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Resumo

Este trabalho disserta sobre divisores livres no plano projetivo. O conceito de divisor
livre foi introduzido por K. Saito, em 1980, no contexto analitico complexo. Posteri-
ormente, desenvolveu-se uma abordagem algébrica da teoria, formulada em termos da
liberdade do moédulo de derivagoes logaritmicas associadas a uma forma f em um anel
de polinémios sobre um corpo. O objetivo desta dissertacao é apresentar critérios que
caracterizam quando uma forma f define um divisor livre algébrico. Inicialmente, sao
explorados critérios classicos, tanto em termos matriciais, por meio do critério de Saito,
quanto em termos homologicos, utilizando resoluc¢oes do tipo Hilbert-Burch. Como prin-
cipal resultado do trabalho, estuda-se uma caracterizacao desenvolvida por S. Tohaneanu,
em 2012, baseado na nogao de sizigias regulares no contexto tridimensional. Além disso,
no caso em que f define um arranjo de hipersuperficies em P?, investigam-se conexoes
entre o grau minimo das sizigias do ideal Jacobiano de f e o grau minimo dos geradores

do radical desse ideal.

Palavras-chave: Divisores livres, ideal Jacobiano, sizigias regulares, resolugao de Hilbert-
Burch.



Abstract

This work discusses free divisors in the projective plane. The concept of a free divisor
was introduced by K. Saito in 1980, within the context of complex analytic geometry. La-
ter, an algebraic approach to the theory was developed, formulated in terms of the freeness
of the module of logarithmic derivations associated with a form f in a polynomial ring over
a field. The goal of this dissertation is to present criteria that characterize when a form
f defines an algebraic free divisor. Initially, classical criteria are explored, both in matrix
terms, via Saito’s criterion, and from a homological perspective, using Hilbert-Burch type
resolutions. As the main result of this work, we study a characterization developed by
S. Tohaneanu in 2012, based on the notion of regular syzygies in the three-dimensional
setting. Moreover, in the case where f defines an arrangement of hypersurfaces in P?, we
investigate connections between the minimal degree of the syzygies of the Jacobian ideal

of f and the minimal degree of the generators of the radical of this ideal.

Keywords: Free Divisors, Jacobian ideal, regular syzygies, Hibert-Burch free resolution.
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Sejam R um anel e M um R-mo6dulo. A seguir, listamos algumas notagoes utilizadas

neste trabalho.

e adj(C) - denota a matriz adjunta de uma matriz C;

e alt(/) - denota a altura do ideal I C R;

e Ass(M) - denota o conjunto dos ideais primos associados de M;
e prof(M) - denota a profundidade de M:;

e Derlog(f) - denota o Modulo de Saito de uma forma (polinémio homogéneo) f;
e det(C) - denota o determinante de uma matriz C,

e dh(M) - denota a dimensao homologica de M;

e dimg (V) - denota a dimensao do espago vetorial de V;

e dim(M) - denota a dimensao de Krull de M:;

e ¢(M) - denota a multiplicidade de M;

e H(M,n) - denota a Fungao de Hilbert de M;

e Hy,(t) - denota a Série de Hilbert de M,

e Hom(—, R) - denota o modulo dos homomorfismos Hompg(—, R);
e J - denota o ideal de definicao de uma variedade algébrica;

e J; - denota o ideal jacobiano de uma forma f;

e Py (t) - denota o polinomio de Hilbert de M:;

e P? - denota o espaco projetivo de dimensao 2;

e (R,m) - denota um anel local R, com m seu ideal maximal,

e Syz, (M) - n-ésimo modulo de sizigias de M;

e V(I) - denota a variedade algébrica associada ao ideal I;

e Z(M) - denota o conjunto dos divisores de zero de M;

e (0: M) - denota o ideal anulador de M;

e 1(]) - denota o nimero minimo de geradores do ideal I C R;

e \/T - denota o ideal radical do ideal I ;

e 0, f - denota a derivada parcial de um polindémio f na i-ésima indeterminada;

e Vf - denota o vetor gradiente de f;



Introducao

O marco inicial da teoria sobre divisores livres é a publicagao do artigo de Kyoji Saito,
Theory of logarithmic differential forms and logarithmic vector fields [15], em 1980. Nesse
célebre trabalho, Saito introduz e explora o conceito de divisores livres em hipersuperficies,
originalmente no contexto da anélise complexa. Ainda nesse artigo, ele apresenta o mais
famoso critério de liberdade, que viria, posteriormente, a receber seu nome: o Critério de
Saito.

Desde entao, diversos mateméticos vém se dedicando ao aprofundamento da teoria e &
investigacao de suas aplicagoes em diferentes areas da Matematica, tais como Geometria
Algébrica, Teoria de Singularidades, Algebra Comutativa, entre outras. Um dos nomes de
destaque nesse contexto é Hiroaki Terao, que contribuiu, em [19], de forma decisiva para
o desenvolvimento da teoria, especialmente no que se refere a interagao com arranjos de
hiperplanos.

No cenario puramente algébrico, entre os problemas ainda em aberto, destaca-se a
caracterizagao e construcao explicita de familias bem estruturadas de divisores livres.
Destacamos o trabalho de Simis e Tohaneanu [I8], que demonstraram que, em P? nao
existem divisores livres irredutiveis de graus 2 e 3, sendo, portanto, os arranjos lineares
0s Unicos possiveis para polindmios de grau menor ou igual a trés. Em 2013, Buchweitz
e Conca [5] descreveram diversos métodos para construir e identificar novos divisores
livres a partir de outros ja conhecidos. Mais recentemente, destacamos o trabalho de
Burity, Miranda-Neto e Ramos [0], que apresenta quatro novas familias de divisores livres
homogéneos em anéis de polindémios sobre um corpo de caracteristica zero com a graduac¢ao
standard.

Um avango importante na caracterizagao de divisores livres foi obtido por Tohaneanu
em [20], ao associar a liberdade de um divisor no plano projetivo a existéncia de uma
sizigia reqular do ideal jacobiano da forma (isto é, um polinémio homogéneo) f que o
define. Esse resultado constitui a motivacao principal deste trabalho.

Esta dissertacao esta estruturada em trés capitulos. O Capitulo 1 tem carater prelimi-
nar: nele apresentamos conceitos fundamentais de Algebra Comutativa essenciais ao de-
senvolvimento do trabalho, com énfase naqueles que serao utilizados com maior frequéncia.
Neste capitulo, exploramos o conceito de sizigia reqular e o Teorema de Hilbert—Burch,

crucial para esta dissertacao, por caracterizar as resolucoes livres de ideais de altura 2



Introducao

gerados por menores de matrizes. Além disso, introduzimos as fungoes e séries de Hilbert,
ferramentas indispensaveis para estudo de ideais graduados. Estas sao as ferramentas
algébricas necessarias para os resultados a serem desenvolvidos ao longo do trabalho.

No Capitulo 2, apresentamos a nocao central do trabalho: divisores livres. Iniciamos
com a exposicao do modulo de derivagoes de um anel e, posteriormente, introduzimos
o mddulo de derivagoes logaritmicas (ou mddulo de Saito), Derlog(f), associado a uma
forma f. Apresentamos o conceito de divisor livre para uma forma f, bem como um
critério de liberdade baseado na estrutura de Derlog(f), associando esse modulo ao ideal
jacobiano Jy. Finalizamos este capitulo com uma demonstragao do Critério de Saito, que
caracteriza a liberdade de divisores em termos determinantais.

Finalmente, no Capitulo 3, apresentamos o resultado obtido por Stefan Tohaneanu
[20], que estabelece, para um ideal I C R = C|x, y, z| de altura 2 minimamente gerado por
trés polindbmios homogéneos, a relagao entre sua resolucao livre minimal e a existéncia de
sizigias regulares. Mais especificamente, o autor caracteriza completamente tal resolucao
via o Teorema de Hilbert—Burch quando I admite uma sizigia regular. No caso particular
em que [ é o ideal jacobiano J; de uma forma f € R, esse resultado fornece um critério
para a liberdade do divisor definido por f. Discutimos também o fato deste critério nao
ser generalizédvel em dimensao superior, ao evidenciarmos um contraexemplo explicito em
S = Clx,y, z,w]. Além disso, investigamos ainda as relagoes entre o grau minimo das
sizigias de J; e o grau minimo dos geradores minimais de \/J_f, no caso em que f define

um arranjo de hipersuperficies em P,



Capitulo 1

Miscelanea

Neste capitulo, vamos introduzir o aparato teérico que da suporte ao desenvolvimento
deste trabalho. De modo geral, consideramos R um anel comutativo com unidade No-
etheriano e M um R-moédulo finitamente gerado. As definigoes e resultados apresentados
podem ser encontrados em: [10], [12], [16] e [17].

1.1 Anéis Graduados e o espago projetivo

O contexto dos principais resultados deste trabalho aborda um anel de polinémios
R :=Klzy,...,x,] sobre um corpo K algebricamente fechado. Devido a propria natureza

do anel de polinémios é natural considerar R um anel graduado.

Definigao 1.1.1. Seja R # 0 um anel. Uma graduagdo para R é uma familia { Ry } rez., ugoy

de subgrupos do grupo aditivo (R, +) tal que:
1. R= @ Rk;
keZ+U{0}

2. RiR; C Ry ;,Vi,j,€ Z, U{0}.
O anel R é dito graduado quando provido de uma graduacao.

Os elementos de cada subgrupo Ry sao chamados de elementos homogéneos de grau
k. Da defini¢do, dado g € R existe s € Z, U {0} tal que g = ap + a; + - -+ + as, sendo
ay € R paratodo k =1,...,s. Cada a; na decomposicao de g é chamado de componente
homogénea de grau k.

Como mencionado, o exemplo mais natural de anel graduado é o anel de polinémios.

Exemplo 1.1.2. O anel de polinémios R = K[z1, ..., x,] sobre um corpo K é uma anel

graduado com a decomposi¢ao

R=Ry®R &,



1. Miscelanea

onde Ry = K e para cada d > 0, o subgrupo Ry é definido como o conjunto dos polinémios

homogéneos de grau d > 0. Isto é, se f € Ry, entao

a a
f= E Pay..an®lt - T2™ COM Pgy. 0, € K. (1.1)
a1+ tan=d
Neste caso, estamos considerando que o grau de cada indeterminada x4, ..., z, é igual

a 1. Essa graduacao para R é chamada de graduacao standard.

Assim como anéis podem ser decompostos em partes homogéneas, ideais podem pre-

servar essa caracteristica.

Definigao 1.1.3. Sejam R = @ Ry um anel graduado e I C R um ideal. Dizemos
keZU{0}
que [ é um ideal homogéneo se
I= @ I

keZU{0}

onde I, := I N Ry.

Note que a defini¢ao anterior é equivalente a dizer que o ideal I é gerado por elementos
homogéneos de R. No ambiente Noetheriano de um anel de polinémios com coeficientes
em um corpo, R = K[zy,...,z,], um ideal I de R é homogéneo se ¢ gerado por uma
quantidade finita de polindmios homogéneos. Se além disso, I é gerado por polindmios
homogéneos de mesmo grau, entao, dizemos que I é um ideal equigerado.

Ainda no ambiente polinomial, podemos notar que a primalidade de um ideal homo-

géneo ¢é dada em termos de elementos homogéneos.

Proposicao 1.1.1. Sejam R anel de polinémios sobre um corpo K e I C R um ideal
homogéneo. Entao I é primo se, dados elementos homogéneos f,qg € R, temos que fg € I

implica que ou f € 1 ou g€ 1.

Demonstragao. Ver [17], Lemma 2.7.1. O
Além disso, para o caso geral, destacamos o seguinte resultado:

Proposigao 1.1.2. Sejam R = @ Ry um anel graduado e I C R um ideal homogé-

keZU{0}
neo. Entao todos os primos minimais de I em R sao ideais homogéneos.

Demonstragao. Ver [12], Chapter I, Proposition 5.11. O

Retornando ao caso R = Klzy,...,x,], anel de polinomios standard graduado, é

possivel concluir que o ideal m = (x4, ..., x,) € um ideal maximal, ja que < ) ~ K,
T1y.eooyTp

pois R =K& (z1,...,x,). Além disso, neste sentido, todo ideal proprio homogéneo de R

esta contido em m.



1. Miscelanea

A estrutura graduada do anel R = Klzy,...,z,,1] permite interpretar seus ideais
homogéneos como objetos geométricos no espago projetivo n-dimensional Py. Esse es-
paco surge naturalmente ao considerar os pontos de K" identificados por multiplicacdo

escalar.

Definigao 1.1.4. Seja K um corpo. O espac¢o projetivo de dimensao n sobre K, denotado

P, é o conjunto de classes de equivaléncia de K"\ {0} pela relacao
(1, Tpg1) ~ (Y1, oy Yns1) <= FIAEeK talquey; = Az, Vi=1,...,n+ 1L

A classe de equivaléncia de (z1,...,z,11) é denotada por [z1 : -+ : Zpy1].

Cada ponto de P corresponde, portanto, a uma reta que passa pela origem em K",
sendo representado por coordenadas homogéneas. Polinomios homogéneos em R definem
fungoes bem definidas nesse espago, pois sua homogeneidade garante que o valor do po-
linémio ¢ bem definido sob a equivaléncia projetiva. Quando nao houver ambiguidade

quanto ao corpo de base, denotaremos o espaco projetivo apenas por P".

Como cada ponto (yi,...,yns+1) € P &, na verdade, uma classe de equivaléncia, entao
para que um polinomio f € R seja tal que f(y1,...,ynr1) = 0, é necessario e suficiente
que f se anule em todos os elementos (yi,...,Yns1) = A(Z1,...,Tpe1), cOm A nao nulo.

Se f é um polinomio homogéneo de grau d, entao é suficiente que ele se anule para um

representante da classe. Como

f(yl’ A 7yn+1) = f(Ax17 A "Axn'*'l) = Ad-][‘(:'vl7 A "/L‘n+1>7

e f(xb s aanrl) = 0, entao f(yla SR 7yn+1) = 0.

Definicao 1.1.5. Sejam fi,..., f,, € R polindbmios homogéneos. Diremos que X C
P" é uma variedade projetiva se é o conjunto de todos os pontos projetivos que zeram

simultaneamente cada f;,7 =1,...,m, em P". Ou seja, X é uma variedade projetiva se
X ={[ay: - :an1) € P filar, ..., ane1) = 0,com f; formas em R, Vi=1,...,m}.

Algebricamente, dado um ideal homogéneo I C R, o conjunto V(I) C P" formado
pelos zeros comuns dos elementos de I define geometricamente uma variedade projetiva.
A propriedade de ser homogéneo garante que os polindémios sejam bem definidos em
coordenadas projetivas. Como [ é finitamente gerado (pelo teorema da base de Hilbert),
V(I) ¢ de fato uma variedade projetiva no sentido acima.

A reciproca dessa correspondéncia geométrica esta na nocao de ideal de definicao de
uma variedade. Para toda variedade projetiva X C P", podemos recuperar um conjunto

de polindbmios homogéneos que se anulam em todos os seus pontos.



1. Miscelanea

Definigao 1.1.6. Seja X C P" uma variedade projetiva nao vazia. Definiremos o ideal
de defini¢ao de X, denotado J(X) C R, como a colegdo dos polindmios homogéneos em

R que se anulam em todos os pontos de X. Explicitamente:
J(X)={f€R;f(P)=0 para todo P € X}.

Esse ideal é homogéneo por construcao e fornece uma maneira algébrica de representar
a variedade X. A relacao entre o ideal I e a variedade V(I), bem como entre X e o ideal

J(X), é formalizada nas propriedades a seguir.

Proposicao 1.1.3. Seja R = Kzy,...,x,11] 0 anel dos polindmios sobre um corpo K

em n + 1 indeterminadas. Sao vdlidas as sequintes propriedades:
(a) Para qualquer variedade X € P", V(3(X)) = X;

(b) Dados X, Xo variedades algébricas em P", temos que X1 C X5 se, e somente se,
J(Xa) € I(XH).

Demonstragao. Ver [12], Chapter I, Propostion 5.9. O]

O teorema a seguir, versao projetiva do Teorema dos Zeros de Hilbert, fundamenta a

correspondéncia entre variedades geométricas e ideais homogéneos radicais nao triviais.
Teorema 1.1.4 (Zeros de Hilbert Projetivo). Seja I C R um ideal homogéneo. Entao:
(a) V(I) =0 se, e somente se, {(x1,...,2ps1) C VI.
(b) Se V(I) #0, entio I(V(I)) = VI.

Esse teorema estabelece uma bijecao entre variedades projetivas nao vazias e ideais
homogéneos radicais que nao contém o ideal irrelevante.
A dimensao de uma variedade projetiva pode ser definida em termos da dimensao de

Krull do anel quociente pelo seu ideal de definicao.
Defini¢ao 1.1.7. Sejam I C R um ideal e V(I) C P" a variedade algébrica associada a
I. Definimos a dimensao de V(I) como sendo:

dim(V (1)) = dim <ﬁ -1

R )
V(1))

Por fim, ainda podemos definir o espaco tangente a uma variedade de maneira analoga
a abordagem diferencial usual. Para este fim, exploraremos o contexto principal deste
trabalho: uma hipersuperficie no plano projetivo, isto é, uma variedade em P? definida

apenas por um polinémio homogéneo f € Kz, y, z|.



1. Miscelanea

Definicao 1.1.8. O espago tangente de uma variedade V(f) em um ponto z € V(f) é a

colecao de todas as retas tangentes a V' neste ponto. A saber, o conjunto

3
T,V = {[al tag:ag) € PQ;Zaxif(:U)ai = 0} .

Esse espaco representa a melhor aproximacao linear da variedade no ponto e é central
no estudo da suavidade e singularidades de variedades projetivas. A analise local da
estrutura do espago tangente levard naturalmente ao estudo de derivadas logaritmicas,
modulos de derivadas, e, mais adiante, & teoria dos divisores livres, tema central desta

dissertacao.

1.2 Sizigias e sequéncias regulares

Seja {my,...,m,} um conjunto de geradores de M. Definamos a seguinte aplicagao
R-linear:
Qg : R - M (12)
(a1,...,an) — amy+ -+ a,my,.

Naturalmente, esta aplicagao se traduz na seguinte sequéncia exata curta:
0 — ker(ag) — R™ =% M — 0. (1.3)

Neste caso, o ntcleo de ag, denotado acima por ker(ayg), é chamado de modulo de relagoes
dos geradores {my,...,m,}, ou Mddulo das Sizigias de M. Por simplicidade, denotare-
mos:

Syz(M) := ker(ap) = {(b1,...,b,) € R"; bymy + -+ + b,m,, = 0}.

Cada elemento (by,...,b,) € Syz(M) é chamado uma sizigia de M (com rela¢do a

ml,...,mn).

Observacao 1.2.1. Note que, por definicao, o conceito de sizigia depende do conjunto

de geradores escolhido, e nao ¢ intrinseco ao modulo.

Embora, como observado anteriormente, o conceito de sizigia dependa do conjunto de
geradores escolhido, h& propriedades que sao mantidas quando da mudanga do conjunto
de geradores fixado. Um exemplo desta manifestacao é o conceito de sizigia regular.

Iniciamos definindo a nogao de sequéncia regular.

Definigao 1.2.2. Sejam R um anel Noetheriano, M # 0 um R-mo6dulo finitamente gerado

eay,...,a, € R. Dizemos que aq,...,a, é¢ uma M-sequéncia reqular se :

7
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(a) M # {ay,...,a,)M;

M

(b) Paratodoi =0,...,n—1, temos que a;,; ¢ um nao divisor de zero em m.
Lyeen Gy

Em particular, a; é um nao divisor de zero em M, neste caso, a; é dito um elemento

M -regular.

No contexto dessa definigao, temos que nao existe uma sequéncia (a;);2; de elementos
em R, tal que para todo n € N a sequéncia (a;);,, seja uma M-sequéncia regular. E
possivel encontrar uma prova para esse fato em [16, Proposition 16.10]. Esse resultado

motiva nossa proxima defini¢ao.

Definigao 1.2.3. Sejam R um anel Noetheriano e M # 0 um R-mo6dulo finitamente

gerado. Sejam I C R um ideal tal que IM # M e aq,...,a, uma M-sequéncia regular
de elementos de I. Diremos que ay,...,a, é uma M-sequéncia regular maximal se nao
existe um elemento a,.1 € I tal que ay,...,a,,a,11 € uma M-sequéncia regular.

Na definigdo acima, dado b € I, temos que M # (ay,...,a,,b)M, ja que IM # M.
Entao, a definicao de M-sequéncia regular maximal é equivalente a dizer que I esté contido

no conjunto dos divisores de zero de . Uma propriedade que decorre do fato

(a1, ...,an)M
de R ser um anel Noetheriano é que toda M-sequéncia regular em I pode ser estendida a

uma M-sequéncia regular maximal em /.

Teorema 1.2.1. Sejam R um anel Noetheriano, M # 0 um R-mddulo finitamente gerado
el C R um ideal tal que IM # M. Entao, quaisquer duas M -sequéncias regqulares

mazimais em I tém o mesmo tamanho.
Demonstragao. Ver [12], Chapter VI, Proposition 3.1. O
Motivado por esta discussao, podemos definir um importante invariante algébrico.

Definicao 1.2.4. Sejam R um anel Noetheriano, M # 0 um R-moédulo finitamente gerado
e I € R um ideal tal que IM # M. O tamanho de uma M-sequéncia regular maximal
em [ é chamada de profundidade de I em M, denotado por prof(I, M).

Se (R, m) é um anel local, entao prof(m, M) é chamada simplesmente de profundidade
de M e denotada prof(M).

Observagao 1.2.5. (a) Na definigdo acima poderemos fazer com que o moédulo em
questao seja o proprio anel R. Neste caso, a énfase do invariante é dada ao ideal I.
A profundidade de I em R ¢ chamada de grade de I e denotada por grade(!) :=
prof(/, R).
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(b) No caso em que (R, m) ¢ um anel local, temos que
prof(M) =0 <= m C Z(M),

onde Z(M) denota o conjunto dos divisores de zero de M.

Definigao 1.2.6. Umasizigia (by, ..., b,) de M é dita R-regular, ou simplesmente regular,

quando by, ..., b, determina uma R-sequéncia regular.

Retomando o contexto dos principais resultados deste trabalho, dada uma sizigia
regular de um ideal I do anel de polinémios R = Klxzy,...,z,]|, é possivel recuperar

sizigias regulares associadas a novos conjuntos minimais de geradores de I.

Lema 1.2.2. Sejam K um corpo, R = K|xy, ..., x,], standard graduado e I C R um ideal
minimamente gerado por fi, ..., f, polindmios homogéneos de grau d. Se este conjunto
de geradores possui uma sizigia reqular, entao para todo conjunto minimal de geradores

de I existe uma sizigia reqular.

Demonstracao. Considere ¢1,...,9, € R um conjunto minimal de geradores de I. Po-
demos expressar esse conjunto em termos dos geradores originais fi, ..., f, por meio de
um argumento matricial. Naturalmente, existe M, uma matriz invertivel de ordem n x n

com coeficientes em K tal que:

[gl“'gn]:[fl“'fn}'M- (1'4)

Considere ay, ..., a, uma R-sequéncia regular que satisfaz a relagao a; f1 +---+a,f, = 0.

Reescrevendo na forma matricial:

aq 0
[fl el =] (1.5)
an, 0
Utilizando [I.4], obtemos:
aq 0
[gl [P gn].Mil. =
n, 0
Definiremos (aj, ..., al) como o vetor resultante do produto
ay ay
: - M!
a, an
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Desta forma, (ay,...,a,,) é uma sizigia do ideal I com respeito a gi, ..., gn, ja que:
ay 0
al 0
Precisamos avaliar a regularidade da sequéncia ay, . . ., a,,. Considere oideal {a},...,a),
Como M ¢ invertivel, segue que ay,...,a, € (a},...,a,). Logo, este ideal possui uma

R-sequéncia regular de tamanho n. Portanto, pelo Corolario 17.7 de [10], concluimos que
ay,...,a, é uma R-sequéncia regular.
O

1.3 Dimensoes Homoloégica e de Krull

Retomando ao ambiente inicial em [I.2] como R é um anel Noetheriano, temos que
Syz(M) é um R-submoédulo de R" finitamente gerado. Ent@o, supondo que Syz(M) é

gerado por n; elementos, podemos repetir o processo em [1.3] obtendo a sequéncia exata
0 — Syzo(M) := Syz(Syz(M)) — R™ =% Syz(M) — 0. (1.6)

Como Im(a) = ker(ap) C R" na sequéncia[l.3] via composigao entre[1.3|e[L.6] produzimos
a seguinte sequéncia exata:
R™ 2 R™ 2% M — 0, (1.7)

chamada de apresentacao livre do modulo M. Iterando o processo anterior, através de su-

cessivas composicoes, obtemos uma sequéncia exata longa a qual chamaremos de resolu¢ao
livre de M.
i—1

‘”_>Rnigi_>Rni—la_>..._)RT“&}R”&) M — 0.

Uma tal sequéncia é, a priori, infinita, mas podemos trunca-la a qualquer momento,

tornando-a finita:
0 — Syz;, (M) = R" <% ... - R™ 25 R" 2% M — 0. (1.8)

Neste caso, nao se trata de uma resolucao livre. Porém, se para algum ¢ > 1,
Syz.. (M) élivre, entao Syz, (M) é isomorfo ao moédulo livre R™*!, sendo n;+; o0 ntmero
+1 ) 1+1 ) 1+

minimo de geradores de Syz; (M ). Desta maneira, obtemos uma resolugdo livre finita

10
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do modulo M:
0 — RMi+! a”l) R™ Ei) R ﬂ) R™ ﬂ) M — 0. (19)

Ressaltamos que diferentes conjuntos geradores para M produzem modulos de sizigias
distintos, dessa forma, é razoavel que um modulo M apresente diversas resolugoes livres.
Além disso, definimos o tamanho de uma resolugao livre finita como sendo o numero

de moédulos livres menos um.

Observacgao 1.3.1. Como mencionado na sec¢ao anterior, o modulo de sizigias, a rigor, é
definido com respeito ao conjunto de geradores do moédulo. No entanto, esta construgao
estd bem posta quando pensamos no caso em o moédulo M é finitamente gerado sobre R
um anel local, visto que, via Lema de Nakayama, o nimero minimo de geradores de M

estd bem posto.

Definigao 1.3.2. Sejam R um anel e M um R-moédulo. A dimensao homoldgica de
M, denotada dhg (M), é o comprimento de uma resolugao livre finita de menor tamanho

possivel. Se M nao admite resolucao livre finita entdo dhg(M) = co.

Exemplo 1.3.3. Sejam K um corpo, R = K|z, y]/(zy) = K[X,Y] e [ = (X,Y) C R.
Entdo, I tem resolucio livre infinita. De fato, Syz(I) = {(a,b) € R*; aX + bY = 0}.
Deste modo, Syz(I) é gerado pelos elementos (Y,0), (0, X) € R?, pois XY = 0, e obtemos

a apresentagao livre
Y 0
0 X

RP—— S R* 510,

0
onde a matriz 0 X descreve a aplicacdo linear entre os modulos livres R%. Ao iterar

0 processo, obtemos a resolucao livre

by G 63

— R? s R s R s R2 > 1 — 0.

A dimensao homolégica do ideal I no exemplo [1.3.3] é infinita devido a condi¢ao do
anel R nao ser um anel regular. Um anel local (R, m) é dito regular se o ideal maximal
m é gerado por uma sequéncia regular. A finitude da dimensao homologica de modulos
finitamente gerados sobre anéis locais regulares é consequéncia do célebre Teorema de
Auslander-Buchsbaum-Serre [12, Chapter VII, Proposition 2.4].

Exemplo 1.3.4. Sejam K um corpo, R = K|z, y, z] e m = (x,y, z) C R. Utilizando-se do

11
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software computacional Macaulay2[11], obtemos uma resolugao livre de m descrita por:

z -y —z 0
—y r 0 —z
x 0 z vy Ty z
0— R! R? >R3( )R—>m—>0

Logo, dh(I) = 3.
Definicao 1.3.5. Sejam (R, m) um anel local e M um R-mdédulo. Uma resolugao livre
de M
0— R™ &% Rri—t 254 o R SL R ES M 50
¢ dita minimal se Im(a;) CmR™ ' Vie {1,...,k}.

Observagao 1.3.6. Todo moédulo finitamente gerado sobre um anel local admite uma
resolugao livre minimal, basta que escolhamos R" de forma que n seja igual a pu(M), o
niumero minimo de geradores de M, entao ker(a;) € mR", sendo «; construida como na
segdo anterior. Escolhemos R™ tal que u(R™) = p(Syz(M)). Iteradamente, para todo
ie{l,...,k}, temos n; = pu(Syz;(M)).

Lema 1.3.1 (Lema de Schanuel). Sejam duas sequéncias exatas de R-mddulos

0K, F, 25 oo 5 B SS B 2% Mo,

/ /
1

0 K O pr Sl g S g oo ap o,
comn > 1 e F;, F, mddulo livres para todo i =0,...,n— 1. Entao,
]{‘ 6917/ 1 69~F% 2 GB - }{' EB IQ1 1 6)}?/ 2 GB

Demonstragao. Ver [12], Chapter VII, Proposition 1.4. O

Uma importante propriedade relacionada a resolugoes livres minimais ¢ a invariancia
dos postos, isto é, do niimero minimos de geradores, dos modulos livres que compoem tais

resolugoes, precisamente:

Proposicao 1.3.2. Considere duas resolugoes livres minimais de um modulo M

n Oy —
N N e Y 2 T N JR Sy V)

al, aj,_ o
N I A M RV = ()

Entao, u(F;) = u(F!) para todo i.

12
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Demonstragao. Ver [12], Chapter VII, Proposition 1.1. ]

Estes importantes invariantes sao chamados de nimeros de Bett: do R-moédulo M, e
sao denotados por 3; = u(F;),V i = 1.

Proposicao 1.3.3. Sejam R um anel Noetheriano e M um R-mddulo com a resolu¢ao
livre

AL —
0—-F 5 o, - >R S M=0

de comprimento k. Entao sao equivalentes:

a) (0: M):={a€ Riam=0, Vme M} +#0, isto €, o anulador de M ¢é nao trivial;

c) (0: M) contém um elemento nao divisor de zero de R.

Demonstragao. Ver [12], Chapter VII, Lemma 2.2. ]

Até agora, exploramos invariantes homologicos como a profundidade e a dimensao
homoloégica, que medem a complexidade de moédulos através de sequéncias regulares e
resolucoes livres. No entanto, para contemplar a estrutura de um modulo é necessario um
invariante que va além das homologias e descreva as cadeias de ideais primos no anel de

base.

Definigao 1.3.7. Seja R # 0 um anel. Uma expressao

com P; € Spec(R) := {ideais primos de R},V i = 0,...,n, é chamada uma cadeia de
ideais primos de R e seu comprimento é definido como a quantidade de ideais primos na

cadeia menos 1.

Defini¢ao 1.3.8. Seja R # 0 um anel. Definimos a dimensao de Krull de R, dim(R),

como o supremo dos comprimentos das cadeias de ideais primos em R.

Definigao 1.3.9. Seja P € Spec(R). A altura de P, denotada por alt(P), é definida
como sendo o supremo dos comprimentos das cadeias Py C Py € --- C P,, com P; €
Spec(R),Vi=0,...,ne P, ="P.

Para um ideal qualquer I de R, definimos a altura de I, alt(/), como sendo o infimo

das alturas dos primos minimais de /.

O célebre Teorema do Ideal Principal de Krull, em sua versao generalizada [12], Chap-
ter V, Theorem 3.4], nos garante que se I C R é gerado por m elementos, entao, a altura
de qualquer primo minimal de I é menor ou igual a m. Assim, pela defini¢do acima, temos

que alt(/) < u(l). Esta discussao nos motiva a seguinte definicao.

13
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Definigao 1.3.10. Sejam I C R um ideal sobre R um anel local Noetheriano. Diremos
que I & interse¢ao completa se alt(I) = pu(I). Mais geralmente, no contexto nao necessari-
amente local, diremos que I é localmente intersecao completa se para todo ideal maximal
m em R, tal que I C m, tivermos que I, é intersecao completa em R,. Além disso,
dizemos que um ideal é genericamente intersecao completa se Ip é intersecao completa

para todo P primo minimal de I, vide [8, Theorem 3.1].

Se tivermos que I é localmente intersegdo completa, entdo para todo P € Spec(R),
tal que I C P, segue das propriedades da localizagao [12, Chapter III, Proposition 4.12],
que alt(Iy,) < alt(lp) < pu(lp) < p(ly), para m C R ideal maximal tal que P C m. Donde

segue alt(Ip) = pu(Ip). Portanto Ip & intersecao completa em Rp.

Definigao 1.3.11. Sejam R um anel e M um R-mo6dulo, definimos a dimensao de Krull
de M como sendo a dimensao de Krull de R/(0: M).

Se M é um moédulo finitamente gerado sobre R um anel Noetheriano, entao os primos
minimais de (0 : M) s@o os elementos minimais do conjunto dos primos associados de M,
denotado por Ass(M), conjunto finito de ideais primos P tais que P = 0 : m, para algum

m € M. A defini¢ao acima nos provém com a seguinte formula:

dim(M) = sup {dim (§> } :
PeAss(M) P

A proxima proposicao ilustra, para um anel local, a relacao entre a dimensao de Krull

e a profundidade de um R-modulo.

Proposicao 1.3.4. Sejam (R, m) um anel local Noetheriano e M um R-mddulo nao trivial

finitamente gerado. Entao:

T PeAss(M)

prof(M) < min {dim (g)} < dim(M).

Demonstracao. Ver [12], Chapter VI, Proposition 3.9. O

No contexto da proposigao acima, prof(M) = dim(M) implica em propriedades im-

portantes para o médulo em questao.

Definigao 1.3.12. Sejam (R, m) um anel local Noetheriano e M um R-moédulo finita-
mente gerado. Diremos que M é um modulo Cohen-Macaulay se M = (0) ou prof(M) =
dim(M). De forma geral, se R ndo é um anel local, diremos que M é Cohen-Macaulay se
My, é um Ry-modulo Cohen-Macaulay para todo ideal maximal de m do anel R. O anel

R ¢é dito Cohen-Macaulay se possui essa propriedade quando visto como R-moddulo.

Proposicao 1.3.5. Seja R um anel Cohen-Macaulay (nao necessariamente local) e I C R

um ideal proprio de R. Entdao grade(I) = alt([).

14
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Demonstragao. Ver [12], Chapter VI, Theorem 3.14. ]

Exemplo 1.3.13. Em [I6] Theorem 17.33], o autor prova que o anel de polinémios sobre
um anel é Cohen-Macaulay se, e somente se, o anel de base é um anel Cohen-Macaulay.

Neste sentido, se K um corpo, entao o anel R = K|z, ..., z,] é Cohen-Macaulay.

Finalizamos esta secao apresentando um resultado central da teoria que relaciona a

dimensao homolégica e a profundidade de um R-mo6dulo M.

Teorema 1.3.6 (Formula de Auslander-Buchsbaum). Seja (R, m) um anel local Noethe-

riano e M um R-mddulo finitamente gerado. Se dh(M) < oo, entdo
dh(M) + prof(M) = prof(R). (1.10)

Demonstragao. Ver [12], Chapter VII, Proposition 1.12. ]

Observagao 1.3.14. Em [1.3.6] se adicionarmos a hipotese de que (R, m) é um anel
Cohen-Macaulay, é imediato que a férmula de Auslander-Buchsbaum passa a relacionar
a profundidade e a dimensao homolégica de M com a dimensao de Krull do anel R. Uma

vez que (R, m) ser Cohen-Macaulay implica prof(R) = dim(R), temos que:

dh(M) + prof (M) = dim(R).

1.4 O Teorema de Hilbert-Burch

Nesta secao exibiremos a teoria necessaria para apresentar o Teorema de Hilbert-
Burch, uma importante ferramenta que caracteriza ideais gerados pelos menores de uma
matriz em termos de suas resolugoes livres; em especial, sua principal adicao ao nosso
estudo é a informacgao de que ideais de que trata o teorema sao ideais de dimensao homo-
logica igual a 1.

Iniciamos com o aparato teérico que servird como base para a demonstracao do teo-

rema. Essa etapa esta baseada em [2], [3], [7] e [10].

Definicao 1.4.1. Seja ¢ uma matriz de tamanho p X ¢, com entradas em R, um anel
Noetheriano. Definimos, para cada n = 1,...,min{p, ¢}, o ideal dos menores n x n da
matriz ¢ como sendo o ideal I,,(p) gerado por todos os determinantes das submatrizes de

ordem n da matriz ¢.

Observacgao 1.4.2. Ideais do tipo menores de uma matriz sao bastante estudados em
Algebra Comutativa pela natural relacao com as aplicacoes lineares que aparecem em re-
solugoes livres serem dadas por matrizes. Portanto, varias propriedades foram exploradas
visando o desenvolvimento da teoria, a exemplo de uma cota para a altura de I,,(¢) ser
dada por alt(Z,(¢)) < (p —n+1)(¢ —n+ 1) [4, Theorem (2.1)].
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Definigao 1.4.3. Sejam R um anel e G; ~ RP, Gy ~ R? moédulos livres finitamente
gerados. Qualquer aplicagao R-linear 6 : G; — G5 pode ser representada, com respeito
as bases de G; e G5, por uma matriz ¢ X p, com entradas em R. Definimos o posto da
matriz 6 por

rank(f) = max{r; I,(0) # 0}.

Ao tentarmos construir resolucoes livres para um modulo M, por vezes, conhecemos
algumas sizigias de M. Entretanto, isso induz apenas a construgao de um complexo para
M, isto é, em , é garantido que Im(a;11) C Ker(q;). O proximo resultado, devido a

Buchsbaum-Eisenbud, nos fornece um critério para quando um complexo é exato.

Teorema 1.4.1. Seja R um anel Noetheriano. O complexo de mddulos livres finitamente

gerados

0—F, & F_, 2% oo 51 2 R

¢ um complezo exato se, e somente se, valem as sequintes condigoes:
(a) rank(F})) = rank(py) + rank(pgi1), Ve =1,...,n — 1 e rank(F,) = rank(p,);
(b) grade(I,, (vx)) > k,Yk =1,...,n, onde ny = rank(yy).
Demonstragao. Ver [10], Theorem 20.9. O

Lema 1.4.2. Sejam R um anel Noetheriano e I C R um ideal nao trivial. Se I admite

uma resolucao livre finita, entdo, I contém um nao divisor de zero.
Demonstra¢ao. Considere uma resolugao livre minimal para o ideal I,

0—F, ™ F, 24 oo 5 BT

Dela, induzimos uma resolucao para o quociente T

0—F, 2 F_, &% ... 5B 25 R —>? — 0.

Observe que Im(p1) = I # 0. Isso implica que existe pelo menos uma entrada nao
nula na matriz associada a ¢, ou seja, rank(p;) > 1. Como ¢; deve ser uma matriz
de dimensao 1 x rank(F}), temos que ¢; nao admite submatrizes de ordem r X r com
r > 1, ja que Im(p;) C R. Logo, rank(yp) = 1 e o ideal I1(p;), gerado pelas entradas
de ¢, coincide com Im(p;) = I. Logo, pelo Teorema [1.4.1} temos que grade(/) =
grade(l1(p1)) > 1. Portanto, I deve conter pelo menos um elemento nao divisor de

Zero. OJ
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Diante do exposto, podemos iniciar nossas consideragoes sobre a demonstracao do

teorema que da nome a essa secao.

Teorema 1.4.3 (Teorema de Hilbert-Burch). Sejam R um anel Noetheriano e I C R um

1deal nao trivial.

(a) Se o complezo

Fl:0-F 2 2% RS

R
— =0
7

¢ exato e Fy ~ R" entio Fy ~ R" e existe um elemento a € R ndo divisor de

zero tal que I = al,(¢2), com grade(l,(¢2)) = 2.

(b) Dada uma matriz de po de tamanho n x (n+ 1) tal que grade(I,,(p2)) > 2 ea € R
um nao divisor de zero, a aplica¢do py, como descrita anteriormente, faz de Fy; uma

resolugao livre de R/1, com I = al,(p2).

Demonstragao. (a) Como JF; é exato, entdao Im(yp;) = ker(m) = I, isto &, ¢1 # 0.
Assim, existe pelo menos uma entrada nao nula na matriz associada de 1, donde
segue que rank(p1) > 1. Desde que 7 é uma matriz 1 x (n + 1), entao I.(p;) =0
para r > 1. Portanto, rank(y;) = 1.

Pelo Teorema, temos que
rank(Fy) = rank(p;) + rank(pe) = rank(ys) = rank(Fy) = n. (1.11)

Entao Fy ¢ um modulo livre tal que rank(Fy) = n. Portanto, Fy ~ R".

Novamente pelo Teorema temos que grade(/,(yp2)) > 2. Por outro lado, sabe-

mos que o grade é limitado pela altura e, pela Observacao [I.4.2] temos que:
grade(l,(p2)) < alt(l,(p2)) < (n+1—n+1)(n—n+1)=2.

Logo,
grade(I,(p2)) = 2. (1.12)

Agora, defina a aplicagao R-linear

A F1 — R
€; f-)A(GJ :Ai7

onde A; é o menor maximal da matriz de ¢, removendo a i-ésima linha, sendo e;,

comi=1,...,n+ 1, os elementos da base de F;. Entao,

0—FR3BRSR—R/II—0
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é um complexo, pois considerando o produto das matrizes A - s, temos para cada
n+1

i, que (A - p9); E Ay 7" & 0 determinante da matriz @, com a i-ésima coluna

repetida. Temos entao dois complexos:

Fi:0—F 22 5 R— R/I —0,
Fo:0—F 2 F S R—R/I—0.

Ao aplicar o funtor Hom(—, R), obtemos:

HQHW%F%@,
Fri0— RS pr 2y

onde R* = Hom(R, R), F; = Hom(Fi, R), F; = Hom(F,, R). Note que R* ~ R e

que através do isomorfismo:

p: Ff — F ~ R
[ (fle), . flent)),

concluimos que F;" = Fj. Analogamente, provamos que F; = F,. De maneira
natural, considerando a contra variancia do funtor, obtemos que ¢} = 1, 5 = 5
e A* = AT onde M7 denota a matriz transposta da matriz M. Assim temos os

seguintes complexos:

. ol 03
f1-0—>R—>F1—>R—>R/]—>0,

Fy 0—>R—>F1 s R— R/T — 0.

Como o determinante é invariante por transposicao, segue que I,(¢2) = L,(p2).
Desta forma, pelas consideragoes em m temos que grade(I,(3)) > 1. Além
disso, como rank(p}) = rank(y,) = n, concluimos que existe pelo menos um sub-
determinante de 5 nao nulo.

Dessa forma, rank(A”) = 1 e pela definicdo de A temos que I;(A”) = I,(ps), o
que implica grade(l;(A")) = grade(I,,(¢3)) > 2. Como rank(A”) = 1 = rank(R) e
rank(F}) = n + 1 = rank(p2 ) + rank(A”), segue, pelo Teorema , que Fj é um

complexo exato.

Considerando a aplicacao Id : F» — F5, podemos induzir aplicacoes R-lineares tais

que o diagrama abaixo comuta:
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1. Miscelanea

T T
ff :0 R i F1 2 FQ
i T ! T !
Fi:0 R p_ g

A aplicacao Id : F; — F} claramente satisfaz o quadro a direita, enquanto o homo-

morfismo induzido de R em R deve ser definido por:

a: R — R

r — ar,

a multiplicagao por algum elemeto a € R, satisfaz a comutatividade do quadro a

esquerda.

Entao, temos, da comutatividade do diagrama, que IdgplT = ATa, isto &, g1 = Aae,
aplicando ¢; nos elementos da base de Fy, temos que ¢1(e;) = Aja, Vi =1,...,n+1.
Logo,

al,(p2) = (Ara, ..., Api1a) = Im(py) = 1. (1.13)

Por fim, como I possui uma resolucao livre, pelo Lema [1.4.2] existe um r € [ nao
divisor de zero de R. Suponha, por absurdo, que a é divisor de zero, dessa forma,
Ju € R\{0} tal que au = 0. Por outro lado, por [L.13] temos que I C (a), isto ¢,
r = as, para algum s € R. Assim, pela lei da absor¢ao, ur = uas = 0, um absurdo,

pois r é nao divisor de zero de R. Finalizando assim, a primeira parte do teorema.

Considere ¢y uma matriz (n+1) x n com entradas em R tal que grade(I,,(p2)) > 2, e
um elemento a nao divisor de zero de R. Como grade(I,,(y2)) # 0, entéo I,,(p2) # 0,
isto ¢, rank(yy) > n e, como o rank é limitado pelas dimensoes da matriz, tem-
se que rank(ps) = n. Considere a aplicagdo A como definida na parte 1., entéo

I (A) = L,(¢2) # 0. Como a ¢ nao divisor de zero de R, segue que
I(aA) = al;(A) #0.
Assim, rank(aA) > 1 e al1(A) = al,(¢2). Por hipotese,
grade(I1(A)) = grade(/n(p2)) = 2 > 1.
Portanto, pelo Teorema [I.4.1] temos a resolugao

Fioo R 2y gt 2 g K
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1. Miscelanea

Finalizando nossa demonstracao. O]

Como discutido anteriormente, ter resolucao livre minimal de Hilbert-Burch significa
ter dimensao homoldgica igual a 1. Nesse sentido, ter uma resolu¢cao minimal do tipo
Hilbert-Burch sera uma qualidade importante no estudo de divisores livres, conceito que

introduziremos no proximo capitulo do trabalho.

Exemplo 1.4.4. Sejam K um corpo e R = K|z, y, z] o anel de polinémios. Considere o

ideal I = (zy,zz,yz). Os geradores de [ sdo os menores 2 X 2 da matriz

0 z
p=1-y 0
X —XT

Isto é, I = I5(p). Além disso, grade(I) = alt(/) = 2, por R é um anel Cohen-Macaulay.

Assim, pelo Teorema de Hilbert-Burch, a sequéncia
0-RELER 5T -0
é exata e, portanto, uma resolugao livre minimal para I. Logo, dh(/) = 1.

Observacao 1.4.5. Frequentemente, dizemos que um ideal tem resolucao livre do tipo
Hilbert-Burch quando o ideal em questao possuir resolucao livre minimal nos moldes da

resolucao que aparece no Teorema de Hilbert-Burch.

1.5 Funcao de Hilbert

Os resultados e definigdes apresentados nessa se¢ao podem ser encontrados de forma
aprofundada em [3] e [I7]. Similarmente ao contexto de anel graduado, [1.1.1} podemos

definir a nog¢ao de modulo graduado.

Definicao 1.5.1. Seja R = @ Ry um anel graduado. Um R-moédulo M é dito
keZ {0}
graduado quando pode ser decomposto em uma soma direta de subgrupos aditivos

M:@Mk

k€Z+U{O}
tal que Rle g MHJ-,V Z,j S ZJr U {O}

De maneira totalmente analoga ao caso de anéis graduados, os elementos de cada
subgrupo M, sao chamados de elementos homogéneos de grau k. Da definicao, dado

m € M existe s € Z, U {0} tal que m = mg + my - -+ + my, sendo my, € My, para todo
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1. Miscelanea

=1,...,s. Cada my na decomposicao de m é chamado de componente homogénea de
grau k. Note ainda que cada My é um Ry-modulo, desde que RoM; C M.

Seja M = EB M, um moédulo graduado sobre um anel graduado R. Uma impor-
k€Z+U{O}
tante ferramenta no estudo de modulos graduados é a translagao de grau M (v), isto é,

para v € Z,, definimos M (v) := Mj,. Uma das principais vantagens é ajustar os graus
de M de modo a preservar homogeneidade entre homomorfismos. Precisamente, se M
¢ gerado por elementos homogéneos my, ..., m,, com grau(m;) = u;, entdo o homomor-
fismo R" — M, utilizado para obter o médulo de sizigias de M, pode ser reescrito como
R(—uy) ® -+ ® R(—u,) — M, garantindo que este homomorfismo seja homogéneo de
grau zero. HEssa construcgao é essencial para obter resolucoes livres graduadas, nas quais

modulos livres com graus deslocados mantém a estrutura homogénea das aplicagoes.

Definicao 1.5.2. Sejam R um anel graduado e M um R-moédulo graduado finitamente

gerado. Uma resolugao livre graduada de M é dada por
0= P R(—un)* = P R(—un_1)" 1 = - = @ R(—uo)* — M — 0.

Os expoentes f3; ; sao chamados de nimeros de Betti graduados de M.

Exemplo 1.5.3. Sejam K um corpo ¢ R = K[z, vy, z]. No Exemplo [1.4.4] apresentamos

uma resolugao livre para o ideal I = (xy, xz, yz).
0 RS R 51 —0.

Esta resolucao pode ser vista como uma resolucao livre graduada ao se adicionar a

informagao sobre as translagoes de grau. Uma tal resolucao para o ideal I é dada por:
0— R(—3)> 5 R(-2)> =1 —0.

Note que o grau dos geradores de [ é 2, assim como o grau dos geradores do médulo
de sizigias de I é 1, desta forma, as transla¢oes para que os homomofismos na resolugao

livre de [ sejam graduados sao —2 e —3 = (—2) — 1, respectivamente.

Definicao 1.5.4. Sejam R um anel graduado Noetheriano, sendo Ry = K um corpo e M

um R-moédulo graduado finitamente gerado. A fungao numérica
H(M,n) := dimg(M,), n >0, (1.14)

é chamada de fun¢ao de Hilbert de M, onde dimg(M,,) a dimensao do K-espago vetorial
M,,, bem definida pois RqM,, C M,,
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1. Miscelanea

Suponha que dim(M) := dim(R/(0 : M) seja igual a d + 1 com d > 0. Para n
suficientemente grande, a funcdo de Hilbert H(M,t) se apresenta como um polinémio
em n de grau d. A este polindmio damos o nome de polindomio de Hilbert de M e o
denotaremos por Py/(t). Além da informac@o da dimensdo de M ser obtida via o grau de
Py (t), o polinémio de Hilbert nos fornece outros invariantes algébricos associados a M,

a exemplo da multiplicidade.

Defini¢ao 1.5.5. A multiplicidade de M, denotada por e(M) (ou deg(M)), é definida
por
e(M) =Py (1).

A terminologia multiplicidade remete ao caso em que M é o anel de coordenadas de

uma variedade algébrica projetiva.
Defini¢ao 1.5.6. A série de Hilbert de M é dada por Hy,(t) = ZH(M, n)t".
n=0

O proximo resultado apresenta uma conexao entre os conceitos trabalhados nesta
se¢ao, isto €, nos diz como obter a série de Hilbert de um moédulo graduado M a partir

de uma resolucao livre graduada.

Proposicao 1.5.1. Seja M um R-maodulo finitamente gerado com dimensao homoldgica

finita e seja

0= P R(=s) = - = P R(—s)* - M -0,

uma resolucao livre graduada finita de M. Entdao a série de Hilbert Hys(t) = Sy (t)Hg(%),
onde Sp(t) = Z(—l)iﬁi,st‘g. Em particular, se R = K[z, ...,z,11] entao, Hy(t) =

SM(t) .5
(1 =ty

Demonstragao. Ver [I7], Proposition 7.4.11. O

Finalizamos esta se¢ao mencionando que no caso em que R é um anel polinomial

obtemos uma férmula explicita para a multiplicidade.

Proposigao 1.5.2. Sejam R = Klzy,...,z,41] anel de polindmios sobre um corpo K e

M um R-modulo graduado finitamente gerado de dimensao d + 1. FEntao,

(=D 9" "Sm(t)
(n—da)l  otn—d

e(M) = (1).

Demonstragao. Ver [17], Corolary 7.4.12. O
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1. Miscelanea

Exemplo 1.5.7. Considere o ideal I = (zy,yz,zx) C R = K|z,y, 2], com a resolugao
livre graduada apresentada no exemplo [1.5.3] A série de Hilbert de R/I é dada por:

DL Bt (—1)0180 4 (—1)'3¢2 + (1)%26°
1-t3 (1—1)3
1=-3t 428
(=t

HR/[(t) —

Note que dim(R/I) = 1, assim a multiplicidade deste mesmo ideal é dada por:

e(R/T) = ((_21)? %(1 _32 4 2t3)} (1) = (12t2_ 6) (1) =3
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Capitulo 2
Sobre Divisores Livres

Formalmente definido, e estudado, pelo matematico japonés K. Saito nos anos 1980,
o conceito de divisores livres surge no contexto de investigagoes sobre formas logaritmicas
diferenciais e singularidades de hipersuperficies. As descobertas de Saito, em [15], sdo de
suma importancia ao desenvolvimento da teoria algébrica sobre esse conceito.

Para além das contribui¢oes fundamentais de Saito, o estudo de divisores livres faz
parte do repertorio de produgoes de autores como Dimca [9], Tohaneanu [20], etc.

Na primeira secao deste capitulo, estabelecemos o contexto algébrico necessario ao
desenvolvimento desse trabalho. A segunda se¢ao apresenta o modulo de derivagoes loga-
ritmicas, introduz formalmente o conceito de divisor livre e fornece um critério algébrico
para liberdade baseado nas propriedades do ideal Jacobiano. Para finalizar este capitulo,
exibimos uma demonstracao para o célebre critério de Saito, que caracteriza a liberdade

do divisor em termos matriciais.

2.1 Derivacoes

O principal objetivo desta secao é apresentar as principais defini¢oes e resultados ne-
cessarios para a construgao do ambiente onde desenvolveremos nosso estudo. As principais
referéncias para esta se¢ao sao [10], [13] e [14].

Seja R := K[z, ..., x,] um anel de polinémios standard graduado sobre um corpo K.
Eventualmente, hipoteses sobre K ser algebricamente fechado ou sobre sua caracteristica
serao consideradas ja que os resultados principais do trabalho estao propostos no ambiente

tridimensional Clz, y, z].

Definicao 2.1.1. Uma deriva¢io de R é uma aplicacao 0 : R — R que satisfaz as

seguintes condigoes:
(a) O(f +g) =0(f) +0(g), para todo f,g € R (Aditividade),

(b) 0(fg) = f0(g) + g0(f), para todo f,g € R (Regra de Leibniz).
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2. Sobre Divisores Livres

Exemplo 2.1.2. As derivadas parciais formais 0,, sao exemplos iniciais de derivagoes.

Além disso, podemos apresentar a aplicacao € : R — R, definida por

n
€= E 20y, ,
=1

como uma derivacao de R, chamada de Derivacao de Fuler.

E de facil verificacio que o conjunto das derivacies de R, denotado Der(R), possui

uma estrutura de R-moédulo com as operagoes:

+ : Der(R) x Der(R) — Der(R)
(64,02) = O +60: A= A
[ (00 +6:)(f) = 0u(f) + 62(f);
R x Der(R) —  Der(R)
(f,01) = [0 A= A
g f-0i(9) = f01(g).

Como Der(R) é um moddulo, podemos definir o submé6dulo das derivagoes que se

anulam nos elementos de K, denotado por Derg(R). Formalmente:
Derg(R) = {0 € Der(R); 0|x=0}.

Se # é uma derivagao em Derg(R), diremos que 6 é uma K-derivagao.

Em [0, Proposition 16.1], ¢ mostrado que Derg(R) é um modulo livre no qual o
conjunto das derivagoes parciais usuais do calculo, 0,,,7 € {1,...,n}, determinam uma
base para Derg(R). Isto é, qualquer K-derivagao, 6 € R, pode ser escrita como a seguinte

combinacao R-linear das derivacoes parciais:

9:Zgi8xi, comg; €R, i=1,...,n.

=1

Estruturalmente:

Derg(R) = @ RO,, ~ R". (2.1)
i=1

Naturalmente, a derivacao de Euler,

n
€= § Iiaitu
1=1

¢ um elemento de Derg(R).
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2. Sobre Divisores Livres

2.2 Mobdulo de Saito e Divisores Livres

Esta secao terd como foco principal um R-submodulo do médulo das K-derivacoes: o
Moédulo das Derivagoes Logaritmicas, ou Mddulo de Saito, relativo a um polinémio dado

em R. O estudo das estruturas algébricas desse moédulo é fundamental para este trabalho.

Defini¢ao 2.2.1. Seja f € R = K[zy,...,x,] um polinémio. O Mddulo de Derivagies
Logaritmicas de f, ou Mddulo de Saito de f, é o R-submédulo de Derg(R) definido por:

Derlog(f) := {0 € Derg(R); 0(f) = gf, com g € R}.

Observagao 2.2.2. E facil verificar que f - Derg(R) C Derlog(f). Para uma derivacio
qualquer 6 € Derg(R) temos que f-0(f) = fO(f) =0(f)f € (f), o ideal principal gerado

por f. Portanto, o conjunto Derlog(f) é nao trivial.

Exemplo 2.2.3. Seja f € R uma forma de grau m, isto é, um polin6mio homogéneo de
grau m. Neste caso, a derivacao de Euler, ¢, ¢ um elemento em Derlog(f). Com efeito,

sendo f homogéneo de grau m > 0, é vélida a identidade de Fuler:
2104, f 4+ + 2,04, f = mf. (2.2)

Isto significa, em particular, que a derivacao de Euler, ¢, pertence a Derlog(f), pois

E por meio do médulo de Saito que apresentamos a definicdo que fornece o titulo de

nosso trabalho. Definimos:

Definigao 2.2.4. Seja f € R, dizemos que f é um divisor livre se Derlog(f) é um modulo

livre.

Frequentemente, encontrar uma base para um modulo nao é uma tarefa facil. Com
respeito ao modulo de Saito, em especial, serd possivel investigar uma decomposicao
estrutural para este moédulo. Para este fim, iniciamos introduzindo o ideal Jacobiano

associado a um polinémio f.

Definic¢ao 2.2.5. Seja f € R. O ideal Jacobiano de f, denotado por Jy, é o ideal gerado

por f e suas derivadas parciais:

Jf:<ar1f77a’rnf7f>
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2. Sobre Divisores Livres

No caso em que f é um polindmio homogéneo de grau m > 0, entao a relacao de Euler

nos aponta que f é combinacgao de suas derivadas parciais, isto é,
x1 L,
[= 20 4+ 0,
m m

Assim, para um polinémio f € R homogéneo, podemos simplificar um conjunto de gera-

dores para o ideal Jacobiano: Jy = (0y, f,...,0u, f) -

Exemplo 2.2.6. Seja R = K[z,y, z], um anel de polindmios sobre um corpo K. Seja

f = zyz, entao o ideal Jacobiano de f é dado por:

Jp = (yz, 2z, 7y).

A seguir, apresentaremos um primeiro resultado que estabelece uma relagao entre o

modulo de sizigias de Jg, o R-mdédulo ciclico Re e o médulo de Saito de uma forma f.

Proposicao 2.2.1. Seja f € R um polinomio homogéneo de grau m > 0. FEntdo, a
sequéncia
0 — Syz(J;) — Derlog(f) & Re — 0, (2.3)

€ exata, sendo

¢ : Derlog(f) — Re

0 — gec,

onde go € R € tal que O(f) = gof.

Demonstragao. Iniciamos mostrando que a aplicagao:

¢ : Derlog(f) — Re
0 +— gee, onde gg € R & tal que 0(f) = gof,

esta bem definida.

De fato, sejam gy, go € R tais que 0(f) = gof ¢ 0'(f) = gor f. Deste modo, § = §' =
0(f) =0'(f) = goc = goc = (90 — gp)e = 0 = go = go = »(0) = ¢(¢'). Logo, ¢ estd
bem definido.

Além disso, se 0,60 € Derlog(f) sao derivagoes tais que 0(f) = gof e 0'(f) = guf,
sendo go, gy € R, temos que (0 + 0)(f) = 8(F) + 6'(F) = gof + gof = (g0 + gh)f. Assim
sendo, ©(0 +6') = (go + gy)e = goe + goe = p(0) + p(#'). Além disso, para h € R, temos
que h-0(f) = hO(f) = hgyf. Dessa forma, ¢(hf) = hgge = hp(f). Do exposto, conclui-se

que o é uma aplicagao R-linear.
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Agora, vamos mostrar que ker ¢ = Syz(Jy). Para tanto, observe que

ker p = {0 € Derlog(f); ¢(0) = 0¢}

{6 € Derlog(f); 0(f) = 0}

= { Zhiacci € Derlog(f); Zhia$if = 0}-
i=1 i=1

Uma vez que Derlog(f) C Derk(R), podemos identificar as derivagoes 6 = Z hiO,, com
i=1
vetores (hy,...,h,) € R", ja que Derk(R) é um modulo livre gerado pelas n derivagoes

parciais (logo isomorfo a R"). Isso significa que podemos identificar ker ¢ com o modulo

de sizigias de Jy:

Syz(Jy) = {(hh o ha) €RMY hiOy, f = O}.
=1

Ainda precisamos demonstrar a sobrejetividade de ¢, isto é, mostrar a exatidao da
sequéncia
Derlog(f) & Re — 0. (2.4)

Por hipotese, f ¢ homogéneo de grau m > 0, entao, pela relacao de Euler temos que:
T T
m m

Para cada h € R, defina a derivagao 6, € Derg(R) por:

h h mh
0, = iaxl + xif)m 4+ 4+ x_axn'
m m m

E imediato que 6, € Derlog(f), visto que
h < h
0 = — Oy f = —mf = hf.
1) = 30 D idnf = i = b

Além disso, note que por defini¢ao temos que ¢(6,) = he. Isto é, dado he € Re,
existe ), € Derlog(f), com 0,(f) = hf, tal que ¢(0,) = he. Portanto, ¢ é sobrejetora e a
sequéncia curta [2.4) ¢ exata.

Diante do exposto, concluimos a exatidao da sequéncia
0 — Syz(J;) — Derlog(f) & Re — 0.

]

Como mencionado anteriormente, nosso objetivo é estabelecer uma decomposicao para
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Derlog(f). Para isso, precisaremos apresentar alguns resultados gerais de Algebra Comu-

tativa.

Definicao 2.2.7. Seja S um anel qualquer e suponha que M, N e T sejam S-mo6dulos.
Uma sequéncia exata
0=-NSME5T 0,

é dita cindida se existe ¢ : T — M aplicagao S-linear tal que p o1 = Idr. Esta aplicagao
1 é chamada de cisdo.
Observacao 2.2.8. No contexto descrito acima, se T' é livre, entao toda sequéncia exata

0= N5 MET 06 cindida. De fato, defina a cisao como a aplicacao que leva cada

elemento da base de 7" na sua imagem inversa via :

YT — M
tap(t) = 0 (1),

Logo, (pov)(t) = w(¢ ' (t)) = t, para todo t € T.
Lema 2.2.2. Seja S um anel qualquer e suponha que M, N e T sejam S-maodulos. Con-

sidere uma sequéncia exata
0=-NSMST 0.

Se: T — M € uma cisao, entao
M =i(N) @ y(T).

Demonstracao. Desde que a sequéncia é exata, entao temos a igualdade entre os conjuntos
i(N) = ker(p). Assim, é suficiente mostrar que M = ker o & ¢(7T).

Para todo x € M temos que p(z) € T e, consequentemente, ¥ (¢(x)) € M. Defina
y:=x —(p(x)) € M. Aplicando ¢, obtemos:

p(y) = p(z) — (po)(p(x))
= p(z) — p(z) = 0.

Logo, y € kerp. Dai, z = y + ¥(¢(x)) € kero + ¢(T). Consequentemente, M =
ker p + (7).

Precisamos mostrar que ker ¢ N¢(7T") = {0}. De fato, tome y € ker p N (7). Entao,
©(y) = 0. Como y € (T), entdo para algum x € T, temos que y = 1(x). Donde segue que
0= ¢(y) = p(¢(x)) = z, pois, por hipdtese, 1 é uma cisdo. Assim, y = ¢(z) = 1»(0) = 0.
Logo, ker o N(T) = {0}. Portanto, M = i(N) @ (T). O
Observagao 2.2.9. Uma vez que 9 ¢é injetora, temos que (1) ~ T. E, como i(N) ~ N,
segue que M =N & T.
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Apresentada a teoria necessaria, o proximo teorema estabelece um resultado estrutural

para o modulo de derivacoes logaritmicas de uma forma f.

Teorema 2.2.3. Seja f € R um polindmio homogéneo de grau m > 0. Entao
Derlog(f) = Syz(Jy) @ Re.

Demonstracao. Como Re é um modulo livre, o resultado segue do Lema aplicado a

sequéncia exata

0 — Syz(J;) — Derlog(f) & Re — 0.

Em todo caso, exibiremos a cisao em questao. Nosso objetivo serda mostrar que existe

uma cisao ¢ : Re — Derlog(f). Considere a aplicagao

Y Re — Derlog(f)

he v dp=Y il
m

=1

Decorre naturalmente que d,(f) € Derlog(f), visto que

- m
=1

" x:h h < h
Ai(f) =) ~0uf = — > @i0sf = —mf=h.
m <= m
Além disso, considere ¢ como na Proposigao [2.2.1}

¢ : Derlog(f) — Re

0 — go<,

onde gy € R é tal que 0(f) = gof.
Assim, temos que (¢ (he)) = ¢(dp). Como dy(f) = hf, segue que p(d,) = he, ou
seja, ¢ 01 = Idg.. Concluimos que ¢ é uma cisao.

Portanto, a sequéncia exata
0 — Syz(Jy) % Derlog(f) & Re — 0

é cindida e
Derlog(f) = Syz(Jy) @ Re.

A préoxima defini¢cao nos fornece uma classe mais geral que moédulos livres.

Definicao 2.2.10. Sejam S um anel e M um moédulo sobre S. Dizemos que M é projetivo

se existe um S-modulo M’ tal que M @ M’ é um S-modulo livre.
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Considerando a decomposicao Derlog(f) = Syz(J;) & Re, temos que Syz(Jy) é um
modulo projetivo, se Derlog(f) é um modulo livre. Porém, devido ao Teorema de Quillen-
Suslin [12 Chapter IV, Theorem 3.14, Theorem 3.15], temos que todo modulo projetivo
sobre R = Klzy,...,x,], anel de polinémios com coeficientes em um corpo K, é livre.
Desta forma, se Derlog(f) é livre, temos que Syz(Jy) é livre.

Essa discussao culmina no seguinte critério de liberdade.

Teorema 2.2.4. Seja f € R um polindmio homogéneo. FEntao, f € divisor livre se, e
somente se, dh(Jy) < 1.

Demonstra¢ao. Considere a sequéncia exata curta
0 — Syz(J¢) — Derlog(f) — Re — 0.

Suponha que f é um divisor livre. Isto significa, por defini¢do, que Derlog(f) é
livre. No Teorema , apresentamos a seguinte decomposicao Derlog(f) = Syz(Jy) &
Re. Neste caso, pela defini¢ao [2.2.10 temos que Syz(.J;) é um modulo projetivo e, pela
discussdo anterior, temos que Syz(.J;) ¢ um modulo livre.

Diante do exposto, temos que
0 — Syz(J¢) = Derlog(f) = Jf — 0

¢ uma resolucao livre finita para J; de comprimento 1. Portanto, dh(Jy) < 1.

Reciprocamente, suponha que dh(J;) < 1. Considere a sequéncia exata a seguir
0 — Syz(J;) = R" — J; = 0. (2.5)

Pelo Lema de Schanuel, Lema segue que [2.5(¢ uma resolugao livre de J;. Donde
segue que Syz(Jy) ¢ um modulo livre. Logo, Derlog(f) = Syz(Js) @ Re ¢é livre e f é,

portanto, um divisor livre. O

Exemplo 2.2.11. Sejam R = C|x,y, z] e f = zyz € R. O ideal Jacobiano de f ¢ o ideal
Jp = (021, 0,f,0:f) = (yz, vz, xy).
O qual possui resolugao livre:
0= R*— R — J; =0,

conforme discutido no Exemplo [1.5.3] Assim, dh(.J;) < 1. Portanto, pelo Teorema [2.2.4}

f é um divisor livre.
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2. Sobre Divisores Livres

Exemplo 2.2.12. Sejam R = Clz,y,z2] e g = zyz(x —y)(y — 2)(z — x) € R. O ideal

Jacobiano de g, J,, ¢ o ideal gerado pelos polinoémios:

0pg = —2y(y—2)(32% — 2wy — 222 + y2)
0,9 = —zv(z—2)(2ry — 3y* — vz + 2yz)
0.9 = —yx(z —y)(zy — 2wz — 2yz + 327).

Precisamente, J;, = (0,9, 0,9, 0.9).
Utilizando o software computacional Macaulay2, encontramos uma resolugao livre
para J, como segue:
0= R = R — J,—0.

Isso implica que dh(.J,) < 1. Portanto, pelo Teorema [2.2.4] g ¢ um divisor livre.

Esse resultado é um critério para determinar se uma forma é um divisor livre. Embora
seja uma ferramenta ttil, nao é o critério inicialmente proposto por Saito. Na proxima

secao iremos apresentar o Critério de Saito junto com sua demonstracao.

2.3 Critério de Saito

Em [15], Saito desenvolve um estudo geral sobre formas logaritmicas diferenciais e
apresenta um critério para determinar se o modulo das derivacoes logaritmicas de uma
forma f é livre. Em esséncia, o critério se fundamenta na propria definicao de mddulo
livre, isto é, quando este possui uma base (um conjunto de geradores linearmente inde-
pendentes).

Esta se¢ao traz uma outra demonstragao deste teorema, elaborada por Alexandru
Dimca e Gabriel Sticlaru, em [9], que constitui uma abordagem alternativa & prova original
de Saito.

O resultado considera o corpo K como sendo o corpo dos ntmeros complexos C e
f € R = Clzy,...,z,;] uma forma reduzida. A fim de uma melhor apresentacdo do
critério, introduzimos algumas notagoes preliminares.

Dado um conjunto ® = {4y, ..., d,} formado por n derivagoes em Derlog(f), podemos
considerar uma matriz M := M(dy,...,0,) cujas linhas sdo dadas pelos coeficientes das

derivagoes 4y, .. ., d, na base candnica 9., ..., 0,, . Explicitamente:

se 0; = a;10z, + -+ + a0, € Derlog(f) C @R@xi para cada i € {1,...,n},

=1

32



2. Sobre Divisores Livres

entao,
aix a2
21 Qa22
M(él, 5 (Sn) ==
anp1  Ap2

Teorema 2.3.1 (Critério de Saito). No contexto anterior. O conjunto ® = {0y, ...

Q1n

Q2n,

ann

, On}

¢ uma base para o mddulo livre Derlog(f) se, e somente se,

det(M(6y, . .

,0n)) = cf, para algum c € C*.

Demonstragao. Inicialmente, faremos consideragoes para um conjunto qualquer de n de-

rivagoes em Derlog(f), digamos, p1, ...

para cada ¢ = 1,...,n temos que:

pi(f) = anlu f+ - + ainOs, f = Z aijaxjf

Jj=1

Considere a supracitada matriz M = M (py, ...

das derivacoes pi, ..., pn.
matriciais:
aipr a2 ain O, f
a1 Q22 Q2n Oy |
Ap1  Ap2 Apn a’rnf
Denotemos a igualdade [2.7] por
MV (f) =

onde Vf = (0., f,..

= h,f, para algum h; € R.

., 0y, [) € 0 vetor gradiente do polinomio f e f':= (h}f,...

. pn. (n80 necessariamente uma base). Note que

(2.6)

,Pn), cujas linhas sdo os coeficientes

Deste modo, podemos reescrever a equacao [2.6] em termos

mf
= hff (2.7)
hf
(2.8)
P f)-

Denote por adj(M) = [b;;], b;; € R, a matriz adjunta de M. Desta forma, multipli-
cando 2.8 por adj(M), obtemos a seguinte igualdade:

adj(MYMV f = adj(M) f'.

Mas pela formula de Cauchy, temos que

(2.9)

det(M) 0
. 0 det(M)
adj(M)M = det(M)Id = : :
0 0 det(M)
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Dessa forma, o sistema de equagoes pode ser explicitamente reescrito da seguinte

maneira:
> bkt f
det(M) 0 .- 0 O, f o
0 det(M) --- 0 Ouy f Z bajhs f
. . . . . = Jj=1
0 0 oo det(M) Ou, [ 0o
> buihif
L 7=1 i
E imediato do sistema acima que, para cadai=1,...,n,

det(M)dy, f = bijhif.
j=1

Logo, det(M)0,, f € (f), paratodoi=1,...,n.
Afirmagao: det(M) € (f).

Com efeito, por hipotese, sendo f reduzido, podemos escrever f = p; ... p;, onde para
cada k = 1,...,l, temos que p; € R é um polinémio irredutivel tal que mdc(ps, p,) = 1,
para s # r. Como det(M)d,, f € (f) segue que para todo k =1,...,1,

det(M)0,, f € (px). (2.10)

Desde que cada py € irredutivel, temos que (p;) é um ideal primo. Entao, por [2.10]
tem-se det(M) € (pg) ou O, f € (pr). Argumentamos que, para todo i = 1,...,n,
O, [ & (pr). Do contrério, se, para algum i, tivéssemos 0., f € (px), entao, por meio da

regra de Leibniz,

Op; f = 00,(D1--.01) =D1- - Dk—1Pkt1 - - - DiOs; (D) + PiOs; (D1 - - - Pk—1Dkt1 - - - 1) € (Pk)s

concluirfamos que py...pg_1Pks1--- P10z, (Pk) € (pr). E mais uma vez, sendo (py) um
ideal primo, derfamos ter que 0,,pr € (pr) ou p1...DPk—1Pk+1---21 € (pr). Em ambos os
casos, temos um absurdo, de fato: uma vez que py ¢ homogéneo, temos que grau(d,,px) <
grau(py) —1, logo, 0., px ¢ (pk) €, por outro lado, py ... pr_1Pk+1--- P & (P, pela hipotese
sobre pq ...p; serem relativamente primos entre si.

Portanto, para todo i = 1,...,n e k = 1,...,l, obtemos que 0,,px ¢ (pr). Conse-
quentemente, det(M) € (pg), para todo k = 1,...,[. Isso implica que det(M) € (f).

Conclusao: se M é uma matriz quadrada de ordem n cujas linhas sao os coeficientes
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de n derivagoes logaritmicas de f, entao
det(M) = hf, para algum h € R. (2.11)

Agora, suponha que as derivagoes dy, ..., 0, formam uma base para Derlog(f). Por

definicao, essas derivacoes sao R-linearmente independentes, isso implica que, na equagao

h#0.
Considere as derivagoes (1, ..., 3, definidas como segue:
ﬂl - faml
ﬁj = flaxj — fj&xl,Vj = 2, e, Ny sendo fj = am](f)

Note que claramente (i, ..., 5, € Derlog(f). Além disso, considere a matriz M; :=
M(fy, ..., Bn) cujas linhas sdo compostas pelos coeficientes das derivagdes (i, ..., 5, na
base canonica 0, , ..., 0y,

_ PP ;
—f2 f1 0
Mi=|—f3s 0 fi
| S 00 o fi
Entao,
det(Ml) = ffln_l. (212)

Como {01,...,0,} € uma base para Derlog(f), podemos explicitar as derivagoes

B, ..., 0, através de combinacoes R-lineares desses geradores. Em termos matriciais,

existe N uma matriz de ordem n x n tal que M; = NM. Assim sendo, det(M;) =
det(N) det(M). Isso implica, devido e que

ffi"t = det(N)hf.

Ou seja, h deve dividir f,"!.

Reproduzindo o procedimento anterior para cada k # 1, definimos:

BY = fu0s, — fi00, ¥ j=1,... k=1L k+1,...n
Mais uma vez, claramente, para cada k, temos que Bf e ,Bf,f sao derivagoes logarit-
micas de f. E definindo M, = M(B¥,...,3%) matriz cujas linhas sdo compostas pelos
coeficientes das derivacdes 7, ..., % na base canénica d,,,...,0,,, temos que existe Ny
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2. Sobre Divisores Livres

matriz quadrada de ordem n tal que My = Ny M. Desta forma, det(My) = det(Ny) det(M)
o que implica ff," ! = det(N;)hf. Consequentemente, h divide fz,V k=1,...,n.
Por fim, consideremos as derivacoes logaritmicas B} = fOy,, com j =1,...,n,ea

matriz:

—~

f
0
M=M@i,....5) = | 0

o - O

000 --- f

Similarmente, existe N matriz quadrada de ordem n tal que M = NM. Entao, det(M ) =
fm = det(]v)hf. Dessa forma, temos que h divide f*~!. Conclusdo: h divide "' e h
divide fp,,Vk=1,....,n.

Afirmacgao: h € C*.
De fato, como f é reduzido, por hipotese, podemos reescrevé-lo como anteriormente,

isto é, como um produto de [ formas irredutiveis distantas duas a duas:

f=p...m

Suponha, por absurdo, que h ¢ C*. Desta forma, como h divide f" ', existiria
j€{1,...,1} tal que p; divide h. Além disso, como h divide f,V k= 1,...,n, terfamos
que p; dividiria f~'\Vk=1,...,n.

Perceba que para cada k= 1,...,n podemos escrever

fe="n1.. -Dj—1Dj+1 - - -pzaxk (pj) + pjaxk (pl co . Dj—1Dj+1 - - -Pl)-

Denotaremos f(;j) == pi...pj—1Pj41 - - - P10, (pj). Pelo Teorema Binomial, temos que

n—1
n— n—1\ ,m_1)—i .
fk = Z ( ; )f((laj)l) (p]aack (pl cePj—1Pj+1 - - pl))

- 1
=0

n—1

n— n—1 n—1)—i j— i

= f(kdé +Dpj Z ( i )f((w) : b; la:ck (p1- Pj—1Pjr1---p1)"
i=1

Da expressao acima, podemos concluir que p; deve dividir f&_ﬁ E pela definicao de f 5,

)", Sendo p; irredutivel, terfamos finalmente que p; | 9., (p;),

teriamos que p; | Oy, (p;
um absurdo, pois grau(d,,p;) < grau(p;).

Portanto h = A, para algum A\ € C*, como queriamos demonstrar.

Reciprocamente, suponha que det(M) = c¢f, com ¢ € C*. Neste caso, em particular,
as derivagoes 01, ..., 0, sao linearmente independentes sobre R. Resta mostrar que tais

derivagoes geram Derlog(f). Seja 5 € Derlog(f), evidentemente, esta derivagao pode ser
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identificada como sendo:
B=> bida; b eRVi=1,. n (2.13)
i=1

Afirmacgao: Existem uq,...,u, € R tais que

fB= iuzﬁi € Derlog(f). (2.14)
i=1

De fato, em esséncia, precisamos resolver o sistema R-linear abaixo:

[ul un]~M=[fb1 fbn}-

Pela Formula de Cauchy, obtemos que, para todo i =1,...,n,
det(M) --- 0
Uy e un]- : . :[fb1 fbn}-adj(M).
0 - det(M)

Desde que det(M) = cf, com ¢ € C*, podemos reescrever a igualdade anterior:

1 0
[ul un] . = | b/c bn/c] ~adj(M).
0 --- 1
Ou seja, o sistema linear é solivel em R para uq,...,u,, € a afirmacao é valida.

Seja M, a matriz obtida ao trocar a i-ésima linha de M = M (6y,...,d,) pelas coor-

denadas de :

ail ai2 A1n
Q;—11 Aj—12 Ai—1n
by by by,
Ai+11  Ai412 Ai+1n
| an1 (02%5)) Apn |

Em [2.T1] concluimos que para uma matriz qualquer U, quadrada de ordem n, cujas
linhas sao derivagoes em Derlog(f), temos que det(U) € (f). Isto vale, em particular,

para cada M;. Dessa forma,

Jg € R; det(M;) =gif, Vi=1,...,n.
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Agora, considere a matriz M, trocando a i-ésima linha de M = M (4, ...
coordenadas da derivacao f/3. Considerando e [2.14] temos duas escritas de ff na

base canonica {0y, ..., 0, }, a saber,

fblam + -4 fbnaxn = fﬁ = <Z U]'G,j1> 8961 + 4 (Z U]’Cljn> 8%.
j=1 j=1

Logo, podemos apresentar M, do seguinte modo:

r ai ai2 Q1n
a1 Q12 - Q1n
Ai—11 Qi—12 Qi—1n
Ai—11 Aj—12 Qi—1n n n n
/ - - -
M;=1| fbi fby ---  fb, Zu]ajl Zuyaﬂ Zujayn
Jj=1 j=1 j=1
Ai+11  Ai+12 At 1n
Ai411 @412 Ait1n
L an1 an2 tte Ann
an1 an2 Ann

,0n) pelas

Pela primeira expressdo matricial, é imediato ver quer det(M)) = fdet(M;) = g; f>.
Ja pela segunda, a menos de sinal, temos que uy - - - u;_1u;1 1 - - - uy, det (M) = w; det(M).

Denote u; :=wuy - - - U;—_1Ujz1 - - - Uy Dal,

u; det(Mz/) = U; det(M) < U.Z'gifZ = UZ'Cf

e ulng = Uu;cC.

Como, por hipotese, ¢ é constante, temos que f divide w;,V i = 1,...,n. Entao,

.,d, € Rtais que u; = d;f,Vi=1,...,n. Assim,

fB=> " fdis;=f>  di:.
=1

=1

existem dy, ..

Logo, 5 = Zdidi. Portanto, o conjunto {di,...,d,} determina uma base para
i=1
Derlog(f), concluindo nossa demonstragcao. O
Exemplo 2.3.1. Sejam R = Clz,y,z] e f = xzyz € R. Considere as derivagbes: §; =
20y, 0y = y0,, 03 = 20.. E fécil notar que para todo i = 1,2,3 temos que &(f) = f.
Logo, ¢; € Derlog(f),Vi=1,2,3.

38



2. Sobre Divisores Livres

Além disso, com respeito a base canonica de Derc(R), a matriz de Saito é dada por

Il
o o R
ow o
N o o

Trivialmente, notamos que det(M) =1 f. Assim, pelo Critério de Saito, f é um divisor

livre e as derivagoes 01, 09, 03 formam uma base para Derlog(f).

39



Capitulo 3
Resultado Principal e Aplicacoes

Conforme discutido no capitulo anterior, o estudo de divisores livres admite uma
gama de critérios tedricos e algoritmicos para identificar quando classes especificas de
polinémios que satisfazem essa propriedade. Este capitulo se propoe a explorar o resultado
apresentado por Stefan O. Tohadneanu em [20] que fornece um critério para quando uma

forma f, no plano projetivo, é um divisor livre, bem como algumas aplicagoes.

3.1 Um Ciritério de Liberdade

Nesta se¢ao, discutiremos em detalhes o teorema principal deste trabalho. No contexto
particular sobre divisores, este resultado atuard como um critério de liberdade, fornecendo
uma maneira alternativa de obter a dimensao homolégica do ideal Jacobiano associado a
uma forma f € R.

Preliminar & discussao central desta secao, vamos apresentar dois lemas que serao

ferramentas fundamentais na demonstragao do teorema principal.

Lema 3.1.1. Sejam R = K[zy,...,x,] anel de polinomios standard graduado sobre um
corpo K e A, B,C € R polindomios homogéneos. FEntdo, a sequéncia A, B,C determina

uma R-sequéncia regular se, e somente se, alt(A, B,C) = 3.

Demonstragao. Denote por J = (A, B,C), o ideal gerado pelas trés formas A, B,C. Se
A, B, C determinam uma R-sequéncia regular, entdo, alt(.J) = 3, pela Proposigao m
Reciprocamente, se alt(J) = 3, entdo grade(JJ) = 3, mais uma vez, pela Proposigao
[1.3.5 Entao, existem D, E,F elementos em J de forma que D, E, F determina uma
R-sequéncia maximal em J. Desta forma, por [I0, Corollary 17.7], A, B,C é uma R-

sequéncia regular. O

Para os proximos resultados deste capitulo, estaremos supondo que R := Clz,y, 2] é

o anel dos polindmios nas indeterminadas x,y e z com coeficientes no corpo C.
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Lema 3.1.2. Seja I C R = Clz,y,z| um ideal de altura 2, minimamente gerado por
trés polindomios homogéneos de mesmo grau. Se I possui uma sizigia reqular, entao I é

genericamente intersegdao completa.

Demonstracio. Seja (A, B,C) € R® uma sizigia regular de I = (f1, f, f3). Entdo,

Seja P O I um primo minimal. Note que alt(P) = alt(/) = 2, desta forma,

alt(Ip) = min{alt(Qp)  Ip CQp, Qp € SpeC(Rp)}
~ minfalt(Qr) : 1S QC P, Q€ Spec(R)}
= alt(Pp) = dim RP = alt(P) = 2,

visto que P é minimal sobre /. Dessa forma, devemos mostrar que u(lp) = 2, sendo

I, — fi 2 [3
p=\ 777
17171

Note que o ideal P nao contém ao menos um dos elementos da sizigia (A, B,C'). Do
contrario, se (A, B,C) C P, terfamos 2 = alt(P) > alt(A, B, (), absurdo, visto que
(A, B,C) é gerado por uma R-sequéncia regular, logo, alt(A, B, C) = 3.

Suponha, sem perda de generalidade, que A ¢ P, entao 1 ¢ uma unidade em Rp, o
que implica que podemos reescrever a equagao da seguinte forma:

h_ Bh Ch

PTAT A (32)

oo (B2 1) (1 5
P=\N1171/ \N1'1/"

Portanto, concluimos que Ip ¢ minimamente gerado por dois elementos de Rp. Isto

Sendo assim,

é, I é genericamente interse¢ao completa. O

Em posse dessas ferramentas, iremos enunciar e demonstrar o resultado principal deste
trabalho.

Teorema 3.1.3. Seja I C R = Clx,y, z] um ideal de altura 2, minimamente gerado por
trés polindmios homogéneos de mesmo grau. Entao, o ideal I € genericamente intersecao
completa e R/I admite resolugao livre minimal do tipo Hilbert-Burch se, e somente se, o

ideal I admite uma sizigia reqular.

Demonstragao. (<) O Lema nos garante que / é genericamente intersegao completa.
Resta mostrar que R/I admite resolucao livre minimal do tipo Hilbert-Burch. Considere

(A,B,C) € R?® uma sizigia regular de I. Assim, A, B,C é uma R-sequéncia regular e,
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para polinémios homogéneos de mesmo grau f, fs, f3 € R que geram I, temos que:
Afi+Bfys+Cfs=0. (3.3)
Rearranjando a equacao, temos:
Cfs = —Af1 — Bfs o que implica que C'f3 € (A, B). (3.4)

Como C' é um elemento regular em R/(A, B), temos que f3 € (A, B). Isto é, f3 =
AD + BE, para certos D, E € R.
Substituindo f3 na equagao [3.3] temos:

Afi+ Bfs+ C(AD + BE) = 0.
Reagrupando os termos, obtemos:
A(fi +CD)=B(—f, — CE). (3.5)
Uma vez que B ¢é regular em R/(A), a igualdade acima implica que
—fo—CE € (A), isto é, — fo — CE = AF, para algum F € R.

Assim,
fo=—-AF - CE.

Por fim, substituindo f5 na equagao |3.5 obtemos:
A(fi+CD)=B(AF+CE - CFE) = ABF.

Sendo A regular em R, isto é, um elemento nao nulo (j4 que R é um dominio),

concluimos que:
fi+CD = BF, ou seja, fi = BF — CD.

Conclusao: podemos identificar f; = BF — CD, fo = —AF —CFE e fy= AD + BE

como os respectivos determinantes

B D
¢ F

A —-F
¢ F

A —-F

fi= 5 D

JJo=— e fs=

Donde segue que os polinémios f;, — fo, f3 sao 0os menores de ordem 2 x 2 da seguinte
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matriz:
A —F
p=|B D
c F

Finalmente, tendo em conta que R é um anel Cohen-Macaulay, devemos ter que
grade(/) = 2 (pois, por hipotese, alt(/) = 2). Portanto, pelo Teorema [1.4.3] R/I tem

uma resolucao minimal do tipo Hilbert-Burch.

0—-R* 3% R 3R —>§ — 0.

(=) Suponha que R/I tenha resolu¢do minimal do tipo Hilbert-Burch. Isto significa

que
N R
0—-R = R —>R—>7—>O (3.6)

¢ uma resolugao minimal para R/I, onde

A A,
=1 B B
C; Oy

¢ uma matriz tal que os menores de ordem 2 x 2 de ¢ sao geradores minimais para /. Isto

2

é, se
f1:=B1Cy — BoCy, fo := A1Cy — AsCh e f3:= A1By — Ay By, (3.7)

théO, I= <f17 f27 f3>
Precisamos mostrar que existe (A4, B, C') € R® uma sizigia regular de I. Note que pelo

Lema m ¢ suficiente mostrar que (A, B, (') é uma sequéncia regular para os geradores
f1, f2, f3. Portanto, basta mostrarmos que existe (4, B, C) € R® tal que Afi+Bf,+C f3 =
0.

Desde que ¢ é a matriz de sizigias de I, se Ay, By, C; ou Ay, By, Cy é uma R-sequéncia
regular, entao, obtemos o resultado.

Suponha que nenhuma delas é R-sequéncia regular. Como I é um ideal equigerado,
temos que existem dy, dy > 1 tais que grau(A4;) = grau(B;) = grau(C}) = d; e grau(A4sy) =
grau(By) = grau(Cy) = dy. Sem perda de generalidade, podemos supor d; < ds.

Nosso objetivo é mostrar que uma combinacao R-linear das sequéncia Ay, By,C; e
As, By, C5 determina uma R-sequéncia regular. Explicitamente, mostraremos que existe

f € R polinébmio homogéneo de grau dy — dy tal que Ay — fA;, Bo— fBy,Cy — fC] é uma
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R-sequéncia regular, ja que evidentemente (Ay — f Ay, By — f By, Cy— fC1) determina uma
sizigia para os geradores f1, fo, f3 do ideal I.

Considere o ideal J = (A;, Ay, By, By, C1, Cs). Iniciamos mostrando que a variedade
algébrica projetiva V(J) é vazia. De fato, suponha, por absurdo, que V' (J) # @.

Seja p =a:b:c € V(J) C P2 Por , temos que I C J. Consequentemente,
V(J) € V(I), em particular, p € V(I). Denote por B := J(p), o ideal (primo) de
definigao associado ao ponto p. Como {p} C V(I) temos que J(V(I)) C J(p) = B.
Porém, pelo Teorema dos Zeros de Hilbert, 3(V(I)) = VT D I. Desta forma, I C .

Por hipotese, I ¢ um ideal de altura 2. Assim, alt(f) > 2. Contudo, alt(P) < 3,
ja que P # m = (z,y,2) ideal irrelevante associado a origem no espaco afim A. Em
particular, dim(Ry) = alt(P) = 2.

Localizando a resolucao [3.6{ em ‘B3, obtemos:
0= RY 5 Ry — Iy —0, (3.8)

onde @ é a localizagao de ¢ em ‘.
Passando a localizacdo de R em 3, temos que alt(ly) < dim(Ry) = alt(p) = 2. Por
hipotese, como I é genericamente interse¢ao completa, temos que p(ly) < 2. Logo, a

resolucao livre nao ¢ minimal para Iy. Consequentemente, Im(®) ¢ ‘Bng}

Como 525(161) e (e2)

de R?, segue que ou

sao geradores de Im(Q), sendo e1, e elementos da base canonica
o o
(fl) ou (162)

nao pertence a ‘BmR%.

¢
Suponha, sem perda de generalidade, que (161) ¢ ‘,BspR%. Entao,
@(61) Al 6,1 Bl 6’2 Cl €é

_ 1 3
1 _11+11+11¢mmR‘3’

. A B C

sendo €], €}, e5 os elementos da base candnica de R?. Donde segue que Tl ou Tl ou Tl
. - A By Cy

nao pertence a Py. Isso significa que pelo menos um elemento entre EREREE ¢ um ele-

mento invertivel em Ry e, consequentemente, um elemento entre Ay, By, C; nao pertence

ao ideal . Um absurdo, pois o ponto p foi tomado em V' (J). Portanto,
V(J)=2. (3.9)

Agora vamos introduzir um ideal auxiliar. Dado f em R, polinémio de grau ds — dy,

definimos o ideal:

I(f): <A2_fA17B2_fB1702_fCI>-

Mostraremos que existe uma forma f € R de grau dy — d; para o qual V(I(f)) = @
(em P?), em particular, alt(I(f)) = 3. Desta forma, pelo Lema m, teriamos que os trés
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geradores de I(f) formam uma R-sequéncia regular.

Diante disso, analisemos o caso em que V(I(f)) # @, para f € R forma de grau

dy — dy. Para cada f € R polindmio homogéneo de grau ds — d;, considere um ponto

qualquer Py € V(I(f)) C P*. Em particular, os geradores de I(f) se anulam no ponto
P

(A2 — fA1)(Py) = Aa(Py) — f(Pr)Ar(Py)

(B2 — fB1)(Py) = Ba(Py) — f(Py)Bi(Fy)

(Cy = fC1)(Pr) = Co(Py) — f(Pr)Ch(Pr) =

Por [3.7], realizando convenientes manipulagoes algébricas nos geradores de I, podemos

0;
0; (3.10)
0.

evidenciar a dependéncia de fi, fo e f3 sobre f:

fi = BiCy—BCy+ fBCy— fBiC1 =  B(Cy— fC1) — Ci(By — fBy),
fo = A1Cy — AyCy + fAIC — fAIC = A(Cy— fCr) — Ci(Ay — fAL),
fs = —DBi1Ay+ BoAy + fBiA — fBiA1 = —Bi(Ay— fA) + Av(By — fBy).

Avaliando o ponto Py nas equagoes de fi, fo e f3, como reescritas acima, obtemos que:
fi(Pf) =0, fo(Pf) =0 e f3(Pf) = 0. Donde concluimos que Py € V(I). Isto é,

dado f € Rg,—q, tal que V(I(f)) # @ temos que V(I(f)) C V(I), (3.11)

onde Rg,_4, denota o conjunto dos polindmios homogéneos de grau ds — d;.
Agora, note que se [a : b : ¢ € V(I(f)) NV (I(g)), sendo f,g € Rg,—4,, entao,

fla,b,¢) =g(a,b,c).
De fato, por concluimos que V' (J) = &. Assim, algum dos geradores de J nao se
anula em [a : b : ¢|. Suponha que As(a,b,c) # 0. Pela igualdade |3.10}

As(a,b,c) — f(a,b,¢)Ai(a,b,c) =0,

obtemos que A;(a, b, c) # 0. Note que o mesmo valeria para By e Cy, isto é, se By(a, b, ¢) #
0 entdo, Bi(a,b,c) # 0 e se Csy(a, b, c) # 0 entao, Ci(a, b, c) # 0. Portanto, suponha, sem
perda de generalidade, que A;(a, b, c) # 0. Mais uma vez por [3.10, isto implica que

. A2<a7 ba C)

A - A = : .
o(a,b,c) — f(a,b,c)As(a,b,c) =0, que é equivalente a  f(a,b,c) = Ay (a,b, c)’
. A2<a7b7 C)

A _ A = : 1
2(a:,¢) = gla,b,)A(a,b.c) =0, que & equivalente ag(a,b,¢) = Z70= 0.

Logo,
la:b:d € V(I(f)NV(I(9) = fla,b,c) = g(a,b,c). (3.12)

Finalmente, tomemos f € Rg4,_4, de modo que f nao se anula em nenhum ponto de
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V' (I). Suponha, por absurdo, que V(I(f)) # @. Além disso, considere a seguinte sequéncia
de polinémios:

£,28,. . K, ...
Afirmagao: Vi # j, temos que V(I(if)) NV (I(jf)) = @.

De fato, suponha que a intersecao seja nao vazia. Em virtude de [3.12] teriamos que
se [a:b:c] & um ponto em V(I(if)) NV (I(jf)), entdo:

if(a,b,c) = jf(a,b,c),¥Y i # j. (3.13)

Desde que ¢ # j, segue que f(a,b,c) = 0, isto &, [a : b : ¢] € V(I(if)). Por outro
lado, por [3.11] terfamos que V(I(if)) C V(I). Consequentemente, [a : b : ] € V().
Contradizendo a hipotese de que f nao se anula nos pontos de V(I). Assim, V i # j,
temos que V(I(if)) NV (I(jf)) = @.

Como uma consequéncia da Afirmacao, concluimos que, para cada k > 1, obtemos
um ponto distinto em V(I), ja que V k > 0, V(I(kf)) C V (1), por 3.11]

Em particular, V(1) possui infinitos pontos, uma contradigao, visto que a dimensao

da variedade V(1) é descrita por

dim(V (1)) = dim (%) —1 = dim (%) —1=dimR—alt(vVI)—1=3-2-1=0,

visto que alt(v/T) = alt(I) = 2.
Portanto, V(I(f)) = @. Concluindo nossa demonstragao, pois, pelo Lema [3.1.1] a

sequéncia Ay — fAq, By — By, Cy — fC determina uma R-sequéncia regular. O

Observagao 3.1.1. A versao do Teorema [3.1.3] apresentado neste trabalho é mais geral
que a proposta originalmente em [20]. Especificamente, o autor do trabalho original supoe
que o ideal I é genericamente interse¢ao completa como hipotese basica a equivaléncia.
Embora a motivacao inicial para apresentacao do Lema derive do comentario em

[20], a demonstracao e os detalhes técnicos sao desenvolvimentos proprios deste trabalho.

Uma particularidade da resolugao livre do tipo Hilbert-Burch é que esse tipo de reso-
lugao carrega consigo a informagao sobre um invariante algébrico importante: a dimensao
homologica. Em sintese, dizer que um ideal é do tipo Hilbert-Burch é dizer que este
ideal tem dimensao homoldgica menor ou igual a um. Nesse sentido, podemos finalmente

apresentar um critério alternativo para determinar a liberdade de uma forma f € R.

Teorema 3.1.4. Sejam R = Clz,y, z] o anel dos polinémios sobre o corpo C e f € R

um polindmio homogéneo. Suponha que alt(Jr) = 2 e {0,f,0,f,0.f} seja um conjunto
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minimal de geradores de Jy. Entao,

f € um diwvisor livre e Jy € genericamente intersecao completa
<~

J¢ admite uma sizigia regular.

Demonstragao. Sejam f € R um polindémio homogéneo e Jr = (0,f,0,f,0.f) o ideal
Jacobiano de f. Se f é um divisor livre, entdo o modulo de sizigias Syz(J¢) é um modulo

livre. Isto significa que

R
0-R"5 R 3R - — —0,
I
com R" ~ Syz(Js) e n = u(Syz(Jy)), é uma resolucdo livre minimal para J;.
Além disso, pela Proposigao [I.3.3] temos que —n+3 —1 = 0 o que implica que n = 2.
Logo, J; possui resolugao livre do tipo Hilbert-Burch:

O—>R23>R3—>R—>J£;—>O, (3.14)
e o resultado segue do Teorema @, ja que estamos supondo que Jy é genericamente
intersecao completa.

Reciprocamente, se Jy tem uma sizigia regular, entao, J; possui resolugao livre do tipo
Hilbert-Burch, pelo Teorema [3.1.3] Em particular, dh(J;) < 1. Portanto, pelo Teorema
, f ¢ um divisor livre. Além disso, Jy é genericamente intersecao completa pelo Lema
5. 1.2, ]

Exemplo 3.1.2. Sejam R = C[x,y,z] e f = xzyz € R. O ideal Jacobiano de f é o ideal

minimamente gerado pelas derivadas parciais de f :

Jr =(0f, O, f, 0.f) = (yz, xwz, xy).

Esse ideal é tal que alt(.J;) = 2, pois seus primos minimais possuem altura 2, a saber,

os ideais primos (z,%), (x,z) e (z,y). Considere a 3-upla (—2z,y, z) em R?, temos que:
—2x(yz) + y(xz) + z(zy) = 0.
Como —2x, y e z constituem uma sequéncia regular em R, podemos aplicar o Teo-

rema para concluir que o polinémio f = zyz é um divisor livre.

Observacao 3.1.3. E fato que existem, em P?, divisores livres que néo possuem sizigias
regulares devido ao fato de que nao satisfazem a condicao de ser genericamente intersecao

completa. Em [0, Theorem 4.1, item (iii)| os autores apresentam uma familia de divisores
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livres em P? que, para os parametros corretos, nao possuem ideal Jacobiano do tipo linear
e, portanto, nao podem ser genericamente intersecao completa, uma vez que ha uma

equivaléncia entre esses conceitos [18], Proposition 1.6].

Ao longo deste capitulo estamos nos concentrando no caso onde R := Clz,y,z]. E
natural o questionamento se o teorema principal deste trabalho é valido para anéis de
polinébmios em mais variaveis. De fato, a seguir, apresentaremos um exemplo onde o
teorema nao iré funcionar no ambiente S := C[z,y, z, w|. Este exemplo consta em [20].
Exemplo 3.1.4. Sejam S := Clz,y,z,w] e Q = xyzw(zr +y+ 2 +w) € S. O ideal
Jacobiano de @) ¢é descrito por Jgo = (0,0, 0,Q, 0,Q, 0,Q), onde

%@ =yzw(2r +y + 2z + w),
0,Q = zxzw(x + 2y + z + w),

(3.15)
0,Q = zyw(r + y + 2z + w),

0w@ = zyz(z +y + 2z + 2w).

Note que alt(Jg) = 2. Considere (s1, 59, 83, 54) € S*, onde

s1 = 22% + a2y + Trw = r(2z +y + Tw),

s2 1= —y* — dyw = y(-y—dw),

s3 = dxz+yz+222+32w = z(dx+y+ 22+ 3w),
sy = —8rvw—4dzw—3w? = w(—8z —4z— 3w).

De fato, é facil verificar que:
SlamQ + SQayQ + 838zQ + 348111@ =0,

o que mostra que (s1, S2, S3, s4) ¢ uma sizigia de Jg. Utilizando o software de computacao
algébrica Macaulay2, temos que o ideal I = (s1, S, 3, 84) tem altura igual a 4. Conse-
quentemente, grade(I) = 4, pois S é Cohen-Macaulay. Assim, existe uma S-sequéncia
regular de 4 elementos s}, sy, s5, 85 em I. Entdo, de acordo com a prova do Lema [1.2.2]
temos que sy, 2, 53, 54 € uma sizigia regular sobre Jg.

Contudo, se existe um polinomio t € S tal que t ¢ Jg et € (Jg : m), com m =

_ _ S
(z,y,z,w), temos que tm C Jg, logo, m = (Jg : t), isto &, m = (0: ), com t € - \ {0}.
Q

S S
Assim, m € Ass (—), em particular, prof (—) =0.
Jq Jq
Como dim(S) = 4 e S é um anel Cohen-Macaulay, pela formula de Auslander-

Buchsbaum, discutido na observagao [1.3.14] segue que:

prof (J_SC;) + dh (%) =dim S.
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Consequentemente, dh (—> = 4. De fato, utilizando, mais uma vez, o software de
Q
computacio algébrica Macaulay2, é possivel verificar que o polinoémio ¢t = y*zw + yz*w +

yzw? é tal que t ¢ Jo et € (Jg : m). Portanto, Jg ndo pode ter resolu¢ao minimal do tipo
Hilbert-Burch. Isto é, o ideal Jacobiano Jg possui uma sizigia regular, mas nao admite

resolucao livre de Hilbert-Burch, em particular, () nao é um divisor livre.

Observagao 3.1.5. No Exemplo contamos com o auxilio do software computacional
Macaulay2. No Apéndice [A] é possivel encontrar os codigos utilizados na resolugao do

exemplo em questao.

3.2 Aplicacoes

Nessa secao, apresentaremos outras aplicagoes na temética dos objetos centrais neste
estudo. Os resultados apresentados nessa se¢ao sao propostos por Tohaneanu em [20].

Ainda no ambiente introduzido neste capitulo, seja R = C[x, y, z|, anel de polinomios
standard graduado e f € R um polindbmio homogéneo. Podemos considerar o moédulo das
C-derivagoes, Derc(R), como um R-mo6dulo graduado: uma C-derivagao 6 = A0, + B0, +
CO., & homogénea de grau d se grau(A) = grau(B) = grau(C) = d.

Agora vamos introduzir uma nomenclatura auxiliar. Se (A4, B,C) € R é uma sizigia

do ideal jacobiano de f, descrito por J; = (0, f, 0, f, 0. f), entdo, a derivagao 6, dada por
0 = Ad, + Bo, + CO,,

¢ uma derivagao em Derlog(f), uma vez que 6(f) = A0, f + BO,f +CO.f =0=0f. A
derivagao 6 é denominada derivagao logaritmica especial. Se A, B,C' é uma R-sequéncia
regular com grau(A) = grau(B) = grau(C') = d, entdo a # daremos o nome de deriva¢io
especial reqular de grau d.

Os resultados que seguem estao no contexto onde F' define um arranjo de hipersuper-
ficies (em particular, um arranjo de hiperplanos), isto é, quando F' é definido como um
produto de formas irredutiveis. Nosso primeiro resultado apresenta uma relagao entre o

grau minimo das sizigias de Jg e o grau dos geradores do ideal radical de Jp.

Proposicao 3.2.1. Sejam fi,..., fin € R polindmios homogéneos irredutiveis relativa-
mente primos entre si e F' := f1... fm. Suponha que as hipersuperficies algébricas defini-
das por fi,..., fm interceptem-se transversalmente (duas a duas) e que V(Jy,) =0, para
todoi=1,...,m.

Denote o grau minimo das sizigias de Jgp por f(Jr) € o grau minimo dos geradores

de \/Jp por a(\/Jr). Entao,
(v Jr) < B(Jr) + 1.
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Demonstragio. Seja (A, B,C) € R* uma sizigia de Jp de grau minimo, 3(Jr). Considere
a derivagao especial

0 = A0, + B0, + CO, € Derlog(F).

Como F' = fy--- fiu, com fi,..., f,, formas irredutiveis, entao

O(F) = AD,F + BO,F + CO.F = (Ad,f1 + BO,fr + COf1) fa- - fru+ -+

+ (A, fi + BOfi + COf) [ i+ -+

J#i

+ (A@xfm + Bayfm + O@zf?ﬂ)fl T fm—l
= (Adufi + BO, fi + CO.£:) [ | £

i=1 i
Desde que (A, B,C') é uma sizigia sobre Jp = (0, F,0,F,0,F), temos que Ad,F' +

BOyF + CO.F = 0. Dessa forma,

m

> (Adufi + Bo,fi+ Co.f) [[ £ = 0. (3.16)

i=1 i
Como 4(f;) = A0, fi + BO, f; + CO, fi, segue que, para todo j # 1,

i—1

0f) ][ i == D _(Ad:f; + Bo, f; + Co.f) | | fr—

J#i j=1 k#j
— Y (A0, f;+ Bo,f; + Co. i) [ [ #r-
j=i+1 k#j

Mais ainda, podemos destacar f; na expressao acima:

i—1

0[] f = fi( SN (A0 f, 4 B+ Cogy) T e

J#i =1 ket jik#i
— Y (Aduf;+ Bo,f;+ Co.fy) ] fk>.
j=it+1 ke ik
Como f; é irredutivel, e mde(f;, f;) = 1, para j # i, segue que, para cada i =1,...,m:
0(f;) = A0, fi + BO, fi + CO.f; = figi, para algum g; € R. (3.17)

Note que V(Jr) # 0, visto que alt(Jp) < 2, pois Jp C (f;, f;). Assim, considere um
ponto P =[a:b:c] € V(Jp) C P
Afirmacgao: P € V(f;) N V(f;), para algum par i, j com i # j.
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De fato, como F' = fy ... fi, € Jpe P € V(Jp), segue que 0 = F(P) = f1(P)--- fr(P).
Dai, existe i tal que f;(P) = 0. Suponha, por absurdo, que para todo j # i, temos
P & V(f;),isto é, f;(P) # 0. Note ainda que podemos expressar a derivada parcial de F’

com respeito a I COImo segue:

m m m—1
aF = 0u(f)[[ i+ +oul) [I £+ -+ ] #
j=2 J=1

j=1.j#i

= o.(f) ] fj+fz-< o) |1 fj>-

=1, k=1,ki j=1,j#ki

Avaliando a expressao anterior no ponto P teriamos:

9, F(P) = ( 11 f;) (fi)(P )( o) |1 fj> (P),

J 1 ‘77574 kzl)k7£2 J:17J¢k77‘

donde segue 0 = 0,(f;)(P ( H fj> , 0 que implicaria que 0,(f;)(P) = 0, ja que
J=1j#i
f;(P) # 0 para todo j # i. Reproduzindo o mesmo argumento para as variaveis y, z,

obteriamos 0, (f;)(P) = 0,(f;)(P) = 0, o que seria um absurdo, pois V(J;,) = 0. Assim,
P e V(fi)NV(f;), para algum par ¢,j com ¢ # j.

Dado P € V(Jg), duas situagoes podem acontecer: P € V(A, B,C)ouP ¢ V(A, B,C).
Se P ¢ V(A, B,C), entdo, por [3.17, temos

A(P)0, fi(P) + B(P)0, fi(P) + C(P)0.fi(P) = fi(P)g:(P) = 0, (3.18)

ja que P € V(f;), para algum i = 1,...,m.

Diante do exposto, em [3.1§ temos que o ponto P’ = [A(P) : B(P) : C(P)] deve
pertencer ao espaco tangente a variedade V(f;) em P. Desde que as hipersuperficies
V(f;) definem curvas projetivas em P?, temos que P’ pertence a reta L; tangente a V (f;).
Analogamente, concluimos que P’ pertence a reta tangente L; a V(f;), ja que P € V(f;)N
V(f;) (pela afirmacdo).

Por hipoétese, as hipersuperficies se interceptam transversalmente, isto é, as retas L;
e L; possuem inclinacoes diferentes, logo L; N L; = {P}, uma vez que P € V(f;) NV (f;).

Dessa forma, temos uma tnica possibilidade: P’ = P, isto é:
) )

[a:b:c]=P=P =[A(P): B(P):C(P)].
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Agora, consideremos o ideal
TABO) — (yA — 2B, 2A — 2C, 2B — yC).
Avaliando P nos geradores de 142 obtemos:

(yA — xB)(P) = bA(P) —aB(P) =0,
(zA — zC)(P) = cA(P) —aC(P) =0,
0

Donde segue que P € V(IA4BO),

Por outro lado, se P € V(A, B, C), entio, como I‘APC) C (A, B,C), ¢ imediato que
P e V(IWBO),

Em ambos os casos, concluimos que se P é um ponto em V (J5), entdao P € V (IA5C)),
Isto significa que V (Jp) C V(IAPC)). Pelo Teorema dos Zeros de Hilbert, temos que
JABC) \/J_F Desde que 145 ¢ um ideal equigerado em grau B(Jr)+ 1, o resultado

segue:

Oz(\/J_F) S ﬁ(JF) + 1.
[

A proposicao a seguir estabelece uma cota superior para a multiplicidade do ideal
radical do ideal jacobiano associado a um divisor livre definido por um arranjo de hiper-

planos.

Proposigao 3.2.2. Sejam Lq,...,L, € R formas lineares relativamente primas entre si
e =Ly...L,. Suponha que Q) € um divisor livre que admite uma derivacao logaritmica

especial reqular de grau d > 2. Entao,

e(R/\/Jg) < d*+d+1.

Demonstragao. A argumentacao desta prova ¢ similar a feita em Proposicao [3.2.1] Seja
0 = AD, + BO, + C0O,, uma derivacao logaritmica especial regular de ) de grau d. Isto
¢, (A, B,C) ¢ uma sizigia de Jg tal que grau(A) = grau(B) = grau(C) = d, com d > 2
e A, B,C forma uma sequéncia regular. Desde que cada L; é uma forma linear em R,
podemos escrever L; = a;x + by + ¢;z, com a;,b;,¢c; e C,Vi=1,...,n.

Aplicando # em @ = Ly --- L, considerando que (A, B,C) é uma sizigia regular de
Jg, obtemos:

0(Q) = A0, Q + B9,Q + C0.Q =Y (Ad, L + B, Ly + CO.Ly) [[ L; = 0.
k=1 j#k
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Como 8mLk = ag, (‘%Lk = bk, asz = Cg, temos que

0(Q) = (axA+bB+caC)[[L;=0.
k=1 j£k

Assim, para cada i, podemos reescrever de forma conveniente esta igualdade:

n i—1 n
(@A+bB+cC)[[L; = Li< =) (arA+ 0B +c.C) [ Li—

jF#i k=1 jFEk
— > (aA+bB+aC) [] Lj>.
k=i+1 J#k,

Como L; é uma forma de grau 1 e mde(L;, L;) = 1, temos que
a;A+b;B + ¢;C = L;S;, para algum S; € RVi=1,...,n. (3.19)

Afirmagao: Se P =[a:b:c| € V(Jg), entao P € V(L;) N V(L;), para algum para
i,j com i # j.

Com efeito, como ) = Ly---L, € Jg e P € V(Jg), segue que 0 = Q(P) =
Ly(P)--- Ly(P). Logo, L;(P) = 0 para algum ¢. Suponha, por absurdo, que para todo
J # i, temos P ¢ V(L;). Note que

m m m—1
0.Q = L)L+ +0:.L) T Li+-+0u(Lw) [] L;
j=2 J=1j#i J=1
= 0.(L) [] Lj+Lz-< > oL ] Lj).
j=1,j7i k=1,k#i J=1,5#ki

Avaliando a expressao anterior no ponto P teriamos:

0,Q(P) = am<Lz-><P>< 1T Lj> (P)+(L»<P>( > oLy ] L;-) (P),

=1, k=1,ki j=1,j#ki

donde segue 0 = 0,(L;)(P) ( H Lj> (P), o que implicaria que a; = 0,(L;)(P) = 0.
j=1 g
De maneira anéloga, concluimos também que b; = 9,(L;)(P) = 0 e ¢; = 0,(L;)(P) = 0,

ou seja, (a;, b;,¢;) = (0,0,0), um absurdo. Assim, P € V(L;) NV (L,), para algum par i, j
com i # j.

Analogo a proposi¢ao anterior, temos duas opgoes. Se P ¢ V (A, B, ('), avaliamos o
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ponto P na equagao obtemos

pois P € V(L;) N V(L;). Dessa forma, o ponto [A(P) : B(P): C(P)] € V(L;) NV (L;).
Como a intersegdo entre as retas projetivas V(L;) e V(L;) define um ponto projetivo,
pela afirmacao segue que V(L;) N V(L;) = {P}, logo, [A(P) : B(P) : C(P)] =P = [a:
b:c]. Assim, A(P) = ka, B(P) = kb e C(P) = kc para algum k € C".
Considere o ideal J45) = (yA—zB,zA—xC, zB —y(C). Avaliando P nos geradores
de 1AB0);

(yA — xB)(P) = bA(P) —aB(P) =0,
(yA — xC)(P) = cA(P) —aC(P) =0,
0

Donde P € V(IB9) Se P € V(A,B,C), entio P € V(IAPD) pois 4B C
(A, B,C). Concluimos que
V(Jg) C V(IAED), (3.20)

Nossa estratégia consiste em utilizar o Teorema para inferir uma cota superior

A7B,C))‘ A,B,C)

para e([ ( Assim, precisamos mostrar que [ ( se encaixa nas hipoteses do

teorema.

(A,B,C)

Primeiro mostraremos que [ é minimamente gerado por trés elementos. Sem

perda de generalidade, suponha, por absurdo, que existem «, § € C tais que:
yA— 2B = a(zA —2C) + (2B — yC).
Reorganizando a igualdade anterior, obtemos:
(y —az)A+ (—x — B2)B + (fy + ax)C =0, (3.21)

uma sizigia de grau 1 do ideal (A, B, C), um absurdo, visto que A, B, C' é uma R-sequéncia
regular de elementos homogéneos de mesmo grau d > 2, por hipotese. Logo, o grau das
sizigias de (A, B,C) deve ser maior ou igual que d > 2. Com efeito, se (f,g,h) ¢ uma
sizigia do ideal (A, B,C), entao fA + gB + hC = 0, consequetemente, hC' = —fA — gB
e, pela regularidade de A, B e C, tem-se que h € (A, B). Entao, grau(h) > d. O mesmo

(4.B.C) deve ser minimamente gerado por trés elementos.

é valido para f e g. Portanto, I
Em seguida, devemos mostrar que alt(I%)) = 2. Uma vez que 1459 C vV Jo,
pela equagao e que alt(Jg) < 2, visto que Jo C (L, L;), entdo alt(I‘F9)) < 2.

Suponha, por absurdo, alt(I4F) = 1.
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Como R ¢ um dominio de fatoracdo tnica, os primos minimais de I‘4%) de altura 1

sao ideais principais. Dai, existe um polinémio homogéneo D € R que divide os geradores

de IAB9) . Ou seja,

fD = yA—uaB, (3.22)
gD = zA—2C,
hD = zB—yC.

Para certos polindmios f,g,h € R tais que alt(f,g,h) = 2. Note que, se f,g,h nao
cumprem a condi¢ao de altura 2, podemos iterar esse processo.

Multiplicando as equagoes por z, —y, x, respectivamente, obtemos

z2fD = zyA — zx B,
—ygD = —yzA + yxC, (3.23)
xhD = xzB — xyC.

Somando estas equacgoes, tem-se
0=2z2fD —ygD + xhD = D(zf — yg + zh), consequentemente, zf — yg + xh = 0.

E, da regularidade da sequéncia z, —y, x, concluimos que f = yv; +xvq, g = 201 + xvU3

e h = yv3 — zvy, para certos vy, v9,v3 € R. Donde segue que:

yA—zB = (yv; + 2v3)D <= y(A—uvD)—x(B+vyD) =0;
2A—2C = (z2v1 + 2v3)D <= 2(A—vD)—x(C +v3D) =0;
2B —yC = (yvs — 2v9)D <= 2(B+ v2D) —y(C +v3D) = 0.

Dessa forma, y(A — v1D) = z(B 4+ v D). Logo, existe t € R tal que A — v, D = tx.
Entao, yat = x(B + v2D), o que implica que B + voD = ty e C' + v3D = tz. Isto é,
(A,B,C) C (D,t). Um absurdo, ja que alt(A, B,C) = 3 e alt(D,t) < 2. Portanto,
alt(IA4B9) =2,

Note que por a R-sequéncia regular z, —y, z &, na verdade, uma sizigia de [A5),
E, do que foi discutido anteriormente, tem-se, pelo Teorema , que 149 ¢ do tipo

Hilbert-Burch com resolugao livre minimal:
0— R? = R® - [B9) .

Desde que grau(A) = grau(B) = grau(C) = d, e P9 admite uma sizigia linear,
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produzimos a seguinte resolucao graduada:
0— R(—(d+2)@® R(—(2d+1)) —» R¥(—(d+1)) = R — R/TPC) 0. (3.24)

Com o auxilio do teorema [I.5.1] e da resolugao graduada [3.24] temos que a série de
Hilbert de I ¢ dada por:

Hyape(t) = (1 — 3t 4 2071 4 d+2) (3.25)

(1-1)*

Além disso, dim(R/IAP9)) = dim R — alt(I“P9) = 1. Entdo, pela Proposicio
1.5.2) calculamos a multiplicidade de R/I“5©).

—1)270 0°-98 (A,B,C) (t) 1 [0%S (A,B,0) (t)
JABC)Y ( 1(A.B, 1) = = | 22200 (g
e(R/ ) 2-0) o0 (=3 12 (1),
onde
Sy (t) =1 — 3tdH1 4 ¢2d41 4 gd+2,
Calculando as derivadas de Sj.s.0)(t) com respeito a ¢, obtemos:
aney () = =3(d+ Dt + (2d + 1) + (d + 2)t*,
Sthanoy(t) = =3(d+1)dt* " +2d(2d + 1)** ' + (d + 1)(d + 2)t*,

S;,(A,B,C)(l) = 2(d2 +d+ 1).

Entéo, e(R/IAPY)) = d> + d + 1.

Finalmente, como consequéncia de [3.20] obtemos a desigualdade desejada:

e(R/\/Jg) <d®+d+1.
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Apéndice A
Macaulay?2

O Macaulay2 ¢ um sistema computacional voltado para Algebra Comutativa e Ge-
ometria Algébrica, muito utilizado por pesquisadores e estudantes para realizar célculos
simbolicos com ideais, anéis e modulos. Ele permite estudar caracteristicas dessas es-
truturas, como dimensoes e resolucoes livres, de forma eficiente, além de oferecer uma
linguagem de programacao propria para automatizar tarefas.

Nesse trabalho, o Macaulay2 desempenha um papel decisivo na argumentagao do
Exemplo |3.1.4

A fim de calcular a altura do ideal I = (22% + xy + Tzw, —y* — dyw, 4wz +yz + 22* +
3zw, —8rw — 4zw — 3w?), no Exemplo , usamos o seguinte codigo:

i1 : R=QQ[x,y,z,w]
ol =R
ol : PolynomialRing

i2 @ I=ideal(2xx*x + x*y + Tkx*w, -yxy-4d*y*w, 4*x*z + y*z + 2kzxz+3*z*w,
-8k XKW - 4K ZKW-3kWKW)

02 = ideal (2x2+xy+7xw,-y2-4yw,4xz+yz+222+3zw, -8xw-4zw-3w2)

02 : Ideal of R

i3 : dim R - dim(R/I)
o3 =14

Para encontrar elementos dentro de um ideal construido, basta indexar, com o co-
mando " _[indice]", o nome do ideal. Deixamos claro que, para esse software, a indexagao
comeca em 0. Assim, para encontrar o polinémio t = y?zw + yz*w + yzw?* no Exemplo
.1.4] utilizamos o codigo abaixo:

i1 : R=QQ[x,y,z,w]
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ol

R
ol : PolynomialRing

i2 : m= ideal(x,y,z,w)
02 ideal(x,y,z,w)
02 : Ideal of R

i3 : Jg=ideal (y*z*wx(2*x + y + z + w), x*kzxwk(x + 2%y + z + w),

xxy*kwk(x + y + 2%z + w), xky*xzx(x +y + z + 2%w))

03 = ideal (2xyzw+y2zw+yz2uw+yzw2 ,x2zZw+2XyZw+xz2W+xzZw2, X2yWw+xy2w+2XyZw+xyw2,
X2yZ+xy2z+xyz2+2XyZW)

03 : Ideal of R

i4 : condutor= Jq:m

04 = ideal (y2zw+yz2u+yzw2,Xyzw, X2ZW+xz2W+XZw2 , X2yw+xy2u+xyw2,
X2yz+xy2z+xyz2)

04 : Ideal of R

i5 : condutor_0
05 = y2zwtyz2utyzw2
o5 : R

Um outro recurso de grande utilidade nesse trabalho é a possibilidade de se calcular

n

resolugoes livres através do Macaulay2. Para tal, utilizamos o cédigo "res ". Este foi

utilizado tanto no Exemplo quanto no Exemplo [2.2.12]

Exemplo [I.3.4}
i1 : R=QQ[x,y,z,w]
ol =R

ol : PolynomialRing
i2 : m=ideal(x,y,z)
02 = ideal(x,y,z)

02 : Ideal of R

i3 : res m
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-y —z 0 z
0 -z —y
R 0 =z y x
R {22 g R L R' 0

03 : ChainComplex

Exemplo [2.2.12}
il : R=QQ[x,y,z]
ol =R

ol : PolynomialRing

12 @ g=xxy*xz*(x-y)*(y-z) *(z-x)
02
02: R

-x3y2z+x2y3z+x3yz2-xy322-x2yz3+xy22z3

i3 : Jg=ideal (diff(x,g), diff(y,g), diff(z,g))

03 = ideal (-3x2y2z+2xy3z+3x2yz2-y3z2-2xyz3+y2z3, -2x3yz+3x2y2z+x322-3xy222
-x2z3+2xyz3, -x3y2+x2y3+2x3yz-2xy3z-3x2yz2+3xy222)

03 : Ideal of R

i4 : res Jg
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