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Resumo

Esta tese trata da existéncia de solugoes para uma classe de problemas elipticos nao
lineares definidos em espagos de Orlicz-Sobolev, com destaque para nao linearidades
envolvendo crescimento critico exponencial. Inicialmente, sao estabelecidos resultados
fundamentais sobre tais espacos, que servem de base para a analise posterior. Em
seguida, utilizando métodos variacionais e técnicas refinadas, demonstra-se a existéncia
de solugoes positivas para problemas semipositones com o operador ®-laplaciano,
superando dificuldades relacionadas a falta de homogeneidade do operador e o
crescimento exponencial. Por fim, mostramos a existéncia de uma solugdo nodal
de energia minima com exatamente dois dominios nodais, ampliando resultados ja
existentes na literatura, ao considerar hipéteses mais gerais sobre o operador e a nao

linearidade envolvida.

Palavras-chave: Espacos de Orlicz-Sobolev; Crescimento critico exponencial; Opera-

dor ®-laplaciano; Métodos variacionais.
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Abstract

This thesis addresses the existence of solutions for a class of nonlinear elliptic
problems defined in Orlicz-Sobolev spaces, with emphasis on nonlinearities involving
critical exponential growth. Initially, fundamental results concerning these spaces are
established, serving as the foundation for the subsequent analysis. Then, by employing
variational methods and refined techniques, the existence of positive solutions is de-
monstrated for semipositone problems involving the ®-Laplacian operator, overcoming
difficulties related to the operator’s lack of homogeneity and the exponential growth of
the nonlinearity. Finally, we establish the existence of a least energy nodal solution with
exactly two nodal domains, extending existing results in the literature by considering

more general assumptions on both the operator and the nonlinearity involved.

Keywords: Orlicz—Sobolev spaces; Critical exponential growth; ®-Laplacian operator;

Variational methods.
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Notacao e Terminologia

Nesta tese sao empregadas as seguintes notagoes e terminologias:

°*— —

o —

oL >
e QCRY
e 00

o |A|

o A°

o X*

e B(R,x)

® Xa

convergéncia fraca e forte, respectivamente.

imersao.

quase todo ponto.

suporte da funcao f.

equivaléncia assintotica.

equivaléncia.

muito menor do que e muito maior do que, respectivamente.
subconjunto aberto de RY contendo a origem.

fronteira de (2.

medida de Lebesgue de um conjunto mensuravel A C RY.
complemento do conjunto A.

espaco dual topologico de X.

bola aberta de centro x e raio R.

fungao caracteristica do conjunto €.

ft)

e f=0(9),quando t - t,  se }l}r% g(t)| =0.

e ut = max{u,0}. v~ = min{u, 0}.

e C(Q) espago das fungdes continuas em 2.

o () espaco das funcoes continuas em € que se anulam sobre 0f).
e C*(Q), keN espaco das fungoes k vezes continuamente diferenciaveis em (2.



o C*(Q)), espaco das fungoes C*(Q) tais que para todo multi-indice ¢, com

|¢] < k, a fungdo x — DSu(z) admite extensdo continua para €.

o C.(Q) espago das fungoes continuas com suporte compacto em (2.

o CE(Q) = CHQ) NC(); C(Q) = M1 CH(); C2(Q) = C(Q) N Ce().

e C%7(Q) = u e C(Q); sup M <o0p,0<7<1 espacodas funcoes
wgfﬂ |z —y|”
Ty

Holder continuas em {2 com expoente 7.

o CF(Q) = {u € C*(Q); Du(x) € C° para todo multi-indice ¢ com [(| = k}.

o Vu = (86—;‘1, e a%‘v) gradiente da funcao u.
o Apu = div (<I>’(|Vu|)%) ®-laplaciano da fungao w.

o [7(Q) = {u:Q — R mensuravel ; [, [ulPdr < oo}, 1 <p < 0.
o |lull, = (Jq |u|Pdz) norma no espago LP(€2).
o K?(Q) = {u: Q — R mensuravel ; [, ®(|u|)dz < oo}  classe de Orlicz.

o L2(N) = {u : 0 — R mensurével ; [, ® (‘%‘) dr < oo para algum A\ > 0} espaco
de Orlicz.

o ||lu||le = inf {)\ >0; [o@ (%) dr < 1} norma de Luxemburgo de L®(€).
u € L*(Q) tal que existem f; € L*(Q), i=1,..., N, com

Q) = 9
/Quaidx:—/gfiwdx, Ve C®(Q), i=1,...,N

o WL

espaco

de Orlicz-Sobolev.
o |ul| = ||ulle + [|Vulle norma no espago WhH%(Q).

o Wy*(Q) fecho de C°(Q2) em WH®(0).

xi



Introducao

Neste trabalho, estudaremos problemas do tipo

—Agu = h(u) em (2,
u = 0 sobre 012,

em que Q C R, com N > 2, é um dominio limitado com fronteira suave, ® € C?*(R,R)

é uma N-funcao, h : R — R é uma func¢ao continua e

Vu
Agpu = div | ®'(|Vu|) =
o =i (7)1
é o operador ®-laplaciano. Hipoteses adicionais e especificidades para ® e h serao
apresentadas em cada capitulo.
Esta classe de problemas pode ser motivada por aplicagoes fisicas, em especial no

contexto da mecanica dos fluidos. Em particular, ao considerarmos
2 Il «
O(t) =t + 2/ s arcsenh® sds t € R, (2)
0

pode-se mostrar que ® satisfaz condi¢oes adequadas que indicaremos posteriormente.

Neste caso, o problema

D
div <(I>’(|Du|)’DZ‘> + (termo potencial) =0 em €2,
divu =0 em €,
u=>0 em 02,

modela um fluido do tipo Prandtl-Eyring, que caminha lento sobre €2, onde u :  — R?

denota o campo velocidade de um fluido incompressivel e
Du = %[Vu + (Vu)T],

¢ o gradiente simétrico de u. Para mais detalhes, veja [10] e [30].



Esta tese esta estruturada da forma a seguir.

O Capitulo [I] é dedicado a apresentacao dos espagos de Orlicz e Orlicz-Sobolev.
Nele, discutimos algumas propriedades e resultados fundamentais desses espagos. Essa
analise desempenha um papel crucial nas argumentagoes desenvolvidas nos capitulos
subsequentes, fornecendo uma base sélida para as discussoes posteriores.

No Capitulo , inspirados em [37], investigamos a existéncia de solugbes positivas

para um problema semipositone da forma

“Agu = fw)—p emQ,
u > 0 em (2, (1)
u = 0 sobre 012,

em que  C R, com N > 2, é um dominio limitado com fronteira suave, a funcao
f :]0,400) — R é continua, ® : R — [0,00) ¢ uma N-fungao de classe C? e
Ag é o operador ®-laplaciano definido anteriormente. Assumindo algumas condigbes
adicionais sobre ® e f mostraremos que (|I) possui uma solucdo se o parametro real
1 > 0 for pequeno.

Muitos autores estudaram problemas semipositones ao longo dos anos, desde o
surgimento do artigo de Castro e Shivaji [16], que foram os primeiros a considerar essa
classe de problemas.

Quando p = 0, o Problema ¢ bem conhecido e pode ser resolvido usando o
Teorema do Passo da Montanha, proposto por Ambrosetti e Rabinowitz em [7]. No
entanto, para o caso em que ¢ semipositone, ou seja, quando f(0) = 0e —p < 0,
a existéncia de uma solugao positiva nao é tao simples, pois os argumentos padrao
via Teorema do Passo da Montanha, combinados com o Principio do Maximo, nao
fornecem diretamente uma solucao para o problema.

Problemas do tipo semipositone continuam sendo amplamente estudados na
literatura recente. Em [37], Perera e Sim trataram do caso com o operador N-laplaciano

(isto é, ®(t) = +[t|") e uma ndo linearidade especifica do tipo

’ N
fu) = MuN2ue™™ | com N’ = o7 ¢ 0<A<

onde

/ \VulY dx
A = inf A
ueW N (Q)\{0} /|U\N dr

Q

, - - 1,N
é o menor autovalor do problema nao linear —Ayu = A|u|Y"?u, com u € Wy ().

Assim, os autores provaram que se A € (0, \;) entdo existe u* > 0 tal que para todo



p € (0, "), o problema

—Ayu = )\\u]N_Quem“‘N/ —p em €,
u > 0 em €,
u = 0 sobre 0f2,

tem solucao fraca positiva u, € Cy™(9) para algum o € (0,1).

Em outra dire¢ao, em [4], Alves et al. estudaram um problema semipositone com
operador geral Ag em espacos de Orlicz—Sobolev, considerando ® satisfazendo
(1)t
égﬂgm, Vt>0, comf,me(1,N). (2)
D(t)
Sob essa e outras condigoes técnicas, e assumindo que f > 0 tem crescimento
subcritico do tipo Sobolev, os autores demonstram a existéncia de solugdo positiva
do problema para p pequeno, também explorando métodos variacionais e argumentos
de truncamento.

Em [38], os autores Radulescu et. al. trabalharam com o problema

—Agu = /\f(xa u) + ,U/g(l’, u) em Qv
u > 0 em {2,
u = 0 sobre 0f),

comA>0, pe€Re f,g:Q xR — R sao fungdes Carathéodory. Os autores incluiram

dentre outras hipdteses a seguinte:

<m-1, Vt>0, com{me(1,N),

com ¢ <m < Nl{/(N —1).
Usando métodos variacionais, um teorema de compacidade para o espaco de Orlicz-
Sobolev e algumas estimativas a priori, e supondo , Alves et. al., em [5], estudaram

a existéncia de solucgao positiva para o problema semipositone quasilinear

—Agu = Af(z,u)+b(u) —a em €,
u > 0 em (2,

sobre 012,

u

com parametros a, A > 0, f(z,u) uma fun¢do Carathéodory, com crescimento subcritico
e b(t) uma funcdo com crescimento critico no espago Wy'* ().

Na literatura, encontramos diferentes métodos para provar a existéncia e a nao



existéncia de solucgoes, como subsupersolugoes, argumentos da teoria do grau, teoria
do ponto fixo e bifurcacdo; veja, por exemplo, [2], [3], [6], [8] e suas referéncias. Além
desses métodos, o método variacional também foi utilizado em alguns artigos, como
pode ser visto em [26], [13], [15], [21], [22] e [23].

O Capitulo [2 desta tese foi inspirado, principalmente, pelos artigos [37] e [4].

Em todo este texto, adotaremos a seguinte definic¢ao:

Definicao 0.1. Seja o € [0, N — 1). Definimos os ntimeros v, B e Ky, da seguinte

forma:
N
(a) v N1 o b
N
() B=1-—" € (0,1);

N-1 (N-1)n

(¢) Kyo = BYEN w]lv/ﬂ]_l), em que wy_; denota a medida da esfera unitaria em
RY.

Iremos supor que ® : R — [0, 00) é uma N-funcao de classe C? e satisfaz as seguintes

condicoes:

(¢1) Existe uma constante C' > 1, tal que para todo t € [O, %)

(¢2) Para algum o € [0, N — 1), temos

o)

t—g-noo f;Nloga (t)

)

(¢3) Existem constantes mg, ¢, > 0 tais que

(1)t
(1)

Mo < <o, VE>0;

(¢4) Existem ty > e e a € (0, B), tais que

d(t) < tNlog®(t)(1 — log (), t € [to, 00).

Decorre das hip6teses (¢1) e (¢3) que, denotando m, = m, + 1 € ¢, = ¢, + 1, vale

o' (1)t o' (1)t
o) =5 ()

1 < myg < inf < Cq. (3)
t>0



Veja o Lema [2.3| para os detalhes.

Quanto a funcao continua f : [0,00) — R, consideramos as seguintes hipdteses:

()
) B )

(f2) Existem constantes C' > 0 e > 0 tais que

0< fit)y<C {tN_l + exp(ﬁt"’)} Vit >0;

(f3) Existem constantes C, M, Ry > 0, tais que

];((;) <Ct'™M Vit>R,,

em que F(t) = [3 f(s)ds, para todo t > 0;
tft)  _

é crescente para t > 0, e

tea

inf F()

t>0 {Ca

:k’0>0.

Devido a desigualdade do tipo Trudinger-Moser, valida para func¢des em Wol ’CD(Q),

ver Teorema 1.3 de [19], temos a seguinte nocdo de criticalidade para o Problema [2.1}

Definicao 0.2. Dizemos que uma fungdo f : R — R possui crescimento critico

exponencial quando existe uma constante Ky > 0 tal que

Gl { 0, para todo K > K,
lim =

t—o0 K|t

400, para todo K < K.

O principal resultado do Capitulo 2 é o seguinte teorema:

Teorema 0.1. Assuma (¢1) — (¢4) e (f1) — (fs). Euwiste u* > 0 tal que para todo
p € (0, ") o Problema tem uma solucao fraca positiva

u, € Gy (9)

para algum o € (0,1).

O nosso resultado constitui uma generalizagdo daquele obtido em [37], na medida

em que o operador ®-laplaciano estende o N-laplaciano. Essa generalizacao nos

5



trouxe a dificuldade adicional advinda da nao-homogeneidade do ®-laplaciano. Além
disso, a nao linearidade considerada neste trabalho ¢ de natureza mais geral do que a
tratada por eles, que abordam um caso particular. No entanto, em razao da hipotese
(f1) adotada aqui, o caso especifico considerado em [37] ndo esta contido como caso
particular do nosso, o que limita parcialmente essa generalizagao.

Além disso, complementamos o escopo de [4], uma vez que trabalhamos com m > N,
diferentemente da condicao (2)) usada por eles.

No Capitulo [3] investigamos a existéncia de uma solugao nodal, isto é, uma solugao

que muda de sinal no dominio €2 para o problema

—Agpu = f(u) em €,
ut #£0 em (2, (4)
u=>0 sobre 052,

onde Q C RV, com N > 2, ¢ um dominio limitado e suave, f : R — R ¢ uma funcdo
de classe C' e @ : R — [0,00) é uma N-funcio de classe C2.

Mostraremos que a solugao encontrada possui exatamente dois dominios nodais, ou
seja, as partes do dominio onde a func¢ao assume valores estritamente positivos ou nega-
tivos formam duas componentes conexas abertas disjuntas, conforme estabeleceremos
na Definigao [3.1]

Problemas de natureza semelhante, envolvendo solu¢oes que mudam de sinal, tém
sido objeto de estudo em diferentes contextos variacionais. Um exemplo relevante é o
trabalho de Figueiredo e Santos [28], onde os autores estabelecem a existéncia de uma

solu¢ao nodal com dois dominios nodais para uma equacao do tipo Kirchhoft:
Y (/ &(|Vu) d:c) Ap = f(u), ueWHQ).
Q

No presente capitulo, seguimos uma abordagem semelhante a de [2§], utilizando
métodos variacionais, argumentos de minimizagao sobre um subconjunto da variedade
de Nehari e um lema de deformacao. Porém, trabalhamos com o caso M =1 e com
hipoteses diferentes sobre a funcao ®.

Além disso, diversas ideias e resultados utilizados neste capitulo foram inspirados
no trabalho de [29], onde os autores estudam solugoes do tipo multi-bump para
um problema envolvendo o operador ®-laplaciano envolvendo crescimento critico
exponencial.

No Capitulo [3| além de (¢1) — (¢3), consideramos as seguintes hipGteses sobre a
N-fungao :



/

((;34) A funcao é nao-decrescente para t < 0 e nao-crescente para t > 0;

[T

(¢5) As fungoes t — @' (t)t e t— (t) — i@’(t)t sdo convexas para t > 0.

Para a funcdo f : R — R de classe C' consideramos as seguintes hipdteses:

() tiy 210

=0 '(¢) 0

(f2) Existem C e 8 > 0 constantes, tais que
F@] < C [N +exp(8)]  VEeR;

(fs) (Ambrosetti-Rabinowitz) Existe o > ¢, tal que
0<oF(t) <tf(t), Vt+£0,

em que F(t) = [ f(s)ds;

(f1) A funcio
ft)
i

¢ decrescente para t < 0 e crescente para t > 0;

5N6N (Mé)a’ma (O‘_m ) o’r—ni;;za Mea

N MM

g

* [yp—
Qo= maxs i,
dN,a

com § € (0,4) fixado de modo que, existam x*, =~ € Q tais que B(x1,d) C Q,
B(z=,0) C Q, B(zT,0)NB(z~,0) =9, ¢

=z

s 1= ZNQ)(%), dno = U;Ca (i?\’;‘)v,

em que Oy representa a medida de Lebesgue da bola unitaria B(1,0) e Ky, é
dado na Definicao [0.1

O resultado principal deste capitulo é o seguinte:



Teorema 0.2. Suponha que as condigoes (¢1) — (¢P3), (@), (p5) e (fl)-(f5) estejam
satisfeitas. Entdo o Problema (3.1) admite ao menos uma solu¢io nodal de energia

minima, a qual apresenta exatamente dois dominios nodais.



Capitulo 1

Resultados preliminares de espacos
de Orlicz-Sobolev

Neste capitulo, faremos uma introducao aos espacos de Orlicz-Sobolev. Apresenta-
remos a teoria e os pré-requisitos necessarios ao bom entendimento de todos os resul-
tados deste trabalho.

Para uma andlise mais detalhada sobre os espacos de Orlicz-Sobolev, veja, por
exemplo, [1], [35] e [39].

Ao longo deste trabalho, a fungdo ® sera sempre considerada uma N-fun¢ao. A

seguir, apresentaremos sua defini¢do formal, bem como alguns exemplos ilustrativos.

Definigao 1.1. Dizemos que a funcao ® : R — [0, 00) é uma N-fungao quando satisfaz

as seguintes condigoes:
(a) ® é convexa e par;

(b) ®(t) = 0 se, e somente se, t = 0;

De acordo com ([39], Corolério 2), toda N-funcao ¢ admite a seguinte representagao
It
O(t) = / p(s)ds teR,
0

com a fungdo ¢ : [0,00) — [0, 00) satisfazendo as propriedades:
(a) ¢ é continua a direita e ndo-decrescente;

(b) ¢(s) =0 se, e somente se, s = 0;



1. Resultados preliminares de espacos de Orlicz-Sobolev

(c) [lim ¢(s) = oc.

Exemplo 1.1 ([39]). As fungoes abaixo sao exemplos de N-fungoes.
(@) () =
a = —
p

(b) ®(t) = el — |t| — 1.

p> 1.

Para uma N-funcao @, definimos a seguir a classe de Orlicz e o espaco de Orlicz

associados a ®.

Definig¢ao 1.2. Sejam ® uma N-funcio e Q2 C RY um subconjunto aberto. Dizemos

que

(a) A classe de Orlicz associada a ® é o conjunto de fungoes definido por

K*(Q) = {u: Q — R mensurével ; /Q(I)(|u(x)]) dr < oo}

(b) O espago de Orlicz é o conjunto de fungoes definido por

u

L*(Q) = {u: Q — RY mensuravel ; /Q(ID </\

> dr < oo, para algum A\ > 0}.

A seguir, enunciamos algumas propriedades satisfeitas pela classe e pelo espaco de

Orlicz. As respectivas demonstragoes podem ser consultadas em [I] e [35].

Lema 1.1. Sejam K?®(Q) e L*(Q), respectivamente, a classe de Orlicz e o espaco de

Orlicz definidos anteriormente. Entao, valem as seguintes propriedades:
(a) K?(Q) é um conjunto convexo.
(b) K®(£) nio necessariamente é um espaco vetorial.
(c) L®(Q) é o menor espago vetorial que contém K®(Q).

E possivel definir diferentes normas no espaco L®(Q), entre as quais destacamos as

aplicacoes a seguir, que associam elementos de L®(£2) a valores reais.

! o350 [ () <1}

denominada norma de Luxemburgo.

(b) 1
fullo.s = int {5 (1+ [ @\ul)do )},

chamada de norma de Amemiya.

10



1. Resultados preliminares de espacos de Orlicz-Sobolev

As normas apresentadas sdo equivalentes entre si e, sob qualquer uma delas, o
espago vetorial L®(€) constitui um espago de Banach. Quando u # 0, o infimo na

norma de Luxemburgo é atingido, pois se considerarmos em

/Qob (‘“(;)’) dr <1, (1.1)

uma sequéncia decrescente de ntimeros reais positivos (\,) que converge para ||u||

entao, pelo Teorema da Convergéncia Monotona (ver Teorema [4.7)), obtemos

/ch> (‘ﬁtﬁﬁ') dr < 1. (1.2)

Se ocorre a igualdade em (|1.1)), entdo A = ||ul|¢. Entretanto, a reciproca nao é sempre

valida. Isto é, pode ocorrer A = ||ul|¢ com a desigualdade estrita em (I.1)). Para mais
detalhes, ver [1J.
Neste trabalho, adotaremos como norma no espaco L*(£2) a norma de Luxemburgo,

denotada por || - ||¢.
t p
A N-funcao ®(t) = u, com p > 1, apresentada no Exemplo , é tal que o
p
espaco de Orlicz L®(Q) coincide com o classico espaco de Lebesgue LP(£2). Nesse caso,

a norma de Luxemburgo em L?(Q) é dada por

1
-l =271 - [lp,
em que || - ||, denota a norma usual em LP(€2).

Defini¢do 1.3. Dada uma N-funcao ®, a funcao ® : R — [0, +00) definida por

() =sup{st —®(s)},t >0 e O(t)=d(—t), t<0

s>0
é dita a complementar de P.

De acordo com [39], uma func¢ao complementar P pode ser escrita na forma

~ [¢]
O(t) = / Y(s)ds em que 1(s)= sup t, para s >0
0 p(t)<s

e, além disso, ® é também uma N -funcao. Por fim, a fungdo complementar de P éa

propria @, ou seja, & = &.

Agora, dado @ € Lg(Q), introduzimos a seguinte norma associada ao espago Lg(Q):

11



1. Resultados preliminares de espacos de Orlicz-Sobolev

(©
il =sup{ [ avdzs ve L*@) e olle <1},

denominada norma de Orlicz no espago Lg(Q).

A seguir, apresentamos um exemplo em que, dada uma N-func¢ao ®, determinamos
sua N-funcdo complementar ®.

Exemplo 1.2. Sejam p > 1 e p’ seu conjugado, isto é, % + ]% = 1. Considere a funcao

p(t) = [t~
Entao, a N-funcao ® associada é dada por

B(t) = /O't' o(s)ds = L

p

Observe que esta ¢ justamente a primeira N-fungdo apresentada no Exemplo [I.1]

Temos que

s)= sup t= sup t=s/CD ara s > 0.
¥(s) p p , D

p(t)<s [t|P—2t<s

Portanto, a fun¢ao complementar de ® é

= ‘t| |t| tp/
i) = [Mp(syas= [ s as= 1T
0 0

pl

Para a N-funcio ®(t) = el!l — |t| — 1, apresentada no Exemplo , tem-se, conforme

[39], que sua N-funcao complementar é dada por
d(t) = (L+ [t In (1 + [t]) — [¢].

Nos espacos L?(Q) e L¥(Q) vale a seguinte desigualdade de Holder: Se u € L®(€)
e v e L*(Q), entdo wv € L) e

| el dz < 2ulloolls.
Vale também a desigualdade de Young
ab < ®(a) + ®(b), Ya,beR.

Essas duas desigualdades sao demonstradas em [I].

12
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Lema 1.2. Seja & uma N-funcao. Entao
(a) ®(at) < a®(t), paraa € [0,1] et € R.
(b) ®(5t) > fP(t), para f € [1,00) et € R.
Demonstracao.
(a) Como ® é uma funcao convexa e ®(0) = 0, segue que, para todo « € [0, 1],

P(at) = ¢(at + (1 — a)0) < ad(t).

(b) Como ® é uma funcdo par, podemos supor, sem perda de generalidade, que t > 0.

Assim, pelo item (a), para § > 1 temos

t
Fazendo a substituicao s = —, obtemos

B

®(Bs) > 5P(s), s> 0,

como desejado. O

Definigao 1.4. Dizemos que uma N-fungao ® satisfaz a condigao A, (e escrevemos

d € A,) se existem constantes & > 0 e to > 0, tais que
O(2t) < kd(t), Vit > 1.

No caso em que || = 0o, dizemos que ® satisfaz a condi¢ao A, se existe uma constante
k>0, tal que ®(2t) < k®(t), para todo t > 0.

Como veremos na Observagao 0 espago Wol ’q)(Q) é um espaco de Banach,
e a condicdo As é necessaria para garantir a sua reflexividade. Recordemos que,
em espacos de Banach reflexivos, toda sequéncia limitada admite uma subsequéncia
fracamente convergente. Esse resultado sera utilizado de maneira recorrente ao longo

das demonstragoes.

Lema 1.3. Uma N-funcao ® satisfaz a condicao A, se, e somente se, para cada s > 1

existem k£ > 0 e tg > 0, tais que

O(st) < kD(1), Vi > to.

13
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No caso em que |Q2] = 0o, a N-fungao ® satisfaz a condicao A, se, e somente se, para

todo s > 1 existe uma constante k; > 0, tal que ®(st) < k;®(¢), para todo ¢t > 0.

Proposigao 1.1 ([I] e [39]). Se ® satisfaz a condigdo A,, entdo existem a,b > 0, tais
que
o(t) < at’,

para t suficientemente grande.

Isso significa que ® cresce, no infinito, de forma assintoticamente inferior a uma
funcao polinomial.
Exemplo 1.3. A N-fungao ®4(t) = %, com p € (1,00), satisfaz a condigdo Ay, pois
®(2t) = 27d(t). Por outro lado, a N-funcao ®,(t) = el!l —|t| — 1 nao satisfaz a condicio
A,, uma vez que seu crescimento, no infinito, é mais rapido do que o de qualquer fungao
polinomial. Além disso, conforme visto anteriormente, a N-fungdo complementar de
®, é dada por

O(t) = (1+[¢) In (1+|t]) — |¢],

a qual, conforme visto em [35], satisfaz a condigao A,.

Defini¢ao 1.5. Dizemos que uma N-funcao ¢ satisfaz a condicdo Vs (e denotamos

por & € V,) se existe ¢ > 1, tal que

1
O(t) < i@(gt) para todo ¢ > 0.

Lema 1.4 ([1]). Seja ® uma N-fun¢do. Entao,
(a) O espaco (L®(Q), || - ||lo) é reflexivo se, e somente se, ® e ® satisfazem A,.

(b) Seja ® € A,. Entdo, a sequéncia (u,,) converge para zero em L®(Q) se, e somente
se,

/Q(I>(|un|) dr — 0.

(c) Seja ® € Ay. Entdo, a sequéncia (u,) ¢ limitada em L®(Q) se, e somente se,

/QCI>(|un])dx

é limitada.

Além disso, vale destacar que, se ® e ¢ sdo ambas A,, entao

(L2 o) = (L), I+ lla) e (LT[ lls)" = (L*(), [ - lls)

14
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em que (L2(Q), || - [|lo)* ¢ (L2(), ]| - |3)* representam os espacos duais topolégicos de
L®(Q) e L*(9), respectivamente.

Os trés lemas a seguir podem ser encontrados em Fukagai et al. [32]. Os dois
primeiros serao utilizados para demonstrar, no terceiro, que as N-fungoes consideradas
neste trabalho satisfazem a condicao As. Além disso, esses resultados também se

mostram lteis em diversos outros argumentos ao longo deste trabalho.

Lema 1.5 ([32], Lema 2.1). Seja A uma N-funcio de classe C* que satisfaz a seguinte

condicao

1l<m< < M < oo, para todo ¢ > 0. (1.3)

Considere, ainda, as fun¢oes auxiliares
&) = min{t™, M}, £(t) = max{t™, tM}.
Entao
(a) &o(p)A(t) < Alpt) < &1(p)A() para p,t > 0.

(b) &olllulla) < Jo A(lul) dp < &1(|Julla) para u € LT(A).

Lema 1.6 ([32], Lema 2.5). Seja A uma N-fungdo de classe C' que satisfaz a condigao

([T.3), e seja A a N-funciio complementar associada a A. Defina as funcoes

&(1) = min{t7T, 7T}, g(t) = max{tT, 437,

gt < M- parat > 0.

v

A( m—1

(b) &(p)A(t) < A(pt) < &(p)A(t)  para p,t > 0.
Segue dos Lemas [L.5](a) e [L.6[b) que:

Lema 1.7 ([32], Lema 2.7). Sejam A uma N-funcio de classe C satisfazendo ((1.3) e

A a sua N-funcdo complementar. Entdo A e A satisfazem a condicao As.
Prosseguimos agora com a defini¢ao do espago de Orlicz-Sobolev.

Definicao 1.6. O espago de Orlicz-Sobolev é definido por

existem fi, ..., fx € LT(Q) tais que

1, _ ).
W (Q) = {u e LE(Q); /ngjdfcz_/gfﬂ/,dx Vel Q),i=1,..,N

15
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As fungobes u,, = f; sao denominadas derivadas fracas de u.
De forma mais compacta, o espago de Orlicz-Sobolev pode ser descrito como o

conjunto de funcoes
Wt (Q) = {u € L*(Q);|Vu| € L*(Q)}.
A aplicacao
u = fulle + [|Vulle

define uma norma em WhH%(Q). De acordo com [I], W1®() é um espago de Banach.
A partir de agora, até o fim deste capitulo vamos assumir que ® satisfaz a condicao
As.
O subespago Wy'®(€2) é definido como o fecho do conjunto C°(€2) em W®(Q) com

respeito a essa norma.
Observacao 1.1. Conforme apresentado em [I], temos que:
1. O espaco Wy'®(Q) também é um espaco de Banach.
2. O espago W, ’Q(Q) é separavel;
3. Se também @ satisfaz a condicdo A, entdo Wy ’CD(Q) é reflexivo;

Proposicao 1.2 ([I], Desigualdade de Poincaré). Se & € A,, entdo existe uma

constante ¢ > 0, tal que
lulle < el Vulls, Vue Wy®(Q).

A partir da desigualdade de Poincaré, obtemos uma equivaléncia entre a norma de
u em Wy'®(Q) e a norma de Luxemburgo do gradiente de u em L®(Q). Diante disso,

ao longo deste trabalho consideraremos como norma em Wy ’q)(Q) a norma
[ull = [[Vulle,

isto é, a norma de Luxemburgo do gradiente de u no espago L®().
Enunciamos a seguir o Principio do Maximo Forte e o Principio da Comparagao
Forte, conforme apresentados nos Lemas 3.4 e 3.5 de [31]. Em ambos os casos, considere

® uma funcao tal que

(1) ® € C*([0,00)), convexa, com ®(0) =0 e ®(t) > 0 para todo t > 0.

16
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(2) Existem constantes [,m > 1 tais que

LD (1)
= 0

< m, Vt>O0.

(3) Existem constantes ag, a; > 0 tais que

£ 3(t)
10

Qo

Teorema 1.1. (1. Principio do Mdximo Forte.) Seja h € L®() uma fung¢io ndo

negativa e nao identicamente nula. Entdo, a solucao u € Wol’q)(Q) do problema
—A(pu = h,
isto €, a solucao da equacao

Vu
! _— = 1’(I>
/QCD (|Vu|)| u| Vo dz /thdac, Vove W, (Q),

¢ estritamente positiva em 2, ou seja, u(x) > 0 para todo z € S).
(2. Principio da Comparagio Forte.) Sejam h; € L*(QQ), com i € {1,2}, e sejam
u; € Wy (Q) solugées do problema eliptico

—Agu = h; em ),
u =0 sobre 0S).

Suponha que 0 < hy < hy q.t.p. em €2, e que o conjunto
C={x€Q; hi(x) = hs(x)},
possui interior vazio. Entdo, valem as sequintes conclusoes:

0<u; <uy em S,

aU,Q 8’&1
- — <<
ey < ey <0 sobre 012,

em que v denota o vetor normal exterior a fronteira OS).
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Capitulo 2

Solucoes positivas para uma classe
de problemas semipositones
envolvendo crescimento critico

exponencial

Neste capitulo, investigaremos o seguinte problema

Ngu = flu)—p emQ,
u > 0 em (), (2.1)
0 sobre 0f2,

u

no qual Q C RY, com N > 2 é um conjunto aberto e limitado com fronteira suave,

Vu
Agu = div | ' (|Vu|) =—
¢ o operador ®-laplaciano.
Sob algumas hipoteses na N-funcao ® e no termo nao linear f, veremos que o
Problema tem solugao fraca positiva u, € Cy? (Q) para algum o € (0,1), se > 0
for suficientemente pequeno.

Iremos supor que ® é uma N-funcdo de classe C? que satisfaz as seguintes condicoes:

1

(¢1) Existe uma constante C' > 1 tal que, para todo t € [O, 5), vale

tN N
< ®(t) < OtV
oS0 <

Ou seja, proximo da origem, o crescimento de @ estd controlado entre dois

18



2. Solugoes positivas para uma classe de problemas semipositones envolvendo
crescimento critico exponencial

polinomios de grau N.
(¢2) Para algum a € [0, N — 1), vale

D(t
t—+o00 tNlogOé (t)
o que significa que, no infinito, ®(¢) se comporta assintoticamente como ¥ log® t.

Neste caso, escrevemos ®(t) ~ tNlog®(t) no infinito.

(¢3) Existem constantes mg, ¢, > 0 tais que

(1)t

< iy Vi>0. 2.2
0 <¢ >0 (2.2)

Mo <

(¢4) Existem o > e e a € (0, B), tais que

d(t) < tNlog®(t)(1 —log™*(t)), t € [fy, 00),

em que B é dado na Definigao [0.1]

Com o intuito de ilustrar as hipoteses (¢1)—(¢4) e favorecer uma maior compreensao,
apresentamos a seguir um exemplo uma N-funcdo ® que satisfaz todas essas condigoes.

Exemplo 2.1. Considere N =3, a =1, B = % ea = *esejam 0 <t <ty com

3
ta > e. Defina

By(t) = [t logle + 1), ] <t

@a(t) = [t log((t) (1~ log 3(1)), 11 = ta.

Calculando a primeira e segunda derivadas de ®4(t), com ¢ # 0, temos

1’
P (t) = sgn(t) lSt2 log(e + |t]) + cH 1| t#0
e
6[t|%e + 5[t|?
o7 (t) = 6|t|1 t —— t .
1() 6||Og(€+||)+ <€+|t|)2 >O7 7é0

Por outro lado, quando ¢ = 0, temos

. 3
04 0) = iy DO = DO _ [Flos(e 1)

t—0 t t—0

—1; 2 —
= lim sgn(t)t” log(e + |t|) = 0,

19
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crescimento critico exponencial

: t?
= %Lr% <3|t] log(e + [t]) + s W) =0

Isso prova que ®; ¢ de classe C? e convexa. Agora, considerando a funcdo ®,(t), temos
g

@)(t) = [ 3log([t)) + 1 — 3(1og(|1)3 — 2(log() 3 |, t= 1

o5()

t(61og () + 5 — 6(log([t])7 — 4 (lor(t]) 3 + 3(lox(|t)) 3

— (5 + 610g(1t1)7 ( (log(1#))3 — 1) — L(og(1t]) "3 + 2(og(lt))”

ol

)

Logo, @, é de classe C? e convexa em |[tz,00).

Agora definimos

Proge+ 1), 1 <t
D(t) = H(t), 1 t| € [t1, ] (2.3)
108 (11) (1~ Tog 3 (1)), I1] > ta

onde H € C? é uma funcio par arbitraria de modo que ® seja de classe C? e convexa
em R, com H” > 0 em [t1,1,]. E facil ver que ® satisfaz as condicoes da definicio de

N-fungao, ver Defini¢ao [1.1], pois

d(t D, (¢t
tim 20 iy 1():@’(0):0
t—0 ¢ t—0 t
’ o) . D)
: ) .. o(t) ..o ~3 _
Jim = = g =55 = Ji (0 (1~ Tog3(0)) = o

Pela definigao de @, facilmente vemos que as hipdteses (¢1), (¢2) e (¢4) s@o satisfeitas

e omitiremos as demonstragoes. Verificaremos a hipdtese (¢3) para a fungdo ®. Note
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crescimento critico exponencial

que
6]t]%e + 5t?
(e £ [1])?

) 3
sgn(t) (3]t\2 log(e + |t]) + . l—i-| |t|)

(1)t ) 6|t| log(e + |t|) +

=0 P (t) tl—r>%

6[t] + 5t|?
. (e +1t)? _

t—0 |t|
3log(e + |t]) + ——
e+t +

6log(e + |t]) +
2.

Assim,
O (L)t
1) > 1

0 , para |t| < t,

para algum #; < ¢;. Por outro lado, temos

2 1 4
4O . t2<610gt+5—6(logt)3 — P(logt)”3 —i-g(logt)_?))
tlgglo D4 (1) - tli>rg>

2 _1
t2(310gt+ 1 —3(logt)3 — %(logt) 3)

1
6logt +5 — 6(logt)s — P(logt)™3 + %(logt)_%

= lim 2 1
t=ro0 3logt+1—3(logt)s — 2(logt) "3
5 6 10 2
=i T logt ~ Tog)'  3(og)® T 9(log7 _
= 1 3 2 =2,
t—o0 34+ — —

logt (logt)1/3 ~ 3(logt)4/3

de onde obtemos
OU(t)t

D) <3, para|t| >t
2

para algum t, > t,. Além disso, como ®” e @ sdo funcdes continuas e positivas no
compacto [fl, 52], temos, pelos limites acima, que existem constantes m,, e ¢, positivas
satisfazendo (2.2)). Portanto, ® é um exemplo de N—fungdo que satisfaz as hipdteses

deste capitulo.

A seguir, apresentamos as condi¢oes assumidas para a funcao f € C([0,+0o0),R) e
a sua primitiva F(t) = [3 f(s)ds.

@)
(f) Jim 5y = O

(f2) Existem C e [ constantes positivas, tais que

0< f(t)<CN ' +exp(Bt))|, V>0
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crescimento critico exponencial

em que 7y é dado na Defini¢ao [0.1};
(f3) Existem constantes C, M, Ry > 0, tais que

F(t
L < CottM para todo t > Ry;

f(@t)

(f1) liminf L)

minf Ty 2 L para algum L € (0, +00)

F(t
(fs) A fungao t — tc(> é nao decrescente em (0, 00), e existe ky > 0 tal que
F(t
WA QNN
t>0 tCa

em que ¢, = Co + 1.
A seguir temos um exemplo de uma funcao f nessas condicgoes.

Exemplo 2.2. Considere N = 3 e « = 1. Assim, v = 3. Seja ® a N-fungao do
Exemplo . Assuma que ¢, € (3,4]. Considere a funcao continua

f)=t"t+ (" =1), t>0.

Para verificar a hip6tese (f1), note que para t € (0,t;) tem-se

e’ —1
o — ca—3
O e () T

¥(t) i)  32logle+1t) + L5 3log(e +t) +

e+t
Como , ,
CoePt 1 3t2ePt
lim = lim =0,
t—0 12 t—0 2t
temos que
f(?)

= 0.

.
S0t /(1)
A hipétese (fy) é vélida, pois

0< f(t)=t"+e" —1<®+ce®™, Vi>o0.
Quanto a hipdtese (f3), temos

F(t) = /Otf(S) ds = /Ot (SCa_l + et — 1) ds = Clatc‘* + /Ot (6683 — 1) ds.
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crescimento critico exponencial

Veja que

t 1 gt 1 Bt 1
Bs3 2 _Bs? _ u _ ,3t3_ B
/16 dsggﬂ/l?ﬁse ds_?)ﬂ/g edu——gﬁ{e e}.

Substituindo isso na igualdade acima, obtemos

1 ¢ t ,383 t 583 1 c 1 BSS 1 ﬁt?’
F(t):—t"+/e ds+/e dsﬁ—t"%—/e ds+ —e’", Vit>1.
Ca 0 1 Ca 0 30

Dai, para t > 1, temos

tCe 1 3 3 3
F@)SCH—;%—@(E& < Oy + CoeP™ = (Cy + Cy) + Co(e” — 1)

<(CL+Cy) [t + e =1 =c- f(t).

Portanto, vemos que (f3) vale com M =1, j& que

F(t
£ <c<ec- -t Vex>1
f(t)
Para a condicao (f4), basta notar que
tf) Lt teP —t e —t
t+too eBt? o t—z-r‘,-noo ebt? o tlg—noo eBt? +1t=o0.

Por fim, quanto a hipétese (f5), segue que

t t 3 s 1
— — ca—1 Bs® > ca—1 — Ca > 0.
F(t) /0 f(s)ds /o (s + (e 1)) ds > /0 st ds cat , Vt>0

F(t) _ 1

>—, Vt>0
tCa Co

e com isso o infimo deste quociente em (0, c0) é positivo. Resta mostrar que t +— £t

tea

é uma func¢ado nao decrescente. Denote,

h(t) = tia /Ot (e’853 — 1) ds,

de modo que

F 1 1 rt 3 1
(*) = [P 1) ds= —+h(), V>0
0

tca Co  tCo Coy
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crescimento critico exponencial

A derivada de h é

W(t) = - tiil /O t (" —1)ds+ tl (e - 1)

) s [ () as] = e, e

em que )
w(t) =t (e 1) - ca/o (" —1) ds.
Temos, U(0) =0e

U'(t) = — 143863 — ¢, (eﬂt3 - 1)
= ft (1 + 3683 — ca> + cq — 1.

Escrevendo s = 3, temos que s > 0 para ¢t > 0. Defina ¥'(t) := n(s), isto é,

n(s) :=e*(1+3s —cq) + co — 1.
Temos que n(0) =0 e

n'(s)=e*(1+3s—cy)+3e’=¢€*(4—co+3s) >0, Vs>0,
dado que ¢, < 4. Logo, n é crescente e dai
W' (t) = n(pt*) >n0)=0, Vt>D0.
Isso mostra que ¥ é crescente, o que garante que
T(t) > W(0)=0, Vt>0.

Assim, por (2.4)), segue que #'(t) > 0, V ¢ > 0. Logo, h é crescente. Consequentemente,
N Ft) 1

= — +h(t)

A Coy

é crescente em (0, 00). Isso conclui a prova de que (f5) vale e portanto f é um exemplo

de funcao satisfazendo as condigoes deste capitulo.
O principal teorema deste capitulo é o seguinte:

Teorema 2.1. Assuma que (¢1)—(p4) e (f1)—(f5) sdo satisfeitas. Entdo existe p* > 0
tal que para todo p € (0, u*) o Problema tem solugdo fraca positiva u, € od(®)
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para algum o € (0,1).

Diante das hipoteses sobre ®, é apropriado recorrer ao método variacional no
contexto dos espagos de Orlicz-Sobolev para o estudo do problema proposto. A
seguir, apresentamos alguns resultados preliminares que serdo fundamentais nas etapas

subsequentes do trabalho.

2.1 Resultados basicos

Proposicao 2.1 ([39], Teorema 3). Sejam ® e ® N-funcdes conjugadas diferencidveis.

Entao sao equivalentes:
(a) ® € As.
(b) existe o € (1,00) tal que ®'(¢)t/P(t) < a para todo ¢t > 0.
(c) existe 3 € (1,00) tal que @' (s)s/®(s) > § para todo s > 0.
(d) ® € V,.

Lema 2.1 ([24], Lema 2.6). Seja ® uma N-fungao satisfazendo (¢1) e (¢2). Entao
P e V,.

Na Proposicao 3.1 de [24], temos o seguinte resultado de imersao.

Lema 2.2. Se as condigoes (¢1) e (¢2) sao satisfeitas, entdo as seguintes imersoes sao

continuas:
(a) LE(RY) — LN(RN).
(b) WH2(RY) — WLN(RYN).
(c) WE®(RN) — L"(RY), para todo r € [N, +00).

Segue do lema acima que Wy*(Q) < L"(Q) para todo r € [1,+0c), pois, em
dominio limitado, temos a imersdo continua LY (Q) < L"(Q) para r € [1, N).

A seguir apresentamos alguns fatos que decorrem das hip6teses (f1) — (fs).
(1) A hipotese (f1) garante que f(0) = 0.
De fato, por (f1), temos

f(t)
(1)

Ve>0, 0 >0talque 0 <t < = <e
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Como @' é continua e ¢'(0) = 0, dado € > 0, existe §; > 0 tal que
0<t<d = |D'(t)| <e.
Seja 0 < t < min{d, d; }. Assim,
f)] <e|®'(t)] <<
Como ¢ > 0 é arbitrario, conclui-se que

lim f(t) = 0.

t—0t

Pela continuidade de f, obtemos f(0) = 0.
Dessa forma, a nao linearidade presente no Problema[2.T]assume, na origem, o valor

—u < 0, o que permite classificar o problema como sendo do tipo semipositone.

(2) A hipétese (f1) garante que, dado € > 0 existe § > 0, tal que

F(t) < ed(t), para 0 <t <§. (2.5)

/@)
()

Com efeito, considere € > 0. Pela hipdtese %g% = 0, existe 0 > 0 tal que

f(s) < ed'(s), Vsel(0,0).

Assim, para 0 <t < §, temos

Flt) = /Utf(s) ds < e/ot '(s) ds = cd(t).

(3) A hipétese (f1) em conjunto com (fs), garante que para p > 1, dado € > 0 existe
ce > 0 tal que

0< F(t) < ed(t) +ct’ exp(Bt?), Vt>D0. (2.6)

(4) Seja o > ¢,. As hipéteses (f2) — (f3) implicam que a funcao f satisfaz a condicao

de Ambrosetti—-Rabinowitz
0<oF(t) < f(t)t, para todot > R (2.7)

para algum R = R, > Ry.
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Com efeito, por (f2) temos F'(t) > 0 para todo ¢t > 0. Devido a (f3) obtemos
tME@) <C f(t)t, Vt> Ry.

Seja R > Ry tal que RM/C > o. Assim,
0<oF(t)< f(t)t, Vt>R.

(5) Seja 0 > c,. As hipéteses (f2) — (f3) implicam que existem constantes ¢, ca > 0

tais que

F(t) Z C1 t7 — Co, Vit Z 0. (28)

De fato, por (2.7)), para t > R, temos

J/Rtids < /Rt?((;)ds,

de onde
ollog(t) —log(R)] < log(F(t)) —log(F(R)), Vt>R
Dali,
o F
log<<;%) ) < log<F(I%>, Vt>R
Assim,
F(t) > F}gf”) 7= ct’, Vt>R

Por outro lado, se t € [0, R], como F' ¢ limitada em compactos, existe uma constante
co > 0 tal que
—F@) < |F@)| < .

Portanto,
F(t) > CltU_CQ, Vt20

(6) A hipotese (fy) implica que existe tg > 0 tal que
L
@)t = 3 exp(B), Vi = to. (2.9)
(7) A hipotese (f5) implica que

F(t) > kot®, Yt>0. (2.10)
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(8) Usando o fato de que t +— F'(t)/t° é nao decrescente para t > 0, parte da hipdtese

(f5), vemos que

0 < coF(t) <tf(t), Yt>0. (2.11)

Lema 2.3. Seja & uma N-fungao satisfazendo as hipétes (¢1) e (¢3). Entao, para

Me = Mg + 1 € cu, = ¢4 + 1 valem as sequintes desigualdades:

(a) Tem-se

<o, VE>0; (2.12)
(b) 1 <my <N <e¢, < 0.
Demonstragio. (a) Pela hipdtese (¢3) temos

()t
<
0<my, < (1)

<Gy <00, Vt>0,
o que implica que
ma®'(s) < ®"(s)s < ¢, P'(s), Vs>0.

Assim, usando integracdo por partes obtemos

t 1 st 1 t
— / < " - / t /
B(1) /0 ¥(s)ds < — /0 ¥(s)s ds = — [5@ (st /0 ' (s) ds]
= () - ().
mq
o que nos da
Ma®(t) = (g + 1)®(t) < td'(t), Vt > 0. (2.13)
De modo analogo obtemos
ca®(t) = (Co + D)P(t) > td'(t), Vt >0, (2.14)

o que garante que (2.12)) se verifica.

(b) E claro que 1 < my < ¢o < 00. Além disso, ao derivarmos a funcio t — ®(t)/t,

verificamos que a desigualdade (2.14) implica que esta fungdo é nao-crescente para
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t > 0. De forma analoga, a partir da desigualdade de (2.13) segue que t — ®(t)/t™ é

nao-decrescente para t > 0. Logo,
P(1)t> < O(t) < d(1)t"=, Vit € [0,1].

Combinando essas desigualdades com a hipétese (¢;), obtemos que, para t € [0,1/C),

valem as seguintes relagoes

B}t < d(t) < OtV e étN < () < D1y,

donde m, < N < ¢,. O

Observacao 2.1. Decorre do Lema que P satisfaz a condicao da N-funcao
A, apresentada no Capitulo [I, Assim, concluimos que os Lemas [1.5] e Sa0
aplicaveis a ® com os parametros m = m, e M = ¢,. Em particular, isso implica que
® e P satisfazem a condicao As. Dai, pela Proposicao , ® e ® satisfazem também
a condicao V,. Em particular, pela Observacao , temos que Wol ’(b(Q) é um espago

de Banach reflexivo.

2.2 Um problema auxiliar e lemas técnicos

O objetivo desta se¢ao é formular um problema auxiliar que contorne a dificuldade
causada pela presenca do termo constante negativo —u no problema original, o qual
impede que a funcao identicamente nula seja uma subsolugao, dificultando a aplicagao
direta de métodos variacionais classicos.

O problema auxiliar de que falamos é

—Agu = f(u") —pg(u) em €, (2.15)
u = 0 sobre 012,
com ut(z) = max{u(z),0} e g : R — [0, 1] a funcdo auxiliar definida a seguir
0, set<-—1,
gty =14 14t se —1<t<0, (2.16)

1, set>0.

Ao considerar uma versdao modificada do problema, com a introducao de um termo
auxiliar g(u), tornamos possivel o emprego de ferramentas variacionais classicas, como

o Teorema do Passo da Montanha.
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Dizemos que u € Wy'®() é uma solucéo fraca do problema auxiliar (2.15)), se

L@’(\Vu\)vlézv dr = /Qf(qu)v dx —u/ﬂg(u)vdm, (2.17)

para toda v € C°(Q).
Seja E,: Wy®(2) — R o funcional definido por

Bu(w) = [ [2(Vu)) = F*) + pG(w)] da.

em que

com f uma func¢ao continua satisfazendo as hipoteses (f1)—(f5), ¢ sendo a funcao
definida em e ® uma N-funcio de classe C? que cumpre as condigoes (¢1)—(¢p4)-
Essa modificagdo do problema original permite mostrar, através da desigualdade de
Trudinger-Moser (ver Teorema , que o funcional energia E,, associado ao problema
auxiliar, estd bem definido. Além disso, E, ¢ de classe C'(Q) e satisfaz as condigoes
requeridas para a aplicagao do Teorema do Passo da Montanha.

O proximo lema estabelece uma desigualdade entre as fungdes g e G, a qual sera
utilizada em demonstracgoes subsequentes.

Antes de enunciarmos o préximo resultado, destacamos que a andlise variacional
feita no Teorema Auxiliar da secao seguinte requer a convergéncia da primitiva
F. Em particular, serd necessario garantir que, sob hipoteses adequadas, a integral de
F(uj) converge para a integral de F'(u"), mesmo na auséncia de convergéncia forte. O
lema a seguir estabelece esse resultado e serd usado nas Afirmacoes [2.2] e [2.4] da prova
do Teorema 2.2

Definigao 2.1. Seja A C €2 um conjunto mensuravel. A funcao caracteristica de A,

denotada por x4, é definida por

1, sex €A,
0, sex ¢ A.

xa(z) =

Lema 2.4. Seja {u;} C Wy'®(9) uma sequéncia tal que u;(x) — u(z) q.t.p. em Q,

para algum u € W, ’Q(Q), e suponha que

C, = sup/ uf fu))de < oo, (2.18)
i Jao
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Entao

/QF(u;r)dx—>/QF ut

Demonstragio. Seja {u;} € Wy'®(Q) uma sequéncia tal que u;(z) — u(z) q.t.p. z € Q,
para algum u € Wy'*(Q), e suponha que a sequéncia (u] f(u})) ¢ limitada em L*(€).
Devido a (2.18)), segue do Lema de Fatou (ver Lema {4.1)), que

0</ ut f(ut dx<hm1nf uf f(ul)de < Ch.

j—o0

De acordo com a hipétese (f3), existe Ry > 0 tal que
C
0 F(1) < S f() V> Ry

para certas constantes C, M > 0. Dado € > 0, seja R > Ry tal que 4(CC;/RM) < e.
Para esse valor de R, usando a desigualdade triangular e lembrando que f(t)t > 0,
para todo t > 0, temos

/QF(uj)dx—/QF(qu)dx <

Flut)d —/ Flut)d
/{uj*zR} (u) dr {ut>R} (") dz

F fd—/ Flut)d
i /{u+<R} (u7) de {ut<R} o) do

C C
_RM/ uf f(uf d:v+R—M ut f(ut) dx

F*d—/ FuNdz . (2.19
+ /{uj*<R} (uj) v {ut<R} (u ) v ( )

Para estimar o ultimo termo, recorremos ao uso de fungOes caracteristicas e a

desigualdade triangular, obtendo assim a seguinte estimativa

+ + +
|[{uj<R} F(uj)dx—/{u+<R}F( )dx| = ‘/ X{u <rydz — /QF(u )X {ut<ry dx
+/ ‘X{u <R} X{u+<R} dx. (220)

Pela continuidade de F, segue que ela é limitada em [0, R]. Portanto, existe uma

constante C' > 0, tal que

Yot < F(uf) = Fuh)| < €+ F(u) € LY.

Além disso, como uj(x) — ut(z) qtp. x € Q e F é continua, temos que

F(uj (z)) = F(u™(x)) q.t.p. € Q. Assim, pelo Teorema da Convergéncia Dominada
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(ver Teorema [4.6]), segue que

/yF U)X oy A = 0. (2.21)

Para a tltima integral em ([2.20]), observamos que

— + —
= /{u+<R} P ‘X{UT<R} 1‘ da

+
* /{u+2R} F(u >X{uj<R} d. (2.22)

/QF(UJF) 'X{ujdz} — X{ut<R}

Como u (z) = u'(z) q.t.p. = € Q, segue que X{u;r<R}(:C) — 1 qtp. z € {u" < R}.
Além disso,
0< Fh) X am — 1| < Fu) € L(Q)

Assim, novamente pelo Teorema da Convergéncia Dominada, temos
+ _
/QF(u )‘X{uj<R} 1‘ dx — 0. (2.23)

Para o ultimo termo de (2.22)), vemos que

C
+ Y+
/{quZR} F(U )X{u;'<R} dz < R7M /{u*ER} f(u )u dx.

Juntando esta dltima desigualdade a (2.20)-(2.23)) e inserindo essas informagcoes em

(2.19) concluimos que

/QF(uj)dx—/QF( )dz| < M/ wt f(ut dx+— [t fu) da + o(1)
3CC,
< o +o(l) <e
para j € N suficientemente grande. Como € > 0 ¢é arbitrario, segue o resultado. [

O proximo resultado sera utilizado na Afirmagao da demonstragao do Teorema
Auxiliar 2.2] adiante. Ele fornece uma estimativa fundamental de limitagdo do termo
exponencial. Esse tipo de resultado esta relacionado a desigualdade de Trudinger—

Moser generalizada.

Lema 2.5. ([18], Proposicao 4.1). Considere ® uma N- funcao satisfazendo (¢)—(¢2).
Sejam N > 2, a < N — 1 e (u;) uma sequéncia de funcées em Wy'* (), tal que

lim [ ®(|Vu,|)dz <oo e Vuj(z) = Vu(zr) qt.p. z el

J—=00JQ
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Entao para cada

zlR

1
]1LTOIQ®(|Vuj|)dx—fQCI>(|Vu|)dx ,

(P = oo se o denominador é zero), temos
[ exp(Kyaplus") do < C,
0

em que C' é uma constante que nao depende de j.
Lema 2.6. ([19], Proposigao 3.2). Considere ® uma fun¢ao de N-fungao satisfazendo

(¢1) e (¢3). Seja (u;) € Wy'®(92) uma sequéncia, tal que

KN N/v
/ O(|Vu,|)de <c < <6a> , para cada j € N.
Q
Entao existem ¢ > 1 e C' > 0, tais que
/ exp(gf|u;|7) de < C, para cada j € N.
Q

Defini¢ao 2.2 (Sequéncia (PS)). Sejam X um espaco de Banach e /: X — R um
funcional de classe C*(X). Dizemos que uma sequéncia (u;) C X é uma sequéncia de

Palais—-Smale para I no nivel ¢ € R se ela satisfaz:
(@) I(u;) = ¢
(b) I'(u;) = 0 em X*.

Em outras palavras, trata-se de uma sequéncia cujos valores pelo funcional se
aproximam do nivel ¢ enquanto os funcionais derivadas tendem a zero no dual X*,

caracterizando-a como uma sequéncia de “quase-pontos criticos” de I.

Defini¢ao 2.3 (Funcional (PS).). Seja X um espago de Banach. Dizemos que um
funcional 7: X — R satisfaz a condi¢do de Palais—Smale no nivel (PS)., se toda

sequéncia (PS) para I no nivel ¢ possui subsequéncia convergente em X.

O objetivo do teorema a seguir é provar um resultado de compacidade, o qual
possui interesse independente. Como consequéncia, veremos no corolario seguinte que

o funcional E, satisfaz a condicao (PS). para valores de ¢ apropriados.
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2.2.1 Um teorema auxiliar

O objetivo dessa subsecao é provar um resultado de compacidade, o qual possui
interesse independente. Como consequéncia, veremos no corolario seguinte que o

funcional E,, satisfaz a condigao (PS). para valores de ¢ apropriados.
Lema 2.7. Para todo t € R temos que G(t) > g(t)t — 1/2.

Demonstragio. Para t € (—1,0), temos que t + % >t +t? — 1/2. Assim, desde que

~1/2, set< —1,
2
Gt)=q t+%5, se —1<t<0,
t, set >0,
e
-1/2, set < —1,
gyt —=1/2=¢ t+1*—-1/2, se —1<t <0,
t—1/2, set>0,
temos que G(t) > g(t)t — 1/2. O

A seguir, temos um importante resultade de compacidade.

Teorema 2.2. Sejam p1; > 0 uma sequéncia tal que p; — p > 0 e (u;) C Wol’q’(Q)

uma sequéncia que satisfaz:

E,(u;)—c e E (uj)—0 em [WOI’@(Q)]*,

J K

para algum ¢ # 0 tal que

N
~

c< (Kg’f"> - gym, (2.24)

em que 3 > 0 é a constante fornecida por (f2) € Ky o foi dado na Definigao . Entao,
eziste uma subsequéncia de (uj) que converge em Wol’@(Q) para um ponto critico de F,

no nivel c.

Demonstragdo. Como E,, (u;) — ¢, temos

B, (u;) :/Q<I>(|Vuj\)dq:—/QF(uj)d:c—i-uj/QG(uj)d:c:c—i-o(l), (2.25)

e, ja que
1B, (ug) ()] < B (ug) s - o]l = o(D)]v]l,
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obtemos

, Vu;
J Tl Vode = [ fiede+pg [ gtus)ode = o)

quando j — oo, para todo v € W, "I)(Q). Em particular, tomando v = u;, obtemos

B, (i) (ug) = [ (Vi IVlde — [ ff)uf dotps [ glug)us do = of|us]).

(2.26)
Pela hipotese (f3), dado § € (0,1), existe uma constante ¢; = ¢;(9) > 0, tal que
F(t) <ecp+0tf(t) paratodot e R.
Além disso, pelas defini¢oes das funcoes g e G, temos
)/Qg(uj)uj dx’ < /Q |u;| dx, ‘/Q G(uj)dx| < /Q |uj|dz, VjeN. (2.27)

Afirmacio 2.1. A sequéncia (u;) é limitada em W, ®(Q).
De fato, pela equagao ([2.25)), temos
/Qq>(|vuj|)dx — /QF(uj)da;+uj/QG(uj)dx+c+o(1)
<ec 5/Q fw)uy doe — py /Q G(uj)dr +c+o(1)
< et 8| [ @ (Tu)IVegl do 4y [ gl do = ol

_/J/j/QG(u]‘)d-m_'_O(l).

Assim, por (2.27) e pela imersao W, ’(b(Q) — L'(Q) mencionada logo apds o Lema ,

segue que

| @(Vwdo =6 [ @ (VDI Vsl de < 2 + s [ glus)uydo = gy [ Gluy)do
+ (1) + oflJu 1)

< ez + caluy]-

Por (2.14) temos que ®'(¢)t/®(t) < c,, para todo t > 0. Como ® é uma fungao par,
segue que, ¢’ (1)t < ¢, P(t) para todo t € R. Assim,

5/QCI>'(|VUJ-])|Vuj|dxScaé/ﬂfb(|Vuj|)dx, VjeN.
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Substituindo esta estimativa na desigualdade anterior, obtemos
(1- cad)/QCI)(\Vudex < ¢ + 3|y
Além disso, para todo v € L*(£2), vale a desigualdade
min{|[v]lg, lvf[g~} < /Q@(v) d < max{||v[|g", [[v]z=}.
Fazendo v = |Vu;| na desigualdade acima e lembrando que ||u;|| = [|Vu,||e, obtemos
(1 = cad) minlluy |, s} < e + callugll, V€ N.

Dai se conclui que a sequéncia (u;) é limitada em Wy®(Q), visto que ¢q > mg > 1.
Isso conclui a prova da Afirmacdo 2.1} Em particular, pelas imersées do Lema [2.2]

temos que, a menos de subsequéncia:

U — u em Wy *(Q),
u; = u em LP(Q), para todo p € [1,00), (2.28)
u;(z) = u(x) qt.p. zeQ.

Afirmagao 2.2. A funcao u é nao nula.

Como (u;) é limitada, temos pela equacao (2.26) que
B, (uy)(u;) :/Qcp'(yvujpwuj\dx—/Qf(uj)u; dij/gg(uj)uj dr — 0. (2.29)

Como ® € A,, vemos que ([, ®(|Vu,|)dr) é limitada. Pela desigualdade ([2.14)
concluimos que a sequéncia (®'(|Vu;|) [Vu,|) é limitada. Usando esse fato juntamente
com os controles dados por (2.27)), obtemos de (2.29) que

sup/ uf f(uf) de < oco. (2.30)
i Ja
Dessa forma, podemos aplicar o Lema [2.4] o que nos garante que

/QF(u;r) d:v—>/QF(u+)dx. (2.31)

Além disso, a convergéncia u; — u em L'(Q) junto com o fato de as fungoes g e G

serem ambas continuas, assegura que

/Lj/Qujg(uj)dx —>,u/9ug(u) dr e /Lj/QG(Uj)dQZ — ,u/QG(u) dx. (2.32)
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Suponha, por absurdo, que u = 0. Entao, pelas convergéncias dadas em (12.31)) e (2.32)),

segue que

/QF(uj) dr — 0, ,uj/Qujg(uj) dr — 0, 14 /Q G(uj)der — 0.  (2.33)

Portanto, pela equagao (2.25)), obtemos que

/’¢qvuﬂ)¢c——>o
Q
Entretanto, como
N
Y

KN,oc 1% KN,a
c< (5) —§|Q| < <ﬁ> ,

e Jo € N, tais que

2=

2|z

. K
existem ¢ < ( g“)

AMW%WM<% Y5 > jo-
Assim, o Lema [2.6| garante que existem constantes co > 0 e ¢ > 1 tais que
[ explaplu M) de < eo V5 = o

Agora, aplicando a hipé6tese de crescimento da fungao f dada por (f2), e usando a

desigualdade de Holder com expoentes conjugados ¢ e ¢’, obtemos
/u<+ (uf)dx < c3/ (\u|N + ]u-]exp(ﬁm-\”)) dx
o 3\ =G\ j j
N , 1/q 1/q
< C3/Q |u;|™ dx + ¢4 (/Q ;|7 d:c) (/Q exp(¢B|y;|7) da:)

, 1/q
§03/Q|uj\Ndx+c5 </Q | |? dx) — 0,

visto que u; — 0 em L7 (Q) e em LN (Q). Essa convergéncia, combinada com (2.29) e

[£33), implica que
/@ﬂVWMVWMx—+Q
Q

e, portanto, (2.13)) garante que

A;@UVuﬂ)dx——+0.

Finalmente, usando as equagoes ([2.25) e (2.33]), concluimos que

Euj (U]) — O,
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o que é um absurdo, pois E, (u;) — ¢ # 0. Portanto, u # 0, como queriamos

demonstrar.

Afirmacao 2.3. O limite fraco u em (2.28)) é um ponto critico do funcional energia
E

e

Com efeito, dado que Ej, (u;) — 0, temos

Vu,
/<I> (|Vu,)) Vu | Vvdm—/f vda:—l—,u]/g(uj)vdm—>0, (2.34)

para todo v € W, ’q)(Q). Estudaremos agora o comportamento de cada uma das trés
integrais. Primeiro, como |g(u;)| < 1, v € LY(Q) e u; — p, segue do Teorema da

Convergéncia Dominada (ver Teorema 4.6|), que
,uj/ g(uj)vde — ,u/ guw)vde, YveWy®(Q). (2.35)
Q Q

Para a segunda integral, dado v € C°(€2) e R > 0, temos

+

Lembremos que a sequéncia (uJ-r f(u})) é limitada, como visto em ([2.30). Usando um

Vlloo ‘
”]!/Qf(uj)ujdx, VjieN

raciocinio andlogo ao do Lema [2.4] obtemos

’/ f(u vdm—/ flwHvdz| < /{usz}f(upvdx_/{U+ZR}f(“+)UdI
+ /{u+<R} f(uj)vdx—/{u+<R} Fut)vde

||UHOO u +f( ) +> d$

_ +
‘/u+<R} uy)vde /{u+<R} fw)vdzl.

Agora, usando a desigualdade triangular no tltimo termo acima, segue que

|/{u - J Yudr — /{u+<R} fuH)vdr| < ‘/ (f(uj)v — f(u"‘)v) X{ut <R) dw’

+ [ F) el

(2.36)

dx.
(2.37)

X{u <R} — X{ut<R}

Como f ¢ continua em [0, R] e v € C*(2), temos que f(u] (x))v — f(ut(z))v q.t.p.
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em €2 e é dominada por fungao integravel como a seguir,

Py = )] X apy < C+ (5ol € LH(9),

segue novamente do Teorema da Convergéncia Dominada

/Q (f(u;r)v — f(u+)v> X{ut<ry 4z — 0. (2.38)
Por fim, temos
/ F)l X qur<ry — X{u+<R}‘ dx = /{u+<R}u{u+zR} FW) ] | Xur<ry — X{uj<R}‘ dx
= Jos g TN x{u;@}\ do
+/{u+>R}f(u+)|v| X{u;r<R}‘ dx
+ HU]!C’O/QJ”(W)U+ da (2.39)

visto que o Teorema da Convergéncia Dominada de Lebesgue também garante que

Je oy Tl

Utilizando (2.38)) e (2.39) em (2.37) e, em seguida, retornando a equagao ([2.36]),

concluimos que

dxr — 0.

- X{u;r<R}

'/Q fuf)vde /Q flu)*v dx’ < % +o(1),

quando j — co. Sendo R > 0 arbitrario, segue que
/ fwhH)vde — / fwHvde Yove CX(Q). (2.40)

Para a primeira integral em (2.34)), usamos os Lemas e , para garantir que a

menos de subsequéncia, temos

Vuj(x) — Vu(z) qt.p. z€Q, (2.41)

Vvda;—>/<b ]Vu]) -Vodr, VveCr(Q). (242)

[ (uh val

j |
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Pelas trés convergéncias obtidas em ([2.35]), (2.40) e (2.42)), segue que

\Y
/QQD’(]VU|)|VZ|-Vvdx:/Qf(uﬂvdx—u/ﬂg(u)vdx, Vo e CX(Q).

Pela densidade de C%°(Q) em Wy '*(£2), concluimos que u é um ponto critico de E,,.

Em particular, tomando v = u, obtemos
/ o' (|Vu|) |Vl dz = / Flut)ut dz — M/ ug(u) dz. (2.43)
Q Q Q

Afirmagio 2.4. A sequéncia (u;) é tal que u; — u em Wy *(Q).

Primeiramente, lembremos que por (2.31)) e (2.32) temos
/F(u;“)dx — / Fu)dr e Mj/ G(u;)dr — ,u/ G(u)dx. (2.44)
Q Q Q Q

Agora, queremos garantir que

/Qf(u;r)u;’dm—>/gf(u+)u+dm (2.45)

Para isso, mostraremos, inicialmente, que (f (zﬁr

7)) € limitada em L?(Q2) para algum
q > 1. De fato, pelo Lema [2.7] temos que
caG(t) — g(t)t > —%‘”, VteR.

Assim, segue de (2.14) e da condigdo de Ambrosetti-Rabinowitz com o pardmetro
0 = c,, vista em (2.11)), que

Eu(u) = By(u) = =B, (u)(u)
= /Q [CID(|VU|) - Cloé(I)'(|Vu]) |Vu|} dx —/Q [F(u+) — Claf(qu) ut| dx
+ C[: ; [caG(u) — g(u) u] dz
> g,
2

Logo, usando a hipétese sobre a constante ¢, dada em (2.24)), obtemos

KN,a>N/7

C—Eu(u)<< 3
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Além disso, como E,(v;) — c e valem as convergéncias em (2.44)), temos

lim [ ®(|Vu,|)dz = lim { (uy) +/ d:c—u]/ G(uj) dx
j—

j—o0 JQ
—c—l—/ d:p—,u/G

=c—E,(u) —I—/Q (|Vul|)d

Combinando isso com desigualdade estrita obtida acima, temos

KN,(X>N/’Y

lim <I>(|Vuj|)dx—/Q<I>(|Vu|)dx:c—EM(u) < < 3

J—=00 JQ

Como P é continua e convexa segue do Teorema [£.5] que

@(|Vul) de < liminf | &(Vu,))de = lim [ &(Vu,))d
[ @(1Vu)de < liminf [ @(Vu;l)dr = lim [ @(|Vu,))de

Dali,
. KNa N
0 < lim Q®(|Vuj|)dx—/ (]Vu])d:c<< ; ) . (2.46)
Seja
. ~
P = ,

T o @1V, ]) de = Jo S(IVul) o

(P = oo se o denominador é zero), entao, por ([2.46]), temos que %a < P. Logo existe
q > 1tal que p = %’aq < P. Assim, pelo Lema existe C' > 0, tal que

/Qexp(q5|uj|7) dx < C, para cada j € N.

Utilizando esta estimativa junto com a hipétese (fs), temos

/|f |qu<c/ |uj|‘J(N_1)da:+c/ﬂexp(q5|uj|7)dx<é, VjieN

Isso prova que (f (u;“)) é limitada em L?(2) para algum ¢ > 1, como queriamos. Agora,

considerando ¢’ o expoente conjugado de ¢ e aplicando a desigualdade de Holder, temos

L5 —wtde < ([ 1rpirae)” ([ -t ar) " <o)
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Isso prova ([2.45)). Por fim, ji que ® é convexa, temos

, Vu;
/Q<I)(|Vu|)dx—/g@(]Vuj\)dx2/9@(|Vuj]) IVuj-\ (Vu — Vi) de

= B}, (u)(w =) + [ flu) () —u)da

—/ij/gg(uj)(uj —u)dz.

Dai, pelas convergéncias obtidas em ([2.44)) e (2.45]), obtemos

/QCD(\VuDdx > /Q<I>(|Vuj|)dx+0(1),
isto é,

limsup | ®(|Vuy;|)de < / O(|Vul) dx. (2.47)

j—ooo  JQ Q
Das equagdes ([2.46|) e (2.47), obtemos
/Qc1>(|vuj|) dr — /Q<I>(|Vu|) dz.
Combinando com ([2.41)) e aplicando o Lema de Brezis-Lieb (ver Lema [4.2)), temos
/ch(\vuj — Vu|)dz — 0.

Lembrando que ® € A, temos que

luj = ull = [Vy; = Vulle — 0,

o que conclui a prova da Afirmagao [2.4] e finaliza a demonstracao do Teorema [2.2] [

Corolario 2.1. O funcional E, satisfaz a condicao (PS). para todo ¢ # 0, tal que

N—-1—«a
Kch X
: — =19Q].
C<< 3 ) 5 1]

Demonstragio. Seja p > 0 fixado e ¢ € R\ {0}, tal que

K N—1l—«
c< < gva> - g|9|.

Seja (u;) C Wy'®(Q) uma sequéncia de Palais-Smale para E, no nivel ¢, isto é,

Ey(uj) = c e E(u;) =0,
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Definimos a sequéncia constante de parametros p; = p para todo j € N. Com isso,
temos
By (uj) —c e E, (u;) = 0.

Como ¢ # 0 e a desigualdade acima é satisfeita, todas as hip6teses do Teorema[2.2] estao
verificadas. Assim, a sequéncia (u;) possui uma subsequéncia que converge fortemente
em W, ®(Q). Portanto, o funcional E, satisfaz a condicdo (PS)., como querfamos

demonstrar. O

2.3 Estrutura do passo da montanha

Nesta secao, desenvolvemos os elementos necessarios para a aplicacao do Teorema
do Passo da Montanha ao funcional energia associado ao problema estudado. Para
isso, comecamos estabelecendo a geometria do passo da montanha, demonstrando que
o funcional ¢é limitado inferiormente por uma constante positiva em uma esfera em
torno da origem, bem como a existéncia de um ponto onde ele assume valor negativo.
Em seguida veremos que o nivel minimax esta no intervalo no qual o funcional satisfaz a
condicao de Palais—Smale, verificando que o funcional satisfaz as hipdteses do teorema.
Essas construgoes sao essenciais para assegurar a existéncia de um ponto critico nao
trivial, o qual sera identificado com uma soluc¢ao do problema auxiliar abordado.

Para desenvolver os passos citados, iremos supor, sem perda de generalidade, que
0 € Qe fixar R > 0 tal que B(0, R) C Q. Para j € N consideramos g; : [0, R] — [0, 00)
definida no Exemplo 5.1 de [17], por

2 1 r
(—y+2) KN NBlog % ( og ) , sey € R,R},
R | 2
1 1 - ;
gj(y) = KNLNB logB <R> VEl (1 08(J > sey € |Re™ W, R} 7
’ Yy . J L 2
1 r j
KNa <1+ Oi( )> , se y € O,Re_ﬁ},

e entao definimos a sequéncia de fun¢oes radiais v; : B[0, R] — R por

vi(z) = g;(|z]). (2.48)
Assumindo as hipéteses (¢1) — (¢4), obtemos o resultado a seguir.

Lema 2.8. Considere ® uma N-funcio de classe C! que satisfaz (¢1) — (¢4). Entéo,
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para v; definida em (2.48)), tem-se v; € W' *(B(0, R)) e existe jo € N tal que
/ O (|0Vy,]) dz <6~ Vj>jo, (2.49)
B(0,R)

onde 0 € [0y, 6], com 6; > 0.

Demonstrag¢do. Primeiramente, veja que v; é uma fungao continua e limitada, para
todo j € N. Em particular, v; € L*(B(0, R)). Calculando as derivadas parciais de v;

em x # 0, obtemos

a?)j , xZ;
o) = die])
de modo que |Vv;(z)| = |g}(|z[)]. Note que |[Vu;(z)| = 0 para |z] < Re /N
Introduzimos agora a sequéncia auxiliar o; = ]10% Uma vez que
lim e_j/leog(j) — lim °°@DI9/N — 0 ¢ lim 71 =
j 00 j—ro0 j—oo jlog(s) ’

escolhemos j; > e tal que Re /N < 0; < R/2 para todo j > j;. Com isso, a prova
de (2.49) sera dividida na estimativa das integrais radiais de ®(0|g}(y)|) associadas a

estes trés intervalos. Mais precisamente, temos
R
O(0| V) dr — f/ O0g' ()N dy = w1 (I + I + Is), (2.50
Loy PO dr =y [ @)y dy = wxoa (1 + B+ 1), (250

onde os termos Iy, I e I3 correspondem as integrais nos intervalos [Re =/~ a;], [0, R/2]
e [R/2, R], respectivamente. Vamos estimar cada uma destas integrais.

Antes disso, observe que pelas condicoes (¢1) — (¢4) existem ty > e, a € (0,B) e
c > 0, tais que

etV se t €[0,%),
P(t) < . (2.51)
tN log®(t) (1 — log_“(t)) , set € [ty,00).

Estimativa de I: Para y € [R/2,R], temos 0|g}(y)| < 62¢j'775, e como
1/y — B < 0, existe jo > j1 tal que |0g)(y)| < to, possibilitando aplicar a primeira
parte da desigualdade (2.51]), obtendo
R
Is = // (0g(y))y™N " dy < e VOB = eoN B, (2.52)
R/2
Estimativa de I: Continuamos considerando j > j,. Usando ([2.51)) obtemos

o(t) < CtV [14 [log"(1)|], vt>o0.
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Note que [0, R/2] C [Re™#/N R/2] e para y no intervalo [Re™/N | R/2] tem-se

—1/v ArB B—1 1 B log j o
9;(y) = =Ky ' N”Blog” " (R/y) ;jl/’** <1+j> < 0. (2.53)

Entao

R/2
I, < CoN /

g}-(y)\N [1 + |log (614 ()] ]N] y"tdy. (2.54)

Vamos estimar a parcela log" <0| g;(y)|) Utilizando o fato de que 2 < % < & para

todo y € [0j, R/2], com 0; = jk,%, temos
2 < E < E — jlog(j) — elog(jlog(j)) — plog(h)log(j) _ log*(s) (2.55)
Y 0j

J& que log é uma funcao crescente, vemos que

log(2) < log(R/y) < log®(j) < 7%, Vy € [0, R/2]. (2.56)
Além disso,
log j 1
jl/w—B < jl/v—B (1 + j) < Ql/vjl/v—B' (2.57)

Por (2.53)), (2.56]) e (2.57)), lembrando que 1/v < B < 1, obtemos

9103'2(3”53'1”3 < 0lg;(y)l < 92010g31(2)];21”j1”37 Vy € [oj, R/2),
ou seja, existem c1, co > 0 tais que
P < b)) < e 3L V€ Lo B2
Consequentemente, para j > jo > e existe c3 > 0 tal que

log (619, (y)])| < max {|log(cr Rj%7 72 y) |; [1og (2R~ /y) |}
< cz[log(R/y) +1log(j)], Vy € [0y, R/2].

Assim, usando ([2.55)), vemos que

llog(9|9§-(y)l)\N < ¢y [log" (R/y) +log" (j)] < calog™(j) (2.58)

para todo y € [0, R/2] e j > jo. Retomando a estimativa da integral I, dada em
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(2.54), e utilizando (2.58)) em conjunto com a expressao da derivada em ([2.53)), temos

R/2 1
I < es0™ i 10g™ () [ 10PN (RYy) -y dy
o Y
_ N [R? _ 1
= 5 P1og™ () [ 10s POV (RYy) Ly (2:59)

Denotemos b = (B — 1)N. Se b # —1, usando a mudanga de varidveis s = log(R/y) e

(2.55)) obtemos

R/2 1 log?(j) 1 s=log?(j)
log” (R/y) = dy — / b ds — b+l
/Uj og’ (R/y) Y Y og(2) 5 a5 =y +1 5 cog)
1 .
T (IOgQ(bH) (J) 1Ogb+1(2))

Caso ocorra b = —1, obtemos

R/2 1 log?(j) log?(i
log™' (R/y) - d :/ s71ds = log(s)|*Tlos )
[ hee Ry dy= [ 8(5)| oS

= log (log*(j)) — log (log(2))
< cg[1 + log (log”(j))] < cg[1 + log*(5)].

Em qualquer caso, vemos que

R/2 1
/ log” (R/y) ;W< co[L +1og” ™2 (j)], Vi > >e.

J

Substituindo essa estimativa na expressao (2.59)), obtemos

I < 0N 578 1og® (j) - 1og? PTINH(G) = .07 i B log?PNT(j). (2.60)

Estimativa para [;: Lembremos que o; = ﬁ §

y € [Re‘%,aj] temos e//N > g > elOgZ(j), de modo que

1
5

- B—-1
6logQ(j) (]JV) S E logB—l (R/y) S elogQ(j) 10g2(371)(j).
Yy

Isso implica que

1_

NkBj% < leBelogQ(j)j; 1 < longl (R/y)j%—B < elogQ(]’) logQ(Bfl)(j)j%_B.

< =

Entao, a partir da expressao da derivada de g; dada em (2.53)), vemos que existe um
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indice j3 > 7o tal que, para todo j > js, vale

1
_ 1 .1_ log(7)\> -

B (] = Coton () 147 (14 20) o ey
para todo y € [Re‘j/N, ay} e 0 € [01,0,], onde £y é dado em (2.51)). Além disso, para
y nesse mesmo intervalo, escrevendo s = R/y e h(s) = s/log' ?(s) vemos que h é
uma funcao crescente no intervalo [elOgQ(j ),e//N] e assim atinge o maximo em s = e//V,
Assim,

C logj\* _ 270,C
v .
o] < oGnr i) 577 (14 0) " < BRCpomjion
J

< GV BB — Ged/N 571 = GedemiN-D/N ;51

para todo y € {Re‘j/N ,0]} . Dessa forma, podemos encontrar um indice j, > j3 tal

que, para todo j > j4, temos

sup ‘Gg;(y)‘ <él, VO Eh, 0,

y€E[Re=I/N ;]

Em particular, para a € (0, B) obtemos log™“(0|g}(y)|) > j% Devido a (2.61)) e (2.51)

verificamos que

@ (0]g,(9)]) < 6" g ()| 10g (6

<N (1—.1>
]a

para j > js. Ja que log" ' (R/y) < 1e j%_B — 0 quando j — oo, por ([2.61]) temos

gw)]) (1 1og™ (0]g;)]))

g;(y))Nlog"‘ (|095»))) (2.62)

1.1_pl R
0lg;(y)| < COs27 57 B; < 7

para todo j > js ey € [Re’j/N,aj}, para algum js > j;. Com isso, usando (2.62)) e
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(2.53), j& que a > 0, a integral I; satisfaz

=, @ ) v dy
A,

(g

N
< gV (1 _ ) WNNBBN (1 n 10§;j> ! j(%—B)N
J

: /R 7 log® N (Ryy) - yl -log™ (R/y) - y™ " dy.

| /\

g, w)[ 10g* (|0g(w)|) vV dy

e—J/N

Pela definicao de B temos (B —1)N + o = B —1 > —1. Dali, ja que 0; = Re~108°().

usando a mesma mudanga de variaveis s = log(R/y) da estimativa de I obtemos

[ g™ (Bjy) Y 1(j)B
Re—3/N Yy B N '

Lembrando das defini¢oes de B e Ky, dadas em Definigao , Kyo = BYEN w?V/iVl,
N
vemos que Ky I NV"DERN=1 — ()11 = Além disso, (1/7 — B)N = —B e entdo

N
-

J J

< OVuRL, (1 - ;) (1 + 10?) . (2.63)

Por fim, usando as estimativas (2.52)), (2.60) e (2.63]), obtidas para as integrais I, I e
I3, na equagao ([2.50)), segue que

| log j
I < OV Ky NOV-DB BN <1 - ,a> (1 + Og.‘7>
N

/B(OﬁR)q>(|9wj(z)|) d = wy_ 1/ @(\eg] Dot

N
(g ()
]a

para todo 0 € [01,65] e j > j5. Note que

<o~

+esg P log? () )] : (2.64)

N
1 1 N\
lim [(1 - > <1+ Og.(j)> + e P log23N+4(j)] =1
j—00 ja i

Afirmamos que para j suficientemente grande vale

N

1 1 5
(1 - ) (1 + Og(J)) + c5j B log?PN () < 1. (2.65)
j J
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Com efeito, ja que (N — 1)B = N/, consideremos h: [0,00) — R a funcao auxiliar
dada por
h(z) = (1+2)" D2,

a qual é derivavel em (0, 00). Aplicando o Teorema do Valor Médio obtemos que, para

cada z > 0 existe £ € (0,z) tal que

Como h(0) = 1, segue que

(1 a) X =14 W (e = 1+ (N =B+ N D e

loa (i
No nosso caso, tomando x = %(J), obtemos

N\ (N-1)B :
<1 N loi.<j)> 1L (N-1)B(1+ fj)(N—l)B—l 10gj(3)
A\ (N—1)B—1 :
<l+ec (1 + bgf”) log(4) (2.66)

. ?

J

para algum §; € (0, logjﬁ) Substituindo (2.66)) na expressao original a esquerda de
(2.65)), obtemos

A\ (N-1)B
1 1
<1 B ) (1 n og‘(])> toegj B 10g2BN+4(j)

J¢ J
A\ (N=1)B-1 .

1 1 |
< (1 - u) 1+c (1 T Ogm> Og.(j) + e3P log? N (j)

J J J
=1-1 (2.67)

onde
A\ (N—1)B-1 .
1 I
bj = — [1+c(1—j% <1 + Ogj(j)> ogj(j) — g " 10g2BN+4(j)] :

Lembrando que (N —1)B>1e0<a < B < 1, temos

J

. Y

A\ (N-1)B-1 . . k-
] ] ] ]
<1+ 0g(])> Lo los() 05&7)) Oi (7) N
J jlma’ jB-a

para qualquer k£ > 0, quando j — oo. Portanto, para j suficientemente grande, temos

que b; > 0. Entao, (2.67) garante que (2.65) é valido, como afirmamos. Desse modo,
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tomando o limite quando j — oo em ([2.64]), concluimos que
P (|0Vv;(x)|) dx < 6N
Loy ® V03]

para j suficientemente grande e 6 € [6, 6], com 6; > 0. Em particular, v; € W, (Q)
e para 6 = 1 tem-se
Vuille < 1,

para j € N suficientemente grande. O]

O proéximo resultado estabelece a geometria do Teorema do Passo da Montanha
para o funcional E,. Mais precisamente, mostramos que £, satisfaz trés propriedades
fundamentais: (a) positividade uniforme na esfera de raio pequeno; (b) existéncia
de uma dire¢do em que, no infinito, o funcional decresce para menos infinito; e (c)
existéncia de um valor de nivel critico obtido por um min-max sobre uma familia de
caminhos que ligam a origem a um ponto especifico da direcao de decaimento.

Essas propriedades, combinadas com a compacidade do funcional (garantida
por condigOes anteriores), asseguram a existéncia de um ponto critico de E, no
nivel correspondente ao valor critico min-max. Esse ponto critico sera interpretado
posteriormente como uma solugao fraca do problema eliptico associado.

A formalizacao dessas ideias é apresentada no lema a seguir.

Lema 2.9. Existem constantes g, p,co >0, J >2, T >pe

KNa
9 S b
<<6>’

tais que, para todo u € (0, 11g), valem as seguintes propriedades:

e

(a) E,(u) > co para todo u € WOI’Q(Q) com |lul| = p.

(b) Para toda fungiio ndo negativa ug € Wy'*(Q)\ {0} temos E,(tug) — —oo quando
t — 00.

(c¢) Considerando a seugéncia (v;) definida em (2.48]), tem-se para algum J, ||[Tv,|| >
peE,(Tvy) <0. Além disso, se denotamos por

I = {n € C([0,1], Wo™()); 1(0) = 0, n(1) = Ty}
a classe de caminhos que ligam a origem ao ponto T'v;, entao
< ¢, = inf E,(u) < o, 2.
co < ¢ = nf uergl(%ﬁ]) W(u) <U+Cp (2.68)
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(d) O funcional E, possui um ponto critico u, € Wy'®(Q) no nivel c,.

Demonstracao.

(a) Fixamos p > ¢,. Inicialmente escolhemos py > 0 satisfazendo

1
KNa g
< : .
Po < 25 >
Para p € (0,p0) e u € Wy*(Q) tal que |ju|| = p, defina @ = u/p. Note que a
desigualdade de Trudinger—-Moser (ver Teorema [4.4) é aplicavel a 4. Dado € > 0,

usando (2.6 e aplicando as desigualdades de Holder, de Poincaré (ver Proposigao

e de Trudinger—Moser, obtemos

/QF(UJ’) dr < e/ﬂ O (u) dr + C’G/Q |ul? exp(B|u|”) dx
1/2
geclfvaym+cwm&(A@@@mmmd@
1/2
—wCA@MMWM+QW(4wM%NWUM>
<eC [ o(Vul)dz + Cp'Cy,

onde C,, > 0 depende de py, e C. é uma constante ajustada, que depende de € e da

constante de imersio de Wy'*(Q) em L?(Q). Fixando ¢ = ¢ tal que 1 — Cey = 3,

tomamos p < py < min{pp; 1} suficientemente pequeno de modo que

e 1
Co(po)? <17

onde Cy = C,,C,,. Substituindo a estimativa acima no funcional E,, obtemos

Emo:KEMVMM$—4F@ﬂdm+M4GmﬁM

> (1= Ce) [ @(Vul)dz — Cop? - 519

Aqui usamos o fato de que G(t) > —1/2 para todo ¢ € R, decorrente do Lema 2.7

Pela escolha de €, e pg, devido ao Lema [1.5) vemos que

v

Lo Z co 1 - iz
Eu(w) 2 5 lull = Cop” = £101 = % (5 = Cop =) = 10

> gy,
4 2
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Por fim, escolhemos pg > 0 suficientemente pequeno tal que

@‘m < pL’
2 8
e definimos »
p «
Co = 505 > 0.

Assim, para todo p € (0, po), temos E,(u) > ¢y sempre que ||u|| = po, 0 que conclui a

demonstracao do item (a).

(b) Seja ug € Wy *(Q) \ {0} tal que uo > 0. Utilizando a estimativa G(t) < |t|, em
conjunto com o Lema e a desigualdade (2.8) para um o > ¢, fixado, obtemos
B, (tuo) :/@(t\vuopczx—/ F(tug)da;w/ G(tuo) da
0 Q 0
ggl(t)/ﬂ@(\vuoodx—ctojg\uoygdx+cl|sz| +M/Qt\u0]d:v

= cot® — c3t7 + 1 |Q| + catpp — —o0,

quando t — oco. Assim, para t suficientemente grande temos Eu(tuo) < 0.

(c) Para demonstrar este item usaremos a sequéncia (v;) definida em ([2.48)). Observe
que, como G(t) < [t| para todo t € R, e como v; > 0 para todo j, segue que
Eu(t;) = [ [0(9(tv))]) = F(tv,) + uG(t;)] do

< / [B(t|Vy|) — F(tv)) + ptv;] dw, ¥t > 0.
Q
Aplicando a desigualdade de Young ao termo ptv;, obtemos
pitv; < ko(tv;)e + cspe,

onde ¢, e ¢, sdo expoentes conjugados, ko é dado na condicao (f5) e a constante cj é

dada por
1

c, (koca>1/(ca—1) ’

Substituindo essa estimativa na desigualdade anterior, obtemos

Cy; =

B, (tv) < / O(t|Vv,|) dx — / F(tv,) da + ko / (tv;) dz + ez / dr.  (2.69)
Q Q Q Q

Para cada j € N, definimos a funcao H; : [0,00) — R por
H(t) = / O(t|Vv,|) do — / F(tv;) da + ko / (tv;)° dz.
Q Q Q
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Aplicando novamente o Lema e a estimativa (2.8)) para F'(t), temos
H(t) < tCa/Q(I)(WUj])d:U— (c6t0/9vgdm+c7m\) +/~cgt6a/9v;a dr,
parat > 1e o > ¢,. Portanto,

lim H,(t) = —oo0. (2.70)

t—o00

Para obter um controle inferior para H;(t) quando ¢t — 0, como v; € L*>(£), utilizamos
o Lema e com € = %, onde ¢ > 0 ¢é a constante da desigualdade de Poincaré

para ®, e obtemos

H,(t) :/Q<I>(t|ij|)dx—/QF(tvj)dx%—ko/Q(tvj)ca dz
2/Qcp(ﬂwjpdx—G/Qq><mj)dx+ko/ﬂ(mj)% d,

para t > 0 suficientemente pequeno. Aplicando a desigualdade de Poincaré, Proposi¢cao

[I.2] temos
Hy(t) > (1— Ee)/ﬂ@(t]ijDdx + k;o/Q@Uj)Ca dz.

Por fim, utilizando o Lema [I.5 obtemos
1 -
H;(t) > itm“/ O(|Vu;|) dx + kotc"/ vi*dr >0, parate(0,t;),
Q Q

com fj suficientemente pequeno, ja que v; # 0. Como H; é continua em [0, 00), segue
que existe ¢; > 0 tal que

Hj(tj) = maXHj(t).

>0

Além disso, como H; é diferencidvel, temos

Afirmacao 2.5. Existe J € N, com J > 2, tal que

2=

Hj(fj) < (I(/g/,a> , VJ > J.

Suponha, por contradi¢ao, que

H;(t;) > () , para todo j > 2.
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Pela estimativa (2.10]), temos que F(t) > kot para todo t > 0. Assim, para cada
J > 2, segue que

(*5)

Agora, suponha que ¢; < 1. Pelo Lema , com # = 1, existe jo > 0, tal que

2z

< [ Vel de — [ F(tiog) otk [ (t0) do

< /ch(tjyvujp dz. (2.71)

[ @1Vl <1, para j > jo.

Q

Dessa forma, aplicando o Lema |1.2] (a),
/ O(t;|Vuy|) de < tj/ O(|V,|) de < t;, para j > jo.
Q Q

Dai, voltando para (2.71)), obtemos

N
KN70¢ K . .
6 Stj, seijoetj<1.

Assim, verificamos que

t; > min{l, (Kgo‘)} =k (2.72)

para todo j > jo. Por outro lado, como Hj(t;) = 0, segue que t;H}(t;) = 0. Isto &,
/Q & (t;V0,) (&5 Vo) da + kocatse /Q Ve dy = /Q F(t0;)(t50;) da. (2.73)
Pelo Lema , em conjunto com , obtemos
@’(tj\ij|)(tj|ij|) < ca®(t|Vy]) < e &ilty) (| Vy),
com & (t) = max{t™ t°}. Portanto,
(1Y) ) (5] Ve5)) < comax{t=, 153 B(| Vo).

Além disso, conforme visto anteriormente, temos

/ O(|Vv;])dx <1, para todo j > jo.
Q
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Ademais, a sequéncia ( Jo v5° da:) ¢é limitada em j. Utilizando essas informagdes em
(2.73]), obtemos que existe uma constante k£ > 0 tal que

/;:(t}"“—i-tja Z/ft-vj (tjv;) dx

>/ ot f(tjv;) (tjv;) dx. (2.74)

Por outro lado, pela defini¢ao de v; em ([2.48)) vemos que para x € B(0, Re_%) vale

1
log 7 .
N PP
Assim, para ty > 0 apresentado em ([2.9)), a partir de (2.72)), vemos que
tvi() = t; [KRL, (G +1og )] > ky [KRL (j +10g)] " > to, V€ B(0, Re %),
para todo j > jo. Dessa forma, em virtude de (2.9)), temos que
L 0!
Ftjv;)t05 2 o exp (B(t05)7)

para todo j > jo no conjunto B(O,Re’%). Retornando a desigualdade em (22.74)),

obtemos
k (tm“ + tc-‘*) > L/ - exp (B(tjv,)7) do
J 777 2 JBO,Re" W) I
L i 1. .
_ (QWN_l RV, a) exp (5] Kyl +1og 1)) - (2.75)

Observe que a sequéncia (t;) deve ser limitada. De fato, suponha, por absurdo, que

t; — oo para alguma subsequéncia. Nesse caso, para j > 1, temos
ﬂthNl >1 e ﬂKN logj > 1.

Substituindo essas estimativas em (2.75]), obtemos

L
k(tma +tc‘*> SWN- 1RYe ™ exp (ﬂt”KNa(j—i—logj))
L s Y L o
> EwN_lRNe_]eJetj = §wN_1RNetﬂ'.

No entanto, o lado esquerdo da desigualdade acima cresce, no maximo, polinomialmente
em t;, enquanto o lado direito cresce exponencialmente. Assim, a hipdtese t; — oo

leva a uma contradigao, o que prova que a sequéncia (¢;) é necessariamente limitada.
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Seja

N
Ena\™ S
0<k1:min{17< Jg’ ) }gtjgk% vj 2]17

para algum j; > jo tal que [, ®(|Vv;|)dz < 1, e tal que a desigualdade (2.75) seja

valida. Além disso, pelo Lema [2.8] sabemos que existe jo € N, com js > j1, tal que
/ OO|Vv,|)dr < 0N, VO E [k ko), Vi > jo.
Q

Retornando a desigualdade (2.71)), obtemos

Kxa\™ .
£ z/ﬂ@(tj|wj|)dxz (g) . V>

Assim, temos que
BUIK =1, Vj>jo.

e’

Retornando a desigualdade ([2.75)), concluimos que, para todo j > js,

~ L . . .
ks =k (k'™ + k5*) > §wN_1RNe*J el . elos

L
= EwN_lRNj — 00, quando j — 00

o que é um absurdo, ja que o lado esquerdo da desigualdade é constante. Portanto,

existe J € N, com J > 2, tal que

N
~

Hj(fj) < (%) , VJ > J.

Concluimos, entao a prova da Afirmacao . Como (2.70) implica que H;(t) — —oo

quando t — oo, escolhemos T > 0 suficientemente grande tal que
Hy(t)< -1, Vt>T.
Definindo w := Twv;, devido a obtemos, para todo t € [0, 1],
E,(tw) < Hy(tT) + c5|Q| . (2.76)
Note que existe g > 0 tal que

Eu(w) < Hy(T) + ¢ Q™ < =1+ ¢5|Qu <0,  sempre que u < pg.
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Assim, a curva t — tw, com t € [0, 1], pertence ao conjunto I'. Pelo que foi estabelecido

em ([2.76)), segue que

6 < gt () < i H (1) + e = H (1) + 5|0

para todo u € (0, p1p). Tomando 9 := H,(t;), essa constante satisfaz

KNa%
V< | —= ,
<ﬂ>

como vimos na Afirmagao 2.5 Assim, o funcional E,, apresenta a geometria do tipo

passo da montanha no nivel ¢,, o qual satisfaz
co < ¢y < 19+c,ucg,

com 9 < (Kyo/B)Y 7, para todo p € (0, o) e ¢o dado no item (a).

(d) Segue do item (c), em conjunto com o Corolario [2.1 que o funcional E, satisfaz a
condigao de Palais-Smale no nivel c,, isto é, (PS).,. Portanto, pelo Teorema do Passo
da Montanha, o funcional F,, admite um ponto critico u, no nivel de energia do passo
da montanha, ou seja,

E/Z(u“) =0 e Eu(u,)=cyu

Sabendo que E,(0) = 0, concluimos que u,, é ndo trivial. ]

2.4 Regularidade das solucgoes

A fim de aplicar o teorema de Liberman para garantir a regularidade das solugoes
u,, faremos primeiramente a estimativa L>°. Em seguida veremos que as hipdteses do
Teorema se verificam, o qual garante que as fungdes u, sao de classe C'7 e fornece

uma estimativa uniforme para as normas neste espaco.

2.4.1 Estimativa L*

Nesta subsecao provaremos uma estimativa L para solugoes de (2.15)). Para obter

algumas convergéncias envolvendo a nao linearidade f, precisamos do lema a seguir.

Lema 2.10. Se (u;) é uma sequéncia convergente em Wy'* (), entdo

sup | exp(blu;|”)dx < oo, VbeR.
jEN JQ
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Demonstragio. O caso b < 0 é trivial. Considere b > 0. Seja u € Wy'*(Q) o limite de

(u;). Temos que
Ju[" < (sl 4wy = ul)” <27 (Jul” + |u; — ul7),
de modo que

/Qexp(b|uj]7) dzr < </ﬂ exp(27+1blu|v) da:) v </Q exp(27+1b|u]~ - u|7> das)

A primeira integral a direita é finita, devido a desigualdade de Trudinger-Moser,

1/2

Teorema [£.4] J4 a segunda integral é igual a
exp(277b||u; — ul||"|v;|7) dz,
| exp(27 bl = ul o)

onde v; = (u; — u)/|lu; — ul. Como u; — wu, temos 27" b|lu; — ul|” < Ky, para
j suficientemente grande. Além disso, temos [[v;|| = 1. Assim, a desigualdade de
Trudinger-Moser, Teorema [4.4] garante a limitagdao desta sequéncia de integrais, o que

conclui a prova do lema. O]

Para ;o € (0, p0), seja v = u, a solugdo do problema auxiliar (2.15) no nivel c,,.
Ou seja, E,(u) = ¢, e Ej(u) = 0. Considere y; — fjig, com fig € [0, o). Como

/ N .
0<é¢<e <O+ cp, em que ¥ < (Kg’a) ", temos que a menos de subsequéncia

¢y, — ¢ € [¢,9]. Em particular, ¢ # 0. Pelo Teorema temos que a menos de

- _ 1,0 . ” foa
subsequéncia u; == u,, — ug em Wy (2) em que g é ponto critico de Ej, no nivel c.

Proposicao 2.2. Para pi; — fip como acima, cada solugao u; := u,,, pertence a L>°(£2)

e existe My > 0 tal que ||u;]loo < M para todo j € N.

Demonstrag¢io. Como E;j (u;)u; = 0, usando a imersao continua de LV (Q2) em L*(Q)
e o Lema vemos que existe D = D(ug) tal que

| @ (s Vsl do = [ fufuydo =y [ g(us)u; do

§CI/Q|uj|Ndx—|—02/Q|uj|65|“f‘W dx—i—uj/g|uj|dx
1 1
§cl/ ;)N dx + ¢ </ |uj|Ndx>N (/ eN/ﬂ“J"da:)N +M0/ lu;| dx
Q Q Q Q

1
<a |uj\Nd:c+D(/ |uj]Ndx)N.
Q Q

Uma vez que ® satisfaz (¢1) — (¢2), vemos que existe C' > 0 tal que ®(t) > Ct" para
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todo ¢t € R. Entao existe c3 > 0, independente de j, tal que

/Q<1>’(|vujy)|vuj|dx < cs VQ@(uj)der (/Qq>(uj)da;>}v1 . (2.77)

Como

segue de (2.77)) que para todo j,

1
. < — / . .
[ @l do <~ [ @(Vu) V| de

203

< — max { [/Q P(u;) dx} v ,/be(uj) dx} . (2.78)

Mq

Uma vez que ¢’ é ndo negativa e crescente em [0, 00) vemos que ®'(¢)s < &' (¢)t+D'(s)s

para s,t > 0. Além disso, como ¥’ é impar obtemos

L1v@uide = [ |@w)Vulde = [ @ ()| V| da
< [ @y de+ [ O(1Vuy))| V| do

< ca/ D (u;) dx—i—ca/ O(|Vu;|) d.
0 Q

Como (u;) é convergente em Wy'*(€2), é limitada em L*(Q) e [y ®(u;) dz é limitada.

Dai, usando ([2.78]) vemos que

/Q |V (®(u )| de < ¢y max {/Q O (u;) de, (/Q P (uy) d:c)llv} <d, Vj.
Logo, {®(u;)} ¢ limitada em W,"' (). Além disso, pela imersdo
Wy () = LT(Q) = LY(9),
obtemos

/QI‘P(UJ‘)IN' d < cf|®(u)lwrne) = el|®(uw)llr@) + IV E())llLre)

< cmax {/Q O (u;) dz, (/Q D (u,) dx)l/N} <C, (2.79)

em que C' > 0 depende de N, ¢,, ug e da constante de imersdo, mas nio depende de

j € N. Agora considere uma constante dy € (1, N') e um ndmero arbitrario ¢ > 1 tal
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que ®(u;) € L91%(Q). Para t > 0 defina
¢ (t) = ¢(min{t, L}), com L >0,

e considere a funcio teste w; = [®1(|u;|)]9  u;. Note que {w;}; é limitada em € L®(Q),

para cada L fixado. De fato, desde que |w;| < [®(L)]7 !u;] e D € Ay, temos

/QCI)(wj)d:c < /Qcp([q)(L)}qfluj) dr < CL/Q@(uj)dx <.

Além disso,

OW; 1y — {(ql)[@( )17 () gty o+ [ () g2 se Juy ()] < L

Oz (L)) 5, se |u;(z)] > L,

de modo que

g = D@ D2 (g Juy + [D(Jug ]} Vg, se Juy(@)] < L

Vw;(x)
[@(L)]" Vuy, se |u;(z)] > L

= \IJL(uj)Vuj.

- {(q — D@V ()t + [2(1)]* < [L+ealg = D@L, se | <L
[@(L)", se |t| > L,

vemos que, para todo 7 € N

| @1V do / O([1+ calg = V(D))" Vay|) da

Portanto, w; € Wh®(Q2). Usando w; como fungao teste obtemos

O’ (|Vu,
0= E, (uj)w; :/QWVUJVZUJ dx—/ fuf)w; dx+uj/g(uj)wj dr.
J

o que nos da
/ W (ug) ¥ (V) V| dee _/ W )u[ @1 (uy))* do — ﬂj/ﬂg(ug‘)uj[%(ujﬂq_ldﬂ
Para t > 0 temos que 0 < tf(t) < c(tN +tVef") < ¢(P(t) + ®(t)e’”). Também temos
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g(t)t > 0 para [t| > 1 e |g(t)| <1 para todo t. Assim,
/Qm(uj)qﬂ(yvujy)yvuj\dx < c/ﬂ[@(uj>]q (1+ ") do
o [ (L @) ]
< (c+ o) /Q [®(uy))? (1470 da (2.80)
+,uo/Q |u;| dx.

Lembrando que ®(u;) € L%%(Q), usando a desigualdade de Hélder e o Lema [2.10)

vemos que

@) (14 €M) dar < [ @(uy), (192070 + DI%)

qdo
e, j& que ®(t) > /tV para todo t € R, temos também

1/N 1/N
/Q]uj|dx§c(/Q |uj|Ndx) SC’(/Q@(uj)dx)

-~ 1/N
< C (19 (1) g |21 T < O () g (14 €2)).

qdo

Usando estas desigualdades em ([2.80]) obtemos
qdo qdo

AWL<uj>¢'<|Vuj|>!Vuj|dx <& @@u)llgn + I19(w;) 1%y, (2.81)

onde ¢ é uma constante que nao depende de j ou L ou ¢q. Agora vamos analisar a

sequéncia de fungoes {®] (u;)}. Note que

. 0, se |uj| > L
V(@7 (uy)) =
qPT ()P (uy)Vuy,  se |uj] < L

de modo que, para |u;| < L, vale
V(DL (u)] = g7 (u)) @' (|u ) V| < q@7 (ug) [ (Juy )y | + @ (|Vus ) [V ]
Temos ainda, para |u;| < L,

ST (u;) < [1 4 malq — 1)]PT (uy)
< QT (uy) + (g — 1) P72 (uy) D' (u)uy = Wi (uy).
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Entao

/Q!V(@%(uj))\ < 9/{ [ ()] [@ (u)u; + ' (IVuy ) V] da

uj|<L}

< qea [ @) dr+q | Wi(u)®(Vu;))| V| do.

Usando ([2.81]) obtemos

< qcall ()5 190% -+ a2 {10 g, + 19I5, |

1
< gemax {Hcp(uj)ngdo, rlé(uj)lléizo} :

[ 19(@% ()

Pela desigualdade de Sobolev-Gagliardo-Niremberg, como 1* = N’, temos
1
1\ N’/
([ 1ot)™) " < [19(@h )
< gCmaue {10 [, 190035, }

para alguma constante C' > 1, independente de j, L e q. Fazendo L — oo, segue do

Lema de Fatou que
11 L
1G5l < 3% mave {105, [103) 12 (2.52)

A partir de agora iremos escolher uma sequéncia {g,,} de modo que ®(u;) € LI%((Q).

Tomando ¢; > 1 tal que ¢1dy = N’, temos ®(u;) € L1%(Q) e
14 %
900 < O ma {12 v |90 I} (253)

Definindo ¢,,11 = %qm, temos ¢, = (M>m = ¢{", para todo m € N e para ¢ = ¢, em

do
(2.82) temos
1 1 1
1(5) g0 < (4) 75 €77 mae {10 gt 100377 | - (289)
Provaremos que
19005 e < 0= ) ) i (o). 289

Vimos em ([2.83)) que ([2.85|) vale para m = 1. Suponha que ([2.85)) vale para m. Como
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¢1,C > 1, max {[|®(u;)||n, 1} > 1 e 1/Ngpi1 < 1, obtemos

1

1 (), 5

gm N’

< (=5 () 25 ) max (0 () 13

Entao, devido a ([2.84]) e usando o fato de que ¢,+1do = ¢, N’, temos para m + 1

1
1D ()l g < g

U+
m—+1

qu+1
gm N’

) S S
L(Clam4a max{”q)(u]')quNH”(I)(uj)H }

< ()i o (g =

i=1 qT-) 0221 (i
= ()= @) o

) max {0 ()L, 1}
) max {||D(u;)||n, 1}, VY

o que mostra que (2.85)) também vale para m + 1. Portanto, vale para todo m € N.
Assim, por (2.79)) vemos que

e
12 () llgmnsanr < (@1) ()

() tmae {10l 1)
< (%)Zzl(é)szl(‘i) max {C’, 1} =

C
para todo 7,m € N ja que

E — = <
i=1 (Cﬁ)

1\ 1
(n —1)? ¢ ; <(]1> = o

!
Sabemos pelo Teorema 8.1 de [42] que, se |E| < oo, entdo ||f|le = plggo | fl- Assim,

fazendo m — oo na desigualdade acima, temos

|0l < C, ¥jeEN.
Portanto,

()] < &[D(uy(x))]¥ < & D(uy)| X < EOF = My,
o que conclui esta prova.

2.4.2 Estimativa em C'°
A seguir, provaremos que as hipoteses do Teorema de Limitacdo Global de
Lieberman, Teorema [4.3] sao vdlidas no nosso contexto.
Lema 2.11. Suponha que ® é uma N-funcio de classe C? que satisfaz (¢1) — (¢3) e
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f, g sdo fungdes continuas. Entao, para cada My > 0, as hipéteses (a) - (d) do Teorema

[4.3] sao validas para as fungoes

'(|pl)
Ip|

para (z,z,p) € Q x [—My, My] x RY.

Az, 2,p) = A(p) = e B(z,2,p) =B(2) = f(z") — ng(2)

Demonstracao.

(a) Precisamos mostrar que

N
> ay&d; Z ¥l D|f|2

ij=1 |p|

para todo p, £ € RV onde a¥ g‘;‘ Dada a defini¢do de A, temos
J

o (q)’(|p|) l) _ CI)”(’]?D%QTD' _(I)/(lpD% . @,(|p|)5

aij\P) = 5~ i ij
i) a5\ Ipl p|? |
() =T ()
= iDi Oji- 2.86
pE T T (250
Entao
N o([p|) — T v ' (|p|) &
Z aij(p)&i&; = 3 i Z Pip;&i&; + (Ip) Z 0i;&i&;
7,7=1 |p| 1,7=1 | | i,j=1
"(Ipl) - *” p
= e b (p, €)% + ‘(’,DKI?
_‘1’”<|p|> e eost 4 P o

Como & satisfaz (¢3), temos ®”(t) > 5@ para todo t > 0, com § = m, > 0. Dal

segue que

S ay(pes, > (6 2P

ij=1 p|

_ (o)
= ST EPIE — 1) eos® (5 41]

S

s¥UP)e2 e 0< < 1.
Pl

'(|pl)
Ip|

[€]* cos™ (§ + €1*

b) Precisamos mostrar que V., |a;| < Aq) ‘p D , para alguma constante A > 0.
i,j=1 J
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£/ (1)
(1)

Uma vez que m, < < ¢, para todo t > 0, tomando A\ = max{|m, — 1|;|¢a — 1|}

temos

td"(t) — @'(1)] < A'(t), Vi>0.

Usando ([2.86)) vemos que

N (I)HUPD (pD | N o p) N
> agl < 5 E > |pips| + (Ip > 6
ij=1 p| ij=1 p| ij=1
2 (I)/ p
< T 910 l) — (] + N
/ !

ol Ipl

(c) Temos que

|A(z, 2,p) — Ay, w,p)] < A(1+ @ (|p)[|z — y|” + |z — wl|],

para alguma constante A; > 0. De fato, a funcdo A depende apenas de p, obtemos

|A(z, z,p) — Ay, w,p)| = 0 para quaisquer x,y € , z,w € Re p € RY.
(d) Para algum A; > 0, vale

Bl < Ay [1+ @(|p])lpl]

para todo (z, z,p) € Q x [— My, My] x RY. Com efeito, as fungoes f e g sao continuas

e, sendo 2z = max{z,0}, vemos que

1B(2)| = [f(z")=pg(2)| < max |f(z)[+p max |g(z)| = Ay < Ay [1+ @ (|p|)Ip]].

6[0 M()] 6[ M(),Mo}
Portanto, se verificam as hip6teses do Teorem [4.3] O

Logo, dada a limitacdo L™ da sequéncia (u;), podemos aplicar o teorema de

Lieberman, Teorema , e garantir que u; € C7(Q) para algum o > 0 e

|ujllcro@) < e

onde o e ¢ ndo dependem de j. Ou seja, a sequéncia (u;) é limitada em C7(Q).
Pela imersdo compacta de Cy?(Q) em CF(€Q) temos que a menos de subsequéncia u;
converge para ug em Cg(9).

Note que, considerando p; = p1, a Proposicao garante que u, € L>(Q) e pelo
Teorema temos u,, € C}(Q), para cada p € (0, uo).
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2.5 Prova do teorema principal

Ja sabemos que para p € (0, 1) existe uma solugdo do problema auxiliar (2.15)),
a qual denotamos por u,, e u, € Cj(Q). Agora provaremos que, se pg > 0 é
suficientemente pequeno, entao u, ¢ positiva em (2, e portanto uma solucao fraca
do Problema [2.1} Para isso, é suficiente provar que para cada sequéncia p; > 0, que
satisfaz p1; — 0, existe uma subsequéncia de u; = u,,; positiva em (2.

Considerando j; — 0, por (2.68)), a menos de subsequéncia, c,,; converge para algum

% N
0<c < N’°‘>7.
< B

Pelo Teorema , a menos de subsequéncia (u;) converge em W, ®(Q) para um ponto

c* satisfazendo

critico u de Ey no nivel ¢*. Como ¢* > 0, u é nao trivial. Como u é uma solugao fraca

nao trivial do problema

—Agu = f(u) em Q
u = 0 sobre 0f2,

temos, pelo Teorema [I.1] temos que u > 0 em € e que a derivada normal exterior é
negativa, du/0v < 0 em 0. Lembramos que, sendo v o vetor normal unitario exterior

sobre 02, o conjunto
A={ueC;(Q);u>0edu/dv <0},

é um subconjunto aberto de C(Q). Pelos resultados da Secao [2.4]sabemos que, a menos
de subsequéncia, u; — u em C3(Q). Consequentemente, u; € A para j suficientemente

grande, o que garante que u; > 0. Isso conclui a prova do Teorema 2.1}
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Capitulo 3

Solucao nodal de energia minima
para um problema no espaco de
Orlicz-Sobolev com crescimento

critico exponencial

Neste capitulo, investigaremos a existéncia de uma solugao nodal, com exatamente

dois dominios nodais, para o problema

—Agu = f(u) em €,
u® #0 em (2, (3.1)
u=>0 sobre 012,

em que 2 C RV, com N > 2, é um dominio limitado e suave, f : R — R é uma funcio

de classe C! e Ag denota o operador ®-laplaciano, definido por

, , Vu
Aq)u = div (q) qquWu‘) y

em que ® : R — R é uma N-funcdo de classe C2.

Definicao 3.1. Seja u :  — R uma funcdo continua. Dizemos que u é uma fungao
nodal, se u muda de sinal em 2. Além disso, o dominio nodal de u sdo as componentes

conexas dos conjuntos abertos
Q={zeQ:ulz)>0} e Q ={zreQ:ur) <0}

Neste capitulo, o nosso objetivo é mostrar que o Problema [3.1] admite pelo menos

uma soluc¢ao nodal de energia minima que possui exatamente dois dominios nodais.
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3. Solugao nodal de energia minima para um problema no espago de Orlicz-Sobolev
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A seguir, listamos as hipoteses adotadas sobre a N-funcao .

(¢1) Existe uma constante C' > 1 tal que, para todo t € [O, %), temos

(¢2) Para algum « € [0, N — 1), vale o limite

P
im 7(12 =1;
t—oo tN Jog™(t)
(¢3) Existem constantes mg, ¢, > 0 tais que
()t
Ng < < Co, VE>0. 3.2
Mo =gy =© (3.2)

Denotando ¢, = ¢, + 1, veja Lema [2.3] supomos também que:
((§4) A funcao | t|6a(_)2 . € nao-decrescente para t < 0 e nao-crescente para ¢ > 0;

(¢5) As fungoes t — &' (t)t e t— O(t) — é@’(t)t sao convexas para t > 0.

A seguir, apresentamos um exemplo de funcao ® satisfazendo as hipoteses acima.

Exemplo 3.1. Considere a funcao
O(t) = [t log(e + |t]), VteR.

Temos que ® € C? ¢é convexa e par e que ®(¢) = 0 se, e somente se, t = 0. Além disso,

temos
o) 2 (1) 2
t1_1>rg1+ - = hm t“log(e +t) =0, e Jim - = Jim ¢ log(e 4 t) = +o0.

Portanto, ® é uma N-funcao. Agora verificaremos as 5 hipéteses apresentadas acima.
(¢1) Existe uma constante C' > 1 tal que, para todo t € {0 ) temos | < d(t) < Ct3.

Como log(e +t) — 1 quando t — 0T, temos ®(¢) ~ t> perto da origem. Portanto,
existe C' > 1 tal que para todo t € [O, %), vale

3 5
— < ®(t) <Ot
C () =C

(¢2) Vale o limite lim;_, % = 1.
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Com efeito,
) 1
() _ . loglet)
t—woo t3logt  t—oo  logt

Y

(¢3) Para m, =2 e é, = 3, temos m, < q)q:,(('?)t < Cq4, para todo t > 0.

De fato, derivando ® para t > 0, obtemos

t2(t + 3(t + e) log(e + t
t+e
e
" t<_t2 +6t(t +¢e) + 6(t +e)?log(e + t))
d"(t) = - .
(t+e)
Entao,
or(t) ¢ #(3t + 4e)
/ -2= 2 N 0,
(1) 2 + et + log<(t + ¢) 37 +6et+3e )
e

(I)//<t) t —2t2 — 3et + log((t + 6) 3t2+6€t+3e2> .
() (t+e)(t+3t+e)logle+t)

3
pois log(e +t) > 1 implica
log((t + ) H0eH5) = (3% + Get + 3¢?) log(e + t) > 267 + 3et.

Assim,
O"(t)t

0

<3.

(¢4) Pondo ¢y = o +1 = 4, temos que a fungio h(t) = e

= e ¢ nao-decrescente para

t < 0 e nao-crescente para t > 0.

Consideremos, para t > 0,

_ (1) _ t+3(t+e)log(e+t).

A1) t3 t(t+e)

Calculando a derivada de h, temos

h/( ) 2t2 + 3et — log((t + e) 3t2+6et+3€2)
t) =
12 <t2 + 2et + 62)

<0

— )

porque novamente log(e +¢) > 1 torna o numerador nao-positivo. Logo h é nao-
crescente em (0, 00) e, por paridade de ', a fungao t — P'(¢) /(|t|2 t) é nao-decrescente

em (—00,0).
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(¢5) As fungdes hq(t) := ()t e ho(t) :== P(t) — 1®'(t)t sdo convexas para t > 0.

Como & é par, basta verificar a convexidade em (0, 00). Observe que

t4

hi(t) = 3t*log(e +t) + o

Sejam A(t) := t3log(e + t) e B(t) := t*/(t +¢). Mostraremos que A e B sdao convexas.

De fato,

t( =2+ 6t(t+e) +6(t + e)?log(e + 1))
(t+e)?

A'(t) = >0,

262(12 — 4t(t + ) + 6(t +¢)?)  2t*(3t2 + 8et + 6¢?)
(t+e)? B (t+e)?

B'(t) = > 0.

Portanto, A e B sao convexas, o que implica a convexidade de h;. Agora, quanto a

1/, ¢t
hg(t):4(t log(e +t) — He),

seja C(t) := i(t?’ log(e +1t) — ti) Assim para ¢t > 0, temos
t

W = Greop

( — 1* — bet® — 6e’t + (6t3 + 18et? + 18¢%t + 6€3> log(e + t)) > 0.

O que implica a convexidade de hs.

Supomos que a funcdo f: R — R é de classe C' e satisfaz as seguintes condicoes:

() tim I

t—0 (I)’(t) =0.

( fg) Existem C e 8 > 0 constantes, tais que
FOI< C ([N +exp(Bt")] VEeR

com vy dado na Definic¢ao [0.1}

(fs) (Ambrosetti-Rabinowitz) Existe o > ¢4 tal que

0 < oF(t) <tf(t), Vt0.

(f1) A funcdo
ft)
IRR

¢ decrescente para t < 0 e crescente para t > 0;
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com 0 € (0,4) fixado de modo que, existam =z, z~ € Q tais que By(z",d) C Q,
BQ(I'775) C €, Bl($+,5) N BQ($7,6> =J,e

2=

s = QNQJ(%) , dn,o = g ;Ca (IEJJVVO‘> ,

em que [y representa a medida de Lebesgue da bola unitaria B;(0) e Ky, é
dado na Defini¢ao [0.1

A hipétese ( f4) implica para t > 0 que

P = f(t)(ca — Dt
(tca—l)Z

> 0,
isto é,
(ca — V) f()t < f()F* VE>0. (3.3)

Exemplo 3.2. Sejam N = 3 e a = 1, neste caso, v = 3 e ¢, = 4. Sejam 0 > ¢, e

B > 0. Considere a funcao F': R — R dada por
F(t) = ltoe™”

cuja derivada é
F) = (ot 1 4 38749), £ > 0.

A

Verifica-se que f satisfaz as hipéteses (f1) - (f5).

O principal resultado do Capitulo, cuja demonstracao foi inspirada, principalmente,

nos trabalhos [28] e [29] é o seguinte:

Teorema 3.1. Suponha que as condigoes (1) — (¢3), (da), (¢5) e (fL)-(f5) estejam
satisfeitas. Entdo o Problema |3.1 admite ao menos uma solugdo nodal de energia

minima, a qual apresenta exatamente dois dominios nodais.
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A seguir, apresentamos algumas consequéncias importantes decorrentes das hipé-

teses (f1)-(f5).

(1) Por (fs), existe uma constante ¢ > 0 tal que

Ft)>clt]” —¢ VteR. (3.4)

(2) Dados p > 1ee > 0, as hipoteses (f1) e (f2) implicam que existe uma constante
C' =C(p,e) > 0 tal que

[f(O)] < e®'(t) + Ol exp (BIt]"), V=0 (3.5)

3.1 Estrutura variacional e lemas técnicos

Dizemos que u € Wy'*(€2) é uma solucio nodal fraca do Problema [3.1|se u™ # 0 e

u” # 0 em Q, e se satisfaz

, Vu
/QCID(|Vu|)|vu|Vvdx—/Qf(u)vdx:O, Yo e W, (Q).

O funcional energia .J : W, "P(Q) — R associado ao Problema ¢ dado por
J(u) = /Q<I>(|Vu|)dx—/QF(u) dx,

0 qual estéd bem definido e é de classe C. Sobre Wy'*(2), em vista de (f;) e (f2),

motra-se que, para u € Wol "D(Q), a derivada de J em u é dada por

\%
J’(u)v:/QCID’(|Vu|)|vZ|Vvdx—/Qf(u)vdx, Yo e Wyt (Q).

A prova do préximo resultado pode ser encontrada em [28].

Lema 3.1 (28], Lema 2.4). Suponha que a condicao (¢3) estd satisfeita. Para ¢ > 0,

defina as funcoes
To(t) := min {tma, taa} e T7(t) := max {tm(’, téa} :
Entao para todo p,t > 0, temos
To(p) ¥'(t) < ©'(pt) < 71(p) ¥'(1).

Lembre que, por (3]), podemos supor m, =m, — 1 € ¢y = co — 1.
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Lema 3.2. Seja h : (0,400) — R uma funcao integravel e suponha que existe m > 1

tal que a funcao

h(s)

—— ¢ crescente (resp., ndo-crescente) em (0, 4+00).
o

S =

Defina

Entao a funcgao
s — sh(s) —mH(s)

é crescente (resp., ndo-crescente) em (0, 400).

Demonstragao. Sejam 0 < s < t. Como (si)l,(,le é crescente, temos

hs) _ h(r) _ h(t)

G 1 S Tm 1 S pmo1 DArd todo T € [s,1].

Consequentemente,

h(s) < W) st e h(r) < W) 7™t para todo T € [s,1].

Agora, observe que

sh(s) —mH(s) = :ng'i)l s — m/os h(T) dr
= ils) s™ —mH(t) + m/t h(t)dr

Smfl

h(t)

t h(t
pros s™ —mH(t) + m/ tnf_)l = dr

B h(zﬁ)1 S mH(t) + mh(t) (tm T—ﬂs’”)

tmfl tmfl

IO

tmfl

= th(t) — mH(t),

isto é,
sh(s) —mH(s) < th(t) —mH(t).

Portanto, a funcao s — sh(s) —mH(s) é crescente. Para o caso em que a fungao ;qu—f)l é

nao-crescente, basta inverter todas as desigualdades e o mesmo raciocinio usado acima

mostrard que sh(s) — mH(s) serd nao-crescente.
O]
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A

Observacao 3.1. A partir do lema anterior, em conjunto com as hipdteses (54) e (f1),

obtemos as seguintes propriedades:

(a) Paratodot > 0, a fungao t — tf(t) —co F(t) é crescente. Em particular, a fungao

= F()t - F()

também é crescente para t > 0.

(b) Paratodot > 0, a funcao t — ®'(t)t—c,P(t) é ndo-crescente. Consequentemente,
a funcao
1
O(t) — —d'(t)t

Ca

¢ nao-decrescente para t > 0. Pelo mesmo argumento, dado que o > ¢,, a fungao

d(t) — p (1)t

também é nao-decrescente para t > 0.

1
Lema 3.3. Seja u € W,*(Q), com |ul| < p, onde p € (0,1&111&{(1(]5“‘)W ,1}), e seja
p > ¢,. Entao, existe uma fungao n = n(p) > 0 tal que

[ ul? exp (3lu) da < n(p) | @ (1Vul) [Vl da. (36)

Além disso, tem-se que n(p) — 0 quando p — 0F.

Demonstragdo. Fixe r > 1 suficientemente proximo de 1 de modo que ainda se tenha

Kn o
p7<min{ 5]\; ,1}. (3.7)

Aplicando a desigualdade de Hélder, a funcao a esquerda de (3.6)), com os expoentes

conjugados r e ' := ==, obtemos
r—1

S
7

/Q|U|p P (Pul) de = (/Q ful™ dx)y (/Q exp (Brlul”) dx>i

</Q Iulr'pdx)rl’ Vﬂ exp (”“HWBT <|:Z|”>v> d:rr.

priull” < Brp’ < Ky

IN

Pela condicao (3.7)), temos

Além disso, como ||u/||ul|]| = 1, podemos aplicar a desigualdade de Trudinger-Moser,

Teorema juntamente com a imersao continua W' *(Q) < L"?(Q) e a equivaléncia
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entre as normas ||lul| e ||Vu|l¢ para obter

1
o

/ |ul? exp (B|ul”) dx < ¢y (/ |u|"P dx)
0 Q

< calfull?

< os||Vullg ™ - [[Vullg

< e[ Vullg
Como ||Vulle < p < 1, segue do Lema [L.5] que
/ch(]Vu])dx = &(IVulle) = [[Vullg
Combinando isso com e substituindo acima, temos
[l exp (Blul) do < o< [ (| Vu]) da
Q Q
< C—GpHa/ o' (|Vu)|Vul dz
Ma 0

:n<p)/§2@'(\vu\)\wdw,

onde 7(p) == cg/Mq - PP~ > 0. Como p > ¢4, temos n(p) — 0 quando p — 07, como

queriamos provar. O

3.1.1 A variedade nodal de Nehari: definicao e propriedades

Associado ao funcional J, definimos a variedade de Nehari
N = {u e W (@) \ {0} ; J'(u)u=0}.
Para provar o Teorema [3.1], mostraremos que existe w € M tal que
J(w) = min J(v) =: ¢,
onde M ¢ definido por

M::{wEN; w® # 0, eJ’(w)wizo}.

O conjunto M é denominado de Variedade Nodal de Nehari.
No lema a seguir, provaremos que M C N ¢é precisamente o conjunto das fungoes

w € N cujas partes positiva e negativa, w™ e w™, também pertencem a N
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Lema 3.4. Seja w € M. Entdo, J'(w*)w* = 0. Em particular,
Mz{wé/\/; wie./\f}.
Demonstracio. Seja w € M. Como w' e w™ tém suportes disjuntos, segue que
0=J(w /cI>’ V) —vuﬁdx—/f wt do
= /QCID (|Vw™|)|Vw™ | dx —/Qf whHwt de = J'(wh)w™.

Isso implica que wt € N. Desde que, por (f3), f(t) < 0 para t < 0, concluimos de

modo andlogo, que w~ € N, o que mostra que
M C {wEN; wh w” EN}.

A reciproca é direta da definicdo de M. Logo, a igualdade é vélida. O
Agora provaremos algumas propriedades da Variedade de Nehari.

Lema 3.5. (a) Para todo u € N, vale a estimativa

Iw) = (75 @(1vule):

(b) Existe r > 0 tal que ||jul]| > r para todo v € N. Em particular, tem-se que
|w*|| > r para todo w € M.

Demonstragio. (a) Seja u € N. Pela hipGtese (fg), temos
J() = J(u) — 27 () > / o(|Vaul) de — 1/ ' (|Vu))|Vul do
B o — Ja o Ja '

Aplicando o Lema juntamente com , obtemos

w) E/QQJOVu])dx—%a/QCD(Wu\)dx
_ (”;%)/Qq)(\vm)d:c

> (755 & (1ula).

(b) Suponha, por contradi¢ao, que exista uma sequéncia (u,) C N tal que u, — 0

em W3 (Q) e |lun|| < p, com p > 0 satisfazendo as hipéteses do Lema [3.31 Como
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(u,) C N, segue que

/qu'qvunmvun\dx —/Qf(un)un dr = 0, (3.8)

Considere p > ¢, > 1 e fixe € > 0 de modo que

ecec 1

1 .
Mg, 2

A partir da estimativa (3.5)), da Desigualdade de Poincaré, Proposicio [L.2] e de (3],
segue que existe uma constante C' > 0 tal que
[ S ayunde <= [ @ (unl)unldo +C [ fual? exp(Blu|”) da
Q Q Q
< et [ ®unl)do+C [ Junl? exp(Blun|") da
Q Q
< Ecaé/ O(|Vu|) do + 0/ o |? exp(Blun|") da,
Q Q
onde ¢ é a constante associada a Desigualdade de Poincaré. Utilizando essa estimativa
e, mais uma vez, em (3.8]), obtemos
0= / O (| |) V| die — / F(n)ttn d
Q Q

5cac/ﬂ¢/(|vun|)|vUn|d:p—C/Q|un|pexp(ﬂ|un|7)dx.
(3.9)

> /Q(I)'(|Vun|)|Vun| dr —

Mq

Seja p > 0 suficientemente pequeno de modo que 7(p)C' < 1/2 em que 7n(p) é dada pelo
Lema [3.3] Assim,

[ unl? exp(Blun ) do < (o) [ @'(1Fual)| V| do (3.10)
Como u,, # 0 (pois u, € N'), ao substituirmos (3.10)) em (3.9)), obtemos

. / _ ~ _ /
O—/QCI>(|Vun|)\Vun|d:c 8cac/Q<I>(|Vun|)dx C’nn(r)/QCI)(|Vun|)\Vun|d:c

> (1 _ Sl Cn(p)) /QCI)'(|Vun|)|Vun| dr > 0,

Me

o que é uma contradigdo. Logo, nao existe sequéncia (u,) C N tal que u, — 0.

Portanto, existe r > 0 tal que ||u|| > r para todo u € N. O

Lema 3.6. Seja v € Wol’(b(Q) tal que v* # 0 e v~ # 0. Entao, existem ¢,s > 0 tais
que
J' (tv+ + sv*) (wt)=0 e J (tv+ + sv*) (v7) =0.
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Demonstracio. Como o funcional J é de classe C! sobre Wol ’¢(Q), temos que a funcao
V 1 (0,+00) X (0,+00) — R? definida por

V(t,s) = (J' (tv+ - sv’) (tv™), J’ (tv+ + sv’) (sv’))

é continua. Observe que

o ) . / V(tvt + sv~
J (tvt 4 sv7) (t ):/Q@ ( |Vgtv++sv;!

—/Qf(th“quv_) tvt dx
:/Qcp' (IV (o)) |V(tv+)|dx—/gf(tv+)tv+dm, (3.11)

V(tv" + sv_)D V(tv")dx

onde usamos o fato de que os suportes de v™ e v~ sdo disjuntos. Para t > 0
suficientemente pequeno, podemos aplicar o Lema juntamente com ({3.5)), além
de (3) e da desigualdade de Poincar, Proposigao a fim de obter

/Qf(tzﬁ) ot dr < €/Q<I>’ (\tv*[) [tv"] dx + C/Q [tv™|P exp (ﬁ|tv+\7> dx
< €ca/Q<I><\tv+]) d:r;—i—Cn(p)/Qq)’(]Vtvﬂ) Vto*| do

< €cacl/Q<I> (\Vt'u*]) dx+C77(p)/Q<I>’ (]Vtv*[) \Viv"|dz. (3.12)

De modo analogo ao procedimento adotado no Lema [3.3] fixamos € > 0 tal que

ECuC1 1

1— )
Mg, 2

e tomamos 7(p) suficientemente pequeno tal que Cn(p) < 1. Substituindo a estimativa
(3-12) na expressao (3.11)) e utilizando novamente , obtemos para todo s > 0

J (tv+ - sv‘) (tv™) > / P’ (|V(tv )]) |VtvT| dr — ecacy /Q ) (\Vtvﬂ) dx

—Cn(p / ' ( N|Vto" | dx

> (1-“"01 —Cnlp )/cp’ IV (t0™)|)|VEo™| de > 0.

«

De forma anéloga, para s > 0 suficientemente pequeno, obtemos para todo t > 0, que

ECyC1

J (tv+ + SU_> (sv7) > (1 - - C’n(p)) /QCID/ <|V(sv_)|) |Vsv™|dx > 0.

(67
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Resumindo, existe r > 0 suficientemente pequeno de modo que

J' (rvt +sv7) (rvt) > 0 para todo s > 0,
o) 513
J'(tv+ + TU_) (rv™) >0 para todo t > 0.

Por outro lado, das hipdteses ( fg), ( f5) e de (3), segue que

J' (to* + sv7) (t0) :/Qcp/ (Iv (o)) |Vtv+|dx—/9f(tv+)-tv+ dz

<o [ @(|Vi0r]) do - ot [ (v*)7 da
_c/ﬂ(!v\)xua Q(v)x

Assim, pelo Lema e como o > ¢, conclui-se que, para t > 0 suficientemente

grande,
J (tv+ + SU_> (tvT) < eat®& (||Vv+||) - uat"/ﬁ(vﬂ" dr <0 Vs>0.
De forma anéloga, para s > 0 suficientemente grande, temos
J (tv+ + SU_) (sv7) <0, paratodot> 0.

Portanto, existe R > r tal que

J’(Rv+ + sv‘) (Rv") <0, para todo s > 0, (3.14)
3.1
J'(thr + Rv’) (Rv™) <0, paratodot > 0.

Combinando as estimativas (3.13)), (3.14) e usando o Teorema de Miranda, Teorema
4.1} o resultado estd provado. O

Corolario 3.1. O conjunto M é nao vazio.

Demonstracao. Pelo lema anterior, dado v € Wol’q)(Q) tal que v* # 0, existem ¢, s > 0
satisfazendo
J (tv+ + sv_) (vF) = 0.

Em particular, a funcao wy := tvt + sv™ pertence a M. Logo, M # (). H
Lema 3.7. Sob as condi¢oes do Lema [3.6, os nimeros t, s > 0 sdo Unicos.

Demonstrag¢io. Suponha que v = v™ + v~ € M e que existam ¢,s > 0 tais que

tvt 4+ sv™ € M. Nosso objetivo é provar que t = s = 1. Como v € M, temos
J' (T +0v7)(vh) =0,
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isto é,
/ + + _ +\ ..t
/Qcp (1Vot)) [V |d:c—/Qf(v ) vt da.
Logo,
(Vv') o brew g [ SOT)
QW|VU | d.ﬁU—AW(U ) dI (315)

Por outro lado, como tvt + sv™ € M, temos
J' (tvt + sv7)(tvt) =0,
isto é,
o (|V(toh)|) [V(tvT)|d :/ tvt) - tot dx,
[ @ (V@) V@) de = [ o) -0 da
de onde segue que

o ([V(tvT)))

g [ )
o TV (o)t v ) d I

o _(toT) da. 3.16
L) o (3.16)
Suponha, por absurdo, que ¢t > 1. Subtraindo a expressao (3.15)) da (3.16), temos

' ([V (o))
o [V(tot)fet

f(tv™) Flu) .
/ tv+)ca 1 ) dx_/g@fr)cal(lﬁ_) dx > 0,

o' ([Vor])

V(o) de — |
V(t0")] oo

Vot | dx

onde usamos as hipdteses (g54) e ( f4), que asseguram que, para t > 0,

O/ (t t
®) é nao-crescente, e f(®) é crescente.

t— tcafl tcafl

Obtemos, assim, uma contradi¢do. Por um argumento andlogo, provamos que também
nao ocorre t < 1, o que nos leva a conclusao de que t = 1. Analogamente, prova-se que
s=1. O

Lema 3.8. Se (w,) C NV, entao

lim inf/ f(wy)wy, dz > 0.
Q

n—oo

Demonstragio. Como (w,) C N, temos, para todo n € N,

/QCD'(]anD|an|dx:/gf(wn)wndx.

Por , obtemos
/f(wn)wndx > ma/ O(|Vw,|) dx
Q Q
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Pelos Lemas e[3.3] existe p > 0 tal que |Jw,| > p para todo n. Logo,

[ @(¥wal) do > o (lunll) = €(o)

pois &y é crescente e, portanto,

[ fwnywnde = mago(p) > 0.

o que implica
lim inf/ fwp)w, de > ma&o(p) > 0.
Q

n—o0

O mesmo raciocinio usado no lema acima se aplica as sequéncias (wr) C N.

3.2 Um teorema auxiliar

Seguindo ideias de [28], vamos definir uma fun¢io auxiliar e um campo gradiente
associados ao funcional J, os quais desempenharao um papel central, especialmente na
aplicagao de um lema de deformacao.

Para cada v € Wy'*(Q) com v* # 0, considere a funcio h : [0, +00) x [0, +00) — R,
dada por

RU(t,s) == J(tvt + sv7),

e o campo vetorial associado

T(t, s) = <8h 8(? S), aha(z’ S)> = (J’(tv+ +sv o, J'(tot + sv_)v_) :

Mais explicitamente, temos

it )= ([ @ (9@)DITe |- feo )] do, [ 09 s0)IVe| = S )] da).

Para cada (t,s) € [0, +00) x [0, +00), considere a matriz Hessiana de h”, que coincide

com a matriz Jacobiana do campo vetorial T", dada por

oYy (t,s) OYV(t,s)

o B It 0s
(T ) (tu 8) — oYy (t,s)  OYL(t,s)
ot Os
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Calculando as derivadas parciais, obtemos

oty _ovy
ds ot
ory  d

5 = o (/Q @’(t\Vv*[)\Vvﬂdx—/Qf(tiﬁ)iﬁ d:c)
:/Q<I>”<t|Vv+|>|Vv+|2da:—/Qf'(th“)(vJ“)de;

ory d , _ _ .
as—ds(/QCD<S|VU |)|VU |dx—/ﬂf(sv v dx)
= [0 (s|Vu )|V [Pl — [ f(sv)(07) P d
| @ (sIvor ) [V Pda = [ f(s07)(07) da
Portanto, a matriz Jacobiana de TV em (s,t) é diagonal e assume a forma

(fﬂ[q)/,(tv"ﬁ)v’v”f’(tW)(v*)Q] dx 0 )
0 Jol®@"(sIVomIVo=? = f'(sv7) (v7)?] da

A seguir, demonstraremos um resultado auxiliar que serd fundamental nas etapas

posteriores.

Teorema 3.2. Seja w € M. Entdo, valem as sequintes propriedades:
(a) Para todo t,s >0, com (t,s) # (1,1), temos

R*(t,s) < h*(1,1) = J(w).
(b) A matriz Jacobiana de T* no ponto (1,1) € tal que
det ((T™)'(1,1)) > 0.
Demonstrag¢io. (a) Como w € M, temos que

J' (w)w* = J'(w" +w”)w* = 0.

Logo,
ohv ohv
TY(1,1) = —(1,1), —(1,1) | = (0,0). 3.17
1= (GranGran) - 0o (317
Afirmacgao 3.1.
lim  h"Y(t,s) = —o0.
|(t,8)[ =00
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De fato, sabemos que

J(tw* + sw™) = /Q (| (tw + sw)|) da — /Q F(twt + sw™) dz. (3.18)

Sabemos, pelo Lema que para t,s > 1 vale

/Q<I>(|V(tw+ +sw)|) de < & ([V(tw" + sw)ls)
<& (thwt ]+ sllw)
= (thw* ]|+ sflw])”
< 2ot (et s o) (319)
Além disso, usando o fato de que as funcoes wt e w~ possuem suportes disjuntos, e
pela hipdtese ( f5), obtemos
/ F(tw" + sw™)dx = / F(tw") dz + / F(sw™)dx
Q Q Q
> / (tw™)” dz + 02/ |sw™|7 dx — c3
Q Q

=t? /Q(ufr)” dx + 023"/9 lw™|7 dx — c3. (3.20)

Portanto, substituindo (3.19) e (3.20)) em (3.18]), obtemos

J(tw+ + S’LU_) < 9ca—1 (tca||w+||0a + Scan—HcQ)

—ct? / (wh)? dx — 023”/ |lw™ |7 dx + c3.
Q Q
Como o > c,, segue que
J(twt + sw™) - —oo quando t — +00 ou § — +00.

Isso conclui a prova da Afirmacdo [3.1 Portanto, (1,1) é um ponto critico da fungao
h* e, além disso, h" possui um ponto de maximo global, que denotamos por (a,b).

Observe que (a,b) # (0,0), isto é, ndo ocorre a = b = 0. De fato,
J(aw® +bw™) = h¥(a,b) > h*(1,1) = J(w).

Para estimar J(w), utilizamos o fato de que w € M, em conjunto (3] e a hipétese ( fg),

83



3. Solugao nodal de energia minima para um problema no espago de Orlicz-Sobolev
com crescimento critico exponencial

conforme descrito a seguir:

J@stwééﬂVwMVMdm—iwawwx

:(1-—1>é@ﬂVwMVwa

Ca O

:(0_%>A@ﬂVwMVwa>O

OCq

Unindo esse fato a desigualdade anterior, concluimos que h*(a,b) > 0. Como
h*(0,0) = J(0) = 0, segue que o ponto de méximo (a,b) de h" ndo ocorre na origem
(0,0).

Afirmacao 3.2. Temos que a,b > 0.

Primeiro, provaremos que se b = 0 entao a < 1. Para isso, suponha, por contradigao,

que b = 0. Nesse caso, temos

o que implica que

/Q<I>'(|V(aw+)|)|an+| dr = /Qf(an“)an’ d.
Agora, aplicando o Lema [3.1], obtemos

T(a)a/ﬂq)’(|Vw+|)|Vw+| dr > /Qf(cmufr)owfr dx,

onde 7(a) := min{a™, a®}. Como, pela Observacio |3} 7(a)a = & (a), segue que

gt
(V) [Vurt | do > [ L) 21
J @ (Ve pverdr > [ S50 (3.21)
Por outro lado, como J'(w™)w™ = 0, temos
/ + + _ ot
A@qumkum_éfm)wdm (3.22)

Se a > 1, subtraindo (3.21]) de (3.22) e utilizando que w* > 0 (pois w € M) e a
hip6tese (f4), obtemos

§
:/Q(f(er) (w™)ce dx—/ﬂ(f(awﬂ (aw™) dx

w—i—)ca—l

<0, (3.23)

0 S/Qf(’er)wJr d:U—/Qf(?(u;;)aw*dx
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o que é um absurdo. Com isso provamos que b = 0 implica a < 1, como afirmamos.
Agora, continuemos supondo por absurdo b = 0. Assim,
1
h*(a,0) = J(aw™) = J(aw™) — —J'(aw™)(aw™)
Ca

1
= [ |e@var) = —o'avur el vur

(67

dx

dzx.

1
+/ {]‘?(auﬁ)anr — F(aw™)
o Leg
De acordo com a Observagao e o fato de a < 1, temos
1 1
h(a,0) < [ [@(\vfww) - @’(yv@uﬂ)va@ dr+ [ [f(w+)w+ ~ Flw")| da.
Q Ca Q Ca
Além disso, ainda pela Observagao [3.1] temos que

(| V- |) - Clq>'(|w—|)|w—| >0 e le(w_)w_ ~ F(w) > 0.

«

Usando essas informagoes na tltima desigualdade, obtemos
1
n"(a,0) < [ [(D(|Vw+|) _ cp’(\wwvw] da
Q Ca

[ :Claf(er)w* _ F(w)

o
+ [ e(vu]) -~V Ve do

(0}

dx

(1
L o — P e
+ [ s = P d
Como os suportes de w™ e w™~ sao disjuntos, segue da ultima desigualdade que

h*(a,0) </Q[(I>(|Vw|)— )] de 4+ — / w)w — (|Vw|)|Vw|] de

— (W) — T w)w = J(w) = h*(1,1),

Ca

o que é um absurdo. Portanto, b > 0. Analogamente, podemos mostrar que a > 0.

Isso conclui a demonstragao da Afirmagao [3.2]
Afirmacao 3.3. Temos que a,b < 1.

Suponha, sem perda de generalidade, que a > b. Como o ponto (a,b) é um ponto

critico de h", pois (a,b) € (0,400) x (0,400), entao

0=J(aw’ +bw™)(aw™) = /Q<I>’(a|Vw+])a|Vw+| dr — /Q flaw)aw* dx.
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Assim, argumentando de modo andlogo ao feito em (3.23), se supusermos a > 1,
f(t)

tca—1

obtemos uma contradigdo com a hipétese ( fg), que garante que é crescente. Logo,

a < 1. Como b < a, segue que b < 1, o que prova a Afirmagao [3.3

Afirmagao 3.4. A funcao A" nao admite ponto de maximo global no conjunto
[0,1] < [0, 1]\ {(1, 1)}

Para demonstrar essa afirmacao, basta mostrar que se a < 1 ou b < 1, entao
h*(a,b) < h*(1,1).
Note que

h*(a,b) = J(aw" + bw™)

1
= J(aw" +bw™) — —J (aw™ + bw ™) (aw™ + bw™)

:/QCI)(]V(aw*+bwa)D dx—/QF(anr%—bw’)dac

1
— — [ & (|V(aw® + bw")|)|V(aw" + bw")| do

Ca /O

1
+ —/ flaw™ + bw™)(aw™ + bw™) dz.
Co /O
Como os suportes de w™ e w™ sdo disjuntos, segue que
IV (aw™ +bw™)| = a|VwT| + b|Vw ™| < |[Vwt| + |Vw™| = |[Vw|.
Assim, obtemos
h*(a,b) = / P (|V(aw+ + bw_)|) dx — / Flaw™ +bw™) dx
Q Q
1
—— [ ¥ T rbw” T +bw)|d
Ca/ﬂ (IV(aw* +bw)|) |V (aw? +bu)|de
1
+ —/ flaw™ +bw™)(aw™ + bw™) dz
Co JO
1
< / o(|Vwl|) da — f/ o' (|V|)| V| dz
Q Co /0
1
+ ;/ flaw® +bw™)(aw™ +bw™) dx — / F(aw™ 4+ bw™) du.
a /O Q
Mais uma vez, como os suportes de w' e w™ sao disjuntos, temos
1
B (a, b) S/QqD(Wwax—C—/QCI)’(\Vw])]Vw\d:U

+ /Q {Claf(anr)anr — F(aw™)

dx —l—/Q [le(bw_)bw_ — F(bw™)| dz.
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Usando a Observacao e o fato de que a < 1 ou b < 1, segue que
1
h*(a, b) </Q@(Ww\)dx—C—/QQD’(meVw]dx

—l—/Q [Claf(uﬁ)w* —F(w*)] d:r:+/Q d.

Claf(w)w — F(w")

Usando novamente o fato de que wt e w™ possuem suportes disjuntos, obtemos

h* (a, b) </Q<1><|wa>dx—Cla/gq>'(|w|)|w\dx+;/Qf(w)wdx—/QF(w)dx

= J(w) — iJ'(w)w = J(w) = h“(1,1),

Ca

como querfamos demonstrar, e a prova do item (a) estd completa. Agora provaremos

o item(b). Considere as seguintes notagoes:
TPt s) == J(twt +sw)wt e YY(t,s):=J{tw" +sw )w™.

Dessa forma, temos

TU(t, 5) = /ch'(

V(twﬂ‘) ‘Vwﬂ dx —/Qf(th“)er dx,

Ty (t,s) = / o’
$(ts)= | @'(
Portanto, aplicando as fungoes TY e T4 no ponto (1, 1), segue de (3.17) que

V(sw’)D ‘Vw" dx —/Qf(sw’)w’ dx.

/Q ¢ (|Vut|) [Vuwt|de = /Q Flwbwt da, (3.24)

@ (V) Vo |de = [ f(w )w do.
[ @ (Vo)) Ve de = [ fw ) da
Agora, calculando as derivadas parciais de T{’ e T, obtemos

IYY(t, s)

o= @ (V) Ve e = [ (1) ()

Wzgit,s) = /QQ)” (s]Vw‘]) Vw™ > dz —/Qf’ (sw‘) (w™)? da;

oYY(t,s) O0Yy(t,s)
0s B ot
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Segue da hipdtese (¢3) e da Observacao |3 juntamente com (3.24)) e (3.3), que

a;t?(l,l) Z/qu (Ivw™)) |Vw+|2dx—/ﬂf’ () (s

< (ca—l)/gtb’(Wwﬂ) |Vw+|dx—/gf’ (w") (w*)? da

= (co — 1)/Qf(w+)w+ dr — /Qf' (w+> (wh)?dz < 0.

Analogamente, obtemos

ory

P (1,1) <O.
Como o -~
1 _ 2 _
Os (1’1) - ot (1a1> _O)
temos - Gy
w\/ _ 1 X 2
det ((T7)'(1, 1) = “E(1,1) - 52(1,1) > 0.

3.3 Prova do Teorema [3.1]

Comegamos esta segao seguindo a abordagem apresentada em [29], com o objetivo
de obter uma estimativa para o nivel de energia minima associado ao funcional .J, dado
por

¢ = inf J(v). 3.25
inf J(0) (3.25)
Em seguida, com base nas ideias desenvolvidas em [28], demonstraremos que existe

w € M satisfazendo

J(w) = 1{2% J(v)

e que w ¢ ponto critico de J, isto é, w é uma solucao nodal de energia minima para o
Problema [3.1] Por fim, provaremos que w possui exatamente dois dominios nodais.
Seguindo ideias de [29], fixe 0 < § < 4 tal que B(z",d) C Q, B(z™,0) C Qe
B(zT,6) N B(x~,0) = &, e defina a funcao

1, sex € By,
P(z) =
0, sex €\ By,
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com |Vo(z)| < %, de forma que ¢ € C°(Q2). A partir dela, construa a fungao

((z) = ¢ <2<x_‘”+>> — ¢ <M> . de modo que ¢ € C®(Q).

Note que

r—at

5/2

lz—2"| >0 = ‘

>9 = ¢<9”5_/§+>_0.

Aplicando um argumento analogo a segunda parcela de ¢ obtemos

supp(¢*) C Q.

Lembrando que o > ¢,, |Vo¢| < %, ¢ < 1, e que assumimos, na hipotese (f5), que

>y > s o= 2N® (%), entao, aplicando o Lema , obtemos, para todo t > 1,

J(t¢h) < tee /

Bs(z

, ¥Vl do — pt /B(mqs da

)

Analogamente, obtemos J(t(~) < 0 para todo t > 1, observando que |(~| =|—¢| >0

em um subconjunto de medida positiva de B(d,2~). Como J(0) = 0, segue que
+ -
max J(t¢T) € [0,1] e max J(t¢™) €10, 1].

No préoximo resultado, obteremos uma estimativa para o nivel de energia minima

(3.29).

Lema 3.9. Suponha que a hipétese ( f5) ¢ satisfeita e considere o valor dy , 14 definido.

Entao, ¢* < dy, para ¢ dado em ([3.25)).

Demonstragdo. Primeiro, note que, por definicao, ¢t # 0 e (- # 0. Assim, pelo
Lema , existem ¢, § # 0 tais que a combinacdo t¢(* + 5(~ € M. Como (* e (~ tém
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suportes disjuntos, segue que

¢ < JECH+3¢C7) = JECH) + J(3¢)
< max J(t¢H) +I£1>30X J(t¢™)

— max (/B (V¢ do — [ F(t¢) dx)

1

+ max (/B B(HVC|) de — /B F(t¢) dx) .

Agora, utilizando a hipétese ( f5) e o Lema , obtemos

e < max ([ @ 9CHydo— e [ ¢ty de)
t€[0,1] \J By By
+ max ( (V) do — ut” [ |§_|”dx) .
B2 B2

te(0,1]

Lembrando que 0 < [¢*] < 1, e que para t € [0,1] vale t7 < #™e_ pois 0 > My,
concluimos que

te€(0,1]

¢ < max [|Bs| @ (4) ™ + [Bs| @ (4) 7 — 2| By ol t”|
o

te[0,1]

— max [5N5N (4) e+ 0N ® (4) 17 — Q(SNBN,M]

Pela hipotese (f5), p > 2N® (%) =: ps. Assim,

) ONBN2N @ ()t 4 VB2V @ (4) 17— VBNV D (3) 17 o 5Ny,
¢ < max —
te[0,1] 2N 2N
5N5N N 4\ 4m, o
= o8 tem[gﬁﬁ[Q (3)tme — pt]
5N5N m o
—Tvtem[%[ust — pt%l.
Portanto,

p—— _ma 1
) (0 —my)m& ™ —g—. (3.26)
Mafma

N (Ma

*
c<2N —

g

Pela hipotese (f5), temos

g —1
mo S

N % mea
()7 (o = ma)md

dN,a
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ou seja,

Mo

o
6N5N s o—m o—m
2V \ o " (o0 —ma)ma " _ma

dN,a

isto é,

5N/8 ) oc—Me Lisled 1
2TN (i) (U — ma) ma NGTT?L < dNa-

Substituindo essa desigualdade em (3.26)), obtemos
¢ < dN@,

como queriamos demonstrar. O

Lema 3.10. Considere o valor ¢* definido em (3.25)). Se (w,) C M é uma sequéncia

minimizante de J. Entao

+ on(1).

[ @(1Vwn)dz <

Em particular, a sequéncia (w,) é limitada em W, *(Q).

Demonstragio. De fato, como (w,) C M é uma sequéncia minimizante de .J, segue

que

¢ 4 on(1) = J(wn) = J(wn) — lJ'(wn)wn

_” (V) _*Cb(|vwn|)|an|

+ — / (wp)w, — o F(wy,)] dz.

Agora, utilizando a hipdtese ( fg) e o Lema , obtemos

0 — Cq

¢+ on(1) z/Q<1>(|vwn|>dx—%“/Q@(wwnndx: /Q<I>(|an|)d:c.

Portanto,

/ O(|Vw,|)dx < +0,(1), Vn>1.
Q

o

Em particular, concluimos que a sequéncia (w,) é limitada em W, *(£2), pois

min { ||V, [, [[Vw, [} < /QCI)(IanD dx
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Lema 3.11. Existe ng € N e uma constante

< ()

/Qq)(|an|)dx <¢, Vn>nyg.

N
Y

tais que

Demonstragio. De fato, pelos Lemas e [3.10, temos que, a menos de uma

subsequéncia

2|z

* K N
lim | @(Vw,|)de < o¢ << N’)

n—00 0 — Cq ﬁ

. _ N
Portanto, existem ny € N e uma constante -2~ < ¢ < (Ky,/3)" tais que, a menos

de uma subsequéncia,
/ O(|Vw,|)dx <e¢, Vn>ng.
Q

Lema 3.12. Valem as seguintes convergéncias:

(a)
/Qf(wn)wndx%/gf(w)wdx;

(b)
/S]F(wn)dx%/QF(w)dx;

()
/Qf(wff)wffda:—)/gf(wi)widx.

Demonstracao.

(a) Pela desigualdade triangular, temos

’/Qf(wn)wndx—/gf(w)wdx’ < ‘/Qf(wn)wdm—/gf(w)wdx
| [ )~ w) da

Portanto, a convergéncia da integral

/Qf(wn)wndx%/ﬂf(w)wdx

ocorre quando verificarem-se simultaneamente os limites:
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(a1) /Q | f(wn)w — f(w)w|dz — 0;

(a2) [ 1F(w)(w, —w)]dx 0.

Para provar o item (a;), notamos que w,(r) — w(z) q.t.p. =z € Q. Como f
é continua, segue que f(wy,(z))w — f(w(z))w q.t.p. * € Q. Agora, seja E C Q
um conjunto mensurdvel arbitrrio. Pelo Lema [3.11] podemos aplicar a desigualdade
de Trudinger-Moser, Lema . Combinando esse resultado com a hipdtese ( fg) ea
desigualdade de Hoélder, garantimos que existe ¢ > 1 suficientemente préximo de 1, tal

que

L1l de < ¢ [ (jwnl¥ " + exp(luwa[)) fu] da

N

< (/ |wn|Nda:> " (/ |w|Ndx)N
E E
+ ¢y (/ ks d:c)ql </ exp(qBlwy,|) da:)q
E Q
< c3 </ |w|Nd:1:>N +cy </ |w|q,d:£)q/ < 0,
E E

onde ¢ = (;%1. Portanto, a sequéncia (f(w,)w) é equi-integravel, Definigao . Logo,

pelo Teorema de Vitali, Teorema 4.2, concluimos que
flwp)w — f(w)w em L'().

Quanto ao item (ag), obtemos, de modo anélogo, que

L
7

/Q|f(wn)(wn—w)|d:c§c5 (/Q|wn—w\Nd:c>}v+c6 (/Q|wn—w\q/dx>q — 0,

em virtude da imersdo compacta de Wol’cb(Q) em LP(§2) para todo p € (1,00), e do fato

de que a convergéncia fraca
1,0
w, = w em Wy~ (Q)

implica, a menos de subsequéncia, que w, — w fortemente em LY (Q) e em L (Q).

(b) Como wy,(z) — w(z) q.t.p. x € Q e F' é continua, segue que F(w,(z)) = F(w(x))

q.t.p. € Q. Além disso, no item (a) demonstramos que

flwp)w, — f(w)w em L'(Q).
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Pela hipétese ( fg), temos que
1
0< F(w,) < —=f(w,)w,, VnéeN.
o

Assim, podemos aplicar o Teorema da Convergéncia Dominada Generalizado para

concluir que

(¢) O resultado segue de forma analoga ao demonstrado no item (a), bastando considerar

w e w* no lugar de w, e w, respectivamente. ]

Lema 3.13. Existe w € M tal que

J(w) = vienj\f/l J(v).

Demonstragdo. Pelo Corolério [3.1] temos M # ). Além disso, pelo Lema [3.5 segue
que

¢ = inf J(v) > 0.
veEM

Portanto, existe uma sequéncia minimizante (w,) C M, a qual, pelo Lema ,
¢ limitada. Assim, pela imersdao de Sobolev, a menos de subsequéncia, existem

1,0 .
w,wy, we € Wy~ () tais que
_ 1,0
w, = w, w—w, w, —wy em WyT().
Assim, a menos de subsequéncia,

w, = w, wi—w, w, —wy, em LYQ), paratodo q € [1,00),

wp(x) = w(z), wi(x) = w(x), w, (r)—w(z) qtp ze.

n

Dessa forma, concluimos que wy(z) = wt(z) e wy(x) = w™(x) q.t.p. z € Q. Como as
aplicagoes w — wt e w — w™, de L1(Q) em L7(Q), sdo continuas — isso decorre do
Lema 2.2 de [14] — segue que w™ = wy e w™ = wy. Além disso, pelas convergéncias
demonstradas no Lema[3.12] juntamente com o Lema [3.8], obtemos que w # 0, w* # 0
e w~ # 0. Dessa forma, pelo Lema , existem t, s > 0 tais que

J(twt +sw)wt =0 e J(twt +sw )w =0,
isto é, w = twt + sw~ € M.
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Afirmacao 3.5. Os valores t e s satisfazem t <1 e s < 1.

Como J'(w)w;} = 0, segue que
[ (vt IV |de = [ f(w}
Q 0
Pela hipétese (¢4) e o Teorema obtemos

+
/|V|Vw ) |Vw +|Cadx</f wr)® dz.

w—&-‘ca—l w+ ca—l
Por outro lado, como J'(twt + sw™) tw™ = 0, segue que

e Devute = [ SOty e

tVwt|e o (twt)ce—1
Q |

Combinando essa desigualdade com a anterior, e utilizando as hipéteses (¢4) e (fi),

concluimos que 0 < t < 1. De fato, suponha, por absurdo, que ¢ > 1. Entao, teriamos

! + ! +
0z | F(Ww ) e — AVED e

[tV wT|ca—l |Vwt|ea—t
f(tw?™) e _ ST (wT)™

o que é uma contradicdo. Portanto, necessariamente 0 < t < 1. Da mesma forma

prova-se que 0 < s < 1 ao considerar-se a funcao w™.
Afirmagdo 3.6. O infimo ¢* = in/]\f/l J(v) é atingido no ponto w € M.
ve

Pelo que acabamos de provar, existem 0 < ¢, s < 1 tais que
W= twt + sw” € M,

em que w é o limite fraco da sequéncia (w,) em Wy'*(Q), visto no Lema [3.13, Além

disso, temos

1
< Jtwt + sw) = J(twt + swT) — —J (twT + sw”)(tw + sw)

o

1
:/Q@(t\Vwﬂ+3\Vw*\)dx—C—/Qq)’(thﬂ+5|Vw*])(t]Vw+\+s]Vw*|)da:

1
+ — f(tw + sw”)(tw" + sw™) dr — / F(tw™ + sw™) dz.
Ca 0
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Assim, pela Observacao obtemos
¢ < J(tw + sw™)
1
< [ [o0vut1 4 19w - S vurt| + [vur (e + e de

+/Q {Cf(w +w ) (wh+w”) — Flw" +w™)| dz. (3.27)
Note que a diferenca
1
O(|Vw™ |+ |[Vw™]) — C—CD'(|VUJ+| + [V ) (|[VwT| + [Vw™|) (3.28)

¢ uma funcao convexa. De fato, pois se trata da composicao da fungao

t— d(t) — i<I>’(15)zt,

COL
a qual, para ¢ > 0, é convexa e nao-decrescente, conforme a hipitese (¢5) e a
Observagao [3.1] respectivamente, com a aplicacao

z = |[Vu' ()| + [V~ (2)],

a qual é convexa por ser soma de func¢bes convexas. Além disso, a funcao dada em
é continua. Assim, podemos aplicar o Teorema [4.5] em - Ademais, em
virtude da condi¢ao de Ambrosetti-Rabinowitz, imposta em ( fg), ¢é possivel também
utilizar, em , o Lema de Fatou, Lema , e dai concluimos

¢ < J(twt + sw™)
N + - Y + - + -
< timint [ @ (V] + Vo |) = =@ (IVuif] + Vo |) (IVuf] + Vo) | do
n—oo  JO Co
1
+117{g£f {c flwf +w,; )(w;+w;)—F(w:+w;)} dx

= liminf [ [B(|Vaw,|) — F(w,) dx——/ (IVwn]) [ Vwn] — f(wn)w,] do
n oo Q

< liminf [J(wn) - 1J’(wn)(wn)] :

n—oo Ca

Como (w,) C M, concluimos que

< Jtwt 4+ sw”) < lim inf J(wy,) = ¢*.

Portanto, ¢* = J(twt + sw™), ou seja, a funcdo w := tw™ + sw™ atinge o infimo
¢* = inf J(v), como afirmamos.
veM
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Afirmacao 3.7. W = w, isto é, t = s = 1.

Suponha, por absurdo, que 0 < ¢ < 1. De modo analogo ao argumento apresentado

anteriormente, utilizando a Observagéo [3.1] obtemos

< J(tw" + sw™)
:/ t|Vw+|+s|Vw_|)dx—f/ O (V| + 8|V ) (V| + |V~ |) de
- + - + - _ -
+9/f(tw +sw™)(tw" + sw™ ) dx /QF(tw +sw™)dx
< [ o(Vut |+ |[Vu) J:—f/@ (IVart| + [V~ |)(| V| + [V |) de

+§/ﬂf(w +w” ) (w* +w_)dx—/QF(w +w”)dr < ¢,

o que é um absurdo. Portanto, ¢ > 1. O mesmo raciocinio se aplica no caso em que
s < 1, conduzindo novamente a uma contradicao. Logo, concluimos que t = s = 1,
como queriamos demonstrar. Portanto, w € M e atinge o infimo de J em M, o que

conclui a prova do Lema [3.13 O

3.3.1 Lema de deformacao

Seguindo ideias de [28], aplicaremos a seguir um lema de deformagao.

Lema 3.14. Considere w € M dado no Lema [3.13] Entao existe 0 < § < 1 tal que o

quadrado aberto
Ds=(1-6,1+6)x(1-41+0)CR?

satisfaz as seguintes propriedades:

1. (1,1) € Ds e
T(t,s) = (0,0) em D < (t,5) = (1,1);

2. ¢* ¢ h"(0Ds);
3. Dado r > 0, podemos tomar § > 0 tal que
{twt + sw™ ; (t,s) € Dy} C B(r,w) C Wy *(Q),

em que as fungdes h" e T* sdo aquelas previamente definidas na Secao [3.2

Demonstracao.
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1) De fato, como w € M C N, segue que
(1, 1) = (J'(w)w", J(w)w™) = (0,0).

Reciprocamente, como a matriz Jacobiana (Y*)'(1,1) é invertivel, pelo Teorema da
Funcdo Inversa, existem uma bola aberta B(e, (1,1)) € R? com ¢ > 0, e uma

vizinhanca aberta V' C R? contendo (0, 0) tais que

\B(Q(M)) . Ble, (1,1)) = V

¢ um difeomorfismo de classe C*(B(e, (1,1))). Seja § > 0 tal que Ds C B(e, (1,1)).
Como T%(1,1) = (0,0) e T ¢ injetiva em B(e, (1,1)), temos que T*(¢,s) = (0,0) se,
e somente se, (t,s) = (1,1) para (t,s) € Ds.

2) Para provar que ¢* ¢ h"(0Dy), basta mostrar que
J(twt +sw™) > ¢*, para todo (¢,s) € OD;.

De fato, sabemos que J(w) = ¢* e J'(w)w* = 0. Vimos acima que (¢,s) = (1,1) € Ds
é o tinico ponto da vizinhanca Dj tal que tw™ +sw~ € M. Como J atinge seu minimo
global em M no ponto w, e ndo ha outros pontos de Ds que pertencam a M, conclui-se
que

J(twt 4+ sw™) > ¢*, para todo (t,s) € Ds \ {(1,1)}.

Em particular, isso vale para todo ponto da fronteira dDs, o que implica

¢ ¢ h*(9Dj).

3) Seja (t,s) € Ds. Dado r > 0, considere d < r/||w]||. Entao
[tw® + sw™ —w| = [[(t = Dw™ + (s = Dw™ || < Sflw™ || + dljw™|| = dfjw]| <r.

O
Usando um lema de deformacao e argumentos de [9] provaremos o resultado a seguir.
Lema 3.15. Seja w € M dado no Lema |3.13] Entao, w é um ponto critico de J.

Demonstragio. Suponha, por contradi¢dao, que J'(w) # 0. Entdo existem ¢ > 0 e

v € Wy'® (), com ||vg|| = 1, tais que

J'(w)vg = 2e > 0.
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Como J' é continuo, existe r > 0 tal que
J'(v)vg > €, paratodo v € B(r,w).
Seja Ds C R? o conjunto construido no Lema . Note que, por construgao, temos
0 ({tw+ +sw™; (t,8) € Dg}) = {tw* + sw™; (t,s) € IDs}.
Escolhemos agora um raio 7’ € (0,7) tal que
B:=B(r',w) C B(r,w) e BnN{tw" +sw™; (t,s) € 0Ds} =0, (3.29)

ou seja,
Bno ({thr +sw; (t,s) € D(;}) = 0.

Agora, definimos o mapa continuo p: Wol’q)(Q) — [0, 00) dado por
p(u) = dist (u, BY),
e 0 campo vetorial V: W, (Q) — Wy*(Q), dado por
V() = —p(u) vo.

O campo V ¢ Lipschitz e limitado. De fato, como a funcao distancia p é Lipschitz,

temos
V() = V@I _ llp(0)vo = plu)voll _ |p(v) = p(u)| _
[ — o [ — o lw—oll
onde ¢ > 0 é a constante de Lipschitz de p. Além disso, como 0 < p(u) <71 e ||vo|| =1,

segue que V é limitado por 77/, ou seja,
V@) <7/, VueWy® ().

Agora, para cada u € Wy'*(Q), denotamos por n(r) = 5(r,u) a solucdo do seguinte

problema de Cauchy:

1'(r) =V(n(r)), 7>0,

1(0) = u.
Pelo Teorema de Existéncia e Unicidade para Equagoes Diferenciais Ordinarias com
valor inicial, esse problema admite uma solugao local tnica 7(7,u), definida em um

intervalo aberto contendo 7 = 0. Além disso, como o campo V é limitado, segue que a

solucao 7 pode ser estendida para todo 7 € R.
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Afirmagao 3.8. Existe 75 > 0 tal que, para todo 7 € [0, 79|, a deformagao continua

n(T,u) satisfaz as seguintes propriedades:
(1) n(r,u) = u, para todo u ¢ B;
(2) A aplicagao 7 +— J(n(1,u)) é estritamente decrescente, sempre que n(7,u) € B;

r'er

(3) J(n(r,w)) < J(w) = —~.

(1) Note que, se u ¢ B, entao p(u) = 0. Nesse caso, o campo vetorial satisfaz V(u) = 0,
de modo que a tnica solugao do problema de Cauchy é a fungao constante (7, u) = u,

para todo 7 > 0.

(2) Sen(r) € B C B(r,w), segue da condi¢ao em r que J'(n(7))vy > a > 0. Além disso,

como n(7) € B, temos
p(n(r)) := dist(n(r), B) > 0

Dessa forma, derivando J em rela¢ao a 7, para todo n(7) € B, obtemos

L1 = Tl (7) = —pln(r ) () < —pln())z < 0.

Portanto, J(n(7)) é decrescente com respeito a 7.

(3) Seja 19 > 0 tal que n(7,w) € B para todo 7 € [0, 79]. Podemos assumir, sem perda

de generalidade, que
/

r
In(ryw) = wl| < 5. V7€ [0,7),

isto é, n(r,w) € B(5,w) C B para todo 7 € [0, 79]. Logo,

p(n(r,w)) = dist(n(r,w), B°) >

Portanto,

n(rw) < —pn(r,w))e <~

P
J(n(T,w)) / n(s,w))ds < — Tegs=-"%1

Logo,

T(n(r,w) < J(w) = 5.

concluindo assim a prova da Afirmagao . Agora considere 77, : Dy — Wy *(Q) a
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aplicacao dada por
Tz (t,8) = n(70, tw™ + sw™),
para a qual vale a estimativa

max_J(7,,(t,5)) < c". (3.30)
(t,s)€D

Com efeito, pelo item (2) da Afirmacao |3.8 juntamente com o Teorema Auxiliar e
a condigao inicial (0, u) = u, segue que, para todo (t,s) € D\ {(1,1)},

J (15, (,8)) = J(n(7o, tw™ + sw™))
J(n(0, tw™ + sw™))
J(tw" + sw™)

h*(t,s) < h*(1,1) = ¢*

I IA

Ja no caso (t,s) = (1,1), pelo item (3) da Afirmacao 3.8} temos

r'eTy
2

T (5, (1, 1)) = J(n(70, w™ +w™)) = J(n(70,w)) < J(w) — < J(w) <,

concluindo assim a prova da desigualdade (3.30)). Assim, obtemos que 7,,(Ds)NM = 0,

ou seja,
Mn(t:s) ¢ M, V()€ Ds. (3.31)

Por fim, definimos a aplicagao A,,: Ds — R? dada por

An(t,5) = (‘]’ (7t S))t(”fo(t’ %) It s))s(mo t s))) |

Pela condicao ([3.29) e pelo item (1) da Afirmacao 3.8} temos que, para todo (¢, s) € dDj
A (L, s) = (J/(szJr + sw)wt, J(twt + sw‘)w_) = T"(t, s).

Como as fungoes A,, e T* coincidem na fronteira, segue da definicdo de Grau de
Brouwer, da Propriedade dg do grau do Capitulo 3 de [25] e do Teorema Auxiliar ,
que

deg(A,,, Ds, (0,0)) = deg(T", Dy, (0,0)) = sgn (det ((T*)'(1,1))) = 1.

Portanto, a aplicacdo A,, possui um zero no interior de Ds, ou seja, existem (¢, 5) € Ds
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tais que
A, (t,5) = (0,0),

o que implica
J' (71, (£,9)) (77, (£, 5)) = 0.
Logo, 7,,(t, 5) € M, contradizendo (3.31]), uma vez que (¢,5) € D;. Essa contradi¢do

mostra que nossa suposicao inicial estava incorreta, e, portanto, w é de fato um ponto

critico de J. O

Lema 3.16. Seja w € M dado no Lema [3.13, Entao, w possui exatamente dois

dominios nodais.

Demonstracao. Suponha, por absurdo, que w possui trés dominios nodais, ou seja,
suponha que existam conjuntos abertos €2; C €2, para i = 1,2, 3, tais que w > 0 em €4,

Q3 e w < 0 em y. Agora considere as fungoes w;: {2 — R dadas por

(2) w(z), sex € L),
w;\xr) =
0, sex € Q\ Q.

Note que wy; > 0 em €27, wo < 0 em 9, w3 >0 em (23 €
Q=0 U0 UQUQ,

em que Q = {z € QO w(z) =0}. Além disso, w = w; + wy 4 w3 e os suportes de w; e

w; sao disjuntos para i # j, com 4, j = 1,2,3. Como J'(w) = 0, temos
J (wy + wo)wy = 0 = J (wy + wo)ws.

Desde que 0 # w; = (wy + we)* € 0 # wy = (wy + we)~, pelo Teorema existem
t,s € (0,1] tais que t(wy +wy) " + s(w; +wse)~ € M, ou seja, twy + swy € M. Assim,

segue que
J(twy + swy) > ¢, (3.32)

Por outro lado, como 0 # w3 € N, temos J(ws) > 0. Usando o Teorema Auxiliar ,

obtemos
J(twy + swy) < J(wy + wy) < J(wy + wsy) + J(ws) = J(w) = ¢,

o que contradiz (3.32)). Portanto, w possui exatamente dois dominios nodais. O

A prova do Teorema [3.1] segue agora dos Lemas [3.13], [3.15] e [3.16]

102



Capitulo 4
Resultados auxiliares

O resultado a seguir pode ser encontrado em [36].

Teorema 4.1 (Teorema de Miranda). Seja G = {z € RY;|z;] < L, 1<i < N}.
Suponha que a aplicagio F = (f1, fa, ..., fn) : G — RN ¢é continuo no fecho G de G e
F(x) # 0 para x na fronteira 0G de G, e

1. fi(l‘l,ﬂfg,...,xi_l,—L,$i+1,...,l‘n)ZO, 1§Z<N
2. fi(xl,f,ﬂg,...,xi,1,+L,l’i+1,...,l‘n) SO, 1§Z<N
Entao, F(z) =0 tem uma solugio em G.

Definigao 4.1. Dizemos que (u, ), uma sequéncia de fungoes de L*(€2), é equi-integrdvel
se a seguinte condigao é satisfeita: para todo € > 0, existe um conjunto mensuravel A,

de medida finita, e 6 > 0 tais que

Vn>1, / lup(x)| dx < ¢,
Ac

VE C Q, mensuravel com |E| < 4, / lun (z)] dz < e.
B

Observa-se que, no caso particular em que €2 é de medida finita, a equi-integrabilidade
se reduz a segunda condicao.

O teorema a seguir pode ser encontrado na pagina 13 em [43].

Teorema 4.2 (Teorema de Vitali). Seja (u,) uma sequéncia de funcoes em L'(Q) que
converge q.t.p. em € para uma fungio mensurdvel u. Entdo, u, — u em L'(Q) se, e

somente se, (u,) € equi-integravel.

Apresentamos, conforme utilizado no Capitulo o seguinte resultado classico
de regularidade para solucoes de equacoes elipticas quasilineares, apresentado por

Lieberman, no Teorema 1.7, de [34].
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Seja ¢ : [0,00) — [0,00) uma fungao de classe C', derivada de uma fungao convexa

® € C*([0,0)), que satisfaz a condi¢io de crescimento:

o(t)t
O<5§m§gbo, Vit >0, (4.1)

para constantes 0, ¢g > 0.
Suponha que as fungoes A(z, z,p), B(x,z,p) : © x R x RY — R satisfacam as

seguintes condigoes:

(a) TN avge; > g2,

|p|

(b) =1 la”] < Ag(Ip])lpl;
(©) [A(z, z,p) = Ay, w,p)| < Ai(1+ o(|p)[lx — 9|7 + |z — wl];

(d) [Bl < A(X+ o(lpDlpl);

em que a” = g—g, para constantes positivas o < 1, A, A;.
J

Teorema 4.3 (Teorema de Regularidade Global de Lieberman). Seja M, > 0 e
suponha que as condigoes (a) — (d) sejam satisfeitas para x,y € Q, z € [—My, M|
ep,& € RN, Assuma também que seja vdlida com ¢ € C'. Entdo, toda solugio
fraca uw € WH2(Q) de

Qu = div(A(x,u, Du)) + B(z,u, Du) =0, em
com |u| < My em Q, pertence a CY7(Q) para algum 7 > 0 e
||u||cl""(ﬂ’) < C (0_7 A7 qua Na A17 diSt(Q/a 89)7 MO) )

para todo aberto ' CC Q.

Observacgao 4.1 ([34]). A mesma estimativa de Holder vista no teorema acima, é
valida em Q quando u € Wol "P(Q) é solucao do problema com condi¢ao de fronteira de

Dirichlet, sob as mesmas condigoes (a) — (d).

Em ([19], Teorema 1.1), encontramos teorema a seguir, cuja demonstragao se baseia
em [33], [20], [I7] e [27.
Teorema 4.4 (Desigualdade de Trudinger-Moser). Sejam K >0, N >2 ea < N—1.

Seja ® uma fung¢io de Young satisfazendo a hipdtese (¢a) dos capitulos acima, isto €,

()

_ 2\
t—g-ri-noo tNloga (t) ’
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para algum o € [0, N — 1). Entdio,

1. Seue W, *(Q), temos

/Qexp(K|u(x)|7)dx < o0

2. Se K < Kyo eu€ Wy®(Q) € tal que |Vule < 1, temos

/Qexp(K|u(m)|7)dm < C(N,a,?,K).

Antes de enunciarmos o préximo teorema, vejamos a seguinte caracterizacao.
Sejam [ : X — (—o00,+00| um funcional definido em um espago de Banach X e

uma sequéncia (u,) C X. Quando a convergéncia u, — u implica

liminf I(u,) > I(u),

n—o0

dizemos que I é fracamente semicontinuo inferiormente.

O teorema a seguir pode ser encontrado em ([I1], Observagao 6, Capitulo 3).

Teorema 4.5 ([I1]). Seja X um espago de Banach. Se I : X — (—o0,+00) é um

funcional convexo e continuo, entao I é fracamente semicontinuo inferiormente.

Teorema 4.6 (Teorema da Convergéncia Dominada de Lebesgue). Seja (f,) uma
sequéncia de funcoes mensurdveis em um conjunto mensurdvel Q C RY, e suponha

que:

1. fulz) = f(2z) ¢tp. x €Q;

2. Eziste g € L' () tal que |f.(x)| < g(x), para todon € N, q.t.p. x € Q.
Entao,

1. feLYQ);

Teorema 4.7 (Teorema da Convergéncia Monétona). Seja (f,) uma sequéncia de

fungdes mensurdveis nao negativas em um conjunto mensurdvel @ C RY, tal que

1. fu(z) < fos1(x) para todo n € N e quase todo x € §2;

2. fu(x) = f(x) quase em todo ponto de €.
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Entao,

lim/an(x)d:c:/Qf(x)dx.

n—o0

Lema 4.1 (Lema de Fatou). Seja (f,) uma sequéncia de fungoes em L'(€2) que satisfaz:

1. Para todo n, f, > 0 q.t.p. em ;

2. sup,, Jo fn < 00.

Para quase todo x € €2, definimos

f(z) == liminf f,(z) < +oo.

n—oo

Entdo, f € L}(Q) e
liminf/gfn(x) da:Z/f(:U) dx.

n—o0

O resultado a seguir encontra-se em [12].

Lema 4.2 (Brezis-Lieb). Seja ® uma fungiao de Young e seja 2 C RY um conjunto

mensurdvel. Considere u € L*(2) e uma sequéncia (u,) de fungoes em L®(Q) tal que
1. u,, — u quase em todo ponto de €2;
2. a sequéncia (u,) é limitada em L*(0).

Entao,
/Q@(yuny)dx—/gq>(yun—u|)dx s /Q<I>(\u|)dx.

Agora, enunciaremos dois lemas de [19].

Se tivermos u € Wy'*(€) tal que a menos de subsequéncia:

U — U em Wy *(Q),
u; —u em LP(Q), para todo p € [1,00), (4.2)
uj(z) = u(z) qt.p. z e,

Entéao, os lemas a seguir, encontrados em [19], garantem que:

Lema 4.3. A menos de subsequéncia temos
Vuj(x) — Vu(z) q.t.p. z€Q,

Lema 4.4. A menos de subsequéncia temos

VUJ' )

, , Vu
/Qc1>(|vuj|) Vo Vvdx—>/Q<I>(|Vu|)—~

|Vl

Vuvdz, VveCXrQ).
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