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RESUMO 

Este Trabalho de Conclusão de Curso tem como objetivo analisar o desempenho do modelo 

econométrico clássico ARIMA (Box e Jenkins, 1976) e do modelo de aprendizado 

profundo TimesNet (WU et al., 2022), aplicados à previsão de séries temporais financeiras, 

com atenção à relação entre sinal e ruído, elemento central que define o grau de 

previsibilidade e a natureza linear ou não linear dos dados. A pesquisa avaliou a eficácia 

de cada abordagem em termos de acurácia estatística. A metodologia incluiu o uso de 

métricas amplamente reconhecidas, como RMSE, MAE e MAPE, aplicadas a ativos 

representativos de economias maduras e emergentes, incluindo índices de mercado 

acionário (americano, brasileiro, alemão, Reino Unido e Japão) e a commodity ouro. Os 

resultados empíricos mostraram que o modelo ARIMA, baseado em uma estrutura linear e 

parcimoniosa, teve desempenho superior em horizontes temporais curtos e séries com 

baixo sinal e alto ruído, confirmando sua eficiência em ambientes com menor 

previsibilidade. Por outro lado, o TimesNet, ao empregar mecanismos de aprendizado 

profundo capazes de capturar padrões não lineares e dependências complexas, apresentou 

vantagens apenas quando combinado com o ARIMA, reforçando o potencial dos modelos 

híbridos. Assim, conclui-se que a integração entre modelos clássicos e técnicas avançadas 

de inteligência artificial permite explorar de forma complementar sinais lineares e não 

lineares, aprimorando a previsão de retornos e contribuindo para decisões mais assertivas 

em um ambiente dinâmico na gestão de portfólios de investimentos. 

 

Palavras-chave: Séries Temporais; ARIMA; Inteligência Artificial; Deep Learning; 

TimesNet; Mercado Financeiro.   
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ABSTRACT 

This Undergraduate Thesis aims to analyze the performance of the classical econometric 

model ARIMA (Box and Jenkins, 1976) and the deep learning model TimesNet (Wu et al., 

2022), applied to the forecasting of financial time series, with attention to the relationship 

between signal and noise, a central element that defines the degree of predictability and the 

linear or nonlinear nature of the data. The research evaluated the effectiveness of each 

approach in terms of statistical accuracy. The methodology included the use of widely 

recognized metrics, such as RMSE, MAE, and MAPE, applied to assets representing 

mature and emerging economies, including stock market indices (United States, Brazil, 

Germany, the United Kingdom, and Japan) and the gold commodity. 

Empirical results showed that the ARIMA model, based on a linear and parsimonious 

structure, performed better in short-term horizons and in series with low signal and high 

noise, confirming its efficiency in environments with lower predictability. On the other 

hand, TimesNet, by employing deep learning mechanisms capable of capturing nonlinear 

patterns and complex dependencies, presented advantages only when combined with 

ARIMA, reinforcing the potential of hybrid models. Thus, it is concluded that the 

integration between classical models and advanced artificial intelligence techniques allows 

for the complementary exploration of linear and nonlinear signals, enhancing return 

forecasting and contributing to more assertive decision-making in the dynamic context of 

investment portfolio management. 

 

Keywords: Time Series; ARIMA; Artificial Intelligence; Deep Learning; TimesNet; 

Financial Market. 
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1. INTRODUÇÃO 

A previsão de retorno e risco de ativos financeiros emerge como um pilar central na 

literatura de finanças, com implicações diretas na gestão de portfólios e na avaliação de 

desempenho de fundos de investimentos. Tradicionalmente, a análise financeira baseia-se na 

Hipótese de Mercados Eficientes (HME), que, em sua formulação mais estrita, postula a 

impossibilidade de prever retornos consistentemente (Fama, 1998). Contudo, a crescente 

complexidade e volatilidade dos mercados globais, aliadas ao aumento exponencial do volume 

de dados e à maior capacidade de absorção de informações, impulsionam a demanda por 

modelos preditivos mais sofisticados para apoiar a tomada de decisão dos investidores (Liu et 

al., 2019; Mehtab, Sen & Dutta, 2020). Adicionalmente, a capacidade preditiva de modelos de 

series temporais podem demonstrar leves desvios à HME em decorrência da existência de 

limites de arbitragem (Kellly et al., 2022).  

O Aprendizado de Máquina (AM) consiste em um subconjunto da Inteligência Artificial 

voltado para o desenvolvimento de algoritmos capazes de aprender padrões a partir de dados, 

sem depender de instruções explícitas para cada tarefa, o aprendizado ocorre quando o sistema 

melhora seu desempenho em uma tarefa com base na experiência obtida, o que o diferencia dos 

métodos puramente determinísticos. Em aplicações financeiras e de séries temporais, o 

aprendizado de máquina busca identificar relações complexas entre variáveis como retornos, 

volatilidade e volume que são difíceis de capturar por modelos estatísticos lineares tradicionais 

(Kelly et al., 2022; Provost; Fawcett, 2013). 

O Deep Learning (DL), por sua vez, representa uma evolução do aprendizado de 

máquina, fundamentada em estruturas com múltiplas camadas de processamento hierárquico. 

Conforme destacado por Masini, Medeiros e Mendes (2023), os modelos de aprendizado 

profundo permitem capturar relações não lineares complexas e dependências temporais de 

longo alcance, especialmente úteis em séries financeiras. Essa abordagem utiliza redes neurais 

profundas para decompor os dados em representações progressivamente mais abstratas, 

aprimorando a generalização e a capacidade de adaptação a diferentes regimes de mercado. 

As Redes Neurais Artificiais (RNAs) constituem a base do aprendizado profundo e 

foram inspiradas na estrutura biológica do cérebro humano. De acordo com Haykin (2001), 

essas redes são compostas por unidades de processamento interconectadas (neurônios 

artificiais) que ajustam pesos sinápticos para minimizar erros de previsão, permitindo a 

aproximação de funções não lineares de alta complexidade. Estudos como o de Mehtab, Sen e 

Dutta (2020) reforçam essa vantagem ao demonstrarem que arquiteturas neurais, em capturar 

de forma mais eficiente as variações estruturais e de tendência dos mercados. 

A comparação entre abordagens clássicas, como o ARIMA (Autoregressive Integrated 

Moving Average), proposto por Box e Jenkins (1976), e técnicas de Deep Learning, como as 

redes LSTM (Long Short-Term Memory), é amplamente estudada (Athey e Ibens, 2019). 

Outros estudos corroboram essa perspectiva, mostrando que modelos LSTM superam o 

ARIMA em setores como óleo e gás e na previsão de preços de ações, com a vantagem adicional 

de exigirem menos dados para previsões eficientes devido à sua alta capacidade de capturar o 

comportamento observado (Agrawal et al., 2023; Bezerra e Albuquerque, 2019). 

Sendo um modelo linear clássico, o ARIMA consolidaram-se como referências na 

modelagem de séries temporais, na qual combina três componentes: autorregressão (AR), 

diferenciação (I) e médias móveis (MA). Destacando por robustez em estruturas lineares e 

estacionárias, sendo usado por décadas como padrão para avaliação de previsões financeiras. O 

Ele permite quantificar a previsibilidade dos retornos financeiros explicada pela autocorrelação 

linear, fornecendo uma base sólida e comparável para avaliar o desempenho de modelos mais 
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complexos. (Box e Jenkins, 1976; Tavares; Quadrelli, 2022). 

A ascensão do aprendizado de máquina (AM) consolidou-se como uma técnica 

proeminente na ciência de dados, para prever os preços de mercado e subsidiar decisões de 

investimento é essencial. Redes Neurais Artificiais, particularmente as redes LSTM, têm 

demonstrado eficiência na previsão de preços de mercado. Estudos como os de Liu et al. (2019) 

e Mehtab, Sen e Dutta (2020) indicam que essa técnica tem o poder de analisar grandes volumes 

de dados históricos, identificar padrões e tendências, e prever com razoável precisão os preços 

futuros de ativos de renda variável, permitindo decisões mais informadas.  

Proposta por Hochreiter e Schmidhuber (1997), a LSTM é um tipo especial de Rede 

Neural Recorrente (RNN) projetada para resolver o problema da dissipação do gradiente, 

permitindo o aprendizado de dependências temporais de longo prazo em sequências de dados.  

O funcionamento das LSTM baseia-se em três estruturas chamadas "portões" (gates): o portão 

de esquecimento, que elimina informações irrelevantes; o portão de entrada, que adiciona novas 

informações ao estado da célula; e o portão de saída, que determina as informações a serem 

transmitidas para a próxima previsão. 

O TimesNet, em particular, representa um avanço relevante ao incorporar uma 

abordagem de convoluções temporais bidimensionais capazes de identificar múltiplos ciclos 

sazonais semanais, mensais ou anuais dentro de uma mesma série temporal. Diferentemente 

das RNNs ou LSTMs, que processam dependências temporais de forma sequencial, o” 

TimesNet” utiliza uma abordagem baseada em convoluções temporais 2D, permitindo maior 

eficiência na aprendizagem de padrões complexos e sazonais, mantendo a hipótese de coexistes 

de diferentes regimes de ao mesmo tempo (Wu et al., 2023).  

Nesse cenário, o campo das finanças quantitativas busca modelos robustos capazes de 

lidar com a alta dimensionalidade e a incerteza inerente aos ativos de risco. Este estudo propõe 

uma análise comparativa entre duas metodologias fundamentais na previsão de séries 

temporais: o modelo estatístico clássico ARIMA e a rede neural recorrente avançada LSTM, 

investigando qual abordagem oferece maior acurácia preditiva em ambientes financeiros 

complexos de curto prazo (Gu, Kelly & Xiu, 2020; Tsay, 2010; Kelly et al., 2024). 

 

1.1. Fundamentos Técnicos 

A busca por métodos preditivos precisos e operacionalmente viáveis, cujo investimento 

seja inferior ao custo de implementação prática no mercado real, capazes de apoiar a 

inteligência estratégica em finanças (Tsay, 2010; Gu, Kelly & Xiu, 2020), justifica a 

comparação detalhada desses dois modelos. A análise da eficácia desses modelos para 

identificar momentos e antecipar movimentos de mercado fortalecerá o uso de métodos 

quantitativos no suporte à tomada de decisão em investimentos. 

Giannone et al. (2021) analisaram aplicações em finanças, microeconomia e 

macroeconomia, avaliando a premissa de modelos econômicos de baixa dimensão e 

encontrando suporte limitado para essa hipótese. Gu et al. (2020) evidenciaram outra aplicação 

convincente de ML, utilizando dados de alta dimensão para prever retornos do mercado de 

ações. Goulet Coulombe et al. (2022) demonstraram que a capacidade dos modelos de ML em 

lidar com não linearidades melhora significativamente as previsões macroeconômicas. 

A otimização de Hiperparâmetros define o controle do modelo e, antes do treinamento, 

representa variáveis de controle que influenciam diretamente a capacidade de generalização e 

desempenho de um modelo de aprendizado de máquina. Diferentemente dos parâmetros 

ajustados durante o aprendizado, os hiperparâmetros configuram o comportamento do 
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algoritmo, como o número de camadas e neurônios em uma rede neural, a taxa de aprendizado 

(learning rate) ou o tamanho da janela temporal em séries financeiras. Esses ajustes equilibram 

a complexidade e estabilidade do modelo, sendo essenciais para que ele capture de forma 

eficiente as estruturas temporais e dinâmicas não lineares do mercado financeiro (Haykin, 2001; 

Mehtab; Sen; Dutta, 2020). 

Provost e Fawcett (2013) ressaltam que a definição apropriada das variáveis de entrada 

é uma das etapas mais críticas na modelagem preditiva, pois impacta diretamente a capacidade 

do modelo de extrair conhecimento útil e representar as relações subjacentes nos dados. Os 

dados fornecidos ao modelo (inputs) correspondem às entradas, enquanto as features 

representam variáveis explicativas ou atributos derivados que descrevem o comportamento da 

série temporal, como retornos, volatilidade, médias móveis ou outros indicadores relevantes 

para o aprendizado. Gu, Kelly e Xiu (2020) enfatizam que a seleção e transformação de features 

em finanças quantitativas devem preservar a integridade informacional e refletir fielmente a 

estrutura estocástica das séries, assegurando previsões consistentes e empiricamente robustas. 

Tsay (2010) discute que, em séries financeiras, a relação entre sinal e ruído determina o 

quanto os movimentos observados refletem informações relevantes (sinal) em oposição a 

flutuações aleatórias (ruído). O sinal representa a componente informativa que os modelos 

buscam identificar para prever tendências, enquanto o ruído corresponde à parte imprevisível e 

aleatória dos preços, característica de mercados emergentes. A predominância do ruído dificulta 

a identificação de padrões consistentes, tornando modelos lineares, como o ARIMA, mais 

adequados em contextos de baixo sinal e alta variabilidade. Por outro lado, em ambientes com 

dependências complexas e persistentes, modelos como o TimesNet, tendem à capturar 

estruturas subjacentes que escapam às abordagens tradicionais (Mehtab, Sen e Dutta, 2020). 

As aplicações de teste preditivo buscam evitar vazamentos de dados (data leakage), que 

ocorrem quando informações do conjunto de teste, que deveriam permanecer desconhecidas 

durante o treinamento, são utilizadas direta ou indiretamente pelo modelo no processo de ajuste. 

Essa prática gera um viés otimista nos resultados e compromete a validade da avaliação 

preditiva. De acordo com Provost e Fawcett (2013), a separação entre treino, validação e teste 

é um princípio fundamental da metodologia de ciência de dados, garantindo que o modelo seja 

avaliado sob condições realistas, simulando previsões em dados futuros. 

Essas aplicações também passam por um processo de normalização, essencial em 

modelos baseados em redes neurais artificiais, já que essas estruturas são sensíveis à escala das 

variáveis de entrada. A normalização ajusta os dados para um intervalo, permitindo que todas 

as features (características explicativas captadas pelo modelo) contribuam de forma equilibrada 

para o aprendizado, evitando que variáveis de maior magnitude dominem o processo de ajuste 

dos pesos sinápticos, melhorando a estabilidade e convergência  (Haykin, 2001). 

Kotchoni et al. (2019) investigaram seis categorias de modelos para prever diferentes 

séries, comparando a eficácia preditiva entre modelos tradicionais e de aprendizado de máquina 

(ML). Métodos mais recentes, como mineração de dados e análise de sentimento, também 

trouxeram avanços à área, como demonstrado por Duarte et al. (2021), que utilizaram notícias 

para prever preços de ações. De forma semelhante, Saurabh e Dey (2020) apresentaram vários 

modelos preditivos baseados em ML para analisar a relação entre preços de ações e reações do 

mercado capturadas por tweets relevantes, reforçando a importância de aplicar múltiplos 

modelos para prever ativos financeiros. 

Araujo e Gaglianone (2023) compararam 50 métodos de previsão para a inflação 

brasileira, concluindo que os modelos de ML superam frequentemente os métodos tradicionais 

(como o modelo ARIMA). Contudo, eles também destacaram a ausência de um método 
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universalmente superior, com a escolha ideal dependendo dos dados e da métrica de avaliação. 

Garcia et al. (2017) aplicaram modelos de alta dimensão para prever a inflação brasileira, 

observando que tais modelos, especialmente a regressão de subconjuntos completos, 

apresentaram um desempenho excepcional em diversos horizontes de previsão. Na previsão do 

mercado de ações utilizando ML, Pierdzioch e Risse (2018) testaram a hipótese das expectativas 

racionais ao preverem o mercado de ações americano com árvores de regressão impulsionadas, 

comparando os resultados em diferentes janelas temporais. 

Ersan et al. (2020) compararam o desempenho de três métodos para prever a direção de 

séries temporais financeiras, demonstrando que o aumento do tamanho da janela de tempo é 

benéfico somente para dados horários e até certo ponto. Kotchoni et al. (2019) concluíram que 

o modelo ARIMA é eficaz para prever mudanças na inflação no curto prazo, enquanto a Média 

de Modelos Rica em Dados Regularizada (RDRMA) se destaca em horizontes mais longos.  

Diversos estudos na literatura corroboram o desempenho superior do modelo ARIMA 

em horizontes de curto prazo (até 5 dias), especialmente em ambientes caracterizados por baixo 

sinal informacional e alta volatilidade. De acordo com Tsay (2010), modelos lineares, ao 

representarem adequadamente a estrutura autorregressiva e estacionária das séries financeiras, 

tendem a produzir previsões mais estáveis sob ruído elevado, situação em que as relações de 

dependência são predominantemente locais. Essa robustez em curtos horizontes é reforçada por 

Faust e Wright (2013), que argumentam que, em mercados próximos da eficiência 

informacional, a presença de ruído e a ausência de padrões persistentes reduzem o potencial de 

ganho de modelos complexos. 

Por outro lado, Mehtab, Sen e Dutta (2020) mostram que redes LSTM (Long Short-

Term Memory) apresentam maior eficiência em horizontes longos, onde há maior 

disponibilidade de dependências temporais e padrões estruturais a serem aprendidos. No 

entanto, em períodos curtos ou intradiários, essas redes tendem a sofrer com sobreajuste 

(overfitting) e degradação de desempenho, dada sua sensibilidade a ruídos e flutuações de alta 

frequência. Em consonância, Gu, Kelly e Xiu (2020) evidenciam que o poder explicativo de 

modelos baseados em aprendizado de máquina depende fortemente da dimensionalidade e do 

horizonte de previsão, sendo os modelos lineares mais eficientes em contextos de ruído elevado 

e menor persistência informacional. 

Entretanto, vale se destacar que os LSTM representam um avanço significativo no 

campo do Deep Learning e da ciência de dados, com uma estrutura permite que as LSTM 

mantenham e atualizem informações relevantes ao longo do tempo, oferecendo maior 

flexibilidade na captura de padrões não-lineares e de longa duração em séries financeiras (Gu; 

Kelly; Xiu, 2020; Masini; Medeiros; Mendes, 2023). 

Um fator frequentemente apontado como determinante para o desempenho dos modelos 

é o horizonte de tempo. A literatura especializada evidencia que o desempenho relativo dos 

modelos de previsão é altamente sensível ao domínio de aplicação e ao horizonte temporal 

considerado. Por isso, a superioridade de técnicas como ARIMA ou LSTM não é universal, 

sendo essencial uma avaliação contextualizada. Em um estudo sobre previsão de curto prazo da 

demanda de potência ativa, o modelo ARIMA alcançou 46% de eficiência, enquanto o LSTM 

obteve somente 13% de acerto, considerado um espaço de previsão de curto prazo para ambos 

os modelos (Tavares & Quadrelli, 2022). 

Ersan et al. (2020), Kotchoni et al. (2019) e Faust e Wright (2013), reforçam que a 

literatura ainda apresenta resultados ambíguos quanto à superioridade sistemática de um 

modelo superior aos demais. Enquanto o ARIMA tende a oferecer previsões mais consistentes 

em horizontes curtos (5 dias) e dados relativamente estáveis, o LSTM demonstra maior 
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desempenho em horizontes longos (15 dias) e em séries caracterizadas por não linearidade e 

alta volatilidade (Tsay, 2010; Gu, Kelly e Xiu, 2020).  

Como apresentado no estudo de Gonçalves, Alexandre e Lima (2023), foi realizada uma 

análise comparativa entre os modelos ARIMA e LSTM aplicada a séries temporais financeiras, 

com o objetivo de avaliar o desempenho de cada abordagem em diferentes janelas de previsão 

especificamente de 5, 15 e 30 dias. Os autores utilizaram métricas clássicas de erro, como o 

RMSE (Root Mean Square Error) e o MAE (Mean Absolute Error), para mensurar a precisão 

dos modelos. A tabela a seguir, apresenta um resumo dos resultados obtidos por Gonçalves, 

Alexandre e Lima (2023), destacando a superioridade do modelo ARIMA em curtos prazos e a 

eficiência do LSTM em janelas mais amplas: 

 

Tabela 1: Desempenho comparativo entre ARIMA e LSTM em diferentes horizontes temporais 

Horizonte/dias Modelo MAPE RMSE 

5 dias 
ARIMA 0,0108 223,24 

LSTM 0,0401 741,24 

15 dias 
ARIMA 0,0367 777,54 

LSTM 0,0167 438,81 

30 dias 
ARIMA 0,0616 1.295,37 

LSTM 0,0141 359,3 

Série completa 
ARIMA 0,0527 1.191,97 

LSTM 0,0251 581,06 

FONTE: Adaptado de Gonçalves, Alexandre e Lima (2023). 

 

Essa dualidade sugere que a escolha do modelo deve ser condicionada ao horizonte de 

previsão e à natureza da série temporal em análise, tema que permanece como uma lacuna 

central no campo da econometria financeira, podendo afetar significativamente o desempenho 

do modelo (Keelawat et al., 2021). 

Tavares e Quadrelli (2022) realizaram uma pesquisa sobre previsão de demanda de 

potência ativa, utilizando os modelos ARIMA e LSTM. Nesse estudo, o ARIMA apresentou 

46% de precisão, enquanto o LSTM obteve apenas 13%, indicando que o desempenho de cada 

modelo depende das características das séries temporais fornecidas, um consenso universal na 

literatura. Onde pesquisas, concluíram que o modelo preditivo mais eficaz varia conforme o 

horizonte considerado.  

Gu, Kelly e Xiu (2020), trazem a perspetiva de que o uso de janelas deslizantes (Rolling 

Out ou Rolling Deslizante) é essencial em finanças empíricas porque os relacionamentos entre 

variáveis mudam com o tempo, e modelos fixos podem rapidamente se tornar obsoletos diante 

de novas dinâmicas de volatilidade e regimes de mercado. Assim, o Rolling Out possibilita a 

adaptação contínua dos parâmetros do modelo, reduzindo o risco de sobreajuste e aumentando 

a relevância das previsões, sendo o mais realista para um mercado altamente dinâmico. 

Na mesma direção, Masini, Medeiros e Mendes (2023) destacam que estratégias 

baseadas em janelas móveis são fundamentais para modelos de aprendizado de máquina 

aplicados a finanças, pois permitem o reequilíbrio periódico entre dados recentes e históricos, 

garantindo que o modelo aprenda de maneira dinâmica em ambientes não estacionários. 

Consequentemente, o uso do out deslizante neste trabalho visa reproduzir um cenário preditivo 
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mais realista, onde o modelo é constantemente atualizado com informações recentes. 

Diante das evidências acima, surge a necessidade de um estudo sobre modelos híbridos 

para superar essas limitações, combinando tanto a capacidade linear de curto prazo do ARIMA 

quanto as do modelo TimesNet de Wu et al. (2023), resultando na integração de ambos. O 

ARIMA tem demonstrado eficácia no curto prazo, enquanto o TimesNet se apresenta na 

identificação de sazonalidades, posicionando o TimesNet como uma alternativa promissora 

com características inovadoras, apesar de haver poucos estudos que aprofundem sua aplicação 

no mercado financeiro. 

A metodologia, fundamentada em uma abordagem quantitativa e comparativa, foi 

desenvolvida com etapas bem definidas. Após a coleta e preparação minuciosa dos dados, 

implementam-se os modelos preditivos, sendo o ARIMA escolhido por sua consolidação na 

literatura de séries temporais, e o TimesNet, pela capacidade de lidar com dinâmicas temporais 

complexas. Em seguida, realiza-se a otimização de parâmetros de ambos os modelos, 

culminando na avaliação de desempenho com ênfase no modelos com menor RMSE (Raiz 

Quadrada do Erro-médio) 

 

2. METODOLOGIA 

O presente estudo adota uma abordagem quantitativa e comparativa para avaliar a 

eficácia de modelos econométricos e de aprendizado profundo na previsão de séries temporais 

financeiras. A pesquisa analisa e compara modelos econométricos clássicos e de aprendizado 

profundo, utilizando uma estrutura metodológica cuidadosamente elaborada em etapas 

sequenciais. Essas etapas incluem a coleta e preparação de dados, a implementação de dois 

modelos distintos  ARIMA e TimesNet, como modelo avançado, a otimização de seus 

parâmetros e a avaliação de desempenho com um conjunto robusto de métricas. Cada decisão 

no processo foi planejada para assegurar rigor científico, reprodutibilidade dos resultados e 

relevância prática no contexto dos mercados financeiros. 

 

2.1 Coleta e Preparação dos Dados 

A qualidade e a integridade dos dados são fatores cruciais e indispensáveis para a 

validade e robustez de qualquer modelo preditivo financeiro, considerando a natureza 

intrinsecamente complexa, volátil e ruidosa desses mercados. As fontes de dados históricos de 

preços foram sistematicamente coletadas utilizando a biblioteca yfinance, uma ferramenta 

amplamente reconhecida e utilizada no meio acadêmico e de pesquisa para o acesso a dados de 

mercado em larga escala (Neto, 2010; Goodell et al., 2021). 

A seleção de múltiplos ativos, incluindo índices globais e commodities, e a análise em 

diferentes granularidades (diária e intradiária) seguem a abordagem de estudos que testam a 

robustez e generalização de modelos preditivos em diferentes condições de mercado. Trabalhos 

como o de Ersan, Nishioka e Scherp (2020) demonstram que a eficácia de um modelo de 

previsão pode variar significativamente conforme a frequência dos dados e o nível de 

volatilidade do ativo. Assim, a inclusão de horizontes distintos permite avaliar se os modelos 

mantêm desempenho consistente tanto em escalas curtas (horárias) quanto longas (diárias), 

testando a adaptabilidade das técnicas a diferentes regimes temporais e dinâmicas de ruído. 

A ideia central dessa seleção é aplicar os algoritmos sobre um conjunto diversificado de 

economias e classes de ativos, abrangendo mercados maduros, emergentes e de commodities, 

a fim de verificar o poder de generalização e estabilidade dos modelos. Essa diversidade é 

essencial, pois o comportamento dos retornos e a estrutura de dependência entre observações 
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variam substancialmente conforme o grau de desenvolvimento econômico e a profundidade do 

mercado (Gu, Kelly & Xiu, 2020; Tsay, 2010; Kelly et al., 2024). 

Para as análises em diferentes escalas temporais, foi selecionada uma amostra de 2.500 

dias para o horizonte diário, representando aproximadamente dez anos de dados, período 

considerado suficiente para capturar diferentes ciclos econômicos e regimes de volatilidade 

(Tsay, 2010). A amostra de 502 dias permite avaliar previsões em uma janela intermediária de 

cerca de dois anos, adequada à comparação entre curto e médio prazo. Por fim, a frequência 

intradiária de 1.752 horas (aproximadamente 251 dias úteis), esses intervalos seguem o padrão 

da literatura em séries financeiras de alta frequência (Tsay, 2010; Hyndman & Athanasopoulos, 

2018), permitindo equilibrar tamanho amostral e estabilidade de estimativas.  

Essa combinação temporal equilibra extensão histórica e granularidade operacional, 

possibilitando avaliar se os modelos mantêm estabilidade e precisão sob diferentes escalas de 

observação e níveis de volatilidade um aspecto crucial na literatura de previsão de séries 

financeiras (Gu, Kelly & Xiu, 2020). Servindo como base para observar o desempenho dos 

modelos em ambientes de alta frequência e baixo sinal-ruído, contexto no qual a capacidade de 

generalização é frequentemente testada (Ersan, Nishioka & Scherp, 2020). 

No contexto deste estudo, foram incluídos índices como o americano, representado pelo 

S&P 500 (GSPC), refletindo uma economia desenvolvida e altamente líquida; o brasileiro, 

representado pelo Ibovespa (BVSP), que reflete um mercado emergente, sujeito a maior 

volatilidade e choques regionais; o japonês, representado pelo Nikkei 225 (N255), indicando 

uma economia asiática madura com forte influência tecnológica; o alemão, representado pelo 

DAX (GDAXI), expressando o comportamento de uma das principais economias industriais da 

Europa; e o britânico, representado pelo FTSE 100 (FTSE), que reúne as maiores empresas do 

Reino Unido e é referência para mercados europeus. A commodity ouro (GC=F) foi incluída 

como ativo de refúgio (safe haven) e commodity global, com comportamento de preço 

frequentemente inverso aos índices acionários em períodos de incerteza.  

Como se pode observar, os índices escolhidos são os mais representativos de suas 

economias. Essas escolhas possibilitam testar se a capacidade preditiva dos modelos se mantém 

em diferentes estruturas de mercado desde economias altamente integradas e eficientes até 

mercados em desenvolvimento, com maiores assimetrias informacionais e comportamentos 

menos previsíveis, conforme discutido por Faust e Wright (2013) e Ersan, Nishioka e Scherp 

(2020). Tais estudos reforçam que o grau de eficiência de mercado e o nível de ruído nas séries 

temporais influenciam diretamente o desempenho dos modelos de previsão, corroborando os 

pressupostos da Hipótese de Mercado Eficiente (HME) e a importância de testar modelos sob 

diferentes regimes econômicos e granularidades de dados. 

Eventuais valores ausentes nos conjuntos de dados foram tratados e imputados 

utilizando a técnica de forward fill (ffill), que consiste em preencher as lacunas com o último 

valor válido observado, como sugerido por, Mehtab, Sen e Dutta (2020). Onde são amplamente 

utilizadas em contextos de alta frequência, por preservarem a ordem cronológica e a integridade 

informacional das séries temporais financeiras. Conforme destacado por Tsay (2010), a 

manutenção da característica de caminho aleatório e da dependência temporal é essencial para 

garantir a validade das análises e previsões em séries financeiras. Além disso, Gu, Kelly e Xiu 

(2020) reforçam que o uso de dados consistentes e o controle de distorções no pré-

processamento são fatores determinantes para a robustez empírica de modelos preditivos.  

O conjunto de dados foi dividido em amostras de treino, validação e teste. A amostra de 

treino é utilizada para o aprendizado dos parâmetros do modelo; a de validação, para o ajuste 

fino dos hiperparâmetros; e a de teste, mantida "invisível" durante todo o processo, é reservada 
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exclusivamente para a avaliação final do desempenho, assegurando resultados imparciais. 

sedno aplicada uma divisão de 80% para treinamento, 10% para validação e os 10% restantes 

para teste (Provost; Fawcett, 2013) 

O conjunto de validação é utilizado especificamente para otimizar o desempenho dos 

modelos, permitindo ajustes refinados sem comprometer a imparcialidade. A performance final 

e a capacidade de generalização dos modelos são avaliadas exclusivamente no conjunto de teste, 

que permanece intocado durante as fases de treinamento e validação. Essa separação é de suma 

importância para garantir a credibilidade e a imparcialidade em estudos de aprendizado de 

máquina aplicados à precificação de ativos e previsão financeira (Gu; Kelly; Xiu, 2020). 

No presente estudo, os dados foram submetidos ao processo de normalização, no qual o 

escalonador MinMaxScaler foi ajustado com base no conjunto de treinamento, garantindo que 

nenhuma informação do conjunto de teste influenciasse os parâmetros do modelo. Isso assegura 

que os features contribuam de forma equilibrada para o modelo e melhora a estabilidade do 

treinamento por gradiente descendente (Haykin, 2001).  

Para evitar vazamento de dados (data leakage), o escalonador foi configurado 

exclusivamente com os dados do conjunto de treino, uma prática essencial na metodologia de 

ciência de dados (Provost; Fawcett, 2013). Além disso, a normalização dos dados facilita a 

captura de padrões sutis e relações não lineares entre variáveis, permitindo que o modelo 

identifique estruturas temporais e dependências complexas sem distorções causadas por escalas 

incompatíveis, ou volatidades do mercado. 

 

2.2 Arquitetura e Implementação dos Modelos 

2.2.1. Arima recursivo onde se tem um grid search 

Essa metodologia é amplamente aplicada na modelagem de séries temporais, 

combinando componentes autorregressivos e de média móvel em um único framework, lidando 

tanto com padrões lineares quanto com a não estacionalidade por meio da diferenciação. A 

escolha do modelo ARIMA como benchmark é justificada por seu status canônico na literatura 

de séries temporais. Sua eficácia em modelar estruturas lineares o torna um ponto de partida 

robusto e um concorrente desafiador para modelos mais complexos, sendo até hoje amplamente 

utilizado em estudos comparativos (Tavares; Quadrelli, 2022; Gonçalves; Alexandre; Lima, 

2023). 

A otimização dos parâmetros p, d e q do modelo ARIMA foi realizada por meio de uma 

grid search, permitindo uma exploração sistemática do espaço de modelos. Essa abordagem 

garante total transparência sobre os parâmetros testados e as configurações que levaram aos 

melhores resultados. Esse processo de otimização envolve uma avaliação exaustiva de 

combinações específicas para minimizar o erro de previsão, sendo uma alternativa robusta aos 

métodos automáticos, tendo como critério para seleção os parâmetros com menor RMSE 

(Hyndman; Athanasopoulos, 2018). 

O modelo ARIMA(p, d, q) combina três componentes principais: Autorregressivo 

(AR(p)), onde o valor atual da série é explicado por uma combinação linear de valores passados; 

Integração (I(d)), que indica o número de diferenciações necessárias para tornar a série 

estacionária; e Média Móvel (MA(q)), em que o valor da série é influenciado por erros 

passados, conforme descrito por Box e Jenkins (1976). Esse processo possibilita a adaptação 

do modelo a diferentes ativos e economias, ajustando-se ao comportamento da série histórica 

para projetar valores futuros. 

Adotou-se uma estratégia de previsão recursiva, na qual o modelo é reestimado a cada 
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novo passo temporal, simulando um ambiente real em que novas informações se tornam 

disponíveis, alinhando-se às práticas de previsão em tempo real. Sendo uma estratégia uma das 

maneiras mais fiel um cenário de implantação em tempo real. Nessa abordagem, o modelo é 

periodicamente reestimado com a inclusão de novas informações, permitindo sua adaptação às 

mudanças nas dinâmicas da série temporal (Garcia; Medeiros; Vasconcelos, 2017). 

A validação do modelo ARIMA não se restringiu à sua acurácia preditiva. Realizou-se 

uma análise de diagnóstico dos resíduos para verificar se eles se comportavam como ruído 

branco, uma premissa essencial que indica que o modelo capturou toda a estrutura de 

dependência temporal presente nos dados, conforme a metodologia clássica. A ausência de 

autocorrelação estatisticamente significativa nos resíduos é um indicador fundamental de que 

o modelo conseguiu capturar a estrutura linear preditiva dos dados, deixando apenas o "ruído" 

aleatório não explicável (Montgomery et al., 2008). 

No presente estudo, o ARIMA foi implementado, utilizando informações desde o 

período de treinamento até o instante-alvo para prever o próximo valor da série. Para previsões 

intradiárias, o modelo considerou a última hora disponível para antecipar o movimento da 

próxima hora. Já para previsões de horizonte diário, utilizou-se aproximadamente 80% para 

treinamento, 10% para validação, reservando 10% o teste na amostra. Essa abordagem permite 

o uso do ARIMA medir a eficácia de modelos mais sofisticados (Box; Jenkins, 1976; 

Montgomery et al., 2008). 

 

2.2.2 Modelo de Aprendizado Profundo: TimesNet 

A literatura recente destaca consistentemente a superioridade desses modelos em 

previsões de séries temporais financeiras, em longo prazo (períodos acima de 15 dias). Para 

abordar dinâmicas não-lineares, complexas e de longa dependência, inerentes às séries 

financeiras foi implementado um modelo de aprendizado profundo. Estudos recentes reforçam 

a eficácia superior desses modelos em diversas tarefas de precificação de ativos e previsão em 

longo prazo (Tsay, 2010; Masini; Medeiros; Mendes, 2023). 

A Estrutura do Problema, a série temporal foi transformada em um formato de 

aprendizado supervisionado utilizando a técnica de janelas deslizantes. Essa abordagem, que 

gera pares de sequências de entrada e saída, é um método eficaz e amplamente utilizado para 

aplicar arquiteturas de aprendizado profundo a problemas de previsão, como demonstrado por 

Kim et al. (2020). A série temporal original foi estruturada nesse formato supervisionado por 

meio das janelas deslizantes, permitindo que o modelo mapeie sequências passadas de dados 

para prever valores futuros. 

A arquitetura TimesNet, baseada em Redes Neurais Convolucionais 1D (Conv1d), foi 

projetada especificamente para funcionar como um extrator de características hierárquicas. Sua 

principal capacidade está em identificar padrões locais e recorrentes em diferentes escalas 

temporais, sendo especialmente útil para capturar interdependências complexas presentes nos 

dados de séries temporais, como apresentando por Wu, H. et al. (2023).Modelos híbridos que 

integram LSTM para extração de features têm apresentado resultados promissores na previsão 

de séries financeiras (Zhang et al., 2019; Shi et al., 2022). 

Para a otimização dos hiperparâmetros do TimesNet, foi empregada a otimização 

Bayesiana com a biblioteca Optuna, visando calibrar a taxa de aprendizagem, tamanho do lote 

e filtros convolucionais, confere maior robustez ao modelo, minimizando problemas de 

sobreajuste (overfitting), no qual o modelo se ajusta excessivamente ao ruído presente na 

amostra de treino, comprometendo sua capacidade de generalização. Essa técnica destaca-se 

por sua eficiência e sistematicidade na busca de configurações ideais, considerando a 
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sensibilidade dos modelos de aprendizado profundo a esses parâmetros (Goodell et al., 2021).  

O processo foi configurado para minimizar o erro na amostra de validação, evitando 

enviesamento pelos dados de teste, com um comprimento de entrada de 12 para as últimas 

observações do diário e 2 para o intradiário, permitindo que o modelo se adapte à diversidade 

dos dados (temporais e econômicos). O treinamento do modelo foi realizado com o otimizador 

Adam, conhecido por sua eficiência na gestão de taxas de aprendizado, proporcionando uma 

convergência mais rápida e estável durante o treinamento da rede neural. O uso do Adam é uma 

escolha robusta e amplamente validada para problemas de regressão com redes neurais. O 

treinamento final, após a otimização, utiliza os melhores hiperparâmetros para ajustar o modelo 

final, consolidando o aprendizado obtido na fase de validação  (Mehtab; Sen; Dutta, 2020; 

Haykin, 2001).   

Em resumo, a LSTM apresenta vantagens evidentes sobre modelos lineares, como o 

ARIMA, na identificação de relações complexas e não lineares em séries financeiras. No 

entanto, sua eficácia depende diretamente do horizonte de previsão considerado, demonstrando 

que o desempenho relativo entre modelos econométricos tradicionais e de aprendizado 

profundo não é absoluto, mas varia conforme o contexto e a granularidade temporal da análise. 

Diante dessas limitações, utilizou-se o modelo TimesNet, introduzido por Wu, H. et al. (2023), 

projetado para superar as restrições dos modelos lineares na captura de dinâmicas não lineares 

e complexas, como a volatilidade em clusters e outros fenômenos autorregressivos não lineares 

frequentemente observados em séries financeiras. 

 

2.2.3. Modelo Híbrido (ARIMA combinado com TimesNet) 

A premissa de que um único modelo preditivo pode capturar toda a complexidade de 

uma série temporal financeira é frequentemente irrealista. Séries de preços de ativos são 

tipicamente compostas por diferentes estruturas, como tendências lineares, autocorrelação e 

padrões não-lineares complexos, que são mais bem modelados por diferentes classes de 

algoritmos. Diante dessa limitação, a implementação de estratégias de combinação (ensembles) 

e a criação de um modelo híbrido tornam-se fundamentais para esta análise (Tsay, 2010; 

Mehtab) 

O objetivo é transcender as fraquezas de modelos individuais como a rigidez linear do 

ARIMA e a propensão ao overfitting do TimesNet, para construir uma previsão agregada que 

seja simultaneamente mais robusta, adaptativa e precisa, aproveitando as forças 

complementares de cada abordagem. A análise dos quatro modelos de combinação, Média 

Simples, Ponderação por Erro, Rolling Deslizante (Out-of-Sample) e Rolling Expansivo (In-

Sample), revela distinções claras em termos de robustez e adaptabilidade (Zhang et al., 2019; 

Shi et al., 2022). 

Os modelos de Média Simples e Ponderação por Erro representam as formas mais 

diretas de combinação de previsões, um conceito cuja eficácia foi estabelecida no trabalho 

seminal de Bates e Granger (1969). A Média Simples, ao atribuir pesos idênticos (0.5) ao 

ARIMA e ao TimesNet/LSTM, opera sob a premissa de que não há informação prévia 

suficiente para favorecer um modelo em detrimento do outro. Sua força reside na diversificação 

de erros, que tende a produzir uma previsão agregada com variância menor do que a dos 

modelos individuais.  

A Ponderação por Erro refina essa abordagem ao atribuir pesos fixos, calculados com 

base no desempenho histórico (RMSE) em um conjunto de validação. Esta técnica busca dar 

maior relevância ao modelo que demonstrou maior acurácia no passado. A equação geral para 

a combinação pela média simples pode ser expressa como: 
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A ponderação por erro, por sua vez, refina essa abordagem ao atribuir pesos calculados 

com base no desempenho histórico dos modelos, geralmente mensurado pelo RMSE em um 

conjunto de validação, tendo sua equação sendo expressa como: 

 

 

 

Ambas as abordagens são "estáticas" porque os pesos de combinação, uma vez 

definidos, não se alteram ao longo do horizonte de previsão. Embora representem uma melhoria 

consistente sobre o modelo de pior desempenho (TimesNet/LSTM), sua natureza não-

adaptativa os torna vulneráveis a mudanças de regime nos dados, um fenômeno comum em 

mercados financeiros (Tsay, 2010). Se a performance relativa dos modelos base se altera ao 

longo do tempo, um ensemble estático não consegue se ajustar a essa nova realidade. 

O modelo Rolling Deslizante (Out) representa uma evolução significativa as 

combinações estáticos, incorporando princípios de stacking (Wolpert, 1992) em um framework 

dinâmico e adaptativo. Ao treinar um meta-modelo de regressão linear a cada passo de tempo, 

utilizando apenas as previsões dos modelos base em uma janela móvel de dados recentes, esta 

abordagem aprende continuamente a combinação ótima. A principal vantagem desta 

metodologia é sua capacidade de "esquecer" dados passados que podem não ser mais 

representativos da dinâmica atual do mercado. Sua formulação pode ser expressa como: 

 

 

 

em que os parâmetros 𝛼𝑡e 𝛽𝑡são reestimados a cada passo temporal, com base em uma 

janela móvel de tamanho 𝑤, de modo a minimizar o erro quadrático médio local: 

 

 

 

Essa capacidade de adaptação a "concept drift" mudanças na relação estatística 

subjacente dos dados explica seu desempenho superior em quase todos os cenários. Em 
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ambientes voláteis e não-estacionários, a relevância da informação decai com o tempo. O 

Rolling Deslizante captura essa realidade, permitindo que os pesos da combinação se ajustem 

dinamicamente para refletir qual dos modelos base (ARIMA ou TimesNet/LSTM) é mais 

confiável nas condições de mercado mais recentes. Sua eficácia empírica, tanto em mercados 

maduros quanto emergentes, válida a hipótese de que a adaptação contínua é crucial para a 

previsão financeira. Sendo particularmente eficaz em contextos não estacionários e de mudança 

de regime, fenômeno amplamente documentado na literatura financeira (TSAY, 2010) 

Em contraste, o modelo de Rolling Expansivo utiliza uma janela de dados que cresce 

continuamente, incorporando todo o histórico disponível a cada passo de tempo. Embora 

também seja uma abordagem adaptativa, sua premissa fundamental é a de que todo o passado 

é relevante para o futuro. Os resultados do estudo demonstram que, para as séries financeiras 

analisadas, essa premissa é não apenas falha, mas perigosa. A formulação geral segue a mesma 

estrutura linear: 

 

 

 

O desempenho desse modelo, pode ser evidencia uma severa sensibilidade a eventos 

estruturais passados. Ao nunca "esquecer", o modelo fica excessivamente ancorado a regimes 

de mercado antigos, como crises ou bolhas, resultando em um viés persistente que degrada sua 

capacidade preditiva no presente. Podendo ser mais propenso a overfitting ao histórico, onde a 

tentativa de usar mais dados resulta em um modelo menos generalizável e robusto, reforçando 

a conclusão de que, em finanças, a relevância da informação é frequentemente local e 

dependente do tempo (Gu; Kelly; Xiu, 2020; Masini; Medeiros; Mendes, 2023). 

 

2.3 Métricas de Avaliação de Desempenho e Acurácia Estatística 

A seleção de um conjunto diversificado de métricas é essencial para uma avaliação 

completa, pois cada métrica oferece uma perspectiva única sobre os erros de previsão. As 

métricas escolhidas (MAE, RMSE, MAPE) são amplamente utilizadas na literatura de previsão 

de séries temporais e permitem tanto a quantificação do erro em termos absolutos e percentuais 

quanto a avaliação da qualidade do ajuste do modelo (Hyndman; Athanasopoulos, 2018; Tsay, 

2010). 

O uso combinado dessas métricas fornece uma visão abrangente e confiável do 

desempenho comparativo dos modelos. A avaliação foi dividida em duas categorias principais: 

acurácia estatística, garantindo uma análise completa e multifacetada. A análise final dos 

modelos foi estruturada em duas camadas complementares. A primeira aborda a acurácia 

estatística, medindo a proximidade das previsões aos valores reais. Essa abordagem dual é 

crucial, pois um modelo estatisticamente preciso pode não ser necessariamente lucrativo ou 

aplicável na prática (Mesquita; Oliveira; Pereira, 2020). 

Erros percentuais, como MAPE (Mean Absolute Percentage Error) e são métricos 

adimensionais ideais para comparar o desempenho de modelos entre ativos com escalas de 

preço distintas. A adoção de um portfólio diversificado de métricas estatísticas é amplamente 

recomendada para uma avaliação abrangente e equilibrada do desempenho preditivo dos 

modelos, permitindo a análise dos algoritmos em diferentes economias e frequências 

(Hyndman; Athanasopoulos, 2018). 
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2.4 Síntese Metodológica 

Este capítulo apresentou a metodológico utilizada, rigoroso e multifacetado, 

desenvolvido para abordar de forma sistemática e científica as questões de pesquisa propostas. 

A pesquisa segue um protocolo disciplinado e exaustivo de coleta, tratamento e preparação de 

dados, fundamental para a construção de modelos robustos. Em seguida, realiza uma análise 

comparativa aprofundada entre um modelo linear clássico (ARIMA), que serve como 

referência, e uma arquitetura de aprendizado profundo (TimesNet), explorando suas respectivas 

capacidades preditivas. As premissas para a construção do modelo híbrido que combina tanto 

o ARIMA quanto o TimesNet e as métricas de mensuração de erros empregadas para distinção 

da eficácia dos modelos e suas combinações. 

Todos os processos de otimização de parâmetros foram conduzidos de forma sistemática 

e transparente, assegurando a validade interna dos resultados. A metodologia culmina em uma 

abordagem de avaliação dual, que combina a precisão estatística das previsões com a relevância 

financeira e econômica, proporcionando uma visão holística do desempenho dos modelos, sem 

negligenciar as delimitações e limitações inerentes a qualquer estudo empírico. Esta estrutura 

metodológica cuidadosamente planejada garante que os resultados, a serem apresentados e 

discutidos no capítulo seguinte, sejam não apenas robustos e bem fundamentados, mas também 

adequadamente contextualizados e diretamente aplicáveis às questões de pesquisa propostas, 

contribuindo de maneira significativa para o campo das previsões financeiras. 

Considera-se que os mercados financeiros, embora altamente eficientes, não seguem um 

"Passeio Aleatório" perfeito. Existem padrões e ineficiências, particularmente em horizontes de 

tempo mais curtos, que podem ser explorados por modelos quantitativos. Essa premissa desafia 

a forma forte da Hipótese de Mercados Eficientes e fundamenta toda a análise preditiva em 

finanças (Tsay, 2010). O estudo assume que os dados históricos de preços e volumes contêm 

informações relevantes sobre o comportamento futuro dos ativos. Modelos como o ARIMA 

baseiam-se explicitamente na autocorrelação, enquanto modelos de aprendizado profundo 

procuram capturar padrões não lineares mais complexos nos Mesmos Dados (Box; Jenkins, 

1976; Masini Et Al., 2023).  

O impacto do trabalho reside na sua contribuição para diferentes grupos, especialmente 

para a comunidade acadêmica e científica. A pesquisa aprimora o debate sobre a eficácia de 

modelos lineares versus não lineares em finanças, apresentando evidências empíricas 

atualizadas e uma metodologia transparente. Destaca-se por propor um modelo híbrido que 

combina ARIMA e TimesNet, buscando reduzir os erros de previsão. Embora as séries de 

preços sejam não estacionárias, considera-se que elas podem ser transformadas (e.g., por 

diferenciação ou análise de retornos) para apresentar propriedades estatísticas mais estáveis. No 

entanto, reconhece-se que a dinâmica dos mercados varia ao longo do tempo, justificando o uso 

de estratégias de validação robustas e modelos adaptativos (Hyndman; Athanasopoulos, 2018). 

A qualidade do estudo e a confiabilidade das conclusões sobre relações de causa e efeito 

foram asseguradas por meio de comparações controladas entre os modelos, utilizando 

condições idênticas de dados e métricas. Para garantir que os resultados sejam generalizáveis 

além da amostra específica, os testes foram realizados em múltiplos ativos de mercados 

distintos (emergentes, desenvolvidos, commodities) e em diferentes frequências. Essa 

abordagem reforçou a validade externa. Ademais, a qualidade foi garantida pelo uso de um 

conjunto abrangente de métricas de avaliação que consideram tanto a precisão estatística quanto 

a relevância financeira, seguindo as recomendações de Hyndman e Athanasopoulos (2018), 

evitando inferências baseadas em um único indicador.  
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3. RESULTADOS 

3.1. Apresentação Consolidada dos Erros Preditivos 

A análise empírica inicia-se com a apresentação dos resultados quantitativos. A tabela 

a seguir consolida as métricas de desempenho dos modelos ARIMA, TimesNet e as 

Combinações aplicadas desses modelos em conjunto em todos os períodos e frequências 

avaliados. Esses dados constituem a base para a discussão teórica e as conclusões subsequentes, 

permitindo uma avaliação clara e objetiva do desempenho preditivo. A análise engloba a 

consolidação das métricas de erro desses modelos em diferentes períodos e mercados, 

fornecendo suporte à discussão posterior, (Athey, S.; Imbens, G. W., 2019). Por fim, 

apresentamos uma síntese dos achados, organizada por horizonte temporal e contexto 

econômico. 

 

Tabela 2: Métricas de erros por frequência e Ativo 

  Intradiário, 1752h Diário, frequência de 502d Diário, frequência de 2500d 

Índices 
Modelo 

RMSE MAE 

MAPE 

(%) RMSE MAE 

MAPE 

(%) RMSE MAE 

MAPE 

(%) 

BVSP 

ARIMA 442,93 272,93 0,19 1.196,10 891,6 0,64 1.257,80 960,02 0,72 

TimesNet (LSTM) 562,04 411,72 0,29 2.916,82 2.643,07 1,9 2.118,36 1.844,04 1,38 

Média simples 481,97 314,09 0,22 1.890,58 1.558,12 1,11 1.517,16 1.244,22 0,93 

Ponderada por erro 474,08 304,76 0,22 1.669,34 1.304,54 0,93 1.378,15 1.105,07 0,83 

Rolling deslizante (Out) 417,97 270,28 0,19 887,83 825,62 0,58 1.218,19 930,51 0,68 

Rolling Expansiva (In) 486,36 311,55 0,22 20529,09 6052,7 5,94 1.390,60 1059,6 0,8 

FTSE 

ARIMA 14,11 10,6 0,11 41,18 31,05 0,34 70,83 43,96 0,51 

TimesNet (LSTM) 36,26 33,59 0,36 275,11 270,09 2,97 162,85 148,20 1,69 

Média simples 21,77 18,57 0,2 145,90 139,28 1,52 103,11 85,85 0,98 

Ponderada por erro 17,04 13,5 0,15 60,74 51,17 0,56 88,49 68,51 0,79 

Rolling deslizante (Out) 15,55 11,62 0,13 38,51 30,37 0,33 41,96 33,57 0,38 

Rolling Expansiva (In) 15,09 10,98 0,12 84,73 52,26 0,56 88,13 48,87 0,57 

GC=F 

ARIMA – – – 31,41 24,71 0,71 40,32 30,33 0,94 

TimesNet (LSTM) – – – 83,34 70,49 2 144,61 132,30 4,14 

Média simples – – – 52,38 43,07 1,22 82,13 71,95 2,23 

Ponderada por erro – – – 44,96 36,22 1,03 54,00 44,45 1,37 

Rolling deslizante (Out) – – – 24,97 19,38 0,53 40,64 30,76 0,92 

Rolling Expansiva (In) – – – 49,83 37,42 1,06 42,63 32,32 1,06 

GDAXI 

ARIMA 55,4 38,92 0,16 158,47 115,41 0,48 284,27 210,58 0,93 

TimesNet (LSTM) 60,15 46,35 0,19 352,89 302,00 1,25 310,26 229,23 1,01 

Média simples 56,11 40,97 0,17 230,69 179,52 0,75 289,41 211,71 0,93 

Ponderada por erro 55,84 40,37 0,17 183,85 137,52 0,57 290,04 212,63 0,93 

Rolling deslizante (Out) 61,06 44,75 0,19 114,07 84,22 0,36 203,37 161,68 0,68 

Rolling Expansiva (In) 57,42 41,4 0,17 245,57 187,21 0,78 311,69 225,03 0,99 

GSPC 

ARIMA 14,17 8,39 0,13 39,35 32,62 0,5 74,63 47,57 0,82 

TimesNet (LSTM) 19,25 14,72 0,23 50,97 43,96 0,68 111,74 93,69 1,59 

Média simples 15,68 10,62 0,16 40,35 35,39 0,55 85,80 64,91 1,11 

Ponderada por erro 15,47 10,32 0,16 41,35 35,59 0,55 83,06 60,86 1,05 
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Rolling deslizante (Out) 12,8 8,79 0,14 37,86 37,85 0,58 48,71 37,19 0,61 

Rolling Expansiva (In) 15,34 9,48 0,15 463,15 168,2 2,9 84,28 55,39 0,96 

N225 

ARIMA – – – 403,36 341,82 0,79 551,56 377,56 1 

TimesNet (LSTM) – – – 674,07 561,52 1,31 927,85 696,74 1,81 

Média simples – – – 507,92 427,23 0,99 675,17 482,22 1,26 

Ponderada por erro – – – 481,20 404,07 0,94 631,05 445,82 1,17 

Rolling deslizante (Out) – – – 574,20 483,02 1,11 411,37 330,97 0,82 

Rolling Expansiva (In) – – – 529,44 458,03 1,06 633,62 410,63 1,1 

FONTE: Elaboração própria, (2025) 

  

3.2. Análise por Horizonte Temporal 

Na análise dos erros em frequências intradiárias (1752h) contexto em que a 

granularidade dos dados teoricamente favoreceria modelos capazes de identificar padrões 

complexos emerge o resultado mais surpreendente desta investigação. Contrariando a hipótese 

inicial e parte da literatura recente (MASINI et al., 2023), os modelos de menor complexidade, 

especialmente o ARIMA e o Rolling deslizante (Out), demonstraram desempenho 

consistentemente superior ao TimesNet (LSTM). 

Uma observação detalhada das métricas de erro apresentadas na Tabela 2 para a 

frequência intradiária (1752h) corrobora de forma inequívoca essa conclusão. Para o Mercado 

Americano (GSPC), a superioridade do ARIMA (RMSE = 14,17) sobre o TimesNet/LSTM 

(RMSE = 19,25) representa uma redução de erro de 26,4%. O modelo Rolling deslizante (Out), 

contudo, apresentou performance ainda mais robusta (RMSE = 12,80).  

A disparidade torna-se ainda mais evidente no mercado Britânico (FTSE), em que o 

ARIMA (RMSE = 14,11) apresentou erro 157% inferior ao do TimesNet/LSTM (RMSE = 

36,26), validando uma diferença superior a 150%. Em termos de Erro Absoluto Médio (MAE), 

a vantagem do ARIMA (10,60) sobre o LSTM (33,59) alcança 216%. Para o índice Brasileiro 

(BVSP), o modelo Rolling deslizante (Out) obteve o melhor desempenho em todas as métricas 

(RMSE = 417,97; MAE = 270,28; MAPE = 0,19%), enquanto o TimesNet (LSTM) novamente 

registrou o pior desempenho absoluto (RMSE = 562,04). O mesmo padrão se repete para a 

Alemanha (GDAXI), em que o ARIMA se destacou como o modelo mais acurado (RMSE = 

55,40), superando significativamente o TimesNet (LSTM) (RMSE = 60,15). 

Esses resultados refletem um fenômeno clássico de overfitting, nesse contexto, o 

ARIMA, ao impor uma estrutura linear mais restritiva, atua como um filtro robusto e eficaz, 

capaz de capturar a dependência serial e a “memória” do mercado sem ser excessivamente 

influenciado por flutuações aleatórias ou outliers (Giannone, Lenza e Primiceri, 2021). 

A notável performance do ARIMA e do Rolling deslizante (Out) sugere que a dinâmica 

intradiária dos mercados analisados, no período em questão, foi dominada por padrões de 

momentum e reversão à média de natureza essencialmente linear ou localmente adaptativa, os 

quais esses modelos capturam com elevada eficiência. Alternativamente, é possível que a 

configuração do LSTM não tenha sido suficientemente otimizada para explorar as não-

linearidades presentes, um risco destacado por Tsay (2010) ao discutir a aplicação de modelos 

não-lineares em finanças.  

Em termos práticos, a implementação de um modelo híbrido, que combine a capacidade 

explicativa e parcimoniosa de modelos lineares com o poder de representação não-linear do 

TimesNet, representa um caminho promissor para integrar linearidade e profundidade em uma 

estrutura única de previsão. A seguir, apresenta-se o gráfico que ilustra os erros obtidos por 
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ativo e por modelo, consolidando visualmente essas diferenças de desempenho:  

 

Gráfico 1: RMSE agrupado por ativo e frequência de cada modelo. 

 

Fonte: Elaboração Própria (2025) 

 

A superioridade do ARIMA indica que a dinâmica intradiária dos mercados analisados, 

no período em questão, foi dominada por padrões de momentum e reversão à média de natureza 

predominantemente linear, os quais o modelo é capaz de capturar com elevada eficiência. 

Alternativamente, esse resultado pode refletir uma subotimização da arquitetura do modelo 

LSTM, que, embora teórica e empiricamente apto a identificar não-linearidades, exige um 

ajuste rigoroso de hiperparâmetros para expressar todo o seu potencial preditivo. 

Com base na premissa de que o Rolling Deslizante (Out) representa uma abordagem 

híbrida, integrando a estrutura linear e parsimoniosa do ARIMA com a flexibilidade adaptativa 

do TimesNet, a análise dos dados da Tabela 2 evidencia que essa configuração alcança o 

desempenho mais robusto na maioria dos cenários testados. A eficácia do modelo híbrido reside 

em sua capacidade de combinar o melhor dos dois mundos, o ARIMA oferece estabilidade e 

precisão na captura da autocorrelação e da estrutura temporal, enquanto o componente neural 

contribui com a adaptação local às não-linearidades e à variabilidade contextual do mercado 

(Haykin, 2001; Tsay, 2010). 
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Horizontes de longo prazo (502d e 2500d),  o modelo híbrido apresentou o menor RMSE 

em 10 das 12 combinações de ativos e frequências diárias, superando consistentemente tanto o 

ARIMA quanto o TimesNet de forma isolada. Frequência intradiária (1752h), mesmo em 

horizontes de curtíssimo prazo, a abordagem híbrida manteve desempenho competitivo, 

alcançando o menor RMSE para os ativos Brasileiro (BVSP) e Mercado Americano (GSPC), 

com exceção apenas o índice da Alemanha (GDAXI), onde o ARIMA se manteve um certa 

margem superior. Esses resultados consolidam a validade empírica da abordagem híbrida, que 

se mostra capaz de filtrar o ruído estocástico de forma eficiente à semelhança de um ARIMA 

bem especificado e, simultaneamente, aproveitar a capacidade do TimesNet de modelar 

relações não-lineares locais. A seguir, um gráfico apresentando a distribuição do erro (RMSE) por 

frequência e modelo: 

 

Gráfico 2 : distribuição do erro (RMSE) por frequência e modelo. 

 

Fonte: Elaboração Própria (2025) 

 

Do ponto de vista econômico e estatístico, a análise dos erros evidencia ainda um padrão 

inversamente proporcional entre a frequência e o erro médio, conforme a granularidade 

temporal diminui (isto é, à medida que os horizontes se tornam mais longos), observa-se uma 

tendência de redução sistemática dos erros. Esse comportamento é coerente com a literatura de 

previsão financeira, segundo a qual as séries de maior frequência são mais dominadas por ruído 

aleatório e microestruturas de mercado, dificultando a extração de sinal preditivo (Giannone, 

Lenza e Primiceri, 2021). 

  

3.3. Análise por Contexto Econômico 

Ao agrupar os resultados por tipo de economia, um padrão emerge, a necessidade de 

robustez é universal, em mercados maduros, a robustez de modelos parcimoniosos e híbridos 

superou a complexidade teórica de um modelo de aprendizado profundo que não foi 

rigorosamente ajustado a cada contexto específico. Em mercados maduros, definidos como o 

mercado Americano, Britânico, Alemão e do Japonês (representantes respetivamente pelos 

índices GSPC, FTSE, GDAXI, N225), o ARIMA e o Rolling Deslizante (Out) demonstraram 

uma performance exemplar, desafiando a ideia de que uma maior complexidade é 

intrinsecamente necessária para obter vantagem em mercados considerados eficientes (Gu, 
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Kelly, & Xiu, 2020). Por exemplo, para os Britânicos (FTSE) no horizonte de 502 dias, o 

Rolling Deslizante (Out) (RMSE 38,51) e o ARIMA (RMSE 41,18) foram ordens de magnitude 

mais precisos que o TimesNet (LSTM) (RMSE 275,11). 

Em mercados emergentes, caracterizados por maior volatilidade, na então pesquisa 

representando pelo Brasil (BVSP), a performance do TimesNet (LSTM) em dados diários foi 

particularmente inadequada. No horizonte de 502 dias, seu RMSE de 2.916,82 foi 144% 

superior ao do ARIMA. A alta volatilidade parece ter sido um ambiente hostil para a 

configuração do LSTM testada, que possivelmente interpretou o "ruído" como "padrão", 

resultando em previsões erráticas. Neste caso, a teórica capacidade do LSTM de modelar 

sequências complexas (Hochreiter; Schmidhuber, 1997). Em ambos os contextos, a robustez 

dos modelos mais simples e do híbrido Rolling Deslizante prevaleceu. 

Este estudo, portanto, apresenta uma contribuição relevante à literatura como um 

contraponto empírico essencial. Ele evidencia que a mera utilização de modelos de aprendizado 

profundo não garante um desempenho superior. A principal implicação prática é que o ARIMA 

deve ser considerado não apenas um benchmark, mas uma ferramenta preditiva poderosa, 

confiável e eficiente. Da mesma forma, abordagens híbridas como o Rolling Deslizante (Out) 

demonstram ser uma via promissora para alcançar um equilíbrio entre adaptabilidade e robustez 

(Giannone, D.; Lenza, M.; Primiceri, G. E., 2021). 

A busca por maior complexidade, como evidenciado pelos resultados do TimesNet 

(LSTM), pode levar a modelos que, apesar de teoricamente mais sofisticados, apresentam 

desempenho empírico inferior caso não sejam aplicados e ajustados com rigor absoluto. Assim, 

a conclusão final não condena o aprendizado profundo, mas destaca a importância da validação 

criteriosa e da adequação do modelo ao problema, em vez de priorizar apenas a sofisticação 

teórica. Esse princípio reforça a necessidade de modelos que sejam não apenas preditivos, mas 

também compreensíveis e robustos no mundo real, demonstrando que o ARIMA, embora 

simples, raramente é superado por outros modelos, mas pode ser potencializado quando 

complementado por outro método como o TimesNet (Thaler, Richard H., 2015). 

 

3.3.1. Mercados Maduros (GSPC, FTSE, GDAXI) 

Nestes mercados, caracterizados por alta liquidez e eficiência, Longe de validar a 

premissa de que a complexidade é essencial para obter vantagem preditiva, os dados da Tabela 

2 demonstram que a robustez de modelos parcimoniosos e híbridos é o fator determinante para 

a acurácia, como sugerido por algumas interpretações de Gu, Kelly e Xiu (2020). 

Em vez disso, reforça-se que, na ausência de ineficiências marcantes, a robustez de um 

modelo mais simples pode superar a flexibilidade de um modelo complexo. O S&P 500 e os 

demais mercados considerados “maduros”, devido à sua alta liquidez e eficiência, é o principal 

campo de provas para avaliar a eficácia de qualquer modelo preditivo, assim como outras 

econômicas mais maduras e tendem a ser mais previsíveis e menos voláteis. A seguir estar um 

gráfico desempenhos dos modelos na demais economia “maduras”:   
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Gráfico 3: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - S&P 500 (^GSPC), Frequência Diária 

(2500d). 

 

Fonte: Elaboração Própria (2025) 

 

Gráfico 4: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - S&P 500 (^GSPC), Frequência Diária 

(502d). 

 

Fonte: Elaboração Própria (2025) 

 

Gráfico 5: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - S&P 500 (^GSPC), Frequência Diária 

(Intradiário). 

 

Fonte: Elaboração Própria (2025) 
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Gráfico 6: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - Alemanha (^GDAXI), Frequência Diária 

(2500d). 

 

Fonte: Elaboração Própria (2025) 

 

Gráfico 7: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - Alemanha (^GDAXI), Frequência Diária 

(502d). 

 

Fonte: Elaboração Própria (2025) 

 

Gráfico 8: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - Alemanha (^GDAXI), Frequência 

Intradiário (202d). 

 

Fonte: Elaboração Própria (2025) 
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Gráfico 9: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - Reino Unido (^FTSE), Frequência Diária 

(2500d). 

 

Fonte: Elaboração Própria (2025) 

 

Gráfico 10: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - Reino Unido (^FTSE), Frequência Diária 

(502d). 

 

Fonte: Elaboração Própria (2025) 

 

Gráfico 11: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - Reino Unido (^FTSE), Frequência 

Intradiário (202d). 

 

Fonte: Elaboração Própria (2025) 

 

Os gráficos indicam que o modelo LSTM, apesar de apresentar números relativamente 

inferiores de erros, mostra resultados ligeiramente próximos aos do ARIMA, sendo bastante 

promissor mesmo com desempenho numérico inferior. No entanto, ele depende fortemente da 

quantidade de dados fornecidos e, ainda assim, pode sofrer grande impacto preditivo devido a 
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esses dados, desconsiderando fatores lineares e gerando previsões que visualmente podem 

contradizer o comportamento real do ativo. Isso pode causar estranheza quando comparado a 

outros modelos, evidenciando que o LSTM pode ser útil como apoio, desde que treinado com 

dados adequados, mas perde eficiência quando o objetivo é um modelo linear de previsão 

contínua de mercado. A abordagem híbrida (Arima combinado com TimesNet), que combina 

as melhores características de ambos os modelos. Essa integração busca aprimorar as previsões 

fornecidas, oferecendo projeções cada vez mais realistas do mercado. 

Os dados da Tabela 2 indicam que, no longo prazo (2500 dias), o Rolling Deslizante 

(Out) (RMSE 48,71) e o ARIMA (RMSE 74,63) superam de forma significativa o TimesNet 

(LSTM) (RMSE 111,74). No médio prazo (502 dias), essa tendência se acentua, com o Rolling 

Deslizante (Out) (RMSE 37,86) e o ARIMA (RMSE 39,35) apresentando desempenho muito 

superior ao do TimesNet (LSTM) (RMSE 50,97). No intradiário, novamente, o Rolling 

Deslizante (Out) (RMSE 12,80) e o ARIMA (RMSE 14,17) mostram maior precisão em 

comparação ao TimesNet (LSTM) (RMSE 19,25). Esse padrão não se restringe ao mercado 

americano, pois, para o Alemão (GDAXI) e o Britânico (FTSE), o modelo híbrido Rolling 

Deslizante (Out) destaca-se como o de melhor desempenho nos horizontes de 2500 e 502 dias. 

Esse cenário ressalta que o uso de modelos complexos sem uma calibração rigorosa 

pode levar a resultados insatisfatórios, como alertado por Haykin (2001) sobre a sensibilidade 

das redes neurais a seus hiperparâmetros. Ao agrupar os resultados por tipo de economia, 

emerge um padrão. Em mercados considerados maduros, o modelo híbrido demonstrou 

desempenho exemplar, desafiando a ideia de que a complexidade é indispensável para obter 

vantagem em mercados eficientes, destacando a complementação de mais de um modelo para 

reduzir a probabilidade de erro em suas previsões (Gu, Kelly, & Xiu, 2020). 

 

3.3.2. Ibovespa (BVSP) – O Desafio da Volatilidade Emergente 

O Mercado Brasileiro, Ibovespa (BVSP), como representante de um mercado 

emergente, desafia a robustez dos modelos em um ambiente caracterizado por alta volatilidade 

e mudanças de regime mais abruptas. Neste cenário, a análise dos dados revela de forma 

contundente a fragilidade do modelo de maior complexidade e a notável superioridade das 

abordagens parcimoniosas e, em especial, do modelo híbrido Rolling Deslizante (Out). A seguir 

o desempenho gráfico dos modelos aplicados no BVSP, nas frequências de que o estudo 

realizou o teste: 

 

Gráfico 12: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - Brasil, Ibovespa (^BVSP), frequência 

diária (2500d). 

 

Fonte: Elaboração Própria (2025) 
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Gráfico 13: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - Brasil, ibrovespa (^BVSP), frequência 

diária (502d). 

 

Fonte: Elaboração Própria (2025) 

 

Gráfico 14: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - Brasil, ibrovespa (^BVSP), Frequência 

Intradiário (202d). 

 

Fonte: Elaboração Própria (2025) 

 

A alta volatilidade parece ter criado um cenário particularmente desfavorável para a 

configuração do TimesNet (LSTM) testada. A hipótese é que o modelo complexo interpretou a 

volatilidade não como risco estocástico, mas como um padrão estrutural complexo, resultando 

em previsões erráticas e um severo overfitting (Provost; Fawcett, 2013). Em contrapartida, a 

simplicidade do ARIMA e a natureza adaptativa do Rolling Deslizante (Out) se mostraram 

vantagens decisivas. 

A análise quantitativa da Tabela 2 evidencia essa dinâmica. No horizonte de 502 dias, a 

inadequação do TimesNet (LSTM) torna-se mais evidente, apresentando um RMSE de 

2.916,82, valor 144% superior ao do ARIMA (1.196,10). O modelo híbrido Rolling Deslizante 

(Out) obteve o melhor desempenho, com um RMSE de 887,83, o menor erro entre todos os 

modelos avaliados para este período. No horizonte de 2500 dias, o padrão se mantém, com o 

Rolling Deslizante (Out) (RMSE 1.218,19) e o ARIMA (RMSE 1.257,80) superando 

claramente o TimesNet (LSTM) (RMSE 2.118,36). Na frequência intradiária, mesmo em alta 

frequência, onde se poderia supor uma vantagem dos modelos complexos, o Rolling Deslizante 

(Out) (RMSE 417,97) e o ARIMA (RMSE 442,93) foram mais precisos do que o TimesNet 

(LSTM) (RMSE 562,04). 

Em síntese, para o mercado brasileiro, a simplicidade do ARIMA provou ser uma 
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virtude, funcionando como um filtro de ruído eficaz que foca na tendência estrutural. Contudo, 

a análise revela que a abordagem híbrida do Rolling Deslizante (Out) representa um avanço 

adicional, conseguindo a melhor performance em todas frequências. Este resultado é 

significativo, pois sugere que, em ambientes de alta volatilidade, um modelo que combina a 

robustez de princípios estatísticos com uma capacidade adaptativa controlada é superior tanto 

a um modelo puramente linear quanto a um modelo de aprendizado profundo.  

  

3.3.3. Mercado Asiático: Nikkei 255 (^N225) 

A análise do Nikkei 225 (^N225) demonstra que o padrão de desempenho observado 

nos mercados ocidentais se estende ao mercado maduro asiático. A premissa de que modelos 

mais simples e híbridos superam um modelo de aprendizado profundo não otimizado é 

novamente validada pelos dados. Em ambos os períodos diários disponíveis para análise (2500 

e 502 dias), o TimesNet (LSTM) apresentou um desempenho significativamente inferior às 

alternativas mais parcimoniosas, e tendo como destaque o modelo híbrido. A seguir para uma 

melhor compreensão, estar um gráfico comparativo do desempenho dos modelos no Japão 

(^N225): 

 

Gráfico 15: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - Japão (^N255), Frequência diário 

(2500d). 

 

Fonte: Elaboração Própria (2025) 

 

Gráfico 16: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - Japão (^N255), Frequência diário (502d). 

 

Fonte: Elaboração Própria (2025) 
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Em ambos os períodos diários disponíveis para análise (2500 e 502 dias), o TimesNet 

(LSTM) apresentou desempenho consideravelmente inferior em comparação com alternativas 

mais simples. No horizonte de 2500 dias, o modelo híbrido Rolling Deslizante (Out) 

demonstrou maior precisão, com um RMSE de 411,37. O ARIMA também obteve resultados 

positivos (RMSE 551,56), ambos superando significativamente o TimesNet (LSTM), que 

registrou um RMSE de 927,85. O desempenho do LSTM foi 125% inferior ao do modelo 

híbrido. No horizonte de 502 dias, o ARIMA destacou-se com o menor erro (RMSE 403,36), 

novamente superando amplamente o TimesNet (LSTM), que alcançou um RMSE de 674,07. 

Conforme argumentam Provost e Fawcett (2013), na ausência de padrões não lineares 

claros, um modelo flexível como o LSTM pode acabar modelando o ruído estocástico em torno 

da tendência principal, em vez da própria tendência. Em contraste, a estrutura do ARIMA e a 

natureza adaptativa do Rolling Deslizante (Out) atuam como filtros mais eficazes contra esse 

ruído, resultando em previsões mais estáveis e acuradas. 

  

3.3.4. Ouro (GC=F) – Dinâmica de Porto Seguro 

A análise do ouro merece uma seção dedicada, já que sua dinâmica de preços difere 

fundamentalmente da dos mercados de ações, sendo frequentemente influenciada por fatores 

macroeconômicos globais, inflação e aversão ao risco também conhecida como "sentimento do 

investidor", conforme discutido por TETLOCK (2007). 

A análise da Tabela 2 revela um desempenho excepcional dos modelos mais robustos. 

No horizonte de 502 dias, o modelo híbrido Rolling Deslizante (Out) obteve o menor erro 

(RMSE 24,97), superando o ARIMA (RMSE 31,41). No período mais longo de 2500 dias, o 

ARIMA (RMSE 40,32) apresentou uma vantagem marginal sobre o híbrido (RMSE 40,64). A 

seguir um gráfico com as previsões realizadas:  

 

Gráfico 17: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - commodity Ouro (^GCF=F), Frequência 

diário (2500d). 

 

Fonte: Elaboração Própria (2025) 
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Gráfico 18: Comparativo de Modelos (TimesNet vs. ARIMA vs. Real) - commodity Ouro (^GCF=F), Frequência 

diário (502d). 

 

Fonte: Elaboração Própria (2025) 

 

O desempenho superior do ARIMA e do Rolling Deslizante pode ser atribuído à 

característica de "porto seguro" do ativo. Os preços do ouro frequentemente exibem tendências 

fortes e persistentes (momentum), fenômenos com alta autocorrelação que ambos os modelos 

capturam com eficácia, focada na memória da série temporal, é ideal para um ativo influenciado 

por tendências macroeconômicas. 

 

3.4. Discursão dos resultados Obtidos 

A análise empírica dos resultados quantitativos, sintetizados na Tabela 2, fundamenta a 

avaliação objetiva do desempenho preditivo dos modelos, permitindo uma comparação robusta 

entre as diferentes metodologias, conforme salientam Athey e Imbens (2019). Os dados revelam 

um padrão consistente em múltiplos ativos e horizontes temporais, a robustez de modelos 

parcimoniosos e a eficácia de abordagens híbridas superaram consistentemente a complexidade 

teórica de um modelo de aprendizado profundo não rigorosamente otimizado. 

Em séries financeiras, cujo comportamento frequentemente se aproxima de um 

“caminho aleatório”, o sinal estrutural é obscurecido pelo ruído estocástico. A alta flexibilidade 

do TimesNet (LSTM), um risco inerente a modelos de alta capacidade (Provost; Fawcett, 2013), 

levou ao overfitting, ao interpretar o ruído como padrão. Em contrapartida, o ARIMA e o 

modelo híbrido Rolling Deslizante (Out) atuaram como filtros mais eficazes, capturando a 

dependência serial dos preços sem se desviarem por flutuações aleatórias. 

A superioridade dos modelos mais robustos foi notável no GSPC em todas as 

frequências, questionando a premissa de que maior complexidade é condição para vantagem 

preditiva em mercados eficientes (Gu; Kelly; Xiu, 2020). O desempenho do Rolling Deslizante 

(Out), que consistentemente obteve o menor erro para o S&P 500, sugere que uma abordagem 

adaptativa e híbrida pode ser a mais eficaz em contextos de baixa ineficiência informacional. 

O Ibovespa reforça essa conclusão em um ambiente de alta volatilidade. O TimesNet 

(LSTM) apresentou performance inadequada, especialmente no período de 502 dias, com um 

RMSE 144% superior ao do ARIMA. O Rolling Deslizante (Out), por sua vez, demonstrou 

resiliência estrutural superior, alcançando o menor erro em todas as três frequências para o 

ativo, provando ser a ferramenta mais adequada para a instabilidade de um mercado emergente. 

Nos mercados asiáticos, representando pelo índice Japonês  (Nikkei 225 - N225) 



35 
 

manteve o padrão dos mercados ocidentais, com o ARIMA e o Rolling Deslizante apresentando 

maior precisão. A teórica capacidade do LSTM de modelar dependências complexas 

(Hochreiter; Schmidhuber, 1997) não se traduziu em superioridade empírica, reforçando a tese 

do potencial overfitting. 

Finalmente, a análise do Ouro (GC=F) confirma a força dos modelos mais simples e do 

híbrido. Por ser um ativo de “porto seguro” com tendências macroeconômicas persistentes, seu 

momentum foi capturado com elevada precisão pelo ARIMA e pelo Rolling Deslizante, que 

dividiram a liderança nos dois horizontes diários. Este resultado dialoga com Tetlock (2007), 

que associa o preço do ouro ao “sentimento do investidor” em larga escala. 

Em síntese, os resultados indicam que a robustez de modelos parcimoniosos e a eficácia 

de modelos híbridos superam a complexidade teórica de arquitetura em curto prazo, e ao serem 

combinados tendem a ter um alta capacidade de minimização de erros. A principal implicação 

prática é que o ARIMA deve ser considerado uma ferramenta preditiva poderosa, e não apenas 

um benchmark, enquanto o Rolling Deslizante (Out) emerge como uma solução pragmática e 

superior na maioria dos cenários analisados. 

 

4. CONSIDERAÇÕES FINAIS 

Os resultados desta pesquisa evidenciam que o modelo ARIMA, apesar de sua natureza 

linear e estrutura relativamente simples, continua sendo uma ferramenta extremamente 

poderosa para a previsão de retornos financeiros. A robustez observada em diferentes 

horizontes temporais e contextos de mercado confirma o Princípio da Parcimônia proposto por 

Box e Jenkins (1976), segundo o qual modelos mais simples podem oferecer desempenho 

superior quando capturam adequadamente a estrutura essencial dos dados. Essa constatação 

desafia a percepção comum de que técnicas mais sofisticadas de aprendizado profundo, como 

as LSTM e o TimesNet, superam consistentemente os modelos clássicos. 

Os experimentos realizados demonstraram que o ARIMA é altamente eficaz na captura 

das relações lineares subjacentes aos retornos de ativos, explicando boa parte da variabilidade 

observada, especialmente em ambientes caracterizados por alta volatilidade e ruído, como o 

mercado acionário Brasileiro (BVSP). Em contrapartida, o modelo LSTM, embora 

teoricamente mais apto a captar relações não lineares, mostrou-se sensível ao ruído dos dados 

e menos eficiente em contextos de forte instabilidade fenômeno frequentemente documentado 

na literatura financeira (Tsay, 2010; Giannone, Lenza & Primiceri, 2021). 

De forma geral, o ARIMA continua sendo um modelo competitivo e confiável, 

especialmente para horizontes curtos e séries com alta linearidade, enquanto o LSTM 

demonstra eficácia em domínios com menor ruído e maior estrutura não linear, como mercados 

de energia e commodities (Liu et al., 2019; Mehtab, Sen & Dutta, 2020). Contudo, a junção de 

ambos os modelos pode gerar uma solução que captura tanto a linearidade do mercado quanto 

o reconhecimento de períodos sazonais, como demonstrado pela combinação híbrida (ARIMA 

+ TimesNet), que apresentou melhor desempenho geral, corroborando a hipótese de que a 

integração de abordagens complementares resulta em previsões com menores métricas de erro. 

A complexidade dos modelos de aprendizado profundo, ao buscar identificar padrões 

não lineares, provavelmente interpretou a volatilidade de curto prazo em torno da tendência 

principal como um sinal, resultando em previsões inconsistentes e desalinhadas com a trajetória 

macroeconômica (Tetlock, Paul C., 2007). Entretanto, vale destacar que, ao ser implementado 

em um modelo híbrido de Rolling Deslizante (Out), dificilmente é superado, minimizando 

significativamente a capacidade de erro dos modelos. 
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Além das evidências empíricas apresentadas, estudos recentes reforçam as constatações 

deste trabalho quanto à importância de integrar modelos lineares e não lineares na previsão 

financeira. Pesquisas como as de Gonçalves, Alexandre e Lima (2023) demonstram 

empiricamente que o ARIMA tende a apresentar melhor desempenho em horizontes de curto 

prazo, enquanto modelos baseados em aprendizado profundo, como o LSTM e o TimesNet, 

alcançam maior precisão em janelas mais longas e em séries menos ruidosas.  

Da mesma forma, Kelly et al. (2024) destacam que o uso de arquiteturas de inteligência 

artificial em finanças deve ser complementado por fundamentos estatísticos clássicos para 

evitar sobreajuste e garantir estabilidade preditiva em ambientes de alta volatilidade. Ademais, 

Masini, Medeiros e Mendes (2023) reforçam o papel das janelas deslizantes (rolling windows) 

na calibração dinâmica dos modelos, permitindo melhor adaptação às mudanças estruturais e 

regimes de mercado. 

Esses achados corroboram as conclusões deste estudo ao evidenciar que a combinação 

de modelos parcimoniosos, como o ARIMA, com abordagens de aprendizado profundo, como 

o TimesNet, constitui uma estratégia robusta para lidar com diferentes regimes de informação, 

explorando de forma complementar os sinais lineares e não lineares e promovendo previsões 

mais consistentes e realistas no contexto da gestão de portfólios e da tomada de decisão 

financeira. 

A principal conclusão deste estudo é que a escolha de uma ferramenta de previsão deve 

ser uma decisão estratégica e contextual, e não dogmática, ressaltando que a adequação do 

modelo ao problema e sua calibração rigorosa são mais importantes para a tomada de decisão 

do que a complexidade teórica. O trabalho demonstra que o ARIMA continua altamente 

competitivo e que sua combinação com modelos não lineares, como o TimesNet, gera ganhos 

consistentes de desempenho, minimizando os erros gerados. Ao unir a estabilidade do ARIMA 

com a capacidade adaptativa do TimesNet, surge um caminho promissor para previsões 

financeiras mais precisas, robustas e alinhadas à complexidade dos mercados modernos. 

Sugere-se, para futuros avanços nesta área, a implementação de mais variáveis 

macroeconômicas, como câmbio, juros e commodities, para ampliar a capacidade explicativa 

dos modelos, juntamente com uma mensuração de seu custo operacional. 
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