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Resumo

Fundamentando-se no artigo Nets of conics and associated Artinian algebras
of length 7 ([1]), de Abdallah, Emsalem e Iarrobino, este trabalho classifica as 6rbitas
sob a ac¢do do grupo de automorfismos do plano projetivo complexo, Aut(P?), sobre as
Grassmannianas G3(5;) e G3(52), onde Sy denota o espago dos polindmios homogéneos
de grau 2 em trés variaveis com coeficientes complexos. Inicialmente, apresentam-se no-
¢oes preliminares sobre agoes de grupos em espacos projetivos e Grassmannianas. Em
seguida, desenvolve-se a classificagdo completa das oérbitas em G3(S3), determinando
suas dimensoes e relagoes de especializagdo. A analise estende-se para G3(Ss) (cujos
elementos sdo denominados de redes de conicas), com destaque para a identificagao
geométrica de planos associados as redes de conicas e suas interse¢coes com a hipersu-
perficie H das conicas singulares. Finalmente, discutem-se aplicagoes (da classifica¢do
obtida em G3(S3)) na classificagdo dos morfismos no plano projetivo de grau 4 e na

classificagao de algebras artinianas graduadas locais com funcao de Hilbert (1,3, 3,0).

Palavras-chave: Grassmanniana, conicas e ctibicas projetivas, grupo de automorfis-

mos, acao de grupo, algebras artinianas.



Abstract

According to the article Nets of conics and associated Artinian algebras of length
7 ([]) by Abdallah, Emsalem, and Iarrobino, this work classifies the orbits under
the action of the automorphism group of the complex projective plane, Aut(P?), on
the Grassmannians G5(S;) and G3(S2), where Sy denotes the space of homogeneous
polynomials of degree 2 in three variables with complex coefficients. First, we present
preliminary notions on group actions in projective spaces and Grassmannians. Next,
we develop the complete classification of orbits in G5(Ss), determining their dimensions
and specialization relations. The analysis extends to G3(S2) (whose elements are called
nets of conics), highlighting the geometric identification of planes associated with conic
nets and their intersections with the hypersurface H of singular conics. Finally, we
discuss applications (of the classification obtained for G3(95)) to classifying degree-4
morphisms in the projective plane and classifying local graded Artinian algebras with
Hilbert function (1,3,3,0).

Keywords: Grassmannian, Projective conics and cubics, Automorphism group, Group

action, Artinian algebras.
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Notacoes

A seguir, listamos algumas notagoes utilizadas neste trabalho.

e P" - denota o n-espaco projetivo complexo.
o Aut(P") = {¢: P" — P" | ¢ ¢ uma mudanca de coordenadas projetivas (MCP)}.

o G4(V) = {W | Wé um subespago de V' de dimensao d} - A d—Grassmaniana asso-

ciada a V.

o C :=IP(S;) - 0 espaco das conicas em P?.
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Introducao

A teoria das agoes de grupos em variedades algébricas tem desempenhado um
papel fundamental no desenvolvimento da geometria algébrica e suas aplicagoes (cf.
[15]). Por exemplo, se S = C[zg, x1, x3] € Sq é 0 subespago dos polindmios homogéneos
de grau d, entdo o grupo das mudancas de coordenadas projetivas (MCP) em P?
Aut(P?), nos permite classificar as conicas C = P(S;) (cf. Exemplo [A.0.15)), ctibicas
(cf. [9]) e assim por diante. Esta dissertagao, baseada no artigo Nets of conics and
associated Artinian algebras of length 7 de Nancy Abdallah, Jacques Emsalem e
Anthony Iarrobino ([1]), tem como objetivo investigar a classificagdo das orbitas sob
a acao do grupo Aut(P?) nas Grassmannianas G5(S;) e G3(S3), bem como apresentar
algumas aplicagoes associadas no caso de G3(952).

Historicamente a classificagao das orbitas em Go(Ry) sendo R = Clzo, ..., z,] sob
a acgao do grupo Aut(P") é frequentemente atribuida ao matemaético italiano Corrado
Segre (1863-1924). Entretanto, ha registros de resultados anteriores dessa classificagao,
conforme citado por Igor Dolgachev [5]; Karl Weierstrass fornecera uma classificagao
em seu artigo de 1868 (|22]).

Sobre a classificagao das orbitas em G3(Ss) (cujos elementos sdo denominados de
redes de conicas), um dos seus precursores foi o matemaético francés Camille Jordan
(1838-1922). Em 1906 ele apresentou uma tabela com 13 classes de representantes na
qual constam omissoes (cf. [13]). Trabalhos posteriores, como os de Albert Wilson
(1914, |23]) e Alan Campbell (1928, [4]) exploraram casos modulares e corpos finitos,
os quais foram revistos e corrigidos por Corrado Zanella (2012, [24]).

A classificagao completa de redes de conicas sobre C e R foi estabelecida em 1977
por Charles Wall |21, mediante técnicas de germes de aplicages e abordagens algébri-
cas. Posteriormente, Naoto Onda (2021, [16]) estendeu essa classificacdo de redes de
conicas planares para corpos de caracteristica arbitraria (exceto 2 e 3), relacionando-as
com algebras artinianas. No entanto, o trablaho de Onda revela uma equivaléncia nao
notada pelo autor entre classificacao de redes de conicas e algebras artinianas graduadas
locais com funcao de Hilbert (1,3,3,0).

Este trabalho esta organizado em quatro capitulos e quatro apéndices.



Introducao

No Capitulo 1, introduzem-se nogoes preliminares, incluindo: a identificacao entre
os grupos Aut(P") e PGL,(C), a agao do grupo Aut(P") sobre espagos de polindémios
homogéneos e Grassmannianas associadas ao espaco das conicas projetivas. Destaca-
se também a acdo de Aut(P?) no espaco das conicas C, que é identificado com P°) e
a caracterizacao da hipersuperficie H que parametriza as conicas singulares, a qual
desempenhara um papel fundamental para o desenvolvimento deste trabalho.

No Capitulo 2, classificam-se as 6rbitas em G5(Ss) sob a acdo de Aut(P?). Utili-
zando ferramentas geométricas e algébricas (incluindo o teorema de Bézout e a analise
de intersegoes entre duas conicas), determinam-se todas as orbitas, suas dimensoes e
relagoes de especializagao. Além disso, estudam-se as intersecoes das retas associa-
das a essas oOrbitas com a hipersuperficie H, obtendo-se informagoes cruciais para o
desenvolvimento do capitulo subsequente.

No Capitulo 3, estende-se a classificagao as érbitas em G5(Ss). A cada ponto W em
G3(93) associa-se um plano my C P°, e Ty := myNHps. Ty pode ser uma curva ctbica
ou o proprio plano my (se contido em Hps). Quando 'y, é€ uma cubica, sua geometria
(particularmente as singularidades e componentes irredutiveis) permite distinguir 6r-
bitas distintas. Vale salientar que o software de computagao algébrica MAXIMA [[14]]
foi reiteradamente ultilizado neste capitulo, principalmente para determinar a equacao
das cibicas I'y e realizar célculos complementares a classificagao em questao.

Ja no Capitulo 4, aplica-se a classificacao (estabelecida no Capitulo 3) para clas-
sificar os morfismos de P* em P? de grau 4. Adicionalmente, discute-se sucintamente
sua relacao com a classificacao de algebras artinianas graduadas locais com funcao de
Hilbert (1,3, 3,0).

Por fim, incluem-se quatro apéndices para tornar o texto autossuficiente facilitando
0 acesso aos leitores menos familiarizados com os conceitos abordados. No Apéndice A
constam nocoes basicas de Geometria Algébrica, dentre as quais destacam-se a apresen-
tacdo algébrica e geométrica das conicas e ctibicas em P? (baseando-se nas referéncias
[17], [8], [11] e [20]). No Apéndice B, apresentam-se resultados sobre agao de grupos e
mudanca de coordenadas projetivas. No Apéndice C, aborda-se conceitos relacionados
a teoria de intersecdo de curvas em P?, tais como o teorema de Bézout. Por ultimo,
no Apéndice D apresentam-se alguns comandos do software MAXIMA que facilitam
os calculos em diversos casos, principalmente no Capitulo 3.

Este trabalho oferece uma abordagem sistematica para o estudo de ac¢oes de gru-
pos em Grassmannianas, motivando e abrindo caminho para investigacoes futuras em

contextos mais amplos.



Capitulo 1

Nocoes Preliminares

Neste trabalho, nosso corpo base é C, o conjunto dos nimeros complexos. Para este
capitulo, introduzimos alguns conceitos e ferramentas mateméticas basicas que serao
utilizadas em um desenvolvimento futuro. Comegamos com um breve resumo sobre as

quadricas em P".

1.1 Quadricas em P"

Definicao 1.1.1. Uma hipersuperficie quadrica em P" é definida por uma forma qua-

dratica nao nula, ou seja, um polinémio homogéneo de grau dois,

n
Q = Z CLZ‘]‘ZL‘Z‘I']‘

1,j=0

O proximo resultado garante uma classificagdo para as quadricas em P" (sobre

certas condigoes) usando mudangas de coordenadas projetivas (M CP).

Teorema (Forma Normal das Quéadricas) 1.1.1. Seja K um corpo de caracteristica
diferente de 2. Se f = Z a;;viv; € Kz, ..., x,] um polinémio homogéneo nao nulo

i,§=0
de grau 2 entao Z(f) € projetivamente equivalente a uma quddrica definida por uma

equagao da sequinte forma

box(2)+---+bnxi:0;
em que by, ...,b, € K, nao todos nulos.
Demonstragao. Confira o Teorema 1.2 (p. 4 em [7] ) O

De acordo com a forma normal dada no Teorema acima, alguns dos coeficientes b;

podem ser nulos. Logo, por uma MCP , podemos assumir que b; #0se 0 <i < m e

3



1. Nocoes Preliminares

b; = 0 para i > m. Assim, uma quadrica é projetivamente equivalente a uma quadrica

dada pela equagao representada como

n
onde X; = Z c;jx; para todo i, de forma que f vista nas novas variéveis tenha a forma
5=0
boXg +---+ b, X2 =0.

Definicao 1.1.2. Seja V' C P" uma hipersuperficie quadrica.

1. Se V & definida por uma equagao como em ([1.1)), diremos que V' tem posto m+1;

2. De forma geral, se V' é uma quadrica qualquer, diremos que V' tem posto m + 1
se V' é projetivamente equivalente a uma quadrica definida por uma equagao com
em (|1.1)).

n
Observacao 1.1.1. Dado f = Z a;jT;T;, podemos sempre supor que a;; = aj;.

1,5=0
n

De fato, basta considerar d;; = (a;; + a;;)/2, dai reescrevemos f = Z dijx;x; com
i,j=0
d;j = d;;. Além disso, podemos representar f através de multiplicacao de matrizes, pois

os coeficientes de f formam uma matriz (n+1) x (n+1), A = (a;5), da qual podemos

supor que é simétrica. Seja X o vetor coluna com entradas zy, ..., x,. Teremos
F(X) = X'AX,

onde X' é a transposta do vetor X.

Proposigao 1.1.1. Seja f = X'AX, em que A é uma matriz simétrica (n+1) x (n+1).

Entao, o posto da superficie qudadrica Z(f) € igual o posto da matriz A.
Demonstracao. Veja a Proposi¢ao 1.2 ( p. 6 item (i) em [7]) O

Dessa forma, quando K é um corpo algebricamente fechado, o Teorema ea
Proposigao classifica as quadricas de acordo co seu posto mediante o seguinte

resultado.

Proposicao 1.1.2. Se K € um corpo algebricamente fechado, entao uma hipersuperficie

quddrica de posto m + 1 € projetivamente equivalente a quddrica definida pela equagao

Demonstragao. Veja a Proposi¢ao 1.4 (p. 7 em [7]) ]

4



1. Nocoes Preliminares

1.2 A superficies de Veronese

Considere A = K|z, ..., z,| um espago vetorial sobre K. Para cada d > 0 inteiro,

seja Ag o subespago vetorial N—dimensional de A gerado por monémio de grau d onde

J ) Dessa forma, podemos definir

PNt = P(Ay).

Considere agora S = C|xg, 71, 23]. Com isso, particularmente temos P? = P(S)) e
P° = P(S,).

Dessa forma, dado um ponto [ag : a; : as] € P* podemos interpretar tal ponto com
uma reta

l:agro+ a1y + asxy = 0,

além disso, para um ponto [ag : ao1 : Qo : @11 : A1 : Az € P° podemos identifica-lo

Z aiixf -+ Z 2(lijflfi$j =0.

1<j

como uma codnica

Ainda mais, dado F = E ayxs + E 2a,;mm; = 0 € P°, podemos representa-lo
i<j
através de uma matriz simétrica associada a F' como
Qoo Ap1 Qo2
Qo1 Al Q12 (1-2)

Qo2 A12 (22

a menos de um multiplo escalar, é claro.
Agora, lembrando que a acao de Aut(PP?) em P° = P(S;) determina trés orbitas, que
se relaciona com o posto da matriz. Dessa forma, essas 6rbitas podem ser representadas

respectivamente pelos conjuntos de pontos em P°

A = {F|F = [? para alguma reta [} (1.3)
H = {F|F ¢singular} (1.4)
P°—H = {F|F énao singular} (1.5)

onde H é a hipersuperficie ctubica definida pela equacao
2 2 2
detMF = QgpA11G22 + 2(101@02&12 — QpoQ11 — Aol — Ap1A22 = 0. (16)

Ainda mais, A = Z(det(a;;)) onde (a,;) sao os menores 2 x 2 da matriz (|1.2)).



1. Nocoes Preliminares

Agora, seja a aplicacao

v:P? — P° (1.7)
[ — [P (1.8)

da qual temos em coordenadas [ag : a; : as] € P? a seguinte interpretacao
C 2. ) D2 .2
[ag : ay @ as] — [ag : apay = apag @ aj : ajas : a;).

Note que, v estd bem definida e é injetiva. Com isso, definimos a superficie de
Veronese como sendo a imagem da aplicacao v. Dessa forma, por definicao obtemos
que A = y(P?). Além disso, podemos obter pela matriz jacobiana de H que A =
Sing(H).

Agora, apresentamos os seguintes resultados relacionados a agao de grupos, vale
ressaltar que em muitos dos artigos que utilizamos para desenvolver este trabalho
(principalmente [1]) é utilizado o grupo projetivo geral linear PGLy(C) em lugar de

Aut(P?), o que nos motiva mostrar em seguida que PGL,,(C) = Aut(P").

1.3 Acao do Grupo Aut(P")

Seja M,,11(C) o conjunto das matrizes quadradas de orden n + 1 com entradas
complexas. Considere o grupo GL,1(C) = {A € M, 11(C) | A ¢ invertivel} com o
produto usual de matrizes. Seja D = {A € GL,+1(C) | A # 0, A € C} sendo I a
matriz identidade de ordem n + 1. Sendo D um subgrupo normal de GL,,1(C), vamos

considerar o grupo quociente:

_ GLn+1 (C>

PGL,(C) : )

Observe que, se A, B € PGL,(C), entdo
A=B<= A -B'eD«= A-B "=\ paraalgum A\ € C <= A = \B.

Lembremos que ¢ : P — P" é uma mudanga de coordenadas projetivas (MCP)
se existe T € Aut(C") .= {T : C"*' — C"*' | T' é um isomorfismo C-linear } tal
que ¢([v]) = [T'(v)] para qualauer [v] € P". O conjunto constituido pelas MCP em P",
que denotaremos por Aut(P"), é um grupo com a operacao de composi¢ao de fungoes.
O leitor encontrara no Apéndice A os principais resultados que utilizaremos no texto

que dizem respeito ao grupo Aut(P") e topicos afins.
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Notagao 1.3.1. Para cada A € GL,1(C), defina T4 € Aut(C""') por v — A - v.
Vamos denotar por 4 € Aut(P") o automorfismo definido por TAD

Proposigao 1.3.1. Com as notagoes acima. Verifica-se que,

¥: PGL,(C) —» Aut(P")

A — 04

estd bem definida e € um isomorfismo de grupos.
Demonstragio. Sejam A, B € PGL,(C).

1 estd bem definida e é injetiva. Observe que:

A=B <<= A=ABparaalgum A # 0 em C <= Ty = \Tp <= 4 = ©5.

1 é sobrejetora. Dada ¢ € Aut(P"), existe T' € Aut(C"™) tal que ¢([v]) = [T'(v)] para

todo [v] € P". Considere o = {ey, ..., e,.1} a base canonica de C" e A = [T]2 = (a;;)

a matriz associada a T' da base « na base a. Assim,

n+1

T(e;) = aje; para j=1,...,n+1.
=1

De fato, verifica-se que ¢ = @4 uma vez que T'(v) = A - v para todoﬂ v em C".

1 é um homomorfismo.

Note que, A-B=ABe que pap é o automorfismo correspondente a A- E, isto é,
wap([v]) = [(AB) - v]. Assim, ¥ (AB)([v]) = ¢as([v]) = [(AB) - v]. Entretanto,

[(AB) - v] = [A(B - v)] = ¥ (A)([B - v]) = ¢(A)(¢p([v])) = (¥(A) 0 (B))([v])

[]

Portanto, de posse dessa identificagdo entre os grupos Aut(P") e PGL,(C), pode-
mos utilizar qualquer um deles no que segue do texto. Vale salientar que no artigo que
utilizamos como base deste trabalho os autores utilizam o grupo PGL,(C) (cf. [1]).

Entretanto, optamos por trabalhar com o grupo Aut(P").

'Observe que se T € Aut(C"™') e A = [T]% é a matriz associada a T da base a na base a, sendo

(03
« a base candnica de C"*1. Entdo, T = Tjy.
n+1 n+1n+1

2Visto que, se v = (v1,...,Vp41) € C", entdo T(v) = Z v;T(ej) = Z Z vjagie; = A-v.
j=1

j=1i=1
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Acao de Aut(P") em P"

Nesta subsegdo, considere S = Clxy,...,2,| com a graduacao usual. A seguir

vamos considerar a agao pela esquerda e : Aut(P") x P* — P" dada por ¢ e [v] :=

([v])-
Proposicao 1.3.2. A acdo e ¢ trasitiva, ou seja, Op,) =P" sendo e; = (1,0,...,0).

Demonstrag¢ao. A seguir, mostraremos que para quaisquer p € P", existe ¢ € Aut(P")
tal que o([e1]) = p, ou seja, p € O,).

Sabemos que o ideal Z({p}) = (L1,...,L,) com {Ly,...,L,} < S; LI. Com-
pletando {L;}, a uma base « = {Lo, L1,...,L,} de S1 = [zo,...,2,]. Logo, a
Proposicao nos garante que existe um tnico 7" € Aut(C"™!) tal que 7, 'z; = L;
para i =0,...,n. Seja ¢ € Aut(P") determinada por 7. Por fim observe que

o({[el]}) = p(Z(x1,...,2,)) = Z(T 2y, ..., T, ) = Z(La, ..., L) = {p}.

Acgao de Aut(P") em P(S;) sendo d > 1

Observe que o : Aut(P") x P(S;) — P(S;) dada por
(0, [F]) — [ToF,

se ¢ € Aut(P") for determinada por 7' € Aut(C™™'), define uma acdo pela esquerda
do grupo Aut(PP") no espago P(S,).

Exemplo 1.3.1. A acdo de Aut(P") em P(S)) é transitiva.

Se [L] € P(S)), entdo podemos completar {L} a uma base {L,M,..., M,} de
S1 = [xo, 1, ..., x,]. Novamente, segue da Proposigao que existe T' € Aut(C"*)
tal que T,xo = L. Logo, [L] € O, 0 que implica em que O, = P(S).

A acao de Aut(P") em P(S;) ndo ¢é transitiva.

De fato, sejam [Fi], [F3] € P(S2) tal que [F}y] é singular e [F3] é ndo singular. Dai,
como MCP preserva singularidades (pela Proposic¢ao , segue que para qualquer
¢ € Aut(P?) determinada por 7' € Aut(C?) temos que [T,F}] é singular. Sendo assim,
nao existe ¢ € Aut(C) tal que [T, Fy] = [Fy].

Na proxima secdo, vamos focar na acio de Aut(PP?) no espaco das conicas em P?,

uma vez que este espacgo e suas Orbitas tém um papel preponderante neste texto.
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1.4 A acao de Aut(P?) no espaco das conicas em P?

Lembremos que uma conica em P? ¢ um elemento de C := P(S,) sendo S, a com-
ponente homogénea de grau dois em S = Clzg, x1, x2]. De acordo com as notagoes da

secao 1.2, temos

Proposicao 1.4.1. Considere as orbitas Oy = O[a:g]; 0, = O[xgﬂﬂ e Oy = O%H%Hg]

sob a agio de Aut(P?) em C. Entdo verifica-se que
1. C - OO U Ol U 02
QH:OQU(Dl e A:OO

Demonstracao. Para a demonstracao do item 1., confira o Exemplo no Apéndice
B.

Para A = Oy, basta seguir a construgao na demonstracgao do item 1. do Exemplo
[B.0.1] Por outro lado, sendo C = Oy UO; UO, com O, correspondendo as conicas
nao singulares, entao H C OyU O;. Analogamente, se [F] € C é singular, segue que

[F] € Og ou [F] € Oy, ou seja, H =0y UO; . O

A seguir vamos identificar o espaco das conicas C com o espaco projetivo P°. Para

isso, vamos utilizar o mapa  : P° — C dado por:
e 2 2 2
[ao s ay :as:ag:aq:as) — [agry + a1xox1 + aaToxe + a3y + a4x1x9 + aszxs). (1.9)
Mostraremos a seguir que ) nos permitira identificar H com uma hipersuperficie

singular de grau 3 de P°. Para isso, observe que a todo F € S, podemos associar uma

matriz simétrica, conforme indicamos na préoxima definigao.

Definicao 1.4.1. Se F' = aox?) + a1x9r1 + AoxoTo + agx% + asx1x9 + a5x§ € Sy, entao

vamos associar F' & matriz simétrica

1 1
Qo 2@1 a9
1 1
Mp=|Z -
F 2CL1 as 2&4
1 1
=a = a
1272 27t TP

De fato, verifica-se que X' - Mp-X = F se X' = [ZL‘O 1 [L‘2i| .
Lema 1.4.1. Considere F' € Sy nao nulo. F € singular se, e somente se, det(Mp) = 0.

Demonstracao. Seja F = @0333 + a120T1 + aoxToT2 + agzv% + aqr1T9 + ag,xg € 9.
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OF
Sep=lpo:p1:ps] €P? e OF = I entdo tem-se Cm

p € Sing(F) <=

(0, F
o F
O I

Qo

1
—a
542

< detMr =0

Considere f € Clyo, y1, Y2, Y3, Ya, ys] dado por

1 2
f = Yoysys + —Y1Yoys — TV2Ys —

(p) = 2aopo + arp1 + azps = 0
(p) = a1po + 2aspy + asp; =0
(p) = aspo + aspa + 2asps = 0
1 1]
—Qa —Q
27 27 po 0
1
as 5@4 pi| = |0
1 D2 0
5(14 as |
]
1 1 1
Zyoyi - Z?J%%- (1.10)

Para uma construcao futura, usaremos os seguintes resultados com as identificacoes

tanto em P° quanto em C.

Corolario 1.4.1. Sejam Hps := Q' (H) e f definido em (1.10)), entdo verifica-se que

Hps = Z(f) C P°.

Demonstragio. Considere P = [ag : a; : as : a3 : a4 : as] € P°. Logo, Q(P)

[F]eC

sendo F' = aoxg + a1xox1 + asxoro + CLgZE% + aqx119 + a5m%. Agora, observe que

detMp =

Qo

1

1
—a
52

1

2
a3
1

2

1
—a
52

5@4 - f(a'07a17a27a37a4aa5)'

Qs

Entretanto, o Lema [1.4.1| nos garante que F' é singular se, e somente se, det Mp = 0.

Portanto, P € Hps se, e somente se, f(P) = 0.

]

Lema 1.4.2. Seja Aps := Q '(A). Verifica-se que Sing(Hps) = Aps.

3Lembre que, p € Sing(F) se, e somente se

F
o (p) = 0 para todo i € {0,1,2}.

10
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Demonstrac¢ao. Vamos comegar mostrando que
Aps = {[bg  2boby : 2boby 1 02 2byby < b2] € PO | [by : by : bo) € IPQ}.

De fato, segue da Proposicao [L4.1] que A = {[L?] | L € S néo nulo}. Logo, basta

observar que se L = byxg + bz + boxs € S; é nao nulo, entao

L2 = bgl’g + 2b0b1$0$1 + 2b0b2£L‘0[E2 + b%x% + 2b1b2[[‘11’2 + bgl‘g

J parat = 0,...,5 sendo f definido como

Por simplicidade, considere g = 4f e 0,9 = 5
Yi

na Equacao ((1.10)). Logo,
p € Sing(Hps) < 0;g9(p) =0,V i€ {0,1,2,3,4,5}.

Para p = [b2 : 2boby @ 2bgby : b3 @ 2b1by : b3] verifica-se que d;9(p) = 0 para todo i.
Assim, Aps C Sing(Hps).

Por outro lado, temos que

dog = 4ysys — v (1.11)
g = Yaya — 251Ys (1.12)
Org = hYs— 22y (1.13)
Ozg = 4yoys — v (1.14)
019 = y1y2 — 2Yoya (1.15)
dsg = 4yoys — i (1.16)

Assim, se p = [ag : ... : a5] € Sing(Hps), entdo temos dois casos a analisar:

ap # 0. Podemos supor que ag = 1. Logo, segue de (]1.14[), d1.15l) e (]1.16[)

que as = ia%, ay = %alag eag = }laf. Dessa forma,

p=1[l:a;:as: ia% ; %alag : iag] = [4:4a; : 4ay : a2 : 2aya ¢ a3).

Logo, p € Aps.

ap = 0. Segue das Equacoes e que a; = az = 0 e da Equagao

(1.11)) que a3 = 4asas. Observe que, podemos parametrizar os pontos do suporte da
conica [daszas — aj] € C por [bF : 2b1by : b5]. Logo, p = [0:0:0: b2 : 2byby : b3] €
Aps. m

Na préxima secdo, vamos apresentar a acdo Aut(P?) na Grassmanniana G;(Sy)

sendo nosso foco o caso em que [ € {2,3}.

11
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1.5 Acao pela esquerda de Aut(P?) em Gy(Sy)

Considere a acdo de Aut(P?) em Gy(Sy)

o Aut(IP’Z) X Gl(Sd) — Gl(Sd)
(0, W) — oW :={T,FeS;|FeW}

sendo ¢ determinada por T' € Aut(C?).

Observagao 1.5.1. Considere as notacoes acima. A funcao "e" estd bem definida e

define uma acio pela esquerda do grupo Aut(P?) em Gy(Sy).

De fato, se {Fi,...,F;} ¢ uma base de W € G(Sy), entao {T.Fy,..., T F} ¢é
um conjunto de elementos linearmente independente (LI) [e [T.F | F € W] =
[T FY, ... ,T.Fl]ﬂ 0 que nos permite concluir que ¢ @ W = [T,Fy,..., T,F] e conse-
quentemente p ¢ W € G,(Sy).

Exemplo 1.5.1. Se W; = [z3 — t23, 23] € G5(S;) com t € C nao-nulo, entdo existe
¢ € Aut(P?) tal que p @ W, = [zox1, 23]

De fato, considere s € C tal que t = s* e observe que x2—tx? = (zg—s11)-(2o+571).
Visto que {xg — sx1, ¢+ sx1, 22} € uma base de S = [zg, x1, 22]. Entdo, a Proposigao
nos garante que existe T' € Aut(C?) tal que T, (2o — s1) = 7o, To(To + 571) = 71
e Tywy = x5. Assim, basta considerar ¢ € Aut(P?) determinada por tal T', uma vez

que

peW, = [T.(xg — txf), T.x%] = [To(xo — sx1) - To(x0 + s27), (T,x2)2] = [xox1, xg]

Porém, para t = 0 tem-se Wy = [z5, 23] e ndo existe ¢ € Aut(P?) que atenda

ao resultado. Pelo absurdo suponha que existe tal MC' P, geometricamente deveria

acontecer a situacao descrita na Figura (1.1

“De fato, visto que T, é um isomorfismo linear, segue que

1 l l
S alF =0— T.(ZaiFi) —0=> aF=0=a,=0 Vi,
i=1 i=1 i=1
®De fato, usando novamente a linearidade de Ty, segue que
l l

FeW=F=Y aF;=T.JF =Y oT.F;=T.F € [I.Fy,..., T.F].

i=1 i=1

12
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Figura 1.1

o que é um absurdo pois uma MCP preserva a cardinalidade do conjunto intersecao

de duas curvas no plano projetivo e as multiplicidades dos respectivos pontos.

13



Capitulo 2

Orbitas sob a acdo de Aut(P?) em
G(52)

O foco deste capitulo é determinar as orbitas sob a agao pela esquerda do grupo
Aut(P?) na Grassmanniana de planos em Sy sendo S = Clzg, 71, 72]. Uma vez que
essas Orbitas estejam determinadas iremos calcular sua dimensao e especializagoes.

Vale salientar, que cada um dos pontos em G5(S;) determina uma reta no P° 22 C
das conicas, e que a determinacao dos pontos de intersecao dos representantes das
orbitas listadas no Teorema com a hipersuperficie ctibica H (que parametriza as
conicas singulares) irdo ter um rol importante na classificagao das oérbitas em G3(Ss)
sob a acdo de Aut(IP?), que desenvolveremos no Capitulo 3.

A seguir, vamos introduzir algumas notagoes e observacoes importantes para o

desenvolvimento deste capitulo.
2.1 Preliminares

Observacgoes 2.1.1. Considere W € G2(53) e a« = {F, G} base de W.

(a) Se B8 = {Fi,G,} for uma outra base de W, entao

(b) Se mde(F,G) = 1, entao Z(F) N Z(G) é nado vazio e consiste de no méaximo de 4
pontos distintos. Entretanto, o teorema de Bézout nos garante que Z(F)N Z(G)

consiste de 4 = 2 - 2 pontos, se os pontos forem contados com multiplicidade.ﬂ

'Se p € Z(F)N 2(G), entdo denotaremos por I,(F,G) a multiplicidade de intersecio de F e G em

p (confira Definigao [C.0.3)

14



2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

A seguir, considere X = Z(F) N Z(G). Temos as seguintes possibilidades:

Tabela 2.1: Possibilidades para intersecoes de conicas em P2

#(X) L,(F,G) Interpretagao Geométrica
Ambas 1ao Singular e nao Ambas singulares
singulares
singular
1
1 1
[ ] [ ]
1
1
I : ;
2
1 1
1 1
[ ] [ ]
3 3
><2:i
2 2
[ ] [ ]
ou
o |4 3
4
S
1| e

15



2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

(¢) Semde(F,G) # 1, entao F=L-M eG=L-N com L, M,N € S;. Tem-se que:

Condigao Interpretagao geométrica de Z(F) N Z(G)

-
N
9
2N

{L,M,N} LL
{L,M,N} LD.

A proposicao a seguir serd muito utilizada na determinacao das 6rbitas de um

ponto [F,G] € Go(S3) tal que F' ou G sdo nao singulares.

Proposigao 2.1.1. Considere [F| € C néo singular e C = Z (x5 — mox1). Entdo,
1. Existe T € Aut(C?) tal T,F = x5 — wo11;
2. A fungio f: P* — C dada por [a : b] — [a® : b* : ab] € uma bijedo;

3. Eaiste ¢ € Aut(P?) tal que (C) = C, o(p) =[1:0:0] e p(q) =[0:1:0], para
quaisquer p # q em C.

Demonstragio. 1. Segue do Exemplo [A.0.15] que existe R € Aut(C?) tal que
R,F = z3+x7+25. Entretanto, 25 +23 + 23 = 25+ (1wo+ix1)- (zo—iz;). Assim, a Propo-
si¢ao nos garante que existe um tnico Ry € Aut(C?) tal que: (Ry)s(o+iz1) = w0,
(R1)e(w0 —iz1) = 71 € (Ry)e(x2) = 75. Logo, temos que (R))e(ReF) = 73 — 7071.

2. Note que f estd bem definida. Assim, a seguir iremos mostrar que f é uma bijecao.

e f & injetora: Considere [a : b],[c : d] € P' tais que [a® : b* : ab] = [¢* : d° : cd).

Assim, existe um A # 0 em C tal que

a? =\, b* = \d®> e ab= \cd. (2.1)

Temos duas possibilidades: (i) a =0 ou (ii) a # 0.

(i) Se a = 0 entao segue de (2.1) que ¢ = 0. O que implica em b-d # 0. Dali,
concluimos que [0: 0] =[0: 1] =1[0: d].
&)

(ii) Se a # 0 entdo [a : b] = [a* : ab] = [\ : Acd] = [c : d].

e f ¢ sobrejetora: Considere p = [ag : a; : as] € C. Logo, a3 = apa;. A seguir
vamos analisar as possibilidades: (i) ap = 0 ou (ii) ag # 0.
(i) Se ap =0, entdao ap =0ep=[0:1:0] = f([0: 1]).

(ii) Se ag # 0, entdo p = [a3 : apay : agas] = [ag : a3 : apas] = f([ao : as)).
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2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

3. Queremos determinar p € Aut(PP?) tal que tal que p(C) = C, ¢(p) =[1:0:0] e
©(q) = [0 : 1: 0] para quaisquer p # ¢ em C. A ideia que vamos utilizar é a seguinte:
Considere a reta tangenteﬂ a C em p, T,(C) = Z(L,), a reta tangente a C' em g,

T,(C) = Z(L,) e a reta secante a C por p e ¢, {,, = Z(L,,), conforme ilustrado a

seguir
Figura 2.1 Retas tangentes a C' em p e q.

L

p.q

T,C

T,C

Sabemos que existe um tnico R € Aut(C?) tal que R.L, = zy, ReL, = 71 €
R,L,, = x2. Entao vamos levar a configuracao da Figura na configuragao da

Figura [2.2

Figura 2.2 Configuracao apds aplicar ¢.

QTQZO

.CC():O

fﬂl:O

Na Figura temos p = [a® : ¢* 1 acl e ¢ = [b* : d* : bd] em C. Note que, se

G = x5 — 2971 entdo VG = (1, z9, —275). Assim,

Lp:a2+cz—2ac e Lq:b2+d2—2bd.

?Se [F] € P?(S,) for ndo singular em p € Z(F), define-se a reta tangente a Z(F) em p, T),(C) :=
Z(Ly), sendo L, = 0o F(p)xo + 01F (p)x1 + 02F (p)x2 sendo 0, F :=

B, para i =0,1,2.
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2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

A equagao da reta L, , é determinada por:

Lo T1 L2
a2 & ac| = (be — ad)(cdzy + abxy — (ad + be)zy) = 0.
v d* bd

Note que se bc = ad entdo p = ¢q (absurdo). Logo, bec — ad # 0. Assim,
L,, = cdzy+ abxy — (ad + be)z,.

Agora, considere ¢ € Aut(P?) determinada por R € Aut(C?) tal que a matriz associada

a R na base canonica é dada por:

a’> A —2ac

v d? —2bd
ab cd —(ad+ be)

Observe que, R(1,0,0) = (a?,b%, ab) e R(0,1,0) = (c*, d* cd). Assim, ¢([1:0:0]) =p

e([0:1:0])=q.
Afirmagao: ¢(C) = C.

? 1 y? : wy] € O entdo,

U(r) = [R(z?: y? : xy)] = [(cy — ax)? : (dy — bx)* : (cy — ax) - (dy — bx)] € C.

De fato, seja r = [z

Assim, temos ¢(C') C C.
Note que, (C) e C sdo subvariedades fechadas com dim(C') = dim(¢(C)) = 1.
Logo, pelo Teorema 1.19 (p. 68 em [12]) segue que C' = ¢(C).

Portanto, basta considerar ¢ = 1)~! e o resultado segue. O]

O proximo lema nos daré suporte para descrever as orbitas dos pontos [F, G| €

G2(S2) tal que F' e G sao ambas singulares.

Lema 2.1.1. Seja [F,G] € G3(S,) tal que F' e G sao singulares e mde(F,G) = 1.
Entao, temos as sequintes possibilidades para a cardinalidade de Z(F) N Z(G).

1. Se F,G € A entao, #Z(F)NZ(G) = 1.
2. Se F,G € H\ A entiao, #Z(F)N Z(G) € {1,3,4}.

3. Se FEH\ A e G e N entio, #2(F) N 2(G) € {1,2} ]

3 A menos de uma reordenacio no conjunto {F, G}.
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2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

Demonstracao. Usaremos como base o apelo geométrico e a condicao de que duas
curvas sempre se intersectam no plano projetivo.

1. Sendo F,G € A segue que F = L? e G = M? com {L, M} LI, isto é, duas retas
duplas da qual temos uma tnica possibilidade. Portanto, #Z(F) N Z(G) = 1.

Figura 2.3

M?

2. Agora temos que F,G € H \ A, ou seja, ambas sdo um par de retas distintas.
Considere F' = Ll'Lg com {Ll, Lg} L[, G = Ml'MQ com {Ml, Mg} L[, Z(Ll, Lg) = {p}
e Z(My, My) = {q}. Sendo assim, temos trés possibilidades:

Primeiramente, se p = q entao
Figura 2.4

L,

-,
/"\ Ll
M,

donde temos #Z(F)N Z(G) = 1.
Proseguindo, note que podemos ter o caso em queﬁ p € My ep ¢ M,y. Assim, segue

que M, deve intersectar L; e L, em pontos distintos, isto é,

Figura 2.5

logo, #Z(F)N Z(G) = 3.
Por fim, temos a possibilidade de p ¢ M; Vi e q ¢ L; V1, logo

Figura 2.6

Ly

4Um raciocinio analogo se aplica trocando p por g e L; por M.
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2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

Assim, #Z(F)N Z(G) = 4.

Portanto, temos que #Z(F) N Z(G) = {1, 3,4}.
3. Neste caso, considere F' = Ly - Ly com {L1, Lo} Ll e G = M? assim, existe ape-
nas duas possibilidades para M? intersectar F, ou seja, M? passa por Z(Li, Ly) ou

intersecta em pontos distintos. Geometricamente temos:

Figura 2.7

ou
Ly L,
M? M?

Sendo assim, temos que #Z(F) N Z(G) = {1,2}.

Portanto, segue o resultado. O]

2.2 Classificagao das 6rbitas de G5(S5)

O proximo lema da inicio a determinacdo das orbitas em G5(S2) sob a acao do

grupo Aut(P?), para [F, G| € G5(S,) tal que #Z(F) N Z(G) = 4.

Lema 2.2.1. Sejam W = [F,G] € G2(S2) e Ow a drbita associada a W pela a
acio de Aut(P?) em Go(Sy). Se #Z(F) N Z(G) = 4, entio Oy = Oy sendo

V = [oy — x5, 25 — 7).

Demonstra¢ao. Assuma que Z(F) N Z(G) = {p1,p2,ps,ps}. Neste caso, necessaria-
mente temos que os quatros pontos estao em posicao geral. Entao, pela Proposicao
existe p € Aut(P?) tal que ¢(p;) = ¢s sendo ¢ = [1:1:1], g = [1:1: 1],
g3=1[1:—1:1]eqy=[-1:1:1] (uma vez que os pontos qi,q1, s € g4 também estao
em posicao geral).

A seguir, vamos determinar uma base para o subespaco V de S5 constituido pelas
cOnicas que passam pelos pontos q1, q1, q3 € 4. Com esse objetivo em mente, considere

f= aoxg + a120T1 + a2 +a3x% + ayr179 + a5x§ € S5 e note que f € V se, e somente

se,
flq)) =0<=ao+a+ay+az+ays+as=0,
flge) =0<=ag+a; —as+az—as+as =0, (2.2)
flgzs) =0<= a9 —a; +as+ a3 —as+as =0,
fl@)=0<=ap—a; —as +az+ay+as =0.
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2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

Sendo o sistema (2.2)) equivalente a ay = ay = a; =0 e a9 = —az — as. Logo,
f = (—a3—as)zo + azxs + aszy = az(r] — 3) + as(x; — x5).
Assim, {27 — 25,25 — 27} é uma base de V. Entretanto, T e W = [T,F,T,G] C V.
Portanto, T'e W = V e consequentemente Oy, = Oy sendo V = [27 — x5, 25 — x2]. O

Tendo em consideragao que o teorema de Bézout nos garante que a intersecao de
duas conicas [F], [G] em P? sem componentes em comum, consiste de no méaximo 4
pontos distintos. Do contrario, mde(F,G) = L com L € S; ndo nula, o que implica

que a reta Z(L) esta contida em Z(F) N Z(G). Nessa perspectiva, temos que:

Proposigao 2.2.1. Se W = [F, G| € G5(52) sendo [F] e [G] ambas singulares. Entao,
existe T € Aut(C?) tal que

1. Se #Z(F)N Z(G) = 1 entio, T e« W = [z5, 23].

2. Se #Z(F)N Z(G) =2 entdo, T @ W = [wozy, 73).

3. Se #Z(F)N Z(G) = 3 entao, T @ W = [xox1, (xo + T1)T2).

4. Se #Z(F)N Z(G) = 4 entio, T o W = [25 — x3, 25 — 7).

5. Semdc(F,G) # 1 entio, T ¢ W = [xox1, 2072 ou T @ W = |22, moxy].

Demonstrag¢ao. Note que, uma conica singular é dada por um par de retas distintas ou

por uma reta dupla. Assim, temos trés possibilidades:
(i) F,G € A (F,G sao retas duplas).
(i) FeH\AeGeA (F éum par de retas distintas e G é uma reta dupla)ﬂ
(iii) F,G € H\ A (F,G sao um par de retas distintas).

De acordo com o Lema temos que analisar as trés possibilidades des-

critas acima:

(i) se F,G € A,entdo F = L?, G = M* e {L, M} & LI. Note que a Proposicio
nos garante que, existe 7' € Aut(C?) tal que T,L = x5 e T,M = x, e, portanto,
TeW =7, xz]ﬂ

®A menos de uma reordenacio do conjunto {F,GY}.
S0bserve que, Z(x2,2?) = {[0 : 0 : 1]}. Assim, o teorema de Bézout nos garante que
2 2y _
I[O:O:l] (.%'071'1) =4.
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2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

(i)

(iii)

Se FeH\AeGc A, entdao F = L,-Lysendo {Li, Ly} LI e G = M?*. Observe
que necessariamente a reta Z(M) passa pelo ponto de interse¢ao das retas Z(L;)
e Z(Ls) (do contrario #(Z(F,G)) = 2). Assim, M = a;L; 4+ asLs com ay,ay €
C nao-nulos. Agora, completando {L;, M} a uma base de S; = [z, x1, 22|, a
Proposigao nos garante que existe B € Aut(C?) tal que R.(L;) = 7, e
Re(M) = zy. Visto que agLlys = M — a4, segue que Re(asls) = xy — ay1y.
Logo,

Wi :=Re[LiLy, MQ] =Re [Ll(ang),MQ] = [z1(z0 — a1x1)735(2)] com a; # 0.

Dai, considerando a = a; ' segue que

MB a a MB a
W1 = [mg,x% — (1,1'05(,’1] = |:l’g, (Z‘l — 5%0)2 — ng] = [xg, (Il — 5370)2 .
a
Para concluirmos, basta considerar R, € Aut(C?) tal que Ri,(z; — 5:60) =1 e

Ri.(x;) = z; para j € {0,2}.

Se ;.G € H\ A, entdao F' = Ly - Ly com {Ly,Ly} LI e G = M; - My com
{My, My} LI. Como #Z(F)N Z(G) = 1, segue que as retas Ly, Lo, My e M, sao
concorrentes. Considere R € Aut(C?) tal que R,L; = 29 ¢ RyLy = x1. Além
disso, visto que R M; € [zg,x1] ¢ = 1,2, vamos escrever M; = a;x¢ + b;x; para

i=1,2 (com a; - b; # 0 uma vez que F e G sdo LI). Assim,

ReW = [xoxh (alx(] + b1x1> . (CLQI‘O + bg,’lﬂ‘l)]

MB
= [wowy,ax) + bxi] com a = ajas e b= biby

IS

b
[zo71, 7§ + c2?] com ¢ = = (pois a,b # 0)
a

[zoz1, (20 + d1)? — 2d2971] COm d* = ¢

o}

= [zox1, (2o + d$1)2]-

Agora, prosseguindo como no caso (ii) deste item, temos o resultado.

Como #Z(F)N Z(G) = 2, novamente pelo Lema m temos que (a menos

de uma reordenagao) a unica possibilidade permissivel é FF € H\ A e G € A.

Assim, considerando F' = Ly-Ly com {L;, Ly} LI e G = M?. Note que, {Ly, Ly, M}
¢ L1, pois caso fosse LD implicaria que #2Z(F)N Z(G) = 1. Logo, sabemos que existe
T € Aut(C?) tal que T,(Ly) = xg, Tu(Ly) = x1 € To(M) = 5. Portanto,

T oW = [Ty(L1 - L), To(M?)] = [xow1, 23).
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2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

Segue do Lema que unica a possibilidade a considerar ¢ F,G € H \ A.

Assim, assuma que F = Ly - Ly com {Ly,Ls} LI e G = M; - My com {M;, My}

LI. Como #Z(F)N Z(G) = 3, o conjunto {Ly, Ly, M;} é LI para algum i = 1,2[]

Escolhendo { Ly, Lg, My} LI deve ocorrer necessariamente que o conjunto { L1, Lo, My}

seja LD , e portanto, temos que My = alq + bLy com a,b em C ambos nao-nulos.

Assim, considere R € Aut(C?) tal que R,(L;) = z;_1 parai = 1,2 e R,(M;) = x5.
Visto que RyMs = axy + bxi. Logo,

Wy = ReW = [xox1, (axg + bx1)xs) 15 [(axg)(bx1), (azo + bxq)xs).
Por fim, basta considerar R; € Aut(C?) tal que (R)).(azo) = zo, (R1)e(bz1) = 21 €
(Rl).l'g = I9.

Segue do Lema [2.2.1}

Como mdc(F,G) # 1, podemos assumir que mde(F,G) = L com L € 5.

Neste caso, pelo menos uma das conicas pertence a H \ Aﬂ Assim, a menos de uma

reordenacao temos duas possibilidades:

e F=L-Ly,G=L-M €H\A, oque implica em que {L, L, M;} é LI. Dai,
basta considerar R € Aut(C?) tal que R,L = x, RyL1 = 7, ¢ R,M; = x5. Logo,
RelWW = [R.(L : Ll), R.(L : Ml)] = [l’o[L‘l,ZEol'g].

e F=L-Li € H\AeG = L Entdo, ReW = [z9z1,2]] ao considerarmos
R € Aut(C?) tal que R,L =z e R,L1 = ;.

Portanto, segue o resultado. O]

Determinacao das érbitas de G5(S;) sob a acao de Aut(P?)

Finalmente, dispomos de todos os resultados que nos permitirao estabelecer a clas-
sificacdo das érbitas em G5(S;) sob a acdo de Aut(P?), conforme mostraremos no

teorema a seguir.

Teorema 2.2.1. Considere W = [F, G| € G5(S2) e Ow a drbita associada a W pela a
acio de Aut(P?) em Go(Ss). Verifica-se que

e Se mdc(F,G) =1, entao de acordo com a cardinalidade de Z(F) N Z(G) temos

as sequintes possibilidades para Oy :

"Note que, se o conjunto {L;, Lo, M;} for LI para todo i, entdo #Z(F) N Z(G) = 4 visto que os
pontos singulares das conicas nao pertencem a Z(F)N Z(G). Assim, necessariamente deve ocorer que
{L1,L2, M;} & LI exatamente para um valor de 3.

8Sendo {F,G} é LI, ambas das conicas em A implicaria em que mdc(F,G) = 1.
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2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

1. Se #Z(F)N Z(G) = 1. Entao,

Oy, sendo m = x5 — 2971, 77
Ow = { ou S,
O, sendo my = [xg, 7).

2. Se #Z(F)N Z(G) = 2. Entao,

Or, sendo T3 = (15 — 20Ty, T172)
Ow = { ou )
Or, sendo 7y =[x, T122).

3. Se #Z(F)N Z(G) = 3. Entao, Ow = O, sendo 75 = [vox1, (xo + x1)T2].
4. Se #Z(F)N Z(G) = 4. Entio, Oy = Oy, sendo T = [27 — x2, 23 — x7).

e Semdc(F,G) # 1, entao

O, sendo w7 = [ToT1, ToTa)
Ow = ou )
Or, sendo wg =[xy, ToT1].

Demonstragao. Considere W = [F, G| € Go(Ss). Se F' e G sao ambas singulares, entao
o resultado segue diretamente da Proposicao 2.2.1] Assim, sem perda de generalidade
(e a menos de uma reordenagao na base {F,G} de W), a seguir vamos supor que F’
é nao singular. Observe que, sendo F' nao singular, necessariamente mde(F, G) = 1.
Portanto, #Z(F) N Z(G) ¢é finita e varia entre 1 e 4.

Por outro lado, a Proposicao nos garante que existe ¢ € Aut(P?) determi-
nada por T € Aut(C?) tal que T,F = 235 — 2971 (o que implica em o(C) = C se
C = Z(x5 — mox1)) e, além disso p(p) = [1:0:0] e p(q) = [0: 1 : 0] para quaisquer
p,q € C' distintos.

Assim, a seguir faremos a demonstracao analisando as possibilidades para a cardi-
nalidade de Z(F)N Z(G), sendo F = x5 — 2.

o #Z(F)NZ(G) =1.

Neste caso, a menos de uma MCP podemos assumir que Z(F) N Z(G) = {p},
sendo p = [1: 0 : 0] e o teorema de Bézout nos garante que I,(F,G) = 4. Note
que

2 2
{xox1, T0T2, 7, X122, T5 — ToT1 }

é uma base de Sy constituida pelas conicas que passam por p. Visto que {F, G}
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2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

é LI e G(p) =0, podemos assumir que

G = azoxy + browy + c2? + driTy com a,b,c,d € C.

Agora, escrevendo F' e G como polinémios na variavel xs, tem-se que
F= 1~:z:§—a:’0:c1 e G = axry + f sendo a = bxg + dxy eﬁ:axoxl—i-cx%.
Assim, a resultante de F' e G (relativa a xz5) em p é dada por

1 0 —xpxq
RP(F,.G) = |a S 0
0 « 16
= (% —a’zory
= a*xlr? + 2acxox? + Fxl — xoxy (V22h + 2bdxoz) + d22?)

= ot + (2ac — d*)zoxt + (a* — 2bd)xia] — iz,

Visto que I,(F,G) =4, segue que a =b=d=0e c# 0E| Portanto, G = 7.

Da qual concluimos que Oy = O, sendo 7, = [15 — Tz, T7).

o #Z(F)NZ(G) =2

Neste caso, a menos de uma M C P podemos considerar que Z(F)NZ(G) = {p, ¢}

sendop=1[1:0:0leq=1[0:1:0]. Visto que
{2021, 20T2, T1T9, T3 — ToT1 }

¢ uma base para as conicas que passam pelos pontogV| p e ¢. Assim,
G = axoxy + bxoxs + criT9

Além disso, temos duas possibilidades para considerar:
(i) L,(F,G) =2 = 1,(F,G). (ii) I,(F,G) =3 e I,(F,G) = 1.

De fato,

9Lembre que I,,(F,G) = 4 implique em que a maior poténcia de 1 que divide a resultante R (F,G)

é a:‘ll.

ODe fato, se f = aox(2)+a1:c0x1 +aoToxs +a3xs +asx 0 +asrs € So, entdo f(p) = 0 = f(g) implica
em ag = az = 0. Assim, uma base para tal subespago ¢ dada por {zox1,xo22, 122, x%} Entretanto,

F pertence a este subespaco de conicas, o que nos permite obter uma base contendo F'.
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2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

(i)

Neste caso, escrevendo F' e G como polinémios na variavel o, a resultante
de F e G (relativa a z3) em z € Z(F) N Z(G) ¢ dada por

1 0 —Toxq
R?*(F,G)=|a azor; 0 |=ad*zlz] — zo10?
0 « aroTy
sendo v = bxg + cry. Assim
R™2(F,G) = —cxoz’ + (a* — 2bc)xpat — b wdn,. (2.4)

Logo,

I,(F1,Gy) =2 implicaem b= 0 e a # 0,
I,(F1,G1) =2 implicaem c=0e a #0.

Portanto, G = azoz;. Logo, W) = |15 — zoT1, axor1] MP (25, zo71]. Por fim,
considere R € Aut(C?) tal que Royzy = 29, Rex1 = 1 € Rexg = 3. Assim,
Re W, = [x5, 125] = m4. Ou seja, Oy = Oy, .

Como I,(F, G) = 3, segue da Equagao quea =b=0ec+# 0. Portanto,
G = cx129 com ¢ # 0. Logo, Wy = [23 — zox1, cx172)] MB (25 — xoxl,xlxg]

Portanto, concluimos que Oy = O, sendo 73 = [ — 2ox1, T172).

o #Z(F)N Z(G) = 3.

Assuma que Z(F) N Z(G) = {p,q,r}, sendop =[1:0:0,, ¢g=1[0:1:0]e
r=[1:u*:ul comu # O.H Se I,(F,G) = 2, segue do teorema de Bézout
que I,(F,G) = I,(F,G) = 1. Visto que, G(p) = G(q) = 0 segue de (2.3) que

G = axoxy +brors+criwe COm a,b, ¢ € C nem todos nulos. Entretanto, G(r) =0

implica em que au® + bu + u3c = 0. Sendo u # 0, segue que au + b + u’c =0 do

qual tem-se b = —au — u’c, 0 que nos permite concluir que

G = axo(r) — uwy) + cwy(zy — uxg).

Agora, escrevendo F e G como polindmios na variavel s, temos que

' Note que pelo teorema de Bézout, tem-se que I,(F,G) = 1.
12Como r € Z(F), segue da Proposigﬁoque existe um tnico [a : b] € P! tal que r = [a® : b? : ab).
Agora, como r € {p, ¢}, segue que a # 0 e b # 0. Dai, concluimos que

r:{llbz_ab

= =[1:u?: - =u.
pe ] [1:u®: u com — =u

a?
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2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

F=1-25+(—2¢71) e G = axy + B com a = —u(a + uc)xy + cry e B = axoz;.

Assim, a resultante de F' e G (com respeito a z2) em y € Z(F) N Z(G) ¢é dada

por
1 0 —ToTq
RP(F.G)=|a S 0 |=a®— sz’
0 « 6]
Assim,
RP(F,G) = a’r3r? — zoxy [u*(a + uc)wl + At — 2uc(a + uc)zow]

= —ctxoz} + (a® + 2uc(a + uc))xir] — u?(a + uc)xjr; .

Logo I,(F,G) = 2 (resp. I,(F,G) = 1) implica em a +uc = 0 e a # 0 (resp.
¢ #0), além disso [,(F,G) = 1 tem-se que ¢ # 0. Consequentemente,
G = (~uc)ro(zy — uxs) + cwy(zy — uPzp) como ¢ # 0
= —uzo(r) — uTs) + o (1) — U0)
= —uror1 + u2$0x2 + x129 — u2x0x2
= —UTeT1 + T1T2
= x1(mg — uxp).
Assim,
Wy = [22 — zow1, 11 (29 — uzg)] = [23 — 2021, L1079 — UTOT]
UT3 — UTOT1, T1T9 — UTOT1]
>

uxr

[
= |
MB

[ux; — 129, 129 — UTX1]

[

xo(uxy — 1), 21 (9 — UXY)].

A seguir, considere R € Aut(C?) tal que R,ry = g, Re(uzs — 1) = 71 €

Re(z9 — uzg) = x9. Logo,
Re W) = [Re(xo(uzy — 1)), Re(x1(x2 — uxp))| = [T021, T2(UT — 21)].

Por fim, considere R; € Aut(C?) tal que Ri.z; = x; para j = 0,2 e
Rl.xl = —Uuxry. ASSiIIl,

B B
Ry o Wy = [—uxgxy, xo(uzg + uzy)|] = [—x0x1,22(20 + 21)] = [T021, T2(T0 + X1)].

Portanto, Ow = O, com 75 = [zox1, T2(xo + 21)].

o #Z(F)N Z(G) = 4. Segue diretamente do Lema m
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2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

Se mdc(F, G) # 1 o resultado segue da Proposicao O

2.3 Intersecao das retas em P(S;) com H

Observe que m = [F, Fy] € Go(S2) determina a reta L, C C = P(S;), dada por:
L,= {[a-F1+b-F2] eC| [a:}] ePl}.
Por exemplo, se m; = [23 — zx1, %] (dado no Teorema , entao
L. = {[a(x% —z011) + b33 €C| [a:b] € Pl}.

A seguir, vamos determinar L., NH. De fato, conforme o Lema m, [Fle L, NH

se, e somente se F' = arj — azxor; + br: para algum [a : b] € P! e detMp = 0 sendo

1
0 ——a 0

1 2
MF - —§0J b 0
0 0 a

Note que detMp = ia:)’. Assim, a = 0 é a tnica solugao de detMyr = 0 e possui
multiplicidade 3. Logo, L,, N H = {x7} consiste de um tinico ponto de multiplicidade
tres[l]

Utilizando o mesmo raciocinio, calculamos as intersecoes das retas determinadas
pelos representantes das orbitas descritas no Teorema [2.2.1] com a hipersuperficie H,

apresentados na Tabela [2.2] a seguir.

Observagao 2.3.1. Considere [F] € P(S;) e ¢ € Aut(P?) determinada por T €
Aut(C)?. Sejam, My e My, as matrizes associadas a [F] e [T,F]. Entdo verifica-se
que

Mz,p = [T]"" Mp[T]

sendo [T] a matriz associada ao isomorfismo C-linear 7' na base canénica de C>.
Assim, MCP deixam invariante o valor do determinante. O que nos permite

concluir que a cardinalidade da interse¢ao da reta com a hipersuperficie H permanecem

invariante. Logo, os resultados da Tabela [2.2 ndo dependem do representante escolhido

em cada Orbita.

13Visto que a = 0, obtemos [a : b] = [0 : 1], que implica em F = 27.
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2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

Tabela 2.2: Intersecao das retas com H

7 L., NH Multiplicidades | detMp
1
1 {27} 3 Za?’
2 L., ; 0
L3
3 {z122} 3 7°
1
4 {23, 1110} le2 Zab2
1
5 {zox1, (xo + 21)22} le2 Zab2
6 | {2 — a3, 23 — 25, 2] — 75} 11,1 ab(a + b)
7 L. ; 0
8 Lo, ; 0

Determinando a cardinalidade de L, NA

Apés os calculos realizados para obter a Tabela [2.2] resulta natural se perguntar
pela cardinalidade de L., N A, ou seja, determinar quantos sdo os [a : b] € P? tais
que a - F1 +b- F, € A. Note que, a Tabela j& fornece respostas em alguns dos
casos, faltando apenas verificar os casos 1 = 2,7 e 8. Por exemplo, se my = [x%,xf] e

azg + bz} € Ly,, temos
2 2 2 2 _ 2 b 2
axy + br] € A <= axj + bxy = (boxo + b1y + baws)” para algum [bg : by : by] € P=.

A partir da igualdade polinomiallf], segue que, by = 0 e byby = 0, em ambos casos
(bp = 0 ou by = 0), obtemos que #L,, N A = 2. Proseguindo de forma anéloga,
obtemos os resultados listados na Tabela a seguir.

Tabela 2.3: Intersecao das retas com A

ZL. NA

OOl J| | U x| W DO ] =
=l vl Neol Nanll - Nanl I NG )

146L$(2) + bx% = bg%% + b?aﬁ + ng% + bobirox1 + boboxgxs + b1boxs.
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2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

Observacao 2.3.2. Segue da Tabela [2.3] que as retas determinadas pelos elementos

de G5(.52), admitem no méaximo dois pontos que se correspondem com codnicas em A.

2.4 Dimensao das Orbitas

Nesta secao, vamos determinar as dimensoes das oérbitas listadas no Teorema [2.2.1]
Para isso, usaremos os seguintes fatos:
dim(PGL,(C)) = (n+ 1)® — 1.
Se O ¢ a orbita associada a W € G5(S) sob a acdo de Aut(P?) na Gras-
manniana Gd(S2)B entao

dim(Ow) = 8 — dim(Eyw) (2.5)

sendo By = {¢ € Aut(P?) | ¢ ¢ W = W} o estabilizador de W em Aut(P?).
Observe que, se ¢ € Ey for determinadapor T € Aut(C?) e W = [F}, F3] € Go(Ss),

entao
[T F1, T F,| = [F1, Fy] = Z(F1) N Z(Fy) = Z(T F) N Z(TF). (2.6)

De fato, [T, F1,ToFy| = [Fi, Fy] implica em (i) T,F; = a;Fy + b;F5 com a;,b; i = 1,2
em C e (ii) F; = ;T F) + d;T F5 com ¢;,d; i = 1,2 em C.

Se p € Z(Fy) N Z(F;y), entdao Fy(p) = 0 para i = 1,2, logo (i) implica em
T.F; = a;Fi(p) + biF>(p) = 0. De onde concluimos que p € Z(T,Fy) N Z(T,Fy).

Analogamente, prova-se a outra inclusao.
(I) Se W = 7g = [2? — 23,25 — 23], entdo dim(Oy) = 8.

Note que, Z(Fy) N Z(Fy) = {p1,p2,p3,ps} sendo F} = 22 — 22 e Fy = 23 — x}
consiste de 4 pontos em posi¢ao geral. De fato, se C' = {p1, p2, p3, p4}, entdo verifica-se
que
Afirmacao 1: Se ¢ € Ey, entao ¢(C) = C.

De fato, o(C) = @(Z(F, Fy)) = Z(T F\, T F,) = Z(Fy, Fy) = C.

Afirmagdo 2: I'c = {¢p € Aut(P?) | »(C) = C} ¢ um subgrupom de Aut(P?) finito.

De fato, lembremos que fixados {p1, ps, p3, pa} C P* e {q1, 42, g3, ¢4} C P? em posi-

cdo geral, existe um tnico ¢ € Aut(P?) tal que ¢(p;) = ¢ i = 1,2,3, 4.

Y5Lembremos que, se W = [Fy, Fy] € G2(S2) e ¢ € Aut(P?) for determinada por T € Aut(C?),
entdo @ @ W := [T F1, T F5).

Note que, claramente Id € T'¢. Se ¢ € Aut(IF’z) temos que ¢ adimite uma inversa ¢!, dai
e lop(C)=¢ HC0) = C = }(C) = ¢! € T¢. Por fim, se p,9 € T¢ entdo (¢ o ¢)(C) =
P(p(C) =9(C)=C=topelc.
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Assim, fixados {p1, pa2, p3, 4} um elemento de I'c é determinado por uma permu-
tacio o € S;. Mais precisamente, se o € Sy, entdo existe um tnico ¢, € Aut(P?) tal
que ©q(pi) = pPo) para i =1,2,3,4. Com efeito, I'c = {p, € Aut(P?)| o € S4}. Logo,
|| = |S4] = 4! = 24. Para concluir, note que a afirmagao 1 implica que Ey C T'c.
Entretanto, sendo I'¢ finito, segue que Eyy é finito. Portanto, dim(Ey ) = 0. Por fim,

o Fato 2 nos permite concluir que dim(Oy ) = 8.

Observagoes 2.4.1. Para o calculo das dimensoes das o6rbitas com representante m;

com i € {1,...,8} e i # 6, observe que:

(a) SL,(C) = {A € GL,(C) | det A = 1} é um subgrupo normal de GL,(C) e
a fungdo ¥ : SL,(C) — PGL,(C) dada por A — A ¢ um homomorfismo

sobrejetivo de grupos tal que

UL(A) = {gA € SL,(C) | & = 1}.

2(C
Por outro lado, segue do teorema dos isomorfismos que R ((‘I’)) = PGL,(C) e
er
pela correspondéncia que o citado isomorfismo estabelece, que todo subgrupo
!/

sendo H’

H de PGL,(C) ira se identificar com um subgrupo da forma

ker (W)
um subgrupo de SL,(C) contendo ker(V¥). Entretanto, como ker(¥) é um grupo

finito, concluimos que
dim H = dim H'.

Agora, como o estabilizador E,, = H; := {Z € PGLy(C) | ps € Em.}, segue que
dim E,, = dimH; = dim H; sendo H] = {A € SLy(C) | pa € E'm}.

(b) Para o calculo da dimensao de E,,, vamos considerar ¢ € Ey determinada por
T € Aut(C?) tal que

Toxg = axg+ bxy + cxo,
T.iL‘l = a1xp + bll'l + C1%9,
T..’BQ = Q2% + bg$1 + CoXo.

Salientamos que na analise nos sistemas gerados em cada caso (para i € {1,...,8}
e i # 6), abordamos apenas uma das possibilidades para elucidar tal procedimento,

visto que os demais seguem de forma analoga.
(IT) Se W = 75 = [zox1, (Tg + 21) 22, entao dim(Ow) = 7.
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Seja ¢ € By determinada por T' € Aut(C?). Logo,
[T,(Iol‘l), T,(l’g(l’o + I’l))] = [1’01‘1, ZEQ(JIO + .Tl)] (27)
Note que,

T,(Iol'l) = (T,Io) . (T.xl) = (CLJJQ + bl‘l + 0132) . (CLL’L'() + blxl + Clxg)
= aaxj + (aby + a1b)zory + (ac, + ayc)rors + bbyas

+ (bey + bic)x 2o + ceyaa.
Segue de (2.7) que Ty(zor1) = pwory +yra(zo + 71). Logo, temos as seguintes relagoes:

aa; =0, bby = 0, cc; = 0, 2.8)

aby + a1b=p e acy + ajc = bey + by = 7.

Assim, para o sistema acima temos a seguinte possibilidade:
ea=c=0(0b#0)eb =0.

Neste caso, das relagdes em ([2.8)) segue que be; = 0 e como b # 0, entdao ¢; = 0. Logo,

Toxg = bry e Tyx; = ayxg com a; # 0. Segue que,

T.(I'Q(IEO + 33’1)) = (T..TQ) . (T.I'Q -+ T.I’l)) = (a2$0 -+ b2$1 -+ CQJ?Q)(b.Tl + (11330)

= agalxg + (agb + a1by) o1 + a1cozoTy + bbox? + by Ty,
Novamente pela Equacao temos que
agalxg + (agb + a1by)wory + a1c27072 + bbgl‘% + beoriwe = prory + YT2(To + T1).
Assim,

o1 = 0, be = 0,

ash + arbs = e ajco = bey = 7.

Dai, sendo a; # 0 e b # 0 temos que as = 0 e by = 0 o que implica em ¢ # 0
e assim, ajco = bcy 0 que nos permite concluir que a; = b. Logo, Texg = by,

Tex1 = bxg € Texo = Coxo.
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Donde concluimos que a matriz associada ao isomorfismo 77t é dada por:

0 b 0
T=1b 0 0
0 0 ¢
Note que, det[T'] = —b®c,. Tendo em consideragdo o item (a) na Observagao
podemos supor que o determinante da matriz é igual a 1, assim segue que c; = 2
Logo,
0 b 0
7= 1b 0 0
1
0 0 ]

Na qual temos apenas um parametro livre, o que nos permite concluir que a
dim(FEw) = 1. Portanto, pelo Fato temos que dim(Ow) = 7.

(II) Se W = 7, = [x3, 217], entdo dim(Oy ) = 6.
Assumindo ¢ € Ey determinada por T' € Aut(C?). Assim,
[Ta(5), Tu(2122)] = [0, 2122]. (2.9)
Note que,

To(1ze) = (Texr) - (Texa) = (m1xo + biz1 + c122) - (agzo + bay + c222)
= Glag.’lﬁg + (&1[)2 + CLle).’Bol'l -+ (CLlCQ + CZQCl).Z'oiEQ + blbg.fb'%

+ (bycy + bocy)x120 + 6102$g-
Dai, segue de (2.9) que T,(z129) = pxi + yr175. Logo,

blbg = 0, C1Cy = O, a1b2 + a261 = O, a1Co + aoCy = 0, (21())

ajas = p and bycy + bacy = 7.
Assim, para o sistema acima segue a seguinte possibilidade:
e a;=b=0(c1 #£0) eag=co =0 (bg #0).
Sendo assim, temos que Tox1 = c1x2 € Tyxs = boxy. Logo,
T.(23) = (azo + by + cxp)? = a’xl + b%2? + a3 + 2abxox, + 2acwowy + 2bcx 2.
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Novamente pela Equagao (2.9)) temos que
2.2 12,2, 2.2 _ 2
a“xy 4 b x] + c“x5 + 2abxrozy + 2acrore + 2bcxiT0 = Py + YT 120

Assim, a # 0 e b = ¢ = 0 no qual temos T,zy = arg. Logo, a matriz associada ao

isomorfismo 77! é dada por:

0
[T = 0 ¢
0 by O
Note que, det[T"!] = —abyc;. Novamente, podemos supor o determinante igual a 1,
assim a = ———. Logo,
2C1
! 0 O
1 bycy
T71=1 0 o0 o
0 by 0O

Do qual temos dois parametros livres, o que nos permite concluir que dim(Ey ) = 2.
Portanto, pelo Fato [2.5 temos que dim(Oy ) = 6.

(IV) Se W = 73 = [23 — 2021, 2125], entdo dim(Oy ) = 6.
Se ¢ € By for determinada por T € Aut(C?), entdo
[Ty (25 — ox1), To(2122)] = [15 — ToT1, T172). (2.11)
Note que,

T.(l’ll'Q) = (T..%l) . (T.LCQ) = (Cll.fo -+ bll'l + CllCQ) . (CLQl'U + bgl’l + ngg)
= alazxg + (albg + agbl)fﬂoxl + (a102 + a201)$0932 + blbsz%

+ (blcg + bgcl)xll’g + 01021’3.
, 2
Dai, segue de (2.11)) que T,(z172) = pxs — pwor; + yx122. Deste modo,

aa| = 0, ble == 0, ai1Co + a2C1 = O’ (212)

c1Cy = ft, arby + agby = —p e bicy + bacy = .

Assim, para o sistema acima temos a seguinte possibilidade:
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oa1201:0(bl7é0)ea2:b2:0(027&0).

Logo Toxy = byxy e Tyxy = coxg € segue que,

T.(J?% —Tory) = (T.x%) — (Tozo) - (Toxy)
= 19 — (amg + bry + )by

= czxg — abyxor; — bblﬁ — cbyxq2s.

Outra vez, pela Equacao (2.11)) temos que

2 2 2
coxy — abyxoxry — bbix] — chix1T9 = prs — PreT) + YT1T2.

2

Sendo, b; # 0 segue que b = 0 e ¢5 = ab; o que implica em a # 0, assim a = b—2 Logo,
1
Tuxo = axy + cxy. Deste modo, a matriz associada ao isomorfismo 77! é dada por:
2
& 0 ¢
= |
— 10 b O
0 0 Co

Note que, det[T!] = ¢3. Mais uma vez, podemos supor o determinante igual a 1, assim

co = 1. Logo,

1
— 0 ¢

_ 1
=10 b o
0 0 1

Desta forma, dim(Ey ) = 2. Portanto, dim(Oy,) = 6.
(V) Se W =, = [25 — mow1, 27], entdo dim(Oy) = 5.

Assumindo ¢ € Ey determinada por T' € Aut(C?). Assim,

[T, (25 — wox1), Tox?] = [25 — 2021, T7). (2.13)

T-(l’%) = (axo + bz + 61332)2

2.2 12,2, 2.2
= ajx; + bix] + cizs + 2a1b1x071 + 201012072 + 2010171 29.

Dai, segue de (2.13) que T, (2?) = p(x3 — xox1) + 22 = paws — pwoxr; + Yyt
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Deste modo,

a? =0, 2a1¢1 = 0, 2by¢; = 0,
! a o (2.14)

=7 e ci=—2a1b = p.

Note que, em ([2.14) temos que a; = 0 implica que ¢; = 0 e consequentemente by # 0.

Logo, Tyxy = byxy. Por outro lado,

To(z3 — 2021) = (Tuwd) — (Tuwo) - (Tox1)
(CLQ%O + b2$1 + 62.1'2)2 — (CLI’O + b$1 + Cl‘g)bl.’lﬁl

asxh + (b3 — bby)xt + caxs + (2a9by — aby)zo7,

+ 2&2021‘01’2 + (2b202 - Cb1>$1l’2.

Mais uma vez pela Equacdo (2.13) temos que T, (23 — zox1) = pas — pxor; + 7. Logo,

ag = 0, 2@202 = O, 2b2€2 — Cb1 == O, (215>
b; —bby =7 ¢ cg = —2asby — aby = p.
2
Sendo, a; = 0 segue que c2 = ab; o que implica em a # 0, assim a = b Além disso,
1

2byc
= 022 Dai, Tyxg = axg + bxry1 + cxo € Texy = byxq + cox5. Deste modo, a matriz

CcC =
b
associada ao isomorfismo 77! é dada por:

C_% b 2b202
| by
T T=10 b o
0 bg Co

Note que, det[T'] = ¢3. De novo, podemos supor o determinante igual a 1, assim

co = 1. Logo,
1 2by
— oy =
I
T71=10 b o0
0 by 1

Desta forma, dim(Ey ) = 3. Portanto, dim(Oy ) = 5.

(VI) Se W = my = [x2, 23], entdo dim(Oy) = 4.
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Mais uma vez, suponha ¢ € Ey, determinada por T' € Aut(C?). Assim,
(T, Tua?] = [o, 2%, (2.16)

Note que,

T.(23) = (azo + bxy + cxp)? = a’x] + b*23 + a5 + 2abzox; + 2acrowy + 2bcx 7o

T.(l‘%) = (a1$0+b1371 +01[L’2)2 = a%x%+b§x?+c?w§+2a1b1xox1+2a101x0I2+2()101x1x2.

Segue de ([2.16]) que

=0,ab=0, ac=0, bc =0, 3 =0, ab; =0, ajc; =0, bye; =0,

e (2.17)
a2:ueb2:7 a%:lu,eb%:/y
Sendo assim, temos a seguinte possibilidade:
e a=0e bl = 0.
Neste caso, segue de (2.17) que ¢ = ¢; = 0. Logo, Texg = bxy, Texy = ayxg €

Texs = asxo + boxy + como.

Deste modo, a matriz associada ao isomorfismo 77! ¢ dada por:

0O b 0
= 1la, 0 0
(05} bg (&)
. —1 . . 1
Assim, det[T~"| = —ajbce. Supondo o determinante igual a 1, temos b = ———. Logo,
a1Cy
1
0O —— 0
_ a1Co
[T 1] = aq 0 O
(05} b2 Cy
Desta forma, dim(Ey ) = 4. Portanto, dim(Oy ) = 4.
(VII) Se W = 77 = [xox1, Tox2], entdo dim(Oy ) = 4.
Assumindo ¢ € Ey determinada por 7' € Aut(C?). Assim,
(To(z021), Te(z022)] = [T0T1, ToT2]. (2.18)

37



2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

Note que,

T,(Iol‘g) = (T,l’o) . (T.ZL'Q) = (CLJIQ + bl‘l —+ 0132) . (CLQZL'O + ngl + CQ.I‘Q)
= aagxy + (aby + axb)zory + (acy + asc)rors + bbox?

+ (beg + bac) w129 + o3,
Dai, segue de (2.18)) que T4(xox2) = pxoxs + Y2022 LoOgo,

aas =0, bby =0, cco =0, acy + asc =0, (2.19)

aby + ashb = e beg + boc = 7.

Assim, para o sistema acima segue a seguinte possibilidade:
eb=c=0(a#0)eay=0.

Sendo assim, temos que T,zo = azxg. Segue que,
2
To(zox1) = axo - (@120 + biz1 + c122) = aayxy + abixory + acixos.

Pela Equacao 1’ temos que aalxg + abixgri + acixors = Urori + YTL.

Assim, sendo a # 0 entao a; = 0. Dai Tyxy = byxy + c1x9 € Tyxs = boxy + coxs.

Logo,
a 0 0
[T_l] = |0 b1 C1
0 bg Cy

Note que, det[T'] = a(bicy — byc;). Novamente, podemos supor o determinante igual

al, assima =——————— Logo,
(blc2 - 5201) &
1
———— 0 O
1 (bica — bacy)
[T ] - 0 b1 C1
0 bg Cy

Do qual temos dim(Eyw ) = 4. Portanto, pelo Fato [2.5 temos que dim(Oy ) = 4.
(VIII) Se W = mg = [x3, 2o71], entdo dim(Oy) = 3.
Mais uma vez, suponha ¢ € Ey determinada por 7' € Aut(C?). Assim,
[Tyx?, Tawoxy] = |22, moxy]. (2.20)
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Note que,

2

To(23) = axg + bry + cx2)? = a*xp + b*a] + a5 + 2abrow; + 2acrors + 2bew Ts.

Dai, por (22.20]) segue que

a%% + b%% + 621‘3 + 2abxgr1 + 2acxore + 2bcxri19 = ,uxg + yToT7.

Temos que

ac=0,bc=0,0>=0, =0,
(2.21)

a>=p e ab=r.

Logo, Tyxg = axy com a # 0. Sendo assim,
2
To(zox1) = azo(a1xg + b1y + c122) = aayxy + abixory + acixos.

Uma vez que a # 0 e pela Equacdo (2.20) concluimos que ¢; = 0. Dai, Tz, =

a1xo + bll‘l (§ T.ZL'Q = a9y + bg[El + Coo. LOgO,

a 0 0
[Tﬁl] = lar b1 O
a9 bg Co
Note que, det[T'"!] = abjc,. Novamente, podemos supor o determinante igual a 1,
assim a = —. Logo,
1C2
1
— 0 0
_ b102
[T ]: aq bl 0
(05} bg Co

Do qual temos dim(Fyy) = 5. Portanto, pelo Fato [2.5 temos que dim(Oy,) = 3.

2.5 Especializagao das orbitas em G5(S;) sob a agao
de Aut(P?)

Definigao 2.5.1. Sejam Oy e Oy, 6rbitas obtidas pela acao de Aut(P?) em Gy(S,).

Dizemos que Oy especializa em Oyy,, neste caso usaremos a notacao Oy — Oy, se
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existe v : I — G2(S2) sendo I C R uma vizinhanga do zero tal que
’7(t) eOw,Vt#0e ’7(0) S OWO.

A seguir, determinaremos a especializa¢ao das orbitas descritas no Teorema
seguindo uma ordem decrescente em relacao as suas dimensoes.

Ory — Oy, | sendo w6 = [27 — 2, 25 — x0] e 75 = [vo71, T2 (20 + 71)].

Considere v : I — G(5;) definida por
’}/(t) = [111(1’0 — tl’g), 1‘2(110 + 1'1)] € GQ(SQ)

Note que, v(0) = [xox1, x2(xo + 21)] = 75. Logo, v(0) € O,,. Agora, considere
t # 0 e observe que

Z(y(t)) = Z(x1(wo — twg), v2(20 + 1)) = {p1, P2, P3,Pa}

sendopy =[1:0:0), pp=1[0:1:0),p3=1[0:0:1] epy =[t:—t:1][7] Assim, segue
do Lema que Oy = Oy V1 # 0. Logo, ¥(t) € Or, ¥ t # 0. Portanto, temos que

Oy, especializa O,.

Or, — Oy, |sendo 5 = [zox1, x2(10 + 21)] € Ty = [xg, T129).

Considere v : I — G(53) definida por
Y(t) = [zo(wo + tw1), 2a(tzo + 21)] € G2(S2).

Note que, v(0) = [23, z129] = 4. Logo, 7(0) € O,,. Agora, considere t # 0 € I,
dai calculando Z(v(t)) obtemog"|

pr=[0:1:0,po=[t:1:0eps=1[0:0:1]

"De fato, temos as seguintes intersegoes (entre as retas componentes das conicas):

x1=0ex3=0=1[1:0:0]=p;
xg—tro=0exs=0=x20=22=0=1[0:1:0] =po
x1=0exp+21=0=20=21=0=[0:0:1] =p;3

xo—tee=0exg+ax =0= 29 = —x1 e twg =29 = [txg: —txo: 2] =[t: —t:1] = p4.

8De fato, temos as seguintes intersecoes:

20=0ex2=0=1[0:1:0]=p1
xo—tr;=0exs=0= g =ty = [t:1:0] =p
xo=0exg+try=0=20=21=0=[0:0:1] =p;3
xo—tx;=0etxg+21=0=10:0:1] = ps.

40



2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

sendo ps de multipicidade dois. Assim, como #Z(y(t)) = 3, segue da Proposi¢ao [2.2.1]
que Oy ) = O, para qualquer ¢ # 0. Logo, v(t) € O, para qualquer ¢ # 0.

sendo 75 = [wowy, T2(70 + 71)] € T3 = [¥5 — ToT1, T1 7).
Seja v : I — G(53) definida por

’}/(t) = [l’g — l‘0$1,$2(t$2 + 1'1)] € GQ(SQ)

Para t = 0 segue que v(0) = [v3 — zoz1,2179] = 73. Logo, v(0) € O,,. Agora,
calculando Z(v(t)) para t # 0, obtemoﬁ

pr=[1:0:0],po=[0:1:0]p3s=1[1:¢*:—].

Assim, como #Z(v(t)) = 3, novamente pela Proposigao segue que
Oy = Ox, YVt #0. Logo, ¥(t) € Or, ¥Vt #0.
Ory — Oy, | sendo 73 = [25 — mowy, 1175) € T = [15 — zoT1, T7).

Seja v : I — G4(S3) definida por
V(t) - [95; - $0$1,$1<tx2 + 131)] S GQ(SQ)

Para t = 0 segue que 7(0) = [25 — 7971, 73] = m. Logo, v(0) € O,,. Agora, se
t #0 €I, tem-se que Z(v(t)) = {p, q} sendﬂp =[1:0:00eq=[1:t":—t].
Note que,

1 0 —ToTq
R (a5 — moxy, 21 (21 + t22)) = |ty 2 0 |=a]— 222’ = 23 (z; — t210)

0 t; a3

sendo t # 0 segue que I,(z5 — zoz1, 71(21 + tz)) = 3. Como #Z(y(t)) = 2 e pelo
Teorema, podemos concluir que O,y = O, ¥Vt # 0. Portanto, y(t) € O, V1 # 0.

Pois

x5 — 201 =0eao=0=[1:0:0=poul0:1:0] =py

too+ 11 =0e 22 —2or; = 0 = 11 = —txg => 235 + trowg = 0 = xo(a0 +tag) =0
xo=0o0uzg+teg=0=[1:0:0]=p; ou To = —txg e x1 = t2x0

= [wo : t?x0 : —twg) = [1:t* : —t] = p3 com t # 0.

20

x%—xoxleexleﬁ[lt():O]:p
trg+x=0ex5 —xor; =0=[1:0:0]=pou[l:t?: —t] =g comt#0.
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2 2 2
Or, — Ox, |sendo my = [x5, T122) € T =[5 — Toxy, T7].

Seja v : I — G(53) definida por
Y(t) = [23 — zoxy, (trs + 21)°] € Go(S).

Como v(0) = [25 — xox1, 23] = 7. Logo, ¥(0) € O,,. Agora, se t # 0 € I, entdo
Z(y(t)) ={p,q¢} sendop=[1:0:0]eq=[1:1*: —t].

Note que,
1 0 —Toxq
R (x5 — oy, (21 +t19)?) = |2tz; @ 0 = a7+ 2txex? + tPaia? — 4w’
0 2ty o

= 23(a] + (2t — 4%z, + t22)).

com o = 7 + troz;. Sendo t # 0 segue que I,(r5 — xory, (71 + tas)®) = 2. Como
#Z(y(t)) = 2 e pelo Teorema podemos concluir que Oy = O V t # 0.
Portanto, vy(t) € O, V¢t # 0.
Or, — Oy, | sendo 7 = [25 — moz1, 23] € T = |23, 27).

A menos de uma mudanga de representante, vamos considerar m; = [z — 2179, 73].

Assim, seja vy : I — G2(S2) definida por
Y(t) = [25 — to1me, 7] € Go(S,).

Temos que 7(0) = [x5, 23] = m. Logo, ¥(0) € O,,. Agora, se t # 0 € I, entdo
Z(y(t)) ={p} sendop=1[0:0:1].

Note que, pelo Teorema temos duas possibilidades para (t): v(t) € Og,
ou y(t) € O,. Porém, pela Tabela percebe-se que o determinante obtido pela
interse¢cao da reta que tem como representante a 6rbita de mo com a hipersuperficie H
¢ nulo, conclui-se que todos os elementos que pertencem O, sao gerados por elementos
singulares. Sendo t # 0, tem-se que x3 — tz; 2z, define uma conica nao singular.ﬂ

Assim, concluimos que y(t) € O, V t # 0.

Ory, — Op, | sendo my = [x%,a:f] e g = [9:(2),:503:1].

21

1 0 0
t2
detMp =0 0 —5t 770
0 —=t 0
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2. Orbitas sob a acéo de Aut(IP’Q) em G(.52)

Defina «y : I — G»(S2) por
’y(t) = [JI(Q),ZEl(JIO + tl’l)] S GQ(SQ)

Para t = 0 segue que v(0) = [z3, zo71] = 7s. Logo, ¥(0) € O,. Agora,set #0 € I,
entdo Z(y(t)) = {p} sendop=[0:0:1].

Novamente, pelo Teorema temos duas possibilidades para v(t): v(t) € O,
ou y(t) € O,. Porém, pela Tabela percebe-se que o determinante obtido pela
intersecao da reta que tem como representante a 6rbita de m; com a hipersuperficie
‘H é nao nulo e consiste de um tnico ponto, ou seja, s6 admite um ponto singular.
No entanto, para ~y(t) temos dois elementos singulares o que permite concluir que

v(t) € O, para qualquer t # 0 pois O, possui todos os elementos singulares.

O, — Op, | sendo mo = [xox1, Toxs] € T = [xﬁ,xoxl].
Defina vy : I — G»(S2) dada por

Y(t) = [xox1, To(xo + txg)] € Go(Ss).
Para t = 0 segue que v(0) = [vox1, 7)) = [5, 7o71] = 7s. Logo, ¥(0) € On,. Agora,

como {xo, z1, o+ tx2} é LI para ¢ # 0, segue da prova do item 5. da Proposicao [2.2.1]
que (t) € O, para qualquer ¢ # 0.
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Capitulo 3

Classificagao das 6rbitas em G3(59)
sob a agdo de Aut(P?)

Neste capitulo, estendemos a andlise feita em G5(S5;) para G3(Sz). Nosso obje-
tivo é classificar as 6rbitas sob a acdo do grupo Aut(PP?), explorando as propriedades
geométricas e algébricas da intersecao desses subespagos com a hipersuperficie H que
parametriza conicas singulares.

De fato, a cada W € G3(S;) vamos associar um plano my C P5 e estudar a
intersecao I'yy := my N Hps. Essa intersecao, pode ser o préprio plano my, ou uma
curva cubica plana. A natureza de I'yy — singular ou nao singular — desempenha
um papel central na classificacao das orbitas. Por fim, vamos calcular a dimensao e

determinar a especializacao em apenas um caso para elucidar o procedimento.

3.1 Associacao do plano 1y C P’ a cada W € G5(Ss)

Vamos comegar lembrando dois resultados preliminares em P" (n > 3). Considere

P, = [v;] € P" para i = 1,2,3, verifica-se que:
e P, P,, P; sdo nao colineares se, e somente se, {vy, va,v3} é LI;

e Se P, P, P; sao nao colineares, entao existe um tunico plano contendo Pi, Ps e

P3, que denotaremos por (Py, Ps, Ps).

A seguir, considere  : P° — C definido em (1.9) no Capitulo 1. Assim, se
W = [F, Fy, F3] € G3(S3), entdo considere p; = Q '(F;) para i = 1,2,3. Observe

que se

2 2 < :
F; = ajprg+apzori+- - -+a;xs, entdo p; = [v;] sendo v; = (@i, . .., a;5) para i = 1,2,3.
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Lema 3.1.1. Com as notagoes acima, verifica-se que: {v1,vs,v3} € LI se, e somente
S€E, {Fl, FQ, Fg} é LI.

Demonstracao. Considere Aq, Ay, A3 € C. Note que

3 3
ZAiUi :6<:>A1a1j—|—A2a2j+A3a3j =0, ‘7:0”5<:>ZAZFZ:0

i=1 =1
Dai, {vy,v9,v3} é LI se, e somente se, {F}, Fo, F3} ¢ LI. O

Assim, obtemos o plano (p1, p2, p3) em P°. A seguir, mostraremos que esse plano in-
depende da escolha da base de W € G3(Ss). De fato, se W = [Fy, Fy, F3] = [G1, Ga, G3]
entdo considere p; = Q7 '(F}) e ¢ = Q" (G;) parai = 1,2,3. Note que, para verificar a
igualdade (p1,p2, p3s) = (q1, @2, q3), basta mostrar que ¢; € (p1, p2, p3), i = 1,2,3. Visto
que G; € [Fy, Iy, F3], para todo i, segue que

G = a;Fy + B;F5 + v;F3 para alguns «y, 3;,7v; € C. (3.1)
Note que se F; = ajoxp + ;12071 + - - - + ;525 entdo p; = [v;] sendo v; = (as, . . ., a;5). E
analogamente, se G; = byowa+bywoz;+- - ~+bisr3 entdo ¢; = [ug] sendo u; = (big, - . ., bys).

Como (p1, pa, p3) = {[s101 + Sovy + s3v3] € P° | [s1 @ 59 : s3] € P?}, a partir de (3.1)
conclui-se que [ul] =q; € <p1ap27p3>7 IOgO <q17 g2, Q3> = <p17p27p3>7 visto que, existe um
tnico plano determinado por trés pontos distintos e néo colineares em P°.

Com isso temos a seguinte defini¢ao.

Definigao 3.1.1. A cada W € G5(S,) vamos associar o plano 7y C P° determinado
por pi,p2 € ps tais que Q(p;) = [Fi], se W = [Fy, Fh, F3].
Das consideragoes feitas acima, segue que my = (p1,p2, p3) e sua definigdo inde-

pende da base escolhida para W.

Exemplo 3.1.1. Seja W = [z5, 23, 25] € G3(S,). Considere p;,y = Q '([z}]) para
i =0,1,2. Logo, pp =[1:0:0:0:0:0,p,=100:0:0:1:0:0]ce€
p3 =[0:0:0:0:0:1]. Lembre que A C P° é um plano se, e somente se,
A = Z(Li, Ly, L3), L; homogéneos de grau 1 em Clyo,...,ys]. Assim, se

L = boyo + b1y1 + baya + bsys + byys + b5ys, entao verifica-se que

L(p1)=0<=by=0
L(p) =0<=1b3=0
L(ps) =0 <= b5 =0.

Donde podemos concluir que L = byy; + baya + bsys. Assim, mw = Z(y1, Yo, Ya).
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Defina I'yy = my N Hps para cada W € G3(S3).

Proposicao 3.1.1. Com as notagoes acima, verifica-se que I'yy = my ou I'yy € uma

curva plana de grau 3.

Demonstragio. Considere W = [Fy, Fy, F3] € G3(S2) e seja myr € P° o plano deter-
minado por W. Note que temos duas possibilidades: my C Hps ou my ,@ Hps. No
primeiro caso, concluimos que I'yy = 7. A seguir, assuma que my ¢ Hps. Neste
caso, I'yy = mw N Hps C mw. Note que, Hps e my sdao subvariedades de PP tais que
dimHps = 4 e dimm, = 2. Agora, visto que 244 —5 =1 > 0, entao segue do Teorema
7.2 (p. 48 em [11]) que Ty = my N Hps # 0. Além disso, sendo 7y e Hps fechados,
segue que I'y também é fechado. Dai, pelo Teorema 5.7 (p. 52 em [10]) segue que 'y,

pode se decompor em uma uniao finita de componentes irredutiveis, ou seja,
'y =XjU...UXy.

Novamente pelo do Teorema 7.2 (p. 48 em [11]), temos que a dimX; >2+4—-5=1
para todo i € {1,...,k}. Entretanto, como I'yy = X; U ... U X} C my, temos que
X; C mw para todo ¢ (com a inclusdo propria pois Ty € Hps). Segue que dimX; <1,
0 que nos permite concluir que dimX; = 1 para todo 7. Logo, I'yy é um curva plana
(uma vez que 'y esta contido em myy).

Por fim, afirmamos que o grau(T'yw) = 3. Com efeito, lembre que [v;] = p; = Q™ (F})
e com isso, Ty = (p1, P2, p3) = {[a1v1 + vy + asvs] | [a1 1 as ¢ as] € P?}. Por outro
lado, 7y esta em bijecio com P2, assim ¢ € I'yy se, e somente se, ¢ = [ 01 +aavy+3v3]
para algum [y : o : as] € P2 e f(q) = 0 (lembre que Hps = Z(f) C P°). Dai, defina

g = g(xg, 1, 22) = f(zov1 + 2102 + 2203).

Note que, g é um polindomio homogéneo de grau 3 visto que f é homogéneo de grau 3.

Portanto, segue o resultado. [

Conforme o Exemplo temos que Iy = mw N Hps = Z(y1, y2,v4) N Z(f) =
Z(y1,¥y2,Y3, f). Sendo assim, p = [po : p1 : P2 : p3 : ps : ps] € ['y se, e somente se,
p1=p2=ps=0ce f(p) =0, ou seja,

Yo %yl %yz po 0 0

[ = %yl Y3 %y4 = f(p) = |0 ps 0| = Yoysys = 0.
1 1
SY2 Y U 0 0 ps
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Note que, mw = Z(y1,%2,y3) — P? dada por [rg : 0 : 0 : 2y : 0 : ] — [z9 : 27 :
Ts] € uma bijecao. Neste caso I'yy € uma curva ctbica plana singular, representada

geometricamente na Figura [3.1] a seguir.

Figura 3.1
Z(x0)
P
Z(x1)

De posse do resultado anterior se I'y, for uma curva, temos duas possibilidades:
'y € singular ou I'yy nao é singular. Trataremos primeiro o caso em que Iy é nao
singular.

No que segue do texto,
e /4 p denota a reta pasando pelos pontos A e B;
e Para cada ponto P em P°, denotaremos por P a conica associada via Q;

e Usaremos indistintamente, no caso das retas em P?: L = Z(agz¢ + a1z; + ass)

ou L = aprg + a1x1 + asxs.

3.2 I'y é nao singular

Seja W € G3(S2) tal que I'yy é um curva nédo singular. Para este caso, vamos

comecar com o seguinte resultado preliminar.

Lema 3.2.1. Seja C uma cibica nao singular. Entao, existem pontos A, B,C, D € C

tais que
1. A€ C ¢ um ponto de inflexao;

2. B,C,D sao pontos distintos e colineares em C e lyp = TpC para todo P €
{B,C,D}.

Demonstracao. Segue uma representacao geométrica do que queremos mostrar
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Figura 3.2 Representacao da ctbica nao singular

0 ./

A menos de uma MCP podemos assumir que C = Z(G) C P? sendo
G = 23w + 207% + 5 + ameriT5 com a € C tal que a® # —27 (cf. Teorema 6, p.
3 em [I8]). Considere A =[1:0:0] e note que VG(A) = (0,1,0) uma vez que

VG = (2zox; + 22+ axy 29, 20T, + x% + axoy, 3T2 + axgry).

Assim, A é um ponto nao singular da curva, cujo o plano tangente é dado por

S_Z(A> St DA+ O () :v) — Z(z).

T = Z
AC ( 81‘1

Além disso, TACNC = Z(x1)NZ(G) = {[1:0: 0]} = {A}. O que nos permite concluir
que A é um ponto de inflexdo, provando o primeiro item. Prosseguindo, considere a
familia de retas que passam pelo ponto A, ou seja, definidas por Z(ax; + fxz) com
[ : B] € P'. Logo, podemos representar tais retas por lo, = 1 com [ : f] = [0: 1] € P*
ely,=xy —ux; com [a: 3] =[—u:1] €P.

Note que, lo = Z(x1) = T4C logo .o N C = {A}. Por outro lado, p=[z:y:z] €

[, N C se, e somente se,

Z=uy Z=uy

22y +ay? + 22 Faxyz =0 y($2 + zy + uly® + auzy) =0

Como solugbes para o sistema, percebe-se que y = 0 implica em z = 0 do qual temos
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

p=1[1:0:0] = A. Por outro lado, as solugdes p = [z : y : 2] do sistema
z=uy
2 + 2y + uy? + auxy = 0

verificam que y # 0 (caso contrario, teriamos x = y = z = 0), entdo podemos supor

y=1.Logo, p=[x:1:u] comx € C tal que
2° + (14 au)z +u® = 0. (3.2)

Ou seja, 1, NC = {A, [z :1: u]} com z solugdo da Equagao (3.2). Note que ao impor
que #l, N C = 2, segue que o discriminante da Equagao (3.2)) deve ser nulo, isto ¢,

1+ 2au + a*u?® — 4u® = 0. (3.3)

2

Logo, u ¢ solucdo da equacdo 4t* — a*t* — 2at — 1 = 0, a qual admite trés solucdes

distintas, digamos b, ¢ e d. Assim, obtemos a partir de (3.2)) para u € {b, ¢, d} os pontos

B = [— (1+ab) :1:6},02 [— (1—i—ac) :110} e D= [_—(1+ad) :1:d].
2 2
Visto que
1
(I +ab) 1 b
) 2
_< _;CLC) 1 cl = O
14 ad
_ﬂ 1 d
2
conclui-se que B,C e D sao distintos e colineares. E pelo teorema de Bézout temos
que Iy p = TpC para P € {B,C, D}. Portanto, temos o resultado. ]

Lema 3.2.2. Considere W, = [x} — x129, 2071, (11 — 22) (71 — axy)] com a € C—{0,1}

em G3(Ss). Entao, T'yw, € uma cibica nao singular.

Demonstragcao. Primeiramente, vamos determinar a equacao para o plano my, em
P5. Considere F} = IL‘(Q) — xxe, Fy = wory e F3 = (17 — x2)(x1 — axy). Assim,
W, = [Fy, Fy, F3] e p; = Q '(F;) parai=1,2,3 édado por p =[1:0:0:0: —1:0],
ppo=0:1:0:0:0:0epg=[0:0:0:1:—1+a): al. Observe que
L = boyo + b1y1 + baya + bsys + byys + b5ys esté no ideal associado a myy,, se

L(pl) = O<:>b0—b4:()<:>b4:b0
Lips) = 0<==0b,=0
L(pg) = 0« b3 — (1 +a)b4+ab5 =0.
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Logo, L = by(yo + (1 + a)ys + ya) + baya + b5(y5 — ays). Assim, mw, = Z(Lq, Lo, Ls),
sendo Ly = yo+ (1 + a)ys + vya, Lo = y2 € L3 = y5 — ays. Dai, por definigao, temos que

FWa = Tw, N H]PS = Z<L17L2>L37 f)7 com

1 1
Yo 291 2?/2
1 1

f: - - .

291 Y3 294
1 1
2y2 2y4 Ys

Considere, p = [yo : y1 : Y2 : ¥3 : ¥a : y5] € P°. Note que:
pElw, <= w=—-(1+a)ys —ys, 12=0, ys =0ays e f(p) =0.

Ou seja, p € 'y, se, e somente se,

—(14+a)ys —ya %Zh 0
9, Y3, ya) = %yl Y3 %y4 = 0.
0 %ZM ays
Isto é,
o0, s ) = yi + (a + Dysyi — 4ayzy —44a2y§’ —days(a+1) —ayiys _ (3.4)

Afirmacgao: I'y, é nao singular.
Lembremos que ¢ € Sing(I'y, ) se, e somete se, Vg(q) = 0. Calculando as derivadas
parciais em (3.4)), obtemos que Vg é igual a

( ayiys ayi +yi — Sayzys — 12a°y3 — 12ay3 — ayi 3y + 2aysys + 2ysys — 4ay§) (3.5)

2 4 ’ 4 T
Note que, se ¢ = [y1 : y3 : y4] € um ponto singular entao y;y3 = 0 (visto que a # 0). O
que nos leva a considerar os seguintes dois casos:

Se y3 = 0, entao segue das outras equagoes que y; = y4 = 0.
11 = 0. Neste caso, verifica-se que y3 = 0 se, e somente se, y, = 0. Assim,

vamos analisar o caso y; = 0 e que ys3, y4 sao ambos nao nulos. Podemos assumir que
ys = 1. A partir de (3.5 obtemos

ay? +y2 — Say, — 12a* — 124 = 0
3yi + 2ay4 + 2y4 —4a=0
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

vVaz+1lda+1+a+1
(§]

para a segunda equagao, obtemos como solugoes ¢; = —

3
vVa?+1lda+1—-—a—1 o . . : .
Co = 3 , substituindo ¢; na primeria equagao, no sistema acima,
temos
2 (aQ\/EJr 14avk + vk +a® — 3302 — 330+ 1)
=0 (3.6)

9

sendo k = a®> + 14a + 1. Entretanto, observe que pode ser escrita na forma:
k~k%+(a+1)(a2—34a+1) = 0. De onde, segue que k? = —bonde b = (a+1)(a*—34a+1)
implica que k* = b>. Como k = a* + 14a+ 1 e b = (a + 1)(a® — 34a + 1), checamos
que k* — b* = 108a(a — 1)*. Portanto, 108a(a — 1) = 0 onde temos um absurdo pois
a € C—{0,1}. Analogamente, ao substituir ¢ obteremos um absurdo. Portanto, segue

que ['yy, é uma cubica nao singular. O

Proposicao 3.2.1. Com as notacoes do Lema se W € G3(Ss) ey € uma cibica
ndo singular, entio existe o € Aut(lP?) tal que p @ W = W, para algum a € C — {0, 1}.

Demonstragao. Considere W € G3(95) tal que I'yy seja uma ctibica nao singular. Segue

do Lema [3.2.1] que existem pontos A, B,C, D € I'y, tais que:
e A é um ponto de inflexao;
e {B,C,D} C I'iy — {A} sao distintos e colineares.

Note que, cada ponto de 'y, estd associado a uma conica em C (de modo que a cada
ponto @ € I'y associaremos a conica Q € C). Além disso, a reta L determinada pelos
pontos B,C e D é do tipo (6) na Tabela Assim, existe ¢; € Aut(P?) de modo que
as conicas associadas a B, C'e D sdo da forma, B = 22 —22, ' = 2> —a22 e D = 22— z2.
Considere os pontos P =[0:0:1], Po =[1:0:0] e Ppb =10 :1: 0] determinados
pelas intersecdes das componentes de B, C' e D. Por outro lado, O € L = lpc e O

esté associado a uma conica nao singular O (visto que O ¢ I'y,). Logo, temos que

O = p(a?—a2?) +v(? —22) com - v #0
O = pay+(v—pai—vaj
0 = — o~ (=)t ad
v v
O = ka—(1+ka?+22  comk=-LecC—{0,-1}.
v

Afirmagao 1: A € Hps — Aps.
De fato, como Sing(Hps) = Aps, se A € Aps, entdo A seria um ponto singular, o

que é um absurdo pois A é ponto de inflexao.
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Assim, segue que A estéa associado a um par de retas distintas, e portanto, as retas
la,p com P € {B,C, D} sao do tipo (5) na Tabela [2.2]
Afirmacgao 2: Os pontos Pg, Pc e Pp pertencem a exatamente uma das componentes
da conica A.

De fato, observe que l40 ¢ do tipo (3) na Tabela ou seja, geometricamente

temos a seguinte representacao para as conicas A e O.

Figura 3.3

Suponha por absurdo que Pg pertenca a ambas das componentes da conica A.
Logo, como A e B sao distintos e [4 g nao é uma componente de 'y, geometricamente

temos

Figura 3.4

PB PB

Note que, as conicas B e O se intersectam em trés pontos distintos, donde podemos
conlcuir pelo Teorema que a reta lp g € do tipo (5) na Tabela , 0 que é um
absurdo ja que lp g = L ¢ do tipo (6). O mesmo racioncinio se aplica para CeD.

Sendo assim, temos trés possibilidades (representandas geometricamente abaixo)

para a posicao dos pontos Pg, P e Pp em relagao as componentes da conica A.

Figura 3.5

Logo, as possibilidades para A sdo: xo - Ly, x1 - Ly, xo- Ly. Para A = To - Ly

temos que a componente 2o = 0 encontra a conica O = kxj — (14 k)7 + 23 nos pontos
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3. Classificacio das orbitas em G3(Ss) sob a acdo de Aut(P?)

0:1:ulef0:1: —u] sendo u> = k+ 1. De onde concluimos que existem duas
possibilidades para a componente L; (que é a reta tangente nos pontos indicados), a
saber L; = xo+wux; ou Ly = x5 —uxy. Escolha Ly = x5+ uxq, assim, em resumo temos

que

A 2 2.9 2 3} 3 2 2 A 2
O = kxg — ux] + x5, A= zo(xg +uzy), B=2a;—27, C =2x7

2 0 _ 2 2
—x5 e D =ua5—x.

Dai, considerando my = (O, A, C) temos que

Wi=gpreW = [ka] —u*2? + 23, x0(z0 + uxy), 25 — 23]

15 [lmg + (29 +uxy) - (w9 — uxy), xo(22 + uml),4u2(xf — x%)]

Considere a base {xg, 7y + uzry, o — uz;} de Sy, assim existe R € Aut(C?) tal que

Rexg = 19, Re(x2 4+ uxi) = 21 € Re(x9 — uxy) = —kxo. Note que,
(xo +uwy) + (2 — ury) = 2x9 => Re(2x9) = 11 — ko,
(o +uxy) — (12 —uxy) = 2ury = Re(2uxi) = x1 + ko.

Logo, sob a acao de R,, obtemos

k —k 1

2wy — 2x9 > nf key ulen = k) =— [(1 —u)zy + k(1 + u)xg],
u u u
k —k 1

20y + 2wy > L R + wz — kzs) = — [(1 +u)xy + k(1 — U)I2i|
u u u

Agora considere oy € Aut(P?) determinada por R € Aut(C?). Assim, p, @ W) := W,

é dado por
Wo = [kaf — kaiza, mox1, (1 — w)zy + k(14 uw)zs) - (1 + vz + k(1 — u)zs)]
W, & (kaf — kayaa, xoxy, ((_kxl + k(1 + “)%2) : ( — Ky + k(1 — u)2x2)]
w, (25 — 12, 2oz, (21 4+ (1 + w)?zs) - (21 4 (1 — u)’zy)],

com u # +1 (pois u = +1 implica que k¥ = 0). Por fim, seja Ry € Aut(C?®) de modo

que (R2)e(x1) = 1, (Ro)e(2) = (11—2“)2 e (Ry)e(zo) = (1;7_—0”)2, assim, considere
@3 € Aut(P?) determinada por R, € Aut(C?). Logo,
Wi =ps0Wy = T Tot (x129) (21 — Mm )]
3= ¥3 2 - (1+U)2 (1+u)2)(1+u)27 142 1 (1+u)2 2

MB
= [23 — 1129, mox1, (11 — T2)(T1 — aT2)]
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

1—u\2
com a = (1 n u) ea¢ {0, 1}. Portanto, segue o resultado. O
u
Proposicao 3.2.2. Considere W € G3(5,) tal que I'y € nao singular. Entao,
oG
1. Existe uma unica cibica [G] € P(Ss) tal que W = [Gyy, Gay, Gay] sendo G, = Pz
Ly

comi=0,1,2.
2. A cubica [G) em[l € nao singular e ndo € projetivamente equivalente a cibica

(x5 + 2% + 23] € P(S3).

3. Reciprocamente, se [G] € P(S3) € nao singular e nao é projetivamente equiva-
lente a cibica [z} + o5 + 1], entdo Ty, € uma cibica nao singular, sendo

WG = [Gxovau GIQ] S G3(52)

4. O invariante fundamental jo associado a uma cibica nao singular [G] € P(Ss)

classifica os elementos W € G5(Ss) sob a agio de Aut(P?).

Demonstragao. 1. Considere W € G3(Ss) tal que I'yy é nao singular. Segue da Propo-
sicao que existe ¢ € Aut(P?) tal que o ¢ W = [F|, Fy, Fy] sendo F} = 22 — 2129,
Fy = zox1 e Fy = (7 — x9) - (1 — axg) para algum a € C — {0,1}. Assim, vamos

procurar [G] € P(S3) de modo que

We =[Gy, Gayy Gay] = [F1, Fo, F3). (3.7)
Segue de que
Go =1 By +01F + 1 Fs, Gy = aoly + 0o Fs + coF5 e Gy, = ashy + bsFy + c3F;

com a;,b;,c; € C, i =1,2,3. Visto que Gupzy = Gayagy Grozs = Gagze € Gayzos = Gagays
a partir dessas trés relagoes, obtemos um sistema de 9 equacoes lineares nas incognitas

(com o auxilio do software MAXIMA) (a;, b;, ¢;), a saber:

b 0 2@2 0 )
ap 01 € 0 ((I + 1)(12 a 0 2((1 - 1) 0
] B e (e A v 1N Lt A
as bg C3 0 2CLCL2 0 0 %2,
(a— 17
Logo, temos que
Goo =2(a—1)*Fy, Gy, =(a—1*F—(a+1)F; e G, = 2aFs. (3.8)
De fato, a = 1= (1+u)? = (1 —u)? = 4u = 0= k = 1 (absurdo) e a = 0 = 113 —

0 = u = 0 (absurdo).
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Assim, por uma mudanga de base, temos que [G,,, Gy, Gy,| = [F1, Fa, F3]. Por fim,
pela identidade de Euler, segue que 3 - G = 2¢G,, + ©1G,, + 22G,,. Logo, a menos de

um multiplo por escalar, temos que
G = 3(a—1)%xiz, + 3ax’sy — 3(a® — a)xy25 — (1 + a)z’ + 26’3,

2. Primeiro mostraremos que [G] é nao singular. De fato, lembre que p € Sing(G) se,
e somente se, G, (p) = 0 para i = 0,1,2. Tendo em consideragao e o fato de que
a ¢ {0, 1}, conclui-se que p € Sing(G) se, e somente se, p € Z(Fy, Fy, F3).

Assuma que p = [po : p1 : p2] é um ponto singular de [G]. Visto que Fy = x} — 1179,

Fy = moz1 € F3 = (21 — 22) (21 — axy), dai

P — pip2 =0 (3.9)
pop1 =0 (3.10)
(p1 = p2)(p1 — apz) =0 (3.11)

Se po = 0, entao por p1 = 0 ou po = 0, mas se p; = 0 em (3.11])
temos ap3 = 0 o que implica em p, = 0. Por outro lado, se p, = 0 segue o mesmo
raciocinio e concluimos que p; = 0.

Se p1 = 0, entao em temos que pyg = 0 ¢ em Py = 0.

Logo, segue que Sing(G) = (). Portanto, [G] é ndo singular.

Por outro lado, [G] ndo é projetivamente equivalente a [zj + 7 + x3]. De fato,
considere H = xj + 2% + x3. Logo, Wy = |25, 7], 235] € G3(S;). Assim, de acordo com
o Exemplo [3.1.1], temos que I'yy,, é uma ctibica plana singular. Entretanto, I'y,, é uma

cubica plana nao singular. Portanto, nao sao projetivamente equivalentes.

3. Sendo [G] € P(S;3) nado singular, a menos de uma MCP podemos assumir que

G = a2} + 2} + 25 + 3\zz172 com A € C — {~1,—w, —w’} tal que w € C com

w? =1, w # 1. Segue do item (b) no Teorema 4.1 em [II] que jg # jg, com

Go = x3 + 2% + 23 sendo jg e jg, o j—invariante associado as curvas [G] e [Go]. Tendo
A3(N3 —8)
27(A¥ + 1)
Jao # Ja segue que A # 0 e A ¢ {2,2w, 207},

Afirmagao: Se Wg = [z + Av179, 2] + AT, 75 + Azozy] com A ¢ {0, —w', 2w},

em consideracao que jg = (cf. [11]), se G = x3 + 2% + 5 + 3\z¢7129. Como

entao I'y,, ¢ uma ctbica nao singular.

De fato, seja P € I'yy,, = mw, NHps. Lembre que a P € my,, se associa uma conica

P = a(a? + Azyx5) + b(a? + Azows) + (a2 + Azozy) com [a: b ¢ € P2
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Assim, se a conica P é singular, segue que

bA
A
2

C

a
cA

B
2

=0 <= (a®+ 0+ )N\ — (\ +4)abe = 0.

SIS

(A3 +4)
)\2

¢ {—1,w,w?}. Pois, se

Como X # 0, segue que a® +b* + ¢* —
(A3 +4)
32

abc = 0 define uma ctibica singular se, e

somente se, —

WAy 35\ 4 oo _
e 1 <= N3 +4=0= A+1)(A=2)"=0<= e {-1,2}.
Procedendo de forma analoga, para os demais valores (w e w?) obtemos que

A ¢ {0, —w', 20" ?:0, tendo em vista que A nao assume esses valores, segue a afirmacao.

4. Seja W € G3(S,), se I'yy define uma ctbica ndo singular, entdo existem [G,] € P(S3)
ndo singular que nio é projetivamente equivalente a [zj + x5 + 23] e ¢ € Aut(P?) tais
que

0G, 0G, 0G,
Oxo’ Oxy  Oxs

oW =Wg, =

3.3 TI'yy é singular e irredutivel

A partir de agora, vamos concentrar nossa atengao na classificacao das érbitas no

caso em que 'y € singular e irredutivel. Ou seja, 'y, € uma cibica nodal ou cuspidal.

Lema 3.3.1. Seja C C P? uma cibica nodal tendo P por singularidade. Entdo, existem
A, B € C — {P} distintos, tais que A é um ponto de inflexao e TpC =4 p.

Demonstrac¢ao. Segue da Proposi¢ao B.5 (cf. p. 53 item (1) em [2]), que a menos
de uma MCP, C = Z(G) com G = zix9 — 13 — x575. Note que VG = (=327 —

27012, 22129, 25 — ). Logo, P = [zg : 1 : x5) € Sing(G) se, e somente se,

—315 — 2mowy = O, (3.12)
21’11‘2 = O, (313)
i —x2 = 0. (3.14)
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

De segue que 1 = 0 ou z9 = 0. Se z; = 0, entao a partir temos que
zg = 0, logo P =[0: 0 : 1]. Por outro lado, se x5 = 0, entdao a partir e
concluimos que zg = 27 = 0. Portanto, [0 : 0 : 1] é a tnica singularidade de C.

A seguir considere A =[0:1:0]. Observe que A € C e que VG(A) =1[0:0:1],
assim, T4yC = Z(x3), além disso, temos que T4C N C = {A}. Portanto, A é um ponto
de inflexao. Por outro lado, considere a familia de retas passando por A, isto é, aquelas
definidas por, L = x5 e L, = x¢g — uxy com u € C.

Note que, L = T4C. A seguir, vamos determinar v € C tal que #L, N C = 2.

Observe que, Q = [zg : x1 : 23] € L, N C se, e somente se,

o = 2379 — uxh — ulry = o (2] — u¥(u+ 1)23) = 0.
T} — 9 — T — Tiwn =0

Queremos que 7 —u?(u+1)z; = 0 admita uma tnica solugdo, ou seja, u*(u+1) = 0.
Assim, w = 0 ou u = —1. Note que, se u =0 entdo @ =[0:0:1] = P. Seu = —1
entdo ) = [—x2:0: 2] =[-1:0:1].
Afirmacao: Se B=[—1:0:1] entdo l4 5 = TpC.

De fato, lap = Z(xo + 2). Por outro lado, TpC = Z(Lg) sendo Lp = gﬁ(B) .
Lo
oG oG
zo+ %(B) ~x1+ %(B) - 5. Como VG(B) = [—1:0: 1] segue que Lp = —x¢ — Z2.
Portanté, lap = TBC.2 O

Lema 3.3.2. Se C C P? for uma cubica cuspidal tendo P por singularidade, entdo

existe A € C — {P} ponto de inflexdo e existe uma unica reta Lp passando por P tal
que Lp N C = {P}.

Demonstrag¢ao. Novamente pela Proposi¢ao B.5 (p. 53 item (2) em [2]), a menos de
uma MCP podemos supor que C = Z(G), sendo G = z,27 — xp. Assim, segue que
VG = (=323, 2x129, 27) e conclui-se que P = [0 : 0 : 1] é a tnica singularidade de C.
Note que, A =1[0:1:0] € C satisfaz VG(A) = [0: 0 : 1], logo T4yC = Z(z3). Visto
que T4CNC = {A}, concluimos que A é um ponto de inflexdo. Considerando a familia
de retas passando por P, ou seja, Lp = Z(x;) e L, = Z(xg — ux), com u € C.

Note que Lp N C = {P} (z; = 0 implica em x¢ = 0), isto ¢é, a reta Lp intersecta a

curva somente no ponto P. Considere () = [x¢ : 21 : 23] e observe que

To = Uty 2 3.3 _ .2 3
Qel,NC <= = 1720 —uwx] = xy(r2 —u'xy) = 0.
rize — ) = 0.

Se :17% =0, entdo zy = 0 e obtemos Q = P. Por outro lado, se 2o — uz; = 0 entdo
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Q = [uwy : 2y ulny]) = [u:1: 4. Assim, Z(zo—uz;)NC = {P,[u: 1:u*]}. Portanto,

Lp é a Gnica reta que passa por P e nao intersecta a curva em outro ponto. O

Proposicao 3.3.1. Seja W € G3(S2) tal que Ty € uma cibica singular irredutivel.

Entao, verifica-se que

1. Se 'y é uma ciubica nodal cuja singularidade se corresponde com uma conica em

Hps — Aps, entdo eviste o € Aut(P?) tal que o o W = [1oz1, 25 — 7179, T — T3] ;

2. Se 'y € uma cibica nodal cuja singularidade se corresponde com uma conica em

Aps, entio eviste p € Aut(P?) tal que ¢ @ W = [xox1, 75 — 2179, (11 + 22)?];

)

3. Se 'y € uma cibica cuspidal, entdo a singularidade de 'y, se corresponde com

uma conica em Aps e existe o € Aut(P?) tal que p @ W = 12 — 2129, 1071, 73]

Demonstragao. Assuma que I'yy é uma cubica nodal. Segue do Lema que existe
A € I'y ponto de inflexdo, B € I'y — {A} tal que l4 p = Tl'w. De fato, se P € I'yy

for sua singularidade entao temos a seguinte representagao geométrica para 'y,

Figura 3.6: Representagao para uma cubica nodal

B
O
l
T,C B,P

Sendo O o ponto de intersecao das retas T4C e g p. Observe que O ¢ Iy,
logo O se corresponde com a conica nao singular O. Além disso, temos que A, B

e P se correspondem com coénicas singulares A, B e P, respectivamente. Note que
mw = (4,0, P) e além disso

L lA’p, lA,Ba lB’p, lB,O7 lp’() sao do tipO (5) na Tabela
e l40 ¢ do tipo (3) na Tabela2.2]

Como W = [A, O, 15] e tendo em vista o tipo da reta [ 4 o, segue que existe p; € Aut(P?)
tal que Wi = o @ W = [1129, 25 — 1071, ]51]
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3. Classificacio das orbitas em G3(Ss) sob a acdo de Aut(P?)

Considere ¢, € Aut(P?) tal que zg — 2o, 71 — 1 € Ty — To. Assim,

W2 = P2 [ ] Wl = [xoxl,xg — X1X3, L1 . Lg] (315)

~

Por simplicidade, no que segue do texto, considere A = moz;, O = 75 — 7179 € P =
Ly - Ly. Além disso, sejam x4 e xp 0 ponto de intersecao das componentes de A e P.

A partir de agora, considere os seguintes dois casos: P € Hps — Aps € P € Aps.

[Caso 15 P € Mo — A,

Como P € Hps — Aps e lpp ¢ do tipo (5) na Tabela , temos que analisar as

seguintes possibilidades de acordo com a posicao relativa de PeO:

Figura 3.7

xTp
rp

(i) zp € O (i) zp ¢ O

(i) z, € O.

A seguir, vamos analisar as possibilidades para a posi¢ao relativa das conicas A e

P em Wy (cf. )

(i-1) zp pertence a uma das componentes de A. Como I, p ¢ do tipo (5) (na Tabela
segue que x4 = [0: 0: 1] # xp. Entretanto, [4 o é do tipo (3) (na Tabela .

Com isso, temos a seguinte representagao:

Figura 3.8
o = 0
xTp
I = 0
TA
Ly Lo
Assim, necessariamente xp = [0 : 1 : 0]. Portanto, L; = axo + bry e Ly =

a1+ b1 79, com a, ar,b,by € C—{0}. Assim, L, - Ly = aa 3 + (aby + a1b)zozs + bby 23
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Dai, por uma mudanga de base obtemos

aby + a1b aa
2 2 2 1 1 1
Wy = [xox1, 2§ — X1T9, T5 + proTe + vrg] com p= ———) v =

bb, T bby

Seja 3 € Aut(P?) tal que xg — xo, 2, — Ty € Ty — Ty + 01, com 6 solu-
cdo da equacdo t* + ut + v = 0. Assim, ao aplicarmos @3 teremos A —s ToT1,

O +— x% — T1T9 — Oz €

A

Py a3+ 023 + 203079 + pvors + pbrh + vy

— x5+ (20 + ) aors + (07 + Ou + v)afy = 15 + pTore, com puy = 20 + p.

Logo,

2 2
Wi = 30 Wy = [xory, x5 — 122 — Ox0T1, T5 + (1T0T2)

MB 2 2
= [rox1,xf — X1T9, TH + p1ToT2).

Sendo assim, temos duas possibilidades: p; = 0 ou uy # 0.
o 11 =0.

Considere G € Wy = [wox1, 25 — 7119, 5. Logo, G = axoxy + b(x] — 2129) + cx3 com

[a:b:c] €P? temos

b
5| = det(Mg) = b* — a’c.

o Nl o

De onde concluimos que I'y, é uma cubica cuspidal, o que ¢ um absurdo pois I'y é

uma cubica nodal.

o 11 # 0.
_ , 1 1
Neste caso, considere ¢4 € Aut(P?) tal que zy —> —z9, T, — —5T1 € Ty — Ta.
H1 M1
Logo,
- 1 MB
A = ST = TeTy
My
A 1 1 MB
0O — —2xg — —5T1Ty = xg — T1T9
H1 H1
A 1
P3 — .CIZ'% — ulu—xon = Ig — T2
1

2 2
Segue que Wy = ¢, @ W3 = [zoz1, 25 — 2122, T5 — Toa).
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1
Seja agora @5 € Aut(P?) em que xg — T, Ty — T1 € Ty —> Ty + 5%0- Assim,

A — Tox1

A 1 MB
0O xo — T1Tg — §$0$1 = JJO — T1T9
R 1 1 1
2 2 2 2 2
Py —— a5 4+ —xf + ToT2 — ToT2 — —Ty = Ty — =T,
4 2 2
Com isso, temos
1 MB 1
2 2 2 2 2
W5 = o5 @ Wy = [xox1, 25 — 2122, T5 — 5:1:0] = [xoxy, x5 — 2120, 25 — 5;511’2].

Seja g € Aut(]P’2) na qual xg — 2xg, r1 — 4x1 e 9 — x5. Assim, aplicando pg e

por uma mudanca de base obtemos

B
We =0 Ws = [10T1, T8 — 2120, 75 — 2129] = [20T1, Tg — X179, Tg — T3).
Definindo O, = x] — 2oTo, NOte que
O+0, = T2 — 2129 + 10 — ToTo (3.16)
O0-0, = T2 — 2119 — 22 + 2029 = (0 — 21)(T0 + T1 + T2). (3.17)
Agora, considere ¢; € Aut(P?) em que xg — 79 — T, T; > 5(350 + a1+ x9) €
To — To + T1. Segue que,
~ 1 (3.17 1 MB A
A — ($0—$1)§(l‘0+$1+l‘2) = (O 01) = 0—01
R 1
O — (%0—%1)2— §($0+l’1)($0+l’1+l‘2)
2 2 L, 2
— x5+ 2] — 2x071 — 5(% + x] + 2xow + ToT2 + T1T2)
— L2 + L2 3 =
—x5 + =27 — 3ToT] — =ToTa — —=T1T
9 0 9 1 041 2 042 9 142
MB x% — T2 + x% — XoTo — 6x9x1 (8.16) O+ 01 — 601
Pg — (CL’() -+ $1)2 — (ZL’O — I1)2 = 4I0[E1.

Com isso, temos que Wy = @7 ¢ Wy = [O — Ol, O+ 0, — 6xor1,4xor1]. Note que
MB

A A A A MB B
W7 = [O — Ol, O -+ Ol,ZL‘ol’l] = [01, O onl] = [I()ZL’l, (L’g — X1T9, (L’? — [Eol’g].

Donde chegamos ao resultado.
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

(i-2) xp nao pertence a nenhuma das componentes de A.
Neste caso, temos que x4 pertence a uma das componentes de P (visto que l4 p é

do tipo (5)). Geometricamente, a situagao é a seguinte

Figura 3.9
AV
Ly
. Try = 0

Note que, xp = [ab : a® : b?] para algum [a : b] € IP’IH De fato, podemos assumir
a =1, assim xp = [b: 1 : 0% com b # 0, caso contrario zp pertenceria a uma das

componentes de A. Observe que, se L = aqrg + a171 + asxs € xp € L, temos que

ag + aq +a2b2 =0 = a1 = —aob— a2b2
— L =agxg+ (-aob — a2b2)$1 + a9

— L= Clo(ﬂﬁo — b.fCl) -+ GQ(J]Q — bQZ'l).

Como z4,zp € Li, segue da equagao de L acima que L; = z¢ — bxr;. Logo,
Ly = a(xg — bwy) + 29 — b*x; com a € C visto que (L; # Ly). Temos entdo duas

possibilidades: @ = 0 ou a # 0.
e a=0.

Neste caso, P = (zo — bx1) (29 — b*11) = T2 — b 2071 — b1y + b*23, com b # 0.

Assim,

Wi

2 2 3 92
[Tox1, 5 — T122, Toxe — b xoxy — bT1Te + b72]]
B

1S

2 3 2
[Toxy, XG5 — T1X2, ToTy — brixe + b 2]]

= [wox1, 25 — 2129, bP22 + 2o (10 — b1)].

?Se a =0, entdo xp = [0:0: 1] = 24 (absurdo).
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Seja o € Aut(P?) tal que zg — T, 1 — T € Ty — 2o + bxy. Consequentemente,

A — zom
O r—s :Ug — x1T9 — bxoxy MB :Ug — T1X
Py — 022 + (29 — bxo) (2 — bay)
— b3l‘% + Toxg — b:v?) — bryzo + bPzoxy MB b?’xf + Toxs.

Diante disso, Wy = @, @ Wi = [10z1, 75 — 7129, b°23 + 2072
Considere @5 € Aut(P?) em que zy — axg, 1 — &’y e x5 — 29, com o € C

tal que o®

= Dai,

A MB

A — afrory = xoT1

A MB

0O — oz2x(2) — Py = x% — T1T9

Py — bPata? + axgry = bPalar? + azgry = ax? + azgrs MEB r] — 202s.
Obtendo o resultado almejado W3 = @3 @ Wy = [zgz1, x% — T1T9, x% — ToTa).
e a#0
Neste caso, Ly = a(xg — bxy) + 29 — b*x, com ab # 0 e por uma M B obtemos
Ll-ngsa:(Q)+tx%+mox2 coms=a—b, et=ab®+b>

Logo, Wy = [wowy, 12 — 2129, 575 + t27 + 2013).

A seguir, considere @y € Aut(P?) tal que xg — T, Ty — Ty € Ty —> Ty — STg.
Observe que, A e O se mantém invariantes a menos de uma MB e
]51 2y sxg + ta:% + xox9 — sx% = tx% + xpxs.

Com isso, temos duas possibilidades: ¢ = 0 ou ¢ # 0.

Se t = 0, entdo Wy = , @ Wi = [20x1, 23 — 212, ToT»]. Verificamos (com auxilio
do software MAXIMA) que I'yy, é uma cubica redutivel.

Para t # 0, considere 3 € Aut(P?) tal que zy — azg, T1 — a1 e Ty — Ty

3

com « € C tal que o = 7 Assim,

A MB
A — Brory = xory

MB
0O 042333 — olrzy = ch — T1T9

- MB
Py — ta%% + axgry = —cw:% + axgry = x% — XoTa.

Logo, W3 = @3 @ Wy = [xg11, x(z) — X1%2, xf — xox3] obtendo o resultado desejado.
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

(ii) zp ¢ O.
Analogamente, precisamos considerar duas possibilidades:
(ii-1) zp pertence a exatamente a uma das componentes de A=z
Suponha que zp pertenca a componente dada pela equacao zg = 0, que represen-

tamos graficamente a seguir:

Figura 3.10
Tp
E
7 R Y :L'l — O
L fra
Ty = 0

De modo que L; = T5O sendo E = [b: 1 : b%. Note que, zp # [0:0: 1] = x4
(estd na reta o = 0) assim xp = [0: 1 : ¢].

De fato, como VO = (—2x0, 22, x1), temos L; = TpO = —2bxg + b2y + x5, além
disso, zp € TxO o que implica b> +t = 0. Assim, zp = [0:1:—b%. Observe que as
retas passando por zp e distintas de xg = 0 sao da forma: axy + x5 + b2z, = 0, com

a € C. Logo,
Ly = —2bxg + x9 + b2, e Ly = axg+ x5 + b?xy com a € C.
Temos duas possibilidades para a: a = 0 ou a # 0.

e 0 —=0.

Assim, Ly = xo + 0?11 e Ly - Ly = (—2bxg + 29 + b*11) - (22 + b*x1). Portanto, a menos
de uma M B, Wy = [xox1, 75 — 2129, —2bT015 + x5 + 2672129 + b'2?).
Considere g € Aut(]P’2) determinada por xg — g, T1 —> 1 € Ty —> X9 + 2bxg.

Assim,

P ¥ 2bxg(x + 2bx0) + (22 + 2b20)? + 20222 + 20%%, (2 + 2bxo) + bl

V2 a2 4 2bagry 4 b2 (apos uma MB).

Logo, ap6s uma M B temos Wy = [vox1, 75 — 2129, 75 + 2bzozs + b*2?]. A seguir,
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

1 1
considere 3 € Aut(P?) tal que xg — —x¢, 71 — =T € Ty — To. Logo,

b b2
A —s bigﬂl?o% " rom
0 — blzxg - 6—12:751@ MP T8 — 1179
Py — 22+ 26%1’01‘2 + b4bi4xf = 73 + ToTo + T7.

Dessa forma, W3 = [2971, 75 — 2179, ¥5 + 2972 + 27]. Utilizando o software MAXIMA,

verifica-se que I'y, é uma cubica ndo singular (absurdo).
e a#0.
Neste caso, Ly = axg + 2 + b’z; com a # 0. Assim,

pl = L1 . L2 = (IQ — 2b$0 + bQSL’l) : (CLLUO + X9 + 1)2131).

Apés M B obtemos W, = w21, 2g — 2129, T] + 125 + w109 + vrors + d27]. Considere
©o € Aut(P?) tal que zo — 20, 1 — T1€ Ty — 2o + Oz com 6 solucdo da equacio
a1t> + vt 4+ 8 = 0. Note que

P 2 a? 4op(ad 4 0202 + 20201,) + pa (w0 + Ox0) + vag(xy + Oxo) + 0x2

e 2] + zo(NTo + 1171 + 1170).

Segue que Wy MB (2071, 7§ — 1129, ] + T2 (N9 + p1 71 +1170)]. Considere p3 € Aut(P?)
tal que xg — awgy, 1 —> x1€ T5 — Y9 com v € C tal que v ==eaeC tal que
n

o® = ~. Note que

Rz 2 2. 2 _ 2 2

Py = 27+ a5 + per1xs + vax0xs = ] + Ty + [oX1Te + VeXoTo.
Logo,

2 2 2
Wi =p30Wy = [xox1,T5— 2102, T] + T3 + floT1T2 + VoZols]

MB 2 2 2 2
= [rox1,xy — T1T9, T] + T35 + floT] + VaZoTa).

Agora, seja @, € Aut(]P’2) determinada por xy — xg, 1 — 1€ To —> Ty + Oy com
6 solucdo da equacao t* + vot 4 p15 = 0. Neste caso, A e O sdo fixadas por 4 (a menos

de uma MB) e

5o P32 2 2,2 2 2 2 2
Py — a7 + x5 + 0725 + 202022 + poxy + 1ox0x2 + 1201y = 27 + 25 + V3T Ts.
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Portanto, Wy = [zoz1, 25 — 2179, T3 + x5 + 137073). Verificamos que Iy, é uma ciibica
nao singular (absurdo).
(ii-2) xp nao pertence a nenhuma das componentes de A.

Nesse caso, x4 pertence a exatamente umas das componentes de Ly - Lo = P

Segue uma representagao grafica deste caso

Figura 3.11
Ly 507 b
E
TP
N Ty = 0

sendo L; = T5O com E = [b:1:V]eLy=1I,,., Assim, de forma analoga,

obtemos

Ly = 29+ b%x; — 2bzy  (tangente) com b # 0

Ly =x9+ 11z (secante) com vy # 0.

Assim, P = Ly - Ly = x99 + b?zox1 — 2bx(2) + T2 + b21/1x% — 2bvixoxy.
Logo, W, MB [T0T1, Tg— 31T, ToTo+v1 7109 +b v 207 —2b2]]. Considere gy € Aut(P?)
tal que g — xg, 1 — 1 € Ty — 19 + 2bxy. Dali,
- MB
J AN xo(xe + 2bxy) — beg + 2y (19 + 2bxg) + BPya? = woxy + V1w my + bRy,
MB 2 2 2
Logo, Wy "= [xox1, 25 — T1%2, ToXa + 1T1T2 + 1ex]] sendo vy = bvy e by # 0. A

seguir, considere @3 € Aut(P?) tal que xg — g, T — T1 € Ty — Ty — V1 2. Assim,

A

P3 2 MB 2
Py = xo(xg — 11x0) + iz (e — 1120) + 1ex] = XoTg + oY

Dessa forma, W3 = @3 @ Wy = [zg11, w% — T1%g, ToTo + UQxf]. Para concluir, considere
1
w4 € Aut(P?) tal que zo — axg, 1 — a’rie Ty — 25 com a € C tal que @ = ——.

)
Com isso, temos

A MB
A — Brory = xory

MB
— Oé21‘g — Oélel'g = .Ig — 1T

O
~ MB
Py — axpre + a4x% = x% — XoTo.
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Portanto, Wy = [zoz1, 25 — 212, 1] — T3] e segue o resultado.

[Caso 2:| P € Ass.

Neste caso, j4 sabemos que existe ¢, € Aut(P?) tal que W, = [x170, 75 — 2179, L?].
Visto que [4 p é do tipo (4) (na Tabela [2.2]), geometricamente temos a seguinte repre-

sentacao para AeP

Figura 3.12
TA
L2
r1 =0
o — 0 !

com L = zo+aixg+asxri. Observe que os pontos () € O distintos de 4 sdo da forma
Q=1[t:1:t)]. Alémdisso, Q = [t :1:t?] € L se, e somente se, t*+a;t+ay = 0. Agora,
pelo tipo da reta lp p, queremos que tal equacao tenha duas solugoes distintas, ou seja,
af — 4ay # 0. Assim, por uma M B temos L? = x% + a%x% + a%x% + 2a1x9x2 + 20271 %2.

Considere @q € Aut(IP’Q) tal que g — g, 1 —> 1 € Ty — To — a1xy. Logo,

A ZNW 2. 2 2 2.2 2.2 2
Py = x5 + ajxg — 2a12072 + a1 + ayx] + 2017072 — 2077 + 2007179 = (29 + agmy)”.

Note que, se a; = 0 entdo Wy = [2¢71, 7§ + 7172, 73] e verificamos (com a ajuda
do software MAXIMA) que I'y, é uma cubica cuspidal (absurdo). Por outro lado, se
1

as # 0, considere 3 € Aut(P?) tal que 79 — axg, ¥] —> —T1 € Ty > Ty com
a2

a € C tal que a? = i Assim, W3 = 3 @ Wy = [2011, 75 — 2129, (12 + 1)?], portanto,
tem-se o resultado. “

Com isso concluimos a demonstracao dos itens 1. e 2.
3. Pelo Lema [3.3.2] existe A € T'y ponto de inflexdo, Lp reta passando pela singulari-
dade P de 'y tal que #Lp NT'y = 1. Assim, ao considerar que Lp N Ty'y = {O}

temos a seguinte representacao grafica

Figura 3.13: Representagao para uma cubica cuspidal

Lp

Tal'y
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Considerando W = [fl, 0, ]5] e sabendo que T4 C ¢é do tipo (3) na Tabela , entao
existe 1 € Aut(IP)Q) tal que Wy = @ W = [z, x%—xlxg, ﬁl] Suponha, por absurdo,
que P € Hps — Aps. Neste caso, temos que l40 € [po s@o do tipo (3) na Tabela .
Logo, ]51 =Ly Ly com zp, € O, L, tangente a O em xp, € Ly secante a O passando
por xp,. Temos duas situagoes a analisar:

(i) zp, pertence a exatamente umas das componentes de A= ToT1.

Como xp, # x4, temos a seguinte representacao grafica

Figura 3.14
Ty = 0
.I'pl
Ly
xA\ Ir = 0
L,

Donde temos zp, = [0 : 1 : 0], L1 = x5 ¢ Ly = x9 + pxo sendo p # 0. Assim,
Wy = [wox1, 25 — 2129, To(29 + pwo)] com g # 0. Utilizando o software MAXIMA
verificamos que 'y, é uma cibica nodal (absurdo).

(ii) xp, ndo pertence a nenhuma das componentes de A= zoxy.
Assim, temos que x4 pertence a exatamente uma das componentes de L - Lo. Note
que, se 4 € L4 sendo L = szlé teremos que x4 = zp, (absurdo). Logo, x4 € Ls.

Neste caso, temos a seguinte representagao grafica

Figura 3.15
ro=0
L,
Z p)
/ o r1 =0
Ly

Sendo zp, € O temos que wp, = [t:1:t*] comt #0. Logo, Ly = x5 + t*x; — 2tz

€ LQ :ZEO—th‘l.
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Com isso, a menos de uma M B, temos P, = xgxy — tx129 — t%% — 2tx3. Assim,

seja o € Aut(IP’Z) tal que g — g, 1 —> 1 € Ty — T9 + 3txy. Segue que
Pl REN ToTo + 3tx(2) — txymy — 3t2x0m, — tgmf — 2tmg MB ToTo — t%%.

1
Agora considere ¢35 € Aut(P?) tal que xg — axg, 11 — Br e 29 —> —z5 com 3 € C
o)

1
tal que 5° = e e a € C tal que o® = 3. Logo, a menos de uma M B, obtemos
W3 = 3 @ Wy = [wo21, 2 — 2179, ToTy — 77).

Verificamos com a ajuda do software MAXIMA que 'y, ¢ uma ctbica nodal (absurdo).
Portanto, P ¢ Hps — Aps.

Sendo assim, considere agora P € Aps, neste caso temos que l4 p, € lo p, sao do
tipo (4) na Tabela . Assim, temos Wy = [ro71, 75 — 7172, L?]. Como lap, € uma

reta do tipo (4), temos a seguinte representagao geométrica:

Figura 3.16
Ty = 0
[t:1:¢%
7 w1 =0
Como L determina uma reta tangente a O em t 1 : t2] segue que

L = 9 + t?z1 — 2tzo. Por uma M B, temos L? = x% + t4xf + 4t:cg + 2t2x 19 — AtxoTs.

Considere ¢, € Aut(P?) tal que zg — 2q, 11 — T1 € Ty — T + 2tzg. Logo,
L? x5 + 47 x] + Atzoxs + tra] + AtPx) + 2000wy — dtaory — SPE = (1o + )2

Com isso Wy = [mowy, 73 — 1129, (72 + t°71)%]. Se t # 0, entdo utilizando o software
MAXIMA verificamos que I'y, é uma cibica nodal (absurdo). E para t = 0 segue o
resultado. O

3.4 Iy € uma cubica redutivel

Proposicao 3.4.1. Se I'yy € uma cibica redutivel tal que I'y = I'y UT'y sendo I'1 uma

conica nao singular e T'y uma reta secante a T'y de modo que T'yNTy = {A, B}. Entao,
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

A, B € Hps — Aps ou A, B € Aps. Além disso,
1. Se A, B ¢ Aps entdo existe o € Aut(P?) tal que o @ W = w21, 75 — 1109, ToT2);
2. Se A, B € Aps entdo existe ¢ € Aut(P?) tal que p @ W = [23, 22 — 1119, 73].

Demonstra¢ao. Assuma que TaT'1NTgI = {O}. Assim, podemos considerar a seguinte

representacao grafica

Figura 3.17
O
B T,
I
Taly Tpl'y

Assim, W = [A, O, B]. Temos trés casos a considerar.

[Caso 1:] A, B € Hps — Aps.

Neste caso, I'y = l4 g € do tipo (7) e l4,0, [5,0 sao do tipo (3) na Tabela . Sendo
assim, existe ¢; € Aut(P?) tal que W, = o, ¢ W = [zoz1, x% — w19, Ly - Ls]. Pelo tipo

da reta [4 g, temos duas possibilidades: L = xy ou L; = .

e [, = xy. Necessariamente, Ly = 5. Assim, o resultado em 1. segue, visto que

Wy = [zozy, x% — T129, ToZz]. Temos a seguinte representacao grafica

Figura 3.18

leﬂfo:o

lL‘1:O

T4

e [, = x1. Neste caso, Ly é uma reta secante a O passando por z4. Temos a

seguinte representacao geomeétrica
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Figura 3.19

l’lzo

Logo, Ly = x1 + pux com p # 0. Assim,

W, = [xox1, 25 — 2179, (11 + px0) 1] ey [zoT1, T8 — 2129, T7).
Verificamos (novamente utilizando o software MAXIMA) que 'y, consiste de trés retas
distintas e nao concorrentes (absurdo).
[Caso2:| A€ Hps — Aps ¢ B € Aps.
Neste caso, {4 p ¢ do tipo (8), la0 ¢ do tipo (3) e Ip o ¢ do tipo (1) na Tabela .
Com isso, escolha ; € Aut(P?) tal que Wy = o, @« W = |22y, 25 — 2129, L?]. Sendo

la.p do tipo (8), temos duas possibilidades: L = zy ou L = ;.

e se L = x teremos Wi = [z¢z1, 23 — 7172, 75]. Neste caso, verificamos que Ty,
¢ uma cubica redutivel, cujas componentes sao uma reta dupla e uma secante

(absurdo).

e se L = x; teremos W, = |1y, 73 — 7172, 75]. Neste caso, 'y, é uma reta tripla

(absurdo).

A, B € Aps.

Temos que 14 ¢ do tipo (2), lao e lpo sao do tipo (1) na Tabela 2.2 Logo,
existe ¢; € Aut(P?) tal que W, = o, ¢ W = [22, 23 — 1179, L*] com L tangente a
O e {z1,L} LI. Observe que, podemos fazer uma MCP de modo que pela Pro-
posi¢ao existe @y € Aut(P?) em que ©(0) = O e @o(p) = [0 : 1 : 0],
w2(q) = [0:0: 1] para quaisquer p,q € 0. Assim, o resultado em 2. segue, visto que

2 .2 2
Wy = g @ Wy =[x}, 25 — 2129, X3). O

Proposicao 3.4.2. Se 'y é uma cibica redutivel tal que I'yy = T'1 Uy sendo I'y uma
conica nao singular e I'y uma reta tangente a I'y. Entao existe ¢ € Aut(]P’Q) tal que

peW = [xg, xory, To(x1 + X2)].

Demonstragao. Assuma que I'' N 'y = {A}. Considere B em I'y — {A} e

{C} =Ty N TgT', conforme ilustra a figura a seguir
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Figura 3.20

A C

Iy

B

I Tl

Sendo lp ¢ do tipo (5) na Tabela e T, Tc o ponto de intersecao de suas
componentes, temos duas possibilidades:
(CB-1) z¢ pertence a exatamente uma das componentes de L - Ls.

ou

(CB-2) zp pertence a exatamente uma das componentes de z(zs.

A seguir, note que W = [121, C, é] Temos duas possibilidades: A ¢ Aps ou A € Aps.
A € Hps — Aps

Note que, la,c C Hps ¢ do tipo (7) e la g, Ip,c sdo do tipo (5) na Tabela[2.2] Sendo
assim, existe ¢; € Aut(P?) tal que Wy = [zoz1, 2oZa, L1 - Ly] com x4 = [0:0: 1] e
zp =[0:1:0]. Analisando a posigao relativa de zoz1 e Ly - Lo, segue que
(AB-1) 24 pertence a exatamente uma das componentes de Ly - Lo

ou
(AB-2) zp pertence a exatamente uma das componentes de zz;.

A seguir analisaremos os dois casos acima levando em consideragao (CB-1) e (CB-
2).

Para (AB-1): Neste caso temos a seguinte representagao

Figura 3.21

TA

B TR

[EOZO L1 .171:0

A seguir vamos explorar as condi¢oes (CB-1) e (CB-2) neste caso.
Para (CB-1). Visto que x4 = [0: 0 : 1] € Ly, segue que Ly = x1 + bzxg com b # 0.
Note que, z¢c = [0 : 1 : 0] ¢ Ly, logo x¢ € Ly e Ly = x5 + cxg com ¢ # 0. Logo,

Ly Lo MB 21Ty + pwg com p # 0. Portanto, Wy = [, T, 712 + ). Verificamos
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

que 'y, € uma cubica redutivel cujas componentes sao uma conica nao singular e uma
reta secante (absurdo).
Para (CB-2). Note que, neste caso xp ¢ Z(xy). Logo, xp € Z(x2) e entdo
g = [1:s:0] coms # 0. Com isso, L1 = x1 — sxg com s # 0. Observe que,
as retas passando por zp sao da forma Z(ajxy + as(x; — sxg)) e {L1, L} & LI. Dai,
segue que Ly = w9 + v(xy — sxg). Assim, Ly - Ly MB T1T9 + l/xf + 1/32,@(2). Dessa
forma, Wy = [wox1, 1o, 1109 + va? + vs?az]]. Verificamos (utilizando o software MA-
XIMA) que T'y, é uma cibica redutivel cujas componentes sao trés retas distintas e
nao concorrentes (absurdo).

A seguir, vamos abordar o caso (AB-2).
Para (AB-2): Neste caso, temos duas novas possibilidades: (AB-2.1): x5 € Z(x¢) ou
(AB-2.2): zp € Z(x1).
(AB-2.1) x5 € Z(z0). Temos a seguinte representagao grafica

Figura 3.22

TB

=0
7 Ta v 1
Ly T 2

.CC():O

Tendo em consideragao (CB-1) e (CB-2) segue que:
Para (CB-1). z¢ € L; para algum 7. Neste caso, sendo 25 =[0:1:s/ com s #0e
que as retas passando por z g distintas de xg = 0 sao da forma L; = axy+ x2 — sx; com
a € C. Assim, se zc =[0:1:0] € L; temos por consequéncia que s = 0 (absurdo).
Para (CB-2). Observe que 25 =[0:1: s] com s # 0. Logo,

Ly Ly = (x9— sz +bxo)- (x3 — swy + baxg) com by - by #0

MB 9 2.2 2
= x5 — 252179 + 5777 + b1baxy.

Dessa forma, considere ¢, € Aut(]P’z) tal que xg — g, T1 —> T1 € Ty —> Ty + ST

Assim,

Ly- Ly &2 224 %2 4 2531wy — 252109 — 25°0% + 5222 + pa? com p # 0

¥2 2 2
= x5 + purg.
Logo, Wy = py @ W = [:onl,xg — T1T9, x% + ;w:g]. Verificamos que ['yy, uma cibica
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

redutivel cujas componentes sao uma reta dupla e uma reta secante (absurdo).

(AB-2.2) x5 € Z(z1). Neste caso temos a seguinte representagao
Figura 3.23

TB

7 A v Y0~ 0
Ly T 2
Ty = 0
com xp = [1 : 0 : s]. Note que, as retas passando por zp distintas de z; = 0 sao
da forma Z(ux; + x9 — sxg). A partir da posicao relatica de B e C temos:
Para (CB-1). Sex¢ =[0:1:0] € L; entdo u = 0. Assuma que L, = x5 — sxg ¢

Ly = w9 — sxg + pxy com p # 0. Logo,

MB

Ly Ly x% + s2x(2) + pxixs.

Se s # 0, verifica-se 'y, ¢ uma cibica nao singular. Por outro lado, se s = 0 e
sendo p # 0, verificamos que 'y, ¢ uma cibica redutivel com componentes trés retas
distintas (absurdo).

Para (CB-2). Neste caso xp € Z(x) ou xp € Z(x2). Sabemos que zp ¢ Z(x), logo
se xp € Z(x3) obtemos s = 0. Sendo assim, L1 = xo + b1zg € Ly = x9 + byxg € segue
que Ly - Lo MB 2 —|—/m:(2) com p # 0. Com isso obtemos Wy = [zoxy, 33(2) — 12, T2 —i—,ux(z)].
Verificamos que I'y, ¢ uma cibica redutivel cujas componentes sao uma reta dupla e
uma reta secante (absurdo).

A€ Aps

Neste caso, l4,¢ € do tipo (8) na Tabela . Assim, existe p; € Aut(P?) tal que
W, = [x5, 2011, L1 - Ly]. Além disso, temos que 4 p é do tipo (4) e I é do tipo (6).
Novamente, pela posigao relativa de B e C temos duas possibilidades:

Para (CB-1). Neste caso, xc = [0 : 0 : 1]. Assuma que z¢ € L;. Segue uma

representacao geométrica deste caso

Figura 3.24

L,
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Com isso, pelo tipo da reta [4 g temos que {Ly, Lo, z9} é LI. Dessa forma, temos
que L1 = x1 + axg, com a # 0 e Ly = x9 + bixy + boxg. Logo, por uma M B obtemos
Ly Ly = 3109 + b1 2% 4+ azozy. Assim, Wi = [22, 2oz, 2129 + b127 + axxs). Verificamos
com o auxilio do MAXIMA que I'yy, é uma ciibica redutivel cujas componentes sao
uma reta dupla e uma reta secante (absurdo).

Para (CB-2). Neste caso, temos duas possibilidades a analisar: xp € Z(x() ou

rp € Z(x1)

e 15 € Z(xy). Note que, podemos representar geometricamente na forma

Figura 3.25
Ly m}gz
Ty = 0

Dessa forma, xp = [0: 1: t] e a familia de retas passando por zp distintas da reta
x9 = 0, é dada por uxrg + 19 —try = 0 com u € C. Assim, Ly = xo — tx1 + bizg €
Ly = x9 — tay + bawg com by # by, 0 que implica (a menos de uma MB) Ly - Ly =
T3+ 1222 — 2tw 179 +axgrs, com a # 0. Em ambos dos casos, t = 0 ou t # 0, verificamos
que 'y, é uma cibica redutivel cujas componentes sao uma reta dupla e uma reta

secante (absurdo).

e xp € Z(x1). Conforme ilustra a figura a seguir

Figura 3.26
L :1;52
7 | Zo =0
T = 0

com xp =[1:0:t].
Sabemos que existe @y € Aut(IP’Z) tal que xog — xg, 1 — x1 € L1 — x5. Dessa

forma, obtemos xp = [1 : 0 : 0] e Ly = w9 + pxy com p # 0. Por fim, considere
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3. Classificacio das orbitas em G3(Ss) sob a acdo de Aut(P?)

1
3 € Aut(IP’Z) tal que o — g, x1 —> —x1 € X9 —> To. Assim, obtemos
[

1 :B[

1
W3 = 30 Wy = [12, ;560331,552(372 + N;xlﬂ x3, 2071, T2(T1 + 72)].

Portanto, segue o resultado. O

Proposicao 3.4.3. Seja I'yy = 'y Uy U 'y sendo T'; retas distintas para @ = 1,2, 3.

Verifica-se que
1. As retas 'y, I's e I's nao sao concorrentes;

2. Se A, B,C sao os pontos singulares de Ty (ilustrada na sequinte figura)

Figura 3.27

entao temos duas possibilidades:

(a) A, B,C € Hps — Aps e existe o € Aut(P?) tal que oW = [zox1, ToTa, 117);
(b) A, B,C € Aps e existe o € Aut(P?) tal que o ¢ W = |23, 2%, 23].
Demonstracao. 1. Suponha pelo absurdo que I'y = 'y UI'yUT'3 sendo I'y, I'y e I'3 retas

distintas concorrentes em P. Considere, uma reta L tal que P ¢ L e {A;} = LNT;

para i = 1,2, 3. Conforme ilustra na figura a seguir

Figura 3.28
I'3
>3‘ r,
A3
I
P AN
L

Assim, W = [Al, P, Ag] Temos duas possibilidades: P ¢ Aps ou P € Aps.
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

P € Hps —Aps. Dessa forma, perceba que l4, p, L4, p s80 do tipo (7) e la, 4, €
do tipo (6) na Tabela [2.2| Assim, existe ¢; € Aut(P?) tal que

Wy = o @ W = [xgx1, xox2, L1 - Ls]. Visto que mdc(f’,Ag) =# 1 segue que: L; = xy ou

Ll = XZ9.
e se L = xg, entdo xy é fator comum das trés conicas, logo Wi C Hps (absurdo).

e se L; = xo, entdo segue que {xg, T2, Lo} é LI. Assim, Ly = x1 + a120 + asxs €
MB .
Li- Ly = z129 + agxg. Logo, Wy = [zoz1, Toxa, X129 + aga:%]. Verificamos que

['w, consiste de trés retas distintas ndo concorrentes (absurdo).

P € Aps. Agora, note que la, p, la, p sdo do tipo (8) e la, 4, ¢ do tipo (6)
na Tabela . Assim, existe ¢; € Aut(P?) tal que Wy = ¢, @ W = [zoz1, 23, L1 - Lo).
Porém, como mdc(lS, AQ) # 1 temos que Ly = x¢, logo xy ¢ um fator comum das trés
conicas, novamente teremos que W; C Hps (absurdo).

Portanto, temos que as retas I'y, I's e I'3 nao sao concorrentes.
2. Segue do item 1. desta proposicao que I'y, I'; e I's sao retas distintas e nao concor-

rentes. Assim, temos a seguinte representacao geométrica
Figura 3.29

ISRNVAY

r
/A B

sendo A, B, C' os pontos singulares de I'yy,. Observe que, W = [A, f?, C’] e temos os
seguintes casos a analisar:
A, B,C € Hps — Aps. Perceba que la ¢, lap € lp o sdo do tipo (7) na Tabela
. Com isso, existe 1 € Aut(P?) tal que Wi, = ¢, ¢ W = [z, 5072, L1 - L.
Como mdc(A,C) # 1 e mde(B,C) # 1 temos que Ly = #; e Ly = x5. Portanto,
Wy = [xox1, To2, T125] provando o item 2.(a).
A, B € Hps — Aps e C € Aps (a menos de uma reordenagao). Sendo assim,
temos que Ly ¢ e lp e sdo do tipo (8) e 145 ¢ do tipo (7) na Tabela2.2] Dessa forma,
existe ¢ € Aut(P?) tal que Wy = ¢, @ W = [zox1, Toxs, L?]. Como mde(A,C) # 1 e
mdc(B, C) # 1 temos L = Z(xp). Logo, W) = [wox1, To2, 73] C Hps (absurdo).
A€ Hps — Aps e B,C € Aps. Neste caso, temos l4 p e l4¢ sao do tipo
(8) na Tabela Assim, existe ¢; € Aut(P?) tal que W, = ¢, ¢ W = [z¢71, 75, L?].
Sendo mdc(A7 C) # 1 temos que L = xy ou L = x1, em ambos dos casos verifica-se que

W1 C Hps (absurdo).
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

A, B,C € Aps. Note que, lac, lap e lpc sao do tipo (3) na Tabela .

Dessa forma, existe ¢; € Aut(P?) tal que W) = ¢, ¢ W = [25, 2% L?]. Escreva

- MB
L = agrg + ayxy + asxs. Note que, se a; = 0 entao Wy = [x%,xf,xoxl] C Hps

(absurdo). Assim, L = xs + boxo + b1x; e pela Proposigao existe @, € Aut(P?)

tal que mg — xg, 71 — 1 € L — 1y, Logo, Wy = py @ Wy = [27, 23, 3], provando

assim o item 2.(b). Portanto, segue o resultado. O

Proposicao 3.4.4. Se I'yy € uma cubica nao reduzida tal que I'yy =11 ULy sendo I'y
uma reta dupla com reta suporte em M tal que M NTy = {P}. Entdo M N Aps € nao

vazio. Além disso,

1. Se #M N Aps = 1 entdio P ¢ Aps e emiste ¢ € Aut(P?) tal que

oW = |13, xowy, 1125);
2. Se #M N Aps = 2 entao
2-1. Se P € Aps entio existe o € Aut(P?) tal que o ¢ W = |13, 23, 2125];
2-2. Se P ¢ Aps entio existe o € Aut(P?) tal que p @ W = [12, 27 m5(z0 + 71)].
Demonstragao. Considere A € M —{P} e B € I'y — { P}, conforme ilustramos a seguir
Figura 3.30

Iy
B

I

A

Segue da Observagao[2.3.2lque MNAps consiste no maximo de dois pontos distintos.
Assim, temos trés casos a considerar:
A reta suporte de I'; nao contém pontos em Aps.

Neste caso, A, P € Hps — Aps e W = [/1, P, B] Assim, [4 p ¢ do tipo (7) na Tabela
. Logo, existe ¢; € Aut(P?) tal que Wy = o, @ W = [z¢z1, 2oT2, L1 - Ly]. Note que,
areta lp p ¢ do tipo (7), logo temos duas possibilidades para L:

(i) Ly = x¢. Neste caso, obtemos que W C Hps (absurdo).

(ii) L1 = 9. Logo, lyp ¢ do tipo (5), x4 =[0:0: 1] e xp = [s: t: 0]. Entao, ao
analisarmos a posicao relativa de x4 e xg temos que:

(ii-1) w4 pertence a uma das componentes de x5 - Ly. Observe que, necessariamente
xa € Ly e Ly = x1 + pxy com pu € C. Neste caso, verificamos que 'y, é uma ctbica
cujas componentes sao trés retas distintas (absurdo).

(ii-2) xp pertence a uma das componentes de xory. Note que, se xp € Z(x), segue

que xp = [0:1:0] e Ly = bxg+ 22 com b € C. Como lgp C Hps é do tipo (7)
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

temos que {xg,xq,bro + xo} deveria ser LI, o que é um absurdo. Por outro lado,
se xp € Z(x1) temos que xp = [1 : 0 : 0] e Ly = x9 + pxy com g # 0. Assim,
Wy = [zox1, Toa, x2(22 + pa1)] € verificamos que 'y, é uma ciibica cujas componentes
sao trés retas distintas (absurdo).

A reta suporte de I'; contém exatamente um ponto de Aps.

Por conta da analise feita no caso 1, nao ocorre que A, P € Hps — Aps. Assim,
temos as seguintes duas possibillidades a analisar: (i) A € Hps — Aps e P € Aps ou (ii)
P e Hps — Aps e A € Aps.

(i) Neste caso, temos que 4 p ¢ lp p sao do tipo (8) na Tabela2.2] Dessa forma, escolha
@1 € Aut(P?) tal que Wy = o @ W = [wozy, 23, L1 - Ly]. Logo, pelo tipo da reta Ip p
temos que Ly = xg e {xg, Lo} ¢ LI. Assim, o mdc(fl, B’) = x¢ o que implica 4 g C Hps
(absurdo).

(ii) Segue que lsp ¢ do tipo (8) na Tabela . Escolha ¢; € Aut(P?) tal que
W, = o @ W = [23, z0z1, L1 - Ly]. Como lp,p C Hps temos mdc(]g,f’) # 1, segue
que L; = xy e obtemos Wy C Hps (absurdo) ou L; = z; e pelo tipo da reta l4 g temos

a seguinte representacao gréfica

Figura 3.31

%O

Escolha ¢, € Aut(P?) tal que 79 — 7, 11 — 21 € Ly — p. Assim,

Wy = o @0 W = [xg, ToT1, T1Ts), O que prova o item 1. desta proposigao.

A reta suporte de I'; contém exatamente dois ponto de Aps.

Tendo em consideragao o caso 1, para este caso, temos novamente duas possibili-
dades: (i) P € Aps ou (ii) P ¢ Aps.
(i) Neste caso, sem perda de generalidade podemos assumir que A, P € Aps. Perceba
que, lap € do tipo (3) na Tabela . Com isso, escolha ¢; € Aut(P?) tal que
Wy=p oW = [a:%,x%,Ll - Ly]. Como lp p C Hps, segue que Ly = z1 e {x1, Lo} é LI,

além disso, [4 g € do tipo (4). Assim, temos a seguinte representagio grafica

Figura 3.32

Lo r1 =0
/\ 2

/ x5=20
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Assim, existe ¢, € Aut(P?) tal que zg — 9, 1 — o1 e Ly —> x5. Logo,
Wy = py @ Wy = [22, 27, 7125]. O que prova o item 2-1. desta proposicdo.
(ii) Neste caso, vamos assumir que A € Aps e escolher C' # A € M tal que C €
Aps. Com isso, temos que 4 ¢ ¢ do tipo (3), e assim, existe ¢; € Aut(P?) em que
Wy = [x5,23, Ly - Ly]. Como lap e lpc sdao do tipo (4), temos que {L;,zg, 71} é
LI para algum i = 1,2. Suponha sem perda de generalidade que {Lq,zo, 21} é LI,
dessa forma existe @, € Aut(P?) tal que xg — o, 2, — o1 ¢ L — x5, Assim,
Wy = oy @ Wi = [25, 23, 25 - M]. Temos duas possibilidades a analisar: {M, zg, 21} é
LI ou LD.
(ii-1) Se {M,x¢,x1} for LI entdo M = xz9 + apxo + ajz;. Dessa forma,

Wy = [22, 23, 2o(22 + apwo + a1z1)]. A seguir, temos duas possibilidades a analisar:

e Se apa; = 0 entao, utilizando o software MAXIMA, verificamos que I'y, é uma

cibica cujas componentes sao trés retas distintas e nao concorrentes (absurdo).

e Se apa; # 0 entao, novamente pelo auxilio do softaware MAXIMA, verificamos
que I'yy, € uma cubica cujas componentes sao uma conica nao singular e uma reta
secante (absurdo).

(ii-1) Se {M, xg, 21} é LD. entdo M = x; + bxy com b # 0. Seja @, € Aut(P?) tal que
T — T, T1 — bry e Ly — my. Dai, Wy = p, @ Wy = [25, 25, 7a(z0 + 21)] 0 que
prova o item 2-2.. Portanto, temos o resultado. O
Proposicao 3.4.5. Seja W € G5(Ss) tal que I'yy é uma cibica nao reduzida que
possui uma unica componente irredutivel (ou seja, 'y, € uma reta tripla). FEntao,

existe © € Aut(PP?) tal que p @ W = [zox1, 25 — 7122, T7).

Demonstrag¢ao. Considere A, B pontos distintos na reta suporte [ de I'yy e O ¢ [,

conforme ilustra a figura a seguir:

Figura 3.33

%
Y I

2N

AN

ps

/

Assim, W = [A, O, B]. Vamos considerar os seguintes trés casos de acordo com a
distribuicao dos pontos A, B em relagao a Aps.
A, B € Hps — Aps.

Observe que, 140 ¢ lpo sao do tipo (3) e 1 ¢ do tipo (7) na Tabela[2.2] Esco-
lhendo ¢; € Aut(P?) tal que o, @ W = W, = w011, 72 — 2179, L1 - Ly]. Veja que, temos

duas possibilidades: L; = xg ou L = z7.
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

(i) L1 = x¢. Visto que A # B e concluimos que W = [xox1, 75 — 2179, ToT2]. temos a

seguinte representagao grafica
Figura 3.34

lel’ozo

Verificamos que 'y, é uma ctbica cujas as componentes sao uma codnica nao sin-
gular e uma reta secante (absurdo).

(ii) Ly = z1. Neste caso temos a seguinte representagao grafica

Figura 3.35

[0:0:1]/ L= =0

Ly

Dessa forma, Ly = 1 4+ bxy com b # 0. Assim, o resultado segue, visto que

B
Wy =[xz, 93(2) — 2129, 1 (21 + bxg)] = [$0$1,$(2) - :1:1932,:8?].

A€ Hps — Aps e B € Aps (a menos de uma reordenagao).
Neste caso, sendo l40 do tipo (3) na Tabela , escolha ¢, € Aut(P?) em que

Wy = o8 W = [2971, 75 — 2129, L*]. Como l4 5 é do tipo (8), segue que mdc(A, E) #1

o que implica em L = xg ou L = 4.

e Se L = xy entdo W, = [wox1, 75 — 1179, 73] e verificamos que I'yy, é um ctibica

redutivel cujas as componentes sdo uma reta dupla e uma reta secante (absurdo).

e Se L = x; entdo W) = [vox1, 75 — 7179, 73] € temos o resultado.

[Caso 3:] A, B € Aps.
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

Observe que l4 0, lpo sao do tipo (1) enquanto [4 g ¢ do tipo (3) na Tabela [2.2]
Assim, escolha ¢; € Aut(P?) tal que ¢, ¢ W = W, = |27, 22 — 2125, L?]. Considerando
as retas suporte de L? e a:f temos a seguinte representacao grafica

Figura 3.36

/ 1 =20

Observe que, novamente podemos fazer uma MCP de modo que pela Proposicao
existe o € Aut(P?) tal que o, — 2y e L — 25 € @2(0) =0. Logo, Wy = ¢q @
W, = [2], 25— 2129, 23] e verificamos que I'yy, é uma ctibica redutivel cujas componentes

sdo uma coOnica nao singular e uma reta secante (absurdo). O

3.5 Orbitas dos pontos W € G5(.5;) tais que 7y C Hps

Para determinar as orbitas dos pontos W € G3(S;) tais que my C Hps, temos o

seguinte lema que dara suporte aos resultados a seguir.
Lema 3.5.1. Se W € G3(S3) for tal que my C Hps, entao my N Aps € nao vazio.

Demonstracao. Considere W = [A, Z%, C’] Observe que, necessariamente os tipos das
retas 4, lac e lpc na Tabela variam entre os tipos (2), (7) e (8). Com isso,
se 45 for do tipo (2) ou (8), o resultado segue, como também se C' € Aps. Caso
contrario, escolha ¢; € Aut(P?) tal que ¢, @ W = W, = [xox1, 7072, L1 - Ls]. Sendo
lac e lpc do tipo (7), temos as seguintes possibilidades: (i) Ly = o ou (ii) Ly = ;.
(i) Note que, {xo, 21, Lo} e {xg, 2, Lo} s@o LI. Assim, Ly = x5 + a121 + apxy com

ay # 0. Logo, o resultado segue, visto que

B 2
W1 = [1'0371, Toka, .1'0(1'2 +a1x1 + CL().I'())] = [a:oscl, Toxa, IO}.
(i) Neste caso, sendo mde(B, C) # 1 segue que Ly = x5, Logo, Wi = [zx1, ToT2, T122]
e verificamos que 'y, € uma ctibica redutivel cujas componentes sao trés retas distintas

(absurdo). Portanto, segue o resultado. O
Proposicao 3.5.1. Considere W € G3(S3) tal que Ty C Hps. Entdo,

1. Se #W N A =1, entdo existe ¢ € Aut(P?) tal que p @ W = [3, 2071, ToT2);
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3. Classificacio das orbitas em G'3(Ss) sob a acdo de Aut(P?)

2. Se #W N A > 1, entio existe o € Aut(P?) tal que o @ W = [13, 17, mo15).

Demonstracao. Assuma que W = [121, B, é]

1. Se A€ Aps e B,C € Hps —Aps, entdo as retas 4 g e l4 ¢ sdo do tipo (8) e Ip ¢ sdo do
tipo (7) na Tabela . Escolha ¢; € Aut(P?) tal que Wy = ¢, @ W = [L? 2921, 2oZ).
Note que, necessariamente L = xg, ou seja, Wi = [x3, o1, ToTa].

2. Se A,B € Aps, entdo pelo tipo da reta Il p, existe p; € Aut(P?) tal que
Wy = ¢ @ W = [22,22,Cy]. Temos assim, duas possibilidades: (i) C; € A ou (ii)
Cy ¢ A.

(i) Cy € A, ou seja, C; = L. Neste caso, temos {zo, L} e {1, L} sdo LI, e assim,
temos duas possibilidades: L € [zo,z1] ou L ¢ [xg, x1].

(i-1) Se L € [z, x1], ent@o temos a seguinte representacao grafica

Figura 3.37
To = 0 T = 0
L
com isso, L = x1 + bxg com b # 0. Logo, W; MEB [mg, 22, ror1] e temos o resultado.

(i-2) Se L ¢ [z, x1], ent@o temos a seguinte representacao grafica
Figura 3.38

IQIO 33120

/ L
Dessa forma, existe g, € Aut(P?) tal que zy — 2, 3 — 21 e L — y.
Logo, Wy = @9 @ 1 P [x3, 27, v3]. Verificamos que I'yy, é uma ctibica redutivel cujas
componentes sao trés retas distintas (absurdo).
(i) Se Cy € H — A, ou seja, Cy = Ly - Ly. Note que, mde(A, C) # 1 e mde(B, C) # 1
segue que, necessariamente, L1 = xg e Ly = x1. Assim, W; = [w%,x%,xowl] e temos o
resultado. O

Na tabela a seguir, apresentamos a classificacao das érbitas em G3(5;) sob a agao

de Aut(PP?).
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3. Classificacio das orbitas em G3(Ss) sob a acdo de Aut(P?)

Tabela 3.1: Classificacio das orbitas em G3(S;) sob a acdo de Aut(P?).

) o< =

[zoz1, 28 + T122, 27 + ToT2) [xoz1,2d — 2122, (21 + 22)]

2
[z5 — z1®2, 2071, (1 — 22) (21 — AX2)]

RS}

x fxlxg,xoxl,xz xo:pl,xo — z1%2, ToT2] [m%,mg 711332,1%]
330,330331,332($1 + z2)] [zox1, Tow2, T122] [I(Q)aziwg]
() // (@) (/ (@) // (@)
[€3, zox1, T122] [€3, 23, x1 2] [€2, 23, x2(x0 + x1)]
S / /WW
N2
[xox1, 23 — 2122, 23] [x3, zow1, Toxa) (23, 23, zow2]

3.6 Sobre a dimensao das orbitas de G3(.Ss)

Nesta subsecao, nao vamos determinar a dimensao de todas as 6rbitas, resultantes
da agdo de Aut(P?) em G3(S;). Apenas, faremos o calculo para a érbita associada a
W = [xox1, Tox2, T122], no qual o leitor poderd visualizar mais uma vez as técnicas

utilizadas na Se¢ao 2.2 do Capitulo 2

Afirmacgao: Se W = [zgx1, ZoT2, T172], entdo dim(Oy ) = 6.

Considere ¢ € Ey determinada por T' € Aut(C?). Assim,
[T. (Io.’L'l), T. (Iol’g), T. (Ill'g)] = [onl, ToL2,T1T2|. (318)
Note que,

To(zoz1) = (Texo) - (Texw1) = (azo + bxy + cxa) - (a0 + bz + c123)
= aa1z; + (aby + a1b)xory + (acy + a1c)zors + bby 17

+  (bey + bie)wiwy + coys.

84
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Segue de (3.18)) que
To(zoza) = Qo1 + BroTs + YI122. (3.19)
Logo,
aa; =0, bby =0, ccy =0, aby + a1b = a, acy + ajc = 5, bey + bie = .

Assim, para o sistema acima segue a seguinte possibilidade:
ea=b=0(c#0)ec; =0.

Sendo assim, temos que Tyxg = cro. Segue que,
To(z022) = €1y - (a0 + baxy + CoTa) = canToTa + Chow 1Ty + certs.
Pela equacao temos que
CasToTo + cbox1T9 + cchg = axor1 + ProTs + YT 123,

Assim, sendo ¢ # 0 entao co = 0. Dai Tyzy = ayxg + by e Toxs = asxg + boxy. Dessa

forma,
T.(;Ulilig) = (alxo + blxl) . (CLQIO + bgﬂ?l) = alagscg + blng% + (CleQ + blag)ﬂfol’l.

Com isso, ajag = 0 e biby = 0. Se as = 0 entdo b; = 0 (uma vez que by # 0). Entao,

T..T() = CI9, T.Il = a1Xp € T.Ig = bg[[‘l. LOgO7

0 0 ¢
T = la; 0 0 e det[T '] = ca1by.
0 b O
. . . 1
Podemos supor que o valor do determinante seja igual a 1, assim ¢ = P Logo,
102
0 0 L
1 &1b2
T 1=1a, 0 0
0 b 0

Assim, dim(FEy ) = 2. Portanto, pelo Fato [2.5 temos que dim(Ow ) = 6.
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3.7 Sobre a especializagao das orbitas em G3(.5;) sob

a acao de Aut(P?)

A determinagdo das especializacoes realizadas pelos autores em [I] utiliza as mes-
mas técnicas da Secao 2.3 do Capitulo 2, com excecao de alguns casos, que deixamos
para o leitor interessado investigar. Assim, nos remetemos a determinar a especializa-
¢ao Ow — Oy sendo W = [zo21, 2oTa, T172) € W' = [23, oT1, T129].

Seja v : I — G3(S2) definida por
Y(t) = [25 — twowe, Toy, T12] € G3(S9).
Para t = 0 segue que v(0) = |22, moxy, 7125] = W'. Logo, 7(0) € Oy

Para t # 0 considere G € v(t). Logo, G = a(x3 — txowy) + bror; + cr129 COM

[a:b:c] €P? temos

b at
“© 5 Ty
bt
MG = g 0 g — det(Mg) = aC( 4+ C)
at ¢ 0
2 2

Segue que I'; ;) define uma cibica singular cujas componentes sao trés retas distin-

tas e nao concorrentes. Portanto, v(t) € Oy para qualquer ¢ # 0.
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Capitulo 4
Aplicacoes

Neste capitulo, destacamos algumas aplicacoes que podem ser realizadas a partir
da classificacio das orbitas de G3(Ss) sob a acdo de Aut(PP?), conforme a Tabela [3.1]
A seguir, faremos uma apresentagao descritiva, com base na Segao 7 de [I].

Vamos comecar abordando a classificacdo dos morfismos de P? em P? de grau 4 sob

a acdo de Aut(P?) x Aut(P?) indicada na Definigao [4.1.2}

4.1 Morfismo de P? em P? de grau 4

Vamos comecar revisando o conceito de morfismo, para logo indicarmos a definigao

de grau tao somente no caso do plano projetivo.

Definicao 4.1.1. Uma funcdo f : P* — P? é denominada morfismo (ou funcdo regu-
lar) se existem F, G, H € C|xg, x1, 5] homogéneos de mesmo grau tais que Z(F, G, H) =
De f(a) =[F(a): G(a): H(a)], para todo a € P?.

2y ¢ 2% define um

Por exemplo, f : P* — P? dada por [z : y : 2] — [z
morfismo.
Grau do morfismo: Considere f : P> — P? um morfismo. Definimos o grau de f,
grau(f) = #(f*(a)) com a € P?, sendo essa cardinalidade contada com multiplicidade.

O lema a seguir mostra que a defini¢ao de grau(f) independe do ponto escolhido.

Lema 4.1.1. Seja f : P> — P? 0 morfismo dado por f(a) = [F(a) : G(a) : H(a)] com
F,G, H homogéneos de grau d, entio grau(f) = d°.
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Demonstragio. Sejam a = [ag : a1 : ag] € P* e b € f~'(a). Note que:

fb)y=a <= [F(b):G(): H()] =[ap: ay: as)
< {(F(b),G(b),H(b)), (ap,ar,a2)} &€ LD

Fb) G(b) H(
<= o0 posto da matriz (b) &) ()] é igual a 1
Qo aq a9
F(b) G F(b) H(b G(b) H(b
) Go)| _|Fw m)| _|ew) BHO|
ag a Qg a9 ai Q2

Ou seja,

CL1F(b> - (l(]G(b) =0 (1)
f(b) =a <=  ayF(b) — agH (D)
asG(b) — a1 H (D)

0
0 (3)

Percebe-se que, se ap # 0 entao podemos obter a partir das equagoes (1) e (2), a

equagao (3). De fato,
—as - (a1 F(b) — apG (b)) + a1 - (aaF(b) —agH (b)) = ao(axG(b) —a1H(b)) =0
Assim, se ag # 0, entao o sistema acima é dado por

a1 F(b) — agG(b) =

f6) = 0 = 0
asF(b) —agH(b) =0

<~ be Z(alF — CL()G,G,QF — CL()H)

Para concluir, segue do teorema de Bézout que #Z(a1F — aoG,axF — agH) = d?,

contada com multiplicidades. O
A seguir introduzimos a no¢ao de morfismo do mesmo tipo.

Definigao 4.1.2. Considere f, g : P> — P? morfismos de grau d*. Dizemos que f e g

possuem o mesmo tipo se existem ¢, € Aut(]P’Q) tais que o seguinte diagrama comuta

f

P? —— P?
(’DW L/} isto é, o g= foop.

2 2
PTP

Usaremos a notacao f ~ g para indicar que f e g possuem o mesmo tipo. Observe
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que ~ define uma relacdo de equivaléncia no conjunto dos morfismos de P? em P? de

grau d>.

Proposicao 4.1.1. Sejam f,g : P* — P? morfismos de grau 4 dados por
fla) = [fila) = fala) : fs(a)] e g(a) = [g1(a) : g2(a) : gs(a)]. Verifica-se que f e g

possuem o mesmo tipo se, e somente se, Oy, 1,151 = Olgy.,g2,95]-

Demonstracao. Sejam [ e g dadas por f(a) = [fi(a) : fa(a) : fs3(a)] e
g(a) = [g1(a) : g2(a) : gs(a)] do mesmo tipo, ou seja, existem ¢, € Aut(P?) tais
que Yo g = fop. Assim, temos que

fr~g < WYog=fop
= Y(g(a)) = f(p(a)) YacP?
= P(gi(a) : g2(a) : g3(a)]) = [fi(p(a) : falp(a)) : fs(p(a))] V aecP?
= [g1(a) 1 g2(a) : g3(a)] = V7 ([fi(0(a)) = falp(a)) : fa(p(a))]) VaeP?

Se ¢! for determinada por S, entdo assuma que [S™!] = [ay;] (na base candnica de

CS). Assim, podemos reescrever a tltima equacao acima, da seguinte forma:

9:(0)  92(0) : 5(@)] = 157 (a(0(@): Lol(@). fal(@)]
= [P oudi(e(@) : 3 anfi(e(@) Y anfile(a))|.

Desta forma, temos que existe \;(a) # 0 € C tal que
Ma) - (1), ga(@). ga(@) = (D awdi(e(@), Y 0 fi(0(@), Y s fi((a))

= Ma)-gi(a) = Zaz‘jfj(@(a))a Va € P2,

3
Considere Fj(a) = Z a;; fi(p(a)). Assim,
j=1

Ma)gi(a) = Fi(a) <= Aa) = I;Z((Z))

se gi(a) # 0.

Note que, A : P? — C & uma funcéao regularﬂ e segue do Teorema 3.4 (p. 18 em [11])

'Seja Y C P um conjunto algébrico e p € Y. Uma funcio ¢ : ¥ — K ¢é dita regular em p,

se existe U, C Y vizinhgao aberta de p, F,G € K]z, ..., z,] homogéneos de mesmo grau tais que
F
G(u) # 0 para todo v € Uy, ¢ p(u) = GEU;’ para todo u € U,.
U
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que A é uma fungao contante, ou seja, A(a) = A\g € C. Assim, tem-se queﬂ

3
gi(xo,xl, Ig) = )\61 . (ZOZijT._lfj<I0, fL’l,Z‘Q)), para 1= 17 2, 3.
j=1

Tsso 1mphca que g; € [T._lfl,T._lfQ,T._lfii]‘ POI‘t&l’ltO; [91792793] = T—l ) [fla f27 f3]7
isto é, O[f17f27f3] = 0[91792793]' .

De posse deste resultado, segue que as classes determinadas pelos os morfismos de
P? em P? de grau 4 do mesmo tipo, é equivalente & classificacdo das 6rbitas de G'3(S5)
sob a acdo de Aut(IP?) cujos geradores ndo possuem zeros em comum.

Na tabela a seguir, listamos os zeros comuns dos geradores dos representantes
das orbitas em G5(S2) (cf. Tabela[3.1)).

Tabela 4.1: Zeros em comum dos representantes das érbitas

W = [f1, f2, f3] Z(f1, f2, f3)

(22, 021, ToTo) nao vazio

(23, 23, 2071 nao vazio

(2071, 75 — T129, 73] nao vazio

(23, 0T 1, T179) nao vazio

(23, 23, 2129 nao vazio

[To1, ToTa, T1T0] nao vazio

(23, ToT1, To (71 + 13))] nao vazio

(x5, 27, To(x0 + 71)] nao vazio
(x5, 27, 23] vazio

[Tox1, T8 — 2129, Tows] nao vazio
(23, 25 — T129, 23] vazio

(23 — 2129, ToT1, 73] nao vazio

[zox1, :vg + 2129, 22 + ToTo] nao vazio
[zoz1, 25 — T129, (21 + 72)?] vazio
(23 — 2129, oz, (71 — T2) (71 — aT2)] vazio

Dessa forma, os representantes dos morfismos f : P> — P? de grau 4 do mesmo

tipo sdo dados pelos geradores dos subespagos W € G3(S3) em azul na Tabela

ZNote que H;(zo,x1,22) = gi(x0, x1,x2) — A()_lFl-(xo,xl,xQ) é homogeénio e H;(a) = 0 para todo
a € P?, logo H; = 0.
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4.2 Classificacao das K-algebras artinianas graduadas
locais com fung¢ao de Hilbert (1,3,3,0)

Considere K um corpo algebricamente fechado e S = K[zg, x1, 23], com a graduacao
usual. Se I C S for um ideal homogéneo, entao o anel quociente 7 também é um anel

graduado. Dessa forma, considere

sendo Iy = (Fy, Fy, F3) +m®, com W = [F}, Fy, Fs] € G3(S2) e m = (g, 71, T2).

Observe que Ay, é uma K-algebra artiniana graduada loca]EI Além disso, note jue
o comprimento de Ay, ou seja, [(Aw) é dado por: I(Aw) = dimgAw sendo K = e
e n = (Tg, 71, 22) (de fato K = K) o corpo residual de Ay, conforme o Lema 7.2.5 (cap
7, p. 162 em [19)).

Exemplo 4.2.1. Seja W = [22, 2921, 7125] como na Proposicao item 1.

Dessa forma, Ay = Clxg, 11, 12]/ ({23, 2ox1, 1175) +m?), com m = (z¢, 21, 25). Note

que, C[zg, x1, z5] admite a base candnica

2 2 2
{17 Lo, L1, T2, Ty, LoL1, LoL2, L1, L1X2, Loy« - - }

€ m3 <$S,.§CO$1,wol’g,xoﬂfl,ll}on,xoxlxz,l’?,x x2,1’1$2,$2> LOgO temos que

T = = - 2 _2
{1,$0,I1,$2,$0I2,$1,5L’2} g AW

¢ uma base do C—espago vetorial Ay . Portanto, [(Ay) = dimcAy = 7.
Funcgao de Hilbert associada a uma K-algebra artiniana graduada (A, n)
Seja (A, n) uma K-algebra artiniana graduada local. Considere N o conjunto dos

inteiros nao negativos. Definimos a fun¢ao de Hilbert associada a A por

hga:N — N
n
nitl

1 — dimg

3E uma K-algebra visto que ¢ : K — Ay dada por a — @ ¢ um homomorfismo de anéis.
Além disso, € local (lembremos que Spec(Aw) estd em bijecao com {P € Spec(S) | Iw C P}. Assim,
Iy = (Fy, Fy, F3) +m? C P implica que m® C P. Entretanto, xi’ e m® para i = 0,1, 2. Logo, visto que
P é primo, segue que x; € P para todo i = 0,1, 2. Portanto, m = (zg, 21, 22) C P. De onde concluimos
que m = P). Além disso, Ay é artiniana (visto que Spec(Aw) = {n} sendo n = (Zg, Z1, Tz) segue que
a dimy,q1(Aw) = 0. Logo, como Ay é noetheriano e dimy(Aw) = 0, segue do Teorema 8.5 em [3]
que Ay é artiniana).

91



4. Aplicagoes

sendo K = o o corpo residual de A, n® = A, n' =n e n’ é o produto de i fatores de n.

Vale salientar que a notagao (1,3,3,0) indica que A é uma &algebra graduada ar-
tiniana local, cuja a fungdo de Hilbert é dada por h4(0) =1, ha(1l) = 3, ha(2) =3 ¢
ha(i)=0 VY i>3.

Exemplo 4.2.2. Considere o anel local (Aw,n) com W = |22 zoxy,7120] e
i
n = (T, T1, T). Iremos calcular ha,, (i) = dimg 1 para i=0,1,2,....
0 0
. n Aw .n
1. Para i = 0 temos priali K. Logo, ha,, (0) = dlmKE = 1.

A seguir por simplicidade, considere x = Tg,y = T7 € 2 = T3 em Ay .
2. Para i = 1 temos n' = (z,y,2) e n* = (2 2y,22,9% yz 2*). Note que,

1% = vy = yz = 0, assim n* = (x2,9?, 2%). Dessa forma,

n! (2,9, 2) 2 2 2 - n!
EZWZ[I‘Fn ,y+n ,Z+n]:>hAW<].):dlmK§:3.

3. Para i = 2 note que, n® = {0}, pois Iy = (3, Tow1, 1122) + n’. Assim,
2 n2

ﬁ = [$Z+n3,y2 +n3,22 + n3] — hAW(2) = dlmKE = 3.

4. Para i > 3 temos que ha,, (i) = 0, j4 que n* = {0} para todo i > 3.
Portanto, ha,, = (1,3,3,0).

Exemplo 4.2.3. Considere agora o anel local (Aw,n) com W = [zf,27,23] e

n = (Tg, T1, Tz). Calcularemos hga,, (i) = dimg para1=0,1,2,....

0 0
. n Aw . on
1. Para i = 0 temos A=, = K. Logo, ha,, (0) = dlmK; = 1.
Novamente por simplicidade, considere © = Tg,y = T7 € 2 = T3 em Ay .

2. Para i = 1 temos n' = (z,9,2) e n* = (2% xy,x2,9° yz,2°). Note que,

r? =y* =2* =0, com isso n* = (wy, vz, yz). Logo,

1

n (2,y,2) !

n

2 2 2 .
= PP pgn? iyt 240 = ha, (1) = dimg — = 3.
n?  (xy,r2,y2) w ety oz o aw (1) K
3. Para i = 2, note que n® = {0}, pois Iy = (z7, 27, 23) +n’. Assim,
n? n?
W = [:l?y+n3,:lrz +n3,yz + n3] — hAW(Q) = dlng = 3.

4. Para i > 3 hya,(i) = 0, uma vez que n’ = {0} para todo i > 3. Portanto,
ha, = (1,3,3,0).
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Observagao 4.2.1. Considere

AW _ (C[xO}:I;l? ':EQ] ’
w

com Iy = (F|, Fo, F3) + 0’ W = [F}, Fy, F3] € G3(S,) e n = (z,y, z) sendo x = 7,

Yy =T1,2 = Tz em Ay . Verifica-se que:
o hya, (0)=1;

e ha, (1) = 3, pois n = (z,y,2) e n* = (2%, 2y,22,y° y2,2°) ird eliminar todo
elemento de grau maior que 1 em n, ao passar ao quociente, o qual independe da

escolha dos geradores de W;

e ha,(2) = 3, uma vez que n* = {0} e sempre eliminanos trés elementos de n*

modulo Iy ;
e hy, (i) = 0 para todo i > 3, ja que n® = {0} para todo i > 3.

Para concluir esta breve exposi¢ao, indicamos a seguir um dos resultados principais

provado pelos autores Nancy Abdallah, Jacques Emsalem e Anthony Iarrobino em [1].

Teorema 4.2.1. Algebras artinianas graduadas locais A com fungio de Hilbert (1,3,3,0)
sao suavizaveis. Ou seja, A pode ser deformada em uma dlgebra suave de dimensao 7

(isomorfa & dlgebra produto K).

Com o objetivo de discutir brevemente o conceito de algebra suavizavel, que é
citado no teorema acima, reproduzimos a seguir (com um pouco mais de detalhes),

parte do texto da Sec@o 7.1 em [1].

4.2.1 Deformagao de algebras com fungao de Hilbert (1,3,3,0)

em uma algebra suave

K[Q/"O’ €, x2]
(F,G,H) +m3’

Uma algebra com funcao de Hilbert (1,3,3,0) tem a forma geral

sendo {F,G,H} LI em Sy e m = (xg, z1, x2). Considere

K[$0, Zy, x?]

Ay = '
° (23 + A\z129, 2T + ATo2, 75 + ATox1) + M3

Observe que:

2 2 2 3 2 2 2
<$0+/\$1$2, Xy +>\$0$2, Ty +)\.§L’0.T1> +m’ = <LUO +)\$1$2, Xy +)\$0$2, Lo +)\I0.§L’1, $0$1$2>.
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Logo, Ay = K[zg, 21, 2] /(25 + 2179, T3+ AT T2, ¥5+AT0T1, ToT1 7). A seguir, considere

a familia de algebras
Klzo, 21, 5]

A, —
t It

sendo I; = (13 + Ax179 + txo, ] + AToT2, T5 + AToT1, ToT172 + N1 — N?) " tad).
Lema 4.2.1. O conjunto Z(I,) € C* ¢ dado por

{(07 07 0)7 (_u7 )‘ua )\U), (—'U,, >\7U’7 >‘j2u>7 (_U’v )\jQU, /\jU)}

t
1+ M3

sendo u = e j uma raiz cubica primitiva da unidade.

Demonstragio. Observe que (zg,71,72) € Z(I;) € C* se, e somente se, satisfaz o

sistema:

/

T2+ ATTe —twg =0 (4.1)
o]+ Azore =0 (4.2)
73+ Awor; =0 (4.3)

(w12 + N1 = X°)'af =0 (4.4).
Segue da equagao (4.4) que
l‘o(l’lxg + )\Qt(l - )\3)_11'()) = 0. (45)

Dai, temos duas possibilidades:

se o = 0, segue das equagoes (4.2) e (4.3) que 1 = 0 e x5 = 0. Portanto,
obtemos o ponto (0,0,0) em C®.

se mg # 0, segue da equacdo (4.5) que z179 = —A*(1 — A*)"'zg. Subs-
t

tituindo essa ultima igualdade em (4.1) teremos que zy = B Ao substituir
t ) 1 1 At \2
Ty = EPRE em r1xy = —A“t(1 — A\?) "z, segue que x; = x_g <1+/\3) . Logo,
ao substituir xy = —; e xry = L. ( Al )2 em (4.3) teremos 3 = a® com
1+ A3 i) 1+ A3
a = 1 j_\t)\?). Assim, x% = o se, e somente se, Ty € {a, aj, osz} onde j ¢é a raiz cubica
primitiva da unidade. Dessa forma, segue o resultado. [

Em relacao a esses quatros pontos, os autores afirmam que, a localizacao da algebra
A; em (0, 0) é isomorfa a K[z, z1]/(z3, 23), tem comprimento 4; e as demais localizagoes
tém comprimento 1. Portanto, obtém-se uma deformacao plana de Ay em uma familia

de algebras isomorfas a K[zg, z1]/(x5, #3) x K*. Como todas as algebras artinianas com
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dois geradores sdo suavizaveis (cf. [6]) entdo K[xg, z1]/(z], 2]) pode ser deformada em

K*. Logo, Ay é deformavél em K'.

Observagoes 4.2.1. Entretanto, embora A, seja suavizavel, isso nao garante que Ay
seja alinhével, isto é, que admita uma deformagao plana a uma algebra curvilinea do
tipo K[z]/(x™). No caso especifico das algebras com funcao de Hilbert (1,3, 3,0), ainda

é um problema em aberto se elas sao alinhaveis ou nao.
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Apéndice A
Nocoes de Geometria Algébrica

Para deixar o texto autocontido, neste apéndice apresentamos os conceitos e re-
sultados béasicos que utilizamos no desenvolvimento do trabalho. O leitor também é
convidado a consultar os textos [17], [8], [I1] e [20].

Projetivizacao de um espacgo vetorial

Seja V um espago vetorial de dimensao finita sobre K. Em V' — {0} defina a seguinte
relagao: U~ v <= u= v, para algum A € K
Observagoes A.0.1. Com as notagoes acima. Observe que \ # 0. Além disso,

(a) ~ define uma relagao de equivaléncia em V' — {0};

(b) A classe de equivaléncia associada a v € V' (v nao nulo) ¢ dada por
t={ueV —{0} | u~v}=[v]—{0}.
sendo [v] = {Av € V | A € K} o subespago vetorial de V' gerado pelo vetor v.

_V-{0

~

Definimos a projetivizagao de V por P(V) :
Notacgao A.0.1. Considere V = K" como espaco vetorial sobre K. Usaremos a
notacao

1. P§ em lugar de P(K"™!) (Pg é chamado n—espaco projetivo sobre K);
2. P" em lugar de P = P(C"™1);
3.0 =[vg vy ¢ ... 1w sev = (vo,v,...,v,) € K" & ndo nulo. Neste caso,

Vg, V1, - - ., Uy, Sa0 chamadas coordenadas homogéneas de v € Py.

Observagao A.0.1. Se u,v € V — {0}, entao

u=1€P(V) <= u e v sao linearmente dependentes.

Assim, [vg: vy ...t vp] =[Avg i Avg oo Av,] em P VA # 0 em K
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Exemplo A.0.1. Vamos descrever os pontos em P" para n € {0, 1,2, 3}.

(i)
(ii)

(iii)

Se n = 0 entdo P° = P(C) = {[a]| ap € C, ag # 0} = {[1]}E|
Se n =1 entdao P! = P(C?) = {[ao : a1]| (ao, a1) € C?, (ag,a1) # (0,0)}.
Seja [ag : a1] € P* temos duas possibilidades, a; # 0 ou a; = 0.
e Sea; #0, entdo [ag: a1] =[ao-a;' 1a1-a;] =]a:1] com a=ag-a;’
e Sea; =0, entdo ag # 0 e [ag : ai] = [ag-ag"' : 0] = [1:0].
Logo, P! = {[a: 1] |a € C} U {[1 : 0]}.
Note que, a fun¢io ¢ : C — P' —{[1: 0]} dada por a — [a : 1] é uma bijecdo,
ou seja, em P! existe uma copia de C. Assim, temos a seguinte identificacio:

P' = {a:1] |a € C}U{[1:0]} ~ C U {oo}.

Nesta particao, [1 : 0] é denominado ponto no infinito e denotado por oo.

se n = 2 entdo P? = P(C*) = {[ap : a1 : as]| (ag, a1, as) € C* —{(0,0,0)}}.
Seja [ag @ ay @ as] € P2 Temos novamente duas possibilidades: a, # 0 ou ay =0.
e Seay #0,entdo [ag: a; : ap] = [ag-ay’ 1ar-ay as-ay'] =[a:b:1] com
a=ay-ay,' eb=a; a;’.
e Se ay =0, entdo [ag : a; : as] = [ag : a; : 0] com [ag : a;] € P,
Seja Lo := {[ag : a1 : 0] |[ao : a1] € P'}. Entdo a funcio ¢ : C* — P? — L,
dada por (a,b) — [a : b : 1] é uma bijecdo, ou seja, em P? existe uma copia de
(0
Logo, P* = {[a : b: 1] |(a,b) € C*} UL,. Note ainda que, [ag : a1] = [aq : a; : O]
define uma bijecdo entre a reta projetiva P! e a reta no infinito L.
se n = 3 entdao P* = P(C*).

De forma analoga, se H, := {[ao : a1 : as : 0] |[ao : a1 : as] € P?} teremos que
PP ={[a:b:c:1]|(a,b,c) € C} UHL,.

H. é denominado plano no infinito. Note também que, [ag : a1 : as] — [ag : a; :

ap : 0] define uma bijecdo entre o plano projetivo P? e o plano no infinito He,.

'De fato,

0:T<:>GON1<:>CL():G0~1.
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De forma geral, mostra-se que o n—espago projetivo P" adimite uma particao da
forma, P" = A U H. em que podemos identificar A4 como C" e H,, (denominado

hiperplano no infinito) com P"*.

A d—Grassmaniana associada a V' sobre K
Seja V um espago vetorial de dimensao finita n sobre K. Considered € {0,1,...,n}.

A d—Grassmaniana associada a V' é dada por:
Gq(V) :={W | Wé um subespaco de V' de dimensao d}.
Exemplo A.0.2. Seja V = R®.
e se d =0 entdo Go(R*) = {{0}}.
e se d =1 entdao G1(R*) = {[v] | v # 0 € R*}.
e se d =2 entdo Go(R*) = {[u,v] | v e v sdo LI em R*}.
e se d = 3 entdo G3(R?) = {R*}.

Observagao A.0.2. Seja V um espago vetorial sobre K de dimensao finita e positiva.
A fungao ¢ : P(V) — G1(V) dada por v — [v] é uma bijecdo. Logo, podemos
identificar P(V') com G;(V).

Poliné6mios homogéneos
Considere A = K]|xy,...,z,] o anel de polindémios nas variaveis zg, ..., x, com

coeficientes no corpo K.

Para cada I = (ig,...,4,) com ig, ..., inteiros ndo negativos. Definimos o mono-
mio #/ = -2} -... 2" e grau(x’) =g+ + - - - +i,. Vale salientar que z{ := 1V i.
Se F € Klzy, ..., x,], entdo F = E a;x’ com a; € K e
1 finita

grau(F) = max{ grau(z’) | 2’ ¢ um monoémio que comparece em F'}.

Graduacgao usual no anel de polindmios
Note que, A = K[z, ..., z,] € um espago vetorial sobre K. Para cada d > 0 inteiro,

seja Ay o subespaco de A gerado por mondémios de grau d. Assim,

o Ay =[x, x1,...,2,] = {aoxo + arz1 + - + apzy | ag, ..., a, € K}
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o Ay =[{z" | grau(z’) = d}].
Observagoes A.0.2. Com as notagoes acima, verifica-se que:
1. dim(Ag) = (” :lr d);

2. Os elementos de A, sao chamados de polinomios homogéneos;
3. Se F € Aje F # 0 entao F é chamado de polinbmio homogéneo de grau d.

4. Se F' € A é nao nulo de grau d, entao F' pode ser escrito de forma tinica como

F=F+F+---+F; comF;e€A;ie{0,...,d}.

Proposicao A.0.1. Seja K um corpo infinito. Considere F' € A = K|xy,...,z,]| ndo

nulo de grau d. Verifica-se que,
FeAj<= F(\xg,...,\1,) = M F(x,...,2,) VA EK.

Demonstracao. Seja F' € Ay. Logo, F' = Zalacl com a; € K, sendo 2! mono-
i

mios de grau d. Assim,

F(Azg, ..., A\x,) = Z ar(Azg)® ... (Ax,)" = Z ap Aot in) (glo L g
T I

= MF(20,...,22).

[<=]Seja F' # 0 de grau d. Dai, F' = Fy + Fy +--- + F; com Fy # 0.
Afirmacgao: F; =0V i€ {0,...,d—1}.
Pelo absurdo, suponha que exista um j € {0,...,d — 1} tal que F; # 0. Note que

F(Azo, ..., z,) = Fo(Azo,..., A x,) + Fi(Axo, ..., zp) + -+ Fy(Azo, ..., Axyp)
= FO—{—)\Fl(xO,...,xn)+---+)\dFd(;E0,...,xn).

Pela hipotese tem-se que F(Axg, ..., \x,) = A F(xg,...,z,). Logo

F0—|—)\F1(x07...,xn) + - +)\dFd(.T0,...7$n) == )\dF(xo,...,l‘n).
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Ou seja, Fy + AFy + -+ X 1E 1 + M F; = X F. Logo,
Fo+ AL 4+ X F + X E, = MFy+ ME 4+ -+ MEF,.
Assim, Fy + AFy 4+ X7 E ) = XY(Fy + Fy + -+ + F;_). Equivalentemente
Fo+ AF 4+ NFj 4 A X E - AN (Fy+ Fy -+ Fy ) =0 (A1)

Como Fj # 0 e K ¢é infinito, entdo existeﬂa = (ag, . .., a,) € K" tal que Fj(a) # 0.
Assim, a partir de (A.1)) obtemos

iixE@y—v(iiﬂm»:ﬂl

Agora considere
f@)=bo+bit+ ...+ bt + . byt =t by + b+ bg) € K[H]

sendo by = Fy(a) com k € {0,1,...,d —1}. Note que, f(t) #0e f(\) =0V A e K

(absurdo). Portanto, segue o resultado. O

Corolario A.0.1. Com as notagées da Proposicao [A.0.1. Assuma que F € Ay. Se
F(ag,...,a,) =0 entdo F(Aag, ..., a,) =0V X e K.

Demonstragao. Segue da Proposicao m que F(Xag, ..., an) = X F(ag, ..., a,) =

M 0=0VAeK O
Zeros de um polinémio homogéneo de K|z, ..., z,]
Se p = lag : ... : ay] € Pgx e FF € Klxg,...,x,] for homogéneo entao

F(p) := F(aq,...,a,). Definimos os zeros de F' em P} por Z(F) = {p € P | F(p) =
0}.
Se T' C A é formado por polindbmios homogéneos, entao definimos os zeros de T’

por

Z(T) =) 2(F).

FeT
Ideal homogéneo
Seja I C K|xg,...,z,] um ideal. I & dito homogéneo se existe uma quantidade
finita de geradores homogéneos de I.
2Seja K um corpo infinito. G' € K[z], G # 0 se, e somente se, existe (ag,...,a,) € K" tal que

G(ao,...,an) 75 0.
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O exemplo abaixo, mostra que apesar de I admitir geradores nem todos homogé-

neos, isso nao implica em I nao ser homogéneo.

Exemplo A.0.3. Seja I = (z — 3°,y) C ]R[x,y].ﬂ Note que, I = (z,y). De fato,
r=1-(—y)+y-yey=0-(x—y*)+1-y.

Proposicao A.0.2. Seja I C Kz, ..., x,] um ideal.
I é um ideal homogéneo se, e somente se, ¥ g # 0 € I de grau d tal que

g=go+ -+ gqg comg; € A; tem-se que g; € I Vi € {0,...,d}.
Demonstracao. Veja a Proposi¢ao 1.17 (p. 58 em [17]). O

Zeros de um Ideal homogéneo
Seja I C Klxg,...,,] um ideal homogéneo tendo {F;}¥_, como um conjunto de

geradores homogéneos. Definimos os zeros de I por

Observagao A.0.3. Se [ = (F},..., Fy) sendo F; € Klxo,...,x,] homogéneos V i e

{G4,...,G4} for outro conjunto de geradores de I, entao
k d
Z2(F) =2
i=0 i=0

Exemplo A.0.4. Seja I = (3xg—x1, xo—222) C R[zg, 21, 2]. Iremos calcular Z(I) em
PPZ. Por defini¢ao, Z(I) = Z(3z¢ — 1) N Z (2o — 21). Considere a = [ag : a1 : as] € P3.
Note que
a€Z(l) < 3ap—a1=0 e ay—2a2=0
< a1 =3a9 € ag=2as

< a=|ag:3ap:2a] =1[1:3:2].

Portanto, Z(I) = {[1:3:2]}.

Exemplo A.0.5. Seja J = (zox1) C Rlzg, 21, 22]. Entao, Z(J) = Z(x) U Z(z1).

3Lembre que se I = (Fy,...,Fy) e J = (Gy,...,G,) sdo ideais em K[z, ...,z,] entdo verifica-se:
I=J< F,eJeG;el paratodoi,j.
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De fato, considere a = [ag : a; : ay] € P%. Note que

a€ Z(J)<=ac Z(xoxr1) < ap-a1=0
< ay=0 ou a; =0
< a€ Z(xg) ou ac€ Z(x)

<~ CLEZ(Q]())UZ(ZL'l).
Visto que,
a€ Z(wg) == ay=0<=a=1[0:a;:a com [a; : ay] € P,

segue que Z(xg) esta em bijecdo com Pg.

Proposicao A.0.3. Sejam I, J ideais homogéneos em K|z, ..., z,] e T C K[z, ..., x,]

formados por polindmios homogéneos. Verifica-se que:
1. I C J, entao Z(I) D Z(J);

2. Z()UZ(J) = 2(INJ);

4o Z)NZ(J) = Z(I+J).
Demonstragao. Confira a Proposigao 1.18 (p. 61 em [I7]). O

Conjuntos Algébricos em Py

Seja X C Pg. X ¢ denominado conjunto algébrico em Py se X = Z([) para

algum ideal homogéneo I C K|z, ..., z,]. Ou seja, X é um conjunto algébrico em Py
se existe uma quantidade finita de polindmios homogéneos Fi, ..., Fj € K[z, ..., x,]
k

tais que X = ﬂ Z(F).

i=1
Exemplo A.0.6. (Conjuntos Algébricos em P'). Seja X C P'. Lembre que: X é um

conjunto algébrico se, e somente se, existem Fi, ..., Fj € C[zg, x1] homogéneos tais que

k
X =) 2(F).

i=1

Se k=1, entdao X = Z(F) com F € C[xg,x;] homogéneo. Vamos analisar primeiro
o caso em que F' é um polindmio constante. Se F' = 0 entdo Z(F) = P!, caso contrario
Z(F) =0,
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Considere entao, ' # 0 e grau(F') = d > 1. Dai, se d = 1 tem-se F' = byzo + by21.
Logo

a=lag:ai] € Z(F) <= boag+ bia; =0
by b
—a; ap
<~ {(bo,b1),(—ay1,a0)} ¢ LD

<= —a; = Ay e ag = \b; para algum A #0 € C
< a=ag:a1] =[Nby: —Aby] = [b1 : —by].

— =0

Portanto, Z(F) = {[by : —bol}-

Para analisar o caso em que d > 1 vamos utilizar o seguinte lema.

Lema A.0.1. Seja F € Clzg, z1] homogéneo de grau d > 1. Entao, existem Fi,..., Fy

d
homogéneos de grau 1 tais que ' =F, -... - F; = HE
i=1

Demonstrag¢ao. Veja o Lema 1.8 (p. 63 em [17]). O

De posse do resultado, tem-se que todo polidmio homogéneo em Clzg, z1] ¢ um
produto de fatores lineares da forma bxy + ax;, podendo aparecer fatores repetidos.

Logo, podemos representar F' da seguinte forma
F=L"- Ly . - L™
sendo L; = bjzg — a;xy e {L1,..., Ly} LI com my +mg + ...+ my = d. Logo,

Z(F) = Z(LT")UZ(Ly?) U...UZ(L™)
= Z(L1)UZ(L)U...UZ(Ly)
= {lay : b1],ag : b, ..., [ax : O]}

Assim concluimos que os conjuntos algébricos em P! sdo os subconjuntos finitos de P*

e o proprio P

Observacao A.0.4. F = {Py — X | X é um conjunto algébrico} define uma topologia

em Px denominada Topologia de Zariski.

Ideal associado a um subconjunto de Py

Seja Y C Pk um subconjunto qualquer. Definimos o ideal associado a Y por

Z(Y) = {F € K[zg,...,z,) | F é homogéneo e F(a) =0, Va€Y})
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Proposicao A.0.4. Sejam YY) subconjuntos de Pg. Considere T C Kz, ..., x,]

formado por polinémios homogéneos. Verifica-se que
1. Y C Yy, entao Z(Y) 2 Z(Y1);
2.Z(YUY)) =Z(Y)NZ(Yy);
3. T CZ(Z(T));
4. Z(Z(Y)) =Y.
Demonstragao. Confira a Proposi¢ao 1.22 (p. 74 em [17]). O

Conjunto irredutivel em um espago topologico

Seja (X, F) um espago topologico e Y um subconjunto de X. Verifica-se que
Fy={UnNY |UeF}

define a topologia em Y, denominada topologia induzida em Y a partir da topologia
em X.

Definicao A.0.1. Seja Y um espaco topolégico. Y é dito irredutivel se, e somente se,
para todo Fi, Fy C Y fechados tais que Y = F} U F5, tem-se que Y = F; ou Y = Fj.

Do contrario, Y é dito redutivel.
Exemplos A.0.1. 1. () é irredutivel.

2. Em P! os conjuntos algébricos sdo os subconjuntos finitos e o proprio P'. Logo,

os conjuntos irredutiveis em P! sdo o proprio P! e os conjuntos unitérios.
3. Y = Z(xory) = Z(z0) U Z(x1) C P? é redutivel. Entretanto, Z(zg) é irredutivel.

Observacao A.0.5. Considere A = Klzg,...,z,] e A = (z¢,...,2,). Seja I C A um

ideal homogéneo. Verifica-se que
Z) =0 <= VI=AouVI=A, < 3d>0tal que A4, C I.

Proposicao A.0.5. (Teorema dos zeros de Hilbert - versao projetiva) Seja K um corpo
algebricamente fechado e I C Klxo, ..., x,] um ideal homogéneo tal Z(I) # 0. Entao,

Z(Z(I)) = VI.

Demonstracao. Veja o Teorema 1.4 (p. 82 em [17]). O
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Considere A = K[z, ..., x,] sendo A; o subespago vetorial de A gerado por pelos
monomios em A de grau d > 0.

Dizemos que X é uma hipersuperficie de grau d > 1 em P§ se X € P(4,), isto
¢, X =[F] € P(A;) com F' # 0 em A,.

Observagao A.0.6. Se [F], [G] € P(A,) definem a mesma hipersuperficie se, e somente
se, F' = AG para algum X\ # 0 em K.

Definimos o suporte de [F] € P(A4) por Z(F) C Pg.

Exemplo A.0.7. Considere S = Clxg, 21, 25]. Uma hipersuperficie de grau d em P?
sera denominada de curva plana de grau d. Em particular, curvas de grau 2 em P? séo

chamadas de conicas. Observe que
U:P(Sy) — {Z(F) | F #0em Sy} dada por [F] — Z(F),
¢ uma bijecdo. Como também ® : P(Sy) — P° dada por
[apxh + a12071 + a920T + asT] + auT1To + aswy) — [ag :ay : as :as: ay : as)
¢ uma bijecao.

Variedades lineares
Seja Y C Py um conjunto algébrico. Y ¢ uma variedade linear se
Z(Y)=(F1,..., Fg) com Fy,..., Fy € K[zo,...,x,] homogéneos de grau 1.

Exemplo A.0.8. Seja Y C Pg um conjunto algébrico. Observe que se Z(Y) = {0}
entio Y =Y = Z(Z(Y)) = Z({0}) = Pi. Entretanto, se Z(Y) = (xo, ..., 2,) entdo
Y =10.

Observagao A.0.7. Seja Y C Pg uma variedade linear tal que Z(Y') = (Ly,..., L)
com L; € Ajndonulos. SejaW = [Ly,..., Ly < Ay = [xg,...,z,) eseja{Ly,..., L.} C
{Ly,..., L} base de W. Entéo, Z(Y) = (L;,, ..., L;,).

Proposigao A.0.6. Seja K um corpo algebricamente fechado e Y C Pg um conjunto
algébrico. 'Y € uma variedade linear se, e somente se, Y = P(W) para algum W

subespago de K"
Demonstragao. Confira a Proposi¢ao 1.19 (p. 67 em [17]). O
Corolario A.0.2. A fungio ¢ : {W | W < K"} — {Y C P} | Variedade linear}

dada por W —— P(W) € uma bijegdo.
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Demonstracao. De fato, a sobrejetividade é dada pela Proposicao [A.0.6] Para a inje-
tividade, considere U, W subespacos vetoriais de K" tais P(W) = P(U). Seja w € W

com w # 0, dai
[w] € P(W) = [w] € P(U) = [w]| = [u] para algum u € U — {0}.

Consequentemente, w = \u para algum A\ # 0 em K. Logo, W C U. De forma analoga,
tem-se U C W. Portanto, U = W. O

Definigcao A.0.2. Seja Y C Py uma variedade linear. Definimos a dimensao de Y,
por dimY = dimW — 1, com W subespaco vetorial de K" tal que Y = P(W).

Retas e planos em P(V)
Considere Y C P(V'). Entao

e Y ¢ uma reta se Y = P(W) para algum W € Go(V).
e Y ¢ um plano se Y = P(U) para algum U € G5(V).

Observagao A.0.8. Sejam p, g pontos em P(V') distintos. Entao, existe uma tnica

reta passando por p e ¢, que denotaremos por [, ,.

De fato, sejam p = [u] e ¢ = [v] pontos em P(V') distintos, logo temos que u ¢ v
sao LI. Dai, considere W = [u,v] € G5(V). Logo, P(W) = L, , ¢ uma reta em P(V)
que contém os pontos p e ¢. Provando assim, a existéncia. Para a unicidade, considere
L,, =P(W;) com W) € G5(V). Uma vez que, p = [u] € P(W)) segue que [u] = [w]
para algum w; € W. Assim, u = Aw; para algum A nao nulo em C, ou seja, u € Wi e

analogamente, tem-se que v € Wj. Assim,
W = [u,v] € Wy "2 W = W

Portanto, P(W) = P(W;) do qual concluimos que existe uma tnica reta passando por

pegq.

Observagoes A.0.3. Pontos, retas e planos sao variedades lineares em Pg. De fato,

n>2: [ CPEéumareta<= 1= 2Z(Ly,...,L, 1), {L:}"= C[xo,...,2,] LI

n>3: 7 CP;éumplano <= 7= Z(Ly,..., Ly s), {L}*=F C [xo,..., 2] LI.
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Exemplos A.0.2. Com as notagoes acima
e Considere S = Clxg, 71, 29, S1 = [0, 21, 2] e | C P?. Entdo
[ ¢ uma reta <= [ é uma variedade linear de dimensao 1

<= | =P(W) para algum W € G5(C?)
<= [=2Z(L), sendo L # 0 em S,

e Considere R = C[xg, z1, To, 73], Ry = |10, 71,72, 73] ¢ Y C P?. Entdo

Y é uma reta <= Y é uma variedade linear de dimenséo 1
<= Y =P(U) para algum U € G5(C*)
<~ Y:Z<L1,L2)e {Ll,LQ} g Rl LI

Y é um plano <= Yé uma variedade linear de dimensao 2
<= Y =P(W) para algum W € G5(C*)
< Y =2(L), sendo L # 0 em R,

Proposicao A.0.7. Duas retas em P? sempre se intersectam.

Demonstragio. Considere I; = P(W)), Iy = P(W,) com W; € G5(C?) retas em P2
Assuma que l; # l. Vamos mostrar que, l; Ny = P(W7) NP(Ws) = P(W N W) # (.

Lembre que,

Se dim(W; + Ws) = 2 entao W; = Wy (absurdo). Logo, dim(W; + W3) > 2 de onde
concluimos que dim(W; + Ws) = 3. De (A.2), segue que a dim(W; N W,) = 1. Assim,
P(W; N Ws) define um ponto em P2. O

Mudanga de coordenadas projetivas (MCP)

Considere Aut(K"™) = {T: K" — K"*! | T é um isomorfismo K-linear}.

Observagao A.0.9. Para todo W € G4(K"*) verifica-se que T(W) € G4(K™*!) para
todo T € Aut(K"™).

Definicao A.0.3. Uma funcao ¢ : Px — Py é chamada de mudanga de coordenadas
projetivas (MCP) em P se existe T' € Aut(K™*) tal que o([v]) = [T(v)], V [v] € P.

Notagao A.0.2. Aut(Pg) := {p : Px — P | ¢ ¢ uma MCP}.

107



A. Nogoes de Geometria Algébrica

Exemplo A.0.9. Se p = [1:2: 3] € P? entdo vamos determinar ¢ : P* — P* MCP
tal que p(p) =[1:0:0].

Note que, existe um tinico isomorfismo C-linear T : C* — C? tal queﬁ

T(1,2,3) = (1,0,0), T(0,1,0) = (0,1,0) e T(0,0,1) = (0,0,1).

Visto que T'(z,y, 2) = (z,y — 2,2 — 3z), entdo ¢ : P* — P? definida por
[z :y:z]—[x:y—2x:2z— 3]

¢ uma MCP tal que ¢([1:0:0])=[1:2:3].

Exemplo A.0.10. Se | C P? ¢ uma reta, entdo existe ¢ : P> — P? MCP tal que

p(l) = Z(xo).
Note que,

Z(xg)={la:b:c] €P?’|a=0}={[0:b:c] € P*} =P(U) sendo U = [ey, e3].

Assuma que | = P(W) sendo W = [wy, ws] e escolha wz € C* tal que {wy, ws, w3}
seja uma base para C>. Como existe um tnico T € Aut(C?) tal que T'(w;) = es,
T(wy) = es e T(ws) = e;. Podemos considerar, ¢ : P* — P? MCP dada por
©([v]) = [T'(v)]. Note que, T(W) = U. Logo, () = Z(a:o)ﬂ

Exemplo A.0.11. Considere {L;, Lo} LI em [zg, x1, x3] C Clxg, 21, 25]. Entao, existe
@ :P? — P? MCOP tal que p(Z(Ly - Ly)) = Z(x0) U Z(z1).

A seguir, colocamos uma representagao do queremos mostrar

Assim, considere o isomorfismo C-linear 7' : C* — C? determinado por T'(w) = es,
T(wy) =eg e T(wy) = elﬂ

“De fato, basta determinar a,b,c € C tais que (z,v,2) = a(1,2,3) + b(0,1,0) + ¢(0,0,1). Equiva-
lentemente,

r=a a=ux
y=a+2b = b=y —2z
z=3a+c c=z—3x

Donde concluimos que T'(z,y, z) = (x,y — 2z, z — 3x).
De fato,

o(l) = p@BW)) = {e([w]) [w# 0,w e W} ={[T(w)] | w #0,we W} =PU) = Z(x).

Pois, we W = w=a-w;+b-ws = T(w) =a-ea+b-e5 = T(w) € [ea,e3] =U.
5De fato,

P(Z(L1)) = »(P(W)) =P([ez, e5]) = Z(0);
P(Z2(L2)) = @(P(W2)) =P([le1, e5]) = Z(x1);
P(Z(L1-Lp)) = @(Z(L1) U Z(L2)) = ¢(2(L1)) Up(Z(L2)) = Z(z0) U Z(21) = Z(x071).
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Figura A.1

Z(Ly) = P(W1) = P([w, w])

w]
Z(zo) = P([e2, e3])

Z(z1) = P(le1, e3
Z(Ly) = P(Wy) = P([w, ws]) (z1) = P([ )

A acido do grupo Aut(K"*!) no anel K|z, ..., ,]

Considere A = K[z, ...,x,] e defina

o Aut(K")x A — A
(T,F) — T, F
sendo T, F(xo, ... ,2,) = F(T (zo,. .. ,xn))m

Exemplo A.0.12. Se T € Aut(C?) ¢ tal que T '(z,y,2) = (z — y,y,0 — 2) e

F =1+ 9 — x129 € Clzg, 21, 2. Entao,
T.F = F(Tﬁl(l'o,%l,ﬂfg)) = F(IO — T1,T1,Ty — SL’Q) =1 + To — X1 — .%'1(270 — Ig).

Proposicao A.0.8. Com as notagées acima. Considere T, R € Aut(K"™). Entdo,
1. Ty : A — A dado por F —— T F é um isomorfismo K-linear.
2. (ToR)y=TyoR, e (T")y = (T,)"".
3. TJ(F-G)=(T,F) - (T.G) ¥V F,G € A.

4. se F € Ay entao T,F € Ay. Além disso, Ty : Aq —> Ag € um isomorfismo

K-linear.
Demonstragao. Veja a Proposi¢ao 1.34 (p. 127 em [I7]). O

Proposicao A.0.9. Seja {Ly, ..., L,} uma base de [z, ..., x,] C Klzo,...,z,]|. Entdo,
eviste T € Aut(K"*Y) tal que ToL; = z; Vi € {0,...,n}.

"Observe que "e"define uma acao pela esquerda do grupo Aut(K"*1) em A.
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Demonstracao. Observe que
T.Lj =T; <~ Lj = (T.)_IZL‘]' = (T_l).l’j = Zajixi se |:T] = |:a7;ji|

for a matriz associada a T na base canonica. Visto que,

n n

T, F(zo, ... 20) = F(T(z0,...,2,)) :F<Za0ixi,...,2amxi> V F e A

=0 1=0

Assim, as linhas da matriz [T} sao determinadas pelas coeficientes de L; na base

{%‘}?:0-
O

Exemplo A.0.13. Sejam Lo = xg + x1 + 229, L1 = x1 — 49 € Ly = x9 — Hx9. Dal,

para determinar 7" € Aut(K"™!) tal que T,L; = x; basta considerar,

1 1 2
[T ] — |0 1 —4| na base canonica de C3.
1 0 =5

Corolario A.0.3. Sejam {L;}, e {M;}7, bases de [xq,...,x,|. Entdo, existe T €
Aut(K)"*! tal que T,L; = M; ¥ i € {0,...,n}.

Demonstragao. Pela Proposicao existem 77, Ty € Aut(K™*) tais que Ty, L; = z; e
TreM; = x; paratodoi € {0,...,n}. Segue que, M; = T, ' ,x; paratodoi € {1,...,n}.
Logo, considere T := Ty ' o T} € Aut(K™™!) tal que

ToLi= (Ty ' o Th)e(Li) = Ty ' ((TheLi) = Ty ' yzi = M;

para todo i € {0,...,n}. ]

Lema A.0.2. Seja A = Clz, ..., x,]. Considere Ly, Ly € Ay = [z, ...,T,| ndo nulos.

Verifica-se que:
1. Se {Ly, Ly} ¢ LD, entio eviste T € Aut(C"™) tal que To(Ly - Ly) = x2;
2. Se {Ly, Ly} € LI, entdo existe T € Aut(C"™) tal que T,(Ly - Ly) = w2 + 7.

Demonstragao. 1. Sendo {Lq, Ly} LD entdo Ly = ALy para algum A € C. Assim,

Ly Ly = AL3 = o*’L3 = (aLy)? com «a € C tal que o = ).
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Dai, completando {«Ls} para a base {aLo, My,..., M,} de A;, entdao a Proposigao
A.0.9| garante que existe 7' € Aut(C™™) tal que

To(aly) =xy e T M;=2x2;Vie{l,... n}

Logo, Ty(Ly - Ly) = Tu(aLy)® = (Ty(aLy))? = 2.

2. Sendo {Ly, Ly} LI, podemos completar a base {Ly, Lo, My, ..., M,} de A;. Agora
sendo {xg + iz, x0 — ix1, T, ..., T, uma outra base de A, entdo a Proposi¢ao
garante novamente que existe T € Aut((C)”+1 tal que Ty Ly = xo+ixq, Telo = 1o — i1y
e ToM; = x;, Vi€ {2,...,n}. Logo,

T.(Ll . LQ) = T.(Ll) . T.(Ll) = (lL‘O + Z[L‘l) . (l’o — ZI’l) = I’g + £L‘%

Exemplo A.0.14. Classificacdo das quadricas em P! :

Considere F' € A = C|xg, 1] homogéneo de grau 2 nao nulo. Segue do Lema
A.0.1|que F = L, L,. Portanto, segue do Lema [A.0.2] que existe T € Aut(C?) tal que
TF = x% ouT,F = a:g +x%.

Exemplo A.0.15. Classificacdo das conicas em P? :

Considere F' € A = C[xg,x1, 23] homogéneo de grau 2 nao nulo. Temos duas

possibilidades: F' é redutivel ou irredutivel.

1. \F é redutivel: ‘ temos que F' = L - Ly com Ly, Ly € A;. Pelo Lema existe
T € Aut(C?) tal que To(Ly - Ly) = 22 ou Ty(Ly - Ly) = x5 + xlﬁ

2. ‘F ¢é irredutivel: ‘ Assim, F = aoxg + a120T1 + asToTe + agxf + aqx129 + a5x§

(a) Suponha primeiro que ag # 0. Logo,

2,2
ajry 2 2
—— + a2xox2 + azr] + a4T1T2 + asx;
4ag

a1

= qo (x0+—:r;1)2+(a3—
2a0

F = a ($0+££L‘1)2 —

ay 2

@)le + xz(agl'o + agx1 + CL5£C2)
0

. aj ai
considere: Lo =g+ —x1; a =a3 — —5 € M = ayxo + ayr1 + asT2
2ay 4ag

F = (boLo)* + ax? + Mxzy com by € C tal que b3 = ag.

®Note que Z(x3) = xo. Entretanto, [z3] € P(A) é chamada de reta dupla e Z(x3 + z7) =
Z(xg 4 ix1) U Z(xo — iz1) € um par de retas distintas.
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Dai, considere {byLg, 1,72} base de A; entdo existe R € Aut(C?) tal que

Re(boLo) = xo € Rex; = x; para i = 1,2. Note que, se = 2&—1 entao
Qo

boLO = b0$0 + boﬁxl é Ty = boR..Z'O + boﬁilfl == R.Q?o = % — ﬁl’l.
0

- x
Como M = asxg + asxq + asxy entao RgM = CLQ(—O — Bx1) + agx1 + aswo.

bo
Assim
2 2
G = RJF = zj+ ax] + x2(coro + €121 + cot2)
as axf3 .
com ¢y = b—,q = a4 — o e co = as. Dali, tem-se que a = 0 ou a # 0.
0 0

Se o« = 0 entao

2
G = x5+ xo(coxo + c1m1 + C222)
2

9, 2 % 2 2
= (ZCO + —$2) — Ty + c1r1x0 + Coly
2 4
2

C C
= (zo+ 50952)2 + (2 + Zo)xg + c12129.

¢
Dali, considere {1:0—1—50@, x1, 75} uma base de A;. Logo, existe R, € Aut(C?)

tal que (Ry)e(zo + %OwQ) =19 e (Rs)ex; = x; para i = 1,2. Com efeito,

2
Gl = (Rl).G = .I'g + ”)/.1'% + C1T1X2 com y = ¢y — %

= x% + xo(yxe + c17).

e Se ¢; = 0, entdo, Gy = x} + vo3 é redutivel (pois todo polinomio de
duas variaveis de grau 2 é redutivel), o que é um absurdo ja que F é
irredutivel.

e Se ¢; # 0, entdo considere {cix; + Yx2, Tg, T2} base de C3. Assim,
existe Ry € Aut(C?) tal que (Ra)e(cim1 + v22) = 1 e (Ro)ew; = 5
para i = 0,2. Logo, Go = (Ry).G) = a3 + mpx;. Por fim, sendo
{20, 21 + iTy, 11 — iz9} uma base de C*, segue da Proposicao que
existe Ry € Aut(C?) tal que (R3)eo = o, (R3)e(w) + iz3) = 1 €
(R3)e(1 — i79) = To. Assim, G5 = (R3)eGy = 27 + 27 + 25.

Se a # 0 entao
G = R, = x% + omcf + Mixe com M = coxg + c121 + caxs.

Considere a; € C tal que of = a. Logo, G = R F = ¢ + (y71)* + Mo
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Considere {zg, a;21, 72} uma base para A;. Dai, existe T' € Aut(C?) tal que

Te(oyxy) = 21 e Tox; = x;, para ¢ = 0,2. Assim,

G1 = T.G = 17(2) + ZL‘? + JZQMQ com M2 = dol’o + d1[E1 + dQl’Q.

dy do &
= (.170 —+ 5{1’,’2)2 -+ (I‘l —+ 31’2)2 —+ (do — ZO — Zl)l'g
d, d A2 d&?
= (370 + —0$2)2 + (ZEl + —01'2>2 + ()\11‘2)2 com /\% = d() -0
2 2 4 4
: do do . .
Por fim, seja {xo+ ?33'2, 1+ Ei[)g, A12z2} uma base para Aj, e assim, existe

d d
71 € Aut(C?) tal que (T1)(zo + 30@) = 20, (T1)e(w1 + 50@) = Zp €

(T1)e(A12) = x9. Portanto, Gy = (T1).G1 = 22 + 2% + 23.
Em resumo, se o coeficiente de xg ¢ nao nulo, podemos obter por MC'P que

F = 22 + 2% + 23. Sendo assim, considere agora o seguinte caso

Suponha que ag = 0. Dai, F' = ayxox1 + asx9xs +a3$f + a4 2129 +a5x§. Note
que se as ou as sao nao nulos, basta considerar uma M CP tal que apareca o
termo em xg e assim proceder como no caso 1. Por exemplo, se az # 0 basta
considerar a 7' € Aut(C?) tal que T,x1 = x9, Toxg = o € Towy = x;. Dai,
perceba que T, F' = ayxoxs + asx1T9 + agzg + agx9r1 + a5x%, sendo az # 0 o
resultado segue do caso 1.

Por outro lado, se as e as sao nulos, entao F = a1x9x1 + asxors + a4T1T9,
considerando a; # 0 temos que existe T € Aut((C3) tal que Toxg = o,
Tor1 = 19 + 21 € Toxy = 2. Logo, ToF = a1x§ + ayzory + (ag + ag)zexs +
a4x122. Novamente, o resultado segue do caso 1. Portanto, a menos de uma
MCP F = x3 + 23 + 3.

Classificacdo das ctbicas em P? :

De acordo com [9] podemos classificar as ctibicas em P? em nove classes distintas

representadas na tabela a seguir:
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Tabela A.1: Classificacao das ctibicas em P2

Tipo Descrigao Representagao geométrica
Nao-singular e irredutivel | Geral
Singular e irredutivel Nodal
Singular e irredutivel Cuspidal

Singular e redutivel

Conica nao singular e
uma reta secante

Singular e redutivel

Conica nao singular e
uma reta tangente

Singular e redutivel

Trés retas distintas
nao colineares

Singular e redutivel

Trés retas distintas e
colineares

Singular e redutivel

Uma reta dupla e uma
reta secante

<
==
-
VAN
i
/

Singular e redutivel

Reta tripla
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Apéndice B
Acao de grupos e resultados de MCP

Considere (G, *) um grupo e X um conjunto nao vazio. A fungao

o . GxX — X

(9,7) = gex

define uma agao pela esquerda de G em X se as seguintes condigoes forem satisfeitas

para todos g,h € Gex € X:
(i) e @ x =z para todo x € X
(ii) (gxh)ex=ge(heux).

Note que, a agao e induz a seguinte relacao de equivaléncia em X
x1~ Ty <= d g€ G tal que geox; = x5.

Seja O, = {gexz € X | g€ G} adrbitaderem X e G, = {g € G | gex = 1}

o estabilizador de x em G. Em geral, tem-se que X = U O.. De fato, as oOrbitas

zeX
determinam uma particao no conjunto X.

Exemplo B.0.1. Considere G = Aut(C?) e X = P(S;) sendo S = Clxg, 11, 13).
Observe que, o : Aut(C*) x P(Sy) — P(S;) dada por (T, [F]) — T e [F| = [T.F] é
uma acdo pela esquerda de Aut(C*) em P(S,). Sejam

Oo = O}, O1 = Oy e Oz = Oy
sendo Fy = x5, Fy = 23 + 27 e Fy = 2} + 2] + 3.

Afirmagao: P(S;) = OgUO; UO,.
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Por defini¢ao tem-se que Og U O; U Oy C P(S,). Para mostrarmos a outra inclusao,
considere [F] € P(S;). Vamos comegar dando uma descrigao explicita das orbitas Oy,

O, e O, relacionada com a classificacio das conicas em P? (cf. Exemplo [A.0.15)).
: Note que Oy = {T e [22] | T € Aut(C?)} = {([Tazo])? | T € Aut(C?)}.

A seguir mostraremos que Oy = {[L?] | [L] € P(S;)}. De fato,

[F] € Oy <= [F] = [(T\x0)?] para algum T € Aut(C?)
< F = MT,1)* para algum A € C nao nulo
= F = (MTuxo)? com A\ € Ctal que A2 = )
— F = L?com L=M\Tx < 5.

Para concluir, basta observar que para quaisquer L, \;zq € S; existe T € Aut(C?) tal
que L = To(A1xo).

. Tem-se que O = {[Ta(22 + 22)] | T € Aut(C*} = {[Ly - Lo] | {L1, Ly} C
S1 L1}. De fato,

[F] € Oy <= [F] = [Tu(xf+ 23)] para algum T € Aut(C?)
<= F = X T,(z3+2}) paraalgum \ € C
< F = N T.((zo+izy) - (wg — ix1))
= F = A (To(xo+ixy) - To(xo —ixy))
—F = L Ly

com L; = V\ - To(xg +iz1) € Ly = V- To(xo — iz1). Para concluir, é suficiente notar
que se {Li, Ly} C Sy é LI, existe T € Aut(C?) tal que Ly = T.(ai(zo + iz1)) e
Ly = Ty(aa(zg — ix1)) para quaisquer escolha de ay, a0 € C — {0}.

: Seguindo de forma semelhante, temos que Oy = {[F] | F' é irredutivel}.

Portanto, segue que

P(S5) = Oy U O, U O,.

Proposicao B.0.1. Sejam Z(F') C Py com F homogéneo de grau d em K[z, ..., x,]
e ¢ € Aut(Py) definida por T € Aut(K™™). Entdo, o(Z(F)) = Z(T,F).

Demonstracio. Seja ¢ : Pg — P uma MCP determinada por T € Aut(K"th).
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Considere p € Pg e note que

pE@(Z(F)) <= p=¢(q) paraalgum q € Z(F)

<= p=¢([u]) para algum ¢ = [u] € Z(F)( i,6. F(u)=0)
<= p=[v] com [v] € P} tal que F(T ' (v)) =0
<~ p=[]eTF(v)=0
= pe Z(I.F).
O
Corolario B.0.1. Toda MCP preserva conjuntos algébricos em Pg.
Demonstracao. Seja X C Pk um conjunto algébrico. Assim, existem Fi, ..., Fj, homo-
géneos em K[z, ..., x,] tais que X = ﬂ Z(F;
Considere ¢ € Aut(Pg) definida pg;lT € Aut(K"™). Note que,
k k
p(X) =p((Z(F) = e(2(F))
=1 =1
Segue da Proposi¢ao B.0.1] que ¢(Z(F;)) = Z(T.F;). Logo,
k
o(X) = Z(T.F))
i=1
0

Proposicao B.0.2. Toda MCP preserva conjuntos irredutiveis em Pg.

Demonstragao. Seja X C Py um conjunto irredutivel e ¢ € Aut(Pg). Queremos mos-
trar que @(X) é irredutivel. De fato, considere Y7,Ys C ¢(X) fechados tais que
YUYy = o(X). Logo, X = ¢ (Y1) U }(Ys). Temos que cada Y; = p(X) N
Z;, Z; fechado em P, Logo, ¢ *(Y;) = X N *(Z;) e segue do Corolario que
0 '(Z;) é fechado em P (lembre que, fechado é sindonimo de conjunto algébrico). Por-
tanto, cada ¢ '(Y;) é fechado em Pj. Como X é irredutivel, segue que X = o *(V})
ou X = ¢ 1(Y3), aplicando ¢ tem-se que p(X) = Y] ou ¢(X) = Y, ou seja, p(X) é

irredutivel em Py. []

Pontos singulares de hipersuperficies em Py.

Considere X = [F] € P(A;) uma hipersuperficie de grau d > 1 em Py sendo
A = Klzg,...,z,]. O ponto p € P é dito ponto singular de X se, e somente se,
0

F .
axi(p)—OVZE{O,...,n}.
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Notacao B.0.1. Iremos denotar por
Sing(F') = {p € P | p ¢ ponto singular de X = [F]}.

Afirmacao: Sing(F) C Z(F) C Py.

F
(p) = 0 V i. Logo, pela relagao de Eule,

7

Sep=lag:...:a,] € Sing(F) entao g

segue que
" OF
— Jx;
=0

(p)-a;=d-F(p) = F(p) =0=pe Z(F).

Exemplo B.0.2. Considere F' € Clxg, 71, ¥2] homogéneo de grau 2 nao nulo. Sabemos

que existe T € Aut(C?) tal que

2
ne

T.F = § a2 + 27,

2 2 2
Ty + 27 + x5,

d e VF = (80F, 81F, aQF)

e Se Fy = af entdo Sing(Fy) = Z(z9). De fato, VF = (210,0,0). Assim,
VF = (0,0,0) se, e somente se, zp = 0. Logo, Sing(Fy) = {[0 : 1 : xa] | [z :
Ty] € P} = Z(xp).

No que segue usaremos a notacao 0;F =

e Se Fy = x5 + z7 entdo Sing(F) = {[0 : 0 : 1]}. De fato, VF = (2x¢,27,,0).
Assim, VF = (0,0,0) se, e somente se, xg = x; = 0. Logo, [ag : a1 : ag] €

Sing(F}) se, e somente se ag = a; = 0 e ag # 0.

e Se [, = x5 +2° + 23 entdo Sing(F) = 0. De fato, VF = (2, 271, 225) = (0,0,0)

se, e somente se xg = 11 = x9 = 0.
Definicao B.0.1. Dizemos que [F] € P(A44) é nao singular se Sing(F') = 0.

Com isso, de acordo com o Exemplo temos a seguinte identificacao para as

conicas em P?

LA relacdo de Euler é dada por:

OF oF
— oot — 2, =d-F.
Jxg o+ +8xn v
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Tabela B.1: Classificacio das conicas em P2,

Tipo Descricao Representacao geométrica

Irredutivel | Conica nao singular

Redutivel | Par de retas distintas
Redutivel Reta dupla

Defini¢ao B.0.2. Sejam S = [F] € P(A,) sendo A = Klxg,...,x,] e p € Z(F) nao

singular. Entao, definimos o hiperplano tangente a S no ponto p, por:

OF OF oF
1,8 = Z(L,) com L, = 8_x0<p) " Zo + 8_:101(p) “rp .+ 87(17) "I

Exemplo B.0.3. Seja C = Z(F) C P? com F = x5 — moz;. Considere p=[1:0:0] e

gq=1[0:1:0] em C. Note que VF = (—x1, —x, 2x). Assim,

VF(p) = (07 _170) = TPC = Z(xl)u
VF(q) =(-1,0,0) = T,C = Z(xg).

Definigao B.0.3. (Pontos em posi¢ao geral) Considere py,...,pr € Pk tais que p; =
[v;] com v; € K" — {0} i € {1,...,k}. Dizemos que py, ..., p; estdo em posicio geral
se para todo C' C {vy,..., v} tal que 1 < #C < n+ 1 verifica-se que C' é LI.

Proposicao B.0.3. Sejam [F| € P(A4) uma hipersuperficie de grau d sendo
A=Kl[zg,...,7,] e p € Aut(Py) determinada por T € Aut(K"™). Verifica-se que

p € Sing(F) <= ¢(p) € Sing(T,F).

Demonstragao. Veja a Proposi¢ao 1.36 (p. 129 em [I7]). O

Proposi¢cao B.0.4. Sejam o, o1 € Aut(Py) definidas por T, S € Aut(K™™), respecti-

vamente, entao:
1. p =1 <= T = \S para algum X\ # 0 € C.

2. Se {p;}112 sio pontos em Py em posicio geral e {g;}177 também sio pontos em

Pk em posicao geral. Entao, existe um unico ¢ € Aut(Pg) tal que p(p;) = q; Vi €
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{1,...,n+2}.
3. Aut(Pg) com a composicao de fungoes é um grupo.
Demonstragio. 1. (=) Seja a = {v1,...,v,41} base de C"*.
p=p1 = p(v]) =e(lvi]) Vi

= [T(w)] =[S(v)] Vi
= T'(v;) = \;:S(v;) para algum \; # 0 € C.

Agora considere v = vy + vy + -+ 4+ vpq1. Logo, ¢([v]) = ¢1([v]) o que implica em
T(v) = AS(v) para algum X\ # 0 € C. Assim,

= T(v)+T(v2)+ -+ T(vpy1) = AS(v1) + AS(va) + -+ + AS(vps1)

= M S(v1) + A2S(v2) + -+ Apy1S(Ung1) = AS(v1) + AS(v2) + - -+ + AS(Vn41)
= N =AV1

= T =\S.

(«<=) Segue da defini¢do de MCP.
2. Veja o Teorema 1.4 (p. 7 em [10]). O
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Apéndice C

Intersecoes e multiplicidades de curvas
planas

Neste apéndice sao apresentados alguns resultados relacionados com intersecoes de
curvas planas projetivas e multiplicidades (cf. [20], [§] e [9]).

Definigao C.0.1. Seja A um anel comutativo com unidade e F,G € A[z] com

F=a+az+...+a2" (n>1),

G=by+bx+...+byz™ (m>1).

Definimos a resultante de F' e G como o determinante da matriz (n +m) x (n + m),

com m linhas de a’s e n linhas de b’s (preenchendo com zeros nos espagos livres), a
seguir

Ay Ap—1 ... Qo
Qn, ar ao
R(F, G) = [0 Qo
bm bm—l bO
by, ... bo

Exemplo C.0.1. Considere F' = zyx; e G = 3 polindmios em Clxg, 21, z5]. Considere
A = Clzg,z1] e F,G € Alxy]. Note que

graum(moxl) =0e graum(xg) =2

Assim, iremos repetir zero linhas para os coeficientes de G e duas vezes as linhas dos
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coeficientes de F' em A[xs]. Logo,

ToT1 0

R(F,G) =

= (I0$1)2.

0 Lol

Exemplo C.0.2. Sejam F = 27 + 27,79 ¢ G = 27 + 202 polindmios em C[zg, 11, 7).
Neste caso, escolhendo 1 como variavel, isto é, A = Clzg, x5, temos que grauxl(xg +

2x172) = 1 e grau,, (5 + zox2) = 2. Logo,

21y T 0
RIF,G)=|0 2z, x2|=4wozl+ x;.

0 NI )

Lema C.0.1. O polinomio R(F,G) acima definido é homogéneo de grau n-m, se nao

for wdenticamente nulo.
Demonstragao. Veja o Lema 18 (p. 28 em [20]). O

Da teoria geral, sabe-se que duas curvas projetivas planas quaisquer sempre se

intersectam, o proximo resultado nos garante uma relagao para a finitude da intercessao.

Lema C.0.2. Sejam F,G curvas planas projetivas. Entao FNG € finita se, e somente

se, F' e G nao admitem componentes em comum.
Demonstragao. Veja o Lema 8 (p. 61 em [20]) ]

De posse desse resultado, é interessante obtermos uma estimativa para tal cardi-

nalidade, mas para isso precisamos de mais algumas definicoes.

Definigao C.0.2. Sejam P, = [z; : y; : 2], i = 1,...,r os distintos pontos de F'NG.
Diremos que F, G estao em boa posi¢ao se Py = [0:1:0] ¢ F NG. Diremos que F,G
estdo muito bem posicionados se Py ¢ F'NG e se, para cada par P, P; € F NG, temos

Py, P;, P; nao colineares.

Suponha de agora em diante que F,G € C|xg, z1, x5] s@o homogéneos de grau d e

e, respectivamente, e nao tém componentes em comum. Escrevendo

d d—1
F:aoxl—i—alxl +...—|—ad,

G = boiL'El3 —|—b1£L'613_1 + '--+be>

em que a;,b; € Clzg, z2] sdo homogéneos de graus i, j. Note que, o ponto [0:1:0] € F

se, e somente se, ag = 0. Logo, estando F, G bem posicionados, temos que ag e by sao
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nao nulos. Sendo a resultante R = R(zg,z3) de F' e G com respeito a x; homogénea
de grau d - e. Por outro lado, considerando ag e by ndo nulos, para cada [z : 2] € P!
temos R(x,z) = 0 se, e somente se, [z :y : 2] € FNG. Ao supor que F, G estao bem

posicionados, concluimos que R rescreve-se na forma:

R(QJ(), l’z) =C- H(ZiLUO — l’ﬁﬂg)mi

i=1
na qual
e ¢ é uma constante nao nula;

o P,=[r;:y;:z], i=1,...,r sdo os pontos distintos de F' N G;

r

e 0s expoentes m; sao inteiros maiores ou iguais a 1 e 5 m; =d-e.
i=1

Definicao C.0.3. A multiplicidade ou indice de intersecao de F' e G no ponto P é
dada por

0 seP¢FNG
IP(F,G):

m; seP=DFP, nas condig¢oes acima.

Teorema C.0.1. (Bézout) Sejam C' e Cy sao duas curvas planas projetivas de grau
d e dy, respectivamente, sem componentes em comum. FEntao, C e C se interceptam

em d - dy pontos, contando com as multiplicidades, ou seja,

> Ip(C.Ch)=d-d.

PeCNCy
Demonstracao. Veja o Teorema 14.7 (p. 182 em [9]). O

Exemplo C.0.3. Sejam C; = Z(F}) e Cy = Z(Fy) com F; € Sy sendo S = Clxg, 21, x9]
nao singulares para todo ¢ € {1,2}. Logo, o teorema de Bézout nos garante que essas

curvas tem as seguintes possibilidades de intersecao, representadas graficamente abaixo:

(iid)

(7) (i) (iv)
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Apéndice D

Software MAXIMA

Este Apéndice apresenta alguns dos algoritmos ultilizados no trabalho, com o ob-

jetivo de auxiliar o leitor, na utilizacao dos comandos do software MAXIMA, para

verificar as afirmacoes feitas ao longo do texto.

Observe que as afirmacoes que constam na Tabela [2.2| foram bastante utilizadas no

Capitulo 3 do trabalho. O que nos motiva a dar um roteiro dos comandos utilizados

para obté-la, a partir do software MAXIMA.

Conforme a Se¢ao 2.1, lembre-se que m = [F1, Fy| € G5(Ss) determina a reta L, C

C =P(S,), dada por L, = {[a-Fy+b-F,] € C | [a : b] € P'}. De fato, (cf. o Lemal|l.4.1)
[F] € L,N%H se, e somente se, F' = a-F+b-F, para algum [a:b] € P* e det My =0,

sendo

1 1
Qo 501 §a2
1 1
Mp = -1 a3 —a4
2
1 1
— a9 5@4 Qs

Primeiro usamos a seguinte mudanca no codigo: x = xg, y = x1 € 2 = x5. Seguindo,

temos

F1

:digite o primeiro gerador$ F2:digite o segundo gerador$ F:ax(F1)+b*(F2);
:factor(diff (F,x,2)/2);

:factor (diff (diff (F,x),y));

:factor(diff (diff (F,x),z));

:factor (diff (F,y,2)/2);

:factor (diff (diff(F,y),z));

:factor(diff (F,z,2)/2);

: [y0,y1/2,y2/2]1$
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D. Software MAXIMA

12:
13:

[y1/2,y3,y4/2]$
[y2/2,y4/2,y5]$

h:matrix(11,12,13);

dh:

f:

determinant (h) ;
factor(dh);

Com isso, obtemos as informagoes para a construgao da Tabela [2.2]

O software MAXIMA foi também de grande ajuda, uma vez que possibilitou reduzir

algumas contas nos vastos casos que foram abordados nas proposi¢oes do Capitulo 3.

De fato, se W € G53(S2) nos utilizamos o software MAXIMA para determinar que

tipo de cibica era obtida pela intersecao de my N Hps € compara-la com a ciibica em

questao. Segue o coddigo que utilizamos nessa analise:

F1i:

primeiro gerador$ F2:segundo gerador$ F3:terceiro gerador$

F:ax(F1)+b*x(F2)+cx(F3)$

11:
12:
13:

:factor(diff (F,x,2)/2);
:factor (diff (diff (F,x),y));
:factor(diff (diff (F,x),z));
:factor (diff (F,y,2)/2);
:factor (diff (diff(F,y),z));
:factor(diff(F,z,2)/2);

[y0,y1/2,y2/21$
[y1/2,y3,y4/2]1$
[y2/2,y4/2,y5]$

h:matrix(11,12,13);

dh:

f:

Gh:

determinant (h) ;

factor(dh);

factor([diff(f,a),diff(f,b),diff(f,c)]);
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