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Resumo

Este trabalho disserta sobre divisores livres no plano projetivo. O conceito de divisor
livre foi introduzido por K. Saito, em 1980, no contexto analítico complexo. Posteri-
ormente, desenvolveu-se uma abordagem algébrica da teoria, formulada em termos da
liberdade do módulo de derivações logarítmicas associadas a uma forma f em um anel
de polinômios sobre um corpo. O objetivo desta dissertação é apresentar critérios que
caracterizam quando uma forma f define um divisor livre algébrico. Inicialmente, são
explorados critérios clássicos, tanto em termos matriciais, por meio do critério de Saito,
quanto em termos homológicos, utilizando resoluções do tipo Hilbert-Burch. Como prin-
cipal resultado do trabalho, estuda-se uma caracterização desenvolvida por S. Tohaneanu,
em 2012, baseado na noção de sizígias regulares no contexto tridimensional. Além disso,
no caso em que f define um arranjo de hipersuperfícies em P2, investigam-se conexões
entre o grau mínimo das sizígias do ideal Jacobiano de f e o grau mínimo dos geradores
do radical desse ideal.

Palavras-chave: Divisores livres, ideal Jacobiano, sizígias regulares, resolução de Hilbert-
Burch.



Abstract

This work discusses free divisors in the projective plane. The concept of a free divisor
was introduced by K. Saito in 1980, within the context of complex analytic geometry. La-
ter, an algebraic approach to the theory was developed, formulated in terms of the freeness
of the module of logarithmic derivations associated with a form f in a polynomial ring over
a field. The goal of this dissertation is to present criteria that characterize when a form
f defines an algebraic free divisor. Initially, classical criteria are explored, both in matrix
terms, via Saito’s criterion, and from a homological perspective, using Hilbert–Burch type
resolutions. As the main result of this work, we study a characterization developed by
S. Tohaneanu in 2012, based on the notion of regular syzygies in the three-dimensional
setting. Moreover, in the case where f defines an arrangement of hypersurfaces in P2, we
investigate connections between the minimal degree of the syzygies of the Jacobian ideal
of f and the minimal degree of the generators of the radical of this ideal.

Keywords: Free Divisors, Jacobian ideal, regular syzygies, Hibert-Burch free resolution.
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Sejam R um anel e M um R-módulo. A seguir, listamos algumas notações utilizadas
neste trabalho.

• adj(C) - denota a matriz adjunta de uma matriz C;
• alt(I) - denota a altura do ideal I ⊊ R;
• Ass(M) - denota o conjunto dos ideais primos associados de M ;
• prof(M) - denota a profundidade de M ;
• Derlog(f) - denota o Módulo de Saito de uma forma (polinômio homogêneo) f ;
• det(C) - denota o determinante de uma matriz C;
• dh(M) - denota a dimensão homológica de M ;
• dimK(V ) - denota a dimensão do espaço vetorial de V ;
• dim(M) - denota a dimensão de Krull de M ;
• e(M) - denota a multiplicidade de M ;
• H(M,n) - denota a Função de Hilbert de M ;
• HM(t) - denota a Série de Hilbert de M ;
• Hom(−, R) - denota o módulo dos homomorfismos HomR(−, R);
• I - denota o ideal de definição de uma variedade algébrica;
• Jf - denota o ideal jacobiano de uma forma f ;
• PM(t) - denota o polinômio de Hilbert de M ;
• P2 - denota o espaço projetivo de dimensão 2;
• (R,m) - denota um anel local R, com m seu ideal maximal;
• Syzn(M) - n-ésimo módulo de sizígias de M ;
• V (I) - denota a variedade algébrica associada ao ideal I;
• Z(M) - denota o conjunto dos divisores de zero de M ;
• (0 :M) - denota o ideal anulador de M ;
• µ(I) - denota o número mínimo de geradores do ideal I ⊊ R;
•
√
I - denota o ideal radical do ideal I;

• ∂xi
f - denota a derivada parcial de um polinômio f na i-ésima indeterminada;

• ∇f - denota o vetor gradiente de f ;

x



Introdução

O marco inicial da teoria sobre divisores livres é a publicação do artigo de Kyoji Saito,
Theory of logarithmic differential forms and logarithmic vector fields [15], em 1980. Nesse
célebre trabalho, Saito introduz e explora o conceito de divisores livres em hipersuperfícies,
originalmente no contexto da análise complexa. Ainda nesse artigo, ele apresenta o mais
famoso critério de liberdade, que viria, posteriormente, a receber seu nome: o Critério de
Saito.

Desde então, diversos matemáticos vêm se dedicando ao aprofundamento da teoria e à
investigação de suas aplicações em diferentes áreas da Matemática, tais como Geometria
Algébrica, Teoria de Singularidades, Álgebra Comutativa, entre outras. Um dos nomes de
destaque nesse contexto é Hiroaki Terao, que contribuiu, em [19], de forma decisiva para
o desenvolvimento da teoria, especialmente no que se refere à interação com arranjos de
hiperplanos.

No cenário puramente algébrico, entre os problemas ainda em aberto, destaca-se a
caracterização e construção explícita de famílias bem estruturadas de divisores livres.
Destacamos o trabalho de Simis e Tohaneanu [18], que demonstraram que, em P2, não
existem divisores livres irredutíveis de graus 2 e 3, sendo, portanto, os arranjos lineares
os únicos possíveis para polinômios de grau menor ou igual a três. Em 2013, Buchweitz
e Conca [5] descreveram diversos métodos para construir e identificar novos divisores
livres a partir de outros já conhecidos. Mais recentemente, destacamos o trabalho de
Burity, Miranda-Neto e Ramos [6], que apresenta quatro novas famílias de divisores livres
homogêneos em anéis de polinômios sobre um corpo de característica zero com a graduação
standard.

Um avanço importante na caracterização de divisores livres foi obtido por Tohaneanu
em [20], ao associar a liberdade de um divisor no plano projetivo à existência de uma
sizígia regular do ideal jacobiano da forma (isto é, um polinômio homogêneo) f que o
define. Esse resultado constitui a motivação principal deste trabalho.

Esta dissertação está estruturada em três capítulos. O Capítulo 1 tem caráter prelimi-
nar: nele apresentamos conceitos fundamentais de Álgebra Comutativa essenciais ao de-
senvolvimento do trabalho, com ênfase naqueles que serão utilizados com maior frequência.
Neste capítulo, exploramos o conceito de sizígia regular e o Teorema de Hilbert–Burch,
crucial para esta dissertação, por caracterizar as resoluções livres de ideais de altura 2
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Introdução

gerados por menores de matrizes. Além disso, introduzimos as funções e séries de Hilbert,
ferramentas indispensáveis para estudo de ideais graduados. Estas são as ferramentas
algébricas necessárias para os resultados a serem desenvolvidos ao longo do trabalho.

No Capítulo 2, apresentamos a noção central do trabalho: divisores livres. Iniciamos
com a exposição do módulo de derivações de um anel e, posteriormente, introduzimos
o módulo de derivações logarítmicas (ou módulo de Saito), Derlog(f), associado a uma
forma f . Apresentamos o conceito de divisor livre para uma forma f , bem como um
critério de liberdade baseado na estrutura de Derlog(f), associando esse módulo ao ideal
jacobiano Jf . Finalizamos este capítulo com uma demonstração do Critério de Saito, que
caracteriza a liberdade de divisores em termos determinantais.

Finalmente, no Capítulo 3, apresentamos o resultado obtido por Stefan Tohaneanu
[20], que estabelece, para um ideal I ⊊ R = C[x, y, z] de altura 2 minimamente gerado por
três polinômios homogêneos, a relação entre sua resolução livre minimal e a existência de
sizígias regulares. Mais especificamente, o autor caracteriza completamente tal resolução
via o Teorema de Hilbert–Burch quando I admite uma sizígia regular. No caso particular
em que I é o ideal jacobiano Jf de uma forma f ∈ R, esse resultado fornece um critério
para a liberdade do divisor definido por f . Discutimos também o fato deste critério não
ser generalizável em dimensão superior, ao evidenciarmos um contraexemplo explícito em
S = C[x, y, z, w]. Além disso, investigamos ainda as relações entre o grau mínimo das
sizígias de Jf e o grau mínimo dos geradores minimais de

√
Jf , no caso em que f define

um arranjo de hipersuperfícies em P2.
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Capítulo 1

Miscelânea

Neste capítulo, vamos introduzir o aparato teórico que dá suporte ao desenvolvimento
deste trabalho. De modo geral, consideramos R um anel comutativo com unidade No-
etheriano e M um R-módulo finitamente gerado. As definições e resultados apresentados
podem ser encontrados em: [10], [12], [16] e [17].

1.1 Anéis Graduados e o espaço projetivo

O contexto dos principais resultados deste trabalho aborda um anel de polinômios
R := K[x1, . . . , xn] sobre um corpo K algebricamente fechado. Devido a própria natureza
do anel de polinômios é natural considerar R um anel graduado.

Definição 1.1.1. Seja R ̸= 0 um anel. Uma graduação para R é uma família {Rk}k∈Z+∪{0}

de subgrupos do grupo aditivo (R,+) tal que:

1. R =
⊕

k∈Z+∪{0}

Rk;

2. RiRj ⊆ Ri+j,∀ i, j,∈ Z+ ∪ {0}.

O anel R é dito graduado quando provido de uma graduação.

Os elementos de cada subgrupo Rk são chamados de elementos homogêneos de grau
k. Da definição, dado g ∈ R existe s ∈ Z+ ∪ {0} tal que g = a0 + a1 + · · · + as, sendo
ak ∈ Rk para todo k = 1, . . . , s. Cada ak na decomposição de g é chamado de componente
homogênea de grau k.

Como mencionado, o exemplo mais natural de anel graduado é o anel de polinômios.

Exemplo 1.1.2. O anel de polinômios R = K[x1, . . . , xn] sobre um corpo K é uma anel
graduado com a decomposição

R = R0 ⊕R1 ⊕ · · · ,

3



1. Miscelânea

onde R0 = K e para cada d ≥ 0, o subgrupo Rd é definido como o conjunto dos polinômios
homogêneos de grau d ≥ 0. Isto é, se f ∈ Rd, então

f =
∑

a1+···+an=d

ρa1...anx
a1
1 . . . xann , com ρa1...an ∈ K. (1.1)

Neste caso, estamos considerando que o grau de cada indeterminada x1, . . . , xn é igual
a 1. Essa graduação para R é chamada de graduação standard.

Assim como anéis podem ser decompostos em partes homogêneas, ideais podem pre-
servar essa característica.

Definição 1.1.3. Sejam R =
⊕

k∈Z+∪{0}

Rk um anel graduado e I ⊆ R um ideal. Dizemos

que I é um ideal homogêneo se
I =

⊕
k∈Z+∪{0}

Ik,

onde Ik := I ∩Rk.

Note que a definição anterior é equivalente a dizer que o ideal I é gerado por elementos
homogêneos de R. No ambiente Noetheriano de um anel de polinômios com coeficientes
em um corpo, R = K[x1, . . . , xn], um ideal I de R é homogêneo se é gerado por uma
quantidade finita de polinômios homogêneos. Se além disso, I é gerado por polinômios
homogêneos de mesmo grau, então, dizemos que I é um ideal equigerado.

Ainda no ambiente polinomial, podemos notar que a primalidade de um ideal homo-
gêneo é dada em termos de elementos homogêneos.

Proposição 1.1.1. Sejam R anel de polinômios sobre um corpo K e I ⊂ R um ideal
homogêneo. Então I é primo se, dados elementos homogêneos f, g ∈ R, temos que fg ∈ I
implica que ou f ∈ I ou g ∈ I.

Demonstração. Ver [17], Lemma 2.7.1.

Além disso, para o caso geral, destacamos o seguinte resultado:

Proposição 1.1.2. Sejam R =
⊕

k∈Z+∪{0}

Rk um anel graduado e I ⊆ R um ideal homogê-

neo. Então todos os primos minimais de I em R são ideais homogêneos.

Demonstração. Ver [12], Chapter I, Proposition 5.11.

Retornando ao caso R = K[x1, . . . , xn], anel de polinômios standard graduado, é

possível concluir que o ideal m = ⟨x1, . . . , xn⟩ é um ideal maximal, já que
R

⟨x1, . . . , xn⟩
≃ K,

pois R = K⊕⟨x1, . . . , xn⟩. Além disso, neste sentido, todo ideal próprio homogêneo de R
está contido em m.
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1. Miscelânea

A estrutura graduada do anel R = K[x1, . . . , xn+1] permite interpretar seus ideais
homogêneos como objetos geométricos no espaço projetivo n-dimensional Pn

K. Esse es-
paço surge naturalmente ao considerar os pontos de Kn+1 identificados por multiplicação
escalar.

Definição 1.1.4. Seja K um corpo. O espaço projetivo de dimensão n sobre K, denotado
Pn
K, é o conjunto de classes de equivalência de Kn+1 \ {0} pela relação

(x1, . . . , xn+1) ∼ (y1, . . . , yn+1) ⇐⇒ ∃λ ∈ K∗ tal que yi = λxi, ∀ i = 1, . . . , n+ 1.

A classe de equivalência de (x1, . . . , xn+1) é denotada por [x1 : · · · : xn+1].

Cada ponto de Pn
K corresponde, portanto, a uma reta que passa pela origem em Kn+1,

sendo representado por coordenadas homogêneas. Polinômios homogêneos em R definem
funções bem definidas nesse espaço, pois sua homogeneidade garante que o valor do po-
linômio é bem definido sob a equivalência projetiva. Quando não houver ambiguidade
quanto ao corpo de base, denotaremos o espaço projetivo apenas por Pn.

Como cada ponto (y1, . . . , yn+1) ∈ Pn é, na verdade, uma classe de equivalência, então
para que um polinômio f ∈ R seja tal que f(y1, . . . , yn+1) = 0, é necessário e suficiente
que f se anule em todos os elementos (y1, . . . , yn+1) = λ(x1, . . . , xn+1), com λ não nulo.
Se f é um polinômio homogêneo de grau d, então é suficiente que ele se anule para um
representante da classe. Como

f(y1, . . . , yn+1) = f(λx1, . . . , λxn+1) = λdf(x1, . . . , xn+1),

e f(x1, . . . , xn+1) = 0, então f(y1, . . . , yn+1) = 0.

Definição 1.1.5. Sejam f1, . . . , fm ∈ R polinômios homogêneos. Diremos que X ⊂
Pn é uma variedade projetiva se é o conjunto de todos os pontos projetivos que zeram
simultaneamente cada fi, i = 1, . . . ,m, em Pn. Ou seja, X é uma variedade projetiva se

X := {[a1 : · · · : an+1] ∈ Pn; fi(a1, . . . , an+1) = 0, com fi formas em R, ∀i = 1, . . . ,m}.

Algebricamente, dado um ideal homogêneo I ⊂ R, o conjunto V (I) ⊂ Pn formado
pelos zeros comuns dos elementos de I define geometricamente uma variedade projetiva.
A propriedade de ser homogêneo garante que os polinômios sejam bem definidos em
coordenadas projetivas. Como I é finitamente gerado (pelo teorema da base de Hilbert),
V (I) é de fato uma variedade projetiva no sentido acima.

A recíproca dessa correspondência geométrica está na noção de ideal de definição de
uma variedade. Para toda variedade projetiva X ⊂ Pn, podemos recuperar um conjunto
de polinômios homogêneos que se anulam em todos os seus pontos.
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1. Miscelânea

Definição 1.1.6. Seja X ⊂ Pn uma variedade projetiva não vazia. Definiremos o ideal
de definição de X, denotado I(X) ⊂ R, como a coleção dos polinômios homogêneos em
R que se anulam em todos os pontos de X. Explicitamente:

I(X) = {f ∈ R; f(P ) = 0 para todo P ∈ X} .

Esse ideal é homogêneo por construção e fornece uma maneira algébrica de representar
a variedade X. A relação entre o ideal I e a variedade V (I), bem como entre X e o ideal
I(X), é formalizada nas propriedades a seguir.

Proposição 1.1.3. Seja R = K[x1, . . . , xn+1] o anel dos polinômios sobre um corpo K
em n+ 1 indeterminadas. São válidas as seguintes propriedades:

(a) Para qualquer variedade X ∈ Pn, V (I(X)) = X;

(b) Dados X1, X2 variedades algébricas em Pn, temos que X1 ⊊ X2 se, e somente se,
I(X2) ⊊ I(X1).

Demonstração. Ver [12], Chapter I, Propostion 5.9.

O teorema a seguir, versão projetiva do Teorema dos Zeros de Hilbert, fundamenta a
correspondência entre variedades geométricas e ideais homogêneos radicais não triviais.

Teorema 1.1.4 (Zeros de Hilbert Projetivo). Seja I ⊂ R um ideal homogêneo. Então:

(a) V (I) = ∅ se, e somente se, ⟨x1, . . . , xn+1⟩ ⊂
√
I.

(b) Se V (I) ̸= ∅, então I(V (I)) =
√
I.

Esse teorema estabelece uma bijeção entre variedades projetivas não vazias e ideais
homogêneos radicais que não contêm o ideal irrelevante.

A dimensão de uma variedade projetiva pode ser definida em termos da dimensão de
Krull do anel quociente pelo seu ideal de definição.

Definição 1.1.7. Sejam I ⊂ R um ideal e V (I) ⊂ Pn a variedade algébrica associada a
I. Definimos a dimensão de V (I) como sendo:

dim(V (I)) = dim

(
R

I(V (I))

)
− 1.

Por fim, ainda podemos definir o espaço tangente a uma variedade de maneira análoga
a abordagem diferencial usual. Para este fim, exploraremos o contexto principal deste
trabalho: uma hipersuperfície no plano projetivo, isto é, uma variedade em P2 definida
apenas por um polinômio homogêneo f ∈ K[x, y, z].

6



1. Miscelânea

Definição 1.1.8. O espaço tangente de uma variedade V (f) em um ponto x ∈ V (f) é a
coleção de todas as retas tangentes a V neste ponto. A saber, o conjunto

TxV =

{
[a1 : a2 : a3] ∈ P2;

3∑
i=1

∂xi
f(x)ai = 0

}
.

Esse espaço representa a melhor aproximação linear da variedade no ponto e é central
no estudo da suavidade e singularidades de variedades projetivas. A análise local da
estrutura do espaço tangente levará naturalmente ao estudo de derivadas logarítmicas,
módulos de derivadas, e, mais adiante, à teoria dos divisores livres, tema central desta
dissertação.

1.2 Sizígias e sequências regulares

Seja {m1, . . . ,mn} um conjunto de geradores de M . Definamos a seguinte aplicação
R-linear:

α0 : R
n → M (1.2)

(a1, . . . , an) 7→ a1m1 + · · ·+ anmn.

Naturalmente, esta aplicação se traduz na seguinte sequência exata curta:

0→ ker(α0)→ Rn α0−→M → 0. (1.3)

Neste caso, o núcleo de α0, denotado acima por ker(α0), é chamado de módulo de relações
dos geradores {m1, . . . ,mn}, ou Módulo das Sizígias de M . Por simplicidade, denotare-
mos:

Syz(M) := ker(α0) = {(b1, . . . , bn) ∈ Rn; b1m1 + · · ·+ bnmn = 0}.

Cada elemento (b1, . . . , bn) ∈ Syz(M) é chamado uma sizígia de M (com relação a
m1, . . . ,mn).

Observação 1.2.1. Note que, por definição, o conceito de sizígia depende do conjunto
de geradores escolhido, e não é intrínseco ao módulo.

Embora, como observado anteriormente, o conceito de sizígia dependa do conjunto de
geradores escolhido, há propriedades que são mantidas quando da mudança do conjunto
de geradores fixado. Um exemplo desta manifestação é o conceito de sizígia regular.
Iniciamos definindo a noção de sequência regular.

Definição 1.2.2. Sejam R um anel Noetheriano, M ̸= 0 um R-módulo finitamente gerado
e a1, . . . , an ∈ R. Dizemos que a1, . . . , an é uma M-sequência regular se :

7
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(a) M ̸= ⟨a1, . . . , an⟩M ;

(b) Para todo i = 0, . . . , n−1, temos que ai+1 é um não divisor de zero em
M

⟨a1, . . . , ai⟩M
.

Em particular, a1 é um não divisor de zero em M , neste caso, a1 é dito um elemento
M-regular.

No contexto dessa definição, temos que não existe uma sequência (ai)
∞
i=1 de elementos

em R, tal que para todo n ∈ N a sequência (ai)
n
i=1, seja uma M -sequência regular. É

possível encontrar uma prova para esse fato em [16, Proposition 16.10]. Esse resultado
motiva nossa próxima definição.

Definição 1.2.3. Sejam R um anel Noetheriano e M ̸= 0 um R-módulo finitamente
gerado. Sejam I ⊊ R um ideal tal que IM ̸= M e a1, . . . , an uma M -sequência regular
de elementos de I. Diremos que a1, . . . , an é uma M -sequência regular maximal se não
existe um elemento an+1 ∈ I tal que a1, . . . , an, an+1 é uma M -sequência regular.

Na definição acima, dado b ∈ I, temos que M ̸= ⟨a1, . . . , an, b⟩M , já que IM ̸= M .
Então, a definição deM -sequência regular maximal é equivalente a dizer que I está contido

no conjunto dos divisores de zero de
M

⟨a1, . . . , an⟩M
. Uma propriedade que decorre do fato

de R ser um anel Noetheriano é que toda M -sequência regular em I pode ser estendida a
uma M -sequência regular maximal em I.

Teorema 1.2.1. Sejam R um anel Noetheriano, M ̸= 0 um R-módulo finitamente gerado
e I ⊊ R um ideal tal que IM ̸= M . Então, quaisquer duas M-sequências regulares
maximais em I têm o mesmo tamanho.

Demonstração. Ver [12], Chapter VI, Proposition 3.1.

Motivado por esta discussão, podemos definir um importante invariante algébrico.

Definição 1.2.4. Sejam R um anel Noetheriano, M ̸= 0 um R-módulo finitamente gerado
e I ⊊ R um ideal tal que IM ̸= M . O tamanho de uma M -sequência regular maximal
em I é chamada de profundidade de I em M , denotado por prof(I,M).

Se (R,m) é um anel local, então prof(m,M) é chamada simplesmente de profundidade
de M e denotada prof(M).

Observação 1.2.5. (a) Na definição acima poderemos fazer com que o módulo em
questão seja o próprio anel R. Neste caso, a ênfase do invariante é dada ao ideal I.
A profundidade de I em R é chamada de grade de I e denotada por grade(I) :=

prof(I, R).

8
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(b) No caso em que (R,m) é um anel local, temos que

prof(M) = 0 ⇐⇒ m ⊆ Z(M),

onde Z(M) denota o conjunto dos divisores de zero de M .

Definição 1.2.6. Uma sizígia (b1, . . . , bn) de M é dita R-regular, ou simplesmente regular,
quando b1, . . . , bn determina uma R-sequência regular.

Retomando o contexto dos principais resultados deste trabalho, dada uma sizígia
regular de um ideal I do anel de polinômios R = K[x1, . . . , xn], é possível recuperar
sizígias regulares associadas a novos conjuntos minimais de geradores de I.

Lema 1.2.2. Sejam K um corpo, R = K[x1, . . . , xn], standard graduado e I ⊂ R um ideal
minimamente gerado por f1, . . . , fn polinômios homogêneos de grau d. Se este conjunto
de geradores possui uma sizígia regular, então para todo conjunto minimal de geradores
de I existe uma sizígia regular.

Demonstração. Considere g1, . . . , gn ∈ R um conjunto minimal de geradores de I. Po-
demos expressar esse conjunto em termos dos geradores originais f1, . . . , fn por meio de
um argumento matricial. Naturalmente, existeM, uma matriz invertível de ordem n×n
com coeficientes em K tal que:

[g1 · · · gn] = [f1 · · · fn] · M. (1.4)

Considere a1, . . . , an uma R-sequência regular que satisfaz a relação a1f1+ · · ·+anfn = 0.

Reescrevendo na forma matricial:

[
f1 · · · fn

]
·


a1
...
an

 =


0
...
0

 . (1.5)

Utilizando 1.4, obtemos:

[
g1 · · · gn

]
· M−1 ·


a1
...
an

 =


0
...
0

 .
Definiremos (a′1, . . . , a

′
n) como o vetor resultante do produto

a′1
...
a′n

 :=M−1 ·


a1
...
an

 .
9
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Desta forma, (a′1, . . . , a
′
n) é uma sizígia do ideal I com respeito a g1, . . . , gn, já que:

[
g1 · · · gn

]
·


a′1
...
a′n

 =


0
...
0

 .
Precisamos avaliar a regularidade da sequência a′1, . . . , a

′
n. Considere o ideal ⟨a′1, . . . , a′n⟩.

Como M é invertível, segue que a1, . . . , an ∈ ⟨a′1, . . . , a′n⟩. Logo, este ideal possui uma
R-sequência regular de tamanho n. Portanto, pelo Corolário 17.7 de [10], concluímos que
a′1, . . . , a

′
n é uma R-sequência regular.

1.3 Dimensões Homológica e de Krull

Retomando ao ambiente inicial em 1.2, como R é um anel Noetheriano, temos que
Syz(M) é um R-submódulo de Rn finitamente gerado. Então, supondo que Syz(M) é
gerado por n1 elementos, podemos repetir o processo em 1.3, obtendo a sequência exata

0→ Syz2(M) := Syz(Syz(M))→ Rn1
α1−→ Syz(M)→ 0. (1.6)

Como Im(α1) = ker(α0) ⊂ Rn na sequência 1.3, via composição entre 1.3 e 1.6, produzimos
a seguinte sequência exata:

Rn1
α1−→ Rn α0−→ M → 0, (1.7)

chamada de apresentação livre do módulo M . Iterando o processo anterior, através de su-
cessivas composições, obtemos uma sequência exata longa a qual chamaremos de resolução
livre de M .

· · · → Rni
αi−→ Rni−1

αi−1−−→ · · · → Rn1
α1−→ Rn α0−→ M → 0.

Uma tal sequência é, a priori, infinita, mas podemos truncá-la a qualquer momento,
tornando-a finita:

0→ Syzi+1(M) −→ Rni
αi−→ · · · → Rn1

α1−→ Rn α0−→ M → 0. (1.8)

Neste caso, não se trata de uma resolução livre. Porém, se para algum i ≥ 1,
Syzi+1(M) é livre, então Syzi+1(M) é isomorfo ao módulo livre Rni+1 , sendo ni+1 o número
mínimo de geradores de Syzi+1(M). Desta maneira, obtemos uma resolução livre finita
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do módulo M :

0→ Rni+1
αi+1−−→ Rni

αi−→ · · · → Rn1
α1−→ Rn α0−→ M → 0. (1.9)

Ressaltamos que diferentes conjuntos geradores para M produzem módulos de sizígias
distintos, dessa forma, é razoável que um módulo M apresente diversas resoluções livres.
Além disso, definimos o tamanho de uma resolução livre finita 1.9 como sendo o número
de módulos livres menos um.

Observação 1.3.1. Como mencionado na seção anterior, o módulo de sizígias, a rigor, é
definido com respeito ao conjunto de geradores do módulo. No entanto, esta construção
está bem posta quando pensamos no caso em o módulo M é finitamente gerado sobre R
um anel local, visto que, via Lema de Nakayama, o número mínimo de geradores de M
está bem posto.

Definição 1.3.2. Sejam R um anel e M um R-módulo. A dimensão homológica de
M , denotada dhR(M), é o comprimento de uma resolução livre finita de menor tamanho
possível. Se M não admite resolução livre finita então dhR(M) =∞.

Exemplo 1.3.3. Sejam K um corpo, R = K[x, y]/⟨xy⟩ =: K[X, Y ] e I = ⟨X, Y ⟩ ⊂ R.
Então, I tem resolução livre infinita. De fato, Syz(I) = {(a, b) ∈ R2; aX + bY = 0}.
Deste modo, Syz(I) é gerado pelos elementos (Y, 0), (0, X) ∈ R2, pois XY = 0, e obtemos
a apresentação livre

R2

Y 0

0 X


−−−−−−→ R2 → I → 0,

onde a matriz

(
Y 0

0 X

)
descreve a aplicação linear entre os módulos livres R2. Ao iterar

o processo, obtemos a resolução livre

· · · → R2

Y 0

0 X


−−−−−−→ R2

X 0

0 Y


−−−−−−→ R2

Y 0

0 X


−−−−−−→ R2 → I → 0.

A dimensão homológica do ideal I no exemplo 1.3.3 é infinita devido a condição do
anel R não ser um anel regular. Um anel local (R,m) é dito regular se o ideal maximal
m é gerado por uma sequência regular. A finitude da dimensão homológica de módulos
finitamente gerados sobre anéis locais regulares é consequência do célebre Teorema de
Auslander-Buchsbaum-Serre [12, Chapter VII, Proposition 2.4].

Exemplo 1.3.4. Sejam K um corpo, R = K[x, y, z] e m = ⟨x, y, z⟩ ⊂ R. Utilizando-se do
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software computacional Macaulay2[11], obtemos uma resolução livre de m descrita por:

0 −→ R1


z

−y
x


−−−−→ R3


−y −z 0

x 0 −z
0 x y


−−−−−−−−−−−−→ R3

(
x y z

)
−−−−−−−→ R1 −→ m −→ 0.

Logo, dh(I) = 3.

Definição 1.3.5. Sejam (R,m) um anel local e M um R-módulo. Uma resolução livre
de M

0→ Rnk
αk−→ Rnk−1

αk−1−−−→ · · · → Rn1
α1−→ Rn α0−→ M → 0

é dita minimal se Im(αi) ⊆ mRni−1 ,∀ i ∈ {1, . . . , k}.

Observação 1.3.6. Todo módulo finitamente gerado sobre um anel local admite uma
resolução livre minimal, basta que escolhamos Rn de forma que n seja igual a µ(M), o
número mínimo de geradores de M , então ker(α1) ⊆ mRn, sendo α1 construida como na
seção anterior. Escolhemos Rn1 tal que µ(Rn1) = µ(Syz(M)). Iteradamente, para todo
i ∈ {1, . . . , k}, temos ni = µ(Syzi(M)).

Lema 1.3.1 (Lema de Schanuel). Sejam duas sequências exatas de R-módulos

0→ Kn
αn−→ Fn−1

αn−1−−−→ · · · → F1
α1−→ F0

α0−→ M → 0,

0→ K ′
n

α′
n−→ F ′

n−1

α′
n−1−−−→ · · · → F ′

1

α′
1−→ F ′

0
α0−→ M → 0,

com n ≥ 1 e Fi, F
′
i módulo livres para todo i = 0, . . . , n− 1. Então,

Kn ⊕ F ′
n−1 ⊕ Fn−2 ⊕ · · · ≃ K ′

n ⊕ Fn−1 ⊕ F ′
n−2 ⊕ · · · .

Demonstração. Ver [12], Chapter VII, Proposition 1.4.

Uma importante propriedade relacionada a resoluções livres minimais é a invariância
dos postos, isto é, do número mínimos de geradores, dos módulos livres que compõem tais
resoluções, precisamente:

Proposição 1.3.2. Considere duas resoluções livres minimais de um módulo M

· · · → Fn
αn−→ Fn−1

αn−1−−−→ · · · → F1
α1−→ F0

α0−→ M → 0,

· · · → F ′
n

α′
n−→ F ′

n−1

α′
n−1−−−→ · · · → F ′

1

α′
1−→ F ′

0
α0−→ M → 0.

Então, µ(Fi) = µ(F ′
i ) para todo i.
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Demonstração. Ver [12], Chapter VII, Proposition 1.1.

Estes importantes invariantes são chamados de números de Betti do R-módulo M , e
são denotados por βi = µ(Fi),∀ i = 1.

Proposição 1.3.3. Sejam R um anel Noetheriano e M um R-módulo com a resolução
livre

0→ Fk
αk−→ Fk−1

αk−1−−−→ · · · → F1
α1−→ F0

α0−→ M → 0

de comprimento k. Então são equivalentes:

a) (0 :M) := {a ∈ R; am = 0, ∀ m ∈M} ≠ 0, isto é, o anulador de M é não trivial;

b)
k∑

i=0

(−1)iβi = 0;

c) (0 :M) contém um elemento não divisor de zero de R.

Demonstração. Ver [12], Chapter VII, Lemma 2.2.

Até agora, exploramos invariantes homológicos como a profundidade e a dimensão
homológica, que medem a complexidade de módulos através de sequências regulares e
resoluções livres. No entanto, para contemplar a estrutura de um módulo é necessário um
invariante que vá além das homologias e descreva as cadeias de ideais primos no anel de
base.

Definição 1.3.7. Seja R ̸= 0 um anel. Uma expressão

P0 ⊊ P1 ⊊ · · · ⊊ Pn,

com Pi ∈ Spec(R) := {ideais primos de R},∀ i = 0, . . . , n, é chamada uma cadeia de
ideais primos de R e seu comprimento é definido como a quantidade de ideais primos na
cadeia menos 1.

Definição 1.3.8. Seja R ̸= 0 um anel. Definimos a dimensão de Krull de R, dim(R),
como o supremo dos comprimentos das cadeias de ideais primos em R.

Definição 1.3.9. Seja P ∈ Spec(R). A altura de P , denotada por alt(P), é definida
como sendo o supremo dos comprimentos das cadeias P0 ⊊ P1 ⊊ · · · ⊊ Pn, com Pi ∈
Spec(R),∀ i = 0, . . . , n e Pn = P .

Para um ideal qualquer I de R, definimos a altura de I, alt(I), como sendo o ínfimo
das alturas dos primos minimais de I.

O célebre Teorema do Ideal Principal de Krull, em sua versão generalizada [12, Chap-
ter V, Theorem 3.4], nos garante que se I ⊊ R é gerado por m elementos, então, a altura
de qualquer primo minimal de I é menor ou igual a m. Assim, pela definição acima, temos
que alt(I) ≤ µ(I). Esta discussão nos motiva a seguinte definição.
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Definição 1.3.10. Sejam I ⊊ R um ideal sobre R um anel local Noetheriano. Diremos
que I é interseção completa se alt(I) = µ(I). Mais geralmente, no contexto não necessari-
amente local, diremos que I é localmente interseção completa se para todo ideal maximal
m em R, tal que I ⊂ m, tivermos que Im é interseção completa em Rm. Além disso,
dizemos que um ideal é genericamente interseção completa se IP é interseção completa
para todo P primo minimal de I, vide [8, Theorem 3.1].

Se tivermos que I é localmente interseção completa, então para todo P ∈ Spec(R),
tal que I ⊂ P , segue das propriedades da localização [12, Chapter III, Proposition 4.12],
que alt(Im) ≤ alt(IP ) ≤ µ(IP ) ≤ µ(Im), para m ⊊ R ideal maximal tal que P ⊂ m. Donde
segue alt(IP ) = µ(IP ). Portanto IP é interseção completa em RP .

Definição 1.3.11. Sejam R um anel e M um R-módulo, definimos a dimensão de Krull
de M como sendo a dimensão de Krull de R/(0 :M).

Se M é um módulo finitamente gerado sobre R um anel Noetheriano, então os primos
minimais de (0 :M) são os elementos minimais do conjunto dos primos associados de M ,
denotado por Ass(M), conjunto finito de ideais primos P tais que P = 0 : m, para algum
m ∈M . A definição acima nos provém com a seguinte fórmula:

dim(M) = sup
P∈Ass(M)

{
dim

(
R

P

)}
.

A próxima proposição ilustra, para um anel local, a relação entre a dimensão de Krull
e a profundidade de um R-módulo.

Proposição 1.3.4. Sejam (R,m) um anel local Noetheriano e M um R-módulo não trivial
finitamente gerado. Então:

prof(M) ≤ min
P∈Ass(M)

{
dim

(
R

P

)}
≤ dim(M).

Demonstração. Ver [12], Chapter VI, Proposition 3.9.

No contexto da proposição acima, prof(M) = dim(M) implica em propriedades im-
portantes para o módulo em questão.

Definição 1.3.12. Sejam (R,m) um anel local Noetheriano e M um R-módulo finita-
mente gerado. Diremos que M é um módulo Cohen-Macaulay se M = ⟨0⟩ ou prof(M) =

dim(M). De forma geral, se R não é um anel local, diremos que M é Cohen-Macaulay se
Mm é um Rm-módulo Cohen-Macaulay para todo ideal maximal de m do anel R. O anel
R é dito Cohen-Macaulay se possui essa propriedade quando visto como R-módulo.

Proposição 1.3.5. Seja R um anel Cohen-Macaulay (não necessariamente local) e I ⊊ R

um ideal próprio de R. Então grade(I) = alt(I).
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Demonstração. Ver [12], Chapter VI, Theorem 3.14.

Exemplo 1.3.13. Em [16, Theorem 17.33], o autor prova que o anel de polinômios sobre
um anel é Cohen-Macaulay se, e somente se, o anel de base é um anel Cohen-Macaulay.
Neste sentido, se K um corpo, então o anel R = K[x1, . . . , xn] é Cohen-Macaulay.

Finalizamos esta seção apresentando um resultado central da teoria que relaciona a
dimensão homológica e a profundidade de um R-módulo M .

Teorema 1.3.6 (Fórmula de Auslander-Buchsbaum). Seja (R,m) um anel local Noethe-
riano e M um R-módulo finitamente gerado. Se dh(M) <∞, então

dh(M) + prof(M) = prof(R). (1.10)

Demonstração. Ver [12], Chapter VII, Proposition 1.12.

Observação 1.3.14. Em 1.3.6, se adicionarmos a hipótese de que (R,m) é um anel
Cohen-Macaulay, é imediato que a fórmula de Auslander-Buchsbaum passa a relacionar
a profundidade e a dimensão homológica de M com a dimensão de Krull do anel R. Uma
vez que (R,m) ser Cohen-Macaulay implica prof(R) = dim(R), temos que:

dh(M) + prof(M) = dim(R).

1.4 O Teorema de Hilbert-Burch

Nesta seção exibiremos a teoria necessária para apresentar o Teorema de Hilbert-
Burch, uma importante ferramenta que caracteriza ideais gerados pelos menores de uma
matriz em termos de suas resoluções livres; em especial, sua principal adição ao nosso
estudo é a informação de que ideais de que trata o teorema são ideais de dimensão homo-
lógica igual a 1.

Iniciamos com o aparato teórico que servirá como base para a demonstração do teo-
rema. Essa etapa está baseada em [2], [3], [7] e [10].

Definição 1.4.1. Seja φ uma matriz de tamanho p × q, com entradas em R, um anel
Noetheriano. Definimos, para cada n = 1, . . . ,min{p, q}, o ideal dos menores n × n da
matriz φ como sendo o ideal In(φ) gerado por todos os determinantes das submatrizes de
ordem n da matriz φ.

Observação 1.4.2. Ideais do tipo menores de uma matriz são bastante estudados em
Álgebra Comutativa pela natural relação com as aplicações lineares que aparecem em re-
soluções livres serem dadas por matrizes. Portanto, várias propriedades foram exploradas
visando o desenvolvimento da teoria, a exemplo de uma cota para a altura de In(φ) ser
dada por alt(In(φ)) ≤ (p− n+ 1)(q − n+ 1) [4, Theorem (2.1)].
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Definição 1.4.3. Sejam R um anel e G1 ≃ Rp, G2 ≃ Rq módulos livres finitamente
gerados. Qualquer aplicação R-linear θ : G1 → G2 pode ser representada, com respeito
às bases de G1 e G2, por uma matriz q × p, com entradas em R. Definimos o posto da
matriz θ por

rank(θ) = max{r; Ir(θ) ̸= 0}.

Ao tentarmos construir resoluções livres para um módulo M , por vezes, conhecemos
algumas sizígias de M . Entretanto, isso induz apenas a construção de um complexo para
M , isto é, em 1.9, é garantido que Im(αi+1) ⊆ Ker(αi). O próximo resultado, devido a
Buchsbaum-Eisenbud, nos fornece um critério para quando um complexo é exato.

Teorema 1.4.1. Seja R um anel Noetheriano. O complexo de módulos livres finitamente
gerados

0→ Fn
φn−→ Fn−1

φn−1−−−→ · · · −→ F1
φ1−→ F0

é um complexo exato se, e somente se, valem as seguintes condições:

(a) rank(Fk) = rank(φk) + rank(φk+1),∀k = 1, . . . , n− 1 e rank(Fn) = rank(φn);

(b) grade(Ink
(φk)) ≥ k,∀k = 1, . . . , n, onde nk := rank(φk).

Demonstração. Ver [10], Theorem 20.9.

Lema 1.4.2. Sejam R um anel Noetheriano e I ⊆ R um ideal não trivial. Se I admite
uma resolução livre finita, então, I contém um não divisor de zero.

Demonstração. Considere uma resolução livre minimal para o ideal I,

0→ Fn
φn−→ Fn−1

φn−1−−−→ · · · −→ F1
φ1−→ I.

Dela, induzimos uma resolução para o quociente
R

I
,

0→ Fn
φn−→ Fn−1

φn−1−−−→ · · · −→ F1
φ1−→ R −→ R

I
−→ 0.

Observe que Im(φ1) = I ̸= 0. Isso implica que existe pelo menos uma entrada não
nula na matriz associada a φ1, ou seja, rank(φ1) ≥ 1. Como φ1 deve ser uma matriz
de dimensão 1 × rank(F1), temos que φ1 não admite submatrizes de ordem r × r com
r > 1, já que Im(φ1) ⊆ R. Logo, rank(φ1) = 1 e o ideal I1(φ1), gerado pelas entradas
de φ1, coincide com Im(φ1) = I. Logo, pelo Teorema 1.4.1, temos que grade(I) =

grade(I1(φ1)) ≥ 1. Portanto, I deve conter pelo menos um elemento não divisor de
zero.
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Diante do exposto, podemos iniciar nossas considerações sobre a demonstração do
teorema que dá nome a essa seção.

Teorema 1.4.3 (Teorema de Hilbert-Burch). Sejam R um anel Noetheriano e I ⊊ R um
ideal não trivial.

(a) Se o complexo

F1 : 0→ F2
φ2−→ F1

φ1−→ R
π−→ R

I
−→ 0

é exato e F1 ≃ Rn+1, então F2 ≃ Rn e existe um elemento a ∈ R não divisor de
zero tal que I = aIn(φ2), com grade(In(φ2)) = 2.

(b) Dada uma matriz de φ2 de tamanho n× (n+ 1) tal que grade(In(φ2)) ≥ 2 e a ∈ R
um não divisor de zero, a aplicação φ1, como descrita anteriormente, faz de F1 uma
resolução livre de R/I, com I = aIn(φ2).

Demonstração. (a) Como F1 é exato, então Im(φ1) = ker(π) = I, isto é, φ1 ̸= 0.
Assim, existe pelo menos uma entrada não nula na matriz associada de φ1, donde
segue que rank(φ1) ≥ 1. Desde que π é uma matriz 1 × (n + 1), então Ir(φ1) = 0

para r > 1. Portanto, rank(φ1) = 1.

Pelo Teorema 1.4.1 temos que

rank(F1) = rank(φ1) + rank(φ2) =⇒ rank(φ2) = rank(F2) = n. (1.11)

Então F2 é um módulo livre tal que rank(F2) = n. Portanto, F2 ≃ Rn.

Novamente pelo Teorema 1.4.1 temos que grade(In(φ2)) ≥ 2. Por outro lado, sabe-
mos que o grade é limitado pela altura e, pela Observação 1.4.2, temos que:

grade(In(φ2)) ≤ alt(In(φ2)) ≤ (n+ 1− n+ 1)(n− n+ 1) = 2.

Logo,
grade(In(φ2)) = 2. (1.12)

Agora, defina a aplicação R-linear

∆ : F1 → R

ei 7→ ∆(ei) = ∆i,

onde ∆i é o menor maximal da matriz de φ2 removendo a i-ésima linha, sendo ei,
com i = 1, . . . , n+ 1, os elementos da base de F1. Então,

0 −→ F2
φ2−→ F1

∆−→ R −→ R/I −→ 0
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é um complexo, pois considerando o produto das matrizes ∆ · φ2, temos para cada

i, que (∆ · φ2)i =
n+1∑
j=1

∆jφ
j,i
2 é o determinante da matriz φ2 com a i-ésima coluna

repetida. Temos então dois complexos:

F1 : 0 −→ F2
φ2−→ F1

φ1−→ R −→ R/I −→ 0,

F2 : 0 −→ F2
φ2−→ F1

∆−→ R −→ R/I −→ 0.

Ao aplicar o funtor Hom(−, R), obtemos:

F∗
1 : 0 −→ R∗ φ∗

1−→ F ∗
1

φ∗
2−→ F ∗

2 ,

F∗
2 : 0 −→ R∗ ∆∗

−→ F ∗
1

φ∗
2−→ F ∗

2 ,

onde R∗ = Hom(R,R), F ∗
1 = Hom(F1, R), F ∗

2 = Hom(F2, R). Note que R∗ ≃ R e
que através do isomorfismo:

ρ : F ∗
1 → F1 ≃ Rn+1

f 7→ (f(e1), . . . , f(en+1)),

concluímos que F ∗
1
∼= F1. Analogamente, provamos que F ∗

2
∼= F2. De maneira

natural, considerando a contra variância do funtor, obtemos que φ∗
1 = φT

1 , φ∗
2 = φT

2

e ∆∗ = ∆T , onde MT denota a matriz transposta da matriz M . Assim temos os
seguintes complexos:

F∗
1 : 0 −→ R

φT
1−→ F1

φT
2−→ R −→ R/I −→ 0,

F∗
2 : 0 −→ R

∆T

−−→ F1

φT
2−→ R −→ R/I −→ 0.

Como o determinante é invariante por transposição, segue que In(φT
2 ) = In(φ2).

Desta forma, pelas considerações em 1.12, temos que grade(In(φ
T
2 )) > 1. Além

disso, como rank(φT
2 ) = rank(φ2) = n, concluímos que existe pelo menos um sub-

determinante de φ2 não nulo.

Dessa forma, rank(∆T ) = 1 e pela definição de ∆ temos que I1(∆T ) = In(φ2), o
que implica grade(I1(∆

T )) = grade(In(φ2)) ≥ 2. Como rank(∆T ) = 1 = rank(R) e
rank(F1) = n+ 1 = rank(φT

2 ) + rank(∆T ), segue, pelo Teorema 1.4.1, que F∗
2 é um

complexo exato.

Considerando a aplicação Id : F2 → F2, podemos induzir aplicações R-lineares tais
que o diagrama abaixo comuta:
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F∗
1 : 0 R F1 F2

φT
1 φT

2

F∗
2 : 0 R F1 F2

∆T φT
2

A aplicação Id : F1 → F1 claramente satisfaz o quadro à direita, enquanto o homo-
morfismo induzido de R em R deve ser definido por:

a : R → R

r 7→ ar,

a multiplicação por algum elemeto a ∈ R, satisfaz a comutatividade do quadro à
esquerda.

Então, temos, da comutatividade do diagrama, que IdφT
1 = ∆Ta, isto é, φ1 = ∆a e,

aplicando φ1 nos elementos da base de F1, temos que φ1(ei) = ∆ia, ∀i = 1, . . . , n+1.
Logo,

aIn(φ2) = ⟨∆1a, . . . ,∆n+1a⟩ = Im(φ1) = I. (1.13)

Por fim, como I possui uma resolução livre, pelo Lema 1.4.2, existe um r ∈ I não
divisor de zero de R. Suponha, por absurdo, que a é divisor de zero, dessa forma,
∃u ∈ R\{0} tal que au = 0. Por outro lado, por 1.13, temos que I ⊆ ⟨a⟩, isto é,
r = as, para algum s ∈ R. Assim, pela lei da absorção, ur = uas = 0, um absurdo,
pois r é não divisor de zero de R. Finalizando assim, a primeira parte do teorema.

(b) Considere φ2 uma matriz (n+1)×n com entradas em R tal que grade(In(φ2)) ≥ 2, e
um elemento a não divisor de zero de R. Como grade(In(φ2)) ̸= 0, então In(φ2) ̸= 0,
isto é, rank(φ2) ≥ n e, como o rank é limitado pelas dimensões da matriz, tem-
se que rank(φ2) = n. Considere a aplicação ∆ como definida na parte 1., então
I1(∆) = In(φ2) ̸= 0. Como a é não divisor de zero de R, segue que

I1(a∆) = aI1(∆) ̸= 0.

Assim, rank(a∆) ≥ 1 e aI1(∆) = aIn(φ2). Por hipótese,

grade(I1(∆)) = grade(In(φ2)) ≥ 2 > 1.

Portanto, pelo Teorema 1.4.1, temos a resolução

F : 0→ Rn φ2−→ Rn+1 a∆−→ R
π−→ R

aIn(φ2)
−→ 0.
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1. Miscelânea

Finalizando nossa demonstração.

Como discutido anteriormente, ter resolução livre minimal de Hilbert-Burch significa
ter dimensão homológica igual a 1. Nesse sentido, ter uma resolução minimal do tipo
Hilbert-Burch será uma qualidade importante no estudo de divisores livres, conceito que
introduziremos no próximo capítulo do trabalho.

Exemplo 1.4.4. Sejam K um corpo e R = K[x, y, z] o anel de polinômios. Considere o
ideal I = ⟨xy, xz, yz⟩. Os geradores de I são os menores 2× 2 da matriz

φ =

 0 z

−y 0

x −x

 .
Isto é, I = I2(φ). Além disso, grade(I) = alt(I) = 2, por R é um anel Cohen-Macaulay.
Assim, pelo Teorema de Hilbert-Burch, a sequência

0→ R2 φ−→ R3 → I → 0

é exata e, portanto, uma resolução livre minimal para I. Logo, dh(I) = 1.

Observação 1.4.5. Frequentemente, dizemos que um ideal tem resolução livre do tipo
Hilbert-Burch quando o ideal em questão possuir resolução livre minimal nos moldes da
resolução que aparece no Teorema de Hilbert-Burch.

1.5 Função de Hilbert

Os resultados e definições apresentados nessa seção podem ser encontrados de forma
aprofundada em [3] e [17]. Similarmente ao contexto de anel graduado, 1.1.1, podemos
definir a noção de módulo graduado.

Definição 1.5.1. Seja R =
⊕

k∈Z+∪{0}

Rk um anel graduado. Um R-módulo M é dito

graduado quando pode ser decomposto em uma soma direta de subgrupos aditivos

M =
⊕

k∈Z+∪{0}

Mk

tal que RiMj ⊆Mi+j,∀ i, j ∈ Z+ ∪ {0}.

De maneira totalmente análoga ao caso de anéis graduados, os elementos de cada
subgrupo Mk são chamados de elementos homogêneos de grau k. Da definição, dado
m ∈ M existe s ∈ Z+ ∪ {0} tal que m = m0 +m1 · · · +ms, sendo mk ∈ Mk para todo
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k = 1, . . . , s. Cada mk na decomposição de m é chamado de componente homogênea de
grau k. Note ainda que cada Mk é um R0-módulo, desde que R0Mk ⊆Mk.

Seja M =
⊕

k∈Z+∪{0}

Mk um módulo graduado sobre um anel graduado R. Uma impor-

tante ferramenta no estudo de módulos graduados é a translação de grau M(v), isto é,
para v ∈ Z+, definimos M(v)k :=Mk+v. Uma das principais vantagens é ajustar os graus
de M de modo a preservar homogeneidade entre homomorfismos. Precisamente, se M
é gerado por elementos homogêneos m1, . . . ,mn, com grau(mi) = ui, então o homomor-
fismo Rn → M , utilizado para obter o módulo de sizígias de M , pode ser reescrito como
R(−u1) ⊕ · · · ⊕ R(−un) → M , garantindo que este homomorfismo seja homogêneo de
grau zero. Essa construção é essencial para obter resoluções livres graduadas, nas quais
módulos livres com graus deslocados mantêm a estrutura homogênea das aplicações.

Definição 1.5.2. Sejam R um anel graduado e M um R-módulo graduado finitamente
gerado. Uma resolução livre graduada de M é dada por

0→
⊕
s

R(−un,s)βn,s →
⊕
s

R(−un−1,s)
βn−1,s → · · · →

⊕
s

R(−u0,s)β0,s →M → 0.

Os expoentes βi,j são chamados de números de Betti graduados de M .

Exemplo 1.5.3. Sejam K um corpo e R = K[x, y, z]. No Exemplo 1.4.4, apresentamos
uma resolução livre para o ideal I = ⟨xy, xz, yz⟩.

0→ R2 φ−→ R3 → I → 0.

Esta resolução pode ser vista como uma resolução livre graduada ao se adicionar a
informação sobre as translações de grau. Uma tal resolução para o ideal I é dada por:

0→ R(−3)2 φ−→ R(−2)3 → I → 0.

Note que o grau dos geradores de I é 2, assim como o grau dos geradores do módulo
de sizígias de I é 1, desta forma, as translações para que os homomofismos na resolução
livre de I sejam graduados são −2 e −3 = (−2)− 1, respectivamente.

Definição 1.5.4. Sejam R um anel graduado Noetheriano, sendo R0 = K um corpo e M
um R-módulo graduado finitamente gerado. A função numérica

H(M,n) := dimK(Mn), n ≥ 0, (1.14)

é chamada de função de Hilbert de M , onde dimK(Mn) a dimensão do K-espaço vetorial
Mn, bem definida pois R0Mm ⊆Mm
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Suponha que dim(M) := dim(R/(0 : M) seja igual a d + 1 com d ≥ 0. Para n

suficientemente grande, a função de Hilbert H(M, t) se apresenta como um polinômio
em n de grau d. A este polinômio damos o nome de polinômio de Hilbert de M e o
denotaremos por PM(t). Além da informação da dimensão de M ser obtida via o grau de
PM(t), o polinômio de Hilbert nos fornece outros invariantes algébricos associados a M ,
a exemplo da multiplicidade.

Definição 1.5.5. A multiplicidade de M , denotada por e(M) (ou deg(M)), é definida
por

e(M) = PM(1).

A terminologia multiplicidade remete ao caso em que M é o anel de coordenadas de
uma variedade algébrica projetiva.

Definição 1.5.6. A série de Hilbert de M é dada por HM(t) =
∞∑
n=0

H(M,n)tn.

O próximo resultado apresenta uma conexão entre os conceitos trabalhados nesta
seção, isto é, nos diz como obter a série de Hilbert de um módulo graduado M a partir
de uma resolução livre graduada.

Proposição 1.5.1. Seja M um R-módulo finitamente gerado com dimensão homológica
finita e seja

0→
⊕
s

R(−s)βp,s → · · · →
⊕
s

R(−s)β0,s →M → 0,

uma resolução livre graduada finita de M . Então a série de Hilbert HM(t) = SM(t)HR(t),
onde SM(t) =

∑
i,s

(−1)iβi,sts. Em particular, se R = K[x1, . . . , xn+1] então, HM(t) =

SM(t)

(1− t)n+1
.

Demonstração. Ver [17], Proposition 7.4.11.

Finalizamos esta seção mencionando que no caso em que R é um anel polinomial
obtemos uma fórmula explícita para a multiplicidade.

Proposição 1.5.2. Sejam R = K[x1, . . . , xn+1] anel de polinômios sobre um corpo K e
M um R-módulo graduado finitamente gerado de dimensão d+ 1. Então,

e(M) =
(−1)n−d

(n− d)!
∂n−dSM(t)

∂tn−d
(1).

Demonstração. Ver [17], Corolary 7.4.12.
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Exemplo 1.5.7. Considere o ideal I = ⟨xy, yz, zx⟩ ⊂ R = K[x, y, z], com a resolução
livre graduada apresentada no exemplo 1.5.3. A série de Hilbert de R/I é dada por:

HR/I(t) =

∑
i,s(−1)iβi,sts

(1− t)3
=

(−1)01t0 + (−1)13t2 + (1)22t3

(1− t)3

=
1− 3t2 + 2t3

(1− t)3
.

Note que dim(R/I) = 1, assim a multiplicidade deste mesmo ideal é dada por:

e(R/I) =

[
(−1)2

(2)!

∂2

∂t2
(1− 3t2 + 2t3)

]
(1) =

(
12t− 6

2

)
(1) = 3.
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Capítulo 2

Sobre Divisores Livres

Formalmente definido, e estudado, pelo matemático japonês K. Saito nos anos 1980,
o conceito de divisores livres surge no contexto de investigações sobre formas logarítmicas
diferenciais e singularidades de hipersuperfícies. As descobertas de Saito, em [15], são de
suma importância ao desenvolvimento da teoria algébrica sobre esse conceito.

Para além das contribuições fundamentais de Saito, o estudo de divisores livres faz
parte do repertório de produções de autores como Dimca [9], Tohaneanu [20], etc.

Na primeira seção deste capítulo, estabelecemos o contexto algébrico necessário ao
desenvolvimento desse trabalho. A segunda seção apresenta o módulo de derivações loga-
rítmicas, introduz formalmente o conceito de divisor livre e fornece um critério algébrico
para liberdade baseado nas propriedades do ideal Jacobiano. Para finalizar este capítulo,
exibimos uma demonstração para o célebre critério de Saito, que caracteriza a liberdade
do divisor em termos matriciais.

2.1 Derivações

O principal objetivo desta seção é apresentar as principais definições e resultados ne-
cessários para a construção do ambiente onde desenvolveremos nosso estudo. As principais
referências para esta seção são [10], [13] e [14].

Seja R := K[x1, . . . , xn] um anel de polinômios standard graduado sobre um corpo K.
Eventualmente, hipóteses sobre K ser algebricamente fechado ou sobre sua característica
serão consideradas já que os resultados principais do trabalho estão propostos no ambiente
tridimensional C[x, y, z].

Definição 2.1.1. Uma derivação de R é uma aplicação θ : R → R que satisfaz as
seguintes condições:

(a) θ(f + g) = θ(f) + θ(g), para todo f, g ∈ R (Aditividade),

(b) θ(fg) = fθ(g) + gθ(f), para todo f, g ∈ R (Regra de Leibniz).
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Exemplo 2.1.2. As derivadas parciais formais ∂xi
são exemplos iniciais de derivações.

Além disso, podemos apresentar a aplicação ε : R→ R, definida por

ε =
n∑

i=1

xi∂xi
,

como uma derivação de R, chamada de Derivação de Euler.

É de fácil verificação que o conjunto das derivações de R, denotado Der(R), possui
uma estrutura de R-módulo com as operações:

+ : Der(R)×Der(R) → Der(R)

(θ1, θ2) 7→ θ1 + θ2 : A→ A

f 7→ (θ1 + θ2)(f) = θ1(f) + θ2(f);

· : R×Der(R) → Der(R)

(f, θ1) 7→ f · θ1 : A→ A

g 7→ f · θ1(g) = fθ1(g).

Como Der(R) é um módulo, podemos definir o submódulo das derivações que se
anulam nos elementos de K, denotado por DerK(R). Formalmente:

DerK(R) = {θ ∈ Der(R); θ|K≡ 0}.

Se θ é uma derivação em DerK(R), diremos que θ é uma K-derivação.
Em [10, Proposition 16.1], é mostrado que DerK(R) é um módulo livre no qual o

conjunto das derivações parciais usuais do cálculo, ∂xi
, i ∈ {1, . . . , n}, determinam uma

base para DerK(R). Isto é, qualquer K-derivação, θ ∈ R, pode ser escrita como a seguinte
combinação R-linear das derivações parciais:

θ =
n∑

i=1

gi∂xi
, com gi ∈ R, i = 1, . . . , n.

Estruturalmente:

DerK(R) =
n⊕

i=1

R∂xi
≃ Rn. (2.1)

Naturalmente, a derivação de Euler,

ε =
n∑

i=1

xi∂xi
,

é um elemento de DerK(R).
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2.2 Módulo de Saito e Divisores Livres

Esta seção terá como foco principal um R-submódulo do módulo das K-derivações: o
Módulo das Derivações Logarítmicas, ou Módulo de Saito, relativo a um polinômio dado
em R. O estudo das estruturas algébricas desse módulo é fundamental para este trabalho.

Definição 2.2.1. Seja f ∈ R = K[x1, . . . , xn] um polinômio. O Módulo de Derivações
Logarítmicas de f , ou Módulo de Saito de f , é o R-submódulo de DerK(R) definido por:

Derlog(f) := {θ ∈ DerK(R); θ(f) = gf, com g ∈ R} .

Observação 2.2.2. É fácil verificar que f · DerK(R) ⊆ Derlog(f). Para uma derivação
qualquer θ ∈ DerK(R) temos que f · θ(f) = fθ(f) = θ(f)f ∈ ⟨f⟩, o ideal principal gerado
por f . Portanto, o conjunto Derlog(f) é não trivial.

Exemplo 2.2.3. Seja f ∈ R uma forma de grau m, isto é, um polinômio homogêneo de
grau m. Neste caso, a derivação de Euler, ε, é um elemento em Derlog(f). Com efeito,
sendo f homogêneo de grau m ≥ 0, é válida a identidade de Euler :

x1∂x1f + · · ·+ xn∂xnf = mf. (2.2)

Isto significa, em particular, que a derivação de Euler, ε, pertence a Derlog(f), pois

ε(f) =

(
n∑

i=1

xi∂xi

)
(f) =

n∑
i=1

xi∂xi
f = mf.

É por meio do módulo de Saito que apresentamos a definição que fornece o título de
nosso trabalho. Definimos:

Definição 2.2.4. Seja f ∈ R, dizemos que f é um divisor livre se Derlog(f) é um módulo
livre.

Frequentemente, encontrar uma base para um módulo não é uma tarefa fácil. Com
respeito ao módulo de Saito, em especial, será possível investigar uma decomposição
estrutural para este módulo. Para este fim, iniciamos introduzindo o ideal Jacobiano
associado a um polinômio f .

Definição 2.2.5. Seja f ∈ R. O ideal Jacobiano de f , denotado por Jf , é o ideal gerado
por f e suas derivadas parciais:

Jf = ⟨∂x1f, . . . , ∂xnf, f⟩ .
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No caso em que f é um polinômio homogêneo de grau m ≥ 0, então a relação de Euler
nos aponta que f é combinação de suas derivadas parciais, isto é,

f =
x1
m
∂x1f + · · ·+ xn

m
∂xnf.

Assim, para um polinômio f ∈ R homogêneo, podemos simplificar um conjunto de gera-
dores para o ideal Jacobiano: Jf = ⟨∂x1f, . . . , ∂xnf⟩ .

Exemplo 2.2.6. Seja R = K[x, y, z], um anel de polinômios sobre um corpo K. Seja
f = xyz, então o ideal Jacobiano de f é dado por:

Jf = ⟨yz, xz, xy⟩.

A seguir, apresentaremos um primeiro resultado que estabelece uma relação entre o
módulo de sizígias de Jf , o R-módulo cíclico Rε e o módulo de Saito de uma forma f .

Proposição 2.2.1. Seja f ∈ R um polinômio homogêneo de grau m ≥ 0. Então, a
sequência

0→ Syz(Jf ) −→ Derlog(f)
φ−→ Rε→ 0, (2.3)

é exata, sendo

φ : Derlog(f) → Rε

θ 7→ gθε,

onde gθ ∈ R é tal que θ(f) = gθf .

Demonstração. Iniciamos mostrando que a aplicação:

φ : Derlog(f) → Rε

θ 7→ gθε, onde gθ ∈ R é tal que θ(f) = gθf,

está bem definida.
De fato, sejam gθ, gθ′ ∈ R tais que θ(f) = gθf e θ′(f) = gθ′f. Deste modo, θ = θ′ ⇒

θ(f) = θ′(f) ⇒ gθε = gθ′ε ⇒ (gθ − g′θ)ε = 0 ⇒ gθ = gθ′ =⇒ φ(θ) = φ(θ′). Logo, φ está
bem definido.

Além disso, se θ, θ′ ∈ Derlog(f) são derivações tais que θ(f) = gθf e θ′(f) = g′θf ,
sendo gθ, g′θ ∈ R, temos que (θ + θ′)(f) = θ(f) + θ′(f) = gθf + g′θf = (gθ + g′θ)f . Assim
sendo, φ(θ + θ′) = (gθ + g′θ)ε = gθε+ g′θε = φ(θ) + φ(θ′). Além disso, para h ∈ R, temos
que h · θ(f) = hθ(f) = hgθf . Dessa forma, φ(hθ) = hgθε = hφ(θ). Do exposto, conclui-se
que φ é uma aplicação R-linear.
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Agora, vamos mostrar que kerφ = Syz(Jf ). Para tanto, observe que

kerφ = {θ ∈ Derlog(f); φ(θ) = 0ε} = {θ ∈ Derlog(f); θ(f) = 0}

=

{ n∑
i=1

hi∂xi
∈ Derlog(f);

n∑
i=1

hi∂xi
f = 0

}
.

Uma vez que Derlog(f) ⊂ DerK(R), podemos identificar as derivações θ =
n∑

i=1

hi∂xi
com

vetores (h1, . . . , hn) ∈ Rn, já que DerK(R) é um módulo livre gerado pelas n derivações
parciais (logo isomorfo a Rn). Isso significa que podemos identificar kerφ com o módulo
de sizígias de Jf :

Syz(Jf ) =

{
(h1, . . . , hn) ∈ Rn;

n∑
i=1

hi∂xi
f = 0

}
.

Ainda precisamos demonstrar a sobrejetividade de φ, isto é, mostrar a exatidão da
sequência

Derlog(f)
φ−→ Rε→ 0. (2.4)

Por hipótese, f é homogêneo de grau m ≥ 0, então, pela relação de Euler temos que:

f =
x1
m
∂x1f + · · ·+ xn

m
∂xnf.

Para cada h ∈ R, defina a derivação θh ∈ DerK(R) por:

θh =
x1h

m
∂x1 +

x2h

m
∂x2 + · · ·+

xmh

m
∂xn .

É imediato que θh ∈ Derlog(f), visto que

θh(f) =
h

m

n∑
i=1

xi∂xi
f =

h

m
mf = hf.

Além disso, note que por definição temos que φ(θh) = hε. Isto é, dado hε ∈ Rε,
existe θh ∈ Derlog(f), com θh(f) = hf , tal que φ(θh) = hε. Portanto, φ é sobrejetora e a
sequência curta 2.4 é exata.

Diante do exposto, concluímos a exatidão da sequência

0→ Syz(Jf )→ Derlog(f)
φ−→ Rε→ 0.

Como mencionado anteriormente, nosso objetivo é estabelecer uma decomposição para
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Derlog(f). Para isso, precisaremos apresentar alguns resultados gerais de Álgebra Comu-
tativa.

Definição 2.2.7. Seja S um anel qualquer e suponha que M,N e T sejam S-módulos.
Uma sequência exata

0→ N
i−→M

φ−→ T → 0,

é dita cindida se existe ψ : T →M aplicação S-linear tal que φ ◦ψ = IdT . Esta aplicação
ψ é chamada de cisão.

Observação 2.2.8. No contexto descrito acima, se T é livre, então toda sequência exata
0→ N

i−→M
φ−→ T → 0 é cindida. De fato, defina a cisão como a aplicação que leva cada

elemento da base de T na sua imagem inversa via φ:

ψ : T →M

t 7→ ψ(t) = φ−1(t).

Logo, (φ ◦ ψ)(t) = φ(φ−1(t)) = t, para todo t ∈ T .

Lema 2.2.2. Seja S um anel qualquer e suponha que M,N e T sejam S-módulos. Con-
sidere uma sequência exata

0→ N
i−→M

φ−→ T → 0.

Se ψ : T →M é uma cisão, então

M = i(N)⊕ ψ(T ).

Demonstração. Desde que a sequência é exata, então temos a igualdade entre os conjuntos
i(N) = ker(φ). Assim, é suficiente mostrar que M = kerφ⊕ ψ(T ).

Para todo x ∈ M temos que φ(x) ∈ T e, consequentemente, ψ(φ(x)) ∈ M . Defina
y := x− ψ(φ(x)) ∈M . Aplicando φ, obtemos:

φ(y) = φ(x)− (φ ◦ ψ)(φ(x))

= φ(x)− φ(x) = 0.

Logo, y ∈ kerφ. Daí, x = y + ψ(φ(x)) ∈ kerφ + ψ(T ). Consequentemente, M =

kerφ+ ψ(T ).

Precisamos mostrar que kerφ ∩ ψ(T ) = {0}. De fato, tome y ∈ kerφ ∩ ψ(T ). Então,
φ(y) = 0. Como y ∈ ψ(T ), então para algum x ∈ T , temos que y = ψ(x). Donde segue que
0 = φ(y) = φ(ψ(x)) = x, pois, por hipótese, ψ é uma cisão. Assim, y = ψ(x) = ψ(0) = 0.
Logo, kerφ ∩ ψ(T ) = {0}. Portanto, M = i(N)⊕ ψ(T ).

Observação 2.2.9. Uma vez que ψ é injetora, temos que ψ(T ) ≃ T . E, como i(N) ≃ N ,
segue que M = N ⊕ T .
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Apresentada a teoria necessária, o próximo teorema estabelece um resultado estrutural
para o módulo de derivações logarítmicas de uma forma f .

Teorema 2.2.3. Seja f ∈ R um polinômio homogêneo de grau m ≥ 0. Então

Derlog(f) = Syz(Jf )⊕Rε.

Demonstração. Como Rε é um módulo livre, o resultado segue do Lema 2.2.2 aplicado a
sequência exata

0→ Syz(Jf )→ Derlog(f)
φ−→ Rε→ 0.

Em todo caso, exibiremos a cisão em questão. Nosso objetivo será mostrar que existe
uma cisão ψ : Rε→ Derlog(f). Considere a aplicação

ψ : Rε → Derlog(f)

hε 7→ dh =
n∑

i=1

xih

m
∂xi
.

Decorre naturalmente que dh(f) ∈ Derlog(f), visto que

dh(f) =
n∑

i=1

xih

m
∂xi
f =

h

m

n∑
i=1

xi∂xi
f =

h

m
mf = hf.

Além disso, considere φ como na Proposição 2.2.1:

φ : Derlog(f) → Rε

θ 7→ gθε,

onde gθ ∈ R é tal que θ(f) = gθf .
Assim, temos que φ(ψ(hε)) = φ(dh). Como dh(f) = hf , segue que φ(dh) = hε, ou

seja, φ ◦ ψ = IdRε. Concluímos que ψ é uma cisão.
Portanto, a sequência exata

0→ Syz(Jf )
i−→ Derlog(f)

φ−→ Rε→ 0

é cindida e
Derlog(f) = Syz(Jf )⊕Rε.

A próxima definição nos fornece uma classe mais geral que módulos livres.

Definição 2.2.10. Sejam S um anel e M um módulo sobre S. Dizemos que M é projetivo
se existe um S-módulo M ′ tal que M ⊕M ′ é um S-módulo livre.
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Considerando a decomposição Derlog(f) = Syz(Jf ) ⊕ Rε, temos que Syz(Jf ) é um
módulo projetivo, se Derlog(f) é um módulo livre. Porém, devido ao Teorema de Quillen-
Suslin [12, Chapter IV, Theorem 3.14, Theorem 3.15], temos que todo módulo projetivo
sobre R = K[x1, . . . , xn], anel de polinômios com coeficientes em um corpo K, é livre.
Desta forma, se Derlog(f) é livre, temos que Syz(Jf ) é livre.

Essa discussão culmina no seguinte critério de liberdade.

Teorema 2.2.4. Seja f ∈ R um polinômio homogêneo. Então, f é divisor livre se, e
somente se, dh(Jf ) ≤ 1.

Demonstração. Considere a sequência exata curta

0→ Syz(Jf )→ Derlog(f)→ Rε→ 0.

Suponha que f é um divisor livre. Isto significa, por definição, que Derlog(f) é
livre. No Teorema 2.2.3, apresentamos a seguinte decomposição Derlog(f) = Syz(Jf ) ⊕
Rε. Neste caso, pela definição 2.2.10, temos que Syz(Jf ) é um módulo projetivo e, pela
discussão anterior, temos que Syz(Jf ) é um módulo livre.

Diante do exposto, temos que

0→ Syz(Jf )→ Derlog(f)→ Jf → 0

é uma resolução livre finita para Jf de comprimento 1. Portanto, dh(Jf ) ≤ 1.
Reciprocamente, suponha que dh(Jf ) ≤ 1. Considere a sequência exata a seguir

0→ Syz(Jf )→ Rn → Jf → 0. (2.5)

Pelo Lema de Schanuel, Lema 1.3.1, segue que 2.5 é uma resolução livre de Jf . Donde
segue que Syz(Jf ) é um módulo livre. Logo, Derlog(f) = Syz(Jf ) ⊕ Rε é livre e f é,
portanto, um divisor livre.

Exemplo 2.2.11. Sejam R = C[x, y, z] e f = xyz ∈ R. O ideal Jacobiano de f é o ideal

Jf = ⟨∂xf, ∂yf, ∂zf⟩ = ⟨yz, xz, xy⟩.

O qual possui resolução livre:

0→ R2 −→ R3 → Jf → 0,

conforme discutido no Exemplo 1.5.3. Assim, dh(Jf ) ≤ 1. Portanto, pelo Teorema 2.2.4,
f é um divisor livre.
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Exemplo 2.2.12. Sejam R = C[x, y, z] e g = xyz(x − y)(y − z)(z − x) ∈ R. O ideal
Jacobiano de g, Jg, é o ideal gerado pelos polinômios:

∂xg = −zy(y − z)(3x2 − 2xy − 2xz + yz)

∂yg = −zx(x− z)(2xy − 3y2 − xz + 2yz)

∂zg = −yx(x− y)(xy − 2xz − 2yz + 3z2).

Precisamente, Jg = ⟨∂xg, ∂yg, ∂zg⟩.
Utilizando o software computacional Macaulay2, encontramos uma resolução livre

para Jg como segue:
0→ R2 −→ R3 → Jg → 0.

Isso implica que dh(Jg) ≤ 1. Portanto, pelo Teorema 2.2.4, g é um divisor livre.

Esse resultado é um critério para determinar se uma forma é um divisor livre. Embora
seja uma ferramenta útil, não é o critério inicialmente proposto por Saito. Na próxima
seção iremos apresentar o Critério de Saito junto com sua demonstração.

2.3 Critério de Saito

Em [15], Saito desenvolve um estudo geral sobre formas logarítmicas diferenciais e
apresenta um critério para determinar se o módulo das derivações logarítmicas de uma
forma f é livre. Em essência, o critério se fundamenta na própria definição de módulo
livre, isto é, quando este possui uma base (um conjunto de geradores linearmente inde-
pendentes).

Esta seção traz uma outra demonstração deste teorema, elaborada por Alexandru
Dimca e Gabriel Sticlaru, em [9], que constitui uma abordagem alternativa à prova original
de Saito.

O resultado considera o corpo K como sendo o corpo dos números complexos C e
f ∈ R = C[x1, . . . , xn] uma forma reduzida. A fim de uma melhor apresentação do
critério, introduzimos algumas notações preliminares.

Dado um conjunto D = {δ1, . . . , δn} formado por n derivações em Derlog(f), podemos
considerar uma matriz M := M(δ1, . . . , δn) cujas linhas são dadas pelos coeficientes das
derivações δ1, . . . , δn na base canônica ∂x1 , . . . , ∂xn . Explicitamente:

se δi = ai1∂x1 + · · ·+ ain∂xn ∈ Derlog(f) ⊂
n⊕

i=1

R∂xi
para cada i ∈ {1, . . . , n},
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então,

M(δ1, . . . , δn) :=


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann

 .

Teorema 2.3.1 (Critério de Saito). No contexto anterior. O conjunto D = {δ1, . . . , δn}
é uma base para o módulo livre Derlog(f) se, e somente se,

det(M(δ1, . . . , δn)) = cf, para algum c ∈ C∗.

Demonstração. Inicialmente, faremos considerações para um conjunto qualquer de n de-
rivações em Derlog(f), digamos, ρ1, . . . , ρn (não necessariamente uma base). Note que
para cada i = 1, . . . , n temos que:

ρi(f) = ai1∂x1f + · · ·+ ain∂xnf =
n∑

j=1

aij∂xj
f = h′if, para algum h′i ∈ R. (2.6)

Considere a supracitada matriz M = M(ρ1, . . . , ρn), cujas linhas são os coeficientes
das derivações ρ1, . . . , ρn. Deste modo, podemos reescrever a equação 2.6 em termos
matriciais: 

a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann



∂x1f

∂x2f
...

∂xnf

 =


h′1f

h′2f
...

h′nf

 . (2.7)

Denotemos a igualdade 2.7 por
M∇(f) = f ′, (2.8)

onde ∇f = (∂x1f, . . . , ∂xnf) é o vetor gradiente do polinômio f e f ′ := (h′1f, . . . , h
′
nf).

Denote por adj(M) = [bij] , bij ∈ R, a matriz adjunta de M . Desta forma, multipli-
cando 2.8 por adj(M), obtemos a seguinte igualdade:

adj(M)M∇f = adj(M)f ′. (2.9)

Mas pela fórmula de Cauchy, temos que

adj(M)M = det(M)Id =


det(M) 0 · · · 0

0 det(M) · · · 0
...

... . . . ...
0 0 · · · det(M)

 .
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Dessa forma, o sistema de equações 2.9 pode ser explicitamente reescrito da seguinte
maneira:


det(M) 0 · · · 0

0 det(M) · · · 0
...

... . . . ...
0 0 · · · det(M)



∂x1f

∂x2f
...

∂xnf

 =



n∑
j=1

b1jh
′
1f

n∑
j=1

b2jh
′
2f

...
n∑

j=1

bnjh
′
nf


.

É imediato do sistema acima que, para cada i = 1, . . . , n,

det(M)∂xi
f =

n∑
j=1

bijh
′
if.

Logo, det(M)∂xi
f ∈ ⟨f⟩, para todo i = 1, . . . , n.

Afirmação: det(M) ∈ ⟨f⟩.
Com efeito, por hipótese, sendo f reduzido, podemos escrever f = p1 . . . pl, onde para

cada k = 1, . . . , l, temos que pk ∈ R é um polinômio irredutível tal que mdc(ps, pr) = 1,
para s ̸= r. Como det(M)∂xi

f ∈ ⟨f⟩ segue que para todo k = 1, . . . , l,

det(M)∂xi
f ∈ ⟨pk⟩. (2.10)

Desde que cada pk é irredutível, temos que ⟨pk⟩ é um ideal primo. Então, por 2.10,
tem-se det(M) ∈ ⟨pk⟩ ou ∂xi

f ∈ ⟨pk⟩. Argumentamos que, para todo i = 1, . . . , n,
∂xi
f /∈ ⟨pk⟩. Do contrário, se, para algum i, tivéssemos ∂xi

f ∈ ⟨pk⟩, então, por meio da
regra de Leibniz,

∂xi
f = ∂xi

(p1 . . . pl) = p1 . . . pk−1pk+1 . . . pl∂xi
(pk) + pk∂xi

(p1 . . . pk−1pk+1 . . . pl) ∈ ⟨pk⟩,

concluiríamos que p1 . . . pk−1pk+1 . . . pl∂xi
(pk) ∈ ⟨pk⟩. E mais uma vez, sendo ⟨pk⟩ um

ideal primo, deríamos ter que ∂xi
pk ∈ ⟨pk⟩ ou p1 . . . pk−1pk+1 . . . pl ∈ ⟨pk⟩. Em ambos os

casos, temos um absurdo, de fato: uma vez que pk é homogêneo, temos que grau(∂xi
pk) ≤

grau(pk)−1, logo, ∂xi
pk /∈ ⟨pk⟩ e, por outro lado, p1 . . . pk−1pk+1 . . . pl /∈ ⟨pk⟩, pela hipótese

sobre p1 . . . pl serem relativamente primos entre si.
Portanto, para todo i = 1, . . . , n e k = 1, . . . , l, obtemos que ∂xi

pk /∈ ⟨pk⟩. Conse-
quentemente, det(M) ∈ ⟨pk⟩, para todo k = 1, . . . , l. Isso implica que det(M) ∈ ⟨f⟩.

Conclusão: se M é uma matriz quadrada de ordem n cujas linhas são os coeficientes
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de n derivações logarítmicas de f , então

det(M) = hf, para algum h ∈ R. (2.11)

Agora, suponha que as derivações δ1, . . . , δn formam uma base para Derlog(f). Por
definição, essas derivações são R-linearmente independentes, isso implica que, na equação
2.11, h ̸= 0.

Considere as derivações β1, . . . , βn definidas como segue:

β1 = f∂x1

βj = f1∂xj
− fj∂x1 , ∀ j = 2, . . . , n, sendo fj := ∂xj

(f).

Note que claramente β1, . . . , βn ∈ Derlog(f). Além disso, considere a matriz M1 :=

M(β1, . . . , βn) cujas linhas são compostas pelos coeficientes das derivações β1, . . . , βn na
base canônica ∂x1 , . . . , ∂xn :

M1 =



f 0 0 · · · 0

−f2 f1 0 · · · 0

−f3 0 f1 · · · 0
...

...
... . . . ...

−fn 0 0 · · · f1


.

Então,
det(M1) = ff1

n−1. (2.12)

Como {δ1, . . . , δn} é uma base para Derlog(f), podemos explicitar as derivações
β1, . . . , βn através de combinações R-lineares desses geradores. Em termos matriciais,
existe N uma matriz de ordem n × n tal que M1 = NM . Assim sendo, det(M1) =

det(N) det(M). Isso implica, devido 2.11 e 2.12, que

ff1
n−1 = det(N)hf.

Ou seja, h deve dividir f1n−1.
Reproduzindo o procedimento anterior para cada k ̸= 1, definimos:

βk
k = f∂xk

βk
j = fk∂xj

− fj∂xk
,∀ j = 1, . . . , k − 1, k + 1, . . . n.

Mais uma vez, claramente, para cada k, temos que βk
1 , . . . , β

k
n são derivações logarít-

micas de f . E definindo Mk = M(βk
1 , . . . , β

k
n) matriz cujas linhas são compostas pelos

coeficientes das derivações βk
1 , . . . , β

k
n na base canônica ∂x1 , . . . , ∂xn , temos que existe Nk
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matriz quadrada de ordem n tal queMk = NkM . Desta forma, det(Mk) = det(Nk) det(M)

o que implica ffkn−1 = det(Nk)hf . Consequentemente, h divide fk,∀ k = 1, . . . , n.
Por fim, consideremos as derivações logarítmicas β̃j = f∂xj

, com j = 1, . . . , n, e a
matriz:

M̃ =M(β̃1, . . . , β̃n) =



f 0 0 · · · 0

0 f 0 · · · 0

0 0 f · · · 0
...

...
... . . . ...

0 0 0 · · · f


.

Similarmente, existe Ñ matriz quadrada de ordem n tal que M̃ = ÑM . Então, det(M̃) =

fn = det(Ñ)hf . Dessa forma, temos que h divide fn−1. Conclusão: h divide fn−1 e h
divide fk,∀ k = 1, . . . , n.

Afirmação: h ∈ C∗.

De fato, como f é reduzido, por hipótese, podemos reescrevê-lo como anteriormente,
isto é, como um produto de l formas irredutíveis distantas duas a duas:

f = p1 . . . pl.

Suponha, por absurdo, que h /∈ C∗. Desta forma, como h divide fn−1, existiria
j ∈ {1, . . . , l} tal que pj divide h. Além disso, como h divide fk,∀ k = 1, . . . , n, teríamos
que pj dividiria fn−1

k ,∀ k = 1, . . . , n.
Perceba que para cada k = 1, . . . , n podemos escrever

fk = p1 . . . pj−1pj+1 . . . pl∂xk
(pj) + pj∂xk

(p1 . . . pj−1pj+1 . . . pl).

Denotaremos f(k,j) := p1 . . . pj−1pj+1 . . . pl∂xk
(pj). Pelo Teorema Binomial, temos que

fk
n−1 =

n−1∑
i=0

(
n− 1

i

)
f
(n−1)−i
(k,j) (pj∂xk

(p1 . . . pj−1pj+1 . . . pl))
i

= fn−1
(k,j) + pj

n−1∑
i=1

(
n− 1

i

)
f
(n−1)−i
(k,j) pi−1

j ∂xk
(p1 . . . pj−1pj+1 . . . pl)

i.

Da expressão acima, podemos concluir que pj deve dividir fn−1
(k,j). E pela definição de f(k,j),

teríamos que pj | ∂xi
(pj)

n−1. Sendo pj irredutível, teríamos finalmente que pj | ∂xi
(pj),

um absurdo, pois grau(∂xi
pj) < grau(pj).

Portanto h = λ, para algum λ ∈ C∗, como queríamos demonstrar.
Reciprocamente, suponha que det(M) = cf , com c ∈ C∗. Neste caso, em particular,

as derivações δ1, . . . , δn são linearmente independentes sobre R. Resta mostrar que tais
derivações geram Derlog(f). Seja β ∈ Derlog(f), evidentemente, esta derivação pode ser
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identificada como sendo:

β =
n∑

i=1

bi∂xi
; bi ∈ R, ∀ i = 1, . . . , n. (2.13)

Afirmação: Existem u1, . . . , un ∈ R tais que

fβ =
n∑

i=1

uiδi ∈ Derlog(f). (2.14)

De fato, em essência, precisamos resolver o sistema R-linear abaixo:[
u1 · · · un

]
·M =

[
fb1 · · · fbn

]
.

Pela Fórmula de Cauchy, obtemos que, para todo i = 1, . . . , n,

[
u1 · · · un

]
·


det(M) · · · 0

... . . . ...
0 · · · det(M)

 =
[
fb1 · · · fbn

]
· adj(M).

Desde que det(M) = cf , com c ∈ C∗, podemos reescrever a igualdade anterior:

[
u1 · · · un

]
·


1 · · · 0
... . . . ...
0 · · · 1

 =
[
b1/c · · · bn/c

]
· adj(M).

Ou seja, o sistema linear é solúvel em R para u1, . . . , un, e a afirmação é válida.
Seja Mi a matriz obtida ao trocar a i-ésima linha de M = M(δ1, . . . , δn) pelas coor-

denadas de β:

Mi =



a11 a12 · · · a1n
...

... . . . ...
ai−11 ai−12 · · · ai−1n

b1 b2 · · · bn

ai+11 ai+12 · · · ai+1n

...
... . . . ...

an1 an2 · · · ann


.

Em 2.11 concluímos que para uma matriz qualquer U , quadrada de ordem n, cujas
linhas são derivações em Derlog(f), temos que det(U) ∈ ⟨f⟩. Isto vale, em particular,
para cada Mi. Dessa forma,

∃ gi ∈ R; det(Mi) = gif, ∀ i = 1, . . . , n.
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Agora, considere a matriz M ′
i trocando a i-ésima linha de M = M(δ1, . . . , δn) pelas

coordenadas da derivação fβ. Considerando 2.13 e 2.14, temos duas escritas de fβ na
base canônica {∂x1 , . . . , ∂xn}, a saber,

fb1∂x1 + · · ·+ fbn∂xn = fβ =

(
n∑

j=1

ujaj1

)
∂x1 + · · ·+

(
n∑

j=1

ujajn

)
∂xn .

Logo, podemos apresentar M ′
i do seguinte modo:

M ′
i =



a11 a12 · · · a1n
...

... . . . ...
ai−11 ai−12 · · · ai−1n

fb1 fb2 · · · fbn

ai+11 ai+12 · · · ai+1n

...
... . . . ...

an1 an2 · · · ann


=



a11 a12 · · · a1n
...

... . . . ...
ai−11 ai−12 · · · ai−1n

n∑
j=1

ujaj1

n∑
j=1

ujaj2 · · ·
n∑

j=1

ujajn

ai+11 ai+12 · · · ai+1n

...
... . . . ...

an1 an2 · · · ann


.

Pela primeira expressão matricial, é imediato ver quer det(M ′
i) = f det(Mi) = gif

2.

Já pela segunda, a menos de sinal, temos que u1 · · ·ui−1ui+1 · · ·un det(M ′
i) = ui det(M).

Denote ui := u1 · · ·ui−1ui+1 · · ·un. Daí,

ui det(M
′
i) = ui det(M) ⇐⇒ uigif

2 = uicf

⇐⇒ uigif = uic.

Como, por hipótese, c é constante, temos que f divide ui,∀ i = 1, . . . , n. Então,
existem d1, . . . , dn ∈ R tais que ui = dif, ∀ i = 1, . . . , n. Assim,

fβ =
n∑

i=1

fdiδi = f

n∑
i=1

diδi.

Logo, β =
n∑

i=1

diδi. Portanto, o conjunto {δ1, . . . , δn} determina uma base para

Derlog(f), concluindo nossa demonstração.

Exemplo 2.3.1. Sejam R = C[x, y, z] e f = xyz ∈ R. Considere as derivações: δ1 =

x∂x, δ2 = y∂y, δ3 = z∂z. É fácil notar que para todo i = 1, 2, 3 temos que δi(f) = f .
Logo, δi ∈ Derlog(f),∀ i = 1, 2, 3.
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2. Sobre Divisores Livres

Além disso, com respeito a base canônica de DerC(R), a matriz de Saito é dada por

M :=

 x 0 0

0 y 0

0 0 z

 .
Trivialmente, notamos que det(M) = 1 · f . Assim, pelo Critério de Saito, f é um divisor
livre e as derivações δ1, δ2, δ3 formam uma base para Derlog(f).
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Capítulo 3

Resultado Principal e Aplicações

Conforme discutido no capítulo anterior, o estudo de divisores livres admite uma
gama de critérios teóricos e algorítmicos para identificar quando classes específicas de
polinômios que satisfazem essa propriedade. Este capítulo se propõe a explorar o resultado
apresentado por Ştefan O. Tohǎneanu em [20] que fornece um critério para quando uma
forma f , no plano projetivo, é um divisor livre, bem como algumas aplicações.

3.1 Um Critério de Liberdade

Nesta seção, discutiremos em detalhes o teorema principal deste trabalho. No contexto
particular sobre divisores, este resultado atuará como um critério de liberdade, fornecendo
uma maneira alternativa de obter a dimensão homológica do ideal Jacobiano associado a
uma forma f ∈ R.

Preliminar à discussão central desta seção, vamos apresentar dois lemas que serão
ferramentas fundamentais na demonstração do teorema principal.

Lema 3.1.1. Sejam R = K[x1, . . . , xn] anel de polinômios standard graduado sobre um
corpo K e A,B,C ∈ R polinômios homogêneos. Então, a sequência A,B,C determina
uma R-sequência regular se, e somente se, alt⟨A,B,C⟩ = 3.

Demonstração. Denote por J = ⟨A,B,C⟩, o ideal gerado pelas três formas A,B,C. Se
A,B,C determinam uma R-sequência regular, então, alt(J) = 3, pela Proposição 1.3.5.

Reciprocamente, se alt(J) = 3, então grade(J) = 3, mais uma vez, pela Proposição
1.3.5. Então, existem D,E, F elementos em J de forma que D,E, F determina uma
R-sequência maximal em J . Desta forma, por [10, Corollary 17.7], A,B,C é uma R-
sequência regular.

Para os próximos resultados deste capítulo, estaremos supondo que R := C[x, y, z] é
o anel dos polinômios nas indeterminadas x, y e z com coeficientes no corpo C.
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Lema 3.1.2. Seja I ⊆ R = C[x, y, z] um ideal de altura 2, minimamente gerado por
três polinômios homogêneos de mesmo grau. Se I possui uma sizígia regular, então I é
genericamente interseção completa.

Demonstração. Seja (A,B,C) ∈ R3 uma sizígia regular de I = ⟨f1, f2, f3⟩. Então,

Af1 +Bf2 + Cf3 = 0. (3.1)

Seja P ⊇ I um primo minimal. Note que alt(P ) = alt(I) = 2, desta forma,

alt(IP ) = min{alt(QP ) ; IP ⊆ QP , QP ∈ Spec(RP )}

= min{alt(QP ) ; I ⊆ Q ⊆ P, Q ∈ Spec(R)}

= alt(PP ) = dimRP = alt(P ) = 2,

visto que P é minimal sobre I. Dessa forma, devemos mostrar que µ(IP ) = 2, sendo

IP =

〈
f1
1
,
f2
1
,
f3
1

〉
.

Note que o ideal P não contém ao menos um dos elementos da sizígia (A,B,C). Do
contrário, se ⟨A,B,C⟩ ⊂ P , teríamos 2 = alt(P ) ≥ alt(A,B,C), absurdo, visto que
⟨A,B,C⟩ é gerado por uma R-sequência regular, logo, alt(A,B,C) = 3.

Suponha, sem perda de generalidade, que A /∈ P , então
A

1
é uma unidade em RP , o

que implica que podemos reescrever a equação 3.1 da seguinte forma:

f1
1

= −B
A

f2
1
− C

A

f3
1
. (3.2)

Sendo assim,

IP =

〈
f1
1
,
f2
1
,
f3
1

〉
=

〈
f2
1
,
f3
1

〉
.

Portanto, concluímos que IP é minimamente gerado por dois elementos de RP . Isto
é, I é genericamente interseção completa.

Em posse dessas ferramentas, iremos enunciar e demonstrar o resultado principal deste
trabalho.

Teorema 3.1.3. Seja I ⊂ R = C[x, y, z] um ideal de altura 2, minimamente gerado por
três polinômios homogêneos de mesmo grau. Então, o ideal I é genericamente interseção
completa e R/I admite resolução livre minimal do tipo Hilbert-Burch se, e somente se, o
ideal I admite uma sizígia regular.

Demonstração. (⇐) O Lema 3.1.2 nos garante que I é genericamente interseção completa.
Resta mostrar que R/I admite resolução livre minimal do tipo Hilbert-Burch. Considere
(A,B,C) ∈ R3 uma sizígia regular de I. Assim, A,B,C é uma R-sequência regular e,
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para polinômios homogêneos de mesmo grau f1, f2, f3 ∈ R que geram I, temos que:

Af1 +Bf2 + Cf3 = 0. (3.3)

Rearranjando a equação, temos:

Cf3 = −Af1 −Bf2 o que implica que Cf3 ∈ ⟨A,B⟩. (3.4)

Como C é um elemento regular em R/⟨A,B⟩, temos que f3 ∈ ⟨A,B⟩. Isto é, f3 =

AD +BE, para certos D,E ∈ R.
Substituindo f3 na equação 3.3, temos:

Af1 +Bf2 + C(AD +BE) = 0.

Reagrupando os termos, obtemos:

A(f1 + CD) = B(−f2 − CE). (3.5)

Uma vez que B é regular em R/⟨A⟩, a igualdade acima implica que

−f2 − CE ∈ ⟨A⟩, isto é, − f2 − CE = AF, para algum F ∈ R.

Assim,
f2 = −AF − CE.

Por fim, substituindo f2 na equação 3.5, obtemos:

A(f1 + CD) = B(AF + CE − CE) = ABF.

Sendo A regular em R, isto é, um elemento não nulo (já que R é um domínio),
concluímos que:

f1 + CD = BF, ou seja, f1 = BF − CD.

Conclusão: podemos identificar f1 = BF − CD, f2 = −AF − CE e f3 = AD + BE

como os respectivos determinantes

f1 =

∣∣∣∣∣ B D

C F

∣∣∣∣∣ , f2 = −
∣∣∣∣∣ A −E
C F

∣∣∣∣∣ e f3 =

∣∣∣∣∣ A −E
B D

∣∣∣∣∣ .
Donde segue que os polinômios f1,−f2, f3 são os menores de ordem 2× 2 da seguinte
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matriz:

φ =

 A −E
B D

C F

 .
Finalmente, tendo em conta que R é um anel Cohen-Macaulay, devemos ter que

grade(I) = 2 (pois, por hipótese, alt(I) = 2). Portanto, pelo Teorema 1.4.3, R/I tem
uma resolução minimal do tipo Hilbert-Burch.

0→ R2 φ−→ R3 −→ R −→ R

I
−→ 0.

(⇒) Suponha que R/I tenha resolução minimal do tipo Hilbert-Burch. Isto significa
que

0→ R2 φ−→ R3 −→ R −→ R

I
−→ 0 (3.6)

é uma resolução minimal para R/I, onde

φ =

 A1 A2

B1 B2

C1 C2


é uma matriz tal que os menores de ordem 2×2 de φ são geradores minimais para I. Isto
é, se

f1 := B1C2 −B2C1, f2 := A1C2 − A2C1 e f3 := A1B2 − A2B1, (3.7)

então, I = ⟨f1, f2, f3⟩.
Precisamos mostrar que existe (A,B,C) ∈ R3 uma sizígia regular de I. Note que pelo

Lema 1.2.2, é suficiente mostrar que (A,B,C) é uma sequência regular para os geradores
f1, f2, f3. Portanto, basta mostrarmos que existe (A,B,C) ∈ R3 tal que Af1+Bf2+Cf3 =
0.

Desde que φ é a matriz de sizígias de I, se A1, B1, C1 ou A2, B2, C2 é uma R-sequência
regular, então, obtemos o resultado.

Suponha que nenhuma delas é R-sequência regular. Como I é um ideal equigerado,
temos que existem d1, d2 ≥ 1 tais que grau(A1) = grau(B1) = grau(C1) = d1 e grau(A2) =

grau(B2) = grau(C2) = d2. Sem perda de generalidade, podemos supor d1 ≤ d2.
Nosso objetivo é mostrar que uma combinação R-linear das sequência A1, B1, C1 e

A2, B2, C2 determina uma R-sequência regular. Explicitamente, mostraremos que existe
f ∈ R polinômio homogêneo de grau d2 − d1 tal que A2− fA1, B2− fB1, C2− fC1 é uma
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R-sequência regular, já que evidentemente (A2−fA1, B2−fB1, C2−fC1) determina uma
sizígia para os geradores f1, f2, f3 do ideal I.

Considere o ideal J = ⟨A1, A2, B1, B2, C1, C2⟩. Iniciamos mostrando que a variedade
algébrica projetiva V (J) é vazia. De fato, suponha, por absurdo, que V (J) ̸= ∅.

Seja p = [a : b : c] ∈ V (J) ⊆ P2. Por 3.7, temos que I ⊆ J . Consequentemente,
V (J) ⊆ V (I), em particular, p ∈ V (I). Denote por P := I(p), o ideal (primo) de
definição associado ao ponto p. Como {p} ⊆ V (I) temos que I(V (I)) ⊆ I(p) = P.

Porém, pelo Teorema dos Zeros de Hilbert, I(V (I)) =
√
I ⊇ I. Desta forma, I ⊆ P.

Por hipótese, I é um ideal de altura 2. Assim, alt(P) ≥ 2. Contudo, alt(P) < 3,
já que P ̸= m = ⟨x, y, z⟩ ideal irrelevante associado a origem no espaço afim A3

C. Em
particular, dim(RP) = alt(P) = 2.

Localizando a resolução 3.6 em P, obtemos:

0→ R2
P

Φ−→ R3
P −→ IP −→ 0, (3.8)

onde Φ é a localização de φ em P.
Passando à localização de R em P, temos que alt(IP) ≤ dim(RP) = alt(P) = 2. Por

hipótese, como I é genericamente interseção completa, temos que µ(IP) ≤ 2. Logo, a
resolução livre 3.8 não é minimal para IP. Consequentemente, Im(Φ) ⊈ PPR

3
P.

Como
Φ(e1)

1
e
Φ(e2)

1
são geradores de Im(Φ), sendo e1, e2 elementos da base canônica

de R2, segue que ou
Φ(e1)

1
ou

Φ(e2)

1
não pertence à PPR

3
P.

Suponha, sem perda de generalidade, que
Φ(e1)

1
/∈ PPR

3
P. Então,

Φ(e1)

1
=
A1

1

e′1
1
+
B1

1

e′2
1
+
C1

1

e′3
1
/∈ PPR

3
P,

sendo e′1, e
′
2, e

′
3 os elementos da base canônica de R3. Donde segue que

A1

1
ou

B1

1
ou

C1

1

não pertence a PP. Isso significa que pelo menos um elemento entre
A1

1
,
B1

1
,
C1

1
é um ele-

mento invertível em RP e, consequentemente, um elemento entre A1, B1, C1 não pertence
ao ideal P. Um absurdo, pois o ponto p foi tomado em V (J). Portanto,

V (J) = ∅. (3.9)

Agora vamos introduzir um ideal auxiliar. Dado f em R, polinômio de grau d2 − d1,
definimos o ideal:

I(f) = ⟨A2 − fA1, B2 − fB1, C2 − fC1⟩.

Mostraremos que existe uma forma f ∈ R de grau d2 − d1 para o qual V (I(f)) = ∅
(em P2), em particular, alt(I(f)) = 3. Desta forma, pelo Lema 3.1.1, teríamos que os três
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geradores de I(f) formam uma R-sequência regular.
Diante disso, analisemos o caso em que V (I(f)) ̸= ∅, para f ∈ R forma de grau

d2 − d1. Para cada f ∈ R polinômio homogêneo de grau d2 − d1, considere um ponto
qualquer Pf ∈ V (I(f)) ⊆ P2. Em particular, os geradores de I(f) se anulam no ponto
Pf :

(A2 − fA1)(Pf ) = A2(Pf )− f(Pf )A1(Pf ) = 0;

(B2 − fB1)(Pf ) = B2(Pf )− f(Pf )B1(Pf ) = 0;

(C2 − fC1)(Pf ) = C2(Pf )− f(Pf )C1(Pf ) = 0.

(3.10)

Por 3.7, realizando convenientes manipulações algébricas nos geradores de I, podemos
evidenciar a dependência de f1, f2 e f3 sobre f :

f1 = B1C2 −B2C1 + fB1C1 − fB1C1 = B1(C2 − fC1)− C1(B2 − fB1),

f2 = A1C2 − A2C1 + fA1C1 − fA1C1 = A1(C2 − fC1)− C1(A2 − fA1),

f3 = −B1A2 +B2A1 + fB1A1 − fB1A1 = −B1(A2 − fA1) + A1(B2 − fB1).

Avaliando o ponto Pf nas equações de f1, f2 e f3, como reescritas acima, obtemos que:
f1(Pf ) = 0, f2(Pf ) = 0 e f3(Pf ) = 0. Donde concluímos que Pf ∈ V (I). Isto é,

dado f ∈ Rd2−d1 tal que V (I(f)) ̸= ∅ temos que V (I(f)) ⊂ V (I), (3.11)

onde Rd2−d1 denota o conjunto dos polinômios homogêneos de grau d2 − d1.
Agora, note que se [a : b : c] ∈ V (I(f)) ∩ V (I(g)), sendo f, g ∈ Rd2−d1 , então,

f(a, b, c) = g(a, b, c).
De fato, por 3.9 concluímos que V (J) = ∅. Assim, algum dos geradores de J não se

anula em [a : b : c]. Suponha que A2(a, b, c) ̸= 0. Pela igualdade 3.10:

A2(a, b, c)− f(a, b, c)A1(a, b, c) = 0,

obtemos que A1(a, b, c) ̸= 0. Note que o mesmo valeria para B2 e C2, isto é, se B2(a, b, c) ̸=
0 então, B1(a, b, c) ̸= 0 e se C2(a, b, c) ̸= 0 então, C1(a, b, c) ̸= 0. Portanto, suponha, sem
perda de generalidade, que A1(a, b, c) ̸= 0. Mais uma vez por 3.10, isto implica que

A2(a, b, c)− f(a, b, c)A1(a, b, c) = 0, que é equivalente a f(a, b, c) =
A2(a, b, c)

A1(a, b, c)
,

A2(a, b, c)− g(a, b, c)A1(a, b, c) = 0, que é equivalente a g(a, b, c) =
A2(a, b, c)

A1(a, b, c)
.

Logo,
[a : b : c] ∈ V (I(f)) ∩ V (I(g)) =⇒ f(a, b, c) = g(a, b, c). (3.12)

Finalmente, tomemos f ∈ Rd2−d1 de modo que f não se anula em nenhum ponto de

45



3. Resultado Principal e Aplicações

V (I). Suponha, por absurdo, que V (I(f)) ̸= ∅. Além disso, considere a seguinte sequência
de polinômios:

f, 2f, . . . , kf, . . .

Afirmação: ∀ i ̸= j, temos que V (I(if)) ∩ V (I(jf)) = ∅.
De fato, suponha que a interseção seja não vazia. Em virtude de 3.12, teríamos que

se [a : b : c] é um ponto em V (I(if)) ∩ V (I(jf)), então:

if(a, b, c) = jf(a, b, c),∀ i ̸= j. (3.13)

Desde que i ̸= j, segue que f(a, b, c) = 0, isto é, [a : b : c] ∈ V (I(if)). Por outro
lado, por 3.11, teríamos que V (I(if)) ⊆ V (I). Consequentemente, [a : b : c] ∈ V (I).
Contradizendo a hipótese de que f não se anula nos pontos de V (I). Assim, ∀ i ̸= j,

temos que V (I(if)) ∩ V (I(jf)) = ∅.
Como uma consequência da Afirmação, concluímos que, para cada k ≥ 1, obtemos

um ponto distinto em V (I), já que ∀ k > 0, V (I(kf)) ⊆ V (I), por 3.11.
Em particular, V (I) possui infinitos pontos, uma contradição, visto que a dimensão

da variedade V (I) é descrita por

dim(V (I)) = dim

(
R

I(V (I))

)
−1 = dim

(
R√
I

)
−1 = dimR−alt(

√
I)−1 = 3−2−1 = 0,

visto que alt(
√
I) = alt(I) = 2.

Portanto, V (I(f)) = ∅. Concluindo nossa demonstração, pois, pelo Lema 3.1.1, a
sequência A2 − fA1, B2 − fB1, C2 − fC1 determina uma R-sequência regular.

Observação 3.1.1. A versão do Teorema 3.1.3 apresentado neste trabalho é mais geral
que a proposta originalmente em [20]. Especificamente, o autor do trabalho original supõe
que o ideal I é genericamente interseção completa como hipótese básica à equivalência.
Embora a motivação inicial para apresentação do Lema 3.1.2 derive do comentário em
[20], a demonstração e os detalhes técnicos são desenvolvimentos próprios deste trabalho.

Uma particularidade da resolução livre do tipo Hilbert-Burch é que esse tipo de reso-
lução carrega consigo a informação sobre um invariante algébrico importante: a dimensão
homológica. Em síntese, dizer que um ideal é do tipo Hilbert-Burch é dizer que este
ideal tem dimensão homológica menor ou igual a um. Nesse sentido, podemos finalmente
apresentar um critério alternativo para determinar a liberdade de uma forma f ∈ R.

Teorema 3.1.4. Sejam R = C[x, y, z] o anel dos polinômios sobre o corpo C e f ∈ R

um polinômio homogêneo. Suponha que alt(Jf ) = 2 e {∂xf, ∂yf, ∂zf} seja um conjunto
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minimal de geradores de Jf . Então,

f é um divisor livre e Jf é genericamente interseção completa

⇐⇒

Jf admite uma sizígia regular.

Demonstração. Sejam f ∈ R um polinômio homogêneo e Jf = ⟨∂xf, ∂yf, ∂zf⟩ o ideal
Jacobiano de f . Se f é um divisor livre, então o módulo de sizígias Syz(Jf ) é um módulo
livre. Isto significa que

0→ Rn φ−→ R3 −→ R → R

Jf
−→ 0,

com Rn ≃ Syz(Jf ) e n = µ(Syz(Jf )), é uma resolução livre minimal para Jf .
Além disso, pela Proposição 1.3.3, temos que −n+3−1 = 0 o que implica que n = 2.

Logo, Jf possui resolução livre do tipo Hilbert-Burch:

0→ R2 φ−→ R3 −→ R −→ R

Jf
−→ 0, (3.14)

e o resultado segue do Teorema 3.1.3, já que estamos supondo que Jf é genericamente
interseção completa.

Reciprocamente, se Jf tem uma sizígia regular, então, Jf possui resolução livre do tipo
Hilbert-Burch, pelo Teorema 3.1.3. Em particular, dh(Jf ) ≤ 1. Portanto, pelo Teorema
2.2.4, f é um divisor livre. Além disso, Jf é genericamente interseção completa pelo Lema
3.1.2.

Exemplo 3.1.2. Sejam R = C[x, y, z] e f = xyz ∈ R. O ideal Jacobiano de f é o ideal
minimamente gerado pelas derivadas parciais de f :

Jf = ⟨∂xf, ∂yf, ∂zf⟩ = ⟨yz, xz, xy⟩.

Esse ideal é tal que alt(Jf ) = 2, pois seus primos minimais possuem altura 2, a saber,
os ideais primos ⟨x, y⟩, ⟨x, z⟩ e ⟨z, y⟩. Considere a 3-upla (−2x, y, z) em R3, temos que:

−2x(yz) + y(xz) + z(xy) = 0.

Como −2x, y e z constituem uma sequência regular em R, podemos aplicar o Teo-
rema 3.1.4 para concluir que o polinômio f = xyz é um divisor livre.

Observação 3.1.3. É fato que existem, em P2, divisores livres que não possuem sizígias
regulares devido ao fato de que não satisfazem a condição de ser genericamente interseção
completa. Em [6, Theorem 4.1, item (iii)] os autores apresentam uma família de divisores
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livres em P2 que, para os parâmetros corretos, não possuem ideal Jacobiano do tipo linear
e, portanto, não podem ser genericamente interseção completa, uma vez que há uma
equivalência entre esses conceitos [18, Proposition 1.6].

Ao longo deste capítulo estamos nos concentrando no caso onde R := C[x, y, z]. É
natural o questionamento se o teorema principal deste trabalho é válido para anéis de
polinômios em mais variáveis. De fato, a seguir, apresentaremos um exemplo onde o
teorema não irá funcionar no ambiente S := C[x, y, z, w]. Este exemplo consta em [20].

Exemplo 3.1.4. Sejam S := C[x, y, z, w] e Q := xyzw(x + y + z + w) ∈ S. O ideal
Jacobiano de Q é descrito por JQ = ⟨∂xQ, ∂yQ, ∂zQ, ∂wQ⟩, onde

∂xQ = yzw(2x+ y + z + w),

∂yQ = xzw(x+ 2y + z + w),

∂zQ = xyw(x+ y + 2z + w),

∂wQ = xyz(x+ y + z + 2w).

(3.15)

Note que alt(JQ) = 2. Considere (s1, s2, s3, s4) ∈ S4, onde

s1 := 2x2 + xy + 7xw = x(2x+ y + 7w),

s2 := −y2 − 4yw = y(−y − 4w),

s3 := 4xz + yz + 2z2 + 3zw = z(4x+ y + 2z + 3w),

s4 := −8xw − 4zw − 3w2 = w(−8x− 4z − 3w).

De fato, é fácil verificar que:

s1∂xQ+ s2∂yQ+ s3∂zQ+ s4∂wQ = 0,

o que mostra que (s1, s2, s3, s4) é uma sizígia de JQ. Utilizando o software de computação
algébrica Macaulay2, temos que o ideal I = ⟨s1, s2, s3, s4⟩ tem altura igual a 4. Conse-
quentemente, grade(I) = 4, pois S é Cohen-Macaulay. Assim, existe uma S-sequência
regular de 4 elementos s′1, s

′
2, s

′
3, s

′
4 em I. Então, de acordo com a prova do Lema 1.2.2,

temos que s1, s2, s3, s4 é uma sizígia regular sobre JQ.
Contudo, se existe um polinômio t ∈ S tal que t /∈ JQ e t ∈ (JQ : m), com m =

⟨x, y, z, w⟩, temos que tm ⊆ JQ, logo, m = (JQ : t), isto é, m = (0̄ : t̄), com t̄ ∈ S

JQ
\ {0}.

Assim, m ∈ Ass

(
S

JQ

)
, em particular, prof

(
S

JQ

)
= 0.

Como dim(S) = 4 e S é um anel Cohen-Macaulay, pela fórmula de Auslander-
Buchsbaum, discutido na observação 1.3.14, segue que:

prof

(
S

JQ

)
+ dh

(
S

JQ

)
= dimS.
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Consequentemente, dh
(
S

JQ

)
= 4. De fato, utilizando, mais uma vez, o software de

computação algébrica Macaulay2, é possível verificar que o polinômio t = y2zw+ yz2w+

yzw2 é tal que t /∈ JQ e t ∈ (JQ : m). Portanto, JQ não pode ter resolução minimal do tipo
Hilbert-Burch. Isto é, o ideal Jacobiano JQ possui uma sizígia regular, mas não admite
resolução livre de Hilbert-Burch, em particular, Q não é um divisor livre.

Observação 3.1.5. No Exemplo 3.1.4 contamos com o auxílio do software computacional
Macaulay2. No Apêndice A é possível encontrar os códigos utilizados na resolução do
exemplo em questão.

3.2 Aplicações

Nessa seção, apresentaremos outras aplicações na temática dos objetos centrais neste
estudo. Os resultados apresentados nessa seção são propostos por Tohaneanu em [20].

Ainda no ambiente introduzido neste capítulo, seja R = C[x, y, z], anel de polinômios
standard graduado e f ∈ R um polinômio homogêneo. Podemos considerar o módulo das
C-derivações, DerC(R), como um R-módulo graduado: uma C-derivação θ = A∂x+B∂y+

C∂z é homogênea de grau d se grau(A) = grau(B) = grau(C) = d.
Agora vamos introduzir uma nomenclatura auxiliar. Se (A,B,C) ∈ R3 é uma sizígia

do ideal jacobiano de f , descrito por Jf = ⟨∂xf, ∂yf, ∂zf⟩, então, a derivação θ, dada por

θ = A∂x +B∂y + C∂z,

é uma derivação em Derlog(f), uma vez que θ(f) = A∂xf + B∂yf + C∂zf = 0 = 0f . A
derivação θ é denominada derivação logarítmica especial. Se A,B,C é uma R-sequência
regular com grau(A) = grau(B) = grau(C) = d, então a θ daremos o nome de derivação
especial regular de grau d.

Os resultados que seguem estão no contexto onde F define um arranjo de hipersuper-
fícies (em particular, um arranjo de hiperplanos), isto é, quando F é definido como um
produto de formas irredutíveis. Nosso primeiro resultado apresenta uma relação entre o
grau mínimo das sizígias de JF e o grau dos geradores do ideal radical de JF .

Proposição 3.2.1. Sejam f1, . . . , fm ∈ R polinômios homogêneos irredutíveis relativa-
mente primos entre si e F := f1 . . . fm. Suponha que as hipersuperfícies algébricas defini-
das por f1, . . . , fm interceptem-se transversalmente (duas a duas) e que V (Jfi) = ∅, para
todo i = 1, . . . ,m.

Denote o grau mínimo das sizígias de JF por β(JF ) e o grau mínimo dos geradores
de
√
JF por α(

√
JF ). Então,

α(
√
JF ) ≤ β(JF ) + 1.
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Demonstração. Seja (A,B,C) ∈ R3 uma sizígia de JF de grau mínimo, β(JF ). Considere
a derivação especial

θ = A∂x +B∂y + C∂z ∈ Derlog(F ).

Como F = f1 · · · fm, com f1, . . . , fm formas irredutíveis, então

θ(F ) = A∂xF +B∂yF + C∂zF = (A∂xf1 +B∂yf1 + C∂zf1)f2 · · · fm + · · ·+

+ (A∂xfi +B∂yfi + C∂zfi)
m∏
j ̸=i

fj + · · ·+

+ (A∂xfm +B∂yfm + C∂zfm)f1 · · · fm−1

=
m∑
i=1

(A∂xfi +B∂yfi + C∂zfi)
m∏
j ̸=i

fj.

Desde que (A,B,C) é uma sizígia sobre JF = ⟨∂xF, ∂yF, ∂zF ⟩, temos que A∂xF +

B∂yF + C∂zF = 0. Dessa forma,

m∑
i=1

(A∂xfi +B∂yfi + C∂zfi)
m∏
j ̸=i

fj = 0. (3.16)

Como θ(fi) = A∂xfi +B∂yfi + C∂zfi, segue que, para todo j ̸= i,

θ(fi)
m∏
j ̸=i

fj =−
i−1∑
j=1

(A∂xfj +B∂yfj + C∂zfj)
m∏
k ̸=j

fk−

−
m∑

j=i+1

(A∂xfj +B∂yfj + C∂zfj)
m∏
k ̸=j

fk.

Mais ainda, podemos destacar fi na expressão acima:

θ(fi)
m∏
j ̸=i

fj = fi

(
−

i−1∑
j=1

(A∂xfj +B∂yfj + C∂zfj)
m∏

k ̸=j;k ̸=i

fk−

−
m∑

j=i+1

(A∂xfj +B∂yfj + C∂zfj)
m∏

k ̸=j;k ̸=i

fk

)
.

Como fi é irredutível, e mdc(fi, fj) = 1, para j ̸= i, segue que, para cada i = 1, . . . ,m:

θ(fi) = A∂xfi +B∂yfi + C∂zfi = figi, para algum gi ∈ R. (3.17)

Note que V (JF ) ̸= ∅, visto que alt(JF ) ≤ 2, pois JF ⊆ ⟨fi, fj⟩. Assim, considere um
ponto P = [a : b : c] ∈ V (JF ) ⊆ P2.

Afirmação: P ∈ V (fi) ∩ V (fj), para algum par i, j com i ̸= j.
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De fato, como F = f1 . . . fm ∈ JF e P ∈ V (JF ), segue que 0 = F (P ) = f1(P ) · · · fm(P ).
Daí, existe i tal que fi(P ) = 0. Suponha, por absurdo, que para todo j ̸= i, temos
P /∈ V (fj), isto é, fj(P ) ̸= 0. Note ainda que podemos expressar a derivada parcial de F
com respeito a x como segue:

∂xF = ∂x(f1)
m∏
j=2

fj + · · ·+ ∂x(fi)
m∏

j=1,j ̸=i

fj + · · ·+ ∂x(fm)
m−1∏
j=1

fj

= ∂x(fi)
m∏

j=1,j ̸=i

fj + fi

(
m∑

k=1,k ̸=i

∂x(fk)
m∏

j=1,j ̸=k,i

fj

)
.

Avaliando a expressão anterior no ponto P teríamos:

∂xF (P ) = ∂x(fi)(P )

(
m∏

j=1,j ̸=i

fj

)
(P ) + (fi)(P )

(
m∑

k=1,k ̸=i

∂x(fk)
m∏

j=1,j ̸=k,i

fj

)
(P ),

donde segue 0 = ∂x(fi)(P )

(
m∏

j=1,j ̸=i

fj

)
(P ), o que implicaria que ∂x(fi)(P ) = 0, já que

fj(P ) ̸= 0 para todo j ̸= i. Reproduzindo o mesmo argumento para as variáveis y, z,
obteríamos ∂y(fi)(P ) = ∂z(fi)(P ) = 0, o que seria um absurdo, pois V (Jfi) = ∅. Assim,
P ∈ V (fi) ∩ V (fj), para algum par i, j com i ̸= j.

Dado P ∈ V (JF ), duas situações podem acontecer: P ∈ V (A,B,C) ou P /∈ V (A,B,C).
Se P /∈ V (A,B,C), então, por 3.17, temos

A(P )∂xfi(P ) +B(P )∂yfi(P ) + C(P )∂zfi(P ) = fi(P )gi(P ) = 0, (3.18)

já que P ∈ V (fi), para algum i = 1, . . . ,m.
Diante do exposto, em 3.18 temos que o ponto P ′ = [A(P ) : B(P ) : C(P )] deve

pertencer ao espaço tangente à variedade V (fi) em P . Desde que as hipersuperfícies
V (fi) definem curvas projetivas em P2, temos que P ′ pertence a reta Li tangente à V (fi).
Analogamente, concluímos que P ′ pertence a reta tangente Lj à V (fj), já que P ∈ V (fi)∩
V (fj) (pela afirmação).

Por hipótese, as hipersuperfícies se interceptam transversalmente, isto é, as retas Li

e Lj possuem inclinações diferentes, logo Li ∩Lj = {P}, uma vez que P ∈ V (fi)∩ V (fj).
Dessa forma, temos uma única possibilidade: P ′ = P , isto é:

[a : b : c] = P = P ′ = [A(P ) : B(P ) : C(P )].
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Agora, consideremos o ideal

I(A,B,C) = (yA− xB, zA− xC, zB − yC).

Avaliando P nos geradores de I(A,B,C), obtemos:

(yA− xB)(P ) = bA(P )− aB(P ) = 0,

(zA− xC)(P ) = cA(P )− aC(P ) = 0,

(zB − yC)(P ) = cB(P )− bC(P ) = 0.

Donde segue que P ∈ V (I(A,B,C)).
Por outro lado, se P ∈ V (A,B,C), então, como I(A,B,C) ⊆ ⟨A,B,C⟩, é imediato que

P ∈ V (I(A,B,C)).
Em ambos os casos, concluímos que se P é um ponto em V (JF ), então P ∈ V (I(A,B,C)).

Isto significa que V (JF ) ⊆ V (I(A,B,C)). Pelo Teorema dos Zeros de Hilbert, temos que
I(A,B,C) ⊆

√
JF . Desde que I(A,B,C) é um ideal equigerado em grau β(JF )+1, o resultado

segue:
α(
√
JF ) ≤ β(JF ) + 1.

A proposição a seguir estabelece uma cota superior para a multiplicidade do ideal
radical do ideal jacobiano associado a um divisor livre definido por um arranjo de hiper-
planos.

Proposição 3.2.2. Sejam L1, . . . , Ln ∈ R formas lineares relativamente primas entre si
e Q = L1 . . . Ln. Suponha que Q é um divisor livre que admite uma derivação logarítmica
especial regular de grau d ≥ 2. Então,

e(R/
√
JQ) ≤ d2 + d+ 1.

Demonstração. A argumentação desta prova é similar a feita em Proposição 3.2.1. Seja
θ = A∂x + B∂y + C∂z, uma derivação logarítmica especial regular de Q de grau d. Isto
é, (A,B,C) é uma sizígia de JQ tal que grau(A) = grau(B) = grau(C) = d, com d ≥ 2

e A,B,C forma uma sequência regular. Desde que cada Li é uma forma linear em R,
podemos escrever Li = aix+ biy + ciz, com ai, bi, ci ∈ C,∀ i = 1, . . . , n.

Aplicando θ em Q = L1 · · ·Ln, considerando que (A,B,C) é uma sizígia regular de
JQ, obtemos:

θ(Q) = A∂xQ+B∂yQ+ C∂zQ =
n∑

k=1

(A∂xLk +B∂yLk + C∂zLk)
n∏

j ̸=k

Lj = 0.
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Como ∂xLk = ak, ∂yLk = bk, ∂zLk = ck, temos que

θ(Q) =
n∑

k=1

(akA+ bkB + ckC)
n∏

j ̸=k

Lj = 0.

Assim, para cada i, podemos reescrever de forma conveniente esta igualdade:

(aiA+ biB + ciC)
n∏

j ̸=i

Lj = Li

(
−

i−1∑
k=1

(akA+ bkB + ckC)
n∏

j ̸=k,i

Lj−

−
n∑

k=i+1

(akA+ bkB + ckC)
n∏

j ̸=k,i

Lj

)
.

Como Li é uma forma de grau 1 e mdc(Li, Lj) = 1, temos que

aiA+ biB + ciC = LiSi, para algum Si ∈ R, ∀ i = 1, . . . , n. (3.19)

Afirmação: Se P = [a : b : c] ∈ V (JQ), então P ∈ V (Li) ∩ V (Lj), para algum para
i, j com i ̸= j.

Com efeito, como Q = L1 · · ·Ln ∈ JQ e P ∈ V (JQ), segue que 0 = Q(P ) =

L1(P ) · · ·Lm(P ). Logo, Li(P ) = 0 para algum i. Suponha, por absurdo, que para todo
j ̸= i, temos P /∈ V (Lj). Note que

∂xQ = ∂x(L1)
m∏
j=2

Lj + · · ·+ ∂x(Li)
m∏

j=1,j ̸=i

Lj + · · ·+ ∂x(Lm)
m−1∏
j=1

Lj

= ∂x(Li)
m∏

j=1,j ̸=i

Lj + Li

(
m∑

k=1,k ̸=i

∂x(Lk)
m∏

j=1,j ̸=k,i

Lj

)
.

Avaliando a expressão anterior no ponto P teríamos:

∂xQ(P ) = ∂x(Li)(P )

(
m∏

j=1,j ̸=i

Lj

)
(P ) + (Li)(P )

(
m∑

k=1,k ̸=i

∂x(Lk)
m∏

j=1,j ̸=k,i

Lj

)
(P ),

donde segue 0 = ∂x(Li)(P )

(
m∏

j=1,j ̸=i

Lj

)
(P ), o que implicaria que ai = ∂x(Li)(P ) = 0.

De maneira análoga, concluímos também que bi = ∂y(Li)(P ) = 0 e ci = ∂z(Li)(P ) = 0,
ou seja, (ai, bi, ci) = (0, 0, 0), um absurdo. Assim, P ∈ V (Li)∩V (Lj), para algum par i, j
com i ̸= j.

Análogo à proposição anterior, temos duas opções. Se P /∈ V (A,B,C), avaliamos o
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ponto P na equação 3.19, obtemos

aiA(P ) + biB(P ) + ciC(P ) = 0 = ajA(P ) + bjB(P ) + cjC(P ),

pois P ∈ V (Li) ∩ V (Lj). Dessa forma, o ponto [A(P ) : B(P ) : C(P )] ∈ V (Li) ∩ V (Lj).
Como a interseção entre as retas projetivas V (Li) e V (Lj) define um ponto projetivo,

pela afirmação segue que V (Li) ∩ V (Lj) = {P}, logo, [A(P ) : B(P ) : C(P )] = P = [a :

b : c]. Assim, A(P ) = ka,B(P ) = kb e C(P ) = kc para algum k ∈ C∗.
Considere o ideal I(A,B,C) = (yA−xB, zA−xC, zB−yC). Avaliando P nos geradores

de I(A,B,C):

(yA− xB)(P ) = bA(P )− aB(P ) = 0,

(yA− xC)(P ) = cA(P )− aC(P ) = 0,

(yB − yC)(P ) = cB(P )− bC(P ) = 0.

Donde P ∈ V (I(A,B,C)). Se P ∈ V (A,B,C), então P ∈ V (I(A,B,C)), pois I(A,B,C) ⊆
(A,B,C). Concluímos que

V (JQ) ⊆ V (I(A,B,C)). (3.20)

Nossa estratégia consiste em utilizar o Teorema 3.1.3 para inferir uma cota superior
para e(I(A,B,C)). Assim, precisamos mostrar que I(A,B,C) se encaixa nas hipóteses do
teorema.

Primeiro mostraremos que I(A,B,C) é minimamente gerado por três elementos. Sem
perda de generalidade, suponha, por absurdo, que existem α, β ∈ C tais que:

yA− xB = α(zA− xC) + β(zB − yC).

Reorganizando a igualdade anterior, obtemos:

(y − αz)A+ (−x− βz)B + (βy + αx)C = 0, (3.21)

uma sizígia de grau 1 do ideal ⟨A,B,C⟩, um absurdo, visto que A,B,C é uma R-sequência
regular de elementos homogêneos de mesmo grau d ≥ 2, por hipótese. Logo, o grau das
sizígias de ⟨A,B,C⟩ deve ser maior ou igual que d ≥ 2. Com efeito, se (f, g, h) é uma
sizígia do ideal ⟨A,B,C⟩, então fA + gB + hC = 0, consequetemente, hC = −fA− gB
e, pela regularidade de A,B e C, tem-se que h ∈ ⟨A,B⟩. Então, grau(h) ≥ d. O mesmo
é válido para f e g. Portanto, I(A,B,C) deve ser minimamente gerado por três elementos.

Em seguida, devemos mostrar que alt(I(A,B,C)) = 2. Uma vez que I(A,B,C) ⊆
√
JQ,

pela equação 3.20, e que alt(JQ) ≤ 2, visto que JQ ⊆ ⟨Li, Lj⟩, então alt(I(A,B,C)) ≤ 2.
Suponha, por absurdo, alt(I(A,B,C)) = 1.
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Como R é um domínio de fatoração única, os primos minimais de I(A,B,C) de altura 1
são ideais principais. Daí, existe um polinômio homogêneo D ∈ R que divide os geradores
de I(A,B,C). Ou seja,

fD = yA− xB, (3.22)

gD = zA− xC,

hD = zB − yC.

Para certos polinômios f, g, h ∈ R tais que alt(f, g, h) = 2. Note que, se f, g, h não
cumprem a condição de altura 2, podemos iterar esse processo.

Multiplicando as equações 3.22 por z,−y, x, respectivamente, obtemos

zfD = zyA− zxB,

−ygD = −yzA+ yxC,

xhD = xzB − xyC.

(3.23)

Somando estas equações, tem-se

0 = zfD − ygD + xhD = D(zf − yg + xh), consequentemente, zf − yg + xh = 0.

E, da regularidade da sequência z,−y, x, concluímos que f = yv1+xv2, g = zv1+xv3

e h = yv3 − zv2, para certos v1, v2, v3 ∈ R. Donde segue que:

yA− xB = (yv1 + xv2)D ⇐⇒ y(A− v1D)− x(B + v2D) = 0;

zA− xC = (zv1 + xv3)D ⇐⇒ z(A− v1D)− x(C + v3D) = 0;

zB − yC = (yv3 − zv2)D ⇐⇒ z(B + v2D)− y(C + v3D) = 0.

Dessa forma, y(A − v1D) = x(B + v2D). Logo, existe t ∈ R tal que A − v1D = tx.
Então, yxt = x(B + v2D), o que implica que B + v2D = ty e C + v3D = tz. Isto é,
⟨A,B,C⟩ ⊆ ⟨D, t⟩. Um absurdo, já que alt(A,B,C) = 3 e alt(D, t) ≤ 2. Portanto,
alt(I(A,B,C)) = 2.

Note que por 3.23, a R-sequência regular z,−y, x é, na verdade, uma sizígia de I(A,B,C).
E, do que foi discutido anteriormente, tem-se, pelo Teorema 3.1.3, que I(A,B,C) é do tipo
Hilbert-Burch com resolução livre minimal:

0→ R2 → R3 → I(A,B,C) → 0.

Desde que grau(A) = grau(B) = grau(C) = d, e I(A,B,C) admite uma sizígia linear,
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produzimos a seguinte resolução graduada:

0→ R(−(d+ 2))⊕R(−(2d+ 1))→ R3(−(d+ 1))→ R→ R/I(A,B,C) → 0. (3.24)

Com o auxílio do teorema 1.5.1, e da resolução graduada 3.24, temos que a série de
Hilbert de I(A,B,C) é dada por:

HI(A,B,C)(t) = (1− 3td+1 + t2d+1 + td+2)
1

(1− t)3
. (3.25)

Além disso, dim(R/I(A,B,C)) = dimR − alt(I(A,B,C)) = 1. Então, pela Proposição
1.5.2, calculamos a multiplicidade de R/I(A,B,C):

e(R/I(A,B,C)) =

[
(−1)2−0

(2− 0)!

∂2−0SI(A,B,C)(t)

∂t2−0

]
(1) =

1

2

[
∂2SI(A,B,C)(t)

∂t2

]
(1),

onde
SI(A,B,C)(t) = 1− 3td+1 + t2d+1 + td+2.

Calculando as derivadas de SI(A,B,C)(t) com respeito a t, obtemos:

S ′
I(A,B,C)(t) = −3(d+ 1)td + (2d+ 1)t2d + (d+ 2)td+1,

S ′′
I(A,B,C)(t) = −3(d+ 1)dtd−1 + 2d(2d+ 1)t2d−1 + (d+ 1)(d+ 2)td,

S ′′
I(A,B,C)(1) = 2(d2 + d+ 1).

Então, e(R/I(A,B,C)) = d2 + d+ 1.
Finalmente, como consequência de 3.20, obtemos a desigualdade desejada:

e(R/
√
JQ) ≤ d2 + d+ 1.
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Apêndice A

Macaulay2

O Macaulay2 é um sistema computacional voltado para Álgebra Comutativa e Ge-
ometria Algébrica, muito utilizado por pesquisadores e estudantes para realizar cálculos
simbólicos com ideais, anéis e módulos. Ele permite estudar características dessas es-
truturas, como dimensões e resoluções livres, de forma eficiente, além de oferecer uma
linguagem de programação própria para automatizar tarefas.

Nesse trabalho, o Macaulay2 desempenha um papel decisivo na argumentação do
Exemplo 3.1.4.

A fim de calcular a altura do ideal I = ⟨2x2 + xy+7xw,−y2− 4yw, 4xz+ yz+2z2 +

3zw,−8xw − 4zw − 3w2⟩, no Exemplo 3.1.4, usamos o seguinte código:

i1 : R=QQ[x,y,z,w]

o1 = R

o1 : PolynomialRing

i2 : I=ideal(2*x*x + x*y + 7*x*w, -y*y-4*y*w, 4*x*z + y*z + 2*z*z+3*z*w,

-8*x*w-4*z*w-3*w*w)

o2 = ideal(2x2+xy+7xw,-y2-4yw,4xz+yz+2z2+3zw,-8xw-4zw-3w2)

o2 : Ideal of R

i3 : dim R - dim(R/I)

o3 = 4

Para encontrar elementos dentro de um ideal construído, basta indexar, com o co-
mando "_[índice]", o nome do ideal. Deixamos claro que, para esse software, a indexação
começa em 0. Assim, para encontrar o polinômio t = y2zw + yz2w + yzw2 no Exemplo
3.1.4, utilizamos o código abaixo:

i1 : R=QQ[x,y,z,w]
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o1 = R

o1 : PolynomialRing

i2 : m= ideal(x,y,z,w)

o2 = ideal(x,y,z,w)

o2 : Ideal of R

i3 : Jq=ideal(y*z*w*(2*x + y + z + w), x*z*w*(x + 2*y + z + w),

x*y*w*(x + y + 2*z + w), x*y*z*(x + y + z + 2*w))

o3 = ideal(2xyzw+y2zw+yz2w+yzw2,x2zw+2xyzw+xz2w+xzw2,x2yw+xy2w+2xyzw+xyw2,

x2yz+xy2z+xyz2+2xyzw)

o3 : Ideal of R

i4 : condutor= Jq:m

o4 = ideal(y2zw+yz2w+yzw2,xyzw,x2zw+xz2w+xzw2,x2yw+xy2w+xyw2,

x2yz+xy2z+xyz2)

o4 : Ideal of R

i5 : condutor_0

o5 = y2zw+yz2w+yzw2

o5 : R

Um outro recurso de grande utilidade nesse trabalho é a possibilidade de se calcular
resoluções livres através do Macaulay2. Para tal, utilizamos o código "res ". Este foi
utilizado tanto no Exemplo 1.3.4 quanto no Exemplo 2.2.12.

Exemplo 1.3.4:

i1 : R=QQ[x,y,z,w]

o1 = R

o1 : PolynomialRing

i2 : m=ideal(x,y,z)

o2 = ideal(x,y,z)

o2 : Ideal of R

i3 : res m

o3 =
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R1 (x y z)←−−−− R3


−y −z 0

x 0 −z
0 x y


←−−−−−−−−−−−− R3


z

−y
x


←−−−− R1 ←− 0

o3 : ChainComplex

Exemplo 2.2.12:

i1 : R=QQ[x,y,z]

o1 = R

o1 : PolynomialRing

i2 : g=x*y*z*(x-y)*(y-z)*(z-x)

o2 = -x3y2z+x2y3z+x3yz2-xy3z2-x2yz3+xy2z3

o2: R

i3 : Jg=ideal (diff(x,g), diff(y,g), diff(z,g))

o3 = ideal(-3x2y2z+2xy3z+3x2yz2-y3z2-2xyz3+y2z3,-2x3yz+3x2y2z+x3z2-3xy2z2

-x2z3+2xyz3, -x3y2+x2y3+2x3yz-2xy3z-3x2yz2+3xy2z2)

o3 : Ideal of R

i4 : res Jg
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