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Resumo 
 
Título:Uma Estratégia de Validação Híbrida para Calibração Multivariada  

         Baseada na Seleção de Amostras Fixadas pelo Algoritmo SPXY 
 
Autor: João Batista de Sousa Costa 

 Em análise multivariada, é usual deparar-se com o problema recorrente de particionar 

o conjunto de dados de modo a obter, para o subconjunto de calibração, as amostras mais 

representativas e que cubram a fronteira do espaço amostral de natureza multidimensional. 

O presente trabalho teve como objetivo desenvolver uma estratégia de validação híbrida para 

calibração multivarida (a exemplo da MLR-APS e do PLS group-out), a qual previne 

problemas de extrapolação e proporciona modelos com maior capacidade preditiva e robustez.  

A estratégia propostautiliza o algoritmo SPXY para selecionar as amostras de fronteira do 

espaço experimental para a calibração eque sejammais representativaspor explorar a 

estatística de X (respostas instrumentais) e Y (parâmetro de interesse). Para avaliar seu 

desempenho, foram empregados dois conjuntos de dados de NIR. O primeiro envolve a 

análise de amostras detrigo nas quaisfoi determinado o conteúdo de proteína; o segundo 

refere-se à determinação do teor de umidade em milho.Na validação híbridaaplicada à 

modelagem PLS grou-out, não foi possível avaliar a variabilidade do RMSEP em função do 

índice de amostras. Isso porque o mesmo não apresentava uma variabilidade significativa dos 

resultados para 20 execuções, impossibilitando uma melhor avaliação da estratégia 

proposta.Na modelagem MLR-APS, observou-se uma variabilidade em termos de RMSECV 

e RMSEP, tornando possível a avaliação da influência das amostras fixadas na capacidade 

preditiva dos modelos. Os modelos resultantes da fixação de amostras de fronteira na 

calibração apresentaram os maiores coeficientes de correlação, os quaisforam iguais a, 

respectivamente, 0,9996 e 0,9934 para o conjunto de dados de milho e de trigo. Os valores de 

RMSEP e RMSECV para os dois conjuntos apresentaram uma diminuição significativa. De 

fato, foram obtidos, repectivamente, os valores 0,194e 0,163% (m/m) para o conteúdo de 

proteína no trigo e 0,0121 e 0,0061% (m/m) para umidadenas amostras de milho. Um número 

de variáveis menor foi também obtido. A estratégiade validação híbrida é uma alternativa 

viável paracalibração multivariada, proporcionado modelosmais parcimoniosos e com maior 

robustez e capacidade preditiva. 

 

Palavras-chave:Validação Cruzada; Amostras fixadas; SPXY; Calibração  

                      Multivariada; PLS;APS-MLR 
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Abstract 
 

Title: A Hybrid Validation Strategy for Multivariate Calibration  
           Based on Fixed Sample Selection by SPXY Algorithm 
 

Autor: João Batista de Sousa Costa 
 

In multivariate analysis, it is usual to come across the recurring problem of 

partitioning the dataset in order to obtain, for the calibration subset, the most representative 

samples that cover the boundary of the multidimensional sample space.The present work 

aimed to develop a hybrid validation strategy for multivariate calibration (such as MLR-APS 

and PLS group-out), which prevents extrapolation problems and provides models with greater 

predictive capacity and robustness.The proposed strategy uses the SPXY algorithm to select 

the experimental space boundary samples for calibration and which are more representative 

for exploring the statistics of X (instrumental responses) and Y (parameter of interest). To 

assess its performance, two sets of NIR reflectance data were used.The first involves the 

analysis of wheat samples in which the protein content has been determined; the second refers 

to the determination of the moisture content in corn. In the hybrid validation applied to the 

PLS grou-out modeling, it was not possible to assess the variability of the RMSEP as a 

function of the sample index. This is because it did not present a significant variability of 

results for 20 executions, making it impossible to better evaluate the proposed strategy. In the 

MLR-APS modeling, a variability was observed in terms of RMSECV and RMSEP, making 

it possible to assess the influence of fixed samples on the predictive capacity of the 

models.The models resulting from the fixation of frontier samples in the calibration showed 

the highest correlation coefficients, which were equal to, respectively, 0.9996 and 0.9934 for 

the corn and wheat dataset. The values of RMSEP and RMSECV for the two sets showed a 

significant decrease.In fact, the values of 0.194 and 0.163 % (m/m) were obtained, 

respectively, for the protein content in wheat and 0.0121 and 0.0061 % (m/m) for moisture in 

the corn samples. A smaller number of variables was also obtained. The hybrid validation 

strategy is a viable alternative for multivariate calibration, providing more parsimonious 

models with greater robustness and predictive capacity. 

 

Keywords: Cross validation; Fixed samples, SPXY algorithm;  

                        Multivariate calibration; PLS; APS-MLR.
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CAPÍTULO 1 

Introdução 
 
 
 
 
 
 
 
 



 
1 

INTRODUÇÃO 

1.1 Caracterizando a problemática e a proposta de solução 

 
 A calibração multivarida é um processo matemático que tem sido implementado com 

sucesso nas determinações quantitativas de analitos em amostras com matrizes complexas, 

especialmente usando técnicas espectroanalíticas1. Esse fato se deve, entre outras razões, ao 

problema recorrente de multicolinearidadeentre as variáveis (comprimentosde onda)e de 

sobreposição de bandas de concomitantes sobre as do(s) analito(s) quepodem ocorrer 

nosespectrosUV-Vis, NIR, RMN, etc88. Nesse cenário, a regressão linear múltipla (Multiple 

Linear Regression-MLR) e por mínimos quadrados parciais (Partial Least Squares-PLS) 

destacam-se entre as técnicasquimiométricasusadas na calibração multivariadapara superar 

esses problemas14,59,62. 

 O uso consolidado do PLS em calibração multivariada pode ser atribuído àrobustez 

ealta capacidade preditiva dos modelos5, como resultado damelhor correlação obtidaentre as 

variáveis latentes associadas aos escoresdos sinais e ao(s) parâmetro(s) de interesse. 

A regressão PLS possui a vantagem, quando comparada à técnica MLR,de permitir 

umamodelagemmais eficientena presença de dados ruidosos e acentuada multicolinearidade 

entre as variáveis19. Além disso, permite implementar uma calibração multivariada 

envolvendo matrizes (no sentido matemático do termo) com alta dimensão19.Por outro lado, a 

técnica MLR tem a grande vantagem deoperar no domínio original dos dados, gerando 

modelosde mais fácil compreensão einterpretação química dos resultados da predição76.O 

modelo MLR atrelado á seleção de variáveis se mostrou mais adequado para avaliação da 

estratégia proposta, tendo em vista que o mesmo apresentou uma maior sensibilidade quando 

comparado ao modelo PLS. 

 Para a construção de um modelo MLR, éfundamentalque os dados apresentem 

baixamulticonearidade entre as variáveis associadas aos sinais analíticos espectrométricos e 

que a fronteira amostral seja delimitada(específico da estratégia proposta), tendo isso em vista 

o algoritmo SPXY é utilizado para seleção dessas amostras(amostras mais externas). De fato, 

as variáveis com expressiva multicolinearidade fornecem informação redundante que 

dificultam o cálculo matricial naregressão e na determinação da variância dos coeficientes, 

prejudicando a escolha dos coeficientes de regressão adequados para os modelos MLR76,78. Os 

problemas de alta dimensionalidade e multicolinearidade podem também ser supera 
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dosmediante a seleção das variáveisque contenham informações úteis e não redundantes a fim 

de viabilizar a modelagem MLR e melhorara robustez e capacidade preditiva dos modelos78. 

Para esse propósito, pode-se recorrer aosalgoritmos de seleção de variáveis80. 

 Para seleção de variáveis usandotécnicas determinísticas – que são interessantes, 

sobretudo, para a interpretação química dos resultados –, destaca-se o algoritmo das projeções 

sucessivas (APS) proposto por Araújo et al78 para calibração MLR usando dadosUV-Vis, por 

ser um método que permite a obtenção de apenas um subconjunto de variáveis e que não estão 

atreladas a probabilidade a priori, facilitando assim a compreensão do 

modelo79.Posteriormente, o APS foitambém utilizado para seleção de variáveis empregando 

dados espectrométricos NIR84.Nesse trabalho, demonstrou-se que o APS proporciona as 

menores raizes quadradas de erros médios de previsão (RMSEP-Root Mean Square Error 

Prediction)78e menores raizes quadradas de erros medios de validação cruzada  (RMSECV- 

Root Mean Square Error Cross validation)80.  

Em calibração multivariada via PLS, a validação cruzada (CV-Cross-validation) é o 

procedimento mais comumente usado para definir o número de componentes a serem 

definidos para o modelo15,16,38,40.Muitas variantes de CV são utilizadas e a mais usual é a 

validação cruzada de exclusão única (CVLOO-Leave-one-out cross validation). Consiste na 

retirada deuma amostrapor vezda calibração, cujo parâmetro de interesse deve ser 

predito15,16,40. A CVLOO pode apresentar problema de extrapolação no modelo, o que 

acarreta um precária ou nenhuma capacidade preditiva7, 19,41. Na literatura não foi relatada 

nenhuma estratégiaquimiométrica para contornar esse problema– não apenas em calibração 

PLS, mas também para MLR combinada a técnicas de seleção de variáveis. 

 Em validação cruzada as amostras são selecionadas aleatoriamente, fato este que pode 

comprometer a sua significância para o conjunto de dados. O Algoritmo de validação cruzada 

com divisão representativa(RSCV- Representative Spltiting Cross Validation), no qual um 

algoritmo seleciona as amostras mais representativas. 

 No presente trabalho, desenvolveu-se uma nova estratégia quimiométrica – 

denominada aqui “validação híbrida” –  para a validação de modelos em calibração PLS e 

MLR.A validação híbrida proposta consiste na seleção, usando o algoritmoSPXY (Sample set 

Partitioning based on joint x-y distances)9, das amostras de fronteira(mais externas) do espaço 

experimental e as amostras restantes são selecionadas de maneira aleatória.Assim, é possível 

evitar o problema de extrapolação, melhorandoa capacidade preditiva e robustez dos modelos. 

Para esse propósito, faz-se necessário que as amostras fixadas – além de garantirem a 
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cobertura na fronteira do espaço experimental (amostral) explorado – sejam estatisticamente 

representativas para o conjunto de dados original6,40.  

1.2. Objetivos 
 

1.2.1. Objetivo geral 

 

 O objetivo central deste trabalho foi propor uma nova estratégia de validação híbrida 

para calibração multivariada baseada na seleção de amostras fixadas (na fronteira do espaço 

amostral),empregando-se o algoritmo SPXY. Com a aplicação dessa estratégia, objetivou-se 

minimizar problemas de extrapolação e melhorar a capacidade preditiva e robustez dos 

modelos PLS e MLR-APS. 

 

1.2.2. Objetivos específicos  

 Desenvolver um algoritmo de validação híbrida que minimize problemas com 
extrapolação dos modelos e melhore assim sua eficiência e robustez. 
 

 Implementar e depurar o código-fonte, em ambiente computacional do software 
Matlab, do programa do algoritmo desenvolvido para a estratégia proposta; 
 

 Estudar o comportamento do RMSEP e RMSECV ao se adicionar as amostras fixadas 

na modelagem PLS; 

 

 Avaliar o comportamento do RMSEP e RMSECV ao se adicionar as amostras fixadas 

na modelagem MLR-APS; 

 

 Melhorar a robustez dos modelos MLR-APS, determinando o número ótimo de 

variáveis selecionadas em calibração MLR-APS para os modelos com e sem adição de 

amostras fixadas pelo SPXY; 

 

 Aplicar a estratégia proposta para o melhoramento da capacidade preditiva e robustez 

dos modelos PLS e MLR-APS de dados espectométricos de milho e trigo, envolvendo 

matrizes com diferentes níveis de complexidade; 

 

 Comparar o desempenho entre os modelos PLS e MLR-APS, ressaltando as 

caracteríticas que foram melhoradas para cada tipo particular de calibração 

multivariada. 
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1.3Calibração Multivariada 

 O uso da calibração multivariada tem sido impulsionado por suas vantagens (por 

exemplo, calibração na presença de interferentes, redução de custos e tempo de análise) na 

determinação do(s) analito(s)sem a necessidade desua separação física da matriz das 

amostras. Nesse contexto, a obtenção de dados mutivariados em análises espectrométricas – 

inclusive dados de segunda ordem, a exemplo dos obtidos em espectrofluorometria89 – tem 

ensejado a utilização da calibração multivariada a fim de realizar a modelagem com sucesso. 

 Na implementação de uma calibraçãomultivariada, várias respostas instrumentais 

podem ser relacionadas a uma ou mais propriedades de interesse nas amostras 

analisadas,empregado-se os métodos lineares e os não-lineares23.Uma relação matemática 

(linear ou não) é estabelecida entre os resultados fornecidos por um método de referência – 

representados pela matriz Y– e os dados da matriz Xobtidos nos espectros das amostras de 

calibração57. Nesse processo, a calibração possibilita a determinação de todas as propriedades 

modeladas,desde de que as amostras com os interferentes sejam incluídas no conjunto de 

calibração12. 

 Para implementar uma calibração multivariada – independentemente da técnica 

matemática (MLR ou PLS, por exemplo) utilizada –, faz-se necessário primeiro estruturar 

(organizar) os dados de acordo com o esquema ilustrado na Figura 1.1.Os dados (espectros, 

por exemplo) obtidos para as amostras do conjunto de calibração comporão a matrizX; os 

sinais correspondentes às variáveis (comprimentos de onda) para cada amostra são colocados 

em uma linha dessa matriz. Na matriz Y, por outro lado, são lançados em uma linha o valor 

da(s) propriedade(s) de interesse para cada amostra. Assim, o papel da técnica de calibração 

usada é estabelecer um relação matemática adequada (em geral, linear) entre os dados de 

ambas as matrizes – diretamente no domínio original (como é o caso da MLR) ou no domínio 

dos dados transformados (a exemplo do PLS). 
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1.3.1 Análise de componentes principais 

 A análise de componentes pricipais (Principal Component Analysis-PCA) é uma 

técnica multivariada de compressão dos dados quepermite reduzir a dimensionalidade do 

espaçosem a perda de informação útil. A transformação matemáticaleva a um novo sistema de 

eixos ortogonais – denominados de componentes principais (PCs) –, nos quais as coordenadas 

das amostras são os “escores” e os pesos das variáveis originais são chamados de “loadings”. 

Assim, essa técnica permite remover as informações redundantes dos dados o que permite 

contornaros problemas de multicolinearidade entre as variáveis originais das respostas 

instrumentais2,22,27,29. 

 Nos espectros para um agrupamento de m amostras envolvendo n constituintes é 

registrado em k comprimentos de onda, podendo assim ser descrita na forma de matriz de 

dados espectrais [X(m,k)]2,28. Essas matrizes são desmembradas em uma soma dos 

componentes principais (PCs) como pode ser observado na Equação 1. 

 

� = ����
� + ����

� + ����
� … .+����

� + �     (1) 

 

Figura 1.1. Representação Matriz de dados Instrumentais com p representando as variáveis da matriz Xcal e da 

Matriz de dados Padrão ou método de referênciacom q representando as variáveis da matriz Ycal. 

 1 

a 

q 

q 

1 
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 Em termos matriciais, a Equação 1 toma a formaX= T PT+ E, sendo T uma matriz 

com t colunas e PT com pt linhas. Assim sendo, os vetores tn que são conhecidos como scores 

e indicam as relações existentes entre as amostras. A maneira como as variáveis estão 

relacionadas entre si, são representadas pelos vetores pn que são conhecidos como loadings. O 

Eé a matriz de resíduos, contendo informações não modeladas na primeira PC. 

 Em PCA, os autovalores e autovetores são obtidos da matriz de covariância Xque 

apresenta a Equação 2. 

 

Cov(�) =
���

���
         (2) 

 

onde a covariância entre cada par de eixo é zero, mas os eixos principais não são 

correlacionados. Sendo N o número de amostras e XTX é a matriz de covariância. 

 As linhas da matriz P são os autovalores de covariância em cada pi, tendo este relação 

de correspondência com uma parcela da variância, que é correlacionada com cada autovetor. 

Os autovetores tem autovalores relacionados a eles, e o autovetor de início é aquele que 

aponta para a maior diferença dos dados projetados no espaço de representação, o mesmo 

ocorre com todos os demais autovetores associados a demais autovalores66. 

 Para realizar o cálculo dos vetores dos “loadings”, é feito o produto da matriz de 

covariância, para os vetores |pi da seguinte maneira. 

 

���(�)��= ����        (3) 

 

 No qual, σi é o i-ésimo autovalor correlacionado com o i-ésimo autovetor pi. Em PCA 

os autovetores devem explicar a maior variabilidade possível dos dados de forma a minimizar 

os resíduos em cada etapa, pois cada  fator é responsável pela variância dos dados22. 

 A maneira como as amostras estão distribuídas em um eixo diferente do original é 

denominado scores, que pode ser representado pela Equação 4. 

 

��� = ��         (4) 

 

ondeXé a matriz de respostas inicial e t1é a projeção de Xsob o autovetor inicial de P1. 

 

1.3.2. Regressão por componentes principais  
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 O PCR é baseado na modelagem de fatores, uma vez que o fator pode ser entendido 

como uma combinação linear das variáveis originais possibilitando assim a redução da 

dimensionalidade dos dados e consequentemente a construção de gráficos que possam 

facilitar a visualização de agrupamento de amostras e de variáveis, permitindo assim 

diferenciar dados de amostras com alta influência25,29. O modelo de regressão PCR pode ser 

compreendido por meio das Equações5 e 6. 

 

� = ��� + �         (5) 

 

� = ��� + ����        (6) 

 

Os pesos (loadings), presentes na matriz P,são encontrados ao escolher os primeiros 

autovetores de ��� , no qualXé a matriz de dados instrumentais centrados na média. A matriz 

T, que representa as pontuações é obtida projetando a matriz X no espaço da matriz transposta 

de P56. A matriz de Tté utilizada como regressor junto com o vetor yna equação do cálculo da 

distância de mahalanobis43 como pode ser visto na Equação 7. 

 

D = (a� − a�)
�(cov(x)��(a� − a�)

�/�     (7) 

 

 A principal característica de um modelo PCR é o fato do mesmo considerar apenas as 

respostas obtidas pelo instrumento (X), sem considerar as informações relevantes da 

concentração (y), acarretando numa fragilidade do modelo, pois em dados onde a propriedade 

de interesse apresente um sinal muito pequeno e não causa forte influência nas primeiras PCs, 

podendo assim acarretar numa escolha de um maior de PCs para se construir o modelo68. 

 

1.3.3. Regressão por mínimos quadrados parciais(PLS) 

 Diferentemente do modelo PCRque não leva em consideração as estatísticas dos 

parâmetros de interesse (Y) o PLS estabelece uma relação linear entre as matrizes de scores 

dos dados de X e Y22. 

 A abordagem PLS (Partial Least Squares) possibilita a construção de uma boa 

modelagem mesmo na presença de ruídos experimentais, colinearidade e não-linearidade dos 

dados1. Em uma matriz X com G colunas, que correspondem ao sinal do espectro, para cada 
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comprimento de onda, e j linhas representando cada amostra. Na matriz Y, tem-se H colunas, 

nas quais apresentam os parâmetros de interesse (densidade), e n linhas referentes a cada 

amostra65.Em modelagem  PLS as variáveis latentes sofrem pequenas rotações para que os 

scores te u apresentem o melhor comportamento possível e que assim possam descrever as 

relações existentes entre X e Y29, 55. 

 As matrizes X e Ysão divididas em uma soma de matrizes menores chamadas 

componentes principais ou variáveis latentes que são responsáveis por mostrar o grau de 

complexidade do modelo2,67,69. A decomposição dessas matrizes, propicia uma soma dessas 

matrizes menores geradas, conhecidas como componentes principais (PCs), podendo ser 

compreendida pelas Equações 8 e 9. 

 

 � = ��� + �=����
� + ����

� + ����
� …… ����

� + �   (8) 

 

 � = � + �� + � = ����
� + ����

� + ����
� ……����

� + �  (9) 

 

onde as matrizes T e U são as respectivas matrizes de scores de X e Y e os loadings são 

representados pelas matrizes Pte Qt, a parte dos dados não modelados vai estar presente nas 

matrizes de resíduos E e F. 

 A modelagem PLSprocura maximizar a covariância entre as variáveis das matrizes de 

dados reais e instrumentais26, como pode ser visto pela Equação 10. 

 

 Cov(����,����) = ��
� ����

���
�a = ��

� ���      (10) 

 

 Após a decomposição das matrizes de dados X e Y respectivamente, as novas matrizes 

obtidas (scores T e U), são relacionadas por meio de um modelo linear como pode ser 

visualizado na Equação 11. 

 

 � = �∗�          (11) 

 

ondeb é o vetor do coeficiente de regressão que estabelece a melhor relação entre os dados 

previstos pelo modelo e os dados obtidos por um método de referência e assim obter um 

modelo bem ajustado. Para uma determinação apropriada de b, faz-se necessário a seleção do 
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número adequado de VLs e a detecção e exclusão de amostras com outliers(amostras 

anômalas)24. 

 Uma das maneiras de se avaliar a performance preditiva de um modelo PLS é usando 

a soma dos quadrados dos erros de predição (PRESS)2-4, que é expresso Equação 12. 

 

 PRESS = ∑ ∑ (�
���

�
��� C�� − C���)      (12) 

 

onde m são as amostras e n os parâmetros de interesse, C��são as concentrações obtidas por 

método padrão (amostras reais) e C���são as previstas pelo modelo de calibração. 

 

1.3.3.1(PLS group-out) 

 Na estrategia PLS-grou-out  grupos de amostras são deixadas de fora durante o 

processo de validação cruzada, reduzindo assim o número de vezes que se recalcula o 

modelo90. Os n-grupos de amostras de calibração são utlizados para prever n-grupos de 

validação90, o procedimento continua até que os grupos de amostras de calibração sejam 

incluidas no grupo das amostras de validação. 

 

1.3.4 Regressão linear múltipla(MLR) 

 A modelagem MLR é bastante utilizada em problemas envolvendo a calibração 

multivariada, pois ela estabelece uma relação simples entre as variáveis do conjunto de dados 

de partida75. Nesta modelagem tem-se uma matriz X e um vetor y, onde cada variávely é 

descrita como sendo uma combinação linear das variáveis da matriz X75. A combinação linear 

descrita pode ser observada na Equação 13. 

 

 � =   β� + β��� + ⋯ β��� + ɛ       (13) 

 

na qual β�,β�eβ� são os valores obtidos pela regreção e ɛ é a parte do erro não modelado. 

 Os coeficiente β�,β�eβ�podem ser obtidos de forma aproximada atraves da pseudo 

inversa  como veremos na Equação 14. 

 

 � = (���)����          (14) 
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 Os coefiecientes após a sua obtenção, são utlizados para encontrar as variáveis 

estimadas no pelo como pode ser visto na Equação 15. 

 ��= X�          (15) 

 

onde X e � são as matrizes de, respectivamente,variáveis independentes e coefiecientes de 

regressão. 

 A regressão linear multípla(MLR) atua no espaço original dos dados e por isso 

fornecem modelos mais inteligíveis e de facíl interpretação76
.Para uma modelagem 

MLRadequada,se faz necessário a escolha adequada das variáveis espectraisde modo a evitar 

a escolha de variáveis muito colineares no conjunto de dados que prejudiquem a 

modelagem76,77. 

 

1.3.5 Algoritmo das projeções sucessivas 

 Quando se tem um grande número de variáveis, algumas podem apresentar informação 

redundante entre si e, consequentemente, adiciona informação de pouca utilidade para a 

modelagem76. Em matrizes de dados com alta dimensão, a calibração MLR se torna inviável,  

em virtude da presença de variáveis colineares no conjunto de dados, sendo necessário a 

utilização um método de seleção de variáveis para obtenção de modelos mais robustos76,78. 

 Ao longo dos anos, muitos algoritmos para seleção de variáveis foram desenvolvidos, 

dentre os quais  cabe destacar o Algoritmo de Projeções Sucessivas79, que busca selecionar as 

variáveis com menor correlação possível com as variáveis preliminarmente selecionadas. O 

APS utiliza manipulações simples em espaços vetoriais que diminuem a possibilidade de 

inserção de variáveis com informação irrelevante para a modelagem77,78,79. 

 O APS  funciona da seguinte maneira: 

Etapa 1 -Na primeira etapa, a matriz de dados original é utilizada para obter-se uma seríe  

              de variáveis com a menor correlação possível; 

 

Etapa 2 -Durante a segunda etapa, as cadeias de variáveis são testadas de modo a avaliar  

               sua correlação com a propriedade de interesse em termos de menor RMSEP na  

               modelagem MLR; 
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Etapa 3 -A terceira etapa consiste na retirada de variáveis, que não proporcionam melhora  

              significativa do erro do RMSEP. Essa retirada é feita com base em testes  

              estatísticos de significância tal como o teste F. 

 As projeções usadas na abordagem APS podem ser melhor compreendidas com o 

auxílio da na Figura 1.2 para o caso em que J=5 e Mcal=3, onde J é o número de variáveis de 

partida e Mcal é o número de amostras de calibração. Os valores de k representam os vetores 

selecionados para o cálculo das projeções ortogonais ao valor correspondnete de k.Um vetor 

de partida(X3) é selecionado, e os demais vetores tem suas projeções calculadas em um 

espaço ortogonal ao vetor de partida. Os vetores com as maiores projeções ortogonais ao vetor 

de partida são selecionadas. 

 

Figura 1.2. Representação das projeções APS para J=5, Mcal =3 e k(0)=3. Primeira interação: k(1)=1. 

 

 

 

 

 

 

 

 

 

 

 

 

  

            Na Figura 1.2, pode-se observar como as variáveis são escolhidas pelo algoritmo APS 

levando em consideração suas projeções espaciais. Inicialmente uma variável X3é selecionada 

e as demais variáveis tem suas projeções calculadas.As variáveis selecionadas 

posteriormente,são aquelas que apresentam a maior ortogonalidade em relação a variável de 

partida, fato este que diminui a correlação entre estas variáveis7678. 

 O conjunto de variáveis que apresentar o menor erro médio quadratico de 

previsão(RMSEP) na modelagem MLR serão selecionadas76,77. 

 O RMSEP para essa modelagem pode ser calculado de acordo com a Equação 16. 
 

X3 Vetor de partida 

Maior projeção 

X1 
X5 

X4 

X2 

PX1 

Px2 
Px4 

Px3 
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RMSEP = �
�

�
∑ (y� − y���(� ))

��
� ��         (16) 

 

onde M denota as amostras de calibração, ym as amostras preditas pelo modelo e yref(m) 

contém valores obtidos por metodo de referência. 

1.3.6. Métodos de validação 

 O uso de algoritmos que possibilitem dividir o conjunto de dados original em 

subconjuntos independentes e que as amostras selecionadas sejam as mais representativas 

possíveis se tornou cada vez mais comum em calibração multivariada, tendo em vista que 

uma representação inadequada dos dados pode gerar modelos com precária capacidade 

preditiva. Muitos métodos de validação são usados atualmente, tais como: Validação por série 

de teste,Validação bootstrap e Validação cruzada70.Cabe salientar nesses tipos de validação a 

forma como as amostras para construção do modelo são selecionadas. Na validação por serie 

de teste as amostras são selecionadas via algoritmos baseados em distância euclidiana, tais 

como (KS, SPXY, etc)60. A validação bootstrap utiliza o método de reamostragem com 

reposição. Para a validação cruzada as amostras são selecionadas de maneira aleatoria. 

 

1.3.6.1 Validação por série de teste 

 Na validação de um modelo de calibração por série de teste, a divisão dos conjuntos de 

calibração e validação é realizada, utilizando-se algoritmos que selecionam as amostras de 

maior representatividade no conjunto amostral71, a exemplo do KS e SPXY descritos a seguir. 

 

1.3.6.2 Algoritmo KS 

 O algoritmo Kennard-Stone (KS)8 utiliza adistância Euclidiana, dx(p,q), entre dois 

pontos “p eq”, correspondentes a 2 (duas) amostras no espaço multidimensionaldas variáveis, 

com o objetivo de determinar as amostras que seencontram mais distâncias entre si. A Figura 

1.3ilustracomo essa distância évisualizada, geometricamente, para o caso particular de três 

variáveis(Var 1: x1, Var 2: x2 e Var 3: x3), cujo espaço correspondente é o tridimensional. 

Nesse caso, a distância dx(p,q) é dada pela Equação 17. 

 

                                                                                                                                        (17) 

 

Para um espaço multidimensional com J dimensões, a distânica Euclidiana dx(p,q) é 

dada pela Equação 18. 

2
qp

2
qp

2
qpx )]3(x)3(x[)]2(x)2(x[)]1(x)1(x[)q,p(d 
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 d�(p,q) = �∑ ���(�) − ��(�)�
��

���          p e q[1;N]     (18) 

 

onde xp(j) e xq(j)são as respostas instrumentais (sinais nos espectros) para amostras p e qnos j-

ésimos comprimentos de onda dos espectros. 

Figura 1.3. Visão geométrica da distância Euclidiana entre dois pontos p (xp1, xp2, xp3) e q (xq1, xq2, xq3). 

 

 

 

Na Figura 1.4, ilustra-se o princípio de funcionamento do algoritmo Kennard-Stone 

considerando o caso de um conjunto de seis amostras que se encontram localizadas no espaço 

bidimensional de duas variáveis Var 1 e Var 2.Primeiramente, o KS determina o par de 

amostras que tenham a maior distância entre sidx(p,q) encontradausando aEquação 18paraJ = 

2. Nesse exemplo,as amostras 1 e 2 são as mais distantes entre si.Em seguida,  

o algoritmo determina – entre as amostras remanescentes – as que se encontram mais 

próximas de 1 ou 2 e seleciona a mais distante. Nesse caso, a amostra 4 é selecionada 

nessepasso. Esse processo é repetido até que um certo número Nde amostras, usado como 

critério de parada, seja alcançado. Quando N = 3, o KS seleciona as amostras selecionadas: 1, 

2 e 4; para N = 4, as amostras 1, 2, 4 e 3 são selecionadas e assim por diante. 
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Figura 1.4.Ilustração da aplicação KS a um conjunto de seis amostras no espaço bidimensional das 

variáveis Var 1 e Var 2. 

 

 

 Como resultado da aplicação do KS, as primeiras amostras selecionadas – cujo 

número N é estabelecido a priori – são usadas para compor o subconjunto de calibração e as 

restantes do conjunto total comporão o subconjunto de validação. Com isso, assegura-se que 

as amostras de calibração serão sempre as mais externas e cobrirão a fronteira do espaço, 

conforme ilustrado na Figura 1.5. 

 

Figura 1.5. Espaços cobertos pelas amostras (calibração e validação) selecionadas pelo algoritmo KS. 

 

 
 

O algoritmo apresenta algumas limitações, por exemplo, o fato de não levar em 

consideração a estatística da matriz Yque são os parâmetros de interesse. Assim, o KS não 

leva em consideração a variabilidade decorrente de mudanças de composição na matriz47 que 

se refletem nos parâmetros de interesse. Para levar em contaesse fato – assim como a 

estatística de Y no processo de busca das amostras mais distantes entre si –, desenvolveu-se o 

algoritmo SPXY descrito na Seção1.3.6.3. 
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1.3.6.3 Algoritmo SPXY 

O SPXY é uma variante do algoritmo KS, mas difere no que diz respeito a inclusãoda 

estatística de Y no seuprincípio de funcionamento.As distâncias dx(p,q) e dy(p,q), são medidas 

levando-se em consideração as relações existentes em  X e em Y no cálculo da distância inter-

amostras.Assim, 
 

d��(p,q) =
��(�,�)

���  �,� Є [�,�]��(�,�)
+

��(�,�)

���   �,� Є [�,�]��(�,�)
 ;p,q Є[1,N]  (19) 

 

Visando garantir que a distribuição das amostras no espaço de X e Ytenham mesma 

importância, fze-se necessário dividir as distâncias dx(p,q) e dy(p,q) pelos seus valores 

máximos no conjunto amostral obtendo-se assim uma distância dxy normalizada9. 

1.3.6.4 Validação Bootstrap 

O Bootstrap e uma técnica de reamostragem, sendo assim é possível  fazer inferências 

a cerca da distribuição das observaçãos a partir da disposição dos dados experiementais42.Ao 

se utilizar esse método é possível estimar o seu limite de confiança, com a intenção de fazer 

deduções a cerca das propriedades em análise42,44. 

A reamostragem com reposição(Bootstrap) possibilita a obtenção de distintos 

conjuntos de amostra45. Esta tecníca pode ser utilizada nos mais diversos problemas, podendo 

ser utilizado nas mais diversas situações, pois independem da disposição inicial da estatística 

das propiedades em avalição42. 

 

1.3.6.5 Validação cruzada  

 Em calibração PLS (Partial Least Squares), é de fundamental importância escolher um 

número ideal de variáveis latentes, que determina complexidade do modelo5,58. A escolha do 

número inapropriado de VLs , pode acarretar uma perda significativa na robustez do modelo e 

consequentemente afetar a sua capacidade preditiva6,63. A escolha de um número maior de 

variáveis latentes pode aumentar o ruído e causar problemas de sobreajuste, no qual os dados 

de calibração são bem ajustados, mas não apresentam desempenho satisfatorio na predição de 

amostras desconhecidas83. Um número menor de variáveis latentes escolhido, pode acarretar 

problemas de sub-ajustes, devido a não inclusão de informação relevante do conjunto de 

dados, gerando modelos de calibração mal ajustados83. A validação cruzada é o método mais 

comumente usado para definir o número de componentes escolhidas para um modelo15,16,38,39. 

Na CV os dados treinamento são divididos em subconjuntos de calibração e validação17. 
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1.3.6.6 Validação cruzada de exclusão única 

 Em modelagem PLS  a escolha do número ideal de VLs é de suma importância, tendo 

em vista que os modelos baseados em projeções  geram resultados que não condizem com os 

dados observados experimentalmente e por isso carecem de ajustes para evitar o overfitting49.  

A validação cruzada é o metodo mais comum quando se pretende determinar o número ideal 

de VLs64. 

 A CVLOO (Leave-one-out Cross validation)  é uma dos métodos mais utlizados de se 

fazer uma validação cruzada, neste metodo uma das amostras fica de fora do conjunto de 

calibração para depois ser predita, o procedimento é repetido até que todas as amostras 

tenham ficado pelo menos uma vez fora do conjunto de calibração46,48,49. Após todas as 

amostraspassarem por esta mesma estratégia, uma raiz quadrada do erro médio de validação 

cruzada (RMSECV) é calculado para cada uma das VL utilizadas49, como pode ser 

visualizado na Equação 19. 

 RMSECV = 

�∑(�����)
�

�
       (19) 

 

na qual yp é o valor de concentração previsto pelo modelo, yeo resultado esperado e n é a 

quantidade de amostras do conjunto de calibração. 

 

1.3.6.7 Validação cruzada de divisão representativa 

 Quando se constroi e valida modelos em calibração multivariada é de fundamental 

importância que os conjuntos de calibração e validação sejam significativos para o conjunto 

de dados original5,39,54.Em validação cruzada a divisão do conjunto de dados original é 

normalmente feita de maneira randômica e a determinação da quantidade de VLs geralmente 

varia de acordo com a abordagem CV utilizada na construção do modelo5,35,50. 

 O RSCV(Representative Splitting Cross Validation) é um novo método de CV no qual 

a divisão dos dados em calibração e validação é  feita utilizando um algortimo de seleção de 

amostras e não mais de maneira randômica como em CVs mais convencionais5. 

 Nessa nova abordagem, o algoritmo DUPLEX é usado para dividir em partes iguais o 

conjunto de calibração de partida e assim fazer uma combinação dos valores de uma serie de 

CVs K-fold5.Para avaliar a performance da nova estrategia os CVs fundamentados na partição 
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dos dados DUPLEX são utilizados para determinar o RMSE associado de RSCV como 

observado na Equação 20. 
 

 RMSERCV  =�
�

� � �
∑ ∑ (y��− y���)²

�
���

�
���      (20) 

 

sendo ��ij e yijos resultados previstos e de referência dos j-ésimos objetos da validação e i-

ésima (i = 1, 2, 3, 4) k-fold (k = 2, 4, 8, 16) CV.  

 

1.3.6.8 Validação Híbrida 

A validação híbrida é uma estrategia de validação cruzada na qual as amostras mais 

externas são selecionadas e as restantes são divididas de forma randômica em conjuntos de 

calibração e predição. O algoritmo SPXY é utilizado para selecionar as amostras mais 

externas, visando a garantir que toda a variabilidade do conjunto de amostras esteja dentro dos 

limites de observação dos dados. 

 À medida que as amostras selecionadas vão sendo fixadas, as fronteiras de calibração 

são delimitadas e problemas com extrapolação do modelo – que ocorre quando amostras são 

preditas além dos limites de observação do conjunto amostral – são minimizados. A escolha 

de amostras mais representativas para o conjunto de dados, possibilita a construção de 

modelos mais robustos e com melhor capacidade preditiva. 

 Os resultado de RMSECV para cada processo de validação cruzada, a medida que 

amostras vão sendo fixadas, foi utilizado como uma das metricas para avaliação das estrategia 

propostas como pode ser visualizado na Equação 21. 

 

 RMSECV = 

�∑(�����)
�

���
       (21) 

 

na qual “yp”é o valor predito pelo modelo, “ye” o valor de referência e “n” é o número de 

amostras do conjunto de calibração e “a” é o número de amostras fixadas. 
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2. METODOLOGIA 

 

2.1. Conjuntos de dados 

No presente trabalho, foram utilizados dois conjuntos de dados NIR(Near 

infrared) que são de domíniopúblico e disponíveis na Internet.O primeiro conjunto 

(http://www.idrc-chambersburg.org/shootout.html) consiste dos dados de 107 amostras 

de trigo, cujos espectros NIR foram registradosna faixa 1100-2500 nm com uma 

resolução de 2nm72. A propriedade alvo do estudo compreende o teor de proteína, que 

varia de 9,7 a 14,4% (w/w).A determinação do conteúdo de proteina em amostras de 

trigo é de fundamental importância para a indústria de produção de farinha de trigo. As 

proteínas presentes nesses grãos apresentam uma grande capacidade de formar glútem, 

que durante o processo de fermentação em pães e massas é o responsável por reter as 

moleculas de dioxido de carbono e favorecer o crescimento da massa. 

No segundo conjunto (http://software.eigenvector.com/Data/Corn/index.htm), 

têm-se os dados de 80 amostras de milho, no qual seus espectros NIR foram adquiridos 

num intervalo de 1100-2498nm com intervalos de 2nm. O parâmetro de interesse 

empregados nesse estudo foi umidade. O teor de umidade em amostras de milho é um 

parâmetro fundamental para determinar as melhores condições de armazenagem do 

grão. Esse teor deve ser bem definido, pois o mesmo vai garantir a qualidade do grão 

durante a estocagem. 

 

2.2. Pré-processamento  
 

2.2.1 Dados NIR de trigo 

Na analíse da Figura 2.1para os dados da matriz “trigo”, pode-se observar que a 

região de 1000-1100não apresenta informação util para a modelagem(sem resposta na 

região para a propriedade de interesse), portanto essa região que compreende um total 

de 50 variáveis foram retiradas, restanto 700 variáveis para a construção do modelo.  A 

Figura 2.1a  os espectros brutos das 107 amostras de trigo são apresentados e pode-se 

observar que além de regiões não informativas, tambem observa-se pequenas mudanças 

na linha de base(variações sistemáticas que não apresentam relação com a propriedade 

em investigação, mas que podem afetar o modelo caso não sejam retiradas73).Em 

virtude do óbice apresentado, preferiu-se por utilizar os espectros derivados gerados 

http://www.idrc-chambersburg.org/shootout.html
http://software.eigenvector.com/Data/Corn/index.htm
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após a aplicação do filtro Savitsky-Golay com polinômio de 2aordem e janela de 21 

pontos74, restando 680 variáveis para cada amostra como pode ser visualizado na 

Figura 2.1b, que serviu como base para os calculos realizados. A janela de 17 

pontos73,foi selecionada em um trabalho anterior como sendo o número idealde pontos 

para o conjunto de dados em análise, mas para a estratégia proposta a janelacom21 

pontos foi a escolhida, pois apresenta espectros menos ruidosos e por proporcionar 

melhores resultados RMSECV e RMSEP durante a construção do modelo de calibração. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figura 2.1. Espectro de 107 amostras de trigo. (a) Sem pré-processamento. (b) Derivados e 
Suavizados Savitsk Golay com janela de 21 pontos  

a
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O conjunto de dados foi dividido da seguinte maneira: 12 amostras foram 

retiradas com o auxílio do algoritmo SPXY9(amostras que permanecerão fixas e serão 

adicionadas durante a etapa de calibração) em PLS e 16 para abordagem MLR-APS, e 

as amostras remanescentes foram divididas de forma randômica em calibração 75% (71 

amostras) e predição 25% (24 amostras). 

Após a divisão do conjunto de dados, implementa-sea PCA com o intuito de 

verificar se o SPXY selecionou as amostras de fronteira e assim minimizar problemas 

de extrapolação do modelo durante a etapa de calibração. 

 
2.2.2 Dados NIR de milho 

Os espectros de 80 amostras da matriz“milho” foram obtidos na faixa 1.100 – 

2.498 nm eencontram-se apresentados na Figura 2.2. Observa-se na Figura 2.2a que 

apresentam variação de sua linha de base,assim é necessario o pré-processamento desses 

dados. Diferentemente do conjunto de dados anterior, não foi necessario retirar regiões 

dos espectros registrados. Tendo em vista o obice encontrado, deu-se preferência a 
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utilização dos espectros derivados e após a derivação e suavização com filtro Savitsky-

Golay e emprego do polinômio de 2aordem com janela de 21 pontos como descrito em 

outros trabalhos60,62,restaram 680 variáveis para cada amostra como pode ser observado 

na Figura 2.2b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 2.2. Espectro das 80 amostras de milho. (a) Sem pré-processamento. (b) Derivados e 
Suavizados Savitsk Golay com janela de 21 pontos. 
 

Compriemnto de onda(nm) 
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Quanto a divisão do conjunto de dados, foi adotado o mesmo procedimento dos 

dados anteriores sendo para calibração(51 amostras) e para predição(17 amostras) e 12 

amostras selecionadas pelo SPXY. 

Assim, como no conjunto de dados anterior, uma analise PCA foi realizada e 

foram destacadas as amostras que permanecerão fixas durante a modelagem e assim 

verificar se as mais externas foram realmente selecionadas. 

 
2.3.Algoritmo de Validação Cruzada Híbrida  

 

 O algoritmo CVH foi desenvolvido com o intuito de contornar os problemas de 

extrapolação de modelos de calibração multivariada e, assim, melhorar a capacidade 

preditiva da modelagem PLS e MLR-APS.Na busca de uma melhor compreensão a 

cerca do algoritmo de validação cruzada híbrida, um fluxograma com as principais 

etapas do algoritmo foi construido,como pode ser visualizado a seguir. 
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Figura 2.3. Fluxograma do Algortimo de validação cruzada híbrida. 
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Inicialmente têm-se um conjunto de dados, no qual são apresentados em forma 

de matrizes X e Y, que são respectivamente a matriz de resposta intrumental e matriz de 

referência. Na etapa seguinte as amostras mais externas presentes nas matrizes X e Ysão 

selecionadas via algoritmo SPXY e geram os conjuntos de dadosXfixe Yfix. Tendo estas 

amostras mais externas sido selecionadas, as amostras de prediçãoXpred e Ypredsão 

selecionadas levando-se em conta a distribuição homogênea dessas amostras. Em 

seguida as amostras Xfixe yfixsão adiconadas nas amostras restante X e Y, gerando assim 

os conjuntos de calibração Xcal e Ycal. Quando o número de amotras fixadas Ni é igual a 

zero, um modelo MLR-APS é calibrado com todas as amostras de Xcal e Ycal e as 

amostras Ni não são fixadas. À medida que as amostras vão sendo fixadas, ou seja, 

Ni≠0, um modelo de calibração MLR-APS é obtido com as amostras Xcal e Ycal, sem a 

presença das amostras Ni que foram fixadas. Durante a etapa de validação cruzada as Ni 

amostras fixadas não são seleciondas, pois estas apenas delimitam as fronteiras do 

conjunto amostral. O RMSECV é obtido a partir da predição das amostras do conjunto 

de calibração, somente Ncal-Ni são preditas durante este processo. Após o modelo 

calibrado as amostras Xpred são preditas e os valores de RMSEP obtidos. Diversos 

modelos são gerados, levando-se em consideração a seguinte equação Ni = Ni+ P, onde 

P é o incremento usado para escolher as amostras que serão fixadas, esses processo se 

repete até que o número de incrimentos(Número de amostras fixadas por vez durante o 

procedimento de validação cruzada) seja igual ao número de amostras mais externas 

Xfix  selecionadas previamente. 

 

2.4. Funcionamento do Algoritmo de validação híbrida 

 Inicialmente as amostras mais externas(azul) são selecionadas pelo algoritmo 

SPXY, como pode ser visualizado na Figura 2.4a.As amostras selecionadas, 

representam um percentual de 15% do total das amostras existentes e delimitam as 

fronteiras amostrais dos dados.Após esse procedimento as amostras 

remanecentes(vermelho) são divididas de forma randômica em amostras de calibração e 

predição. Na Figura 2.4b,as amostras do conjunto de calibração(vermelho) e as 

amostras selecionadas previamente pelo algoritmo SPXY(azul) são unidas em um único 

conjunto de dados. 
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 O conjunto de calibração incial(vermelho e azul) é dividido em um subconjunto 

de calibração, como pode ser observado na Figura 2.4c. Esse subconjunto de calibração 

é utilizado na predição da amostra do subconjunto de validação 

. A amostra que ficou de fora no procedimento CVLOO, como pode ser vista na Figura 

2.4d, é predita com base nas amostras do subconjunto de calibração. A amostra que 

ficou de fora do procimento de validação cruzada é mais externa.Na fase inicial do 

algoritmo todas as amostras de calibração(amostras restante e amostras selecionadas 

previamente pelo SPXY),são incluidas no procedimento de validação cruzada de 

exclusão e consequentemente preditas na etapa de calibração. O fato de amostras 

selecionadas previamente, serem usadas na etapa de validação cruzada, não impede que 

ocorram problemas com extrapolação, pois ao serem preditas as fronteiras amostrais 

perde-se a delimitação da mesma. 

  

Figura 2.4.Seleção de amostras fixadaspelo SPXY e procedimento CVLOO - (a) Seleção das 

amostras mais externas. (b) Amostras de calibração e amostras selecionadas pelo SPXY (c) Amostras do 

subconjunto de calibração d)Amostra deixada de fora no processo CVLOO. 

 

 

 

 

 

 

 

 

 
 

 
 

 
 
 

 

 

 

 

Na etapa seguinte do algoritmo, as amostras que foram selecionadas inicialmente 

pelo algoritmo SPXY, são divididas em grupos com as mesmas quantidades de amostras  

que serão fixadas por vez. A medida que cada grupo de amostras é fixado, um 

a) 

b) 

c) 
d) 
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procedimento CVLOO é realizado,esse procedimento é executado até que todos os 

grupos de amostras tenham sido fixadas. A cada grupo de amostras fixadas na etapa de 

calibração, tem-se uma restrição no número de amostras a serem incluidas no processo 

CVLOO,ou seja, o grupo de amostras fixadas,não podem ser incluídas na etapa de 

validação cruzada. As amostras fixadas e a delimitação das amostras a serem utilizadas 

no processo de validação cruzada, podem ser compreendidas de maneira mais simples 

na Figura 2.5. 

 

 

Figura 2.5. Amostras selecionadas pelo SPXY–Vermelho(amostras mais externas selecionadas 

previamente)Preto(amostras que serão selecionadas no procedimento de validaçao cruzada). 

 

 
 

 

 

 

 

 

  

As amostras mais externas que foram selecionadas previamente,passam a ser 

fixadas (vermelho) na etapa de calibração. As amostras mais internas (preto), são as 

amostras a serem incluidas na validação cruzada,sendo estas delimitadas, problemas 

com predição de amostras fora dos limites de observação amostral são 

reduzidos.Quando as amostras fixadas(vermelho) são incluídas no conjunto de 

calibração, se torna possível avaliar sua influência na modelagem de calibração, umas 

vez que é possível verificar a variabilidade do RMSECV(Root-Mean-Square Error of 

Cross-Validation) e RMSEP (Root Mean Square Error of Prediction) à medida que mais 

amostras são fixadas. 

 As amostras de predição foram selecionadas tendo como parâmetro sua 

distribição no espaço amostral(amostras mais externas, amostras mais internas e 

amostras homogeneamente distribuídas), as amostras que fornecessem os melhores 

resultados em termos de menores raizes quadratícas de erros médios de previsão e de 

validação cruzada (RMSEP e RMSECV) respectivamente. A escolha das amostras de 

X

X
KSXY – 12 

      X1 

          X2 
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predição em face da sua distribuição espacial, foi utilizada na modelagem PLS-grou-out 

e MLR-APS. 

 O algoritmo foi,integralmente, implementado (código-fonte no APÊNDICE) e 

executado em ambienteMatlab® 2010b (Mathworks) e opré-processamento dos dados 

foi realizado, exclusivamente, usando o software Unscrambler® 9.7 (CAMO AS). 

 

2.5. Uso da Espectrometria NIR para avaliação da estratégia 
proposta 
 

 A espectrometria do infravermelho próximo(NIR-Near InfraRed espectrometry) 

é uma técnica espectrométrica que utiliza a REM (Radiação EletroMagnética), cujos 

comprimentos de onda encontam-se na faixa de 750 a 2500 nm80. A interação dessa 

radiação com a matéria (absorção ou emissão de fótons) promove apenas mudanças em 

estados vibracionaisdas moléculas81,82. Os espectros NIR consistem de bandas largas 

resultantes de transições vibracionas – envolvendo, geralmente, ligações do tipo C-H, 

N-H, O-H e S-H – associadas aos sobretons e bandas de combinação de transições 

fundamentais que ocorrem no MIR (Mid InfraRed)1,3,86. 

 Em determinações espectroanalíticas usando a espectrometria NIR, é comum a 

obtenção de espectros que acarretam dadosmultivariados complexos,dificultando a 

extração das informações mais relevantes para as análises químicas. Ademais, a 

complexidade dos espectros se torna maior quando os sinais do analito são sobrepostos 

pelas bandas de, sobretudo, concomitante(s) em matrizes complexas.Devido às 

caracteríticas dos espectros NIR, a calibração univariada geralmente não permite obter 

modelos com acurácia satisfatória80-81 mesmo na determinação de um único componente 

(analito ou parâmetro de interesse) em uma matriz menos complexa3 . Para superar esse 

problema, recorre-se usualmente à modelagem empregando técnicas quimiométricas de 

calibração multivarida 

 

2.5. Espectroscopia NIR na determinção de conteúdo de 
Proteina em trigo e de umidade em milho. 
 
 Na espectroscopia NIR a quantificação desses parâmetros nas amostras em 

estudo são feitas sem separação previa do analito da matriz e isso requer a utilização de 

metódos de calibração multivariada, tendo em vista que o sinal do analito não é 

evidenciado de forma isolada no espectro NIR81. O fato de necessitar de escasso ou 
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nenhum tratamento das amostras, proporciona análises mais rapidas e com geração de 

residuos minimizada, contribuindo assim para o meio ambiente81. 

 A determinação de conteúdo de proteína  em amostras de trigo e úmidade em 

amostras milho foram feitas empregando a espectroscopia NIR, por ser uma técnica 

não-invasiva, não-destrutiva e por fornecer  bons resultados semdanificar a amostra para 

estudos posteriores3,84. O uso no NIR na determinação desses parâmetros, propicia a 

inserção de algoritmos de seleção de variáveis, tendo em vista que essas análises 

espectroscópicas fornecem uma grande quantidade de informações e faz-se necessario 

selecionar as variáveis relevantes na construção do modelo84,87. 
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3.1. PLS group-out com seleção de amostras fixadas 

 Inicialmente, vários testes foram realizados com o intuito de verificar quais 

amostras de validação (mais internas, externas e distribuídas homogeneamente) 

proporcionariam uma diminuição do RMSECV e do RMSEP. Os resultados expressos 

foram obtidos depois de vinte execuções do algoritmo e avaliados seus respectivos 

valores de RMSECV e RMSEP. Foram utilizadas 20 execuções,com o intuito de avaliar 

a previsibilidade do modelo quanto a fixação das amostras mais externas e tambem 

avaliou-se o RMSECV médio para cada modelo obtido.Na determinação das amostras a 

serem retiradas na modelagem PLS group-out, diferentes tipos de amostras de validação 

foram explorados e o modelo com menores valores de RMSECV foi escolhido.  

 No conjunto de dados das amostras de trigo, as amostras de predição mais 

internas proporcionaram uma diminuição significativa em termos de RMSECV. Após o 

diagnóstico das amostras de predição que mais se adequassem à modelagem,gerou-se o 

gráfico da Figura 3.1 no qual se avaliou a variabilidade do RMSECV em função do 

número deamostras fixas adicionadas. 

 

 

 

 Na Figura 3.1 pode-se observar a diminuição do RMSECV a medida que as 

amostras que permanecerão fixas são adicionadas, a variabilidade desses valores 

Figura 3.1. RMSECV amostras trigo em função do número de amostras.fixadas. 
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tambem é reduzida, sendo esta mais perceptível ao comparar-se o modelo com zero 

amostras fixadas(vermelho) com os modelos com seis, nove e doze amostras 

fixadas(roxo,verde,azul). Ao comparar-se o modelo com nenhuma amostras 

fixada(vermelho) com os demais modelos no qual as amostras foram fixadas, é 

perceptível que a adição das mesmas favorece uma diminuição significativa do 

RMSECV e de sua variabilidade, demonstrando que ao se adicionar amostras que 

permanecerão fixas no conjunto de calibração pode-se melhorar a robustez da 

modelagem. O modelo com zero amostras fixadas(vermelho), apresentou um RMSECV 

medio de 0,235(%m/m), enquanto que os modelos com 

três(laranja),seis(roxo),nove(verde) e doze(azul) apresentam os respectivos valores de 

RMSECV 0,234(%m/m), 0,212(%m/m), 0,210(%m/m) e 0,212(%m/m).Pode-se 

observar que o modelo com nove amostras fixadas(verde), apresenta um menor 

RMSECV médio, evidenciando assim que esse número de amostras é o mais adequado 

para a construção do modelo de calibração. A medida que aumenta o número de 

amostras fixadas, as fronteiras de calibração vão sendo melhor delimitadas, diminuindo 

assim a ocorrência de predições  além  dos limites de observação, acarretando assim 

uma diminuição no RMSECV(raiz quadrada do erro quadratico médio de validação 

cruzada). 

 Na análise do conjunto de dados de milho, vinte execuções tambem foram 

realizadas com o intuito de avaliar a obviedade dos modelos quando amostras são 

fixadas e assimobteveum RMSECV médio. A escolha das amostras de predição mais 

externas forneceram os menores valores e a menor variavibilídade dentre os modelos 

estudados em termos de RMSECV. Pode-se observar uma diminuição da variabilidade 

do RMSECV quando amostras são fixadas no conjunto de calibração. Na Figura 3.2 é 

possivel observar a medida que mais amostras fixas vão sendo adicionadas no conjunto 

de calibração,uma queda acentuada do RMSECV e uma baixa alterabilida do mesmo ao 

longo das vinte execuções.Os modelos com zero(vermelho) e com três (laranja) 

amostras fixadas apresentaram as maiores mutalibilidades de RMSECV, mesmo assim é 

possivel observar que o modelo no qual amostras foram fixadas, exibe um perfil com 

menor varibilidade dos dados. 

 Dentre os modelos estudados, aquele com menor alterabilidade em termos de 

RMSECVfoi selecionado. Quando doze amostras (azul claro) foram fixadas no 

conjunto de validação, pode-se notar uma queda em termos de variação do RMSECV, 

exceto na decima execução, onde possivelmente as amostras mais externas não eram de 
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fronteira, acarretando assim um aumento na sua variabilidade.Os modelos obtidos 

apresentaram uma pequena diferença em termos de RMSECV, levando-se em conta 

aqueles com e sem a fixação de amostras na etapa de calibração. O modelo com zero 

amostras fixadas(vermelho) apresentou um RMSECV de 0,0140(%m/m), já os modelos 

com três(laranja) 0,0135(%m/m),seis(roxo) 0,0124(%m/m),nove(verde) 

0,0124(%m/m) e doze(azul) 0,0121(%m/m).Em face do exposto, é perceptível que os 

modelos com amostras fixadas no conjunto de calibração proporcionam em média 

menores valores de RMSECV que os sem nenhuma amostras fixada, demonstrando 

assim que a inclusão destas pode proporcinar uma melhora significativa no modelo de 

calibração. 

 

 

 

 Com a abordagem PLS adotada para esses conjuntos de dados, não foi possivel 

avaliar a variabilidade do RMSEP em função do índice de amostras, pois os mesmos 

não apresentavam variabilidade significativa dos resultados para as vinte execuções, 

impossibilitando assim uma melhor avaliação para a modelagem proposta. 

 

 

Figura 3.2. RMSECV amostras milho em função do número de amostras fixas 
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3.2. MLR-APS Fixação de amostras 

3.2.1 Dados NIR de amostras de trigo 

 À medida que amostras selcionadas, previamente, são fixadas no conjunto de 

calibração proporcionam uma diminuição em termos de RMSEP e RMSECV em 

modelagem MLR-APS. Na Tabela 3.1 é possivel observar que o modelo no qual quatro 

amostras são fixadas apresentam os menores valores de raiz quadrada do erro medio de 

previsão(RMSEP) e de raiz quadrática do erro quadrático médio de validação cruzada 

(RMSECV), mesmo com um número menor de amostras que participam do 

procedimento de validação cruzada, demonstrando que as amostras mais externas ao 

serem fixadas proporcinam a aquisição de melhores modelos de calibração. 

 Apesar de ter um número menor de amostras, que participam do procedimento 

CVLOO, os modelos que possuem amostras fixadas na etapa de calibração apresentam 

desempenho ligeiramente melhor que o modelo sem que amostras sejam fixadas na 

etapa de calibração. Ao comparar-se o modelo com o número minímo de amostras 

fixadas e o modelo com o maxímo de amostras fixadas, pode-se observar que o número 

de amostras que participam do procedimento validação cruzada diminui 

significativamente de 77 para 61 amostras e pode-se observar seus respectivos valores 

de RMSECV e RMSEP que são 0,261%(m/m) e 0,197%(m/m), para o número minímo 

de amostras fixadas e 0,231%(m/m) e 0,164%(m/m) com o maxímo de amostras 

fixadas. 

 

 

 Os valores de RMSEP para os modelos com amostras fixadas diminuem 

sinificativamente(com excesssão do modelo com 8 amostras fixadas)quando 

Nº de Amostras 

Fixadas 

RMSEP 

%(m/m) 

Nº de Variáveis 

selecionadas 
RMSECV%(m/m) 

0 0,261 24 0,197 (77) 

4 0,194 19 0,163 (73) 

8 0,266 18 0,164 (69) 

12 0,219 19 0,177 (65) 

16 0,231 20 0,164 (61) 

Tabela 3.1. Valores de RMSEP e RMSECV em relação ao número de amostras de trigo fixadas. 
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comparados com o modelo sem amostras fixadas. O aumento em termos de RMSEP em 

alguns modelos com amostras fixadasocorreu em virtude da fixação de amostras mais 

internas,pois nem todas as  amostras selecionadas pelo SPXYsão necessariamente as 

mais externas(de fronteira), tendo em vista que nesse algoritmo a seleção dessas 

amostras leva-se em conta tambem a correlação entre as matrizes X e Y. Amedida que 

amostras são fixadas na etapa de calibração, um número menor de variáveissão 

incluidas no modelo de calibração, demonstrando bom condicionamento dos dados.O 

modelo com zero amostras fixadas apresentou um  baixo desempenho em termos de 

RMSEP, RMSECV e númerode variáveis selecionadas para a construção do modelo, 

que são respectivamente 0,261% (m/m),0,197% (m/m) e 24 variáveis selecionadas. Já  o 

melhor modelo foi obtido quando quatro amostras foramfixadas 0,194% (m/m), 0,163% 

(m/m) e 19, que foram seus respectivos valores de RMSEP, RMSE e número de 

variáveis selecionadas. Quando essas amostras são fixadas na etapa de calibração, em 

modelagem APS-MLR demonstrou grande potencial, pois uma vez que as amostras de 

fronteira são fixadas os problemas com extrapolação de modelo são minimizados e 

consequentemente  ocorre uma melhoria na capacidade preditiva do mesmo. 

 

3.2.2 Análise das figuras scree plot 

 Nas Figuras 3.3a e 3.3b é possível observar que quando quatro amostras fixas 

são adicionadas, o modelo apresenta baixos valores de RMSECV com apenas cinco 

variáveis selecionadas na modelagem MLR-APS, enquanto o modelo sem nenhuma 

amostra fixa adicionada apresenta diminuição considerável do RMSECV a partir de oito 

variáveis selecionadas.O número de variáveis ideal para o modelo com zero amostras 

adicionadas foi 24 variáveis selecionadas e para o modelo com quatro amostras 

adiciondas foi 19 variáveis, demonstrando assim que a adição de amostras fixadas na 

etapa de calibração proporciona uma simplificação para a modelagem APL-MLR. 
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Vale ressaltar também que, com quatro amostras fixadas,observa-se uma 

diminuição significativa em termos RMSECV com apenas 5 variáveis selecionadas, 

enquanto que o modelo com zero amostras fixadas esse efeito pode ser observado 

Figura 3.3. (a)  Scree plot com zero amostras fixadas.e (b) Scree plot com quatro 

Scree plot com zero amostras fixadas 

Scree plot com quatro amostras 
fixadas 

(a) 

(b) 
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quando 8 variáveis são selecionadas, demosntrando assim que o modelo com quatro 

amostras fixadas geram modelos mais simples 

3.2.3. Valores preditos versus valores de referência  

Nas Figuras 3.4a e 3.4b pode-se observar que  o modelo com quatro amostras 

fixadas estão ligeiramente mais ajustados a reta, quando compararado ao modelo com 

nenhuma amostra fixada. Os coeficientes de correlação para os modelos com zero e 

quatro amostras foramrepectivamente 0,9894 e 0,9934, demonstrando que ao se 

adicionar as amostras fixas na calibração proporcina uma melhoria no modelo.Os 

modelo com zero e quatro amostras fixadas apresentam bom condicionamento dos 

dados, visto que não há tendência quanto a disposição dos mesmos. Porém o modelo 

com 4 amostras fixadas apresenta um melhor coeficiente correlação dos dados sendo 

este mais indicado para a construção de um bom modelo de calibração.  

 

 

 

Figura 3.4. (a) Valores preditos versus valores de referência zero amostras fixadas e (b) 

Valores preditos versus valores de referência quatro amostras fixadas. 

(a) 
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Quando quatro amostras são adicionadas é possivel perceber uma redução do 

somatório dos quadrados dos erros risuduais de predição (PRESS) em aproximadamente 

50% em relação ao modelo com zero amostras adicionadas.Essa redução indica que o 

modelo com quatro amostras fixadas é mais adequado para a construção de um bom 

modelo de calibração MLR-APS. 

 

3.2.4 Dados NIR de amostras de milho 

 Na determinação do teor de umidade em amostras de milho, o modelo no qual 

amostras foram fixadas apresentaram melhores desempenhos em termos de RMSEP e 

RMSECV, como pode ser evidenciado na Tabela 3.2. Dentre todos os modelos, aquele 

com três amostras fixadas apresentou o pior desempenho, tendo selecionado um número 

maior de variáveis incluidas no modelo, que aumenta a complexidade do mesmo e 

apresentou os maiores valores de RMSECV e RMSEP que são respectivamente 

0,0085%(m/m) e 0.0155%(m/m). Essas três amostras fixadas não eram amostras de 

fronteira e portanto o espaço amostral não foi delimitado com precisão, afetando assim a 

capacidade preditiva do modelo. 

 

 

Valores preditos versus valores de referência quatro amostras fixadas 

 

(b) 
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Tabela 3.2. Valores de RMSEP e RMSECV em relação ao número de amostras de milho fixadas. 

 

 

Nº de Amostras 
Fixadas 

RMSEP 
%(m/m) 

Nº de Variáveis 
RMSECV 
%(m/m) 

0 0.0142 28 0.0065 (60) 

3 0.0155 30 0.0085 (57) 

6 0.0115 24 0.0063 (54) 

9 0.0125 21 0.0087 (51) 

12 0.0114 21 0.0061 (48) 

 

 O modelo com zero amostras fixas adicionadas apresentou valores de RMSEP e 

RMSECV bem maiores que os modelos com seis, nove e doze amostras, mesmo 

selecionando um número maior de variáveis, demonstrando que os modelos sem 

amostras fixadas são menos parcimoniosos.Quando doze amostras fixas são adicionadas 

na etapa de  calibração apenas 21 variáveis foram selecionadas  e os menores erros de 

predição(RMSEP) e erros de validação cruzada(RMSECV) foram obtidos 

0,0114%(m/m) e 0,0061%(m/m). No modelo sem amostras fixadas, 28 variáveis foram 

selecionadas e mesmo assim o modelo apresentou altos valores de RMSEP e RMSECV 

por essa ordem 0,0142% (m/m) e 0,0065%(m/m). A fixação de amostras mais externas 

na etapa de calibração, além de minimizar problemas com extrapolação do modelo, 

tambem permite a obtenção de modelos mais simples e parcimoniosos. 

 

3.2.5 Análise das figuras Scree Plot 

 Os gráficos de“scree plot, obtidos para o pior e o melhor modelo, são 

apresentandos, respectivamente, nas Figuras 3.5a e 3.5b. Pode-se observar a 

diminuição do RMSECV a medida que mais variáveis são selecionadas. 
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 Na Figura 3.5b, pode-se observar que  três variáveis são incluidas no modelo, 

proporcionam um decréscimo do RMSECV, já na figura 3.5a, um número maior de 

 Figura 3.5. (a) Scree plot com zero amostras fixadas.b) Scree plot com doze amostras fixadas. 

 

Scree plot com zero amostras fixadas 
(a) 

Scree plot com doze amostras fixadas 
 (b) 
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variávies devem ser incluidas no modelo para proporcinar uma diminuição do 

RMSECV.O modelo com doze amostras fixadas selecionou 21 variáveis como sendo o 

número ideial para a construção de um bom modelo, enquanto que aquele sem a 

presença de amostras fixadas, incluiu 28 variáveis para construção de um modelo bem 

ajustado. 

 

3.2.6. Valores Preditos versus valores de referência  

 O modelo com doze amostras fixadas apresenta um coefiencente de correlação 

ligeiramente maior que o obtido sem nenhuma amostra fixada sendo estes iguais a, 

repectivamente, 0,99961 e 0,99938. Nas Figuras 3.6a e 3.6b é percebivel que não 

ocorreu diferenças significativas de como as amostras estão dispostas na reta de ajuste 

para ambos modelos. 

 

 

 

 

Figura 3.6. (a) Valores preditos versus valores de referência com zero amostras fixadas e (b) Valores 

preditos versus Valores de referência com dezesseis amostras fixadas. 

(a) 
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 A diferença mais significativa entre os resultados expostos, ocorre ao comparar-

se os resultados em termos de valores de PRESS. O modelo com doze amostras fixadase 

o modelo sem amostras fixadas, percebe-se uma redução significativa 0,00261%(m/m) e 

0,0040%(m/m) respectivamente, que demonstra que a modelagem com doze amostras 

fixadas é o mais adequado para construção de modelos mais parcimonisos e de melhor 

capacidade preditiva em modelos MLR-APS. 

 

 

 

 

 

 

 

 

 

 

 

Valores preditos versus valores de referência doze amostras 
fixadas 

 

(b) 
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CAPÍTULO 4 

Conclusões 
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4.1 CONCLUSÕES 

 No presente trabalho, propôs-se uma nova estratégia de validação híbrida com 

seleção de amostras fixadas pelo algoritmo SPXY em modelagens PLS group-out e 

MLR-APS para minimizar problemas de extrapolação de modelos de calibração 

multivariada. A estratégia proposta foi avaliada, inicialmente, em modelagem PLS 

group-out usando dois conjuntos de dados. O primeiro compreende 107 amostras de 

trigo, no qual o parâmetro de interesse era o conteúdo de proteína sendo os espectros 

NIR 680 variáveis (comprimentos de onda) após realizado o pré-processamento. O 

segundo conjunto envolveu 80 amostras de milho, cujo parâmetro alvo no estudo foi o 

teor de umidade, sendo os sinais medidos também em 680 varáveis (após pré-

processamento).  

 Para ambos os conjuntos de dados, a estratégia proposta foi avaliada em termos 

de RMSECV e RMSEP em função do número de amostras fixadas. Durante a realização 

desses estudos percebeu-se que, apesar de obter bons resultados em termos de 

RMSECV, o mesmo não ocorreu com os valores de RMSEP. Em virtude dos resultados 

insatisfatórios em termos de RMSEP para o modelo PLS para uma única execução do 

algoritmo, foram realizadas vinte execuções do algorimo para os dois conjuntos de 

dados; avaliou-se então seus respectivos RMSEP médios. De fato, essa última métrica 

apresentava variabilidade muito pequena à medida que mais amostras fixadas foram 

adicionadas ao longo das vinte execuções, impossibilitando uma avaliação adequada da 

validação híbrida em calibração PLS. 

 Em face desse óbice, optou-se por utilizar essa validação híbrida em modelos de 

calibração multivariada baseados em seleção de variáveis. A modelagem MLR-APS foi 

utlizada para os mesmos conjuntos de dados. Observou-se que, diferentemente da 

modelagem PLS, os resultados em termos de RMSEP mostraram uma certa variabildade 

à medida que mais amostras fixadas são adicionadas na etapa de calibração. 

 Para o conjunto de dados de trigo, houve uma redução do RMSEP de, 

aproximadamente, 25% quando se compara o modelo, obtido com base em quatro 

amostras fixadas, com o obtido sem nenjuma amostra fixada. Além disso, o modelo 

baseado em quatro amostras fixadas proporcionou uma redução no RMSECV em cerca 

de 17% e com um número de variáveis selecionadas bem menor.  

 No conjunto de dados do milho, quando se compara o modelo com doze 

amostras fixadas e o modelo sem amostras fixadas, é possível observar uma diminuição 
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do número de variáveis selecionadas, bem como uma diminuição dos respectivos 

valores de RMSEP e RMSECV para, respectivamente, cerca de 20% e 6%. 

 A abordagem proposta mostrou-se bem eficiente em modelagem MLR-APS, 

demonstrando que, quando as amostras mais externas são fixadas, os problemas de 

extrapolação na modelagem são minimizados e proporcionam uma melhoria na 

capacidade preditiva do modelo de calibração. A inserção dessas amostras faz com que 

um menor número de variáveis sejam selecionadas, proporcionando modelos mais 

parcimoniosos e de fácil interpretação. Como as amostras mais externas são fixadas, os 

modelos tornam-se menos susceptíveis a variações que prejudicam sua robustez. 

Ademais, o uso das amostras de fronteira pode minimizar (ou até prevenir) problemas 

de extrapolação da região envolvida na modelagem de calibração. 

 

4.2. Perspectivas Futuras 

 Re-aplicar a validação híbrida, com seleção de amostras fixadas pelo algoritmo 

SPXY, em modelagem PLS para investigar a razão da baixa variabilidade do 

RMSE à medida que mais amostras fixadas são adicionadas. 

 

 Aplicar a estratégia de validação híbrida a novos conjuntos de dados. 

 
 Adaptar a estratégia proposta à modelagem multivariada envolvendo problemas 

de classificação. 
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APÊNDICE  
 

Nesse apêndice, é apresentado o código-fonte do programa – escrito e 

executável somente no ambiente computacional Matlab – do algoritmo desenvolvido 

para a estratégia proposta no presente trabalho. 

 

Apêndice A - Validação cruzada com conjunto separado fixo 
 
function[e,yhat]=validation_fixed_one(Xcal,ycal,Xfix,yfix,v
ar_sel) 
 
 
%[yhat,e]=validation_fixed_one(Xcal,ycal,Xfix,yfix,var_sel) 
--> Validation with a separate set fixed 
% [yhat,e] = validation_fixed_one(Xcal,ycal,[],[],var_sel) 
--> Cross-validation leave one out 
% 
Nfix = size(Xfix,1); % número de amostras que serão 
mantidas no conjunto em cal 
N = size(Xcal,1); 
g = floor(0.1*N);  % número de amostras que saem no 
processo cross_validation 
yhat = zeros(N,1); % Setting the proper dimensions of yhat 
fori = 1:N 
% Removing the ith object from the calibration set cal = 
[[1:i-1] [i+1:N]]; 
 
X = [Xcal(cal,var_sel); Xfix(:,var_sel)]; 
y = [ycal(cal); yfix]; 
xtest = Xcal(i,var_sel); 
X_ones = [ones(N+Nfix-1,1) X]; 
    b = X_ones\y; % MLR with offset term (b0) 
yhat(i) = [1 xtest]*b; % Prediction for the ith object 
 
end 
e = ycal - yhat; % Cross-validation error 
 
 

Apêndice A - Métricas de Validação 
 

function[PRESS,RMSEP,SDV,BIAS,r]=validation_metrics_v2p1(Xc
al,ycal,Xval,yval,var_se) 
 
%[PRESSV,RMSEPV,SDV,BIASV,rV]=validation_metrics_v2p1(Xcal,
ycal,Xval,yval,var_sel) --> Validation with a separate set 
%[PRESSV,RMSEPV,SDV,BIASV,rV]=validation_metrics_v2p1(Xcal,
ycal,Xval,[],var_sel) -->Validation with a separate set 
with no reference values for y 
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%[PRESSCV,RMSEPCV,SDCV,BIASCV,rCV]=validation_metrics_v2p1(
Xcal,ycal,[],[],var_sel) --> Cross-validation 
% 
% Record of modifications: 
% 08 Sept 2011 (v2): 
% Allows for the use of yval = [ ] (no reference values) 
% get(h,'XLim') modified to get(h,'xlim'); 
% 09 Sept 2011 (v2p1): 
% Use of prediction_uncertainty.m instead of 
statistical_prediction_error.m 
 
if size(Xval,1) > 0 % Validation with a separate set 
    y = yval; 
else % Cross-validation 
    y = ycal; 
end 
 
[yhat,e] = validation_v2(Xcal,ycal,Xval,yval,var_sel); 
 
if (~isempty(e))  
    PRESS = e'*e; 
    N = length(e); 
    RMSEP = sqrt(PRESS/N); 
    BIAS = mean(e); 
ec = e - BIAS; % Mean-centered error values 
SDV = sqrt(ec'*ec/(N - 1)); 
yhat_as = (yhat - mean(yhat))/std(yhat); % Autoscaling 
y_as = (y - mean(y))/std(y); % Autoscaling 
r = (yhat_as'*y_as)/(N-1); 
else 
    PRESS = []; 
    RMSEP = []; 
    SDV = []; 
    BIAS = []; 
    r = []; 
end 
 
% Prediction uncertainty (one-sigma) 
pred_unc = prediction_uncertainty(Xcal,ycal,Xval,var_sel) 
 
if (~isempty(e)) 
    % Plot of Predicted vs Reference values 
figure, hold on, grid 
errorbar(y,yhat,pred_unc,'o') 
xlabel('Reference y value'),ylabel('Predicted y value') 
h = gca; XLim = get(h,'xlim'); 
h = line(XLim,Xlim); 
title(['PRESS = ' num2str(PRESS) ', RMSEP = ' 
num2str(RMSEP) ', SDV = ' num2str(SDV) ', BIAS = ' 
num2str(BIAS) ', r = ' num2str(r)]) 
else 
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% Plot of predicted values with +/- one-sigma bars 
figure, hold on, grid 
errorbar([1:length(yhat)],yhat,pred_unc,'o') 
xlabel('Sample'),ylabel('Predicted y value') 
end 
 
 
Apêndice A - Cálculo SPA para os conjuntos de dados 
 
clear,clc,close all 
 
Nfix = 16; %MilhoNfix = 12; TrigoNfix = 16. 
g = 4; % Milho g = 3; Trigo g = 4; 
%txp = 0.30; % taxa usada no conjunto milho (corresponde a 
20 amostras de predição). 
txp = 0.33; % % taxa usada no conjunto Trigo (corresponde a 
30 amostras de predição). 
 
Nmax = 59; % Milho Nmax = 39; Trigo Nmax = 59. 
 
load('D:\Trabalho\Sófacles\Orientações\João\Dados\X.mat') % 
local onde está os dados trigo 
XNIR = X(:,351:1050); 
 
 
%load('D:\Trabalho\Sófacles\Orientações\João\Dados\Milho\mi
lho1.MAT') 
 
% 701 = 'Moistrure'; 
% 702 = 'Oil'; 
% 703 = 'Protein'; 
% 704 = 'Starch'; 
 
 
%XNIR = AllSamples_AllVariables(:,1:700); 
%Y = AllSamples_AllVariables(:,701); % Umidade 
 
 
Xder = derivadaSG(XNIR,1,2,21); % preprocessamento milho 
 
Ntot = size(Xder,1); 
[mfix,dminmax] = ksxy(Xder,Y,Nfix); % Milho 12 amostras com 
o ksxy 
mdif = setdiff(1:Ntot,mfix); 
 
% Separando as amostras fixas 
Xfix = [Xder(mfix,:)]; 
Yfix = [Y(mfix,:)]; 
 
% amostras restantes 
Xrest = [Xder(mdif,:)]; 
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Yrest = [Y(mdif,:)]; 
Nrest = size(Xrest,1); 
 
 
[mtot,dminmax] = ksxy(Xrest,Yrest,Nrest); % Ordenando as 
amostrasrestantes 
NP = round(txp*Nrest); 
 
mpred = mtot([round(2:(1/txp):(NP*(1/txp)))]); 
m = setdiff(1:Nrest,mpred); 
 
Xpred = Xrest(mpred,:); 
Ypred = Yrest(mpred,:); 
Xcal = Xrest(m,:); 
Ycal = Yrest(m,:); 
 
cont = 1; 
fori = 0:g:Nfix 
 [var_sel_fix{cont},var_sel_phase2_fix{cont}] = 
spa_fix_one([Xcal; Xfix((i+1):Nfix,:)],[Ycal; 
Yfix((i+1):Nfix,:)],Xfix(1:i,:),Yfix(1:i,:),1,39,0); % 
trigo 
 
[PRESS_fix(cont),RMSEP_fix(cont),SDV_fix(cont),BIAS_fix(con
t),r_fix(cont)] = validation_metrics_v2p1([Xcal; 
Xfix],[Ycal; Yfix],Xpred,Ypred,var_sel_fix{cont}); 
cont = cont+1; 
end 
 
 
 
 

Apêndice A-  Validação SPA com amostras fixas e figuras de mérito 
 
function [var_sel,var_sel_phase2] = 
spa_fix_one(Xcal,ycal,Xfix,yfix,m_min,m_max,autoscaling) 
 
% [var_sel,var_sel_phase2] = 
spa_fix_one(Xcal,ycal,Xfix,yfix,m_min,m_max,autoscaling) --
> Validation with fixed sample 
% 
% If m_min = [], the default value m_min = 1 is employed 
% If m_max = [], the default values m_max = min(N-1,K) 
(validation with a separate set) 
% or min(N-2,K) (cross-validation) are employed. 
% autoscaling --> 1 (yes) or 0 (no) 
 
autoscaling 
if ((autoscaling ~= 1) & (autoscaling ~= 0)) 
error('Please choose whether or not to use autoscaling.') 
end 
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N = size(Xcal,1); % Number of calibration objects 
K = size(Xcal,2); % Total number of variables 
 
if length(m_min) == 0, m_min = 1; end  
if length(m_max) == 0,  
if size(Xfix,1) > 0 
m_max = min(N-1,K);  
else 
m_max = min(N-2,K);  
end 
end 
 
ifm_max> min(N-1,K) 
error('m_max is too large !'); 
end 
 
% Phase 1: Projection operations for the selection of 
candidate subsets 
 
% The projections are applied to the columns of Xcal after 
% mean-centering and (optional) autoscaling 
 
ifautoscaling == 1 
normalization_factor = std(Xcal); 
else 
normalization_factor = ones(1,K); 
end 
 
for k = 1:K 
    x = Xcal(:,k); 
Xcaln(:,k) = (x - mean(x)) / normalization_factor(k); 
end 
 
SEL = zeros(m_max,K); 
 
h = waitbar(0,'Phase 1 (Projections). Please wait...'); 
loopStart = now; 
tic 
for k = 1:K 
SEL(:,k) = projections_qr(Xcaln,k,m_max); 
loopEnd = loopStart + (now-loopStart)*K/k; 
waitbar(k/K,h,['Phase 1 ETC: ' datestr(loopEnd)]); 
end 
toc 
close(h); 
 
disp('Phase 1 (projections) completed !') 
 
% Phase 2: Evaluation of the candidate subsets according to 
the PRESS criterion 
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PRESS = Inf*ones(m_max,K); 
h = waitbar(0,'Phase 2 (Evaluation of variable subsets). 
Please wait...'); 
warning off MATLAB:singularMatrix 
warning off MATLAB:nearlySingularMatrix 
loopStart = now; 
tic 
for k = 1:K 
for m = m_min:m_max 
var_sel = SEL(1:m,k); 
        [e,yhat] = 
validation_fixed_one(Xcal,ycal,Xfix,yfix,var_sel); 
PRESS(m,k) = e'*e; 
end 
loopEnd = loopStart + (now-loopStart)*K/k; 
waitbar(k/K,h,['Phase 2 ETC: ' datestr(loopEnd)]); 
end 
close(h); 
warning on MATLAB:singularMatrix 
warning on MATLAB:nearlySingularMatrix 
 
[PRESSmin,m_sel] = min(PRESS); 
[dummy,k_sel] = min(PRESSmin); 
 
var_sel_phase2 = SEL(1:m_sel(k_sel),k_sel); 
toc 
disp('Phase 2 (evaluation of variable subsets) completed 
!') 
 
% Phase 3: Final elimination of variables 
tic 
% Step 3.1: Calculation of the relevance index 
Xcal2 = [ones(N,1) Xcal(:,var_sel_phase2)];  
b = Xcal2\ycal; % MLR with intercept term 
std_deviation = std(Xcal2); 
relev = abs(b.*std_deviation'); 
relev = relev(2:end); % The intercept term is always 
included 
% Sorts the selected variables in decreasing order of 
"relevance" 
[dummy,index_increasing_relev] = sort(relev); % Increasing 
order 
index_decreasing_relev = index_increasing_relev(end:-1:1); 
% Decreasing order 
 
% Step 3.2: Calculation of PRESS values 
fori = 1:length(var_sel_phase2) 
    [e,yhat] = 
validation_fixed_one(Xcal,ycal,Xfix,yfix,var_sel_phase2(ind
ex_decreasing_relev(1:i)) ); 
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PRESS_scree(i) = e'*e; 
end 
RMSEP_scree = sqrt(PRESS_scree/length(e)); 
figure, grid, hold on 
plot(RMSEP_scree) 
xlabel('Number of variables included in the 
model'),ylabel('RMSE') 
 
% Step 3.3: F-test criterion 
PRESS_scree_min = min(PRESS_scree); 
alpha = 0.25; 
dof = length(e); % Number of degrees of freedom 
fcrit = finv(1-alpha,dof,dof); % Critical F-value 
PRESS_crit = PRESS_scree_min*fcrit; 
% Finds the minimum number of variables for which 
PRESS_scree 
% is not significantly larger than PRESS_scree_min 
i_crit = min(find(PRESS_scree<PRESS_crit));  
i_crit = max(m_min,i_crit); % The number of selected 
variables must be at least m_min 
 
var_sel = var_sel_phase2(index_decreasing_relev(1:i_crit) 
); 
title(['Final number of selected variables: ' 
num2str(length(var_sel)) '  (RMSE = ' 
num2str(RMSEP_scree(i_crit)) ')']) 
toc 
% Indicates the selected point on the scree plot 
plot(i_crit,RMSEP_scree(i_crit),'s') 
 
disp('Phase 3 (final elimination of variables) completed 
!') 
% Presents the selected variables  
% in the first object of the calibration set 
figure,plot(Xcal(1,:));hold,grid 
plot(var_sel,Xcal(1,var_sel),'s') 
legend('First calibration object','Selected variables') 
xlabel('Variable index') 
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