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Resumo

Titulo:Uma Estratégia de Validacao Hibrida para Calibragcao Multivariada
Baseada na Selecao de Amostras Fixadas pelo Algoritmo SPXY

Autor: Joao Batista de Sousa Costa

Em anélise multivariada, ¢ usual deparar-se com o problema recorrente de particionar
o conjunto de dados de modo a obter, para o subconjunto de calibra¢do, as amostras mais
representativas ¢ que cubram a fronteira do espago amostral de natureza multidimensional.
O presente trabalho teve como objetivo desenvolver uma estratégia de validacao hibrida para
calibragdo multivarida (a exemplo da MLR-APS e do PLS group-out), a qual previne
problemas de extrapolacdo e proporciona modelos com maior capacidade preditiva e robustez.
A estratégia propostautiliza o algoritmo SPXY para selecionar as amostras de fronteira do
espago experimental para a calibracdo eque sejammais representativaspor explorar a
estatistica de X (respostas instrumentais) e Y (pardmetro de interesse). Para avaliar seu
desempenho, foram empregados dois conjuntos de dados de NIR. O primeiro envolve a
analise de amostras detrigo nas quaisfoi determinado o contetdo de proteina; o segundo
refere-se a determinacdo do teor de umidade em milho.Na validacdo hibridaaplicada a
modelagem PLS grou-out, ndo foi possivel avaliar a variabilidade do RMSEP em funcdo do
indice de amostras. Isso porque o mesmo ndo apresentava uma variabilidade significativa dos
resultados para 20 execugdes, impossibilitando uma melhor avaliacdo da estratégia
proposta.Na modelagem MLR-APS, observou-se uma variabilidade em termos de RMSECV
¢ RMSEP, tornando possivel a avaliagdo da influéncia das amostras fixadas na capacidade
preditiva dos modelos. Os modelos resultantes da fixagdo de amostras de fronteira na
calibragdo apresentaram os maiores coeficientes de correlagdo, os quaisforam iguais a,
respectivamente, 0,9996 e 0,9934 para o conjunto de dados de milho e de trigo. Os valores de
RMSEP ¢ RMSECYV para os dois conjuntos apresentaram uma diminui¢do significativa. De
fato, foram obtidos, repectivamente, os valores 0,194e 0,163% (m/m) para o conteudo de
proteina no trigo e 0,0121 e 0,0061% (m/m) para umidadenas amostras de milho. Um niimero
de variaveis menor foi também obtido. A estratégiade validacdo hibrida ¢ uma alternativa
viavel paracalibragdo multivariada, proporcionado modelosmais parcimoniosos € com maior

robustez e capacidade preditiva.

Palavras-chave:Validacao Cruzada; Amostras fixadas; SPXY; Calibracao
Multivariada; PLS;APS-MLR
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Abstract

Title: A Hybrid Validation Strategy for Multivariate Calibration
Based on Fixed Sample Selection by SPXY Algorithm

Autor: Joao Batista de Sousa Costa

In multivariate analysis, it is usual to come across the recurring problem of
partitioning the dataset in order to obtain, for the calibration subset, the most representative
samples that cover the boundary of the multidimensional sample space.The present work
aimed to develop a hybrid validation strategy for multivariate calibration (such as MLR-APS
and PLS group-out), which prevents extrapolation problems and provides models with greater
predictive capacity and robustness.The proposed strategy uses the SPXY algorithm to select
the experimental space boundary samples for calibration and which are more representative
for exploring the statistics of X (instrumental responses) and Y (parameter of interest). To
assess its performance, two sets of NIR reflectance data were used.The first involves the
analysis of wheat samples in which the protein content has been determined; the second refers
to the determination of the moisture content in corn. In the hybrid validation applied to the
PLS grou-out modeling, it was not possible to assess the variability of the RMSEP as a
function of the sample index. This is because it did not present a significant variability of
results for 20 executions, making it impossible to better evaluate the proposed strategy. In the
MLR-APS modeling, a variability was observed in terms of RMSECV and RMSEP, making
it possible to assess the influence of fixed samples on the predictive capacity of the
models.The models resulting from the fixation of frontier samples in the calibration showed
the highest correlation coefficients, which were equal to, respectively, 0.9996 and 0.9934 for
the corn and wheat dataset. The values of RMSEP and RMSECYV for the two sets showed a
significant decrease.In fact, the values of 0.194 and 0.163 % (m/m) were obtained,
respectively, for the protein content in wheat and 0.0121 and 0.0061 % (m/m) for moisture in
the corn samples. A smaller number of variables was also obtained. The hybrid validation
strategy is a viable alternative for multivariate calibration, providing more parsimonious

models with greater robustness and predictive capacity.

Keywords: Cross validation; Fixed samples, SPXY algorithm;
Multivariate calibration; PLS; APS-MLR.
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Introducao



INTRODUCAO

1.1 Caracterizando a problematica e a proposta de solugao

A calibragdo multivarida ¢ um processo matematico que tem sido implementado com
sucesso nas determinacdes quantitativas de analitos em amostras com matrizes complexas,
especialmente usando técnicas espectroanaliticas!. Esse fato se deve, entre outras razdes, ao
problema recorrente de multicolinearidadeentre as variaveis (comprimentosde onda)e de
sobreposi¢do de bandas de concomitantes sobre as do(s) analito(s) quepodem ocorrer
nosespectrosUV-Vis, NIR, RMN, etc®®. Nesse cendrio, a regressio linear multipla (Multiple
Linear Regression-MLR) e por minimos quadrados parciais (Partial Least Squares-PLS)
destacam-se entre as técnicasquimiométricasusadas na calibragdo multivariadapara superar
esses problemas!#5%62,

O uso consolidado do PLS em calibragdo multivariada pode ser atribuido arobustez
ealta capacidade preditiva dos modelos®, como resultado damelhor correlagdo obtidaentre as
variaveis latentes associadas aos escoresdos sinais e ao(s) parametro(s) de interesse.
A regressdo PLS possui a vantagem, quando comparada a técnica MLR,de permitir
umamodelagemmais eficientena presenca de dados ruidosos e acentuada multicolinearidade
entre as variaveis!®. Além disso, permite implementar uma calibragio multivariada
envolvendo matrizes (no sentido matematico do termo) com alta dimensio!®.Por outro lado, a
técnica MLR tem a grande vantagem deoperar no dominio original dos dados, gerando
modelosde mais facil compreensdo einterpretagdo quimica dos resultados da predi¢do’®.0
modelo MLR atrelado & selecdo de varidveis se mostrou mais adequado para avaliacdo da
estratégia proposta, tendo em vista que o mesmo apresentou uma maior sensibilidade quando
comparado ao modelo PLS.

Para a constru¢do de um modelo MLR, éfundamentalque os dados apresentem
baixamulticonearidade entre as varidveis associadas aos sinais analiticos espectrométricos ¢
que a fronteira amostral seja delimitada(especifico da estratégia proposta), tendo isso em vista
o algoritmo SPXY ¢ utilizado para selecdo dessas amostras(amostras mais externas). De fato,
as variaveis com expressiva multicolinearidade fornecem informacdo redundante que
dificultam o célculo matricial naregressdo e na determinacdo da varidncia dos coeficientes,
prejudicando a escolha dos coeficientes de regressdo adequados para os modelos MLR7%78. Os

problemas de alta dimensionalidade e multicolinearidade podem também ser supera



dosmediante a selecdo das variaveisque contenham informagdes tteis e ndo redundantes a fim
de viabilizar a modelagem MLR e melhorara robustez e capacidade preditiva dos modelos.
Para esse proposito, pode-se recorrer aosalgoritmos de selegio de variaveis®’.

Para selecdo de variaveis usandotécnicas deterministicas — que sdo interessantes,
sobretudo, para a interpretagdo quimica dos resultados —, destaca-se o algoritmo das projegdes

sucessivas (APS) proposto por Aratjo et al’®

para calibracdo MLR usando dadosUV-Vis, por
ser um método que permite a obtengdo de apenas um subconjunto de variaveis e que ndo estdo
atreladas a probabilidade a priori, facilitando assim a compreensdo do
modelo” . Posteriormente, o APS foitambém utilizado para selegdo de variaveis empregando
dados espectrométricos NIR® Nesse trabalho, demonstrou-se que o APS proporciona as
menores raizes quadradas de erros médios de previsio (RMSEP-Root Mean Square Error
Prediction)’8e menores raizes quadradas de erros medios de validagdo cruzada (RMSECV-
Root Mean Square Error Cross validation)®’.

Em calibracdo multivariada via PLS, a validag¢do cruzada (CV-Cross-validation) ¢ o
procedimento mais comumente usado para definir o numero de componentes a serem
definidos para o modelo'>163840 Muitas variantes de CV sdo utilizadas e a mais usual é a
validagdo cruzada de exclusdo unica (CVLOO-Leave-one-out cross validation). Consiste na
retirada deuma amostrapor vezda calibracdo, cujo pardmetro de interesse deve ser
predito'™>164 - A CVLOO pode apresentar problema de extrapolagio no modelo, o que
acarreta um precaria ou nenhuma capacidade preditiva’ 4!, Na literatura ndo foi relatada
nenhuma estratégiaquimiométrica para contornar esse problema— nao apenas em calibragdo
PLS, mas também para MLR combinada a técnicas de sele¢do de variaveis.

Em validacdo cruzada as amostras sdo selecionadas aleatoriamente, fato este que pode
comprometer a sua significancia para o conjunto de dados. O Algoritmo de validagdo cruzada
com divisdo representativa(RSCV- Representative Spltiting Cross Validation), no qual um
algoritmo seleciona as amostras mais representativas.

No presente trabalho, desenvolveu-se uma nova estratégia quimiométrica —
denominada aqui “validac@o hibrida” — para a validacdo de modelos em calibragdo PLS e
MLR.A validagdo hibrida proposta consiste na selecdo, usando o algoritmoSPXY (Sample set
Partitioning based on joint x-y distances)’, das amostras de fronteira(mais externas) do espago
experimental e as amostras restantes sdo selecionadas de maneira aleatoria. Assim, ¢ possivel
evitar o problema de extrapolacao, melhorandoa capacidade preditiva e robustez dos modelos.

Para esse proposito, faz-se necessario que as amostras fixadas — além de garantirem a



cobertura na fronteira do espaco experimental (amostral) explorado — sejam estatisticamente

representativas para o conjunto de dados original®#.

1.2. Objetivos

1.2.1. Objetivo geral

O objetivo central deste trabalho foi propor uma nova estratégia de validacdo hibrida

para calibragdo multivariada baseada na selecdo de amostras fixadas (na fronteira do espago

amostral),empregando-se o algoritmo SPXY. Com a aplicagdo dessa estratégia, objetivou-se

minimizar problemas de extrapolacdo e melhorar a capacidade preditiva e robustez dos

modelos PLS e MLR-APS.

1.2.2. Objetivos especificos

Desenvolver um algoritmo de validacdo hibrida que minimize problemas com
extrapolagcdo dos modelos e melhore assim sua eficiéncia e robustez.

Implementar e depurar o cddigo-fonte, em ambiente computacional do software
Matlab, do programa do algoritmo desenvolvido para a estratégia proposta;

Estudar o comportamento do RMSEP ¢ RMSECYV ao se adicionar as amostras fixadas

na modelagem PLS;

Avaliar o comportamento do RMSEP e RMSECYV ao se adicionar as amostras fixadas

na modelagem MLR-APS;

Melhorar a robustez dos modelos MLR-APS, determinando o numero 6timo de
variaveis selecionadas em calibragdo MLR-APS para os modelos com e sem adigao de

amostras fixadas pelo SPXY;

Aplicar a estratégia proposta para o melhoramento da capacidade preditiva e robustez
dos modelos PLS e MLR-APS de dados espectométricos de milho e trigo, envolvendo

matrizes com diferentes niveis de complexidade;

Comparar o desempenho entre os modelos PLS e MLR-APS, ressaltando as
caracteriticas que foram melhoradas para cada tipo particular de -calibragdo

multivariada.



1.3Calibracao Multivariada

O uso da calibracdo multivariada tem sido impulsionado por suas vantagens (por
exemplo, calibragdo na presenca de interferentes, redugdo de custos e tempo de analise) na
determinacdo do(s) analito(s)sem a necessidade desua separacdo fisica da matriz das
amostras. Nesse contexto, a obtencdo de dados mutivariados em andlises espectrométricas —
inclusive dados de segunda ordem, a exemplo dos obtidos em espectrofluorometria® — tem
ensejado a utilizacdo da calibracdo multivariada a fim de realizar a modelagem com sucesso.

Na implementacdo de uma calibraciomultivariada, varias respostas instrumentais
podem ser relacionadas a uma ou mais propriedades de interesse nas amostras
analisadas,empregado-se 0os métodos lineares e os ndo-lineares?®.Uma relagdo matematica
(linear ou ndo) ¢ estabelecida entre os resultados fornecidos por um método de referéncia —
representados pela matriz Y— e os dados da matriz Xobtidos nos espectros das amostras de
calibragdo®’. Nesse processo, a calibragio possibilita a determinagdo de todas as propriedades
modeladas,desde de que as amostras com os interferentes sejam incluidas no conjunto de
calibra¢do!?.

Para implementar uma calibragio multivariada — independentemente da técnica
matematica (MLR ou PLS, por exemplo) utilizada —, faz-se necessario primeiro estruturar
(organizar) os dados de acordo com o esquema ilustrado na Figura 1.1.0s dados (espectros,
por exemplo) obtidos para as amostras do conjunto de calibragdo compordo a matrizX; os
sinais correspondentes as variaveis (comprimentos de onda) para cada amostra sdo colocados
em uma linha dessa matriz. Na matriz Y, por outro lado, sdo langados em uma linha o valor
da(s) propriedade(s) de interesse para cada amostra. Assim, o papel da técnica de calibragdo
usada ¢ estabelecer um relagdo matematica adequada (em geral, linear) entre os dados de
ambas as matrizes — diretamente no dominio original (como ¢ o caso da MLR) ou no dominio

dos dados transformados (a exemplo do PLS).



Figura 1.1. Representacio Matriz de dados Instrumentais com p representando as variaveis da matriz Xcal e da

Matriz de dados Padrao ou método de referénciacom q representando as variaveis da matriz Ycal.
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1.3.1 Analise de componentes principais

A andlise de componentes pricipais (Principal Component Analysis-PCA) ¢ uma
técnica multivariada de compressdo dos dados quepermite reduzir a dimensionalidade do
espacosem a perda de informag@o util. A transformac¢do matematicaleva a um novo sistema de
eixos ortogonais — denominados de componentes principais (PCs) —, nos quais as coordenadas
das amostras sdo os “escores” e 0s pesos das varidveis originais sdo chamados de “loadings”.
Assim, essa técnica permite remover as informagdes redundantes dos dados o que permite
contornaros problemas de multicolinearidade entre as variaveis originais das respostas
instrumentais®?227-29,

Nos espectros para um agrupamento de m amostras envolvendo n constituintes €
registrado em k comprimentos de onda, podendo assim ser descrita na forma de matriz de
dados espectrais [X(m,k)]>?. Essas matrizes sdo desmembradas em uma soma dos

componentes principais (PCs) como pode ser observado na Equacao 1.

X = typ] + top5 + t3p§ ... +t,ph + E (1)



Em termos matriciais, a Equagdo 1 toma a formaX= T PT™+ E, sendo T uma matriz
com t colunas e PT com p! linhas. Assim sendo, os vetores tn que sdo conhecidos como scores
¢ indicam as relagdes existentes entre as amostras. A maneira como as variaveis estao
relacionadas entre si, sdo representadas pelos vetores pn que sdo conhecidos como loadings. O
E¢ a matriz de residuos, contendo informagdes ndo modeladas na primeira PC.

Em PCA, os autovalores e autovetores sdo obtidos da matriz de covaridncia Xque

apresenta a Equacio 2.

COV(X) = N-1 2)

XX
onde a covariancia entre cada par de eixo € zero, mas 0s eixos principais ndo sao
correlacionados. Sendo N o niimero de amostras ¢ XTX é a matriz de covariincia.

As linhas da matriz P s3o os autovalores de covaridncia em cada pi, tendo este relagdo
de correspondéncia com uma parcela da variancia, que ¢ correlacionada com cada autovetor.
Os autovetores tem autovalores relacionados a eles, e o autovetor de inicio é aquele que
aponta para a maior diferenga dos dados projetados no espago de representacdo, 0 mesmo
ocorre com todos os demais autovetores associados a demais autovalores®.

Para realizar o calculo dos vetores dos “loadings”, ¢ feito o produto da matriz de

covariancia, para os vetores |pi da seguinte maneira.

Cov(X)p; = o;p; Q)

No qual, ei € o i-ésimo autovalor correlacionado com o i-ésimo autovetor pi. Em PCA
os autovetores devem explicar a maior variabilidade possivel dos dados de forma a minimizar
os residuos em cada etapa, pois cada fator é responsavel pela variancia dos dados?2

A maneira como as amostras estdo distribuidas em um eixo diferente do original ¢é

denominado scores, que pode ser representado pela Equacéo 4.
Xp1 =1t 4)
ondeX¢ a matriz de respostas inicial e ti1é¢ a projecdo de Xsob o autovetor inicial de P1.

1.3.2. Regressao por componentes principais



O PCR ¢ baseado na modelagem de fatores, uma vez que o fator pode ser entendido
como uma combinacdo linear das variaveis originais possibilitando assim a reducdo da
dimensionalidade dos dados e consequentemente a construcdo de graficos que possam
facilitar a visualizacdo de agrupamento de amostras e de varidveis, permitindo assim
diferenciar dados de amostras com alta influéncia*>?°. O modelo de regressio PCR pode ser

compreendido por meio das Equagdes5 e 6.
X=TP'+E ®
y = T'b + fX'X (6)

Os pesos (loadings), presentes na matriz P,sdo encontrados ao escolher os primeiros

autovetores de XtX, no qualX¢ a matriz de dados instrumentais centrados na média. A matriz

T, que representa as pontuagdes ¢ obtida projetando a matriz X no espaco da matriz transposta
de P%, A matriz de T% utilizada como regressor junto com o vetor yna equagdo do calculo da

distdncia de mahalanobis*® como pode ser visto na Equacio 7.

D = (a; — a;)"(cov(x) ! (a; — aj)*/? @)

A principal caracteristica de um modelo PCR ¢ o fato do mesmo considerar apenas as
respostas obtidas pelo instrumento (X), sem considerar as informagdes relevantes da
concentragao (y), acarretando numa fragilidade do modelo, pois em dados onde a propriedade
de interesse apresente um sinal muito pequeno e ndo causa forte influéncia nas primeiras PCs,

podendo assim acarretar numa escolha de um maior de PCs para se construir o modelo®.

1.3.3. Regressao por minimos quadrados parciais(PLS)

Diferentemente do modelo PCRque ndo leva em consideracdo as estatisticas dos
parametros de interesse (Y) o PLS estabelece uma relagdo linear entre as matrizes de scores
dos dados de X e Y22,

A abordagem PLS (Partial Least Squares) possibilita a constru¢do de uma boa
modelagem mesmo na presenca de ruidos experimentais, colinearidade e ndo-linearidade dos

dados'. Em uma matriz X com G colunas, que correspondem ao sinal do espectro, para cada



comprimento de onda, e j linhas representando cada amostra. Na matriz Y, tem-se H colunas,
nas quais apresentam os parametros de interesse (densidade), e n linhas referentes a cada
amostra®® Em modelagem PLS as varidveis latentes sofrem pequenas rotagdes para que 0s
scores te u apresentem o melhor comportamento possivel e que assim possam descrever as
relagdes existentes entre X e Y2% %5,

As matrizes X e Ysdo divididas em uma soma de matrizes menores chamadas
componentes principais ou varidveis latentes que sdo responsaveis por mostrar o grau de
complexidade do modelo?®7%°, A decomposi¢do dessas matrizes, propicia uma soma dessas
matrizes menores geradas, conhecidas como componentes principais (PCs), podendo ser

compreendida pelas Equacdes 8 ¢ 9.
X = TP' + E=t; P} + t,P; + t3P% ... t,P{ +E @®)
Y=U+Q"'+F=u;q} +uyq5 + uzqj ... u,qt +F )

onde as matrizes T e U sdo as respectivas matrizes de scores de X e Y e os loadings sdo
representados pelas matrizes P'e Q', a parte dos dados ndo modelados vai estar presente nas

matrizes de residuos E e F.
A modelagem PLSprocura maximizar a covariancia entre as varidveis das matrizes de

dados reais e instrumentais?®, como pode ser visto pela Equacio 10.
G o~ _ TYX 4
COV(an, Xra) =qa Era - anyx (10)

Ap6s a decomposicdo das matrizes de dados X e Y respectivamente, as novas matrizes
obtidas (scores T e U), sdo relacionadas por meio de um modelo linear como pode ser

visualizado na Equacéo 11.
U=>b'T an
ondeb ¢é o vetor do coeficiente de regressdo que estabelece a melhor relagdo entre os dados

previstos pelo modelo e os dados obtidos por um método de referéncia e assim obter um

modelo bem ajustado. Para uma determinacdo apropriada de b, faz-se necessario a selegdo do



nimero adequado de VLs e a deteccdo e exclusdo de amostras com outliers(amostras
andmalas)®*.
Uma das maneiras de se avaliar a performance preditiva de um modelo PLS ¢ usando

a soma dos quadrados dos erros de predi¢do (PRESS)?, que ¢ expresso Equacio 12.
m n C
PRESS = Yi2 4 Xim1( Gy — Gjj) 12)

onde m sdo as amostras € n os parametros de interesse, Ci]-sﬁo as concentracdes obtidas por

método padrdo (amostras reais) e Ci]- sdo as previstas pelo modelo de calibragao.

1.3.3.1(PLS group-out)

Na estrategia PLS-grou-out grupos de amostras sdo deixadas de fora durante o
processo de validagdo cruzada, reduzindo assim o niimero de vezes que se recalcula o
modelo®. Os n-grupos de amostras de calibragdo sdo utlizados para prever n-grupos de
validagdo®, o procedimento continua até que os grupos de amostras de calibragdo sejam

incluidas no grupo das amostras de validagao.

1.3.4 Regressao linear multipla(MLR)

A modelagem MLR ¢ bastante utilizada em problemas envolvendo a calibragdo
multivariada, pois ela estabelece uma relagdo simples entre as variaveis do conjunto de dados
de partida”. Nesta modelagem tem-se uma matriz X € um vetor y, onde cada variavely ¢é
descrita como sendo uma combinagdo linear das variaveis da matriz X’>. A combinag¢io linear

descrita pode ser observada na Equagao 13.

y= Bo+BiXs+ - PrXpt+e (13)
na qual 3, B1eBx sdo os valores obtidos pela regrecdo e € ¢ a parte do erro ndo modelado.

Os coeficiente By, B1eBrpodem ser obtidos de forma aproximada atraves da pseudo

inversa como veremos na Equacio 14.

B = XTX)~XT (14)
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Os coefiecientes apds a sua obtengdo, sdo utlizados para encontrar as variaveis

estimadas no pelo como pode ser visto na Equacao 15.

y=XB (15)

onde X € B sdo as matrizes de, respectivamente,variaveis independentes e coefiecientes de
regressao.

A regressdao linear multipla(MLR) atua no espago original dos dados e por isso
fornecem modelos mais inteligiveis e de facil interpretagio’® Para uma modelagem
MLRadequada,se faz necessario a escolha adequada das variaveis espectraisde modo a evitar
a escolha de variaveis muito colineares no conjunto de dados que prejudiquem a

modelagem777.

1.3.5 Algoritmo das projecoes sucessivas

Quando se tem um grande numero de variaveis, algumas podem apresentar informagao
redundante entre si e, consequentemente, adiciona informacdo de pouca utilidade para a
modelagem’s. Em matrizes de dados com alta dimensdo, a calibragdio MLR se torna inviavel,
em virtude da presenca de variaveis colineares no conjunto de dados, sendo necessario a
utilizagdo um método de sele¢do de varidveis para obten¢do de modelos mais robustos’®’8.

Ao longo dos anos, muitos algoritmos para selecdo de variaveis foram desenvolvidos,
dentre os quais cabe destacar o Algoritmo de Proje¢des Sucessivas’, que busca selecionar as
variaveis com menor correlagdo possivel com as varidveis preliminarmente selecionadas. O
APS utiliza manipula¢des simples em espagos vetoriais que diminuem a possibilidade de
inser¢do de variaveis com informagdo irrelevante para a modelagem’”7%7°,
O APS funciona da seguinte maneira:

Etapa 1 -Na primeira etapa, a matriz de dados original é utilizada para obter-se uma serie

de variaveis com a menor correlagdo possivel;

Etapa 2 -Durante a segunda etapa, as cadeias de varidveis sdo testadas de modo a avaliar
sua correlagdo com a propriedade de interesse em termos de menor RMSEP na

modelagem MLR;
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Etapa 3 -A terceira etapa consiste na retirada de varidveis, que ndo proporcionam melhora
significativa do erro do RMSEP. Essa retirada é feita com base em testes
estatisticos de significdancia tal como o teste F.

As projecoes usadas na abordagem APS podem ser melhor compreendidas com o
auxilio da na Figura 1.2 para o caso em que J=5 ¢ Mca=3, onde J ¢ o nimero de variaveis de
partida € Mca € 0 niimero de amostras de calibracdo. Os valores de k representam os vetores
selecionados para o calculo das projegdes ortogonais ao valor correspondnete de k.Um vetor
de partida(X3) é selecionado, ¢ os demais vetores tem suas projegdes calculadas em um
espaco ortogonal ao vetor de partida. Os vetores com as maiores projegdes ortogonais ao vetor

de partida sdo selecionadas.

Figura 1.2. Representacio das projecdes APS para J=5, Mcal =3 e k(0)=3. Primeira intera¢ao: k(1)=1.
X2 )1(‘3 < Vetor de partida

X4

X1
X5

M

—,

/
/
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Na Figura 1.2, pode-se observar como as variaveis sdo escolhidas pelo algoritmo APS
levando em consideragd@o suas projegdes espaciais. Inicialmente uma variavel X3¢ selecionada
e as demais varidveis tem suas projecdes calculadas.As varidveis selecionadas
posteriormente,sdo aquelas que apresentam a maior ortogonalidade em relagdo a variavel de
partida, fato este que diminui a correlagio entre estas variaveis’¢’8,

O conjunto de varidveis que apresentar o menor erro médio quadratico de
previsdo(RMSEP) na modelagem MLR serdo selecionadas’®7”.

O RMSEP para essa modelagem pode ser calculado de acordo com a Equacio 16.
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1
RMSEP = \/ﬁZ%:K}’m - Yref(m))2 (16)

onde M denota as amostras de calibragdo, ym as amostras preditas pelo modelo € Yrefim)
contém valores obtidos por metodo de referéncia.
1.3.6. Métodos de validagao

O uso de algoritmos que possibilitem dividir o conjunto de dados original em
subconjuntos independentes e que as amostras selecionadas sejam as mais representativas
possiveis se tornou cada vez mais comum em calibracdo multivariada, tendo em vista que
uma representacdo inadequada dos dados pode gerar modelos com precaria capacidade
preditiva. Muitos métodos de validagdo sdo usados atualmente, tais como: Validacdo por série
de teste,Validagio bootstrap e Validagdo cruzada’’.Cabe salientar nesses tipos de validagdo a
forma como as amostras para constru¢do do modelo sdo selecionadas. Na validag¢do por serie
de teste as amostras sdo selecionadas via algoritmos baseados em distancia euclidiana, tais
como (KS, SPXY, etc)®. A validagdo bootstrap utiliza 0 método de reamostragem com

reposi¢do. Para a validag@o cruzada as amostras sdo selecionadas de maneira aleatoria.

1.3.6.1 Validacao por série de teste
Na validacdo de um modelo de calibrag@o por série de teste, a divisdo dos conjuntos de
calibragdo e validag@o ¢ realizada, utilizando-se algoritmos que selecionam as amostras de

maior representatividade no conjunto amostral’!, a exemplo do KS e SPXY descritos a seguir.

1.3.6.2 Algoritmo KS

O algoritmo Kennard-Stone (KS)? utiliza adistdncia Euclidiana, d«(p,q), entre dois
pontos “p eq”, correspondentes a 2 (duas) amostras no espaco multidimensionaldas variaveis,
com o objetivo de determinar as amostras que seencontram mais distancias entre si. A Figura
1.3ilustracomo essa distancia évisualizada, geometricamente, para o caso particular de trés
variaveis(Var 1: xi, Var 2: x» e Var 3: x3), cujo espago correspondente ¢ o tridimensional.

Nesse caso, a distancia dx(p,q) ¢ dada pela Equagao 17.

d,(p.9) = fIx,() —x,OF +[x,D - x,AF +[x,)-x,F (7

Para um espago multidimensional com J dimensdes, a distanica Euclidiana dx(p,q) ¢

dada pela Equacao 18.
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de(p,q) = \/Zle[xp(,-) — Xq(h) ? p € qe[1:N] (18)

onde Xxp() € xq()s80 as respostas instrumentais (sinais nos espectros) para amostras p e gnos j-
ésimos comprimentos de onda dos espectros.

Figura 1.3. Visao geométrica da distincia Euclidiana entre dois pontos p (Xp1, Xp2, Xp3) € ( (Xq1, Xq2, Xq3)-

Vvar 3
dy(p.q)
Xq(3) _ _ _ * q
|
e P :
! |
I I
| Xp(2) !Xq(2) Var 2
Xq(1) / ; pd :
xp(1) P —— :udE@f
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Var 1

Na Figura 1.4, ilustra-se o principio de funcionamento do algoritmo Kennard-Stone
considerando o caso de um conjunto de seis amostras que se encontram localizadas no espaco
bidimensional de duas varidveis Var 1 e Var 2.Primeiramente, o KS determina o par de
amostras que tenham a maior distancia entre sidx(p,q) encontradausando aEquacao 18paraJ =
2. Nesse exemplo,as amostras 1 e 2 s3o as mais distantes entre si.Em seguida,
o algoritmo determina — entre as amostras remanescentes — as que se encontram mais
proximas de 1 ou 2 e seleciona a mais distante. Nesse caso, a amostra 4 ¢ selecionada
nessepasso. Esse processo ¢ repetido até que um certo nimero Nde amostras, usado como
critério de parada, seja alcangado. Quando N = 3, o KS seleciona as amostras selecionadas: 1,

2 e 4; para N =4, as amostras 1, 2, 4 e 3 sdo selecionadas e assim por diante.
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Figura 1.4.Ilustracio da aplicacio KS a um conjunto de seis amostras no espaco bidimensional das
variaveis Var 1 e Var 2.

Var 2

&

4

Var 1
Como resultado da aplicacdo do KS, as primeiras amostras selecionadas — cujo
numero N ¢ estabelecido a priori — sdo usadas para compor o subconjunto de calibragéo e as
restantes do conjunto total compordo o subconjunto de validagcdo. Com isso, assegura-se que
as amostras de calibracdo serdo sempre as mais externas e cobrirdo a fronteira do espago,

conforme ilustrado na Figura 1.5.

Figura 1.5. Espacos cobertos pelas amostras (calibracio e validaciio) selecionadas pelo algoritmo KS.

fronteira do espaco
experimental

calibragao

validacao

espacos para a predicdo (estimacdo)
do parametro em amostras futuras
O algoritmo apresenta algumas limitacdes, por exemplo, o fato de ndo levar em
consideragdo a estatistica da matriz Yque sdo os parametros de interesse. Assim, o KS nao
leva em consideracdo a variabilidade decorrente de mudangas de composi¢do na matriz*’ que
se refletem nos parametros de interesse. Para levar em contaesse fato — assim como a
estatistica de Y no processo de busca das amostras mais distantes entre si —, desenvolveu-se o

algoritmo SPXY descrito na Se¢d01.3.6.3.
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1.3.6.3 Algoritmo SPXY

O SPXY ¢ uma variante do algoritmo KS, mas difere no que diz respeito a inclusdoda
estatistica de Y no seuprincipio de funcionamento.As distancias dx(p,q) € dy(p,q), sdo medidas
levando-se em consideracdo as relagdes existentes em X e em Y no calculo da distancia inter-

amostras.Assim,

_ dx(p.9) dy(p,.9) )
dyy(p. ) = max p,q €[1,N]dx(p.q) Y p.q€[LN]dy(p.q) ’ P,q E[1,N] (19)

Visando garantir que a distribui¢do das amostras no espaco de X e Ytenham mesma
importancia, fze-se necessario dividir as distancias dx(p,q) e dy(p,q) pelos seus valores
maximos no conjunto amostral obtendo-se assim uma distancia dxy normalizada’.
1.3.6.4 Validacao Bootstrap

O Bootstrap e uma técnica de reamostragem, sendo assim € possivel fazer inferéncias
a cerca da distribuicdo das observacaos a partir da disposicdo dos dados experiementais *.Ao
se utilizar esse método ¢ possivel estimar o seu limite de confianga, com a intengdo de fazer
dedugdes a cerca das propriedades em analise*?#4,

A reamostragem com reposicdo(Bootstrap) possibilita a obtencdo de distintos
conjuntos de amostra*®. Esta tecnica pode ser utilizada nos mais diversos problemas, podendo

ser utilizado nas mais diversas situagdes, pois independem da disposi¢do inicial da estatistica

das propiedades em avaligdo*?.

1.3.6.5 Validacao cruzada

Em calibracao PLS (Partial Least Squares), ¢ de fundamental importancia escolher um
numero ideal de variaveis latentes, que determina complexidade do modelo>®. A escolha do
nimero inapropriado de VLs , pode acarretar uma perda significativa na robustez do modelo e
consequentemente afetar a sua capacidade preditiva®®. A escolha de um nimero maior de
variaveis latentes pode aumentar o ruido e causar problemas de sobreajuste, no qual os dados
de calibracdo sdo bem ajustados, mas ndo apresentam desempenho satisfatorio na predi¢ao de
amostras desconhecidas®’. Um niimero menor de variaveis latentes escolhido, pode acarretar
problemas de sub-ajustes, devido a ndo inclusdo de informacdo relevante do conjunto de
dados, gerando modelos de calibragdo mal ajustados®. A validagdo cruzada é o método mais
comumente usado para definir o nimero de componentes escolhidas para um modelo!516:38:39,

Na CV os dados treinamento sdo divididos em subconjuntos de calibragio e validagio!”.
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1.3.6.6 Validacao cruzada de exclusao unica

Em modelagem PLS a escolha do numero ideal de VLs ¢ de suma importancia, tendo
em vista que os modelos baseados em proje¢des geram resultados que ndo condizem com os
dados observados experimentalmente e por isso carecem de ajustes para evitar o overfitting®.
A validacdo cruzada ¢ o metodo mais comum quando se pretende determinar o numero ideal
de VLs®.

A CVLOO (Leave-one-out Cross validation) ¢ uma dos métodos mais utlizados de se
fazer uma validagdo cruzada, neste metodo uma das amostras fica de fora do conjunto de
calibracdo para depois ser predita, o procedimento ¢ repetido até que todas as amostras

tenham ficado pelo menos uma vez fora do conjunto de calibragao?6-#849

. Apos todas as
amostraspassarem por esta mesma estratégia, uma raiz quadrada do erro médio de validacao
cruzada (RMSECV) ¢é calculado para cada uma das VL utilizadas*®, como pode ser

visualizado na Equacio 19.

/Z(yp—ye)2

RMSECV = I 19)

na qual yp é o valor de concentragdo previsto pelo modelo, y.o resultado esperado e n ¢ a

quantidade de amostras do conjunto de calibragao.

1.3.6.7 Validagao cruzada de divisao representativa

Quando se constroi ¢ valida modelos em calibragdo multivariada é de fundamental
importancia que os conjuntos de calibracdo e valida¢do sejam significativos para o conjunto
de dados original®>** Em validagdo cruzada a divisdo do conjunto de dados original é
normalmente feita de maneira randdémica e a determinacdo da quantidade de VLs geralmente
varia de acordo com a abordagem CV utilizada na construgdo do modelo®3>50,

O RSCV(Representative Splitting Cross Validation) ¢ um novo método de CV no qual
a divisdo dos dados em calibracdo e validacdo ¢ feita utilizando um algortimo de selecdo de
amostras e ndo mais de maneira randomica como em CVs mais convencionais®.

Nessa nova abordagem, o algoritmo DUPLEX ¢ usado para dividir em partes iguais o
conjunto de calibragdo de partida e assim fazer uma combinag@o dos valores de uma serie de

CVs K-fold®.Para avaliar a performance da nova estrategia os CVs fundamentados na partigdo
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dos dados DUPLEX sdo utilizados para determinar o RMSE associado de RSCV como

observado na Equacao 20.

1 PN
RMSERCV = \/mZilZ}‘:l(yu -9’ (20)

sendo ¥ € yijos resultados previstos e de referéncia dos j-ésimos objetos da validagdo e i-

ésima (i=1, 2, 3,4) k-fold (k=2, 4, 8, 16) CV.

1.3.6.8 Validac¢ao Hibrida

A validagdo hibrida ¢ uma estrategia de validagcdo cruzada na qual as amostras mais
externas sdo selecionadas e as restantes sdo divididas de forma randomica em conjuntos de
calibragdo e predicdo. O algoritmo SPXY ¢é utilizado para selecionar as amostras mais
externas, visando a garantir que toda a variabilidade do conjunto de amostras esteja dentro dos
limites de observagdo dos dados.

A medida que as amostras selecionadas vdo sendo fixadas, as fronteiras de calibragio
sdo delimitadas e problemas com extrapolagdo do modelo — que ocorre quando amostras sdo
preditas além dos limites de observacdo do conjunto amostral — sdo minimizados. A escolha
de amostras mais representativas para o conjunto de dados, possibilita a constru¢do de
modelos mais robustos e com melhor capacidade preditiva.

Os resultado de RMSECV para cada processo de validagdo cruzada, a medida que
amostras vao sendo fixadas, foi utilizado como uma das metricas para avaliagdo das estrategia

propostas como pode ser visualizado na Equacao 21.

/Z(yp—ye)2

RMSECV = @1
n-a

na qual “yp”’¢ o valor predito pelo modelo, “y.” o valor de referéncia e “n” ¢ o numero de

[Pl

amostras do conjunto de calibracdo e “a” € o nimero de amostras fixadas.
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2. METODOLOGIA

2.1. Conjuntos de dados

No presente trabalho, foram utilizados dois conjuntos de dados NIR(Near
infrared) que sdo de dominioptblico e disponiveis na Internet.O primeiro conjunto

(http://www.idrc-chambersburg.org/shootout.html) consiste dos dados de 107 amostras

de trigo, cujos espectros NIR foram registradosna faixa 1100-2500 nm com uma
resolugdo de 2nm’~*. A propriedade alvo do estudo compreende o teor de proteina, que
varia de 9,7 a 14,4% (w/w).A determinacdo do conteudo de proteina em amostras de
trigo ¢ de fundamental importancia para a industria de producdo de farinha de trigo. As
proteinas presentes nesses graos apresentam uma grande capacidade de formar glutem,
que durante o processo de fermentacdo em paes e massas € o responsavel por reter as
moleculas de dioxido de carbono e favorecer o crescimento da massa.

No segundo conjunto (http://software.eigenvector.com/Data/Corn/index.htm),

tém-se os dados de 80 amostras de milho, no qual seus espectros NIR foram adquiridos
num intervalo de 1100-2498nm com intervalos de 2nm. O pardmetro de interesse
empregados nesse estudo foi umidade. O teor de umidade em amostras de milho é um
pardmetro fundamental para determinar as melhores condigdes de armazenagem do
grao. Esse teor deve ser bem definido, pois 0 mesmo vai garantir a qualidade do grao

durante a estocagem.

2.2. Pré-processamento

2.2.1 Dados NIR de trigo

Na analise da Figura 2.1para os dados da matriz “trigo”, pode-se observar que a
regido de 1000-1100ndo apresenta informacdo util para a modelagem(sem resposta na
regido para a propriedade de interesse), portanto essa regido que compreende um total
de 50 varidveis foram retiradas, restanto 700 variaveis para a constru¢do do modelo. A
Figura 2.1a os espectros brutos das 107 amostras de trigo sdo apresentados e pode-se
observar que além de regides ndo informativas, tambem observa-se pequenas mudancas
na linha de base(variacdes sistematicas que ndo apresentam relacdo com a propriedade
em investigacdo, mas que podem afetar o modelo caso ndo sejam retiradas’®).Em

virtude do oObice apresentado, preferiu-se por utilizar os espectros derivados gerados


http://www.idrc-chambersburg.org/shootout.html
http://software.eigenvector.com/Data/Corn/index.htm
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apos a aplicacdo do filtro Savitsky-Golay com polinomio de 2%ordem e janela de 21
pontos’, restando 680 varidveis para cada amostra como pode ser visualizado na
Figura 2.1b, que serviu como base para os calculos realizados. A janela de 17
pontos”3,foi selecionada em um trabalho anterior como sendo o nimero idealde pontos
para o conjunto de dados em analise, mas para a estratégia proposta a janelacom?21
pontos foi a escolhida, pois apresenta espectros menos ruidosos e por proporcionar

melhores resultados RMSECV e RMSEP durante a constru¢do do modelo de calibragao.

Figura 2.1. Espectro de 107 amostras de trigo. (a) Sem pré-processamento. (b) Derivados e
Suavizados Savitsk Golay com janela de 21 pontos
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O conjunto de dados foi dividido da seguinte maneira: 12 amostras foram
retiradas com o auxilio do algoritmo SPXY®(amostras que permanecerdo fixas € serdo
adicionadas durante a etapa de calibracdo) em PLS e 16 para abordagem MLR-APS, e
as amostras remanescentes foram divididas de forma randoémica em calibragcdo 75% (71
amostras) e predi¢do 25% (24 amostras).

Apos a divisdo do conjunto de dados, implementa-sea PCA com o intuito de
verificar se o SPXY selecionou as amostras de fronteira e assim minimizar problemas

de extrapolacdo do modelo durante a etapa de calibragao.

2.2.2 Dados NIR de milho

Os espectros de 80 amostras da matriz“milho” foram obtidos na faixa 1.100 —
2.498 nm eencontram-se apresentados na Figura 2.2. Observa-se na Figura 2.2a que
apresentam variagao de sua linha de base,assim € necessario o pré-processamento desses
dados. Diferentemente do conjunto de dados anterior, ndo foi necessario retirar regides

dos espectros registrados. Tendo em vista o obice encontrado, deu-se preferéncia a
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utilizacdo dos espectros derivados e apos a derivagdo e suavizagdo com filtro Savitsky-
Golay e emprego do polindmio de 2%ordem com janela de 21 pontos como descrito em
outros trabalhos®®%2 restaram 680 variaveis para cada amostra como pode ser observado

na Figura 2.2b.

Figura 2.2. Espectro das 80 amostras de milho. (a) Sem pré-processamento. (b) Derivados e
Suavizados Savitsk Golay com janela de 21 pontos.
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Quanto a divisdo do conjunto de dados, foi adotado o mesmo procedimento dos
dados anteriores sendo para calibragdo(51 amostras) e para predi¢ao(17 amostras) e 12
amostras selecionadas pelo SPXY.

Assim, como no conjunto de dados anterior, uma analise PCA foi realizada e
foram destacadas as amostras que permanecerdo fixas durante a modelagem e assim

verificar se as mais externas foram realmente selecionadas.

2.3.Algoritmo de Validagcao Cruzada Hibrida

O algoritmo CVH foi desenvolvido com o intuito de contornar os problemas de
extrapolagdo de modelos de calibragdo multivariada e, assim, melhorar a capacidade
preditiva da modelagem PLS e MLR-APS.Na busca de uma melhor compreensao a
cerca do algoritmo de validacdo cruzada hibrida, um fluxograma com as principais

etapas do algoritmo foi construido,como pode ser visualizado a seguir.
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Figura 2.3. Fluxograma do Algortimo de validacio cruzada hibrida.
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Inicialmente tém-se um conjunto de dados, no qual sdo apresentados em forma
de matrizes X e Y, que s@o respectivamente a matriz de resposta intrumental ¢ matriz de
referéncia. Na etapa seguinte as amostras mais externas presentes nas matrizes X e Ysao
selecionadas via algoritmo SPXY e geram os conjuntos de dadosXsixe Yiix. Tendo estas
amostras mais externas sido selecionadas, as amostras de predi¢doXprea € Ypreasdo
selecionadas levando-se em conta a distribuicdo homogénea dessas amostras. Em
seguida as amostras Xfixe yfixsdo adiconadas nas amostras restante X e Y, gerando assim
os conjuntos de calibragdo Xecal € Yecal. Quando o niimero de amotras fixadas N; € igual a
zero, um modelo MLR-APS ¢ calibrado com todas as amostras de Xcal € Ycal € as
amostras Ni ndo sdo fixadas. A medida que as amostras vdo sendo fixadas, ou seja,
Ni#0, um modelo de calibragio MLR-APS ¢ obtido com as amostras Xcal € Yecal, sem a
presenca das amostras Ni que foram fixadas. Durante a etapa de validagdo cruzada as Ni
amostras fixadas ndo sdo seleciondas, pois estas apenas delimitam as fronteiras do
conjunto amostral. O RMSECYV ¢ obtido a partir da predicdo das amostras do conjunto
de calibragdo, somente Nea=Ni sdo preditas durante este processo. Apos o modelo
calibrado as amostras Xpred sdo preditas e os valores de RMSEP obtidos. Diversos
modelos sdo gerados, levando-se em consideragdo a seguinte equagdo Ni = Ni+ P, onde
P ¢ o incremento usado para escolher as amostras que serdo fixadas, esses processo se
repete até que o niumero de incrimentos(Numero de amostras fixadas por vez durante o
procedimento de validacdo cruzada) seja igual ao nimero de amostras mais externas

Xrix selecionadas previamente.

2.4. Funcionamento do Algoritmo de validacao hibrida
Inicialmente as amostras mais externas(azul) sdo selecionadas pelo algoritmo
SPXY, como pode ser visualizado na Figura 2.4a.As amostras selecionadas,
representam um percentual de 15% do total das amostras existentes e delimitam as
fronteiras  amostrais dos dados.Apds esse procedimento as  amostras
remanecentes(vermelho) sao divididas de forma randomica em amostras de calibracao e
predicdo. Na Figura 2.4b,as amostras do conjunto de calibracdo(vermelho) e as
amostras selecionadas previamente pelo algoritmo SPXY (azul) sdo unidas em um tnico

conjunto de dados.
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O conjunto de calibragdo incial(vermelho e azul) ¢ dividido em um subconjunto
de calibracdo, como pode ser observado na Figura 2.4c¢. Esse subconjunto de calibragdo
¢ utilizado na predigdo da amostra do subconjunto de validagdo
. A amostra que ficou de fora no procedimento CVLOO, como pode ser vista na Figura
2.4d, ¢é predita com base nas amostras do subconjunto de calibracdo. A amostra que
ficou de fora do procimento de validagdo cruzada ¢ mais externa.Na fase inicial do
algoritmo todas as amostras de calibragdo(amostras restante e amostras selecionadas
previamente pelo SPXY),sd0 incluidas no procedimento de validacdo cruzada de
exclusdo e consequentemente preditas na etapa de calibragdo. O fato de amostras
selecionadas previamente, serem usadas na etapa de validacdo cruzada, ndo impede que
ocorram problemas com extrapolacdo, pois ao serem preditas as fronteiras amostrais

perde-se a delimitacdo da mesma.

Figura 2.4.Selecdo de amostras fixadaspelo SPXY e procedimento CVLOO - (a) Selegcdo das
amostras mais externas. (b) Amostras de calibragdo e amostras selecionadas pelo SPXY (c) Amostras do
subconjunto de calibragdo d)Amostra deixada de fora no processo CVLOO.
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Na etapa seguinte do algoritmo, as amostras que foram selecionadas inicialmente

<+ |

pelo algoritmo SPXY, sdo divididas em grupos com as mesmas quantidades de amostras

que serdo fixadas por vez. A medida que cada grupo de amostras ¢ fixado, um
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procedimento CVLOO ¢ realizado,esse procedimento ¢ executado até que todos os
grupos de amostras tenham sido fixadas. A cada grupo de amostras fixadas na etapa de
calibragdo, tem-se uma restricdo no nimero de amostras a serem incluidas no processo
CVLOO,ou seja, o grupo de amostras fixadas,ndo podem ser incluidas na etapa de
validagdo cruzada. As amostras fixadas e a delimitacdo das amostras a serem utilizadas
no processo de validacdo cruzada, podem ser compreendidas de maneira mais simples

na Figura 2.5.

Figura 2.5. Amostras selecionadas pelo SPXY-Vermelho(amostras mais externas selecionadas

previamente)Preto(amostras que serdo selecionadas no procedimento de validagao cruzada).
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As amostras mais externas que foram selecionadas previamente,passam a ser
fixadas (vermelho) na etapa de calibragdo. As amostras mais internas (preto), sdo as
amostras a serem incluidas na validacdo cruzada,sendo estas delimitadas, problemas
com predicdio de amostras fora dos limites de observagdo amostral sdo
reduzidos.Quando as amostras fixadas(vermelho) sdo incluidas no conjunto de
calibragdo, se torna possivel avaliar sua influéncia na modelagem de calibrag¢do, umas
vez que ¢ possivel verificar a variabilidade do RMSECV(Root-Mean-Square Error of
Cross-Validation) e RMSEP (Root Mean Square Error of Prediction) a medida que mais
amostras sdo fixadas.

As amostras de predicdo foram selecionadas tendo como parametro sua
distribi¢do no espago amostral(amostras mais externas, amostras mais internas e
amostras homogeneamente distribuidas), as amostras que fornecessem os melhores
resultados em termos de menores raizes quadraticas de erros médios de previsao e de

validagdo cruzada (RMSEP e RMSECV) respectivamente. A escolha das amostras de
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predicdo em face da sua distribui¢ao espacial, foi utilizada na modelagem PLS-grou-out
e MLR-APS.

O algoritmo foi,integralmente, implementado (cédigo-fonte no APENDICE) ¢
executado em ambienteMatlab® 2010b (Mathworks) e opré-processamento dos dados

foi realizado, exclusivamente, usando o software Unscrambler® 9.7 (CAMO AS).

2.5. Uso da Espectrometria NIR para avaliacao da estratégia
proposta

A espectrometria do infravermelho proximo(NIR-Near InfraRed espectrometry)
¢ uma técnica espectrométrica que utiliza a REM (Radiacdo EletroMagnética), cujos
comprimentos de onda encontam-se na faixa de 750 a 2500 nm®’. A interagdo dessa
radiacdo com a matéria (absor¢ao ou emissao de fotons) promove apenas mudancas em
estados vibracionaisdas moléculas®#2, Os espectros NIR consistem de bandas largas
resultantes de transi¢cdes vibracionas — envolvendo, geralmente, liga¢cdes do tipo C-H,
N-H, O-H e S-H — associadas aos sobretons e bandas de combina¢do de transi¢Oes
fundamentais que ocorrem no MIR (Mid InfraRed)!-86,

Em determinagdes espectroanaliticas usando a espectrometria NIR, é comum a
obtencdo de espectros que acarretam dadosmultivariados complexos,dificultando a
extragdo das informagdes mais relevantes para as analises quimicas. Ademais, a
complexidade dos espectros se torna maior quando os sinais do analito sdo sobrepostos
pelas bandas de, sobretudo, concomitante(s) em matrizes complexas.Devido as
caracteriticas dos espectros NIR, a calibragdo univariada geralmente ndo permite obter

modelos com acuracia satisfatoria3?-8!

mesmo na determinag@o de um tnico componente
(analito ou parAmetro de interesse) em uma matriz menos complexa® . Para superar esse
problema, recorre-se usualmente a modelagem empregando técnicas quimiométricas de

calibra¢do multivarida

2.5. Espectroscopia NIR na determingcdo de conteido de
Proteina em trigo e de umidade em milho.

Na espectroscopia NIR a quantificagdo desses parametros nas amostras em
estudo sdo feitas sem separagdo previa do analito da matriz e isso requer a utilizagdo de
metddos de calibragdo multivariada, tendo em vista que o sinal do analito ndo ¢

evidenciado de forma isolada no espectro NIR®.. O fato de necessitar de escasso ou
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nenhum tratamento das amostras, proporciona analises mais rapidas e com geracao de
residuos minimizada, contribuindo assim para o meio ambiente®!.

A determinacdo de conteiido de proteina em amostras de trigo ¢ umidade em
amostras milho foram feitas empregando a espectroscopia NIR, por ser uma técnica
ndo-invasiva, ndo-destrutiva e por fornecer bons resultados semdanificar a amostra para
estudos posteriores***. O uso no NIR na determinagdo desses pardmetros, propicia a
insercdo de algoritmos de selecdo de variaveis, tendo em vista que essas analises
espectroscopicas fornecem uma grande quantidade de informagdes e faz-se necessario

selecionar as variaveis relevantes na constru¢io do modelo®437.
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3.1. PLS group-out com selecao de amostras fixadas

Inicialmente, varios testes foram realizados com o intuito de verificar quais
amostras de validacdo (mais internas, externas e distribuidas homogeneamente)
proporcionariam uma diminuicdo do RMSECV e do RMSEP. Os resultados expressos
foram obtidos depois de vinte execugdes do algoritmo e avaliados seus respectivos
valores de RMSECV e RMSEP. Foram utilizadas 20 execug6es,com o intuito de avaliar
a previsibilidade do modelo quanto a fixa¢cdo das amostras mais externas ¢ tambem
avaliou-se 0 RMSECV médio para cada modelo obtido.Na determinacdo das amostras a
serem retiradas na modelagem PLS group-out, diferentes tipos de amostras de validacdo
foram explorados € 0 modelo com menores valores de RMSECYV foi escolhido.

No conjunto de dados das amostras de trigo, as amostras de predi¢do mais
internas proporcionaram uma diminuic¢do significativa em termos de RMSECV. Apdés o
diagnodstico das amostras de predi¢do que mais se adequassem a modelagem,gerou-se o
grafico da Figura 3.1 no qual se avaliou a variabilidade do RMSECV em fung¢do do

numero deamostras fixas adicionadas.

Figura 3.1. RMSECYV amostras trigo em func¢iio do nimero de amostras.fixadas.
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Na Figura 3.1 pode-se observar a diminui¢do do RMSECV a medida que as

amostras que permanecerdo fixas sdo adicionadas, a variabilidade desses valores
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tambem ¢ reduzida, sendo esta mais perceptivel ao comparar-se o modelo com zero
amostras fixadas(vermelho) com os modelos com seis, nove e doze amostras
fixadas(roxo, azul). Ao comparar-se o modelo com nenhuma amostras
fixada(vermelho) com os demais modelos no qual as amostras foram fixadas, ¢
perceptivel que a adigdo das mesmas favorece uma diminui¢do significativa do
RMSECV e de sua variabilidade, demonstrando que ao se adicionar amostras que
permanecerdo fixas no conjunto de calibracdo pode-se melhorar a robustez da
modelagem. O modelo com zero amostras fixadas(vermelho), apresentou um RMSECV
medio de 0,235(%m/m), enquanto que 0s modelos com
trés( ),seis(roxo),nove( ) e doze(azul) apresentam os respectivos valores de
RMSECV 0,234(%m/m), 0,212(%m/m), 0,210(%m/m) e 0,212(%m/m).Pode-se
observar que o modelo com nove amostras fixadas( ). apresenta um menor
RMSECV médio, evidenciando assim que esse numero de amostras ¢ o mais adequado
para a constru¢do do modelo de calibragdo. A medida que aumenta o nimero de
amostras fixadas, as fronteiras de calibracdo vao sendo melhor delimitadas, diminuindo
assim a ocorréncia de predigdes além dos limites de observagdo, acarretando assim
uma diminui¢do no RMSECV(raiz quadrada do erro quadratico médio de validacao
cruzada).

Na analise do conjunto de dados de milho, vinte execugdes tambem foram
realizadas com o intuito de avaliar a obviedade dos modelos quando amostras sdo
fixadas e assimobteveum RMSECV médio. A escolha das amostras de predi¢do mais
externas forneceram os menores valores e a menor variavibilidade dentre os modelos
estudados em termos de RMSECV. Pode-se observar uma diminui¢do da variabilidade
do RMSECV quando amostras sdo fixadas no conjunto de calibracdo. Na Figura 3.2 ¢
possivel observar a medida que mais amostras fixas vao sendo adicionadas no conjunto
de calibra¢do,uma queda acentuada do RMSECV e uma baixa alterabilida do mesmo ao
longo das vinte execucgdes.Os modelos com zero(vermelho) e com trés ( )
amostras fixadas apresentaram as maiores mutalibilidades de RMSECV, mesmo assim ¢
possivel observar que o modelo no qual amostras foram fixadas, exibe um perfil com
menor varibilidade dos dados.

Dentre os modelos estudados, aquele com menor alterabilidade em termos de
RMSECVfoi selecionado. Quando doze amostras (azul claro) foram fixadas no
conjunto de validacdo, pode-se notar uma queda em termos de variagdo do RMSECV,

exceto na decima execugdo, onde possivelmente as amostras mais externas ndo eram de
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fronteira, acarretando assim um aumento na sua variabilidade.Os modelos obtidos
apresentaram uma pequena diferenca em termos de RMSECV, levando-se em conta
aqueles com e sem a fixacdo de amostras na etapa de calibragdo. O modelo com zero
amostras fixadas(vermelho) apresentou um RMSECYV de 0,0140(%m/m), ja os modelos
com trés( ) 0,0135(%m/m),seis(roxo) 0,0124(%m/m),nove( )
0,0124(%m/m) e doze(azul) 0,0121(%m/m).Em face do exposto, ¢ perceptivel que os
modelos com amostras fixadas no conjunto de calibragdo proporcionam em média
menores valores de RMSECV que os sem nenhuma amostras fixada, demonstrando
assim que a inclusdo destas pode proporcinar uma melhora significativa no modelo de

calibracdo.

Figura 3.2. RMSECYV amostras milho em func¢fo do nimero de amostras fixas
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Com a abordagem PLS adotada para esses conjuntos de dados, ndo foi possivel
avaliar a variabilidade do RMSEP em fungdo do indice de amostras, pois os mesmos
ndo apresentavam variabilidade significativa dos resultados para as vinte execugdes,

impossibilitando assim uma melhor avaliagdo para a modelagem proposta.
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3.2. MLR-APS Fixacao de amostras
3.2.1 Dados NIR de amostras de trigo

A medida que amostras selcionadas, previamente, sio fixadas no conjunto de
calibragdo proporcionam uma diminui¢do em termos de RMSEP e RMSECV em
modelagem MLR-APS. Na Tabela 3.1 ¢ possivel observar que o modelo no qual quatro
amostras sao fixadas apresentam os menores valores de raiz quadrada do erro medio de
previsao(RMSEP) e de raiz quadratica do erro quadratico médio de validagdo cruzada
(RMSECV), mesmo com um numero menor de amostras que participam do
procedimento de validagdo cruzada, demonstrando que as amostras mais externas ao
serem fixadas proporcinam a aquisi¢do de melhores modelos de calibragao.

Apesar de ter um niimero menor de amostras, que participam do procedimento
CVLOO, os modelos que possuem amostras fixadas na etapa de calibracdo apresentam
desempenho ligeiramente melhor que o modelo sem que amostras sejam fixadas na
etapa de calibragdo. Ao comparar-se 0 modelo com o nimero minimo de amostras
fixadas e 0 modelo com o maximo de amostras fixadas, pode-se observar que o nimero
de amostras que participam do procedimento validagdo cruzada diminui
significativamente de 77 para 61 amostras ¢ pode-se observar seus respectivos valores
de RMSECV e RMSEP que sao 0,261%(m/m) e 0,197%(m/m), para o nimero minimo
de amostras fixadas e 0,231%(m/m) e 0,164%(m/m) com o maximo de amostras

fixadas.

Tabela 3.1. Valores de RMSEP e RMSECYV em relacio ao nimero de amostras de trigo fixadas.

0,261 0,197 (77)
4 0,194 19 0,163 (73)
8 0,266 18 0,164 (69)
12 0,219 19 0,177 (65)
16 0,231 20 0,164 (61)

Os valores de RMSEP para os modelos com amostras fixadas diminuem

sinificativamente(com excesssdo do modelo com 8 amostras fixadas)quando
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comparados com o modelo sem amostras fixadas. O aumento em termos de RMSEP em
alguns modelos com amostras fixadasocorreu em virtude da fixagdo de amostras mais
internas,pois nem todas as amostras selecionadas pelo SPXYsdo necessariamente as
mais externas(de fronteira), tendo em vista que nesse algoritmo a selecdo dessas
amostras leva-se em conta tambem a correlagdo entre as matrizes X ¢ Y. Amedida que
amostras sdo fixadas na etapa de calibragdo, um nimero menor de variaveissao
incluidas no modelo de calibragdo, demonstrando bom condicionamento dos dados.O
modelo com zero amostras fixadas apresentou um baixo desempenho em termos de
RMSEP, RMSECV e numerode variaveis selecionadas para a constru¢do do modelo,
que sdo respectivamente 0,261% (m/m),0,197% (m/m) e 24 variaveis selecionadas. J4 o
melhor modelo foi obtido quando quatro amostras foramfixadas 0,194% (m/m), 0,163%
(m/m) e 19, que foram seus respectivos valores de RMSEP, RMSE e numero de
variaveis selecionadas. Quando essas amostras sdo fixadas na etapa de calibragdo, em
modelagem APS-MLR demonstrou grande potencial, pois uma vez que as amostras de
fronteira sdo fixadas os problemas com extrapolacdo de modelo sdo minimizados e

consequentemente ocorre uma melhoria na capacidade preditiva do mesmo.

3.2.2 Analise das figuras scree plot

Nas Figuras 3.3a e 3.3b ¢ possivel observar que quando quatro amostras fixas
sdo adicionadas, o modelo apresenta baixos valores de RMSECV com apenas cinco
varidveis selecionadas na modelagem MLR-APS, enquanto o modelo sem nenhuma
amostra fixa adicionada apresenta diminui¢do consideravel do RMSECYV a partir de oito
variaveis selecionadas.O niumero de variaveis ideal para o modelo com zero amostras
adicionadas foi 24 varidveis selecionadas e para o modelo com quatro amostras
adiciondas foi 19 varidveis, demonstrando assim que a adicdo de amostras fixadas na

etapa de calibragdo proporciona uma simplificagdo para a modelagem APL-MLR.
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Figura 3.3. (a) Scree plot com zero amostras fixadas.e (b) Scree plot com quatro
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Vale ressaltar também que, com quatro amostras fixadas,observa-se uma
diminui¢do significativa em termos RMSECV com apenas 5 variaveis selecionadas,

enquanto que o modelo com zero amostras fixadas esse efeito pode ser observado
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quando 8 variaveis sdo selecionadas, demosntrando assim que o modelo com quatro
amostras fixadas geram modelos mais simples
3.2.3. Valores preditos versus valores de referéncia

Nas Figuras 3.4a e 3.4b pode-se observar que o modelo com quatro amostras
fixadas estdo ligeiramente mais ajustados a reta, quando compararado ao modelo com
nenhuma amostra fixada. Os coeficientes de correlagdo para os modelos com zero e
quatro amostras foramrepectivamente 0,9894 e 0,9934, demonstrando que ao se
adicionar as amostras fixas na calibragdo proporcina uma melhoria no modelo.Os
modelo com zero e quatro amostras fixadas apresentam bom condicionamento dos
dados, visto que ndo ha tendéncia quanto a disposi¢do dos mesmos. Porém o modelo
com 4 amostras fixadas apresenta um melhor coeficiente correlagdo dos dados sendo

este mais indicado para a constru¢do de um bom modelo de calibrag@o.

Figura 3.4. (a) Valores preditos versus valores de referéncia zero amostras fixadas e (b)
Valores nreditos versus valores de referéncia auatro amostras fixadas.
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e PRESS = 1.1312 , r = 0.9934

Valores preditos versus valores de referéncia quatro amostras fixadas §
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Quando quatro amostras sdo adicionadas ¢ possivel perceber uma redugdo do
somatorio dos quadrados dos erros risuduais de predicdo (PRESS) em aproximadamente
50% em relacdo ao modelo com zero amostras adicionadas.Essa reducdo indica que o
modelo com quatro amostras fixadas ¢ mais adequado para a constru¢do de um bom

modelo de calibracdo MLR-APS.

3.2.4 Dados NIR de amostras de milho

Na determinagdo do teor de umidade em amostras de milho, o modelo no qual
amostras foram fixadas apresentaram melhores desempenhos em termos de RMSEP e
RMSECV, como pode ser evidenciado na Tabela 3.2. Dentre todos os modelos, aquele
com trés amostras fixadas apresentou o pior desempenho, tendo selecionado um niimero
maior de variaveis incluidas no modelo, que aumenta a complexidade do mesmo e
apresentou os maiores valores de RMSECV e RMSEP que sdo respectivamente
0,0085%(m/m) e 0.0155%(m/m). Essas trés amostras fixadas ndo eram amostras de
fronteira e portanto o espago amostral ndo foi delimitado com precisdo, afetando assim a

capacidade preditiva do modelo.
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Tabela 3.2. Valores de RMSEP e RMSECY em relacio ao nimero de amostras de milho fixadas.

0.0142 0.0065 (60)
3 0.0155 30 0.0085 (57)
6 0.0115 24 0.0063 (54)
9 0.0125 21 0.0087 (51)
12 0.0114 21 0.0061 (48)

O modelo com zero amostras fixas adicionadas apresentou valores de RMSEP e
RMSECV bem maiores que os modelos com seis, nove ¢ doze amostras, mesmo
selecionando um numero maior de variaveis, demonstrando que os modelos sem
amostras fixadas sdo menos parcimoniosos.Quando doze amostras fixas sdo adicionadas
na etapa de calibracdo apenas 21 variaveis foram selecionadas e os menores erros de
predicdo(RMSEP) e erros de validacio cruzada(RMSECV) foram obtidos
0,0114%(m/m) e 0,0061%(m/m). No modelo sem amostras fixadas, 28 variaveis foram
selecionadas e mesmo assim o modelo apresentou altos valores de RMSEP e RMSECV
por essa ordem 0,0142% (m/m) e 0,0065%(m/m). A fixacdo de amostras mais externas
na etapa de calibragdo, além de minimizar problemas com extrapolagdo do modelo,

tambem permite a obteng¢do de modelos mais simples e parcimoniosos.

3.2.5 Andlise das figuras Scree Plot
Os graficos de“scree plot, obtidos para o pior e o melhor modelo, sdo
apresentandos, respectivamente, nas Figuras 3.5a e 3.5b. Pode-se observar a

diminuicdo do RMSECYV a medida que mais variaveis sdo selecionadas.
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Figura 3.5. (a) Scree plot com zero amostras fixadas.b) Scree plot com doze amostras fixadas.
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Na Figura 3.5b, pode-se observar que trés variaveis sdo incluidas no modelo,

proporcionam um decréscimo do RMSECV, ja na figura 3.5a, um nimero maior de
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variavies devem ser incluidas no modelo para proporcinar uma diminui¢do do
RMSECV.O modelo com doze amostras fixadas selecionou 21 variaveis como sendo o
numero ideial para a constru¢do de um bom modelo, enquanto que aquele sem a
presenca de amostras fixadas, incluiu 28 varidveis para constru¢cdo de um modelo bem

ajustado.

3.2.6. Valores Preditos versus valores de referéncia

O modelo com doze amostras fixadas apresenta um coefiencente de correlagio
ligeiramente maior que o obtido sem nenhuma amostra fixada sendo estes iguais a,
repectivamente, 0,99961 e 0,99938. Nas Figuras 3.6a e 3.6b ¢ percebivel que nao
ocorreu diferencas significativas de como as amostras estdo dispostas na reta de ajuste

para ambos modelos.

Figura 3.6. (a) Valores preditos versus valores de referéncia com zero amostras fixadas e (b) Valores
preditos versus Valores de referéncia com dezesseis amostras fixadas.
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PRESS = 0.0026066, r = 0.99961

Valores preditos versus valores de referéncia doze amostras
fixadas
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A diferenga mais significativa entre os resultados expostos, ocorre ao comparar-
se os resultados em termos de valores de PRESS. O modelo com doze amostras fixadase
o modelo sem amostras fixadas, percebe-se uma redugao significativa 0,00261%(m/m) e
0,0040%(m/m) respectivamente, que demonstra que a modelagem com doze amostras
fixadas ¢ o mais adequado para constru¢do de modelos mais parcimonisos e de melhor

capacidade preditiva em modelos MLR-APS.



CAPITULO 4

ConclusoOes
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4.1 CONCLUSOES

No presente trabalho, propds-se uma nova estratégia de validacao hibrida com
selecdo de amostras fixadas pelo algoritmo SPXY em modelagens PLS group-out e
MLR-APS para minimizar problemas de extrapolagdo de modelos de calibragdo
multivariada. A estratégia proposta foi avaliada, inicialmente, em modelagem PLS
group-out usando dois conjuntos de dados. O primeiro compreende 107 amostras de
trigo, no qual o parametro de interesse era o contetido de proteina sendo os espectros
NIR 680 variaveis (comprimentos de onda) apos realizado o pré-processamento. O
segundo conjunto envolveu 80 amostras de milho, cujo parametro alvo no estudo foi o
teor de umidade, sendo os sinais medidos também em 680 varaveis (apos pré-
processamento).

Para ambos os conjuntos de dados, a estratégia proposta foi avaliada em termos
de RMSECV ¢ RMSEP em fun¢do do nimero de amostras fixadas. Durante a realizacdo
desses estudos percebeu-se que, apesar de obter bons resultados em termos de
RMSECV, o0 mesmo nio ocorreu com os valores de RMSEP. Em virtude dos resultados
insatisfatorios em termos de RMSEP para o modelo PLS para uma unica execucao do
algoritmo, foram realizadas vinte execucdes do algorimo para os dois conjuntos de
dados; avaliou-se entdo seus respectivos RMSEP médios. De fato, essa tultima métrica
apresentava variabilidade muito pequena a medida que mais amostras fixadas foram
adicionadas ao longo das vinte execugdes, impossibilitando uma avaliagdo adequada da
valida¢do hibrida em calibragdo PLS.

Em face desse obice, optou-se por utilizar essa validacdo hibrida em modelos de
calibragdo multivariada baseados em sele¢do de variaveis. A modelagem MLR-APS foi
utlizada para os mesmos conjuntos de dados. Observou-se que, diferentemente da
modelagem PLS, os resultados em termos de RMSEP mostraram uma certa variabildade
a medida que mais amostras fixadas sdo adicionadas na etapa de calibracao.

Para o conjunto de dados de trigo, houve uma reducdo do RMSEP de,
aproximadamente, 25% quando se compara o modelo, obtido com base em quatro
amostras fixadas, com o obtido sem nenjuma amostra fixada. Além disso, o modelo
baseado em quatro amostras fixadas proporcionou uma redu¢ao no RMSECV em cerca
de 17% e com um numero de variaveis selecionadas bem menor.

No conjunto de dados do milho, quando se compara o modelo com doze

amostras fixadas e o modelo sem amostras fixadas, € possivel observar uma diminui¢do
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do numero de variaveis selecionadas, bem como uma diminui¢do dos respectivos
valores de RMSEP ¢ RMSECYV para, respectivamente, cerca de 20% ¢ 6%.

A abordagem proposta mostrou-se bem eficiente em modelagem MLR-APS,
demonstrando que, quando as amostras mais externas sdo fixadas, os problemas de
extrapolagdo na modelagem sdo minimizados e proporcionam uma melhoria na
capacidade preditiva do modelo de calibragdo. A insercdo dessas amostras faz com que
um menor numero de varidveis sejam selecionadas, proporcionando modelos mais
parcimoniosos e de facil interpretagdo. Como as amostras mais externas sao fixadas, os
modelos tornam-se menos susceptiveis a variagdes que prejudicam sua robustez.
Ademais, o uso das amostras de fronteira pode minimizar (ou até prevenir) problemas

de extrapolagdo da regido envolvida na modelagem de calibragao.

4.2. Perspectivas Futuras

e Re-aplicar a valida¢do hibrida, com sele¢do de amostras fixadas pelo algoritmo
SPXY, em modelagem PLS para investigar a razdo da baixa variabilidade do

RMSE a medida que mais amostras fixadas sdo adicionadas.

e Aplicar a estratégia de validago hibrida a novos conjuntos de dados.

e Adaptar a estratégia proposta a modelagem multivariada envolvendo problemas

de classificacdo.
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APENDICE

Nesse apéndice, ¢ apresentado o codigo-fonte do programa — escrito e
executavel somente no ambiente computacional Matlab — do algoritmo desenvolvido

para a estratégia proposta no presente trabalho.

Apéndice A - Validacio cruzada com conjunto separado fixo

function[e,yhat]=validation fixed one (Xcal,ycal,Xfix,yfix,v
ar_sel)

% [yhat,e]=validation fixed one(Xcal,ycal,Xfix,yfix,var sel)
--> Validation with a separate set fixed

% [yhat,e] = wvalidation fixed one (Xcal,ycal, [],[],var sel)
-—> Cross-validation leave one out

o

¢}

Nfix = size(Xfix,1); % numero de amostras que serdo
mantidas no conjunto em cal

N = size (Xcal,l);

g = floor(0.1*N); % numero de amostras gue saem no

processo cross validation

¢}

vhat = zeros(N,1); % Setting the proper dimensions of yhat
fori = 1:N

% Removing the ith object from the calibration set cal =
[[1:1-1] [i+1:N]11;

X = [Xcal(cal,var sel); Xfix(:,var _sel)];
y = l[ycal(cal); yfix];
xtest = Xcal (i,var sel);
X ones = [ones (N+Nfix-1,1) X];
b = X ones\y; % MLR with offset term (bO)
vhat (1) = [1 xtest]*b; % Prediction for the ith object
end
e = ycal - vyhat; % Cross-validation error

Apéndice A - Métricas de Validacao

function[PRESS,RMSEP, SDV,BIAS, r]=validation metrics v2pl (Xc
al,ycal,Xval,yval,var se)

% [PRESSV, RMSEPV, SDV, BIASV, rV]=validation metrics v2pl (Xcal,

ycal,Xval,yval,var sel) --> Validation with a separate set
% [PRESSV, RMSEPV, SDV, BIASV, rV]=validation metrics v2pl (Xcal,
ycal,Xval, [],var sel) -->Validation with a separate set

with no reference values for y
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% [PRESSCV, RMSEPCV, SDCV, BIASCV, rCV]=validation metrics v2pl (
Xcal,ycal, [],[],var sel) --> Cross-validation

% Record of modifications:

% 08 Sept 2011 (v2):

% Allows for the use of yval = [ ] (no reference values)

% get(h, 'XLim') modified to get(h, 'xlim');

% 09 Sept 2011 (v2pl):

% Use of prediction uncertainty.m instead of
statistical prediction error.m

if size(Xval,1l) > 0 % Validation with a separate set

y = yval;
else % Cross-validation
y = ycal;
end
[vhat,e] = validation v2(Xcal,ycal,Xval,yval,var sel);

if (~isempty(e))
PRESS = e'*e;
N = length(e);
RMSEP = sqrt (PRESS/N) ;

BIAS = mean(e);
ec = e - BIAS; % Mean-centered error values
SDV = sqgrt(ec'*ec/(N - 1));
yvhat as = (yhat - mean(yhat))/std(yhat); % Autoscaling
y as = (y - mean(y))/std(y); % Autoscaling
r = (yhat as'*y as)/(N-1);
else

PRESS = [];

RMSEP = [];

SDV = [];

BIAS = [];

r = [1;

end

% Prediction uncertainty (one-sigma)
pred unc = prediction uncertainty(Xcal,ycal,Xval,var sel)

if (~isempty(e))
% Plot of Predicted vs Reference values
figure, hold on, grid
errorbar (y, yhat,pred unc, 'o')
xlabel ('Reference y value'),ylabel ('Predicted y value')
h = gca; XLim = get(h, 'xlim'");
h = line (XLim,Xlim) ;

title ([ 'PRESS = ! num2str (PRESS) ', RMSEP = !
num2str (RMSEP) ', SDV = ' num2str (SDV) ', BIAS = !
num2str (BIAS) ', r = ' num2str(r)])

else
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e}

% Plot of predicted values with +/- one-sigma bars
figure, hold on, grid

errorbar ([1l:length(yhat) ], yhat,pred unc,'o")
xlabel ('Sample'),ylabel ('Predicted y value')

end

Apéndice A - Calculo SPA para os conjuntos de dados
clear,clc,close all

Nfix = 16; %MilhoNfix = 12; TrigoNfix = 16.

g = 4; % Milho g = 3; Trigo g = 4;
$txp = 0.30; % taxa usada no conjunto milho (corresponde a

20 amostras de predicédo).
txp = 0.33; % % taxa usada no conjunto Trigo (corresponde a
30 amostras de predicéo).

Nmax = 59; % Milho Nmax = 39; Trigo Nmax = 59.
load ('D:\Trabalho\Séfacles\Orientacdes\Jodo\Dados\X.mat') %

local onde estd os dados trigo
XNIR = X (:,351:1050);

%$load ('D:\Trabalho\Séfacles\Orientacdes\Jodo\Dados\Milho\mi
1lhol.MAT'")

% 701 = 'Moistrure';
% 702 = '0il';

% 703 = 'Protein';

% 704 = 'Starch';

O

(@]

$XNIR = AllSamples AllVariables(:,1:700);
%Y = AllSamples AllVariables(:,701); % Umidade

Xder = derivadaSG (XNIR,1,2,21); % preprocessamento milho

Ntot = size (Xder,1l);
[mfix,dminmax] = ksxy(Xder,Y,Nfix); % Milho 12 amostras com
o ksxy

mdif = setdiff (l:Ntot,mfix);
% Separando as amostras fixas
Xfix = [Xder (mfix, :)];

Yfix = [Y(mfix, :)];

% amostras restantes

Xrest = [Xder (mdif, :)];
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Yrest = [Y(mdif, :)];
Nrest = size (Xrest,1l);
[mtot,dminmax] = ksxy(Xrest,Yrest,Nrest); % Ordenando as

amostrasrestantes
NP = round(txp*Nrest) ;

mpred = mtot ([round(2: (1/txp) : (NP* (1/txp)))1):
m = setdiff (1:Nrest,mpred);

Xpred = Xrest (mpred, :);
Ypred = Yrest (mpred, :);
Xcal = Xrest(m, :);
Ycal Yrest(m, :);

cont = 1;
fori = 0:g:Nfix
[var sel fix{cont},var sel phase2 fix{cont}] =

spa_fix one([Xcal; Xfix ((i+1) :Nfix, :)], [Ycal;
Yfix ((i+1) :Nfix,:)],Xfix(l:i,:),Yfix(1:41,:),1,39,0); %
trigo

[PRESS fix(cont),RMSEP fix(cont),SDV fix(cont),BIAS fix(con

t),r fix(cont)] = validation metrics v2pl ([Xcal;
Xfix], [Ycal; Yfix],Xpred,Ypred,var sel fix{cont});

cont = cont+l;

end

Apéndice A- Validacdo SPA com amostras fixas e figuras de mérito

function [var sel,var sel phase?2] =
spa fix one(Xcal,ycal,Xfix,yfix,m min,m max,autoscaling)

5 [var sel,var sel phaseZ] =
spa fix one(Xcal,ycal,Xfix,yfix,m min,m max,autoscaling) --

> Validation with fixed sample

$ If m min = [], the default value m min = 1 is employed

$ If m max = [], the default values m max = min(N-1,K)
(validation with a separate set)

% or min(N-2,K) (cross-validation) are employed.

% autoscaling --> 1 (yes) or 0 (no)

autoscaling

if ((autoscaling ~= 1) & (autoscaling ~= 0))

error ('Please choose whether or not to use autoscaling.')
end
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N = size(Xcal,1l); % Number of calibration objects
K = size(Xcal,2); % Total number of variables

if length(m min) == 0, m min = 1; end

if length(m max) == 0,

if size(Xfix,1l) > O
m max = min(N-1,K);
else
m max = min(N-2,K);
end
end

ifm max> min (N-1,K)

error('m max is too large !');

end

% Phase 1: Projection operations for the selection of
candidate subsets

o°

The projections are applied to the columns of Xcal after
% mean-centering and (optional) autoscaling

ifautoscaling ==

normalization factor = std(Xcal);
else

normalization factor = ones(1l,K);
end

for k = 1:K

x = Xcal(:,k);
Xcaln(:,k) = (x - mean(x)) / normalization factor(k);
end
SEL = zeros(m max,K);
h = waitbar (0, 'Phase 1 (Projections). Please wait...');
loopStart = now;
tic
for k = 1:K
SEL(:,k) = projections gr (Xcaln,k,m max);
loopEnd = loopStart + (now-loopStart)*K/k;
waitbar (k/K,h, ['Phase 1 ETC: ' datestr (loopEnd)]);
end
toc

close (h);
disp ('Phase 1 (projections) completed !'")

% Phase 2: Evaluation of the candidate subsets according to
the PRESS criterion
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PRESS = Inf*ones (m max,K);
h = waitbar (0, "Phase 2 (Evaluation of wvariable subsets).
Please wait...'"):;

warning off MATLAB:singularMatrix
warning off MATLAB:nearlySingularMatrix
loopStart = now;

tic

for k = 1:K

for m = m min:m max

var sel = SEL(l:m,Kk);

[eryhat] =
validation fixed one(Xcal,ycal,Xfix,yfix,var sel);
PRESS (m, k) = e'*e;
end
loopEnd = loopStart + (now-loopStart) *K/k;
waitbar (k/K,h, ['Phase 2 ETC: ' datestr (loopEnd)]):;
end

close (h);
warning on MATLAB:singularMatrix
warning on MATLAB:nearlySingularMatrix

[PRESSmin,m sel] = min (PRESS) ;
[dummy, k sel] = min(PRESSmin) ;

var sel phase2 = SEL(l:m sel(k sel),k sel);

toc

disp ('Phase 2 (evaluation of variable subsets) completed
')

o

% Phase 3: Final elimination of variables

tic
% Step 3.1: Calculation of the relevance index
Xcal2 = [ones(N,1) Xcal(:,var sel phase2)];

b = Xcal2\ycal; % MLR with intercept term

std deviation = std(Xcal2);

relev = abs(b.*std deviation');

relev = relev(2:end); % The intercept term 1is always
included

% Sorts the selected wvariables 1in decreasing order of
"relevance"

[dummy, index increasing relev] = sort(relev); % Increasing
order
index decreasing relev = 1index increasing relev(end:-1:1);

o

% Decreasing order

% Step 3.2: Calculation of PRESS values
fori = l:length(var sel phase2)

[e, yhat] =
validation fixed one(Xcal,ycal,Xfix,yfix,var sel phase2 (ind
ex decreasing relev(l:1)) );
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PRESS scree (i) = e'*e;

end

RMSEP scree = sqrt(PRESS_scree/length(e));

figure, grid, hold on

plot (RMSEP scree)

xlabel ('Number of variables included in the
model'),ylabel ('"RMSE"')

% Step 3.3: F-test criterion

PRESS scree min = min(PRESS scree);

alpha = 0.25;

dof = length(e); % Number of degrees of freedom

fcrit = finv(l-alpha,dof,dof); % Critical F-value

PRESS crit = PRESS scree min*fcrit;

% Finds the minimum number of +variables for which
PRESS scree

% 1s not significantly larger than PRESS scree min

i crit = min(find(PRESS scree<PRESS crit));

i crit = max(m min,i crit); % The number of selected
variables must be at least m min

var sel = var sel phase2(index decreasing relev(l:1i crit)
) ;

title(['Final number of selected variables: !
numZstr (length (var sel)) ! (RMSE = !
num2str (RMSEP scree(i crit)) ')'])

toc

e}

% Indicates the selected point on the scree plot
plot (i crit,RMSEP scree(i crit),'s"')

disp ('Phase 3 (final elimination of wvariables) completed
')

% Presents the selected variables

% in the first object of the calibration set

figure,plot (Xcal(1l,:)) ;hold,grid

plot (var sel,Xcal(l,var sel),'s")

legend ('First calibration object', 'Selected variables')
xlabel ('Variable index')
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