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Resumo

Ao longo deste estudo, nosso objetivo geral foi o que estabelecer uma re-
lação entre as soluções de um sistema progressivo-regressivo (forward-backward)
de equações diferenciais estocásticas no grupo de difeomorfismos do toro plano que
são Hα-suaves para α > 2 e que preservam volume (denotado como Dα

v (T2)) e as
soluções das equações de Navier-Stokes no plano, R2.

Nossa teoria nos capítulos 1 e 2 foi obtida tendo como base principal Shkoller
[16], do Carmo [6] e Gliklikh [10] para fornecer os conceitos básicos sobre espaços de
Sobolev, Geometria Riemanniana e Análise Estocástica em variedades que seriam
necessários para o desenvolvimento dos resultados de Cruzeiro e Shamarova [4].

No capítulo 3, apresentamos o primeiro resultado principal do trabalho. Supo-
mos que existe uma solução para Navier-Stokes equações no plano e, a partir
desta solução, encontramos uma tripla de soluções para um sistema de equações
diferenciais estocásticas forward-backward em Dα

v (T2).
Por fim, no capítulo 4, apresentamos o resultado recíproco e dada uma solução

do sistema supracitado, nós construímos uma solução para as equações de Navier-
Stokes.

Palavras-chave: Equações de Navier-Stokes; Sistema FBSDE; Grupo de Difeo-
morfismos no toro plano.



Abstract

Throughout this study, our general objective was to establish a relationship
between the solutions of a forward-backward system of stochastic differential equa-
tions in the group of diffeomorphisms of the flat torus that areHα-smooth for α ≥ 2

which preserve volume (denoted as Dα
v (T2)) and the solutions of the Navier-Stokes

equations in the plane, R2.
The theory in Chapters 1 and 2 was obtained mainly by Shkoller [16], do Carmo

[6] and Gliklikh [10] to provide the basic concepts about Sobolev spaces, Rieman-
nian Geometry and Stochastic Analysis on Manifolds that would be necessary for
the development of the results of Cruzeiro and Shamarova [4].

In Chapter 3, we present the first main result of the work. We assume that
there exists a solution to the Navier-Stokes equations in the plane, and from this
solution we find a triple of solutions to a system of forward-backward stochastic
differential equations in Dα

v (T2).
Finally, in Chapter 4, we present the converse result and given a solution of

the aforementioned system, we construct a solution to Navier-Stokes equations.

Keywords: Navier Stokes equations; FBSDE System; diffeomorphism group on
the flat torus
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Notation

Chapter 1

expq Exponential map at a point q on a Riemannian manifold, mapping tangent
vectors to the manifold.

DV
dt

Covariant derivative of a vector field V along a curve, incorporating curva-
ture effects in non-Euclidean spaces.

Tn The flat n-torus.

B The σ-algebra representing the information up to time t, often used in
stochastic processes.

Bt Filtration of the σ-algebra B, capturing the evolution of information over
time.

Ft Variation of the filtration notation defined in a σ-algebra F , capturing the
evolution of information over time.

∇ Covariant derivative operator, generalizing partial derivatives in curved
spaces or manifolds.

H A Hilbert space, a complete inner product space.

Chapter 2

(−∆)α Fractional Laplacian operator, a generalization of ∆, defined as (−∆)α via
Fourier transform.

x



∆ Laplace operator or Laplacian, defined as ∆ = ∇ · ∇, which measures the
divergence of the gradient of a function.

⟨·, ·⟩ Inner product, typically associated with a Hilbert space, which provides a
notion of angle and length.

Dα(Tn) Group of diffeomorphisms of the Hα-maps defined on the flat n-torus.

Dα
v (Tn) Group of diffeomorphisms of the Hα-maps that preserve volumes defined

on the flat n-torus.

e Identity mapping on the flat n-torus Tn, serving as the neutral element in
the group of diffeomorphisms Dα(Tn) and in Dα

v (Tn).

Hα(Tn) Denote the set of Sobolev Hα-mappings from Tn to Tn in which we have
α > n

2
+ 1

TTn Tangent bundle of the flat n-torus.

TeTn Tangent space at the identity element e ∈ Tn.

TgDα(Tn) Tangent space at g ∈ D(Tn), defined by the composition of the vector
fields of TeDα(Tn) by a function g ∈ Dα(Tn).

Chapters 3 e 4

Āk(θ) Vector defined using the Fourier coefficients on T2, given by the decompo-
sitions into cosine series.

B̄k(θ) Vector defined using the Fourier coefficients on T2, given by the decompo-
sitions into sine series

E[Xt | Fs] Conditional expectation of Xt given the σ-algebra Fs, representing the
best prediction of Xt based on information available up to time s.

E[Xt] Expected value of the random variableXt, representing the average outcome
of Xt under the probability measure.



Introduction

The Navier–Stokes equations are among the famous Millennium Prize Prob-
lems and have been motivating mathematicians around the world for over two
centuries. Researchers have explored numerous theories and performed countless
hypothesis tests in an attempt to prove the existence of analytic (or smooth) so-
lutions. However, until this day, the problem remains unsolved for cases beyond
two dimensions.

Our goal in this work is not to solve the Navier-Stokes equations in full gener-
ality, but rather to outline a possible approach for finding solutions under specific
conditions by employing systems of stochastic differential equations.

The main idea of this study is to demonstrate that a solution to a system
of forward-backward stochastic differential equations on an infinite-dimensional
manifold can be used to formulate a corresponding solution to the Navier-Stokes
equations in an appropriate function space.

Conversely, given a solution to the Navier-Stokes equations, it is possible to
find the solutions of a given system of stochastic differential equations.

The main idea of this study is to demonstrate that a solution to a system
of forward-backward stochastic differential equations on an infinite-dimensional
manifold can be used to formulate a corresponding solution to the classical Navier-
Stokes equations.

More specifically, the infinite-dimensional manifold under consideration is the
set Dα

v (T2) which is also a group with respect to the composition operation and
constitutes all volume-preserving Hα-diffeomorphisms of the flat two-dimensional
torus T2 to itself. Similarly, the Navier-Stokes equations are considered on the

1



two-dimensional Euclidean space R2.
This master’s thesis is divided into four chapters. In the first chapter, we are

introduced to the most essential and necessary concepts for what we will use in
this work on Hilbert manifolds and Stochastic Analysis of manifolds, having as
main reference the books by Gliklikh in [9], [10] and [11].

In the second chapter, we address more specific aspects related to Sobolev
Spaces and also Sobolev maps, since our diffeomorphisms will be defined under the
understanding of these spaces. We also define the metrics and other stronger results
related to stochastic analysis on manifolds focusing on diffeomorphism groups,
following Schkoller [16], Gliklikh [10] and others.

In the third chapter, we finally begin to deepen the results shown in the article
written by Cruzeiro and Shamarova [4], define the notations that we will use next
and construct the results that demonstrate that it is possible to obtain a solution
for a system of stochastic differential equations from a solution for Navier-Stokes
equations.

Finally, in the fourth chapter we have the reciprocal result and present the
second main theorem of the work, in which we address that having a solution for
the aforementioned stochastic system, we are able to construct the solution for the
Navier-Stokes equations.

The appendix presents the author’s proof of Itô’s formula in Hilbert spaces
with a Brownian motion on a finite-dimensional space.

2



Chapter 1

Riemannian Geometry and

Stochastic Analysis

Throughout this chapter, our goal is to discuss the essential concepts related to
Riemannian Geometry and Stochastic Analysis that will be covered in the following
chapters of this work. However, it is necessary for the reader to be familiar with
the most basic notions of Differential Geometry and Measure Theory.

In this way, we will start by addressing the general concepts of Riemannian
Geometry throughout this next section.

1.1 Riemannian Geometry

1.1.1 Hilbert Manifolds

Before defining Hilbert manifolds, let us recall the definition of Hilbert space
as follows:

Definition 1.1. [Hilbert Space] We say that H is a Hilbert Space if H is a normed
vector space which satisfies two properties:

• The norm defined on H is induced by an inner product in this way:
√
⟨·, ·⟩ =

∥ · ∥.

3



1. Riemannian Geometry and Stochastic Analysis

• Any Cauchy sequence in H converges with respect to above norm to an
element of H.

Definition 1.2. [Hilbert Manifold] A Hilbert manifold is a set M and a family of
injective mappings ϕα : Uα ⊂ H →M of open sets Uα of H into M such that:

I)
⋃

α ϕα(Uα) =M

II) for any pair α, β with ϕα(Uα) ∩ ϕβ(Uβ) = W ̸= ∅, the sets ϕ−1
α (W ) and ϕ−1

β

are open sets in H and the mappings ϕ−1
β ◦ ϕα are differentiable.

III) The family {(Uα, ϕα}) is maximal relative to the previous conditions.

Items I) and II) described above define what we call a differentiable atlas;
condition III) guarantees what we call a maximal atlas — that is, it cannot be
expanded without losing its differentiability conditions. Thus, a maximal atlas is
the "best" possible collection of charts from the manifold M .

Let p ∈ ϕα(Uα). Then, the pair (Uα, ϕα) is called a parametrization or sys-
tem of coordinates of M at the point p; moreover, ϕα(Uα) is called a coordinate
neighborhood at p.

In what follows, we will discuss properties and main results concerning Rieman-
nian manifolds; our discussion will be restricted to the case of Hilbert manifolds,
with appropriate observations.

Example 1.1. An Euclidean space Rn, and a Hilbert Space H equipped with the
differentiable structure generated by the identity map is a trivial example of a
Hilbert manifold.

Example 1.2. Let M be a Hilbert manifold, any open M ′ of M is a Hilbert
manifold and if (uα,Mα)α∈A of a differentiable atlas for M , its restriction (uα|Mα∩
M ′,Mα ∩M ′)α∈A to M ′ gives a differentiable atlas for M ′.

Definition 1.3. [Tangent Vector] Let M be a Hilbert manifold. A differentiable
function α : (−ε, ε) → M is called a differentiable curve in M . Suppose that
α(0) = m, where m ∈ M , and let D be the set of functions on M that are

4



1. Riemannian Geometry and Stochastic Analysis

differentiable at point m. The tangent vector to the curve α at t = 0 is a function
α′(0) : D → R given by:

α′(0)f =
d(f ◦ α)

dt

∣∣∣∣∣
t=0

, f ∈ D

A tangent vector at m is the tangent vector at t = 0 of some curve α(−ε, ε) →
M with α(0) = m. The set of all tangent vectors to M at m will be denoted by
TmM .

Definition 1.4. [Diffeomorphism] Let M1 and M2 be Hilbert manifolds. A map-
ping φ : M1 → M2 is a diffeomorphism if it is differentiable, bijective, and its
inverse φ−1 is differentiable. The map φ is said to be a local diffeomorphism at
p ∈ M if there exist neighborhoods U of p and V of φ(p) such that φ : U → V is
a diffeomorphism.

Definition 1.5. [Tangent Bundle] Let M be a Hilbert manifold and let TM =

{(m, v); m ∈ M, v ∈ TmM}. That is, we can define TM as the union of all the
tangent spaces TmM of the manifold M at each of its points m ∈ M . Moreover,
we will denote by π : TM → M the natural projection of the tangent bundle on
the manifold. The set TM will be called the Tangent Bundle of M and this space
has manifold structure as will see below.

Let {(Uα, φα)} be a maximal differentiable structure on a manifold M . Denote
by (xα1 , ..., x

α
i , ...) the coordinates of Uα and by

{
∂

∂xα
1
, ..., ∂

∂xα
i
, ...
}

the associated
bases to the tangent spaces of φα(Uα). For every α, define:

Φα : Uα ×H → TM,

by

Φα(x
α
1 , u1, ..., x

α
i , ui, ...) =

(
φα(x

α
1 ), u1

∂

∂xα1
, ..., φα(x

α
i ), ui

∂

∂xαi
, ...

)
where (u1, ..., ui, ...) ∈ H.

5



1. Riemannian Geometry and Stochastic Analysis

In a geometric view, the above equality means that we are taking as coordi-
nates of a point (m, v) ∈ TM the coordinates xα1 , ..., xαi , ... of m together with the
coordinates of v in the basis

{
∂

∂xα
1
, ..., ∂

∂xα
i
, ...
}

.
Now, we will check that {(Uα ×H,Φα)} is a differentiable structure on TM .
Since that

⋃
α φα(Uα) =M and (dφα)q(H) = Tφα(q)M , we obtain:

⋃
α

Φα(Uα ×H) = TM,

which verifies condition I) of Definition (1.2). Now, let:

(m, v) ∈ Φα(Uα ×H) ∩ Φβ(Uβ ×H).

Then,
(m, v) = (φα(qα), dφα(vα)) = (φβ(qβ), dφβ(vβ)),

where qα ∈ Uα, qβ ∈ Uβ, vα, vβ ∈ Rn. Therefore,

Φ−1
β ◦ Φα(qα, vα)

=Φ−1
β (φα(qα), dφα(vα))

=((φ−1
β ◦ φα)(qα), d(φ

−1
β ◦ φα)(vα)).

Since φ−1
β ◦φα is differentiable, d(φ−1

β ◦φα) is as well. So, it follows that Φ−1
β ◦Φα

is differentiable, which verifies condition II) of Definition (1.2).

Definition 1.6. [Vector Field] A vector field X of a Hilbert manifold M is a
correspondence that associates to each point m ∈ M a vector X(m) ∈ TmM . In
terms of mappings, X is a mapping of M into the tangent bundle TM . We say
that the field is differentiable if the mapping X :M → TM is differentiable.

Let ψ : U ⊂ H → M be a parametrization. Then, any vector field X on M

can be locally expressed as

X(p) =
∞∑
i=1

ψi(p)
∂

∂xi
, (1.1)

6



1. Riemannian Geometry and Stochastic Analysis

where each ψi : U → R is the i-th coordinate function defined by ψ, and
{

∂
∂xi

}
,

where i ∈ N is the coordinate basis associated with ψ. Moreover, X is differentiable
if and only if the coordinate functions ψi are differentiable (with respect to the
coordinates given by this parametrization).

It is convenient to use the idea suggested by (1.1) above and consider a vector
field as a mapping X : D → F from the set D of differentiable functions on M to
the set F of functions on M , defined as follows:

(Xf)(p) =
∑
i

ψi(p)
∂f

∂xi
(p), (1.2)

where f denotes, by abuse of notation, the expression of f in the parametrization
ψ. The function Xf obtained in equation (1.2) does not depend on the choice of
parametrization φ.

Definition 1.7 (Riemannian Metric). We say that a Riemannian metric is given
on a manifold M if in each tangent space TpM , p ∈ M , a inner product ⟨·, ·⟩p is
specified which depends smoothly on p, that is, for any two vector fields X and Y ,
the function ⟨X(p), Y (p)⟩p is smooth in p ∈ M . A manifold with a Riemannian
metric is called a Riemannian manifold.

Example 1.3. Let M = Rn with ∂
∂xi

identified with ei = (0, ..., 1, ..., 0). The metric
is given by the relation: ⟨ei, ej⟩ = δij. The manifold Rn is called Euclidean Space
of dimension n and the Riemannian Geometry of this space is called the metric
Euclidean Geometry.

Example 1.4 (Product Metric). Let M and N be Riemannian Manifolds and
consider the cartesian product: M × N with the product structure. Let π1 : M ×
N →M and π2 :M×N → N be the natural projections. We can define on M×N
a Riemannian Metric as follows:

⟨u, v⟩m,n = ⟨dπ1 · u, dπ1 · v⟩m + ⟨dπ2 · u, dπ2 · v⟩n,

for all (m,n) ∈M ×N , u, v ∈ T(m,n)(M ×N)

7



1. Riemannian Geometry and Stochastic Analysis

Example 1.5 (Flat Torus). As a subcase of previous example, consider the torus
S1 × ... × S1 = Tn equipped with a Riemannian structure obtained by choosing
the induced Riemannian Metric of R2 on the circle S1 ⊂ R2 and then taking the
product metric. The n-dimensional torus, denoted by Tn, with this metric will be
called the flat torus.

Definition 1.8. [Lie Group] A Manifold G is called a Lie Group if there is an
algebraic operation ∗ on G such that G is a group with respect to ∗ and g ∗ h is
jointly smooth in g, h ∈ G as a map G×G→ G.

Definition 1.9. [Left Action of a Lie Group] A left action of a Lie Group G on a
manifold M is defined if a certain C∞-map

G×M →M, (g,m) 7→ gm (1.3)

is given such that the following hypotheses hold:

(I) for any g ∈ G, the map (1.3) is a diffeomorphism;

(II) (g ∗ h)m = g(hm) for g, h ∈ G,m ∈M .

Analogously, a right action of a Lie Group G on a manifold M is the specifica-
tion of a certain C∞-map M × G → G for g ∈ G and m ∈ M which satisfies (I)

and (II) defined below:

(II) (g ∗ h)m = h(gm) for g, h ∈ G,m ∈M .

When the action is given, the notation mg for g ∈ G and m ∈ M is used so
that m(g ∗ h) = (mg)h. Moreover, in this work, we will denote the unit of the Lie
Group by e.

Let g ∈ G, we will define two special maps: the right translation and the left
translation (or equivalently right shift and left shift). The right translation is the
map Rg : G → G defined by Rgh = h ∗ g and, analogously, the left translation is
the map Lg : G → G defined by Lgh = g ∗ h for all h ∈ G. From definition of a
Lie Group above (1.8), we have that the maps Rg and Lg are smooth.

8



1. Riemannian Geometry and Stochastic Analysis

Definition 1.10. The vector field on G obtained by right translation of a vector
X ∈ TeG at all points of G is called right-invariant vector field generated by X.
In this way, the vector field on G obtained by left translation of a vector X ∈ TeG

is called left-invariant.

1.1.2 Connection

Definition 1.11. [Affine Connection] Let X (M) be the set of C∞-vector fields
on M and D(M) be the set of C∞-functions on M . A affine connection ∇ on a
manifold M is a mapping:

∇ : X (M)×X (M) → X (M)

such that:

I) ∇fX+gYZ = f∇XZ + g∇YZ

II) ∇X(Y + Z) = ∇XY +∇XZ

III) ∇X(fY ) = f∇XY +X(f)Y ,

in which X, Y, Z ∈ X (M) and f, g ∈ D(M).

Remark 1.1. Throughout this work, it will be common for us to use the term
connector when referring to the map defined by a connection. In particular, when
working in local coordinates, we will call this mapping the local connector.

Proposition 1.1. Let M be a differentiable manifold with an affine connection
∇. There exists a unique correspondence which associates to a vector field V along
the differentiable curve c : I ⊂ R →M another vector field DV

dt
along c, called the

covariant derivative of V along c, such that:

I) D
dt
(V +W ) = DV

dt
+ DW

dt
.

II) D
dt
(fV ) = df

dt
V + f DV

dt
, where V is as vector field along c and f is a differen-

tiable function on I ⊂ R.

9



1. Riemannian Geometry and Stochastic Analysis

III) If V is induced by a vector field Y ∈ X (M), in others words, V (t) = Y (c(t)),
then DV

dt
= ∇dc/dtY .

Proof. Suppose there is a correspondence satisfying the proposition conditions.
Let φ : U ⊂ H → M be a system of coordinates with c(I) ∩ φ(U) ̸= ∅ and let
(x1, x2, ..., xi, ...) be the local expression of the curve c(t), where t ∈ I. Further-
more, denote by Xi the derivative in the xi direction, that is, Xi =

∂
∂xi

. In this
way, we can express the vector field V locally as

∑
j v

jXj where vj = vj(t) and
Xj = Xj(c(t)).

By I) and II), we have:

DV

dt
=
∑
j

dvj

dt
+
∑
j

DXj

dt
.

By III) e I) of the definition 1.11, we have:

DXj

dt
= ∇dc/dtXj = ∇∑ dxi

dt
Xi
Xj

=
∑
i

dxi
dt

∇Xi
Xj

where i ∈ N.
Therefore,

DV

dt
=
∑
j

dvj

dt
Xj +

∑
i,j

dxi
dt

∇Xi
Xj (1.4)

The above expression shows that if there is a correspondence satisfying the
conditions of the proposition, then that correspondence is unique.

To prove existence, define DV
dt

in φ(U) by 1.4. Let ψ(W ) be another coordinate
neighborhood such that ψ(W )∩φ(U) ̸= ∅ and we define DV

dt
in ψ(W ) by equation

1.4. Thus, the definitions coincide at the intersection ψ(W )∩φ(U), by the unique-
ness of DV

dt
in φ(U). Finally, it follows from the definition that we can extend it

over the entire manifold M and this concludes the proof.

10



1. Riemannian Geometry and Stochastic Analysis

Definition 1.12 (Parallel Vector Field). Let M be a differentiable manifold with
an affine connection ∇. A vector field V along a curve c : I →M is called parallel
when DV

dt
= 0, for all t ∈ I.

Definition 1.13 (Connection Compatible). We say that a connection ∇ and a
Riemannian Metric ⟨·, ·⟩ are compatible if the metric admits a uniform Rieman-
nian atlas such that, in every chart defined on a ball V [m, r], the local connector
Γm′(X,X) at all m′ ∈ V [m, r] is uniformly bounded in the norm generated by the
metric, as a quadratic operator of X, by a certain constant c > 0 independent of
the choice of chart and ball.

Definition 1.14 (Symmetric Connection). An affine connection ∇ on a Hilbert
manifold M is said to be symmetric when:

∇XY −∇YX = [X, Y ] for all X, Y ∈ X (M). (1.5)

Theorem 1.1 (Levi-Civita). Given a Hilbert manifold M , there exists a unique
affine connection ∇ on M satisfying the conditions:

I) ∇ is symetric.

II) ∇ is compatible with the Riemannian Metric.

Proof. Suppose that exists a connection ∇. Then, it holds that:

X⟨Y, Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩, (1.6)

Y ⟨Z,X⟩ = ⟨∇YZ,X⟩+ ⟨Z,∇YX⟩, (1.7)

Z⟨X, Y ⟩ = ⟨∇ZX, Y ⟩+ ⟨x,∇ZY ⟩. (1.8)

Adding equations (1.6) and (1.7) and subtracting (1.8), using the symmetry of
connection ∇, we obtain:

X⟨Y, Z⟩+ Y ⟨Z,X⟩+ Z⟨X, Y ⟩

=⟨[X,Z], Y ⟩+ ⟨[Y, Z], X⟩+ ⟨[X, Y ], Z⟩+ 2⟨Z,∇YX⟩

11



1. Riemannian Geometry and Stochastic Analysis

Therefore,

⟨Z,∇YX⟩ = 1

2
{X⟨Y, Z⟩+ Y ⟨Z,X⟩ − Z⟨X, Y ⟩ (1.9)

− ⟨[X,Z]Y ⟩ − ⟨[Y, Z], X⟩ − ⟨[X, Y ], Z⟩}.

The expression (1.9) shows that the connection ∇ is uniquely determined from
the metric ⟨·, ·⟩. Hence, if it exists, it will be unique.

To prove existence, define the connection ∇ by (1.9) and note that this con-
nection satisfies the desired conditions.

Remark 1.2. The connection ∇ as given by above theorem is called as the Levi-
Civita (or Riemannian) connection on M .

Now, we will partially rewrite what was shown above using a coordinate system
(U,φ). Let be functions Γk

ij defined on U as follow:

∇Xi
Xj =

∑
k

Γk
ijXk

will be called the coefficients of the connection ∇ on U or the Christoffel Symbols
of the connection. From equation (1.9), it follows that:

∑
l

Γl
ij⟨Xl, Xk⟩ =

1

2

{
∂

∂xi
⟨Xj, Xk⟩+

∂

∂xj
⟨Xk, Xi⟩ −

∂

∂xk
⟨Xi, Xj⟩

}
.

Since the matrix ⟨Xk, Xm⟩ has an inverse, denoted by by ⟨Xk, Xm⟩, satisfying
⟨Xl, Xk⟩ ⟨Xk, Xm⟩ = δml . We obtain that:

Γm
ij =

1

2

∑
k

{
∂

∂xi
⟨Xj, Xk⟩+

∂

∂xj
⟨Xi, Xk⟩ −

∂

∂xk
⟨Xi, Xj⟩

}
⟨Xk, Xm⟩. (1.10)

The above equation given by (1.10) is a classical expression for the Christoffel
Symbols of the Riemannian Connection in terms of the ⟨Xi, Xj⟩ given by the
metric.

12



1. Riemannian Geometry and Stochastic Analysis

As constructed above, it is clear from the Remark 1.1 that the Christofell sym-
bols are an example of a local connector, representing the connection analytically
on a given chart.

1.1.3 Geodesics

Definition 1.15 (Geodesic). A parametrized curve γ : I →M is called a geodesic
at t0 ∈ I if D

dt

(
dγ
dt

)
= 0 at the point t0.

If γ is a geodesic at t, for all t ∈ I, we say that the curve γ is a geodesic. If
[a, b] ⊂ I and γ : I →M is a geodesic, then the restriction of γ to interval [a, b] is
called a geodesic segment joining γ(a) to γ(b).

If γ : I →M is a geodesic, then:

d

dt

〈
dγ

dt
,
dγ

dt

〉
= 2

〈
D

dt

dγ

dt
,
dγ

dt

〉
= 0

that is, the length of the tangent vector dγ
dt

is constant.
In what follow, we will determine the local equations satisfied by a geodesic

curve γ in a system of coordinate (U,φ) about γ(t0). In U , a curve γ give by:

γ(t) = (x1(t), ..., xi(t), ...)

will be a geodesic if and only if:

0 =
D

dt

(
dγ

dt

)
=
∑
k

(
d2xk
dt2

+
∑
i,j

Γk
ij

dxi
dt

dxj
dt

)
∂

∂xk
.

In this way, the second order system:

d2xk
dt2

+
∑
i,j

Γk
ij

dxi
dt

dxj
dt

(1.11)

in which k ∈ N yields the desired equations. To analyze the above system 1.11, it
is convenient to consider the tangent bundle TM . This is the set of pairs (q, v),

13
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where q ∈ M and v ∈ TqM . If (U,φ) is a system of coordinates on the manifold
M , then any vector in the tangent space TqM , where q ∈ φ(U), can written as:

∞∑
i=1

yi
∂

∂xi
.

So, considering (x1, y1, ..., xi, yi, ...) as coordinates of (q, v) in TU , as we saw
previously in the Definition 1.5, TM has differentiable structure. Note that TU =

U ×H , that is, the tangent bundle is locally a product. Moreover, the canonical
projection defined as π : TM →M given by π(q, v) = q is differentiable.

This way, any differentiable curve t → γ(t) in the manifold M determines a
curve t→ (γ(t), dγ

dt
(t)) in TM . If γ is a geodesic, then, on TU , the curve gives by:

t→
(
x1(t),

dx1(t)

dt
, ..., xi(t),

dxi(t)

dt
, ...

)
satisfies the system: 

dxk

dt
= yk

dyk
dt

= −
∑

ij Γ
k
ijyiyj

(1.12)

where k ∈ N in terms of coordinates (x1, y1, ..., xi, yi, ...) on TM .
Finally, the second order system described in 1.11 on U is equivalent to the

first order system 1.12 on TU above.

Lemma 1.1. There exists a unique vector field G on the space TM whose trajec-
tories are of the form t→ (γ(t), γ′(t)) where γ is a geodesic curve on M .

Proof. Initially, we will prove the uniqueness of G, supposing its existence. Con-
sider a system of coordinates (U,φ) on the manifold M . From the hypothesis,
the trajectories of the vector field G are of the form: t → (γ(t), γ′(t)), where γ
is a geodesic on M . In this way, it follows that t → (γ(t), γ′(t)) is a solution of
the system shown in (1.12) and results from the uniqueness of the trajectories of
a such system that if G exists, then it is unique. Now, to prove the existence,

14
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define G locally through the system (1.12) and, by uniqueness, follows that G is
well-defined on TM .

Definition 1.16. Let X be a vector field on a Hilbert manifold M , and let p ∈M .
Then there exist a neighborhood U ⊂ M of p, an interval (−δ, δ), where δ > 0,
and a differentiable mapping φ : (−δ, δ)×U →M such that the curve t→ φ(t, q),
t ∈ (−δ, δ) and q ∈ U , is the unique curve which satisfies:

∂φ
∂t

= X(φ(t, q))

φ(0, q) = q

The curve given by α : (−δ, δ) →M which satisfies the conditions α′(t) = X(α(t))

and α(0) = q is called a trajectory of the vector field X that passes through point
q at time t = 0.

Remark 1.3. Commonly, the notation φ(t, q) is used in a simplified form as φt(q)

when we fix a time t. The curve φt : U → M is called the local flow of the vector
field X.

Definition 1.17 (Geodesic Flow). The vector field G defined above is called the
geodesic field on TM and its flow is called the geodesic flow on TM .

In the following results, we will denote a geodesic γ(t, q, v) that depends of the
triple (t, q, v) defined over the Cartesian product [−δ, δ]×U , with δ > 0, in which
U is a open set in TU , where (U,φ) is a system of coordinates at p ∈M , such that
{(q, v); q ∈ V, v ∈ TqM, |v| < ε} with ε > 0 and V is a neighborhood of p ∈M .

Lemma 1.2 (Homogeineity of a Geodesic). If the geodesic γ(t, q, v) is defined on
the interval (−δ, δ), then the geodesic γ(t, q, av), with a ∈ R, a > 0, is defined on
the interval

(
− δ

a
, δ
a

)
and

γ(t, q, av) = γ(at, q, v).

Proof. Define the curve:

h :

(
−δ
a
,
δ

a

)
→M

15
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h(t) = γ(at, q, v)

Which we have that h(0) = γ(0, q, v) = q, that is, the curve h(t) passes through
the point q at time t = 0. Moreover, note that:

h′(t) =
d

dt
γ(at, q, v) = a γ′(at, q, v).

Evaluating at t = 0, we obtain: h′(0) = a γ′(0, q, v) = av

In addition, since h′(t) = aγ(at, q, v), then:

D

dt

(
h′(t)

)
=
D

dt

(
a γ′(at, q, v)

)
= a

D

dt

(
γ′(at, q, v)

)
= a2 γ′′(at, q, v).

Since the curve γ is a geodesic, then: γ′′(at, q, v) = D
dt

(
γ′(at, q, v)

)
= 0. We

extend h′(t) to a neighborhood of h(t) in M , therefore, h is a geodesic passing
through q with velocity av at the instant t = 0. By uniqueness, we obtain:

h(t) = γ(at, q, v) = γ(t, q, av).

Proposition 1.2. Given p ∈ M there exist an open set V ⊂ M , p ∈ V , real
numbers δ > 0 and ϵ1 > 0, and a C∞ mapping:

γ : (−δ, δ)× U

where U = {(q, v); q ∈ V, v ∈ TqM, |v| < ϵ1}, such that the curve t 7→ γ(t, q, v) with
t ∈ (−δ, δ), is the unique geodesic of M which, at the instant t = 0, passes through
point q with velocity v, for each q ∈ V and for each v ∈ TqM with |v| < ϵ1.

Proof. Consider p ∈ M , by hypothesis there exists a neighborhood V of p in M

and real numbers δ > 0 and ϵ1 > 0 such that, for each (q, v) ∈ U = {(q, v) : q ∈

16
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V, v ∈ TqM, |v| < ϵ1}, we have:

γ(0, q, v) = q,

D

dt
γ′(t, q, v) = 0,

γ′(0, q, v) = v,

where t ∈ (−δ, δ).
We want to prove that the curve γ(t, q, v) is the only geodesic under these

conditions. By the Homogeneity Lemma 1.2, for any a > 0 such that |av| < ϵ1 we
have that γ(t, q, a v) = γ(a t, q, v), where t ∈

(
− δ

a
, δ
a

)
.

Therefore, the initially defined map γ(·) is C∞-smooth and, by its uniqueness,
for each (q, v) ∈ U the curve t 7→ γ(t, q, v) is the only geodesic that satisfies the
given initial conditions.

Proposition 1.3. Let be a Riemannian Manifold M and let p ∈M , there exist a
neighborhood V of p in M , a number ϵ > 0 and a C∞ mapping γ : (−2, 2)×U →M ,
where U = {(q, w) ∈ TM ; q ∈ V ; w ∈ TqM, |w| < ϵ} such that t 7→ γ(t, q, w),
t ∈ (−2, 2) is the unique geodesic of M which, at the instant t = 0, passes through
q with velocity w, for every q ∈ V and for every w ∈ TqM , with |w| < ϵ.

Proof. The geodesic γ(t, q, v) give by Proposition 1.2 is defined for |t| < δ and for
|v| < ϵ1. According the Lemma of Homogeneity 1.2, we have that the geodesic
γ(t, q, δv

2
) is defined for |t| < 2.

Taking ϵ < δϵ1
2

, we obtain that the geodesic γ(t, q, w) is defined for |t| < 2 and
|w| < ϵ.

The previous proposition permit us to introduce an important concept called
exponential map. Let p ∈ M and U ⊂ TM be an open set given by Proposition
(1.3), then the map exp : U →M given by:

expq(v) = exp(q, v) = γ(1, q, v) = γ

(
|v|, q, v

|v|

)
where (q, v) ∈ U , is called the exponential map on U .

17
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In general, we will restrict of the exponential map to an open subset of the
tangent space TqM , in other words, we will define:

expq : B[0, ε] ⊂ TqM →M

expq(v) = exp(q, v)

where B[0, ε] denotes the open ball with center at the origin 0 of TqM and of radius
ε. Notices that expq(0) = q and map expq is differentiable.

In geometric terms, the exp(q, v) is a point of the manifold M which is obtained
by going out the length equal to |v|, starting in the point q, along a geodesic which
passes through q with velocity equal to v

|v| .

Proposition 1.4. Let p ∈M , there exists an ε > 0 such that the exponential map
expq : B[0, ε] ⊂ TqM → M is a diffeomorphism of B[0, ε] onto an open subset of
M .

Proof. Initially, we will calculate the differential of the exponential map and then
we will apply the time t = 0. Thus:

d(expq)0(v) =
d

dt
(expq(tv))

=
d

dt
(γ(1, q, tv))

=
d

dt
(γ(t, q, v))

Evaluating at t = 0, we obtain:

d

dt
(γ(0, q, v)) = γ′(0, q, v)) = v.

Thus, we have that d(expq)0 is the identity of the tangent space TqM and it follows
by the inverse function theorem that the map expq is a local diffeomorphism in a
neighborhood of 0.

If expp is a diffeomorphism of a neighborhood V of the origin in TpM , the
neighborhood gives by expp(V ) = U ⊂ M is called a normal neighborhood or

18



1. Riemannian Geometry and Stochastic Analysis

normal chart.

Definition 1.18. [Geodesic Frame] Let M be a Riemannian Manifold, let p ∈M

and U ⊂ M be a neighborhood of p, consider the vector fields Ei ∈ X (U), where
i ∈ N and orthonormal at each point of U such that, at point p, ∇Ei

Ej(0) = 0.
The family of vector fields Ei, in this conditions, is called a local geodesic frame
at p.

Definition 1.19. [Divergence] Let M be a Riemannian Manifold, X ∈ X (M),
f ∈ D(M) and Ei, where i ∈ N is a local geodesic frame at p ∈ M , we define
divergence as:

divX(p) =
∑
i

Ei(fi)(p)

where X =
∑
i

fiEi.

Next, we will define the concept of geodesic spray, which will be widely used
in the results and theorems of the next chapter.

Definition 1.20. A vector field Y (t, (m,X)) on the tangent bundle TM is called
a special vector field on TM or a second order differential equation on M if at
every point (m,X) ∈ TM the equality:

TπY (t, (m,X)) = Xm

holds where π : TM →M is the natural projection of TM onto M .

Definition 1.21. Let a connection ∇ be given on a manifold M . Given a point
(m,X) ∈ TM , the mapping Tπ is a linear isomorphism of ∇(m,X) onto TmM .
Consequently in ∇(m,X) there is a unique vector Z(m,X) such that:

TπZ(m,X) = Xm. (1.13)

The vector field described above is called the geodesic spray of the connection ∇.
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1.2 Stochastic Analysis on Manifolds

In this section, our focus will be the Stochastic Process and their concepts
associated, having as a priority the Stochastic Process which occur in Manifolds.
Moreover, as mentioned before, we will suppose that reader is familiarized with
elementary concepts of Measure and Integration, such as random variables, con-
vergence, and others.

Definition 1.22. [Time] Let ξ(t), for t ∈ [0, T ], be a stochastic process in Rn,
defined on a probability space (Ω,B, P ). Then, for each t ∈ [0, T ], ξ(t) determines
three families of σ-subalgebras of Bt:

i) "past" Pξ
t , generated by pre-images of Borel sets in Rn by all mappings

ξ(s) : Ω → Rn for 0 < s < t;

ii) "future" F ξ
t , generated by pre-images of Borel sets in Rn by all mappings

ξ(t) : Ω → Rn for t < s < T ;

iii) present ("now") N ξ
t , generated by the mapping ξ(t).

We assume that all of these families of σ-subalgebras are completes, that is,
contain all sets of probability P = 0.

Definition 1.23. Let Bt be a filtration of the σ-algebra B, a random process A(t)
is said to be adapted with respect to a filtration Bt if A(t) is measurable with
respect to Bt for every t.

1.2.1 Stochastic Integrals

Our objective throughout this section is to review the most essential concepts
about stochastic integrals in Itô form and in Stratonovich form, making the neces-
sary connections between these two topics with the aim of clarifying the relation-
ships that exist between stochastic differential equations in Itô and Stratonovich
forms, respectively.

First, consider a positive constant T finite. Let A : [0, T ] × Ω → L(Rn, H)

be a random operator function, in other words, A(t) is a random linear operator
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from the n-dimensional space Rn to a Hilbert space H. Moreover, let us consider
a Wiener Process w(t) with respect to filtration Bt with values in Rn.

To define the Itô Integral of A(t), choose a partition P := (0 = t0 < t1 < ... <

tq = T ) of the time interval [0, T ] and consider the integral sum given below:

q−1∑
i=0

A(ti)(w(ti+1 − w(ti)). (1.14)

The limit (if it exists) of the above sum, as the length |P| → 0, is called the
H-valued Itô Integral of A(t) and will be denoted by:∫ t

0

A(t)dw(t)

However, under certain boundedness hypothesis, the Itô Integral does exist as
the L2(Ω, H)-limit of the integral sums when we have that A(t) is adapted with
respect to filtration Bt. In particular, it exists if the entries Aj

i (t) of operator A(t)
satisfy the equality:

P

{
ω ∈ Ω

∣∣∣∣∣
∫ T

0

(
Aj

i

)2
(t, ω)dt <∞

}
= 1 (1.15)

where i ∈ N correspond to the lines of the operator A(t) (interpreted as a ma-
trix) that are indexed by natural numbers (since H has an infinite basis) and
j correspond to the columns that vary from 1 to n (since Brownian motion is
n-dimensional).

Now, considering the integral sums given by:

q−1∑
i=0

A(ti+1) + A(ti)
2

· (w(ti+1)− w(ti)), (1.16)

we have that the limit of these sums (if it exists) is the called Stratonovich Integral
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denoted as: ∫ t

0

A(s) ◦ dws (1.17)

Remark 1.4. The differentials dw and ◦dw that appear in the previous definitions
of Itô and Stratonovich integrals are called the forward and symmetric differen-
tials, which refer to location of t in time interval [ti, ti+1] where the operator A is
evaluated.

Now, we will show a formula that relates the Itô and Stratonovich integrals.
By the definition of the Stratonovich integral, we get:

q∑
S

=

q∑
I

+
1

2

q−1∑
i=0

(A(ti+1)− A(ti))(w(ti+1 − w(ti))) (1.18)

where
∑q

I is the Itô Integral sum presented in (1.14). The limit of the second sum
on the right-hand side is a second order integral in dA and dw, denoted simply by∫ t

0
dAdw. In this way, we obtain:∫ t

0

A(τ) ◦ dw(τ) =
∫ t

0

A(τ)dw(τ) +
1

2

∫ t

0

dA(τ)dw(τ) (1.19)

Definition 1.24. An Itô Process is a process ξ(t) of the form:

ξ(t) = ξ(0) +

∫ t

0

a(s)ds+

∫ t

0

A(s)dw(s)

where a(t) is a process with sample paths almost surely having bounded variation
and A is defined according to (1.14).

Just for simplicity, we will sometimes denote the differential dw(s) as dws for
all s ∈ [0, T ]. The same goes for Xt which will be used in some situations instead of
X(t). Next, we will present one of the most important base results for the theory
developed in this master’s thesis, the Itô’s Formula.

Theorem 1.2 (Itô’s Formula). Let H1 and H2 be Hilbert Spaces, Wt be a n-
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dimensional Brownian Motion and Xt ∈ H1 a Stochastic Process given by:

Xt = X0 +

∫ t

0

a(s)ds+

∫ t

0

A(s)dWs,

such that for each direction i ∈ N, it is holds:

X i
t = X i

0 +

∫ t

0

ai(s)ds+
n∑

l=1

∫ t

0

Al
i(s)dW

l
s

in which a(s) is an H1-valued Stochastic Process and A(s) is a L(Rn, H1)-valued
Stochastic Process, and let F = (F1(t, x), ..., Fd(t, x), ...) be a C2([0, t] × H1, H2)

application, so we get for each d ∈ N:

Fd(t,Xt) =Fd(0, X0) +

∫ t

0

∂Fd

∂s
(s,Xs)ds+

∞∑
i=1

∫ t

0

∂Fd

∂xi
(s,Xs)ai(s)ds (1.20)

+
∞∑
i=1

n∑
l=1

∫ t

0

∂Fd

∂xi
(s,Xs)Al

i(s)dW
l
s

+
1

2

∞∑
i=1

∞∑
h=1

n∑
l=1

∫ t

0

∂2Fd

∂xi∂xh
(s,Xs)Al

i(s)Al
h(s)ds

Proof. The proof is extremely extensive and has been added to the appendix.

To simplify some representations of the integral that contains the second deriva-
tive of F (·) (described above), it will be convenient to use the following notations
as equivalent when necessary:

trF ′′(A(s),A(s)) =
n∑

l=1

F ′′(A(s)el,A(s)el) (1.21)

where e1, ..., en is an arbitrary orthonormal frame in Rn. And, equivalently,

1

2

∫ t

0

F ′′(A(s)dws,A(s)dws) =

∫ t

0

1

2
trF ′′(A(s),A(s))ds (1.22)

A classic result in linear algebra ensures that the trace introduced above does

23



1. Riemannian Geometry and Stochastic Analysis

not depend on the choice of orthonormal frame e1, ..., en in Rn.

Definition 1.25. [Stratonovich Process] A process is called a Stratonovich Process
if it is of the form:

ξ(t) = ξ(0) +

∫ t

0

a(s)ds+

∫ t

0

A(s) ◦ dws (1.23)

where the integral with the operator A(t) is constructed as seen in (1.17).

If F (t, x) is a smooth mapping as above, then:

F (ξ(t)) = F (ξ(0)) +

∫ t

0

[
∂F

∂t
+ F ′(a(s))

]
ds+

∫ t

0

F ′(A(s)) ◦ dws. (1.24)

Itô’s formula for the Stratonovich Process will not be demonstrated, as it is
similar to the main demonstration of Itô’s Formula presented previously and left
in the appendix.

Definition 1.26. An Itô Process ξ(t) is called a diffusion-type process if both a(t)
and A(t) are adapted with respect to the past filtration Pξ

t of ξ(·) and the Wiener
process w(t) is adapted to Pξ

t .

The diffusion type process exist as solutions of the so-called Itô diffusion type
equation as will be presented below.

1.2.2 Stochastic Differential Equations

Let on the Hilbert Manifold M a time dependent vector field a(t, x) and a time
dependent field of linear operators A(t, x). A Stochastic Differential Equation in
the Itô form (or Itô SDE) is an integral equation as:

ξ(t) = ξ(0) +

∫ t

0

a(τ, ξ(τ))dτ +

∫ t

0

A(τ, ξ(τ))dwτ (1.25)
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where the integral with operator A(τ, ξ(τ)) on the right-hand side is a Itô Integral.
Usually, the equation can be written in the differential form as below:

dξ(t) = a(t, ξ(t))dt+ A(t, ξ(t))dwt (1.26)

On the other hand, a Stochastic Differential Equation in Stratonovich form
(or equivalently Stratonovich SDE) is the integral equation presented below which
contains the Stratonovich integral:

ξ(t) = ξ(0) +

∫ t

0

a(τ, ξ(τ))ds+

∫ t

0

A(τ, ξ(τ)) ◦ dwτ (1.27)

which can be written in the reduced differential form:

dξ(t) = a(t, ξ(t))dt+ A(t, ξ(t)) ◦ dwt (1.28)

Equations of the form present in (1.25) are often called diffusion equations, the
reason is clarified in the definition below that describes the diffusion coefficient.

Definition 1.27. The equation of Itô type:

dξ(t) = a(t, ξ(t))dt+ A(t, ξ(t))dw(t) (1.29)

is called a diffusion type stochastic differential equation.

The equation shows above in (1.29) is a reduced form to the integral expression:

ξ(t) = ξ(0) +

∫ t

0

a(s, ξ(s))ds+

∫ t

0

A(s, ξ(s))dws (1.30)

Notice that equation present in (1.26) is a particular case of (1.30).
Moreover, we shall often require that the mappings a(t, x(t)) and A(t, x(t))

are jointly continuous. Sometimes, it will be necessary to consider equations with
random coefficients, that is, coefficients depending on ω ∈ Ω.

Definition 1.28. [Strong Solution] The equation (1.29) is said to have a strong
solution if for every Wiener Process w(t) on a probability space and a adapted to
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a filtration Bt, there exists a stochastic process ξ(t) on the same probability space
as w(t) and adapted with respect Bt, such that for ξ(t) and w(t) a.s. for every t
in some interval, the equality (1.30) is fulfilled.

Definition 1.29. [Weak Solution] The equation (1.29) is said to have a weak
solution ξ(t) if there exist a probability space (Ω,F , P ), a filtration Bt, a process
ξ(t) in Rn adapted with respect to Bt and a Wiener Process w(t) in Rn adapted to
Bt such that for ξ(t) and w(t) a.s. for every t in some interval, the equality (1.30)
is fulfilled.

Definition 1.30. [Strongly and Weakly Unique] A strong solution is said to be
strongly unique if any two strong solutions coincide almost surely. Analogously, a
weak solution is called weakly unique if for any two weak solutions, the measures
corresponding to them on the path space coincide.

Definition 1.31. [Itô Vector Field] Let M be a Hilbert Manifold, the pair de-
scribed as (a(t,m),A(t,m)), where a(t,m) is a vector field on M and A(t,m) is a
field of linear operators A(t,m) : Rn → TmM sending a certain Euclidean Space
Rn to the tangent spaces to M is called an Itô Vector Field.

Let w(t) be a Wiener Process in Rn and (a(t,m),A(t,m)) be an Itô vector
field on the manifold M . The equation below is called a Stochastic Differential
Equation in Stratonovich Form on M given by Itô vector field (a(t,m),A(t,m)):

dξ(t) = a(t, ξ(t))dt+ A(t, ξ(t)) ◦ dw(t) (1.31)

This means that in every chart on the manifold M , the solution ξ(t) satisfies
the equation:

ξ(t) = ξ(0) +

∫ t

0

a(s, ξ(s))ds+

∫ t

0

A(s, ξ(s)) ◦ dw(s) (1.32)

previously built and presented in equation (1.27).

Example 1.6. Let a filtration Bt of the σ-algebra B, where t ∈ [0, T ] with T > 0

to which a Wiener Process w(t) in Rn is adapted, a stochastic process a(t) in a
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Hilbert Space H and a stochastic process A(t) with values in the space of linear
mappings from Rn to H that are adapted with respect to Bt and having almost surely
continuous sample trajectories, and the field of linear operators Em : Rn → TmM ,
smooth in m ∈ M . The pair given by (Ema(t), EmA(t)) on M is a random Itô
vector field and it generates the stochastic differential equation:

dξ(t) = Eξ(t)a(t)dt+ Eξ(t)A(t) ◦ dwt (1.33)

Definition 1.32. The forward stochastic differential:

a(t,m)dt+ A(t,m)dw(t)

at point m ∈M given by an Itô vector field (a,A) is the class of stochastic process
in the tangent space TmM that consists of the solution of all stochastic differential
equations of the form:

X(t+ s) =

∫ t+s

t

ã(τ,X(τ))dτ +

∫ t+s

t

Ã(τ,X(τ))dw(τ)

where ã(τ,X(τ)) is a vector field on TmM ; Ã(τ,X) : Rn → TmM is a linear
operator depending on the parameters τ ∈ R and X ∈ TmM and the following
conditions are satisfied: ã(τ,X) and Ā(τ,X) are Lipschitz continuous, are equal
to zero outside some neighborhood of the origin in TmM and such that for τ ≥ t,
the equalities ã(τ, 0) = a(t,m) and Ã(τ, 0) = A(t,m) hold.

Moreover, since the vector fields ã(τ,X) and Ã(τ,m) are Lipschitz continuous,
the process given by X(t + s) is a strong solution of the equation and it is well
defined for every Wiener Process in Rn.

Definition 1.33. A process ξ(t) is said to satisfy the Itô Equation in Belopolskaya-
Daletskii Form given by:

dξ(t) = expξ(t)(a(t, ξ(t))dt+ A(t, ξ(t))dw(t)) (1.34)

if for every point ξ(t) there exists a neighborhood of ξ(t) in M such that before
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ξ(t + s), s ≥ 0, leaves this neighborhood, ξ(t + s) almost surely coincides with a
process from the class expξ(t)(a(t, ξ(t))dt+ A(t, ξ(t))dw(t))

The term "strong" used in the Riemannian metric G(·, ·) described in the fol-
lowing theorem means that G(·, ·) determines that the metric ∥ · ∥H of the model
space H of the manifold M is defined on the tangent spaces to M .

Theorem 1.3. Let M be a Hilbert Manifold, ∇ be a connection on M , a(t,m)

be a vector field and A(t,m) be a field of linear operators A(t,m) : Rn → TmM ,
where m ∈M , t ∈ [0, T ] and Rn is the Euclidean space in which a Wiener process
w(t) takes values. Assume there exists a strong Riemannian metric G(·, ·) on M

compatible with ∇, with respect to which ∥a(t,m)∥H < C and ∥A(t,m)∥H < C,
where C > 0 is a constant, for all t,m. Then, for every m0 ∈ M there exists a
strong and strongly unique solution ξ(t) of equation

dξ (t) = expξ(t) (a (t, ξ (t)) dt+ A (t, ξ (t)) dw(t)) (1.35)

with initial condition ξ(0) = m0, well-defined for all t ∈ [0, T ].

Proof. Letm0 be a point belonging toM such that ξ(0) = m0. SinceM is a Hilbert
manifold, for each point we can take a chart locally given by: φ : U ⊂ H → φ(U) ⊂
M , where H is a Hilbert Space. Consider B(m0, r) as the open ball with center at
m0 and radius r given according to the metric induced by H , where r is a positive
real constant. From the chart, we have that φ(V ) → B(m0, r) ⊂ M , where V is
a restriction of U which is the preimage of the ball considered. Furthermore, the
chosen radius r is taken independently of the chart and the point.

By hypothesis, in each ball B(m0, r), we have that there is a positive real
constant C such that:

∥a(t,m)∥H ≤ C and ∥A(t,m)∥H ≤ C,

for all t ∈ [0, T ] and all m in the ball. This constant C does not depend on the
selected point and chart.
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Now, applying the classical theorem of existence and uniqueness of strong so-
lutions in Hilbert spaces, according to [1]. By this theorem, we obtain that there
exists a strong solution in the chart with center at m0 in the random interval [0, τ1]
where τ1 is the shortest time such that the trajectory of ξ(t, ω) hits the boundary
of the ball B(m0, r). That is,

τ1 = inf{t > 0 : ξ(t, ω) /∈ B(m0, r)}

and if ξ(t, ω) does not hit the boundary, then τ1 = ∞.
Similarly, define ξ(τ1, ω) as the initial point at time τ1 and consider a open ball

centered at that point and with radius r as we did before. Similarly, this ball is
the image of an open V2 of H with respect to a chart φ2 in which the same uniform
boundedness conditions hold and, at a certain time τ2, we have that ξ(t, ω) hits
the boundary of B(ξ(τ1), r). Applying the theorem of strong solutions in Hilbert
spaces, we are able to find a strong solution locally in the time interval [τ1, τ2].

We repeat the argument so that we cover the entire time interval [0, T ]. In this
way, we obtain a sequence of stopping times:

0 = τ0 < τ1 < τ2 < · · · ,

on which a unique strong solution is defined locally.
Using estimates, we calculate the probability of the process ξ(t, ω) hitting the

boundary of the respective ball for a small time t, based on the boundedness of the
SDE coefficients. It follows, then, that supn τn = ∞ which leads us to conclude
that when we construct a solution locally and patching these intervals together,
the accumulated time almost surely diverges, which guarantees a unique global
solution in the complete interval [0, T ].

Definition 1.34. The stochastic differential (a(m), Ã(m)) at m ∈ M given by
an Itô vector field (a,A) is the set of stochastic processes in TmM formed by the
solutions of all stochastic differential equations:

X(s) =

∫ s

0

ã(r,X(r))dr +

∫ s

0

Ã(r,X(r))dwr,
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where ã(s,X) is a vector field on TmM and Ã(s,X) : Rn → TmM is a linear
operator depending on s ∈ R and X ∈ TmM . We assume ã(s,X) and Ã(s,X) to
be Lipschitz, vanish outside a neighborhood of the origin in TmM , and such that
ã(s, 0) = a(m) and Ã(s, 0) = A(m).

Definition 1.35. Let exp be the exponential map of a fixed connection ∇ on a
manifold M . A process ξ(t) is said to satisfy the equation:

dξ(t) = expξ(t)(a(ξ(t)),A(ξ(t))) (1.36)

if for every t there exists a neighborhood of ξ(t) such that the process ξ(t + s),
s ≥ 0, a.s. coincides with a process from the set expξ(t)(a(ξ(t)),A(ξ(t))), as long
as ξ(t+ s) belongs to the neighborhood.

Remark 1.5. If f : M → N is a C2-map and exp on N is such that f(expX) =

exp(Tf ◦X) for all X ∈ TmM , then we have:

df(ξ(t)) = expf(ξ(t))(Tf ◦ a(f(ξ(t))), T f ◦ A(ξ(t)))

for any solution ξ(t) of (1.36).

Next, we will show three important results that will be used in future demon-
strations, especially in chapter 4.

Lemma 1.3 (Grönwall’s Inequality (Differential)). Let η(s) be a nonnegative, ab-
solutely continuous function on [0, T ], which satisfies for almost everywhere the
differential inequality:

η′(t) ≤ ϕ(t)η(t) + ψ(t) (1.37)

where ϕ(t) and ψ(t) are nonnegative, integrable functions on [0, T ]. Then,

η(t) ≤ e
∫ t
0 ϕ(s)ds

[
η(0) +

∫ t

0

ψ(s)ds

]

30



1. Riemannian Geometry and Stochastic Analysis

for all 0 ≤ t ≤ T . In particular, if η′ ≤ ϕη on [0, T ] and η(0) = 0, then: η = 0 on
[0, T ].

Proof. By inequality (1.37), we obtain:

d

ds

(
η(s)η−

∫ s
0 ϕ(r)dr

)
= e−

∫ s
0 ϕ(r)dr(η′(s)− ϕ(s)η(s))

⇒ d

ds

(
η(s)η−

∫ s
0 ϕ(r)dr

)
≤ e−

∫ s
0 ϕ(r)drψ(s)

for almost everywhere 0 ≤ s ≤ T . That way, for each 0 ≤ t ≤ T , we get:

η(t)e−
∫ t
0 ϕ(r)dr ≤ η(0) +

∫ s

0

e−
∫ s
0 ϕ(r)drψ(s)ds ≤ η(0) +

∫ t

0

ψ(s)ds

And this inequality implies:

η(t) ≤ e
∫ t
0 ϕ(s)ds

[
η(0) +

∫ t

0

ψ(s)ds

]
.

Lemma 1.4 (Grönwall’s Inequality (Integral)). Let ξ(t) be a nonnegative, summable
function on [0, T ] which satisfies for almost everywhere (a.e.) time t the integral
inequality:

ξ(t) ≤ C1

∫ t

0

ξ(s)ds+ C2 (1.38)

for constants C1, C2 ≥ 0. Then,

ξ(t) ≤ C2

(
1 + C1te

C1t
)
. (1.39)

for a.e. 0 ≤ t ≤ T .
In particular, if:

ξ(t) ≤ C1

∫ t

0

ξ(t)ds
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for a.e. 0 ≤ t ≤ T , then ξ(t) = 0 a.e.

Proof. Consider a function η(t) =
∫ t

0
ξ(s)ds, then η ≤ C1η+C2 almost everywhere

in [0, T ]. According to the differential version of Grönwall’s lemma above, we
obtain:

η(t) ≤ eC1t(η(0) + C2t) = C2te
C1t.

In this way, the inequality given by (1.38) results in:

ξ(t) ≤ C1η(t) + C2

⇒ξ(t) ≤ C2(1 + C1te
C1t)

Theorem 1.4 (Blumenthal’s Zero-One Law). Let (Ω,B, (Bt)t≥0,P) be a filtered
probability space with a right-continuous filtration, and let Xt, with t ≥ 0, be a
stochastic process adapted to Bt such that X0 is P-almost surely constant. Define
the σ-subalgebra at zero as

B0+ =
⋂
t>0

Bt.

Then, for every event A ∈ B0+,

P(A) ∈ {0, 1}.

Proof. The proof can be found in Rogers and Williams [15].
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Chapter 2

Groups of Diffeomorphisms

In this chapter, we will address the most essential and important concepts
about Groups of Diffeomorphisms, in order to prepare for the next section that
will focus on stochastic processes that occur in these environments.

But first, we will review Sobolev Spaces and applications involving the n-
dimensional Torus, since this will be the focus of our study later on.

2.1 Sobolev Spaces

The study of Sobolev Spaces, in general, begins with the definition of Test
Functions, which are functions defined on some specified domain and that are C∞-
differentiable and that are compactly contained in the domain. However, since our
study will be restricted to Sobolev applications on the flat n−torus, due to the
property of the flat n-torus being a closed manifold, we have that all applications
defined on it have compact support, that is, it is unnecessary to make this condition
explicit, since all diffeomorphisms naturally already satisfy this condition.

Thus, we will consider the set of all maps u defined on the n-dimensional flat
torus which are C∞-differentiable. This set will be denoted as D(Tn).

For u ∈ C1(Tn), we can define ∂xi
u for each direction i, where i ∈ {1, ..., n},
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2. Groups of Diffeomorphisms

the integration by parts formula:∫
Tn

∂u

∂xi
(x)ϕ (x) dx = −

∫
Tn

u (x)
∂ϕ

∂xi
(x) dx ∀ϕ ∈ D(Tn).

The right-hand side of the above equality is well-defined, whenever the function
u ∈ L1 (Tn).

Definition 2.1 (Multi-index). An element α ∈ Zn
+, i.e., α is finite sequence of

nonnegative integers, is called a multi-index. For such an α = (α1, ..., αn), we
write:

Dα =
∂α1

∂xα1
1

...
∂αn

∂xαn
n

and |α| = α1 + α2 + ...+ αn.

Definition 2.2 (Weak Derivative). Let u a function such that u ∈ L1 (Tn). Then,
a function vα ∈ L1 (Tn) is called the α-th weak-derivative of u, written as vα =

Dαu, if: ∫
Tn

u(x)Dαϕ(x)dx = (−1)|α| ·
∫
Tn

vα(x)ϕ(x)dx

for all ϕ ∈ D(Tn).

Definition 2.3. Let p ∈ [1,∞), define:

W 1,p(Tn) = {u ∈ Lp(Tn); Du ∈ Lp(Tn)}

such that the weak derivative exists and Du is the weak derivative of u.

Throughout the work, we will restrict ourselves only to the case p = 2, in which
we have:

W 1,2(Tn) = {u ∈ L2(Tn); Du ∈ L2(Tn)}.

This set is a Hilbert Space and we will denote simply by: H1(Tn) = W 1,2(Tn).
The norm for this space will be introduced later.

Remark 2.1. Note that if the weak derivative exists, it is unique. To verify this,
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suppose that v1 and v2 are two weak derivative of u on Tn. Then, it is valid that:∫
Tn

(v1 − v2)ϕdx = 0

for all ϕ ∈ D(Tn).
So that v1 = v2 almost everywhere.

Definition 2.4. Let k ≥ 0 an integer and p = 2,

W k,2(Tn) = {u ∈ L1(Tn); Dαu exists and is in L2(Tn) for |α| ≤ k}

Definition 2.5. Let k ≥ 0 an integer and p = 2, for u ∈ W k,2(Tn), define:

||u||Wk,2(Tn) =

∑
|α|≤k

||Dαu||2L2(Tn)

 1
2

The function defined above is a norm, since it is a finite sum of L2-norms.

Definition 2.6. Let k ≥ 0 an integer and p = 2, we define: Hk(Tn) = W k,2(Tn).
This set Hk(Tn) is a Hilbert Space with inner-product give by:

⟨u, v⟩Hk(Tn) =
∑
|α|≤k

⟨Dαu,Dαv⟩L2(Tn).

Now, we will dedicate ourselves to reviewing the Fourier coefficients, a tool
that will be essential for the development of some proposed calculations in later
chapters.

Definition 2.7 (Fourier Coefficient on the n-Torus). For all u ∈ L2(Tn), the
Fourier coefficient F is defined by:

(Fu)(k) = ûk =
1

(2π)n
·
∫
Tn

e−ik·θu(x)dθ

where k · θ is a inner product between k ∈ Zn
+ and θ ∈ Tn.
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Equivalently, by Euler’s Formula e−ik·θ = cos(k · θ)− i sin(k · θ), we obtain:

(Fu)(k) = ûk =
1

(2π)n
·
∫
Tn

(cos(k · θ)− i sin(k · θ))u(θ)dθ

In the next definition, we will denote û := {ûk}, where k ∈ Zn
+ as above.

Definition 2.8. For all u ∈ L1(Tn), we define the inverse operator F∗ by:

(F∗û)(θ) =
∑
k∈Zn

ûke
ik·θ.

in other words,in this case, the inverse operator is the Fourier series.

Example 2.1. Let u ∈ C1(Tn) and j ∈ {1, 2, ..., n}, then:

F

[
∂u

∂θj

]
(k) =

1

(2π)n
·
∫
Tn

∂u

∂θj
e−ik·θdθ

= − 1

(2π)n
·
∫
Tn

u(θ)(−ikj)e−ik·θdθ

= ikjûk

Note that Tn is a closed manifold without boundary; in a alternative way, we
may identify Tn with the [0, 1]n with periodic boundary conditions, in other words,
with opposite faces identified.

Using the Fourier coefficients F and the Fourier series F∗, over the space L2(Tn)

we obtain the following applications and equivalences:

F : L2(Tn) → ℓ2 F∗ : ℓ2 → L2(Tn)

F∗F = Id on L2(Tn) FF∗ = Id on ℓ2.

Definition 2.9. The inner-products on L2(Tn) and ℓ2 are defined as follows. In
the L2(Tn) space is given by:

⟨u(θ), v(θ)⟩L2(Tn) =
1√
(2π)n

·
∫
Tn

u(θ)v(θ)dθ
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And in ℓ2 space is given by:

⟨û, v̂⟩ℓ2 =
∑
k∈Zn

ûkv̂k.

Moreover, it is holds that:

∥u∥L2(Tn) = ∥û∥ℓ2

Definition 2.10 (Sobolev Spaces Hα(Tn)). For all multi-index α ∈ R+, the
Sobolev Spaces Hα(Tn) are defined as follows.

Hα(Tn) = {u ∈ L2(Tn); ∥u∥Hα(Tn) <∞}

where the norm on Hα(Tn) is defined as:

∥u∥2Hα(Tn) =
∑
k∈Zn

|ûk|2(1 + |k|2α). (2.1)

The space Hα(Tn) equipped with norm ∥·∥Hα(Tn) mentioned above is a Hilbert
Space.

Definition 2.11. Let u ∈ L2(Tn) and α > 0. The fractional Laplacian on the
n-torus is given by:

(−∆)αu(θ) =
∑
k∈Zn

|k|2αûkeik·θ

2.2 Analysis on Groups of Diffeomorphisms

As seen in the previous section, throughout this master’s thesis we will be
working only with the flat n-torus Tn. With this in mind, in this section we will
present in more detail the structures we will work with that are directly related to
the flat n-torus and that will form the base environment for our study in chapters
3 and 4.
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Let Tn be the n-dimensional flat torus equipped with a Riemannian metric
⟨·, ·⟩ and its Levi-Civita connection ∇. The torus is an example of a compact
Riemannian manifold without boundaries, so the concepts presented in this section
are just a restriction of the more general results shown in Gliklikh [11] and [9].

2.2.1 The group and manifold structure

Definition 2.12 (Sobolev-Maps between Manifolds). We will denote by Hα =

Hα (Tn,Tn) the set of Sobolev Hα-mappings from Tn to Tn in which we have
α > n

2
+ 1.

As shown in Ebin and Marsden [7], for a multi-index α > n
2
+ k, the maps

from Hα are Ck-smooth. Furthermore, there is an infinite-dimensional manifold
structure on Hα (Tn,Tn).

Take the identical mapping e ∈ Hα(Tn,Tn) and consider an open neighbor-
hood Dα (Tn) that consists of all Hα-diffeomorphisms. Furthermore, consider also
its subset Dα

v (Tn) which consists of Hα-diffeomorphisms which preserve the Rie-
mannian volume.

Both these sets, Dα(Tn) and Dα
v (Tn) have the structures of smooth Hilbert

Manifolds as well as multiplicative group structures through composition opera-
tion.

To prove the group structure, the verification is quite simple. We will notice
that the three properties necessary for Dα(Tn) to be a group are satisfied. First,
note that the composition operation is closed in the set, that is, given two maps
f and g that belong to Dα(Tn), the composition f ◦ g is also a diffeomorphism of
class Ck, therefore, it belongs to Dα(Tn).

• Let f, g and h be maps that belong to Dα(Tn), note that:

(f ◦ g) ◦ h = f ◦ g ◦ h = f ◦ (g ◦ h)

and this composition is a Ck-diffeomorphism, so the first property is satisfied.

• The identity map, denoted by e, is a Ck-diffeomorphism defined as e : Tn 7→
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Tn, such that e(m) = m, for all m ∈ M , so it is clear that it belongs to
Dα(Tn).

• Finally, consider any map f : Tn 7→ Tn that belongs to Dα(Tn), since it
is a diffeomorphism, by definition, there exists a f−1 : Tn 7→ Tn such that
f ◦ f−1 = e. This concludes the proof.

The verification that Dα
v (Tn) is a group with respect to the composition opera-

tion is analogous, it suffices to observe that the composition of any two applications
f and g that preserve the volume results in an application f ◦g that also preserves
the volume. Furthermore, all volume-preserving Ck-diffeomorphisms belong to
Dα(Tn), so the inclusion of Dα

v (Tn) in Dα(Tn) as a subgroup is clear.
On the other hand, to verify whether these sets are Hilbert manifolds, we need

to verify the properties as described in definition 1.2 of this work. First, let us
consider again the most general space of functions, that is, let α > n

2
, consider the

Hα-Sobolev maps from Tn to Tn, which are well defined. This set of maps will be
denoted by Hα(Tn,Tn).

Consider a map g ∈ Hα(Tn,Tn) and the set given by:

TgH
α(Tn,Tn) = {f ∈ Hα(Tn, TTn) ;π ◦ f = g}

where π : TTn → Tn is the natural projection. Note that the set TgHα(Tn,Tn)

described above, equipped with the standard Sobolev inner product, is a Hilbert
Space. The map

ωexp : TgH
α(Tn,Tn) → Hα(Tn,Tn)

ωexpf = exp ◦f

is defined one-to-one over a sufficiently small neighborhood of the origin in the
set TgHα(Tn,Tn). Thus, this neighborhood of the origin and the map given by
ωexp can be taken as a chart at the point g ∈ Hα(Tn,Tn). Furthermore, given
two charts, it is easy to see that the transition map between these charts is a C∞-
differentiable map. Therefore, we obtain a structure of a C∞-differentiable Hilbert
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manifold over Hα(Tn,Tn) such that the set TgHα(Tn,Tn) is the tangent space to
Hα(Tn,Tn) at the point g.

Furthermore, note that given α > n
2
+1, the manifold Hα(Tn,Tn) contains the

subset Dα(Tn) which consists of all Hα-maps that are C1-diffeomorphisms. Since
Dα(Tn) is an open in Hα(Tn,Tn), then it is a Hilbert submanifold. Looking at
e as point of the manifold Dα (Tn), we can define the tangent space TeDα (Tn)

which is the space of all vector fields on Tn belonging to Hα. The tangent space
TeDα(Tn) is the space of all Hα-vector fields on Tn. Moreover, the whole tangent
bundle TDα(Tn) can be identified as the subset of Hα(Tn, TTn) which consists of
maps that, when composed with the natural projection π : TTn → Tn, result in
elements of Dα(Tn). So, in particular, we have:

TgDα(Tn) = {f ∈ Hα(Tn, TTn) | π ◦ f = g} = {X ◦ g | X ∈ TeDα(Tn)}

Given the maps g and h in Hα, note that the composition h ◦ g may not
belong to Hα, however, since α > n

2
+ 1 and g is a local diffeomorphism, then

the composition h ◦ g belongs to Hα, since that h is a Hα-map. The proof that
Dα

v (Tn) is a Hilbert manifold is analogous. Moreover, the TeDα
v (Tn) is the space

of all divergent-free vector fields on Tn belonging to Hα.
Furthermore, it will be important to describe two new spaces that will be of

great use in the future which are related to the manifold Dα
v (Tn). The tangent

space TgDα
v (Tn), where g ∈ Dα

v (Tn) and that consists of the compositions of the
fields from tangent space TeDα

v (Tn) with g. In symbols, that is:

TgDα
v (Tn) = {X ◦ g | X ∈ TeDα

v (Tn)}.

This means that given a vector field Y ∈ TgDα
v (Tn), Y : Tn → TTn is a map

such that πY (m) = g(m), where π : TTn → Tn is the natural projection. On the
other hand, for X ∈ TeDα

v (Tn), we have that πX(m) = m.

Lemma 2.1 (α-lemma). Let Tn be the flat n-torus, g ∈ Dα(Tn) and h ∈ Hα(Tn,Tn),
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in which h is a function as described above. Consider the map given by:

αg : H
α (Tn,Tn) → Hα (Tn,Tn)

αg(f) = f ◦ g.

The map αg is C∞-smooth and its derivative is also of the form αg.

Lemma 2.2 (ω-lemma). Let Tn be the flat n-torus, let r ∈ Hα(Tn,Tn) and h ∈
Hα(Tn,Tn), in which h is a function as described above. Consider the map given
by:

ωh : Dα (Tn) → Hα (Tn,Tn)

ωh(r) = h ◦ r.

The map ωh is continuous. If h ∈ Hα+k, ωh : Dα(Tn) → Hα(Tn,Tn) is a Ck-
mapping with derivative of the form ωTh

. In particular, if h ∈ C∞, ωh is C∞-
smooth.

Proof. The proofs of the ω-lemma and the α-lemma can be found in Ebin and
Marsden [7].

The right translation defined as:

Rg : Dα
v (Tn) → Dα

v (Tn)

Rg ◦ η = η ◦ g

where η, f ∈ Dα
v (Tn) are C∞-smooth and, in this way, can be considered an right-

invariant vector fields on Dα
v (Tn). The tangent map TRg restricted to the tangent

space TηDα(Tn) is defined by the formula:

TRg : TηDα(Tn) → Tη◦gDα(Tn),

X 7→ X ◦ g.

for X ∈ TDα
v (Tn). For the Hilbert manifold Dα(Tn), the properties are analogous.
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Remark 2.2. Note that we will consider the map: TRg given above for all η and
g ∈ Dα

v (Tn) as a right action of Dα
v (Tn) on TDα

v (Tn).

Theorem 2.1. Let X ∈ TeDα(Tn) be a vector field on Tn and X̄ be the corre-
sponding right-invariant vector field on Dα(Tn) denoted by X̄g = X ◦g. The vector
field X̄ on Dα(Tn) is Ck-smooth if and only if the vector field X on Tn belongs to
the class Hα+k. In particular, X̄ is C∞ smooth if and only if X is C∞-smooth.

Proof. Consider the vector field X ∈ Hα+k(Tn) and its respective right-invariant
vector field given by X̄g = X ◦ g. Since the composition operation ◦ preserves
differentiability, let h = X and g ∈ Hα(Tn), by the ω-lemma we have that:

ωX(g) = X ◦ g

is a function of class Ck if and only if X belongs to Hα+k(Tn).
Furthermore, let X be a C∞-smooth vector field and g ∈ Hα(Tn) as before,

again by the ω-lemma, the result follows.

The same property presented by the previous theorem is satisfied for the case
of the Hilbert Manifold Dα

v (Tn), it suffices to remember that every diffeomorphism
that preserves volume belongs to Dα(Tn) and the verification is immediate.

2.2.2 Metrics on Group of Diffeomorphisms

Next, we will define some essential concepts for various theorems and results
which will be addressed throughout the work, respectively: the Riemannian Metric
(I), the Levi-Civita Connection with connector (II) and the exponential mapping
exp (III) are defined as follow:

I) Let g ∈ Dα(Tn) and the tangent space TgDα(Tn). We will define an inner
product (·, ·) in TgDα(Tn) by:

(X, Y )g =

∫
Tn

⟨X(θ), Y (θ)⟩g(θ)v(dθ) (2.2)

where X, Y ∈ TgDα(Tn) and v is the Riemannian volume form.
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II) Let K : TTTn → TTn the connector of Levi-Civita Connection ∇ on Tn, we
will define the mapping: K̄ : TTDα(Tn) → TDα(Tn) by the equality:

K̄(Y ) = K ◦ Y. (2.3)

III) Let TeDα(Tn) the tangent space of Dα(Tn) in the point e ∈ Dα, by general
properties of smooth exponential mapping, we can define the exponential
mapping:

exp : U ⊂ TeDα(Tn) → V ⊂ Dα(Tn)

which sends a neighborhood U of zero vector field of TeDα(Tn) onto a neigh-
borhood V of e in Dα(Tn).

The metric described above in equation (2.2) is called a weak metric.

Theorem 2.2. The connector K̄ is invariant with respect to right translations on
the manifold Dα(Tn).

Proof. First, K̄ is the connector of a connection ∇̄. Moreover, is the Levi-Civita
connection of the metric (2.2) (for more details, see Gliklikh [11]).

Consider vector fields X and Y on the manifold Dα(Tn) and a vector field X(t)

along a certain smooth curve c(t) in Dα(Tn). For these vector fields, define the
covariant derivatives ∇̄XY and D̄

dt
X(t), respectively:

∇̄XY = K̄ ◦ TY (X) = K ◦ TY (X)

and

D̄

dt
X(t) = K̄ ◦ d

dt
X(t) = K ◦ d

dt
X(t) (2.4)

On the space Dα(Tn) with connection ∇̄, a vector field X along a curve c(t) is
parallel if D̄

dt
X(t) = 0, according Definition 1.12. The curve c(t) is a geodesic if it

satisfies the equation D̄
dt

(
d
dt
c(t)
)
= 0.
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The geodesic spray Z̄ of the connection ∇̄ is give by:

Z̄(X) = Z ◦X (2.5)

for X ∈ TDα(Tn), where Z is the geodesic spray of the connection ∇ on Tn.
Since the geodesic spray Z is C∞-smooth, according the ω-lemma (2.2), it

follows that Z̄ is C∞-smooth on TDα(Tn). By the equality given by (2.5), it is
clear that Z̄ is Dα(Tn)-right invariant.

Remark 2.3. In particular, we will consider the exponential map exp : TDα(Tn) →
Dα(Tn) as corresponding to Z̄.

Theorem 2.3. The geodesic spray S of the Levi-Civita connection ∇̃ of the metric
(2.2) on Dα

v (Tn) is a C∞-smooth right-invariant vector field on TDα
v (Tn) of the

form:
S = T P̄ (Z̄)

where Z is the geodesic spray according (2.5) on TDα(Tn).

Proof. We have that P̄ and Z̄ are Dα
v (Tn)-right-invariant and C∞-smooth on the

space TDα
v (Tn), then we have that S = T P̄ (Z̄) is also C∞-smooth and Dα

v (Tn)-
right-invariant.

Now, we will denote by ẽxp the corresponding exponential map of a neighbor-
hood of the 0 in TDα

v (Tn) onto Dα
v (Tn). The constructed geodesic spray defines

the flow ϕt : Dα
v (Tn) → Dα

v (Tn) is smooth and right-invariant, and since the ex-
ponential map is a particular case defined for a fixed time t = 0 of this flow, it is
also smooth and right-invariant.

Theorem 2.4 (Neighborhood of unit). There exists a neighborhood W of the
unite e in Dα

v (Tn) that is covered by the image of TeDα
v (Tn) under the exponential

mapping of the Levi-Civita connection of Dα
v (Tn).

Proof. According to the previous theorem 2.3, the geodesic spray S = T P̄ (Z̄) is a
C∞-smooth right-invariant vector field on TDα

v (Tn) and furthermore the geodesic
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spray defines the exponential map given by:

ẽxp : U0 ⊂ TDα
v (Tn) → Dα

v (Tn),

which is C∞-smooth and right-invariant.
In particular, consider the exponential map restriction given below:

ẽxp : U ⊂ TeDα
v (Tn) → Dα

v (Tn),

where U is a neighborhood of the zero vector in the manifold TeDα
v (Tn).

Since the map ẽxp is a smooth local diffeomorphism at 0, by the inverse function
theorem, then there exists a neighborhood U of zero in which ẽxpU will be a
diffeomorphism onto its image, which we will denote by W .

Therefore, since W = ẽxpU is an open neighborhood of the identity e ∈
Dα

v (Tn), then the theorem is proved.

Definition 2.13. [Strong Riemannian Metric] Let Tn be the n-dimensional flat
torus, g ∈ Dα(Tn), Xg and Yg ∈ TgDα(Tn), which Xg = X ◦ g and Yg = Y ◦ g such
that X, Y ∈ TeDα(Tn). Introduce on the tangent space TgDα(Tn) a strong inner
product (·, ·)g by the formula:

(Xg, Yg)
(α)
g =

∫
Tn

⟨Xg(θ), Yg(θ)⟩g(θ)dθ +
∫
Tn

⟨(−∆)
α
2Xg(θ), (−∆)

α
2 Yg(θ)⟩g(θ)dθ

(2.6)

or

(Xg, Yg)
(α)
g =

∫
Tn

⟨Xg(θ), (1 + (−∆)α))Yg(θ)⟩g(θ)dθ

where (−∆)α is the Laplacian presented in Definition 2.11.

Furthermore, we shall also use another strong right-invariant Riemannian Met-
ric, given by the formula:

(Xg, Yg)
(α)
g = (TR−1

g Xg, TR
−1
g Yg)

(α)
e . (2.7)
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2.3 Stochastic Analysis on Groups of Diffeomor-

phisms

In this section, our goal is to present results that guarantee the existence and
uniqueness of SDE solutions specifically associated with the group of diffeomor-
phisms of the flat n−torus. It is worth mentioning that although the theorems
presented here are for this case, it is possible to find more general results in the
literature, as we can see in Gliklikh [11], in chapter 10. For this, it would be
necessary to consider the most general version of the strong metric, introduced
in definition 2.13 which would be understood in any finite-dimensional manifold
M . However, it would also be necessary to extend the concepts related to Sobolev
presented earlier in this work, which can be found in Shkoller [16].

Consider the flat n-dimensional torus Tn, as described before, and note that
we can also represent it as Tn = Rn/Zn and from this we obtain that the metric
on the manifold Tn can be induced through the Euclidean space Rn as described
in Example 1.5. In this case, Tn = Rn/Zn means that in Rn the points whose
coordinates differ by an integer in each entry are considered equivalent and are
therefore identified.

Furthermore, there is a canonical identification of the tangent bundle TTn with
Tn × Rn, which is also inherited from TRn = Rn × Rn.

Definition 2.14 (Maps on the n-Torus). Consider the n-dimensional flat-torus
as presented previously, define the operators:

(I) B : TTn −→ Rn, the projection onto the second factor in Tn × Rn.

(II) A(m) : Rn −→ TmTn, the inverse to B sending Rn onto the tangent space
TmTn of Tn at m ∈ Tn.

(III) Qg : A(g(m)) ◦ B, the linear isomorphism Qg : TmTn −→ Tg(m)Tn, where
g ∈ Dα and m ∈ Tn.

Consider a positive constant σ, a(t,m) an Hα-vector field over Tn, where t ∈
[0, T ] and α > s is an integer. Let us denote by ā(t, g) the right-invariant vector
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field over Dα(Tn) generated by a(t,m) as a vector belonging to the tangent space
TeDα(Tn).

Furthermore, consider a map A described according to the definition 2.14 above.
For any vector x ∈ Rn, the vector field A(x) on Tn is constant, which means that
its coordinates with respect to the basis given by ∂

∂q1
, ..., ∂

∂qn
are constant. In

particular, this implies that A(x) is C∞-smooth and divergence-free.
Let Ā : Dα(Tn) × Rn → TDα(Tn) where Ae : Rn → TeDα

v (Tn) is given by the
expression Ae(x) = A(x) and for g ∈ Dα(Tn), we have that the mapping Ag : Rn →
TgDα(Tn) is constructed from A by the right shift Āg(x) : TRgĀe(x) = (A ◦ g)(x).
Since the map A is C∞-smooth, it follows by Theorem 2.1 that the map Ā is also
C∞-smooth on x ∈ Rn and g ∈ Dα(Tn). That is, for all x ∈ Rn, the right-invariant
vector field A(x) over Dα(Tn) is C∞-smooth.

The pair given by (ā, Ā) is an Itô vector field on Dα(Tn). Consider a Wiener
process w(t) in Rn given on a probability space (Ω,F ,P).

Theorem 2.5. For every g ∈ Dα (Tn) there exists a unique strong solution ξ̄g (t)

of equation:
dξ̄(t) = expξ̄(t)

(
ā(t, ξ̄(t))dt+ σĀ(t, ξ̄(t))dw(t)

)
(2.8)

with initial condition ξ̄g(0) = g which is well-defined for all t ∈ [0, T ], where T > 0

is an arbitrary a priori specified real number.

Proof. Using the exponential map exp, consider the normal chart in a neighbor-
hood of the point e on the manifold Dα(Tn) and note that at each point of this
chart, the local connector (2.3) equals zero, this is because the connection is gen-
erated by the Euclidean connection on the n-Torus Tn.

Thus, take a strong right-invariant Riemannian Metric on Dα(Tn). We say,
generated by (2.7).

Since, the normal chart is a open set, there exists a positive real number r such
that the ball with radius r (with respect to the strong Riemannian distance on
Dα(Tn)) and with center at e, denoted by B[e, r], is contained in this neighborhood.

Then, in a neighborhood of each point g ∈ Dα(Tn), applying the right shift
Rg to the ball B[e, r], we determine an chart. So, in this way, we obtain an atlas
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on Dα(Tn) that is uniformly Riemannian for the strong metric, and in each chart
of this atlas considered, the local connectors for connection 2.3 equal zero, this
occurs because the connection is right-invariant according to Theorem 2.2.

Therefore, the right-invariant Itô vector field (ā, σĀ) is uniformly bounded with
respect to the strong Riemannian metric, so, the Theorem 1.3 can be applied to
equation.

dξ̄(t) = expξ̄(t)
(
ā
(
t, ξ̄(t)

)
dt+ σĀ(t, ξ̄(t))dw(t)

)
.

Remark 2.4. Later, in chapters 3 and 4, it will be common to use superscript
indices such as: X t,e(s) to highlight that at time s = t, the initial condition is
X(t) = e. This detail will be very useful when we work with different initial
conditions caused by the right shift and it will make it common for notations such
as X t,ξ and X t,e to be used simultaneously.

Now, denote ξ̄e(t) by ξ(t) only for simplicity. Since the equation

dξ̄(t) = expξ̄(t)
(
ā
(
t, ξ̄(t)

)
dt+ σĀ(t, ξ̄(t))dw(t)

)
is right-invariant, it follows that: ξ̄g(t) = ξ(t) ◦ g. So, ξ(t) is the general solution
of the stochastic differential equation on Tn described below:

dξ(t) = expξ(t) (a(t, ξ(t))dt+ σAdw(t)) (2.9)

In other words, for every point m in the n-dimensional torus Tn, the stochastic
process ξm(t) is a solution of above equation 2.9, with initial condition m at time
t = 0 on Tn.

Remark 2.5. In the equations previously described in (2.8) and (2.9), we used
the general notation of Ito’s Equations in Belopolskaya-Daletskii form. But, since
that the connection of the manifold Dα(Tn) is generated by the flat connection on
the torus, the corresponding exponential map is like that on a linear space. In this
way, we can employ the same notation that is used for Itô’s Equations in linear
spaces.
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Theorem 2.6. Let σ > 0 be a real constant:

(I) For every ω ∈ Ω and t ∈ [0, T ] the vector field A (σw(t, ω)) on Tn, where w (t)

is a Wiener process in Rn, is divergence-free, i.e. A (σw (t)) is a stochastic
process in TeDα

v (Tn).

(II) For every ω ∈ Ω and t ∈ [0, T ], the mapping:

W (σ)
ω (t) = expeA (σw(t, ω)) : Tn → Tn

is a volume-preserving Hα-diffeomorphism of Tn, i.e., W σ (t) is a stochastic
process in Dα

v (Tn).

Proof. Regarding (I), let ω ∈ Ω and t ∈ [0, T ], so the vector field A(σw(t, ω)) on
Tn has constant coordinates with respect to the basis ∂

∂q1
, ..., ∂

∂qn
and so it is C∞

and divergence-free.
In respect to (II), the mapping W σ

ω (t) sends m ∈ Tn to expm A(w(t, ω)), where
expm : TmTn → Tn is the exponential mapping of the flat torus n-dimensional Tn.
That means that all points of the manifold Tn under the mapping W (σ)

ω (t) perform
the same shift as that generated by the shift of the space Rn by σw(t, ω). The
application W (σ)

ω (t) is clearly volume-preserving.

Theorem 2.7. For every g ∈ Dα
v (Tn) there exists a unique strong solution ξ̃0,g(t)

of
dξ̃(t) = ẽxpξ̃(t)

(
ā(t, ξ̃(t))dt+ σĀ(t, ξ̃(t))dw(t)

)
(2.10)

with initial condition ξ̃0,g(0) = g which is well-defined for all t ∈ [0, l].

Proof. We begin introducing on Dα
v (Tn) the strong Riemannian Metric, according

to formula (2.6), and remember that this metric is right-invariant. On the manifold
Dα

v (Tn), consider a neighborhood U around the point e, according to Theorem 2.4,
this neighborhood is covered by the exponential mapping exp0,e, where exp0 denote
the exponential map of a neighborhood of the 0 in TDα

v (Tn) onto Dα
v (Tn).

Consider the normal chart at e in U . The strong norm of the local connector,
denoted by Γη(·, ·), being a quadratic operator, is a continuous function of η ∈ U

in this chart.
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In this way, at e, we obtain Γe(·, ·) = 0. Hence, there exists an open V ⊂ U

such that at each point, the norm (above-mentioned) is less than a priori given
positive constant C. Since V is an open, so it contains the ball centered at e and
radius r > 0 with respect to the strong Riemannian distance on Dα

v (Tn) generated
by the strong metric described in (2.6), which will be denoted by B[e, r].

Now, we will define a chart at a neighborhood of each point g ∈ Dα
v (Tn) through

the right shift of the normal chart U at g. In this way, the atlas constructed is
uniformly Riemannian with respect to strong metric (2.6).

Moreover, consider the balls B[g, r], in other words, the balls with center in
each point g ∈ Dα

v (Tn) and radius r with respect to the Riemannian metric above-
mentioned. On this balls in the charts of the atlas constructed, the norm of
the local connector Γ of Levi-Civita Connection of the metric (2.2) on Dα

v (Tn)

is bounded by constant C, since the connection is right-invariant, according the
Theorem 2.2.

So, the right-invariant Itô Vector field (ā, Ā) on Dα
v (Tn) is bounded with respect

to the metric (2.6). Thus, the equation 2.10 satisfies the conditions of Theorem
1.3 and therefore it has a strong solution.
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Chapter 3

Navier-Stokes Equations and a

system of FBSDE

3.1 Navier-Stokes Equations

We will begin this chapter by presenting the Navier-Stokes equations. Our main
results in this work will be developed involving the solutions of these equations and
their relations with the solutions of a Forward Backward Stochastic Differential
Equations system described later.

The classical Navier-Stokes Equations are described as:

∂

∂t
u(t, x) = −(u,∇)u(t, x) + ν∆u(t, x)−∇p(t, x),

div u = 0,

u(0, x) = −u0(x),

(3.1)

where u0(x) is a divergence-free smooth vector field.
Fixing a time interval [0, T ], we can rewrite equations (3.1) with respect to the

function
ũ(t, x) = −u(T − t, x).
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So, the problem (3.1) is equivalent to the following:

∂

∂t
ũ(t, x) = −(ũ,∇)ũ(t, x)− ν∆ũ(t, x)−∇p̃(t, x),

div ũ = 0,

ũ(T, x) = u0(x),

(3.2)

where p̃(t, x) = p(T − t, x).
The above system (3.2) will be referred to as the backward Navier-Stokes Equa-

tions.
In what follows, for the development of our calculations, we will use the follow-

ing notation. Initially, we established the set given by: Z2
+ = {(k1, k2) ∈ Z2 : k1 >

0 or k1 = 0, k2 > 0}, that is, Z2
+ will be the set of ordered integers pairs k1 and k2

such that one of them is necessarily positive and k1 is strictly non-negative.
Moreover, let k = (k1, k2) ∈ Z2

+ an arbitrary element, we will denote its norm
as |k| =

√
k21 + k22. And through it, we can define a new vector k̄ that will be

orthogonal to k denoted by k̄ = (k2,−k1). Indeed, we see that k and k̄ are
orthogonal to each other, since: ⟨k, k̄⟩ = 0.

Furthermore, the element θ ∈ T2 will correspond to the pair (θ1, θ2) where
θi ∈ S1, i ∈ {1, 2}, since the flat 2-torus can be interpreted as T2 = S1 × S1 as
seen before. Thus, using the notation established above, the product k · θ will
correspond to: k · θ = k1θ1 + k2θ2.

Finally, define the following gradient vector:

∇ =

(
∂

∂θ1
,
∂

∂θ2

)
from which we obtain:

(k̄,∇) = k2
∂

∂θ1
− k1

∂

∂θ2
.

Using the Fourier coefficients in the T2, we will define the vectors described
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below:

Āk(θ) =
1

|k|α+1
cos(k · θ)

[
k2

−k1

]
,

B̄k(θ) =
1

|k|α+1
sin(k · θ)

[
k2

−k1

]
,

Ā0 =

[
1

0

]
, and B̄0 =

[
0

1

]
.

Let {Ak(g), Bk(g)} with k ∈ Z2
+ ∪ {0}, be the right-invariant vector fields on

Dα(T2) generated by {Āk, B̄k}k∈Z2
+∪{0}, i.e.

Ak(g) = Āk ◦ g, Bk(g) = B̄k ◦ g, g ∈ Dα(T2),

A0 = Ā0, B0 = B̄0.

According to the ω-lemma 2.2, Ak and Bk are C∞-smooth vector fields on
Dα(T2).

Now, let us define some lemmas that will be important for the discussions
presented throughout this chapter. These lemmas describe, in general, the con-
struction of the bases of the tangent spaces TeDα

v (T2) and TeDα(T2), and also
important properties about the right-invariant vector fields.

Lemma 3.1. The vectors Ak(g), Bk(g), k ∈ Z2
+ ∪ {0} in which g ∈ Dα

v (T2), form
an orthogonal basis of the tangent space TgDα

v (T2) with respect to both the weak
and the strong inner products in TgDα

v (T2). In particular, the vectors Āk, B̄k,
k ∈ Z2

+ ∪ {0}, form an orthogonal basis of the tangent space TeDα
v (T2). Moreover,

the weak (2.2) and the strong (2.6) norms of the basis vectors are bounded by the
same constant.

Proof. Proving this lemma for the strong norm given in (2.6) is sufficient, since
a strong norm induces the weak norm (2.2). Let us calculate the operator ∆α

applied to the vector Āk as follows. First, note that the normalized vectors k
|k| and

k̄
|k| form an orthonormal basis of R2, where k = (k1, k2) and k̄ = (k2,−k1) ∈ Z2

+ as
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described at the beginning of this chapter.
Also, note that:

(−∆)αĀk(θ) = (−∆)α
[

1

|k|α
cos(k · θ) k̄

|k|

]
=

1

|k|α
(−∆)α [cos(k · θ)] k̄

|k|

=
1

|k|α
(
|k|2α cos(k · θ)

) k̄

|k|

= |k|α cos(k · θ) k̄

|k|

= |k|2α
(

1

|k|α
cos(k · θ) k̄

|k|

)
= |k|2α Āk(θ).

With this last equality and the volume-preserving property of the map g ∈
Dα

v (T2). We have the following results for Ak and Bm, where k,m ∈ Z2
+:

⟨Bm(g), Ak(g)⟩α = ⟨B̄m, Āk⟩α
= (1 + |k|2α) ⟨B̄m, Āk⟩L2

= (1 + |k|2α) ·
∫
T2

B̄m(θ) · Āk(θ) dθ

= (1 + |k|2α) · 0

= 0.

Moreover, we obtain:

∥Ak(g)∥2α = ∥Āk∥2α
=
(
1 + |k|2α

)
∥Āk∥2L2

=
(
1 + |k|2α

)
·
∫
T2

∥Āk(θ)∥2L2 dθ

=
(
1 + |k|2α

)
·
∫
T2

1

|k|2α
cos2(k · θ) dθ
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=
(
1 + |k|2α

)
· 1

|k|2α
(2π2).

= 2π2
(
|k|−2α + 1

)
where ∥ · ∥α is the norm corresponding to the scalar product ⟨·, ·⟩α. Therefore,
2π2 ≤ ∥Ak(g)∥2α ≤ 4π2.

The same argumentation applies to the directional vectors described as B̄k,
from which we obtain the same for ∥Bk(g)∥2α.

As seen in the first chapter, the weak Riemannian metric has the Levi-Civita
connection, geodesics, the exponential map and the geodesic spray. Then, let ∇̄
and ∇̃ be the covariant derivatives of the Levi-Civita connection with respect to
the weak metric (2.2) on the Hilbert manifolds Dα(T2) and Dα

v (T2) respectively.
The following equality holds:

∇̃ = P ◦ ∇̄

where the map P : TDα(T2) → TDα
v (T2) is defined in the following way: on each

tangent space TgDα, we have that P = Pg where Pg = TRg ◦Pe ◦ TRg−1 , TRg and
TRg−1 are tangent maps, and Pe : TeDα(T2) → Dα

v (T2) is the defined projection
of the first space into the second.

Next, we will have two similar results, the first addresses the understanding of
right invariance in the manifold Dα(T2), while the second brings the same result
in Dα

v (T2).

Lemma 3.2. Let Û be the right-invariant vector field on Dα(T2) generated by an
Hα+1-vector field U on T2, and let V̂ be the right-invariant vector field on Dα(T2)

generated by an Hα-vector field V on T2. Then ∇̄V̂ Û is the right-invariant vector
field on Dα(T2) generated by the Hα-vector field ∇VU on T2.

Proof. The proof follows from the right-invariance of covariant derivatives on
Dα(T2) and Dα

v (T2), according to [9].

Lemma 3.3. Let Û be the right-invariant vector field on Dα
v (T2) generated by a

divergence-free Hα+1-vector field U on T2, and let V̂ be the right-invariant vector
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field on Dα(T2) generated by a divergence-free Hα-vector field V on T2. Then
∇̃V̂ Û is the right-invariant vector field on Dα

v (T2) generated by the divergence-free
Hα-vector field Pe∇VU on T2.

Proof. The proof of the theorem can be done in two ways. The first way consists in
observing Dα

v (T2) as a submanifold of Dα(T2), then the result of lemma 3.2 can be
simply restricted to divergent-free vectors due to embedding map: i : Dα

v (T2) →
Dα(T2). The second way would be to simply repeat the same argumentation of
the proof of 3.2 adapting it to the Hilbert manifold Dα

v (T2).

Remark 3.1. The basis {Āk, B̄k}k∈Z+
2 ∪{0} of TeDα

v (T2) can be extended to a basis
of the entire tangent space TeDα(T2).

Indeed, let us introduce the vectors:

Āk(θ) =
1

|k|α+1
cos(k · θ)

[
k1

k2

]
,

and

B̄k(θ) =
1

|k|α+1
sin(k · θ)

[
k1

k2

]

where k ∈ Z+
2 .

The system Āk, B̄k, in which k ∈ Z+
2 ∪ {0} and Āk B̄k in which k ∈ Z+

2 , form
an orthogonal basis of TeDα(T2). Further let Ak and Bk denote the right-invariant
vector fields on Dα(T2) generated by Āk and B̄k.

3.2 The FBSDE on group of diffeomorphisms

In this section, we will present the system of stochastic differential equations
that we will study in this work, which will be composed by a forward SDE and a
backward SDE. First, let us define the vector fields and Brownian motion that we
will consider in the system.
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3. Navier-Stokes Equations and a system of FBSDE

Let h : T2 → R2 be a divergence-free Hα+1-vector field on the manifold T2 and
let ĥ be the right-invariant vector field on Dα(T2) generated by h.

Moreover, consider the function given by V (s, ·) such that there exists a func-
tion p : [t, T ] → Hα+1(T2,R2) satisfying V (s, ·) = ∇p(s, ·) for all s in the time
interval [t, T ]. For each s ∈ [t, T ], V̂ (s, ·) denotes the right-invariant vector field
on Dα(T2) generated by V (s, ·) ∈ Hα(T2,R2).

Now, consider E as a Euclidean space spanned on an orthonormal, relative to
the scalar product in E, system of vectors: {eAk , eBk , eA0 , eB0 } which k ∈ Z2

+, |k| ≤ N

and the indices A and B are related to the directions of the vectors Ak and Bk

seen in the previous section.
Consider the mapping:

A(g) =
∑

k∈Z2
+∪{0},

|k|≤N

Ak(g)⊗ eAk +Bk(g)⊗ eBk , g ∈ Dα(T2),

that is, A(g) is a linear operator E → TgDα(T2) for each g ∈ Dα(T2). More
specifically, if a =

∑
k∈Z2

+∪{0},
|k|≤N

aAk e
A
k + aBk e

B
k ∈ E, then

A(g)a =
∑

k∈Z2
+∪{0},

|k|≤N

aAkAk(g) + aBk Bk(g).

Let (Ω,F ,P) be a probability space and Ws, where s ∈ [t, T ], be an E-valued
Brownian motion defined as:

Ws =
∑
k

(βA
k (s)e

A
k + βB

k (s)e
B
k )

in which {βA
k , β

B
k } is a sequence of independent Brownian motions with index

k ∈ Z2
+ ∪ {0} such that |k| ≤ N .

Finally, we shall consider the following system of forward and backward stochas-
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tic differential equations (FBSDE):
dZt,e(s) = Y t,e(s)ds+ ϵA(Zt,e(s))dWs,

dY t,e(s) = −V̂ (s, Zt,e(s))ds+X t,e(s)dWs,

Zt,e(t) = e; Y t,e(T ) = ĥ(Zt,e(T )).

(3.3)

The first line of the above system is the forward SDE (which will be denoted as
FSDE throughout the work) and it is an SDE on Dα

v (T2), where Dα
v (T2) is regarded

as a Hilbert manifold, as we saw before. Moreover, the stochastic integral in the
FSDE can be explicitly written as follows:∫ s

t

A(Zt,e(r))dWr =
∑
k

∫ s

t

Ak(Z
t,e(r))dβA

k (r) +Bk(Z
t,e(r))dβB

k (r). (3.4)

which k ∈ Z2
+ ∪ {0} and we have that |k| ≤ N .

Let us consider the backward SDE (BSDE) given as follows:

Y t,e(s) = ĥ(Zt,e(T )) +

∫ T

s

V̂ (r, Zt,e(r))dr −
∫ T

s

X t,e(r)dWr. (3.5)

Note that the processes

V̂ (s, Zt,e(s)) = V (s, ·) ◦ Zt,e(s)

and
ĥ(Zt,e(T )) = h ◦ Zt,e(T )

are Hα-maps as discussed in the 2.2.1 section, since they are compositions of Hα-
maps and Hα-vector fields

In this way, BSDE (3.5) will be interpreted as a BSDE in the Hilbert space
Hα(T2,R2). Let Fs = σ(Wr, r ∈ [0, s]) be a filtration, our objective is to find an Fs-
adapted triple of adapted processes (Zt,e(s), Y t,e(s), X t,e(s)) solving FBSDEs (3.3)
in the following sense: for each s ∈ [t, T ] and ω ∈ Ω, we have that Zt,e(s) ∈ Dα

v (T2)

and Y t,e(s) ∈ TZt,e(s)Dα
v (T2) and, moreover, Y t,e(s) is an Hα-vector field.
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We notice that the forward SDE is well-posed on both Hilbert manifolds Dα(T2)

and Dα
v (T2) and can be written in the Dalecky-Belopolskaya form:

dZt,e(s) = expZt,e(s){Y t,e(s)ds+ ϵA(Zt,e(s))dWs} or

dZt,e(s) = ẽxpZt,e(s){Y t,e(s)ds+ ϵA(Zt,e(s))dWs}

where exp and ẽxp are respectively the exponential maps of the Levi-Civita con-
nection of the weak Riemannian metrics (2.2) on Dα(T2) and Dα

v (T2); see Section
1.1.2. In what follows, we will show that using either of these representations leads
to the same solution of FBSDEs (3.3).

Finally, the stochastic process X t,e(s) takes values in the space of linear oper-
ators L(E,Hα(T2,R2)), that is,

X t,e(s) =
∑
k

XkA(s)⊗ eAk +XkB(s)⊗ eBk (3.6)

where the processesXkA(s) andXkB(s) take values inHα(T2,R2) and k ∈ Z2
+∪{0}

is such that |k| ≤ N .

3.3 Constructing a solution of the FBSDEs

In this section, our goal will be to study the Forward and the Backward equa-
tions separately and then establish results about the solution of the system of
Forward Backward Stochastic Differential Equations shown in (3.3)

3.3.1 The forward SDE

First, let us consider the backward Navier-Stokes Equations in R2 given as:

y(s, θ) = h(θ) +

∫ T

s

[
∇p(r, θ) +

(
y(r, θ),∇

)
y(r, θ) + ν∆y(r, θ)

]
dr,

div y(s, θ) = 0

(3.7)
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where s ∈ [t, T ], θ ∈ T2, while ∆ and ∇ are the Laplacian and the gradient in R2,
respectively.

Assumption 3.1. Let us assume that on the interval [t, T ] there exists a solu-
tion

(
y(s, ·), p(s, ·)

)
to the backward Navier-Stokes Equations (3.7) such that the

functions p : [t, T ] → Hα+1(T2,R2) and y : [t, T ] → Hα+1(T2,R2) are continuous.

Since y(s, ·) is divergence-free, then y(s, ·) ∈ TeDα
v (T2). According to Lemma

3.1 and Remark 3.1, we can represent the function y(s, ·) with respect to the basis
{Āk, B̄k} of tangent space TeDα

v (T2) using the coordinates: {Y t;kA(s), Y t;kB(s)},
where k ∈ Z2

+ ∪ {0}. In other words,

y(s, θ) =
∑
k

Y t;kA(s)Āk(θ) + Y t;kB(s)B̄k(θ).

in which k ∈ Z2
+ ∪ {0}.

Let Ŷ (s, ·) denote the right-invariant vector field on Dα
v (T2) generated by the

solution y(s, ·), that is, Ŷ (s, g) = y(s, ·) ◦ g. On each tangent space TgDα
v (T2),

the vector Ŷ (s, g) can be represented by a serie converging with respect to the
Hα-norm as follows:

Ŷ (s, g) =
∑
k

Y t;kA(s)Ak(g) + Y t;kB(s)Bk(g). (3.8)

with k ∈ Z2
+ ∪ {0}.

First, we will study the SDE

dZt,e(s) = Ŷ (s, Zt,e(s))ds+ ϵA(Zt,e(s))dWs. (3.9)

where ϵ > 0 is a constant.
Later, in Theorem 3.6, we will show that the solution Zt,e(s) to (3.9) and the

process Y t,e(s) = Ŷ (s, Zt,e(s)) are the first two processes in the triple (Zt,e(s),
Y t,e(s), X t,e(s)) that solves the system of FBSDEs (3.3).

Theorem 3.1. There exists a unique strong solution Zt,e(s), where s ∈ [t, T ], to
(3.9) on the Hilbert Manifold Dα

v (T2), with the initial condition Zt,e(t) = e.
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Proof. First, let us check whether the hypotheses of the Theorem 1.3 are satisfied.
Analyzing the stochastic integral using the representation given by (3.4), we obtain
two cases:

Case 1: If the sum (3.4) representing the stochastic integral
∫ s

t
A(Zt,e(s))dWs

contains only the terms A0(β
A
0 (s)−βA

0 (t)) and B0(β
B
0 (s)−βB

0 (t)), in other words,
informally speaking, if the Brownian motion runs only along the constant vectors
A0 and B0, then the result follows from Theorem 2.7.

Case 2: On the other hand, if sum (3.4) contains also terms with Ak and
Bk, where k ∈ Z2

+, or, informally, when the Brownian motion runs also along
non-constant vectors Ak and Bk, then the hypotheses of Theorem 1.3 require the
boundedness of vector Ak and Bk with respect to the strong norm. However, this
fact is assured by Lemma 3.1.

Therefore, all the hypotheses of Theorem 1.3 are satisfied. Therefore, exists
a unique strong solution Zt,e(s) to (3.9) with the initial condition Zt,e(t) = e.
Indeed, the proof of Theorem 2.7 shows that the Levi-Civita connection of the
Weak Riemannian Metric given as (2.2) on Dα

v (T2) is compatible in the sense of
Definition 1.13 with the Strong Riemannian metric (2.6). The map:

A(g) =
∑
k

Ak(g)⊗ eAk +Bk(g)⊗ eBk

where k ∈ Z2
+ ∪ {0} such that |k| ≤ N , is C∞-smooth since Ak and Bk are C∞-

smooth. Furthermore, according to Lemma 3.1, A(g) is bounded on Dα
v (T2).

Since y : [t, T ] → Hα+1(T2,R2) is continuous, then y(s) is also bounded with
respect to the Hα-norm. In this way, the generated right-invariant vector field
Ŷ (s, g) is bounded in s ∈ [t, T ] with respect to the strong metric (2.6), and it is at
least C1-smooth in g ∈ Dα

v (Tn). The boundedness of Ŷ (s) in g follows from the
volume-preserving property of g.

Now, we will present a similar result in which we verify the existence of a solu-
tion to the Forward Stochastic Differential Equation 3.9 on the manifold Dα(T2)

and we establish an equivalence between the solutions on Dα(T2) and Dα
v (T2).
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Theorem 3.2. There exists a unique strong solution Zt,e(s), where s ∈ [t, T ], to
FSDE (3.9) on the Hilbert manifold Dα(T2), with the initial condition Zt,e(t) = e.
This solution coincides with the solution to FSDE (3.9) on Dα

v (T2).

Proof. Consider the identical embedding defined as:

i : Dα
v (T) → Dα(T2).

According to Remark 1.5, the stochastic process i(Zt,e(s)) = Zt,e(s), where s ∈
[t, T ], is a solution to SDE (3.9) on the manifold Dα(T2), that is, with respect to the
exponential map exp. This follows from the fact that Ti : TDα

v (T2) → TDα(T2),
where T is the tangent map, is the identical embedding, and that i

(
exp(X)

)
=

ẽxp(Ti ◦X).
Therefore, the solution Zt,e(s) to FSDE (3.9) on Dα(T2) is unique. This state-

ment follows from the uniqueness theorem for FSDE (3.9) considered on the man-
ifold Dα(T2) equipped with the weak Riemannian metric.

Indeed, A(g) and Ŷ (s, g) are bounded with respect to the weak metric (2.2)
since the functions Āk, B̄k, where k ∈ Z2

+ ∪ {0}, are bounded on T2, and y(·, ·) is
bounded on [t, T ]×T2. Moreover, the vector field A(g) is C∞-smooth and Ŷ (s) is
at least C1-smooth on Dα(T2).

In the following result, we will show that there is a unique strong solution Zt,e(s)

for the FSDE if we consider that it takes values in a Hilbert space Hα(T2,R2) and,
furthermore, that this solution coincides with the solutions described in the two
previous theorems.

Theorem 3.3. There exists a unique strong solution Zt,e(s) to the Hα(T2,R2)-
valued FSDE (3.9) on time interval [t, T ], with the initial condition Zt,e(t) = e

where e is the identity of Dα
v (T2). This solution coincides with the solution to

FSDE (3.9) on manifolds Dα
v (T2) or Dα(T2).

Proof. The proof is slightly similar to the proof of the previous theorem. First,
according to Theorem 3.1, FSDE (3.9) on the manifold Dα

v (T2) has a unique strong
solution Zt,e(s) on [t, T ].
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Let us prove that the solution Zt,e(s) to (3.9) solves this FSDE considered as
an FSDE in Hilbert Space Hα(T2,R2). Consider the identical embedding given
by:

f : Dα
v (T2) → Hα(T2,R2),

f(g) 7→ g.

Applying Itô’s formula to the embedding f(·) and taking into account that:

Ak(g)f(g) = ∇Āk
θ ◦ g = Ak(g)

and that
Ak(g)Ak(g)f(g) = Ak(g)Ak(g) = 0,

we obtain that the solution Zt,e(s) to equation (3.9) on the manifold Dα
v (T2) solves

the Hα(T2,R2)-valued FSDE (3.9).
Furthermore, by the uniqueness theorem for SDEs in Hilbert spaces, the FSDE

(3.9) can have only one solution in the space L2(T2,R2).
This proves the uniqueness of its solution in Hα(T2,R2) as well. Finally, this

concludes that the solutions to (3.9) on Dα
v (T2), Dα(T2), and in Hα(T2,R2) coin-

cide.

Now, our objective is to find the representations of FSDE (3.9) in normal
coordinates on Dα(T2) and Dα

v (T2). But, first, it is necessary to prove the following
lemma.

Lemma 3.4. The following equality holds:∫ s

t

A(Zt,e(r)) ◦ dWr =

∫ s

t

A(Zt,e(r))dWr.

In other words, instead of the Itô stochastic integral in equation (3.9) we can write
the Stratonovich stochastic integral denoted by

∫ s

t
A(Zt,e(r)) ◦ dWr.
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Proof. We have the following equality:

A(Zt,e(r)) ◦ dWr = A(Zt,e(r))dWr +
∑
k

dAk(Z
t,e(r))dβA

k (r)

+
∑
k

dBk(Z
t,e(r))dβB

k (r)

in which k ∈ Z2
+ ∪ {0} is such that |k| ≤ N .

In this way, our objective is to prove that:

dAk(Z
t,e(r))dβA

k (r) = 0 and dBk(Z
t,e(r))dβB

k (r) = 0.

For simplicity of notation, we use the notation Ci for both of the vector fields
Ak and Bk and the notation C̄i for Āk and B̄k, k ∈ Z2

+ ∪ {0}.
We will also simplify the notation of Brownian motion and use: βi(s) for the

Brownian motions {βA
k (s), β

B
k (s)} where k ∈ Z2

+ ∪ {0} is such that |k| ≤ N .
So, we obtain:

d(C̄i ◦ Zt,e(s)) = Y t,e
(
s, (C̄i ◦ Zt,e(s)

)
dt+

∑
j

Cj(Z
t,e(s))

(
C̄i ◦ Zt,e(s)

)
◦ dβj(s)

Multiplying dβi(s) on both sides, we get:

d(C̄i ◦ Zt,e(s)) · dβi(s)

=Y t,e
(
s, (C̄i ◦ Zt,e(s)

)
dt · dβi(s) +

∑
j

Cj(Z
t,e(s))

(
C̄i ◦ Zt,e(s)

)
◦ dβj(s)d · βi(s)

=
∑
j

Cj(Z
t,e(s))

(
C̄i ◦ Zt,e(s)

)
dt

which vanish by the identity (k̄,∇) cos(k · θ) = (k̄,∇) sin(k · θ) = 0 or by differen-
tiating of constant vector fields.

Now, we will bring up a result in which we can represent the Forward Stochas-
tic Differential Equation (3.9) in local coordinates. For this, consider: Z̄t(s) =

{Zt;kA(s), Zt;kB(s)} which k ∈ Z2
+ ∪ {0} be the vector of local coordinates of the
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solution Zt,e(s) to (3.9) on Dα
v (T2), in other words, the vector of normal coordi-

nates provided by the exponential map ẽxp : TeDα
v (T2) → Dα

v (T2). Let Ue be the
canonical chart of the map ẽxp.

Theorem 3.4 (FSDE (3.9) in local coordinates). Consider the stopping time τ
given by:

τ = inf{s ∈ [t, T ] : Zt,e(s) /∈ Ue}. (3.10)

On the interval [t, τ ], the FSDE (3.9) has the following representation in local
coordinates:

Zt,kA(s ∧ τ) =
∫ s∧τ

t

Y t;kA(r)dr + δkϵ (β
A
k (s ∧ τ)− βA

k (t)),

Zt,kB(s ∧ τ) =
∫ s∧τ

t

Y t;kB(r)dr + δkϵ (β
B
k (s ∧ τ)− βB

k (t)).

(3.11)

where δk = 1 if |k| ≤ N , and δk = 0 if |k| > N .

Proof. Let ḡ = {gkA, gkB} where k ∈ Z2
+ ∪ {0} be local coordinates in the neigh-

borhood Ue provided by the map ẽxp : TeDα
v (T2) → Dα

v (T2).
Let f ∈ C∞(Dα

v (T2)), and let f̃ : TeDα
v (T2) → R be such that f̃ = f ◦ ẽxp.

Since ẽxp is a C∞-map (see [7]), then f̃ ∈ C∞(U0), where U0 = ẽxp−1Ue.
Note that ∂

∂gkA
f̃(ḡ) = Ak(g)f(g) and ∂

∂gkB
f̃(ḡ) = Bk(g)f(g). Applying Itô’s

formula, we obtain:

f(Zt,e(s ∧ τ))− f(e)

=f̃(Z̄t,0(s ∧ τ))− f̃(0)

=
∑
k

∫ s∧τ

t

∂f̃

∂gkA
(Z̄t(r))Y t;kA(r)dr + ϵ

∑
k

∫ s∧τ

t

δk
∂f̃

∂gkA
(Z̄t(r))Y t;kA(r) ◦ dβA

k (r)

+
∑
k

∫ s∧τ

t

∂f̃

∂gkB
(Z̄t(r))Y t;kB(r)dr + ϵ

∑
k

∫ s∧τ

t

δk
∂f̃

∂gkB
(Z̄t(r))Y t;kB(r) ◦ dβB

k (r)

=
∑
k

∫ s∧τ

t

(
Y t;kA(r)Ak(Z

t,e(r))f(Zt,e(r)) + Y t;kB(r)Bk(Z
t,e(r)

)
f(Zt,e(r))

)
dr
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+ ϵ
∑
k

∫ s∧τ

t

δk
(
Ak(Z

t,e(r))f(Zt,e(r)) ◦ dβA
k (r) +Bk(Z

t,e(r))f(Zt,e(r)) ◦ dβB
k (r)

)
.

where k ∈ Z2
+ ∪ {0}.

Using the representation of the process Y t,e(s) in the coordinates of the space
Dα

v (T2) given by 3.8 and the representation of the stochastic integral as a summa-
tion given by 3.4, we obtain:

f(Zt,e(s ∧ τ))− f(e)

=

∫ s∧τ

t

Ŷ (r, Zt,e(r))f(Zt,e(r))dr + ϵ

∫ s∧τ

t

A(Zt,e(r))f(Zt,e(r)) ◦ dWr.

This shows that the process given by:

exp

{∑
k

Zt,kA(s ∧ τ)Āk + Zt,kB(s ∧ τ)B̄k

}

where k ∈ Z2
+ ∪ {0} solves the Forward SDE (3.9) on the time interval [t, τ ].

Now, we will show a result similar to this theorem, however, instead of working
with the group of volume-preserving diffeomorphisms Dα

v (T2), we will work with
the group of diffeomorphisms Dα(T2). In this way, consider

ˇ̄Zt(s) = {Žt;kA(s), Žt;kB(s), Žt;kA(s), Žt;kB(s), Žt;0A(s), Žt;0B(s)}

where k ∈ Z2
+ be the vector of local coordinates of the solution Zt,e(s) to Forward

SDE (3.9) on Dα(T2). That is, the vector of normal coordinates provided by the
exponential map exp : TeDα(T2) → Dα(T2). Furthermore, let Ǔe be the canonical
chart of the map exp.

Theorem 3.5. Let τ be a stopping time given by:

τ̌ = inf{s ∈ [t, T ] : Zt,e(s) /∈ Ǔe}.

Then, a.s. τ̌ = τ , where the stopping time τ is defined by (3.10), and on [t, τ ],

66



3. Navier-Stokes Equations and a system of FBSDE

we have the following equalities: Žt;kA(s) = Zt;kA(s), Žt;kB(s) = Zt;kB(s) for all
k ∈ Z2

+ ∪ {0} and Žt;kA(s) = Žt;kB(s) = 0 for all k ∈ Z2
+, a.s.

Proof. Let us introduce additional local coordinates gkA, gkB, k ∈ Z2
+. In this way,

consider: ḡ = {gkA, gkB, gkA, gkB, g0A, g0B} where k ∈ Z2
+ ∪ {0} be local coordi-

nates in the neighborhood Ǔe provided by the map exp mentioned above.
Since the proof follows in a similar way to the previous case proved in 3.4, we

will omit it, making only the necessary observations that Y kA(s) = Y kB(s) = 0 for
all k ∈ Z2

+, and that the components of the Brownian motion are non-zero only
along divergence-free and constant vector fields.

So, we obtain that the coordinate process given by ˇ̄Zt(s) verifies the Forward
SDE in local coordinates (3.11) and the equations Žt;kA(s) = Žt;kB(s) = 0, where
k ∈ Z2

+.

3.3.2 The Backward SDE and the solution of the FBSDE

Finally, in this subsection, our goal will be to establish a relationship between
the solution of Backward Navier-Stokes Equations presented in (3.7) and the solu-
tion of the system of forward and backward stochastic differential equations shown
in (3.3).

The most important result of this subsection is the theorem described as follow:

Theorem 3.6. Let Ŷ (s) be the right-invariant vector field generated by the solution
y(s, ·) to the backward Navier-Stokes equations (3.7). Moreover, let Zt,e(s) be the
solution to SDE (3.9) on Dα

v (T2). Then there exists an ϵ > 0 such that the triple
of stochastic processes given by:

Zt,e(s), (3.12)

Y t,e(s) = Ŷ (s, Zt,e(s)),

X t,e(s) = ϵA(Zt,e(s))Ŷ (s, Zt,e(s)).

solves the system of FBSDEs (3.3) on the interval [t, T ].
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However, before proving this theorem, we need some lemmas and results that
we will show below.

Remark 3.2. The expression A(Zt,e(s))Ŷ (s, Zt,e(s)) shown above means the fol-
lowing:

A(Zt,e(s))Ŷ (s, Zt,e(s)) =
∑
k

Ak(Z
t,e
s )Ŷ (s, Zt,e

s )⊗ eAk +
∑
k

Bk(Z
t,e
s )Ŷ (s, Zt,e

s )⊗ eBk

where k ∈ Z2
+ ∪ {0} is such that |k| ≤ N and Ŷ (s, ·) is regarded as a function

Dα
v (T2) → Hα(T2,R2) in which s ∈ [t, T ] and Ak(g)Ŷ (s, g) means differentiation of

Ŷ (s, ·) : Dα
v (T2) → Hα(T2,R2) along the vector field Ak at the point g ∈ Dα

v (T2).
Let γ(ξ) be the geodesic on the Dα

v (T2) such that γ(0) = e and γ′(0) = Āk.
We obtain:

Ak(g)Ŷ (s, g(θ)) =
d

dξ
Ŷ (s, (γ(ξ) ◦ g)(θ))

∣∣∣
ξ=0

= Rg
d

dξ
Ŷ (s, γ(ξ(θ)))

∣∣∣
ξ=0

Remember that Ŷ (s, g) = y(s, ·) ◦ g, where g ∈ Dα
v (T2) and, furthermore,

γ(0) = e. Then,

Rg
d

dξ
Ŷ (s, γ(ξ(θ)))

∣∣∣
ξ=0

= Rg
d

dξ
y(s, ·) ◦ γ(ξ(θ))

∣∣∣
ξ=0

= Rg
d

dξ
y(s, e(θ))

= Rg ∇Āk
y(s, θ)

= ∇̄Ak
Ŷ (s, g(θ)).

Therefore,

Ak(g)Ŷ (s, g)(θ) = ∇̄Ak
Ŷ (s, g(θ)) (3.13)
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Thus, we can represent the process X t,e(s) as:

X t,e(s) = ϵ
∑
k

[
∇Āk

y(s, ·)⊗ eAk +∇B̄k
y(s, ·)⊗ eBk

]
◦ Zt,e(s), (3.14)

where k ∈ Z2
+ ∪ {0} is such that |k| ≤ N . Moreover, the stochastic integral

presented in BSDE (3.5) can be represented as:∫ T

s

X t,e(r)dWr = ϵ
∑
k

∫ T

s

∇Āk
y(r, ·) ◦ Zt,e(r)dβA

k (r)

+ ϵ
∑
k

∫ T

s

∇B̄k
y(r, ·) ◦ Zt,e(r)dβB

k (r).

With k under the conditions described above.
In particular, if N = 0, we have:∫ T

s

X t,e(r)dWr = ϵ

∫ T

s

∂

∂θ1
y(r, ·) ◦ Zt,e(r)dβA

0 (r)

+ ϵ

∫ T

s

∂

∂θ2
y(r, ·) ◦ Zt,e(r)dβB

0 (r).

In next lemma, α̃ is an integer which is not necessary equal to α.

Lemma 3.5 (The Laplacian of a right-invariant vector field). Let V̂ be the right-
invariant vector field on Dα̃(T2) generated by an H α̃+2-vector field V on T2. Fur-
thermore, let ϵ > 0 be a constant such that:

ϵ2

2

(
1 +

1

2

∑
k

1

|k|2α

)
= ν,

where k ∈ Z2
+, |k| ≤ N . Then for all g ∈ Dα̃(T2), the following equality holds:

ϵ2

2

∑
k

(
∇̄Ak

∇̄Ak
+ ∇̄Bk

∇̄Bk

)
V̂ (g) = ν∆V ◦ g. (3.15)

where k ∈ Z2
+ ∪ {0}, |k| ≤ N .
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Proof. According to Lemma 3.2, due to right-invariance of the vector fields ∇̄Ak
∇̄Ak

V̂

and ∇̄Bk
∇̄Bk

V̂ , it is sufficient to show that the equation (3.15) is satisfied for the
case g = e.

We observe that

(k̄,∇) cos(k · θ) = (k̄,∇) sin(k · θ) = 0.

Indeed, both expressions contain the scalar product (k̄, k) = 0.
Then, for k ∈ Z2

+ and θ ∈ T2, we have:

∇̄Ak
∇̄Ak

V̂ (e)(θ) =
1

|k|2α+2
cos(k · θ)(k̄,∇)

[
cos(k · θ)(k̄,∇)V (θ)

]
=

1

|k|2α+2
cos2(k · θ)(k̄,∇)2V (θ).

Analogously,

∇̄Bk
∇̄Bk

V̂ (e)(θ) = =
1

|k|2α+2
sin(k · θ)(k̄,∇)

[
sin(k · θ)(k̄,∇)V (θ)

]
=

1

|k|2α+2
sin2(k · θ)(k̄,∇)2V (θ).

Hence, for each k ∈ Z2
+,

(∇̄Ak
∇̄Ak

+ ∇̄Bk
∇̄Bk

) V̂ (e)(θ) (3.16)

=
1

|k|2α+2
cos2(k · θ)(k̄,∇)2V (θ) +

1

|k|2α+2
sin2(k · θ)(k̄,∇)2V (θ).

=
1

|k|2α+2

(
cos2(k · θ) + sin2(k · θ)

)
(k̄,∇)2V (θ).

=
1

|k|2α+2
(k̄,∇)2V (θ).

Note that for each k ∈ Z2
+, either k̄ or −k̄ is in Z2

+, and

(k̄,∇)2 + (k,∇)2 = |k|2∆. (3.17)
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Indeed, the equality follows as below:

|k|2∆ =

(√
k21 + k22

)2

·
(
∂2

∂θ21
+

∂2

∂θ22

)
= (k21 + k22) ·

(
∂2

∂θ21
+

∂2

∂θ22

)
= k21

∂2

∂θ21
+ k22

∂2

∂θ21
+ k21

∂2

∂θ22
+ k22

∂2

∂θ22

= k21
∂2

∂θ21
+ k22

∂2

∂θ21
+ k21

∂2

∂θ22
+ k22

∂2

∂θ22
+ 2

(
k1k2

∂

∂θ1

∂

∂θ2
− k1k2

∂

∂θ1

∂

∂θ2

)
= k22

∂2

∂θ21
− 2k1k2

∂

∂θ1

∂

∂θ2
+ k21

∂2

∂θ22
+ k21

∂2

∂θ21
+ 2k1k2

∂

∂θ1

∂

∂θ2
+ k22

∂2

∂θ22

=

(
k2

∂

∂θ1
− k1

∂

∂θ2

)2

+

(
k1

∂

∂θ1
+ k2

∂

∂θ2

)2

= (k̄,∇)2 + (k,∇)2.

Summation over k ∈ Z2
+, such that |k| ≤ N , in (3.16), coupling the terms

numbered by k and k̄ (or −k̄) and using equality (3.17), we get:

∑
k

(∇̄Ak
∇̄Ak

+ ∇̄Bk
∇̄Bk

)V̂ (e)(θ) =
1

|k|2α+2
(k̄,∇)2V (θ)

=
1

2

∑
k

1

|k|2α+2
· |k|2∆V (θ)

=
1

2

∑
k

1

|k|2α
∆V (θ).

where k ∈ Z2
+, |k| ≤ N .

Let be k = 0. Note that (∇̄A0∇̄A0 + ∇̄B0∇̄B0)V̂ (e)(θ) = ∆V (θ).
Therefore, we obtain:

∑
k∈Z2

+∪{0},
|k|≤N

(
∇̄Ak

∇̄Ak
+ ∇̄Bk

∇̄Bk

)
V̂ (e)(θ) =

(
1 +

1

2

∑
k∈Z2

+,

|k|≤N

1

|k|2α

)
∆V (θ).

The lemma is proved.

71



3. Navier-Stokes Equations and a system of FBSDE

Corollary 3.1. Let the function φ : T2 → R2 be C2-smooth. Furthermore, let
Ak(g)[φ ◦ g] and Bk(g)[φ ◦ g], such that k ∈ Z+

2 , mean the differentiation of the
function Dα̃(T2) → L2(T2,R2), g 7→ φ ◦ g along Ak and respectively Bk. Then for
all g ∈ Dα̃(T2),

ϵ2

2

∑
k

(
Ak(g)Ak(g) +Bk(g)Bk(g)

)
[φ ◦ g] = ν∆φ ◦ g. (3.18)

where k ∈ Z2
+ ∪ {0}, |k| ≤ N .

Proof. The proof of this corollary follows two steps performed in previous results.
The first is to calculate the derivative of the composite function φ ◦ g in the
directions Ak and Bk.

To calculate Ak(g)[φ◦g] and Bk(g)[φ◦g] we follow as done in 3.13, from where
we get:

Ak(g)[φ ◦ g] =
[

1

|k|α+1
cos(k · θ)(k̄,∇)φ(θ)

]
◦ g.

and

Bk(g)[φ ◦ g] =
[

1

|k|α+1
sin(k · θ)(k̄,∇)φ(θ)

]
◦ g.

Now, the second step is to repeat the proof of the previous Lemma 3.5 to obtain
the equation (3.18). In other words, we differentiate Ak and Bk a second time and
sum all Ak(g)Ak(g)[φ ◦ g] and Bk(g)Bk(g)[φ ◦ g] as we did in (3.16).

With this, it is noted that the terms sin2(k · θ) and cos2(k · θ) are simplified to
1 and we perform the substitution made by (3.17), obtaining the equation:

1

2

∑
k

1

|k|2α
∆[φ ◦ g].

where k ∈ Z2
+ is such that |k| ≤ N .

The parcels A0 and B0 in which k = 0 are obtained in a manner analogous to
the previous lemma. Finally, we do the summation over all k and we arrive at the
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equation (3.18).

Lemma 3.6. Let ψ(r), r ∈ [t, T ] in which t ∈ [0, T ), be an Hα(T2,R2)-valued
stochastic process whose trajectories are integrable and let ϕ(T ) be an Hα(T2,R2)-
valued random element so that both ψ(r) and ϕ(T ) possess finite expectations.Then
there exists an Fs-adapted Hα(T2,R2)×L

(
E,Hα(T2,R2)

)
-valued pair of stochastic

processes (Y (s), X(s)) solving the BSDE:

Y (s) = ϕ(T ) +

∫ T

s

ψ(r) dr −
∫ T

s

X(r) dWr (3.19)

in the time interval [t, T ].
The Y (s)-part of the solution has the representation

Y (s) = E

[
ϕ(T ) +

∫ T

s

ψ(r) dr

∣∣∣∣∣Fs

]
, (3.20)

and therefore is unique.
The X(s)-part of the solution is unique with respect to the norm:

∥X∥2 =
∫ T

t

∥X(r)∥2L dr (3.21)

where || · ||L is the L(E,Hα(T2,R2))-norm.

Proof. Extend Y (s), defined by (3.20), to [0, t] as follows:

Y (s) = E

[
ϕ(T ) +

∫ T

t

ψ(r) dr

∣∣∣∣∣Fs

]
, (3.22)

and note that Y (s) is a martingale for s ∈ [0, t]. Also note that

M(s) := E

[
ϕ(T ) +

∫ T

t

ψ(r)dr − Y (t)

∣∣∣∣∣Fs

]
(3.23)

is a martingale which is zero for s ∈ [0, t]. Indeed, since for s ∈ [0, t], E[Y (t)|Fs] =
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Y (s), we obtain

M(s) =E

[
ϕ(T ) +

∫ T

t

ψ(r)dr − Y (t)

∣∣∣∣∣Fs

]

=E

[
ϕ(T ) +

∫ T

t

ψ(r) dr

∣∣∣∣∣Fs

]
− Y (s) = 0.

By the martingale representation theorem, there exists a process X(s) such that

E

[
ϕ(T ) +

∫ T

t

ψ(r)dr − Y (t)

∣∣∣∣∣Fs

]
=

∫ s

0

X(r) dWr (3.24)

Since M(s) = 0 on [0, t], we obtain that∫ s

0

X(r) dWr = 0 for s ∈ [0, t].

Therefore, for s ∈ [t, T ], (3.24) implies that

E

[
ϕ(T ) +

∫ T

t

ψ(r)dr − Y (t)

∣∣∣∣∣Fs

]
=

∫ s

t

X(r) dWr (3.25)

E

[
ϕ(T ) +

∫ s

t

ψ(r)dr +

∫ T

s

ψ(r)dr − Y (t)

∣∣∣∣∣Fs

]
=

∫ s

t

X(r) dWr

Since Y (t) is Fs-adapted (Ft ⊂ Fs), using the definition of Y (s) by (3.20), we
obtain

Y (s) +

∫ s

t

ψ(r)dr − Y (t) =

∫ s

t

X(r) dWr. (3.26)

Evaluating (3.25) at s = T , we obtain

ϕ(T ) +

∫ T

t

ψ(r)dr − Y (t) =

∫ T

t

X(r) dWr. (3.27)
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Subtracting (3.26) from (3.27), we obtain that Y (s) and X(s) satisfy (3.19).
To prove the uniqueness, just note that any Fs-adapted solution to BSDE

(3.19), this solution takes the forms given by (3.20) and (3.21) . Moreover, consider
a process X ′(s) such that the processes X(s) and X ′(s) satisfy (3.21) , then, again
by Itô’s isometry, the following equality is valid:

∫ T

t

∥X(s)−X ′(s)∥2L dr =
∥∥∥∥∫ T

t

(X(s)−X ′(s)) dWr

∥∥∥∥2
Hα(T2,R2)

= 0.

That is, X(s) and X ′(s) are almost surely the same, which concludes the proof.

Finally, having these results, we will prove the most important theorem of this
section, Theorem 3.6, which establishes a direct connection between the Backward
Navier-Stokes (3.7) and FSDE (3.9) solutions for the FBSDE system (3.3).

Proof of Theorem 3.6. Let us consider BSDE (3.5) as an L2(T2,R2)-valued SDE
and Ŷ (s) as a map Dα(T2) → L2(T2,R2). Since for each s ∈ [t, T ], the map
y(s, ·) belongs to Hα+1(T2,R2) and α > 2 by assumption, then Ŷ (s) : Dα

v (T2) →
L2(T2,R2) is at least C2-smooth.

The Navier-Stokes Equations (3.2) show that the function ∂sy(·, ·) : [t, T ] →
L2(T2,R2) is continuous since ∇p, ∆y, and (y,∇y) are continuous functions [t, T ] →
L2(T2,R2) according to Assumption 3.1. Since the diffeomorphisms of the Hilbert
manifold Dα

v (T2) are volume-preserving, we conclude that for each fixed element
g ∈ Dα

v (T2), the map ∂sŶ (s, g) : [t, T ] → L2(T2,R2) is a continuous function.
Consequently, Ŷ (·, ·) : [t, T ] × Dα

v (T2) → L2(T2,R2) is C1-smooth in s ∈ [t, T ]

and C2-smooth in g ∈ Dα
v (T2). In this way, Itô’s formula is applicable in the map

Ŷ (s, Zt,e(s)).
In what follows, we will use the fact that Zt,e(s) is a solution to FSDE (3.9)

and that the following identity is valid:

∂Ŷ

∂s
(s, Zt,e(s)) =

∂y(s, ·)
∂s

◦ Zt,e(s).
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For the latter derivative we substitute the right-hand side of the first equa-
tion of (3.2). The notation X̂(g)[Ŷ (s, g)] is the same established throughout
the Lemma 3.5 and the Corollary 3.18 and means differentiation of the function
Ŷ (s, ·) : Dα

v (T2) → L2(T2,R2) along the right-invariant vector field X̂ on Dα
v (T2)

at the point g ∈ Dα
v (T2). The same argument used in Remark 3.2 implies that

X̂(g)[Ŷ (s, g)] = ∇̄X̂ Ŷ (s, g).

Considering all these observations and established notations, we get that the
Navier-Stokes Equation (3.2) becomes:

Ŷ (s, Zt,e(s))− ĥ(Zt,e(T )) =−
∫ T

s

∂Ŷ

∂r
(r, Zt,e(r)) dr −

∫ T

s

Ŷ (r, Zt,e(r))[Ŷr(Z
t,e
r )]dr

−
∫ T

s

ϵ2

2

∑
k

Ak(Z
t,e(r))Ak(Z

t,e(r))Ŷr(Z
t,e(r))dr

−
∫ T

s

ϵ2

2

∑
k

Bk(Z
t,e(r))Bk(Z

t,e(r))Ŷ (r, Zt,e(r))dr

−
∫ T

s

ϵ A(Zt,e(r))Ŷ (r, Zt,e(r))dWr. (3.28)

where k ∈ Z2
+ ∪ {0} is such that |k| ≤ N .

Notice that:

Ŷ (r, Zt,e(r))[Ŷ (r, Zt,e(r))] = [(y(r, ·),∇)y(r, ·)] ◦ Zt,e(r).

Moreover, let us observe that:

ϵ2

2

∑
k

[
Ak(Z

t,e(r))Ak(Z
t,e(r))Ŷ (r, Zt,e(r)) +Bk(Z

t,e(r))Bk(Z
t,e(r))Ŷ (r, Zt,e(r))

]
=
ϵ2

2

∑
k

[
∇̄Ak

∇̄Ak
Ŷ (r, Zt,e(r)) + ∇̄Bk

∇̄Bk
Ŷ (r, Zt,e(r))

]
= ν[∆y(r, ·)] ◦ Zt,e(r)

where k ∈ Z2
+ ∪{0}, |k| ≤ N and that the latter equality holds by Lemma 3.5 and
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ϵ > 0 is chosen in such a way that equality holds:

ϵ2

2

1 +
1

2

∑
k∈Z2

+,|k|≤N

1

|k|2α

 = ν.

Note that the terms ∇̄Ak
∇̄Ak

Ŷ (r, Zt,e(r)) and ∇̄Bk
∇̄Bk

Ŷ (r, Zt,e(r)) are ele-
ments of TDα−1(T2), and therefore are well defined in L2(T2,R2).

Replacing the terms with their equivalents presented in the equality above, the
new expression of the Navier-Stokes equation (3.28) is given by:

Ŷ (s, Zt,e(s))− ĥ(Zt,e(T )) (3.29)

=

∫ T

s

[
V̂ (r, Zt,e(r)) + [(y(r, ·),∇)y(r, ·)] ◦ Zt,e(r) + ν[∆y(r, ·)] ◦ Zt,e

r

]
dr

−
∫ T

s

[(y(r, ·),∇)y(r, ·)] ◦ Zt,e(r) dr −
∫ T

s

ν[∆y(r, ·)] ◦ Zt,e(r) dr

−
∫ T

s

ϵA(Zt,e(r))Ŷ (r, Zt,e(r)) dWr

=

∫ T

s

V̂ (r, Zt,e(r)) dr −
∫ T

s

ϵA(Zt,e(r))Ŷ (r, Zt,e(r))dWr.

Then, the pair of stochastic processes (Ŷ (s, Zt,e(s)), ϵA(Zt,e(s))Ŷ (s, Zt,e(s)))

is a solution to BSDE (3.5) in L2(T2,R2). And this pair is Fs adapted, since the
process Zt,e(s) is Fs-adapted.

According to Lemma 3.6, there is a unique Fs-adapted solution (Y t,e(s), X t,e(s))

to BSDE (3.5) in the spaceHα(T2,R2). Moreover, (Y t,e(s), X t,e(s)) is also a unique
Fs-adapted solution to BSDE (3.5) in the space L2(T2,R2).

For this reason, Y t,e(s) = Ŷ (s, Zt,e(s)) and∫ T

t

∥∥∥X t,e(s)− ϵA(Zt,e(s))Ŷ (s, Zt,e(s)))
∥∥∥2
L
ds = 0, (3.30)

and therefore the pair of stochastic processes given by

(
Ŷ (s, Zt,e(s)), ϵA(Zt,e(s))Ŷ (s, Zt,e(s))

)
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is a unique Fs-adapted solution to BSDE (3.5) in Hα(T2,R2). Finally, the theorem
is proved.

The proof of the above theorem concludes the first major result of this work,
which consisted, in simpler terms, that given a solution to the Backward Navier
Stokes equations (3.7), we can find a triple of stochastic processes that solve a
given FBSDE system (3.3) built on the Dα

v (T2).

3.4 Some Identities involving Navier-Stokes solu-

tion

In this section, we will bring an extra result in which we obtain a representation
for the solution of the Navier-Stokes equation, in addition to showing how this
representation implies the energy identity.

Theorem 3.7. Let t ∈ [0, T ], and let Zt,e(s) be the solution to FSDE (3.9) on
[t, T ] with the initial condition Zt,e(t) = e. Then, the following representation
holds for the solution y(t, ·) to (3.7).

y(t, ·) = E
[
ĥ(Zt,e(T )) +

∫ T

t

∇p(s, ·) ◦ Zt,e(s)ds

]
. (3.31)

Proof. First, note that due to the initial condition Zt,e(t) = e, we obtain that:

Ŷ (t, Zt,e(t)) = Ŷ (t, e) = y(t, ·) ◦ e = y(t, ·),

and, moreover, we know that:

E
[∫ T

t

X t,e(r)dWr

]
= 0.

Remember the BSDE presented in (3.5) which is rewritten below:

Y t,e(s) = ĥ(Zt,e(T )) +

∫ T

s

V̂ (r, Zt,e(r))dr −
∫ T

s

X t,e(r)dWr.
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Taking the expectation from the both parts of BSDE at time s = t we obtain
the representation (3.31).

Now, we will show a simple derivation of the energy identity. Applying Itô’s
formula to the squared L2(T2,R2)-norm of the solution Y t,e(s), we obtain:

∥Y t,e(s)∥2L2
= ∥ĥ(Zt,e(T ))∥2L2

+ 2

∫ T

s

⟨Y t,e(r), V̂ (Zt,e(r))⟩L2dr (3.32)

− 2

∫ T

s

⟨Y t,e(r), X t,e(r)dWr⟩L2 −
∫ T

s

∥X t,e(s)∥2L2
dr.

Remember that as shown in equation (3.14), we can decompose the process
X t,e(s) with respect to its coordinates, then:

∥X t,e(s)∥2L2
= ϵ2

 ∑
k∈Z2

+∪{0}, |k|≤N

∥∇Āk
y(s, ·)∥2L2

+ ∥∇B̄k
y(s, ·)∥2L2


= ϵ2

 ∑
k∈Z2

+, |k|≤N

1

|k|2α+2
∥(k̄,∇y(s, ·))∥2L2

+ ∥∇y(s, ·)∥2L2


= ϵ2

 1

2

∑
k∈Z2

+, |k|≤N

1

|k|2α+2

(
∥(k̄,∇y(s, ·))∥2L2

+ ∥(k,∇y(s, ·))∥2L2

)
+ ∥∇y(s, ·)∥2L2


= ϵ2

1 +
1

2

∑
k∈Z2

+, |k|≤N

1

|k|2α

 ∥∇y(s, ·)∥2L2

= 2 ν ∥∇y(s, ·)∥2L2
.

Taking the expectation in (3.32) and using the volume-preserving property of
Zt,e(s), we obtain:

∥y(s, ·)∥2L2
+ 2ν

∫ T

s

∥∇y(r, ·)∥2L2
dr = ∥h(·)∥2L2

.

And that concludes the proof.
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Chapter 4

Constructing the solution to the

Navier-Stokes from a solution to the

FBSDEs

4.1 Looking for a solution for Navier-Stokes

We will present throughout this section the second main result of this work.
The theorem shown below is, in a way, a converse to the Theorem 3.6 proved in
the previous section. At this point, in simple terms, our goal will be to find a
solution to the Navier-Stokes equations starting from the hypothesis that we have
a solution to a system of forward and backward equations in Dα

v (T2).
We will consider (3.3) as a system of forward and backward SDEs in the Hilbert

space Hα(T2,R2), where α ≥ 3. Moreover, as before, let V̂ (s, Zt,e(s)) be the vector
field which denotes ∇p(s, ·) ◦ Zt,e(s), and let Fs denote the filtration σ{Wr, r ∈
[0, s]}.

Theorem 4.1. Assume, for an Hα+1-smooth function p(s, ·), with s ∈ [0, T ], and
for any t ∈ (0, T ), the existence of an Fs-adapted solution (Zt,e(s), Y t,e(s), X t,e(s))
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to FBSDE (3.3) (rewritten below)
dZt,e(s) = Y t,e(s)ds+ ϵA(Zt,e(s))dWs,

dY t,e(s) = −V̂ (s, Zt,e(s))ds+X t,e(s)dWs,

Zt,e(t) = e; Y t,e(T ) = ĥ(Zt,e(T )).

(4.1)

on [t, T ] such that the processes Zt,e(s) and Y t,e(s) have almost surely continuous
trajectories and such that Zt,e(s) take values in Dα

v (T2). Then there exists a time
T0 > 0 such that for all T < T0 there exists a deterministic function y(s, ·) ∈
TeDα

v (T2) on [0, T ], such that almost surely on [t, T ] the relation Y t,e(s) = y(s, ·) ◦
Zt,e(s) holds. Moreover, the pair of functions (y, p) solves the backward Navier-
Stokes equations (3.7) on [0, T ] rewritten below:

y(s, θ) = h(θ) +

∫ T

s

[
∇p(r, θ) +

(
y(r, θ),∇

)
y(r, θ) + ν∆y(r, θ)

]
dr,

div y(s, θ) = 0.

(4.2)

The proof of this theorem is extensive and for this reason it will be divided
into stages, which correspond to the following lemmas.

The first step is to verify that the hypotheses about the triple of solutions
(Zt,e(s), Y t,e(s), X t,e(s)) are true.

Lemma 4.1. For all t ∈ [0, T ) and for any Ft-measurable Dα
v (T2)-valued random

variable ξ, the triple of stochastic processes

(Zt,ξ(s), Y t,ξ(s), X t,ξ(s)) = (Zt,e(s) ◦ ξ, Y t,e(s) ◦ ξ,X t,e(s) ◦ ξ) (4.3)

is Fs-adapted and solves the FBSDEs
Zt,ξ(s) = ξ +

∫ s

t

Y t,ξ(r) dr +

∫ s

t

A(Zt,ξ(r)) dWr

Y t,ξ(s) = h(Zt,ξ(T )) +

∫ T

s

V̂ (r, Zt,ξ(r))dr −
∫ T

s

X t,ξ(r) dWr

(4.4)

on the interval [t, T ] in the space Hα(T2,R2).
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Proof. Let us apply the right translation operator, denoted by Rξ, on both sides of
the system of FBSDEs (3.3). We just need to proof that we can write the operator
Rξ under the signs of both stochastic integrals in (3.3). To verify this, we will
show that this statement is true for an arbitrary Ft-measurable stepwise function
ξ =

∑∞
i=1 ξiIAi

, where ξi ∈ Dα
v (T2) and the sets Ai are Ft-measurable.

Indeed, consider the times s and S such that t ≤ s < S ≤ T , and let Φ(r) be
an Fr-adapted stochastically integrable process. We obtain:∫ S

s

Φ(r) dWr ◦
∞∑
i=1

ξiIAi
=

∞∑
i=1

IAi

∫ S

s

Φ(r) ◦ ξi dWr

=
∞∑
i=1

∫ S

s

IAi
Φ(r) ◦ ξi dWr

=

∫ S

s

Φ(r) ◦
∞∑
i=1

ξiIAi
dWr.

Now, let us consider a countable number of disjoint Borel sets Bn
i covering the

space of continuous functions C(T2,R2), such that their diameter in the norm of
C(T2,R2) is smaller than 1

n
. And let An

i = ξ−1(Bn
i ) and ξni ∈ Bn

i ∩ Dα
v (T2), that

is, each set Ai is the pre-image by function ξi of a sequence of coverings Bn
i

Define ξn as:

ξn =
∞∑
i=1

ξni IAn
i
.

Then it holds that for all ω ∈ Ω, we have that:

∥ξ − ξn∥C(T2,R2) <
1

n
.

Our goal will be to prove that almost surely I(Φ) ◦ ξ = I(Φ ◦ ξ). For this, it is
enough to check the equalities:

lim
n→∞

E
∥∥∥∥∫ S

s

Φ(r)dWr ◦ ξn −
∫ S

s

Φ(r)dWr ◦ ξ
∥∥∥∥2
L2

= 0, (4.5)
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and

lim
n→∞

E
∥∥∥∥∫ S

s

Φ(r) ◦ ξn dWr −
∫ S

s

Φ(r) ◦ ξ dWr

∥∥∥∥2
L2

= 0, (4.6)

where || · ||L2 is the L2(T2,R2)-norm.
Since the functions ξ and ξn belong to the space Dα

v (T2), they preserve volume,
so the following equalities are valid:∥∥∥∥∫ S

s

Φ(r)dWr ◦ ξn
∥∥∥∥2
L2

=

∥∥∥∥∫ S

s

Φ(r)dWr

∥∥∥∥2
L2

and ∥∥∥∥∫ S

s

Φ(r)dWr ◦ ξ
∥∥∥∥2
L2

=

∥∥∥∥∫ S

s

Φ(r)dWr

∥∥∥∥2
L2

.

Applying Lebesgue’s theorem to equation (4.5), we can pass to the limit un-
der the expectation sign and the equality presented in (4.5) follows due to the
continuity of the stochastic integral of ϕ(r) in θ ∈ T2.

On the other hand, to prove equality in (4.6), we will take an additional step
which is to apply Itô’s Isometry. Note that:

lim
n→∞

E
∥∥∥∥∫ S

s

(Φ(r) ◦ ξn − Φ(r) ◦ ξ) dWr

∥∥∥∥2
L2

= lim
n→∞

E
∫ S

s

∥Φ(r) ◦ ξn − Φ(r) ◦ ξ∥2L2
dr.

Finally, we use the same previous argument and by Lebesgue’s theorem we
can pass the limit under the expectation and the integration sign and the equality
presented in (4.6) follows due to continuity follows from the continuity of the
function Φ(r) in θ ∈ T2.

Therefore, the triple (Zt,e(s) ◦ ξ, Y t,e(s) ◦ ξ,X t,e(s) ◦ ξ) is a solution to FBSDE
(4.4). This solution is Fs-adapted, since its component processes and functions
are Fs-adapted.

In the following lemma, we will verify that the function considered in the
hypotheses of Theorem 4.1 is deterministic, that is, that it does not depend on
any stochastic component.
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Lemma 4.2. The map [0, T ]×T2 → R2 defined by (t, θ) 7→ Y t,e(t, θ) is determin-
istic.

Proof. Suppose that (Zt,e(s), Y t,e(s), X t,e(s)) is a solution to the FBSDE and let
us extend this solution to the time interval [0, t] by setting Zt,e(s) = e, Y t,e(s) =

Y t,e(t), X t,e(s) = 0 for all s ∈ [0, t]. The extended stochastic process solves the
following system:

Zt,e(s) = e+

∫ s

0

I[t,T ](r)Y
t,e(r)dr +

∫ s

0

I[t,T ](r)A(Zt,e(r))dWr

Y t,e(s) = h(Zt,e(T )) +

∫ T

s

I[t,T ](r)V̂ (r, Zt,e(r))dr −
∫ T

s

X t,e(r)dWr.
(4.7)

In particular, consider s = 0, then we have that Y t,e(0) is a F0-measurable func-
tion. By Blumenthal’s zero-one law (described in 1.4), then Y t,e(0) is deterministic
and since Y t,e(t) = Y t,e(0), the result follows.

Lemma 4.3. There exists a constant T0 > 0 such that for T < T0 the function
[0, T ] → H2(T2,R2), defined by t 7→ Y t,e(t) is continuous.

Proof. Consider as solutions to the FBSDE system (4.4) the triples given by
(Zt,e(s), Y t,e(s), X t,e(s)) and (Zt′,e(s), Y t′,e(s), X t′,e(s)) which begin at the point
e (identity function) respectively at times t and t′, such that t < t′. In a proce-
dure analogous to that carried out in the demonstration of the previous lemma,
we will extend these solutions to the interval [0, T ] by setting the initial condi-
tions: Zt,e(s) = e, Y t,e(s) = Y t,e(t), X t,e(s) = 0 for all s ∈ [0, t]. Therefore, these
solutions can be considered as solutions of the extended FBSDE system (4.7).

Using Itô’s formula in the L2(T2,R2)-norm of Y t,e(s) as described in equa-
tion (3.32) and the BSDE of system (4.4) ensure that the expectation given by
E∥Y t,e(s)∥2L2

is bounded.
To verify this, define the function F (Y ) = ∥Y ∥2L2

, so the first-order derivative
is given by

∂F

∂Yi
(Y ) = 2Yi,⇒ ⟨DF (Y ), h⟩L2 = 2⟨Y, h⟩L2 = 2

∫
T2

Y (θ)h(θ)dθ.

84



4. Constructing the solution to the Navier-Stokes from a solution to the FBSDEs

And the second-order derivative is given by:

∂2F

∂Yi∂Yj
(Y ) = 2δij,

where δij = 1 if i = j and = 0 if i ̸= j.
Using Itô’s formula presented in (5.1) we will notice that the derivative of the

first term (calculated for time) is zero. This means that Itô’s Formula only has in
its composition the other derivatives given below:

Using the first derivative, we have:

−
∑
i

∫ T

r

2Yi(s) V̂i(s) ds = −2

∫ T

r

⟨Y (s), V̂ (s)⟩L2 ds

= −2

∫ T

r

⟨Y (s), V̂ (s, Zt,ξ(s))⟩L2 ds.

The stochastic term is given by:

∑
i

∑
l

∫ T

r

2Yi(s)X
l
i(s) dW

l
s = 2

∫ T

r

⟨Y (s), X t,ξ(s) dWs⟩L2 .

and the second-order term becomes:

1

2

∑
i,j

∑
l

∫ T

r

2 δij X
l
i(s)X

l
j(s) ds =

∫ T

r

∑
i

∑
l

(
X t,ξ

i (s)
)2
ds

=

∫ T

r

∥X t,ξ(s)∥2L2
ds.

where i and j correspond to the infinite directions of the basis of the Hilbert space
and l are the finite directions of the basis of the space in which the Wiener process
takes values.

Applying Itô’s formula between times s and T and remembering that the final
condition is given by Y t,ξ(T ) = ĥ(Zt,ξ(T ))), we obtain:

∥Y t,ξ(T )∥2L2
− ∥Y t,ξ(s)∥2L2

= −2

∫ T

s

⟨Y t,ξ(r), V̂ (r, Zt,ξ(r))⟩L2 dr
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+ 2

∫ T

s

⟨Y t,ξ(r), X t,ξ(r) dWr⟩L2 +

∫ T

s

∥X t,ξ(r)∥2L2
dr.

Rearranging the terms, we have:

∥Y t,ξ(s)∥2L2
= ∥ĥ(Zt,ξ(T ))∥2L2

+ 2

∫ T

s

⟨Y t,ξ(r), V̂ (Zt,ξ(r))⟩L2dr (4.8)

− 2

∫ T

s

⟨Y t,ξ(r), X t,ξ(r)dWr⟩L2 −
∫ T

s

∥X t,ξ(r)∥2L2
dr.

where ∥ · ∥L2 is the L2(T2,R2)-norm.
Applying the expectation, we have to make some observations: the expectation

of the initial condition ĥ(Zt,ξ(T )) will be bounded, since it is a constant, the
expectation of the stochastic term will be zero due to the martingale property and
the expectation of the term X t,ξ(s) can be estimated by any positive value, since
it is negative. Thus, it is necessary to verify that the expectation of the norm of
2
∫ T

s
⟨Y t,ξ(r), V̂ (Zt,ξ(r))⟩L2dr is bounded.

Note that by the Cauchy-Schwarz inequality, we have: ⟨Y t,ξ(r), V̂ (Zt,ξ(r))⟩L2 ≤
∥Y t,ξ(r)∥L2 · ∥V̂ (Zt,ξ(r))∥L2 , which implies:

2

∫ T

s

⟨Y t,ξ(r), V̂ (Zt,ξ(r))⟩L2dr ≤ 2

∫ T

s

∥Y t,ξ(r)∥L2 · ∥V̂ (Zt,ξ(r))∥L2dr (4.9)

For simplicity, the constant 2 previously presented will be omitted, since it will
naturally be implied in the estimate below. By hypothesis, the function V̂ (·) is
Lipchitz, so there is a positive constant C1 which is worth the equation:

∥V̂ (Zt,ξ(r))∥L2 ≤ C1

(
1 + ∥Zt,ξ(r)∥L2

)
.

Applying the control condition described above to the equation (4.9), we obtain:∫ T

s

⟨Y t,ξ(r), V̂ (Zt,ξ(r))⟩L2dr ≤
∫ T

s

∥Y t,ξ(r)∥L2 · C1

(
1 + ∥Zt,ξ(r)∥L2

)
dr

≤
∫ T

s

C1∥Y t,ξ(r)∥L2dr +

∫ T

s

C1∥Y t,ξ(r)∥L2 · ∥Zt,ξ(r)∥L2dr

86



4. Constructing the solution to the Navier-Stokes from a solution to the FBSDEs

Finally, recall that Zt,ξ(s) is a solution of the FSDE and, therefore, is bounded
with respect to the L2-norm by hypothesis. To estimate the product of its norm
with the norm of ∥Y t,ξ(s)∥ we can apply Grönwall’s Lemma and obtain a new
constant C3 which will guarantee the estimate.

Now, considering the FSDE of system (4.7), we can calculate the difference of
Zt,e(s)− Zt′,e(s) as:

Zt,e(s)− Zt′,e(s) =

∫ s

0

I[t,T ](r)
(
Y t,e(r)− Y t′,e(r)

)
dr

+

∫ s

0

I[t,T ](r)
(
A(Zt,e(r))− A(Zt′,e(r))

)
dWr.

Applying the L2-norm to both sides we obtain the following equality:

∥Zt,e(s)− Zt′,e(s)∥2L2
≤ 2

∥∥∥∥∫ s

0

I[t,T ](r)
(
Y t,e(r)− Y t′,e(r)

)
dr

∥∥∥∥2
L2

(4.10)

+ 2

∥∥∥∥∫ s

0

I[t,T ](r)
(
A(Zt,e(r))− A(Zt′,e(r))

)
dWr

∥∥∥∥2
L2

. (4.11)

Then, we apply the expectation to both sides of the previous equation and
using Itô’s Isometry in the stochastic term, we obtain:

E∥Zt,e(s)− Zt′,e(s)∥2L2
≤ 2 E

∥∥∥∥∫ s

0

I[t,T ](r)
(
Y t,e(r)− Y t′,e(r)

)
dr

∥∥∥∥2
L2

(4.12)

+ 2

∫ s

0

E
∥∥∥I[t,T ](r)

(
A(Zt,e(r))− A(Zt′,e(r))

)∥∥∥2
L2

dr.

By hypothesis, the operator A(·) is bounded with respect to the norm (see
conditions of Theorem 1.3) then there exists a positive constant C2 such that:∫ s

0

I[t,T ](r) · E
∥∥∥A(Zt,e(r))− A(Zt′,e(r))

∥∥∥2
L2

dr

< C2

∫ s

0

I[t,T ](r) · E
∥∥∥(Zt,e(r))− (Zt′,e(r))

∥∥∥2
L2

dr
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Using the above estimate in the previous equality given by (4.12), we obtain:

E∥Zt,e(s)− Zt′,e(s)∥2L2
< 2 E

∥∥∥∥∫ s

0

I[t,T ](r)
(
Y t,e(r)− Y t′,e(r)

)
dr

∥∥∥∥2
L2

+ C2

∫ s

0

I[t,T ](r) · E
∥∥∥(Zt,e(r))− (Zt′,e(r))

∥∥∥2
L2

dr

Applying Grönwall’s Lemma, we can obtain a new positive constant K1 such
that the following inequality holds:

E
∥∥∥Zt,e(s)− Zt′,e(s)

∥∥∥2
L2

< K1

[∫ s

0

I[t,T ]E
∥∥∥Y t,e(r)− Y t′,e(r)

∥∥∥2
L2

dr + (t′ − t)

]
.

(4.13)

Similarly, we will apply Itô’s Formula to: ∥Y t,e(s)−Y t′,e(s)∥2L2
using the BSDE

of (4.7), where ∥ · ∥L2 denotes the L2(T2,R2)-norm as before. From which we can
conclude that ∥Y t,e(s)−Y t′,e(s)∥2L2

is bounded, since it is a sum of bounded norms.
Again, applying the Grönwall’s lemma, usual stochastic integral estimates and the
above estimate for expectation E∥Zt,e(s) − Zt′,e(s)∥2L2

, we obtain that there is a
positive constant K2 such that the following inequality holds:

E
∥∥∥Y t,e(s)− Y t′,e(s)

∥∥∥2
L2

< K2

[∫ T

0

E
∥∥∥Y t,e(r)− Y t′,e(r)

∥∥∥2
L2

dr + (t′ − t)

]
.

Take T0 smaller than 1
K2

. Then there exists a positive constant K for which
the following estimate holds:

sup
s∈[0,T ]

E
∥∥∥Y t,e(s)− Y t′,e(s)

∥∥∥2
L2

< K(t′ − t). (4.14)

Evaluating the previous inequality at time s = t and taking into account that
initial condition we have: Y t,e(t) = e = Y t′,e(t′), then we obtain that:∥∥∥Y t,e(t)− Y t′,e(t′)

∥∥∥2
L2

≤ K(t′ − t). (4.15)

Differentiating the extended FBSDE (4.7) with respect to θ, we obtain the
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following system of forward and backward SDEs:

∇Zt,e(s) = 1 +

∫ s

0

I[t,T ](r)∇Y t,e
r dr +

∫ s

0

I[t,T ](r)∇A(Zt,e(r))∇Zt,e(r)dWr

∇Y t,g(s) = ∇h(Zt,e(T ))∇Zt,e(T ) +

∫ T

s

I[t,T ](r)∇V̂ (r, Zt,e(r))∇Zt,e(r)dr

−
∫ T

s

∇X t,e(r) dWr.

(4.16)

Through the usual stochastic integral estimates, we obtain that the expecta-
tions E∥∇Zt,e(s)∥2L2

and E∥∇Y t,e(s)∥2L2
are bounded.

Note that when we apply the control condition of inequality (4.14) to the
estimate given for ∥Zt,e(s) − Zt′,e(s)∥ in (4.13), we also obtain an estimate for
sups∈[0,T ] E∥Zt,e(s)− Zt′,e(s)∥2L2

Using this estimate and considering the FSDE of
system (4.16), when evaluating s = t and remembering that Y t,e(t) = Y t′,e(t′),
then there is a positive constant L such that for all t and t′ from the time interval
[0, T ] holds:

∥∇Y t,e(t)−∇Y t′,e(t′)∥2L2
< L|t′ − t|. (4.17)

Differentiating the extended system of FBSDE (4.7) with respect to θ a second
time and using the same argument, we will obtain a new positive constant M such
that for all times t and t′ belonging to [0, T ] the following inequality holds:

∥∇∇Y t,e(t)−∇∇Y t′,e(t′)∥2L2
< M |t′ − t|. (4.18)

Finally, note that the estimates given for the first and second derivatives at
(4.15), (4.17), and (4.18) show that they are bounded and therefore continuous.
This leads us to conclude that map t 7→ Y t,e(t) is continuous with respect to the
H2(T2,R2)-norm.

For the following lemmas, we will assume that T < T0, where T0 is a positive
definite constant, as described in Lemma 4.3.
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Lemma 4.4. For every t ∈ [0, T ) and for every Ft-measurable random variable ξ,
the solution (Zt,ξ(s), Y t,ξ(s), X t,ξ(s)) to FBSDE (4.4) is unique in the time interval
[t, T ].

Proof. Let (Zt,ξ(s), Y t,ξ(s), X t,ξ(s)) be a solution to the FBSDE (4.4), to prove
uniqueness, consider another solution (Z̃t,ξ(s), Ỹ t,ξ(s), X̃ t,ξ(s)) to (4.4) in time
[t, T ]. We will extend these solutions to the interval [0, T ] by setting the initial
conditions:

Zt,ξ(s) = ξ = Z̃t,ξ(s),

Y t,ξ(s) = Y t,ξ(t) = Ỹ t,ξ(t) = Ỹ t,ξ(s),

X t,ξ(s) = 0 = X̃ t,ξ(s).

for all s ∈ [0, t]. In this way, these triples of solutions can be considered as solutions
of the extended FBSDE system presented below:

Zt,ξ(s) = e+

∫ s

0

I[t,T ](r)Y
t,ξ(r)dr +

∫ s

0

I[t,T ](r)A(Zt,ξ(r))dWr

Y t,ξ(s) = h(Zt,ξ(T )) +

∫ T

s

I[t,T ](r)V̂ (r, Zt,ξ(r))dr −
∫ T

s

X t,ξ(r)dWr.
(4.19)

The rest of the proof follows in a similar manner to what we did in the previous
lemma 4.3 and will be omitted.

In short, our goal would be to verify the norms of differences ∥Y t,ξ(s) −
Ỹ t,ξ(s)∥2L2

and ∥Zt,ξ(s) − Z̃t,ξ(s)∥2L2
are 0, which means that these processes are

almost surely equal. The calculations are developed in a similar way to what we
did using the inequality (4.10).

Lemma 4.5. Let the function y : [0, T ]× T2 → R2 be defined by the formula:

y(t, θ) = Y t,e(t, θ). (4.20)

Then, for every t ∈ [0, T ], y(t, ·) is Hα-smooth, and a.s.

Y t,e(u) = y(u, ·) ◦ Zt,e(u). (4.21)
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Proof. Recall that in lemma 4.2, we proved that the equality presented by the triple
of solutions in (4.3) is true, which implies that the function ξ is Ft-measurable, in
this way:

Y t,ξ(t) = y(t, ·) ◦ ξ

Furthermore, for each fixed time u ∈ [t, T ], the triple (Zt,e(s), Y t,e(s), X t,e(s))

is a solution of the following FBSDE system on the time interval [u, T ]:
Zt,e(s) = Zt,e(u) +

∫ s

u

Y t,e(r)dr +

∫ s

u

A(Zt,e(r))dWr

Y t,e(s) = h(Zt,e(T )) +

∫ T

s

V̂ (r, Zt,e(r))−
∫ T

s

X t,e(r)dWr.

Note that by the uniqueness of the solution, it is valid that if u = t, then
Zt,e(u) = e which implies Y t,e(s) = Y u,Zt,e(u)(s) almost surely in the interval
[u, T ]. By the equality shown in 4.21, we obtain:

Y u,Zt,e(u)(s) = y(u, ·) ◦ Zt,e(u).

This implies that there exists a set that depends on time u ∈ [t, T ], which we
will denote as Ωu, of full P-measure such that the equality 4.21 holds everywhere
on Ωu. Thus, we can find a set ΩQ such that the probability of this set is P(ΩQ) = 1

and that the equality given by 4.21 holds over all ΩQ for all rational u ∈ [t, T ].
However, the processes given by Zt,e(s) and Y t,e(s) have almost surely con-

tinuous trajectories. Furthermore, according to lemma 4.3, the function y(t, ·) is
continuous at time t with respect to L2(T2,R2)-norm. Therefore, since the equality
(4.21) is a composition of functions of this space, we conclude that almost surely
the equality (4.21) holds with respect to L2(T2,R2)-norm.

Finally, since both sides of the equality (4.21) are continuous in θ ∈ T2, then
it also holds for almost surely every θ ∈ T2.

The following lemma presents the same function introduced in lemma 4.5,
however, it addresses the differentiability of this function with respect to the time
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variable.

Lemma 4.6. Consider the function y : [0, T ]× T2 → R2 defined as:

y(t, θ) = Y t,e(t, θ). (4.22)

The function y(t, ·) defined above is C1-smooth in t ∈ [0, T ].

Proof. Consider a positive increment δ, applying this increment to the time vari-
able t in the function y(t, ·), we obtain:

y(t+ δ, ·)− y(t, ·) = Y t+δ,e(t+ δ)− Y t,e(t)

= Y t+δ,e(t+ δ)− Y t,e(t+ δ) + Y t,e(t+ δ)− Y t,e(t).

Recall that by Ŷ (s), we denote the right-invariant vector field over the manifold
Dα(T2) generated by the vector field y(s, ·). By Lemma 4.5, we have that the
following equality holds almost surely:

Y t,e(t+ δ) = y(t+ δ, ·) ◦ Zt,e(t+ δ)

= Ŷ (t+ δ, Zt,e(t+ δ)).

Thus, the equation we initially considered becomes almost surely:

y(t+ δ, ·)− y(t, ·) = Ŷ (t+ δ, e)− Ŷ (t+ δ, Zt,e(t+ δ)) + Y t,e(t+ δ)− Y t,e(t).

(4.23)

For the parcel Ŷ (t + δ, e) − Ŷ (t + δ, Zt,e(t + δ)), we apply Itô’s formula when
considering Ŷ (t+δ) as a C2-smooth function Dα

v (T2) → L2(T2,R2). So, we obtain:

Ŷ (t+ δ, Zt,e(t+ δ))− Ŷ (t+ δ, e) =

∫ t+δ

t

Ŷ (r, Zt,e(r))[Ŷ (t+ δ, Zt,e(r))]dr

+
∑
k

∫ t+δ

t

Ak(Z
t,e(r))Ak(Z

t,e(r))Ŷ (t+ δ, Zt,e(r))dr

+
∑
k

∫ t+δ

t

Bk(Z
t,e(r))Bk(Z

t,e(r)) Ŷ (t+ δ, Zt,e(r))dr
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+

∫ t+δ

t

ϵ A(Zt,e(r)) Ŷ (t+ δ, Zt,e(r))dWr

where k ∈ Z+
2 ∪ {0}.

Note that this equation is similar to the one presented in Theorem 3.6, specifi-
cally in equation (3.28), an argument similar to that used in this theorem implies:

Ŷ (t+ δ, Zt,e(t+ δ))− Ŷ (t+ δ, e) =

∫ t+δ

t

∇y(r,·) y(t+ δ, ·) ◦ Zt,e(r)dr (4.24)

+

∫ t+δ

t

ν∆ y(t+ δ, ·) ◦ Zt,e(r)dr

+

∫ t+δ

t

ϵA(Zt,e(r)) Ŷ (t+ δ, Zt,e(r)) dWr.

where ν is defined according to the lemma 3.5 and is given as:

ν =
ϵ2

2

(
1 +

1

2

∑
k

1

|k|2α

)

in which k ∈ Z2
+, |k| ≤ N .

On other hand, for the parcel Y t,e(t+ δ)−Y t,e(t) of equation (4.23) we use the
equality given by BSDE, obtaining:

Y t,e(t)− Y t,e(t+ δ) =

∫ t+δ

t

∇p(r, ·) ◦ Zt,e(r)dr −
∫ t+δ

t

X t,e(r) dWr. (4.25)

Finally, adding both developments made in (4.24) and (4.25), we arrive at the
equation:

Ŷ (t+ δ, Zt,e(t+ δ))− Ŷ (t+ δ, e) + Y t,e(t)− Y t,e(t+ δ)

=

∫ t+δ

t

∇y(r,·) y(t+ δ, ·) ◦ Zt,e(r)dr +

∫ t+δ

t

ν∆ y(t+ δ, ·) ◦ Zt,e(r)dr

+

∫ t+δ

t

ϵA(Zt,e(r)) Ŷ (t+ δ, Zt,e(r)) dWr +

∫ t+δ

t

∇p(r, ·) ◦ Zt,e(r)dr −
∫ t+δ

t

X t,e(r) dWr

As seen previously in (3.30), the stochastic terms are equal and cancel each
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other out, thus we obtain.

Ŷ (t+ δ, Zt,e(t+ δ))− Ŷ (t+ δ, e) + Y t,e(t)− Y t,e(t+ δ)

=

∫ t+δ

t

∇y(r,·) y(t+ δ, ·) ◦ Zt,e(r)dr +

∫ t+δ

t

ν∆ y(t+ δ, ·) ◦ Zt,e(r)dr

+

∫ t+δ

t

∇p(r, ·) ◦ Zt,e(r)dr

Now, note that ∇y(r,·)y(t + δ, ·) = (y(r, ·),∇)y(t + δ, ·). With this equality,
applying the expectation to both sides of the equation and multiplying by 1

δ
, we

obtain:

1

δ

(
y(t+ δ, ·)− y(t, ·)

)
(4.26)

= −1

δ
E
[∫ t+δ

t

[ (y(r, ·),∇) y(t+ δ, ·) + ν∆ y(t+ δ, ·) +∇p(r, ·)] ◦ Zt,e(r) dr

]
.

Note that functions Zt,e(r), ∇p(r, ·), and (y(r, ·),∇) y(t + δ, ·) ◦ Zt,e(r) are
continuous in time r almost surely with respect to the L2(T2,R2)-norm. In this
way, by Lemma 4.3, the functions ∇y(t, ·) and ∆y(t, ·) are continuous in time
t with respect to the L2(T2,R2)-norm. Formula (4.26) and the initial condition
Zt,e(t) = e imply that in the L2(T2,R2)-norm, we have:

∂ty(t, ·) = −[∇y(t,·) y(t, ·) + ν∆ y(t, ·) +∇p(t, ·)]. (4.27)

Since the right-hand side of equation (4.27) is an Hα−2-map, then this im-
plies that the left side is also an Hα−2-map. Therefore, the function ∂ty(t, ·) is
continuous in θ ∈ T2.

The relation given by equality (4.27) is obtained at this point for the right
derivative of y(t, θ) with respect to t. However, notice that the right-hand side of
equation (4.27) is continuous in t which clearly implies that the right derivative
∂ty(t, θ) is continuous in each t of the time interval [0, T ). Finally, this function
is uniformly continuous on every compact sub-interval of [0, T ). For this reason,
there is a left derivative of y(t, θ) in t, and therefore, this proves the existence of
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the continuous derivative ∂ty(t, θ) everywhere of the time interval [0, T ].

Finally, we come to the last lemma that will conclude the proof of Theorem
4.1.

Lemma 4.7. For every time t ∈ [0, T ], the function y(t, ·) : T2 → R2 is divergence-
free. Moreover, the pair of functions (y(t, ·), p(t, ·)) verifies the backward Navier-
Stokes equations (4.2).

Proof. Initially, fix a time t > 0 and consider the TeDα
v (T2)-valued curve γ(u) =

E [exp−1Zt,e(u)], where u ≥ t, in a neighborhood of the origin of TeDα
v (T2).

The FSDE of the system (4.4) can be represented as an SDE on the manifold
Dα(T2) as follows:dZ

t,e(s) = exp
{
Ŷ (s, Zt,e(s)) ds+ A(Zt,e(s)) dWs

}
,

Zt,e(t) = e,

where Ŷ (s) is the right-invariant vector field on Dα(T2) generated by function
y(s, ·).

This implies that the derivative of the curve γ(u) with respect to time u and
evaluated at time t is given by

∂

∂u
γ(u)

∣∣∣
u=t

= y(t, ·),

and therefore y(t, ·) ∈ TeDα
v (T2).

Next, the BSDE of the FBSDE system (4.4) implies that the final conditions
Y t,e(T ) = h(Zt,e(T )). This observation and the equality given by Lemma 4.5 in
(4.21) imply that y(T, ·) = h, just note that:

h(Zt,e(T )) = Y t,e(T ) = y(T, ·) ◦ e = y(T, ·)

Since we already obtained ∂ty(t, ·) to which it associates the solution p(t·) using
the equation (4.27) in Lemma 4.6, then the proof of the lemma is now complete.
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4.2 Conclusion

In the previous section, we conclude our study of the relationship between
the solutions of the system of classical Navier-Stokes equations and the solutions
of a forward-backward system of stochastic differential equations on the Dα

v (Tn).
However, new questions arise and remain open within this issue, the most general
being: is it possible to generalize or extend this concept?

Indeed, other approaches are possible to test, and I will list some hypotheses
that can be studied below:

• I) By extending the torus to higher dimensions.

• II) By testing other free-divergence maps.

• III) By studying other cases of diffeomorphism groups.

• IV) By testing homeomorphisms instead of diffeomorphisms.

Finally, we emphasize how stochastic analysis is both interesting and challeng-
ing as a research area, in addition to clearly being a field of study with diverse
applications that connect well with other areas, as seen in this work that permeated
geometry, algebra, and analysis content.
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Chapter 5

Appendix

Theorem 5.1 (Itô’s Formula). Let H1 and H2 be Hilbert Spaces, Wt be a n-
dimensional Brownian Motion and Xt ∈ H1 a Stochastic Process given by:

Xt = X0 +

∫ t

0

a(s)ds+

∫ t

0

A(s)dWs,

such that for each direction i ∈ N, it is holds:

X i
t = X i

0 +

∫ t

0

ai(s)ds+
n∑

l=1

∫ t

0

Al
i(s)dW

l
s

in which a(s) is an H1-valued Stochastic Process and A(s) is a L(Rn, H1)-valued
Stochastic Process, and let F = (F1(t, x), ..., Fd(t, x), ...) be a C2([0, t] × H1, H2)

application, so we get for each d ∈ N:

Fd(t,Xt) =Fd(0, X0) +

∫ t

0

∂Fd

∂s
(s,Xs)ds+

∞∑
i=1

∫ t

0

∂Fd

∂xi
(s,Xs)ai(s)ds (5.1)

+
∞∑
i=1

n∑
l=1

∫ t

0

∂Fd

∂xi
(s,Xs)Al

i(s)dW
l
s

+
1

2

∞∑
i=1

∞∑
h=1

n∑
l=1

∫ t

0

∂Fd

∂xi∂xh
(s,Xs)Al

i(s)Al
h(s)ds

Proof. Throughout this demonstration, the subscripted d is used to indicate the
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d-th component function of F , while the subscripts i and h indicate, respectively,
the i-th and h-th components of the process Xt or the corresponding i-th and
h-th derivatives of each function Fd. Moreover, we will use the index l to indicate
the dimensions of the Brownian motion dWs and m when there are two distinct
Brownian motions.

First, assume that Fd, Xt,
∫ t

0
A(s)dWs,

∫ t

0
|a(s)|ds and

∫ t

0
⟨Ai(s),Ah(s)⟩ds, for

all l ∈ {1, . . . , n} and i, h ∈ N are bounded in (t,Xt).
In which, ∫ t

0

⟨Ai(s),Ah(s)⟩ds =
n∑

l=1

∫ t

0

Al
i(s)Al

h(s)ds

By simplicity, we will denote ai(s) and Ai(s) by ai and Ai for all s ∈ [0, t] and
i ∈ N.

Define the stopping time:

τc =

0, if |X0| > c

inf
{
t : max

(∣∣∣∫ t

0
AdWs

∣∣∣ , ∫ t

0
|a|ds,

∫ t

0
⟨Ai,Ah⟩ds

)
> c
}
, if |X0| ≤ c.

We have that τc tends to ∞ when c tends to ∞. So, if we prove the equation
(5.1) for Xτc∧t on the set {τc > 0}, when c→ ∞, then the equation (5.1) is proved
for the general case.

Assume that a and A are bounded elementary functions and define the parti-
tion:

t0 = 0 < t1 < ... < tn < t

for the time interval [0, t]. Using Taylor’s Expansion in each direction d ∈ N of
function F , we obtain:

Fd(t,Xt) =Fd(0, X0) +
∑
j

∆Fd(tj, Xj)

=Fd(0, X0) +
∑
j

∂Fd

∂t
∆tj +

∞∑
i=1

∑
j

∂Fd

∂xi
∆X i

j

98



5. Appendix

+
1

2

∑
j

∂2Fd

∂t2
(∆tj)

2 +
∞∑
i=1

∑
j

∂2Fd

∂t∂xi
∆tj∆X

i
j

+
1

2

∞∑
i=1

∞∑
h=1

∑
j

∂2Fd

∂xi∂xh
∆X i

j∆X
h
j +

∑
j

Rj

where ∂Fd

∂t
, ∂Fd

∂x
, and others, are evaluated at the points (tj, Xtj), ∆tj = tj+1 − tj,

∆X i
j = X i

tj+1
− X i

tj
, i = 1, 2, . . ., ∆Fd = Fd(tj+1, Xtj+1

) − Fd(tj, Xtj) and Rj =

o(|∆tj|2 + |∆Xj|2) for all j.
If ∆tj → 0, by the definition of the Riemann integral, we obtain:

∑
j

∂Fd

∂t
∆tj =

∑
j

∂Fd

∂t
(tj, Xtj)∆tj →

∫ t

0

∂Fd

∂t
(s,Xs)ds

Now, our goal will be to prove that:

∞∑
i=1

∑
j

∂Fd

∂xi
(tj, Xtj)∆X

i
j →

∞∑
i=1

∫ t

0

∂Fd

∂xi
(s,Xs)dX

i
s

To demonstrate this convergence, consider the decomposition of ∆X i
j into ele-

mentary functions ai and Ai as follow:

∆X i
j = ai(tj)∆tj +

n∑
l=1

Al
i(tj)∆W

l
j

In this way, we obtain:

∞∑
i=1

∑
j

∂Fd

∂xi
(tj, Xtj)∆X

i
j

=
∞∑
i=1

∑
j

∂Fd

∂xi
(tj, Xtj)

(
ai(tj)∆tj +

n∑
l=1

Al
i(tj)∆W

l
j

)
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=
∞∑
i=1

∑
j

∂Fd

∂xi
(tj, Xtj)ai(tj)∆tj +

n∑
l=1

∞∑
i=1

∑
j

∂Fd

∂xi
(tj, Xtj)Al

i(tj)∆W
l
j

Which, by the definitions of Riemann and stochastic integrals, converge respec-
tively to:

∞∑
i=1

∫ t

0

∂Fd

∂xi
(s,Xs)ai(s)ds+

n∑
l=1

∞∑
i=1

∫ t

0

∂Fd

∂xi
(s,Xs)Al

i(s)dW
l
s

=
n∑

l=1

∞∑
i=1

∫ t

0

∂Fd

∂xi
(s,Xs)ai(s)ds+

∂Fd

∂xi
(s,Xs)Al

i(s)dW
l
s

=
∞∑
i=1

∫ t

0

∂Fd

∂xi
(s,Xs)dX

i
s

Now, for the component with (∆tj)
2 in Taylor’s Expansion, we have that:

∣∣∣∣∣∑
j

∂2Fd

∂t2
(∆tj)

2

∣∣∣∣∣ ≤ max
j

|∆tj| ·
∑
j

∣∣∣∣∣∂2Fd

∂t2
(tj, Xtj)

∣∣∣∣∣∆tj
and this vanish as |P| → 0. Indeed,

∑
j

∣∣∣∣∂2Fd

∂t2
(tj, Xtj)

∣∣∣∣∆tj → ∫ t

0

∣∣∣∣∂2Fd

∂t2
(t,Xt)

∣∣∣∣ ds, |P| → 0.

For the component of Taylor’s Expansion with ∆tj∆X
i
j. We will verify that:

∞∑
i=1

∑
j

∂2Fd

∂t∂xi
(tj, Xtj)∆tj∆X

i
j → 0 in L2(Ω).

Let βi(tj) := ∂Fd

∂t∂xi
(tj, Xtj) and let ∆X i

j = ai(tj)(∆tj) +
∑n

l=1Al
i(tj)∆W

l
j , since
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this converges to zero, we will use the L2-norm to prove it as follows:

∞∑
i=1

∑
j

βi(tj)∆tj∆X
i
j

=
∞∑
i=1

∑
j

βi(tj)∆tj

(
ai(tj)∆tj +

n∑
l=1

Al
i(tj)∆W

l
j

)

=
∞∑
i=1

(∑
j

βi(tj)ai(tj)(∆tj)
2 +

n∑
l=1

∑
j

βi(tj)Al
i(tj)∆W

l
j∆tj

)
.

Let us prove the first term goes to zero:

∣∣∣∣∣
∞∑
i=1

∑
j

βi(tj)ai(tj)(∆tj)
2

∣∣∣∣∣ ≤ max
j

(∆tj)
∞∑
i=1

∑
j

|βi(tj)ai(tj)|∆tj

≤ max
j

(∆tj)
∑
j

|β(tj)| · |a(tj)|∆tj → 0.

Indeed, let us observe that:

∑
j

∥β(tj)∥ ∥a(tj)∥∆tj →
∫ t

0

∥β(s)∥ ∥a(s)∥ds

Now, let us prove that the second term vanishes. For this, we will use the
L2(H1)-norm:

E

∣∣∣∣∣
n∑

l=1

∞∑
i=1

∑
j

βi(tj)Al
i(tj)∆W

l
j∆tj

∣∣∣∣∣
2

=E

[(
n∑

l=1

∞∑
i=1

∑
j

βi(tj)Al
i(tj)∆tj∆W

l
j

)
·

(
n∑

m=1

∞∑
h=1

∑
k

βh(tk)Am
h (tk)∆tk∆W

m
k

)]

=E

[
n∑

l,m=1

∞∑
i,h=1

∑
j,k

βi(tj)βh(tk)Al
i(tj)Am

h (tk)∆tj∆tk∆W
l
j∆W

m
k

]
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=E

[
E

[
n∑

l,m=1

∞∑
i,h=1

∑
j,k

βi(tj)βh(tk)Al
i(tj)Am

h (tk)∆tj∆tk∆W
l
j∆W

m
k

∣∣∣∣∣Ftk

]]

Let j < k, since Brownian Motion has independents trajectories, so ∆W l
j and

∆Wm
k are independents for every case l ̸= m, thus, the expectation of their product

is 0, remaining the case l = m. In this way, we obtain:

n∑
l=1

∞∑
i,h=1

∑
j,k

E
[
βi(tj)βh(tk)Al

i(tj)Al
h(tk)∆tj∆tk

]
· E
[
E
[
∆W l

j∆W
l
k |Ftk

]]
=

n∑
l=1

∞∑
i,h=1

∑
j,k

E
[
βi(tj)βh(tk)Al

i(tj)Al
h(tk)∆tj∆tk

]
· 0

=0.

The case k < j is analogous, so we will analyze the case where j = k:

E

[
E

[
n∑

l=1

∞∑
i,h=1

∑
j,k

βi(tj)βh(tk)Al
i(tj)Al

h(tk)∆tj∆tk∆W
l
j∆W

l
k

∣∣∣∣∣Ftj

]]

=E

[
E

[
n∑

l=1

∞∑
i,h=1

∑
j

βi(tj)βh(tj)Al
i(tj)Al

h(tj)(∆tj)
2(∆W l

j)
2

∣∣∣∣∣Ftj

]]

=
n∑

l=1

∞∑
i,h=1

∑
j

E
[
βi(tj)βh(tj)Al

i(tj)Al
h(tj)(∆tj)

2
]
· E

[
E

[
(∆W l

j)
2

∣∣∣∣∣Ftj

]]

=
n∑

l=1

∞∑
i,h=1

∑
j

E
[
βi(tj)βh(tj)Al

i(tj)Al
h(tj)(∆tj)

2
]
· (∆tj)

This expression tends to 0 as ∆tj tends to 0.
Now, let us analyze the last component of Taylor’s Expansion, which has vari-

ation: ∆X i
j∆X

h
j . Let

∆X i
j = ai∆tj +

n∑
l=1

Al
i∆W

l
j ,
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and for ∆Xh
j is analogous with functions ah and Ah, then:

∞∑
i=1

∞∑
h=1

∑
j

∂2Fd

∂xi∂xh
∆X i

j∆X
h
j

=
∞∑
i=1

∞∑
h=1

∑
j

∂2Fd

∂xi∂xh

(
ai∆tj +

n∑
l=1

Al
i∆W

l
j

)
·

(
ah∆tj +

n∑
m=1

Am
h ∆W

m
j

)

=
∞∑
i=1

∞∑
h=1

∑
j

∂2Fd

∂xi∂xh
aiah(∆tj)

2

+
n∑

m=1

n∑
l=1

∞∑
i=1

∞∑
h=1

∑
j

∂2Fd

∂xi∂xh

(
aiAm

h ∆tj∆W
m
j + ahAl

i∆tj∆W
l
j

)
+

n∑
m=1

n∑
l=1

∞∑
i=1

∞∑
h=1

∑
j

∂2Fd

∂xi∂xh
Al

iAm
h ∆W

l
j∆W

m
j

= I1 + I2 + I3.

Where, each ai and Ai is evaluated in tj and ∂2Fd

∂xi∂xh
is evaluated in (tj, Xtj). In

this equality, the terms I1 and I2, respectively, the terms with (∆tj)
2, ∆tj∆Wm

j

and tj∆W l
j tends to 0 as ∆tj tends to 0, as we saw in the previous demonstrations.

However, it remains to see what happening with the term I3 with ∆W l
j∆W

m
j .

We will assert that:

n∑
m=1

n∑
l=1

∞∑
i=1

∞∑
h=1

∑
j

∂2Fd

∂xi∂xh
Al

i(tj)Am
h (tj)∆W

l
j∆W

m
j

→
n∑

l=1

n∑
m=1

∞∑
i=1

∞∑
h=1

∫ t

0

∂2Fd

∂xi∂xh
Al

i(s)Am
h (s)ds

Since Brownian Motions W l
j and Wm

j have independents trajectories, so the
cases where l ̸= m vanishes in the product. So, the equality is reduced to the case:
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n∑
l=1

∞∑
h=1

∞∑
i=1

∑
j

∂2Fd

∂xi∂xh
(tj, Xtj)Al

i(tj)Al
h(tj)(∆W

l
j)

2

→
n∑

l=1

∞∑
h=1

∞∑
i=1

∫ t

0

∂2Fd

∂xi∂xh
Ai(s)Ah(s)ds

To prove the assert above, define:

γl(t) =
∞∑
h=1

∞∑
i=1

∂2Fd

∂xi∂xh
(t,Xt)Al

i(t)Al
h(t)

and γlj = γl(tj), γj =
∑n

l=1 γ
l
j. So,

E

[
n∑

l=1

∑
j

γlj(∆W
l
j)

2 −
n∑

l=1

∑
j

γlj∆tj

]2

= E

[
n∑

l=1

∑
j

γlj
(
(∆W l

j)
2 −∆tj

)]2

= E

[
n∑

m=1

n∑
l=1

∑
j,k

γlj
(
(∆W l

j)
2 −∆tj

)
· γmk

(
(∆Wm

k )2 −∆tk
)]

=
n∑

m=1

n∑
l=1

∑
j,k

E
[
γljγ

m
k

(
(∆W l

j)
2 −∆tj)(∆W

m
k )2 −∆tk)

)]
=

n∑
m=1

n∑
l=1

∑
j,k

E
[
E[γljγmk

(
(∆W l

j)
2 −∆tj)(∆W

m
k )2 −∆tk)

)
|Ftk ]

]
If j < k, then

n∑
m=1

n∑
l=1

∑
j,k

E
[
E[γljγmk

(
(∆W l

j)
2 −∆tj)(∆W

m
k )2 −∆tk)

)
|Ftk ]

]
=

n∑
m=1

n∑
l=1

∑
j,k

E[γljγmk ((∆W l
j)

2 −∆tj)] · E[(∆Wm
k )2 −∆tk|Ftk ]
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=
n∑

m=1

n∑
l=1

∑
j,k

E[γljγmk ((∆W l
j)

2 −∆tj)] · 0

=0.

For the case k < j, the proof is analogous. Finally, consider j = k e we get:

n∑
m=1

n∑
l=1

∑
j

E
[
γljγ

m
j

(
(∆W l

j)
2 −∆tj)(∆W

m
j )2 −∆tj)

)]

Again, since Brownian Motion have trajectories independents, the cases l ̸= m

vanish, so:

n∑
l=1

∑
j

E
[
(γlj)

2(∆W l
j)

2 −∆tj)
2
]

n∑
l=1

∑
j

E
[
E
[
(γlj)

2(∆W l
j)

2 −∆tj)
2|Ftj

]]
n∑

l=1

∑
j

E
[
E
[
(γlj)

2|Ftj

]
· E
[
(∆W l

j)
2 −∆tj)

2|Ftj

]]
n∑

l=1

∑
j

E[(γlj)2] · E
[
(∆W l

j)
2 −∆tj)

2
]

This occurs because (γlj)
2 is Ftj -measurable and (∆W l

j)
2 is independent of Ftj .

So,

n∑
l=1

∑
j

E[(∆W l
j)

2 −∆tj]
2 =

n∑
l=1

∑
j

E[(∆W l
j)

4 − 2(∆W l
j)

2(∆tj) + (∆tj)
2]

= 3n(∆tj)
2 − 2n(∆tj)

2 + (∆tj)
2
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= (n+ 1)(∆tj)
2

In this way,

n∑
l=1

∑
j

E[(γlj)2] · E[(∆W l
j)

2 −∆tj)
2] = (n+ 1)

∑
j

E[γ2j ](∆tj)2

And this expression tends to 0 as ∆tj tends to 0.
Then, in the end,

n∑
l=1

∑
j

γlj(∆W
l
j)

2 →
n∑

l=1

∫ t

0

γl(s)ds (5.2)

By equation 5.2, we obtain:

n∑
l=1

∞∑
i=1

∑
j

∂2Fd

∂x2i
(tj, Xtj)Ai(tj)Ai(tj)(∆W

l
j)

2

→
∞∑
i=1

∫ t

0

∂2Fd

∂x2i
(s,Xs)Ai(s)Ai(s)ds

Moreover, it is clear that:

∑
j

Rj =
∑
j

o(|∆tj|2 + |∆Xj|2) → 0

as ∆tj → 0.
That completes the demonstration of Itô Formula in Hilbert Spaces.
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