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ABSTRACT 

 
In semi-arid regions, where water resources are scarce, the development of precise 
methods for their identification and mapping is pertinent. This study aimed to 
investigate the use of artificial intelligence techniques to map alluvial deposits in the 
Riacho Grande basin, Pernambuco. To this end, an extensive, high-resolution, 
georeferenced database was employed, comprising eleven geomorphological and 
hydrological dimensions for the characterisation of alluvial areas. Initially, the database, 
containing over 315 million points distributed across the Basin, underwent an 
optimisation process using the extended Geometric Markovian Diffusion (e-GMD) 
method, with the aim of reducing the data volume at different levels without 
compromising its representativeness. Subsequently, supervised machine learning 
models (KNN, CART/DT, and RF) were constructed and evaluated for the detection of 
alluvial areas. Each model was trained and validated using 10-fold cross-validation, and 
its hyperparameters were tuned to optimise performance. The results demonstrated 
that the Random Forest (RF) algorithm excelled, achieving an F1-score of 89.8% using 
only 5% of the original data, outperforming KNN (86.1%) and CART/DT (86.3%). This 
study demonstrates the potential of employing artificial intelligence techniques for the 
effective mapping of alluvial deposits in semi-arid regions. 

 
Keywords: Random Forest, alluvial deposits, machine learning, semi-arid regions, 
data reduction. 



 

 

 

 
RESUMO 

 
Em regiões semiáridas, onde os recursos hídricos são escassos, é relevante o 
desenvolvimento de métodos precisos para sua identificação e mapeamento. Este 
estudo teve como objetivo investigar o uso de técnicas de inteligência artificial para 
mapear depósitos aluvionares na bacia do Riacho Grande, em Pernambuco. Para isso, 
utilizou-se um extenso banco de dados georreferenciado de alta resolução, composto 
por onze dimensões geomorfológicas e hidrológicas para a caracterização de áreas 
aluvionares. Inicialmente, o banco de dados, com mais de 315 milhões de pontos 
distribuídos pela Bacia, passou por um processo de otimização utilizando o método 
Difusão Geométrica Markoviana estendido (DGM-e), visando reduzir o volume de 
dados, em diferentes patamares, sem comprometer sua representatividade. 
Posteriormente, foram construídos e avaliados modelos de aprendizado de máquina 
supervisionado (KNN, CART/DT e RF) para detecção de áreas aluvionares. Cada 
modelo foi treinado e validado utilizando a técnica de validação cruzada com 10 folds, 
e seus hiperparâmetros foram ajustados para otimizar o desempenho. Os resultados 
demonstraram que o algoritmo Random Forest (RF) se destacou, alcançando um F1-
score de 89,8% utilizando apenas 5% dos dados originais, superando o KNN (86,1%) e 
o CART/DT (86,3%). Este estudo aponta o potencial do uso de técnicas de inteligência 
artificial para o mapeamento eficaz de depósitos aluvionares em regiões semiáridas. 
  
 
 
  
 
Palavras-chave: Floresta Aleatória, depósitos aluvionares, aprendizado de máquina, 
regiões semiáridas, redução de dados. 



 

 

 

AGRADECIMENTOS 

 

Agradeço à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo 

apoio financeiro que viabilizou esta pesquisa. 

 

Meus sinceros agradecimentos aos meus orientadores, Prof. Dr. Gustavo Henrique Matos 

Bezerra Motta, Prof. Dr. Jonas Otaviano Praça de Souza e Prof. Dr. Leandro Carlos de 

Souza, pela dedicação, orientação valiosa e amizade durante todo este percurso. 

 

Agradeço também aos professores Prof. Dr. Clauirton de Albuquerque Siebra (CI/UFPB) 

e Prof. Dr. Osmar Abílio de Carvalho Junior (UnB) pelas valiosas contribuições, críticas e 

sugestões durante a banca de qualificação e de defesa, que enriqueceram este trabalho. 

 

Às professoras e professores, bem como aos colegas do Programa de Pós-Graduação em 

Informática, meu reconhecimento pelo compartilhamento de conhecimentos. 

 

Aos pesquisadores do Laboratório de Inteligência Artificial Aplicada (LIAA) do Centro de 

Informática da UFPB, pela colaboração e suporte. 

 

Por fim, mas não menos importante, à equipe do Laboratório de Estudos Fluviais (CCEN) 

e ao Grupo de Estudos de Ambientes Fluviais Semiáridos (GEAFS/CCEN), pelo 

companheirismo, incentivo e contribuições fundamentais ao longo desta jornada. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

 

SUMÁRIO 

ABSTRACT ............................................................................................................ v 

RESUMO ............................................................................................................. vi 

AGRADECIMENTOS ...................................................................................... vii 

LISTA DE FIGURAS ............................................................................................ ix 

LISTA DE QUADROS ........................................................................................... x 

1. INTRODUÇÃO ...................................................................................... 12 
1.1 Objetivos.......................................................................................................... 14 
1.2 Contribuições .................................................................................................. 15 
1.3 Estrutura do Trabalho ..................................................................................... 15 

2. REFERENCIAL TEÓRICO ............................................................................. 17 
2.1 Detecção de Áreas Aluviais ............................................................................. 17 
2.2 Técnicas de Inteligência Artificial .................................................................... 20 
2.2.1 CART - DT ................................................................................................ 22 

2.2.2 Floresta Aleatória - RF ............................................................................ 23 

2.2.3 K-Vizinhos Mais Próximos - KNN ............................................................ 24 

2.3 DGM-e para redução de instâncias ................................................................. 26 
2.3.1 Estruturação das Instâncias .................................................................... 27 

2.3.2 Cálculo da Representatividade ............................................................... 28 

2.3.3 O processo de Simplificação ................................................................... 29 

3 MATERIAL E MÉTODOS ............................................................................. 31 
3.1 Área objeto da pesquisa .................................................................................. 31 
3.2 Obtenção dos Dados ....................................................................................... 33 
3.3 Redução das instâncias e sua avaliação .......................................................... 36 
3.4 Construção dos Modelos e Detecção de Áreas de Aluvião ............................. 38 

4 RESULTADO E DISCUSSÃO ........................................................................ 41 

5 CONCLUSÕES E TRABALHOS FUTUROS ...................................................... 49 

REFERÊNCIAS ................................................................................................... 51 
 

 

  



 
 

 

 

 

LISTA DE FIGURAS 

 

Figura 1 - Paradigmas do Aprendizado de Máquina ...................................................... 21 

Figura 2 - Estrutura da Árvore de Decisão ..................................................................... 22 

Figura 3 - A variação do k no KNN ............................................................................... 25 

Figura 4 - Representação das Etapas do método DGM-e ............................................... 26 

Figura 5 - Identificação das áreas de aluvião na Bacia do Riacho Grande .................... 32 

Figura 6 - Localização e Drenagem da Bacia do Riacho Grande ................................... 32 

Figura 7 - Etapas de trabalho para obtenção dos dados .................................................. 34 

Figura 8 - Etapas para implementação da redução a partir do DGM-e .......................... 37 

Figura 9 - Etapas de trabalho para aplicação das técnicas de aprendizagem ................. 39 

Figura 10 - Resultado da aplicação do KNN .................................................................. 42 

Figura 11 - Resultados da aplicação do CART/DT ........................................................ 42 

Figura 12 - Resultados obtidos com o RF ...................................................................... 43 

Figura 13 - Importância das variáveis utilizadas na predição ........................................ 44 

Figura 14 - Matriz de confusão RF (Banco reduzido para 5% do total) ........................ 45 

Figura 15 – Curva Precision-Recall (Banco reduzido para 5% do total) ....................... 46 

Figura 16 – Validação cruzada resultados (Banco reduzido para 5% do total) .............. 46 

Figura 17- Instâncias aluviais restantes nos diferentes patamares de redução ............... 47 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

 

 

 

LISTA DE QUADROS 

Quadro 1 – Descrição das variáveis utilizadas na modelagem ....................................... 36 

Quadro 2 – Percentuais aplicados em cada etapa de redução......................................... 38 

Quadro 3 – Resultado obtido por cada uma das técnicas de AM ................................... 41 



12 
 

 
 

1. INTRODUÇÃO 

 

A preocupação global com a preservação dos recursos hídricos tem se 

intensificado nas últimas décadas, diante das crescentes crises causadas pelas mudanças 

climáticas (TAYER et al., 2023). Estudos recentes, como o conduzido por Jasechko et al. 

(2024), analisaram milhares de medições em poços e aquíferos localizados em regiões 

áridas e semiáridas, evidenciando um declínio acelerado das reservas de água subterrânea 

em escala global. Esse cenário reforça a importância de estratégias para a gestão 

sustentável dos recursos hídricos, sobretudo em áreas particularmente vulneráveis às 

transformações climáticas. 

Nesse contexto, os Objetivos de Desenvolvimento Sustentável (ODS), 

estabelecidos pela Organização das Nações Unidas (ONU), reforçam a necessidade de 

ações globais coordenadas para enfrentar os desafios relacionados à água e ao clima. O 

ODS número 6 prioriza a garantia de acesso universal à água potável e ao saneamento, 

enquanto o ODS número 13 destaca a importância de implementar medidas eficazes para 

mitigar os impactos das mudanças climáticas. Essas metas ressaltam a relevância de 

iniciativas que aliem conservação ambiental e gestão sustentável, sobretudo em regiões 

onde a falta de água ameaça diretamente a vida da população. 

No semiárido da Região Nordeste do Brasil, a irregularidade dos regimes 

pluviométricos agrava os desafios relacionados à disponibilidade hídrica. O déficit de 

chuvas nesta região contribui para a predominância de rios efêmeros ou intermitentes, 

cujo fluxo ocorre apenas durante a estação chuvosa (MCLEOD et al., 2024). Além disso, 

eventos de seca recorrentes impactam o desenvolvimento socioeconômico, provocando o 

esgotamento de reservatórios superficiais, como lagos e açudes (BÚRQUEZ et al., 2024).  

Nesse cenário, os aquíferos aluviais, definidos como formações geológicas 

porosas e permeáveis compostas por sedimentos não consolidados (cascalho, areia, silte 

e argila) depositados por corpos d'água, que armazenam e transmitem água subterrânea 

(FREEZE; CHERRY, 1979),  destacam-se como fontes estratégicas de água subterrânea, 

devido à sua elevada capacidade de infiltração e proteção contra a evaporação, oferecendo 

uma alternativa viável para mitigar os efeitos das secas prolongadas (SILVA; SOUZA, 

2023). 

Apesar da importância dos aquíferos aluviais como fonte de água sua identificação 

e mapeamento precisos representam um desafio significativo. Os métodos tradicionais, 
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baseados em descrições visuais e análises manuais de amostras de solo (AMIT et al., 

1996), são processos demorados, onerosos e de alcance limitado, dificultando a obtenção 

de uma visão abrangente em grandes áreas. Embora o sensoriamento remoto 

multiespectral e o radar de abertura sintética (SAR) tenham permitido análises em larga 

escala, a interpretação dos dados ainda pode ser complexa e a resolução espacial nem 

sempre é suficiente para identificar feições aluvionares com a precisão necessária. A 

introdução do LiDAR melhorou a análise topográfica, mas a identificação da natureza do 

material sedimentar e a distinção entre áreas aluvionares com potencial aquífero e outras 

formações geológicas superficiais permanecem dependentes de análise e interpretação 

especializadas, muitas vezes com limitações de escala e custo para o mapeamento 

extensivo necessário na região. 

É importante destacar, que áreas aluvionares, regiões superficiais com depósitos 

de sedimentos transportados por rios, nem sempre correspondem a aquíferos produtivos, 

embora sejam zonas prioritárias para investigação devido ao seu potencial hídrico. No 

entanto, identificar e mapear esses depósitos representa um grande desafio também 

devido à sua distribuição irregular e à ausência de uma forma geométrica definida 

(CERVI; TAZIOLI, 2021). Consolidar estratégias de mapeamento eficiente, integrando 

tecnologias modernas e baixo custo, como as técnicas de inteligência artificial abordadas 

neste estudo, pode ampliar significativamente as possibilidades de gestão hídrica na 

região.  

Os avanços nas técnicas de inteligência artificial, possibilitam a identificação 

desses depósitos em maior escala. Métodos de aprendizado de máquina têm mostrado 

grande potencial para modelar sistemas hídricos complexos, eliminando a necessidade de 

estabelecer previamente relações matemáticas fixas entre as variáveis de entrada 

(ZARESEFAT; DERAKHSHANI, 2023). 

Apesar da grande quantidade de pesquisa que aplica técnicas de aprendizado de 

máquina em estudos de água subterrânea (DÍAZ-ALCAIDE; MARTÍNEZ-SANTOS, 

2019; ALI et al., 2023; SEIFU et al., 2023), e embora alguns estudos tenham abordado a 

identificação de feições geomorfológicas relacionadas a ambientes fluviais (Pipaud; 

Lehmkuhl, 2017; Babič et al., 2021; Rabanaque et al., 2022), uma lacuna específica 

persiste na aplicação dessas técnicas para a identificação direta e em larga escala de áreas 

aluvionares com potencial aquífero no contexto do semiárido brasileiro. Os estudos 

existentes frequentemente utilizam dados com menor resolução espacial (como SRTM de 



14 
 

 

30 metros), ou têm como foco principal a delimitação de trechos de uma bacia 

hidrográfica. 

Para preencher essa lacuna este trabalho desenvolveu e testou modelos preditivos 

para identificação de áreas aluvionares utilizando dados da bacia hidrográfica do Riacho 

Grande, localizada no sertão do Estado de Pernambuco. A bacia, que se estende por 

aproximadamente 315 Km², foi mapeada com aproximadamente 315 milhões de pontos, 

um ponto por metro quadrado. Para cada uma dessas instancias, foram capturadas dez 

variáveis de entrada e uma variável de saída que indica se a área é de aluvião ou não. 

Um dos principais desafios do trabalho foi realizar a redução de instâncias, etapa 

essencial para viabilizar a aplicação eficiente de técnicas de aprendizagem de máquina. 

O crescimento exponencial na geração de dados em diversas áreas do conhecimento traz 

significativos desafios para o processamento e análise de informações. Nesse contexto, a 

redução de dados apresenta-se como uma solução para criar representações mais 

compactas, preservando, na medida do possível, as características originais dos dados. 

Este trabalho aplicou o método Difusão Geométrica Markoviana estendido 

(DGM-e) (SILVA, 2012) como metodologia para redução de dados. A escolha se 

justificou pela necessidade de um método capaz de preservar a representatividade dos 

dados enquanto reduzia substancialmente seu volume. Baseado no método DGM original, 

proposto por Souza (2011), o DGM-e foi adaptado para tratar dados genéricos, utilizando 

uma análise probabilística fundamentada na propagação de calor entre elementos de um 

grafo.  

Essa abordagem foi capaz de identificar e preservar as instâncias mais 

representativas entre os pontos originais. Após a redução dos dados, foram aplicadas 

diferentes técnicas de aprendizado de máquina, incluindo Árvore de Decisão do tipo 

CART (CART/DT), Florestas Aleatórias (RF) e K-Vizinhos Mais Próximos (KNN).  

 

1.1 Objetivos 

 

O objetivo geral desta dissertação é investigar o uso de técnicas de aprendizado 

de máquina para a identificação de depósitos aluvionares em regiões semiáridas, 

promovendo avanços metodológicos no mapeamento do fenômeno e contribuindo, de 

forma indireta, com subsídios técnicos para o planejamento territorial. Além dele, a 

dissertação apresenta os seguintes objetivos específicos: 
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Objetivo 1: Construir e comparar modelos preditivos com base em diferentes 

algoritmos de aprendizado de máquina, avaliando o desempenho por meio das métricas 

F1-score, recall e precisão, a fim de identificar quais abordagens oferecem maior eficácia 

na detecção de depósitos aluvionares. 

Objetivo 2: Produzir modelos e resultados que possam ser aproveitados por 

iniciativas públicas voltadas ao mapeamento de áreas com potencial hídrico e uso 

estratégico do solo, especialmente em regiões semiáridas com demandas por 

desenvolvimento territorial sustentável. 

 

 

1.2 Contribuições 

 

Atendidos os objetivos apresentados na seção anterior, os resultados do trabalho 

eventualmente podem contribuir para formular políticas públicas mais eficazes na 

identificação e exploração de depósitos aluvionares, particularmente em regiões 

semiáridas. A modelagem resultante poderá subsidiar decisões estratégicas de gestão de 

recursos hídricos, atuando como uma ferramenta relevante para a proteção e uso 

sustentável das fontes de água subterrânea. Essa contribuição é particularmente relevante 

no semiárido nordestino, onde os aquíferos aluviais representam uma solução vital para 

mitigar os impactos das secas recorrentes e atender às necessidades de abastecimento 

hídrico de comunidades rurais isoladas. 

 

1.3 Estrutura do Trabalho 

 

Os capítulos subsequentes que compõe este trabalho estão organizados da seguinte 

forma: 

 

• Capítulo 2: Neste capítulo, são apresentados os conceitos fundamentais que 

embasam o desenvolvimento deste trabalho. Inicialmente, será feita uma breve 

caracterização sobre como as detecções de áreas de aluvião evoluíram ao longo 

do tempo, desde os métodos tradicionais baseados em trabalho de campo até as 

abordagens modernas que utilizam inteligência artificial. Em seguida, serão 

detalhadas as técnicas de aprendizado de máquina empregadas na presente 

pesquisa, CART/DT, RF e KNN. Por fim, a última parte do capítulo será dedicada 

à apresentação detalhada do método DGM-e, explorando suas principais etapas e 
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características. Inicialmente, será descrito o processo de estruturação das 

instâncias, etapa essencial para organizar e preparar os dados de forma eficiente. 

Em seguida, será explicado o cálculo da representatividade de cada instância, 

destacando como o método identifica os elementos mais relevantes dentro do 

conjunto de dados. Por fim, será apresentado o processo de simplificação, que visa 

preservar as características estruturais do conjunto original. 

 

• Capítulo 3: Este capítulo apresenta a metodologia utilizada na pesquisa. 

Inicialmente, será descrita a área de estudo, a bacia hidrográfica do Riacho 

Grande, localizada no sertão de Pernambuco, destacando suas características 

geográficas e sua importância no contexto hidrológico de regiões semiáridas. Em 

seguida, será detalhado como, utilizando o software ArcGIS Pro versão 10.3, 

foram obtidas as dez variáveis de entrada e a variável de saída (classificação de 

aluvião), extraídas de um conjunto de aproximadamente 315 milhões de pontos 

espalhados pela bacia, com densidade de um ponto por metro quadrado. 

Posteriormente, será apresentada a aplicação do método DGM-e para a redução 

de instâncias, destacando os quatro níveis de redução implementados (10%, 5%, 

1% e 0,1%). Por fim, serão apresentados elementos relevantes utilizados para a 

aplicação das técnicas de inteligência artificial. 

 

• Capítulo 4: O capítulo apresenta os resultados obtidos na redução dos dados e 

pela aplicação das técnicas de aprendizado de máquina implementadas, incluindo 

CART/DT, RF e KNN. Indicadores de desempenho, como F1-Score, Recall e 

Precisão, são comparados entre os diferentes modelos, identificando aquele que 

apresentou o melhor desempenho em cada nível de redução (10%, 5%, 1% e 

0,1%). Por fim, é realizada uma discussão sobre os resultados obtidos na 

identificação de áreas aluvionares, destacando as limitações e implicações dos 

modelos desenvolvidos no contexto do estudo. 

 

• Capítulo 5: Este capítulo apresenta as conclusões do trabalho, sintetizando os 

principais resultados alcançados na identificação de áreas aluvionares em regiões 

semiáridas. Além disso, discute as motivações para futuros desdobramentos, 

sugerindo caminhos para a continuidade da pesquisa. 
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2 REFERENCIAL TEÓRICO 

 

 Este capítulo, estruturado em três seções, apresenta os fundamentos que sustentam 

a metodologia desta pesquisa. A primeira seção traz uma revisão sobre a evolução das 

abordagens para detecção de áreas aluvionares, desde os métodos tradicionais até 

contemporâneos baseadas em inteligência artificial. A segunda seção é dedicada à 

descrição das técnicas de aprendizado de máquina empregadas, explorando seus 

conceitos. Por fim, a terceira seção apresenta o método DGM-e, destacando sua 

concepção, fundamentos e aplicabilidade no contexto investigado. 

  

2.1 Detecção de Áreas Aluviais 

 

A formação de aquíferos aluviais resulta da fragmentação de rochas e do 

transporte de sedimentos pela chuva. Esses depósitos sedimentares desempenham um 

papel crucial na retenção de água em regiões áridas, atuando como reservatórios naturais 

que contribuem para a sustentabilidade hídrica durante períodos de seca (BRAGA, 2016). 

No entanto, a identificação dessas formações sempre representou um desafio. 

Inicialmente, os aluviões eram reconhecidos com base em descrições visuais e análises 

manuais de amostras de solo, um processo demorado e oneroso que exigia inspeções 

extensivas e levantamentos topográficos (AMIT et al., 1996). 

Com o avanço da tecnologia, as limitações desses métodos tradicionais 

impulsionaram a busca por abordagens mais eficientes. Nesse contexto, o sensoriamento 

remoto multiespectral emergiu como uma alternativa promissora, permitindo análises em 

larga escala com maior precisão e reduzindo a necessidade de trabalhos de campo 

exaustivos. Estudos pioneiros demonstraram o impacto dessa abordagem na identificação 

de aluviões. Gillespie; Kahle; Palluconi (1984), por exemplo utilizaram um escâner 

multiespectral de infravermelho térmico para mapear leques aluviais no Vale da Morte, 

Califórnia, evidenciando a eficácia do sensoriamento térmico na discriminação de 

diferentes sedimentos. Da mesma forma, Crouvi et al. (2006) aplicaram espectrometria 

de campo e sensoriamento remoto hiperespectral no deserto do Negev, Israel, 

identificando assinaturas espectrais específicas associadas a depósitos aluvionares. 

Apesar dos avanços proporcionados pelo sensoriamento remoto multiespectral, a 

necessidade de mapear áreas ainda mais extensas e obter dados detalhados em condições 

desafiadoras levou à adoção do radar de abertura sintética (SAR). Essa tecnologia 
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ampliou significativamente as possibilidades de análise, sendo particularmente útil para 

o estudo de superfícies aluvionares em regiões com vegetação densa ou de difícil acesso. 

Farr; Chadwick (1996) demonstraram sua aplicabilidade ao utilizar dados de SAR para 

mapear leques aluviais nas Montanhas Kun Lun, na China, possibilitando uma análise 

detalhada da morfologia e dos processos geomórficos dessas formações. Estudos 

posteriores reforçaram esse avanço, como os de Hetz et al., (2016) e Gaber; Koch; El-

Baz (2010), que empregaram SAR na análise de superfícies aluvionares em desertos, 

ampliando o conhecimento sobre a dinâmica desses depósitos sedimentares.  

A introdução do LiDAR (Light Detection and Ranging), com sua capacidade de 

gerar modelos digitais de elevação altamente precisos, transformaram os modos de se 

classificar e identificar áreas de aluvião. Esses modelos facilitam a análise detalhada da 

topografia e da estrutura de aluviões, possibilitando a identificação de características 

geomorfológicas com uma precisão sem precedentes. Conforme destacado por Hohenthal 

et al., (2011) e Cavalli et al., (2008), o LiDAR se estabeleceu como uma ferramenta 

eficiente para obter informações topográficas detalhadas, mesmo em áreas montanhosas 

e densamente florestadas. Estudos pioneiros de Staley; Wasklewicz; Blaszczynski (2006) 

e Frankel; Dolan (2007) demonstraram a eficácia do LiDAR na análise de padrões de 

deposição e na caracterização da rugosidade de superfícies de leques aluviais. Esses 

estudos revelaram zonas de deposição distintas e permitiram diferenciar superfícies de 

leques aluviais de diferentes idades. Pesquisas subsequentes, como as realizadas por 

Cavalli; Marchi (2008) e Regmi, McDonald; Bacon (2014), também utilizaram LiDAR 

para identificar e classificar leques aluviais. 

Mais recentemente, o uso de técnicas de aprendizado de máquina potencializou a 

análise de grandes volumes de dados geoespaciais. Essas abordagens, aliadas às 

tecnologias anteriores, têm ampliado a capacidade de detecção e classificação de áreas 

aluvionares. Conforme destacado por Muñoz-Carpena et al., (2023), a integração dessas 

abordagens pode reduzir a incerteza dos modelos hidrológicos e melhorar a precisão das 

previsões, especialmente em grandes sistemas integrados. 

Dois tipos de estudos sobre água subterrânea utilizando técnicas de aprendizado 

de máquina se destacam na literatura. O primeiro foca na detecção de água subterrânea, 

com exemplos incluindo os seguintes trabalhos:  trabalhos de (DÍAZ-ALCAIDE; 

MARTÍNEZ-SANTOS, 2019), (ALI et al., 2023), (SEIFU et al., 2023), (MARTÍNEZ-

SANTOS; RENARD, 2020) e (NGUYEN et al., 2020). O segundo tipo envolve o 

desenvolvimento de modelos específicos para a previsão do nível de água subterrânea, 
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como os seguintes estudos: (ARDABILI et al., 2019), (TAO et al., 2022), (UC-

CASTILLO et al., 2023), (GHOLAMI et al., 2023), (KAYHOMAYOON et al., 2022), 

(VADIATI et al., 2022), (SHAKYA; BHATTACHARJYA; DADHICH, 2022), 

(SRIVASTAVA; SHUKLA; JEMNI, 2022), (GAFFOOR et al., 2022), (EL BILALI; 

TALEB; BROUZIYNE, 2021) e (LUIZ, 2022).  

Embora o estudo da água subterrânea tenha recebido ampla atenção na aplicação 

de técnicas de aprendizado de máquina, a identificação e classificação específicas de 

formações aluvionares têm sido pouco investigadas. O levantamento bibliográfico 

realizado revelou que poucas pesquisas se dedicaram especificamente a essa temática. 

Pipaud; Lehmkuhl (2017) realizaram uma pesquisa que apresentou um método 

para a delimitação e classificação de leques aluviais utilizando MDEs, combinados com 

a técnica de clusterização mean-shift e uma máquina de vetores de suporte (SVM). As 

variáveis de entrada, utilizadas na segmentação, incluíram parâmetros morfométricos 

como declividade, curvatura transversal, curvatura longitudinal, assimetria dos valores de 

altitude e o desvio do gradiente em relação ao ápice do leque. O estudo foi conduzido 

utilizando dados SRTM com uma resolução de 30 metros. A segmentação mean-shift foi 

aplicada repetidamente com diferentes parâmetros para capturar a variabilidade dos 

leques aluviais. Posteriormente, uma SVM foi utilizada para a classificação dos objetos 

já agrupados. Os resultados mostraram que essa abordagem, denominada Análise 

Morfométrica Baseada em Objetos (OBMA), alcançou bons resultados, medidos a partir 

da utilização de valores de pertinência fuzzy derivados da classificação SVM para a 

seleção da segmentação mais apropriada para cada leque aluvial identificado. 

Babič et al., (2021) também modelaram e classificaram leques aluviais utilizando 

Modelos Digitais de Elevação e diversas técnicas de aprendizagem de máquina. O estudo 

se concentrou nos leques aluviais da Eslovênia, identificando sete principais parâmetros 

geomorfométricos: inclinação média da hinterlândia, inclinação média da torrente, 

número de rugosidade de Melton da bacia de captação, razão de relevo, relação entre a 

área do leque e a área da hinterlândia, número de Melton do leque aluvial e inclinação 

média do leque. Através da comparação de cinco métodos de aprendizagem, incluindo 

Random Forest, Programação Genética, SVM, Rede Neural e um método híbrido de grafo 

de Euler, os pesquisadores demonstraram a eficácia dessas abordagens na classificação 

automática de leques aluviais propensos a fluxos de detritos. O estudo utilizou dados de 

várias fontes de imagens de satélite, como ASTER, GeoEye, Ikonos, WorldView, ALOS 

e SPOT Image, com resoluções variando de 2 metros (WorldView) a 30 metros (ASTER 
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e SRTM). Os resultados, validados com dados empíricos, mostraram que a Programação 

Genética apresentou o melhor desempenho na classificação. 

Rabanaque et al., (2022) realizaram uma análise hidromorfológica em larga escala 

de riachos efêmeros utilizando algoritmos de aprendizado de máquina, especificamente a 

SVM e RF, para segmentar e classificar canais fluviais e formas fluviais associadas. As 

variáveis de entrada incluíram largura do canal ativo, largura do fundo do vale, gradiente 

de declive, distância de rota e potência específica do fluxo, além de dados de 

sensoriamento remoto das bandas espectrais do Sentinel-2 (RGB, NIR1, SWIR1, SWIR2) 

e índices espectrais como NDVI, GRVI e NDWI. Os dados LiDAR do Projeto PNOA-

LiDAR foram utilizados para criar um modelo digital de elevação (DEM) reamostrado 

para maior resolução, permitindo análises mais detalhadas. A precisão dos modelos foi 

avaliada usando a Matriz de Confusão, Precisão e o Índice de Kappa de Cohen, com o 

SVM obtendo uma precisão média de 0,87 e Kappa de 0,84, enquanto o RF obteve uma 

precisão média de 0,85 e Kappa de 0,81. 

 A evolução das técnicas de detecção de áreas aluvionares reflete o avanço 

tecnológico e computacional, mas também a crescente necessidade de compreender os 

processos geomorfológicos de maneira detalhada para adoção de políticas públicas mais 

eficientes. 

 

2.2 Técnicas de Inteligência Artificial 

 

O aumento significativo do poder computacional nas últimas décadas elevou 

consideravelmente a relevância do aprendizado de máquina. Um dos desafios centrais 

enfrentados pelos algoritmos dessa área é maximizar sua capacidade de generalização, ou 

seja, a habilidade de fornecer respostas eficientes a situações inéditas, não encontradas 

durante o processo de treinamento. Essa característica é crucial para garantir que os 

sistemas possam tomar decisões adequadas em uma variedade de cenários (MITCHELL, 

1997). 

O aprendizado de máquina é tradicionalmente dividido em quatro paradigmas 

principais: aprendizado supervisionado, aprendizado não supervisionado, aprendizado 

por reforço e aprendizado semi-supervisionado. Os dois primeiros (ver Figura 1) são os 

mais amplamente utilizados.   

No aprendizado supervisionado, o modelo é treinado com dados rotulados, ou 

seja, cada entrada no conjunto de treinamento está associada a uma saída conhecida. Isso 
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permite que o algoritmo aprenda a mapear corretamente as entradas para as saídas 

esperadas. Esse paradigma é amplamente empregado em tarefas preditivas, como 

classificação e regressão. 

 

 

Figura 1 - Paradigmas do Aprendizado de Máquina  

 

Por outro lado, o aprendizado não supervisionado busca identificar padrões ou 

relações em dados sem rótulos associados. É aplicado principalmente em tarefas 

descritivas, como agrupamento e associação. O aprendizado por reforço, por sua vez, 

envolve a interação contínua de um agente com o ambiente, em que este recebe 

recompensas ou penalidades para aprimorar suas decisões ao longo do tempo. 

Finalmente, o aprendizado semi-supervisionado combina dados rotulados e não 

rotulados, oferecendo uma abordagem híbrida entre os paradigmas supervisionado e não 

supervisionado (FACELLI et al., 2021). 

No contexto desta pesquisa, o enfoque está no aprendizado supervisionado, dado 

o uso de dados rotulados. Esses algoritmos são projetados para aprender uma função que 

mapeie com precisão entradas para saídas específicas, com base em um conjunto de dados 

de treinamento previamente estabelecido (Russel, 2022). 

Com o objetivo de identificar áreas de aluvião, foram desenvolvidos modelos 

supervisionados como CART/DT, K-Vizinhos Mais Próximos (KNN) e Floresta 

Aleatória (RF). Cada um desses algoritmos apresenta características específicas que os 

tornam adequados para diferentes aspectos do problema investigado. Para contextualizar 
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a aplicação desses modelos, este capítulo apresenta uma breve descrição acerca dos 

principais das características de cada técnica utilizada nesta pesquisa. 

 

2.2.1 CART - DT 

 

As Árvores de Decisão (DT) são uma forma eficaz de representar o conhecimento 

adquirido a partir de conjuntos de dados, organizando as informações como uma 

combinação de restrições nos valores dos atributos das instâncias. Cada caminho da raiz 

até uma folha da árvore representa uma sequência de testes nos atributos. Os nós internos 

correspondem a pontos de decisão, enquanto os ramos indicam os diferentes resultados 

possíveis dessas decisões. 

Durante a construção de uma DT (Figura 2), a seleção dos atributos para divisão 

é determinada pela pureza de cada nó. O processo se inicia no nó raiz e busca criar uma 

estrutura de classificação que seja compacta e eficiente (Mitchell, 1997). Isso é feito 

através da seleção recursiva dos atributos mais informativos para formar os nós internos 

e os ramos correspondentes a cada valor possível do atributo escolhido. A construção 

prossegue até que os exemplos em um nó sejam homogêneos, formando nós folha, onde 

a classificação final é realizada. 

 

 

Figura 2 - Estrutura da Árvore de Decisão 

 

A escolha do atributo para dividir os dados em cada nó é fundamentada em 

medidas de pureza, com o objetivo de criar a DT mais precisa e menor possível. Nesta 

pesquisa, foi utilizado o algoritmo CART (Classificação e Regressão de Árvores), que é 
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adequado tanto para problemas de classificação quanto de regressão. Na classificação, o 

algoritmo CART utiliza como métrica de decisão o índice de Gini (Marsland, 2015). Esse 

índice é calculado como: 

 

𝐺𝑖𝑛𝑖 = ∑ 𝑝𝑖
2

𝑛

𝑖=1

 
(1) 

 

Onde n corresponde ao número de classes, e pi representa a proporção da classe i 

no nó. Um índice de Gini próximo a 0 indica alta pureza no nó, enquanto valores mais 

próximos de 0,5 indicam maior impureza. Essa métrica garante que cada nó seja o mais 

homogêneo possível, ajudando a evitar inconsistências na classificação. 

Para validar os modelos de DT, esta pesquisa utilizou o método de validação 

cruzada k-fold (HASTIE; TIBSHIRANI; FRIEDMAN, 2009). Nesse método, o conjunto 

de dados é dividido em 𝑘 grupos ou dobras. Em cada iteração, uma das dobras é utilizada 

como dados de validação, enquanto as dobras restantes são usadas para o treinamento do 

modelo. Esse processo é repetido 𝑘 vezes, garantindo que cada grupo seja usado uma vez 

como conjunto de validação. Ao final, o erro médio de todas as iterações é calculado, 

fornecendo uma estimativa mais precisa do desempenho do modelo e reduzindo o risco 

de superajuste. 

 

2.2.2 Floresta Aleatória - RF 

 

As Florestas Aleatórias (RF) são uma evolução das DT, desenvolvidas para 

aumentar a precisão e a robustez dos modelos preditivos. Essa técnica consiste na 

construção de um conjunto de 𝑛 árvores de decisão independentes, cada uma treinada 

com um subconjunto aleatório dos dados e das variáveis. Esse procedimento, conhecido 

como bagging (ou bootstrap aggregating), ajuda a reduzir o risco de sobreajuste 

(overfitting) ao combinar as previsões de diversas árvores. A previsão final é obtida por 

meio da média, no caso de regressão, ou pelo voto majoritário, no caso de classificação 

(BREIMAN, 2001). 

Cada árvore na floresta é gerada utilizando amostras aleatórias com reposição a 

partir do conjunto de dados original. Durante o processo de divisão dos nós, apenas um 

subconjunto aleatório de variáveis é analisado, o que introduz maior diversidade entre as 

árvores. Essa característica torna as RF potencialmente eficazes para capturar padrões 
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complexos em dados e especialmente vantajosas em cenários com muitas dimensões ou 

ainda com variáveis altamente correlacionadas. 

A abordagem que combina várias árvores confere às RF maior estabilidade e 

precisão, minimizando os impactos de instâncias ruidosas ou de outliers no desempenho 

geral do modelo. Outra vantagem significativa das Florestas Aleatórias é sua capacidade 

de medir a importância relativa das variáveis, auxiliando na identificação dos atributos 

mais relevantes para o problema em estudo. Esse recurso é particularmente útil para 

análises exploratórias e para a construção de modelos mais interpretáveis. 

 

2.2.3 K-Vizinhos Mais Próximos - KNN 

 

O algoritmo K-Vizinhos Mais Próximos (KNN) é reconhecido por sua eficiência 

e relativa simplicidade no momento da implementação. Este método pertence à categoria 

de algoritmos supervisionados baseados em instâncias, sendo que ele não realiza uma 

etapa de treinamento explícita antes de produzir previsões. Em vez disso, o KNN utiliza 

todo o conjunto de treinamento armazenado para prever a saída de uma nova amostra com 

base na proximidade entre essa amostra e as instâncias existentes no conjunto (HASTIE; 

TIBSHIRANI; FRIEDMAN, 2009). 

O princípio do KNN é medir a similaridade entre uma amostra desconhecida e as 

instâncias do conjunto de treinamento, com base em métricas de distância, como a 

Euclidiana, Manhattan ou Minkowski. Após calcular essas distâncias, são selecionados 

os 𝑘 vizinhos mais próximos, cuja classe ou valor será usado para determinar a saída. Para 

tarefas de classificação, o resultado é baseado na classe predominante entre os vizinhos; 

em problemas de regressão, a saída é calculada como a média ponderada dos valores das 

instâncias selecionadas.  

Embora sua implementação seja direta, a eficiência do KNN depende fortemente 

do valor de 𝑘, que define o número de vizinhos considerados. Valores muito pequenos 

para 𝑘 podem tornar o modelo mais suscetível a ruídos nos dados, enquanto valores 

maiores podem diluir a relevância das instâncias mais próximas, reduzindo a precisão do 

modelo. 

A Figura 3 ilustra o impacto da escolha do parâmetro 𝑘 no comportamento do 

modelo K-Vizinhos Mais Próximos (KNN), evidenciando como diferentes valores podem 

influenciar a classificação de uma mesma amostra. No exemplo apresentado na figura, 

observa-se que, para um valor menor de 𝑘, o modelo tende a classificar a amostra com 
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base em vizinhos mais próximos, o que pode resultar em decisões altamente sensíveis a 

variações locais e à presença de ruídos. Por outro lado, à medida que 𝑘 aumenta, o modelo 

passa a considerar um conjunto maior de vizinhos na tomada de decisão, o que pode 

suavizar a classificação, reduzindo a influência de outliers, mas, ao mesmo tempo, 

aumentando o risco de incluir instâncias irrelevantes ou até mesmo pertencentes a outras 

classes. Dessa forma, a Figura 3 destaca visualmente a necessidade de um ajuste criterioso 

do parâmetro 𝑘 para equilibrar precisão e generalização no modelo. 

 

 

Figura 3 - A variação do k no KNN 

 

O KNN possui algumas limitações importantes. Por exemplo, o custo 

computacional pode ser alto para grandes volumes de dados, já que cada previsão exige 

o cálculo de distâncias para todas as instâncias do conjunto de treinamento. Além disso, 

o desempenho do KNN pode ser prejudicado em cenários de alta dimensionalidade, que 

reduz a eficácia das métricas de distância. Para lidar com essas questões, técnicas como 

redução de dimensionalidade, métodos de ponderação por distância e a seleção adaptativa 

do valor de 𝑘 são amplamente investigadas na literatura. 

 O KNN tem sido amplamente aplicado em diversas áreas. Sua estrutura simples 

o torna uma ferramenta adequada para experimentação inicial, enquanto variações mais 
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avançadas buscam melhorar sua eficácia e reduzir suas limitações em cenários mais 

complexos. 

 

2.3 DGM-e para redução de instâncias 

 

O aumento no volume de dados gerados atualmente exige a adoção de estratégias 

eficientes para seu manejo, sendo a redução de instâncias uma abordagem possível. Os 

métodos de redução podem ser classificados em duas categorias principais: aqueles 

baseados em técnicas de clusterização e os supervisionados. Este trabalho estendeu o 

método chamado Difusão Geométrica Markoviana - DGM-e (SILVA, 2012), a partir do 

método original, desenvolvido por SOUZA (2011).  

O DGM é baseado na equação diferencial do calor entre partículas, onde se 

observa que após certo tempo partículas com menor interação com partículas vizinhas 

retém menos calor, mostrando-se relativamente diferentes do conjunto de partículas 

próximas, por outro lado, elementos que podem ser considerados como mais importantes 

no sistema são os que apresentam maior capacidade de reter calor. 

Na sua forma original, o método foi concebido para realizar a redução em malhas 

triangulares, preservando os vértices que apresentam características específicas de 

interesse durante o processo de simplificação. A extensão demonstrou a capacidade do 

método de ser aplicado a outros dados para além dos originalmente testados, para tanto a 

adaptação precisou criar uma estrutura geométrica para que dados genéricos fossem 

suportados. 

O DGM-e redunda em um método de redução de instancias que pode ser 

representado no fluxograma abaixo: 

 

 

Figura 4 - Representação das Etapas do método DGM-e 
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A seção segue com uma breve apresentação de cada uma das etapas estruturantes do 

método DGM-e. 

 

2.3.1 Estruturação das Instâncias 

 

A estruturação das instâncias é o que permite aos elementos assumirem a estrutura 

de um grafo, ou seja, após a passagem dos elementos pelo algoritmo de estruturação, os 

pontos assumem a estrutura de um grafo o que permite a aplicação do DGM-e. O primeiro 

passo para a estruturação das instâncias é a realização de escalonamento dos dados. Os 

elementos a serem processados podem apresentar grandes variações de escala. Calcular a 

distância entre instâncias, sem essa transformação prévia, não é adequado.  

Assim para a instancia 𝑥𝑖𝑗  correspondente a 𝑗𝑡ℎ  dimensão de 𝑥𝑖 , a equação 

utilizada para o escalonamento foi: 

 

𝑥̂𝑖𝑗 =
𝑥𝑖𝑗− 𝑚𝑗

𝑀−𝑚
 (2) 

 

Onde  𝑚𝑗   é o valor mínimo da dimensão 𝑗𝑡ℎ  , 𝑚 e 𝑀 equivalem ao mínimo e 

máximo globais. Com o escalonamento acima as instâncias assumem valores entre 0 e 1 

e fica garantida a manutenção da relação de distância entre as instâncias. 

A segunda etapa de estruturação dos dados consiste na partição do espaço. O 

DGM-e utiliza a técnica KD-Tree (MOORE, 1991), que funciona de modo semelhante a 

uma generalização da d binária de busca. O algoritmo escolhe a mediana da partição atual 

e a divide em duas partes. Dessa forma, para duas dimensões, a divisão será uma linha e 

cada divisão um plano. No caso de três dimensões teremos cubos, generalizando a 

estrutura para mais dimensões teremos hipercubos. 

A segmentação é parametrizada por: 

 

𝑟 = (𝑛/𝑘) 
1
𝑘           (3) 
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Onde 𝑟 é o número de segmentos, 𝑛 o número de instâncias e 𝑘  o número de 

dimensões. Após a divisão cria-se um espaço com 𝑟𝑘  hipercubos, tal criação ocorre 

através da fórmula abaixo: 

 

ℎ𝑖𝑗= ⌊ 𝑥̂𝑖𝑗 ⋅ 𝑟⌋ (4) 

 

Onde ℎ𝑖𝑗  representa a coordenada inteira da instância 𝑖 ao longo da 𝑗 − é𝑠𝑖𝑚𝑎  

dimensão do hipercubo ao qual ela será alocada dentro da estrutura particionada. O termo 

𝑥̂𝑖𝑗 denota o valor normalizado da instância 𝑖 na 𝑗 − é𝑠𝑖𝑚𝑎  dimensão do espço de dados 

antes da sua discretização nos hipercubos. A função ⌊⋅⌋  representa a função floor, 

responsável por arredondar o valor resultante da multiplicação. 

Para evitar uma explosão combinatória, o método DGM-e propõe uma otimização 

que consiste em gerar apenas os hipercubos populados ao invés de se gerar todos para 

depois efetuar a população.  

Sucede a criação dos hipercubos o último passo para estruturação dos dados, a 

construção da vizinhança. O DGM-e utiliza a própria estrutura dos hipercubos como base 

inicial para construção da relação de vizinhança entre as instâncias. O método adota a 

estratégia de determinar a vizinhança de uma instância a partir do método de amostragem 

Monte Carlo. Assim, são selecionadas p instâncias pertencentes ao mesmo hipercubo da 

instância. A vantagem de tal abordagem é se mostrar efetiva em conjuntos de dados de 

alta densidade. 

O resultado da estruturação é o surgimento de uma tupla de vizinhança de cada 

instância. Deve-se destacar que em tal estruturação a simetria de ligação entre as 

instâncias fica garantida, ou seja, se uma instância “a” está ligada a “b”, deve-se garantir 

que “b” também esteja ligada a “a”. 

 

2.3.2 Cálculo da Representatividade 

 

O DGM-e propõe a construção de um núcleo para cálculo da similaridade entre as 

instâncias. Esse núcleo deve ser uma função que atenda as seguintes relações:  

 

𝑘(𝑥𝑖 , 𝑥𝑗) =  𝑘(𝑥𝑗 , 𝑥𝑖)  (5) 

(𝑥𝑖, 𝑥𝑗) ≥  0 𝑠𝑒 𝑖 ≠ 𝑗 (6) 
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𝑘(𝑥𝑖 , 𝑥𝑗) > 0 (7) 

 

A simetria fica garantida em (5) removendo a influência de direção de ligação 

entra as instâncias. São as inequações subsequentes (6) e (7) que permitem associar os 

valores obtidos por k como medidas de probabilidade. 

Adotou-se no DGM-e a distância euclidiana para comparar relação entre os 

elementos. Assim, considerando-se o núcleo Gaussiano 𝑘(𝑥𝑖 , 𝑥𝑗) = exp  (−|𝑥𝑖 − 𝑥𝑗|)2 , 

temos |𝑥𝑖 −  𝑥𝑗|
2
 como a distância euclidiana ao quadrado. Para efetuar a comparação 

dos elementos pode-se generalizar a distância para qualquer função de distância. 

Os valores do núcleo são utilizados para construção de uma matriz simétrica sem 

valores negativos. Uma normalização (𝑑(𝑥𝑖)) é aplicada, resultando em uma matriz de 

Transição ( 𝑃 ).  Assim temos: 

 

𝑃(𝑥𝑖 , 𝑥𝑗) =  
𝑘(𝑥𝑗 , 𝑥𝑖)

𝑑(𝑥𝑖)
 (8) 

 

Onde  𝑑(𝑥𝑖) realiza a normalização conforme relação que segue: 

 

𝑑(𝑥𝑖) =  ∑ 𝑘(𝑥𝑖 , 𝑥𝑗)

𝑥𝑗∈𝑋

 
(9) 

. 

A matriz de transição ( 𝑃 ) incorpora a estrutura geométrica do elemento com seus 

vizinhos imediatos. A matriz, construída a partir da função núcleo, tem em sua diagonal 

justamente o valor da similaridade entre os vizinhos. A partir de tal valor de similaridade 

é que ocorre a redução de elementos. 

 

2.3.3 O processo de Simplificação 

 

Os valores da diagonal da matriz de Transição ( 𝑃  ) refletem a relação de 

similaridade entre a vizinhança de cada instância. No entanto, o valor encontrado na 

diagonal, e representativo de cada ponto (vértice), ainda sofre a influência da 

conectividade que possui em virtude da normalização aplicada (7). Essa influência pode 

comprometer a avaliação da representatividade de um elemento, uma vez que diferentes 
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pontos podem possuir diferentes densidades de conexões. Diante disso, o DGM-e propõe 

um cálculo de importância  𝑉 que leve em conta o número de conexões que um elemento 

possui. O cálculo de importância de um elemento no método DGM-e ocorre assim: 

 

𝑉(𝑥𝑖) =  
𝐷𝑒𝑔(𝑥𝑖)

𝑃(𝑥𝑖,𝑥𝑖)
                                                         (10)                        

 

onde 𝐷𝑒𝑔(𝑥𝑖)  é o número de conexões que um elemento 𝑥𝑖  possui na estrutura 

geométrica e 𝑃(𝑥𝑖, 𝑥𝑖) é o valor do ponto na matriz de transição. 

A importância de um ponto mede a propensão daquela região ser removida. No 

DGM-e a simplificação atua nos elementos com baixos valores. Para valores mais altos 

de importância opta-se pela manutenção, pois trata-se de regiões de maior relevância para 

a estrutura dos dados. Além disso, o DGM-e usa como critério de parada o percentual de 

redução de instâncias que o usuário decidir. 

De maneira geral o processo de simplificação ocorre da seguinte forma: 

inicialmente, calcula-se a importância 𝑉(𝑥𝑖)  de cada elemento da base de dados, 

considerando a diagonal da matriz de transição ( 𝑃 ) e no grau 𝑑(𝑥𝑖). As instâncias são 

ordenadas, de acordo com sua importância, e as menos representativas (com menores 

valores de 𝑉(𝑥𝑖)) são removidas de maneira iterativa. Após cada remoção, a matriz de 

transição é recalculada ajustando os valores de importância para as instâncias restantes. 

Esse processo permanece até que o ponto de parada seja atingido. Essa abordagem 

preserva as características essenciais do conjunto, de modo a manter os elementos mais 

relevantes. 
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3 MATERIAL E MÉTODOS 

 

Este Capítulo se inicia com a apresentação da área objeto de estudo, no caso a 

bacia do Riacho Grande, localizada no semiárido da Região Nordeste do Brasil. Coube a 

segunda seção do capítulo descrever a obtenção e manipulação inicial dos dados até a 

formação de um banco de dados. Por fim, as duas últimas seções do capítulo apresentam 

respectivamente o método empregado na redução de instâncias do banco e a metodologia 

para construção de modelos de aprendizagem de máquina para detecção de áreas 

aluvionares.  

 

3.1 Área objeto da pesquisa  

 

 A área de estudo desta pesquisa é a bacia hidrográfica do Riacho Grande, situada 

no sertão de Pernambuco e abrangendo os municípios de Serra Talhada, Calumbi, Flores 

e Betânia. Para melhor contextualizar a região, suas características serão apresentadas na 

seguinte sequência: clima, geologia, geomorfologia e hidrografia. 

A região da bacia do Riacho Grande possui um clima tropical semiárido, marcado 

por elevadas temperaturas médias, que variam entre 25°C e 30°C, e baixos índices 

pluviométricos anuais, com precipitação média entre 450 e 700 mm. A ocorrência de 

chuvas concentra-se principalmente nos meses de novembro a abril. 

A bacia encontra-se integralmente localizada no Planalto da Borborema, uma 

formação geológica caracterizada pela predominância de rochas cristalinas. Essa 

composição rochosa influencia diretamente o relevo da região. 

O relevo da bacia do Riacho Grande apresenta variações altimétricas 

significativas, com altitudes que oscilam entre aproximadamente 430 e 870 metros, 

diminuindo no sentido leste para oeste (a jusante). As maiores declividades são 

observadas nas áreas de cabeceira, enquanto a bacia, de modo geral, caracteriza-se por 

áreas de baixa declividade. As regiões de maior altitude atuam como zonas de produção 

de sedimentos, que são posteriormente transportados pela água da chuva para as áreas 

mais baixas, onde ocorre a deposição, processo fundamental para a formação das áreas 

de aluvião (Figura 5). 
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Figura 5 - Identificação das áreas de aluvião na Bacia do Riacho Grande 

 

A rede hidrográfica da bacia do Riacho Grande é composta por rios efêmeros, cujo 

fluxo de água é intermitente, ocorrendo principalmente durante a estação chuvosa (Figura 

6). O principal curso d'água é o Riacho Grande, que, apesar de sua relevância para a bacia, 

é uma sub-bacia do Rio Pajeú. 

 

Figura 6 - Localização e Drenagem da Bacia do Riacho Grande 
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Com a área de estudo contextualizada em termos climáticos, geológicos, 

geomorfológicos e hidrográficos, a próxima etapa metodológica consistiu na obtenção e 

no tratamento dos dados geoespaciais que permitiram a caracterização detalhada da bacia 

do Riacho Grande. A definição e o processo de coleta dessas informações são detalhados 

na seção seguinte. 

 

3.2 Obtenção dos Dados 

 

A definição das onze dimensões que compõem o banco de dados baseou-se na 

relevância dessas variáveis para a caracterização geomorfológica e hidrológica das áreas 

aluvionares, considerando fatores essenciais para a formação e identificação desses 

depósitos. Foram utilizadas as variáveis disponíveis nos dados extraídos da bacia 

hidrográfica do Riacho Grande, priorizando aquelas que apresentavam potencial para 

influenciar a ocorrência de aluviões. A seleção foi fundamentada tanto em estudos 

anteriores sobre predição de aluviões quanto no conhecimento consolidado sobre os 

processos de transporte e deposição de sedimentos em bacias hidrográficas. 

A definição da variável de saída (Figura 6), que indica a presença ou ausência de 

áreas aluvionares, foi realizada por meio de trabalhos de campo e análise de imagens de 

satélite. Inicialmente, foram realizadas vistorias em trechos da bacia do Riacho Grande 

considerados críticos para a ocorrência de aluviões, com o objetivo de identificar e 

delimitar a extensão dessas áreas. Posteriormente, essas informações foram 

complementadas e refinadas através da análise visual de imagens de alta resolução do 

Google Earth. A precisão dos polígonos criados a partir do trabalho foi cuidadosamente 

avaliada para garantir a representatividade da variável de saída utilizada na modelagem.  

A obtenção das onze dimensões (Quadro 1) que compõem o banco de dados 

ocorreu por meio do uso do software ArcMap, versão 10.8, uma ferramenta de Sistema 

de Informação Geográfica (SIG). Através dessa ferramenta, foram realizadas análises 

espaciais e geográficas fundamentais para coleta das variáveis. 

O primeiro passo do trabalho foi a obtenção dos Modelos Digitais de Elevação 

junto ao Programa Pernambuco Tridimensional (PE3D), que utiliza tecnologias de 

aerofotogrametria e o LiDAR (Light Detection and Ranging) para realizar o mapeamento 

do Estado de Pernambuco. Os modelos obtidos possuem uma resolução espacial de 1 

metro quadrado (1x1m), o que representa uma precisão significativamente superior aos 

modelos gratuitos disponíveis globalmente, como o Shuttle Radar Topography Mission 
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(SRTM) e o ALOS PALSAR, que possuem resolução de 30x30 metros. Essa alta 

resolução permitiu a extração detalhada de variáveis topográficas e hidrológicas, 

aumentando a precisão da análise das áreas aluvionares. 

Com os modelos processados, foram realizadas as etapas de tratamento das 

imagens e extração de atributos relevantes para o estudo. O fluxograma abaixo ilustra 

essas etapas, apresentando desde a aquisição dos dados brutos até a geração do conjunto 

final de informações utilizadas para a modelagem. O fluxograma destaca as principais 

operações realizadas, como a interpolação dos dados de elevação, o cálculo de atributos 

geomorfológicos e hidrológicos e a integração das variáveis em uma base unificada. Essas 

etapas foram fundamentais para garantir a representatividade dos dados e viabilizar a 

aplicação das técnicas de inteligência artificial para a identificação de áreas aluvionares. 

 

 

Figura 7 - Etapas de trabalho para obtenção dos dados 

 

A Figura 7 ilustra o fluxo de trabalho para a obtenção do conjunto de dados 

utilizado nesta pesquisa. O processo inicia-se com a aquisição de Modelos Digitais de 

Elevação (MDE) provenientes do Programa Pernambuco Tridimensional (PE3D) e de 

dados de precipitação fornecidos pela Agência Pernambucana de Águas e Clima (APAC). 

Paralelamente, a identificação das áreas de aluvião (Saída) é realizada através da análise 

de imagens do Google Earth e de trabalhos de campo. 
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A partir do MDE, são derivadas variáveis geomorfológicas e hidrológicas, 

incluindo Altitude, Área de Acumulação, Conectividade, Curvatura Total, Declividade, 

Distância até a Cabeceira, SPI (Stream Power Index) e TWI (Topographic Wetness 

Index). Para a variável de Distância até o Centro do Canal, utiliza-se o MDE para a criação 

da Nuvem de Pontos e posterior cálculo da distância. Os dados de Precipitação passam 

por um processo de interpolação para serem espacializados em toda a bacia hidrográfica, 

resultando na variável de Pluviosidade. 

Os valores de todas as onze dimensões são extraídos para cada ponto da bacia, 

integrando-se para formar o Conjunto de Dados final, que servirá de base para a 

modelagem de aprendizado de máquina 

Ao longo de toda a bacia do Riacho Grande foram espalhados pontos a cada metro 

quadrado, resultando em um banco de dados com 11 dimensões e pouco mais de 315 

milhões de instancias. O quadro 1 caracteriza cada um dos atributos utilizados na 

modelagem. 

 

Atributo Descrição 

Altitude Refere-se à elevação do terreno em relação ao nível 

do mar, medida em metros, para cada ponto 

analisado. 

Área de Acumulação Indica a área acumulada de drenagem desde a 

cabeceira até o ponto em análise, medida em 

quilômetros quadrados. 

Conectividade Representa o índice que mensura, em escala de 

pixel, a conectividade de um ponto com outros 

trechos da bacia hidrográfica. Este índice varia no 

intervalo [-∞, +∞], sendo utilizado para avaliar a 

continuidade do fluxo hídrico. 

Curvatura Total Combina as curvaturas plana e de perfil do terreno, 

fornecendo uma representação integrada da 

curvatura do relevo. 

Declividade Mede a inclinação do terreno em graus, indicando 

a relação angular em relação à horizontal. 

Distância até o Centro do Rio Mensura, em metros, a distância de cada ponto até 

o centro do canal principal de drenagem. 

Distância até a Cabeceira Refere-se à distância acumulada do ponto 

analisado até a cabeceira do curso d'água. Este 

atributo mede a extensão total percorrida pela água 

ao longo do fluxo, a partir do ponto mais elevado 

da bacia hidrográfica até o ponto em questão. 
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Precipitação Reflete a quantidade média de chuva, em 

milímetros, estimada para cada um dos pontos com 

base em uma interpolação realizada a partir de 

dados de cinco estações pluviométricas (Betânia, 

Calumbi, Flores, Serra Talhada e Custódia). As 

informações foram fornecidas pela Agência 

Pernambucana de Águas e Clima (APAC) e 

correspondem à média de precipitação dos últimos 

30 anos. 

SPI (Stream Power Index) Indica o potencial de erosão exercido pela água 

corrente sobre o terreno, considerando a 

declividade e o fluxo acumulado. 

TWI (Topographic Wetness 

Index) 

Representa a umidade topográfica potencial, 

calculada com base na área de contribuição e na 

inclinação do terreno. É utilizado para avaliar a 

capacidade de retenção de água em uma área 

específica. 

Aluvião (Saída) Variável de saída utilizada no modelo. Os pontos 

identificados como áreas aluvionares foram 

atribuídos o valor 1, enquanto os pontos não 

aluvionares receberam o valor 0. 

Quadro 1 – Descrição das variáveis utilizadas na modelagem 

 

Dado o extenso volume do banco de dados resultante da etapa de obtenção, a 

próxima seção detalha o método aplicado para a redução do número de instâncias, visando 

otimizar o processamento para a modelagem de aprendizado de máquina. 

 

3.3 Redução das instâncias e sua avaliação 

 

Devido ao grande volume de dados, foi necessário aplicar um método de redução 

de instâncias para viabilizar o processamento e a aplicação de técnicas de aprendizado de 

máquina. O método escolhido foi o Difusão Geométrica Markoviana estendido - DGM-e 

(SILVA, 2012), uma abordagem validada na literatura (SILVA; SOUZA; MOTTA, 2016) 

para a redução de grandes conjuntos de dados, preservando a representatividade das 

informações originais.  O DGM-e foi aplicado para obtenção de diferentes níveis de 

redução (10%, 5%, 1% e 0,1% do total de instâncias), permitindo a criação de bancos de 

dados menores, mas ainda representativos. 

Para a realização do processamento, foi utilizado um computador com 

processador Intel Core i7 de 13ª geração, 64 GB de memória RAM e uma placa gráfica 

dedicada com 8 GB de memória. Além disso, quatro outros computadores de suporte 

foram empregados, todos equipados com processadores Intel Core i7-4770 CPU @ 3.4 

GHz (8 núcleos), 16 GB de memória RAM e gráficos integrados Intel HD Graphics 4600. 
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Essa configuração conjunta acelerou significativamente o trabalho de redução das 

instâncias. 

O conjunto de dados original possuía aproximadamente 40 GB, que foi dividido 

em 16 partes. Essa divisão foi essencial para a efetivação da redução. O processo de 

trabalho para redução está retratado na Figura 8.  

Cada uma das 16 partes passou por uma primeira etapa de redução. 

Subsequentemente, as instâncias foram reunidas em quatro grupos e submetidas à 

segunda etapa de redução. A etapa final consistiu na unificação dos quatro conjuntos e na 

realização da terceira e última fase de redução.  

 

 

Figura 8 - Etapas para implementação da redução a partir do DGM-e 

 

Foram realizadas reduções no conjunto de dados original, aplicando percentuais 

totais de 10%, 5%, 1% e 0,01%. Os resultados obtidos serão detalhados nos experimentos 

descritos no próximo capítulo. O conjunto de dados original possui aproximadamente 315 

milhões e 870 mil instancias, o Quadro 2 apresenta o percentual reduzido em cada uma 

das etapas. 
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Patamares de 

Redução (% 

final 

alcançado) 

% Retido 

Após a 1ª 

Etapa 

Instâncias 

Após a 1ª 

Etapa 

(Milhões) 

% Retido 

Após a 2ª 

Etapa 

Instâncias 

Após a 2ª 

Etapa 

(Milhões) 

% Retido 

Após a 3ª 

Etapa 

Instâncias 

Após a 3ª 

Etapa - Final 

(Milhões) 

0,1% 10,1% 31,9 1,1% 3,5 0,1% 0,3 

1% 11% 34,7 2% 6,3 1% 3,2 

5% 15% 47,4 6% 19 5% 15,8 

10% 20% 63,2 11% 34,7 10% 31,6 

Quadro 2 – Percentuais aplicados em cada etapa de redução 

 

Resta esclarecer que, durante nossa aplicação do processo de redução, os dados 

foram escalonados para o intervalo entre -10 e 10, da seguinte maneira:  

 

𝑥̂𝑖𝑗 = -10 + 
𝑥𝑖𝑗− 𝑚𝑗

𝑀−𝑚
 * 20                                                     (11) 

 

onde 𝑥𝑖𝑗 representa o valor original, 𝑚𝑗𝑒 𝑀 correspondem respectivamente, ao menor e 

maior valor da variável em questão. Esse escalonamento foi adotado em substituição ao 

intervalo originalmente proposto (2), de 0 a 1, com o objetivo de ampliar a 

representatividade dos valores e permitir maior representatividade no momento da 

construção da vizinhança. 

Dado o grande volume do conjunto de dados original, foi a redução que 

possibilitou a realização do treinamento e dos testes para os testes. O método apresentado 

buscou, dentro dos recursos computacionais disponíveis, otimizar o tempo necessário 

para a conclusão de todas as etapas de redução. 

 

3.4 Construção dos Modelos e Detecção de Áreas de Aluvião 

 

Os experimentos para a detecção de áreas de aluvião foram realizados utilizando 

a linguagem Python, versão 3.13.1, em conjunto com o ambiente de desenvolvimento 

Spyder 6. A proposta do experimento, cujos resultados serão apresentados no próximo 

capítulo, consistiu em comparar o desempenho de diferentes técnicas de aprendizado de 

máquina na identificação de aluviões. 
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Foram aplicadas as técnicas de CART/DT, K-Vizinhos Mais Próximos e Floresta 

Aleatória para a detecção de aluviões. Devido ao alto volume de dados, não foi possível 

testar essas abordagens no banco de dados completo, tornando essencial a aplicação do 

método de redução. Assim, as análises foram conduzidas em bases reduzidas para 10%, 

5%, 1% e 0,1% do total de instâncias, permitindo a comparação do desempenho de cada 

técnica. O critério principal de avaliação foi a eficácia na classificação das áreas 

aluvionares, considerando métricas como precisão, recall e F1-score. 

A Figura 9 apresenta as etapas metodológicas empregadas na construção e 

validação dos modelos. O processo iniciou-se com a aplicação de diferentes níveis de 

redução ao banco de dados original, que continha aproximadamente 315 milhões de 

pontos. Foram gerados quatro conjuntos de dados reduzidos: 31,5 milhões de pontos 

(redução para 10%), 15,7 milhões de pontos (redução para 5% do total), 3,15 milhões de 

pontos (redução para 1%) e 315 mil pontos (redução para 0,1% do total), correspondendo 

a sucessivas reduções no tamanho do banco. 

 

 

Figura 9 - Etapas de trabalho para aplicação das técnicas de aprendizagem  

 

Cada conjunto reduzido foi submetido a etapas de ajustes, treinamento e 

validação, empregando validação cruzada com 10 folds para garantir consistência na 

avaliação dos modelos. Para otimizar o desempenho das técnicas utilizadas, CART/DT, 

KNN e RF, os melhores hiperparâmetros foram selecionados por meio de grid search 

combinado com validação cruzada.  
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Para o algoritmo de KNN, o grid search identificou que o número ideal de vizinhos 

(n_neighbors) foi de 7, utilizando a ponderação por distância (weights='distance') e a 

métrica de distância Manhattan (metric='manhattan'). Esses hiperparâmetros se 

mostraram consistentes para todos os níveis de redução do conjunto de dados. 

No caso do CART/DT, os hiperparâmetros ótimos encontrados através do grid 

search foram: profundidade máxima da árvore (max_depth) de 20, número mínimo de 

amostras para dividir um nó (min_samples_split) igual a 5, número mínimo de amostras 

nas folhas (min_samples_leaf) de 2 e um peso para a classe positiva (class_weight) de 6. 

Assim como no KNN, essa configuração se manteve a melhor para todas as bases de 

dados reduzidas. 

Finalmente, para o algoritmo RF, o grid search determinou os seguintes 

hiperparâmetros como os mais eficazes: profundidade máxima da árvore (max_depth) de 

25, número mínimo de amostras para dividir um nó (min_samples_split) de 2, número 

mínimo de amostras nas folhas (min_samples_leaf) de 2, peso para a classe positiva 

(class_weight) de 5 e o número de árvores na floresta (n_estimators) igual a 50. Esses 

hiperparâmetros também foram consistentes entre os diferentes níveis de redução dos 

dados. 

Esse processo permitiu identificar as configurações mais adequadas para cada 

técnica, maximizando a eficácia preditiva dos modelos. Por fim, os resultados de cada 

etapa foram registrados e comparados, considerando o impacto do nível de redução no 

desempenho das técnicas. 
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4 RESULTADO E DISCUSSÃO 

 

O Quadro 3 apresenta os resultados obtidos com a aplicação de três técnicas de 

classificação (KNN, CART/DT e Random Forest) nos quatro bancos gerados após o 

processo de redução dos dados. 

Não foi possível aplicar as técnicas de aprendizado de máquina ao conjunto total 

de dados, que continha aproximadamente 315 milhões de pontos, devido ao alto custo 

computacional envolvido. Dessa forma, a redução dos dados tornou-se essencial para 

viabilizar a modelagem, permitindo que os experimentos fossem conduzidos dentro do 

limite da capacidade dos recursos disponíveis. Após alguns testes, o percentual de 10% 

do total de instancias representou o maior volume de dados que foi possível processar 

sem comprometer a execução dos modelos, garantindo uma análise consistente sem 

exceder os limites operacionais. 

 

Técnica Aplicada Total de 

Instâncias 

F1-Score Precisão Recall 

KNN 0,1% 72,7% 75,1% 70,4% 

KNN 1% 66,3% 69,5% 63,5% 

KNN 5% 86,1% 87,3% 84,9% 

KNN 10% 85,5% 86,7% 84,3% 

CART/DT 0,1% 70,3% 73,2% 67,9% 

CART/DT 1% 74,4% 76,1% 72,9% 

CART/DT 5% 86,3% 88,2% 84,5% 

CART/DT 10% 85,3% 87,1% 83,7% 

RF 0,1% 75% 78,5% 71,7% 

RF 1% 77,4% 80,2% 74,8% 

RF 5% 89,8% 91,0% 88,7% 

RF 10% 89,0% 90,2% 87,9% 

Quadro 3 – Resultado obtido por cada uma das técnicas de AM 

 

Os dados analisados representam quatro diferentes níveis de redução do conjunto 

original, com proporções de 0,1%, 1%, 5% e 10% do total, permitindo avaliar o impacto 

da redução na performance dos classificadores. A acurácia não foi utilizada como critério 
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de avaliação, uma vez que o extremo desbalanceamento dos dados tornaria essa métrica 

pouco representativa para a qualidade real dos modelos. 

Entre as técnicas avaliadas, o KNN (Figura 10) apresentou desempenho inferior 

na maioria dos casos, especialmente nos bancos mais reduzidos, evidenciando uma 

sensibilidade maior à disponibilidade de dados. 

 

 

Figura 10 - Resultado da aplicação do KNN 

 

O CART/DT mostrou resultados intermediários, com melhorias progressivas à 

medida que a proporção de dados aumentava (Figura 11). Isso sugere que a técnica é 

menos sensível à redução de dados do que o KNN, mas ainda depende de um maior 

volume de informações para obter resultados mais consistentes. 

 

 

Figura 11 - Resultados da aplicação do CART/DT 
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Por outro lado, o RF (Figura 12) destacou-se como o melhor classificador em 

todos os bancos, apresentando maior estabilidade e métricas relativamente elevadas. Os 

resultados obtidos com RF nos bancos reduzidos para 5% e 10% do total foram próximos, 

com F1-Score e Precisão superiores a 89% e Recall próximo desse patamar.  

 

 

Figura 12 - Resultados obtidos com o RF 

 

A análise dos modelos treinados com 5% e 10% dos dados apontou uma leve 

vantagem para o modelo de 5%, com pequenas diferenças observadas nas métricas de 

desempenho. Para verificar essa diferença, foram calculados os intervalos de confiança 

de 95% para o F1-Score no conjunto de teste final. 

Os resultados demonstraram que o modelo treinado com 5% dos dados obteve um 

F1-Score de 0.8975, com um intervalo de confiança de (0.8972, 0.8978), enquanto o 

modelo treinado com 10% dos dados apresentou um F1-Score de 0.8897, com intervalo 

de (0.8895, 0.8899). Como esses intervalos não se sobrepõem, há evidências de que o 

modelo treinado com 5% dos dados manteve um desempenho levemente superior ao 

modelo treinado com 10%, reforçando que a redução da quantidade de dados, neste caso, 

não comprometeu a qualidade preditiva. 

Dessa forma, as análises que serão apresentadas a partir deste ponto terão como 

referência o modelo treinado com 5% dos dados. 

Ao comparar os resultados obtidos neste estudo com as métricas apresentadas na 

literatura, observa-se que as abordagens utilizadas, como Random Forest, alcançam 

níveis de precisão e F1-Score comparáveis aos relatados em estudos similares, como o de 
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Rabanaque et al. (2022). Esse estudo obteve uma acurácia média de 85% e um coeficiente 

Kappa de 0,81 na classificação de elementos fluviais, incluindo áreas aluvionares.  

Os resultados do presente estudo, onde o Random Forest atingiu um F1-Score de 

89,8%, além de precisão e recall próximos desse patamar indicam desempenhos similares, 

considerando as diferenças metodológicas e os contextos de aplicação. Isso reforça a 

aplicabilidade do aprendizado de máquina na identificação de áreas aluvionares, 

indicando que modelos como o Random Forest podem obter resultados consistentes 

mesmo com diferentes bases de dados e metodologias.  

Com base nos resultados obtidos utilizando o Random Forest no banco com 5% 

do total, podemos destacar que as variáveis de maior importância no modelo foram a 

distância ao canal, a altitude e a precipitação. Esses fatores apresentaram os maiores pesos 

na classificação das áreas aluvionares. Estudos como os de Pipaud e Lehmkuhl (2017) e 

Babič et al. (2021) destacam a relevância de variáveis geomorfométricas, como 

declividade e curvatura, que, embora tenham sido consideradas neste estudo, 

apresentaram menor impacto na modelagem, com valores de importância inferiores aos 

das variáveis de maior relevância. A Figura 13 ilustra a importância relativa das variáveis 

utilizadas, evidenciando a hierarquia dos fatores mais influentes na classificação, bem 

como a menor contribuição de atributos geomorfométricos como declividade e curvatura. 

 

 

Figura 13 - Importância das variáveis utilizadas na predição  

 

A matriz de confusão gerada para o Random Forest no banco de 5% do total é 

apresentada na Figura 14. Ela aponta que o modelo foi capaz de classificar corretamente 

a maior parte das amostras, com 2.898.662 verdadeiros negativos (áreas corretamente 
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identificadas como não sendo de aluvião) e 211.549 verdadeiros positivos (áreas de 

aluvião corretamente classificadas). Os erros foram relativamente baixos, com 24.308 

falsos positivos (áreas classificadas erroneamente como aluvião) e 24.037 falsos 

negativos (áreas de aluvião não identificadas pelo modelo). 

É importante destacar que o conjunto de dados apresenta um cenário 

desbalanceado, com uma predominância expressiva de áreas não aluvionares. No total, 

aproximadamente 92,5% das amostras pertencem à classe 0 (áreas sem aluvião), enquanto 

apenas 7,5% correspondem à classe 1 (áreas de aluvião). Ainda assim, o Random Forest 

conseguiu manter uma boa taxa de classificação para ambas as classes, identificando 

corretamente a maioria das áreas aluvionares e não aluvionares. 

 

 

Figura 14 - Matriz de confusão RF (Banco reduzido para 5% do total) 

 

Além disso, a análise da curva Precision-Recall (Figura 15) revela um adequado 

desempenho do modelo na identificação das áreas de aluvião. A precisão média 

ponderada pelo recall (Average Precision - AP) obtida foi de 0.97, indicando que o 

modelo mantém uma alta precisão mesmo cobrindo uma proporção significativa das áreas 

de aluvião reais. 
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Figura 15 – Curva Precision-Recall (Banco reduzido para 5% do total) 

 

Os resultados alcançados durante a validação cruzada reforçam a estabilidade do 

modelo Random Forest na tarefa de identificar áreas aluvionares. A Figura 16 apresenta 

a distribuição das métricas F1-Score, Precisão e Recall ao longo das divisões realizadas 

na validação cruzada (com k = 10). Observa-se que as métricas mantêm valores 

consistentes entre os diferentes folds, com baixa variabilidade e medianas elevadas, 

próximas das médias calculadas. 

 

Figura 16 – Validação cruzada resultados (Banco reduzido para 5% do total) 

 

Esses resultados apontam que o modelo é confiável e apresenta alta capacidade de 

generalização, mesmo ao lidar com diferentes amostras. Assim, o desempenho 

demonstrado pelo Random Forest valida seu uso como uma ferramenta eficiente para a 

identificação de áreas aluvionares, com potencial aplicação em estudos geomorfológicos 

e no planejamento territorial.  
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Os mapas apresentados na Figura 17 mostram o resultado das diferentes reduções 

aplicadas às áreas aluvionares, partindo de 0,1% do total (canto superior esquerdo) até 

10% do total (canto inferior direito). A figura permite observar a distribuição espacial das 

áreas aluvionares à medida que diferentes níveis de redução são aplicados, destacando a 

concentração em torno dos principais canais fluviais.  

 

Redução para 0,1% do Total Redução para 1% do Total 

 

 

Redução para 5% do Total Redução para 10% do Total 

 
 

Figura 17- Instâncias aluviais restantes nos diferentes patamares de redução 

 

Nas reduções mais extremas (correspondente a 0,1% e 1%), as áreas aluvionares 

ficam altamente restritas. Por outro lado, com percentuais de 5% e 10%, observa-se uma 

expansão gradativa dessas áreas, abrangendo não apenas os rios principais, mas também 

porções significativas de seus afluentes. Essa variação evidencia a hierarquia fluvial e o 

papel das áreas aluvionares em trechos de diferentes relevâncias na bacia hidrográfica. 
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O processo de redução progressiva demonstrado nos mapas é útil para diversos 

objetivos. Em cenários com alta redução (ex.: 0,1%), o foco é apenas nos trechos mais 

críticos ou de maior relevância, enquanto as menores reduções (ex.: 10%) permitem uma 

representação mais abrangente das áreas aluvionares, preservando trechos com menor 

densidade de drenagem.  

A escolha do percentual adequado depende diretamente das necessidades da 

análise, sejam elas voltadas ao planejamento ambiental, à modelagem hidrológica ou à 

preservação de habitats associados aos rios. 
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5 CONCLUSÕES E TRABALHOS FUTUROS 

 

 Este trabalho realizou uma análise sobre a aplicação de diferentes técnicas de 

aprendizado de máquina na classificação de áreas aluvionares, considerando conjuntos de 

dados reduzidos em diferentes proporções. As técnicas utilizadas foram o KNN, 

CART/DT e RF, aplicadas a bancos com 0,1%, 1%, 5% e 10% dos dados originais. A 

análise permitiu identificar o impacto da redução no desempenho dos classificadores, 

destacando que o Random Forest apresentou resultados mais consistentes e robustos em 

todos os cenários testados. 

Os resultados mais expressivos foram obtidos com o Random Forest, onde as 

métricas de F1-Score e Precisão superaram 89%, e o Recall apresentou um desempenho 

próximo desse patamar. Isso evidencia a capacidade do modelo em lidar com a 

complexidade e variabilidade das características geomorfológicas, mesmo em bases 

reduzidas. Entre as variáveis analisadas, destacaram-se como mais relevantes a distância 

ao centro do canal, a altitude e a precipitação. 

Além disso, a comparação entre os quatro patamares de redução mostrou que a 

redução do volume de dados não comprometeu significativamente a eficiência dos 

classificadores. Sugere-se que o DGM-e foi eficaz, oportunizando seu uso em análises 

futuras, com menor custo computacional e maior agilidade no processamento. 

Embora os três objetivos deste estudo tenham sido alcançados, ainda existem 

possibilidades de aprofundamento. Um dos próximos passos será submeter os bancos de 

dados a um conjunto mais diversificado de técnicas de aprendizado de máquina, incluindo 

métodos como Gradient Boosting, Extreme Gradient Boosting (XGBoost) e redes 

neurais. A aplicação dessas técnicas poderia oferecer uma análise complementar do 

desempenho em relação às abordagens já testadas, permitindo explorar a capacidade de 

modelagem em diferentes cenários e identificar potenciais melhorias no processo de 

classificação. 

Outro ponto central para futuros desenvolvimentos é a comparação da redução 

realizada pelo método DGM-e com outras abordagens para redução de instâncias. Essa 

análise permitirá avaliar a eficiência do método proposto em relação a alternativas 

existentes, identificando suas vantagens e limitações em contextos variados. Tal 

comparação será crucial para consolidar o DGM-e como uma ferramenta útil e confiável 

em estudos geomorfológicos e aplicações de aprendizado de máquina.  
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Por fim, este trabalho reforça a importância do uso de técnicas modernas de 

aprendizado de máquina para a classificação de áreas aluvionares. Além disso, aponta 

caminhos para otimizações futuras, que poderão ampliar o alcance e a aplicabilidade das 

metodologias apresentadas, contribuindo para o avanço no entendimento de processos 

geomorfológicos e no planejamento territorial.  
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