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Resumo

Neste trabalho, com base no artigo On the Fully Nonlinear Alt—Phillips Equation
de Yijing Wu e Hui Yu [17], investigamos a versao totalmente nao-linear do problema
de Alt-Phillips no caso nao-singular. Apresentamos uma analise detalhada sobre
aspectos de regularidade 6tima para solugoes nao-negativas dessa equacgao, bem como
para as fronteiras livres formadas por essas solucdes. E observado que essas fronteiras
livres sdo superficies (n — 1)-dimensionais com suavidade C' nas proximidades dos

pontos regulares da fronteira livre.

Palavras-chave: Problema de Alt-Phillips; Operadores totalmente nao-lineares;

Problemas de fronteira livre; Regularidade de solugoes.



Abstract

In this work, based on the article On the Fully Nonlinear Alt—Phillips Equation
by Yijing Wu and Hui Yu [17]|, we investigate the fully nonlinear version of the
Alt-Phillips problem in the non-singular case. We present a detailed analysis of the
optimal regularity aspects for non-negative solutions of this equation, as well as for the
free boundaries formed by these solutions. It is observed that these free boundaries
are (n — 1)-dimensional surfaces with C'! smoothness in the neighborhoods of regular

points of the free boundary.

Keywords: Alt-Phillips problem; Fully nonlinear operators; Free boundary pro-

blems; Regularity of solutions.
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Notacoes

Aqui estao algumas notagoes adotadas ao longo do texto:

e Seja u : B — R uma fungao real definida em um conjunto B C R". A notacao
sup u representa o menor nimero real que é maior ou igual a todos os valores
B
de u(z) para x € B. Analogamente, infu é o maior niimero real que é menor
B

ou igual a todos os valores de u(x) com z € B;
e O € M, matriz nula do espago M, das matrizes quadraticas d x d;

e C?() espaco das funcoes u : 2 — R que possuem todas as derivadas parciais

de primeira e segunda ordem continuas em ().
e (z-y) - produto interno entre x € R% e y € RY;

e P > 0 - P ¢é uma matriz definida nao-negativa, isto é, sua forma quadratica

(P¢-€) > 0 para todo & € RY;
o (X Y]={(1-t)X+1tY;te]0,1]};
e DF(X)-Y - Derivada de F' aplicada no ponto X na diregao Y’;
e Fo ) - Composigao entre as aplicacoes F' e A;

FoM(ty+1t)—FoAt)

Y

dFo) +_
o (W) = lim, t
e QT - Indica a matriz transposta da matriz Q;

e Du - Gradiente da funcao u;

e D?uy - Hessiana da funcao u;



I - Matriz identidade;
M~! indica a matriz inversa de uma determinada matriz M quadratica;
Sym(n;R) representa o espago das matrizes simétricas reais de ordem n;

v ® v - Matriz quadratica formada pela produto da matriz 4.7 com sua trans-

posta vl ;;
{u >0} = {z;u(z) > 0}

0{u > 0} representa o conjunto formado pelos pontos da fronteira do conjunto

{u> 0}

| {u > 0} | - Volume (n — 1)—dimensional do conjunto {u > 0};

|ul|c2.e(p) € a norma de Hélder C** de uma fun¢do u em um conjunto B C R";
D.u(z) = (Du(x) - e);

D.ou(x) = (D*u(x)e - e);

H ;(Q) ¢ o espago das fungoes que pertencem a H'() e coincidem com a fungao

g sobre 0f);

Seja v = (vy,--+,v,) € R" entdo v ®v é a matriz n X n em que o elemento que

estd na i-ésima linha e j-ésima coluna sera v;v;.



Introducao

Esta dissertac¢ao tem como base o trabalho de Yijing Wu e Hui Yu [17]. Procurou-
se, ao longo deste estudo, abordar de maneira mais detalhada eventuais omissoes ou
pontos pouco explorados no artigo [17], com o intuito de tornar o contetdo mais claro
e diminuir a necessidade de consultas complementares. Todas as afirmacgoes con-
sideradas evidentes foram cuidadosamente analisadas, verificadas e incorporadas a
esta dissertacgao, visando facilitar a compreensao do problema Alt-Phillips totalmente
nao-linear, descrito pela seguinte equagao:

F(D*u) =uw~"' em Q

u>0 em §? @
em que, sao considerados 2 C R? aberto e limitado, v € (1,2) e F' é um operador
diferenciavel, convexo e uniformemente eliptico.

E importante destacar que o caso F'(M) = trace(M) é considerado classico, pois
se reduz ao operador Laplaciano. Nesse contexto, a equacao correspondente é dada
por

Au = u"t (2)

Esse problema estéa relacionado ao comportamento de sistemas de reagao-difusao
em que a difusao de reagentes dentro de um catalisador permeéavel pode limitar a taxa
de reacao. Esse fenomeno é precisamente abordado no livro The Mathematical The-
ory of Diffusion and Reaction in Permeable Catalysts de R. Aris [4], onde o autor
desenvolve uma teoria matematica para descrever como a difusao e as reacgoes qui-
micas interagem em sistemas porosos. Aris [4] utiliza modelos baseados em equagoes
diferenciais para analisar o transporte de massa e a cinética das reacoes, destacando
como a velocidade de difusao pode afetar a distribuicao de reagentes e a eficiéncia da
reacao no interior do catalisador. No contexto do problema Alt-Philips, essas limita-

¢oes na difusao podem resultar em regioes do catalisador onde a reagao nao ocorre,



o que é um aspecto crucial para entender o desempenho desses sistemas e otimizar
processos cataliticos.

Outro estudo relacionado & aplicagao do problema Alt-Philips é o de Bandle e
Stakgold [5] sobre a formacao do dead-core {u = 0} em sistemas de reagao-difusao.
O problema Alt-Philips e o estudo de Bandle e Stakgold [5] estdo ambos ligados a
interacao entre difusao e reacao, onde a difusao limitada pode impedir a reacao em
determinadas regioes. No caso do Alt-Philips, a difusao insuficiente nos catalisadores
permeaveis pode levar a areas inativas, semelhantes as dead-core {u = 0} descrito
por Bandle e Stakgold [5], onde a reagao é suprimida devido a falta de reagentes,
comprometendo a eficiéncia do sistema.

[remos observar na se¢ao 1.3 que o minimizante do funcional Alt-Phillips
g 2
u [ |Dul”+ —u"dx
Q v

é solucao para a equacao (2).
Quando v — 0 essa energia degenera para o funcional Alt-Caffarelli [1], também

chamado de problema de Bernoulli,

u / |Dul? + 2xgu>01d
Q

em que xg indica a funcao caracteristica de um certo conjunto E. Para obter in-
formagoes mais completas, consulte o livro "A geometric approach to free boundary
problems” de Luis Caffarelli e Sandro Salsa, [7]. O caso v = 1 o funcional Alt-Phillips

torna-se a energia no problema do obstaculo
U / | Dul? + 2u,
Q

para mais detalhes sobre esta classe de problemas veja o livro “Regularity of Free
Boundaries in Obstacle-Type Problems” de Arshak Petrosyan, Henrik Shahgholian e
Nina Uraltseva, [14].

As comparagoes entre (1) e os problemas de Bernoulli, com v € (0,1), e o
problema do obstaculo, com v = 1, tornam-se interessantes, considerando que, ao

definir o parametro

f=——¢€(1,400) onde v € (1,2), (3)



reescalonamentos do tipo

w0 (z) = u(:ﬁa:)

sdo solugoes de (2) em Bjj. Isto sugere comportamentos do tipo |z|? préximos
a fronteira livre 0 {u > 0}, enquanto solugbes para o problema de Bernoulli e do
obstéaculo crescem, respectivamente, de forma linear e quadratica. Vale ressaltar que,
para o parametro [ definido em (3), nao é possivel, de forma rigorosa, tomar o limite
v — 0 para “recuperar” o problema singularmente perturbado ou o de Bernoulli,
nem v — 1 para “recuperar” o problema do obstéculo. Isso se deve ao fato de
que as estimativas podem nao ser uniformes em relacao a v, além de os problemas
apresentarem naturezas distintas.

No presente contexto desta dissertacao, o foco recai sobre a variacao do pa-
rametro 7 no intervalo (1,2). Contudo, para leitores com maior interesse, os casos
v=0,7v € (0,1) e ¥y = 1 sdo estudados, respectivamente, nos seguintes trabalhos:
Ricarte-Texeixa [15]; Aratjo-Texeira [3] e Lee [13].

Apos a definigao clara do problema proposto, o presente trabalho foi estruturado
em cinco capitulos:

O primeiro capitulo ¢ dedicado ao estabelecimento das preliminares relacionadas
ao operador F', bem como as defini¢oes e resultados aplicaveis ao problema (1).

O segundo capitulo trata da estimativa de Harnack e suas consequéncias, com

destaque para os seguintes teoremas:

Teorema A Suponha que F seja um operador convexo e uniformemente eliptico,

com F(O) =0. Seja u uma solugdo de (1) em By para algum R > 0. Entdo,
supu < C (u(0) + R?)

R
2

em que 8 = ﬁ, C' uma constante universal e v € (1,2).

Uma constante é chamada universal se, e somente se, depender unicamente da
dimensao d, do parametro v e da constante de elipticidade do operador, que seréa
devidamente definida no capitulo 1.

Essa estimativa para o problema classico (2) esta apresentada no Corolério 1.11
de [2].

Ainda neste capitulo, sao apresentadas diversas consequéncias relacionadas ao

Teorema A, como, por exemplo:



Teorema B Seja u solu¢iao de (1) com F nas condi¢oes do Teorema A. Entio
u € Cr*(Q) para algum o € (0,1). Além disso, se By C ), entdo ewiste uma

constante C' > 0 tal que
lullczas,,) < Cu(0) +1).

A regularidade C%“ decorre do teorema 8.1, apresentado em [8], enquanto a
limitacao universal é uma implicacao do Teorema A. De fato, o Teorema A es-
tabelece um controle uniforme sobre certas quantidades invariantes por escala, como

por exemplo
D%y

ur—t

Y

mesmo proximo a fronteira livre d {u > 0}, o que sugere comportamentos indefinidos
nesta regiao. Isso possibilita a realizacao de uma anéalise detalhada do limite de
solugoes reescalonadas, denominadas de blow-up, nas proximidades da fronteira livre.
A classificacao dos blow-ups é abordada no capitulo trés, onde, em pontos
regulares da fronteira livre 0 {u > 0}, obtém-se informagdes geométricas suficien-
tes para deduzir um resultado sobre a regularidade dessa fronteira como superficie
(d — 1) — dimensional.
No capitulo quatro, conclui-se a abordagem deste trabalho, com a conclusao do
resultado abaixo.
Teorema C Juntamente com as hipoteses do Teorema A, assuma que F € dife-
rencidvel no ponto O € Sy ou que F € homogénea. Se u € solugao de (1), entdo a

parte reqular da fronteira livre € relativamente aberta em 0{u > 0} e € localmente

uma hiperficie de classe C*.



Capitulo 1

Preliminares

O leitor ja familiarizado com este tema, pode seguir para os capitulos seguintes.
Este capitulo esta organizado em quatro segdes tendo como principais referéncias [17]
e [8]. Na primeira, sdo abordadas algumas das defini¢goes fundamentais para a com-
preensao deste trabalho: Operadores uniformemente eliptico; operadores convexo e o
conceito de sub-diferencial. Além de algumas propriedades, como, por exemplo, inva-
riancia de rotagao do operador de maneira a obter o laplaciano como sub-diferencial.
Na segunda se¢ao, o objetivo é apresentar as ferramentas que serao essenciais para a
obtencao dos resultados desejados. A terceira secao, trata do caso variacional do ope-
rador Alt-Philips. Por fim, na quarta se¢ao, sao introduzidas as definigoes relaciona-
das ao problema Alt-Phillips nao-variacional, juntamente com algumas propriedades

intermediarias da solucao.

1.1 Hipoéteses e definigoes

Definigao 1.1 Sejam Sy o espago das matrizes d X d—simétricas e A uma constante

maior que ou igual a 1. A funcado
F: Sd — R

€ dita ser um operador uniformemente eliptico com constante de elipticidade A se

satisfaz

CIPI < FOM + P)— F(M) < AP (L1)

para toda M, P € Sy em que P > 0.



E necessario destacar algumas equivaléncias na definicao de operador uniforme-

mente eliptico. Como por exemplo, dada P € S; definida nao-negativa, entao,
[P <Tr(P) e Tr(P) < d|P| (1.2)

em que || - || representa a norma espectral definida como o maior valor absoluto de
seus valores proprios. De (1.1), dai

JETH(P) < F(M + P) — F(M) < ATr(P)

Reciprocamente, se F' satisfazer
Nr(P)< F(M+ P)—F(M)<ATr(P)
com (0 <A<AeP>0,por (1.2),
M|P|| < F(M+ P)— F(M) <dA||P|

o que garante que I’ é um operador uniformemente eliptico.
Além disso, em certos casos, é necessario lidar com a diferenca F(M+ P)—F(P)
sem se preocupar com o sinal definido da matriz P. Nesses casos, é importante ter uma

definicao equivalente de operador uniformemente eliptico que dispense a exigéncia
P >0.

Para essa finalidade, a matriz P € S; pode ser decomposta da seguinte maneira,
P=P"—P emque P",P~ >0.
Sendo F' uniformemente eliptica com constante A, entao
F(M—P +P")~F(M—-P") < A||P"|| = F(M—P +P") < A|PY|+F(M—-P")
por outro lado,
LIPS FOM = P~ 4 P7) = F(M — P7) = F(M ~ P7) < F(M) — 1] "]

e portanto,

F(M + P) = F(M) SAIW*H—%IIP‘II- (1.3)

Reciprocamente, se F' satisfaz (1.3) para M, P € Sy, entdo, para P > 0 tem-se
Pt =Pe P =0, dai,

F(M + P) — F(M) < A|[P]|

8



e por outro lado,
1 1
F(M+P—P)-F(M+P)<—5| =Pl = +|IP| < F(M + P) - F(M)

o que retorna F' a definigdo inicial (1.1).
Com base no que foi feito acima, podemos afirmar que a definigao (1.1) é equi-

valente as seguintes defini¢oes:
Definicao 1.2 Considere as constantes 0 < A < A. A fungao
F . Sd — R

€ dita ser um operador uniformemente eliptico com constantes de elipticidade X\ e A
se satisfaz

MNTr(P)< F(M+ P)—F(M) < ATr(P)
para toda M, P € Sg em que P > 0 e Tr : S; — R simboliza o operador traco de

uma matriz.

Definicao 1.3 Seja A uma constante maior que ou iqual a 1. A funcao
F. Sd — R

€ dita ser um operador uniformemente eliptico com constante de elipticidade A se

satisfaz

I,
F(M + P) = F(M) < AIPT]| = +[[P7
para toda M, P € Sy.

Solugoes para estes operadores sao comumente estudados no conceito de solu¢ao

de viscosidade, conforme Defini¢ao 2.3 em [§].

Defini¢ao 1.4 (Solugao de viscosidade) Considere u e f fungdes continuas em
Q CRY,
F(D*u) = f em Q (1.4)
em que F' € um operador uniformemente eliptico. Dizemos que u é:
Sub-solugdo de Viscosidade de (1.4) em Q, quando a sequinte condigdo é
satisfeita:

Se xg € Q, ¢ € C*(Q) e u— ¢ tem um mdzimo local em xg, entdo

F(D*¢(w0)) > f(20);



Super-solucao de Viscosidade de (1.4) em (), quando a sequinte condi¢ao €
satisfeita:

Se xg € Q, ¢ € C*(Q) eu— ¢ tem um minimo local em xg, entio

F(D*(x0)) < f(0).

Por fim, u é uma solugao de viscosidade de (1.}) quando € sub-solugao e

super-solug¢ao.

Neste contexto, vale ressaltar a Proposi¢ao 4.11 em [8], sobre estabilidade de

limites de solugoes.

Proposicao 1.1 Sejam {Fh}h21 uma sequéncia de operadores uniformemente elip-
ticos com mesma constante de elipticidade A e {up},-, uma familia de solugdes de

wiscosidade uniformemente continuas ou equicontinuas para
F(D*up) = f em Q.

Assumindo que {Fy},~, converge uniformemente para uma F no compacto S x € e

que {uh}h21 € uniformemente limitada em um subconjunto compacto w de . Entao:
- Existe u € C(Q) e uma subsequéncia de {uy},~,, tal que

ur — u uniformemente em €);

- F(D*u) = f em Q no sentido de solugio de viscosidade.

As solugoes para esses operadores sao compreendidas no sentido da viscosidade.
No entanto, neste trabalho, consideraremos u € C?(2), pois em breve, veremos que

a solugao para o problema (1) é, na verdade, uma solugao cléssica.

Definicao 1.5 Dizemos que o operador linear Sy : Sq — R € um sub-diferencial de

F para a matriz A € Sy se satisfaz

Sa(P) < F(A+ P) — F(A) para toda P € S,. (1.5)

Note que S4 é um operador uniformemente eliptico com mesma constante de
elipticidade de F', pois
Sa(—=P) < F(A—P)—F(A)

e pela linearidade de S, temos
1
Sa(P) 2 F(A) - F(A-P)=F(A-P)+P) - F(A=P) 2 4| P|
para todo P > 0.

10



Definicao 1.6 Dizemos que uma aplicacio F' : R? — R ¢ uma aplicagdo con-
vexa quando para todos X,Y € R? tem-se que a reta secante que passa pelos pontos
(X, F (X)) e(Y,F(Y)) estd por cima do grdafico da aplicagcao F no seqguimento [X,Y].

Em outras palavras, para t € [0,1], tem-se que

FX+t(Y — X)) <(1—-t)F(X)+tF(Y).

Note que a estimativa acima implica em

FXHUY = X0) = FX) _ oy - px),
: <

Segue dai que se F for diferenciavel no ponto X € R?, entao
DF(X)- (Y = X) < F(Y) - F(X)

ou seja, a sua derivada no ponto X € S; é um sub-diferencial de F'.
Caso F nao seja diferenciavel em tal ponto, entao pelo fato do caminho \ :

[—1,1] — R¢ dado por A\(t) = X + (Y — X) ser continuo e F o X\ ser uma funcio

real convexa, temos que para todo ty € (—1,1) pelo menos um dos limites (dFd;”\ (to))+

dF o)\

T (to))_ existe, assim garantindo a existéncia de um sub-diferencial de F' que

ou (
serd um hiper-plano (d — 1)-dimensional por baixo do grafico de F', cujo normal
¢ ortogonal a reta que passa pelo ponto F o A(ty) e tem como coeficiente angular o
limite (%(to))Jr se existir, caso contrario sera ortogonal a (%(to))jL e esta contido

no plano que contém F o A\, conforme a figura 1.1.

r(t) = (E2(0) "t + X by

Figura 1.1: Sub-diferencial de F no ponto X € R

Proposicao 1.2 Seja Tr : Sg — R o operador traco de cada matriz M € S;. Se
F . S5 — R é um operador convexo e uniformemente eliptico com constante de

elipticidade A, entdo:
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a) Para todo A € Sy existe uma matriz invertivel B tal que o operador F(M) =
F(BM + A) — F(A) possui Tr como um sub-diferencial no ponto O € Sy;

b) F é um operador uniformemente eliptico e convexo.

Demonstragao:

a) Sendo S um sub-diferencial de F' no ponto A € Sy, entdo para todo M =

(M;j)axa € Sq tem-se pela simetria de M,
d d
SA(M) = ZaijMij = ZaijMi]’ = SA(MT) com ai]’ = SA(GZ']')
.7j '7j

d A . 5
em que {e;;}.. . é a base canodnica do espa¢o das matrizes d x d. Tome A =
lij=1

(aij+aji

5 )dxd e veja que,

I

Y
VR
E
RS

<.

no |+
Q

<

=
~__—

Além disso, note que A é uma matriz invertivel, isso segue pelas seguintes

observagoes;

i) S4 ¢ injetiva no conjunto das matrizes simétricas definidas nao-negativas,
pois
LIM | < Sa(M) < A|M]] se M >0,

i1) Se A néo for invertivel, entdo o nicleo do operador A : R4 —s R?, definido

pela matriz A, é ndo trivial, isto ¢, existe v € R? — {0} tal que
Av=0= A(v®v)=(Av)@v=00v=0.
Note que (v ® v) € Sq — {O} ¢é definida nao-negativa e
Sa(v@v) =Tr(A(v ®v)) = Tr(0) =0
contrariando assim o item anterior.
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Por fim, sendo

F(M) = F(BM + A) — F(A) > Sy(BM) = Tr(ABM)
com AM = M A para toda M € S, tem-se,

MA™' = A "M — A~'M é simétrica.

Portanto, podemos tomar B = A~! e obter

E(M +0) — F(O) = F(M) > Tr(ABM) = Tr(M)
isto é, o trago é um sub-diferencial de F' no ponto O € Sj.

b) Veja que fixado A € S, tem-se que F' & convexa e uniformemente eliptica, pois

dados X,Y € Sy;

F((1—t)X +1Y) = F(B((1 — )X + 1Y) + A) — F(A)

= F((1—t)(BX + A) + t(BY + A)) — F(A)
< (1—t)F(BX + A) + tF(BY + A) — F(A)

= (1 — O)[F(BX — A) — F(A)] + t[F(BY + A) — F(A)]

=(1—t)F(X)+tF(Y)

o que prova a convexidade do operador F.

Por fim, considere M, P € S; com P > 0, entao

F(M+ P)— F(M)= F(B(M + P)+ A) — F(BM + A). (1.6)

Agora sao necessérias algumas informagoes sobre o produto BP € Sy, primei-

ramente, note que
— Be Sdi
De fato, sendo B~! = A € S, entdo

A=AT

) 3 — (AB)Y' =1"=1— BTA"=BA— B" =B
AB=BA=1
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— BP > 0:
Para verificar isto é necessario analisar o sinal da forma quadratica de BP,

ou seja, o sinal de

2T BPx para todo z € R%

Sendo B e P simétricas com BP = PB, entao B e P sao simultianea mente
diagonalizaveis, isto é, existem matrizes () ortogonal, D* e D diagonais,
tais que,

B=Q"DQe P=Q"D*Q.
Além disso, temos que,
(R"D2Q)(Q"D2Q)=Q"DQ =B
portanto B2 = QTD%Q, segue dai que,
B:P=Q"D:QP =QTD2D*Q = QT D*D2Q = PB=.
Note que P > 0, implica em
(Bzz)"P(B2z) > 0 = T B2 PBiz > ()
logo, pela comutatividade entre P e B3 temos,

T BPx > 0.

Por fim, sabendo que BP > 0, podemos usar a hipotese de I’ ser um operador

uniformemente eliptico (1.1) juntamente com (1.6), para obter,

1 - -
AIBP| < F(M + P) = F(M) < A|BP]. (1.7)
Se considerarmos || - || como sendo a norma de Frobenius ou qualquer norma
satisfazendo
IBP| < |BIl[lP]
e se || - || for a norma oo — espectral, entao

[BllscllPlloc < |BP[sc-
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Pela equivaléncia entre as normas, existe uma constante ¢ > 0 tal que
Bl < ¢l Bllo-
Aplicando estas informagoes em ( 1.7), tem-se,
CQLAHBHHPII < F(M + P) — F(M) < A|| BJ||| P

Portanto, ' é um operador uniformemente eliptico com constante de eliptici-

dade dependendo de A.

|
Considerando a proposigao anterior, ganha-se sentido, a partir deste ponto,
impormos certas condi¢oes ao operador uniformemente eliptico F' : S; — R. Sao

elas:

F' convexa,
F(O) =0, (1.8)
O traco do operador é um sub-diferencial de F' no ponto O.

E em alguns casos adicionar uma ou ambas as hipoteses:
F diferenciavel no ponto O € Sy (1.9)

ou

F homogénea = F(AM) = AF(M) para todo A > 0e M € S,. (1.10)
Note que, F' sendo homogénea e satisfazendo (1.8), entao
FM)=—-F(O—-M)+ F(O) < So(M) =tr(M) < F(O+ M) — F(O),

consequentemente

e adicionando a hipéteses de diferenciabilidade no ponto O € S,

DF(O)(M) = lim FO+M) - F(O) _ F(M) = Tr(M). (1.11)

=1l
t—0 t

A seguir, apresentamos um exemplo de operador que satisfaz essas hipoteses:

Exemplo 1: Seja F': Sym(n; R) — R definido por
F(A) :=logdet(A)
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onde A > 0. Considere ¢(t) = F(A+tM), assim

g(t) = logdet(A+tM)
— logdet(A(I +tA™'M))
= log(det(A)det(I +tA™TM))
= log(det(A)) + logdet(I +tA~*M))

= log(det(A)) + Zn: log(1 + tA;),

=1

sendo ); os autovalores de A~'M. Dai,

DF(A)(M) = lim

" - )‘12 " - 2
g (t)——ijDQMMF(A)—g (0)——;&- <0

provando assim que F' é um operador diferenciavel no espaco das matrizes definidas
positivas e concava (sera verificado a posteriori no Teorema 1.3 que a condigao (1.12)
é suficiente para garantir a concavidade da fungao), assim temos que —F é convexo
e diferencidvel. Resta verificar a uniformidade eliptica de tal operador, com efeito,
sejam [, L > 0 tais que

I <A<LLI,

isto é, todos os autovalores de A estao no intervalo [l, L].
Entao,

I<A <

1
—1.
l

S

Dessa forma, temos

Dy F(A) =) N =tr(AMATM) = A2 MAT2|3,
=1
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onde || - [|# ¢ a norma de Frobenius.
Como A~Y2 > \/LEI e A712 < %/ll, segue que
1 2 2 1 2
T IMl[ < Dy F(A) < 7I1M ][5
Logo, G(A) = —F(A) = —logdet A é um operador uniformemente eliptico em con-

juntos compactos de matrizes definidas positivas. Segue da Proposicao 1.2 que a

partir do operador F' definido neste exemplo é possivel construir um operador G

satisfazendo as hipotese de diferenciabilidade na origem e (1.8).

1.2 Preliminares técnicas

Apresentam-se, a seguir, os resultados relevantes que serao utilizados adiante.
Teorema 1.1 (Principio do Minimo) Seja L : Q2 — R o operador linear
L(h) = S(D*h) + (Dv - b(z)) + c(x)h

para h € C*(Q) N C°Q). Assumindo que S : Sy — R é um operador linear e
b,c:Q — R sdo limitadas e continuas. Supondo que L(h) <0 e c(z) <0 em Q. Se

h admaitir minimo nao-positivo, entao
infh <infh
EI9) Q
isto €, o minimo nao-positivo de h € atingido em sua fronteira.
Uma consequéncia imediata do principio do minimo é o principio da comparagao,
conforme enunciado a seguir.

Corolario 1.1 (Principio da Comparagao) Seja h € C?(Q)NC°(Q) satisfazendo
L(h) <0 comc(x) <0 em Q. Se h>0 em 02, entao h >0 em €.

Ambos os resultados acima estdo apresentados em [11] como teorema 2.3 e

corolario 2.8, respectivamente.

Teorema 1.2 (Arzela-Ascoli) Seja K um compacto do espago R Toda sequén-
cia de fungoes fr, : K — R equicontinua e uniformemente limitada possui uma

subsequéncia uniformemente convergente.

Para mais detalhes, veja o Teorema 3.4 em |[16].
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Teorema 1.3 Seja u € C*(RY) uma funcio tal que, Decu > 0 para todo e € RY.
Entao, u € convexa.

Demonstragao: Primeiramente, veja que
D.u = (Du-e) = Deu = (D (Du) - e),
onde
d
Do(Du) = (De(Dyu), De(Dayur), - -+ De(Dgu)) e De(Dju) = (D(Dju) -€) = Y  Dyjue;.
j=1
Logo,

d
D;jueje; = E D;jue;e; = (D?ue - €)

1 ij=1

d
0< Dectu =Y _ De(Diu)e; = »

d
=1 =1 j=

e portanto u é convexa, pois sua hessiana é definida nao-negativa. [ ]

Teorema 1.4 Sejam F um operador convezo, f € C* e u uma solugao de viscosi-
dade da equagio F(D*u) — f(x) =0 em By. Entao, u € C**(By) e

[ullc2e0 (B, ) < Clllullzes) + [F(O)])
em que ap € (0,1) e C' sao constantes universais.
O resultado acima mencionado corresponde ao Teorema 6.6 apresentado em [§].
Para operadores convexos, as solugoes apresentam uma boa regularidade. Pre-

cisamos apenas da seguinte versao simples, que é uma combinacao das estimativas de

Caffarelli [6] e de um teorema de Evans [9] e Krylov [12].

Teorema 1.5 Seja F' um operador uniformemente eliptico e convexo com constante
de elipticidade A, satisfazendo F(O) = 0. Suponha que u € solugdo de

F(D*u) = f em B; C RY,
entao:
1) Se f € limitada, entao u € C*(By2) para todo o € (0,1) com

[ullores, o) < C (lullpesy + 1 fllzes))

para alguma constante C dependendo somente de d, A e .
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2) Se f € C%*(By) para algum o € (0,1), entio u € C*™e0a} (B ») com
[ullc2mintenr p, ) < C (Iullpe(my) + 1 fllcas)
para alguma constante C' = C(d, A, ).
Definicao 1.7 (Operadores Pucci) Considere os sequintes operadores
P/—\i_, PA_ : Sd — R,
definidos por

Pt (M) = ATr(M") — %TT(M_); e Pm(M) = %TT(M’L) — ATr(M™).

Sendo F' um operador uniformemente eliptico, pela Defini¢ao 1.3

F(M +0) ~ F(0) < AJM* ||~ £ | M| = P*(M),

e por (1.2)
F(M) — F(O) < ATr(M*) — %TT(M_) — P (M)
sendo F(O) = 0, entao
F(M) < PY(M). (1.12)

Nos iremos concluir esta subse¢ao com o seguinte principio do méaximo local.

Veja o Teorema 4.8 em [8].
Teorema 1.6 Suponha que

PT(D*u) >0 em B, C R?
entao

supu < Cllul[p1(s))

By 2

para alguma contante C' dependendo somente de d e A.

1.3 O caso variacional

Sejam {2 um dominio conexo e limitado do espaco euclidiano d — dimensional

e F': H)(Q) — R um funcional tal que

Flu) = /Q (IDuf + f(u)) d, (1.13)
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em que u, f € Hy(Q) e fou:R — R.

A existéncia do minimizante v € H, () tal que F(v) < F(u) para toda u €
H, (), pode ser verificada no capitulo 8 do livro [10].

Seja A = (a;;) uma matriz d x d tal que a;; € L*>°(Q2) sejam coeficientes unifor-
memente elipticos (i, é. a;&& > MEJ? para todo x € Q e € € R?). Entao dizemos

que v € H'(Q) é solugdo fraca de
div(A-Dv) = f
se, e somente se, é solugao de

/ aijDiUDj(bdx = / f : ¢d$7 para toda ¢ € H&
Q Q

Teorema 1.7 Seja v € H, () minimizante de (1.13) e f diferencidvel em R. Entdo

v satisfaz (no sentido fraco) a equagdo

Av = f'(v) em$
v =g sobre 0S).
Demonstragao: Considere t € R, ¢ € Hj(Q) e tome u = v+t € H (). Por

definicao temos que
g(0) = F(v) < F(v+t¢) = g(t) para todo t € R

isto ¢, t = 0 é ponto de minimo de g : R — R. Dai segue que,

=g =5 ([Iperops )| 0

dg
0= t=0 dt t=0

Cdt

Como a derivada é linear iremos calcular separadamente. Primeiro note que

]:%/Q|D(v+tgb)|2’t:0 — D(v+t¢>-D(v+t¢>)

Q t=0

/ |Dv|* 4+ 2tDv - D¢ + t2]D¢|2) ’
Q

7 N7 N

I
S— S =
&.lg‘

(|Dv|?* + 2tDv - D¢ + t*| Dg|?)

'
(2Dv - Do + 21 DgP?) |

t=0

I
S~

Q t=0



substituindo I e II em (1.14) temos

| po-po=3 [ 1o

para qualquer %(b € H}(2). Portanto,

Av = div(I - Dv) = f'(v).

1.4 O problema nao-variacional

Definicao 1.8 Assuma que F' € um operador satisfazendo (1.1), (1.8), (1.9) e (1.10).
Diremos que
F(Du) =™ em Q)
u e ST(Q) = (D%u) = u e
u>0 em €2.
Agora, dado R > 0 e xy € R?, defina
u € Pk (w0) <= u € S¥(Bg(x0)) com o € 0 {u > 0}. (1.15)

E por fim,
u € PE(20) <= u € S*(RY) com xy € 0 {u > 0}.

Observagao 1.4.1 Quando o operador F' coincidir com o trago, é comumente utili-

zada a notagio S*(Q) e PR (xg) em vez de ST"() e PE"(x0), respectivamente.

Proposigao 1.3 [Reescalonamento de solugao] Seja u € Pf(xg) e 0 < r < R,

um reescalonamento da solug¢ao u € uma fun¢ao

V() = Uy, () = Tiﬁu(r;v + z9) (1.16)

para
b=——-:. (1.17)

Entao

Demonstragao: Note que,

Dy(z) = mDiu(rx +x9) e Dju(x)= szju(m + z9).
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Logo,

D?*v(z) = D*u(rz +x9) = D*u(rz + zo) = r’2D%v(z)

rf—2

— F(r"2D%(x)) = F(D*u(rz + x0))
sendo u € ST (Bgr(zg)) tem-se F(D*u(rz + x9)) = (u(rx + x0))?1, dai
F(rP72D%v(x)) = (u(re 4 20))" " = rP0Dy(2)71,
Por (1.17), tem-se B(y — 1) = § — 2 e portanto

F(rﬁ’2D2v(a:)) =v(x)!

rh—2
para todo x € Bg/,(0), pois u esta definida em Bg(z), entdo
re + xg € Br(zg) <= ||rz| = ||(re + xo) — 20| < R <= ||z|| < R/r.

Portanto, definindo

F,.(M) F(rP=2M) (1.18)

temos que v ¢ uma solugao nao negativa de F,(D*v) = v em Bpg/,(0), isto ¢,
v € ST (Bg/(0)).

]
Observacao 1.4.2 Vale ressaltar algumas observagoes sobre F, definida em (1.18):

a) Seja P € Sy definida ndo negativa, entdo r®=2P > 0 desde que v > 0, logo por

F' ser uniformemente eliptica (1.1)

1
X|\rHPH < F(rP72P 4 1P72A) — F(rP72A) < A||r?72P)|

1
= Pl < B (P +A4) = F(4) < AP

para todo A € Sy, ou seja, F,. € um operador uniformemente eliptico com mesma
constante de elipticidade de F'.

b) Se F(O) =0, entio F,(0) = 5= F(r’20) = 55 F(0) = 0;
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c) Sendo F convexa e X,Y € Sy, tem-se

FAL=0X +09) = SR (-0 )
N rﬁl?F((l —)rP 72X + tr77%Y)
1“5_1—2 (1= ) F(rP=2X) + tF(r72Y)]

IA

portanto F,. também € convexa;

d) Seja o operador trago um subdiferencial de F' no ponto O € Sy, entdo

1
F(rP=2M) >

FT(M) = rB-2 rB—2

Tr(rP=2M) = Tr(M)
o que garante que o traco € um subdiferencial de F,. no ponto O € Sy;

e) Note que,

DF,(0)(X) = lim

t—0 t
= lim b (X)
t—0 t
B—2
— im F(rf—2tX)
t—s0  rB-2t
) F(hX)
= Jim =55 = DF(O)(X)

em que h(t) = rf=2t.

f) Se F for homogénea, entio F.(M) = = F(r’2M) = ;g:;F(M) = F(M) para
todo M € Sj,.

Definigao 1.9 Dada u € S¥(Q), defina o operador linear

Ly(w) = Sp2y(D*w) — (v — Du"'w em {u >0} NQ. (1.19)
Observagao 1.4.3 Note que se u € ST(2), entio u € solucio de

F(D*u) =u""" em Q.

Como ) é um dominio compacto, o lado direito da igualdade acima € limitado. Assim,
pelo item a) do Teorema 1.5, a solugdo admite regqularidade C**. Consequentemente,
podemos aplicar o item b) do mesmo teorema e concluir que u pertence a C?. Portanto,
as solucoes da equacdo acima sio, na verdade, solucoes cldssicas de classe C?, o que

garante que o operador definido em (1.9) estd bem definido.
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Proposigao 1.4 Dadau € ST (Q) e um vetor e € S a esfera unitdria do R?, entdo
L,(D.u) <0 e Ly(Deeu) <0 em {u>0}NAQ.

Ou seja, D.u e Deou sao super-solugoes do operador linear Ly,.

Demonstragao: Para um nimero real t > 0 e considerando P = D?u(z+te)—D?u(x)

e A = D?u(r) na defini¢do de sub-diferencial em (1.5) temos

F(D*u(z + te)) — F(D*u(z)) S5 g (DQU(SL’ +te) — D2u(x))
t = P D?u(x) t
em que
F(D*u(x + te)) — F(D?u(x)) _ (u(x +te))’ ™t — (u(x))r1
t t

que converge para (v — 1)u?"!(x)D.u(z) quando ¢ — 0 e por conta da linearidade

de Sp2,, segue que

(DQU(IL‘ +te) — D*u(x)
SDQu(m)

; > — SDzu(x)(DQ(Deu(x)))

o que nos da a primeira desigualdade.

Analogamente, temos

2’U,I e 2u33767 2’[1,1‘ 2’U,I e 2’11,1767 QUI
F(D>u(a+t ))+F(Dt2( te)~2F(D*u(x)) St (D (z+te)+D t2( te)—2D%u( )> .

Utilizando o polinémio de Taylor de grau 2 e fazendo ¢ — 0 a desigualdade

acima nos da que,
Spoy(D?*(Deetr)) < (7 — Du" ?Deeu + (v — 1)(y — 2)u" 3 (Deu)? em {u > 0} N Q.

Como v € (1,2) o ultimo termo é nao-positivo, o que implica na segunda inequagao.

n
Proposigao 1.5 Seja u € S¥(Q), entio

Ly(u) > (2 —y)u"™ em {u>0}nQ,

Au<u' ' em Q.

Demonstracao: Sendo Sp2, o sub-diferencial de F' no ponto D?u € Sy definido em

(1.5), por (1.8) temos que
Speu(—D*u) < F(D*u — D*u) — F(D*u) = Spey(D*u) > F(D*u) = v, (1.20)
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logo,

Spou(D*u) > uw'' = Ly(u) = Sp2(D?*u) — (y — Du" ' >0t — (4 — D!

— Ly(u) > (2 —y)u!

o que nos da a primeira desigualdade. Por outro lado, como o traco é um sub-

diferencial da F' no ponto O € Sy, segue de (1.20) que
Speu(D*u) > F(D*u) = " > So(D*u) = Tr(D*u) = Au em Q

assim obtendo a segunda desigualdade. ]
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Capitulo 2

Estimativa de Nao-Degenerescéncia

Neste capitulo, é apresentada uma estimativa da nao degenerescéncia da solucao

na fronteira livre, ou seja, um controle sobre o crescimento da solucao nesses pontos.

Lema 2.1 Suponha queu € ST (Q) e xg € RY. Seja 8 a constante definida em (1.17).
Entao existe uma constante universal ag dependendo somente de A, d ey, tal que para

todo a > ag, tem-se

Ly(au — |z — 20/?) > 0 em {u>0}NQ.

Demonstragao: Para simplificar a notagao defina p = p(x) = |x — x¢|. Inicialmente

veja que as seguintes igualdades sao verdadeiras

lz—zo| P

Dip = (zi—(x0)s) (zi—(%0)i)
Dip? = BpP'Dip = Bp° 2 (z; — (20);)

Dijp” = B(8 —2)p" > Dip(a; — (20):) = B(8 — 2)p°2DipDip + 858" >.

Portanto,

D*p = (8 —2)p"*Dp @ Dp + Bp°21.

Sendo Sp2, ¢ o sub-diferencial do operador uniformemente eliptico F' no ponto D?u €

Sy, entao
Speu(D*p") = B(8 = 2)p" 2 Sp2u(Dp @ Dp) + Bp° 2 Speu(I)

como DpRDp > 0 e Sp2, ¢ um operador uniformemente eliptico com mesma constante

de elipticidade da F', tem-se

Speu(D*p") < B(B —2)p" A Dp @ Dpl| + Bp"*Al1]. (2.1)
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Note que,

IDp@ Dpl> = > (DipD;p)°

o (= (@) = (20),) )

> ( r )
1 d 2 2

= (@i — (20)i)" (25 — (20);)

1
= = 2(% - (xO)J)Q
P
d
1
= - (z; — (xO)J)Q
Pm
1
= ;LT — x|
1

Utilizando este fato juntamente com (2.1), tem-se
Sp2u(D?p°) < B(B = 2)p A+ Bp" AT = Cp”?

em que C = [(8 — 2)A + SA|I| > 0 é uma constante dependendo de A, v e da

dimensao d. Logo,
Lu(p®) = Sp2u(D?p") = (v = D' 72p" < CpP72 — (v = w2

em {u >0} NQ.
Note que pela proposigao 1.5 tem-se que L, (u) > 0, logo

Lu(au — |o = zo|”) = Lu(au — p”) = aLy(u) = Lu(p”) > —Lu(p”)
> —Cp" 2 4 (v — Du 2P
> 0

se e somente se,

N

C
(v =1 %" > CpP? = oy LS P’
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isto ¢, Ly(au — |z — 0/%) > 0 em QN {u >0} N {7—£1u2_7 < p2}.
Por outro lado, utilizando a desigualdade da Proposigao 1.5 em QN {u > 0} N

{Tgu2_7 > p2} temos que
Ly(au — |z — xo|”) > a(2 = y)u" ™" = CpP 2 + (v = w2 2p°
e sendo v € (1,2), entdao (y — 1)u?"2p? > 0. Dalf,

Ly(au — |z —20|?) > a2 -y —Cp’?

B—2
>a(2—Y)uW ' —-C ( L) uF

B—2
=t a(2—7)—C’< —7(31>

B2
tomando k = C < 7—2) > 0 e por u > 0 tem-se

Ly(au — |z —20/?) > a(2—7) — k>0

desde que, se tome ag suficientemente grande satisfazendo ag > % Em particular,

temos que a constante universal ay depende unicamente da constante de elipticidade

do operador F', do parametro ~, pois § = % e da dimensao d. [ ]

Corolario 2.1 Para u € Pg(xg), tem-se

sup u > Cr?
OBr(x0)

para uma constante universal C'e 0 <r < R.

Demonstragao: Tome yo € {u > 0} com |zg — yo| < 37 ¢ p = |z — yo|. Para a

constante universal ag do Lema 2.1, defina
h(z) = agu(z) — p’(2)

em 2 = B,.(z9) N {u > 0}.

Como h(yg) > 0 e L,(u) > 0 (veja a Proposigao 1.5) em (2, pelo principio do
maximo temos que supgq h > 0.

Note que

0 = (0{u >0} N B.(x9)) U (IB.(x0) N{u > 0}).
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e que h <0 em 0{u > 0} N B,(xg), isto implica

sup h =suph > 0.
8B, (z0)N{u>0} o0

Como para todo = € 0B, (x¢) tem-se p(x) = |z — yo| < r, entdo
h(z) > agu(z) —r° Vo € QF = 0B, () N {u > 0}

dai segue que,

sup h > sup(apu — %) = agsupu — r’ > 0 = supu > lr
ot ot o+ o+ ap

B

e como Q7 C 0B, (xg) tem-se
1

sup u > —r”.
3By (z0) Qo
|
A seguir, iremos estabelecer o seguinte lema de positividade do gradiente.
Lema 2.2 Suponha que u € ST (By). Seja ag a constante do Lema 2.1 ¢ 8 = %

Suponha que para alguma direcio e € ST, e alguma constantek > 0e0 < n < m,
tenha-se
Dou>k em {u>n}.

Se existe € > 0, dependendo somente de k, tal que
D.u > —e em By,

entao
Dou >0 em B%.

Demonstragao: Tome ¢ = k. Note que por hipotese D.u > 0 em {u > n} e por
0 <u € C?*(By) segue que no conjunto {u = 0} estao os pontos de minimo da fungao
u o que implica D.u = 0 em {u = 0}. Portanto, é suficiente provar que D.u > 0 em
Bin {0 <u<n}.

Para isto, iremos tomar um ponto xy € B% N {0 < u < n}. Defina,
Q=B nN{0<u<n}

pla) = [z — 0|

h = Dou — 2°T k(agu — p°).
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By u=>n

By /o
d{u>n}
n>u>0
\j/ 0{u > 0}
u=20

Figura 2.1: Analise da regiao entre 0 {u > n} N By e 0{u > 0} N By )2

Primeiramente iremos investigar o comportamento da fun¢ao h sobre 92 = (0B; N

{0<u<np)U@{u>0}NB;)U(O{u<n}NBy), veja a figura 2.

-0BIN{0<u<nk

Note que p > % em 0B; N {0 < u < n} e como por hipotese D.u > —e em By.

Temos

1
e 9B+ -
h>—e—2 k(aon 26)'
Comongmee:k,tem—sehZOemaBlﬂ{O<u<77}
- 0{u >0} N By;
Em que u=0e D.u = 0, logo

h=2%1kp% > 0.

- 0{u < n}nNBy;

Temos que u =n e D.u > K, consequentemente,
h>k—2%(agn) >0
utilizando a hipotese n < 25—1“@0.

Portanto,

h > 0 sobre 9f2.
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Pelo Lema 2.1 e a Proposicao 1.4 tem-se

Lu(h) = Ly(D.u) — 2°T kL, (agu — p®) <0

Lu(h) = Sp2u(D?*h) + (Dh - 0) — (y — 1)u"?h

considerando que —(y — 1)u?~2 < 0, conclui-se que h satisfaz as condigoes exigidas

pelo principio da comparagao (Teorema 1.1), e, assim, temos que
h>0em Q= D> 2" k(agu — p°) em Q

como gy € €2 entao

Deu(wo) > 2° k(agu) > 0.
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Capitulo 3

Estimativa de Harnack e

Consequéncias

Neste capitulo, iremos abordar estimativas do tipo Harnack, veja Teorema A.
Como consequéncia, obtemos a estimativa de regularidade universal do Teorema B,
bem como o controle sobre quantidades invariantes de escala. Estes sao tteis para
estudar os perfis de blow-ups, tratados no capitulo seguinte.

O teorema 1.1 segue diretamente do seguinte lema.

Lema 3.1 Seja u € S¥(B;). Entao

supu < C(u(0) + 1)
B

em que C' € uma constante universal.

Demonstracao: A demonstracao do lema sera dividida em cinco partes:
I) Primeiramente considere v € C?(B;) N C°(B;) solucio da EDP

-1
Av=v]" em B,

v=u>0 sobre 0B;.

Note que v > 0 em By, pois se existir y € B; tal que v(y) < 0 entdo, por conta
da continuidade de v no compacto By, segue que v admite minimo interior

negativo, isto é, existe x € By tal que

v(z) =infv < 0.

B1
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1)

Novamente pela continuidade de v tem-se que existe r € (0,1) tal que v < 0 em
B, (z). Dali,
Av =0 em B,(x).

Pelo Principio do Méaximo v nao admite ponto de minimo interior a B, (z), uma

contradigao.

Afirmacgao 3.1 FEuwiste uma constante A > 0 universal, tal que

1
][ 02A=>v(0)2—][ v.
0B, 2 0B1

Prova: Segue da proposi¢ao 1.22, em [11], que a fungao de Green G em Bj no
ponto 0, ¢ igual a,

2—d
i
— = |zly

sed=2
||

1
— (log |z —y| — log
2T

1 _ x
T (v [ ) ez

Em que G(z,y) = G(y,x) e wy ¢ a area da casca esférica de By. Dal,

f v —v(0) :][ v—/ G(O,y)AU—/ va—G(O,y)
0B1 0B1 B1 0B any

onde, pelo corolario 1.23 de [11], tem-se

G(r,y) =

oG 11— |[zf?
on,  wqlr —yl?

para d > 3.

Portanto,

1 1
v—v(0) = ][ v— Gy,Ov”l——/ v—s
][BBl ©) 0B, By ®0) - Wd JoB, |yl

1
= f o[ Gwoprt - [
8By B Wd Jop,
— o= [ G- f
631 Bl 8B1

= - G(y7 O)U:yi—il

B
1
- [ [ cwou
0 OB,

Consequentemente, utilizando a inequacao de Holder para p = % obtemos

formso <= [ (f, temor=) ([, )
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IN

IN

<

< —

Como G € L*>(By)

1 L\
/ Fd=1)(3=1) (/ |G(y,0)|M>
0 0B,

1 L\
< / pd=10-1) (/ (“G(y,O)HL(’Q(Bl))M)
0 9Br

1 L\
< / P00 (198, (IG(y, 0) = (5)) 7 )
0

pOiS d Z 37 lOgO

]éBl v—v(0) <

o que implica

1
/ AN (4,
0

1
2 /0 Y G(y, 0) | o (51)

—1\2—
P2 Gy, 0) e )

1
= NG Ollmis [ 7
0

) 1
= wy NG, )=

N

Wy 771
21600l (o)
0By

(L)

fomoze(f, ) o,

Desde que v — 2 < 0, entao para A suficientemente grande tal que

1 772
A2 < — = (][ v)
2 9B,

C



117)

IV)

Dali,
1

1
][ U—U(O)g-][ v—= 4 <)
0B1 2 0B, 2 0B,

Afirmacgao 3.2 FEuwiste uma constante A > 0, tal que

1
][ uZA:>u(O)Z—][ u.
631 2 8B1

Note que é suficiente provar que

u > v em B
em que v é a solucao da afirmacao 3.1. Para esta finalidade, considere t, =
min(u — v) = (u — v)(xo) para alguma zy € B;. Nos precisamos mostrar que
B

1

to > 0.

Se x¢ € 0B; entao tg = 0. Por outro lado, ¢ € By é um ponto de minimo local

de (u—v), logo A(u —v)(xg) > 0, entéo
Au(zg) > Av(xg).
A segunda parte da proposicao 2.3 nos da
F(D?u(x0)) = w~"(x0) > Au(zo) > Av(wo) = v ()

o que implica ty = u(zg) — v(zo) > 0.

Afirmagao 3.3 Para todo 0 <r < 1, tem-se

1
ouu(O)Z—][ uou][ u < Arf.
2 Jo, OB,

Seja u, o reescalonamento da u no ponto xy = 0, tem-se
u € S¥(B)) = u, € S™(B1) = u, € S™(B)).

Portanto, pela afirmacao 3.2

N | —

][ Uy > A —> u,(0) >
0B1

0B,

onde,

1
U = ———— Uy
]<[931 210B1| Jag,
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| utan
= u\xr
2war® Jop,

_ 1 / u(y)
2war? Jop, 471

1
= 28108, ] Jop, "
1

— U
2rf 9B,

logo,

1 1 1
2 = (0) > = = — u(0) > = .
P u()_2]£31u 2rP BBTU u(0) 2i3ru

No entanto, se tivermos

1
][ u < A= — u< A= u<rPA.
0B " JoB, OB,

Por fim, veja que,

1 1 1
/u:// u:/wdrd_l][ u:wd/ Td_lj[ U
By 0o JoB, 0 9By 0 9B,

V') Pela afirmacao 3.3 temos

][ u < Ar® + 2u(0).
OB,

Dai, segue que

/Blu < wd/olrd—l (Arf +2u(0)) = wq (df@ + 2“(50)) < wy (g'f‘ 2u§0))

Portanto,

[;ugcuqum+m.

Por fim, como Py (D*u) > F(D?*u) = u’~! > 0, entdo pelo Teorema 1.6

supu < C(A, )|l = C(A, d) \m:am@/USC@%mw@+u
B

By By

Segue abaixo as demonstragoes dos teoremas A e B, respectivamente.
Teorema 3.1 Se u € S¥(Bg), entio

supu < C (u(0) + R?).

Br
2
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Demonstragao: Temos que
u € SF(BR) — UR € SFR(Bl)

e pelo lema anterior

supur < C(ug(0) + 1)
By

multiplicando ambos os lados por R,

supu(Rz) < C(u(0) + R°) = supu < C(u(0) + R).
Bl BE

Teorema 3.2 Seja u € ST(Q) com u € C2%(Q) para algum o € (0,1). Supondo que

loc

By C Q, entao existe uma constante C' > 0 tal que
[ullczas, ) < C(u(0) +1).

Demonstragao: Pelo Teorema 3.1 temos que u é limitada em B% consequente-
mente F'(D*u) = u?~' ¢ limitada em By, e pela primeira parte do Teorema 1.5,

temos que u € C’La(B%). Além disso, como v — 1 € (0,1) temos que
() = )] < Jule) = uly)| < (K e =yl

em Byy. Logo,

F(D*u) = u'~! € C°0=Y(By).

Pela segunda parte do Teorema 1.5 tem-se u € C**(B

N

) para algum «ag € (0,1)

1
8

com

IN

Crlullz s, + 0 =, )
Cr2lull L= (,,4))

< C(u(0)+1)

[ullc2.a s, 5)

IN

pois, pelo Lema 2.1 existe uma constante universal Cs, tal que

supu < Cy(u(0) + 1).
B
2
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Corolario 3.1 Seja u € PE(z). Entdo

sup u < cr?
By (o)

para todo 0 < r < %R em que C' € uma constante universal.

Demonstragao: Note que u € PE (o) implica que o reescalonamento

1
V(Z) = Ugg2r () = (2r)5u(x2r + 1) € nggr(()) c P (0),

pois 1 < R/2r. Agora, utilizando o Teorema 3.1 temos que existe uma constante

universal C' tal que,

supv < C (v(0) +1)=C = supu(a2r + x) < 2°Cr”
Bi o By )2

= sup u< 28CP
By (z0)

0 que encerra a demonstragao.

Corolario 3.2 Seja u € Pr(xo). Entao

D%y
uY~1

<C

sup
Bps(zo)N{u>0}

para alguma constante universal C'.

Demonstragao: Note que é suficiente provar para u € PF(0).
Tome yo € By N {u > 0}, pelo Corolario 3.1 existe uma constante universal
M tal que

1
ulyo) < supu < M-
By 2 2

ri= (“5\?20)) <

Em particular v € S¥(B,(y)) pois B.(yo) C B;. Consequentemente, o reescalona-

assim,

=

. (3.1)

N | —

mento u,, , definido em (1.16), nos da que u,,, € ST (By).

Pelo Lema 3.1 segue que

SUp gy, < Clttyy,(0) +1) = C (“(90) + 1) = O(M +1). (3.2)

B
B2 r
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Aplicando a primeira parte do Teorema 1.5 com f = uzo_ﬁ limitada em B/, temos

Uyyr € 6’170‘(31/4), dai existe uma constante C tal que

« 1 “
Dt (0) = Dt ()] < Cile = <1 ()
Fixado y € By4 tem-se |Duy, ,(z)| < C15% +|Duy, - (y)| = const. para todo = € By 4.

Logo,

(@) = )
z—0 |x — z’

= |Duy, ,(x)] < const. = |uy, () — uy,r(2)| < const.|z — z|

0,1
= Uy, €C

para todo z suficientemente proximo de x. Tomando z = 0, existe p > 0 sufici-

entemente pequeno, tal que uy,, € C*'(B,), assim implicando em, f = u) " €

C%71(B,). Dai, pela segunda parte do Teorema 1.5 tem-se uy,,, € Cp™™ 10N (B ).

loc

Portanto, existe uma constante Cs, tal que para z € B/,
| D%y, (0) — Dty (2)] < Col0 — z|minlr=haok — copst.
Assim, fixando z € B2, obtemos que
|D?u,, ,(0)| < const. (3.3)

Por fim, note que pela definigdo de r (3.1)

Duy, (0 = 2~ D?u(y) = (“E@)) Du(y),

pois

2 4-2y-2 2
2—y 22—~  2—x
Por (3.3) segue que |Duy, ,(0)] é limitado, logo

D?u(yo)

U;oj (yo)

2-f=2-

< const.

39



Capitulo 4

Classificacao de Blow-ups

Este capitulo é dedicado a analisar o comportamento de blow-ups em pontos
regulares da fronteira livre. Para isso, se faz necessario, nao somente investigar as
propriedades dos blow-ups em pontos regulares, mas também examinar a geometria
do conjunto de contato formado por esses blow-ups. Esse estudo visa obter informa-
¢oes sobre o comportamento da solu¢gao em pontos proximos aos pontos regulares da

fronteira livre.

Definigao 4.1 Seja u € Pk (xo). Dizemos que zo € um ponto regular da fronteira

lwre quando

B, N{u=0
lim sup |Br(x0) d{u H >0
r—0 r

(4.1)

e utiliza-se a notagio xy € Reg(u), caso contrdrio, xy € considerado um ponto singular

da fronteira livre.

Suponha que u € PF'(0) com 0 € Reg(u) (Defini¢ao 1.15 e 4.1) para alguma F
satisfazendo (1.1) e (1.8) juntamente com (1.9) ou (1.10).

O reescalonamento u, () = -su(rz) satisfaz

u, € Pfr(O),

com F, definida em (1.18). Resulta do capitulo anterior que esta familia é localmente
uniformemente limitada em C?*“, Teorema 3.1, o qual nos proporciona, para uma

constante C' universal, a seguinte desigualdade,

supu < C (u(0) + 7).
Br
2
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Uma vez que, 0 € 0 {u > 0} C {u =0}, tem-se

U u(rz
supugCr’B:>sup—6§C:>sup (B)gC:>supur§C.
By By T By T By

Vale ressaltar que u € PF(0) para r € (0,1).
Em suma, dada uma sequéncia r, — 0, tem-se u € PTFh (0) para h suficiente-
mente grande e pela Proposigao 1.1

sup u, < C

B
2

isto ¢, o reescalonamento u,, da u ¢ localmente limitado por uma constante universal
C.
Além disso, pelo Teorema 1.5 item 1), temos que u € CH*(By2) com a €

(0,1), entéo existe uma contante k£ > 0, tal que,

[u(rnz) —ulruy)| < krgle =y < krgle —y)°

pois [ = QL > 2. Dai,

-

[r, () = up, (y)] < Kl —y|* em Bys.

Em razao disso, temos que {uy, },-, ¢ um sequéncia equicontinua.
Entao, pelo Teorema de Arzela-Ascoli (Teorema 1.2), a menos de uma sub-

sequéncia, existe uma funcao v continua, tal que
Up,, —> U (4.2)

uniformemente.

A convergéncia acima, implica que o operador uniformemente eliptico F,, —u] " 1
converge uniformemente para Tr — v, pois se F' for homogénea (1.10), entdo F,, =
F = Tr, veja (1.18), por outro lado se F' for diferenciavel no ponto O € S; (1.9),
entao por (1.11) e (1.8), tem-se

F(tM FOi2M
To(M) = tim 2D oy FO0 M) e .
t—0 rp—0 Tf 2 heN ™ "

Portanto, em ambos os casos (1.10) ou (1.9), obtemos que

F,

Th

(D*up,) —ul~t — Av— 07!
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tendo em vista que a hipotese de homogeneidade implica que F' coincide com o ope-
rador traco.

Recapitulando o que foi feito até agora, temos que {FTh — u;!;l é uma

}h21
sequéncia de operadores uniformemente elipticos, tal que {u,,},., é solucao clas-
: 2 -1 2 : 1 :

sica de F}, (D*uy,) —u)~" = 0. Além disso, F,, — ]~ converge uniformemente para
Tr — v~ com {“rh}h21 uniformemente limitada em B /5, segue da Proposigao 1.1

que,

Tr(D*v) ="' = v € P2(0). (4.3)

Sendo v solugao continua de Tr(D?*v) = Av = v7~! = f em R? temos pelo Teo-
rema 1.5 que v € C*(R?).
Este resultado ¢ particularmente interessante, pois, no caso em que F' é homo-

génea, ele se reduz ao problema classico (2), e, de forma intuitiva, temos

F,

2 a1 1
(D7, ) —u) = Av — 077,

No entanto, ao remover a hipétese de homogeneidade da F' e introduzir a hipotese
(1.9), ampliam-se as possibilidades de equagoes diferenciais parciais (EDPs) conside-
radas, sem comprometer o limite acima.

E necessério, agora, realizar uma anélise sobre o conjunto de contato {v > 0}.
Contudo, antes disso, torna-se indispensavel provarmos propriedades de convexidade

para v.

Lema 4.1 Sejau € PL(0), para alguma F satisfazendo (1.1), (1.8) e (1.10) ou (1.9).
Entao u € conveza.

Demonstragao: Pelo Teorema 1.3 temos que para provar a convexidade de wu,

basta verificar que para todo ¢ € {1,--- ,n} tem-se
Dyu > 0 em R (4.4)

Com u > 0 em R? & suficiente provar (4.4) em {u > 0}.

Supondo que tal estimativa nao seja verdadeira, temos

Diiu

<0 (4.5)

—[:= inf
{u>0} w1
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Note que pelo Corolario 3.2 existe uma constate universal C' tal que

D?u

<Cem {u>0},

uY

0 que garante a existéncia do infimo (4.5).

i) Considere (z5,) uma sequéncia em {u > 0} satisfazendo

D”u(xh)
u = ()

[

(xh)u

entao a menos de uma subsequéncia o reescalonamento

T, = U

1
vp(z) = r—ﬁu(rhx +xp) s v E POAO(O)
h

uniformemente. Portanto, Tr(D%*v) = Av = v?~! em R%.

i1) Note que

71 D.
Diu(rpz + ap) = - (rnz + @n) Diu(rpe + x)

Divp, = ——
—92 —92 _ ’
Tf rf W rpx + o)

como 3 —2 = f(y — 1), tem-se por (4.5),

1
v—1 1 7
D;;vp > W (raz + 2n) (=) =-1 (—Bu(rhw + xh)> = —lvh_l

B2
Th Th

para todo € RY. Aplicando o limite temos
Diﬂ) Z —lU’y_l em Bl.
Por outro lado,

ﬂDiiU<xh) = mDn’U(l‘h) =

Dii’U 0 =
h( ) Th T’h u'y—l(xh)

pela defini¢ao de r,. Portanto, (4.6) nos da que
D“U(O) =—-l= —lzﬂ_l(O).

Agora defina
g = Dyv+ W,

entdo g > 0 em By e g(0) = 0, isto é, g admite minimo interior em Bj.
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ii1) Note que a equagao

D;(v"™ ) = (y = 1) *Dw
implica que,
Dij(v%l) = (v — 1)7)%2Dz‘jv + (=D — 2)v7*3Djquw.

Dali,
D*(" ) = (v = 1w 2D*v + (v — 1)(y — 2)v" *Dv @ Dv,

sendo v € (1,2) temos que tltimo termo determina uma matriz nao-positiva em
By n{v > 0}. Logo,
D*(v" ) < (y — D" 2D?v.

Sendo o blow-up v € P2(0), entao
Spoy(D*v7™Y) = Tr(D* 1) < (v — D" 2Tr(D*) = (y — 1)o7,
Portanto, em B; N {w > 0}

Lv(?ﬂ_l) = SD%(DZ(W_I)) —(y- 1)07_21)7_1

< (V=D = (v = PP =0,

onde L,, é o operador linear definido em (1.9).

Agora note que a Proposicao 1.4 implica em
L,(Dyv) <0em By N{v > 0}.
Como [ > 0, temos
Ly(9) = Ly(Dgv + 107™Y) = Ly(Dyv) + IL,(v"™ ") <0 em B; N {v>0}.

Sendo 0 € B; o ponto de minimo global de g e v € C° com v(0) = 1, segue
que g admite minimo interior em B; N{v > 0}. Logo, pelo principio do méaximo
g = 0, isto implicaria em,

Dyv =~ (4.7)
um absurdo, pois isto implica na seguinte igualdade
v =Tr(D*) = v d.
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Observacao 4.0.1 Note que o Lema 4.1 implica que {u = 0} é um conjunto con-

vezo, pois dados x,y € {u =0} et € (0,1) pela converidade de u tem-se
O<u((l—t)r+ty) <1 —thu(x)+tu(y) =0= (1 —t)z+ty € {u=0}.

Observagao 4.0.2 Retomando a andlise do conjunto de contato {v =0}, veja (4.2).
Considere 0 € Reg(u), entao por (4.1), tem-se que para v suficientemente pequeno
B, {u=0}]
rd
pois B, C Bj.
Por outro lado, se x € By N{u =0} — {0}, entdo pela convezridade de {u = 0}
e por 0 € {u = 0}, obtemos que rpx € {u = 0} para todo 0 <1, <1, ou seja,

>0=|B,N{u=0}|>0=|BiN{u=0}|>0 (4.8)

1
Uy, () = r—ﬁu(rhx) =0=z€{u, =0} = BiN{u=0} C {u, =0}.
h

Seque de (4.8) que,
| {u,, =0} | >|BiN{u=0}|>0.

para todo h suficientemente grande satisfazendo 0 < r, < 1.

Aplicando o limite h — oo, obtemos

[{v=0}|>0.

Pode ter passado despercebido, mas também obtivemos o resultado de que {v = 0} é
convexo, conforme indicado pela equagao (4.3), pelo lema 4.1 e pela Observagao 4.0.1.
Para concluir os estudos relacionados ao conjunto de contado da fungao (4.2),

serda demonstrado a seguir que {v = 0} é um cone.

Proposigao 4.1 Seja u € Pf(0), com F satisfazendo (1.1), (1.8) e (1.10) ou (1.9).
Entao o conjunto de contato do blow-up (4.2) € igual a um cone.

Demonstragao: Defina Q = {u =0} e Q,, = {u,, =0} = {z € Rz € Q}. Se-
gue da observagao 4.0.1 que Q = {u = 0} é convexo, logo as seguintes afirmagoes sao

verdadeiras;

Afirmacao 4.1 A convexidade de ), implica na convezridade de €Q,, .

Dados x,y € €, , entao rpx, rpy € €2, pela convexidade de €2, obtemos

Th?
I-trpe+trnye Q= 1-t)z+tycQ,,,
para todo t € [0,1].
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Afirmagao 4.2 {v =0} é um cone.

Considere x € 9B; N (), entao %x € 9By, NQ,,, pela convexidade de €2, , obtemos
que o segmento de reta [O, %x] estd completamente contido em €2,,. Agora "abra"
um cone de rotacao C} em volta da diregao z, tal que a reta geratriz do cone seja a

reta [(t) = ta para todo t € R, para um centro a € €2,, satisfazendo

d (lx;(‘?th) =
Th

Claramente, por causa da convexidade de §2,,, o cone é um subconjunto de €2,, em

1
—r —a
T'h

Bl/rh-
Assim, encontramos uma sequéncia de cones Cj, N By, C (2, convergindo para
um cone C' contido em {v = 0}. Para facilitar a compreensao da construgao desses

cones, consulte a Figura 4.1.

N

d(im; of,) u=0

0{u =0}
Figura 4.1: Cones em {u = 0}.

Além disso, a convexidade de €2 também implica que para h < k,
ye, = nycl=rycll=ycl, ousca, Q, CQ,,
e, consequentemente, C, C C}, pois

1 1
Chy C th C Qrk —d (—JI; 8Ch> <d (—1’; 8QT,€> = (), C (. (49)

Tk Tk

Assim, {C},-, também é uma sequéncia nao-decrescente.
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Para concluir a demonstracao, provaremos que (€2, \ Cy| — 0, uma vez que
isso implica que:

C:}LIEI%Oh :}361%9% ={v=0}.

Primeiramente, note que, se 2 for um cone, entao €2,, é um cone para todo h € N.
Neste caso ja terfamos que {v = 0} é um cone, caso contrario a convexidade de €,
implicaria em

|2\ Cy| — 0.
Por sua vez, o mesmo argumento pode ser aplicado para €2,, com h € N fixo, isto ¢,
EEI% €0, \ Ci
Logo, dado € > 0, existe ky € N tal que
12, \ Ck| < e
Por (4.9), segue que, para todo h > kg, tem-se
Q. \CrL CQ \ Cry = |, \ O] <.

Com isso, conclui-se a demonstragao.

Lema 4.2 Seja u € PL(0) com F satisfazendo (1.1), (1.8) e homogénea. Suponha

que o conjunto de contato {u =0} € um cone com |{u=0}|> 0, entao

u(@) = cyel(@- 2],

em que (x - €)1 defina a parte positiva do produto interno entre x pertencente ao
dominio da u e € € ST, Além disso, cye € R € uma constante satisfazendo 0 < ¢ <

cy.e < C para constantes universais ¢ e C.

Demonstracgao: Pelo Lema 4.1 e a Observacao 4.0.1, obtemos que u é convexa e

consequentemente {u = 0} também.

Afirmagao 4.3 Dado —e € S N d{u =0}, entdo e € {u = 0}.
Usando em particular que —e € {u = 0} ¢ que {u = 0} ¢ um cone, tem-se

u(—te) = 0 para todo ¢t > 0.
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Desde que u > 0 e convexa, entdao para todo z € R?

Dou(z) = thmo @ + tet) —u(@) > 0.
—

De fato, note que tomando ¢ € (0, 1), entao x € [x + te — e, x + te] com
r=(1—t)(x+te) +t(x+te—e),
logo pela convexidade de u
u(x) < (1 —t)u(z + te) + tu(z + te —e)

implicando em,

u(z + te) — u(x)
t

> u(z +te) —u(r +te —e) — u(z) —u(x —e).
Em que, sendo 1 —t<1le % > 0 temos

u(x +te) > (1 —t)u(z+te) = (1 —t)u(z+te)+tu (—%e)
> u((1—=t)(z+te) —e)) =u(x +te —t(x —te) —e)

= u(r+te—e—t(x+te)).
Aplicando o limite com ¢t — 0 obtemos que,
u(z) > u(zr —e)

e portanto, D.u > 0 em R%.
Com a Proposicao 1.4 temos que L,(D.u) < 0. Assim, pelo principio do

maximo temos que:
ou Dou =0 em R ou D.u > 0 em R (4.10)
Suponha que o segundo caso seja verdadeiro, entao existe um k£ > 0 tal que
d 1
D.u > 2k > 0 em R o0 mesmo vale em BoN<u > ———— (4.11)
25“&0

com ag sendo a constante universal do Lema 2.1.

Note que, sendo u € C?_(R?), entao existe uma constante L tal que

|Du(x)| < L para todo x € Bs.
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Assim, fixado = € B, e dados w, v € R? temos

|Dou(z) = Dyu(z)| = [(Du(z) - w) = (Du(z) - v)| = [(Du(z) - w = v)]

IN

| Du(z)||w = v|

< Llw—vl|.

Portanto, D,u(x) é continua em relacio a w. Logo, existe § > 0 dependendo de k,

satisfazendo;
lv—e| <0 = |Dyu(z)] < Llv—e|+|Du(z)
< LS+ |Du(x)|| — €
< L(6+1)
< k+L.
Dai, temos
D,u> —(k+ L) em Bs. (4.12)

Por outro lado, sendo
Dou>2k>0em Byndu>
eU = > €1 DHo u = 2/8+—1a0 .
Pela continuidade de D,u(z) em relagao a diregao v, tem-se que,

1 .
Vo € BoN {u > 25+—1ao} existe 0, > 0,

tal que

v —e| <6, = Dyu(z) >k

e pela continuidade de D,u(-), temos que existe €5, satisfazendo

ly — x| < €5, = Dyu(y) > k.

Sendo,
1
Bg N {u Z 25+—16L0} C U Beéz(a:),
zeB
com B = By N {u > ﬁ} compacto, segue que existem 1,9, - - ,x, € By N

{u > m} tals que,



Portanto, tomando ¢ = min {5, Opys Oy * ,5%} > 0, tem-se que,
1
]V—€|<(5:>D,,u2kem32ﬂ UZm . (413)

Note que, (4.12) e (4.13) colocam D,u com |v — e| < § nas condi¢oes do Lema 2.2,
segue dai, que

D,u>0em B;
ou seja, u nao decresce na direcao v em By, isto é, sendo 0 <t < 1, entao
uw(0 —tr) < u(0) < u(0+ tv).
Com 0 € {u =0} e u > 0, isto implica
—v € {u =0} para todo v € Bs(e) = Bs(—e) C {u =0}

contrariando a hipotese de —e € 9 {u = 0}.

Portanto, D,u = 0 em R?. Segue dai, que {u = 0} é um cone convexo que corta
do espaco R? ao "meio", conjuntos com tal propriedade sdo comumente chamados de
half-space.

Sendo {u = 0} um cone nao tivial e um half-space, entao existe € € S¢! tal que

{(z-8) <0} = {u=0} (4.14)

em que {(x-€) < 0} exprime os pontos do cone.
Dai, segue que u depende diretamente da direcao € € S, pois dado z € R? e

uma direcao e; € R? ortogonal a €, entdo um dos itens abaixo ocorre
i) (z-€) <0= ((z+te;) - €) =(r-€) <0= u(xr +te;) =0 para todo t € R;
it) (x-€) >0= (—x-€) <0 = u(—z+te;) = 0 para todo t € R;

em que, em ambos 0s casos

=0

Dyu(z) = Tim u(x + tej) — u(x)

t—s0 t

pois ou u(z) = 0 (caso i) ou u(—z) = 0 (caso i7) e sendo u € C?, temos
Dju(z) = —Dju(—z) = 0 para todo x € R%.
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Sendo e; uma direcao arbitraria ortogonal a €, temos que, dada uma base ortonormal
d o . o .. ~

{61-}1:1 contendo €, considere € = e; para facilitar a notacao, temos que D;u = 0 em

R?, com j # 1, o que implica

Diju =0 em R,

desde que i e 7 nao sejam simultaneamente iguais a 1.
Portanto, para todo z € R?, tem-se D?u(z) = Dyju(x)e; ® e; o que implica pela
homogeneidade da F
F (D*u(z)) = Dyu(z)F(e1 @ e1).

Por u € PL(0) tem-se F(D?*u(x)) = u’~!, logo
u(z)™! = Dyu(z)F(ey ® ep)
o que reduz o nosso problema a uma equacao diferencial ordinéria do tipo
Yy =cy’ em que c = F(e; ® ey), (4.15)
cuja solucao geral é dada por y = Az? com A e o a serem determinados, note que
Y = Ao’ ' =y = Ao(o — 1)27 ? = (x”)'y_lé = Ao(o — 1)a" 2.

Dali, segue que

2 1 1
0—220(7—1):>0:m:5614:00(0_1):cﬁ(ﬁ_l):c%el.

Portanto, y = ¢, ., 2 ¢ solugao da equagao diferencial ordinéria (4.15) com

C'y,elﬁ(ﬁ — 1)F(€1 (%9 61) = 1.

A partir de (4.14) tem-se

u(z) = erel(a - )47,

]
Proposigao 4.2 Suponha que u € PE(0) com |{u = 0} > 0 para alguma F satisfa-
zendo (1.1), (1.8) e (1.10).

Entao, a menos de uma rotacao, tem-se:

Para todo § > 0, existe r = rs > 0 tal que

D.ou>0 em B,,
(4.16)

Deu > codr®1 em B, N {u > mrﬂ}
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para todo e € S™1 com (e-ey) > 4.
Em que cg € uma constante universal, ag € a constante do lema 2.1 e 5 como
definido em (1.17).

Demonstragao: Tome uma sequencia de valores reais r, — 0 e defina para cada

h € N o reescalonamento

up(z) = Tiﬁu(rh:c).

Entao, a menos de uma subsequéncia,
u, — v localmente uniforme em C?*(RY)

para alguma v € PE(R?).
Pela Proposi¢ao 4.1 o conjunto de contato {v = 0} é um cone. Aplicando o

Lema 4.2, a menos de uma rotagao, tem-se

v= Cw(xl)i'

Em que,
- X > 0

D.v = D.c,[(z - 1))’ = cBl(x - e)]’ e -e)]>0<= (e-e)) >0

—LU1<O

Dov=0
- 1 =0 como v € C3_(R?), entao pela continuidade da derivada, segue que,
D.,v=0.
Assim, temos que v satisfaz

D.v > 0 para todo e € S* ! desde que (e-e1) > 0.

Além disso, existe uma constante universal, ¢ > 0, tal que

D.v > 2¢6 em {v >

> 55 }ﬂ32 desde que (e-e1) > ¢
Qo
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basta observar que para x € {v > ﬁ} N By, tem-se

Dev = c;Bl(x-e)]” (e er)]

= 5vxf1(e -eq)
S 1 1
- Q’BCLD 2

1
—25“@05'

Pela convergéncia u;, — v, tem-se que, para h suficientemente grande,

1 1 1
{Uh Z m} ﬂBg C {U 2 2/6610 > 25+1a0} ﬂBg

Juntamente com a convergéncia das derivadas, temos, para h suficientemente grande

1
D.uy, > ¢ em {uh > WTlCLo} N By (4.17)

em que (e-e1) > 0.
Desde que D.u;, — D.v uniformemente em By e D,v > 0 > —e para todo

e € ST satisfazendo (e - e;) > 0, tem-se, para h suficientemente grande
D.up > —e em Bs. (4.18)

Note que, (4.18) e (4.17) implicam que u;, € PE(R?), satisfaz as condigoes do
Lema 2.2, portanto,

D.up, > 0 em By

para h suficientemente grande e (e - e;) > 0.
|

Observacao 4.0.3 Em suma, acabamos de mostrar que, para hg fixo e suficiente-

mente grande, temos:

D.up, >0 em By
D.up, > cd  em {uho > m} N B;

em que,
1
Deup, = WDeu<rhox) = Tho& € By,
e portanto,
Deu >0 em B,
Dou > cd(rp,)°  em {u > s (Tho)ﬁ’l} N B,,,

o que, tomando rs = 1y, tem-se (4.16).
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Capitulo 5

Regularidade da Fronteira Livre

Neste capitulo, demonstra-se a regularidade para a fronteira livre préxima a
pontos regulares, ou seja, a suavidade da fronteira em uma regiao suficientemente
restrita. Em esséncia, verifica-se que, em pontos proximos a um ponto regular, a
fronteira livre se comporta como o grafico de uma fun¢ao C' (d — 1)-dimensional,

comprovando o Teorema C.

Proposicao 5.1 Seja F' um operador satisfazendo (1.1) e (1.8), juntamente com
(1.9) ou (1.10).

Supondo u € PE(0) com 0 € Reg(u) e |{u=0}|> 0.

Entao, existe p > 0 tal que B,N0{u > 0} C Reg(u).

Demonstracao: Pela demonstragao da Proposicao 4.16, podemos encontrar uma

sequéncia r, — 0, tal que o reescalonamento

1
up(z) = r—ﬁu(rhx) — v, localmente uniforme em C?(R?),
h

para alguma v € PL(0) com {u =0} C {v = 0}. Entdo o blow-up v se encontra nas

condicgoes exigidas pela Proposigao 4.16, logo para § = %, existe r > 0 tal que

Dov>0> —¢ em B,,

1 - 1 — 1 1
DeU > 5007"5 1 > ZCQ?"B 1 em Br N {U > 2ﬁ+1a0,rﬁ > 25+2a0r6}

desde que, e >0, e € ST te (e-e) > %

Pela convergéncia u, — v, temos que para h suficientemente grande

> LI > 1 s
uh_25+2a0r C v_zgﬂaor
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e consequentemente aumentando h se necessario teremos

D.uy, > —¢ em B,,

1
L. pB8-1 B
D.uy, > 1CoT >0 em Brﬂ{uh> 58 QCLOT }

Escolhendo €, dependendo de ¢j, pelo Lema 2.2, tem-se
D.oup, > 0em B 1,

para todo e € S9! satisfazendo (e - e;) > 1.

Fixado hg suficientemente grande

B -1

1 1
D.upy, > 0= D, (—u(rhox)> = ——D.u(rp,x) > 0= D.u(rp,x) >0
Tho T’ho

sendo x € B1,, entao rp,x € B1
2

isto é,
2

Tho’f’7

DN | —

Deu>0em B, para todo e € 591 gatisfazendo (e-e1) >

com p = %rhor.
Isto juntamente com o fato de 0 € 0 {u > 0} garante que, para qualquer dire¢ao

e que nao seja ortogonal a (1/2,0,---,0) € R? tenha-se
0 = u(0) < u(te) desde que te € B, et > 0.

Garantindo, assim, a existéncia de um cone C}] com vértice na origem, tal que C; N
B, C {u >0} N B,, e com angulo a > 0 entre a sua reta geratriz e o eixo z.

Por outro lado, devido ao Lema 4.1 tem-se que {u = 0} é convexo, conclui-se
que, existe um cone Cy, também com vértice na origem (pois 0 € {u =0}), com
angulo 6 > 0 entre a sua reta geratriz e o eixo zy, tal que Co N B, C {u =0} N B,.

Dessa forma, a fronteira livre em B, esta situada entre os dois cones C; e Cy,

permitindo, assim, que a fronteira livre seja interpretada como o grafico de uma fungao
f:B,Nn{x; =0} — R.
A qual satisfaz,
{fu=0}NB,={z; < f(2")} e {u>0}NB, ={z; < f(a)}
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Ty

Cl u>0

{1 =0}

0{u >0}
Figura 5.1: A fungao f entre dois cones.

Além disso, note que f ¢é Lipschitz em 0 € B, N {z; = 0}, pois dado ' €
B, N {x, =0}, tem-se

f) = f(0) = f(y') — C1(0) < Ci(y') — C1(0) < Ley |y — 0
f(0) = f(y) = Ca(0) — f(y) < C5(0) — Co(y') < Le,|y' — 0]
Portanto,

1f(y') = f(0)] < max{Lecy, Loy Hy' — 0] (5.1)

em que L, e L, representam as constantes de Lipschitz associadas as equagoes das
cascas dos cones (' e (Y, respectivamente.

Por fim, com f continua em B,, garantimos que a fronteira livre em B, nao
admite pontos nao regulares, concluindo assim, a demonstragao da proposicao.

|
Observagao 5.0.1 Vale ressaltar mais algumas informagoes sobre as constantes L¢,
e Le,, sendo Cy e Cy cones com vértices na origem e volumes nao nulos, temos que,
1 I - 1

tgla) © T 19(0)

em que a (respectivamente ¢) representa o dngulo entre a reta geratriz do cone Cy

Le, =

(resp. Cy) com o eizo {x1 = 0}.

Geometricamente, podemos tomar 8 = min {a, ¢} > 0 e novos cones com vérti-
ces na origem e dngulo 0 entre a reta geratriz e x1, denominados C| e C, que estao
contidos, respectivamente, em Cy e Cy. Assim, C| e C), possuem a mesma constante
de Lipschitz.

A,
90wl -
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desde que, se tome x{, € {1 = 0} satisfazendo C}(xy) < 6. E, conforme (5.1), tem-se

J

0]

1f(y') — f(0)] < ly" — 0| = 6kly'| para todo y' € B, N{x, =0}

com k= = |z}| constante.

Defini¢ao 5.1 Denotamos Cs o cone com diregao e; = (1,0,---,0) e altura 6 > 0,

ou seja
Cs={z eR" |z e > 2|},

onde &' 1= (xg9, -+ ,Tp).
Definicao 5.2 Dado um cone C, definimos o seu cone dual por
C={yeR"|z-y>0,YVzel}
Proposicao A Para cada 6 > 0, tem-se
Cs = Cuys.

Além disso, existe uma fun¢ao universal nao decrescente w : RT — R, com w(0) = 0,
tal que
ly — e < w(d),

para cada y € Cyy5, with |y| = 1.

Demonstragao: Seja ) o angulo entre a reta geratriz de Cs r(y1) = (y1, dy1) e o vetor

e1, entao

!
sinf = 5M,
|yl

garantido assim que, = 6(§) é ndo-crescente. I facil ver que para o caso § = 1
tem-se § = m/4, pois a reta geratriz serd r(y;) = y;1(1,1). Portanto, se 6 € (0,1),
entao 0(0) < w/4. Além disso, 1/6 > 1, logo 0(1/6) > 7 /4.

€1
Cs

C
m 1/6

—0u % Y1

Figura 5.2: Cones Cjs
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Para o caso 6 € (0,1) considere a figura 5.2 e note que,

Loy -5 2,2
oS (a n 29) _ ((91,15?/1) (yb Z/l)) _ . Y1 — N —0
(1, 590 - [y, =0yl [y, 590 - (1, =6y

Portanto a + 20 = 7/2 o que garante C; = Cy /5. Para § € [1,00) inverta os papéis de

Cs e Cy/5 na figura 5.2 e obtém-se o mesmo resultado.
Na sequéncia, iremos mostrar a desigualdade da Proposicao em questao. De
fato, sendo & > 0 o angulo de abertura entre os vetores unitérios y € Cy/5 e ey,

observamos que
[y — e’ = (1—y1)* +y/]* < (1 - cos0)* + &
veja a figura 5.3. Dai,

€1

n Yy

S
o
8
w0
>
|
|
=

Figura 5.3:

y—al < /0 - I GmoP)e + o2
< Ju-vi—Pp 4o
SN (T  r cRE R
= V2V1-VI-&
Conclufmos a prova denotando w(d) := v2 v/1 — V1 — 6% .

Proposicao 5.2 Assumindo as mesmas hipdteses da proposicao anterior, € possivel

encontrar um p > 0 tal que B, N d{u > 0} € uma hiperficie de classe C".

Demonstragao: Do mesmo argumento da demonstracao anterior, agora utilizando
d > 0 qualquer (ao invés de 6 = 1/2), podemos mostrar a seguinte afirmagao: Dado

0 > 0, existe ps > 0 tal que
D.u > 0em B,,, para cada e € S*! satisfazendo e, - e > . (5.2)
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Ainda com base na demonstragao da proposi¢ao anterior, nota-se que a equagao (5.2)
junto com a Observagao (5.0.1) implicam que 0 {u > 0} é grafico de uma fungao f

Lipschitz em 0 € B,,. Além disso, existe constante universal C' > 0, tal que
|f(2") — f(0)] < CH|a’| para cada ' € B,, N {x; =0}.

Uma vez que § acima ¢é arbitréario, concluimos que, ao tomarmos § — 0, a fungao f é

diferenciavel no ponto 0 com derivada nula, isto é,
Df(0) -2’ = 0 para todo 2’ € {z; = 0}.

Desta forma, temos a existéncia de um plano tangente ao grafico da f (ou seja, um

plano tangente a fronteira d{u > 0}), na origem, com vetor normal

(1, =D f(0))

V1+[DF0)?

Até este ponto, é mostrado que a fronteira livre 9{u > 0} é diferenciavel na origem.

Pela Proposicao 5.1, para cada ponto z € d{u > 0} N B,, com p suficien-
temente pequeno, é possivel construir um plano tangente, de onde denotamos o seu
vetor normal por v,. Assim, como d{u > 0} N B,, é uma superficie de nivel diferen-
ciavel, temos que v, = Vu(z), para cada z € 0{u > 0} N B,,. Desta forma, aplicando
(5.2), temos

v, - e > 0 para cada e € S"! satisfazendo e; - e > 6. (5.3)

Usando a Definigao 5.2, temos que v, pertence ao cone dual C;. Pela Proposigao A,

temos que v, € Cy/5. Portanto, pela Proposigao A, temos que
v, —el] <C9

Como 6 é arbitrario, podemos considerar § < u. Assim, a desigualdade acima vale
para cada z € 0{u > 0} N Bs. Isto nos mostra que a variagdo do vetor normal é

universalmente continua em relagao proximidade da origem. [ ]
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