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Resumo

Neste trabalho, estudamos a existéncia de solugoes blow-up para a seguinte classe

de problemas

—Au+a(x)u=0em M,
{ g () (Pi5>

Qu  22p(z)u = (n— 2)un-2% sobre OM,
em que (M, g) é uma variedade Riemanniana compacta de dimensao n > 5 com bordo
OM, A, é o operador de Laplace-Beltrami referente a métrica g, a € C*(M),b €

CY(OM) e v é o vetor unitério normal a 9M apontando para fora e € é um parametro

positivo. Supondo adicionalmente que exista uma constante 6 > 0 tal que

n—2

| (Vo + a@ydn, + "2 [ sapitdo =6 [ (Vo ),
M oM M

mostramos que é possivel construir solugoes blow-up positivas para o caso (P_.) ou
para o caso (P,.), dependendo do comportamento da fungao ¢ : M — R dada por
©(q) = b(q) — H(q), em que H é a curvatura média de O M.

Palavras-chave: Solugoes blow-up, problema de Yamabe, método da reducao finita,

método variacional.



Abstract

In this work, we study the existence of blow-up solutions to the following class of

problems

—A,u+a(x)u =0 in M,
{ g () (Pig)

B2+ 252b(w)u = (n = 2)u™ on O,

where (M, g) is a compact Riemannian manifold of dimension n > 5 with a boundary
OM, A, is the Laplace-Beltrami operator with respect to the metric g, a € C*(M),
b € CY(OM), v is the outward-pointing unit vector normal to M and ¢ is a positive

parameter. Assuming also that there is a real number § > 0 such that

n—2

| (Vo + a@uydny + "5 [ syt =6 [ (Vo ),
M M

oM
we show that it is possible to build blow-up positive solutions to the case (P_.) or
to the case (P,.), depending on the behavior of the function ¢ : M — R, given by
©(q) = b(q) — H(q), where H is the boundary mean curvature.

Keywords: Blow-up solutions, Yamabe Problem, Finite Reduction Method, Variati-
onal Method.
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Notacoes

A seguir, listamos algumas notacoes utilizadas neste trabalho.

Sejam X e Y espacos de Banach;

e X’ denota o dual topolégico de um espaco de Banach X;

e L(X,Y) denota o espago dos operadores lineares continuos de X em Y’;
e i : A — B denota a aplicacao inclusao, em que A C B;

e (U, (1, (5, ... denotam constantes positivas, possivelmente diferentes;

e [ ] denota o final de uma demonstracao;

e | - | denota a norma euclidiana do R™;

e — denota convergéncia fraca em um espago normado;

o ut = max{u,0} e v~ = max{—u,0};

e B(0, R) denota a bola aberta de centro 0 e raio R do R"!;

e B(0, R) x [0, R) denota a semi-bola aberta superior de centro 0 e raio R do R" ;
e dyi, denota o volume da variedade Riemanniana (M, g);

e do denota o elemento de volume da subvariedade Riemanniana (0M, g);

e (. t. p. denota quase todo ponto;

e Dizemos que f(g) = O(e) se existe uma constante C' > 0 tal que lim._, ‘f‘(j)l < C;

X1



e Dizemos que g(¢) = o(e) se lim._



Introducao

Seja (M, g) uma variedade Riemanniana compacta de dimensao n > 3 com bordo
OM. Neste trabalho, baseado no artigo devido a Ghimenti, Micheletti e Pistoia [29],
temos como objetivo estudar a existéncia de solucoes blow-up positivas para a seguinte

classe de problemas:

{ —Agu+a(z)u=0em M, )

% + "T_Qb(x)u =(n— 2)uﬁi€ sobre OM,

em que A, é o operador de Laplace-Beltrami referente & métrica g, a € C*(M), b €
CY(OM), v é o vetor unitdrio normal a OM apontando para fora e € ¢ um parametro

positivo. Ao longo do trabalho, iremos supor que o operador linear Lu := —Aju + au

(n—
2

.~ . 2 , . . .
com a condi¢ao de fronteira Bu := % + Ly & coercivo, ou seja, que existe uma

constante ¢ > 0 tal que

n—2
/M (|Vgu|2 + a(z)u?) dpg + —5— b(z)u*do > €||u||§{1(M), (2)

oM

em que H'(M) é o espaco de Sobolev munido da norma

ull s any = < [ (19 dug)

Observagao 0.1. Veremos mais tarde que a Condigao ¢ importante para que
possamos ter uma norma equivalente & norma || - || z1(ar) que possibilitara a construgao

de um espaco de solugoes conveniente do Problema .

Nossa motivagao para estudar tal problema vem da Conjectura da Compacidade,
introduzida por Schoen em 1988, para o problema de Yamabe.

O problema de Yamabe foi proposto em 1960 pelo matematico japonés Hidehiko
Yamabe em [48] e inicialmente foi formulado para variedades Riemannianas compactas
sem bordo. Posteriormente, comecou-se a estudar versoes do problema para variedades

compactas com bordo. Veremos a seguir ambas as versoes do problema.



1. O problema de Yamabe classico

Seja (M, g) uma variedade Riemanniana compacta de dimensao n > 3 sem bordo.
O problema de Yamabe formulado em [48] pode ser enunciado da seguinte maneira:
Existe uma métrica conforme a g que torna a curvatura escalar constante?

E conhecido na literatura que se considerarmos a mudanca conforme § = u* (2 g,
em que u € C*°(M) é uma fungdo positiva, tal problema é equivalente a provar a

existéncia de uma solugao positiva do seguinte problema:

n—2

n+2
ngu = Ku»—2 em M, (3)

— Aju +
em que R, é a curvatura escalar relativa a métrica g e K é uma constante. Entao, afim
de resolver o Problema (), Yamabe considerou o funcional

5 Rgdp
oM, g) = JuFata

(f M dﬁ‘ﬁ) o
conhecido como funcional de Yamabe. A partir dai, foi definido o invariante de Yamabe,

dado por

gelgl
em que [g] denota a classe de equivaléncia de métricas conformes a g. Um fato im-
portante é que o conjunto de solugoes depende do sinal desse invariante. Com efeito,
quando A(M,g) < 0, a solu¢ao é unica. O caso em que A\(M,g) = 0, tem-se unici-
dade de solu¢do a menos de multiplicacdo por escalar. Quando A(M,g) > 0, temos
multiplicidade de solugdes.

Yamabe, em seu artigo [48], acreditava ter resolvido o problema. No entanto, em
1968 Trudinger apontou um erro na prova de Yamabe. No artigo [45], Trudinger
adaptou os resultados obtidos por Yamabe e resolveu o problema de existéncia de
solugao positiva para a Equacao sob a condicao analitica A(M) < «, em que « é
uma constante positiva. Consequentemente, com esse trabalho, ficou provado também
o caso particular A(M) < 0. Em 1976, Aubin em [5] provou que a constante 6tima
encontrada em [45] é dada pelo invariante de Yamabe da esfera, isto é, « = A\(S"), em
que S" é a esfera do R™"! munida da métrica candnica gy, e adicionalmente verificou
essa condicao analitica quando a variedade é nao-localmente conformemente plana e a
dimensao n > 6. Schoen [42], entao, em 1984 mostrou essa condigdo para variedades
localmente conformemente planas e para variedades quaisquer de dimensao 3 < n < 5,
desde que a variedade nao seja conformemente difeomorfica a esfera munida da métrica

canonica ¢y, completando, assim, a solucao do problema de Yamabe.



2. O problema de Yamabe em variedades com bordo

Seja (M, g) uma variedade Riemanniana compacta de dimensao n > 3 com bordo
OM. Em [I8], [19], Escobar formulou o problema de Yamabe em variedades com bordo,
que pode ser enunciado da seguinte maneira: Fxiste uma métrica conforme a g que,
além de tornar a curvatura escalar constante, torna a curvatura média no bordo cons-
tante?

Este problema é equivalente a provar a existéncia de uma solugao positiva da se-
guinte equagao:

{ —Agu + 4(’;—__21)Rgu = Kunz em M ()
% + "T’Qng = @)\uﬁ sobre OM,
em que H, denota a curvatura média de M e A é uma constante.

Devido a sua complexidade, o Problema foi estudado em casos, como, por
exemplo, sob a hipdtese de que uma das constantes K ou A é nula.

O caso A = 0, conhecido na literatura como o caso escalar flat foi primeiramente
estudado por Escobar em [I8, [19], que mostrou a existéncias de solugoes supondo al-
gumas condic¢oes sobre M e M, tais como M sendo localmente conformemente plana
e OM umbilico. Alguns casos remanescentes foram estudados por Marques [37, 138],
Almaraz [2], e por Brendle ¢ Chen [§]. Outros vérios casos remanescentes foram estu-
dados como por exemplo nos trabalhos de Marques [37, 38], Almaraz [2], e por Brendle

e Chen [8]. Para mais referéncias, veja também [T, 11, 12} T3], 20, 31, 39] 40].

3. A conjectura da compacidade

Uma vez provada a existéncia de solucoes, bem como a multiplicidade de solucoes
quando A(M, g) > 0, como por exemplo é o caso de S* x S! (veja o trabalho de Bray
e Neves [6]), surge o problema da compacidade, isto é, queremos saber se tais solucoes
sao limitadas, por exemplo, em L*(M). Tal conjectura foi levantada por Schoen num
curso na Universidade de Stanford em 1988. Precisamente a conjectura da compacidade

pode ser escrita da seguinte maneira:

Conjectura da compacidade: O conjunto de solucdes positivas do problema de
Yamabe para variedades sem bordo no caso em que A(M, g) > 0 € compacto com respeito

a topologia C*(M) desde que M nao seja conformemente equivalente a esfera.

Em 1991, Schoen [43] provou alguns resultados de compacidade, mostrando que
para variedades (M, g) localmente conformemente planas que nao sao conformemente
equivalentes a esfera (S™, go) as solucgoes do problema de Yamabe estao contidas num

conjunto compacto com relagao a topologia C*(M). Em 1999, Li e Zhu [36] provaram



a compacidade para variedades gerais de dimensao 3 que nao sao conformemente equi-
valentes a esfera (S°, gg). No que se refere ainda a variedades gerais, Druet [23] em
2003 provou a compacidade para dimensao 4 e, no ano seguinte, para dimensao 5.
Em 2008, Brendle [7] mostrou que a a compacidade nao é valida no caso geral
quando n > 52. Ainda no mesmo ano, Brendle e Marques [9] aprimoraram o resultado,
mostrando que a compacidade também nao vale em geral quando 25 < n < 51. Final-
mente, em 2009, a conjectura foi provada para o caso geral quando 3 < n < 24 por

Khuri, Marques e Schoen [34]. Dessa maneira, fica posto o seguinte resultado:
A Conjectura da Compacidade no caso geral € valida se, e somente se, 3 < n < 24.

Quando a variedade tem bordo, a condigao para a compacidade passa a ser (M, g)
nao ser conforme a bola (B", gy), em que gy é a métrica canonica da bola. A conjectura
da compacidade com a presenga do bordo foi estudada por Han e Li [30], que provaram
o caso em que K < 0e A =0, como também o caso K > 0 para variedades localmente
conformemente planas com bordo umbilico. V. Felli e M. Ould Ahmedou [28] provaram
a compacidade para o caso K = 0, A > 0, para variedades localmente conformemente
planas e com bordo umbilico. Almaraz [3] provou o caso em que K = 0 e A > 0,
n > 7, e supondo uma condi¢ao geral sobre a parte livre de trago da segunda forma
fundamental.

Recentemente, o caso em que K > 0, A = 0 e o bordo é umbilico foi completa-
mente resolvido pelo trabalho de Disconzi e Khuri [22]. Precisamente, eles provaram
a compacidade para o conjunto de solucoes quando a dimensao 3 < n < 24 e deram
contra-exemplos para a compacidade quando n > 25. Parao caso K = 0e A > 0, Alma-
raz [3] provou que se a dimensao da variedade é n > 25, nao vale a compacidade, uma
vez que é possivel construir solugoes para que explodem para uma certa métrica g.
O problema da compacidade em dimensao 4 < n < 24 ainda nao esta completamente
resolvido para ' = 0 e A > 0. Veja também o trabalho de Almaraz, Queiroz e Wang [4]

para variedades gerais em dimensao 3, em que foi provado que nao vale a compacidade.

4. Uma generalizacao da equacao de Yamabe

Motivado por um ponto de vista menos geométrico e mais analitico, comegou-se a
estudar uma classe mais geral de problemas em que substituimos a curvatura escalar por
uma fungio a € C*(M) satisfazendo certas condigoes. De maneira natural, considerou-
se também, quando a variedade tem bordo dM, a substituicao da curvatura média por

uma fungao b € C1(OM) também satisfazendo hipéteses adicionais.



Em 2003, Druet [23] considerou a seguinte generalizacao para a equacao de Yamabe
—Agu+a(:v)u:u%,u>()em M, (5)

em que a € C*(M) e provou que vale a compacidade para solugoes com energia limitada
sen € {4,5} e a(§) # 4(’;—_721)}%9(5) para todo £ € M.
Para variedades com bordo, de Souza [I5] em 2020 considerou a seguinte genera-

lizagao do problema de Yamabe com bordo proposto por Escobar [18]

—Ayu+a(x)u=0em M,
i+ ale) o

% + ”T’Zb(x)u = (n— 2)uﬁ sobre OM,

em que a € C°(M) e b € C®(0M) sao fungoes satisfazendo a < ﬁRQ eb< Hy
e provou a compacidade para certos casos, como M localmente conformemente plana,

OM umbilico e supondo condigoes adicionais sobre a e b.

5. O problema da estabilidade

Inspirada pela Conjectura da Compacidade para o Problema , surge o Problema
da Estabilidade de . Isto é, queremos saber se perturbacoes da Equacao preser-
vam a compacidade ou nao, que é equivalente a existir ou nao uma limitacao uniforme
na norma L para solugoes a priori. Esta questao foi introduzida e desenvolvida pelos
trabalhos de Druet [23], [24], Druet e Hebey [25] e Druet, Hebey e Robert [26].

Em 2014, Esposito, Pistoia e Vetois em [2I] provaram que a compacidade nao é
valida para a seguinte classe de problemas de Yamabe com perturbacao para variedades

de dimensao n > 4 :

n+2

-2
— Agu+ (Zl(tl—_l)Rg—l—eh)u:un? em M, u >0, (7)

em que h é uma fungio pertencente a C*(M) ou a C%*(M), com 0 < a < 1, que
satisfaz max,; h > 0.

Nosso objetivo é provar a existéncia de solucao positiva para o seguinte Problema
de Yamabe com perturbacao no expoente, que foi abordado no artigo de Ghimenti,
Micheletti e Pistoia [29] de 2015:

{ _Agu—i—a(ac)uzoem M7 (8)

% + ”T_Qb(x)u = (n— 2)uﬁi€ sobre OM,

emquea € C'(M)eb e C'(OM) sao fungoes escolhidas satisfazendo algumas condigoes.



Mais do que isso, iremos também provar que tal solu¢ao apresenta um compor-
tamento de blow-up, conceito este que definiremos no Capitulo 2] Veremos que tal
comportamento é ditado pela funcdo ¢(q) = b(q) — H,(¢q) com q € OM.

Com efeito, iremos provar que

(i) Se go € OM ¢é um ponto de minimo local de ¢ com ¢(gg) > 0, entdo para € > 0

suficientemente pequeno, existe uma solucao blow-up u. de (P_.) quando ¢ — 0%,

(ii) Se go € OM é um ponto de maximo local de ¢ com ¢(go) < 0, entao para € > 0

suficientemente pequeno, existe uma soluc¢ao blow-up u. de (Py.) quando e — 0F.

Afim de atingir nossos objetivos, este trabalho sera dividido da seguinte maneira:

No Capitulo [1, fazemos uma revisdo de alguns contetidos de geometria e andlise
que serao usados no trabalho. O dividiremos em trés se¢oes. A Segao tratara
de alguns conceitos fundamentais de geometria para que, assim, todos os aspectos do
problema fiquem bem definidos. Introduziremos variedades Riemannianas com bordo,
veremos que o bordo pode ser visto como uma subvariedade imersa de codimensao
1 e que, consequentemente, obtemos uma noc¢ao de vetor normal e, naturalmente, de
curvatura média sobre o bordo. Depois, falaremos das coordenadas de Fermi, que serao
extremamente tteis para simplificar os calculos do trabalho. Finalmente, na Secao 1.2
definiremos o espaco de Sobolev, enunciaremos os teoremas de imersao e do trago
numa variedade M com bordo, e definiremos a derivada de Fréchet para tratarmos da
formulagao variacional do problema.

O Capitulo 2| é dedicado a descricao minuciosa do problema. Além disso, explicare-
mos o método para resolvé-lo. De maneira resumida, a ideia é reformular o problema
num espaco de fungoes conveniente. Feito isso, iremos usar o método da reducao fi-
nita para decompor esse espaco numa soma direta e, assim, construir uma funcao
que é a soma de uma fungao-bolha (Standard Bubble) com uma outra fungao positiva
adequada. Posteriormente, enunciaremos alguns lemas auxiliares necessarios para a
solugao do problema.

No Capitulo 3] provaremos o resultado principal. Mostraremos que a func¢ao cons-
truida no Capitulo [2| sera, de fato, uma solucao do problema. Para isso, usaremos
a formulagao variacional do problema. Dentro desse contexto, iremos provar que a
solugao é ponto critico do funcional associado ao problema. Na verdade, teremos uma
familia de solugoes variando com o parametro €. Veremos que quando fazemos € — 0,
a imagem em moédulo das fungoes préximo de um certo ponto do bordo pode ficar
arbitrariamente grande. Em outras palavras, construiremos uma familia de solugoes
blow-up.

Finalmente, o Apéndice A é dedicado aos detalhes dos lemas técnicos.
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Capitulo 1

Preliminares

Neste capitulo, veremos alguns conceitos que serao abordados no Capitulo [2| em
diante. Estes serao importantes para desenvolvermos a descri¢ao e linguagem do pro-
blema no qual estamos interessados. Na Secao [I.1], falaremos sobre alguns conceitos
fundamentais de Geometria Riemanniana e, ao final, introduziremos as coordenadas
de Fermi. A Secao ¢é dedicada a parte analitica do problema, como as defini¢oes de
espacos de Sobolev em variedades Riemannianas com bordo, os Teoremas de Sobolev

e a derivada de Fréchet.

1.1 Pré-requisitos geométricos

Nesta secao, iremos apresentar algumas definicoes e resultados de geometria, que
serao essenciais mais tarde. Utilizaremos como referéncia principal o livro do Lee [35]

e auxiliarmente o livro do Tu [46].

1.1.1 Variedades com bordo

Primeiramente introduzamos o espaco que serve de modelo para variedades com

bordo, o hemisfério norte do espago euclidiano R’ C R", definido por
RY = {(z1,...,2,) € R" : 2, > 0}.

Diferentemente do contexto de variedades sem bordo, cujas vizinhancas sao homeomor-
fas a abertos do R", veremos que na presenca de bordo as vizinhancas da variedade

sao homeomorfas a um dos dois tipos de abertos do R}, como ilustra a figura a seguir:
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Figura 1.1: Variedade com bordo
Fonte: John Lee, 2012

Denotaremos por int(R) e IR} o interior de R’} e o bordo de R’} , respectivamente.
Nesse caso, temos
int(R}) = {(z1,...,2,) € R" 1 2, > 0}

OR"Y = {(x1,...,2,) ER" 1z, =0} = R"" x {0}.
Observacao 1.1. E comum fazermos a identificagao OR”? =~ R"1.

Definicao 1.1. Uma variedade de dimensao n com bordo é um conjunto M tal que
todo ponto tem uma vizinhanca homeomorfa a um aberto do R™ ou a um aberto do

R

O par (U, ¢), em que U C M é um aberto de M e ¢ : U — R™ é um homeomorfismo
sobre um aberto do R" ou do R, é dita uma carta de M ou um sistema de coordenadas
de M (exatamente como no caso de variedades sem bordo). Quando necessério fazer
uma distingao, diremos que (U, ) é uma carta interior se o(U) for um aberto do R”
(que inclui o caso quando ¢(U) é um aberto do R’} que nao intersecta JR" ), e que é
uma carta do bordo se ¢(U) for um aberto do R’} tal que ¢(U) N ORY # 0.

Um ponto p € M ¢ dito um ponto interior de M se este pertence a um dominio de
uma carta interior e é dito um ponto do bordo de M se este pertence ao dominio de

uma carta do bordo cuja imagem de p pertence a R”. Denotaremos o bordo de M por
OM e interior de M por int(M).

Observagao 1.2. Note que, pela definicao acima, um ponto ¢ € M tem, em coorde-

nadas locais, a forma (qi,...,q¢n_1,0).

Veremos com os resultados seguintes que tais defini¢oes nunca coincidem, isto é,
um ponto interior de M nunca pode ser um ponto do bordo de M e vice-versa.

A proposigao a seguir pode ser encontrada como Proposi¢ao 22.4 de [46].
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Proposicao 1.1. Sejam U e V abertos de R} e f : U — V um homeomorfismo. Entao,
f mapeia pontos do interior de U em pontos do interior V' e pontos da fronteira de U

em pontos da fronteira de V.

Demonstracao. Seja p € U um ponto interior. Entao p esta contido numa bola B, que
¢ um aberto do R". Como f por hipdtese é um homeomorfismo, entao o conjunto f(B)
¢ um aberto do R". Logo, f(p) é um ponto do interior do R} .

Seja agora ¢ € U NOR%. Entao f~'(f(¢q)) = ¢ é um ponto do bordo. Como
f~1:V — U é um homeomorfismo, pelo que foi provado acima, f(¢q) ndo pode ser um

ponto do interior. Logo, f(g) é um ponto do bordo. H
Corolario 1.2. O bordo de M e o interior de M sao disjuntos.

Demonstragao. Suponha por absurdo que M Nint(M) # () e seja p € OM Nint(M).
Como p € int(M), existe uma carta interior ¢; : Uy — R™ com p € U; e como
p € OM, existe uma carta do bordo ¢, : Uy — R} com p € Us.
Como ambas as cartas sdo homeomorfismos, entdo ¢ : ¢(U;) — U, dado por

¢ = ] 0y é um homeomorfismo, o que é um absurdo pela Proposicio . O

Dessa maneira, podemos expressar a variedade como a seguinte uniao disjunta:

M = int(M)UOM.

1.1.2 Imersoes Isométricas

Inspirado pela teoria de superficies no R?, para falar de curvatura média de vari-
edades de dimensao m, precisamos que estas estejam imersas isometricamente numa

outra variedade de dimensao m + 1. Utilizaremos o livro do Manfredo [16] como guia.

Definicao 1.2. Sejam M e M variedades diferencidveis de dimensoes n e k = n + m,
respectivamente. Uma fungdo diferencidvel f : M — M é dita uma imersdo se df, :
T,M — Tf(p)M é injetiva para todo p € M. Se, além disso, f é um homeomorfismo
sobre a imagem f(M) C M, em que f(M) tem a topologia subespaco induzida de M,
dizemos que f é um mergulho. Se M C M e a inclusdo ¢ : M — M é um mergulho,

dizemos que M é uma subvariedade de M.

Definicao 1.3. Sejam (M, g) e (NN, g) variedades Riemannianas. Um difeomorfismo

¢ : M — N é dito uma isometria se vale

(u,v)p = (dpp(u), d@p(“))ﬂm
para todo p € M,u,v € T,M.

10
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Serao de fundamental importancia as fungoes que sao imersoes e isometrias ao
mesmo tempo, as chamadas imersoes isométricas, uma vez que estamos interessados
na relacao entre a geometria da variedade imersa e a variedade ambiente.

Seja f : M — M uma imersdo, em que M tem dimensdo n e M tem dimensdo
k = n + m. Entao, para cada p € M, existe uma vizinhanca U C M de p tal que
f(U) C M é uma subvariedade de M. Isso significa que existe uma vizinhanca U C M
de f(p) e um difeomorfismo ¢ : U — V C R* para o conjunto aberto V de R, tal
que o mapeia f(U) N U difeomorficamente no aberto do subespaco de R* C R*. Para
simplificar a notacao, iremos identificar U com f(U) e cada vetor v € T,M, q € U,
com df,(v) € Tf(q)M . Devemos fazer essas identificacoes para estender, por exemplo,
um campo vetorial local (isto é, definido em U) em M para um campo vetorial local
(isto é, definido em U) sobre M; se U é suficientemente pequena, tal extensdo é sempre
possivel, gracas ao difeomorfismo ¢.

Para cada p € M, o produto interno em 7, pM divide T, pM na soma direta
T,M =T,M & (T,M)", (1.1)

em que (T,M )L é o complemento ortogonal de T,M em T, M.

Figura 1.2: Imersdo M < M
Fonte: Manfredo do Carmo, 1992

Isto é, se v € T,M,p € M, podemos escrever

v=0" oV, WTeT,M, N e (T,M)".

11
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T ¢ a componente tangencial de v e v”, a componente normal de v.

Dizemos que v
Por uma questao didatica, optamos por definir o operador de Weingarten ao invés
de construi-lo usando a segunda forma fundamental. Caso o leitor esteja interessado

na construgao classica deste, consulte o Capitulo 6 de [16].

Definigao 1.4. (Férmula de Weingarten) Sejam p € M,n € (T,M)" e V a conexdo
de M. Seja N uma extensdo local de n normal a M. O operador de Weingarten é o
operador S, : T,M — T,M dado por

Proposicao 1.3. S, : T,M — T,,M é um operador auto-adjunto.

Demonstragao. Ver a Segao 2 do Capitulo 6 de [16]. ]

1.1.3 A curvatura média numa hipersuperficie

Considere o caso particular em que a codimensao da imersao f : M — M é 1, isto é,
M tem dimensdao m e M tem dimensdo m + 1; f(M) C M é dita uma hipersuperficie.
Como a aplicacao traco independe da base escolhida de T,M, estd bem definida a

curvatura média de f denotada por Hy(f) : M — R dada por

1
Hy(f) = m tr(Sy)- (1.2)
Em particular, fixada uma base {es, ..., e, } de T,,M, denotemos (h;;) a matriz do ope-

rador S, nessa base. Entao, podemos reescrever a equacao acima da seguinte maneira:

Agora consideremos o caso particular que é de maior interesse, que é o da curvatura
média no bordo. Os dois resultados a seguir podem ser encontrados no Capitulo 5 do
livro do Lee [35].

Teorema 1.4. Seja (M, g) uma variedade Riemanniana de dimensao n com bordo,
entao, munida da topologia subespago, OM € uma variedade topoldgica (sem bordo) de
dimensao n — 1 e tem uma estrutura suave de tal maneira que € uma subvariedade
merqulhada de M.

Demonstragao. Com efeito, seja ¢ € OM. Entao existe uma carta do bordo (U, ),

ou seja, uma carta tal que ¢ € U e o(U) N IR} # (. Como JR? é homeomorfo

12
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a R""!, entao o aberto ¢(U) N IR’} é homeomorfo a um aberto V' C R""'. Assim,
temos os seguintes homeomorfismos de abertos U NOM = ¢(U) NOR" = V. As outras
propriedades topoldgicas como ser espaco de Hausdorff e ser segundo contéavel também

sao validas para OM uma vez que OM C M. m

Destacamos ainda que a estrutura suave de dM é tinica, como mostra o teorema a

seguir.

Teorema 1.5. Seja M uma variedade suave e S C M uma subvariedade merqulhada.
A topologia subespago de S e a estrutura suave descrita no Teorema sao a unica

topologia e estrutura suave tais que S € uma subvariedade mergulhada ou imersa.
Demonstragao. Ver Teorema 5.31 de [35]. O

Uma vez provado que OM é uma subvariedade imersa isometricamente de M, po-

demos definir a curvatura média no bordo.

Definicao 1.5. Considere a imersao canonica dada pela inclusao ¢ : OM — M. A

curvatura média no bordo é a fungao H : 0M — R dada por

Hla) = Hy(0)(0) = — > haa) (13

1.1.4 Vetor normal ao bordo

Como ja vimos anteriormente, se M é uma variedade de dimensao n com bordo,
entao OM é uma variedade de dimensao n — 1. Além disso, uma orientagao em M
induz uma orientacao em 0M. A escolha de uma orientagao no bordo é uma questao
de convencao, motivado pelo Teorema de Stokes no objetivo de torné-la livre de sinal.
Das varias maneiras de descrever a orientacao do bordo, existem duas que se destacam
pela simplicidade. A primeira delas é usar a teoria de formas, fazendo uma contragao
da orientacao de M com um campo vetorial normal exterior a M e a segunda é definir
uma nog¢ao de vetor normal ao bordo primeiro. Para uma leitura bem detalhada desse
assunto, o leitor pode consultar a introducao do Capitulo 22 de [46].

Como o nosso objetivo é apenas deixar bem definida a nocao de vetor normal,
optaremos pela segunda forma.

Para construir a nogao de vetor normal ao bordo, usamos a decomposi¢ao do espaco
tangente em e obtemos

T,M =T, (OM) & (T,(0M))*, (1.4)

em que q € OM.

13
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Definigao 1.6. Dado ¢ € M. Um vetor v € (T,(OM))* é dito um vetor normal ao
bordo.

Como OM e M tém dimensoes n— 1 e n, respectivamente, entao os espagos vetoriais
T,(0M) e T,M tém dimensoes n — 1 e n, respectivamente.

Portanto, o espago vetorial (T,(0M))* tem dimensao 1. Dessa maneira, podemos
dividir o espago em duas classes, os que apontam para dentro e os que apontam para

fora.

Definigao 1.7. Dado ¢ € M, dizemos que v € (T,(OM))* aponta para dentro se para
algum ¢ > 0, existe uma curva suave 7 : [0,£) — M tal que v(0) = g e v (0) = v, e
dizemos que aponta para fora se existe tal curva cujo dominio é (—e&,0]. Denotaremos

o vetor normal a OM wunitdrio apontando para dentro por v.

ZT,, IM

Figura 1.3: Um vetor normal apontando para dentro
Fonte: adaptado de John Lee, 2012

1.1.5 Coordenadas de Fermi

Um conceito que serd de suma importancia no trabalho sao as coordenadas de
Fermi. De fato, estas irao auxiliar em muitos calculos posteriores. A definicao a seguir

pode ser encontrada em [37].

Definicao 1.8. Seja M uma variedade Riemanniana compacta com bordo, gy € OM,
r = (21,...,%,_1) as coordenadas normais de um ponto ¢(z) € dM numa vizinhanga
de qo e v(z) o vetor normal unitario apontando para dentro. Entdo, considere a seguinte
funcao
0 :B(0,R)x[0,R) CR" " xR — M
(z,t) — wgo (z,t) == exp,, tv(z).

Nesse caso, dizemos que (z,t) € R™ sdo as coordenadas de Fermi do ponto 42 (x,t) € M

(1.5)

numa vizinhanca de qq.

14
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Apresentaremos um resultado 1til sobre coordenadas de Fermi. Para mais detalhes,

o leitor pode consultar o Lema 2.2 em [37].

Lema 1.6. Sejam y = (y1,...,yn) = (x,t) as coordenadas de Fermi de ¢(y) em torno
de um ponto ¢y € M. Entao, valem as seguintes expansoes da métrica em coordenadas

de Fermi:

97 (y) = 05 + 2hij(qo)yn + O (Jy|*) parai,j=1,...,n—1, (1.6)
g"(y) = 0 parai=1,...,n — 1, (1.7)

VIy) =1—(n—1)H(qo)yn + O (ly*) , (1.8)

V9(x,0) =1+ 0(]z]?). (1.9)

1.2 Pré-requisitos de Analise

Nessa secao, falamos um pouco sobre os espacos de Sobolev numa variedade M
compacta suave com bordo. E bom salientar que a hipdotese da compacidade sobre a
variedade nessa teoria ¢ muito importante. Usaremos como referéncia o livro do Hebey
[32].

1.2.1 Espacos de Sobolev, Teoremas de Imersao e do Trago

Seja (M, g) uma variedade Riemanniana suave compacta de dimensao n com bordo.

Denotamos por H'(M) o complemento de C* (M) com respeito & norma ||-|| g1 (ary dada

el cary = ( T ruwzdug)

Observacao 1.3. H'(M) é um espaco de Hilbert quando munido da norma || - || g1 (ar)

por
1

induzida do produto interno
(U, V) g1 (ary = / (V,uV v + uv)dp,.
M

Enunciamos agora um resultado importante de imersoes de Sobolev.

Teorema 1.7. (Teorema de Imersdo de Sobolev) Seja (M, g) uma variedade Rieman-

2n

,n_Q] , existe

niana suave compacta de dimensao n com bordo. FEntao, dado p € [1
C > 0 tal que

ullzrary < Cllwl| g1 (ar).-

15
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O resultado a seguir pode ser encontrado em [36].

Proposicao 1.8. Seja (M, g) uma variedade Riemanniana de dimensao n > 3 com

bordo OM. Entao, dado € > 0, existe uma constante B > 0 que depende apenas de ¢,

M e g tal que
n—2
2(n—1) n—1 9 9
|u| "2 do < (S+e) | |Voulduy,+ B | udp, (1.10)
oM M M
-1

para todo u € H'(M), em que S = %UT’Z’I e 0, é o volume da esfera unitaria de R".
Demonstragao. Ver Proposigao 1.1 em [36]. O

Corolario 1.9. (Teorema do Trago de Sobolev) Seja (M, g) uma variedade Riemanni-
ana de dimensao n > 3 com bordo 0M. Entao, existe uma constante C' > 0 dependendo

apenas de M e g tal que

HUHL%%:;)(@M) < Ollull g1 (ary- (1.11)

1.2.2 Derivada de Gateaux

Nessa secao, trataremos de funcionais diferencidveis, uma vez que usaremos o
método variacional na abordagem do problema. Usaremos como referéncia o livro

do Willem [47].

Definicao 1.9. Seja ¢ : U — R, em que U é um subconjunto aberto de um espaco
de Banach. Dados u,h € U, denotamos, caso exista, a a derivada de Fréchet em u

aplicada em h por
/ _ i plu+th) — o(u)
) h =i =

16



Capitulo 2

Sobre uma classe de problemas do

tipo Yamabe em variedades com
bordo

Neste capitulo, temos como objetivo estudar a existéncia de solugao positiva do

seguinte problema:

—Au+a(x)u=0em M,
{ g () (P:I:5>

% + ”T_Qb(x)u = (n— 2)u#i€ sobre OM,

em que (M, g) é uma variedade Riemanniana compacta de dimensao n > 3 com bordo
OM, a € CY M), be C'OM), e € é um parametro positivo.
Mostraremos que sob certas hipdteses existe solu¢ao para o problema (P..)). Mais

ainda, mostraremos que tal solu¢ao é blow-up num ponto ¢y € OM, no seguinte sentido:
Definicao 2.1. Dizemos que u. é solucao blow-up no ponto gy € OM caso
(i) Exista uma familia de pontos ¢. € M tais que ¢. — go quando € — 0;
(ii) Dada qualquer vizinhanga U C M de qo, temos que sup,c; uc(q) — oo quando
e — 0.
Ao longo do trabalho, iremos supor que a parte quadratica associada ao problema

(Pse) ¢ coercivo, isto é, que existe uma constante 6 > 0 tal que

n—2
| Vol + oo dg + 52 [ byt 2 0l (©)
M oM

Enunciaremos, assim, o resultado principal do trabalho:

Teorema 2.1. Defina ¢ : OM — R por ¢(q) = b(q) —H(q) e suponha e quen > .

Entao:

17
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(i) Se qo € OM € um ponto de minimo local de p com p(qo) > 0, entao para € > 0

suficientemente pequeno, existe uma solugdo blow-up u. de (P_.) quandoe — 07.

(ii) Se qo € OM € um ponto de mdzimo local de ¢ com ¢(qo) < 0, entdo para & > 0

suficientemente pequeno, eziste uma solugdo blow-up u. de (Py.) quandoe — 07.

Observacgao 2.1. No artigo [29] originalmente supoe-se n > 7, mas em nossos calculos,

encontramos que basta supormos n > 5.

2.1 Formulacao de problema

Nesta secao, explicaremos a abordagem que faremos do problema e a estratégia

para resolvé-lo. Para isso, dividiremos essa se¢ao em algumas partes:

2.1.1 Resultados auxiliares - Parte I
Proposigao 2.2. Supondo (C]), entao a funcao (-,-) : H'(M) x H'(M) — R dada por

n— 2

(u,v) = /M (VuV,v + a(x)uv) dpy, + 5 /8M b(z)uvdo

define um produto interno em H'(M).

Demonstracao. Pela linearidade da integral e pela bilinearidade de V ,uV v, entao sao

validas as seguintes propriedades:
(i) (u,v) = (v,u) para todo u,v € H' (M),
(ii) (Au,v) = Mu,v) para todo A € R e u,v € H*(M) e
(iii) (u+v,w) = (u,w) + {(v,w) para todo u,v,w € H'(M).
Isto é, (-, -) é uma forma bilinear simétrica. Mostremos agora que valem
(iv) {(u,u) > 0 para todo u € H'(M) e
(v) (u,u) =0 se, e somente se, u = 0.

De fato, por , temos
n—2
() = [ (Vg + ale)ed) dpg + 5= [ bapido > Ol > 0

Pela expressao acima, se (u,u) = 0, entao ||u||§{1(M) = 0, o que implica em u = 0, o

que mostra que (-, -) é, de fato, um produto interno. O

18
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Desse modo, o produto interno acima induz a norma || - || dada por

[ull = V/{u, u).
Ao longo do trabalho, denotaremos por H o espago H'(M) munido do produto interno
<'7 >
Proposicao 2.3. Supondo (C]), entao as normas || - ||z1(ar) € || - || sdo equivalentes.
Demonstragdo. Por , temos [|ul[? > O|u|3 (5. Por outro lado,

n—2
Jull? = [ (950 +ate)ed) duy + "2 [ bapdo
M oM

n—2
< [ (9 + ol dity + "5 2l [t
M oM

Mas pelo Teorema do Traco, existe C; > 0 tal que

/ udo < C’l/ (IVgul* 4+ u?) dp,.
oM M

Assim, temos

Ciln—2
|ul|? < /M (IVgul® + |allscu®) dug + %Hb“w /M (|Vgul® +u?) dp,

= [ (0 A ) 19+ (ol + SO ) o) i,

Tomando Cy = max{1 + WHbHO@, lalleo + WHwa}, obtemos que

lull* < Collullz ar)-

Assim, concluimos a prova. O

2.1.2 Reexpressando o problema

Uma vez que os espagos adequados para estudar o problema ([P..]) estao apresenta-
dos, vamos para o segundo passo, que ¢ transforma-lo num problema mais conveniente.
Para isso, definiremos alguns conceitos, provaremos algumas proposicoes importantes

e alguns resultados da Teoria de Equagoes Diferenciais Elipticas.

2(n—1)

Definigao 2.2. Dada g € L™= (0M), considere o seguinte problema:

Qu + 12h(z)u = g sobre OM.

{ —Agu+a(z)u=0em M,
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Dizemos que ug € H'(M) é solugao fraca do problema (P)) se ug ¢ tal que

-2
/ (V,uoV v + a(x)ugv) dpg + nT b(z)ugvdo = / gudo, (2.1)
M oM oM

para todo v € H'(M).

Observagao 2.2. Para obter a formulagao fraca do problema ([P,)), seguimos os se-
guintes passos:
Supomos que uy é suave e multiplicamos a primeira expressao de (P,)) por v €

H(M) e integramos, obtendo:

—/ Agugvdug—l—/ a(z)ugvdpy = 0. (2.2)
M M

Usamos a Formula de Integracao por Partes, temos

0
—/ Aguovdug:/ Vguovgvdug—/ 700 do. (2.3)
M M 9

oM oV

Substituimos ([2.3]) em (2.2)), segue que
8U0
VuoVvdp, — —uvdo + [ a(z)uovdpy = 0. (2.4)
M om OV M

Substituimos em (2.4)) a segunda expressao de (FP,)), temos que

-2
L b(x)uovda:/ gudo,

oM

/ (VauoV v + a(x)ugv) dp, +
M 2 oM

que é a expressao definida em ([2.1]).
Lema 2.4. O problema tem uma tnica solugao fraca ug € H'(M).
Demonstragao. Considere o funcional L, : H'(M) — R dado por Ly(v) := [,,, gvdo.

Temos que L, é continuo em H'(M), pois L, ¢ linear e vale

2(n—1) .
n—2 ((‘)M)

< < ne
L@ < [ lgllldo < Lol 2 01,

Pelo Teorema do Traco, vale

ol 2wmn < Chlo]].
L™ n=2 (OM)

Assim, tem-se que

|[Ly(v)] < Cofo]].
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Logo, L, é continuo.

Portanto, pelo Teorema da Representagao de Riesz, existe um tnico ug € H'(M)
tal que Ly(v) = (ug,v). Substituindo Ly(v) e (ug,v) por suas respectivas expressoes,
obtemos exatamente a Equacao . Isto é, ug é solucao fraca de . O

Observagao 2.3. Vejamos agora que a solugao de (P,)) é dado pelo adjunto do operador
(n—1)
inclusao i : H'(M) — L= (OM) aplicado na funcao g.

2(n—1)

No contexto deste trabalho, o adjunto de i é o operador i* : L™ = (OM) — H' (M),

definido pela expressao
() odmanmon = i@z o socn o (25)
e /
em que fazemos as identificacoes dos espacos duais (H'(M)) = H' (M) e <L2(nf21) ((9M)>
2(n—1)
L2572 (9).
Observando que (i*(u), v) g1 (ar),m () = (% (w),v) e (u,i(v)}Lz(nn_l) 010252 o =
Joas uvdo, temos

Fazendo u = g, obtemos

@0 = [ gudo
oM
Mas pela unicidade da solucao de , entao up = i*(g).

Observacao 2.4. Assim, ao longo do trabalho, denotaremos a solugao de (P,) por
i*(9)-

Usando as notagoes acima e fazendo g = f.(u) em (P,|), ficamos com o problema

u=1"(fe(u), weH, (P)

em que H := H'(M) N L*(0M) é o espago de Banach dotado da norma | - || :=
A1

L= (M), sendo o expoente s, definido por

2(n—-1)

% para o caso (P_.)
S pr—
€ =D 1+ ne  para o caso (Py.) .

1
n—2

Observagao 2.5. Apés resolvermos o problema ([P ]), é facil ver que a solucao que

encontraremos é nao-negativa, ou seja, temos que u = u". Desse modo, uma solucao

encontrada em (P}, é também solucao de (P..).
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Observagao 2.6. Observe que, por conta do Teorema do Traco, temos que H =
HY(M) no caso (P_.) e, desse modo, temos que se u € H = H'(M), entao, pelos re-
sultados anteriores, i*(f.(u)) € H'(M) = H. No entanto, no caso (P,.) nao ¢ imediato

provar que dada u € H, terfamos que i*(f.(u)) € H.

Para provar isso, enunciaremos alguns resultados auxiliares que nos darao algumas

estimativas importantes. Consideremos agora o problema (FP,)) em coordenadas locais:

{ Lu+ a(z)u=0em Q (2.6)

% + ”T—%(x)u = g sobre 012,

em que €2 é um dominio limitado Lipschitz e L é o operador dado por

Zax (129”833 ) +Z (Zg”x/_ax (\/_)> g;i (2.7)

e a derivada normal assume a forma

ou "\ Ou
o > Tl (2.8)
j=1 =
sendo v = (4, ..., V,) o vetor unitario normal a J€2 apontando para fora.

Como consequéncia do Teorema 3.14 em [17], temos as seguintes estimativas rela-
tivas ao Problema ((2.6)).

)q

2 (0. Entdo eiste
uma constante C satisfazendo a segumte propmedade Se uw € HY(Q) satisfaz ,

Teorema 2.5. Suponha que 55 < q < 3,7 >0eg € L n=

entao valem também que u € Ln%q(Q) eu e = (092), e vale a estimativa

n— < ne . 2.
ol ot g+ 0l e <€ (il + ol iz, ) (29
Além disso, se a solucao u € unica, temos que

[l

e < ne . 2.1
ety I e gy < OOl e 210

(n— )q

Corolério 2.6. Se u € HY(M) é uma solucao de eg € L
dados =% < ¢ < 3 er >0, existe C' > 0 tal que

(OM), entdo

n— - " n— < C n— . 2]_1
lell jampe )y = WO e < Cllal e, (2.11)
Demonstragdo. Segue da Estimativa (2.10) no Teorema 2.5 O
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Observagao 2.7. No Corolério , tomamos ¢ e r tais que (Z:;)qq = 2(5:21) + ne e

—(i;lq)q +r= —2(”;2(:?(27;;2)5, ou seja,
2n+n? (2=2) ¢
Cnt2+2n(2=2)e
e
2(n—1)+n(n—2) 2(n—1)+n(n—2)c
r= - :
n+(n—2)e n+(n—2)(-%)e
_ _ (n—

Notando que ( ) +ne = (n - +¢) % temos que se u € Le 1)J”“':(aM),

—1)+n(n

entdo |u|n2 7 € LW(@]\/[) e, por (2.11)), que * <|u| 2+a> c L

2(n 1

QM.

Assim, fica provado que no Problema (P ) se u € H, entao ¢*(f.(u)) € H.

2.1.3 Resultados auxiliares - Parte 11

Veremos alguns problemas auxiliares que ajudarao na construcao de uma solugao
para o problema (P}_). Como ja haviamos dito anteriormente, somos levados a cons-
truir solugdes blow-up de (Pf.]). A maneira canonica de construir solugdes deste tipo é

através das fungoes bolhas. Estas sao as fungoes Use : R"™! x R, definidas por

n—2

d =z
(6+1)2 + |z —€2)T

U&g(ﬂf, t) =
em que d > 0e & € R" ! que sdo as solucoes do problema limite

AU =0 em R™! xR
{ e xRy (2.12)

U = (n— 2)Un-2 sobre R"! x {0}.

Denotamos Us(x,t) := Usp(x,t). Também precisamos introduzir o problema linear

_AV =0em Rnil X R+,
(2.13)

90 = nU ™V sobre R"~! x {0}.

No trabalho de Almaraz [3] foi provado que o espago de solugoes de (2.13)) de dimensao

n é gerado pelas fungoes

Vi:aUlz( —n) i =~ parai=1d,...n — 1,
O (1 +18)% + [f?)2
8U5 n—2 1 2 2 2
= =1 —1].
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Definimos a funcao-bolha da variedade como sendo

Waal€) = Us () 7€) x () ¢).

em que ¢ € OM e x(x,t) = x(|x|)x(t), sendo x uma fungdo corte suave que satisfaz
X(s) =1para0 < s< R/2e x(s) =0 para s > R. A partir das fungoes V;, definimos

as seguintes fungoes

z;,q<s>=5%w(§<¢2)‘1g)x((¢3)—15), P20, no1

2

Escreveremos o espaco de Hilbert H'(M) como soma direta de dois subespagos orto-

gonais. Sao estes o subespago
Ksq= 123,25,
e seu complemento ortogonal
Kéq ={p e H' (M) |{p, Z;,) =0 paratodoi=0,...,n—1}.
Procuramos solugoes de do tipo
us(x) = Wi o(x) + o(2),

em que o ponto de blow-up é ¢ € OM e a taxa de blow-up 0 satisfaz § := de para
algum d > 0 e o resto ¢ pertence ao espaco vetorial de dimensao infinita K (%q NH de

codimensao n. Desse modo, o problema
Wig(@) + d(2) = i* (fe(Woy(2) + 6(2))), ¢ € Kz, NH
pode ser reescrito na forma
Wig(@) + ¢(x) = (f-(Wsq(2) + 6(2))) =0, ¢ € Kz, NH. (2.14)

Uma vez que H ¢ a soma direta de K5, NH e K54 N H, resolver o Problema (2.14) é

equivalente a resolver o sistema
M5 {Wsg(2) + d(x) — 0 (f Wsq(2) + ¢(2)))} =0, ¢ € Kz, NH, (2.15)

Mg {Wig(@) + o) =i (fe (Wag(2) + ¢(2)} =0, ¢ € K5, NH, (2.16)
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

L . ~ L .
sendo I3, e Il5, as projecoes em K5, NH e K;, N H, respectivamente.

2.1.4 Reducao a dimensao finita

Referente a Equacao auxiliar (2.15)), usaremos o método de reducao a dimensao

finita, que no nosso contexto consiste em reescrever (2.15) da seguinte maneira:

Lsq(¢) = Nog(@) + Rsg, (2.17)

em que Ly, : Kz, NH — Ki, NH é o operador linear

Lsq(6) = s, {6(x) — " (fL(Wiq) - 0)}, (2.18)

fL(Ws,) denota a derivada da fungdo f. : R — R em W;,, sendo Ns,(¢) o termo

nao-linear

Nig(¢) = Ty, {i* (fe (Woq(x) + ¢(2))) — 0" (fe (Wog(2)) =" (fL (Wsq) - 0)}  (2.19)

e o erro R, definido por

Rsq = T3, {i" (fe Wig(@)) — W(2)}- (2.20)

2.2 Lemas auxiliares

Apresentaremos agora alguns lemas que serao muito importantes na prova do teo-

rema principal.

Lema 2.7. Sejam a,b € R tais que 0 < a < b. Entao, existe uma constante positiva
Co = Cy(a, b) tal que dados € suficientemente pequeno, g € OM, d € [a, bl e ¢ € K(%qﬂ’;'—l,
temos

1£5.4(@)ll3, = Colldll3-

Demonstracao. Argumentamos por contradicao. Suponha que existam duas sequéncias
de nimeros reais ¢,, — 0 e d,, € [a,b], uma sequéncia de pontos ¢,, € OM e uma
e Kl

sequéncia de fungoes ¢, 4 _MH tais que

m,qm

7q

Para simplificar a notacao, ponha ¢,, = €,,d,, e defina

Om = 052205, 4 (U5, (0m1)) X (O1) para n = (2,t) €RL, z € R"1, 1> 0.
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Nesse Caso? temos |’¢5mdm,QmH S ]‘7 pOiS ||¢5m7QmH S "¢6m7Qm‘| + ||¢5m,Qm

Afirmagdo 2.1. ¢,, é limitada em D'?(R").

Le=(OM) =

De fato,

n—2

= 0m® [0mX YV (6m1) Ds1m.0m OmT]) + Db g (On1) VX (01n17)]
= 52 [X(Om) V5,0 g () + B8, s (G VX ()] -

Assim, temos

/.

Fazendo a mudanga de variaveis d,,n — (w,s), temos o elemento de volume dn =

IV () |2y = / ) 32 IX(6mM) Y B B1) + B g (60) VX (3m) | .

n
+ R%

0, "dwds e, assim, ficamos com

e I
R}

= / X (w0, $)V P50 (W, ) 4 5,4, (0, 8)Vx(w, 5)|*dwds

R?

<2 / (IX(w, ) V5,140 (w0, 8)* 4 D6, 40 (W, 5) VX (w, 5)[?) dwds
R}

S C (|V¢5m,qm(w, 8)|2 + ’¢5m,qm(w, 3)‘2) dwds

RY

S Cl||¢5m,‘]m”i{1(M) S C2H¢5m,qm||2 — 02'

Portanto, H(b:nHDI,Q(Ri) ¢ limitada.

Observagao 2.8. A partir de agora diremos que a sequéncia converge quando esta

converge a menos de subsequéncia.

Por conta da Afirmacao , temos que existe ¢; € DV2(R?) tal que vale a con-
vergéncia fraca ¢,, — ¢;. Pela propriedade reflexiva do espaco D'2(R"), entao b — b1
q.t.p. em R"™.

Além disso, temos, pelo Teorema de Rellich-Kondrachov, que q~3m — 9252 em L] (R")

2(n—1)

para1§q<ﬁ.

Assim existe ¢y € LY

1e(RT) tal que vale a convergéncia fraca ¢,, = ¢, e que, a

menos de subsequéncia, ¢:n — (52 g.t.p. em R7.
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Observacao 2.9. Pela unicidade do limite, denotaremos ambos os limites por qg

Procedendo como anteriormente fazendo as mudancas de varidaveis M 3 £ — 6,,n €
RY e OM > £ — (6,2,0) € OR, que nos da os respectivos elementos de volume
dpy = 6"dn e do = 07 *dz, obtemos

0= <¢5m7‘hn7 ng,qm> = /M (V9¢5m7QmVQng,qm + a(x)%m,qngm,qm) dﬂg
+ /aM b(x)%m,qugm,qmda
—1I4 / SO (5Bt (00 GtV Zh . (42 (8,))™dl
B(0,R)x[0,R)
/ V92 O, (822 0)) Pt g (0. (Gons O))ZE - (2 (B 0))67
OR
14 / TOmm)a (02 (E)) 05, amn (7. (Bu))2 V() x(Bou) S0l
B(0,R)x[0,R)
/° VI OB (502, 0)) b5 (17 (Bunz, )0 Vi(z 0)x (Gonz, )7 2
OR
. / 5 T (2. (5rat)) P (L2, (B Vi ()X (Gl
B(0,R)x[0,R)
+ / 55 (s OVD(EL, (Bon 2, 0)) 5, g (U2, (Bon, O))Vi(2, 0)x (G, 0)elz
B(0,R)

oy /B o 5 /g a(w?. () b5 (U2 (B Vi) X (Bt}

—i—ém/ O o V 9(0,2,0)b wa (0mz,0)) ¢5mqm(w(?m(émaO))W(z,O)X(émz,O)dz
B(0,R))
— T+,

em que

J=5i/ﬁ O 90mm)a(d (5mn)) Bsmsgm (o (8mm))Vi(n) X (0ram)dn
B(0,R)x[0,R)
+ Om / 3)5 ey vV 9(0mz,0 bwa Omz,0)) gb(gmqm(@b (0mz,0)Vi(2,0)x(0,m2,0)dz
O
=62 [ aGamatu, Gun))om (Vi)
B(0,R)
+ 6m / V902, 00612 (6,02,0))dm(2,0)Vi(2,0)dz
B(0,R)

(0,R)x[0,R)
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Py 05 Zi
] = 6m 67’L 2 gk 5m m,qdm 0] 5m Om ,gm - d
Lo VI n>(2 B ) g () G (0,9 n>>> .

J,k=1
0[50 Vilm)x(6m)|
O

dn

Ops
= 5m 671 2 6m msdm o 5m
/B(O,R)X[O,R) 9(0m) Z 7 (6mm) an, (¥, (0mn))

j,k:*l

:/B (6mm) Z 5m2 g]k %( gm@mn))a[‘/i(ﬁ)x(%ﬁ)]dn

(0,R)x[0,R) ]k f 0 j ank

\/Tnz 5 () (9¢5m qm( (5mn))0[%(n)x(5mn)]dn

(0,R)x[0,R) k=1 ank

oV
-/ V) 3 857 ) 2 0, Gt (5) S )
B(0,R)x[0,R) Mk

7,k=1

I
T

> 8¢m . Ix
v | V) 3 655 7 Goin) 2522 52 6,00}V r) 25 )
B(0,R)x[0,R) Tk

7,k=1

Mas pelas expansoes em coordenadas de Fermi ((1.6)) e ([1.8)), ficamos com

76% qm
/Bmmx[om( + O0m)) (05 + Z 2 (Snm))X (G

3 ¢5 IPom,am. Ix
/B(o R)x[0 R)( (0m)) (O Z qm( m))0m ™ D (n)dn

7,k=1

= g 5m2 6m m,qm d
/(0 R)x[0,R) X(Omn) =502 on; (%sm o (Om)) an; (m)dn

O o Viln) e Sn)d
+ /B(O R) Z (7]> 877 (¢§m qm( ))877 ( 77) n—+ 0(1)

x[0,R) =1 j

En "3 05,4 oV;
N Om* X(0m o dn + o(1).
/B(O R)x[0,R) X(om) on; (%’” an (O >)877j (n)dn + o(1)

Somando e subtraindo o termo, que pelos cédlculos anteriores, satisfaz

x

3 oV,
Om / O Osna Sont) o
B(0,R)x[0,R) Z P (%’" a0 O 77”(977]( )

g (1)dn = o(1).
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

na Equacao ([2.21)), obtemos

I- / VG ()Y Vi)
B(0,R)x[0,R)

n

n—2 a(b(g 9 (3)(
B(O,R)X[O,R)Z ) o, (Vnam >>377j( )

j=1

", a2 ox ov;
—5m/ O b5 o (W2 (6m1)) 22X (6,0m) S () d.
o > 00 G (V3 4 (Gmn) 8nj< ) o (n)dn

Isto é,

1= / VG () VVi(m)dn + ofL). (2.22)
B(0,R)x[0,R)

Assim, por (2.22) e (2.2]), temos

0= Bspgm+ Z o) = | VViVhu(n)dn + o(1). (2.23)

RY

Logo, passando o limite em l} e pela convergéncia fraca ¢, — ¢ em DY2(R?),

obtemos

0=A{Bspim: Zo )= | VViVéndn+o(l)= [ VViVdn. (2.24)

R™ R%

Por outro lado, como V; é solucao de ([2.13]) e usando a convergéncia fraca novamente,

J

Desse modo, combinando ([2.24)) e (2.25]), temos

temos que

VYV Gy = /

OR"

2 2
nU?Vopmdz = n/ U2 ¢dz. (2.25)

7 oR}

VV;Védn =n / U2 ddz. (2.26)

R? OR™

Agora podemos expressar

Bssgm — T (Fr Wor 0 [Bsman)) = s g0 ABbmam = 7 (fL, (W) (06,0 )) }
+ H5m,qm{¢5m,qm - i*<f;m(W5m7Qm>[¢5muqm])}

n—1
_ i i
- Lém:Qm (¢5m7Qm) + Z CmZ5m,Qm
i=0
para certos ¢! . Queremos mostrar que para todo i € {0,...,n — 1}, tem-se ¢!, — 0
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

quando m — oco. Equivalentemente reexpressamos

n—1
¢6m7‘Zm - Z*(fém(W5m7Qm)[¢5m7Qm]) - Lgnu‘]’m (¢5m7Qm) - Z C'ZmZ(ZSm,qm' (227)
=0
Fazendo o produto interno da Equacgao ([2.27) com Zg 4 s ODtemos

n

Z cin <Z§m,qm7 ng,qm> - <¢5m,qrn7 ng,qm> - <Z* (fslm(W(Sm’lIm)[(rb(Sm;lZm])? ng,qm>

=0
- <L5man <¢5m,qm>, ng7Qm> .

Levando em conta que ¢s,, .. € Kimqm e Ls,, g (0500.0m) € KéLm,qw temos que <¢5m7qm, ng qm> =
Oe <L5m7qm(gz55m7qm), ng’qm> =0, o que nos da

n—1

Z m <Z(5m qm’ jm,qm> == <Z Elm W‘Sm Qm>[¢5m Qm]) ng,qm> :

1=0

Pela definicao de *, temos

i‘icjn (Zy o 3 ) =— » fr (W an ) [@smam Zs. g, do. (2.28)
Agora fazendo o produto interno da Equacao por @5, g, t€MOS
(D6mams o) = ™ (Lo Wor0) [B51m,0))s Do)
Db Lo (Po1)) = "Z‘l o (Z5 - Pomsm) -
=0

Como no caso anterior, temos <i*(f€’m(W5m’qm)[¢5m,qm gz55m7qm> =0e) = 01 {7 H. ¢5m7qm> =

0 e assim ficamos com

Gl = [ £ (W)l =0

Ou seja, temos

| I W) g7 = 5, < 1.
oM

Assim, f (Ws, 4 V3¢5, 4 ¢ limitada em L?(QM).

Afirmacao 2.2. [, f! (Ws, 4.)03, ,.do = o(1).
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Substituindo cada termo por sua respectiva expressao, obtemos

| 1 Wsn )k
=C /aM [Us, (62 )XW ) O] ™2 G500 V05 (02 )71 (€))do,

em que C'=n =+ (n — 2)e. Fazendo a mudanca de coordenadas, obtemos

/ fém (Waman )¢§m,qm dO-

oM

:O/ V9(z0) [Us, (2,00x(2,0)| 725" 5. 6n Vi(57:(2,0))dz.
B(0,R)

n—2 +n=2¢ ~ ..
Como /g, Xtz emelU P ™ sao limitadas, uma vez que
e 1k n=2g Fr2e,
Us, (2,0)5m < (6,7)7 2 ™ =, 2

5;5”7_28"1

-2
— 152 eln(dymenm) +O(e2, In2e,) < O

(2.29)

emInd,, +0(e2 In?6,,) = 1F n
Assim, obtemos a estimativa

/ f{:{m (W(vaqm)gbgm,qmdo- S CQ /
oM

) 2-n
n | ——— ) x(2,0)¢s,,4.0m> Vi(6,,}(2,0))dz.
" () X6 O V00

Colocando as poténcias de 9,, em evidéncia, obtemos

/ fém (WémJIm)gbgm,qm do S 026771% /
oM

1
n|———— 2,0)s,. 0., Vi(6:1(2,0))dz.
" (mz/émp)x( 165,00 Vi(62 (2, 0)

Fazendo a mudanga de varidvel w = §12, que nos d4 o elemento de dw = §,""dz,

ficamos com

oM f;m (W(Sm dm ) ¢(2Sm7Q’m dU

_n 1
< Cym? / n (—) Smw, 0)s,. ¢ (mw, 0)Vi(w, 0)5, " dw
o [ () 100005 G Vi, 0
1 n—2
=C / n (—) O’ X(0mw, 0)ds,. 4, (0w, 0)V;(w, 0)dw
s o™ (T 27 100,000 G Vi, 0

= C’g/ nU; 2 (w, 0)¢~m(w, 0)V;(w, 0)dw.
B(O,R)
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Como Vj; é limitada, entao

fém(ng,qm)¢§m7qmdo < Cg/ nU; 2 (w, 0)(b~m(w, 0)dw.

oM B(0,R)

Como ¢, — ¢ em LI (OR%) para 1 < ¢ < 2D entao

loc n—2

/ nU % (w, 0) ¢ (w, 0)dw —>/ nU7 2 (w,0)¢(w, 0)dw.
B(0,R) B(0,R)
Usando ([2.26)), ficamos com
|12 Ws 0,068, 4,0 = of0).
oM
Analogamente aos calculos anteriores, temos que
{Z}, 0 23 0 Y = C6i;. (2.30)
Assim, substituindo (2.30]) em ([2.28)), e fazendo m — oo, obtemos que
c — 0. (2.31)

Agora tomamos a norma || - || na identidade ([2.27)), ficamos com

n—1
||¢6W,Q7n - 7’* (f:’;{m (W5m7QTrL))[¢6m7Q7n ||H - Z Cinng,qm + Ld7n7‘17n(¢577u(bn)
=0 H
- (2.32)
<Y 1l 25, a3+ 1 Lo (P ) 134
=0

Como supomos que || Ls,, g, (95,,.0 ) |2 = 0(1) no inicio do lema e usando o Fato (2.31)),

ficamos com

P5m.am = 7 (FZ e (Wo00)) (5.0 12 = 0(1).- (2.33)

Agora tomamos uma funcao ¢ € C§°(R") cujo suporte estad contido em B(0, R) e defina

a sequéncia de fungoes

om(€) = 07 (67112 )L ((12.) 7€), com € € M.

32



2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Podemos expressar (¢s,, q.., m) da seguinte maneira

(B> Pm) = (D6mgm = T (fey, Worn g [Bsmsam]) + 1 (fL, (W00 [06m,0m))» )
= <¢5m,qm —1 (fém(Wém,Qm)[Qb&m,qu: ‘Pm> + <i*(fa/m(Wém,qm)[¢5m,qm])7 Spm>

= Bsmn — 7L (Wa)[B5ma])s 9m) + / EARUCIR I P

-3k
*

Por ([2.33)), ficamos com
<¢6m7Qm7 (10m> - / fE/m(W6M7Qm)[¢6m7Qm]90mdo— + 0(1)
oM

Analogamente & prova da Afirmagao (2.2)), vemos que

LEm L?ib?m ~
(05,00 o) = (1 £ (1 — 2)2n) / SR U ()6 (2, 0)(2, 0)dz + o(L).
B(0,R)

Assim, ficamos com

(B ms o) = 11 / U7 (2,0) (2. 0)(z, 0)dz + o).

B(0,R)

Como ¢, — ¢ em LL_(OR" 1) para 1 < ¢ < %, entao

n / U7 (2, 0)6m(2, 0)0(2, 0)dz + o(1) = n / U7 (2,000(2, 0) (2, 0)d=.
B(0,R) B(0,R)
(2.34)
pois

/B<o [ 1009, 0060 (2:0) = 9z 0)ldz < U7 2 00z, Ol

<[ Jom(0) = 6(2,0)ldz = o{0).
B(0,R)
Por outro lado, temos

(D6,1.qms Pm) = / VoViedn + o(1). (2.35)

B(0,R)x[0,R)
Assim, combinando ([2.34) e (2.35]) e passando o limite obtemos:

n / U7 (2,0)8(2, 0)p(2, 0)dz = / VomVelndy,  (2.36)
B(O,R) B(

0,R)%[0,R)

que, como vimos anteriormente, nos diz que ¢ é solugao fraca de {D Assim, temos
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

que ¢ é uma combinagao das fungoes V;. Mas como tinhamos construido a sequéncia

qz;m e K JLm gm» € CONsequentemente o limite gz; e K (%q, 0 que obriga que

¢ =0.
Procedendo de maneira analoga, encontramos que

”d)ﬁm,qm H2 = <¢5m,qm7 ¢§m,qm>
:/ fo (Ws,.00) [ D) Do gm0 + 0(1)
oM

— (ntem(n—2) / ST R (032 (5, 0)(2, 0)d + o1)
B(O,R)
=o(1).
(2.37)
De maneira similar a ([2.32)), tomando desta vez a norma || - || zs- aar), temos
196,00 | 5= 010) < 7 (fZ,, (W00 ) [860,000 )| L52m 021) + 0(1) = 0(1). (2.38)
Desse modo, por (2.37) e (2.38)), temos que
H¢5m:QmHH = |’¢5m7qu + "¢6m:Qm‘ LSE(aM) = 0<1)7 (239)

o que é uma contradi¢do, pois ||¢s,, 4. [l% = 1. Assim, finalizamos a demonstragdo. [

Lema 2.8. Sejam a,b € R,0 < a < b tais que existe uma constante positiva C; =

C1(a,b) para a qual, dados € pequeno, g € OM e d € [a, b] tem-se
| Resqlly < Ciellnel.

Observagao 2.10. Dividiremos a demonstragao do lema em trés afirmacoes principais.
Cada uma é responsavel por uma estimativa e ao fim utilizaremos as trés estimativas

para provar o lema.
Demonstragao. Sendo fo(Ws,) € L5 (OM), sabemos que existe I' que satisfaz

{ —AgI'+a(z)l' =0 em M, (Fo)

2T+ 22b(z)L = fo (Ws,) sobre OM,

em que I' (z) = i*(fo (Wi (2)), isto é, a solucao fraca de (Py).
Afirmacao 2.3. ||i*(fo(Ws,)) — Ws4ll = O(e).
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

De fato, temos

1 (fo (Wag)) = Wagll® = IIT = Wl

B /M (IVg (T = Wig) I* + a(z) (T — Ws,)?) dug

-2
n / b(z) (T — Wis,)? do.
2 Jom

Pela féormula de integragao por partes, temos

I~ Wagl* = /M (=8 (' = Wig) + a(x) (T = Wig)) (U = Wig) dpug

+ /8 . {a (= Wag) | (n=2) WM)} ) do

ov 2

Como I' é solugao fraca, entao

IT = Wi, |12 = /M (8, Wiy — ala)Wiy) (T = Wi,) dpg

" /8M {fo (Wisq) — OWiq

52 (0 = Wi i
n—2
( _ ) / b(x)Wsy (T — Wig) dpy = I + I + I.
oM

i) Pela Desigualdade de Holder, temos

I < [AGWs g — a(x) W — Wil 22,

oI M)’

Pelo Teorema de Imersao de Sobolev, existe C' > 0 tal que

I < CllAgWs g — alz)Ws || 1T = Wil

2n
Ln+2 (M)

Mostraremos que [|A;Ws, — a(z)Ws,4|| = O(6). Primeiramente, temos

n+2

(i)’

- ( /M [U5((@2) () )] dﬂg)

IWaall, 2 0

n+2

2n
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Como x tem suporte compacto contido em B(0, R) x [0, R), temos

Wil 2o )=</ [Ua«w?)-l)x((wf)*))]ffzdug)
¥§(B(0,R)x[0,R))
([ D st ) )
B(0,R)x[0,R)

em que (z,t) sdo as coordenadas de Fermi em torno de ¢ € M. Pela Desigualdade de

Holder, temos

n+2
2n

2n
5 on < Xn+2 i </ Usla,t dedt)
Waall 285 0y < | \/_HL BORXO\ fpo o (z,1)

n+2
:C(/ m@@ﬂmwo
B(0,R)X[0,R)

2n
Pelo Lema supondo n > 5, temos que

Wadll, 2, ,,, = O%). (2.40)

2 (M)

Agora expressemos o Laplaciano da seguinte maneira:

~ PUsx]  ~=~ i OlUsx]
AWsg = AlUsx] + ) (97 = 05) 5 I Ry pr (2.41)

4,j=1 1,5,k=1

Em relagao ao termo AWs,, temos que

AW, 2, = IXAUs + UsAx +2VUs V]| 2

2 L2 ()’

Mas como Us é solugao do Problema (2.12)), entao AUs = 0, o que nos d&

1A, 2y, = 105 + 2905V

dem que j& vimos por (2.40)), temos que
|UsAX|| 2 = O(6?). J& para VUsV, tem-se

Ln+2 (M)

on_
VU, 2y = ([ 190902, )
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Pela Desigualdade de Cauchy-Schwartz, temos

Analogamente ao calculo de HW‘S"IHL 2

V0, 2, < ([

IVU; Vx| 2

Um célculo direto nos da

VU(;(ZL', t) =

Usando o Lema

(NG,

i,5,k=1

= (n—

A2

(

2 -G +0)]

n+2

o = ([ o)
M

n+2

temos que

(M)’

(0,R)x[0,R)

8U5 2 n—1 8U5 2 2
E) t2 (a?)

|\VUs(z, t)|n2+n2dxdt)

n+2
2n

(2.42)

((6+1)2+a]?)2

supondo n > 5, temos que HVU(SVXHL%Z

) Us(x,1).

—_

n—

+

(6 +1)2+[2[*)2

e
Il

1

= 0(6?). De maneira andloga, temos que

i z]Fk a[UzSX]

Y Oz

por conta de (2.40) e que

oUs
X@xk

2n
Ln+2

<Oy
M)

/B(OR )x[0,R)

B(0,R)x[0,R)

I[Usx]
&xk

oUs
X@a:k

oUs
X@xk

+0(6?)

2n
Ln¥2(M)

n+2

2n_ 2n
n+2
dxdt)

2n

oUs
a0, —(z,t)

%7 |a
(0 +1)2 4 |z

n+2

n(n—2) n n
/ g |zt dudt ) :
n2 :
B(O.R)x[0.R) ((& 4 t)% + |x|?)n+2
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n—2 2
(2—n)d = xp ]

(M)

o)
- dzdt
)2 ]

(2.43)

= 0O(). Assim,

n+2

2n



2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Pelo Lema supondo n > 4, temos que

i gijFl'c. o[Usx]

i k=1

= 0(3). (2.45)

Lembrando que ¢ — 6;; = 2h;;(0)t + O(|(x,t)|?) e repetindo o mesmo procedimento

anterior, obtemos que

i [Usx]
Y — 0y = 0(9), 2.46
>0 b | =00) (2.46)
wi=l L7F2 (M)
concluindo assim a demonstragao de que
[8gWsq — a(@)Ws,ll = O(6). (2.47)
Portanto, vale
I = |7 = Wi O(6). (2.48)
ii) Pela Desigualdade de Holder, temos
oWs
I < F - W n— W - 4 .
Pelo Teorema do Traco, existe C' > 0 tal que
oWs
I < CHF - WJ,qH fO(Wé,q) - o : 2(n—1) :
VollL= om)
Pelo Lema supondo n > 3, vemos que
oWs
[pove) -S| L, —o@) (2.49)
VollL= om)
Assim,
I = |I0 = Wi, | O(). (2.50)
iii) Pela Desigualdade de Holder, temos
< - n—1 n— .
B 0= Wigl e [ Wall 2,
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Pelo Teorema do Traco, temos

Iy < OIT = Wig [ Wagll 200

(o)’

mas ||W5,q||L2(n_1> = 0(9), pois

e (OM)

2(n—1) -1
n— < n
Wl 2 g, <€ [ U050

que pelo Lema supondo n > 5,

Dessa maneira, temos

Wsgll 20on ) = O0). (2.51)

Iy = |0 — W5, | O). (2.52)

Portanto, por (2.48)), (2.50) e (2.52)), temos que

17 (fo(Ws.q)) = Wagll = [T = Wigll = O(5). (2.53)

Pondo ¢ = de, ficamos com

1" (fo(Wag)) = Wagll = O(e). (2.54)

Afirmacao 2.4. No caso (P-.), vale [|i*(f-:(Ws,)) — *(fo(Ws,4))|| = O(e) + O(g]Inel).

De fato, temos por linearidade que

1 (f:(Ws.0)) = 7 (FoWs Il = 17 (fe(Ws ) = Fo(Wsa))l

Substituindo U*¢(z,0) = ﬁUiS(Z,O) + U*4(2,0) — ﬁUiE(z,O) em ([2.55)),
[ R stz

< ||E(L2<”n—1) (aM),Hl(M))||f6(W6’q) — fo(Wsg)
= [|f:(Wsq) — fo(Wa,q)HLz(nn—l)

n_4. _n_
n—2 n—2
‘W&q — W

”L%(aM)

(OM)

=(n—2)

2(n—1
%(aM)

2(n—1) 2(nn—1)

<C (/R [(Uﬂ(z,()) . 1)Uﬁ(z,o>} " dz)

(2.55)
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

ficamos com

[ (f:(Wsg)) = 7 (fo(Wis,g))|

<C<énj(ﬁ;yﬁﬁ%am—¢)Uﬁﬂzm}ndaﬂfn+ow%.(2%)

Consideremos agora as expansoes de Taylor em relagao a € de ordem 1:

U =14+elnU + O 1n?U), (2.57)

1
n—2

gt

Substituindo (2.57) e (2.58)) em ([2.56)), obtemos

n —

5 2o+ O(e?1In?9). (2.58)

:5¢5n7_2:1$5

175 (f:(Ws4)) = " (fo(Ws )

n

2(n—1) 2(nn71)
—9 n
<C(/ <:Fn2 81n5:|:51nU(z,0)+0(52)+O(521n5)> U"—Z’(Z,O)' dz)
Rn—1

+ 0(6?)

n—2 2(n—1) ﬁ 2(n—1) ﬁ
= el Ind| (/ Us "2 (z,O)dz> +e (/ Us"™? (2,0)In U5(2,0)d2>
Rn—1 Rn—1

+ O(e%) + O(2|Ind]) + O(6%).

J& vimos que

n—2 2(n—1) ey
5 el In o] (/ Us "% (2, O)dz) = O(g]Ind)). (2.59)
Rn—1

Para o segundo termo, note que

n—2

) 2
IHU(;(Z,O) =In (m)
:n_21n< i ><n_21n<£>:n_21n(51):2;n1n5.

2 52 + |22 2 52 2
(2.60)
Tomando o médulo em (2.60) e considerando § < 1, ficamos com
n—2
| InUs(2,0)| < 5 |In 4. (2.61)
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Por (2.59)) e (2.61)), temos que

n—29 2(n—1) D) 2(n—1) 5T
el Ind| (/ Us"™? (z,O)dz) +e (/ Us"™ (2,0)In Ug(Z,O)dZ)
2 Rn—1 Rn—1
= O(e|Ind|)

e, consequentemente, que
|5 (fe(Ws,q)) = 7 (fo(Wsg))l = O(e) + O(e] In.d]) + O(6?). (2.62)
Pondo 0 = de, ficamos com

15 (fe(Wsq)) = (fo(Wso)) | < CllF-(Wsg) = fo(Wiy) = O(e|Inel). (2.63)

”LQ("E” (OM)

Afirmacao 2.5. No caso (Py.), temos ||i*(f-(Ws,)) — i*(fo(Ws)) |l = O(e| Ingl).

De fato, temos

| Re s.qll o= onry < |Wggllar any, iy 17 (fe (W o (%)) = Wi g ()] Lo o)
= [li*(fe(Ws4(2))) — Wi q(z)

Ls= (M) -
Pela desigualdade triangular, temos

HRE,&q

woeonr) < N[ (fe(Wag(2))) = " (fo(Wisg(2)))

L< (M)

| (2.64)
+ 17 (fo(Weg(2))) = Weg (@) oc (oar)-
Denotamos I' = i*( fo(W;s,))-
Observacao 2.11. I' — W;, ¢é solugao de
Ay (' = Ws,) +a(z) (I’ = Ws,) = AWs, — a(z)Ws, em M, (2.65)

(T-Wsq)  pe Lo
( By va) + 725(37) (I' = Wsq) = fo(T) — ng — sz(x)Wg,q sobre OM,

uma vez que
aAY (0= Wsgq) +a(z) (I = W;s,q) = —A L+ AW, + a(x)l' — a(x)Ws,.

Mas como I' é solugao de , entdo —A,' + a(z)I’ = 0, o que nos da a primeira

equacao

—A,(I' = Ws,) +a(z) (T’ = Wsy) = AWsq — a(z)Ws, em M
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

e também
or—-Wws,) n-—2 _or . oWs, n—2 n—2
By + 5 b(z) (L' = Ws,) = % ey + 5 b(x)T b(z)Ws,.

Novamente, como I' é solucao de 1' entao g—g + "T’Qb(x)]? = fo(T'), o que nos d& a

segunda equacao

8(F—W57) n—2 @VV(;7 n—2
5 2+ 5 b(z) (T —Ws,) = fo(T) — 5 4 5 b(x)Ws, em OM.
Agora utilizaremos o Teorema , tomando ¢ de tal maneira que % = % +ne =
Se, isto é,
2n + n? (Z%)
1 n+242n

ceu=1— W57q, fo = AgW(S,q —CL([E)W&Q €g= fO F) -

nos garante a existéncia de C' > 0 tal que

LW — "52b(x)Ws,4. O teorema

[T = Wil

Lse (OM) < C”AgWJ,q - a(l’)W&qHLq-Ff((‘)M)

0 n—2
fo(T) — %W&q — ——b(x)W;s,

+] .

(n—1)q
L n—a (M)

Observacao 2.12. Note que

2 2 (n=2 2 (n=2
_ntn (n_)26 _ 2n 4 n (n—l)6 = 2n + 0% (e),
n+2+2n(22)e n+2 m+2)(n+2+2n(22)e n+2
(2.66)

em que 0 < Of(g) < (;_28‘(—;?25)2 = Ce.

Através de calculos andlogos aos que fizemos no inicio do lema e usando o Fato

(2.66)), obtemos
||a(x)W5,q||LCI+E(M) < 052_O+(5);

b(2)Wsoll ne1)a < O§0T@),
[b() (s,qHL%ﬁ(aM)_

Também obtemos por (2.41)), (2.44)), (2.46) e (2.49) que

||A9W§,ql|LQ+E(M) < 052_O+(5)7

OWs.q

< 051704—(6) )
ov -

fO(W5,q) -

(n—1)q
L n=a (OM)
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Como *(f.(Ws,)) é a solucao do problema

{ —A,T +a(x)l =0 em M, (2.67)

20+ 222p(2)l = f. (W) sobre M,
aplicamos novamente o Teorema e obtemos, pelas Expansoes (2.57) e (2.58]), que

1 (f:(Ws,g)) = 7 (fo(Wiyg))
< NfeWsg) = fo(Wiy)

peoan = 17 (W) = (oW )| 2020,

2(n=1) 4 o+ (e)

I,

) 2n=1) 4 o+ (e) W
§<150*@><j£1[(5;§;U§@a0)—1)l§(&0ﬁk} )

+ O(6%).
(2.68)
Usando a Estimativa (2.63|) obtemos

1 (£- (W) = & (Jo(Wsg))lo= oar) = -7 (O(e] Ind]) + O(e)) + O(5)
= O(c|In8]) + O(e) + O(6?).

Pondo d = de, obtemos

1 (fe(Ws.0)) = 7" (fo(Wsg)) | oe onry < W fe(Wisig) = fo(Wig)l|Loe onry = O(e| Inel). (2.69)

Para finalizar a demonstragao do lema, estimamos

HRs,é,qHH = ||Rs,6,q” + HR&M L3 (0M)
= |15, {i* (f-(Wag)) — Wag | + | Resgll Lo onn)
< i (fe(Wsg)) — Wagll + | Resq

Ls< (OM)-

Pela Desigualdade Triangular, obtemos

[Besqll < 117 (fo(Wag)) — Wall
(e Wsq)) = " (fo(Ws gl + [ Be s.dl

Ls<(OM)-

Usando as estimativas enunciadas nas Afirmacoes [2.3] 2.4] e [2.5] ficamos com

||R6,6,q||H = O(e|Ineg]).
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Assim, existe C7 > 0 tal que
[ Resqlln < CrelInel,
concluindo a demonstragao. O]

Proposicao 2.9. Dados a,b € R, com 0 < a < b, existe uma constante positiva
C' = C(a,b) tal que, para ¢ suficientemente pequeno e para quaisquer ¢ € M e
d € [a,b], existe uma unica ¢;, solucao de que satisfaz ||¢s4||,, < Ce|lne|. Além
disso, a aplicagdo q — ¢s, € C*(OM,H).

Demonstracao. Primeiramente, temos que

N(¢1) = N(¢2) = 5 {i* (fe(Wsg + ¢1)) — " (f-(Wsy)) — i (fi(Ws,4) - 61)}
- ngq{i*(fa(wdq + ¢2)) - i*(fE(W&q)) - i*(fé(W67q) ’ ¢2)}

Como IIj, e i* sdo operadores lineares, temos

N(él) - N(CbZ) = H(Jsjq{i*(fE(qu + Cbl(T)) - fs(u/é,q) - fE/(qu) : ¢)1) - (fs(Wﬁyq + ¢)2) - fE(W&q) - fé(W&q) : (/52)}-

Isto é,

N(¢1) — N(¢2) = Tz {i*(f-(Wisg + 61) — fe-(Wag + ¢2) — [L(Wag) - [d1 — ¢2])}. (2.70)

Tomando a norma || - |3 em (2.70), temos

IN(¢1) = N (@)l = M5, {i* (fe(Wsg + &1) = fe(Wsg + d2) — fA(Wig) - [01 — d2])} |
< HHquE(H,H)Hi*(fa(W&q + le) - fs(Wﬁ,q + ¢2) - fé(W&q) ’ [?bl - ¢2D“H

z 1 =z : = x 1 — ]
Ja que I3, é projecao, entdo ||l ||z = 1. Assim,

IN (1) = N(d2)ll < || (f-(Wsg + &1) — fe(Wesg + d2) — [i(Wigldr — 62]) [
em que s. é o expoente conjugado de s., dado por

2(n—
, { % no caso (P_.),
sL =

2(n—1)4en(n—2)

o en(n—2) no caso (P..) .

Pela continuidade do operador ¢*, temos

IN(¢1) = N(@2)lln < Cllfe(Wsg + d1(2)) = fe(Wig(@) + da(2)) = fi(Wsg) - [61 = alll 1ot o)
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

em que C' = [|i*| 2 12 oary 1) = l2ll 23,15 0a1)) = 1. Entéo, ficamos com

IN(¢1) = N(d2)llae < 1fe(Wag + 1) = fe(Wag + 62) = fi(Wag) - [61 — ¢2]

Pelo Teorema do Valor Médio, existe 6 € (0,1) tal que

fE(Wé,q + d)l) - fs(Wﬁ,q + ¢2) = fs/(Wé,q + 091 + (1 - 9)¢2) ’ [(bl - ¢2]

Assim, ficamos com

IN(61) = N(d2)llse < [(fi(Woq+ 061 + (1 = 0)h2) + f2(Wsg)) - [61 — 2]

Se
sL?

!/
Usando a Desigualdade Holder com expoentes p = (5—5> eq= ficamos com

/!
SS

L5 (OM)"

L5t (OM)"

IN(¢1) = N(@2)ll < | fo(Wesq + 001 + (1 = 0)¢2) — fL(Ws )| ()
L "\se/ (0M)
X ||p1 — 2l Lo o)
Denotamos v = y(¢1, ¢2) = [[fi(Wsg + 01 + (1 = 0)d2) — fL(Wi,4)|l ()
L "\se/ (0M)

Afirmacao 2.6. Vale v(¢y, ¢2) — 0 quando ||¢1|[z — 0 e [[@2]|% — 0.

De fato,

2 2 4 2y s
1= (25 ) (/ Wi + 001 + (1= 0)g] 7275 — Wy, [755*
n—2 oM

<G ( / 'IWa,q+9¢1+(1—9)¢2|<fzie>sz(zz> _wy, | (%)
oM

Pelo Teorema do Valor Médio, existe A € (0,1) tal que

Wiy + 060+ (1 — B)go| 3294 (2) _ iy ((F#) ()
= ( n 5 + g) s (%) |W57q|{(£2i5)51‘5(:z> _1] [(AOd1 + (1 —0)ds)].

n —

Assim, ficamos com

Se

v < Cy (/aM Wil (e () (@ + (1 — 9)¢2)|d0> (%)
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Novamente usamos a Desigualdade de Holder com p = s. e ¢ = s. e obtemos

1

v f lles 1)) S ([ oo ooear) A

/
Levando em consideracao que {(% + 5) s (S—f> — 1] sk < (% + 6) st eque|fl()| €

L*:(OM), temos que

</3M |W6,q|({(nz2:|:s)s

m\
/~
o
0 |t
\_/
|
ILI
\_/
oY
Q)
SN———
o
o>
o
[ V)
7/
m\‘m
SN——
d
A

e, assim,

’7 < Cg "9@51 —|— ]. - )¢2|85d0'> SES/E(%Z)

1

( (1611 + |2l™) d )Sf*(i@

( f<se>'>
Ls=(8M)

Cy <H¢1Hy<i> £ oal G > 0

quando [|¢1]l — 0 e ||¢2|lz — 0. Assim, temos que

H¢1HL68 )+ [

|IN(p1) = N(¢2)|l < Vo1 — D2l s onry < V| D1 — D2l (2.71)

Fazendo ||¢1]|% e ||#2]|3 suficientemente pequenos, podemos considerar v < 1. Tomando

¢$2 =0 em ([2.71]), vemos que
IN(@)ln < VIl (2.72)

para algum v < 1 desde que ||¢||% seja suficientemente pequeno. Relembremos que

pelo Lema [2.7], existe Cy > 0 tal que

1L5.4(@)ll% = Col| 6]l (2.73)

Dai, temos que L;, ¢ injetivo. Além disso, restringindo Ls, na sua imagem a uma
bola pequena, temos também a sobrejetividade de L;,. Dessa maneira, L;, ¢ bijetivo

e admite uma inversa L;!

5.4 due, pela Equagao 1} satisfaz

154 (D)l < C5 Ml (2.74)
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

Além disso, pelo Lema [2.8], existe C7 > 0 tal que
| Re 54l < Ciellnel. (2.75)

Pelas Desigualdades (2.74]) e (2.75)), temos

IL5q(N(¢) + Resg)ll < Co ' IN(9) + Reglln
< Co (IN(@) I3 + | Resall) -

Por e (2.75)), temos
IL5q (N (8) + Resg)llae < Co* (11l @lla + CrelInel) .
Tomando C' = max {Cy",Cy'Cy } > 0, ficamos com
1Z5q (N(9) + Resa)ll,, < C (Yl @llae + el nel). (2.76)

Fixado este C' > 0, podemos considerar 7 satisfazendo 0 < Cy < 3 desde que ||¢||x

seja suficientemente pequeno. Se tomarmos ||¢||y < 2C¢|Ine|, teremos, por (2.76]), que

_ 1
153 (N(9) + Resa)ll,, < 5lléll + Cellne]
< Ce|lne| + Ce|ln¢]
= 2C¢|Ine|.

Desse modo, a fungdo T'(¢) = L;;(N(gb) + R.s,) ¢ uma contragdo da bola {¢ €
H; |9l < 2Ce|Ine|} nela préopria. Portanto, pelo Teorema do Ponto Fixo de Banach,

existe um unico ¢s, com ||¢ps 4|l < 2Ce|Ine| que satisfaz

Psq = T(¢5,q) = L(;,; (N((bciq) + Re,57q>~

Aplicando L;,, temos
L&q(ﬁb&q) = N(¢6,q) + Resq-

Ou seja, @54 € solucao de (2.16). A regularidade de ¢s5, vem do Teorema da Funcao
Implicita. [
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2. Sobre uma classe de problemas do tipo Yamabe em variedades com bordo

2.3 A formulacao do problema via energia reduzida

Seguindo os passos da Observagao 2.2 temos que uma solugao fraca u € H do

Problema (Py.) que satisfaz

b(x)uvdo — (n — 2)/ un2tdo =0 (2.77)

-2
/ (VyuVyu + a(x)uv)dp, + e
M 2 oM

oM

para qualquer v € H. Veremos a seguir que o problema (P..)) admite uma formulacao

variacional.

Observagao 2.13. Solugoes fracas de (Py.)) sdo pontos criticos do funcional J. : H —
R dado por

Jo(u) = 1/ (IVul* + a(x)u®)dp, + nT—2 b(x)udo
M

2
oM (2.78)

- 2 2 2n—2
. (n ) / wn—2 iEdU.
2n —2+¢e(n —2) Jou

Como na verdade estamos procurando solugoes de ([P..)) da forma us, = Ws,+ s 4,
em que ¢5, € K 5{1 N H, entao nos atemos a procurar pontos criticos da funcao I. :

(0, +00) x OM — R, chamada Energia Reduzida, definida por

Ie(da Q> = Je (Wsd,q + (bsd,q) y (279)

em que ¢.q, foi encontrada na Proposigao (2.9).
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Capitulo 3
Provas dos principais resultados

Nesse capitulo, provaremos o teorema principal enunciado no Capitulo 2 Antes

disso, enunciaremos e provaremos uma proposicao importante.

Proposicao 3.1. (i) Se (do,q0) € (0,+00) x OM é um ponto critico da energia
reduzida 1. definida anteriormente, entao Wegy 4o + @edo.q0 € H € solucao de (Pec).

(ii) Vale que I.(d,q) = cp(€) + € [andp(q) — BnInd] + o(e) no caso (P-.) e I.(d,q) =
cn(€) + € [andp(q) + BnInd] + o(g) no caso (Py.) uniformemente em C° com res-
peito a d nos subconjuntos compactos de (0,4+00) e ¢ € IM. Aqui ¢,(g) é uma
constante que sé depende de ¢, e n,q, e [, sao constantes positivas que sé de-
pendem de n, e p(q) = h(q) — H(q).

— 0
q0

e considere a composicao desta com a energia reduzida. Como trataremos dos pontos

Para simplificar a notagao, denotemos g = ¢(y) (y) a parametrizacao de Fermi

criticos da energia reduzida, o faremos em coordenadas, isto é, lidamos com pontos

criticos da energia reduzida em coordenadas denotado por I.(d, q(y)).

3.1 Prova da Proposicao 3.1]- (i)

Seja (do, o) um ponto critico de I, em que ¢y = ¢(0). Entao, paracadai=1,...,n
temos o1
= (dy,0) = 0.
ayi( 0.0)

Levando em consideracao que I.(d,y) = J. o0 (Wegqy) + ®edqy)) €ntado pela regra da

cadeia, temos que

I OWedg(y) + Peda(y))
0= 8yh (dO’ O) = Jé(Wado,qo) ' : yayh Y (dOa O)
8W€d, (y) a¢€d, (v)
= W) (Z 5 0) + 255 4, 0) )
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3. Provas dos principais resultados

Usando a Expressao (2.77)), obtemos

OWeq q(y) OPeq q(y) )
ZEbaW) (g0 ) 4 b4 (g0 0
o (do, 0) (do,0)

0= J (Wsdo qo) . ( 8yh

151%% 0
= <W€do,qo + ¢6do,qo - (fs( edo,qo + ¢6do qo)) M(doa 0) + M(doa 0)> .
OYn OYn 6.1)
3.1

Por outro lado, fazendo a decomposicao em K g, 4 NH e K N H, ficamos com

Edo q0

oW, O0ea,
0= <W€d0,lJ0 + ¢8d0,QO - (fE( edp,qo0 + (bsdo QO)) adq (d0> 0) ad 4w (dﬂ? 0)>
Yn Yn

aWE qly a¢5 29\Y
- <H5do,qo{Wsdo,qo + ¢6do,qo - (fe( edo,qo T+ ¢6do qo))}’ - ( )(d O) acgl,h( )(d07 0)>

6W5 O¢ea,
+ <Hé}zo,q0{W5do,q0 + ¢sd0¢10 - (fs( edo,qo + d)sdo qo))}v - q(y) (d O) E;;Z(y) (d07 0)> :

Usando o fato de que ¢4, 4, ¢ solugao de (2.15)), temos que

oW, 00,
0= <W€d0,QO + ¢€d0,QO - (fE( edp,qo0 + ¢Ed0 QO)) —daw) (d0> 0) ¢ ) (d 0)>
OYn Oy

8W5 a(y Oea,q(y
- <H5d0,‘IO{W€d07QO + ¢Edo,¢I0 (fE( edo,qo T ¢Ed0 QO))}v il )(d O) di()(d(h O>> ’

Oyn

Entao, existem . tais que

n—1
0 c;<zf Weaatw) (g, ) 4 Pstats) (4 >>

SN oy, Oy
— ; OWedq(y) — ; 0Pedqty) 32
= 3 L <Z€d0 © " oy (d0,0)> 2 <Z6do © oy (d0,0)>.
Uma vez que ¢egq(y) € Kad a(y) Para todo y, entao
0= (Pedaty) Ziaqty)) - (3.3)

Derivando a Expressao (3.3) em relagao a yp, em (dy,0), obtemos

¢€dq ed (v) 0 B aZé‘
0= < d >(d070) = <%(do70) Zla, qo> + ¢£do,qoaﬂ(d0>0) :

8?/h Yn OYn

Isto é, temos que

96, 0z
< ¢ da(y) (do, O) Zédo q0> = - <¢ado,qo7 a;;l(m(dm 0)> : (34)

Iy

50



3. Provas dos principais resultados

Substituindo a Identidade (3.4]) em (3.2)), obtemos

n—1 n—1
) 7 8W€d 8Z5d
0= Z Ce <Z€d0 q0° ) hq d07 > E C < edo,q0 ay: (dOa 0) .

=0 =

Agora observamos que

8Z5dq
<¢€d07QO7 a—yh(d(b 0)> >

por conta da Proposicao [2.9. Temos também que

) (4, o)

o o(e), (3.5)

i aWed 1 ) h 1 aX
<ZEd0 q0? 9 hq (d07 )> Sdo <Z€d0 q0° Zedo q0> + <Z€do q° a Uado
1

Sd <Zz Z?do q0> +0(5>7

edop,q0°

por conta do Lema[A.1] Por outro lado, podemos ver que

3 aWa Oé(;ih
<Z€d07q07 adhq (d070>> = gdo + 0(8), (36)

em que « é uma constante positiva. Assim, por - temos que

n—1

L Zc 5’h+0

=0
Afirmagao 3.1. ¢! =0 para todoi=0,...,n— 1.
Com efeito, suponha por absurdo que existam exatamente k termos ¢! nao-nulos,

em que 1 < k < n. Sem perda de generalidade, admita que ¢ # 0, ..., c*"! = 0. Entao,

temos o sistema homogéneo k x k :

1
0= [o(e)? + -+ (1 +o(e)) +...0(e) ], 0<h<k-—1, (3.7)
0

que pode ser reexpressado matricialmente da seguinte maneira:

[ (1, 0@ o) oe) ] 2 0
<E+T€> = = e
o(e)
€
: 1 o( _
(1+9) =
. ole)
€
o(0) oe) 1, o®
T D (1+2) | k1 0




3. Provas dos principais resultados

Tomando ¢ suficientemente pequeno, temos que

ofe) .
€
det : (%Jr@) > 0.

Isso implica em que a tnica solucao do sistema é a trivial, o que é um absurdo, pois

supomos que a soluc¢ao era nao-trivial. Como k € {1,...,n} é arbitréario, verificamos

que todas as possibilidades de negacao da hipdtese levam a um absurdo, provando

assim a Afirmagao [3.1
Isto €, Pegyqo € solugao de ([2.16). Sendo assim, ¢.q, 4, € solucdo de (P%,).

3.2 Prova da Proposicao 3.1| - (ii)

Passo 1 Queremos mostrar que para e suficientemente pequeno, vale
| Je (W5,q + (bé,q) —Je (Wé,q)‘ <C H¢&q”3—[ + ég‘ Ine H¢6,qHH = o(e).

i) De fato, temos

(n—2)?
2n —2+¢e(n —2)
1
= §<W5,q + ¢5,q7 W(S,q + ¢5,q>
(n =2

- /(W‘+¢>%#WO
m—2+e(n—2) fop 0T

1
Ja(W(iq + ¢5,q) = §||W57q + Qbé,q”z -

1 1
— SIWsall? + (W, 65) + 5105,

(n—2)?

B /(W‘+¢>%#%a
m—2+e(n—2) [y 0T

ii) e também que

(n — 2)2 / 2n=2 4
n— €d .
n—2+e(n—2) aM(WM + G5q) 2 odo

1
Jé?(W&q) = §||I/V5,t;{||2 - 9

52
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3. Provas dos principais resultados

Logo, temos por (3.8)) e (3.9) que

Ja(Wé,q + 455,(1) - JE(Wé,q) :/ V¢5,qvw5,q + a(l’)ﬁbé,qW&qdﬂg
M

n—2

T

1
| v@hosaWsgdo + 516517
oM

2n—2

(n —2)2 / -2 o2y,
a + ne2 T — " do.
2n —2+e(n—2) BM( 5.q T $5,q) W&q o

(3.10)
Usando a identidade de Green
oW,
/M V05,4V gWsqdptg = /M —AgW&ngg,q + /3M a;’q G5 qdo (3.11)
na Equacao (3.10)), obtemos
Je(Wsq + s,4) — J:(Wiq) = / —AgWsq05,q + a(x)Wis,q05,4d11g
M
+ [ T Wiyt + 505
(n—2) / e R
2L e D) Joy,Ba T80 T — Wi do
(3.12)

Para efeitos de célculo, somamos e subtraimos o termo [, fo(Wsq) — fo(Wsq)¢s4d0,

reescrevemos a Equagao (3.12)) como sendo

1
Js(Wé,q + 9255,!1) - JE(WM) = / [_Agw&q + G(I)Wé,q](b&qdﬂg + §H¢6,q”2
M

+/ |:8W5,q + i 2b(:6‘)W5,q - fo(Wé,q)} P5,qd0 + / [fo(Wsg) = fe(Wig)l s qdo
oM ?

v 2 "
(n — 2)2 2n—24 ?%Qie
a /BM 2n — 2+ ¢e(n —2) (Wag + dsq) =2 - Wi i — fe(Ws4)¢s,4do

Finalmente, tomando o valor absoluto da equacao acima e usando a desigualdade tri-

angular em cada termo, obtemos

1 2
+ 2 105l

| Je (Wé,q + ¢5,q) —Je (Wé,q)‘ < ‘/M [‘AgWé,q + a(ﬂf)W&q] ¢6,qdﬂg

oW, )
+ / |: a;’q + n 5 b(l‘)W(S’q — f() (WJ,q):| ¢57qd0'
r (3.13)

+ / o (Wsy) — o (Wig)] d5.4do
oM

(n—2)?
* /BMQn—Q:ta(n—Q)

2n—2 +e

2n-2
hmwwmwdﬂ—WﬁQ}—ﬁmummw
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3. Provas dos principais resultados

iii) Pela Desigualdade de Holder, temos que

‘/ [_Agwdq + a(a:)W&q] Ps,qdptg
M

S/ | — AgWs g+ a(m)Wé,qubé,q‘dﬂg
M

n+2
2n

< ([ 1= AW+ alo) Wy Foa,
M

x(/@Mwm%> .
M

Pelo Teorema do Traco, ficamos com

n+2

2n

‘/ [_AQWM + a(x)W(;,q] Gsqdpg| < C (/ | - AgVV&q + a(x)Wé,qVTzd/ig) ||¢5,q||~
M M

Usando a Estimativa ([2.47)), ficamos com

] [ 80 e b5, = 0(0) 65 (3.14)

iv) Pela Desigualdade de Holder, temos

oW, —2
/ [ 5 bg T b(z)Ws.4 — fo (Wé,q)} Ps,qdo
oM v 2
n—

8W5q 2
< : —
_/OM‘ oy T g t@Wag = fo(Wg)

8W§q n—2
< : —
B (/aM ov + 92 b(x)Ws 4 — fo(Wisg)

| ¢5,q |d0‘

2(n—1) oD o e
do </ |ps,q| "2 d0> .
oM

Pelo Teorema do Traco, temos

oW, —2
P TR )
oM v

2
2(n—1) ﬁ
da) 194l

oW, n — 2
= </8M' (9;(1 T3 b(x)Wsq — fo(Ws,)

Pela Desigualdade Triangular, obtemos

oW, —2
/ |: a d,q + n b(l‘)W(S,q — f() (W67q):| ¢(5,qu-
oM v 2

2(n—1) Z(Tn—l)
aW n
f(/ \aé’q—mwg,q) do—) 95
oM v

n—2 2(n-1) 2i-T)
+ 9 (/ |b(x)W5,q| r d‘7> Hﬁb&qH-
oM

o4




3. Provas dos principais resultados

Assim, usando as Estimativas (2.49) e (2.51]), obtemos

v 2 = 0(0)|gs4ll- (3.15)

/ {8W6,q + n- Qb(x)W(s,q — fo (W&q)} Psqdo
oM

v) Para o terceiro termo no caso (P_.) temos pela Desigualdade de Holder que

/ Jo(Wia) — J-(Wh ) ésgdo| = / Jo(Wia) — J-(Wa)l|ésldo
oM oM

2(n—1) 2("711)
s( [ 100) = o) 5 da)
oM

2(n—1) 2(7}”121)
X |¢57q| n—2 do .
oM

Pelo Teorema do Traco, ficamos com

2(n—1) 2(nn—1)
<0 (107~ W) o) ol
M

[ 100Wi) = 105 ))ono

Pela Estimativa (2.63]), temos que

= O(e[Inel)||¢s4l-

/8 Wi = W) )05,

Ja para o caso (P,.), usando a Desigualdade de Holder com p = s. e ¢ = s, ficamos

com

/ Fo(Wsg) — fo(Wsg)|dsado| < / - (Wsa) — foWag)llbagldo
oM oM

1
Se

= ([ 10s,) = Wi

1

<[ posattan)”
oM

Pelo Teorema do Traco, existe C' > 0 tal que

<c ( [ 1rm) - fo(Waq)ISEdU) “Nésal.
oM

/a ol Wig) = £(Ws oo

Utilizando a Estimativa 1} visto que s. = @ +ne = 2An=b 4 Ot(e) e s =

% — O™ (g), obtemos

/BM[fo(Wa,ﬁ — fe(Wsg)lsqdo| = Ofe|nel)|[dsqll- (3.16)
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3. Provas dos principais resultados

vi) Para estimar o tltimo termo, aplicamos o Teorema do Valor Médio para a fungao

F :]0,1] — R definida por

:I:Edo_’

_ (n B 2)2 2'::22
F) = /aM on—2+e(n—2) (Waq + Adsa)

dem que obtemos A\; € (0, 1) tal que

(n B 2>2 2n— 2n— 2:|:
/BM 2n — 2 L e(n — 2) (Wsg + og) n2 5 = W27 | do

=/8M< 2) (Wi + M) 72+ do

Assim, temos

272:|:E

(n — 2)2 -2
/aM 2n —2+¢e(n —2) {(qu—l—qﬁ(;q)n ’ Wéq ] — f- Wsq) dsqdo

_n_4 Tste
= /8M(n —2)(Wsq + A1¢57q)n—2 —(n=2)Wy5 > ¢s4do.

Novamente, podemos usar o Teorema do Valor Médio para a fungao G : [0, 1]

definida por
GO = [ (0= D)Wy + Midsa) 1050
oM

dem que obtemos Ay € (0, 1) tal que
_n_4e g te
0= 2)(0Wag o M) P55 — (0= W5
oM
_ / Mm% e(n — 2))(Way + MAadsg) 2702 do.
oM

Pondo 6 = A1\, temos que

(n—2)*
om 2n—2+e(n —2)

/ )\1(71 + e(n — 2))(W5q + 9¢5q) j:e¢§ qd(T
oM

o2 2n-24e
{(W&q + Psq) 2T — Wa ] — fe Wsg) ¢sqdo

56

— R



3. Provas dos principais resultados

Pela Desigualdade de Holder Generalizada com expoentes p = "5 e ¢ = 1 = s

satisfazendo % + % + % =1, temos que

/ D (W, + s 55 = W - 1 (Wag) 05,
8M 2n - 2 j: 6(” - 2) §7q 6,(] 67‘1 € 67‘1 67(] o
S Cl |:/ ‘Wé"q + 0¢§7q’($ﬂ:6)&:7i2 dO':| - |:/ ’(b&’q‘s.e do,:| o
oM oM (3.17)

se—2

<0 { /8 |W6,q+9¢5,q|("2ﬂ>5552d0] " ldsall3
M

<y |W5,q + ngé,q SLes:Q ||¢5,q||3-[ <Cs Hgb&q

2
I3

Assim, substituindo (3.14]), (3.15]), (3.16]) e (3.17) em (3.13)), e fazendo § = de, obtemos
constantes C, C' > 0, tais que

| Je(Wsq + d5.4) — J-(Wisg)| < O||¢57q||$-t + 05| Inel||ds gl -
Mas pela Proposicao 2.9 temos que [|¢s4][2 = O(e|Ine|) e, consequentemente, que
| J-(Wsg + b54) — J(Ws )| = 0(52| 1n5|2) = o(e). (3.18)

Passo 2 Provaremos que

20 - @ a0 b o)

uniformemente em C° em relagao a d em compactos de (0, +00) e ¢ € M, em que

J. (Wyy) = Ce) + ¢ {d

1 n—2 2 2n—22
Cle) = 5/ |VU;(y)|2dy — (2 ; / Us" ™% (2,0)dz
B(0,R)x[0,R) n—= B(0,R)
—2)3 n— —2)? 2n=2
L. (n=2) / U2 (2 0yde 5 02 US (2,0) In Uy (2, 0)d=
2n—2 Jpor 2n—2 Jpo,R)

—92)3 2n—2
== lns|u/ Us" % (2,0)dz
B(0,R)

2(2n — 2)
o] n—2
13:22 :/ S—Hdz,
o (1+s?)

com w,_; sendo a area da bola unitdria de R"~!. Primeiramente temos por definicao
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3. Provas dos principais resultados

que
1 9 9 n—2 9
Ja(W&q) =5 (lng57q| + a(x)W; q) dpg + b(x)W; ng
2 Ju ’ oM ’ 319
(TL — 2)2 2n—24 . ( ' )
- W&n_Q dO’
2n—2+e(n—2) Jour
Estudemos cada termo separadamente. Temos
/ VW4 dpg :/ (CIVUs? + 2xUsV XV Us + UZ |V o x[?) dpsy. (3.20)
M M
Pelo Lema (A.1]), podemos provar que
/M (2xUsVoxVUs + UF |V x|?) dpsg = 0(9).
Assim,
Wil disy = [ IV, UsPdy + of0)
M M (3.21)
< / IV, Us dpy + of0).
M
Substituindo § = dy nas Equagoes (L.6)), (1.7) e (L.§), obtemos
9" (8y) = dij + 2hi;(q)0ya + ly[?O(6%), (3.22)
9" (0y) = Gin, (3.23)
V9(0y) = 1= d(n — 1) H(q)y, + [y[*O(5%). (3.24)
Agora substituindo as expressoes (3.22)), (3.23)) e (3.24]) em (3.20)), temos
19 Wsalang < [ VUsdy  (n - DH(0)5 [ [ VUs[dy
M B(0,R)x[0,R) B(0,R)x[0,R)
n—1 (325)
oU; 0Us
+ 20 h,~q/ Yn —dy + 0(9).
”Z_:l i) BO,R)x[0,R)  OYi 0Yy; ©)
Por simetria, ficamos com
1/ VW o2dpy < 1/ VU 2dy — (”_1)H@5/ Y| VU 2dy
2 /m 2 JB(0,R)x[0,R) 2 B(0,R)x[0,R)
n—1 2
Us
+90 hiiQ/ n( >d+05'
; @ B(0,R)x[0,R) Y y; Y ©)
(3.26)

2 2
9 9
Uma vez que fB(o,R)x[o,R) Un (8—[;‘5(1/)) dy = fB(O,R)X[O,R) Un (a—gf(y)) dy para todo
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3. Provas dos principais resultados

1,7 =1,...,n—1, temos que

n—1 2 n—1 n—1
oUs 1 oUs
hii(q / n < > dy = hii(q / ( )
Z @ B(O,R)X[O,R)y y; e ; @ B(0,R) [0, R) Z oy

=1 =1
H
- fta) [ va0
Rn—1

4
(3.27)

usando (A.19)). Agora substituindo (3.27)) em (3.26)), obtemos

n—1)H
/ IV Wiq*dprg < / \VUaI dy — ()@5/ Yn|VUs|*dy
H
iQ) UZ(2,0)dz + o(6).
Rn—1

(3.28)

Para o segundo termo, temos

%Aﬂ@mwﬁm@:%memmvawmwnw%wm%y

< Cl/ Us(y)*dy,
B(0,R)x[0,R)

dem que pelo Lema ({A.1]), obtemos que

1

5 | alIWadldu, = 0)
M

Analogamente, temos para o terceiro termo

n—2 n—2

| bW, o =

4 Joum

< O/ Us(z2,0)%dz = O(5),
B(0,R)

/ b(z,0)x(z,0)*Us(z,0)dz
B(0,R)

por conta do Lema (A.3). Para o quarto termo, temos

/ W 55 %o = VI 0T (2, 0) U (2, 0)UE (2, 0)d=
oM B(0,R)
< Va2, 00U (2,0)U3(2,0)dz.
B(0,R)

Por (L9) e €58), temos

/ Wiyl "2 *do < / ST UL (2,0)UE (2, 0)dz + o(0).
oM B(0,R)
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3. Provas dos principais resultados

Substituindo as expansoes de Taylor (2.57)) e (2.58]), obtemos

2n—2 2n—2

/ |W5,q|277:22i5da < / Us"* (2,0)dz + 5/ Us" 2 (2,0) In Us(2,0)
oM B(0,R) B(0,R)

n — 2n—2

2o U (2,0)dz + o(6) + O(e?) + O(e2n 6).

B(0,R)

:F

(n—2)2 _ (n—2)? e(n—2)3

In—2+e(n—2)  2n-2 5 » obtemos

Usando o fato de que

(n - 2)2 / m=2_, (n — 2)2 / 2n-—2
- " o = — "2 (2,0)d
o —2+e(n—2) Jou Wil "= on—g [ U (20

—9)3 2n—2 —92)2 2n—2
te (n=2) / U2 (2,0)dz F e (n=2) / Us"™? (2,0) InUs(2,0)dz
B(0,R) B(0,R)

2n — 2 2n — 2

(n —2)° / =3 2 2

+—-—~¢Ind Us"? (2,0)dz +0(6) + O (¢°) + O (¢°Ind) .
2(2n —2) B(0,R) =0 ©) ( ) ( )

Fazendo § = de e notando que o(d) + O(e?) + O(e*Ind) = o(e) e eInd = eln(de) =

elnd+elne =¢elnd — ¢|Ine| = o(e). Desse modo, temos

I (Wig) = O@) +ed™ by~ HG) [ Uiz 00

+ (”_2)31d/ U (2,0)dz + o(e|Ine))
e—————1n 2,0)dz + o(e|Ing|),
2(2n — 2) B(0,R) 0

ja que pelo Lema ({A.3), tem-se

/ UZ(2,0)dz < / UZ(2,0)dz = w, 1173
B(0,R)

Rn—1
© 2n—2 2n—2
/ Ug" % (2,0)dz < / Us" 2 (2,0)dz = w1 1773,
B(0,R) Rn—1
em que I§ = [ ﬁds e usando o fato de que I~} = 2(’;—132)]3:22 (Ver prova em [3],

Lema 9.4(b)).

3.3 Prova do Teorema Principal

Introduzimos agora a seguinte funcao

A

I:(0,400) x OM — R
(d,q) — I(d,q) = andp(q) — B, Ind.
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3. Provas dos principais resultados

Seja o € OM um ponto de minimo local de ¢(q). Sem perda de generalidade, vamos

supor que ¢(qo) > 0. Desse modo, defina dy = aniT(qu) > 0. Entao, (qo,do) é um ponto
critico de 1 , pois A
ol B
5% 1) = anplaly)) —
e também R
ol Op
—(d = ap,d— )
ayi( ,4(y)) =« 0, (q(»))
Assim, )
ol B
(o, 0) = anplgo) — =2 =0
8d( 0, ) « Sp(qo) dO
e A~
ol Op
—(dp,0) = a,dg—=—— =0,
3yi( 05 ) «Q ani (QO)

pois qo é ponto critico de ¢(gq). Além do mais, existe uma vizinhanca B de ¢o tal que

©(q) > v(qo) para todo ¢ € B. Por um lado, temos

dp(q) — dow(qo) > de(qo) — dop(qo) = ¢(qo)(d — do). (3.29)

Por outro lado, dado um intervalo compacto [a,b] C (0,+00), podemos tomar uma

vizinhanca de B C [a,b] x OB de (dy, qo) tal que

©(qo)(d — dpy) > &(lnd —Indy). (3.30)

Qn

Combinando e , obtemos
1(d, q) > 1(do, q0)
para todo (d,q) € OB. Pela Proposicio (3.1)-(ii), temos que
I.(d,q) = ca(e) +el(d, q) + o(e).

Expressando I. da seguinte maneira

I.(d,q) = c,(e) + ¢ (f(d, q) + @) ,

podemos fazer ¢ suficientemente pequeno de tal maneira que I (do, qo0) + @ mantenha
o sinal de f(do, Qo). Portanto, temos que existe (d*,¢*) € B tal que Weas g+ + Pegr g+ €
ponto critico de J.. Assim, pela (3.1)-(ii), temos que Weg+ o« + ¢ea= o+ € H é solucao de

(P*.). De maneira anéloga, provamos o caso (P},).
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Apeéendice A
Integrais auxiliares

Neste apéndice apresentaremos alguns resultados recorrentes ao longo do trabalho.

Comecamos relembrando duas formulas bastantes conhecidas:

1+7r2)8 INE)) ’

[ T e "

em que « e 3 sdo constantes positivas satisfazendo 26 —a > 1 e I'(z) = f0+oo xt e dt

é a funcao gama, e

By (A2

em que wy,,_; ¢ a area da esfera unitdria do R™ 1.

A.1 Integral da funcao do tipo bolha na variedade

Lema A.1. Sejam p, q,r, v constantes positivas satisfazendo
2 —v>n-—1 (A.3)

Entao, para cada § > 0, existe uma constante positiva C' = C(p, q,r,~y) tal que

P Y % —2q+n
/ 6 |.T|2 dl’dt2 :C(Sp-ﬁ-'vr + . (A4)
ey (04 07 + [aP)

Demonstracao. Colocando em evidéncia as poténcias de 0 no numerador e denominador
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A. Integrais auxiliares

do integrando e reescrevendo |z| = d|z/d| e t = §(t/0), obtemos
/ 0P| x|V dxdt i B Ptz /O dxdt ’
g (O+02+ 227 )\ Jre 0%((1+1/0)% + |2 /[?)a

_ ortr2 ’:C/§|7dxdt :
- (/ Tt/ + \x/amq) '

Fazendo a substituigdo y = x/0 e s = t/d, que fornece os respectivos elementos de
volume dy = dx /6" ! e ds = dt/§, obtemos

/ olepdedt  \T Ransy / lyondyds  \ "
rr (602 + 22 ) rn ((1+8)2+ [y]?)

Reescrevendo y = (1 4 s)(y/(1 + s)), ficamos com

/ 5p|5(]|7dxdt % _ 5p+'y;2q+n / (1 + S)’Y|y/(1 + S)|'Ydyd8 %
rr (0 41)% + |z[*) rr (L49)%0(1+ |y/(1 4 5)[?)

n
+

Agora fazemos a mudanga de variavel z = y/(1+ s), que fornece o elemento de volume

dz = dy/(1 + s), obtemos

/ 8P|z ddt ?_5p+w_2q+n / (1+ )" 2)dzds \ 7
g (0 +8)2+[xP)r ) g (1+8)%(1+ |2[?)7

n
+

_ greasien / (1+ )72z 7dzds | 7
N R (1 +[2[*) '

n
+

Como o integrando é o produto de duas funcoes de variaveis diferentes, podemos reex-

pressar a integral da seguinte maneira:

SFlalrdedt " pra-2ein ( /+°° - )
=40 1+ s) 1724
(/ G+ W)q) , Ut
y </ |2|7dz >71
oot (L4 [22)2) 7

(A.5)
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A. Integrais auxiliares

em que

+o0 % 1 Y+2—2q
(/ (14 S)7+1—2qd3) — &
) 1

- (Zq —2- 7)

e, pela Formula (A.2) pondo m =n — 1,

/ |z|7dz g /+°° 7 2dr /+oo P2 -

_— = W — e == Wy — )
re-1 (14 |2[2)7 “Jo (T4 “Jo o (1412

que pondo o« =y +n —2 e = ¢ na Férmula (A.1) fornece

([ o) - (=)

Assim, substituindo (A.6) e (A.7)) em (A.5)), obtemos

/ 5p|l'|7dl‘dt v B 5@ ( 1 >1 y 1"("/"‘721—1)F<2q—’y2—n+1) T
(002 +[eP)e ) 20-2—7) \ " 2T (q)

pty—2gq+n

=C6 -~

“+oo % 1 %
- (0 Ry )
0 7 1 (A.6)

3=

Assim, concluimos a prova. O

Lema A.2. Sejam ¢, p, q,r,~ constantes satisfazendo

qg—v>1 (A.8)

29 >n—1. (A.9)

Entao, para cada § > 0, existe uma constante C' = C(p, q,r,7) tal que

Py pty—2q+n
/ 5t2dxdt2 :C§+T+. (A.10)
wr (04 8)2 + [a )7

Demonstracao. Também obtemos procedendo de maneira completamente analoga ao

Lema [A.T], obtemos

/ OPtYdxdt
e (6 + 07 + [2P)s

S =

1 1
T ™

_ g / sVdzds
N ry (14 8)20777 (1 |2[2)0

n
+
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A. Integrais auxiliares

Como o integrando é um produto de funcoes de variaveis distintas, podemos reexpressar

a integral como sendo

1

/‘ 5P dadlt T_dﬁ%m%(/*“ $1ds )i
re (O+ 02+ 2?0 ] o (14s)2t
. ( / dz )
et (L4 [22)7)

. 1
em que, fazendo a mudanca de variavel 7 = s2, obtemos o elemento de volume e que

(A.11)

-1
dr = %STdS,

/+oo sVds T B /Oo T2 27dr "
o (4s2-t) \Jy (147221

+o0o 2v+1 %
e T dr (A.12)
o (v P

LT+ 1029 — 2y —2)\ "
:2r< 2I'(2g — v — 1) )

R

por conta da Férmula (A.1)), e, pela Férmula (A.2)), temos

/ =\ _ (., /+°° 2y \ 7
et (L [2P)7) "y ()

dem que usando (A.1]), temos

</R Jﬁ)i - (wnzf(?;zg)(%——;“)> B (A.13)

Portanto, usando (A.12)) e (A.13]) em (A.11]), concluimos que, de fato, existe C' tal que

OPt dxdt v p+y—2q+n
=C6 T . A.14
</ G+ir+ |o:|2>q> A

Assim concluimos a demonstracao. O]
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A. Integrais auxiliares

A.2 Integral da funcao do tipo bolha no bordo da

variedade

Lema A.3. Sejam 6, p, q,r,~ constantes satisfazendo
2q—y>n-—1. (A.15)

Entao, para cada ¢ > 0, existe uma constante positiva C' = C(p, q,r,7) tal que

0P |z|Vdx G pHy—2q+n-1
(/R_ m) =Co (A.16)

Demonstracdo. Procedendo como nos lema anterior, obtemos

(/ o° |z dx )i_dw_m (/ 2 /8] dx )i
oot (02 + |2[2)7) re-t (L4 |2/02)e)

Fazendo a mudanga de varidvel z = x/d, obtemos o elemento de volume dz = dz /5",

5p+y—2q / |Z|’y(5n71d2 71 o 5pf2q+’v+n71 / |Z|’de %
rot (L4227 Rt (14 ]2[%)

p—2g+y+n—1
=C4 T

logo

Assim, concluimos a demonstragao. O]

A.3 Identidades Auxiliares

Proposigao A.4. Se U é solugao de (2.12)), entao sao vélidas as seguintes identidades:

1
/ t|\VUPdzdt = —/ U?(z,0)dz (A.17)
Ri 2 Rn—1
2

/ t]VU\Zdzdt—2/ t aa—U dzdt (A.18)

R% R% t
/ tnzi ou 2dzdt— l/ U%(2,0)dz (A.19)
1 —— 821 4 Rn—1 ’ . ‘

Demonstragdo. Denotemos primeiramente 1 = (z,t) € R’, em que z € R 1eteR,.

Seja U uma solugao de (2.12)). Note que

ou
mIVUP = V(nU)VU - U5 -
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A. Integrais auxiliares

em que 1,(z,t) = t. Logo, temos que

oU
[ mvordn = [ V@i [ vg
R? R? gy Ol
Pela Férmula de Green, obtemos
oU
+ + +

em que [;p. 92 (2,0)n,(2,0)U(2,0)dz = 0, pois 7, = 0 em IR} e [o, n,UAUdn = 0,
s s
pois AU = 0. Logo, obtemos

ou
/ 1| VU|dn = —/ U —dn.
R? R™ Oy,
Mas como vale —Ungi = —%%Uj, entao

oU 1 / o[U?]
— U—-dn=—-= ———dn.
/11@1 Onn 7 2 R” Onn "

Usando a Férmula de Integracao por Partes, temos

I i I ,

OR™

Para o item (ii), usando o fato de que AU = 0, temos pela Férmula de Green que
ou
0=— / AUn? ——dn
R 87711

n
4

Mas como 7, = 0 em OR", entao

OE/ VUV (772 8U) dn
R

oUu oUu oUu
2 _ 2
. VUV (nn—ann) dn /am M (z,0)m; (2, 0)_3% (z,0)dz.

i " O
oU oUu
= / nZVUV <0—) dn —l—/ a—VUV(ni)dn
R” Tin R” OTln

oU oU
= / VUV (—) dn + 2 / — 1, VUVn,dn
R 87771 R"” ann

n
+
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A. Integrais auxiliares

2

ou dn

Z / 20U _O°U dn + 2 / ——
o " O Omdn, 2" on,

N _Z/ "0% (0771)2(177 o

1 ou |*
== Ndn + 2 — dn.

Usando o Teorema da divergéncia de Gauss, obtemos

1
0= ——/ n2(2,0)|VU(z,0)|*dz
2 Jory

=5 [ 5 -0RIVUP
5 sy B HIVUP)

1 0
= [ lvUPd s [ (VUPy
n 2 R O

Isto é, .
3 [, g VU=~ [ wlvUPd (A21)
+

Substituindo (A.21]) em (A.20]), obtemos

2

dn—/ 0| VU|*dn.
n

/t|VU\2dzdt:2/ t‘a—U
" n | Ot
+ +

Ou seja,
2

dzdt.

Para (iii), temos

2

U
/nnIVUlzdnz D a /nna— dn.
Ri i Ri M
E por (ii), segue que
—1 2
U 1
[ onivvpan= [ 03|50 a5 [ o
R} Rp o f Ry
Logo,
n—1 aU 2 1 )
n dnp == [ 0. |VUPdn.
/177;% 0 2/177!V|77
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A. Integrais auxiliares

Usando (i), obtemos

n—1 2
ou 1
M, dn = - U%(z,0)dz,
/1 221 o 4 OR™ (=.0)

concluindo a prova.
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