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RESUMO

O estudo das Equações Diferenciais Ordinárias é de extrema importância para diversas
áreas, como Física e Engenharia. Entretanto, existem algumas Equações Diferenciais
Ordinárias (EDOs), em que os métodos mais conhecidos não se mostram eficazes, o que faz
necessário a exploração de ferramentas do conhecimento para uma abordagem alternativa.
Uma das ferramentas que pode ser usada é resolver por meio das Séries de Potências,
que permite representar a solução da EDO em forma de Séries em torno de um ponto
específico. Neste contexto, buscou-se investigar como o método de séries de potências pode
ser aplicado na resolução de EDOs de segunda ordem com coeficientes variáveis. Para
comprovar sua funcionalidade, aplicou-se o método a duas EDOs muito importantes dentro
da área da Matemática, a Equação de Airy e a Equação de Legendre. Como esse estudo
está relacionado com as EDOs, ele insere-se na área da Matemática Pura, especificamente
na subárea da Análise.

Palavras-chave: Séries de Potências, Equações Diferenciais Ordinárias, Coeficientes
Variáveis.



ABSTRACT

The study of Ordinary Differential Equations is extremely important for various fields,
such as Physics and Engineering. However, there are some Ordinary Differential Equations
(ODEs) for which the most well-known methods are not effective, making it necessary to
explore knowledge tools for an alternative approach. One of the tools that can be used is
solving through Power Series, which allows representing the solution of the ODE in the
form of Series around a specific point. In this context, we sought to investigate how the
power series method can be applied in solving second-order ODEs with variable coefficients.
To prove its functionality, the method was applied to two very important ODEs in the field
of mathematics, the Airy equation and the Legendre equation. As this study is related to
ODEs, it falls within the field of pure mathematics, specifically in the subfield of analysis.

Key-words: Power Series, Ordinary Differential Equations, Variable Coefficients.
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1 INTRODUÇÃO

No curso de Licenciatura em Matemática da Universidade Federal da Paraíba, no
Campus IV estudamos a disciplina de Séries e Equações Diferenciais Ordinárias, diversos
métodos utilizados na resolução de problemas envolvendo essas equações. Entre esses
estudos o tema de Séries de Potências e sua aplicação na resolução de Equações Diferenciais
nem sempre é explorado com profundidade, apesar de sua ampla utilização na modelagem
de problemas do cotidiano.

No entanto, existem EDOs para as quais os métodos tradicionalmente apresentados
na disciplina não se mostram eficazes. Nesses casos, torna-se necessário recorrer a aborda-
gens alternativas, como o uso de Séries de Potências. Esse método é especialmente útil
quando lidamos com EDOs que possuem coeficientes não constantes. Segundo Matos(1),
o método consiste em substituir a solução por uma Série de Potências, e, em seguida,
calcular seus coeficientes.

Diante disso, este trabalho busca realizar uma investigação na área de Matemática
Pura, especificamente na subárea de Análise, com foco no tema: Uso de Séries de Potências
na Resolução de Equações Diferenciais Ordinárias. O estudo está direcionado ao Ensino
Superior e integrar conteúdos abordados na disciplina Séries e Equações Diferenciais
Ordinárias, ofertada no curso de Licenciatura em Matemática. Para a compreensão será
necessária uma breve revisão dos conceitos fundamentais envolvendo Sequências, Séries e
Séries de Potências.

O método de Séries de Potências permite encontrar soluções para EDOs em
casos situações em que os métodos tradicionais não são eficientes, sobretudo quando os
coeficientes são variáveis. Dessa forma, amplia-se o conjunto de problemas que podem ser
resolvidos, possibilitando o tratamento de situações que, de outro modo, permaneceriam
sem solução. A importância dessa diversidade de métodos se reforça quando se considera
que, segundo Matos (1), as EDOs são amplamente aplicadas em áreas como Engenharia,
Economia e Física, servindo de base para a formulação matemática de leis e fundamentos
teóricos nessas disciplinas.

Assim, este trabalho de investigação pode colaborar para um melhor entendimento
por parte dos estudantes que se dedicam a essa área, mas que muitas vezes não têm contato
aprofundado com esse conteúdo, restringindo-se aos métodos usuais para a resolução de
EDOs. O estudo, portanto, pode beneficiar não apenas os alunos da Licenciatura, como
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também ajudar pesquisadores interessados na temática.

Como mencionado, as EDOs aparecem em diversas áreas. Em seu Trabalho de
Conclusão de Curso, Alves (2) destaca que elas estão presentes na modelagem de diversos
fenômenos, como a queda livre de um corpo, o crescimento populacional e a perseguição
entre presa e predador, entre outros. Ainda, segundo Matos (1), não basta apenas encontrar
a solução de uma EDO: é igualmente essencial formular matematicamente o fenômeno que
dá origem à equação diferencial. Além disso, suas soluções são têm aplicações importantes
em campos como mecânica quântica e cinética química.

À vista disso, este trabalho tem como objetivo geral analisar o método de Séries de
Potências como ferramenta para a solução de EDOs. Para isso, busca-se, primeiramente
definir os conceitos historicamente construídos: Sequências, Séries e Equações Diferenciais
Ordinárias, Séries de Potências e como se relacionam. Em seguida, identificar em quais
tipos de EDOs o método de Séries de Potências pode se aplicar, e, por fim, demonstrar
sua utilização na resolução dessas equações e em suas aplicações.

Desse modo, este trabalho está organizado em três seções. Na primeira, que tem
como referencial teóricos os livros de Boyer (3) e Eves (4), com uma breve apresentação
sobre o desenvolvimento histórico dos principais conceitos envolvendo Séries e Séries de
Potências. Em seguida, apresenta-se a fundamentação teórica necessária para realizar o
estudo do método envolvendo as Séries de Potências, fundamentado nos livros de Boyce,
Diprima e Meade (5) e Matos (1). Por fim, no último capítulo na última seção são
exploradas duas aplicações do método, analisando duas equações fundamentais na área da
Matemática, baseando-se nos livros Boyce, Diprima e Meade (5), Matos (1) e Zill(6).
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2 APONTAMENTOS HISTÓRICOS

Desenvolvida há milhares de anos, a Matemática exerce um papel fundamental
em nossa sociedade, desde sua criação até os dias atuais. É importante destacar que a
Matemática surgiu devido a necessidade do homem de contar e de medir, mas com o passar
do tempo, com a colaboração de diversos intelectuais, ela evoluiu com novos conceitos e
novas técnicas.

Neste tópico, iremos fazer uma breve abordagem sobre a evolução das ideias em
torno do conceito de Séries e de Séries de Potências, que despertou a curiosidade de
estudiosos da Antiguidade até matemáticos europeus no século XVIII.

Os babilônios foram um dos primeiros a ter conhecimento sobre o conceito de série.
Eles tinham um entendimento inicial sobre alguns conceitos que envolviam Séries e Pro-
gressões, que hoje estão ligados às Séries Geométricas e Aritméticas, especialmente a soma
dos termos de uma Progressão Geométrica e de uma Sequência Numérica, respectivamente

Quando vamos falar sobre o cálculo integral é necessário fazer referência a John
Wallis (1616-1703), um matemático britânico do século XVII que fez contribuições enri-
quecedoras para a Matemática, como por exemplo, o uso do símbolo do infinito (∞). Eves
(4) afirma que Wallis foi quem abriu o caminho para Isaac Newton (1642-1727), fazendo
um uso sistemático de Séries Infinitas na área da Análise.

Isaac Newton teve uma contribuição fundamental no desenvolvimento das Séries,
destacando-se especialmente no estudo e na formalização das Séries de Potências. Ele
explicou e demonstrou que poderíamos utilizar o Teorema do Binômio para expoentes

Figura 1 – John Wallis

Fonte: Eves (2011)
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não inteiros, permitindo, assim a série que hoje chamamos de Série Binomial. Ademais,
Newton resolvia funções transcendentes (seno, cosseno, arco-seno,etc) utilizando Séries de
Potências. E, Boyce, Diprima e Meade (5) afirmam que Newton desenvolveu um método
para resolver Equações Diferenciais Ordinárias utilizando Séries Infinitas. Em paralelo a
Newton, Gottfried Wilhelm Leibniz (1646-1716) foi mais um intelectual que Séries Infinitas
desempenharam um papel fundamental em seus trabalhos. Segundo Boyer (3), foi após
um problema proposto por Christiaan Huygens (1629-1695) sobre encontrar a soma dos
recíprocos números triangulares, isto é, 2

n(n+1) . Após resolver esse problema, Leibinz propôs
que era possível encontrar a soma de quase todas as séries.

Figura 2 – Isaac Newton

Fonte: Eves (2011)

O escocês James Gregory (1638-1675) teve um grande papel no estudo de Séries,
pois, foi o primeiro a diferenciar uma Série convergente e uma Série Divergente. Ademais,
Eves (4) conta que Gregory fez a expansão em série infinita de arctan x, tan x e arcsec x.
Por sua vez, o matemático britânico Brook Taylor (1685-1731) foi responsável por criar
um método de expansão de funções em Séries de Potências. Em 1715, Taylor publicou em
seu Methodus incrementorum directa it inversa a Série que hoje conhecemos como a Série
de Taylor,

f(x+ a) = f(a) + f ′(a)x+ f ′′(a)x
2

2! + f ′′′(a)x
3

3! + · · ·+ f (n)(a)x
n

n! + · · ·

que possui um caso especial que é conhecida como Série de Maclaurin. Segundo Boyer
(3), Colin Maclaurin (1698-1746), um matemático escocês, é lembrado por causa de um
resultado em análise no qual ele tinha sido antecipado por outros. Em 1742, em seu Treatise
of fluxions, aparece a Série de Maclaurin, que é um caso especial da Série de Taylor quando
substituimos a por zero. Boyer (3) completa que Taylor não sabia sobre isso mas James
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Gregory já conhecia essa Série. E, a Série de Maclaurin já havia aparecido no Methodus
differentialis de James Stirling (1692-1770), que trouxe avanços relevantes para o estudo
de convergência de Séries Infinitas e das funções especiais definidas por Séries.

Figura 3 – Colin Maclaurin

Fonte: Eves (2011)

Durante o século XVIII, Leonhard Euler (1707-1783) foi outro estudioso que se
aprofundou no conteúdo de Séries Infinitas. Segundo Eves (4), tinha pouco cuidado na
utilização das Séries, fazendo aplicações a elas que só eram válidas com somas finitas. Para
mais, Euler considerava as Séries de Potências como polinômios de grau infinito e acabava
contando com a sorte para chegar em resultados profundos e verdadeiros.

Figura 4 – Leonhard Euler

Fonte: Eves (2011)

Quando estamos diante a uma Série, um dos estudos que podemos fazer com ela é
verificar a sua convergência, ou seja, observar se a soma de seus termos aproxima-se de
um valor finito. Eves (4) conta que o primeiro a fazer essa investigação foi o alemão Carl
Friedrich Gauss (1777-1855), em 1812, no seu artigo sobre Séries Hiporgeométricas. Outro



Capítulo 2. Apontamentos históricos 19

intelectual que teve uma grande colaboração do estudo da convergência de uma Série foi
o matemático Francês Augustin-Louis Cauchy (1789-1857). Inclusive um dos métodos
utilizados para determinar se uma Série é convergente é o Critério do n-ésimo termo, ou, o
Critério de Cauchy, que leva o seu nome devido ao rigor que ele introduziu no estudo das
séries.

Niels Henrik Abel (1802-1829), um matemático noruguês, colaborou bastante no
trabalho de Cauchy, já que Abel forneceu teoremas fundamentais sobre o estudo do
limite das Séries de Potências, que hoje chamamos de Teorema de Abel. O alemão Karl
Weierstrass (1815-1897), tem como sua contribuição matemática mais conhecida a teoria
das funções complexas por meio de Séries de Potências. Segundo Eves (4), ele pôs em
prática com vigor uma extensão ao plano complexo de uma ideia tentada anteriormente
por Joseph-Louis Lagrange (1736-1813).

Assim, podemos observar que o desenvolvimento de conceitos relacionados Séries e
Séries de Potências não ocorreram de forma isolada, mas veio de uma construção coletiva
ao longo do tempo com diversos intelectuais. Essa colaboração vem desde a antiguidade
com as primeiras noções de Séries Geométricas e Aritméticas até progressos fundamentais
de matemáticos como Newton, Leibniz, Taylor, Maclaurin, Euler, Gauss, Cauchy, Abel e
Weierstrass, cada um contribuindo de maneira significativa para a consolidação da Análise
Matemática. Esse percurso histórico descrito nos mostra a importância do estudo das
Séries e Séries de Potências para diversos temas na área da Matemática, como resolução
de Equações Diferenciais e a teoria das funções complexas.
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3 FUNDAMENTOS

Neste capítulo, apresentamos os principais conceitos sobre Sequências Numéricas,
Séries infinitas e Séries de Potências, além de abordar suas extensões ás Séries de Taylor e
de Maclaurin. São noções fundamentais no estudo do método de resolução de Equações
Diferenciais Ordinárias por meio de Séries de Potências, que constitui o objeto de estudo
deste trabalho. Neste capítulo utilizaremos como base as referências (1) e (5), que servem
como recomendação caso queira se aprofundar no tema.

3.1 SEQUÊNCIAS NUMÉRICAS

Uma sequência ou sucessão de números é uma função

f : N→ R

que relaciona um número natural n a um número real f(n).

É denominado de n-ésimo termo ou termo geral de uma sequência f o valor de uma
sequência f e que pode ser representado por an, bn, xn, etc. Para simplificar, iremos utilizar
como representação an para referenciar o termo geral de uma sequência, de modo que,

f(n) = an.

Portanto, uma sequência se define como uma lista ordenada que apresenta infinitos
números. Uma sequência pode ser denotada como (an), n ∈ N ou simplesmente (an).
Podemos representar sequências da seguinte forma:

(a1, a2, a3, . . . , ai, . . .).

Exemplo 3.1. Considere a sequência an = 1
n
. Os termos dela são 1, 1

2 ,
1
3 ,

1
4 , · · ·

Sobre a classificação das sequências numéricas, ela é dada de acordo com o com-
portamento de seus termos. Dizemos que uma sequência (an) é limitada superiormente
quando existir um número real C, denominado cota superior da sequência, que atende à
seguinte condição

an ≤ C , ∀n.

Já para uma sequência (an) que é limitada inferiormente, existe um número real c,
denominado cota inferior da sequência, que atende à seguinte condição

an ≥ c , ∀n.
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Dizemos que uma sequência (an) é limitada quando os dois casos citados anterior-
mente ocorrerem de forma simultânea, ou seja, quando uma constate positiva K, que serve
como um limite superior para os termos da sequência, atender à seguinte condição

|an| ≤ K, ∀n.

Exemplo 3.2. Considere a sequência an = (−1)n. Note que ela é limitada, pois, seus
valores sempres estão entre -1 e 1.

Denominamos uma sequência (an) de monótona não descrescente quando

an ≤ an+1, ∀n,

isto é,
a1 ≤ a2 ≤ a3 ≤ · · · ≤ an ≤ · · ·

Exemplo 3.3. Considere a sequência an = n. Note que ela é uma sequência monótona
não decrescente já que 1 ≤ 2 ≤ 3 ≤ 4 ≤ . . .

Já uma sequência (an) é dita como monótona não crescente quando

an ≥ an+1, ∀n,

isto é,
a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ · · ·

Exemplo 3.4. Considere a sequência an = 1
n
. Note que ela é uma sequência monótona

não crescente já que 1 ≥ 1
2 ≥

1
3 ≥

1
4 ≥ · · · .

Conforme Matos (1), quando ocorrerem as desigualdades < e > ao em vez de
≤ e ≥, respectivamente, denominamos a sequência de monótona crescente ou monótona
decrescente, conforme o caso.

Ao analisar uma sequência é necessário identificar se esta é convergente, isto é, se
os seus termos estão se aproximando de um determinado número à medida que o índice
dessa sequência vai aumentando. Para essa análise é preciso estudar o limite da sequência.

Definição 3.1. Uma sequência (an) é chamada de convergente se existe um número
real L tal que os termos an se aproximam de L à medida que n cresce. Em outras palavras,
dizemos que L é o limite de (an) quando:

∀ε > 0, ∃n0 ∈ N tal que |an − L| < ε,∀n ≥ n0.
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Exemplo 3.5. Considere a sequência an = 1
n
. Note que:

lim
n→∞

an = 0.

Sendo assim, dizemos que a sequência an converge para 0.

3.2 SÉRIES

Após os estudos sobre os principais conceitos e propriedades relacionados às Sequên-
cias Numéricas, podemos prosseguir para o estudo das Séries, já que uma Série nada mais
é que uma soma dos termos de uma Sequência.

Dada uma sequência numérica (an), a soma infinita

a1 + a2 + a3 + · · ·+ an + · · ·

será representada da seguinte forma:∑∞n=1 an que pode ser chamada de série infinita,
ou simplesmente, série.

Quando vamos analisar uma série, utilizamos ferramentas para determinar se aquela
série é convergente (somável) ou divergente (não somável). E para isso, consideramos a
sequência de somas parciais daquela Série. É necessário realizar o estudo da convergência
da sequência de somas parciais da Série para determinar se uma Série é convergente ou
divergente, que representamos da seguinte forma:

Sn = a1 + a2 + a3 + a4 + · · ·+ an.

De acordo com Matos (1), dizemos que a Série
∞∑
n=1

an ,

é convergente quando a sequência (Sn) de suas somas parciais for convergente. Isto é, a
soma da série é o limite da sequência (Sn), ou seja:

∞∑
n=1

an = lim
n→∞

Sn.

Na situação que essa situação não ocorrer, ou seja, quando a série não for convergente
denominamos ela de divergente. Em outras palavras, a sequência (Sn) de suas somas parciais
é divergente, ou seja, não tem limite ou (Sn)→ ±∞.

Exemplo 3.6. Considere a série
∞∑
n=1

1
n2 = 1 + 1

4 + 1
9 + 1

16 + · · ·

Note que essa série é convergente, pois, 1
n2 → 0
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Exemplo 3.7. Considere a série
∞∑
n=1

n = 1 + 2 + 3 + 4 + · · ·

Note que essa série é divergente, pois, Sn →∞ quando n→∞.

Ainda falando sobre a convergência de uma série, existem dois casos específicos
sobre esse tópico. Dizemos que uma série ∑∞n=1 an é absolutamente convergente quando a
série

∞∑
n=1
|an|

for convergente. Por outro lado, dizemos que a série∑∞n=1 an é condicionalmente convergente
quando for convergente e

∞∑
n=1
|an|

for divergente.

Dentre as Séries mais estudadas, podemos destacar: as séries geométricas, que
possui a forma ∑∞n=1 αr

n−1; a série harmônica que é representada por ∑∞n=1
1
n
, e as séries

de encaixe que são do tipo ∑∞
n=1 (bn − bn+1) .

Como existem diferentes tipos de séries, cabe também a diferentes métodos utili-
zados para determinar se uma série classifica-se como convergente ou divergente. Como
exemplo: podemos citar o método do n-ésimo termo, o critério da cauda e critério da
comparação direta. Já que o foco é falar sobre Séries de Potências é importante entender o
Critério da Razão, indispensável para melhor compreensão das Séries de Potências e suas
aplicações.

3.2.1 Critério da Razão

Dada uma série ∑∞n=1 an, com an 6= 0,∀n, seja

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
(a) Se L < 1, então a série converge absolutamente;

(b) Se L > 1 ou L =∞, então a série diverge.

Exemplo 3.8. Tomemos como exemplo a série ∑∞n=1
n!
nn para utilizar o teste da razão

para verificar sua convergência. Seja

an = n!
nn
,
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podemos aplicar no teste da razão da seguinte forma:

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n+1)!
(n+1)n+1

n!
nn

.

Simplificando nossa expressão, ficamos com o seguinte

L = lim
n→∞

(n+ 1)! · nn
n! · (n+ 1)n+1 = lim

n→∞

(n+ 1) · nn
(n+ 1)n+1 = lim

n→∞

nn

(n+ 1)n

= lim
n→∞

(
n

n+ 1

)n
= lim

n→∞

(
1− 1

n+ 1

)n
= 1
e

Sendo assim, a série converge, pois

L = 1
e
≈ 0, 367 < 1.

3.3 SÉRIES DE POTÊNCIAS

Nesta seção, iremos falar sobre Séries de Potências, que é um importante instrumento
dentro da Análise Matemática, que pode ser utilizada para representar funções e na
resolução de Equações Diferenciais Ordinárias. Dito isso, uma Série de Potência é uma
Série em que os termos possuem potências de uma variável x. São Séries de Potências as
séries do tipo:

c0 + c1(x− x0) + c2(x− x0)2 + · · ·+ cn(x− x0)n + · · · ,

que pode ser representada da seguinte forma:
∞∑
n=0

cn(x− x0)n.

Nessa Série, dizemos que o número real x0 é o centro da série. Além disso, os
números cn são denominados de coeficientes. Existem algumas séries de potências em que
o valor de x0 é igual a 0, com isso elas podem ser escritas assim:

∞∑
n=0

cnx
n.

Conforme Matos (1), ao trabalhar com Séries de Potências temos uma perguntas
chave. Para pra quais valores reais de x a série é convergente? Toda Série de Potência da
primeira forma mostrada é convergente quando x = x0, sendo assim, a soma da série igual
a c0. Os valores de x que tornam a série convergente formam o domínio de uma função f,
que é dada por
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f(x) =
∞∑
n=0

cn(x− x0)n,

na qual a função é aproximada pelas Somas Parciais Sn da série, que são polinômios.

É importante destacar que quando
∞∑
n=0

cn(x− x0)n = 0

então,
cn = 0.

3.3.1 Intervalo de Convergência

Para determinar quais os valores de x a Série converge, utilizamos o Critério da
Razão, que como citado anteriormente é dado por

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ .
Como dito anteriormente, uma Série de Potências ∑∞n=0 cn(x−x0)n converge apenas

quando x = x0. Segundo Matos (1), pode convergir absolutamente em qualquer valor de
x, ou, no intervalo |x − x0| < R. Além disso, a Série é divergente quando |x − x0| > R,
podendo ser convergente ou não nos extremos desse intervalo. Esse R é um número real
que denominamos raio de convergência da série e o intervalo correspondente é chamado de
intervalo de convergência. Esse intervalo de convergência pode ser de diferentes tipos, que
são:

(x0 −R, x0 +R), [x0 −R, x+R), (x0 −R, x0 +R] ou [x0 −R, x0 +R],

dependendo da convergência ou não da série nos extremos do intervalo.

3.3.2 Derivação termo a termo

Com o estudo da convergência das Série de Potências, é possível entender melhor
algumas de suas propriedades mais importantes, que é a derivação e integração termo a
termo dentro do intervalo de convergência. Se uma Série de Potências ∑∞n=0 cn(x− x0)n,
converge para valores de x que pertencem ao intervalo (x0 − R, x0 + R), então a série
obtida pela derivação ou integração termo a termo também converge no mesmo intervalo.
A derivada de uma Série de Potências é dada por

∞∑
n=1

ncn(x− x0)n−1.
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Continuando na derivação termo a termo, podemos encontrar a derivada de segunda
ordem que é representada assim:

∞∑
n=2

n(n− 1)cn(x− x0)n−2

O estudo dessa propriedade é fundamental na resolução de uma EDO utilizando as
Séries de Potências, pois, a derivação termo a termo vai permitir substituir na EDO uma
série que represente a solução, como vamos estudar n tópico a seguir.

3.3.3 Séries de Potências na resolução de EDO

Definição 3.2. Uma equação que relaciona derivadas de funções ainda não determinadas,
em relação a uma variável independente é denominada equação diferencial ordinária (EDO).

Como disse Matos (1), uma Equação Diferencial Ordinária define-se como “uma
equação que envolve uma função desconhecida e suas derivadas ordinárias.” Podemos
representar assim uma Equação Diferencial Ordinária:

F (x, y, y′) = 0

onde x é a variável independente e y = y(x) é uma função que queremos encontrar. Ainda
podemos representar uma EDO das seguintes formas:

a) Forma normal: y′ = f(x, y)

b) Forma diferencial: P (x, y)dx+Q(x, y)dy = 0

Podemos classificar as EDO de acordo com sua ordem, que nada mais é que a
maior ordem da derivada que está presenta na equação. Neste trabalho, a que será base
para nosso estudo será a Equação Diferencial Ordinária Linear de Segunda Ordem que é
representada da seguinte forma:

P (x) · y′′ +Q(x) · y′ +R(x) · y = 0

Note que para o coeficiente P (x) 6= 0, podemos dividir a equação toda por esse
fator e chegamos nessa EDO

y′′(x) + Q(x)
P (x)y

′ + R(x)
P (x)y = 0

Levando em consideração essa EDO, dizemos que um ponto x0 é um ponto ordinário
quando P (x0) 6= 0. Neste caso, as funções Q(x)

P (x) e R(x)
P (x) são funções analíticas nesse ponto,

ou seja, quando elas podem ser desenvolvidas por Séries de Potências.
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Definição 3.3. Dizemos que um ponto x0 é um ponto ordinário ou não-singular da
equação diferencial (1) se P (x) e R(x) são analíticas em x0. Um ponto que não é um
ordinário é considerado como um ponto singular da equação.

No estudo do uso das Séries de Potências para encontrar a solução de uma EDO
de segunda ordem com coeficientes variáveis em torno de um ponto ordinário, torna-
se necessário entender em quais condições esse método pode ser utilizado. Para isso, é
necessário compreender o Teorema, que garante a existência de uma solução em forma de
série.

Teorema 3.1. Se x0 for um ponto ordinário da equação diferencial

P (x)y′′ +Q(x)y′ +R(x)y = 0,

ou seja, se p(x) = Q(x)/P (x) e q(x) = R(x)/P (x) forem analíticas em x0 então a solução
geral da equação será

y =
∞∑
n=0

cn(x− x0)n = c0y1(x) + c1y2(x),

em que c0 e c1 são arbitrários, e y1 e y2 são duas soluções em séries de potências que são
analíticas em x0. As soluções y1 e y2 formam um conjunto fundamental de soluções. Além
disso, o raio de convergência de cada uma das soluções em série y1 e y2 é pelo menos tão
grande quanto o mínimo dos raios de convergência das séries para p e q.

Esse teorema garante que quando os coeficientes da EDO são funções analíticas
em um ponto x0, existe pelo menos uma solução que pode ser representada por uma Série
de Potência centrada nesse ponto.

Com esse entendimento, podemos prosseguir e demonstrar como encontrar a solução
de uma EDO de segunda ordem com coeficientes variáveis em torno de um ponto ordinário
x0. Primeiramente, suponhamos que a solução y(x) da EDO pode ser escrita em forma de
Série de Potências, assim

y(x) =
∞∑
n=0

an(x− x0)n.

O segundo passo é fazer a derivação termo a termo da Série de Potências, como
mostrado anteriormente

y′ =
∞∑
n=1

ncn(x− x0)n−1

e,
y′′ =

∞∑
n=2

n(n− 1)cn(x− x0)n−2
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.

Em seguida, substituímos esses termos na EDO

y′′ + P (x)y′ +Q(x)y = 0.

e assim encontramos uma Série de Potências única. Em seguida, utilizamos a relação de
recorrência para determinar seus coeficientes.

Exemplo 3.9. Consideremos a seguinte EDO,

y′′ + 2xy = 0.

Note que essa é uma EDO de segunda ordem com coeficientes variáveis, pois perceba
que

• Coeficiente de y′′: 1 (constante);

• Coeficiente de y′: 0;

• Coeficiente de y: 2x (função polinomial de primeiro grau).

Agora, vamos supor que
y(x) =

∞∑
n=0

cnx
n.

Sendo assim,
y′′(x) =

∞∑
n=2

n(n− 1)cnxn−2

.

O próximo passo, é substituir esses termos na nossa EDO, portanto, temos que
∞∑
n=2

n(n− 1)cnxn−2 + 2x
∞∑
n=0

cnx
n = 0.

Perceba que podemos colocar o 2x dentro do somatório, realizando a multiplicação,
logo

∞∑
n=2

cnn(n− 1)xn−2 +
∞∑
n=0

2cnxn+1 = 0.

Note que nos dois somatórios x não está elevado ao mesmo valor, para facilitar,
vamos fazer com que ele fique com a mesma potência. Para isso, vamos usar k = n− 2 no
primeiro somatório e k = n+ 1 no segundo.Então, note que

• 1o caso: k = n− 2, então, n = k + 2;



Capítulo 3. Fundamentos 29

• 2o caso: k = n+ 1, então, n = k − 1.

Sendo assim, nossa soma fica da seguinte forma
∞∑
k=0

ck+2(k + 2)(k + 1)xk +
∞∑
k=1

2ck−1x
k = 0.

Agora, conseguimos deixar o termo x com a mesma potência, o próximo passo é
deixar o índice dos dois somatórios iguais. Para isso, vamos relembrar que

∞∑
n=0

an = a0 + a1 + a2 + · · · = a0 +
∞∑
n=1

an.

Então, usando essa propriedade na nossa solução, fazemos o seguinte

c0+2(0 + 2)(0 + 1)x0 +
∞∑
k=1

ck+2(k + 2)(k + 1)xk +
∞∑
k=1

2ck−1x
k = 0.

Simplificando o primeiro termo, temos que

2 · c2 +
∞∑
k=1

ck+2(k + 2)(k + 1)xk +
∞∑
k=1

2ck−1x
k = 0.

Agora, que os dois somatórios possuem o mesmo índice, podemos transformá-los
em um só, da seguinte forma

c22 +
∞∑
k=1

[ck+2(k + 2)(k + 1) + 2ck−1]xk = 0.

Observe que o termo xk está em evidência, já que ele estava nas duas parcelas da
soma. Note que isso é uma Série de Potências que resulta em 0, ou seja, a primeira parcela
e a segunda parcela são iguais a 0. Sendo assim,

• Na 1o parcela, temos que c2 = 0;

• Na 2o parcela, temos que ck+2(k + 2)(k + 1) + 2ck−1 = 0.

Sendo assim, já podemos concluir que c2 = 0. Já no 2o termo, vamos isolar o
coeficiente com maior índice, ou seja, o ck+2 e chegamos na seguinte relação

ck+2 = − 2ck−1

(k + 2)(k + 1) , k ≥ 1.

Chamamos essa relação de fórmula de recorrência. A fórmula de recorrência serve
apenas para k ≥ 1, já que o somatório inicia no mesmo valor. Em seguida, precisamos
determinar os coeficientes. Então, temos o seguinte



Capítulo 3. Fundamentos 30

• c0 e c1 são arbitrários;

• c2 = 0.

Além dessas informações, olhando nossa fórmula de recorrência, podemos notar
que ck+2 é dado em função de ck−1. Logo, os coeficientes são dados de três em três, ou seja,
c0 determina c3 que determina c6,· · · ; c1 determina c4 que determina c7,· · · ; e c2 determina
o c5 que determina o c8, · · · . Mas sabemos que c2 = 0, então, chegamos a conclusão que
c2 = c5 = c8 = c11 = · · · = 0.

Para a sequência c0, c3, c6, · · · , vamos utilizar k = 1, 4, 7, · · · na nossa fórmula de
recorrência. Então, temos

• Para k=1:
c3 = − 2c0

3 · 2 = −c0

3 .

• Para k=4:
c6 = − 2c3

6 · 5 = −
2(−c0

3 )
30 = c0

45 .

• Para k=7:

c9 = − 2c6

9 · 8 = −
2
(
c0
45

)
72 = − c0

1620 .

Observando os resultados, podemos notar que eles sugerem que a fórmula geral seja

c3n = (−1)n2nc0

2 · 3 · 5 · 6 · · · (3n− 1)(3n) , n ≥ 1.

Agora vamos observar a sequência c1, c4, c7, · · · , utilizando k = 2, 5, 8, · · · na nossa
fórmula de recorrência. Então, temos

• Para k=2:
c4 = − 2c1

4 · 3 = −c1

6

• Para k=5:
c7 = − 2c4

7 · 6 = −
2(−c1

6 )
42 = c1

126

• Para k=8:
c10 = −

2 · c1
126

90 = − 2c1

11340 = − c1

5670

Observando os resultados, podemos notar que eles sugerem que a fórmula geral seja

c3n+1 = (−1)n2nc1

3 · 4 · 6 · 7 · · · (3n)(3n+ 1) , n ≥ 1.
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Agora usando o Teorema 2.1, podemos escrever a solução geral da equação y′′+2xy =
0 da seguinte forma:

y(x) = c0

[
1− 2x3

2 · 3 + 22x6

2 · 3 · 5 · 6 − · · ·+
(−1)n2nx3n

2 · 3 · · · (3n− 1)(3n) + · · ·
]

+c1

[
x− 2x4

3 · 4 + 22x7

3 · 4 · 6 · 7 − · · ·+
(−1)n2nx3n+1

3 · 4 · · · (3n)(3n+ 1) + · · ·
]

= c0y1(x) + c1y2(x).

Encontradas as soluções em Séries da EDO, podemos aplicar o Teste da Razão e
encontramos que ambas as séries convergem em x ∈ R, sendo assim, são soluções válidas
da EDO.
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4 APLICAÇÕES

No capítulo anterior, abordamos um breve estudo sobre Séries de Potências, estu-
dando melhor sua definição, propriedades e critérios de convergências, além de explorar os
processos de derivação termo a termo e demonstrar como utilizar as Séries de Potências
para encontrar a solução de Equações Diferenciais Ordinárias de Segunda Ordem com
Coeficientes Variáveis. Com base nesses fundamentos, este capítulo tem como propósito
investigar as aplicações das Séries de Potências na resolução de Equações Diferencias
Ordinárias (EDO).

O método de Séries de Potências na resolução de EDO é uma ferramenta analítica
muito importante na área da Matemática, pois, ele permite que representamos a solução em
forma de séries infinitas, sendo muito útil quando não podemos utilizar funções elementares.
Nesta seção, vamos mostrar como resolver duas Equações muito importantes na área da
Matemática, Equação de Airy e Equação de Legendre, utilizando as Séries de Potências
para encontrar as soluções das duas EDO citadas.

4.1 EQUAÇÃO DE AIRY

Uma das EDOs de segunda ordem, que possui os coeficientes variáveis, mais
conhecidas na área da Matemática é a Equação de Airy, que leva o nome do matemático
e astrônomo inglês George Biddel Airy (1801-1892). É uma equação que surge de forma
natural em diversos fenômenos. Zill (6) afirma que ela pode ser encontrada no estudo da
difração de luz, difração de ondas de rádio em torno da superfície da Terra, aerodinâmica
e deflexão de uma coluna vertical fina e uniforme. Ela é dada por

y′′ − xy = 0.

Observando a equação podemos chegar a conclusão de que seus coeficientes não
são constantes. Dessa forma, ela não possui solução em termos de funções elementares,
fazendo com que as Séries de Potências sejam eficazes para encontrar sua solução.

Para essa equação temos que P (x) = 1, Q(x) = 0 e R(x) = −x, logo, todo ponto é
ordinário. Para encontrar a solução dessa EDO vamos supor que y(x) pode ser escrita em
forma de Série de Potências centrada em x0 = 0. Dessa forma,

y(x) =
∞∑
n=0

cnx
n
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e,
y′′(x) =

∞∑
n=2

n(n− 1)cnxn−2.

.

Substituindo y′′ e y na EDO, ficamos com o seguinte
∞∑
n=2

n(n− 1)cn+2x
n−2 − x

∞∑
n=0

cnx
n

=
∞∑
n=2

n(n− 1)cn+2x
n−2 −

∞∑
n=0

cnx
n+1 = 0

Agora, para deixar xn−2 e xn+1 com a mesma potência, vamos igualar k = n− 2
no primeiro termo e k = n+ 1 no segundo. Então, ficaremos com o seguinte

∞∑
k=0

ck+2(k + 2)(k + 1)xk −
∞∑
k=1

ck−1x
k = 0.

Seguindo, precisamos igualar o índice dos dois somatórios. Para isso, basta encontrar
o termo quando k = 0 no primeiro somatório e retirá-lo, da seguinte forma

c22 +
∞∑
k=1

ck+2(k + 2)(k + 1)xk −
∞∑
k=1

ck−1x
k = 0.

Como os dois somatórios estão com o mesmo índice, podemos juntá-los em um só,
assim

c22 +
∞∑
k=1

[ck+2(k + 2)(k + 1)− ck−1]xk = 0.

Então, podemos notar que c2 = 0 e agora basta isolar ck+2 para encontrar a fórmula
de recorrência. Então,

ck+2 = ck−1

(k + 2)(k + 1) , k ≥ 1.

Prosseguindo, precisamos encontrar nossos coeficientes. Como já dito, c0 e c1

são livres e c2 = 0. Observando a fórmula de recorrência, ck + 2 é dado em função de
ck − 1. Sendo assim, os coeficientes são dados de três em três. Então já sabemos que
c2 = c5 = c8 = . . . = 0.

Para a sequência c0, c3, c6, · · · , vamos utilizar k = 1, 4, 7, · · · na nossa fórmula de
recorrência. Então, temos que

• Para k=1:
c3 = c0

3 · 2 .
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• Para k=4:
c6 = c3

6 · 5 = c0

6 · 5 · 3 · 2 .

• Para k=7:
c9 = c6

9 · 8 = c0

9 · 8 · 6 · 5 · 3 · 2 .

Para a sequência c1, c4, c7, · · · , vamos utilizar k = 2, 5, 8, · · · na nossa fórmula de recorrência.
Então, temos que

• Para k=2:
c4 = c1

4 · 3 .

• Para k=5:
c7 = c4

7 · 6 = c1

7 · 6 · 4 · 3 .

• Para k=8:
c10 = c7

9 · 8 = c0

9 · 8 · 6 · 5 · 3 · 2 .

Sendo assim, a solução geral da Equação de Airy é

y(x) = c0

[
1 + x3

2 · 3 + x6

2 · 3 · 5 · 6 + · · ·+ x3n

2 · 3 · · · (3n− 1)(3n) + · · ·
]

+c1

[
x+ x4

3 · 4 + x7

3 · 4 · 6 · 7 + · · ·+ x3n+1

3 · 4 · · · (3n)(3n+ 1) + · · ·
]

= c0y1(x) + c1y2(x).

Desse modo, a combinação linear c0y1(x) + c1y2(x) é a solução geral da Equação
de Airy y′′ − xy = 0. Aplicando o Teste da Razão encontramos que as séries convergem
em x ∈ R, garantindo que são soluções válidas.

Ainda que y1 e y2 não sejam funções elementares conhecidas na área do Cálculo,
elas são de extrema importância em áreas como Física e Engenharia, fazendo com que
muitos da comunidade científica utilizem elas e estudem suas propriedades.

4.2 EQUAÇÃO DE LEGENDRE

A segunda EDO que será aplicado o método utilizando as Séries de Potências é
conhecida como uma das funções especiais no ramo da Matemática. Segundo (6) , essas
funções especiais (ou funções com nome) seriam um efeito colateral: algum estudioso estava
buscando uma solução para uma EDO ultraespecífica que surgia de um problema físico.
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A equação que será estudada é a Equação de Legendre, que leva o nome do matemático
francês Adrien-Marie Legendre (1752-1833), que pode ser encontrada em estudos na área
de Eletromagnetismo e seus resultados são objetos de estudo de atração de esferoides.

A EDO de Legendre é dada da seguinte forma

(1− x2)y′′ − 2xy′ + α(α + 1)y = 0,

no qual α é qualquer inteiro positivo. Note que podemos dividir toda a equação por (1−x2),
válida para |x| < 1, obtemos:

y′′ − 2x
1− x2y

′ + α(α + 1)
1− x2 y = 0.

Seguindo, podemos observar estamos diante de uma EDO de segunda ordem na
qual seus coeficientes são variáveis. E, analisando seus coeficientes −2x

1−x2 e α(α+1)
1−x2 concluímos

que são funções analíticas em uma vizinhança de x = 0, que é ponto ordinário da equação.
Sendo assim, podemos utilizar as Séries de Potências para encontrar a solução dessa
equação.

Admitimos que a solução seja da forma

y(x) =
∞∑
n=0

cnx
n

e, derivando termo a termo, obtemos,

y′(x) =
∞∑
n=1

ncnx
n−1,

y′′(x) =
∞∑
n=2

n(n− 1)cnxn−2.

Substituindo na Equação de Legrenge, temos o seguinte

(1− x2)y′′ − 2xy′ + α(α + 1)y

= (1− x2)
∞∑
n=2

n(n− 1)cnxn−2 − 2x
∞∑
n=1

ncnx
n−1 + α(α + 1)

∞∑
n=0

cnx
n = 0.

Desenvolvendo, podemos encontrar a seguinte equação
∞∑
n=2

n(n− 1)cnxn−2 − x2
∞∑
n=2

n(n− 1)cnxn−2 −
∞∑
n=1

2ncnxn + α(α + 1)
∞∑
n=0

cnx
n

=
∞∑
n=2

n(n− 1)cnxn−2 −
∞∑
n=2

n(n− 1)cnxn −
∞∑
n=1

2ncnxn + α(α + 1)
∞∑
n=0

cnx
n = 0.



Capítulo 4. Aplicações 36

Note que a primeira parcela é a única na qual o termo x não está elevando apenas
a n. Para facilitar, vamos fazer com que k = n− 2. Então, a primeira parcela fica assim

∞∑
k=0

(k + 2)(k + 1)ck+2x
k

Substituindo de volta n no lugar de k, chegamos a seguinte expressão
∞∑
n=0

(n+ 2)(n+ 1)cn+2x
n −

∞∑
n=2

n(n− 1)cnxn −
∞∑
n=1

2ncnxn + α(α + 1)
∞∑
n=0

cnx
n = 0

Agora, queremos deixar todos os somatórios com o índice igual a 2. A segunda
parcela já está como queremos, então vamos fazer os procedimentos necessários para deixar
as outras três parcelas da mesma forma.

No primeiro somatório, vamos descobrir os valores quando n = 0 e n = 1.

• Para n=0:
∞∑
n=0

(n+ 2)(n+ 1)cn+2x
n = (0 + 2)(0 + 1)c0+2x

0

= 2 · 1 · c2 · 1 = 2c2.

• Para n=1:
∞∑
n=1

(n+ 2)(n+ 1)cn+2x
n = (1 + 2)(1 + 1)c1+2x

1

= 3 · 2 · c3 · x = 6c3x.

Com isso, o primeiro somatório fica da seguinte forma
∞∑
n=0

(n+ 2)(n+ 1)cn+2x
n = 2c2 + 6c3x+

∞∑
n=2

(n+ 2)(n+ 1)cn+2x
n

Seguindo, vamos realizar o mesmo procedimento com o terceiro somatório e encon-
trar o valor quando n = 1. Então, temos que

• Para n=1:
∞∑
n=1

2ncnxn = 2 · 1 · c1 · x1

= 2c1x.

Consequentemente, o terceiro somatório fica assim
∞∑
n=1

2ncnxn = 2c1x+
∞∑
n=2

2ncnxn.

No último somatório, precisamos descobrir os valores do somatório quando n = 0 e
n = 1.
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• Para n=0:
α(α + 1)

∞∑
n=0

cnx
n = α(α + 1) · c0 · x0

= α(α + 1) · c0.

• Para n=1:
α(α + 1)

∞∑
n=1

cnx
n = α(α + 1) · c1 · x1

= α(α + 1) · c1 · x.

Com isso, nosso quarto somatório fica assim

α(α + 1)
∞∑
n=0

cnx
n = α(α + 1)c0 + α(α + 1)c1x+ α(α + 1)

∞∑
n=2

cnx
n.

Após deixarmos todos os somatórios com o mesmo índice com n = 2, vamos
substituir na nossa equação

2c2 + 6c3x+
∞∑
n=2

(n+ 2)(n+ 1)cn+2x
n −

∞∑
n=2

n(n− 1)cnxn

−2c1x−
∞∑
n=2

2ncnxn + α(α + 1)c0 + α(α + 1)c1x+ α(α + 1)
∞∑
n=2

cnx
n = 0.

Colocando alguns termos em evidência e juntando os somatórios, chegamos a essa
nova expressão

[2c2 + α(α + 1)c0] + [6c3 − [α(α + 1)− 2] c1] · x

+
∞∑
n=2

[(n+ 2)(n+ 1)cn+2 + {−n(n− 1)− 2n+ α(α + 1)} cn]xn = 0.

Para que essa igualdade se satisfaça, as três parcelas precisam ser iguais a 0. Sendo
assim, isso implica que

• Na primeira parcela
2c2 + α(α + 1)c0 = 0.

• Na segunda parcela
6c3 − [α(α + 1)− 2] c1 = 0.

• Na terceira parcela

[(n+ 2)(n+ 1)cn+2 + {−n(n− 1)− 2n+ α(α + 1)} cn] = 0.
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Desenvolvendo o 1o caso, temos que

2c2 = −α(α + 1)c0

c2 = −α(α + 1)c0

2! .

No 2o caso, usando produtos notáveis, temos que

6c3 = [α(α + 1)− 2] c1

c3 = [α(α + 1)− 2] c1

6 = (α− 1)(α + 2)c1

3! .

E no último caso, obtemos

(n+ 2)(n+ 1)cn+2 = −{−n(n− 1)− 2n+ α(α + 1)} cn.

Isolando cn+2, obtemos

cn+2 = −{−n(n− 1)− 2n+ α(α + 1)} cn
(n+ 2)(n+ 1) = [n(n+ 1)− α(α + 1)] cn

(n+ 2)(n+ 1)

= (α− n)(α + n+ 1)
(n+ 2)(n+ 1) = 0; n ≥ 2.

Prosseguindo, vamos colocar alguns valores para n e aplicar na nossa fórmula de
recorrência

• Para n = 2

c4 = (α− 2)(α + 2 + 1)
(2 + 1)(2 + 2) c2 = (α− 2)α(α + 1)(α + 3)

4! c0.

• Para n = 3

c5 = (α− 3)(α + 3 + 1)
(3 + 1)(3 + 2) c3 = (α− 3)(α− 1)(α + 2)(α + 4)

5! c1.

• Para n = 4

c6 = (α− 4)(α + 4 + 1)
(4 + 1)(4 + 2) c4 = (α− 4)(α− 2)α(α + 2)(α + 4)(α + 6)

6! c0.

• Para n = 5

c7 = (α− 5)(α + 5 + 1)
(5 + 1)(5 + 2) c5 = (α− 5)(α− 3)(α− 1)(α + 1)(α + 3)(α + 5)

7! c1.
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Analisando os resultados, podemos notar que, para |x| < 1, encontramos as soluções
da EDO em forma de Séries de Potências linearmente independentes. Podemos escrever a
solução da seguinte forma

y(x) = c0

[
1− α(α + 1)

2! x2 + (α− 2)α(α + 1)(α + 3)
4! x4

−(α− 4)(α− 2)α(α + 1)(α + 3)(α + 5)
6! x6 + . . .

]

+c1

[
x− (α− 1)(α + 2)

3! x3 + (α− 3)(α− 1)(α + 2)(α + 4)
5! x5−

(α− 5)(α− 3)(α− 1)(α + 2)(α + 4)(α + 6)
7! x7 + . . .

]
= c0y1(x) + c1y2(x).

Dessa maneira, encontramos a solução geral da Equação de Legendre utilizando as
Séries de Potências na vizinhança de x = 0. Conforme Zill (6), quando α assume um valor
inteiro, alguma das séries y1 e y2 podem se tornar séries finitas, fato que está relacionado
com o surgimento dos polinômios de Legendre. Como já dito no inicio deste tópico, essas
soluções são de extrema importância para estudos de determinados problemas físicos.
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5 CONCLUSÃO

Neste trabalho, abordamos as Séries de Potências e sua utilização nas Equações
Diferenciais Ordinárias, equações fundamentais na modelagem dos fenômenos mencionados.
Diante disso, pôde-se notar que o método se mostrou uma ferramenta valiosa devido à
ampla aplicabilidade.

O principal o objetivo do trabalho foi analisar o método de Séries de Potências
como ferramenta para a solução de uma Equação Diferencial Ordinária. Com a realização
dessa analise, foi possível perceber que o método é eficaz e uma excelente alternativa
quando os principais métodos não são adequados.

Para alcançar esse objetivo, foram devidamente definidos os conceitos historicamente
construídos de Sequências, Séries e Equações Diferenciais Ordinárias, Séries de Potências,
bem como suas relações. A compreensão da evolução desses conceitos possibilitou uma
melhor compreensão do desenvolvimento do método que foi constitui foco deste estudo.

Além disso, foi possível identificar em quais Equações Diferencias Ordinárias o
método de Séries de Potências pode ser aplicado: EDO de segunda ordem cujos coeficientes
são variáveis. Também, demonstramos o uso do método na resolução dessas equações e
como ela pode ser empregada para para resolver equações clássicas na Matemática, mas
que também aparecem em diversas áreas, como a Física.

No campo da Matemática, é fundamental conhecer diferentes maneiras de resolver
determinados problemas, por isso oferece flexibilidade na formação acadêmica, e permite
lidar com situações em que as ferramentas mais conhecidas não são eficazes. Neste trabalho,
foram analisadas como utilizar as Séries de Potências para resolver a Equação de Airy e a
Equação de Legendre, embora, o método possa ser aplicado em diferentes EDO lineares.

É importante destacar que este estudo mostra apenas uma pequena parte do
conteúdo de relacionado às Séries de Potências e sua aplicação na resolução de EDOs.
Sendo assim, trata-se de uma área muito promissora para investigações futuras. Em
suma, o método das Séries de Potências revela-se uma ferramenta essencial no repertório
de pesquisadores da área e de profissionais que trabalham com EDOs e modelagem
matemática.
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