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Resumo

Neste trabalho, estudamos a existência de soluções blow-up para a seguinte classe

de problemas {
−∆gu+ a(x)u = 0 em M,
∂u
∂ν

+ n−2
2
b(x)u = (n− 2)u

n
n−2
±ε sobre ∂M,

(P±ε)

em que (M, g) é uma variedade Riemanniana compacta de dimensão n ≥ 5 com bordo

∂M, ∆g é o operador de Laplace-Beltrami referente à métrica g, a ∈ C1(M), b ∈
C1(∂M) e ν é o vetor unitário normal a ∂M apontando para fora e ε é um parâmetro

positivo. Supondo adicionalmente que exista uma constante θ > 0 tal que∫
M

(|∇gu|2 + a(x)u2)dµg +
n− 2

2

∫
∂M

b(x)u2dσ ≥ θ

∫
M

(|∇gu|2 + u2)dµg,

mostramos que é posśıvel construir soluções blow-up positivas para o caso (P−ε) ou

para o caso (P+ε), dependendo do comportamento da função ϕ : ∂M → R dada por

ϕ(q) = b(q)−H(q), em que H é a curvatura média de ∂M.

Palavras-chave: Soluções blow-up, problema de Yamabe, método da redução finita,

método variacional.



Abstract

In this work, we study the existence of blow-up solutions to the following class of

problems {
−∆gu+ a(x)u = 0 in M,
∂u
∂ν

+ n−2
2
b(x)u = (n− 2)u

n
n−2
±ε on ∂M,

(P±ε)

where (M, g) is a compact Riemannian manifold of dimension n ≥ 5 with a boundary

∂M, ∆g is the Laplace-Beltrami operator with respect to the metric g, a ∈ C1(M),

b ∈ C1(∂M), ν is the outward-pointing unit vector normal to ∂M and ε is a positive

parameter. Assuming also that there is a real number θ > 0 such that∫
M

(|∇gu|2 + a(x)u2)dµg +
n− 2

2

∫
∂M

b(x)u2dσ ≥ θ

∫
M

(|∇gu|2 + u2)dµg,

we show that it is possible to build blow-up positive solutions to the case (P−ε) or

to the case (P+ε), depending on the behavior of the function ϕ : ∂M → R, given by

ϕ(q) = b(q)−H(q), where H is the boundary mean curvature.

Keywords: Blow-up solutions, Yamabe Problem, Finite Reduction Method, Variati-

onal Method.
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Notações

A seguir, listamos algumas notações utilizadas neste trabalho.

Sejam X e Y espaços de Banach;

• X ′ denota o dual topológico de um espaço de Banach X;

• L(X, Y ) denota o espaço dos operadores lineares cont́ınuos de X em Y ;

• i : A→ B denota a aplicação inclusão, em que A ⊂ B;

• C, C1, C2, . . . denotam constantes positivas, possivelmente diferentes;

• � denota o final de uma demonstração;

• | · | denota a norma euclidiana do Rm;

• ⇀ denota convergência fraca em um espaço normado;

• u+ = max{u, 0} e u− = max{−u, 0};

• B(0, R) denota a bola aberta de centro 0 e raio R do Rn−1;

• B(0, R)× [0, R) denota a semi-bola aberta superior de centro 0 e raio R do Rn ;

• dµg denota o volume da variedade Riemanniana (M, g);

• dσ denota o elemento de volume da subvariedade Riemanniana (∂M, g);

• q. t. p. denota quase todo ponto;

• Dizemos que f(ε) = O(ε) se existe uma constante C > 0 tal que limε→0
|f(ε)|
|ε| ≤ C;

xi



• Dizemos que g(ε) = o(ε) se limε→0
|g(ε)|
|ε| = 0;
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Introdução

Seja (M, g) uma variedade Riemanniana compacta de dimensão n ≥ 3 com bordo

∂M. Neste trabalho, baseado no artigo devido a Ghimenti, Micheletti e Pistoia [29],

temos como objetivo estudar a existência de soluções blow-up positivas para a seguinte

classe de problemas:{
−∆gu+ a(x)u = 0 em M,
∂u
∂ν

+ n−2
2
b(x)u = (n− 2)u

n
n−2
±ε sobre ∂M,

(1)

em que ∆g é o operador de Laplace-Beltrami referente à métrica g, a ∈ C1(M), b ∈
C1(∂M), ν é o vetor unitário normal a ∂M apontando para fora e ε é um parâmetro

positivo. Ao longo do trabalho, iremos supor que o operador linear Lu := −∆gu+ au

com a condição de fronteira Bu := ∂u
∂ν

+ (n−2)
2
bu é coercivo, ou seja, que existe uma

constante θ > 0 tal que∫
M

(
|∇gu|2 + a(x)u2

)
dµg +

n− 2

2

∫
∂M

b(x)u2dσ ≥ θ‖u‖2
H1(M), (2)

em que H1(M) é o espaço de Sobolev munido da norma

‖u‖H1(M) =

(∫
M

(
|∇gu|2 + u2

)
dµg

) 1
2

.

Observação 0.1. Veremos mais tarde que a Condição (2) é importante para que

possamos ter uma norma equivalente à norma ‖ · ‖H1(M) que possibilitará a construção

de um espaço de soluções conveniente do Problema (1).

Nossa motivação para estudar tal problema vem da Conjectura da Compacidade,

introduzida por Schoen em 1988, para o problema de Yamabe.

O problema de Yamabe foi proposto em 1960 pelo matemático japonês Hidehiko

Yamabe em [48] e inicialmente foi formulado para variedades Riemannianas compactas

sem bordo. Posteriormente, começou-se a estudar versões do problema para variedades

compactas com bordo. Veremos a seguir ambas as versões do problema.
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1. O problema de Yamabe clássico

Seja (M, g) uma variedade Riemanniana compacta de dimensão n ≥ 3 sem bordo.

O problema de Yamabe formulado em [48] pode ser enunciado da seguinte maneira:

Existe uma métrica conforme a g que torna a curvatura escalar constante?

É conhecido na literatura que se considerarmos a mudança conforme g̃ = u4/(n−2)g,

em que u ∈ C∞(M) é uma função positiva, tal problema é equivalente a provar a

existência de uma solução positiva do seguinte problema:

−∆gu+
n− 2

4(n− 1)
Rgu = Ku

n+2
n−2 em M, (3)

em que Rg é a curvatura escalar relativa à métrica g e K é uma constante. Então, afim

de resolver o Problema (3), Yamabe considerou o funcional

Q(M, g̃) =

∫
M
Rg̃dµg(∫

M
dµg̃
)n−2

n

,

conhecido como funcional de Yamabe. A partir dáı, foi definido o invariante de Yamabe,

dado por

λ(M, g) = inf
g̃∈[g]

Q(M, g̃),

em que [g] denota a classe de equivalência de métricas conformes a g. Um fato im-

portante é que o conjunto de soluções depende do sinal desse invariante. Com efeito,

quando λ(M, g) < 0, a solução é única. O caso em que λ(M, g) = 0, tem-se unici-

dade de solução a menos de multiplicação por escalar. Quando λ(M, g) > 0, temos

multiplicidade de soluções.

Yamabe, em seu artigo [48], acreditava ter resolvido o problema. No entanto, em

1968 Trudinger apontou um erro na prova de Yamabe. No artigo [45], Trudinger

adaptou os resultados obtidos por Yamabe e resolveu o problema de existência de

solução positiva para a Equação (3) sob a condição anaĺıtica λ(M) < α, em que α é

uma constante positiva. Consequentemente, com esse trabalho, ficou provado também

o caso particular λ(M) ≤ 0. Em 1976, Aubin em [5] provou que a constante ótima

encontrada em [45] é dada pelo invariante de Yamabe da esfera, isto é, α = λ(Sn), em

que Sn é a esfera do Rn+1 munida da métrica canônica g0, e adicionalmente verificou

essa condição anaĺıtica quando a variedade é não-localmente conformemente plana e a

dimensão n ≥ 6. Schoen [42], então, em 1984 mostrou essa condição para variedades

localmente conformemente planas e para variedades quaisquer de dimensão 3 ≤ n ≤ 5,

desde que a variedade não seja conformemente difeomórfica a esfera munida da métrica

canônica g0, completando, assim, a solução do problema de Yamabe.
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2. O problema de Yamabe em variedades com bordo

Seja (M, g) uma variedade Riemanniana compacta de dimensão n ≥ 3 com bordo

∂M. Em [18, 19], Escobar formulou o problema de Yamabe em variedades com bordo,

que pode ser enunciado da seguinte maneira: Existe uma métrica conforme a g que,

além de tornar a curvatura escalar constante, torna a curvatura média no bordo cons-

tante?

Este problema é equivalente a provar a existência de uma solução positiva da se-

guinte equação: {
−∆gu+ n−2

4(n−1)
Rgu = Ku

n+2
n−2 em M

∂u
∂ν

+ n−2
2
Hgu = (n−2)

2
λu

n
n−2 sobre ∂M,

(4)

em que Hg denota a curvatura média de ∂M e λ é uma constante.

Devido a sua complexidade, o Problema (4) foi estudado em casos, como, por

exemplo, sob a hipótese de que uma das constantes K ou λ é nula.

O caso λ = 0, conhecido na literatura como o caso escalar flat foi primeiramente

estudado por Escobar em [18, 19], que mostrou a existências de soluções supondo al-

gumas condições sobre M e ∂M, tais como M sendo localmente conformemente plana

e ∂M umb́ılico. Alguns casos remanescentes foram estudados por Marques [37, 38],

Almaraz [2], e por Brendle e Chen [8]. Outros vários casos remanescentes foram estu-

dados como por exemplo nos trabalhos de Marques [37, 38], Almaraz [2], e por Brendle

e Chen [8]. Para mais referências, veja também [1, 11, 12, 13, 20, 31, 39, 40].

3. A conjectura da compacidade

Uma vez provada a existência de soluções, bem como a multiplicidade de soluções

quando λ(M, g) > 0, como por exemplo é o caso de S2 × S1 (veja o trabalho de Bray

e Neves [6]), surge o problema da compacidade, isto é, queremos saber se tais soluções

são limitadas, por exemplo, em L∞(M). Tal conjectura foi levantada por Schoen num

curso na Universidade de Stanford em 1988. Precisamente a conjectura da compacidade

pode ser escrita da seguinte maneira:

Conjectura da compacidade: O conjunto de soluções positivas do problema de

Yamabe para variedades sem bordo no caso em que λ(M, g) > 0 é compacto com respeito

à topologia C2(M) desde que M não seja conformemente equivalente à esfera.

Em 1991, Schoen [43] provou alguns resultados de compacidade, mostrando que

para variedades (M, g) localmente conformemente planas que não são conformemente

equivalentes a esfera (Sn, g0) as soluções do problema de Yamabe estão contidas num

conjunto compacto com relação à topologia C2(M). Em 1999, Li e Zhu [36] provaram
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a compacidade para variedades gerais de dimensão 3 que não são conformemente equi-

valentes a esfera (S3, g0). No que se refere ainda a variedades gerais, Druet [23] em

2003 provou a compacidade para dimensão 4 e, no ano seguinte, para dimensão 5.

Em 2008, Brendle [7] mostrou que a a compacidade não é válida no caso geral

quando n ≥ 52. Ainda no mesmo ano, Brendle e Marques [9] aprimoraram o resultado,

mostrando que a compacidade também não vale em geral quando 25 ≤ n ≤ 51. Final-

mente, em 2009, a conjectura foi provada para o caso geral quando 3 ≤ n ≤ 24 por

Khuri, Marques e Schoen [34]. Dessa maneira, fica posto o seguinte resultado:

A Conjectura da Compacidade no caso geral é válida se, e somente se, 3 ≤ n ≤ 24.

Quando a variedade tem bordo, a condição para a compacidade passa a ser (M, g)

não ser conforme à bola (Bn, g̃0), em que g̃0 é a métrica canônica da bola. A conjectura

da compacidade com a presença do bordo foi estudada por Han e Li [30], que provaram

o caso em que K < 0 e λ = 0, como também o caso K > 0 para variedades localmente

conformemente planas com bordo umb́ılico. V. Felli e M. Ould Ahmedou [28] provaram

a compacidade para o caso K = 0, λ > 0, para variedades localmente conformemente

planas e com bordo umb́ılico. Almaraz [3] provou o caso em que K = 0 e λ > 0,

n ≥ 7, e supondo uma condição geral sobre a parte livre de traço da segunda forma

fundamental.

Recentemente, o caso em que K > 0, λ = 0 e o bordo é umb́ılico foi completa-

mente resolvido pelo trabalho de Disconzi e Khuri [22]. Precisamente, eles provaram

a compacidade para o conjunto de soluções quando a dimensão 3 ≤ n ≤ 24 e deram

contra-exemplos para a compacidade quando n ≥ 25. Para o caso K = 0 e λ > 0, Alma-

raz [3] provou que se a dimensão da variedade é n ≥ 25, não vale a compacidade, uma

vez que é posśıvel construir soluções para (4) que explodem para uma certa métrica g.

O problema da compacidade em dimensão 4 ≤ n ≤ 24 ainda não está completamente

resolvido para K = 0 e λ > 0. Veja também o trabalho de Almaraz, Queiroz e Wang [4]

para variedades gerais em dimensão 3, em que foi provado que não vale a compacidade.

4. Uma generalização da equação de Yamabe

Motivado por um ponto de vista menos geométrico e mais anaĺıtico, começou-se a

estudar uma classe mais geral de problemas em que substitúımos a curvatura escalar por

uma função a ∈ C1(M) satisfazendo certas condições. De maneira natural, considerou-

se também, quando a variedade tem bordo ∂M, a substituição da curvatura média por

uma função b ∈ C1(∂M) também satisfazendo hipóteses adicionais.
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Em 2003, Druet [23] considerou a seguinte generalização para a equação de Yamabe

−∆gu+ a(x)u = u
n+2
n−2 , u > 0 em M, (5)

em que a ∈ C1(M) e provou que vale a compacidade para soluções com energia limitada

se n ∈ {4, 5} e a(ξ) 6= n−2
4(n−1)

Rg(ξ) para todo ξ ∈M.

Para variedades com bordo, de Souza [15] em 2020 considerou a seguinte genera-

lização do problema de Yamabe com bordo proposto por Escobar [18]−∆gu+ a(x)u = 0 em M,

∂u
∂ν

+ n−2
2
b(x)u = (n− 2)u

n
n−2 sobre ∂M,

(6)

em que a ∈ C∞(M) e b ∈ C∞(∂M) são funções satisfazendo a ≤ n−2
4(n−1)

Rg e b ≤ Hg;

e provou a compacidade para certos casos, como M localmente conformemente plana,

∂M umb́ılico e supondo condições adicionais sobre a e b.

5. O problema da estabilidade

Inspirada pela Conjectura da Compacidade para o Problema (5), surge o Problema

da Estabilidade de (5). Isto é, queremos saber se perturbações da Equação (5) preser-

vam a compacidade ou não, que é equivalente a existir ou não uma limitação uniforme

na norma L∞ para soluções a priori. Esta questão foi introduzida e desenvolvida pelos

trabalhos de Druet [23], [24], Druet e Hebey [25] e Druet, Hebey e Robert [26].

Em 2014, Esposito, Pistoia e Vetois em [21] provaram que a compacidade não é

válida para a seguinte classe de problemas de Yamabe com perturbação para variedades

de dimensão n ≥ 4 :

−∆gu+

(
n− 2

4(n− 1)
Rg + εh

)
u = u

n+2
n−2 em M, u > 0, (7)

em que h é uma função pertencente a C1(M) ou a C0,α(M), com 0 < α < 1, que

satisfaz maxM h > 0.

Nosso objetivo é provar a existência de solução positiva para o seguinte Problema

de Yamabe com perturbação no expoente, que foi abordado no artigo de Ghimenti,

Micheletti e Pistoia [29] de 2015:{
−∆gu+ a(x)u = 0 em M,
∂u
∂ν

+ n−2
2
b(x)u = (n− 2)u

n
n−2
±ε sobre ∂M,

(8)

em que a ∈ C1(M) e b ∈ C1(∂M) são funções escolhidas satisfazendo algumas condições.
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Mais do que isso, iremos também provar que tal solução apresenta um compor-

tamento de blow-up, conceito este que definiremos no Caṕıtulo 2. Veremos que tal

comportamento é ditado pela função ϕ(q) = b(q)−Hg(q) com q ∈ ∂M.

Com efeito, iremos provar que

(i) Se q0 ∈ ∂M é um ponto de mı́nimo local de ϕ com ϕ(q0) > 0, então para ε > 0

suficientemente pequeno, existe uma solução blow-up uε de (P−ε) quando ε→ 0+.

(ii) Se q0 ∈ ∂M é um ponto de máximo local de ϕ com ϕ(q0) < 0, então para ε > 0

suficientemente pequeno, existe uma solução blow-up uε de (P+ε) quando ε→ 0+.

Afim de atingir nossos objetivos, este trabalho será dividido da seguinte maneira:

No Caṕıtulo 1, fazemos uma revisão de alguns conteúdos de geometria e análise

que serão usados no trabalho. O dividiremos em três seções. A Seção 1.1 tratará

de alguns conceitos fundamentais de geometria para que, assim, todos os aspectos do

problema fiquem bem definidos. Introduziremos variedades Riemannianas com bordo,

veremos que o bordo pode ser visto como uma subvariedade imersa de codimensão

1 e que, consequentemente, obtemos uma noção de vetor normal e, naturalmente, de

curvatura média sobre o bordo. Depois, falaremos das coordenadas de Fermi, que serão

extremamente úteis para simplificar os cálculos do trabalho. Finalmente, na Seção 1.2

definiremos o espaço de Sobolev, enunciaremos os teoremas de imersão e do traço

numa variedade M com bordo, e definiremos a derivada de Fréchet para tratarmos da

formulação variacional do problema.

O Caṕıtulo 2 é dedicado à descrição minuciosa do problema. Além disso, explicare-

mos o método para resolvê-lo. De maneira resumida, a ideia é reformular o problema

num espaço de funções conveniente. Feito isso, iremos usar o método da redução fi-

nita para decompor esse espaço numa soma direta e, assim, construir uma função

que é a soma de uma função-bolha (Standard Bubble) com uma outra função positiva

adequada. Posteriormente, enunciaremos alguns lemas auxiliares necessários para a

solução do problema.

No Caṕıtulo 3, provaremos o resultado principal. Mostraremos que a função cons-

trúıda no Caṕıtulo 2 será, de fato, uma solução do problema. Para isso, usaremos

a formulação variacional do problema. Dentro desse contexto, iremos provar que a

solução é ponto cŕıtico do funcional associado ao problema. Na verdade, teremos uma

famı́lia de soluções variando com o parâmetro ε. Veremos que quando fazemos ε→ 0,

a imagem em módulo das funções próximo de um certo ponto do bordo pode ficar

arbitrariamente grande. Em outras palavras, construiremos uma famı́lia de soluções

blow-up.

Finalmente, o Apêndice A é dedicado aos detalhes dos lemas técnicos.
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Caṕıtulo 1

Preliminares

Neste caṕıtulo, veremos alguns conceitos que serão abordados no Caṕıtulo 2 em

diante. Estes serão importantes para desenvolvermos a descrição e linguagem do pro-

blema no qual estamos interessados. Na Seção 1.1, falaremos sobre alguns conceitos

fundamentais de Geometria Riemanniana e, ao final, introduziremos as coordenadas

de Fermi. A Seção 1.2 é dedicada à parte anaĺıtica do problema, como as definições de

espaços de Sobolev em variedades Riemannianas com bordo, os Teoremas de Sobolev

e a derivada de Fréchet.

1.1 Pré-requisitos geométricos

Nesta seção, iremos apresentar algumas definições e resultados de geometria, que

serão essenciais mais tarde. Utilizaremos como referência principal o livro do Lee [35]

e auxiliarmente o livro do Tu [46].

1.1.1 Variedades com bordo

Primeiramente introduzamos o espaço que serve de modelo para variedades com

bordo, o hemisfério norte do espaço euclidiano Rn
+ ⊂ Rn, definido por

Rn
+ = {(x1, . . . , xn) ∈ Rn : xn ≥ 0} .

Diferentemente do contexto de variedades sem bordo, cujas vizinhanças são homeomor-

fas a abertos do Rn, veremos que na presença de bordo as vizinhanças da variedade

são homeomorfas a um dos dois tipos de abertos do Rn
+, como ilustra a figura a seguir:

8



1. Preliminares

Figura 1.1: Variedade com bordo
Fonte: John Lee, 2012

Denotaremos por int(Rn
+) e ∂Rn

+ o interior de Rn
+ e o bordo de Rn

+, respectivamente.

Nesse caso, temos

int(Rn
+) = {(x1, . . . , xn) ∈ Rn : xn > 0}

∂Rn
+ = {(x1, . . . , xn) ∈ Rn : xn = 0} = Rn−1 × {0}.

Observação 1.1. É comum fazermos a identificação ∂Rn
+
∼= Rn−1.

Definição 1.1. Uma variedade de dimensão n com bordo é um conjunto M tal que

todo ponto tem uma vizinhança homeomorfa a um aberto do Rn ou a um aberto do

Rn
+.

O par (U,ϕ), em que U ⊆M é um aberto de M e ϕ : U → Rn é um homeomorfismo

sobre um aberto do Rn ou do Rn
+, é dita uma carta de M ou um sistema de coordenadas

de M (exatamente como no caso de variedades sem bordo). Quando necessário fazer

uma distinção, diremos que (U,ϕ) é uma carta interior se ϕ(U) for um aberto do Rn

(que inclui o caso quando ϕ(U) é um aberto do Rn
+ que não intersecta ∂Rn

+), e que é

uma carta do bordo se ϕ(U) for um aberto do Rn
+ tal que ϕ(U) ∩ ∂Rn

+ 6= ∅.
Um ponto p ∈M é dito um ponto interior de M se este pertence a um domı́nio de

uma carta interior e é dito um ponto do bordo de M se este pertence ao domı́nio de

uma carta do bordo cuja imagem de p pertence a Rn
+. Denotaremos o bordo de M por

∂M e interior de M por int(M).

Observação 1.2. Note que, pela definição acima, um ponto q ∈ ∂M tem, em coorde-

nadas locais, a forma (q1, . . . , qn−1, 0).

Veremos com os resultados seguintes que tais definições nunca coincidem, isto é,

um ponto interior de M nunca pode ser um ponto do bordo de M e vice-versa.

A proposição a seguir pode ser encontrada como Proposição 22.4 de [46].

9



1. Preliminares

Proposição 1.1. Sejam U e V abertos de Rn
+ e f : U → V um homeomorfismo. Então,

f mapeia pontos do interior de U em pontos do interior V e pontos da fronteira de U

em pontos da fronteira de V .

Demonstração. Seja p ∈ U um ponto interior. Então p está contido numa bola B, que

é um aberto do Rn. Como f por hipótese é um homeomorfismo, então o conjunto f(B)

é um aberto do Rn. Logo, f(p) é um ponto do interior do Rn
+.

Seja agora q ∈ U ∩ ∂Rn
+. Então f−1(f(q)) = q é um ponto do bordo. Como

f−1 : V → U é um homeomorfismo, pelo que foi provado acima, f(q) não pode ser um

ponto do interior. Logo, f(q) é um ponto do bordo.

Corolário 1.2. O bordo de M e o interior de M são disjuntos.

Demonstração. Suponha por absurdo que ∂M ∩ int(M) 6= ∅ e seja p ∈ ∂M ∩ int(M).

Como p ∈ int(M), existe uma carta interior ϕ1 : U1 → Rn com p ∈ U1 e como

p ∈ ∂M, existe uma carta do bordo ϕ2 : U2 → Rn
+ com p ∈ U2.

Como ambas as cartas são homeomorfismos, então ϕ : ϕ(U1) → U2 dado por

ϕ = ϕ−1
1 ◦ ϕ2 é um homeomorfismo, o que é um absurdo pela Proposição 1.1.

Dessa maneira, podemos expressar a variedade como a seguinte união disjunta:

M = int(M)∪̇∂M.

1.1.2 Imersões Isométricas

Inspirado pela teoria de superf́ıcies no R3, para falar de curvatura média de vari-

edades de dimensão m, precisamos que estas estejam imersas isometricamente numa

outra variedade de dimensão m+ 1. Utilizaremos o livro do Manfredo [16] como guia.

Definição 1.2. Sejam M e M̄ variedades diferenciáveis de dimensões n e k = n+m,

respectivamente. Uma função diferenciável f : M → M̄ é dita uma imersão se dfp :

TpM → Tf(p)M̄ é injetiva para todo p ∈ M. Se, além disso, f é um homeomorfismo

sobre a imagem f(M) ⊂ M̄ , em que f(M) tem a topologia subespaço induzida de M̄ ,

dizemos que f é um mergulho. Se M ⊂ M̄ e a inclusão ι : M → M̄ é um mergulho,

dizemos que M é uma subvariedade de M̄ .

Definição 1.3. Sejam (M, g) e (N, g̃) variedades Riemannianas. Um difeomorfismo

ϕ : M → N é dito uma isometria se vale

〈u, v〉p = 〈dϕp(u), dϕp(v)〉ϕ(p)

para todo p ∈M,u, v ∈ TpM.
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1. Preliminares

Serão de fundamental importância as funções que são imersões e isometrias ao

mesmo tempo, as chamadas imersões isométricas, uma vez que estamos interessados

na relação entre a geometria da variedade imersa e a variedade ambiente.

Seja f : M → M̄ uma imersão, em que M tem dimensão n e M̄ tem dimensão

k = n + m. Então, para cada p ∈ M , existe uma vizinhança U ⊂ M de p tal que

f(U) ⊂ M̄ é uma subvariedade de M̄ . Isso significa que existe uma vizinhança Ū ⊂ M̄

de f(p) e um difeomorfismo ϕ : Ū → V ⊂ Rk para o conjunto aberto V de Rk, tal

que ϕ mapeia f(U) ∩ Ū difeomorficamente no aberto do subespaço de Rn ⊂ Rk. Para

simplificar a notação, iremos identificar U com f(U) e cada vetor v ∈ TqM , q ∈ U ,

com dfq(v) ∈ Tf(q)M̄. Devemos fazer essas identificações para estender, por exemplo,

um campo vetorial local (isto é, definido em U) em M para um campo vetorial local

(isto é, definido em Ū) sobre M̄ ; se U é suficientemente pequena, tal extensão é sempre

posśıvel, graças ao difeomorfismo ϕ.

Para cada p ∈M , o produto interno em TpM̄ divide TpM̄ na soma direta

TpM̄ = TpM ⊕ (TpM)⊥ , (1.1)

em que (TpM)⊥ é o complemento ortogonal de TpM em TpM̄.

Figura 1.2: Imersão M ↪→ M̄
Fonte: Manfredo do Carmo, 1992

Isto é, se v ∈ TpM̄, p ∈M , podemos escrever

v = vT + vN , vT ∈ TpM, vN ∈ (TpM)⊥ .

11
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Dizemos que vT é a componente tangencial de v e vN , a componente normal de v.

Por uma questão didática, optamos por definir o operador de Weingarten ao invés

de constrúı-lo usando a segunda forma fundamental. Caso o leitor esteja interessado

na construção clássica deste, consulte o Caṕıtulo 6 de [16].

Definição 1.4. (Fórmula de Weingarten) Sejam p ∈ M, η ∈ (TpM)⊥ e ∇̄ a conexão

de M̄. Seja N uma extensão local de η normal a M. O operador de Weingarten é o

operador Sη : TpM → TpM dado por

Sη(x) = −
(
∇̄xN

)T
.

Proposição 1.3. Sη : TpM → TpM é um operador auto-adjunto.

Demonstração. Ver a Seção 2 do Caṕıtulo 6 de [16].

1.1.3 A curvatura média numa hipersuperf́ıcie

Considere o caso particular em que a codimensão da imersão f : M → M̄ é 1, isto é,

M tem dimensão m e M̄ tem dimensão m+ 1; f(M) ⊂ M̄ é dita uma hipersuperf́ıcie.

Como a aplicação traço independe da base escolhida de TpM, está bem definida a

curvatura média de f denotada por Hg(f) : M → R dada por

Hg(f) =
1

m
tr(Sη). (1.2)

Em particular, fixada uma base {e1, . . . , em} de TpM, denotemos (hij) a matriz do ope-

rador Sη nessa base. Então, podemos reescrever a equação acima da seguinte maneira:

Hg(f) =
1

m

m∑
i=1

hii.

Agora consideremos o caso particular que é de maior interesse, que é o da curvatura

média no bordo. Os dois resultados a seguir podem ser encontrados no Caṕıtulo 5 do

livro do Lee [35].

Teorema 1.4. Seja (M, g) uma variedade Riemanniana de dimensão n com bordo,

então, munida da topologia subespaço, ∂M é uma variedade topológica (sem bordo) de

dimensão n − 1 e tem uma estrutura suave de tal maneira que é uma subvariedade

mergulhada de M .

Demonstração. Com efeito, seja q ∈ ∂M. Então existe uma carta do bordo (U,ϕ),

ou seja, uma carta tal que q ∈ U e ϕ(U) ∩ ∂Rn
+ 6= ∅. Como ∂Rn

+ é homeomorfo

12
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a Rn−1, então o aberto ϕ(U) ∩ ∂Rn
+ é homeomorfo a um aberto V ⊂ Rn−1. Assim,

temos os seguintes homeomorfismos de abertos U ∩ ∂M ∼= ϕ(U)∩ ∂Rn
+
∼= V. As outras

propriedades topológicas como ser espaço de Hausdorff e ser segundo contável também

são válidas para ∂M uma vez que ∂M ⊂M.

Destacamos ainda que a estrutura suave de ∂M é única, como mostra o teorema a

seguir.

Teorema 1.5. Seja M uma variedade suave e S ⊆M uma subvariedade mergulhada.

A topologia subespaço de S e a estrutura suave descrita no Teorema (1.4) são a única

topologia e estrutura suave tais que S é uma subvariedade mergulhada ou imersa.

Demonstração. Ver Teorema 5.31 de [35].

Uma vez provado que ∂M é uma subvariedade imersa isometricamente de M, po-

demos definir a curvatura média no bordo.

Definição 1.5. Considere a imersão canônica dada pela inclusão ι : ∂M → M. A

curvatura média no bordo é a função H : ∂M → R dada por

H(q) := Hg(ι)(q) =
1

n− 1

n−1∑
i=1

hii(q). (1.3)

1.1.4 Vetor normal ao bordo

Como já vimos anteriormente, se M é uma variedade de dimensão n com bordo,

então ∂M é uma variedade de dimensão n − 1. Além disso, uma orientação em M

induz uma orientação em ∂M. A escolha de uma orientação no bordo é uma questão

de convenção, motivado pelo Teorema de Stokes no objetivo de torná-la livre de sinal.

Das várias maneiras de descrever a orientação do bordo, existem duas que se destacam

pela simplicidade. A primeira delas é usar a teoria de formas, fazendo uma contração

da orientação de M com um campo vetorial normal exterior à ∂M e a segunda é definir

uma noção de vetor normal ao bordo primeiro. Para uma leitura bem detalhada desse

assunto, o leitor pode consultar a introdução do Caṕıtulo 22 de [46].

Como o nosso objetivo é apenas deixar bem definida a noção de vetor normal,

optaremos pela segunda forma.

Para construir a noção de vetor normal ao bordo, usamos a decomposição do espaço

tangente em (1.1) e obtemos

TqM = Tq(∂M)⊕ (Tq(∂M))⊥, (1.4)

em que q ∈ ∂M.
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Definição 1.6. Dado q ∈ ∂M. Um vetor v ∈ (Tq(∂M))⊥ é dito um vetor normal ao

bordo.

Como ∂M e M têm dimensões n−1 e n, respectivamente, então os espaços vetoriais

Tq(∂M) e TqM têm dimensões n− 1 e n, respectivamente.

Portanto, o espaço vetorial (Tq(∂M))⊥ tem dimensão 1. Dessa maneira, podemos

dividir o espaço em duas classes, os que apontam para dentro e os que apontam para

fora.

Definição 1.7. Dado q ∈ ∂M, dizemos que v ∈ (Tq(∂M))⊥ aponta para dentro se para

algum ε > 0, existe uma curva suave γ : [0, ε) → M tal que γ(0) = q e γ′(0) = v, e

dizemos que aponta para fora se existe tal curva cujo domı́nio é (−ε, 0]. Denotaremos

o vetor normal a ∂M unitário apontando para dentro por ν.

Figura 1.3: Um vetor normal apontando para dentro
Fonte: adaptado de John Lee, 2012

1.1.5 Coordenadas de Fermi

Um conceito que será de suma importância no trabalho são as coordenadas de

Fermi. De fato, estas irão auxiliar em muitos cálculos posteriores. A definição a seguir

pode ser encontrada em [37].

Definição 1.8. Seja M uma variedade Riemanniana compacta com bordo, q0 ∈ ∂M,

x = (x1, . . . , xn−1) as coordenadas normais de um ponto q(x) ∈ ∂M numa vizinhança

de q0 e ν(x) o vetor normal unitário apontando para dentro. Então, considere a seguinte

função

ψ∂q0 : B(0, R)× [0, R) ⊂ Rn−1 × R→M

(x, t) 7→ ψ∂q0(x, t) := expq0 tν(x).
(1.5)

Nesse caso, dizemos que (x, t) ∈ Rn são as coordenadas de Fermi do ponto ψ∂q0(x, t) ∈M
numa vizinhança de q0.
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Apresentaremos um resultado útil sobre coordenadas de Fermi. Para mais detalhes,

o leitor pode consultar o Lema 2.2 em [37].

Lema 1.6. Sejam y = (y1, . . . , yn) = (x, t) as coordenadas de Fermi de q(y) em torno

de um ponto q0 ∈ ∂M. Então, valem as seguintes expansões da métrica em coordenadas

de Fermi:

gij(y) = δij + 2hij(q0)yn +O
(
|y|2
)

para i, j = 1, . . . , n− 1, (1.6)

gin(y) = δin para i = 1, . . . , n− 1, (1.7)

√
g(y) = 1− (n− 1)H(q0)yn +O

(
|y|2
)
, (1.8)

√
g(x, 0) = 1 +O(|x|2). (1.9)

1.2 Pré-requisitos de Análise

Nessa seção, falamos um pouco sobre os espaços de Sobolev numa variedade M

compacta suave com bordo. É bom salientar que a hipótese da compacidade sobre a

variedade nessa teoria é muito importante. Usaremos como referência o livro do Hebey

[32].

1.2.1 Espaços de Sobolev, Teoremas de Imersão e do Traço

Seja (M, g) uma variedade Riemanniana suave compacta de dimensão n com bordo.

Denotamos por H1(M) o complemento de C∞(M) com respeito à norma ‖·‖H1(M) dada

por

‖u‖H1(M) =

(∫
M

|∇gu|2 + |u|2dµg
) 1

2

.

Observação 1.3. H1(M) é um espaço de Hilbert quando munido da norma ‖ · ‖H1(M)

induzida do produto interno

〈u, v〉H1(M) =

∫
M

(∇gu∇gv + uv)dµg.

Enunciamos agora um resultado importante de imersões de Sobolev.

Teorema 1.7. (Teorema de Imersão de Sobolev) Seja (M, g) uma variedade Rieman-

niana suave compacta de dimensão n com bordo. Então, dado p ∈
[
1, 2n

n−2

]
, existe

C > 0 tal que

‖u‖Lp(M) ≤ C‖u‖H1(M).
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O resultado a seguir pode ser encontrado em [36].

Proposição 1.8. Seja (M, g) uma variedade Riemanniana de dimensão n ≥ 3 com

bordo ∂M. Então, dado ε > 0, existe uma constante B > 0 que depende apenas de ε,

M e g tal que

(∫
∂M

|u|
2(n−1)
n−2 dσ

)n−2
n−1

≤ (S + ε)

∫
M

|∇gu|2dµg +B

∫
M

u2dµg (1.10)

para todo u ∈ H1(M), em que S = 2
n−2

σ
−1
n−1
n e σn é o volume da esfera unitária de Rn.

Demonstração. Ver Proposição 1.1 em [36].

Corolário 1.9. (Teorema do Traço de Sobolev) Seja (M, g) uma variedade Riemanni-

ana de dimensão n ≥ 3 com bordo ∂M. Então, existe uma constante C > 0 dependendo

apenas de M e g tal que

‖u‖
L

2(n−1)
n−2 (∂M)

≤ C‖u‖H1(M). (1.11)

1.2.2 Derivada de Gateaux

Nessa seção, trataremos de funcionais diferenciáveis, uma vez que usaremos o

método variacional na abordagem do problema. Usaremos como referência o livro

do Willem [47].

Definição 1.9. Seja ϕ : U → R, em que U é um subconjunto aberto de um espaço

de Banach. Dados u, h ∈ U, denotamos, caso exista, a a derivada de Fréchet em u

aplicada em h por

ϕ′(u) · h = lim
t→0

ϕ(u+ th)− ϕ(u)

t
.
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Caṕıtulo 2

Sobre uma classe de problemas do

tipo Yamabe em variedades com

bordo

Neste caṕıtulo, temos como objetivo estudar a existência de solução positiva do

seguinte problema: {
−∆gu+ a(x)u = 0 em M,
∂u
∂ν

+ n−2
2
b(x)u = (n− 2)u

n
n−2
±ε sobre ∂M,

(P±ε)

em que (M, g) é uma variedade Riemanniana compacta de dimensão n ≥ 3 com bordo

∂M, a ∈ C1(M), b ∈ C1(∂M), e ε é um parâmetro positivo.

Mostraremos que sob certas hipóteses existe solução para o problema (P±ε). Mais

ainda, mostraremos que tal solução é blow-up num ponto q0 ∈ ∂M, no seguinte sentido:

Definição 2.1. Dizemos que uε é solução blow-up no ponto q0 ∈ ∂M caso

(i) Exista uma famı́lia de pontos qε ∈ ∂M tais que qε → q0 quando ε→ 0;

(ii) Dada qualquer vizinhança U ⊂ M de q0, temos que supq∈U uε(q) → ∞ quando

ε→ 0.

Ao longo do trabalho, iremos supor que a parte quadrática associada ao problema

(P±ε) é coercivo, isto é, que existe uma constante θ > 0 tal que∫
M

(
|∇gu|2 + a(x)u2

)
dµg +

n− 2

2

∫
∂M

b(x)u2dσ ≥ θ‖u‖2
H1(M). (C)

Enunciaremos, assim, o resultado principal do trabalho:

Teorema 2.1. Defina ϕ : ∂M → R por ϕ(q) = b(q)−H(q) e suponha (C) e que n ≥ 5.

Então:
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

(i) Se q0 ∈ ∂M é um ponto de mı́nimo local de ϕ com ϕ(q0) > 0, então para ε > 0

suficientemente pequeno, existe uma solução blow-up uε de (P−ε) quando ε→ 0+.

(ii) Se q0 ∈ ∂M é um ponto de máximo local de ϕ com ϕ(q0) < 0, então para ε > 0

suficientemente pequeno, existe uma solução blow-up uε de (P+ε) quando ε→ 0+.

Observação 2.1. No artigo [29] originalmente supõe-se n ≥ 7, mas em nossos cálculos,

encontramos que basta supormos n ≥ 5.

2.1 Formulação de problema

Nesta seção, explicaremos a abordagem que faremos do problema e a estratégia

para resolvê-lo. Para isso, dividiremos essa seção em algumas partes:

2.1.1 Resultados auxiliares - Parte I

Proposição 2.2. Supondo (C), então a função 〈·, ·〉 : H1(M)×H1(M)→ R dada por

〈u, v〉 =

∫
M

(∇gu∇gv + a(x)uv) dµg +
n− 2

2

∫
∂M

b(x)uvdσ

define um produto interno em H1(M).

Demonstração. Pela linearidade da integral e pela bilinearidade de ∇gu∇gv, então são

válidas as seguintes propriedades:

(i) 〈u, v〉 = 〈v, u〉 para todo u, v ∈ H1(M),

(ii) 〈λu, v〉 = λ〈u, v〉 para todo λ ∈ R e u, v ∈ H1(M) e

(iii) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 para todo u, v, w ∈ H1(M).

Isto é, 〈·, ·〉 é uma forma bilinear simétrica. Mostremos agora que valem

(iv) 〈u, u〉 ≥ 0 para todo u ∈ H1(M) e

(v) 〈u, u〉 = 0 se, e somente se, u = 0.

De fato, por (C), temos

〈u, u〉 =

∫
M

(
|∇gu|2 + a(x)u2

)
dµg +

n− 2

2

∫
∂M

b(x)u2dσ ≥ θ‖u‖2
H1(M) ≥ 0.

Pela expressão acima, se 〈u, u〉 = 0, então ‖u‖2
H1(M) = 0, o que implica em u = 0, o

que mostra que 〈·, ·〉 é, de fato, um produto interno.
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Desse modo, o produto interno acima induz a norma ‖ · ‖ dada por

‖u‖ =
√
〈u, u〉.

Ao longo do trabalho, denotaremos por H o espaço H1(M) munido do produto interno

〈·, ·〉.

Proposição 2.3. Supondo (C), então as normas ‖ · ‖H1(M) e ‖ · ‖ são equivalentes.

Demonstração. Por (C), temos ‖u‖2 ≥ θ‖u‖2
H1(M). Por outro lado,

‖u‖2 =

∫
M

(
|∇gu|2 + a(x)u2

)
dµg +

n− 2

2

∫
∂M

b(x)u2dσ

≤
∫
M

(
|∇gu|2 + ‖a‖∞u2

)
dµg +

n− 2

2
‖b‖∞

∫
∂M

u2dσ.

Mas pelo Teorema do Traço, existe C1 > 0 tal que∫
∂M

u2dσ ≤ C1

∫
M

(
|∇gu|2 + u2

)
dµg.

Assim, temos

‖u‖2 ≤
∫
M

(
|∇gu|2 + ‖a‖∞u2

)
dµg +

C1(n− 2)

2
‖b‖∞

∫
M

(
|∇gu|2 + u2

)
dµg

=

∫
M

((
1 +

C1(n− 2)

2
‖b‖∞

)
|∇gu|2 +

(
‖a‖∞ +

C1(n− 2)

2
‖b‖∞

)
u2

)
dµg.

Tomando C2 = max{1 + C1(n−2)
2
‖b‖∞, ‖a‖∞ + C1(n−2)

2
‖b‖∞}, obtemos que

‖u‖2 ≤ C2‖u‖2
H1(M).

Assim, conclúımos a prova.

2.1.2 Reexpressando o problema

Uma vez que os espaços adequados para estudar o problema (P±ε) estão apresenta-

dos, vamos para o segundo passo, que é transformá-lo num problema mais conveniente.

Para isso, definiremos alguns conceitos, provaremos algumas proposições importantes

e alguns resultados da Teoria de Equações Diferenciais Eĺıpticas.

Definição 2.2. Dada g ∈ L
2(n−1)
n (∂M), considere o seguinte problema:{
−∆gu+ a(x)u = 0 em M,
∂u
∂ν

+ n−2
2
b(x)u = g sobre ∂M.

(Pg)
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Dizemos que u0 ∈ H1(M) é solução fraca do problema (Pg) se u0 é tal que∫
M

(∇gu0∇gv + a(x)u0v) dµg +
n− 2

2

∫
∂M

b(x)u0vdσ =

∫
∂M

gvdσ, (2.1)

para todo v ∈ H1(M).

Observação 2.2. Para obter a formulação fraca do problema (Pg), seguimos os se-

guintes passos:

Supomos que u0 é suave e multiplicamos a primeira expressão de (Pg) por v ∈
H1(M) e integramos, obtendo:

−
∫
M

∆gu0vdµg +

∫
M

a(x)u0vdµg = 0. (2.2)

Usamos a Fórmula de Integração por Partes, temos

−
∫
M

∆gu0vdµg =

∫
M

∇gu0∇gvdµg −
∫
∂M

∂u0

∂ν
vdσ. (2.3)

Substitúımos (2.3) em (2.2), segue que∫
M

∇gu0∇gvdµg −
∫
∂M

∂u0

∂ν
vdσ +

∫
M

a(x)u0vdµg = 0. (2.4)

Substitúımos em (2.4) a segunda expressão de (Pg), temos que∫
M

(∇gu0∇gv + a(x)u0v) dµg +
n− 2

2

∫
∂M

b(x)u0vdσ =

∫
∂M

gvdσ,

que é a expressão definida em (2.1).

Lema 2.4. O problema (Pg) tem uma única solução fraca u0 ∈ H1(M).

Demonstração. Considere o funcional Lg : H1(M) → R dado por Lg(v) :=
∫
∂M

gvdσ.

Temos que Lg é cont́ınuo em H1(M), pois Lg é linear e vale

|Lg(v)| ≤
∫
∂M

|g||v|dσ ≤ ‖g‖
L

2(n−1)
n (∂M)

‖v‖
L

2(n−1)
n−2 (∂M)

.

Pelo Teorema do Traço, vale

‖v‖
L

2(n−1)
n−2 (∂M)

≤ C1‖v‖.

Assim, tem-se que

|Lg(v)| ≤ C2‖v‖.
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Logo, Lg é cont́ınuo.

Portanto, pelo Teorema da Representação de Riesz, existe um único u0 ∈ H1(M)

tal que Lg(v) = 〈u0, v〉. Substituindo Lg(v) e 〈u0, v〉 por suas respectivas expressões,

obtemos exatamente a Equação (2.1). Isto é, u0 é solução fraca de (Pg).

Observação 2.3. Vejamos agora que a solução de (Pg) é dado pelo adjunto do operador

inclusão i : H1(M)→ L
2(n−1)
n−2 (∂M) aplicado na função g.

No contexto deste trabalho, o adjunto de i é o operador i∗ : L
2(n−1)
n (∂M)→ H1(M),

definido pela expressão

〈i∗(u), v〉H1(M),H1(M) = 〈u, i(v)〉
L

2(n−1)
n (∂M),L

2(n−1)
n−2 (∂M)

, (2.5)

em que fazemos as identificações dos espaços duais (H1(M))
′ ∼= H1(M) e

(
L

2(n−1)
n−2 (∂M)

)′ ∼=
L

2(n−1)
n (∂M).

Observando que 〈i∗(u), v〉H1(M),H1(M) = 〈i∗(u), v〉 e 〈u, i(v)〉
L

2(n−1)
n (∂M),L

2(n−1)
n−2 (∂M)

=∫
∂M

uvdσ, temos

〈i∗(u), v〉 =

∫
∂M

uvdσ.

Fazendo u = g, obtemos

〈i∗(g), v〉 =

∫
∂M

gvdσ.

Mas pela unicidade da solução de (Pg), então u0 = i∗(g).

Observação 2.4. Assim, ao longo do trabalho, denotaremos a solução de (Pg) por

i∗(g).

Usando as notações acima e fazendo g = fε(u) em (Pg), ficamos com o problema

u = i∗(fε(u)), u ∈ H, (P ∗±ε)

em que H := H1(M) ∩ Lsε(∂M) é o espaço de Banach dotado da norma ‖ · ‖H :=

‖ · ‖+ ‖ · ‖Lsε (∂M), sendo o expoente sε definido por

sε =

{
2(n−1)
n−2

para o caso (P−ε)
2(n−1)
n−2

+ nε para o caso (P+ε) .

Observação 2.5. Após resolvermos o problema (P ∗±ε), é fácil ver que a solução que

encontraremos é não-negativa, ou seja, temos que u = u+. Desse modo, uma solução

encontrada em (P ∗±ε) é também solução de (P±ε).

21



2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Observação 2.6. Observe que, por conta do Teorema do Traço, temos que H =

H1(M) no caso (P−ε) e, desse modo, temos que se u ∈ H = H1(M), então, pelos re-

sultados anteriores, i∗(fε(u)) ∈ H1(M) = H. No entanto, no caso (P+ε) não é imediato

provar que dada u ∈ H, teŕıamos que i∗(fε(u)) ∈ H.

Para provar isso, enunciaremos alguns resultados auxiliares que nos darão algumas

estimativas importantes. Consideremos agora o problema (Pg) em coordenadas locais:{
Lu+ a(x)u = 0 em Ω
∂u
∂ν

+ n−2
2
b(x)u = g sobre ∂Ω,

(2.6)

em que Ω é um domı́nio limitado Lipschitz e L é o operador dado por

Lu = −
n∑
j=1

∂

∂xj

(
n∑
i=1

gij
∂u

∂xi

)
+

n∑
i=1

(
n∑
j=1

gij
√
g
∂

∂xj

(
1
√
g

))
∂u

∂xi
(2.7)

e a derivada normal ∂
∂ν

assume a forma

∂u

∂ν
=

n∑
j=1

∂u

∂xj
νj, (2.8)

sendo ν = (ν1, . . . , νn) o vetor unitário normal a ∂Ω apontando para fora.

Como consequência do Teorema 3.14 em [17], temos as seguintes estimativas rela-

tivas ao Problema (2.6).

Teorema 2.5. Suponha que 2n
n+2
≤ q < n

2
, r > 0 e g ∈ L

(n−1)q
n−q +r(∂Ω). Então existe

uma constante C satisfazendo a seguinte propriedade: Se u ∈ H1(Ω) satisfaz (2.6),

então valem também que u ∈ L
nq
n−2q (Ω) e u ∈ L

(n−1)q
n−2q (∂Ω), e vale a estimativa

‖u‖
L

nq
n−2q (Ω)

+ ‖u‖
L

(n−1)q
n−2q (∂Ω)

≤ C

(
‖u‖L2(Ω) + ‖g‖

L
(n−1)q
n−q +r

(∂Ω)

)
. (2.9)

Além disso, se a solução u é única, temos que

‖u‖
L

nq
n−2q (Ω)

+ ‖u‖
L

(n−1)q
n−2q (∂Ω)

≤ C‖g‖
L

(n−1)q
n−q +r

(∂Ω)
. (2.10)

Corolário 2.6. Se u ∈ H1(M) é uma solução de (Pg) e g ∈ L
(n−1)q
n−q +r(∂M), então

dados 2n
n+2
≤ q ≤ n

2
e r > 0, existe C > 0 tal que

‖u‖
L

(n−1)q
n−2q (∂M)

= ‖i∗(g)‖
L

(n−1)q
n−2q (∂M)

≤ C‖g‖
L

(n−1)q
n−q +r

(∂M)
. (2.11)

Demonstração. Segue da Estimativa (2.10) no Teorema 2.5.
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Observação 2.7. No Corolário 2.6, tomamos q e r tais que (n−1)q
n−2q

= 2(n−1)
n−2

+ nε e
(n−1)q
n−q + r = 2(n−1)+n(n−2)ε

n+(n−2)ε
, ou seja,

q =
2n+ n2

(
n−2
n−1

)
ε

n+ 2 + 2n
(
n−2
n−1

)
ε

e

r =
2(n− 1) + n(n− 2)ε

n+ (n− 2)ε
− 2(n− 1) + n(n− 2)ε

n+ (n− 2)
(

n
n−1

)
ε
.

Notando que 2(n−1)
n−2

+ nε =
(

n
n−2

+ ε
) 2(n−1)+n(n−2)ε

n+ε(n−2)
, temos que se u ∈ L

2(n−1)
n−2

+nε(∂M),

então |u|
n
n−2

+ε ∈ L
2(n−1)+n(n−2)ε

n+ε(n−2) (∂M) e, por (2.11), que i∗
(
|u|

n
n−2

+ε
)
∈ L

2(n−1)
n−2

+nε(∂M).

Assim, fica provado que no Problema (P ∗±ε) se u ∈ H, então i∗(fε(u)) ∈ H.

2.1.3 Resultados auxiliares - Parte II

Veremos alguns problemas auxiliares que ajudarão na construção de uma solução

para o problema (P ∗±ε). Como já hav́ıamos dito anteriormente, somos levados a cons-

truir soluções blow-up de (P ∗±ε). A maneira canônica de construir soluções deste tipo é

através das funções bolhas. Estas são as funções Uδ,ξ : Rn−1 × R+ definidas por

Uδ,ξ(x, t) :=
δ
n−2
2

((δ + t)2 + |x− ξ|2)
n−2
2

,

em que δ > 0 e ξ ∈ Rn−1, que são as soluções do problema limite{
−∆U = 0 em Rn−1 × R+,
∂U
∂ν

= (n− 2)U
n
n−2 sobre Rn−1 × {0}.

(2.12)

Denotamos Uδ(x, t) := Uδ,0(x, t). Também precisamos introduzir o problema linear{
−∆V = 0 em Rn−1 × R+,

∂U
∂ν

= nU
2

n−2

1 V sobre Rn−1 × {0}.
(2.13)

No trabalho de Almaraz [3] foi provado que o espaço de soluções de (2.13) de dimensão

n é gerado pelas funções

Vi =
∂U1

∂xi
= (2− n)

xi

((1 + t)2 + |x|2)
n
2

para i = i, . . . n− 1,

V0 =
∂Uδ
∂δ

(δ = 1) =
n− 2

2

(
1

(1 + t)2 + |x|2

)n
2 [
t2 + |x|2 − 1

]
.
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Definimos a função-bolha da variedade como sendo

Wδ,q(ξ) = Uδ

((
ψ∂q
)−1

ξ
)
χ
((
ψ∂q
)−1

ξ
)
,

em que q ∈ ∂M e χ(x, t) = χ̃(|x|)χ̃(t), sendo χ̃ uma função corte suave que satisfaz

χ̃(s) ≡ 1 para 0 ≤ s < R/2 e χ̃(s) ≡ 0 para s ≥ R. A partir das funções Vi, definimos

as seguintes funções

Zi
δ,q(ξ) =

1

δ
n−2
2

Vi

(
1

δ

(
ψ∂q
)−1

ξ

)
χ
((
ψ∂q
)−1

ξ
)
, i = 0, . . . n− 1.

Escreveremos o espaço de Hilbert H1(M) como soma direta de dois subespaços orto-

gonais. São estes o subespaço

Kδ,q =
[
Z0
δ,q, . . . , Z

n−1
δ,q

]
e seu complemento ortogonal

K⊥δ,q =
{
ϕ ∈ H1(M) | 〈ϕ,Zi

δ,q〉 = 0 para todo i = 0, . . . , n− 1
}
.

Procuramos soluções de (P ∗±ε) do tipo

uε(x) = Wδ,q(x) + φ(x),

em que o ponto de blow-up é q ∈ ∂M e a taxa de blow-up δ satisfaz δ := dε para

algum d > 0 e o resto φ pertence ao espaço vetorial de dimensão infinita K⊥
δ̄,q
∩ H de

codimensão n. Desse modo, o problema

Wδ,q(x) + φ(x) = i∗(fε(Wδ,q(x) + φ(x))), φ ∈ K⊥δ,q ∩H

pode ser reescrito na forma

Wδ,q(x) + φ(x)− i∗(fε(Wδ,q(x) + φ(x))) = 0, φ ∈ K⊥δ,q ∩H. (2.14)

Uma vez que H é a soma direta de K⊥δ,q ∩ H e Kδ,q ∩ H, resolver o Problema (2.14) é

equivalente a resolver o sistema

Π⊥δ,q {Wδ,q(x) + φ(x)− i∗ (fε (Wδ,q(x) + φ(x)))} = 0, φ ∈ K⊥δ,q ∩H, (2.15)

Πδ,q {Wδ,q(x) + φ(x)− i∗ (fε (Wδ,q(x) + φ(x)))} = 0, φ ∈ K⊥δ,q ∩H, (2.16)
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

sendo Π⊥δ,q e Πδ,q as projeções em K⊥δ,q ∩H e Kδ,q ∩H, respectivamente.

2.1.4 Redução a dimensão finita

Referente à Equação auxiliar (2.15), usaremos o método de redução a dimensão

finita, que no nosso contexto consiste em reescrever (2.15) da seguinte maneira:

Lδ,q(φ) = Nδ,q(φ) +Rδ,q, (2.17)

em que Lδ,q : K⊥δ,q ∩H → K⊥δ,q ∩H é o operador linear

Lδ,q(φ) = Π⊥δ,q {φ(x)− i∗ (f ′ε (Wδ,q) · φ)} , (2.18)

f ′ε(Wδ,q) denota a derivada da função fε : R → R em Wδ,q, sendo Nδ,q(φ) o termo

não-linear

Nδ,q(φ) = Π⊥δ,q {i∗ (fε (Wδ,q(x) + φ(x)))− i∗ (fε (Wδ,q(x))− i∗ (f ′ε (Wδ,q) · φ)} (2.19)

e o erro Rδ,q definido por

Rδ,q = Π⊥δ,q {i∗ (fε (Wδ,q(x))−Wδ,q(x)} . (2.20)

2.2 Lemas auxiliares

Apresentaremos agora alguns lemas que serão muito importantes na prova do teo-

rema principal.

Lema 2.7. Sejam a, b ∈ R tais que 0 < a < b. Então, existe uma constante positiva

C0 = C0(a, b) tal que dados ε suficientemente pequeno, q ∈ ∂M, d ∈ [a, b] e φ ∈ K⊥δ,q∩H,
temos

‖Lδ,q(φ)‖H ≥ C0‖φ‖H.

Demonstração. Argumentamos por contradição. Suponha que existam duas sequências

de números reais εm → 0 e dm ∈ [a, b], uma sequência de pontos qm ∈ ∂M e uma

sequência de funções φεmdm,qm ∈ K⊥εmdm,qm ∩H tais que

‖φεmdm,qm‖H = 1 e ‖Lεmdm,qm (φεmdm,qm)‖H → 0 quando m→ +∞

Para simplificar a notação, ponha δm = εmdm e defina

φ̃m := δ(n−2)/2
m φδm,qm

(
ψ∂qm (δmη)

)
χ (δmη) para η = (z, t) ∈ Rn

+, z ∈ Rn−1, t ≥ 0.
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Nesse caso, temos ‖φεmdm,qm‖ ≤ 1, pois ‖φδm,qm‖ ≤ ‖φδm,qm‖ + ‖φδm,qm‖Lsε (∂M) =

‖φδm,qm‖H = 1.

Afirmação 2.1. φ̃m é limitada em D1,2(Rn
+).

De fato,

∇φ̃m(η) = δ
n−2
2

m ∇ (φδm,qm(δmη)χ(δmη))

= δ
n−2
2

m [χ(δmη)∇(φδm,qm(δmη)) + φδm,qm(δmη)∇(χ(δmη))]

= δ
n−2
2

m [δmχ∇(δmη)φδm,qm(δmη) + φδm,qm(δmη)∇χ(δmη)]

= δ
n
2
m [χ(δmη)∇φδm,qm(δmη) + φδm,qm(δmη)∇χ(δmη)] .

Assim, temos∫
Rn+
|∇φ̃m(η)|2dη =

∫
Rn+
δn−2
m |χ(δmη)∇φδm,qm(δmη) + φδm,qm(δmη)∇χ(δmη)|2 dη.

Fazendo a mudança de variáveis δmη 7→ (w, s), temos o elemento de volume dη =

δ−nm dwds e, assim, ficamos com

‖φ̃m‖2
D1,2(Rn+) =

∫
Rn+
|∇φ̃m(η)|2dη

=

∫
Rn+
|χ(w, s)∇φδm,qm(w, s) + φδm,qm(w, s)∇χ(w, s)|2dwds

≤ 2

∫
Rn+

(
|χ(w, s)∇φδm,qm(w, s)|2 + |φδm,qm(w, s)∇χ(w, s)|2

)
dwds

≤ C

∫
Rn+

(
|∇φδm,qm(w, s)|2 + |φδm,qm(w, s)|2

)
dwds

≤ C1‖φδm,qm‖2
H1(M) ≤ C2‖φδm,qm‖2 = C2.

Portanto, ‖φ̃m‖D1,2(Rn+) é limitada.

Observação 2.8. A partir de agora diremos que a sequência converge quando esta

converge a menos de subsequência.

Por conta da Afirmação 2.1, temos que existe φ̃1 ∈ D1,2(Rn
+) tal que vale a con-

vergência fraca φ̃m ⇀ φ̃1. Pela propriedade reflexiva do espaçoD1,2(Rn
+), então φ̃m → φ̃1

q.t.p. em Rn.

Além disso, temos, pelo Teorema de Rellich-Kondrachov, que φ̃m → φ̃2 em Lqloc(Rn
+)

para 1 ≤ q < 2(n−1)
n−2

.

Assim existe φ̃2 ∈ Lqloc(Rn
+) tal que vale a convergência fraca φ̃m ⇀ φ̃2 e que, a

menos de subsequência, φ̃m → φ̃2 q.t.p. em Rn
+.
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Observação 2.9. Pela unicidade do limite, denotaremos ambos os limites por φ̃.

Procedendo como anteriormente fazendo as mudanças de variáveis M 3 ξ 7→ δmη ∈
Rn

+ e ∂M 3 ξ 7→ (δmz, 0) ∈ ∂Rn
+, que nos dá os respectivos elementos de volume

dµg = δnmdη e dσ = δn−1
m dz, obtemos

0 =
〈
φδm,qm , Z

i
δm,qm

〉
=

∫
M

(
∇gφδm,qm∇gZ

i
δm,qm + a(x)φδm,qmZ

i
δm,qm

)
dµg

+

∫
∂M

b(x)φδm,qmZ
i
δm,qmdσ

:= I +

∫
B(0,R)×[0,R)

√
g(δmη)a(ψ∂qm(δmη))φδm,qm(ψ∂qm(δmη))Zi

δm,qm(ψ∂qm(δmη))δnmdη

+

∫
B(0,R)

√
g(δmz, 0)b(ψ∂qm(δmz, 0))φδm,qm(ψ∂qm(δmz, 0))Zi

δm,qm(ψ∂qm(δmz, 0))δn−1
m dz

= I +

∫
B(0,R)×[0,R)

√
g(δmη)a(ψ∂qm(δmη))φδm,qm(ψ∂qm(δmη))δ

2−n
2

m Vi(η)χ(δmη)δnmdη

+

∫
B(0,R)

√
g(δmz, 0)b(ψ∂qm(δmz, 0))φδm,qm(ψ∂qm(δmz, 0))δ

2−n
2

m Vi(z, 0)χ(δmz, 0)δn−1
m dz

= I +

∫
B(0,R)×[0,R)

δ
n+2
2

m

√
g(δmη)a(ψ∂qm(δmη))φδm,qm(ψ∂qm(δmη))Vi(η)χ(δmη)dη

+

∫
B(0,R)

δ
n
2
m

√
g(δmz, 0)b(ψ∂qm(δmz, 0))φδm,qm(ψ∂qm(δmz, 0))Vi(z, 0)χ(δmz, 0)dz

= I + δ2
m

∫
B(0,R)×[0,R)

δ
n−2
2

m

√
g(δmη)a(ψ∂qm(δmη))φδm,qm(ψ∂qm(δmη))Vi(η)χ(δmη)dη

+ δm

∫
B(0,R))

δ
n−2
2

m

√
g(δmz, 0)b(ψ∂qm(δmz, 0))φδm,qm(ψ∂qm(δmz, 0))Vi(z, 0)χ(δmz, 0)dz

= I + J,

em que

J = δ2
m

∫
B(0,R)×[0,R)

δ
n−2
2

m

√
g(δmη)a(ψ∂qm(δmη))φδm,qm(ψ∂qm(δmη))Vi(η)χ(δmη)dη

+ δm

∫
B(0,R)

δ
n−2
2

m

√
g(δmz, 0)b(ψ∂qm(δmz, 0))φδm,qm(ψ∂qm(δmz, 0))Vi(z, 0)χ(δmz, 0)dz

= δ2
m

∫
B(0,R)

√
g(δmη)a(ψ∂qm(δmη))φ̃m(η)Vi(η)dη

+ δm

∫
B(0,R)

√
g(δmz, 0)b(ψ∂qm(δmz, 0))φ̃m(z, 0)Vi(z, 0)dz

≤ C1δ
2
m

∫
B(0,R)×[0,R)

φ̃m(η)dη + C̃1δm

∫
B(0,R)

φ̃m(z, 0)dz ≤ C2δ
2
m + C̃2δm = o(1)
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

e

I =

∫
B(0,R)×[0,R)

√
g(δmη)

(
n∑

j,k=1

δn−2
m gjk(δmη)

∂φδm,qm
∂ηj

(ψ∂qm(δmη))
Zi
δm,qm

∂ηk
(ψ∂δm,qm(δmη))

)
dη

=

∫
B(0,R)×[0,R)

√
g(δmη)

n∑
j,k=1

δn−2
m gjk(δmη)

∂φδm,qm
∂ηj

(ψ∂qm(δmη))
∂
[
δ

2−n
2

m Vi(η)χ(δmη)
]

∂ηk
dη

=

∫
B(0,R)×[0,R)

√
g(δmη)

n∑
j,k=1

δ
n−2
2

m gjk(δmη)
∂φδm,qm
∂ηj

(ψ∂qm(δmη))
∂ [Vi(η)χ(δmη)]

∂ηk
dη

=

∫
B(0,R)×[0,R)

√
g(δmη)

n∑
j,k=1

δ
n−2
2

m gjk(δmη)
∂φδm,qm
∂ηj

(ψ∂qm(δmη))
∂ [Vi(η)χ(δmη)]

∂ηk
dη

=

∫
B(0,R)×[0,R)

√
g(δmη)

n∑
j,k=1

δ
n−2
2

m gjk(δmη)
φδm,qm
∂ηj

(ψ∂qm(δmη))χ(δmη)
∂Vi
∂ηk

(η)dη

+ δm

∫
B(0,R)×[0,R)

√
g(δmη)

n∑
j,k=1

δ
n−2
2

m gjk(δmη)
∂φδm,qm
∂ηj

(ψ∂qm(δmη))Vi(η)
∂χ

∂ηk
(δmη)dη.

(2.21)

Mas pelas expansões em coordenadas de Fermi (1.6) e (1.8), ficamos com

I =

∫
B(0,R)×[0,R)

(1 +O(δm))(δjk +O(δm))
n∑

j,k=1

δ
n−2
2

m
∂φδm,qm
∂ηj

(ψ∂qm(δmη))χ(δmη)
∂Vi
∂ηk

(η)dη

+

∫
B(0,R)×[0,R)

(1 +O(δm))(δjk +O(δm))
n∑

j,k=1

δ
n−2
2

m
∂φδm,qm
∂ηj

(ψ∂qm(δmη))δm
∂χ

∂ηk
Vi(η)dη

=

∫
B(0,R)×[0,R)

n∑
j=1

δ
n−2
2

m χ(δmη)
∂φδm,qm
∂ηj

(ψ∂δm,qm(δmη))
∂Vi
∂ηj

(η)dη

+ δm

∫
B(0,R)×[0,R)

n∑
j=1

δ
n−2
2

m Vi(η)
∂φδm,qm
∂ηj

(ψ∂δm,qm(δmη))
∂χ

∂ηj
(δmη)dη + o(1)

=

∫
B(0,R)×[0,R)

n∑
j=1

δ
n−2
2

m χ(δmη)
∂φδm,qm
∂ηj

(ψ∂δm,qm(δmη))
∂Vi
∂ηj

(η)dη + o(1).

Somando e subtraindo o termo, que pelos cálculos anteriores, satisfaz

δm

∫
B(0,R)×[0,R)

n∑
j=1

δ
n−2
2

m φδm,qm(ψ∂δm,qm(δmη))
∂χ

∂ηj
(δmη)

∂Vi
∂ηj

(η)dη = o(1),
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

na Equação (2.21), obtemos

I =

∫
B(0,R)×[0,R)

∇φ̃m(η)∇Vi(η)dη

+ δm

∫
B(0,R)×[0,R)

n∑
j=1

δ
n−2
2

m Vi(η)
∂φδm,qm
∂ηj

(ψ∂δm,qm(δmη))
∂χ

∂ηj
(δmη)dη

− δm
∫
B(0,R)×[0,R)

n∑
j=1

δ
n−2
2

m φδm,qm(ψ∂δm,qm(δmη))
∂χ

∂ηj
(δmη)

∂Vi
∂ηj

(η)dη.

Isto é,

I =

∫
B(0,R)×[0,R)

∇φ̃m(η)∇Vi(η)dη + o(1). (2.22)

Assim, por (2.22) e (2.2), temos

0 =
〈
φδm,qm , Z

i
δm,qm

〉
=

∫
Rn+
∇Vi∇φ̃m(η)dη + o(1). (2.23)

Logo, passando o limite em (2.23) e pela convergência fraca φ̃m ⇀ φ̃ em D1,2(Rn
+),

obtemos

0 =
〈
φδm,qm , Z

i
δm,qm

〉
=

∫
Rn+
∇Vi∇φ̃mdη + o(1) =

∫
Rn+
∇Vi∇φ̃dη. (2.24)

Por outro lado, como Vi é solução de (2.13) e usando a convergência fraca novamente,

temos que ∫
Rn+
∇Vi∇φ̃mdη =

∫
∂Rn+

nU
2

n−2

1 V φ̃mdz = n

∫
∂Rn+

U
2

n−2

1 φ̃dz. (2.25)

Desse modo, combinando (2.24) e (2.25), temos∫
Rn+
∇Vi∇φ̃dη = n

∫
∂Rn+

U
2

n−2

1 φ̃dz. (2.26)

Agora podemos expressar

φδm,qm − i∗(f ′εm(Wδm,qm)[φδm,qm ]) = Π⊥δm,qm{φδm,qm − i
∗(f ′εm(Wδm,qm)[φδm,qm ])}

+ Πδm,qm{φδm,qm − i∗(f ′εm(Wδm,qm)[φδm,qm ])}

= Lδm,qm(φδm,qm) +
n−1∑
i=0

cimZ
i
δm,qm

para certos cim. Queremos mostrar que para todo i ∈ {0, . . . , n − 1}, tem-se cim → 0
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

quando m→∞. Equivalentemente reexpressamos

φδm,qm − i∗(f ′εm(Wδm,qm)[φδm,qm ])− Lδm,qm(φδm,qm) =
n−1∑
i=0

cimZ
i
δm,qm . (2.27)

Fazendo o produto interno da Equação (2.27) com Zj
δm,qm

, obtemos

n∑
i=0

cim
〈
Zi
δm,qm , Z

j
δm,qm

〉
=
〈
φδm,qm , Z

j
δm,qm

〉
−
〈
i∗(f ′εm(Wδm,qm)[φδm,qm ]), Zj

δm,qm

〉
−
〈
Lδm,qm(φδm,qm), Zj

δm,qm

〉
.

Levando em conta que φδm,qm ∈ K⊥δm,qm e Lδm,qm(φδm,qm) ∈ K⊥δm,qm , temos que
〈
φδm,qm , Z

j
δm,qm

〉
=

0 e
〈
Lδm,qm(φδm,qm), Zj

δm,qm

〉
= 0, o que nos dá

n−1∑
i=0

cim
〈
Zi
δm,qm , Z

j
δm,qm

〉
= −

〈
i∗(f ′εm(Wδm,qm)[φδm,qm ]), Zj

δm,qm

〉
.

Pela definição de i∗, temos

n−1∑
i=0

cim
〈
Zi
δm,qm , Z

j
δm,qm

〉
= −

∫
∂M

f ′εm(Wδm,qm)[φδm,qm ]Zi
δm,qmdσ. (2.28)

Agora fazendo o produto interno da Equação 2.27 por φδm,qm , temos

〈φδm,qm , φδm,qm〉−
〈
i∗(f ′εm(Wδm,qm)[φδm,qm ]), φδm,qm

〉
−〈φδm,qm , Lδm,qm(φδm,qm)〉 =

n−1∑
i=0

cim
〈
Zi
δm,qm , φδm,qm

〉
.

Como no caso anterior, temos
〈
i∗(f ′εm(Wδm,qm)[φδm,qm ]), φδm,qm

〉
= 0 e

∑n−1
i=0 c

i
m

〈
Zi
δm,qm

, φδm,qm
〉

=

0 e assim ficamos com

‖φδm,qm‖2 −
∫
∂M

f ′εm(Wδm,qm)φ2
δm,qmdσ = 0.

Ou seja, temos ∫
∂M

f ′εm(Wδm,qm)φ2
δm,qmdσ = ‖φδm,qm‖2 ≤ 1.

Assim, f ′εm(Wδm,qm)
1
2φδm,qm é limitada em L2(∂M).

Afirmação 2.2.
∫
∂M

f ′εm(Wδm,qm)φ2
δm,qm

dσ = o(1).

30



2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Substituindo cada termo por sua respectiva expressão, obtemos∫
∂M

f ′εm(Wδm,qm)φ2
δm,qmdσ

= C

∫
∂M

[
Uδm((ψ∂qm)−1(ξ))χ((ψ∂qm)−1(ξ))

] 2
n−2
±εm

φδm,qmδ
2−n
2 Vi(δ

−1
m (ψ∂qm)−1(ξ))dσ,

em que C = n± (n− 2)ε. Fazendo a mudança de coordenadas, obtemos∫
∂M

f ′εm(Wδm,qm)φ2
δm,qmdσ

= C

∫
B(0,R)

√
g(z, 0) [Uδm(z, 0)χ(z, 0)]

2
n−2
±εm φδm,qmδ

2−n
2

m Vi(δ
−1
m (z, 0))dz.

Como
√
g, χ±

n−2
2
εm e U

±n−2
2
εm

δm
são limitadas, uma vez que

Uδm(z, 0)±εm ≤ (δ−1
m )±

n−2
2
εm = δ

∓n−2
2
εm

m

δ
∓n−2

2
εm

m = 1∓n− 2

2
εm ln δm+O(ε2

m ln2 δm) = 1∓n− 2

2
ε ln(dmεm)+O(ε2

m ln2 εm) ≤ C1.

(2.29)

Assim, obtemos a estimativa∫
∂M

f ′εm(Wδm,qm)φ2
δm,qmdσ ≤ C2

∫
B(0,R)

n

(
δm

δ2
m + |z|2

)
χ(z, 0)φδm,qmδ

2−n
2

m Vi(δ
−1
m (z, 0))dz.

Colocando as potências de δm em evidência, obtemos∫
∂M

f ′εm(Wδm,qm)φ2
δm,qmdσ ≤ C2δ

−n
2

m

∫
B(0,R)

n

(
1

1 + |z/δm|2

)
χ(z, 0)φδm,qmVi(δ

−1
m (z, 0))dz.

Fazendo a mudança de variável w = δ−1
m z, que nos dá o elemento de dw = δ−n+1

m dz,

ficamos com∫
∂M

f ′εm(Wδm,qm)φ2
δm,qmdσ

≤ C2δ
−n

2
m

∫
B(0,R)

n

(
1

1 + |w|2

)
χ(δmw, 0)φδm,qm(δmw, 0)Vi(w, 0)δ−n+1

m dw

= C2

∫
B(0,R)

n

(
1

1 + |w|2

)
δ
n−2
2

m χ(δmw, 0)φδm,qm(δmw, 0)Vi(w, 0)dw

= C2

∫
B(0,R)

nU
2

n−2

1 (w, 0)φ̃m(w, 0)Vi(w, 0)dw.
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Como Vi é limitada, então∫
∂M

f ′εm(Wδm,qm)φ2
δm,qmdσ ≤ C3

∫
B(0,R)

nU
n
n−2

1 (w, 0)φ̃m(w, 0)dw.

Como φ̃m ⇀ φ̃ em Lqloc(∂Rn
+) para 1 ≤ q < 2(n−1)

n−2
então∫

B(0,R)

nU
n
n−2

1 (w, 0)φ̃m(w, 0)dw →
∫
B(0,R)

nU
n
n−2

1 (w, 0)φ̃(w, 0)dw.

Usando (2.26), ficamos com∫
∂M

f ′εm(Wδm,qm)φ2
δm,qmdσ = o(1).

Analogamente aos cálculos anteriores, temos que

|
〈
Zi
δm,qm , Z

j
δm,qm

〉
| = Cδij. (2.30)

Assim, substituindo (2.30) em (2.28), e fazendo m→∞, obtemos que

cim → 0. (2.31)

Agora tomamos a norma ‖ · ‖H na identidade (2.27), ficamos com

‖φδm,qm − i∗(f ′εm(Wδm,qm))[φδm,qm‖H =

∥∥∥∥∥
n−1∑
i=0

cimZ
i
δm,qm + Lδm,qm(φδm,qm)

∥∥∥∥∥
H

≤
n−1∑
i=0

|cim|‖Zi
δm,qm‖H + ‖Lδm,qm(φδm,qm)‖H.

(2.32)

Como supomos que ‖Lδm,qm(φδm,qm)‖H = o(1) no ińıcio do lema e usando o Fato (2.31),

ficamos com

‖φδm,qm − i∗(f ′εm(Wδm,qm))[φδm,qm‖H = o(1). (2.33)

Agora tomamos uma função ϕ ∈ C∞0 (Rn
+) cujo suporte está contido em B(0, R) e defina

a sequência de funções

ϕm(ξ) = δ
2−n
2

m ϕ(δ−1
m (ψ∂qm)−1ξ)χ((ψ∂qm)−1ξ), com ξ ∈M.
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Podemos expressar 〈φδm,qm , ϕm〉 da seguinte maneira

〈φδm,qm , ϕm〉 = 〈φδm,qm − i∗(f ′εm(Wδm,qm)[φδm,qm ]) + i∗(f ′εm(Wδm,qm)[φδm,qm ]), ϕm〉

= 〈φδm,qm − i∗(f ′εm(Wδm,qm)[φδm,qm ]), ϕm〉+ 〈i∗(f ′εm(Wδm,qm)[φδm,qm ]), ϕm〉

= 〈φδm,qm − i∗(f ′εm(Wδm,qm)[φδm,qm ]), ϕm〉+

∫
∂M

f ′εm(Wδm,qm)[φδm,qm ]ϕmdσ.

Por (2.33), ficamos com

〈φδm,qm , ϕm〉 =

∫
∂M

f ′εm(Wδm,qm)[φδm,qm ]ϕmdσ + o(1).

Analogamente à prova da Afirmação (2.2), vemos que

〈φδm,qm , ϕm〉 = (n± (n− 2)εm)

∫
B(0,R)

δ
∓ n
n−2

εm
m U

n
n−2
±εm

1 (z, 0)φ̃m(z, 0)ϕ(z, 0)dz + o(1).

Assim, ficamos com

〈φδm,qm , ϕm〉 = n

∫
B(0,R)

U
n
n−2

1 (z, 0)φ̃m(z, 0)ϕ(z, 0)dz + o(1).

Como φ̃m → φ̃ em Lqloc(∂R
n−1
+ ) para 1 ≤ q < 2(n−1)

n−2
, então

n

∫
B(0,R)

U
n
n−2

1 (z, 0)φ̃m(z, 0)ϕ(z, 0)dz + o(1) = n

∫
B(0,R)

U
n
n−2

1 (z, 0)φ̃(z, 0)ϕ(z, 0)dz,

(2.34)

pois∫
B(0,R)

|U
n
n−2

1 (z, 0)ϕ(z, 0)||φ̃m(z, 0)− φ̃(z, 0)|dz ≤ ‖U
n
n−2

1 (z, 0)ϕ(z, 0)‖L∞(B(0,R))

×
∫
B(0,R)

|φ̃m(z, 0)− φ̃(z, 0)|dz = o(1).

Por outro lado, temos

〈φδm,qm , ϕm〉 =

∫
B(0,R)×[0,R)

∇φ̃∇ϕdη + o(1). (2.35)

Assim, combinando (2.34) e (2.35) e passando o limite obtemos:

n

∫
B(0,R)

U
n
n−2

1 (z, 0)φ̃(z, 0)ϕ(z, 0)dz =

∫
B(0,R)×[0,R)

∇φ̃(η)∇ϕ(η)dη, (2.36)

que, como vimos anteriormente, nos diz que φ̃ é solução fraca de (2.12). Assim, temos
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

que φ̃ é uma combinação das funções Vi. Mas como t́ınhamos constrúıdo a sequência

φ̃m ∈ K⊥δm,qm , e consequentemente o limite φ̃ ∈ K⊥δ,q, o que obriga que

φ̃ = 0.

Procedendo de maneira análoga, encontramos que

‖φδm,qm‖2 = 〈φδm,qm , φδm,qm〉

=

∫
∂M

f ′εm(Wδm,qm)[φδm,qm ]φδm,qmdσ + o(1)

= (n± εm(n− 2))

∫
B(0,R)

δ
∓εm n

n−2
m U

n
n−2
±εm

1 (z, 0)φ̃2
m(z, 0)ϕ(z, 0)dz + o(1)

= o(1).

(2.37)

De maneira similar a (2.32), tomando desta vez a norma ‖ · ‖Lsε (∂M), temos

‖φδm,qm‖Lsε (∂M) ≤ ‖i∗(f ′εm(Wδm,qm)[φδm,qm ])‖Lsεm (∂M) + o(1) = o(1). (2.38)

Desse modo, por (2.37) e (2.38), temos que

‖φδm,qm‖H = ‖φδm,qm‖+ ‖φδm,qm‖Lsε (∂M) = o(1), (2.39)

o que é uma contradição, pois ‖φδm,qm‖H = 1. Assim, finalizamos a demonstração.

Lema 2.8. Sejam a, b ∈ R, 0 < a < b tais que existe uma constante positiva C1 =

C1(a, b) para a qual, dados ε pequeno, q ∈ ∂M e d ∈ [a, b] tem-se

‖Rε,δ,q‖H ≤ C1ε| ln ε|.

Observação 2.10. Dividiremos a demonstração do lema em três afirmações principais.

Cada uma é responsável por uma estimativa e ao fim utilizaremos as três estimativas

para provar o lema.

Demonstração. Sendo f0(Wδ,q) ∈ L
2(n−1)
n (∂M), sabemos que existe Γ que satisfaz{

−∆gΓ + a(x)Γ = 0 em M,
∂
∂ν

Γ + n−2
2
b(x)Γ = f0 (Wδ,q) sobre ∂M,

(P0)

em que Γ (x) = i∗(f0 (Wδ,q (x)) , isto é, a solução fraca de (P0).

Afirmação 2.3. ‖i∗(f0(Wδ,q))−Wδ,q‖ = O(ε).
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De fato, temos

‖i∗ (f0 (Wδ,q))−Wδ,q‖2 = ‖Γ−Wδ,q‖2

=

∫
M

(
|∇g (Γ−Wδ,q) |2 + a(x) (Γ−Wδ,q)

2) dµg
+
n− 2

2

∫
∂M

b(x) (Γ−Wδ,q)
2 dσ.

Pela fórmula de integração por partes, temos

‖Γ−Wδ,q‖2 =

∫
M

(−∆g (Γ−Wδ,q) + a(x) (Γ−Wδ,q)) (Γ−Wδ,q) dµg

+

∫
∂M

[
∂ (Γ−Wδ,q)

∂ν
+

(n− 2)

2
b(x) (Γ−Wδ,q)

]
(Γ−Wδ,q) dσ.

Como Γ é solução fraca, então

‖Γ−Wδ,q‖2 =

∫
M

(∆gWδ,q − a(x)Wδ,q) (Γ−Wδ,q) dµg

+

∫
∂M

[
f0 (Wδ,q)−

∂Wδ,q

∂ν

]
(Γ−Wδ,q) dµg

− (n− 2)

2

∫
∂M

b(x)Wδ,q (Γ−Wδ,q) dµg := I1 + I2 + I3.

i) Pela Desigualdade de Hölder, temos

I1 ≤ ‖∆gWδ,q − a(x)Wδ,q‖
L

2n
n+2 (M)

‖Γ−Wδ,q‖
L

2n
n−2 (M)

.

Pelo Teorema de Imersão de Sobolev, existe C > 0 tal que

I1 ≤ C‖∆gWδ,q − a(x)Wδ,q‖
L

2n
n+2 (M)

‖Γ−Wδ,q‖.

Mostraremos que ‖∆gWδ,q − a(x)Wδ,q‖ = O(δ). Primeiramente, temos

‖Wδ,q‖
L

2n
n+2 (M)

=

(∫
M

W
2n
n+2

δ,q dµg

)n+2
2n

=

(∫
M

[
Uδ((ψ

∂
q )−1)χ((ψ∂q )−1))

] 2n
n+2 dµg

)n+2
2n

.
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Como χ tem suporte compacto contido em B(0, R)× [0, R), temos

‖Wδ,q‖
L

2n
n+2 (M)

=

(∫
ψ∂q (B(0,R)×[0,R))

[
Uδ((ψ

∂
q )−1)χ((ψ∂q )−1))

] 2n
n+2 dµg

)n+2
2n

=

(∫
B(0,R)×[0,R)

√
g(x, t) [Uδ(x, t)χ(x, t)]

2n
n+2 dxdt

)n+2
2n

,

em que (x, t) são as coordenadas de Fermi em torno de q ∈ ∂M. Pela Desigualdade de

Hölder, temos

‖Wδ,q‖
L

2n
n+2 (M)

≤ ‖χ
2n
n+2
√
g‖

n+2
2n

L∞(B(0,R)×[0,R))

(∫
B(0,R)×[0,R)

Uδ(x, t)
2n
n+2dxdt

)n+2
2n

= C

(∫
B(0,R)×[0,R)

Uδ(x, t)
2n
n+2dxdt

)n+2
2n

.

Pelo Lema A.1, supondo n ≥ 5, temos que

‖Wδ,q‖
L

2n
n+2 (M)

= O(δ2). (2.40)

Agora expressemos o Laplaciano da seguinte maneira:

∆gWδ,q = ∆[Uδχ] +
n∑

i,j=1

(
gij − δij

) ∂2[Uδχ]

∂xi∂xj
−

n∑
i,j,k=1

gijΓkij
∂[Uδχ]

∂xk
. (2.41)

Em relação ao termo ∆Wδ,q, temos que

‖∆[Uδχ]‖
L

2n
n+2 (M)

= ‖χ∆Uδ + Uδ∆χ+ 2∇Uδ∇χ‖
L

2n
n+2 (M)

.

Mas como Uδ é solução do Problema (2.12), então ∆Uδ = 0, o que nos dá

‖∆[Uδχ]‖
L

2n
n+2 (M)

= ‖Uδ∆χ+ 2∇Uδ∇χ‖
L

2n
n+2 (M)

,

dem que já vimos por (2.40), temos que

‖Uδ∆χ‖
L

2n
n+2 (M)

= O(δ2). Já para ∇Uδ∇χ, tem-se

‖∇Uδ∇χ‖
L

2n
n+2 (M)

=

(∫
M

|∇Uδ∇χ|
2n
n+2dµg

)n+2
2n

.
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Pela Desigualdade de Cauchy-Schwartz, temos

‖∇Uδ∇χ‖
L

2n
n+2 (M)

≤
(∫

M

|∇Uδ|
2n
n+2 |∇χ|

2n
n+2dµg

)n+2
2n

.

Analogamente ao cálculo de ‖Wδ,q‖
L

2n
n+2 (M)

, temos que

‖∇Uδ∇χ‖
L

2n
n+2 (M)

≤ C

(∫
B(0,R)×[0,R)

|∇Uδ(x, t)|
2n
n+2dxdt

)n+2
2n

. (2.42)

Um cálculo direto nos dá

∇Uδ(x, t) =

((
∂Uδ
∂t

)2

+
n−1∑
k=1

(
∂Uδ
∂xk

)2
) 1

2

=

[(2− n)δ
n−2
2 (δ + t)

((δ + t)2 + |x|2)
n
2

]2

+
n−1∑
k=1

[
(2− n)δ

n−2
2 xk

((δ + t)2 + |x|2)
n
2

]2
 1

2

= (n− 2)Uδ(x, t).

(2.43)

Usando o Lema A.2, supondo n ≥ 5, temos que ‖∇Uδ∇χ‖
L

2n
n+2 (M)

= O(δ). Assim,

‖∆[Uδχ]‖
L

2n
n+2 (M)

= O(δ2). De maneira análoga, temos que

∥∥∥∥∥
n∑

i,j,k=1

gijΓkij
∂[Uδχ]

∂xk

∥∥∥∥∥
L

2n
n+2 (M)

≤ C
n∑
k=1

∥∥∥∥∂[Uδχ]

∂xk

∥∥∥∥
L

2n
n+2 (M)

= C
n∑
k=1

(∥∥∥∥χ∂Uδ∂xk

∥∥∥∥
L

2n
n+2 (M)

+

∥∥∥∥Uδ ∂χ∂xk
∥∥∥∥
L

2n
n+2 (M)

)

= C
n∑
k=1

∥∥∥∥χ∂Uδ∂xk

∥∥∥∥
L

2n
n+2 (M)

+O(δ2)

(2.44)

por conta de (2.40) e que

∥∥∥∥χ∂Uδ∂xk

∥∥∥∥
L

2n
n+2 (M)

≤ C1

(∫
B(0,R)×[0,R)

∣∣∣∣∂Uδ∂xk
(x, t)

∣∣∣∣ 2n
n+2

dxdt

)n+2
2n

= C2

∫
B(0,R)×[0,R)

[
δ
n−2
2 |xk|

((δ + t)2 + |x|2)
n
2

] 2n
n+2

dxdt


n+2
2n

≤ C2

(∫
B(0,R)×[0,R)

δ
n(n−2)
n+2 |x|

2n
n+2dxdt

((δ + t)2 + |x|2)
n2

n+2

)n+2
2n

.
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Pelo Lema A.1, supondo n ≥ 4, temos que∥∥∥∥∥
n∑

i,j,k=1

gijΓkij
∂[Uδχ]

∂xk

∥∥∥∥∥
L

2n
n+2 (M)

= O(δ). (2.45)

Lembrando que gij − δij = 2hij(0)t + O(|(x, t)|2) e repetindo o mesmo procedimento

anterior, obtemos que ∥∥∥∥∥
n∑

i,j=1

(gij − δij)
∂2[Uδχ]

∂xi∂xj

∥∥∥∥∥
L

2n
n+2 (M)

= O(δ), (2.46)

concluindo assim a demonstração de que

‖∆gWδ,q − a(x)Wδ,q‖ = O(δ). (2.47)

Portanto, vale

I1 = ‖Γ−Wδ,q‖O(δ). (2.48)

ii) Pela Desigualdade de Hölder, temos

I2 ≤ ‖Γ−Wδ,q‖
L

2(n−1)
n−2 (∂M)

∥∥∥∥f0(Wδ,q)−
∂Wδ,q

∂ν

∥∥∥∥
L

2(n−1)
n (∂M)

.

Pelo Teorema do Traço, existe C > 0 tal que

I2 ≤ C‖Γ−Wδ,q‖
∥∥∥∥f0(Wδ,q)−

∂Wδ,q

∂ν

∥∥∥∥
L

2(n−1)
n (∂M)

.

Pelo Lema A.3 supondo n ≥ 3, vemos que∥∥∥∥f0(Wδ,q)−
∂Wδ,q

∂ν

∥∥∥∥
L

2(n−1)
n (∂M)

= O(δ2). (2.49)

Assim,

I2 = ‖Γ−Wδ,q‖O(δ2). (2.50)

iii) Pela Desigualdade de Hölder, temos

I3 ≤ ‖Γ−Wδ,q‖
L

2(n−1)
n−2 (∂M)

‖Wδ,q‖
L

2(n−1)
n (∂M)

.
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Pelo Teorema do Traço, temos

I3 ≤ C‖Γ−Wδ,q‖‖Wδ,q‖
L

2(n−1)
n (∂M)

,

mas ‖Wδ,q‖
L

2(n−1)
n (∂M)

= O(δ), pois

‖Wδ,q‖
L

2(n−1)
n (∂M)

≤ C

(∫
Rn−1

Uδ(z, 0)
2(n−1)
n dz

) n
2(n−1)

,

que pelo Lema A.3 supondo n ≥ 5,

‖Wδ,q‖
L

2(n−1)
n (∂M)

= O(δ). (2.51)

Dessa maneira, temos

I3 = ‖Γ−Wδ,q‖O(δ). (2.52)

Portanto, por (2.48), (2.50) e (2.52), temos que

‖i∗(f0(Wδ,q))−Wδ,q‖ = ‖Γ−Wδ,q‖ = O(δ). (2.53)

Pondo δ = dε, ficamos com

‖i∗(f0(Wδ,q))−Wδ,q‖ = O(ε). (2.54)

Afirmação 2.4. No caso (P−ε), vale ‖i∗(fε(Wδ,q))− i∗(f0(Wδ,q))‖ = O(ε) +O(ε| ln ε|).

De fato, temos por linearidade que

‖i∗(fε(Wδ,q))− i∗(f0(Wδ,q))‖ = ‖i∗(fε(Wδ,q)− f0(Wδ,q))‖

≤ ‖i∗‖
L(L

2(n−1)
n (∂M),H1(M))

‖fε(Wδ,q)− f0(Wδ,q)‖
L

2(n−1)
n (∂M)

= ‖fε(Wδ,q)− f0(Wδ,q)‖
L

2(n−1)
n (∂M)

= (n− 2)
∥∥∥W n

n−2
±ε

δ,q −W
n
n−2

δ,q

∥∥∥
L

2(n−1)
n (∂M)

≤ C

(∫
Rn−1

[
(U±ε(z, 0)− 1)U

n
n−2 (z, 0)

] 2(n−1)
n

dz

) n
2(n−1)

.

(2.55)

Substituindo U±ε(z, 0) = 1

δ±ε
(n−2)

2

U±ε(z, 0) + U±ε(z, 0) − 1

δ±ε
(n−2)

2

U±ε(z, 0) em (2.55),
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ficamos com

‖i∗(fε(Wδ,q))− i∗(f0(Wδ,q))‖

≤ C

(∫
Rn−1

[(
1

δ±ε
(n−2)

2

U±ε(z, 0)− 1

)
U

n
n−2 (z, 0)

] 2(n−1)
n

dz

) n
2(n−1)

+O(δ2).
(2.56)

Consideremos agora as expansões de Taylor em relação a ε de ordem 1:

U±ε = 1± ε lnU +O(ε2 ln2 U), (2.57)

1

δ±ε
n−2
2

= δ∓ε
n−2
2 = 1∓ εn− 2

2
ln δ +O(ε2 ln2 δ). (2.58)

Substituindo (2.57) e (2.58) em (2.56), obtemos

‖i∗(fε(Wδ,q))− i∗(f0(Wδ,q))‖

≤ C

∫
Rn−1

∣∣∣∣(∓n− 2

2
ε ln δ ± ε lnU(z, 0) +O(ε2) +O(ε2 ln δ)

)
U

n
n−2 (z, 0)

∣∣∣∣
2(n−1)
n

dz

 n
2(n−1)

+O(δ2)

=
n− 2

2
ε| ln δ|

(∫
Rn−1

U
2(n−1)
n−2

δ (z, 0)dz

) n
2(n−1)

+ ε

(∫
Rn−1

U
2(n−1)
n−2

δ (z, 0) lnUδ(z, 0)dz

) n
2(n−1)

+O(ε2) +O(ε2| ln δ|) +O(δ2).

Já vimos que

n− 2

2
ε| ln δ|

(∫
Rn−1

U
2(n−1)
n−2

δ (z, 0)dz

) n
2(n−1)

= O(ε| ln δ|). (2.59)

Para o segundo termo, note que

lnUδ(z, 0) = ln

(
δ

δ2 + |z|2

)n−2
2

=
n− 2

2
ln

(
δ

δ2 + |z|2

)
<
n− 2

2
ln

(
δ

δ2

)
=
n− 2

2
ln(δ−1) =

2− n
2

ln δ.

(2.60)

Tomando o módulo em (2.60) e considerando δ < 1, ficamos com

| lnUδ(z, 0)| < n− 2

2
| ln δ|. (2.61)
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Por (2.59) e (2.61), temos que

n− 2

2
ε| ln δ|

(∫
Rn−1

U
2(n−1)
n−2

δ (z, 0)dz

) n
2(n−1)

+ε

(∫
Rn−1

U
2(n−1)
n−2

δ (z, 0) lnUδ(z, 0)dz

) n
2(n−1)

= O(ε| ln δ|)

e, consequentemente, que

‖i∗(fε(Wδ,q))− i∗(f0(Wδ,q))‖ = O(ε) +O(ε| ln δ|) +O(δ2). (2.62)

Pondo δ = dε, ficamos com

‖i∗(fε(Wδ,q))− i∗(f0(Wδ,q))‖ ≤ C‖fε(Wδ,q)− f0(Wδ,q)‖
L

2(n−1)
n (∂M)

= O(ε| ln ε|). (2.63)

Afirmação 2.5. No caso (P+ε), temos ‖i∗(fε(Wδ,q))− i∗(f0(Wδ,q))‖ = O(ε| ln ε|).

De fato, temos

‖Rε,δ,q‖Lsε (∂M) ≤ ‖Π⊥δ,q‖L(H1(M),H1(M))‖i∗(fε(Wδ,q(x)))−Wδ,q(x)‖Lsε (∂M)

= ‖i∗(fε(Wδ,q(x)))−Wδ,q(x)‖Lsε (∂M).

Pela desigualdade triangular, temos

‖Rε,δ,q‖Lsε (∂M) ≤ ‖i∗(fε(Wδ,q(x)))− i∗(f0(Wδ,q(x)))‖Lsε (∂M)

+ ‖i∗(f0(Wδ,q(x)))−Wδ,q(x)‖Lsε (∂M).
(2.64)

Denotamos Γ = i∗(f0(Wδ,q)).

Observação 2.11. Γ−Wδ,q é solução de −∆g (Γ−Wδ,q) + a(x) (Γ−Wδ,q) = ∆gWδ,q − a(x)Wδ,q em M,
∂(Γ−Wδ,q)

∂ν
+ n−2

2
b(x) (Γ−Wδ,q) = f0(Γ)− ∂Wδ,q

∂ν
− n−2

2
b(x)Wδ,q sobre ∂M,

(2.65)

uma vez que

−∆g (Γ−Wδ,q) + a(x) (Γ−Wδ,q) = −∆gΓ + ∆gWδ,q + a(x)Γ− a(x)Wδ,q.

Mas como Γ é solução de (P0), então −∆gΓ + a(x)Γ = 0, o que nos dá a primeira

equação

−∆g (Γ−Wδ,q) + a(x) (Γ−Wδ,q) = ∆gWδ,q − a(x)Wδ,q em M
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e também

∂(Γ−Wδ,q)

∂ν
+
n− 2

2
b(x) (Γ−Wδ,q) =

∂Γ

∂ν
− ∂Wδ,q

∂ν
+
n− 2

2
b(x)Γ− n− 2

2
b(x)Wδ,q.

Novamente, como Γ é solução de (P0), então ∂Γ
∂ν

+ n−2
2
b(x)Γ = f0(Γ), o que nos dá a

segunda equação

∂ (Γ−Wδ,q)

∂ν
+
n− 2

2
b(x) (Γ−Wδ,q) = f0(Γ)− ∂Wδ,q

∂ν
− n− 2

2
b(x)Wδ,q em ∂M.

Agora utilizaremos o Teorema 2.5, tomando q de tal maneira que (n−1)q
n−2q

= 2(n−1)
n−2

+nε =

sε, isto é,

q =
2n+ n2

(
n−2
n−1

)
ε

n+ 2 + 2n
(
n−2
n−1

)
ε

e u = Γ−Wδ,q, f0 = ∆gWδ,q−a(x)Wδ,q e g = f0(Γ)− ∂
∂ν
Wδ,q− n−2

2
b(x)Wδ,q. O teorema

nos garante a existência de C > 0 tal que

‖Γ−Wδ,q‖Lsε (∂M) ≤ C‖∆gWδ,q − a(x)Wδ,q‖Lq+ε(∂M)

+

∥∥∥∥f0(Γ)− ∂

∂ν
Wδ,q −

n− 2

2
b(x)Wδ,q

∥∥∥∥
L

(n−1)q
n−q (∂M)

.

Observação 2.12. Note que

q =
2n+ n2

(
n−2
n−1

)
ε

n+ 2 + 2n
(
n−2
n−1

)
ε

=
2n

n+ 2
+

n2
(
n−2
n−1

)
ε

(n+ 2)(n+ 2 + 2n
(
n−2
n−1

)
ε

=
2n

n+ 2
+O+(ε),

(2.66)

em que 0 < O+(ε) < n2(n−2)ε
(n−1)(n+2)2

= Cε.

Através de cálculos análogos aos que fizemos no ińıcio do lema e usando o Fato

(2.66), obtemos

‖a(x)Wδ,q‖Lq+ε(M) ≤ Cδ2−O+(ε);

‖b(x)Wδ,q‖
L

(n−1)q
n−q +ε

(∂M)
≤ Cδ1−O+(ε).

Também obtemos por (2.41), (2.44), (2.46) e (2.49) que

‖∆gWδ,q‖Lq+ε(M) ≤ Cδ2−O+(ε),∥∥∥∥f0(Wδ,q)−
∂Wδ,q

∂ν

∥∥∥∥
L

(n−1)q
n−q (∂M)

≤ Cδ1−O+(ε).
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Como i∗(fε(Wδ,q)) é a solução do problema{
−∆gΓ + a(x)Γ = 0 em M,
∂
∂ν

Γ + n−2
2
b(x)Γ = fε (Wδ,q) sobre ∂M,

(2.67)

aplicamos novamente o Teorema 2.5 e obtemos, pelas Expansões (2.57) e (2.58), que

‖i∗(fε(Wδ,q))− i∗(f0(Wδ,q))‖Lsε (∂M) = ‖i∗(fε(Wδ,q))− i∗(f0(Wδ,q))‖
L

2(n−1)
n +O+(ε)

≤ ‖fε(Wδ,q)− f0(Wδ,q)‖
L

2(n−1)
n +O+(ε)

≤ Cδ−O
+(ε)

(∫
Rn−1

[(
1

δε
n−2
2

U ε
δ (z, 0)− 1

)
U ε
δ (z, 0)dz

] 2(n−1)
n

+O+(ε)
) 1

2(n−1)
n +O+(ε)

+O(δ2).

(2.68)

Usando a Estimativa (2.63) obtemos

‖i∗(fε(Wδ,q))− i∗(f0(Wδ,q))‖Lsε (∂M) = δ−O
+(ε)(O(ε| ln δ|) +O(ε)) +O(δ2)

= O(ε| ln δ|) +O(ε) +O(δ2).

Pondo δ = dε, obtemos

‖i∗(fε(Wδ,q))−i∗(f0(Wδ,q))‖Lsε (∂M) ≤ ‖fε(Wδ,q)−f0(Wδ,q)‖Lsε (∂M) = O(ε| ln ε|). (2.69)

Para finalizar a demonstração do lema, estimamos

‖Rε,δ,q‖H = ‖Rε,δ,q‖+ ‖Rε,δ,q‖Lsε (∂M)

= ‖Π⊥δ,q{i∗(fε(Wδ,q))−Wδ,q}‖+ ‖Rε,δ,q‖Lsε (∂M)

≤ ‖i∗(fε(Wδ,q))−Wδ,q‖+ ‖Rε,δ,q‖Lsε (∂M).

Pela Desigualdade Triangular, obtemos

‖Rε,δ,q‖H ≤ ‖i∗(f0(Wδ,q))−Wδ,q‖

+ ‖i∗(fε(Wδ,q))− i∗(f0(Wδ,q))‖+ ‖Rε,δ,q‖Lsε (∂M).

Usando as estimativas enunciadas nas Afirmações 2.3, 2.4 e 2.5, ficamos com

‖Rε,δ,q‖H = O(ε| ln ε|).
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Assim, existe C1 > 0 tal que

‖Rε,δ,q‖H ≤ C1ε| ln ε|,

concluindo a demonstração.

Proposição 2.9. Dados a, b ∈ R, com 0 < a < b, existe uma constante positiva

C = C(a, b) tal que, para ε suficientemente pequeno e para quaisquer q ∈ ∂M e

d ∈ [a, b], existe uma única φδ,q solução de (2.15) que satisfaz ‖φδ,q‖H ≤ Cε| ln ε|. Além

disso, a aplicação q 7→ φδ,q ∈ C1(∂M,H).

Demonstração. Primeiramente, temos que

N(φ1)−N(φ2) = Π⊥δ,q{i∗(fε(Wδ,q + φ1))− i∗(fε(Wδ,q))− i∗(f ′ε(Wδ,q) · φ1)}

− Π⊥δ,q{i∗(fε(Wδ,q + φ2))− i∗(fε(Wδ,q))− i∗(f ′ε(Wδ,q) · φ2)}.

Como Π⊥δ,q e i∗ são operadores lineares, temos

N(φ1)−N(φ2) = Π⊥δ,q{i∗(fε(Wδ,q + φ1(x))− fε(Wδ,q)− f ′ε(Wδ,q) · φ1)− (fε(Wδ,q + φ2)− fε(Wδ,q)− f ′ε(Wδ,q) · φ2)}.

Isto é,

N(φ1)−N(φ2) = Π⊥δ,q{i∗(fε(Wδ,q + φ1)− fε(Wδ,q + φ2)− f ′ε(Wδ,q) · [φ1 − φ2])}. (2.70)

Tomando a norma ‖ · ‖H em (2.70), temos

‖N(φ1)−N(φ2)‖H = ‖Π⊥δ,q{i∗(fε(Wδ,q + φ1)− fε(Wδ,q + φ2)− f ′ε(Wδ,q) · [φ1 − φ2])}‖H
≤ ‖Π⊥δ,q‖L(H,H)‖i∗(fε(Wδ,q + φ1)− fε(Wδ,q + φ2)− f ′ε(Wδ,q) · [φ1 − φ2])‖H.

Já que Π⊥δ,q é projeção, então ‖Π⊥δ,q‖L(H,H) = 1. Assim,

‖N(φ1)−N(φ2)‖H ≤ ‖i∗(fε(Wδ,q + φ1)− fε(Wδ,q + φ2)− f ′ε(Wδ,q[φ1 − φ2]))‖H.

em que s′ε é o expoente conjugado de sε, dado por

s′ε =

{
2(n−1)
n

no caso (P−ε),
2(n−1)+εn(n−2)
n+εn(n−2)

no caso (P+ε) .

Pela continuidade do operador i∗, temos

‖N(φ1)−N(φ2)‖H ≤ C‖fε(Wδ,q + φ1(x))− fε(Wδ,q(x) + φ2(x))− f ′ε(Wδ,q) · [φ1 − φ2]‖Ls′ε (∂M),
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em que C = ‖i∗‖L(Ls
′
ε (∂M),H) = ‖i‖L(H,Lsε (∂M)) = 1. Então, ficamos com

‖N(φ1)−N(φ2)‖H ≤ ‖fε(Wδ,q + φ1)− fε(Wδ,q + φ2)− f ′ε(Wδ,q) · [φ1 − φ2]‖Ls′ε (∂M).

Pelo Teorema do Valor Médio, existe θ ∈ (0, 1) tal que

fε(Wδ,q + φ1)− fε(Wδ,q + φ2) = f ′ε(Wδ,q + θφ1 + (1− θ)φ2) · [φ1 − φ2].

Assim, ficamos com

‖N(φ1)−N(φ2)‖H ≤ ‖(f ′ε(Wδ,q + θφ1 + (1− θ)φ2) + f ′ε(Wδ,q)) · [φ1 − φ2]‖Ls′ε (∂M).

Usando a Desigualdade Hölder com expoentes p =
(
sε
s′ε

)′
e q = sε

s′ε
, ficamos com

‖N(φ1)−N(φ2)‖H ≤ ‖f ′ε(Wδ,q + θφ1 + (1− θ)φ2)− f ′ε(Wδ,q)‖
L
s′ε

(
sε
s′ε

)′
(∂M)

× ‖φ1 − φ2‖Lsε (∂M).

Denotamos γ = γ(φ1, φ2) = ‖f ′ε(Wδ,q + θφ1 + (1− θ)φ2)− f ′ε(Wδ,q)‖
L
s′ε

(
sε
s′ε

)′
(∂M)

.

Afirmação 2.6. Vale γ(φ1, φ2)→ 0 quando ‖φ1‖H → 0 e ‖φ2‖H → 0.

De fato,

γ =

(
2

n− 2
± ε
)(∫

∂M

∣∣∣|Wδ,q + θφ1 + (1− θ)φ2|
2

n−2
±ε − |Wδ,q|

2
n−2
±ε
∣∣∣s′ε( sεs′ε )′ dσ) 1

s′ε
(
sε
s′ε

)′

≤ C1

(∫
∂M

∣∣∣∣|Wδ,q + θφ1 + (1− θ)φ2|(
2

n−2
±ε)s′ε

(
sε
s′ε

)′
− |Wδ,q|(

2
n−2
±ε)s′ε

(
sε
s′ε

)′∣∣∣∣ dσ)
1

s′ε
(
sε
s′ε

)′
.

Pelo Teorema do Valor Médio, existe λ ∈ (0, 1) tal que

|Wδ,q + θφ1 + (1− θ)φ2|(
2

n−2
±ε)s′ε

(
sε
s′ε

)′
− |Wδ,q|(

2
n−2
±ε)s′ε

(
sε
s′ε

)′

=

(
n

n− 2
± ε
)
s′ε

(
sε
s′ε

)′
|Wδ,q|

[
( n
n−2
±ε)s′ε

(
sε
s′ε

)′
−1

]
[λ(θφ1 + (1− θ)φ2)].

Assim, ficamos com

γ ≤ C2

(∫
∂M

|Wδ,q|
[
( n
n−2
±ε)s′ε

(
sε
s′ε

)′
−1

]
|λ(θφ1 + (1− θ)φ2)|dσ

) 1

s′ε
(
sε
s′ε

)′
.
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Novamente usamos a Desigualdade de Hölder com p = s′ε e q = sε e obtemos

γ ≤ C2

(∫
∂M

|Wδ,q|
([

( n
n−2
±ε)s′ε

(
sε
s′ε

)′
−1

]
s′ε

)
dσ

) 1

(s′ε)2
(
sε
s′ε

)′ (∫
∂M

|θφ1 + (1− θ)φ2|sεdσ
) 1

sεs
′
ε

(
sε
s′ε

)′
.

Levando em consideração que

[(
n
n−2
± ε
)
s′ε

(
sε
s′ε

)′
− 1

]
s′ε <

(
n
n−2
± ε
)
s′ε e que |f ′ε(·)| ∈

Ls
′
ε(∂M), temos que

(∫
∂M

|Wδ,q|
([

( n
n−2
±ε)s′ε

(
sε
s′ε

)′
−1

]
s′ε

)
dσ

) 1

(s′ε)2
(
sε
s′ε

)′
<∞.

e, assim,

γ ≤ C3

(∫
∂M

|θφ1 + (1− θ)φ2|sεdσ
) 1

sεs
′
ε

(
sε
s′ε

)′

≤ C4

(∫
∂M

(|φ1|sε + |φ2|sε) dσ
) 1

sεs
′
ε

(
sε
s′ε

)′

= C4

(
‖φ1‖

s′ε

(
sε
s′ε

)′
Lsε (∂M) + ‖φ2‖

s′ε

(
sε
s′ε

)′
Lsε (∂M)

)

≤ C4

(
‖φ1‖

s′ε

(
sε
s′ε

)′
H + ‖φ2‖

s′ε

(
sε
s′ε

)′
H

)
→ 0

quando ‖φ1‖H → 0 e ‖φ2‖H → 0. Assim, temos que

‖N(φ1)−N(φ2)‖H ≤ γ‖φ1 − φ2‖Lsε (∂M) ≤ γ‖φ1 − φ2‖H. (2.71)

Fazendo ‖φ1‖H e ‖φ2‖H suficientemente pequenos, podemos considerar γ < 1. Tomando

φ2 = 0 em (2.71), vemos que

‖N(φ)‖H ≤ γ‖φ‖H. (2.72)

para algum γ < 1 desde que ‖φ‖H seja suficientemente pequeno. Relembremos que

pelo Lema 2.7, existe C0 > 0 tal que

‖Lδ,q(φ)‖H ≥ C0‖φ‖H. (2.73)

Dáı, temos que Lδ,q é injetivo. Além disso, restringindo Lδ,q na sua imagem a uma

bola pequena, temos também a sobrejetividade de Lδ,q. Dessa maneira, Lδ,q é bijetivo

e admite uma inversa L−1
δ,q , que, pela Equação (2.73), satisfaz

‖L−1
δ,q (φ)‖H ≤ C−1

0 ‖φ‖H. (2.74)

46



2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Além disso, pelo Lema 2.8, existe C1 > 0 tal que

‖Rε,δ,q‖H ≤ C1ε| ln ε|. (2.75)

Pelas Desigualdades (2.74) e (2.75), temos

‖L−1
δ,q (N(φ) +Rε,δ,q)‖H ≤ C−1

0 ‖N(φ) +Rε,δ,q‖H
≤ C−1

0 (‖N(φ)‖H + ‖Rε,δ,q‖H) .

Por (2.72) e (2.75), temos

‖L−1
δ,q (N(φ) +Rε,δ,q)‖H ≤ C−1

0 (γ‖φ‖H + C1ε| ln ε|) .

Tomando C = max
{
C−1

0 , C−1
0 C1

}
> 0, ficamos com

∥∥L−1
δ,q (N(φ) +Rε,δ,q)

∥∥
H ≤ C (γ‖φ‖H + ε| ln ε|) . (2.76)

Fixado este C > 0, podemos considerar γ satisfazendo 0 < Cγ < 1
2

desde que ‖φ‖H
seja suficientemente pequeno. Se tomarmos ‖φ‖H ≤ 2Cε| ln ε|, teremos, por (2.76), que

∥∥L−1
δ,q (N(φ) +Rε,δ,q)

∥∥
H <

1

2
‖φ‖H + Cε| ln ε|

≤ Cε| ln ε|+ Cε| ln ε|

= 2Cε| ln ε|.

Desse modo, a função T (φ) = L−1
δ,q (N(φ) + Rε,δ,q) é uma contração da bola {φ ∈

H; ‖φ‖H ≤ 2Cε| ln ε|} nela própria. Portanto, pelo Teorema do Ponto Fixo de Banach,

existe um único φδ,q com ‖φδ,q‖H ≤ 2Cε| ln ε| que satisfaz

φδ,q = T (φδ,q) = L−1
δ,q (N(φδ,q) +Rε,δ,q).

Aplicando Lδ,q, temos

Lδ,q(φδ,q) = N(φδ,q) +Rε,δ,q.

Ou seja, φδ,q é solução de (2.16). A regularidade de φδ,q vem do Teorema da Função

Impĺıcita.
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2.3 A formulação do problema via energia reduzida

Seguindo os passos da Observação 2.2, temos que uma solução fraca u ∈ H do

Problema (P±ε) que satisfaz∫
M

(∇gu∇gv + a(x)uv)dµg +
n− 2

2

∫
∂M

b(x)uvdσ − (n− 2)

∫
∂M

u
n
n−2
±εdσ = 0 (2.77)

para qualquer v ∈ H. Veremos a seguir que o problema (P±ε) admite uma formulação

variacional.

Observação 2.13. Soluções fracas de (P±ε) são pontos cŕıticos do funcional Jε : H →
R dado por

Jε(u) =
1

2

∫
M

(|∇gu|2 + a(x)u2)dµg +
n− 2

4

∫
∂M

b(x)u2dσ

− (n− 2)2

2n− 2± ε(n− 2)

∫
∂M

u
2n−2
n−2

±εdσ.

(2.78)

Como na verdade estamos procurando soluções de (P±ε) da forma uδ,q = Wδ,q+φδ,q,

em que φδ,q ∈ K⊥δ,q ∩ H, então nos atemos a procurar pontos cŕıticos da função Iε :

(0,+∞)× ∂M → R, chamada Energia Reduzida, definida por

Iε(d, q) := Jε (Wεd,q + φεd,q) , (2.79)

em que φεd,q foi encontrada na Proposição (2.9).
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Caṕıtulo 3

Provas dos principais resultados

Nesse caṕıtulo, provaremos o teorema principal enunciado no Caṕıtulo 2. Antes

disso, enunciaremos e provaremos uma proposição importante.

Proposição 3.1. (i) Se (d0, q0) ∈ (0,+∞) × ∂M é um ponto cŕıtico da energia

reduzida Iε definida anteriormente, então Wεd0,q0 +φεd0,q0 ∈ H é solução de (P±ε).

(ii) Vale que Iε(d, q) = cn(ε) + ε [αndϕ(q)− βn ln d] + o(ε) no caso (P−ε) e Iε(d, q) =

cn(ε) + ε [αndϕ(q) + βn ln d] + o(ε) no caso (P+ε) uniformemente em C0 com res-

peito a d nos subconjuntos compactos de (0,+∞) e q ∈ ∂M. Aqui cn(ε) é uma

constante que só depende de ε, e n, αn e βn são constantes positivas que só de-

pendem de n, e ϕ(q) = h(q)−H(q).

Para simplificar a notação, denotemos q = q(y) = ψ∂q0(y) a parametrização de Fermi

e considere a composição desta com a energia reduzida. Como trataremos dos pontos

cŕıticos da energia reduzida, o faremos em coordenadas, isto é, lidamos com pontos

cŕıticos da energia reduzida em coordenadas denotado por Iε(d, q(y)).

3.1 Prova da Proposição 3.1 - (i)

Seja (d0, q0) um ponto cŕıtico de Iε, em que q0 = q(0). Então, para cada i = 1, . . . , n

temos
∂Iε
∂yi

(d0, 0) = 0.

Levando em consideração que Iε(d, y) = Jε ◦ (Wεd,q(y) + φεd,q(y)) então pela regra da

cadeia, temos que

0 =
∂Iε
∂yh

(d0, 0) = J ′ε(Wεd0,q0) ·
∂(Wεd,q(y) + φεd,q(y))

∂yh
(d0, 0)

= J ′ε(Wεd0,q0) ·
(
∂Wεd,q(y)

∂yh
(d0, 0) +

∂φεd,q(y)

∂yh
(d0, 0)

)
.
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Usando a Expressão (2.77), obtemos

0 = J ′ε(Wεd0,q0) ·
(
∂Wεd,q(y)

∂yh
(d0, 0) +

∂φεd,q(y)

∂yh
(d0, 0)

)
=

〈
Wεd0,q0 + φεd0,q0 − i∗(fε(Wεd0,q0 + φεd0,q0)),

∂Wεd,q(y)

∂yh
(d0, 0) +

∂φεd,q(y)

∂yh
(d0, 0)

〉
.

(3.1)

Por outro lado, fazendo a decomposição em Kεd0,q0 ∩H e K⊥εd0,q0 ∩H, ficamos com

0 =

〈
Wεd0,q0 + φεd0,q0 − i∗(fε(Wεd0,q0 + φεd0,q0)),

∂Wεd,q(y)

∂yh
(d0, 0) +

∂φεd,q(y)

∂yh
(d0, 0)

〉
=
〈

Πεd0,q0{Wεd0,q0 + φεd0,q0 − i∗(fε(Wεd0,q0 + φεd0,q0))},
∂Wεd,q(y)

∂yh
(d0, 0) +

∂φεd,q(y)
∂yh

(d0, 0)
〉

+
〈

Π⊥εd0,q0{Wεd0,q0 + φεd0,q0 − i∗(fε(Wεd0,q0 + φεd0,q0))},
∂Wεd,q(y)

∂yh
(d0, 0) +

∂φεd,q(y)
∂yh

(d0, 0)
〉
.

Usando o fato de que φεd0,q0 é solução de (2.15), temos que

0 =

〈
Wεd0,q0 + φεd0,q0 − i∗(fε(Wεd0,q0 + φεd0,q0)),

∂Wεd,q(y)

∂yh
(d0, 0) +

∂φεd,q(y)

∂yh
(d0, 0)

〉
=
〈

Πεd0,q0{Wεd0,q0 + φεd0,q0 − i∗(fε(Wεd0,q0 + φεd0,q0))},
∂Wεd,q(y)

∂yh
(d0, 0) +

∂φεd,q(y)
∂yh

(d0, 0)
〉
.

Então, existem ciε tais que

0 =
n−1∑
i=0

ciε

〈
Zi
εd0,q0

,
∂Wεd,q(y)

∂yh
(d0, 0) +

∂φεd,q(y)

∂yh
(d0, 0)

〉

=
n−1∑
i=0

ciε

〈
Zi
εd0,q0

,
∂Wεd,q(y)

∂yh
(d0, 0)

〉
+

n−1∑
i=0

ciε

〈
Zi
εd0,q0

,
∂φεd,q(y)

∂yh
(d0, 0)

〉
.

(3.2)

Uma vez que φεd,q(y) ∈ K⊥εd,q(y) para todo y, então

0 =
〈
φεd,q(y), Z

i
εd,q(y)

〉
. (3.3)

Derivando a Expressão (3.3) em relação a yh em (d0, 0), obtemos

0 =
∂
〈
φεd,q(y), Z

i
εd,q(y)

〉
∂yh

(d0, 0) =

〈
∂φεd,q(y)

∂yh
(d0, 0), Zi

εd0,q0

〉
+

〈
φεd0,q0 ,

∂Zi
εd,q(y)

∂yh
(d0, 0)

〉
.

Isto é, temos que

〈
∂φεd,q(y)

∂yh
(d0, 0), Zi

εd0,q0

〉
= −

〈
φεd0,q0 ,

∂Zi
εd,q(y)

∂yh
(d0, 0)

〉
. (3.4)
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Substituindo a Identidade (3.4) em (3.2), obtemos

0 =
n−1∑
i=0

ciε

〈
Zi
εd0,q0

,
∂Wεd,q(y)

∂yh
(d0, 0)

〉
−

n−1∑
i=0

ciε

〈
φεd0,q0 ,

∂Zi
εd,q(y)

∂yh
(d0, 0)

〉
.

Agora observamos que〈
φεd0,q0 ,

∂Zi
εd,q(y)

∂yh
(d0, 0)

〉
≤

∥∥∥∥∥∂Z
i
εd,q(y)

∂yh
(d0, 0)

∥∥∥∥∥ ‖φεd0,q0‖ = o(ε), (3.5)

por conta da Proposição 2.9. Temos também que〈
Zi
εd0,q0

,
∂Wεd,q(y)

∂yh
(d0, 0)

〉
=

1

εd0

〈Zi
εd0,q0

, Zh
εd0,q0
〉+

〈
Zi
εd0,q0

,
∂χ

∂yh
Uεd0

〉
=

1

εd0

〈Zi
εd0,q0

, Zh
εd0,q0
〉+ o(ε),

por conta do Lema A.1. Por outro lado, podemos ver que〈
Zi
εd0,q0

,
∂Wεd,q(y)

∂yh
(d0, 0)

〉
=
αδih

εd0

+ o(ε), (3.6)

em que α é uma constante positiva. Assim, por (3.5) e (3.6), temos que

0 =
1

εd0

n−1∑
i=0

ciε(δ
ih + o(ε)).

Afirmação 3.1. ciε = 0 para todo i = 0, . . . , n− 1.

Com efeito, suponha por absurdo que existam exatamente k termos ciε não-nulos,

em que 1 ≤ k ≤ n. Sem perda de generalidade, admita que c0
ε 6= 0, . . . , ck−1

ε 6= 0. Então,

temos o sistema homogêneo k × k :

0 =
1

εd0

[
o(ε)c0

ε + · · ·+ (1 + o(ε))chε + . . . o(ε)ck−1
ε

]
, 0 ≤ h ≤ k − 1, (3.7)

que pode ser reexpressado matricialmente da seguinte maneira:



(
1
ε

+ o(ε)
ε

)
o(ε)
ε

. . . o(ε)
ε

o(ε)
ε

. . .
...

...
(

1
ε

+ o(ε)
ε

)
. . . o(ε)

ε
o(ε)
ε

. . . o(ε)
ε

(
1
ε

+ o(ε)
ε

)





c0
ε

...

ck−1
ε


=



0

...

0


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Tomando ε suficientemente pequeno, temos que

det



(
1
ε

+ o(ε)
ε

)
o(ε)
ε

. . . o(ε)
ε

o(ε)
ε

. . .
...

...
(

1
ε

+ o(ε)
ε

)
. . . o(ε)

ε
o(ε)
ε

. . . o(ε)
ε

(
1
ε

+ o(ε)
ε

)


> 0.

Isso implica em que a única solução do sistema é a trivial, o que é um absurdo, pois

supomos que a solução era não-trivial. Como k ∈ {1, . . . , n} é arbitrário, verificamos

que todas as possibilidades de negação da hipótese levam a um absurdo, provando

assim a Afirmação 3.1.

Isto é, φεd0,q0 é solução de (2.16). Sendo assim, φεd0,q0 é solução de (P ∗±ε).

3.2 Prova da Proposição 3.1 - (ii)

Passo 1 Queremos mostrar que para ε suficientemente pequeno, vale

|Jε (Wδ,q + φδ,q)− Jε (Wδ,q)| ≤ C ‖φδ,q‖2
H + C̃ε| ln ε| ‖φδ,q‖H = o(ε).

i) De fato, temos

Jε(Wδ,q + φδ,q) =
1

2
‖Wδ,q + φδ,q‖2 − (n− 2)2

2n− 2± ε(n− 2)

∫
∂M

(Wδ,q + φδ,q)
2n−2
n−2

±εdσ

=
1

2
〈Wδ,q + φδ,q,Wδ,q + φδ,q〉

− (n− 2)2

2n− 2± ε(n− 2)

∫
∂M

(Wδ,q + φδ,q)
2n−2
n−2

±εdσ

=
1

2
‖Wδ,q‖2 + 〈Wδ,q, φδ,q〉+

1

2
‖φδ,q‖2

− (n− 2)2

2n− 2± ε(n− 2)

∫
∂M

(Wδ,q + φδ,q)
2n−2
n−2

±εdσ

(3.8)

ii) e também que

Jε(Wδ,q) =
1

2
‖Wδ,q‖2 − (n− 2)2

2n− 2± ε(n− 2)

∫
∂M

(Wδ,q + φδ,q)
2n−2
n−2

±εdσ. (3.9)
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Logo, temos por (3.8) e (3.9) que

Jε(Wδ,q + φδ,q)− Jε(Wδ,q) =

∫
M
∇φδ,q∇Wδ,q + a(x)φδ,qWδ,qdµg

+
n− 2

2

∫
∂M

b(x)φδ,qWδ,qdσ +
1

2
‖φδ,q‖2

− (n− 2)2

2n− 2± ε(n− 2)

∫
∂M

(Wδ,q + φδ,q)
2n−2
n−2

±ε −W
2n−2
n−2

±ε
δ,q dσ.

(3.10)

Usando a identidade de Green∫
M

∇gφδ,q∇gWδ,qdµg =

∫
M

−∆gWδ,qφδ,q +

∫
∂M

∂Wδ,q

∂ν
φδ,qdσ (3.11)

na Equação (3.10), obtemos

Jε(Wδ,q + φδ,q)− Jε(Wδ,q) =

∫
M
−∆gWδ,qφδ,q + a(x)Wδ,qφδ,qdµg

+

∫
∂M

∂Wδ,q

∂ν
+
n− 2

2
b(x)Wδ,qφδ,qdσ +

1

2
‖φδ,q‖2

− (n− 2)2

2n− 2± ε(n− 2)

∫
∂M

(Wδ,q + φδ,q)
2n−2
n−2

±ε −W
2n−2
n−2

±ε
δ,q dσ.

(3.12)

Para efeitos de cálculo, somamos e subtráımos o termo
∫
∂M

f0(Wδ,q)− fε(Wδ,q)φδ,qdσ,

reescrevemos a Equação (3.12) como sendo

Jε(Wδ,q + φδ,q)− Jε(Wδ,q) =

∫
M

[−∆gWδ,q + a(x)Wδ,q]φδ,qdµg +
1

2
‖φδ,q‖2

+

∫
∂M

[
∂Wδ,q

∂ν
+
n− 2

2
b(x)Wδ,q − f0(Wδ,q)

]
φδ,qdσ +

∫
∂M

[f0(Wδ,q)− fε(Wδ,q)]φδ,qdσ

−
∫
∂M

(n− 2)2

2n− 2± ε(n− 2)

[
(Wδ,q + φδ,q)

2n−2
n−2

±ε −W
2n−2
n−2

±ε
δ,q

]
− fε(Wδ,q)φδ,qdσ.

Finalmente, tomando o valor absoluto da equação acima e usando a desigualdade tri-

angular em cada termo, obtemos

|Jε (Wδ,q + φδ,q)− Jε (Wδ,q)| ≤
∣∣∣∣∫
M

[−∆gWδ,q + a(x)Wδ,q]φδ,qdµg

∣∣∣∣+
1

2
‖φδ,q‖2

+

∣∣∣∣∫
∂M

[
∂Wδ,q

∂ν
+
n− 2

2
b(x)Wδ,q − f0 (Wδ,q)

]
φδ,qdσ

∣∣∣∣
+

∣∣∣∣∫
∂M

[f0 (Wδ,q)− fε (Wδ,q)]φδ,qdσ

∣∣∣∣
+

∣∣∣∣∫
∂M

(n− 2)2

2n− 2± ε(n− 2)

[
(Wδ,q + φδ,q)

2n−2
n−2

±ε −W
2n−2
n−2

±ε
δ,q

]
− fε (Wδ,q)φδ,qdσ

∣∣∣∣ .
(3.13)
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iii) Pela Desigualdade de Hölder, temos que∣∣∣∣∫
M

[−∆gWδ,q + a(x)Wδ,q]φδ,qdµg

∣∣∣∣ ≤∫
M

| −∆gWδ,q + a(x)Wδ,q||φδ,q|dµg

≤
(∫

M

| −∆gWδ,q + a(x)Wδ,q|
2n
n+2dµg

)n+2
2n

×
(∫

M

|φδ,q|
2n
n−2dµg

)n−2
2n

.

Pelo Teorema do Traço, ficamos com

∣∣∣∣∫
M

[−∆gWδ,q + a(x)Wδ,q]φδ,qdµg

∣∣∣∣ ≤ C

(∫
M

| −∆gWδ,q + a(x)Wδ,q|
2n
n+2dµg

)n+2
2n

‖φδ,q‖.

Usando a Estimativa (2.47), ficamos com∣∣∣∣∫
M

[−∆gWδ,q + a(x)Wδ,q]φδ,qdµg

∣∣∣∣ = O(δ)‖φδ,q‖. (3.14)

iv) Pela Desigualdade de Hölder, temos∣∣∣∣∫
∂M

[
∂Wδ,q

∂ν
+
n− 2

2
b(x)Wδ,q − f0 (Wδ,q)

]
φδ,qdσ

∣∣∣∣
≤
∫
∂M

∣∣∣∣∂Wδ,q

∂ν
+
n− 2

2
b(x)Wδ,q − f0(Wδ,q)

∣∣∣∣ |φδ,q|dσ
≤

∫
∂M

∣∣∣∣∂Wδ,q

∂ν
+
n− 2

2
b(x)Wδ,q − f0(Wδ,q)

∣∣∣∣
2(n−1)
n

dσ

 n
2(n−1) (∫

∂M
|φδ,q|

2(n−1)
n−2 dσ

) n−2
2(n−1)

.

Pelo Teorema do Traço, temos∣∣∣∣∫
∂M

[
∂Wδ,q

∂ν
+
n− 2

2
b(x)Wδ,q − f0 (Wδ,q)

]
φδ,qdσ

∣∣∣∣
≤

(∫
∂M

∣∣∣∣∂Wδ,q

∂ν
+
n− 2

2
b(x)Wδ,q − f0(Wδ,q)

∣∣∣∣
2(n−1)
n

dσ

) n
2(n−1)

‖φδ,q‖.

Pela Desigualdade Triangular, obtemos∣∣∣∣∫
∂M

[
∂Wδ,q

∂ν
+
n− 2

2
b(x)Wδ,q − f0 (Wδ,q)

]
φδ,qdσ

∣∣∣∣
≤

(∫
∂M

∣∣∣∣∂Wδ,q

∂ν
− f0(Wδ,q)

∣∣∣∣
2(n−1)
n

dσ

) n
2(n−1)

‖φδ,q‖

+
n− 2

2

(∫
∂M

|b(x)Wδ,q|
2(n−1)
n dσ

) n
2(n−1)

‖φδ,q‖.
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Assim, usando as Estimativas (2.49) e (2.51), obtemos∣∣∣∣∫
∂M

[
∂Wδ,q

∂ν
+
n− 2

2
b(x)Wδ,q − f0 (Wδ,q)

]
φδ,qdσ

∣∣∣∣ = O(δ)‖φδ,q‖. (3.15)

v) Para o terceiro termo no caso (P−ε) temos pela Desigualdade de Hölder que∣∣∣∣∫
∂M

[f0(Wδ,q)− fε(Wδ,q)]φδ,qdσ

∣∣∣∣ =

∫
∂M

|f0(Wδ,q)− fε(Wδ,q)||φδ,q|dσ

≤
(∫

∂M

|fε(Wδ,q)− f0(Wδ,q)|
2(n−1)
n dσ

) n
2(n−1)

×
(∫

∂M

|φδ,q|
2(n−1)
n−2 dσ

) n−2
2(n−1)

.

Pelo Teorema do Traço, ficamos com∣∣∣∣∫
∂M

[f0(Wδ,q)− fε(Wδ,q)]φδ,qdσ

∣∣∣∣ ≤ C

(∫
∂M

|fε(Wδ,q)− f0(Wδ,q)|
2(n−1)
n dσ

) n
2(n−1)

‖φδ,q‖.

Pela Estimativa (2.63), temos que∣∣∣∣∫
∂M

[f0(Wδ,q)− fε(Wδ,q)]φδ,qdσ

∣∣∣∣ = O(ε| ln ε|)‖φδ,q‖.

Já para o caso (P+ε), usando a Desigualdade de Hölder com p = sε e q = s′ε, ficamos

com ∣∣∣∣∫
∂M

[f0(Wδ,q)− fε(Wδ,q)]φδ,qdσ

∣∣∣∣ ≤∫
∂M

|fε(Wδ,q)− f0(Wδ,q)||φδ,q|dσ

=

(∫
∂M

|fε(Wδ,q)− f0(Wδ,q)|sεdσ
) 1

sε

×
(∫

∂M

|φδ,q|s
′
εdσ

) 1
s′ε
.

Pelo Teorema do Traço, existe C > 0 tal que

∣∣∣∣∫
∂M

[f0(Wδ,q)− fε(Wδ,q)]φδ,qdσ

∣∣∣∣ ≤ C

(∫
∂M

|fε(Wδ,q)− f0(Wδ,q)|sεdσ
) 1

sε

‖φδ,q‖.

Utilizando a Estimativa (2.69), visto que sε = 2(n−1)
n

+ nε = 2(n−1)
n

+ O+(ε) e s′ε =
2(n−1)
n−2

−O+(ε), obtemos∣∣∣∣∫
∂M

[f0(Wδ,q)− fε(Wδ,q)]φδ,qdσ

∣∣∣∣ = O(ε| ln ε|)‖φδ,q‖. (3.16)
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vi) Para estimar o último termo, aplicamos o Teorema do Valor Médio para a função

F : [0, 1]→ R definida por

F (λ) =

∫
∂M

(n− 2)2

2n− 2± ε(n− 2)
(Wδ,q + λφδ,q)

2n−2
n−2

±εdσ,

dem que obtemos λ1 ∈ (0, 1) tal que∫
∂M

(n− 2)2

2n− 2± ε(n− 2)

[
(Wδ,q + φδ,q)

2n−2
n−2

±ε −W
2n−2
n−2

±ε
δ,q

]
dσ

=

∫
∂M

(n− 2)(Wδ,q + λ1φδ,q)
n
n−2
±εdσ.

Assim, temos∫
∂M

(n− 2)2

2n− 2± ε(n− 2)

[
(Wδ,q + φδ,q)

2n−2
n−2

±ε −W
2n−2
n−2

±ε
δ,q

]
− fε (Wδ,q)φδ,qdσ

=

∫
∂M

(n− 2)(Wδ,q + λ1φδ,q)
n
n−2
±ε − (n− 2)W

n
n−2
±ε

δ,q φδ,qdσ.

Novamente, podemos usar o Teorema do Valor Médio para a função G : [0, 1] → R
definida por

G(λ) =

∫
∂M

(n− 2)(Wδ,q + λλ1φδ,q)
n
n−2
±εφδ,qdσ,

dem que obtemos λ2 ∈ (0, 1) tal que∫
∂M

(n− 2)(Wδ,q + λ1φδ,q)
n
n−2
±ε − (n− 2)W

n
n−2
±ε

δ,q φδ,qdσ

=

∫
∂M

λ1(n± ε(n− 2))(Wδ,q + λ1λ2φδ,q)
2

n−2
±εφ2

δ,qdσ.

Pondo θ = λ1λ2, temos que∣∣∣∣∫
∂M

(n− 2)2

2n− 2± ε(n− 2)

[
(Wδ,q + φδ,q)

2n−2
n−2

±ε −W
2n−2
n−2

±ε
δ,q

]
− fε (Wδ,q)φδ,qdσ

∣∣∣∣
=

∣∣∣∣∫
∂M

λ1(n± ε(n− 2))(Wδ,q + θφδ,q)
2

n−2
±εφ2

δ,qdσ

∣∣∣∣ .
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Pela Desigualdade de Hölder Generalizada com expoentes p = sε
sε−2

e q = r = sε

satisfazendo 1
p

+ 1
q

+ 1
r

= 1, temos que

∣∣∣∣∫
∂M

(n− 2)2

2n− 2± ε(n− 2)

[
(Wδ,q + φδ,q)

2n−2
n−2

±ε −W
2n−2
n−2

±ε
δ,q

]
− fε (Wδ,q)φδ,qdσ

∣∣∣∣
≤ C1

[∫
∂M

|Wδ,q + θφδ,q|(
2

n−2
±ε) sε

sε−2 dσ

] se−2
sε
[∫

∂M

|φδ,q|sε dσ
] 2
sε

≤ C1

[∫
∂M

|Wδ,q + θφδ,q|(
2

n−2
±ε) sε

sε−2 dσ

] se−2
sε

‖φδ,q‖2
H

≤ C2 |Wδ,q + θφδ,q|sε−2
Lsε ‖φδ,q‖

2
H ≤ C3 ‖φδ,q‖2

H .

(3.17)

Assim, substituindo (3.14), (3.15), (3.16) e (3.17) em (3.13), e fazendo δ = dε, obtemos

constantes C, C̃ > 0, tais que

|Jε(Wδ,q + φδ,q)− Jε(Wδ,q)| ≤ C‖φδ,q‖2
H + C̃ε| ln ε|‖φδ,q‖H.

Mas pela Proposição 2.9, temos que ‖φδ,q‖H = O(ε| ln ε|) e, consequentemente, que

|Jε(Wδ,q + φδ,q)− Jε(Wδ,q)| = O(ε2| ln ε|2) = o(ε). (3.18)

Passo 2 Provaremos que

Jε (Wδ,q) = C(ε) + ε

{
d
n− 2

4
[b(q)−H(q)]± ln d

(n− 2)3(n− 3)

4(n− 2)(2n− 2)

}
ωn−1I

n−2
n−2 + o(ε)

uniformemente em C0 em relação a d em compactos de (0,+∞) e q ∈ ∂M, em que

C(ε) =
1

2

∫
B(0,R)×[0,R)

|∇Uδ(y)|2dy − (n− 2)2

2n− 2

∫
B(0,R)

U
2n−2
n−2

δ (z, 0)dz

± ε(n− 2)3

2n− 2

∫
B(0,R)

U
2n−2
n−2 (z, 0)dz ∓ ε(n− 2)2

2n− 2

∫
B(0,R)

U
2n−2
n−2

δ (z, 0) lnUδ(z, 0)dz

∓ ε| ln ε| (n− 2)3

2(2n− 2)

∫
B(0,R)

U
2n−2
n−2

δ (z, 0)dz

e

In−2
n−2 =

∫ ∞
0

sn−2

(1 + s2)n−2dz,

com ωn−1 sendo a área da bola unitária de Rn−1. Primeiramente temos por definição
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que

Jε(Wδ,q) =
1

2

∫
M

(
|∇gWδ,q|2 + a(x)W 2

δ,q

)
dµg +

n− 2

4

∫
∂M

b(x)W 2
δ,qdσ

− (n− 2)2

2n− 2± ε(n− 2)

∫
∂M

W
2n−2
n−2

±ε
δ,q dσ.

(3.19)

Estudemos cada termo separadamente. Temos∫
M

|∇Wδ,q|2 dµg =

∫
M

(
χ2|∇gUδ|2 + 2χUδ∇gχ∇gUδ + U2

δ |∇gχ|2
)
dµg. (3.20)

Pelo Lema (A.1), podemos provar que∫
M

(
2χUδ∇gχ∇gUδ + U2

δ |∇gχ|2
)
dµg = o(δ).

Assim, ∫
M

|∇Wδ,q|2 dµg =

∫
M

χ2|∇gUδ|2dµg + o(δ)

≤
∫
M

|∇gUδ|2dµg + o(δ).

(3.21)

Substituindo ỹ = δy nas Equações (1.6), (1.7) e (1.8), obtemos

gij(δy) = δij + 2hij(q)δyn + |y|2O(δ2), (3.22)

gin(δy) = δin, (3.23)

√
g(δy) = 1− δ(n− 1)H(q)yn + |y|2O(δ2). (3.24)

Agora substituindo as expressões (3.22), (3.23) e (3.24) em (3.20), temos∫
M
|∇Wδ,q|2dµg ≤

∫
B(0,R)×[0,R)

|∇Uδ|2dy − (n− 1)H(q)δ

∫
B(0,R)×[0,R)

yn|∇Uδ|2dy

+ 2δ
n−1∑
i,j=1

hij(q)

∫
B(0,R)×[0,R)

yn
∂Uδ
∂yi

∂Uδ
∂yj

dy + o(δ).

(3.25)

Por simetria, ficamos com

1

2

∫
M
|∇Wδ,q|2dµg ≤

1

2

∫
B(0,R)×[0,R)

|∇Uδ|2dy −
(n− 1)H(q)

2
δ

∫
B(0,R)×[0,R)

yn|∇Uδ|2dy

+ δ
n−1∑
i=1

hii(q)

∫
B(0,R)×[0,R)

yn

(
∂Uδ
∂yi

)2

dy + o(δ).

(3.26)

Uma vez que
∫
B(0,R)×[0,R)

yn

(
∂Uδ
∂yi

(y)
)2

dy =
∫
B(0,R)×[0,R)

yn

(
∂Uδ
∂yl

(y)
)2

dy para todo
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i, j = 1, . . . , n− 1, temos que

n−1∑
i=1

hii(q)

∫
B(0,R)×[0,R)

yn

(
∂Uδ
∂yi

)2

dy =
1

n− 1

n−1∑
i=1

hii(q)

∫
B(0,R)×[0,R)

yn

n−1∑
l=1

(
∂Uδ
∂yl

)2

dy

=
H(q)

4

∫
Rn−1

U2
δ (z, 0)dz,

(3.27)

usando (A.19). Agora substituindo (3.27) em (3.26), obtemos

1

2

∫
M
|∇Wδ,q|2dµg ≤

1

2

∫
B(0,R)×[0,R)

|∇Uδ|2dy −
(n− 1)H(q)

2
δ

∫
B(0,R)×[0,R)

yn|∇Uδ|2dy

+
H(q)

4

∫
Rn−1

U2
δ (z, 0)dz + o(δ).

(3.28)

Para o segundo termo, temos

1

2

∫
M

a(x)|Wδ,q|2dµg =
1

2

∫
B(0,R)×[0,R)

√
g(y)a(y)χ(y)2Uδ(y)2dy

≤ C1

∫
B(0,R)×[0,R)

Uδ(y)2dy,

dem que pelo Lema (A.1), obtemos que

1

2

∫
M

a(x)|Wδ,q|2dµg = O(δ2).

Analogamente, temos para o terceiro termo

n− 2

4

∫
∂M

b(x)|Wδ,q|2dσ =
n− 2

4

∫
B(0,R)

b(z, 0)χ(z, 0)2Uδ(z, 0)2dz

≤ C

∫
B(0,R)

Uδ(z, 0)2dz = O(δ),

por conta do Lema (A.3). Para o quarto termo, temos∫
∂M

|Wδ,q|
2n−2
n−2

±εdσ =

∫
B(0,R)

√
g(z, 0)χ

2n−2
n−2

±ε(z, 0)U
2n−2
n−2

δ (z, 0)U±εδ (z, 0)dz

≤
∫
B(0,R)

√
g(z, 0)U

2n−2
n−2

δ (z, 0)U±εδ (z, 0)dz.

Por (1.9) e (2.58), temos∫
∂M

|Wδ,q|
2n−2
n−2

±εdσ ≤
∫
B(0,R)

δ∓ε
n−2
2 U

2n−2
n−2

δ (z, 0)U±εδ (z, 0)dz + o(δ).
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3. Provas dos principais resultados

Substituindo as expansões de Taylor (2.57) e (2.58), obtemos∫
∂M

|Wδ,q|
2n−2
n−2

±εdσ ≤
∫
B(0,R)

U
2n−2
n−2

δ (z, 0)dz ± ε
∫
B(0,R)

U
2n−2
n−2

δ (z, 0) lnUδ(z, 0)

∓ n− 2

2
ε ln δ

∫
B(0,R)

U
2n−2
n−2

δ (z, 0)dz + o(δ) +O(ε2) +O(ε2 ln δ).

Usando o fato de que (n−2)2

2n−2±ε(n−2)
= (n−2)2

2n−2
∓ ε(n−2)3

2n−2
, obtemos

− (n− 2)2

2n− 2± ε(n− 2)

∫
∂M

|Wδ,q|
2n−2
n−2

−ε dσ = −(n− 2)2

2n− 2

∫
Rn−1

U
2n−2
n−2

δ (z, 0)dz

± ε(n− 2)3

2n− 2

∫
B(0,R)

U
2n−2
n−2

δ (z, 0)dz ∓ ε(n− 2)2

2n− 2

∫
B(0,R)

U
2n−2
n−2

δ (z, 0) lnUδ(z, 0)dz

± (n− 2)3

2(2n− 2)
ε ln δ

∫
B(0,R)

U
2n−2
n−2

δ (z, 0)dz + o(δ) +O
(
ε2
)

+O
(
ε2 ln δ

)
.

Fazendo δ = dε e notando que o(δ) + O(ε2) + O(ε2 ln δ) = o(ε) e ε ln δ = ε ln(dε) =

ε ln d+ ε ln ε = ε ln d− ε| ln ε| = o(ε). Desse modo, temos

Jε (Wδ,q) = C(ε) + εd
n− 2

4
[b(q)−H(q)]

∫
B(0,R)

U2
δ (z, 0)dz

± ε (n− 2)3

2(2n− 2)
ln d

∫
B(0,R)

U
2n−2
n−2

δ (z, 0)dz + o(ε| ln ε|),

já que pelo Lema (A.3), tem-se∫
B(0,R)

U2
δ (z, 0)dz ≤

∫
Rn−1

U2
δ (z, 0)dz = ωn−1I

n−2
n−2

e ∫
B(0,R)

U
2n−2
n−2

δ (z, 0)dz ≤
∫
Rn−1

U
2n−2
n−2

δ (z, 0)dz = ωn−1I
n−2
n−1 ,

em que Iαβ =
∫∞

0
sα

(1+s2)β
ds e usando o fato de que In−2

n−1 = n−3
2(n−2)

In−2
n−2 (Ver prova em [3],

Lema 9.4(b)).

3.3 Prova do Teorema Principal

Introduzimos agora a seguinte função

Î : (0,+∞)× ∂M → R

(d, q) 7→ Î(d, q) = αndϕ(q)− βn ln d.
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3. Provas dos principais resultados

Seja q0 ∈ ∂M um ponto de mı́nimo local de ϕ(q). Sem perda de generalidade, vamos

supor que ϕ(q0) > 0. Desse modo, defina d0 = βn
αnϕ(q0)

> 0. Então, (q0, d0) é um ponto

cŕıtico de Î , pois
∂Î

∂d
(d, q(y)) = αnϕ(q(y))− βn

d

e também
∂Î

∂yi
(d, q(y)) = αnd

∂ϕ

∂yi
(q(y)).

Assim,
∂Î

∂d
(d0, 0) = αnϕ(q0)− βn

d0

= 0

e
∂Î

∂yi
(d0, 0) = αnd0

∂ϕ

∂yi
(q0) = 0,

pois q0 é ponto cŕıtico de ϕ(q). Além do mais, existe uma vizinhança B de q0 tal que

ϕ(q) > ϕ(q0) para todo q ∈ ∂B. Por um lado, temos

dϕ(q)− d0ϕ(q0) > dϕ(q0)− d0ϕ(q0) = ϕ(q0)(d− d0). (3.29)

Por outro lado, dado um intervalo compacto [a, b] ⊂ (0,+∞), podemos tomar uma

vizinhança de B̃ ⊂ [a, b]× ∂B de (d0, q0) tal que

ϕ(q0)(d− d0) >
βn
αn

(ln d− ln d0). (3.30)

Combinando (3.29) e (3.30), obtemos

Î(d, q) > Î(d0, q0)

para todo (d, q) ∈ ∂B̃. Pela Proposição (3.1)-(ii), temos que

Iε(d, q) = cn(ε) + εÎ(d, q) + o(ε).

Expressando Iε da seguinte maneira

Iε(d, q) = cn(ε) + ε

(
Î(d, q) +

o(ε)

ε

)
,

podemos fazer ε suficientemente pequeno de tal maneira que Î(d0, q0) + o(ε)
ε

mantenha

o sinal de Î(d0, q0). Portanto, temos que existe (d∗, q∗) ∈ B̃ tal que Wεd∗,q∗ + φεd∗,q∗ é

ponto cŕıtico de Jε. Assim, pela (3.1)-(ii), temos que Wεd∗,q∗ + φεd∗,q∗ ∈ H é solução de

(P ∗−ε). De maneira análoga, provamos o caso (P ∗+ε).

61



Apêndice A

Integrais auxiliares

Neste apêndice apresentaremos alguns resultados recorrentes ao longo do trabalho.

Começamos relembrando duas fórmulas bastantes conhecidas:∫ ∞
0

rαdr

(1 + r2)β
=

Γ
(
α+1

2

)
Γ
(

2β−α−1
2

)
2Γ(β)

, (A.1)

em que α e β são constantes positivas satisfazendo 2β−α > 1 e Γ(x) =
∫ +∞

0
xt−1e−xdt

é a função gama, e ∫
Rm

f(|x|)dx = ωm−1

∫ ∞
0

f(r)rm−1dr, (A.2)

em que ωm−1 é a área da esfera unitária do Rm−1.

A.1 Integral da função do tipo bolha na variedade

Lema A.1. Sejam p, q, r, γ constantes positivas satisfazendo

2q − γ > n− 1. (A.3)

Então, para cada δ > 0, existe uma constante positiva C = C(p, q, r, γ) tal que

(∫
Rn+

δp|x|γdxdt
((δ + t)2 + |x|2)q

) 1
r

= Cδ
p+γ−2q+n

r . (A.4)

Demonstração. Colocando em evidência as potências de δ no numerador e denominador
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A. Integrais auxiliares

do integrando e reescrevendo |x| = δ|x/δ| e t = δ(t/δ), obtemos

(∫
Rn+

δp|x|γdxdt
((δ + t)2 + |x|2)q

) 1
r

=

(∫
Rn+

δp+γ|x/δ|γdxdt
δ2q((1 + t/δ)2 + |x/δ|2)q

) 1
r

= δ
p+γ−2q

r

(∫
Rn+

|x/δ|γdxdt
((1 + t/δ)2 + |x/δ|2)q

) 1
r

.

Fazendo a substituição y = x/δ e s = t/δ, que fornece os respectivos elementos de

volume dy = dx/δn−1 e ds = dt/δ, obtemos

(∫
Rn+

δp|x|γdxdt
((δ + t)2 + |x|2)q

) 1
r

= δ
p+γ−2q

r

(∫
Rn+

|y|γδndyds
((1 + s)2 + |y|2)q

) 1
r

.

Reescrevendo y = (1 + s)(y/(1 + s)), ficamos com

(∫
Rn+

δp|x|γdxdt
((δ + t)2 + |x|2)q

) 1
r

= δ
p+γ−2q+n

r

(∫
Rn+

(1 + s)γ|y/(1 + s)|γdyds
(1 + s)2q(1 + |y/(1 + s)|2)q

) 1
r

.

Agora fazemos a mudança de variável z = y/(1 + s), que fornece o elemento de volume

dz = dy/(1 + s), obtemos

(∫
Rn+

δp|x|γdxdt
((δ + t)2 + |x|2)q

) 1
r

= δ
p+γ−2q+n

r

(∫
Rn+

(1 + s)γ+1|z|γdzds
(1 + s)2q(1 + |z|2)q

) 1
r

= δ
p+γ−2q+n

r

(∫
Rn+

(1 + s)γ+1−2q|z|γdzds
(1 + |z|2)q

) 1
r

.

Como o integrando é o produto de duas funções de variáveis diferentes, podemos reex-

pressar a integral da seguinte maneira:

(∫
Rn+

δp|x|γdxdt
((δ + t)2 + |x|2)q

) 1
r

= δ
p+γ−2q+n

r

(∫ +∞

0

(1 + s)γ+1−2qds

) 1
r

×
(∫

Rn−1

|z|γdz
(1 + |z|2)q

) 1
r

,

(A.5)
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em que

(∫ +∞

0

(1 + s)γ+1−2qds

) 1
r

=

(
(1 + s)γ+2−2q

γ + 2− 2q

∣∣∣∣+∞
0

) 1
r

=

(
0− 1

γ + 2− 2q

) 1
r

=

(
1

2q − 2− γ

) 1
r

(A.6)

e, pela Fórmula (A.2) pondo m = n− 1,

(∫
Rn−1

|z|γdz
(1 + |z|2)q

) 1
r

=

(
ωn−2

∫ +∞

0

rγrn−2dr

(1 + r2)q

) 1
r

=

(
ωn−2

∫ +∞

0

rγ+n−2dr

(1 + r2)q

) 1
r

,

que pondo α = γ + n− 2 e β = q na Fórmula (A.1) fornece

(∫
Rn−1

|z|γdz
(1 + |z|2)q

) 1
r

=

(
ωn−2

Γ(γ+n−1
2

)Γ(2q−γ−n+1
2

)

2Γ(q)

) 1
r

. (A.7)

Assim, substituindo (A.6) e (A.7) em (A.5), obtemos

(∫
Rn+

δp|x|γdxdt
((δ + t)2 + |x|2)q

) 1
r

= δ
p+γ−2q+n

r

(
1

2q − 2− γ

) 1
r

(
ωn−2

Γ(γ+n−1
2

)Γ(2q−γ−n+1
2

)

2Γ(q)

) 1
r

= Cδ
p+γ−2q+n

r .

Assim, conclúımos a prova.

Lema A.2. Sejam δ, p, q, r, γ constantes satisfazendo

q − γ > 1 (A.8)

e

2q > n− 1. (A.9)

Então, para cada δ > 0, existe uma constante C = C(p, q, r, γ) tal que

(∫
Rn+

δptγdxdt

((δ + t)2 + |x|2)q

) 1
r

= Cδ
p+γ−2q+n

r . (A.10)

Demonstração. Também obtemos procedendo de maneira completamente análoga ao

Lema A.1, obtemos

(∫
Rn+

δptγdxdt

((δ + t)2 + |x|2)q

) 1
r

= δ
p+γ−2q+n

r

(∫
Rn+

sγdzds

(1 + s)2q−γ−1(1 + |z|2)q

) 1
r

.
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Como o integrando é um produto de funções de variáveis distintas, podemos reexpressar

a integral como sendo

(∫
Rn+

δptγdxdt

((δ + t)2 + |x|2)q

) 1
r

= δ
p+γ−2q+n

r

(∫ +∞

0

sγds

(1 + s)2q−γ−1

) 1
r

×
(∫

Rn−1

dz

(1 + |z|2)q

) 1
r

,

(A.11)

em que, fazendo a mudança de variável τ = s
1
2 , obtemos o elemento de volume e que

dτ = 1
2
s
−1
2 ds,

(∫ +∞

0

sγds

(1 + s)2q−γ−1

) 1
r

=

(∫ ∞
0

τ 2γ2τdτ

(1 + τ 2)2q−γ−1

) 1
r

= 2
1
r

(∫ +∞

0

τ 2γ+1dτ

(1 + τ 2)2q−γ−1

) 1
r

= 2
1
r

(
Γ(γ + 1)Γ(2q − 2γ − 2)

2Γ(2q − γ − 1)

) 1
r

(A.12)

por conta da Fórmula (A.1), e, pela Fórmula (A.2), temos

(∫
Rn−1

dz

(1 + |z|2)q

) 1
r

=

(
ωn−2

∫ +∞

0

rn−2dr

(1 + r2)q

) 1
r

,

dem que usando (A.1), temos

(∫
Rn−1

dz

(1 + |z|2)q

) 1
r

=

(
ωn−2Γ(n−1

2
)Γ(2q−n+1

2
)

2Γ(q)

) 1
r

. (A.13)

Portanto, usando (A.12) e (A.13) em (A.11), conclúımos que, de fato, existe C tal que

(∫
Rn+

δptγdxdt

((δ + t)2 + |x|2)q

) 1
r

= Cδ
p+γ−2q+n

r . (A.14)

Assim conclúımos a demonstração.
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A.2 Integral da função do tipo bolha no bordo da

variedade

Lema A.3. Sejam δ, p, q, r, γ constantes satisfazendo

2q − γ > n− 1. (A.15)

Então, para cada δ > 0, existe uma constante positiva C = C(p, q, r, γ) tal que

(∫
Rn−1

δp|x|γdx
(δ2 + |x|2)q

) 1
r

= Cδ
p+γ−2q+n−1

r . (A.16)

Demonstração. Procedendo como nos lema anterior, obtemos

(∫
Rn−1

δp|x|γdx
(δ2 + |x|2)q

) 1
r

= δ
p+γ−2q

r

(∫
Rn−1

|x/δ|γdx
(1 + |x/δ|2)q

) 1
r

.

Fazendo a mudança de variável z = x/δ, obtemos o elemento de volume dz = dx/δn−1,

logo

δ
p+γ−2q

r

(∫
Rn−1

|z|γδn−1dz

(1 + |z|2)q

) 1
r

= δ
p−2q+γ+n−1

r

(∫
Rn−1

|z|γdz
(1 + |z|2)q

) 1
r

= Cδ
p−2q+γ+n−1

r .

Assim, conclúımos a demonstração.

A.3 Identidades Auxiliares

Proposição A.4. Se U é solução de (2.12), então são válidas as seguintes identidades:∫
Rn+
t|∇U |2dzdt =

1

2

∫
Rn−1

U2(z, 0)dz (A.17)

∫
Rn+
t|∇U |2dzdt = 2

∫
Rn+
t

∣∣∣∣∂U∂t
∣∣∣∣2 dzdt (A.18)

∫
Rn+
t

n−1∑
i=1

∣∣∣∣∂U∂zi
∣∣∣∣2 dzdt =

1

4

∫
Rn−1

U2(z, 0)dz. (A.19)

Demonstração. Denotemos primeiramente η = (z, t) ∈ Rn
+, em que z ∈ Rn−1 e t ∈ R+.

Seja U uma solução de (2.12). Note que

ηn|∇U |2 = ∇(ηnU)∇U − U ∂U

∂ηn
,
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em que ηn(z, t) = t. Logo, temos que∫
Rn+
ηn|∇U |2dη =

∫
Rn+
∇(ηnU)∇Udη −

∫
Rn+
U
∂U

∂ηn
dη.

Pela Fórmula de Green, obtemos∫
Rn+
∇(ηnU)∇Udη =

∫
∂Rn+

∂U

∂ν
(z, 0)ηn(z, 0)U(z, 0)dz −

∫
Rn+
ηnU∆Udη,

em que
∫
∂Rn+

∂U
∂ν

(z, 0)ηn(z, 0)U(z, 0)dz = 0, pois ηn ≡ 0 em ∂Rn
+ e

∫
Rn+
ηnU∆Udη = 0,

pois ∆U = 0. Logo, obtemos∫
Rn+
ηn|∇U |2dη = −

∫
Rn+
U
∂U

∂ηn
dη.

Mas como vale −U ∂U
∂ηn

= −1
2
∂[U2]
∂ηn

, então

−
∫
Rn+
U
∂U

∂ηn
dη = −1

2

∫
Rn+

∂[U2]

∂ηn
dη.

Usando a Fórmula de Integração por Partes, temos

−1

2

∫
Rn+

∂[U2]

∂ηn
dη =

1

2

∫
∂Rn+

U2(z, 0)dz.

Para o item (ii), usando o fato de que ∆U = 0, temos pela Fórmula de Green que

0 = −
∫
Rn+

∆Uη2
n

∂U

∂ηn
dη

=

∫
Rn+
∇U∇

(
η2
n

∂U

∂ηn

)
dη −

∫
∂Rn+

∂U

∂ν
(z, 0)η2

n(z, 0)
∂U

∂ηn
(z, 0)dz.

Mas como ηn ≡ 0 em ∂Rn
+, então

0 ≡
∫
Rn+
∇U∇

(
η2
n

∂U

∂ηn

)
dη

=

∫
Rn+
η2
n∇U∇

(
∂U

∂ηn

)
dη +

∫
Rn+

∂U

∂ηn
∇U∇(η2

n)dη

=

∫
Rn+
η2
n∇U∇

(
∂U

∂ηn

)
dη + 2

∫
Rn+

∂U

∂ηn
ηn∇U∇ηndη

67



A. Integrais auxiliares

=
n∑
l=1

∫
Rn+
η2
n

∂U

∂ηl

∂2U

∂ηl∂ηn
dη + 2

∫
Rn+
ηn

∣∣∣∣ ∂U∂ηn
∣∣∣∣2 dη

=
1

2

n∑
l=1

∫
Rn+
η2
n

∂

∂ηn

(
∂U

∂ηl

)2

dη

=
1

2

∫
Rn+
η2
n

∂

∂ηn
(|∇U |2)dη + 2

∫
Rn+
ηn

∣∣∣∣ ∂U∂ηn
∣∣∣∣2 dη.

(A.20)

Usando o Teorema da divergência de Gauss, obtemos

0 = −1

2

∫
∂Rn+

η2
n(z, 0)|∇U(z, 0)|2dz

=
1

2

∫
Rn+

∂

∂ηn
(η2
n|∇U |2)dη

=

∫
Rn+
ηn|∇U |2dη +

1

2

∫
Rn+
η2
n

∂

∂ηn
(|∇U |2)dη.

Isto é,
1

2

∫
Rn+
η2
n

∂

∂ηn
(|∇U |2)dη = −

∫
Rn+
ηn|∇U |2dη. (A.21)

Substituindo (A.21) em (A.20), obtemos

0 = 2

∫
Rn+
ηn

∣∣∣∣∂U∂t
∣∣∣∣2 dη − ∫

Rn+
ηn|∇U |2dη.

Ou seja, ∫
Rn+
t|∇U |2dzdt = 2

∫
Rn+
t

∣∣∣∣∂U∂t
∣∣∣∣2 dzdt.

Para (iii), temos

∫
Rn+
ηn|∇U |2dη =

∫
Rn+
ηn

n−1∑
i=1

∣∣∣∣∂U∂ηi
∣∣∣∣ dη +

∫
Rn+
ηn

∣∣∣∣ ∂U∂ηn
∣∣∣∣2 dη.

E por (ii), segue que

∫
Rn+
ηn|∇U |2dη =

∫
Rn+
ηn

n−1∑
i=1

∣∣∣∣∂U∂ηi
∣∣∣∣2 dη +

1

2

∫
Rn+
ηn|∇U |2dη.

Logo, ∫
Rn+
ηn

n−1∑
i=1

∣∣∣∣∂U∂ηi
∣∣∣∣2 dη =

1

2

∫
Rn+
ηn|∇U |2dη.
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Usando (i), obtemos

∫
Rn+
ηn

n−1∑
i=1

∣∣∣∣∂U∂ηi
∣∣∣∣2 dη =

1

4

∫
∂Rn+

U2(z, 0)dz,

concluindo a prova.
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