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Resumo

Neste trabalho, com base no artigo On the Fully Nonlinear Alt–Phillips Equation

de Yijing Wu e Hui Yu [17], investigamos a versão totalmente não-linear do problema

de Alt-Phillips no caso não-singular. Apresentamos uma análise detalhada sobre

aspectos de regularidade ótima para soluções não-negativas dessa equação, bem como

para as fronteiras livres formadas por essas soluções. É observado que essas fronteiras

livres são superfícies (n − 1)-dimensionais com suavidade C1 nas proximidades dos

pontos regulares da fronteira livre.

Palavras-chave: Problema de Alt-Phillips; Operadores totalmente não-lineares;

Problemas de fronteira livre; Regularidade de soluções.



Abstract

In this work, based on the article On the Fully Nonlinear Alt–Phillips Equation

by Yijing Wu and Hui Yu [17], we investigate the fully nonlinear version of the

Alt-Phillips problem in the non-singular case. We present a detailed analysis of the

optimal regularity aspects for non-negative solutions of this equation, as well as for the

free boundaries formed by these solutions. It is observed that these free boundaries

are (n− 1)-dimensional surfaces with C1 smoothness in the neighborhoods of regular

points of the free boundary.

Keywords: Alt-Phillips problem; Fully nonlinear operators; Free boundary pro-

blems; Regularity of solutions.
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Notações

Aqui estão algumas notações adotadas ao longo do texto:

• Seja u : B → R uma função real definida em um conjunto B ⊆ Rn. A notação

sup
B

u representa o menor número real que é maior ou igual a todos os valores

de u(x) para x ∈ B. Analogamente, inf
B

u é o maior número real que é menor

ou igual a todos os valores de u(x) com x ∈ B;

• O ∈ Md matriz nula do espaço Md das matrizes quadráticas d× d;

• C2(Ω) espaço das funções u : Ω → R que possuem todas as derivadas parciais

de primeira e segunda ordem contínuas em Ω.

• (x · y) - produto interno entre x ∈ Rd e y ∈ Rd;

• P ≥ 0 - P é uma matriz definida não-negativa, isto é, sua forma quadrática

(Pξ · ξ) ≥ 0 para todo ξ ∈ Rd;

• [X, Y ] = {(1− t)X + tY ; t ∈ [0, 1]};

• DF (X) · Y - Derivada de F aplicada no ponto X na direção Y ;

• F ◦ λ - Composição entre as aplicações F e λ;

•
(
dF◦λ
dt

(t0)
)+

= lim
t−→0+

F ◦ λ(t0 + t)− F ◦ λ(t0)
t

;

• QT - Indica a matriz transposta da matriz Q;

• Du - Gradiente da função u;

• D2u - Hessiana da função u;
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• I - Matriz identidade;

• M−1 indica a matriz inversa de uma determinada matriz M quadrática;

• Sym(n;R) representa o espaço das matrizes simétricas reais de ordem n;

• ν ⊗ ν - Matriz quadrática formada pela produto da matriz νd×1 com sua trans-

posta νT
1×d;

• {u > 0} = {x;u(x) > 0}

• ∂ {u > 0} representa o conjunto formado pelos pontos da fronteira do conjunto

{u > 0};

• | {u > 0} | - Volume (n− 1)−dimensional do conjunto {u > 0};

• ∥u∥C2,α(B) é a norma de Hölder C2,α de uma função u em um conjunto B ⊂ Rn;

• Deu(x) = (Du(x) · e);

• Deeu(x) = (D2u(x)e · e);

• H1
g (Ω) é o espaço das funções que pertencem a H1(Ω) e coincidem com a função

g sobre ∂Ω;

• Seja v = (v1, · · · , vn) ∈ Rn, então v⊗ v é a matriz n×n em que o elemento que

está na i-ésima linha e j-ésima coluna será vivj.
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Introdução

Esta dissertação tem como base o trabalho de Yijing Wu e Hui Yu [17]. Procurou-

se, ao longo deste estudo, abordar de maneira mais detalhada eventuais omissões ou

pontos pouco explorados no artigo [17], com o intuito de tornar o conteúdo mais claro

e diminuir a necessidade de consultas complementares. Todas as afirmações con-

sideradas evidentes foram cuidadosamente analisadas, verificadas e incorporadas a

esta dissertação, visando facilitar a compreensão do problema Alt-Phillips totalmente

não-linear, descrito pela seguinte equação: F (D2u) = uγ−1 em Ω

u ≥ 0 em Ω
(1)

em que, são considerados Ω ⊂ Rd aberto e limitado, γ ∈ (1, 2) e F é um operador

diferenciável, convexo e uniformemente elíptico.

É importante destacar que o caso F (M) = trace(M) é considerado clássico, pois

se reduz ao operador Laplaciano. Nesse contexto, a equação correspondente é dada

por

∆u = uγ−1. (2)

Esse problema está relacionado ao comportamento de sistemas de reação-difusão

em que a difusão de reagentes dentro de um catalisador permeável pode limitar a taxa

de reação. Esse fenômeno é precisamente abordado no livro The Mathematical The-

ory of Diffusion and Reaction in Permeable Catalysts de R. Aris [4], onde o autor

desenvolve uma teoria matemática para descrever como a difusão e as reações quí-

micas interagem em sistemas porosos. Aris [4] utiliza modelos baseados em equações

diferenciais para analisar o transporte de massa e a cinética das reações, destacando

como a velocidade de difusão pode afetar a distribuição de reagentes e a eficiência da

reação no interior do catalisador. No contexto do problema Alt-Philips, essas limita-

ções na difusão podem resultar em regiões do catalisador onde a reação não ocorre,
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o que é um aspecto crucial para entender o desempenho desses sistemas e otimizar

processos catalíticos.

Outro estudo relacionado à aplicação do problema Alt-Philips é o de Bandle e

Stakgold [5] sobre a formação do dead-core {u = 0} em sistemas de reação-difusão.

O problema Alt-Philips e o estudo de Bandle e Stakgold [5] estão ambos ligados à

interação entre difusão e reação, onde a difusão limitada pode impedir a reação em

determinadas regiões. No caso do Alt-Philips, a difusão insuficiente nos catalisadores

permeáveis pode levar a áreas inativas, semelhantes as dead-core {u = 0} descrito

por Bandle e Stakgold [5], onde a reação é suprimida devido à falta de reagentes,

comprometendo a eficiência do sistema.

Iremos observar na seção 1.3 que o minimizante do funcional Alt-Phillips

u 7→
ˆ
Ω

|Du|2 + 2

γ
uγdx

é solução para a equação (2).

Quando γ → 0 essa energia degenera para o funcional Alt-Caffarelli [1], também

chamado de problema de Bernoulli,

u 7→
ˆ
Ω

|Du|2 + 2χ{u>0}dx

em que χE indica a função característica de um certo conjunto E. Para obter in-

formações mais completas, consulte o livro "A geometric approach to free boundary

problems” de Luis Caffarelli e Sandro Salsa, [7]. O caso γ = 1 o funcional Alt-Phillips

torna-se a energia no problema do obstáculo

u 7→
ˆ
Ω

|Du|2 + 2u,

para mais detalhes sobre esta classe de problemas veja o livro “Regularity of Free

Boundaries in Obstacle-Type Problems” de Arshak Petrosyan, Henrik Shahgholian e

Nina Uraltseva, [14].

As comparações entre (1) e os problemas de Bernoulli, com γ ∈ (0, 1), e o

problema do obstáculo, com γ = 1, tornam-se interessantes, considerando que, ao

definir o parâmetro

β =
2

2− γ
∈ (1,+∞) onde γ ∈ (1, 2), (3)
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reescalonamentos do tipo

ur(x) :=
u(rx)

rβ

são soluções de (2) em B1/r. Isto sugere comportamentos do tipo |x|β próximos

à fronteira livre ∂ {u > 0}, enquanto soluções para o problema de Bernoulli e do

obstáculo crescem, respectivamente, de forma linear e quadrática. Vale ressaltar que,

para o parâmetro β definido em (3), não é possível, de forma rigorosa, tomar o limite

γ → 0 para “recuperar” o problema singularmente perturbado ou o de Bernoulli,

nem γ → 1 para “recuperar” o problema do obstáculo. Isso se deve ao fato de

que as estimativas podem não ser uniformes em relação a γ, além de os problemas

apresentarem naturezas distintas.

No presente contexto desta dissertação, o foco recai sobre a variação do pa-

râmetro γ no intervalo (1, 2). Contudo, para leitores com maior interesse, os casos

γ = 0, γ ∈ (0, 1) e γ = 1 são estudados, respectivamente, nos seguintes trabalhos:

Ricarte-Texeixa [15]; Araújo-Texeira [3] e Lee [13].

Após a definição clara do problema proposto, o presente trabalho foi estruturado

em cinco capítulos:

O primeiro capítulo é dedicado ao estabelecimento das preliminares relacionadas

ao operador F , bem como às definições e resultados aplicáveis ao problema (1).

O segundo capítulo trata da estimativa de Harnack e suas consequências, com

destaque para os seguintes teoremas:

Teorema A Suponha que F seja um operador convexo e uniformemente elíptico,
com F (O) = 0. Seja u uma solução de (1) em BR para algum R > 0. Então,

sup
BR

2

u ≤ C
(
u(0) +Rβ

)
em que β = 2

2−γ
, C uma constante universal e γ ∈ (1, 2).

Uma constante é chamada universal se, e somente se, depender unicamente da

dimensão d, do parâmetro γ e da constante de elipticidade do operador, que será

devidamente definida no capítulo 1.

Essa estimativa para o problema clássico (2) está apresentada no Corolário 1.11

de [2].

Ainda neste capítulo, são apresentadas diversas consequências relacionadas ao

Teorema A, como, por exemplo:
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Teorema B Seja u solução de (1) com F nas condições do Teorema A. Então
u ∈ C2,α

loc (Ω) para algum α ∈ (0, 1). Além disso, se B1 ⊂ Ω, então existe uma
constante C > 0 tal que

∥u∥C2,α(B1/2) ≤ C(u(0) + 1).

A regularidade C2,α decorre do teorema 8.1, apresentado em [8], enquanto a

limitação universal é uma implicação do Teorema A. De fato, o Teorema A es-

tabelece um controle uniforme sobre certas quantidades invariantes por escala, como

por exemplo ∣∣∣∣D2u

uγ−1

∣∣∣∣ ,
mesmo próximo a fronteira livre ∂ {u > 0}, o que sugere comportamentos indefinidos

nesta região. Isso possibilita a realização de uma análise detalhada do limite de

soluções reescalonadas, denominadas de blow-up, nas proximidades da fronteira livre.

A classificação dos blow-ups é abordada no capítulo três, onde, em pontos

regulares da fronteira livre ∂ {u > 0}, obtêm-se informações geométricas suficien-

tes para deduzir um resultado sobre a regularidade dessa fronteira como superfície

(d− 1)− dimensional.

No capítulo quatro, conclui-se a abordagem deste trabalho, com a conclusão do

resultado abaixo.

Teorema C Juntamente com as hipóteses do Teorema A, assuma que F é dife-
renciável no ponto O ∈ Sd ou que F é homogênea. Se u é solução de (1), então a
parte regular da fronteira livre é relativamente aberta em ∂ {u > 0} e é localmente
uma hiperfície de classe C1.
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Capítulo 1

Preliminares

O leitor já familiarizado com este tema, pode seguir para os capítulos seguintes.

Este capítulo está organizado em quatro seções tendo como principais referências [17]

e [8]. Na primeira, são abordadas algumas das definições fundamentais para a com-

preensão deste trabalho: Operadores uniformemente elíptico; operadores convexo e o

conceito de sub-diferencial. Além de algumas propriedades, como, por exemplo, inva-

riância de rotação do operador de maneira a obter o laplaciano como sub-diferencial.

Na segunda seção, o objetivo é apresentar as ferramentas que serão essenciais para a

obtenção dos resultados desejados. A terceira seção, trata do caso variacional do ope-

rador Alt-Philips. Por fim, na quarta seção, são introduzidas as definições relaciona-

das ao problema Alt-Phillips não-variacional, juntamente com algumas propriedades

intermediárias da solução.

1.1 Hipóteses e definições

Definição 1.1 Sejam Sd o espaço das matrizes d× d−simétricas e Λ uma constante
maior que ou igual a 1. A função

F : Sd −→ R

é dita ser um operador uniformemente elíptico com constante de elipticidade Λ se
satisfaz

1

Λ
∥P∥ ≤ F (M + P )− F (M) ≤ Λ∥P∥ (1.1)

para toda M,P ∈ Sd em que P ≥ 0.
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É necessário destacar algumas equivalências na definição de operador uniforme-

mente elíptico. Como por exemplo, dada P ∈ Sd definida não-negativa, então,

∥P∥ ≤ Tr(P ) e Tr(P ) ≤ d∥P∥ (1.2)

em que ∥ · ∥ representa a norma espectral definida como o maior valor absoluto de

seus valores próprios. De (1.1), daí

1

dΛ
Tr(P ) ≤ F (M + P )− F (M) ≤ ΛTr(P )

Reciprocamente, se F satisfazer

λTr(P ) ≤ F (M + P )− F (M) ≤ ΛTr(P )

com 0 < λ < Λ e P ≥ 0, por (1.2),

λ∥P∥ ≤ F (M + P )− F (M) ≤ dΛ∥P∥

o que garante que F é um operador uniformemente elíptico.

Além disso, em certos casos, é necessário lidar com a diferença F (M+P )−F (P )

sem se preocupar com o sinal definido da matriz P . Nesses casos, é importante ter uma

definição equivalente de operador uniformemente elíptico que dispense a exigência

P ≥ 0.

Para essa finalidade, a matriz P ∈ Sd pode ser decomposta da seguinte maneira,

P = P+ − P− em que P+, P− ≥ 0.

Sendo F uniformemente elíptica com constante Λ, então

F (M−P−+P+)−F (M−P−) ≤ Λ∥P+∥ =⇒ F (M−P−+P+) ≤ Λ∥P+∥+F (M−P−)

por outro lado,

1

Λ
∥P−∥ ≤ F (M − P− + P−)− F (M − P−) =⇒ F (M − P−) ≤ F (M)− 1

Λ
∥P−∥

e portanto,

F (M + P )− F (M) ≤ Λ∥P+∥ − 1

Λ
∥P−∥. (1.3)

Reciprocamente, se F satisfaz (1.3) para M,P ∈ Sd, então, para P ≥ 0 tem-se

P+ = P e P− = O, daí,

F (M + P )− F (M) ≤ Λ∥P∥
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e por outro lado,

F (M + P − P )− F (M + P ) ≤ − 1

Λ
∥ − P∥ =⇒ 1

Λ
∥P∥ ≤ F (M + P )− F (M)

o que retorna F a definição inicial (1.1).

Com base no que foi feito acima, podemos afirmar que a definição (1.1) é equi-

valente às seguintes definições:

Definição 1.2 Considere as constantes 0 < λ < Λ. A função

F : Sd −→ R

é dita ser um operador uniformemente elíptico com constantes de elipticidade λ e Λ

se satisfaz
λTr(P ) ≤ F (M + P )− F (M) ≤ ΛTr(P )

para toda M,P ∈ Sd em que P ≥ 0 e Tr : Sd −→ R simboliza o operador traço de
uma matriz.

Definição 1.3 Seja Λ uma constante maior que ou igual a 1. A função

F : Sd −→ R

é dita ser um operador uniformemente elíptico com constante de elipticidade Λ se
satisfaz

F (M + P )− F (M) ≤ Λ∥P+∥ − 1

Λ
∥P−∥

para toda M,P ∈ Sd.

Soluções para estes operadores são comumente estudados no conceito de solução

de viscosidade, conforme Definição 2.3 em [8].

Definição 1.4 (Solução de viscosidade) Considere u e f funções contínuas em
Ω ⊂ Rd,

F (D2u) = f em Ω (1.4)

em que F é um operador uniformemente elíptico. Dizemos que u é:
Sub-solução de Viscosidade de (1.4) em Ω, quando a seguinte condição é

satisfeita:
Se x0 ∈ Ω, ϕ ∈ C2(Ω) e u− ϕ tem um máximo local em x0, então

F (D2ϕ(x0)) ≥ f(x0);

9



Super-solução de Viscosidade de (1.4) em Ω, quando a seguinte condição é
satisfeita:

Se x0 ∈ Ω, ϕ ∈ C2(Ω) e u− ϕ tem um mínimo local em x0, então

F (D2ϕ(x0)) ≤ f(x0).

Por fim, u é uma solução de viscosidade de (1.4) quando é sub-solução e
super-solução.

Neste contexto, vale ressaltar a Proposição 4.11 em [8], sobre estabilidade de

limites de soluções.

Proposição 1.1 Sejam {Fh}h≥1 uma sequência de operadores uniformemente elíp-
ticos com mesma constante de elipticidade λ e {uh}h≥1 uma família de soluções de
viscosidade uniformemente contínuas ou equicontínuas para

Fh(D
2uh) = f em Ω.

Assumindo que {Fk}k≥1 converge uniformemente para uma F no compacto S × Ω e
que {uh}h≥1 é uniformemente limitada em um subconjunto compacto ω de Ω. Então:

- Existe u ∈ C(Ω) e uma subsequência de {uk}k≥1, tal que

uk −→ u uniformemente em Ω;

- F (D2u) = f em Ω no sentido de solução de viscosidade.

As soluções para esses operadores são compreendidas no sentido da viscosidade.

No entanto, neste trabalho, consideraremos u ∈ C2(Ω), pois em breve, veremos que

a solução para o problema (1) é, na verdade, uma solução clássica.

Definição 1.5 Dizemos que o operador linear SA : Sd −→ R é um sub-diferencial de
F para a matriz A ∈ Sd se satisfaz

SA(P ) ≤ F (A+ P )− F (A) para toda P ∈ Sd. (1.5)

Note que SA é um operador uniformemente elíptico com mesma constante de

elipticidade de F , pois

SA(−P ) ≤ F (A− P )− F (A)

e pela linearidade de SA temos

SA(P ) ≥ F (A)− F (A− P ) = F ((A− P ) + P )− F (A− P ) ≥ 1

Λ
∥P∥

para todo P ≥ 0.
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Definição 1.6 Dizemos que uma aplicação F : Rd −→ R é uma aplicação con-
vexa quando para todos X, Y ∈ Rd tem-se que a reta secante que passa pelos pontos
(X,F (X)) e (Y, F (Y )) está por cima do gráfico da aplicação F no seguimento [X, Y ].
Em outras palavras, para t ∈ [0, 1], tem-se que

F (X + t(Y −X)) ≤ (1− t)F (X) + tF (Y ).

Note que a estimativa acima implica em

F (X + t(Y −X))− F (X)

t
≤ F (Y )− F (X).

Segue daí que se F for diferenciável no ponto X ∈ Rd, então

DF (X) · (Y −X) ≤ F (Y )− F (X)

ou seja, a sua derivada no ponto X ∈ Sd é um sub-diferencial de F .

Caso F não seja diferenciável em tal ponto, então pelo fato do caminho λ :

[−1, 1] −→ Rd dado por λ(t) = X + t(Y − X) ser contínuo e F ◦ λ ser uma função

real convexa, temos que para todo t0 ∈ (−1, 1) pelo menos um dos limites
(
dF◦λ
dt

(t0)
)+

ou
(
dF◦λ
dt

(t0)
)− existe, assim garantindo a existência de um sub-diferencial de F que

será um hiper-plano (d − 1)-dimensional por baixo do gráfico de F , cujo normal

é ortogonal a reta que passa pelo ponto F ◦ λ(t0) e tem como coeficiente angular o

limite
(
dF◦λ
dt

(t0)
)+ se existir, caso contrário será ortogonal a

(
dF◦λ
dt

(t0)
)+ e está contido

no plano que contém F ◦ λ, conforme a figura 1.1.

10

F (Y )F (X)

r(t) =
(
dF◦λ
dt

(0)
)+

t+X
F ◦ λ

Figura 1.1: Sub-diferencial de F no ponto X ∈ Rd.

Proposição 1.2 Seja Tr : Sd −→ R o operador traço de cada matriz M ∈ Sd. Se
F : Sd −→ R é um operador convexo e uniformemente elíptico com constante de
elipticidade Λ, então:

11



a) Para todo A ∈ Sd existe uma matriz invertível B tal que o operador F̃ (M) =

F (BM + A)− F (A) possui Tr como um sub-diferencial no ponto O ∈ Sd;

b) F̃ é um operador uniformemente elíptico e convexo.

Demonstração:

a) Sendo SA um sub-diferencial de F no ponto A ∈ Sd, então para todo M =

(Mij)d×d ∈ Sd tem-se pela simetria de M ,

SA(M) =
d∑
i,j

aijMij =
d∑
i,j

aijMij = SA(M
T ) com aij = SA(eij)

em que {eij}di,j=1 é a base canônica do espaço das matrizes d × d. Tome Ã =(aij+aji
2

)
d×d

e veja que,

Tr(ÃM) =
d∑

i=1

(ÃM)ii

=
d∑

i=1

(
d∑

j=1

aij + aji
2

Mji

)

=
1

2

(
d∑
i,j

aijMji +
d∑
i,j

ajiMji

)

=
1

2

(
SA(M

T ) + SA(M))
)

= SA(M).

Além disso, note que Ã é uma matriz invertível, isso segue pelas seguintes

observações;

i) SA é injetiva no conjunto das matrizes simétricas definidas não-negativas,

pois
1
Λ
∥M∥ ≤ SA(M) ≤ Λ∥M∥ se M ≥ 0.

ii) Se Ã não for invertível, então o núcleo do operador Ã : Rd −→ Rd, definido

pela matriz Ã, é não trivial, isto é, existe v ∈ Rd − {0} tal que

Ãv = 0 =⇒ Ã(v ⊗ v) = (Ãv)⊗ v = 0⊗ v = O.

Note que (v ⊗ v) ∈ Sd − {O} é definida não-negativa e

SA(v ⊗ v) = Tr(Ã(v ⊗ v)) = Tr(O) = 0

contrariando assim o item anterior.

12



Por fim, sendo

F̃ (M) = F (BM + A)− F (A) ≥ SA(BM) = Tr(ÃBM)

com ÃM = MÃ para toda M ∈ Sd tem-se,

MÃ−1 = Ã−1M =⇒ Ã−1M é simétrica.

Portanto, podemos tomar B = Ã−1 e obter

F̃ (M +O)− F̃ (O) = F̃ (M) ≥ Tr(ÃBM) = Tr(M)

isto é, o traço é um sub-diferenciál de F̃ no ponto O ∈ Sd.

b) Veja que fixado A ∈ Sd, tem-se que F̃ é convexa e uniformemente elíptica, pois

dados X, Y ∈ Sd;

F̃ ((1− t)X + tY ) = F (B((1− t)X + tY ) + A)− F (A)

= F ((1− t)(BX + A) + t(BY + A))− F (A)

≤ (1− t)F (BX + A) + tF (BY + A)− F (A)

= (1− t)[F (BX − A)− F (A)] + t[F (BY + A)− F (A)]

= (1− t)F̃ (X) + tF̃ (Y )

o que prova a convexidade do operador F̃ .

Por fim, considere M,P ∈ Sd com P ≥ 0, então

F̃ (M + P )− F̃ (M) = F (B(M + P ) + A)− F (BM + A). (1.6)

Agora são necessárias algumas informações sobre o produto BP ∈ Sd, primei-

ramente, note que

– B ∈ Sd:

De fato, sendo B−1 = Ã ∈ Sd, então Ã = ÃT

ÃB = BÃ = I
=⇒ (ÃB)T = IT = I =⇒ BT ÃT = BÃ =⇒ BT = B

13



– BP ≥ 0:

Para verificar isto é necessário analisar o sinal da forma quadrática de BP ,

ou seja, o sinal de

xTBPx para todo x ∈ Rd.

Sendo B e P simétricas com BP = PB, então B e P são simultânea mente

diagonalizáveis, isto é, existem matrizes Q ortogonal, D∗ e D diagonais,

tais que,

B = QTDQ e P = QTD∗Q.

Além disso, temos que,

(QTD
1
2Q)(QTD

1
2Q) = QTDQ = B

portanto B
1
2 = QTD

1
2Q, segue daí que,

B
1
2P = QTD

1
2QP = QTD

1
2D∗Q = QTD∗D

1
2Q = PB

1
2 .

Note que P ≥ 0, implica em

(B
1
2x)TP (B

1
2x) ≥ 0 =⇒ xTB

1
2PB

1
2x ≥ 0

logo, pela comutatividade entre P e B
1
2 temos,

xTBPx ≥ 0.

Por fim, sabendo que BP ≥ 0, podemos usar a hipótese de F ser um operador

uniformemente elíptico (1.1) juntamente com (1.6), para obter,

1

Λ
∥BP∥ ≤ F̃ (M + P )− F̃ (M) ≤ Λ∥BP∥. (1.7)

Se considerarmos ∥ · ∥ como sendo a norma de Frobenius ou qualquer norma

satisfazendo

∥BP∥ ≤ ∥B∥∥P∥

e se ∥ · ∥∞ for a norma ∞− espectral, então

∥B∥∞∥P∥∞ ≤ ∥BP∥∞.
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Pela equivalência entre as normas, existe uma constante c > 0 tal que

∥B∥ ≤ c∥B∥∞.

Aplicando estas informações em ( 1.7), tem-se,

1

c2Λ
∥B∥∥P∥ ≤ F̃ (M + P )− F̃ (M) ≤ Λ∥B∥∥P∥.

Portanto, F̃ é um operador uniformemente elíptico com constante de eliptici-

dade dependendo de Λ.

Considerando a proposição anterior, ganha-se sentido, a partir deste ponto,

impormos certas condições ao operador uniformemente elíptico F : Sd −→ R. São

elas: 
F convexa,

F (O) = 0,

O traço do operador é um sub-diferencial de F no ponto O.

(1.8)

E em alguns casos adicionar uma ou ambas as hipóteses:

F diferenciável no ponto O ∈ Sd (1.9)

ou

F homogênea =⇒ F (λM) = λF (M) para todo λ > 0 e M ∈ Sd. (1.10)

Note que, F sendo homogênea e satisfazendo (1.8), então

F (M) = −F (O −M) + F (O) ≤ SO(M) = tr(M) ≤ F (O +M)− F (O),

consequentemente

Tr(M) = F (M)

e adicionando a hipóteses de diferenciabilidade no ponto O ∈ Sd

DF (O)(M) = lim
t−→0

F (O + tM)− F (O)

t
= F (M) = Tr(M). (1.11)

A seguir, apresentamos um exemplo de operador que satisfaz essas hipóteses:

Exemplo 1: Seja F : Sym(n;R) → R definido por

F (A) := log det(A)
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onde A > 0. Considere g(t) = F (A+ tM), assim

g(t) = log det(A+ tM)

= log det(A(I + tA−1M))

= log(det(A) det(I + tA−1M))

= log(det(A)) + log det(I + tA−1M))

= log(det(A)) +
n∑

i=1

log(1 + tλi),

sendo λi os autovalores de A−1M . Daí,

DF (A)(M) = lim
t→0

F (A+ tM)− F (A)

t

= lim
t→0

g(t)− g(0)

t

= g′(0)

=
n∑

i=1

λi

= Tr(A−1M).

Ademais,

g′′(t) = −
n∑

i=1

λ2
i

(1 + tλi)2
=⇒ D2MMF (A) = g′′(0) = −

n∑
i=1

λ2
i < 0

provando assim que F é um operador diferenciável no espaço das matrizes definidas

positivas e côncava (será verificado a posteriori no Teorema 1.3 que a condição (1.12)

é suficiente para garantir a concavidade da função), assim temos que −F é convexo

e diferenciável. Resta verificar a uniformidade elíptica de tal operador, com efeito,

sejam l, L > 0 tais que

lI ≤ A ≤ LI,

isto é, todos os autovalores de A estão no intervalo [l, L].

Então,
1

L
I ≤ A−1 ≤ 1

l
I.

Dessa forma, temos

D2
MMF (A) =

n∑
i=1

λ2
i = tr(A−1MA−1M) = ∥A−1/2MA−1/2∥2F ,
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onde ∥ · ∥F é a norma de Frobenius.

Como A−1/2 ≥ 1√
L
I e A−1/2 ≤ 1√

l
I, segue que

1

L
∥M∥2F ≤ D2

MMF (A) ≤ 1

l
∥M∥2F .

Logo, G(A) = −F (A) = − log detA é um operador uniformemente elíptico em con-

juntos compactos de matrizes definidas positivas. Segue da Proposição 1.2 que a

partir do operador F definido neste exemplo é possível construir um operador G̃

satisfazendo as hipótese de diferenciabilidade na origem e (1.8).

1.2 Preliminares técnicas

Apresentam-se, a seguir, os resultados relevantes que serão utilizados adiante.

Teorema 1.1 (Princípio do Mínimo) Seja L : Ω −→ R o operador linear

L(h) = S(D2h) + (Dv · b(x)) + c(x)h

para h ∈ C2(Ω) ∩ C0(Ω̄). Assumindo que S : Sd −→ R é um operador linear e
b, c : Ω −→ R são limitadas e contínuas. Supondo que L(h) ≤ 0 e c(x) ≤ 0 em Ω. Se
h admitir mínimo não-positivo, então

inf
∂Ω

h ≤ inf
Ω

h

isto é, o mínimo não-positivo de h é atingido em sua fronteira.

Uma consequência imediata do princípio do mínimo é o princípio da comparação,

conforme enunciado a seguir.

Corolário 1.1 (Princípio da Comparação) Seja h ∈ C2(Ω)∩C0(Ω̄) satisfazendo
L(h) ≤ 0 com c(x) ≤ 0 em Ω. Se h ≥ 0 em ∂Ω, então h ≥ 0 em Ω.

Ambos os resultados acima estão apresentados em [11] como teorema 2.3 e

corolário 2.8, respectivamente.

Teorema 1.2 (Arzelá-Ascoli) Seja K um compacto do espaço Rd. Toda sequên-
cia de funções fh : K −→ R equicontínua e uniformemente limitada possui uma
subsequência uniformemente convergente.

Para mais detalhes, veja o Teorema 3.4 em [16].
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Teorema 1.3 Seja u ∈ C2(Rd) uma função tal que, Deeu ≥ 0 para todo e ∈ Rd.
Então, u é convexa.

Demonstração: Primeiramente, veja que

Deu = (Du · e) =⇒ Deeu = (De(Du) · e),

onde

De(Du) = (De(D1u), De(D2u), · · · De(Ddu)) e De(Diu) = (D(Diu) · e) =
d∑

j=1

Dijuej.

Logo,

0 ≤ Deeu =
d∑

i=1

De(Diu)ei =
d∑

i=1

d∑
j=1

Dijuejei =
d∑

i,j=1

Dijueiej = (D2ue · e)

e portanto u é convexa, pois sua hessiana é definida não-negativa.

Teorema 1.4 Sejam F um operador convexo, f ∈ C0,α e u uma solução de viscosi-
dade da equação F (D2u)− f(x) = 0 em B1. Então, u ∈ C2,α0(B1/2) e

∥u∥C2,α0 (B1/2)
≤ C(∥u∥L∞(B1) + |F (O)|)

em que α0 ∈ (0, 1) e C são constantes universais.

O resultado acima mencionado corresponde ao Teorema 6.6 apresentado em [8].

Para operadores convexos, as soluções apresentam uma boa regularidade. Pre-

cisamos apenas da seguinte versão simples, que é uma combinação das estimativas de

Caffarelli [6] e de um teorema de Evans [9] e Krylov [12].

Teorema 1.5 Seja F um operador uniformemente elíptico e convexo com constante
de elipticidade Λ, satisfazendo F (O) = 0. Suponha que u é solução de

F (D2u) = f em B1 ⊂ Rd,

então:

1) Se f é limitada, então u ∈ C1,α(B1/2) para todo α ∈ (0, 1) com

∥u∥C1,α(B1/2) ≤ C
(
∥u∥L∞(B1) + ∥f∥L∞(B1)

)
para alguma constante C dependendo somente de d, Λ e α.
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2) Se f ∈ C0,α(B1) para algum α ∈ (0, 1), então u ∈ C2,min{α0,α}(B1/2) com

∥u∥C2,min{α0,α}(B1/2)
≤ C

(
∥u∥L∞(B1) + ∥f∥Cα(B1)

)
para alguma constante C = C(d,Λ, α).

Definição 1.7 (Operadores Pucci) Considere os seguintes operadores

P+
Λ , P−

Λ : Sd −→ R,

definidos por

P+(M) = ΛTr(M+)− 1

Λ
Tr(M−); e P−(M) =

1

Λ
Tr(M+)− ΛTr(M−).

Sendo F um operador uniformemente elíptico, pela Definição 1.3

F (M +O)− F (O) ≤ Λ∥M+∥ − 1

Λ
∥M−∥ = P+(M),

e por (1.2)

F (M)− F (O) ≤ ΛTr(M+)− 1

dΛ
Tr(M−) = P+(M)

sendo F (O) = 0, então

F (M) ≤ P+(M). (1.12)

Nós iremos concluir está subseção com o seguinte princípio do máximo local.

Veja o Teorema 4.8 em [8].

Teorema 1.6 Suponha que

P+(D2u) ≥ 0 em B1 ⊂ Rd

então
sup
B1/2

u ≤ C∥u∥L1(B1)

para alguma contante C dependendo somente de d e Λ.

1.3 O caso variacional

Sejam Ω um domínio conexo e limitado do espaço euclidiano d − dimensional

e F : H1
g (Ω) −→ R um funcional tal que

F (u) =

ˆ
Ω

(
|Du|2 + f(u)

)
dx, (1.13)
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em que u, f ∈ H1
g (Ω) e f ◦ u : R −→ R.

A existência do minimizante v ∈ H1
g (Ω) tal que F (v) ≤ F (u) para toda u ∈

H1
g (Ω), pode ser verificada no capítulo 8 do livro [10].

Seja A = (aij) uma matriz d× d tal que aij ∈ L∞(Ω) sejam coeficientes unifor-

memente elípticos (i, é. aijξiξj ≥ λ|ξ|2 para todo x ∈ Ω e ξ ∈ Rd). Então dizemos

que v ∈ H1(Ω) é solução fraca de

div(A ·Dv) = f

se, e somente se, é solução de
ˆ
Ω

aijDivDjϕdx =

ˆ
Ω

f · ϕdx, para toda ϕ ∈ H1
0 .

Teorema 1.7 Seja v ∈ H1
g (Ω) minimizante de (1.13) e f diferenciável em R. Então

v satisfaz (no sentido fraco) a equação{
∆v = f ′(v) em Ω

v = g sobre ∂Ω.

Demonstração: Considere t ∈ R, ϕ ∈ H1
0 (Ω) e tome u = v + tϕ ∈ H1

g (Ω). Por

definição temos que

g(0) = F (v) ≤ F (v + tϕ) = g(t) para todo t ∈ R

isto é, t = 0 é ponto de mínimo de g : R −→ R. Daí segue que,

0 =
dg

dt

∣∣∣
t=0

=
d

dt
F (v + tϕ)

∣∣∣
t=0

=
d

dt

(ˆ
Ω

|D(v + tϕ)|2 + f(v + tϕ)

) ∣∣∣
t=0

. (1.14)

Como a derivada é linear iremos calcular separadamente. Primeiro note que

I =
d

dt

ˆ
Ω

|D(v + tϕ)|2
∣∣∣
t=0

=
d

dt

(ˆ
Ω

D(v + tϕ) ·D(v + tϕ)

) ∣∣∣
t=0

=
d

dt

(ˆ
Ω

|Dv|2 + 2tDv ·Dϕ+ t2|Dϕ|2
) ∣∣∣

t=0

=

ˆ
Ω

d

dt

(
|Dv|2 + 2tDv ·Dϕ+ t2|Dϕ|2

) ∣∣∣
t=0

=

ˆ
Ω

(
2Dv ·Dϕ+ 2t|Dϕ|2

) ∣∣∣
t=0

= 2

ˆ
Ω

Dv ·Dϕ.

II =

ˆ
Ω

d

dt
f(v + tϕ)

∣∣∣
t=0

=

ˆ
Ω

f ′(v + tϕ) · ϕ
∣∣∣
t=0

=

ˆ
Ω

f ′(v) · ϕ
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substituindo I e II em (1.14) temos
ˆ
Ω

Dv ·Dϕ =
1

2

ˆ
Ω

f ′(v) · ϕ

para qualquer 1
2
ϕ ∈ H1

0 (Ω). Portanto,

∆v = div(I ·Dv) = f ′(v).

1.4 O problema não-variacional

Definição 1.8 Assuma que F é um operador satisfazendo (1.1), (1.8), (1.9) e (1.10).
Diremos que

u ∈ SF (Ω) ⇐⇒

{
F (D2u) = uγ−1 em Ω

u ≥ 0 em Ω.

Agora, dado R > 0 e x0 ∈ Rd, defina

u ∈ P F
R (x0) ⇐⇒ u ∈ SF (BR(x0)) com x0 ∈ ∂ {u > 0} . (1.15)

E por fim,
u ∈ P F

∞(x0) ⇐⇒ u ∈ SF (Rd) com x0 ∈ ∂ {u > 0} .

Observação 1.4.1 Quando o operador F coincidir com o traço, é comumente utili-
zada a notação S∆(Ω) e P∆

R (x0) em vez de STr(Ω) e P Tr
R (x0), respectivamente.

Proposição 1.3 [Reescalonamento de solução] Seja u ∈ P F
R (x0) e 0 < r < R,

um reescalonamento da solução u é uma função

v(x) = ux0,r(x) =
1

rβ
u(rx+ x0) (1.16)

para

β =
2

2− γ
. (1.17)

Então
v ∈ SFr(BR/r(0)).

Demonstração: Note que,

Div(x) =
1

rβ−1
Diu(rx+ x0) e Dijv(x) =

1

rβ−2
Diju(rx+ x0).
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Logo,

D2v(x) =
1

rβ−2
D2u(rx+ x0) =⇒ D2u(rx+ x0) = rβ−2D2v(x)

=⇒ F (rβ−2D2v(x)) = F (D2u(rx+ x0))

sendo u ∈ SF (BR(x0)) tem-se F (D2u(rx+ x0)) = (u(rx+ x0))
γ−1, daí

F (rβ−2D2v(x)) = (u(rx+ x0))
γ−1 = rβ(γ−1)v(x)γ−1.

Por (1.17), tem-se β(γ − 1) = β − 2 e portanto

1

rβ−2
F (rβ−2D2v(x)) = v(x)γ−1

para todo x ∈ BR/r(0), pois u está definida em BR(x0), então

rx+ x0 ∈ BR(x0) ⇐⇒ ∥rx∥ = ∥(rx+ x0)− x0∥ < R ⇐⇒ ∥x∥ < R/r.

Portanto, definindo

Fr(M) =
1

rβ−2
F (rβ−2M) (1.18)

temos que v é uma solução não negativa de Fr(D
2v) = vγ−1 em BR/r(0), isto é,

v ∈ SFr(BR/r(0)).

Observação 1.4.2 Vale ressaltar algumas observações sobre Fr definida em (1.18):

a) Seja P ∈ Sd definida não negativa, então rβ−2P ≥ 0 desde que r > 0, logo por
F ser uniformemente elíptica (1.1)

1

Λ
∥rβ−2P∥ ≤ F (rβ−2P + rβ−2A)− F (rβ−2A) ≤ Λ∥rβ−2P∥

=⇒ 1

Λ
∥P∥ ≤ Fr(P + A)− Fr(A) ≤ Λ∥P∥

para todo A ∈ Sd, ou seja, Fr é um operador uniformemente elíptico com mesma
constante de elipticidade de F .

b) Se F (O) = 0, então Fr(O) = 1
rβ−2F (rβ−2O) = 1

rβ−2F (O) = 0;
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c) Sendo F convexa e X, Y ∈ Sd, tem-se

Fr((1− t)X + tY ) =
1

rβ−2
F (rβ−2((1− t)X + tY ))

=
1

rβ−2
F ((1− t)rβ−2X + trβ−2Y )

≤ 1

rβ−2

[
(1− t)F (rβ−2X) + tF (rβ−2Y )

]
= (1− t)Fr(X) + tFr(Y )

portanto Fr também é convexa;

d) Seja o operador traço um subdiferencial de F no ponto O ∈ Sd, então

Fr(M) =
1

rβ−2
F (rβ−2M) ≥ 1

rβ−2
Tr(rβ−2M) = Tr(M)

o que garante que o traço é um subdiferencial de Fr no ponto O ∈ Sd;

e) Note que,

DFr(O)(X) = lim
t−→0

Fr(O + tX)− Fr(O)

t

= lim
t−→0

Fr(tX)

t

= lim
t−→0

F (rβ−2tX)

rβ−2t

= lim
h−→0

F (hX)

h
= DF (O)(X)

em que h(t) = rβ−2t.

f) Se F for homogênea, então Fr(M) = 1
rβ−2F (rβ−2M) = rβ−2

rβ−2F (M) = F (M) para
todo M ∈ Sd.

Definição 1.9 Dada u ∈ SF (Ω), defina o operador linear

Lu(w) = SD2u(D
2w)− (γ − 1)uγ−1w em {u > 0} ∩ Ω. (1.19)

Observação 1.4.3 Note que se u ∈ SF (Ω), então u é solução de

F (D2u) = uγ−1 em Ω.

Como Ω é um domínio compacto, o lado direito da igualdade acima é limitado. Assim,
pelo item a) do Teorema 1.5, a solução admite regularidade C1,α. Consequentemente,
podemos aplicar o item b) do mesmo teorema e concluir que u pertence a C2. Portanto,
as soluções da equação acima são, na verdade, soluções clássicas de classe C2, o que
garante que o operador definido em (1.9) está bem definido.
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Proposição 1.4 Dada u ∈ SF (Ω) e um vetor e ∈ Sd−1 a esfera unitária do Rd, então

Lu(Deu) ≤ 0 e Lu(Deeu) ≤ 0 em {u > 0} ∩ Ω.

Ou seja, Deu e Deeu são super-soluções do operador linear Lu.

Demonstração: Para um número real t > 0 e considerando P = D2u(x+te)−D2u(x)

e A = D2u(x) na definição de sub-diferencial em (1.5) temos

F (D2u(x+ te))− F (D2u(x))

t
≥ SD2u(x)

(
D2u(x+ te)−D2u(x)

t

)
em que

F (D2u(x+ te))− F (D2u(x))

t
=

(u(x+ te))γ−1 − (u(x))γ−1

t

que converge para (γ − 1)uγ−1(x)Deu(x) quando t −→ 0 e por conta da linearidade

de SD2u, segue que

SD2u(x)

(
D2u(x+ te)−D2u(x)

t

)
−→ SD2u(x)(D

2(Deu(x)))

o que nos dá a primeira desigualdade.

Analogamente, temos

F (D2u(x+te))+F (D2u(x−te))−2F (D2u(x))
t2

≥ SD2u(x)

(
D2u(x+te)+D2u(x−te)−2D2u(x)

t2

)
.

Utilizando o polinômio de Taylor de grau 2 e fazendo t −→ 0 a desigualdade

acima nos dá que,

SD2u(D
2(Deeu)) ≤ (γ − 1)uγ−2Deeu+ (γ − 1)(γ − 2)uγ−3(Deu)

2 em {u > 0} ∩ Ω.

Como γ ∈ (1, 2) o último termo é não-positivo, o que implica na segunda inequação.

Proposição 1.5 Seja u ∈ SF (Ω), então

Lu(u) ≥ (2− γ)uγ−1 em {u > 0} ∩ Ω,

e
∆u ≤ uγ−1 em Ω.

Demonstração: Sendo SD2u o sub-diferencial de F no ponto D2u ∈ Sd definido em

(1.5), por (1.8) temos que

SD2u(−D2u) ≤ F (D2u−D2u)− F (D2u) =⇒ SD2u(D
2u) ≥ F (D2u) = uγ−1, (1.20)
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logo,

SD2u(D
2u) ≥ uγ−1 =⇒ Lu(u) = SD2u(D

2u)− (γ − 1)uγ−1 ≥ uγ−1 − (γ − 1)uγ−1

=⇒ Lu(u) ≥ (2− γ)uγ−1

o que nos dá a primeira desigualdade. Por outro lado, como o traço é um sub-

diferencial da F no ponto O ∈ Sd, segue de (1.20) que

SD2u(D
2u) ≥ F (D2u) = uγ−1 ≥ SO(D

2u) = Tr(D2u) = ∆u em Ω

assim obtendo a segunda desigualdade.
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Capítulo 2

Estimativa de Não-Degenerescência

Neste capítulo, é apresentada uma estimativa da não degenerescência da solução

na fronteira livre, ou seja, um controle sobre o crescimento da solução nesses pontos.

Lema 2.1 Suponha que u ∈ SF (Ω) e x0 ∈ Rd. Seja β a constante definida em (1.17).
Então existe uma constante universal a0 dependendo somente de Λ, d e γ, tal que para
todo a ≥ a0, tem-se

Lu(au− |x− x0|β) ≥ 0 em {u > 0} ∩ Ω.

Demonstração: Para simplificar a notação defina ρ = ρ(x) = |x− x0|. Inicialmente

veja que as seguintes igualdades são verdadeiras

Diρ = (xi−(x0)i)
|x−x0| = (xi−(x0)i)

ρ

Diρ
β = βρβ−1Diρ = βρβ−2(xi − (x0)i)

Dijρ
β = β(β − 2)ρβ−3Djρ(xi − (x0)i) = β(β − 2)ρβ−2DjρDiρ+ δijβρ

β−2.

Portanto,

D2ρβ = β(β − 2)ρβ−2Dρ⊗Dρ+ βρβ−2I.

Sendo SD2u é o sub-diferencial do operador uniformemente elíptico F no ponto D2u ∈

Sd, então

SD2u(D
2ρβ) = β(β − 2)ρβ−2SD2u(Dρ⊗Dρ) + βρβ−2SD2u(I)

como Dρ⊗Dρ ≥ 0 e SD2u é um operador uniformemente elíptico com mesma constante

de elipticidade da F , tem-se

SD2u(D
2ρβ) ≤ β(β − 2)ρβ−2Λ∥Dρ⊗Dρ∥+ βρβ−2Λ|I|. (2.1)
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Note que,

∥Dρ⊗Dρ∥2 =
d∑
ij

(DiρDjρ)
2

=
d∑
ij

(
(xi − (x0)i)(xj − (x0)j)

ρ2

)2

=
1

ρ4

d∑
ij

(xi − (x0)i)
2(xj − (x0)j)

2

=
1

ρ4

d∑
j

((
d∑
i

(xi − (x0)i)
2

)
(xj − (x0)j)

2

)

=
1

ρ4

d∑
j

(
|x− x0|2(xj − (x0)j)

2
)

=
1

ρ4

d∑
j

ρ2(xj − (x0)j)
2

=
1

ρ2

d∑
j

(xj − (x0)j)
2

=
1

ρ2
|x− x0|2

=
1

ρ2
ρ2 = 1.

Utilizando este fato juntamente com (2.1), tem-se

SD2u(D
2ρβ) ≤ β(β − 2)ρβ−2Λ + βρβ−2Λ|I| = Cρβ−2

em que C = β(β − 2)Λ + βΛ|I| ≥ 0 é uma constante dependendo de Λ, γ e da

dimensão d. Logo,

Lu(ρ
β) = SD2u(D

2ρβ)− (γ − 1)uγ−2ρβ ≤ Cρβ−2 − (γ − 1)uγ−2ρβ

em {u > 0} ∩ Ω.

Note que pela proposição 1.5 tem-se que Lu(u) ≥ 0, logo

Lu(au− |x− x0|β) = Lu(au− ρβ) = aLu(u)− Lu(ρ
β) ≥ −Lu(ρ

β)

≥ −Cρβ−2 + (γ − 1)uγ−2ρβ

≥ 0

se e somente se,

(γ − 1)uγ−2ρβ ≥ Cρβ−2 =⇒ C

γ − 1
u2−γ ≤ ρ2
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isto é, Lu(au− |x− x0|β) ≥ 0 em Ω ∩ {u > 0} ∩
{

1
γ−1

u2−γ ≤ ρ2
}

.

Por outro lado, utilizando a desigualdade da Proposição 1.5 em Ω∩{u > 0}∩{
C

γ−1
u2−γ > ρ2

}
temos que

Lu(au− |x− x0|β) ≥ a(2− γ)uγ−1 − Cρβ−2 + (γ − 1)uγ−2ρβ

e sendo γ ∈ (1, 2), então (γ − 1)uγ−2ρβ ≥ 0. Daí,

Lu(au− |x− x0|β) ≥ a(2− γ)uγ−1 − Cρβ−2

≥ a(2− γ)uγ−1 − C

(√
C

γ − 1

)β−2

u
β−2
β

= uγ−1

a(2− γ)− C

(√
C

γ − 1

)β−2


tomando k = C
(√

C
γ−1

)β−2

≥ 0 e por u ≥ 0 tem-se

Lu(au− |x− x0|β) ≥ a(2− γ)− k ≥ 0

desde que, se tome a0 suficientemente grande satisfazendo a0 ≥ k
2−γ

. Em particular,

temos que a constante universal a0 depende unicamente da constante de elipticidade

do operador F , do parâmetro γ, pois β = 2
2−γ

e da dimensão d.

Corolário 2.1 Para u ∈ PR(x0), tem-se

sup
∂Br(x0)

u ≥ Crβ

para uma constante universal C e 0 < r < R.

Demonstração: Tome y0 ∈ {u > 0} com |x0 − y0| < 1
2
r e ρ = |x − y0|. Para a

constante universal a0 do Lema 2.1, defina

h(x) = a0u(x)− ρβ(x)

em Ω = Br(x0) ∩ {u > 0}.

Como h(y0) > 0 e Lu(u) ≥ 0 (veja a Proposição 1.5) em Ω, pelo princípio do

máximo temos que sup∂Ω h > 0.

Note que

∂Ω = (∂ {u > 0} ∩Br(x0)) ∪ (∂Br(x0) ∩ {u > 0}).
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e que h ≤ 0 em ∂ {u > 0} ∩Br(x0), isto implica

sup
∂Br(x0)∩{u>0}

h = sup
∂Ω

h > 0.

Como para todo x ∈ ∂Br(x0) tem-se ρ(x) = |x− y0| < r, então

h(x) > a0u(x)− rβ ∀x ∈ Ω+ = ∂Br(x0) ∩ {u > 0}

daí segue que,

sup
Ω+

h ≥ sup
Ω+

(a0u− rβ) = a0 sup
Ω+

u− rβ > 0 =⇒ sup
Ω+

u >
1

a0
rβ

e como Ω+ ⊂ ∂Br(x0) tem-se

sup
∂Br(x0)

u >
1

a0
rβ.

A seguir, iremos estabelecer o seguinte lema de positividade do gradiente.

Lema 2.2 Suponha que u ∈ SF (B1). Seja a0 a constante do Lema 2.1 e β = 2
2−λ

.
Suponha que para alguma direção e ∈ Sd−1, e alguma constante k > 0 e 0 < η ≤ 1

2β+1a0
,

tenha-se
Deu ≥ k em {u ≥ η} .

Se existe ϵ > 0, dependendo somente de k, tal que

Deu ≥ −ϵ em B1,

então
Deu ≥ 0 em B 1

2
.

Demonstração: Tome ϵ = k. Note que por hipótese Deu ≥ 0 em {u ≥ η} e por

0 ≤ u ∈ C2(B1) segue que no conjunto {u = 0} estão os pontos de mínimo da função

u o que implica Deu = 0 em {u = 0}. Portanto, é suficiente provar que Deu ≥ 0 em

B 1
2
∩ {0 < u < η}.

Para isto, iremos tomar um ponto x0 ∈ B 1
2
∩ {0 < u < η}. Defina,

Ω = B1 ∩ {0 < u < η}

ρ(x) = |x− x0|

e

h = Deu− 2β+1k(a0u− ρβ).
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u > η

η > u > 0

u = 0

B1
B1/2

∂ {u > 0}

∂ {u > η}

Figura 2.1: Análise da região entre ∂ {u > η} ∩B1/2 e ∂ {u > 0} ∩B1/2

Primeiramente iremos investigar o comportamento da função h sobre ∂Ω = (∂B1 ∩

{0 < u < η}) ∪ (∂ {u > 0} ∩B1) ∪ (∂ {u < η} ∩B1), veja a figura 2.

- ∂B1 ∩ {0 < u < η};

Note que ρ ≥ 1
2

em ∂B1 ∩ {0 < u < η} e como por hipótese Deu ≥ −ϵ em B1.

Temos

h ≥ −ϵ− 2β+1k

(
a0η −

1

2β

)
.

Como η ≤ 1
2β+1a0

e ϵ = k, tem-se h ≥ 0 em ∂B1 ∩ {0 < u < η}

- ∂ {u > 0} ∩B1;

Em que u = 0 e Deu = 0, logo

h = 2β+1kρβ ≥ 0.

- ∂ {u < η} ∩B1;

Temos que u = η e Deu ≥ K, consequentemente,

h ≥ k − 2β+1k(a0η) ≥ 0

utilizando a hipótese η ≤ 1
2β+1a0.

Portanto,

h ≥ 0 sobre ∂Ω.
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Pelo Lema 2.1 e a Proposição 1.4 tem-se

Lu(h) = Lu(Deu)− 2β+1kLu(a0u− ρβ) ≤ 0

e

Lu(h) = SD2u(D
2h) + (Dh · 0)− (γ − 1)uγ−2h

considerando que −(γ − 1)uγ−2 ≤ 0, conclui-se que h satisfaz as condições exigidas

pelo princípio da comparação (Teorema 1.1), e, assim, temos que

h ≥ 0 em Ω =⇒ Deu ≥ 2β+1k(a0u− ρβ) em Ω

como x0 ∈ Ω então

Deu(x0) ≥ 2β+1k(a0u) ≥ 0.
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Capítulo 3

Estimativa de Harnack e
Consequências

Neste capítulo, iremos abordar estimativas do tipo Harnack, veja Teorema A.

Como consequência, obtemos a estimativa de regularidade universal do Teorema B,

bem como o controle sobre quantidades invariantes de escala. Estes são úteis para

estudar os perfis de blow-ups, tratados no capítulo seguinte.

O teorema 1.1 segue diretamente do seguinte lema.

Lema 3.1 Seja u ∈ SF (B1). Então

sup
B 1

2

u ≤ C(u(0) + 1)

em que C é uma constante universal.

Demonstração: A demonstração do lema será dividida em cinco partes:

I) Primeiramente considere v ∈ C2(B1) ∩ C0(B̄1) solução da EDP ∆v = vγ−1
+ em B1,

v = u ≥ 0 sobre ∂B1.

Note que v ≥ 0 em B1, pois se existir y ∈ B1 tal que v(y) < 0 então, por conta

da continuidade de v no compacto B̄1, segue que v admite mínimo interior

negativo, isto é, existe x ∈ B1 tal que

v(x) = inf
B1

v < 0.

32



Novamente pela continuidade de v tem-se que existe r ∈ (0, 1) tal que v < 0 em

Br(x). Daí,

∆v = 0 em Br(x).

Pelo Princípio do Máximo v não admite ponto de mínimo interior a Br(x), uma

contradição.

II) Afirmação 3.1 Existe uma constante A > 0 universal, tal que
 
∂B1

v ≥ A =⇒ v(0) ≥ 1

2

 
∂B1

v.

Prova: Segue da proposição 1.22, em [11], que a função de Green G em B1 no

ponto 0, é igual a,

G(x, y) =


1

2π

(
log |x− y| − log

∣∣∣∣ x|x| − |x|y
∣∣∣∣2−d

)
se d = 2

1

(2− d)ωd

(
|x− y|2−d −

∣∣∣∣ x|x| − |x|y
∣∣∣∣) se d ≥ 3.

Em que G(x, y) = G(y, x) e ωd é a área da casca esférica de B1. Daí,
 
∂B1

v − v(0) =

 
∂B1

v −
ˆ
B1

G(0, y)∆v −
ˆ
∂B1

v
∂G

∂ny

(0, y)

onde, pelo corolário 1.23 de [11], tem-se

∂G

∂ny

=
1

ωd

1− |x|2

|x− y|d
para d ≥ 3.

Portanto,
 
∂B1

v − v(0) =

 
∂B1

v −
ˆ
B1

G(y, 0)vγ−1
+ − 1

ωd

ˆ
∂B1

v
1

|y|d

=

 
∂B1

v −
ˆ
B1

G(y, 0)vγ−1
+ − 1

ωd

ˆ
∂B1

v

=

 
∂B1

v −
ˆ
B1

G(y, 0)vγ−1
+ −

 
∂B1

v

= −
ˆ
B1

G(y, 0)vγ−1
+

= −
ˆ 1

0

ˆ
∂Br

G(y, 0)vγ−1
+ .

Consequentemente, utilizando a inequação de Holder para p = 1
γ−1

obtemos

 
∂B1

v − v(0) ≤ −
ˆ 1

0

(ˆ
∂Br

|G(y, 0)|
1

2−γ

)2−γ (ˆ
∂Br

|vγ−1
+ |

1
γ−1

)γ−1
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≤ −
ˆ 1

0

(ˆ
∂Br

|G(y, 0)|
1

2−γ

)2−γ (ˆ
∂Br

|v+|
)γ−1

≤ −
ˆ 1

0

(ˆ
∂Br

|G(y, 0)|
1

2−γ

)2−γ (ˆ
∂Br

v

)γ−1

≤ −
ˆ 1

0

(ˆ
∂Br

|G(y, 0)|
1

2−γ

)2−γ (
ωdr

d−1

 
∂Br

v

)γ−1

≤ −ωγ−1
d

ˆ 1

0

r(d−1)(γ−1)

(ˆ
∂Br

|G(y, 0)|
1

2−γ

)2−γ ( 
∂Br

v

)γ−1

.

Por
ffl
∂Br

v ser não decrescente, temos

 
∂B1

v − v(0) ≤ −ωγ−1
d

ˆ 1

0

r(d−1)(γ−1)

(ˆ
∂Br

|G(y, 0)|
1

2−γ

)2−γ ( 
∂B1

v

)γ−1

.

Como G ∈ L∞(B1)

ˆ 1

0

r(d−1)(γ−1)

(ˆ
∂Br

|G(y, 0)|
1

2−γ

)2−γ

≤
ˆ 1

0

r(d−1)(γ−1)

(ˆ
∂Br

(∥G(y, 0)∥L∞(B1))
1

2−γ

)2−γ

≤
ˆ 1

0

r(d−1)(γ−1)
(
|∂Br|(∥G(y, 0)∥L∞(B1))

1
2−γ

)2−γ

=

ˆ 1

0

r(d−1)(γ−1)
(
ωdr

d−1
)2−γ ∥G(y, 0)∥L∞(B1)

= ω2−γ
d

ˆ 1

0

rd−1∥G(y, 0)∥L∞(B1)

= ω2−γ
d ∥G(y, 0)∥L∞(B1)

ˆ 1

0

rd−1

= ω2−γ
d ∥G(y, 0)∥L∞(B1)

1

d

pois d ≥ 3, logo
 
∂B1

v − v(0) ≤ −ωd

d
∥G(y, 0)∥L∞(B1)

( 
∂B1

v

)γ−1

= C

( 
∂Br

v

)γ−1

o que implica  
∂B1

v − v(0) ≤ C

( 
∂Br

v

)γ−2  
∂Br

v.

Desde que γ − 2 < 0, então para A suficientemente grande tal que

Aγ−2 ≤ 1

2C
=⇒

( 
∂B1

v

)γ−2

≤ Aγ−2 ≤ 1

2C
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Daí,  
∂B1

v − v(0) ≤ 1

2

 
∂Br

v =⇒ 1

2

 
∂Br

v ≤ v(0).

III) Afirmação 3.2 Existe uma constante A > 0, tal que
 
∂B1

u ≥ A =⇒ u(0) ≥ 1

2

 
∂B1

u.

Note que é suficiente provar que

u ≥ v em B1

em que v é a solução da afirmação 3.1. Para esta finalidade, considere t0 =

min
B̄1

(u − v) = (u − v)(x0) para alguma x0 ∈ B̄1. Nós precisamos mostrar que

t0 ≥ 0.

Se x0 ∈ ∂B1 então t0 = 0. Por outro lado, x0 ∈ B1 é um ponto de mínimo local

de (u− v), logo ∆(u− v)(x0) ≥ 0, então

∆u(x0) ≥ ∆v(x0).

A segunda parte da proposição 2.3 nos dá

F (D2u(x0)) = uγ−1(x0) ≥ ∆u(x0) ≥ ∆v(x0) = vγ−1
+ (x0)

o que implica t0 = u(x0)− v(x0) ≥ 0.

IV ) Afirmação 3.3 Para todo 0 < r < 1, tem-se

ou u(0) ≥ 1

2

 
∂Br

u ou
 
∂Br

u ≤ Arβ.

Seja ur o reescalonamento da u no ponto x0 = 0, tem-se

u ∈ SF (B1) =⇒ ur ∈ SFr(B 1
r
) =⇒ ur ∈ SFr(B1).

Portanto, pela afirmação 3.2
 
∂B1

ur ≥ A =⇒ ur(0) ≥
1

2

 
∂B1

ur

onde,

1

2

 
∂B1

ur =
1

2|∂B1|

ˆ
∂B1

ur
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=
1

2ωdrβ

ˆ
∂B1

u(xr)

=
1

2ωdrβ

ˆ
∂Br

u(y)

rd−1

=
1

2rβ|∂Br|

ˆ
∂Br

u

=
1

2rβ

 
∂Br

u

logo,
u(0)

rβ
= ur(0) ≥

1

2

 
∂B1

ur =
1

2rβ

 
∂Br

u =⇒ u(0) ≥ 1

2

 
∂Br

u.

No entanto, se tivermos
 
∂B1

ur < A =⇒ 1

rβ

 
∂Br

u < A =⇒
 
∂Br

u < rβA.

Por fim, veja que,
ˆ
B1

u =

ˆ 1

0

ˆ
∂Br

u =

ˆ 1

0

ωdr
d−1

 
∂Br

u = ωd

ˆ 1

0

rd−1

 
∂Br

u

V ) Pela afirmação 3.3 temos
 
∂Br

u ≤ Arβ + 2u(0).

Daí, segue que
ˆ
B1

u ≤ ωd

ˆ 1

0

rd−1
(
Arβ + 2u(0)

)
= ωd

(
A

d+ β
+

2u(0)

d

)
≤ ωd

(
A

d
+

2u(0)

d

)
Portanto, ˆ

B1

u ≤ C(d, γ)(u(0) + 1).

Por fim, como P+
Λ (D2u) ≥ F (D2u) = uγ−1 ≥ 0, então pelo Teorema 1.6

sup
B 1

2

u ≤ C(Λ, d)∥u∥L1(B1) = C(Λ, d)

ˆ
B1

|u| = C(Λ, d)

ˆ
B1

u ≤ C(d, γ,Λ)(u(0)+1).

Segue abaixo as demonstrações dos teoremas A e B, respectivamente.

Teorema 3.1 Se u ∈ SF (BR), então

sup
BR

2

u ≤ C
(
u(0) +Rβ

)
.
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Demonstração: Temos que

u ∈ SF (BR) =⇒ uR ∈ SFR(B1)

e pelo lema anterior

sup
B 1

2

uR ≤ C(uR(0) + 1)

multiplicando ambos os lados por Rβ,

sup
B 1

2

u(Rx) ≤ C(u(0) +Rβ) =⇒ sup
BR

2

u ≤ C(u(0) +Rβ).

Teorema 3.2 Seja u ∈ SF (Ω) com u ∈ C2,α
loc (Ω) para algum α ∈ (0, 1). Supondo que

B1 ⊂ Ω, então existe uma constante C > 0 tal que

∥u∥C2,α(B1/8) ≤ C(u(0) + 1).

Demonstração: Pelo Teorema 3.1 temos que u é limitada em B 1
2

consequente-

mente F (D2u) = uγ−1 é limitada em B1/2 e pela primeira parte do Teorema 1.5,

temos que u ∈ C1,α(B 1
4
). Além disso, como γ − 1 ∈ (0, 1) temos que

∥uγ−1(x)− uγ−1(y)∥ ≤ ∥u(x)− u(y)∥γ−1 ≤ (K∥x− y∥α)(γ−1)

em B1/4. Logo,

F (D2u) = uγ−1 ∈ Cα(γ−1)(B 1
4
).

Pela segunda parte do Teorema 1.5 tem-se u ∈ C2,α0(B 1
8
) para algum α0 ∈ (0, 1)

com

∥u∥C2,α(B1/8) ≤ C1(∥u∥L∞(B1/4) + ∥uγ−1∥L∞(B1/4))

≤ C1(2∥u∥L∞(B1/4))

≤ C(u(0) + 1)

pois, pelo Lema 2.1 existe uma constante universal C2, tal que
sup
B 1

2

u ≤ C2(u(0) + 1).
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Corolário 3.1 Seja u ∈ P F
R (x0). Então

sup
Br(x0)

u ≤ Crβ

para todo 0 < r ≤ 1
2
R em que C é uma constante universal.

Demonstração: Note que u ∈ P F
R (x0) implica que o reescalonamento

v(x) = ux0,2r(x) =
1

(2r)β
u(x2r + x0) ∈ P F2r

R/2r(0) ⊂ P F2r
1 (0),

pois 1 ≤ R/2r. Agora, utilizando o Teorema 3.1 temos que existe uma constante

universal C tal que,

sup
B1/2

v ≤ C (v(0) + 1) = C =⇒ sup
B1/2

u(x2r + x0) ≤ 2βCrβ

=⇒ sup
Br(x0)

u ≤ 2βCrβ

o que encerra a demonstração.

Corolário 3.2 Seja u ∈ PR(x0). Então

sup
BR/2(x0)∩{u>0}

∣∣∣∣D2u

uγ−1

∣∣∣∣ ≤ C

para alguma constante universal C.

Demonstração: Note que é suficiente provar para u ∈ P F
1 (0).

Tome y0 ∈ B1/2 ∩ {u > 0}, pelo Corolário 3.1 existe uma constante universal

M tal que

u(y0) ≤ sup
B1/2

u ≤ M
1

2β

assim,

r :=

(
u(y0)

M

) 1
β

≤ 1

2
. (3.1)

Em particular u ∈ SF (Br(y0)) pois Br(y0) ⊂ B1. Consequentemente, o reescalona-

mento uy0,r definido em (1.16), nos dá que uy0,r ∈ SFr(B1).

Pelo Lema 3.1 segue que

sup
B1/2

uy0,r ≤ C(uy0,r(0) + 1) = C

(
u(y0)

rβ
+ 1

)
= C(M + 1). (3.2)
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Aplicando a primeira parte do Teorema 1.5 com f = uγ−1
y0,r

limitada em B1/2 temos

uy0,r ∈ C1,α(B1/4), daí existe uma constante C1 tal que

|Duy0,r(x)−Duy0,r(y)| ≤ C1|x− y|α ≤ C1

(
1

2

)α

.

Fixado y ∈ B1/4 tem-se |Duy0,r(x)| ≤ C1
1
2α

+ |Duy0,r(y)| = const. para todo x ∈ B1/4.

Logo,

lim
z→0

|uy0,r(x)− uy0,r(z)|
|x− z|

= |Duy0,r(x)| ≤ const. =⇒ |uy0,r(x)− uy0,r(z)| ≤ const.|x− z|

=⇒ uy0,r ∈ C0,1

para todo z suficientemente próximo de x. Tomando x = 0, existe ρ > 0 sufici-

entemente pequeno, tal que uy0,r ∈ C0,1(Bρ), assim implicando em, f = uγ−1
y0,r

∈

C0,γ−1(Bρ). Daí, pela segunda parte do Teorema 1.5 tem-se uy0,r ∈ C
2,min{γ−1,α0}
loc (Bρ/2).

Portanto, existe uma constante C2, tal que para z ∈ Bρ/2

|D2uy0,r(0)−D2uy0,r(z)| ≤ C2|0− z|min{γ−1,α0} = const.

Assim, fixando z ∈ Bρ/2, obtemos que

|D2uy0,r(0)| ≤ const. (3.3)

Por fim, note que pela definição de r (3.1)

D2uy0,r(0) = r2−βD2u(y0) =

(
u(y0)

M

)1−γ

D2u(y0),

pois

2− β = 2− 2

2− γ
=

4− 2γ − 2

2− γ
=

2

2− γ
(1− γ) = β(1− γ).

Por (3.3) segue que |Duy0,r(0)| é limitado, logo∣∣∣∣D2u(y0)

uγ−1
y0,r (y0)

∣∣∣∣ ≤ const.
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Capítulo 4

Classificação de Blow-ups

Este capítulo é dedicado a analisar o comportamento de blow-ups em pontos

regulares da fronteira livre. Para isso, se faz necessário, não somente investigar as

propriedades dos blow-ups em pontos regulares, mas também examinar a geometria

do conjunto de contato formado por esses blow-ups. Esse estudo visa obter informa-

ções sobre o comportamento da solução em pontos próximos aos pontos regulares da

fronteira livre.

Definição 4.1 Seja u ∈ P F
R (x0). Dizemos que x0 é um ponto regular da fronteira

livre quando

lim sup
r−→0

|Br(x0) ∩ {u = 0} |
rd

> 0 (4.1)

e utiliza-se a notação x0 ∈ Reg(u), caso contrário, x0 é considerado um ponto singular
da fronteira livre.

Suponha que u ∈ P F
1 (0) com 0 ∈ Reg(u) (Definição 1.15 e 4.1) para alguma F

satisfazendo (1.1) e (1.8) juntamente com (1.9) ou (1.10).

O reescalonamento ur(x) =
1
rβ
u(rx) satisfaz

ur ∈ P Fr
1
r

(0),

com Fr definida em (1.18). Resulta do capítulo anterior que está família é localmente

uniformemente limitada em C2,α, Teorema 3.1, o qual nos proporciona, para uma

constante C universal, a seguinte desigualdade,

sup
B r

2

u ≤ C
(
u(0) + rβ

)
.
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Uma vez que, 0 ∈ ∂ {u > 0} ⊂ {u = 0}, tem-se

sup
B r

2

u ≤ Crβ =⇒ sup
B r

2

u

rβ
≤ C =⇒ sup

B 1
2

u(rx)

rβ
≤ C =⇒ sup

B 1
2

ur ≤ C.

Vale ressaltar que u ∈ P F
r (0) para r ∈ (0, 1).

Em suma, dada uma sequência rh −→ 0, tem-se u ∈ P F
rh
(0) para h suficiente-

mente grande e pela Proposição 1.1

sup
B 1

2

ur ≤ C

isto é, o reescalonamento urh da u é localmente limitado por uma constante universal

C.

Além disso, pelo Teorema 1.5 item 1), temos que u ∈ C1,α(B1/2) com α ∈

(0, 1), então existe uma contante k > 0, tal que,

|u(rhx)− u(rhy)| ≤ krαh |x− y|α ≤ krβh |x− y|α

pois β = 2
2−γ

> 2. Daí,

|urh(x)− urh(y)| ≤ k|x− y|α em B1/2.

Em razão disso, temos que {urh}h≥1 é um sequência equicontínua.

Então, pelo Teorema de Arzelá-Ascoli (Teorema 1.2), a menos de uma sub-

sequência, existe uma função v contínua, tal que

urh −→ v (4.2)

uniformemente.

A convergência acima, implica que o operador uniformemente elíptico Frh−uγ−1
rh

converge uniformemente para Tr − v, pois se F for homogênea (1.10), então Frh =

F = Tr, veja (1.18), por outro lado se F for diferenciável no ponto O ∈ Sd (1.9),

então por (1.11) e (1.8), tem-se

Tr(M) = lim
t−→0

F (tM)

t
= lim

rh−→0

F (rβ−2
h M)

rβ−2
h

= lim
h∈N

Frh(M).

Portanto, em ambos os casos (1.10) ou (1.9), obtemos que

Frh(D
2urh)− uγ−1

rh
−→ ∆v − vγ−1
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tendo em vista que a hipótese de homogeneidade implica que F coincide com o ope-

rador traço.

Recapitulando o que foi feito até agora, temos que
{
Frh − uγ−1

rh

}
h≥1

é uma

sequência de operadores uniformemente elípticos, tal que {urh}h≥1 é solução clás-

sica de Frh(D
2urh)− uγ−1

rh
= 0. Além disso, Frh − uγ−1

rh
converge uniformemente para

Tr− vγ−1 com {urh}h≥1 uniformemente limitada em B1/2, segue da Proposição 1.1

que,

Tr(D2v) = vγ−1 =⇒ v ∈ P∆
∞(0). (4.3)

Sendo v solução contínua de Tr(D2v) = ∆v = vγ−1 = f em Rd, temos pelo Teo-

rema 1.5 que v ∈ C2(Rd).

Este resultado é particularmente interessante, pois, no caso em que F é homo-

gênea, ele se reduz ao problema clássico (2), e, de forma intuitiva, temos

Frh(D
2urh)− uγ−1

rh
→ ∆v − vγ−1.

No entanto, ao remover a hipótese de homogeneidade da F e introduzir a hipótese

(1.9), ampliam-se as possibilidades de equações diferenciais parciais (EDPs) conside-

radas, sem comprometer o limite acima.

É necessário, agora, realizar uma análise sobre o conjunto de contato {v > 0}.

Contudo, antes disso, torna-se indispensável provarmos propriedades de convexidade

para v.

Lema 4.1 Seja u ∈ P F
∞(0), para alguma F satisfazendo (1.1), (1.8) e (1.10) ou (1.9).

Então u é convexa.

Demonstração: Pelo Teorema 1.3 temos que para provar a convexidade de u,

basta verificar que para todo i ∈ {1, · · · , n} tem-se

Diiu ≥ 0 em Rd. (4.4)

Com u ≥ 0 em Rd, é suficiente provar (4.4) em {u > 0}.

Supondo que tal estimativa não seja verdadeira, temos

−l := inf
{u>0}

Diiu

uγ−1
< 0 (4.5)
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Note que pelo Corolário 3.2 existe uma constate universal C tal que∣∣∣∣D2u

uγ−1

∣∣∣∣ ≤ C em {u > 0} ,

o que garante a existência do ínfimo (4.5).

i) Considere (xh) uma sequência em {u > 0} satisfazendo

Diiu(xh)

uγ−1(xh)
→ −l (4.6)

e

rh = u
1
β (xh),

então a menos de uma subsequência o reescalonamento

vh(x) =
1

rβh
u(rhx+ xh) → v ∈ P∆

∞(0)

uniformemente. Portanto, Tr(D2v) = ∆v = vγ−1 em Rd.

ii) Note que

Diivh =
1

rβ−2
h

Diiu(rhx+ xh) =
uγ−1(rhx+ xh)

rβ−2
h

Diiu(rhx+ xh)

uγ−1(rhx+ xh)
,

como β − 2 = β(γ − 1), tem-se por (4.5),

Diivh ≥ uγ−1(rhx+ xh)

rβ−2
h

(−l) = −l

(
1

rβh
u(rhx+ xh)

)γ−1

= −lvγ−1
h

para todo x ∈ Rd. Aplicando o limite temos

Diiv ≥ −lvγ−1 em B1.

Por outro lado,

Diivh(0) =
1

rβ−2
h

Diiu(xh) =
1

r
β(γ−1)
h

Diiu(xh) =
Diiu(xh)

uγ−1(xh)

pela definição de rh. Portanto, (4.6) nos dá que

Diiv(0) = −l = −lvγ−1(0).

Agora defina

g = Diiv + lvγ−1,

então g ≥ 0 em B1 e g(0) = 0, isto é, g admite mínimo interior em B1.
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iii) Note que a equação

Di(v
γ−1) = (γ − 1)vγ−2Div

implica que,

Dij(v
γ−1) = (γ − 1)vγ−2Dijv + (γ − 1)(γ − 2)vγ−3DjvDiv.

Daí,

D2(vγ−1) = (γ − 1)vγ−2D2v + (γ − 1)(γ − 2)vγ−3Dv ⊗Dv,

sendo γ ∈ (1, 2) temos que último termo determina uma matriz não-positiva em

B1 ∩ {v > 0}. Logo,

D2(vγ−1) ≤ (γ − 1)vγ−2D2v.

Sendo o blow-up v ∈ P∆
∞(0), então

SD2v(D
2vγ−1) = Tr(D2vγ−1) ≤ (γ − 1)vγ−2Tr(D2v) = (γ − 1)v2γ−3.

Portanto, em B1 ∩ {w > 0}

Lv(v
γ−1) = SD2v(D

2(vγ−1))− (γ − 1)vγ−2vγ−1

≤ (γ − 1)v2γ−3 − (γ − 1)v2γ−3 = 0,

onde Lw é o operador linear definido em (1.9).

Agora note que a Proposição 1.4 implica em

Lv(Diiv) ≤ 0 em B1 ∩ {v > 0} .

Como l > 0, temos

Lv(g) = Lv(Diiv + lvγ−1) = Lv(Diiv) + lLv(v
γ−1) ≤ 0 em B1 ∩ {v > 0} .

Sendo 0 ∈ B1 o ponto de mínimo global de g e v ∈ C0 com v(0) = 1, segue

que g admite mínimo interior em B1∩{v > 0}. Logo, pelo princípio do máximo

g ≡ 0, isto implicaria em,

Diiv ≡ −lvγ−1, (4.7)

um absurdo, pois isto implica na seguinte igualdade

vγ−1 = Tr(D2v) = −lvγ−1d.
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Observação 4.0.1 Note que o Lema 4.1 implica que {u = 0} é um conjunto con-
vexo, pois dados x, y ∈ {u = 0} e t ∈ (0, 1) pela convexidade de u tem-se

0 ≤ u((1− t)x+ ty) ≤ (1− t)u(x) + tu(y) = 0 =⇒ (1− t)x+ ty ∈ {u = 0} .

Observação 4.0.2 Retomando a análise do conjunto de contato {v = 0}, veja (4.2).
Considere 0 ∈ Reg(u), então por (4.1), tem-se que para r suficientemente pequeno

|Br ∩ {u = 0} |
rd

> 0 =⇒ |Br ∩ {u = 0} | > 0 =⇒ |B1 ∩ {u = 0} | > 0 (4.8)

pois Br ⊂ B1.
Por outro lado, se x ∈ B1 ∩ {u = 0} − {0}, então pela convexidade de {u = 0}

e por 0 ∈ {u = 0}, obtemos que rhx ∈ {u = 0} para todo 0 < rh ≤ 1, ou seja,

urh(x) =
1

rβh
u(rhx) = 0 =⇒ x ∈ {urh = 0} =⇒ B1 ∩ {u = 0} ⊂ {urh = 0} .

Segue de (4.8) que,
| {urh = 0} | > |B1 ∩ {u = 0} | > 0 .

para todo h suficientemente grande satisfazendo 0 < rh ≤ 1.
Aplicando o limite h −→ ∞, obtemos

| {v = 0} | > 0.

Pode ter passado despercebido, mas também obtivemos o resultado de que {v = 0} é

convexo, conforme indicado pela equação (4.3), pelo lema 4.1 e pela Observação 4.0.1.

Para concluir os estudos relacionados ao conjunto de contado da função (4.2),

será demonstrado a seguir que {v = 0} é um cone.

Proposição 4.1 Seja u ∈ P F
1 (0), com F satisfazendo (1.1), (1.8) e (1.10) ou (1.9).

Então o conjunto de contato do blow-up (4.2) é igual a um cone.

Demonstração: Defina Ω = {u = 0} e Ωrh = {urh = 0} =
{
x ∈ Rd; rhx ∈ Ω

}
. Se-

gue da observação 4.0.1 que Ω = {u = 0} é convexo, logo as seguintes afirmações são

verdadeiras;

Afirmação 4.1 A convexidade de Ω, implica na convexidade de Ωrh.

Dados x, y ∈ Ωrh , então rhx, rhy ∈ Ω, pela convexidade de Ω, obtemos

(1− t)rhx+ trhy ∈ Ω =⇒ (1− t)x+ ty ∈ Ωrh ,

para todo t ∈ [0, 1].
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Afirmação 4.2 {v = 0} é um cone.

Considere x ∈ ∂B1 ∩Ω, então 1
rh
x ∈ ∂B1/rh ∩Ωrh , pela convexidade de Ωrh , obtemos

que o segmento de reta
[
0, 1

rh
x
]

está completamente contido em Ωrh . Agora "abra"

um cone de rotação Ch em volta da direção x, tal que a reta geratriz do cone seja à

reta l(t) = ta para todo t ∈ R, para um centro a ∈ Ωrh satisfazendo

d

(
1

rh
x; ∂Ωrh

)
=

∣∣∣∣ 1rhx− a

∣∣∣∣ .
Claramente, por causa da convexidade de Ωrh , o cone é um subconjunto de Ωrh em

B1/rh .

Assim, encontramos uma sequência de cones Ch∩B1/rh ⊂ Ωrh convergindo para

um cone C contido em {v = 0}. Para facilitar a compreensão da construção desses

cones, consulte a Figura 4.1.

Rd−1

−x

a

b

∂ {u = 0}
u = 0

u > 0

d( 1
rh
x; ∂Ωrh)

Figura 4.1: Cones em {u = 0}.

Além disso, a convexidade de Ω também implica que para h < k,

y ∈ Ωrh =⇒ rhy ∈ Ω =⇒ rky ∈ Ω =⇒ y ∈ Ωrk ou seja, Ωrh ⊂ Ωrk

e, consequentemente, Ch ⊂ Ck, pois

Ch ⊂ Ωrh ⊂ Ωrk =⇒ d

(
1

rk
x; ∂Ch

)
≤ d

(
1

rk
x; ∂Ωrk

)
=⇒ Ch ⊂ Ck. (4.9)

Assim, {Ch}h≥1 também é uma sequência não-decrescente.
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Para concluir a demonstração, provaremos que |Ωrh \ Ch| −→ 0, uma vez que

isso implica que:

C = lim
h∈N

Ch = lim
h∈N

Ωrh = {v = 0} .

Primeiramente, note que, se Ω for um cone, então Ωrh é um cone para todo h ∈ N.

Neste caso já teríamos que {v = 0} é um cone, caso contrário a convexidade de Ω,

implicaria em

|Ω \ Ch| −→ 0.

Por sua vez, o mesmo argumento pode ser aplicado para Ωrh com h ∈ N fixo, isto é,

lim
k∈N

|Ωrh \ Ck|

Logo, dado ϵ > 0, existe k0 ∈ N tal que

|Ωrh \ Ck0| < ϵ.

Por (4.9), segue que, para todo h ≥ k0, tem-se

Ωrh \ Ch ⊂ Ωrh \ Ck0 =⇒ |Ωrh \ Ch| < ϵ.

Com isso, conclui-se a demonstração.

Lema 4.2 Seja u ∈ P F
∞(0) com F satisfazendo (1.1), (1.8) e homogênea. Suponha

que o conjunto de contato {u = 0} é um cone com | {u = 0} | > 0, então

u(x) = cγ,e⃗ [(x · e⃗)+]β ,

em que (x · e⃗)+ defina a parte positiva do produto interno entre x pertencente ao
domínio da u e e⃗ ∈ Sd−1. Além disso, cγ,e⃗ ∈ R é uma constante satisfazendo 0 < c ≤
cγ,e⃗ ≤ C para constantes universais c e C.

Demonstração: Pelo Lema 4.1 e a Observação 4.0.1, obtemos que u é convexa e

consequentemente {u = 0} também.

Afirmação 4.3 Dado −e ∈ Sd−1 ∩ ∂ {u = 0}, então e ∈ {u = 0}.

Usando em particular que −e ∈ {u = 0} e que {u = 0} é um cone, tem-se

u(−te) = 0 para todo t > 0.
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Desde que u ≥ 0 e convexa, então para todo x ∈ Rd

Deu(x) = lim
t−→0

u(x+ te)− u(x)

t
≥ 0.

De fato, note que tomando t ∈ (0, 1), então x ∈ [x+ te− e, x+ te] com

x = (1− t)(x+ te) + t(x+ te− e),

logo pela convexidade de u

u(x) ≤ (1− t)u(x+ te) + tu(x+ te− e)

implicando em,

u(x+ te)− u(x)

t
≥ u(x+ te)− u(x+ te− e) −→ u(x)− u(x− e).

Em que, sendo 1− t ≤ 1 e 1
t
> 0 temos

u(x+ te) ≥ (1− t)u(x+ te) = (1− t)u(x+ te) + tu

(
−1

t
e

)
≥ u((1− t)(x+ te)− e)) = u(x+ te− t(x− te)− e)

= u(x+ te− e− t(x+ te)).

Aplicando o limite com t → 0 obtemos que,

u(x) ≥ u(x− e)

e portanto, Deu ≥ 0 em Rd.

Com a Proposição 1.4 temos que Lu(Deu) ≤ 0. Assim, pelo princípio do

máximo temos que:

ou Deu ≡ 0 em Rd, ou Deu > 0 em Rd. (4.10)

Suponha que o segundo caso seja verdadeiro, então existe um k > 0 tal que

Deu ≥ 2k > 0 em Rd, o mesmo vale em B2 ∩
{
u ≥ 1

2β+1a0

}
(4.11)

com a0 sendo a constante universal do Lema 2.1.

Note que, sendo u ∈ C2
loc(Rd), então existe uma constante L tal que

|Du(x)| ≤ L para todo x ∈ B2.
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Assim, fixado x ∈ B2 e dados ω, ν ∈ Rd temos

|Dωu(x)−Dνu(x)| = |(Du(x) · ω)− (Du(x) · ν)| = |(Du(x) · ω − ν)| ≤ |Du(x)||ω − ν|

≤ L|ω − ν|.

Portanto, Dωu(x) é contínua em relação a ω. Logo, existe δ̄ > 0 dependendo de k,

satisfazendo;

|ν − e| < δ̄ =⇒ |Dνu(x)| ≤ L|ν − e|+ |Deu(x)|

≤ Lδ̄ + |Du(x)|| − e|

≤ L(δ̄ + 1)

≤ k + L.

Daí, temos

Dνu ≥ −(k + L) em B2. (4.12)

Por outro lado, sendo

Deu ≥ 2k > 0 em B2 ∩
{
u ≥ 1

2β+1a0

}
.

Pela continuidade de Dνu(x) em relação a direção v, tem-se que,

∀x ∈ B2 ∩
{
u ≥ 1

2β+1a0

}
existe δx > 0,

tal que

|ν − e| < δx =⇒ Dνu(x) ≥ k

e pela continuidade de Dνu(·), temos que existe ϵδx satisfazendo

|y − x| < ϵδx =⇒ Dνu(y) ≥ k.

Sendo,

B2 ∩
{
u ≥ 1

2β+1a0

}
⊂
⋃
x∈B

Bϵδx
(x),

com B = B2 ∩
{
u ≥ 1

2β+1a0

}
compacto, segue que existem x1, x2, · · · , xn ∈ B2 ∩{

u ≥ 1
2β+1a0

}
tais que,

B2 ∩
{
u ≥ 1

2β+1a0

}
⊂

n⋃
i=1

Bϵδxi
(xi).
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Portanto, tomando δ = min
{
δ̄, δx1 , δx2 , · · · , δxn

}
> 0, tem-se que,

|ν − e| < δ =⇒ Dνu ≥ k em B2 ∩
{
u ≥ 1

2β+1a0

}
. (4.13)

Note que, (4.12) e (4.13) colocam Dνu com |ν − e| < δ nas condições do Lema 2.2,

segue daí, que

Dνu ≥ 0 em B1

ou seja, u não decresce na direção ν em B1, isto é, sendo 0 ≤ t ≤ 1, então

u(0− tν) ≤ u(0) ≤ u(0 + tν).

Com 0 ∈ {u = 0} e u ≥ 0, isto implica

−ν ∈ {u = 0} para todo ν ∈ Bδ(e) =⇒ Bδ(−e) ⊂ {u = 0}

contrariando a hipótese de −e ∈ ∂ {u = 0}.

Portanto, Deu ≡ 0 em Rd. Segue daí, que {u = 0} é um cone convexo que corta

do espaço Rd ao "meio", conjuntos com tal propriedade são comumente chamados de

half-space.

Sendo {u = 0} um cone não tivial e um half-space, então existe e⃗ ∈ Sd−1 tal que

{(x · e⃗) ≤ 0} = {u = 0} (4.14)

em que {(x · e⃗) ≤ 0} exprime os pontos do cone.

Daí, segue que u depende diretamente da direção e⃗ ∈ Sd−1, pois dado x ∈ Rd e

uma direção ei ∈ Rd ortogonal a e⃗, então um dos itens abaixo ocorre

i) (x · e⃗) ≤ 0 =⇒ ((x+ tej) · e⃗) = (x · e⃗) ≤ 0 =⇒ u(x+ tej) = 0 para todo t ∈ R;

ii) (x · e⃗) > 0 =⇒ (−x · e⃗) < 0 =⇒ u(−x+ tej) = 0 para todo t ∈ R;

em que, em ambos os casos

Dju(x) = lim
t−→0

u(x+ tej)− u(x)

t
= 0

pois ou u(x) = 0 (caso i) ou u(−x) = 0 (caso ii) e sendo u ∈ C2, temos

Dju(x) = −Dju(−x) = 0 para todo x ∈ Rd.
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Sendo ej uma direção arbitrária ortogonal a e⃗, temos que, dada uma base ortonormal

{ei}di=1 contendo e⃗, considere e⃗ = e1 para facilitar a notação, temos que Dju ≡ 0 em

Rd, com j ̸= 1, o que implica

Diju ≡ 0 em Rd,

desde que i e j não sejam simultaneamente iguais a 1.

Portanto, para todo x ∈ Rd, tem-se D2u(x) = D11u(x)e1⊗e1 o que implica pela

homogeneidade da F

F
(
D2u(x)

)
= D11u(x)F (e1 ⊗ e1).

Por u ∈ P F
∞(0) tem-se F (D2u(x)) = uγ−1, logo

u(x)γ−1 = D11u(x)F (e1 ⊗ e1)

o que reduz o nosso problema a uma equação diferencial ordinária do tipo

yγ−1 = cy′′ em que c = F (e1 ⊗ e1), (4.15)

cuja solução geral é dada por y = Axσ com A e σ a serem determinados, note que

y′ = Aσxσ−1 =⇒ y” = Aσ(σ − 1)xσ−2 =⇒ (xσ)γ−11

c
= Aσ(σ − 1)xσ−2.

Daí, segue que

σ − 2 = σ(γ − 1) =⇒ σ =
2

2− γ
= β e A =

1

cσ(σ − 1)
=

1

cβ(β − 1)
= cγ,e1 .

Portanto, y = cγ,e1x
β é solução da equação diferencial ordinária (4.15) com

cγ,e1β(β − 1)F (e1 ⊗ e1) = 1.

A partir de (4.14) tem-se

u(x) = cγ,e⃗[(x · e⃗)+]β.

Proposição 4.2 Suponha que u ∈ P F
∞(0) com |{u = 0}| > 0 para alguma F satisfa-

zendo (1.1), (1.8) e (1.10).
Então, a menos de uma rotação, tem-se:
Para todo δ > 0, existe r = rδ > 0 tal que{

Deu ≥ 0 em Br,

Deu ≥ c0δr
β−1 em Br ∩

{
u ≥ 1

2β+1a0
rβ
} (4.16)
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para todo e ∈ Sd−1 com (e · e1) ≥ δ.
Em que c0 é uma constante universal, a0 é a constante do lema 2.1 e β como

definido em (1.17).

Demonstração: Tome uma sequencia de valores reais rh −→ 0 e defina para cada

h ∈ N o reescalonamento

uh(x) =
1

rβh
u(rhx).

Então, a menos de uma subsequência,

uh −→ v localmente uniforme em C2(Rd)

para alguma v ∈ P F
∞(Rd).

Pela Proposição 4.1 o conjunto de contato {v = 0} é um cone. Aplicando o

Lema 4.2, a menos de uma rotação, tem-se

v = cγ(x1)
β
+.

Em que,

- x1 > 0

Dev = Decγ[(x · e1)]β = cγβ[(x · e1)]β−1[(e · e1)] ≥ 0 ⇐⇒ (e · e1) ≥ 0

- x1 < 0

Dev ≡ 0

- x1 = 0 como v ∈ C2
loc(Rd), então pela continuidade da derivada, segue que,

Dev ≡ 0.

Assim, temos que v satisfaz

Dev ≥ 0 para todo e ∈ Sd−1 desde que (e · e1) ≥ 0.

Além disso, existe uma constante universal, c > 0, tal que

Dev ≥ 2cδ em
{
v ≥ 1

2βa0

}
∩B2 desde que (e · e1) ≥ δ
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basta observar que para x ∈
{
v ≥ 1

2βa0

}
∩B2, tem-se

Dev = cγβ[(x · e1)]β−1[(e · e1)]

= βvx−1
1 (e · e1)

≥ β
1

2βa0

1

2
δ

= 2
1

2β+2a0
δ.

Pela convergência uh → v, tem-se que, para h suficientemente grande,{
uh ≥ 1

2β+1a0

}
∩B2 ⊂

{
v ≥ 1

2βa0
>

1

2β+1a0

}
∩B2.

Juntamente com a convergência das derivadas, temos, para h suficientemente grande

Deuh ≥ cδ em
{
uh ≥ 1

2β+1a0

}
∩B2 (4.17)

em que (e · e1) ≥ δ.

Desde que Deuh −→ Dev uniformemente em B2 e Dev ≥ 0 > −ϵ para todo

e ∈ Sd−1 satisfazendo (e · e1) ≥ 0, tem-se, para h suficientemente grande

Deuh ≥ −ϵ em B2. (4.18)

Note que, (4.18) e (4.17) implicam que uh ∈ P F
∞(Rd), satisfaz as condições do

Lema 2.2, portanto,

Deuh ≥ 0 em B1

para h suficientemente grande e (e · e1) ≥ δ.

Observação 4.0.3 Em suma, acabamos de mostrar que, para h0 fixo e suficiente-
mente grande, temos:{

Deuh0 ≥ 0 em B1

Deuh0 ≥ cδ em
{
uh0 ≥ 1

2β+1a0

}
∩B1

em que,

Deuh0 =
1

(rh0)
β−1

Deu(rh0x) =⇒ rh0x ∈ Brh0

e portanto, {
Deu ≥ 0 em Brh0

Deu ≥ cδ(rh0)
β em

{
u ≥ 1

2β+1a0
(rh0)

β−1
}
∩Brh0

o que, tomando rδ = rh0 tem-se (4.16).
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Capítulo 5

Regularidade da Fronteira Livre

Neste capítulo, demonstra-se a regularidade para a fronteira livre próxima a

pontos regulares, ou seja, a suavidade da fronteira em uma região suficientemente

restrita. Em essência, verifica-se que, em pontos próximos a um ponto regular, a

fronteira livre se comporta como o gráfico de uma função C1 (d − 1)-dimensional,

comprovando o Teorema C.

Proposição 5.1 Seja F um operador satisfazendo (1.1) e (1.8), juntamente com
(1.9) ou (1.10).

Supondo u ∈ P F
∞(0) com 0 ∈ Reg(u) e | {u = 0} | > 0.

Então, existe ρ > 0 tal que Bρ ∩ ∂ {u > 0} ⊂ Reg(u).

Demonstração: Pela demonstração da Proposição 4.16, podemos encontrar uma

sequência rh → 0, tal que o reescalonamento

uh(x) =
1

rβh
u(rhx) → v, localmente uniforme em C2(Rd),

para alguma v ∈ P F
∞(0) com {u = 0} ⊂ {v = 0}. Então o blow-up v se encontra nas

condições exigidas pela Proposição 4.16, logo para δ = 1
2
, existe r > 0 tal que Dev ≥ 0 > −ϵ em Br,

Dev ≥ 1
2
c0r

β−1 > 1
4
c0r

β−1 em Br ∩
{
v ≥ 1

2β+1a0
rβ > 1

2β+2a0
rβ
}

desde que, ϵ > 0, e ∈ Sd−1 e (e · e1) ≥ 1
2
.

Pela convergência uh → v, temos que para h suficientemente grande{
uh ≥ 1

2β+2a0
rβ
}

⊂
{
v ≥ 1

2β+1a0
rβ
}
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e consequentemente aumentando h se necessário teremos
Deuh ≥ −ϵ em Br,

Deuh ≥ 1
4
c0r

β−1 ≥ 0 em Br ∩
{
uh ≥ 1

2β+2a0
rβ
}

.

Escolhendo ϵ, dependendo de c0, pelo Lema 2.2, tem-se

Deuh ≥ 0 em B 1
2
r

para todo e ∈ Sd−1 satisfazendo (e · e1) ≥ 1
2
.

Fixado h0 suficientemente grande

Deuh0 ≥ 0 =⇒ De

(
1

rβh0

u(rh0x)

)
=

1

rβ−1
h0

Deu(rh0x) ≥ 0 =⇒ Deu(rh0x) ≥ 0

sendo x ∈ B 1
2
r, então rh0x ∈ B 1

2
rh0r

, isto é,

Deu ≥ 0 em Bρ para todo e ∈ Sd−1 satisfazendo (e · e1) ≥
1

2

com ρ = 1
2
rh0r.

Isto juntamente com o fato de 0 ∈ ∂ {u > 0} garante que, para qualquer direção

e que não seja ortogonal a (1/2, 0, · · · , 0) ∈ Rd tenha-se

0 = u(0) < u(te) desde que te ∈ Bρ e t > 0.

Garantindo, assim, a existência de um cone C1 com vértice na origem, tal que C1 ∩

Bρ ⊂ {u > 0} ∩Bρ, e com ângulo α > 0 entre a sua reta geratriz e o eixo x1.

Por outro lado, devido ao Lema 4.1 tem-se que {u = 0} é convexo, conclui-se

que, existe um cone C2, também com vértice na origem (pois 0 ∈ {u = 0}), com

ângulo θ > 0 entre a sua reta geratriz e o eixo x1, tal que C2 ∩Bρ ⊂ {u = 0} ∩Bρ.

Dessa forma, a fronteira livre em Bρ está situada entre os dois cones C1 e C2,

permitindo, assim, que a fronteira livre seja interpretada como o gráfico de uma função

f : Bρ ∩ {x1 = 0} −→ R.

A qual satisfaz,

{u = 0} ∩Bρ = {x1 ≤ f(x′)} e {u > 0} ∩Bρ = {x1 < f(x′)}
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{x1 = 0}

x1

C1

C2

u > 0

u = 0

∂ {u > 0}

Figura 5.1: A função f entre dois cones.

Além disso, note que f é Lipschitz em 0 ∈ Bρ ∩ {x1 = 0}, pois dado y′ ∈

Bρ ∩ {x1 = 0}, tem-se f(y′)− f(0) = f(y′)− C1(0) ≤ C1(y
′)− C1(0) ≤ LC1|y − 0|

f(0)− f(y′) = C2(0)− f(y′) ≤ C2(0)− C2(y
′) ≤ LC2 |y′ − 0|.

Portanto,

|f(y′)− f(0)| ≤ max {LC1 , LC2}|y′ − 0| (5.1)

em que LC1 e LC2 representam as constantes de Lipschitz associadas as equações das

cascas dos cones C1 e C2, respectivamente.

Por fim, com f contínua em Bρ, garantimos que a fronteira livre em Bρ não

admite pontos não regulares, concluindo assim, a demonstração da proposição.

Observação 5.0.1 Vale ressaltar mais algumas informações sobre as constantes LC1

e LC2, sendo C1 e C2 cones com vértices na origem e volumes não nulos, temos que,

LC1 =
1

tg(α)
e LC2 =

1

tg(ϕ)

em que α (respectivamente ϕ) representa o ângulo entre a reta geratriz do cone C1

(resp. C2) com o eixo {x1 = 0}.
Geometricamente, podemos tomar θ = min {α, ϕ} > 0 e novos cones com vérti-

ces na origem e ângulo θ entre a reta geratriz e x1, denominados C ′
1 e C ′

2, que estão
contidos, respectivamente, em C1 e C2. Assim, C ′

1 e C ′
2, possuem a mesma constante

de Lipschitz.

L =
1

tg(θ)
=

C ′
1(x

′
0)

|x′
0|

≤ δ

|x′
0|
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desde que, se tome x′
0 ∈ {x1 = 0} satisfazendo C ′

1(x
′
0) ≤ δ. E, conforme (5.1), tem-se

|f(y′)− f(0)| ≤ δ

|x′
0|
|y′ − 0| = δk|y′| para todo y′ ∈ Bρ ∩ {x1 = 0}

com k−1 = |x′
0| constante.

Definição 5.1 Denotamos Cδ o cone com direção e1 = (1, 0, · · · , 0) e altura δ > 0,
ou seja

Cδ = {x ∈ Rn | x · e1 > δ|x′|},

onde x′ := (x2, · · · , xn).

Definição 5.2 Dado um cone C, definimos o seu cone dual por

C⋆ := {y ∈ Rn | x · y ≥ 0,∀x ∈ C}.

Proposição A Para cada δ > 0, tem-se

C⋆
δ = C1/δ.

Além disso, existe uma função universal não decrescente ω : R+ → R+, com ω(0) = 0,
tal que

|y − e1| ≤ ω(δ),

para cada y ∈ C1/δ, with |y| = 1.

Demonstração: Seja θ o ângulo entre a reta geratriz de Cδ r(y1) = (y1, δy1) e o vetor

e1, então

sin θ = δ
|y′|
|y|

,

garantido assim que, θ = θ(δ) é não-crescente. É fácil ver que para o caso δ = 1

tem-se θ = π/4, pois a reta geratriz será r(y1) = y1(1, 1). Portanto, se δ ∈ (0, 1),

então θ(δ) ≤ π/4. Além disso, 1/δ > 1, logo θ(1/δ) ≥ π/4.

x′

e1

C1/δ
Cδ

y1

1
δ
y1−δy1

θ α

Figura 5.2: Cones Cδ
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Para o caso δ ∈ (0, 1) considere a figura 5.2 e note que,

cos (α + 2θ) =

(
(y1,

1
δ
y1) · (y1,−δy1)

)
|(y1, 1δy1)| · |(y1,−δy1)|

=
y21 − y21

|(y1, 1δy1)| · |(y1,−δy1)|
= 0.

Portanto α+ 2θ = π/2 o que garante C⋆
δ = C1/δ. Para δ ∈ [1,∞) inverta os papéis de

Cδ e C1/δ na figura 5.2 e obtém-se o mesmo resultado.

Na sequência, iremos mostrar a desigualdade da Proposição em questão. De

fato, sendo θ > 0 o ângulo de abertura entre os vetores unitários y ∈ C1/δ e e1,

observamos que

|y − e1|2 = (1− y1)
2 + |y′|2 < (1− cos θ)2 + δ2

veja a figura 5.3. Daí,

x′

e1

yy1

y′

θ

sin θ = |y′|
|y| = |y′| < δ|y| = δ

cos θ = y1
|y| = y1

Figura 5.3:

|y − e1| <
√

(1−
√
1− (sin θ)2)2 + δ2

<
√

(1−
√
1− δ2)2 + δ2

=
√

(1− 2
√
1− δ2 + 1− δ2) + δ2

=
√
2
√
1−

√
1− δ2.

Concluímos a prova denotando ω(δ) :=
√
2
√

1−
√
1− δ2.

Proposição 5.2 Assumindo as mesmas hipóteses da proposição anterior, é possível
encontrar um ρ > 0 tal que Bρ ∩ ∂ {u > 0} é uma hiperfície de classe C1.

Demonstração: Do mesmo argumento da demonstração anterior, agora utilizando

δ > 0 qualquer (ao invés de δ = 1/2), podemos mostrar a seguinte afirmação: Dado

δ > 0, existe ρδ > 0 tal que

Deu > 0 em Bρδ , para cada e ∈ Sn−1 satisfazendo e1 · e ≥ δ. (5.2)
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Ainda com base na demonstração da proposição anterior, nota-se que a equação (5.2)

junto com a Observação (5.0.1) implicam que ∂ {u > 0} é gráfico de uma função f

Lipschitz em 0 ∈ Bρδ . Além disso, existe constante universal C > 0, tal que

|f(x′)− f(0)| ≤ Cδ|x′| para cada x′ ∈ Bρδ ∩ {x1 = 0} .

Uma vez que δ acima é arbitrário, concluimos que, ao tomarmos δ → 0, a função f é

diferenciável no ponto 0 com derivada nula, isto é,

Df(0) · x′ = 0 para todo x′ ∈ {x1 = 0} .

Desta forma, temos a existência de um plano tangente ao gráfico da f (ou seja, um

plano tangente a fronteira ∂{u > 0}), na origem, com vetor normal

ν0 :=
(1,−Df(0))√
1 + |Df(0)|2

= e1.

Até este ponto, é mostrado que a fronteira livre ∂{u > 0} é diferenciável na origem.

Pela Proposição 5.1, para cada ponto z ∈ ∂{u > 0} ∩ Bµ, com µ suficien-

temente pequeno, é possível construir um plano tangente, de onde denotamos o seu

vetor normal por νz. Assim, como ∂{u > 0} ∩ Bµ é uma superfície de nível diferen-

ciável, temos que νz = ∇u(z), para cada z ∈ ∂{u > 0} ∩Bµ. Desta forma, aplicando

(5.2), temos

νz · e ≥ 0 para cada e ∈ Sn−1 satisfazendo e1 · e ≥ δ. (5.3)

Usando a Definição 5.2, temos que νz pertence ao cone dual C⋆
δ . Pela Proposição A,

temos que νz ∈ C1/δ. Portanto, pela Proposição A, temos que

|νz − e1| ≤ Cδ

Como δ é arbitrário, podemos considerar δ ≤ µ. Assim, a desigualdade acima vale

para cada z ∈ ∂{u > 0} ∩ Bδ. Isto nos mostra que a variação do vetor normal é

universalmente contínua em relação proximidade da origem.
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