pair of stochastic
processes (Y (s), X(s)) solving the BSDE:

Y(s)=o(T) —|—/ P(r)dr — / X(r)dW, (3.19)

in the time interval [t,T)].

The Y (s)-part of the solution has the representation

Y(s)=E | $(T) + / b(r) dr

Fs] : (3.20)

and therefore is unique.

The X (s)-part of the solution is unique with respect to the norm:

T
IX2 = / IX ()2 dr (3.21)
t
where || - ||z is the L(E, H*(T? R?))-norm.

Proof. Extend Y'(s), defined by (3.20), to [0,¢] as follows:

y(s)=E | o(T) + / b(r) dr

J-"s] , (3.22)
and note that Y'(s) is a martingale for s € [0,¢]. Also note that

M(s):=E |¢(T) +/t Y(r)dr —Y(t)

]-“S] (3.23)

is a martingale which is zero for s € [0,¢]. Indeed, since for s € [0,t], E[Y (t)|Fs] =
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Y (s), we obtain

M(s) =

—i—/tTw(r)dr—Y(t)
+/tTw(r)dr F

By the martingale representation theorem, there exists a process X (s) such that

rye [ -y ] [ xeaw (324

Since M (s) =0 on [0,t], we obtain that

g

—-Y(s)=0.

/X(r)dWT:() for s €10,1].
0

Therefore, for s € [t,T], (3.24) implies that

ry+ [ vty ] [ xeyaw (3.95)
/wdr—i—/wdr— ]/X

Since Y(t) is Fs-adapted (F; C F;), using the definition of Y'(s) by (3.20), we

obtain
+/ts P(r)dr — Y (2) :[X(r) aw (3.26)

Evaluating (3.25) at s = T, we obtain
T T
4 / B(r)dr — Y (1) = / X (r) dW,. (3.27)
t t
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Subtracting (3.26) from (3.27), we obtain that Y (s) and X(s) satisfy (3.19).

To prove the uniqueness, just note that any Fs-adapted solution to BSDE
(3.19), this solution takes the forms given by (3.20) and (3.21) . Moreover, consider
a process X'(s) such that the processes X (s) and X'(s) satisfy (3.21) , then, again
by Itd’s isometry, the following equality is valid:

2

/t 1X(s) — X'(s)]% dr = / (X(s) - X'(s)) W, 0.

He(T2,R2)

That is, X(s) and X'(s) are almost surely the same, which concludes the proof.
[l

Finally, having these results, we will prove the most important theorem of this
section, Theorem 3.6, which establishes a direct connection between the Backward
Navier-Stokes (3.7) and FSDE (3.9) solutions for the FBSDE system (3.3).

Proof of Theorem 3.6. Let us consider BSDE (3.5) as an Lo(T? R?)-valued SDE
and Y(s) as a map D%(T?) — Ly(T2,R?). Since for each s € [t,T], the map
y(s,-) belongs to Hot1 (T2, R?) and « > 2 by assumption, then Y'(s) : D¥(T?) —
Ly(T? R?) is at least C*-smooth.

The Navier-Stokes Equations (3.2) show that the function dsy(-,-) : [t,T] —
Ly(T?,R?) is continuous since Vp, Ay, and (y, Vy) are continuous functions [t, T] —
Ly(T? R?) according to Assumption 3.1. Since the diffeomorphisms of the Hilbert
manifold D%¥(T?) are volume-preserving, we conclude that for each fixed element
g € D%(T?), the map 8,Y(s,g) : [t,T] — Ly(T2, R?) is a continuous function.
Consequently, Y(-,-) : [t,T] x D(T?) — Ly(T% R?) is C'-smooth in s € [t,T]
and C%-smooth in g € D¥(T?). In this way, [t6’s formula is applicable in the map
Y (s, Zt¢(s)).

In what follows, we will use the fact that Z"¢(s) is a solution to FSDE (3.9)
and that the following identity is valid:

oY

t.e _ ay(sv ) t.e
g(s,Z (s)) = 55 ° Z5¢(s).
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For the latter derivative we substitute the right-hand side of the first equa-
tion of (3.2). The notation X(g)[Y (s, g)] is the same established throughout
the Lemma 3.5 and the Corollary 3.18 and means differentiation of the function
Y(s,-) : D(T?) — Ly(T? R?) along the right-invariant vector field X on D%(T?)
at the point g € D¥(T?). The same argument used in Remark 3.2 implies that

~

X(9)[Y (s.9)] = VY (s,9).

Considering all these observations and established notations, we get that the

Navier-Stokes Equation (3.2) becomes:

Vo, 700~ bz @) == [ e 70— [0 20 o2 b

- [ 5 Az ) A2 )T 2 )
- / %ZBk(Zt’e(r))Bk(Zt’e(r))Y(r, Z4(r))dr
_ / ¢ A(Z ()Y (r, 25 (r)) V. (3.28)

where k € Z% U {0} is such that |k| < N.
Notice that:

Y (r, 2 ()Y (r, 25 ()] = [(y(r ), V)y(r, )] o Z(r).
Moreover, let us observe that:
- Z (Z5(r)ARZP ()Y (r, Z5(r)) + Bi(Z5(r) Bi(Z5(r)Y (r, Z(r))]
_ § SO IVA AT (1, 25(0)) + V5, V5,V (r, 20(r))]
k
= v[Ay(r, )] o Z"(r)
where k € Z2 U{0},|k| < N and that the latter equality holds by Lemma 3.5 and
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3. Navier-Stokes Equations and a system of FBSDE

€ > 0 is chosen in such a way that equality holds:

€ 1 1
S _
2 + 2 Z |k-|2a v

kEZ? |k|<N

Note that the terms V4, V4 Y (r, Z%(r)) and Vg Vp Y (r, Z¢(r)) are ele-
ments of 7D 1(T?), and therefore are well defined in Ly(T?, R?).
Replacing the terms with their equivalents presented in the equality above, the

new expression of the Navier-Stokes equation (3.28) is given by:

Y (s, Z4(s)) — h(Z"(T)) (3.29)

~

Then, the pair of stochastic processes (Y (s, Z"¢(s)), e A(Z4¢(s))Y (s, Z4¢(s)))
is a solution to BSDE (3.5) in Ly(T? R?). And this pair is F, adapted, since the
process Z'¢(s) is Fe-adapted.

According to Lemma 3.6, there is a unique Fy-adapted solution (Y¢(s), X*¢(s))
to BSDE (3.5) in the space H*(T?,R?). Moreover, (Y*¢(s), X*¢(s)) is also a unique
Fs-adapted solution to BSDE (3.5) in the space Lo(T? R?).

~

For this reason, Y*¢(s) = Y (s, Z"¢(s)) and

/tT "Xt,e<s) A2 ()Y (s, Zt@(s)))Hi ds = 0, (3.30)

and therefore the pair of stochastic processes given by
(Y(s,2%(s)), e A(Z"())Y (s, Z"(5)))
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3. Navier-Stokes Equations and a system of FBSDE

is a unique F,-adapted solution to BSDE (3.5) in H*(T? R?). Finally, the theorem
is proved. ]

The proof of the above theorem concludes the first major result of this work,
which consisted, in simpler terms, that given a solution to the Backward Navier

Stokes equations (3.7), we can find a triple of stochastic processes that solve a
given FBSDE system (3.3) built on the DY(T?).

3.4 Some Identities involving Navier-Stokes solu-
tion

In this section, we will bring an extra result in which we obtain a representation
for the solution of the Navier-Stokes equation, in addition to showing how this

representation implies the energy identity.

Theorem 3.7. Let t € [0,T], and let Z"(s) be the solution to FSDE (3.9) on
[t,T) with the initial condition Z*°(t) = e. Then, the following representation
holds for the solution y(t,-) to (3.7).

T
y(t,") =E {h(Zt’e(T)) +/ Vp(s,-)o Z"(s)ds]| . (3.31)
¢
Proof. First, note that due to the initial condition Z"¢(t) = e, we obtain that:
Y(t, 2%(1) = Y(t,e) = y(t,-) oe = y(t,-),

and, moreover, we know that:

E [ / ' Xt’e(r)dWT] —0.

t

Remember the BSDE presented in (3.5) which is rewritten below:
X T T
Ye(s) = h(Z"(T)) + / V(r, Z%¢(r))dr — / XY (r)dW,.
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3. Navier-Stokes Equations and a system of FBSDE

Taking the expectation from the both parts of BSDE at time s = ¢ we obtain
the representation (3.31). O

Now, we will show a simple derivation of the energy identity. Applying Itd’s

formula to the squared L(T?, R?)-norm of the solution Y*¢(s), we obtain:

V), = 2D, +2 [ ). Vet (332
2 [ X W - [ )

Remember that as shown in equation (3.14), we can decompose the process

X"¢(s) with respect to its coordinates, then:

IX"<(s)]7, = € S VA )R, + Vs )i,
| kez3 u{0}, [k|<N
1 _
=3 e Vs DI, + 1Vl

k:eZ%r |k|<N

SaED> iR ,M (%, Vs, DIIZ + 11K, Tyl )L, + 199G, )l

keZ2 |k|<N

1 1
262 1+§ Z |k’|2a ”Vy(87)||%2
keZ2, [kI<N

=2v|Vy(s, )IIL,-

Taking the expectation in (3.32) and using the volume-preserving property of

Z%¢(s), we obtain:

T
lys, I, + 20 / Iy (I, dr = [|A()]2,.

And that concludes the proof.
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Chapter 4

Constructing the solution to the
Navier-Stokes from a solution to the
FBSDEs

4.1 Looking for a solution for Navier-Stokes

We will present throughout this section the second main result of this work.
The theorem shown below is, in a way, a converse to the Theorem 3.6 proved in
the previous section. At this point, in simple terms, our goal will be to find a
solution to the Navier-Stokes equations starting from the hypothesis that we have
a solution to a system of forward and backward equations in D% (T?).

We will consider (3.3) as a system of forward and backward SDEs in the Hilbert
space H*(T2,R?), where o > 3. Moreover, as before, let V (s, Z%¢(s)) be the vector
field which denotes Vp(s,-) o Z%¢(s), and let F, denote the filtration o{W,,r €

0, s]}.

Theorem 4.1. Assume, for an H*™'-smooth function p(s,-), with s € [0,T], and
for anyt € (0,T), the existence of an Fs-adapted solution (Z%¢(s), Y1¢(s), X"4(s))
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4. Constructing the solution to the Navier-Stokes from a solution to the FBSDEs

to FBSDE (3.3) (rewritten below)

dZbe(s) =Y (s)ds + e A(Z"¢(s))dW,
dY'e(s) = —V(s, Z"¢(s))ds + X"¢(s)dWs, (4.1)
Zte(t) =e; Yte(T) = h(Z5(T)).

on [t,T) such that the processes Z"%(s) and Y"*(s) have almost surely continuous
trajectories and such that Z%¢(s) take values in D¥(T?). Then there exists a time
To > 0 such that for all T < Ty there exists a deterministic function y(s,-) €
T.DY(T?) on [0,T), such that almost surely on [t,T] the relation Y'¢(s) = y(s,-) o
Z%¢(s) holds. Moreover, the pair of functions (y,p) solves the backward Navier-
Stokes equations (3.7) on [0, T rewritten below:

y(s,0) =h(0) + / [Vp(r, 0) + (y(r, 0), V)y(r, 0) + vAy(r, 9)}dr,

divy(s,6) = 0.

(4.2)

The proof of this theorem is extensive and for this reason it will be divided
into stages, which correspond to the following lemmas.

The first step is to verify that the hypotheses about the triple of solutions
(Z4(s),Yhe(s), X¢(s)) are true.

Lemma 4.1. For allt € [0,T) and for any Fy-measurable D (T?)-valued random

variable &, the triple of stochastic processes
(Z(5), Y"5(5), X"4(s)) = (2"(5) 0 §,Y"(5) 0 §, X"“(s) 0€)  (4.3)
18 Fs-adapted and solves the FBSDEs
AIE §+/ Y5 (r dr+/ A(Z5(r)) dW,
Y5 (s) = h(Z%(T)) + /T V(r, Z4(r / X5 (r

on the interval [t, T) in the space H*(T? R?).
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4. Constructing the solution to the Navier-Stokes from a solution to the FBSDEs

Proof. Let us apply the right translation operator, denoted by R, on both sides of
the system of FBSDEs (3.3). We just need to proof that we can write the operator
R¢ under the signs of both stochastic integrals in (3.3). To verify this, we will
show that this statement is true for an arbitrary F;-measurable stepwise function
£ =>"7,&l4,, where & € DI(T?) and the sets A; are Fi-measurable.

Indeed, consider the times s and S such that t < s < .S < T, and let ®(r) be
an JF,-adapted stochastically integrable process. We obtain:

/S r) dW, OZ@HA _Z]IA/ o & dW,
_Z/ Ty, ®(r) o & dW,
:/S Z&HA dw,.

Now, let us consider a countable number of disjoint Borel sets B]' covering the
space of continuous functions C(T? R?), such that their diameter in the norm of
C(T?,R?) is smaller than +. And let A7 = ¢*(B}") and &' € B N DY(T?), that
is, each set A; is the pre-image by function &; of a sequence of coverings B}’

Define &, as:

o

&= &Tar.

i=1

Then it holds that for all w € €2, we have that:

1
—&, < =,
1€ = &nlleer2 r2) -

Our goal will be to prove that almost surely I(®)o & = I(P o&). For this, it is

enough to check the equalities:

=0, (4.5)

lim E ‘
Lo

n—oo

/SS O(r)dW, o &, — /SS O(r)dW, o ¢
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4. Constructing the solution to the Navier-Stokes from a solution to the FBSDEs

and
s S 2
lim E / O(r) o &, dW, — / O(r)o & dW,|| =0, (4.6)
n—00 s s Ly
where || - ||z, is the Ly(T?, R?)-norm.

Since the functions £ and &, belong to the space D%(T?), they preserve volume,

so the following equalities are valid:

2 2

/Ssq)(r)dWT o0&, /SS O(r)dW,

Lo ‘ Lo

and
2

-

Lo

/SS O(r)dW, o & /SS O(r)dW,

Applying Lebesgue’s theorem to equation (4.5), we can pass to the limit un-

Lo

der the expectation sign and the equality presented in (4.5) follows due to the
continuity of the stochastic integral of ¢(r) in 6 € T?.

On the other hand, to prove equality in (4.6), we will take an additional step
which is to apply Itd’s Isometry. Note that:

2
lim E

n—oo ‘ n—o0

S S
/ (B(r) o0&, — B(r) o &) dW,|| = lim IE/ |@(r) 0 & — ®(r) o |7, dr.

Lo

Finally, we use the same previous argument and by Lebesgue’s theorem we
can pass the limit under the expectation and the integration sign and the equality
presented in (4.6) follows due to continuity follows from the continuity of the
function ®(r) in § € T2

Therefore, the triple (Z¢(s) 0 &, Y¢(s) 0 &, X"¢(s) 0 £) is a solution to FBSDE
(4.4). This solution is Fs-adapted, since its component processes and functions
are Fg-adapted. O

In the following lemma, we will verify that the function considered in the
hypotheses of Theorem 4.1 is deterministic, that is, that it does not depend on

any stochastic component.
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Lemma 4.2. The map [0,T] x T? — R? defined by (t,0) — Y'*(t,0) is determin-

1stic.

Proof. Suppose that (Z%(s), Y"¢(s), X*¢(s)) is a solution to the FBSDE and let
us extend this solution to the time interval [0, ¢] by setting Z"¢(s) = e, Y"¢(s) =
Yte(t), X4¢(s) = 0 for all s € [0,¢]. The extended stochastic process solves the

following system:

Zhe(s) = e+/ ]I[t7T](r)Yt’e(7’)dT+/ IS (M)A(Z5(r))dW,
0 0

T . T (4.7)

Yt,e(s) — h(Zt’e<T)) + / H[t,T] (T)V(T‘, Zt’e(T»dT‘ _ / Xt’e(r)dWT.
In particular, consider s = 0, then we have that Y*¢(0) is a Fo-measurable func-
tion. By Blumenthal’s zero-one law (described in 1.4), then Y*¢(0) is deterministic
and since Y"¢(¢t) = Y¢(0), the result follows. O

Lemma 4.3. There exists a constant Ty > 0 such that for T' < T the function
0, T] — H?(T?,R?), defined by t — Y*¢(t) is continuous.

Proof. Consider as solutions to the FBSDE system (4.4) the triples given by
(Z<(s), Y (s), X¥(s)) and (Z"¢(s),Y"*(s), X"(s)) which begin at the point
e (identity function) respectively at times ¢ and t’, such that ¢ < ¢. In a proce-
dure analogous to that carried out in the demonstration of the previous lemma,
we will extend these solutions to the interval [0, 7] by setting the initial condi-
tions: Z%¢(s) = e, Yh¢(s) = Yhe(¢t), X"¢(s) = 0 for all s € [0,t]. Therefore, these
solutions can be considered as solutions of the extended FBSDE system (4.7).

Using It6’s formula in the Ly(T? R?*)-norm of Y*¢(s) as described in equa-
tion (3.32) and the BSDE of system (4.4) ensure that the expectation given by
E[[Y*¢(s)|7, is bounded.

To verify this, define the function F(Y') = ||Y]|7,, so the first-order derivative

is given by
oOF
(V) =¥, (DF(Y), B}y, = 2(Y, )y, =2 / Y (6)h(6)do.
7 T2
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4. Constructing the solution to the Navier-Stokes from a solution to the FBSDEs

And the second-order derivative is given by:

O°F
ay oy ) = 20,

where 0;; =1if ¢ = j and = 0 if ¢ # j.

Using Itd’s formula presented in (5.1) we will notice that the derivative of the
first term (calculated for time) is zero. This means that I1t6’s Formula only has in
its composition the other derivatives given below:

Using the first derivative, we have:

=30 [ i) Vshds = =2 [ (), Vs, ds

The stochastic term is given by:

SN [ o) X awl =2 [ (), XS
i Ur r

and the second-order term becomes:

_22/ 265 X!(5) X(s ds—/ HEE

- / 1XHE(s)12, ds.

r

where ¢ and j correspond to the infinite directions of the basis of the Hilbert space
and [ are the finite directions of the basis of the space in which the Wiener process
takes values.

Applying It6’s formula between times s and 7" and remembering that the final
condition is given by Y“¢(T) = h(Z"$(T))), we obtain:

VS, IV, = =2 [0, Vo 240 b
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T T
2 [ s a1, dr

s

Rearranging the terms, we have:
~ T A
Y (s)IIL, = IIL(Z"(T)IIZ, + 2/ (Y (r), V(Z"5(r))) rodr (4.8)
T ’ T
—2 [, X — [ X,

where || - ||z, is the Ly(T? R?)-norm.

Applying the expectation, we have to make some observations: the expectation
of the initial condition h(Z*¢(T)) will be bounded, since it is a constant, the
expectation of the stochastic term will be zero due to the martingale property and
the expectation of the term X%¢(s) can be estimated by any positive value, since
it is negative. Thus, it is necessary to verify that the expectation of the norm of
2 fST<Yt’5(r), V(Z94(r))) 1, dr is bounded.

Note that by the Cauchy-Schwarz inequality, we have: (Y5€(r), V(Z5(r))), <
1Y€ () ||y - |V (Z5(r) ||y, which implies:

2/ <Yt’£('f’)>‘7(Zt’5(r))>de7’32/ Yz - IV(Z5S () lzadr (49)

s

For simplicity, the constant 2 previously presented will be omitted, since it will
naturally be implied in the estimate below. By hypothesis, the function f/() is

Lipchitz, so there is a positive constant C'; which is worth the equation:
IV(Z5 (), < CoL(L+ 12%(r) || o)

Applying the control condition described above to the equation (4.9), we obtain:

[ V@ dr < [0 G+ 1240 12)dr

s

T T
S/bﬂwﬂﬂhﬂf+/0mwﬂﬂhfHﬂﬂﬂhﬂr
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Finally, recall that Z%¢(s) is a solution of the FSDE and, therefore, is bounded
with respect to the Lo-norm by hypothesis. To estimate the product of its norm
with the norm of ||Y%¢(s)|| we can apply Grénwall’s Lemma and obtain a new
constant C5 which will guarantee the estimate.

Now, considering the FSDE of system (4.7), we can calculate the difference of
Zte(s) — Z¥¢(s) as:

24(6) = 2°(5) = [ Tum(o) (V'“(r) = YO (0)
+ [ aze o) - s ) aw

Applying the Lo-norm to both sides we obtain the following equality:

12:4(5) = 2, < 2| [ Bun(r) () = v (e)ar| o)
+2 H/O L) () (A(Z5(r)) = A(Z(r)))dW, ) (4.11)

Then, we apply the expectation to both sides of the previous equation and

using I[t0’s Isometry in the stochastic term, we obtain:

E||Z"(s) — Z"(s)||3, <2 E /0 S L) (r) (Y54 (r) — Y78 (r) ) dr ) (4.12)
+2 /O & Loy (r) (A(Z"(r)) — A(Z"(r))) i dr.

By hypothesis, the operator A(-) is bounded with respect to the norm (see

conditions of Theorem 1.3) then there exists a positive constant Cy such that:

| ten)-E a2 o) - sz, ar
<G [ L) E |20 - @), ar
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Using the above estimate in the previous equality given by (4.12), we obtain:

s 2
E|2t(s) - 2°(s)|2, < 2E H [ T - vy

Lo

+C/H[m E|@e0) — (20| ar

Lo

Applying Gronwall’s Lemma, we can obtain a new positive constant K; such

that the following inequality holds:

E HZt’e(s) - Zt’ve(s)‘

2 s ) 2
< K, { / Tn |[Y<(r) = Y*“(r)
Lo 0

Lo

dr+ (t' — t)} :
(4.13)

Similarly, we will apply It6’s Formula to: ||Y¢(s) —Y"<(s)||3, using the BSDE
of (4.7), where || - ||z, denotes the Ly(T? R?)-norm as before. From which we can
conclude that ||Y*¢(s) —Y*"¢(s)||2, is bounded, since it is a sum of bounded norms.
Again, applying the Gronwall’s lemma, usual stochastic integral estimates and the
above estimate for expectation E||Z%¢(s) — Z"¢(s)||3,, we obtain that there is a
positive constant K5 such that the following inequality holds:

2 T 2
E|ve(s) - v'(s)| <Ko { /0 E [ v*e(r) = ()

L Lo

dr+ (t' — t)} :

Take T smaller than K% Then there exists a positive constant K for which

the following estimate holds:

, 2
sup E HYt “( Yt’e(s)‘ < K(t'—1). (4.14)

s€[0,T7] L

Evaluating the previous inequality at time s = t and taking into account that
initial condition we have: Y4¢(t) = e = Y**(#'), then we obtain that:

2

HYt’e(t) vty < k@ — o). (4.15)

Lo

Differentiating the extended FBSDE (4.7) with respect to 6, we obtain the
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following system of forward and backward SDEs:

4 S S
VZt’e(s) =1 —I—/ ]I[f;7gp](7“)VY;f‘/’e dr —i—/ ]I[t,T] (T)VA(Zt’e(T))VZt’e(T)dWr
0 P
VY"(s) = Vh(Z"(T))VZ"(T) +/ ]I[t7T]<T)VV(T, ZHE(r))V 25 (r)dr

T
- VX (r) dW,.

(4.16)

Through the usual stochastic integral estimates, we obtain that the expecta-
tions E[|VZ"¢(s)||7, and E[|[VY™"*(s)|7, are bounded.

Note that when we apply the control condition of inequality (4.14) to the
estimate given for ||Z%¢(s) — Z"¢(s)| in (4.13), we also obtain an estimate for
SUP,ejo.7) EIIZ5(s) — Z"¢(s)||3, Using this estimate and considering the FSDE of
system (4.16), when evaluating s = ¢ and remembering that Y*¢(t) = Y"¢(t'),
then there is a positive constant L such that for all ¢ and ¢’ from the time interval
[0, 7 holds:

VY e(t) — VYPe(t)|2, < LIt —t|. (4.17)

Differentiating the extended system of FBSDE (4.7) with respect to  a second
time and using the same argument, we will obtain a new positive constant M such

that for all times ¢ and ¢ belonging to [0, T the following inequality holds:
IVVYe(t) — VYY", < Mt —t|. (4.18)

Finally, note that the estimates given for the first and second derivatives at
(4.15), (4.17), and (4.18) show that they are bounded and therefore continuous.
This leads us to conclude that map ¢t — Y*¢(¢) is continuous with respect to the
H?(T?, R?)-norm. O

For the following lemmas, we will assume that 7" < Tj, where Tj is a positive

definite constant, as described in Lemma 4.3.
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Lemma 4.4. For every t € [0,T) and for every F;-measurable random variable &,
the solution (Z%(s),Y(s), X¢(s)) to FBSDE (4.4) is unique in the time interval
[t,T].

Proof. Let (Z%(s),Y"(s), X*¢(s)) be a solution to the FBSDE (4.4), to prove
uniqueness, consider another solution (Z%4(s),Y"(s), X*£(s)) to (4.4) in time
[t,T]. We will extend these solutions to the interval [0,7] by setting the initial

conditions:

2%() = € = 2'%(s),
VI(s) = YS() = F15(0) = Ts),
XH(s) = 0= X"(s).

for all s € [0,¢]. In this way, these triples of solutions can be considered as solutions
of the extended FBSDE system presented below:

Z4(s) = e + / Ly (r)Y "5 (r)dr + / Ly 7y (1) A(Z4(r))dW,
0 0

T ) T (4.19)
Y (s) :h(ztvS(T))+/ Ty () V (r, Zt,f(r))dr—/ X5 (r)dW,..

The rest of the proof follows in a similar manner to what we did in the previous
lemma 4.3 and will be omitted.

In short, our goal would be to verify the norms of differences ||[Y¢(s) —
YiE(s)||2, and || Z4€(s) — Z4¢(s)||2, are 0, which means that these processes are
almost surely equal. The calculations are developed in a similar way to what we
did using the inequality (4.10). O

Lemma 4.5. Let the function y : [0,T] x T? — R? be defined by the formula:
y(t,0) = Y"(t,0). (4.20)
Then, for every t € [0,T], y(t,-) is H*-smooth, and a.s.

Yh(u) = y(u,-) o Z"(u). (4.21)
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Proof. Recall that in lemma 4.2, we proved that the equality presented by the triple
of solutions in (4.3) is true, which implies that the function ¢ is Fi-measurable, in

this way:

Yté(t) = y(ta ) o¢

Furthermore, for each fixed time u € [t,T], the triple (Z%¢(s), Y¢(s), X"(s))
is a solution of the following FBSDE system on the time interval [u, T'):

zw@:zqm+/xwmm+/lwwmmm

u

Yt’e(s):h(Zt’e(T))nL/sT V(r, Z%(r / Xte(r

Note that by the uniqueness of the solution, it is valid that if v = ¢, then
Zb(u) = e which implies Y%¢(s) = Y®“Z"()(s) almost surely in the interval
[u, T]. By the equality shown in 4.21, we obtain:

yuZt W (s) = y(u, ) o Z4¢(u).

This implies that there exists a set that depends on time w € [t,T|, which we
will denote as €2, of full P-measure such that the equality 4.21 holds everywhere
on €2,,. Thus, we can find a set Qg such that the probability of this set is P(Qg) = 1
and that the equality given by 4.21 holds over all {2 for all rational u € [t, T].

However, the processes given by Z"¢(s) and Y*(s) have almost surely con-
tinuous trajectories. Furthermore, according to lemma 4.3, the function y(t, -) is
continuous at time ¢ with respect to Ly(T?, R?)-norm. Therefore, since the equality
(4.21) is a composition of functions of this space, we conclude that almost surely
the equality (4.21) holds with respect to Lo(T?,R?)-norm.

Finally, since both sides of the equality (4.21) are continuous in ¢ € T?, then
it also holds for almost surely every § € T2 m

The following lemma presents the same function introduced in lemma 4.5,

however, it addresses the differentiability of this function with respect to the time
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variable.

Lemma 4.6. Consider the function y : [0,T] x T? — R? defined as:
y(t,0) = Y"°(¢,0). (4.22)

The function y(t,-) defined above is C*-smooth in t € [0,T].

Proof. Consider a positive increment 9, applying this increment to the time vari-

able t in the function y(¢,-), we obtain:

y(t + 57 ) - y<t7 ) = YH_&e(t + 5) o Ytye(t)
= YOt 4 6) — YOt +0) + YOt 4+ 6) — YHe(1).
Recall that by Y(s), we denote the right-invariant vector field over the manifold

D*(T?) generated by the vector field y(s,-). By Lemma 4.5, we have that the

following equality holds almost surely:

Yot +6) = y(t +9,-) o ZH(t + 6)
=Y (t+36, Z(t + ).

Thus, the equation we initially considered becomes almost surely:

yt+0,)—yt,) =Yt +6,e) = Y(t+06,Zt+0)) + Yt +6) — Ye(t).
(4.23)

For the parcel Y (¢t + d,e) — Y (t + 6, Z4(t + 8)), we apply Ito’s formula when
considering Y (t+6) as a C2-smooth function D?(T?2) — Ly(T2,R?). So, we obtain:

V(t 406,25t +6)) — V(t +d,¢) = /jMf/(r,Zt’e(r))[Y(t—i-5,Zt’e(r))]dr

A (Z5°(r) Ap(Z5(r)Y (t + 6, Z4¢(r))dr

t+4

; Z / B(Z"(r) Bu(Z"(r)) Y (t + 6, 2 (r) dr
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+ / o A(ZM(r) Y (t + 6, Z4(r))dW,

where k € Z5 U {0}.
Note that this equation is similar to the one presented in Theorem 3.6, specifi-

cally in equation (3.28), an argument similar to that used in this theorem implies:

t+0
Y(t+06,Z"(t+0))—Y(t+d,e) = / Ve y(t+6,-) o Z%(r)dr  (4.24)
tt-‘r(s
+/ vAyY(t+6,) o Z4(r)dr
o )
+ / e A(ZH () V(E + 8, Z5(r)) V.
t

where v is defined according to the lemma 3.5 and is given as:

€? 1 1
= [14+=
’ 2<+2¥v€\2ﬂ>
in which k € Z2, |k| < N.

On other hand, for the parcel Y"¢(t+§) — Y"¢(¢) of equation (4.23) we use the
equality given by BSDE, obtaining:

t45 t+6
Yhe(t) — YPe(t 4 §) = / Vp(r,-) o Z¢(r)dr — / Xte(rydW,.  (4.25)
¢ t

Finally, adding both developments made in (4.24) and (4.25), we arrive at the

equation:

Y(t+06, 20t 4+ 6)) — Y (t +0,¢) + YP(t) — YPe(t 4 §)

t+6 t+6
= / Ve Yyt +6,-) o Z4(r)dr + / vAy(t—+96,-)o 24 (r)dr
¢ ¢

t+5 . t+6 t+5
+ / eA(Zt’e(r)) Y(t+ 6, Zt’e(r)) dW, + / Vp(r,-) o Zt’e(r)dr — / Xt’e(r) dW,
¢ ¢ t

As seen previously in (3.30), the stochastic terms are equal and cancel each
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other out, thus we obtain.

Y(t+6, 20t 4+ 6)) — Y (t +0,¢) + YP(t) — YPe(t 4 §)

t+6 t46
= / Ve Yyt +6,-) o Z5(r)dr + / vAy(t+96,-)o 24 (r)dr
tt-‘rﬁ :
+ / Vp(r,-) o Zb¢(r)dr
¢

Now, note that Vy, . y(t +6,-) = (y(r,-), V)y(t + 9,-). With this equality,
applying the expectation to both sides of the equation and multiplying by %, we

obtain:
%@@+&)—y@)) (4.26)
1 48
=5 E [/t [(y(r,),V)y(t+6,") +v Ayt +06,)+ Vp(r,-)] o Z(r) dr| .

Note that functions Z%¢(r), Vp(r,-), and (y(r,-),V)y(t + 0,-) o Z"*(r) are
continuous in time r almost surely with respect to the Lo(T? R?)-norm. In this
way, by Lemma 4.3, the functions Vy(t,-) and Ay(t,-) are continuous in time
t with respect to the Lo(T? R?)-norm. Formula (4.26) and the initial condition
Z%¢(t) = e imply that in the Ly(T? R?)-norm, we have:

Oy(t,-) = =[Vyuyy(t,-) + v Ay(t,-) + Vp(t, )] (4.27)

Since the right-hand side of equation (4.27) is an H* ?-map, then this im-
plies that the left side is also an H* ?-map. Therefore, the function dyy(t,-) is
continuous in 6 € T?.

The relation given by equality (4.27) is obtained at this point for the right
derivative of y(¢,0) with respect to t. However, notice that the right-hand side of
equation (4.27) is continuous in ¢ which clearly implies that the right derivative
Oyy(t, 0) is continuous in each t of the time interval [0,7"). Finally, this function
is uniformly continuous on every compact sub-interval of [0,7). For this reason,

there is a left derivative of y(¢,0) in ¢, and therefore, this proves the existence of
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the continuous derivative 0;y(t, 6) everywhere of the time interval [0, 7. O

Finally, we come to the last lemma that will conclude the proof of Theorem
4.1.

Lemma 4.7. For every timet € [0,T), the function y(t,-) : T> — R? is divergence-
free. Moreover, the pair of functions (y(t,-),p(t,-)) verifies the backward Navier-
Stokes equations (4.2).

Proof. Initially, fix a time ¢ > 0 and consider the T,D%(T?)-valued curve v(u) =
E [exp~ ! Z%¢(u)], where u > ¢, in a neighborhood of the origin of T,D%(T?).

The FSDE of the system (4.4) can be represented as an SDE on the manifold
D*(T?) as follows:

dZ"(s) = exp {?(s, Zb¢(s)) ds + A(Z5(s)) dWs} ,
Z4(t) = e,

where Y(s) is the right-invariant vector field on D*(T?2) generated by function
y(sa )
This implies that the derivative of the curve (u) with respect to time u and

evaluated at time ¢ is given by

Tau)] =),

u=t

and therefore y(t,-) € T,DY(T?).

Next, the BSDE of the FBSDE system (4.4) implies that the final conditions
Y5(T) = h(Z%¢(T)). This observation and the equality given by Lemma 4.5 in
(4.21) imply that y(7T', ) = h, just note that:

W(ZV(T)) = Y*(T) = y(T,-) o e = y(T')

Since we already obtained dyy(t, -) to which it associates the solution p(¢-) using

the equation (4.27) in Lemma 4.6, then the proof of the lemma is now complete. [
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4.2 Conclusion

In the previous section, we conclude our study of the relationship between
the solutions of the system of classical Navier-Stokes equations and the solutions
of a forward-backward system of stochastic differential equations on the Dg(T").
However, new questions arise and remain open within this issue, the most general
being: is it possible to generalize or extend this concept?

Indeed, other approaches are possible to test, and I will list some hypotheses
that can be studied below:

e I) By extending the torus to higher dimensions.
e II) By testing other free-divergence maps.
e III) By studying other cases of diffecomorphism groups.

e 1V) By testing homeomorphisms instead of diffeomorphisms.

Finally, we emphasize how stochastic analysis is both interesting and challeng-
ing as a research area, in addition to clearly being a field of study with diverse
applications that connect well with other areas, as seen in this work that permeated

geometry, algebra, and analysis content.
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Chapter 5
Appendix

Theorem 5.1 (Itd’s Formula). Let Hy, and Hsy be Hilbert Spaces, W; be a n-

dimenstonal Brownian Motion and X; € Hy a Stochastic Process given by:

t t
X =Xo+ / a(s)ds + / A(s)dWs,
0 0

such that for each direction i € N, it is holds:

t n t
X=X} + / a;(s)ds + Z/ Al(s)aw!
0 = Jo

in which a(s) is an Hy-valued Stochastic Process and A(s) is a L(R", Hy)-valued
Stochastic Process, and let F' = (Fi(t,x), ..., Fy(t,1),...) be a C*([0,t] x Hy, Hy)
application, so we get for each d € N:

B LOF, OFa (9Fd
Fy(t, Xy) =F4(0, Xo) + s (s, Xs) ds—l—Z/ Jai(s)ds (5.1)

+ZZ/ aFd Al(s)dW!

=1 [=1

Proof. Throughout this demonstration, the subscripted d is used to indicate the
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d-th component function of F', while the subscripts ¢ and h indicate, respectively,
the i-th and h-th components of the process X; or the corresponding ¢-th and
h-th derivatives of each function Fy. Moreover, we will use the index [ to indicate
the dimensions of the Brownian motion dW, and m when there are two distinct

Brownian motions.

First, assume that Fj, X, fo dWs,fO la(s)|ds and fo s), Ap(s))ds, for
all 1 € {1,...,n} and i, h € N are bounded in (¢, X}).
In which,

/0 (Ails), An(s))ds = 5 / Al(s)AlL (s)ds

By simplicity, we will denote a;(s) and A;(s) by a; and A; for all s € [0,¢] and
ieN.
Define the stopping time:

0, if |X0| >cC
inf {t : max <)f0t AdW,

Te =

o |a|d57fot<Ai,Ah>d8> > C}, if [Xo| <ec

We have that 7. tends to oo when ¢ tends to co. So, if we prove the equation
(5.1) for X, s on the set {7. > 0}, when ¢ — oo, then the equation (5.1) is proved
for the general case.

Assume that a and A are bounded elementary functions and define the parti-
tion:

tr=0<t1 <...<t, <t

for the time interval [0,¢]. Using Taylor’s Expansion in each direction d € N of

function F', we obtain:

Fy(t, X,) =Fa(0,Xo) + Y AFy(t;, X;)

J

=F,(0, Xo) +Z OFq ZZ%AXZ
J
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2 oo
9 Fy Fd(Atj)2+ZZ O°F L AHAX]
e

24 0 otox;

1 o= 0*Fy :

= AXIAX] R;
where %, %, and others, are evaluated at the points (t;, X;,), At; = tj,1 —t;,
AXZ = th i Xtij, 1= 1,27..., AFd = Fd(tj+1,th+1) — Fd(tj,th) and Rj =

o(|At;|* + |AX;[?) for all j.
If At; — 0, by the definition of the Riemann integral, we obtain:

OF, OF,
Z = A —Zj: o (1 X1, ) At %/ (s, X,)ds

Now, our goal will be to prove that:

OF
ZXJ: Lt X, AX’—>Z/ ax, S)dX!

To demonstrate this convergence, consider the decomposition of AX ; into ele-

mentary functions a; and A; as follow:

i l l
AXE = ai(t At+ZA AW

In this way, we obtain:

ZZaFd (tj, Xi, ) AX]
8Fd ( ! z)
—ZZ t],Xt )AL, +ZA VAW
J
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_ZZaFd (85, X, )ai(t) At +ZZZaFd (t;, Xo, )ALt AW

=1 i=1

Which, by the definitions of Riemann and stochastic integrals, converge respec-

tively to:

Z/ O (s, X ds+22/ 5, X)W

=1 i=1
- oF, | oF, l ,
_;;/0 S5, X.)a(s)ds + 52 s Xl (s)aw
= ['OF, ;
_;/0 o, (s, X)dX:

Now, for the component with (A¢;)? in Taylor’s Expansion, we have that:

0?Fy 0? Fd
‘Z 72 (At;)? <maX|At| Z i (b X)) | At
J
and this vanish as |P| — 0. Indeed,
0’ Fy 0?F,
5 ——(t5, Xy, )| At; —>/ 52 (t, Xy)|ds, |P|—0.

For the component of Taylor’s Expansion with At;AX ; We will verify that:

a2Fd . ,
Zzata 5 X ) ALAXE =0 in Ly(Q).

Let Bi(t;) = %(tj,th) and let AX; = a;(t;)(At;) + >0, Aé(tj)AVV;, since
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this converges to zero, we will use the Ls-norm to prove it as follows:

ZZ@( JALAX]
- i Z Bi(t;)At; ( )AL + ZAZ Awl>
Z(Z@ Jai(t;)(AL;) +ZZ@ AWAt)

Let us prove the first term goes to zero:

At;)? <max At; ZZL@Z t;)|At;

< mjax (At) Z ‘5 ti) - la(t;)|At; — 0.

Indeed, let us observe that:

ZHB(@)H lat;)l| At —>/O 18(s)] [la(s)llds

Now, let us prove that the second term vanishes. For this, we will use the

L?(H;)-norm:

n

Z i Z Bi(t;)AL(t)) AW AL,
=E ( y ZZ@ )AL AW’) ( izﬁh(tkmmtkmtmmﬁ”)]

=E| ) ZZ@ ) B () AL () AT (8) AL At AWTAT

Li,m=11i,h=1 jk

E

3
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Z Z S Bilt)) Bu(te) ALt AR (1) At AL AW AW

Im=1ih=1 jk

o]

Let 7 < k, since Brownian Motion has independents trajectories, so AW; and
AW are independents for every case [ # m, thus, the expectation of their product

is 0, remaining the case [ = m. In this way, we obtain:

Z Z > E[Bi(t) B (i) ALt AL (1) At A - B [E [AW; AW, | F, ]]

=1 i,h=1 3k

3 S S E [t AL )AL A -0

=1 i,h=1 j,k

=0.

The case k < j is analogous, so we will analyze the case where 7 = k:

E _E Z Z Zﬁ, ) B (t) AL (t)) A, (tr) At AL, AW AW ftj”
E 'E ;hzlz@ ()8 1) (A1, (AW f”
:Z ;iZE 56t A ()AL (1) (A7) - B [B | (aT2 f”
=33 SR AR - ()

This expression tends to 0 as At; tends to 0.

Now, let us analyze the last component of Taylor’s Expansion, which has vari-
ation: AX;:AX;?. Let

i l l
AXD = Aty + Y AIAW],

=1
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and for AX ]h is analogous with functions a;, and Ay, then:

Z Z Z o axh L AXIAXD

i=1 h=1 j

Z Z > aig;h <aiAtj - ZAgAw;) : (ahAtj +> Amw]@)
i=1 h=1 j ¢ =1 m=1
0°F,
D) I PEALEININ:

zlhl]

+ Z > Z Z > ai g;h (AP ALAW™ + a, ALALAWY)

mlllzlhlj

- O*F,
+ Z > Z Z Z 7. a;hAgAgAW;AW]m

m=1 l=1 i=1 h=1 j

:Il+12+13.

Where, each a; and A, is evaluated in ¢; and 5 3 is evaluated in (t;, X¢,). In
this equality, the terms I; and I, respectively, the terms with (At;)?, At; AW
and tjAVV} tends to 0 as At; tends to 0, as we saw in the previous demonstrations.

However, it remains to see what happening with the term I3 with AW;AVVJ?”.

We will assert that:

n n o0 [e.e]

O*F,
19 W W IECHINTANISE

m=1 [=1 i=1 h=1 j

n

O*F, '
%2222/%MA P (s)ds

=1 m=1 i=1 h=

Since Brownian Motions VVJZ and W)™ have independents trajectories, so the

cases where [ # m vanishes in the product. So, the equality is reduced to the case:
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1D I) DRIV 5 pRvs

=1 =1 j

=E Z > A ((AW)? - Aty)

Li=1

=E (DD (AW = Aty) -7 (AW — Aty)

mllljk

2

= ZZZE 7 ( — At)(AW")* — Aty)) ]
m=1 =1 jk
—ZZZE it (AW))? — A (AW — Aty)) | F, ]
m=1 1=1 jk
If j <k, then

Z Z > R BN (AWH? — At)(AWM)? — Aty)) | F, ]

mlll]k

= Z Z S ERA (AW — Aty)] - E[(AW)? — Aty| F,]

m=1[=1 jk
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n n

=D > D Bt ((AW))° = At)] -0

m=11=1 jk

=0.

For the case k < j, the proof is analogous. Finally, consider j = k e we get:

D07 DCE [y ((AW)? — Aty (AW]")” — Aty))]

Again, since Brownian Motion have trajectories independents, the cases [ # m

vanish, so:

iZE ()2 AW? — AL

ZZE PAW) = A7 ]
Z;E O517,] - E (AW = A6
ZZE Y E[(AWDH? — At)?]

This occurs because (74)? is F,-measurable and (AW})? is independent, of F,.
So,

> ZE[(AW})Q — AP =) Y E[(AW)! = 2(AW))(AL) + (At)’]

=1 3

= 3n(At))? = 2n(At))? + (At)?
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= (n+1)(At;)?

In this way,

ZZE %P1 EIAW)) = ALY = (n+ 1) 3B (Aty)?

And this expression tends to 0 as At; tends to 0.
Then, in the end,

IDIEHIVAED DY RUETE

By equation 5.2, we obtain:

ZZZM (1), X0, VAt At ) ATV’

=1 =1 3
L 92E,

8—56? (s, Xs)A;(s)A;(s)ds

i=1 Y0

Moreover, it is clear that:

ZR Z (|AL [ +]AX;)?) —

as At; — 0.

That completes the demonstration of It6 Formula in Hilbert Spaces.
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