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RESUMO 
 

A avaliação da voz é multidimensional por abordar diversos aspectos, como os 

principais métodos de avaliação: o julgamento perceptivo-auditivo (JPA), a avaliação 

acústica, a avaliação laringológica e a autoavaliação. Esta última contempla a 

perspectiva do paciente e proporciona informações da vivência sobre sintomas, 

impactos na qualidade de vida e aspectos cognitivos comportamentais relativos à voz. 

O estágio de prontidão para terapia de voz surge nesse contexto e reflete a disposição 

do paciente em adotar mudanças que contribuam para o seu comportamento vocal. 

Identificar o estágio do indivíduo permite uma intervenção mais direcionada e eficaz. 

Ademais, a utilização de modelos de aprendizado de máquina (AM) para a predição 

dos estágios de prontidão representa uma inovação para agregar a tomada de decisão 

clínica na área de avaliação e tratamento de disfonia. Desta forma, o objetivo desta 

pesquisa é avaliar e comparar o desempenho de modelos de AM para predição do 

estágio de prontidão para terapia fonoaudiológica de voz. Trata-se de um estudo 

observacional, analítico e quantitativo, de delineamento transversal, conduzido a partir 

da análise retrospectiva de dados clínicos, com aplicação de modelos preditivos de 

AM para predição do estágio de prontidão. As fontes de dados para alimentar os 

modelos foram obtidas da avaliação fonoaudiológica e da avaliação laringológica 

iniciais de pacientes, de ambos os sexos, que buscam atendimento no Laboratório 

Integrado de Estudos da Voz, da Universidade Federal da Paraíba. Foram extraídos 

os dados do Protocolo de Anamnese e Avaliação Vocal e a Escala University of Rhode 

Island Change Assessment - Voice Validated, do Índice de Desvantagem Vocal, das 

Escalas de Qualidade de Vida em Voz, Sintomas Vocais e de Desconforto do Trato 

Vocal e dos dados do JPA, da acústica e do diagnóstico laríngeo. A amostra foi 

composta por 236 indivíduos, divididos em dois grupos dos estágios de prontidão: 

contemplação e manutenção. Foi realizada a análise estatística descritiva das 

variáveis quantitativas e qualitativas e foram testados algoritmos de AM 

supervisionado: regressão logística, k-nearest neighbors (KNN), naive bayes, árvore 

de decisão e floresta aleatória. O desempenho dos modelos foi avaliado por meio de 

acurácia, sensibilidade, especificidade, entre outras medidas. Os resultados indicam 

que os modelos KNN e Floresta Aleatória apresentaram melhor desempenho nos 

dados da anamnese. Para os dados do JPA, diagnóstico laríngeo e classificação da 

disfonia, os modelos Regressão Logística e Naive Bayes demonstraram desempenho 

balanceado entre sensibilidade e especificidade. Nos dados dos instrumentos de 

autoavaliação e das medidas acústicas, os modelos apresentaram desempenho 

inferior. Nos modelos com dados combinados das diferentes dimensões da avaliação 

vocal, o KNN se destacou, apresentando alta acurácia. Embora ainda apresentem 

limitações em seu poder preditivo, esses achados sugerem que os modelos de AM 

possuem potencial para contribuir na identificação do estágio de prontidão, 

possibilitando estratégias de intervenção mais direcionadas na terapia de voz.  

 

Descritores: Modelo Transteórico; Voz; Disfonia; Fonoaudiologia; Aprendizado de 

Máquina. 



 

ABSTRACT 
 
Voice assessment is multidimensional as it addresses various aspects, including the 
main evaluation methods: perceptual-auditory judgment (PAJ), acoustic assessment, 
laryngological evaluation, and self-assessment. The latter encompasses the patient’s 
perspective and provides information on the experience of symptoms, impacts on 
quality of life, and cognitive-behavioral aspects related to voice. The stage of readiness 
for voice therapy emerges in this context and reflects the patient’s willingness to adopt 
changes that contribute to their vocal behavior. Identifying the individual’s stage allows 
for a more targeted and effective intervention. Moreover, the use of machine learning 
(ML) models to predict stages of readiness represents an innovation to support clinical 
decision-making in the evaluation and treatment of dysphonia. The objective of this 
research is to evaluate and compare the performance of ML models for predicting the 
stage of readiness for speech-language voice therapy. This is an observational, 
analytical, and quantitative study with a cross-sectional design, conducted through the 
retrospective analysis of clinical data, applying predictive ML models to predict the 
stage of readiness. The data sources for the models were obtained from the initial 
speech-language and laryngological assessments of patients of both sexes seeking 
care at the Integrated Voice Studies Laboratory of the Federal University of Paraíba. 
Data were extracted from the Anamnesis and Vocal Assessment Protocol, the 
University of Rhode Island Change Assessment – Voice Validated Scale, the Vocal 
Handicap Index, the Voice-Related Quality of Life Scales, Vocal Symptoms and Vocal 
Tract Discomfort Scales, and from PAJ, acoustic measures, and laryngological 
diagnosis. The sample comprised 236 individuals, divided into two readiness stage 
groups: contemplation and maintenance. Descriptive statistical analysis was 
performed for quantitative and qualitative variables, and supervised ML algorithms 
were tested, including logistic regression, k-nearest neighbors (KNN), naive Bayes, 
decision tree, and random forest. Model performance was evaluated through accuracy, 
sensitivity, specificity, among other measures. Results indicate that the KNN and 
Random Forest models performed best with the anamnesis data. For PAJ data, 
laryngological diagnosis, and dysphonia classification, the Logistic Regression and 
Naive Bayes models demonstrated balanced performance between sensitivity and 
specificity. For self-assessment instruments and acoustic measures, the models 
showed lower performance. In models combining data from different dimensions of 
voice assessment, KNN stood out, presenting high accuracy. Although still limited in 
predictive power, these findings suggest that ML models have the potential to 
contribute to identifying the stage of readiness, enabling more targeted intervention 
strategies in voice therapy. 
 
Keywords: Transtheoretical Model; Voice; Dysphonia; Speech Therapy; Machine 
Learning. 
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1. INTRODUÇÃO 
 

A voz humana é um instrumento complexo e essencial na comunicação 

interpessoal. Desempenha um papel crucial na expressão de emoções, intenções e 

informações. A qualidade da voz pode ser afetada por diversos fatores, que resulta 

em distúrbios vocais, que podem impactar significativamente a vida social, profissional 

e emocional dos indivíduos (Behlau, 2001). A disfonia é um distúrbio comumente 

observado e de origens variadas, entre elas abuso vocal, lesões nas pregas vocais ou 

condições médicas subjacentes; seus sintomas, como rouquidão, esforço ao falar e 

perda de voz, podem comprometer a saúde vocal, o bem-estar emocional e a vida 

social do indivíduo (Constantini; Ribeiro; Behlau, 2022).  

A avaliação da voz é multidimensional por abordar diversos aspectos, como o 

julgamento perceptivo-auditivo (JPA) conduzido por profissionais treinados, que avalia 

a qualidade vocal do paciente (Patel et al., 2018; Roy et al., 2013; Carding et al., 2009; 

Dejonckere et al., 2001). Dentre as demais dimensões que estão focadas na 

perspectiva do clínico, pode-se destacar a avaliação instrumental, como a avaliação 

acústica qualitativa e quantitativa para extração de medidas, e a avaliação 

laringológica que oferece uma visualização direta das estruturas da laringe para trazer 

informações de possível alterações funcionais e/ou estruturais (Payten et al., 2022; 

Almeida et al., 2021; Lopes et al., 2021).  

Somado às anteriores, elenca-se a dimensão que contempla a perspectiva do 

paciente, quem vivencia o problema de voz, a autoavaliação. Os instrumentos de 

autoavaliação são respondidos pelo paciente e proporcionam informações da vivência 

sobre sintomas, impactos na qualidade de vida e aspectos cognitivos 

comportamentais relativos à voz (Behlau; Madazio; Yamasaki, 2023; Behlau et al., 

2022; Almeida et al., 2024; Almeida et al., 2021). Deste modo, essa abordagem 

multidimensional auxilia a compreender profundamente o comportamento vocal, além 

de permitir diagnósticos precisos para um planejamento de tratamento eficaz e 

personalizado. 

O estágio de prontidão para terapia de voz surge dentro desse contexto de 

aspectos cognitivos comportamentais a serem avaliados. Emerge como um conceito 

central, que reflete a disposição do paciente em adotar mudanças que contribuam 

para o seu comportamento vocal. O estágio de prontidão pode ser explicado com base 

no Modelo Transteórico (MTT) (Prochaska, DiClemente, 1982). É uma teoria 
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amplamente utilizada para compreender como as pessoas mudam comportamentos 

inadequados, que inclui aqueles relacionados à saúde. O modelo propõe que a 

mudança de comportamento ocorra em estágios sequenciais, cada um representa um 

nível diferente de prontidão para mudança comportamental. Os estágios descritos no 

MTT são pré-contemplação, contemplação, preparação, ação e manutenção 

(Prochaska, DiClemente, 1982). 

É essencial promover mudanças comportamentais na terapia de voz, pois as 

disfonias podem ter origem ou serem agravadas por comportamentos vocais 

inadequados, assim é necessária a participação ativa do paciente para obter 

resultados eficazes, pois a prontidão não se limita apenas ao seguimento das 

orientações dos profissionais de saúde, mas também inclui a compreensão e 

aceitação do diagnóstico, como o comprometimento com o tratamento, de modo que 

avaliar as características individuais que influenciam a prontidão permite uma 

intervenção mais direcionada e eficaz, a fim de minimizar as falhas no tratamento e 

melhorar o prognóstico a longo prazo (Costa et al., 2017). 

Nesse cenário, a University of Rhode Island Change Assessment - Voice 

Validated (URICA-VV), adaptada (Teixeira et al, 2013) e validada para o português 

brasileiro (Aguiar et al., 2021), surge como um instrumento promissor para avaliar o 

estágio de prontidão dos pacientes em modificar comportamentos vocais prejudiciais 

e aderir ao tratamento recomendado. Desse modo, a classificação adequada do 

estágio de prontidão para a mudança pode otimizar a intervenção terapêutica. 

Para otimizar ainda mais essa classificação, utilização de modelos de 

aprendizado de máquina (AM) para a predição dos estágios de prontidão representa 

uma inovação metodológica para facilitar a tomada de decisão clínica na área de 

avaliação e terapia de voz, e contribui para o desenvolvimento teórico e prático. 

Recentes avanços no campo do AM oferecem novas perspectivas em seu uso na área 

da saúde, pois essas técnicas podem permitir uma análise mais objetiva e quantitativa 

dos dados, com vistas a explorar padrões complexos que podem não ser facilmente 

discerníveis por métodos tradicionais (Habehh; Gohel, 2021).  

Na área de voz, o AM possibilitou o desenvolvimento de modelos em diferentes 

contextos clínicos e populacionais demonstrando-se eficazes tanto em tarefas de 

classificação binária quanto multiclasse, como na identificação da doença de 

Parkinson com base na qualidade vocal (Suppa et al., 2022), na detectação do tremor 

vocal e sua resposta ao tratamento farmacológico em pacientes com tremor essencial 
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(Suppa et al., 2021), na classificação de distúrbios neurológicos da voz (Yagnavajjula 

et al., 2024), para distinguir disartria hipocinética da presbifonia (Byeon, 2021), na voz 

como um biomarcador para detectar depressão menor e maior (Shin et al., 2021), na 

identificação de parâmetros relevantes para distúrbios funcionais da voz (Schlegel et 

al., 2020) e na classificação de vozes disfônicas e não disfônicas (Leite; Moraes; 

Lopes, 2025). 

Desta forma, utilizar métodos de AM para predizer o estágio de prontidão 

possibilita tornar a avaliação mais rápida e aplicar em larga escala, de forma que 

beneficiará um número maior de pacientes. Além disso, mais pesquisas focadas em 

compreender os fatores que influenciam para mudança de comportamento vocal 

podem contribuir na escolha de estratégias para a terapia de voz, promover maior 

prontidão e ampliar as chances do sucesso terapêutico. 

Assim, esta pesquisa se propõe a responder as seguintes investigações: Qual 

é a classificação do estágio de prontidão para mudanças comportamentais de 

pacientes com disfonia? As variáveis da avaliação multidimensional da voz possuem 

poder de predição do estágio de prontidão para terapia de voz? Quais modelos de 

aprendizagem de máquina apresentam melhor desempenho na predição dos estágios 

de prontidão para a terapia de voz? 

Solucionar esses questionamentos possibilitará fornecer dados que possam 

melhorar a prática clínica fonoaudiológica na terapia de voz por meio de intervenção 

individualizada e personalizada, que possa beneficiar os pacientes com disfonia, pois 

uma predição assertiva do estágio de prontidão poderá contribuir para o profissional 

decidir a abordagem terapêutica, além de contribuir para a ampliação do 

conhecimento científico na área. 
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2. OBJETIVOS  

2.1 Objetivo Principal:  

● Avaliar e comparar o desempenho de modelos de aprendizado de máquina na 

predição do estágio de prontidão para terapia fonoaudiológica de voz. 

2.2 Objetivos Específicos: 

● Verificar a classificação do estágio de prontidão de pacientes com disfonia; 

● Investigar se há associação dos dados da avaliação multidimensional da voz 

com o estágio de prontidão para terapia de voz de pacientes que buscam por 

atendimento; 

● Identificar as variáveis que possuem poder de predição do estágio de prontidão. 
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3. FUNDAMENTAÇÃO TEÓRICA 

3.1 Avaliação Multidimensional da Voz 

A voz é uma ferramenta essencial de comunicação humana, permite a 

expressão de opiniões e conhecimentos, e contribui para o sucesso profissional e 

pessoal, por isso profissionais que dependem da voz são diretamente impactados por 

qualquer alteração vocal. A produção da voz é um ato fisiológico da laringe, 

envolvendo a vibração das pregas vocais pelo ar dos pulmões, seguida pela 

ressonância e articulação nas cavidades nasal e oral (Silva, 2021). De acordo com 

Constantini, Ribeiro e Behlau (2022): “a voz é um fenômeno complexo e 

multidimensional que é objeto de interesse interdisciplinar”.  

Quando ocorre uma dificuldade na produção normal da voz é atribuído o nome 

de disfonia. Além de prejudicar a comunicação, problemas vocais podem impactar 

negativamente diversos aspectos da qualidade de vida de uma pessoa. Em casos que 

a disfonia é causada por comportamentos vocais inadequados, é classificada como a 

disfonia comportamental. Por outro lado, quando não há envolvimento de 

comportamentos vocais no seu desenvolvimento, sendo decorrente de lesões nos 

músculos ou nervos que controlam a voz, é denominada disfonia orgânica (Behlau, 

2018). 

A equipe multidisciplinar que contribui para o diagnóstico da disfonia inclui uma 

combinação de profissionais da saúde com os fonoaudiólogos e os 

otorrinolaringologistas. Enquanto os fonoaudiólogos realizam o julgamento perceptivo-

auditivo (JPA) para descrever a alteração vocal, por sua vez os otorrinolaringologistas 

realizam exame laríngeo para verificar presença ou ausência de fisiopatologia como 

nódulos ou pólipos nas pregas vocais (Payten et al., 2022).  

Na avaliação da voz humana por ser multidimensional, além da perspectiva do 

clínico, envolve também a do paciente. Deste modo, os instrumentos de autoavaliação 

da voz abrangem aspectos dimensionais da doença, como incapacidade e 

desvantagem vocal, e possuem robustez estatística que os tornam úteis tanto na 

prática clínica quanto na pesquisa (Capucho, 2017). 

 Desta forma, na autoavaliação são coletadas informações detalhadas sobre 

suas queixas vocais e o impacto desses problemas em sua vida social, profissional, 

diária e emocional. Então, a partir dos instrumentos, é adquirida uma visão única e 
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essencial que não pode ser obtida por meio de outros métodos clínicos tradicionais 

(Behlau; Madazio; Yamasaki, 2023). 

Diversos protocolos de autoavaliação vocal foram adaptados e validados para 

o português brasileiro, inclui instrumentos como o Questionário de Qualidade de Vida 

em Voz (QVV), Índice de Desvantagem Vocal (IDV), Questionário de Performance 

Vocal (QPV), Protocolo de Participação e Atividades Vocais (PPAV), URICA-VV, 

Questionário de Qualidade de Vida em Voz Pediátrico (QVV-P), Escala de Sintomas 

Vocais (ESV), e Protocolo de Estratégias de Enfrentamento na Disfonia (PEED-15). 

Considerando a diversidade cultural e sociodemográfica do país, foram publicados em 

periódicos e utilizados em pesquisas observacionais e de intervenção para estudar 

diferentes aspectos vocais em diversas populações e regiões do Brasil (Almeida et al., 

2021). 

Ademais, o que é percebido como um desvio vocal intenso para um profissional 

da voz pode ser considerado um desvio de voz leve para quem não depende da voz 

para trabalhar. Assim, o instrumento de autoavaliação pode capturar uma dimensão 

diferente da função vocal que o JPA e o exame laríngeo não observam. Recomenda-

se que o fonoaudiólogo use todas as informações obtidas com os instrumentos de 

forma complementar durante a avaliação, o tratamento e a alta dos pacientes, pois 

são úteis, válidos e confiáveis para diferenciar indivíduos com problemas vocais de 

pessoas saudáveis (Behlau et al., 2016).  

Outrossim, existe uma correlação moderada entre o JPA e os protocolos de 

autoavaliação, destaca-se a importância de verificar essa associação em vez de inferi-

la. Desta forma, os instrumentos de autoavaliação vocal fornecem informações 

valiosas que as demais avaliações não podem determinar. Sendo recomendado o uso 

combinado de instrumentos em casos difíceis, mas não devem ser usados 

isoladamente para diagnósticos (Behlau, 2017). 

Quanto ao JPA da voz é um método qualitativo que envolve a avaliação da 

qualidade vocal de um indivíduo através da escuta atenta e sistemática por parte de 

um avaliador treinado. Esse processo permite que o profissional identifique 

características vocais que podem estar associadas a alterações vocais, além de 

reconhecer aspectos importantes da voz que podem necessitar de terapia de voz. 

Assim, proporciona uma base para um planejamento terapêutico eficaz (Lee et al., 

2021). 
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Para uma análise mais precisa, são frequentemente utilizados protocolos 

padronizados, como o GRBAS (Grade, Roughness, Breathiness, Asthenia, Strain), 

que ajuda a sistematizar a avaliação das qualidades vocais com base em uma escala 

específica (Bodt; Muyts; Heyning, 1997). E a Escala Analógica Visual (EAV), que 

consiste em uma linha horizontal de 100 milímetros, onde um dos extremos representa 

a ausência de desvio vocal e o outro extremo representa o grau máximo do desvio 

vocal, é realizada a marcação em algum ponto ao longo dessa linha, que indica o grau 

do desvio vocal (Kempster et al., 2009). 

Ainda não há um consenso sobre um programa específico de treinamento para 

o JPA que possa ser considerado o padrão de referência. Contudo, as estratégias 

mais comuns incluem o uso de âncoras auditivas, feedback durante o treinamento 

para informar sobre respostas corretas e erradas, avaliação de parâmetros vocais, 

principalmente soprosidade e aspereza, e treinos de até duas horas de duração (Paz 

et al. 2023).  

Em relação a análise acústica, é importante para gerar um diagnóstico preciso 

e monitorar o tratamento oferecido ao paciente, e permite caracterizar o sinal vocal de 

forma quantitativa ou qualitativa, fornecendo estimativas sobre os aspectos 

fisiológicos envolvidos na produção vocal (Lopes; Vieira; Behlau, 2022) Do ponto de 

vista clínico, espera-se que cada medida acústica seja sensível a variações 

aerodinâmicas e biomecânicas da produção vocal e relacionada aos parâmetros do 

JPA, além disso que ajude os fonoaudiólogos a entenderem a qualidade vocal do 

paciente (Paiva et al., 2024). 

Quanto a análise acústica quantitativa são existem as medidas lineares, não 

lineares e cepstrais. As medidas lineares são extraídas com base no modelo de 

produção vocal de fonte-filtro, diferem das não-lineares que se baseiam em conceitos 

caóticos de produção vocal, focam nas relações biomecânicas e aerodinâmicas para 

a extração de características. Já as medidas cepstrais destacam os harmônicos da F0 

e sua relação com o ruído da emissão (Florêncio et al. 2021).  

As medidas acústicas lineares e não lineares variam conforme a intensidade 

vocal. As medidas lineares mostraram aumentos consistentes na regularidade do sinal 

com o aumento da intensidade vocal e maior irregularidade com a diminuição da 

intensidade, enquanto as medidas não lineares apresentaram variações significativas 

dependendo da intensidade vocal (Florêncio et al., 2021).  
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Também existe uma correlação entre medidas acústicas lineares e 

perceptivoauditivas na quantificação do desvio vocal, onde o Glottal to Noise 

Excitation (GNE) mostrou-se eficaz para diagnosticar vozes saudáveis e alteradas, 

além de identificar a presença de soprosidade e classificar seu grau na emissão vocal. 

O shimmer identificou presença ou ausência de rugosidade vocal, e o desvio padrão 

de F0 diferenciou vozes com e sem tensão, contudo a média de F0 foi útil para 

classificar a intensidade de tensão fonatória (Lopes; Cavalcante; Costa, 2014). 

Em outro estudo sobre a relação do desvio vocal com as medidas acústicas 

Cepstral Peak Prominence-Smoothed (CPPS) e o declínio espectral, que se tratam de 

medidas cepstrais, foi constatado que existe associação entre a presença de desvio 

vocal, o grau geral do desvio vocal (GG), a qualidade vocal predominante e o CPPS. 

Desta forma, os valores do CPPS foram capazes de distinguir entre vozes rugosas 

versus soprosas, rugosas versus tensas e soprosas versus tensas. Porém, o declínio 

espectral foi útil apenas para distinguir vozes soprosas versus tensas (Lopes et al., 

2019).  

Os exames laríngeos, como a laringoscopia e a estroboscopia, são essenciais 

para a avaliação detalhada da laringe, pois nenhum diagnóstico definitivo deve ser 

feito sem a visualização da laringe. A laringoscopia, que pode ser indireta (com o uso 

de um instrumento óptico) ou direta (com um laringoscópio), permite a visualização 

direta das pregas vocais e da laringe, sendo útil para diagnósticos (Sulica, 2013).  

A estroboscopia, por sua vez, é a técnica que oferece imagens da 

movimentação das pregas vocais, utiliza-se luz estroboscópica para criar uma ilusão 

contínua e lenta do movimento da mucosa. Isso permite uma análise detalhada do 

padrão vibratório das pregas vocais, sendo fundamental para identificar 

irregularidades como nódulos ou cistos, sendo eficaz na maioria dos casos de disfonia 

(Sulica, 2013). 

Além disso, atualmente também são realizados a videolaringoscopia e 

videoestroboscopia. A videolaringoscopia utiliza um laringoscópio com câmera de 

vídeo para transmitir imagens da laringe em tempo real para um monitor, proporciona 

uma visualização detalhada e mais confortável para o paciente. Já a 

videoestroboscopia integra uma câmera de vídeo ao estroboscópio, permite a captura 

contínua e em tempo real das vibrações das pregas vocais. Essa técnica oferece uma 

visualização mais nítida e detalhada em comparação aos métodos convencionais 

(Yilmaz et al., 2023). 
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3.2. Estágio de Prontidão para a terapia de Voz 

O Modelo Transteórico (MTT) propõe que a alteração de um comportamento 

não ocorre por acaso, mas sim através de um processo. Segundo este modelo, 

diferentes indivíduos se encontram em diferentes estágios de prontidão para a 

mudança. Durante esse processo, as pessoas atravessam cinco estágios distintos: 

pré-contemplação, contemplação, preparação, ação e manutenção (Prochaska; 

Diclemente, 1982). 

O MTT classifica os indivíduos nos estágios de prontidão, mas reconhece a 

complexidade e a natureza não linear da mudança de comportamento, pois os 

indivíduos podem avançar e retroceder entre os estágios de mudança, reflete a 

realidade comum de recaídas e dificuldades na manutenção de novos 

comportamentos (Prochaska et al., 1993). 

No estágio de pré-contemplação, os indivíduos não estão considerando 

ativamente a necessidade de mudança e podem não estar plenamente conscientes 

dos impactos negativos de seus comportamentos. Na fase seguinte, contemplação, 

há um reconhecimento dos problemas associados ao comportamento e uma 

ponderação sobre a possibilidade de mudança, embora ainda não tenham sido 

tomadas ações concretas para isso (Prochaska; Norcross; DiClemente, 2013). 

À medida que avançam para o estágio de preparação, os indivíduos estão 

preparados para agir em um futuro próximo e começam a implementar medidas 

pequenas em direção à mudança. No estágio de ação, ocorre a implementação ativa 

de comportamentos novos e saudáveis, através de um compromisso ativo com a 

mudança e a adoção de estratégias para modificar o comportamento. Finalmente, o 

estágio de manutenção visa consolidar as mudanças alcançadas durante a ação, com 

foco na prevenção de recaídas e na sustentação do novo comportamento a longo 

prazo (Prochaska; Norcross; DiClemente, 2013). 

Deste modo, os dois primeiros estágios são caracterizados por ambivalência 

quanto à mudança, enquanto os três últimos envolvem um comprometimento maior 

com a mudança. Sugere-se que as intervenções comportamentais devem ser 

adaptadas ao estágio do paciente para aumentar as chances de mudança 

comportamental e a eficácia das intervenções (Sutton et al., 2003). 

Na saúde, diversas pesquisas foram realizadas utilizando os estágios de 

prontidão, o que inclui pesquisas para verificar o estágio de prontidão para o manejo 

de doenças crônicas (Vásquez; Garrido, 2022), de sobrepeso e obesidade (Silva; 
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Oliveira; Velasquez, 2020; Soares, 2022), de alteração auditivas (Laplante-Lévesque 

et al., 2015), da diabetes (Silva; Luz, 2022), do tabagismo (Barbosa et al., 2020), da 

ansiedade (Dozois et al. 2004) e do consumo de bebidas alcoólicas (Soares; Vargas, 

2020; Lima et al., 2022) . 

Ademais, o estágio de prontidão pode ser utilizado para avaliar se determinada 

medida adotada contribui para mudança de hábitos dos paciente, em um estudo foi 

verificada a efetividade de uma tecnologia educativa que contribuiu para avanço do 

estágio de prontidão para mudança comportamental em adultos hipertensão e 

excesso ponderal (Santiago et al., 2021), enquanto em outro estudo com em 

indivíduos com obesidade verificou-se que a intervenção realizada foi eficaz na 

evolução dos estágios de prontidão para a mudança de comportamento alimentar e 

de atividade física (Luz et al., 2021). 

Além das várias áreas da saúde já citadas onde os estágios de prontidão são 

utilizados, também é relevante na terapia de voz. Com base no MTT, foi desenvolvida 

a escala University of Rhode Island Change Assessment (URICA), e adaptada para a 

área da voz (Teixeira et al., 2013; Aguiar et al., 2021), para verificar o estágio de 

prontidão na terapia de voz, intitulada de URICA-Voice Validated (URICA-VV). Desde 

então, o instrumento passou a ser bastante empregado na literatura em pessoas que 

buscam a terapia de voz.  

A URICA, desenvolvida por McConnaughy, Prochaska e Velicer em 1983, é um 

questionário de autopreenchimento para medir estágios motivacionais de mudança 

comportamental (pré-contemplação, contemplação, ação e manutenção) em adultos, 

inicialmente não especificando o tipo de comportamento-problema. Embora concebida 

para medir cinco estágios, a preparação foi excluída após avaliação. A versão original 

possui 32 perguntas, com 8 itens para cada estágio, enquanto a versão reduzida 

contém 24 perguntas, com 6 itens para cada estágio. 

O instrumento elaborado na pesquisa de Teixeira e colaboradores (2013) 

possui 32 itens e foi baseado na Teoria Clássica do Teste (TCT) que trata de um 

modelo estatístico psicométrico onde o nível do atributo é determinado pelo somatório 

das respostas dos itens de um teste. Os itens são agrupados em quatro conjuntos de 

oito afirmações, cada um correspondendo aos estágios de mudança: Pré-

contemplação, Contemplação, Ação e Manutenção.  

O estudo de adaptação brasileira da escala URICA para a área de voz, foi 

transversal e contou com uma amostra com 66 pacientes com disfonia, dos quais 57,6 
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estavam no estágio de contemplação, 30,3% no de pré-contemplação e 12,1% no de 

ação. Devido a maioria dos pacientes com disfonia em tratamento está no estágio de 

contemplação, pode limitar os resultados da terapia, e não houve relação entre as 

variáveis idade, tipo de disfonia, escolaridade e número de sessões de fonoterapia e 

os estágios de prontidão (Teixeira et al., 2013). 

Posteriormente, foi realizado outro estudo que utilizou a análise fatorial 

confirmatória para verificar a acurácia dos componentes presentes na escala URICA-

VV, além de propor a aplicação da Teoria de Resposta ao Item (TRI) por ser 

considerada uma análise estatística mais robusta que a TCT e permite diferentes 

pesos para diferentes itens, reconhecendo que alguns itens podem ser mais 

informativos do que outros sobre a habilidade do indivíduo (Aguiar et al., 2021). 

Após a análise fatorial e a aplicação da TRI, a URICA-VV passou de 32 para 

25 questões, além de possuir dois domínios: contemplação e manutenção. Isso 

ocorreu porque apenas 3 dos 8 itens do estágio de pré-contemplação e 3 dos 8 itens 

do estágio de ação apresentaram uma correlação significativa dentro de seus 

respectivos domínios. Enquanto as cargas fatoriais associadas aos estágios de 

contemplação e manutenção mostraram uma correlação adequada com seus fatores 

correspondentes (Aguiar et al., 2021; Aguiar et al., 2023). 

A URICA-VV, em sua versão validada pela TRI, apresentou relação com outras 

variáveis da avaliação multidimensional da voz, foi observada validade discriminante 

entre o escore total e os sintomas vocais auditivos, assim como entre o estágio de 

contemplação e os sintomas vocais auditivos, sensoriais e totais. Também mostrou 

validade discriminante do escore total e contemplação com fatores de risco 

organizacionais e totais, e do escore manutenção com fatores de risco 

organizacionais. No JPA, apresentou validade discriminante com o grau geral (Silva, 

2022).  

Em relação ao tipo de disfonia, verificou-se que os indivíduos com disfonia 

organofuncional apresentam maior adesão para a terapia de voz.  Além disso, foi 

observado que quanto maior o impacto emocional da disfonia, como sentimentos de 

vergonha, baixa autoestima, preocupação e insatisfação, melhor é a adesão do 

paciente a terapia de voz. Deste modo, verificou-se a importância da escala URICA-

VV no início e ao longo do tratamento para desenvolver estratégias motivacionais 

adaptadas ao estágio de prontidão de cada paciente, o que pode ter um impacto 

positivo significativo no progresso terapêutico (Góes et al., 2016).  
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Um estudo investigou a eficácia da terapia de grupo e utilizou a escala URICA-

VV para avaliar o estágio de prontidão de 49 pacientes com disfonia comportamental. 

A maioria dos participantes, principalmente mulheres com lesão membranosa da 

prega vocal e não profissionais da voz, estava no estágio de Contemplação tanto 

antes quanto depois da terapia. Entretanto, houve mudanças significativas nos 

estágios de prontidão, a maioria dos pacientes apresentou redução e poucos 

avançaram (Costa et al., 2017).  

Quanto aos pacientes com disfonia orgânica, em um estudo com indivíduos 

com doença de Parkinson (DP), foi analisado se assistir a vídeos curtos sobre 

sintomas de voz e tratamento na doença de Parkinson influência no estágio de 

prontidão para mudança. Foi descoberto que a prontidão para mudança aumentou 

significativamente após assistir aos vídeos, sugerindo que assistir a vídeos ajudou 

esses indivíduos a se aproximarem da melhoria ativa de sua voz e na mudança de 

comportamento vocal. Isso ressalta a importância de explorar e integrar tecnologias 

de saúde sem fio em futuras abordagens terapêuticas, para melhorar os resultados de 

tratamento e a qualidade de vida desses pacientes. Além de medir o estágio de 

prontidão, pode ser útil para verificar a eficácia das abordagens utilizadas nos 

pacientes (Kopf; Graetzer; Hun, 2015).  

3.3 Aprendizado de Máquina (AM) 

A aprendizagem de máquina trata-se de uma área da Inteligência Artificial (IA) 

que tem por objetivo desenvolver técnicas computacionais sobre o aprendizado, além 

de construir sistemas capazes de obter conhecimento de maneira automática. Com 

os sistemas de AM é possível tomar decisões com base em experiências anteriores 

(Rezende, 2003).  

Os avanços recentes em estatística têm focado no desenvolvimento de 

técnicas automatizadas mais poderosas para modelagem preditiva, como regressão 

e classificação, dentro do aprendizado de máquina estatístico. Diferentemente dos 

métodos estatísticos clássicos, essas abordagens são orientadas por dados, evitando 

impor estruturas predeterminadas aos dados. Um exemplo simples é o método dos K-

Vizinhos Mais Próximos, que classifica uma observação baseado na classificação de 

observações similares (Bruce; Bruce, 2019). 

Existem três tipos principais de AM: Supervisionado, Não Supervisionado e por 

Reforço. No Aprendizado Supervisionado, o algoritmo aprende a partir de exemplos 
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rotulados, em que cada exemplo é descrito por um vetor de valores (atributos) e um 

rótulo associado, que pode ser qualitativo ou quantitativo. O objetivo é construir um 

modelo capaz de prever corretamente o rótulo de novos exemplos não rotulados 

(Ludermir, 2021).  

Esse método é amplamente utilizado e inclui problemas de classificação e de 

regressão. Problemas de classificação têm saídas discretas, como a nacionalidade de 

um usuário, enquanto problemas de regressão têm saídas contínuas, como a previsão 

do preço de uma casa baseada em atributos como área e número de quartos. Alguns 

dos algoritmos mais comuns de aprendizado supervisionado incluem Regressão 

Logística, K-Vizinhos Mais Próximos, Naive Bayes, Árvore de Decisão e Floresta 

Aleatória (Alvim, 2019). Esses modelos foram abordados neste trabalho. 

Os dados relevantes são coletados e preparados, abrange históricos, 

características individuais, variáveis independentes e o desfecho a ser previsto. Com 

base nesses dados, escolhe-se um modelo adequado de aprendizado de máquina, os 

dados são divididos em conjuntos de treinamento e teste. No conjunto de treinamento, 

o modelo aprende padrões que relacionam variáveis independentes ao desfecho. 

Após o treinamento, com o conjunto de teste é avaliada a capacidade de predição do 

modelo em novos dados. Ademais, ajustes e otimizações são realizados conforme 

necessário para melhorar a precisão do modelo (Alloghani et al., 2020). 

No Aprendizado Não Supervisionado, os exemplos são fornecidos sem rótulos, 

e o algoritmo busca explorar a estrutura subjacente dos dados, o que pode envolver 

agrupar observações semelhantes, reduzir a dimensionalidade, estimar distribuições 

de probabilidade ou identificar padrões de associação (Ludermir, 2021). Entre os 

algoritmos mais comuns destacam-se os de agrupamento, incluindo K-Means e 

agrupamento hierárquico; os de visualização e redução de dimensionalidade, como a 

análise de componentes principais; e os de regras de associação, como Apriori e Eclat 

(Alvim, 2019). 

Já no Aprendizado por Reforço, o algoritmo recebe um sinal de reforço, como 

recompensa ou punição, em vez da resposta correta. O algoritmo então ajusta suas 

hipóteses com base nesse feedback, sendo bastante utilizado em jogos e robótica. A 

escolha dos algoritmos apropriados para o problema é essencial, bem como a 

definição de seus parâmetros. Após o treinamento, é necessário avaliar a precisão do 

modelo e garantir que ele continue a funcionar bem com dados novos e em mudança 

(Ludermir, 2021). 
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Para aplicar o Aprendizado de Máquina de maneira eficaz, é necessário ter um 

bom conjunto de dados, que frequentemente precisa ser atualizado e aprimorado. 

Dados desequilibrados limitam o desempenho e a precisão dos classificadores. 

Existem abordagens amplas para resolver problemas de desequilíbrio na classificação 

de dados, como pré-processamento de métodos, abordagens centradas em 

algoritmos e abordagens híbridas (Kaur, 2020).  

Além disso, as técnicas de modelagem enfrentam o desafio do sobreajuste. Por 

exemplo, ao incorporar muitas variáveis em uma equação de regressão, o modelo 

pode realizar previsões imprecisas. Contudo, em muitas técnicas estatísticas, é 

possível evitar esse sobreajuste ao selecionar criteriosamente as variáveis preditoras 

que são usadas para prever ou explicar o valor de uma variável de interesse, assim 

garante que o modelo seja capaz fazer previsões mais precisas em novos dados não 

utilizados durante o treinamento (Bruce; Bruce, 2019). 

O aprendizado de máquina na área da saúde já demonstrou progressos 

significativos, ao melhorar a capacidade em fornecer tratamentos mais eficazes com 

maior qualidade e precisão. Os Registros Eletrônicos de Saúde aprimoraram a 

organização de dados e contribuem para o uso de previsão, permitindo decisões 

clínicas mais informadas. Da mesma forma, em exames de imagens, o aprendizado 

de máquina demonstrou grandes vantagens em precisão e diagnóstico (Habehh; 

Gohel, 2021).  

Ademais, a aprendizagem profunda na saúde facilita a análise de dados 

biomédicos complexos e heterogêneos, com modelos mais precisos e eficientes para 

lidar com grandes volumes de dados não estruturados, embora a interpretabilidade 

dos resultados ainda seja um desafio. Assim, é essencial desenvolver arquiteturas 

que não só garantam precisão, mas também sejam compreensíveis e aplicáveis aos 

profissionais de saúde, com o objetivo de melhorar a prática clínica e os resultados 

para os pacientes (Miotto et al., 2018).  

3.3.1 Regressão Logística 

A Regressão Logística é um método utilizado para prever a probabilidade de 

uma classe binária com base em variáveis independentes (Cox, 1958). Ela utiliza uma 

função logística para modelar a relação entre as variáveis explicativas e a resposta 

categórica, que serve como a base matemática que transforma os valores previstos 

para que se ajustem ao intervalo [0, 1]. Para transformar probabilidades em uma 
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decisão binária, define-se um limiar (geralmente 50%), acima do qual o evento é 

previsto como 1 e abaixo como 0. Essa transformação garante que o modelo seja 

adequado para problemas de classificação binária (Lantz, 2023).  

No entanto, para problemas de classificação, a regressão logística calcula a 

probabilidade de a resposta assumir o valor 1, dado o vetor de variáveis 

independentes. Para isso, aplica-se a função logística à equação linear, o que garante 

que a saída do modelo fique restrita a esse intervalo, tornando-a apropriada para 

representar uma probabilidade (Molnar, 2022). A equação de regressão logística é: 

𝑃(𝑌(𝑖) = 1) = logistic(𝑥(𝑖)𝑇β) =
1

1+exp(−(β0+β1𝑥1
(𝑖)

+⋯+β𝑝𝑥𝑝
(𝑖)

))
, 

Onde:  

• 𝑃(𝑌(𝑖) = 1) é probabilidade de que a variável dependente 𝑌 assuma o valor 1 

na 𝑖-ésima observação; 

• logistic(𝑥(𝑖)𝑇β) é a função logística que transforma a combinação linear dos 

preditores para um valor de probabilidade entre 0 e 1; 

• exp é a função exponencial do número de Euler (aproximadamente 2.7183); 

• 𝛽0 é o intercepto do modelo, representa o valor predito quando todas as 

variáveis independentes são iguais a zero; 

• 𝛽1 ⋯ 𝛽𝑝 são coeficientes de inclinação, representam a influência de cada 

variável independente no valor predito; 

• 𝑥1
(𝑖)

⋯ 𝑥𝑝
(𝑖)

  são valores das variáveis independentes para a 𝑖-ésima observação. 

Seu ponto forte reside na interpretabilidade dos coeficientes, que indicam o 

impacto de cada variável sobre o resultado. Na regressão logística, esses coeficientes 

são interpretados de forma multiplicativa em relação às chances (odds) de ocorrência 

de um evento, que mostram como um aumento unitário em uma variável preditora 

altera as chances do evento ocorrer (Molnar, 2022). 

 Desta forma, é bastante eficaz em problemas em que os dados seguem uma 

relação linear aproximadamente, mas pode apresentar limitações em situações de alta 

multicolinearidade ou em dados não lineares. Apesar disso, surge como ferramenta 

prática para resolver problemas de classificação binária, sendo assim especialmente 

útil em situações com conjuntos de dados limitados (Conway; White, 2012). 
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3.3.2 K-Nearest Neighbors (KNN) 

O algoritmo K-Nearest Neighbors (KNN) é um método de classificação em que 

a categoria de um dado desconhecido é determinada com base nas categorias dos K 

eventos mais próximos no espaço dos atributos (Fix; Hodges, 1951). Esses vizinhos 

mais próximos são identificados utilizando a distância euclidiana, uma métrica que 

calcula a diferença geométrica entre os vetores dos atributos do dado não rotulado e 

os dados conhecidos. A classificação final é atribuída à classe mais frequente entre 

os vizinhos identificados. A escolha do valor de K é crucial, pois valores muito baixos 

tornam o modelo sensível a outliers, ou seja, dados atípicos que podem distorcer os 

resultados. Por outro lado, valores muito altos podem aumentar o tempo de 

processamento e diluir a influência de vizinhos relevantes (Lopes, 2020). Observa-se 

a forma da distância euclidiana a seguir:                                                                

 𝑑 = √∑ (𝑝𝑖𝑘 − 𝑝𝑗𝑘)
2𝑛

𝑘=1 , 

Onde: 

• 𝑑 é a distância euclidiana entre as observações 𝑖 e 𝑗; 

• 𝑛 é o número total de variáveis utilizadas para calcular a distância; 

• 𝑘 é o índice que representa cada variável, variando de 1 até 𝑛; 

• 𝑝𝑖𝑘 é o valor da 𝑘-ésima variável para a observação 𝑖; 

• 𝑝𝑗𝑘 é o valor da 𝑘-ésima variável para a observação 𝑗; 

• ∑ (𝑝𝑖𝑘 − 𝑝𝑗𝑘)
2𝑛

𝑘=1  é a soma dos quadrados das diferenças entre os valores 

correspondentes das duas observações em cada uma das 𝑛 variáveis. 

Depois de selecionados os K menores distâncias, verifica-se a classe de cada 

um desses dados mais próximos, contando a quantidade de vezes que cada classe 

aparece. Por fim, o algoritmo atribui ao novo dado a classe que mais se repetiu entre 

esses vizinhos mais próximos, realizando assim a classificação. A Figura 1 a seguir 

ilustra o funcionamento do KNN. 

 



29 
 

Figura 1 - Funcionamento do algoritmo KNN.  

 

Fonte: Xing; Du, 2018. 

Na Figura 1, o ponto amarelo representa uma nova observação que ainda não 

foi classificada, enquanto os pontos já classificados estão divididos em duas 

categorias: os azuis representam a classe Active e os vermelhos representam a classe 

Dropout. Para classificar esse novo ponto, o algoritmo calcula a distância dele em 

relação a todos os demais pontos do conjunto. Em seguida, seleciona os k vizinhos 

mais próximos — por exemplo, k = 3 ou k = 8, como mostrado nos dois círculos. No 

caso de k = 3, o ponto amarelo possui 2 vizinhos azuis e 1 vizinho vermelho dentro do 

círculo, portanto, será classificado como Active, já que essa é a classe predominante 

entre os mais próximos. Por outro lado, se k = 8, há uma maioria de pontos vermelhos 

(5 vermelhos contra 3 azuis), e o ponto seria classificado como Dropout.  

Ademais, neste algoritmo são utilizadas métricas de similaridade para tarefas 

como recomendar itens a usuários de websites, sendo intuitivo e fácil de compreender, 

com seu conceito básico inspirado na forma como as pessoas fazem recomendações. 

A abordagem mais simples, o 1-nearest neighbor, sugere itens baseando-se no mais 

próximo dos que um usuário já gosta. O KNN é versátil e considerado bastante útil em 

problemas de classificação, como separar pontos em duas categorias (Conway; 

White, 2012). 



30 
 

3.3.3 Naive Bayes 

O algoritmo Naive Bayes baseia-se no teorema de Bayes, trata-se de um 

método simples e eficaz para classificação, muito popular especialmente para 

classificação de texto, como filtragem de spam, devido à sua eficiência computacional 

e robustez, mesmo com conjuntos de dados grandes. Apesar de sua força e rapidez, 

o algoritmo faz a suposição “ingênua” de que todas as características (features) são 

independentes e igualmente importantes, o que raramente ocorre na prática. Mesmo 

assim, o Naive Bayes costuma apresentar bom desempenho mesmo quando essa 

suposição é violada (Lantz, 2023). Sejam A e B eventos pertencentes ao espaço 

amostral de um experimento e P a função de probabilidade, observe a equação do 

Teorema de Bayes abaixo:  

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)×𝑃(𝐴)

𝑃(𝐵)
, 

Onde: 

• 𝑃(𝐴|𝐵) é a probabilidade de 𝐴 dado 𝐵; 

• 𝑃(𝐵|𝐴) é a probabilidade de 𝐵 dado 𝐴; 

• 𝑃(𝐴) é a probabilidade de 𝐴 ocorrer; 

• 𝑃(𝐵) é a probabilidade de 𝐵 ocorrer. 

Inicialmente é realizada a coleta das probabilidades condicionais de cada 

atributo dado uma determinada classe, são organizadas em uma tabela de 

verossimilhança. Em seguida, calcula-se a probabilidade conjunta de observar aquele 

conjunto específico de atributos em uma nova instância. Entretanto, esse cálculo pode 

ser computacionalmente complexo, pois exige considerar todas as possíveis 

combinações de atributos. Para simplificar esse processo, assume-se a 

independência condicional entre os atributos, o que permite multiplicar as 

probabilidades condicionais individuais. Com isso, estima-se a probabilidade de cada 

classe dada a instância observada, e a classe com maior probabilidade é atribuída 

como resultado da classificação (Mitchell, 1997). 

Esse processo torna viável a aplicação do algoritmo mesmo em cenários com 

muitas características, ao reduzir drasticamente o custo computacional. As vantagens 

incluem simplicidade, velocidade, boa performance com dados ruidosos e poucos 

exemplos de treinamento, além da facilidade de obtenção das probabilidades de 

predição. Entre as limitações, estão a dependência da suposição de independência 
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das variáveis e a menor confiabilidade das probabilidades estimadas em comparação 

com as classes previstas. 

3.3.4 Árvore de Decisão 

O conceito de Árvores de Decisão tem origem no trabalho de Leo Breiman e 

colegas, formalizado no CART (Classification and Regression Trees) em 1984 

(Breiman et al., 1984). É um modelo preditivo inspirado na forma como os humanos 

tomam decisões. Uma de suas principais vantagens é apresentar a informação 

visualmente, de uma forma fácil de entender e interpretar. As árvores podem ser 

usadas para problemas de Classificação ou Regressão. 

Uma árvore de decisão usa amostras das características dos dados para criar 

regras de decisão no formato de árvore, isto é, reduz os dados em um conjunto de 

regras que podem ser usadas para uma decisão. Elas possibilitam a seleção 

automática de variáveis para compor suas estruturas: cada nó interno representa uma 

decisão sobre um atributo que determina como os dados estão particionados pelos 

seus nós filhos. Para classificar um novo exemplo, basta testar os valores dos 

atributos na árvore e percorrê-la até se atingir um nó folha (classe predita) (Escovedo; 

Koshiyama, 2021). 

Na interpretação, a previsão de um modelo de árvore é feita rastreando o 

caminho desde o nó raiz até um nó terminal, com decisões baseadas nos limites 

definidos pelos splits (pontos de divisão). A importância das variáveis é medida pela 

contribuição na redução da variância ou do índice de Gini ao longo da árvore, sendo 

este um critério de impureza que quantifica a probabilidade de um elemento, escolhido 

aleatoriamente de um nó, ser classificado incorretamente. Além disso, é possível 

decompor o caminho de decisão para analisar a contribuição individual de cada 

variável na previsão final, mesmo que algumas variáveis sejam usadas mais de uma 

vez ou não sejam usadas. Assim, para obter a previsão final, percorre-se o caminho 

da instância na árvore, somando as contribuições de cada split no trajeto, conforme a 

fórmula (Molnar, 2022): 

𝑓(𝑥) = 𝑦̅ + ∑ split.contrib(𝑑, 𝑥)𝐷
𝑑=1 = 𝑦̅ + ∑ feat.contrib(𝑗, 𝑥)𝑃

𝑗=1 , 

Onde: 

• 𝑓(𝑥) é o valor predito pelo modelo para a entrada 𝑥; 

• 𝑦̅ é a média da variável resposta no conjunto de dados de treinamento; 

• 𝐷 é o número total de divisões (splits) nas árvores do modelo; 



32 
 

• split.contrib(𝑑, 𝑥) é a contribuição da 𝑑-ésima divisão (split) para a predição do 

ponto 𝑥; 

• 𝑃  é o número total de variáveis (features) usadas no modelo. 

• feat.contrib(𝑗, 𝑥) é a contribuição da 𝑗-ésima variável (feature) para a predição 

do ponto 𝑥. 

Entre as vantagens, as árvores de decisão são intuitivas, facilmente 

visualizadas e permitem explicações baseadas em cenários contrafactuais. São úteis 

para capturar relações não lineares e interações entre variáveis. Contudo, podem ser 

instáveis devido à dependência do conjunto de treino e árvores muito profundas 

tornam-se difíceis de interpretar (Molnar, 2022).  

3.3.5 Floresta Aleatória 

O algoritmo Floresta Aleatória é uma extensão das árvores de decisão, 

baseada em ensembles, uma técnica que combina os resultados de vários modelos, 

o que ajuda a criar resultados mais precisos para chegar à sua conclusão (Breiman, 

2001). É combinado o poder de múltiplas árvores de decisão, treinadas com amostras 

aleatórias do conjunto de dados e subconjuntos de variáveis, para melhorar a precisão 

e reduzir o risco de overfitting, que ocorre quando o modelo se ajusta tão bem aos 

dados de treinamento que perde a capacidade de generalizar para novos dados. 

Adicionalmente, essa técnica é eficaz em dados com alta dimensionalidade e fornece 

uma estimativa de importância das variáveis, sendo amplamente utilizada em 

problemas de classificação e regressão. 

A partir do conjunto de dados original, são construídas múltiplas árvores de 

decisão, cada uma usando uma amostra aleatória dos dados (com reposição) e, a 

cada nó de decisão, considerando apenas um subconjunto aleatório das variáveis 

disponíveis para definir o melhor corte. Essa combinação de amostragem e seleção 

aleatória de variáveis promove diversidade entre as árvores. Para fazer uma predição, 

cada árvore “vota” em uma classe, e o modelo final escolhe a classe que receber mais 

votos, o que melhora a capacidade de generalização. A Floresta Aleatória é popular 

por sua versatilidade, robustez e boa performance, mesmo em conjuntos de dados 

grandes e com muitas variáveis, em que outros métodos podem falhar (Lanzt, 2023).  
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Figura 2 - Floresta Aleatória. 

 

Fonte: Deng et al., 2019. 

 

Na Figura 2, observamos três árvores de decisão individuais que, juntas, 

formam uma Floresta Aleatória. Isso aumenta a precisão do modelo, pois analisa os 

resultados de muitas árvores de decisão diferentes e encontra uma média (Deng et al., 

2019).  
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4. MÉTODOS 

4.1. Delineamento do Estudo 

Esta pesquisa adota uma abordagem quantitativa, de natureza observacional 

e transversal, com delineamento transversal. 

4.2 População e Amostra 

A população foi composta por pacientes, de ambos os sexos, que buscam 

atendimento no Laboratório Integrado de Estudos da Voz (LIEV), da Universidade 

Federal da Paraíba (UFPB), Campus I, João Pessoa - PB. Para participar do estudo, 

o indivíduo deveria estar de acordo com os seguintes critérios de elegibilidade: 

● Possuir idade acima de 18 anos; 

● Não ter realizado terapia de voz anteriormente; 

● Apresentar queixa vocal por meio do autorrelato; 

● Ter respondido a todos os itens da URICA-VV; 

● Ausência de limitação neurológica, cognitiva e genética que pudesse afetar a 

comunicação e as respostas aos instrumentos. 

 Assim, a amostra foi por conveniência, por isso a seleção dos sujeitos foi 

baseada em quem estava disposto a participar no momento da coleta de dados e que 

estivesse dentro dos critérios pré-estabelecidos para essa pesquisa.  

4.3 Instrumentos de Coleta de Dados 

Foram utilizados instrumentos para obter as informações necessárias para 

atingir os objetivos do estudo. Por isso, os instrumentos escolhidos foram: o Protocolo 

de Anamnese e Avaliação Vocal (PAAV) e a Escala URICA-VV, além da coleta de 

amostras vocais. 

4.3.1 Protocolo de Anamnese e Avaliação Vocal (PAAV) 

Foi utilizado o Protocolo de Anamnese e Avaliação Vocal (PAAV) (Anexo 1), 

desenvolvido no Laboratório Integrado de Estudos da Voz (LIEV) do Departamento de 

Fonoaudiologia da UFPB (Almeida et al, 2021). Este protocolo, elaborado por 

especialistas na área de voz, constitui um instrumento de avaliação que aborda tanto 

dados pessoais quanto vocais. Ele foi adotado para as atividades de pesquisa e 
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assistência vinculadas ao laboratório, conforme descrito por Almeida et al. (2015), 

Almeida et al. (2021). 

         O PAAV é dividido em sete partes: identificação pessoal; queixa e duração; 

tratamentos prévios para disfonia; investigação complementar; antecedentes 

familiares; motivação para terapia; e outras observações. No entanto, nesta pesquisa, 

foram utilizadas apenas as três primeiras partes. A exclusão das demais seções do 

protocolo foi motivada pelo foco clínico do instrumento, não sendo essencial para 

alcançar os objetivos deste estudo. 

         A primeira parte do PAAV visa coletar informações pessoais do paciente, inclui 

nome, idade, data de nascimento, sexo, estado civil, nível de instrução, endereço e 

contato. Também são registradas informações relacionadas à ocupação, como 

profissão, período de trabalho e carga horária. Na segunda parte são coletados dados 

sobre a queixa e duração, divide-se em quatro tópicos: motivo da consulta/duração, 

história pregressa da disfonia, sintomas vocais e fatores de risco. A terceira parte diz 

respeito à realização anterior de tratamento para a disfonia. 

         Ao abordar os sintomas vocais, o PAAV lista 24, distribuídos de forma equitativa 

entre auditivos e sensoriais. Os pacientes indicam se estão ou não presentes esses 

sintomas, e então é feita uma soma simples para determinar o total de sintomas 

relatados. Quanto maior for esse total, maior será a sintomatologia de disfonia (Vital 

et al., 2016).  

Os sintomas vocais auditivos incluem rouquidão, voz muda, projeção da voz, 

mudança da voz ao longo do dia, voz monótona, dificuldade com notas agudas, falar 

baixo, ar na voz, instabilidade vocal, dificuldade com notas graves, falhas na voz e 

perda constante da voz. Os sintomas vocais sensoriais incluem fadiga vocal, sensação 

de bolo na garganta, tensão, presença de muco, desconforto, garganta seca, pigarro, 

gosto ácido, esforço ao falar, dor na garganta, tosse e odinofagia (dor ao engolir) 

(Almeida et al, 2021). 

Enquanto os fatores de risco vocais são subdivididos em três sendo 5 fatores 

de risco organizacionais, 9 fatores ambientais e 21 fatores de risco pessoais. Para 

obtenção do resultado é realizado um somatório simples, tanto para todos os fatores 

de risco em conjunto quanto separadamente para os fatores organizacionais, 

ambientais e pessoais. Quanto mais elevado o número de fatores de risco 

identificados, maior é a possibilidade de a disfonia estar relacionada ao 

comportamento vocal (Almeida et al., 2015). 



36 
 

Os fatores de risco são categorizados em organizacionais, ambientais e 

pessoais. Os fatores de risco organizacionais incluem a jornada de trabalho, o número 

de ouvintes, o acúmulo de tarefas, o tempo de uso da voz e a demanda vocal. Os 

fatores de risco ambientais incluem ruído, umidade, ergonomia, acústica, poluição, 

estresse, distância, poeira/mofo e equipamentos inadequados (Almeida et al., 2021).  

Os fatores de risco pessoais incluem fumo, falar muito, uso de telefone, falar 

em ambientes ruidosos, gritar, vida social intensa, automedicação, consumo de álcool, 

falar alto, falar com esforço, falar em público, torcer, tossir, falta de repouso, uso de 

drogas, falar rápido, falar em pitch (altura) inadequado, imitar vozes, cantar, hidratação 

inadequada e alimentação inadequada (Almeida et al., 2021). 

 Desta forma, esse protocolo foi escolhido para a pesquisa por distinguir os 

sintomas vocais entre auditivos e sensoriais, além de distinguir os fatores de risco 

vocais entre organizacionais, ambientais e pessoais, que permite uma investigação 

separada e a observação de possíveis diferenças no estágio de prontidão para a 

terapia de voz.  

4.3.2 URICA-VV 

A Escala URICA-VV (Anexo 2) é um instrumento de autoavaliação que avalia 

o estágio de prontidão do paciente em mudar seu comportamento vocal a partir da 

terapia de voz. Foi traduzida e adaptada para área de voz (Teixeira et al., 2013) e 

validada para o português brasileiro a partir da Teoria de Resposta ao Item (TRI); 

envolve 25 itens divididos em dois estágios de prontidão: contemplação, com 12 itens, 

e manutenção, com 13 itens (Aguiar et al., 2021).  

Neste instrumento, os itens que fazem parte do estágio de “Contemplação” são: 

1, 2, 3, 6, 9, 10, 11, 13, 15, 17, 19 e 20, sendo o item 15 o mais representativo; e os 

itens que fazem parte do estágio de “Manutenção” são 4, 5, 7, 8, 12, 14, 16, 18, 21, 

22, 23, 24 e 25, onde o item 14 é o mais representativo.  A chave de resposta é a partir 

de uma escala Likert de 5 pontos para a marcação das respostas, oferecendo uma 

medida gradativa da disposição do indivíduo em relação à motivação para as 

mudanças vocais necessárias.  

No estágio de contemplação, o indivíduo reconhece o problema vocal e 

considera mudanças, mas ainda não tomou iniciativas. Já no estágio de manutenção, 

ele está em ação e busca manter comportamentos saudáveis para a voz, com a 

finalidade de avaliar a continuidade das ações adotadas (Prochaska; Norcross; 
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DiClemente, 2013). O cálculo e interpretação dos resultados pode ser realizado a 

partir de algoritmo desenvolvido por meio da TRI, realizada pelo software SelfVox, 

desenvolvido pelo LIEV, com um ponto de corte estabelecido em -0,236, esse valor é 

obtido pelo teta do instrumento. Valores abaixo desse ponto indicam estágio de 

contemplação, enquanto valores acima sugerem que o indivíduo está no estágio de 

manutenção em relação a terapia de voz. 

4.4 Fonte de Dados 

 Os dados utilizados foram obtidos da avaliação fonoaudiológica e da avaliação 

otorrinolaringológica dos pacientes que procuram o LIEV por problemas de voz. Antes 

de iniciar a coleta de dados, todos os pacientes atendidos assinaram um Termo de 

Autorização de Uso de Imagem e Dados, garantindo que as informações coletadas 

durante o atendimento possam ser utilizadas para fins científicos e acadêmicos, 

assegurando privacidade e confidencialidade.  

Em seguida, cada paciente foi orientado a preencher o PAAV e a escala 

URICA-VV. Ademais, responderam também instrumentos de autoavaliação baseados 

na Teoria da Resposta ao Item (TRI), incluindo o Índice de Desvantagem Vocal (IDV-

10-TRI), a Escala de Qualidade de Vida em Voz (QVV-TRI), a Escala de Sintomas 

Vocais (ESV-TRI) e a Escala de Desconforto do Trato Vocal (EDTV-TRI). O IDV-10-

TRI investiga o impacto da voz na qualidade de vida, considerando dimensões 

funcionais, físicas e emocionais. A QVV-TRI avalia o quanto a voz interfere nas 

esferas emocional, física e social do indivíduo. A ESV-TRI identifica sintomas 

relacionados ao uso da voz autorreferidos, enquanto a EDTV-TRI examina 

desconfortos e sensações físicas no trato vocal, considerando tanto a frequência 

quanto a intensidade desses sintomas. Para fins de análise, as respostas foram 

agrupadas em duas categorias: “sim”, indicando presença de disfonia, e “não”, 

indicando sua ausência. 

Após o preenchimento dos instrumentos de autoavaliação, os indivíduos foram 

encaminhados para a coleta das amostras vocais, onde foram posicionados dentro de 

uma cabine acústica e ficaram a uma distância de 10 centímetros de um microfone 

profissional dinâmico, montado em um tripé. Durante o procedimento, foram 

solicitados a emitir a vogal [ɛ] de forma sustentada e realizar contagem de 0 a 10, 

tanto em seu volume habitual quanto pelo tempo máximo que conseguem. As 

gravações das amostras foram realizadas em um ambiente com ruído inferior a 50 dB 
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de pressão sonora e através do software Fono View 4, com uma taxa de amostragem 

de 44100 Hz.  

As vozes coletadas foram avaliadas por juízes fonoaudiólogos especialistas em 

voz, com experiência no JPA da voz. Para essa pesquisa foi utilizada Escala de Desvio 

Vocal (EDV), com foco no parâmetro grau geral, onde foram classificadas as vozes 

com pontuação até 35,5 como dentro da variabilidade normal da qualidade vocal, 

enquanto pontuações a partir de 35,6 indicaram qualidade vocal desviada (YamasakI 

et al, 2017).  

Para a análise acústica, foi utilizado o software gratuito VoxMore para extração 

das medidas, foram as medidas da frequência fundamental (F0), incluindo média, 

desvio padrão (DP), primeiro quartil (Q1), mediana, terceiro quartil (Q3), mínimo, 

máximo e coeficiente de variação (CV); medidas do período, como média, desvio 

padrão e logaritmo natural do desvio padrão (lnDP); medidas de perturbação do 

período da F0 (jitter), como jitter local, jitter local absoluto, jitter RAP (Relative Average 

Perturbation), jitter PPQ5 (Pitch Perturbation Quotient) e jitter DDP (Difference of 

Differences of Periods); e medidas de perturbação de amplitude da F0 (shimmer), 

incluindo shimmer local, shimmer em decibéis (dB), shimmer APQ3 (Amplitude 

Perturbation Quotient de 3 períodos), shimmer APQ5, shimmer APQ11 e shimmer 

DDA (Difference of Differences of Amplitudes). 

Além disso, foram extraídas medidas espectrais, como a proporção harmônico-

ruído (HNR), a proporção harmônico-ruído de Dejonckere (Hfno), a diferença entre a 

amplitude do primeiro e do segundo harmônicos (H1-H2), o declínio espectral e o tilt 

espectral; medidas de ruído glotal (GNE), incluindo GNE1000, GNE2000 e GNE3000; 

e medidas no domínio cepstral, com destaque para o CPPS (Cepstral Peak 

Prominence Smoothed), considerando média, desvio padrão, Q1, mediana, Q3, 

mínimo, máximo, CV e frequência fundamental do CPPS (F0_CPPS). Também foram 

consideradas medidas de intensidade (dB), correlação média, voice breaks (quebras 

de vozeamento) e unvoiced frames (quadros não vozeados). 

 Além do mais, os pacientes foram solicitados a fornecer o laudo do exame 

laríngeo para documentação e categorização. Os voluntários foram agrupados de 

acordo com o diagnóstico laríngeo em cinco categorias: sem lesão laríngea, lesão na 

porção membranosa da prega vocal, distúrbios neurológicos da voz, fenda glótica sem 

causa orgânica ou neurológica e distúrbio de voz secundário à refluxo 

gastroesofágico, bem como disfonia com e sem lesão e disfonia orgânica. 
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4.5 Análise de dados 

Os dados foram organizados em uma planilha eletrônica através do Microsoft 

Office Excel. A análise estatística foi conduzida com o uso do software estatístico livre 

R, versão 4.4.3 (R Core Team, 2025). Inicialmente, foi realizada a análise descritiva 

dos dados, para as variáveis quantitativas foram exploradas medidas centrais e de 

dispersão, como valor mínimo, valor máximo, média, mediana, desvio padrão e 

intervalo interquartílico, e as variáveis qualitativas foram analisadas por meio de 

frequência simples e percentual. 

Ademais, para a análise comparativa entre os grupos dos estágios de prontidão 

contemplação e manutenção, foram selecionados testes estatísticos com base na 

natureza das variáveis envolvidas. Para variáveis quantitativas, quando as suposições 

de normalidade foram atendidas foi utilizado o teste paramétrico t de Student para 

comparar médias dos dois grupos independentes. Quando os dados não seguiram 

uma distribuição normal, foi aplicado o teste não paramétrico de Wilcoxon. Para 

variáveis qualitativas, foi utilizado o teste qui-quadrado e o teste exato de Fisher 

(Bussab e Morettin, 2023). Foi adotado o nível de significância de 5%. 

Além disso, para medir a força e a direção da relação linear entre duas variáveis 

quantitativas, foi gerada uma matriz de gráficos de correlação de Spearman. Essa 

matriz fornece uma visão geral das correlações entre as variáveis, facilita a 

identificação de padrões e relações lineares entre elas. No coeficiente de correlação 

linear de Spearman (rs) considera-se que rs = ±1 indica uma relação linear perfeita; rs 

= ±0,70 indica uma relação linear forte; rs = ±0,50 indica uma relação linear moderada; 

rs = ±0,30 indica uma relação linear fraca; e rs = 0 indica ausência de relação linear 

(Rumsey, 2019). Variáveis altamente correlacionadas não foram incluídas nos 

modelos de classificação. Além disso, também foi utilizado o método stepwise do tipo 

both para realizar a seleção de variáveis, que combina os procedimentos de entrada 

e remoção automática de variáveis (Draper; Smith, 1998). 

Adicionalmente, foram aplicados modelos de aprendizagem de máquina de 

classificação, para predição do desfecho de interesse, contudo a escolha do modelo 

mais adequado dependerá da distribuição dos dados. Para preparar os dados para a 

modelagem preditiva foram divididos em dois conjuntos, o treinamento com 70% e o 

teste com 30% dos dados. Depois, realizou-se a imputação dos dados ausentes, foi 

utilizado o método dos K-vizinhos mais próximos (KNN), técnica baseada em 

aprendizado de máquina que utiliza os dados disponíveis para identificar padrões e, a 
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partir disso, estimar os valores faltantes com base nas observações mais semelhantes 

no conjunto de dados (Costa, 2018).  

Devido ao desbalanceamento das classes do banco de dados, foi aplicado a 

técnica de oversampling no treinamento para criar novas amostras da classe 

minoritária e igualar sua proporção à da classe majoritária. O oversampling consiste 

em aumentar artificialmente a quantidade de exemplos da classe minoritária, seja por 

replicação direta ou por geração de novos exemplos sintéticos, com o objetivo de 

equilibrar a distribuição das classes e permitir que o modelo aprenda melhor os 

padrões da classe menos representada (Altalhan; Algarni; Monia, 2025). Dessa 

maneira, o modelo pode aprender de forma mais eficaz sobre a classe minoritária e 

melhorar seu desempenho (Chawla et al., 2002). Ademais, para realizar a predição do 

estágio de prontidão foram usados os seguintes modelos de aprendizado de máquina 

supervisionados: Regressão logística, KNN, naive bayes, árvore de decisão e floresta 

aleatória (Apêndice).  

Foi aplicada a técnica de validação cruzada com 10 repartições (10-fold cross-

validation) durante o processo de treinamento dos modelos. Esse procedimento 

consiste em dividir aleatoriamente o conjunto de dados em 10 subconjuntos 

aproximadamente do mesmo tamanho, de modo que, em cada iteração, nove 

subconjuntos foram usados para treinar o modelo e o décimo para testá-lo, alternando-

se até que cada subconjunto fosse utilizado uma vez como teste (Hastie; Tibshirani; 

Friedman, 2009). A acurácia obtida nas iterações foi utilizada como métrica para a 

escolha dos melhores hiperparâmetros, com objetivo de melhorar a capacidade 

preditiva dos algoritmos. 

A avaliação do desempenho de modelo foi realizada através de métricas. Na 

matriz de confusão, uma tabela que compara os valores reais das classes com os 

valores preditos pelo modelo. Na matriz, a diagonal principal contém as classificações 

corretas, enquanto os valores que estão fora dessa diagonal representam erros de 

classificação. Com base nela, são calculadas métricas como acurácia, precisão e 

sensibilidade (Lopes, 2020).  

A acurácia mede a proporção de classificações corretas entre todas as 

predições feitas pelo modelo. A precisão avalia a capacidade do modelo de evitar 

falsos positivos, indicando o quão bem ele classificou corretamente uma determinada 

classe. Já a sensibilidade indica a capacidade do modelo de identificar corretamente 
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os verdadeiros positivos, mostrando o quão bem ele reconhece uma classe específica 

entre todos os exemplos reais dessa classe (Lopes, 2020).  

Enquanto, a especificidade mensura a proporção de verdadeiros negativos 

entre todos os indivíduos realmente negativos. O valor preditivo positivo (VPP) 

representa a proporção de predições positivas que realmente correspondem a casos 

positivos, enquanto o valor preditivo negativo (VPN) indica a proporção de predições 

negativas que, de fato, correspondem a casos negativos. A acurácia balanceada, por 

sua vez, corresponde à média entre sensibilidade e especificidade, sendo 

especialmente útil em cenários com classes desbalanceadas, pois evita que o 

desempenho seja inflado artificialmente pela classe majoritária. E o coeficiente Kappa 

de Cohen avalia o grau de concordância entre as classificações do modelo e os 

valores reais (Vilela Junior et al., 2022).  

A Taxa de Informação Nula (NIR) refere-se à acurácia que seria obtida ao 

sempre prever a classe majoritária, servindo como comparação básica. O p-valor 

[Acurácia > NIR] testa se o desempenho do modelo supera estatisticamente essa 

acurácia nula. O Teste de McNemar é utilizado para comparar a precisão preditiva de 

dois modelos, bem como para avaliar, em um único modelo de classificação, se há 

diferença significativa entre o número de falsos positivos e falsos negativos; em ambos 

os casos, um p-valor baixo (p < 0,05) indica diferença estatisticamente significativa 

(Mcnemar, 1947). O ponto de corte utilizado nos modelos foi definido com base no 

critério de Youden, que busca maximizar a soma da sensibilidade e da especificidade, 

e assim identifica o limiar que proporciona o melhor equilíbrio (Youden, 1950). 

 

4.6 Considerações éticas  

O projeto de pesquisa foi analisado e aprovado pelo Comitê de Ética em 

Pesquisas do Centro de Ciências da Saúde da Universidade Federal da Paraíba – 

CEP/CCS/UFPB sob o número de parecer 4.866.871/2021 (Anexo 3).  

5. RESULTADOS E DISCUSSÃO 

5.1 Análise Descritiva 

Na análise descritiva realizada, a amostra foi composta por 236 indivíduos, 

constatou-se que os grupos dos estágios de prontidão contemplação e manutenção, 

contém 18 (7,63%) e 218 (92,37%) indivíduos, respectivamente. Deste modo, 



42 
 

observa-se um desbalanceamento no tamanho das amostras entre os grupos de 

contemplação e manutenção, com o grupo de contemplação sendo 

consideravelmente menor. 

A variável idade apresentou p < 0,0001, o que indica não seguir uma 

distribuição normal. O mesmo ocorreu com as variáveis Número Total de Sintomas 

Vocais (NºTotal.SV; p = 0,0325), Número de Sintomas Vocais Auditivos (NºSVA; p = 

0,0008), Número de Sintomas Vocais Sensoriais (NºSVS; p < 0,0001), Número de 

Fatores de Risco Organizacionais (NºFRO; p < 0,0001), Número de Fatores de Risco 

Ambientais (NºFRA; p < 0,0001) e Número de Fatores de Risco Pessoais (NºFRP; p 

= 0,0133), cujos p-valores foram todos inferiores a 0,05. A única variável que 

apresentou distribuição normal foi o Número Total de Fatores de Risco (NºTotal.FR; p 

= 0,09846), com p > 0,05. Como a maioria das variáveis não apresentou distribuição 

normal, optou-se por utilizar testes não paramétricos para comparação entre os 

grupos.  

A Tabela 1 apresenta estatísticas descritivas do Banco de Dados (BD) da 

anamnese, que inclui variáveis demográficas, socioeconômicas, queixas, sintomas 

vocais e fatores de risco. 

 

Tabela 1 - Comparação das variáveis da anamnese com o estágio de prontidão. 

Variáveis Total, n = 236 Estágio de prontidão 

contemplação, n = 18 

Estágio de prontidão 

manutenção, n = 218 

Valor p2 

Idade 
   

0,018* 

Média  

(Desvio Padrão) 38,39 (16,30) 29,56 (9,43) 39,11 (16,54) 
 

Mediana (AIQ) 34,50 (24,00) 27,50 (10,00) 36,00 (24,00) 
 

Min 18 19 18 
 

Max 88 57 88 
 

Sexo 
   

0,4 

Masculino 94 (40%) 9 (50%) 85 (39%) 
 

Feminino 142 (60%) 9 (50%) 133 (61%) 
 

Estado Civil 
   

0,3 

Solteiro 122 (54%) 13 (72%) 109 (52%) 
 

Casado 83 (36%) 3 (17%) 80 (38%) 
 

Divorciado 16 (7,0%) 2 (11%) 14 (6,7%) 
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Viúvo 5 (2,2%) 0 (0%) 5 (2,4%) 
 

União Estável 2 (0,9%) 0 (0%) 2 (1,0%) 
 

Desconhecido 8 0 8 
 

Grau  

de Instrução 
   

0,5 

Fundamental 

Incompleto 8 (3,6%) 0 (0%) 8 (3,9%) 
 

Fundamental 

Completo 39 (18%) 1 (5,9%) 38 (19%) 
 

Médio Incompleto 42 (19%) 3 (18%) 39 (19%) 
 

Médio Completo 50 (23%) 3 (18%) 47 (23%) 
 

Superior 

Incompleto 46 (21%) 7 (41%) 39 (19%) 
 

Superior 

Completo 33 (15%) 3 (18%) 30 (15%) 
 

Pós-Graduado 3 (1,4%) 0 (0%) 3 (1,5%) 
 

Desconhecido 15 1 14 
 

Profissional  

da Voz 
   

0,6 

Não 158 (67%) 13 (72%) 145 (67%) 
 

Sim 78 (33%) 5 (28%) 73 (33%) 
 

Queixa 
   

0,07* 

Sintomas 

Auditivos 81 (34%) 6 (33%) 75 (34%) 
 

Sintomas 

Proprioceptivos 14 (5,9%) 1 (5,6%) 13 (6,0%) 
 

Sintomas Mistos 111 (47%) 5 (28%) 106 (49%) 
 

Aprimoramento 

Vocal 19 (8,1%) 4 (22%) 15 (6,9%) 
 

Encaminhamento 

Médico 6 (2,5%) 1 (5,6%) 5 (2,3%) 
 

Patologia laríngea 5 (2,1%) 1 (5,6%) 4 (1,8%) 
 

Nº Total SV 
   

0,003* 

Média (Desvio 

Padrão) 11,77 (4,98) 8,00 (5,39) 12,08 (4,82) 
 

Mediana (AIQ) 11,00 (8,00) 7,00 (7,50) 12,00 (8,00) 
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Min 0 0 1 
 

Max 24 17 24 
 

Nº SVA 
   

0,009* 

Média (Desvio 

Padrão) 6,32 (2,64) 4,61 (2,68) 6,46 (2,60) 
 

Mediana (AIQ) 6,00 (4,00) 4,50 (3,00) 7,00 (3,75) 
 

Min 0 0 0 
 

Max 12 9 12 
 

Nº SVS 
   

0,005* 

Média  

(Desvio Padrão) 5,39 (3,05) 3,39 (3,09) 5,56 (2,99) 
 

Mediana (AIQ) 5,00 (5,00) 2,50 (5,50) 5,00 (5,00) 
 

Min 0 0 0 
 

Max 12 9 12 
 

Nº Total FR 
   

0,9 

Média 

(Desvio Padrão) 13,08 (5,86) 13,00 (4,43) 13,09 (5,97) 
 

Mediana (AIQ) 13,00 (8,00) 12,00 (4,75) 14,00 (9,50) 
 

Min 0 6 0 
 

Max 29 23 29 
 

Nº FRO 
   

0,5 

Média  

(Desvio Padrão) 2,20 (1,77) 2,44 (1,65) 2,18 (1,78) 
 

Mediana (AIQ) 2,00 (4,00) 2,00 (3,00) 2,00 (4,00) 
 

Min 0 0 0 
 

Max 5 5 5 
 

Nº FRA 
   

0,3 

Média  

(Desvio Padrão) 2,98 (2,29) 2,33 (1,85) 3,03 (2,32) 
 

Mediana (AIQ) 3,00 (4,00) 2,00 (2,75) 3,00 (4,00) 
 

Min 0 0 0 
 

Max 9 6 9 
 

Nº FRP 
   

0,5 

Média  

(Desvio Padrão) 7,88 (3,24) 8,61 (2,99) 7,82 (3,26) 
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Mediana (AIQ) 8,00 (4,00) 7,50 (5,50) 8,00 (4,00) 
 

Min 0 5 0 
 

Max 15 14 15 
 

Legenda: 1Mediana (Q1 – Q3); n (%), 2Teste de soma de postos de Wilcoxon; Teste qui-quadrado de 

independência; Teste exato de Fisher. *p < 0.05. Fonte: Dados da Pesquisa, 2025.  

 

 Na Tabela 1, a idade média geral foi de 38,39 anos, sendo significativamente 

menor no grupo em contemplação (29,56 anos) em comparação ao grupo em 

manutenção (39,11 anos). Quanto ao sexo, observou-se predominância do feminino 

(60%), com distribuição semelhante entre os estágios, não havendo diferença 

estatística. Em relação ao estado civil, a maior parte era solteira (54%), seguida de 

casados (36%), com distribuição semelhante entre os grupos. No grau de instrução, 

os níveis mais frequentes foram ensino médio completo (23%) e superior incompleto 

(21%), com distribuição semelhante entre os grupos. A maioria dos participantes não 

se identificava como profissional da voz (67%), também sem diferença significativa 

entre os grupos.  

 No que se refere à queixa vocal, os sintomas mistos foram os mais frequentes 

(47%), seguidos por sintomas auditivos (34%). Embora não tenha alcançado 

significância estatística, observou-se tendência para maior proporção de participantes 

com queixa relacionada ao aprimoramento vocal no grupo contemplação (22%) em 

comparação ao grupo manutenção (6,9%). Observou-se diferença significativa nos 

sintomas vocais, grupo contemplação apresentou menor Nº total de SV (média de 

8,00) em relação ao grupo manutenção (12,08). O mesmo padrão foi observado no 

número de SVA e de SVS. No número total de FR, não houve diferença entre os 

grupos (p = 0,9), assim como para o Nº de FRO, FRA e FRP. 

 

Esses dados sugerem que pessoas mais velhas tendem a apresentar maior 

percepção dos prejuízos causados a voz, consequentemente, maior motivação para 

modificações comportamentais. Pode estar relacionado à maturação do córtex pré-

frontal que ocorre por volta dos 25 anos e é responsável pelas funções executivas que 

envolvem o controle comportamental (Arain et al., 2013), com essa maturação ocorre 

o aumento do controle dos impulsos, do estabelecimento de metas e do 

desenvolvimento de estratégias eficazes. 
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Em relação ao número de sintomas vocais, sejam auditivos ou sensoriais, 

quanto maior for esse número, maior pode ser a percepção do problema de voz e 

maior o impacto na vida do indivíduo, o que pode motivar a buscar por terapia (Deary 

et al., 2003). Assim, o maior número de sintomas pode favorecer a mudança do 

indivíduo do estágio de contemplação para o estágio de manutenção. 

Ademais, o número de fatores de risco é semelhante nos dois estágios. Como 

os participantes estavam iniciando a terapia, é provável que ainda não tinham recebido 

orientações específicas sobre os riscos. Muitos desses fatores, especialmente os 

relacionados ao ambiente de trabalho, são difíceis de modificar, e a falta de 

conscientização pode ter contribuído para a semelhança entre os grupos, sugerindo 

que o entendimento sobre os riscos se desenvolve durante o processo terapêutico 

(Ghirardi; Constantini, 2022). 

Além disso, as variáveis Estado Civil e Grau de Instrução apresentaram 

distribuição desigual em relação à variável resposta Estágio de Prontidão, 

caracterizando um caso de separação completa (Agresti, 2002), uma vez que não 

houve indivíduos no estágio de contemplação que fossem viúvos, estivessem em 

união estável ou que tivessem ensino fundamental incompleto ou pós-graduação. 

Embora esse padrão possa sugerir uma associação relevante entre essas variáveis e 

o estágio de prontidão, ele inviabiliza a estimação adequada dos coeficientes, pois os 

algoritmos de estimação tendem a atribuir valores infinitos para representar essa 

separação perfeita, o que compromete a convergência do modelo e resulta em 

estimativas instáveis e erros-padrão excessivamente elevados. Dessa forma, tais 

variáveis não foram incluídas nos modelos para não comprometerem a acurácia das 

predições.  

Realizou-se também a matriz de correlação de Spearman entre as variáveis 

explicativas contínuas, que pode ser observada na Figura 3. 
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Figura 3 - Matriz de Gráficos de Correlação: dados da Anamnese. 

 

Fonte: Dados da Pesquisa, 2025. 

 

Observa-se na Figura 3 que o Número Total de SV apresentou correlação 

positiva forte com o Número de SVA e com o Número de SVS. Além de uma correlação 

positiva forte do Número Total de FR com FRO, FRA e FRP. Desta forma, para os 

modelos foram considerados apenas o Número Total de SV e Número Total de FR, 

pois como são variáveis fortemente correlacionadas poderia haver sobreposição para 

o modelo.  

A Tabela 2 apresenta a comparação de proporção de participantes que tiveram 

os resultados relacionados ao Protocolo do Índice de Desvantagem Vocal (IDV-10-

TRI), à Escala de Qualidade de Vida em Voz (QVV-TRI), à Escala de Sintomas Vocais 

(ESV-TRI) e à Escala de Desconforto do Trato Vocal (EDTV-TRI). A resposta 'sim' 

indica que o participante apresentou resultado compatível com presença de disfonia 

segundo o respectivo instrumento, enquanto 'não' indica a ausência. 

Tabela 2 - Comparação de instrumentos de autoavaliação com o estágio de prontidão. 

Variáveis Total,  

n = 236 

Estágio de prontidão 

contemplação, n = 18 

Estágio de prontidão 

manutenção, n = 218 

Valor p2 

IDV10-TRI    0,023* 

Não 61 (26%) 9 (50%) 52 (24%)  

Sim 175 (74%) 9 (50%) 166 (76%)  
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QVV-TRI    0,2 

Não 21 (8,9%) 3 (17%) 18 (8,3%)  

Sim 214 (91%) 15 (83%) 199 (92%)  

Desconhecido 1 0 1  

ESV-TRI    0,027* 

Não 43 (18%) 7 (39%) 36 (17%)  

Sim 193 (82%) 11 (61%) 182 (83%)  

EDTV-TRI    0,5 

Não 33 (22%) 4 (31%) 29 (22%)  

Sim 114 (78%) 9 (69%) 105 (78%)  

Desconhecido 89 5 84  

Legenda: 1n (%), 2Teste exato de Fisher. *p < 0.05. Fonte: Dados da Pesquisa, 2025. 

 

Verifica-se na Tabela 2 que o IDV10-TRI e a ESV-TRI, apresentaram diferença 

estatisticamente significativa entre os estágios, com um maior número de pessoas 

com indicativo de disfonia a partir destes instrumentos no estágio de Manutenção. 

Esses achados sugerem que uma maior percepção do impacto na funcionalidade 

vocal e na presença de sintomas leva os indivíduos a reconhecerem a necessidade 

de mudança. Assim, essa conscientização motiva os pacientes a iniciar ou consolidar 

estratégias para modificar seus comportamentos vocais. Por outro lado, não foram 

observadas diferenças estatisticamente significativas entre os estágios quanto à QVV-

TRI e à EDTV-TRI.  

Na Tabela 3 apresenta estatísticas descritivas de outros dados referentes à 

avaliação multidimensional da voz, como o JPA, o diagnóstico laríngeo e a 

classificação da disfonia. 

 

Tabela 3 - Comparação das variáveis referentes ao JPA, Diagnóstico Laríngeo e 

Classificação da Disfonia com estágio de prontidão. 

Variáveis Total, n = 236 Estágio de prontidão 

contemplação, n = 18 

Estágio de prontidão 

manutenção, n = 218 

Valor p2 

Alteração do 

JPA  
   0,010 

Sim 61 (27%) 10 (56%) 51 (25%)  

Não 162 (73%) 8 (44%) 154 (75%)  

Desconhecido 13 0 13  
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Classificação 

do JPA  
   <0,001 

Normal 61 (27%) 10 (56%) 51 (25%)  

Leve 79 (35%) 8 (44%) 71 (35%)  

Moderado 79 (35%) 0 (0%) 79 (39%)  

Intenso 4 (1,8%) 0 (0%) 4 (2,0%)  

Desconhecido 13 0 13  

Diagnóstico 

Laríngeo 
   0,683 

Sem lesão 

laríngea 
96 (43%) 9 (53%) 87 (43%)  

Lesão na 

porção 

membranosa 

das PPVV 

53 (24%) 2 (12%) 51 (25%)  

Distúrbios 

neurológicos da 

voz 

8 (3,6%) 0 (0%) 8 (3,9%)  

Fenda glótica 

sem causa 

orgânica ou 

neurológica 

33 (15%) 3 (18%) 30 (15%)  

Distúrbio de voz 

secundário à 

refluxo 

gastroesofágico 

31 (14%) 3 (18%) 28 (14%)  

Desconhecido 15 1 14  

Alteração 

Laríngea 
   0,437 

Sim 110 (50%) 10 (59%) 100 (49%)  

Não 111 (50%) 7 (41%) 104 (51%)  

Desconhecido 15 1 14  

Disfonia    0,287 

Comportamenta

l com lesão 
74 (35%) 3 (19%) 71 (36%)  

Comportamenta

l sem lesão 
119 (56%) 11 (69%) 108 (55%)  

Orgânica 18 (8,5%) 2 (13%) 16 (8,2%)  

Legenda: 1n (%), 2Teste exato de Fisher. Fonte: Dados da Pesquisa, 2025. 
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Na Tabela 3, observou-se que o estágio Contemplação apresenta uma 

proporção maior de indivíduos classificados em variabilidade normal da qualidade 

vocal enquanto no estágio de Manutenção, predomina a voz classificada em 

moderada, indicando uma percepção mais acentuada da alteração vocal nos 

indivíduos neste estágio de prontidão. Dessa forma, como alterações da qualidade de 

voz podem prejudicar a comunicação e relações sociais (Santos et al., 2016), pode 

assim levar os indivíduos a buscarem mudanças para melhora da saúde vocal. Dessa 

forma, sugere que pessoas com voz maior intensidade do desvio vocal percebem mais 

o impacto da disfonia, o que pode ser um fator determinante para o avanço nos 

estágios de prontidão. 

Além disso, na Classificação do JPA não são encontrados indivíduos 

classificados em moderado e intenso que pertençam ao estágio de prontidão 

contemplação, e no Diagnóstico Laríngeo nenhum indivíduo em contemplação 

apresenta distúrbios neurológicos da voz. Isso indica que são casos de separação 

completa, como essas variáveis apresentam distribuição desigual em relação variável 

resposta (Agresti, 2002), não foram incluídas no modelo. No entanto, a classificação 

do JPA se relaciona à presença de alteração no JPA, assim como o diagnóstico 

laríngeo se relaciona com a presença ou ausência de alteração laríngea, sendo 

utilizadas nos modelos as variáveis Alteração da JPA, Alteração Laríngea e 

Classificação da Disfonia. 

Ademais, também foram criados modelos utilizando medidas acústicas que 

abrangem diferentes domínios da produção vocal. Aplicou-se o teste de Shapiro-Wilk 

a todas as variáveis das medidas acústicas. Os resultados indicam que a maioria das 

variáveis apresentou p-valores menores que 0,05, o que sugere rejeição da hipótese 

nula de normalidade para essas variáveis. Entre os exemplos mais expressivos estão 

variáveis como F0media (p < 0,0001), F0desvio (p < 0,0001), Correlacao.media (p < 

0,0001), VoiceBreaks (p < 0,0001) e Jitter.local (p < 0,0001), todas com distribuição 

significativamente diferente da normal. Apenas três variáveis apresentaram p-valores 

acima do limiar de significância de 0,05, não rejeitando a hipótese de normalidade: 

HNRD (p = 0,6906), Hfno (p = 0,1213) e CPPSmedia (p = 0,1927). 

Além disso, foi realizada uma análise de correlação de Spearman entre as 

variáveis acústicas, com o objetivo de identificar colinearidades e reduzir 

redundâncias que pudessem impactar o desempenho do modelo. Foram excluídas as 

variáveis que apresentaram correlação forte entre si (≥ 0,07), priorizou aquelas com 
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maior relevância estatística e plausibilidade clínica na predição do estágio de 

prontidão para a terapia vocal. As variáveis selecionadas após essa etapa foram: 

F0media, F0desvio, Intensidade.db, Periodo, PSD, VoiceBreaks, UnvoicedFrames, 

Shimmer.local, HNR, Hfno, H1H2, Declinio, Tilt, GNE1000 e CPPSdesvio.  

Ademais, foi utilizada a técnica de seleção de variáveis stepwise, com direção 

do tipo both, para o modelo final foram selecionadas as variáveis Intensidade.db, 

Periodo, Shimmer.local, Tilt e CPPSdesvio, as quais apresentaram associação 

estatisticamente significativa com a variável resposta e contribuíram para melhorar o 

desempenho do modelo. 

5.2 Modelos de AM – Dados da Anamnese 

 Os primeiros modelos apresentados usaram o banco de dados (BD) da 

anamnese (sexo, idade, queixa, profissional da voz, número de sintomas vocais e 

número de fatores de risco). Essas variáveis foram empregadas como preditoras na 

construção de modelos de aprendizado de máquina supervisionado. Inicialmente, foi 

desenvolvido o modelo de regressão logística. Na Figura 4, é possível avaliar a 

relação entre as variáveis preditoras e a variável resposta foi adequadamente 

modelado na regressão logística. O efeito marginal mostra a resposta prevista do 

modelo logístico em função do preditor, mantendo as demais variáveis constantes. A 

linha azul representa a tendência dos dados reais, enquanto a linha vermelha 

tracejada indica a predição feita pelo modelo. 
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Figura 4 - Efeito Marginal do Modelo de Regressão Logística: Dados da Anamnese. 

 

Fonte: Dados da Pesquisa, 2025. 

 

Na Figura 4, observa-se que as variáveis idade e Nº Total de SV apresentam 

relações crescentes com a resposta, o que indica bom ajuste do modelo. Entretanto, 

na variável Nº Total de FR, a relação é mais complexa e não linear. Além disso, o 

gráfico do preditor linear mostra a curva sigmoide esperada da regressão logística, 

com bom alinhamento entre os valores observados e os preditos, indica um bom ajuste 

geral do modelo.  

Quanto ao desempenho geral do modelo de regressão logística, a área sob a 

curva ROC (AUC) foi de 0,6031. Esse valor indica que o modelo possui uma 

capacidade moderada de discriminar entre os estágios da prontidão. Embora superior 

a um classificador aleatório (AUC = 0,5), esse resultado sugere que o modelo ainda 

apresenta limitações. Além disso, o ponto de corte escolhido a partir do critério de 

Youden foi de 0,710. 

Depois, foi utilizado o algoritmo k-Nearest Neighbors (KNN). Para selecionar o 

valor ideal do hiperparâmetro k (número de vizinhos), realizou-se uma validação 

cruzada com 10 partições (10-fold cross-validation). A Figura 5 apresenta a acurácia 

obtida para diferentes valores do k. Através desta visualização, pode-se identificar o 

valor de k que amplia a precisão do modelo em dados não vistos. 
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Figura 5 - Número de Vizinhos do KNN com Base na Acurácia: Dados da 

Anamnese. 

 

Fonte: Dados da Pesquisa, 2025. 

 

A Figura 5 indica que o valor ideal de k para este modelo KNN é 5, pois é nesse 

ponto que o modelo alcança a maior acurácia (aproximadamente 82%) durante o 

processo de validação cruzada. Utilizar um k maior resultaria em um modelo com 

menor poder preditivo (menor acurácia). Portanto, k = 5 foi escolhido como o 

hiperparâmetro ideal para este modelo KNN. 

Outrossim, o modelo KNN apresentou AUC de 0,5923, indicando uma 

capacidade moderada, porém ligeiramente inferior a da regressão logística, de 

discriminar entre os indivíduos nos diferentes estágios de prontidão. Seguindo o 

critério de Youden, o ponto de corte escolhido foi de 0,024, para classificar os 

indivíduos no estágio de prontidão. 

No modelo Naive Bayes, a acurácia foi utilizada como critério para selecionar 

os hiperparâmetros fL, usekernel e adjust. O parâmetro fL define o grau de suavização 

de Laplace, sendo usado para evitar probabilidades nulas, especialmente em 

variáveis categóricas. O parâmetro usekernel indica se será utilizada a estimativa de 

densidade por kernel, permite uma modelagem não paramétrica e mais flexível da 

distribuição das variáveis contínuas. Já o parâmetro adjust regula a largura da função 
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kernel utilizada na estimativa de densidade, influencia diretamente o grau de 

suavização aplicado (John; Langley, 1995). 

Figura 6 - Hiperparâmetros do Naive Bayes com Base na Acurácia: Dados da 

Anamnese. 

 

Fonte: Dados da Pesquisa, 2025. 

 

Com base na Figura 6, os hiperparâmetros adotados para o modelo Naive 

Bayes foram: fL = 0, usekernel = TRUE e adjust = 1.O valor fL = 0 define que não será 

aplicada suavização aos dados de treinamento, ou seja, o modelo utilizará os dados 

como estão. O hiperparâmetro usekernel = TRUE ativa a estimativa de densidade por 

kernel, permite modelar a distribuição das variáveis de forma mais flexível e não 

paramétrica. Já o adjust = 1 indica o uso do valor padrão de ajuste da largura da 

função kernel. 

 Quanto a árvore de decisão, a Figura 7 mostra como a acurácia do modelo 

varia com a profundidade máxima permitida para suas árvores. A profundidade 

máxima para a árvore escolhida para o modelo foi 11 por apresentar a maior acurácia, 

esse parâmetro controla o quanto a árvore pode crescer. 
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Figura 7 - Profundidade Máxima da Árvore de Decisão com Base na Acurácia: 

Dados da Anamnese. 

 

Fonte: Dados da Pesquisa, 2025. 

 

A Figura 8 apresenta a árvore de decisão gerada pelo modelo, que ilustra as 

regras utilizadas para classificar as observações com base nas variáveis preditoras. 
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Figura 8 - Árvore de Decisão com os Dados da Anamnese. 

 

Fonte: Dados da Pesquisa, 2025. 

 

A primeira divisão da árvore ocorre com base na variável N° Total de SV, o que 

indica sua importância como preditora. Em seguida, a árvore se ramifica por outras 

variáveis relevantes, como idade, N° Total de FR e queixa. O modelo de árvore de 

decisão apresentou AUC de 0,4077, indica baixa capacidade discriminativa do 

modelo. O ponto de corte utilizado foi 0,1, o modelo não foi capaz de prever 

adequadamente o estágio de prontidão Contemplação o que também é evidenciado 

pela baixa AUC. 

Por fim, ainda com os dados da anamnese foi criado um modelo de Floresta 

Aleatória, a Figura 9 apresenta a variação da acurácia para diferentes combinações 

de hiperparâmetros, assim permite visualizar qual configuração proporcionou o melhor 

desempenho para este modelo. 
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Figura 9 - Hiperparâmetros da Floresta Aleatória com Base na Acurácia: Dados da 

Anamnese. 

 

Fonte: Dados da Pesquisa, 2025. 

 

Com base no observado na Figura 9, os hiperparâmetros adotados para o 

modelo foram mtry = 3, que determina o número de variáveis consideradas em cada 

divisão da árvore, e ntree = 1000, que corresponde ao número total de árvores 

construídas no modelo de Floresta Aleatória.  

O erro OOB é uma estimativa do erro de generalização calculado durante o 

treinamento, faz uso dos dados que não foram usados na construção de cada árvore 

no modelo de floresta aleatória. Na Figura 10, pode-se observar a visualização do erro 

OOB. 
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Figura 10 - Erro OOB no Modelo Floresta Aleatória: Dados da Anamnese. 

 

Fonte: Dados da Pesquisa, 2025. 

 

De acordo com a Figura 10, as taxas de erro OBB são inicialmente altas, mas 

conforme o número de árvores aumenta, as taxas de erro diminuem e, em seguida, 

se estabilizam em valores baixos com o erro OOB de 1.31%. Isso indica que o modelo 

atinge um desempenho robusto e generalizável, sendo ligeiramente melhor na 

classificação do Estágio de Prontidão Manutenção. 

Essa matriz a seguir mostra como o modelo classificou as amostras OOB, 

separadas por estágio: 

Tabela 4 - Matriz de confusão OOB: dados da Anamnese. 

 Contemplação  Manutenção Erro da classe 

Contemplação 153 0 0.000 (0%) 

Manutenção 4 149 0.026 (2,6%) 

Fonte: Dados da Pesquisa, 2025. 

 

A matriz de confusão OOB mostrou acurácia quase perfeita, com todos os 

acertos no estágio de contemplação e apenas quatro erros no estágio de manutenção, 

dessa forma indica alta capacidade de classificação. Apesar desses resultados 
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promissores, é importante ressaltar que a validação em dados de teste é essencial 

para verificar a capacidade de generalização do modelo. 

O valor da AUC obtido foi de 0,8262, indicando um bom poder discriminativo 

do modelo. O melhor comparado aos demais modelos. Foi identificado o ponto de 

corte com o critério de Youden de 0,853. Com esse novo ponto de corte, foi realizada 

a classificação dos casos, permitindo a construção da matriz de confusão a seguir: 

Tabela 5 – Matriz de Confusão da Floresta Aleatória: Dados da Anamnese. 

 Contemplação Manutenção  

Contemplação 5 22 

Manutenção 0 43 

Fonte: Dados da Pesquisa, 2025. 

 

Na matriz de confusão com os dados de teste, o modelo apresentou 

desempenho perfeito na classificação de indivíduos no estágio de contemplação, sem 

ocorrência de falsos positivos. No entanto, teve dificuldade em identificar corretamente 

os casos do estágio de manutenção, cometendo 22 falsos negativos. Esse 

desempenho sugere limitação na capacidade de generalização do modelo e evidencia 

a importância da validação externa para uma avaliação mais precisa. 

 

Tabela 6 – Desempenho dos Modelos para Classificação do Estágio de Prontidão 

com Dados da Anamnese. 

 
Regressão 

Logística 
KNN Naive Bayes 

Árvore de 

Decisão 

Floresta 

Aleatória 

Acurácia 0,6429 0,9286 0,7286 0,8429 0,6857 

Acurácia 

Balanceada 0,7154 0,6846 0,3923 0,4538 0,8308 

Kappa 0,1379 0,4068 -0,1176 -0,0845 0,2183 

      

Sensibilidade 0,6308 0,9692 0,7846 0,9077 0,6615 

Especificidade 0,8000 0,4000 0,0000 0,0000 1,0000 

Valor Preditivo 

Positivo 0,9762 0,9545 0,9107 0,9219 1.0000 
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Valor Preditivo 

Negativo 0,1429 0,5000 0,0000 0,0000 0,1852 

Taxa de Detecção 0,5857 0,9000 0,7286 0,8429 0,6143 

Prevalência 

Estimada 0,6000 0,9429 0,8000 0,9143 0,6143 

Taxa de Informação 

Nula 

0,9286 0,9286 0,9286 0,9286 0,9286 

P-Valor [Acurácia > 

Taxa de Informação 

Nula] 1,0000 0,6160 1,0000 0,9962 1,0000 

P-Valor do Teste de 

McNemar 1,083e-05 1,000 0,0665 1,0000 7,562e-06 

Fonte: Dados da Pesquisa, 2025. 

 

A Tabela 6 apresenta uma visão abrangente das métricas de desempenho dos 

modelos. Os modelos avaliados devem apresentar acurácia superior a 92,37%, valor 

equivalente ao desempenho de um classificador que atribui todas as observações à 

classe majoritária (estágio de manutenção). Superar esse valor indica que o modelo 

é capaz de identificar padrões relevantes nos dados, classificando corretamente 

observações que não pertencem à classe majoritária.  

Entre os modelos testados, apenas o K-NN demonstrou efetividade, 

apresentando desempenho acima (0,9286). Em relação à sensibilidade, o KNN 

apresentou um valor alto (0,9692), indicando que é eficaz na detecção do estágio de 

manutenção. No entanto, sua especificidade foi baixa (0,4000), o que sugere uma 

maior propensão a classificar erroneamente o estágio de contemplação. Sugere que 

os dados da anamnese podem contribuir para identificar o estágio em que o paciente 

se encontra, permitindo estratégias de intervenção mais direcionadas desde o início 

da terapia de voz.  

A Floresta Aleatória apresentou acurácia balanceada mais alta (0,8308), além 

de especificidade perfeita (1,0000) e valor preditivo positivo também perfeito (1,0000), 

o que demonstra excelente desempenho na identificação de contemplação e precisão 

nas classificações de manutenção. Considerando o conjunto de métricas e a 

necessidade de classificar adequadamente ambos os estágios nos dados da 

anamnese, a floresta aleatória é um modelo mais indicado. 
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A Regressão Logística também se destacou pela alta especificidade (0,8000) 

e pelo valor preditivo positivo elevado (0,9762), embora sua sensibilidade tenha sido 

mais baixa (0,6308), o que indica maior dificuldade em identificar corretamente os 

casos no estágio de manutenção. Enquanto os modelos Naive Bayes e Árvore de 

Decisão apresentaram especificidade nula (0,0000), o que indica falha total na 

identificação dos casos de contemplação. Isso também é refletido nos valores 

negativos ou muito baixos do Kappa e da acurácia balanceada, sugere que apesar de 

apresentarem acurácias absolutas aparentemente altas, seu desempenho prático é 

comprometido. 

Figura 11 – Valores de AUC dos Modelos: Dados da Anamnese. 

 

Fonte: Dados da Pesquisa, 2025. 

 

Com base nos valores de AUC obtidos (Figura 11), observa-se que a Floresta 

Aleatória apresentou o melhor desempenho, com AUC de 0,8262, indicando maior 

capacidade de discriminar corretamente os diferentes estágios de prontidão. Em 

seguida, aparecem a Regressão Logística e o KNN, com valores de 0,6031 e 0,5923, 

respectivamente, sugerindo desempenho moderado. Já os modelos Naive Bayes 

(0,4508) e Árvore de Decisão (0,4308) apresentaram valores abaixo de 0,5, o que 

indica desempenho inferior, próximo ou abaixo do nível esperado pelo acaso. 
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Esses resultados sugerem que a escolha do modelo influência de forma 

relevante a capacidade preditiva no contexto avaliado, pois diferentes algoritmos 

apresentam desempenhos variados na classificação do estágio de prontidão. A 

Floresta Aleatória, conseguiu capturar padrões mais complexos nos dados e resultou 

em maior discriminabilidade, refletida pelo valor mais alto de AUC. Por outro lado, 

modelos como Naive Bayes e Árvore de Decisão, que apresentaram desempenho 

inferior, podem não ser adequados para lidar com as características específicas dos 

dados da anamnese.  

Na área da voz, o modelo de Floresta Aleatória já se mostrou capaz de 

identificar com alta precisão e sensibilidade diferentes distúrbios vocais, incluindo a 

detecção precoce de alterações acústicas associadas a doenças neurológicas e 

funcionais (Byeon, 2021). Esses achados evidenciam o potencial da aplicação do 

modelo preditivo de Floresta Aleatória, para auxiliar fonoaudiólogos na tomada de 

decisão e no direcionamento de condutas preventivas e terapêuticas mais assertivas. 

Quanto às variáveis analisadas, a literatura demonstra que fatores 

sociodemográficos como sexo e idade influenciam a prontidão para mudança em 

contextos de saúde (Pedersen et al., 2009; Bulc; Svab; Godycki-Cwirko, 2014; Rocha, 

2020). Ademais, a exposição a fatores de riscos intensifica a gravidade dos sintomas 

vocais, (Martins et al., 2024), o que pode impactar no avanço do estágio de prontidão 

para mudança, pois indivíduos com queixas possuem um maior comprometimento 

emocional e vocal (Costa et al., 2013), e ao aumentar a percepção das limitações 

impostas pela condição, pode também funcionar como motivador para realizar as 

mudanças necessárias do comportamento vocal. Assim, destaca-se a necessidade de 

considerar essas particularidades dos indivíduos nas intervenções. 

5.3 Modelos de AM - Dados dos Instrumentos de Autoavaliação 

Foram desenvolvidos modelos de regressão logística, KNN, Naive Bayes, 

Árvore de Decisão e Floresta aleatória com variáveis extraídas dos instrumentos de 

autoavaliação IDV10-TRI, QVV-TRI, ESV-TRI e EDTV-TRI, as quais foram 

empregadas como preditoras na construção dos modelos. Inicialmente, foi ajustado 

um modelo de regressão logística. O gráfico do efeito marginal do modelo (Figura 12) 

permitiu avaliar se a relação entre as variáveis preditoras derivadas dos instrumentos 

e a variável resposta foi adequadamente modelada. 

 



63 
 

Figura 12 – Efeito Marginal do Modelo de Regressão Logística: Dados dos 

Instrumentos de Autoavaliação. 

 
Fonte: Dados da Pesquisa, 2025. 

 

Observa-se na Figura 12, que o modelo segue de forma geral o padrão 

esperado, com uma curva em S, típica da regressão logística. No entanto, há 

pequenas discrepâncias, pois o modelo tende a subestimar as probabilidades nos 

valores mais baixos do preditor linear e a superestimar nos valores mais altos. Ainda 

assim, o ajuste pode ser considerado razoável, indicando que o modelo representa 

adequadamente a relação entre as variáveis preditoras e a variável resposta. Além 

disso, a AUC foi de aproximadamente 0,46, isso sugere que o modelo tem um 

desempenho inferior ao acaso na distinção do estágio de prontidão, pois uma AUC de 

0,5 indicaria desempenho equivalente ao acaso. O ponto de corte selecionado para 

este modelo foi de 0,195.  

Em seguida foi criado o modelo KNN. Na Figura 13, no eixo horizontal (x), os 

diferentes valores de k testados, enquanto no eixo vertical (y), tem a acurácia 

correspondente a cada valor de k, obtida durante o processo de validação cruzada. 
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Figura 13 - Número de Vizinhos do KNN com Base na Acurácia: Dados dos 

Instrumentos de Autoavaliação. 

 

Fonte: Dados da Pesquisa, 2025. 

 

A Figura 13 mostra que a acurácia variou com os diferentes valores de k, atingiu 

seu ponto máximo quando k = 17. Esse ponto é considerado o melhor valor de k, pois 

é onde o modelo obteve o melhor desempenho preditivo de acordo com a acurácia. 

Assim, entre os valores testados, foi considerado para o modelo os 17 vizinhos mais 

próximos. O modelo KNN apresentou AUC de 0,5831, indicando 58,31% de chances 

de prever corretamente, esse desempenho é levemente melhor do que o acaso na 

classificação do estágio de prontidão. Além disso, foi definido o ponto de corte de 

0,239, aplicou-se esse ponto de corte para classificar os dados de teste. 

 No modelo Naive Bayes, também foi utilizada a validação cruzada com 10 

repartições. Na Figura 14 a acurácia foi utilizada como critério para selecionar os 

hiperparâmetros fL, usekernel e adjust. A definição adequada desses hiperparâmetros 

é essencial para melhorar o desempenho do modelo, pois busca equilibrar viés e 

variância para que consiga generalizar melhor com novos dados. 
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Figura 14 - Hiperparâmetros do Naive Bayes com Base na Acurácia: Dados dos 

Instrumentos de Autoavaliação. 

 

Fonte: Dados da Pesquisa, 2025. 

 

Conforme observa-se na Figura 14, os parâmetros finais adotados para o 

modelo foram fL = 0, que controla o ajuste de Laplace; usekernel = TRUE, indica o 

uso de uma função kernel para suavizar as estimativas; e adjust = 1, que ajusta a 

largura do kernel. Essa configuração buscou melhorar o desempenho preditivo, como 

evidenciado pelo valor máximo de acurácia obtido durante o treinamento. 

O modelo Naive Bayes apresentou AUC de 0,4508, indicando um desempenho 

inferior ao acaso na classificação do estágio de prontidão para a mudança. O ponto 

de corte selecionado foi de 0,126 e foi aplicado para classificar os dados de teste. 

Contudo, o baixo valor da AUC sugere que o modelo Naive Bayes pode não ser eficaz 

para predizer novos dados. 

A Figura 15 apresenta a acurácia do modelo de árvore de decisão em função 

da profundidade máxima (maxdepth), obtido a partir da acurácia média nas 10 

repartições da validação. Por meio dessa visualização, é possível observar o 

comportamento do modelo conforme o aumento da complexidade, auxiliando na 

escolha do ponto ótimo de corte para o parâmetro profundidade máxima. 
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Figura 15 - Profundidade Máxima da Árvore de Decisão com Base na Acurácia: 

Dados dos Instrumentos de Autoavaliação. 

 

Fonte: Dados da Pesquisa, 2025. 

 

Desta forma, o parâmetro final adotado para o modelo de árvore de decisão foi 

maxdepth = 5, que limita a profundidade máxima da árvore, em busca de um equilíbrio 

entre complexidade do modelo e capacidade preditiva, e de evitar o ajuste excessivo 

aos dados de treino, o que comprometeria o desempenho em novos dados. 

Além da avaliação numérica do desempenho preditivo, o modelo de árvore de 

decisão permite a visualização gráfica de sua estrutura, o que contribui para a 

interpretação clínica dos resultados. A Figura 16 apresenta o diagrama gerado a partir 

do modelo final, com profundidade máxima de cinco níveis, conforme estabelecido na 

etapa de ajuste.  
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Figura 15 – Árvore de Decisão com Base nos Dados dos Instrumentos de 

Autoavaliação. 

 

Fonte: Dados da Pesquisa, 2025. 

 

Este diagrama de árvore de decisão mostra como diferentes variáveis são 

usadas para classificar observações. As variáveis mais relevantes para a divisão dos 

nós encontram-se nas camadas superiores da árvore, pois indica maior importância 

na definição do desfecho. Deste modo, a variável mais importante é o IDV10, que 

realiza a primeira divisão; quando alterado classifica como pertencentes ao estágio de 

manutenção, ou seja, sua alteração auxilia a prever que o indivíduo está nesse estágio 

de prontidão para a terapia de voz.  enquanto as outras variáveis como ESV, EDTV e 

QVV refinam a previsão. Assim, o gráfico ilustra claramente as regras de decisão do 

modelo. O modelo de Árvore de Decisão apresentou AUC de 0,5662, que indica um 

desempenho um pouco superior ao acaso na classificação do estágio de prontidão 

para a terapia de voz. O ponto de corte utilizado para fazer as predições com o 

conjunto teste foi de 0,174. 

No modelo de Floresta Aleatória, a acurácia foi utilizada como critério para 

selecionar o modelo ótimo, como pode-se observar na Figura 16, para o modelo foi 

escolhido os parâmetros que apresentaram o maior valor dessa métrica. Os 

parâmetros finais adotados foram mtry = 3, que determina o número de variáveis 

consideradas em cada divisão da árvore, e ntree = 500, que define a quantidade de 

árvores construídas no conjunto.  
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Figura 16 - Hiperparâmetros da Floresta Aleatória com Base na Acurácia: Dados 

dos Instrumentos de Autoavaliação. 

 

Fonte: Dados da Pesquisa, 2025. 

 

A validação interna do modelo de Floresta Aleatória foi realizada por meio da 

estimativa do erro Out-Of-Bag (OOB), que utiliza apenas os dados não empregados 

na construção de cada árvore para avaliar o desempenho preditivo. Nesse caso, o 

erro OOB foi de aproximadamente 29,08%, como pode ser observado na Figura 17, 

isso indica que o modelo errou 29,08% das vezes ao classificar essas observações, 

mesmo sem ter sido exposto a elas durante o treinamento. 
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Figura 17 – Erro OOB no Modelo Floresta Aleatória: Dados dos Instrumentos de 

Autoavaliação. 

 

Fonte: Dados da Pesquisa, 2025. 

 

A matriz de confusão a seguir mostra como o modelo classificou as amostras 

OOB, separadas por estágio: 

Tabela 7 - Matriz de Confusão OOB: Dados dos Instrumentos de Autoavaliação. 

 Contemplação Manutenção Erro da classe 

Contemplação 84 20 0.451 (45,1%) 

Manutenção 69 133 0.131 (13,1%) 

Fonte: Dados da Pesquisa, 2025. 

 

Constata-se que o modelo teve desempenho significativamente melhor para 

classificar o estágio de manutenção, enquanto quase metade dos que estavam no 

estágio contemplação foram classificados de forma equivocada. Ademais, o valor da 

AUC obtido foi de 0,5862, indicando um desempenho moderado na classificação do 

estágio de prontidão para a terapia de voz. Foi identificado o ponto de corte de 0,858. 

Com esse ponto de corte, foi realizada a classificação com o conjunto de teste, que 

permite a construção da matriz de confusão a seguir: 
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Tabela 8 – Matriz de Confusão da Floresta Aleatória: Dados dos Instrumentos de 

Autoavaliação. 

 Contemplação Manutenção 

Contemplação 2 12 

Manutenção 3 53 

Fonte: Dados da Pesquisa, 2025. 

 

Na matriz de confusão com os dados de teste (Tabela 8), o modelo apresentou 

desempenho excelente na classificação de indivíduos no estágio de manutenção. No 

entanto, teve dificuldade em identificar corretamente os casos do estágio de 

contemplação, semelhante aos resultados achados na validação interna. Esse 

desequilíbrio de desempenho pode indicar que mesmo com oversampling a presença 

de desbalanceamento ainda interferiu nas predições ou ainda que as variáveis 

preditoras utilizadas não foram suficientemente discriminativas. 

 

Tabela 9 - Desempenho dos Modelos para Classificação do Estágio de Prontidão com 

os Dados dos Instrumentos de Autoavaliação. 

 
Regressão 

Logística 
KNN Naive Bayes 

Árvore 

De Decisão 

Floresta 

Aleatória 

Acurácia 0,9143 0,9143 0,9143 0,9143 0,7857 

Acurácia 

Balanceada 
0,5846 0,5846 0,5846 0,5846 0,6077 

Kappa 0,2075 0,2075 0,2075 0,2075 0,1176 

Sensibilidade 0,9692 0,9692 0,9692 0,9692 0,8154 

Especificidade 0,2000 0,2000 0,2000 0,2000 0,4000 

Valor 

Preditivo Positivo  
0,9403 0,9403 0,9403 0,9403 0,9464 

Valor  

Preditivo 

Negativo 

0,3333 0,3333 0,3333 0,3333 0,1429 

Taxa de Detecção 0,9000 0,9000 0,9000 0,9000 0,8000 

Prevalência 

Estimada 
0,9571 0,9571 0,9571 0,9571 0,6077 
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Regressão 

Logística 
KNN Naive Bayes 

Árvore 

De Decisão 

Floresta 

Aleatória 

Taxa de 

Informação Nula 

(NIR) 

0,9286 0,9286 0,9286 0,9286 0,9286 

p-valor [Acurácia 

> NIR] 
0,7678 0,7678 0,7678 0,7678 0,9997 

p-valor do Teste 

de McNemar 
0,6831 0,6831 0,6831 0,6831 0,0389 

      

Fonte: Dados da Pesquisa, 2025. 

 

Em relação à capacidade dos modelos com variáveis dos instrumentos de 

autoavaliação em identificar corretamente os indivíduos no estágio de contemplação, 

observa-se que a especificidade foi limitada. Conforme apresentado na Tabela 9, a 

maioria dos modelos apresentou especificidade próxima a 2.000, indicando baixa 

performance na correta classificação dos casos deste estágio. Apenas o modelo de 

Floresta Aleatória alcançou desempenho superior, com especificidade de 4.000, 

evidenciando maior sensibilidade à detecção da classe menos frequente. Esses 

achados sugerem que, de forma geral, os modelos não foram eficazes em prever o 

estágio de prontidão contemplação com base em instrumentos de autorrelato, com a 

Floresta Aleatória se destacando como o algoritmo de melhor desempenho relativo, 

ainda que com limitações. 
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Figura 18 - Valores de AUC dos Modelos: Dados dos Instrumentos de 

Autoavaliação. 

 

Fonte: Dados da Pesquisa, 2025. 

 

Os valores de AUC obtidos para os diferentes modelos indicam variações no 

desempenho preditivo na classificação do estágio de prontidão. O modelo de Floresta 

Aleatória apresentou o maior valor de AUC (0,5862), seguido de perto pelo KNN 

(0,5831) e pela Árvore de Decisão (0,5662), sugerindo desempenho ligeiramente 

superior ao acaso, mas ainda modesto. A Regressão Logística (0,4599) e o Naive 

Bayes (0,4508) apresentaram AUC inferiores a 0,5, o que indica baixa capacidade 

discriminatória.  

Esses resultados sugerem que, apesar de alguns algoritmos apresentarem 

desempenho um pouco melhor, nenhum modelo atingiu níveis elevados de predição, 

apontando para a complexidade da tarefa e possíveis limitações nas variáveis 

utilizadas para prever o estágio de prontidão. Adicionalmente, o desbalanceamento 

dos dados, com prevalência maior do estágio manutenção, também favorece a 

tendência dos modelos em classificar erroneamente os casos menos frequentes, 

reduzindo a especificidade.  

Contudo, o estágio de contemplação caracteriza-se pela ambivalência do 

indivíduo, com consciência do problema, porém sem decisão definitiva para a 

mudança, o que pode torna sua identificação um desafio para modelos preditivos que 
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dependem de padrões claros entre classes, especialmente na ausência de dados 

comportamentais complementares. Apesar da Floresta Aleatória apresentar 

desempenho relativo superior, ela ainda não alcançou níveis satisfatórios de 

especificidade, demonstrando as limitações impostas pela qualidade dos dados. 

Assim, recomenda-se a inclusão de variáveis comportamentais, psicossociais e dados 

clínicos objetivos para aprimorar a predição. 

5.4 Modelos de AM – Dados Clínicos do JPA, Diagnóstico Laríngeo e Disfonia 

 

Foram desenvolvidos modelos com as variáveis clínica relativas à presença de 

alteração do JPA, alteração laríngea e classificação da disfonia. O primeiro modelo 

com esses dados, foi a regressão logística. Na Figura 19, observa-se o gráfico do 

efeito marginal deste modelo, a sobreposição quase perfeita das duas linhas no 

gráfico indica que o modelo se ajusta muito bem aos dados, mostrando um bom poder 

preditivo para a variável URICA-VV. 

Figura 19 - Efeito Marginal do Modelo de Regressão Logística: Dados Clínicos do 

JPA, Diagnóstico Laríngeo e Disfonia. 

 

Fonte: Dados da Pesquisa, 2025. 

 

No modelo de regressão logística, o valor da AUC obtido foi de 0,6815, 

indicando uma capacidade moderada de discriminação entre as classes.  Com o 
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critério de Youden, foi identificado o ponto de corte de 0,486. Com esse limiar, foi 

gerada uma nova classificação para verificar o impacto do ajuste no desempenho do 

modelo. 

Após isso, foi desenvolvido um modelo KNN, através da validação cruzada foi 

possível identificar o melhor valor de K, a acurácia foi utilizada como critério para a 

seleção do mais adequado, conforme observado na Figura 20. Entre as diferentes 

configurações testadas, o modelo com melhor acurácia foi aquele com k=5, valor 

adotado para construção do modelo. Esse resultado indica que, ao considerar os cinco 

vizinhos mais próximos para a tomada de decisão, o modelo obteve a melhor taxa de 

acerto na classificação dos dados. 

Figura 20 - Número de Vizinhos do KNN com Base na Acurácia: Dados Clínicos do 

JPA, Diagnóstico Laríngeo e Disfonia. 

 

Fonte: Dados da Pesquisa, 2025. 

 

Além disso, no KNN o valor da AUC obtido foi de 0,4923, indicando um 

desempenho inferior ao esperado, com capacidade de discriminação próxima ao 

acaso. O ponto de corte utilizado para as novas predições foi de 0,307, que 

proporcionou a melhor combinação entre sensibilidade e especificidade.  

Para o ajuste do modelo Naive Bayes, também foi realizada uma validação 

cruzada com o objetivo de identificar a combinação de hiperparâmetros que 

proporcionasse o melhor desempenho na classificação. Na Figura 21, é possível 
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observar que a melhor acurácia foi alcançada com a combinação dos parâmetros fL = 

0, usekernel = TRUE e adjust = 3. Esses valores indicam que o modelo utilizou 

estimativa de densidade com kernel para a função de probabilidade, sem aplicação 

de suavização adicional via parâmetro fL, e com um fator de ajuste ampliado na 

largura de banda do kernel, para melhorar o desempenho na classificação. 

Figura 21 - Hiperparâmetros da Floresta Aleatória com Base na Acurácia: Dados 

Clínicos do JPA, Diagnóstico Laríngeo e Disfonia. 

 

Fonte: Dados da Pesquisa, 2025. 

 

No modelo Naive Bayes, também foi realizada a análise da AUC com o valor 

de 0,6231, que indica uma capacidade moderada de discriminar o estágio de 

prontidão. A partir da curva, identificou o ponto de corte de 0,556 que foi utilizado para 

gerar novas predições com os dados de teste.  

Enquanto, na Árvore de Decisão, foi identificado que o modelo com melhor 

desempenho apresentava como parâmetro o valor de maxdepth = 7. Isso indica que 

a profundidade máxima da árvore de decisão foi limitada a sete níveis. A Figura 22 

apresenta a variação da acurácia em função do parâmetro profundidade máxima, e 

evidencia o ponto de melhor performance adotado como modelo final. 
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Figura 22 - Profundidade Máxima da Árvore de Decisão com Base na Acurácia: 

Dados Clínicos do JPA, Diagnóstico Laríngeo e Disfonia. 

 

Fonte: Dados da Pesquisa, 2025. 

 

A árvore (Figura 23) mostra que a alteração do JPA foi a variável mais 

relevante, aparecendo no topo da estrutura, as outras variáveis como alteração 

laríngea e classificação da disfonia entram na sequência para realizar a previsão, e 

resulta em combinações com diferentes percentuais da classificação final. 
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Figura 23 – Árvore de Decisão de Dados Clínicos do JPA, Diagnóstico Laríngeo e 

Disfonia. 

 

Fonte: Dados da Pesquisa, 2025. 

 

 Quanto a curva ROC, foi utilizada para avaliar o desempenho do modelo de 

árvore de decisão, resultando em uma AUC de 0,4646, o que indica desempenho 

abaixo do esperado. Foi identificado o ponto de corte ideal de 0,307, que foi aplicado 

para realizar as predições no conjunto teste. 

No modelo de Floresta Aleatória, foi analisada a acurácia na validação cruzada 

em função dos parâmetros mtry e ntree. O modelo final selecionado utilizou mtry = 2, 

então duas variáveis foram consideradas em cada divisão, e ntree = 500, ou seja, a 

floresta foi composta por 500 árvores. Na Figura 24, mostra como a acurácia variou 

com diferentes valores de mtry e ntree.  
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Figura 24 - Hiperparâmetros da Floresta Aleatória com Base na Acurácia: Dados 

Clínicos do JPA, Diagnóstico Laríngeo e Disfonia. 

 

Fonte: Dados da Pesquisa, 2025. 

 

Na floresta aleatória, a estimativa de erro OOB foi de 28,76%, indicando que 

aproximadamente um quarto das observações foram classificadas incorretamente 

pelo modelo durante a validação interna, como constatado na Figura 25. 
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Figura 25 – Erro OOB do Modelo Floresta Aleatória: Dados Clínicos do JPA, 

Diagnóstico Laríngeo e Disfonia. 

 

Fonte: Dados da Pesquisa, 2025. 

 

A matriz de confusão, gerada com as amostras OOB, mostrou que o modelo 

teve maior dificuldade em classificar corretamente os casos de manutenção, com uma 

taxa de erro de aproximadamente 39,86%, enquanto contemplação apresentou 

desempenho superior, com erro de 17,64%. A matriz de confusão a seguir mostra 

como o modelo classificou as amostras OOB: 

 

Tabela 10 – Matriz de Confusão OOB: dados clínicos do JPA, Diagnóstico Laríngeo 

e Disfonia. 

 Contemplação Manutenção Erro da classe 

Contemplação 126 27 0.1764 (17,64%) 

Manutenção 61 92 0.3986 (39,86%) 

Fonte: Dados da Pesquisa, 2025. 

 

Esses resultados sugerem que teve melhor desempenho na identificação do 

estágio contemplação. Além disso, a AUC obtida foi de 0,6292, o que representa um 

desempenho moderado na classificação do estágio de prontidão para a terapia de 
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voz. Identificou-se o ponto de corte ideal em 0,867. Com base nesse limiar, foi 

realizada a classificação dos dados do conjunto de teste, resultando na matriz de 

confusão apresentada a seguir: 

Tabela 11 – Matriz de Confusão da Floresta Aleatória: Dados Clínicos do JPA, 

Diagnóstico Laríngeo e Disfonia. 

 Contemplação Manutenção 

Contemplação 5 44 

Manutenção  0 21 

Fonte: Dados da Pesquisa, 2025. 

 

 Os resultados com o conjunto de teste também mostraram melhor predição do 

estágio contemplação, assim como as predições obtidas com as amostras OOB. 

Embora o desempenho geral do modelo não tenha sido excelente, a validação externa 

confirmou os achados da validação interna, o que reforça a consistência dos 

resultados obtidos. 

 

Tabela 12 – Desempenho dos Modelos para Classificação do Estágio de Prontidão 

com os Dados Clínicos do JPA, Diagnóstico Laríngeo e Classificação da Disfonia 

para classificação. 

 
Regressão 

Logística 
KNN 

Naive 

Bayes 

Árvore 

de Decisão 

Floresta 

Aleatória 

Acurácia 0,7571 0,8571 0,7000 0,8857 0,3714 

Acurácia Balanceada 0,6846 0,5538 0,6538 0,5692 0,6615 

Kappa 0,1678 0,0909 0,1198 0,1385 0,0638 

Sensibilidade 0,7692 0,9077 0,7077 0,9385 0,3231 

Especificidade 0,6000 0,2000 0,6000 0,2000 1,0000 

Valor Preditivo 

Positivo 
0,9615 0,9365 0,9583 0,9385 1,0000 

Valor Preditivo 

Negativo 
0,1667 0,1429 0,1364 0,2000 0,1020 

Prevalência 0,9286 0,9286 0,9286 0,9286 0,9286 

Taxa de Detecção 0,7143 0,8429 0,6571 0,8714 0,3000 

Prevalência Estimada 0,7429 0,9000 0,6857 0,9286 0,3000 
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Regressão 

Logística 
KNN 

Naive 

Bayes 

Árvore 

de Decisão 

Floresta 

Aleatória 

Taxa de Informação 

Nula 
0,9286 0,9286 0,9286 0,9286 0,9286 

P-Valor [Acurácia > 

Taxa de Inf. Nula] 
0,999999 0,9894 1,000000 0,9391 1,0000 

P-Valor Teste de 

McNemar 
0,003609 0,7518 0,0004803 1,0000 9,022e-11 

      

Fonte: Dados da Pesquisa, 2025. 

 
Os resultados indicam que a Árvore de Decisão apresentou um bom 

desempenho, com a maior acurácia (0,8857) e sensibilidade de 0,9385, o que 

demonstra ótima capacidade para detectar o estágio manutenção, embora tenha 

baixa especificidade de 0,2000, indicando dificuldade em reconhecer o estágio 

contemplação. O KNN apresentou resultados semelhantes em acurácia (0,8571), 

sensibilidade (0,9077) e especificidade (0,2000).  

A Regressão Logística e o Naive Bayes mostraram desempenho mais 

equilibrado entre os estágios, com acurácia balanceada superior, sendo 0,6846 para 

a Regressão Logística e 0,6538 para o Naive Bayes, além de especificidade razoável 

de 0,6000 e sensibilidade de 0,7692 para regressão e 0,7077 para naive bayes. Por 

outro lado, a Floresta Aleatória apresentou especificidade perfeita (1,0000) e alto valor 

preditivo positivo, o que indica excelente capacidade para identificar corretamente o 

estágio contemplação. Contudo, teve baixa sensibilidade (0,3231) e acurácia baixa 

(0,3714), demonstrando dificuldade significativa para detectar o estágio manutenção.  

Além disso, os valores de valor preditivo positivo são elevados em todos os 

modelos, especialmente na Floresta Aleatória, o que indica que quando o modelo 

prevê o estágio de manutenção, a chance de estar correto é alta. Porém, os valores 

de valor preditivo negativo são baixos, apontando dificuldade em afirmar corretamente 

os casos no estágio de contemplação. 

Em suma, a Regressão Logística destaca-se pelo melhor equilíbrio entre 

sensibilidade e especificidade, acurácia balanceada e valores estatísticos, tornando-

a mais adequada para predição nesse conjunto de dados. O KNN a Árvore de 

Decisão, apesar de maior acurácia, sofre com baixa especificidade e acurácia 
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balanceada, comprometendo a identificação da classe minoritária. O Naive Bayes 

também é um candidato viável, apresentando desempenho intermediário e equilíbrio 

razoável. Já a Floresta Aleatória, apesar da especificidade perfeita, apresenta baixa 

sensibilidade e acurácia inferior, sugerindo que não é o modelo ideal. 

Figura 26 – Valores de AUC dos Modelos: Dados clínicos JPA, Diagnóstico 

Laríngeo e Classificação da Disfonia. 

 

Fonte: Dados da Pesquisa, 2025. 

 

Os valores de AUC obtidos mostram que a Regressão Logística apresentou o 

melhor desempenho (0,6815), seguida pela Floresta Aleatória (0,6292) e pelo Naive 

Bayes (0,6231), indicando moderada capacidade de discriminação entre os estágios 

de prontidão. Por outro lado, o KNN (0,4923) e a Árvore de Decisão (0,4646) tiveram 

desempenho inferior a 0,5, sugerindo baixa capacidade discriminatória e resultados 

próximos ao acaso. Esses achados indicam que, embora alguns modelos tenham 

alcançado desempenho moderado (Regressão Logística e Naive Bayes), a tarefa de 

prever o estágio de prontidão continua desafiadora, possivelmente devido à 

complexidade do constructo e à necessidade de variáveis adicionais que capturem 

melhor as diferenças entre os grupos. 

Em outros estudos que verificaram o tipo de disfonia, em casos de disfonia 

comportamental, observou-se predominância do estágio de contemplação, com 
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mudanças limitadas ao longo da terapia (Costa et al., 2017), enquanto em disfonias 

orgânicas, estratégias educativas, demonstraram potencial para aumentar a prontidão 

e favorecer mudanças comportamentais relacionadas à voz (Kopf, Graetzer & Hun, 

2015). Ademais, quando o impacto emocional da disfonia é elevado, maior é a adesão 

do paciente a terapia de voz, evidenciando a importância de predizer o estágio de 

prontidão para orientar intervenções motivacionais (Góes et al., 2016). 

Assim, o estado psicológico do paciente e o ambiente de tratamento exerce um 

papel fundamental na prontidão para a mudança (Krebs et al., 2018), destaca-se a 

necessidade de estratégias terapêuticas que integrem tanto a motivação individual 

quanto o suporte externo. Esses fatores psicossociais podem influenciar o estágio de 

prontidão para a terapia de voz. Isso sugere que, embora as variáveis clínicas sejam 

importantes para o diagnóstico e o manejo da disfonia, é necessário reconhecer a 

influência de fatores psicológicos no estágio de prontidão. 

5.5 Modelos de AM – Dados das Medidas Acústicas 

 
Foram criados modelos também com as medidas acústica. A partir dos gráficos 

de efeitos marginais (Figura 27) gerados com base no modelo de regressão logística, 

foi possível observar a relação individual entre variáveis acústicas da voz e a variável 

resposta. Esses gráficos por permitirem visualizar o efeito isolado de cada preditor e 

manterem os demais constantes no modelo ajustado, tornam-se uma ferramenta útil 

para interpretação clínica e estatística dos modelos preditivos. 
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Figura 27 – Efeito Marginal do Modelo de Regressão Logística: Medidas Acústicas. 

 
Fonte: Dados da Pesquisa, 2025. 

 

Na Figura 27 mostra que variáveis acústicas apresentam relações importantes 

com a prontidão para mudança vocal no modelo de Regressão logística. A Intensidade 

e o Período apresentaram relação inversa com a variável resposta, sugerindo que 

vozes mais intensas e com frequência fundamental mais alta estariam associadas ao 

estágio de contemplação. Isso pode indicar que indivíduos com vozes mais estáveis 

ou menos comprometidas percebem menor necessidade de modificar seu 

comportamento vocal, permanecendo em estágios iniciais, como a contemplação.  

Entretanto, variáveis como Shimmer, Tilt e CPPS desvio padrão mostraram 

associação positiva com a prontidão, sugerindo que maior instabilidade ou distorção 

vocal está relacionada a maior prontidão para a mudança (manutenção), 

possivelmente devido à percepção mais clara do problema vocal.  A AUC obtida foi de 

0,6308, indicando que o modelo tem uma capacidade moderada de discriminar. O 

valor de corte utilizado foi 0,949 para realizar as predições. 

No modelo KNN, a escolha do valor de k foi realizada por meio de validação 

cruzada, utilizando a acurácia como critério de desempenho. A Figura 28 apresenta a 
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variação da acurácia em diferentes valores de k, assim permite identificar o ponto 

ideal. 

Figura 28 - Número de Vizinhos do KNN com Base na Acurácia: Medidas Acústicas 

 

Fonte: Dados da Pesquisa, 2025. 

 

Na Figura 28 demonstra que a maior acurácia (aproximadamente 0.80) é obtida 

com um baixo número de vizinhos, de k=5, assim sugere que modelos baseados nos 

5 vizinhos mais próximos oferecem o melhor desempenho preditivo. A partir desse 

ponto, a acurácia cai significativamente, indicando que valores maiores de k podem 

introduzir ruído e reduzir a capacidade do modelo de predizer de forma eficaz. No 

KNN, a AUC foi de 0,5662, sugerindo uma capacidade preditiva moderada, levemente 

acima do acaso. Utilizou-se o ponto de corte de 0,069, sendo adotado como limiar 

para as previsões.  

O modelo final de Naive Bayes foi selecionado com base na maior acurácia 

obtida durante o processo de validação. Os hiperparâmetros escolhidos foram: fL = 0, 

usekernel = TRUE e adjust = 1 (Figura 29). Isso significa que o modelo utilizou 

estimativas de densidade kernel (em vez de assumir distribuição normal para as 

variáveis) com ajuste padrão, e sem correção de suavização (fL = 0). Esses 

parâmetros indicam que o modelo buscou capturar melhor a distribuição real dos 
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dados sem adicionar suavização artificial, o que pode melhorar o desempenho em 

conjuntos de dados com características não paramétricas. 

 

Figura 29 - Hiperparâmetros do Naive Bayes com Base na Acurácia: Medidas 

Acústicas. 

 

Fonte: Dados da Pesquisa, 2025. 

 
Quando a AUC do modelo KNN, foi de 0,5262, esse valor indica um 

desempenho próximo ao aleatório na tarefa de discriminar entre os estágios da 

variável resposta. A partir da análise da curva, foi identificado o ponto de corte ótimo 

em 0,319. 

Em relação ao ajuste da Árvore de Decisão, o modelo final adotado foi com 

profundidade máxima igual a 8 (maxdepth = 8), pois apresentava a melhor acurácia, 

como apresenta a Figura 30, onde valores menores indicavam também acurácia 

menor na validação cruzada. 
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Figura 30 - Profundidade Máxima da Árvore de Decisão com Base na Acurácia: 

Medidas Acústicas. 

 

 

Fonte: Dados da Pesquisa, 2025. 

 

A Figura 31 apresenta a árvore de decisão construída para classificar o estágio 

de prontidão para a terapia de voz. A variável Shimmer local ocupa a divisão inicial da 

árvore, o que demonstra sua maior relevância para separar os estágios contemplação 

e manutenção. Em seguida, outras variáveis vocais como Tilt, Intensidade e CPPS 

desvio padrão aparecem em níveis subsequentes, com diferentes pontos de corte, 

para complementam a decisão ao longo da árvore. A variável Período não consta em 

nenhuma divisão, isso sugere que neste modelo específico, ela não apresentou 

capacidade discriminativa suficiente para diferenciar quanto à prontidão para a 

mudança. 
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Figura 31 – Árvore de Decisão das Medidas Acústicas. 

 

Fonte: Dados da Pesquisa, 2025. 

 

O modelo de Árvore de Decisão obteve uma AUC de 0,6262, indicando 

capacidade moderada para classificar o estágio de prontidão para mudança. O ponto 

de corte ótimo foi identificado em 0,567, equilibrando sensibilidade e especificidade. 

Com esse limiar ajustado, os dados do teste foram classificados para avaliar o 

desempenho do modelo. 

Além disso, o modelo Floresta Aleatória teve sua performance otimizada com 

base na métrica de acurácia, selecionando-se o valor mais alto obtido durante o 

processo de validação. Os melhores hiperparâmetros encontrados foram mtry = 1, 

indicando que uma variável preditora foi considerada a cada divisão das árvores, e 

ntree = 1000, o que significa que o modelo foi construído com 1000 árvores (Figura 

32). Esses parâmetros refletem a configuração que proporcionou o melhor 

desempenho do modelo na tarefa de classificação. 
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Figura 32 - Hiperparâmetros do Floresta Aleatória com Base na Acurácia: Medidas 

Acústicas. 

 

Fonte: Dados da pesquisa, 2025. 

 

Constata-se um desempenho excelente do modelo Floresta Aleatória, com erro 

OOB) de 0,98%, indica alta capacidade de generalização (Figura 33). O modelo 

apresentou alta precisão e equilíbrio, o estágio de prontidão contemplação é 

classificada com erro nulo, enquanto o de manutenção tem erro de 1,96%. Como 

pode-se observar na matriz a seguir: 

 

Tabela 13 – Matriz de Confusão OOB: Medidas Acústicas 

  Contemplação Manutenção Erro da classe 

Contemplação             153    0 0.000 (0%) 

Manutenção    3  150 0.0196 (1,96%) 

Fonte: Dados da pesquisa, 2025. 
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A matriz de confusão OOB indicou alta acurácia, com todos os acertos no 

estágio contemplação e apenas três erros no estágio manutenção, evidencia boa 

capacidade de classificação. Contudo, a validação em dados de teste é necessária 

para confirmar a generalização do modelo. 

 

Figura 33 – Erro OOB do Modelo de Floresta Aleatória: Medidas acústicas. 

 

Fonte: Dados da pesquisa, 2025. 

 

O valor da AUC obtido foi de 0,4738, indicando um desempenho inferior ao 

esperado, abaixo de 0,5, o que sugere que o modelo está classificando pior do que o 

acaso. O ponto de corte foi de 0,952, foi feita uma nova classificação e gerada a matriz 

de confusão a seguir: 

Tabela 14 – Matriz de Confusão da Floresta Aleatória: Medidas Acústicas. 

 Contemplação   Manutenção 

Contemplação            2           36 

Manutenção            3            29 

Fonte: Dados da pesquisa, 2025. 

 

Na matriz de confusão da validação externa, o modelo apresentou dificuldades 

para classificar corretamente o estágio contemplação, acertando apenas 2 casos e 

classificando erroneamente 36 indivíduos. Para o estágio manutenção, classificou 
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corretamente 29 casos, com 3 erros de classificação. Esses resultados diferem dos 

obtidos na validação interna, evidenciando limitação do modelo para generalizar a 

classificação dos estágios de prontidão.  

 

Tabela 15 – Desempenho dos Modelos Para Classificação do Estágio de Prontidão 

com Dados das Medidas Acústicas. 

 
Regressão 

Logística 
KNN 

Naive 

Bayes 

Árvore de 

Decisão 

Floresta 

Aleatória 

Acurácia 0,3571 0,8429 0,7857 0,8286 0,4429 

Acurácia Balanceada 0,6538 0,6385 0,6077 0,6308 0,4230 

Kappa 0,0597 0,1895 0,1176 0,1683 -0,038 

Sensibilidade 0,3077 0,8769 0,8154 0,8615 0,4461 

Especificidade 1,0000 0,4000 0,4000 0,4000 0,4000 

Valor Preditivo 

Positivo 
1,0000 0,9500 0,9464 0,9492 0,9062 

Valor Preditivo 

Negativo 
0,1000 0,2000 0,1429 0,1818 0,0526 

Prevalência 0,9286 0,9286 0,9286 0,9286 0,9286 

Taxa de Detecção 0,2857 0,8143 0,7571 0,8000 0,4143 

Prevalência Estimada 0,2857 0,8571 0,8000 0,8429 0,4571 

Taxa de Informação 

Nula 
0,9286 0,9286 0,9286 0,9286 0,9286 

P-Valor [Acurácia > 

Taxa Nula] 
1 0,9962 0,99997 0,9987 1 

P-Valor Teste de 

McNemar 
5.41e-11 0,2278 0,03887 0,1489 2.99e-07 

Fonte: Dados da Pesquisa, 2025. 

 

Conforme a Tabela 15, os modelos KNN e Árvore de Decisão apresentaram as 

melhores acurácias, com 0,8429 e 0,8286, respectivamente, e altas sensibilidades 

(acima de 0,86), indicando boa capacidade para identificar corretamente indivíduos no 

estágio de prontidão manutenção. No entanto, a especificidade desses modelos foi 
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baixa (0,4000), mostrando dificuldade na correta identificação dos indivíduos no 

estágio contemplação.  

O modelo Naive Bayes apresentou acurácia de 0,7857 e sensibilidade de 

0,8154, também com boa capacidade de identificação dos casos em manutenção, 

mas, assim como os demais, teve baixa especificidade (0,40), refletindo limitações na 

detecção dos indivíduos em contemplação. A acurácia balanceada, que pondera 

igualmente o desempenho em ambas as classes, foi semelhante entre Regressão 

Logística (0,6538), KNN (0,6385), Árvore de Decisão (0,6308) e Naive Bayes (0,6077), 

sugerindo que, apesar da alta acurácia geral do KNN, da Árvore e do Naive Bayes, o 

desempenho nesses dados desequilibrados não é tão robusto para os dois estágios.  

A Floresta Aleatória apresentou a pior acurácia balanceada (0,4230), refletindo 

o baixo desempenho global, que difere dos modelos a partir de dados da Anamnese, 

onde apresentou um dos melhores desempenhos. A Regressão Logística, apesar da 

baixa acurácia geral (0,3571), alcançou a maior especificidade (1,0) e a melhor 

acurácia balanceada (0,6538), o que indica bom desempenho na identificação do 

estágio contemplação, mas falha na detecção do estágio manutenção, evidenciado 

pela baixa sensibilidade (0,3077).  

Os valores de Kappa foram baixos para todos os modelos, indicando que a 

concordância entre as previsões dos modelos e as classificações reais é apenas 

ligeiramente superior ao que poderia ocorrer por acaso. Os testes de McNemar 

indicam diferenças estatisticamente significativas para Regressão Logística e Floresta 

Aleatória, mas não para KNN, Árvore de Decisão e Naive Bayes. 
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Figura 34 - Valores de AUC dos Modelos: Medidas Acústicas. 

 

Fonte: Dados da Pesquisa, 2025. 

 

A Regressão Logística obteve o melhor desempenho geral na métrica AUC 

(0,6308), seguida muito de perto pela Árvore de Decisão (0,6262). Ambos ficaram 

acima do valor de 0,60, o que indica uma capacidade moderada de discriminar entre 

as classes. O KNN (0,5662) e o Naive Bayes (0,5262) apresentaram desempenhos 

mais baixos, próximos ao limite de 0,50, o que representa desempenho pouco melhor 

que o acaso. Enquanto, a Floresta Aleatória, que normalmente tende a apresentar 

bom desempenho, obteve a menor AUC (0,4738), sugerindo que, no contexto e nos 

dados utilizados, o modelo não conseguiu aprender padrões eficazes para distinguir 

corretamente os estágios. 

O desempenho geral foi limitado em todos os modelos. A Regressão Logística, 

embora tenha apresentado a maior AUC e especificidade perfeita, revelou baixa 

sensibilidade, o que significa que o modelo é eficaz para identificar corretamente os 

indivíduos no estágio de contemplação, porém falha em detectar adequadamente 

aqueles no estágio de manutenção. Esse comportamento sugere que o modelo pode 

estar subestimando os casos do estágio de manutenção, o que limita seu uso prático 

para intervenções direcionadas a esses pacientes. 
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Por outro lado, os modelos KNN, Árvore de Decisão e Naive Bayes 

demonstraram boa capacidade em reconhecer os indivíduos no estágio de 

manutenção, com sensibilidades elevadas, mas apresentaram baixa especificidade, o 

que implica dificuldade em distinguir os indivíduos no estágio de contemplação. Essa 

limitação pode decorrer do desequilíbrio entre as classes, em que o estágio de 

manutenção possui maior representatividade, influenciando os modelos a 

favorecerem a classe majoritária. Além disso, a baixa especificidade reflete a 

complexidade intrínseca da prontidão para mudança, um fenômeno que envolve 

aspectos cognitivos, emocionais e comportamentais que podem não estar totalmente 

capturados pelas variáveis utilizadas. 

A Floresta Aleatória, apesar de ser um modelo robusto para muitas aplicações, 

apresentou baixo desempenho geral neste contexto, isso reforça a importância de 

ajustes específicos e testes adicionais para cada algoritmo, bem como a potencial 

necessidade de inclusão de variáveis complementares que melhorem a discriminação 

entre os estágios. Apesar de fornecerem informações importantes, os modelos atuais 

ainda carecem de precisão suficiente para uso clínico isolado, indicando a 

necessidade de estratégias adicionais para melhorar sua capacidade preditiva e 

apoiar intervenções mais eficazes. 

5.6 Modelos de AM – Dados Multidimensionais da Voz 

 Por fim, foram propostos modelos com todas as variáveis anteriores que foram 

analisadas nos modelos isolados, usando as variáveis de cada uma das dimensões 

da Avaliação Multidimensional da Voz, compreendendo os dados da anamnese, dos 

instrumentos de autoavaliação, clínicos e das medidas acústicas. 

Para a regressão logística, foi elaborada a Figura 35 que apresenta a relação 

entre cada variável preditora contínua e a variável resposta, que é o estágio de 

prontidão para mudança. O gráfico do Linear Predictor mostra a relação esperada 

entre o preditor linear do modelo e a variável resposta. Observa-se um crescimento 

monotônico, indicando que, à medida que o valor do preditor linear aumenta, também 

aumenta a probabilidade de o indivíduo estar no estágio de prontidão para mudança. 

Esse comportamento confirma que o modelo está ajustado conforme o esperado, 

reforçando a coerência entre os efeitos combinados das variáveis e a saída predita 

pela regressão logística. 
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Figura 35 - Efeitos Marginais do Modelo de Regressão Logística: Dados 

Multidimensionais da Voz. 

 

 
Fonte: Dados da Pesquisa, 2025. 

 

O desempenho da Regressão Logística também foi avaliado pelo valor da AUC, 

foi obtido 0,5662, indicando um desempenho próximo ao aleatório, com baixa 

capacidade em distinguir entre os estágios de prontidão. O ponto de corte utilizado foi 

de 0,9 em busca do melhor equilíbrio entre sensibilidade e especificidade. 

Quanto ao modelo KNN, em relação ao ajuste do k, através da Figura 36, a 

escolha de K=5 vizinhos é o ideal porque ele apresenta a maior acurácia de validação 

cruzada, aproximadamente 0,85. Isso sugere que, para este conjunto de dados, 

considerar os 5 vizinhos mais próximos é a estratégia que oferece o melhor equilíbrio 

entre viés e variância, e resulta na melhor capacidade de generalização do modelo. 
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Figura 36 - Número de Vizinhos do KNN com Base na Acurácia: Dados 

Multidimensionais da Voz. 

 

Fonte: Dados da Pesquisa. 

 

Para o KNN, o valor da AUC foi de 0,6185, o que indica um desempenho 

moderado na discriminação entre os estágios de prontidão. Foi identificado um ponto 

de corte ótimo de 0,086. Com a adoção desse limiar, foram realizadas as predições 

para verificar as métricas de desempenho. 

No modelo de Naive Bayes é possível na Figura 37 verificar como a acurácia 

foi utilizada como critério para a seleção dos hiperparâmetros, sendo escolhido aquele 

que apresentou o maior valor. Os hiperparâmetros finais adotados para o modelo 

Naive Bayes foram: fL = 0, usekernel = TRUE e adjust = 1. Esses parâmetros indicam 

que não foi aplicado um fator de suavização (fL), foi utilizada uma estimativa por kernel 

para modelar a distribuição dos preditores contínuos, e o parâmetro adjust foi mantido 

em seu valor padrão, controlando a largura da banda do kernel.  
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Figura 37 - Hiperparâmetros do Naive Bayes com Base na Acurácia: Dados 

Multidimensionais da Voz. 

 

Fonte: Dados da Pesquisa, 2025. 

 

Quanto o valor da AUC para o modelo Naive Bayes foi de 0,59, indica um 

desempenho apenas ligeiramente superior ao acaso. Quanto ao ponto de corte, foi 

definido 0,5, que visa uma boa capacidade discriminativa. 

 Em seguida, foi realizado o ajuste da Árvore de Decisão, a Figura 38 exibe a 

relação entre a acurácia medida por validação cruzada e a profundidade máxima da 

árvore. Fica evidente que, ao aumentar a profundidade, a acurácia do modelo cresce 

significativamente até um ponto de estabilização. A escolha foi de uma profundidade 

máxima de 10, pois é nesse patamar que o modelo atinge sua acurácia máxima, em 

torno de 0.90.  
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Figura 38 - Profundidade Máxima da Árvore de Decisão com Base na Acurácia: 

Dados Multidimensionais da Voz. 

 

Fonte: Dados da Pesquisa, 2025. 

 

Na Figura 39, apresenta-se a árvore de decisão, a qual ilustra visualmente o 

processo de classificação com base nas variáveis preditoras selecionadas. A variável 

Shimmer local demonstra ser um preditor de grande relevância, uma vez que aparece 

como o primeiro nó de decisão da árvore, indicando sua importância na classificação. 

Valores elevados dessa variável (acima ou iguais a 2.2) conduzem diretamente à 

predição da classe 1, o que reforça seu peso no modelo. Além disso, outras variáveis 

como Nº Total de FR, Intensidade, Nº Total de SV, Classificação da Queixa, QVV e 

Idade também se mostram relevantes na distinção entre as classes nos casos em que 

o valor de Shimmer local é baixo. Observa-se que alguns caminhos da árvore levam 

a predições bastante claras, com 100%, enquanto outros apresentam uma mistura 

entre as classes, o que sugere que, para determinadas combinações de 

características, a separação entre os grupos não é tão evidente. 
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Figura 39 – Árvore de Decisão dos Dados Multidimensionais da Voz.

 

Fonte: Dados da pesquisa, 2025. 

 

Em relação ao AUC do modelo de Árvore de Decisão foi de 0,45, indicando que 

o desempenho do modelo está abaixo do valor esperado por acaso. Isso sugere uma 

baixa capacidade discriminativa para diferenciar corretamente entre os estágios de 

prontidão. Foi identificado do ponto de corte de 0,06. 

No modelo Floresta Aleatória também foi realizado ajuste de hiperparamêtros, 

é possível visualizar na Figura 40. Como a acurácia foi o critério de seleção, o modelo 

ideal de Floresta Aleatória foi definido com mtry = 2 e ntree = 500. Essa combinação 

oferece a maior acurácia (próxima a 0.995), com mtry = 2 garantindo um bom poder 

preditivo e ntree = 500 sendo a escolha mais eficiente computacionalmente, já que 

mais árvores não trariam ganhos significativos de desempenho nesse ponto. Sendo o 

ponto no gráfico de maior acurácia. 
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Figura 40 - Hiperparâmetros da Floresta Aleatória com Base na Acurácia: Dados 

Multidimensionais da Voz. 

 

Fonte: Dados da pesquisa, 2025. 

 

Na validação interna, obteve-se um desempenho excelente do modelo Floresta 

Aleatória, com erro OOB de 0,33%, com alta capacidade de generalização (Figura 41). 

Como pode-se observar na matriz de confusão a seguir: 

Tabela 16 – Matriz de Confusão OOB: Dados Multidimensionais da Voz. 

  Contemplação Manutenção Erro da classe 

Contemplação  153 0 0.000 (0%) 

Manutenção  1 152 0.0065 (0,65%) 

Fonte: Dados da pesquisa, 2025. 
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Figura 41 - Erro OOB do Modelo Floresta Aleatória: Dados Multidimensionais da 

Voz. 

 

Fonte: Dados da pesquisa, 2025. 

 

A matriz de confusão OOB indicou alta acurácia, com todos os acertos no 

estágio contemplação e apenas um erro no estágio manutenção, com boa capacidade 

de classificação. Contudo, a validação externa em dados de teste é necessária para 

confirmar a generalização do modelo. O valor da AUC foi de 0,5585, indica que o 

modelo possui uma performance limitada para distinguir os estágios de prontidão. O 

ponto de corte foi de 0,849 no modelo de Floresta Aleatória, com esse limiar utilizando 

os dados do conjunto teste foi gerada a matriz de confusão a seguir: 

Tabela 17 – Matriz de Confusão da Floresta Aleatória: Dados Multidimensionais da 

Voz. 

 Contemplação Manutenção  

Contemplação 3 23 

Manutenção 2 42 

 Fonte: Dados da pesquisa, 2025. 

 

O modelo apresentou dificuldades para classificar corretamente. No estágio 

contemplação, acertou 3 casos e classificou erroneamente 23 indivíduos. Para o 

estágio manutenção, classificou corretamente 29 casos, com 3 erros de classificação. 
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Por serem resultados que diferem da validação interna, evidencia a limitação do 

modelo para generalizar a classificação do estágio de prontidão.  

 

Tabela 18 - Desempenho dos Modelos para Classificação do Estágio de Prontidão 

com os Dados Multidimensionais da Voz. 

 Regressão 

Logística 

KNN Naive 

Bayes 

Árvore de 

Decisão 

Floresta 

Aleatória 

Acurácia 0.7000 0.8857 0.8143 0.8857 0.6429 

Acurácia 

Balanceada 

0.4692 0.6615 0.6231 0.4769 0.6231 

Kappa -0.028 0.2727 0.1495 -0.0566 0.0838 

Sensibilidade 0.73846 0.9231 0.8462 0.9538 0.6462 

Especificidade 0.2000 0.4000 0.4000 0.0000 0.6000 

Valor Preditivo 

Positivo 

0.92308 0.9524 0.9483 0.9254 0.9545 

Valor Preditivo 

Negativo 

0.05556 0.2857 0.1667 0.0000 0.1154 

Prevalência 0.92857 0.9286 0.9286 0.9286 0.9286 

Taxa de 

Detecção 

0.68571 0.8571 0.7857 0.8857 0.6000 

Prevalência 

Estimada 

0.74286 0.9000 0.8286 0.9571 0.6286 

Taxa de 

Informação 

Nula 

0.9286 0.9286 0.9286 0.9286 0.9286 

P-Valor 

[Acurácia > 

Inf. Nula] 

1.000000 0.9391 0.99962 0.9391 1 

P-Valor do 

Teste de 

McNemar 

0.008829 0.7237 0.09609 0.7237 6.334e-05 

Fonte: Dados da pesquisa, 2025. 
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 A análise comparativa entre os modelos de classificação indica que o KNN 

obteve a maior acurácia (0.8857) e sensibilidade (0.9231), além da melhor acurácia 

balanceada (0.6615), evidenciando sua capacidade de identificar corretamente os 

indivíduos em manutenção sem negligenciar completamente os em contemplação, 

mesmo diante do forte desequilíbrio entre as classes. Seu valor de Kappa (0.2727) foi 

o mais alto, indicando uma concordância razoável com os dados observados. A 

especificidade (0.4000) foi superior à da Regressão Logística e da Árvore de Decisão, 

que não identificou nenhum caso em contemplação. Apesar da sensibilidade elevada 

da Árvore de Decisão (0.9538), sua especificidade nula comprometeu sua acurácia 

balanceada e resultou em Kappa negativo. 

O Naive Bayes e a Floresta Aleatória apresentaram desempenhos 

intermediários, sendo a floresta o modelo com maior especificidade (0.6000), embora 

com menor sensibilidade e acurácia. A Regressão Logística foi o modelo que não 

apresentou bom desempenho, com baixa especificidade (0.2000), acurácia 

balanceada reduzida (0.4692) e Kappa negativo, demonstrando fragilidade na 

identificação de indivíduos em contemplação. Assim, o KNN se sobressai como a 

alternativa mais equilibrada para a classificação dos estágios de prontidão, 

contribuindo de forma mais confiável para a triagem e planejamento da terapia de voz. 

Figura 42 – Valores de AUC dos Modelos: Dados Multidimensionais da Voz. 

 

Fonte: Dados da Pesquisa, 2025. 
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Os resultados mostram que os modelos KNN e Naive Bayes apresentaram os 

melhores desempenhos, com AUC de 0,6185 e 0,5938, respectivamente, indicando 

uma capacidade moderada para distinguir os estágios de prontidão para a terapia de 

voz. A Regressão Logística e a Floresta Aleatória tiveram desempenhos semelhantes, 

com AUCs próximas de 0,56, sugerindo uma discriminação um pouco abaixo dos 

modelos mencionados. E o modelo de Árvore de Decisão apresentou o pior 

desempenho, com AUC de 0,4462, indicando uma capacidade inferior à aleatoriedade 

na classificação dos estágios. Esses resultados indicam que, entre os modelos 

avaliados, KNN e Naive Bayes mostram maior potencial para aplicação. Contudo, o 

modelo KNN apresentou métricas um pouco superiores em comparação, sendo assim 

o mais recomendável entre os avaliados, embora o desempenho geral do modelo 

ainda seja considerado moderado. 

Em suma, o modelo KNN se destaca como o mais equilibrado e eficaz entre os 

avaliados com variáveis que contemplam todas dimensões da avaliação vocal, 

especialmente diante do desbalanceamento. Ele mantém boas taxas de acerto, o que 

o torna mais confiável para aplicações práticas nesse contexto. Além disso, o modelo 

KNN tem se destacado na área da voz. Sua eficácia foi comprovada na diferenciação 

entre vozes patológicas e saudáveis por meio de gravações feitas com smartphones, 

demonstrando viabilidade em contextos de triagem acessível (Cesare et al., 2024).  

De forma semelhante, o KNN também foi utilizado com sucesso na identificação 

da doença de Parkinson a partir de alterações acústicas da voz, evidenciando sua 

capacidade de captar padrões sutis associados a distúrbios neurológicos (Ouhmida et 

al., 2021). Esses achados corroboram os resultados da presente pesquisa, na qual o 

KNN apresentou um bom desempenho, evidenciando seu potencial como suporte à 

tomada de decisões na fonoaudiologia. 

No entanto, é importante reconhecer algumas limitações inerentes ao KNN, 

como sua sensibilidade a ruídos nos dados e à escolha do parâmetro k, que pode 

impactar o desempenho do modelo. Além disso, o KNN exige um pré-processamento 

cuidadoso dos dados e pode se beneficiar de técnicas de seleção e engenharia de 

variáveis para otimizar a predição (Shetty et al., 2022). A utilização de variáveis 

provenientes de múltiplas dimensões da avaliação vocal, incluindo aspectos clínicos, 

acústicos, laringológicos e de autoavaliação, foi determinante para o desempenho dos 

modelos. Essa abordagem multidimensional reflete a complexidade do distúrbio vocal 
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e oferece uma visão mais abrangente do paciente, contribuindo para a identificação 

mais precisa dos estágios de prontidão. 

De modo geral, os resultados dos modelos em diferentes dimensões 

evidenciam um desafio recorrente em bases de dados desbalanceadas, que é o viés 

dos algoritmos em privilegiar a classe mais representada, mesmo após tentativas de 

correção por meio de técnicas de reamostragem. Esse desequilíbrio pode ser 

parcialmente explicado pelo tipo de amostragem utilizada na pesquisa. Por se tratar 

de uma amostra por conveniência, composta por indivíduos que já estavam em busca 

de atendimento fonoaudiológico, é esperado que a maioria dos participantes 

apresentasse um maior nível de consciência sobre o problema vocal e, 

consequentemente, estivesse em estágios mais avançados de prontidão para a 

mudança, como o estágio de manutenção. Essa característica da amostra contribuiu 

para a predominância dessa classe na variável resposta, dificultando o desempenho 

dos modelos de classificação ao tentar identificar adequadamente os casos 

pertencentes aos demais estágios de prontidão. 

Entretanto, ainda foi possível identificar modelos com desempenho razoável, 

capazes de lidar, mesmo que parcialmente, com o desbalanceamento da amostra. 

Isso sugere que, mesmo diante de limitações amostrais, é viável empregar algoritmos 

de aprendizado de máquina como ferramenta auxiliar no reconhecimento de 

diferentes estágios de prontidão para a mudança. Tal resultado reforça o potencial da 

aplicação de modelos em contextos clínicos, desde que acompanhados de estratégias 

que considerem as características da população-alvo e busquem mitigar o impacto do 

desbalanceamento nas análises. 

Finalmente, cabe destacar que o estágio de prontidão para a terapia de voz, 

que o modelo busca predizer, é um fator essencial para o sucesso do tratamento. 

Compreender em que fase o paciente se encontra, desde a contemplação até a 

manutenção, permite ao fonoaudiólogo adaptar as intervenções, aumentar a adesão 

ao tratamento e otimizar os resultados terapêuticos. Assim, modelos preditivos 

representam uma ferramenta valiosa para a prática clínica, oferecendo suporte na 

tomada de decisão e na personalização da terapia fonoaudiológica. 
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6. CONCLUSÃO 

É possível identificar modelos com desempenho moderado, como o KNN e a 

Floresta Aleatória nos dados da anamnese, a Regressão Logística e o Naive Bayes 

nos dados clínicos (JPA, diagnóstico laríngeo e classificação da disfonia), e o KNN 

nos dados combinados das diferentes dimensões da avaliação vocal. Nos dados dos 

instrumentos de autoavaliação e das medidas acústicas, os modelos não 

apresentaram o desempenho esperado, demonstrando limitações para a predição do 

estágio de prontidão. Embora ainda apresentem limitações em seu poder preditivo, 

esses achados sugerem que modelos de AM podem contribuir para a identificação do 

estágio de prontidão para mudança, para possibilitar estratégias de intervenção mais 

direcionadas desde o início da terapia de voz. 
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