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RESUMO 

INTRODUÇÃO: A voz é produzida por um complexo processo neurofisiológico que 

envolve diversas estruturas e sistemas do corpo, pode ser influenciada pelo estado 

emocional do indivíduo e por características da personalidade. A construção de um 

modelo que utilize o sinal de voz em diferentes emoções irá servir de base para elaboração 

e desenvolvimento de sistemas de reconhecimento que sejam robustos na automatização 

do reconhecimento das emoções. A definição de características acústicas próprias de 

cada estado emocional poderá permitir a efetiva separação das emoções por meio de 

técnicas de reconhecimento de padrões de voz. OBJETIVO: Desenvolver um modelo 

baseado na lógica fuzzy capaz de reconhecer as emoções a partir da voz de falantes do 

português brasileiro. MÉTODO: Trata-se de um estudo de natureza tecnológica, 

descritiva, observacional e transversal, que utilizou dados secundários, provenientes do 

Banco de Vozes Brasileiro nas Variações das Emoções - EmoVox-BR, que conta com um 

conjunto de dados composto por 182 sinais sonoros associados às emoções básicas: 

alegria, medo, tristeza, raiva, surpresa, nojo e estado neutro, produzidos por 26 atores 

profissionais e em formação. Foram extraídos parâmetros acústicos como medidas de 

frequência fundamental (fo), jitter, shimmer, medidas de ruído glótico Glottal to Noise 

Excitation Ratio (GNE) e Harmonics-to-Noise Ratio (HNR), medidas cepstrais 

Cepstral Peak Prominence Smoothed (CPPS), Mel-Frequency Cepstral Coefficients 

(MFCC) e os parâmetros acústico-prosódicos da fo, duração e intensidade a partir dos 

dados do EmoVox-BR. A partir desses, desenvolveu-se o modelo de reconhecimento das 

emoções. RESULTADOS: O estudo apresentou um modelo inovador baseado em lógica 

fuzzy para o reconhecimento dos estados emocionais a partir da voz, com a integração 

de parâmetros acústicos e prosódicos selecionados de forma criteriosa. O modelo utiliza 

18 parâmetros de entrada e 7 de saída. Foram implementadas 23 regras fuzzy para 

discriminação de sete categorias emocionais. O modelo apresentou acurácia de 89,01% 

e coeficiente Kappa de 87,18%, com sensibilidade variando entre 76,92% para alegria e 

100% para tristeza e estado neutro. As especificidades foram superiores a 93% em todas 

as categorias, indicando alta capacidade de diferenciação emocional. Variáveis 

sobrepostas, como alguns parâmetros acústicos e mel-cepstrais, foram removidas para 

simplificar o modelo e refinar seu desempenho. Além de otimizar a simplicidade e 

eficiência no reconhecimento das emoções, o modelo superou métodos convencionais em 

robustez em comparação com algoritmos de aprendizado de máquina como o Random 
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Forest e Kernel SVM. CONCLUSÃO: O modelo de reconhecimento emocional, 

desenvolvido com lógica fuzzy a partir da voz humana, alcançou alta acurácia e precisão 

na diferenciação de emoções. O resultado prevê aplicações promissoras em computação 

afetiva e tecnologias interativas. A abordagem demonstra eficácia ao capturar nuances 

emocionais, com adaptação a diferentes contextos para tornar interações humano-

máquina mais empáticas e personalizadas. 

Palavras-Chave: Voz, Reconhecimento de voz, Emoções Expressas, 

Processamento de Voz, Inteligência Artificial, Lógica Fuzzy.  
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ABSTRACT 
 

INTRODUCTION: Voice is produced by a complex neurophysiological process that 

involves several structures and systems of the body, and can be influenced by the 

individual's emotional state and personality traits. The construction of a model that uses 

the voice signal in different emotions will serve as a basis for the development and 

development of recognition systems that are robust in the automation of emotion 

recognition. The definition of acoustic characteristics specific to each emotional state may 

allow the effective separation of emotions through voice pattern recognition techniques. 

OBJECTIVE: To develop a model based on fuzzy logic capable of recognizing emotions 

from the voices of Brazilian Portuguese speakers. METHOD: This is a technological, 

descriptive, observational and cross-sectional study that used secondary data from the 

Brazilian Voice Bank in Variations of Emotions - EmoVox-BR, which has a data set 

composed of 182 sound signals associated with the basic emotions: joy, fear, sadness, 

anger, surprise, disgust and neutral state, produced by 26 professional actors and actors 

in training. Acoustic parameters such as fundamental frequency (fo), jitter, shimmer, glottal 

noise measures Glottal to Noise Excitation Ratio (GNE) and Harmonics-to-Noise Ratio 

(HNR), cepstral measures Cepstral Peak Prominence Smoothed (CPPS), Mel-Frequency 

Cepstral Coefficients (MFCC) and acoustic-prosodic parameters of fo, duration and 

intensity were extracted from the EmoVox-BR data. From these, the emotion recognition 

model was developed. RESULTS: The study presented an innovative model based on 

fuzzy logic for the recognition of emotional states from voice, with the integration of 

carefully selected acoustic and prosodic parameters. The model uses 18 input and 7 output 

parameters. Twenty-three fuzzy rules were implemented to discriminate seven emotional 

categories. The model presented an accuracy of 89.01% and a Kappa coefficient of 

87.18%, with sensitivity ranging from 76.92% for happiness to 100% for sadness and 

neutral state. Specificities were higher than 93% in all categories, indicating a high capacity 

for emotional differentiation. Overlapping variables, such as some acoustic and mel-

cepstral parameters, were removed to simplify the model and refine its performance. In 

addition to optimizing simplicity and efficiency in emotion recognition, the model 

outperformed conventional methods in robustness compared to machine learning 

algorithms such as Random Forest and Kernel SVM. CONCLUSION: The emotion 

recognition model, developed with fuzzy logic from the human voice, achieved high 

accuracy and precision in differentiating emotions. The result predicts promising 
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applications in affective computing and interactive technologies; the approach 

demonstrates effectiveness in capturing emotional nuances, with adaptation to different 

contexts to make human-machine interactions more empathetic and personalized. 

 
Keywords: Voice Recognition, Expressed Emotions, Voice Processing, Artificial 

Intelligence, Fuzzy Logic. 
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1 INTRODUÇÃO 

 

A voz é parte integrante da individualidade humana. Por meio dela é possível 

externalizar sentimentos e pensamentos, além de estabelecer contato com outras 

pessoas e com o mundo (GUIMARÃES et al., 2010). A produção vocal é influenciada por 

uma combinação de fatores fisiológicos, psicológicos, ambientais e de aprendizado, como 

gênero, idade, constituição física, saúde geral, e fatores psicossociais, como 

personalidade e emoção (CIELO et al., 2009; ALMEIDA et al., 2015; GUZY et al., 2016). 

A voz pode atuar como um sinal biológico para diferenciação do estado emocional, 

uma vez que varia em intensidade, frequência e ritmo. A voz pode expressar os traços de 

personalidade, sentimentos, estado de saúde física e mental, dentre outros aspectos 

(COSTA, et al 2013, YEH, et al 2016), com possibilidade de auxiliar em processos de 

detecção, avaliação, diagnóstico e monitoramento de condições neurológicas, 

psiquiátricas, cardiovasculares e respiratórias (IDRISOGLU et al., 2023; LOW et al., 2020; 

TRACEY et al., 2021). Assim, a voz transm ite informações relacionadas aos estados 

físicos e/ou emocionais do falante e oferece uma abordagem não invasiva e acessível 

para gerenciar diversas condições clínicas (AMORIM et al., 2021). 

A face e a vocalização destacam-se entre os vários canais de expressão das 

emoções, pois, ao manifestar emoções uma pessoa transmite e comunica a outra o que 

sente, seja de forma intencional ou inconsciente, que pode impactar em diversos 

aspectos, na cognição, percepção, aprendizado e comunicação (ADRIANO; ARRIAGA, 

2016). Essa expressão poderá surtir efeitos nas emoções e no comportamento do 

indivíduo que irá receber, a depender da sua sensibilidade e precisão no reconhecimento 

emocional (VIEIRA, 2018). 

Diversos estudos realizados em diferentes culturas contribuíram para que alguns 

autores propusessem seis emoções básicas, a saber: felicidade/alegria, medo, raiva, 

tristeza, repugnância/nojo e surpresa (EKMAN, 1999, LEVENSON, 2011; AN et al., 2017). 

Acredita-se que essas sejam universalmente reconhecidas na face pelos seres humanos, 

por apresentarem configurações específicas, expressas de forma semelhante em 

diferentes culturas (HALSZKA, 2016; AN, et al., 2017; WANG, et al., 2019). Essas 

emoções quando combinadas geram um espectro de estados emocionais (EKMAN, 1999; 

AN, et al., 2017). Cada estado emocional provoca modificações no trato vocal e alteram 

momentaneamente a anatomofisiologia de produção da voz, que interfere no controle da 

respiração, no posicionamento vertical da laringe, no relaxamento relativo das pregas 
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vocais e no posicionamento e no relaxamento dos músculos da faringe e da língua, que 

pode resultar em vozes alteradas (METALLINOU, et al., 2008). 

Essas modificações no trato vocal ocorrem na variação das emoções e vê-se um 

maior impacto negativo quando está relacionado a um transtorno mental, que aumenta as 

chances de instalação de uma alteração vocal, como a disfonia (DIETRICH, VERDOLINI-

ABBOTT, 2012; SOUZA; HANAYAMA, 2005). Nessa mesma linha de entendimento, os 

pesquisadores que estudam a expressão das emoções a partir da voz assumem que 

essas também possuem padrões distintos nos parâmetros acústicos (MANOHAR, et al., 

2019; BHATT, et al., 2021) 

A sensibilidade à emoção do outro pode ficar comprometida em algumas pessoas, 

como nos profissionais expostos a níveis de estresse continuado que, por vezes, culmina 

em implicações negativas no desempenho profissional e social (NEUMANN et al., 2011; 

PASSALACQUA; SEGRIN, 2012; WEST et al., 2009). O reconhecimento das emoções é 

essencial para profissionais que lidam diariamente com outras pessoas e fazem 

julgamentos sobre o seu estado físico e emocional, além do que o reconhecimento das 

emoções é essencial para a comunicação e vida em sociedade.  

O conhecimento sobre a variação emocional e a construção de bancos de vozes 

para diferenciação das emoções, vem sendo amplamente estudados. Assim, faz-se 

necessário o desenvolvimento de bancos de dados de sinais de voz que sejam validados 

por humanos para que se possa fazer um estudo baseado em emoções identificadas pela 

voz. Os bancos de dados de vozes utilizados para reconhecimento de emoções podem 

ser elaborados de forma simulada/atuada, indução de emoções, ou coleta de emoções 

em situações cotidianas/reais (BURKHARDT et al., 2005; BARRA-CHICOTE et al., 2008; 

DOUGLAS-COWIE; COWIE; SCHRÖDER, 2000; SNEDDON et al., 2012, KINGESKI, 

2019).  

Existem alguns bancos de vozes que foram desenvolvidos com a variação das 

emoções com a população de atores em diferentes línguas, como o Berlin Database of 

Emotional Speech (EMO-DB) (BURKHARDT et al., 2005), Interactive Emotional Dyadic 

Motion Capture (IEMOCAP) (BUSSO et al., 2008), Sustained Emotionally colored 

Machine-human Interaction using Nonverbal Expression (SEMAINE) (MCKEOWN et al., 

2012) e Remote Colaborative and Affective interactions (RECOLA) (RINGEVAL et al., 

2013). De forma geral, esses bancos de vozes foram construídos com informações da 

análise das variações acústicas emocionais e pouco se tem sobre outros tipos de medidas, 

como: aprofundamento nas medidas perceptuais por parte de fonoaudiólogos e linguistas 



 

 

18 

 

e no impacto do julgamento por ouvintes especialistas em ciências vocais, além da 

possibilidade de encontrar reconhecimento de padrões de voz comuns a cada uma das 

emoções.  

Dado a escassez de bases de áudio de emoções em português brasileiro (PB) 

(TORRES NETO et al., 2018; KINGESKI, 2019; GERMANO et al., 2021), recentemente 

no Brasil foi elaborado um banco de vozes com informações sobre os diferentes estados 

emocionais que contemplasse dados perceptuais, acústicos e de fala de indivíduos 

nativos do PB, o banco de vozes nas variadas emoções para o português brasileiro - 

EmoVox-BR (LIMA, 2022). Os atores participaram das gravações de amostras vocais com 

a expressão simulada das emoções alegria, medo, tristeza, raiva, surpresa, nojo e a 

emissão neutra. Na validação, 39 áudios foram hospedados no banco EmoVox-BR por 

possuírem alta confiabilidade quanto à qualidade dos áudios, identificação das emoções, 

valência e potência das emoções após julgamento e avaliação de juízes fonoaudiólogos.  

Um dos grandes desafios no estudo da expressão das emoções pela voz é 

identificar qual a melhor tarefa de fala e medidas vocais sensíveis para diferenciar as 

emoções. Há estudos que utilizam tarefas de fala como a leitura de frases padronizadas, 

fala espontânea, repetição de palavras, histórias curtas ou narrativas pessoais, imitação 

de emoções e vocalização sustentada, e que selecionam medidas fisiológicas e vocais 

para verificar o estado emocional (FITCH, 1990; BURIN, 2017; PATEL et al., 2011; MOON 

et al., 2012). Pode-se dizer que as medidas vocais mais recorrentes nesses estudos são 

as medidas acústicas, já que esses parâmetros capturam de forma mais objetiva as 

variações nas características vocais associadas a diferentes estados emocionais. 

As medidas mais utilizadas para o reconhecimento das emoções por meio da voz 

são as medidas acústicas, como a frequência fundamental (fo), o jitter, shimmer, formantes, 

coeficientes cepstrais e mel-cepstrais, intensidade do sinal e taxa de elocução da fala 

(VERVERIDIS; KOTROPOULOS, 2006; BYUN; LEE, 2021; SONG et al., 2024). A 

definição de características acústicas próprias de cada estado emocional permite a efetiva 

separação das emoções para o desenvolvimento de sistemas modernos de 

reconhecimento a partir da voz (LI, et al., 2019; BHATT, et al., 2021). As medidas acústicas 

tradicionais, como as de perturbação, ruído, cepstrais e espectrais, têm papel crucial na 

identificação e no monitoramento dos distúrbios vocais, pois fornecem informações sobre 

parâmetros físicos da voz. No entanto, quando o objetivo envolve diferenciar variações 

sutis dentro da normalidade vocal, outras análises, como as prosódicas e formânticas, 

complementam e ampliam esse entendimento. Essas medidas adicionais investigam as 
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nuances rítmicas e melódicas da fala, essenciais para capturar aspectos transitórios e 

expressivos, fundamentais para a percepção emocional e a expressividade da voz 

(BARBOSA; CONSTANTINI, 2020; SANTOS et al., 2022). 

A investigação da prosódia emocional envolve tanto a forma como as modulações 

acústicas são produzidas quanto a maneira como são percebidas (a partir do julgamento 

perceptivo-auditivo), com possibilidade de uma compreensão mais ampla da relação entre 

os processos linguísticos e emocionais na comunicação humana, que ultrapassa o 

conteúdo semântico das palavras (SILVA; BARBOSA, 2017). As medidas acústico-

prosódicas comumente utilizadas para o reconhecimento das emoções por meio da voz 

são f0, intensidade e duração (FILIPPA et al., 2022; LAUSEN; HAMMERSCHMIDT, 2020). 

Compreender esses elementos é essencial para desvendar a complexidade da 

comunicação humana, na qual a dimensão emocional influencia significativamente a 

interação social. Além de seu impacto teórico, o estudo da prosódia emocional apresenta 

aplicações práticas em tecnologias avançadas de reconhecimento de emoções, 

inteligência artificial, e diagnósticos clínicos de transtornos da comunicação e saúde 

mental (OH et al., 2023; FILIPPA et al., 2022). 

Para isto, utiliza-se a combinação de métodos de extração e reconhecimento de 

características por meio de sistemas de inteligência artificial. Estes sistemas são 

responsáveis por produzir uma representação do sinal de voz na identificação de 

emoções, que podem auxiliar mercados como callcenter, aplicativos de tutorial de 

computador, web filmes, comunicação móvel, transcrição de discursos gravados, 

pesquisa em documentos de áudio, comandos de voz, diálogos interativos, entre outros 

sistemas automáticos de detecção por voz (GALES, 2008; ZHU; WU, 2020; LI; LIN, 2021). 

As análises de expressões emocionais vocais demonstraram que a intensidade e a 

valência variam conforme a emoção expressa. Cada emoção apresenta um perfil vocal 

específico, o que possibilita sua distinção (Banse, Scherer, 1996). As medidas 

relacionadas à qualidade vocal contribuem para a identificação de estados emocionais 

(Nenko et al., 2021; Laukka, Elfenbein, 2012), principalmente nas emoções de valência 

negativa como tristeza e raiva (Nenko et al., 2021). As variações nas medidas de f₀ e de 

qualidade vocal foram relevantes para trazer informações emocionais e contextuais mais 

complexas, o que inclui a intensidade e a potência da emoção (Laukka, Elfenbein, 2012). 

Os Mel-Frequency Cepstral Coefficients (MFCC) mostraram-se sensíveis à distinção entre 

vozes de indivíduos deprimidos e saudáveis, o que reforça o potencial da voz como 

biomarcador para o diagnóstico emocional (Zhao et al., 2022). 
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Como exposto, há estudos que classificam emoções a partir da voz, sobretudo com 

base em medidas acústicas, com tarefas de fala sem padronização e em diversas línguas. 

Desenvolver um modelo que utilize a inteligência artificial, no intuito de procurar fatores 

preditores para o reconhecimento das emoções básicas é importante para chegar a um 

conjunto de medidas que caracterize e discrimine as emoções a partir da voz, coletada 

dentro de um rigor e padrão científico. Portanto, para a efetiva aplicação de 

reconhecimento de estados emocionais é necessário que haja um sólido estudo com 

bases de dados que abrange inicialmente a cultura local, de forma que os dados sejam 

verificados com outras bases de vozes gravadas em outras culturas e, assim, a validação 

dos métodos e medidas aconteça. Posteriormente, a construção de um modelo de 

reconhecimento dos estados emocionais a partir da voz. 

A construção de modelos que utilizem o sinal de voz em diferentes emoções, 

servirão de base para elaboração e desenvolvimento de sistemas de inteligência artificial 

que sejam robustos na detecção por voz e identificação de emoções. O modelo a ser 

proposto permitirá o desenvolvimento de uma ferramenta automatizada no 

reconhecimento das emoções com precisão conhecida, o que possibilita ao examinador 

um avanço potencialmente significativo na identificação do estado emocional. Assim, 

diversos tipos de mercado podem aplicar este tipo de tecnologia de modo a entender as 

necessidades do indivíduo de acordo com sua emoção no determinado momento e assim 

beneficiar e esses sistemas de atendimento. 

A lógica fuzzy se destaca como uma abordagem robusta para modelar sistemas 

complexos e incertos, como o reconhecimento de emoções na voz (XIONG, et al., 2024; 

TON-THAT; CAO, 2019; GRIMM et al., 2007). Diferente dos modelos tradicionais que 

dependem de limiares rígidos, a lógica fuzzy permite uma representação mais flexível e 

próxima da realidade, incorporando o conhecimento e a experiência humana na análise 

de padrões contribuindo para a tomada de decisão (MORAES; MELO, 2017). Essa 

capacidade de lidar com incertezas e subjetividades a torna uma ferramenta promissora 

para a modelagem preditiva no reconhecimento de estados emocionais. 

A aplicação da lógica fuzzy neste contexto justifica-se pela necessidade de um 

modelo que não apenas interprete dados vocais de forma precisa, mas que também seja 

capaz de captar nuances emocionais que podem escapar a técnicas mais rígidas 

(MORAES, 2002). Este trabalho pretende explorar o potencial da lógica fuzzy para criar 

um modelo de reconhecimento emocional mais eficaz e adaptável, capaz de melhorar a 

interação entre humanos e máquinas e contribuir para avanços na área de saúde mental 
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e tecnologias assistivas. Além de gerar conhecimento que transcende o conjunto de dados 

específico utilizado para seu desenvolvimento, o modelo proposto busca oferecer uma 

base metodológica com potencial de generalização e aplicação em outros bancos de 

dados, ampliando a validade externa e a aplicabilidade dos resultados obtidos. 

A identificação automática de estados emocionais a partir da voz têm se tornado 

uma área de crescente interesse na interseção entre tecnologia, saúde e comunicação 

(DE LOPE; GRAÑA, 2023, HASHEM et al., 2023). Esse reconhecimento é fundamental 

em diversas aplicações, como assistentes virtuais, monitoramento de saúde mental, 

sistemas de atendimento ao cliente e interfaces homem-máquina. Entretanto, a 

complexidade intrínseca dos sinais de voz, aliada à variabilidade individual e cultural das 

expressões emocionais, torna essa tarefa desafiadora. 

Ao priorizar o conhecimento humano no desenvolvimento do modelo, o sistema 

proposto torna-se mais intuitivo, confiável e alinhado às complexidades das interações 

emocionais humanas, para oferecer uma solução inovadora e eficaz para o 

reconhecimento automático de emoções. Um modelo construído com base nas 

características vocais e acústicas dos sinais de áudio em cada estado emocional pode 

proporcionar uma maior taxa de acurácia na diferenciação e reconhecimento das emoções 

a partir da voz humana em comparação com métodos tradicionais. 

Não foram identificados na literatura estudos que desenvolvessem modelos de 

reconhecimento dos estados emocionais construídos com as características perceptuais, 

acústicas e prosódicas julgadas por fonoaudiólogos especialistas em voz em uma base 

de áudios em PB, uma vez que a variação cultural e linguística pode influenciar 

significativamente a expressão e percepção das emoções. Modelos de reconhecimento 

que levam em consideração essas limitações são fundamentais para auxiliar de forma 

eficaz e confiável profissionais e pesquisadores na área de voz. Esses modelos 

possibilitam a automatização da identificação e diferenciação das emoções a partir da voz 

humana, sendo capazes de extrair informações suficientes para identificar com precisão 

a emoção que uma pessoa está sentindo.  
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2 OBJETIVOS 

 
 

2.1 Objetivo Geral 

 
 

• Desenvolver um modelo de reconhecimento das emoções baseado em lógica fuzzy 
a partir da voz de falantes do português brasileiro. 

 

2.2 Objetivos Específicos 

● Identificar e selecionar os principais parâmetros vocais que serão utilizados na 

análise para o reconhecimento das emoções. 

 

● Verificar o desempenho do modelo fuzzy nas amostras vocais nas variadas 

emoções; 

 

● Verificar os parâmetros vocais indicadores para cada emoção por meio de um 

modelo de decisão baseado em lógica fuzzy; 

 

● Implementar o método baseado na lógica fuzzy como um modelo preditivo do 

estado emocional por meio da análise vocal, a partir de regras e funções de 

pertinência que relacionem as medidas vocais aos estados emocionais; 

 

● Realizar o treinamento do modelo de reconhecimento de emoções utilizando os 

dados do EmoVox-BR; 

 

● Testar e validar o desempenho do modelo de reconhecimento de emoções, 

identificando as taxas de acerto para diferentes emoções e ajustando os 

parâmetros fuzzy para otimizar a predição.  

 

● Comparar o modelo baseado em lógica fuzzy com outros métodos de 

reconhecimento de emoções para avaliar as vantagens e limitações dos diferentes 

modelos. 
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3 FUNDAMENTAÇÃO TEÓRICA 

3.1 Voz e Emoção 

 

A voz reflete a personalidade e as emoções do indivíduo, funcionando como um 

indicador do estado emocional. É na expressão emocional dos gestos e da voz que se 

encontram os primeiros indícios da linguagem como um fenômeno autêntico, já que a 

emoção é uma variação de nosso ser no mundo, e manifesta aquele mesmo poder de 

ordenar os estímulos e situações que estão no seu auge no plano da linguagem (SILVA, 

2009). A personalidade e a condição emocional influenciam a níveis de ansiedade do 

indivíduo, que por sua vez podem ser expressos no comportamento vocal. Por outro lado, 

este fato significa que as modificações e perturbações vocais podem ser entendidas como 

uma reação a um estresse emocional (GOMES et al., 2019; TRAJANO et al., 2016; 

ALMEIDA et al., 2014; COSTA et al., 2013; ALMEIDA et al., 2011). 

A voz funciona como um biomarcador, por meio da análise de indicadores e de 

características típicas da produção vocal. A inteligência artificial permite comparar 

diversas de vozes de indivíduos saudáveis para estabelecer um padrão de voz de sujeitos 

com distúrbio. A partir de então, é possível fazer a detecção e diferenciação de algumas 

características próprias. Esses indicadores são atributos que não são normalmente 

percebidos pelo ouvido humano, como características das oscilações da prega vocal e 

flutuações da ressonância do trato vocal (boca, nariz, faringe etc.) que podem variar de 

acordo com cada estado emocional (MONTICELLI; OTTA 2021). Somente por meio de 

análise de dados vocais em programas computacionais específicos para esse fim é 

possível fazer uma investigação detalhada.  

Os seres humanos dispõem de cognição social e de inteligência emocional, as 

emoções presentes em seu cotidiano podem agir diretamente, entre diversos aspectos, 

na comunicação, cognição, aprendizado e percepção. Um evento inesperado, por 

exemplo, pode ser motivado por algo que gere a sensação de felicidade, ou pode ocorrer 

uma surpresa negativa, causando sensações desagradáveis no indivíduo, como medo e 

estresse. Sem dúvida, esses acontecimentos geram estímulos neurais que afetam, entre 

outras questões, a tomada de decisão de curto prazo (VIEIRA, 2018). A emoção poderia 

ser definida como uma condição complexa e momentânea que surge em experiências de 

caráter afetivo, provocando modificações em várias áreas do funcionamento psicológico 

e fisiológico, preparando o indivíduo para a ação.  
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Segundo a literatura, as emoções podem ser divididas em abordagem discreta e 

abordagem contínua. A abordagem discreta direciona que há um grupo de seis emoções 

básicas, conhecido como “Big-Six”: raiva, felicidade, surpresa, nojo (ou desgosto), medo 

e tristeza, que, quando combinadas, geram um espectro de estados emocionais (EKMAN, 

1999). Já a abordagem contínua agrupa as emoções em diferentes eixos de dimensões. 

O modelo mais conhecido, neste sentido, é o modelo tridimensional de Schlosberg (1954). 

Cada estado emocional pode ser definido como uma combinação linear dos eixos ativação 

(ou excitação), valência (ou avaliação) e potência (ou poder). Ativação mede o grau de 

excitação do indivíduo em expressar a emoção. Valência quão positiva ou negativa é a 

emoção. Potência diz respeito à força da emoção (RUSSELL, 1980). 

O comportamento comunicativo dos indivíduos pode ser influenciado pelo estado 

emocional, sendo possível perceber inúmeras vezes as variações emocionais com base 

na escuta de suas vozes. As emoções provocam mudanças fisiológicas no corpo humano 

que se refletem na voz e fala. Variações na velocidade de fala e controle respiratório 

podem ser influenciados pelo estado emocional, essas variações possuem efeitos na 

pressão supraglótica que, por sua vez, levarão a modificação de intensidade e até da 

frequência de fonação (SUNDBERG, 2015), como também pode alterar a velocidade da 

fala, a coordenação pneumofonoarticulatória, a inteligibilidade de fala e a fluência com a 

presença de hesitações e repetições de palavras (BARBOSA; FRIEDMAN, 2007). As 

emoções de valência negativa podem provocar ressecamento da mucosa oral interferindo 

na ação de fala, afetar o controle da musculatura oral e articulação dos fonemas, e de 

poder provocar temores. Assim, o estado emocional provoca modificações na atividade 

comunicativa e não apenas na voz (SUNDBERG, 2015).  

A análise do sinal de voz é um importante método para lidar com o reconhecimento 

do sinal e interpretação das informações contidas nele. Um estudo de revisão observou 

que o reconhecimento da emoção pela voz aborda questões importantes, como os 

recursos, características e métodos utilizados nas pesquisas sobre o tema. Foram 

encontrados 64 artigos e os autores verificaram alguns dados importantes: a maioria dos 

estudos tinham como voluntários população em geral, atores e estudantes; objetivavam o 

reconhecimento de emoções; o tipo de amostra vocal era coletada a partir de simulação, 

seguida de forma natural e eliciada; um quarto dos estudos utilizaram medidas 

neurofisológicas para mapear o estado emocional dos voluntários de pesquisa; e houve 

uma maior preocupação em avaliar emoções de valência negativa. De forma geral, 

verificaram que as medidas mais utilizadas para o reconhecimento das emoções foram as 
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variações da fo, formantes, coeficientes mel-cepstrais, intensidade do sinal e taxa 

elocução da fala (VERVERIDIS, KOTROPOULOS, 2006).  

No que se refere às medidas para o reconhecimento das emoções na voz, 

Ververidis e Kotropoulos (2006) afirmam que o pitch (percepção subjetiva da fo) depende 

da tensão das pregas vocais e a pressão de ar subglótica e que pode ocorrer a seguinte 

variação: pitch elevado/agudo está relacionado à alegria ou surpresa e pitch baixo/grave 

à raiva ou desgosto. Apontam ainda que os harmônicos são importantes devido ao fluxo 

de ar não-linear no trato vocal que produz o sinal de fala, com isso verificaram, em 

espectrograma de banda larga, que a raiva e estresse apresentam fluxo de ar rápido 

próximo das pregas vestibulares, fornecem sinais de excitação adicional. Complementam 

que a forma do trato vocal muda devido ao estado emocional e os formantes são a 

representação de ressonância do trato vocal; em relação a esse tipo de parâmetro, viu-se 

que em momento de estresse ou depressão comumente não articulam sons das 

consoantes com o mesmo esforço que o estado emocional neutro. Por fim, direcionaram 

que as medidas acústicas a curto prazo (média, intervalo e desvio padrão (dp) da fo, pitch, 

intensidade, jitter e shimmer), vão repercutir na taxa de elocução e pausas entre 

enunciados, assim, encontraram que homens com raiva mostraram níveis mais elevados 

de energia e falavam mais pausadamente (VERVERIDIS, KOTROPOULOS, 2006). 

Contudo, compilaram as variações de fala de cinco das seis emoções básicas (alegria, 

tristeza, medo, raiva, surpresa, nojo): na alegria o pitch fica agudo ascendente, 

intensidade forte e pausas curtas; no medo o pitch fica agudo, intensidade forte e pausas 

curtas; na raiva o pitch fica mais agudo, intensidade mais fraca nos homens, forte nas 

mulheres e velocidade de fala aumentada para mulheres; e no nojo o pitch fica grave, 

intensidade fraca e velocidade de fala reduzida (BURKHARDT et al., 2005; VERVERIDIS, 

KOTROPOULOS, 2006). 

Alguns bancos de vozes internacionais foram desenvolvidos com intuito de analisar 

variações acústicas emocionais, dentre eles estão a base EMO-DB (BURKHARDT et al., 

2005) que foi desenvolvida na Universidade Técnica de Berlim, na Alemanha. 

Participaram 40 atores das gravações de amostras vocais, em alemão, de 6 emoções: 

raiva, tédio, nojo, medo, felicidade, tristeza e neutro. A base IEMOCAP (BUSSO et al., 

2008) foi desenvolvida na Universidade do Sul da Califórnia, nos Estados Unidos. Os 

sinais acústicos foram realizados a partir das interações dois a dois, com 10 atores (5 

homens e 5 mulheres), onde 7 eram atores profissionais e 3 eram alunos sênior no 

Departamento de Drama. As gravações foram no idioma inglês, e as emoções gravadas 
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foram: raiva, felicidade, tristeza e emissão neutra. A base SEMAINE (MCKEOWN et al., 

2012) é audiovisual e foi desenvolvida a partir de uma cooperação de Universidades da 

Inglaterra, da Holanda e da Alemanha. Participaram da coleta 150 estudantes de 

graduação e pós-graduação de oito diferentes países, todos padronizados no idioma 

inglês. As gravações foram feitas a partir de interações realizadas dois a dois, onde o 

controle ficava sempre a cargo de um dos dois. As emoções foram divididas em 27 estilos, 

dentre raiva e tristeza, além de outros comportamentos. A base RECOLA (RINGEVAL et 

al., 2013) foi desenvolvida na Suíça, e utilizou-se o idioma francês, apesar de terem 

participantes nativos de outros idiomas. Um total de 46 participantes foram submetidos a 

interações entre os dois. Antes de haver a interação entre os participantes, eles foram 

submetidos a um questionário de autoavaliação emocional conhecido como Self-

Assessment Manikin (SAM), que está relacionado com a valência das emoções. Os 

aplicadores do questionário decidiram quais participantes iriam ser induzidos com humor 

positivo ou negativo, de acordo com o SAM. Nesse, capturaram sinais acústicos e 

biológicos, onde posteriormente extraíram dados dos sinais acústicos quanto à valência e 

ativação.  

Em relação as bases nacionais, o VERBO (Voice Emotion Recognition dataBase in 

Portuguese) é um banco de vozes emocional desenvolvido em PB, que contou com a 

amostra de 12 atores brasileiros (6 homens e 6 mulheres), que gravaram 14 frases pré-

definidas e adaptadas para o idioma, representando 7 emoções: alegria, nojo, medo, raiva, 

surpresa, tristeza e estado neutro. No total, foram realizadas 1167 gravações. A validação 

foi conduzida por três psicólogos, com resultados que apontaram uma concordância de 

65% pelo teste Kappa de Fleiss. As emoções mais facilmente reconhecidas foram raiva e 

alegria, enquanto nojo e surpresa apresentaram maiores desafios de identificação 

(TORRES NETO et al., 2018). 

Desenvolvido pela Universidade Estadual do Rio de Janeiro, o emoUERJ incluiu 8 

atores, sendo 4 homens e 4 mulheres, que gravaram um total de 377 áudios. Esses áudios 

foram baseados em 10 frases, escolhidas livremente pelos participantes, representando 

quatro emoções: felicidade, raiva, tristeza e estado neutro. O processo de validação incluiu 

a criação de um conjunto de testes composto por vídeos coletados em uma plataforma de 

vídeo online com amostras que representavam variações linguísticas regionais do Brasil, 

como baiana, mineira, carioca e gaúcha, organizadas por gênero e emoção (raiva, 

felicidade e estado neutro) e utilizou como medida vocal o MFCC. Os resultados 

mostraram melhor desempenho na variação carioca (40% de acurácia) e pior na gaúcha 
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(7%), com vozes femininas sendo mais bem reconhecidas e maior dificuldade em 

emoções sutis, como tristeza (GERMANO et al., 2021).  

O banco de vozes em PB apresentado no estudo Kingeski (2019) foi desenvolvido 

com gravação realizada em estúdio, abrangendo seis emoções básicas: felicidade, 

tristeza, raiva, nojo, medo e surpresa. Além das transmissões causadas por meio de 

vídeos e atividades, o banco incluiu áudios encontrados de vídeos da internet e de filmes 

brasileiros e estrangeiros dublados em PB. No processo de validação, 200 frases foram 

selecionadas e avaliadas por 20 pessoas aleatórias, que identificaram as emoções 

apresentadas nos áudios, com um desempenho médio de acerto superior a 79%. 

Poucas informações são fornecidas por essas bases sobre outros tipos de medidas 

utilizadas, como: aprofundamento nas medidas perceptuais por parte de juízes, 

padronização da forma de coleta, além da possibilidade de encontrar reconhecimento de 

padrões comuns a cada uma das emoções e poder relacionar ao impacto no ouvinte. De 

toda forma, ainda não há um consenso a respeito de um atributo acústico, de qualidade 

vocal ou prosódicos que sinalize diferentes estados emocionais. Assim, a definição de um 

atributo que represente de forma significativa informações relacionadas ao 

comportamento fisiológico dos estados emocionais é uma busca crucial. 

Recentemente um banco de vozes brasileiro nas variações das emoções 

(EMOVOX- BR) foi desenvolvido e validado com 182 áudios que apresentaram altos níveis 

de concordância inter-juízes, representando emoções como alegria, medo, tristeza, raiva, 

surpresa, nojo e estado neutro (LIMA, 2022). Construído remotamente com a participação 

de 26 atores que simularam emoções em frases foneticamente balanceadas, o EmoVox-

BR não apenas estabelece um repositório de vozes nas variações emocionais, mas 

também fornece um levantamento detalhado das características vocais e prosódicas que 

distinguem as emoções, além de envolver uma ampla variedade de emoções, essencial 

para estender o alcance e a aplicabilidade dos bancos de vozes. O julgamento perceptivo-

auditivo, conduzido por fonoaudiólogos especialistas, identificou marcadores vocais 

específicos de cada estado emocional, enriquecendo o entendimento de medidas vocais 

das emoções na população brasileira. A validação do banco se destaca pela qualidade 

dos áudios e sua confiabilidade, tornando-o uma ferramenta valiosa para aplicações em 

contextos clínicos, estudos populacionais e desenvolvimento tecnológico, como sistemas 

de reconhecimento emocional. Além disso, sua diversidade e aplicabilidade prática 

ampliam seu impacto nas áreas de fonoaudiologia e computação afetiva, contribuindo 

significativamente para a pesquisa e inovação em cenários reais. 
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3.2 Modelos de reconhecimento a partir da Voz 

A análise do sinal de voz é um importante método para realizar o reconhecimento 

das emoções e forte indicador para diversos tipos de transtornos mentais. Embora ainda 

esteja em estágios iniciais, essa área tem mostrado promessa como uma abordagem não 

invasiva e objetiva para auxiliar na detecção precoce e no monitoramento de transtornos 

mentais. Algoritmos de inteligência artificial, como os que utilizam a lógica fuzzy e/ou 

métodos de aprendizado de máquinas são então empregados para tentar identificar os 

padrões distintos associados a cada transtorno, permitindo que os sistemas 

compreendam o estado emocional do falante (SINGH; GOEL, 2022). 

A importância de técnicas computadorizadas tem sido cada vez mais enfatizada. 

Para melhorar as habilidades de comunicação dos profissionais de saúde com seus 

pacientes, existem sistemas que utilizam programas de reconhecimento de padrões que 

analisam a emoção presente no rosto e voz do profissional de saúde ou do paciente 

(MARTINS et al., 2020). A avaliação do estado emocional que os profissionais de saúde 

estão nas consultas pode facilitar o desenvolvimento de empatia com os pacientes.  

O reconhecimento a partir da voz é essencialmente um problema de 

reconhecimento de padrões, realizado a partir de uma sequência de parâmetros que 

caracterizam o sinal de voz. O reconhecimento de padrões que é naturalmente aprendido 

pelos humanos vem sendo aprimorado por técnicas de inteligência artificial que tentam 

representar o padrão como um vetor numérico, chamado de vetor de similaridade. O 

padrão será catalogado de acordo com a maior semelhança entre ele e o vetor 

representativo. Isso pode ser alcançado por redes que se ajustam a novas informações, 

fornecendo boas respostas, mesmo com dados ausentes ou confusos (YU et al., 2019).  

Um sistema de reconhecimento que utiliza a voz é capaz de transformar um sinal 

de voz em uma sequência de dados com a qual uma máquina irá reconhecer por critérios 

próprios as emoções rotuladas. Esse reconhecimento começa na fase de captação do 

sinal de áudio. Na fase de pré-processamento, existe a formação de um vetor 

característico do padrão a ser analisado e na eliminação de sinais redundantes. Na fase 

de processamento, inicia-se o reconhecimento de padrões (PARTILA et al., 

2015). Portanto, o reconhecimento de emoções por meio da voz poderá ser eficaz quando 

realizado por modelos que considerem o conhecimento humano e permitam a tomada de 

decisões com base em processos que consideram a incerteza e a complexidade das 

emoções como a lógica fuzzy.  
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Esses processos aumentam a precisão final na detecção do emocional do 

indivíduo. Isso permite maior feedback sobre como as emoções são manifestadas e uma 

possível melhora na empatia e relacionamento com o outro, permitindo melhores 

resultados e adesão ao tratamento, aumentando o grau de satisfação do paciente 

(HEGDE et al., 2018). Dessa forma, observa-se que, na literatura científica, existe a 

necessidade de construção de sistemas computacionais que utilizem modelos de 

inteligência artificial para reconhecer os padrões comuns a cada uma das emoções 

(WANG; JO, 2007; EDDINS; SHRIVASTAV, 2013). A construção dessas ferramentas 

poderá auxiliar o clínico nos procedimentos de avaliação e monitoramento de cada estado 

emocional, o qual pode aumentar as chances de instalação dos desvios da voz. 

Do ponto de vista social, a importância da expressão emocional por meio da 

comunicação falada perpassa por meio da intenção do discurso, é fundamental para um 

poderoso sistema de reconhecimento por parte do ouvinte (SCHERER, 2003), expressa 

o estado emocional, sinaliza o quanto se percebe e aceita opiniões diferentes, bem como, 

como se antecipa o efeito do que se diz e da forma como se transmite a mensagem a 

quem se ouve. De forma geral, é um importante regulador social, além de, juntamente 

com a parte verbal, compõe a competência comunicativa (BORREGO; BEHLAU, 2018).   

A voz provoca julgamentos, que mesmo acurados ou não, influenciam as interações 

sociais, a escolha de parceiros, líderes e até mesmo opções de consumidores 

(KLOFSTAD et al., 2012; TIGUE et al., 2012). Uma primeira impressão ruim pode ser 

provocada simplesmente por um desvio vocal presente (AMIR; LEVINE-YUNDOF, 2013) 

e um indivíduo portador de um distúrbio de voz pode ter dificuldades de expressão 

emocional e relacionais que não tem a ver com a sua personalidade ou com as emoções 

que está experimentando. Julgamento psicodinâmico, impacto da voz do falante no 

ouvinte, é um bom exemplo do quanto nos baseamos na voz para inferir os mais variados 

aspectos do falante. 

Com a evolução da inteligência artificial e a recente popularidade do aprendizado 

de máquinas e do aprendizado profundo, os sistemas de reconhecimento a partir da voz 

estão se tornando mais poderosos e robustos. O treinamento tornou-se mais rápido e o 

número de falantes aptos a serem diferenciados tornou-se maior (NGUYEN; PAPRZYCKI; 

VOSSEN, 2024). Isso abre a oportunidade de treinar um sistema efetivo para 

reconhecimento das emoções a partir da voz e identificar os diferentes estados 

emocionais a partir dele, pois sistemas de treinamento podem aprender com uma 

infinidade de sinais de áudio (MICHALSKI et al., 2013; LECUN et al., 2015). 
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Para a efetiva separação das emoções, utiliza-se a combinação de métodos de 

extração e reconhecimento de características do sinal vocal por meio de sistemas de 

inteligência artificial. Estes sistemas são responsáveis por produzir uma representação do 

sinal de voz na identificação de emoções, o que pode gerar impacto de inovação 

tecnológica em diversos tipos de mercado (PARTILA et al., 2015).  

Algumas possibilidades ilustram a ampla aplicabilidade desses sistemas na 

detecção de emoções e promovem avanços em diferentes setores. Em empresas de 

atendimento ao cliente, é possível identificar o nível de satisfação ou estresse do cliente 

em atendimento, além de verificar se o funcionário teve influência sobre aquele estado 

emocional. Em profissões que geram maior pressão emocional, como policiais, bombeiros 

e militares, esses sistemas podem ajudar a evitar ordens ou atitudes influenciadas pelo 

estado emocional. Outra aplicação está em sistemas de acesso por voz a ambientes 

privativos, permitindo identificar se uma pessoa está sendo coagida a acessar o local. Em 

videoconferências com tradução automática, esses sistemas podem detectar não apenas 

o que é falado, mas também como é falado, reduzindo desconfortos nas interações. Na 

área da saúde, o reconhecimento de emoções pela voz pode auxiliar na detecção de sinais 

de estresse, ansiedade ou depressão em pacientes. Assistentes de voz inteligentes 

também podem reconhecer as emoções dos usuários, tornando as interações mais 

personalizadas e empáticas. No campo do entretenimento, a detecção de emoções pela 

voz pode melhorar a experiência do usuário em jogos, adaptando a narrativa conforme as 

reações emocionais do jogador. Além disso, essas tecnologias impulsionam o 

desenvolvimento de dispositivos de tecnologia assistiva, como os de Comunicação 

Alternativa e Ampliada (CAA), ao adaptar a comunicação ao contexto emocional do 

usuário, promove maior expressividade e qualidade nas interações sociais e terapêuticas, 

especialmente em indivíduos com dificuldade severa de comunicação (GALES, 2008; 

ZHU; WU, 2020; LI; LIN, 2021; IRYAN et al., 2022). 

O processo de reconhecimento de emoções a partir da voz envolve as seguintes 

etapas: Pré-processamento do áudio; Extração de características do sinal; Construção do 

modelo; Treinamento do modelo; Validação e ajuste e Teste do modelo (CIPRIANO, 2001; 

ZHANG et al., 2015). Na etapa de pré-processamento acontece a conversão 

analógico/digital, redução do ruído, filtragem e, se necessário, a segmentação em 

unidades menores, como frases ou palavras. Na segunda etapa são extraídos parâmetros 

vocais relevantes, que podem incluir medidas de f0, de intensidade, medidas de ruído 

glótico, medidas de intensidade, medidas cepstrais e mel-cepstrais, medidas formânticas 
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e medidas prosódicas que podem ajudar a representar as características emocionais na 

voz (VERVERIDIS e KOTROPOULOS, 2006; PATEL et al., 2011). A terceira etapa 

envolve a construção de um modelo de inteligência artificial que será treinado para 

reconhecer as emoções presentes na voz com base nas características extraídas. 

Diferentes algoritmos, como os utilizam a lógica Fuzzy, e/ou métodos de aprendizado de 

máquinas como o Support Vector Machine (SVM), Redes Neurais Artificiais (RNA), Redes 

Naive Bayes (RNB), Random Forest, entre outros, podem ser usados para esse fim (DE 

LOPE; GRAÑA, 2023). Em seguida, o modelo é treinado usando o conjunto de dados 

rotulados para cada emoção. Durante o treinamento, o modelo ajusta seus parâmetros 

para aprender a mapear as características acústicas para as emoções correspondentes. 

Após o treinamento, é essencial validar o desempenho do modelo usando um conjunto de 

dados de validação separados. Isso ajuda a avaliar a precisão e a eficácia do modelo. Se 

necessário, o modelo pode ser ajustado e re-treinado para melhorar seu desempenho. 

Finalmente, o modelo é testado em um conjunto de dados de teste independente para 

avaliar sua capacidade de reconhecer emoções na voz de novos exemplos (HUANG et 

al., 2001). 

É importante ressaltar que a precisão do reconhecimento de emoções na voz pode 

variar de acordo com a quantidade e qualidade do conjunto de dados de treinamento, a 

escolha do algoritmo/modelo e as características acústicas selecionadas. Além disso, as 

emoções são complexas e podem ser expressas de maneiras sutis e variadas, o que pode 

representar um desafio adicional na tarefa de reconhecimento. No entanto, com avanços 

contínuos em tecnologias de processamento de sinais, uso da lógica e do aprendizado de 

máquina, espera-se que o reconhecimento de emoções na voz continue melhorando e 

encontre aplicações práticas em diversas áreas (SINGH; GOEL, 2022). 

Considerando a importância da análise da voz e suas modificações nos estados 

emocionais e transtornos mentais, a utilização de técnicas computacionais avançadas 

permite a investigação dos aspectos vocais como uma ferramenta promissora para o 

rastreio de forma objetiva dos sintomas das alterações psicológicas, assim, pode contribuir 

para otimizar o diagnóstico de diversos transtornos. 

Um modelo computacional que consiga verificar os efeitos das emoções e a 

definição de características acústicas próprias de cada estado emocional por meio de 

técnicas de reconhecimento de padrões possibilita de forma efetiva a separação das 

emoções. Por meio de um sistema baseado em regras fuzzy, é possível traduzir a 

variabilidade das características acústicas em graus de pertinência para diferentes 
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emoções. Essas regras, organizadas em um modelo fuzzy, agregam informações de 

forma gradativa e atribui uma classificação emocional ao sinal analisado, mesmo em 

casos de dados limitados. Além disso, o sistema fuzzy torna-se eficiente em termos 

computacionais e com potencial para ser ampliado com técnicas de pré e pós-

classificação (MORAES, 2002). Assim, mesmo diante de incertezas ou sobreposição entre 

estados emocionais, o sistema oferece uma resposta fundamentada nos graus de 

compatibilidade calculados, aumenta a qualidade e robustez das classificações e permite 

uma identificação robusta da emoção predominante em cada sinal vocal.  

 

3.3 Medidas de voz 

A extração de medidas acústicas e prosódicas da voz é uma ferramenta que 

fornece informações quantitativas e qualitativas do sinal sonoro e se torna um importante 

método para realizar o reconhecimento do sinal vocal e interpretação das informações 

contidas nele (TANDEL et al., 2020). Elas são amplamente utilizadas em pesquisas devido 

à sua objetividade e por extrair características do sinal de áudio responsáveis por gerar 

informações e traçados no formato de onda sonora. O primeiro passo em qualquer técnica 

de extração de características vocais é extrair e identificar os componentes do sinal de 

áudio que são adequados para identificar o conteúdo linguístico e descartar todas as 

outras partes que transportam informações desnecessárias como por exemplo ruído de 

fundo. 

As medidas consideradas mais robustas para a discriminação de falantes e que 

oferecem uma perspectiva técnica e mensurável dos aspectos emocionais da voz são 

relativas as medidas de f0,  Jitter, Shimmer, HNR, GNE, Medidas Cepstrais (CPPS) e Mel-

Cepstrais (MFCC) relacionadas a avaliação acústica, e as medidas de f0, intensidade e 

duração, relacionadas a avaliação acústica- prosódicas, (LOPES et al., 2019, BARBOSA; 

CONSTANTINI, 2020) e a interpretação desses sinais permite entender a fisiologia da 

produção vocal.  

As medidas acústicas tradicionais oferecem uma visão objetiva sobre a qualidade 

da voz. Esses parâmetros capturam variações na altura vocal, estabilidade e qualidade 

do som que podem indicar emoções específicas. A fo é uma medida que fornece os 

números de ciclos glóticos produzidos em um segundo. Além de fazer parte da avaliação 

acústica tradicional, a fo também desempenha um papel crucial na análise acústico-

prosódica. Suas perturbações ou variabilidades ciclo a ciclo, de frequência e amplitude 
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são denominadas jitter e shimmer respectivamente, os quais apresentam-se alterados em 

pacientes disfônicos (TEIXEIRA et al., 2013). A HNR, que contrasta com o sinal regular 

das pregas vocais e do trato vocal, fornece um índice que relaciona o componente 

periódico (harmônico) versus o componente aperiódico (ruído) da onda acústica. Em 

outras palavras, essa medida analisa presença de ruído no sinal vocal (FERNANDES et 

al., 2018). O GNE é responsável pelo cálculo do ruído em uma série de pulsos produzidos 

pela vibração das pregas vocais na laringe. Portanto, esse parâmetro indica se o sinal 

vocal é proveniente da oscilação das pregas vocais ou da corrente de ar gerada ao longo 

do trato vocal. Por fim, as medidas CPPS e MFCC tem a função de evidenciar o quanto 

os harmônicos advindos da fo são individualizados e se destacam em relação ao nível de 

ruído presente no sinal (LOPES et al., 2018; CONSERVA 2022; LOPES et al., 2019). Por 

esse motivo são consideradas as medidas importantes e confiáveis para avaliação vocal 

com ampla faixa de desvio e têm sido empregadas como parâmetros de classificação, em 

sistemas de reconhecimento a partir da voz, sistemas de identificação e verificação de 

locutor, como também na discriminação entre sinais de vozes afetados por patologias 

laríngeas (FECHINE, 2000; COSTA, 2008; BARAVIEIRA, 2016). 

A análise dos aspectos acústico-prosódicos das emoções constitui uma área de 

crescente interesse nas ciências da fala e da comunicação, oferecendo novas 

perspectivas sobre como as emoções são expressas e percebidas por meio da voz (OH, 

et al., 2023; FILIPPA et al., 2022). A investigação da prosódia emocional envolve tanto a 

forma como as modulações acústicas são produzidas quanto a maneira como são 

percebidas, principalmente no comportamento dos parâmetros acústicos de fo, duração e 

intensidade, proporcionando uma compreensão mais ampla da relação entre os processos 

linguísticos e emocionais na comunicação humana, ultrapassando o conteúdo semântico 

das palavras (SILVA; BARBOSA, 2017).  

A fo desempenha um papel central tanto na análise acústica quanto na análise 

acústico-prosódica da fala, porém, o foco e a aplicação da fo em cada tipo de análise são 

diferentes. Na análise prosódica a fo é avaliada de maneira mais dinâmica, focando em 

sua variação ao longo do tempo, em conjunto com outros aspectos prosódicos, como 

intensidade e duração (ARVANITI, 2020). A intensidade refere-se ao volume ou nível de 

pressão sonora da fala, ou seja, o quão alto ou baixo um som é produzido. É um aspecto 

fundamental da prosódia, pois está diretamente relacionado à forma como as emoções 

são expressas vocalmente (ARVANITI, 2020). A duração refere-se ao tempo que uma 

unidade de fala, como uma sílaba, palavra ou frase, é mantida. Ela pode ser entendida 



 

 

34 

 

como o tempo total gasto em uma produção vocal e também varia conforme o estado 

emocional (LARROUY-MAESTRI, 2023).  

No estudo de Aguiar e colaboradores (2024), os autores investigaram a relação 

entre medidas acústico-prosódicas e a discriminação de diferentes estados emocionais 

em falantes do PB. Utilizaram 182 sinais de áudio que compõem o banco EmoVox-BR e 

que contém dados coletados de falantes nativos com expressão das emoções básicas 

como alegria, tristeza, medo, raiva, surpresa, nojo e emissão neutra. As análises focaram 

nos parâmetros de duração, fo e intensidade. Os resultados indicaram variações 

significativas, destacou que o nojo apresentou maior duração e taxa de elocução, 

enquanto a alegria revelou menor duração e maior intensidade. O medo foi associado a 

menor variabilidade na duração e valores reduzidos de intensidade, enquanto a raiva 

exibiu a maior intensidade vocal. A surpresa apresentou os maiores valores de fo. 

Concluiu-se que tais medidas acústico-prosódicas são ferramentas eficazes para 

diferenciar as emoções e forneceu suporte para aplicações em tecnologias de 

reconhecimento emocional e no entendimento da expressividade vocal no PB. 

A análise cepstral demonstra ser uma possibilidade para análise de sinais com 

maior irregularidade, visto que as medidas cepstrais são capazes de determinar a f0 e 

produzir estimativas de aperiodicidade e/ou ruído aditivo sem a necessidade de identificar 

limites de ondas sonoras individuais (LOPES et al., 2019). Os MFCC são considerados 

uma forma de análise cepstral ajustada para modelar a audição humana com base na 

escala Mel e têm sido amplamente aplicados em estudos de reconhecimento a partir da 

voz (MA; FOKOUÉ, 2014; PARTILA et al. 2015; BARAVIEIRA, 2016; FANG et al., 2019; 

TANDEL et al., 2020). Esses parâmetros são uma representação paramétrica do espectro 

de frequências do sinal de voz e surgiram devido a estudos que mostraram que a 

percepção humana das frequências de tons puros ou de sinais de voz que não seguem 

uma escala linear. Como o sinal de fala consiste em tons com frequências diferentes, para 

cada tom com uma frequência real f, medida em Hz, um tom subjetivo é medido na escala 

mel. O mel é uma unidade de medida da frequência percebida de um tom (COSTA et al., 

2008).  

Um estudo feito por Umapathy e colaboradores (2005) enfatiza a importância das 

medidas cepstrais como indicadores confiáveis da qualidade vocal, que podem ser mais 

eficazes do que as medidas acústicas tradicionais e relatou uma precisão geral de 93,4% 

de acurácia usando uma análise discriminante linear para detectar amostras de fala 

contínuas do banco de dados de distúrbios de voz do Massachusetts Eye and Ear 
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Infirmary (MEEI). A tecnologia de reconhecimento de voz baseada em MFCC tem sido 

destacada como importante para aplicativos de inteligência artificial incorporados, 

aumentando a velocidade e a precisão em dispositivos como alto-falantes inteligentes e 

smartphones (WANG et al., 2024). A integração do MFCC no processamento em tempo 

real possibilita o reconhecimento da voz eficiente mesmo em ambientes sem conexão de 

rede, evidenciando sua versatilidade (WANG et al., 2024). Contudo, embora amplamente 

reconhecidos por sua eficácia no reconhecimento de a partir da voz, alguns pesquisadores 

apontam a limitada interpretabilidade dos MFCC como um desafio, restringindo seu uso 

em diagnósticos clínicos e aplicações específicas (TRACEY et al., 2023). 

Apesar do sucesso dos estudos mencionados, os sistemas para reconhecimento 

das emoções a partir do sinal da voz ainda enfrentam desafios relacionados à definição 

de quais parâmetros vocais são mais eficazes para capturar as emoções de forma precisa 

e universal (LAUSEN; HAMMERSCHMIDT, 2020; TRACEY et al., 2023). Além disso, 

diferenças linguísticas e culturais podem influenciar a manifestação vocal das emoções, 

tornando necessário um aprofundamento nas pesquisas para identificar as medidas mais 

adequadas em diferentes idiomas e contextos. Essa variabilidade representa um 

obstáculo, mas também uma oportunidade para desenvolver modelos mais robustos e 

adaptáveis, capazes de ajustar suas respostas conforme o estado emocional do usuário 

para promover interações mais humanas e eficientes.  

 

3.4 Reconhecimento das emoções a partir da voz 

O estado emocional da mente humana se expressa por diferentes formas, incluindo 

sinais de voz. O reconhecimento da emoção pode ser realizado por meio da identificação 

das características vocais nas variadas classes de emoções. Normalmente, um sistema 

supervisionado pré-treinado com características vocais de cada emoção como entrada e 

classe de emoção como saída é usado para determinar a classe de emoções com objetivo 

de criar um modelo emocionalmente inteligente com capacidades além do ser humano, 

que entende o sentimento do usuário e gera uma resposta de acordo (SINGH; GOEL, 

2022). O reconhecimento automático de emoções por meio da voz é realizado 

processando-se um arquivo de áudio, identificando as características da voz contidas nos 

sinais de áudio e classificando-a como pertencente a alguma emoção conhecida (IRIYA, 

2014).  
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Alguns estudos utilizaram métodos de inteligência artificial e as dimensões do 

espaço de emoções para o reconhecimento por meio da voz. Tato e colaboradores (2002) 

utilizaram um sistema de reconhecimento a partir da voz de diferentes naturezas para as 

dimensões da avaliação e da ativação para identificar cinco emoções: felicidade, raiva, 

tédio, neutro e tristeza. Os resultados mostraram que ao se utilizar um único conjunto de 

parâmetros de voz em um único sistema, as emoções mais próximas, principalmente na 

dimensão da ativação, tendem a se confundir frequentemente. No estudo de Lugger e 

Yang (2008), utilizam seis emoções: felicidade, raiva, tédio, nojo, medo e tristeza, que são 

reconhecidas por meio de um sistema de reconhecimento hierárquico com três estágios, 

passando pelas dimensões: ativação, domínio e avaliação. Os autores comparam o 

desempenho do sistema sequencial com o sistema de um único estágio, encontrando uma 

melhoria considerável de 14%. Xiao et al (2007) apresentam um sistema hierárquico com 

as mesmas seis emoções, porém a teoria de emoções é levada em conta apenas para a 

dimensão da ativação. Os autores ainda utilizam um primeiro estágio adicional para 

separação prévia do gênero, aumentando o desempenho em cerca de 3% em relação ao 

cenário independente do gênero. 

Eventualmente, com a crescente popularidade das RNA em todos os campos de 

pesquisa, muitas outras abordagens de aprendizado de máquinas têm sido investigadas, 

como em Mirsamadi et al. (2017), onde Convolutional recurrent Neural Network (CRNN) 

foram aplicadas para extrair recursos, bem como para tarefas de reconhecimento, 

alcançando uma taxa de acurácia de 61,8% nas cinco emoções representadas (raiva, 

felicidade, frustração, tristeza e neutralidade) na base IEMOCAP. 

Em uma revisão de literatura realizada por Singh e Goel (2022), alguns modelos 

foram avaliados pelos pesquisadores para o reconhecimento a partir da voz em busca da 

melhor precisão. Os sistemas de reconhecimento comumente utilizados foram SVM, 

Gaussian Mixture Models (GMM), Hidden Markov Models (HMM), KNearest Neighbors 

(KNN) e RNA. Pode-se concluir que 54,45% dos 152 artigos analisados, utilizaram o SVM 

como sistema e a precisão de 98% foi alcançada usando recursos MFCC no banco de 

dados EMODB. A maioria dos artigos utilizaram os MFCC ou MFCC com a combinação 

de outros recursos acústicos para reconhecimento de emoções.  

No estudo de Kerkeni et al. (2019), os autores apresentam dois modelos de 

aprendizado de máquina para o reconhecimento de sete emoções distintas: alegria, raiva, 

tristeza, surpresa, medo, desgosto e emissão neutra. O estudo faz uso de atributos 

baseados em modulação AM-FM e análises não-lineares combinando MFCC baseados 
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em energia de Teager (TEMFCCs) com decomposição do modo empírico. Os sistemas 

de aprendizado de máquina utilizados foram CRNN e o SVM. Foram utilizadas duas bases 

de dados, uma em Espanhol, e outra em Alemão. Para a diferenciação do sinal da voz, se 

torna de grande importância a extração de parâmetros cepstrais e de modulação AM-FM. 

Baseando-se nos resultados e análises dos experimentos do estudo em questão, o autor 

conclui que para que um sistema baseado em CRNN tenha bons resultados de 

reconhecimento de emoções, é necessária uma maior extração de parâmetros e um 

tempo maior de treinamento do sistema. Já o sistema SVM demonstrou um maior 

potencial para seu uso prático devido a essas características.  

O trabalho apresentado por Jain et al. (2020) aborda um sistema de 

reconhecimento de emoções a partir da utilização do SVM. Neste estudo, foram utilizados 

os estados emocionais de tristeza, raiva, medo e felicidade para o reconhecimento das 

emoções a partir de amostras vocais em uma base de dados em alemão. Os parâmetros 

extraídos de cada amostra foram energia, pitch, MFCC, Coeficientes Cepstrais de 

Predição Linear (LPCCs) e taxa de fala. O autor, por fim, concluiu que, a partir dos 

resultados obtidos em seus experimentos, a extração dos MFCC junto ao sistema 

alcançou a melhor taxa de 93% de acurácia para o reconhecimento de emoções.  

Sandhya et al. (2020) propõem em seu estudo métodos para a identificação de 

locutores sob a influência de emoções na voz. O autor argumenta que sistemas de 

identificação de locutores funcionam bem em condições neutras, mas se deterioram em 

condições emocionais, devido ao impacto que as emoções causam ao sinal de voz. Neste 

estudo foram extraídas diversas características cepstrais da voz como os MFCC e 

TEMFCCs a fim de analisar quais apresentam melhores resultados entre diversos 

sistemas. Em seus resultados, o autor obtém uma melhor acurácia de 100% em condições 

neutras e 87,0967% em condições emocionais.  

Em seu trabalho, Iriya (2014) aborda o reconhecimento das emoções nos sinais de 

voz com diferentes parâmetros como fo, energia de curto prazo, formantes e coeficientes 

cepstrais. Foram utilizados diversos modelos para a comparação entre eles, tais como 

KNN, SVM, GMM e HMM, tendo o GMM como o principal devido ao seu desempenho e 

custo computacional. Iriya fez o uso de um sistema de reconhecimento de estágio único e 

um sistema sequencial em três estágios baseado na teoria de emoções da área de 

psicologia e conseguiu uma taxa de 83% de acurácia na identificação das emoções raiva, 

tristeza, tédio e neutra.  
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O trabalho realizado por Jahangir et al. (2021) trata a respeito de aprendizagem 

profunda no contexto do reconhecimento de emoções a partir da voz. Nele são analisadas 

diversas características extraídas do sinal vocal e como eles se comportam em diferentes 

abordagens de aprendizagem profunda. O autor menciona que o MFCC baseado em 

energia de Teager (TEMFCC) é indicado para detectar estresse na voz com base em suas 

observações apresentadas no estudo. Ele também afirma que os MFCC são as mais 

eficazes para o reconhecimento das emoções. 

Em um estudo de Iqbal e colaboradores (2020) propôs uma técnica eficiente e 

precisa para o reconhecimento de emoções baseado na voz em quatro emoções básicas 

(tristeza, raiva, felicidade e neutralidade) usando uma RNA com regularização bayesiana. 

Os experimentos são conduzidos em um banco de dados em Alemão com 1470 amostras 

vocais contendo quatro emoções básicas com 500 amostras na emoção de raiva, 300 

amostras na emoção felicidade, 350 amostras da neutralidade e 320 amostras de 

emoções tristes. Foram extraídas as medidas de frequência, pitch, loudness e formantes 

da voz de cada emoção para reconhecer as quatro emoções básicas da voz. A 

metodologia proposta alcançou 95% de acurácia no reconhecimento de emoções, que é 

a mais alta em comparação com outras técnicas de última geração no domínio relevante. 

O artigo de Trinh Van et al. (2022) apresentou uma pesquisa sobre reconhecimento 

de quatro emoções (raiva, felicidade, tristeza e neutralidade) pela voz utilizando redes 

neurais profundas, como CRNN e Gated Recurrent Unit (GRU) no banco de vozes 

IEMOCAP. Os parâmetros de recursos usados para o reconhecimento incluem os MFCC 

e outros parâmetros relacionados ao espectro e à intensidade do sinal da voz. Os 

resultados mostraram que o modelo GRU apresentou a acurácia de reconhecimento de 

97,47%. 

Sharma (2021) apresentou um estudo comparativo de dois sistemas criados para 

reconhecimento das emoções calma, felicidade, tristeza, raiva, medo, surpresa, nojo e 

neutra. Foram criados dois modelos para reconhecimento de emoção por meio da voz na 

base de dados em inglês Ryerson Audio-Visual Database of Emotional Speech and Song 

(RAVDESS). Os MFCC foram utilizados como parâmetros dos arquivos de áudio. O 

primeiro modelo foi criado usando uma RNA Multi-Layer Perceptron (MLP) que forneceu 

uma acurácia de 57,29%. O segundo modelo criado foi de uma LSTM que apresentou 

acurácia de 92,88%.  

Gangani et al. (2024) investigaram o reconhecimento das emoções (raiva, calma, 

nojo, medo, felicidade, tristeza, angústia, surpresa e a emissão neutra) a partir da voz 
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utilizando CRNN, explorando propriedades acústicas, como MFCC, pitch e intensidade. 

Três modelos foram propostos: redes neurais recorrentes com unidades LSTM, GRU e 

CRNN. Os modelos foram avaliados com dados dos bancos de vozes em inglês 

RAVDESS e TESS, e os resultados indicaram que o CRNN superou outros métodos em 

precisão e eficiência no reconhecimento de emoções. O modelo CRNN integrou a 

extração de características espectrais e análise temporal, alcançando uma precisão média 

ponderada de 84%. Os autores concluíram que as CRNN foram promissoras para capturar 

as variações emocionais complexas. 

Com objetivo de implementar um sistema para reconhecimento de quatro estados 

emocionais a partir de sinais de áudio, Bhakre e Bang (2016) consideraram diferentes 

características como pitch, energia, Zero Crossing Rate (ZCR) e MFCC de 2000 

enunciados de um banco vozes elaborado. A RNB foi utilizada para reconhecer o sinal de 

áudio em quatro emoções diferentes. Neste sistema obtiveram a acurácia para raiva, 

felicidade, tristeza e neutralidade de 81%, 78%, 76% e 77% respectivamente. Os 

resultados extraídos mostram que o sistema proposto foi capaz de reconhecer emoções 

em tempo real com um conjunto pequeno de dados. 

Embora os métodos de aprendizado de máquina, amplamente utilizados em 

diversos estudos, apresentem benefícios significativos, como alta precisão e capacidade 

de identificar padrões complexos em grandes volumes de dados, o uso da lógica se 

sobressai por sua capacidade única de lidar com a incerteza e imprecisão inerentes ao 

comportamento humano e aos fenômenos naturais, como as emoções. A lógica fuzzy 

permite uma generalização mais ampla, uma vez que não exige classificações rígidas ou 

exatas, mas trabalha com conjuntos de possibilidades e graus de pertinência. Essa 

característica é vantajosa em áreas como o reconhecimento de estados emocionais, onde 

as fronteiras entre categorias são frequentemente tênues, garantindo uma modelagem 

mais flexível e adaptável à complexidade do mundo real. 

3.5 Teoria dos Conjuntos Fuzzy e Lógica Fuzzy 

A Teoria dos Conjuntos Fuzzy (ou Fuzzy Set Theory) é uma generalização da 

Teoria dos Conjuntos Clássica e visa modelar a incerteza sobre a classificação de 

elementos a um determinado conjunto.  

Na Teoria dos Conjuntos Clássica, cada conjunto A de um universo X é definido 

pela função 𝑋𝛢 : 𝑋 → {0,1}, que é dada por: 
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𝑋𝛢(𝑥) = {
1, 𝑠𝑒𝑥 ∈ 𝛢
0, 𝑠𝑒𝑥 ∉ 𝛢

 (1) 

onde 𝑥 ∈ 𝑋. 

Zadeh (1965) propôs a seguinte definição: seja X um universo, com um elemento 

genérico de X denotado por x. Um conjunto fuzzy A em X é caracterizado por uma função 

de pertinência 𝑋𝛢(𝑥) que associa a cada ponto em X um número real no intervalo [0,1], 

onde 𝑋𝛢(𝑥)representa para x o seu grau de pertinência em A. Quando ∃ x X, tal que 𝑋𝛢(𝑥)) 

= 1, então A é dito ser normalizado. Quando 𝑋𝛢(𝑥) = 1 diz-se que x é compatível com o 

conceito expresso por A em X e quando 𝑋𝛢(𝑥) = 0, diz que x é incompatível com A em X. 

Essa definição de conjuntos fuzzy estabelece a base matemática para a 

representação de conceitos vagos ou subjetivos que possibilitam a construção de modelos 

capazes de lidar com informações nebulosas. Como nos conjuntos clássicos, é possível 

realizar operações sobre esses conjuntos (união, intersecção e complemento). É possível 

realizar a união e intersecção entre conjuntos fuzzy utilizando-se t-normas e t-conormas 

aplicados sobre as funções de pertinência dos conjuntos de entrada. A partir de uma t-

norma (operador binário) pode-se definir a intersecção entre dois conjuntos fuzzy, 

enquanto a t-conorma pode-se definir a união entre dois conjuntos fuzzy. Algumas t-

normas e t-conormas são apresentadas na Tabela 1: 

Tabela 1 - Principais t-normas e t-conormas 

t-norma t-conorma 

min (a,b) max (a,b) 

a.b a + b - ab 

max (a + b - 1, 0) min (a + b, 1) 
{𝑎, 𝑠𝑒𝑏 = 1𝑏, 𝑠𝑒 𝑎 = 10, 𝑜𝑢𝑡𝑟𝑜𝑠 𝑐𝑎𝑠𝑜𝑠 {𝑎, 𝑠𝑒𝑏 = 0𝑏, 𝑠𝑒 𝑎 = 01, 𝑜𝑢𝑡𝑟𝑜𝑠 𝑐𝑎𝑠𝑜𝑠 

Fonte: MORAES, 1998 
 

 

A lógica fuzzy, também denominada lógica difusa ou nebulosa, é um método 

amplamente aplicado na solução de problemas complexos, especialmente aqueles que 

envolvem descrições subjetivas, típicas das interações humanas. Esse método tem por 

objetivo a modelagem computacional da imprecisão do raciocínio humano, tornando-se 

útil em cenários onde não existem modelos matemáticos ou teóricos que expressem de 

forma precisa o comportamento do fenômeno em estudo (ZADEH, 1988). Na lógica fuzzy, 
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as t-normas e t-conormas modelam, respectivamente, os conceitos de conjunção (E) e 

disjunção (OU) que permitem lidar com graus de verdade que vão além dos valores 

binários. 

Diferentemente dos métodos tradicionais de aprendizado de máquina, a lógica 

fuzzy oferece uma capacidade única de lidar com incertezas e subjetividades, aspectos 

frequentemente presentes nas emoções humanas. Enquanto os métodos de aprendizado 

de máquina, geralmente exigem grandes volumes de dados rotulados e operam com 

limites rígidos de classificação, a lógica fuzzy permite uma abordagem mais flexível 

(ROSS, 2010). Dessa forma, a lógica fuzzy se destaca por garantir maior generalização e 

por sua capacidade de integrar o conhecimento em situações em que as emoções 

apresentam características muito próximas, dificultando a distinção clara entre elas com 

base em medidas extraídas. Nesse sentido, a lógica fuzzy permite modelar essas sutilezas 

de forma mais intuitiva e eficiente, atribuindo graus de pertencimento a diferentes estados 

emocionais. Essa abordagem é indicada para o reconhecimento emocional, onde a 

precisão na identificação de nuances desempenha um papel importante para refletir a 

complexidade das respostas humanas. 

Além disso, a lógica fuzzy tem sido considerada como uma ferramenta eficaz na 

representação de conhecimento e na modelagem de Sistemas de Apoio à Decisão. 

Diferentemente da lógica clássica, que opera com valores binários, classificando 

afirmações como verdadeiras ou falsas, a lógica fuzzy reconhece que muitas experiências 

humanas não podem ser reduzidas a essas categorias rígidas (ZADEH, 1965). Em 

contextos como saúde e doença, por exemplo, as respostas e comportamentos humanos 

frequentemente não se encaixam em definições absolutas de "sim" ou "não", "verdadeiro" 

ou "falso". Assim, a lógica fuzzy possibilita a consideração de áreas de transição ou 

granularidade, fornecendo uma modelagem mais precisa para fenômenos que envolvem 

incerteza e variabilidade (MARQUES et al., 2005).  

Enquanto sistemas tradicionais categorizam afirmações de forma binária, a lógica 

fuzzy permite modelar cenários com diferentes níveis de associação, como "Se o copo 

está quase vazio, então posso matar parte da minha sede". Essa abordagem considera 

que os limites dos conjuntos não são rígidos, e a manipulação dos elementos em situações 

de incerteza utilizam o conceito de variáveis linguísticas e valores representados por 

conjuntos fuzzy. Nesse contexto, os valores das variáveis não são precisos ou fixos, mas 

descritos por termos linguísticos. Essa modelagem permite a caracterização aproximada 
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de fenômenos complexos e é regida por funções de compatibilidade que avaliam o grau 

de pertencimento dos elementos a esses conjuntos (ZADEH, 1988). 

As variáveis linguísticas surgem como uma extensão prática desse formalismo para 

traduzir informações qualitativas em representações quantitativas por meio de termos 

associados a conjuntos fuzzy. Segundo Zadeh (1988) cada variável linguística é 

caracterizada por um quíntuplo (V, T(V), X, G, M), onde V é o nome da variável, T(V) é o 

conjunto de termos, X é o universo de discurso, G é a regra sintática que gera os termos 

em T(V), e M é a regra semântica que associa um significado a cada termo, geralmente 

representado por um subconjunto fuzzy de X. Dessa forma, os valores dessas variáveis 

são palavras com significado de uma linguagem natural ou sintética. Por exemplo, a 

variável linguística "Intensidade" pode ser descrita em termos linguísticos como: 

"intensidadeMuitoMuitoPequena", "intensidadeMuitoPequena", "intensidadePequena", 

"intensidadeMedia", "intensidadeAlta", "intensidadeMuitoAlta" e 

"intensidadeMuitoMuitoAlta". Cada termo está relacionado a uma função de pertinência 

que o descreve dentro do universo de discurso. 

Uma das maneiras de formalizar esse conhecimento é por meio de regras do tipo 

condição-ação. Em lógica fuzzy, uma regra representa uma relação estabelecida entre 

variáveis de entrada e saída por meio de operadores lógicos baseados em valores 

linguísticos e conjuntos fuzzy, estruturada no formato "SE... ENTÃO...". A parte 

antecedente da regra, correspondente à condição "SE", define critérios com base em 

conjuntos fuzzy associados às variáveis de entrada, enquanto a parte consequente, 

representada pelo "ENTÃO", especifica a ação ou o resultado esperado. Essas regras 

utilizam os operadores como E, OU e NÃO, que permitem o processamento de graus de 

pertinência em vez de valores binários, característicos da lógica clássica (ZADEH, 1978). 

Assim, cada regra fuzzy constitui uma unidade de conhecimento que captura informações 

específicas do domínio em questão, permitindo a modelagem e resolução de problemas 

de forma mais flexível e adaptativa (PASSINO; YURKOVICH, 1998). 

Os conjuntos fuzzy são geralmente construídos com base no julgamento de 

especialistas. Essa abordagem envolve a participação de um ou mais especialistas na 

área de interesse, cujas opiniões podem ser coletadas individualmente ou em grupo, e 

agregadas de forma adequada. As funções de pertinência podem ser determinadas por 

métodos diretos ou indiretos, dependendo da complexidade do conceito que o termo 

linguístico deve representar (MASSAD et al., 2008). Além da abordagem baseada em 

especialistas, é possível utilizar bases de conhecimento extraídas de dados para gerar 
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tanto o conjunto de regras fuzzy quanto às funções de pertinência, oferecendo uma 

alternativa mais automatizada ao processo. 

Os sistemas baseados em regras fuzzy utilizam conectivos como AND (E) e OR 

(OU). Esses conectivos podem ser aplicados tanto nas premissas (condições) quanto nas 

conclusões de uma regra. A premissa representa o argumento da regra, enquanto a 

conclusão refere-se ao resultado, que neste estudo corresponde aos graus de prioridade. 

Existem dois sistemas de inferência fuzzy amplamente conhecidos: o de Mamdani, que 

utiliza uma estrutura de operações min-max e regras do tipo "Se x é A e y é B, então z é 

C", onde A, B e C são conjuntos fuzzy (MASSAD et al., 2008); e o de Takagi-Sugeno, o 

qual é caracterizado por um processo de tomada de decisão simplificado, baseado na 

lógica fuzzy, onde apenas o antecedente das regras é formado por variáveis fuzzy. O 

consequente de cada regra é expresso por uma função linear dos valores observados das 

variáveis que descrevem o estado do sistema, também conhecidas como variáveis de 

entrada (TAKAGI, SUGENO, 1983). No presente trabalho, foi utilizado o sistema de 

inferência de Mamdani, juntamente com o processo de defuzzificação, que converte um 

conjunto fuzzy em um valor numérico real (SAADE; DIAB, 2003). 

 

3.5.1 Lógica fuzzy em sistemas de detecção automática 

 

A inteligência artificial com utilização da lógica fuzzy fornece uma alternativa à 

abordagem de parâmetro único ou multidimensional para análise de reconhecimento de 

padrões. A lógica fuzzy tem sido amplamente explorada em diversas aplicações, incluindo 

sistemas de controle e tomada de decisão, desde sua introdução na década de 1960 

(ZADEH, 1965). Embora haja uma vasta pesquisa sobre o uso de sistemas fuzzy para 

modelagem de incertezas e variáveis linguísticas, poucos estudos aplicaram essa 

tecnologia à análise da detecção automática na variação das emoções (XIONG, et al., 

2024; TON-THAT; CAO, 2019; GRIMM et al., 2007). Assim, o levantamento de 

características acústicas e de fala poderia servir como uma ferramenta eficiente para 

identificar as variações emocionais em sistemas automatizados de reconhecimento a 

partir da voz humana, utilizando a lógica fuzzy para lidar com as ambiguidades e 

subjetividades inerentes às expressões emocionais (ESAU, 2007, HEGDE et al., 2019).  

A lógica fuzzy tem se mostrado uma abordagem promissora para a detecção e 

reconhecimento automáticos de emoções, principalmente devido à sua capacidade de 

lidar com incertezas e variabilidades que são inerentes às expressões emocionais 
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humanas (XU, 2011). Ao contrário de outras técnicas que podem exigir uma categorização 

rígida das emoções, a lógica fuzzy permite que diferentes estados emocionais sejam 

representados de forma mais precisa, com graus de pertinência que refletem a 

complexidade das emoções humanas (RAVI; ZIMMERMANN, 2000). 

A detecção de emoções por meio da lógica fuzzy aproveita as características únicas 

dessa abordagem para interpretar sinais vocais, faciais ou fisiológicos que, 

frequentemente, não são facilmente classificados em categorias binárias (MORAES, 

2002). Por exemplo, um sorriso pode ser identificado com graus variados de alegria, ou o 

tom da voz pode sugerir simultaneamente a surpresa e medo em diferentes intensidades. 

A teoria de conjuntos fuzzy nessas situações é aplicada pela sua capacidade de lidar com 

situações imprecisas e incertas, resultando em sistemas de reconhecimento emocional 

que são mais adaptáveis e realistas (ORTEGA, 2001). 

Além disso, a lógica fuzzy facilita a criação de modelos que incorporam o 

conhecimento e as regras heurísticas desenvolvidas por seres humanos especialistas, 

tornando-a uma ferramenta valiosa em contextos onde as emoções precisam ser 

interpretadas de maneira subjetiva e contextualizada (LILIANA, et al., 2019), tornando o 

reconhecimento mais sensível em aplicações como assistentes virtuais, sistemas de 

atendimento ao cliente, e interfaces homem-máquina, onde a interpretação precisa das 

emoções pode melhorar significativamente a interação e a experiência do usuário.  

Pesquisas recentes têm explorado a aplicação da lógica fuzzy na análise de sinais 

de voz e expressões faciais para identificar estados emocionais com maior precisão 

(LILIANA, et al., 2019; TON-THAT; CAO, 2019; GRIMM et al., 2007). Essas abordagens 

têm mostrado resultados promissores, especialmente em situações onde outras técnicas, 

como redes neurais e algoritmos de aprendizado profundo, podem falhar em capturar as 

sutilezas emocionais ou exigir pequenos volumes de dados para treinamento.  

Liliana e colaboradores (2019) desenvolveram um sistema baseado em lógica fuzzy 

para reconhecimento de emoções por meio de expressões faciais, buscando uma 

abordagem mais natural e alinhada às respostas emocionais humanas. O sistema permitiu 

lidar com a ambiguidade inerente às emoções humanas, focando em seis emoções 

principais: felicidade, tristeza, raiva, surpresa, nojo e medo. O estudo demonstrou que o 

uso da lógica fuzzy categorizou de forma mais precisa as emoções, melhorando as taxas 

de reconhecimento com melhoria de 12% em comparação com modelos tradicionais KNN, 

RNA e métodos baseados em lógica binária. Os principais resultados afirmaram que o 
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sistema fuzzy teve maior precisão ao reconhecer estados emocionais mistos, como 

quando as expressões faciais indicavam surpresa e medo simultaneamente. 

O estudo de Ton-That e Cao (2019) desenvolveu um sistema de inferência fuzzy 

baseado em memória associativa fuzzy (FAM-FIS) para reconhecimento de emoções a 

partir da voz, com foco na melhoria da precisão do reconhecimento. O sistema utilizou as 

características MFCC e foi testado em dois bancos de dados: EMO-DB (alemão) e SAVEE 

(inglês). Os resultados mostraram que o sistema fuzzy superou classificadores 

tradicionais, como Bayes e SVM. Especificamente, o FAM-FIS alcançou uma precisão de 

74,31% no EMO-DB e 97,29% no SAVEE, superando o desempenho do SVM. O estudo 

destacou a capacidade do sistema fuzzy de lidar com as complexidades emocionais, 

aumentando a precisão à medida que mais dimensões das características MFCC foram 

incluídas. Os autores concluíram que a abordagem fuzzy oferece vantagens para o 

reconhecimento de emoções na voz e outros problemas de reconhecimento de padrões. 

Grimm e colaboradores (2007) desenvolveram um sistema para estimar emoções 

a partir da voz usando lógica fuzzy em um espaço multidimensional de emoções. O estudo 

focou nos eixos de dimensões na abordagem contínua das emoções, de valência 

(positivo/negativo), ativação (calmo/excitado) e potência (fraco/forte). Utilizando 

características acústicas como pitch, energia e taxa de elocução, o sistema foi testado em 

dois conjuntos de dados: emoções simuladas e emoções espontâneas de um programa 

de televisão. Os resultados verificaram que a lógica fuzzy apresentou alta correlação com 

as avaliações humanas. A precisão no reconhecimento das emoções alcançou 83,5% ao 

mapear os três eixos emocionais para categorias. O sistema foi considerado eficaz em 

cenários dependentes de locutor, ressaltando a importância de modelar a variação 

emocional individual. O estudo concluiu que a lógica fuzzy oferece um método eficiente 

para lidar com variações emocionais contínuas. 

Hidalgo e colaboradores (2024) desenvolveram um sistema baseado na voz para o 

reconhecimento de estados emocionais e sua associação a transtornos de humor. O 

estudo utilizou bases de dados em espanhol e alemão para treinar um modelo de 

reconhecimento baseado em lógica fuzzy integrada a SVM, com características acústicas 

como pitch, intensidade e coeficientes MFCC das 6 emoções básicas. Os resultados 

demonstraram uma alta precisão na classificação de emoções como felicidade, tristeza, 

ansiedade e raiva, permitindo a integração dessas informações no projeto Bip4Cast, que 

visa prever estados de humor, incluindo mania, depressão e eutimias. O uso do sinal vocal 

foi considerado eficaz na identificação de crises emocionais, com potencial para 
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complementar outras fontes de dados clínicos, como sensores de movimento. Além disso, 

os resultados indicaram que a lógica fuzzy ofereceu maior flexibilidade e precisão em 

comparação a métodos tradicionais, permitindo lidar com sobreposições entre estados 

emocionais e categorizando melhor emoções difíceis de distinguir.  

A lógica fuzzy oferece uma alternativa eficaz para a detecção e reconhecimento 

automáticos de emoções, e permite que sistemas de inteligência artificial interpretem as 

emoções humanas de maneira mais natural e ajustada às incertezas e variações que 

essas emoções podem apresentar. A contínua pesquisa e desenvolvimento nessa área 

prometem aprimorar ainda mais a capacidade dos sistemas automatizados de 

compreender e responder às emoções humanas, abrindo novas possibilidades para a 

aplicação da lógica fuzzy em contextos emocionais e interativos. 

 

3.6 Parâmetros de Acurácia dos Modelos 

Os modelos de reconhecimento foram analisados levando em consideração a 

Matriz de Confusão, a Acurácia Geral (AG) e o coeficiente Kappa, para avaliar a precisão 

dos resultados obtidos. 

A matriz de confusão é uma matriz quadrada de números que expressam a 

quantidade de unidades amostrais, associada a uma dada categoria durante o processo 

de reconhecimento efetuado, e à categoria real a que pertencem essas unidades 

(CONGALTON, 1991). Quando aplicada no contexto da lógica fuzzy, essa matriz não 

apenas detalha os resultados esperados e os resultados obtidos, mas também considera 

os graus de pertinência das amostras às categorias analisadas. Assim, permite uma 

análise mais flexível e precisa da performance do modelo e proporciona uma visão mais 

abrangente das classificações realizadas.  

A AG (CONGALTON, 1999) é amplamente utilizada na literatura, mede a 

concordância geral entre as previsões realizadas por um sistema e os dados de referência, 

sendo uma métrica fundamental para avaliar a performance de modelos de 

reconhecimento, incluindo aqueles voltados à identificação de emoções. Esse índice é 

definido como: 

𝐴𝐺 =
∑ 𝑚𝑖𝑖

𝑀
𝑖=1

𝑁
   (2) 

 

onde ∑𝑀
𝑖=1  é a soma da diagonal principal da matriz de confusão, 𝑀 é o número total de 
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classes e 𝑁 é a quantidade total de decisões possíveis presentes na matriz de 

classificação. 

Apesar de sua simplicidade e ampla aceitação, o AG é considerado otimista por 

não ponderar os erros fora da diagonal principal, o que pode mascarar problemas em 

classes minoritárias ou de difícil reconhecimento (MORAES et al., 2020). Essa abordagem 

permite incorporar a incerteza inerente às emoções humanas, proporcionando uma 

análise mais robusta e adequada para aplicações que requerem maior sensibilidade às 

variações emocionais. Assim, o uso da AG, aliado a métricas complementares, contribui 

para uma avaliação abrangente e detalhada da performance do sistema de 

reconhecimento. 

O índice Kappa (COHEN, 1960) será utilizado para avaliar o desempenho do 

Modelo. O uso desse coeficiente é satisfatório na avaliação de um sistema de 

reconhecimento, pelo fato de apresentar uma medida da concordância entre as taxas de 

acerto e erro alcançadas, usando a matriz de confusão no seu cálculo, inclusive os 

elementos de fora da diagonal principal, os quais representam as discordâncias no modelo 

(MORAES, 2020). Seu cálculo procede da seguinte forma. 

K= 
𝑃0−𝑃𝑐

1−𝑃𝑐
 ,    sendo 𝑃0 e 𝑃𝑐:    𝑃0=

∑ 𝑚𝑖𝑖
𝑀
𝑖=1

𝑁
 e 𝑃𝑐= 

∑ 𝑚𝑖+𝑚+𝑖
𝑀
𝑗=1

𝑁²
, (3) 

em que 𝑚𝑖𝑖 é o valor total da diagonal principal, 𝑚𝑖+ é o valor total da linha i, 𝑚+𝑖 é o total 

da coluna i, M é o número total de classes, e N é o total de decisões possíveis da matriz 

de confusão 𝑚𝑖𝑖𝑚𝑖+𝑚+𝑖
.  

Segundo Landis e Koch (1977), quanto mais próximo de 100%, maior o grau de 

concordância do modelo de decisão. A interpretação da magnitude do estimador do Kappa 

é convencionada como: <0,0% (Ruim), 0,00%–20,00% (Leve), 21,00%–40,00% 

(Razoável), 41,00%–60,00% (Moderado), 61,00%–80,00% (Substancial) e 81,00%–

100,00% (Quase Perfeito).  

As medidas de sensibilidade e especificidade são amplamente utilizadas em 

medicina e epidemiologia e compõem um conjunto de testes diagnósticos (VAN 

STRALEN, 2009). São medidas estatísticas do desempenho de uma classificação binária, 

traduzidas por uma tabela de contingência 2 × 2. Também é possível obter essas medidas 

a partir de uma matriz de confusão n × n. 

Quatro medidas básicas são utilizadas nos testes diagnósticos e delas é possível 

obter todas as outras: Verdadeiro Positivo (VP, que significa identificação correta), Falso 
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Positivo (FP ou identificação incorreta), Verdadeiro Negativo (VN, que significa rejeição 

correta) e Falso Negativo (FN ou rejeição incorreta).  

A Sensibilidade, ou taxa de Verdadeiro Positivo (VP), é a probabilidade de 

identificação correta. A TPR é dada por: 

𝑉𝑃 =
𝑉𝑃

𝑉𝑃+𝐹𝑁
   (4) 

A Especificidade, ou taxa de Verdadeiro Negativo (VN), é a probabilidade de 

rejeição correta. A TNR é dada por: 

𝑉𝑁 =
𝑉𝑁

𝑉𝑁+𝐹𝑃
  (5) 

 

Outra medida interessante é a Acurácia (AC), que é a probabilidade de acertos de 

um classificador, ou seja, a probabilidade de um classificador identificar corretamente ou 

rejeitar corretamente. A AC é expressa por: 

𝐴𝐶 =
𝑉𝑃+𝑉𝑁

𝑉𝑃+𝑉𝑁+𝐹𝑃+𝐹𝑁
  (6) 

 

Essas medidas podem fornecer uma análise detalhada do modelo a partir da matriz 

de confusão, em oposição aos coeficientes de concordância. Vale salientar, que a análise 

de testes diagnósticos por meio das métricas de sensibilidade e especificidade é 

tradicionalmente aplicada a dados binários, nos quais a condição avaliada se encontra 

claramente categorizada entre presença ou ausência de determinada característica ou 

desfecho. Essa abordagem, embora amplamente aceita e eficaz em contextos binários, 

pode apresentar limitações quando aplicada a dados não binários, uma vez que combina 

diferentes graus de erros e acertos em uma única métrica. Essa simplificação pode 

comprometer a precisão da análise, especialmente em cenários onde há múltiplas 

categorias ou níveis de gravidade. No entanto, apesar dessas limitações, a sensibilidade 

e especificidade podem, ainda assim, ser empregadas para avaliar dados não binários, 

desde que se reconheça que essa aplicação exige cautela e uma interpretação mais crítica 

dos resultados. Essa utilização, embora menos precisa, pode fornecer informações 

relevantes para avaliar o desempenho do modelo. 

Um modelo de reconhecimento dos estados emocionais que considera as 

incertezas e a natureza imprecisa dos dados de entrada, características comuns quando 

se trata de emoções humanas e que utilize um banco de vozes construído com as medidas 

perceptuais, acústicas e prosódicas dos sinais de áudio em cada estado emocional 

permitirá o desenvolvimento de uma ferramenta automatizada no reconhecimento das 



 

 

49 

 

emoções e será capaz de permitir maior taxa de acurácia no reconhecimento e 

diferenciação das emoções a partir da voz humana do que os métodos tradicionais, o que 

possibilita ao examinador um avanço potencialmente eficiente na identificação do estado 

emocional, permitindo agilizar, simplificar, facilitar e auxiliar a análise da identificação de 

cada estado emocional além de gerar impacto de inovação tecnológica em diversos tipos 

de mercado com ferramentas robustas, não invasivas e de baixo custo. 

 

4 Métodos 

4.1 Considerações Éticas 

Esta pesquisa faz parte do projeto “Banco de vozes em diferentes estados 

emocionais: construção, reconhecimento de padrões e validação transcultural”, que foi 

avaliado e aprovado pelo Comitê de Ética em Pesquisa do Centro de Ciências da Saúde 

da Universidade Federal da Paraíba (CEP/CCS/UFPB), por meio do parecer nº 

3.304.419/2019 (ANEXO 1). Trata-se de uma pesquisa de natureza tecnológica, 

descritiva, observacional, transversal, que utilizou dados secundários provenientes do 

EmoVox-BR e que contou com a criação de um modelo de reconhecimento de padrões 

de voz nas variadas emoções simuladas. 

Todos os voluntários foram solicitados a ler e caso concordassem com o conteúdo, 

assinar um Termo de Consentimento Livre e Esclarecido (TCLE), que expõe os objetivos 

do estudo, riscos, benefícios e procedimentos de coleta de dados, bem como a garantia 

de confidencialidade das informações obtidas.  

4.2 Área e População do estudo 

O estudo foi realizado no Laboratório Integrado de Estudos da Voz (LIEV) do 

Departamento de Fonoaudiologia e no Laboratório de Estatística Aplicada ao 

Processamento de Imagens e Geoprocessamento (LEAPIG) do Departamento de 

Estatística, ambos da Universidade Federal da Paraíba. 

Todos os participantes da pesquisa seguiram os seguintes critérios de elegibilidade: 

ausência de comorbidades que comprometesse a cognição, audição e comunicação que 

poderia limitar a realização das tarefas solicitadas; não fazer uso de substâncias 

psicotrópicas; responder aos questionários da pesquisa; ter acesso a internet, microfone 
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externo, e smartphone; ter realizado as gravações nas 6 variações das emoções e na 

emissão neutra. 

O conjunto de dados para análise foi composto por 182 sinais sonoros, produzidos 

por 26 atores profissionais e estudantes de Artes Cênicas brasileiros, de ambos os 

gêneros, com média de idade sendo 26 (±8,86) anos, residentes nos estados da Paraíba, 

São Paulo, Rio grande do Sul, Ceará, Roraima, Mato Grosso e Distrito Federal. Esses 

sinais pertencem ao Banco de Vozes Brasileiro nas Variações das Emoções - EmoVox-

BR, desenvolvido pelo LIEV (LIMA, 2022).  

O EmoVox-BR foi elaborado e validado de acordo com alguns direcionamentos. Os 

participantes receberam um tutorial com roteiro e procedimentos de gravação e em 

seguida realizaram a coleta da voz remota. Foram coletadas três tarefas de fala distintas: 

1) a emissão da vogal /ε/ sustentada; 2) fala automática a partir da contagem de 1 a 10; e 

3) fala semi-espontânea por meio da frase “Olha lá o avião azul.”, que compõem o 

Consensus Auditory Perceptual Evaluation of Voice - CAPE-V (BEHLAU et al., 2020). As 

tarefas foram executadas por cada voluntário nas seis emoções básicas (alegria, tristeza, 

medo, raiva, surpresa e nojo) e emissão neutra. Todos os voluntários gravaram com as 

seguintes variações:  com e sem fone, por meio de smartphone e computador, a partir da 

plataforma Zoom Meeting e de forma line in. Essas variações metodológicas geraram 63 

amostras vocais por voluntário (ator profissional ou em formação), o que totalizou 1.638 

sinais de áudios (três tarefas de fala, vezes a variação das seis emoções e a emissão 

neutra, vezes 3 variações de formatação da coleta, vezes 26 voluntários). 

     Alguns estudos (ASHA, 2002; MONTEIRO, 2021) buscaram analisar a qualidade 

de diferentes tarefas de fala nas variações emocionais, como também investigar quais as 

diferenças entre a qualidade do sinal coletado de forma remota com entrada line in e pela 

plataforma zoom meeting, também foram elencados trabalhos, que objetivavam analisar 

se as vozes coletadas via smartphone possuíam relação sinal-ruído diferente dentre as 

vozes coletas com o uso de microfone e sem o microfone. Os resultados desses estudos 

verificaram que a fala semi-espontânea e contagem são as tarefas de fala que apresentam 

melhor qualidade na coleta remota, a opção de entrada direta no aparelho para coleta da 

voz de forma line in se sobressai quando comparada aos serviços de coleta da plataforma 

zoom meeting, e o smartphone é uma opção segura e eficaz para a coleta remota da voz. 

O estudo de Monteiro e colaboradores (2021) investigou a eficácia do uso de 

smartphones como estratégia de coleta remota de voz e avaliou a relação sinal-ruído de 

emissões vocais na variação das seis emoções básicas e emissão neutra, coletadas via 
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smartphones com e sem microfone externo. Os resultados indicaram que a gravação por 

smartphone apresentou qualidade de áudio satisfatória para todas as emoções, 

independentemente do uso do microfone externo, mas em local com intensidade 

controlada. A pesquisa concluiu que o smartphone, associado a protocolos adequados de 

gravação, é uma ferramenta confiável para a coleta remota de voz em contextos clínicos 

e científicos e garantiu a validade de análises acústicas e perceptivo-auditivas. 

Após essas motivações exposta e testes, os pesquisadores optaram por selecionar a 

tarefa de fala semi- espontânea, coletada via smartphone. Portanto dos 1.638 sinais de 

áudios coletados, foram selecionados 182 sinais de áudio para a etapa do julgamento 

perceptivo-auditivo com objetivo de aumentar a robustez e a representatividade da análise 

(LIMA  et al, 2022). Esses mesmos sinais foram utilizados neste estudo como forma de ter 

acesso a uma amostra mais ampla que permite capturar uma gama mais variada de 

características e nuances emocionais presentes no banco de dados, o que pode resultar 

em um modelo mais robusto e com melhor generalização para diferentes contextos de 

aplicação. A seguir, observa-se o fluxograma detalhando do processo para a obtenção 

dos áudios finais no EmoVox-BR, desde a seleção inicial até a finalização e validação dos 

dados (Figura 1). 

 

 

Figura 1 - Processo de seleção dos áudios para construção do EmoVox-BR 

 

Fonte: Elaborado pelo autor, 2024. 
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As vozes foram avaliadas por juízes fonoaudiólogos com a tarefa de fala “olha lá o 

avião azul”, executada por cada voluntário nas seis emoções básicas (alegria, tristeza, 

medo, raiva, surpresa e nojo) e emissão neutra, e gravadas com uso de smartphone, sem 

microfone e de forma line in.  Os sinais de áudio receberam a indicação da emoção 

correspondente, da potência/intensidade da emoção (o quanto a emoção transmitida pelo 

áudio), valência (emoção positiva ou negativa), e de quais parâmetros de voz e fala seriam 

decisivos para a identificar a emoção daquele áudio (pitch, loudness, articulação, 

velocidade de fala, incoordenação pneumofonoarticulatória, fluência, qualidade vocal). Os 

juízes especialistas foram orientados a ouvir 200 áudios. Em 182 áudios mais 18 áudios 

(10% da amostra) foram apresentados de forma repetida para garantir a confiabilidade 

intraavaliador na análise perceptivo-auditiva para identificação das emoções, de forma 

randomizada. Assim, para a avaliação com os juízes foram utilizadas 200 vozes com o 

objetivo de entender quais vozes eram as mais confiáveis, bem como também a 

concordância inter juízes. Concluiu-se que os fonoaudiólogos conseguiram um alto 

percentual de acerto das seis emoções básicas e o estado neutro, com valores de 

referência superiores a 70% na identificação das emoções, valência e potência, além de 

indicarem os parâmetros de voz que auxiliam reconhecer as variadas emoções (LIMA et 

al, 2022). 

 

4.3 Materiais 

O presente estudo adota um modelo experimental quantitativo com o objetivo de 

desenvolver e validar um sistema preditivo baseado na lógica fuzzy para reconhecimento 

de diferentes estados emocionais a partir da análise da voz. Os áudios do EMOVOX-BR 

foram processados com técnicas de modelamento acústico utilizadas para a extração de 

vetores de características dos MFCC, e outras medidas acústicas como medidas de fo, o 

jitter, o shimmer, as medidas de ruído glótico GNE, HNR, CPPS e medidas acústico-

prosódicas de fo, duração e intensidade.  

Vale destacar que neste estudo, a fo foi analisada a partir de duas perspectivas 

distintas: a acústica tradicional e a prosódica. Como medida acústica tradicional, foram 

considerados os valores de fo média, mínima, máxima e o dp, que refletem a estabilidade 

e as variações globais da frequência ao longo do tempo. Já na análise prosódica, os 

mesmos valores de fo média, mínima e máxima foram utilizados, porém com a adição do 

range de fo, que representa a amplitude entre os valores máximo e mínimo de frequência 
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fundamental. Essa inclusão do range na análise prosódica destaca o foco dessa 

abordagem em captar a dinâmica melódica da voz, essencial para compreender aspectos 

expressivos e entoacionais em contextos comunicativos. 

Foram consideradas também como variáveis independentes as dimensões de 

valência, potência e ativação de cada emoção.  Essas, são características fundamentais 

e inerentes de cada emoção, refletem dimensões essenciais que descrevem como as 

emoções são experienciadas e diferenciadas. A valência refere-se ao espectro prazer-

desprazer e indica se uma emoção é percebida como positiva. A potência, por sua vez, 

está relacionada ao senso de controle ou força associado à emoção e descreve se ela é 

percebida como dominante. Já a ativação diz respeito ao nível de energia ou excitação, 

para diferenciar emoções de alta ativação de baixa ativação (VIEIRA, 2018). Essas 

dimensões não são construídas a partir de medições, mas representam atributos 

estruturais de cada emoção, conforme descrito na literatura (GRIMM, 2007; SPEED; 

BRYSBAERT, 2023, BESTELMEYER et al., 2017).  

Todas as variáveis foram coletadas a partir dos dados do EMOVOX- BR, para 

desenvolver um modelo de reconhecimento das emoções básicas a partir da voz. Cada 

amostra vocal foi submetida a uma análise detalhada com o objetivo de extrair 

características acústicas e prosódicas específicas associadas a cada emoção.  

 

4.3.1 Extração das medidas acústico-prosódicas 

 

A extração dos aspectos acústico-prosódicos da voz baseou-se principalmente nos 

parâmetros de duração, fo e intensidade, uma vez que são considerados elementos 

robustos na identificação de falantes (BARBOSA; CONSTANTINI, 2020). A duração de 

uma emoção pode variar de momentos breves a períodos prolongados, que depende da 

intensidade do estímulo emocional, da capacidade de regulação emocional do indivíduo e 

do contexto em que a emoção ocorre (LARROUY-MAESTRI, 2023). A duração é 

fundamental para identificar variações no ritmo da fala, na estruturação dos enunciados e 

na organização temporal das frases (CONSTANTINI; BARBOSA, 2015).  

Para análise da duração, todas as amostras de fala foram segmentadas 

manualmente em unidades Vogal-Vogal (unidade VV), que são unidades do tamanho da 

sílaba que compreendem o segmento que vai do início de uma vogal até o início da 

próxima vogal, que inclui as consoantes entre elas (CONSTANTINI; BARBOSA, 2015). 
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A frase utilizada no presente "Olha lá o avião azul", foi então segmentada 

foneticamente em unidades VV, resultando nas seguintes divisões: [Al], [auav], [iaNU] e 

[az]. Essa segmentação é amplamente utilizada na análise acústico-prosódica da fala por 

se tratar de uma unidade que representa, de forma mais estável, as variações temporais 

e rítmicas do enunciado. Para evitar interferências que pudessem comprometer a análise 

dos parâmetros acústicos, os segmentos iniciais e finais da tarefa de fala foram excluídos. 

Essa exclusão se justifica pelo fato de que esses trechos costumam apresentar maior 

instabilidade na produção vocal, especialmente devido ao ajuste inicial das pregas vocais 

e à redução natural da intensidade sonora ao final da frase. Além disso, é comum que 

essas regiões contenham pausas ou hesitações que não refletem o padrão típico da 

produção vocal durante a emissão do enunciado. A exclusão desses trechos, portanto, 

visa garantir que a análise se concentre no núcleo do enunciado, onde os parâmetros de 

duração se manifestam de forma mais estável e representativa (BARBOSA; 

CONSTANTINI, 2020).  

Para extrair essa medida, com utilização do cálculo da duração normalizada das 

unidades VV, foi empregado o script SG Detector (BARBOSA, 2006). O script apresenta 

uma tabela de referência com médias e desvios-padrão dos segmentos fônicos do PB 

para calcular o valor da duração, z-score e o z-score suavizado das unidades VV ao longo 

do enunciado, que gerou uma segmentação dos grupos frasais. A segmentação é 

realizada por meio do cálculo do desvio-padrão das médias de duração das unidades VV, 

que são normalizadas pelo cálculo do z-score. 

O valor do z-score indica o número de desvios-padrão em relação à média, no caso 

as variações do PB, ou seja, é uma proporção do número de desvios-padrão acima ou 

abaixo do PB, representando uma pontuação bruta. O z-score é uma pontuação padrão 

que pode ser posicionada em uma curva de dispersão comum, variando de –3 a +3 

desvios (MATTE, 2006). 

Os valores de z-score suavizado permitem atenuar variações locais de duração 

provenientes de quedas de duração em unidades VV pós-tônicas e/ou de fones com 

durações muito diferentes das relações de duração dos fones do PB (BARBOSA, 2006). 

Esse valor representa a suavização de cinco pontos aplicada à sequência de dados de z-

score, que permite observar com mais precisão as proeminências de duração.  

A fo corresponde ao número de vibrações das pregas vocais por segundo e está 

diretamente relacionada à percepção de pitch (LOPES et al., 2018). Esse parâmetro 

permite uma análise detalhada da entonação e da variação tonal ao longo dos enunciados, 
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fornecendo informações sobre o controle e a qualidade vocal (ARVANITI, 2020). Para a 

análise da fo, foram medidos os valores médios, máximos, mínimos e o intervalo de 

variação (fo range) em cada enunciado. 

A intensidade está associada à força ou ao grau de ativação emocional 

experimentado pelo falante, que se relaciona à energia vocal empregada durante a fala 

(LOPES et al., 2018). Sua medição ajuda a entender a energia da emissão e a modulação 

da força ao longo do discurso, contribuindo para estudos de prosódia e expressividade 

vocal (ARVANITI, 2020). Na análise da intensidade, foram extraídos os valores médios, 

mínimos e máximos de cada sinal, e os dados foram posteriormente comparados entre as 

emoções. As medidas de fo e intensidade foram extraídas com o auxílio do plug-in 

VoxMore (ABREU et al., 2023). 

Utilizou-se o programa PRAAT, versão 5.4.04, para a extração das medidas 

acústico-prosódicas. O software gera um relatório com informações e imagens referentes 

aos valores de medidas acústicas relacionadas a fo, medidas de período, perturbação e 

ruído. As instruções sobre instalação do VoxMore podem ser encontradas em: 

https://github.com/abreusamuel/VoxMore.  

 

4.3.2 Extração das medidas acústicas 

 

A extração das medidas acústicas envolveu a análise detalhada de diversos 

parâmetros essenciais para a avaliação da qualidade vocal e da expressividade emocional 

dos sinais de áudio. Entre os parâmetros extraídos, a fo foi medida em termos de seus 

valores mínimo, máximo, médio e dp, que permite a compreensão das variações tonais 

ao longo dos enunciados (BROCKMANN-BAUSER DRINNAN 2011). A fo, é importante 

para avaliar o pitch da voz e entender como diferentes emoções podem influenciar a 

frequência vocal (LOPES et al., 2018). As variações da fo entre os diferentes estados 

emocionais fornecem uma base sólida para a discriminação entre emoções. 

O CPPS e seu dp também foram extraídos. O CPPS é uma medida que reflete a 

suavidade e regularidade das vibrações das pregas vocais, sendo um importante indicador 

da qualidade vocal e da intensidade emocional. A inclusão do dp do CPPS permite 

capturar as flutuações na regularidade vocal ao longo do tempo, que pode oferecer 

insights sobre a instabilidade vocal em diferentes estados emocionais (LOPES et al., 

2019). 
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Outro parâmetro relevante foi o jitter, que mede a variação na frequência da voz 

entre ciclos sucessivos de vibração das pregas vocais. O jitter é um indicador de 

perturbações no controle vocal, podendo revelar emoções que impactam diretamente na 

estabilidade vocal, como medo ou ansiedade (LOPES et al., 2018). O shimmer, por sua 

vez, mede as variações na amplitude das vibrações vocais, sendo fundamental para 

avaliar a instabilidade na intensidade vocal (LOPES et al., 2018). Emoções que alteram o 

controle da força vocal, podem ser identificadas por meio do shimmer. 

As medidas de ruído glótico, como o GNE e o HNR, também foram extraídas. O 

GNE reflete a proporção de ruído glotal em relação ao som harmônico produzido pelas 

pregas vocais, sendo uma medida importante para avaliar a quantidade de ruído na voz 

(BROCKMANN-BAUSER; DRINNAN 2011; GODINO-LLORENTE et al., 2010). Já o HNR 

quantifica a relação entre os componentes harmônicos e o ruído presente no sinal vocal, 

sendo utilizado para analisar a qualidade da voz em termos de clareza e pureza 

(BROCKMANN-BAUSER; DRINNAN 2011; LOPES et al., 2018). Essas medidas são 

essenciais para distinguir emoções que podem aumentar o ruído vocal, como a tristeza 

ou o cansaço, em comparação com emoções que resultam em uma voz mais clara e limpa, 

como a alegria ou a surpresa. 

Utilizou-se o programa PRAAT, versão 5.4.04, para a extração dos dados acústicos 

com o auxílio do plug-in VoxMore (ABREU et al., 2023). 

 

4.3.3 Extração dos Coeficientes Mel-Cepstrais 

 

Os MFCC são parâmetros constantemente utilizados para a construção de modelos 

de reconhecimento a partir da voz (MA; FOKOUÉ, 2014; PARTILA et al. 2015; FANG et 

al., 2019; TANDEL et al., 2020), pois são baseados na resposta em frequência do ouvido 

humano. Sua ideia principal é transformar o sinal do domínio do tempo para o domínio da 

frequência e mapear o sinal transformado em hertz para a escala Mel devido ao fato de 

que 1 kHz é o limite da capacidade auditiva humana.  

A extração das características MFCC utilizou a escala Mel, desenvolvida por 

Stevens e Volkmann na década de 1940, com o objetivo de representar como o ouvido 

humano percebe as frequências presentes no espectro sonoro (MA; FOKOUÉ, 2014). 

Concluíram que esta relação é linear de 0 a 1000 Hz, e que para frequências superiores 

a 1000 Hz, a relação pode ser descrita de forma logarítmica.  
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O MFCC pode ser calculado usando a fórmula apresentada na Equação (7) para 

converter a frequência em Hertz para a correspondente escala Mel (Kumar et al. 2014) 

𝐹𝑚𝑒𝑙 = 2595. 𝑙𝑜𝑔10 [1 +
𝐹𝑙𝑖𝑛𝑒𝑎𝑟(𝐻𝑧)

700
]  (7) 

onde 𝐹𝑚𝑒𝑙é a frequência resultante na escala mel medida em mels e 𝐹𝑙𝑖𝑛𝑒𝑎𝑟(𝐻𝑧) é a 

frequência medida em Hertz. 

Para realizar o cálculo dos coeficientes mel-cepstrais primeiramente é obtido o 

módulo ao quadrado da transformada de Fourier do sinal,𝑥(𝑛) para cada segmento do 

sinal, quando processado a curto intervalo de tempo. Posteriormente. é aplicado um banco 

de filtros em escala mel com o formato triangular não separados linearmente.  

A quantidade de filtros, 𝑁𝑓, é determinada por uma relação com a frequência de 

amostragem, 𝐹𝑎, sendo 𝑁𝑓 =. Em seguida, é feito o cálculo do logaritmo da energia de 

saída de cada filtro para a obtenção do cepstro e, por fim, os coeficientes mel-cepstrais 

podem ser determinados por meio da equação (8) (COSTA et al., 2008).  

𝑐𝑚𝑒𝑙(𝑛) = 𝛴𝑘=1

𝑁𝑓 𝑙𝑜𝑔(𝑆𝐹𝐹𝑇(𝑘)). 𝑐𝑜𝑠 [𝑛 (𝑘 −
1

2
)] .

𝜋

𝑁𝑓
 ,   (8) 

 

onde 𝑁𝑓 é o número de filtros digitais; 𝑐𝑚𝑒𝑙(𝑛) corresponde ao 𝑛-coeficientes mel-cepstrais 

e o 𝑆𝐹𝐹𝑇(𝑘)o sinal de saída do bando de filtros digitais que é obtido por meio da equação 

(9).  

𝑆𝐹𝐹𝑇(𝑘) = 𝛴𝑘=1

𝑁𝑓 𝑊(𝑗) ∙ 𝑋(𝑗),  𝑘 = 1, . . . , 𝑁𝑓 ,     (9) 

 

onde 𝑊(𝑗) correspondem às janelas de ponderação triangulares associadas a escala mel 

e 𝑋(𝑗) corresponde o espectro da 𝐹𝐹𝑇 para 𝑛 pontos (COSTA et al., 2008). 

A escala Mel é projetada para refletir a percepção auditiva humana, onde pequenas 

variações em frequências baixas são mais perceptíveis do que variações em frequências 

altas. Portanto, os filtros na parte inferior do espectro de frequências são mais estreitos e 

próximos entre si, enquanto os filtros nas frequências mais altas são mais largos e mais 

espaçados. Após a aplicação desses filtros, o sinal de saída passa por uma transformação 

cepstral, que gera 12 coeficientes mel-cepstrais, representando as características 

acústicas mais relevantes do sinal de voz (MA; FOKOUÉ, 2014). 

Para a extração dos MFCC, os sinais de áudio foram pré-processados no formato 

adequado, garantindo a remoção de ruídos e a normalização da amplitude. 

Posteriormente, os dados foram importados para o software WEKA, versão 3.9.5, onde o 
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filtro de extração de características foi aplicado. O algoritmo utilizado permitiu a 

decomposição das amostras de áudio em 12 coeficientes mel-cepstrais, que capturam as 

nuances de frequência relacionadas às emoções expressas na voz. 

 

4.4 Variáveis  

As variáveis independentes são os vetores de características de dados vocais 

extraídos pela análise acústica: medidas de fo média, máxima, mínima e dp (Hz), Jitter 

(%), Shimmer (dB), CPPS (dB), média e máximo de GNE (Hz), HNR (Hz), coeficientes 

mel-cepstrais MFCC, medidas acústico-prosódicas de fo média, máxima, mínima e range 

(Hz), duração (ms), intensidade (dB), e as dimensões de valência, potência e ativação. Ao 

total foram extraídas 41 medidas acústicas tradicionais, acústico-prosódicas e mel-

cepstrais, descritas no Quadro 1, a seguir. 

 

Quadro 1- Descrição das variáveis independentes 

VARIÁVEL DESCRIÇÃO 

Duração_Al Duração da unidade VV [Al] 

Duração_auav Duração da unidade VV [auav] 

Duração_iaNU Duração da unidade VV [iaNU] 

Duração_az Duração da unidade VV [az] 

z_Al Valor do z-score da unidade VV [Al] 

z_auav Valor do z-score da unidade VV [auav] 

z_iaNU Valor do z-score da unidade VV [iaNU] 

z_az Valor do z-score da unidade VV [az] 

zsuave_Al Valor do z-score suavizado da unidade VV [Al] 

zsuave_auav Valor do z-score suavizado da unidade VV [auav] 

zsuave_iaNU Valor do z-score suavizado da unidade VV [iaNU] 

zsuave_az Valor do z-score suavizado da unidade VV [az] 

fo min Mínima da fo 

fo max Máxima da fo 

fo média Média da fo 

fo range Intervalo fo (máxima - mínima) 

fo DP Desvio Padrão da fo 

Intensidade Intensidade média do som em decibéis 

Jitter Variação de ciclo a ciclo na fo 

Shimmer Diferença média absoluta entre as amplitudes de períodos 

consecutivos, dividida pela amplitude média 

HNR Média da relação harmônico-ruído 

GNE 1 Taxa de excitação glotal-para-ruído com largura de banda de 

1000 Hz 

GNE 2 Taxa de excitação glotal-para-ruído com largura de banda de 

2000 Hz 
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(continuação) 

GNE3 Taxa de excitação glotal-para-ruído com largura de banda de 

3000 Hz. 

CPPS média Proeminência do pico cepstral suavizado média 

CPPS DP Proeminência do pico cepstral suavizado desvio padrão 

x1MFCC Coeficiente 1 do MFCC 

x2MFCC Coeficiente 2 do MFCC 

x3MFCC Coeficiente 3 do MFCC 

x4MFCC Coeficiente 4 do MFCC 

x5MFCC Coeficiente 5 do MFCC 

x6MFCC Coeficiente 6 do MFCC 

x7MFCC Coeficiente 7 do MFCC 

x8MFCC Coeficiente 8 do MFCC 

x9MFCC Coeficiente 9 do MFCC 

x10MFCC Coeficiente 10 do MFCC 

x11MFCC Coeficiente 11 do MFCC 

x12MFCC Coeficiente 12 do MFCC 

Valência Caráter positivo ou negativo da emoção 

Potência Nível de força ou poder que a emoção provoca 

Ativação Nível de energia ou excitação associado à emoção 

   

As variáveis dependentes são as emoções simuladas que se pretende identificar 

com base nas variáveis acústicas e prosódicas. As emoções incluem alegria, medo, 

tristeza, raiva, surpresa, nojo e neutra.  

A relação entre as variáveis consiste no uso das variáveis independentes 

(características vocais) como entradas para o modelo que visa prever reconhecer as 

variáveis dependentes (emoções). A premissa é que diferentes combinações e valores 

dessas características vocais estejam associadas a estados emocionais específicos, e 

permitem que o modelo aprenda essas associações e identifique a emoção a partir dos 

sinais vocais do EmoVox-BR.  

 

4.5 Estrutura do Modelo Fuzzy 

Para construir o modelo de reconhecimento automático de emoções a partir de 

amostras vocais de atores simulando emoções, foi utilizada um sistema baseado em 

regras fuzzy. As amostras de áudio foram previamente rotuladas por fonoaudiólogos 

especialistas, com identificação da emoção simulada em cada gravação. Esse processo 

favoreceu ao modelo aprender a reconhecer e diferenciar categorias emocionais 

(emoções rotuladas) de forma autônoma, utilizando critérios próprios. Na etapa final, 

foram definidas as variáveis linguísticas de entrada, de saída e suas respectivas funções 

de pertinência, visando otimizar o desempenho e a precisão do modelo. Essa abordagem 
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considera as incertezas e a natureza imprecisa dos dados de entrada, aspectos inerentes 

às emoções humanas, para alcançar uma maior taxa de acerto. 

As variáveis linguísticas são aquelas que permitem a descrição de informações de 

forma qualitativa, sendo expressas qualitativamente por termos linguísticos (fornece o 

conceito para a variável) e, quantitativamente, por uma função de pertinência. Cada 

variável linguística tem um conjunto de termos fuzzy associados que é o conjunto de 

valores atribuídos à variável fuzzy (ZADEH, 1988).  

Para expressar conceitos fuzzy é comum o uso de elementos qualitativos e 

quantitativos. Por exemplo, os termos “pequena”, “média” e “grande” são utilizados pela 

definição da variável linguística (ZADEH, 1988). Por exemplo, a variável linguística “fo 

média (fomd)” admite valores linguísticos: muito pequeno, pequeno, médio, alto, muito alto 

e muito muito alto. Cada um destes valores admite valores numéricos em um intervalo [0, 

fomdMAX], podendo também ser representado por valores linguísticos sobre o intervalo [0, 

fomdMAX] por meio de funções de pertinências. 

As regras fuzzy são estruturas vastamente utilizadas em várias abordagens da 

teoria fuzzy. Elas descrevem situações específicas que podem ser submetidas à análise 

de um painel de especialistas, e cuja inferência nos conduz a algum resultado desejado. 

A inferência baseada em regras fuzzy pode também ser compreendida como um funcional 

que mapeia um conjunto de entradas do sistema para um conjunto de saídas (ORTEGA, 

2001). 

Essas regras possuem uma estrutura básica definida em duas partes: O 

antecedente (SE), que é composto pelas variáveis de entrada que descrevem uma 

condição, e o consequente (ENTÃO), composto pelas variáveis de saída, indicando uma 

conclusão. Vale salientar que no antecedente é permitido o uso de mais de um conector 

como o “E” e “OU” e no consequente pode haver mais de uma conclusão (ORTEGA, 

2001). De forma genérica, uma regra fuzzy pode ser representada da seguinte forma: 

SE (𝑥 é 𝑎𝑖) E (𝑦 é 𝑏𝑖) OU... ENTÃO (𝑧 é 𝑐𝑖) E (𝑤 é 𝑑𝑖) (10) 

onde 𝑥 e 𝑦 são as variáveis linguísticas de entrada, 𝑧 e 𝑤 as de saída, e 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 𝑒 𝑑𝑖 são 

realizações dessas variáveis, medidas a partir da interação do especialista com o sistema 

(GOMIDE; GUDWIN, 1994) 

Os antecedentes descrevem uma condição (premissas), enquanto a parte 

consequente descreve uma conclusão ou uma ação que pode ser esboçada quando as 

premissas se verificam. A diferença entre os antecedentes de uma regra fuzzy e uma regra 

clássica é que os primeiros descrevem uma condição flexível, ou seja, uma condição que 
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pode ser parcialmente satisfeita, enquanto os últimos descrevem uma condição rígida (a 

regra não funciona se os antecedentes não são completamente satisfeitos) (ORTEGA, 

2001). 

Deste modo, a implementação de um projeto de sistema fuzzy pode ser reduzida a 

um ponto em que problemas anteriormente de difícil tratamento passam a ser factíveis de 

mais simplificada solução (ZADEH, 1973). 

A figura 2 representa a estrutura genérica de um sistema baseado em lógica fuzzy, 

conforme o modelo proposto por Mamdani (1974). Este sistema utiliza entradas precisas, 

que são convertidas em valores fuzzy por meio do processo de fuzzificação, no qual 

funções de pertinência atribuem graus de pertencimento as variáveis linguísticas. As 

regras do sistema, estruturadas por meio do conhecimento, são aplicadas pelo motor de 

inferência, que combina os valores fuzzificados para gerar uma saída. Posteriormente, o 

defuzzificador transforma essa saída em um valor preciso, pronto para uso em aplicações 

práticas (Figura 2).  

Figura 2 - Estrutura básica de um sistema fuzzy 

 

Fonte: Elaborado pelo autor, 2024. 

 

4.5.1 Processador de entrada (Fuzificador) 

 

No processo de fuzzificação, uma ou mais funções de fuzzificação são 

especificadas para cada variável do modelo, com o objetivo de transformar valores de 

entrada, representados por números reais, em conjuntos fuzzy predefinidos pelo usuário 
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(KLIR; YUAN, 1995). permitindo que informações contínuas ou discretas sejam analisadas 

de forma qualitativa.  

A fuzzificação é realizada utilizando uma função de pertinência, que calcula o grau 

de pertinência de cada valor de entrada em relação a um conjunto fuzzy previamente 

definido em uma variável linguística. Esse grau de pertinência é um valor numérico dentro 

do intervalo [0, 1], e representa a intensidade com que o valor pertence ao conjunto fuzzy 

correspondente. O resultado da fuzzificação, que inclui os conjuntos fuzzy relevantes e 

seus respectivos graus de pertinência, é então encaminhado para o motor de inferência. 

Este utilizará as informações fuzzificadas em conjunto com regras fuzzy previamente 

definidas para determinar as saídas do sistema, disparando aquelas que forem 

compatíveis com as condições de entrada (PASSINO; YURKOVICH, 1998). Além disso, 

o processo de fuzzificação é frequentemente acompanhado de estratégias de pré-

processamento, como normalização das entradas ou ajustes dinâmicos das funções de 

pertinência, para garantir maior precisão e adaptabilidade em aplicações práticas. 

 

4.5.2 Base de conhecimento (Regras) 

 

A base de conhecimento contém informações gerais relativas ao domínio do 

problema em análise e, juntamente com o motor de inferência, pode ser considerada o 

núcleo dos sistemas baseados em regras fuzzy. As informações existentes na base de 

conhecimento são expressas através de proposições e regras de produção fuzzy (KLIR; 

YUAN, 1995), as quais compõem a base de regras do sistema.  

Uma base de regras fuzzy pode ser construída manualmente com o auxílio de um 

especialista, ou de forma automática através de geradores de regras fuzzy a partir de 

dados tabulados. Independentemente de como foi gerada, a base de regras é composta 

por uma coleção de proposições condicionais fuzzy que devem descrever linguisticamente 

o conhecimento capturado (ZADEH, 1965). Cada regra fuzzy é formada por uma parte 

antecedente e uma parte consequente (ORTEGA, 2001). O resultado obtido das relações 

representadas pelas regras será utilizado pelo motor de inferência do sistema. Outras 

características importantes de uma base de regras fuzzy são a consistência e a 

completude. Uma base de regras fuzzy consistente, não possui regras com consequentes 

conflitantes e que possam ser ativadas simultaneamente (PEDRYCZ; GOMIDE, 1998).  

Com base nas características acústicas extraídas, regras fuzzy serão 

desenvolvidas para modelar a relação entre parâmetros vocais e estados emocionais, 
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utilizando uma combinação de conhecimento empírico e teórico da literatura sobre voz e 

emoção. 

 

4.5.3 Motor de inferência 

Nesta etapa, define-se quais as normas e regras de inferência serão utilizadas na 

obtenção da relação fuzzy que modela a base de regras (KAYACAN; KHANESAR, 2016). 

Inicialmente, processam-se os dados fuzzy de entrada juntamente com as regras, 

aplicando as t-normas, t-conormas e as regras de inferência para determinar os conjuntos 

fuzzy de saída e modelar a base de regras (PASSINO; YURKOVICH, 1997).  

O processo de inferência de Mamdani (1974) utiliza o operador de implicação 

mínimo (t-norma) que é responsável por modelar a relação lógica "SE... ENTÃO..." em um 

contexto de incerteza e as regras da base de conhecimento para associar as 

características vocais às emoções correspondentes, manipulando as incertezas e 

ambiguidades nas variações emocionais da voz (KAYACAN; KHANESAR, 2016). No 

processo de inferência fuzzy, o operador de implicação é aplicado para calcular o grau de 

verdade do consequente a partir do antecedente, conforme definido em regras fuzzy do 

tipo "SE intensidade é alta, ENTÃO emoção é raiva". Após a aplicação do operador de 

implicação para todas as regras relevantes, os resultados são combinados por meio de 

agregação fuzzy, posteriormente, o grau fuzzy é convertido em um valor exato no 

processo de defuzzificação.  

O processo de inferência gera um grau de pertinência de ativação para cada regra, 

onde ocorre a implicação mediante a aplicação do operador escolhido. O último passo 

do processo é o operador de agregação sobre todos os valores resultantes da implicação 

de cada regra para a geração de um conjunto fuzzy único que será passado para a 

interface de defuzificação (MORAES, 1998).  

Entre os principais operadores de agregação estão o máximo (t-conorma), que 

seleciona o maior grau de pertinência. Outros operadores incluem a média, que balanceia 

os valores de saída ao calcular a média aritmética, o produto que pondera os resultados 

de forma mais restritiva, e o mínimo, que avalia o menor grau de pertinência e permite 

representar de maneira conservadora e intuitiva as relações lógicas "SE... ENTÃO...", 

evitando superestimações de ativação nas regras fuzzy (MEGRI; BOUKEZZOULA, 2008; 

ZADEH, 1965). Para cada característica vocal, serão definidas funções de pertinência que 

determinam o grau de correspondência entre os valores das características e as 

categorias emocionais. 
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A implicação consiste na formulação de uma conexão entre causa e efeito, ou 

uma condição e sua consequência. Para a realização da implicação podem ser utilizados 

vários operadores (Tabela 2) (MORAES, 1998). Neste estudo foi utilizado o operador de 

Zadeh. 

 

Tabela 2 - Principais operadores de implicação 

Operador de Implicação Nome 

min (a,b) Zadeh 

1 – a + ab Reichenback 

min (1 - a + b , 1) Lukasiewicz 

max (1-a, b) Kleene-Diemes 

Fonte: MORAES, 1998. 

 

Existem diversos métodos de inferência, deve-se, portanto, escolher aquele que 

melhor se adapta ao sistema que está sendo modelado. Um dos métodos mais utilizados 

é o método de Mamdani (1974). O processo de inferência do tipo Mamdani pode ser 

descrito em quatro etapas principais: 

1. Identificação das regras compatíveis e cálculo do grau de pertinência dos valores 

de entrada para cada proposição no antecedente das regras. 

2. Combinação dos graus de pertinência calculados utilizando a t-norma padrão de 

interseção (min). 

3. Determinação do grau de ativação do consequente, com base no grau de 

pertinência resultante, utilizando novamente a t-norma padrão de interseção.  

4. Agregação dos resultados individuais das regras compatíveis por meio da s-norma 

padrão de união. 

A figura 3 apresenta graficamente um exemplo do modelo de inferência de 

Mamdani (Figura 3). 
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Figura 3 - Inferência pelo método de Mamdani 

 

Fonte: Santos (2009) 

 

É importante destacar que o antecedente pode conter mais de duas proposições. 

A seguir, é apresentado um exemplo do processo de inferência utilizando o método de 

Mamdani: 

Regra1: Se V1 é A11 e V2 é A12, então U1 é B1 

Regra2: Se V1 é A21 e V2 é A22, então U2 é B2 

Condição observada: V1 é a1’ e V2 é a2’ 

Conclusão: U é Y’      (11) 

w11 = A11(a1’)   w12 = A12(a2’) 

w21 = A21(a1’)   w22 = A22(a2’) 

 

Assim, o grau de ativação das regras 1 e 2 será determinado por w1 e w2, calculados 

respectivamente da seguinte forma: 

w1 = w11 ˄ w12 

w2 = w21 ˄ w22 

          (12) 
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As saídas das regras serão então calculadas utilizando o operador de mínimo: 

B1’ (y) = w1 ˄ B(y)1  (13) 

B2’ (y) = w2 ˄ B(y)2    

Por fim, a saída global será obtida por meio da agregação utilizando o operador de 

máximo: 

B’(y) = B1’(y) ˅ B2’(y) (14) 

A saída global gerada pelo método de Mamdani deve ser submetida a um processo 

de defuzzificação, permitindo que o usuário obtenha um valor exato (crisp) (Mamdani, 

1974). 

 

4.5.4 Processador de saída (Defuzificador) 

A etapa final do processo de inferência fuzzy, chamada de defuzzificação, 

transforma os conjuntos fuzzy em números reais, facilitando a obtenção de uma 

representação numérica que reflete o estado emocional mais provável. Esse processo 

traduz o conjunto fuzzy resultante para valores precisos (KAYACAN; KHANESAR, 2016). 

Diversos métodos são apresentados para este processo na literatura, sendo os 

principais: Centroid or Center of Gravity (CoG), Center of Sums (CoS), Center of Largest 

Area (CoLA), First of Maxima (FoM), Last of Maxima (LoM) e Mean of Maxima (MoM) 

(LIU, 2007; JAIN et al., 2022). 

No presente estudo, o método de defuzzificação utilizado foi o CoLA, que identifica 

o valor numérico correspondente ao centro da figura de maior área dos conjuntos fuzzy 

resultantes. Esse método se baseia na seleção da região mais significativa do conjunto 

fuzzy e no cálculo do centro dessa área, considerando a importância relativa das variáveis 

no modelo.  

Se existirem pelo menos duas sub-regiões convexas no conjunto fuzzy resultante, 

então o centro de gravidade (isto é, a abordagem do centróide) é utilizado para calcular 

z∗) da sub-região convexa com a maior área, que é empregada para determinar o valor 

de z∗) da saída (VAN LEEKWIJCK; KERRE, 1999; SUGENO, 1985) 

Essa condição pode ser expressa na forma algébrica como: 

 

𝑧∗ =
∫ 𝜇𝑐̃𝑚 (𝑧)𝑧𝑑𝑧)

∫ 𝜇𝑐̃𝑚 (𝑧)𝑧𝑑𝑧
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onde 𝑐̃𝑚 é o segmento convexo com a maior área que compõe 𝑐̃𝑘. Quando todo o conjunto 

fuzzy resultante 𝑐̃𝑘 é não convexo, essa condição é válida. Quando 𝑐̃𝑘 é convexo, o valor 

de z∗) é igual ao valor obtido utilizando a técnica do centróide, já que há apenas uma única 

zona convexa. A equação acima pode ser usada para encontrar z∗) utilizando a 

abordagem do centro da maior área. Como todo o conjunto fuzzy resultante é convexo, a 

abordagem do centro da maior área gera o mesmo resultado que o método do centróide, 

resultando em z∗= 4,9. 

O CoLA é indicado quando as saídas do processo de inferência fuzzy são formadas 

por conjuntos de múltiplas áreas (WEBER e KLEIN, 2003). A figura 4 mostra o resultado 

da defuzzificação pelo método CoLA. 

 

Figura 4 - Defuzzificação pelo método CoLA 

 

Fonte: WEBER e KLEIN, 2003. 

 

O CoLA é indicado para situações onde diferentes regiões apresentam graus de 

pertinência variados, pois prioriza a área com maior relevância, proporcionando maior 

precisão e representatividade no processo de defuzzificação (KOVACIC E BOGDAN 

2006). 

 

4.5.5 Módulo Fuzzy Rules 

 

Para o desenvolvimento do modelo de reconhecimento dos estados emocionais a 

partir da voz, utilizou-se o pacote FuzzyRules, implementado no software R, versão 4.3.3 
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por Moraes, Machado e Ferreira (2024) disponível em: 

https://github.com/leapigufpb/FuzzyRules. Este módulo permite a criação de sistemas 

baseados em lógica fuzzy, abrangendo a definição de funções de pertinência, operações 

em conjuntos fuzzy e métodos de defuzzificação.  

Na definição das funções de pertinência para as variáveis de entrada, o módulo 

oferece suporte a diferentes formatos, incluindo triangular, trapezoidal, constante, 

singleton e gaussiana. No entanto, com base na análise dos histogramas das variáveis 

utilizadas, foi selecionada a função trapezoidal como a mais adequada. Esse formato 

apresentou maior correspondência com as distribuições observadas e garantiu uma 

modelagem mais precisa das características vocais associadas a cada emoção básica. 

Adicionalmente, foram implementadas operações em conjuntos fuzzy, utilizando t-

normas e t-conormas de Zadeh, Probabilística e de Lukasiewicz. Essas operações 

possibilitaram a manipulação eficiente dos conjuntos fuzzy associados às variáveis de 

entrada para modelar as interações entre diferentes características acústicas de forma 

mais robusta. 

Em relação à lógica fuzzy, foram realizadas operações lógicas como AND, OR e 

NOT para múltiplos conjuntos fuzzy, possibilitando a construção de regras que relacionam 

as variáveis de entrada aos estados emocionais. O modelo de inferência adotado foi o do 

tipo Mamdani, amplamente reconhecido por sua habilidade de lidar com incertezas e por 

fornecer uma representação intuitiva das relações entre as variáveis e os estados 

emocionais (MAMDANI, 1974). 

Para a defuzzificação, o módulo oferece diversos métodos, como CoG, CoS, Center 

CoLA, FoM, LoM e MoM. Optou-se pelo método CoLA devido à sua eficácia em fornecer 

resultados representativos em cenários com múltiplos picos nas funções de pertinência, 

característica presente nas distribuições das variáveis analisadas. O CoLA destacou-se 

por priorizar a maior área da função de pertinência, proporcionando maior estabilidade 

nos valores defuzzificados e melhorando a precisão do modelo de reconhecimento das 

emoções. 

A utilização do módulo FuzzyRules no R possibilitou a implementação eficiente do 

modelo, integrando diversas técnicas avançadas de lógica fuzzy. Essa abordagem 

garantiu maior robustez e precisão na identificação das emoções, destacando-se como 

uma solução inovadora e eficaz no reconhecimento automático das emoções. 
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4.5.6 Análise de desempenho do modelo fuzzy 

 

O modelo fuzzy será avaliado de acordo com os seguintes indicadores para validar 

o modelo lógico: 

  Acurácia: percentual de emoções corretamente identificadas pelo sistema. 

  Sensibilidade: capacidade do modelo de detectar corretamente uma emoção 

presente. 

  Especificidade: capacidade do modelo de identificar corretamente a ausência de 

uma emoção específica. 

Os resultados apresentados serão analisados levando em consideração a Matriz 

de Confusão, o coeficiente de Acurácia Geral e o coeficiente Kappa, para avaliar a 

precisão dos resultados obtidos através do modelo. 

 

4.5.7 Validação do modelo de reconhecimento das emoções fuzzy 

 

Realizou-se uma análise comparativa entre o desempenho do modelo fuzzy e 

outros modelos tradicionais de reconhecimento de emoções, como Linear SVM, Random 

Forest, Kernel SVM, Redes Neurais MLP, Redes Neurais MLP combinadas através de 

Bagging, Árvore de decisão, KNN, Linear SVM, Redes Naive Bayes, Extreme Gradient 

Boosting (XGBoost) e Elastic Net (EL Net). As métricas de desempenho foram 

comparadas entre os diferentes modelos para validar a eficácia do modelo fuzzy. Vale 

destacar que essa comparação visou validar a viabilidade e o potencial do modelo fuzzy, 

sem estabelecer hierarquias rígidas de desempenho, mas ressaltando sua aplicabilidade 

e contribuição no campo investigado. 

O fluxograma a seguir indica as etapas realizadas para o desenvolvimento dos 

modelos de aprendizado de máquinas (Figura 5). 

 

 

 

 

 

 

 



 

 

70 

 

     Figura 5 - Etapas para a construção dos modelos baseados em aprendizado de 

máquinas 

 

Fonte: Elaborado pelo autor, 2024. 

4.5.7.1 Importação e formatação dos dados 

 

Inicialmente foram realizadas as etapas de importação e formatação dos dados. O 

processamento inicial do conjunto de dados apresentou as medidas vocais e categorias 

emocionais. Posteriormente, a variável emoção foi convertida em um fator com rótulos 

descritivos, categorizando as emoções alegria, tristeza, medo, raiva, surpresa, nojo e 

neutra.   

4.5.7.2 Classificação baseada na transformação espectral 

 

Os testes realizados inicialmente com as variáveis originais não apresentaram 

resultados satisfatórios em termos de precisão, devido a sobreposição existente entre as 

variáveis, o que levou à necessidade de aplicar transformações espectrais como a Análise 

Espectral de Grafos (AEG). Essa transformação permitiu explorar e analisar as relações 

entre os objetos em um conjunto de dados que podem ser descritos por grafos. O método 

utiliza a decomposição espectral do Laplaciano do grafo, derivado da matriz de 

similaridade dos dados, para capturar propriedades estruturais e relacionais. A AEG 

possibilita a clusterização de objetos com base em relações de similaridade, 

representando esses objetos como nós em um grafo e conectando-os com arestas 

ponderadas que refletem o grau de similaridade (BORKOWSKY et al., 2023).  



 

 

71 

 

O método espectral facilitou a atribuição de novos dados a clusters já existentes, 

uma vez que a classificação pode ser realizada com base em critérios de similaridade 

entre espectros de autovalores, garantindo maior coerência na integração de dados 

previamente não rotulados. Além disso, o uso de autovalores permite superar limitações 

de escalabilidade e precisão, comuns em métodos que dependem exclusivamente de 

autovetores ou de clusterizações estáticas. Essa técnica torna-se eficaz para dados 

heterogêneos ou com sobreposição de classes (BORKOWSKY et al., 2023). A 

transformação espectral permitiu decompor o sinal em componentes de frequência, 

essenciais para o entendimento de características acústicas específicas e para a redução 

de ruídos ou variações comprometeram a precisão das análises. Essa técnica foi aplicada 

para facilitar a discriminação entre diferentes classes de sinais e contribuiu para a melhoria 

da acurácia dos modelos. 

Inicialmente, a matriz de adjacência foi construída usando uma métrica de 

similaridade baseada em distâncias euclidianas, ajustadas por um parâmetro de escala 

kpar, com valores abaixo de um limiar sendo truncados. Em seguida, foram calculadas as 

matrizes de grau e o Laplaciano normalizado, que representaram a estrutura relacional 

dos dados. A decomposição espectral do Laplaciano foi realizada para obter os 

autovalores e autovetores, sendo os autovetores correspondentes às menores dimensões 

selecionados para formar a nova representação. Por fim, os dados foram normalizados 

para garantir a consistência geométrica da transformação, resultando em uma 

representação reduzida que preserva as características estruturais mais relevantes do 

conjunto original. 

A figura 6 representa o processo de aplicação da transformação espectral em um 

conjunto de dados para redução de dimensionalidade e visualização. Inicialmente, 

estimou-se o parâmetro de kernel, que ajustou a escala na construção da matriz de 

adjacência. A matriz foi criada a partir do conjunto de dados original, excluindo a variável 

categórica de emoção, e a transformação espectral foi realizada, projetando os dados em 

um espaço de cinco dimensões reduzidas. Os dados transformados foram então 

convertidos em um formato tabular e combinados com a variável de emoção original. A 

visualização em duas dimensões foi gerada utilizando os dois primeiros componentes 

principais (V1) e (V2) da projeção, com as cores representando as diferentes categorias 

emocionais. Cada ponto representa uma observação no conjunto de dados, posicionada 

em relação às dimensões (V1) e (V2), enquanto as cores indicam as emoções associadas 

(Figura 6). 
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Figura 6 - Transformação espectral aplicada no conjunto de dados 

 

 

Observa-se como as diferentes emoções se distribuíram no espaço projetado, 

identificando padrões ou clusters de acordo com a proximidade espacial de observações 

pertencentes à mesma categoria emocional.  

A figura 7 exibe a relação entre as variáveis específicas (V1) a (V5) por meio de 

diagramas de dispersão, com as cores indicando as diferentes emoções para identificar 

possíveis clusters ou tendências associadas às emoções. As distribuições univariadas, 

exibidas nos gráficos diagonais, mostram como as variáveis se distribuíram 

individualmente para cada emoção (Figura 7). 
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Figura 7 - Relação entre as variáveis pós transformação espectral 

 

 

Os painéis laterais, como os boxplots para cada variável por emoção, destacaram 

as diferenças na mediana e dispersão das dimensões reduzidas entre as categorias 

emocionais. Essas informações são valiosas para observar como as emoções se 

distinguem em cada dimensão e podem indicar quais variáveis têm maior poder 

discriminatório. As variáveis V1 a V5, representam os componentes principais do conjunto 

de variáveis, destacaram-se nos painéis laterais, como os boxplots por emoção, 

evidenciando diferenças na mediana e dispersão entre as categorias emocionais. As 

correlações apresentadas nos painéis numéricos avaliam a força e direção das relações 

lineares entre as variáveis (V1) a (V5) que ajudou a identificar redundâncias ou 

independências entre dimensões.  
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4.5.7.3 Pré-processamento dos dados 

 

O pré-processamento dos dados incluiu diversas etapas para garantir a qualidade 

e a padronização das variáveis. Inicialmente, as variáveis numéricas foram normalizadas, 

ajustando-se para que apresentassem média igual a zero e desvio-padrão igual a um, 

para melhorar a performance de modelos sensíveis à escala dos dados. Além disso, foram 

implementadas alternativas para lidar com valores ausentes, como imputação por KNN, 

considerando k=5, bagged trees, média, mediana ou moda, além da possibilidade de 

exclusão direta de instâncias com valores ausentes. Dessa forma, para cada instância 

com o valor ausente, o algoritmo K-NN calculou a distância entre as instâncias no conjunto 

de dados, por meio da métrica de distância euclidiana ao quadrado (IMANDOUS; 

BOLANDRAFTAR, 2013). 

Transformações adicionais, como logaritmo, polinômios de grau até 4 e Yeo-

Johnson, também foram previstas para tratar assimetrias e preparar as variáveis para 

modelagem. Foi realizada a remoção de preditores altamente correlacionados (threshold 

= 0,6, correlação de Spearman), reduzindo o risco de multicolinearidade, e a exclusão de 

variáveis com variância próxima de zero, para melhorar a eficiência computacional. 

O conjunto de dados foi então pré-processado e estruturado para garantir que as 

transformações fossem aplicadas de maneira consistente ao conjunto de treinamento. 

Esse processo assegurou a preparação adequada dos dados para análises e modelagens 

subsequentes. 

 

4.5.7.4 Conjunto de Validação 

 

Foi utilizado o método k-fold cross-validation para construir um conjunto de 

validação com k folds e considerado um procedimento com k = 10 folds, repetido uma vez. 

Os dados foram particionados em 10 partes utilizando amostragem estratificada com base 

na variável emoção. Em cada iteração, os modelos foram ajustados em um conjunto de 

treinamento composto por 9 dessas partes e avaliados em um conjunto de teste composto 

pela parte restante.  

Esse procedimento foi utilizado para determinar os valores otimizados dos 

hiperparâmetros dos modelos, garantindo representatividade das classes e uma avaliação 

robusta do desempenho do modelo.  
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4.5.7.5 Modelagem 

 

Para a construção dos aprendizagem de máquina foram considerados os seguintes 

modelos: Linear SVM, Kernel SVM, KNN, Árvore de Decisão, Random Forest, Redes 

Neurais MLP, Redes Neurais MLP combinadas através de Bagging, Redes Naive Bayes, 

EL Net e XGBoost. 

Os critérios de categorização para as métricas de acurácia e sensibilidade dos 

modelos foram adaptados com base em intervalos de referência: excelente (valores 

superiores a 0,90), bom (entre 0,80 e 0,90), aceitável (entre 0,70 e 0,80), ruim (entre 0,60 

e 0,70) e inaceitável (inferior a 0,60) (HOSMER; LEMESHOW, 2000). Para o coeficiente 

Kappa, foi considerado os valores segundo Landis; Koch (1977). 

Com esses parâmetros, foram avaliados os desempenhos dos modelos de 

aprendizado de máquina utilizados para o reconhecimento das emoções a partir da voz. 

Modelos com acurácia, sensibilidade e especificidade inferiores a 0,80 foram 

considerados insuficientes para este estudo, pois valores abaixo desse limiar indicam uma 

baixa capacidade de reconhecimento (YER et al., 1991). 

Todo o processo de construção dos modelos de aprendizado de máquinas foi 

realizado utilizando o software R, versão 4.3.3.  
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5 RESULTADOS 

 
Os resultados a seguir descrevem o desempenho do modelo fuzzy baseado em 

regras desenvolvido para o reconhecimento das emoções a partir da voz. A construção 

do modelo fundamentou-se em uma abordagem que integra parâmetros acústicos e 

acústico-prosódicos relevantes, cuidadosamente selecionados para maximizar a precisão 

no reconhecimento emocional.  

A seleção das variáveis que compuseram o modelo fuzzy foi realizada de forma 

criteriosa, considerando tanto a relevância individual quanto a interação entre elas. 

Utilizou-se inicialmente a construção de boxplots para cada variável para realizar a análise 

das variáveis e identificar possíveis interseções que poderiam comprometer o 

desempenho do modelo fuzzy. Essa abordagem gráfica permitiu observar a distribuição 

dos valores de forma visual, para facilitar a identificação de padrões similares entre as 

variáveis. Foram analisados aspectos como a posição da mediana, a amplitude do 

intervalo interquartil e a presença de outliers. Variáveis com distribuições muito 

semelhantes, que refletiam padrões consistentes em seus boxplots, foram consideradas 

redundantes. Essa análise forneceu subsídios iniciais para avaliar a sobreposição de 

informações entre variáveis e direcionar etapas subsequentes de seleção ou exclusão, 

com o objetivo de simplificar o modelo e melhorar sua precisão na diferenciação 

emocional.       

Parâmetros acústicos como os MFCC, os parâmetros de duração z-score e z-

suavizado, e de GNE foram excluídos devido ao fato de apresentarem intersecções com 

outras variáveis. Além disso, a inclusão dessas variáveis piorou o desempenho do modelo, 

aumentou o ruído no sistema e reduziu sua precisão. Essa exclusão foi fundamental para 

otimizar a simplicidade do modelo fuzzy e aprimorar sua capacidade de diferenciar as 

emoções de maneira eficiente e robusta, com foco exclusivamente nas variáveis que 

contribuem de maneira efetiva para a identificação precisa das emoções.  

Os boxplots de algumas variáveis excluídas destacaram as distribuições dessas 

variáveis e suas características principais, que oferece uma visão detalhada sobre os 

dados excluídos do modelo principal (Figura 8). 
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Figura 8 - Boxplots das variáveis excluídas do modelo fuzzy 

 

 

A seleção criteriosa das variáveis no modelo fuzzy, verificou as variáveis mais 

eficazes para capturar diretamente as nuances prosódicas associadas às expressões 

emocionais humanas. Parâmetros como as variações da fo, duração e intensidade foram 

mantidas no modelo, complementados por medidas acústicas adicionais, como HNR, 

CPPS, jitter, shimmer, bem como pelos eixos dimensionais das emoções (valência, 

potência e ativação). Essas variáveis demonstraram um impacto positivo na precisão e no 

desempenho do sistema, que proporcionou uma análise mais robusta e diferenciada dos 

estados emocionais. 
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A inclusão dessas variáveis reforçou a capacidade do modelo de captar nuances 

emocionais de maneira robusta e com maior exatidão, com diferenciação das emoções 

de forma mais confiável e detalhada. A exclusão de parâmetros menos relevantes, como 

as medidas cepstrais, e a incorporação de variáveis acústicas e dimensionais bem 

fundamentadas não apenas simplificaram o modelo, mas também aumentaram sua 

robustez e aplicabilidade, assegurando que o sistema responde com precisão às 

variações emocionais. Dessa forma, a construção do modelo foi orientada para maximizar 

a eficácia do reconhecimento emocional, com garantia da eficiência no desempenho, além 

de evitar variáveis que poderiam comprometer a diferenciação entre emoções, o que 

fortalece sua aplicabilidade em cenários práticos. 

 
 

5.1 Modelo baseado em regras fuzzy 

 
Os parâmetros acústicos e acústico-prosódicos foram usados como variáveis 

linguísticas de entrada para o sistema baseado em regras fuzzy, configurando a última 

etapa do modelo de reconhecimento dos estados emocionais. As emoções básicas, mais 

a emissão neutra, constituíram as variáveis linguísticas de saída. A Tabela 3 apresenta as 

variáveis linguísticas para o conjunto completo de casos, detalhando seus termos 

linguísticos e universo de discurso. 

 
Tabela 3 - Variáveis linguísticas do sistema fuzzy baseado em regras para o modelo de 
reconhecimento das emoções a partir da voz. 

VARIÁVEIS 
LINGUÍSTICAS 

TERMOS LINGUÍSTICOS DOMÍNIO (SUPORTE) 

Variáveis de entrada 

Duração [al] 
 

duracao_alMuitoMuitoPequena [0, 0, 140, 150] 

duracao_alMuitoPequena [140, 150, 160, 170] 

duracao_alPequena [160, 170, 180, 190] 

duracao_alMedia [180, 190, 200, 210] 

duracao_alAlta [200, 210, 220, 230] 

duracao_alMuitoAlta [220, 230, 250, 270] 

duracao_alMuitoMuitoAlta [250, 270, 380, 380] 

Duração [auav] 
duracao_auavMuitoMuitoPequena [0, 0, 500, 510] 

duracao_auavMuitoPequena [505, 515, 520, 560] 
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(continuação) 

Duração [auav] 

duracao_auavPequena [530, 545, 565, 585] 

duracao_auavMedia [575, 605, 625, 665] 

duracao_auavAlta [645, 670, 780, 800] 

duracao_auavMuitoAlta [790, 810, 1010, 1020] 

duracao_auavMuitoMuitoAlta [1010, 1040, 1450, 1450] 

Duração [ianu] 
 
 

duracao_ianuMuitoMuitoPequena [0, 0, 130, 140] 

duracao_ianuMuitoPequena [130, 150, 170, 180] 

duracao_ianuPequena [170, 190, 210, 220] 

duracao_ianuMedia [210, 230, 250, 260] 

duracao_ianuAlta [250, 270, 290, 300] 

duracao_ianuMuitoAlta [290, 310, 330, 340] 

duracao_ianuMuitoMuitoAlta [330, 350, 450, 450] 

Duração [az] 

duracao_azMuitoMuitoPequena [0, 0, 180, 200] 

duracao_azMuitoPequena [190, 200, 210, 220] 

duracao_azPequena [210, 220, 230, 240] 

duracao_azMedia [230, 240, 250, 260] 

duracao_azAlta [250, 260, 270, 280] 

duracao_azMuitoAlta [270, 290, 305, 320] 

duracao_azMuitoMuitoAlta [310, 320, 480, 480] 

fo mínimo 
 

fominMuitoMuitoPequeno [0, 0, 60, 70] 

fominMuitoPequeno [55, 70, 90, 100] 

fominPequeno [85, 100, 120, 130] 

fominMedio [115, 130, 150, 160] 

fominAlto [150, 158, 178, 186] 

fominMuitoAlto [178, 186, 210, 225] 

fominMuitoMuitoAlto [210, 225, 310, 310] 

fo máximo 
 

fomaxMuitoMuitoPequeno [0, 0, 180, 210] 

fomaxMuitoPequeno [190, 200, 230, 250] 

fomaxPequeno [240, 250, 280, 290] 

fomaxMedio [280, 290, 320, 330] 
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(continuação) 

fo máximo 
 

fomaxAlto [320, 330, 360, 370] 

fomaxMuitoAlto [360, 370, 415, 425] 

fomaxMuitoMuitoAlto [415, 425, 530, 530] 

fo médio 

fomdMuitoMuitoPequeno [0, 0, 90, 110] 

fomdMuitoPequeno [100, 115, 140, 150] 

fomdPequeno [140, 155, 175, 190] 

fomdMedio [180, 195, 230, 245] 

fomdAlto [235, 250, 265, 280] 

fomdMuitoAlto [270, 285, 300, 315] 

fomdMuitoMuitoAlto [305, 320, 400, 400] 

fo range 
 

forangeMuitoMuitoPequeno [0, 0, 30, 50] 

forangeMuitoPequeno [30, 50, 70, 90] 

forangePequeno [70, 90, 110, 130] 

forangeMedio [110, 130, 155, 170] 

forangeAlto [150, 170, 190, 210] 

forangeMuitoAlto [190, 210, 235, 250] 

forangeMuitoMuitoAlto [230, 250, 370, 370] 

fo desvio padrão 
 

fodpMuitoMuitoPequeno [0, 0, 13, 15] 

fodpMuitoPequeno [14, 16, 18, 20] 

fodpPequeno [19, 20, 23.5, 25] 

fodpMedio [24, 26, 28, 30] 

fodpAlto [29, 31, 33, 35] 

fodpMuitoAlto [34, 36, 38, 40] 

fodpMuitoMuitoAlto [39, 41, 70, 70] 

Intensidade 
 

intensidadeMuitoMuitoPequena [0, 0, 34, 38] 

intensidadeMuitoPequena [35, 39, 40, 45] 

intensidadePequena [42, 46, 47, 52] 

intensidadeMedia [49, 53, 54, 59] 

intensidadeAlta [57, 59, 62, 66] 

intensidadeMuitoAlta [63, 68, 69, 73] 
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(continuação) 

Intensidade 
 

intensidadeMuitoMuitoAlta [70, 75, 85, 85] 

Jitter 

jitterMuitoMuitoPequena [0, 0, 11, 11,5] 

jitterMuitoPequena [11, 12, 12,7, 13,2] 

jitterPequena [12,5, 13,4, 14,2, 14,7] 

jitterMedia [14, 14,9, 15,7, 16,2] 

jitterAlta [15,5, 16,5, 17,2, 17,7] 

jitterMuitoAlta [17, 18, 18,7, 19,2] 

jitterMuitoMuitoAlta [18,5, 19,5, 40, 40] 

Shimmer 
 

shimmerMuitoMuitoPequena [0, 0, 5, 6] 

shimmerMuitoPequena [5, 6, 7, 8] 

shimmerPequena [7, 8, 9, 10] 

shimmerMedia [9, 10, 11, 12] 

shimmerAlta [11, 12, 13, 14] 

shimmerMuitoAlta [13, 14, 15, 16] 

shimmerMuitoMuitoAlta [15, 16, 21, 21] 

Hnr 
 

hnrMuitoMuitoPequena [0, 0, 9, 10] 

hnrMuitoPequena [9, 10, 11, 12] 

hnrPequena [11, 11,8, 13, 14] 

hnrMedia [13, 14, 15, 16] 

hnrAlta [15, 16, 17, 18] 

hnrMuitoAlta [17, 18, 19, 20] 

hnrMuitoMuitoAlta [19, 20, 23, 23] 

Cpps 
 

cppsMuitoMuitoPequena [0, 0, 7,5, 7,8] 

cppsMuitoPequena [7,7, 8, 8,3, 8,5] 

cppsPequena [8,4, 8,7, 9, 9,3] 

cppsMedia [9,2, 9,45, 9,8, 10,1] 

cppsAlta [10, 10,3, 10,6, 10,9] 

cppsMuitoAlta [10,8, 11,1, 11,4, 11,7] 

cppsMuitoMuitoAlta [11,6, 11,9, 15, 15] 

Cpps desvio padrão 
 

cppsdpMuitoMuitoPequeno [0, 0, 2,5, 2,7] 
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  (conclusão) 

Cpps desvio padrão 
 

cppsdpMuitoPequeno [2,6, 2,8, 2,9, 3,2] 

cppsdpPequeno [3,1, 3,2, 3,3, 3,4] 

cppsdpMedio [3,3, 3,4, 3,5, 3,6] 

cppsdpAlto [3,5, 3,7, 3,9, 4] 

cppsdpMuitoAlto [3,9, 4, 4,4, 4,5] 

cppsdpMuitoMuitoAlto [4,4, 4,6, 5,3, 5,3] 

Valência 

valenciaPositiva [0, 1, 2] 

valenciaNegativa [1, 2, 3] 

valenciaNeutra [2, 3, 4] 

Potência 
potenciaForte [0, 1, 2] 

potenciaFraca [1, 2, 3] 

Ativação 
ativacaoAlta [0, 1, 2] 

ativacaoBaixa [1, 2, 3] 

Variável de saída 

Emoções 

Alegria [0,5, 1, 1,5] 

Medo [1,5, 2, 2,5] 

Tristeza [2,5, 3, 3,5] 

Raiva [3,5, 4, 4,5] 

Surpresa [4,5, 5, 5,5] 

Nojo [5,5, 6, 6,5] 

Neutra [6,5, 7, 7,5] 

 
 

A seguir foram apresentados os gráficos das funções de pertinência 

correspondentes a cada variável utilizada no modelo. As cores nos gráficos foram 

escolhidas aleatoriamente, e cada cor corresponde a um termo linguístico relacionado às 

variáveis de entrada e saída. Observa-se como os graus de pertinência são atribuídos a 

diferentes faixas de valores. Os parâmetros acústicos foram definidos com funções 

trapezoidais devido à necessidade de representar uma amplitude maior de valores com 

máxima pertinência. Este formato permite acomodar termos linguísticos de maneira 

abrangente, apresentam um pico plano que indica a máxima pertinência (grau de 

pertinência = 1) e bases inclinadas que proporcionam uma transição gradual entre 

diferentes termos. Essa estrutura possibilita que valores intermediários compartilhem 



 

 

83 

 

pertinência com mais de um termo para refletir a suavidade e a incerteza inerentes a lógica 

fuzzy. Por exemplo, um valor intermediário pode pertencer simultaneamente a dois termos 

linguísticos, como "médio" e "alto", com graus de pertinência distintos. Por outro lado, os 

eixos de dimensão emocional foram representados por funções triangulares devido à sua 

simplicidade e capacidade de modelar categorias bem definidas. Cada triângulo possui 

um único pico, que representa o valor central mais característico de um termo linguístico, 

como "positivo", "negativo" ou "neutro". As bases inclinadas dessas funções permitem 

uma transição gradual entre termos adjacentes, assegurando a continuidade entre os 

estados emocionais. 

As funções de pertinência para a variável de saída (emoções) foram representadas 

no formato triangular, devido à simplicidade para o processo de defuzzificação e à 

capacidade de representar emoções com um pico central que define o valor mais 

representativo para cada termo linguístico. As bases do triângulo permitem uma gradação 

contínua entre as emoções adjacentes, conferindo ao modelo uma transição suave entre 

diferentes estados emocionais.  

Os eixos dos gráficos representam, no eixo X, os valores reais das variáveis dentro 

de seus respectivos universos de discurso, e, no eixo Y, os graus de pertinência que 

variam de 0 a 1. As interseções entre as funções de pertinência são importantes para o 

funcionamento do sistema, pois permitem que um mesmo valor numérico pertença 

parcialmente a mais de um termo linguístico, influenciando diretamente a construção das 

regras fuzzy. Essas interseções refletem a capacidade do modelo de lidar com 

informações graduais, possibilitando inferências mais realistas.  

Dessa forma, os gráficos apresentados a seguir gerados no pacote FuzzyRules, 

oferecem uma representação clara da categorização das variáveis de entrada e saída no 

modelo fuzzy, evidenciando as relações entre os termos linguísticos, suas transições e os 

valores centrais. Essas ilustrações, delimitadas por um recorte do universo de discurso, 

têm como propósito demonstrar de forma visual a atribuição dos graus de pertinência a 

diferentes faixas de valores, para uma análise mais intuitiva da classificação das emoções 

(Figura 9–27). 

 

 

 

  



 

 

84 

 

Figura 9 - Função de pertinência da variável de entrada Duração [al] 

 

Figura 10 - Função de pertinência da variável de entrada Duração [auav] 
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Figura 11 - Função de pertinência da variável de entrada Duração [ianu] 

 

Figura 12 - Função de pertinência da variável de entrada Duração [az] 
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Figura 13 - Função de pertinência da variável de entrada fo mínimo 

 

Figura 14 - Função de pertinência da variável de entrada fo máximo 
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Figura 15 - Função de pertinência da variável de entrada fo médio 

 

Figura 16 - Função de pertinência da variável de entrada fo range 
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Figura 17 - Função de pertinência da variável de entrada fo desvio padrão 

 

Figura 18 - Função de pertinência da variável de entrada Intensidade 
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Figura 19 - Função de pertinência da variável de entrada Jitter 

 

Figura 20 - Função de pertinência da variável de entrada Shimmer 
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Figura 21 - Função de pertinência da variável de entrada HNR 

 

Figura 22 - Função de pertinência da variável de entrada CPPS 
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Figura 23- Função de pertinência da variável de entrada CPPS desvio padrão 

 
 

Figura 24 - Função de pertinência da variável de entrada Valência 
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Figura 25 - Função de pertinência da variável de entrada Potência 

 

Figura 26 - Função de pertinência da variável de entrada Ativação 
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Figura 27 - Função de pertinência da variável de saída Emoções 

 
 

5.1.1 Construção das regras fuzzy 

 
 

Foram desenvolvidos bancos de regras fuzzy para modelar o reconhecimento das 

emoções com precisão, com a integração de 18 variáveis linguísticas de entrada, 

representativas de parâmetros acústicos e prosódicos, tais como fo, intensidade, duração, 

medidas cepstrais, além da valência, potência e ativação da emoção, e 7 variáveis 

linguísticas de saída, que incluem as emoções básicas e a emissão neutra. Com base 

nesses parâmetros, 23 regras foram formuladas e implementadas no sistema fuzzy, a fim 

de garantir uma inferência robusta que permite diferenciar emoções de forma adaptativa 

e sensível às variações sutis dos sinais de voz.  

Cada regra estabelece condições específicas que acionam classificações precisas 

no sistema, promovendo uma interpretação ajustada às variações vocais associadas a 

cada estado emocional. A seguir, exemplificam-se as regras aplicadas nos bancos, 

ilustrando como as variáveis de entrada interagem para gerar as inferências de saída 

conforme as características emocionais detectadas. 
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Regras emoção Alegria 

 

SE (valencia é valenciaPositiva) E (duracao_az é duracao_azMuitoMuitoPequena 

OU duracao_az é duracao_azMuitoPequena OU duracao_az é duracao_azPequena) E 

(cpps é cppsPequena OU cpps é cppsMedia OU cpps é cppsAlta OU cpps é cppsMuitoAlta 

OU cpps é cppsMuitoMuitoAlta) ENTÃO (Emoção é Alegria) 

 

SE (valencia é valenciaPositiva) E (f0min é f0min é F0minAlto OU f0min é 

F0minMuitoAlto OU f0min é F0minMuitoMuitoAlto) E (hnr é hnrMuitoMuitoPequena OU 

(hnr é hnrMuitoPequena OU hnr é hnrPequena OU hnr é hnrMedia OU hnr é hnrAlta OU 

hnr é hnrMuitoAlta) E (duracao_ianu é duracao_ianuPequena OU duracao_ianu é 

duracao_ianuMedia OU duracao_ianu é duracao_ianuAlta OU duracao_ianu é 

duracao_ianuMuitoAlta OU duracao_ianu é duracao_ianuMuitoMuitoAlta) ENTÃO 

(Emoção é Alegria) 

 

Regras emoção Medo 

 

SE (valencia é valenciaNegativa) E (f0md é F0mdMedio OU f0md é F0mdAlto OU 

f0md é F0mdMuitoAlto OU f0md é F0mdMuitoMuitoAlto) E (hnr é hnrMuitoMuitoPequena 

OU hnr é hnrMuitoPequena OU hnr é hnrPequena OU hnr é hnrMedia OU hnr é hnrAlta 

OU hnr é hnrMuitoAlta) E (cppsdp é cppsdpMedia OU cppsdp é cppsdpAlta OU cppsdp é 

cppsdpMuitoAlta OU cppsdp é cppsdpMuitoMuitoAlta) E (duracao_az é 

duracao_azMuitoMuitoPequena OU duracao_az é duracao_azMuitoPequena OU 

duracao_az é duracao_azPequena) E (potencia é potenciaForte) ENTÃO (Emoção é 

Medo) 

 

SE (valencia é valenciaNegativa) E (cpps é cppsPequena OU cpps é cppsMedia 

OU cpps é cppsAlta OU cpps é cppsMuitoAlta OU cpps é cppsMuitoMuitoAlta) E (hnr é 

hnrAlta OU hnr é hnrMuitoAlta OU hnr é hnrMuitoMuitoAlta) E (duracao_al é 

duracao_alMuitoMuitoPequena OU duracao_al é duracao_alMuitoPequena OU 

duracao_al é duracao_alPequena) E (ativacao é ativacaoAlta) ENTÃO (Emoção é Medo) 

 

SE (valencia é valenciaNegativa) E (cpps é cppsMuitoMuitoPequena) E (potencia 

é potenciaForte) E (ativacao é ativacaoAlta) E (duracao_az é 
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duracao_azMuitoMuitoPequena OU duracao_az é duracao_azMuitoPequena OU 

duracao_az é duracao_azPequena) ENTÃO (Emoção é Medo) 

 

SE (valencia é valenciaNegativa) E (f0min é F0minMuitoMuitoAlto) E (ativacao é 

ativacaoAlta) ENTÃO (Emoção é Medo) 

 

SE (valencia é valenciaNegativa) E (f0min é F0minPequeno OU f0min é 

F0minMedio OU f0min é F0minAlto) E (f0md é F0mdMuitoPequeno OU f0md é 

F0mdPequeno OU f0md é F0mdMedio) E (hnr é hnrMuitoPequena OU hnr é hnrPequena 

OU hnr é hnrMedia) E (cpps é cppsMuitoMuitoPequena OU cpps é cppsMuitoPequena) E 

(ativacao é ativacaoAlta) ENTÃO (Emoção é Medo) 

 

Regras emoção Tristeza 

 

SE (valencia é valenciaNegativa) E (potencia é potenciaFraca) E (ativacao é 

ativacaoBaixa) ENTÃO (Emoção é Tristeza) 

 

Regras emoção Raiva 

 

SE (valencia é valenciaNegativa) E (f0md é F0mdMedio OU f0md é F0mdAlto OU f0md é 

F0mdMuitoAlto OU f0md é F0mdMuitoMuitoAlto) E (cppsdp é cppsdpMuitoAlta OU cppsdp 

é cppsdpMuitoMuitoAlta) E (hnr é hnrMuitoMuitoPequena OU hnr é hnrMuitoPequena OU 

hnr é hnrPequena OU hnr é hnrMedia OU hnr é hnrAlta OU hnr é hnrMuitoAlta) E (ativacao 

é ativacaoAlta) ENTÃO (Emoção é Raiva) 

 

SE (valencia é valenciaNegativa) E (f0min é F0minMuitoMuitoPequeno OU f0min é 

F0minMuitoPequeno OU f0min é F0minPequeno OU f0min é F0minMedio OU f0min é 

F0minAlto OU f0min é F0minMuitoAlto) E (f0max é F0maxMedio OU f0max é F0maxAlto 

OU f0max é F0maxMuitoAlto OU f0max é F0maxMuitoMuitoAlto) E (duracao_auav é 

duracao_auavMuitoMuitoPequena OU duracao_auavMuitoPequena OU 

duracao_auavPequena OU duracao_auavMedia OU duracao_auavAlta OU 

duracao_auavMuitoAlta) E (intensidade é intensidadeAlta OU intensidade é 

intensidadeMuitoAlta OU intensidade é intensidadeMuitoMuitoAlta) E (ativacao é 

ativacaoAlta) ENTÃO (Emoção é Raiva) 
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SE (valencia é valenciaNegativa) E (duracao_al é duracao_alMuitoMuitoPequena OU 

duracao_al é duracao_alMuitoPequena) E (duracao_ianu é 

duracao_ianuMuitoMuitoPequena OU duracao_ianu é duracao_ianuMuitoPequena OU 

duracao_ianu é duracao_ianuPequena) E (cppsdp é cppsdpMuitoMuitoPequena OU 

cppsdp é cppsdpMuitoPequena OU cppsdp é cppsdpPequena OU cppsdp é cppsdpMedia 

OU cppsdp é cppsdpAlta OU cppsdp é cppsdpMuitoAlta) E (f0min é 

F0minMuitoMuitoPequeno OU f0min é F0minMuitoPequeno OU f0min é F0minPequeno 

OU f0min é F0minMedio OU f0min é F0minAlto OU f0min é F0minMuitoAlto) E (hnr é 

hnrMuitoMuitoPequena OU hnr é hnrMuitoPequena OU hnr é hnrPequena) E (ativacao é 

ativacaoAlta)  ENTÃO (Emoção é Raiva) 

 

SE (valencia é valenciaNegativa) E (cppsdp é cppsdpPequena OU cppsdp é cppsdpMedia 

OU cppsdp é cppsdpAlta OU cppsdp é cppsdpMuitoAlta OU cppsdp é 

cppsdpMuitoMuitoAlta) E (f0range é f0rangeMuitoPequeno OU f0range é f0rangePequeno 

OU f0range é f0rangeMedio OU f0range é f0rangeAlto OU f0range é f0rangeMuitoAlto OU 

f0range é f0rangeMuitoMuitoAlto) E (hnr é hnrMuitoMuitoPequena OU hnr é 

hnrMuitoPequena) E (duracao_auav é duracao_auavMuitoMuitoPequena OU 

duracao_auav é duracao_auavMuitoPequena OU duracao_auav é 

duracao_auavPequena OU duracao_auav é duracao_auavMedia OU duracao_auav é 

duracao_auavAlta OU duracao_auav é duracao_auavMuitoAlta) E (ativacao é 

ativacaoAlta) ENTÃO (Emoção é Raiva) 

 

SE (valencia é valenciaNegativa) E (hnr é hnrMuitoMuitoPequena OU hnrMuitoPequena) 

E (f0max é F0maxMuitoMuitoPequeno OU f0max é F0maxMuitoPequeno OU f0max é 

F0maxPequeno OU f0max é F0maxMedio OU f0max é F0maxAlto OU f0max é 

F0maxMuitoAlto) E (ativacao é ativacaoAlta) ENTÃO (Emoção é Raiva) 

 

Regras emoção Surpresa 

 

SE (valencia é valenciaPositiva) E (cpps é cppsMuitoMuitoPequena OU cpps é 

cppsMuitoPequena OU cpps é cppsPequena) E (cppsdp é cppsdpMuitoMuitoPequena OU 

cppsdp é cppsdpMuitoPequena OU cppsdp é cppsdpPequena OU cppsdp é cppsdpMedia 

OU cppsdp é cppsdpAlta OU cppsdp é cppsdpMuitoAlta) ENTÃO (Emoção é Surpresa) 
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SE (valencia é valenciaPositiva) E (f0md é F0mdAlto OU f0md é F0mdMuitoAlto OU f0md 

é F0mdMuitoMuitoAlto) E (duracao_auav é duracao_auavMuitoMuitoPequena OU 

duracao_auav é duracao_auavMuitoPequena OU duracao_auav é 

duracao_auavPequena) E (cpps é cppsMuitoMuitoPequena OU cpps é 

cppsMuitoPequena OU cpps é cppsPequena) E (intensidade é 

intensidadeMuitoMuitoPequena OU intensidadeMuitoPequena OU intensidadePequena 

OU intensidadeMedia OU intensidadeAlta OU intensidadeMuitoAlta) ENTÃO (Emoção é 

Surpresa) 

 

SE (valencia é valenciaPositiva) E (f0md é F0mdMedio OU f0md é F0mdAlto OU f0md é 

F0mdMuitoAlto OU f0md é F0mdMuitoMuitoAlto) E (cppsdp é cppsdpMuitoPequena OU 

cppsdp é cppsdpPequena OU cppsdp é cppsdpMedia OU cppsdp é cppsdpAlta) E (cpps 

é cppsMedia OU cpps é cppsAlta OU cpps é cppsMuitoAlta OU cpps é 

cppsMuitoMuitoAlta) E (hnr é hnrMedia OU hnr é hnrAlta OU hnr é hnrMuitoAlta OU hnr é 

hnrMuitoMuitoAlta) E (duracao_auav é duracao_auavMuitoMuitoPequena OU 

duracao_auav é duracao_auavMuitoPequena OU duracao_auav é 

duracao_auavPequena OU duracao_auav é duracao_auavMedia) ENTÃO (Emoção é 

Surpresa) 

 

SE (valencia é valenciaPositiva) E (f0md é F0mdMuitoMuitoAlto) E (cppsdp é 

cppsdpMuitoPequena OU cppsdp é cppsdpPequena OU cppsdp é cppsdpMedia OU 

cppsdp é cppsdpAlta OU cppsdp é cppsdpMuitoAlta) E (cpps é cppsMedia OU cpps é 

cppsAlta OU cpps é cppsMuitoAlta) E (hnr é hnrMedia OU hnr é hnrAlta OU hnr é 

hnrMuitoAlta OU hnr é hnrMuitoMuitoAlta) E (f0min é F0minMuitoMuitoAlto) ENTÃO 

(Emoção é Surpresa) 

 

Regras emoção Nojo 

 

SE (valencia é valenciaNegativa) E (duracao_az é duracao_azMuitoAlta OU duracao_az 

é duracao_azMuitoMuitoAlta) E (intensidade é intensidadeMuitoMuitoPequena OU 

intensidade é intensidadeMuitoPequena OU intensidade é intensidadePequena OU 

intensidade é intensidadeMedia OU intensidade é intensidadeAlta OU intensidade é 

intensidadeMuitoAlta) E (ativacao é ativacaoBaixa) ENTÃO (Emoção é Nojo) 
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SE (valencia é valenciaNegativa) E (duracao_al é duracao_alMedia OU duracao_al é 

duracao_alAlta OU duracao_al é duracao_alMuitoAlta OU duracao_al é 

duracao_alMuitoMuitoAlta) E (duracao_ianu é duracao_ianuMuitoMuitoPequena OU 

duracao_ianu é duracao_ianuMuitoPequena OU duracao_ianu é duracao_ianuPequena) 

E (intensidade é intensidadeMuitoMuitoPequena OU intensidade é 

intensidadeMuitoPequena OU intensidade é intensidadePequena OU intensidade é 

intensidadeMedia OU intensidade é intensidadeAlta)  E (ativacao é ativacaoBaixa) ENTÃO 

(Emoção é Nojo) 

 

SE (valencia é valenciaNegativa) E (duracao_az é duracao_azMedia OU duracao_az é 

duracao_azAlta OU duracao_az é duracao_azMuitoAlta OU duracao_az é 

duracao_azMuitoMuitoAlta) E (f0dp é f0dpMuitoMuitoPequeno OU f0dp é 

f0dpMuitoPequeno OU f0dp é f0dpPequeno) E (ativacao é ativacaoBaixa) E (potencia é 

potenciaForte) ENTÃO (Emoção é Nojo) 

 

SE (valencia é valenciaNegativa) E (f0dp é f0dpMedio OU f0dp é f0dpAlto OU f0dp é 

f0dpMuitoAlto OU f0dp é f0dpMuitoMuitoAlto) E (jitter é jitterMuitoMuitoPequena OU jitter 

é jitterMuitoPequena OU jitter é jitterPequena) E (ativacao é ativacaoBaixa) ENTÃO 

(Emoção é Nojo) 

 

SE (valencia é valenciaNegativa) E (cpps é cppsMuitoMuitoPequena) E (potencia é 

potenciaForte) E (ativacao é ativacaoBaixa) ENTÃO (Emoção é Nojo) 

 

Regras Estado Neutro 

 

SE (valencia é valenciaNeutra) ENTÃO (Emoção é Neutra) 

 
Após a construção das regras, o modelo de decisão baseado na lógica fuzzy foi 

aplicado para a categorização das emoções, com utilização de cada conjunto de regras 

para representar as diferentes emoções. Essa aplicação prática permitiu validar a 

funcionalidade do modelo, que se mostra promissor como um método de análise 

emocional de baixo custo, capaz de ser integrada a sistemas que demandam 

processamento eficiente. 
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O quadro 2 corresponde a matriz de confusão gerada no FuzzyRules, que avalia o 

desempenho do modelo em um problema de reconhecimento emocional, sendo que as 

classes estão associadas a diferentes emoções. A análise da matriz revela que os valores 

dispostos na diagonal principal indicam as predições corretas, enquanto os valores fora 

da diagonal representam os erros de classificação.  

Na posição correspondente à emoção alegria (linha e coluna 1), observa-se que 

79,9% (n=20) foram corretamente classificadas, mas há erros, como em 19,2% (n=5) das 

instâncias de alegria classificadas incorretamente como pertencentes à emoção surpresa 

e 3,8% (n=1) classificada como neutra. Da mesma forma, para a emoção medo, 88,5% 

(n=23) das instâncias foram corretamente classificadas, enquanto 11,5% (n=3) foram 

erroneamente atribuídas à emoção raiva. A emoção tristeza foi totalmente classificada de 

forma correta, sem erros, com 100% (n=26) das ocorrências. Para raiva, 84,6% (n=22) 

das instâncias foram corretamente classificadas, enquanto 15,4% (n=4) foram 

equivocadamente atribuídas à emoção medo. Na emoção surpresa, houve 80,8% (n=21) 

das classificações corretas, mas 19,2% (n=5) das instâncias foram classificadas como 

pertencentes à emoção alegria. O nojo apresentou 92,3% (n=24) das classificações 

corretas, com 7,7% (n=2) erros atribuídos à emoção medo. Por fim, a neutra foi 

corretamente classificada em sua totalidade, com 100% (n= 26) das ocorrências (Quadro 

2). 

 

Quadro 2 - Matriz de confusão do modelo fuzzy 

 Classe Alegria Medo Tristeza Raiva Surpresa  Nojo Neutra 

Alegria 20 0 0 0 6 0 0 

Medo 0 23 0 3 0 0 0 

Tristeza 0 0 26 0 0 0 0 

Raiva 0 4 0 22 0 0 0 

Surpresa  5 0 0 0 21 0 0 

Nojo 0 2 0 0 0 24 0 

Neutra 0 0 0 0 0 0 26 

 

 

Observa-se, na tabela 4, o desempenho do modelo de reconhecimento fuzzy. O 

coeficiente Kappa alcançou 87,18%. Este valor indica um nível substancial de 

concordância, próximo ao considerado excelente, conforme os critérios de avaliação 

padrão (LANDIS E KOCH, 1977). O coeficiente de AG forneceu a acurácia do modelo de 
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89,01% e o número absoluto de decisões corretas foi de 162, de 180 observações (Tabela 

4).  

Tabela 4 - Índices da estatística para o ajuste do modelo fuzzy. 

 

 

 
 

 

A tabela 5 apresenta os valores de sensibilidade e especificidade para cada 

emoção avaliada pelo modelo de reconhecimento. A sensibilidade apresentou valores 

elevados para a maioria das emoções, variando de 76,92% para alegria a 100% para 

tristeza e neutra. A especificidade também apresentou índices elevados, com valores 

acima de 93% para todas as classes de emoções. A acurácia global, de 89,01%, reforça 

o bom desempenho geral do modelo (Tabela 5). 

 

Tabela 5 - Sensibilidade e especificidade por emoção do modelo fuzzy. 

Emoção VP FN FP VN Sensibilidade (%) Especificidade (%) 

Alegria 20 6 5 151 76,92 96,79 

Medo 23 3 6 150 88,46 96,15 

Tristeza 26 0 0 156 100,0 100,0 

Raiva 22 4 3 153 84,62 98,08 

Surpresa 21 5 6 150 80,77 96,15 

Nojo 24 2 0 156 92,31 100,0 

Neutra 26 0 0 156 100,0 100,0 

Legenda: VP-Verdadeiro Positivo FN-Falso Negativo FP- Falso Positivo VN-Verdadeiro Negativo 

    

O quadro 3 apresenta a descrição dos parâmetros acústico-prosódicos associados 

às emoções com base na construção das regras fuzzy. A emoção alegria apresenta curta 

duração, fo mínima alta e velocidade de fala acelerada, enquanto os demais parâmetros 

não mostram informações que a discriminam. O medo é caracterizado por curta duração, 

valência negativa, fo elevada em todos os aspectos (média, mínima e máxima) e ativação 

elevada. A tristeza demonstra valência negativa, intensidade baixa, ativação reduzida e 

potência fraca, com jitter baixo e HNR elevado, enquanto os demais parâmetros 

permanecem sem informações que a discriminam. A raiva possui curta duração, valência 

Kappa Acurácia Decisões corretas 

87,179 89,01 162 
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negativa, fo elevada (média, mínima e máxima), ativação alta, intensidade alta e potência 

forte. Já a surpresa é marcada por curta duração, valência positiva, fo máxima e média 

altas, intensidade variável (baixa a alta) e ausência de informações que discriminam a 

emoção nos demais parâmetros. O nojo apresenta duração longa, valência negativa, 

intensidade que varia de muito baixa a muito alta, ativação baixa e potência forte, 

enquanto os outros parâmetros não exibem informações importantes de descriminação. 

O estado neutro não apresenta características marcantes em nenhum dos parâmetros 

analisados, sendo descrito apenas com aspecto de valência neutra (Quadro 3). 

 

Quadro 3 - Descrição dos parâmetros vocais das emoções baseados nas regras fuzzy. 

 
Duração 

Fo 
Média 

F o 
Mínima 

F o 
Máxima 

F o 
range 

F o 
dp 

Jitter HNR CPPS 
CPPS 

dp 
Intensi 
dade 

Valência Ativação Potência 

Alegria Curta AD Alta AD AD AD AD Baixo 
a alto 

Baixo 
a alto 

AD AD AD AD AD 

Medo Curta Alta Alta AD AD AD AD Baixo Baixo Alto AD Negativa Alta AD 

Tristeza AD AD AD AD AD AD AD AD AD AD Baixa Negativa Baixa Fraca 

Raiva Curta Alta Baixa a 
alta 

Alta Baixo 
a alto 

AD AD Baixo 
a alto 

Baixo 
a alto 

Alto Alta Negativa Alta Forte 

Surpresa Curta Alta Alta AD AD Baixo Baixo Alto Baixo Baixo 
a alto 

Baixa 
a alta 

Positiva AD AD 

Nojo Alta AD AD AD AD AD AD AD Baixo AD Baixa 
a alta 

Negativa Baixa Forte 

Neutra AD AD AD AD AD AD AD AD AD AD AD Neutra AD AD 

Legenda: AD = Ausência de discriminação 

 

 5.2 Modelos de Aprendizado de Máquinas  

Foi realizado o comparativo de desempenho do modelo de reconhecimento das 

emoções fuzzy com outros métodos que realizaram a classificação básica das emoções.  

Após o pré-processamento dos dados e definição do conjunto de validação, os 

hiperparâmetros dos modelos foram otimizados no processo de validação cruzada 

repetida. A busca pelos valores ótimos dos hiperparâmetros se deu a partir de um 

processo de busca em uma grade aleatória de valores definida através de um esquema 

de hipercubo latino, com vistas a preencher adequadamente o espaço de valores dos 

hiperparâmetros. 
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Para a análise dos dados, foi calculada a área sob a curva ROC (AUC-ROC) no 

conjunto de validação, de acordo com o melhor conjunto de hiperparâmetros ajustados 

para cada modelo. Esse cálculo permite avaliar o desempenho de cada modelo em 

distinguir corretamente entre as categorias da variável-alvo. Embora a área sob a curva 

ROC (AUC-ROC) tenha sido calculada para os modelos tradicionais como forma de 

avaliar sua capacidade de distinguir corretamente entre as categorias da variável-alvo, 

essa métrica não é adequada para o modelo fuzzy. Isso ocorre porque a geração da curva 

ROC no modelo fuzzy exige a realização de múltiplas interações, o que não é coerente 

com a natureza desse modelo, tornando a análise por essa métrica pouco significativa. 

Assim, a avaliação da acurácia no conjunto de validação, com base nos mesmos 

hiperparâmetros otimizados, foi adotada como medida complementar para compreender 

o desempenho geral dos modelos. 

Na Figura 28, observou-se os resultados da AUC-ROC para cada modelo de 

aprendizado testado no conjunto de validação, destacando como cada abordagem se 

comportou utilizando os hiperparâmetros ajustados. A visualização ilustra as diferenças 

de desempenho entre os modelos, evidenciando aqueles que apresentaram maior 

capacidade de discriminar corretamente entre as classes, com base nas características 

dos dados analisados. 

 

Figura 28 - Área sob a curva ROC dos modelos de aprendizado de máquinas 
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Legenda: bag_mlp: Redes neurais multi-layer perceptron com bagging; - boost_tree: Extreme gradient 

boosting; decision_tree: Árvore de decisão; mlp: Redes neurais multi-layer perceptron; multinom_reg: 

Elastic net; naive_Bayes: Redes naive bayes; nearest_neighbor: KNearest neighbors; rand_forest: 

Random Forest; svm_linear: Linear support vector machine; svm_rbf: Kernel support vector machine. 

 

Dessa forma, os modelos de aprendizado de máquinas foram ordenados de acordo 

com o resultado da AUC-ROC (Quadro 4). 

Quadro 4 - Ranqueamento dos modelos de aprendizado de máquinas investigados na 

etapa de validação de acordo com o valor da área sob a curva ROC. 

RANKING MODELO Média DP 

1 Random Forest 0.958 0.014 

2 Redes Neurais MLP com Bagging 0.955 0.016 

3 KNN 0.955  0.010 

4 Redes Neurais MLP 0.943 0.016 

5 XGBoost  0.936 0.015 

6 Redes Naive Bayes 0.928 0.018 

7 EL Net 0.926  0.019 

8 SVM Linear 0.919 0.018 

9 Kernel SVM  0.877 0.014 

10 Árvore de Decisão 0.873 0.021 

Legenda: MLP: Multi-layer Perceptron - KNN: KNearest Neighbors; SVM: Support Vector Machine; 

XGBoost: Extreme gradient boosting; EL Net: Elastic net; RBF: Radial Basis Function; DP: desvio-padrão. 

 

Em seguida, foi extraída a acurácia no conjunto de validação de acordo com o 

melhor conjunto de hiperparâmetros obtidos para cada modelo. 
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Figura 29 - Acurácia dos modelos de aprendizagem 

 

Legenda: bag_mlp: Redes neurais multi-layer perceptron com bagging; - boost_tree: Extreme gradient 

boosting; decision_tree: Árvore de decisão; mlp: Redes neurais multi-layer perceptron; multinom_reg: 

Elastic net; naive_Bayes: Redes naive bayes; nearest_neighbor: KNearest neighbors; rand_forest: 

Random Forest; svm_linear: Linear support vector machine; svm_rbf: Kernel support vector machine. 

 

A tabela 6 contém os resultados das medidas de desempenho de reconhecimento 

obtidas pelos diferentes modelos ajustados com seus respectivos conjuntos de 

hiperparâmetros. Os modelos foram avaliados utilizando diversas métricas de 

classificação, que inclui acurácia, AUC-ROC, sensibilidade, especificidade e índice kappa 

(Tabela 6). 

 

Tabela 6 - Valores dos modelos ajustados com os conjuntos de hiperparâmetros 

selecionados de acordo com a acurácia 

Método  Acurácia AUC Sensibilidade Especificidade Kappa 

Random Forest 0.8333 0.8355 0.9722 0.9669 0.8056 

Kernel SVM 0.8333 0.8338 0.9722 0.8505 0.8056 

Redes Neurais MLP 

Combinadas por Bagging 
0.7857 0.7829 0.9643 0.9735 0.75 

Árvore de decisão 0.7619 0.7762 0.9603 0.9246 0.7222 

KNN 0.7619 0.7587 0.9603 0.9689 0.7222 

Redes Neurais MLP 0.7619 0.7576 0.9603 0.957 0.7222 

Linear SVM 0.7381 0.7402 0.9563 0.8995 0.6944 
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Redes Naive Bayes 0.7381 0.7257 0.9563 0.9471 0.6944 

XGBoost 0.6905 0.687 0.9484 0.9193 0.6389 

EL Net 0.6429 0.647 0.9405 0.916 0.5833 

MLP: Multi-layer Perceptron - KNN: KNearest Neighbors; SVM: Support Vector Machine; XGBoost: 

Extreme gradient boosting; EL Net: Elastic net; RBF: Radial Basis Function; AUC: Area Under Curve. 

 

Apenas os modelos Random Forest e Kernel SVM foram selecionados ao 

considerar os critérios de desempenho estabelecidos no presente estudo. Ambos 

alcançaram uma acurácia de 0,8333, AUC ≥ 0.80, e apresentando valores de Kappa de 

0,9669 e 0,8505, respectivamente. Esses modelos também demonstraram alta 

sensibilidade (0,9722), o que indica que conseguem identificar corretamente uma alta 

proporção de positivos.  

Observa-se as matrizes de confusão para os modelos Random Forest e Kernel 

SVM na classificação das emoções (Figura 30). Ambos os modelos apresentaram bom 

desempenho na alegria, tristeza, surpresa, nojo e neutro, com seis a cinco classificações 

corretas em geral, de sete possibilidades. No entanto, o Kernel SVM mostrou menor 

confusão na emoção medo, o que indica desempenho ligeiramente superior em relação 

ao Random Forest nesse aspecto.  

 

Figura 30 - Matriz de confusão dos modelos Random Forest e Kernel SVM 

 

Considerando o exposto, os resultados deste trabalho evidenciam o potencial das 

técnicas baseadas na lógica fuzzy no reconhecimento das emoções a partir de dados 

vocais. Os valores de acurácia, sensibilidade, especificidade alcançados indicam a 

relevância dessa abordagem, que preserva a continuidade dos parâmetros vocais e evita 

segmentações rígidas nas variáveis, características observadas nas abordagens 

tradicionais de aprendizado de máquina.  
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6 DISCUSSÃO 

 

A voz humana é um fenômeno complexo que reflete aspectos fisiológicos, 

psicológicos e emocionais e pode ser considerada como biomarcador sensível das 

emoções. Com os avanços tecnológicos, a inteligência artificial tem se destacado como 

uma ferramenta inovadora na identificação de estados emocionais a partir da análise 

vocal, que pode ser aplicada para auxiliar no diagnóstico, monitoramento e 

acompanhamento de diversas condições de saúde (MILLING et al., 2022; HANSEN et al., 

2022; KHAN et al., 2023; CANSEL et al., 2023). 

Estudos indicam que parâmetros vocais, como fo, intensidade, qualidade vocal e 

taxa de elocução, sofrem alterações em resposta a diferentes estados emocionais 

(SUNDBERG, 2015; ALHINTI et al., 2021). As mudanças que ocorrem na fisiologia da 

produção vocal durante a expressão das emoções são mediadas por ajustes no sistema 

nervoso autônomo, que influenciam a tensão muscular laríngea, o fluxo respiratório e a 

coordenação pneumofonoarticulatória (BARBOSA; FRIEDMAN, 2007; JOHNSTONE et 

al., 2017; KIM et al., 2020). A análise da voz, associada a modelos computacionais, tem 

demonstrado potencial na identificação e predição de estados emocionais, além de 

oferecer uma ferramenta não invasiva e de baixo custo para o monitoramento da saúde 

mental e emocional.  

O conhecimento das medidas vocais contribui para construção da definição sobre 

as variações emocionais comuns nos sinais vocais (SILVA; BARBOSA, 2020). No âmbito 

clínico, a análise vocal facilita o diagnóstico de condições relacionadas à expressão 

emocional e à saúde mental, como transtornos de ansiedade e depressão, contribuindo 

para uma abordagem mais direcionada e eficaz (BAIRD et al., 2021; HANSEN et al., 

2021). Além disso, o mapeamento detalhado dessas medidas vocais favorece o 

desenvolvimento de modelos de reconhecimento automático que identificam padrões 

emocionais com base na voz (JING, et al., 2018; ASIYA; KIRAN, 2021; HASHEM et al., 

2023). Essa integração de tecnologia e ciência vocal amplia as aplicações práticas, desde 

assistentes virtuais mais empáticos até ferramentas para monitoramento emocional em 

tempo real, com a finalidade de promover avanços significativos na interface entre 

comunicação humana e inteligência artificial. 

A análise das variações emocionais manifestadas na voz e a construção de bancos 

de dados vocais que capturam essas nuances tem sido amplamente estudada em 

diferentes línguas/culturas e incluem gravações associadas a diferentes estados 
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emocionais, coletadas tanto em condições controladas quanto em cenários espontâneos 

(BURKHARDT et al., 2005; BUSSO et al., 2008; MCKEOWN et al., 2012; RINGEVAL et 

al., 2013). No entanto, ainda existem lacunas importantes em relação à exploração de 

medidas acústico-prosódicas e perceptuais mais aprofundadas. Além disso, poucos 

estudos incorporam o impacto do julgamento de ouvintes especialistas em voz ou 

investigam padrões acústicos comuns a cada emoção de forma sistemática. Esses bancos 

são fundamentais para pesquisas que buscam compreender melhor as relações entre 

emoção e voz (SWAIN et al., 2018). 

Apesar do crescente interesse na construção de bancos de vozes para análise de 

variações emocionais, observa-se uma escassez de acervos voltados para o PB, o que 

limita a generalização e a aplicabilidade dos resultados em contextos locais. Nesse 

cenário, o EmoVox-BR se destaca como um banco de vozes que adota critérios rigorosos 

de controle na coleta dos dados, utiliza tarefas de fala cuidadosamente balanceadas para 

captar diferentes estados emocionais, que permitem uma análise mais detalhada de 

parâmetros acústicos e prosódicos (LIMA, 2022). Além disso, o banco integra avaliações 

realizadas por juízes especialistas em voz, que garante uma validação perceptual das 

emoções expressas. Outro diferencial importante é a consideração dos aspectos culturais 

e linguísticos inerentes ao PB, que desempenham um papel importante na manifestação 

emocional.  

Esses fatores permitem incluir variações prosódicas, diferenças na entonação e 

padrões de expressão emocional que podem variar quando comparado com outras 

línguas (LIU; PELL, 2014; KAUR, et al., 2018; MUÑETÓN-AYALA et al., 2017). O EmoVox-

BR, ao abordar essas particularidades, não apenas preenche uma lacuna na pesquisa 

vocal em PB, mas também estabelece uma base sólida para o desenvolvimento de 

tecnologias e modelos preditivos mais alinhados à realidade sociocultural brasileira.  

Diferentes tarefas de fala são utilizadas para diferenciar o estado emocional devido 

à sua capacidade de explorar aspectos específicos da produção vocal, como prosódia, 

entonação e intensidade, com o objetivo de maximizar a distinção entre emoções (AL-

TALABANI et al., 2015; SEAL et al., 2018). Vogais sustentadas, por exemplo, têm sido 

empregadas para analisar parâmetros acústicos como frequência fundamental e 

qualidade vocal, permitindo identificar variações relacionadas a emoções básicas como 

felicidade, tristeza ou raiva (WAARAMAA et al., 2010). Frases balanceadas, com conteúdo 

semântico, são úteis para avaliar a entonação e o ritmo (JOHNSON et al., 1986). A leitura 

de textos padronizados possibilita a captura de mudanças emocionais na prosódia de 
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forma consistente, que exclui influências do conteúdo (PELL; KOTZ, 2011). Outras 

abordagens, como sons não verbais e interjeições, têm sido usadas para analisar a 

prosódia emocional (BOSTANOV; KOTCHOUBEY, 2004). Essa ausência de 

padronização reforça a necessidade de procedimentos mais consistentes, que possam 

aumentar a precisão na identificação de estados emocionais e aprimorar o 

desenvolvimento de tecnologias e modelos preditivos nessa área. 

A escolha de frases padronizadas ou leituras controladas são consideradas 

estratégias eficazes para analisar os parâmetros vocais, pois destacam as nuances vocais 

relacionadas a emoções, oferecem dados consistentes e estruturados para a extração de 

características emocionais e possibilitam melhorar o treinamento de modelos de 

reconhecimento. Alguns estudos têm demonstrado a eficácia do uso de frases 

padronizadas no reconhecimento de emoções (RINGEVAL et al., 2014; HERACLEOUS; 

YONEYAMA, 2019; ER, 2020; LI et al., 2021). Contudo, ainda se observa uma ausência 

de padronização na forma de coleta e nas tarefas de fala em pesquisas que utilizam 

bancos de vozes para o reconhecimento emocional, o que compromete a uniformidade 

dos dados e dificulta comparações entre pesquisas.  

A tarefa de fala "olha lá o avião azul" utilizada neste estudo, contém uma variedade 

de sons que abrangem diferentes articulações e posições vocálicas, que permite a análise 

ampla de aspectos acústicos e articulatórios da fala do PB (BEHLAU et al., 2020). Essa 

característica proporciona um recurso valioso para investigações sobre emoções, uma 

vez que oferece um estímulo de fala consistente e diversificado, que favorece a 

identificação de sutis mudanças prosódicas e de timbre que podem refletir estados 

emocionais. Além disso, a uniformidade de uma frase padronizada contribui para a 

comparabilidade entre estudos, reduz a variabilidade introdutória na coleta dos dados e 

aumenta a confiabilidade dos resultados (SANDAGE et al., 2015, PINHEIRO et al., 2022).  

As medidas vocais representam outro importante atributo no reconhecimento 

emocional, pois fornecem pistas acústicas que auxiliam na identificação de emoções a 

partir da voz (VERVERIDIS; KOTROPOULOS, 2006; SAKURAI; KOSAKA 2021; HASHEM 

et al., 2023). Entre os achados principais, destacam-se os aspectos prosódicos, como 

variações de fo, intensidade e duração, que diferenciam as emoções (PERVAIZ; KHAN, 

2016; AGUIAR et al., 2024). Além disso, medidas de qualidade vocal, como o HNR e 

medidas cepstrais, aumentam a precisão, especialmente para emoções como felicidade 

e raiva (LEE et al., 2013). A intensidade da emoção impacta a acurácia, com emoções de 

alta intensidade, como raiva e medo, sendo reconhecidas mais rapidamente que emoções 
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de baixa intensidade, como alegria (MORNINGSTAR et al., 2021). Dinâmicas temporais e 

características de falantes e ouvintes, incluindo diferenças de gênero, também são 

relevantes. De modo geral, abordagens automatizadas, baseadas em inteligência artificial, 

demonstram potencial para aprimorar sistemas de reconhecimento emocional. 

Um estudo prévio demonstrou que medidas acústico-prosódicas de duração, fo e 

intensidade discriminam as emoções alegria, tristeza, medo, raiva, surpresa, nojo e 

emissão neutra em falantes do PB pertencentes ao EmoVox-BR (AGUIAR, et al., 2024). 

Os resultados indicaram que as emoções influenciam as medidas acústico-prosódicos de 

maneira distinta. A emoção alegria foi caracterizada por uma fala mais acelerada, com 

menor duração e maior intensidade média, enquanto nojo apresentou maior duração e 

taxa de elocução, indicando uma fala mais lenta. A raiva destacou-se pela maior 

intensidade vocal máxima, e surpresa registrou os valores mais altos de frequência 

fundamental. Em contraste, tristeza e medo apresentaram as menores intensidades e 

frequências fundamentais. O medo exibiu também os menores valores de assimetria 

positiva de z-score, refletindo menor alongamento nos segmentos analisados. Os achados 

confirmam que as medidas acústico-prosódicas são ferramentas eficazes para discriminar 

estados emocionais, e o destacou o potencial dessas análises para o desenvolvimento de 

tecnologias de reconhecimento de emoções (AGUIAR, et al., 2024).  

A subjetividade das emoções, caracterizada pela variação contínua e pela 

interpretação individual de cada estado emocional, representa um desafio significativo 

para o desenvolvimento de sistemas que buscam identificar padrões precisos na voz 

TALELE; JAIN, 2023). Nesse contexto, a lógica fuzzy se apresenta como uma ferramenta 

eficaz, ao permitir a modelagem de emoções como estados graduais, em vez de 

categorias fixas e absolutas (VASHISHTHA et al., 2023). Essa abordagem reconhece que 

emoções podem coexistir em diferentes graus, capturando melhor a complexidade das 

variações presentes nos sinais vocais. A lógica fuzzy utiliza regras e variáveis linguísticas 

para interpretar parâmetros vocais e possibilita uma análise mais precisa e adaptativa 

(ZADEH, 1965). Quando aplicada em bancos de vozes como o EmoVox-BR, essa 

metodologia incorpora julgamentos perceptuais de especialistas e considera as 

particularidades culturais e linguísticas do PB, tornando o reconhecimento de emoções 

mais contextualizado e sensível. Nesta pesquisa, essa modelagem foi utilizada para 

construir um modelo preditivo de reconhecimento emocional, e os principais resultados 

observados nesse processo foram discutidos a seguir.  
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A utilização de um modelo baseado na lógica fuzzy permite lidar com a natureza 

ambígua e subjetiva das emoções e fornece uma representação flexível e adaptável das 

variações vocais associadas a cada estado emocional (TON-THAT; CAO, 2019; BARROS 

et al., 2023). Diversos estudos reforçam o potencial da lógica fuzzy em lidar com 

variabilidade e desafios de generalização no reconhecimento emocional (ALI et al. 2020; 

FAROOQUE; MUÑOZ-HERNÁNDEZ 2016; ZHANG et al. 2017; LILIANA et al., 2019; 

ROVETTA et al. 2020).  

Os resultados a seguir apresentam uma análise detalhada da eficácia do modelo 

fuzzy para o reconhecimento emocional a partir de dados vocais, destaca os acertos, 

limitações e potenciais aplicações no reconhecimento automático das emoções em 

contextos reais. 

No presente estudo, cada emoção foi caracterizada por parâmetros vocais 

específicos que a diferenciam de forma singular das demais. A identificação de 

parâmetros exclusivos para cada emoção é essencial para a lógica fuzzy, pois permite a 

formulação de regras claras e distintas que capturam as nuances emocionais, utilizando 

variáveis como medidas de f0, duração, intensidade e medidas cepstrais (CAO et al., 2014; 

DHAMYAL et al., 2023). Esses parâmetros específicos criam perfis acústicos e prosódicos 

para cada emoção, ativando conjuntos particulares de regras e variáveis linguísticas que 

são exclusivos a cada estado emocional (ZADEH, 1975). 

A presença desses parâmetros diferenciais oferece ao modelo fuzzy a capacidade 

de reconhecer emoções com precisão. Ao vincular variáveis acústicas específicas a cada 

emoção, o sistema fuzzy consegue não apenas detectar a presença de uma emoção, mas 

também captar variações sutis entre diferentes estados emocionais (MING et al., 2015; 

TON-THAT; CAO, 2019; ROVETTA et al., 2019). Essa diferenciação detalhada amplia a 

capacidade do modelo de capturar as nuances emocionais e garantir que o 

reconhecimento seja fiel aos perfis de emoção analisados. 

Para a construção do modelo fuzzy, a exclusão de determinadas variáveis foi uma 

etapa inicial, fundamentada na identificação de redundâncias informacionais que 

comprometiam a capacidade de discriminação precisa entre os estados emocionais. A 

presença de dados sobrepostos dificultou a definição de padrões únicos para cada 

emoção e aumentou a possibilidade de ambiguidade nos processos de classificação.  

Algumas variáveis, como os MFCC, parâmetros de duração z-score e z-suavizado, 

e parâmetros acústicos de GNE, foram excluídas do modelo fuzzy devido ao fato de 

apresentarem intersecções com outras variáveis. As medidas apresentaram baixo poder 



 

 

111 

 

de discriminação entre as emoções e poderiam introduzir inconsistências nos resultados. 

Esse efeito levou à decisão de eliminá-los, pois a presença de variáveis que não 

contribuem para a diferenciação emocional clara pode adicionar complexidade 

desnecessária e tornar o modelo mais suscetível a erros (GUPTA, 2018; ZHANG; HAN, 

2021). 

Além disso, a inclusão dessas variáveis piorou o desempenho do modelo, e 

aumentou o ruído no sistema e reduziu sua precisão. Quando apresentam alto grau de 

interseção ou redundância, essas variáveis tendem a carregar informações sobrepostas, 

o que dificulta a distinção clara entre categorias ou estados emocionais. No contexto de 

um modelo fuzzy, essa redundância pode gerar ruído no sistema, aumentando a 

complexidade sem agregar informações úteis, o que compromete a clareza das 

inferências geradas pelas regras fuzzy (BRANCO; DENTE, 2000; LUGHOFER et al., 

2011). Somado a isso, variáveis interseccionadas inflacionam o número de regras 

necessárias no modelo, tornando-o mais denso e dificultando tanto sua interpretação 

quanto sua manutenção. Esse cenário também prejudica a precisão do modelo, uma vez 

que variáveis redundantes priorizam características com baixo impacto para a 

diferenciação emocional, levando a decisões menos robustas. Outro efeito negativo é a 

redução da capacidade de generalização do sistema, já que a redundância favorece o 

ajuste excessivo aos dados de treinamento (overfitting), comprometendo seu desempenho 

em novos conjuntos de dados (JUANG; TSAO, 2008).  

Embora tenha inicialmente reduzido o número de parâmetros analisados, a 

simplificação resultante foi benéfica para refinar o conjunto de variáveis mais relevantes, 

ou seja, aquelas com maior poder preditivo sobre as emoções. Essa abordagem permitiu 

identificar os parâmetros mais robustos para a discriminação dos estados emocionais, 

como variações da fo (média, mínima, máxima, range e dp), duração, intensidade, HNR, 

CPPS, jitter, shimmer, bem como os eixos dimensionais das emoções (valência, potência 

e ativação), reduzindo a redundância e aumentando a eficiência do sistema. Além disso, 

a exclusão de variáveis sobrepostas levou à geração de um menor número de regras 

fuzzy, o que tornou o sistema com maior simplicidade e menor custo computacional, 

preservando a precisão necessária para as aplicações propostas.  

Essa simplificação contribuiu para um modelo mais direto e focado nas variáveis 

realmente determinantes, facilitando sua implementação. A exclusão desses parâmetros 

também contribuiu para o desenvolvimento de um modelo com maior eficiência e de menor 

custo computacional, com operações mais simples e processamento mais rápido. Assim, 
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a simplificação do conjunto de variáveis manteve apenas os parâmetros com relação clara 

às emoções e garantiu um reconhecimento mais eficiente e preciso. 

Neste estudo, observou-se que os MFCC, amplamente utilizados em sistemas de 

reconhecimento das emoções a partir da voz (DURUKAL; HOCAOGLU, 2015, LIKITHA et 

al., 2017; GOEL, 2018, PATNAIK, 2023), apresentaram limitações no modelo para o PB. 

Essa medida prioriza frequências médias e baixas, relevantes para o conteúdo linguístico, 

mas pode perder nuances emocionais em frequências altas ou transições rápidas. A 

compressão espectral dos MFCC gerou sobreposições entre características cruciais, 

como variações de entonação, intensidade e qualidade vocal. No PB, cuja prosódia é 

fundamental na expressão emocional, os coeficientes baseados na escala mel não 

captaram adequadamente as interações dinâmicas entre pitch, loudness e ritmo.  

O estudo de Sharif (2023) destacou uma limitação dos MFCC na determinação do 

número de características, o que pode causar sobreajuste e perda de distinção entre 

aspectos cruciais, como entonação, intensidade e qualidade vocal. A pesquisa envolveu 

o reconhecimento de sotaques ingleses utilizando Recurrent Neural Network LSTM a 

partir da extração de características MFCC, para treinamento e teste do modelo. Os 

resultados revelaram uma acurácia máxima de 64,96%. O estudo concluiu que a 

atribuição dos MFCC aumentou a dimensão das características e diminuiu o desempenho 

do modelo, fato que evidenciou uma limitação no uso desse atributo. 

Portanto, o processamento de variáveis que não explicam bem o modelo elevaria 

o custo computacional, sem ganhos proporcionais na performance e diminuiria sua 

eficiência (MAGDALENA, 2018). A exclusão dessas medidas foi fundamental para 

otimizar a simplicidade do modelo fuzzy e aprimorar sua capacidade de diferenciar as 

emoções de maneira eficiente e robusta, com foco exclusivamente nas variáveis que 

contribuíram de maneira efetiva para a identificação precisa das emoções.   

Foram realizadas análises criteriosas para definir os parâmetros de entrada e saída 

para a construção das regras fuzzy, baseadas em parâmetros acústicos e acústico-

prosódicos que integram a etapa final do modelo de reconhecimento de emoções. As 

variáveis linguísticas de entrada foram elaboradas a partir de medidas relacionadas à fo, 

intensidade, duração das unidades VV, medidas cepstrais e características emocionais 

como valência, potência e ativação. Essas variáveis foram representadas por funções de 

pertinência cuidadosamente ajustadas, que permitiram associar diferentes intervalos de 

valores às nuances vocais específicas de cada emoção. O sistema fuzzy foi estruturado 

de forma a integrar essas variáveis em regras que traduzem as interações entre os 
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parâmetros vocais e os estados emocionais, a fim de promover inferências sensíveis às 

sutilezas do sinal de voz.  

As regras fuzzy para a emoção alegria utilizam parâmetros acústicos e atributos 

prosódicos para identificar padrões que correspondem a esse estado emocional. A 

primeira regra estabelece que a emoção é classificada como alegria quando a valência é 

positiva, a duração da unidade VV [az] é muito muito pequena, muito pequena ou 

pequena, e o CPPS varia entre níveis pequenos e muito muito altos. A segunda regra 

complementa essa análise ao identificar a emoção alegria quando a valência também é 

positiva, a a fo mínima é alta, muito alta ou muito muito alta, o HNR varia entre muito muito 

pequeno e muito alto, e a duração da unidade VV [ianu] abrange desde valores pequenos 

até muito muito altos. Esses critérios demonstram que a alegria é caracterizada por 

parâmetros acústicos que refletem alta energia vocal, fo elevada, consistência harmônica 

e padrões de fala acelerada, indicadores típicos de maior intensidade emocional. 

Para a emoção medo, as regras fuzzy utilizam uma combinação de valência 

negativa, parâmetros acústicos e prosódicos para identificar padrões característicos dessa 

emoção. A primeira regra define que o medo é identificado quando a valência é negativa, 

a fo média varia de média a muito muito alta, o HNR varia de muito pequeno a muito alto, 

o dp de CPPS é médio ou alto, a duração da unidade VV [az] é curta, e a potência vocal 

é forte. A segunda regra complementa essa análise ao indicar que o CPPS é de pequeno 

a alto, o HNR é alto ou muito alto, a duração da unidade VV [al] é curta, e a ativação é 

alta. Regras adicionais reforçam a identificação do medo em contextos de valência 

negativa quando há combinações específicas de parâmetros, como fo mínimo muito muito 

alto ou CPPS reduzido combinado com potência vocal forte e ativação elevada. As regras 

reforçam que o medo ocorre em contextos com valência negativa e valores intermediários 

de fo mínimo e fo médio, associados a HNR reduzido, CPPS baixo e alta ativação. Essas 

combinações refletem padrões de alta tensão vocal, curta duração entre emissões e 

características de alta energia e esforço vocal, comuns no estado emocional de medo.  

Quanto as regras fuzzy para a emoção tristeza, demonstram que sua identificação 

ocorre especialmente com base na valência negativa, potência vocal fraca e baixa 

ativação. As características acústicas e acústico-prosódicas apresentaram ambiguidades 

ao diferenciar tristeza do estado neutro. Alguns estudos indicam que a tristeza apresenta 

características menos expressivas e compartilha propriedades acústicas semelhantes ao 

estado neutro, o que pode causar confusão entre os dois estados emocionais (PEREIRA; 

WATSON, 1998; YILDIRIM et al., 2004; SUNDBERG et al., 2019). 
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Portanto, a análise pelos eixos dimensionais de valência, potência e ativação 

permitiu uma separação mais clara entre esses estados emocionais. A tristeza é marcada 

por baixos níveis de energia vocal, níveis baixos de frequência e intensidade emocional, 

refletindo um padrão distinto em relação ao estado neutro, que apresenta maior 

estabilidade e equilíbrio nos parâmetros prosódicos (YILDIRIM et al., 2004). Essa 

distinção destaca a importância de considerar os eixos dimensionais para a classificação 

precisa de emoções que compartilham semelhanças acústicas, como tristeza e 

neutralidade, especialmente em contextos que exigem alta sensibilidade na identificação 

de estados emocionais. 

As regras fuzzy para a emoção raiva utilizam múltiplos parâmetros acústicos e 

prosódicos para caracterizar esse estado emocional, enfatizando a interação entre 

valência negativa e alta ativação. A primeira regra identifica a raiva por meio de fo média 

elevada, alto dp de CPPS, níveis de ruído harmônico (HNR) variados e ativação alta, 

sugerindo forte energia vocal e tensão emocional. A segunda regra considera a amplitude 

mínima da fo variando de muito baixa a muito alta, frequência máxima predominantemente 

elevada, curta duração da unidade VV [auav] e intensidade vocal alta, refletindo um padrão 

vocal enérgico e instável. Outras regras reforçam a associação da raiva com curta duração 

nas unidades VV [al] e [ianu], variações no alcance tonal (fo range) e presença de altos 

níveis de ruído harmônico. Portanto, a raiva é caracterizada por sinais acústicos com altos 

níveis de intensidade, variabilidade tonal, alta ativação e elementos que indicam alta 

excitação emocional, que a distingue de outras emoções negativas. 

Quanto as regras fuzzy para a emoção surpresa, combinou informações de 

valência positiva, parâmetros acústicos e prosódicos para sua identificação. A surpresa é 

caracterizada por fo média geralmente altas ou muito altas, associadas a baixos níveis de 

suavidade espectral (CPPS) e de seu dp. A curta duração de unidades VV [auav] é uma 

característica marcante, refletindo um padrão vocal breve e abrupto que enfatizam a 

natureza inesperada dessa emoção. Além disso, os valores de intensidade vocal variam 

amplamente, desde muito baixa até muito alta, que pode indicar flexibilidade na projeção 

vocal. O HNR, que representa o equilíbrio harmônico, tende a ser médio ou alto, enquanto 

a fo mínima pode atingir valores muito altos, reforçando o elemento de excitação. Observa-

se que a surpresa combina elementos de alta variabilidade acústica, excitação emocional 

e de velocidade de fala acelerada, refletindo reatividade imediata e padrões vocais 

distintivos associados a esse estado emocional. 
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Na emoção nojo, as regras fuzzy destacam a valência negativa como característica 

central, associada a parâmetros acústicos que refletem baixa energia vocal, excitação 

reduzida e velocidade de fala lenta. O nojo é identificado por ativações consistentemente 

baixas em todas as regras, associadas a durações maiores nos segmentos vocais, como 

[az] e [al], que variam de muito alta a muito muito alta, reforçando a característica de 

prolongamento vocal e ênfase emocional. A duração da unidade VV [ianu], em 

contrapartida, apresenta valores mais curtos, refletindo uma dinâmica contrastante dentro 

do padrão vocal. A intensidade vocal apresenta ampla variabilidade, desde valores muito 

baixos até níveis altos, enquanto a potência vocal pode ser forte em determinados 

cenários, sugerindo momentos de maior ênfase emocional. O dp da fo é 

predominantemente pequeno ou muito pequeno, indicando estabilidade tonal, e baixos 

valores de jitter que refletem regularidade nos ciclos vocais. Em algumas condições, 

valores muito baixos de CPPS refletem uma voz menos harmônica, alinhando-se ao 

aumento de ruído e tensão (LOWELL et al., 2013) frequentemente associado ao nojo. 

Esses critérios revelam padrões acústicos que enfatizam uma reação aversiva, marcada 

por baixa excitação, longa duração e ajustes específicos na projeção vocal. 

A regra fuzzy para o estado neutro definem exclusivamente pela valência neutra, 

sem especificar outros parâmetros acústicos ou prosódicos, o que evidencia a dificuldade 

de análise desse estado emocional. O estado neutro apresenta desafios interpretativos 

porque frequentemente compartilha características acústicas com outras emoções de 

baixa intensidade, como a tristeza, tornando-se menos distinto nos parâmetros vocais 

(GUZMÁN et al., 2013). A ausência de variações marcantes em atributos como fo, 

intensidade, duração e suavidade espectral dificulta a identificação de padrões exclusivos. 

Além disso, sua classificação depende fortemente do contexto e da percepção subjetiva, 

pois o neutro funciona como um ponto de equilíbrio entre estados emocionais opostos, o 

que pode gerar ambiguidades durante a análise acústica. Verifica que a neutralidade 

carece de valência, ou seja, não possui carga afetiva positiva ou negativa, e por esse 

motivo apresenta desafios interpretativos em análises vocais devido à sua natureza 

menos distinta (GASPER et al., 2019). No contexto do modelo fuzzy, que lida com 

categorias não rigidamente delimitadas, a valência surge como a métrica mais objetiva e 

operacionalizável para diferenciar o neutro dos estados emocionais valenciados. 

A ambiguidade entre as emoções tristeza e neutra foi um exemplo claro da 

dificuldade em modelar categorias emocionais que apresentam características vocais 

pouco definidas ou sobrepostas. No modelo desenvolvido, essa sobreposição gerou 
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desafios para a diferenciação entre essas duas emoções, uma vez que muitos parâmetros 

acústicos analisados apresentaram valores semelhantes para ambas. No entanto, ao 

considerar a variável de valência, que reflete a carga emocional positiva ou negativa 

associada à emoção, foi possível identificar uma distinção clara entre os estados 

(BESTELMEYER et al., 2017; SPEED, BRYSBAERT, 2023). Essa abordagem permitiu a 

criação de uma única regra fuzzy para a emissão neutra, suficiente para resolver essa 

limitação e assegurar a precisão do modelo no reconhecimento dessas categorias. Essa 

simplificação demonstrou a importância de selecionar variáveis altamente discriminativas 

para lidar com ambiguidades emocionais em sistemas de reconhecimento de emoções. 

Assim, a utilização de regras com características exclusivas para cada emoção 

oferece melhor precisão do modelo fuzzy, uma vez que a categorização detalhada das 

emoções vai além da identificação genérica e promove uma distinção sensível a 

características acústicas específicas. Os resultados fortalecem a aplicabilidade do modelo 

fuzzy em cenários práticos de reconhecimento emocional, como na análise de interações 

em atendimento ao cliente, no monitoramento de saúde mental, ou em sistemas de análise 

emocional para mídia e entretenimento, onde a diferenciação precisa de estados 

emocionais é fundamental para a qualidade do serviço. 

A análise da matriz de confusão revelou que o modelo fuzzy classificou 

corretamente a maioria das instâncias, com destaque para as emoções tristeza e neutra, 

que não apresentaram erros de categorização. Por outro lado, a emoção alegria exibiu 

maior número de confusões, principalmente com surpresa, o que refletiu a dificuldade do 

modelo em distinguir emoções de valência positiva com características acústicas 

semelhantes. Apesar disso, a predominância de valores na diagonal principal da matriz 

evidenciou um bom desempenho geral, indicando que o modelo manteve coerência na 

categorização emocional, evitando classificações aleatórias. As confusões observadas 

ocorreram majoritariamente dentro do mesmo espectro de valência, sugerindo 

sobreposição de traços vocais entre emoções positivas, como alegria e surpresa, ou entre 

estados de baixa ativação, como neutra e tristeza. Esse padrão pode estar associado a 

mecanismos biomecânicos da produção vocal, uma vez que emoções de valência 

negativa tendem a apresentar marcadores vocais mais consistentes e distintos 

(JAYWANT; PELL, 2012), o que facilita sua identificação. A precisão na classificação da 

tristeza reforçou esse achado. Adicionalmente, os valores de especificidade confirmaram 

a capacidade do modelo em evitar falsos positivos, o que fortaleceu sua eficácia na 

exclusão de emoções incorretas. Assim, os resultados indicam um bom desempenho do 
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modelo na distinção emocional, com margem para aprimoramentos que aumentem a 

discriminação entre emoções com características acústicas mais próximas. 

O coeficiente Kappa indicou uma concordância substancial no desempenho o que 

reflete consistência do modelo na classificação correta das emoções. Além disso, a 

acurácia geral do modelo reforçou a robustez do sistema em diferenciar corretamente as 

emoções. Os índices de sensibilidade e especificidade para cada emoção confirmam o 

desempenho positivo do modelo. A sensibilidade, que reflete a capacidade do modelo em 

identificar corretamente as instâncias de cada emoção, variou de níveis altos para alegria, 

a valores perfeitos para tristeza e neutra. Esses resultados sugerem que o modelo foi 

eficaz em detectar corretamente emoções com padrões bem definidos. A especificidade, 

por sua vez, foi elevada para todas as emoções, demonstrando que o modelo também foi 

eficiente em evitar falsos positivos. Esses resultados indicam que o modelo fuzzy 

apresenta uma solução promissora para problemas de reconhecimento emocional, com 

excelente acurácia e alta capacidade de discriminação entre diferentes emoções.  

Os resultados encontrados neste estudo destacaram a lógica fuzzy ao aprimorar os 

modelos de suporte à decisão para o reconhecimento de emoções, especialmente no 

tratamento das ambiguidades e complexidades inerentes às emoções humanas. 

Diferentemente dos métodos tradicionais, que dependem de classificações rígidas e 

exigem relações discretas de entrada-saída, frequentemente enfrentando dificuldades 

com a natureza sobreposta dos estados emocionais, a lógica fuzzy demonstrou grande 

eficácia no gerenciamento de incertezas e imprecisões. 

Diante da efetividade dessa modelagem, diversos estudos que empregaram a 

lógica fuzzy para o reconhecimento das emoções obtiveram resultados superiores aos 

métodos de aprendizado de máquinas (CHATCHINARAT et al., 2016; LILIANA et al., 

2019; TON-THAT; CAO, 2019). A lógica fuzzy se destaca como uma abordagem mais 

intuitiva e aplicada devido ao seu benefício potencial de compreensão humana. Ademais, 

exibe menor tempo de computação, sendo mais rápida do que outras técnicas de 

aprendizado de máquina, especialmente quando o número de regras é gerenciável 

(PAREEK et al., 2023). Essas características tornam a lógica fuzzy uma solução robusta, 

adaptável e eficiente em cenários desafiadores envolvendo a diferenciação de estados 

emocionais. 

Essa abordagem processou de forma eficaz pistas emocionais diferenciadas, para 

que emoções com características vocais sobrepostas fossem representadas por funções 

de pertinência que definiram os graus de pertencimento (ANAAM et al., 2023). Esse 
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método resultou em um mapeamento preciso dos estados emocionais a partir de padrões 

vocais, mesmo em condições de dados ambíguos. Além disso, ao incorporar variáveis 

linguísticas que simulavam o raciocínio humano, o sistema tornou-se altamente 

interpretável em comparação com os modelos baseados em aprendizado de máquina, 

fato que possibilita a integração de diversos recursos acústicos em regras fuzzy que 

refletiam a experiência humana. 

Foi realizada uma análise de desempenho em relação a métodos de aprendizado 

de máquinas para o reconhecimento das emoções para validação do modelo baseado em 

lógica fuzzy. Essa análise foi importante para contextualizar a eficiência do modelo fuzzy 

no cenário mais amplo de reconhecimento emocional, que permitiu avaliar como a 

abordagem utilizada ofereceu vantagens em termos de modelagem, acurácia, 

sensibilidade e especificidade em relação a outras técnicas. Vale destacar que a finalidade 

não foi identificar o modelo com o melhor desempenho absoluto, considerando as 

diferenças entre as abordagens e aplicabilidades das metodologias analisadas. O foco 

residiu na apresentação de uma proposta inovadora que leva em conta a incerteza das 

variações emocionais, fundamentada na lógica fuzzy, explorada como uma nova 

perspectiva metodológica em vez de uma alternativa competitiva direta. A comparação 

com outras metodologias teve como propósito contextualizar e demonstrar a eficácia do 

modelo desenvolvido em cenários práticos, oferecendo um ponto de referência para 

análise dos resultados. Além disso, o comparativo forneceu uma base para identificar as 

vantagens e limitações do modelo, confirmar sua aplicabilidade prática e destacar 

possíveis melhorias em relação às abordagens existentes. 

Os testes realizados inicialmente com as variáveis originais não apresentaram 

resultados satisfatórios em termos de acurácia, o que levou à necessidade de aplicar 

transformações espectrais no conjunto de variáveis (BORKOWSKI et al., 2023). Essas 

transformações permitiram converter os dados do domínio do tempo para o domínio da 

frequência, destacando padrões relevantes para a classificação emocional que não eram 

evidentes nas variáveis originais.  

A transformação espectral nos dados foi realizada para capturar relações não 

lineares e preservar tanto a estrutura global quanto local das amostras no espaço original 

(WEN et al., 2021). Essa abordagem realizada devido a característica complexa e 

sobreposta do conjunto de dados, pois permite reduzir a dimensionalidade enquanto 

mantém informações essenciais para a análise subsequente. Além disso, a laplaciana 

normalizada empregada na transformação reduz os impactos de ruído e 
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desbalanceamento entre as amostras, o que garante maior robustez na representação 

dos dados. No dos dados do EmoVox-BR, a transformação espectral foi utilizada para 

revelar padrões subjacentes e facilitar a separação entre grupo para estabelecer uma 

análise mais precisa e visualização clara das relações entre as classes de interesse.  

Porém, essa transformação adiciona complexidade computacional e pode não 

capturar integralmente as características emocionais sutis nos sinais, além de apresentar 

dificuldade ao interpretar os resultados em termos das variáveis originais, nesse sentido, 

dificulta a compreensão direta do comportamento dos dados e dos fenômenos 

subjacentes no sinal de entrada, tornando o modelo menos explicável (NADLER; GALUN, 

2006; ZHU et al., 2017). O estudo de Noguchi (2020), analisou a precisão do agrupamento 

espectral em redes com estruturas sobrepostas e evidenciou suas limitações teóricas. O 

autor destacou que a incapacidade do método de explicar a sobreposição de informações 

leva à perda de informações estruturais no autovetor principal. A pesquisa revelou como 

essas informações estruturais são comprometidas em redes com sobreposição, 

ressaltando a necessidade de abordagens específicas para detecção de informações 

sobrepostas. 

Após análise com base em critérios de desempenho, os modelos de aprendizado 

de máquinas Random Forest e Kernel SVM foram selecionados para o presente estudo 

de acordo com a performance em comparação a outros métodos avaliados para o 

reconhecimento de emoções a partir de dados vocais. Ambos apresentaram resultados 

consistentes em métricas globais, que evidenciou a capacidade de realizar classificações 

precisas e equilibradas. A comparação entre os modelos Random Forest e Kernel SVM 

destacou o desempenho consistente de ambos no reconhecimento das emoções. Esses 

métodos demonstraram alta acurácia, particularmente nas emoções alegria, tristeza, 

surpresa, nojo e neutra, evidenciando sua capacidade de reconhecer padrões emocionais 

em diferentes cenários. Embora os dois modelos tenham apresentado resultados similares 

em termos de métricas globais, como sensibilidade e especificidade, o Kernel SVM exibiu 

uma leve vantagem ao lidar com a emoção medo, mostrando menos confusões em 

comparação ao Random Forest. Essa diferença, ainda que discreta, indicou uma 

capacidade superior do Kernel SVM em captar nuances específicas desta emoção.  

A análise entre os modelos de aprendizado de máquinas tradicionais e o modelo 

baseado em lógica fuzzy evidenciou diferenças importantes em desempenho e 

abordagem metodológica. Os modelos de aprendizado de máquinas necessitaram de 

etapas adicionais, como a transformação espectral das variáveis além de apresentarem 
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desempenho inferior em termos de acurácia. Apesar da eficácia das transformações 

espectrais em melhorar o desempenho dos modelos de aprendizado de máquina, a perda 

de conexão com as variáveis originais representou uma limitação importante em cenários 

de reconhecimento emocional, que exigem explicabilidade e alinhamento prático com os 

dados reais. 

A utilização do modelo baseado em lógica fuzzy apresentou também limitações 

importantes. A definição das regras fuzzy, bem como a adaptação e modificação dessas 

regras, tornou-se desafiadora e dependeu fortemente do conhecimento, domínio e da 

experiência dos especialistas. Esse processo é subjetivo e muitas vezes requer múltiplas 

iterações, o que pode tornar o desenvolvimento do modelo demorado e suscetível a 

inconsistências. Além disso, a escolha adequada das funções de pertinência e dos 

parâmetros associados pode influenciar diretamente o desempenho do modelo, sendo 

difícil alcançar um equilíbrio ideal entre complexidade e precisão. A escalabilidade do 

modelo também pode ser comprometida à medida que o número de variáveis ou estados 

emocionais aumenta, levando a uma explosão combinatória no número de regras 

necessárias.  

 Por outro lado, a lógica fuzzy teve a vantagem de operar diretamente com as 

variáveis originais e com variáveis linguísticas derivadas, mantendo uma relação mais 

intuitiva e transparente com os dados de entrada, além de se destacar pela capacidade 

generalização e de lidar com incertezas e ambiguidades intrínsecas às emoções 

humanas, dispensando a necessidade de transformações nas variáveis. Esses fatores 

explicam o melhor desempenho em acurácia e a eficiência do modelo fuzzy na 

classificação de estados emocionais, especialmente em cenários onde as variáveis 

apresentam sobreposição ou imprecisão, tornando-a essencial para o reconhecimento de 

emoções humanas. Deve-se ressaltar que a lógica fuzzy pode também ser integrada a 

técnicas de aprendizado de máquina e outras metodologias de inteligência artificial, para 

elevar o nível de adaptabilidade e eficácia desses modelos (CHRYSAFIADI, 2022). 

De forma geral, o modelo baseado em lógica fuzzy não apenas supera as limitações 

dos modelos tradicionais, mas também amplia a capacidade dos sistemas de identificar e 

responder adequadamente a complexidade dos estados emocionais. Ao preservar a 

conexão com as variáveis originais e incorporar a flexibilidade das variáveis linguísticas, 

essa abordagem oferece uma combinação única de precisão, explicabilidade e 

generalização. Essa generalização é possível no âmbito de diferentes contextos culturais 

e linguísticos, bem como na aplicação em outras bases de dados, com características 
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distintas. A lógica fuzzy se adapta a padrões emocionais extraídos de diferentes idiomas, 

e permite que o modelo identifique nuances emocionais específicas de cada língua. Além 

disso, ao integrar dados de múltiplas fontes, o modelo demonstra capacidade de 

aprendizado robusto, suporta análises mais amplas e inclusivas, com potencial para 

atender demandas em contextos globais. Portanto, sua habilidade de lidar com incertezas 

e sobreposições reforça seu potencial como ferramenta robusta para aplicações práticas 

e avançadas no reconhecimento emocional contribuindo para o desenvolvimento de 

sistemas mais eficientes, humanos e inclusivos.  
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7 CONCLUSÃO 

 

A construção de um modelo baseado na lógica fuzzy para o reconhecimento de 

estados emocionais a partir de medidas acústicas e acústico-prosódicas da voz 

representa uma importante contribuição para o campo da análise emocional 

automatizada. Foi possível desenvolver um sistema robusto e flexível, capaz de lidar com 

a complexidade inerente às variações emocionais humanas ao utilizar características 

vocais específicas associadas a emoções básicas, como alegria, medo, tristeza, raiva, 

surpresa, nojo e a emissão neutra.  

A lógica fuzzy demonstra ser uma abordagem eficaz para tratar incertezas e 

nuances nas expressões vocais, resultando em um modelo com maior capacidade de 

diferenciação e maior taxa de acurácia no reconhecimento emocional. A análise criteriosa 

e a exclusão de variáveis redundantes, como os MFCC e os parâmetros acústicos de 

GNE, foram passos fundamentais para otimizar o desempenho do modelo. Assim, essa 

abordagem permitiu a simplificação da estrutura analítica e destacou as medidas vocais 

com maior poder preditivo para a identificação dos estados emocionais, como as 

variações da fo, duração, intensidade, HNR, CPPS, jitter, shimmer, além dos eixos 

dimensionais das emoções (valência, potência e ativação). Essas medidas apresentaram 

potencial para atuar como biomarcadores digitais de estados emocionais, oferecendo 

subsídios objetivos para a caracterização automatizada das emoções.  

O modelo fuzzy mostrou-se eficiente em integrar múltiplas medidas vocais, 

preservando a simplicidade e a interpretabilidade das regras que orientam as decisões do 

modelo. Garantiu a precisão no reconhecimento das emoções, bem como viabilizou a 

generalização do modelo para diferentes contextos e populações. 

Os resultados obtidos evidenciam que o uso de sistemas fuzzy, aliados à seleção 

criteriosa de variáveis acústicas, superou as limitações dos métodos tradicionais de 

aprendizado de máquinas na análise de emoções, especialmente em cenários onde as 

fronteiras entre estados emocionais são difusas. Esse trabalho reafirma o potencial da 

inteligência artificial e da lógica fuzzy na compreensão e no reconhecimento automático 

das emoções humanas, abrindo perspectivas para sua aplicação em áreas como saúde, 

comunicação, entretenimento e inovação para ser aplicada em sistemas humano-

máquina. 

Por fim, o modelo desenvolvido representa um avanço na interface entre tecnologia 

e cognição humana, com destaque pela sua capacidade de capturar e interpretar as 



 

 

123 

 

sutilezas emocionais a partir da voz. As contribuições deste estudo reforçam a importância 

de abordagens interdisciplinares e inovadoras para compreender as complexidades da 

expressão emocional, estabelecendo bases sólidas para futuros aprimoramentos e 

aplicações práticas em sistemas inteligentes.  
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