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Resumo

Fundamentando-se no artigo Nets of conics and associated Artinian algebras

of length 7 ([1]), de Abdallah, Emsalem e Iarrobino, este trabalho classifica as órbitas
sob a ação do grupo de automorfismos do plano projetivo complexo, Aut(P2), sobre as
Grassmannianas G2(S2) e G3(S2), onde S2 denota o espaço dos polinômios homogêneos
de grau 2 em três variáveis com coeficientes complexos. Inicialmente, apresentam-se no-
ções preliminares sobre ações de grupos em espaços projetivos e Grassmannianas. Em
seguida, desenvolve-se a classificação completa das órbitas em G2(S2), determinando
suas dimensões e relações de especialização. A análise estende-se para G3(S2) (cujos
elementos são denominados de redes de cônicas), com destaque para a identificação
geométrica de planos associados às redes de cônicas e suas interseções com a hipersu-
perfície H das cônicas singulares. Finalmente, discutem-se aplicações (da classificação
obtida em G3(S2)) na classificação dos morfismos no plano projetivo de grau 4 e na
classificação de álgebras artinianas graduadas locais com função de Hilbert (1, 3, 3, 0).

Palavras-chave: Grassmanniana, cônicas e cúbicas projetivas, grupo de automorfis-
mos, ação de grupo, álgebras artinianas.



Abstract

According to the article Nets of conics and associated Artinian algebras of length
7 ([1]) by Abdallah, Emsalem, and Iarrobino, this work classifies the orbits under
the action of the automorphism group of the complex projective plane, Aut(P2), on
the Grassmannians G2(S2) and G3(S2), where S2 denotes the space of homogeneous
polynomials of degree 2 in three variables with complex coefficients. First, we present
preliminary notions on group actions in projective spaces and Grassmannians. Next,
we develop the complete classification of orbits in G2(S2), determining their dimensions
and specialization relations. The analysis extends to G3(S2) (whose elements are called
nets of conics), highlighting the geometric identification of planes associated with conic
nets and their intersections with the hypersurface H of singular conics. Finally, we
discuss applications (of the classification obtained for G3(S2)) to classifying degree-4
morphisms in the projective plane and classifying local graded Artinian algebras with
Hilbert function (1, 3, 3, 0).

Keywords: Grassmannian, Projective conics and cubics, Automorphism group, Group
action, Artinian algebras.



Sumário

Introdução 1

1 Noções Preliminares 3

1.1 Quádricas em Pn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 A superfícies de Veronese . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Ação do Grupo Aut(Pn) . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 A ação de Aut(P2) no espaço das cônicas em P2 . . . . . . . . . . . . . 9
1.5 Ação pela esquerda de Aut(P2) em Gl(Sd) . . . . . . . . . . . . . . . . 12

2 Órbitas sob a ação de Aut(P2) em G2(S2) 14

2.1 Preliminares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Classificação das órbitas de G2(S2) . . . . . . . . . . . . . . . . . . . . 20
2.3 Interseção das retas em P(S2) com H . . . . . . . . . . . . . . . . . . . 28
2.4 Dimensão das Órbitas . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Especialização das órbitas em G2(S2) sob a ação de Aut(P2) . . . . . . 39

3 Classificação das órbitas em G3(S2) sob a ação de Aut(P2) 44

3.1 Associação do plano πW ⊆ P5 a cada W ∈ G3(S2) . . . . . . . . . . . . 44
3.2 ΓW é não singular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 ΓW é singular e irredutível . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 ΓW é uma cúbica redutível . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 Órbitas dos pontos W ∈ G3(S2) tais que πW ⊂ HP5 . . . . . . . . . . . 82
3.6 Sobre a dimensão das órbitas de G3(S2) . . . . . . . . . . . . . . . . . . 84
3.7 Sobre a especialização das órbitas em G3(S2) sob a ação de Aut(P2) . . 86

4 Aplicações 87

4.1 Morfismo de P2 em P2 de grau 4 . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Classificação das K-álgebras artinianas graduadas locais com função de

Hilbert (1, 3, 3, 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

x



4.2.1 Deformação de álgebras com função de Hilbert (1, 3, 3, 0) em uma
álgebra suave . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A Noções de Geometria Algébrica 96

B Ação de grupos e resultados de MCP 115

C Interseções e multiplicidades de curvas planas 121

D Software MAXIMA 124

Referências Bibliográficas 126

xi



Notações

A seguir, listamos algumas notações utilizadas neste trabalho.

• Pn - denota o n-espaço projetivo complexo.

• Aut(Pn) = {φ : Pn −→ Pn | φ é uma mudança de coordenadas projetivas (MCP )}.

• Gd(V ) = {W | W é um subespaço de V de dimensão d} - A d−Grassmaniana asso-
ciada a V .

• C := P(S2) - o espaço das cônicas em P2.
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Introdução

A teoria das ações de grupos em variedades algébricas tem desempenhado um
papel fundamental no desenvolvimento da geometria algébrica e suas aplicações (cf.
[15]). Por exemplo, se S = C[x0, x1, x2] e Sd é o subespaço dos polinômios homogêneos
de grau d, então o grupo das mudanças de coordenadas projetivas (MCP ) em P2,
Aut(P2), nos permite classificar as cônicas C = P(S2) (cf. Exemplo A.0.15), cúbicas
(cf. [9]) e assim por diante. Esta dissertação, baseada no artigo Nets of conics and

associated Artinian algebras of length 7 de Nancy Abdallah, Jacques Emsalem e
Anthony Iarrobino ([1]), tem como objetivo investigar a classificação das órbitas sob
a ação do grupo Aut(P2) nas Grassmannianas G2(S2) e G3(S2), bem como apresentar
algumas aplicações associadas no caso de G3(S2).

Historicamente a classificação das órbitas em G2(R2) sendo R = C[x0, . . . , xn] sob
a ação do grupo Aut(Pn) é frequentemente atribuída ao matemático italiano Corrado
Segre (1863-1924). Entretanto, há registros de resultados anteriores dessa classificação,
conforme citado por Igor Dolgachev [5]; Karl Weierstrass fornecera uma classificação
em seu artigo de 1868 ([22]).

Sobre a classificação das órbitas em G3(S2) (cujos elementos são denominados de
redes de cônicas), um dos seus precursores foi o matemático francês Camille Jordan
(1838-1922). Em 1906 ele apresentou uma tabela com 13 classes de representantes na
qual constam omissões (cf. [13]). Trabalhos posteriores, como os de Albert Wilson
(1914, [23]) e Alan Campbell (1928, [4]) exploraram casos modulares e corpos finitos,
os quais foram revistos e corrigidos por Corrado Zanella (2012, [24]).

A classificação completa de redes de cônicas sobre C e R foi estabelecida em 1977
por Charles Wall [21], mediante técnicas de germes de aplicações e abordagens algébri-
cas. Posteriormente, Naoto Onda (2021, [16]) estendeu essa classificação de redes de
cônicas planares para corpos de característica arbitrária (exceto 2 e 3), relacionando-as
com álgebras artinianas. No entanto, o trablaho de Onda revela uma equivalência não
notada pelo autor entre classificação de redes de cônicas e álgebras artinianas graduadas
locais com função de Hilbert (1, 3, 3, 0).

Este trabalho está organizado em quatro capítulos e quatro apêndices.
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Introdução

No Capítulo 1, introduzem-se noções preliminares, incluindo: a identificação entre
os grupos Aut(Pn) e PGLn(C), a ação do grupo Aut(Pn) sobre espaços de polinômios
homogêneos e Grassmannianas associadas ao espaço das cônicas projetivas. Destaca-
se também a ação de Aut(P2) no espaço das cônicas C, que é identificado com P5, e
a caracterização da hipersuperfície H que parametriza as cônicas singulares, a qual
desempenhará um papel fundamental para o desenvolvimento deste trabalho.

No Capítulo 2, classificam-se as órbitas em G2(S2) sob a ação de Aut(P2). Utili-
zando ferramentas geométricas e algébricas (incluindo o teorema de Bézout e a análise
de interseções entre duas cônicas), determinam-se todas as órbitas, suas dimensões e
relações de especialização. Além disso, estudam-se as interseções das retas associa-
das a essas órbitas com a hipersuperfície H, obtendo-se informações cruciais para o
desenvolvimento do capítulo subsequente.

No Capítulo 3, estende-se a classificação às órbitas em G3(S2). A cada ponto W em
G3(S2) associa-se um plano πW ⊂ P5, e ΓW := πW∩HP5 . ΓW pode ser uma curva cúbica
ou o próprio plano πW (se contido em HP5). Quando ΓW é uma cúbica, sua geometria
(particularmente as singularidades e componentes irredutíveis) permite distinguir ór-
bitas distintas. Vale salientar que o software de computação algébrica MAXIMA [[14]]
foi reiteradamente ultilizado neste capítulo, principalmente para determinar a equação
das cúbicas ΓW e realizar cálculos complementares à classificação em questão.

Já no Capítulo 4, aplica-se a classificação (estabelecida no Capítulo 3) para clas-
sificar os morfismos de P2 em P2 de grau 4. Adicionalmente, discute-se sucintamente
sua relação com a classificação de álgebras artinianas graduadas locais com função de
Hilbert (1, 3, 3, 0).

Por fim, incluem-se quatro apêndices para tornar o texto autossuficiente facilitando
o acesso aos leitores menos familiarizados com os conceitos abordados. No Apêndice A
constam noções básicas de Geometria Algébrica, dentre as quais destacam-se a apresen-
tação algébrica e geométrica das cônicas e cúbicas em P2 (baseando-se nas referências
[17], [8], [11] e [20]). No Apêndice B, apresentam-se resultados sobre ação de grupos e
mudança de coordenadas projetivas. No Apêndice C, aborda-se conceitos relacionados
à teoria de interseção de curvas em P2, tais como o teorema de Bézout. Por último,
no Apêndice D apresentam-se alguns comandos do software MAXIMA que facilitam
os cálculos em diversos casos, principalmente no Capítulo 3.

Este trabalho oferece uma abordagem sistemática para o estudo de ações de gru-
pos em Grassmannianas, motivando e abrindo caminho para investigações futuras em
contextos mais amplos.

2



Capítulo 1

Noções Preliminares

Neste trabalho, nosso corpo base é C, o conjunto dos números complexos. Para este
capítulo, introduzimos alguns conceitos e ferramentas matemáticas básicas que serão
utilizadas em um desenvolvimento futuro. Começamos com um breve resumo sobre as
quádricas em Pn.

1.1 Quádricas em Pn

Definição 1.1.1. Uma hipersuperfície quádrica em Pn é definida por uma forma qua-
drática não nula, ou seja, um polinômio homogêneo de grau dois,

Q =
n∑

i,j=0

aijxixj

.

O próximo resultado garante uma classificação para as quádricas em Pn (sobre
certas condições) usando mudanças de coordenadas projetivas (MCP ).

Teorema (Forma Normal das Quádricas) 1.1.1. Seja K um corpo de característica

diferente de 2. Se f =
n∑

i,j=0

aijxixj ∈ K[x0, . . . , xn] um polinômio homogêneo não nulo

de grau 2 então Z(f) é projetivamente equivalente a uma quádrica definida por uma
equação da seguinte forma

b0x
2
0 + · · ·+ bnx

2
n = 0;

em que b0, . . . , bn ∈ K, não todos nulos.

Demonstração. Confira o Teorema 1.2 (p. 4 em [7] )

De acordo com a forma normal dada no Teorema acima, alguns dos coeficientes bi
podem ser nulos. Logo, por uma MCP , podemos assumir que bi ̸= 0 se 0 ≤ i ≤ m e

3



1. Noções Preliminares

bi = 0 para i > m. Assim, uma quádrica é projetivamente equivalente a uma quádrica
dada pela equação representada como

b0X
2
0 +· · ·+ bmX

2
m = 0, b0, . . . , bm ̸= 0. (1.1)

onde Xi =
n∑

j=0

cijxj para todo i, de forma que f vista nas novas variáveis tenha a forma

b0X
2
0 +· · ·+ bnX

2
n = 0.

Definição 1.1.2. Seja V ⊂ Pn uma hipersuperfície quádrica.

1. Se V é definida por uma equação como em (1.1), diremos que V tem posto m+1;

2. De forma geral, se V é uma quádrica qualquer, diremos que V tem posto m+ 1

se V é projetivamente equivalente a uma quádrica definida por uma equação com
em (1.1).

Observação 1.1.1. Dado f =
n∑

i,j=0

aijxixj, podemos sempre supor que aij = aji.

De fato, basta considerar dij = (aij + aji)/2, dai reescrevemos f =
n∑

i,j=0

dijxixj com

dij = dji. Além disso, podemos representar f através de multiplicação de matrizes, pois
os coeficientes de f formam uma matriz (n+ 1)× (n+ 1), A = (aij), da qual podemos
supor que é simétrica. Seja X o vetor coluna com entradas x0, . . . , xn. Teremos

f(X) = X tAX,

onde X t é a transposta do vetor X.

Proposição 1.1.1. Seja f = X tAX, em que A é uma matriz simétrica (n+1)×(n+1).
Então, o posto da superfície quádrica Z(f) é igual o posto da matriz A.

Demonstração. Veja a Proposição 1.2 ( p. 6 item (ii) em [7])

Dessa forma, quando K é um corpo algebricamente fechado, o Teorema 1.1.1 e a
Proposição 1.1.1 classifica as quádricas de acordo co seu posto mediante o seguinte
resultado.

Proposição 1.1.2. Se K é um corpo algebricamente fechado, então uma hipersuperfície
quádrica de posto m+ 1 é projetivamente equivalente a quádrica definida pela equação

m∑
i=0

x2i .

Demonstração. Veja a Proposição 1.4 ( p. 7 em [7])

4



1. Noções Preliminares

1.2 A superfícies de Veronese

Considere A = K[x0, . . . , xn] um espaço vetorial sobre K. Para cada d ≥ 0 inteiro,
seja Ad o subespaço vetorial N−dimensional de A gerado por monômio de grau d onde

dimAd =

(
n+ d

d

)
. Dessa forma, podemos definir

PN−1 = P(Ad).

Considere agora S = C[x0, x1, x2]. Com isso, particularmente temos P2 = P(S1) e
P5 = P(S2).

Dessa forma, dado um ponto [a0 : a1 : a2] ∈ P2 podemos interpretar tal ponto com
uma reta

l : a0x0 + a1x1 + a2x2 = 0,

além disso, para um ponto [a00 : a01 : a02 : a11 : a12 : a22] ∈ P5 podemos identifica-lo
como uma cônica ∑

aiix
2
1 +

∑
i<j

2aijxixj = 0.

Ainda mais, dado F =
∑

aiix
2
1 +

∑
i<j

2aijxixj = 0 ∈ P5, podemos representa-lo

através de uma matriz simétrica associada a F como
a00 a01 a02

a01 a11 a12

a02 a12 a22

 (1.2)

a menos de um múltiplo escalar, é claro.
Agora, lembrando que a ação de Aut(P2) em P5 = P(S2) determina três órbitas, que

se relaciona com o posto da matriz. Dessa forma, essas órbitas podem ser representadas
respectivamente pelos conjuntos de pontos em P5 :

∆ = {F | F = l2 para alguma reta l} (1.3)

H = {F | F é singular} (1.4)

P5 −H = {F | F é não singular} (1.5)

onde H é a hipersuperfície cúbica definida pela equação

detMF = a00a11a22 + 2a01a02a12 − a202a11 − a00a
2
12 − a201a22 = 0. (1.6)

Ainda mais, ∆ = Z(det(ai|j)) onde (ai|j) são os menores 2× 2 da matriz (1.2).

5



1. Noções Preliminares

Agora, seja a aplicação

ν : P2 −→ P5 (1.7)

l 7−→ l2 (1.8)

da qual temos em coordenadas [a0 : a1 : a2] ∈ P2 a seguinte interpretação

[a0 : a1 : a2] 7−→ [a20 : a0a1 : a0a2 : a
2
1 : a1a2 : a

2
2].

Note que, ν está bem definida e é injetiva. Com isso, definimos a superfície de

Veronese como sendo a imagem da aplicação ν. Dessa forma, por definição obtemos
que ∆ = ν(P2). Além disso, podemos obter pela matriz jacobiana de H que ∆ =

Sing(H).
Agora, apresentamos os seguintes resultados relacionados a ação de grupos, vale

ressaltar que em muitos dos artigos que utilizamos para desenvolver este trabalho
(principalmente [1]) é utilizado o grupo projetivo geral linear PGL2(C) em lugar de
Aut(P2), o que nos motiva mostrar em seguida que PGLn(C) ∼= Aut(Pn).

1.3 Ação do Grupo Aut(Pn)

Seja Mn+1(C) o conjunto das matrizes quadradas de orden n + 1 com entradas
complexas. Considere o grupo GLn+1(C) = {A ∈ Mn+1(C) | A é invertível} com o
produto usual de matrizes. Seja D = {λI ∈ GLn+1(C) | λ ̸= 0, λ ∈ C} sendo I a
matriz identidade de ordem n+1. Sendo D um subgrupo normal de GLn+1(C), vamos
considerar o grupo quociente:

PGLn(C) :=
GLn+1(C)

D
.

Observe que, se A,B ∈ PGLn(C), então

A = B ⇐⇒ A ·B−1 ∈ D ⇐⇒ A ·B−1 = λI para algum λ ∈ C ⇐⇒ A = λB.

Lembremos que φ : Pn −→ Pn é uma mudança de coordenadas projetivas (MCP )

se existe T ∈ Aut(Cn+1) := {T : Cn+1 −→ Cn+1 | T é um isomorfismo C-linear } tal
que φ([v]) = [T (v)] para qualauer [v] ∈ Pn. O conjunto constituído pelas MCP em Pn,
que denotaremos por Aut(Pn), é um grupo com a operação de composição de funções.
O leitor encontrará no Apêndice A os principais resultados que utilizaremos no texto
que dizem respeito ao grupo Aut(Pn) e tópicos afins.

6



1. Noções Preliminares

Notação 1.3.1. Para cada A ∈ GLn+1(C), defina TA ∈ Aut(Cn+1) por v 7−→ A · v.
Vamos denotar por φA ∈ Aut(Pn) o automorfismo definido por TA.1

Proposição 1.3.1. Com as notações acima. Verifica-se que,

ψ : PGLn(C) −→ Aut(Pn)

A 7−→ φA

está bem definida e é um isomorfismo de grupos.

Demonstração. Sejam A,B ∈ PGLn(C).
ψ está bem definida e é injetiva. Observe que:

A = B ⇐⇒ A = λB para algum λ ̸= 0 em C ⇐⇒ TA = λTB ⇐⇒ φA = φB.

ψ é sobrejetora. Dada φ ∈ Aut(Pn), existe T ∈ Aut(Cn+1) tal que φ([v]) = [T (v)] para
todo [v] ∈ Pn. Considere α = {e1, . . . , en+1} a base canônica de Cn+1 e A = [T ]αα = (aij)

a matriz associada a T da base α na base α. Assim,

T (ej) =
n+1∑
i=1

aijei para j = 1, . . . , n+ 1.

De fato, verifica-se que φ = φA uma vez que T (v) = A · v para todo2 v em Cn+1.
ψ é um homomorfismo.

Note que, A ·B = AB e que φAB é o automorfismo correspondente a A ·B, isto é,
φAB([v]) = [(AB) · v]. Assim, ψ(AB)([v]) = φAB([v]) = [(AB) · v]. Entretanto,

[(AB) · v] = [A(B · v)] = ψ(A)([B · v]) = ψ(A)(φB([v])) = (ψ(A) ◦ ψ(B))([v])

Portanto, de posse dessa identificação entre os grupos Aut(Pn) e PGLn(C), pode-
mos utilizar qualquer um deles no que segue do texto. Vale salientar que no artigo que
utilizamos como base deste trabalho os autores utilizam o grupo PGLn(C) (cf. [1]).
Entretanto, optamos por trabalhar com o grupo Aut(Pn).

1Observe que se T ∈ Aut(Cn+1) e A = [T ]αα é a matriz associada a T da base α na base α, sendo
α a base canônica de Cn+1. Então, T = TA.

2Visto que, se v = (v1, . . . , vn+1) ∈ Cn+1, então T (v) =
n+1∑
j=1

vjT (ej) =

n+1∑
j=1

n+1∑
i=1

vjaijej = A · v.

7



1. Noções Preliminares

Ação de Aut(Pn) em Pn

Nesta subseção, considere S = C[x0, . . . , xn] com a graduação usual. A seguir
vamos considerar a ação pela esquerda • : Aut(Pn) × Pn −→ Pn dada por φ • [v] :=
φ([v]).

Proposição 1.3.2. A ação • é trasitiva, ou seja, O[e1] = Pn sendo e1 = (1, 0, . . . , 0).

Demonstração. A seguir, mostraremos que para quaisquer p ∈ Pn, existe φ ∈ Aut(Pn)

tal que φ([e1]) = p, ou seja, p ∈ O[e1].
Sabemos que o ideal I({p}) = ⟨L1, . . . , Ln⟩ com {L1, . . . , Ln} ⊂ S1 LI. Com-

pletando {Li}ni=1 a uma base α = {L0, L1, . . . , Ln} de S1 = [x0, . . . , xn]. Logo, a
Proposição A.0.3 nos garante que existe um único T ∈ Aut(Cn+1) tal que T−1

• xi = Li

para i = 0, . . . , n. Seja φ ∈ Aut(Pn) determinada por T . Por fim observe que

φ({[e1]}) = φ(Z(x1, . . . , xn)) = Z(T−1
• x1, . . . , T

−1
• xn) = Z(L1, . . . , Ln) = {p}.

Ação de Aut(Pn) em P(Sd) sendo d ≥ 1

Observe que • : Aut(Pn)× P(Sd) −→ P(Sd) dada por

(φ, [F ]) 7−→ [T•F ],

se φ ∈ Aut(Pn) for determinada por T ∈ Aut(Cn+1), define uma ação pela esquerda
do grupo Aut(Pn) no espaço P(Sd).

Exemplo 1.3.1. d = 1. A ação de Aut(Pn) em P(S1) é transitiva.
Se [L] ∈ P(S1), então podemos completar {L} a uma base {L,M1, . . . ,Mn} de

S1 = [x0, x1, . . . , xn]. Novamente, segue da Proposição A.0.3 que existe T ∈ Aut(Cn+1)

tal que T•x0 = L. Logo, [L] ∈ O[x0], o que implica em que O[x0] = P(S1).

d > 1. A ação de Aut(Pn) em P(Sd) não é transitiva.
De fato, sejam [F1], [F2] ∈ P(S2) tal que [F1] é singular e [F2] é não singular. Daí,

como MCP preserva singularidades (pela Proposição B.0.3), segue que para qualquer
φ ∈ Aut(P2) determinada por T ∈ Aut(C3) temos que [T•F1] é singular. Sendo assim,
não existe φ ∈ Aut(C) tal que [T•F1] = [F2].

Na próxima seção, vamos focar na ação de Aut(P2) no espaço das cônicas em P2,
uma vez que este espaço e suas órbitas têm um papel preponderante neste texto.
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1.4 A ação de Aut(P2) no espaço das cônicas em P2

Lembremos que uma cônica em P2 é um elemento de C := P(S2) sendo S2 a com-
ponente homogênea de grau dois em S = C[x0, x1, x2]. De acordo com as notações da
seção 1.2, temos

Proposição 1.4.1. Considere as órbitas O0 = O[x2
0]
, O1 = O[x2

0+x2
1]

e O2 = O[x2
0+x2

1+x2
2]

sob a ação de Aut(P2) em C. Então verifica-se que

1. C = O0 ∪̇O1 ∪̇O2

2. H = O0 ∪̇O1 e ∆ = O0.

Demonstração. Para a demonstração do item 1., confira o Exemplo B.0.1 no Apêndice
B.

Para ∆ = O0, basta seguir a construção na demonstração do item 1. do Exemplo
B.0.1. Por outro lado, sendo C = O0 ∪̇O1 ∪̇O2 com O2 correspondendo as cônicas
não singulares, então H ⊆ O0 ∪̇O1. Analogamente, se [F ] ∈ C é singular, segue que
[F ] ∈ O0 ou [F ] ∈ O1, ou seja, H = O0 ∪̇O1 .

A seguir vamos identificar o espaço das cônicas C com o espaço projetivo P5. Para
isso, vamos utilizar o mapa Ω : P5 −→ C dado por:

[a0 : a1 : a2 : a3 : a4 : a5] 7−→ [a0x
2
0 + a1x0x1 + a2x0x2 + a3x

2
1 + a4x1x2 + a5x

2
2]. (1.9)

Mostraremos a seguir que Ω nos permitirá identificar H com uma hipersuperfície
singular de grau 3 de P5. Para isso, observe que a todo F ∈ S2 podemos associar uma
matriz simétrica, conforme indicamos na próxima definição.

Definição 1.4.1. Se F = a0x
2
0 + a1x0x1 + a2x0x2 + a3x

2
1 + a4x1x2 + a5x

2
2 ∈ S2, então

vamos associar F à matriz simétrica

MF =


a0

1

2
a1

1

2
a2

1

2
a1 a3

1

2
a4

1

2
a2

1

2
a4 a5

 .

De fato, verifica-se que X t ·MF ·X = F se X t =
[
x0 x1 x2

]
.

Lema 1.4.1. Considere F ∈ S2 não nulo. F é singular se, e somente se, det(MF ) = 0.

Demonstração. Seja F = a0x
2
0 + a1x0x1 + a2x0x2 + a3x

2
1 + a4x1x2 + a5x

2
2 ∈ S2.
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1. Noções Preliminares

Se p = [p0 : p1 : p2] ∈ P2 e ∂iF =
∂F

∂xi
, então tem-se que3

p ∈ Sing(F ) ⇐⇒


∂0F (p) = 2a0p0 + a1p1 + a2p2 = 0

∂1F (p) = a1p0 + 2a3p1 + a4p2 = 0

∂2F (p) = a2p0 + a4p2 + 2a5p2 = 0

⇐⇒


a0

1

2
a1

1

2
a2

1

2
a1 a3

1

2
a4

1

2
a2

1

2
a4 a5

 ·


p0

p1

p2

 =


0

0

0



⇐⇒ detMF = 0

Considere f ∈ C[y0, y1, y2, y3, y4, y5] dado por

f = y0y3y5 +
1

4
y1y2y4 −

1

4
y22y3 −

1

4
y0y

2
4 −

1

4
y21y5. (1.10)

Para uma construção futura, usaremos os seguintes resultados com as identificações
tanto em P5 quanto em C.

Corolário 1.4.1. Sejam HP5 := Ω−1(H) e f definido em (1.10), então verifica-se que
HP5 = Z(f) ⊆ P5.

Demonstração. Considere P = [a0 : a1 : a2 : a3 : a4 : a5] ∈ P5. Logo, Ω(P ) = [F ] ∈ C
sendo F = a0x

2
0 + a1x0x1 + a2x0x2 + a3x

2
1 + a4x1x2 + a5x

2
2. Agora, observe que

detMF =

∣∣∣∣∣∣∣∣∣∣∣∣

a0
1

2
a1

1

2
a2

1

2
a1 a3

1

2
a4

1

2
a2

1

2
a4 a5

∣∣∣∣∣∣∣∣∣∣∣∣
= f(a0, a1, a2, a3, a4, a5).

Entretanto, o Lema 1.4.1 nos garante que F é singular se, e somente se, detMF = 0.
Portanto, P ∈ HP5 se, e somente se, f(P ) = 0.

Lema 1.4.2. Seja ∆P5 := Ω−1(∆). Verifica-se que Sing(HP5) = ∆P5.

3Lembre que, p ∈ Sing(F ) se, e somente se
∂F

∂xi
(p) = 0 para todo i ∈ {0, 1, 2}.
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Demonstração. Vamos começar mostrando que

∆P5 =
{
[b20 : 2b0b1 : 2b0b2 : b

2
1 : 2b1b2 : b

2
2] ∈ P5 | [b0 : b1 : b2] ∈ P2

}
.

De fato, segue da Proposição 1.4.1 que ∆ = {[L2] | L ∈ S1 não nulo}. Logo, basta
observar que se L = b0x0 + b1x1 + b2x2 ∈ S1 é não nulo, então

L2 = b20x
2
0 + 2b0b1x0x1 + 2b0b2x0x2 + b21x

2
1 + 2b1b2x1x2 + b22x

2
2.

Por simplicidade, considere g = 4f e ∂ig =
∂g

∂yi
para i = 0, . . . , 5 sendo f definido como

na Equação (1.10). Logo,

p ∈ Sing(HP5) ⇐⇒ ∂ig(p) = 0, ∀ i ∈ {0, 1, 2, 3, 4, 5}.

Para p = [b20 : 2b0b1 : 2b0b2 : b21 : 2b1b2 : b22] verifica-se que ∂ig(p) = 0 para todo i.
Assim, ∆P5 ⊆ Sing(HP5).

Por outro lado, temos que

∂0g = 4y3y5 − y24 (1.11)

∂1g = y2y4 − 2y1y5 (1.12)

∂2g = y1y4 − 2y2y3 (1.13)

∂3g = 4y0y5 − y22 (1.14)

∂4g = y1y2 − 2y0y4 (1.15)

∂5g = 4y0y3 − y21. (1.16)

Assim, se p = [a0 : . . . : a5] ∈ Sing(HP5), então temos dois casos a analisar:
Caso 1 : a0 ̸= 0. Podemos supor que a0 = 1. Logo, segue de (1.14), (1.15) e (1.16)

que a5 =
1

4
a22, a4 =

1

2
a1a2 e a3 =

1

4
a21. Dessa forma,

p = [1 : a1 : a2 :
1

4
a21 :

1

2
a1a2 :

1

4
a22] = [4 : 4a1 : 4a2 : a

2
1 : 2a1a2 : a

2
2].

Logo, p ∈ ∆P5 .
Caso 2 : a0 = 0. Segue das Equações (1.14) e (1.16) que a1 = a2 = 0 e da Equação
(1.11) que a24 = 4a3a5. Observe que, podemos parametrizar os pontos do suporte da
cônica [4a3a5 − a24] ∈ C por [b21 : 2b1b2 : b22]. Logo, p = [0 : 0 : 0 : b21 : 2b1b2 : b22] ∈
∆P5 .

Na próxima seção, vamos apresentar a ação Aut(P2) na Grassmanniana Gl(Sd)

sendo nosso foco o caso em que l ∈ {2, 3}.
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1.5 Ação pela esquerda de Aut(P2) em Gl(Sd)

Considere a ação de Aut(P2) em Gl(Sd)

• : Aut(P2)×Gl(Sd) −→ Gl(Sd)

(φ,W ) 7−→ φ •W := {T•F ∈ Sd | F ∈ W}

sendo φ determinada por T ∈ Aut(C3).

Observação 1.5.1. Considere as notações acima. A função "•" está bem definida e
define uma ação pela esquerda do grupo Aut(P2) em Gl(Sd).

De fato, se {F1, . . . , Fl} é uma base de W ∈ Gl(Sd), então {T•F1, . . . , T•Fl} é
um conjunto de elementos linearmente independente (LI) 4 e [T•F | F ∈ W ] =

[T•F1, . . . , T•Fl],5 o que nos permite concluir que φ • W = [T•F1, . . . , T•Fl] e conse-
quentemente φ •W ∈ Gl(Sd).

Exemplo 1.5.1. Se Wt = [x20 − tx21, x
2
2] ∈ G2(S2) com t ∈ C não-nulo, então existe

φ ∈ Aut(P2) tal que φ •Wt = [x0x1, x
2
2].

De fato, considere s ∈ C tal que t = s2 e observe que x20−tx21 = (x0−sx1)·(x0+sx1).
Visto que {x0 − sx1, x0 + sx1, x2} é uma base de S1 = [x0, x1, x2]. Então, a Proposição
A.0.3 nos garante que existe T ∈ Aut(C3) tal que T•(x0− sx1) = x0, T•(x0+ sx1) = x1

e T•x2 = x2. Assim, basta considerar φ ∈ Aut(P2) determinada por tal T , uma vez
que

φ •Wt = [T•(x
2
0 − tx21), T•x

2
2] = [T•(x0 − sx1) · T•(x0 + sx1), (T•x2)

2] = [x0x1, x
2
2].

Porém, para t = 0 tem-se W0 = [x20, x
2
2] e não existe φ ∈ Aut(P2) que atenda

ao resultado. Pelo absurdo suponha que existe tal MCP , geometricamente deveria
acontecer a situação descrita na Figura 1.1

4De fato, visto que T• é um isomorfismo linear, segue que
l∑

i=1

aiT•Fi = 0 =⇒ T•

( l∑
i=1

aiFi

)
= 0 =⇒

l∑
i=1

aiFi = 0 =⇒ ai = 0 ∀ i.

5De fato, usando novamente a linearidade de T•, segue que

F ∈W =⇒ F =

l∑
i=1

αiFi =⇒ T•F =

l∑
i=1

αiT•Fi =⇒ T•F ∈ [T•F1, . . . , T•Fl].
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Figura 1.1

x20 = 0

x22 = 0

4
x1 = 0

x0 = 0

x22 = 0

2

2

φ−→

o que é um absurdo pois uma MCP preserva a cardinalidade do conjunto interseção
de duas curvas no plano projetivo e as multiplicidades dos respectivos pontos.
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Capítulo 2

Órbitas sob a ação de Aut(P2) em

G2(S2)

O foco deste capítulo é determinar as órbitas sob a ação pela esquerda do grupo
Aut(P2) na Grassmanniana de planos em S2 sendo S = C[x0, x1, x2]. Uma vez que
essas órbitas estejam determinadas iremos calcular sua dimensão e especializações.

Vale salientar, que cada um dos pontos em G2(S2) determina uma reta no P5 ∼= C
das cônicas, e que a determinação dos pontos de interseção dos representantes das
órbitas listadas no Teorema 2.2.1 com a hipersuperfície cúbica H (que parametriza as
cônicas singulares) irão ter um rol importante na classificação das órbitas em G3(S2)

sob a ação de Aut(P2), que desenvolveremos no Capítulo 3.
A seguir, vamos introduzir algumas notações e observações importantes para o

desenvolvimento deste capítulo.

2.1 Preliminares

Observações 2.1.1. Considere W ∈ G2(S2) e α = {F,G} base de W .

(a) Se β = {F1, G1} for uma outra base de W , então

mdc(F,G) = mdc(F1, G1) e Z(F ) ∩ Z(G) = Z(F1) ∩ Z(G1).

(b) Se mdc(F,G) = 1, então Z(F )∩Z(G) é não vazio e consiste de no máximo de 4
pontos distintos. Entretanto, o teorema de Bézout nos garante que Z(F )∩Z(G)

consiste de 4 = 2 · 2 pontos, se os pontos forem contados com multiplicidade.1

1Se p ∈ Z(F )∩Z(G), então denotaremos por Ip(F,G) a multiplicidade de interseção de F e G em
p (confira Definição C.0.3)
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

A seguir, considere X = Z(F ) ∩ Z(G). Temos as seguintes possibilidades:

Tabela 2.1: Possibilidades para interseções de cônicas em P2.

#(X) Ip(F,G) Interpretação Geométrica
Ambas não
singulares Singular e não

singular
Ambas singulares

4

1

1

1

1

1 1

1 1

1 1

1 1

1

1

1

1

3

1

2

1

2

1

1

2

1 1

ou
2

1

1

2

1
1

2

2

1

2

3

ou

2 2

2 2

3

1

2

2

1
4

4

4
4

4

4
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

(c) Se mdc(F,G) ̸= 1, então F = L ·M e G = L ·N com L,M,N ∈ S1. Tem-se que:

Condição Interpretação geométrica de Z(F ) ∩ Z(G)

{L,M,N} LI.

{L,M,N} LD.

A proposição a seguir será muito utilizada na determinação das órbitas de um
ponto [F,G] ∈ G2(S2) tal que F ou G são não singulares.

Proposição 2.1.1. Considere [F ] ∈ C não singular e C = Z(x22 − x0x1). Então,

1. Existe T ∈ Aut(C3) tal T•F = x22 − x0x1;

2. A função f : P1 −→ C dada por [a : b] 7−→ [a2 : b2 : ab] é uma bijeção;

3. Existe φ ∈ Aut(P2) tal que φ(C) = C, φ(p) = [1 : 0 : 0] e φ(q) = [0 : 1 : 0], para
quaisquer p ̸= q em C.

Demonstração. 1. Segue do Exemplo A.0.15 que existe R ∈ Aut(C3) tal que
R•F = x20+x

2
1+x

2
2. Entretanto, x20+x

2
1+x

2
2 = x22+(x0+ix1)·(x0−ix1). Assim, a Propo-

sição A.0.9 nos garante que existe um único R1 ∈ Aut(C3) tal que: (R1)•(x0+ix1) = x0,
(R1)•(x0 − ix1) = x1 e (R1)•(x2) = x2. Logo, temos que (R1)•(R•F ) = x22 − x0x1.

2. Note que f está bem definida. Assim, a seguir iremos mostrar que f é uma bijeção.

• f é injetora: Considere [a : b], [c : d] ∈ P1 tais que [a2 : b2 : ab] = [c2 : d2 : cd].

Assim, existe um λ ̸= 0 em C tal que

a2 = λc2, b2 = λd2 e ab = λcd. (2.1)

Temos duas possibilidades: (i) a = 0 ou (ii) a ̸= 0.

(i) Se a = 0 então segue de (2.1) que c = 0. O que implica em b · d ̸= 0. Daí,
concluímos que [0 : b] = [0 : 1] = [0 : d].

(ii) Se a ̸= 0 então [a : b] = [a2 : ab]
(2.1)
= [λc2 : λcd] = [c : d].

• f é sobrejetora: Considere p = [a0 : a1 : a2] ∈ C. Logo, a22 = a0a1. A seguir
vamos analisar as possibilidades: (i) a0 = 0 ou (ii) a0 ̸= 0.

(i) Se a0 = 0, então a2 = 0 e p = [0 : 1 : 0] = f([0 : 1]).

(ii) Se a0 ̸= 0, então p = [a20 : a0a1 : a0a2] = [a20 : a
2
2 : a0a2] = f([a0 : a2]).
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

3. Queremos determinar φ ∈ Aut(P2) tal que tal que φ(C) = C, φ(p) = [1 : 0 : 0] e
φ(q) = [0 : 1 : 0] para quaisquer p ̸= q em C. A ideia que vamos utilizar é a seguinte:
Considere a reta tangente2 a C em p, Tp(C) = Z(Lp), a reta tangente a C em q,
Tq(C) = Z(Lq) e a reta secante a C por p e q, ℓp,q = Z(Lp,q), conforme ilustrado a
seguir

Figura 2.1 Retas tangentes a C em p e q.

TpC

TqC
Lp,q

q

p

Sabemos que existe um único R ∈ Aut(C3) tal que R•Lp = x0, R•Lq = x1 e
R•Lp,q = x2. Então vamos levar a configuração da Figura 2.1 na configuração da
Figura 2.2.

Figura 2.2 Configuração após aplicar φ.

x2 = 0

x1 = 0

x0 = 0

Na Figura 2.1 temos p = [a2 : c2 : ac] e q = [b2 : d2 : bd] em C. Note que, se
G = x22 − x0x1 então ∇G = (x1, x0,−2x2). Assim,

Lp = a2 + c2 − 2ac e Lq = b2 + d2 − 2bd.

2Se [F ] ∈ P2(S2) for não singular em p ∈ Z(F ), define-se a reta tangente a Z(F ) em p, Tp(C) :=

Z(Lp), sendo Lp = ∂0F (p)x0 + ∂1F (p)x1 + ∂2F (p)x2 sendo ∂iF :=
∂F

∂xi
para i = 0, 1, 2.
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

A equação da reta Lp,q é determinada por:∣∣∣∣∣∣∣∣
x0 x1 x2

a2 c2 ac

b2 d2 bd

∣∣∣∣∣∣∣∣ = (bc− ad)(cdx0 + abx1 − (ad+ bc)x2) = 0.

Note que se bc = ad então p = q (absurdo). Logo, bc− ad ̸= 0. Assim,

Lp,q = cdx0 + abx1 − (ad+ bc)x2.

Agora, considere ψ ∈ Aut(P2) determinada por R ∈ Aut(C3) tal que a matriz associada
a R na base canônica é dada por:

a2 c2 −2ac

b2 d2 −2bd

ab cd −(ad+ bc)

 .
Observe que, R(1, 0, 0) = (a2, b2, ab) e R(0, 1, 0) = (c2, d2, cd). Assim, ψ([1 : 0 : 0]) = p

e ψ([0 : 1 : 0]) = q.
Afirmação: ψ(C) = C.

De fato, seja r = [x2 : y2 : xy] ∈ C então,

ψ(r) = [R(x2 : y2 : xy)] = [(cy − ax)2 : (dy − bx)2 : (cy − ax) · (dy − bx)] ∈ C.

Assim, temos ψ(C) ⊆ C.

Note que, ψ(C) e C são subvariedades fechadas com dim(C) = dim(ψ(C)) = 1.
Logo, pelo Teorema 1.19 (p. 68 em [12]) segue que C = ψ(C).

Portanto, basta considerar φ = ψ−1 e o resultado segue.

O próximo lema nos dará suporte para descrever as órbitas dos pontos [F,G] ∈
G2(S2) tal que F e G são ambas singulares.

Lema 2.1.1. Seja [F,G] ∈ G2(S2) tal que F e G são singulares e mdc(F,G) = 1.
Então, temos as seguintes possibilidades para a cardinalidade de Z(F ) ∩ Z(G).

1. Se F,G ∈ △ então, #Z(F ) ∩ Z(G) = 1.

2. Se F,G ∈ H \△ então, #Z(F ) ∩ Z(G) ∈ {1, 3, 4}.

3. Se F ∈ H \△ e G ∈ △ então, #Z(F ) ∩ Z(G) ∈ {1, 2}.3
3A menos de uma reordenação no conjunto {F,G}.
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

Demonstração. Usaremos como base o apelo geométrico e a condição de que duas
curvas sempre se intersectam no plano projetivo.
1. Sendo F,G ∈ △ segue que F = L2 e G = M2 com {L,M} LI, isto é, duas retas
duplas da qual temos uma única possibilidade. Portanto, #Z(F ) ∩ Z(G) = 1.

Figura 2.3

L2

M2

2. Agora temos que F,G ∈ H \ △, ou seja, ambas são um par de retas distintas.
Considere F = L1·L2 com {L1, L2} LI, G =M1·M2 com {M1,M2} LI, Z(L1, L2) = {p}
e Z(M1,M2) = {q}. Sendo assim, temos três possibilidades:

Primeiramente, se p = q então

Figura 2.4

L1

L2

M1

M2

donde temos #Z(F ) ∩ Z(G) = 1.

Proseguindo, note que podemos ter o caso em que4 p ∈M1 e p /∈M2. Assim, segue
que M2 deve intersectar L1 e L2 em pontos distintos, isto é,

Figura 2.5

L1

L2

M1

M2

logo, #Z(F ) ∩ Z(G) = 3.

Por fim, temos a possibilidade de p /∈Mi ∀ i e q /∈ Li ∀ i, logo

Figura 2.6

L2

L1

M1

M2

4Um raciocínio análogo se aplica trocando p por q e Li por Mi.
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

Assim, #Z(F ) ∩ Z(G) = 4.

Portanto, temos que #Z(F ) ∩ Z(G) = {1, 3, 4}.
3. Neste caso, considere F = L1 · L2 com {L1, L2} LI e G = M2 assim, existe ape-
nas duas possibilidades para M2 intersectar F , ou seja, M2 passa por Z(L1, L2) ou
intersecta em pontos distintos. Geometricamente temos:

Figura 2.7

L2

L1

M2

ou

L2

L1

M2

Sendo assim, temos que #Z(F ) ∩ Z(G) = {1, 2}.
Portanto, segue o resultado.

2.2 Classificação das órbitas de G2(S2)

O próximo lema da início a determinação das órbitas em G2(S2) sob a ação do
grupo Aut(P2), para [F,G] ∈ G2(S2) tal que #Z(F ) ∩ Z(G) = 4.

Lema 2.2.1. Sejam W = [F,G] ∈ G2(S2) e OW a órbita associada a W pela a
ação de Aut(P2) em G2(S2). Se #Z(F ) ∩ Z(G) = 4, então OW = OV sendo
V = [x21 − x20, x

2
2 − x20].

Demonstração. Assuma que Z(F ) ∩ Z(G) = {p1, p2, p3, p4}. Neste caso, necessaria-
mente temos que os quatros pontos estão em posição geral. Então, pela Proposição
B.0.4 existe φ ∈ Aut(P2) tal que φ(pi) = qi sendo q1 = [1 : 1 : 1], q2 = [1 : 1 : −1],
q3 = [1 : −1 : 1] e q4 = [−1 : 1 : 1] (uma vez que os pontos q1, q1, q3 e q4 também estão
em posição geral).

A seguir, vamos determinar uma base para o subespaço V de S2 constituído pelas
cônicas que passam pelos pontos q1, q1, q3 e q4. Com esse objetivo em mente, considere
f = a0x

2
0+a1x0x1+a2x0x2+a3x

2
1+a4x1x2+a5x

2
2 ∈ S2 e note que f ∈ V se, e somente

se, 
f(q1) = 0 ⇐⇒ a0 + a1 + a2 + a3 + a4 + a5 = 0,

f(q2) = 0 ⇐⇒ a0 + a1 − a2 + a3 − a4 + a5 = 0,

f(q3) = 0 ⇐⇒ a0 − a1 + a2 + a3 − a4 + a5 = 0,

f(q4) = 0 ⇐⇒ a0 − a1 − a2 + a3 + a4 + a5 = 0.

(2.2)
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

Sendo o sistema (2.2) equivalente a a4 = a2 = a1 = 0 e a0 = −a3 − a5. Logo,

f = (−a3 − a5)x0 + a3x
2
1 + a5x

2
2 = a3(x

2
1 − x20) + a5(x

2
2 − x20).

Assim, {x21 − x20, x
2
2 − x20} é uma base de V . Entretanto, T •W = [T•F, T•G] ⊆ V .

Portanto, T •W = V e consequentemente OW = OV sendo V = [x21 − x20, x
2
2 − x20].

Tendo em consideração que o teorema de Bézout nos garante que a interseção de
duas cônicas [F ], [G] em P2, sem componentes em comum, consiste de no máximo 4
pontos distintos. Do contrário, mdc(F,G) = L com L ∈ S1 não nula, o que implica
que a reta Z(L) esta contida em Z(F ) ∩ Z(G). Nessa perspectiva, temos que:

Proposição 2.2.1. Se W = [F,G] ∈ G2(S2) sendo [F ] e [G] ambas singulares. Então,
existe T ∈ Aut(C3) tal que

1. Se #Z(F ) ∩ Z(G) = 1 então, T •W = [x20, x
2
1].

2. Se #Z(F ) ∩ Z(G) = 2 então, T •W = [x0x1, x
2
2].

3. Se #Z(F ) ∩ Z(G) = 3 então, T •W = [x0x1, (x0 + x1)x2].

4. Se #Z(F ) ∩ Z(G) = 4 então, T •W = [x21 − x20, x
2
2 − x20].

5. Se mdc(F,G) ̸= 1 então, T •W = [x0x1, x0x2] ou T •W = [x20, x0x1].

Demonstração. Note que, uma cônica singular é dada por um par de retas distintas ou
por uma reta dupla. Assim, temos três possibilidades:

(i) F,G ∈ △ (F,G são retas duplas).

(ii) F ∈ H \△ e G ∈ △ (F é um par de retas distintas e G é uma reta dupla).5

(iii) F,G ∈ H \△ (F,G são um par de retas distintas).

Item 1 . De acordo com o Lema 2.1.1, temos que analisar as três possibilidades des-
critas acima:

(i) se F,G ∈ ∆, então F = L2, G =M2 e {L,M} é LI. Note que a Proposição A.0.9
nos garante que, existe T ∈ Aut(C3) tal que T•L = x0 e T•M = x1 e, portanto,
T •W = [x20, x

2
1].

6

5A menos de uma reordenação do conjunto {F,G}.
6Observe que, Z(x20, x

2
1) = {[0 : 0 : 1]}. Assim, o teorema de Bézout nos garante que

I[0:0:1](x
2
0, x

2
1) = 4.
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

(ii) Se F ∈ H\△ e G ∈ △, então F = L1 ·L2 sendo {L1, L2} LI e G =M2. Observe
que necessariamente a reta Z(M) passa pelo ponto de interseção das retas Z(L1)

e Z(L2) (do contrário #(Z(F,G)) = 2). Assim, M = a1L1 + a2L2 com a1, a2 ∈
C não-nulos. Agora, completando {L1,M} a uma base de S1 = [x0, x1, x2], a
Proposição A.0.3 nos garante que existe R ∈ Aut(C3) tal que R•(L1) = x1 e
R•(M) = x0. Visto que a2L2 = M − a1L1, segue que R•(a2L2) = x0 − a1x1.
Logo,

W1 := R • [L1L2,M
2] = R • [L1(a2L2),M

2] = [x1(x0 − a1x1), x
2
0] com a1 ̸= 0.

Daí, considerando a = a−1
1 segue que

W1
MB
= [x20, x

2
1 − ax0x1] =

[
x20, (x1 −

a

2
x0)

2 − a2

4
x20

]
MB
=
[
x20, (x1 −

a

2
x0)

2
]
.

Para concluirmos, basta considerar R1 ∈ Aut(C3) tal que R1•(x1 −
a

2
x0) = x1 e

R1•(xj) = xj para j ∈ {0, 2}.

(iii) Se F,G ∈ H \ △, então F = L1 · L2 com {L1, L2} LI e G = M1 · M2 com
{M1,M2} LI. Como #Z(F )∩Z(G) = 1, segue que as retas L1, L2,M1 e M2 são
concorrentes. Considere R ∈ Aut(C3) tal que R•L1 = x0 e R•L2 = x1. Além
disso, visto que R•Mi ∈ [x0, x1] i = 1, 2, vamos escrever Mi = aix0 + bix1 para
i = 1, 2 (com ai · bi ̸= 0 uma vez que F e G são LI). Assim,

R •W = [x0x1, (a1x0 + b1x1) · (a2x0 + b2x1)]

MB
= [x0x1, ax

2
0 + bx21] com a = a1a2 e b = b1b2

MB
= [x0x1, x

2
0 + cx21] com c =

b

a
(pois a, b ̸= 0)

= [x0x1, (x0 + dx1)
2 − 2dx0x1] com d2 = c

MB
= [x0x1, (x0 + dx1)

2].

Agora, prosseguindo como no caso (ii) deste item, temos o resultado.

Item 2 . Como #Z(F ) ∩ Z(G) = 2, novamente pelo Lema 2.1.1 temos que (a menos
de uma reordenação) a única possibilidade permissível é F ∈ H \△ e G ∈ △.

Assim, considerando F = L1·L2 com {L1, L2} LI e G =M2. Note que, {L1, L2,M}
é LI, pois caso fosse LD implicaria que #Z(F )∩Z(G) = 1. Logo, sabemos que existe
T ∈ Aut(C3) tal que T•(L1) = x0, T•(L2) = x1 e T•(M) = x2. Portanto,

T •W = [T•(L1 · L2), T•(M
2)] = [x0x1, x

2
2].
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

Item 3 . Segue do Lema 2.1.1 que única a possibilidade a considerar é F,G ∈ H \ △.
Assim, assuma que F = L1 · L2 com {L1, L2} LI e G = M1 · M2 com {M1,M2}
LI. Como #Z(F ) ∩ Z(G) = 3, o conjunto {L1, L2,Mi} é LI para algum i = 1, 2.7

Escolhendo {L1, L2,M1} LI deve ocorrer necessariamente que o conjunto {L1, L2,M2}
seja LD , e portanto, temos que M2 = aL1 + bL2 com a, b em C ambos não-nulos.
Assim, considere R ∈ Aut(C3) tal que R•(Li) = xi−1 para i = 1, 2 e R•(M1) = x2.

Visto que R•M2 = ax0 + bx1. Logo,

W1 := R •W = [x0x1, (ax0 + bx1)x2]
MB
= [(ax0)(bx1), (ax0 + bx1)x2].

Por fim, basta considerar R1 ∈ Aut(C3) tal que (R1)•(ax0) = x0, (R1)•(bx1) = x1 e
(R1)•x2 = x2.

Item 4 . Segue do Lema 2.2.1.

Item 5 : Como mdc(F,G) ̸= 1, podemos assumir que mdc(F,G) = L com L ∈ S1.
Neste caso, pelo menos uma das cônicas pertence a H \ ∆.8 Assim, a menos de uma
reordenação temos duas possibilidades:

• F = L · L1 , G = L ·M1 ∈ H \∆, o que implica em que {L,L1,M1} é LI. Daí,
basta considerar R ∈ Aut(C3) tal que R•L = x0, R•L1 = x1 e R•M1 = x2. Logo,
R •W = [R•(L · L1), R•(L ·M1)] = [x0x1, x0x2].

• F = L · L1 ∈ H \ ∆ e G = L2. Então, R • W = [x0x1, x
2
0] ao considerarmos

R ∈ Aut(C3) tal que R•L = x0 e R•L1 = x1.

Portanto, segue o resultado.

Determinação das órbitas de G2(S2) sob a ação de Aut(P2)

Finalmente, dispomos de todos os resultados que nos permitirão estabelecer a clas-
sificação das órbitas em G2(S2) sob a ação de Aut(P2), conforme mostraremos no
teorema a seguir.

Teorema 2.2.1. Considere W = [F,G] ∈ G2(S2) e OW a órbita associada a W pela a
ação de Aut(P2) em G2(S2). Verifica-se que

• Se mdc(F,G) = 1, então de acordo com a cardinalidade de Z(F ) ∩ Z(G) temos
as seguintes possibilidades para OW :

7Note que, se o conjunto {L1, L2,Mi} for LI para todo i, então #Z(F ) ∩ Z(G) = 4 visto que os
pontos singulares das cônicas não pertencem a Z(F )∩Z(G). Assim, necessariamente deve ocorer que
{L1, L2,Mi} é LI exatamente para um valor de i.

8Sendo {F,G} é LI, ambas das cônicas em ∆ implicaria em que mdc(F,G) = 1.
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

1. Se #Z(F ) ∩ Z(G) = 1. Então,

OW =

Oπ1 sendo π1 = [x22 − x0x1, x
2
1]

ou
Oπ2 sendo π2 = [x20, x

2
1].

2. Se #Z(F ) ∩ Z(G) = 2. Então,

OW =

Oπ3 sendo π3 = [x22 − x0x1, x1x2]
ou
Oπ4 sendo π4 = [x20, x1x2].

3. Se #Z(F ) ∩ Z(G) = 3. Então, OW = Oπ5 sendo π5 = [x0x1, (x0 + x1)x2].

4. Se #Z(F ) ∩ Z(G) = 4. Então, OW = Oπ6 sendo π6 = [x21 − x20, x
2
2 − x20].

• Se mdc(F,G) ̸= 1, então

OW =

Oπ7 sendo π7 = [x0x1, x0x2]
ou
Oπ8 sendo π8 = [x20, x0x1].

Demonstração. Considere W = [F,G] ∈ G2(S2). Se F e G são ambas singulares, então
o resultado segue diretamente da Proposição 2.2.1. Assim, sem perda de generalidade
(e a menos de uma reordenação na base {F,G} de W ), a seguir vamos supor que F
é não singular. Observe que, sendo F não singular, necessariamente mdc(F,G) = 1.
Portanto, #Z(F ) ∩ Z(G) é finita e varia entre 1 e 4.

Por outro lado, a Proposição 2.1.1 nos garante que existe φ ∈ Aut(P2) determi-
nada por T ∈ Aut(C3) tal que T•F = x22 − x0x1 (o que implica em φ(C) = C se
C = Z(x22 − x0x1)) e, além disso φ(p) = [1 : 0 : 0] e φ(q) = [0 : 1 : 0] para quaisquer
p, q ∈ C distintos.

Assim, a seguir faremos a demonstração analisando as possibilidades para a cardi-
nalidade de Z(F ) ∩ Z(G), sendo F = x22 − x0x1.

• #Z(F ) ∩ Z(G) = 1.

Neste caso, a menos de uma MCP podemos assumir que Z(F ) ∩ Z(G) = {p},
sendo p = [1 : 0 : 0] e o teorema de Bézout nos garante que Ip(F,G) = 4. Note
que

{x0x1, x0x2, x21, x1x2, x22 − x0x1}

é uma base de S2 constituída pelas cônicas que passam por p. Visto que {F,G}
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

é LI e G(p) = 0, podemos assumir que

G = ax0x1 + bx0x2 + cx21 + dx1x2 com a, b, c, d ∈ C.

Agora, escrevendo F e G como polinômios na variável x2, tem-se que

F = 1 · x22 − x0x1 e G = αx2 + β sendo α = bx0 + dx1 e β = ax0x1 + cx21.

Assim, a resultante de F e G (relativa a x2) em p é dada por

Rx2
p (F,G) =

∣∣∣∣∣∣∣∣
1 0 −x0x1
α β 0

0 α β

∣∣∣∣∣∣∣∣
= β2 − α2x0x1

= a2x20x
2
1 + 2acx0x

3
1 + c2x41 − x0x1(b

2x20 + 2bdx0x1 + d2x21)

= c2x41 + (2ac− d2)x0x
3
1 + (a2 − 2bd)x20x

2
1 − b2x30x1.

Visto que Ip(F,G) = 4, segue que a = b = d = 0 e c ̸= 0.9 Portanto, G = x21.

Da qual concluímos que OW = Oπ1 sendo π1 = [x22 − x0x1, x
2
1].

• #Z(F ) ∩ Z(G) = 2

Neste caso, a menos de uma MCP podemos considerar que Z(F )∩Z(G) = {p, q}
sendo p = [1 : 0 : 0] e q = [0 : 1 : 0]. Visto que

{x0x1, x0x2, x1x2, x22 − x0x1}

é uma base para as cônicas que passam pelos pontos10 p e q. Assim,

G = ax0x1 + bx0x2 + cx1x2 (2.3)

Além disso, temos duas possibilidades para considerar:

(i) Ip(F,G) = 2 = Iq(F,G). (ii) Ip(F,G) = 3 e Iq(F,G) = 1.

De fato,
9Lembre que Ip(F,G) = 4 implique em que a maior potência de x1 que divide a resultante Rx2

p (F,G)

é x41.
10De fato, se f = a0x

2
0+a1x0x1+a2x0x2+a3x

2
1+a4x1x2+a5x

2
2 ∈ S2, então f(p) = 0 = f(q) implica

em a0 = a3 = 0. Assim, uma base para tal subespaço é dada por {x0x1, x0x2, x1x2, x22}. Entretanto,
F pertence a este subespaço de cônicas, o que nos permite obter uma base contendo F .
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

(i) Neste caso, escrevendo F e G como polinômios na variável x2, a resultante
de F e G (relativa a x2) em z ∈ Z(F ) ∩ Z(G) é dada por

Rx2
z (F,G) =

∣∣∣∣∣∣∣∣
1 0 −x0x1
α ax0x1 0

0 α ax0x1

∣∣∣∣∣∣∣∣ = a2x20x
2
1 − x0x1α

2

sendo α = bx0 + cx1. Assim

Rx2
z (F,G) = −c2x0x31 + (a2 − 2bc)x20x

2
1 − b2x30x1. (2.4)

Logo, Ip(F1, G1) = 2 implica em b = 0 e a ̸= 0,

Iq(F1, G1) = 2 implica em c = 0 e a ̸= 0.

Portanto, G = ax0x1. Logo, W1 = [x22 − x0x1, ax0x1]
MB
= [x22, x0x1]. Por fim,

considere R ∈ Aut(C3) tal que R•x2 = x0, R•x1 = x1 e R•x0 = x2. Assim,
R •W1 = [x20, x1x2] = π4. Ou seja, OW = Oπ4 .

(ii) Como Ip(F,G) = 3, segue da Equação (2.4) que a = b = 0 e c ̸= 0. Portanto,
G = cx1x2 com c ̸= 0. Logo, W1 = [x22 − x0x1, cx1x2]

MB
= [x22 − x0x1, x1x2].

11

Portanto, concluímos que OW = Oπ3 , sendo π3 = [x22 − x0x1, x1x2].

• #Z(F ) ∩ Z(G) = 3.

Assuma que Z(F ) ∩ Z(G) = {p, q, r}, sendo p = [1 : 0 : 0], q = [0 : 1 : 0] e
r = [1 : u2 : u] com u ̸= 0.12 Se Ip(F,G) = 2, segue do teorema de Bézout
que Iq(F,G) = Ir(F,G) = 1. Visto que, G(p) = G(q) = 0 segue de (2.3) que
G = ax0x1+bx0x2+cx1x2 com a, b, c ∈ C nem todos nulos. Entretanto, G(r) = 0

implica em que au2 + bu+ u3c = 0. Sendo u ̸= 0, segue que au+ b+ u2c = 0 do
qual tem-se b = −au− u2c, o que nos permite concluir que

G = ax0(x1 − ux2) + cx2(x1 − u2x0).

Agora, escrevendo F e G como polinômios na variável x2, temos que
11Note que pelo teorema de Bézout, tem-se que Iq(F,G) = 1.
12Como r ∈ Z(F ), segue da Proposição 2.1.1 que existe um único [a : b] ∈ P1 tal que r = [a2 : b2 : ab].

Agora, como r ̸∈ {p, q}, segue que a ̸= 0 e b ̸= 0. Daí, concluímos que

r =
[
1 :

b2

a2
:
ab

a2

]
= [1 : u2 : u] com

b

a
= u.
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

F = 1 · x22 + (−x0x1) e G = αx2 + β com α = −u(a + uc)x0 + cx1 e β = ax0x1.

Assim, a resultante de F e G (com respeito a x2) em y ∈ Z(F ) ∩ Z(G) é dada
por

Rx2
y (F,G) =

∣∣∣∣∣∣∣∣
1 0 −x0x1
α β 0

0 α β

∣∣∣∣∣∣∣∣ = α2 − x0x1α
2.

Assim,

Rx2
y (F,G) = a2x20x

2
1 − x0x1[u

2(a+ uc)2x20 + c2x21 − 2uc(a+ uc)x0x1]

= −c2x0x31 + (a2 + 2uc(a+ uc))x20x
2
1 − u2(a+ uc)x30x1.

Logo Ip(F,G) = 2 (resp. Iq(F,G) = 1) implica em a + uc = 0 e a ̸= 0 (resp.
c ̸= 0), além disso Iq(F,G) = 1 tem-se que c ̸= 0. Consequentemente,

G = (−uc)x0(x1 − ux2) + cx2(x1 − u2x0) como c ̸= 0

MB
= −ux0(x1 − ux2) + x2(x1 − u2x0)

= −ux0x1 + u2x0x2 + x1x2 − u2x0x2

= −ux0x1 + x1x2

= x1(x2 − ux0).

Assim,

W1 = [x22 − x0x1, x1(x2 − ux0)] = [x22 − x0x1, x1x2 − ux0x1]

MB
= [ux22 − ux0x1, x1x2 − ux0x1]

MB
= [ux22 − x1x2, x1x2 − ux0x1]

= [x2(ux2 − x1), x1(x2 − ux0)].

A seguir, considere R ∈ Aut(C3) tal que R•x2 = x0, R•(ux2 − x1) = x1 e
R•(x2 − ux0) = x2. Logo,

R •W1 = [R•(x2(ux2 − x1)), R•(x1(x2 − ux0))] = [x0x1, x2(ux0 − x1)].

Por fim, considere R1 ∈ Aut(C3) tal que R1•xj = xj para j = 0, 2 e
R1•x1 = −ux1. Assim,

R1 •W1 = [−ux0x1, x2(ux0 + ux1)]
MB
= [−x0x1, x2(x0 + x1)]

MB
= [x0x1, x2(x0 + x1)].

Portanto, OW = Oπ5 com π5 = [x0x1, x2(x0 + x1)].

• #Z(F ) ∩ Z(G) = 4. Segue diretamente do Lema 2.2.1
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

Se mdc(F,G) ̸= 1 o resultado segue da Proposição 2.2.1

2.3 Interseção das retas em P(S2) com H

Observe que π = [F1, F2] ∈ G2(S2) determina a reta Lπ ⊂ C = P(S2), dada por:

Lπ =
{
[a · F1 + b · F2] ∈ C | [a : b] ∈ P1

}
.

Por exemplo, se π1 = [x22 − x0x1, x
2
1] (dado no Teorema 2.2.1), então

Lπ1 =
{
[a(x22 − x0x1) + bx21] ∈ C | [a : b] ∈ P1

}
.

A seguir, vamos determinar Lπ1 ∩ H. De fato, conforme o Lema 1.4.1, [F ] ∈ Lπ1 ∩ H
se, e somente se F = ax22 − ax0x1 + bx21 para algum [a : b] ∈ P1 e detMF = 0 sendo

MF =


0 −1

2
a 0

−1

2
a b 0

0 0 a

 .

Note que detMF =
1

4
a3. Assim, a = 0 é a única solução de detMF = 0 e possui

multiplicidade 3. Logo, Lπ1 ∩H = {x21} consiste de um único ponto de multiplicidade
três.13

Utilizando o mesmo raciocínio, calculamos as interseções das retas determinadas
pelos representantes das órbitas descritas no Teorema 2.2.1 com a hipersuperfície H,
apresentados na Tabela 2.2 a seguir.

Observação 2.3.1. Considere [F ] ∈ P(S2) e φ ∈ Aut(P2) determinada por T ∈
Aut(C)3. Sejam, MF e MT•F as matrizes associadas a [F ] e [T•F ]. Então verifica-se
que

MT•F = [T ]−1MF [T ]

sendo [T ] a matriz associada ao isomorfismo C-linear T na base canônica de C3.
Assim, MCP deixam invariante o valor do determinante. O que nos permite

concluir que a cardinalidade da interseção da reta com a hipersuperfìcie H permanecem
invariante. Logo, os resultados da Tabela 2.2 não dependem do representante escolhido
em cada órbita.

13Visto que a = 0, obtemos [a : b] = [0 : 1], que implica em F = x21.
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

Tabela 2.2: Interseção das retas com H

i Lπi
∩H Multiplicidades detMF

1 {x21} 3
1

4
a3

2 Lπ2 - 0

3 {x1x2} 3
1

4
a3

4 {x20, x1x2} 1 e 2
1

4
ab2

5 {x0x1, (x0 + x1)x2} 1 e 2
1

4
ab2

6 {x21 − x20, x
2
2 − x20, x

2
1 − x22} 1,1,1 ab(a+ b)

7 Lπ7 - 0

8 Lπ8 - 0

Determinando a cardinalidade de Lπi ∩∆

Após os cálculos realizados para obter a Tabela 2.2, resulta natural se perguntar
pela cardinalidade de Lπi

∩ ∆, ou seja, determinar quantos são os [a : b] ∈ P2 tais
que a · F1 + b · F2 ∈ ∆. Note que, a Tabela 2.2 já fornece respostas em alguns dos
casos, faltando apenas verificar os casos i = 2, 7 e 8. Por exemplo, se π2 = [x20, x

2
1] e

ax20 + bx21 ∈ Lπ2 , temos

ax20 + bx21 ∈ ∆ ⇐⇒ ax20 + bx21 = (b0x0 + b1x1 + b2x2)
2 para algum [b0 : b1 : b2] ∈ P2.

A partir da igualdade polinomial14, segue que, b2 = 0 e b0b1 = 0, em ambos casos
(b0 = 0 ou b1 = 0), obtemos que #Lπ2 ∩ ∆ = 2. Proseguindo de forma análoga,
obtemos os resultados listados na Tabela 2.3, a seguir.

Tabela 2.3: Interseção das retas com ∆

i #Lπi
∩∆

1 1
2 2
3 0
4 1
5 0
6 0
7 0
8 1

14ax20 + bx21 = b20x
2
0 + b21x

2
1 + b22x

2
2 + b0b1x0x1 + b0b2x0x2 + b1b2x1x2.
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

Observação 2.3.2. Segue da Tabela 2.3 que as retas determinadas pelos elementos
de G2(S2), admitem no máximo dois pontos que se correspondem com cônicas em ∆.

2.4 Dimensão das Órbitas

Nesta seção, vamos determinar as dimensões das órbitas listadas no Teorema 2.2.1.
Para isso, usaremos os seguintes fatos:
Fato 1 : dim(PGLn(C)) = (n+ 1)2 − 1.
Fato 2 : Se OW é a órbita associada a W ∈ G2(S2) sob a ação de Aut(P2) na Gras-
manniana Gd(S2),15 então

dim(OW ) = 8− dim(EW ) (2.5)

sendo EW = {φ ∈ Aut(P2) | φ •W = W} o estabilizador de W em Aut(P2).
Observe que, se φ ∈ EW for determinada por T ∈ Aut(C3) eW = [F1, F2] ∈ G2(S2),

então

[T•F1, T•F2] = [F1, F2] =⇒ Z(F1) ∩ Z(F2) = Z(T•F1) ∩ Z(T•F2). (2.6)

De fato, [T•F1, T•F2] = [F1, F2] implica em (i) T•Fi = aiF1 + biF2 com ai, bi i = 1, 2

em C e (ii) Fi = ciT•F1 + diT•F2 com ci, di i = 1, 2 em C.
Se p ∈ Z(F1) ∩ Z(F2), então Fi(p) = 0 para i = 1, 2, logo (i) implica em

T•Fi = aiF1(p) + biF2(p) = 0. De onde concluímos que p ∈ Z(T•F1) ∩ Z(T•F2).
Analogamente, prova-se a outra inclusão.

(I) Se W = π6 = [x21 − x20, x
2
2 − x20], então dim(OW ) = 8.

Note que, Z(F1) ∩ Z(F2) = {p1, p2, p3, p4} sendo F1 = x21 − x20 e F2 = x22 − x20

consiste de 4 pontos em posição geral. De fato, se C = {p1, p2, p3, p4}, então verifica-se
que
Afirmação 1: Se φ ∈ EW , então φ(C) = C.

De fato, φ(C) = φ(Z(F1, F2)) = Z(T•F1, T•F2)
(2.6)
= Z(F1, F2) = C.

Afirmação 2: ΓC := {φ ∈ Aut(P2) | φ(C) = C} é um subgrupo16 de Aut(P2) finito.
De fato, lembremos que fixados {p1, p2, p3, p4} ⊂ P2 e {q1, q2, q3, q4} ⊂ P2 em posi-

ção geral, existe um único ψ ∈ Aut(P2) tal que ψ(pi) = qi i = 1, 2, 3, 4.

15Lembremos que, se W = [F1, F2] ∈ G2(S2) e φ ∈ Aut(P2) for determinada por T ∈ Aut(C3),
então φ •W := [T•F1, T•F2].

16Note que, claramente Id ∈ ΓC . Se φ ∈ Aut(P2) temos que φ adimite uma inversa φ−1, daí
φ−1 ◦ φ(C) = φ−1(C) =⇒ C = φ−1(C) =⇒ φ−1 ∈ ΓC . Por fim, se φ,ψ ∈ ΓC então (ψ ◦ φ)(C) =
ψ(φ(C)) = ψ(C) = C =⇒ ψ ◦ φ ∈ ΓC .
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

Assim, fixados {p1, p2, p3, p4} um elemento de ΓC é determinado por uma permu-
tação σ ∈ S4. Mais precisamente, se σ ∈ S4, então existe um único φσ ∈ Aut(P2) tal
que φσ(pi) = pσ(i) para i = 1, 2, 3, 4. Com efeito, ΓC = {φσ ∈ Aut(P2)| σ ∈ S4}. Logo,
|ΓC | = |S4| = 4! = 24. Para concluir, note que a afirmação 1 implica que EW ⊆ ΓC .
Entretanto, sendo ΓC finito, segue que EW é finito. Portanto, dim(EW ) = 0. Por fim,
o Fato 2 nos permite concluir que dim(OW ) = 8.

Observações 2.4.1. Para o cálculo das dimensões das órbitas com representante πi
com i ∈ {1, ..., 8} e i ̸= 6, observe que:

(a) SLn(C) = {A ∈ GLn(C) | detA = 1} é um subgrupo normal de GLn(C) e
a função Ψ : SLn(C) −→ PGLn(C) dada por A 7−→ A é um homomorfismo
sobrejetivo de grupos tal que

Ψ−1(A) =
{
ξA ∈ SLn(C) | ξn+1 = 1

}
.

Por outro lado, segue do teorema dos isomorfismos que
SLn(C)
ker(Ψ)

∼= PGLn(C) e

pela correspondência que o citado isomorfismo estabelece, que todo subgrupo

H de PGLn(C) irá se identificar com um subgrupo da forma
H′

ker(Ψ)
sendo H′

um subgrupo de SLn(C) contendo ker(Ψ). Entretanto, como ker(Ψ) é um grupo
finito, concluímos que

dimH = dimH′.

Agora, como o estabilizador Eπi
∼= Hi :=

{
A ∈ PGL2(C) | φA ∈ Eπi

}
, segue que

dimEπi
= dimHi = dimH′

i sendo H′
i =

{
A ∈ SL2(C) | φA ∈ Eπi

}
.

(b) Para o calculo da dimensão de Eπi
, vamos considerar φ ∈ EW determinada por

T ∈ Aut(C3) tal que

T•x0 = ax0 + bx1 + cx2,

T•x1 = a1x0 + b1x1 + c1x2,

T•x2 = a2x0 + b2x1 + c2x2.

Salientamos que na análise nos sistemas gerados em cada caso (para i ∈ {1, ..., 8}
e i ̸= 6), abordamos apenas uma das possibilidades para elucidar tal procedimento,
visto que os demais seguem de forma análoga.

(II) Se W = π5 = [x0x1, (x0 + x1)x2], então dim(OW ) = 7.
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Seja φ ∈ EW determinada por T ∈ Aut(C3). Logo,

[T•(x0x1), T•(x2(x0 + x1))] = [x0x1, x2(x0 + x1)]. (2.7)

Note que,

T•(x0x1) = (T•x0) · (T•x1) = (ax0 + bx1 + cx2) · (a1x0 + b1x1 + c1x2)

= aa1x
2
0 + (ab1 + a1b)x0x1 + (ac1 + a1c)x0x2 + bb1x

2
1

+(bc1 + b1c)x1x2 + cc1x
2
2.

Segue de (2.7) que T•(x0x1) = µx0x1+γx2(x0+x1). Logo, temos as seguintes relações:aa1 = 0, bb1 = 0, cc1 = 0,

ab1 + a1b = µ e ac1 + a1c = bc1 + b1c = γ.
(2.8)

Assim, para o sistema acima temos a seguinte possibilidade:

• a = c = 0 (b ̸= 0) e b1 = 0.

Neste caso, das relações em (2.8) segue que bc1 = 0 e como b ̸= 0, então c1 = 0. Logo,
T•x0 = bx1 e T•x1 = a1x0 com a1 ̸= 0. Segue que,

T•(x2(x0 + x1)) = (T•x2) · (T•x0 + T•x1)) = (a2x0 + b2x1 + c2x2)(bx1 + a1x0)

= a2a1x
2
0 + (a2b+ a1b2)x0x1 + a1c2x0x2 + bb2x

2
1 + bc2x1x2.

Novamente pela Equação (2.7) temos que

a2a1x
2
0 + (a2b+ a1b2)x0x1 + a1c2x0x2 + bb2x

2
1 + bc2x1x2 = µx0x1 + γx2(x0 + x1).

Assim, a2a1 = 0, bb2 = 0,

a2b+ a1b2 = µ e a1c2 = bc2 = γ.

Daí, sendo a1 ̸= 0 e b ̸= 0 temos que a2 = 0 e b2 = 0 o que implica em c2 ̸= 0

e assim, a1c2 = bc2 o que nos permite concluir que a1 = b. Logo, T•x0 = bx1,
T•x1 = bx0 e T•x2 = c2x2.
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Donde concluímos que a matriz associada ao isomorfismo T−1 é dada por:

[T−1] =


0 b 0

b 0 0

0 0 c2

 .
Note que, det[T−1] = −b2c2. Tendo em consideração o item (a) na Observação 2.4.1

podemos supor que o determinante da matriz é igual a 1, assim segue que c2 = − 1

b2
.

Logo,

[T−1] =


0 b 0

b 0 0

0 0 − 1

b2

 .
Na qual temos apenas um parâmetro livre, o que nos permite concluir que a
dim(EW ) = 1. Portanto, pelo Fato 2.5 temos que dim(OW ) = 7.

(III) Se W = π4 = [x20, x1x2], então dim(OW ) = 6.

Assumindo φ ∈ EW determinada por T ∈ Aut(C3). Assim,

[T•(x
2
0), T•(x1x2)] = [x20, x1x2]. (2.9)

Note que,

T•(x1x2) = (T•x1) · (T•x2) = (a1x0 + b1x1 + c1x2) · (a2x0 + b2x1 + c2x2)

= a1a2x
2
0 + (a1b2 + a2b1)x0x1 + (a1c2 + a2c1)x0x2 + b1b2x

2
1

+(b1c2 + b2c1)x1x2 + c1c2x
2
2.

Daí, segue de (2.9) que T•(x1x2) = µx20 + γx1x2. Logo,b1b2 = 0, c1c2 = 0, a1b2 + a2b1 = 0, a1c2 + a2c1 = 0,

a1a2 = µ and b1c2 + b2c1 = γ.
(2.10)

Assim, para o sistema acima segue a seguinte possibilidade:

• a1 = b1 = 0 (c1 ̸= 0) e a2 = c2 = 0 (b2 ̸= 0).

Sendo assim, temos que T•x1 = c1x2 e T•x2 = b2x1. Logo,

T•(x
2
0) = (ax0 + bx1 + cx2)

2 = a2x20 + b2x21 + c2x22 + 2abx0x1 + 2acx0x2 + 2bcx1x2.
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Novamente pela Equação (2.9) temos que

a2x20 + b2x21 + c2x22 + 2abx0x1 + 2acx0x2 + 2bcx1x2 = µx20 + γx1x2.

Assim, a ̸= 0 e b = c = 0 no qual temos T•x0 = ax0. Logo, a matriz associada ao
isomorfismo T−1 é dada por:

[T−1] =


a 0 0

0 0 c1

0 b2 0

 .
Note que, det[T−1] = −ab2c1. Novamente, podemos supor o determinante igual a 1,

assim a = − 1

b2c1
. Logo,

[T−1] =


− 1

b2c1
0 0

0 0 c1

0 b2 0

 .
Do qual temos dois parâmetros livres, o que nos permite concluir que dim(EW ) = 2.
Portanto, pelo Fato 2.5 temos que dim(OW ) = 6.

(IV) Se W = π3 = [x22 − x0x1, x1x2], então dim(OW ) = 6.

Se φ ∈ EW for determinada por T ∈ Aut(C3), então

[T•(x
2
2 − x0x1), T•(x1x2)] = [x22 − x0x1, x1x2]. (2.11)

Note que,

T•(x1x2) = (T•x1) · (T•x2) = (a1x0 + b1x1 + c1x2) · (a2x0 + b2x1 + c2x2)

= a1a2x
2
0 + (a1b2 + a2b1)x0x1 + (a1c2 + a2c1)x0x2 + b1b2x

2
1

+(b1c2 + b2c1)x1x2 + c1c2x
2
2.

Daí, segue de (2.11) que T•(x1x2) = µx22 − µx0x1 + γx1x2. Deste modo,aa1 = 0, b1b2 = 0, a1c2 + a2c1 = 0,

c1c2 = µ, a1b2 + a2b1 = −µ e b1c2 + b2c1 = γ.
(2.12)

Assim, para o sistema acima temos a seguinte possibilidade:
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• a1 = c1 = 0 (b1 ̸= 0) e a2 = b2 = 0 (c2 ̸= 0).

Logo T•x1 = b1x1 e T•x2 = c2x2 e segue que,

T•(x
2
2 − x0x1) = (T•x

2
2)− (T•x0) · (T•x1)

= c22x2 − (ax0 + bx1 + cx2)b1x1

= c2x
2
2 − ab1x0x1 − bb1x

2
1 − cb1x1x2.

Outra vez, pela Equação (2.11) temos que

c2x
2
2 − ab1x0x1 − bb1x

2
1 − cb1x1x2 = µx22 − µx0x1 + γx1x2.

Sendo, b1 ̸= 0 segue que b = 0 e c22 = ab1 o que implica em a ̸= 0, assim a =
c22
b1

. Logo,

T•x0 = ax0 + cx2. Deste modo, a matriz associada ao isomorfismo T−1 é dada por:

[T−1] =


c22
b1

0 c

0 b1 0

0 0 c2

 .

Note que, det[T−1] = c32. Mais uma vez, podemos supor o determinante igual a 1, assim
c2 = 1. Logo,

[T−1] =


1

b1
0 c

0 b1 0

0 0 1

 .
Desta forma, dim(EW ) = 2. Portanto, dim(OW ) = 6.

(V) Se W = π1 = [x22 − x0x1, x
2
1], então dim(OW ) = 5.

Assumindo φ ∈ EW determinada por T ∈ Aut(C3). Assim,

[T•(x
2
2 − x0x1), T•x

2
1] = [x22 − x0x1, x

2
1]. (2.13)

Note que,

T•(x
2
1) = (a1x0 + b1x1 + c1x2)

2

= a21x
2
0 + b21x

2
1 + c21x

2
2 + 2a1b1x0x1 + 2a1c1x0x2 + 2b1c1x1x2.

Daí, segue de (2.13) que T•(x21) = µ(x22 − x0x1) + γx21 = µx22 − µx0x1 + γx21.
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

Deste modo, a
2
1 = 0, 2a1c1 = 0, 2b1c1 = 0,

b21 = γ e c21 = −2a1b1 = µ.
(2.14)

Note que, em (2.14) temos que a1 = 0 implica que c1 = 0 e consequentemente b1 ̸= 0.
Logo, T•x1 = b1x1. Por outro lado,

T•(x
2
2 − x0x1) = (T•x

2
2)− (T•x0) · (T•x1)

= (a2x0 + b2x1 + c2x2)
2 − (ax0 + bx1 + cx2)b1x1

= a22x
2
0 + (b22 − bb1)x

2
1 + c22x

2
2 + (2a2b2 − ab1)x0x1

+2a2c2x0x2 + (2b2c2 − cb1)x1x2.

Mais uma vez pela Equação (2.13) temos que T•(x22−x0x1) = µx22−µx0x1+γx21. Logo,a
2
2 = 0, 2a2c2 = 0, 2b2c2 − cb1 = 0,

b22 − bb1 = γ e c22 = −2a2b2 − ab1 = µ.
(2.15)

Sendo, a2 = 0 segue que c22 = ab1 o que implica em a ̸= 0, assim a =
c22
b1

. Além disso,

c =
2b2c2
b1

. Daí, T•x0 = ax0 + bx1 + cx2 e T•x2 = b2x1 + c2x2. Deste modo, a matriz

associada ao isomorfismo T−1 é dada por:

[T−1] =


c22
b1

b
2b2c2
b1

0 b1 0

0 b2 c2

 .

Note que, det[T−1] = c32. De novo, podemos supor o determinante igual a 1, assim
c2 = 1. Logo,

[T−1] =


1

b1
b

2b2
b1

0 b1 0

0 b2 1

 .
Desta forma, dim(EW ) = 3. Portanto, dim(OW ) = 5.

(VI) Se W = π2 = [x20, x
2
1], então dim(OW ) = 4.
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

Mais uma vez, suponha φ ∈ EW determinada por T ∈ Aut(C3). Assim,

[T•x
2
0, T•x

2
1] = [x20, x

2
1]. (2.16)

Note que,

T•(x
2
0) = (ax0 + bx1 + cx2)

2 = a2x20 + b2x21 + c2x22 + 2abx0x1 + 2acx0x2 + 2bcx1x2.

e

T•(x
2
1) = (a1x0+b1x1+c1x2)

2 = a21x
2
0+b

2
1x

2
1+c

2
1x

2
2+2a1b1x0x1+2a1c1x0x2+2b1c1x1x2.

Segue de (2.16) quec
2 = 0, ab = 0, ac = 0, bc = 0,

a2 = µ e b2 = γ
e

c
2
1 = 0, a1b1 = 0, a1c1 = 0, b1c1 = 0,

a21 = µ e b21 = γ
(2.17)

Sendo assim, temos a seguinte possibilidade:

• a = 0 e b1 = 0.

Neste caso, segue de (2.17) que c = c1 = 0. Logo, T•x0 = bx1, T•x1 = a1x0 e
T•x2 = a2x0 + b2x1 + c2x2.

Deste modo, a matriz associada ao isomorfismo T−1 é dada por:

[T−1] =


0 b 0

a1 0 0

a2 b2 c2

 .

Assim, det[T−1] = −a1bc2. Supondo o determinante igual a 1, temos b = − 1

a1c2
. Logo,

[T−1] =


0 − 1

a1c2
0

a1 0 0

a2 b2 c2

 .
Desta forma, dim(EW ) = 4. Portanto, dim(OW ) = 4.

(VII) Se W = π7 = [x0x1, x0x2], então dim(OW ) = 4.

Assumindo φ ∈ EW determinada por T ∈ Aut(C3). Assim,

[T•(x0x1), T•(x0x2)] = [x0x1, x0x2]. (2.18)
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

Note que,

T•(x0x2) = (T•x0) · (T•x2) = (ax0 + bx1 + cx2) · (a2x0 + b2x1 + c2x2)

= aa2x
2
0 + (ab2 + a2b)x0x1 + (ac2 + a2c)x0x2 + bb2x

2
1

+(bc2 + b2c)x1x2 + cc2x
2
2.

Daí, segue de (2.18) que T•(x0x2) = µx0x1 + γx0x2. Logo,aa2 = 0, bb2 = 0, cc2 = 0, ac2 + a2c = 0,

ab2 + a2b = µ e bc2 + b2c = γ.
(2.19)

Assim, para o sistema acima segue a seguinte possibilidade:

• b = c = 0 (a ̸= 0) e a2 = 0.

Sendo assim, temos que T•x0 = ax0. Segue que,

T•(x0x1) = ax0 · (a1x0 + b1x1 + c1x2) = aa1x
2
0 + ab1x0x1 + ac1x0x2.

Pela Equação (2.18), temos que aa1x20 + ab1x0x1 + ac1x0x2 = µx0x1 + γx0x2.

Assim, sendo a ̸= 0 então a1 = 0. Daí T•x1 = b1x1 + c1x2 e T•x2 = b2x1 + c2x2.
Logo,

[T−1] =


a 0 0

0 b1 c1

0 b2 c2

 .
Note que, det[T−1] = a(b1c2 − b2c1). Novamente, podemos supor o determinante igual

a 1, assim a = − 1

(b1c2 − b2c1)
. Logo,

[T−1] =


− 1

(b1c2 − b2c1)
0 0

0 b1 c1

0 b2 c2

 .
Do qual temos dim(EW ) = 4. Portanto, pelo Fato 2.5 temos que dim(OW ) = 4.

(VIII) Se W = π8 = [x20, x0x1], então dim(OW ) = 3.

Mais uma vez, suponha φ ∈ EW determinada por T ∈ Aut(C3). Assim,

[T•x
2
0, T•x0x1] = [x20, x0x1]. (2.20)
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

Note que,

T•(x
2
0) = ax0 + bx1 + cx2)

2 = a2x20 + b2x21 + c2x22 + 2abx0x1 + 2acx0x2 + 2bcx1x2.

Daí, por (2.20) segue que

a2x20 + b2x21 + c2x22 + 2abx0x1 + 2acx0x2 + 2bcx1x2 = µx20 + γx0x1.

Temos que ac = 0, bc = 0, b2 = 0, c2 = 0,

a2 = µ e ab = γ.
(2.21)

Logo, T•x0 = ax0 com a ̸= 0. Sendo assim,

T•(x0x1) = ax0(a1x0 + b1x1 + c1x2) = aa1x
2
0 + ab1x0x1 + ac1x0x2.

Uma vez que a ̸= 0 e pela Equação (2.20) concluímos que c1 = 0. Daí, T•x1 =

a1x0 + b1x1 e T•x2 = a2x0 + b2x1 + c2x2. Logo,

[T−1] =


a 0 0

a1 b1 0

a2 b2 c2

 .
Note que, det[T−1] = ab1c2. Novamente, podemos supor o determinante igual a 1,

assim a =
1

b1c2
. Logo,

[T−1] =


1

b1c2
0 0

a1 b1 0

a2 b2 c2

 .
Do qual temos dim(EW ) = 5. Portanto, pelo Fato 2.5 temos que dim(OW ) = 3.

2.5 Especialização das órbitas em G2(S2) sob a ação

de Aut(P2)

Definição 2.5.1. Sejam OW e OW0 órbitas obtidas pela ação de Aut(P2) em G2(S2).
Dizemos que OW especializa em OW0 , neste caso usaremos a notação OW −→ OW0 , se
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

existe γ : I −→ G2(S2) sendo I ⊆ R uma vizinhança do zero tal que

γ(t) ∈ OW ,∀ t ̸= 0 e γ(0) ∈ OW0 .

A seguir, determinaremos a especialização das órbitas descritas no Teorema 2.2.1
seguindo uma ordem decrescente em relação as suas dimensões.

Oπ6 −→ Oπ5 sendo π6 = [x21 − x20, x
2
2 − x20] e π5 = [x0x1, x2(x0 + x1)].

Considere γ : I −→ G2(S2) definida por

γ(t) = [x1(x0 − tx2), x2(x0 + x1)] ∈ G2(S2).

Note que, γ(0) = [x0x1, x2(x0 + x1)] = π5. Logo, γ(0) ∈ Oπ5 . Agora, considere
t ̸= 0 e observe que

Z(γ(t)) = Z(x1(x0 − tx2), x2(x0 + x1)) = {p1, p2, p3, p4}

sendo p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1] e p4 = [t : −t : 1].17 Assim, segue
do Lema 2.2.1 que Oγ(t) = Oπ6 ∀ t ̸= 0. Logo, γ(t) ∈ Oπ6 ∀ t ̸= 0. Portanto, temos que
Oπ6 especializa Oπ5 .

Oπ5 −→ Oπ4 sendo π5 = [x0x1, x2(x0 + x1)] e π4 = [x20, x1x2].

Considere γ : I −→ G2(S2) definida por

γ(t) = [x0(x0 + tx1), x2(tx0 + x1)] ∈ G2(S2).

Note que, γ(0) = [x20, x1x2] = π4. Logo, γ(0) ∈ Oπ4 . Agora, considere t ̸= 0 ∈ I,
daí calculando Z(γ(t)) obtemos18

p1 = [0 : 1 : 0], p2 = [t : 1 : 0] e p3 = [0 : 0 : 1]

17De fato, temos as seguintes interseções (entre as retas componentes das cônicas):
x1 = 0 e x2 = 0 =⇒ [1 : 0 : 0] = p1

x0 − tx2 = 0 e x2 = 0 =⇒ x0 = x2 = 0 =⇒ [0 : 1 : 0] = p2

x1 = 0 e x0 + x1 = 0 =⇒ x0 = x1 = 0 =⇒ [0 : 0 : 1] = p3

x0 − tx2 = 0 e x0 + x1 = 0 =⇒ x0 = −x1 e tx2 = x0 =⇒ [tx0 : −tx0 : x0] = [t : −t : 1] = p4.

18De fato, temos as seguintes interseções:
x0 = 0 e x2 = 0 =⇒ [0 : 1 : 0] = p1

x0 − tx1 = 0 e x2 = 0 =⇒ x0 = tx1 =⇒ [t : 1 : 0] = p2

x0 = 0 e x0 + tx1 = 0 =⇒ x0 = x1 = 0 =⇒ [0 : 0 : 1] = p3

x0 − tx1 = 0 e tx0 + x1 = 0 =⇒ [0 : 0 : 1] = p3.
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

sendo p3 de multipicidade dois. Assim, como #Z(γ(t)) = 3, segue da Proposição 2.2.1
que Oγ(t) = Oπ5 para qualquer t ̸= 0. Logo, γ(t) ∈ Oπ5 para qualquer t ̸= 0.

Oπ5 −→ Oπ3 sendo π5 = [x0x1, x2(x0 + x1)] e π3 = [x22 − x0x1, x1x2].

Seja γ : I −→ G2(S2) definida por

γ(t) = [x22 − x0x1, x2(tx2 + x1)] ∈ G2(S2).

Para t = 0 segue que γ(0) = [x22 − x0x1, x1x2] = π3. Logo, γ(0) ∈ Oπ3 . Agora,
calculando Z(γ(t)) para t ̸= 0, obtemos19

p1 = [1 : 0 : 0], p2 = [0 : 1 : 0]p3 = [1 : t2 : −t].

Assim, como #Z(γ(t)) = 3, novamente pela Proposição 2.2.1 segue que
Oγ(t) = Oπ5 ∀ t ̸= 0. Logo, γ(t) ∈ Oπ5 ∀ t ̸= 0.

Oπ3 −→ Oπ1 sendo π3 = [x22 − x0x1, x1x2] e π1 = [x22 − x0x1, x
2
1].

Seja γ : I −→ G2(S2) definida por

γ(t) = [x22 − x0x1, x1(tx2 + x1)] ∈ G2(S2).

Para t = 0 segue que γ(0) = [x22 − x0x1, x
2
1] = π1. Logo, γ(0) ∈ Oπ1 . Agora, se

t ̸= 0 ∈ I, tem-se que Z(γ(t)) = {p, q} sendo20 p = [1 : 0 : 0] e q = [1 : t2 : −t].
Note que,

Rx2
p (x22 − x0x1, x1(x1 + tx2)) =

∣∣∣∣∣∣∣∣
1 0 −x0x1
tx1 x21 0

0 tx1 x21

∣∣∣∣∣∣∣∣ = x41 − t2x0x
3
1 = x31(x1 − t2x0)

sendo t ̸= 0 segue que Ip(x22 − x0x1, x1(x1 + tx2)) = 3. Como #Z(γ(t)) = 2 e pelo
Teorema 2.2.1 podemos concluir que Oγ(t) = Oπ3 ∀ t ̸= 0. Portanto, γ(t) ∈ Oπ3 ∀ t ̸= 0.

19Pois
x22 − x0x1 = 0 e x2 = 0 =⇒ [1 : 0 : 0] = p1 ou [0 : 1 : 0] = p2

tx2 + x1 = 0 e x22 − x0x1 = 0 =⇒ x1 = −tx2 =⇒ x22 + tx2x0 = 0 =⇒ x2(x2 + tx0) = 0

x2 = 0 ou x2 + tx0 = 0 =⇒ [1 : 0 : 0] = p1 ou x2 = −tx0 e x1 = t2x0

=⇒ [x0 : t2x0 : −tx0] = [1 : t2 : −t] = p3 com t ̸= 0.

20 {
x22 − x0x1 = 0 e x1 = 0 =⇒ [1 : 0 : 0] = p

tx2 + x1 = 0 e x22 − x0x1 = 0 =⇒ [1 : 0 : 0] = p ou [1 : t2 : −t] = q com t ̸= 0.
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

Oπ4 −→ Oπ1 sendo π4 = [x20, x1x2] e π1 = [x22 − x0x1, x
2
1].

Seja γ : I −→ G2(S2) definida por

γ(t) = [x22 − x0x1, (tx2 + x1)
2] ∈ G2(S2).

Como γ(0) = [x22 − x0x1, x
2
1] = π1. Logo, γ(0) ∈ Oπ1 . Agora, se t ̸= 0 ∈ I, então

Z(γ(t)) = {p, q} sendo p = [1 : 0 : 0] e q = [1 : t2 : −t].
Note que,

Rx2
p (x22 − x0x1, (x1 + tx2)

2) =

∣∣∣∣∣∣∣∣
1 0 −x0x1

2tx1 α 0

0 2tx1 α

∣∣∣∣∣∣∣∣ = x41 + 2tx0x
3
1 + t2x20x

2
1 − 4t2x0x

3
1

= x21(x
2
1 + (2t− 4t2)x0x1 + t2x20).

com α = x21 + tx0x1. Sendo t ̸= 0 segue que Ip(x22 − x0x1, (x1 + tx2)
2) = 2. Como

#Z(γ(t)) = 2 e pelo Teorema 2.2.1 podemos concluir que Oγ(t) = Oπ4 ∀ t ̸= 0.

Portanto, γ(t) ∈ Oπ4 ∀ t ̸= 0.

Oπ1 −→ Oπ2 sendo π1 = [x22 − x0x1, x
2
1] e π2 = [x20, x

2
1].

A menos de uma mudança de representante, vamos considerar π1 = [x20−x1x2, x
2
1].

Assim, seja γ : I −→ G2(S2) definida por

γ(t) = [x20 − tx1x2, x
2
1] ∈ G2(S2).

Temos que γ(0) = [x20, x
2
1] = π2. Logo, γ(0) ∈ Oπ2 . Agora, se t ̸= 0 ∈ I, então

Z(γ(t)) = {p} sendo p = [0 : 0 : 1].

Note que, pelo Teorema 2.2.1 temos duas possibilidades para γ(t): γ(t) ∈ Oπ1

ou γ(t) ∈ Oπ2 . Porém, pela Tabela 2.2 percebe-se que o determinante obtido pela
interseção da reta que tem como representante a órbita de π2 com a hipersuperfície H
é nulo, conclui-se que todos os elementos que pertencem Oπ2 são gerados por elementos
singulares. Sendo t ̸= 0, tem-se que x20 − tx1x2 define uma cônica não singular.21

Assim, concluímos que γ(t) ∈ Oπ1 ∀ t ̸= 0.

Oπ2 −→ Oπ8 sendo π2 = [x20, x
2
1] e π8 = [x20, x0x1].

21

detMF =

∣∣∣∣∣∣∣∣
1 0 0

0 0 −1

2
t

0 −1

2
t 0

∣∣∣∣∣∣∣∣ =
t2

4
̸= 0.
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2. Órbitas sob a ação de Aut(P2) em G2(S2)

Defina γ : I −→ G2(S2) por

γ(t) = [x20, x1(x0 + tx1)] ∈ G2(S2).

Para t = 0 segue que γ(0) = [x20, x0x1] = π8. Logo, γ(0) ∈ Oπ8 . Agora, se t ̸= 0 ∈ I,
então Z(γ(t)) = {p} sendo p = [0 : 0 : 1].

Novamente, pelo Teorema 2.2.1 temos duas possibilidades para γ(t): γ(t) ∈ Oπ1

ou γ(t) ∈ Oπ2 . Porém, pela Tabela 2.2 percebe-se que o determinante obtido pela
interseção da reta que tem como representante a órbita de π1 com a hipersuperfície
H é não nulo e consiste de um único ponto, ou seja, só admite um ponto singular.
No entanto, para γ(t) temos dois elementos singulares o que permite concluir que
γ(t) ∈ Oπ2 para qualquer t ̸= 0 pois Oπ2 possui todos os elementos singulares.

Oπ7 −→ Oπ8 sendo π2 = [x0x1, x0x2] e π8 = [x20, x0x1].
Defina γ : I −→ G2(S2) dada por

γ(t) = [x0x1, x0(x0 + tx2)] ∈ G2(S2).

Para t = 0 segue que γ(0) = [x0x1, x
2
0] = [x20, x0x1] = π8. Logo, γ(0) ∈ Oπ8 . Agora,

como {x0, x1, x0 + tx2} é LI para t ̸= 0, segue da prova do item 5. da Proposição 2.2.1
que γ(t) ∈ Oπ2 para qualquer t ̸= 0.
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Capítulo 3

Classificação das órbitas em G3(S2)

sob a ação de Aut(P2)

Neste capítulo, estendemos a análise feita em G2(S2) para G3(S2). Nosso obje-
tivo é classificar as órbitas sob a ação do grupo Aut(P2), explorando as propriedades
geométricas e algébricas da interseção desses subespaços com a hipersuperfície H que
parametriza cônicas singulares.

De fato, a cada W ∈ G3(S2) vamos associar um plano πW ⊆ P5 e estudar a
interseção ΓW := πW ∩ HP5 . Essa interseção, pode ser o próprio plano πW ou uma
curva cúbica plana. A natureza de ΓW — singular ou não singular — desempenha
um papel central na classificação das órbitas. Por fim, vamos calcular a dimensão e
determinar a especialização em apenas um caso para elucidar o procedimento.

3.1 Associação do plano πW ⊆ P5 a cada W ∈ G3(S2)

Vamos começar lembrando dois resultados preliminares em Pn (n ≥ 3). Considere
Pi = [vi] ∈ Pn para i = 1, 2, 3, verifica-se que:

• P1, P2, P3 são não colineares se, e somente se, {v1, v2, v3} é LI;

• Se P1, P2, P3 são não colineares, então existe um único plano contendo P1, P2 e
P3, que denotaremos por ⟨P1, P2, P3⟩.

A seguir, considere Ω : P5 −→ C definido em (1.9) no Capítulo 1. Assim, se
W = [F1, F2, F3] ∈ G3(S2), então considere pi = Ω−1(Fi) para i = 1, 2, 3. Observe
que se

Fi = ai0x
2
0+ai1x0x1+· · ·+ai5x22, então pi = [vi] sendo vi = (ai0, . . . , ai5) para i = 1, 2, 3.
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Lema 3.1.1. Com as notações acima, verifica-se que: {v1, v2, v3} é LI se, e somente
se, {F1, F2, F3} é LI.

Demonstração. Considere A1, A2, A3 ∈ C. Note que

3∑
i=1

Aivi = 0⃗ ⇐⇒ A1a1j + A2a2j + A3a3j = 0, j = 0, . . . , 5 ⇐⇒
3∑

i=1

AiFi = 0.

Daí, {v1, v2, v3} é LI se, e somente se, {F1, F2, F3} é LI.

Assim, obtemos o plano ⟨p1, p2, p3⟩ em P5. A seguir, mostraremos que esse plano in-
depende da escolha da base de W ∈ G3(S2). De fato, se W = [F1, F2, F3] = [G1, G2, G3]

então considere pi = Ω−1(Fi) e qi = Ω−1(Gi) para i = 1, 2, 3. Note que, para verificar a
igualdade ⟨p1, p2, p3⟩ = ⟨q1, q2, q3⟩, basta mostrar que qi ∈ ⟨p1, p2, p3⟩, i = 1, 2, 3. Visto
que Gi ∈ [F1, F2, F3], para todo i, segue que

Gi = αiF1 + βiF2 + γiF3 para alguns αi, βi, γi ∈ C. (3.1)

Note que se Fi = ai0x
2
0+ai1x0x1+ · · ·+ai5x22 então pi = [vi] sendo vi = (ai0, . . . , ai5). E

analogamente, seGi = bi0x
2
0+bi1x0x1+· · ·+bi5x22 então qi = [ui] sendo ui = (bi0, . . . , bi5).

Como ⟨p1, p2, p3⟩ = {[s1v1 + s2v2 + s3v3] ∈ P5 | [s1 : s2 : s3] ∈ P2}, a partir de (3.1)
conclui-se que [ui] = qi ∈ ⟨p1, p2, p3⟩, logo ⟨q1, q2, q3⟩ = ⟨p1, p2, p3⟩, visto que, existe um
único plano determinado por três pontos distintos e não colineares em P5.

Com isso temos a seguinte definição.

Definição 3.1.1. A cada W ∈ G3(S2) vamos associar o plano πW ⊂ P5 determinado
por p1, p2 e p3 tais que Ω(pi) = [Fi], se W = [F1, F2, F3].

Das considerações feitas acima, segue que πW = ⟨p1, p2, p3⟩ e sua definição inde-
pende da base escolhida para W .

Exemplo 3.1.1. Seja W = [x20, x
2
1, x

2
2] ∈ G3(S2). Considere pi+1 = Ω−1([x2i ]) para

i = 0, 1, 2. Logo, p1 = [1 : 0 : 0 : 0 : 0 : 0], p2 = [0 : 0 : 0 : 1 : 0 : 0] e
p3 = [0 : 0 : 0 : 0 : 0 : 1]. Lembre que Λ ⊂ P5 é um plano se, e somente se,
Λ = Z(L1, L2, L3), Li homogêneos de grau 1 em C[y0, . . . , y5]. Assim, se
L = b0y0 + b1y1 + b2y2 + b3y3 + b4y4 + b5y5, então verifica-se que

L(p1) = 0 ⇐⇒ b0 = 0

L(p2) = 0 ⇐⇒ b3 = 0

L(p3) = 0 ⇐⇒ b5 = 0.

Donde podemos concluir que L = b1y1 + b2y2 + b3y3. Assim, πW = Z(y1, y2, y4).
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Defina ΓW = πW ∩HP5 para cada W ∈ G3(S3).

Proposição 3.1.1. Com as notações acima, verifica-se que ΓW = πW ou ΓW é uma
curva plana de grau 3.

Demonstração. Considere W = [F1, F2, F3] ∈ G3(S2) e seja πW ⊂ P5 o plano deter-
minado por W . Note que temos duas possibilidades: πW ⊆ HP5 ou πW ⊈ HP5 . No
primeiro caso, concluímos que ΓW = πW . A seguir, assuma que πW ⊈ HP5 . Neste
caso, ΓW = πW ∩ HP5 ⊊ πW . Note que, HP5 e πW são subvariedades de P5 tais que
dimHP5 = 4 e dimπw = 2. Agora, visto que 2+4− 5 = 1 ≥ 0, então segue do Teorema
7.2 (p. 48 em [11]) que ΓW = πW ∩ HP5 ̸= ∅. Além disso, sendo πW e HP5 fechados,
segue que ΓW também é fechado. Daí, pelo Teorema 5.7 (p. 52 em [10]) segue que ΓW

pode se decompor em uma união finita de componentes irredutíveis, ou seja,

ΓW = X1 ∪ . . . ∪Xk.

Novamente pelo do Teorema 7.2 (p. 48 em [11]), temos que a dimXi ≥ 2 + 4 − 5 = 1

para todo i ∈ {1, . . . , k}. Entretanto, como ΓW = X1 ∪ . . . ∪ Xk ⊆ πW , temos que
Xi ⊂ πW para todo i (com a inclusão própria pois πW ⊈ HP5). Segue que dimXi ≤ 1,

o que nos permite concluir que dimXi = 1 para todo i. Logo, ΓW é um curva plana
(uma vez que ΓW está contido em πW ).

Por fim, afirmamos que o grau(ΓW) = 3. Com efeito, lembre que [vi] = pi = Ω−1(Fi)

e com isso, πW = ⟨p1, p2, p3⟩ = {[α1v1 + α2v2 + α3v3] | [α1 : α2 : α3] ∈ P2}. Por outro
lado, πW está em bijeção com P2, assim q ∈ ΓW se, e somente se, q = [α1v1+α2v2+α3v3]

para algum [α1 : α2 : α3] ∈ P2 e f(q) = 0 (lembre que HP5 = Z(f) ⊆ P5). Daí, defina

g = g(x0, x1, x2) = f(x0v1 + x1v2 + x2v3).

Note que, g é um polinômio homogêneo de grau 3 visto que f é homogêneo de grau 3.
Portanto, segue o resultado.

Conforme o Exemplo 3.1.1, temos que ΓW = πW ∩ HP5 = Z(y1, y2, y4) ∩ Z(f) =

Z(y1, y2, y3, f). Sendo assim, p = [p0 : p1 : p2 : p3 : p4 : p5] ∈ ΓW se, e somente se,
p1 = p2 = p4 = 0 e f(p) = 0, ou seja,

f =

∣∣∣∣∣∣∣∣∣∣∣∣

y0
1

2
y1

1

2
y2

1

2
y1 y3

1

2
y4

1

2
y2

1

2
y4 y5

∣∣∣∣∣∣∣∣∣∣∣∣
=⇒ f(p) =

∣∣∣∣∣∣∣∣∣∣∣∣

p0 0 0

0 p3 0

0 0 p5

∣∣∣∣∣∣∣∣∣∣∣∣
= y0y3y5 = 0.
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Note que, πW = Z(y1, y2, y3) −→ P2 dada por [x0 : 0 : 0 : x1 : 0 : x2] 7−→ [x0 : x1 :

x2] é uma bijeção. Neste caso ΓW é uma curva cúbica plana singular, representada
geometricamente na Figura 3.1 a seguir.

Figura 3.1

Z(x0)

Z(x1)

Z(x2)

De posse do resultado anterior se ΓW for uma curva, temos duas possibilidades:
ΓW é singular ou ΓW não é singular. Trataremos primeiro o caso em que ΓW é não
singular.

No que segue do texto,

• lA,B denota a reta pasando pelos pontos A e B;

• Para cada ponto P em P5, denotaremos por P̂ a cônica associada via Ω;

• Usaremos indistintamente, no caso das retas em P2: L = Z(a0x0 + a1x1 + a2x2)

ou L = a0x0 + a1x1 + a2x2.

3.2 ΓW é não singular

Seja W ∈ G3(S2) tal que ΓW é um curva não singular. Para este caso, vamos
começar com o seguinte resultado preliminar.

Lema 3.2.1. Seja C uma cúbica não singular. Então, existem pontos A,B,C,D ∈ C

tais que

1. A ∈ C é um ponto de inflexão;

2. B,C,D são pontos distintos e colineares em C e lA,P = TPC para todo P ∈
{B,C,D}.

Demonstração. Segue uma representação geométrica do que queremos mostrar
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Figura 3.2 Representação da cúbica não singular

A

B

C

D

O

A menos de uma MCP podemos assumir que C = Z(G) ⊂ P2 sendo
G = x20x1 + x0x

2
1 + x32 + ax0x1x2 com a ∈ C tal que a3 ̸= −27 (cf. Teorema 6, p.

3 em [18]). Considere A = [1 : 0 : 0] e note que ∇G(A) = (0, 1, 0) uma vez que

∇G = (2x0x1 + x21 + ax1x2, 2x0x1 + x20 + ax0x2, 3x
2
2 + ax0x1).

Assim, A é um ponto não singular da curva, cujo o plano tangente é dado por

TAC = Z

(
∂G

∂x0
(A) · x0 +

∂G

∂x1
(A) · x1 +

∂G

∂x2
(A) · x2

)
= Z(x1).

Além disso, TAC∩C = Z(x1)∩Z(G) = {[1 : 0 : 0]} = {A}. O que nos permite concluir
que A é um ponto de inflexão, provando o primeiro item. Prosseguindo, considere a
família de retas que passam pelo ponto A, ou seja, definidas por Z(αx1 + βx2) com
[α : β] ∈ P1. Logo, podemos representar tais retas por l∞ = x1 com [α : β] = [0 : 1] ∈ P1

e lu = x2 − ux1 com [α : β] = [−u : 1] ∈ P1.
Note que, l∞ = Z(x1) = TAC logo l∞ ∩C = {A}. Por outro lado, p = [x : y : z] ∈

lu ∩C se, e somente se,z = uy

x2y + xy2 + z3 + axyz = 0
⇐⇒

z = uy

y(x2 + xy + u3y2 + auxy) = 0

Como soluções para o sistema, percebe-se que y = 0 implica em z = 0 do qual temos
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p = [1 : 0 : 0] = A. Por outro lado, as soluções p = [x : y : z] do sistemaz = uy

x2 + xy + u3y2 + auxy = 0

verificam que y ̸= 0 (caso contrário, teríamos x = y = z = 0), então podemos supor
y = 1. Logo, p = [x : 1 : u] com x ∈ C tal que

x2 + (1 + au)x+ u3 = 0. (3.2)

Ou seja, lu ∩C = {A, [x : 1 : u]} com x solução da Equação (3.2). Note que ao impor
que #lu ∩C = 2, segue que o discriminante da Equação (3.2) deve ser nulo, isto é,

1 + 2au+ a2u2 − 4u3 = 0. (3.3)

Logo, u é solução da equação 4t3 − a2t2 − 2at − 1 = 0, a qual admite três soluções
distintas, digamos b, c e d. Assim, obtemos a partir de (3.2) para u ∈ {b, c, d} os pontos

B =
[
− (1 + ab)

2
: 1 : b

]
, C =

[
− (1 + ac)

2
: 1 : c

]
e D =

[
− (1 + ad)

2
: 1 : d

]
.

Visto que ∣∣∣∣∣∣∣∣∣∣
−(1 + ab)

2
1 b

−(1 + ac)

2
1 c

−(1 + ad)

2
1 d

∣∣∣∣∣∣∣∣∣∣
= 0

concluí-se que B,C e D são distintos e colineares. E pelo teorema de Bézout temos
que lA,P = TPC para P ∈ {B,C,D}. Portanto, temos o resultado.

Lema 3.2.2. Considere Wa = [x20−x1x2, x0x1, (x1−x2)(x1−ax2)] com a ∈ C−{0, 1}
em G3(S2). Então, ΓWa é uma cúbica não singular.

Demonstração. Primeiramente, vamos determinar a equação para o plano πWa em
P5. Considere F1 = x20 − x1x2, F2 = x0x1 e F3 = (x1 − x2)(x1 − ax2). Assim,
Wa = [F1, F2, F3] e pi = Ω−1(Fi) para i = 1, 2, 3 é dado por p1 = [1 : 0 : 0 : 0 : −1 : 0],
p2 = [0 : 1 : 0 : 0 : 0 : 0] e p3 = [0 : 0 : 0 : 1 : −(1 + a) : a]. Observe que
L = b0y0 + b1y1 + b2y2 + b3y3 + b4y4 + b5y5 está no ideal associado a πWa , se

L(p1) = 0 ⇐⇒ b0 − b4 = 0 ⇐⇒ b4 = b0

L(p2) = 0 ⇐⇒ b1 = 0

L(p3) = 0 ⇐⇒ b3 − (1 + a)b4 + ab5 = 0.
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Logo, L = b4(y0 + (1 + a)y3 + y4) + b2y2 + b5(y5 − ay3). Assim, πWa = Z(L1, L2, L3),
sendo L1 = y0 + (1+ a)y3 + y4, L2 = y2 e L3 = y5 − ay3. Daí, por definição, temos que
ΓWa = πWa ∩HP5 = Z(L1, L2, L3, f), com

f =

∣∣∣∣∣∣∣∣∣∣∣∣

y0
1

2
y1

1

2
y2

1

2
y1 y3

1

2
y4

1

2
y2

1

2
y4 y5

∣∣∣∣∣∣∣∣∣∣∣∣
.

Considere, p = [y0 : y1 : y2 : y3 : y4 : y5] ∈ P5. Note que:

p ∈ ΓWa ⇐⇒ y0 = −(1 + a)y3 − y4, y2 = 0, y5 = αy3 e f(p) = 0.

Ou seja, p ∈ ΓWa se, e somente se,

g(y1, y3, y4) :=

∣∣∣∣∣∣∣∣∣∣
−(1 + a)y3 − y4

1

2
y1 0

1

2
y1 y3

1

2
y4

0
1

2
y4 ay3

∣∣∣∣∣∣∣∣∣∣
= 0.

Isto é,

g(y1, y3, y4) =
y34 + (a+ 1)y3y

2
4 − 4ay23y4 − 4a2y33 − 4ay33(a+ 1)− ay21y3

4
= 0. (3.4)

Afirmação: ΓWa é não singular.
Lembremos que q ∈ Sing(ΓWa) se, e somete se, ∇g(q) = 0. Calculando as derivadas

parciais em (3.4), obtemos que ∇g é igual a

(
− ay1y3

2
,
ay24 + y24 − 8ay3y4 − 12a2y23 − 12ay23 − ay21

4
,
3y24 + 2ay3y4 + 2y3y4 − 4ay23

4

)
. (3.5)

Note que, se q = [y1 : y3 : y4] é um ponto singular então y1y3 = 0 (visto que a ̸= 0). O
que nos leva a considerar os seguintes dois casos:

Caso 1 Se y3 = 0, então segue das outras equações que y1 = y4 = 0.

Caso 2 y1 = 0. Neste caso, verifica-se que y3 = 0 se, e somente se, y4 = 0. Assim,
vamos analisar o caso y1 = 0 e que y3, y4 são ambos não nulos. Podemos assumir que
y3 = 1. A partir de (3.5) obtemosay

2
4 + y24 − 8ay4 − 12a2 − 12a = 0

3y24 + 2ay4 + 2y4 − 4a = 0
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para a segunda equação, obtemos como soluções c1 = −
√
a2 + 14a+ 1 + a+ 1

3
e

c2 =

√
a2 + 14a+ 1− a− 1

3
, substituindo c1 na primeria equação, no sistema acima,

temos

2
(
a2
√
k + 14 a

√
k +

√
k + a3 − 33 a2 − 33 a+ 1

)
9

= 0 (3.6)

sendo k = a2 + 14a + 1. Entretanto, observe que (3.6) pode ser escrita na forma:
k·k

1
2+(a+1)(a2−34a+1) = 0. De onde, segue que k

3
2 = −b onde b = (a+1)(a2−34a+1)

implica que k3 = b2. Como k = a2 + 14a + 1 e b = (a + 1)(a2 − 34a + 1), checamos
que k3 − b2 = 108a(a − 1)4. Portanto, 108a(a − 1) = 0 onde temos um absurdo pois
a ∈ C−{0, 1}. Analogamente, ao substituir c2 obteremos um absurdo. Portanto, segue
que ΓWa é uma cúbica não singular.

Proposição 3.2.1. Com as notações do Lema 3.2.2, se W ∈ G3(S2) e ΓW é uma cúbica
não singular, então existe φ ∈ Aut(P2) tal que φ •W = Wa para algum a ∈ C−{0, 1}.

Demonstração. Considere W ∈ G3(S2) tal que ΓW seja uma cúbica não singular. Segue
do Lema 3.2.1 que existem pontos A,B,C,D ∈ ΓW tais que:

• A é um ponto de inflexão;

• {B,C,D} ⊂ ΓW − {A} são distintos e colineares.

Note que, cada ponto de ΓW está associado a uma cônica em C (de modo que a cada
ponto Q ∈ ΓW associaremos a cônica Q̂ ∈ C). Além disso, a reta L determinada pelos
pontos B,C e D é do tipo (6) na Tabela 2.2. Assim, existe φ1 ∈ Aut(P2) de modo que
as cônicas associadas a B,C e D são da forma, B̂ = x20−x21, Ĉ = x21−x22 e D̂ = x22−x20.
Considere os pontos PB = [0 : 0 : 1], PC = [1 : 0 : 0] e PD = [0 : 1 : 0] determinados
pelas interseções das componentes de B̂, Ĉ e D̂. Por outro lado, O ∈ L = lB,C e O
está associado a uma cônica não singular Ô (visto que O /∈ ΓW ). Logo, temos que

Ô = µ(x20 − x21) + ν(x21 − x22) com µ · ν ̸= 0

Ô = µx20 + (ν − µ)x21 − νx22

Ô = −µ
ν
x20 − (1− µ

ν
)x21 + x22

Ô = kx20 − (1 + k)x21 + x22 com k = −µ
ν
∈ C− {0,−1}.

Afirmação 1: A ∈ HP5 −∆P5 .

De fato, como Sing(HP5) = ∆P5 , se A ∈ ∆P5 , então A seria um ponto singular, o
que é um absurdo pois A é ponto de inflexão.
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Assim, segue que A está associado a um par de retas distintas, e portanto, as retas
lA,P com P ∈ {B,C,D} são do tipo (5) na Tabela 2.2.
Afirmação 2: Os pontos PB, PC e PD pertencem a exatamente uma das componentes
da cônica Â.

De fato, observe que lA,O é do tipo (3) na Tabela 2.2, ou seja, geometricamente
temos a seguinte representação para as cônicas Â e Ô.

Figura 3.3

Suponha por absurdo que PB pertença a ambas das componentes da cônica Â.
Logo, como A e B são distintos e lA,B não é uma componente de ΓW , geometricamente
temos

Figura 3.4

PB

=⇒

PB

Note que, as cônicas B̂ e Ô se intersectam em três pontos distintos, donde podemos
conlcuir pelo Teorema 2.2.1 que a reta lO,B é do tipo (5) na Tabela 2.2, o que é um
absurdo já que lO,B = L é do tipo (6). O mesmo racioncínio se aplica para Ĉ e D̂.

Sendo assim, temos três possibilidades (representandas geometricamente abaixo)
para a posição dos pontos PB, PC e PD em relação às componentes da cônica Â.

Figura 3.5

x1 = 0

PD

PB = [0 : 0 : 1]
PC = [1 : 0 : 0]

x0 = 0

PC

PB = [0 : 0 : 1]
PD = [0 : 1 : 0]

x2 = 0

PB

PC = [1 : 0 : 0]
PD = [0 : 1 : 0]

Logo, as possibilidades para Â são: x0 · L1, x1 · L1, x2 · L1. Para Â = x0 · L1

temos que a componente x0 = 0 encontra a cônica Ô = kx20− (1+k)x21+x
2
2 nos pontos
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[0 : 1 : u] e [0 : 1 : −u] sendo u2 = k + 1. De onde concluímos que existem duas
possibilidades para a componente L1 (que é a reta tangente nos pontos indicados), a
saber L1 = x2+ux1 ou L1 = x2−ux1. Escolha L1 = x2+ux1, assim, em resumo temos
que

Ô = kx20 − u2x21 + x22, Â = x0(x2 + ux1), B̂ = x20 − x21, Ĉ = x21 − x22 e D̂ = x22 − x20.

Daí, considerando πW = ⟨O,A,C⟩ temos que

W1 = φ1 •W = [kx20 − u2x21 + x22, x0(x2 + ux1), x
2
1 − x22]

MB
= [kx20 + (x2 + ux1) · (x2 − ux1), x0(x2 + ux1), 4u

2(x21 − x22)].

Considere a base {x0, x2 + ux1, x2 − ux1} de S1, assim existe R ∈ Aut(C3) tal que
R•x0 = x0, R•(x2 + ux1) = x1 e R•(x2 − ux1) = −kx2. Note que,

(x2 + ux1) + (x2 − ux1) = 2x2 =⇒ R•(2x2) = x1 − kx2,

(x2 + ux1)− (x2 − ux1) = 2ux1 =⇒ R•(2ux1) = x1 + kx2.

Logo, sob a ação de R•, obtemos

2x1 − 2x2 7−→ x1 + kx2
u

− u(x1 − kx2)

u
=

1

u

[
(1− u)x1 + k(1 + u)x2

]
,

2x1 + 2x2 7−→ x1 + kx2
u

+
u(x1 − kx2)

u
=

1

u

[
(1 + u)x1 + k(1− u)x2

]
.

Agora considere φ2 ∈ Aut(P2) determinada por R ∈ Aut(C3). Assim, φ2 •W1 := W2

é dado por

W2 = [kx20 − kx1x2, x0x1,
(
(1− u)x1 + k(1 + u)x2

)
·
(
(1 + u)x1 + k(1− u)x2

)
]

W2
MB
= [kx20 − kx1x2, x0x1,

(
(−kx1 + k(1 + u)2x2

)
·
(
− kx1 + k(1− u)2x2

)
]

W2
MB
= [x20 − x1x2, x0x1,

(
(x1 + (1 + u)2x2

)
·
(
x1 + (1− u)2x2

)
],

com u ̸= ±1 (pois u = ±1 implica que k = 0). Por fim, seja R2 ∈ Aut(C3) de modo
que (R2)•(x1) = x1, (R2)•(x2) =

x2
(1 + u)2

e (R2)•(x0) =
x0

(1 + u)2
, assim, considere

φ3 ∈ Aut(P2) determinada por R2 ∈ Aut(C3). Logo,

W3 = φ3 •W2 =
[ x20
(1 + u)2

− x1x2
(1 + u)2

,
x0x1

(1 + u)2
, (x1x2)(x1 −

(1− u)2

(1 + u)2
x2)
]

MB
= [x20 − x1x2, x0x1, (x1 − x2)(x1 − ax2)]
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com a =

(
1− u

1 + u

)2

e a /∈ {0, 1}.1 Portanto, segue o resultado.

Proposição 3.2.2. Considere W ∈ G3(S2) tal que ΓW é não singular. Então,

1. Existe uma única cúbica [G] ∈ P(S3) tal que W = [Gx0 , Gx1 , Gx2 ] sendo Gxi
=
∂G

∂xi
com i = 0, 1, 2.

2. A cúbica [G] em 1. é não singular e não é projetivamente equivalente à cúbica
[x30 + x31 + x32] ∈ P(S3).

3. Reciprocamente, se [G] ∈ P(S3) é não singular e não é projetivamente equiva-
lente à cúbica [x30 + x31 + x32], então ΓWG

é uma cúbica não singular, sendo
WG = [Gx0 , Gx1 , Gx2 ] ∈ G3(S2).

4. O invariante fundamental jG associado a uma cúbica não singular [G] ∈ P(S3)

classifica os elementos W ∈ G3(S2) sob a ação de Aut(P2).

Demonstração. 1. Considere W ∈ G3(S2) tal que ΓW é não singular. Segue da Propo-
sição 3.2.1 que existe φ ∈ Aut(P2) tal que φ •W = [F1, F2, F3] sendo F1 = x20 − x1x2,
F2 = x0x1 e F3 = (x1 − x2) · (x1 − ax2) para algum a ∈ C − {0, 1}. Assim, vamos
procurar [G] ∈ P(S3) de modo que

WG := [Gx0 , Gx1 , Gx2 ] = [F1, F2, F3]. (3.7)

Segue de (3.7) que

Gx0 = a1F1 + b1F2 + c1F3, Gx1 = a2F1 + b2F2 + c2F3 e Gx2 = a3F1 + b3F2 + c3F3

com ai, bi, ci ∈ C, i = 1, 2, 3. Visto que Gx0x1 = Gx1x0 , Gx0x2 = Gx2x0 e Gx1x2 = Gx2x1 ,
a partir dessas três relações, obtemos um sistema de 9 equações lineares nas incógnitas
(com o auxílio do software MAXIMA) (ai, bi, ci), a saber:


a1 b1 c1

a2 b2 c2

a3 b3 c3

 =


0 2a2 0

a2 0 −(a+ 1)a2
(a− 1)2

0 0
2aa2

(a− 1)2

 =
a2

(a− 1)2


0 2(a− 1)2 0

(a− 1)2 0 −(a+ 1)

0 0 2a

 .

Logo, temos que

Gx0 = 2(a− 1)2F2, Gx1 = (a− 1)2F1 − (a+ 1)F3 e Gx2 = 2aF3. (3.8)

1De fato, a = 1 =⇒ (1 + u)2 = (1 − u)2 =⇒ 4u = 0 =⇒ k = −1 (absurdo) e a = 0 =⇒ 1− u

1 + u
=

0 =⇒ u = 0 (absurdo).
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Assim, por uma mudança de base, temos que [Gx0 , Gx1 , Gx2 ] = [F1, F2, F3]. Por fim,
pela identidade de Euler, segue que 3 ·G = x0Gx0 + x1Gx1 + x2Gx2 . Logo, a menos de
um múltiplo por escalar, temos que

G = 3(a− 1)2x20x1 + 3ax21x2 − 3(a2 − a)x1x
2
2 − (1 + a)x31 + 2a3x32.

2. Primeiro mostraremos que [G] é não singular. De fato, lembre que p ∈ Sing(G) se,
e somente se, Gxi

(p) = 0 para i = 0, 1, 2. Tendo em consideração (3.8) e o fato de que
a /∈ {0, 1}, concluí-se que p ∈ Sing(G) se, e somente se, p ∈ Z(F1, F2, F3).

Assuma que p = [p0 : p1 : p2] é um ponto singular de [G]. Visto que F1 = x20−x1x2,
F2 = x0x1 e F3 = (x1 − x2)(x1 − ax2), daí

p20 − p1p2 = 0 (3.9)

p0p1 = 0 (3.10)

(p1 − p2)(p1 − ap2) = 0 (3.11)

Caso 1 Se p0 = 0, então por (3.9) p1 = 0 ou p2 = 0, mas se p1 = 0 em (3.11)
temos ap22 = 0 o que implica em p2 = 0. Por outro lado, se p2 = 0 segue o mesmo
raciocínio e concluímos que p1 = 0.

Caso 2 Se p1 = 0, então em (3.9) temos que p0 = 0 e em (3.11) p2 = 0.
Logo, segue que Sing(G) = ∅. Portanto, [G] é não singular.
Por outro lado, [G] não é projetivamente equivalente a [x30 + x31 + x32]. De fato,

considere H = x30 + x31 + x32. Logo, WH = [x20, x
2
1, x

2
2] ∈ G3(S2). Assim, de acordo com

o Exemplo 3.1.1, temos que ΓWH
é uma cúbica plana singular. Entretanto, ΓWG

é uma
cúbica plana não singular. Portanto, não são projetivamente equivalentes.

3. Sendo [G] ∈ P(S3) não singular, a menos de uma MCP podemos assumir que
G = x30 + x31 + x32 + 3λx0x1x2 com λ ∈ C − {−1,−ω,−ω2} tal que ω ∈ C com
ω3 = 1, ω ̸= 1. Segue do item (b) no Teorema 4.1 em [11] que jG ̸= jG0 com
G0 = x30 + x31 + x32 sendo jG e jG0 o j−invariante associado às curvas [G] e [G0]. Tendo

em consideração que jG =
λ3(λ3 − 8)

27(λ3 + 1)
(cf. [11]), se G = x30+x

3
1+x

3
2+3λx0x1x2. Como

jG0 ̸= jG segue que λ ̸= 0 e λ /∈ {2, 2ω, 2ω2}.
Afirmação: Se WG = [x20 + λx1x2, x

2
1 + λx0x2, x

2
2 + λx0x1] com λ /∈ {0,−ωi, 2ωi}2i=0,

então ΓWG
é uma cúbica não singular.

De fato, seja P ∈ ΓWG
= πWG

∩HP5 . Lembre que a P ∈ πWG
se associa uma cônica

P̂ = a(x20 + λx1x2) + b(x21 + λx0x2) + c(x22 + λx0x1) com [a : b : c] ∈ P2.
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Assim, se a cônica P̂ é singular, segue que∣∣∣∣∣∣∣∣∣∣
a

cλ

2

bλ

2
cλ

2
b

aλ

2
bλ

2

aλ

2
c

∣∣∣∣∣∣∣∣∣∣
= 0 ⇐⇒ (a3 + b3 + c3)λ2 − (λ3 + 4)abc = 0.

Como λ ̸= 0, segue que a3 + b3 + c3 − (λ3 + 4)

λ2
abc = 0 define uma cúbica singular se, e

somente se, −(λ3 + 4)

3λ2
/∈ {−1, ω, ω2}. Pois, se

−(λ3 + 4)

3λ2
= −1 ⇐⇒ λ3 − 3λ2 + 4 = 0 ⇐⇒ (λ+ 1)(λ− 2)2 = 0 ⇐⇒ λ ∈ {−1, 2}.

Procedendo de forma análoga, para os demais valores (ω e ω2) obtemos que
λ /∈ {0,−ωi, 2ωi}2i=0, tendo em vista que λ não assume esses valores, segue a afirmação.

4. Seja W ∈ G3(S2), se ΓW define uma cúbica não singular, então existem [Gλ] ∈ P(S3)

não singular que não é projetivamente equivalente a [x30 + x31 + x32] e φ ∈ Aut(P2) tais
que

φ •W = WGλ
=

[
∂Gλ

∂x0
,
∂Gλ

∂x1
,
∂Gλ

∂x2

]
.

3.3 ΓW é singular e irredutível

A partir de agora, vamos concentrar nossa atenção na classificação das órbitas no
caso em que ΓW é singular e irredutível. Ou seja, ΓW é uma cúbica nodal ou cuspidal.

Lema 3.3.1. Seja C ⊂ P2 uma cúbica nodal tendo P por singularidade. Então, existem
A,B ∈ C− {P} distintos, tais que A é um ponto de inflexão e TBC = lA,B.

Demonstração. Segue da Proposição B.5 (cf. p. 53 item (1) em [2]), que a menos
de uma MCP , C = Z(G) com G = x21x2 − x30 − x20x2. Note que ∇G = (−3x20 −
2x0x2, 2x1x2, x

2
1 − x20). Logo, P = [x0 : x1 : x2] ∈ Sing(G) se, e somente se,

−3x20 − 2x0x2 = 0, (3.12)

2x1x2 = 0, (3.13)

x21 − x20 = 0. (3.14)
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De (3.13) segue que x1 = 0 ou x2 = 0. Se x1 = 0, então a partir (3.14) temos que
x0 = 0, logo P = [0 : 0 : 1]. Por outro lado, se x2 = 0, então a partir (3.12) e (3.14)
concluímos que x0 = x1 = 0. Portanto, [0 : 0 : 1] é a única singularidade de C.

A seguir considere A = [0 : 1 : 0]. Observe que A ∈ C e que ∇G(A) = [0 : 0 : 1],
assim, TAC = Z(x2), além disso, temos que TAC∩C = {A}. Portanto, A é um ponto
de inflexão. Por outro lado, considere a família de retas passando por A, isto é, aquelas
definidas por, L = x2 e Lu = x0 − ux2 com u ∈ C.

Note que, L = TAC. A seguir, vamos determinar u ∈ C tal que #Lu ∩ C = 2.
Observe que, Q = [x0 : x1 : x2] ∈ Lu ∩C se, e somente se,x0 = ux2

x21 − x2 − x30 − x20x2 = 0
=⇒ x21x2 − u3x32 − u2x32 = x2(x

2
1 − u2(u+ 1)x22) = 0.

Queremos que x21−u2(u+1)x22 = 0 admita uma única solução, ou seja, u2(u+1) = 0.
Assim, u = 0 ou u = −1. Note que, se u = 0 então Q = [0 : 0 : 1] = P . Se u = −1

então Q = [−x2 : 0 : x2] = [−1 : 0 : 1].
Afirmação: Se B = [−1 : 0 : 1] então lA,B = TBC.

De fato, lA,B = Z(x0 + x2). Por outro lado, TBC = Z(LB) sendo LB =
∂G

∂x0
(B) ·

x0 +
∂G

∂x1
(B) · x1 +

∂G

∂x2
(B) · x2. Como ∇G(B) = [−1 : 0 : 1] segue que LB = −x0 − x2.

Portanto, lA,B = TBC.

Lema 3.3.2. Se C ⊂ P2 for uma cúbica cuspidal tendo P por singularidade, então
existe A ∈ C − {P} ponto de inflexão e existe uma única reta LP passando por P tal
que LP ∩C = {P}.

Demonstração. Novamente pela Proposição B.5 (p. 53 item (2) em [2]), a menos de
uma MCP podemos supor que C = Z(G), sendo G = x2x

2
1 − x30. Assim, segue que

∇G = (−3x20, 2x1x2, x
2
1) e conclui-se que P = [0 : 0 : 1] é a única singularidade de C.

Note que, A = [0 : 1 : 0] ∈ C satisfaz ∇G(A) = [0 : 0 : 1], logo TAC = Z(x2). Visto
que TAC∩C = {A}, concluímos que A é um ponto de inflexão. Considerando a família
de retas passando por P , ou seja, LP = Z(x1) e Lu = Z(x0 − ux1), com u ∈ C.

Note que LP ∩C = {P} (x1 = 0 implica em x0 = 0), isto é, a reta LP intersecta a
curva somente no ponto P . Considere Q = [x0 : x1 : x2] e observe que

Q ∈ Lu ∩C ⇐⇒

x0 = ux1

x21x2 − x30 = 0.
=⇒ x21x2 − u3x31 = x21(x2 − u3x1) = 0.

Se x21 = 0, então x0 = 0 e obtemos Q = P . Por outro lado, se x2 − u3x1 = 0 então
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Q = [ux1 : x1 : u
3x1] = [u : 1 : u3]. Assim, Z(x0−ux1)∩C = {P, [u : 1 : u3]}. Portanto,

LP é a única reta que passa por P e não intersecta a curva em outro ponto.

Proposição 3.3.1. Seja W ∈ G3(S2) tal que ΓW é uma cúbica singular irredutível.
Então, verifica-se que

1. Se ΓW é uma cúbica nodal cuja singularidade se corresponde com uma cônica em
HP5 −∆P5, então existe φ ∈ Aut(P2) tal que φ•W = [x0x1, x

2
0−x1x2, x

2
1−x0x2];

2. Se ΓW é uma cúbica nodal cuja singularidade se corresponde com uma cônica em
∆P5, então existe φ ∈ Aut(P2) tal que φ •W = [x0x1, x

2
0 − x1x2, (x1 + x2)

2];

3. Se ΓW é uma cúbica cuspidal, então a singularidade de ΓW se corresponde com
uma cônica em ∆P5 e existe φ ∈ Aut(P2) tal que φ •W = [x20 − x1x2, x0x1, x

2
2].

Demonstração. Assuma que ΓW é uma cúbica nodal. Segue do Lema 3.3.1 que existe
A ∈ ΓW ponto de inflexão, B ∈ ΓW − {A} tal que lA,B = TBΓW . De fato, se P ∈ ΓW

for sua singularidade então temos a seguinte representação geométrica para ΓW

Figura 3.6: Representação para uma cúbica nodal

lB,P
TAC

A

P

B

O

Sendo O o ponto de interseção das retas TAC e lB,P . Observe que O /∈ ΓW ,
logo O se corresponde com a cônica não singular Ô. Além disso, temos que A,B

e P se correspondem com cônicas singulares Â, B̂ e P̂ , respectivamente. Note que
πW = ⟨A,O, P ⟩ e além disso

• lA,P , lA,B, lB,P , lB,O, lP,O são do tipo (5) na Tabela 2.2;

• lA,O é do tipo (3) na Tabela 2.2.

ComoW = [Â, Ô, P̂ ] e tendo em vista o tipo da reta lA,O, segue que existe φ1 ∈ Aut(P2)

tal que W1 = φ1 •W = [x1x2, x
2
2 − x0x1, P̂1].
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Considere φ2 ∈ Aut(P2) tal que x0 7−→ x2, x1 7−→ x1 e x2 7−→ x0. Assim,

W2 = φ2 •W1 = [x0x1, x
2
0 − x1x2, L1 · L2]. (3.15)

Por simplicidade, no que segue do texto, considere Â = x0x1, Ô = x20 − x1x2 e P̂ =

L1 · L2. Além disso, sejam xA e xP o ponto de interseção das componentes de Â e P̂ .
A partir de agora, considere os seguintes dois casos: P ∈ HP5 −∆P5 e P ∈ ∆P5 .

Caso 1: P ∈ HP5 −∆P5 .

Como P ∈ HP5 − ∆P5 e lP,O é do tipo (5) na Tabela 2.2, temos que analisar as
seguintes possibilidades de acordo com a posição relativa de P̂ e Ô:

Figura 3.7

xP

(i) xP ∈ Ô

xP

(ii) xP /∈ Ô

(i) xp ∈ Ô.
A seguir, vamos analisar as possibilidades para a posição relativa das cônicas Â e

P̂ em W2 (cf. (3.15)).
(i-1) xP pertence a uma das componentes de Â. Como lA,P é do tipo (5) (na Tabela
2.2) segue que xA = [0 : 0 : 1] ̸= xP . Entretanto, lA,O é do tipo (3) (na Tabela 2.2).

Com isso, temos a seguinte representação:

Figura 3.8

x1 = 0

L1 L2

xP

xA

x0 = 0

Assim, necessariamente xP = [0 : 1 : 0]. Portanto, L1 = ax0 + bx2 e L2 =

a1x0+ b1x2, com a, a1, b, b1 ∈ C−{0}. Assim, L1 ·L2 = aa1x
2
0+(ab1+a1b)x0x2+ bb1x

2
2.
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Daí, por uma mudança de base obtemos

W2 = [x0x1, x
2
0 − x1x2, x

2
2 + µx0x2 + νx20] com µ =

ab1 + a1b

bb1
, ν =

aa1
bb1

.

Seja φ3 ∈ Aut(P2) tal que x0 7−→ x2, x1 7−→ x1 e x2 7−→ x2 + θx0, com θ solu-
ção da equação t2 + µt + ν = 0. Assim, ao aplicarmos φ3 teremos Â 7−→ x0x1,
Ô 7−→ x20 − x1x2 − θx0x1 e

P̂2 7−→ x22 + θx20 + 2θx0x2 + µx0x2 + µθx20 + νx20

7−→ x22 + (2θ + µ)x0x2 + (θ2 + θµ+ ν)x20 = x22 + µ1x0x2, com µ1 = 2θ + µ.

Logo,

W3 = φ3 •W2 = [x0x1, x
2
0 − x1x2 − θx0x1, x

2
2 + µ1x0x2]

MB
= [x0x1, x

2
0 − x1x2, x

2
2 + µ1x0x2].

Sendo assim, temos duas possibilidades: µ1 = 0 ou µ1 ̸= 0.

• µ1 = 0.

Considere G ∈ W3 = [x0x1, x
2
0 − x1x2, x

2
2]. Logo, G = ax0x1 + b(x20 − x1x2) + cx22 com

[a : b : c] ∈ P2, temos

MG =


b

a

2
0

a

2
0 − b

2

0 − b
2

c

 =⇒ det(MG) = b3 − a2c.

De onde concluímos que ΓW3 é uma cúbica cuspidal, o que é um absurdo pois ΓW é
uma cúbica nodal.

• µ1 ̸= 0.

Neste caso, considere φ4 ∈ Aut(P2) tal que x0 7−→ 1

µ1

x0, x1 7−→ 1

µ2
1

x1 e x2 7−→ x2.

Logo,

Â 7−→ 1

µ3
1

x0x1
MB
= x0x1

Ô 7−→ 1

µ2
1

x20 −
1

µ2
1

x1x2
MB
= x20 − x1x2

P̂3 7−→ x22 − µ1
1

µ1

x0x2 = x22 − x0x2

Segue que W4 = φ4 •W3 = [x0x1, x
2
0 − x1x2, x

2
2 − x0x2].
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Seja agora φ5 ∈ Aut(P2) em que x0 7−→ x0, x1 7−→ x1 e x2 7−→ x2 +
1

2
x0. Assim,

Â 7−→ x0x1

Ô 7−→ x20 − x1x2 −
1

2
x0x1

MB
= x20 − x1x2

P̂3 7−→ x22 +
1

4
x20 + x0x2 − x0x2 −

1

2
x20 = x22 −

1

2
x20.

Com isso, temos

W5 = φ5 •W4 = [x0x1, x
2
0 − x1x2, x

2
2 −

1

2
x20]

MB
= [x0x1, x

2
0 − x1x2, x

2
2 −

1

2
x1x2].

Seja φ6 ∈ Aut(P2) na qual x0 7−→ 2x0, x1 7−→ 4x1 e x2 7−→ x2. Assim, aplicando φ6 e
por uma mudança de base obtemos

W6 = φ6 •W5 = [x0x1, x
2
0 − x1x2, x

2
2 − x1x2]

MB
= [x0x1, x

2
0 − x1x2, x

2
0 − x22].

Definindo Ô1 = x21 − x0x2, note que

Ô + Ô1 = x20 − x1x2 + x21 − x0x2 (3.16)

Ô − Ô1 = x20 − x1x2 − x21 + x0x2 = (x0 − x1)(x0 + x1 + x2). (3.17)

Agora, considere φ7 ∈ Aut(P2) em que x0 7−→ x0 − x1, x1 7−→ 1

2
(x0 + x1 + x2) e

x2 7−→ x0 + x1. Segue que,

Â 7−→ (x0 − x1)
1

2
(x0 + x1 + x2)

(3.17)
=

1

2
(Ô − Ô1)

MB
= Ô − Ô1

Ô 7−→ (x0 − x1)
2 − 1

2
(x0 + x1)(x0 + x1 + x2)

7−→ x20 + x21 − 2x0x1 −
1

2
(x20 + x21 + 2x0x1 + x0x2 + x1x2)

7−→ 1

2
x20 +

1

2
x21 − 3x0x1 −

1

2
x0x2 −

1

2
x1x2

MB
= x20 − x1x2 + x21 − x0x2 − 6x0x1

(3.16)
= Ô + Ô1 − 6x0x1

P̂3 7−→ (x0 + x1)
2 − (x0 − x1)

2 = 4x0x1.

Com isso, temos que W7 = φ7 •W6 = [Ô − Ô1, Ô + Ô1 − 6x0x1, 4x0x1]. Note que

W7
MB
= [Ô − Ô1, Ô + Ô1, x0x1]

MB
= [Ô1, Ô, x0x1]

MB
= [x0x1, x

2
0 − x1x2, x

2
1 − x0x2].

Donde chegamos ao resultado.
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(i-2) xP não pertence a nenhuma das componentes de Â.
Neste caso, temos que xA pertence a uma das componentes de P̂ (visto que lA,P é

do tipo (5)). Geometricamente, a situação é a seguinte

Figura 3.9

x1 = 0

L2

L1

xP

xA

x0 = 0

Note que, xP = [ab : a2 : b2] para algum [a : b] ∈ P1.2 De fato, podemos assumir
a = 1, assim xP = [b : 1 : b2] com b ̸= 0, caso contrário xP pertenceria a uma das
componentes de Â. Observe que, se L = a0x0 + a1x1 + a2x2 e xP ∈ L, temos que

a0 + a1 + a2b
2 = 0 =⇒ a1 = −a0b− a2b

2

=⇒ L = a0x0 + (−a0b− a2b
2)x1 + a2x2

=⇒ L = a0(x0 − bx1) + a2(x2 − b2x1).

Como xA, xP ∈ L1, segue da equação de L acima que L1 = x0 − bx1. Logo,
L2 = a(x0 − bx1) + x2 − b2x1 com a ∈ C visto que (L1 ̸= L2). Temos então duas
possibilidades: a = 0 ou a ̸= 0.

• a = 0.

Neste caso, P̂ = (x0 − bx1)(x2 − b2x1) = x0x2 − b2x0x1 − bx1x2 + b3x21, com b ̸= 0.

Assim,

W1 = [x0x1, x
2
0 − x1x2, x0x2 − b2x0x1 − bx1x2 + b3x21]

MB
= [x0x1, x

2
0 − x1x2, x0x2 − bx1x2 + b3x21]

= [x0x1, x
2
0 − x1x2, b

3x21 + x2(x0 − bx1)].

2Se a = 0, então xP = [0 : 0 : 1] = xA (absurdo).
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Seja φ2 ∈ Aut(P2) tal que x0 7−→ x0, x1 7−→ x1 e x2 7−→ x2 + bx0. Consequentemente,

Â 7−→ x0x1

Ô 7−→ x20 − x1x2 − bx0x1
MB
= x20 − x1x2

P̂3 7−→ b3x21 + (x2 − bx0)(x0 − bx1)

7−→ b3x
2
1 + x0x2 − bx20 − bx1x2 + b2x0x1

MB
= b3x21 + x0x2.

Diante disso, W2 = φ2 •W1 = [x0x1, x
2
0 − x1x2, b

3x21 + x0x2].

Considere φ3 ∈ Aut(P2) em que x0 7−→ αx0, x1 7−→ α2x1 e x2 7−→ x2, com α ∈ C
tal que α3 =

1

b3
. Daí,

Â 7−→ αβx0x1
MB
= x0x1

Ô 7−→ α2x20 − α2x1x2
MB
= x20 − x1x2

P̂3 7−→ b3α4x21 + αx0x2 = b3α3αx21 + αx0x2 = αx21 + αx0x2
MB
= x21 − x0x2.

Obtendo o resultado almejado W3 = φ3 •W2 = [x0x1, x
2
0 − x1x2, x

2
1 − x0x2].

• a ̸= 0

Neste caso, L2 = a(x0 − bx1) + x2 − b2x1 com ab ̸= 0 e por uma MB obtemos

L1 · L2 = sx20 + tx21 + x0x2 com s = a− b, e t = ab2 + b3.

Logo, W1 = [x0x1, x
2
0 − x1x2, sx

2
0 + tx21 + x0x2].

A seguir, considere φ2 ∈ Aut(P2) tal que x0 7−→ x0, x1 7−→ x1 e x2 7−→ x2 − sx0.
Observe que, Â e Ô se mantêm invariantes a menos de uma MB e
P̂1

φ27−→ sx20 + tx21 + x0x2 − sx20 = tx21 + x0x2.

Com isso, temos duas possibilidades: t = 0 ou t ̸= 0.
Se t = 0, então W2 = φ2 •W1 = [x0x1, x

2
0 − x1x2, x0x2]. Verificamos (com auxílio

do software MAXIMA) que ΓW2 é uma cúbica redutível.
Para t ̸= 0, considere φ3 ∈ Aut(P2) tal que x0 7−→ αx0, x1 7−→ α2x1 e x2 7−→ x2

com α ∈ C tal que α3 = −1

t
. Assim,

Â 7−→ α3x0x1
MB
= x0x1

Ô 7−→ α2x20 − α2x1x2
MB
= x20 − x1x2

P̂3 7−→ tα4x21 + αx0x2 = −αx21 + αx0x2
MB
= x21 − x0x2.

Logo, W3 = φ3 •W2 = [x0x1, x
2
0 − x1x2, x

2
1 − x0x2] obtendo o resultado desejado.
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

(ii) xP /∈ Ô.
Analogamente, precisamos considerar duas possibilidades:

(ii-1) xP pertence a exatamente a uma das componentes de Â = x0x1.
Suponha que xP pertença a componente dada pela equação x0 = 0, que represen-

tamos graficamente a seguir:

Figura 3.10

L1 L2

x1 = 0

x0 = 0

xA

E

xP

De modo que L1 = TEÔ sendo E = [b : 1 : b2]. Note que, xP ̸= [0 : 0 : 1] = xA

(está na reta x0 = 0) assim xP = [0 : 1 : t].
De fato, como ∇Ô = (−2x0, x2, x1), temos L1 = TEÔ = −2bx0 + b2x1 + x2, além

disso, xP ∈ TEÔ o que implica b2 + t = 0. Assim, xP = [0 : 1 : −b2]. Observe que as
retas passando por xP e distintas de x0 = 0 são da forma: ax0 + x2 + b2x1 = 0, com
a ∈ C. Logo,

L1 = −2bx0 + x2 + b2x1 e L2 = ax0 + x2 + b2x1 com a ∈ C.

Temos duas possibilidades para a: a = 0 ou a ̸= 0.

• a = 0.

Assim, L2 = x2 + b2x1 e L1 ·L2 = (−2bx0 + x2 + b2x1) · (x2 + b2x1). Portanto, a menos
de uma MB, W1 = [x0x1, x

2
0 − x1x2,−2bx0x2 + x22 + 2b2x1x2 + b4x21].

Considere φ2 ∈ Aut(P2) determinada por x0 7−→ x0, x1 7−→ x1 e x2 7−→ x2 + 2bx0.
Assim,

P̂1
φ27−→ −2bx0(x2 + 2bx0) + (x2 + 2bx0)

2 + 2b2x21 + 2b2x1(x2 + 2bx0) + b4x21
φ27−→ x22 + 2bx0x2 + b4x21 (após uma MB).

Logo, após uma MB temos W2 = [x0x1, x
2
0 − x1x2, x

2
2 + 2bx0x2 + b4x21]. A seguir,
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

considere φ3 ∈ Aut(P2) tal que x0 7−→
1

b
x0, x1 7−→

1

b2
x1 e x2 7−→ x2. Logo,

Â 7−→ 1

b3
x0x1

MB
= x0x1

Ô 7−→ 1

b2
x20 −

1

b2
x1x2

MB
= x20 − x1x2

P̂3 7−→ x22 + 2b
1

b
x0x2 + b4

1

b4
x21 = x22 + x0x2 + x21.

Dessa forma, W3 = [x0x1, x
2
0 − x1x2, x

2
2 + x0x2 + x21]. Utilizando o software MAXIMA,

verifica-se que ΓW3 é uma cúbica não singular (absurdo).

• a ̸= 0.

Neste caso, L2 = ax0 + x2 + b2x1 com a ̸= 0. Assim,

P̂1 = L1 · L2 = (x2 − 2bx0 + b2x1) · (ax0 + x2 + b2x1).

Após MB obtemos W1 = [x0x1, x0 − x1x2, x
2
1 + ηx22 + µx1x2 + νx0x2 + δx20]. Considere

φ2 ∈ Aut(P2) tal que x0 7−→ x0, x1 7−→ x1e x2 7−→ x2 + θx0 com θ solução da equação
a1t

2 + γt+ δ = 0. Note que

P̂1
φ27−→ x21 + η(x22 + θ2x20 + 2θx0x2) + µx1(x2 + θx0) + νx0(x2 + θx0) + δx20
φ27−→ x21 + x2(ηx2 + µ1x1 + ν1x0).

Segue que W2
MB
= [x0x1, x

2
0−x1x2, x21+x2(ηx2+µ1x1+ν1x0)]. Considere φ3 ∈ Aut(P2)

tal que x0 7−→ αx0, x1 7−→ x1e x2 7−→ γx2 com γ ∈ C tal que γ2 =
1

η
e α ∈ C tal que

α2 = γ. Note que

P̂2
φ37−→ x21 + γ2ηx22 + µ2x1x2 + ν2x0x2 = x21 + x22 + µ2x1x2 + ν2x0x2.

Logo,

W3 = φ3 •W2 = [x0x1, x
2
0 − x1x2, x

2
1 + x22 + µ2x1x2 + ν2x0x2]

MB
= [x0x1, x

2
0 − x1x2, x

2
1 + x22 + µ2x

2
0 + ν2x0x2].

Agora, seja φ4 ∈ Aut(P2) determinada por x0 7−→ x0, x1 7−→ x1e x2 7−→ x2 + θx0 com
θ solução da equação t2 + ν2t+ µ2 = 0. Neste caso, Â e Ô são fixadas por φ4 (a menos
de uma MB) e

P̂3
φ37−→ x21 + x22 + θ2x20 + 2θx0x2 + µ2x

2
0 + ν2x0x2 + ν2θx

2
0 = x21 + x22 + ν3x0x2.
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Portanto, W4 = [x0x1, x
2
0 − x1x2, x

2
1 + x22 + ν3x0x2]. Verificamos que ΓW4 é uma cúbica

não singular (absurdo).
(ii-2) xP não pertence a nenhuma das componentes de Â.

Nesse caso, xA pertence a exatamente umas das componentes de L1 · L2 = P̂1.
Segue uma representação gráfica deste caso

Figura 3.11

x1 = 0

L1
L2

E
xP

xA

x0 = 0

sendo L1 = TEÔ com E = [b : 1 : b2] e L2 = lxA,xP
. Assim, de forma análoga,

obtemos L1 = x2 + b2x1 − 2bx0 (tangente) com b ̸= 0

L2 = x0 + ν1x1 (secante) com ν1 ̸= 0.

Assim, P̂ = L1 · L2 = x0x2 + b2x0x1 − 2bx20 + ν1x1x2 + b2ν1x
2
1 − 2bν1x0x1.

Logo, W1
MB
= [x0x1, x

2
0−x1x2, x0x2+ν1x1x2+b2ν1x21−2bx20]. Considere φ2 ∈ Aut(P2)

tal que x0 7−→ x0, x1 7−→ x1 e x2 7−→ x2 + 2bx0. Daí,

P̂1
φ37−→ x0(x2 + 2bx0)− 2bx20 + ν1x1(x2 + 2bx0) + b2ν1x

2
1

MB
= x0x2 + ν1x1x2 + b2ν1x

2
1.

Logo, W2
MB
= [x0x1, x

2
0 − x1x2, x0x2 + ν1x1x2 + ν2x

2
1] sendo ν2 = b2ν1 e bν1 ̸= 0. A

seguir, considere φ3 ∈ Aut(P2) tal que x0 7−→ x0, x1 7−→ x1 e x2 7−→ x2− ν1x0. Assim,

P̂2
φ37−→ x0(x2 − ν1x0) + ν1x1(x2 − ν1x0) + ν2x

2
1

MB
= x0x2 + ν2x

2
1.

Dessa forma, W3 = φ3 •W2 = [x0x1, x
2
0 − x1x2, x0x2 + ν2x

2
1]. Para concluir, considere

φ4 ∈ Aut(P2) tal que x0 7−→ αx0, x1 7−→ α2x1e x2 7−→ x2 com α ∈ C tal que α = − 1

ν2
.

Com isso, temos

Â 7−→ α3x0x1
MB
= x0x1

Ô 7−→ α2x20 − α2x1x2
MB
= x20 − x1x2

P̂3 7−→ αx0x2 + α4x21
MB
= x21 − x0x2.
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Portanto, W4 = [x0x1, x
2
0 − x1x2, x

2
1 − x0x2] e segue o resultado.

Caso 2: P ∈ ∆P5 .

Neste caso, já sabemos que existe φ1 ∈ Aut(P2) tal que W1 = [x1x0, x
2
0 − x1x2, L

2].

Visto que lA,P é do tipo (4) (na Tabela 2.2), geometricamente temos a seguinte repre-
sentação para Â e P̂

Figura 3.12

x1 = 0
x0 = 0

L2

xA

com L = x2+a1x0+a2x1. Observe que os pontosQ ∈ Ô distintos de xA são da forma
Q = [t : 1 : t2]. Além disso, Q = [t : 1 : t2] ∈ L se, e somente se, t2+a1t+a2 = 0. Agora,
pelo tipo da reta lO,P , queremos que tal equação tenha duas soluções distintas, ou seja,
a21 − 4a2 ̸= 0. Assim, por uma MB temos L2 = x22 + a21x

2
0 + a22x

2
1 + 2a1x0x2 + 2a2x1x2.

Considere φ2 ∈ Aut(P2) tal que x0 7−→ x0, x1 7−→ x1 e x2 7−→ x2 − a1x0. Logo,

P̂2
φ27−→ x22 + a21x

2
0 − 2a1x0x2 + a1x

2
0 + a22x

2
1 + 2a1x0x2 − 2a21x

2
0 + 2a2x1x2 = (x2 + a2x1)

2.

Note que, se a2 = 0 então W2 = [x0x1, x
2
0 + x1x2, x

2
2] e verificamos (com a ajuda

do software MAXIMA) que ΓW2 é uma cúbica cuspidal (absurdo). Por outro lado, se

a2 ̸= 0, considere φ3 ∈ Aut(P2) tal que x0 7−→ αx0, x1 7−→ 1

a2
x1 e x2 7−→ x2 com

α ∈ C tal que α2 =
1

a2
. Assim, W3 = φ3 •W2 = [x0x1, x

2
0 − x1x2, (x2 + x1)

2], portanto,
tem-se o resultado.

Com isso concluímos a demonstração dos itens 1. e 2.
3. Pelo Lema 3.3.2 existe A ∈ ΓW ponto de inflexão, LP reta passando pela singulari-
dade P de ΓW tal que #LP ∩ ΓW = 1. Assim, ao considerar que LP ∩ TAΓW = {O}
temos a seguinte representação gráfica

Figura 3.13: Representação para uma cúbica cuspidal

LP

TAΓW

P

A

O
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Considerando W = [Â, Ô, P̂ ] e sabendo que TAC é do tipo (3) na Tabela 2.2, então
existe φ1 ∈ Aut(P2) tal que W1 = φ1•W = [x0x1, x

2
0−x1x2, P̂1]. Suponha, por absurdo,

que P ∈ HP5 −∆P5 . Neste caso, temos que lA,O e lP,O são do tipo (3) na Tabela 2.2.
Logo, P̂1 = L1 · L2 com xP1 ∈ Ô, L1 tangente a Ô em xP1 e L2 secante a Ô passando
por xP1 . Temos duas situações a analisar:
(i) xP1 pertence a exatamente umas das componentes de Â = x0x1.

Como xP1 ̸= xA, temos a seguinte representação gráfica

Figura 3.14

x1 = 0

L1

L2

xP1

xA

x0 = 0

Donde temos xP1 = [0 : 1 : 0], L1 = x2 e L2 = x2 + µx0 sendo µ ̸= 0. Assim,
W1 = [x0x1, x

2
0 − x1x2, x2(x2 + µx0)] com µ ̸= 0. Utilizando o software MAXIMA

verificamos que ΓW1 é uma cúbica nodal (absurdo).
(ii) xP1 não pertence a nenhuma das componentes de Â = x0x1.
Assim, temos que xA pertence a exatamente uma das componentes de L1 · L2. Note
que, se xA ∈ L1 sendo L1 = TxP1

Ô teremos que xA = xP1(absurdo). Logo, xA ∈ L2.
Neste caso, temos a seguinte representação gráfica

Figura 3.15

x1 = 0

L1

L2

xP1

xA

x0 = 0

Sendo xP1 ∈ Ô temos que xP1 = [t : 1 : t2] com t ̸= 0. Logo, L1 = x2 + t2x1 − 2tx0

e L2 = x0 − tx1.
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Com isso, a menos de uma MB, temos P̂1 = x0x2 − tx1x2 − t3x21 − 2tx20. Assim,
seja φ2 ∈ Aut(P2) tal que x0 7−→ x0, x1 7−→ x1 e x2 7−→ x2 + 3tx0. Segue que

P̂1
φ27−→ x0x2 + 3tx20 − tx1x2 − 3t2x0x1 − t3x21 − 2tx20

MB
= x0x2 − t3x21.

Agora considere φ3 ∈ Aut(P2) tal que x0 7−→ αx0, x1 7−→ βx1 e x2 7−→
1

α
x2 com β ∈ C

tal que β3 =
1

t3
e α ∈ C tal que α3 = β. Logo, a menos de uma MB, obtemos

W3 = φ3 •W2 = [x0x1, x
2
0 − x1x2, x0x2 − x21].

Verificamos com a ajuda do software MAXIMA que ΓW3 é uma cúbica nodal (absurdo).
Portanto, P /∈ HP5 −∆P5 .

Sendo assim, considere agora P ∈ ∆P5 , neste caso temos que lA,P1 e lO,P1 são do
tipo (4) na Tabela 2.2. Assim, temos W1 = [x0x1, x

2
0 − x1x2, L

2]. Como lA,P1 é uma
reta do tipo (4), temos a seguinte representação geométrica:

Figura 3.16

x1 = 0

[t : 1 : t2]

xA

x0 = 0

Como L determina uma reta tangente a Ô em [t : 1 : t2] segue que
L = x2 + t2x1 − 2tx0. Por uma MB, temos L2 = x22 + t4x21 + 4tx20 + 2t2x1x2 − 4tx0x2.
Considere φ2 ∈ Aut(P2) tal que x0 7−→ x0, x1 7−→ x1 e x2 7−→ x2 + 2tx0. Logo,

L2 φ27−→ x22 + 4t2x20 + 4tx0x2 + t4x21 + 4t2x20 + 2t2x1x2 − 4tx0x2 − 8t2x20 = (x2 + t2x1)
2.

Com isso W2 = [x0x1, x
2
0 − x1x2, (x2 + t2x1)

2]. Se t ̸= 0, então utilizando o software
MAXIMA verificamos que ΓW2 é uma cúbica nodal (absurdo). E para t = 0 segue o
resultado.

3.4 ΓW é uma cúbica redutível

Proposição 3.4.1. Se ΓW é uma cúbica redutível tal que ΓW = Γ1 ∪Γ2 sendo Γ1 uma
cônica não singular e Γ2 uma reta secante a Γ1 de modo que Γ1 ∩Γ2 = {A,B}. Então,
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

A,B ∈ HP5 −∆P5 ou A,B ∈ ∆P5. Além disso,

1. Se A,B /∈ ∆P5 então existe φ ∈ Aut(P2) tal que φ •W = [x0x1, x
2
0 − x1x2, x0x2];

2. Se A,B ∈ ∆P5 então existe φ ∈ Aut(P2) tal que φ •W = [x21, x
2
0 − x1x2, x

2
2].

Demonstração. Assuma que TAΓ1∩TBΓ1 = {O}. Assim, podemos considerar a seguinte
representação gráfica

Figura 3.17

Γ2

TBΓ1TAΓ1

O

A B

Γ1

Assim, W = [Â, Ô, B̂]. Temos três casos a considerar.
Caso 1 : A,B ∈ HP5 −∆P5 .

Neste caso, Γ2 = lA,B é do tipo (7) e lA,O, lB,O são do tipo (3) na Tabela 2.2. Sendo
assim, existe φ1 ∈ Aut(P2) tal que W1 = φ1 •W = [x0x1, x

2
0 − x1x2, L1 · L2]. Pelo tipo

da reta lA,B, temos duas possibilidades: L1 = x0 ou L1 = x1.

• L1 = x0. Necessariamente, L2 = x2. Assim, o resultado em 1. segue, visto que
W1 = [x0x1, x

2
0 − x1x2, x0x2]. Temos a seguinte representação gráfica

Figura 3.18

x1 = 0

L2

xA

L1 = x0 = 0

• L1 = x1. Neste caso, L2 é uma reta secante a Ô passando por xA. Temos a
seguinte representação geométrica
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Figura 3.19

x1 = 0

L2

xA

x0 = 0

Logo, L2 = x1 + µx0 com µ ̸= 0. Assim,

W1 = [x0x1, x
2
0 − x1x2, (x1 + µx0)x1]

MB
= [x0x1, x

2
0 − x1x2, x

2
1].

Verificamos (novamente utilizando o software MAXIMA) que ΓW1 consiste de três retas
distintas e não concorrentes (absurdo).
Caso 2 : A ∈ HP5 −∆P5 e B ∈ ∆P5 .

Neste caso, lA,B é do tipo (8), lA,O é do tipo (3) e lB,O é do tipo (1) na Tabela 2.2.
Com isso, escolha φ1 ∈ Aut(P2) tal que W1 = φ1 •W = [x0x1, x

2
0 − x1x2, L

2]. Sendo
lA,B do tipo (8), temos duas possibilidades: L = x0 ou L = x1.

• se L = x0 teremos W1 = [x0x1, x
2
0 − x1x2, x

2
0]. Neste caso, verificamos que ΓW1

é uma cúbica redutível, cujas componentes são uma reta dupla e uma secante
(absurdo).

• se L = x1 teremos W1 = [x0x1, x
2
0 − x1x2, x

2
1]. Neste caso, ΓW1 é uma reta tripla

(absurdo).

Caso 3 : A,B ∈ ∆P5 .
Temos que lA,B é do tipo (2), lA,O e lB,O são do tipo (1) na Tabela 2.2. Logo,

existe φ1 ∈ Aut(P2) tal que W1 = φ1 • W = [x21, x
2
0 − x1x2, L

2] com L tangente a
Ô e {x1, L} LI. Observe que, podemos fazer uma MCP de modo que pela Pro-
posição 2.1.1 existe φ2 ∈ Aut(P2) em que φ2(Ô) = Ô e φ2(p) = [0 : 1 : 0],
φ2(q) = [0 : 0 : 1] para quaisquer p, q ∈ Ô. Assim, o resultado em 2. segue, visto que
W2 = φ2 •W1 = [x21, x

2
0 − x1x2, x

2
2].

Proposição 3.4.2. Se ΓW é uma cúbica redutível tal que ΓW = Γ1 ∪Γ2 sendo Γ1 uma
cônica não singular e Γ2 uma reta tangente a Γ1. Então existe φ ∈ Aut(P2) tal que
φ •W = [x20, x0x1, x2(x1 + x2)].

Demonstração. Assuma que Γ1 ∩ Γ2 = {A}. Considere B em Γ1 − {A} e
{C} = Γ2 ∩ TBΓ1, conforme ilustra a figura a seguir
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Figura 3.20

Γ2

TBΓ1

A

B

Γ1

C

Sendo lB,C do tipo (5) na Tabela 2.2 e xB, xC o ponto de interseção de suas
componentes, temos duas possibilidades:

(CB-1) xC pertence a exatamente uma das componentes de L1 · L2.

ou
(CB-2) xB pertence a exatamente uma das componentes de x0x2.

A seguir, note queW = [Â, Ĉ, B̂]. Temos duas possibilidades: A /∈ ∆P5 ouA ∈ ∆P5 .
Caso 1 : A ∈ HP5 −∆P5

Note que, lA,C ⊂ HP5 é do tipo (7) e lA,B, lB,C são do tipo (5) na Tabela 2.2. Sendo
assim, existe φ1 ∈ Aut(P2) tal que W1 = [x0x1, x0x2, L1 · L2] com xA = [0 : 0 : 1] e
xB = [0 : 1 : 0]. Analisando a posição relativa de x0x1 e L1 · L2, segue que
(AB-1) xA pertence a exatamente uma das componentes de L1 · L2

ou
(AB-2) xB pertence a exatamente uma das componentes de x0x1.

A seguir analisaremos os dois casos acima levando em consideração (CB-1) e (CB-

2).
Para (AB-1): Neste caso temos a seguinte representação

Figura 3.21

x0 = 0 x1 = 0

L2

L1

xB

xA

A seguir vamos explorar as condições (CB-1) e (CB-2) neste caso.
Para (CB-1). Visto que xA = [0 : 0 : 1] ∈ L1, segue que L1 = x1 + bx0 com b ̸= 0.
Note que, xC = [0 : 1 : 0] /∈ L1, logo xC ∈ L2 e L2 = x2 + cx0 com c ̸= 0. Logo,
L1 ·L2

MB
= x1x2+µx

2
0 com µ ̸= 0. Portanto, W1 = [x0x1, x0x2, x1x2+µx

2
0]. Verificamos
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

que ΓW1 é uma cúbica redutível cujas componentes são uma cônica não singular e uma
reta secante (absurdo).
Para (CB-2). Note que, neste caso xB /∈ Z(x0). Logo, xB ∈ Z(x2) e então
xB = [1 : s : 0] com s ̸= 0 . Com isso, L1 = x1 − sx0 com s ̸= 0. Observe que,
as retas passando por xB são da forma Z(a1x2 + a2(x1 − sx0)) e {L1, L2} é LI. Daí,
segue que L2 = x2 + ν(x1 − sx0). Assim, L1 · L2

MB
= x1x2 + νx21 + νs2x20. Dessa

forma, W1 = [x0x1, x0x2, x1x2 + νx21 + νs2x20]. Verificamos (utilizando o software MA-
XIMA) que ΓW1 é uma cúbica redutível cujas componentes são três retas distintas e
não concorrentes (absurdo).

A seguir, vamos abordar o caso (AB-2).
Para (AB-2): Neste caso, temos duas novas possibilidades: (AB-2.1): xB ∈ Z(x0) ou
(AB-2.2): xB ∈ Z(x1).
(AB-2.1) xB ∈ Z(x0). Temos a seguinte representação gráfica

Figura 3.22

L1 L2

x1 = 0

x0 = 0

xA

xB

Tendo em consideração (CB-1) e (CB-2) segue que:
Para (CB-1). xC ∈ Li para algum i. Neste caso, sendo xB = [0 : 1 : s] com s ̸= 0 e
que as retas passando por xB distintas de x0 = 0 são da forma Li = ax0+x2−sx1 com
a ∈ C. Assim, se xC = [0 : 1 : 0] ∈ Li temos por consequência que s = 0 (absurdo).
Para (CB-2). Observe que xB = [0 : 1 : s] com s ̸= 0. Logo,

L1 · L2 = (x2 − sx1 + b1x0) · (x2 − sx1 + b2x0) com b1 · b2 ̸= 0

MB
= x22 − 2sx1x2 + s2x21 + b1b2x

2
0.

Dessa forma, considere φ2 ∈ Aut(P2) tal que x0 7−→ x0, x1 7−→ x1 e x2 7−→ x2 + sx1.
Assim,

L1 · L2
φ27−→ x22 + s2x21 + 2sx1x2 − 2sx1x2 − 2s2x21 + s2x21 + µx20 com µ ̸= 0
φ27−→ x22 + µx20.

Logo, W2 = φ2 •W1 = [x0x1, x
2
0 − x1x2, x

2
2 + µx20]. Verificamos que ΓW2 uma cúbica
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

redutível cujas componentes são uma reta dupla e uma reta secante (absurdo).
(AB-2.2) xB ∈ Z(x1). Neste caso temos a seguinte representação

Figura 3.23

L1 L2

x0 = 0

x1 = 0

xA

xB

com xB = [1 : 0 : s]. Note que, as retas passando por xB distintas de x1 = 0 são
da forma Z(µx1 + x2 − sx0). A partir da posição relatica de B̂ e Ĉ temos:
Para (CB-1). Se xC = [0 : 1 : 0] ∈ L1 então µ = 0. Assuma que L1 = x2 − sx0 e
L2 = x2 − sx0 + µx1 com µ ̸= 0. Logo,

L1 · L2
MB
= x22 + s2x20 + µx1x2.

Se s ̸= 0, verifica-se ΓW1 é uma cúbica não singular. Por outro lado, se s = 0 e
sendo µ ̸= 0, verificamos que ΓW1 é uma cúbica redutível com componentes três retas
distintas (absurdo).
Para (CB-2). Neste caso xB ∈ Z(x0) ou xB ∈ Z(x2). Sabemos que xB /∈ Z(x0), logo
se xB ∈ Z(x2) obtemos s = 0. Sendo assim, L1 = x2 + b1x0 e L2 = x2 + b2x0 e segue
que L1 ·L2

MB
= x22+µx

2
0 com µ ̸= 0. Com isso obtemos W1 = [x0x1, x

2
0−x1x2, x22+µx20].

Verificamos que ΓW1 é uma cúbica redutível cujas componentes são uma reta dupla e
uma reta secante (absurdo).
Caso 2 : A ∈ ∆P5

Neste caso, lA,C é do tipo (8) na Tabela 2.2. Assim, existe φ1 ∈ Aut(P2) tal que
W1 = [x20, x0x1, L1 · L2]. Além disso, temos que lA,B é do tipo (4) e lB,C é do tipo (6).
Novamente, pela posição relativa de B̂ e Ĉ temos duas possibilidades:
Para (CB-1). Neste caso, xC = [0 : 0 : 1]. Assuma que xC ∈ L1. Segue uma
representação geométrica deste caso

Figura 3.24

x0 = 0x1 = 0

L2

L1

xC
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Com isso, pelo tipo da reta lA,B temos que {L1, L2, x0} é LI. Dessa forma, temos
que L1 = x1 + ax0, com a ̸= 0 e L2 = x2 + b1x1 + b0x0. Logo, por uma MB obtemos
L1 ·L2 = x1x2+ b1x

2
1+ax0x2. Assim, W1 = [x20, x0x1, x1x2+ b1x

2
1+ax0x2]. Verificamos

com o auxílio do MAXIMA que ΓW1 é uma cúbica redutível cujas componentes são
uma reta dupla e uma reta secante (absurdo).
Para (CB-2). Neste caso, temos duas possibilidades a analisar: xB ∈ Z(x0) ou
xB ∈ Z(x1)

• xB ∈ Z(x0). Note que, podemos representar geometricamente na forma

Figura 3.25

L2L1

x1 = 0

x0 = 0

xB

Dessa forma, xB = [0 : 1 : t] e a família de retas passando por xB distintas da reta
x0 = 0, é dada por ux0 + x2 − tx1 = 0 com u ∈ C. Assim, L1 = x2 − tx1 + b1x0 e
L2 = x2 − tx1 + b2x0 com b1 ̸= b2, o que implica (a menos de uma MB) L1 · L2 =

x22+ t
2x21−2tx1x2+ax0x2, com a ̸= 0. Em ambos dos casos, t = 0 ou t ̸= 0, verificamos

que ΓW1 é uma cúbica redutível cujas componentes são uma reta dupla e uma reta
secante (absurdo).

• xB ∈ Z(x1). Conforme ilustra a figura a seguir

Figura 3.26

L2L1

x0 = 0

x1 = 0

xB

com xB = [1 : 0 : t].
Sabemos que existe φ2 ∈ Aut(P2) tal que x0 7−→ x0, x1 7−→ x1 e L1 7−→ x2. Dessa

forma, obtemos xB = [1 : 0 : 0] e L2 = x2 + µx1 com µ ̸= 0. Por fim, considere
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

φ3 ∈ Aut(P2) tal que x0 7−→ x0, x1 7−→
1

µ
x1 e x2 7−→ x2. Assim, obtemos

W3 = φ3 •W2 = [x20,
1

µ
x0x1, x2(x2 + µ

1

µ
x1)]

MB
= [x20, x0x1, x2(x1 + x2)].

Portanto, segue o resultado.

Proposição 3.4.3. Seja ΓW = Γ1 ∪ Γ2 ∪ Γ3 sendo Γi retas distintas para i = 1, 2, 3.
Verifica-se que

1. As retas Γ1, Γ2 e Γ3 não são concorrentes;

2. Se A,B,C são os pontos singulares de ΓW (ilustrada na seguinte figura)

Figura 3.27

Γ2Γ1

Γ3
A B

C

então temos duas possibilidades:

(a) A,B,C ∈ HP5−∆P5 e existe φ ∈ Aut(P2) tal que φ•W = [x0x1, x0x2, x1x2];

(b) A,B,C ∈ ∆P5 e existe φ ∈ Aut(P2) tal que φ •W = [x20, x
2
1, x

2
2].

Demonstração. 1. Suponha pelo absurdo que ΓW = Γ1∪Γ2∪Γ3 sendo Γ1, Γ2 e Γ3 retas
distintas concorrentes em P . Considere, uma reta L tal que P /∈ L e {Ai} = L ∩ Γi

para i = 1, 2, 3. Conforme ilustra na figura a seguir

Figura 3.28

Γ3

Γ1

Γ2

L
A1

A2

A3

P

Assim, W = [Â1, P̂ , Â2]. Temos duas possibilidades: P /∈ ∆P5 ou P ∈ ∆P5 .
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Caso 1 : P ∈ HP5−∆P5 . Dessa forma, perceba que lA1,P , lA2,P são do tipo (7) e lA1,A2 é
do tipo (6) na Tabela 2.2. Assim, existe φ1 ∈ Aut(P2) tal que
W1 = φ1 •W = [x0x1, x0x2, L1 · L2]. Visto que mdc(P̂, Â2) ̸= 1 segue que: L1 = x0 ou
L1 = x2.

• se L1 = x0, então x0 é fator comum das três cônicas, logo W1 ⊂ HP5 (absurdo).

• se L1 = x2, então segue que {x0, x2, L2} é LI. Assim, L2 = x1 + a1x0 + a2x2 e
L1 · L2

MB
= x1x2 + a2x

2
2. Logo, W1 = [x0x1, x0x2, x1x2 + a2x

2
2]. Verificamos que

ΓW1 consiste de três retas distintas não concorrentes (absurdo).

Caso 2 : P ∈ ∆P5 . Agora, note que lA1,P , lA2,P são do tipo (8) e lA1,A2 é do tipo (6)
na Tabela 2.2. Assim, existe φ1 ∈ Aut(P2) tal que W1 = φ1 •W = [x0x1, x

2
0, L1 · L2].

Porém, como mdc(P̂, Â2) ̸= 1 temos que L1 = x0, logo x0 é um fator comum das três
cônicas, novamente teremos que W1 ⊂ HP5 (absurdo).

Portanto, temos que as retas Γ1, Γ2 e Γ3 não são concorrentes.
2. Segue do item 1. desta proposição que Γ1, Γ2 e Γ3 são retas distintas e não concor-
rentes. Assim, temos a seguinte representação geométrica

Figura 3.29

Γ2Γ1

Γ3
A B

C

sendo A,B,C os pontos singulares de ΓW . Observe que, W = [Â, B̂, Ĉ] e temos os
seguintes casos a analisar:
Caso 1 : A,B,C ∈ HP5 −∆P5 . Perceba que lA,C , lA,B e lB,C são do tipo (7) na Tabela
2.2. Com isso, existe φ1 ∈ Aut(P2) tal que W1 = φ1 • W = [x0x1, x0x2, L1 · L2].
Como mdc(Â, Ĉ) ̸= 1 e mdc(B̂, Ĉ) ̸= 1 temos que L1 = x1 e L2 = x2. Portanto,
W1 = [x0x1, x0x2, x1x2] provando o item 2.(a).
Caso 2 : A,B ∈ HP5 −∆P5 e C ∈ ∆P5 (a menos de uma reordenação). Sendo assim,
temos que lA,C e lB,C são do tipo (8) e lA,B é do tipo (7) na Tabela 2.2. Dessa forma,
existe φ1 ∈ Aut(P2) tal que W1 = φ1 •W = [x0x1, x0x2, L

2]. Como mdc(Â, Ĉ) ̸= 1 e
mdc(B̂, Ĉ) ̸= 1 temos L = Z(x0). Logo, W1 = [x0x1, x0x2, x

2
0] ⊂ HP5 (absurdo).

Caso 3 : A ∈ HP5 − ∆P5 e B,C ∈ ∆P5 . Neste caso, temos lA,B e lA,C são do tipo
(8) na Tabela 2.2. Assim, existe φ1 ∈ Aut(P2) tal que W1 = φ1 •W = [x0x1, x

2
0, L

2].
Sendo mdc(Â, Ĉ) ̸= 1 temos que L = x0 ou L = x1, em ambos dos casos verifica-se que
W1 ⊂ HP5 (absurdo).
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Caso 4 : A,B,C ∈ ∆P5 . Note que, lA,C , lA,B e lB,C são do tipo (3) na Tabela 2.2.
Dessa forma, existe φ1 ∈ Aut(P2) tal que W1 = φ1 • W = [x20, x

2
1, L

2]. Escreva
L = a0x0 + a1x1 + a2x2. Note que, se a2 = 0 então W1

MB
= [x20, x

2
1, x0x1] ⊂ HP5

(absurdo). Assim, L = x2 + b0x0 + b1x1 e pela Proposição A.0.9 existe φ2 ∈ Aut(P2)

tal que x0 7−→ x0, x1 7−→ x1 e L 7−→ x2. Logo, W2 = φ2 •W1 = [x20, x
2
1, x

2
2], provando

assim o item 2.(b). Portanto, segue o resultado.

Proposição 3.4.4. Se ΓW é uma cúbica não reduzida tal que ΓW = Γ1 ∪ Γ2 sendo Γ1

uma reta dupla com reta suporte em M tal que M ∩ Γ2 = {P}. Então M ∩∆P5 é não
vazio. Além disso,

1. Se #M ∩ ∆P5 = 1 então P /∈ ∆P5 e existe φ ∈ Aut(P2) tal que
φ •W = [x20, x0x1, x1x2];

2. Se #M ∩∆P5 = 2 então

2-1. Se P ∈ ∆P5 então existe φ ∈ Aut(P2) tal que φ •W = [x20, x
2
1, x1x2];

2-2. Se P /∈ ∆P5 então existe φ ∈ Aut(P2) tal que φ •W = [x20, x
2
1, x2(x0 + x1)].

Demonstração. Considere A ∈M −{P} e B ∈ Γ2−{P}, conforme ilustramos a seguir

Figura 3.30

Γ1

Γ2

PA

B

Segue da Observação 2.3.2 queM∩∆P5 consiste no máximo de dois pontos distintos.
Assim, temos três casos a considerar:

Caso 1 : A reta suporte de Γ1 não contém pontos em ∆P5 .
Neste caso, A,P ∈ HP5 −∆P5 e W = [Â, P̂ , B̂]. Assim, lA,P é do tipo (7) na Tabela

2.2. Logo, existe φ1 ∈ Aut(P2) tal que W1 = φ1 •W = [x0x1, x0x2, L1 · L2]. Note que,
a reta lB,P é do tipo (7), logo temos duas possibilidades para L1:
(i) L1 = x0. Neste caso, obtemos que W1 ⊂ HP5 (absurdo).
(ii) L1 = x2. Logo, lA,B é do tipo (5), xA = [0 : 0 : 1] e xB = [s : t : 0]. Então, ao
analisarmos a posição relativa de xA e xB temos que:
(ii-1) xA pertence a uma das componentes de x2 · L2. Observe que, necessariamente
xA ∈ L2 e L2 = x1 + µx0 com µ ∈ C. Neste caso, verificamos que ΓW1 é uma cúbica
cujas componentes são três retas distintas (absurdo).
(ii-2) xB pertence a uma das componentes de x0x1. Note que, se xB ∈ Z(x0), segue
que xB = [0 : 1 : 0] e L2 = bx0 + x2 com b ∈ C. Como lB,P ⊂ HP5 é do tipo (7)
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temos que {x2, x0, bx0 + x2} deveria ser LI, o que é um absurdo. Por outro lado,
se xB ∈ Z(x1) temos que xB = [1 : 0 : 0] e L2 = x2 + µx1 com µ ̸= 0. Assim,
W1 = [x0x1, x0x2, x2(x2+µx1)] e verificamos que ΓW1 é uma cúbica cujas componentes
são três retas distintas (absurdo).
Caso 2 : A reta suporte de Γ1 contém exatamente um ponto de ∆P5 .

Por conta da análise feita no caso 1, não ocorre que A,P ∈ HP5 − ∆P5 . Assim,
temos as seguintes duas possibillidades a analisar: (i) A ∈ HP5 −∆P5 e P ∈ ∆P5 ou (ii)
P ∈ HP5 −∆P5 e A ∈ ∆P5 .
(i) Neste caso, temos que lA,P e lB,P são do tipo (8) na Tabela 2.2. Dessa forma, escolha
φ1 ∈ Aut(P2) tal que W1 = φ1 •W = [x0x1, x

2
0, L1 · L2]. Logo, pelo tipo da reta lB,P

temos que L1 = x0 e {x0, L2} é LI. Assim, o mdc(Â, B̂) = x0 o que implica lA,B ⊂ HP5

(absurdo).
(ii) Segue que lA,P é do tipo (8) na Tabela 2.2. Escolha φ1 ∈ Aut(P2) tal que
W1 = φ1 • W = [x20, x0x1, L1 · L2]. Como lB,P ⊂ HP5 temos mdc(B̂, P̂) ̸= 1, segue
que L1 = x0 e obtemos W1 ⊂ HP5 (absurdo) ou L1 = x1 e pelo tipo da reta lA,B temos
a seguinte representação gráfica

Figura 3.31

x1 = 0L2

x20 = 0

Escolha φ2 ∈ Aut(P2) tal que x0 7−→ x0, x1 7−→ x1 e L2 7−→ x2. Assim,
W2 = φ2 •W1 = [x20, x0x1, x1x2], o que prova o item 1. desta proposição.
Caso 3 : A reta suporte de Γ1 contém exatamente dois ponto de ∆P5 .

Tendo em consideração o caso 1, para este caso, temos novamente duas possibili-
dades: (i) P ∈ ∆P5 ou (ii) P /∈ ∆P5 .
(i) Neste caso, sem perda de generalidade podemos assumir que A,P ∈ ∆P5 . Perceba
que, lA,P é do tipo (3) na Tabela 2.2. Com isso, escolha φ1 ∈ Aut(P2) tal que
W1 = φ1 •W = [x20, x

2
1, L1 · L2]. Como lB,P ⊂ HP5 , segue que L1 = x1 e {x1, L2} é LI,

além disso, lA,B é do tipo (4). Assim, temos a seguinte representação gráfica

Figura 3.32

x1 = 0L2

x20 = 0
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Assim, existe φ2 ∈ Aut(P2) tal que x0 7−→ x0, x1 7−→ x1 e L2 7−→ x2. Logo,
W2 = φ2 •W1 = [x20, x

2
1, x1x2]. O que prova o item 2-1. desta proposição.

(ii) Neste caso, vamos assumir que A ∈ ∆P5 e escolher C ̸= A ∈ M tal que C ∈
∆P5 . Com isso, temos que lA,C é do tipo (3), e assim, existe φ1 ∈ Aut(P2) em que
W1 = [x20, x

2
1, L1 · L2]. Como lA,B e lB,C são do tipo (4), temos que {Li, x0, x1} é

LI para algum i = 1, 2. Suponha sem perda de generalidade que {L1, x0, x1} é LI,
dessa forma existe φ2 ∈ Aut(P2) tal que x0 7−→ x0, x1 7−→ x1 e L1 7−→ x2. Assim,
W2 = φ2 •W1 = [x20, x

2
1, x2 ·M ]. Temos duas possibilidades a analisar: {M,x0, x1} é

LI ou LD.
(ii-1) Se {M,x0, x1} for LI então M = x2 + a0x0 + a1x1. Dessa forma,
W2 = [x20, x

2
1, x2(x2 + a0x0 + a1x1)]. A seguir, temos duas possibilidades a analisar:

• Se a0a1 = 0 então, utilizando o software MAXIMA, verificamos que ΓW2 é uma
cúbica cujas componentes são três retas distintas e não concorrentes (absurdo).

• Se a0a1 ̸= 0 então, novamente pelo auxílio do softaware MAXIMA, verificamos
que ΓW2 é uma cúbica cujas componentes são uma cônica não singular e uma reta
secante (absurdo).

(ii-1) Se {M,x0, x1} é LD. então M = x1 + bx0 com b ̸= 0. Seja φ2 ∈ Aut(P2) tal que
x0 7−→ x0, x1 7−→ bx1 e L1 7−→ x2. Daí, W2 = φ2 •W1 = [x20, x

2
1, x2(x0 + x1)] o que

prova o item 2-2.. Portanto, temos o resultado.

Proposição 3.4.5. Seja W ∈ G3(S2) tal que ΓW é uma cúbica não reduzida que
possui uma única componente irredutível (ou seja, ΓW é uma reta tripla). Então,
existe φ ∈ Aut(P2) tal que φ •W = [x0x1, x

2
0 − x1x2, x

2
1].

Demonstração. Considere A,B pontos distintos na reta suporte l de ΓW e O /∈ l,
conforme ilustra a figura a seguir:

Figura 3.33

ΓW

BA

O

Assim, W = [Â, Ô, B̂]. Vamos considerar os seguintes três casos de acordo com a
distribuição dos pontos A,B em relação a ∆P5 .
Caso 1 : A,B ∈ HP5 −∆P5 .

Observe que, lA,O e lB,O são do tipo (3) e lA,B é do tipo (7) na Tabela 2.2. Esco-
lhendo φ1 ∈ Aut(P2) tal que φ1 •W = W1 = [x0x1, x

2
0 − x1x2, L1 ·L2]. Veja que, temos

duas possibilidades: L1 = x0 ou L1 = x1.
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(i) L1 = x0. Visto que Â ̸= B̂ e concluímos que W1 = [x0x1, x
2
0 − x1x2, x0x2]. temos a

seguinte representação gráfica

Figura 3.34

x1 = 0

L2 = x2 = 0

xA

L1 = x0 = 0

Verificamos que ΓW1 é uma cúbica cujas as componentes são uma cônica não sin-
gular e uma reta secante (absurdo).
(ii) L1 = x1. Neste caso temos a seguinte representação gráfica

Figura 3.35

L2

L1 = x1 = 0
[0 : 0 : 1]

Dessa forma, L2 = x1 + bx0 com b ̸= 0. Assim, o resultado segue, visto que

W1 = [x0x1, x
2
0 − x1x2, x1(x1 + bx0)]

MB
= [x0x1, x

2
0 − x1x2, x

2
1].

Caso 2 : A ∈ HP5 −∆P5 e B ∈ ∆P5 (a menos de uma reordenação).
Neste caso, sendo lA,O do tipo (3) na Tabela 2.2, escolha φ1 ∈ Aut(P2) em que

W1 = φ1 •W = [x0x1, x
2
0−x1x2, L2]. Como lA,B é do tipo (8), segue que mdc(Â, B̂) ̸= 1

o que implica em L = x0 ou L = x1.

• Se L = x0 então W1 = [x0x1, x
2
0 − x1x2, x

2
0] e verificamos que ΓW1 é um cúbica

redutível cujas as componentes são uma reta dupla e uma reta secante (absurdo).

• Se L = x1 então W1 = [x0x1, x
2
0 − x1x2, x

2
1] e temos o resultado.

Caso 3 : A,B ∈ ∆P5 .
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3. Classificação das órbitas em G3(S2) sob a ação de Aut(P2)

Observe que lA,O, lB,O são do tipo (1) enquanto lA,B é do tipo (3) na Tabela 2.2.
Assim, escolha φ1 ∈ Aut(P2) tal que φ1 •W = W1 = [x21, x

2
0 − x1x2, L

2]. Considerando
as retas suporte de L2 e x21 temos a seguinte representação gráfica

Figura 3.36

L

x1 = 0

Observe que, novamente podemos fazer uma MCP de modo que pela Proposição
2.1.1 existe φ2 ∈ Aut(P2) tal que x1 7−→ x1 e L 7−→ x2 e φ2(Ô) = Ô. Logo, W2 = φ2 •
W1 = [x21, x

2
0−x1x2, x22] e verificamos que ΓW2 é uma cúbica redutível cujas componentes

são uma cônica não singular e uma reta secante (absurdo).

3.5 Órbitas dos pontos W ∈ G3(S2) tais que πW ⊂ HP5

Para determinar as órbitas dos pontos W ∈ G3(S2) tais que πW ⊂ HP5 , temos o
seguinte lema que dará suporte aos resultados a seguir.

Lema 3.5.1. Se W ∈ G3(S2) for tal que πW ⊂ HP5, então πW ∩∆P5 é não vazio.

Demonstração. Considere W = [Â, B̂, Ĉ]. Observe que, necessariamente os tipos das
retas lA,B, lA,C e lB,C na Tabela 2.2 variam entre os tipos (2), (7) e (8). Com isso,
se lA,B for do tipo (2) ou (8), o resultado segue, como também se C ∈ ∆P5 . Caso
contrário, escolha φ1 ∈ Aut(P2) tal que φ1 •W = W1 = [x0x1, x0x2, L1 · L2]. Sendo
lA,C e lB,C do tipo (7), temos as seguintes possibilidades: (i) L1 = x0 ou (ii) L1 = x1.
(i) Note que, {x0, x1, L2} e {x0, x2, L2} são LI. Assim, L2 = x2 + a1x1 + a0x0 com
a1 ̸= 0. Logo, o resultado segue, visto que

W1 = [x0x1, x0x2, x0(x2 + a1x1 + a0x0)]
MB
= [x0x1, x0x2, x

2
0].

(ii) Neste caso, sendo mdc(B̂, Ĉ) ̸= 1 segue que L2 = x2. Logo, W1 = [x0x1, x0x2, x1x2]

e verificamos que ΓW1 é uma cúbica redutível cujas componentes são três retas distintas
(absurdo). Portanto, segue o resultado.

Proposição 3.5.1. Considere W ∈ G3(S2) tal que πW ⊂ HP5. Então,

1. Se #W ∩∆ = 1, então existe φ ∈ Aut(P2) tal que φ •W = [x20, x0x1, x0x2];
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2. Se #W ∩∆ > 1, então existe φ ∈ Aut(P2) tal que φ •W = [x20, x
2
1, x0x2].

Demonstração. Assuma que W = [Â, B̂, Ĉ].
1. Se A ∈ ∆P5 e B,C ∈ HP5−∆P5 , então as retas lA,B e lA,C são do tipo (8) e lB,C são do
tipo (7) na Tabela 2.2. Escolha φ1 ∈ Aut(P2) tal que W1 = φ1 •W = [L2, x0x1, x0x2].
Note que, necessariamente L = x0, ou seja, W1 = [x20, x0x1, x0x2].
2. Se A,B ∈ ∆P5 , então pelo tipo da reta lA,B, existe φ1 ∈ Aut(P2) tal que
W1 = φ1 • W = [x20, x

2
1, Ĉ1]. Temos assim, duas possibilidades: (i) Ĉ1 ∈ ∆ ou (ii)

Ĉ1 /∈ ∆.
(i) Ĉ1 ∈ ∆, ou seja, Ĉ1 = L2. Neste caso, temos {x0, L} e {x1, L} são LI, e assim,
temos duas possibilidades: L ∈ [x0, x1] ou L /∈ [x0, x1].
(i-1) Se L ∈ [x0, x1], então temos a seguinte representação gráfica

Figura 3.37

x1 = 0x0 = 0

L

com isso, L = x1 + bx0 com b ̸= 0. Logo, W1
MB
= [x20, x

2
1, x0x1] e temos o resultado.

(i-2) Se L /∈ [x0, x1], então temos a seguinte representação gráfica

Figura 3.38

x1 = 0x0 = 0

L

Dessa forma, existe φ2 ∈ Aut(P2) tal que x0 7−→ x0, x1 7−→ x1 e L 7−→ x2.
Logo, W2 = φ2 •W1

MB
= [x20, x

2
1, x

2
2]. Verificamos que ΓW2 é uma cúbica redutível cujas

componentes são três retas distintas (absurdo).
(ii) Se Ĉ1 ∈ H −∆, ou seja, Ĉ1 = L1 · L2. Note que, mdc(Â, Ĉ) ̸= 1 e mdc(B̂, Ĉ) ̸= 1

segue que, necessariamente, L1 = x0 e L2 = x1. Assim, W1 = [x20, x
2
1, x0x1] e temos o

resultado.

Na tabela a seguir, apresentamos a classificação das órbitas em G3(S2) sob a ação
de Aut(P2).
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Tabela 3.1: Classificação das órbitas em G3(S2) sob a ação de Aut(P2).

[x2
0 − x1x2, x0x1, (x1 − x2)(x1 − ax2)]

[x0x1, x
2
0 + x1x2, x

2
1 + x0x2] [x0x1, x

2
0 − x1x2, (x1 + x2)

2]

[x2
0 − x1x2, x0x1, x

2
2] [x0x1, x

2
0 − x1x2, x0x2] [x2

1, x
2
0 − x1x2, x

2
2]

[x2
0, x0x1, x2(x1 + x2)] [x0x1, x0x2, x1x2] [x2

0, x
2
1, x

2
2]

[x2
0, x0x1, x1x2] [x2

0, x
2
1, x1x2] [x2

0, x
2
1, x2(x0 + x1)]

[x0x1, x
2
0 − x1x2, x

2
1] [x2

0, x0x1, x0x2] [x2
0, x

2
1, x0x2]

3.6 Sobre a dimensão das órbitas de G3(S2)

Nesta subseção, não vamos determinar a dimensão de todas as órbitas, resultantes
da ação de Aut(P2) em G3(S2). Apenas, faremos o cálculo para a órbita associada a
W = [x0x1, x0x2, x1x2], no qual o leitor poderá visualizar mais uma vez as técnicas
utilizadas na Seção 2.2 do Capítulo 2.

Afirmação: Se W = [x0x1, x0x2, x1x2], então dim(OW ) = 6.

Considere φ ∈ EW determinada por T ∈ Aut(C3). Assim,

[T•(x0x1), T•(x0x2), T•(x1x2)] = [x0x1, x0x2, x1x2]. (3.18)

Note que,

T•(x0x1) = (T•x0) · (T•x1) = (ax0 + bx1 + cx2) · (a1x0 + b1x1 + c1x2)

= aa1x
2
0 + (ab1 + a1b)x0x1 + (ac1 + a1c)x0x2 + bb1x

2
1

+ (bc1 + b1c)x1x2 + cc1x
2
2.
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Segue de (3.18) que

T•(x0x2) = αx0x1 + βx0x2 + γx1x2. (3.19)

Logo,

aa1 = 0, bb1 = 0, cc1 = 0, ab1 + a1b = α, ac1 + a1c = β, bc1 + b1c = γ.

Assim, para o sistema acima segue a seguinte possibilidade:

• a = b = 0 (c ̸= 0) e c1 = 0.

Sendo assim, temos que T•x0 = cx2. Segue que,

T•(x0x2) = cx2 · (a2x0 + b2x1 + c2x2) = ca2x0x2 + cb2x1x2 + cc2x
2
2.

Pela equação (3.19) temos que

ca2x0x2 + cb2x1x2 + cc2x
2
2 = αx0x1 + βx0x2 + γx1x2.

Assim, sendo c ̸= 0 então c2 = 0. Daí T•x1 = a1x0 + b1x1 e T•x2 = a2x0 + b2x1. Dessa
forma,

T•(x1x2) = (a1x0 + b1x1) · (a2x0 + b2x1) = a1a2x
2
0 + b1b2x

2
1 + (a1b2 + b1a2)x0x1.

Com isso, a1a2 = 0 e b1b2 = 0. Se a2 = 0 então b1 = 0 (uma vez que b2 ̸= 0). Então,
T•x0 = cx2, T•x1 = a1x0 e T•x2 = b2x1. Logo,

[T−1] =


0 0 c

a1 0 0

0 b2 0

 e det[T−1] = ca1b2.

Podemos supor que o valor do determinante seja igual a 1, assim c =
1

a1b2
. Logo,

[T−1] =


0 0

1

a1b2
a1 0 0

0 b2 0

 .
Assim, dim(EW ) = 2. Portanto, pelo Fato 2.5 temos que dim(OW ) = 6.
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3.7 Sobre a especialização das órbitas em G3(S2) sob

a ação de Aut(P2)

A determinação das especializações realizadas pelos autores em [1] utiliza as mes-
mas técnicas da Seção 2.3 do Capítulo 2, com exceção de alguns casos, que deixamos
para o leitor interessado investigar. Assim, nos remetemos a determinar a especializa-
ção OW −→ OW ′ sendo W = [x0x1, x0x2, x1x2] e W ′ = [x20, x0x1, x1x2].

Seja γ : I −→ G3(S2) definida por

γ(t) = [x20 − tx0x2, x0x1, x1x2] ∈ G3(S2).

Para t = 0 segue que γ(0) = [x20, x0x1, x1x2] = W ′. Logo, γ(0) ∈ OW ′ .

Para t ̸= 0 considere G ∈ γ(t). Logo, G = a(x20 − tx0x2) + bx0x1 + cx1x2 com
[a : b : c] ∈ P2, temos

MG =


a

b

2
−at

2
b

2
0

c

2

−at
2

c

2
0

 =⇒ det(MG) =
ac(bt+ c)

4
.

Segue que Γγ(t) define uma cúbica singular cujas componentes são três retas distin-
tas e não concorrentes. Portanto, γ(t) ∈ OW para qualquer t ̸= 0.
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Capítulo 4

Aplicações

Neste capítulo, destacamos algumas aplicações que podem ser realizadas a partir
da classificação das órbitas de G3(S2) sob a ação de Aut(P2), conforme a Tabela 3.1.
A seguir, faremos uma apresentação descritiva, com base na Seção 7 de [1].

Vamos começar abordando a classificação dos morfismos de P2 em P2 de grau 4 sob
a ação de Aut(P2)× Aut(P2) indicada na Definição 4.1.2.

4.1 Morfismo de P2 em P2 de grau 4

Vamos começar revisando o conceito de morfismo, para logo indicarmos a definição
de grau tão somente no caso do plano projetivo.

Definição 4.1.1. Uma função f : P2 −→ P2 é denominada morfismo (ou função regu-
lar) se existem F,G,H ∈ C[x0, x1, x2] homogêneos de mesmo grau tais que Z(F,G,H) =

∅ e f(a) = [F (a) : G(a) : H(a)], para todo a ∈ P2.

Por exemplo, f : P2 −→ P2 dada por [x : y : z] 7−→ [x2 : y2 : z2] define um
morfismo.
Grau do morfismo: Considere f : P2 −→ P2 um morfismo. Definimos o grau de f ,
grau(f) = #(f−1(a)) com a ∈ P2, sendo essa cardinalidade contada com multiplicidade.

O lema a seguir mostra que a definição de grau(f) independe do ponto escolhido.

Lema 4.1.1. Seja f : P2 −→ P2 o morfismo dado por f(a) = [F (a) : G(a) : H(a)] com
F,G,H homogêneos de grau d, então grau(f) = d2.
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Demonstração. Sejam a = [a0 : a1 : a2] ∈ P2 e b ∈ f−1(a). Note que:

f(b) = a ⇐⇒ [F (b) : G(b) : H(b)] = [a0 : a1 : a2]

⇐⇒ {(F (b), G(b), H(b)), (a0, a1, a2)} é LD

⇐⇒ o posto da matriz

[
F (b) G(b) H(b)

a0 a1 a2

]
é igual a 1

⇐⇒

∣∣∣∣∣F (b) G(b)

a0 a1

∣∣∣∣∣ =
∣∣∣∣∣F (b) H(b)

a0 a2

∣∣∣∣∣ =
∣∣∣∣∣G(b) H(b)

a1 a2

∣∣∣∣∣ = 0.

Ou seja,

f(b) = a⇐⇒


a1F (b)− a0G(b) = 0 (1)

a2F (b)− a0H(b) = 0 (2)

a2G(b)− a1H(b) = 0 (3)

Percebe-se que, se a0 ̸= 0 então podemos obter a partir das equações (1) e (2), a
equação (3). De fato,

−a2 · (a1F (b)− a0G(b)) + a1 · (a2F (b)− a0H(b)) = a0(a2G(b)− a1H(b)) = 0

Assim, se a0 ̸= 0, então o sistema acima é dado por

f(b) = a⇐⇒

a1F (b)− a0G(b) = 0

a2F (b)− a0H(b) = 0
⇐⇒ b ∈ Z(a1F − a0G, a2F − a0H)

Para concluir, segue do teorema de Bézout que #Z(a1F − a0G, a2F − a0H) = d2,
contada com multiplicidades.

A seguir introduzimos a noção de morfismo do mesmo tipo.

Definição 4.1.2. Considere f, g : P2 −→ P2 morfismos de grau d2. Dizemos que f e g
possuem o mesmo tipo se existem φ, ψ ∈ Aut(P2) tais que o seguinte diagrama comuta

P2 P2

P2 P2

f

φ

g

ψ isto é, ψ ◦ g = f ◦ φ.

Usaremos a notação f ∼ g para indicar que f e g possuem o mesmo tipo. Observe
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que ∼ define uma relação de equivalência no conjunto dos morfismos de P2 em P2 de
grau d2.

Proposição 4.1.1. Sejam f, g : P2 −→ P2 morfismos de grau 4 dados por
f(a) = [f1(a) : f2(a) : f3(a)] e g(a) = [g1(a) : g2(a) : g3(a)]. Verifica-se que f e g
possuem o mesmo tipo se, e somente se, O[f1,f2,f3] = O[g1,g2,g3].

Demonstração. Sejam f e g dadas por f(a) = [f1(a) : f2(a) : f3(a)] e
g(a) = [g1(a) : g2(a) : g3(a)] do mesmo tipo, ou seja, existem φ, ψ ∈ Aut(P2) tais
que ψ ◦ g = f ◦ φ. Assim, temos que

f ∼ g ⇐⇒ ψ ◦ g = f ◦ φ

⇐⇒ ψ(g(a)) = f(φ(a)) ∀ a ∈ P2

⇐⇒ ψ([g1(a) : g2(a) : g3(a)]) = [f1(φ(a)) : f2(φ(a)) : f3(φ(a))] ∀ a ∈ P2

⇐⇒ [g1(a) : g2(a) : g3(a)] = ψ−1([f1(φ(a)) : f2(φ(a)) : f3(φ(a))]) ∀ a ∈ P2.

Se ψ−1 for determinada por S−1, então assuma que [S−1] = [αij] (na base canônica de
C3). Assim, podemos reescrever a última equação acima, da seguinte forma:

[g1(a) : g2(a) : g3(a)] = [S−1(f1(φ(a)), f2(φ(a)), f3(φ(a)))]

=
[ 3∑

j=1

α1jfj(φ(a)) :
3∑

j=1

α2jfj(φ(a)) :
3∑

j=1

α3jfj(φ(a))
]
.

Desta forma, temos que existe λi(a) ̸= 0 ∈ C tal que

λ(a) · (g1(a), g2(a), g3(a)) =
( 3∑

j=1

α1jfj(φ(a)),
3∑

j=1

α2jfj(φ(a)),
3∑

j=1

α3jfj(φ(a))
)

=⇒ λ(a) · gi(a) =
3∑

j=1

αijfj(φ(a)), ∀a ∈ P2.

Considere Fi(a) =
3∑

j=1

αijfj(φ(a)). Assim,

λ(a)gi(a) = Fi(a) ⇐⇒ λ(a) =
Fi(a)

gi(a)
se gi(a) ̸= 0.

Note que, λ : P2 −→ C é uma função regular1 e segue do Teorema 3.4 (p. 18 em [11])
1Seja Y ⊆ Pn

K um conjunto algébrico e p ∈ Y . Uma função φ : Y −→ K é dita regular em p,
se existe Up ⊆ Y vizinhção aberta de p, F,G ∈ K[x0, . . . , xn] homogêneos de mesmo grau tais que

G(u) ̸= 0 para todo u ∈ Up e φ(u) =
F (u)

G(u)
, para todo u ∈ Up.
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que λ é uma função contante, ou seja, λ(a) = λ0 ∈ C. Assim, tem-se que2

gi(x0, x1, x2) = λ−1
0 ·

( 3∑
j=1

αijT
−1
• fj(x0, x1, x2)

)
, para i = 1, 2, 3.

Isso implica que gi ∈ [T−1
• f1, T

−1
• f2, T

−1
• f3]. Portanto, [g1, g2, g3] = T−1 • [f1, f2, f3],

isto é, O[f1,f2,f3] = O[g1,g2,g3].

De posse deste resultado, segue que as classes determinadas pelos os morfismos de
P2 em P2 de grau 4 do mesmo tipo, é equivalente à classificação das órbitas de G3(S2)

sob a ação de Aut(P2) cujos geradores não possuem zeros em comum.
Na tabela 4.1 a seguir, listamos os zeros comuns dos geradores dos representantes

das órbitas em G3(S2) (cf. Tabela 3.1).

Tabela 4.1: Zeros em comum dos representantes das órbitas

W = [f1, f2, f3] Z(f1, f2, f3)

[x20, x0x1, x0x2] não vazio

[x20, x
2
1, x0x1] não vazio

[x0x1, x
2
0 − x1x2, x

2
1] não vazio

[x20, x0x1, x1x2] não vazio

[x20, x
2
1, x1x2] não vazio

[x0x1, x0x2, x1x2] não vazio

[x20, x0x1, x2(x1 + x2)] não vazio

[x20, x
2
1, x2(x0 + x1)] não vazio

[x20, x
2
1, x

2
2] vazio

[x0x1, x
2
0 − x1x2, x0x2] não vazio

[x21, x
2
0 − x1x2, x

2
2] vazio

[x20 − x1x2, x0x1, x
2
2] não vazio

[x0x1, x
2
0 + x1x2, x

2
1 + x0x2] não vazio

[x0x1, x
2
0 − x1x2, (x1 + x2)

2] vazio

[x20 − x1x2, x0x1, (x1 − x2)(x1 − ax2)] vazio

Dessa forma, os representantes dos morfismos f : P2 −→ P2 de grau 4 do mesmo
tipo são dados pelos geradores dos subespaços W ∈ G3(S2) em azul na Tabela 4.1.

2Note que Hi(x0, x1, x2) = gi(x0, x1, x2) − λ−1
0 Fi(x0, x1, x2) é homogênio e Hi(a) = 0 para todo

a ∈ P2, logo Hi = 0.
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4.2 Classificação das K-álgebras artinianas graduadas

locais com função de Hilbert (1, 3, 3, 0)

Considere K um corpo algebricamente fechado e S = K[x0, x1, x2], com a graduação

usual. Se I ⊂ S for um ideal homogêneo, então o anel quociente
S

I
também é um anel

graduado. Dessa forma, considere

AW =
K[x0, x1, x2]

IW
,

sendo IW = ⟨F1, F2, F3⟩+m3, com W = [F1, F2, F3] ∈ G3(S2) e m = ⟨x0, x1, x2⟩.
Observe que AW é uma K-álgebra artiniana graduada local3. Além disso, note que

o comprimento de AW , ou seja, l(AW ) é dado por: l(AW ) = dimKAW sendo K =
AW

n
e n = ⟨x0, x1, x2⟩ (de fato K ∼= K) o corpo residual de AW conforme o Lema 7.2.5 (cap
7, p. 162 em [19]).

Exemplo 4.2.1. Seja W = [x20, x0x1, x1x2] como na Proposição 3.4.4 item 1.

Dessa forma, AW = C[x0, x1, x2]/(⟨x20, x0x1, x1x2⟩+m3), com m = ⟨x0, x1, x2⟩. Note
que, C[x0, x1, x2] admite a base canônica

{1, x0, x1, x2, x20, x0x1, x0x2, x21, x1x2, x22, . . . }

e m3 = ⟨x30, x20x1, x20x2, x0x21, x0x22, x0x1x2, x31, x21x2, x1x22, x32⟩. Logo, temos que

{1, x0, x1, x2, x0x2, x21, x22} ⊆ AW

é uma base do C−espaço vetorial AW . Portanto, l(AW ) = dimCAW = 7.
Função de Hilbert associada a uma K-álgebra artiniana graduada (A, n)

Seja (A, n) uma K-álgebra artiniana graduada local. Considere N o conjunto dos
inteiros não negativos. Definimos a função de Hilbert associada a A por

hA : N −→ N

i 7−→ dimK
ni

ni+1

3É uma K-álgebra visto que φ : K −→ AW dada por a 7−→ a é um homomorfismo de anéis.
Além disso, é local (lembremos que Spec(AW) está em bijeção com {P ∈ Spec(S) | IW ⊆ P}. Assim,
IW = ⟨F1, F2, F3⟩+m3 ⊆ P implica que m3 ⊆ P . Entretanto, x3i ∈ m3 para i = 0, 1, 2. Logo, visto que
P é primo, segue que xi ∈ P para todo i = 0, 1, 2. Portanto, m = ⟨x0, x1, x2⟩ ⊆ P . De onde concluímos
que m = P ). Além disso, AW é artiniana (visto que Spec(AW) = {n} sendo n = ⟨x0, x1, x2⟩ segue que
a dimkrull(AW) = 0. Logo, como AW é noetheriano e dimkrull(AW) = 0, segue do Teorema 8.5 em [3]
que AW é artiniana).
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sendo K =
A

n
o corpo residual de A, n0 = A, n1 = n e ni é o produto de i fatores de n.

Vale salientar que a notação (1, 3, 3, 0) indica que A é uma álgebra graduada ar-
tiniana local, cuja a função de Hilbert é dada por hA(0) = 1, hA(1) = 3, hA(2) = 3 e
hA(i) = 0 ∀ i ≥ 3.

Exemplo 4.2.2. Considere o anel local (AW , n) com W = [x20, x0x1, x1x2] e

n = ⟨x0, x1, x2⟩. Iremos calcular hAW
(i) = dimK

ni

ni+1
para i = 0, 1, 2, . . . .

1. Para i = 0 temos
n0

n1
=
AW

n
∼= K. Logo, hAW

(0) = dimK
n0

n1
= 1.

A seguir por simplicidade, considere x = x0, y = x1 e z = x2 em AW .
2. Para i = 1 temos n1 = ⟨x, y, z⟩ e n2 = ⟨x2, xy, xz, y2, yz, z2⟩. Note que,
x2 = xy = yz = 0, assim n2 = ⟨xz, y2, z2⟩. Dessa forma,

n1

n2
=

⟨x, y, z⟩
⟨xz, y2, z2⟩

= [x+ n2, y + n2, z + n2] =⇒ hAW
(1) = dimK

n1

n2
= 3.

3. Para i = 2 note que, n3 = {0}, pois IW = ⟨x20, x0x1, x1x2⟩+ n3. Assim,

n2

{0}
= [xz + n3, y2 + n3, z2 + n3] =⇒ hAW

(2) = dimK
n2

n3
= 3.

4. Para i ≥ 3 temos que hAW
(i) = 0, já que ni = {0} para todo i ≥ 3.

Portanto, hAW
= (1, 3, 3, 0̄).

Exemplo 4.2.3. Considere agora o anel local (AW , n) com W = [x20, x
2
1, x

2
2] e

n = ⟨x0, x1, x2⟩. Calcularemos hAW
(i) = dimK

ni

ni+1
para i = 0, 1, 2, . . . .

1. Para i = 0 temos
n0

n1
=
AW

n
∼= K. Logo, hAW

(0) = dimK
n0

n1
= 1.

Novamente por simplicidade, considere x = x0, y = x1 e z = x2 em AW .
2. Para i = 1 temos n1 = ⟨x, y, z⟩ e n2 = ⟨x2, xy, xz, y2, yz, z2⟩. Note que,
x2 = y2 = z2 = 0, com isso n2 = ⟨xy, xz, yz⟩. Logo,

n1

n2
=

⟨x, y, z⟩
⟨xy, xz, yz⟩

= [x+ n2, y + n2, z + n2] =⇒ hAW
(1) = dimK

n1

n2
= 3.

3. Para i = 2, note que n3 = {0}, pois IW = ⟨x20, x21, x22⟩+ n3. Assim,

n2

{0}
= [xy + n3, xz + n3, yz + n3] =⇒ hAW

(2) = dimK
n2

n3
= 3.

4. Para i ≥ 3 hAW
(i) = 0, uma vez que ni = {0} para todo i ≥ 3. Portanto,

hAW
= (1, 3, 3, 0̄).
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Observação 4.2.1. Considere

AW =
C[x0, x1, x2]

IW
,

com IW = ⟨F1, F2, F3⟩ + n3, W = [F1, F2, F3] ∈ G3(S2) e n = ⟨x, y, z⟩ sendo x = x0,
y = x1, z = x2 em AW . Verifica-se que:

• hAW
(0) = 1;

• hAW
(1) = 3, pois n = ⟨x, y, z⟩ e n2 = ⟨x2, xy, xz, y2, yz, z2⟩ irá eliminar todo

elemento de grau maior que 1 em n, ao passar ao quociente, o qual independe da
escolha dos geradores de W ;

• hAW
(2) = 3, uma vez que n3 = {0} e sempre eliminanos três elementos de n2

módulo IW ;

• hAW
(i) = 0 para todo i ≥ 3, já que n3 = {0} para todo i ≥ 3.

Para concluir esta breve exposição, indicamos a seguir um dos resultados principais
provado pelos autores Nancy Abdallah, Jacques Emsalem e Anthony Iarrobino em [1].

Teorema 4.2.1. Álgebras artinianas graduadas locais A com função de Hilbert (1, 3, 3, 0̄)
são suavizáveis. Ou seja, A pode ser deformada em uma álgebra suave de dimensão 7
(isomorfa à álgebra produto K7).

Com o objetivo de discutir brevemente o conceito de álgebra suavizável, que é
citado no teorema acima, reproduzimos a seguir (com um pouco mais de detalhes),
parte do texto da Seção 7.1 em [1].

4.2.1 Deformação de álgebras com função de Hilbert (1, 3, 3, 0)

em uma álgebra suave

Uma álgebra com função de Hilbert (1, 3, 3, 0) tem a forma geral
K[x0, x1, x2]

⟨F,G,H⟩+m3
,

sendo {F,G,H} LI em S2 e m = ⟨x0, x1, x2⟩. Considere

A0 :=
K[x0, x1, x2]

⟨x20 + λx1x2, x21 + λx0x2, x22 + λx0x1⟩+m3
.

Observe que:

⟨x20+λx1x2, x21+λx0x2, x22+λx0x1⟩+m3 = ⟨x20+λx1x2, x21+λx0x2, x22+λx0x1, x0x1x2⟩.
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Logo, A0 = K[x0, x1, x2]/⟨x20+λx1x2, x21+λx0x2, x22+λx0x1, x0x1x2⟩. A seguir, considere
a família de álgebras

At =
K[x0, x1, x2]

It

sendo It = ⟨x20 + λx1x2 + tx0, x
2
1 + λx0x2, x

2
2 + λx0x1, x0x1x2 + λ2t(1− λ3)−1x20⟩.

Lema 4.2.1. O conjunto Z(It) ⊆ C3 é dado por

{(0, 0, 0), (−u, λu, λu), (−u, λju, λj2u), (−u, λj2u, λju)}

sendo u =
t

1 + λ3
e j uma raíz cúbica primitiva da unidade.

Demonstração. Observe que (x0, x1, x2) ∈ Z(It) ⊆ C3 se, e somente se, satisfaz o
sistema: 

x20 + λx1x2 − tx0 = 0 (4.1)

x21 + λx0x2 = 0 (4.2)

x22 + λx0x1 = 0 (4.3)

x0x1x2 + λ2t(1− λ3)−1x20 = 0 (4.4).

Segue da equação (4.4) que

x0(x1x2 + λ2t(1− λ3)−1x0) = 0. (4.5)

Daí, temos duas possibilidades:
Caso 1 : se x0 = 0, segue das equações (4.2) e (4.3) que x1 = 0 e x2 = 0. Portanto,

obtemos o ponto (0, 0, 0) em C3.
Caso 2 : se x0 ̸= 0, segue da equação (4.5) que x1x2 = −λ2t(1 − λ3)−1x0. Subs-

tituindo essa última igualdade em (4.1) teremos que x0 = − t

1 + λ3
. Ao substituir

x0 = − t

1 + λ3
em x1x2 = −λ2t(1 − λ3)−1x0, segue que x1 =

1

x2
·
( λt

1 + λ3

)2
. Logo,

ao substituir x0 = − t

1 + λ3
e x1 =

1

x2
·
( λt

1 + λ3

)2
em (4.3) teremos x32 = α3 com

α =
λt

1 + λ3
. Assim, x32 = α3 se, e somente se, x2 ∈ {α, αj, αj2} onde j é a raiz cúbica

primitiva da unidade. Dessa forma, segue o resultado.

Em relação a esses quatros pontos, os autores afirmam que, a localização da álgebra
At em (0, 0) é isomorfa a K[x0, x1]/⟨x20, x21⟩, tem comprimento 4; e as demais localizações
têm comprimento 1. Portanto, obtém-se uma deformação plana de A0 em uma família
de álgebras isomorfas a K[x0, x1]/(x

2
0, x

2
1)×K3. Como todas as álgebras artinianas com

94



4. Aplicações

dois geradores são suavizáveis (cf. [6]) então K[x0, x1]/(x
2
0, x

2
1) pode ser deformada em

K4. Logo, A0 é deformavél em K7.

Observações 4.2.1. Entretanto, embora A0 seja suavizável, isso não garante que A0

seja alinhável, isto é, que admita uma deformação plana a uma álgebra curvilínea do
tipo K[x]/(xn). No caso específico das álgebras com função de Hilbert (1, 3, 3, 0), ainda

é um problema em aberto se elas são alinháveis ou não.
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Apêndice A

Noções de Geometria Algébrica

Para deixar o texto autocontido, neste apêndice apresentamos os conceitos e re-
sultados básicos que utilizamos no desenvolvimento do trabalho. O leitor também é
convidado a consultar os textos [17], [8], [11] e [20].

Projetivização de um espaço vetorial
Seja V um espaço vetorial de dimensão finita sobre K. Em V −{0} defina a seguinte

relação: u ∼ v ⇐⇒ u = λv, para algum λ ∈ K

Observações A.0.1. Com as notações acima. Observe que λ ̸= 0. Além disso,

(a) ∼ define uma relação de equivalência em V − {0};

(b) A classe de equivalência associada a v ∈ V (v não nulo) é dada por

v = {u ∈ V − {0} | u ∼ v} = [v]− {0}.

sendo [v] = {λv ∈ V | λ ∈ K} o subespaço vetorial de V gerado pelo vetor v.

Definimos a projetivização de V por P(V ) :=
V − {0}

∼
.

Notação A.0.1. Considere V = Kn+1 como espaço vetorial sobre K. Usaremos a
notação

1. Pn
K em lugar de P(Kn+1) (Pn

K é chamado n−espaço projetivo sobre K);
2. Pn em lugar de Pn

C = P(Cn+1);
3. v = [v0 : v1 : . . . : vn] se v = (v0, v1, . . . , vn) ∈ Kn+1 é não nulo. Neste caso,
v0, v1, . . . , vn são chamadas coordenadas homogêneas de v ∈ Pn

K.

Observação A.0.1. Se u, v ∈ V − {0}, então

u = v ∈ P(V ) ⇐⇒ u e v são linearmente dependentes.

Assim, [v0 : v1 : . . . : vn] = [λv0 : λv1 : . . . : λvn] em Pn
K ∀ λ ̸= 0 em K.
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Exemplo A.0.1. Vamos descrever os pontos em Pn para n ∈ {0, 1, 2, 3}.

(i) Se n = 0 então P0 = P(C) = {[a0]| a0 ∈ C, a0 ̸= 0} = {[1]}.1

(ii) Se n = 1 então P1 = P(C2) = {[a0 : a1]| (a0, a1) ∈ C2, (a0, a1) ̸= (0, 0)}.

Seja [a0 : a1] ∈ P2 temos duas possibilidades, a1 ̸= 0 ou a1 = 0.

• Se a1 ̸= 0, então [a0 : a1] = [a0 · a−1
1 : a1 · a−1

1 ] = [a : 1] com a = a0 · a−1
1

• Se a1 = 0, então a0 ̸= 0 e [a0 : a1] = [a0 · a−1
0 : 0] = [1 : 0].

Logo, P1 = {[a : 1] |a ∈ C} ∪ {[1 : 0]}.

Note que, a função ϕ : C −→ P1−{[1 : 0]} dada por a 7−→ [a : 1] é uma bijeção,
ou seja, em P1 existe uma cópia de C. Assim, temos a seguinte identificação:

P1 = {[a : 1] |a ∈ C} ∪ {[1 : 0]} ≃ C ∪ {∞}.

Nesta partição, [1 : 0] é denominado ponto no infinito e denotado por ∞.

(iii) se n = 2 então P2 = P(C3) = {[a0 : a1 : a2]| (a0, a1, a2) ∈ C3 − {(0, 0, 0)}}.

Seja [a0 : a1 : a2] ∈ P3.Temos novamente duas possibilidades: a2 ̸= 0 ou a2 = 0.

• Se a2 ̸= 0, então [a0 : a1 : a2] = [a0 · a−1
2 : a1 · a−1

2 : a2 · a−1
2 ] = [a : b : 1] com

a = a0 · a−1
2 e b = a1 · a−1

2 .

• Se a2 = 0, então [a0 : a1 : a2] = [a0 : a1 : 0] com [a0 : a1] ∈ P1.

Seja L∞ := {[a0 : a1 : 0] |[a0 : a1] ∈ P1}. Então a função ϕ : C2 −→ P2 − L∞

dada por (a, b) 7−→ [a : b : 1] é uma bijeção, ou seja, em P2 existe uma cópia de
C2.

Logo, P2 = {[a : b : 1] |(a, b) ∈ C2} ∪ L∞. Note ainda que, [a0 : a1] 7→ [a0 : a1 : 0]

define uma bijeção entre a reta projetiva P1 e a reta no infinito L∞.

(iv) se n = 3 então P3 = P(C4).

De forma análoga, se H∞ := {[a0 : a1 : a2 : 0] |[a0 : a1 : a2] ∈ P2} teremos que

P3 = {[a : b : c : 1] |(a, b, c) ∈ C3} ∪H∞.

H∞ é denominado plano no infinito. Note também que, [a0 : a1 : a2] 7→ [a0 : a1 :

a2 : 0] define uma bijeção entre o plano projetivo P2 e o plano no infinito H∞.
1De fato,

a0 = 1 ⇐⇒ a0 ∼ 1 ⇐⇒ a0 = a0 · 1.
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De forma geral, mostra-se que o n−espaço projetivo Pn adimite uma partição da
forma, Pn = A ∪ H∞ em que podemos identificar A como Cn e H∞ (denominado
hiperplano no infinito) com Pn−1.

A d−Grassmaniana associada a V sobre K
Seja V um espaço vetorial de dimensão finita n sobre K. Considere d ∈ {0, 1, . . . , n}.

A d−Grassmaniana associada a V é dada por:

Gd(V ) := {W | W é um subespaço de V de dimensão d}.

Exemplo A.0.2. Seja V = R3.

• se d = 0 então G0(R3) = {{0}}.

• se d = 1 então G1(R3) = {[v] | v ̸= 0 ∈ R3}.

• se d = 2 então G2(R3) = {[u, v] | u e v são LI em R3}.

• se d = 3 então G3(R3) = {R3}.

Observação A.0.2. Seja V um espaço vetorial sobre K de dimensão finita e positiva.
A função ψ : P(V ) −→ G1(V ) dada por v̄ 7−→ [v] é uma bijeção. Logo, podemos
identificar P(V ) com G1(V ).

Polinômios homogêneos

Considere A = K[x0, . . . , xn] o anel de polinômios nas variáveis x0, . . . , xn com
coeficientes no corpo K.

Para cada I = (i0, . . . , in) com i0, . . . , in inteiros não negativos. Definimos o monô-
mio xI = xi00 ·xi11 · . . . ·xinn e grau(xI) = i0+ i1+ · · ·+ in. Vale salientar que x0i := 1 ∀ i.

Se F ∈ K[x0, . . . , xn], então F =
∑

I finita
aIx

I com aI ∈ K e

grau(F ) = max{ grau(xI) | xI é um monômio que comparece em F}.

Graduação usual no anel de polinômios

Note que, A = K[x0, . . . , xn] é um espaço vetorial sobre K. Para cada d ≥ 0 inteiro,
seja Ad o subespaço de A gerado por monômios de grau d. Assim,

• A0 = [1] = K;

• A1 = [x0, x1, . . . , xn] = {a0x0 + a1x1 + · · ·+ anxn | a0, . . . , an ∈ K};
...
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• Ad = [{xI | grau(xI) = d}].

Observações A.0.2. Com as notações acima, verifica-se que:

1. dim(Ad) =

(
n+ d

d

)
;

2. Os elementos de Ad são chamados de polinômios homogêneos;

3. Se F ∈ Ad e F ̸= 0 então F é chamado de polinômio homogêneo de grau d.

4. Se F ∈ A é não nulo de grau d, então F pode ser escrito de forma única como

F = F0 + F1 + · · ·+ Fd com Fi ∈ Ai i ∈ {0, . . . , d}.

Proposição A.0.1. Seja K um corpo infinito. Considere F ∈ A = K[x0, . . . , xn] não
nulo de grau d. Verifica-se que,

F ∈ Ad ⇐⇒ F (λx0, . . . , λxn) = λdF (x0, . . . , xn) ∀ λ ∈ K.

Demonstração. =⇒ Seja F ∈ Ad. Logo, F =
∑
I

aIx
I com aI ∈ K, sendo xI monô-

mios de grau d. Assim,

F (λx0, . . . , λxn) =
∑
I

aI(λx0)
i0 . . . (λxn)

in =
∑
I

aIλ
(i0+···+in)(xi00 · . . . · xinn )

=
∑
I

aIλ
dxi00 · . . . · xinn

= λd
∑
I

aIx
i0
0 · . . . · xinn

= λd
∑
I

aIx
I

= λdF (x0, . . . , xn).

⇐= Seja F ̸= 0 de grau d. Daí, F = F0 + F1 + · · ·+ Fd com Fd ̸= 0.

Afirmação: Fi = 0 ∀ i ∈ {0, . . . , d− 1}.
Pelo absurdo, suponha que exista um j ∈ {0, . . . , d− 1} tal que Fj ̸= 0. Note que

F (λx0, . . . , λxn) = F0(λx0, . . . , λxn) + F1(λx0, . . . , λxn) + · · ·+ Fd(λx0, . . . , λxn)

= F0 + λF1(x0, . . . , xn) + · · ·+ λdFd(x0, . . . , xn).

Pela hipótese tem-se que F (λx0, . . . , λxn) = λdF (x0, . . . , xn). Logo

F0 + λF1(x0, . . . , xn) + · · ·+ λdFd(x0, . . . , xn) = λdF (x0, . . . , xn).
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Ou seja, F0 + λF1 + · · ·+ λd−1Fd−1 + λdFd = λdF . Logo,

F0 + λF1 + · · ·+ λd−1Fd−1 + λdFd = λdF0 + λdF1 + · · ·+ λdFd.

Assim, F0 + λF1 + · · ·+ λd−1Fd−1 = λd(F0 + F1 + · · ·+ Fd−1). Equivalentemente

F0 + λF1 + · · ·+ λjFj + · · ·+ λd−1Fd−1 − λd(F0 + F1 + · · ·+ Fd−1) = 0 (A.1)

Como Fj ̸= 0 e K é infinito, então existe2 a = (a0, . . . , an) ∈ Kn+1 tal que Fj(a) ̸= 0.
Assim, a partir de (A.1) obtemos

d−1∑
i=0

λiFi(a)− λd
( d−1∑

i=0

Fi(a)
)
= 0.

Agora considere

f(t) = b0 + b1t+ . . .+ . . . bjt
j + . . .+ bd−1t

j−1 − td(b0 + b1 + · · ·+ bd−1) ∈ K[t]

sendo bk = Fk(a) com k ∈ {0, 1, . . . , d − 1}. Note que, f(t) ̸= 0 e f(λ) = 0 ∀ λ ∈ K
(absurdo). Portanto, segue o resultado.

Corolário A.0.1. Com as notações da Proposição A.0.1. Assuma que F ∈ Ad. Se
F (a0, . . . , an) = 0 então F (λa0, . . . , λan) = 0 ∀ λ ∈ K.

Demonstração. Segue da Proposição A.0.1 que F (λa0, . . . , λan) = λdF (a0, . . . , an) =

λd · 0 = 0 ∀λ ∈ K.

Zeros de um polinômio homogêneo de K[x0, . . . , xn]

Se p = [a0 : . . . : an] ∈ Pn
K e F ∈ K[x0, . . . , xn] for homogêneo então

F (p) := F (a0, . . . , an). Definimos os zeros de F em Pn
K por Z(F ) = {p ∈ Pn

K | F (p) =
0}.

Se T ⊂ A é formado por polinômios homogêneos, então definimos os zeros de T
por

Z(T ) =
⋂
F∈T

Z(F ).

Ideal homogêneo

Seja I ⊆ K[x0, . . . , xn] um ideal. I é dito homogêneo se existe uma quantidade
finita de geradores homogêneos de I.

2Seja K um corpo infinito. G ∈ K[x], G ̸= 0 se, e somente se, existe (a0, . . . , an) ∈ Kn+1 tal que
G(a0, . . . , an) ̸= 0.
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O exemplo abaixo, mostra que apesar de I admitir geradores nem todos homogê-
neos, isso não implica em I não ser homogêneo.

Exemplo A.0.3. Seja I = ⟨x − y2, y⟩ ⊆ R[x, y].3 Note que, I = ⟨x, y⟩. De fato,
x = 1 · (x− y2) + y · y e y = 0 · (x− y2) + 1 · y.

Proposição A.0.2. Seja I ⊆ K[x0, . . . , xn] um ideal.
I é um ideal homogêneo se, e somente se, ∀ g ̸= 0 ∈ I de grau d tal que

g = g0 + · · ·+ gd com gi ∈ Ai tem-se que gi ∈ I ∀ i ∈ {0, . . . , d}.

Demonstração. Veja a Proposição 1.17 (p. 58 em [17]).

Zeros de um Ideal homogêneo

Seja I ⊂ K[x0, . . . , xn] um ideal homogêneo tendo {Fi}ki=1 como um conjunto de
geradores homogêneos. Definimos os zeros de I por

Z(I) =
k⋂

i=0

Z(Fi).

Observação A.0.3. Se I = ⟨F1, . . . , Fk⟩ sendo Fi ∈ K[x0, . . . , xn] homogêneos ∀ i e
{G1, . . . , Gd} for outro conjunto de geradores de I, então

k⋂
i=0

Z(Fi) =
d⋂

i=0

Z(Gi).

Exemplo A.0.4. Seja I = ⟨3x0−x1, x0−2x2⟩ ⊆ R[x0, x1, x2]. Iremos calcular Z(I) em
P2
R. Por definição, Z(I) = Z(3x0−x1)∩Z(x0− 2x2). Considere a = [a0 : a1 : a2] ∈ P2

R.

Note que

a ∈ Z(I) ⇐⇒ 3a0 − a1 = 0 e a0 − 2a2 = 0

⇐⇒ a1 = 3a0 e a0 = 2a2

⇐⇒ a = [a0 : 3a0 : 2a2] = [1 : 3 : 2].

Portanto, Z(I) = {[1 : 3 : 2]}.

Exemplo A.0.5. Seja J = ⟨x0x1⟩ ⊆ R[x0, x1, x2]. Então, Z(J) = Z(x0) ∪ Z(x1).

3Lembre que se I = ⟨F1, . . . , Fk⟩ e J = ⟨G1, . . . , Gn⟩ são ideais em K[x0, . . . , xn] então verifica-se:
I = J ⇐⇒ Fi ∈ J e Gj ∈ I para todo i, j.
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De fato, considere a = [a0 : a1 : a2] ∈ P2
R. Note que

a ∈ Z(J) ⇐⇒ a ∈ Z(x0x1) ⇐⇒ a0 · a1 = 0

⇐⇒ a0 = 0 ou a1 = 0

⇐⇒ a ∈ Z(x0) ou a ∈ Z(x1)

⇐⇒ a ∈ Z(x0) ∪ Z(x1).

Visto que,

a ∈ Z(x0) ⇐⇒ a0 = 0 ⇐⇒ a = [0 : a1 : a2] com [a1 : a2] ∈ P1,

segue que Z(x0) está em bijeção com P1
R.

Proposição A.0.3. Sejam I, J ideais homogêneos em K[x0, . . . , xn] e T ⊂ K[x0, . . . , xn]

formados por polinômios homogêneos. Verifica-se que:

1. I ⊆ J , então Z(I) ⊇ Z(J);

2. Z(I) ∪ Z(J) = Z(I ∩ J);

3. Z(T ) = Z(⟨T ⟩);

4. Z(I) ∩ Z(J) = Z(I + J).

Demonstração. Confira a Proposição 1.18 (p. 61 em [17]).

Conjuntos Algébricos em Pn
K

Seja X ⊂ Pn
K. X é denominado conjunto algébrico em Pn

K se X = Z(I) para
algum ideal homogêneo I ⊆ K[x0, . . . , xn]. Ou seja, X é um conjunto algébrico em Pn

K

se existe uma quantidade finita de polinômios homogêneos F1, . . . , Fk ∈ K[x0, . . . , xn]

tais que X =
k⋂

i=1

Z(Fi).

Exemplo A.0.6. (Conjuntos Algébricos em P1). Seja X ⊂ P1. Lembre que: X é um
conjunto algébrico se, e somente se, existem F1, . . . , Fk ∈ C[x0, x1] homogêneos tais que

X =
k⋂

i=1

Z(Fi).

Se k = 1, então X = Z(F ) com F ∈ C[x0, x1] homogêneo. Vamos analisar primeiro
o caso em que F é um polinômio constante. Se F = 0 então Z(F ) = P1, caso contrário
Z(F ) = ∅.
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Considere então, F ̸= 0 e grau(F ) = d ≥ 1. Daí, se d = 1 tem-se F = b0x0 + b1x1.

Logo

a = [a0 : a1] ∈ Z(F ) ⇐⇒ b0a0 + b1a1 = 0

⇐⇒

∣∣∣∣∣ b0 b1

−a1 a0

∣∣∣∣∣ = 0

⇐⇒ {(b0, b1), (−a1, a0)} é LD

⇐⇒ −a1 = λb0 e a0 = λb1 para algum λ ̸= 0 ∈ C

⇐⇒ a = [a0 : a1] = [λb1 : −λb0] = [b1 : −b0].

Portanto, Z(F ) = {[b1 : −b0]}.
Para analisar o caso em que d > 1 vamos utilizar o seguinte lema.

Lema A.0.1. Seja F ∈ C[x0, x1] homogêneo de grau d ≥ 1. Então, existem F1, . . . , Fd

homogêneos de grau 1 tais que F = F1 · . . . · Fd =
d∏

i=1

Fi.

Demonstração. Veja o Lema 1.8 (p. 63 em [17]).

De posse do resultado, tem-se que todo poliômio homogêneo em C[x0, x1] é um
produto de fatores lineares da forma bx0 + ax1, podendo aparecer fatores repetidos.
Logo, podemos representar F da seguinte forma

F = Lm1
1 · Lm2

2 · . . . · Lmk
k

sendo Li = bix0 − aix1 e {L1, . . . , Lk} LI com m1 +m2 + . . .+mk = d. Logo,

Z(F ) = Z(Lm1
1 ) ∪ Z(Lm2

2 ) ∪ . . . ∪ Z(Lmk
k )

= Z(L1) ∪ Z(L2) ∪ . . . ∪ Z(Lk)

= {[a1 : b1], [a2 : b2], . . . , [ak : bk]}.

Assim concluímos que os conjuntos algébricos em P1 são os subconjuntos finitos de P1

e o próprio P1.

Observação A.0.4. F = {Pn
K−X | X é um conjunto algébrico} define uma topologia

em Pn
K denominada Topologia de Zariski.

Ideal associado a um subconjunto de Pn
K

Seja Y ⊆ Pn
K um subconjunto qualquer. Definimos o ideal associado a Y por

I(Y ) = ⟨{F ∈ K[x0, . . . , xn] | F é homogêneo e F (a) = 0, ∀ a ∈ Y }⟩
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Proposição A.0.4. Sejam Y, Y1 subconjuntos de Pn
K. Considere T ⊆ K[x0, . . . , xn]

formado por polinômios homogêneos. Verifica-se que

1. Y ⊆ Y1, então I(Y ) ⊇ I(Y1);

2. I(Y ∪ Y1) = I(Y ) ∩ I(Y1);

3. T ⊆ I(Z(T ));

4. Z(I(Y )) = Y .

Demonstração. Confira a Proposição 1.22 (p. 74 em [17]).

Conjunto irredutível em um espaço topológico

Seja (X,F) um espaço topológico e Y um subconjunto de X. Verifica-se que

FY = {U ∩ Y | U ∈ F}

define a topologia em Y , denominada topologia induzida em Y a partir da topologia
em X.

Definição A.0.1. Seja Y um espaço topológico. Y é dito irredutível se, e somente se,
para todo F1, F2 ⊆ Y fechados tais que Y = F1 ∪ F2, tem-se que Y = F1 ou Y = F2.

Do contrário, Y é dito redutível.

Exemplos A.0.1. 1. ∅ é irredutível.

2. Em P1 os conjuntos algébricos são os subconjuntos finitos e o próprio P1. Logo,
os conjuntos irredutíveis em P1 são o próprio P1 e os conjuntos unitários.

3. Y = Z(x0x1) = Z(x0)∪Z(x1) ⊆ P2 é redutível. Entretanto, Z(x0) é irredutível.

Observação A.0.5. Considere A = K[x0, . . . , xn] e A+ = ⟨x0, . . . , xn⟩. Seja I ⊆ A um
ideal homogêneo. Verifica-se que

Z(I) = ∅ ⇐⇒
√
I = A ou

√
I = A+ ⇐⇒ ∃ d ≥ 0 tal que Ad ⊆ I.

Proposição A.0.5. (Teorema dos zeros de Hilbert - versão projetiva) Seja K um corpo
algebricamente fechado e I ⊆ K[x0, . . . , xn] um ideal homogêneo tal Z(I) ̸= ∅. Então,
I(Z(I)) =

√
I.

Demonstração. Veja o Teorema 1.4 (p. 82 em [17]).
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Considere A = K[x0, . . . , xn] sendo Ad o subespaço vetorial de A gerado por pelos
monômios em A de grau d ≥ 0.

Dizemos que X é uma hipersuperfície de grau d ≥ 1 em Pn
K se X ∈ P(Ad), isto

é, X = [F ] ∈ P(Ad) com F ̸= 0 em Ad.

Observação A.0.6. Se [F ], [G] ∈ P(Ad) definem a mesma hipersuperfície se, e somente
se, F = λG para algum λ ̸= 0 em K.

Definimos o suporte de [F ] ∈ P(Ad) por Z(F ) ⊆ Pn
K.

Exemplo A.0.7. Considere S = C[x0, x1, x2]. Uma hipersuperfície de grau d em P2

será denominada de curva plana de grau d. Em particular, curvas de grau 2 em P2 são
chamadas de cônicas. Observe que

Ψ : P(S2) −→ {Z(F ) | F ̸= 0 em S2} dada por [F ] 7−→ Z(F ),

é uma bijeção. Como também Φ : P(S2) −→ P5 dada por

[a0x
2
0 + a1x0x1 + a2x0x2 + a3x

2
1 + a4x1x2 + a5x

2
2] 7−→ [a0 : a1 : a2 : a3 : a4 : a5]

é uma bijeção.

Variedades lineares

Seja Y ⊆ Pn
K um conjunto algébrico. Y é uma variedade linear se

I(Y ) = ⟨F1, . . . , Fk⟩ com F1, . . . , Fk ∈ K[x0, . . . , xn] homogêneos de grau 1.

Exemplo A.0.8. Seja Y ⊆ Pn
K um conjunto algébrico. Observe que se I(Y ) = {0}

então Y = Y = Z(I(Y )) = Z({0}) = Pn
K. Entretanto, se I(Y ) = ⟨x0, . . . , xn⟩ então

Y = ∅.

Observação A.0.7. Seja Y ⊆ Pn
K uma variedade linear tal que I(Y ) = ⟨L1, . . . , Lk⟩

com Li ∈ A1 não nulos. SejaW = [L1, . . . , Lk] ⩽ A1 = [x0, . . . , xn] e seja {Li1 , . . . , Lis} ⊆
{L1, . . . , Lk} base de W. Então, I(Y ) = ⟨Li1 , . . . , Lis⟩.

Proposição A.0.6. Seja K um corpo algebricamente fechado e Y ⊆ Pn
K um conjunto

algébrico. Y é uma variedade linear se, e somente se, Y = P(W ) para algum W

subespaço de Kn+1.

Demonstração. Confira a Proposição 1.19 (p. 67 em [17]).

Corolário A.0.2. A função ψ : {W | W ⩽ Kn+1} −→ {Y ⊆ Pn
K | Variedade linear}

dada por W 7−→ P(W ) é uma bijeção.
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Demonstração. De fato, a sobrejetividade é dada pela Proposição A.0.6. Para a inje-
tividade, considere U,W subespaços vetoriais de Kn+1 tais P(W ) = P(U). Seja w ∈ W

com w ̸= 0, daí

[w] ∈ P(W ) =⇒ [w] ∈ P(U) =⇒ [w] = [u] para algum u ∈ U − {0}.

Consequentemente, w = λu para algum λ ̸= 0 em K. Logo, W ⊆ U. De forma análoga,
tem-se U ⊆ W. Portanto, U = W.

Definição A.0.2. Seja Y ⊆ Pn
K uma variedade linear. Definimos a dimensão de Y ,

por dimY = dimW − 1, com W subespaço vetorial de Kn+1 tal que Y = P(W ).

Retas e planos em P(V )

Considere Y ⊆ P(V ). Então

• Y é uma reta se Y = P(W ) para algum W ∈ G2(V ).

• Y é um plano se Y = P(U) para algum U ∈ G3(V ).

Observação A.0.8. Sejam p, q pontos em P(V ) distintos. Então, existe uma única
reta passando por p e q, que denotaremos por lp,q.

De fato, sejam p = [u] e q = [v] pontos em P(V ) distintos, logo temos que u e v
são LI. Daí, considere W = [u, v] ∈ G2(V ). Logo, P(W ) = Lp,q é uma reta em P(V )

que contém os pontos p e q. Provando assim, a existência. Para a unicidade, considere
Lp,q = P(W1) com W1 ∈ G2(V ). Uma vez que, p = [u] ∈ P(W1) segue que [u] = [w1]

para algum w1 ∈ W . Assim, u = λw1 para algum λ não nulo em C, ou seja, u ∈ W1 e
analogamente, tem-se que v ∈ W1. Assim,

W = [u, v] ⊂ W1
dimW=2
=⇒ W = W1.

Portanto, P(W ) = P(W1) do qual concluímos que existe uma única reta passando por
p e q.

Observações A.0.3. Pontos, retas e planos são variedades lineares em Pn
K. De fato,

n ≥ 2 : l ⊆ Pn
K é uma reta ⇐⇒ l = Z(L1, . . . , Ln−1), {Li}n−1

i=1 ⊆ [x0, . . . , xn] LI.

n ≥ 3 : π ⊆ Pn
K é um plano ⇐⇒ π = Z(L1, . . . , Ln−2), {Li}n−2

i=1 ⊆ [x0, . . . , xn] LI.
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Exemplos A.0.2. Com as notações acima

• Considere S = C[x0, x1, x2], S1 = [x0, x1, x2] e l ⊆ P2. Então

l é uma reta ⇐⇒ l é uma variedade linear de dimensão 1

⇐⇒ l = P(W ) para algum W ∈ G2(C3)

⇐⇒ l = Z(L), sendo L ̸= 0 em S1

• Considere R = C[x0, x1, x2, x3], R1 = [x0, x1, x2, x3] e Y ⊆ P3. Então

Y é uma reta ⇐⇒ Y é uma variedade linear de dimensão 1

⇐⇒ Y = P(U) para algum U ∈ G2(C4)

⇐⇒ Y = Z(L1, L2)e {L1, L2} ⊆ R1 LI

Y é um plano ⇐⇒ Y é uma variedade linear de dimensão 2

⇐⇒ Y = P(W ) para algum W ∈ G3(C4)

⇐⇒ Y = Z(L), sendo L ̸= 0 em R1

Proposição A.0.7. Duas retas em P2 sempre se intersectam.

Demonstração. Considere l1 = P(W1), l2 = P(W2) com Wi ∈ G2(C3) retas em P2.
Assuma que l1 ̸= l2. Vamos mostrar que, l1 ∩ l2 = P(W1) ∩ P(W2) = P(W1 ∩W2) ̸= ∅.
Lembre que,

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2) (A.2)

Se dim(W1 +W2) = 2 então W1 = W2 (absurdo). Logo, dim(W1 +W2) > 2 de onde
concluímos que dim(W1 +W2) = 3. De (A.2), segue que a dim(W1 ∩W2) = 1. Assim,
P(W1 ∩W2) define um ponto em P2.

Mudança de coordenadas projetivas (MCP )

Considere Aut(Kn+1) = {T : Kn+1 −→ Kn+1 | T é um isomorfismo K-linear}.

Observação A.0.9. Para todo W ∈ Gd(Kn+1) verifica-se que T (W ) ∈ Gd(Kn+1) para
todo T ∈ Aut(Kn+1).

Definição A.0.3. Uma função φ : Pn
K −→ Pn

K é chamada de mudança de coordenadas
projetivas (MCP ) em Pn

K se existe T ∈ Aut(Kn+1) tal que φ([v]) = [T (v)], ∀ [v] ∈ Pn
K.

Notação A.0.2. Aut(Pn
K) := {φ : Pn

K −→ Pn
K | φ é uma MCP}.
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Exemplo A.0.9. Se p = [1 : 2 : 3] ∈ P2, então vamos determinar φ : P2 −→ P2 MCP

tal que φ(p) = [1 : 0 : 0].

Note que, existe um único isomorfismo C-linear T : C3 −→ C3 tal que4

T (1, 2, 3) = (1, 0, 0), T (0, 1, 0) = (0, 1, 0) e T (0, 0, 1) = (0, 0, 1).

Visto que T (x, y, z) = (x, y − 2x, z − 3x), então φ : P2 −→ P2 definida por

[x : y : z] 7−→ [x : y − 2x : z − 3x]

é uma MCP tal que φ([1 : 0 : 0]) = [1 : 2 : 3].

Exemplo A.0.10. Se l ⊆ P2 é uma reta, então existe φ : P2 −→ P2 MCP tal que
φ(l) = Z(x0).

Note que,

Z(x0) = {[a : b : c] ∈ P2 | a = 0} = {[0 : b : c] ∈ P2} = P(U) sendo U = [e2, e3].

Assuma que l = P(W ) sendo W = [w1, w2] e escolha w3 ∈ C3 tal que {w1, w2, w3}
seja uma base para C3. Como existe um único T ∈ Aut(C3) tal que T (w1) = e2,
T (w2) = e3 e T (w3) = e1. Podemos considerar, φ : P2 −→ P2 MCP dada por
φ([v]) = [T (v)]. Note que, T (W ) = U . Logo, φ(l) = Z(x0).5

Exemplo A.0.11. Considere {L1, L2} LI em [x0, x1, x3] ⊆ C[x0, x1, x2]. Então, existe
φ : P2 −→ P2 MCP tal que φ(Z(L1 · L2)) = Z(x0) ∪ Z(x1).

A seguir, colocamos uma representação do queremos mostrar
Assim, considere o isomorfismo C-linear T : C3 −→ C3 determinado por T (w) = e3,

T (w1) = e2 e T (w2) = e1.6

4De fato, basta determinar a, b, c ∈ C tais que (x, y, z) = a(1, 2, 3) + b(0, 1, 0) + c(0, 0, 1). Equiva-
lentemente, 

x = a

y = a+ 2b =⇒
z = 3a+ c


a = x

b = y − 2x

c = z − 3x

Donde concluímos que T (x, y, z) = (x, y − 2x, z − 3x).
5De fato,

φ(l) = φ(P(W )) = {φ([w]) | w ̸= 0, w ∈W} = {[T (w)] | w ̸= 0, w ∈W} = P(U) = Z(x0).

Pois, w ∈W =⇒ w = a · w1 + b · w2 =⇒ T (w) = a · e2 + b · e3 =⇒ T (w) ∈ [e2, e3] = U.
6De fato,

φ(Z(L1)) = φ(P(W1)) = P([e2, e3]) = Z(x0);

φ(Z(L2)) = φ(P(W2)) = P([e1, e3]) = Z(x1);

φ(Z(L1 · L2)) = φ(Z(L1) ∪ Z(L2)) = φ(Z(L1)) ∪ φ(Z(L2)) = Z(x0) ∪ Z(x1) = Z(x0x1).
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Figura A.1

Z(L2) = P(W2) = P([w,w2])

Z(L1) = P(W1) = P([w,w1])

[w] [0 : 0 : 1]]

Z(x0) = P([e2, e3])

Z(x1) = P([e1, e3])

A ação do grupo Aut(Kn+1) no anel K[x0, . . . , xn]

Considere A = K[x0, . . . , xn] e defina

• : Aut(Kn+1)× A −→ A

(T, F ) 7−→ T•F

sendo T•F (x0, . . . , xn) = F (T−1(x0, . . . , xn)).
7

Exemplo A.0.12. Se T ∈ Aut(C3) é tal que T−1(x, y, z) = (x − y, y, x − z) e
F = 1 + x0 − x1x2 ∈ C[x0, x1, x2]. Então,

T•F = F (T−1(x0, x1, x2)) = F (x0 − x1, x1, x0 − x2) = 1 + x0 − x1 − x1(x0 − x2).

Proposição A.0.8. Com as notações acima. Considere T,R ∈ Aut(Kn+1). Então,

1. T• : A −→ A dado por F 7−→ T•F é um isomorfismo K-linear.

2. (T ◦R)• = T• ◦R• e (T−1)• = (T•)
−1.

3. T•(F ·G) = (T•F ) · (T•G) ∀ F,G ∈ A.

4. se F ∈ Ad então T•F ∈ Ad. Além disso, T• : Ad −→ Ad é um isomorfismo
K-linear.

Demonstração. Veja a Proposição 1.34 (p. 127 em [17]).

Proposição A.0.9. Seja {L0, . . . , Ln} uma base de [x0, . . . , xn] ⊆ K[x0, . . . , xn]. Então,
existe T ∈ Aut(Kn+1) tal que T•Li = xi ∀ i ∈ {0, . . . , n}.

7Observe que "•"define uma ação pela esquerda do grupo Aut(Kn+1) em A.
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Demonstração. Observe que

T•Lj = xj ⇐⇒ Lj = (T•)
−1xj = (T−1)•xj =

n∑
i=0

ajixi se
[
T
]
=
[
aij

]
for a matriz associada a T na base canônica. Visto que,

T−1
• F (x0, . . . , xn) = F (T (x0, . . . , xn)) = F

( n∑
i=0

a0ixi, . . . ,

n∑
i=0

anixi

)
∀ F ∈ A.

Assim, as linhas da matriz
[
T
]

são determinadas pelas coeficientes de Li na base
{xi}ni=0.

Exemplo A.0.13. Sejam L0 = x0 + x1 + 2x2, L1 = x1 − 4x2 e L2 = x0 − 5x2. Daí,
para determinar T ∈ Aut(Kn+1) tal que T•Li = xi basta considerar,

[
T
]
=


1 1 2

0 1 −4

1 0 −5

 na base canônica de C3.

Corolário A.0.3. Sejam {Li}ni=0 e {Mi}ni=0 bases de [x0, . . . , xn]. Então, existe T ∈
Aut(K)n+1 tal que T•Li =Mi ∀ i ∈ {0, . . . , n}.

Demonstração. Pela Proposição A.0.9 existem T1, T2 ∈ Aut(Kn+1) tais que T1•Li = xi e
T2•Mi = xi para todo i ∈ {0, . . . , n}. Segue que, Mi = T−1

2 •xi para todo i ∈ {1, . . . , n}.
Logo, considere T := T−1

2 ◦ T1 ∈ Aut(Kn+1) tal que

T•Li = (T−1
2 ◦ T1)•(Li) = T−1

2 •(T1•Li) = T−1
2 •xi =Mi

para todo i ∈ {0, . . . , n}.

Lema A.0.2. Seja A = C[x0, . . . , xn]. Considere L1, L2 ∈ A1 = [x0, . . . , xn] não nulos.
Verifica-se que:

1. Se {L1, L2} é LD, então existe T ∈ Aut(Cn+1) tal que T•(L1 · L2) = x20;

2. Se {L1, L2} é LI, então existe T ∈ Aut(Cn+1) tal que T•(L1 · L2) = x20 + x21.

Demonstração. 1. Sendo {L1, L2} LD então L1 = λL2 para algum λ ∈ C. Assim,

L1 · L2 = λL2
2 = α2L2

2 = (αL2)
2 com α ∈ C tal que α2 = λ.
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Daí, completando {αL2} para a base {αL2,M1, . . . ,Mn} de A1, então a Proposição
A.0.9 garante que existe T ∈ Aut(Cn+1) tal que

T•(αL2) = x0 e T•Mi = xi ∀ i ∈ {1, . . . , n}.

Logo, T•(L1 · L2) = T•(αL2)
2 = (T•(αL2))

2 = x20.
2. Sendo {L1, L2} LI, podemos completar à base {L1, L2,M2, . . . ,Mn} de A1. Agora
sendo {x0 + ix1, x0 − ix1, x2, . . . , xn} uma outra base de A1, então a Proposição A.0.3
garante novamente que existe T ∈ Aut(C)n+1 tal que T•L1 = x0+ ix1, T•L2 = x0− ix1

e T•Mi = xi, ∀ i ∈ {2, . . . , n}. Logo,

T•(L1 · L2) = T•(L1) · T•(L1) = (x0 + ix1) · (x0 − ix1) = x20 + x21.

Exemplo A.0.14. Classificação das quádricas em P1 :

Considere F ∈ A = C[x0, x1] homogêneo de grau 2 não nulo. Segue do Lema
A.0.1 que F = L1L2. Portanto, segue do Lema A.0.2 que existe T ∈ Aut(C2) tal que
T•F = x20 ou T•F = x20 + x21.

Exemplo A.0.15. Classificação das cônicas em P2 :

Considere F ∈ A = C[x0, x1, x2] homogêneo de grau 2 não nulo. Temos duas
possibilidades: F é redutível ou irredutível.

1. F é redutível: temos que F = L1 · L2 com L1, L2 ∈ A1. Pelo Lema A.0.2 existe
T ∈ Aut(C3) tal que T•(L1 · L2) = x20 ou T•(L1 · L2) = x20 + x21.

8

2. F é irredutível: Assim, F = a0x
2
0 + a1x0x1 + a2x0x2 + a3x

2
1 + a4x1x2 + a5x

2
2

(a) Suponha primeiro que a0 ̸= 0. Logo,

F = a0
(
x0 +

a1
2a0

x1
)2 − a21x

2
1

4a20
+ a2x0x2 + a3x

2
1 + a4x1x2 + a5x

2
2

= a0
(
x0 +

a1
2a0

x1
)2

+
(
a3 −

a1
4a20

)
x21 + x2(a2x0 + a4x1 + a5x2)

considere: L0 = x0 +
a1
2a0

x1; α = a3 −
a1
4a20

e M = a2x0 + a4x1 + a5x2

F = (b0L0)
2 + αx21 +Mx2 com b0 ∈ C tal que b20 = a0.

8Note que Z(x20) = x0. Entretanto, [x20] ∈ P(A2) é chamada de reta dupla e Z(x20 + x21) =
Z(x0 + ix1) ∪ Z(x0 − ix1) é um par de retas distintas.
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A. Noções de Geometria Algébrica

Daí, considere {b0L0, x1, x2} base de A1 então existe R ∈ Aut(C3) tal que
R•(b0L0) = x0 e R•xi = xi para i = 1, 2. Note que, se β =

a1
2a0

então

b0L0 = b0x0 + b0βx1
R•=⇒ x0 = b0R•x0 + b0βx1 =⇒ R•x0 =

x0
b0

− βx1.

Como M = a2x0 + a4x1 + a5x2 então R•M = a2(
x0
b0

− βx1) + a4x1 + a5x2.

Assim
G = R•F = x20 + αx21 + x2(c0x0 + c1x1 + c2x2)

com c0 =
a2
b0
, c1 = a4 −

a2β

b0
e c2 = a5. Daí, tem-se que α = 0 ou α ̸= 0.

Se α = 0 então

G = x20 + x2(c0x0 + c1x1 + c2x2)

= (x0 +
c0
2
x2)

2 − c20
4
x22 + c1x1x2 + c2x

2
2

= (x0 +
c0
2
x2)

2 + (c2 +
c20
4
)x22 + c1x1x2.

Daí, considere {x0+
c0
2
x2, x1, x2} uma base de A1. Logo, existeR1 ∈ Aut(C3)

tal que (R1)•(x0 +
c0
2
x2) = x0 e (R2)•xi = xi para i = 1, 2. Com efeito,

G1 = (R1)•G = x20 + γx22 + c1x1x2 com γ = c2 −
c20
4

= x20 + x2(γx2 + c1x1).

• Se c1 = 0, então, G2 = x20 + γx22 é redutível (pois todo polinômio de
duas variáveis de grau 2 é redutível), o que é um absurdo já que F é
irredutível.

• Se c1 ̸= 0, então considere {c1x1 + γx2, x0, x2} base de C3. Assim,
existe R2 ∈ Aut(C3) tal que (R2)•(c1x1 + γx2) = x1 e (R2)•xi = xi

para i = 0, 2. Logo, G2 = (R2)•G1 = x20 + x2x1. Por fim, sendo
{x0, x1 + ix2, x1 − ix2} uma base de C3, segue da Proposição A.0.3 que
existe R3 ∈ Aut(C3) tal que (R3)•x0 = x0, (R3)•(x1 + ix2) = x1 e
(R3)•(x1 − ix2) = x2. Assim, G3 = (R3)•G2 = x20 + x21 + x22.

Se α ̸= 0 então

G = R•F = x20 + αx21 +M1x2 com M1 = c0x0 + c1x1 + c2x2.

Considere α1 ∈ C tal que α2
1 = α. Logo, G = R•F = x20 + (α1x1)

2 +M1x2.
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Considere {x0, α1x1, x2} uma base para A1. Daí, existe T ∈ Aut(C3) tal que
T•(α1x1) = x1 e T•xi = xi, para i = 0, 2. Assim,

G1 = T•G = x20 + x21 + x2M2 com M2 = d0x0 + d1x1 + d2x
2.

= (x0 +
d0
2
x2)

2 + (x1 +
d0
2
x2)

2 + (d0 −
d20
4

− d21
4
)x22

= (x0 +
d0
2
x2)

2 + (x1 +
d0
2
x2)

2 + (λ1x2)
2 com λ21 = d0 −

d20
4

− d21
4
.

Por fim, seja {x0+
d0
2
x2, x1+

d0
2
x2, λ1x2} uma base para A1, e assim, existe

T1 ∈ Aut(C3) tal que (T1)•(x0 +
d0
2
x2) = x0, (T1)•(x1 +

d0
2
x2) = x0 e

(T1)•(λ1x2) = x2. Portanto, G2 = (T1)•G1 = x20 + x21 + x22.

Em resumo, se o coeficiente de x20 é não nulo, podemos obter por MCP que
F = x20 + x21 + x22. Sendo assim, considere agora o seguinte caso

(b) Suponha que a0 = 0. Daí, F = a1x0x1+a2x0x2+a3x
2
1+a4x1x2+a5x

2
2. Note

que se a3 ou a5 são não nulos, basta considerar uma MCP tal que apareça o
termo em x20 e assim proceder como no caso 1. Por exemplo, se a3 ̸= 0 basta
considerar a T ∈ Aut(C3) tal que T•x1 = x0, T•x0 = x2 e T•x2 = x1. Daí,
perceba que T•F = a1x0x2 + a2x1x2 + a3x

2
0 + a4x0x1 + a5x

2
1, sendo a3 ̸= 0 o

resultado segue do caso 1.

Por outro lado, se a3 e a5 são nulos, então F = a1x0x1 + a2x0x2 + a4x1x2,
considerando a1 ̸= 0 temos que existe T ∈ Aut(C3) tal que T•x0 = x0,
T•x1 = x0 + x1 e T•x2 = x2. Logo, T•F = a1x

2
0 + a1x0x1 + (a2 + a4)x0x2 +

a4x1x2. Novamente, o resultado segue do caso 1. Portanto, a menos de uma
MCP F = x20 + x21 + x22.

Classificação das cúbicas em P2 :

De acordo com [9] podemos classificar as cúbicas em P2 em nove classes distintas
representadas na tabela a seguir:
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Tabela A.1: Classificação das cúbicas em P2.

Tipo Descrição Representação geométrica

Não-singular e irredutível Geral

Singular e irredutível Nodal

Singular e irredutível Cuspidal

Singular e redutível Cônica não singular e
uma reta secante

Singular e redutível Cônica não singular e
uma reta tangente

Singular e redutível Três retas distintas
não colineares

Singular e redutível Três retas distintas e
colineares

Singular e redutível Uma reta dupla e uma
reta secante

Singular e redutível Reta tripla
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Apêndice B

Ação de grupos e resultados de MCP

Considere (G, ∗) um grupo e X um conjunto não vazio. A função

• : G×X −→ X

(g, x) 7−→ g • x

define uma ação pela esquerda de G em X se as seguintes condições forem satisfeitas
para todos g, h ∈ G e x ∈ X:

(i) e • x = x para todo x ∈ X;

(ii) (g ∗ h) • x = g • (h • x).

Note que, a ação • induz a seguinte relação de equivalência em X

x1 ∼ x2 ⇐⇒ ∃ g ∈ G tal que g • x1 = x2.

Seja Ox = {g • x ∈ X | g ∈ G} a órbita de x em X e Gx = {g ∈ G | g • x = x}
o estabilizador de x em G. Em geral, tem-se que X =

⋃̇
x∈X

Ox. De fato, as órbitas

determinam uma partição no conjunto X.

Exemplo B.0.1. Considere G = Aut(C3) e X = P(S2) sendo S = C[x0, x1, x2].
Observe que, • : Aut(C3) × P(S2) −→ P(S2) dada por (T, [F ]) 7−→ T • [F ] = [T•F ] é
uma ação pela esquerda de Aut(C3) em P(S2). Sejam

O0 = O[F0], O1 = O[F1] e O2 = O[F2]

sendo F0 = x20, F1 = x20 + x21 e F2 = x20 + x21 + x22.

Afirmação: P(S2) = O0 ∪̇O1 ∪̇O2.
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Por definição tem-se que O0 ∪̇O1 ∪̇O2 ⊆ P(S2). Para mostrarmos a outra inclusão,
considere [F ] ∈ P(S2). Vamos começar dando uma descrição explícita das órbitas O0,
O1 e O2 relacionada com a classificação das cônicas em P2 (cf. Exemplo A.0.15).
Para O0 : Note que O0 = {T • [x20] | T ∈ Aut(C3)} = {([T•x0])2 | T ∈ Aut(C3)}.

A seguir mostraremos que O0 = {[L2] | [L] ∈ P(S1)}. De fato,

[F ] ∈ O0 ⇐⇒ [F ] = [(T•x0)
2] para algum T ∈ Aut(C3)

⇐⇒ F = λ(T•x0)
2 para algum λ ∈ C não nulo

⇐⇒ F = (λ1T•x0)
2 com λ1 ∈ C tal que λ21 = λ

⇐⇒ F = L2 com L = λ1T•x0 ∈ S1.

Para concluir, basta observar que para quaisquer L, λ1x0 ∈ S1 existe T ∈ Aut(C3) tal
que L = T•(λ1x0).
Para O1 : Tem-se que O1 = {[T•(x20 + x21)] | T ∈ Aut(C3)} = {[L1 · L2] | {L1, L2} ⊆
S1 LI}. De fato,

[F ] ∈ O0 ⇐⇒ [F ] = [T•(x
2
0 + x21)] para algum T ∈ Aut(C3)

⇐⇒ F = λ · T•(x20 + x21) para algum λ ∈ C

⇐⇒ F = λ · T•((x0 + ix1) · (x0 − ix1))

⇐⇒ F = λ · (T•(x0 + ix1) · T•(x0 − ix1))

⇐⇒ F = L1 · L2

com L1 =
√
λ · T•(x0 + ix1) e L2 =

√
λ · T•(x0 − ix1). Para concluir, é suficiente notar

que se {L1, L2} ⊆ S1 é LI, existe T ∈ Aut(C3) tal que L1 = T•(α1(x0 + ix1)) e
L2 = T•(α2(x0 − ix1)) para quaisquer escolha de α1, α2 ∈ C− {0}.
Para O2 : Seguindo de forma semelhante, temos que O2 = {[F ] | F é irredutível}.

Portanto, segue que
P(S2) = O0 ∪̇O1 ∪̇O2.

Proposição B.0.1. Sejam Z(F ) ⊆ Pn
K com F homogêneo de grau d em K[x0, . . . , xn]

e φ ∈ Aut(Pn
K) definida por T ∈ Aut(Kn+1). Então, φ(Z(F )) = Z(T•F ).

Demonstração. Seja φ : Pn
K −→ Pn

K uma MCP determinada por T ∈ Aut(Kn+1).
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Considere p ∈ Pn
K e note que

p ∈ φ(Z(F )) ⇐⇒ p = φ(q) para algum q ∈ Z(F )

⇐⇒ p = φ([u]) para algum q = [u] ∈ Z(F )( i,é. F (u) = 0)

⇐⇒ p = [v] com [v] ∈ Pn
K tal que F (T−1(v)) = 0

⇐⇒ p = [v] e T•F (v) = 0

⇐⇒ p ∈ Z(T•F ).

Corolário B.0.1. Toda MCP preserva conjuntos algébricos em Pn
K.

Demonstração. Seja X ⊆ Pn
K um conjunto algébrico. Assim, existem F1, . . . , Fk homo-

gêneos em K[x0, . . . , xn] tais que X =
k⋂

i=1

Z(Fi).

Considere φ ∈ Aut(Pn
K) definida por T ∈ Aut(Kn+1). Note que,

φ(X) = φ(
k⋂

i=1

Z(Fi)) =
k⋂

i=1

φ(Z(Fi)).

Segue da Proposição B.0.1 que φ(Z(Fi)) = Z(T•Fi). Logo,

φ(X) =
k⋂

i=1

Z(T•Fi)).

Proposição B.0.2. Toda MCP preserva conjuntos irredutíveis em Pn
K.

Demonstração. Seja X ⊆ Pn
K um conjunto irredutível e φ ∈ Aut(Pn

K). Queremos mos-
trar que φ(X) é irredutível. De fato, considere Y1, Y2 ⊆ φ(X) fechados tais que
Y1 ∪ Y2 = φ(X). Logo, X = φ−1(Y1) ∪ φ−1(Y2). Temos que cada Yi = φ(X) ∩
Zi, Zi fechado em Pn

K. Logo, φ−1(Yi) = X ∩ φ−1(Zi) e segue do Corolário B.0.1 que
φ−1(Zi) é fechado em Pn

K (lembre que, fechado é sinônimo de conjunto algébrico). Por-
tanto, cada φ−1(Yi) é fechado em Pn

K. Como X é irredutível, segue que X = φ−1(Y1)

ou X = φ−1(Y2), aplicando φ tem-se que φ(X) = Y1 ou φ(X) = Y2, ou seja, φ(X) é
irredutível em Pn

K.

Pontos singulares de hipersuperfícies em Pn
K.

Considere X = [F ] ∈ P(Ad) uma hipersuperfície de grau d ≥ 1 em Pn
K sendo

A = K[x0, . . . , xn]. O ponto p ∈ Pn
K é dito ponto singular de X se, e somente se,

∂F

∂xi
(p) = 0 ∀ i ∈ {0, . . . , n}.
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Notação B.0.1. Iremos denotar por

Sing(F ) = {p ∈ Pn
K | p é ponto singular de X = [F ]}.

Afirmação: Sing(F ) ⊆ Z(F ) ⊆ Pn
K.

Se p = [a0 : . . . : an] ∈ Sing(F ) então
∂F

∂xi
(p) = 0 ∀ i. Logo, pela relação de Euler1,

segue que
n∑

i=0

∂F

∂xi
(p) · ai = d · F (p) =⇒ F (p) = 0 =⇒ p ∈ Z(F ).

Exemplo B.0.2. Considere F ∈ C[x0, x1, x2] homogêneo de grau 2 não nulo. Sabemos
que existe T ∈ Aut(C3) tal que

T•F =


x20,

x20 + x21,

x20 + x21 + x22.

No que segue usaremos a notação ∂iF =
∂F

∂xi
e ∇F = (∂0F, ∂1F, ∂2F ).

• Se F0 = x20 então Sing(F0) = Z(x0). De fato, ∇F = (2x0, 0, 0). Assim,
∇F = (0, 0, 0) se, e somente se, x0 = 0. Logo, Sing(F0) = {[0 : x1 : x2] | [x1 :

x2] ∈ P1} = Z(x0).

• Se F1 = x20 + x21 então Sing(F1) = {[0 : 0 : 1]}. De fato, ∇F = (2x0, 2x1, 0).
Assim, ∇F = (0, 0, 0) se, e somente se, x0 = x1 = 0. Logo, [a0 : a1 : a2] ∈
Sing(F1) se, e somente se a0 = a1 = 0 e a2 ̸= 0.

• Se F2 = x20+x
2
1+x

2
2 então Sing(F2) = ∅. De fato, ∇F = (2x0, 2x1, 2x2) = (0, 0, 0)

se, e somente se x0 = x1 = x2 = 0.

Definição B.0.1. Dizemos que [F ] ∈ P(Ad) é não singular se Sing(F ) = ∅.

Com isso, de acordo com o Exemplo A.0.15 temos a seguinte identificação para as
cônicas em P2

1A relação de Euler é dada por:

∂F

∂x0
· x0 + . . .+

∂F

∂xn
· xn = d · F.
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Tabela B.1: Classificação das cônicas em P2.

Tipo Descrição Representação geométrica

Irredutível Cônica não singular

Redutível Par de retas distintas
Redutível Reta dupla

Definição B.0.2. Sejam S = [F ] ∈ P(Ad) sendo A = K[x0, . . . , xn] e p ∈ Z(F ) não
singular. Então, definimos o hiperplano tangente a S no ponto p, por:

TpS = Z(Lp) com Lp =
∂F

∂x0
(p) · x0 +

∂F

∂x1
(p) · x1 + . . .+

∂F

∂xn
(p) · xn.

Exemplo B.0.3. Seja C = Z(F ) ⊆ P2 com F = x22 − x0x1. Considere p = [1 : 0 : 0] e
q = [0 : 1 : 0] em C. Note que ∇F = (−x1,−x0, 2x2). Assim,

∇F (p) = (0,−1, 0) =⇒ TpC = Z(x1),

∇F (q) = (−1, 0, 0) =⇒ TqC = Z(x0).

Definição B.0.3. (Pontos em posição geral) Considere p1, . . . , pk ∈ Pn
K tais que pi =

[vi] com vi ∈ Kn+1 −{0} i ∈ {1, . . . , k}. Dizemos que p1, . . . , pk estão em posição geral
se para todo C ⊆ {v1, . . . , vk} tal que 1 ≤ #C ≤ n+ 1 verifica-se que C é LI.

Proposição B.0.3. Sejam [F ] ∈ P(Ad) uma hipersuperfície de grau d sendo
A = K[x0, . . . , xn] e φ ∈ Aut(Pn

K) determinada por T ∈ Aut(Kn+1). Verifica-se que

p ∈ Sing(F ) ⇐⇒ φ(p) ∈ Sing(T•F ).

Demonstração. Veja a Proposição 1.36 (p. 129 em [17]).

Proposição B.0.4. Sejam φ, φ1 ∈ Aut(Pn
K) definidas por T, S ∈ Aut(Kn+1), respecti-

vamente, então:

1. φ = φ1 ⇐⇒ T = λS para algum λ ̸= 0 ∈ C.

2. Se {pi}n+2
i=1 são pontos em Pn

K em posição geral e {qi}n+2
i=1 também são pontos em

Pn
K em posição geral. Então, existe um único φ ∈ Aut(Pn

K) tal que φ(pi) = qi ∀ i ∈
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{1, . . . , n+ 2}.

3. Aut(Pn
K) com a composição de funções é um grupo.

Demonstração. 1. (=⇒) Seja α = {v1, . . . , vn+1} base de Cn+1.

φ = φ1 =⇒ φ([vi]) = φ1([vi]) ∀ i

=⇒ [T (vi)] = [S(vi)] ∀ i

=⇒ T (vi) = λiS(vi) para algum λi ̸= 0 ∈ C.

Agora considere v = v1 + v2 + · · · + vn+1. Logo, φ([v]) = φ1([v]) o que implica em
T (v) = λS(v) para algum λ ̸= 0 ∈ C. Assim,

=⇒ T (v1) + T (v2) + · · ·+ T (vn+1) = λS(v1) + λS(v2) + · · ·+ λS(vn+1)

=⇒ λ1S(v1) + λ2S(v2) + · · ·+ λn+1S(vn+1) = λS(v1) + λS(v2) + · · ·+ λS(vn+1)

=⇒ λi = λ∀ i

=⇒ T = λS.

(⇐=) Segue da definição de MCP .
2. Veja o Teorema 1.4 (p. 7 em [10]).
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Apêndice C

Interseções e multiplicidades de curvas

planas

Neste apêndice são apresentados alguns resultados relacionados com interseções de
curvas planas projetivas e multiplicidades (cf. [20], [8] e [9]).

Definição C.0.1. Seja A um anel comutativo com unidade e F,G ∈ A[x] com

F = a0 + a1x+ . . .+ anx
n (n ≥ 1),

G = b0 + b1x+ . . .+ bmx
m (m ≥ 1).

Definimos a resultante de F e G como o determinante da matriz (n +m) × (n +m),
com m linhas de a’s e n linhas de b’s (preenchendo com zeros nos espaços livres), a
seguir

R(F,G) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an−1 . . . a0

an . . . a1 a0

. . . . . . . . . . . .

an . . . . . . a0

bm bm−1 . . . b0

. . . . . . . . . . . . . . .

bm . . . . . . b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Exemplo C.0.1. Considere F = x0x1 e G = x22 polinômios em C[x0, x1, x2]. Considere
A = C[x0, x1] e F,G ∈ A[x2]. Note que

graux2
(x0x1) = 0 e graux2

(x22) = 2.

Assim, iremos repetir zero linhas para os coeficientes de G e duas vezes as linhas dos
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coeficientes de F em A[x2]. Logo,

R(F,G) =

∣∣∣∣∣x0x1 0

0 x0x1

∣∣∣∣∣ = (x0x1)
2.

Exemplo C.0.2. Sejam F = x20 + 2x1x2 e G = x21 + x0x2 polinômios em C[x0, x1, x2].
Neste caso, escolhendo x1 como variável, isto é, A = C[x0, x2], temos que graux1

(x20 +

2x1x2) = 1 e graux1
(x21 + x0x2) = 2. Logo,

R(F,G) =

∣∣∣∣∣∣∣∣
2x2 x20 0

0 2x2 x20

1 0 x0x2

∣∣∣∣∣∣∣∣ = 4x0x
3
2 + x40.

Lema C.0.1. O polinômio R(F,G) acima definido é homogêneo de grau n ·m, se não
for identicamente nulo.

Demonstração. Veja o Lema 18 (p. 28 em [20]).

Da teoria geral, sabe-se que duas curvas projetivas planas quaisquer sempre se
intersectam, o próximo resultado nos garante uma relação para a finitude da intercessão.

Lema C.0.2. Sejam F,G curvas planas projetivas. Então F ∩G é finita se, e somente
se, F e G não admitem componentes em comum.

Demonstração. Veja o Lema 8 (p. 61 em [20])

De posse desse resultado, é interessante obtermos uma estimativa para tal cardi-
nalidade, mas para isso precisamos de mais algumas definições.

Definição C.0.2. Sejam Pi = [xi : yi : zi], i = 1, . . . , r os distintos pontos de F ∩ G.
Diremos que F,G estão em boa posição se P0 = [0 : 1 : 0] /∈ F ∩G. Diremos que F,G
estão muito bem posicionados se P0 /∈ F ∩G e se, para cada par Pi, Pj ∈ F ∩G, temos
P0, Pi, Pj não colineares.

Suponha de agora em diante que F,G ∈ C[x0, x1, x2] são homogêneos de grau d e
e, respectivamente, e não têm componentes em comum. Escrevendo

F = a0x
d
1 + a1x

d−1
1 + . . .+ ad,

G = b0x
e
1 + b1x

e−1
1 + . . .+ be,

em que ai, bj ∈ C[x0, x2] são homogêneos de graus i, j. Note que, o ponto [0 : 1 : 0] ∈ F

se, e somente se, a0 = 0. Logo, estando F,G bem posicionados, temos que a0 e b0 são
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não nulos. Sendo a resultante R = R(x0, x2) de F e G com respeito a x1 homogênea
de grau d · e. Por outro lado, considerando a0 e b0 não nulos, para cada [x : z] ∈ P1

temos R(x, z) = 0 se, e somente se, [x : y : z] ∈ F ∩ G. Ao supor que F,G estão bem
posicionados, concluímos que R rescreve-se na forma:

R(x0, x2) = c ·
r∏

i=1

(zix0 − xix2)
mi

na qual

• c é uma constante não nula;

• Pi = [xi : yi : zi], i = 1, . . . , r são os pontos distintos de F ∩G;

• os expoentes mi são inteiros maiores ou iguais a 1 e
r∑

i=1

mi = d · e.

Definição C.0.3. A multiplicidade ou índice de interseção de F e G no ponto P é
dada por

IP (F,G) =

0 se P /∈ F ∩G

mi se P = Pi nas condições acima.

Teorema C.0.1. (Bézout) Sejam C e C1 são duas curvas planas projetivas de grau
d e d1, respectivamente, sem componentes em comum. Então, C e C1 se interceptam
em d · d1 pontos, contando com as multiplicidades, ou seja,

∑
P∈C∩C1

IP (C,C1) = d · d1.

Demonstração. Veja o Teorema 14.7 (p. 182 em [9]).

Exemplo C.0.3. Sejam C1 = Z(F1) e C2 = Z(F2) com Fi ∈ S2 sendo S = C[x0, x1, x2]
não singulares para todo i ∈ {1, 2}. Logo, o teorema de Bézout nos garante que essas
curvas tem as seguintes possibilidades de interseção, representadas graficamente abaixo:

1

1

1

1

(i)

2

1

1

(ii)

2 2

(iii)

4

(iv)
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Apêndice D

Software MAXIMA

Este Apêndice apresenta alguns dos algoritmos ultilizados no trabalho, com o ob-
jetivo de auxiliar o leitor, na utilização dos comandos do software MAXIMA, para
verificar as afirmações feitas ao longo do texto.

Observe que as afirmações que constam na Tabela 2.2 foram bastante utilizadas no
Capítulo 3 do trabalho. O que nos motiva a dar um roteiro dos comandos utilizados
para obtê-la, a partir do software MAXIMA.

Conforme a Seção 2.1, lembre-se que π = [F1, F2] ∈ G2(S2) determina a reta Lπ ⊂
C = P(S2), dada por Lπ = {[a ·F1+b ·F2] ∈ C | [a : b] ∈ P1}. De fato, (cf. o Lema 1.4.1)
[F ] ∈ Lπ∩H se, e somente se, F = a ·F +b ·F2 para algum [a : b] ∈ P1 e detMF = 0,

sendo

MF =

∣∣∣∣∣∣∣∣∣∣∣∣

a0
1

2
a1

1

2
a2

1

2
a1 a3

1

2
a4

1

2
a2

1

2
a4 a5

∣∣∣∣∣∣∣∣∣∣∣∣
.

Primeiro usamos a seguinte mudança no código: x = x0, y = x1 e z = x2. Seguindo,
temos

F1:digite o primeiro gerador$ F2:digite o segundo gerador$ F:a*(F1)+b*(F2);

y0:factor(diff(F,x,2)/2);

y1:factor(diff(diff(F,x),y));

y2:factor(diff(diff(F,x),z));

y3:factor(diff(F,y,2)/2);

y4:factor(diff(diff(F,y),z));

y5:factor(diff(F,z,2)/2);

l1:[y0,y1/2,y2/2]$

124



D. Software MAXIMA

l2:[y1/2,y3,y4/2]$

l3:[y2/2,y4/2,y5]$

h:matrix(l1,l2,l3);

dh:determinant(h);

f: factor(dh);

Com isso, obtemos as informações para a construção da Tabela 2.2.
O software MAXIMA foi também de grande ajuda, uma vez que possibilitou reduzir

algumas contas nos vastos casos que foram abordados nas proposições do Capítulo 3.
De fato, se W ∈ G3(S2) nós utilizamos o software MAXIMA para determinar que
tipo de cúbica era obtida pela interseção de πW ∩ HP5 e compará-la com a cúbica em
questão. Segue o código que utilizamos nessa análise:

F1:primeiro gerador$ F2:segundo gerador$ F3:terceiro gerador$

F:a*(F1)+b*(F2)+c*(F3)$

y0:factor(diff(F,x,2)/2);

y1:factor(diff(diff(F,x),y));

y2:factor(diff(diff(F,x),z));

y3:factor(diff(F,y,2)/2);

y4:factor(diff(diff(F,y),z));

y5:factor(diff(F,z,2)/2);

l1:[y0,y1/2,y2/2]$

l2:[y1/2,y3,y4/2]$

l3:[y2/2,y4/2,y5]$

h:matrix(l1,l2,l3);

dh:determinant(h);

f: factor(dh);

Gh:factor([diff(f,a),diff(f,b),diff(f,c)]);
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