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Alérgenos e suas respostas fisiopatolégicas em modelos murinos de indugao da asma: uma revisao
integrativa

Cavalcanti, A. M. T.

Coordenagao do Curso de Farmacia

Trabalho de Conclusao de Curso/CCS/UFPB (2024)

A asma é uma doenca inflamatéria cronica que afeta cerca de 29% da populagéo
mundial e se configura como um problema de saude publica de grande relevancia.
Sua complexa patogénese, marcada por hiper-responsividade brénquica, inflamacéao
e remodelamento das vias aéreas, torna os modelos animais ferramentas essenciais
para o estudo dessa desordem. Através desses modelos & possivel investigar os
mecanismos subjacentes a asma, desde a sensibilizacdo a alérgenos até o
desenvolvimento de novas terapias. Diferentes modelos murinos reproduzem
aspectos variados da asma humana, cada um com suas vantagens e limitagdes. Para
induzir a asma em murinos, sdo empregados diversos alérgenos, entre os quais se
destacam a ovalbumina, o lipopolissacaridio, acaro da poeira doméstica, material
particulado e alérgeno da barata. A escolha do modelo adequado depende dos
objetivos especificos da pesquisa, como o fendétipo e fisiopatologia da asma a ser
estudada e consequente resposta imune desejada. Esse trabalho tem como objetivo
realizar uma revisao integrativa da literatura sobre os tipos de alérgenos empregados
em diferentes modelos murinos de indugdo da asma, e analisar os mecanismos
fisiopatoldgicos subjacentes a asma alérgica. Diante disso, foi realizada uma reviséo
de literatura integrativa nas bases de dados PubMed, Science Direct e Scopus dos
ultimos 10 anos, utilizando como descritores: “musculo liso”, “rato”, “camundongo”,
“cobaia”, “asma”, “modelo animal’, “alérgenos” e “modelo de asma”, em inglés.
Observou-se que, entre os anos de 2014 e 2024 foram publicados 1.728 artigos, e
conforme os critérios de inclusido e exclusdo, 157 desses estudos abordaram o
modelo de asma em murinos, considerando aspectos da fisiopatologia, aplicabilidade
e resultados nesses modelos experimentais. Assim como na asma humana, os
modelos murinos de indugdo da asma apresentam aumento do infiltrado de
eosindfilos, neutrdéfilos, leucécitos, macrofagos e monédcitos, e de mediadores
inflamatoérios como diversas interleucinas, IgE, TNF-a e IFN-y, além de hipertrofia e
hiperplasia de células epiteliais e caliciformes da musculatura lisa das vias aéreas,
fatores responsaveis pela hiper-responsividade e alteragdes na funcdo pulmonar. A
partir disso, conclui-se que o uso de alérgenos em murinos € uma ferramenta
essencial para o entendimento dos mecanismos imunolégicos envolvidos na asma,
permitindo a simulagdo de aspectos da asma alérgica. Essa avaliagdo permite que
sejam testadas a eficacia de novas substancias com potencial terapéutico no
tratamento dessa desordem, considerando a heterogeneidade da doenga e seus
multiplos fatores de exacerbacgao.

Palavras-chave: asma alérgica; modelos murinos; hiper-responsividade; vias aéreas;
inflamacéo.
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Allergens and their pathophysiological responses in murine models of asthma induction: a
integrative review

Cavalcanti, A. M. T.
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Asthma is a chronic inflammatory disease that affects approximately 29% of the global
population and is a significant public health issue. Its complex pathogenesis,
characterized by bronchial hyper-responsiveness, inflammation, and airway
remodeling, makes animal models essential tools for studying this disorder. Through
these models, it is possible to investigate the underlying mechanisms of asthma, from
sensitization to allergens to the development of new therapies. Various murine models
replicate different aspects of human asthma, each with its own advantages and
limitations. To induce asthma in mice, various allergens are used, including ovalbumin,
lipopolysaccharides, house dust mites, particulate matter, and cockroach allergens.
The choice of the appropriate model depends on the specific research objectives, such
as the phenotype and pathophysiology of asthma to be studied and the desired
immune response. This work aims to conduct an integrative literature review on the
types of allergens used in different murine models for asthma induction and analyze
the pathophysiological mechanisms underlying allergic asthma. An integrative
literature review was performed in the databases PubMed, Science Direct, and Scopus
over the last 10 years using descriptors such as "smooth muscle," "rat," "mouse,"
"guinea pig," "asthma," "animal model," "allergens," and "asthma model" in English. It
was observed that between 2014 and 2024, 1,728 articles were published; according
to inclusion and exclusion criteria, 157 of these studies addressed the murine asthma
model, considering aspects of pathophysiology, applicability, and results in these
experimental models. Like human asthma, murine models of asthma induction show
increased infiltration of eosinophils, neutrophils, leukocytes, macrophages, and
monocytes, as well as inflammatory mediators such as various interleukins, IgE, TNF-
a, and IFN-y. Additionally, there is hypertrophy and hyperplasia of epithelial cells and
goblet cells in the smooth muscle of the airways—factors responsible for hyper-
responsiveness and changes in pulmonary function. Therefore, it is concluded that
using allergens in mice is an essential tool for understanding the immunological
mechanisms involved in asthma, allowing for the simulation of aspects of allergic
asthma. This evaluation enables testing the efficacy of new substances with
therapeutic potential for treating this disorder while considering the heterogeneity of
the disease and its multiple exacerbating factors.

Keywords: allergic asthma; murine models; hyper-responsiveness; airways;
inflammation.



Lista de Figuras

Figura 1 — Esquema anatdmico do sistema respiratorio.............cccccveiiiviiiiiiiiiiinnnnnnn, 27
Figura 2 — Resposta imunologica da asma alérgica...........cccceeeviiviiiiiiieeiiiin e, 29

Figura 3 — Mecanismo eletromecénico de contracdo do musculo liso das vias aéreas

Figura 4 — Mecanismo farmacomecanico da contragdo do musculo liso das vias
aéreas pela ativagéo do sistema efetor Gg/11- PLC Bt ..eevveiiiiiiiiiiiii 34

Figura 5 — Mecanismo farmacomecanico de relaxamento do musculo liso das vias

aéreas induzido pelas vias efetoras do CAMP € cCGMP ............ccooiiiiiiiiiiiiiiiin e, 35
Figura 6 — Esquema do tratamento farmacolégicodaasma ...............cooooevvvvvinnnnnnnn. 37
Figura 8 — Estrutura quimica do Lipopolissacaridio (LPS).........ccccccceeeiiiiiiiiiiiininnnnnn. 61
Figura 9 - Espécies dos acaros Dermatophagoides pteronyssinus (A) e
Dermatophagoides farinae (B) ............oooo oo 63

Figura 10 — Espécies de baratas que contém o alérgeno CKA ............cccccviviiiinnnnnne 66



Lista de Fluxograma

Fluxograma 1 — Fluxograma da selecao de artigos com base nos critérios de inclusao

L=y (o LV 1T To Mo (=Y il a1 Te [0 < F TR 51



Lista de Graficos

Grafico 1 — Quantidade de artigos publicados nas bases cientificas Pubmed, Science
Direct e Scopus, com base nos descritores no titulo, resumo ou palavras-chave entre
0S ANOS A€ 2014-2024 ... 52

Grafico 2 — Percentual dos diferentes roedores em modelos de indugcdo da asma
empregados em artigos publicados entre o periodo de 2014-2024 nas bases de dados

PubMed, Science Dir€Ct € SCOPUS.............cooeeeeeeeeiieeeeeee e ee e 53

Grafico 3 — Quantidade de artigos publicados utilizando diferentes linhagens de

camundongos NA INAUGA0 A8 @SMI@.......cuuiiiiiiiiaaeeeeaeae it r e e e e e e e e e e e e e e s e aannes 54

Grafico 4 — Quantidade de artigos publicados utilizando diferentes linhagens de ratos

[ F= 18T To [8 o= T Jo £= 1= 1< o 4 - TR PP 55

Grafico 5 — Quantificagdo das metodologias empregadas na indugao da asma em
modelos murinos entre os anos de 2014-2024 publicados nas bases cientificas
Pubmed, Science Direct e Scopus, com base nos descritores no titulo, resumo ou

[OF=1 =NV = ES o = A= 56



Lista de Quadros

Quadro 1 — Modelos murinos de asma induzida por alérgenos e suas principais

caracteristicas fisSiopatolOgICas.........ccoivviiiiiiiii e 67



Al(OH)3
ACh
Anvisa

APC
ATP
BALF

CaM
Cav
CCh
CDs
CEUAs
Cl

CKA
Concea
CysLT
DAG
DAMPs
ELISA

FceRlI
FDA

LISTA DE ABREVIATURAS

Hidroxido de aluminio

Acetilcolina

Agéncia Nacional de Vigilancia Sanitaria
Células apresentadoras de antigeno

Trifosfato de adenosina

Fluido do lavado broncoalveolar
Calmodulina

Canais de calcio dependentes de voltagem
Carbacol

Células dendriticas

Comissdes de Etica no Uso de Animais
Corticosteroide inalatério

Alérgeno da barata

Conselho Nacional de Controle da Experimentagado Animal
Cisteinil leucotrieno

Diacilglicerol

Padrbes moleculares associados ao dano
Ensaio de imunoabsorgao enzimatica

Receptor de IgE de alta afinidade

Food and Drug Administration (Administracdo de alimentos e
medicamentos)

Frequéncia respiratoria

Global Initiative for Asthma (Iniciativa Global para Asma)
Difosfato de guanosina

Trifosfato de guanosina

Acaro da poeira doméstica

Interferon gama
Imunoglobulina E
Células linfoides inatas do tipo 2

Interleucina



IP3 1,4,5-trisfosfato de inositol

IP3R Receptor de 1,4,5-trisfosfato de inositol

VIS Unido Internacional das Sociedades Imunologicas

LABA Agonista adrenérgico- de longa duragao

LAMA Antagonista muscarinico de agao prolongada

LPS Lipopolissacaridio

MAPK Proteina cinase ativada por mitbgeno

MCh Metacolina

MHC Complexo de histocompatibilidade

MLCK Cadeia leve da miosina

NANC N&o-adrenérgico ndo-colinérgico

NCX Trocador Na*-Ca?*

NLRs Receptores semelhantes ao dominio de oligomerizagéo ligante
de nucleotideos

NO Oxido nitrico

OMS Organizagdo Mundial da Saude

OVA Ovalbumina

PAMPs Padrbes moleculares associados ao patégeno

PDEs Fosfodiesterases

PHF11 Gene PHF11

PGD: Prostaglandina D2

PIP: 4,5-bisfosfato de fosfatidilinositol

PKA Proteina cinase A

PKC Proteina cinase C

PKG Proteina cinase G

PLCp1 Fosfolipase C B+

PM Material particulado

PMCA Ca?*-ATPase da membrana plasmatica

PRRs Receptores de reconhecimento de padrdes

RyR Receptor de rianodina

SABA Agonista adrenérgico- de curta duracao



SERCA Ca?*-ATPase do reticulo sarcoplasmatico

STAT Transdutores de sinal e ativadores de transcricéo
Sus Sistema Unico de Saude

Th Células T auxiliares

TGF-B Fator de crescimento transformador 3

TLR Receptor toll-like

TNF-a Fator de necrose tumoral a

TSLP Linfopoetina estromal timica

VvC Volume corrente

VEGF Fator de crescimento endotelial vascular

VM Volume minuto

OBS: as abreviaturas e os simbolos utilizados neste trabalho e que ndo constam nesta
relagdo, encontram-se descritas no texto ou sao convengdes adotadas

universalmente.



SUMARIO

I ] (e o 11 oo SRR 23
A LU gTe F=Ta g [=T g e= Tor= Lo (=To 4 or= U 24
A X 1 - PRSP 25
2.1.1 Conceitos gerais, epidemiologia e classificagies............ccccccvvvviiiiiiiiiiiiinennnnn. 25
2.1.2 FiSIOPALOIOQIa ....cooeviiiiiiiiiiiiiii i 26
2.1.3 Inervagcado e mecanica respiratoria .........cuuueiiiiiiiiiiieeiin e 31
214 TratameNntos .....coooiiiiiiiiii 36
2.2 Uso animal em modelos experimentaiS.........cooovvvuiiiiiiiiiiiiiccciiin e 38
2.2.1 Modelos murinos na iNdUGA0 da aSMa ........ceovvvviiiiiiiiiiieee i 40
2.2.2 Métodos de avaliagcado da asma em MUIMNOS .........ccoevuviiiieiiiiineeeeeiis e 41
FRC I N 1= o =T o [ 1 PR 43
B ODJEEIVOS ..o 45
LY = (oTe (o] (oo = H PP PP PP PPPPPPPPP 47
5 Resultados € DISCUSSA0 ........ccooeieeeieee e 50

5.1 Determinacgao dos artigos revisados que abordavam modelos de asma alérgica

[TaTe [UF4Te b= W=Y 0 0 1 0 18] 1 0 o 10N 51

5.2 Modelos murinos utilizados em protocolos de indugdo da asma na pesquisa

CIENTITICA .. 53
5.3 Determinacao dos alérgenos em modelos de indugcdo da asma............cccceeees 55
5.3.1 Ovalbumina (OVA)... ..o 57
5.3.2 Acaro da poeira dOMESHICA...........ccveeveeeeeeee e 62
5.3.3 Material partiCulado ...........cooii i 64
5.3.4 Alérgenos de baratas.........coooooeeeiiiii i 65
B CONCIUSDOES. .....coiiiiiiiiieeeeee et 76

R OB CIAS ... e e e 78



1 Introducdo



22
Cavalcanti A. M. T. Introducdo

A asma € uma doenga heterogénea, caracterizada clinicamente pela hiper-
responsividade, remodelamento e inflamagao crénica das vias aéreas. A doenca é
definida pelo histérico dos sintomas respiratérios, que variam ao longo do tempo e em
intensidade. Dentre estes, os mais comuns sao tosse, falta de ar, sibilo, sensagao de
aperto no peito e limitagao variavel do fluxo de ar expiratério (Gina 2024).

Essa desordem € uma das doencas cronicas ndo transmissiveis mais
comuns, que acomete aproximadamente 300 milhdes de individuos mundialmente
(Gina, 2024), onde em média 460 mil pessoas morrem prematuramente em
decorréncia da asma por ano (Wang et al., 2023) Nesse processo ha infiltragao e
ativagao de células imunes, como eosindfilos, linfécitos, neutréfilos e mastdcitos que
desencadeiam a hiperplasia e hiper-responsividade do musculo liso das vias aéreas,
que influenciam na patogénese da asma (Hammad; Lambrecht, 2021).

Diversos fatores sédo responsaveis pelo desencadeamento de exacerbacgdes
da asma, tais como exposicdo a alérgenos, poluentes atmosféricos, infecgdes
respiratorias virais e pratica de exercicios fisicos. Essa condigéo é influenciada por
uma combinacdo de fatores genéticos, ambientais e predominantemente
imunoldgicos (Gans; Gavrilova., 2020).

A Global Initiative for Asthma (Gina) classifica a asma em 6 fendtipos distintos
agrupados por caracteristicas observaveis como a asma alérgica; nao alérgica; com
tosse predominante e variante; de inicio tardio; persistente e com limitacdo do fluxo
aéreo; e asma com obesidade, sendo os dois primeiros grupos 0s principais
observados e estudados (Gans; Gavrilova, 2020; Gina, 2024). A asma também pode
ser classificada em dois grandes endoétipos, considerando 0s mecanismos
fisiopatoldgicos da inflamacgao e acao dos linfocitos T auxiliares do tipo 2 (Th2) para
melhor caracterizagdo do quadro clinico do paciente, em Th2-high, de carater
eosinofilico, e Th2-low, com predominio neutrofilico (Hammad; Lambrecht, 2021;
Habib et al., 2022).

Nesse contexto, os modelos experimentais tem como objetivo reproduzir a
fisiopatologia da asma e seus mecanismos moleculares, permitindo a avaliagcdo de
novos candidatos para o tratamento dessa desordem. Dentre esses modelos, as
linhagens celulares podem ser utilizadas in vitro para estabelecer mecanismos de
lesdo celular a partir da quantificagao de citocinas pro-inflamatérias (Liu et al., 2021).
No entanto, neste tipo de modelo néo é possivel replicar com precisido as interagdes

observadas in vivo, uma vez que a asma € uma doenga crbnica multifatorial,
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caracterizada por interagdes complexas entre diversas vias imunoldgicas e fatores
ambientais (Bates; Rincon; Irvin, 2009).

Diante disso, destacam-se os modelos murinos, que sao valorizados por suas
multiplas linhagens consanguineas, facil manipulagéo génica e semelhancga genética
com os seres humanos. Esses modelos sdo capazes de simular diversas desordens
que afetam os seres humanos, incluindo a asma (Reddy et al., 2012).

Considerando a relevancia de modelos que mimetizam a asma observada em
humanos, este trabalho tem como objetivo realizar uma revisdo integrativa da
literatura sobre os modelos murinos utilizados na indugéo da asma alérgica, com foco
em artigos publicados entre os anos de 2014 e 2024. Essa revisdo busca reunir um
material de consulta e apoio para a comunidade académica na area de estudo da
asma ao esclarecer a fisiopatologia, aplicabilidades e resultados obtidos em cada

modelo avaliado.



2 Fundamentacdo teorica
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2.1 Asma
2.1.1 Conceitos gerais, epidemiologia e classificagoes

A asma é uma doenga clinica heterogénea, de carater crénico e complexo
responsavel por acometer as vias aéreas causando tosse, sibilancia, falta de ar e
aperto no peito. Os sintomas costumam variar significantemente entre os pacientes
(Akar-Ghibril et al., 2020; Gina, 2024). A sintomatologia pode aparecer desde o
comecgo da infancia (asma de inicio na infancia) até em individuos adultos (asma de
inicio tardio). Na infancia, € mais comum em individuos do sexo masculino, enquanto
na vida adulta acomete comumente mulheres (Stern et al., 2020).

Essa desordem atinge em média 300 milhdes de individuos mundialmente, se
tratando de um problema de saude publica (Soriano et al., 2017; Gina, 2024). A
prevaléncia dos sintomas da asma vem aumentando em diversos paises,
especialmente nos de média e baixa renda, acompanhado ao aumento da gravidade
desses sintomas (Ellwood et al., 2017)

Estima-se que no Brasil aproximadamente 20 milhdes de pessoas sejam
acometidas com asma, correspondendo a aproximadamente 23% da populagao
(Vasconcelos et al., 2023). Acredita-se que 10% dos individuos asmaticos possuam a
forma grave da doenca, que esta associada ao aumento de mortalidade e reducao da
qualidade de vida do paciente (Fernandes et al., 2014; Reis et al., 2024). Aasma grave
gera altos custos para o sistema de saude, sendo este responsavel por cerca de 200
milhdes de reais das despesas relacionadas a essa desordem com individuos
asmaticos no Brasil entre os anos de 2019 a 2024 (Pizzichini et al., 2020; Teixeira et
al., 2024).

Dentre os custos obtidos, incluem-se os diretos, como as internagdes
hospitalares e medicamentos, e os indiretos, com reducdo da qualidade de vida,
observado pelo impacto na saude mental, associado ao aumento de estresse e
ansiedade, junto a perda da qualidade do sono (Stanescu, 2024), em detrimento dos
sintomas observados em exacerbacdes da doenca, e morte prematura, quando nao
ha tratamento a tempo (Cangado et al., 2019).

De acordo com o DATASUS, o banco de dados do Sistema Unico de Saude
(SUS) publica no Brasil, foi estimado que ocorrem, em média, 354 mil internagdes por
ano e, dentre esses casos, no ano de 2023 houveram mais de 84.500 hospitalizacoes,

onde aproximadamente 97% dos casos eram de carater urgente (Ribeiro et al., 2024).
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Entre os anos de 2016 e 2020, foram contabilizados 2.248 ébitos em decorréncia da
asma, correspondendo mais de 6 6bitos/dia no Brasil (Marques et al., 2022).

De acordo com a Gina (2024), a asma pode ser classificada em seis fenétipos

distintos:

e Alérgica: fenotipo mais comum, tende a iniciar na infancia e esta associado
ao historico familiar de doengas alérgicas com infiltrado eosinofilico;

e Nao-alérgica: ndo esta associada a processos alérgicos, possuindo um
perfil inflamatério neutrofilico ou eosinofilico;

e Com tosse predominante e variante: em alguns individuos o unico sintoma
de asma presente € a tosse que apresenta piora durante a noite ou na
pratica de exercicios fisicos;

e Tardia: surgimento em adultos, especialmente em mulheres. O perfil
inflamatorio se apresenta como nao-alérgico;

e Persistente e com limitagao do fluxo de ar: desenvolvimento da limitagao
do fluxo de ar de modo persistente ou reversivel parcialmente em
decorréncia da remodelacao bronquica,;

e Com obesidade: alguns pacientes obesos e asmaticos tendem a piorar do
quadro clinico de ambas as doencas. O perfil inflamatoério € neutrofilico e

pouco eosinofilico.

2.1.2 Fisiopatologia

O sistema respiratorio é constituido pelas vias aéreas, que sdo um conjunto
de tubos ramificados que conecta os pulmbdes ao meio externo. Pode ser divido
morfologicamente em porg&o condutora, responsavel por conduzir o ar inspirado aos
pulmdes, e porgao respiratoria, onde ocorrem as trocas gasosas (Silverthorn, 2017).

O ar quando inspirado passa pelas fossas nasais, faringe, laringe e traqueia
(Figura 1). A traqueia é um 6rgao tubular semirrigido sustentado por cartilagem, que
se estende para dentro do térax e se ramifica em brénquios primarios, com um
brénquio em cada pulmao. Em seguida, nos pulmdes, os bronquios se ramificam em
bronquiolos, que se tornam progressivamente menores ao modo que adentram no
parénquima pulmonar, se ramificando até criar uma transicdo entre as vias aéreas e

o epitélio de troca do pulméo (West, 2013). As paredes dos alvéolos possuem uma



27
Cavalcanti, A. M. 7. Fundamentacdo teorica

fina camada de células epiteliais e sdo vascularizadas com uma rede de capilares

sanguineos, responsaveis pelas trocas gasosas (Lemes, 2018).

Figura 1 — Esquema anatémico do sistema respiratorio.
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Fonte: Adaptado de Kleinstreuer; Zhang (2010).

A passagem do ar pelas fossas nasais faz com que ele seja aquecido,
umedecido e filtrado pelo trato respiratorio superior. A traqueia e os brénquios sao
revestidos por um epitélio respiratério, composto por um epitélio pseudoestratificado
cilindrico ciliado com células caliciformes, responsaveis pela produgao e secrecao de
mucina por essas células (Fujisawa et al., 2023). Esse epitélio desempenha fungbes
de protegao contra patégenos e filtracdo do ar inalado (Davis; Wypych, 2021).

Na asma alérgica, a principal caracteristica observada é a obstrugéo
variavel das vias aéreas, causada pela reducao do diametro do lumen em decorréncia
da inflamacgao cronica. A hipertrofia das células musculares lisas € caracterizada pela
infiltragdo e ativacdo de células imunes, como eosindfilos, neutrdfilos, células
dendriticas, linfécitos, células linfoides inatas e mastécitos. A interacdo dessas células
imunes com as células estruturais adjacentes, como células epiteliais, desempenha
um papel crucial na manutengdo da inflamagao crénica em individuos asmaticos
(Hammad; Lambrecht, 2021).

O epitélio respiratério fornece uma barreira funcional, fisica e de defesa
imunoldgica, desempenhando um papel fundamental na depuragdo mucociliar de

particulas inaladas. Essas particulas sao removidas e neutralizadas a partir da
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producao de quimiocinas e citocinas produzidas por células epiteliais (Carlier et al.,
2021).

As células dendriticas (CDs) possuem um papel crucial na modulagdo das
respostas imunes, devido a sua alta expressao de receptores de reconhecimento de
padrées (PRRs), incluindo os receptores toll like (TLR), ativados por proteases e os
receptores semelhantes ao dominio de oligomerizagao ligante de nucleotideos (NLRs)
(Steelant et al., 2016). Esses PRRs permitem que as células dendriticas detectem
padrées moleculares associados a patégenos (PAMPs) ou a danos teciduais (DAMPs)
nas vias aéreas (Gill, 2012). Em resposta a essa deteccéo, as CDs liberam alarminas,
como a linfopoetina estromal timica (TLSP), IL-25 e IL-33. Essas citocinas tem a
funcao de ativar as células linfoides inatas 2 (ILC2) que, uma vez ativadas, produzem
e secretam uma variedade de citocinas, como IL-4, IL-5, IL-9 e IL-13 (Calderon et al.,
2023) (Figura 2).

As alarminas ativam as CDs, as principais células apresentadoras de antigeno
(APCs). Apos fagocitar o alérgeno, as CDs se deslocam para os linfonodos, onde
apresentam os peptidios antigénicos as células T auxiliares virgens (Th0), por meio
do complexo de histocompatibilidade do tipo Il (MHCII). Uma vez ativadas, essas
células se diferenciam em células T auxiliares tipo 2 (Th2), que migram para as zonas
de células B nos linfonodos, estimulando a diferenciagdo das células B em
plasmdcitos, células responsaveis pela produgdo de anticorpos, como a IgE
(Lambrecht et al., 2017) (Figura 2).
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Figura 2 — Resposta imunoldgica da asma alérgica.

o A A =
o © Alérgeno Hipersecrecio de muco ‘ ° )
0o, o o Alérgeno

f;‘.-}ri = [~}

z A1\ e Degranulagio

Célula //ﬁ — L5, IL6. @ \ IL-d4ell-13 | © P o e
TGF-B * °

\ IL-33/IL-25

dendritica . .
mastocitos

Eosinodfilos CIS l

o Histamina
) ¥ = j PGD,

Leucotrienos
IgE

Producgao de IL-4,
IL-5e IL-13

Broncoconstrigao e
remodelamento

Linfocito Th2 Plasmocitos Linfocito Th2

Na presenca do alérgeno, ocorre a liberacao de citocinas do epitélio (TSLP, IL 25 e IL-33) que atuam
em células linfoides inatas estimulando as células dendriticas (CDs), que sdo as principais células
apresentadoras de antigeno. As CDs sao mobilizadas para os linfonodos locais, onde ativam as células
T auxiliares virgens (ThO0), convertendo-as em células T auxiliares tipo 2 (Th2), competente de produgao
de IL-4, IL-5 e IL-13. Essas células T migram para as zonas de células B, e se movem para a circulagao
para atuarem como células efetoras. As citocinas de perfil Th2 interagem localmente com células B,
induzindo a sua diferenciagcdo em plasmoécitos produtores de IgE, que se ligam em receptores
especificos em mastdcitos, tornando-os sensibilizados. A partir dos proximos contatos com o alérgeno,
este se liga ao complexo IgE-receptor induzindo uma reagao cruzada que pode ocorrer a degranulagao
dos mastdcitos, liberando mediadores contrateis e inflamatérios. As células Th2 migram para o epitélio
das vias aéreas e para a camada submucosa, onde secretam IL-5 e IL-13 para mediar a resposta
inflamatdria, com acumulo de mastdcitos e eosindfilos, causando aumento da produgéo de muco,
remodelamento das vias aéreas e hiper-reatividade brénquica.

Fonte: Adaptado de Figueiredo et al., 2023.

As células T auxiliares efetoras se direcionam para a corrente sanguinea e
migram para o epitélio das vias aéreas guiadas pela expressdo de quimiocinas e
moléculas de adesao (Medoff et al., 2005). No epitélio respiratério, essas células
efetoras liberam algumas citocinas, como a IL-4, que atua na diferenciacao de outras
células ThO em Th2. Ja a IL-5 é fundamental no recrutamento de eosindfilos para as
vias aéreas, além de estimular a maturacao dessas células em nivel de medula éssea,

além disso, ha ainda o estimulo de eosindfilos por eotaxinas que auxiliam na migracao
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dessas células para o epitélio das vias respiratorias (Asosingh et al., 2016; Hassani;
Koenderman, 2018).

A IL-4 e IL-13 desempenham papel fundamental na diferenciacédo de
plasmacitos, que sdo células especializadas na produgéao de IgE, crucial na fase inicial
da reacao alérgica; além disso, a IL-13 também estimula o remodelamento tecidual e
a hipersecrecdo de muco (Yang et al., 2004; Boonpiyathad et al., 2019). A IgE
produzida se liga aos seus receptores de alta afinidade (FceRI), presentes na
superficie de membrana de basofilos e mastocitos (Zavadniak; Rosario, 2005).

Em individuos previamente sensibilizados, a partir de um préximo contato com
o alérgeno, este se liga ao complexo IgE-FceRI, gerando uma reagédo cruzada que
leva a degranulagdo dos basofilos e mastdcitos com liberagdo de mediadores
inflamatorios e citocinas (Sarinho; Cruz, 2006), como histamina, prostaglandina D2
(PGD2) e CysLT, responsaveis pelo broncoespasmo e inflamagéo das vias aéreas (Van
Ree et al.,, 1996; Gans; Gavrilova, 2020). Esses mecanismos inflamatérios sao
perpetuados pelas citocinas, de modo que a producdo de IgE estd associada a
resposta inflamatoria cronica observada na asma alérgica (Segato et al., 2024).

O estreitamento das vias aéreas €& geralmente reversivel com o uso de
agentes broncodilatadores. No entanto, em alguns casos de asma grave, a obstrugao
ao fluxo aéreo pode ser irreversivel, a partir da formacao de tampao de muco e edema
na submucosa (Mauad et al., 2000; Campos, 2007). Na asma ocorrem alteragdes
estruturais como remodelamento bronquico, que se refere as mudancas de
composic¢ao, quantidade, organizagdo dos componentes celulares e moleculares,
como genes, fatores de transcrigdo e quimiocinas que podem alterar a parede das
vias aéreas, bem como a hiper deposigédo de colageno tipo | (Mauad, 2008; Martire,
2012).

Dentre as alteragdes estruturais, destaca-se a fibrose a partir da deposigao de
matriz colagena e metaplasia para células de goblet, também chamadas de células
caliciformes, que resulta no aumento da producao e hipersecrecao de muco. Além
disso, ocorre o surgimento de edema pelo aumento da vascularizagao das vias
aéreas, a partir do desequilibrio hemodinamico entre 0 meio intravascular e intersticio,
com aumento da permeabilidade vascular a macromoléculas, relacionada ao aumento
da expressao do fator de crescimento endotelial vascular (VEGF) (Sumi; Hamid,

2007). Observa-se também o espessamento da camada muscular das vias aéreas a
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partir da hiperplasia e hipertrofia das células musculares lisas que resultam no
espessamento das vias aéreas (Fixman et al., 2007).

Ainflamacéao e o remodelamento das vias aéreas séo ainda influenciados pelo
fator de crescimento transformador 8 (TGF-$), um mediador produzido pelo epitélio e
liberado em resposta a citocinas, como a IL-13 (Hammad; Lambrecht, 2015). O TGF-
B promove fibrose e hipertrofia do musculo liso das vias areas (Kraik et al., 2024), além
de estimular a diferenciagéo de fibroblastos e deposigédo de colageno, sendo este um

fator primordial no remodelamento das vias aéreas (Kocwin et al., 2023).

2.1.3 Inervacao e mecanica respiratoria

A respiragao € um processo ativo que requer contragao e relaxamento das
vias aéreas, crucial no processo de ventilagdo e perfusdo, garantindo estabilidade
mecanica as vias aéreas nao cartilaginosas (Pelaia et al., 2008). Essa forgca mecanica
imposta pela respiragcao, € um importante modulador da responsividade brénquica,
onde em adultos saudaveis, a inspiragdo profunda reduz a responsividade (David,
2016).

Essa condicdo € impulsionada por uma amplificacdo da inervacgao
parassimpatica, e pela ativagdo dos mastocitos em resposta a alérgenos. O tonus das
células musculares lisas das vias aéreas € aumentado na asma, e regulado pelo nervo
vago, que libera a acetilcolina (ACh) para estimular receptores muscarinicos, a fim de
induzir contracdo, bem como o0 aumento da producgéo e secreg¢ao de muco (Rodrigues
et al., 2016)

As vias aéreas possuem inervagao adrenérgica limitada, com liberacdo de
noradrenalina e adrenalina pelos neurdnios pds-ganglionares simpaticos, reduzindo o
tébnus muscular através da broncodilatagdo e reducédo da resisténcia ao fluxo de ar
(Gorain et al., 2020). Esse efeito ocorre principalmente pela ativagdo dos receptores
adrenérgicos-f2, amplamente expressos nas células musculares lisas das vias aéreas
(Manti et al., 2024).

Adicionalmente, ha o sistema nao-adrenérgico nao-colinérgico (NANC), um
sistema mais complexo dividido em componentes inibitérios (INANC), mediados pelo
oxido nitrico e o peptidio intestinal vasoativo, responsaveis pelo relaxamento; e
excitatérios (eNANC), que liberam a neurocinina A, substéncia P e trifosfato de
adenosina (ATP), causando a contracdo da musculatura lisa das vias aéreas
(Kistemaker; Prakash 2019).
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A contragdo muscular é caracterizada pela geragao de tensédo pelo musculo,
onde essa tensado depende de diversos fatores, tais como o comprimento das fibras
musculares, forga, frequéncia de potenciais de acdo sobre uma fibra e velocidade de
contracado (Silverthorn, 2017). O entendimento do mecanismo de contragdo e
relaxamento da musculatura lisa das vias aéreas € imprescindivel para melhor
entendimento da mecanica respiratoria em individuos asmaticos.

No musculo liso, 0 aumento da concentragao citosdlica de ions calcio ([Ca?*]c)
€ o marco inicial para desencadear a contragdo. O aumento da [Ca?*]c ocorre por dois
principais mecanismos distintos, podendo acontecer pela despolarizacdo da
membrana, caracterizando-o como mecanismo de contragéo eletromecanico, ou pode
se dar pela ligagdo de um agonista ao seu receptor acoplado a proteina G (GPCR),
caracterizando o mecanismo de contracao farmacomecanico (Berridge, 2008).

E possivel avaliar o mecanismo eletromecanico da contracdo através do
aumento da concentragao de potassio extracelular ([K*]e) (Figura 3). Fisiologicamente,
o K* se encontra mais concentrado no meio intracelular, estando em constante efluxo
pelos seus canais de vazamento. Ao aumentar a concentragdo deste ion no meio
extracelular, esse efluxo ira reduzir, levando ao acumulo de cargas positivas no interior
da célula, e consequente despolarizagdo. Essa despolarizagao ira ativar canais de
calcio dependentes de voltagem (Cav), levando a abertura destes e ao influxo de Ca?*.
O calcio ird se ligar a proteina citoplasmatica calmodulina, formando o complexo
4Ca?*-CaM, que ativara a cinase da cadeia leve da miosina (MLCK), e esta, ira
fosforilar a cadeia leve da miosina, permitindo a interagao entre os miofilamentos de
actina e miosina culminando na contracdo da musculatura lisa das vias aéreas
(Somlyo; Somlyo 2003; Camoretti-Mercado; Lockey, 2021)

Ja o mecanismo farmacomecanico da contragdo ocorre pela ligacédo de um
agonista, como a acetilcolina (ACh), que é um ligante enddgeno, ou o carbacol (CCh),
mimético da ACh, ao receptor M3, que acopla as proteinas Gq/11, € estas, ativam o
sistema efetor da fosfolipase C 1 (PLCPB1), que cliva o fosfolipidio de membrana PIP2
(4,5-bisfosfato de fosfatidilinositol) em IP3 (1,4,5-trisfosfato de inositol) e DAG
(diacilglicerol). O IP3, pela ligacdo aos seus receptores (IPsR) no reticulo
sarcoplasmatico, leva a liberagao de Ca?* (Fukata et al., 2001) que, por sua vez, ativa
os receptores de rianodina (RyR) (Sanders, 2001; McFadzean; Gibson, 2002),
levando a liberagdo de mais Ca?*, que transloca a proteina cinase C (PKC) para

membrana para que seja ativada pelo DAG. A PKC fosforila os Cav, levando a abertura
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destes e influxo de Ca?*, resultando na contragdo da musculatura lisa das vias aéreas
(Figura 4).

Figura 3 — Mecanismo eletromecénico de contragdo do musculo liso das vias aéreas.
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(1) Durante o repouso, o gradiente eletroquimico favorece o efluxo de ions K* através de canais de
vazamento, deixando a regido perimembranar interna das células musculares lisas polarizadas
negativamente; (2) um aumento na [K*]e diminui o efluxo desses ions, havendo acumulo de cargas

positivas na regido perimembranar interna; a célula despolariza, ocasionando a ativagdo dos Cav que
leva ao influxo de Ca2* com consequente contragao.

Fonte: Adaptado de Figueiredo, 2020.

Assim, como a condig&o primordial para a contragdo é o aumento da [Ca?]c,
para que o relaxamento ocorra, é necessario a diminuicdo da concentracao citosodlica
deste ion, tanto para o mecanismo eletro quanto para o farmacomecanico. Para que
0 mecanismo eletromecanico de relaxamento ocorra, podera haver a ativagcao de
canais de K* ou bloqueio dos Cav (Knot; Brayden; Nelson, 1996).

Ja o mecanismo farmacomecanico de relaxamento pode ocorrer pela ativagao
de um ligante a receptores acoplados a proteina Gs (Figura 5). Um exemplo de ligante
enddgeno € a adrenalina, que se liga ao receptor adrenérgico-B2 no musculo liso das
vias aéreas, e ativa o sistema efetor da ciclase de adenilil, que ira converter o trifosfato
de adenosina (ATP) em monofosfato ciclico de adenosina (cCAMP), e este, ativa a
proteina cinase A (PKA), dependente de cAMP, que ira fosforilar diversos alvos que
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culminardo no relaxamento por diminuigdo de niveis citoplasmaticos de calcio
(Somlyo, 1999; Price; Bernal, 2001).

Figura 4 — Mecanismo farmacomecanico da contragdo do musculo liso das vias aéreas pela
ativacao do sistema efetor Gg11- PLC B.
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(1) O agonista se liga ao seu receptor do tipo GPCR na membrana plasmatica; (2) As proteinas Gg1
trocam GDP por GTP na sua subunidade a (ndo mostrado na figura), tornando-se ativa; (3) A
subunidade aq11-GTP ativa a PLC1; (4) A PLCpB1 cliva o fosfolipidio de membrana PIP2 em IP3 e DAG;
(5) O IP3 migra pelo citoplasma e ativa o IP3R presente na membrana do RS, liberando o Ca?* dos
estoques; (6) O Ca?* liberado ativa o RyR, fazendo com que mais Ca?* seja liberado para o citoplasma;
(7) O Ca?* que foi liberado, juntamente com o DAG, ativam a PKC; (8) A PKC ativada fosforila os Cav1
promovendo o influxo de Ca?* através dos mesmos; (9) O aumento da [Ca?*]c aumenta a afinidade pela
CaM formando o complexo 4Ca?*-CaM e ativando a MLCK; (10) A MLCK ativada fosforila a MLC e esta
se torna ativa e interage com os filamentos de actina, desencadeando a contragdo do musculo liso.

Fonte: Adaptado de Figueiredo, 2020.

A PKA ird ativar os canais de K*, ocasionando efluxo deste ion e
hiperpolarizagdo da célula, com inativagao indireta dos Cav; a PKA também ira inibir
diretamente os Cav e a MLCK, diminuindo a fosforilagdo da MLC e,
consequentemente, a interagdo entre a miosina e os filamentos de actina; a bomba
de calcio da membrana plasmatica (PMCA) e o trocador 3Na*/2Ca?* (NCX), permitindo

a extrusédo de Ca?*; a bomba de célcio do reticulo (SERCA), garantindo o reestoque
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de Ca?*. (Somlyo, 1999), levando ao relaxamento da musculatura lisa das vias aéreas
(Figura 5).

Figura 5 — Mecanismo farmacomecanico de relaxamento do musculo liso das vias aéreas
induzido pelas vias efetoras do cAMP e cGMP.
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(1) O agonista se liga ao seu receptor do tipo GPCR na membrana plasmatica; (2) a proteina Gs troca
GDP por GTP na sua subunidade a (processo ndo mostrado na figura), tornando-se ativa; (3) a
subunidade Gas-GTP ativa a AC; (4) a AC converte o ATP em cAMP; (5) o NO gerado tanto dos nervos
como das células epiteliais estimula a atividade da sGC; (6) a sGC converte o GTP em cGMP; (7) os
nucleotidios ciclicos, cAMP e cGMP, ativam suas respectivas proteinas cinases, PKA e PKG,
respectivamente. Ambas as proteinas cinases fosforilam varios substratos: (8) ativam os canais de K*;
(9) inibem os Cav; (10) aumentam a atividade da SERCA e da PMCA,; (11) ativam o NCX; (12) A PKG
inibe os IP3R. Todos esses mecanismos diminuem a [CaZ*]c; (13) inibem a MLCK, reduzindo sua
afinidade pelo complexo 4Ca?*-CaM. Todos esses mecanismos impedem a fosforilagdo da MLC e,
consequentemente, a interagdo dos filamentos de miosina com os de actina, promovendo o
relaxamento do musculo liso; (14) Uma inibicao das PDEs leva ao aumento dos nucleotidios ciclicos,
também ocasionando relaxamento.

Fonte: Adaptado de Figueiredo, 2020.

Outro mecanismo relaxante ocorre através da geracao de oxido nitrico (NO).
O NO é produzido pelas enzimas sintases do 6xido nitrico (NOS), a partir da L-arginina
e 02, formando L-citrulina e NO. No trato respiratério, o NO ¢é produzido,
majoritariamente, pelo epitélio, sendo um fator relaxante derivado de epitélio

(Ricciardolo et al., 2004). O NO é um gas lipossoluvel que atravessa a membrana e
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se liga ao seu receptor intracelular ciclase de guanilil soluvel (sGC), que converte
trifosfato de guanosina (GTP) em monofosfato ciclico de guanosina (cGMP). O cGMP
ativa a proteina cinase G (PKG) dependente de cGMP, que fosforila os mesmos alvos
descritos para a PKA para induzir o relaxamento, com adi¢do da inibigdo do IP3R
(Carvajal et al., 2000; Zhao et al., 2015) (Figura 5).

Assim, percebe-se que substancias que aumentem a concentracdo de cAMP
e cGMP sao efetivas para o tratamento da asma, uma vez que diminuem o
broncoespasmo, como € o caso dos inibidores de fosfodiesterases (PDEs), ja que
essas enzimas tém como fungdo a clivagem desses monofosfatos ciclicos (Page;
Spina, 2012).

Além de fatores inflamatdrios, imunoldgicos e contrateis, a regulagdo da asma
também é influenciada por aspectos genéticos. Mais de 120 variagdes genéticas no
DNA foram associadas as caracteristicas da asma (El-Husseini et al., 2023), refletindo
a extensa heterogeneidade dos fenotipos da asma, com variagdes genéticas entre os
individuos (Hoffjan, Ober, 2002).

Cada um desses genes representa uma classe funcional distinta, indicando
novos caminhos na patogénese da asma. Por exemplo, polimorfismos no gene
ADAMS33, que €& expresso no musculo liso brébnquico e nas células epiteliais,
desempenham um papel significativo no remodelamento das vias aéreas (Holgate et
al., 2006; Blakey et al., 2009). Outro exemplo € o gene PHF11 que esta relacionado a
imunorregulacdo de linfécitos B (Laitinen, 2007; Mélen; Pershagen, 2012). Esses
achados ressaltam a complexidade da asma, onde a interagao entre fatores genéticos
e ambientais pode levar a diferentes manifestacdes clinicas da doencga (Vercelli,
2010).

2.1.4 Tratamentos

Aasma é uma doenga crénica sem cura definida, cujo tratamento se concentra
em tratamentos nao farmacolégicos como a interrupgcédo de contato com antigenos e
alérgenos, e farmacolégicos com o uso de medicamentos como broncodilatadores,
glicocorticoides e imunomoduladores, visando o controle dos sintomas (Ji; Li, 2023).
As diretrizes atuais enfatizam a avaliagdo e manejo da asma, oferecendo
recomendacgdes baseadas em evidéncias cientificas para diagnoéstico, tratamento e
monitoramento eficaz (Yorgancioglu et al., 2023). A Gina (2024) categoriza o
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tratamento em duas linhas, cada uma composta por quatro etapas que aumentam em
complexidade conforme a gravidade dos sintomas.

Na primeira linha de tratamento, recomenda-se o uso de corticosteroides
inalatorios (Cl) em combinagdo com agonistas adrenérgicos-f de longa duragao
(LABA), como o formoterol (Figura 6). Essa abordagem é preferida pela Gina devido
a sua simplicidade e eficacia no alivio e manutengao dos sintomas. O uso combinado
de CIl e formoterol tem demonstrado reduzir o risco de exacerbacdes graves em
comparagao ao uso isolado de agonistas adrenérgicos-3 de curta duragao (SABA),
que nao sdo mais recomendados isoladamente como tratamento inicial devido ao seu
potencial de causar exacerbagdes graves e hiper-responsividade brénquica (Gina,
2024).

Para a segunda linha de tratamento, uma abordagem alternativa € adotada
quando a primeira linha ndo é adequada. Em casos de asma leve, recomenda-se o
uso de Cl em baixa dose com um SABA, podendo ser administrados juntos ou
separadamente. Com a progressao dos sintomas, € possivel aumentar a dose do ClI

ou adicionar um LABA para melhorar a fun¢do pulmonar (Gina, 2024).

Figura 6 — Esquema do tratamento farmacoldgico da asma.
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Além disso, existem opg¢des terapéuticas adicionais que consideram nao
apenas os sintomas da asma, mas também os mecanismos alérgicos subjacentes.
Exemplos incluem imunoterapia especifica para alérgenos e antagonistas do receptor
de leucotrienos, que sao eficazes em pacientes com asma leve a moderada. O uso
de antagonistas muscarinicos de agao prolongada (LAMA) também pode ser
considerado como terapia complementar para melhorar a fungdo pulmonar e reduzir

exacerbagdes em pacientes com asma nao controlada (Gina, 2024).

2.2 Uso animal em modelos experimentais

O uso de animais em pesquisas € realizado desde as civilizagbes antigas,
com contribuigdes notaveis dos gregos, onde essas praticas iniciais estabeleceram
um elo para a investigacao cientifica moderna, a partir dos métodos criados por
Galeno, que utilizava primatas para o entendimento da fisiologia humana. Essa pratica
influenciou a medicina por séculos (Miller, 2023), ao conduzir experimentos para
estudar a origem da vida (Andersen; Winter, 2017).

Desde entdo, animais contribuiram para o desenvolvimento das vacinas
contra diversas doengas, como a poliomielite (Levenbook et al., 2000) e a variola
(Anbazhagan et al., 2024), além da compreensao da patogénese e as respostas
imunes de doengas como a AIDS, malaria (Musher; Arasaratnam, 2022), COVID-19
(Brockhurst; Villano, 2021), asma (Zosky; Sly, 2007), dentre outras doengas.

Ha inumeras razdes pelas quais a pesquisa com animais € essencial para a
evolucdo médica e cientifica, mas a principal delas se refere ao fato de que todos os
mamiferos sdo descendentes de um ancestral em comum, sendo assim, possuem um
conjunto de 6rgaos semelhantes com funcionamento equivalentes de modo que
animais e humanos podem desenvolver desordens similares (Taormina et al., 2019;
Diaz et al., 2021).

Diversos animais sao utilizados na pesquisa, no entanto, os murinos, ou
roedores, sdo o0s mais empregados na investigacdo de diversas doencgas,
compreendendo quase 90% dos animais utilizados para este fim (Kiani et al., 2022).
Essa prevaléncia se deve as semelhangas genéticas e biolégicas com os humanos,
tornando-os modelos ideais para esses estudos (Jana et al., 2023). Ademais, os
roedores sao inestimaveis em muitos contextos da pesquisa por seu pequeno

tamanho, que compreende facil manuseio em laboratério, boa adaptabilidade as
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diversas condi¢cdes experimentais que sdo conduzidos e baixo custo (Costa et al.,
2003).

A experimentagao animal em laboratério de pesquisa € uma pratica comum e
fortemente institucionalizada. No entanto, o uso de animais em pesquisa apresenta
uma complexidade ética e metodoldgica significativa (Filipecki et al., 2010), onde
apesar do seu essencialismo para a pesquisa, ainda é fortemente criticado (Petetta;
Ciccocioppo, 2021; Vicente; Costa, 2024).

Em 1959, os cientistas William Russell e Rex Burch desenvolveram o conceito
dos 3R’s, descrevendo principios éticos de Substituicdo (Replacement), que se refere
ao uso de outras técnicas viaveis que substitua o uso animal, como metodologias in
silico, cultura de células e uso de animais invertebrados; Redug¢ao (Reduction), que
busca a reducdo do numero de animais usados na obtencdo de informacgdes de
determinado experimento de forma precisa e eficaz; e Refinamento (Refinement), que
visa reduzir o numero ou gravidade de procedimentos desumanos aplicado aos
animais que ainda estdo em experimentacéo, tornando a pratica mais humanizada
(Smith, 2024).

O filésofo Tom Regan levantou questdes quanto aos principios éticos da
utilizagdo animal em laboratdrios, impactando paises como os Estados Unidos
(Stevens, 1990), Reino Unido (Greif; Tréz, 2000) e a comunidade europeia (Levai,
2001), onde passou a haver inspe¢des quanto ao alojamento, alimentacédo e
licenciamento dos pesquisadores envolvidos (Vicente; Costa, 2024).

A implementacdo das Comissdes de Etica no Uso de Animais (CEUAs) no
Brasil, regulamentada pela Lei de n° 11.794, de 8 de outubro de 2008 (Brasil, 2008),
também conhecida como Lei Arouca, foi um marco significativo ao exigir que todas as
instituicdes que utilizam animais no ensino ou pesquisa constituam uma CEUA, que
tem a responsabilidade de avaliar e aprovar projetos, assegurando principios éticos e
0 bem-estar animal. Essa lei opera dentro da diretriz e regulagdo do Conselho
Nacional de Controle da Experimentagdo Animal (CONCEA), que busca garantir o
cumprimento dos padrdes de tratamento humanitario desde 2008, garantindo que os
beneficios da pesquisa sejam ponderados em relacdo ao sofrimento potencial dos
animais. Além disso, incentivam o uso de métodos alternativos que possam reduzir ou
substituir o uso de animais na pesquisa (Concea, 2013).

Orgéos regulamentares como a Food and Drug Administration (FDA) e a

Agéncia Nacional de Vigilancia Sanitaria (Anvisa) retiraram a obrigatoriedade do uso
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de animais no processo de desenvolvimento de novos medicamentos e
dermocosmeéticos seguindo o principio dos 3R’s (Brasil, 2023; Zushin; Mukherjee; Wu,
2023). Porém, para determinados modelos de pesquisa, especialmente para a de
determinadas doencas, ndo € possivel realizar tal substituigdo para modelos
alternativos, uma vez que a experimentagcdo com animais promove maior
conhecimento quanto ao mecanismo de agao de determinadas substancias em nivel

sistémico (Hashway; Wilding, 2020).

2.2.1 Modelos murinos na indugao da asma

Os fendtipos de asma descritos pela Gina (2024) diferem em paréametros
clinicos, critérios fisioldgicos, e gatilhos ambientais. Dessa forma, sua caracterizagao
depende de biomarcadores que identifiquem endétipos distintos (Aun et al. 2017).
Apesar de modelos animais serem limitados por ndo mimetizarem completamente as
caracteristicas e fenotipos da asma humana, garantem a ampliagéo de conhecimento
acerca de inumeras caracteristicas estruturais, inflamatérias e fisiolégicas da asma
(Chapman et al., 2014).

Muitos modelos animais vém sendo utilizados para estudo dos mecanismos
envolvidos na asma, dentre eles, ratos, cobaias, gatos, cachorros, suinos, bovinos,
cavalos e primatas (Kirschvink; Reinhold, 2008; Plopper; Hyde, 2008). Ainda assim, o
modelo mais comum ¢é a inflamacéao alérgica das vias aéreas em murinos, devido aos
curtos periodos de reproducédo, disponibilidade de cepas endogamicas, marcadores
genéticos com genoma descritos, sistema imunoldgico caracterizado e a capacidade
de induzir alteragbes genéticas (Taube et al., 2004).

Genes de camundongos e ratos se assemelham em 85% com o de humanos.
Estudos genéticos apontaram a homologia de 78 genes cromossdémicos de cobaias
com genes humanos (Romanenko et al., 2015), e essa semelhanca genémica entre
as espécies é capaz de direcionar esses animais como modelos no estudo de doencas
que afligem o ser humano, como a asma (Jagadesan et al., 2023).

O uso de murinos na asma vem sendo empregado ha mais de cem anos. Em
1937 foram realizados os primeiros experimentos com cobaias para avaliacdo da
patogénese da asma, sendo este um dos primeiros modelos animais para a
investigagdo da asma alérgica (Kallés; Kallés, 1984). Em 1994 foram descritos os
primeiros modelos experimentais com camundongos que se assemelhassem a asma

alérgica em humanos, e desde entdo essa descoberta resultou em avangos
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significativos quanto a compreensao dos mecanismos envolvidos na asma (Gavett et
al., 1994; Kung et al., 1994; Lukacs et al., 1994).

Atualmente, o uso de modelos murinos continua a ser fundamental na
pesquisa cientifica, especialmente em estudos relacionados a asma e outras doencas
respiratorias (Paolucci et al., 2024; Sarkl; Radhouani, 2024). Esses modelos permitem
a investigacdo detalhada dos mecanismos imunoldgicos e inflamatérios que
caracterizam a asma, possibilitando o desenvolvimento e a avaliagdo de novas
abordagens que vem sendo desenvolvidas para melhorar a relevancia clinica desses
modelos (Nishimoto et al., 2023).

2.2.2 Métodos de avaliagcao da asma em murinos

Diversas metodologias sdo empregadas para a avaliagdo do processo
inflamatdrio causado pela asma, fundamentais na compreensao da resposta imune e
das alteragcdes patologicas. Um desses parametros observados se refere a
quantificacdo de citocinas pré-inflamatérias, como interleucinas do perfil Th2 como a
IL-4, IL-5 e IL-13, que desempenham papéis cruciais na ativacao e recrutamento de
eosindfilos, além de estarem envolvidas na produgao de IgE especifica (Habib et al.,
2022; Pasha et al., 2024).

A IgE, por sua vez, € um marcador importante na sensibilizagao alérgica, esta
diretamente ligada a sensibilidade das vias aéreas e sua quantificagdo permite avaliar
a intensidade da inflamacgéao (Patelis et al., 2018). Outros marcadores pro-inflamatorios
como a contagem de eosindfilos e quantificacdo de citocinas no fluido do lavado
broncoalveolar (BALF) permitem ainda uma compreensao mais aprofundada das
respostas imunes envolvidas na asma (Kavuru et al., 1999; McBrien; Menzies-Gow,
2017; Tkhayat et al., 2021).

Além disso, a hiperplasia das vias respiratorias € uma caracteristica marcante
em modelos murinos na asma. Essa condigdo se refere ao aumento do niumero de
células, como as células epiteliais e as células musculares lisas, que ocorre em
resposta a inflamacdo crbnica. Mediadores inflamatdérios como IL-13 e PGD2
contribuem para o remodelamento das vias aéreas, levando ao aumento da produgao
de muco e hiperplasia das células caliciformes (Grainge; Park 2018; Rahmawati,
2023).

Esse remodelamento é caracterizado pela deposigéao de colageno, hipertrofia

do musculo liso e espessamento das paredes bronquicas, que afetam o fluxo de ar
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(Jia; Yao, 2019; Livshits; Kalinkovich, 2021). A deposig¢ao de colageno e a proliferagao
de células musculares lisas das vias aéreas sao caracteristicas criticas desse
processo, resultando perda da fungcédo pulmonar (Deng et al., 2022). Além disso, a
inflamacao crénica e os mecanismos de reparo subsequentes exacerbam essas
alteragdes, levando a um ciclo continuo de reparagao de obstrugdo das vias aéreas
(Grainge; Park, 2018; Livshits; Kalinkovich, 2021).

A avaliagéo histoldgica e histomorfométrica sdo outras abordagens adotadas
para avaliagdo da asma em modelos murinos, permitindo uma analise qualitativa e
quantitativa a partir de uma analise detalhada das alteragbes estruturais nos tecidos
pulmonares quanto ao infiltrado inflamatério, predominantemente eosinofilico ou
neutrofilico, remodelamento das vias aéreas e produgao de IgE (Caputo et al., 2020;
Wilson et al., 2020).

Outra metodologia empregada na avaliagdo da responsividade se refere a
técnica de pletismografia, que tem como fungdo medir os volumes pulmonares € a
resisténcia ao fluxo aéreo (Kelada, 2016). Diversas técnicas foram desenvolvidas para
auxiliar na caracterizagao dos fenétipos da asma, e cada abordagem representa uma
correlagdo entre a precisao e invasividade, onde quanto menos invasiva uma
medi¢cdo, menor a probabilidade de os dados serem consistentes e reprodutiveis
(Glaab et al., 2007).

Dentre as técnicas n&o invasivas, destaca-se a pletismografia de corpo inteiro,
em que ndao ha necessidade de intubacdo, sendo util para monitoramento em
condicbes mais naturais, capaz de registrar mudancas de pressdo da respiragao
espontanea do animal a partir de mudancas da pressao sentidas pelo pletismégrafo
(Milton et al., 2012).

Essa metodologia permite a avaliagdo de parametros como, o volume corrente
(VC), que ¢é a quantidade de ar inalado em cada ciclo respiratorio (Null; Suresh, 2016);
a frequéncia respiratéria (FR), referente a quantidade de ciclos respiratorios realizados
por minuto (Zhu et al., 2020); o volume minuto (VM), que representa a quantidade de
ar movimentado pelos pulmdes em cada minuto, esse parametro é calculado a partir
do produto da FR pelo VC, expresso como VM = FR x VC. Essas medicbes sao
fundamentais no entendimento da fisiopatologia de doengas respiratérias, e séo
consideradas na avaliagao de intervengdes terapéuticas (Prada-Dacasa et al., 2020).

As técnicas invasivas oferecem menos estresse aos animais, pois estes sao

anestesiados, fazendo com que as medi¢cdes se tornem mais precisas, no entanto,
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sdo mais complexas e de custo elevado (Berndt et al., 2011). Em contraste, a
anestesia € necessaria para esse procedimento que exige ventilagdo mecanica, para
manter os parametros de fluxo constantes, porém, pode alterar o estado fisiolégico do
animal (Narayan; Chauhan, 2022), sendo necessario conecta-lo a um ventilador
mecanico, que tem a finalidade de manter os parametros de fluxo e volumes
constantes (Glaab et al., 2007).

Outro método ainda utilizado para avaliacdo da reatividade contratil na asma
envolve a avaliagdo do comportamento mecanico do musculo liso das vias aéreas a
partir da tensao isométrica de anéis traqueais, realizados com técnicas in vitro e que
permitem a medigdo precisa da resposta contratil da traqueia de murinos frente a
varios estimulos (Lam et al., 2019). Um dos procedimentos envolve o isolamento e
seccionamento dos anéis cartilaginosos da traqueia, que serdo montados em cubas
de banhos para 6rgaos isolados, conectadas a um sistema de registro mecanico,
responsavel por medir as tensdes geradas pela hiper-responsividade causada pela
asma (Wright et al., 2013). Além disso, também é realizada a avaliagao contratil por
estimulacdo elétrica em impulsos aplicados nas terminag¢des nervosas colinérgicas,
que resulta na liberacdo de ACh e subsequente contragao do musculo liso (Semenov
etal., 2012).

Nessas analises, podem ser adicionados agonistas contrateis ou relaxantes
na cuba contendo o érgéo, a fim de estimular diretamente o musculo liso, fornecendo
uma curva concentragcdo-resposta, utilizada para comparar diferengcas de
responsividade (Xiong et al., 2022). Esses procedimentos permitem uma avaliagao
robusta da reatividade contratil sob diferentes condi¢cdes experimentais, além de
permitir a investigacdo de mecanismos que regulam esses processos no musculo liso

das vias aéreas a partir do acoplamento elétrico ou farmacoldgico (ljpma et al., 2015).

2.3 Alérgenos

Alérgenos sao substancias responsaveis por desencadear respostas
imunoldgicas anormais a partir da produgao de imunoglobulina E (IgE) (Seidler et al.,
2024). Podem ser proteinas, glicoproteinas, ou até compostos de baixo peso
molecular, originadas de fontes distintas, como pélen, acaros, pelos de animais e
determinados alimentos (Puc, 2003). Esses alérgenos podem ser subdivididos com

base em informacdes estruturais, sequéncias e estrutura da proteina, que estao
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relacionados ao seu potencial de alergenicidade e imunogenicidade (Traidl-Hoffmann;
Jakob; Behrendt, 2009).

A Organizagdo Mundial de Saude (OMS) junto a Unido Internacional das
Sociedades Imunoldgicas (IUIS) fornecem um banco de dados com todos alérgenos
reconhecidos, onde de acordo com bancos de dados, todos alérgenos proteicos
podem ser classificados em 151 familias com base em suas caracteristicas estruturais
(Pomeés et al., 2019).

Para alergias, ha a producdo de IgE e sua ligagdo a anticorpos de IgE,
resultando em uma reagdo exagerada do sistema imunologico, com aumento de
citocinas Th2, e secreg¢ao de anticorpos IgE (Uter et al., 2020). A sensibilizacdo a um
alérgeno pode variar quanto as vias de exposigéo, através do contato com a pele,
ingestao pelo trato gastrointestinal ou através da inalagdo pelo trato respiratorio. A
depender da via de exposicao e quantidade de exposicoes, diferentes subconjuntos
de células dendriticas sdo responsaveis por desencadear a resposta imunoldgica
(Seidler et al., 2024).

As alergias alimentares sao classificadas pela OMS uma reagdo anormal do
sistema imunolégico apds a exposi¢ao a alimentos especificos, dentre eles, inclui-se
leite, ovos, crustaceos, oleaginosas como nozes e castanhas, denominados como
alérgenos prioritarios (Liu; Lin; Sun, 2022). A alergia se desencadeia diretamente na
area de contato do alérgeno, como a boca, ou pode ainda disseminar a outros 6rgaos
e sistemas, como a pele e trato respiratorio (Anvari et al., 2019).

Ja a alergia por contato € uma alteragdo imunologica causada pelo contato da
pele ou mucosa com substancias, geralmente de baixo peso molecular que apés a
fase de sensibilizagdo desenvolve uma doencga clinica denominada como dermatite
alérgica de contato (Uter et al., 2020).

Enquanto que em alergias desenvolvidas a partir da inalagdo de alérgenos ou
produtos quimicos de baixo peso molecular pelo trato respiratério, ha reacdes
mediadas por IgE, e subsequente desenvolvimento da inflamagéo por células do tipo
Th2 (Bousquet et al., 2020). Dentre doengas causadas por essa exposi¢cao, destaca-
se a asma alérgica, com a sensibilizagcdo do epitélio respiratorio e desenvolvimento

de mecanismos imunoldgicos (Pemberton; Kimber, 2021).



3 Objetivos
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Realizar uma revisao integrativa da literatura sobre os tipos de alérgenos
empregados em diferentes modelos murinos de indugédo da asma, e analisar os
mecanismos fisiopatoldgicos subjacentes a asma alérgica que mimetizam aspectos

da asma humana, descritos em artigos cientificos publicados nos ultimos 10 anos.



4 Metodologia
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O presente estudo refere-se a uma revisdo integrativa da literatura,
considerando artigos publicados ao longo de um periodo de 10 anos (2014 a 2024). A
busca foi realizada entre os meses de maio e julho de 2024, utilizando as bases
cientificas PubMed, Science Direct e Scopus.

Para selecédo dos artigos, foram utilizadas diferentes combinagées dos
descritores em inglés: “rato”, “camundongo”, “cobaia”, “asma”, “modelo animal’,
“alérgenos” e “modelo de asma” (rat, mice, guinea pig, asthma, animal model,

allergens, asthma model, respectivamente), com o auxilio do operador boleano “e
(and).
Para orientar a selegao dos artigos que fundamentaram esta pesquisa, foram
elencados os seguintes critérios de inclusio:
e Trabalhos publicados como artigos cientificos originais;
e Trabalhos com os descritores no resumo;
e Trabalhos publicados em inglés;
e Data de publicacao entre 2014 e 2024;
e Possuir ao menos um grupo experimental de modelo murino com asma
induzida por alérgeno

e Texto correlacionado ao tema abordado.

Ja para os critérios de exclusdo, foram levados em consideragao:
e Trabalhos de conclusdo de curso (TCC);
o Teses e dissertages;
e Resumos publicados em congresso;
e Capitulos de livro;
e Trabalhos publicados fora do corte temporal;
e Duplicatas;
e Trabalhos que ndo abordassem na metodologia a indug¢do de asma em
murinos;
e Acesso fechado;
e Artigos de revisio;
¢ Que nao obtivessem grupos experimentais unicos com alérgenos
¢ Que nao estivesse publicado em inglés;

e Com duplicidade de resultados.
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Apos a selegdo dos artigos, os resultados da busca foram importados ao
software Rayyan®, uma plataforma especializada na realizagdo de revisdes
integrativas, utilizada na triagem de estudos. Onde ao considerar os critérios de

inclusdo e exclusao, todos os artigos eram analisados na integra.



5 Resultados e Discussdo
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5.1 Determinagao dos artigos revisados que abordavam modelos de asma
alérgica induzida em murinos

A principio os descritores foram inseridos nas bases de dados PubMed,
Science Direct e Scopus, com o objetivo de selecionar os artigos que se
enquadrassem nos critérios de inclusdo e exclusdo, considerando que estes
apresentassem correlagdo com a tematica do trabalho. Dessa forma identificados

1.728 artigos ao todo, onde 695 foram obtidos no PubMed, 916 no Science Direct e
117 no Scopus (Fluxograma 1).

Fluxograma 1 — Fluxograma da selecédo de artigos com base nos critérios de inclusdo e

exclusao definidos.
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Fonte: Autor, 2024.

Apos uma avaliacao, 98 artigos foram excluidos por duplicidade, onde o
mesmo trabalho foi apresentado nas diferentes bases de dados. Restando 1.630
artigos, onde a partir da leitura do titulo e resumo do artigo foi avaliado se possuiam

correlagdo com o tema abordado, e dentre eles 893 artigos foram excluidos, restando
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737 artigos que ao averiguar os critérios de inclusao e exclusado descritos, 580 foram
desconsiderados para o presente trabalho, restando 157 artigos elegiveis para a
revisao.

Dentre os artigos selecionados, 12 foram publicados em 2024; 13 em 2023;
13 em 2022; 22 em 2021; 17 em 2020; 18 em 2019; 14 em 2018; 18 em 2017; 7 em
2016; 10 em 2015; e 38 artigos em 2014 (Grafico 1).

Grafico 1 — Quantidade de artigos publicados nas bases cientificas Pubmed, Science Direct
e Scopus, com base nos descritores no titulo, resumo ou palavras-chave entre os anos de
2014-2024.

Numero de artigos

2024 I 2

2023 I 13

2022 I 13

2021 e 02
2020 T 17

2019 . 18

2018 I 1/

2017 I 18

2016 IS

2015 S 10

2014 e 38

0 5 10 15 20 25 30 35 40

Fonte: Autor, 2024.

A quantidade de artigos publicados nos ultimos anos reflete uma crescente
tendéncia na busca do entendimento da fisiopatologia da asma e interesse quanto ao
desenvolvimento de métodos alternativos para o tratamento dessa doenga. O
aumento de publicagdes no periodo do lockdown pode ter sido um resultado da escrita
de trabalhos cientificos realizados anteriormente, visto que, nesse periodo, grande
parte dos cientistas nao realizavam experimentos. Esse impacto foi sentido anos apés
a pandemia da COVID-19, tendo em vista que a partir do ano de 2021, houve declinio

da quantidade de publicacodes.
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5.2 Modelos murinos utilizados em protocolos de indugao da asma na pesquisa
cientifica

Dentre os artigos selecionados, foi realizada uma classificagéo de acordo com
os diferentes tipos de roedores utilizados em modelos de indugdo da asma. A maior
parcela dos artigos abordou o uso de camundongos na pesquisa, indicando 83% (131
artigos) dos 157 artigos avaliados, seguido de 13% (20 artigos) com a utilizagéo de

ratos e, por fim, um percentual de 4% (6 artigos) para os cobaias (Grafico 2).

Grafico 2 - Percentual dos diferentes roedores em modelos de indugdo da asma empregados
em artigos publicados entre o periodo de 2014-2024 nas bases de dados PubMed, Science
Direct e Scopus.
Cobaia
4%

Rato
13%

Camudongo
83%

Fonte: Autor, 2024.

O uso de murinos é util na pesquisa de mecanismos subjacentes da asma,
devido a alta similaridade fisiopatoldgica dessa espécie com os humanos (Rydell-
Tormanen; Johnson. 2019). O uso expressivo de camundongos como modelo de asma
alérgica se da pelo fato destes possuirem ampla diversidade genética (Lourenco et
al., 2022). Dentre os 131 artigos selecionados com utilizagao de camundongos, houve
73% (96 artigos) das publicagdes utilizando a linhagem BALB/c, 25% (33 artigos) com
0 uso da linhagem C57BL6, e 2% (2 artigos) utilizando a linhagem Swiss webster
(Gréfico 3). Além disso, diferentes linhagens, como a BALB/c e A/J, possuem maior
propensao de desenvolvimento de respostas imunoldgicas Th2, tendo em vista que
essa linhagem é conhecida por apresentar produgao elevada de IgE, bem como
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resposta exacerbada a alérgenos, com maior susceptibilidade a respostas alérgicas
(Casaro et al., 2021).

Grafico 3 - Quantidade de artigos publicados utilizando diferentes linhagens de
camundongos na indug¢ao da asma.

Swiss webster
2%

Fonte: Autor, 2024.

Outras linhagens de camundongos, como o C57BL/6 sdo capazes de gerar
uma resposta imune equilibrada entre células do perfil Th1 e Th2 (Chudzik-Kozlowska
et al., 2020; Carroll et al., 2023). A diversidade genética permite a identificagdo de
genes especificos para a patogénese da asma (Woodrow et al., 2023). Essas
caracteristicas dos camundongos justificam sua crescente utilizagdo em estudos para
elucidar os mecanismos imunoloégicos e ndo imunoldgicos relacionados a
fisiopatologia da asma (Aun et al., 2017), além de possibilitar a investigagao de alvos
potenciais para o controle da inflamagéo alérgica (Namakanova et al., 2022).

A utilizacdo de ratos em pesquisa é preferida por suas caracteristicas
especificas, como a possibilidade de coletar maiores quantidades de amostras, uma
vez que sao animais maiores do que os camundongos. No entanto, linhagens de ratos
como o Fisher e Lewis nem sempre conseguem desenvolver uma resposta alérgica
com producdo de IgE (Camps-Bossacoma et al., 2015; Périz et al., 2020). Em
contrapartida, linhagens como Wistar e Sprague-Dawley demonstram a capacidade
de gerar uma resposta imunoldgica de perfil Th2, semelhante a asma alérgica

observada em humanos (Périz et al., 2020).
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Dentre os 20 artigos selecionados que utilizaram modelos de ratos na indugao
da asma, 50% (10 artigos) utilizaram a linhagem Sprague-dawley, seguido de 45% (9
artigos) que abordaram o uso da linhagem albina de ratos Wistar, e 5% (1 artigo)

utilizou a linhagem Brown rat nos protocolos de indugdo da asma com alérgenos.

Grafico 4 — Quantidade de artigos publicados utilizando diferentes linhagens de ratos na
indugcao da asma.
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Fonte: Autor, 2024.

Apesar de os cobaias terem sido o primeiro modelo animal de asma
experimental, seu uso tende a regredir com o decorrer dos anos em virtude da
escassez de modelos transgénicos, com poucas linhagens de cobaias para estudos
comparativos (Adner et al., 2020), além de possuir maior tempo de gestacdo quando
comparados a camundongos, variando entre 60 a 75 dias, e menor numero de prole
(Aun et al., 2017).

5.3 Determinagao dos alérgenos em modelos de indugao da asma

A partir dos artigos selecionados, foi realizada uma triagem para identificar os
diferentes tipos de metodologias empregadas para indugdo da asma alérgica em
modelos murinos. Dentre os artigos revisados, 90,2% (359 artigos) utilizaram a
ovalbumina (OVA) como agente indutor da asma, enquanto o lipopolissacaridio (LPS)
foi empregado em 4,5% (17 artigos). Ja o acaro da poeira doméstica (HDM) e o

material particulado (PM) foram utilizados em 2,0% dos estudos, cada (8 artigos).
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Além disso, 1% (5 artigos) empregaram o alérgeno de baratas (CKA) para a indugéo

da asma em murinos (Grafico 3).

Grafico 5 — Quantificagdo das metodologias empregadas na indu¢do da asma em modelos
murinos entre os anos de 2014-2024 publicados nas bases cientificas Pubmed, Science Direct
e Scopus, com base nos descritores no titulo, resumo ou palavras-chave.

Hbom FPM CKA
20, 2% 1%

LPS
5%
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90%

CKA = alérgeno da barata; HDM = acaro da poeira doméstica; LPS = lipopolissacaridio; OVA =
ovalbumina; PM = material particulado.

Fonte: Autor, 2024.

A maioria dos modelos de asma requer uma sensibilizacdo nao natural,
frequentemente envolvendo a administracdo de alérgenos por injecoes
intraperitoneais (i.p.), ou por vias inalatorias com aerossois, além de instilagdo nasal
ou intratraqueal (Aun et al., 2015; Starkl; Radhouani, 2024). Esses métodos de
sensibilizagcdo sdo necessarios para induzir caracteristicas associadas ao processo
inflamatério da asma, permitindo a investigacdao dos mecanismos subjacentes a
doenca e o desenvolvimento de novas alternativas terapéuticas para seu manejo
(Alladina et al., 2023; Woodrow et al., 2023).

Foi identificada uma ampla gama de artigos que utilizaram a OVA para o
desenvolvimento de modelos de asma alérgica, refletindo a alta frequéncia com que

este alérgeno € empregado em pesquisas cientificas. Isso se deve as suas
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propriedades imunogénicas bem caracterizadas (Wei et al., 2016) e a sua capacidade
de mimetizar repostas imunoldgicas semelhantes as observadas em humanos nos
modelos murinos (Liang et al., 2016; Wang et al., 2020). A versatilidade da OVA
contribui significativamente para o desenho experimental, consolidando esse alérgeno
como um padrao na pesquisa sobre a asma, ja que pode ser administrada por diversas
vias (Yu et al., 2024). Em contrapartida, a utilizacdo de outros alérgenos na pesquisa
cientifica para a asma é limitada, o que esta relacionado a escassa compreensao de
seus papéis na patogénese da asma e ao baixo reconhecimento na comunidade

cientifica.

5.3.1 Ovalbumina (OVA)

A ovalbumina é uma fosfoglicoproteina globular reconhecida como um
importante alérgeno (Savadkoohi et al., 2016), € a proteina mais abundante
encontrada na clara do ovo de galinha, sua estrutura primaria é composta por 385
residuos de aminoacidos (Jin; Zhu; Hou, 2023). Possui alta heterogeneidade, pois &
capaz de sofrer alteragdes conformacionais, podendo influenciar no potencial alérgico
(Lin et al., 2016), e vem sendo amplamente utilizada em modelos murinos
experimentais devido a sua capacidade de induzir respostas alérgicas semelhantes
as observadas em humanos, apesar de ndo estar associada a asma humana
(Woodrow et al., 2023).

Diversas metodologias sao utilizadas nos protocolos de sensibilizagao inicial,
com variagbes nas vias de administragdo, no uso de adjuvantes, no numero de
sensibilizacdes e de desafios realizados (Périz et al., 2020). Geralmente, esses
protocolos incluem uma fase de sensibilizagcdo realizada a partir de injecbes
intraperitoneais, seguida de desafios inalatérios ou intranasais (Han; Im, 2024).

A sensibilizacdo € um ponto crucial na indugdao da asma, e se refere a
exposicao inicial ao alérgeno, levando a uma resposta imune que culmina na produgao
de anticorpos IgE especificos, e prepara o sistema imunoldgico para desafios futuros.
Esse processo ocorre a partir da ativacao de células do perfil Th2, com liberagao de
citocinas pro-inflamatdrias, como a IL-4, IL-5 e IL-13 que aumentam o recrutamento
de macroéfagos, basdfilos e eosindfilos, e ligagdo da IgE a membrana das células, com
esse processo, tem-se a fase de sensibilizagdo da asma (Adakudugu et al., 2020). Em
seguida, na fase de desafio, os animais previamente sensibilizados sao reexpostos a

OVA, desencadeando um processo inflamatério cronico com lesao epitelial das vias
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aéreas acarretando aumento da hiper-responsividade, remodelamento e metaplasia
das células mucosas (Lewis et al., 2022) (Quadro 1).

A OVA é utilizada juntamente com o hidroxido de aluminio (Al(OH)3), um
adjuvante comumente utilizado em vacinas, sendo capaz de induzir uma resposta
imunoldgica mais rapida, potente e duradoura (Zubeldia et al., 2019). A OVA pode
ainda ser administrada em combinagdo com o lipopolissacaridio (LPS), levando a
inflamacao das vias aéreas e hiperresponssividade, ao estabelecer um modelo de
asma neutrofilica grave (Jia et al., 2017).

O mecanismo de agao desse adjuvante nao é bem descrito, no entanto, sabe-
se que o Al(OH)s aumenta a imunogenicidade e a concentragao de IgE e I1gG (Yanase
et al., 2014). Estudos indicam que o AI(OH)s possui baixa solubilidade no pH
fisiolégico, onde foi evidenciando uma baixa degradacdo desse adjuvante, exposto
pelo seu acumulo no tecido de aplicagdo, indicando que essa persisténcia pode
auxiliar na manutencgao da resposta imune em murinos (McDougall et al., 2016).

Algumas hipoteses sdo levantadas quanto ao mecanismo envolvido no
aumento da resposta imunologica com o Al(OH)s, podendo ser pela formacéo de
depdsitos de antigeno com aumento da produgao de anticorpos (Kooijman et al.,
2018), pela indugdo da inflamagdo com recrutamento e ativacdo de células
apresentadoras de antigeno que capturam o antigeno (Jensen-Jarolim, 2015), ou
ainda pela conversdo do antigeno soluvel em forma particulada, podendo ser
fagocitada por células apresentadoras de antigeno como macrofagos, células
dendriticas (CDs) e células B (He et al. 2015).

ApOs a sensibilizagdo dos animais, ha a liberagao de quimiocinas e citocinas
com recrutamento de células do sistema imunolégico inato, como mondcitos,
neutréfilos e eosindfilos que migram ao local de administracdo do alérgeno,
comumente na regiao intraperitoneal (Zeng; Zhou, 2023). Os mondcitos absorvem o
antigeno e migram para linfonodos de drenagem, onde se tornam células dendriticas
derivadas de mondécitos que expressam altos niveis do complexo principal de
histocompatibilidade de classe Il (MHCII) e do gene CD86, e induz a proliferagcéo de
células T especificas, que se diferenciam em Th2 (Kambayashi et al., 2014) (Quadro
1).

Além disso, os métodos de avaliacdo como a histomorfometria, imuno-

histoquimica e as medigdes respiratérias ou moleculares sdo amplamente utilizadas



59
Cavalcanti, A. M. T. Resultados e Discussdo

para investigar os mecanismos envolvidos na asma experimental (Mazarakis et al.,
2020).

Foi observado nos artigos selecionados que em amostras do BALF de
camundongos sensibilizados com OVA, houve um predominio de eosinofilos nos
pulmdes desses animais (Hu et al., 2020; Kong et al., 2024; Tang et al., 2024). O
mesmo foi observado em ratos (Cellat et al., 2021; Cheng et al., 2018) e em cobaias
(Muraki et al., 2014; Wang et al., 2020) (Quadro 1).

A inflamacao das vias aéreas é profundamente influenciada pela secrecéo de
citocinas inflamatérias, especialmente IL-4, IL-5, IL-9 e IL-13. Essas citocinas séo
fundamentais para a propagacéao da resposta inflamatdria, resultando em eosinofilia e
hiperprodugédo de muco (Yu et al., 2024). A avaliagdo dessas citocinas pode ser
realizada por meio do ensaio de imunoabsor¢ao enzimatica (ELISA), que permite a
deteccéao e quantificagdo de antigenos ou anticorpos especificos (Borges et al., 2022).

Resultados indicaram que modelos experimentais com camundongos
sensibilizados com OVA, foi observado aumento dos niveis dessas citocinas apés a
exposicao do alérgeno (Hu et al., 2020; Yu et al., 2024). Além disso, a elevagéo de
outros mediadores inflamatérios como o fator de necrose tumoral a (TNF-a) e IL-17
(Gong et al., 2021).

Além disso, em ratos submetidos a sensibilizagao com OVA, foi observado um
aumento acentuado das citocinas inflamatorias IL-4, IL-5, IL-13 e IFN-y (Cao et al,,
2023; Cheng et al. 2018; Ma et al., 2014; Shin et al., 2014). Houve ainda aumento de
IL-17, que sao secretadas por células do perfil Th17, e que podem reduzir a liberagao
de fatores anti-inflamatérios como a IL-35 e a IL-10, uma interleucina
imunomoduladora (Huo et al., 2021). Fatos semelhantes foram descritos em modelos
com cobaias, evidenciando a implementacdo do processo inflamatério mediado pela
asma (Shi et al., 2019; Wang et al., 2020).

Outro critério a se avaliar no entendimento da fisiopatologia da asma se refere
a investigagdo de mecanismos subjacentes a hiper-responsividade das vias aéreas,
podendo se manifestar de formas distintas a depender do tempo de exposicdo do
alérgeno (Jung et al., 2021). A sensibilizacdo de murinos com OVA, frente a uma
estimulagdo com metacolina (MCh), um agonista muscarinico utilizado na indu¢ao da
hiper-responsividade no musculo liso brénquico, através da ativacao de receptores

muscarinicos M3 pode causar broncoconstricdo (Mendez-Enriquez et al., 2021).
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Este agonista € amplamente utilizado na clinica para o diagnostico da asma,
devido a alta sensibilidade em pacientes com fungcao pulmonar preservada (Nair et al.,
2017; Bougard et al., 2020), e para avaliar a eficacia de tratamento (Seo et al., 2018).
No entanto, apesar da MCh provocar hiper-responsividade, o grau da resposta nao &
semelhante ao da OVA, isso se da em razdo a MCh induzir um estimulo inespecifico
para avaliar a presencga da hiper-responsividade, sendo evidenciado a indugéo de
alteracdes imediatas nas vias aéreas com a limitagao do fluxo de ar em camundongos
sensibilizados com OVA quando comparado ao desafio com MCh (Jung et al., 2021)
(Quadro 1).

Resultados expostos indicaram que a avaliagéo da hiper-responsividade das
vias aéreas em camundongos sensibilizados com OVA e expostos a MCh
apresentaram hiper-responsividade das vias aéreas apés a inalagdo com OVA (Chua
et al., 2016; Wang et al., 2020; Fang et al., 2021), assim como em modelos com ratos
(Gao et al., 2021; Zhou et al., 2021) e cobaias asmaticos (Wang et al., 2020).

Camundongos sensibilizados com OVA e submetidos a pletismografia
invasiva apresentaram maior resisténcia das vias aéreas (Chua et al., 2016; Cui et al.,
2019; Pang et al., 2019), assim como em ratos (Wang et al., 2022; Gao et al., 2023).
Cobaias sensibilizados com OVA submetidos a técnica de pletismografia de corpo
inteiro apresentaram alta responsividade (Alvarez-Santos et al., 2015), por possuirem
resposta imunolégica mais rapida, semelhante ao observado por Muraki et al. (2014)
em um modelo sensibilizado com OVA e exposto a acetilcolina (ACh) (Quadro 1).

Estudos com traqueia de ratos previamente sensibilizados com OVA
apresentou aumento da reatividade contratil em modelo in vitro pds exposigdao a OVA
na reagao de Schultz-Dale, e aumento da eficacia contratil apés concentracdes
cumulativa de CCh (Ferreira et al., 2022). O mesmo foi evidenciado em traqueias de
cobaias sensibilizadas com OVA, de modo que houve aumento da reatividade e
eficacia contratil, mas sem alterar a poténcia (Vasconcelos et al., 2019; 2020).

O lipopolissacaridio (LPS) € uma endotoxina derivada da membrana externa
de bactérias gram-negativas, também encontrado na atmosfera, onde ha a presenga
dessas bactérias no ambiente (Rasuli et al., 2022). O LPS é constituido de uma fragao
lipidica, chamada de lipidio A, responsavel pela ancoragem a membrana. A fragao
lipidica A é ligada a um oligossacarideo central que o conecta a terceira fragcéo, o

antigeno O (Figura 7).
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Figura 7 — Estrutura quimica do lipopolissacaridio (LPS).
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Fonte: Black; Black, 2021.

Desempenha um papel significativo em modelos murinos devido a sua
capacidade de induzir respostas inflamatérias e de modular a resposta imune (Lowe
etal., 2015), provocando inflamagao aguda das vias aéreas com infiltragao neutrofilica
e eosinofilica (Wang et al., 2017), bem como de induzir a hiper-responsividade das
vias aéreas em individuos asmaticos (Hadjigol et al., 2020).

Nos artigos selecionados, foi observado que a combinagéo de LPS com outros
alérgenos pode induzir a polarizagao de outros linfocitos T auxiliares (Jonckheere et
al., 2022), devido a sua agao como agonista do receptor toll-like (TLR4), ativando
neutréfilos por meio de uma resposta mediada pelos perfis Th1 e Th17 (Ding et al.,
2018). As células Th17, um subconjunto de células T auxiliares efetoras, e a IL-17A,
estdo associadas a inflamacgao neutrofilica em casos graves de asma (Zhao et al.,
2017) (Quadro 1).

O uso de camundongos, especialmente a linhagem BALB/c, € comumente
utilizada na indugao da inflamacéo neutrofilica, por exibirem uniformidade genética
similar a asma humana, com respostas imunes caracterizadas, sendo ideais na
elucidacdo de mecanismos da asma neutrofilica (Dong et al., 2024).

Andlises histologicas de animais expostos ao LPS e OVA concomitantemente
apresentaram aumento significativo da inflamacéo pulmonar com infiltracdo de
eosindfilos e neutrdfilos, onde quanto maior a dose de LPS, maior o infiltrado
neutrofilico proximo aos espacos peribronquiolares e alveolares dos bronquiolos
(Kumari et al., 2015; Zhao et al., 2017), bem como areas de edema na mucosa
brénquica, hiperplasia das células caliciformes e necrose de células epiteliais (Jia et
al.,, 2017). Enquanto a quantificagcdo de células inflamatérias no BALF mostrou
aumento significante de neutrdfilos, eosindfilos e macréfagos (He et al., 2019; Lee et
al., 2020) (Quadro 1).
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Azman et al. (2021) relataram reducgao significativa da ventilagdo pulmonar
em camundongos sensibilizados com a combinagdo de OVA e LPS. Ja em
camundongos sensibilizados com LPS e desafiados com MCh, também houve
diminuicdo do volume corrente e aumento da frequéncia respiratéria (Lee et al., 2020),
indicando aumento da responsividade causada pela inflamagdo com consequente
perda da fungéo pulmonar (Thakur et al., 2019; Wu et al., 2022).

Diversas citocinas desempenham papel na imunologia da asma. Qiao et al.
(2023) descreveram aumento da expressao dos niveis de IL-36 nos camundongos
sensibilizados com LPS e OVA, onde esses alérgenos sao responsaveis por ativar
vias da proteina cinase ativada por mitégeno (MAPK), além de regular a proliferagao,
diferenciacdo e inflamagao de citocinas (Kim; Choi, 2015). Ademais, foi observado
aumento dos niveis de IL-4, IL-5 e IL-13 em camundongos sensibilizados com LPS e
OVA (Zhou et al., 2018; Gao et al., 2021; Wu et al., 2022), bem como aumento de IgE,
um importante marcador para a inflamacdo, uma vez que apods se ligarem a
mastoécitos, levam a degranulagdo e liberagdo de mediadores inflamatérios e
contrateis (He et al., 2019; Wu et al., 2022) (Quadro 1).

5.3.2 Acaro da poeira doméstica

A sensibilizagdo com o acaro da poeira doméstica (HDM) é uma das causas
mais comuns de alergias respiratdrias. Esses acaros sao pertencentes a um grupo de
artrépodes que sobrevivem em locais internos umidos (Khweek et al., 2020), e vem
sendo considerada uma das principais causas para os casos de asma em criancas,
adolescentes e adultos (Cahill et al., 2022). Os sintomas da asma tendem a se
relacionar aos niveis de exposicao a esse alérgeno, podendo desencadear aumento
da reatividade brénquica (Zuani; Custovic, 2020).

Dentre os artigos selecionados, duas espécies de acaros da poeira doméstica
foram descritas como principais alérgenos na indug¢do da asma em pacientes
alérgicos, dentre elas, a D. pteronyssinus (Der p) e Dermatophagoides farinae (Der f)
(Figura 8), que sao responsaveis por até 90% das alergias aos HDMs (Bordas-Le
Floch et al., 2017). Esses alérgenos sdo encontrados em colchdes, travesseiros e
roupas de cama, vivendo de uma dieta de escamas de pele e biodetritos acumulados

na poeira doméstica (Boor et al., 2017) (Quadro 1).
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Figura 8 - Espécies dos acaros Dermatophagoides pteronyssinus (A) e
Dermatophagoides farinae (B).

100 pm

Fonte: Adaptado de Eytun et al., (2018).

O potencial alergénico dos HDM se da por proteinas imunoestimuladoras
produzidas no seu trato gastrintestinal e excretado nas fezes desses acaros, que
possuem atividade de protease e podem estimular a produgédo de IgE em humanos
apos exposigao (Yasuda et al., 2020). Como componentes das fezes dos acaros,
incluem-se o LPS, B-glucano e quitina (Jacquet, 2021), que por serem particulas
grandes, sua deteccao se da apenas com condi¢des de perturbagao dos reservatorios
de poeira, levando a aerossolizagdo e subsequente inalacdo do alérgeno (Zuani;
Custovic, 2020).

A atividade proteolitica do HDM faz com que o epitélio das vias aéreas se
torne altamente permeavel, onde os genes Der p e Der f clivam juncdes epiteliais,
facilitando o transporte de alérgenos através do epitélio. Esse mecanismo é crucial no
desenvolvimento da predominancia de células Th2, que esta relacionada ao aumento
de reagdes alérgicas (Luo et al., 2022). Estudos in vitro relataram o mecanismo de
sensibilizagdo dos HDM, incluindo a modulagao de células imunes e recrutamento de
células pro-inflamatérias, como o TNF- a, IL-13 e IL-6 (Li et al., 2019) (Quadro 1).

Resultados indicaram que na quantificacdo de células presentes no BALF de
camundongos sensibilizados com esse alérgeno houve aumento significativo na
contagem de linfocitos, leucdcitos, neutréfilos, mondcitos e eosindfilos (Ajayi et al.,
2022), o que também foi observado em modelos de ratos (Zhai et al., 2023).

Camundongos sensibilizados com os alérgenos do HDM apresentam
aumento significativo de IL-4, IL5 e IL-13 quando comparados a animais controle (Tan
et al., 2018), além da producgéo de IL-17A. Nesse mesmo estudo, na avaliagdo de
possiveis mecanismos de acao, foi observado que a inflamagao causada por HDM
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esta relacionada com a ativacdo do transdutor de sinal e ativador da transcricdo 3
(STAT3), que leva a ativagao de citocinas pulmonares de perfil Th2 e Th17 (Gavino et
al., 2016) (Quadro 1).

Devido ao alto teor inflamatério da indugéo da asma com HDM, camundongos
sensibilizados apresentaram hiper-responsividade quando desafiados com
metacolina (Jia et al., 2017; Tan et al., 2018). Em consonancia com esses resultados,
achados em cortes histoldégicos do pulm&o de animais sensibilizados com HDM foi
evidenciada a inflamagao com presenga de edema e hemorragia, com espessamento
da musculatura lisa das vias aéreas (Ajayi et al., 2022) e aumento da producgao e
secrecao de muco, a partir da hiperplasia das células caliciformes (Duechs et al., 2014;
Zhao et al., 2021) (Quadro 1).

O uso de camundongos em modelos de asma com HDM permite a criagéo de
varios fenotipos da asma ao estabelecer um modelo de asma aguda, asma crénica e
um modelo de remodelamento, dependendo da quantidade de alérgeno e o tempo de
exposicao a este, permitindo avaliar um modelo de inflamagao eosinofilica, hiper-
responsividade e remodelamento tecidual das vias aéreas respectivamente (Yasuda
et al., 2020).

5.3.3 Material particulado

O material particulado (PM), um dos componentes majoritarios da poluigdo do
ar, composto por uma mistura de particulas sdlidas e liquidas suspensas no ar, que
causam efeitos negativos para a saude humana, ocasionando doencgas respiratorias
e cardiovasculares (Stone et al., 2017; Piao et al., 2023). Essas particulas estao
presentes no ambiente a partir da emissdo de gases por veiculos, industrias e pela
incineragao de residuos e materiais geoldgicos (Chen et al., 2022).

Os PMs apresentam menos de 2,5 um e, com esse didmetro, essas particulas
finas, quando inaladas, podem penetrar na regiao de trocas gasosas dos bronquiolos,
além de atravessar as barreiras epitelial e subepitelial dos pulmbdes, estando
associada a varios processos inflamatorios (Sturm, 2020). A indugdo da asma decorre
da deposicado de um liquido em forma de suspensao nas vias aéreas composto pelo
material particulado suspenso em solugio salina, essa deposi¢ao no epitélio das vias
aéreas busca simular as condi¢gdes que acontecem usualmente com humanos (Zhao
etal., 2018).
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Nos artigos selecionados, foi observado que apds andlise das amostras
obtidas por meio do BALF de camundongos expostos a particulas de PM, revelou-se
um aumento significante na contagem de macrofagos, eosindfilos e neutrofilos (Pang
et al., 2019). Os macréfagos tem um papel crucial no sistema imune inato, atuando na
defesa contra patdégenos nos alvéolos pulmonares, e reduzindo estimulos
inflamatdrios ao remover particulas, como o PM, através da fagocitose (Li et al., 2022).
A partir da inalagdo das pequenas particulas, os macrofagos se tornam pigmentados
pelo PM, podendo induzir estresse oxidativo e inflamacéo local, liberando mediadores
inflamatorios como IL-1P3, IL-6, IL-8 e IL-13 (Liu et al., 2017; He et al., 2019). Além
disso, ocorre a liberacao de TNF-a devido a ativacdo da MAPK (Sanjeewa et al., 2019)
(Quadro 1).

Para avaliagdo da hiper-responsividade das vias aéreas de camundongos
BALB/c sensibilizados com PM, foi realizado a técnica de pletismografia invasiva
nesses trabalhos, seguido da administracao de doses crescentes de ACh, um agonista
de receptores muscarinicos Ms. A resisténcia das vias aéreas apresentou aumento
acentuado (Liu et al., 2017; Pang et al., 2019), indicando o grau de broncoconstricao
que pode ser causado por esse material (Quadro 1).

Kim et al. (2024) constataram o espessamento da musculatura lisa bronquica
em camundongos expostos ao PM, com hiperplasia evidente de células caliciformes
em comparagao aos animais que nao passaram por esse tipo de exposi¢cado. Dessa
forma, evidenciando a essencialidade desse modelo para a compreensao dos
mecanismos da asma, visto que esse alérgeno é nocivo aos humanos, e € um dos
maiores responsaveis casos de inducdo e agravamento da asma (Manners et al.,
2014) (Quadro 1).

5.3.4 Alérgenos de baratas

Os alérgenos de baratas (CKA) sdo um fator significante na patogénese da
asma, especialmente em ambientes urbanos. Esses alérgenos encontrados nas
espécies Blatella germanica e Periplaneta americana (Figura 9), atuam como potentes
indutores de respostas alérgicas (Pomés; Schal, 2020), de modo a contribuir no
desenvolvimento e agravamento da asma em individuos sensibilizados (Do et al.,
2016).
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Figura 9 — Espécies de baratas que contém o alérgeno CKA.

Blatella germéanica Blatella americana

Fonte: Adaptado de Engeprag (2024).

Os alérgenos associados as baratas Blatella germénica (Bla g 1 e 2) e
Periplaneta americana (Per a 1 e 3) sao especificos de cada espécie, podendo ser
encontrados na saliva, fezes e exoesqueleto desses insetos. A exposicdo a esses
alérgenos esta fortemente ligada ao aumento da sensibilizagao e ao desenvolvimento
da asma em criangas (Do et al., 2016), por estimular a sintese de IgE, resultando em
casos de asma grave. Devido a sua ampla variedade, esses alérgenos podem
desencadear diversas reacbes alérgicas, tornando-se um foco importante no
diagndstico e tratamento da asma (Pomés et al., 2017).

Resultados indicaram que a administragdo do CKA em camundongos levou
ao aumento da inflamacao das vias aéreas com infiltragcao eosinofilica, neutrofilica e
de macréfagos (Duechs et al., 2014; Park et al., 2014). Além de induzir respostas Th1
e Th2, com expressao de citocinas de ambos os perfis, com destaque para IL-4, IL-5,
IL-9, IL-33 (Park et al., 2014; 2016; Yu et al., 2018) (Quadro 1).

Além disso, a piora da funcdo pulmonar foi descrita a partir da pletismografia
em camundongos desafiados com metacolina, indicando aumento da hiper-
responsividade brénquica (Duechs et al., 2014; Park et al., 2014). Além disso, também
foi observado infiltrado eosinofilico e alteracbes morfoldgicas, como hiperplasia de
células caliciformes e espessamento da musculatura lisa das vias aéreas nos
camundongos sensibilizados com CKA (Park et al., 2016; Yu et al., 2018) (Quadro 1).
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Quadro 1 - Modelos murinos de asma induzida por alérgenos e suas principais caracteristicas fisiopatoldgicas.

Tipos de alérgenos na indugao da asma

Caracteristicas fisiopatolégicas do modelo Referéncias

Jietal., 2014; Chung et
al., 2015; Lian et al.,
2015; Yao et al., 2015;
Gurusamy et al., 2016;
Wei et al., 2016; Bui et
al., 2017; El-Hashim et
al., 2017; Qu et al., 2017;
Ye et al., 2017; Venturini
et al., 2017; Zhuang et

al., 2018; Adi et al., 2019;
Fernandes et al., 2019;
Ma et al., 2019; Fu et al.,
2020; Hu et al., 2020;
Lee et al., 2020; Shin et
al., 2020; Chen et al.,
2021; Hou et al., 2021;

Ovalbumina +

. Aumento da contagem de eosinofilos nas regides
Hidréxido de Camundongos

o peribronquiolares e perialveolares
aluminio

Wakayama et al., 2021;

Wei: Chen; He, 2021;

(continua)
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(continuacao)

Matsuda et al., 2022;
Wang et al., 2022; Chen
et al., 2023; Muhamad et
al., 2023; Su et al., 2023;
Fu et al., 2024; Lee et al.,

2024; Tang et al., 2024.

Aumento da producéao de IL-4, IL-5, IL-9, IL-13, TNF-a
e lL-17

Wang et al., 2014, Jaffer
et al., 2015; Zhang et al.,
2015; Lee et al., 2016;
Akkog et al., 2018; Qiao
et al. 2018; Sun et al.,
2018; Hanashiro et al.,
2019; Liu et al., 2020;
Gong et al., 2021;
Lertnimitphun et al.,
2021; Zhi et al., 2021;
Kim et al., 2023; Peters;
Ernst; Peters, 2023; Jung
etal., 2024; Yu et al.,
2024.

(continua)
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(continuacao)
Chua et al., 2016; Bao et
al., 2017; Li et al., 2017;
Ye et al., 2017; Zhang et
al., 2017; Kim et al.,
2018; Miyake et al.,
2018; Cai et al., 2019;
Shin et al., 2019; Park et
Aumento da hiper-responsividade apos exposicao a al., 2020; Wang et al.,
metacolina 2020; Fang et al., 2021;
Jung et al., 2021; Yi et
al., 2021; Kim et al.,
2022; Ike et al., 2023;
Zhang et al., 2023;
Hamu-Tanoue; Takagi;
Taketomi, 2024; Wang et
al., 2024.
Wu; Yang; Wang, 2017;
Zhu et al., 2018; Wang et
al., 2019; Li et al., 2020;
Chan et al., 2022; Yao et
al., 2022.

Aumento da hiper-responsividade apos exposi¢cao a

acetilcolina

(continua)
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(continuacao)
Liu et al., 2014; Lim et
al., 2015; Park et al.,
205; Wei et al., 2015;
Chua et al., 2016; Wu et
al., 2016; Sjoberg et al.,
2017; Cui et al., 2019;
Flanagan et al., 2019;
Pang et al., 2019; Wang
et al., 2019; Zhang et al.,
2021.

Yun et al., 2014; Bui et
al., 2017; Liang et al.,
2017; Hu et al., 2017; Ye
et al., 2017; Zhang et al.,
2020; Yan et al.,2020;
Chen et al., 2021; Ou et
al., 2021; Xue et al.,
2021; Jie et al. 2023;
Kang et al., 2023; Zhen
et al., 2023; Caputo et
al., 2024; Lee et al.,

Aumento da resisténcia das vias aéreas

Espessamento da cama muscular da mucosa

brénquica

(continua)
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(continuacéo)
2024; Wu et al., 2024;
Yuan; Sun et al., 2024.
Liou et al., 2018; Lee et
al., 2019; Yang et al.,
2019; Kim et al., 2020;
Hiperplasia de células caliciformes nos bronquios Xue et al., 2020; Gao;
Gao, 2021; Huang; Wu;
Dong, 2021; Tong et al.,
2024.

Gao et al., 2016; Shen et
al., 2016; Sung et al., 2017,
Chen et al., 2019; Yuan et
al., 2019; Lee et al., 2020;
Yang et al., 2022; Wu et al.,
2022; Wang et al., 2024.

Liang et al., 2017; Cheng
Aumento da contagem de eosindfilos nos pulmdes et al., 2018; Liu; Shang,
2020; Cellat et al., 2021.
Cheng et al. 2018; Ma et
Aumento da producéao de IL-4, IL-5, IL-13 e IFN-y al., 2014; Shin et al.,
2014; Guo et al.,2021;

Aumento da expresséao de IgE

Ratos

(continua)
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(continuacéo)

Huo et al., 2021; Cao et
al., 2023.

Aumento da hiper-responsividade apos exposi¢cao a

Gao et al., 2021; Zhou et
al., 2021; Gao et al.,

metacolina
2022.
Wang et al., 2022; Gao
Aumento da resisténcia das vias aéreas
et al., 2023.

Aumento da reatividade e eficacia contratil

Ferreira et al., 2022.

Espessamento da cama muscular da mucosa

brénquica

Abdelaziz; EImahdy;
Suddek, 2018; He et al.,
2018; Ge et al.,, 2019; Yan
et al., 2020; Liu et al., 2023.

Aumento da expresséao de IgE

Li et al., 2014; Bolandi;
Abdolmaleki;
Assarehzadegan, 2021;
Gao et al., 2021.

Cobaias

Aumento da contagem de eosindfilos nos pulmbes

Muraki et al., 2014; Wang
et al., 2020.

Aumento da producéao de IL-4, IL-5, IL-13

Shi et al., 2019; Wang et
al., 2020; Alvares-Santos
et al., 2022.

(continua)
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(continuacéo)

Aumento da hiper-responsividade apos exposicéo a

metacolina

Zheng et al., 2019; Wang
et al., 2020.

Aumento da resisténcia das vias aéreas

Alvarez-Santos et al.,

2015; Muraki et al., 2021.

Aumento da reatividade e eficacia contratil

Vasconcelos et al., 2019;

2020.

Inducéo da polarizagéo de linfécitos T auxiliares para o

perfil Th1 e Th17

Jonckheere et al., 2022.

Aumento da infiltragao eosinofilica e neutrofilica no

Kumari et al., 2015; Zhao
etal., 2017; Gao et al.,

pulmao
2020.
Ovalbumina + Hiperplasia de células caliciformes, com regides de Jia et al., 2017; Xiao et
_ . . Camundongos
Lipopolissacaridio edema na mucosa al., 2022.
Reducao da ventilacdo pulmonar com diminuigao do
. . . Lee et al., 2020.
volume corrente e aumento da frequéncia respiratoria
Zhou et al., 2018; Gao et
Aumento dos niveis de IL-4, IL-5, IL-13 e IgE al., 2021; Wu et al.,
2022.
Acaro da poeira Rat Aumento da contagem de linfécitos, leucdcitos, Ajayi et al., 2022; Zhai et
atos
domeéstica neutroéfilos, mondcitos e eosindéfilos no BALF al., 2023.

(continua)
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(continuacéo)

Aumento da produgéao de lI-4, IL-5, IL-13 e IL-17A

Gavino et al., 2016; Tan

et al., 2018;
Aumento da hiper-responsividade apos desafio com Jia et al., 2017; Tan et
metacolina al., 2018.
Camundongos
Aumento da expresséao de IgE Tan et al., 2018.
Inflamacao nos pulmdes, com pontos de edema, o
_ . Zhao et al., 2021; Ajayi et
hemorragia, espessamento da musculatura lisa das | 2022
al., :
vias aéreas e hiperplasia de células caliciformes
o Pang et al., 2019; Woo et
Aumento na contagem de macréfagos, eosindfilos e .
al., 2021; Kim et al.,
neutroéfilos
2023.
Material Aumento da resisténcia pulmonar apos desafio com Liu et al., 2017; Pang et
particulado Camundongos metacolina, com broncoconstrigéo evidenciada al., 2019.
Aumento da expresséao de IgE Zhao et al., 2023.
Hiperplasia de células caliciformes Kim et al., 2024.
Aumento da contagem de eosindfilos, neutréfilos e
) Park et al., 2014.
Alérgeno de macréfagos
Camundongos
barata Park et al., 2014; 2016;

Aumento da produgéo de IL-4, IL-5, IL-9 e IL-33

Yu et al., 2018.

(continua)
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(continuacao)

Aumento da expresséao de IgE Park et al., 2016.

Hiperplasia de células caliciformes e espessamento da | Park et al., 2014; Park et

musculatura das vias aéreas al., 2016; Yu et al., 2018.

Fonte: Autor, 2024.
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Tendo em vista o exposto, essa revisdo integrativa mostra que existem
diferentes tipos de alérgenos, como a ovalbumina, o acaro da poeira doméstica, o
material particulado e o alérgeno da barata, que s&o capazes de induzir uma resposta
asmatica em murinos de modo semelhante a observada em humanos.

Além disso, esses modelos fornecem uma base sdlida para investigar novas
terapias ao possibilitar o avango no controle e manejo da asma em diferentes
contextos ambientais e clinicos, além de elucidar a fisiopatologia da asma, a partir da
hiper-responsividade e inflamagao das vias aéreas. Também, se apresentam como
modelos adaptaveis na investigacao dos diferentes fenétipos de asma e auxiliam no

desenvolvimento de novos protocolos experimentais.
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