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RESUMO

O estudo das Equagoes Diferenciais Ordinarias é de extrema importancia para diversas
areas, como Fisica e Engenharia. Entretanto, existem algumas Equacoes Diferenciais
Ordinarias (EDOs), em que os métodos mais conhecidos nao se mostram eficazes, o que faz
necessario a exploragao de ferramentas do conhecimento para uma abordagem alternativa.
Uma das ferramentas que pode ser usada é resolver por meio das Séries de Poténcias,
que permite representar a solucao da EDO em forma de Séries em torno de um ponto
especifico. Neste contexto, buscou-se investigar como o método de séries de poténcias pode
ser aplicado na resolucdo de EDOs de segunda ordem com coeficientes variaveis. Para
comprovar sua funcionalidade, aplicou-se o método a duas EDOs muito importantes dentro
da area da Matematica, a Equagao de Airy e a Equagao de Legendre. Como esse estudo
esta relacionado com as EDOs, ele insere-se na area da Matematica Pura, especificamente

na subdrea da Anélise.

Palavras-chave: Séries de Poténcias, Equacoes Diferenciais Ordinarias, Coeficientes

Variaveis.



ABSTRACT

The study of Ordinary Differential Equations is extremely important for various fields,
such as Physics and Engineering. However, there are some Ordinary Differential Equations
(ODEs) for which the most well-known methods are not effective, making it necessary to
explore knowledge tools for an alternative approach. One of the tools that can be used is
solving through Power Series, which allows representing the solution of the ODE in the
form of Series around a specific point. In this context, we sought to investigate how the
power series method can be applied in solving second-order ODEs with variable coefficients.
To prove its functionality, the method was applied to two very important ODEs in the field
of mathematics, the Airy equation and the Legendre equation. As this study is related to
ODEs, it falls within the field of pure mathematics, specifically in the subfield of analysis.

Key-words: Power Series, Ordinary Differential Equations, Variable Coefficients.
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1 INTRODUCAO

No curso de Licenciatura em Matematica da Universidade Federal da Paraiba, no
Campus IV estudamos a disciplina de Séries e Equagoes Diferenciais Ordinarias, diversos
métodos utilizados na resolucao de problemas envolvendo essas equacdes. Entre esses
estudos o tema de Séries de Poténcias e sua aplicacao na resolucao de Equacoes Diferenciais
nem sempre é explorado com profundidade, apesar de sua ampla utilizacao na modelagem

de problemas do cotidiano.

No entanto, existem EDOs para as quais os métodos tradicionalmente apresentados
na disciplina ndo se mostram eficazes. Nesses casos, torna-se necessario recorrer a aborda-
gens alternativas, como o uso de Séries de Poténcias. Esse método ¢é especialmente 1til
quando lidamos com EDOs que possuem coeficientes nao constantes. Segundo Matos(1),
o método consiste em substituir a solugao por uma Série de Poténcias, e, em seguida,

calcular seus coeficientes.

Diante disso, este trabalho busca realizar uma investigacdo na area de Matematica
Pura, especificamente na subéarea de Analise, com foco no tema: Uso de Séries de Poténcias
na Resolucao de Equacoes Diferenciais Ordinarias. O estudo esta direcionado ao Ensino
Superior e integrar contetidos abordados na disciplina Séries e Equagoes Diferenciais
Ordinarias, ofertada no curso de Licenciatura em Matematica. Para a compreensao sera
necessaria uma breve revisao dos conceitos fundamentais envolvendo Sequéncias, Séries e

Séries de Poténcias.

O método de Séries de Poténcias permite encontrar solucdes para EDOs em
casos situacgoes em que os métodos tradicionais nao sao eficientes, sobretudo quando os
coeficientes sao variaveis. Dessa forma, amplia-se o conjunto de problemas que podem ser
resolvidos, possibilitando o tratamento de situacoes que, de outro modo, permaneceriam
sem solugao. A importancia dessa diversidade de métodos se reforca quando se considera
que, segundo Matos (1), as EDOs sdo amplamente aplicadas em areas como Engenharia,
Economia e Fisica, servindo de base para a formulagdo matemaética de leis e fundamentos

teoricos nessas disciplinas.

Assim, este trabalho de investigagdo pode colaborar para um melhor entendimento
por parte dos estudantes que se dedicam a essa drea, mas que muitas vezes nao tém contato
aprofundado com esse contetdo, restringindo-se aos métodos usuais para a resolucao de

EDOs. O estudo, portanto, pode beneficiar ndo apenas os alunos da Licenciatura, como
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também ajudar pesquisadores interessados na tematica.

Como mencionado, as EDOs aparecem em diversas dreas. Em seu Trabalho de
Conclusao de Curso, Alves (2) destaca que elas estao presentes na modelagem de diversos
fenomenos, como a queda livre de um corpo, o crescimento populacional e a perseguicao
entre presa e predador, entre outros. Ainda, segundo Matos (1), ndo basta apenas encontrar
a solucao de uma EDO: é igualmente essencial formular matematicamente o fendmeno que
da origem a equacao diferencial. Além disso, suas solugoes sao tém aplicagoes importantes

em campos como mecanica quantica e cinética quimica.

A vista disso, este trabalho tem como objetivo geral analisar o método de Séries de
Poténcias como ferramenta para a solucao de EDOs. Para isso, busca-se, primeiramente
definir os conceitos historicamente construidos: Sequéncias, Séries e Equagoes Diferenciais
Ordinarias, Séries de Poténcias e como se relacionam. Em seguida, identificar em quais
tipos de EDOs o método de Séries de Poténcias pode se aplicar, e, por fim, demonstrar

sua utilizacao na resolugao dessas equacoes e em suas aplicagoes.

Desse modo, este trabalho esta organizado em trés secoes. Na primeira, que tem
como referencial tedricos os livros de Boyer (3) e Eves (4), com uma breve apresentagao
sobre o desenvolvimento histérico dos principais conceitos envolvendo Séries e Séries de
Poténcias. Em seguida, apresenta-se a fundamentagao tedrica necessaria para realizar o
estudo do método envolvendo as Séries de Poténcias, fundamentado nos livros de Boyce,
Diprima e Meade (5) e Matos (1). Por fim, no ultimo capitulo na ultima se¢ao sao
exploradas duas aplicacdes do método, analisando duas equagoes fundamentais na area da

Matematica, baseando-se nos livros Boyce, Diprima e Meade (5), Matos (1) e Zill(6).
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2 APONTAMENTOS HISTORICOS

Desenvolvida ha milhares de anos, a Matematica exerce um papel fundamental
em nossa sociedade, desde sua criacdo até os dias atuais. E importante destacar que a
Matematica surgiu devido a necessidade do homem de contar e de medir, mas com o passar
do tempo, com a colaboracao de diversos intelectuais, ela evoluiu com novos conceitos e

novas técnicas.

Neste topico, iremos fazer uma breve abordagem sobre a evolucao das ideias em
torno do conceito de Séries e de Séries de Poténcias, que despertou a curiosidade de

estudiosos da Antiguidade até mateméaticos europeus no século XVIII.

Os babilonios foram um dos primeiros a ter conhecimento sobre o conceito de série.
Eles tinham um entendimento inicial sobre alguns conceitos que envolviam Séries e Pro-
gressoes, que hoje estao ligados as Séries Geométricas e Aritméticas, especialmente a soma

dos termos de uma Progressao Geométrica e de uma Sequéncia Numérica, respectivamente

Quando vamos falar sobre o calculo integral é necessério fazer referéncia a John
Wallis (1616-1703), um matemético britdnico do século XVII que fez contribuigoes enri-
quecedoras para a Matemadtica, como por exemplo, o uso do simbolo do infinito (c0). Eves
(4) afirma que Wallis foi quem abriu o caminho para Isaac Newton (1642-1727), fazendo

um uso sistematico de Séries Infinitas na area da Analise.

[saac Newton teve uma contribui¢do fundamental no desenvolvimento das Séries,
destacando-se especialmente no estudo e na formalizacdo das Séries de Poténcias. Ele

explicou e demonstrou que poderiamos utilizar o Teorema do Bindémio para expoentes

Figura 1 — John Wallis

Fonte: Eves (2011)
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nao inteiros, permitindo, assim a série que hoje chamamos de Série Binomial. Ademais,
Newton resolvia fungdes transcendentes (seno, cosseno, arco-seno,etc) utilizando Séries de
Poténcias. E, Boyce, Diprima e Meade (5) afirmam que Newton desenvolveu um método
para resolver Equacgoes Diferenciais Ordinarias utilizando Séries Infinitas. Em paralelo a
Newton, Gottfried Wilhelm Leibniz (1646-1716) foi mais um intelectual que Séries Infinitas
desempenharam um papel fundamental em seus trabalhos. Segundo Boyer (3), foi apds
um problema proposto por Christiaan Huygens (1629-1695) sobre encontrar a soma dos
2

reciprocos nimeros triangulares, isto é, TR Apos resolver esse problema, Leibinz propds

que era possivel encontrar a soma de quase todas as séries.

Figura 2 — [saac Newton

Fonte: Eves (2011)

O escocés James Gregory (1638-1675) teve um grande papel no estudo de Séries,
pois, foi o primeiro a diferenciar uma Série convergente e uma Série Divergente. Ademais,
Eves (4) conta que Gregory fez a expansao em série infinita de arctan x,tanx e arcsec .
Por sua vez, o matematico britdnico Brook Taylor (1685-1731) foi responsavel por criar
um método de expansao de fun¢ées em Séries de Poténcias. Em 1715, Taylor publicou em
seu Methodus incrementorum directa it inversa a Série que hoje conhecemos como a Série

de Taylor,

x3 "

2
x
fle+a)= f(a)+ f'(a)z + f”(a)§ + f”’(a)g +-- f(")(a)ﬁ e
que possui um caso especial que é conhecida como Série de Maclaurin. Segundo Boyer
(3), Colin Maclaurin (1698-1746), um matemético escocés, é lembrado por causa de um
resultado em analise no qual ele tinha sido antecipado por outros. Em 1742, em seu Treatise
of fluxions, aparece a Série de Maclaurin, que é um caso especial da Série de Taylor quando

substituimos a por zero. Boyer (3) completa que Taylor nao sabia sobre isso mas James
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Gregory ja conhecia essa Série. E, a Série de Maclaurin ja havia aparecido no Methodus
differentialis de James Stirling (1692-1770), que trouxe avangos relevantes para o estudo

de convergéncia de Séries Infinitas e das fungoes especiais definidas por Séries.

Figura 3 — Colin Maclaurin

Fonte: Eves (2011)

Durante o século XVIII, Leonhard Euler (1707-1783) foi outro estudioso que se
aprofundou no contetido de Séries Infinitas. Segundo Eves (4), tinha pouco cuidado na
utilizacao das Séries, fazendo aplicagoes a elas que s6 eram véalidas com somas finitas. Para
mais, Euler considerava as Séries de Poténcias como polinomios de grau infinito e acabava

contando com a sorte para chegar em resultados profundos e verdadeiros.

Figura 4 — Leonhard Euler

Fonte: Eves (2011)

Quando estamos diante a uma Série, um dos estudos que podemos fazer com ela é
verificar a sua convergéncia, ou seja, observar se a soma de seus termos aproxima-se de
um valor finito. Eves (4) conta que o primeiro a fazer essa investigagao foi o alemao Carl

Friedrich Gauss (1777-1855), em 1812, no seu artigo sobre Séries Hiporgeométricas. Outro
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intelectual que teve uma grande colaboragao do estudo da convergéncia de uma Série foi
o matematico Francés Augustin-Louis Cauchy (1789-1857). Inclusive um dos métodos
utilizados para determinar se uma Série é convergente é o Critério do n-ésimo termo, ou, o
Critério de Cauchy, que leva o seu nome devido ao rigor que ele introduziu no estudo das

séries.

Niels Henrik Abel (1802-1829), um matematico norugués, colaborou bastante no
trabalho de Cauchy, ja que Abel forneceu teoremas fundamentais sobre o estudo do
limite das Séries de Poténcias, que hoje chamamos de Teorema de Abel. O alemao Karl
Weierstrass (1815-1897), tem como sua contribuigdo matematica mais conhecida a teoria
das fungoes complexas por meio de Séries de Poténcias. Segundo Eves (4), ele pds em
pratica com vigor uma extensao ao plano complexo de uma ideia tentada anteriormente

por Joseph-Louis Lagrange (1736-1813).

Assim, podemos observar que o desenvolvimento de conceitos relacionados Séries e
Séries de Poténcias nao ocorreram de forma isolada, mas veio de uma construcao coletiva
ao longo do tempo com diversos intelectuais. Essa colaboragao vem desde a antiguidade
com as primeiras nogoes de Séries Geométricas e Aritméticas até progressos fundamentais
de matematicos como Newton, Leibniz, Taylor, Maclaurin, Euler, Gauss, Cauchy, Abel e
Weierstrass, cada um contribuindo de maneira significativa para a consolidacao da Analise
Matematica. Esse percurso histérico descrito nos mostra a importancia do estudo das
Séries e Séries de Poténcias para diversos temas na area da Matematica, como resolucao

de Equacoes Diferenciais e a teoria das fungoes complexas.
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3 FUNDAMENTOS

Neste capitulo, apresentamos os principais conceitos sobre Sequéncias Numéricas,
Séries infinitas e Séries de Poténcias, além de abordar suas extensoes as Séries de Taylor e
de Maclaurin. Sao nogoes fundamentais no estudo do método de resolucao de Equacoes
Diferenciais Ordinarias por meio de Séries de Poténcias, que constitui o objeto de estudo
deste trabalho. Neste capitulo utilizaremos como base as referéncias (1) e (5), que servem

como recomendacao caso queira se aprofundar no tema.

3.1 SEQUENCIAS NUMERICAS

Uma sequéncia ou sucessao de ntmeros é uma funcao
fN—=R
que relaciona um ndmero natural n a um numero real f(n).

E denominado de n-ésimo termo ou termo geral de uma sequéncia f o valor de uma
sequéncia f e que pode ser representado por a,, b,, x,, etc. Para simplificar, iremos utilizar

como representagao a,, para referenciar o termo geral de uma sequéncia, de modo que,
f(n) = a,.

Portanto, uma sequéncia se define como uma lista ordenada que apresenta infinitos
nimeros. Uma sequéncia pode ser denotada como (a,),n € N ou simplesmente (a,,).

Podemos representar sequéncias da seguinte forma:

(al,CLQ,CL;g, ey Qg >

Exemplo 3.1. Considere a sequéncia a, = +. Os termos dela sdo 1,3, 1 1 ...
n 2737 4"

Sobre a classificagao das sequéncias numéricas, ela é dada de acordo com o com-
portamento de seus termos. Dizemos que uma sequéncia (a,,) é limitada superiormente
quando existir um numero real C, denominado cota superior da sequéncia, que atende a
seguinte condigao

a, <C, Vn.

J& para uma sequéncia (a,) que é limitada inferiormente, existe um ntimero real c,

denominado cota inferior da sequéncia, que atende a seguinte condic¢ao

a, >c, Yn.
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Dizemos que uma sequéncia (a,) é limitada quando os dois casos citados anterior-
mente ocorrerem de forma simultanea, ou seja, quando uma constate positiva K, que serve

como um limite superior para os termos da sequéncia, atender a seguinte condigao
an| < K, Vi,

Exemplo 3.2. Considere a sequéncia a,, = (—1)". Note que ela é limitada, pois, seus

valores sempres estao entre -1 e 1.

Denominamos uma sequéncia (a,) de monétona nao descrescente quando
an < api1,  Vn,

isto é,

ap <ay<az<---<a

— n

Exemplo 3.3. Considere a sequéncia a,, = n. Note que ela é uma sequéncia mondtona

nao decrescente ja que 1 <2<3<4< ...

J& uma sequéncia (a,) é dita como monétona nao crescente quando
ap, > Gpt1, VN,

isto é,

ap>ay>az> - >0y >

Exemplo 3.4. Considere a sequéncia a, = % Note que ela é uma sequéncia mondétona

~ .7 1 1 1
nao crescente jaque 1 > 5> 5> 7> ---.

Conforme Matos (1), quando ocorrerem as desigualdades < e > ao em vez de
< e >, respectivamente, denominamos a sequéncia de mondtona crescente ou mondtona

decrescente, conforme o caso.

Ao analisar uma sequéncia é necessario identificar se esta é convergente, isto é, se
0s seus termos estao se aproximando de um determinado niimero a medida que o indice

dessa sequéncia vai aumentando. Para essa analise é preciso estudar o limite da sequéncia.

Definicao 3.1. Uma sequéncia (a,) é chamada de convergente se existe um ndimero
real L tal que os termos a,, se aproximam de L a medida que n cresce. Em outras palavras,

dizemos que L é o limite de (a,) quando:

Ve >0, dng € N tal que |a, — L| < &,¥n > ny.
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Exemplo 3.5. Considere a sequéncia a,, = % Note que:

lim a, = 0.
n—oo

Sendo assim, dizemos que a sequéncia a,, converge para 0.

3.2 SERIES

Apods os estudos sobre os principais conceitos e propriedades relacionados as Sequén-
cias Numéricas, podemos prosseguir para o estudo das Séries, ja que uma Série nada mais

¢ que uma soma dos termos de uma Sequéncia.

Dada uma sequéncia numérica (a,), a soma infinita

ay+ag+ag+---+a,+---

sera representada da seguinte forma: > >° | a,, que pode ser chamada de série infinita,

ou simplesmente, série.

Quando vamos analisar uma série, utilizamos ferramentas para determinar se aquela
série é convergente (somavel) ou divergente (ndo somavel). E para isso, consideramos a
sequéncia de somas parciais daquela Série. E necessério realizar o estudo da convergéncia
da sequéncia de somas parciais da Série para determinar se uma Série é convergente ou

divergente, que representamos da seguinte forma:

Sn:a1+a2+a3—|—a4+~--+an.

De acordo com Matos (1), dizemos que a Série

o
> an,
n=1
é convergente quando a sequéncia (S,,) de suas somas parciais for convergente. Isto é, a

soma da série ¢ o limite da sequéncia (.S,,), ou seja:

n—oo

Z a, = lim S,.
n=1

Na situagao que essa situacao nao ocorrer, ou seja, quando a série nao for convergente
denominamos ela de divergente. Em outras palavras, a sequéncia (S,,) de suas somas parciais

é divergente, ou seja, nao tem limite ou (.5,) — +oo.
Exemplo 3.6. Considere a série

ii—1+1+1+i+
—n2 4 9 16

Note que essa série é convergente, pois, n% — 0
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Exemplo 3.7. Considere a série

o0

dn=14+2+3+4+--

n=1

Note que essa série é divergente, pois, S,, — 0o quando n — oo.

Ainda falando sobre a convergéncia de uma série, existem dois casos especificos
sobre esse topico. Dizemos que uma série > >° ; a,, € absolutamente convergente quando a

série
0
Z |an]
n=1

for convergente. Por outro lado, dizemos que a série > ; a,, ¢ condicionalmente convergente

quando for convergente e

o0
Z |an]
n=1

for divergente.

Dentre as Séries mais estudadas, podemos destacar: as séries geométricas, que

1

possui a forma > 7, ar™™"; a série harmonica que é representada por > 07, %, e as séries

de encaixe que sao do tipo Y00, (b, — byyq) -

Como existem diferentes tipos de séries, cabe também a diferentes métodos utili-
zados para determinar se uma série classifica-se como convergente ou divergente. Como
exemplo: podemos citar o método do n-ésimo termo, o critério da cauda e critério da
comparacao direta. J& que o foco ¢é falar sobre Séries de Poténcias ¢ importante entender o
Critério da Razao, indispensédvel para melhor compreensao das Séries de Poténcias e suas

aplicacoes.

3.2.1 Critério da Razdo

Dada uma série 2, a,, com a, # 0,Vn, seja

Qp+1
G,

L = lim

n—o0

(a) Se L < 1, entdo a série converge absolutamente;

(b) Se L > 1 ou L = oo, entao a série diverge.

s . | 1. ~
Exemplo 3.8. Tomemos como exemplo a série > 32 7= para utilizar o teste da razao
para verificar sua convergéncia. Seja

n!
Qp = ﬁa
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podemos aplicar no teste da razao da seguinte forma:

(n+1)!
. n+1)n+l
lim %

n—oo

Ap+1
Qp,

L = lim

n—oo

nn
Simplificando nossa expressao, ficamos com o seguinte

|.yn . n
[— lim D" et L nt
n—oo nl . (TL + 1)n+1 n—00 (n + 1)7‘L+1 n—00 (n + 1)”

. n \" . 1 |
zhm( ) :hm(l— > = -

Sendo assim, a série converge, pois

1
L=-~0,367 < L.
e

3.3 SERIES DE POTENCIAS

Nesta secao, iremos falar sobre Séries de Poténcias, que é um importante instrumento
dentro da Analise Matematica, que pode ser utilizada para representar fungoes e na
resolucao de Equagoes Diferenciais Ordinarias. Dito isso, uma Série de Poténcia é uma
Série em que os termos possuem poténcias de uma variavel z. Sao Séries de Poténcias as

séries do tipo:
CO+C1(l’—l’o)+C2(l’—x0)2+...+Cn(x_x0)n+“. ’

que pode ser representada da seguinte forma:
oo
> enlx —xo)".
n=0

Nessa Série, dizemos que o numero real xg é o centro da série. Além disso, os
numeros ¢, sao denominados de coeficientes. Existem algumas séries de poténcias em que

o valor de z( é igual a 0, com isso elas podem ser escritas assim:
(0.]
Z .
n=0

Conforme Matos (1), ao trabalhar com Séries de Poténcias temos uma perguntas
chave. Para pra quais valores reais de = a série é convergente? Toda Série de Poténcia da
primeira forma mostrada é convergente quando x = g, sendo assim, a soma da série igual
a cg. Os valores de = que tornam a série convergente formam o dominio de uma funcao f,

que é dada por
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o0

fla) =2 enlz —z0)",

n=0

na qual a fungdo é aproximada pelas Somas Parciais S, da série, que sdo polinémios.

E importante destacar que quando

oo
en(x—20)" =0
n=0

entao,

¢, = 0.

3.3.1 Intervalo de Convergéncia

Para determinar quais os valores de x a Série converge, utilizamos o Critério da

Razao, que como citado anteriormente é dado por

An1
Qn

L = lim

n—o0

Como dito anteriormente, uma Série de Poténcias Y00 ¢, (x —x9)" converge apenas
quando = = xy. Segundo Matos (1), pode convergir absolutamente em qualquer valor de
x, ou, no intervalo |x — xy| < R. Além disso, a Série é divergente quando |r — x| > R,
podendo ser convergente ou nao nos extremos desse intervalo. Esse R é um ntimero real
que denominamos raio de convergéncia da série e o intervalo correspondente é chamado de
intervalo de convergéncia. Esse intervalo de convergéncia pode ser de diferentes tipos, que
Sa0:

(xg — R,z + R), [x0 — R,24+R), (x0 — R,20+ R] ou [zg — R, ¢ + R],

dependendo da convergéncia ou nao da série nos extremos do intervalo.

3.3.2 Derivacao termo a termo

Com o estudo da convergéncia das Série de Poténcias, é possivel entender melhor
algumas de suas propriedades mais importantes, que é a derivacao e integracdo termo a
termo dentro do intervalo de convergéncia. Se uma Série de Poténcias Y 0% ¢, (z — )",
converge para valores de x que pertencem ao intervalo (xg — R,zo + R), entdo a série
obtida pela derivacao ou integracao termo a termo também converge no mesmo intervalo.

A derivada de uma Série de Poténcias é dada por

oo
> nep(z — o)
n=1
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Continuando na derivagao termo a termo, podemos encontrar a derivada de segunda

ordem que ¢ representada assim:
o0
> n(n—1)ey(x — x9)" >
n=2

O estudo dessa propriedade é fundamental na resolucao de uma EDO utilizando as
Séries de Poténcias, pois, a derivagao termo a termo vai permitir substituir na EDO uma

série que represente a solucao, como vamos estudar n topico a seguir.

3.3.3 Séries de Poténcias na resolucao de EDO

Definicao 3.2. Uma equagao que relaciona derivadas de fungoes ainda nao determinadas,

em relagao a uma variavel independente é denominada equacao diferencial ordinaria (EDO).

Como disse Matos (1), uma Equagao Diferencial Ordinaria define-se como “uma
equacao que envolve uma fungao desconhecida e suas derivadas ordinarias.” Podemos

representar assim uma Equacgao Diferencial Ordinéria:
F(z,y,y) =0
onde z é a varidvel independente e y = y(x) é uma fun¢ao que queremos encontrar. Ainda
podemos representar uma EDO das seguintes formas:
a) Forma normal: ¢/ = f(x,y)
b) Forma diferencial: P(z,y)dx + Q(z,y)dy =0

Podemos classificar as EDO de acordo com sua ordem, que nada mais é que a
maior ordem da derivada que esta presenta na equacgao. Neste trabalho, a que serd base
para nosso estudo serd a Equacao Diferencial Ordinaria Linear de Segunda Ordem que é

representada da seguinte forma:
P(x)-y"+Qx) -y + R(z) -y =0

Note que para o coeficiente P(z) # 0, podemos dividir a equagao toda por esse

fator e chegamos nessa EDO

Levando em consideragao essa EDO, dizemos que um ponto xy ¢ um ponto ordinario

Q)  R(=z)
P(z) ~ P(z)

ou seja, quando elas podem ser desenvolvidas por Séries de Poténcias.

quando P(zg) # 0. Neste caso, as fungoes

(S

sao fungoes analiticas nesse ponto,
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Definicao 3.3. Dizemos que um ponto xy é um ponto ordinario ou nao-singular da
equagao diferencial (1) se P(z) e R(z) sao analiticas em zy. Um ponto que nao é um

ordinério é considerado como um ponto singular da equacao.

No estudo do uso das Séries de Poténcias para encontrar a solucao de uma EDO
de segunda ordem com coeficientes varidveis em torno de um ponto ordinario, torna-
se necessario entender em quais condigoes esse método pode ser utilizado. Para isso, é
necessario compreender o Teorema, que garante a existéncia de uma soluc¢ao em forma de

série.
Teorema 3.1. Se xq for um ponto ordindrio da equacdo diferencial
P(z)y" + Q(z)y" + R(z)y =0,

ou seja, se p(x) = Q(x)/P(z) e q(xv) = R(x)/P(z) forem analiticas em xy entio a solugdo
geral da equagao serd

o0

y= z:ocn(x —20)" = coyr(x) + crya(z),

n—=
em que ¢y e 1 sao arbitrarios, e y, e yo sao duas solucoes em séries de poténcias que $ao
analiticas em xy. As solucoes y1 e yo formam um conjunto fundamental de solugées. Além
disso, o raio de convergéncia de cada uma das solugoes em série y, e ys € pelo menos tao

grande quanto o minimo dos raios de convergéncia das séries para p e q.

Esse teorema garante que quando os coeficientes da EDO sao fungoes analiticas
em um ponto xp, existe pelo menos uma solucao que pode ser representada por uma Série

de Poténcia centrada nesse ponto.

Com esse entendimento, podemos prosseguir e demonstrar como encontrar a solucao
de uma EDO de segunda ordem com coeficientes variaveis em torno de um ponto ordinario
xy. Primeiramente, suponhamos que a solugao y(x) da EDO pode ser escrita em forma de

Série de Poténcias, assim

y(zr) = iﬁan(x — x0)".

O segundo passo ¢ fazer a derivacao termo a termo da Série de Poténcias, como

mostrado anteriormente
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Em seguida, substituimos esses termos na EDO

y'+ P(x)y + Q(z)y = 0.

e assim encontramos uma Série de Poténcias tinica. Em seguida, utilizamos a relagao de

recorréncia para determinar seus coeficientes.

Exemplo 3.9. Consideremos a seguinte EDO,

y" + 2xy = 0.

Note que essa ¢ uma EDO de segunda ordem com coeficientes variaveis, pois perceba

que

e Coeficiente de y”: 1 (constante);
e Coeficiente de 3 0;

e Coeficiente de y: 2z (func¢do polinomial de primeiro grau).

Agora, vamos supor que
[e.e]
n
y(z) =) cpa™
n=0
Sendo assim,

y'(x) = n(n—1)ca™?
n=2

O préximo passo, ¢ substituir esses termos na nossa EDO, portanto, temos que

[e.e] o
Y n(n—1)c,z"? +22 ) cua” = 0.
n=2 n=0

Perceba que podemos colocar o 2x dentro do somatorio, realizando a multiplicagao,
logo
(o) (e.)
> ean(n — 12"+ 2¢,2™ T = 0.
n=2 n=0

Note que nos dois somatorios x nao estd elevado ao mesmo valor, para facilitar,
vamos fazer com que ele fique com a mesma poténcia. Para isso, vamos usar k = n — 2 no

primeiro somatorio e k = n 4+ 1 no segundo.Entao, note que

e 1° caso: k =n — 2, entao, n =k + 2;
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e 2°caso: k=n+1,entao,n =% — 1.

Sendo assim, nossa soma fica da seguinte forma

ok +2)(k+ D)ak + > 2¢, 42" = 0.
k=0 k=1

Agora, conseguimos deixar o termo x com a mesma poténcia, o préximo passo é

deixar o indice dos dois somatoérios iguais. Para isso, vamos relembrar que

Zan:ao+a1+a2+~~:a0+2an.
n=1

n=0

Entao, usando essa propriedade na nossa solucao, fazemos o seguinte

cor2(0+2)(0+ 12 + > ek + 2)(k + 1)a" + >~ 2¢512% = 0.
k=1 k=1

Simplificando o primeiro termo, temos que

2o+ Y Cppa(k +2)(k+ 1)k + > 2¢,_12" = 0.
k=1 k=1

Agora, que os dois somatérios possuem o mesmo indice, podemos transforma-los

em um so, da seguinte forma

22+ Y [eppa(k +2)(k + 1) 4+ 2¢,4]2" = 0.
k=1

Observe que o termo z* estd em evidéncia, ja que ele estava nas duas parcelas da
soma. Note que isso é uma Série de Poténcias que resulta em 0, ou seja, a primeira parcela

e a segunda parcela sao iguais a 0. Sendo assim,

e Na 1° parcela, temos que c; = 0;

e Na 2° parcela, temos que cgo(k + 2)(k+ 1) + 2¢,_1 = 0.

Sendo assim, ja podemos concluir que ¢ = 0. J& no 2° termo, vamos isolar o

coeficiente com maior indice, ou seja, o ¢;2 e chegamos na seguinte relagao

2c-1
_ k> 1
TRk 1) T

Chamamos essa relacao de férmula de recorréncia. A formula de recorréncia serve

apenas para k > 1, ja que o somatoério inicia no mesmo valor. Em seguida, precisamos

determinar os coeficientes. Entao, temos o seguinte



Capitulo 3. Fundamentos 30

® (y € ¢ sao arbitrarios;

[ ] CQIO.

Além dessas informagoes, olhando nossa férmula de recorréncia, podemos notar

que cgyo € dado em funcao de ¢;_1. Logo, os coeficientes sao dados de trés em trés, ou seja,

co determina c3 que determina cg,- - - ; ¢; determina ¢4 que determina c7,- - - ; e ¢y determina
0 ¢5 que determina o cg, - -+ . Mas sabemos que ¢y = 0, entdo, chegamos a conclusao que
022652682011:"‘20.

Para a sequéncia cg, c3, cg, - - -, vamos utilizar k = 1,4,7,--- na nossa férmula de

recorréncia. Entao, temos

e Para k=1:
200 Co
C — e ————— e
ST 3.2 3
e Para k=4:
203 2(%00) Co
6-5 30 45
e Para k=T7:
. _ 26 :_2(%) _ %
°T 9.8 72 1620°

Observando os resultados, podemos notar que eles sugerem que a férmula geral seja

—1)"2"
C3p = (=1)"2"c , n>1.
2:3-5:6---(3n—1)(3n)
Agora vamos observar a sequéncia ¢y, ¢y, c7, - - -, utilizando k = 2,5,8, - -+ na nossa

férmula de recorréncia. Entao, temos

e Para k=2:
. 201 . C1
“ATT4 3T 7%
e Para k=5:
c :_264:_2<%):i
! 7.6 42 126
e Para k=8:
¢ :_2'16716:_201 :_C1
10 90 11340 5670

Observando os resultados, podemos notar que eles sugerem que a férmula geral seja

C3n+1 = ( ) @ n > 1.

3467 BBt T
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Agora usando o Teorema 2.1, podemos escrever a solugao geral da equagao y”+2zxy =

0 da seguinte forma:

( ) . 2$3 N 22$6 N (_1)n2nx3n N
€Tr) = ¢ — - PR
Y T2 372356 2.3 (3n — 1)(3n)
N 2$4 N 22$7 N (_1)n2n$3n+1 N
C x— —_— . e e )
! 3.4 3.4.6-7 3.4---(3n)(3n+1)

= coy1 () + crya(T).

Encontradas as solugoes em Séries da EDO, podemos aplicar o Teste da Razao e

encontramos que ambas as séries convergem em x € R, sendo assim, sao solugoes validas

da EDO.
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4 APLICACOES

No capitulo anterior, abordamos um breve estudo sobre Séries de Poténcias, estu-
dando melhor sua definicao, propriedades e critérios de convergéncias, além de explorar os
processos de derivacao termo a termo e demonstrar como utilizar as Séries de Poténcias
para encontrar a solucdo de Equagoes Diferenciais Ordinarias de Segunda Ordem com
Coeficientes Variaveis. Com base nesses fundamentos, este capitulo tem como propdsito
investigar as aplicacoes das Séries de Poténcias na resolugdo de Equagoes Diferencias

Ordinérias (EDO).

O método de Séries de Poténcias na resolugdo de EDO ¢ uma ferramenta analitica
muito importante na area da Matematica, pois, ele permite que representamos a solugao em
forma de séries infinitas, sendo muito util quando nao podemos utilizar fungoes elementares.
Nesta secao, vamos mostrar como resolver duas Equagoes muito importantes na area da
Matematica, Equacao de Airy e Equagao de Legendre, utilizando as Séries de Poténcias

para encontrar as solugoes das duas EDO citadas.

4.1 EQUACAO DE AIRY

Uma das EDOs de segunda ordem, que possui os coeficientes variaveis, mais
conhecidas na area da Matematica é a Equagao de Airy, que leva o nome do matematico
e astronomo inglés George Biddel Airy (1801-1892). E uma equacdo que surge de forma
natural em diversos fendmenos. Zill (6) afirma que ela pode ser encontrada no estudo da
difragao de luz, difracao de ondas de radio em torno da superficie da Terra, aerodinamica

e deflexdo de uma coluna vertical fina e uniforme. Ela é dada por

y' —zy =0.

Observando a equac¢ao podemos chegar a conclusao de que seus coeficientes nao
sao constantes. Dessa forma, ela nao possui solucdo em termos de fungoes elementares,

fazendo com que as Séries de Poténcias sejam eficazes para encontrar sua solugao.

Para essa equagao temos que P(x) =1, Q(z) = 0 e R(x) = —=z, logo, todo ponto é
ordindrio. Para encontrar a solugdo dessa EDO vamos supor que y(z) pode ser escrita em

forma de Série de Poténcias centrada em xg = 0. Dessa forma,

y(r) = cna”
n=0
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e7
o

y'(x) = n(n—1)ca" >

n=2

Substituindo y” e y na EDO, ficamos com o seguinte

o o
Z 1)cpioa™ 2 _x Z ™
n=2 n=0

o

[o¢]
=Y nn—1cp22"? =Y " =0
n=0

n—2

Agora, para deixar x e 2" com a mesma poténcia, vamos igualar k = n — 2

no primeiro termo e kK = n + 1 no segundo. Entao, ficaremos com o seguinte

ch+2 k+2)(k+1) ch F =0,
k=0
Seguindo, precisamos igualar o indice dos dois somatérios. Para isso, basta encontrar

o termo quando k£ = 0 no primeiro somatério e retird-lo, da seguinte forma

CQ2+ZCk+2 ]{?+2)(k’+1 ZCk 11’ = 0.
k=1

Como os dois somatorios estdo com o mesmo indice, podemos junté-los em um so,

assim

2+ Y [eppa(k +2)(k+1) — cpq]2® = 0.
k=1

Entao, podemos notar que co = 0 e agora basta isolar c;o para encontrar a formula

de recorréncia. Entao,

Ck—1
p— k: > 1-
T k1) T

Prosseguindo, precisamos encontrar nossos coeficientes. Como ja dito, ¢y e ¢;
sao livres e ¢o = 0. Observando a férmula de recorréncia, ¢, + 2 é dado em funcao de
¢, — 1. Sendo assim, os coeficientes sao dados de trés em trés. Entao ja sabemos que

CQIC5ZCSZ...:0.

Para a sequéncia cg, c3, cg, - - -, vamos utilizar k = 1,4,7, - na nossa férmula de

recorréncia. Entao, temos que

e Para k=1:

Co
C3 — ——.
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e Para k=4:
C3 Co
Cg = = .
6:-5 6-5-3-2
e Para k=T:
Ce Co
Cy = = .
°7 9.8 9.86-5-3-2
Para a sequéncia cy, ¢4, c7, - - -, vamos utilizar £ = 2,5, 8, - - - na nossa formula de recorréncia.
Entao, temos que
e Para k=2:
&1
Cp = ——.
VR
e Para k=5:
Cy C1
cr = = )
"T76 T7-6-4-3
e Para k=8:
Cr Co
Cio =

9.8 9.8-6-5-3-2°

Sendo assim, a solugao geral da Equagao de Airy é

1.3 33'6 1'3”
y(w) = [H2-3+2-3-5-6+"'+2-3--~(3n—1)(3n)+"']
ILA IE7 I37’L+1
ta l”“3-4+3-4-6-7+"'+3-4---(3n)(3n+1)+"']

= coy1(z) + crya(r).

Desse modo, a combinacao linear coy; (z) + c1y2(x) é a solugao geral da Equagao
de Airy y” — xy = 0. Aplicando o Teste da Razao encontramos que as séries convergem

em x € R, garantindo que sao solugoes validas.

Ainda que y; e y» nao sejam fungoes elementares conhecidas na area do Célculo,
elas sao de extrema importancia em areas como Fisica e Engenharia, fazendo com que

muitos da comunidade cientifica utilizem elas e estudem suas propriedades.

4.2 EQUACAO DE LEGENDRE

A segunda EDO que sera aplicado o método utilizando as Séries de Poténcias é
conhecida como uma das fungdes especiais no ramo da Matematica. Segundo (6) , essas
fungoes especiais (ou fungoes com nome) seriam um efeito colateral: algum estudioso estava

buscando uma solugao para uma EDO ultraespecifica que surgia de um problema fisico.
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A equacao que sera estudada é a Equacgao de Legendre, que leva o nome do matematico
francés Adrien-Marie Legendre (1752-1833), que pode ser encontrada em estudos na area

de Eletromagnetismo e seus resultados sao objetos de estudo de atragao de esferoides.
A EDO de Legendre é dada da seguinte forma
(1—2)y" — 22y + a(a+ 1)y =0,
no qual a é qualquer inteiro positivo. Note que podemos dividir toda a equagio por (1—x?),

valida para |z| < 1, obtemos:

2z ala+1)
"o /
Y 1—x2y+ 1 —a?

y = 0.

Seguindo, podemos observar estamos diante de uma EDO de segunda ordem na
a(a+1)

qual seus coeficientes sdo varidveis. E, analisando seus coeficientes =5 e concluimos

{I?2

que sao fungoes analiticas em uma vizinhanga de z = 0, que é ponto ordmarlo da equacao.
Sendo assim, podemos utilizar as Séries de Poténcias para encontrar a solucao dessa

equacao.

Admitimos que a solucao seja da forma
o

= Z "
n=0

e, derivando termo a termo, obtemos,

Substituindo na Equacao de Legrenge, temos o seguinte

(1 -2y — 2xy + ala+1)y

=(1-2%)> n(n—1)c,a"" —Qxchnnl ala+1)> ¢ =0
n=2 n=0
Desenvolvendo, podemos encontrar a seguinte equagao
Zn(n—lcn —xz (n—1)c,a™” —Zanna:"—i-oz(a—l—l)chx"
n=2 n=1 n=0

o

=Y nn—1)c,a" =Y n(n—1ca" = > 2nc,a” + ala+1) Y ez = 0.

n=2 n=2 n=1 n=0
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Note que a primeira parcela é a tinica na qual o termo x nao esta elevando apenas

a n. Para facilitar, vamos fazer com que k£ = n — 2. Entao, a primeira parcela fica assim

o0

S (k+2)(k + 1)cgioa”
k=0

Substituindo de volta n no lugar de k, chegamos a seguinte expressao

> (n+2)(n+ 1)cnpoz™ = > n(n—1)e,z™ — > 2ne,z” +ala+1) Y c,z™ =0
n=0 n=2 n=1 n=0

Agora, queremos deixar todos os somatérios com o indice igual a 2. A segunda
parcela ja esta como queremos, entdo vamos fazer os procedimentos necessarios para deixar

as outras trés parcelas da mesma forma.

No primeiro somatorio, vamos descobrir os valores quandon =0en = 1.

e Para n=0:

> (n+2)(n+ 1)caroz™ = (04 2)(0 + 1)copoz’
n=0
:2‘1'C2‘1:2C2.
e Para n=1:
S (n+2)(n+ 1)cnpor™ = (1+2)(1 + 1)ci oz’
n=1

=3-2-c3-x = 06c3.

Com isso, o primeiro somatoério fica da seguinte forma

> (n+2)(n+ 1)cus02”™ = 2¢5 + 63z + > _(n+2)(n+ 1)cyp0a”
n=0 n=2

Seguindo, vamos realizar o mesmo procedimento com o terceiro somatorio e encon-

trar o valor quando n = 1. Entao, temos que
e Para n=1:
o0
Zannm":2~1-cl-x1
n=1

= 2cix.

Consequentemente, o terceiro somatoério fica assim

o o0
Z 2ne,x" = 2c1x + Z 2ne,x".

n=1 n=2
No 1ltimo somatério, precisamos descobrir os valores do somatério quando n =0 e

n = 1.
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e Para n=0:

ala+1) ch ala+1)-cy-2°
=ala+1)- ¢
e Para n=1:
ala+1) ch ala+1)-¢ -2t
=ala+1) ¢

Com isso, nosso quarto somatorio fica assim

ala+1)> ca™ = ala+ 1) + ala+ ez + ala+1) > ca”.
n=0 n=2

Apods deixarmos todos os somatorios com o mesmo indice com n = 2, vamos

substituir na nossa equacao

205 + 6c3z 4+ Y (n+2)(n + 1)cppoz”™ — Y n(n — 1)c,a"
n=2 n=2

—2c11 — Z 2nc, 2" + ala + 1)cg + a(a+ 1)ar + afa + 1 Z Cpx" =
n=2

Colocando alguns termos em evidéncia e juntando os somatoérios, chegamos a essa
nova expressao

[2¢0 + ala + 1)co] + [6c3 — [a(a+ 1) — 2] ¢4] - @
+ i [(n+2)(n+1)cpe+{—n(n—-1)—2n+ala+1)}c,]a" =0.

n=2
Para que essa igualdade se satisfaca, as trés parcelas precisam ser iguais a 0. Sendo

assim, isso implica que

e Na primeira parcela

2¢9 + a(a+ 1)ep = 0.

e Na segunda parcela

6cs — [a(a+1) —2]c; = 0.
e Na terceira parcela

[(n+2)(n+1)cpe+{—n(n—-1)—2n+a(a+1)}c,] =0.
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Desenvolvendo o 1° caso, temos que

209 = —afa+ 1)cg

—a(a+ 1)

“= 9]

No 2° caso, usando produtos notaveis, temos que
6cs = [a(a+1) — 2]
[ala+1)=2]¢;  (a—1)(a+2)q

= 6 - 3]

E no ultimo caso, obtemos
m+2)(n+Depro=—{—nn—-1) =2n+ala+1)}c,.

Isolando ¢, 2, obtemos

—{—nn—-1)—2n+a(a+1)}c, _ n(n+1) —ala+1)]c,
(n+2)(n+1) (n+2)(n+1)

Cny2 =

(a=n)(a+n+1)
S Tty % n=®

Prosseguindo, vamos colocar alguns valores para n e aplicar na nossa férmula de

recorréncia

e Paran =2

o — (a—2)(a+2+1)c _ (a—2)a(a+1)(a+3)6_

2+ 1)(2+2) 41

e Paran =3

o = (= 3)(+3+ 1)03 _ (v —3) (v — 1)(04—1—2)(@—1—4)61.

B3+ 1)(3+2) 5!

e Paran=4

. (a—4)(a—|—4+1)c B (a—4)(&—2)a(a+2)(oz+4)(a+6)c
ST+ n)U+2) 6! 0

e Paran=>5

B (a—5)(a+5+1)c B (a—5)(a—3)(a—1)(a+1)(a+3)(a—|—5)c
T G+D)GB+2) 0 7! -

Cr
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Analisando os resultados, podemos notar que, para |z| < 1, encontramos as solugoes
da EDO em forma de Séries de Poténcias linearmente independentes. Podemos escrever a

solucao da seguinte forma

y(x) = co [1 - oz(o;% 1)x2 + (o = 2)04(044?' D(a+ 3>x4

(a—4)(a—2)ala+1)(a+3)(a+5) 4
— ol x —l—]

a—1)(a+2) 4 a—3)(a—-1)(a+2)(a+4) ;
a—35)(a—3)(a—-1)(a+2)(a+4)(a+6) ,

= coy1 () + crya(w).

Dessa maneira, encontramos a solugao geral da Equacao de Legendre utilizando as
Séries de Poténcias na vizinhanca de z = 0. Conforme Zill (6), quando « assume um valor
inteiro, alguma das séries y; e yo podem se tornar séries finitas, fato que esta relacionado
com o surgimento dos polindmios de Legendre. Como ja dito no inicio deste topico, essas

solugoes sao de extrema importancia para estudos de determinados problemas fisicos.
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5 CONCLUSAO

Neste trabalho, abordamos as Séries de Poténcias e sua utilizacao nas Equagoes
Diferenciais Ordinarias, equagoes fundamentais na modelagem dos fenomenos mencionados.
Diante disso, pdde-se notar que o método se mostrou uma ferramenta valiosa devido a

ampla aplicabilidade.

O principal o objetivo do trabalho foi analisar o método de Séries de Poténcias
como ferramenta para a solucao de uma Equacao Diferencial Ordinaria. Com a realizagao
dessa analise, foi possivel perceber que o método é eficaz e uma excelente alternativa

quando os principais métodos nao sao adequados.

Para alcancar esse objetivo, foram devidamente definidos os conceitos historicamente
construidos de Sequéncias, Séries e Equagoes Diferenciais Ordinarias, Séries de Poténcias,
bem como suas relagoes. A compreensao da evolugao desses conceitos possibilitou uma

melhor compreensao do desenvolvimento do método que foi constitui foco deste estudo.

Além disso, foi possivel identificar em quais Equacgoes Diferencias Ordinarias o
método de Séries de Poténcias pode ser aplicado: EDO de segunda ordem cujos coeficientes
sao variaveis. Também, demonstramos o uso do método na resolucao dessas equagoes e
como ela pode ser empregada para para resolver equacoes classicas na Matematica, mas

que também aparecem em diversas areas, como a Fisica.

No campo da Matematica, é fundamental conhecer diferentes maneiras de resolver
determinados problemas, por isso oferece flexibilidade na formagao académica, e permite
lidar com situagoes em que as ferramentas mais conhecidas nao sao eficazes. Neste trabalho,
foram analisadas como utilizar as Séries de Poténcias para resolver a Equagao de Airy e a

Equacao de Legendre, embora, o método possa ser aplicado em diferentes EDO lineares.

E importante destacar que este estudo mostra apenas uma pequena parte do
conteuido de relacionado as Séries de Poténcias e sua aplicacdo na resolucao de EDOs.
Sendo assim, trata-se de uma area muito promissora para investigacoes futuras. Em
suma, o método das Séries de Poténcias revela-se uma ferramenta essencial no repertorio
de pesquisadores da area e de profissionais que trabalham com EDOs e modelagem

matematica.
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