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Resumo

Esta tese trata da existência de soluções para uma classe de problemas elípticos não
lineares definidos em espaços de Orlicz-Sobolev, com destaque para não linearidades
envolvendo crescimento crítico exponencial. Inicialmente, são estabelecidos resultados
fundamentais sobre tais espaços, que servem de base para a análise posterior. Em
seguida, utilizando métodos variacionais e técnicas refinadas, demonstra-se a existência
de soluções positivas para problemas semipositones com o operador Φ-laplaciano,
superando dificuldades relacionadas à falta de homogeneidade do operador e o
crescimento exponencial. Por fim, mostramos a existência de uma solução nodal
de energia mínima com exatamente dois domínios nodais, ampliando resultados já
existentes na literatura, ao considerar hipóteses mais gerais sobre o operador e a não
linearidade envolvida.

Palavras-chave: Espaços de Orlicz-Sobolev; Crescimento crítico exponencial; Opera-
dor Φ-laplaciano; Métodos variacionais.
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Abstract

This thesis addresses the existence of solutions for a class of nonlinear elliptic
problems defined in Orlicz-Sobolev spaces, with emphasis on nonlinearities involving
critical exponential growth. Initially, fundamental results concerning these spaces are
established, serving as the foundation for the subsequent analysis. Then, by employing
variational methods and refined techniques, the existence of positive solutions is de-
monstrated for semipositone problems involving the Φ-Laplacian operator, overcoming
difficulties related to the operator’s lack of homogeneity and the exponential growth of
the nonlinearity. Finally, we establish the existence of a least energy nodal solution with
exactly two nodal domains, extending existing results in the literature by considering
more general assumptions on both the operator and the nonlinearity involved.

Keywords: Orlicz–Sobolev spaces; Critical exponential growth; Φ-Laplacian operator;
Variational methods.
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Notação e Terminologia

Nesta tese são empregadas as seguintes notações e terminologias:

• ⇀, → convergência fraca e forte, respectivamente.

• ↪→ imersão.

• q.t.p. quase todo ponto.

• supp(f) suporte da função f .

• ∼ equivalência assintótica.

• ≡ equivalência.

• ≪, ≫ muito menor do que e muito maior do que, respectivamente.

• Ω ⊂ RN subconjunto aberto de RN contendo a origem.

• ∂Ω fronteira de Ω.

• |A| medida de Lebesgue de um conjunto mensurável A ⊂ RN .

• Ac complemento do conjunto A.

• X∗ espaço dual topológico de X.

• B(R, x) bola aberta de centro x e raio R.

• χΩ função característica do conjunto Ω.

• f = o(g), quando t → t0 se lim
t→t0

∣∣∣∣∣f(t)
g(t)

∣∣∣∣∣ = 0.

• u+ = max{u, 0}. u− = min{u, 0}.

• C(Ω) espaço das funções contínuas em Ω.

• C0(Ω) espaço das funções contínuas em Ω que se anulam sobre ∂Ω.

• Ck(Ω), k ∈ N espaço das funções k vezes continuamente diferenciáveis em Ω.
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• Ck(Ω), espaço das funções Ck(Ω) tais que para todo multi-índice ζ, com
|ζ| ≤ k, a função x 7→ Dζu(x) admite extensão contínua para Ω.

• Cc(Ω) espaço das funções contínuas com suporte compacto em Ω.

• Ck
c (Ω) = Ck(Ω) ∩ Cc(Ω); C∞(Ω) = ⋂

k≥1 C
k(Ω); C∞

c (Ω) = C∞(Ω) ∩ Cc(Ω).

• C0,τ (Ω) =

u ∈ C(Ω) ; sup
x,y∈Ω
x̸=y

|u(x) − u(y)|
|x− y|τ

< ∞

, 0 < τ < 1 espaço das funções

Hölder contínuas em Ω com expoente τ .

• Ck,τ (Ω) = {u ∈ Ck(Ω) ; Dζu(x) ∈ C0,τ para todo multi-índice ζ com |ζ| = k}.

• ∇u =
(

∂u
∂x1
, . . . , ∂u

∂xN

)
gradiente da função u.

• ∆Φu = div
(
Φ′(|∇u|) ∇u

|∇u|

)
Φ-laplaciano da função u.

• Lp(Ω) = {u : Ω → R mensurável ;
∫

Ω |u|pdx < ∞}, 1 ≤ p < ∞.

• ∥u∥p = (
∫

Ω |u|pdx)1/p norma no espaço Lp(Ω).

• KΦ(Ω) = {u : Ω → R mensurável ;
∫

Ω Φ(|u|)dx < ∞} classe de Orlicz.

• LΦ(Ω) =
{
u : Ω → R mensurável ;

∫
Ω Φ

(
|u|
λ

)
dx < ∞ para algum λ > 0

}
espaço

de Orlicz.

• ∥u∥Φ = inf
{
λ > 0 ;

∫
Ω Φ

(
|u|
λ

)
dx ≤ 1

}
norma de Luxemburgo de LΦ(Ω).

• W 1,Φ(Ω) =


u ∈ LΦ(Ω) tal que existem fi ∈ LΦ(Ω), i = 1, . . . , N, com∫

Ω
u
∂ψ

∂xi

dx = −
∫

Ω
fiψ dx, ∀ψ ∈ C∞

c (Ω), i = 1, . . . , N

 espaço

de Orlicz-Sobolev.

• ∥u∥ = ∥u∥Φ + ∥∇u∥Φ norma no espaço W 1,Φ(Ω).

• W 1,Φ
0 (Ω) fecho de C∞

c (Ω) em W 1,Φ(Ω).

xi



Introdução

Neste trabalho, estudaremos problemas do tipo
 −∆Φu = h(u) em Ω,

u = 0 sobre ∂Ω,

em que Ω ⊂ RN , com N ≥ 2, é um domínio limitado com fronteira suave, Φ ∈ C2(R,R)
é uma N -função, h : R → R é uma função contínua e

∆Φu = div
(

Φ′(|∇u|) ∇u
|∇u|

)

é o operador Φ-laplaciano. Hipóteses adicionais e especificidades para Φ e h serão
apresentadas em cada capítulo.

Esta classe de problemas pode ser motivada por aplicações físicas, em especial no
contexto da mecânica dos fluidos. Em particular, ao considerarmos

Φ(t) = t2 + 2
∫ |t|

0
s arcsenhα s ds t ∈ R, (2)

pode-se mostrar que Φ satisfaz condições adequadas que indicaremos posteriormente.
Neste caso, o problema


div

(
Φ′(|Du|) Du

|Du|

)
+ (termo potencial) = 0 em Ω,

div u = 0 em Ω,

u = 0 em ∂Ω,

modela um fluido do tipo Prandtl–Eyring, que caminha lento sobre Ω, onde u : Ω → R2

denota o campo velocidade de um fluido incompressível e

Du := 1
2

[
∇u+ (∇u)T

]
,

é o gradiente simétrico de u. Para mais detalhes, veja [10] e [30].
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Esta tese está estruturada da forma a seguir.
O Capítulo 1 é dedicado à apresentação dos espaços de Orlicz e Orlicz-Sobolev.

Nele, discutimos algumas propriedades e resultados fundamentais desses espaços. Essa
análise desempenha um papel crucial nas argumentações desenvolvidas nos capítulos
subsequentes, fornecendo uma base sólida para as discussões posteriores.

No Capítulo 2, inspirados em [37], investigamos a existência de soluções positivas
para um problema semipositone da forma


−∆Φu = f(u) − µ em Ω,

u > 0 em Ω,
u = 0 sobre ∂Ω,

(1)

em que Ω ⊂ RN , com N ≥ 2, é um domínio limitado com fronteira suave, a função
f : [0,+∞) → R é contínua, Φ : R → [0,∞) é uma N -função de classe C2 e
∆Φ é o operador Φ-laplaciano definido anteriormente. Assumindo algumas condições
adicionais sobre Φ e f mostraremos que (1) possui uma solução se o parâmetro real
µ > 0 for pequeno.

Muitos autores estudaram problemas semipositones ao longo dos anos, desde o
surgimento do artigo de Castro e Shivaji [16], que foram os primeiros a considerar essa
classe de problemas.

Quando µ = 0, o Problema (1) é bem conhecido e pode ser resolvido usando o
Teorema do Passo da Montanha, proposto por Ambrosetti e Rabinowitz em [7]. No
entanto, para o caso em que (1) é semipositone, ou seja, quando f(0) = 0 e −µ < 0,
a existência de uma solução positiva não é tão simples, pois os argumentos padrão
via Teorema do Passo da Montanha, combinados com o Princípio do Máximo, não
fornecem diretamente uma solução para o problema.

Problemas do tipo semipositone continuam sendo amplamente estudados na
literatura recente. Em [37], Perera e Sim trataram do caso com o operadorN -laplaciano
(isto é, Φ(t) = 1

N
|t|N) e uma não linearidade específica do tipo

f(u) = λ|u|N−2ueβ|u|N′

, com N ′ = N

N − 1 e 0 < λ < λ1,

onde

λ1 = inf
u∈W 1,N

0 (Ω)\{0}

∫
Ω

|∇u|N dx∫
Ω

|u|N dx

é o menor autovalor do problema não linear −∆Nu = λ|u|N−2u, com u ∈ W 1,N
0 (Ω).

Assim, os autores provaram que se λ ∈ (0, λ1) então existe µ∗ > 0 tal que para todo

2



µ ∈ (0, µ∗), o problema


−∆Nu = λ|u|N−2ueβ|u|N′
− µ em Ω,

u > 0 em Ω,
u = 0 sobre ∂Ω,

tem solução fraca positiva uµ ∈ C1,α
0 (Ω) para algum α ∈ (0, 1).

Em outra direção, em [4], Alves et al. estudaram um problema semipositone com
operador geral ∆Φ em espaços de Orlicz–Sobolev, considerando Φ satisfazendo

ℓ ≤ Φ′(t)t
Φ(t) ≤ m, ∀ t > 0, com ℓ,m ∈ (1, N). (2)

Sob essa e outras condições técnicas, e assumindo que f > 0 tem crescimento
subcrítico do tipo Sobolev, os autores demonstram a existência de solução positiva
do problema para µ pequeno, também explorando métodos variacionais e argumentos
de truncamento.

Em [38], os autores Rădulescu et. al. trabalharam com o problema


−∆Φu = λf(x, u) + µg(x, u) em Ω,
u > 0 em Ω,
u = 0 sobre ∂Ω,

com λ > 0, µ ∈ R e f, g : Ω × R → R são funções Carathéodory. Os autores incluíram
dentre outras hipóteses a seguinte:

ℓ− 1 ≤ Φ′′(t)t
Φ′(t) ≤ m− 1, ∀ t > 0, com ℓ,m ∈ (1, N),

com ℓ ≤ m < Nℓ/(N − ℓ).
Usando métodos variacionais, um teorema de compacidade para o espaço de Orlicz-

Sobolev e algumas estimativas a priori, e supondo (2), Alves et. al., em [5], estudaram
a existência de solução positiva para o problema semipositone quasilinear


−∆Φu = λf(x, u) + b(u) − a em Ω,

u > 0 em Ω,
u = 0 sobre ∂Ω,

com parâmetros a, λ > 0, f(x, u) uma função Carathéodory, com crescimento subcrítico
e b(t) uma função com crescimento crítico no espaço W 1,Φ

0 (Ω).
Na literatura, encontramos diferentes métodos para provar a existência e a não
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existência de soluções, como subsupersoluções, argumentos da teoria do grau, teoria
do ponto fixo e bifurcação; veja, por exemplo, [2], [3], [6], [8] e suas referências. Além
desses métodos, o método variacional também foi utilizado em alguns artigos, como
pode ser visto em [26], [13], [15], [21], [22] e [23].

O Capítulo 2 desta tese foi inspirado, principalmente, pelos artigos [37] e [4].
Em todo este texto, adotaremos a seguinte definição:

Definição 0.1. Seja α ∈ [0, N − 1). Definimos os números γ, B e KN,α da seguinte
forma:

(a) γ = N

N − 1 − α
> 1;

(b) B = 1 − α

N − 1 = N

(N − 1)γ ∈ (0, 1);

(c) KN,α = B1/B N ω
1/(N−1)
N−1 , em que ωN−1 denota a medida da esfera unitária em

RN .

Iremos supor que Φ : R → [0,∞) é uma N -função de classe C2 e satisfaz as seguintes
condições:

(ϕ1) Existe uma constante C ≥ 1, tal que para todo t ∈
[
0, 1

C

)
tN

C
≤ Φ(t) ≤ CtN ;

(ϕ2) Para algum α ∈ [0, N − 1), temos

lim
t→+∞

Φ(t)
tN logα(t) = 1;

(ϕ3) Existem constantes m̃α, c̃α > 0 tais que

m̃α ≤ Φ′′(t)t
Φ′(t) ≤ c̃α, ∀ t > 0;

(ϕ4) Existem t0 > e e a ∈ (0, B), tais que

Φ(t) ≤ tN logα(t)(1 − log−a(t)), t ∈ [t0,∞).

Decorre das hipóteses (ϕ1) e (ϕ3) que, denotando mα = m̃α + 1 e cα = c̃α + 1, vale

1 < mα ≤ inf
t>0

Φ′(t)t
Φ(t) ≤ sup

t>0

Φ′(t)t
Φ(t) ≤ cα. (3)

4



Veja o Lema 2.3 para os detalhes.
Quanto à função contínua f : [0,∞) → R, consideramos as seguintes hipóteses:

(f1) lim
t→0+

f(t)
Φ′(t) = 0;

(f2) Existem constantes C > 0 e β > 0 tais que

0 < f(t) ≤ C
[
tN−1 + exp(βtγ)

]
∀ t > 0;

(f3) Existem constantes C,M,R0 > 0, tais que

F (t)
f(t) ≤ Ct1−M ∀ t > R0,

em que F (t) =
∫ t

0 f(s) ds, para todo t ≥ 0;

(f4) lim inf
t→∞

tf(t)
exp(β|t|γ) =: L > 0;

(f5) A função F (t)
tcα

é crescente para t > 0, e

inf
t>0

F (t)
tcα

= k0 > 0.

Devido à desigualdade do tipo Trudinger-Moser, válida para funções em W 1,Φ
0 (Ω),

ver Teorema 1.3 de [19], temos a seguinte noção de criticalidade para o Problema 2.1:

Definição 0.2. Dizemos que uma função f : R → R possui crescimento crítico
exponencial quando existe uma constante K0 > 0 tal que

lim
t→∞

|f(t)|
eK|t|γ =

 0, para todo K > K0,

+∞, para todo K < K0.

O principal resultado do Capítulo 2 é o seguinte teorema:

Teorema 0.1. Assuma (ϕ1) − (ϕ4) e (f1) − (f5). Existe µ∗ > 0 tal que para todo
µ ∈ (0, µ∗) o Problema (1) tem uma solução fraca positiva

uµ ∈ C1,σ
0 (Ω)

para algum σ ∈ (0, 1).

O nosso resultado constitui uma generalização daquele obtido em [37], na medida
em que o operador Φ-laplaciano estende o N -laplaciano. Essa generalização nos
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trouxe a dificuldade adicional advinda da não-homogeneidade do Φ-laplaciano. Além
disso, a não linearidade considerada neste trabalho é de natureza mais geral do que a
tratada por eles, que abordam um caso particular. No entanto, em razão da hipótese
(f1) adotada aqui, o caso específico considerado em [37] não está contido como caso
particular do nosso, o que limita parcialmente essa generalização.

Além disso, complementamos o escopo de [4], uma vez que trabalhamos comm > N ,
diferentemente da condição (2) usada por eles.

No Capítulo 3, investigamos a existência de uma solução nodal, isto é, uma solução
que muda de sinal no domínio Ω para o problema


−∆Φu = f(u) em Ω,

u± ̸= 0 em Ω,
u = 0 sobre ∂Ω,

(4)

onde Ω ⊂ RN , com N ≥ 2, é um domínio limitado e suave, f : R → R é uma função
de classe C1 e Φ : R → [0,∞) é uma N -função de classe C2.

Mostraremos que a solução encontrada possui exatamente dois domínios nodais, ou
seja, as partes do domínio onde a função assume valores estritamente positivos ou nega-
tivos formam duas componentes conexas abertas disjuntas, conforme estabeleceremos
na Definição 3.1.

Problemas de natureza semelhante, envolvendo soluções que mudam de sinal, têm
sido objeto de estudo em diferentes contextos variacionais. Um exemplo relevante é o
trabalho de Figueiredo e Santos [28], onde os autores estabelecem a existência de uma
solução nodal com dois domínios nodais para uma equação do tipo Kirchhoff:

−M
(∫

Ω
Φ(|∇u|) dx

)
∆Φu = f(u), u ∈ W 1,Φ

0 (Ω).

No presente capítulo, seguimos uma abordagem semelhante a de [28], utilizando
métodos variacionais, argumentos de minimização sobre um subconjunto da variedade
de Nehari e um lema de deformação. Porém, trabalhamos com o caso M ≡ 1 e com
hipóteses diferentes sobre a função Φ.

Além disso, diversas ideias e resultados utilizados neste capítulo foram inspirados
no trabalho de [29], onde os autores estudam soluções do tipo multi-bump para
um problema envolvendo o operador Φ-laplaciano envolvendo crescimento crítico
exponencial.

No Capítulo 3, além de (ϕ1) − (ϕ3), consideramos as seguintes hipóteses sobre a
N -função Φ:
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(ϕ̂4) A função Φ′(t)
|t|cα−2t

é não-decrescente para t < 0 e não-crescente para t > 0;

(ϕ5) As funções t 7→ Φ′(t)t e t 7→ Φ(t) − 1
cα

Φ′(t)t são convexas para t > 0.

Para a função f : R → R de classe C1 consideramos as seguintes hipóteses:

(f̂1) lim
t→0

f(t)
Φ′(t) = 0.

(f̂2) Existem C e β > 0 constantes, tais que

|f(t)| ≤ C
[
|t|N−1 + exp(βtγ)

]
∀ t ∈ R;

(f̂3) (Ambrosetti–Rabinowitz) Existe σ > cα tal que

0 < σF (t) ≤ tf(t), ∀ t ̸= 0,

em que F (t) :=
∫ t

0 f(s) ds;

(f̂4) A função

t 7→ f(t)
|t|cα−2t

é decrescente para t < 0 e crescente para t > 0;

(f̂5) inf
t̸=0

F (t)
|t|σ

=: µ ≥ µ∗, onde

µ∗ := max


µδ,


δNβN

2N

(
µδ

σ

) σ
σ−mα (σ −mα)m

mα

σ−mα
α

dN,α


σ−mα

mα


,

com δ ∈ (0, 4) fixado de modo que, existam x+, x− ∈ Ω tais que B(x+, δ) ⊂ Ω,
B(x−, δ) ⊂ Ω, B(x+, δ) ∩B(x−, δ) = ∅, e

µδ := 2N Φ
(

4
δ

)
, dN,α := σ − cα

σ

(
KN,α

βN

)N
γ

,

em que βN representa a medida de Lebesgue da bola unitária B(1, 0) e KN,α é
dado na Definição 0.1.

O resultado principal deste capítulo é o seguinte:
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Teorema 0.2. Suponha que as condições (ϕ1) − (ϕ3), (ϕ̂4), (ϕ5) e (f̂1)-(f̂5) estejam
satisfeitas. Então o Problema (3.1) admite ao menos uma solução nodal de energia
mínima, a qual apresenta exatamente dois domínios nodais.
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Capítulo 1

Resultados preliminares de espaços
de Orlicz-Sobolev

Neste capítulo, faremos uma introdução aos espaços de Orlicz-Sobolev. Apresenta-
remos a teoria e os pré-requisitos necessários ao bom entendimento de todos os resul-
tados deste trabalho.

Para uma análise mais detalhada sobre os espaços de Orlicz-Sobolev, veja, por
exemplo, [1], [35] e [39].

Ao longo deste trabalho, a função Φ será sempre considerada uma N -função. A
seguir, apresentaremos sua definição formal, bem como alguns exemplos ilustrativos.

Definição 1.1. Dizemos que a função Φ : R → [0,∞) é uma N -função quando satisfaz
as seguintes condições:

(a) Φ é convexa e par;

(b) Φ(t) = 0 se, e somente se, t = 0;

(c) lim
t→0+

Φ(t)
t

= 0;

(d) lim
t→+∞

Φ(t)
t

= ∞.

De acordo com ([39], Corolário 2), toda N -função Φ admite a seguinte representação

Φ(t) =
∫ |t|

0
φ(s) ds t ∈ R,

com a função φ : [0,∞) → [0,∞) satisfazendo as propriedades:

(a) φ é contínua à direita e não-decrescente;

(b) φ(s) = 0 se, e somente se, s = 0;

9



1. Resultados preliminares de espaços de Orlicz-Sobolev

(c) lim
s→+∞

φ(s) = ∞.

Exemplo 1.1 ([39]). As funções abaixo são exemplos de N -funções.

(a) Φ(t) = |t|p

p
p > 1.

(b) Φ(t) = e|t| − |t| − 1.

Para uma N -função Φ, definimos a seguir a classe de Orlicz e o espaço de Orlicz
associados a Φ.

Definição 1.2. Sejam Φ uma N -função e Ω ⊂ RN um subconjunto aberto. Dizemos
que

(a) A classe de Orlicz associada a Φ é o conjunto de funções definido por

KΦ(Ω) = {u : Ω → R mensurável ;
∫

Ω
Φ(|u(x)|) dx < ∞};

(b) O espaço de Orlicz é o conjunto de funções definido por

LΦ(Ω) = {u : Ω → RN mensurável ;
∫

Ω
Φ
(
u

λ

)
dx < ∞, para algum λ > 0}.

A seguir, enunciamos algumas propriedades satisfeitas pela classe e pelo espaço de
Orlicz. As respectivas demonstrações podem ser consultadas em [1] e [35].

Lema 1.1. Sejam KΦ(Ω) e LΦ(Ω), respectivamente, a classe de Orlicz e o espaço de
Orlicz definidos anteriormente. Então, valem as seguintes propriedades:

(a) KΦ(Ω) é um conjunto convexo.

(b) KΦ(Ω) não necessariamente é um espaço vetorial.

(c) LΦ(Ω) é o menor espaço vetorial que contém KΦ(Ω).

É possível definir diferentes normas no espaço LΦ(Ω), entre as quais destacamos as
aplicações a seguir, que associam elementos de LΦ(Ω) a valores reais.

(a)

∥u∥Φ := inf
{
λ > 0 ;

∫
Ω

Φ
(

|u|
λ

)
dx ≤ 1

}
,

denominada norma de Luxemburgo.

(b)
∥u∥Φ,A := inf

λ>0

{1
λ

(
1 +

∫
Ω

Φ(λ|u|) dx
)}

,

chamada de norma de Amemiya.

10



1. Resultados preliminares de espaços de Orlicz-Sobolev

As normas apresentadas são equivalentes entre si e, sob qualquer uma delas, o
espaço vetorial LΦ(Ω) constitui um espaço de Banach. Quando u ̸= 0, o ínfimo na
norma de Luxemburgo é atingido, pois se considerarmos em

∫
Ω

Φ
(

|u(x)|
λ

)
dx ≤ 1, (1.1)

uma sequência decrescente de números reais positivos (λn) que converge para ∥u∥Φ

então, pelo Teorema da Convergência Monótona (ver Teorema 4.7), obtemos

∫
Ω

Φ
(

|u(x)|
∥u∥Φ

)
dx ≤ 1. (1.2)

Se ocorre a igualdade em (1.1), então λ = ∥u∥Φ. Entretanto, a recíproca não é sempre
válida. Isto é, pode ocorrer λ = ∥u∥Φ com a desigualdade estrita em (1.1). Para mais
detalhes, ver [1].

Neste trabalho, adotaremos como norma no espaço LΦ(Ω) a norma de Luxemburgo,
denotada por ∥ · ∥Φ.

A N -função Φ(t) = |t|p

p
, com p > 1, apresentada no Exemplo 1.1, é tal que o

espaço de Orlicz LΦ(Ω) coincide com o clássico espaço de Lebesgue Lp(Ω). Nesse caso,
a norma de Luxemburgo em LΦ(Ω) é dada por

∥ · ∥Φ = p− 1
p ∥ · ∥p,

em que ∥ · ∥p denota a norma usual em Lp(Ω).

Definição 1.3. Dada uma N -função Φ, a função Φ̃ : R → [0,+∞) definida por

Φ̃(t) = sup
s≥0

{st− Φ(s)}, t ≥ 0 e Φ̃(t) = Φ̃(−t), t < 0

é dita a complementar de Φ.

De acordo com [39], uma função complementar Φ̃ pode ser escrita na forma

Φ̃(t) =
∫ |t|

0
ψ(s) ds em que ψ(s) = sup

φ(t)≤s

t, para s ≥ 0

e, além disso, Φ̃ é também uma N -função. Por fim, a função complementar de Φ̃ é a
própria Φ, ou seja, ˜̃Φ = Φ.

Agora, dado ũ ∈ LΦ̃(Ω), introduzimos a seguinte norma associada ao espaço LΦ̃(Ω):

11
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(c)

∥ũ∥(Φ̃) := sup
{∫

Ω
ũv dx ; v ∈ LΦ(Ω) e ∥v∥Φ ≤ 1

}
,

denominada norma de Orlicz no espaço LΦ̃(Ω).

A seguir, apresentamos um exemplo em que, dada uma N -função Φ, determinamos
sua N -função complementar Φ̃.

Exemplo 1.2. Sejam p > 1 e p′ seu conjugado, isto é, 1
p

+ 1
p′ = 1. Considere a função

φ(t) = |t|p−2t.

Então, a N -função Φ associada é dada por

Φ(t) =
∫ |t|

0
φ(s) ds = |t|p

p
.

Observe que esta é justamente a primeira N -função apresentada no Exemplo 1.1.
Temos que

ψ(s) = sup
φ(t)≤s

t = sup
|t|p−2t≤s

t = s1/(p−1), para s ≥ 0.

Portanto, a função complementar de Φ é

Φ̃(t) =
∫ |t|

0
ψ(s) ds =

∫ |t|

0
s1/(p−1) ds = |t|p′

p′ .

Para a N -função Φ(t) = e|t| −|t|−1, apresentada no Exemplo 1.1, tem-se, conforme
[39], que sua N -função complementar é dada por

Φ̃(t) = (1 + |t|) ln (1 + |t|) − |t|.

Nos espaços LΦ(Ω) e LΦ̃(Ω) vale a seguinte desigualdade de Hölder: Se u ∈ LΦ(Ω)
e v ∈ LΦ̃(Ω), então uv ∈ L1(Ω) e

∫
Ω

|uv| dx ≤ 2∥u∥Φ∥v∥Φ̃.

Vale também a desigualdade de Young

ab ≤ Φ(a) + Φ̃(b), ∀ a, b ∈ R.

Essas duas desigualdades são demonstradas em [1].
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Lema 1.2. Seja Φ uma N -função. Então

(a) Φ(αt) ≤ αΦ(t), para α ∈ [0, 1] e t ∈ R.

(b) Φ(βt) ≥ βΦ(t), para β ∈ [1,∞) e t ∈ R.

Demonstração.

(a) Como Φ é uma função convexa e Φ(0) = 0, segue que, para todo α ∈ [0, 1],

Φ(αt) = Φ(αt+ (1 − α)0) ≤ αΦ(t).

(b) Como Φ é uma função par, podemos supor, sem perda de generalidade, que t > 0.
Assim, pelo item (a), para β ≥ 1 temos

1
β

Φ(t) ≥ Φ
(
t

β

)
.

Fazendo a substituição s = t

β
, obtemos

Φ(βs) ≥ βΦ(s), s > 0,

como desejado.

Definição 1.4. Dizemos que uma N -função Φ satisfaz a condição ∆2 (e escrevemos
Φ ∈ ∆2) se existem constantes k > 0 e t0 ≥ 0, tais que

Φ(2t) ≤ kΦ(t), ∀ t ≥ t0.

No caso em que |Ω| = ∞, dizemos que Φ satisfaz a condição ∆2 se existe uma constante
k > 0, tal que Φ(2t) ≤ kΦ(t), para todo t ≥ 0.

Como veremos na Observação 1.1, o espaço W 1,Φ
0 (Ω) é um espaço de Banach,

e a condição ∆2 é necessária para garantir a sua reflexividade. Recordemos que,
em espaços de Banach reflexivos, toda sequência limitada admite uma subsequência
fracamente convergente. Esse resultado será utilizado de maneira recorrente ao longo
das demonstrações.

Lema 1.3. Uma N -função Φ satisfaz a condição ∆2 se, e somente se, para cada s > 1
existem k > 0 e t0 ≥ 0, tais que

Φ(st) ≤ ksΦ(t), ∀ t ≥ t0.

13
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No caso em que |Ω| = ∞, a N -função Φ satisfaz a condição ∆2 se, e somente se, para
todo s > 1 existe uma constante ks > 0, tal que Φ(st) ≤ ksΦ(t), para todo t ≥ 0.

Proposição 1.1 ([1] e [39]). Se Φ satisfaz a condição ∆2, então existem a, b > 0, tais
que

Φ(t) ≤ atb,

para t suficientemente grande.

Isso significa que Φ cresce, no infinito, de forma assintoticamente inferior a uma
função polinomial.

Exemplo 1.3. A N -função Φ1(t) = |t|p
p

, com p ∈ (1,∞), satisfaz a condição ∆2, pois
Φ(2t) = 2pΦ(t). Por outro lado, a N -função Φ2(t) = e|t| −|t|−1 não satisfaz a condição
∆2, uma vez que seu crescimento, no infinito, é mais rápido do que o de qualquer função
polinomial. Além disso, conforme visto anteriormente, a N -função complementar de
Φ2 é dada por

Φ̃(t) = (1 + |t|) ln (1 + |t|) − |t|,

a qual, conforme visto em [35], satisfaz a condição ∆2.

Definição 1.5. Dizemos que uma N -função Φ satisfaz a condição ∇2 (e denotamos
por Φ ∈ ∇2) se existe ζ > 1, tal que

Φ(t) ≤ 1
2ζΦ(ζt) para todo t ≥ 0.

Lema 1.4 ([1]). Seja Φ uma N -função. Então,

(a) O espaço (LΦ(Ω), ∥ · ∥Φ) é reflexivo se, e somente se, Φ e Φ̃ satisfazem ∆2.

(b) Seja Φ ∈ ∆2. Então, a sequência (un) converge para zero em LΦ(Ω) se, e somente
se, ∫

Ω
Φ(|un|) dx → 0.

(c) Seja Φ ∈ ∆2. Então, a sequência (un) é limitada em LΦ(Ω) se, e somente se,
∫

Ω
Φ(|un|) dx

é limitada.

Além disso, vale destacar que, se Φ e Φ̃ são ambas ∆2, então

(LΦ(Ω), ∥ · ∥Φ)∗ = (LΦ̃(Ω), ∥ · ∥Φ̃) e (LΦ̃(Ω), ∥ · ∥Φ̃)∗ = (LΦ(Ω), ∥ · ∥Φ)
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em que (LΦ(Ω), ∥ · ∥Φ)∗ e (LΦ̃(Ω), ∥ · ∥Φ̃)∗ representam os espaços duais topológicos de
LΦ(Ω) e LΦ̃(Ω), respectivamente.

Os três lemas a seguir podem ser encontrados em Fukagai et al. [32]. Os dois
primeiros serão utilizados para demonstrar, no terceiro, que as N -funções consideradas
neste trabalho satisfazem a condição ∆2. Além disso, esses resultados também se
mostram úteis em diversos outros argumentos ao longo deste trabalho.

Lema 1.5 ([32], Lema 2.1). Seja A uma N -função de classe C1 que satisfaz a seguinte
condição

1 < m ≤ A′(t)t
A(t) ≤ M < ∞, para todo t > 0. (1.3)

Considere, ainda, as funções auxiliares

ξ0(t) = min{tm, tM}, ξ1(t) = max{tm, tM}.

Então

(a) ξ0(ρ)A(t) ≤ A(ρt) ≤ ξ1(ρ)A(t) para ρ, t ≥ 0.

(b) ξ0(∥u∥A) ≤
∫

Ω A(|u|) dµ ≤ ξ1(∥u∥A) para u ∈ LΦ(A).

Lema 1.6 ([32], Lema 2.5). Seja A uma N -função de classe C1 que satisfaz a condição
(1.3), e seja Ã a N -função complementar associada a A. Defina as funções

ξ2(t) = min{t
m

m−1 , t
M

M−1 }, ξ3(t) = max{t
m

m−1 , t
M

M−1 }.

Então:

(a) M
M−1 ≤ Ã′(t)t

Ã(t) ≤ m
m−1 para t ≥ 0.

(b) ξ2(ρ)Ã(t) ≤ Ã(ρt) ≤ ξ3(ρ)Ã(t) para ρ, t ≥ 0.

Segue dos Lemas 1.5(a) e 1.6(b) que:

Lema 1.7 ([32], Lema 2.7). Sejam A uma N -função de classe C1 satisfazendo (1.3) e
Ã a sua N -função complementar. Então A e Ã satisfazem a condição ∆2.

Prosseguimos agora com a definição do espaço de Orlicz-Sobolev.

Definição 1.6. O espaço de Orlicz-Sobolev é definido por

W 1,Φ(Ω) =

u ∈ LΦ(Ω);
existem f1, ..., fN ∈ LΦ(Ω) tais que∫
Ω
u
∂ψ

∂xi

dx = −
∫

Ω
fiψ dx ∀ ψ ∈ C∞

c (Ω), i = 1, ..., N

 .
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As funções uxi
:= fi são denominadas derivadas fracas de u.

De forma mais compacta, o espaço de Orlicz-Sobolev pode ser descrito como o
conjunto de funções

W 1,Φ(Ω) = {u ∈ LΦ(Ω); |∇u| ∈ LΦ(Ω)}.

A aplicação
u 7→ ∥u∥Φ + ∥∇u∥Φ

define uma norma em W 1,Φ(Ω). De acordo com [1], W 1,Φ(Ω) é um espaço de Banach.
A partir de agora, até o fim deste capítulo vamos assumir que Φ satisfaz a condição

∆2.
O subespaço W 1,Φ

0 (Ω) é definido como o fecho do conjunto C∞
c (Ω) em W 1,Φ(Ω) com

respeito a essa norma.

Observação 1.1. Conforme apresentado em [1], temos que:

1. O espaço W 1,Φ
0 (Ω) também é um espaço de Banach.

2. O espaço W 1,Φ
0 (Ω) é separável;

3. Se também Φ̃ satisfaz a condição ∆2, então W 1,Φ
0 (Ω) é reflexivo;

Proposição 1.2 ([1], Desigualdade de Poincaré). Se Φ ∈ ∆2, então existe uma
constante c > 0, tal que

∥u∥Φ ≤ c∥∇u∥Φ, ∀u ∈ W 1,Φ
0 (Ω).

A partir da desigualdade de Poincaré, obtemos uma equivalência entre a norma de
u em W 1,Φ

0 (Ω) e a norma de Luxemburgo do gradiente de u em LΦ(Ω). Diante disso,
ao longo deste trabalho consideraremos como norma em W 1,Φ

0 (Ω) a norma

∥u∥ := ∥∇u∥Φ,

isto é, a norma de Luxemburgo do gradiente de u no espaço LΦ(Ω).
Enunciamos a seguir o Princípio do Máximo Forte e o Princípio da Comparação

Forte, conforme apresentados nos Lemas 3.4 e 3.5 de [31]. Em ambos os casos, considere
Φ uma função tal que

(1) Φ ∈ C2([0,∞)), convexa, com Φ(0) = 0 e Φ(t) > 0 para todo t > 0.
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(2) Existem constantes l,m > 1 tais que

l ≤ tΦ′(t)
Φ(t) ≤ m, ∀ t > 0.

(3) Existem constantes a0, a1 > 0 tais que

a0 ≤ tΦ′′(t)
Φ′(t) ≤ a1, ∀ t > 0.

Teorema 1.1. (1. Princípio do Máximo Forte.) Seja h ∈ L∞(Ω) uma função não
negativa e não identicamente nula. Então, a solução u ∈ W 1,Φ

0 (Ω) do problema

−∆Φu = h,

isto é, a solução da equação
∫

Ω
Φ′(|∇u|) ∇u

|∇u|
∇v dx =

∫
Ω
hv dx, ∀ v ∈ W 1,Φ

0 (Ω),

é estritamente positiva em Ω, ou seja, u(x) > 0 para todo x ∈ Ω.
(2. Princípio da Comparação Forte.) Sejam hi ∈ L∞(Ω), com i ∈ {1, 2}, e sejam
ui ∈ W 1,Φ

0 (Ω) soluções do problema elíptico
 −∆Φu = hi em Ω,

u = 0 sobre ∂Ω.

Suponha que 0 ≤ h1 ≤ h2 q.t.p. em Ω, e que o conjunto

C := {x ∈ Ω; h1(x) = h2(x)},

possui interior vazio. Então, valem as seguintes conclusões:

0 ≤ u1 < u2 em Ω,

e
∂u2

∂ν
<
∂u1

∂ν
≤ 0 sobre ∂Ω,

em que ν denota o vetor normal exterior à fronteira ∂Ω.
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Capítulo 2

Soluções positivas para uma classe
de problemas semipositones
envolvendo crescimento crítico
exponencial

Neste capítulo, investigaremos o seguinte problema


−∆Φu = f(u) − µ em Ω,
u > 0 em Ω,
u = 0 sobre ∂Ω,

(2.1)

no qual Ω ⊂ RN , com N ≥ 2 é um conjunto aberto e limitado com fronteira suave,

∆Φu = div
(

Φ′(|∇u|) ∇u
|∇u|

)

é o operador Φ-laplaciano.
Sob algumas hipóteses na N -função Φ e no termo não linear f , veremos que o

Problema 2.1 tem solução fraca positiva uµ ∈ C1,σ
0 (Ω) para algum σ ∈ (0, 1), se µ > 0

for suficientemente pequeno.
Iremos supor que Φ é uma N -função de classe C2 que satisfaz as seguintes condições:

(ϕ1) Existe uma constante C ≥ 1 tal que, para todo t ∈
[
0, 1

C

)
, vale

tN

C
≤ Φ(t) ≤ CtN .

Ou seja, próximo da origem, o crescimento de Φ está controlado entre dois
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2. Soluções positivas para uma classe de problemas semipositones envolvendo
crescimento crítico exponencial

polinômios de grau N .

(ϕ2) Para algum α ∈ [0, N − 1), vale

lim
t→+∞

Φ(t)
tN logα(t) = 1,

o que significa que, no infinito, Φ(t) se comporta assintoticamente como tN logα t.
Neste caso, escrevemos Φ(t) ∼ tN logα(t) no infinito.

(ϕ3) Existem constantes m̃α, c̃α > 0 tais que

m̃α ≤ Φ′′(t)t
Φ′(t) ≤ c̃α, ∀ t > 0. (2.2)

(ϕ4) Existem t̃0 > e e a ∈ (0, B), tais que

Φ(t) ≤ tN logα(t)(1 − log−a(t)), t ∈ [t̃0,∞),

em que B é dado na Definição 0.1.

Com o intuito de ilustrar as hipóteses (ϕ1)–(ϕ4) e favorecer uma maior compreensão,
apresentamos a seguir um exemplo uma N -função Φ que satisfaz todas essas condições.

Exemplo 2.1. Considere N = 3, α = 1, B = 1
2 e a = 1

3 e sejam 0 ≤ t1 < t2 com
t2 ≫ e. Defina

Φ1(t) := |t|3 log(e+ |t|), |t| < t1

Φ2(t) := |t|3 log(|t|)
(

1 − log− 1
3 (|t|)

)
, |t| ≥ t2.

Calculando a primeira e segunda derivadas de Φ1(t), com t ̸= 0, temos

Φ′
1(t) = sgn(t)

[
3t2 log(e+ |t|) + |t|3

e+ |t|

]
, t ̸= 0

e

Φ′′
1(t) = 6|t| log(e+ |t|) + 6|t|2e+ 5|t|3

(e+ |t|)2 > 0, t ̸= 0.

Por outro lado, quando t = 0, temos

Φ′
1(0) = lim

t→0

Φ1(t) − Φ1(0)
t

= lim
t→0

|t|3 log(e+ |t|)
t

= lim
t→0

sgn(t)t2 log(e+ |t|) = 0,
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e

Φ′′
1(0) = lim

t→0

Φ′
1(t) − Φ′

1(0)
t

= lim
t→0

Φ′
1(t)
t

= lim
t→0

(
3|t| log(e+ |t|) + t2

e+ |t|

)
= 0.

Isso prova que Φ1 é de classe C2 e convexa. Agora, considerando a função Φ2(t), temos

Φ′
2(t) = t2

[
3 log(|t|) + 1 − 3(log(|t|))

2
3 − 2

3(log(|t|))− 1
3
]
, t ≥ t2,

e

Φ′′
2(t) = t

(
6 log(|t|) + 5 − 6(log(|t|))

2
3 − 10

3 (log(|t|))− 1
3 + 2

9(log(|t|))− 4
3
)

= t
(

5 + 6(log(|t|))
2
3
(

(log(|t|))
1
3 − 1

)
− 10

3 (log(|t|))− 1
3 + 2

9(log(|t|))− 4
3
)

≥ 5
3t > 0, t ≥ t2 > e.

Logo, Φ2 é de classe C2 e convexa em [t2,∞).
Agora definimos

Φ(t) =


|t|3 log(e+ |t|), |t| < t1

H(t), |t| ∈ [t1, t2]
|t|3 log(|t|)

(
1 − log− 1

3 (|t|)
)
, |t| ≥ t2,

(2.3)

onde H ∈ C2 é uma função par arbitrária de modo que Φ seja de classe C2 e convexa
em R, com H ′′ > 0 em [t1, t2]. É fácil ver que Φ satisfaz as condições da definição de
N -função, ver Definição 1.1, pois

lim
t→0

Φ(t)
t

= lim
t→0

Φ1(t)
t

= Φ′(0) = 0

e
lim
t→∞

Φ(t)
t

= lim
t→∞

Φ2(t)
t

= lim
t→∞

t2 log(t)
(

1 − log− 1
3 (t)

)
= ∞.

Pela definição de Φ, facilmente vemos que as hipóteses (ϕ1), (ϕ2) e (ϕ4) são satisfeitas
e omitiremos as demonstrações. Verificaremos a hipótese (ϕ3) para a função Φ. Note
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que

lim
t→0

Φ′′
1(t) t

Φ′
1(t)

= lim
t→0

t ·
6|t| log(e+ |t|) + 6|t|2e+ 5|t|3

(e+ |t|)2

sgn(t)
(

3|t|2 log(e+ |t|) + |t|3

e+ |t|

)

= lim
t→0

6 log(e+ |t|) + 6|t| + 5|t|2

(e+ |t|)2

3 log(e+ |t|) + |t|
e+ |t|

= 2.

Assim,
Φ′′

1(t) t
Φ′

1(t)
> 1, para |t| < t̃1,

para algum t̃1 ≤ t1. Por outro lado, temos

lim
t→∞

Φ′′
2(t) t

Φ′
2(t)

= lim
t→∞

t2
(

6 log t+ 5 − 6(log t)
2
3 − 10

3 (log t)− 1
3 + 2

9(log t)− 4
3
)

t2
(

3 log t+ 1 − 3(log t)
2
3 − 2

3(log t)− 1
3
)

= lim
t→∞

6 log t+ 5 − 6(log t) 2
3 − 10

3 (log t)− 1
3 + 2

9(log t)− 4
3

3 log t+ 1 − 3(log t) 2
3 − 2

3(log t)− 1
3

= lim
t→∞

6 + 5
log t

− 6
(log t)1/3 − 10

3(log t)4/3 + 2
9(log t)7/3

3 + 1
log t

− 3
(log t)1/3 − 2

3(log t)4/3

= 2,

de onde obtemos
Φ′′

2(t) t
Φ′

2(t)
< 3, para |t| ≥ t̃2

para algum t̃2 ≥ t2. Além disso, como Φ′′ e Φ′ são funções contínuas e positivas no
compacto [t̃1, t̃2], temos, pelos limites acima, que existem constantes m̃α e c̃α positivas
satisfazendo (2.2). Portanto, Φ é um exemplo de N−função que satisfaz as hipóteses
deste capítulo.

A seguir, apresentamos as condições assumidas para a função f ∈ C([0,+∞),R) e
a sua primitiva F (t) =

∫ t
0 f(s) ds.

(f1) lim
t→0+

f(t)
Φ′(t) = 0;

(f2) Existem C e β constantes positivas, tais que

0 < f(t) ≤ C
[
tN−1 + exp(βtγ)

]
, ∀ t > 0
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em que γ é dado na Definição 0.1;

(f3) Existem constantes C,M,R0 > 0, tais que

F (t)
f(t) ≤ Ct1−M para todo t ≥ R0;

(f4) lim inf
t→∞

tf(t)
exp(β|t|γ) ≥ L para algum L ∈ (0,+∞).

(f5) A função t 7→ F (t)
tcα

é não decrescente em (0,∞), e existe k0 > 0 tal que

inf
t>0

F (t)
tcα

= k0 > 0,

em que cα = c̃α + 1.

A seguir temos um exemplo de uma função f nessas condições.

Exemplo 2.2. Considere N = 3 e α = 1. Assim, γ = 3. Seja Φ a N -função do
Exemplo 2.1. Assuma que cα ∈ (3, 4]. Considere a função contínua

f(t) = tcα−1 +
(
eβt3 − 1

)
, t ≥ 0.

Para verificar a hipótese (f1), note que para t ∈ (0, t1) tem-se

f(t)
Φ′(t) = f(t)

Φ′
1(t)

=
tcα−1 +

(
eβt3 − 1

)
3t2 log(e+ t) + t3

e+t

=
tcα−3 + eβt3 − 1

t2

3 log(e+ t) + t

e+ t

.

Como
lim
t→0

eβt3 − 1
t2

= lim
t→0

3t2eβt3

2t = 0,

temos que
lim

t→0+

f(t)
Φ′(t) = 0.

A hipótese (f2) é válida, pois

0 < f(t) = tcα−1 + eβt3 − 1 < t2 + c eβt3
, ∀ t > 0.

Quanto à hipótese (f3), temos

F (t) =
∫ t

0
f(s) ds =

∫ t

0

(
scα−1 + eβs3 − 1

)
ds = 1

cα

tcα +
∫ t

0

(
eβs3 − 1

)
ds.
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Veja que

∫ t

1
eβs3

ds ≤ 1
3β

∫ t

1
3βs2eβs3

ds = 1
3β

∫ βt3

β
eu du = 1

3β
[
eβt3 − eβ

]
.

Substituindo isso na igualdade acima, obtemos

F (t) = 1
cα

tcα +
∫ t

0
eβs3

ds+
∫ t

1
eβs3

ds ≤ 1
cα

tcα +
∫ 1

0
eβs3

ds+ 1
3β e

βt3
, ∀ t ≥ 1.

Daí, para t ≥ 1, temos

F (t) ≤ C1 + tcα

cα

+ 1
3β e

βt3 ≤ C1 + C2e
βt3 = (C1 + C2) + C2(eβt3 − 1)

≤ (C1 + C2)
[
tcα−1 + eβt3 − 1

]
= c · f(t).

Portanto, vemos que (f3) vale com M = 1, já que

F (t)
f(t) ≤ c ≤ c · t1−1, ∀ t ≥ 1.

Para a condição (f4), basta notar que

lim
t→+∞

tf(t)
eβt3 = lim

t→+∞

tcα + teβt3 − t

eβt3 = lim
t→+∞

tcα − t

eβt3 + t = ∞.

Por fim, quanto à hipótese (f5), segue que

F (t) =
∫ t

0
f(s) ds =

∫ t

0

(
scα−1 + (eβs3 − 1)

)
ds ≥

∫ s

0
scα−1 ds = 1

cα

tcα , ∀ t ≥ 0.

Isto é,
F (t)
tcα

≥ 1
cα

, ∀ t > 0

e com isso o ínfimo deste quociente em (0,∞) é positivo. Resta mostrar que t 7→ F (t)
tcα

é uma função não decrescente. Denote,

h(t) := 1
tcα

∫ t

0

(
eβs3 − 1

)
ds,

de modo que

F (t)
tcα

= 1
cα

+ 1
tcα

∫ t

0

(
eβs3 − 1

)
ds = 1

cα

+ h(t), ∀t > 0.
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A derivada de h é

h′(t) = − cα

tcα+1

∫ t

0

(
eβs3 − 1

)
ds+ 1

tcα

(
eβt3 − 1

)
= 1
tcα+1

[
t
(
eβt3 − 1

)
− cα

∫ t

0

(
eβs3 − 1

)
ds
]

:= 1
tcα+1 Ψ(t), (2.4)

em que
Ψ(t) = t

(
eβt3 − 1

)
− cα

∫ t

0

(
eβs3 − 1

)
ds.

Temos, Ψ(0) = 0 e

Ψ′(t) = eβt3 − 1 + 3βt3eβt3 − cα

(
eβt3 − 1

)
= eβt3 (1 + 3βt3 − cα

)
+ cα − 1.

Escrevendo s = βt3, temos que s ≥ 0 para t ≥ 0. Defina Ψ′(t) := η(s), isto é,

η(s) := es(1 + 3s− cα) + cα − 1.

Temos que η(0) = 0 e

η′(s) = es(1 + 3s− cα) + 3es = es(4 − cα + 3s) > 0, ∀ s > 0,

dado que cα ≤ 4. Logo, η é crescente e daí

Ψ′(t) = η(βt3) > η(0) = 0, ∀ t > 0.

Isso mostra que Ψ é crescente, o que garante que

Ψ(t) > Ψ(0) = 0, ∀ t > 0.

Assim, por (2.4), segue que h′(t) > 0, ∀ t > 0. Logo, h é crescente. Consequentemente,

t 7→ F (t)
tcα

= 1
cα

+ h(t)

é crescente em (0,∞). Isso conclui a prova de que (f5) vale e portanto f é um exemplo
de função satisfazendo as condições deste capítulo.

O principal teorema deste capítulo é o seguinte:

Teorema 2.1. Assuma que (ϕ1)−(ϕ4) e (f1)−(f5) são satisfeitas. Então existe µ∗ > 0
tal que para todo µ ∈ (0, µ∗) o Problema 2.1 tem solução fraca positiva uµ ∈ C1,σ

0 (Ω)
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para algum σ ∈ (0, 1).

Diante das hipóteses sobre Φ, é apropriado recorrer ao método variacional no
contexto dos espaços de Orlicz-Sobolev para o estudo do problema proposto. A
seguir, apresentamos alguns resultados preliminares que serão fundamentais nas etapas
subsequentes do trabalho.

2.1 Resultados básicos

Proposição 2.1 ([39], Teorema 3). Sejam Φ e Φ̃ N -funções conjugadas diferenciáveis.
Então são equivalentes:

(a) Φ ∈ ∆2.

(b) existe α ∈ (1,∞) tal que Φ′(t)t/Φ(t) < α para todo t ≥ 0.

(c) existe β ∈ (1,∞) tal que Φ̃′(s)s/Φ̃(s) > β para todo s ≥ 0.

(d) Φ̃ ∈ ∇2.

Lema 2.1 ([24], Lema 2.6). Seja Φ uma N -função satisfazendo (ϕ1) e (ϕ2). Então
Φ ∈ ∇2.

Na Proposição 3.1 de [24], temos o seguinte resultado de imersão.

Lema 2.2. Se as condições (ϕ1) e (ϕ2) são satisfeitas, então as seguintes imersões são
contínuas:

(a) LΦ(RN) ↪→ LN(RN).

(b) W 1,Φ(RN) ↪→ W 1,N(RN).

(c) W 1,Φ(RN) ↪→ Lr(RN), para todo r ∈ [N,+∞).

Segue do lema acima que W 1,Φ
0 (Ω) ↪→ Lr(Ω) para todo r ∈ [1,+∞), pois, em

domínio limitado, temos a imersão contínua LN(Ω) ↪→ Lr(Ω) para r ∈ [1, N).
A seguir apresentamos alguns fatos que decorrem das hipóteses (f1) − (f5).

(1) A hipótese (f1) garante que f(0) = 0.

De fato, por (f1), temos

∀ ε > 0, ∃δ > 0 tal que 0 < t < δ =⇒
∣∣∣∣∣ f(t)
Φ′(t)

∣∣∣∣∣ < ε.
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Como Φ′ é contínua e Φ′(0) = 0, dado ε > 0, existe δ1 > 0 tal que

0 < t < δ1 =⇒ |Φ′(t)| < ε.

Seja 0 < t < min{δ, δ1}. Assim,

|f(t)| < ε |Φ′(t)| < ε2.

Como ε > 0 é arbitrário, conclui-se que

lim
t→0+

f(t) = 0.

Pela continuidade de f , obtemos f(0) = 0.
Dessa forma, a não linearidade presente no Problema 2.1 assume, na origem, o valor

−µ < 0, o que permite classificar o problema como sendo do tipo semipositone.

(2) A hipótese (f1) garante que, dado ϵ > 0 existe δ > 0, tal que

F (t) < ϵΦ(t), para 0 ≤ t < δ. (2.5)

Com efeito, considere ϵ > 0. Pela hipótese lim
t→0

f(t)
Φ′(t) = 0, existe δ > 0 tal que

f(s) < ϵΦ′(s), ∀ s ∈ (0, δ).

Assim, para 0 < t < δ, temos

F (t) =
∫ t

0
f(s) ds ≤ ϵ

∫ t

0
Φ′(s) ds = ϵΦ(t).

(3) A hipótese (f1) em conjunto com (f2), garante que para p ≥ 1, dado ϵ > 0 existe
cϵ > 0 tal que

0 < F (t) ≤ ϵΦ(t) + cϵt
p−1 exp(βtγ), ∀ t > 0. (2.6)

(4) Seja σ > cα. As hipóteses (f2)− (f3) implicam que a função f satisfaz a condição
de Ambrosetti–Rabinowitz

0 < σF (t) ≤ f(t)t, para todo t ≥ R (2.7)

para algum R = Rσ ≥ R0.
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Com efeito, por (f2) temos F (t) > 0 para todo t > 0. Devido a (f3) obtemos

tMF (t) ≤ C f(t) t, ∀t ≥ R0.

Seja R ≥ R0 tal que RM/C ≥ σ. Assim,

0 < σF (t) ≤ f(t) t, ∀t ≥ R.

(5) Seja σ > cα. As hipóteses (f2) − (f3) implicam que existem constantes c1, c2 > 0
tais que

F (t) ≥ c1 t
σ − c2, ∀t ≥ 0. (2.8)

De fato, por (2.7), para t ≥ R, temos

σ
∫ t

R

1
s
ds ≤

∫ t

R

F (s)
f(s) ds,

de onde
σ[log(t) − log(R)] ≤ log(F (t)) − log(F (R)), ∀ t ≥ R.

Daí,

log
((

t
R

)σ
)

≤ log
(

F (t)
F (R)

)
, ∀ t > R.

Assim,
F (t) ≥ F (R)

Rσ
tσ =: c1t

σ, ∀ t ≥ R.

Por outro lado, se t ∈ [0, R], como F é limitada em compactos, existe uma constante
c2 > 0 tal que

−F (t) ≤ |F (t)| ≤ c2.

Portanto,
F (t) ≥ c1 t

σ − c2, ∀ t ≥ 0.

(6) A hipótese (f4) implica que existe t0 > 0 tal que

f(t)t ≥ L

2 exp(βtγ), ∀ t ≥ t0. (2.9)

(7) A hipótese (f5) implica que

F (t) ≥ k0t
cα , ∀ t ≥ 0. (2.10)
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(8) Usando o fato de que t 7→ F (t)/tcα é não decrescente para t > 0, parte da hipótese
(f5), vemos que

0 ≤ cαF (t) ≤ tf(t), ∀ t ≥ 0. (2.11)

Lema 2.3. Seja Φ uma N -função satisfazendo as hipótes (ϕ1) e (ϕ3). Então, para
mα = m̃α + 1 e cα = c̃α + 1 valem as sequintes desigualdades:

(a) Tem-se

mα ≤ Φ′(t)t
Φ(t) ≤ cα, ∀ t > 0; (2.12)

(b) 1 < mα ≤ N ≤ cα < ∞.

Demonstração. (a) Pela hipótese (ϕ3) temos

0 < m̃α ≤ Φ′′(t)t
Φ′(t) ≤ c̃α < ∞, ∀ t > 0,

o que implica que

m̃αΦ′(s) ≤ Φ′′(s)s ≤ c̃αΦ′(s), ∀ s > 0.

Assim, usando integração por partes obtemos

Φ(t) =
∫ t

0
Φ′(s) ds ≤ 1

m̃α

∫ t

0
Φ′′(s)s ds = 1

m̃α

[
sΦ′(s)|t0 −

∫ t

0
Φ′(s) ds

]
= 1
m̃α

[tΦ′(t) − Φ(t)] ,

o que nos dá

mαΦ(t) = (m̃α + 1)Φ(t) ≤ tΦ′(t), ∀t > 0. (2.13)

De modo análogo obtemos

cαΦ(t) = (c̃α + 1)Φ(t) ≥ tΦ′(t), ∀t > 0, (2.14)

o que garante que (2.12) se verifica.

(b) É claro que 1 < mα ≤ cα < ∞. Além disso, ao derivarmos a função t 7→ Φ(t)/tcα ,
verificamos que a desigualdade (2.14) implica que esta função é não-crescente para
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t > 0. De forma análoga, a partir da desigualdade de (2.13) segue que t 7→ Φ(t)/tmα é
não-decrescente para t > 0. Logo,

Φ(1)tcα ≤ Φ(t) ≤ Φ(1)tmα , ∀ t ∈ [0, 1].

Combinando essas desigualdades com a hipótese (ϕ1), obtemos que, para t ∈ [0, 1/C),
valem as seguintes relações

Φ(1)tcα ≤ Φ(t) ≤ CtN e 1
C
tN ≤ Φ(t) ≤ Φ(1)tmα ,

donde mα ≤ N ≤ cα.

Observação 2.1. Decorre do Lema 2.3 que Φ satisfaz a condição (1.3) da N -função
A, apresentada no Capítulo 1. Assim, concluímos que os Lemas 1.5, 1.6 e 1.7 são
aplicáveis a Φ com os parâmetros m = mα e M = cα. Em particular, isso implica que
Φ e Φ̃ satisfazem a condição ∆2. Daí, pela Proposição 2.1, Φ e Φ̃ satisfazem também
a condição ∇2. Em particular, pela Observação 1.1, temos que W 1,Φ

0 (Ω) é um espaço
de Banach reflexivo.

2.2 Um problema auxiliar e lemas técnicos

O objetivo desta seção é formular um problema auxiliar que contorne a dificuldade
causada pela presença do termo constante negativo −µ no problema original, o qual
impede que a função identicamente nula seja uma subsolução, dificultando a aplicação
direta de métodos variacionais clássicos.

O problema auxiliar de que falamos é
 −∆Φu = f(u+) − µg(u) em Ω,

u = 0 sobre ∂Ω,
(2.15)

com u+(x) = max{u(x), 0} e g : R → [0, 1] a função auxiliar definida a seguir

g(t) =


0, se t ≤ −1,

1 + t, se − 1 < t < 0,
1, se t ≥ 0.

(2.16)

Ao considerar uma versão modificada do problema, com a introdução de um termo
auxiliar g(u), tornamos possível o emprego de ferramentas variacionais clássicas, como
o Teorema do Passo da Montanha.
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Dizemos que u ∈ W 1,Φ
0 (Ω) é uma solução fraca do problema auxiliar (2.15), se

∫
Ω

Φ′(|∇u|)∇u∇v
|∇u|

dx =
∫

Ω
f(u+)v dx− µ

∫
Ω
g(u)v dx, (2.17)

para toda v ∈ C∞
c (Ω).

Seja Eµ : W 1,Φ
0 (Ω) → R o funcional definido por

Eµ(u) =
∫

Ω

[
Φ(|∇u|) − F (u+) + µG(u)

]
dx,

em que
F (t) =

∫ t

0
f(s) ds e G(t) =

∫ t

0
g(s) ds,

com f uma função contínua satisfazendo as hipóteses (f1)–(f5), g sendo a função
definida em (2.16) e Φ uma N -função de classe C2 que cumpre as condições (ϕ1)–(ϕ4).
Essa modificação do problema original permite mostrar, através da desigualdade de
Trudinger-Moser (ver Teorema 4.4), que o funcional energia Eµ, associado ao problema
auxiliar, está bem definido. Além disso, Eµ é de classe C1(Ω) e satisfaz as condições
requeridas para a aplicação do Teorema do Passo da Montanha.

O próximo lema estabelece uma desigualdade entre as funções g e G, a qual será
utilizada em demonstrações subsequentes.

Antes de enunciarmos o próximo resultado, destacamos que a análise variacional
feita no Teorema Auxiliar 2.2 da seção seguinte requer a convergência da primitiva
F . Em particular, será necessário garantir que, sob hipóteses adequadas, a integral de
F (u+

j ) converge para a integral de F (u+), mesmo na ausência de convergência forte. O
lema a seguir estabelece esse resultado e será usado nas Afirmações 2.2 e 2.4 da prova
do Teorema 2.2.

Definição 2.1. Seja A ⊂ Ω um conjunto mensurável. A função característica de A,
denotada por χA, é definida por

χA(x) =


1, se x ∈ A,

0, se x /∈ A.

Lema 2.4. Seja {uj} ⊂ W 1,Φ
0 (Ω) uma sequência tal que uj(x) → u(x) q.t.p. em Ω,

para algum u ∈ W 1,Φ
0 (Ω), e suponha que

C1 := sup
j

∫
Ω
u+

j f(u+
j ) dx < ∞. (2.18)
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Então ∫
Ω
F (u+

j ) dx −→
∫

Ω
F (u+) dx.

Demonstração. Seja {uj} ⊂ W 1,Φ
0 (Ω) uma sequência tal que uj(x) → u(x) q.t.p. x ∈ Ω,

para algum u ∈ W 1,Φ
0 (Ω), e suponha que a sequência (u+

j f(u+
j )) é limitada em L1(Ω).

Devido a (2.18), segue do Lema de Fatou (ver Lema 4.1), que

0 ≤
∫

Ω
u+f(u+) dx ≤ lim inf

j→∞

∫
Ω
u+

j f(u+
j ) dx ≤ C1.

De acordo com a hipótese (f3), existe R0 > 0 tal que

0 ≤ F (t) ≤ C

tM
f(t)t ∀ t > R0,

para certas constantes C,M > 0. Dado ε > 0, seja R ≥ R0 tal que 4(CC1/R
M) < ε.

Para esse valor de R, usando a desigualdade triangular e lembrando que f(t)t ≥ 0,
para todo t ≥ 0, temos

∣∣∣∣∫
Ω
F (u+

j ) dx−
∫

Ω
F (u+) dx

∣∣∣∣ ≤
∣∣∣∣∣
∫

{u+
j ≥R}

F (u+
j ) dx−

∫
{u+≥R}

F (u+) dx
∣∣∣∣∣

+
∣∣∣∣∣
∫

{u+
j <R}

F (u+
j ) dx−

∫
{u+<R}

F (u+) dx
∣∣∣∣∣

≤ C

RM

∫
Ω
u+

j f(u+
j ) dx+ C

RM

∫
Ω
u+f(u+) dx

+
∣∣∣∣∣
∫

{u+
j <R}

F (u+
j ) dx−

∫
{u+<R}

F (u+) dx
∣∣∣∣∣ . (2.19)

Para estimar o último termo, recorremos ao uso de funções características e à
desigualdade triangular, obtendo assim a seguinte estimativa
∣∣∣∣∣
∫

{u+
j <R}

F (u+
j ) dx−

∫
{u+<R}

F (u+) dx
∣∣∣∣∣ =

∣∣∣∣∫
Ω
F (u+

j )χ{u+
j <R} dx−

∫
Ω
F (u+)χ{u+<R} dx

∣∣∣∣
≤
∫

Ω
|F (u+

j ) − F (u+)|χ{u+
j <R} dx

+
∫

Ω
F (u+)

∣∣∣∣χ{u+
j <R} − χ{u+<R}

∣∣∣∣ dx. (2.20)

Pela continuidade de F , segue que ela é limitada em [0, R]. Portanto, existe uma
constante C̃ > 0, tal que

χ{u+
j <R}|F (u+

j ) − F (u+)| ≤ C̃ + F (u+) ∈ L1(Ω).

Além disso, como u+
j (x) → u+(x) q.t.p. x ∈ Ω e F é contínua, temos que

F (u+
j (x)) → F (u+(x)) q.t.p. x ∈ Ω. Assim, pelo Teorema da Convergência Dominada
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(ver Teorema 4.6), segue que
∫

Ω
|F (u+

j ) − F (u+)|χ{u+
j <R} dx → 0. (2.21)

Para a última integral em (2.20), observamos que
∫

Ω
F (u+)

∣∣∣∣χ{u+
j <R} − χ{u+<R}

∣∣∣∣ dx =
∫

{u+<R}
F (u+)

∣∣∣∣χ{u+
j <R} − 1

∣∣∣∣ dx
+
∫

{u+≥R}
F (u+)χ{u+

j <R} dx. (2.22)

Como u+
j (x) → u+(x) q.t.p. x ∈ Ω, segue que χ{u+

j <R}(x) → 1 q.t.p. x ∈ {u+ < R}.
Além disso,

0 ≤ F (u+)
∣∣∣∣χ{u+

j <R} − 1
∣∣∣∣ ≤ F (u+) ∈ L1(Ω).

Assim, novamente pelo Teorema da Convergência Dominada, temos
∫

Ω
F (u+)

∣∣∣∣χ{u+
j <R} − 1

∣∣∣∣ dx → 0. (2.23)

Para o último termo de (2.22), vemos que

∫
{u+≥R}

F (u+)χ{u+
j <R} dx ≤ C

RM

∫
{u+≥R}

f(u+)u+ dx.

Juntando esta última desigualdade a (2.20)-(2.23) e inserindo essas informações em
(2.19) concluímos que

∣∣∣∣∫
Ω
F (u+

j ) dx−
∫

Ω
F (u+) dx

∣∣∣∣ ≤ C

RM

∫
Ω
u+

j f(u+
j ) dx+ 2C

RM

∫
Ω
u+f(u+) dx+ o(1)

≤ 3CC1

RM
+ o(1) < ε

para j ∈ N suficientemente grande. Como ε > 0 é arbitrário, segue o resultado.

O próximo resultado será utilizado na Afirmação 2.4 da demonstração do Teorema
Auxiliar 2.2 adiante. Ele fornece uma estimativa fundamental de limitação do termo
exponencial. Esse tipo de resultado está relacionado à desigualdade de Trudinger–
Moser generalizada.

Lema 2.5. ([18], Proposição 4.1). Considere Φ uma N - função satisfazendo (ϕ1)−(ϕ2).
Sejam N ≥ 2, α < N − 1 e (uj) uma sequência de funções em W 1,Φ

0 (Ω), tal que

lim
j→∞

∫
Ω

Φ(|∇uj|) dx < ∞ e ∇uj(x) → ∇u(x) q.t.p. x ∈ Ω.
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Então para cada

p < P :=

 1
lim

j→∞

∫
Ω Φ(|∇uj|) dx−

∫
Ω Φ(|∇u|) dx


γ
N

,

(P = ∞ se o denominador é zero), temos
∫

Ω
exp(KN,αp|uj|γ) dx ≤ C,

em que C é uma constante que não depende de j.

Lema 2.6. ([19], Proposição 3.2). Considere Φ uma função de N -função satisfazendo
(ϕ1) e (ϕ2). Seja (uj) ⊂ W 1,Φ

0 (Ω) uma sequência, tal que

∫
Ω

Φ(|∇uj|) dx ≤ c̄ <

(
KN,α

β

)N/γ

, para cada j ∈ N.

Então existem q > 1 e C > 0, tais que
∫

Ω
exp(qβ|uj|γ) dx < C, para cada j ∈ N.

Definição 2.2 (Sequência (PS)). Sejam X um espaço de Banach e I : X → R um
funcional de classe C1(X). Dizemos que uma sequência (uj) ⊂ X é uma sequência de
Palais–Smale para I no nível c ∈ R se ela satisfaz:

(a) I(uj) → c;

(b) I ′(uj) → 0 em X∗.

Em outras palavras, trata-se de uma sequência cujos valores pelo funcional se
aproximam do nível c enquanto os funcionais derivadas tendem a zero no dual X∗,
caracterizando-a como uma sequência de “quase-pontos críticos” de I.

Definição 2.3 (Funcional (PS)c). Seja X um espaço de Banach. Dizemos que um
funcional I : X → R satisfaz a condição de Palais–Smale no nível (PS)c, se toda
sequência (PS) para I no nível c possui subsequência convergente em X.

O objetivo do teorema a seguir é provar um resultado de compacidade, o qual
possui interesse independente. Como consequência, veremos no corolário seguinte que
o funcional Eµ satisfaz a condição (PS)c para valores de c apropriados.
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2.2.1 Um teorema auxiliar

O objetivo dessa subseção é provar um resultado de compacidade, o qual possui
interesse independente. Como consequência, veremos no corolário seguinte que o
funcional Eµ satisfaz a condição (PS)c para valores de c apropriados.

Lema 2.7. Para todo t ∈ R temos que G(t) ≥ g(t)t− 1/2.

Demonstração. Para t ∈ (−1, 0), temos que t+ t2

2 ≥ t+ t2 − 1/2. Assim, desde que

G(t) =


−1/2, se t ≤ −1,
t+ t2

2 , se − 1 < t < 0,
t, se t ≥ 0,

e

g(t)t− 1/2 =


−1/2, se t ≤ −1,

t+ t2 − 1/2, se − 1 < t < 0,
t− 1/2, se t ≥ 0,

temos que G(t) ≥ g(t)t− 1/2.

A seguir, temos um importante resultade de compacidade.

Teorema 2.2. Sejam µj > 0 uma sequência tal que µj → µ ≥ 0 e (uj) ⊂ W 1,Φ
0 (Ω)

uma sequência que satisfaz:

Eµj
(uj) → c e E ′

µj
(uj) → 0 em [W 1,Φ

0 (Ω)]∗,

para algum c ̸= 0 tal que

c <

(
KN,α

β

)N
γ

− µ

2 |Ω|, (2.24)

em que β > 0 é a constante fornecida por (f2) e KN,α foi dado na Definição 0.1. Então,
existe uma subsequência de (uj) que converge em W 1,Φ

0 (Ω) para um ponto crítico de Eµ

no nível c.

Demonstração. Como Eµj
(uj) → c, temos

Eµj
(uj) =

∫
Ω

Φ(|∇uj|) dx−
∫

Ω
F (u+

j ) dx+ µj

∫
Ω
G(uj) dx = c+ o(1), (2.25)

e, já que
|E ′

µj
(uj)(v)| ≤ ∥E ′

µj
(uj)∥∗ · ∥v∥ = o(1)∥v∥,
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obtemos
∫

Ω
Φ′(|∇uj|)

∇uj

|∇uj|
· ∇v dx−

∫
Ω
f(u+

j )v dx+ µj

∫
Ω
g(uj)v dx = o(1)∥v∥,

quando j → ∞, para todo v ∈ W 1,Φ
0 (Ω). Em particular, tomando v = uj, obtemos

E ′
µj

(uj)(uj) =
∫

Ω
Φ′(|∇uj|)|∇uj| dx−

∫
Ω
f(u+

j )u+
j dx+ µj

∫
Ω
g(uj)uj dx = o(∥uj∥).

(2.26)
Pela hipótese (f3), dado δ ∈ (0, 1), existe uma constante c1 = c1(δ) > 0, tal que

F (t) ≤ c1 + δ tf(t) para todo t ∈ R.

Além disso, pelas definições das funções g e G, temos
∣∣∣∣∫

Ω
g(uj)uj dx

∣∣∣∣ ≤
∫

Ω
|uj| dx,

∣∣∣∣∫
Ω
G(uj) dx

∣∣∣∣ ≤
∫

Ω
|uj| dx, ∀ j ∈ N. (2.27)

Afirmação 2.1. A sequência (uj) é limitada em W 1,Φ
0 (Ω).

De fato, pela equação (2.25), temos
∫

Ω
Φ(|∇uj|) dx =

∫
Ω
F (u+

j ) dx+ µj

∫
Ω
G(uj) dx+ c+ o(1)

≤ c1 + δ
∫

Ω
f(u+

j )u+
j dx− µj

∫
Ω
G(uj) dx+ c+ o(1)

≤ c2 + δ
[∫

Ω
Φ′(|∇uj|)|∇uj| dx+ µj

∫
Ω
g(uj)uj dx− o(∥uj∥)

]
− µj

∫
Ω
G(uj) dx+ o(1).

Assim, por (2.27) e pela imersão W 1,Φ
0 (Ω) ↪→ L1(Ω) mencionada logo após o Lema 2.2,

segue que
∫

Ω
Φ(|∇uj|) dx− δ

∫
Ω

Φ′(|∇uj|)|∇uj| dx ≤ c2 + δµj

∫
Ω
g(uj)uj dx− µj

∫
Ω
G(uj) dx

+ o(1) + o(∥uj∥)

≤ c3 + c4∥uj∥.

Por (2.14) temos que Φ′(t)t/Φ(t) ≤ cα, para todo t > 0. Como Φ é uma função par,
segue que, Φ′(t)t ≤ cαΦ(t) para todo t ∈ R. Assim,

δ
∫

Ω
Φ′(|∇uj|)|∇uj| dx ≤ cαδ

∫
Ω

Φ(|∇uj|) dx, ∀ j ∈ N.
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Substituindo esta estimativa na desigualdade anterior, obtemos

(1 − cαδ)
∫

Ω
Φ(|∇uj|) dx ≤ c2 + c3∥uj∥.

Além disso, para todo v ∈ LΦ(Ω), vale a desigualdade

min{∥v∥cα
Φ , ∥v∥mα

Φ } ≤
∫

Ω
Φ(v) dx ≤ max{∥v∥cα

Φ , ∥v∥mα
Φ }.

Fazendo v = |∇uj| na desigualdade acima e lembrando que ∥uj∥ = ∥∇uj∥Φ, obtemos

(1 − cαδ) min{∥uj∥cα , ∥uj∥mα} ≤ c2 + c3∥uj∥, ∀ j ∈ N.

Daí se conclui que a sequência (uj) é limitada em W 1,Φ
0 (Ω), visto que cα ≥ mα > 1.

Isso conclui a prova da Afirmação 2.1. Em particular, pelas imersões do Lema 2.2,
temos que, a menos de subsequência:

uj ⇀ u em W 1,Φ
0 (Ω),

uj → u em Lp(Ω), para todo p ∈ [1,∞),

uj(x) → u(x) q.t.p. x ∈ Ω.

(2.28)

Afirmação 2.2. A função u é não nula.

Como (uj) é limitada, temos pela equação (2.26) que

E ′
µj

(uj)(uj) =
∫

Ω
Φ′(|∇uj|)|∇uj| dx−

∫
Ω
f(u+

j )u+
j dx+ µj

∫
Ω
g(uj)uj dx −→ 0. (2.29)

Como Φ ∈ ∆2, vemos que (
∫

Ω Φ(|∇uj|) dx) é limitada. Pela desigualdade (2.14)
concluímos que a sequência (Φ′(|∇uj|) |∇uj|) é limitada. Usando esse fato juntamente
com os controles dados por (2.27), obtemos de (2.29) que

sup
j

∫
Ω
u+

j f(u+
j ) dx < ∞. (2.30)

Dessa forma, podemos aplicar o Lema 2.4, o que nos garante que
∫

Ω
F (u+

j ) dx −→
∫

Ω
F (u+) dx. (2.31)

Além disso, a convergência uj → u em L1(Ω) junto com o fato de as funções g e G
serem ambas contínuas, assegura que

µj

∫
Ω
ujg(uj) dx −→ µ

∫
Ω
ug(u) dx e µj

∫
Ω
G(uj) dx −→ µ

∫
Ω
G(u) dx. (2.32)
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Suponha, por absurdo, que u = 0. Então, pelas convergências dadas em (2.31) e (2.32),
segue que

∫
Ω
F (u+

j ) dx −→ 0, µj

∫
Ω
ujg(uj) dx −→ 0, µj

∫
Ω
G(uj) dx −→ 0. (2.33)

Portanto, pela equação (2.25), obtemos que
∫

Ω
Φ(|∇uj|) dx −→ c.

Entretanto, como

c <

(
KN,α

β

)N
γ

− µ

2 |Ω| <
(
KN,α

β

)N
γ

,

existem c1 <
(

KN,α

β

)N
γ e j0 ∈ N, tais que

∫
Ω

Φ(|∇uj|) dx < c1, ∀ j ≥ j0.

Assim, o Lema 2.6 garante que existem constantes c2 > 0 e q > 1 tais que
∫

Ω
exp(qβ|uj|γ) dx ≤ c2, ∀ j ≥ j0.

Agora, aplicando a hipótese de crescimento da função f dada por (f2), e usando a
desigualdade de Hölder com expoentes conjugados q e q′, obtemos

∫
Ω
u+

j f(u+
j ) dx ≤ c3

∫
Ω

(
|uj|N + |uj| exp(β|uj|γ)

)
dx

≤ c3

∫
Ω

|uj|N dx+ c4

(∫
Ω

|uj|q
′
dx
)1/q′ (∫

Ω
exp(qβ|uj|γ) dx

)1/q

≤ c3

∫
Ω

|uj|N dx+ c5

(∫
Ω

|uj|q
′
dx
)1/q′

−→ 0,

visto que uj → 0 em Lq′(Ω) e em LN(Ω). Essa convergência, combinada com (2.29) e
(2.33), implica que ∫

Ω
Φ′(|∇uj|) |∇uj| dx −→ 0,

e, portanto, (2.13) garante que
∫

Ω
Φ(|∇uj|) dx −→ 0.

Finalmente, usando as equações (2.25) e (2.33), concluímos que

Eµj
(uj) −→ 0,
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o que é um absurdo, pois Eµj
(uj) → c ̸= 0. Portanto, u ̸≡ 0, como queríamos

demonstrar.

Afirmação 2.3. O limite fraco u em (2.28) é um ponto crítico do funcional energia
Eµ.

Com efeito, dado que E ′
µj

(uj) → 0, temos

∫
Ω

Φ′(|∇uj|)
∇uj

|∇uj|
· ∇v dx−

∫
Ω
f(u+

j ) v dx+ µj

∫
Ω
g(uj) v dx −→ 0, (2.34)

para todo v ∈ W 1,Φ
0 (Ω). Estudaremos agora o comportamento de cada uma das três

integrais. Primeiro, como |g(uj)| ≤ 1, v ∈ L1(Ω) e µj → µ, segue do Teorema da
Convergência Dominada (ver Teorema 4.6), que

µj

∫
Ω
g(uj) v dx −→ µ

∫
Ω
g(u) v dx, ∀ v ∈ W 1,Φ

0 (Ω). (2.35)

Para a segunda integral, dado v ∈ C∞
c (Ω) e R > 0, temos

∣∣∣∣∣
∫

{u+
j ≥R}

f(u+
j ) v dx

∣∣∣∣∣ ≤ ∥v∥∞

R

∫
Ω
f(u+

j )u+
j dx, ∀ j ∈ N.

Lembremos que a sequência (u+
j f(u+

j )) é limitada, como visto em (2.30). Usando um
raciocínio análogo ao do Lema 2.4, obtemos

∣∣∣∣∫
Ω
f(u+

j ) v dx−
∫

Ω
f(u+) v dx

∣∣∣∣ ≤
∣∣∣∣∣
∫

{u+
j ≥R}

f(u+
j ) v dx−

∫
{u+≥R}

f(u+) v dx
∣∣∣∣∣

+
∣∣∣∣∣
∫

{u+
j <R}

f(u+
j ) v dx−

∫
{u+<R}

f(u+) v dx
∣∣∣∣∣

≤ ∥v∥∞

R

∫
Ω

(
f(u+

j )u+
j + f(u+)u+

)
dx

+
∣∣∣∣∣
∫

{u+
j <R}

f(u+
j ) v dx−

∫
{u+<R}

f(u+) v dx
∣∣∣∣∣ . (2.36)

Agora, usando a desigualdade triangular no último termo acima, segue que
∣∣∣∣∣
∫

{u+
j <R}

f(u+
j ) v dx−

∫
{u+<R}

f(u+) v dx
∣∣∣∣∣ ≤

∣∣∣∣∫
Ω

(
f(u+

j )v − f(u+)v
)
χ{u+

j <R} dx

∣∣∣∣
+
∫

Ω
f(u+) |v|

∣∣∣∣χ{u+
j <R} − χ{u+<R}

∣∣∣∣ dx.
(2.37)

Como f é contínua em [0, R] e v ∈ C∞
c (Ω), temos que f(u+

j (x))v → f(u+(x))v q.t.p.
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em Ω e é dominada por função integrável como a seguir,

∣∣∣f(u+
j )v − f(u+)v

∣∣∣χ{u+
j <R} ≤ C + |f(u+)v| ∈ L1(Ω),

segue novamente do Teorema da Convergência Dominada
∫

Ω

(
f(u+

j )v − f(u+)v
)
χ{u+

j <R} dx −→ 0. (2.38)

Por fim, temos
∫

Ω
f(u+)|v|

∣∣∣∣χ{u+<R} − χ{u+
j <R}

∣∣∣∣ dx =
∫

{u+<R}∪{u+≥R}
f(u+)|v|

∣∣∣∣χ{u+<R} − χ{u+
j <R}

∣∣∣∣ dx
=
∫

{u+<R}
f(u+)|v|

∣∣∣∣1 − χ{u+
j <R}

∣∣∣∣ dx
+
∫

{u+≥R}
f(u+)|v|

∣∣∣∣χ{u+
j <R}

∣∣∣∣ dx
≤ o(1) + ∥v∥∞

R

∫
Ω
f(u+)u+ dx (2.39)

visto que o Teorema da Convergência Dominada de Lebesgue também garante que
∫

{u+<R}
f(u+)|v|

∣∣∣∣1 − χ{u+
j <R}

∣∣∣∣ dx → 0.

Utilizando (2.38) e (2.39) em (2.37) e, em seguida, retornando à equação (2.36),
concluímos que ∣∣∣∣∫

Ω
f(u+

j )v dx−
∫

Ω
f(u)+v dx

∣∣∣∣ ≤ c

R
+ o(1),

quando j → ∞. Sendo R > 0 arbitrário, segue que
∫

Ω
f(u+

j ) v dx →
∫

Ω
f(u+) v dx ∀ v ∈ C∞

c (Ω). (2.40)

Para a primeira integral em (2.34), usamos os Lemas 4.3 e 4.4, para garantir que a
menos de subsequência, temos

∇uj(x) −→ ∇u(x) q.t.p. x ∈ Ω, (2.41)

e,
∫

Ω
Φ′(|∇uj|)

∇uj

|∇uj|
· ∇v dx −→

∫
Ω

Φ′(|∇u|) ∇u
|∇u|

· ∇v dx, ∀ v ∈ C∞
c (Ω). (2.42)
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Pelas três convergências obtidas em (2.35), (2.40) e (2.42), segue que

∫
Ω

Φ′(|∇u|) ∇u
|∇u|

· ∇v dx =
∫

Ω
f(u+) v dx− µ

∫
Ω
g(u) v dx, ∀ v ∈ C∞

c (Ω).

Pela densidade de C∞
c (Ω) em W 1,Φ

0 (Ω), concluímos que u é um ponto crítico de Eµ.
Em particular, tomando v = u, obtemos

∫
Ω

Φ′(|∇u|) |∇u| dx =
∫

Ω
f(u+)u+ dx− µ

∫
Ω
ug(u) dx. (2.43)

Afirmação 2.4. A sequência (uj) é tal que uj → u em W 1,Φ
0 (Ω).

Primeiramente, lembremos que por (2.31) e (2.32) temos
∫

Ω
F (u+

j ) dx −→
∫

Ω
F (u+) dx e µj

∫
Ω
G(uj) dx −→ µ

∫
Ω
G(u) dx. (2.44)

Agora, queremos garantir que
∫

Ω
f(u+

j )u+
j dx −→

∫
Ω
f(u+)u+ dx. (2.45)

Para isso, mostraremos, inicialmente, que (f(u+
j )) é limitada em Lq(Ω) para algum

q > 1. De fato, pelo Lema 2.7, temos que

cαG(t) − g(t)t ≥ −cα

2 , ∀ t ∈ R.

Assim, segue de (2.14) e da condição de Ambrosetti–Rabinowitz com o parâmetro
θ = cα, vista em (2.11), que

Eµ(u) = Eµ(u) − 1
cα

E ′
µ(u)(u)

=
∫

Ω

[
Φ(|∇u|) − 1

cα

Φ′(|∇u|) |∇u|
]
dx−

∫
Ω

[
F (u+) − 1

cα

f(u+)u+
]
dx

+ µ

cα

∫
Ω

[cαG(u) − g(u)u] dx

≥ −µ

2 |Ω|.

Logo, usando a hipótese sobre a constante c, dada em (2.24), obtemos

c− Eµ(u) <
(
KN,α

β

)N/γ

.
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Além disso, como Eµ(vj) → c e valem as convergências em (2.44), temos

lim
j→∞

∫
Ω

Φ(|∇uj|) dx = lim
j→∞

[
Eµj

(uj) +
∫

Ω
F (u+

j ) dx− µj

∫
Ω
G(uj) dx

]
= c+

∫
Ω
F (u+) dx− µ

∫
Ω
G(u) dx

= c− Eµ(u) +
∫

Ω
Φ(|∇u|) dx.

Combinando isso com desigualdade estrita obtida acima, temos

lim
j→∞

∫
Ω

Φ(|∇uj|) dx−
∫

Ω
Φ(|∇u|) dx = c− Eµ(u) <

(
KN,α

β

)N/γ

.

Como Φ é contínua e convexa segue do Teorema 4.5 que
∫

Ω
Φ(|∇u|) dx ≤ lim inf

j→∞

∫
Ω

Φ(|∇uj|) dx = lim
j→∞

∫
Ω

Φ(|∇uj|) dx.

Daí,

0 ≤ lim
j→∞

∫
Ω

Φ(|∇uj|) dx−
∫

Ω
Φ(|∇u|) dx <

(
KN,α

β

)N/γ

. (2.46)

Seja

P :=

 1
lim

j→∞

∫
Ω Φ(|∇uj|) dx−

∫
Ω Φ(|∇u|) dx


γ
N

,

(P = ∞ se o denominador é zero), então, por (2.46), temos que β
KN,α

< P . Logo existe
q > 1 tal que p := β

KN,α
q < P . Assim, pelo Lema 2.5 existe C > 0, tal que

∫
Ω

exp(qβ|uj|γ) dx < C, para cada j ∈ N.

Utilizando esta estimativa junto com a hipótese (f2), temos
∫

Ω
|f(u+

j )|q dx ≤ c
∫

Ω
|uj|q(N−1) dx+ c

∫
Ω

exp(qβ|uj|γ) dx < C̃, ∀ j ∈ N.

Isso prova que (f(u+
j )) é limitada em Lq(Ω) para algum q > 1, como queríamos. Agora,

considerando q′ o expoente conjugado de q e aplicando a desigualdade de Hölder, temos

∫
Ω

|f(u+
j )(uj − u)| dx ≤

(∫
Ω

|f(u+
j )|q dx

)1/q (∫
Ω

|uj − u|q′
dx
)1/q′

≤ C · o(1).
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Isso prova (2.45). Por fim, já que Φ é convexa, temos

∫
Ω

Φ(|∇u|) dx−
∫

Ω
Φ(|∇uj|) dx ≥

∫
Ω

Φ′(|∇uj|)
∇uj

|∇uj|
· (∇u− ∇uj) dx

= E ′
µj

(uj)(u− uj) +
∫

Ω
f(u+

j )(u+
j − u) dx

− µj

∫
Ω
g(uj)(uj − u) dx.

Daí, pelas convergências obtidas em (2.44) e (2.45), obtemos
∫

Ω
Φ(|∇u|) dx ≥

∫
Ω

Φ(|∇uj|) dx+ o(1),

isto é,
lim sup

j→∞

∫
Ω

Φ(|∇uj|) dx ≤
∫

Ω
Φ(|∇u|) dx. (2.47)

Das equações (2.46) e (2.47), obtemos
∫

Ω
Φ(|∇uj|) dx −→

∫
Ω

Φ(|∇u|) dx.

Combinando com (2.41) e aplicando o Lema de Brezis–Lieb (ver Lema 4.2), temos
∫

Ω
Φ(|∇uj − ∇u|) dx −→ 0.

Lembrando que Φ ∈ ∆2, temos que

∥uj − u∥ = ∥∇uj − ∇u∥Φ −→ 0,

o que conclui a prova da Afirmação 2.4 e finaliza a demonstração do Teorema 2.2.

Corolário 2.1. O funcional Eµ satisfaz a condição (PS)c para todo c ̸= 0, tal que

c <

(
KN,α

β

)N−1−α

− µ

2 |Ω|.

Demonstração. Seja µ > 0 fixado e c ∈ R \ {0}, tal que

c <

(
KN,α

β

)N−1−α
α

− µ

2 |Ω|.

Seja (uj) ⊂ W 1,Φ
0 (Ω) uma sequência de Palais–Smale para Eµ no nível c, isto é,

Eµ(uj) → c e E ′
µ(uj) → 0.
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Definimos a sequência constante de parâmetros µj ≡ µ para todo j ∈ N. Com isso,
temos

Eµj
(uj) → c e E ′

µj
(uj) → 0.

Como c ̸= 0 e a desigualdade acima é satisfeita, todas as hipóteses do Teorema 2.2 estão
verificadas. Assim, a sequência (uj) possui uma subsequência que converge fortemente
em W 1,Φ

0 (Ω). Portanto, o funcional Eµ satisfaz a condição (PS)c, como queríamos
demonstrar.

2.3 Estrutura do passo da montanha

Nesta seção, desenvolvemos os elementos necessários para a aplicação do Teorema
do Passo da Montanha ao funcional energia associado ao problema estudado. Para
isso, começamos estabelecendo a geometria do passo da montanha, demonstrando que
o funcional é limitado inferiormente por uma constante positiva em uma esfera em
torno da origem, bem como a existência de um ponto onde ele assume valor negativo.
Em seguida veremos que o nível minimax está no intervalo no qual o funcional satisfaz a
condição de Palais–Smale, verificando que o funcional satisfaz as hipóteses do teorema.
Essas construções são essenciais para assegurar a existência de um ponto crítico não
trivial, o qual será identificado com uma solução do problema auxiliar abordado.

Para desenvolver os passos citados, iremos supor, sem perda de generalidade, que
0 ∈ Ω e fixar R > 0 tal que B(0, R) ⊂ Ω. Para j ∈ N consideramos gj : [0, R] → [0,∞)
definida no Exemplo 5.1 de [17], por

gj(y) =



(
− 2
R
y + 2

)
K

− 1
γ

N,αN
B logB(2) j

1
γ

−B

(
1 + log(j)

j

) 1
γ

, se y ∈
[
R

2 , R
]
,

K
− 1

γ

N,αN
B logB

(
R

y

)
j

1
γ

−B

(
1 + log(j)

j

) 1
γ

, se y ∈
[
Re− j

N ,
R

2

]
,

K
− 1

γ

N,α j
1
γ

(
1 + log(j)

j

) 1
γ

, se y ∈
[
0, Re− j

N

]
,

e então definimos a sequência de funções radiais vj : B[0, R] → R por

vj(x) = gj(|x|). (2.48)

Assumindo as hipóteses (ϕ1) − (ϕ4), obtemos o resultado a seguir.

Lema 2.8. Considere Φ uma N -função de classe C1 que satisfaz (ϕ1) − (ϕ4). Então,
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para vj definida em (2.48), tem-se vj ∈ W 1,Φ
0 (B(0, R)) e existe j0 ∈ N tal que

∫
B(0,R)

Φ (|θ∇vj|) dx ≤ θN , ∀ j ≥ j0, (2.49)

onde θ ∈ [θ1, θ2], com θ1 > 0.

Demonstração. Primeiramente, veja que vj é uma função contínua e limitada, para
todo j ∈ N. Em particular, vj ∈ LΦ(B(0, R)). Calculando as derivadas parciais de vj

em x ̸= 0, obtemos
∂vj

∂xi

(x) = g′
j(|x|) xi

|x|

de modo que |∇vj(x)| = |g′
j(|x|)|. Note que |∇vj(x)| = 0 para |x| < Re−j/N .

Introduzimos agora a sequência auxiliar σj = R
jlog(j) . Uma vez que

lim
j→∞

e−j/Njlog(j) = lim
j→∞

elog2(j)−j/N = 0 e lim
j→∞

1
jlog(j) = 0,

escolhemos j1 > e tal que Re−j/N < σj < R/2 para todo j > j1. Com isso, a prova
de (2.49) será dividida na estimativa das integrais radiais de Φ(θ|g′

j(y)|) associadas a
estes três intervalos. Mais precisamente, temos
∫

B(0,R)
Φ(θ|∇vj|) dx = ωN−1

∫ R

Re−j/N
Φ(θ|g′

j(y)|)yN−1 dy = ωN−1 (I1 + I2 + I3) , (2.50)

onde os termos I1, I2 e I3 correspondem às integrais nos intervalos [Re−j/N , σj], [σj, R/2]
e [R/2, R], respectivamente. Vamos estimar cada uma destas integrais.

Antes disso, observe que pelas condições (ϕ1) − (ϕ4) existem t̃0 > e, a ∈ (0, B) e
c > 0, tais que

Φ(t) ≤


ctN , se t ∈ [0, t̃0],

tN logα(t)
(
1 − log−a(t)

)
, se t ∈ [t̃0,∞).

(2.51)

Estimativa de I3: Para y ∈ [R/2, R], temos θ|g′
j(y)| ≤ θ2cj

1/γ−B, e como
1/γ − B < 0, existe j2 > j1 tal que |θg′

j(y)| ≤ t̃0, possibilitando aplicar a primeira
parte da desigualdade (2.51), obtendo

I3 =
∫ R

R/2
Φ(θ|g′

j(y)|)yN−1 dy ≤ ĉθNjN(1/γ−B) = ĉθNj−B. (2.52)

Estimativa de I2: Continuamos considerando j ≥ j2. Usando (2.51) obtemos

Φ(t) ≤ CtN
[
1 +

∣∣∣logN(t)
∣∣∣] , ∀ t > 0.
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Note que [σj, R/2] ⊂ [Re−j/N , R/2] e para y no intervalo [Re−j/N , R/2] tem-se

g′
j(y) = −K−1/γ

N,α NBB logB−1 (R/y) 1
y
j1/γ−B

(
1 + log j

j

)1/γ

< 0. (2.53)

Então

I2 ≤ CθN
∫ R/2

σj

∣∣∣g′
j(y)

∣∣∣N [1 +
∣∣∣log

(
θ|g′

j(y)|
)∣∣∣N] yN−1 dy. (2.54)

Vamos estimar a parcela logN
(
θ|g′

j(y)|
)
. Utilizando o fato de que 2 ≤ R

y
≤ R

σj
para

todo y ∈ [σj, R/2], com σj = R
jlog(j) , temos

2 ≤ R

y
≤ R

σj

= jlog(j) = elog(jlog(j)) = elog(j)·log(j) = elog2(j). (2.55)

Já que log é uma função crescente, vemos que

log(2) ≤ log(R/y) ≤ log2(j) ≤ j2, ∀ y ∈ [σj, R/2]. (2.56)

Além disso,

j1/γ−B ≤ j1/γ−B

(
1 + log j

j

)1/γ

≤ 21/γj1/γ−B. (2.57)

Por (2.53), (2.56) e (2.57), lembrando que 1/γ < B < 1, obtemos

θ1Cj
2(B−1)R

y
j1/γ−B ≤ θ|g′

j(y)| ≤ θ2C logB−1(2)R
y

21/γj1/γ−B, ∀ y ∈ [σj, R/2],

ou seja, existem c1, c2 > 0 tais que

c1
R

y
jB+1/γ−2 ≤ θ|g′

j(y)| ≤ c2
R

y
j1/γ−B, ∀ y ∈ [σj, R/2].

Consequentemente, para j ≥ j2 > e existe c3 > 0 tal que

∣∣∣log
(
θ|g′

j(y)|
)∣∣∣ ≤ max

{
| log

(
c1Rj

B+1/γ−2/y
)
|; | log

(
c2Rj

1/γ−B/y
)
|
}

≤ c3 [log(R/y) + log(j)] , ∀ y ∈ [σj, R/2].

Assim, usando (2.55), vemos que

∣∣∣log
(
θ|g′

j(y)|
)∣∣∣N ≤ c4

[
logN (R/y) + logN(j)

]
≤ c4 log2N(j) (2.58)

para todo y ∈ [σj, R/2] e j ≥ j2. Retomando a estimativa da integral I2, dada em
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(2.54), e utilizando (2.58) em conjunto com a expressão da derivada em (2.53), temos

I2 ≤ c5θ
Nj(

1
γ

−B)N log2N(j)
∫ R/2

σj

log(B−1)N (R/y) · 1
yN

· yN−1 dy

= c5j
−B log2N(j)

∫ R/2

σj

log(B−1)N (R/y) 1
y
dy. (2.59)

Denotemos b = (B − 1)N . Se b ̸= −1, usando a mudança de variáveis s = log(R/y) e
(2.55) obtemos

∫ R/2

σj

logb (R/y) 1
y
dy =

∫ log2(j)

log(2)
sb ds = 1

b+ 1 s
b+1
∣∣∣s=log2(j)

s=log(2)

= 1
b+ 1

(
log2(b+1) (j) − logb+1(2)

)
≤ c′

6[1 + log2(b+1)(j)] ≤ c′
6[1 + log2(b+2)(j)].

Caso ocorra b = −1, obtemos

∫ R/2

σj

log−1 (R/y) 1
y
dy =

∫ log2(j)

log(2)
s−1 ds = log(s)|s=log2(j)

s=log(2)

= log
(
log2(j)

)
− log (log(2))

≤ c′′
6[1 + log

(
log2(j)

)
] ≤ c′′

6[1 + log2(j)].

Em qualquer caso, vemos que

∫ R/2

σj

logb (R/y) 1
y
dy ≤ c6[1 + log2(b+2)(j)], ∀ j ≥ j2 > e.

Substituindo essa estimativa na expressão (2.59), obtemos

I2 ≤ c7θ
Nj−B · log2N(j) · log2(B−1)N+4(j) = c7θ

Nj−B log2BN+4(j). (2.60)

Estimativa para I1: Lembremos que σj = R
j log(j) e 1

γ
< N

(N−1)γ = B < 1. Para
y ∈ [Re− j

N , σj] temos ej/N ≥ R
y

≥ elog2(j), de modo que

elog2(j)
(
j

N

)B−1
≤ R

y
logB−1 (R/y) ≤ elog2(j) log2(B−1)(j).

Isso implica que

N1−Bj
1
γ ≤ N1−Belog2(j)j

1
γ

−1 ≤ R

y
logB−1 (R/y) j

1
γ

−B ≤ elog2(j) log2(B−1)(j)j
1
γ

−B.

Então, a partir da expressão da derivada de gj dada em (2.53), vemos que existe um
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índice j3 > j2 tal que, para todo j > j3, vale

θ|g′
j(y)| = Cθ logB−1 (R/y) 1

y
j

1
γ

−B

(
1 + log(j)

j

) 1
γ

> t̃0, (2.61)

para todo y ∈
[
Re−j/N , σj

]
e θ ∈ [θ1, θ2], onde t̃0 é dado em (2.51). Além disso, para

y nesse mesmo intervalo, escrevendo s = R/y e h(s) = s/ log1−B(s) vemos que h é
uma função crescente no intervalo [elog2(j), ej/N ] e assim atinge o máximo em s = ej/N .
Assim,

∣∣∣θg′
j(y)

∣∣∣ ≤ θ
C

R
h(R/y) · j

1
γ

−B

(
1 + log j

j

) 1
γ

≤ 2
1
γ θ2C

R
h(ej/N)j

1
γ

−B

≤ C̃ej/NjB−1j
1
γ

−B = C̃ej/Nj
1
γ

−1 = C̃eje−j(N−1)/Nj
1
γ

−1,

para todo y ∈
[
Re−j/N , σj

]
. Dessa forma, podemos encontrar um índice j4 > j3 tal

que, para todo j > j4, temos

sup
y∈[Re−j/N ,σj ]

∣∣∣θg′
j(y)

∣∣∣ ≤ ej, ∀ θ ∈ [θ1, θ2].

Em particular, para a ∈ (0, B) obtemos log−a(θ|g′
j(y)|) ≥ 1

ja . Devido a (2.61) e (2.51)
verificamos que

Φ
(
θ
∣∣∣g′

j(y)
∣∣∣) ≤ θN

∣∣∣g′
j(y)

∣∣∣N logα
(
θ
∣∣∣g′

j(y)
∣∣∣) (1 − log−a

(
θ
∣∣∣g′

j(y)
∣∣∣))

≤ θN

(
1 − 1

ja

) ∣∣∣g′
j(y)

∣∣∣N logα
(∣∣∣θg′

j(y)
∣∣∣) , (2.62)

para j > j4. Já que logB−1(R/y) < 1 e j
1
γ

−B → 0 quando j → ∞, por (2.61) temos

θ|g′
j(y)| ≤ Cθ22

1
γ j

1
γ

−B 1
y

≤ R

y
,

para todo j > j5 e y ∈
[
Re−j/N , σj

]
, para algum j5 > j4. Com isso, usando (2.62) e
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(2.53), já que α ≥ 0, a integral I1 satisfaz

I1 =
∫ σj

Re−j/N
Φ
(
θ
∣∣∣g′

j(y)
∣∣∣) yN−1 dy

≤ θN

(
1 − 1

ja

)∫ σj

Re−j/N

∣∣∣g′
j(y)

∣∣∣N logα
(∣∣∣θg′

j(y)
∣∣∣) yN−1 dy

≤ θN

(
1 − 1

ja

)
K

− N
γ

N,αN
NBBN

(
1 + log j

j

)N
γ

j(
1
γ

−B)N

·
∫ σj

Re−j/N
log(B−1)N (R/y) · 1

yN
· logα (R/y) · yN−1 dy.

Pela definição de B temos (B − 1)N + α = B − 1 > −1. Daí, já que σj = Re− log2(j),
usando a mesma mudança de variáveis s = log(R/y) da estimativa de I2 obtemos

∫ σj

Re−j/N
logB−1 (R/y) dy

y
≤ 1
B

(
j

N

)B

.

Lembrando das definições de B e KN,α dadas em Definição 0.1, KN,α = B1/BNω
γ/N
N−1,

vemos que K
− N

γ

N,αN
(N−1)BBN−1 = ω−1

N−1. Além disso, (1/γ −B)N = −B e então

I1 ≤ θNK
− N

γ

N,αN
(N−1)BBN−1

(
1 − 1

ja

)(
1 + log j

j

)N
γ

≤ θNω−1
N−1

(
1 − 1

ja

)(
1 + log j

j

)N
γ

. (2.63)

Por fim, usando as estimativas (2.52), (2.60) e (2.63), obtidas para as integrais I1, I2 e
I3, na equação (2.50), segue que

∫
B(0,R)

Φ (|θ∇vj(x)|) dx = ωN−1

∫ R

0
Φ
(∣∣∣θg′

j(y)
∣∣∣) yN−1 dy

≤ θN

(1 − 1
ja

)(
1 + log(j)

j

)N
γ

+ c8j
−B log2BN+4(j)

, (2.64)

para todo θ ∈ [θ1, θ2] e j > j5. Note que

lim
j→∞

(1 − 1
ja

)(
1 + log(j)

j

)N
γ

+ c8j
−B log2BN+4(j)

 = 1.

Afirmamos que para j suficientemente grande vale

(
1 − 1

ja

)(
1 + log(j)

j

)N
γ

+ c8j
−B log2BN+4(j) < 1. (2.65)
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Com efeito, já que (N − 1)B = N/γ, consideremos h : [0,∞) → R a função auxiliar
dada por

h(x) = (1 + x)(N−1)B,

a qual é derivável em (0,∞). Aplicando o Teorema do Valor Médio obtemos que, para
cada x > 0 existe ξ ∈ (0, x) tal que

h(x) − h(0) = h′(ξ)x.

Como h(0) = 1, segue que

(1 + x)(N−1)B = 1 + h′(ξ)x = 1 + (N − 1)B(1 + ξ)(N−1)B−1x.

No nosso caso, tomando x = log(j)
j

, obtemos

(
1 + log(j)

j

)(N−1)B

= 1 + (N − 1)B (1 + ξj)(N−1)B−1 log(j)
j

≤ 1 + c

(
1 + log(j)

j

)(N−1)B−1 log(j)
j

, (2.66)

para algum ξj ∈
(
0, log(j)

j

)
. Substituindo (2.66) na expressão original à esquerda de

(2.65), obtemos

(
1 − 1

ja

)(
1 + log(j)

j

)(N−1)B

+ c8j
−B log2BN+4(j)

≤
(

1 − 1
ja

)1 + c

(
1 + log(j)

j

)(N−1)B−1 log(j)
j

+ c8j
−B log2BN+4(j)

= 1 − bj (2.67)

onde

bj := 1
ja

1 + c(1 − ja)
(

1 + log(j)
j

)(N−1)B−1 log(j)
j

− c8j
a−B log2BN+4(j)

 .
Lembrando que (N − 1)B > 1 e 0 < a < B < 1, temos

(
1 + log(j)

j

)(N−1)B−1

→ 1+ e log(j)
j

,
log(j)
j1−a

,
logk(j)
jB−a

→ 0,

para qualquer k > 0, quando j → ∞. Portanto, para j suficientemente grande, temos
que bj > 0. Então, (2.67) garante que (2.65) é válido, como afirmamos. Desse modo,
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tomando o limite quando j → ∞ em (2.64), concluimos que
∫

B(0,R)
Φ (|θ∇vj(x)|) dx < θN

para j suficientemente grande e θ ∈ [θ1, θ2], com θ1 > 0. Em particular, vj ∈ W 1,Φ
0 (Ω)

e para θ = 1 tem-se
∥∇vj∥Φ ≤ 1,

para j ∈ N suficientemente grande.

O próximo resultado estabelece a geometria do Teorema do Passo da Montanha
para o funcional Eµ. Mais precisamente, mostramos que Eµ satisfaz três propriedades
fundamentais: (a) positividade uniforme na esfera de raio pequeno; (b) existência
de uma direção em que, no infinito, o funcional decresce para menos infinito; e (c)
existência de um valor de nível crítico obtido por um min-max sobre uma família de
caminhos que ligam a origem a um ponto específico da direção de decaimento.

Essas propriedades, combinadas com a compacidade do funcional (garantida
por condições anteriores), asseguram a existência de um ponto crítico de Eµ no
nível correspondente ao valor crítico min-max. Esse ponto crítico será interpretado
posteriormente como uma solução fraca do problema elíptico associado.

A formalização dessas ideias é apresentada no lema a seguir.

Lema 2.9. Existem constantes µ0, ρ, c0 > 0, J ≥ 2, T > ρ e

ϑ <

(
KN,α

β

)N
γ

,

tais que, para todo µ ∈ (0, µ0), valem as seguintes propriedades:

(a) Eµ(u) ≥ c0 para todo u ∈ W 1,Φ
0 (Ω) com ∥u∥ = ρ.

(b) Para toda função não negativa u0 ∈ W 1,Φ
0 (Ω)\{0} temos Eµ(tu0) → −∞ quando

t → ∞.

(c) Considerando a seuqência (vj) definida em (2.48), tem-se para algum J , ∥TvJ∥ >
ρ e Eµ(TvJ) < 0. Além disso, se denotamos por

Γ =
{
η ∈ C([0, 1],W 1,Φ

0 (Ω)) ; η(0) = 0, η(1) = TvJ

}
a classe de caminhos que ligam a origem ao ponto TvJ , então

c0 ≤ cµ := inf
η∈Γ

max
u∈η([0,1])

Eµ(u) ≤ ϑ+ Cµc′
α . (2.68)
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(d) O funcional Eµ possui um ponto crítico uµ ∈ W 1,Φ
0 (Ω) no nível cµ.

Demonstração.

(a) Fixamos p > cα. Inicialmente escolhemos ρ0 > 0 satisfazendo

ρ0 <

(
KN,α

2β

) 1
γ

.

Para ρ ∈ (0, ρ0) e u ∈ W 1,Φ
0 (Ω) tal que ∥u∥ = ρ, defina ũ = u/ρ. Note que a

desigualdade de Trudinger–Moser (ver Teorema 4.4) é aplicável a ũ. Dado ϵ > 0,
usando (2.6) e aplicando as desigualdades de Hölder, de Poincaré (ver Proposição 1.2)
e de Trudinger–Moser, obtemos

∫
Ω
F (u+) dx ≤ ϵ

∫
Ω

Φ(u) dx+ Cϵ

∫
Ω

|u|p exp(β|u|γ) dx

≤ ϵC
∫

Ω
Φ(|∇u|) dx+ Cϵ∥u∥p

2p

(∫
Ω

exp(2β|u|γ) dx
)1/2

= ϵC
∫

Ω
Φ(|∇u|) dx+ Cϵρ

p
(∫

Ω
exp(2βργ|ũ|γ) dx

)1/2

≤ ϵC
∫

Ω
Φ(|∇u|) dx+ C̃ϵρ

p−1Cρ0 ,

onde Cρ0 > 0 depende de ρ0, e C̃ϵ é uma constante ajustada, que depende de ϵ e da
constante de imersão de W 1,Φ

0 (Ω) em L2p(Ω). Fixando ϵ = ϵ0 tal que 1 − Cϵ0 = 1
2 ,

tomamos ρ ≤ ρ̃0 ≤ min{ρ0; 1} suficientemente pequeno de modo que

C0(ρ̃0)p−cα <
1
4 ,

onde C0 = C̃ϵ0Cρ0 . Substituindo a estimativa acima no funcional Eµ obtemos

Eµ(u) =
∫

Ω
Φ(|∇u|) dx−

∫
Ω
F (u+) dx+ µ

∫
Ω
G(u) dx

≥ (1 − Cϵ0)
∫

Ω
Φ(|∇u|) dx− C0ρ

p − µ

2 |Ω|.

Aqui usamos o fato de que G(t) ≥ −1/2 para todo t ∈ R, decorrente do Lema 2.7.
Pela escolha de ϵ0 e ρ̃0, devido ao Lema 1.5 vemos que

Eµ(u) ≥ 1
2∥u∥cα − C0ρ

p − µ

2 |Ω| = ρcα

(1
2 − C0ρ

p−cα

)
− µ

2 |Ω|

≥ ρcα

4 − µ

2 |Ω|.
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Por fim, escolhemos µ0 > 0 suficientemente pequeno tal que

µ0

2 |Ω| ≤ ρ̃cα
0
8 ,

e definimos
c0 := ρ̃cα

0
8 > 0.

Assim, para todo µ ∈ (0, µ0), temos Eµ(u) ≥ c0 sempre que ∥u∥ = ρ̃0, o que conclui a
demonstração do item (a).

(b) Seja u0 ∈ W 1,Φ
0 (Ω) \ {0} tal que u0 ≥ 0. Utilizando a estimativa G(t) ≤ |t|, em

conjunto com o Lema 1.5 e a desigualdade (2.8) para um σ > cα fixado, obtemos

Eµ(tu0) =
∫

Ω
Φ(t|∇u0|) dx−

∫
Ω
F (tu+

0 ) dx+ µ
∫

Ω
G(tu0) dx

≤ ξ1(t)
∫

Ω
Φ(|∇u0|) dx− ctσ

∫
Ω

|u0|σ dx+ c1|Ω| + µ
∫

Ω
t|u0| dx

= c2t
cα − c3t

σ + c1|Ω| + c4tµ → −∞,

quando t → ∞. Assim, para t suficientemente grande temos Eµ(tu0) < 0.

(c) Para demonstrar este item usaremos a sequência (vj) definida em (2.48). Observe
que, como G(t) ≤ |t| para todo t ∈ R, e como vj ≥ 0 para todo j, segue que

Eµ(tvj) =
∫

Ω
[Φ(|∇(tvj)|) − F (tvj) + µG(tvj)] dx

≤
∫

Ω
[Φ(t|∇vj|) − F (tvj) + µtvj] dx, ∀ t ≥ 0.

Aplicando a desigualdade de Young ao termo µtvj, obtemos

µtvj ≤ k0(tvj)cα + c5µ
c′

α ,

onde cα e c′
α são expoentes conjugados, k0 é dado na condição (f5) e a constante c5 é

dada por
c5 = 1

c′
α (k0cα)1/(cα−1) .

Substituindo essa estimativa na desigualdade anterior, obtemos

Eµ(tvj) ≤
∫

Ω
Φ(t|∇vj|) dx−

∫
Ω
F (tvj) dx+ k0

∫
Ω
(tvj)cα dx+ c5µ

c′
α

∫
Ω
dx. (2.69)

Para cada j ∈ N, definimos a função Hj : [0,∞) → R por

Hj(t) :=
∫

Ω
Φ(t|∇vj|) dx−

∫
Ω
F (tvj) dx+ k0

∫
Ω
(tvj)cα dx.
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Aplicando novamente o Lema 1.5 e a estimativa (2.8) para F (t), temos

Hj(t) ≤ tcα

∫
Ω

Φ(|∇vj|) dx−
(
c6t

σ
∫

Ω
vσ

j dx+ c7|Ω|
)

+ k0t
cα

∫
Ω
vcα

j dx,

para t > 1 e σ > cα. Portanto,

lim
t→∞

Hj(t) = −∞. (2.70)

Para obter um controle inferior para Hj(t) quando t → 0, como vj ∈ L∞(Ω), utilizamos
o Lema 1.5 e (2.5) com ϵ = 1

2c̃
, onde c̃ > 0 é a constante da desigualdade de Poincaré

para Φ, e obtemos

Hj(t) =
∫

Ω
Φ(t|∇vj|) dx−

∫
Ω
F (tvj) dx+ k0

∫
Ω
(tvj)cα dx

≥
∫

Ω
Φ(t|∇vj|) dx− ϵ

∫
Ω

Φ(tvj) dx+ k0

∫
Ω
(tvj)cα dx,

para t > 0 suficientemente pequeno. Aplicando a desigualdade de Poincaré, Proposição
1.2, temos

Hj(t) ≥ (1 − c̃ϵ)
∫

Ω
Φ(t|∇vj|) dx+ k0

∫
Ω
(tvj)cα dx.

Por fim, utilizando o Lema 1.5, obtemos

Hj(t) ≥ 1
2t

mα

∫
Ω

Φ(|∇vj|) dx+ k0t
cα

∫
Ω
vcα

j dx > 0, para t ∈ (0, t̃j),

com t̃j suficientemente pequeno, já que vj ̸≡ 0. Como Hj é contínua em [0,∞), segue
que existe tj > 0 tal que

Hj(tj) = max
t≥0

Hj(t).

Além disso, como Hj é diferenciável, temos

H ′
j(tj) = 0.

Afirmação 2.5. Existe J ∈ N, com J ≥ 2, tal que

Hj(tj) <
(
KN,α

β

)N
γ

, ∀ j ≥ J.

Suponha, por contradição, que

Hj(tj) ≥
(
KN,α

β

)N
γ

, para todo j ≥ 2.
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Pela estimativa (2.10), temos que F (t) ≥ k0t
cα para todo t ≥ 0. Assim, para cada

j ≥ 2, segue que

(
KN,α

β

)N
γ

≤
∫

Ω
Φ(tj|∇vj|) dx−

∫
Ω
F (tjvj) dx+ k0

∫
Ω
(tjvj)cα dx

≤
∫

Ω
Φ(tj|∇vj|) dx. (2.71)

Agora, suponha que tj < 1. Pelo Lema 2.8, com θ = 1, existe j0 > 0, tal que
∫

Ω
Φ(|∇vj|) dx ≤ 1, para j ≥ j0.

Dessa forma, aplicando o Lema 1.2 (a),
∫

Ω
Φ(tj|∇vj|) dx ≤ tj

∫
Ω

Φ(|∇vj|) dx ≤ tj, para j ≥ j0.

Daí, voltando para (2.71), obtemos

(
KN,α

β

)N
γ

≤ tj, se j ≥ j0 e tj < 1.

Assim, verificamos que

tj ≥ min

1,
(
KN,α

β

)N
γ

 =: k1 (2.72)

para todo j ≥ j0. Por outro lado, como H ′
j(tj) = 0, segue que tjH ′

j(tj) = 0. Isto é,
∫

Ω
Φ′
(
tj|∇vj|

)
(tj|∇vj|) dx+ k0cαt

cα
j

∫
Ω
vcα

j dx =
∫

Ω
f(tjvj)(tjvj) dx. (2.73)

Pelo Lema 1.5, em conjunto com (3), obtemos

Φ′
(
tj|∇vj|

)
(tj|∇vj|) ≤ cαΦ(tj|∇vj|) ≤ cα ξ1(tj) Φ(|∇vj|),

com ξ1(t) = max{tmα , tcα}. Portanto,

Φ′
(
tj|∇vj|

)
(tj|∇vj|) ≤ cα max{tmα

j , tcα
j }Φ(|∇vj|).

Além disso, conforme visto anteriormente, temos
∫

Ω
Φ(|∇vj|) dx ≤ 1, para todo j ≥ j0.
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Ademais, a sequência
(∫

Ω v
cα
j dx

)
é limitada em j. Utilizando essas informações em

(2.73), obtemos que existe uma constante k̃ > 0 tal que

k̃
(
tmα
j + tcα

j

)
≥
∫

Ω
f(tjvj) (tjvj) dx

≥
∫

B(0,Re
− j

N )
f(tjvj) (tjvj) dx. (2.74)

Por outro lado, pela definição de vj em (2.48) vemos que para x ∈ B(0, Re− j
N ) vale

tjvj = tj

[
K−1

N,α j

(
1 + log j

j

)] 1
γ

= tj
[
K−1

N,α (j + log j)
] 1

γ .

Assim, para t0 > 0 apresentado em (2.9), a partir de (2.72), vemos que

tjvj(x) = tj
[
K−1

N,α (j + log j)
] 1

γ ≥ k1
[
K−1

N,α (j + log j)
] 1

γ ≥ t0, ∀x ∈ B(0, Re− j
N ),

para todo j ≥ j0. Dessa forma, em virtude de (2.9), temos que

f(tjvj)tjvj ≥ L

2 exp (β(tjvj)γ) ,

para todo j ≥ j0 no conjunto B(0, Re− j
N ). Retornando à desigualdade em (2.74),

obtemos

k̃
(
tmα
j + tcα

j

)
≥ L

2

∫
B(0,Re

− j
N )

exp (β(tjvj)γ) dx

=
(
L

2 ωN−1R
Ne−j

)
exp

(
βtγjK

−1
N,α(j + log j)

)
. (2.75)

Observe que a sequência (tj) deve ser limitada. De fato, suponha, por absurdo, que
tj → ∞ para alguma subsequência. Nesse caso, para j ≫ 1, temos

βtγjK
−1
N,α ≥ 1 e βK−1

N,α log j ≥ 1.

Substituindo essas estimativas em (2.75), obtemos

k̃
(
tmα
j + tcα

j

)
≥ L

2 ωN−1R
Ne−j exp

(
βtγjK

−1
N,α(j + log j)

)
≥ L

2 ωN−1R
Ne−jejetγ

j = L

2 ωN−1R
Netγ

j .

No entanto, o lado esquerdo da desigualdade acima cresce, no máximo, polinomialmente
em tj, enquanto o lado direito cresce exponencialmente. Assim, a hipótese tj → ∞
leva a uma contradição, o que prova que a sequência (tj) é necessariamente limitada.
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Seja

0 < k1 = min

1,
(
kN,α

β

)N
γ

 ≤ tj ≤ k2, ∀ j ≥ j1,

para algum j1 ≥ j0 tal que
∫

Ω Φ(|∇vj|) dx ≤ 1, e tal que a desigualdade (2.75) seja
válida. Além disso, pelo Lema 2.8, sabemos que existe j2 ∈ N, com j2 ≥ j1, tal que

∫
Ω

Φ(θ|∇vj|) dx ≤ θN , ∀ θ ∈ [k1, k2], ∀ j ≥ j2.

Retornando à desigualdade (2.71), obtemos

tNj ≥
∫

Ω
Φ(tj|∇vj|) dx ≥

(
KN,α

β

)N
γ

, ∀ j ≥ j2.

Assim, temos que
βtγjK

−1
N,α ≥ 1, ∀ j ≥ j2.

Retornando à desigualdade (2.75), concluímos que, para todo j ≥ j2,

k3 := k̃ (kmα
2 + kcα

2 ) ≥ L

2 ωN−1R
Ne−j · ej · elog j

= L

2 ωN−1R
Nj −→ ∞, quando j → ∞

o que é um absurdo, já que o lado esquerdo da desigualdade é constante. Portanto,
existe J ∈ N, com J ≥ 2, tal que

Hj(tj) <
(
kN,α

β

)N
γ

, ∀ j ≥ J.

Concluímos, então a prova da Afirmação 2.5. Como (2.70) implica que HJ(t) → −∞
quando t → ∞, escolhemos T > 0 suficientemente grande tal que

HJ(t) ≤ −1, ∀ t ≥ T.

Definindo w := TvJ , devido a (2.69) obtemos, para todo t ∈ [0, 1],

Eµ(tw) ≤ HJ(tT ) + c5|Ω|µc′
α . (2.76)

Note que existe µ0 > 0 tal que

Eµ(w) ≤ HJ(T ) + c5|Ω|µc′
α ≤ −1 + c5|Ω|µc′

α < 0, sempre que µ ≤ µ0.
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Assim, a curva t 7→ tw, com t ∈ [0, 1], pertence ao conjunto Γ. Pelo que foi estabelecido
em (2.76), segue que

cµ ≤ max
0≤t≤1

Eµ(tw) ≤ max
t≥0

HJ(t) + c5|Ω|µc′
α = HJ(tJ) + c5|Ω|µc′

α ,

para todo µ ∈ (0, µ0). Tomando ϑ := HJ(tJ), essa constante satisfaz

ϑ <

(
KN,α

β

)N
γ

,

como vimos na Afirmação 2.5. Assim, o funcional Eµ apresenta a geometria do tipo
passo da montanha no nível cµ, o qual satisfaz

c0 < cµ ≤ ϑ+ cµc′
α ,

com ϑ < (KN,α/β)N−1−α, para todo µ ∈ (0, µ0) e c0 dado no item (a).

(d) Segue do item (c), em conjunto com o Corolário 2.1, que o funcional Eµ satisfaz a
condição de Palais–Smale no nível cµ, isto é, (PS)cµ . Portanto, pelo Teorema do Passo
da Montanha, o funcional Eµ admite um ponto crítico uµ no nível de energia do passo
da montanha, ou seja,

E ′
µ(uµ) = 0 e Eµ(uµ) = cµ.

Sabendo que Eµ(0) = 0, concluímos que uµ é não trivial.

2.4 Regularidade das soluções

A fim de aplicar o teorema de Liberman para garantir a regularidade das soluções
uµ, faremos primeiramente a estimativa L∞. Em seguida veremos que as hipóteses do
Teorema 4.3 se verificam, o qual garante que as funções uµ são de classe C1,σ e fornece
uma estimativa uniforme para as normas neste espaço.

2.4.1 Estimativa L∞

Nesta subseção provaremos uma estimativa L∞ para soluções de (2.15). Para obter
algumas convergências envolvendo a não linearidade f , precisamos do lema a seguir.

Lema 2.10. Se (uj) é uma sequência convergente em W 1,Φ
0 (Ω), então

sup
j∈N

∫
Ω

exp(b|uj|γ) dx < ∞, ∀ b ∈ R.
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Demonstração. O caso b ≤ 0 é trivial. Considere b > 0. Seja u ∈ W 1,Φ
0 (Ω) o limite de

(uj). Temos que

|uj|γ ≤ (|uj| + |uj − u|)γ ≤ 2γ(|u|γ + |uj − u|γ),

de modo que

∫
Ω

exp(b|uj|γ) dx ≤
(∫

Ω
exp

(
2γ+1b|u|γ

)
dx
)1/2 (∫

Ω
exp

(
2γ+1b|uj − u|γ

)
dx
)1/2

.

A primeira integral à direita é finita, devido à desigualdade de Trudinger-Moser,
Teorema 4.4. Já a segunda integral é igual a

∫
Ω

exp
(
2γ+1b∥uj − u∥γ|vj|γ

)
dx,

onde vj = (uj − u)/∥uj − u∥. Como uj → u, temos 2γ+1b∥uj − u∥γ < KN,α para
j suficientemente grande. Além disso, temos ∥vj∥ = 1. Assim, a desigualdade de
Trudinger-Moser, Teorema 4.4, garante a limitação desta sequência de integrais, o que
conclui a prova do lema.

Para µ ∈ (0, µ0), seja u = uµ a solução do problema auxiliar (2.15) no nível cµ.
Ou seja, Eµ(u) = cµ e E ′

µ(u) = 0. Considere µj → µ̄0, com µ̄0 ∈ [0, µ0). Como
0 < c̃ ≤ cµ < ϑ + cµc′

α , em que ϑ < (KN,α

β
)

N
γ , temos que a menos de subsequência

cµj
→ c̄ ∈ [c̃, ϑ]. Em particular, c̄ ̸= 0. Pelo Teorema 2.2 temos que a menos de

subsequência uj := uµj
→ u0 em W 1,Φ

0 (Ω) em que u0 é ponto crítico de Eµ̄0 no nível c̄.

Proposição 2.2. Para µj → µ̄0 como acima, cada solução uj := uµj
pertence a L∞(Ω)

e existe M0 > 0 tal que ∥uj∥∞ ≤ M0 para todo j ∈ N.

Demonstração. Como E ′
µj

(uj)uj = 0, usando a imersão contínua de LN(Ω) em L1(Ω)
e o Lema 2.10 vemos que existe D = D(u0) tal que
∫

Ω
Φ′(|∇uj|)|∇uj| dx =

∫
Ω
f(u+

j )uj dx− µj

∫
Ω
g(uj)uj dx

≤ c1

∫
Ω

|uj|N dx+ c2

∫
Ω

|uj|eβ|uj |γ dx+ µj

∫
Ω

|uj| dx

≤ c1

∫
Ω

|uj|N dx+ c2

(∫
Ω

|uj|N dx
) 1

N
(∫

Ω
eN ′β|uj | dx

) 1
N′

+ µ0

∫
Ω

|uj| dx

≤ c1

∫
Ω

|uj|N dx+D
(∫

Ω
|uj|N dx

) 1
N

.

Uma vez que Φ satisfaz (ϕ1) − (ϕ2), vemos que existe C > 0 tal que Φ(t) ≥ CtN para
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todo t ∈ R. Então existe c3 > 0, independente de j, tal que

∫
Ω

Φ′(|∇uj|)|∇uj| dx ≤ c3

[∫
Ω

Φ(uj) dx+
(∫

Ω
Φ(uj) dx

) 1
N

]
. (2.77)

Como

mα ≤ Φ′(t)t
Φ(t) ≤ cα, ∀ t > 0,

segue de (2.77) que para todo j,
∫

Ω
Φ(|∇uj|) dx ≤ 1

mα

∫
Ω

Φ′(|∇uj|)|∇uj| dx

≤ 2c3

mα

max
{[∫

Ω
Φ(uj) dx

] 1
N

,
∫

Ω
Φ(uj) dx

}
. (2.78)

Uma vez que Φ′ é não negativa e crescente em [0,∞) vemos que Φ′(t)s ≤ Φ′(t)t+Φ′(s)s
para s, t ≥ 0. Além disso, como Φ′ é ímpar obtemos

∫
Ω

|∇(Φ(uj))| dx =
∫

Ω
|Φ′(uj)∇uj| dx =

∫
Ω

Φ′(|uj|)|∇uj| dx

≤
∫

Ω
Φ′(uj)uj dx+

∫
Ω

Φ′(|∇uj|)|∇uj| dx

≤ cα

∫
Ω

Φ(uj) dx+ cα

∫
Ω

Φ(|∇uj|) dx.

Como (uj) é convergente em W 1,Φ
0 (Ω), é limitada em LΦ(Ω) e

∫
Ω Φ(uj) dx é limitada.

Daí, usando (2.78) vemos que

∫
Ω

|∇(Φ(uj))| dx ≤ c4 max
{∫

Ω
Φ(uj) dx,

(∫
Ω

Φ(uj) dx
) 1

N

}
≤ c′, ∀ j.

Logo, {Φ(uj)} é limitada em W 1,1
0 (Ω). Além disso, pela imersão

W 1,1
0 (Ω) ↪→ L1∗(Ω) = LN ′(Ω),

obtemos
∫

Ω
|Φ(uj)|N

′
dx ≤ c∥Φ(uj)∥W 1,1(Ω) = c(∥Φ(uj)∥L1(Ω) + ∥∇Φ(uj)∥L1(Ω))

≤ cmax
{∫

Ω
Φ(uj) dx,

(∫
Ω

Φ(uj) dx
)1/N

}
≤ C̃, (2.79)

em que C̃ > 0 depende de N , cα, u0 e da constante de imersão, mas não depende de
j ∈ N. Agora considere uma constante d0 ∈ (1, N ′) e um número arbitrário q > 1 tal
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que Φ(uj) ∈ Lqd0(Ω). Para t ≥ 0 defina

ΦL(t) = Φ(min{t, L}), com L > 0,

e considere a função teste wj = [ΦL(|uj|)]q−1uj. Note que {wj}j é limitada em ∈ LΦ(Ω),
para cada L fixado. De fato, desde que |wj| ≤ [Φ(L)]q−1|uj| e Φ ∈ ∆2, temos

∫
Ω

Φ(wj) dx ≤
∫

Ω
Φ([Φ(L)]q−1uj) dx ≤ cL

∫
Ω

Φ(uj) dx ≤ c̃L.

Além disso,

∂wj

∂xi

(x) =


(q − 1)[Φ(uj)]q−2Φ′(uj)∂uj

∂xi
uj + [Φ(uj)]q−1 ∂uj

∂xi
, se |uj(x)| ≤ L

[Φ(L)]q−1 ∂uj

∂xi
, se |uj(x)| > L,

de modo que

∇wj(x) =


{(q − 1)[Φ(|uj|)]q−2Φ′(uj)uj + [Φ(|uj|)]q−1} ∇uj, se |uj(x)| ≤ L

[Φ(L)]q−1 ∇uj, se |uj(x)| > L

=: ΨL(uj)∇uj.

Como

ΨL(t) =


(q − 1)[Φ(t)]q−2Φ′(t)t+ [Φ(t)]q−1 ≤ [1 + cα(q − 1)] [Φ(L)]q−1 , se |t| ≤ L

[Φ(L)]q−1 , se |t| > L,

vemos que, para todo j ∈ N

∫
Ω

Φ(|∇wj|) dx ≤
∫

Ω
Φ([1 + cα(q − 1)][Φ(L)]q−1|∇uj|) dx

≤ cL

∫
Ω

Φ(|∇uj|) dx ≤ cLc
′.

Portanto, wj ∈ W 1,Φ(Ω). Usando wj como função teste obtemos

0 = E ′
µj

(uj)wj =
∫

Ω

Φ′(|∇uj|)
|∇uj|

∇uj∇wj dx−
∫

Ω
f(u+

j )wj dx+ µj

∫
Ω
g(uj)wj dx.

o que nos dá
∫

Ω
ΨL(uj)Φ′(|∇uj|)|∇uj| dx =

∫
Ω
f(u+

j )uj[ΦL(uj)]q−1 dx− µj

∫
Ω
g(uj)uj[ΦL(uj)]q−1 dx.

Para t ≥ 0 temos que 0 ≤ tf(t) ≤ c(tN + tNeβtγ ) ≤ c(Φ(t) + Φ(t)eβtγ ). Também temos
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g(t)t ≥ 0 para |t| ≥ 1 e |g(t)| ≤ 1 para todo t. Assim,
∫

Ω
ΨL(uj)Φ′(|∇uj|)|∇uj| dx ≤ c

∫
Ω
[Φ(uj)]q

(
1 + eβ|uj |γ

)
dx

+ µ0

∫
{|uj |≤1}

(1 + [Φ(uj)]q)|uj| dx

≤ (c+ µ0)
∫

Ω
[Φ(uj)]q

(
1 + eβ|uj |γ

)
dx (2.80)

+ µ0

∫
Ω

|uj| dx.

Lembrando que Φ(uj) ∈ Lqd0(Ω), usando a desigualdade de Hölder e o Lema 2.10,
vemos que

∫
Ω
[Φ(uj)]q

(
1 + eβ|uj |γ

)
dx ≤ ∥Φ(uj)∥q

qd0(|Ω|1−1/d0 +D1−1/d0)

e, já que Φ(t) ≥ c′tN para todo t ∈ R, temos também

∫
Ω

|uj| dx ≤ c
(∫

Ω
|uj|N dx

)1/N

≤ C
(∫

Ω
Φ(uj) dx

)1/N

≤ C
(
∥Φ(uj)∥qd0 |Ω|[1−1/(qd0)]

)1/N
≤ C∥Φ(uj)∥1/N

qd0 (1 + |Ω|).

Usando estas desigualdades em (2.80) obtemos
∫

Ω
ΨL(uj)Φ′(|∇uj|)|∇uj| dx ≤ c̃

[
∥Φ(uj)∥1/N

qd0 + ∥Φ(uj)∥q
qd0

]
, (2.81)

onde c̃ é uma constante que não depende de j ou L ou q. Agora vamos analisar a
sequência de funções {Φq

L(uj)}. Note que

∇(Φq
L(uj)) =


0, se |uj| > L

qΦq−1(uj)Φ′(uj)∇uj, se |uj| ≤ L

de modo que, para |uj| ≤ L, vale

|∇(Φq
L(uj))| = qΦq−1(uj)Φ′(|uj|)|∇uj| ≤ qΦq−1(uj) [Φ′(|uj|)|uj| + Φ′(|∇uj|)|∇uj|] .

Temos ainda, para |uj| ≤ L,

Φq−1(uj) ≤ [1 +mα(q − 1)]Φq−1(uj)

≤ Φq−1(uj) + (q − 1)Φq−2(uj)Φ′(uj)uj = ΨL(uj).
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Então
∫

Ω
|∇(Φq

L(uj))| ≤ q
∫

{|uj |≤L}
[Φ(uj)]q−1 [Φ′(uj)uj + Φ′(|∇uj|)|∇uj|] dx

≤ qcα

∫
Ω

Φq(uj) dx+ q
∫

Ω
ΨL(uj)Φ′(|∇uj|)|∇uj| dx.

Usando (2.81) obtemos
∫

Ω
|∇(Φq

L(uj))| ≤ qcα∥Φ(uj)∥q
qd0|Ω|

1
d′

0 + qc̃
{

∥Φ(uj)∥q
qd0 + ∥Φ(uj)∥

1
N
qd0

}
≤ qcmax

{
∥Φ(uj)∥q

qd0 , ∥Φ(uj)∥
1
N
qd0

}
.

Pela desigualdade de Sobolev-Gagliardo-Niremberg, como 1∗ = N ′, temos

(∫
Ω

|Φq
L(uj)|N

′
) 1

N′
≤ c

∫
|∇(Φq

L(uj))|

≤ qC max
{

∥Φ(uj)∥q
qd0 , ∥Φ(uj)∥

1
N
qd0

}
,

para alguma constante C > 1, independente de j, L e q. Fazendo L → ∞, segue do
Lema de Fatou que

∥Φ(uj)∥qN ′ ≤ q
1
qC

1
q max

{
∥Φ(uj)∥qd0 , ∥Φ(uj)∥

1
Nq

qd0

}
. (2.82)

A partir de agora iremos escolher uma sequência {qm} de modo que Φ(uj) ∈ Lqd0(Ω).
Tomando q1 > 1 tal que q1d0 = N ′, temos Φ(uj) ∈ Lqd0(Ω) e

∥Φ(uj)∥q1N ′ ≤ q
1

q1
1 C

1
q1 max

{
∥Φ(uj)∥N ′ , ∥Φ(uj)∥

1
Nq1
N ′

}
. (2.83)

Definindo qm+1 = N ′

d0
qm, temos qm =

(
N ′

d0

)m
= qm

1 , para todo m ∈ N e para q = qm em
(2.82) temos

∥Φ(uj)∥qmN ′ ≤ (qm)
1

qmC
1

qm max
{

∥Φ(uj)∥qmd0 , ∥Φ(uj)∥
1

Nqm
qmd0

}
. (2.84)

Provaremos que

∥Φ(uj)∥qmN ′ ≤ (q1)
∑m

i=1

(
i

qi

)
C

∑m

i=1

(
1
qi

)
max {∥Φ(uj)∥N ′ , 1} . (2.85)

Vimos em (2.83) que (2.85) vale para m = 1. Suponha que (2.85) vale para m. Como
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q1, C ≥ 1, max {∥Φ(uj)∥N ′ , 1} ≥ 1 e 1/Nqm+1 < 1, obtemos

∥Φ(uj)∥
1

Nqm+1
qmN ′ ≤ (q1)

∑m

i=1

(
i

qi

)
C

∑m

i=1

(
1
qi

)
max {∥Φ(uj)∥N ′ , 1} .

Então, devido a (2.84) e usando o fato de que qm+1d0 = qmN
′, temos para m+ 1

∥Φ(uj)∥qm+1N ′ ≤ q
1

qm+1
m+1 C

1
qm+1 max

{
∥Φ(uj)∥qmN ′ , ∥Φ(uj)∥

1
Nqm+1
qmN ′

}

≤ (qm+1
1 )

1
qm+1C

1
qm+1 (q1)

∑m

i=1

(
i

qi

)
C

∑m

i=1

(
1
qi

)
max {∥Φ(uj)∥N ′ , 1}

= (q1)
∑m+1

i=1

(
i

qi

)
C

∑m+1
i=1

(
1
qi

)
max {∥Φ(uj)∥N ′ , 1} , ∀ j

o que mostra que (2.85) também vale para m + 1. Portanto, vale para todo m ∈ N.
Assim, por (2.79) vemos que

∥Φ(uj)∥qm+1N ′ ≤ (q1)
∑m+1

i=1

(
i

qi

)
C

∑m+1
i=1

(
1
qi

)
max {∥Φ(uj)∥N ′ , 1}

≤ (q1)
∑∞

i=1

(
i

qi

)
C

∑∞
i=1

(
1
qi

)
max

{
C̃, 1

}
=: C̄

para todo j,m ∈ N, já que

∞∑
i=1

(
i

qi
1

)
= q1

(q1 − 1)2 < ∞ e
∞∑

i=1

(
1
q1

)i

= 1
q1 − 1 < ∞.

Sabemos pelo Teorema 8.1 de [42] que, se |E| < ∞, então ∥f∥∞ = lim
p→∞

∥f∥p. Assim,
fazendo m → ∞ na desigualdade acima, temos

∥Φ(uj)∥∞ ≤ C̄, ∀ j ∈ N.

Portanto,

|uj(x)| ≤ c̃[Φ(uj(x))] 1
N ≤ c̃∥Φ(uj)∥

1
N∞ ≤ c̃C̄

1
N =: M0,

o que conclui esta prova.

2.4.2 Estimativa em C1,σ

A seguir, provaremos que as hipóteses do Teorema de Limitação Global de
Lieberman, Teorema 4.3, são válidas no nosso contexto.

Lema 2.11. Suponha que Φ é uma N -função de classe C2 que satisfaz (ϕ1) − (ϕ3) e
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f, g são funções contínuas. Então, para cada M0 > 0, as hipóteses (a) - (d) do Teorema
4.3 são válidas para as funções

A(x, z, p) = A(p) := Φ′(|p|)
|p|

p e B(x, z, p) = B(z) := f(z+) − µg(z)

para (x, z, p) ∈ Ω × [−M0,M0] × RN .

Demonstração.

(a) Precisamos mostrar que

N∑
i,j=1

aijξiξj ≥ cΦ′(|p|)
|p|

|ξ|2,

para todo p, ξ ∈ RN , onde aij = ∂Ai

∂pj
. Dada a definição de A, temos

aij(p) = ∂

∂j

(
Φ′(|p|)

|p|
pi

)
=

Φ′′(|p|)2pj |p|
2|p| − Φ′(|p|) 2pj

2|p|

|p|2
pi + Φ′(|p|)

|p|
δij

=
Φ′′(|p|) − Φ′(|p|)

|p|

|p|2
pipj + Φ′(|p|)

|p|
δij. (2.86)

Então

N∑
i,j=1

aij(p)ξiξj =
Φ′′(|p|) − Φ′(|p|)

|p|

|p|2
N∑

i,j=1
pipjξiξj + Φ′(|p|)

|p|

N∑
i,j=1

δijξiξj

=
Φ′′(|p|) − Φ′(|p|)

|p|

|p|2
⟨p, ξ⟩2 + Φ′(|p|)

|p|
|ξ|2

=
Φ′′(|p|) − Φ′(|p|)

|p|

|p|2
|p|2|ξ|2 cos2 ⟨p

ξ + Φ′(|p|)
|p|

|ξ|2.

Como Φ satisfaz (ϕ3), temos Φ′′(t) ≥ δΦ′(t)
t

para todo t > 0, com δ = m̃α > 0. Daí
segue que

N∑
i,j=1

aij(p)ξiξj ≥ (δ − 1)Φ′(|p|)
|p|

|ξ|2 cos2 ⟨ξ
p + Φ′(|p|)

|p|
|ξ|2

= Φ′(|p|)
|p|

|ξ|2[(δ − 1) cos2 ⟨ξ
p + 1]

≥


Φ′(|p|)

|p| |ξ|2 se δ ≥ 1,
δΦ′(|p|)

|p| |ξ|2 se 0 < δ < 1.

(b) Precisamos mostrar que ∑N
i,j=1 |aij| ≤ ΛΦ′(|p|)

|p| , para alguma constante Λ > 0.
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Uma vez que m̃α ≤ tΦ′′(t)
Φ′(t) ≤ c̃α para todo t > 0, tomando λ = max{|m̃α − 1|; |c̃α − 1|}

temos
|tΦ′′(t) − Φ′(t)| ≤ λΦ′(t), ∀ t > 0.

Usando (2.86) vemos que

N∑
i,j=1

|aij| ≤

∣∣∣∣∣∣
Φ′′(|p|) − Φ′(|p|)

|p|

|p|2

∣∣∣∣∣∣
N∑

i,j=1
|pipj| + Φ′(|p|)

|p|

N∑
i,j=1

δij

≤ N2

|p|
||p|Φ′′(|p|) − Φ′(|p|)| +N

Φ′(|p|)
|p|

≤ (N2λ+N)Φ′(|p|)
|p|

=: ΛΦ′(|p|)
|p|

, ∀ p ∈ RN .

(c) Temos que

|A(x, z, p) − A(y, w, p)| ≤ Λ1(1 + Φ′(|p|))[|x− y|σ + |z − w|σ],

para alguma constante Λ1 > 0. De fato, a função A depende apenas de p, obtemos
|A(x, z, p) − A(y, w, p)| = 0 para quaisquer x, y ∈ Ω, z, w ∈ R e p ∈ RN .

(d) Para algum Λ1 > 0, vale

|B| ≤ Λ1 [1 + Φ′(|p|)|p|]

para todo (x, z, p) ∈ Ω × [−M0,M0] × RN . Com efeito, as funções f e g são contínuas
e, sendo z+ = max{z, 0}, vemos que

|B(z)| = |f(z+)−µg(z)| ≤ max
z∈[0,M0]

|f(z)|+µ max
z∈[−M0,M0]

|g(z)| := Λ1 ≤ Λ1 [1 + Φ′(|p|)|p|] .

Portanto, se verificam as hipóteses do Teorem 4.3.

Logo, dada a limitação L∞ da sequência (uj), podemos aplicar o teorema de
Lieberman, Teorema 4.3, e garantir que uj ∈ C1,σ(Ω) para algum σ > 0 e

∥uj∥C1,σ(Ω) ≤ c

onde σ e c não dependem de j. Ou seja, a sequência (uj) é limitada em C1,σ(Ω).
Pela imersão compacta de C1,σ

0 (Ω) em C1
0(Ω) temos que a menos de subsequência uj

converge para u0 em C1
0(Ω).

Note que, considerando µj ≡ µ, a Proposição 2.2 garante que uµ ∈ L∞(Ω) e pelo
Teorema 4.3 temos uµ ∈ C1

0(Ω), para cada µ ∈ (0, µ0).
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2.5 Prova do teorema principal

Já sabemos que para µ ∈ (0, µ0) existe uma solução do problema auxiliar (2.15),
a qual denotamos por uµ, e uµ ∈ C1

0(Ω). Agora provaremos que, se µ0 > 0 é
suficientemente pequeno, então uµ é positiva em Ω, e portanto uma solução fraca
do Problema 2.1. Para isso, é suficiente provar que para cada sequência µj > 0, que
satisfaz µj → 0, existe uma subsequência de uj = uµj

positiva em Ω.
Considerando µj → 0, por (2.68), a menos de subsequência, cµj

converge para algum
c∗ satisfazendo

0 < c∗ <

(
KN,α

β

)N
γ

.

Pelo Teorema 2.2, a menos de subsequência (uj) converge em W 1,Φ
0 (Ω) para um ponto

crítico u de E0 no nível c∗. Como c∗ > 0, u é não trivial. Como u é uma solução fraca
não trivial do problema

 −∆Φu = f(u+) em Ω
u = 0 sobre ∂Ω,

temos, pelo Teorema 1.1, temos que u > 0 em Ω e que a derivada normal exterior é
negativa, ∂u/∂ν < 0 em ∂Ω. Lembramos que, sendo ν o vetor normal unitário exterior
sobre ∂Ω, o conjunto

A = {u ∈ C1
0(Ω);u > 0 e ∂u/∂ν < 0},

é um subconjunto aberto de C1
0(Ω). Pelos resultados da Seção 2.4 sabemos que, a menos

de subsequência, uj → u em C1
0(Ω). Consequentemente, uj ∈ A para j suficientemente

grande, o que garante que uj > 0. Isso conclui a prova do Teorema 2.1.
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Capítulo 3

Solução nodal de energia mínima
para um problema no espaço de
Orlicz-Sobolev com crescimento
crítico exponencial

Neste capítulo, investigaremos a existência de uma solução nodal, com exatamente
dois domínios nodais, para o problema


−∆Φu = f(u) em Ω,

u± ̸= 0 em Ω,
u = 0 sobre ∂Ω,

(3.1)

em que Ω ⊂ RN , com N ≥ 2, é um domínio limitado e suave, f : R → R é uma função
de classe C1 e ∆Φ denota o operador Φ-laplaciano, definido por

∆Φu = div
(

Φ′(|∇u|) ∇u
|∇u|

)
,

em que Φ : R → R é uma N -função de classe C2.

Definição 3.1. Seja u : Ω → R uma função contínua. Dizemos que u é uma função
nodal, se u muda de sinal em Ω. Além disso, o domínio nodal de u são as componentes
conexas dos conjuntos abertos

Ω+ = {x ∈ Ω : u(x) > 0} e Ω− = {x ∈ Ω : u(x) < 0}.

Neste capítulo, o nosso objetivo é mostrar que o Problema 3.1 admite pelo menos
uma solução nodal de energia mínima que possui exatamente dois domínios nodais.
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A seguir, listamos as hipóteses adotadas sobre a N -função Φ.

(ϕ1) Existe uma constante C ≥ 1 tal que, para todo t ∈
[
0, 1

C

)
, temos

tN

C
≤ Φ(t) ≤ CtN ;

(ϕ2) Para algum α ∈ [0, N − 1), vale o limite

lim
t→∞

Φ(t)
tN logα(t) = 1;

(ϕ3) Existem constantes m̃α, c̃α > 0 tais que

m̃α ≤ Φ′′(t)t
Φ′(t) ≤ c̃α, ∀ t > 0. (3.2)

Denotando cα = c̃α + 1, veja Lema 2.3, supomos também que:

(ϕ̂4) A função Φ′(t)
|t|cα−2t

é não-decrescente para t < 0 e não-crescente para t > 0;

(ϕ5) As funções t 7→ Φ′(t)t e t 7→ Φ(t) − 1
cα

Φ′(t)t são convexas para t > 0.

A seguir, apresentamos um exemplo de função Φ satisfazendo as hipóteses acima.

Exemplo 3.1. Considere a função

Φ(t) = |t|3 log(e+ |t|), ∀ t ∈ R.

Temos que Φ ∈ C2 é convexa e par e que Φ(t) = 0 se, e somente se, t = 0. Além disso,
temos

lim
t→0+

Φ(t)
t

= lim
t→0+

t2 log(e+ t) = 0, e lim
t→+∞

Φ(t)
t

= lim
t→+∞

t2 log(e+ t) = +∞.

Portanto, Φ é uma N -função. Agora verificaremos as 5 hipóteses apresentadas acima.

(ϕ1) Existe uma constante C ≥ 1 tal que, para todo t ∈
[
0, 1

C

)
, temos t3

C
≤ Φ(t) ≤ Ct3.

Como log(e+ t) → 1 quando t → 0+, temos Φ(t) ∼ t3 perto da origem. Portanto,
existe C ≥ 1 tal que para todo t ∈

[
0, 1

C

)
, vale

t3

C
≤ Φ(t) ≤ C t3.

(ϕ2) Vale o limite limt→∞
Φ(t)

t3 log(t) = 1.
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Com efeito,
lim
t→∞

Φ(t)
t3 log t = lim

t→∞

log(e+ t)
log t = 1,

(ϕ3) Para m̃α = 2 e c̃α = 3, temos m̃α ≤ Φ′′(t) t
Φ′(t) ≤ c̃α, para todo t > 0.

De fato, derivando Φ para t > 0, obtemos

Φ′(t) =
t2
(
t+ 3(t+ e) log(e+ t)

)
t+ e

e

Φ′′(t) =
t
(
−t2 + 6t(t+ e) + 6(t+ e)2 log(e+ t)

)
(t+ e)2 .

Então,
Φ′′(t) t
Φ′(t) − 2 = t(3t+ 4e)

t2 + et+ log
(
(t+ e) 3t2+6et+3e2

) > 0,

e

3 − Φ′′(t) t
Φ′(t) =

−2t2 − 3et+ log
(
(t+ e) 3t2+6et+3e2

)
(t+ e)

(
t+ 3(t+ e) log(e+ t)

) ≥ 0,

pois log(e+ t) ≥ 1 implica

log
(
(t+ e) 3t2+6et+3e2) = (3t2 + 6et+ 3e2) log(e+ t) ≥ 2t2 + 3et.

Assim,
2 ≤ Φ′′(t) t

Φ′(t) ≤ 3.

(ϕ̂4) Pondo cα = c̃α + 1 = 4, temos que a função h(t) := Φ′(t)
|t|cα−2t

é não-decrescente para
t < 0 e não-crescente para t > 0.

Consideremos, para t > 0,

h(t) = Φ′(t)
t3

= t+ 3(t+ e) log(e+ t)
t(t+ e) .

Calculando a derivada de h, temos

h′(t) =
2t2 + 3et− log

(
(t+ e) 3t2+6et+3e2

)
t2
(
t2 + 2et+ e2

) ≤ 0,

porque novamente log(e+ t) ≥ 1 torna o numerador não-positivo. Logo h é não-
crescente em (0,∞) e, por paridade de Φ′, a função t 7→ Φ′(t)/

(
|t|2 t

)
é não-decrescente

em (−∞, 0).
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(ϕ5) As funções h1(t) := Φ′(t)t e h2(t) := Φ(t) − 1
4Φ′(t)t são convexas para t > 0.

Como Φ é par, basta verificar a convexidade em (0,∞). Observe que

h1(t) = 3t3 log(e+ t) + t4

t+ e
.

Sejam A(t) := t3 log(e+ t) e B(t) := t4/(t+ e). Mostraremos que A e B são convexas.
De fato,

A′′(t) =
t
(

− t2 + 6t(t+ e) + 6(t+ e)2 log(e+ t)
)

(t+ e)2 > 0,

e

B′′(t) =
2t2
(
t2 − 4t(t+ e) + 6(t+ e)2

)
(t+ e)3 =

2t2
(
3t2 + 8et+ 6e2

)
(t+ e)3 > 0.

Portanto, A e B são convexas, o que implica a convexidade de h1. Agora, quanto a

h2(t) = 1
4

(
t3 log(e+ t) − t4

t+ e

)
,

seja C(t) := 1
4

(
t3 log(e+ t) − t4

t+e

)
. Assim para t > 0, temos

C ′′(t) = t

(t+ e)3

(
− t3 − 5et2 − 6e2t+

(
6t3 + 18et2 + 18e2t+ 6e3

)
log(e+ t)

)
> 0.

O que implica a convexidade de h2.

Supomos que a função f : R → R é de classe C1 e satisfaz as seguintes condições:

(f̂1) lim
t→0

f(t)
Φ′(t) = 0.

(f̂2) Existem C e β > 0 constantes, tais que

|f(t)| ≤ C
[
|t|N−1 + exp(βtγ)

]
∀ t ∈ R

com γ dado na Definição 0.1;

(f̂3) (Ambrosetti–Rabinowitz) Existe σ > cα tal que

0 < σF (t) ≤ tf(t), ∀ t ̸= 0.

(f̂4) A função

t 7→ f(t)
|t|cα−2t

é decrescente para t < 0 e crescente para t > 0;
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(f̂5) inf
t̸=0

F (t)
|t|σ

=: µ ≥ µ∗, onde

µ∗ := max


µδ,


δNβN

2N

(
µδ

σ

) σ
σ−mα (σ −mα)m

mα

σ−mα
α

dN,α


σ−mα

mα


,

com δ ∈ (0, 4) fixado de modo que, existam x+, x− ∈ Ω tais que B1(x+, δ) ⊂ Ω,
B2(x−, δ) ⊂ Ω, B1(x+, δ) ∩B2(x−, δ) = ∅, e

µδ := 2N Φ
(

4
δ

)
, dN,α := σ − cα

σ

(
KN,α

βN

)N
γ

,

em que βN representa a medida de Lebesgue da bola unitária B1(0) e KN,α é
dado na Definição 0.1.

A hipótese (f̂4) implica para t > 0 que

f ′(t)tcα−1 − f(t)(cα − 1)tcα−2

(tcα−1)2 > 0,

isto é,

(cα − 1)f(t)t < f ′(t)t2 ∀ t > 0. (3.3)

Exemplo 3.2. Sejam N = 3 e α = 1, neste caso, γ = 3 e cα = 4. Sejam σ > cα e
β > 0. Considere a função F : R → R dada por

F (t) = |t|σeβ|t|3

cuja derivada é
f(t) = eβt3(σtσ−1 + 3βt2+σ), t ≥ 0.

Verifica-se que f satisfaz as hipóteses (f̂1) - (f̂5).

O principal resultado do Capítulo, cuja demonstração foi inspirada, principalmente,
nos trabalhos [28] e [29] é o seguinte:

Teorema 3.1. Suponha que as condições (ϕ1) − (ϕ3), (ϕ̂4), (ϕ5) e (f̂1)-(f̂5) estejam
satisfeitas. Então o Problema 3.1 admite ao menos uma solução nodal de energia
mínima, a qual apresenta exatamente dois domínios nodais.

71



3. Solução nodal de energia mínima para um problema no espaço de Orlicz-Sobolev
com crescimento crítico exponencial

A seguir, apresentamos algumas consequências importantes decorrentes das hipó-
teses (f̂1)-(f̂5).

(1) Por (f̂3), existe uma constante c > 0 tal que

F (t) ≥ c|t|σ − c̃, ∀ t ∈ R. (3.4)

(2) Dados p ≥ 1 e ε > 0, as hipóteses (f̂1) e (f̂2) implicam que existe uma constante
C = C(p, ε) > 0 tal que

|f(t)| ≤ εΦ′(t) + C|t|p−1 exp (β|t|γ) , ∀ t ≥ 0. (3.5)

3.1 Estrutura variacional e lemas técnicos

Dizemos que u ∈ W 1,Φ
0 (Ω) é uma solução nodal fraca do Problema 3.1 se u+ ̸= 0 e

u− ̸= 0 em Ω, e se satisfaz
∫

Ω
Φ′(|∇u|) ∇u

|∇u|
∇v dx−

∫
Ω
f(u) v dx = 0, ∀ v ∈ W 1,Φ

0 (Ω).

O funcional energia J : W 1,Φ
0 (Ω) → R associado ao Problema 3.1 é dado por

J(u) :=
∫

Ω
Φ(|∇u|) dx−

∫
Ω
F (u) dx,

o qual está bem definido e é de classe C1. Sobre W 1,Φ
0 (Ω), em vista de (f̂1) e (f̂2),

motra-se que, para u ∈ W 1,Φ
0 (Ω), a derivada de J em u é dada por

J ′(u)v =
∫

Ω
Φ′(|∇u|) ∇u

|∇u|
∇v dx−

∫
Ω
f(u) v dx, ∀ v ∈ W 1,Φ

0 (Ω).

A prova do próximo resultado pode ser encontrada em [28].

Lema 3.1 ([28], Lema 2.4). Suponha que a condição (ϕ3) está satisfeita. Para t ≥ 0,
defina as funções

τ0(t) := min
{
tm̃α , tc̃α

}
e τ1(t) := max

{
tm̃α , tc̃α

}
.

Então para todo ρ, t > 0, temos

τ0(ρ) Φ′(t) ≤ Φ′(ρt) ≤ τ1(ρ) Φ′(t).

Lembre que, por (3), podemos supor m̃α = mα − 1 e c̃α = cα − 1.

72



3. Solução nodal de energia mínima para um problema no espaço de Orlicz-Sobolev
com crescimento crítico exponencial

Lema 3.2. Seja h : (0,+∞) → R uma função integrável e suponha que existe m > 1
tal que a função

s 7→ h(s)
sm−1 é crescente (resp., não-crescente) em (0,+∞).

Defina
H(s) :=

∫ s

0
h(τ) dτ.

Então a função
s 7→ sh(s) −mH(s)

é crescente (resp., não-crescente) em (0,+∞).

Demonstração. Sejam 0 < s < t. Como h(s)
(s)m−1 é crescente, temos

h(s)
sm−1 ≤ h(τ)

τm−1 ≤ h(t)
tm−1 , para todo τ ∈ [s, t].

Consequentemente,

h(s) ≤ h(τ)
τm−1 s

m−1 e h(τ) ≤ h(t)
tm−1 τ

m−1, para todo τ ∈ [s, t].

Agora, observe que

sh(s) −mH(s) = h(s)
sm−1 s

m −m
∫ s

0
h(τ) dτ

= h(s)
sm−1 s

m −mH(t) +m
∫ t

s
h(τ) dτ

<
h(t)
tm−1 s

m −mH(t) +m
∫ t

s

h(t)
tm−1 τ

m−1 dτ

= h(t)
tm−1 s

m −mH(t) + mh(t)
tm−1

(
tm − sm

m

)
= h(t)
tm−1 t

m −mH(t)

= th(t) −mH(t),

isto é,
sh(s) −mH(s) < th(t) −mH(t).

Portanto, a função s 7→ sh(s)−mH(s) é crescente. Para o caso em que a função h(s)
sm−1 é

não-crescente, basta inverter todas as desigualdades e o mesmo raciocínio usado acima
mostrará que sh(s) −mH(s) será não-crescente.
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Observação 3.1. A partir do lema anterior, em conjunto com as hipóteses (ϕ̂4) e (f̂4),
obtemos as seguintes propriedades:

(a) Para todo t > 0, a função t 7→ tf(t)−cαF (t) é crescente. Em particular, a função

1
cα

f(t)t− F (t)

também é crescente para t > 0.

(b) Para todo t > 0, a função t 7→ Φ′(t)t−cαΦ(t) é não-crescente. Consequentemente,
a função

Φ(t) − 1
cα

Φ′(t)t

é não-decrescente para t > 0. Pelo mesmo argumento, dado que σ > cα, a função

Φ(t) − 1
σ

Φ′(t)t

também é não-decrescente para t > 0.

Lema 3.3. Seja u ∈ W 1,Φ
0 (Ω), com ∥u∥ ≤ ρ, onde ρ ∈

(
0,min

{(
KN,α

β

) 1
γ , 1

})
, e seja

p > cα. Então, existe uma função η = η(ρ) > 0 tal que
∫

Ω
|u|p exp (β|u|γ) dx ≤ η(ρ)

∫
Ω

Φ′ (|∇u|) |∇u| dx. (3.6)

Além disso, tem-se que η(ρ) → 0 quando ρ → 0+.

Demonstração. Fixe r > 1 suficientemente próximo de 1 de modo que ainda se tenha

ργ < min
{
KN,α

βr
, 1
}
. (3.7)

Aplicando a desigualdade de Hölder, à função à esquerda de (3.6), com os expoentes
conjugados r e r′ := r

r−1 , obtemos

∫
Ω

|u|p exp (β|u|γ) dx ≤
(∫

Ω
|u|r′p dx

) 1
r′
(∫

Ω
exp (βr|u|γ) dx

) 1
r

≤
(∫

Ω
|u|r′p dx

) 1
r′
[∫

Ω
exp

(
∥u∥γβr

(
|u|
∥u∥

)γ)
dx

] 1
r

.

Pela condição (3.7), temos
βr∥u∥γ ≤ βrργ < KN,α.

Além disso, como ∥u/∥u∥∥ = 1, podemos aplicar a desigualdade de Trudinger-Moser,
Teorema 4.4, juntamente com a imersão contínua W 1,Φ

0 (Ω) ↪→ Lr′p(Ω) e a equivalência
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entre as normas ∥u∥ e ∥∇u∥Φ para obter

∫
Ω

|u|p exp (β|u|γ) dx ≤ c2

(∫
Ω

|u|r′p dx
) 1

r′

≤ c4∥u∥p

≤ c5∥∇u∥p−cα

Φ · ∥∇u∥cα
Φ

≤ c6ρ
p−cα∥∇u∥cα

Φ .

Como ∥∇u∥Φ ≤ ρ < 1, segue do Lema 1.5, que
∫

Ω
Φ(|∇u|) dx ≥ ξ0(∥∇u∥Φ) = ∥∇u∥cα

Φ .

Combinando isso com (3) e substituindo acima, temos
∫

Ω
|u|p exp (β|u|γ) dx ≤ c6ρ

p−cα

∫
Ω

Φ(|∇u|) dx

≤ c6

mα

ρp−cα

∫
Ω

Φ′(|∇u|)|∇u| dx

= η(ρ)
∫

Ω
Φ′(|∇u|)|∇u| dx,

onde η(ρ) := c6/mα · ρp−cα > 0. Como p > cα, temos η(ρ) → 0 quando ρ → 0+, como
queríamos provar.

3.1.1 A variedade nodal de Nehari: definição e propriedades

Associado ao funcional J , definimos a variedade de Nehari

N :=
{
u ∈ W 1,Φ

0 (Ω) \ {0} ; J ′(u)u = 0
}
.

Para provar o Teorema 3.1, mostraremos que existe w ∈ M tal que

J(w) = min
v∈M

J(v) =: c∗,

onde M é definido por

M :=
{
w ∈ N ; w± ̸= 0, e J ′(w)w± = 0

}
.

O conjunto M é denominado de Variedade Nodal de Nehari.
No lema a seguir, provaremos que M ⊂ N é precisamente o conjunto das funções

w ∈ N cujas partes positiva e negativa, w+ e w−, também pertencem a N .
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Lema 3.4. Seja w ∈ M. Então, J ′(w±)w± = 0. Em particular,

M =
{
w ∈ N ; w± ∈ N

}
.

Demonstração. Seja w ∈ M. Como w+ e w− têm suportes disjuntos, segue que

0 = J ′(w)w+ =
∫

Ω
Φ′(|∇w|) ∇w

|∇w|
∇w+ dx−

∫
Ω
f(w)w+ dx

=
∫

Ω
Φ′(|∇w+|)|∇w+| dx−

∫
Ω
f(w+)w+ dx = J ′(w+)w+.

Isso implica que w+ ∈ N . Desde que, por (f̂3), f(t) ≤ 0 para t ≤ 0, concluímos de
modo análogo, que w− ∈ N , o que mostra que

M ⊂
{
w ∈ N ; w+, w− ∈ N

}
.

A recíproca é direta da definição de M. Logo, a igualdade é válida.

Agora provaremos algumas propriedades da Variedade de Nehari.

Lema 3.5. (a) Para todo u ∈ N , vale a estimativa

J(u) ≥
(
σ − cα

σ

)
ξ0
(
∥∇u∥Φ

)
;

(b) Existe r > 0 tal que ∥u∥ ≥ r para todo u ∈ N . Em particular, tem-se que
∥w±∥ ≥ r para todo w ∈ M.

Demonstração. (a) Seja u ∈ N . Pela hipótese (f̂3), temos

J(u) = J(u) − 1
σ
J ′(u)u ≥

∫
Ω

Φ(|∇u|) dx− 1
σ

∫
Ω

Φ′(|∇u|)|∇u| dx.

Aplicando o Lema 1.3 juntamente com (3), obtemos

J(u) ≥
∫

Ω
Φ(|∇u|) dx− cα

σ

∫
Ω

Φ(|∇u|) dx

=
(
σ − cα

σ

) ∫
Ω

Φ(|∇u|) dx

≥
(
σ − cα

σ

)
ξ0 (∥∇u∥Φ) .

(b) Suponha, por contradição, que exista uma sequência (un) ⊂ N tal que un → 0
em W 1,Φ

0 (Ω) e ∥un∥ ≤ ρ, com ρ > 0 satisfazendo as hipóteses do Lema 3.3. Como
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(un) ⊂ N , segue que
∫

Ω
Φ′(|∇un|)|∇un| dx−

∫
Ω
f(un)un dx = 0. (3.8)

Considere p > cα > 1 e fixe ε > 0 de modo que

1 − εcαc̃

mα

<
1
2 .

A partir da estimativa (3.5), da Desigualdade de Poincaré, Proposição 1.2, e de (3),
segue que existe uma constante C > 0 tal que

∫
Ω
f(un)un dx ≤ ε

∫
Ω

Φ′(|un|)|un| dx+ C
∫

Ω
|un|p exp(β|un|γ) dx

≤ εcα

∫
Ω

Φ(|un|) dx+ C
∫

Ω
|un|p exp(β|un|γ) dx

≤ εcαc̃
∫

Ω
Φ(|∇un|) dx+ C

∫
Ω

|un|p exp(β|un|γ) dx,

onde c̃ é a constante associada à Desigualdade de Poincaré. Utilizando essa estimativa
e, mais uma vez, (3) em (3.8), obtemos

0 =
∫

Ω
Φ′(|∇un|)|∇un| dx−

∫
Ω
f(un)un dx

≥
∫

Ω
Φ′(|∇un|)|∇un| dx− εcαc̃

mα

∫
Ω

Φ′(|∇un|)|∇un| dx− C
∫

Ω
|un|p exp(β|un|γ) dx.

(3.9)

Seja ρ > 0 suficientemente pequeno de modo que η(ρ)C < 1/2 em que η(ρ) é dada pelo
Lema 3.3. Assim,

∫
Ω

|un|p exp(β|un|γ) dx ≤ η(ρ)
∫

Ω
Φ′(|∇un|)|∇un| dx. (3.10)

Como un ̸= 0 (pois un ∈ N ), ao substituirmos (3.10) em (3.9), obtemos

0 =
∫

Ω
Φ′(|∇un|)|∇un| dx− εcαc̃

∫
Ω

Φ(|∇un|) dx− Cηn(r)
∫

Ω
Φ′(|∇un|)|∇un| dx

≥
(

1 − εcαc̃

mα

− Cη(ρ)
) ∫

Ω
Φ′(|∇un|)|∇un| dx > 0,

o que é uma contradição. Logo, não existe sequência (un) ⊂ N tal que un → 0.
Portanto, existe r > 0 tal que ∥u∥ ≥ r para todo u ∈ N .

Lema 3.6. Seja v ∈ W 1,Φ
0 (Ω) tal que v+ ̸= 0 e v− ̸= 0. Então, existem t, s > 0 tais

que
J ′
(
tv+ + sv−

)
(v+) = 0 e J ′

(
tv+ + sv−

)
(v−) = 0.
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Demonstração. Como o funcional J é de classe C1 sobre W 1,Φ
0 (Ω), temos que a função

V : (0,+∞) × (0,+∞) → R2 definida por

V (t, s) =
(
J ′
(
tv+ + sv−

)
(tv+), J ′

(
tv+ + sv−

)
(sv−)

)
é contínua. Observe que

J ′
(
tv+ + sv−

)
(tv+) =

∫
Ω

Φ′
(∣∣∣∇(tv+ + sv−)

∣∣∣) ∇(tv+ + sv−)
|∇(tv+ + sv−)|∇(tv+) dx

−
∫

Ω
f
(
tv+ + sv−

)
tv+ dx

=
∫

Ω
Φ′
(
|∇(tv+)|

)
|∇(tv+)| dx−

∫
Ω
f(tv+)tv+ dx, (3.11)

onde usamos o fato de que os suportes de v+ e v− são disjuntos. Para t > 0
suficientemente pequeno, podemos aplicar o Lema 3.3 juntamente com (3.5), além
de (3) e da desigualdade de Poincar, Proposição 1.2, a fim de obter
∫

Ω
f(tv+) · tv+ dx ≤ ε

∫
Ω

Φ′
(
|tv+|

)
|tv+| dx+ C

∫
Ω

|tv+|p exp
(
β|tv+|γ

)
dx

≤ εcα

∫
Ω

Φ
(
|tv+|

)
dx+ Cη(ρ)

∫
Ω

Φ′
(
|∇tv+|

)
|∇tv+| dx

≤ εcαc1

∫
Ω

Φ
(
|∇tv+|

)
dx+ Cη(ρ)

∫
Ω

Φ′
(
|∇tv+|

)
|∇tv+| dx. (3.12)

De modo análogo ao procedimento adotado no Lema 3.3, fixamos ε > 0 tal que

1 − εcαc1

mα

<
1
2 ,

e tomamos η(ρ) suficientemente pequeno tal que Cη(ρ) < 1
2 . Substituindo a estimativa

(3.12) na expressão (3.11) e utilizando novamente (3), obtemos para todo s > 0

J ′
(
tv+ + sv−

)
(tv+) ≥

∫
Ω

Φ′
(
|∇(tv+)|

)
|∇tv+| dx− εcαc1

∫
Ω

Φ
(
|∇tv+|

)
dx.

− Cη(ρ)
∫

Ω
Φ′(|∇(tv+)|)|∇tv+| dx

≥
(

1 − εcαc1

mα

− Cη(ρ)
) ∫

Ω
Φ′(|∇(tv+)|)|∇tv+| dx > 0.

De forma análoga, para s > 0 suficientemente pequeno, obtemos para todo t > 0, que

J ′
(
tv+ + sv−

)
(sv−) ≥

(
1 − εcαc1

mα

− Cη(ρ)
) ∫

Ω
Φ′
(
|∇(sv−)|

)
|∇sv−| dx > 0.

78



3. Solução nodal de energia mínima para um problema no espaço de Orlicz-Sobolev
com crescimento crítico exponencial

Resumindo, existe r > 0 suficientemente pequeno de modo que

J ′
(
rv+ + sv−

)
(rv+) > 0 para todo s > 0,

J ′
(
tv+ + rv−

)
(rv−) > 0 para todo t > 0.

(3.13)

Por outro lado, das hipóteses (f̂3), (f̂5) e de (3), segue que

J ′
(
tv+ + sv−

)
(tv+) =

∫
Ω

Φ′
(
|∇(tv+)|

)
|∇tv+| dx−

∫
Ω
f(tv+) · tv+ dx

≤ cα

∫
Ω

Φ
(
|∇tv+|

)
dx− µσtσ

∫
Ω
(v+)σ dx.

Assim, pelo Lema 1.5, e como σ > cα, conclui-se que, para t > 0 suficientemente
grande,

J ′
(
tv+ + sv−

)
(tv+) ≤ cαt

cαξ1
(
∥∇v+∥

)
− µσtσ

∫
Ω
(v+)σ dx < 0 ∀ s > 0.

De forma análoga, para s > 0 suficientemente grande, temos

J ′
(
tv+ + sv−

)
(sv−) < 0, para todo t > 0.

Portanto, existe R > r tal que

J ′
(
Rv+ + sv−

)
(Rv+) < 0, para todo s > 0,

J ′
(
tv+ +Rv−

)
(Rv−) < 0, para todo t > 0.

(3.14)

Combinando as estimativas (3.13), (3.14) e usando o Teorema de Miranda, Teorema
4.1, o resultado está provado.

Corolário 3.1. O conjunto M é não vazio.

Demonstração. Pelo lema anterior, dado v ∈ W 1,Φ
0 (Ω) tal que v± ̸= 0, existem t, s > 0

satisfazendo
J ′
(
tv+ + sv−

)
(v±) = 0.

Em particular, a função w0 := tv+ + sv− pertence a M. Logo, M ≠ ∅.

Lema 3.7. Sob as condições do Lema 3.6, os números t, s > 0 são únicos.

Demonstração. Suponha que v = v+ + v− ∈ M e que existam t, s > 0 tais que
tv+ + sv− ∈ M. Nosso objetivo é provar que t = s = 1. Como v ∈ M, temos

J ′(v+ + v−)(v+) = 0,
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isto é, ∫
Ω

Φ′
(
|∇v+|

)
|∇v+| dx =

∫
Ω
f(v+) · v+ dx.

Logo, ∫
Ω

Φ′ (|∇v+|)
|∇v+|cα−1 |∇v+|cα dx =

∫
Ω

f(v+)
(v+)cα−1 (v+)cα dx. (3.15)

Por outro lado, como tv+ + sv− ∈ M, temos

J ′(tv+ + sv−)(tv+) = 0,

isto é, ∫
Ω

Φ′
(
|∇(tv+)|

)
|∇(tv+)| dx =

∫
Ω
f(tv+) · tv+ dx,

de onde segue que

∫
Ω

Φ′ (|∇(tv+)|)
|∇(tv+)|cα−1 |∇(tv+)|cα dx =

∫
Ω

f(tv+)
(tv+)cα−1 (tv+)cα dx. (3.16)

Suponha, por absurdo, que t > 1. Subtraindo a expressão (3.15) da (3.16), temos

0 ≥
∫

Ω

Φ′ (|∇(tv+)|)
|∇(tv+)|cα−1 |∇(tv+)|cα dx−

∫
Ω

Φ′ (|∇v+|)
|∇v+|cα−1 |∇v+|cα dx

=
∫

Ω

f(tv+)
(tv+)cα−1 (tv+)cα dx−

∫
Ω

f(v+)
(v+)cα−1 (v+)cα dx > 0,

onde usamos as hipóteses (ϕ̂4) e (f̂4), que asseguram que, para t > 0,

t 7→ Φ′(t)
tcα−1 é não-crescente, e t 7→ f(t)

tcα−1 é crescente.

Obtemos, assim, uma contradição. Por um argumento análogo, provamos que também
não ocorre t < 1, o que nos leva à conclusão de que t = 1. Analogamente, prova-se que
s = 1.

Lema 3.8. Se (wn) ⊂ N , então

lim inf
n→∞

∫
Ω
f(wn)wn dx > 0.

Demonstração. Como (wn) ⊂ N , temos, para todo n ∈ N,

∫
Ω

Φ′ (|∇wn|) |∇wn| dx =
∫

Ω
f(wn)wn dx.

Por (3), obtemos ∫
Ω
f(wn)wn dx ≥ mα

∫
Ω

Φ(|∇wn|) dx.
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Pelos Lemas 1.5 e 3.3, existe ρ > 0 tal que ∥wn∥ ≥ ρ para todo n. Logo,
∫

Ω
Φ(|∇wn|) dx ≥ ξ0 (∥wn∥) ≥ ξ0(ρ),

pois ξ0 é crescente e, portanto,
∫

Ω
f(wn)wn dx ≥ mαξ0(ρ) > 0,

o que implica
lim inf

n→∞

∫
Ω
f(wn)wn dx ≥ mαξ0(ρ) > 0.

O mesmo raciocínio usado no lema acima se aplica às sequências (w±
n ) ⊂ N .

3.2 Um teorema auxiliar

Seguindo ideias de [28], vamos definir uma função auxiliar e um campo gradiente
associados ao funcional J , os quais desempenharão um papel central, especialmente na
aplicação de um lema de deformação.

Para cada v ∈ W 1,Φ
0 (Ω) com v± ̸= 0, considere a função hv : [0,+∞)×[0,+∞) → R,

dada por
hv(t, s) := J(tv+ + sv−),

e o campo vetorial associado

Υv(t, s) :=
(
∂hv(t, s)

∂t
,
∂hv(t, s)
∂s

)
=
(
J ′(tv+ + sv−)v+, J ′(tv+ + sv−)v−

)
.

Mais explicitamente, temos

Υv(t, s)=
(∫

Ω

[
Φ′(|∇(tv+)|)|∇v+|−f(tv+)v+

]
dx,

∫
Ω

[
Φ′(|∇(sv−)|)|∇v−|−f(sv−)v−

]
dx
)
.

Para cada (t, s) ∈ [0,+∞) × [0,+∞), considere a matriz Hessiana de hv, que coincide
com a matriz Jacobiana do campo vetorial Υv, dada por

(Υv)′(t, s) =

∂Υv
1(t,s)
∂t

∂Υv
1(t,s)
∂s

∂Υv
2(t,s)
∂t

∂Υv
2(t,s)
∂s

 .
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Calculando as derivadas parciais, obtemos

∂Υv
1

∂s
= ∂Υv

2
∂t

= 0;

∂Υv
1

∂t
= d

dt

(∫
Ω

Φ′
(
t|∇v+|

)
|∇v+| dx−

∫
Ω
f(tv+)v+ dx

)
=
∫

Ω
Φ′′
(
t|∇v+|

)
|∇v+|2 dx−

∫
Ω
f ′(tv+)(v+)2 dx;

∂Υv
2

∂s
= d

ds

(∫
Ω

Φ′
(
s|∇v−|

)
|∇v−| dx−

∫
Ω
f(sv−)v− dx

)
=
∫

Ω
Φ′′
(
s|∇v−|

)
|∇v−|2 dx−

∫
Ω
f ′(sv−)(v−)2 dx.

Portanto, a matriz Jacobiana de Υv em (s, t) é diagonal e assume a forma

∫

Ω[Φ′′(t|∇v+|)|∇v+|2−f ′(tv+)(v+)2] dx 0

0
∫

Ω[Φ′′(s|∇v−|)|∇v−|2−f ′(sv−)(v−)2] dx

 .
A seguir, demonstraremos um resultado auxiliar que será fundamental nas etapas

posteriores.

Teorema 3.2. Seja w ∈ M. Então, valem as seguintes propriedades:
(a) Para todo t, s ≥ 0, com (t, s) ̸= (1, 1), temos

hw(t, s) < hw(1, 1) = J(w).

(b) A matriz Jacobiana de Υw no ponto (1, 1) é tal que

det ((Υw)′(1, 1)) > 0.

Demonstração. (a) Como w ∈ M, temos que

J ′(w)w± = J ′(w+ + w−)w± = 0.

Logo,

Υw(1, 1) =
(
∂hw

∂t
(1, 1), ∂h

w

∂s
(1, 1)

)
= (0, 0). (3.17)

Afirmação 3.1.
lim

|(t,s)|→+∞
hw(t, s) = −∞.
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De fato, sabemos que

J(tw+ + sw−) =
∫

Ω
Φ
(
|∇(tw+ + sw−)|

)
dx−

∫
Ω
F (tw+ + sw−) dx. (3.18)

Sabemos, pelo Lema 1.5, que para t, s ≫ 1 vale
∫

Ω
Φ
(
|∇(tw+ + sw−)|

)
dx ≤ ξ1

(
∥∇(tw+ + sw−)∥Φ

)
≤ ξ1

(
t∥w+∥ + s∥w−∥

)
=
(
t∥w+∥ + s∥w−∥

)cα

≤ 2cα−1
(
tcα∥w+∥cα + scα∥w−∥cα

)
. (3.19)

Além disso, usando o fato de que as funções w+ e w− possuem suportes disjuntos, e
pela hipótese (f̂5), obtemos

∫
Ω
F (tw+ + sw−) dx =

∫
Ω
F (tw+) dx+

∫
Ω
F (sw−) dx

≥ c1

∫
Ω
(tw+)σ dx+ c2

∫
Ω

|sw−|σ dx− c3

= c1t
σ
∫

Ω
(w+)σ dx+ c2s

σ
∫

Ω
|w−|σ dx− c3. (3.20)

Portanto, substituindo (3.19) e (3.20) em (3.18), obtemos

J(tw+ + sw−) ≤ 2cα−1
(
tcα∥w+∥cα + scα∥w−∥cα

)
− c1t

σ
∫

Ω
(w+)σ dx− c2s

σ
∫

Ω
|w−|σ dx+ c3.

Como σ > cα, segue que

J(tw+ + sw−) → −∞ quando t → +∞ ou s → +∞.

Isso conclui a prova da Afirmação 3.1. Portanto, (1, 1) é um ponto crítico da função
hw e, além disso, hw possui um ponto de máximo global, que denotamos por (a, b).
Observe que (a, b) ̸= (0, 0), isto é, não ocorre a = b = 0. De fato,

J(aw+ + bw−) = hw(a, b) ≥ hw(1, 1) = J(w).

Para estimar J(w), utilizamos o fato de que w ∈ M, em conjunto (3) e a hipótese (f̂3),
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conforme descrito a seguir:

J(w) ≥ 1
cα

∫
Ω

Φ′(|∇w|)|∇w| dx− 1
σ

∫
Ω
f(w)w dx

=
( 1
cα

− 1
σ

) ∫
Ω

Φ′(|∇w|)|∇w| dx

=
(
σ − cα

σcα

) ∫
Ω

Φ′(|∇w|)|∇w| dx > 0.

Unindo esse fato à desigualdade anterior, concluímos que hw(a, b) > 0. Como
hw(0, 0) = J(0) = 0, segue que o ponto de máximo (a, b) de hw não ocorre na origem
(0, 0).

Afirmação 3.2. Temos que a, b > 0.

Primeiro, provaremos que se b = 0 então a ≤ 1. Para isso, suponha, por contradição,
que b = 0. Nesse caso, temos

J ′(aw+)aw+ = 0,

o que implica que
∫

Ω
Φ′(|∇(aw+)|)|a∇w+| dx =

∫
Ω
f(aw+)aw+ dx.

Agora, aplicando o Lema 3.1, obtemos

τ(a)a
∫

Ω
Φ′(|∇w+|)|∇w+| dx ≥

∫
Ω
f(aw+)aw+ dx,

onde τ(a) := min{am̃α , ac̃α}. Como, pela Observação 3, τ(a)a = ξ1(a), segue que

∫
Ω

Φ′(|∇w+|)|∇w+| dx ≥
∫

Ω

f(aw+)aw+

ξ1(a) dx. (3.21)

Por outro lado, como J ′(w+)w+ = 0, temos
∫

Ω
Φ′(|∇w+|)|∇w+| dx =

∫
Ω
f(w+)w+ dx. (3.22)

Se a > 1, subtraindo (3.21) de (3.22) e utilizando que w+ > 0 (pois w ∈ M) e a
hipótese (f̂4), obtemos

0 ≤
∫

Ω
f(w+)w+ dx−

∫
Ω

f(aw+)
ξ1(a) aw+ dx

=
∫

Ω

f(w+)
(w+)cα−1 (w+)cα dx−

∫
Ω

f(aw+)
(aw+)cα−1 (aw+)cα dx

< 0, (3.23)
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o que é um absurdo. Com isso provamos que b = 0 implica a ≤ 1, como afirmamos.
Agora, continuemos supondo por absurdo b = 0. Assim,

hw(a, 0) = J(aw+) = J(aw+) − 1
cα

J ′(aw+)(aw+)

=
∫

Ω

[
Φ(a|∇w+|) − 1

cα

Φ′(a|∇w+|)a|∇w+|
]
dx

+
∫

Ω

[ 1
cα

f(aw+)aw+ − F (aw+)
]
dx.

De acordo com a Observação 3.1 e o fato de a ≤ 1, temos

hw(a, 0) ≤
∫

Ω

[
Φ(|∇w+|) − 1

cα

Φ′(|∇w+|)|∇w+|
]
dx+

∫
Ω

[ 1
cα

f(w+)w+ − F (w+)
]
dx.

Além disso, ainda pela Observação 3.1, temos que

Φ(|∇w−|) − 1
cα

Φ′(|∇w−|)|∇w−| ≥ 0 e 1
cα

f(w−)w− − F (w−) > 0.

Usando essas informações na última desigualdade, obtemos

hw(a, 0) <
∫

Ω

[
Φ(|∇w+|) − 1

cα

Φ′(|∇w+|)|∇w+|
]
dx

+
∫

Ω

[ 1
cα

f(w+)w+ − F (w+)
]
dx

+
∫

Ω

[
Φ(|∇w−|) − 1

cα

Φ′(|∇w−|)|∇w−|
]
dx

+
∫

Ω

[ 1
cα

f(w−)w− − F (w−)
]
dx.

Como os suportes de w+ e w− são disjuntos, segue da última desigualdade que

hw(a, 0) <
∫

Ω
[Φ(|∇w|) − F (w)] dx+ 1

cα

∫
Ω

[f(w)w − Φ′(|∇w|)|∇w|] dx.

= J(w) − 1
cα

J ′(w)w = J(w) = hw(1, 1),

o que é um absurdo. Portanto, b > 0. Analogamente, podemos mostrar que a > 0.
Isso conclui a demonstração da Afirmação 3.2.

Afirmação 3.3. Temos que a, b ≤ 1.

Suponha, sem perda de generalidade, que a ≥ b. Como o ponto (a, b) é um ponto
crítico de hw, pois (a, b) ∈ (0,+∞) × (0,+∞), então

0 = J ′(aw+ + bw−)(aw+) =
∫

Ω
Φ′(a|∇w+|)a|∇w+| dx−

∫
Ω
f(aw+)aw+ dx.
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Assim, argumentando de modo análogo ao feito em (3.23), se supusermos a > 1,
obtemos uma contradição com a hipótese (f̂3), que garante que f(t)

tcα−1 é crescente. Logo,
a ≤ 1. Como b ≤ a, segue que b ≤ 1, o que prova a Afirmação 3.3.

Afirmação 3.4. A função hw não admite ponto de máximo global no conjunto
[0, 1] × [0, 1] \ {(1, 1)}.

Para demonstrar essa afirmação, basta mostrar que se a < 1 ou b < 1, então

hw(a, b) < hw(1, 1).

Note que

hw(a, b) = J(aw+ + bw−)

= J(aw+ + bw−) − 1
cα

J ′(aw+ + bw−)(aw+ + bw−)

=
∫

Ω
Φ
(
|∇(aw+ + bw−)|

)
dx−

∫
Ω
F (aw+ + bw−) dx

− 1
cα

∫
Ω

Φ′
(
|∇(aw+ + bw−)|

)
|∇(aw+ + bw−)| dx

+ 1
cα

∫
Ω
f(aw+ + bw−)(aw+ + bw−) dx.

Como os suportes de w+ e w− são disjuntos, segue que

|∇(aw+ + bw−)| = a|∇w+| + b|∇w−| ≤ |∇w+| + |∇w−| = |∇w|.

Assim, obtemos

hw(a, b) =
∫

Ω
Φ
(
|∇(aw+ + bw−)|

)
dx−

∫
Ω
F (aw+ + bw−) dx

− 1
cα

∫
Ω

Φ′
(
|∇(aw+ + bw−)|

)
|∇(aw+ + bw−)| dx

+ 1
cα

∫
Ω
f(aw+ + bw−)(aw+ + bw−) dx

≤
∫

Ω
Φ(|∇w|) dx− 1

cα

∫
Ω

Φ′(|∇w|)|∇w| dx

+ 1
cα

∫
Ω
f(aw+ + bw−)(aw+ + bw−) dx−

∫
Ω
F (aw+ + bw−) dx.

Mais uma vez, como os suportes de w+ e w− são disjuntos, temos

hw(a, b) ≤
∫

Ω
Φ(|∇w|) dx− 1

cα

∫
Ω

Φ′(|∇w|)|∇w| dx

+
∫

Ω

[ 1
cα

f(aw+)aw+ − F (aw+)
]
dx+

∫
Ω

[ 1
cα

f(bw−)bw− − F (bw−)
]
dx.
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Usando a Observação 3.1 e o fato de que a < 1 ou b < 1, segue que

hw(a, b) <
∫

Ω
Φ(|∇w|) dx− 1

cα

∫
Ω

Φ′(|∇w|)|∇w| dx

+
∫

Ω

[ 1
cα

f(w+)w+ − F (w+)
]
dx+

∫
Ω

[ 1
cα

f(w−)w− − F (w−)
]
dx.

Usando novamente o fato de que w+ e w− possuem suportes disjuntos, obtemos

hw(a, b) <
∫

Ω
Φ(|∇w|) dx− 1

cα

∫
Ω

Φ′(|∇w|)|∇w| dx+ 1
cα

∫
Ω
f(w)w dx−

∫
Ω
F (w) dx

= J(w) − 1
cα

J ′(w)w = J(w) = hw(1, 1),

como queríamos demonstrar, e a prova do item (a) está completa. Agora provaremos
o item(b). Considere as seguintes notações:

Υw
1 (t, s) := J ′(tw+ + sw−)w+ e Υw

2 (t, s) := J ′(tw+ + sw−)w−.

Dessa forma, temos

Υw
1 (t, s) =

∫
Ω

Φ′
(∣∣∣∇(tw+)

∣∣∣) ∣∣∣∇w+
∣∣∣ dx−

∫
Ω
f(tw+)w+ dx,

e
Υw

2 (t, s) =
∫

Ω
Φ′
(∣∣∣∇(sw−)

∣∣∣) ∣∣∣∇w−
∣∣∣ dx−

∫
Ω
f(sw−)w− dx.

Portanto, aplicando as funções Υw
1 e Υw

2 no ponto (1, 1), segue de (3.17) que
∫

Ω
Φ′
(
|∇w+|

)
|∇w+| dx =

∫
Ω
f(w+)w+ dx, (3.24)

e ∫
Ω

Φ′
(
|∇w−|

)
|∇w−| dx =

∫
Ω
f(w−)w− dx.

Agora, calculando as derivadas parciais de Υw
1 e Υw

2 , obtemos

∂Υw
1 (t, s)
∂t

=
∫

Ω
Φ′′
(
t|∇w+|

)
|∇w+|2 dx−

∫
Ω
f ′
(
tw+

)
(w+)2 dx;

∂Υw
2 (t, s)
∂s

=
∫

Ω
Φ′′
(
s|∇w−|

)
|∇w−|2 dx−

∫
Ω
f ′
(
sw−

)
(w−)2 dx;

∂Υw
1 (t, s)
∂s

= ∂Υw
2 (t, s)
∂t

= 0.
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Segue da hipótese (ϕ3) e da Observação 3 juntamente com (3.24) e (3.3), que

∂Υw
1

∂t
(1, 1) =

∫
Ω

Φ′′
(
|∇w+|

)
|∇w+|2 dx−

∫
Ω
f ′
(
w+

)
(w+)2 dx

≤ (cα − 1)
∫

Ω
Φ′
(
|∇w+|

)
|∇w+| dx−

∫
Ω
f ′
(
w+

)
(w+)2 dx

= (cα − 1)
∫

Ω
f(w+)w+ dx−

∫
Ω
f ′
(
w+

)
(w+)2 dx < 0.

Analogamente, obtemos
∂Υw

2
∂s

(1, 1) < 0.

Como
∂Υw

1
∂s

(1, 1) = ∂Υw
2

∂t
(1, 1) = 0,

temos
det ((Υw)′(1, 1)) = ∂Υw

1
∂t

(1, 1) · ∂Υw
2

∂s
(1, 1) > 0.

3.3 Prova do Teorema 3.1

Começamos esta seção seguindo a abordagem apresentada em [29], com o objetivo
de obter uma estimativa para o nível de energia mínima associado ao funcional J , dado
por

c∗ := inf
v∈M

J(v). (3.25)

Em seguida, com base nas ideias desenvolvidas em [28], demonstraremos que existe
w ∈ M satisfazendo

J(w) = min
v∈M

J(v)

e que w é ponto crítico de J , isto é, w é uma solução nodal de energia mínima para o
Problema 3.1. Por fim, provaremos que w possui exatamente dois domínios nodais.
Seguindo ideias de [29], fixe 0 < δ < 4 tal que B(x+, δ) ⊂ Ω, B(x−, δ) ⊂ Ω e
B(x+, δ) ∩B(x−, δ) = ∅, e defina a função

ϕ(x) =


1, se x ∈ B1,

0, se x ∈ Ω \B2,
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com |∇ϕ(x)| ≤ 4
δ
, de forma que ϕ ∈ C∞

c (Ω). A partir dela, construa a função

ζ(x) = ϕ

(
2(x− x+)

δ

)
− ϕ

(
2(x− x−)

δ

)
, de modo que ζ ∈ C∞(Ω).

Note que

|x− x+| ≥ δ ⇒
∣∣∣∣∣x− x+

δ/2

∣∣∣∣∣ ≥ 2 ⇒ ϕ

(
x− x+

δ/2

)
= 0.

Aplicando um argumento análogo à segunda parcela de ζ obtemos

supp(ζ±) ⊂ Ω.

Lembrando que σ > cα, |∇ϕ| ≤ 4
δ
, ϕ ≤ 1, e que assumimos, na hipótese (f̂5), que

µ ≥ µ∗ ≥ µδ := 2NΦ
(

4
δ

)
, então, aplicando o Lema 1.5, obtemos, para todo t ≥ 1,

J(tζ+) ≤ tcα

∫
Bδ(x+)

Φ(|∇ϕ|) dx− µtσ
∫

Bδ(x+)
ϕσ dx

< tcα

[
Φ
(

4
δ

)
|Bδ| − 2NΦ

(
4
δ

)
|Bδ/2|

]
= tcαΦ

(
4
δ

) [
βNδ

N − βN

(
δ
2

)N
· 2N

]
= 0.

Analogamente, obtemos J(tζ−) < 0 para todo t ≥ 1, observando que |ζ−| = | − ϕ| > 0
em um subconjunto de medida positiva de B(δ, x−). Como J(0) = 0, segue que

max
t>0

J(tζ+) ∈ [0, 1] e max
t>0

J(tζ−) ∈ [0, 1].

No próximo resultado, obteremos uma estimativa para o nível de energia mínima
(3.25).

Lema 3.9. Suponha que a hipótese (f̂5) é satisfeita e considere o valor dN,α lá definido.
Então, c∗ < dN,α para c dado em (3.25).

Demonstração. Primeiro, note que, por definição, ζ+ ̸= 0 e ζ− ̸= 0. Assim, pelo
Lema 3.6, existem t̃, s̃ ̸= 0 tais que a combinação t̃ζ+ + s̃ζ− ∈ M. Como ζ+ e ζ− têm
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suportes disjuntos, segue que

c∗ ≤ J(t̃ζ+ + s̃ζ−) = J(t̃ζ+) + J(s̃ζ−)

≤ max
t>0

J(tζ+) + max
t>0

J(tζ−)

= max
t∈[0,1]

(∫
B1

Φ(t|∇ζ+|) dx−
∫

B1
F (tζ+) dx

)
+ max

t∈[0,1]

(∫
B2

Φ(t|∇ζ−|) dx−
∫

B2
F (tζ−) dx

)
.

Agora, utilizando a hipótese (f̂5) e o Lema 1.5, obtemos

c∗ ≤ max
t∈[0,1]

(∫
B1
tmαΦ(|∇ζ+|) dx− µtσ

∫
B1

(ζ+)σ dx
)

+ max
t∈[0,1]

(∫
B2
tmαΦ(|∇ζ−|) dx− µtσ

∫
B2

|ζ−|σ dx
)
.

Lembrando que 0 ≤ |ζ±| ≤ 1, e que para t ∈ [0, 1] vale tσ < tmα , pois σ > mα,
concluímos que

c∗ < max
t∈[0,1]

[
|Bδ| Φ

(
4
δ

)
tmα + |Bδ| Φ

(
4
δ

)
tσ − 2|Bδ/2|µtσ

]
= max

t∈[0,1]

[
δNβNΦ

(
4
δ

)
tmα + δNβNΦ

(
4
δ

)
tσ − 2δ

N

2N
βNµt

σ

]
.

Pela hipótese (f̂5), µ ≥ 2NΦ
(

4
δ

)
=: µδ. Assim,

c∗ < max
t∈[0,1]

δNβN2N Φ
(

4
δ

)
tmα + δNβN2N Φ

(
4
δ

)
tσ − δNβN2N Φ

(
4
δ

)
tσ

2N
− µ tσ δNβN

2N


= δNβN

2N
max
t∈[0,1]

[
2N Φ

(
4
δ

)
tmα − µ tσ

]
= δNβN

2N
max
t∈[0,1]

[µδ t
mα − µ tσ] .

Portanto,

c∗ <
δNβN

2N

(
µδ

σ

) σ
σ−mα (σ −mα)m

mα
σ−mα
α

1
µ

mα
σ−mα

. (3.26)

Pela hipótese (f̂5), temos

µ >

 δN βN

2N

(
µδ

σ

) σ
σ−mα (σ −mα)m

mα
σ−mα
α

dN,α


σ−mα

mα

,
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ou seja,
δN βN

2N

(
µδ

σ

) σ
σ−mα (σ −mα)m

mα
σ−mα
α

dN,α

< µ
mα

σ−mα ,

isto é,
δNβN

2N

(
µδ

σ

) σ
σ−mα (σ −mα)m

mα
σ−mα
α

1
µ

mα
σ−mα

< dN,α.

Substituindo essa desigualdade em (3.26), obtemos

c∗ < dN,α,

como queríamos demonstrar.

Lema 3.10. Considere o valor c∗ definido em (3.25). Se (wn) ⊂ M é uma sequência
minimizante de J . Então

∫
Ω

Φ(|∇wn|) dx ≤ σc∗

σ − cα

+ on(1).

Em particular, a sequência (wn) é limitada em W 1,Φ
0 (Ω).

Demonstração. De fato, como (wn) ⊂ M é uma sequência minimizante de J , segue
que

c∗ + on(1) = J(wn) = J(wn) − 1
σ
J ′(wn)wn

=
∫

Ω

[
Φ(|∇wn|) − 1

σ
Φ′(|∇wn|)|∇wn|

]
dx

+ 1
σ

∫
Ω

[f(wn)wn − σF (wn)] dx.

Agora, utilizando a hipótese (f̂3) e o Lema 1.5, obtemos

c∗ + on(1) ≥
∫

Ω
Φ(|∇wn|) dx− cα

σ

∫
Ω

Φ(|∇wn|) dx = σ − cα

σ

∫
Ω

Φ(|∇wn|) dx.

Portanto, ∫
Ω

Φ(|∇wn|) dx ≤ σc∗

σ − cα

+ on(1), ∀n ≥ 1.

Em particular, concluímos que a sequência (wn) é limitada em W 1,Φ
0 (Ω), pois

min {∥∇wn∥mα , ∥∇wn∥cα} ≤
∫

Ω
Φ(|∇wn|) dx.
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Lema 3.11. Existe n0 ∈ N e uma constante

c̄ <

(
KN,α

β

)N
γ

tais que ∫
Ω

Φ(|∇wn|) dx ≤ c̄, ∀n ≥ n0.

Demonstração. De fato, pelos Lemas 3.9 e 3.10, temos que, a menos de uma
subsequência

lim
n→∞

∫
Ω

Φ(|∇wn|) dx ≤ σc∗

σ − cα

<

(
KN,α

β

)N
γ

.

Portanto, existem n0 ∈ N e uma constante σc∗

σ−cα
≤ c̄ < (KN,α/β)

N
γ tais que, a menos

de uma subsequência, ∫
Ω

Φ(|∇wn|) dx ≤ c̄, ∀n ≥ n0.

Lema 3.12. Valem as seguintes convergências:

(a) ∫
Ω
f(wn)wn dx →

∫
Ω
f(w)w dx;

(b) ∫
Ω
F (wn) dx →

∫
Ω
F (w) dx;

(c) ∫
Ω
f(w±

n )w±
n dx →

∫
Ω
f(w±)w± dx.

Demonstração.

(a) Pela desigualdade triangular, temos
∣∣∣∣∫

Ω
f(wn)wn dx−

∫
Ω
f(w)w dx

∣∣∣∣ ≤
∣∣∣∣∫

Ω
f(wn)w dx−

∫
Ω
f(w)w dx

∣∣∣∣
+
∣∣∣∣∫

Ω
f(wn)(wn − w) dx

∣∣∣∣ .
Portanto, a convergência da integral

∫
Ω
f(wn)wn dx →

∫
Ω
f(w)w dx

ocorre quando verificarem-se simultaneamente os limites:
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(a1)
∫

Ω
|f(wn)w − f(w)w| dx → 0;

(a2)
∫

Ω
|f(wn)(wn − w)| dx → 0.

Para provar o item (a1), notamos que wn(x) → w(x) q.t.p. x ∈ Ω. Como f

é contínua, segue que f(wn(x))w → f(w(x))w q.t.p. x ∈ Ω. Agora, seja E ⊂ Ω
um conjunto mensurável arbitrário. Pelo Lema 3.11, podemos aplicar a desigualdade
de Trudinger–Moser, Lema 2.6. Combinando esse resultado com a hipótese (f̂2) e a
desigualdade de Hölder, garantimos que existe q > 1 suficientemente próximo de 1, tal
que

∫
E

|f(wn)w| dx ≤ C
∫

E

(
|wn|N−1 + exp(β|wn|γ)

)
|w| dx

≤ c1

(∫
E

|wn|N dx
)N−1

N
(∫

E
|w|N dx

) 1
N

+ c2

(∫
E

|w|q′
dx
) 1

q′
(∫

Ω
exp(qβ|wn|γ) dx

) 1
q

≤ c3

(∫
E

|w|N dx
) 1

N

+ c4

(∫
E

|w|q′
dx
) 1

q′
< ∞,

onde q′ := q
q−1 . Portanto, a sequência (f(wn)w) é equi-integrável, Definição 4.1. Logo,

pelo Teorema de Vitali, Teorema 4.2, concluímos que

f(wn)w → f(w)w em L1(Ω).

Quanto ao item (a2), obtemos, de modo análogo, que

∫
Ω

|f(wn)(wn − w)| dx ≤ c5

(∫
Ω

|wn − w|N dx
) 1

N

+ c6

(∫
Ω

|wn − w|q′
dx
) 1

q′
→ 0,

em virtude da imersão compacta de W 1,Φ
0 (Ω) em Lp(Ω) para todo p ∈ (1,∞), e do fato

de que a convergência fraca

wn ⇀ w em W 1,Φ
0 (Ω)

implica, a menos de subsequência, que wn → w fortemente em LN(Ω) e em Lq′(Ω).

(b) Como wn(x) → w(x) q.t.p. x ∈ Ω e F é contínua, segue que F (wn(x)) → F (w(x))
q.t.p. x ∈ Ω. Além disso, no item (a) demonstramos que

f(wn)wn → f(w)w em L1(Ω).

93



3. Solução nodal de energia mínima para um problema no espaço de Orlicz-Sobolev
com crescimento crítico exponencial

Pela hipótese (f̂3), temos que

0 < F (wn) ≤ 1
σ
f(wn)wn, ∀n ∈ N.

Assim, podemos aplicar o Teorema da Convergência Dominada Generalizado para
concluir que ∫

Ω
F (wn) dx →

∫
Ω
F (w) dx.

(c) O resultado segue de forma análoga ao demonstrado no item (a), bastando considerar
w±

n e w± no lugar de wn e w, respectivamente.

Lema 3.13. Existe w ∈ M tal que

J(w) = inf
v∈M

J(v).

Demonstração. Pelo Corolário 3.1, temos M ̸= ∅. Além disso, pelo Lema 3.5, segue
que

c∗ = inf
v∈M

J(v) > 0.

Portanto, existe uma sequência minimizante (wn) ⊂ M, a qual, pelo Lema 3.5,
é limitada. Assim, pela imersão de Sobolev, a menos de subsequência, existem
w,w1, w2 ∈ W 1,Φ

0 (Ω) tais que

wn ⇀ w, w+
n ⇀ w1, w−

n ⇀ w2 em W 1,Φ
0 (Ω).

Assim, a menos de subsequência,

wn → w, w+
n → w1, w−

n → w2 em Lq(Ω), para todo q ∈ [1,∞),

e
wn(x) → w(x), w+

n (x) → w1(x), w−
n (x) → w2(x) q.t.p. x ∈ Ω.

Dessa forma, concluímos que w1(x) = w+(x) e w2(x) = w−(x) q.t.p. x ∈ Ω. Como as
aplicações w 7→ w+ e w 7→ w−, de Lq(Ω) em Lq(Ω), são contínuas – isso decorre do
Lema 2.2 de [14] – segue que w+ = w1 e w− = w2. Além disso, pelas convergências
demonstradas no Lema 3.12, juntamente com o Lema 3.8, obtemos que w ̸= 0, w+ ̸= 0
e w− ̸= 0. Dessa forma, pelo Lema 3.6, existem t, s > 0 tais que

J ′(tw+ + sw−)w+ = 0 e J ′(tw+ + sw−)w− = 0,

isto é, w̃ := tw+ + sw− ∈ M.
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Afirmação 3.5. Os valores t e s satisfazem t ≤ 1 e s ≤ 1.

Como J ′(w+
n )w+

n = 0, segue que
∫

Ω
Φ′(|∇w+

n |)|∇w+
n | dx =

∫
Ω
f(w+

n )w+
n dx.

Pela hipótese (ϕ̂4) e o Teorema 4.5, obtemos

∫
Ω

Φ′(|∇w+|)
|∇w+|cα−1 |∇w+|cα dx ≤

∫
Ω

f(w+)(w+)cα

(w+)cα−1 dx.

Por outro lado, como J ′(tw+ + sw−) tw+ = 0, segue que

∫
Ω

Φ′(|t∇w+|)
|t∇w+|cα−1 |t∇w+|cα dx =

∫
Ω

f(tw+)
(tw+)cα−1 (tw+)cα dx.

Combinando essa desigualdade com a anterior, e utilizando as hipóteses (ϕ̂4) e (f̂4),
concluímos que 0 < t ≤ 1. De fato, suponha, por absurdo, que t > 1. Então, teríamos

0 ≥
∫

Ω

[
Φ′(|t∇w+|)
|t∇w+|cα−1 |t∇w+|cα − Φ′(|∇w+|)

|∇w+|cα−1 |∇w+|cα

]
dx

≥
∫

Ω

[
f(tw+)

(tw+)cα−1 (tw+)cα − f(w+)(w+)cα

(w+)cα−1

]
dx > 0,

o que é uma contradição. Portanto, necessariamente 0 < t ≤ 1. Da mesma forma
prova-se que 0 < s ≤ 1 ao considerar-se a função w−.

Afirmação 3.6. O ínfimo c∗ = inf
v∈M

J(v) é atingido no ponto w̃ ∈ M.

Pelo que acabamos de provar, existem 0 < t, s ≤ 1 tais que

w̃ := tw+ + sw− ∈ M,

em que w é o limite fraco da sequência (wn) em W 1,Φ
0 (Ω), visto no Lema 3.13. Além

disso, temos

c∗ ≤ J(tw+ + sw−) = J(tw+ + sw−) − 1
cα

J ′(tw+ + sw−)(tw+ + sw−)

=
∫

Ω
Φ(t|∇w+| + s|∇w−|) dx− 1

cα

∫
Ω

Φ′(t|∇w+| + s|∇w−|)(t|∇w+| + s|∇w−|) dx

+ 1
cα

∫
Ω
f(tw+ + sw−)(tw+ + sw−) dx−

∫
Ω
F (tw+ + sw−) dx.
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Assim, pela Observação 3.1, obtemos

c∗ ≤ J(tw+ + sw−)

≤
∫

Ω

[
Φ(|∇w+| + |∇w−|) − 1

cα

Φ′(|∇w+| + |∇w−|)(|∇w+| + |∇w−|)
]
dx

+
∫

Ω

[ 1
cα

f(w+ + w−)(w+ + w−) − F (w+ + w−)
]
dx. (3.27)

Note que a diferença

Φ(|∇w+| + |∇w−|) − 1
cα

Φ′(|∇w+| + |∇w−|)(|∇w+| + |∇w−|) (3.28)

é uma função convexa. De fato, pois se trata da composição da função

t 7→ Φ(t) − 1
cα

Φ′(t)t,

a qual, para t > 0, é convexa e não-decrescente, conforme a hipótese (ϕ5) e a
Observação 3.1, respectivamente, com a aplicação

x 7→ |∇w+(x)| + |∇w−(x)|,

a qual é convexa por ser soma de funções convexas. Além disso, a função dada em
(3.28) é contínua. Assim, podemos aplicar o Teorema 4.5 em (3.27). Ademais, em
virtude da condição de Ambrosetti–Rabinowitz, imposta em (f̂3), é possível também
utilizar, em (3.27), o Lema de Fatou, Lema 4.1, e daí concluímos

c∗ ≤ J(tw+ + sw−)

≤ lim inf
n→∞

∫
Ω

[
Φ
(
|∇w+

n | + |∇w−
n |
)

− 1
cα

Φ′
(
|∇w+

n | + |∇w−
n |
) (

|∇w+
n | + |∇w−

n |
)]
dx

+ lim inf
n→∞

∫
Ω

[ 1
cα

f(w+
n + w−

n )(w+
n + w−

n ) − F (w+
n + w−

n )
]
dx

= lim inf
n→∞

∫
Ω

[Φ(|∇wn|) − F (wn)] dx− 1
cα

∫
Ω

[Φ′(|∇wn|)|∇wn| − f(wn)wn] dx

≤ lim inf
n→∞

[
J(wn) − 1

cα

J ′(wn)(wn)
]
.

Como (wn) ⊂ M, concluímos que

c∗ ≤ J(tw+ + sw−) ≤ lim inf
n→∞

J(wn) = c∗.

Portanto, c∗ = J(tw+ + sw−), ou seja, a função w̃ := tw+ + sw− atinge o ínfimo
c∗ = inf

v∈M
J(v), como afirmamos.
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Afirmação 3.7. w̃ = w, isto é, t = s = 1.

Suponha, por absurdo, que 0 < t < 1. De modo análogo ao argumento apresentado
anteriormente, utilizando a Observação 3.1, obtemos

c∗ ≤ J(tw+ + sw−)

=
∫

Ω
Φ(t|∇w+| + s|∇w−|) dx− 1

θ

∫
Ω

Φ′(t|∇w+| + s|∇w−|)(t|∇w+| + s|∇w−|) dx

+ 1
θ

∫
Ω
f(tw+ + sw−)(tw+ + sw−) dx−

∫
Ω
F (tw+ + sw−) dx

<
∫

Ω
Φ(|∇w+| + |∇w−|) dx− 1

θ

∫
Ω

Φ′(|∇w+| + |∇w−|)(|∇w+| + |∇w−|) dx

+ 1
θ

∫
Ω
f(w+ + w−)(w+ + w−) dx−

∫
Ω
F (w+ + w−) dx ≤ c∗,

o que é um absurdo. Portanto, t ≥ 1. O mesmo raciocínio se aplica no caso em que
s < 1, conduzindo novamente a uma contradição. Logo, concluímos que t = s = 1,
como queríamos demonstrar. Portanto, w ∈ M e atinge o ínfimo de J em M, o que
conclui a prova do Lema 3.13.

3.3.1 Lema de deformação

Seguindo ideias de [28], aplicaremos a seguir um lema de deformação.

Lema 3.14. Considere w ∈ M dado no Lema 3.13. Então existe 0 < δ < 1 tal que o
quadrado aberto

Dδ = (1 − δ, 1 + δ) × (1 − δ, 1 + δ) ⊂ R2

satisfaz as seguintes propriedades:

1. (1, 1) ∈ Dδ e
Υw(t, s) = (0, 0) em D ⇐⇒ (t, s) = (1, 1);

2. c∗ /∈ hw(∂Dδ);

3. Dado r > 0, podemos tomar δ > 0 tal que

{tw+ + sw− ; (t, s) ∈ Dδ} ⊂ B(r, w) ⊂ W 1,Φ
0 (Ω),

em que as funções hw e Υw são aquelas previamente definidas na Seção 3.2.

Demonstração.

97



3. Solução nodal de energia mínima para um problema no espaço de Orlicz-Sobolev
com crescimento crítico exponencial

1) De fato, como w ∈ M ⊂ N , segue que

Υw(1, 1) = (J ′(w)w+, J ′(w)w−) = (0, 0).

Reciprocamente, como a matriz Jacobiana (Υw)′(1, 1) é invertível, pelo Teorema da
Função Inversa, existem uma bola aberta B(ϵ, (1, 1)) ⊂ R2, com ϵ > 0, e uma
vizinhança aberta V ⊂ R2 contendo (0, 0) tais que

Υw
∣∣∣
B(ϵ,(1,1))

: B(ϵ, (1, 1)) → V

é um difeomorfismo de classe C1(B(ϵ, (1, 1))). Seja δ > 0 tal que Dδ ⊂ B(ϵ, (1, 1)).
Como Υw(1, 1) = (0, 0) e Υw é injetiva em B(ϵ, (1, 1)), temos que Υw(t, s) = (0, 0) se,
e somente se, (t, s) = (1, 1) para (t, s) ∈ Dδ.

2) Para provar que c∗ /∈ hw(∂Dδ), basta mostrar que

J(tw+ + sw−) > c∗, para todo (t, s) ∈ ∂Dδ.

De fato, sabemos que J(w) = c∗ e J ′(w)w± = 0. Vimos acima que (t, s) = (1, 1) ∈ Dδ

é o único ponto da vizinhança Dδ tal que tw+ + sw− ∈ M. Como J atinge seu mínimo
global em M no ponto w, e não há outros pontos de Dδ que pertençam a M, conclui-se
que

J(tw+ + sw−) > c∗, para todo (t, s) ∈ Dδ \ {(1, 1)}.

Em particular, isso vale para todo ponto da fronteira ∂Dδ, o que implica

c∗ /∈ hw(∂Dδ).

3) Seja (t, s) ∈ Dδ. Dado r > 0, considere δ < r/∥w∥. Então

∥tw+ + sw− − w∥ = ∥(t− 1)w+ + (s− 1)w−∥ ≤ δ∥w+∥ + δ∥w−∥ = δ∥w∥ < r.

Usando um lema de deformação e argumentos de [9] provaremos o resultado a seguir.

Lema 3.15. Seja w ∈ M dado no Lema 3.13. Então, w é um ponto crítico de J .

Demonstração. Suponha, por contradição, que J ′(w) ̸= 0. Então existem ε > 0 e
v0 ∈ W 1,Φ

0 (Ω), com ∥v0∥ = 1, tais que

J ′(w)v0 = 2ε > 0.
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Como J ′ é contínuo, existe r > 0 tal que

J ′(v)v0 ≥ ε, para todo v ∈ B(r, w).

Seja Dδ ⊂ R2 o conjunto construído no Lema 3.14. Note que, por construção, temos

∂
(
{tw+ + sw−; (t, s) ∈ Dδ}

)
= {tw+ + sw−; (t, s) ∈ ∂Dδ}.

Escolhemos agora um raio r′ ∈ (0, r) tal que

B := B(r′, w) ⊂ B(r, w) e B ∩ {tw+ + sw−; (t, s) ∈ ∂Dδ} = ∅, (3.29)

ou seja,
B ∩ ∂

(
{tw+ + sw−; (t, s) ∈ Dδ}

)
= ∅.

Agora, definimos o mapa contínuo ρ : W 1,Φ
0 (Ω) → [0,∞) dado por

ρ(u) = dist (u,Bc) ,

e o campo vetorial V : W 1,Φ
0 (Ω) → W 1,Φ

0 (Ω), dado por

V(u) = −ρ(u) v0.

O campo V é Lipschitz e limitado. De fato, como a função distância ρ é Lipschitz,
temos

∥V(u) − V(v)∥
∥u− v∥

= ∥ρ(v)v0 − ρ(u)v0∥
∥u− v∥

= |ρ(v) − ρ(u)|
∥u− v∥

≤ c,

onde c > 0 é a constante de Lipschitz de ρ. Além disso, como 0 ≤ ρ(u) ≤ r′ e ∥v0∥ = 1,
segue que V é limitado por r′, ou seja,

∥V(u)∥ ≤ r′, ∀u ∈ W 1,Φ
0 (Ω).

Agora, para cada u ∈ W 1,Φ
0 (Ω), denotamos por η(τ) = η(τ, u) a solução do seguinte

problema de Cauchy: 
η′(τ) = V(η(τ)), τ > 0,

η(0) = u.

Pelo Teorema de Existência e Unicidade para Equações Diferenciais Ordinárias com
valor inicial, esse problema admite uma solução local única η(τ, u), definida em um
intervalo aberto contendo τ = 0. Além disso, como o campo V é limitado, segue que a
solução η pode ser estendida para todo τ ∈ R.
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Afirmação 3.8. Existe τ0 > 0 tal que, para todo τ ∈ [0, τ0], a deformação contínua
η(τ, u) satisfaz as seguintes propriedades:

(1) η(τ, u) = u, para todo u /∈ B;

(2) A aplicação τ 7→ J(η(τ, u)) é estritamente decrescente, sempre que η(τ, u) ∈ B;

(3) J(η(τ, w)) ≤ J(w) − r′ετ

2 .

(1) Note que, se u /∈ B, então ρ(u) = 0. Nesse caso, o campo vetorial satisfaz V(u) = 0,
de modo que a única solução do problema de Cauchy é a função constante η(τ, u) ≡ u,
para todo τ ≥ 0.

(2) Se η(τ) ∈ B ⊂ B(r, w), segue da condição em r que J ′(η(τ))v0 ≥ α > 0. Além disso,
como η(τ) ∈ B, temos

ρ(η(τ)) := dist(η(τ),Bc) > 0.

Dessa forma, derivando J em relação a τ , para todo η(τ) ∈ B, obtemos

d

dτ
J(η(τ)) = J ′(η(τ))η′(τ) = −ρ(η(τ))J ′(η(τ))v0 ≤ −ρ(η(τ))ε < 0.

Portanto, J(η(τ)) é decrescente com respeito a τ .

(3) Seja τ0 > 0 tal que η(τ, w) ∈ B para todo τ ∈ [0, τ0]. Podemos assumir, sem perda
de generalidade, que

∥η(τ, w) − w∥ ≤ r′

2 , ∀ τ ∈ [0, τ0],

isto é, η(τ, w) ∈ B( r′

2 , w) ⊂ B para todo τ ∈ [0, τ0]. Logo,

ρ(η(τ, w)) = dist(η(τ, w),Bc) ≥ r′

2 , ∀ τ ∈ [0, τ0].

Portanto,
d

dτ
J(η(τ, w)) ≤ −ρ(η(τ, w))ε ≤ −r′ε

2 ,

Integrando a desigualdade obtida sobre o intervalo [0, τ ], para 0 < τ ≤ τ0, obtemos

J(η(τ, w)) − J(w) =
∫ τ

0

d

ds
J(η(s, w)) ds ≤ −

∫ τ

0

r′ε

2 ds = −r′ε

2 τ.

Logo,
J(η(τ, w)) ≤ J(w) − r′ε

2 τ,

concluindo assim a prova da Afirmação 3.8. Agora considere ητ0 : Dδ → W 1,Φ
0 (Ω) a

100



3. Solução nodal de energia mínima para um problema no espaço de Orlicz-Sobolev
com crescimento crítico exponencial

aplicação dada por

ητ0(t, s) = η(τ0, tw
+ + sw−),

para a qual vale a estimativa

max
(t,s)∈D

J(ητ0(t, s)) < c∗. (3.30)

Com efeito, pelo item (2) da Afirmação 3.8 juntamente com o Teorema Auxiliar 3.2 e
a condição inicial η(0, u) = u, segue que, para todo (t, s) ∈ D \ {(1, 1)},

J(ητ0(t, s)) = J(η(τ0, tw
+ + sw−))

≤ J(η(0, tw+ + sw−))

= J(tw+ + sw−)

= hw(t, s) < hw(1, 1) = c∗.

Já no caso (t, s) = (1, 1), pelo item (3) da Afirmação 3.8, temos

J(ητ0(1, 1)) := J(η(τ0, w
+ + w−)) = J(η(τ0, w)) ≤ J(w) − r′ετ0

2 < J(w) < c∗,

concluindo assim a prova da desigualdade (3.30). Assim, obtemos que ητ0(Dδ)∩M = ∅,
ou seja,

ητ0(t, s) /∈ M, ∀ (t, s) ∈ Dδ. (3.31)

Por fim, definimos a aplicação Λτ0 : Dδ → R2 dada por

Λτ0(t, s) =
J ′

(
ητ0(t, s)

)(
ητ0(t, s)+

)
t

,
J ′
(
ητ0(t, s)

)(
ητ0(t, s)−

)
s

 .
Pela condição (3.29) e pelo item (1) da Afirmação 3.8, temos que, para todo (t, s) ∈ ∂Dδ

Λτ0(t, s) =
(
J ′(tw+ + sw−)w+, J ′(tw+ + sw−)w−

)
= Υw(t, s).

Como as funções Λτ0 e Υw coincidem na fronteira, segue da definição de Grau de
Brouwer, da Propriedade d6 do grau do Capítulo 3 de [25] e do Teorema Auxiliar 3.2,
que

deg(Λτ0 , Dδ, (0, 0)) = deg(Υw, Dδ, (0, 0)) = sgn (det ((Υw)′(1, 1))) = 1.

Portanto, a aplicação Λτ0 possui um zero no interior de Dδ, ou seja, existem (t̄, s̄) ∈ Dδ
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tais que
Λτ0(t̄, s̄) = (0, 0),

o que implica
J ′
(
ητ0(t̄, s̄)

)(
ητ0(t̄, s̄)±

)
= 0.

Logo, ητ0(t̄, s̄) ∈ M, contradizendo (3.31), uma vez que (t̄, s̄) ∈ Dδ. Essa contradição
mostra que nossa suposição inicial estava incorreta, e, portanto, w é de fato um ponto
crítico de J .

Lema 3.16. Seja w ∈ M dado no Lema 3.13. Então, w possui exatamente dois
domínios nodais.

Demonstração. Suponha, por absurdo, que w possui três domínios nodais, ou seja,
suponha que existam conjuntos abertos Ωi ⊂ Ω, para i = 1, 2, 3, tais que w > 0 em Ω1,
Ω3 e w < 0 em Ω2. Agora considere as funções wi : Ω → R dadas por

wi(x) =

 w(x), se x ∈ Ωi,

0, se x ∈ Ω \ Ωi.

Note que w1 > 0 em Ω1, w2 < 0 em Ω2, w3 > 0 em Ω3 e

Ω = Ω1 ∪̇ Ω2 ∪̇ Ω3 ∪̇ Ω̂,

em que Ω̂ = {x ∈ Ω; w(x) = 0}. Além disso, w = w1 + w2 + w3 e os suportes de wi e
wj são disjuntos para i ̸= j, com i, j = 1, 2, 3. Como J ′(w) = 0, temos

J ′(w1 + w2)w1 = 0 = J ′(w1 + w2)w2.

Desde que 0 ̸= w1 = (w1 + w2)+ e 0 ̸= w2 = (w1 + w2)−, pelo Teorema 3.6 existem
t, s ∈ (0, 1] tais que t(w1 + w2)+ + s(w1 + w2)− ∈ M, ou seja, tw1 + sw2 ∈ M. Assim,
segue que

J(tw1 + sw2) ≥ c∗. (3.32)

Por outro lado, como 0 ̸= w3 ∈ N , temos J(w3) > 0. Usando o Teorema Auxiliar 3.2,
obtemos

J(tw1 + sw2) ≤ J(w1 + w2) < J(w1 + w2) + J(w3) = J(w) = c∗,

o que contradiz (3.32). Portanto, w possui exatamente dois domínios nodais.

A prova do Teorema 3.1 segue agora dos Lemas 3.13, 3.15 e 3.16.
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Capítulo 4

Resultados auxiliares

O resultado a seguir pode ser encontrado em [36].

Teorema 4.1 (Teorema de Miranda). Seja G = {x ∈ RN ; |xi| ≤ L, 1 ≤ i ≤ N}.
Suponha que a aplicação F = (f1, f2, . . . , fN) : Ḡ → RN é contínuo no fecho Ḡ de G e
F (x) ̸= 0 para x na fronteira ∂G de G, e

1. fi(x1, x2, . . . , xi−1,−L, xi+1, . . . , xn) ≥ 0, 1 ≤ i ≤ N

2. fi(x1, x2, . . . , xi−1,+L, xi+1, . . . , xn) ≤ 0, 1 ≤ i ≤ N .

Então, F (x) = 0 tem uma solução em G.

Definição 4.1. Dizemos que (un), uma sequência de funções de L1(Ω), é equi-integrável
se a seguinte condição é satisfeita: para todo ε > 0, existe um conjunto mensurável A,
de medida finita, e δ > 0 tais que


∀n ≥ 1,

∫
Ac

|un(x)| dx < ε,

∀E ⊂ Ω, mensurável com |E| < δ,
∫

E
|un(x)| dx < ε.

Observa-se que, no caso particular em que Ω é de medida finita, a equi-integrabilidade
se reduz à segunda condição.

O teorema a seguir pode ser encontrado na página 13 em [43].

Teorema 4.2 (Teorema de Vitali). Seja (un) uma sequência de funções em L1(Ω) que
converge q.t.p. em Ω para uma função mensurável u. Então, un → u em L1(Ω) se, e
somente se, (un) é equi-integrável.

Apresentamos, conforme utilizado no Capítulo 2, o seguinte resultado clássico
de regularidade para soluções de equações elípticas quasilineares, apresentado por
Lieberman, no Teorema 1.7, de [34].
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Seja ϕ : [0,∞) → [0,∞) uma função de classe C1, derivada de uma função convexa
Φ ∈ C2([0,∞)), que satisfaz a condição de crescimento:

0 < δ ≤ ϕ(t)t
Φ(t) ≤ ϕ0, ∀ t > 0, (4.1)

para constantes δ, ϕ0 > 0.
Suponha que as funções A(x, z, p), B(x, z, p) : Ω × R × RN → R satisfaçam as

seguintes condições:

(a) ∑N
i,j=1 a

ijξiξj ≥ ϕ(|p|)
|p| |ξ|2;

(b) ∑N
i,j=1 |aij| ≤ Λϕ(|p|)|p|;

(c) |A(x, z, p) − A(y, w, p)| ≤ Λ1(1 + ϕ(|p|))[|x− y|σ + |z − w|σ];

(d) |B| ≤ Λ1(1 + ϕ(|p|)|p|);

em que aij = ∂Ai

∂pj
, para constantes positivas σ ≤ 1, Λ, Λ1.

Teorema 4.3 (Teorema de Regularidade Global de Lieberman). Seja M0 > 0 e
suponha que as condições (a) − (d) sejam satisfeitas para x, y ∈ Ω, z ∈ [−M0,M0]
e p, ξ ∈ RN . Assuma também que (4.1) seja válida com ϕ ∈ C1. Então, toda solução
fraca u ∈ W 1,Φ(Ω) de

Qu := div(A(x, u,Du)) +B(x, u,Du) = 0, em Ω

com |u| ≤ M0 em Ω, pertence a C1,τ (Ω) para algum τ > 0 e

∥u∥C1,τ (Ω′) ≤ C (σ,Λ, ϕ0, N,Λ1, dist(Ω′, ∂Ω),M0) ,

para todo aberto Ω′ ⊂⊂ Ω.

Observação 4.1 ([34]). A mesma estimativa de Hölder vista no teorema acima, é
válida em Ω quando u ∈ W 1,Φ

0 (Ω) é solução do problema com condição de fronteira de
Dirichlet, sob as mesmas condições (a) − (d).

Em ([19], Teorema 1.1), encontramos teorema a seguir, cuja demonstração se baseia
em [33], [20], [17] e [27].

Teorema 4.4 (Desigualdade de Trudinger-Moser). Sejam K ≥ 0, N ≥ 2 e α < N −1.
Seja Φ uma função de Young satisfazendo a hipótese (ϕ2) dos capítulos acima, isto é,

lim
t→+∞

Φ(t)
tN logα(t) = 1,
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para algum α ∈ [0, N − 1). Então,

1. Se u ∈ W 1,Φ
0 (Ω), temos

∫
Ω

exp(K|u(x)|γ)dx < ∞;

2. Se K < KN,α e u ∈ W 1,Φ
0 (Ω) é tal que ∥∇u∥Φ ≤ 1, temos
∫

Ω
exp(K|u(x)|γ)dx < C(N,α,Φ, K).

Antes de enunciarmos o próximo teorema, vejamos a seguinte caracterização.
Sejam I : X → (−∞,+∞] um funcional definido em um espaço de Banach X e

uma sequência (un) ⊂ X. Quando a convergência un ⇀ u implica

lim inf
n→∞

I(un) ≥ I(u),

dizemos que I é fracamente semicontínuo inferiormente.
O teorema a seguir pode ser encontrado em ([11], Observação 6, Capítulo 3).

Teorema 4.5 ([11]). Seja X um espaço de Banach. Se I : X → (−∞,+∞) é um
funcional convexo e contínuo, então I é fracamente semicontínuo inferiormente.

Teorema 4.6 (Teorema da Convergência Dominada de Lebesgue). Seja (fn) uma
sequência de funções mensuráveis em um conjunto mensurável Ω ⊂ RN , e suponha
que:

1. fn(x) → f(x) q.t.p. x ∈ Ω;

2. Existe g ∈ L1(Ω) tal que |fn(x)| ≤ g(x), para todo n ∈ N, q.t.p. x ∈ Ω.

Então,

1. f ∈ L1(Ω);

2. lim
n→∞

∫
Ω
fn(x) dx =

∫
Ω
f(x) dx.

Teorema 4.7 (Teorema da Convergência Monótona). Seja (fn) uma sequência de
funções mensuráveis não negativas em um conjunto mensurável Ω ⊂ RN , tal que

1. fn(x) ≤ fn+1(x) para todo n ∈ N e quase todo x ∈ Ω;

2. fn(x) → f(x) quase em todo ponto de Ω.
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Então,
lim

n→∞

∫
Ω
fn(x) dx =

∫
Ω
f(x) dx.

Lema 4.1 (Lema de Fatou). Seja (fn) uma sequência de funções em L1(Ω) que satisfaz:

1. Para todo n, fn ≥ 0 q.t.p. em Ω;

2. supn

∫
Ω fn < ∞.

Para quase todo x ∈ Ω, definimos

f(x) := lim inf
n→∞

fn(x) ≤ +∞.

Então, f ∈ L1(Ω) e
lim inf

n→∞

∫
Ω
fn(x) dx ≥

∫
f(x) dx.

O resultado a seguir encontra-se em [12].

Lema 4.2 (Brezis–Lieb). Seja Φ uma função de Young e seja Ω ⊂ RN um conjunto
mensurável. Considere u ∈ LΦ(Ω) e uma sequência (un) de funções em LΦ(Ω) tal que

1. un → u quase em todo ponto de Ω;

2. a sequência (un) é limitada em LΦ(Ω).

Então, ∫
Ω

Φ(|un|) dx−
∫

Ω
Φ(|un − u|) dx −→

∫
Ω

Φ(|u|) dx.

Agora, enunciaremos dois lemas de [19].
Se tivermos u ∈ W 1,Φ

0 (Ω) tal que a menos de subsequência:

uj ⇀ u em W 1,Φ
0 (Ω),

uj → u em Lp(Ω), para todo p ∈ [1,∞),

uj(x) → u(x) q.t.p. x ∈ Ω,

(4.2)

Então, os lemas a seguir, encontrados em [19], garantem que:

Lema 4.3. A menos de subsequência temos

∇uj(x) −→ ∇u(x) q.t.p. x ∈ Ω,

Lema 4.4. A menos de subsequência temos
∫

Ω
Φ′(|∇uj|)

∇uj

|∇uj|
· ∇v dx −→

∫
Ω

Φ′(|∇u|) ∇u
|∇u|

· ∇v dx, ∀ v ∈ C∞
c (Ω).
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