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Resumo da Dissertação apresentada ao PPGMMC/CI/UFPB como parte dos requisitos

necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

FORMULAÇÃO VARIACIONAL DE ELEMENTOS FINITOS ESTABILIZADOS

APLICADO AO PROBLEMA DE VIGA DE TIMOSHENKO COM GEOMETRIA

ARBITRÁRIA NO ESPAÇO TRIDIMENSIONAL

Anderson Kerlly Rodrigues de Sousa

Outubro/2022

Orientadores: Antônio José Boness dos Santos

Ana Paula Pintado Wyse

Programa: Modelagem Matemática e Computacional

Apresentamos, neste trabalho, um modelo matemático para estruturas flexíveis de

geometria arbitrária no espaço tridimensional, cuja cinemática esteve regida pela teo-

ria de barras com flexão, cisalhamento e torção, no regime de pequenos deslocamen-

tos e deformações. Inicialmente, retomamos a teoria clássica das vigas retilíneas, fun-

damentada nos modelos de Euler-Bernoulli e Timoshenko, formulamos as equações

governantes da deformação sob a ação de carregamentos distribuídos. Em seguida,

estendemos esses conceitos teóricos para barras com curvatura arbitrária no espaço,

deduzindo as equações constitutivas e de equilíbrio, que resultam em um sistema ve-

torial de equações diferenciais ordinárias. Para a resolução desse problema, adota-

mos uma formulação variacional abstrata baseada no princípio de Hellinger–Reissner,

a qual permite tratar deslocamentos e esforços generalizados como variáveis indepen-

dentes. Nesse contexto, os campos dos deslocamentos e esforços generalizados foram

aproximados por funções de interpolação de mesma ordem, sendo contínuas para os

deslocamentos e descontínuas para os esforços, assegurando, assim, maior flexibili-

dade para representar adequadamente suas variações internas. Para garantir a estabi-

lidade numérica das aproximações, incorporamos termos residuais de mínimos qua-

drados diretamente nas equações de equilíbrio a nível de elemento, o que possibilita

evitar o efeito de trancamento de solução. Alguns resultados numéricos são apresen-

tados demonstrando a potencialidade da formulação.
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Abstract of Dissertation presented to PPGMMC/CI/UFPB as a partial fulfillment of the

requirements for the degree of Master of Science (M.Sc.)

VARIATIONAL STABILIZED FINITE ELEMENT FORMULATION APPLIED TO THE

TIMOSHENKO BEAM PROBLEM WITH ARBITRARY GEOMETRY IN

THREE-DIMENSIONAL SPACE

Anderson Kerlly Rodrigues de Sousa

October/2022

Advisors: Antônio José Boness dos Santos

Ana Paula Pintado Wyse

Program: Computational Mathematical Modelling

We present a mathematical model for flexible structures with arbitrary geome-

tries in three-dimensional space, governed by beam theory that accounts for bending,

shear, and torsion, within the framework of small displacements and strains. We be-

gin by revisiting the classical theory of straight beams, founded on the Euler–Bernoulli

and Timoshenko models, and derive the governing equations for deformation under

distributed loading. These concepts are then extended to spatially curved beams, re-

sulting in the derivation of constitutive and equilibrium equations that form a system

of ordinary differential equations. To solve this problem, an abstract variational formu-

lation founded on the Hellinger–Reissner principle is adopted, which enables general-

ized displacements and internal forces to be treated as independent variables. In this

context, the displacement and internal force fields are approximated by interpolation

functions of the same polynomial degree, continuous for displacements and discon-

tinuous for internal forces, thereby allowing greater flexibility in accurately capturing

their internal variations. To guarantee the numerical stability of the approximations,

least-squares residual terms are directly incorporated into the equilibrium equations

at the element level, which prevents locking phenomena in the solution. Numerical

results are presented to demonstrate the potential of the formulation.
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Introdução

Historicamente, estruturas como vigas, pilares e pórticos têm sido amplamente utili-

zados em construções de pontes, aquedutos, edifícios, entre outros. Estas estruturas

são projetadas para suportar esforços de flexão, tração, compressão e torção ou combi-

nações entre eles. De modo geral, o comportamento desses tipos de estruturas espaci-

ais é representada por modelos unidimensionais, sendo aqui referidos por estruturas

flexíveis unidimensionais.

Além das aplicações em construções civis, os modelos de estruturas flexíveis unidi-

mensionais têm sido amplamente aplicados em outras áreas, como biologia, engenha-

ria espacial, indústria de extração de petróleo, entre outras. Em aplicações subaquáti-

cas, por exemplo, aplicam-se esses modelos para analisar os efeitos de torção e tensões

nos dutos submarinos que transportam petróleo da plataforma até o continente. De

modo geral, os efeitos de torção nesses equipamentos constituem um problema con-

tínuo e recorrente. O processo não é simples, e ocorre devido às correntes marítimas,

que geram uma ação combinada de torção e tração nos dutos, fazendo com que eles

se movimentem e gerem dobras. Esse problema foi analisado por Ross (1977) [1], que

propôs um modelo baseado em estruturas flexíveis unidimensionais para analisar as

combinações críticas de tensão e torção nesses cabos, apresentando resultados que

evitam a ocorrência de falhas.

Na engenharia espacial, os modelos de estruturas flexíveis unidimensionais têm

sido utilizados para analisar os efeitos de deformações sofridos por cabos que conec-

tam veículos espaciais a outros corpos em órbita, como estações, satélites e até mesmo

os próprios astronautas. Neste contexto, Aslanov (2012) [2] desenvolveu um modelo

que analisa a tensão e torção sofridas por estes cabos durante o transporte de carga.

Valverde et al. (2003) [3] apresentaram um modelo que analisa o comportamento de

flexão de cabos submetidos a interações eletromagnéticas. Estes, por sua vez, são utili-

zados para trazer à Terra detritos do espaço (fragmentos de veículos espaciais, satélites

abandonados) que possam comprometer futuros voos espaciais. Um exemplo disso é

o chamado Short Electrodynamic Tether (SET), proposto pela European Space Agency.

O SET é uma estrutura extremamente flexível que orbita a Terra com seu eixo de me-

nor inércia apontado para o plano normal da sua órbita. Esta estrutura, por ser condu-

tora, sofre ação do efeito Faraday devido à interação com o campo magnético terrestre.
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Dessa forma, o SET modifica sua trajetória orbital em função da sua interação com o

campo magnético da Terra, alterando sua velocidade de giro em torno de seu eixo de

menor inércia [3].

Em estudos biológicos, modelos de estruturas flexíveis unidimensionais têm sido

utilizado para analisar o comportamento da molécula do DNA, que é caracterizada

por ter uma estrutura helicoidal de fita dupla, cujo emaranhamento dos filamentos

que compõem essa fita está sujeita a flexões e torções (PHISET et al., 2003) [4]. Estas

estruturas são resultados das ações das enzimas presentes nos processos de replicação

e transição de material genético de uma célula (MENZEL et al., 1994) [5].

Como se pode perceber, o modelo de estruturas flexíveis unidimensionais é am-

plamente utilizado para descrever o comportamento de uma ampla variedade de ele-

mentos estruturais em diversas aplicações. Embora seja uma abordagem simplificada,

muitos problemas práticos podem ser adequadamente analisados usando esse tipo

de modelo. No entanto, a solução analítica para este tipo de modelo é um processo

desafiador, especialmente quando as equações diferenciais que descrevem o compor-

tamento dessas estruturas são complexas e não lineares. Em muitos casos, mesmo

para problemas relativamente simples, não há soluções analíticas conhecidas, o que

torna necessário o uso de métodos numéricos para obter soluções aproximadas. É aí

que entram as ferramentas computacionais, como o Método dos Elementos Finitos e

outros métodos numéricos, que são capazes de resolver numericamente as equações

diferenciais complexas que surgem ao modelar estruturas flexíveis unidimensionais.

Nesse cenário, uma maneira eficaz de abordar problemas desse tipo é por meio

da aplicação de formulações mistas. Nessa abordagem, empregam-se as equações de

equilíbrio e constitutivas do modelo, associando variáveis a diferentes campos. Isso

resultou no aumento do número de variáveis, cada uma com propriedades físicas dis-

tintas. Dessa forma, obtém-se um maior controle sobre a qualidade da solução dos

campos envolvidos, resultando em aprimoramento na qualidade das soluções obtidas.

Nesta linha, destacam-se as contribuições de Arnould (1981) [1], que analisou o

problema da viga de Timoshenko no plano, mostrando que a formulação cinemática

dá origem a uma convergência não uniforme, e que a formulação mista dá origem a

aproximações com taxas quase ótimas, independente do parâmetro de esbeltez; Loula

et al. (1987b) [15] introduziram uma formulação mista de Petrov-Galerkin, ou Galer-

kin com mínimos quadrados para a construção das aproximações por elementos fi-

nitos, para resolver o problema da viga de Timoshenko no plano; Loula et al. (1987a)

[22] aplicaram esta formulação para investigar arcos, introduzindo uma formulação

variacional fundamentada no princípio de Hellinger-Reissner. Nessa abordagem, as

variáveis independentes incluem esforços generalizados (momentos e esforços axiais)

e deslocamentos generalizados (deslocamentos e rotações). Além disso, eles introdu-

ziram uma formulação em elementos finitos mistos e estabilizados; Arunakirinathar
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(1991) [3] desenvolveu uma formulação variacional mista baseada em funcionais bi-

lineares para analisar o processo de deformação sofrida por uma viga de geometria

qualquer no espaço tridimencional; Santos (2007) [28] investigou o processo de defor-

mação de barras elásticas de Timoshenko com geometria arbitrária no espaço tridi-

mensional, utilizando o método dos elementos finitos mistos estabilizados proposto

por Loula et al.

Conforme é sabido, o método dos Elementos Finitos, fundamentado na formula-

ção clássica de Galerkin, tem se destacado como uma ferramenta crucial na obtenção

de soluções numéricas. Entretanto, é fato que tais aproximações podem não convergir

de maneira uniforme para a solução desejada, devido ao surgimento do processo, hoje

bem conhecido, do “trancamento de solução” ou “shear locking”. Este fenômeno surge

em alguns casos específicos de análise, especialmente quando se utilizam funções de

interpolação de baixa ordem e a estrutura possui uma seção transversal muito esbelta

(por exemplo, placas muito finas ou vigas muito estreitas). Tais situações provocam

perda considerável de precisão da solução.

Com base no que foi apresentado, este trabalho tem como objetivo aplicar o mé-

todo dos elementos finitos mistos estabilizados, baseado no princípio de Hellinger-

Reissner, para obter aproximações para o problema da viga de Timoshenko, conside-

rando que esta seja composta por material elástico e isotrópico sob regime de peque-

nos deslocamentos e deformações. Além disso, considera-se esta estrutura com geo-

metria arbitrária no espaço tridimensional em equilíbrio estático.

Este trabalho está estruturado em quatro capítulos: no Capítulo 1 são apresenta-

das noções básicas da teoria clássica dos modelos de vigas de Euler-Bernoulli e Ti-

moshenko; no Capítulo 2, expandem-se as definições apresentadas no Capítulo 1, in-

troduzindo noções básicas de geometria diferencial no espaço tridimensional; no Ca-

pítulo 3, discute-se o método dos elementos finitos mistos estabilizados, baseado no

princípio de Hellinger-Reissner; e, por último, no Capítulo 4, são apresentados os re-

sultados obtidos via formulação variacional desenvolvida no Capítulo 3 para a estru-

tura de viga de Timoshenko com diferentes geometrias.
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Capítulo 1

Teoria clássica de viga de

Euler-Bernoulli e de Timoshenko

A concepção de vigas teve início com Leonardo da Vinci, que concebeu um modelo

considerando seções transversais retangulares. Ele observou que, ao serem submeti-

das à flexão, as vigas apresentam tensões de tração e compressão nas fibras externas,

opostas, respectivamente. Da Vinci propôs que essas tensões possuíam magnitudes

iguais nas fibras inferiores e superiores, o que implica que a linha média da viga per-

manece inalterada, sem sofrer deformações longitudinais durante a flexão.

Passados 500 anos, Galileu Galilei propôs um modelo para determinar a capaci-

dade de carga transversal aplicada sobre a viga. No entanto, presumiu, de forma incor-

reta, que a carga aplicada na seção transversal da viga desenvolveria uma distribuição

uniforme de tensões.

Em meados do século XVIII, Leonhard Euler e Daniel Bernoulli propuseram um

modelo que descrevia o comportamento da deformação das vigas. Em 1750, Euler

apresentou sua teoria sobre a flexão de vigas em sua obra "Methodus inveniendi lineas

curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici

latissimo sensu accepti" (Método para encontrar curvas com propriedades máximas

ou mínimas, ou solução de problemas isoperimétricos em sentido amplo). Nesta obra,

Euler expôs diversas soluções relacionadas à teoria da flexão e suas equações diferen-

ciais, descrevendo o comportamento de vigas submetidas a carregamentos transver-

sais. Em 1759, Daniel Bernoulli também fez importantes contribuições para a teoria

das vigas em seu trabalho "Hydrodynamica". Nesta obra, Bernoulli ampliou as ideias

de Euler, e contribuiu para o desenvolvimento das equações que hoje são conhecidas

como as equações de Euler-Bernoulli.

Posteriormente, por volta de 1921, Timoshenko apresentou uma versão modificada

da teoria de vigas de Euler-Bernoulli, incorporando os efeitos do cisalhamento. Assim,

surgiu a teoria de viga de Timoshenko, que considera a existência de rotação em cada

ponto da viga, adicionado a contribuição da deformação angular decorrente do cisa-
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lhamento.

Como se pode observar, esses modelos foram fundamentais para o desenvolvi-

mento da teoria de vigas e para a engenharia estrutural como um todo. A contribuição

desses trabalhos ilustra como ideias e conceitos avançados surgiram ao longo da his-

tória, ajudando a estabelecer as bases para as teorias estruturais modernas utilizadas

atualmente.

1.1 Considerações iniciais

Define-se viga como um corpo fechado B, inserido no espaço euclidiano tridimensio-

nal R3, dotado de um sistema de eixos ortogonais ei , com i = {1,2,3}, correspondentes

às coordenadas cartesianas x, y e z, respectivamente. Essa estrutura é delimitada por

um domínio unidimensional Ω =]0,L[, onde L representa o comprimento da viga; Ω

denota o fecho de Ω e ∂Ω sua fronteira. As dimensões transversais da viga, represen-

tadas pela largura b e altura h, são significativamente menores que o comprimento L,

caracterizando a geometria alongada típica da viga. Adota-se como configuração de

referência o estado indeformado da viga, isto é, a condição inicial em que não existem

esforços internos nem forças externas aplicadas, servindo de base para a análise de

deformações e tensões subsequentes.

No estudo de vigas, diferentes modelos são utilizados para analisar e projetar siste-

mas estruturais. A Fig. 1.1 apresenta um esquema representativo de uma viga retilínea

de comprimento L, prismática e biapoiada, descrita no espaço tridimensional. Nessa

configuração, a viga está submetida a uma força axial F1, aplicada ao longo da direção

longitudinal e1, e a um carregamento distribuído transversal F3 atuando na direção e3,

perpendicular ao eixo da viga.

Figura 1.1: Modelo de uma viga prismática de comprimento L, de largura b e altura h com seção trans-
versal retangular, descrita no R3. O eixo global e1 representa a direção longitudinal e os eixo e2 e e3, as
direções transversais da viga.
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Denotamos por A(x) ⊂R2 a área da seção transversal da viga em uma posição x ∈Ω,

e A(x) ⊂ R2 o fecho. A junção de todos os centroides das áreas, A(x), define a curva

de centroides que, nesse modelo, será considerada coincidente com a linha neutra da

viga. Sejam b e h as dimensões máximas da largura e da altura das seções transversais,

respectivamente, de modo que, para todo (y, z) ∈ A, tem-se
∥∥y

∥∥< b e ∥z∥ < h. Assim, o

domínioΩ fica caracterizado por:

Ω= {(y, z) ∈ A ⊂R2, x ∈ [0,L] ⊂R}. (1.1)

Neste capítulo, descreveremos as duas teorias clássicas de modelos de vigas no

plano submetidas a cargas arbitrária: a teoria de Euler-Bernoulli e a teoria de Ti-

moshenko. Ambas as teorias compartilham as seguintes hipóteses:

Hipóteses 1.1

(i) Os modelos consideram pequenos deslocamentos e pequenas deformações;

(ii) As propriedades constitutivas dos materiais são homogêneas e isotrópicas, fa-

zendo com que o eixo da viga coincida com a linha neutra;

(iii) Os deslocamentos laterais ao longo do eixo e2 são nulos ( ver Fig.1.1 );

(iv) As seções, inicialmente planas antes da deformação, permanecem planas após a

deformação.

A Fig. 1.1 apresenta um esquema simplificado da viga em seu estado indeformado.

Note que a viga encontra-se inicialmente reta, com sua linha neutra coincidindo com

o eixo e1, sendo submetida a uma força axial F1 na direção e1 e a uma carga distribuída

F3 na direção e3. Para analisarmos seu comportamento cinemático, denotamos por

u :Ω→R3 o campo de deslocamento em qualquer seção da viga, definido por:

u(x, y, z) = u1(x, y, z)e1 +u2(x, y, z)e2 +u3(x, y, z)e3, (1.2)

onde u1(x, y, z), u2(x, y, z) e u3(x, y, z) representam as componentes dos deslocamen-

tos na direção dos vetores e1, e2 e e3, respectivamente.

A caracterização dos campos de deslocamento da viga pode ser realizada a partir

da análise das interações entre os efeitos das forças axiais e transversais atuantes. Para

compreender esse comportamento, consideramos um elemento. Para compreender

esse comportamento, consideramos um elemento diferencial de uma viga deformada

ao longo do eixo e1, em uma posição x, com deslocamentos e rotações variando ao

longo de seu comprimento, conforme mostrado na Fig. 1.2.

Nesse esquema, o deslocamento vertical da fibra média da viga é representada por

u3(x) e a linha neutra é descrita por sua derivada du3(x)
d x . Em uma posição deslocada de

6



d x ao longo do eixo e1, o deslocamento é u3(x)+ du3(x)
d x d x. A rotação da linha neutra da

viga em relação ao eixo e2 é denotada por θ2(x), enquanto β2(x) representa o ângulo

de inclinação relativo da seção transversal em relação ao eixo deformado.

Figura 1.2: Representação da curvatura de flexão da viga, indicando o deslocamento transversal u3(x)

e a inclinação
du3(x)

d x
da linha neutra em um ponto x.

De acordo com as hipóteses 1.1, o campo de deslocamento u(x, y, z), descrito pela

Eq.(1.2), para uma viga sujeita à ação de forças axiais e transversais pode ser expresso

como:

u1(x, y, z) = ua(x)− zθ2(x), (1.3)

u2(x, y, z) = 0, (1.4)

u3(x, y, z) = u3(x). (1.5)

Considerando essas hipóteses comuns aos modelos de vigas de Euler-Bernoulli e

Timoshenko, nas próximas seções apresentaremos as hipóteses adicionais que os dis-

tinguem e desenvolveremos as equações características de cada modelo.

1.2 Modelo clássico de viga de Euler-Bernoulli

A teoria clássica da viga de Euler-Bernoulli incorpora à hipóteses 1.1, em particular a

suposição de que as seções transversais, inicialmente planas e ortogonais ao eixo e1 na

configuração indeformada, permanecem planas e ortogonais a este mesmo eixo após

a deformação. Assim, temos que:

θ2 = du3(x)

d x
, (1.6)
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isto é, a derivada da linha neutra da viga é dada simplesmente pela rotação devido à

flexão, obtendo-se das Eqs. (1.3–1.5)

u1(x, y, z) = ua(x)− z
du3(x)

d x
, (1.7)

u2(x, y, z) = 0, (1.8)

u3(x, y, z) = u3(x), (1.9)

onde ua representa o deslocamento na direção longitudinal e u3 o deslocamento na

direção transversal.

Para descrever as equações de equilíbrio do modelo da viga de Euler-Bernoulli, va-

mos usar o funcional de energia potencial total. Dessa forma, denotando por ΠEB a

energia potencial total do sistema, definida como a soma da energia de deformação

interna Ui com a energia potencial das forças externas Ue :

ΠEB =Ui +Ue , (1.10)

onde:

Ui = 1

2

∫
Ω
σ : εdΩ, (1.11)

Ue =
∫
Ω

f u dΩ. (1.12)

sendo σ : Ω → R3x3 o tensor das tensões, ε : Ω → R3x3 o tensor das deformações e

f :Ω→R3 o campo de forças de corpo.

Fazendo uso do campo de deslocamentos, Eqs. (1.7–1.9), especializado para o mo-

delo de vigas de Euler-Bernoulli, temos que o tensor ∇u(x) será dado por:

∇u(x) =


dua(x)

d x
− z

d 2u3(x)

d x2
0 −du3(x)

d x
0 0 0

du3(x)

d x
0 0

 . (1.13)

Como estamos tratando de pequenos deslocamentos e deformações, temos que o ten-

sor de deformação ε(x), especializado para o modelo, é dado por:

ε(x) = 1

2
(∇u(x)+∇u(x)T )

=


dua(x)

d x
− z

d 2u3(x)

d x2
0 0

0 0 0

0 0 0

 . (1.14)
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Note que, no cálculo da energia interna Eq.(1.11), as únicas componentes do tensor

σ(x) que influenciam no funcional são aquelas associadas às componentes não nulas

de ε(x), isto é, a componente σ11(x). Com isso, o trabalho interno será dado por:

Ui = 1

2

∫
Ω
σ11(x)ε11(x)dΩ

= b

2

L∫
0

h/2∫
−h/2

σ11(x)ε11(x)d zd x. (1.15)

Segue da relação constitutiva elástica e linear entre a tensão e a deformação que

σ11(x) = Eε11(x), (1.16)

onde E é o módulo de Young. Com isso, temos:

Ui = b

2

∫ L

0

∫ h/2

−h/2
E

(
dua(x)

d x
− z

d 2u3(x)

d x2

)2

d z d x

=
∫ L

0

[
E A

2

(
dua(x)

d x

)2

+ E I

2

(
d 2u3(x)

d x2

)2]
d x, (1.17)

com momento de inércia I = bh3

12
e área A = bh correspondentes a uma seção trans-

versal retangular.

Para calcular a energia potencial externa, é necessário considerar a ação das cargas

axiais F1 e transversais F3 na viga. A energia potencial externa para este modelo é dada

por:

Ue =−
∫ L

0
F1(x)

dua(x)

d x
d x −

∫ L

0
F3(x)u3(x)d x, (1.18)

onde a primeira integral representa a energia potencial devido à carga axial F1 atuando

ao longo da viga na direção longitudinal, isto é:∫ L

0
F1(x)

dua(x)

d x
d x = F1(x)[ua(L)−ua(0)]. (1.19)

Por outro lado, a segunda integral representa a energia potencial das cargas trans-

versais F3(x) atuantes na direção vertical. Dessa forma, realizando o somatório destas

contribuições, obtemos o funcional de energia potencial total para o modelo de vigas

de Euler-Bernoulli:

ΠEB =
∫ L

0

[
E A

2

(
d 2ua(x)

d x2

)2

+ E I

2

(
d 2u3(x)

d x2

)2

−F1(x)
dua(x)

d x
−F3u3(x)

]
d x. (1.20)
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A partir da formulação variacional do problema, fundamentada no princípio da

minimização do funcional da energia potencial total (δΠEB = 0), derivou-se as equa-

ções de equilíbrio correspondentes ao modelo de viga de Euler-Bernoulli. Esse pro-

cesso conduz às equações de Euler-Lagrange, que governam o comportamento da es-

trutura sob flexão, desconsiderando os efeitos de cisalhamento. Como resultado, ob-

temos:

d

d x

(
E A

dua(x)

d x

)
= F1, (1.21)

d 2

d x2

(
E I

d 2u3(x)

d x2

)
= F3. (1.22)

As condições de contorno associadas a este modelo podem ser resumidas da seguinte

maneira:

Condições de contorno cinemáticas Condições de contorno naturais

ua(x) prescrita ou E A
dua

d x
= F1 (1.23)

du3(x)

d x
prescrita ou E I

d 2u3

d x2
= 0 (1.24)

u3(x) prescrita ou
d

d x

(
E I

d 2u3

d x2

)
= 0 (1.25)

Especializando a equação constitutiva 1.16 para o modelo de viga de Euler-

Bernoulli, temos que o esforço axial N1 e o momento fletor M2 são dados, respecti-

vamente, por:

N1(x) = E A
dua(x)

d x
(1.26)

e

M2(x) =−E I
d 2u3(x)

d x2
. (1.27)

A solução analítica das Equações (1.21) e (1.22), sujeitas às condições de contorno

definidas em (1.23), (1.24) e (1.25), pode ser encontrada em (Fleischfresser [6], 2012) e

(Assam [7], 2020). Nessas referências, os autores apresentam abordagens detalhadas

para a resolução das equações de equilíbrio da vigas pelo modelo de Euler-Bernoulli,

contemplando distintos tipos de carregamento e variações nas condições de contorno.

Nas discussões apresentadas até o momento, observamos que a teoria da viga de

Euler-Bernoulli assume que as seções transversais da viga permanecem ortogonais à
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linha neutra após a deformação, o que torna o modelo incapaz de estimar os efeitos do

cisalhamento. No entanto, essa simplificação não é adequada para a modelagem de

todos os tipos de vigas. Em casos como vigas curtas e vigas do tipo sanduíche, os efei-

tos do cisalhamento são significativamente relevantes. Com base nisso, Timoshenko

propôs um ajuste na teoria de Euler-Bernoulli, que será discutido na próxima seção.

1.3 Modelo clássico de viga de Timoshenko

A teoria de vigas de Timoshenko compartilha das hipóteses apresentadas em (1.1), pro-

venientes da teoria clássica de Euler–Bernoulli. No entanto, a hipótese relativa à cine-

mática na direção normal da viga, adquire um novo significado. As seções transversais,

inicialmente planas e normais à linha neutra, permanecem planas à linha neutra, mas

não necessariamente normais a esta linha. Essa suposição proporciona uma aproxi-

mação mais precisa da deformação real da seção transversal, especialmente em vigas

espessas. Com base nessas hipóteses, a rotação da seção transversal pode ser escrita

como:

θ2(x) = du3(x)

d x
−β2(x), (1.28)

Vale destacar que a rotação θ2(x) da seção transversal não coincide com a inclinação

da linha neutra
du3(x)

d x
, ao contrário do que ocorre na teoria de Euler-Bernoulli. Consi-

derando que estamos interessados exclusivamente na deformação da viga submetida

a cargas verticais, a equação cinemática do modelo assume a seguinte forma:

u1(x, y, z) = ua(x)− z

(
du3(x)

d x
−β2(x)

)
, (1.29a)

u2(x, y, z) = 0, (1.29b)

u3 A(x, y, z) = u3(x). (1.29c)

Fazendo uso do nosso campo de deslocamentos Eqs. (1.29a–1.29c) especializado

para o modelo de viga de Timoshenko, temos que o tensor ∇u(x) será dado por

∇u(x) =


dua(x)

d x
− z

d

d x

(
du3(x)

d x
−β2(x)

)
0 −

(
du3(x)

d x
−β2(x)

)
0 0 0

du3(x)

d x
0 0

 . (1.30)

Como resultado, o tensor de deformação ε(x), especializado para o modelo de viga de
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Timoshenko, é dado por:

ε(x) = 1

2
(∇u(x)+∇u(x)T )

=


dua(x)

d x
− z

d

d x

(
du3(x)

d x
−β2(x)

)
0

1

2
β2(x)

0 0 0
1

2
β2(x) 0 0

 . (1.31)

Sob o regime de pequenas deformações, e considerando a relação constitutiva para o

cisalhamento válida nessas condições, temos a seguinte expressão:

σ13 =σ31 = 2G ε13, (1.32)

onde G é o módulo de cisalhamento. Assim, o tensor de tensões pode ser caracterizado

da seguinte forma:

σ(x) =


dua(x)

d x
−E z

d

d x

(
du3(x)

d x
−β2(x)

)
0 Gβ2(x)

0 0 0

Gβ2(x) 0 0

 . (1.33)

Com base nas expressões previamente definidas, podemos formular o funcional da

energia potencial total associado ao campo de deformações da viga, conforme descrito

pelo modelo de Timoshenko, como:

ΠT =Ui +Uc +Ue , (1.34)

onde Ui , Uc e Ue representam, respectivamente, a energia interna associada à defor-

mação axial; à deformação por cisalhamento e o trabalho realizado pelas forças exter-

nas. Suas respectivas expressões são dadas por

Ui = 1

2
b

∫ L

0

∫ h/2

−h/2
σ11(x)ε11(x)d z d x, (1.35)

Uc = b
∫ L

0

∫ h/2

−h/2
σ31(x)ε31(x)d z d x, (1.36)

Ue = −
∫ L

0
F1(x)

dua(x)

d x
d x −

∫ L

0
F3(x)u3(x)d x. (1.37)

No contexto da formulação do modelo de viga de Timoshenko, que considera os

efeitos da deformação por cisalhamento transversal, torna-se necessário a introdução

de um fator de correção κ, com o objetivo de representar de forma mais precisa a dis-

tribuição não uniforme da tensão de cisalhamento ao longo da seção transversal.
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Diversos trabalhos foram propostos para caracterizar este fator de correção. Den-

tre eles, destacamos o estudo conduzido por Gruttmann et al. (1999) [8], que emprega

equações da elasticidade linear para determinar o valor de κ, e o método proposto por

Cowper (1966) [9], que usa modelos matemáticos derivados de análises experimen-

tais para calcular o coeficiente de cisalhamento κ em diversas geometrias. Assim, ao

introduzir κ na Eq. (1.36), temos:

Uc = κb
∫ L

0

∫ h/2

−h/2
σ31(x)ε31(x)d z d x. (1.38)

Com isso, a Eq.(1.34) pode ser reescrita da seguinte maneira:

ΠT = 1

2
b

∫ L

0

∫ h/2

−h/2
σ11(x)ε11(x)d z d x +κb

∫ L

0

∫ h/2

−h/2
σ31(x)ε31(x)d z d x

−
∫ L

0
F1(x)ua(x)d x −

∫ L

0
F3(x)u3(x)d x (1.39)

Considerando os resultados obtidos nas Eqs. 1.16, 1.31 e 1.33, esta expressão assume a

seguinte forma:

ΠT = 1

2
b

∫ L

0

∫ h/2

−h/2
E (ε11(x))2 d z d x + 1

2
κbG

∫ L

0

(
β2(x)

)2
∫ h/2

−h/2
d z d x

−
∫ L

0
F1(x)ua(x)d x −

∫ L

0
F3(x)u3(x)d x. (1.40)

Aplicando os resultados das equações (1.31) e (1.28), e considerando a área A(x) = A,

para todo x ∈ [0,L], temos:
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ΠT = 1

2
b

∫ L

0

(∫ h/2

−h/2
E

(
dua(x)

d x
− z

dθ2(x)

d x

)2

d z

)
d x

+1

2
κAG

∫ L

0

(
du3(x)

d x
−θ2(x)

)2

d x −
∫ L

0
F1(x)ua(x)d x −

∫ L

0
F3(x)u3(x)d x

= 1

2
bE

∫ h/2

−h/2

[(
dua(x)

d x

)2

−2z
dua(x)

d x

dθ2(x)

d x
+ z2

(
dθ2(x)

d x

)2]
d z

+1

2
κAG

∫ L

0

(
du3(x)

d x
−θ2(x)

)2

d x −
∫ L

0
F1(x)ua(x)d x −

∫ L

0
F3(x)u3(x)d x

= 1

2
bE

[
h

∫ L

0

(
dua(x)

d x

)2

d x + h3

12

∫ L

0

(
dθ2(x)

d x

)2

d x

]

+1

2
κAG

∫ L

0

(
du3(x)

d x
−θ2(x)

)2

d x −
∫ L

0
F1(x)ua(x)d x −

∫ L

0
F3(x)u3(x)d x.

(1.41)

Como podemos observar, o termo
bh3

12
corresponde ao momento de inércia I da seção

transversal retangular. Assim, a expressão anterior pode ser reescrita como:

ΠT = E A

2

∫ L

0

(
dua(x)

d x

)2

d x + E I

2

∫ L

0

(
dθ2(x)

d x

)2

d x

+κG A

2

∫ L

0

(
du3(x)

d x
−θ2(x)

)2

d x −
∫ L

0
F1(x)ua(x)d x

−
∫ L

0
F3(x)u3(x)d x

=
∫ L

0

[
E A

2

(
dua(x)

d x

)2

+ E I

2

(
dθ2(x)

d x

)2

+κG A

2

(
du3(x)

d x
−θ2(x)

)2

−F1(x)ua(x)−F3(x)u3(x)

]
d x. (1.42)

A partir da formulação variacional do problema, fundamentada no princípio da

minimização da energia potencial total (δΠT = 0), são obtidas as equações de equi-

líbrio correspondentes ao modelo da viga de Timoshenko. Esse processo conduz às

equações de Euler-Lagrange, que governam o comportamento da estrutura sob flexão,

considerando os efeitos de cisalhamento. Como resultado, obtêm-se as seguintes ex-

pressões:
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E A
d 2ua(x)

d x2
+F1(x) = 0, (1.43)

E I
d 2θ2(x)

d x2
+κG A

(
du3(x)

d x
−θ2(x)

)
= 0, (1.44)

κG A

(
d 2u3(x)

d x2
− dθ2(x)

d x

)
+F3(x) = 0. (1.45)

As condições de contorno compatíveis com este modelo podem ser resumidas da se-

guinte forma:

Condições de contorno cinemáticas Condições de contorno naturais

θ2(x) prescrita ou E A
dθ2(x)

d x
= 0 (1.46)

u3(x) prescrita ou κG A

(
du3(x)

d x
−θ2(x)

)
= 0 (1.47)

ua(x) prescrita ou E A
dua(x)

d x
= 0 (1.48)

Especializando as equações constitutiva 1.16 e 1.32 para o modelo de viga de Ti-

moshenko, temos o esforço N2(x) e momento M2(x), são dados, respectivamente, por:

N2(x) =
∫ h/2

−h/2
κσ13(x)b d z

= κσ13(x) (bh)

= κGβ2(x) A

= κG A

(
du3(x)

d x
−θ2(x)

)
, (1.49)

M2(x) =
∫ h/2

−h/2
σ11(x)b z d z

=
∫ h/2

−h/2

(
−z

dθ2(x)

d x

)
E z b d z

= −Eb
dθ2(x)

d x

∫ h/2

−h/2
z2 d z

= −E I
dθ2(x)

d x
. (1.50)
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Com isso, encerramos as formulações das teorias clássicas de vigas de Euler-

Bernoulli e Timoshenko. No capítulo seguinte, será apresentada uma formulação ca-

paz de descrever o comportamento de estruturas flexíveis modeladas como barras com

geometria arbitrária. Para isso, serão introduzidas noções básicas de geometria di-

ferencial, que permitem representar curvas no espaço tridimensional com precisão,

fornecendo os conceitos matemáticos necessários para descrever a orientação, a cur-

vatura e a torção da barra ao longo de sua trajetória. Essa abordagem possibilita o

desenvolvimento de modelos mais gerais, capazes de representar adequadamente o

processo de deformação em estruturas com geometria não retilínea.
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Capítulo 2

Modelos de barras no espaço 3D

No capítulo anterior, apresentamos o modelo de flexão de vigas de Euler-Bernoulli

clássico, incluindo os efeitos das forças axiais e, em seguida, estendemos este mo-

delo considerando os efeitos do cisalhamento, recaindo no modelo de Timoshenko.

Nesta seção, dando continuidade ao aprimoramento dos modelos, apresentamos as

equações que descrevem o comportamento de uma barra de geometria arbitrária no

espaço tridimensional, isto é, um modelo com comportamentos fora do plano, consi-

derando o efeito do cisalhamento. Para isso, consideramos a barra (ver a figura 2.1 ),

com sua linha neutra descrevendo uma curva no espaço, descrita pelo vetor posição

r(s) : Ī 7→ R3, com origem fixada em um ponto qualquer R3, dado por:

r(s) = r1(s)E1(s)+ r2(s)E2(s)+ r3(s)E3(s), (2.1)

sendo I o intervalo aberto (0,L), Ī seu fecho, s o comprimento de arco, Ei (s) : Ī → R3,

com i = 1,2,3, os vetores que definem, em cada posição s da curva, uma base local

ou intrínseca para a barra na configuração de referência e ri (s) as componentes em

relação a Ei , respectivamente.

Figura 2.1: A representação no espaço tridimensional de uma barra de geometria arbitrária, de compri-
mento L, descrita por uma curva parametrizada r(s), onde s ∈ [0,L] representa o comprimento de arco,
e r(0) é sua origem. Em cada ponto s da curva, temos um sistema de coordenadas locais, descrito pelos
vetores E1(s), E2(s) e E3(s).
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Os vetores Ei (s) possuem as seguintes características

∥Ei (s)∥ = 1, Ei (s) ·E j (s) = δi j , ∀s ∈ Ī , (2.2)

E1(s) = r′(s)

∥r′(s)∥ , E1(s) = E2(s)×E3(s), ∀s ∈ Ī . (2.3)

onde ∥·∥ é a norma euclidiana, δi j é o delta de Kronecker. Nota-se que esta base se

relaciona com a curvatura da barra, dada pela relação Eq.1.44, onde E1(s) é definido

como o vetor tangente à curva em cada ponto s. Com isso, E2(s) e E3(s) tornam-se os

vetores normal e binormal, respectivamente.

A partir da expressão (2.3), observamos que a derivada da curva r(s) está relacio-

nada à derivada espacial dos vetores da base intrínseca Ei (s), evidenciando a depen-

dência do campo de direções locais ao longo do comprimento da barra. A caracteriza-

ção da diferenciação destes vetores será estabelecida pelas equações de Serret-Frenet,

as quais relacionam as derivadas dos vetores da base intrínseca com eles próprios, da

seguinte forma:

E′
1(s) = γ(s)E2(s), ∀s ∈ Ī , (2.4)

E′
3(s) = −µ(s)E2(s), ∀s ∈ Ī , (2.5)

E′
2(s) = µ(s)E3(s)−γ(s)E1(s), ∀s ∈ Ī , (2.6)

onde γ(s) : Ī 7→ R é o parâmetro de curvatura, o qual mede a taxa de variação do vetor

tangente E1(s) em cada posição s, e µ(s) : Ī 7→ R é o parâmetro de torção, o qual mede

a taxa de variação do plano osculante (plano formado pelos vetores E3(s) e E1(s) em

cada posição s). As deduções das equações (2.4) a (2.6) encontram-se bem detalhadas

em Stewart (2016)[10] ou Sauter (2022).

Neste contexto, tomando um vetor qualquer v : Ī →R3, descrito em função da base

intrínseca Ei (s) expressa por:

v(s) = v1(s)E1(s)+ v2(s)E2(s)+ v3(s)E3(s), (2.7)

onde vi são suas componentes, a diferenciação em relação a s é dada por:

v′(s) = v̊(s)+Ψv(s)

=
(

d v1

d s
−γ(s)v2

)
E1 +

(
d v2

d s
+γ(s)v1 −µ(s)v3

)
E2 +

(
d v3

d s
+µ(s)v2

)
E3, (2.8)

com

v̊(s) = d v1

d s
E1 + d v2

d s
E2 + d v3

d s
E3 (2.9)
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e

Ψ=


0 γ(s) 0

−γ(s) 0 µ(s)

0 −µ(s) 0

 (2.10)

a matriz de rotação.

Tendo em vista as hipóteses 1.1, temos que a configuração deformada da barra

pode ser completamente descrita pelo deslocamento de sua linha neutra e pela ro-

tação da seção transversal em cada ponto s. Dessa forma, os vetores de deslocamento

generalizados e de rotações generalizados são representados de forma parametrizada

por u e θ, respectivamente . Essas variáveis descreverão o comportamento cinemático

de um elemento de barra orientado no espaço tridimensional.

A partir dessas definições, podemos introduzir as deformações generalizadas δ :

Ī →R3 e η : Ī →R3, definidas respectivamente como o vetor de deformações translaci-

onais e o vetor de deformações rotacionais. Em particular, as deformações translacio-

nais são obtidas pela primeira derivada dos deslocamentos, subtraindo o movimento

de corpo rígido, enquanto as deformações rotacionais são obtidas pelas primeiras de-

rivadas das rotações.

Para um movimento de corpo rígido da barra, os campos de deslocamentos e rota-

ções são constantes em toda a barra, e podem ser descritos como:

θ(s) = θ(0), (2.11)

u(s) = u(0)+θ(s)× (r(s)− r(0)). (2.12)

Derivando essas expressões em relação a s, obtemos

θ(s)

d s
= 0, (2.13)

u(s)

d s
= θ(s)

d s
× (r(s)− r(0))+θ(s)× r(s)

d s
= θ(s)× r′(s). (2.14)

Dessa forma, os campos de deformação e rotações generalizadas podem ser escritos

como:

η(s) = dθ(s)

d s
, (2.15)

δ(s) = du(s)

d s
−θ(s)× r′(s), (2.16)

onde δ(s) está associada aos campos de deformações axial e cisalhamentos, enquanto

η(s) aos campos de torção e flexões.

A Fig. 2.2 ilustra o modelo de uma barra orientada no espaço tridimensional, repre-

sentando tanto sua configuração deformada quanto as forças e momentos distribuídos
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Figura 2.2: Representação do equilíbrio estático em um segmento de viga prismática AB .

ao longo de seu comprimento. Com base nesse esquema, podemos derivar as equa-

ções de equilíbrio associadas ao modelo. Para isso, utilizamos uma abordagem vari-

acional fundamentada no Princípio dos Trabalhos Virtuais, que estabelece que, para

um sistema em equilíbrio, o trabalho virtual realizado pelas forças externas e internas,

associado a um deslocamento virtual admissível, deve ser nulo, isto é, δΠ3D = 0. Nesse

contexto, consideramos que a barra ilustrada na Fig. 2.2 está sujeita a um pequeno

deslocamento virtual δu(s) e a uma rotação virtual δθ(s) ao longo do seu comprimento

s. A expressão correspondente ao trabalho virtual realizado pelas forças externas F(s),

associado ao deslocamento virtual δu(s) é dada por:

δUe =−
∫ L

0
F(s) ·δu(s)d s. (2.17)

Além disso, o trabalho virtual das forças internas, que contempla a contribuição do

força axial N(s) e do momento M(s), é definido por:

δUi =
∫ L

0

(
N(s) ·δu′(s)+M(s) ·δθ(s)

)
d s. (2.18)

Aqui, δu′(s) é a variação virtual da deformação axial e δθ(s) é a variação virtual da

rotação ao longo da barra.

Para que a barra esteja em equilíbrio, devemos ter:

δΠ3D = δUe +δUi = 0. (2.19)
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Substituindo (2.17) e (2.18) nesta expressão, obtemos:

−
∫ L

0
F(s) ·δu(s)d s +

∫ L

0
N(s) ·δu′(s)d s +

∫ L

0
M(s) ·δθ(s) = 0. (2.20)

Resolvendo a segunda integral por integração por partes, temos:∫ L

0
N(s) ·δu′(s)d s = [N(s) ·δu(s)]L

0 −
∫ L

0
N′(s) ·δu(s)d s,

= −
∫ L

0
N′(s) ·δu(s)d s. (2.21)

O primeiro termo, [N(s) ·δu(s)]L
0 , representa o trabalho virtual nas extremidades, que

normalmente é zero se as extremidades forem fixas ou se os deslocamentos virtuais

nas extremidades forem nulos. Dessa forma,

−
∫ L

0
F(s) ·δu(s)d s −

∫ L

0
N′(s) ·δu(s)d s = 0, (2.22)∫ L

0

(−F(s)−N′(s)
)
δu(s)d s = 0, (2.23)

ou seja,

−F(s)−N′(s) = 0

−N′(s) = F(s). (2.24)

para qualquer valor arbitrário de δu(s).

Para o momento, o princípio dos trabalhos virtuais também leva à condição de que

o trabalho virtual seja zero, resultando em:∫ L

0
M(s) ·δθ(s)d s = 0 (2.25)

para qualquer valor arbitrário deδθ(s). Como o momento M(s) varia ao longo da barra,

devido à ação das forças internas, e considerando especificamente a contribuição da

força axial N(s), o equilíbrio é dado por:

−M′(s)+N(s)× r(s) = 0. (2.26)

Esta expressão nos mostra que o termo N(s)× r(s) representa o momento gerado pela

força axial N(s) em relação ao vetor posição r(s). Este termo deve ser equilibrado pela

variação do momento M′(s) ao longo do comprimento da barra.

Como se pode perceber, as Eqs. 2.24 e (2.26) descrevem o estado de equilíbrio

de uma barra orientada no espaço tridimensional. Além disso, ao considerar que a
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mesma é constituída por um material isotrópico, linear e homogêneo, englobamos no

modelo as relações constitutivas expressas por:

M(s) = Dθη(s), (2.27)

N(s) = Duδ(s), (2.28)

onde

Du = di ag [G A1,G A2,E A] , (2.29)

Dθ = di ag [G J ,E I1,E I2] , (2.30)

são especializações do tensor de elasticidade para o modelo, onde J é o momento de

inércia polar, I1 e I2 são os momentos de inércia em relação aos eixos E1 e E2, respecti-

vamente, e A representa a área da seção transversal. Aplicando os fatores de correção

κ1 e κ2, que compensam a distribuição não uniforme da tensão cisalhante em relação

aos eixos E1 e E2, obtemos as áreas corrigidas A1 = κ1 A e A2 = κ2 A.

Com base nas equações constitutivas e de equilíbrio previamente definidas, pode-

mos formular o sistema de equações diferenciais vetoriais que rege o comportamento

da estrutura no espaço tridimensional, apresentado pelo seguinte problema:

PROBLEMA−A: Dado F(s) ∈ R3, encontrar u(s), θ(s), M(s) e N(s) ∈ R3, para ∀s ∈ (0,L)

que satisfaça:

1. Equações de equilíbrio:

−N′(s) = F(s), (2.31)

−M′(s)+N(s)× r′(s) = 0. (2.32)

2. Equações cinemáticas:

δ(s) = u′(s)−θ(s)× r′(s), (2.33)

η(s) = θ′(s). (2.34)

3. Equações constitutivas:

M(s) = Dθη(s), (2.35)

N(s) = Duδ(s). (2.36)

22



4. Condições de contorno:

u(0) = u0, θ(0) = θ0 (2.37)

u(L) = ul , θ(L) = θl (2.38)

A partir das relações constitutivas (2.35) e (2.36), podemos deduzir as equações de

equilíbrio escritas unicamente em função dos deslocamentos generalizados. Sendo

assim, o PROBLEMA−A assume a seguinte configuração:

PROBLEMA−B: Para s ∈ (0,L) e dado F = (F1,F2,F2), encontrar u = (u1,u2,u3) e θ =
(θ1,θ2,θ3) que satisfaçam:

1. As equações de equilíbrio:

d

d s

[
Du

(
du(s)

d s
−θ(s)×E1

)]
+F(s) = 0, (2.39)

d

d s

(
Dθ

dθ(s)

d s

)
−Du

(
du(s)

d s
−θ(s)×E1

)
×E1 = 0. (2.40)

2. Condições de contorno:

u(0) = u0, θ(0) = θ0, (2.41)

u(L) = ul , θ(L) = θl . (2.42)

O PROBLEMA−A, definido pelo sistema de equações (2.31–2.38), e o

PROBLEMA−B, representado pelo sistema (2.40–2.42), descrevem o comportamento

geral de uma estrutura flexível no espaço tridimensional, considerando o regime de

pequenos deslocamentos e deformações. Ressalta-se que o PROBLEMA−A adota

uma formulação em termos dos esforços e deslocamentos generalizados, enquanto o

PROBLEMA−B baseia-se exclusivamente nos deslocamentos generalizados.

Vale destacar que tanto o PROBLEMA −A quanto o PROBLEMA −B foram expres-

sos em notação vetorial, com o objetivo de compactar as equações e facilitar sua inter-

pretação. Para uma descrição detalhada, em termos das componentes escalares dos

deslocamentos, rotações, momentos e esforços cisalhantes nas três direções do es-

paço, apresenta-se no Apêndice A, Seção A.1, a formulação expandida correspondente.
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Capítulo 3

Formulações variacionais mistas

Neste capítulo, desenvolvemos uma modelagem variacional mista com o intuito de su-

perar limitações observadas em formulações puramente cinemáticas para a análise de

vigas, sobretudo em situações em que os efeitos de cisalhamento são relevantes. Nes-

ses casos, o uso de funções de interpolação inadequadas pode resultar em fenômenos

de trancamento por cisalhamento, comprometendo a precisão das soluções obtidas.

Para contornar tais restrições, adotamos uma abordagem variacional mista estabili-

zada, a qual combina a flexibilidade de tratar os esforços internos e os deslocamentos

como variáveis independentes com técnicas adicionais de estabilização, assegurando

coerência física e robustez numérica.

Nesta perspectiva, apresentaremos na próxima seção uma breve descrição das pro-

priedades associadas aos espaços de funções específicos utilizados na construção da

formulação variacional mista.

3.0.1 Formulação variacional

SejaQ=L2(0,L) o espaço de funções escalares de quadrado integrável segundo a me-

dida de Lebesgue e

S= {
v;v ∈ H 1(0,L),v(0) = 0

}
, (3.1)

onde

H 1(0,L) =
{

v ∈L2(0,L);
dv

d s
∈L2(0,L)

}
(3.2)

é o espaço de funções de Hilbert. Definindo os espaços:

S3 = S×S×S, (3.3)

Q3 = Q×Q×Q, (3.4)
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com produto interno e norma dados definidos por:

(σ,τ) = ∫ L
0 σ ·τd s ∥σ∥ = (σ,σ)

1/2 ∀σ,τ ∈Q3 , (3.5)

(u,v)1 =
∫ L

0 (u ·v+ u̇ · v̇)d s ∥v∥1 = (v,v)
1/2
1 ∀u,v ∈S3 , (3.6)

onde:

v̇ = d v1

d s
E1 + d v2

d s
E2 + d v3

d s
E3. (3.7)

é o vetor das derivadas das componentes do vetor v. No espaço S3, define-se a semi-

norma por:

|v |1 =
(

dv

d s
,

dv

d s

) 1
2

. (3.8)

Com base nessas definições, são apresentados a seguir alguns lemas importantes

de equivalência de norma.

Lema 3.0.1. Seja ∥·∥1 a norma usual em S3 (3.6) e a seminorma |·|1 (3.6). Existe c1 > 0

tal que

|v |1 Ê c1∥v∥1,∀v ∈S. (3.9)

Lema 3.0.2. Existe uma constante c2 > 0 tal que

|v |1 É c2∥v∥1,∀v ∈S. (3.10)

Lema 3.0.3. No espaço vetorial S3, a norma e a seminorma são equivalentes:

∃c1,c2 > 0 tais que c1∥v∥ ≤ |v |1 ≤ c2∥v∥. (3.11)

A verificação de cada um destes lemas encontra-se em (Brezzi, 1991) [11] e (Ciarlet,

2002) [12]. Uma vez estabelecida a relação entre a norma e a seminorma, redefinimos

o produto interno e a norma no espaço S3 da seguinte forma

(u,v)1 =
∫ L

0

(
du

d s
· dv

d s

)
, |v|1 =

(
dv

d s

dv

d s

) 1
2 ∀u,v ∈S3, (3.12)

com a identificação dos espaços produto W = Q3 ×Q3 e Z = S3 ×S3, com norma e

produto interno 1 definidos por:

(σ,τ) = (M,Γ)+ (N,Φ), ∥τ∥2
W = ∥Γ∥2 +∥Φ∥2, (3.13)

(z,w)1 =
(

du

d s
,

dv

d s

)
+

(
dθ

d s
,

dψ

d s

)
, ∥w∥2

Z = |v|21 +|ψ|21, (3.14)

1Uma descrição completa acerca destas normas e produtos encontram-se em (Brezzi, 1974) [13], (Ar-
nold, 1981)[14], (Loula, 1987b) [15], (Reddy, 1992)[16] e (Arunakirinathar, 1993) [17].
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onde

z = (u,θ) ∈Z, w = (v,ψ) ∈Z, (3.15)

σ= (M,N) ∈W, τ= (Γ,Φ) ∈W. (3.16)

3.0.2 Formulação cinemática

Após a definição dos espaços de funções, o PROBLEMA−B foi representado de ma-

neira equivalente, por meio de uma formulação variacional abstrata, apresentado no

seguinte problema:

PROBLEMA−C: Dado (F,0) ∈Z′, encontrar z ∈Z tal que

c(z,w) = f (w),w ∈W, (3.17)

com

c(z,w) =
(

Dθ
dθ(s)

d s
,

dψ(s)

d s

)
+

(
Du

(
du(s)

d s
−θ(s)×E1(s)

)
,

dv(s)

d s
−ψ(s)×E1(s)

)
,

(3.18)

f (w) = (F,v)+ (0,ψ), (3.19)

onde z = (u,θ) ∈Z, w = (v,ψ) ∈Z e Z′ é o espaço dual de Z.

Este problema ajusta-se à classe de formulações abstratas estabelecidas pelo lema

de Lax-Milgram. Com isso, a existência e unicidade de solução do PROBLEMA−C

foram garantidas pelo seguinte resultado:

Lema 3.0.4. (Lax-Milgram)

1. A forma bilinear f :Z×Z→R é contínua e portanto, existe uma constante positiva

β tal que:

|c(z,w)| Éβ|z|1|w|1, ∀w,z ∈Z. (3.20)

2. A forma (∗,∗) é Z -elíptico, ou seja, existe uma constante positiva α tal que

|c(z,z)| Êα(|z|1)2, ∀z ∈Z. (3.21)

3. O funcional linear F : Z →R é contínuo, isto é, existe uma constate positiva γ, tal

que

|F (z)| É γ∥z∥1, ∀z ∈Z. (3.22)

As propriedades apresentadas neste lema são verificadas em (Ciarlet, 2002) [12] e

(Santos, 2007) [18]. O PROBLEMA−C é a forma mais simples e direta para representar
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o modelo e tem sua existência e unicidade de solução asseguradas pelo lema de Lax-

Milgram, tanto na sua forma contínua quanto discreta, quando ela é aproximada pelo

Método de Galerkin e discretizada pelo Método dos Elementos Finitos. Entretanto,

é bem conhecido que tais aproximações exigem um compromisso entre as funções

interpoladoras dos campos de deslocamento e rotações para garantir a estabilidade.

Para atingir esse objetivo, apresentamos a seguir uma abordagem variacional mista

baseada no princípio de Hellinger–Reissner.

3.1 Formulação variacional baseada no princípio de

Hellinger-Reissner

A construção de uma formulação variacional mista, fundamentada no princípio de

Hellinger–Reissner, oferece maior flexibilidade na representação dos campos físicos

(deslocamentos e esforços) quando se deseja modelar o processo de deformação de

vigas em regime de pequenos deslocamentos e rotações. Diferentemente das aborda-

gens puramente cinemáticas, essa formulação permite tratar deslocamentos e esfor-

ços generalizados como variáveis independentes, possibilitando a escolha de funções

de interpolação específicas para cada campo. Essa característica é particularmente

vantajosa em situações em que os efeitos de cisalhamento não podem ser despreza-

dos, como ocorre em vigas esbeltas.

Além disso, a formulação mista fundamentada no princípio de Hellinger–Reissner

contribui para evitar fenômenos de trancamento numérico, comuns em formulações

tradicionais, garantindo maior coerência física e estabilidade da solução. Nesta pers-

pectiva, apresentamos um problema equivalente ao PROBLEMA−A, em que as variá-

veis primais são os esforços generalizados, representados porσ (momentos e esforços

cortantes), enquanto os deslocamentos generalizados, denotados por τ (deslocamen-

tos e rotações), atuam como multiplicadores de Lagrange. Assim, temos:

PROBLEMA−D: Dado F ∈Z′, encontrar (σ,z) ∈W×Z tal que satisfaçam o sistema de

equações:

a(σ,τ)+b(τ,z) = 0, ∀τ ∈W, (3.23)

b(σ,w) = f (w), ∀w ∈Z, (3.24)
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onde

a(σ,τ) = −(DθN,Γ)− (DuM,Φ)

= − 1

E I1
(N1,Γ1)− 1

E I2
(N2,Γ2)− 1

G J
(N3,Γ3)−

− 1

κ1G A
(M1,Φ1)− 1

κ2G A
(M2,Φ2)− 1

E A
(M3,Φ3), (3.25)

b(τ,w) =
(
Γ,

dv

d s
−ψ×E1(s)

)
+

(
Φ,

dψ

d s

)
=

(
Γ1,

d v1

d s
−γv2 −ψ2

)
+

(
Γ2,

d v2

d s
+γv1 −µv3 +ψ1

)
+

(
Γ3,

d v3

d s
+γv2

)
+

+
(
Φ1,

dψ1

d s
−γψ2

)
+

(
Φ2,

dψ2

d s
+γψ1 −µψ3

)
+

(
Φ3,

dψ3

d s
+µψ2

)
, (3.26)

f (w) = (F,v)

= (F1, v1)+ (F2, v2)+ (F3, v3). (3.27)

É importante ressaltar que as Eqs. (3.23) e (3.24) resultam das formas fracas das

equações constitutiva do modelo e de equilíbrio dos esforços generalizados, respec-

tivamente. Neste contexto, o PROBLEMA−D enquadra-se na classe das formula-

ções mistas abstratas, conforme discutido por (Babuška, 1973) [20], (Brezzi, 1974) [13],

(Douglas, 1989) [21] e (Reddy, 1992) [16] e possuem existência e unicidade de solução,

asseguradas pelo seguinte resultado:

Teorema 3.1.1 (Brezzi).

1. O funcional f : Z →R é contínuo, isto é, existe uma constante positiva η tal que

∣∣ f (w)
∣∣É η∥w∥Z,∀w ∈Z. (3.28)

2. As formas bilineares a :W×W→R e b :W×Z→R são contínuas, ou seja, existem

constantes α1 e α2 positivas tais que:

|a(σ,τ)| Éα1∥σ∥w∥σ∥w ,∀σ,τ ∈W. (3.29)

|b(τ,w)| Éα2∥σ∥w∥σ∥z ,∀τ ∈ W,∀w ∈Z. (3.30)

3. a(∗,∗) é K -elíptica; ou seja, existe uma constante positiva α3 tal que

a(τ,τ) Êα3(|τ|1)2, ∀τ ∈X, (3.31)
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onde

K = {τ ∈W/b(τ,w) = 0,∀w ∈Z} . (3.32)

4. A condição LBB (Ladysenskaja – Babuška – Brezzi)): Existe uma constante positiva

α4 > 0 tal que

sup
τ∈W

b(τ,w)

∥τ∥W
Êα4∥w∥Z, τ ̸= 0,∀w ∈Z. (3.33)

A verificação de cada uma destas propriedades encontram-se em (Brezzi, 1974) [13]

e (Santos, 2007) [18]. Na proxima seção, faremos a aproximação desta formulação pelo

método de Galerkin e discretização pelo método dos elementos finitos. Vamos discutir

algumas questões de estabilidade e apresentar uma formulação estabilizada para o

problema.

3.1.1 Método dos elementos finitos misto estabilizado

Seja Ie o domínio de cada elemento e da partição do domínio total, he o diâmetro do

elemento, ne o número total de elementos, e h = max{he }, 1 ≤ e ≤ ne o parâmetro

de malha. Definimos o espaço de elementos finitos Lagrangiano de grau l e classe

C−1(0,L) como:

Ql
h = {

τh ∈C−1(0,L) : τh(Ie ) ∈ Pl (Ie )
}

(3.34)

e o espaço de aproximação

Sl
h =Ql

h ∩S,

correspondendo ao espaço de elementos finitos Lagrangiano de grau l e classe C 0(0,L).

Neste contexto, utilizamos polinômios de interpolação do mesmo grau tanto para os

deslocamentos generalizados (Sl
h) quanto para os esforços generalizados (Ql

h). Os po-

linômios associados aos deslocamentos são contínuos entre os elementos, enquanto

os associados aos esforços são descontínuos. Assim, denotamos por:

Zl
h =

(
Sl

h

)3 ×
(
Sl

h

)3 ⊂Z,

Wl
h =

(
Ql

h

)3 ×
(
Ql

h

)3 ⊂W,

os espaços de aproximação para Z e W, respectivamente. Com base nesta definições,

a aproximação de Galerkin para o PROBLEMA−D é dado por:

PROBLEMA−Dh : Encontrar (σh ,zh) ∈Wr
h ×Zr

h tal que:

a (σh ,τh)+b (τh ,uh) = 0, ∀τh ∈Wr
h , (3.35)

b (σh ,τh) = f (wh), ∀wh ∈Zr
h ,
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onde

a(σh ,τh) = −(DθNh ,Γh)− (DuMh ,Φh), (3.36)

(τh ,wh) =
(
Γh ,

dvh

d s
−ψh ×E1

)
+

(
Φh ,

dψh

d s

)
, (3.37)

f (wh) = (Fh ,vh)+ (0,ψh). (3.38)

Esta forma discreta tem existência e unicidade de solução assegurada pelo teorema de

Brezzi.

Devido à aproximação, conforme adotada Zl
h ⊂ Z e Wl

h ⊂ W, as propriedades de

continuidade do funcional f (·) e das formas bilineares a(·, ·) e b(·, ·) são transmitidas

da forma contínua. No entanto, em geral, tem-se que Kh ̸⊂ K , de modo que as demais

condições como a K -elipticidade e a LBB precisam ser verificadas também no contexto

do PROBLEMA−Dh . A propriedade de compatibilidade entre os espaços é verificada

pelo seguinte lema:

Lema 1. Existe β ∈R tal que

sup
τh∈W l

h
τh ̸=0

b(τh ,wh)

∥τh∥W
≥β∥wh∥Z, ∀wh ∈Zl

h . (6.13)

A verificação desse lema encontra-se em (Brezzi, 1974) [13] e (Santos, 2007) [18].

Assim, a verificação da condição de compatibilidade entre os espaços é obtida a partir

das mesmas escolhas feitas na formulação contínua. Porém, nota-se que a proprie-

dade de K -elipticidade não segue o mesmo contexto, isto é, para os espaços de apro-

ximação considerados Zl
h e Wl

h , não é possível estabelecer escolhas que assegurem

a K -elipticidade da forma bilinear a(·, ·). Para superar esta dificuldade, uma estraté-

gia adotada foi considerar os esforços interpolados de forma descontínua, podendo

eliminá-los a nível de elemento. Com isso, obtemos uma formulação apenas em des-

locamentos generalizados. Tal formulação representa precisamente a aproximação ci-

nemática do PROBLEMA−C dado por:

PROBLEMA−Ch : Dado F ∈Z′
h , encontrar zh ∈ Zh tal que

c(zh ,wh) = f (wh), ∀wh ∈Zh , (3.39)
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onde

c(zh ,wh) =
(

Dθ
dθh(s)

d s
,

dψh(s)

d s

)
+

+
(

Du

[
duh(s)

d s
−θh(s)×E1(s)

]
,

dvh(s)

d s
−ψh(s)×E1(s)

)
, (3.40)

f (wh) = (Fh ,vh)+ (0,ψh). (3.41)

Esta forma discreta tem existência e unicidade de solução garantida pelo teorema de

Lax-Milgram.

Neste contexto, estabilizamos o PROBLEMA −Dh fazendo a adição de termos re-

siduais de mínimos quadrados provenientes das equações de equilíbrio do modelo.

Essa estratégia garante a estabilidade da formulação, mesmo quando são utilizadas

interpolações de mesma ordem para os campos de esforços e deslocamentos genera-

lizados. A estabilização utilizada consiste em introduzir na aproximação de Galerkin

uma perturbação a nível de elemento da seguinte forma:

Para τh ∈Wr
h e wh ∈Wr

h , encontrar (σh ,wh) ∈Wr
h ×Zr

h tal que

a(σh ,τh)+b(zh ,τh)+b(σh ,wh)− f (wh)−
ne∑

e=1
δ1h2

e

(
dNe

d s
−Me ×E1,

dΦe

d s
−Γe ×E1

)
−

−
ne∑

e=1
δ2h2

e

(
dMe

d s
+F,

dΓe

d s

)
= 0,

(3.42)

em que δ1 > 0 e δ2 > 0 são parâmetros arbitrários e os termos a eles associados corres-

pondem aos resíduos em mínimos quadrados das equações de equilíbrio dos momen-

tos e dos esforços generalizados (cisalhantes e normal), respectivamente. Nesta nova

abordagem, os resíduos são considerados apenas no interior dos elementos o que ga-

rante a estabilização (Loula, et al., 1987a [22], Loula, et al., 1987b [15]; Santos, et al.,

2007 [23]). Dessa forma, reorganizando os termos da Eq.(3.42), o PROBLEMA−Dh as-

sume a seguinte forma:

PROBLEMA−DE
h : Encontrar (τh ,uh) ∈Wr

h ×Vr
h tal que satisfaçam o sistema de equa-

ções

ah(σh ,τh)+b(τh ,zh) = gδ(τh), ∀τh ∈Wr
h , (3.43)

b(σh ,wh) = f (wh), ∀wh ∈Zr
h ,
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onde

ah(σh ,τh) = a(σh ,τh)+aδ(σh ,τh)h , (3.44)

aδ(σh ,τh)h = −
ne∑

n=1
δ1h2

e

[(
dNe

d s

)
−Me ×E1,

dΦe

d s
−Γe ×E1

]
−δ2h2

e

(
dMe

d s
,

dΓe

d s

)
,

(3.45)

gδ(τh) = δ2h2
e

(
F,

dΓe

d s

)
. (3.46)

Essa formulação tem existência e unicidade de solução garantidas pelo teorema de

Brezzi. Como se pode observar, o funcional bilinear ah(∗,∗) inclui termos adicionais

que servem para estabilizar o método de Galerkin no nível de elemento. No Apêndice

B, apresentamos essa formulação em termos de componentes.

Com isso, finalizamos as discussões referentes à formulação variacional do pro-

blema de viga de Timoshenko no espaço tridimensional. No capítulo seguinte, serão

apresentados experimentos numéricos com o intuito de ilustrar e validar a aplicabili-

dade e a robustez da formulação desenvolvida, evidenciando seu potencial na análise

de estruturas tridimensionais.
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Capítulo 4

Resultados

Nessa seção apresentamos os resultados da aplicação do modelo de estruturas flexí-

veis, desenvolvido no capítulo anterior, através de três experimentos numéricos. No

primeiro experimento, analisamos um problema simples de uma viga retilínea engas-

tada submetida a um carregamento transversal distribuído. No segundo experimento,

analisamos uma viga engastada com sua geometria descrevendo uma hélice no espaço

tridimensional. Por fim, no terceiro experimento, analisamos o problema de uma es-

trutura composta por vários elementos de barras interconectados. Estes estudos con-

sideram deformações, rotações e esforços no espaço tridimensional, evidenciando a

potencialidade e o comportamento do modelo em aplicações de estruturas mais com-

plexas.

4.0.1 Experimento 1

Este experimento tem como objetivo comparar a solução numérica com a solução

analítica, para evidenciar a sua precisão. Para isso, consideramos uma viga de com-

primento L = 3.0m, engastada na sua extremidade inicial e livre na final, sujeita a uma

carga distribuída F3 = −5,0kN na direção e3, conforme ilustra a Fig.4.1. Além disso,

consideramos as propriedades geométricas e constitutivas como descritas na Tab.4.1.

Para resolver este problema, discretizamos o nosso domínio numa malha de elemen-

tos finitos com 14 elementos uniformemente espaçados, e utilizamos funções de in-

terpolações lineares para os campos dos deslocamentos e esforços generalizados.
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Figura 4.1: Representação esquemática de uma viga retilínea, engastada e livre, de comprimento L =
3.0m, com seção transversal retangular ab e submetida a uma carga distribuída F3 =−5.0kN.

Tabela 4.1: Propriedades da viga

Descrição Valores

Módulo de elasticidade E 2,0×1011 Pa

Módulo de elasticidade transversal G 7,5×1010 Pa

Momento de inércia I1 6,0×10−7 m4

Momento de inércia I2 6,0×10−7 m4

Momento polar de inércia J 1,2×10−6 m4

Área de seção transversal A 2,8×10−3 m2
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As Figs.4.2 e 4.3 ilustram a comparação dos resultados numéricos e analíticos para

as componentes não nulas do deslocamento e da rotação, respectivamente.

Figura 4.2: Comparação das soluções numéricas U3 e analítica U3e da componente do deslocamento
na direção e3 de uma viga engastada e livre, sujeita a uma carga distribuída F3 =−5,0kN na direção do
eixo e3.

Figura 4.3: Comparação das soluções numéricas θ2 e analítica θ2e da componente da rotação em rela-
ção ao eixo e2 de uma viga engastada e livre, sujeita a uma carga distribuída F3 =−5,0kN na direção do
eixo e3.
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As Figs.4.4 e 4.5 ilustram a comparação dos resultados numéricos e analíticos para

as componentes não nulas dos momentos fletores e dos esforços cisalhantes, respec-

tivamente.

Figura 4.4: Comparação das soluções numéricas M3 e analítica M3e da componente do momento fletor
em relação ao eixo e3 de uma viga engastada e livre, sujeita a uma carga distribuída F3 = −5,0kN na
direção do eixo e3.

Figura 4.5: Comparação das soluções numéricas N2 e analítica N2e da componente dos esforços ci-
salhantes na direção e2 de uma viga engastada e livre, sujeita a uma carga distribuída F3 = −5,0kN na
direção do eixo e3.

Com base nos resultados gráficos apresentados, podemos constatar a boa precisão

da solução numérica. Fazendo o cálculo do erro relativo para as componentes do des-

locamento, rotação, momento e esforço cisalhante, verificamos valores percentuais na

ordem de 10−2 %, podendo ser considerados desprezíveis. Esses resultados evidenciam

a acurácia da formulação numérica.
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4.1 Experimento 2

Este experimento tem como objetivo comparar a solução numérica com a solução ana-

lítica, para evidenciar a sua precisão quando a estrutura descreve um comportamento

para fora do plano, isto é, no espaço tridimensional. Para isso, consideramos uma viga

de comprimento L = 3.0m, engastada na sua extremidade inicial e livre final, sujeita

a uma carga concentrada unitária F3 = 1,0kN aplicada na sua extremidade livre e na

mesma direção do eixo e3, conforme ilustra a Fig.4.6. As propriedades geométricas e

constitutivas são as mesmas apresentadas na Tab.4.1. A linha neutra desta estrutura

representa uma curva no espaço tridimensional descrita pela equação da hélice:

r(s) = R cos
( s

m

)
e1 +Rsen

( s

m

)
e2 +C

( s

m

)
e3 (4.1)

onde R é o seu raio, C a sua altura do passo e m =
p

R2 +C 2 é o parâmetro geométrico

da hélice.

Decompondo a carga F3 em componentes nas direções tangencial e binormal do

sistema de coordenadas local do modelo, temos que:

F =
(

C

m
P

)
E1 +

(
R

m
P

)
E3. (4.2)

Em nosso experimento, consideramos os parâmetros geométricos C = R =
p

2

4π
e obte-

mos m = 1

2π
. Com isso, a curvatura γ= C

m2
e a torção µ= R

m2
assumem valores iguais

a
p

2π. Substituindo estes resultados na Eq.4.2 encontramos o valor de 0,707kN para

cada componente da carga F3.

Para resolver este problema, discretizamos o domínio utilizando uma malha de ele-

mentos finitos com 96 elementos uniformemente espaçados e funções de interpolação

lineares para aproximar tanto os campos de deslocamentos quanto os esforços gene-

ralizados.
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Figura 4.6: Representação esquemática de uma hélice engastada sujeita a uma carga concentrada F3

aplicada na sua extremidade livre.

As Figs.4.7 a 4.12 ilustram a comparação entre a solução numérica e analítica para

as componentes dos deslocamentos e da rotações generalizados.

Figura 4.7: Comparação das soluções numéricas U1 e analítica U1e da componente do deslocamento na
direção e1 de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN aplicada
na sua extremidade livre, com curvatura e torção γ=µ=p

2π, respectivamente.
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Figura 4.8: Comparação das soluções numéricas U2 e analítica U2e da componente do deslocamento na
direção e2 de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN aplicada
na sua extremidade livre, com curvatura e torção γ=µ=p

2π, respectivamente.

Figura 4.9: Comparação das soluções numéricas U3 e analítica U3e da componente do deslocamento na
direção e3 de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN aplicada
na sua extremidade livre, com curvatura e torção γ=µ=p

2π, respectivamente.
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Figura 4.10: Comparação das soluções numéricas θ1 e analítica θ1e da componente da rotação em
relação ao eixo e1 de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN
aplicada na sua extremidade livre, com curvatura e torção γ=µ=p

2π, respectivamente.

Figura 4.11: Comparação das soluções numéricas θ2 e analítica θ2e da componente da rotação em
relação ao eixo e2 de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN
aplicada na sua extremidade livre, com curvatura e torção γ=µ=p

2π, respectivamente.
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Figura 4.12: Comparação das soluções numéricas θ3 e analítica θ3e da componente da rotação em
relação ao eixo e3 de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN
aplicada na sua extremidade livre, com curvatura e torção γ=µ=p

2π, respectivamente.

As Figs.4.13 a 4.18ilustram a comparação entre a solução numérica e analítica para

as componentes dos momentos e dos esforços cisalhantes generalizados.

Figura 4.13: Comparação das soluções numéricas M1 e analítica M1e da componente do momento em
relação ao eixo e1 de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN
aplicada na sua extremidade livre, com curvatura e torção γ=µ=p

2π, respectivamente.
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Figura 4.14: Comparação das soluções numéricas M2 e analítica M2e da componente do momento em
relação ao eixo e2 de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN
aplicada na sua extremidade livre, com curvatura e torção γ=µ=p

2π, respectivamente.

Figura 4.15: Comparação das soluções numéricas M3 e analítica M3e da componente do momento em
relação ao eixo e3 de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN
aplicada na sua extremidade livre, com curvatura e torção γ=µ=p

2π, respectivamente.
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Figura 4.16: Comparação das soluções numéricas N1 e analítica N1e da componente dos esforços
cisalhantes na direção e1 de uma hélice simplesmente engastada, sujeita a uma carga concentrada
F3 = 1,0kN aplicada na sua extremidade livre, com curvatura e torção γ=µ=p

2π, respectivamente.

Figura 4.17: Comparação das soluções numéricas N2 e analítica N2e da componente dos esforços
cisalhantes na direção e2 de uma hélice simplesmente engastada, sujeita a uma carga concentrada
F3 = 1,0kN aplicada na sua extremidade livre, com curvatura e torção γ=µ=p

2π, respectivamente.

43



Figura 4.18: Comparação das soluções numéricas N3 e analítica N3e da componente dos esforços
cisalhantes na direção e3 de uma hélice simplesmente engastada, sujeita a uma carga concentrada
F3 = 1,0kN aplicada na sua extremidade livre, com curvatura e torção γ=µ=p

2π, respectivamente.

Com base nos resultados gráficos apresentados, calculamos os erros percentuais

relativos para as componentes dos deslocamentos, rotações, momentos e esforços

cisalhantes. Observamos que os erros percentuais obtidos para cada uma das com-

ponentes dos deslocamentos e rotações estão na ordem de 10−2 %, enquanto os mo-

mentos apresentam erros na ordem de 10−3 %, e os esforços cisalhantes na ordem de

10−4 %. Estes erros são muito pequenos e podemos desprezá-los, o que evidencia a

acurácia da formulação numérica quando a estrutura descreve um comportamento

fora do plano.

4.2 Experimento 3

O presente experimento tem como objetivo investigar o comportamento da formula-

ção em um sistema composto por múltiplos elementos de barras interconectadas. Esta

estrutura é constituída por tubos de alumínio de seção transversal circular vazada, de

diâmetro externo D = 20 mm e de diâmetro interno d = 16 mm, conforme ilustrado na

Figura 4.19. A estrutura possui seus movimentos de rotação e deslocamentos restri-

tos em todas as direções nos nós 1, 3 e 6, e está sujeita à ação simultânea das cargas

concentradas F ′
3 =−600N e F ′′

3 =−200N, aplicadas nos nós 5 e 2, respectivamente.

Para a resolução deste problema, foram utilizadas as propriedades geométricas e

constitutivas apresentadas na Tabela 4.2. O domínio foi discretizado em uma malha

composta por 400 elementos finitos uniformemente distribuídos. Para a aproximação

dos campos de deslocamentos e esforços generalizados, empregou-se funções de in-

terpolação lineares.
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Tabela 4.2: Propriedades da estrutura

Descrição Valores

Módulo de elasticidade E 6,9×1010 Pa

Módulo de elasticidade transversal G 2,875×1010 Pa

Momento de inércia I1 4,637×10−9 m4

Momento de inércia I2 4,637×10−9 m4

Momento polar de inércia J 9,274×10−9 m4

Área de seção transversal A 1,131×10−4 m2

Figura 4.19: Representação tridimensional da estrutura interconectada de seção tubular vazada, sob a
ação das cargas concentradas F′

3 =−600N e F′′
3 =−200N.

As Figs. 4.20 a 4.27 representam graficamente a solução numérica para os campos

dos deslocamentos e esforços generalizados na estrutura interconectada. A escala de

cores representa as magnitudes dessas grandezas, em que a cor vermelha indica os

valores máximos e a cor azul, os mínimos. A transição contínua entre as cores ilus-

tra gradualmente as variações das magnitudes, os quais permitem uma interpretação

visual precisa e detalhada dos resultados.
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Figura 4.20: Configuração deformada da estrutura, quando aplicadas cargas concentradas F′
3 =−600N

e F′′
3 =−200N.

Figura 4.21: Rotação ao longo da estrutura, em decorrência da aplicação das cargas concentradas F′
3 =

−600N e F′′
3 =−200N.

Figura 4.22: Variação da componente M1 do momento em relação ao eixo e1, em decorrência da apli-
cação das cargas concentradas F′

3 =−600N e F′′
3 =−200N.
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Figura 4.23: Variação da componente M2 do momento em relação ao eixo e2, em decorrência da apli-
cação das cargas concentradas F′

3 =−600N e F′′
3 =−200N.

Figura 4.24: Variação da componente M3 do momento em relação ao eixo e3, em decorrência da apli-
cação das cargas concentradas F′

3 =−600N e F′′
3 =−200N.

Figura 4.25: Variação da componente N1 dos esforços cisalhantes na direção do eixo e1, em decorrência
da aplicação das cargas concentradas F′

3 =−600N e F′′
3 =−200N.

47



Figura 4.26: Variação da componente N2 dos esforços cisalhantes na direção do eixo e2, em decorrência
da aplicação das cargas concentradas F′

3 =−600N e F′′
3 =−200N.

Figura 4.27: Variação da componente N3 dos esforços cisalhantes na direção do eixo e3, em decorrência
da aplicação das cargas concentradas F′

3 =−600N e F′′
3 =−200N.

Nessa seção, apresentamos três problemas estruturais com naturezas geométricas

distintas, os quais nos permitiram explorar a capacidade do modelo de representar as

deformações em diversos cenários estruturais, considerando diferentes condições de

contorno e distribuições de cargas.
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Capítulo 5

Conclusões

Fundamentado no modelo de estruturas flexíveis unidimensionais, este trabalho apre-

sentou o desenvolvimento de uma formulação variacional mista estabilizada, baseada

no princípio de Hellinger–Reissner, para a solução do problema da viga de Timoshenko

no espaço tridimensional, em regime de pequenos deslocamentos e deformações.

A formulação proposta foi desenvolvida como alternativa às limitações observadas

em abordagens puramente cinemáticas, que tendem a apresentar imprecisões signifi-

cativas quando os efeitos de cisalhamento não podem ser desprezados. Para superar

essas restrições, adotamos uma representação independente para os campos de des-

locamentos e esforços generalizados, utilizando funções de interpolação específicas

para cada um. Essa estratégia demonstrou-se eficaz na mitigação de fenômenos como

o travamento por cisalhamento, contribuindo para maior coerência física e robustez

numérica das soluções.

Os resultados obtidos com a formulação variacional mista ressaltaram a importân-

cia da estabilização numérica por meio da introdução de termos residuais, baseados

no método dos mínimos quadrados, os quais foram aplicados às equações de equilí-

brio. Essa abordagem proporcionou ganhos significativos em precisão, estabilidade e

eficiência computacional.

Além de validar a robustez do modelo, este trabalho apresenta potencial para ser

expandido no contexto da otimização estrutural. A proposta consiste em integrar téc-

nicas de otimização à formulação variacional, por meio da definição de um funcional

de custo adequado, permitindo a calibração de diferentes parâmetros do sistema. En-

tre os parâmetros passíveis de otimização, destacam-se o comprimento, a espessura,

a área da seção transversal e as configurações estruturais (como o posicionamento de

apoios, a conectividade entre elementos e o arranjo topológico). O objetivo é alcançar

soluções que atendam simultaneamente a critérios de desempenho mecânico, segu-

rança estrutural e economia de material.

Por fim, os objetivos propostos foram plenamente alcançados. O modelo desen-

volvido mostrou-se uma alternativa eficaz para a análise de vigas de Timoshenko sob
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a influência significativa de cisalhamento, demonstrando ainda potencial de evolução

para aplicações práticas em projetos estruturais. Espera-se que a abordagem proposta

contribua para o desenvolvimento de soluções mais robustas, flexíveis e inovadoras

na engenharia estrutural, ampliando seu impacto tanto no meio acadêmico quanto no

profissional, por meio da adoção de métodos mais eficientes, confiáveis e orientados

à otimização.
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Apêndice A

Formulação padrão para o problema de

viga de Timoshenko no espaço

tridimensional

Apresentamos, neste apêndice, as expressões dos deslocamentos, rotações, momentos

e esforços cisalhantes em termos de componentes em R3.

A.1 Equações de equilíbrio em R3

Sejam funções arbitrárias v = (v1, v2, v3) e ψ = (
ψ1,ψ2,ψ3

)
com v,ψ ∈ R3. Atendendo

as Eqs. 2.31 e 2.32 e aplicando a integração ao longo de s ∈ (0,L), obtêm-se:

−
∫ s

0
Dθ

(
du

d s
−θ×E1

)
· dv

d s
d s +

∫ s

0
F ·v d s = 0, (A.1)

−
∫ s

0
Dθ

dθ

d s
· dψ

d s
ds+

∫ s

0
E1 ×Du

(
du(s)

d s
−θ×E1

)
·ψ ds = 0. (A.2)

Somando membro a membro estas duas expressões e reordenando os termos, obtêm-

se: ∫ s

0
Dθ

dθ

d s
· dψ

d s
ds+

∫ s

0
Du

(
du

d s
−θ×E1

)
·
(

dv

d s
−ψ×E1

)
d s =

∫ s

0
F ·v d s. (A.3)

onde ∫ s

0
Dθ

dθ

d s
· dψ

d s
d s =

∫ s

0
G J

(
dθ1

d s
−γθ2

)
·
(

dψ1

d s
−γψ2

)
d s +

+
∫ S

0
E I1

(
dθ2

d s
+γθ1 −µθ3

)
·
(

dψ2

d s
+γψ1 −µψ3

)
d s +

+
∫ s

0
E I2

(
dθ1

d s
+µθ2

)
·
(

dψ3

d s
+µψ2

)
d s, (A.4)
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du

d s
−θ×E1 =

(
du1

d s
−γu2

)
E1 +

(
du2

d s
+γu1 −µu3 −θ3

)
E2 +

+
(

du3

d s
+µu2 −θ2

)
E3, (A.5)

∫ S

0
Du

(
du

d s
−θ×E1

)(
dv

d s
−ψ×E1

)
d s =

∫ s

0
E A

(
du1

d s
−γu2

)(
d v1

d s
−γv2

)
+

+
∫ s

0
G A1

(
du2

d s
+γu1 −µu3 −θ3

)(
d v2

d s
+γv1 −µv3 −ψ3

)
d s +

+
∫ s

0
G A2

(
du3

d s
+µu2 +θ2

)(
d v3

d s
+µv2 +ψ2

)
d s. (A.6)

Substituindo os resultados (A.4 - A.6) em (A.3), obtêm-se:∫ s

0
Dθ

dθ

d s
· dψ

d s
d s +

∫ s

0
Du

(
du

d s
−θ×E1

)(
dv

d s
−ψ×E1

)
d s =

∫ s

0
G J

(
dθ1

d s
−γθ2

)(
dψ1

d s
−γψ2

)
d s+

+
∫ s

0
E I1

(
dθ2

d s
+γθ1 −µθ3

)(
dψ2

d s
+γψ1 −µψ3

)
d s +

∫ s

0
E I2

(
dθ1

d s
+µθ2

)(
dψ3

d s
+µψ2

)
d s+

+
∫ s

0
E A

(
du1

d s
−γu2

)(
d v1

d s
−γv2

)
+

∫ s

0
G A1

(
du2

d s
+γu1 −µu3 −θ3

)(
d v2

d s
+γv1 −µv3 −ψ3

)
d s+

+
∫ s

0
G A2

(
du3

d s
+µu2 +θ2

)(
d v3

d s
+µv2 +ψ2

)
d s.

(A.7)

A energia interna para o modelo de viga de Timoshenko no espaço tridimensional

é expressa por:

〈
Φ,∇s

u

〉 = −
∫ s

0
M1

(
dψ1

d s
−γψ2

)
d s −

∫ s

0
M2

(
dψ2

d s
+γψ1 −µψ3

)
d s −

∫ s

0
M3

(
dψ3

d s
+µψ2

)
d s −

−
∫ s

0
N1

(
d v1

d s
−γv2

)
d s −

∫ s

0
N2

(
d v2

d s
+γv1 −µv3 −ψ3

)
d s −

∫ s

0
N3

(
d v3

d s
+µv2 +ψ2

)
d s.

Pelo princípio dos trabalhos virtuais, o trabalho das forças externas equivale ao
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trabalho das forças internas, isto é,

−〈
Φ,∇s

u

〉+〈F,u〉 = 0〈
Φ,∇s

u

〉= 〈F,u〉 =
∫ s

0
M1

(
dψ1

d s
−γψ2

)
d s +

∫ s

0
M2

(
dψ2

d s
+γψ1 −µψ3

)
d s +

∫ s

0
M3

(
dψ3

d s
+µψ2

)
d s+

+
∫ s

0
N1

(
d v1

d s
−γv2

)
d s +

∫ s

0
N2

(
d v2

d s
+γv1 −µv3 −ψ3

)
d s +

∫ s

0
N3

(
d v3

d s
+µv2 +ψ2

)
d s

=
(

M1,
dψ1

d s

)
− (

M1,γψ2
)+(

M2,
dψ2

d s

)
+ (

M2,γψ1
)− (

M2,µψ3
)+(

M3,
dψ3

d s

)
+ (

M1,µψ2
)+

+
(

N1,
d v1

d s

)
− (

N1,γv2
)+(

N2,
d v2

d s

)
+ (

N2,γv1
)− (

N2,µv3
)− (

N2,ψ3
)+(

N3,
d v3

d s

)
+ (

N3,µv2
)+ (

N3,ψ2
)

= M1ψ1
∣∣s
0 −

(
d M1

d s
,ψ1

)
− (

M1,γψ2
)+ M2ψ2

∣∣s
0 −

(
d M2

d s
,ψ2

)
+ (

M2,γψ1
)− (

M2,µψ3
)+

+ M3ψ3
∣∣s
0 −

(
d M3

d s
,ψ3

)
+ (

M3,µψ2
)+ N1v1|s0 −

(
d N1

d s
, v1

)
− (

N1,γv2
)+

+ N2v2|s0 −
(

d N2

d s
, v2

)
+ (

N2,γv1
)− (

N2,µv3
)− (

N2,ψ3
)+

+ N3v3|s0 −
(

d N3

d s
, v3

)
+ (

N3,µv2
)+ (

N3,ψ2
)

=
(
−d M1

d s
+γM2,ψ1

)
+

(
−γM1 − d M2

d s
+µM2 +N3,ψ2

)
+

(
−µM1 − d M3

d s
−N2,ψ3

)
+

+
(
−d N1

d s
+γN2, v1

)
+

(
−γN1 − d N2

d s
+µN3, v2

)
+

(
−µN2 − d N3

d s
, v3

)
= (

F1,ψ1
)+ (

F2,ψ2
)+ (

F3,ψ3
)+ (F1, v1)+ (F2, v2)+ (F3, v3)

(A.8)

Com base nisto, chegam-se as equações de equilíbrio nas três direções do R3

−d M1

d s
+γM2 = F1 (A.9a)

−γM1 − d M2

d s
+µM2 +N3 = F2 (A.9b)

−µM1 − d M3

d s
−N2 = F3 (A.9c)

−d N1

d s
+γN2 = F1 (A.9d)

−γN1 − d N2

d s
+µN3 = F2 (A.9e)

−µN2 − d N3

d s
= F3 (A.9f)
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As equações constitutivas são obtidas a partir de (A.7). Logo,

M1 =G J

(
dθ1

d s
−γθ2

)
, (A.10a)

M2 = E I1

(
dθ2

d s
+γθ1 −µθ3

)
, (A.10b)

M3 = E I2

(
dθ1

d s
+µθ2

)
, (A.10c)

N1 = E A

(
du1

d s
−γu2

)
(A.10d)

N2 =G A1

(
du2

d s
+γu1 −µu3 −θ3

)
, (A.10e)

N3 =G A2

(
du3

d s
+µu2 +θ2

)
. (A.10f)
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Apêndice B

Formulação variacional mista

estabilizada no espaço tridimensional

Neste apêndice, apresenta-se a formulação variacional mista estabilizada do modelo

de viga de Timoshenko, expressa em termos de suas componentes.

B.0.1 Descrição do modelo em termos de componentes

Dados σ = (M,N) ∈ W, τ = (Γ,Φ) ∈ W e W = Q3 ×Q3 o espaço produto, define-se os

funcionais bilineares:

a (σ,τ) = − 1

G J
(Φ,Σ)− 1

E I1
(M1,Ξ1)− 1

E I2
(M2,Ξ2)− 1

E A
(N ,Θ)− 1

G A1
(F1,Γ1)− 1

G A2
(F2,Γ2) .

(B.1)

b(τ,u) =
(
Σ,

dθ1

d s
−γθ2

)
+

(
Ξ1,

dθ2

d s
+γθ1 −µθ3

)
+

(
Ξ2,

dθ3

d s
−µθ2

)
+

(
Θ,

du1

d s
−γu2

)
+

+
(
Γ1,

du2

d s
+γu1 −µu3 −θ3

)
+

(
Γ2,

du3

d s
+µu2 +θ2

)
, (B.2)

F(v) = (
F1,ψ1

)+ (
F2,ψ2

)+ (
F3,ψ3

)+ (F1, v1)+ (F2, v2)+ (F3, v3) , (B.3)

ah (σ,τ) = a (σ,τ)+aδ (σ,τ) , (B.4)

aδ (σ,τ) = −δ1h2
e

(
dΦ

d s
−γM1,

dΦ

d s
−γM1

)
−δ2h2

e

(
γΦ+ d M1

d s
−µM2 −F2,Φ+ d M1

d s
−µM2 −F2

)
−

− δ3h2
e

(
µM1 + d M2

d s
+F1,µM1 + d M2

d s
+F1

)
−δ4h2

e

(
d N

d s
−γF1,

d N

d s
−γF

)
−

− δ5h2
e

(
γN + dF1

d s
−µF2,γN + dF1

d s
−µF2

)
−δ6h2

e

(
µF1 + dF2

d s
,µF1 + dF2

d s

)
. (B.5)
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