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Resumo da Dissertacao apresentada ao PPGMMC/CI/UFPB como parte dos requisitos

necessdrios para a obtencao do grau de Mestre em Ciéncias (M.Sc.)

FORMULACAO VARIACIONAL DE ELEMENTOS FINITOS ESTABILIZADOS
APLICADO AO PROBLEMA DE VIGA DE TIMOSHENKO COM GEOMETRIA
ARBITRARIA NO ESPACO TRIDIMENSIONAL
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Orientadores: Antonio José Boness dos Santos

Ana Paula Pintado Wyse

Programa: Modelagem Matemdtica e Computacional

Apresentamos, neste trabalho, um modelo matematico para estruturas flexiveis de
geometria arbitraria no espaco tridimensional, cuja cinemadtica esteve regida pela teo-
ria de barras com flexao, cisalhamento e torcao, no regime de pequenos deslocamen-
tos e deformacoes. Inicialmente, retomamos a teoria classica das vigas retilineas, fun-
damentada nos modelos de Euler-Bernoulli e Timoshenko, formulamos as equagoes
governantes da deformacao sob a acdo de carregamentos distribuidos. Em seguida,
estendemos esses conceitos tedricos para barras com curvatura arbitrdria no espaco,
deduzindo as equacoes constitutivas e de equilibrio, que resultam em um sistema ve-
torial de equacdes diferenciais ordindrias. Para a resolucao desse problema, adota-
mos uma formulacao variacional abstrata baseada no principio de Hellinger—Reissner,
a qual permite tratar deslocamentos e esfor¢os generalizados como varidveis indepen-
dentes. Nesse contexto, os campos dos deslocamentos e esforcos generalizados foram
aproximados por funcdes de interpolacdao de mesma ordem, sendo continuas para os
deslocamentos e descontinuas para os esfor¢os, assegurando, assim, maior flexibili-
dade para representar adequadamente suas variacoes internas. Para garantir a estabi-
lidade numérica das aproximacdes, incorporamos termos residuais de minimos qua-
drados diretamente nas equacoes de equilibrio a nivel de elemento, o que possibilita
evitar o efeito de trancamento de solucao. Alguns resultados numéricos sdo apresen-

tados demonstrando a potencialidade da formulagao.
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We present a mathematical model for flexible structures with arbitrary geome-
tries in three-dimensional space, governed by beam theory that accounts for bending,
shear, and torsion, within the framework of small displacements and strains. We be-
gin by revisiting the classical theory of straight beams, founded on the Euler-Bernoulli
and Timoshenko models, and derive the governing equations for deformation under
distributed loading. These concepts are then extended to spatially curved beams, re-
sulting in the derivation of constitutive and equilibrium equations that form a system
of ordinary differential equations. To solve this problem, an abstract variational formu-
lation founded on the Hellinger—Reissner principle is adopted, which enables general-
ized displacements and internal forces to be treated as independent variables. In this
context, the displacement and internal force fields are approximated by interpolation
functions of the same polynomial degree, continuous for displacements and discon-
tinuous for internal forces, thereby allowing greater flexibility in accurately capturing
their internal variations. To guarantee the numerical stability of the approximations,
least-squares residual terms are directly incorporated into the equilibrium equations
at the element level, which prevents locking phenomena in the solution. Numerical

results are presented to demonstrate the potential of the formulation.
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Introducao

Historicamente, estruturas como vigas, pilares e porticos tém sido amplamente utili-
zados em construcdes de pontes, aquedutos, edificios, entre outros. Estas estruturas
sdo projetadas para suportar esforcos de flexdo, tragao, compressao e tor¢do ou combi-
nacoes entre eles. De modo geral, o comportamento desses tipos de estruturas espaci-
ais é representada por modelos unidimensionais, sendo aqui referidos por estruturas
flexiveis unidimensionais.

Além das aplicacoes em construcoes civis, os modelos de estruturas flexiveis unidi-
mensionais tém sido amplamente aplicados em outras dreas, como biologia, engenha-
ria espacial, industria de extracao de petroleo, entre outras. Em aplicagoes subaquati-
cas, por exemplo, aplicam-se esses modelos para analisar os efeitos de torcao e tensoes
nos dutos submarinos que transportam petrdleo da plataforma até o continente. De
modo geral, os efeitos de tor¢ao nesses equipamentos constituem um problema con-
tinuo e recorrente. O processo ndo é simples, e ocorre devido as correntes maritimas,
que geram uma acao combinada de tor¢do e tracdo nos dutos, fazendo com que eles
se movimentem e gerem dobras. Esse problema foi analisado por Ross (1977) [1], que
propds um modelo baseado em estruturas flexiveis unidimensionais para analisar as
combinacdes criticas de tensdo e tor¢do nesses cabos, apresentando resultados que
evitam a ocorréncia de falhas.

Na engenharia espacial, os modelos de estruturas flexiveis unidimensionais tém
sido utilizados para analisar os efeitos de deformacdes sofridos por cabos que conec-
tam veiculos espaciais a outros corpos em 6rbita, como estacoes, satélites e até mesmo
0s proprios astronautas. Neste contexto, Aslanov (2012) [2] desenvolveu um modelo
que analisa a tensao e tor¢do sofridas por estes cabos durante o transporte de carga.
Valverde et al. (2003) [3] apresentaram um modelo que analisa o comportamento de
flexao de cabos submetidos a interacoes eletromagnéticas. Estes, por sua vez, sdo utili-
zados para trazer a Terra detritos do espaco (fragmentos de veiculos espaciais, satélites
abandonados) que possam comprometer futuros voos espaciais. Um exemplo disso é
o chamado Short Electrodynamic Tether (SET), proposto pela European Space Agency.
O SET é uma estrutura extremamente flexivel que orbita a Terra com seu eixo de me-
nor inércia apontado para o plano normal da sua 6rbita. Esta estrutura, por ser condu-

tora, sofre acdo do efeito Faraday devido a interacao com o campo magnético terrestre.



Dessa forma, o SET modifica sua trajetéria orbital em funcdo da sua interacdo com o
campo magnético da Terra, alterando sua velocidade de giro em torno de seu eixo de
menor inércia [3].

Em estudos biol6gicos, modelos de estruturas flexiveis unidimensionais tém sido
utilizado para analisar o comportamento da molécula do DNA, que é caracterizada
por ter uma estrutura helicoidal de fita dupla, cujo emaranhamento dos filamentos
que compodem essa fita estd sujeita a flexoes e tor¢oes (PHISET et al., 2003) [4]. Estas
estruturas sao resultados das acdes das enzimas presentes nos processos de replicacao
e transicao de material genético de uma célula (MENZEL et al., 1994) [5].

Como se pode perceber, o modelo de estruturas flexiveis unidimensionais é am-
plamente utilizado para descrever o comportamento de uma ampla variedade de ele-
mentos estruturais em diversas aplicacoes. Embora seja uma abordagem simplificada,
muitos problemas praticos podem ser adequadamente analisados usando esse tipo
de modelo. No entanto, a solugdo analitica para este tipo de modelo é um processo
desafiador, especialmente quando as equacoes diferenciais que descrevem o compor-
tamento dessas estruturas sao complexas e nao lineares. Em muitos casos, mesmo
para problemas relativamente simples, ndo ha solucdes analiticas conhecidas, o que
torna necessario o uso de métodos numéricos para obter solu¢des aproximadas. E ai
que entram as ferramentas computacionais, como o Método dos Elementos Finitos e
outros métodos numéricos, que sao capazes de resolver numericamente as equacoes
diferenciais complexas que surgem ao modelar estruturas flexiveis unidimensionais.

Nesse cendrio, uma maneira eficaz de abordar problemas desse tipo é por meio
da aplicacdo de formula¢des mistas. Nessa abordagem, empregam-se as equacoes de
equilibrio e constitutivas do modelo, associando varidveis a diferentes campos. Isso
resultou no aumento do nimero de varidveis, cada uma com propriedades fisicas dis-
tintas. Dessa forma, obtém-se um maior controle sobre a qualidade da solucao dos
campos envolvidos, resultando em aprimoramento na qualidade das solucoes obtidas.

Nesta linha, destacam-se as contribuicdoes de Arnould (1981) [1], que analisou o
problema da viga de Timoshenko no plano, mostrando que a formulagao cinematica
dé origem a uma convergéncia nao uniforme, e que a formulacao mista da origem a
aproximacdes com taxas quase 6timas, independente do parametro de esbeltez; Loula
et al. (1987b) [15] introduziram uma formula¢do mista de Petrov-Galerkin, ou Galer-
kin com minimos quadrados para a construcdo das aproximacoes por elementos fi-
nitos, para resolver o problema da viga de Timoshenko no plano; Loula et al. (1987a)
[22] aplicaram esta formulacdo para investigar arcos, introduzindo uma formulacao
variacional fundamentada no principio de Hellinger-Reissner. Nessa abordagem, as
varidveis independentes incluem esforcos generalizados (momentos e esforcos axiais)
e deslocamentos generalizados (deslocamentos e rotagdes). Além disso, eles introdu-

ziram uma formulacao em elementos finitos mistos e estabilizados; Arunakirinathar



(1991) [3] desenvolveu uma formulac¢do variacional mista baseada em funcionais bi-
lineares para analisar o processo de deformacdo sofrida por uma viga de geometria
qualquer no espaco tridimencional; Santos (2007) [28] investigou o processo de defor-
macao de barras eldsticas de Timoshenko com geometria arbitrdria no espaco tridi-
mensional, utilizando o método dos elementos finitos mistos estabilizados proposto
por Loula et al.

Conforme é sabido, o método dos Elementos Finitos, fundamentado na formula-
cao cléssica de Galerkin, tem se destacado como uma ferramenta crucial na obtencao
de solu¢bes numéricas. Entretanto, € fato que tais aproximacoes podem nao convergir
de maneira uniforme para a solucao desejada, devido ao surgimento do processo, hoje
bem conhecido, do “trancamento de solucdao” ou “shear locking”. Este fendmeno surge
em alguns casos especificos de andlise, especialmente quando se utilizam funcdes de
interpolacgdo de baixa ordem e a estrutura possui uma secao transversal muito esbelta
(por exemplo, placas muito finas ou vigas muito estreitas). Tais situagdes provocam
perda consideravel de precisdao da solucao.

Com base no que foi apresentado, este trabalho tem como objetivo aplicar o mé-
todo dos elementos finitos mistos estabilizados, baseado no principio de Hellinger-
Reissner, para obter aproximacoes para o problema da viga de Timoshenko, conside-
rando que esta seja composta por material eldstico e isotropico sob regime de peque-
nos deslocamentos e deformacoes. Além disso, considera-se esta estrutura com geo-
metria arbitrdria no espaco tridimensional em equilibrio est4tico.

Este trabalho estd estruturado em quatro capitulos: no Capitulo 1 sdo apresenta-
das nocdes bdsicas da teoria cldssica dos modelos de vigas de Euler-Bernoulli e Ti-
moshenko; no Capitulo 2, expandem-se as defini¢oes apresentadas no Capitulo 1, in-
troduzindo noc¢oes bésicas de geometria diferencial no espaco tridimensional; no Ca-
pitulo 3, discute-se o método dos elementos finitos mistos estabilizados, baseado no
principio de Hellinger-Reissner; e, por ultimo, no Capitulo 4, sdo apresentados os re-
sultados obtidos via formulagdo variacional desenvolvida no Capitulo 3 para a estru-

tura de viga de Timoshenko com diferentes geometrias.



Capitulo 1

Teoria classica de viga de

Euler-Bernoulli e de Timoshenko

A concepcao de vigas teve inicio com Leonardo da Vinci, que concebeu um modelo
considerando sec¢Oes transversais retangulares. Ele observou que, ao serem submeti-
das a flexao, as vigas apresentam tensdes de tracdo e compressao nas fibras externas,
opostas, respectivamente. Da Vinci prop0s que essas tensdes possuiam magnitudes
iguais nas fibras inferiores e superiores, o que implica que a linha média da viga per-
manece inalterada, sem sofrer deformacdes longitudinais durante a flex3o.

Passados 500 anos, Galileu Galilei prop6s um modelo para determinar a capaci-
dade de carga transversal aplicada sobre a viga. No entanto, presumiu, de forma incor-
reta, que a carga aplicada na secao transversal da viga desenvolveria uma distribuicao
uniforme de tensoes.

Em meados do século XVIII, Leonhard Euler e Daniel Bernoulli propuseram um
modelo que descrevia o comportamento da deformacao das vigas. Em 1750, Euler
apresentou sua teoria sobre a flexdao de vigas em sua obra "Methodus inveniendi lineas
curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici
latissimo sensu accepti" (Método para encontrar curvas com propriedades mdaximas
ou minimas, ou solucao de problemas isoperimétricos em sentido amplo). Nesta obra,
Euler expo0s diversas solucoes relacionadas a teoria da flexao e suas equacgdes diferen-
ciais, descrevendo o comportamento de vigas submetidas a carregamentos transver-
sais. Em 1759, Daniel Bernoulli também fez importantes contribuicdes para a teoria
das vigas em seu trabalho "Hydrodynamica". Nesta obra, Bernoulli ampliou as ideias
de Euler, e contribuiu para o desenvolvimento das equac¢des que hoje sdo conhecidas
como as equacoes de Euler-Bernoulli.

Posteriormente, por volta de 1921, Timoshenko apresentou uma versao modificada
da teoria de vigas de Euler-Bernoulli, incorporando os efeitos do cisalhamento. Assim,
surgiu a teoria de viga de Timoshenko, que considera a existéncia de rotacdo em cada

ponto da viga, adicionado a contribuicdao da deformacao angular decorrente do cisa-
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lhamento.

Como se pode observar, esses modelos foram fundamentais para o desenvolvi-
mento da teoria de vigas e para a engenharia estrutural como um todo. A contribuicao
desses trabalhos ilustra como ideias e conceitos avancados surgiram ao longo da his-
toria, ajudando a estabelecer as bases para as teorias estruturais modernas utilizadas

atualmente.

1.1 Consideracoes iniciais

Define-se viga como um corpo fechado %, inserido no espaco euclidiano tridimensio-
nal R3, dotado de um sistema de eixos ortogonais e;, com i = {1, 2,3}, correspondentes
as coordenadas cartesianas x, y e z, respectivamente. Essa estrutura é delimitada por
um dominio unidimensional Q =]0, L[, onde L representa o comprimento da viga; Q
denota o fecho de Q e 0Q sua fronteira. As dimensodes transversais da viga, represen-
tadas pela largura b e altura £, sdo significativamente menores que o comprimento L,
caracterizando a geometria alongada tipica da viga. Adota-se como configuracdo de
referéncia o estado indeformado da viga, isto €, a condicdo inicial em que ndo existem
esforcos internos nem forgas externas aplicadas, servindo de base para a andlise de
deformacoes e tensdes subsequentes.

No estudo de vigas, diferentes modelos sdo utilizados para analisar e projetar siste-
mas estruturais. A Fig.|1.1|apresenta um esquema representativo de uma viga retilinea
de comprimento L, prismética e biapoiada, descrita no espaco tridimensional. Nessa
configuracao, a viga estd submetida a uma forca axial F;, aplicada ao longo da direcao
longitudinal ey, e a um carregamento distribuido transversal F3 atuando na direcao es,

perpendicular ao eixo da viga.

Figura 1.1: Modelo de uma viga prismética de comprimento L, de largura b e altura i com secao trans-
versal retangular, descrita no R3. O eixo global e; representa a direcéo longitudinal e os eixo e, e es, as
direcdes transversais da viga.



Denotamos por A(x) c R? a drea da secdo transversal da viga em uma posicdo x € Q,
e A(x) c R% o fecho. A juncao de todos os centroides das areas, A(x), define a curva
de centroides que, nesse modelo, serd considerada coincidente com a linha neutra da
viga. Sejam b e h as dimensdes méximas da largura e da altura das se¢des transversais,
respectivamente, de modo que, para todo (y, z) € A, tem-se || y|| <be|zl < h. Assim, o

dominio (2 fica caracterizado por:

Q={(y,2)€ AcR? x€[0,L] cR}. (1.1)

Neste capitulo, descreveremos as duas teorias cldssicas de modelos de vigas no
plano submetidas a cargas arbitrdaria: a teoria de Euler-Bernoulli e a teoria de Ti-

moshenko. Ambas as teorias compartilham as seguintes hipdteses:

Hipéteses 1.1

(i) Os modelos consideram pequenos deslocamentos e pequenas deformacaes;

(ii) As propriedades constitutivas dos materiais sio homogéneas e isotropicas, fa-

zendo com que o eixo da viga coincida com a linha neutra;
(iii) Os deslocamentos laterais ao longo do eixo e, sdo nulos ( ver Fig[1.1]);

(iv) Assecoes, inicialmente planas antes da deformacdo, permanecem planas apds a

deformacao.

A Fig.[1.]Japresenta um esquema simplificado da viga em seu estado indeformado.
Note que a viga encontra-se inicialmente reta, com sua linha neutra coincidindo com
o eixo e}, sendo submetida a uma for¢a axial F; na direcdo e; e a uma carga distribuida
F3; na direcdo e3. Para analisarmos seu comportamento cinemadtico, denotamos por

u: Q — R3 o campo de deslocamento em qualquer secdo da viga, definido por:
u(x, y,2) = ui(x, y,2)e1 + uz(x, y, z2) €2 + uz(x, y, z) es, (1.2)

onde u, (x, y, z), u2(x, y,z) e us(x, y, z) representam as componentes dos deslocamen-
tos na dire¢do dos vetores ey, e; e es, respectivamente.

A caracterizacdo dos campos de deslocamento da viga pode ser realizada a partir
da andlise das interagoes entre os efeitos das forcas axiais e transversais atuantes. Para
compreender esse comportamento, consideramos um elemento. Para compreender
esse comportamento, consideramos um elemento diferencial de uma viga deformada
ao longo do eixo e;, em uma posicdo x, com deslocamentos e rotagoes variando ao
longo de seu comprimento, conforme mostrado na Fig.

Nesse esquema, o deslocamento vertical da fibra média da viga é representada por

u3(x) e alinha neutra é descrita por sua derivada %. Em uma posicao deslocada de
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dx aolongo do eixo e}, o deslocamento € u3(x)+ % dx. Arotagdo dalinha neutra da

viga em relacao ao eixo e; é denotada por 02(x), enquanto f3(x) representa o angulo

de inclinacao relativo da secao transversal em relacao ao eixo deformado.

=X

S

u,(x) 143(x)+%dx

e /Bz (x)

%\ duy(x)
' dx

€5 gz(x)

Figura 1.2: Representagao da curvatura de flexao da viga, indicando o deslocamento transversal u3(x)

.o duz(x)
e ainclinagao

da linha neutra em um ponto x.

De acordo com as hip(’)teses o campo de deslocamento u(x, y, z), descrito pela
Eq.(1.2), para uma viga sujeita a acdo de forcas axiais e transversais pode ser expresso

comao:

u1(x,3,2) = ua(x —z02(x), (1.3)
u(x,y,2) = 0, (1.4)
usz(x,y,2) = uz(x). (1.5)

Considerando essas hipdteses comuns aos modelos de vigas de Euler-Bernoulli e
Timoshenko, nas préximas secoes apresentaremos as hip6teses adicionais que os dis-
tinguem e desenvolveremos as equagoes caracteristicas de cada modelo.

1.2 Modelo classico de viga de Euler-Bernoulli

A teoria cldssica da viga de Euler-Bernoulli incorpora a hipéteses em particular a
suposicao de que as secoes transversais, inicialmente planas e ortogonais ao eixo e; na
configuracdo indeformada, permanecem planas e ortogonais a este mesmo eixo apos

a deformacao. Assim, temos que:

duz(x)
dx '’

0, = (1.6)



isto é, a derivada da linha neutra da viga é dada simplesmente pela rotacao devido a
flexao, obtendo-se das Eqs. (1.3H1.5)

W y2) = ugls)— 2 (1.7)
1x,y,z = UglX Z dx , .
ﬁz(X,y,Z) = 0, (1.8)
us(x,y,2) = us(x), (1.9

onde u, representa o deslocamento na direcdo longitudinal e u3 o deslocamento na
direcao transversal.

Para descrever as equacoes de equilibrio do modelo da viga de Euler-Bernoulli, va-
mos usar o funcional de energia potencial total. Dessa forma, denotando por 158 a
energia potencial total do sistema, definida como a soma da energia de deformacao

interna U; com a energia potencial das forcas externas U,:

n‘ =u; +u,, (1.10)
onde:
1
Uu, = —fa:sdQ, (1.11)
2Ja
U, = ffudQ. (1.12)
Q

sendo o : Q — R3*3 o tensor das tensdes, € : Q — R3*3 o tensor das deformacdes e
f :Q — R3 o campo de forcas de corpo.
Fazendo uso do campo de deslocamentos, Egs. (1.7H1.9), especializado para o mo-

delo de vigas de Euler-Bernoulli, temos que o tensor Vu(x) serd dado por:

duy(x)  d?us(x) dus(x)

dx dx? dx
Vu(x) = 0 0 0 . (1.13)
duz(x)
0 0
dx

Como estamos tratando de pequenos deslocamentos e deformacodes, temos que o ten-

sor de deformacao &(x), especializado para o modelo, é dado por:

1 T
elx) = E(Vu(x)+Vu(x))
dug(x)  d’uz(x)
dx —F dx? 00
= 0 0 |- (1.14)
00



Note que, no célculo da energia interna Eq.(1.11), as tinicas componentes do tensor
o (x) que influenciam no funcional sdao aquelas associadas as componentes nao nulas

de &(x), isto é, a componente 011 (x). Com isso, o trabalho interno serd dado por:

1
U; —f o11(x)€1 (x)dQ

2Ja

NS

L hi2
= ffan(x)en(x)dzdx. (1.15)
0

Segue da relacao constitutiva eldstica e linear entre a tensao e a deformacao que
on(x) = Een(x), (1.16)

onde E é o mddulo de Young. Com isso, temos:

L phl2 2 2
gf f E(dua(x)_zd ug(x)) dzdx
0 —_

hi2 dx dx?
L
J
bh3

com momento de inércia I = T e drea A = bh correspondentes a uma se¢do trans-

Ui

dx, (1.17)

EA (dua(x))z LEI (alzug,(x))2
2 dx 2 | dx?

versal retangular.
Para calcular a energia potencial externa, é necessario considerar a acao das cargas
axiais F) e transversais F3 na viga. A energia potencial externa para este modelo é dada

por:

L
dia(x) dx—f Fa(x) us (x) dx, (1.18)
dx 0

onde a primeira integral representa a energia potencial devido a carga axial F; atuando

L
Ue:_f F (x)
0

ao longo da viga na direcao longitudinal, isto é:

L
f F1 0% gy - B (00 (D) = 1 (0). (1.19)
0 dx

Por outro lado, a segunda integral representa a energia potencial das cargas trans-
versais F3(x) atuantes na direcao vertical. Dessa forma, realizando o somatoério destas
contribuicoes, obtemos o funcional de energia potencial total para o modelo de vigas

de Euler-Bernoulli:

L
HEB:f
0

dug(x)

2

2 2 2
EA(M) +El(d 3 (X) —Fusx) |dx.  (1.20)

2 | dx? dx?

2
> ) - F(x)




A partir da formulacdo variacional do problema, fundamentada no principio da
minimiza¢do do funcional da energia potencial total (6 11EB = (), derivou-se as equa-
coes de equilibrio correspondentes ao modelo de viga de Euler-Bernoulli. Esse pro-
cesso conduz as equacoes de Euler-Lagrange, que governam o comportamento da es-
trutura sob flexdao, desconsiderando os efeitos de cisalhamento. Como resultado, ob-
temos:

i (EA
dx

dug(x)

):Fl, (1.21)

d? (EI d?us(x)

PP PP ) = F3. (1.22)

As condig¢des de contorno associadas a este modelo podem ser resumidas da seguinte

maneira:
Condicoes de contorno cinemdticas Condic¢oes de contorno naturais
. dug
U, (x) prescrita ou EA p =F (1.23)
X
d i3 (x) rescrita ou EI duy =0 (1.24)
P dx® ’
. d dz us
uz(x) prescrita ou —|EI =0 (1.25)
dx dx?

Especializando a equacdo constitutiva para o modelo de viga de Euler-
Bernoulli, temos que o esforco axial N; e o momento fletor M, sao dados, respecti-
vamente, por:

Ny (x) = EAYY2™)

(1.26)

d?u3(x)

M. =—FI
2(x) Ix2

(1.27)

A solucdo analitica das Equacdes (1.21) e (1.22), sujeitas as condi¢des de contorno
definidas em (1.23), (1.24) e (1.25), pode ser encontrada em (Fleischfresser [6], 2012) e

(Assam [7], 2020). Nessas referéncias, os autores apresentam abordagens detalhadas

para a resolucdo das equacoes de equilibrio da vigas pelo modelo de Euler-Bernoulli,
contemplando distintos tipos de carregamento e variacoes nas condi¢des de contorno.
Nas discussOes apresentadas até o momento, observamos que a teoria da viga de

Euler-Bernoulli assume que as secOes transversais da viga permanecem ortogonais a
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linha neutra ap6s a deformacao, o que torna o modelo incapaz de estimar os efeitos do
cisalhamento. No entanto, essa simplificacdo ndo é adequada para a modelagem de
todos os tipos de vigas. Em casos como vigas curtas e vigas do tipo sanduiche, os efei-
tos do cisalhamento sdo significativamente relevantes. Com base nisso, Timoshenko

propds um ajuste na teoria de Euler-Bernoulli, que serd discutido na préxima se¢ao.

1.3 Modelo classico de viga de Timoshenko

A teoria de vigas de Timoshenko compartilha das hip6teses apresentadas em (1.1), pro-
venientes da teoria cldssica de Euler-Bernoulli. No entanto, a hip6tese relativa a cine-
matica na dire¢cao normal da viga, adquire um novo significado. As secdes transversais,
inicialmente planas e normais a linha neutra, permanecem planas a linha neutra, mas
ndo necessariamente normais a esta linha. Essa suposi¢do proporciona uma aproxi-
macdo mais precisa da deformacao real da secdo transversal, especialmente em vigas
espessas. Com base nessas hip6teses, a rotacdao da se¢do transversal pode ser escrita

comao:

— B2(x), (1.28)

Vale destacar que a rotacdo 0, (x) da secdo transversal nao coincide com a inclinagdo

d
dalinha neutra 13 (x)

, a0 contrario do que ocorre na teoria de Euler-Bernoulli. Consi-
X
derando que estamos interessados exclusivamente na deformacao da viga submetida

a cargas verticais, a equac¢do cinemadtica do modelo assume a seguinte forma:

_ d

Uy (x,3,2) = ugq(x)-— z( L;;X) - ﬁz(x)), (1.29a)

ﬁz (x) J/, Z) = 0) (129b)
UusAlx,y,2) = us(x). (1.29¢)

Fazendo uso do nosso campo de deslocamentos Eqgs. (1.29aH1.29¢) especializado
para o modelo de viga de Timoshenko, temos que o tensor Vu(x) serd dado por

du,(x) d (dus(x) dus(x)
x —za( dx —,Bz(JC)) 0 —( dx —ﬁz(x))
Vu(x) = 0 0 0 . (1.30)
duz(x)
Tx 0 0

Como resultado, o tensor de deformacao £(x), especializado para o modelo de viga de
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Timoshenko, é dado por:

1 T
e(x) = E(Vu(x)+Vu(x))

dug(x) d (duz(x) 1
dx _ZE( dax _'BZ(x)) 0 EﬁZ(x)

= 0 0 0 : (1.31)
%ﬁz(x) 0 0

Sob o regime de pequenas deformacoes, e considerando a relagdo constitutiva para o

cisalhamento vélida nessas condi¢des, temos a seguinte expressao:
013 =031 =2Gé€ys, (1.32)

onde G é o médulo de cisalhamento. Assim, o tensor de tensdes pode ser caracterizado

da seguinte forma:

dug(x) d (dus(x)
x _EZE( Tx —ﬁz(x)) 0 GpPa2(x)

GB (%) 0 0

Com base nas expressoes previamente definidas, podemos formular o funcional da
energia potencial total associado ao campo de deformacdes da viga, conforme descrito

pelo modelo de Timoshenko, como:
n’=uv;+u.+U,, (1.34)

onde U;, U, e U, representam, respectivamente, a energia interna associada a defor-
macao axial; a deformacao por cisalhamento e o trabalho realizado pelas forcas exter-

nas. Suas respectivas expressoes sao dadas por

1 L phl2
Ul‘ = —bff 0'11(X)€11(X)d2dx, (1.35)
2 Jo J-nr2
L phl2
U, = bff 031(x)es1(x)dzdx, (1.36)
0 J-ni2
L L
U, = - f F g e f Fy(x) us (x) dx. (1.37)
0 dx 0

No contexto da formulacdao do modelo de viga de Timoshenko, que considera os
efeitos da deformacao por cisalhamento transversal, torna-se necessério a introdugdo
de um fator de correcao x, com o objetivo de representar de forma mais precisa a dis-

tribuicao nao uniforme da tensao de cisalhamento ao longo da se¢do transversal.
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Diversos trabalhos foram propostos para caracterizar este fator de corre¢do. Den-
tre eles, destacamos o estudo conduzido por Gruttmann et al. (1999) [8], que emprega
equacoes da elasticidade linear para determinar o valor de «, e 0o método proposto por
Cowper (1966) [9], que usa modelos matematicos derivados de andlises experimen-
tais para calcular o coeficiente de cisalhamento x em diversas geometrias. Assim, ao
introduzir x na Eq. , temos:

L phi2
U;= be f 031(x)es1(x)dzdx. (1.38)
0 J-h/2

Com isso, a Eq.(1.34) pode ser reescrita da seguinte maneira:

1 L phi2 L phi2
nt = —bff Ull(x)sn(x)dzdxH(bff 031(x)es1(x)dzdx
2 Jo J-ni2 0 J-h/2
L L

—f Fi(x) ua(x)dx—f F3(x) us(x)dx (1.39)
0 0

Considerando os resultados obtidos nas Egs.|[1.16}[1.31]e[1.33} esta expressao assume a

seguinte forma:

1 L phl2 1 L 2 hi2
n’ = —b[ f E(eu(x))zdzdx+—1<be (B2(x)) dzdx
2 Jo J-nr 2 0 —hi2
L L
—f Fi(x) ua(x)dx—f F3(x)us(x) dx. (1.40)
0 0

Aplicando os resultados das equacgdes (1.31) e (1.28), e considerando a drea A(x) = A,
para todo x € [0, L], temos:
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1 L hi2 d d 2
nt = —bf (f E( u“(x)—z HZ(X)) dz)dx
2 Jo \J-ns2 dx dx

dx 0

dz

dg(x) )2 dug(x) dOs(x) ( df>(x) )2
-2z +2z
dx dx

dx

L 2 L L
+%1<AG (du3(X)—92(x)) dx— f Fu(0) g (x)dox — f Fi(x)us(x) dx
0

2 L L
—92(X)) dx—f Fl(x)ua(x)dx—f F3(x)us(x)dx
0 0

= —bE[h d”“(x)) P (dezm) dx]
0 dx 12 Jo dx
L 2 L L
eac (du3(x)—92(x)) dx— f Fy (0 g (x)dx — f Fa(x)us(x) dx.
0 dx 0 0

(1.41)

bh? . .
Como podemos observar, o termo e corresponde ao momento de inércia I da secao

transversal retangular. Assim, a expressao anterior pode ser reescrita como:

L 2 L 2
o’ - % (dua(x)) dx+EI (ng(x)) dx

2 Jo dx 70 dx

I 2 L
+KGA (dug(X) _ez(x)) dx—f Fl(X)ua(x)dx
0

2 Jo dx
L
—f F(x)us(x)dx
0
_ fL g(dua(x))2+g(dez(x))2
b 2 dx 2 dx
2
+ KGTA (dl;sfﬂ - Hg(x)) CE (0 ug(x) - Fs(us®) | dx.  (1.42)

A partir da formulacao variacional do problema, fundamentada no principio da
minimizacdo da energia potencial total (5TI7 = 0), sdo obtidas as equacoes de equi-
librio correspondentes ao modelo da viga de Timoshenko. Esse processo conduz as
equacoes de Euler-Lagrange, que governam o comportamento da estrutura sob flexao,
considerando os efeitos de cisalhamento. Como resultado, obtém-se as seguintes ex-

pressoes:
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d?ug(x)

EA—%= 4 Fi(x) =0, (1.43)
2
EI&JZ;C) +1<GA(du3(x) —Hg(x)) =0, (1.44)
d*uz(x) dO(x) B
KGA( - ) +F5(x) =0, (1.45)

As condicoes de contorno compativeis com este modelo podem ser resumidas da se-

guinte forma:

Condicoes de contorno cinemadticas Condicoes de contorno naturais
: dB;(x)
0, (x) prescrita ou [EA =0 (1.46)
dx
. dus(x)
uz(x) prescrita ou «kGA -6>(x)]=0 (1.47)
. dug(x)
Uy (x) prescrita ou EAd— =0 (1.48)
x

Especializando as equacdes constitutiva e para o modelo de viga de Ti-

moshenko, temos o esforco N> (x) e momento M;(x), sdo dados, respectivamente, por:

hi2
f xo13(x)bdz
—h/2

No(x)
= «x013(x)(bh)

= kGP2Azx)A

duz(x)
dx

= KGA( —Hz(x)), (1.49)

M (x)

hi2
f 011(x)bzdz
-h/2

hi2
= f (—zdeZ(x))Ezbdz
—hi2 dx

d@g(x) hi2

Zdz
dx J-nr

= —-Eb

Id92 (x).

= —-F
dx

(1.50)
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Com isso, encerramos as formulacoes das teorias cldssicas de vigas de Euler-
Bernoulli e Timoshenko. No capitulo seguinte, serd apresentada uma formulacao ca-
paz de descrever o comportamento de estruturas flexiveis modeladas como barras com
geometria arbitrdria. Para isso, serdo introduzidas nocodes bdsicas de geometria di-
ferencial, que permitem representar curvas no espaco tridimensional com precisao,
fornecendo os conceitos matemadticos necessdrios para descrever a orientacdo, a cur-
vatura e a tor¢do da barra ao longo de sua trajetéria. Essa abordagem possibilita o
desenvolvimento de modelos mais gerais, capazes de representar adequadamente o

processo de deformacdo em estruturas com geometria nao retilinea.
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Capitulo 2

Modelos de barras no espaco 3D

No capitulo anterior, apresentamos o modelo de flexdo de vigas de Euler-Bernoulli
cldssico, incluindo os efeitos das forcas axiais e, em seguida, estendemos este mo-
delo considerando os efeitos do cisalhamento, recaindo no modelo de Timoshenko.
Nesta secdao, dando continuidade ao aprimoramento dos modelos, apresentamos as
equagoes que descrevem o comportamento de uma barra de geometria arbitraria no
espaco tridimensional, isto €, um modelo com comportamentos fora do plano, consi-
derando o efeito do cisalhamento. Para isso, consideramos a barra (ver a ﬁgura),
com sua linha neutra descrevendo uma curva no espacgo, descrita pelo vetor posicao

r(s) : I — R3, com origem fixada em um ponto qualquer R3, dado por:
r(s) = r1(S)E1(s) + r2()E2(s) + r3(s)Es(s), 2.1)

sendo I o intervalo aberto (0, L), I seu fecho, s o comprimento de arco, E;(s) : I — R3,
com i = 1,2,3, os vetores que definem, em cada posicao s da curva, uma base local
ou intrinseca para a barra na configuracao de referéncia e r;(s) as componentes em

relacdo a E;, respectivamente.

€3

Es(s)

EI(S)
/ L
r(s) Es(s)

r(0) €2

—

€1

Figura 2.1: Arepresentagdo no espaco tridimensional de uma barra de geometria arbitréria, de compri-
mento L, descrita por uma curva parametrizada r(s), onde s € [0, L] representa o comprimento de arco,
er(0) é sua origem. Em cada ponto s da curva, temos um sistema de coordenadas locais, descrito pelos
vetores E; (s), E2(s) e E3(s).
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Os vetores E;(s) possuem as seguintes caracteristicas
IE;(s)] 1, Ei(s)-Ej(s)=6;j, Vsel, (2.2)

r'(s)
I’ (s)Il”

E; () E(s) =Ex(s) xE3(s), Vsel. (2.3)
onde [|-|| € a norma euclidiana, 6;; € o delta de Kronecker. Nota-se que esta base se
relaciona com a curvatura da barra, dada pela relacdo Eq[1.44] onde E, (s) é definido
como o vetor tangente a curva em cada ponto s. Com isso, Ex(s) e E3(s) tornam-se os
vetores normal e binormal, respectivamente.

A partir da expressao (2.3), observamos que a derivada da curva r(s) esta relacio-
nada a derivada espacial dos vetores da base intrinseca E;(s), evidenciando a depen-
déncia do campo de dire¢oes locais ao longo do comprimento da barra. A caracteriza-
cdo da diferenciacdo destes vetores serd estabelecida pelas equagdes de Serret-Frenet,
as quais relacionam as derivadas dos vetores da base intrinseca com eles préprios, da

seguinte forma:

Ei(s) = 7y(s)Ex(s), Vsel, (2.4)
E5(s) = —u(s)Ea(s), Vsel, (2.5)
Ey(s) = u(9)Es(s)—y(s)Ei(s), Vsel, (2.6)

onde y(s) : I — R é o parametro de curvatura, o qual mede a taxa de variacdo do vetor
tangente E (s) em cada posicdo s, e u(s) : I — R é o parametro de torcdo, o qual mede
a taxa de variacao do plano osculante (plano formado pelos vetores E3(s) e E;(s) em
cada posicdo s). As dedugoes das equacgoes a encontram-se bem detalhadas
em Stewart (2016)[10] ou Sauter (2022).

Neste contexto, tomando um vetor qualquer v: I — R3, descrito em funcéo da base
intrinseca E; (s) expressa por:

v($) = v1()E1 () + v2(s)Ea(s) + v3(s)E3(s), 2.7)
onde v; sdo suas componentes, a diferenciacdo em relacao a s é dada por:

V(s) = v(s)+WPv(s)

dv1

dvs dv
= (—— (S)UZ)E”(E +v(s)vy —u(s)vs —

%+ uls) Uz)Es, 2.8)

ds ds

E2+(

com
o= g Gep  dUsp (2.9)
Tds Yds 2gs 8 '
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0 v ($) 0
Y= —y(s) 0 u(s) (2.10)
0 —-u(s) O

a matriz de rotacao.

Tendo em vista as hip6teses temos que a configuracao deformada da barra
pode ser completamente descrita pelo deslocamento de sua linha neutra e pela ro-
tacdo da secao transversal em cada ponto s. Dessa forma, os vetores de deslocamento
generalizados e de rotacoes generalizados sdo representados de forma parametrizada
por u e , respectivamente . Essas varidveis descreverdao o comportamento cinematico
de um elemento de barra orientado no espaco tridimensional.

A partir dessas definicdes, podemos introduzir as deformacdes generalizadas 6 :
I —R3en:I—R3, definidas respectivamente como o vetor de deformacdes translaci-
onais e o vetor de deformacdes rotacionais. Em particular, as deformacoes translacio-
nais sao obtidas pela primeira derivada dos deslocamentos, subtraindo o movimento
de corpo rigido, enquanto as deformacdes rotacionais sao obtidas pelas primeiras de-
rivadas das rotacoes.

Para um movimento de corpo rigido da barra, os campos de deslocamentos e rota-

cOes sao constantes em toda a barra, e podem ser descritos como:

0(s) 6(0), (2.11)

u(0) + 0(s) x (r(s) —r(0)). (2.12)

u(s)

Derivando essas expressoes em relacao a s, obtemos

@ = 0 (2.13)
ds ’
uis) _ 0(s) _ r(s) /

o = ds x (r(s) —r(0)) +0(s) x i O(s) xr'(s). (2.14)

Dessa forma, os campos de deformacdo e rotacoes generalizadas podem ser escritos

Ccomao:
9 = 900 (2.15)
N ds’ ’
5 = MO 6o s, (2.16)
ds

onde 6 (s) estd associada aos campos de deformacdes axial e cisalhamentos, enquanto
1(s) aos campos de tor¢ao e flexoes.
AFig.[2.2]ilustra o modelo de uma barra orientada no espaco tridimensional, repre-

sentando tanto sua configuracdo deformada quanto as for¢cas e momentos distribuidos
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Figura 2.2: Representacdo do equilibrio estatico em um segmento de viga prismatica AB.

ao longo de seu comprimento. Com base nesse esquema, podemos derivar as equa-
coes de equilibrio associadas ao modelo. Para isso, utilizamos uma abordagem vari-
acional fundamentada no Principio dos Trabalhos Virtuais, que estabelece que, para
um sistema em equilibrio, o trabalho virtual realizado pelas forcas externas e internas,
associado a um deslocamento virtual admissivel, deve ser nulo, isto é, STI3P = 0. Nesse
contexto, consideramos que a barra ilustrada na Fig. estd sujeita a um pequeno
deslocamento virtual du(s) e a uma rotacao virtual 60 (s) ao longo do seu comprimento
s. A expressao correspondente ao trabalho virtual realizado pelas forcas externas F(s),

associado ao deslocamento virtual du(s) é dada por:

L
0U, = —f F(s)-6u(s)ds. (2.17)
0

Além disso, o trabalho virtual das forcas internas, que contempla a contribuicdo do

forca axial N(s) e do momento M(s), é definido por:

L
6Ul-:f (N(s)-6u'(s) + M(s)-60(s)) ds. (2.18)
0

Aqui, 6u'(s) é a variacdo virtual da deformac@o axial e 60(s) é a variagdo virtual da
rota¢do ao longo da barra.

Para que a barra esteja em equilibrio, devemos ter:

ST =6U,+6U; = 0. (2.19)
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Substituindo (2.17) e (2.18) nesta expressao, obtemos:

L L L
—f F(s)-6u(s)ds+f N(s)-6u'(s)ds+f M(s)-00(s) =0. (2.20)
0 0 0

Resolvendo a segunda integral por integracao por partes, temos:

L L
f N(s)-0u'(s)ds [N(s) '6u(s)]é —f N'(s)-du(s)ds,
0 0

L
—f N'(s)-6u(s) ds. (2.21)
0

O primeiro termo, [N(s) -6u(s)]£, representa o trabalho virtual nas extremidades, que
normalmente é zero se as extremidades forem fixas ou se os deslocamentos virtuais

nas extremidades forem nulos. Dessa forma,

- fo LF(s)-au(s)ds— fo LN'(s)-6u(s)ds = 0, (2.22)
fo L(—F(s)—N’(s))au(s)ds = 0, (2.23)
ou seja,
-F(s)-N'(s) = 0
~N'(s) = F(s). (2.24)

para qualquer valor arbitrdrio de du(s).
Para o momento, o principio dos trabalhos virtuais também leva a condi¢ao de que

o trabalho virtual seja zero, resultando em:

L
f M(s)-60(s)ds=0 (2.25)
0

para qualquer valor arbitrério de 60(s). Como o momento M(s) varia ao longo da barra,
devido a acao das forgas internas, e considerando especificamente a contribuicao da

forca axial N(s), o equilibrio é dado por:
—M/(s) +N(s) x r(s) = 0. (2.26)

Esta expressdo nos mostra que o termo N(s) x r(s) representa o momento gerado pela
forca axial N(s) em relacdo ao vetor posicao r(s). Este termo deve ser equilibrado pela
variacdo do momento M'(s) ao longo do comprimento da barra.

Como se pode perceber, as Egs. e descrevem o estado de equilibrio

de uma barra orientada no espaco tridimensional. Além disso, ao considerar que a
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mesma é constituida por um material isotrépico, linear e homogéneo, englobamos no

modelo as relacoes constitutivas expressas por:

M(s) = Dgn(s), (2.27)
N(s) = D, 6(9), (2.28)
onde
D, = diaglGA,,GAy EA], (2.29)
Dy = diaglGJ,EL,EL], (2.30)

sdo especializacdes do tensor de elasticidade para o modelo, onde J é o momento de
inércia polar, I; e I, sdo os momentos de inércia em relacao aos eixos E; e E;, respecti-
vamente, e A representa a drea da se¢ao transversal. Aplicando os fatores de correcao
K1 € K2, que compensam a distribuicdo nao uniforme da tensdo cisalhante em relacao
aos eixos E; e Ep, obtemos as areas corrigidas A} =x;Ae Ay =k A.

Com base nas equacodes constitutivas e de equilibrio previamente definidas, pode-
mos formular o sistema de equacdes diferenciais vetoriais que rege o comportamento

da estrutura no espaco tridimensional, apresentado pelo seguinte problema:

PROBLEMA — A: Dado F(s) € R3, encontrar u(s), 0(s), M(s) e N(s) € R3, para Vs € (0,L)

que satisfaca:

1. Equacoes de equilibrio:

—-N'(s) = F(s), (2.31)
—M'(s)+N(s) xr'(s) = O. (2.32)

2. Equacoes cinematicas:
8(s) = u(s)—0(s) xr(s), (2.33)
ns) = 6'(s). (2.34)

3. Equacoes constitutivas:
M(s) = Dgn(s), (2.35)
N(s) = D,6(9). (2.36)
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4. Condicoes de contorno:
u(0) =uy, 60) =80 (2.37)
u(l) =uy, 0(L)=0; (2.38)

A partir das relagdes constitutivas (2.35) e (2.36), podemos deduzir as equacdes de
equilibrio escritas unicamente em fun¢do dos deslocamentos generalizados. Sendo

assim, o PROBLEMA — A assume a seguinte configuracdo:

PROBLEMA —B: Para s € (0,L) e dado F = (F}, F», F»), encontrar u = (13, up, u3) € 0 =

(61,02,03) que satisfacam:

1. As equacodes de equilibrio:

d [ (du(s) )
— | Dy, -0(s)xE{||+F(s) = 0, (2.39)
ds ds

d do(s) du(s) 3

P (Dg R ) -D, ( I 0(s) x El) xE; = 0. (2.40)

2. Condicoes de contorno:

u(0) = u, 0(0) = 6,, (2.41)
u(L) =uy, 0(L)=0,. (2.42)

O PROBLEMA -A, definido pelo sistema de equacoes (2.31H2.38), e o
PROBLEMA - B, representado pelo sistema (2.40H2.42), descrevem o comportamento
geral de uma estrutura flexivel no espaco tridimensional, considerando o regime de
pequenos deslocamentos e deformacdes. Ressalta-se que o PROBLEMA — A adota
uma formulacao em termos dos esforcos e deslocamentos generalizados, enquanto o
PROBLEMA - B baseia-se exclusivamente nos deslocamentos generalizados.

Vale destacar que tanto o PROBLEMA — A quanto o PROBLEMA - B foram expres-
sos em notacao vetorial, com o objetivo de compactar as equacdes e facilitar sua inter-
pretacdo. Para uma descricdo detalhada, em termos das componentes escalares dos
deslocamentos, rotacdes, momentos e esforcos cisalhantes nas trés dire¢oes do es-

paco, apresenta-se no Apéndice[A] Se¢ao[A.1} a formulacdo expandida correspondente.
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Capitulo 3

Formulac¢des variacionais mistas

Neste capitulo, desenvolvemos uma modelagem variacional mista com o intuito de su-
perar limitacdes observadas em formulacoes puramente cinemdticas para a anélise de
vigas, sobretudo em situa¢cdes em que os efeitos de cisalhamento sdo relevantes. Nes-
ses casos, o uso de funcdes de interpolacdao inadequadas pode resultar em fenémenos
de trancamento por cisalhamento, comprometendo a precisdao das solucoes obtidas.
Para contornar tais restricdes, adotamos uma abordagem variacional mista estabili-
zada, a qual combina a flexibilidade de tratar os esforcos internos e os deslocamentos
como varidveis independentes com técnicas adicionais de estabilizacdo, assegurando
coeréncia fisica e robustez numérica.

Nesta perspectiva, apresentaremos na préxima secao uma breve descricao das pro-
priedades associadas aos espacgos de func¢des especificos utilizados na construcdo da

formulacao variacional mista.

3.0.1 Formulacao variacional

Seja Q =_%,(0, L) o espaco de funcdes escalares de quadrado integravel segundo a me-
dida de Lebesgue e
S={v;ve H'(0,L),v(0) =0}, (3.1)

onde
1 av
H'(0,L) =4ve %(0,L); R €.%(0,L) 3.2)
s
é 0 espaco de funcoes de Hilbert. Definindo os espacos:

83
@3

Sx85xS, (3.3)
QxQxQ, (3.4)
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com produto interno e norma dados definidos por:

(@,7)=ffo-tds lol=(0,0" YoreQ®, (3.5)

(w,v) = fOL (u-v+u-v)ds vl = (v,v)?2 YuveS?, (3.6)

onde:

V= E; + Es + Es. 3.7)

é o vetor das derivadas das componentes do vetor v. No espaco S, define-se a semi-

norma por:

(3.8)

Com base nessas definicoes, sdao apresentados a seguir alguns lemas importantes

de equivaléncia de norma.

Lema 3.0.1. Seja |||, a norma usual em S® (3.6) e a seminorma|-|, (3.6). Existe c; >0
tal que
vl = alvl, Vves. 3.9)

Lema 3.0.2. Existe uma constante c, >0 tal que
vy <cllvl, VY ES. (3.10)
Lema 3.0.3. No espago vetorial S3, a norma e a seminorma séo equivalentes:
¢y, ¢2 > 0 tais que c1||v|| < v < c2lv]l. (3.11)

Averificagdo de cada um destes lemas encontra-se em (Brezzi, 1991) [11] e (Ciarlet,
2002) [12]. Uma vez estabelecida a relacao entre a norma e a seminorma, redefinimos

o produto interno e a norma no espaco S* da seguinte forma

Lidu d dv dv\?
(u,vh:f (—“-—V), |v|1:(—v—v)2 VuveS?, (3.12)
o \ds ds dsds

com a identificacdo dos espacos produto W = Q3 x Q% e Z = $3 x $3, com norma e

produto interno E] definidos por:

(0,7) = (M,T) + (N, ®), IzlZ, = ITI* + |®]?, (3.13)
du dv ae dy
(z, W) = (%%) + (%’%)’ Iwll = [vi3 + |wlf, (3.14)

1Uma descri¢cao completa acerca destas normas e produtos encontram-se em (Brezzi, 1974) [13], (Ar-
nold, 1981)[14], (Loula, 1987b) [15], (Reddy, 1992)[16] e (Arunakirinathar, 1993) [17].
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onde

z=(u0)eZ, w=(v,¥)€”Z, (3.15)

o=MN)eW, T={T,®)eW. (3.16)

3.0.2 Formulacao cinematica

Ap6s a definicao dos espacos de fungoes, o PROBLEMA — B foi representado de ma-
neira equivalente, por meio de uma formulacao variacional abstrata, apresentado no

seguinte problema:

PROBLEMA - C: Dado (F,0) € Z’, encontrar z € Z tal que

c(z,w) = f(w),we W, (3.17)
com
dl(s) dw(s) du(s) av(s)
c(z,w) = Oy les )+(Du( s —0(s) x E1(s) ,7—1//(8)><E1(S),
(3.18)
fw) = (Fv+(0,y), (3.19)

ondez=(u,0)eZ,w=(v,y)eZeZ éoespaco dual de Z.
Este problema ajusta-se a classe de formulacoes abstratas estabelecidas pelo lema
de Lax-Milgram. Com isso, a existéncia e unicidade de solucio do PROBLEMA —-C

foram garantidas pelo seguinte resultado:
Lema 3.0.4. (Lax-Milgram)

1. Aformabilinear f : ZxZ — R é continua e portanto, existe uma constante positiva
B tal que:
lc(z,w)| < Blz|,|wl;, YW,z€ Z. (3.20)

2. Aforma (*,*) é Z-eliptico, ou seja, existe uma constante positiva a tal que

lc(z,2)| = a(lz];)?, Vz € Z. (3.21)

3. O funcional linear 7 : Z — R é continuo, isto é, existe uma constate positivay, tal
que
|7 @) <vylzl,, Vze Z. 3.22)

As propriedades apresentadas neste lema sdo verificadas em (Ciarlet, 2002) [12] e

(Santos, 2007) [18]. O PROBLEMA — C é a forma mais simples e direta para representar
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o modelo e tem sua existéncia e unicidade de solucao asseguradas pelo lema de Lax-
Milgram, tanto na sua forma continua quanto discreta, quando ela é aproximada pelo
Método de Galerkin e discretizada pelo Método dos Elementos Finitos. Entretanto,
é bem conhecido que tais aproximacoes exigem um compromisso entre as fungoes
interpoladoras dos campos de deslocamento e rotagoes para garantir a estabilidade.
Para atingir esse objetivo, apresentamos a seguir uma abordagem variacional mista

baseada no principio de Hellinger—Reissner.

3.1 Formulacao variacional baseada no principio de

Hellinger-Reissner

A constru¢do de uma formulagdo variacional mista, fundamentada no principio de
Hellinger—Reissner, oferece maior flexibilidade na representacdo dos campos fisicos
(deslocamentos e esforcos) quando se deseja modelar o processo de deformacao de
vigas em regime de pequenos deslocamentos e rotacoes. Diferentemente das aborda-
gens puramente cinematicas, essa formulagdo permite tratar deslocamentos e esfor-
cos generalizados como varidveis independentes, possibilitando a escolha de fungoes
de interpolacdo especificas para cada campo. Essa caracteristica é particularmente
vantajosa em situacoes em que os efeitos de cisalhamento nao podem ser despreza-
dos, como ocorre em vigas esbeltas.

Além disso, a formulacdo mista fundamentada no principio de Hellinger—Reissner
contribui para evitar fendmenos de trancamento numérico, comuns em formulacdes
tradicionais, garantindo maior coeréncia fisica e estabilidade da solucao. Nesta pers-
pectiva, apresentamos um problema equivalente ao PROBLEMA — A, em que as varia-
veis primais sao os esforcos generalizados, representados por o (momentos e esfor¢os
cortantes), enquanto os deslocamentos generalizados, denotados por T (deslocamen-

tos e rotagdes), atuam como multiplicadores de Lagrange. Assim, temos:

PROBLEMA - D: Dado F € 7/, encontrar (o,z) € W x Z tal que satisfacam o sistema de

equacoes:

I
L

alo,T)+ b(t,z) VTeW, (3.23)

bo,w) = f(w), Ywe Z, (3.24)

27



onde

a(o,t) = —(DyN,I')—- (DM, D)
1 1 1
= —— (N, T1))——(N,,To) — —(N3,I'3) —
EII( 1,I1) EIZ( 2,1'2) G]( 3,1'3)
1
- M;, ®;) - M>, ®y) — — (M3, DP3), 3.25
KlGA( 1, P1) KzGA( 2,D2) EA( 3,D3) (3.25)
av dy
b(T,W) = r,%—’I,IXEl(S) +(¢,E)
= Fﬂ—v— )+(F @+ V] — QU3+ )+(F %+ v)+
= bds YU2 =2 z’ds YU1— UV +Y 3’ds YU2
dlﬂ] d’l[/z d’([/3 )
+ [Py, ds YW2)+(<D2, ds + YY1 — pys +(q)3, s +uya|,  (3.26)
fw) = (Fv)
= (F,v1) + (F2, v2) + (F3, v3). (3.27)

E importante ressaltar que as Egs. e resultam das formas fracas das
equacoes constitutiva do modelo e de equilibrio dos esforcos generalizados, respec-
tivamente. Neste contexto, o PROBLEMA — D enquadra-se na classe das formula-
cOes mistas abstratas, conforme discutido por (Babuska, 1973) [20], (Brezzi, 1974) [13],
(Douglas, 1989) [21] e (Reddy, 1992) [16] e possuem existéncia e unicidade de solucao,
asseguradas pelo seguinte resultado:

Teorema 3.1.1 (Brezzi).
1. O funcional f :Z — R é continuo, isto é, existe uma constante positivan tal que
|fw)| <7nlwlz, Ywe Z. (3.28)

2. Asformas bilineares a:W xW — R e b:W x Z — R sdo continuas, ou seja, existem

constantes a e @, positivas tais que:

la(o, D) <alollyllol,, Yo, TeW. (3.29)

Ib(t, W) < azlollylol, VT eW,Ywe Z. (3.30)

3. a(x,*) é K-eliptica; ou seja, existe uma constante positiva as tal que

a(t,T) = as(|tl)? VT eX, (3.31)
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onde
K={teW/b(r,w)=0,Vwe Z}. (3.32)

4. Acondigdo LBB (Ladysenskaja— Babuska — Brezzi)): Existe uma constante positiva

ay >0 tal que
b(t,w)

= ayllwlz, T#0,Ywe Z. (3.33)
rew [Tllw

Averificacdo de cada uma destas propriedades encontram-se em (Brezzi, 1974) [13]
e (Santos, 2007) [18]. Na proxima sec¢do, faremos a aproximacao desta formulacao pelo
método de Galerkin e discretizacao pelo método dos elementos finitos. Vamos discutir
algumas questdes de estabilidade e apresentar uma formulagdo estabilizada para o

problema.

3.1.1 Método dos elementos finitos misto estabilizado

Seja I, o dominio de cada elemento e da particio do dominio total, h, o didmetro do
elemento, 1, o namero total de elementos, e h = max{h,}, 1 < e < n, o parametro
de malha. Definimos o espa¢o de elementos finitos Lagrangiano de grau [ e classe
C~1(0,L) como:

Qb ={ryeC™10,L) : T(,) € Pi(Ip)} (3.34)

e 0 espaco de aproximacgao
sl =0/ ns,

correspondendo ao espaco de elementos finitos Lagrangiano de grau [ e classe C°(0, L).
Neste contexto, utilizamos polindmios de interpolacdo do mesmo grau tanto para os
deslocamentos generalizados (82) quanto para os esforcos generalizados (Qﬁl). Os po-
linbmios associados aos deslocamentos sao continuos entre os elementos, enquanto

os associados aos esforcos sao descontinuos. Assim, denotamos por:
7l =(st) x(s!) ez
h— h h ’
I _ () (!
W, =1Q;,| x|Q,] cW,

os espacos de aproximacao para Z e W, respectivamente. Com base nesta definicoes,
a aproximacao de Galerkin para o PROBLEMA — D é dado por:

PROBLEMA — Dj;: Encontrar (o,,zj) € WZ X Z;l tal que:

alon, Ty +b(Ttp,uy) = 0, VT, eW,, (3.35)

blopth) = fwg), VYwpeZ,
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onde

a(op,tp) = —DeNp,I'p)— (D Mp, ®@p), (3.36)
davy, d1[l

(Th,Wp) = rhyx—'llthEl)‘F(q)h,d—sh), (3.37)

fwy) = (Fp,vp)+(0,9),). (3.38)

Esta forma discreta tem existéncia e unicidade de solu¢do assegurada pelo teorema de
Brezzi.

Devido a aproximacao, conforme adotada Zil cZe WZ c W, as propriedades de
continuidade do funcional f(-) e das formas bilineares af(:,-) e b(-,-) sdo transmitidas
da forma continua. No entanto, em geral, tem-se que Kj ¢ K, de modo que as demais
condicoes como a K-elipticidade e a LBB precisam ser verificadas também no contexto
do PROBLEMA - Dj,. A propriedade de compatibilidade entre os espacos € verificada

pelo seguinte lema:
Lema 1. Existe f € R tal que

b(t,,w
PEnWh) S Bl Yw, ez (6.13)
rrewt 1Tnlw

T5#0

A verificagdo desse lema encontra-se em (Brezzi, 1974) [13] e (Santos, 2007) [18].
Assim, a verificacdo da condicao de compatibilidade entre os espacos é obtida a partir
das mesmas escolhas feitas na formulacao continua. Porém, nota-se que a proprie-
dade de K-elipticidade ndo segue o mesmo contexto, isto é, para os espacos de apro-
ximag¢do considerados Zil e WZ, ndo é possivel estabelecer escolhas que assegurem
a K-elipticidade da forma bilinear a(-,-). Para superar esta dificuldade, uma estraté-
gia adotada foi considerar os esfor¢os interpolados de forma descontinua, podendo
eliminé-los a nivel de elemento. Com isso, obtemos uma formulacdo apenas em des-
locamentos generalizados. Tal formulagdo representa precisamente a aproximacao ci-
nemadtica do PROBLEMA — C dado por:

PROBLEMA - Cj,: Dado Fe Z,h, encontrar zj, € Zj, tal que

C(Zh,Wh) = f(Wh), th € Zh, (3.39)
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onde

dl(s) d (s)
c(zp,wy) = (Dg dh.S ’ 1’;}; )+
du,(s) vy (s)
+ (Du[ ‘ifss —Bh(s)xEl(w], V;SS —w, () xEi(s)],  (3.40)
fowp) = (Fp,vp) +(0,9). (3.41)

Esta forma discreta tem existéncia e unicidade de solugdo garantida pelo teorema de
Lax-Milgram.

Neste contexto, estabilizamos o PROBLEMA — Dy, fazendo a adicdo de termos re-
siduais de minimos quadrados provenientes das equacdes de equilibrio do modelo.
Essa estratégia garante a estabilidade da formula¢cdao, mesmo quando sao utilizadas
interpolagdes de mesma ordem para os campos de esforcos e deslocamentos genera-
lizados. A estabilizacdo utilizada consiste em introduzir na aproximacao de Galerkin

uma perturbacao a nivel de elemento da seguinte forma:
Paratj € W;Z ewy € W, encontrar (o, wy) € WZ x ZZ tal que

a(op, Th) + bzp, Th) + bley,wy) — fwy) = Y 61k 5 ~M, x Ej, — —ToxEi|-
e=1

e
_e;(szhg (d;;e +F,%) =0,

(3.42)
em que 61 >0 e 5, > 0 sdo parametros arbitrarios e os termos a eles associados corres-
pondem aos residuos em minimos quadrados das equacoes de equilibrio dos momen-
tos e dos esforcos generalizados (cisalhantes e normal), respectivamente. Nesta nova
abordagem, os residuos sdo considerados apenas no interior dos elementos o que ga-
rante a estabilizacao (Loula, et al., 1987a [22], Loula, et al., 1987b [15]; Santos, et al.,
2007 [23]). Dessa forma, reorganizando os termos da Eq.(3.42), o PROBLEMA - D, as-

sume a seguinte forma:

PROBLEMA - Dfl : Encontrar (7, u,) € W) x V) tal que satisfagam o sistema de equa-

coes

anp(op,Th) +b(Th2p) gs(Th), Vr,eW, (3.43)

b(o'h,Wh) f(wh)r th € Z’};r
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onde

aplop,Typ) = alop, T +as(0R T, (3.44)
e dN add dM, dr
’ = - 5 h2 ( e)—M E, e_r E _6 hz( e)_e))
as(op, Trln n;l 1 e[ s e X Eq S e X Eq 2Me\ =0 s
(3.45)
ar
g (Tp) = 62h§(F, d:) (3.46)

Essa formulacdo tem existéncia e unicidade de solucdo garantidas pelo teorema de
Brezzi. Como se pode observar, o funcional bilinear ay,(*, *) inclui termos adicionais
que servem para estabilizar o método de Galerkin no nivel de elemento. No Apéndice
apresentamos essa formulacdao em termos de componentes.

Com isso, finalizamos as discussdes referentes a formulacao variacional do pro-
blema de viga de Timoshenko no espaco tridimensional. No capitulo seguinte, serdo
apresentados experimentos numéricos com o intuito de ilustrar e validar a aplicabili-
dade e a robustez da formulagdo desenvolvida, evidenciando seu potencial na andlise

de estruturas tridimensionais.
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Capitulo 4

Resultados

Nessa secao apresentamos os resultados da aplicacdo do modelo de estruturas flexi-
veis, desenvolvido no capitulo anterior, através de trés experimentos numéricos. No
primeiro experimento, analisamos um problema simples de uma viga retilinea engas-
tada submetida a um carregamento transversal distribuido. No segundo experimento,
analisamos uma viga engastada com sua geometria descrevendo uma hélice no espaco
tridimensional. Por fim, no terceiro experimento, analisamos o problema de uma es-
trutura composta por varios elementos de barras interconectados. Estes estudos con-
sideram deformacdes, rotacdes e esforcos no espaco tridimensional, evidenciando a
potencialidade e o comportamento do modelo em aplica¢des de estruturas mais com-

plexas.

4.0.1 Experimento 1

Este experimento tem como objetivo comparar a solu¢cdo numérica com a solucao
analitica, para evidenciar a sua precisdao. Para isso, consideramos uma viga de com-
primento L = 3.0m, engastada na sua extremidade inicial e livre na final, sujeita a uma
carga distribuida F5 = —5,0kN na direcao e3, conforme ilustra a Fig/4.1] Além disso,
consideramos as propriedades geométricas e constitutivas como descritas na Tab/4.1]
Para resolver este problema, discretizamos o nosso dominio numa malha de elemen-
tos finitos com 14 elementos uniformemente espacgados, e utilizamos func¢dées de in-

terpolacoes lineares para os campos dos deslocamentos e esforgos generalizados.
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Figura 4.1: Representagao esquemadtica de uma viga retilinea, engastada e livre, de comprimento L =
3.0m, com secao transversal retangular ab e submetida a uma carga distribuida F3 = —5.0kN.

Tabela 4.1: Propriedades da viga

corte ;

Descricao Valores

Moédulo de elasticidade E 2,0 x 10! Pa

Modulo de elasticidade transversal G~ 7,5 x 1019 Pa

Momento de inércia I, 6,0 x 107’ m*
Momento de inércia I, 6,0 x 10~ m*
Momento polar de inércia J 1,2x10%m?*
Area de secao transversal A 2,8 x 1073 m?

34



As Figs[4.2e[4.3]ilustram a comparacao dos resultados numeéricos e analiticos para

as componentes ndo nulas do deslocamento e da rotacao, respectivamente.

0 —— Us

— U,
_l,
S
_3,
_4,

0.0 0.5 1.0 1.5 2.0 2.5 3.0
s [m]

Figura 4.2: Comparacdo das solu¢gdes numeéricas Us e analitica Us, da componente do deslocamento
na direcdo e3 de uma viga engastada e livre, sujeita a uma carga distribuida F3 = —5,0kN na dire¢do do
eixo es.

0.00 4 — o

—0.254
—0.501
—0.754
& —1.004
—1.251
—-1.504

—1.751

0.0 0.5 1.0 1.5 2.0 2.5 3.0
s [m]

Figura 4.3: Comparacao das solugdes numéricas 6, e analitica 6,, da componente da rotacdo em rela-
¢d0 ao eixo e; de uma viga engastada e livre, sujeita a uma carga distribuida F3 = —5,0kN na dire¢ao do
€eixo es.
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As Figs[4.4]e[4.5]ilustram a comparac@o dos resultados numeéricos e analiticos para
as componentes ndao nulas dos momentos fletores e dos esforcos cisalhantes, respec-

tivamente.

001 o
— M.,

—1.0+

M3

—1.51

0.0 0.5 1.0 1.5 2.0 2.5 3.0
s [m]

Figura 4.4: Comparacdo das solucoes numéricas Ms e analitica M3, da componente do momento fletor
em relacdo ao eixo e; de uma viga engastada e livre, sujeita a uma carga distribuida F3 = —5,0kN na
direcdo do eixo es.

00f o p,

—024 7 Ne

~0.4]

—1.01
—1.21

—1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
s [m]

Figura 4.5: Comparagao das solu¢des numéricas N, e analitica N,, da componente dos esforgos ci-
salhantes na direcdo e, de uma viga engastada e livre, sujeita a uma carga distribuida F3 = —5,0kN na
direcdo do eixo es.

Com base nos resultados graficos apresentados, podemos constatar a boa precisao
da solucao numérica. Fazendo o célculo do erro relativo para as componentes do des-
locamento, rotacdao, momento e esforco cisalhante, verificamos valores percentuais na
ordem de 1072 %, podendo ser considerados despreziveis. Esses resultados evidenciam

a acurdcia da formula¢do numérica.
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4.1 Experimento 2

Este experimento tem como objetivo comparar a solu¢do numérica com a solucao ana-
litica, para evidenciar a sua precisao quando a estrutura descreve um comportamento
para fora do plano, isto é, no espaco tridimensional. Para isso, consideramos uma viga
de comprimento L = 3.0m, engastada na sua extremidade inicial e livre final, sujeita
a uma carga concentrada unitdria F3 = 1,0kN aplicada na sua extremidade livre e na
mesma diregao do eixo e3, conforme ilustra a Figl4.6] As propriedades geométricas e
constitutivas sdo as mesmas apresentadas na Tab[4.1] A linha neutra desta estrutura

representa uma curva no espaco tridimensional descrita pela equacao da hélice:

r(s) = Rcos (%)el +Rsen(%) e2+C(%) €; (4.1)

onde R é o seu raio, C a sua altura do passo e m = V R? + C? é o pardmetro geométrico
da hélice.
Decompondo a carga F3 em componentes nas direcdes tangencial e binormal do

sistema de coordenadas local do modelo, temos que:

(c
F=(=pP
m

R
E; + (—P) E;. 4.2)
m

. . . 2
Em nosso experimento, consideramos os parametros geométricos C = R = — e obte-

1 . ~ R Lo
mos m = 2— Com isso, a curvatura Y= — eatorcao u = ) assumem valores 1guais
T m m

a v27. Substituindo estes resultados na Eq encontramos o valor de 0,707kN para
cada componente da carga Fs.

Pararesolver este problema, discretizamos o dominio utilizando uma malha de ele-
mentos finitos com 96 elementos uniformemente espagados e fun¢oes de interpolacao
lineares para aproximar tanto os campos de deslocamentos quanto os esforcos gene-

ralizados.
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Figura 4.6: Representacdo esquemadtica de uma hélice engastada sujeita a uma carga concentrada Fs
aplicada na sua extremidade livre.

As Figs[4.7]a ilustram a comparacao entre a solu¢do numeérica e analitica para
as componentes dos deslocamentos e da rotacdes generalizados.

0.0 0.5 1.0 15 2.0 2.5 3.0
s [m]

Figura 4.7: Comparacao das solu¢des numeéricas U; e analitica U;, da componente do deslocamento na

direcao e; de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN aplicada
na sua extremidade livre, com curvatura e tor¢do y = u = v/ 27, respectivamente.
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Figura 4.8: Comparacao das solu¢des numéricas U, e analitica U, da componente do deslocamento na
direcdo e, de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN aplicada
na sua extremidade livre, com curvatura e tor¢do y = ¢ = V27, respectivamente.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
s [m]

Figura 4.9: Comparacao das solu¢des numéricas Us e analitica Us, da componente do deslocamento na

direcdo e3 de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN aplicada
na sua extremidade livre, com curvatura e tor¢do y = y = V27, respectivamente.
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Figura 4.10: Comparacdo das solu¢oes numeéricas 6, e analitica 8;, da componente da rotagdo em
relacdo ao eixo e; de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN
aplicada na sua extremidade livre, com curvatura e tor¢ao y = p = V27, respectivamente.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
s [m]

Figura 4.11: Comparacdo das solucoes numeéricas 6, e analitica 8,, da componente da rotagdo em

relacdo ao eixo e, de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN
aplicada na sua extremidade livre, com curvatura e tor¢ao y = y = v 27, respectivamente.
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Figura 4.12: Comparacdo das solu¢oes numeéricas 63 e analitica 03, da componente da rotagdo em
relacdo ao eixo e; de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN
aplicada na sua extremidade livre, com curvatura e tor¢ao y = p = V27, respectivamente.

As Figs a lustram a comparagdo entre a solu¢do numérica e analitica para
as componentes dos momentos e dos esfor¢os cisalhantes generalizados.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
s [m]

Figura 4.13: Comparacao das solugdes numéricas M; e analitica M;, da componente do momento em

relacdo ao eixo e; de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN
aplicada na sua extremidade livre, com curvatura e tor¢do y = p = v/ 27, respectivamente.
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Figura 4.14: Comparacéo das solugdes numéricas M, e analitica M,, da componente do momento em
relacdo ao eixo e, de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN
aplicada na sua extremidade livre, com curvatura e tor¢ao y = p = V27, respectivamente.

—0.61

—1.01

—1.21
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Figura 4.15: Comparacéo das solugdes numéricas M3 e analitica M3, da componente do momento em

relacdo ao eixo e; de uma hélice simplesmente engastada, sujeita a uma carga concentrada F3 = 1,0kN
aplicada na sua extremidade livre, com curvatura e tor¢ao y = y = v 27, respectivamente.
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Figura 4.16: Comparacdo das solugdes numéricas N; e analitica Nj, da componente dos esforcos
cisalhantes na direcdo e; de uma hélice simplesmente engastada, sujeita a uma carga concentrada
F3 =1,0kN aplicada na sua extremidade livre, com curvatura e tor¢ao y = u = v 271, respectivamente.

1.0 — Ne,
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0.0
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Figura 4.17: Comparacdo das solugdes numéricas N, e analitica N, da componente dos esforcos

cisalhantes na dire¢do e, de uma hélice simplesmente engastada, sujeita a uma carga concentrada
F3 =1,0kN aplicada na sua extremidade livre, com curvatura e tor¢ao y = u = v/ 27, respectivamente.
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Figura 4.18: Comparacdo das solugdes numéricas N3 e analitica N3, da componente dos esforcos
cisalhantes na direcdo e; de uma hélice simplesmente engastada, sujeita a uma carga concentrada
F3 =1,0kN aplicada na sua extremidade livre, com curvatura e tor¢ao y = u = v 271, respectivamente.

Com base nos resultados gréficos apresentados, calculamos os erros percentuais
relativos para as componentes dos deslocamentos, rotacoes, momentos e esforcos
cisalhantes. Observamos que os erros percentuais obtidos para cada uma das com-
ponentes dos deslocamentos e rotacdes estdo na ordem de 1072 %, enquanto os mo-
mentos apresentam erros na ordem de 1073 %, e os esforcos cisalhantes na ordem de
10~*%. Estes erros sdo muito pequenos e podemos desprezé-los, o que evidencia a
acurdcia da formulacdo numérica quando a estrutura descreve um comportamento

fora do plano.

4.2 Experimento 3

O presente experimento tem como objetivo investigar o comportamento da formula-
¢do em um sistema composto por multiplos elementos de barras interconectadas. Esta
estrutura é constituida por tubos de aluminio de se¢do transversal circular vazada, de
diametro externo D = 20 mm e de didmetro interno d = 16 mm, conforme ilustrado na
Figura[4.19] A estrutura possui seus movimentos de rotacdo e deslocamentos restri-
tos em todas as direcdes nos nos 1, 3 e 6, e estd sujeita a acdo simultanea das cargas
concentradas F; = —600N e F}' = —200N, aplicadas nos nés 5 e 2, respectivamente.
Para a resolugdo deste problema, foram utilizadas as propriedades geométricas e
constitutivas apresentadas na Tabela[4.2l O dominio foi discretizado em uma malha
composta por 400 elementos finitos uniformemente distribuidos. Para a aproximagao
dos campos de deslocamentos e esforcos generalizados, empregou-se funcoes de in-

terpolacao lineares.
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Tabela 4.2: Propriedades da estrutura

Descricdo Valores

Médulo de elasticidade E 6,9 x 101°Pa

Modulo de elasticidade transversal G~ 2,875 x 10!°Pa

Momento de inércia I, 4,637 x 1079 m*
Momento de inércia I, 4,637 x 109 m*
Momento polar de inércia J 9,274 x 109 m*
Area de secdo transversal A 1,131 x 10™*m?
€3
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Figura 4.19: Representacao tridimensional da estrutura interconectada de se¢ao tubular vazada, sob a
acao das cargas concentradas F;, = ~600N e F; = —200N.

As Figs. a[4.27|representam graficamente a solu¢ao numérica para os campos
dos deslocamentos e esforcos generalizados na estrutura interconectada. A escala de
cores representa as magnitudes dessas grandezas, em que a cor vermelha indica os
valores maximos e a cor azul, os minimos. A transicdo continua entre as cores ilus-
tra gradualmente as variagcoes das magnitudes, os quais permitem uma interpretacao

visual precisa e detalhada dos resultados.
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2.7e-04

2.0e-4

1.0e-4

0.0e+00

Figura 4.20: Configuragao deformada da estrutura, quando aplicadas cargas concentradas F; = —600N
e F = —200N.
3

Figura 4.21: Rotagao ao longo da estrutura, em decorréncia da aplicagao das cargas concentradas F; =
—600N e F; = —200N.

Figura 4.22: Varia¢ao da componente M; do momento em relagao ao eixo e;, em decorréncia da apli-
cagao das cargas concentradas Fy = —600N e F; = —200N.
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Figura 4.23: Variacao da componente M, do momento em relagao ao eixo e, em decorréncia da apli-
cagao das cargas concentradas Fy = —600N e F; = —200N.

6.0e+00

-5.0e+00
-7.0e+00

Figura 4.24: Variacdo da componente M3 do momento em relacéo ao eixo ez, em decorréncia da apli-
cagdo das cargas concentradas F; = ~600N e F; = —200N.

4.1e+02

0.0

-5.0e+2

-8.0e+02

Figura 4.25: Variacdo da componente N; dos esfor¢os cisalhantes na diregao do eixo e;, em decorréncia
da aplicagao das cargas concentradas F; = —600N e F; = —200N.
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5.4e+02

— 4.0e+2

2.0e+2

0.0

-1.2e+02

Figura 4.26: Variacdo da componente N> dos esfor¢os cisalhantes na diregéo do eixo e,, em decorréncia
da aplicagao das cargas concentradas F; = —600N e F; = —200N.

8.1e-11
-2.0e+1

-4.0e+1

-6.3e+01

Figura 4.27: Variagao da componente N3 dos esfor¢os cisalhantes na diregao do eixo e3, em decorréncia
da aplicacao das cargas concentradas F;; = —600N e F; = —200N.

Nessa secdo, apresentamos trés problemas estruturais com naturezas geométricas
distintas, os quais nos permitiram explorar a capacidade do modelo de representar as
deformacoes em diversos cendrios estruturais, considerando diferentes condicoes de

contorno e distribuicdes de cargas.
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Capitulo 5

Conclusoes

Fundamentado no modelo de estruturas flexiveis unidimensionais, este trabalho apre-
sentou o desenvolvimento de uma formulagdo variacional mista estabilizada, baseada
no principio de Hellinger-Reissner, para a solucao do problema da viga de Timoshenko
no espaco tridimensional, em regime de pequenos deslocamentos e deformacaoes.

A formulagdo proposta foi desenvolvida como alternativa as limitacGes observadas
em abordagens puramente cinemadticas, que tendem a apresentar imprecisoes signifi-
cativas quando os efeitos de cisalhamento nao podem ser desprezados. Para superar
essas restricoes, adotamos uma representacao independente para os campos de des-
locamentos e esforcos generalizados, utilizando func¢des de interpolacao especificas
para cada um. Essa estratégia demonstrou-se eficaz na mitigacao de fendmenos como
o travamento por cisalhamento, contribuindo para maior coeréncia fisica e robustez
numérica das solucoes.

Os resultados obtidos com a formulacao variacional mista ressaltaram a importan-
cia da estabilizacdo numérica por meio da introduc¢do de termos residuais, baseados
no método dos minimos quadrados, os quais foram aplicados as equac¢oes de equili-
brio. Essa abordagem proporcionou ganhos significativos em precisao, estabilidade e
eficiéncia computacional.

Além de validar a robustez do modelo, este trabalho apresenta potencial para ser
expandido no contexto da otimizacdo estrutural. A proposta consiste em integrar téc-
nicas de otimizacao a formulac¢ao variacional, por meio da definicao de um funcional
de custo adequado, permitindo a calibracdo de diferentes parametros do sistema. En-
tre os parametros passiveis de otimizacao, destacam-se o comprimento, a espessura,
a area da sec¢do transversal e as configuracoes estruturais (como o posicionamento de
apoios, a conectividade entre elementos e o arranjo topolégico). O objetivo € alcancar
solugdes que atendam simultaneamente a critérios de desempenho mecanico, segu-
ranca estrutural e economia de material.

Por fim, os objetivos propostos foram plenamente alcancados. O modelo desen-

volvido mostrou-se uma alternativa eficaz para a anélise de vigas de Timoshenko sob
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a influéncia significativa de cisalhamento, demonstrando ainda potencial de evolucao
para aplicacdes préticas em projetos estruturais. Espera-se que a abordagem proposta
contribua para o desenvolvimento de solucdes mais robustas, flexiveis e inovadoras
na engenharia estrutural, ampliando seu impacto tanto no meio académico quanto no
profissional, por meio da adocdao de métodos mais eficientes, confidveis e orientados

a otimizacao.
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Apéndice A

Formulacao padrao para o problema de
viga de Timoshenko no espaco

tridimensional

Apresentamos, neste apéndice, as expressoes dos deslocamentos, rotagoes, momentos

e esforcos cisalhantes em termos de componentes em R>.

A.1 Equacdes de equilibrio em R®

Sejam fungdes arbitrérias v = (v1, v2, v3) € W = (W1, ¥2,¥3) com v,y € R3. Atendendo

as Egs. 2.31 e 2.32 e aplicando a integra¢do ao longo de s € (0, L), obtém-se:

S N
—f Dg(@—exEl)-d—vdﬁf F-vds=0, A1)
0 ds das 0
S do dy s du(s)
- | Dg— —— E, xD - E |- =0. A2
L gdS ds dS+j(; 1 X u( ds 0 x 1) l[IdS 0 (A.2)
Somando membro a membro estas duas expressoes e reordenando os termos, obtém-
se:
S do dy s du av s
Dg— — D,|— - Ei|-|— - E =] F: . A.
fo 0 s ds ds+[0 ”(ds 0 x 1) (ds L/8% 1)ds fo vds (A.3)
onde
S do dy s do, ) (dwl )
Dp— . —— = - _ AL
fo Gds dsd LG](ds 2 ds YWz |ds+
§ do d
+ fEII(_2+Y91—#93)'(ﬂ+YW1—H1//3)d3+
0 d ds
s do, dys
+ j(; Elz( s ,UQZ) ( ds +,UW2) ds, (A.4)
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d d d
—u—H E1 = (ﬂ—')/ug)El+(£+YU1—MLL3—93)E2+

ds ds ds
+ (%+ U —H)E (A5)
ds Hu2 2| B3, .

fSD (@—BXE)(d—V— xE)ds fEA(ﬂ— )(@— v)+
o\ ds Was V™ 0 as T\ as T

s d da

+ fGAl(—+yu1—uu3—93) £+YV1—,UU3—1[/3)dS+
0 d ds
s du dv

+ foGAz(d—;’+,uu2+62)(d—;’+uv2+wg)ds. (A.6)

Substituindo os resultados (A.4]-[A.6) em (A.3), obtém-se:

f da dwd fDu(——BXEl)(Z—:—‘I[IXEl)dS—f G](d—el—}/eg

ds

d
% —)/1//2) ds+

s d@ d s do d
+f0 Eh(d—ﬂ/@l—peg)(d—li+yw1—uw3)ds+f Elz(dsl ﬂgg)(%ﬁ-uwZ)dS-i'
[ ) -
0 ds yie ds yv2
S du3
GAy | — 0
+f0 Z(ds THU2 + 2)
(A.7)

A energia interna para o modelo de viga de Timoshenko no espaco tridimensional

+fSGA (du2+ 7] )(dv +vv v )ds+
— U — Muz — — — -
A 1 ds YUy — i3z —U3 ds YU1— UV3— Y3

d
d_vsg + uv; +1//2) ds.

é expressa por:

(@,V)

g [ | (A2 _ (Vs ) _
fOMl(d Wz)ds fOMz(ds +Yyn Ws)ds fOMs(ds +uy2|ds

$ d $ d s d
fONl(#—yvg)ds ng(d—vsz+yv1—uv3—u/3)ds—fo Ng(d—lf+uv2+u/2)ds.

Pelo principio dos trabalhos virtuais, o trabalho das forcas externas equivale ao
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trabalho das forcas internas, isto é,
—(®,V$) + (F,u) =0

§ d
(D,V5) = (F,u) = f M, (—’”1 ~y»
0 ds

s d s d
ds+f Mg(ﬂ+yw1—mp3)ds+f M3(£+uw2)ds+
0 ds 0 ds

$ dv S dv § dv
+f0 Nl(d—sl—sz ds+f0 Ng(d—sz+yv1—,uv3—w3)ds+fo Ng(d—s?’+uvz+1//2)ds
d d d
= (Ml, %) — (M, yy2) + (sz%) + (Ma, yy1) — (M, pys) + (Mg, %) + (My, pys) +
dv dv dv
+(N1,d—sl)—(Nl,YV2)+(N2,d—SZ)+(Nz,}’lfl)—(Nz,uvs)—(Nzﬂl/s)"'(Ns,d—;)+(N3,HV2)+(N3,W2)
s dMl s dMZ
= My |, - PR 1| = (M1, ywa) + Moy, — Wﬂlfz + (M, yy1) — (Mo, pyr3) +
s [(dM;s s (AN
+ Msys|,— W,Ws + (Ms, uys) + Nyvaly — s — (N1, yve) +
dN.
+ N2V2|(S)—(d—82,l/2 + (N2, yv1) — (N2, pvs) — (N2, w3) +
dN:
+ N3U3|8—(d—83,l/3 + (N3, pvo) + (N3, 92)
—(—dM1+ M, +(—M—dM2+ M, + N: )+(—M—dM3—N )+
= s Y M2, YV s jUal7¢) 3, Y2 piMy s 2, V3
+( dN1+ N; )+ N, dN2+ - )+( N, ANy )
ds YIN2, U1 Y1 ds KNS, U2 HAN2 ds’vg
= (Fi,y1) + (Fo, w2) + (Fs,w3) + (F1, 11) + (B2, v2) + (F3, U3)
(A.8)
Com base nisto, chegam-se as equacdes de equilibrio nas trés direcdes do R®
aMy v, = F (A.92)
ds T h '
dM,
—)/MI—W+;1M2+N3:F2 (A.9b)
M M & (A.9¢)
pv ds 2=13 .
—@+ Ny, =F (A.9d)
ds 1T '
dN,
—)/Nl——+,LtN3:F2 (A.9e)
ds
dN:
—uN, - =S =Fy (A.9f)

ds
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As equacdes constitutivas sdo obtidas a partir de (A.7). Logo,

M —G](del —v0 ) (A.10a)
1— dS Y 21 .

dao

M, =EL (d—;wel —,Ltgg), (A.10b)
dao

M = EIg(d—Sl+u92), (A.10c)
du

Ny :EA(d—Sl —yug) (A.10d)
dug

Ny =GAy %+Yu1—uu3—63 , (A.10€)

N3 =GAy (dd—l? +uu2+02). (A.10D)
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Apéndice B

Formulac¢ao variacional mista

estabilizada no espaco tridimensional

Neste apéndice, apresenta-se a formulacdo variacional mista estabilizada do modelo

de viga de Timoshenko, expressa em termos de suas componentes.

B.0.1 Descricao do modelo em termos de componentes

Dados 0 = M,N) e W, T = (I,®) € W e W = Q3 x Q3 0 espaco produto, define-se os

funcionais bilineares:

alo,T)

b(t,u)

F(v)

ap(o,T)

as (o,T)

_Gi] (®,%) - ELII (M, Z1) — ELIZ (M2, Ep) — ﬁ (N,0) - GLAl (Fy,T) - GLAZ (F2,T2).
(B.1)
(Z, % —)/92) + (El, % + 76, —,u93) + (Eg, % - ,U,Qz) + (@, % —yug) +
(Fl,%+yu1—,uu3—93)+(Fg,%ﬂuugﬂ%), (B.2)
(Fu,v1) + (F2,w2) + (F3,w3) + (F1, v1) + (F2, v2) + (F3, v3), (B.3)
alo,T)+as(0,1), (B.4)
—51h (C;—cf —yM, Z—cf —yMl) N5 (yq>+ % —uM, —Fp, ® + dxl — uMs _pz) _
53 h? (,uMl + dcjl\fz + Fy, M + dc]l\zz +F1) — 8402 (6;—];] _YFl’cil_]Z —YF) _
55h? ()/N+ % — uF, YN + % —qu) —66h? (/JFl + %,uﬂ + %) . (B.5)
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