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Resumo

Nesta dissertacao, calculamos o desvio da luz usando o formalismo de campo forte e o
aplicamos no estudo das lentes gravitacionais. Este formalismo corresponde ao limite
em que a luz se aproxima da esfera de fétons, onde as geodésicas nulas definem orbitas
circulares. Neste limite, o pardmetro de impacto da trajetéria do foton tende ao parametro
de impacto critico, abaixo do qual o féton cai no horizonte de eventos. Supomos inicialmente
uma métrica estatica, esfericamente simétrica e assintoticamente plana e depois aplicamos
o formalismo as métricas de Schwarzschild, de Reissner-Nordstréom e de black-bounce. No
campo forte, a integral do desvio da luz diverge, entdao extraimos a parte divergente e
expressamos o resultado através de alguns parametros. Por fim, definimos observaveis
no contexto das lentes gravitacionais para distinguir entre as métricas a partir de dados

experimentais futuros.

Palavras-chave: Relatividade Geral. Desvio da Luz. Lentes Gravitacionais.



Abstract

In this master thesis, we work out light deflection using the strong field approach and
apply the results in the study of gravitational lensing. This formalism becomes useful when
the light gets close to a photon sphere, where null geodesics trace circular orbits. In this
limit, the impact parameter of the photon approaches the critical impact parameter, and
if it is less than that the photon falls into the event horizon. We start assuming a static,
spherically symmetric and asymptotically flat metric and then we apply this formalism to
the Schwarzschild, Reissner-Nordstrom and black-bounce metrics. In the strong field limit,
the integral for the light deflection diverges, so that we have to extract the divergent term
and express the result in terms of some parameters. Ultimately, we define observables
in the context of gravitational lensing with the purpose of distinguishing between those

metrics from future experimental data.

Keywords: General Relativity. Light Deflection. Gravitational Lensing.
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1 INTRODUCAO

A Relatividade Geral (RG) ¢ a teoria de gravitagdo mais bem verificada atualmente.
Einstein desenvolveu este modelo fisico baseando-se mais em sua intuicao fisica do que nos
dados experimentais, publicando-o em 1915. Mesmo assim, apenas quatro anos depois, foi
observada a primeira evidéncia experimental da teoria, o desvio da luz, que juntamente
com o avanco do periélio de Merctrio e o redshift gravitacional é um dos testes classicos
propostos por Einstein. Estes fendomenos nao sao explicados pela gravitagao newtoniana,
mas todos foram confirmados ao longo do século XX, alcando a RG ao papel desempenhado

por aquela desde o século XVIII.

Devido a limitagoes tecnoldgicas, por anos, a RG nao encontrou muitas aplicagoes,
até que, a partir dos anos 1960, novos testes puderam ser conduzidos e novos efeitos
gravitacionais passaram a ser estudados. Um deles, o atraso temporal pela gravidade,
nao s6 foi verificado como encontrou aplicacdo na comunicagao com satélites, sendo
fundamental para o funcionamento do sistema de GPS [1]. Outro deles, um dos focos

desta dissertacao, sdo as lentes gravitacionais, que serao detalhadas mais adiante.

Uma das previsoes mais notaveis da RG ¢ a existéncia de buracos negros: objetos tao
densos e com gravidade tao intensa, que nem a luz pode sair do horizonte de eventos. Tais
objetos foram previstos apenas como uma hipotese, mas posteriormente foram descobertos
mecanismos para a sua formacao. Um desses processos € o colapso gravitacional de uma
estrela de massa muitas vezes maior que a do Sol ao esgotar seu combustivel de fusao
nuclear. Toda a matéria que nao foi ejetada durante a formacao do buraco negro se

condensa num unico ponto de densidade infinita chamado singularidade.

Por nao emitirem luz, os buracos negros sao dificeis de ser encontrados, sendo
detectados através de sua influéncia gravitacional sobre estrelas préximas ou através da
radiacao emitida pelo disco de acregao, um disco de gas girando ao redor do buraco negro
e sendo aquecido pelo atrito antes de ser finalmente absorvido [2, 3]. Por isso eles sdo
mais facilmente encontrados nos centros das galédxias, sendo nestes casos buracos negros
supermassivos, pois absorvem continuamente muita matéria e gas interestelar. Em 2019,
atingimos uma resolucao de imagem tao grande que pudemos ver pela primeira vez a
sombra de um buraco negro no centro da galaxia M87 [4], e depois novamente em 2022 com
o buraco negro no centro da Via Léctea [5], confirmando definitivamente que os buracos

negros nao sao meras construgoes matematicas.

Outro fendmeno previsto pela RG que s6 pdde ser verificado recentemente sao as
ondas gravitacionais, detectadas pela primeira vez em 2016 [6]. As ondas gravitacionais sao

a forma como a interacdo gravitacional é transmitida pelo espago-tempo. Ao contrario da



gravitagdo newtoniana, que descreve a gravidade como instantanea, na RG, as modificagoes
na configuracdo de matéria sao percebidas pelos objetos sob sua influéncia gravitacional
com um atraso. A propagacao dessa influéncia ocorre a velocidade da luz, que é o limite
superior para a transmissao de qualquer tipo de informacao. Essas ondas sdo, em geral,
muito fracas e instrumentos muito sensiveis sdo necessarios para detectar até mesmo as
ondas geradas por grandes eventos como a fusao de dois buracos negros ou de estrelas de
néutrons, mas servem como uma nova forma de explorar o Universo para além das ondas

eletromagnéticas.

Apesar de ser bem sucedida em alguns aspectos, a RG ainda possui limitagoes
tanto experimentais como tedricas. No campo experimental, ela ndo consegue explicar a
formacao de grandes estruturas no Universo sem a necessidade de introduzir componentes
“escuras” (matéria escura e energia escura). A matéria escura é um tipo de matéria que
nao interage com a radiacao eletromagnética. Ja a energia escura é de natureza incerta.
Estima-se que 25% do Universo é feito de matéria escura, 70% ¢é energia escura e somente
até 5% é matéria barionica (estrelas, gas), havendo também uma presenca infima de
radiagao [7]. A ideia de matéria escura foi concebida para explicar a curva de rotagao
das galaxias [8, 9]. E possivel que sua composicio seja um novo tipo de matéria a ser
descoberta no futuro. Outra opcao é que uma nova teoria possa explicar esse fenémeno
sem ser necessario postular uma forma misteriosa de matéria. Quanto a matéria escura,
experimentos como o WMAP, que mapeou a radiagao césmica de fundo [10, 11] e medidas
do redshift de supernovas distantes [12] confirmam que a expansao do Universo é acelerada.
A RG lida fenomenologicamente com esse fato, adicionando uma constante cosmologica as
equacoes de Einstein. Esta constante é identificada com uma forma de energia de vacuo

cujo valor estd em desacordo com o previsto pela fisica de particulas [13].

Um outro tipo de limitacao é de ordem tedrica. A interacao gravitacional é muito
fraca para ser percebida em sistemas quanticos, sendo necessario realizar experimentos
envolvendo energia tao altas que provavelmente serao inacessiveis por muito tempo. Devido
a falta de evidéncias empiricas, é muito dificil formular uma teoria quantica de gravitacao.
Tal teoria poderia descrever apropriadamente as interagoes entre sistemas quanticos e
os buracos negros, ou fornecer algum mecanismo que impecga o colapso completo da
singularidade. As interagoes entre sistemas quanticos e o horizonte de eventos e problemas
com relacao a termodinamica dos buracos negros poderiam ser melhor compreendidos do
ponto de vista da gravitagao quantica. Estes problemas estao relacionados com a perda
de informacao nos buracos negros, a destruicdao das correlagoes quanticas ao atravessar o

horizonte de eventos, e a radiagdo de Hawking [14].

Acredita-se que as possiveis solugoes para esses problemas sdo associadas a uma
teoria quantica de gravitagao. Sao propostas de teorias quanticas a teoria de cordas e a

gravidade quantica em loop. Por outro lado, acredita-se que modificagoes da RG também



possam ser um caminho promissor. Tais teorias sao conhecidas como teorias alternativas
de gravitagdo. Alguns exemplos sao teorias f(R) [15], galileons [16] e, em geral, teorias

escalar tensoriais [17].

Nesta dissertacao, porém, vamos nos ater ao estudo das lentes gravitacionais, que
além de se mostrarem como um instrumento de verificacdo experimental da RG, também
tiveram seu papel na medicao da constante de Hubble e contribuem até hoje na exploragao
do Universo em larga escala [18]. Lentes gravitacionais também podem ser usadas, por
exemplo, para tentar observar efeitos ou assinaturas de possiveis cordas césmicas, que

acredita-se terem sido geradas no universo primordial [19].

O fendémeno das lentes gravitacionais foi previsto por Einstein em 1936 [20], mas
sO despertou interesse da comunidade cientifica em 1963, com a descoberta dos quasares
[21, 18]. Os quasares sao objetos distantes cuja luz é sujeita a ser desviada de tal forma
que sua imagem seja ampliada, distorcida e multiplicada pela gravidade de galaxias na

sua frente, na nossa perspectiva. A esse efeito, dd-se o nome de lente gravitacional.

Naquela época, procuravam-se principalmente imagens duplicadas de galaxias
distantes, mas ha também outras manifestacoes do mesmo efeito, como os anéis de
Einstein, formados quando o alinhamento entre a fonte e a lente é praticamente perfeito
[18]. Esse efeito foi observado pela primeira vez em 1979 [22]. As lentes gravitacionais
foram estudadas somente no regime de campo fraco até a década de 90, ou seja, no contexto
de objetos nao muito densos, como estrelas e galaxias. Para um resumo dos resultados
dos estudos sobre lentes gravitacionais no formalismo de campo fraco, consultar Lima e
Santos [23].

A descoberta dos buracos negros, por sua vez, instigou o estudo das lentes gravi-
tacionais no regime de campo forte, que ocorre na escala do horizonte de eventos, mais
precisamente na vizinhanga de uma estrutura chamada esfera de fétons [24, 25, 26]. No
campo fraco, s6 é possivel observar as imagens primaria e secundaria — imagens que
sofreram um desvio menor que 360°, uma de cada lado da lente. Para o campo forte, como
o desvio pode ser mais intenso, aparecem as imagens relativisticas, ou seja, imagens que

deram uma ou mais voltas ao redor do objeto espalhador.

As dificuldades para a observacao de imagens relativisticas, no entanto, ainda nao
foram superadas. E necessdrio um alinhamento muito preciso entre a fonte e a lente, pois as
imagens relativisticas sao pequenas, fracas e aparecem por pouco tempo, sendo necessaria
uma fonte de luz intensa, como um quasar ou uma supernova. Além disso, o método
VLBI (Very Long Baseline Interferometry) possui resolucao teoricamente suficiente para
observa-las, mas a visibilidade é comprometida pela presenga do disco de acregao [27].
Sendo assim, é pouco provavel que observemos essas imagens, mas com sorte poderemos

verificar mais este fendmeno impressionante previsto pela RG.



Esta dissertacao esta estruturada da seguinte forma: no capitulo 2 falamos da RG
com foco nos principios empregados em sua formulacao, sua motivacao fisica, mateméatica
bésica e verificagao experimental; no capitulo 3 é feito o calculo do desvio da luz no
regime de campo fraco para as métricas de Schwarzschild, Reissner-Nordstrém (RN) e
black-bounce (BB); no capitulo 4 é apresentado o formalismo de campo forte e o calculo dos
parametros que caracterizam o desvio da luz nesse regime, para as mesmas trés métricas;
no capitulo 5 é exposto uma aplicagao do desvio da luz no regime de campo forte para o
estudo de lentes gravitacionais e como correlacionar os parametros do campo forte com
os observaveis fisicos; no capitulo 6 ¢é feita a conclusao da dissertagdo, com consideragoes

finais e propostas de trabalhos futuros.



2 Relatividade geral

A Gravitacao foi discutida de varias maneiras ao longo da Historia. O movimento
dos corpos na superficie da Terra era estudado pela Dinamica. Aristételes postulou uma lei
de movimento envolvendo os conceitos de “poténcia motriz” e “resisténcia” e que a queda
dos corpos é o resultado de um movimento natural das coisas pesadas para o centro da
Terra e das coisas leves para o alto, onde atingem o equilibrio [28]. Alguns matematicos da
Idade Média criticaram o modelo de Aristételes e contribuiram para a futura formulacao
matemadtica correta das leis da Dinamica, mas nao dispunham do formalismo adequado
(cdlculo diferencial) e ndo puseram suas conclusoes a teste [29]. Em particular, as leis de
movimento aristotélicas relacionavam a forca a velocidade do mével. Galileu foi pioneiro
em enunciar uma lei do movimento através da aceleracao, em particular a queda dos

corpos, e expressar a relagdo correta entre aceleracdo, tempo e distdncia percorrida [29].

J& os movimentos dos corpos celestes eram estudados pela Astronomia, havendo
uma distingdo muito marcada entre fendomenos celestes e terrenos. O modelo dominante
na Idade Média era geocéntrico e descrevia o movimento errante dos planetas através
do modelo de Ptolomeu, que concordava com as observacoes em tal grau que ideias
alternativas advinham de consideracoes filosoficas, em vez de empiricas. Foi esse o caso
de Copérnico, quando propos seu modelo heliocéntrico, desafiando a Igreja e a Academia.
A base empirica para este modelo s6 foi firmada posteriormente, por Brahe. A precisao
de suas observagoes era maior que as disponiveis na época, antes mesmo da invenc¢ao do
telescopio. De posse desses dados, Kepler formulou a lei das érbitas elipticas, publicada
em 1609 [30] e conforme novas evidéncias foram surgindo, particularmente com a invencao

do telescépio, o modelo geocéntrico foi sendo descartado.

Antes de Newton publicar o Principia em 1687, desconhecia-se que a queda dos
corpos e o movimento dos corpos celestes tinham a mesma natureza. Newton fundamentou
sua lei de gravitacao sobre os estudos de Galileu, Kepler e Huygens. Essa lei é descrita
abaixo

= mM

F=G=;

(2.1)
onde G é a constante gravitacional newtoniana. A teoria de Newton descreve muito
bem os fendmenos gravitacionais a nivel do sistema solar, ou seja, no regime de campo
fraco. Uma das aplicacoes mais importantes dessa lei é o experimento de Cavendish, que
mediu a densidade da Terra em 1798, fornecendo, além de uma verificacdo experimental, a

possibilidade de calcular G e as densidades de outros corpos do sistema solar [31].

O sucesso da teoria newtoniana também pode ser ilustrado pela previsao da

existéncia de Netuno por Adams e Le Verrier entre 1845 e 1846, através do calculo



perturbativo desenvolvido por Euler, Lagrange e Laplace no final do século XVIII e inicio
do século XIX. Ainda em 1846, o astronomo Galle conseguiu comprovar sua existéncia [32].
A busca por uma nova teoria de gravitacao, entao, parecia desnecessaria. Pensava-se que
outras anomalias poderiam ser explicadas de maneira andloga. A descoberta de Plutao
em 1930 por Tombaugh também foi precedida de uma previsao baseada numa anomalia
na orbita de Netuno [33].

Outras, porém, se mostraram incompativeis com a teoria newtoniana. Dentre estas
estao algumas anomalias nas orbitas dos cometas e da Lua. A mais famosa, no entanto, é
o avango do periélio de Mercurio (figura 1). Antes de prever a existéncia de Netuno, Le
Verrier calculara, a partir das observacgoes, que o periélio de Mercirio avanca 35”7 a cada
século, valor que foi posteriormente corrigido por Newcomb para 43”. Considerou-se, a
época, que essas anomalias podiam se originar de alguma forma de matéria interplanetaria,

ou outras forgas nao gravitacionais, tamanha era a confianga nas leis de Newton [34].

Figura 1 — Precessao do periélio de Merctrio

‘

Fonte: autoria proépria.

H& também o questionamento sobre o que caracteriza um observador inercial na
visao de Newton. Ele acreditava que o espago era absoluto e somente observadores com
velocidades constantes em relacdo a esse podem ser usados para descrever as leis fisicas.
Contudo num universo vazio ou com somente uma particula, os conceitos de velocidade e
observadores inerciais nio fazem sentido, segundo Mach. E necessério compara-los com o
restante do universo, e ndo com um referencial abstrato. Para definir quais observadores
sao inerciais, deve-se comparar seu movimento ao das “estrelas distantes”. Esse é o
principio de Mach, que pode ter inspirado Einstein, mas nao foi empregado diretamente.
Somente em 1961 é que Brans e Dicke formularam uma teoria relativistica de gravitacao
que incorporava essa ideia [35]. Nesta teoria a constante gravitacional passa a ser um
campo escalar, porém tal modificagdo na RG precisa ainda impor que esse campo seja

estritamente positivo (gravidade atrativa) para permitir a renormalizagao.



Por fim, a mecanica newtoniana ¢ invariante sob as transformagoes de Galileu.
Todavia, o advento da Relatividade Restrita (RR) no século XX motivou a busca por uma
teoria de Gravitagdo que incorporasse as transformagoes de Lorentz. A acdo instantanea a
distancia prevista por Newton é incompativel com a RR, pois a velocidade da luz impoe um
limite sobre a velocidade de propagacao dos campos. Mas em vez de adequar a gravitagao
newtoniana ao formalismo relativistico, Einstein construiu uma nova teoria baseada em

outro principio fundamental da fisica, chamada Relatividade Geral (RG).

2.1 O principio de equivaléncia

Galileu, através dos seus experimentos com planos inclinados, ja percebera que
corpos com diferentes massas e composi¢oes respondem igualmente ao campo gravitacional.
Essa caracteristica contrasta com o eletromagnetismo, por exemplo, em que corpos com
cargas diversas respondem ao campo cada um a sua maneira. A gravidade, pelo contrario,
¢é universal. Nas proprias leis de Newton, ha uma notavel coincidéncia entre a massa
inercial e a massa gravitacional. Se nao fosse assim, poderiamos ter particulas com “cargas

gravitacionais” diferentes, sem violagao da mecénica newtoniana.

Além dos experimentos de Galileu, o proprio Newton também fez experimentos
com péndulos de composigoes diferentes, mas com o mesmo comprimento. Esse mesmo
método foi utilizado por Bessel em 1830, com mais precisao. Um outro método, que obteve
precisdo de uma parte em 10?, foi usado por E6tvos, em 1889. Seu experimento consistiu
em um sistema com pesos presos por uma barra fixa pendurada por um fio. Qualquer
diferenca entre as respostas dos pesos a gravidade e a rotagao da Terra seria detectada
como um torque no fio, o que nao foi observado [34, 36]. Portanto, apesar de termos um
conjunto de leis do movimento e uma lei de gravitacao separados, as massas presentes

nelas sao iguais.

FEinstein, entao, incorporou essa equivaléncia como postulado. Uma consequéncia
importante dela ¢é ilustrada no experimento do elevador de Einstein. Imagine um cientista
dentro de um elevador sem acesso ao exterior. Ele dispoe de equipamento para verificar
o movimento dos objetos dentro do elevador. Se o elevador estiver no espaco sideral, os

objetos se movem com velocidades constantes, conforme a 1? lei de Newton.

Porém duas situagoes distintas produzem efeitos iguais no referencial do cientista. A
primeira é o caso de um elevador com foguete, acelerando numa determinada diregao (figura
2). Todos os objetos soltos caem com a mesma acelera¢ao na dire¢ao contraria. O cientista
verifica que sua forca é proporcional a massa, assim como a forca peso gravitacional. Essas
forcas sao ditas ficticias, porque desaparecem com uma escolha apropriada de referencial.
Num referencial externo fixo, como as estrelas distante, os objetos permanecem em queda

livre até atingirem uma parede do elevador.



Figura 2 — Elevador acelerado Figura 3 — Elevador em repouso
no espaco na Terra
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Fonte: [36] Fonte: [36]

A outra situagdo é a do elevador na superficie da Terra (figura 3). Aqui os objetos
também caem com a mesma aceleragao em direcdo ao chao e o seu peso também é
proporcional a massa. Ja no elevador em queda livre nas proximidades do planeta, os
objetos se comportam como se o elevador estivesse no espago sideral, flutuando sem

aceleragdo, que é o que acontece nas naves espaciais em orbita, por exemplo.

Se o elevador percorrer um caminho suficientemente longo em queda livre na
Terra, os objetos comecarao a se aproximar levemente uns dos outros, pois o campo
gravitacional da Terra é radial. Entretanto, numa regiao pequena do espaco, o efeito
do campo gravitacional é idéntico ao de um referencial nao inercial, como o do elevador
em aceleracao. Pode-se, entao, tratar a forga gravitacional como uma forga ficticia local,
que surge em referenciais nao inerciais, eliminando-a com uma escolha apropriada de
coordenadas. A limitagdo contra isso é que nao existe uma escolha que a anule em todo
lugar, pois o campo gravitacional varia de ponto a ponto globalmente. Essa é uma forma

de expressar o principio de equivaléncia, o maior pilar para a formulacao da RG.

Até entao s6 citamos o movimento de objetos com massa, mas e o caso dos fétons,
que nao tém massa? Por nao ser relativistico, o modelo newtoniano nao prevé a interacao
da luz com a gravidade. Logo, uma forma de diferenciar um referencial acelerado do
referencial com um campo gravitacional seria com algum experimento que nao dependesse
de interacao gravitacional. A luz, por nao ter massa, é a cobaia ideal para esse experimento.
No elevador acelerado, o cientista poderia verificar que a luz se curva, enquanto que no

referencial do elevador com velocidade constante, a luz segue uma trajetoria reta.

Na realidade, outra manifestacao de energia, além da luz, poderia ser usada para
ilustrar uma relagao entre massa, energia e gravidade. Sabemos que os objetos sao feitos de
atomos, mas a massa de um atomo nao ¢é totalmente derivada da soma das suas particulas
constituintes. A energia de ligacao entre as particulas também contribui com a massa dos
objetos. Considerando este fato, ja poderiamos inferir uma relagdo entre os fenémenos
gravitacionais e a relatividade. Se o principio de equivaléncia se aplicasse somente as leis

da dindmica, essa energia de ligacao (seja devida a forga eletromagnética, a forca nuclear



ou a forga forte) seria descontada nas interacoes gravitacionais.

Entretanto, a proposta de Einstein é que o principio de equivaléncia se estende para
todas as leis da fisica, inclusive as equagoes de Maxwell, que dao origem a propagacao da
luz e as interagoes nucleares e atomicas. Assim é o chamado principio de equivaléncia forte.
A gravidade interage com toda forma de energia e matéria. Esse fato é a maior justificativa
para tratar a gravidade como uma caracteristica intrinseca do proprio espaco-tempo, em

vez de uma simples forca.

2.2 A geometria do espaco-tempo

A ferramenta que possibilitou lidar com a localidade do campo gravitacional
pertence a area da matematica chamada geometria diferencial, especificamente da geometria
riemanniana ou mais precisamente, da geometria pseudorriemaniana, ou semirriemaniana’.

Para descrigoes mais detalhadas, consultar [37] ou [38], por exemplo.

No modelo da RG, o espago é uma variedade diferenciavel pseudorriemaniana,
uma forma de generalizar o espago euclidiano para além da inclusao de uma coordenada
temporal ja presente no espago-tempo de Minkowski, da RR, incluindo também uma
curvatura do espago. Os fendmenos gravitacionais, na RG, sdo descritos inteiramente pela

deformagao da geometria do espaco-tempo.

Posteriormente, Weyl, Kaluza e Eddington tentaram desenvolver uma teoria que
incluisse também o eletromagnetismo na geometria do espago-tempo, usando diferentes
abordagens e com diferentes graus de sucesso no campo conceitual [39]. No campo experi-
mental, porém, as teorias quanticas do eletromagnetismo se mostram mais completas e bem
sucedidas, desencorajando avangos na geometrizagao classica do campo eletromagnético e

outros.

Na RG, o potencial gravitacional escalar da lugar ao tensor métrico, de componentes
Guv = Guy (simétrico). A cada ponto da variedade, é associado um espaco tangente, onde se
encontram os vetores. A operacgao produto escalar entre dois vetores X e Y de componentes

X" e YV, respectivamente, é definida como:
(A,B) = g, A"B". (2.2)

Dada uma curva na variedade, parametrizada por A, com vetores tangentes V' associados a
cada ponto, obtemos o comprimento da curva entre dois pontos, integrando a raiz quadrada

do produto escalar de V' consigo mesmo (sua norma):

As = /:QW, V)EdA. (2.3)

1

L A diferenca entre a geometria riemanniana e a pseudorriemaniana estd na assinatura da métrica, que

sera discutida no decorrer do texto.
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As componentes de V' dependem do sistema de coordenadas usado na secao da variedade

. ~ . M ~
onde ele se localiza. As componentes de V sdo escritas V# = dd%\, onde x* sao as
coordenadas usadas. Infinitesimalmente, descreve-se a métrica com o chamado elemento
de linha ds?, expresso a seguir:

ds* = g, datdz”, (2.4)

ou seja, o significado imediato da métrica é que podemos calcular o comprimento de uma

curva qualquer aplicando o elemento de linha ao seu vetor tangente e integrando (2.3).

As variedades pseudorriemannianas apresentam quatro coordenadas, uma temporal

(ro) e trés espaciais (z;, com i = 1,2,3) e assinatura? (+ — — —). Dessa forma, o elemento

de linha pode ser positivo (tipo tempo), negativo (tipo espago) ou nulo (tipo luz). O

espaco de Minkowski é o caso mais simples desse tipo de variedade, cuja métrica é dada
por

ds* = ndatds” = dt* — da® — dy* — d2?, (2.5)

onde usamos a velocidade da luz ¢ = 1.

Nos espacos planos, a derivada parcial é utilizada para quantificar a variacao de
um escalar ou de um campo vetorial em uma direcao. Nos espacos curvos, os vetores
em pontos diferentes nao se localizam no mesmo espago vetorial, entdo se define uma
conexao I, que realiza a ponte entre espagos tangentes vizinhos, e a partir dela se define
uma derivada covariante, que generaliza a nocao de derivada para espacos curvos. Para
grandezas escalares, a derivada covariante é igual a derivada parcial, mas para um vetor

V', a derivada covariante ¢é escrita
vV, Ve =09, Ve + T, V" (2.6)

Percebe-se que a derivada covariante ¢é igual a derivada parcial acrescida de um termo que
inclui a conexao, o que é necessario para ter as propriedades esperadas para uma derivada:
a regra de Leibniz e a linearidade. A derivada covariante, assim como a derivada parcial,
relaciona pontos vizinhos. Aplicagoes sucessivas da derivada covariante de um vetor ao
longo de uma curva sao interpretados como o transporte paralelo do vetor ao longo da

curva.

Na forma (2.6), a conexao pode ser definida de maneira arbitraria, desde que
a derivada covariante tenha essas propriedades, mas na RG, ela tem uma propriedade
adicional, de que as derivadas covariantes da métrica e da métrica inversa sejam nulas.
Em outras palavras, o produto escalar e, portanto, o comprimento de um vetor, devem se
manter constantes quando transportados paralelamente. S existe uma conexao com essa

propriedade, dada a seguir

1

F;O:V = §ga)\<g1/)\,,u + Gury — g/u/,)\)a (27)

em algumas referéncias, adota-se a convengdo (— + + +)

2
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onde gy, = 0ugux € g" € o tensor métrico inverso, definido por
" guxn = 90%. (2.8)

Em geral, nos espacos curvos, o transporte paralelo de um mesmo vetor por
caminhos diferentes resulta em vetores diferentes. A curvatura pode ser representada pelos
tensores de Riemann R,g,,, de Ricci R, e pelo escalar de curvatura R, calculados a partir

da conexdo e de suas derivadas:

Ropr = Gory (T = Ty + T2, 0%, = T,15,.) (2.9)
R,u,z/ - gaIBRauﬂl/ (210)
R=g"R,, (2.11)

Uma geodésica é o caminho mais curto entre dois pontos. No contexto da RG, é a
trajetéria de uma particula em queda livre (auséncia de forgas nao gravitacionais). De

acordo com a geometria diferencial, as geodésicas obedecem a seguinte equacao

P4 T ik = 0, (2.12)

d?zH
d)\2 )

" — dat
onde z# = Y

eIt = sendo A um parametro afim.

A luz percorre geodésicas nulas, que definem cones de luz locais. Geodésicas dentro
do cone de luz sao tipo tempo, e correspondem a trajetorias de particulas livres com massa.
Jé& as geodésicas fora do cone de luz sdo tipo espaco, e sao nao causais. Uma forma mais

direta de se obter as equagoes geodésicas ¢ a partir da lagrangiana
L= g,i"i", (2.13)

onde L é igual a 0 para as geodésicas nulas, 1 para geodésicas tipo tempo e —1 para

geodésicas tipo espacgo. Nesse caso, as equagoes de Euler-Lagrange,

d (0L oL
— =) -== =0, (2.14)
d\ \ Ox+ oxH
também resultam nas equagoes geodésicas, mas sem precisar calcular previamente a conexao

I, a partir do tensor métrico. Dessa forma, podemos extrair a conexao diretamente a
partir de (2.14).

Variedades podem possuir isometrias, que sao curvas ao longo das quais a métrica
é constante. Os vetores que definem essas curvas sao chamados vetores de Killing. Em

termos fisicos, os vetores de Killing representam quantidades fisicas conservadas.

No espago de Minkowski (plano), os vetores de translagao espacial sao vetores de
Killing, e indicam a conservacao do momento linear. Um vetor de Killing tipo tempo
indica que a energia ¢ conservada. Quando os vetores de rotagao sao vetores de Killing da

métrica, o momento angular é conservado.
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Para mostrar como a geometria diferencial pode ser usada para descrever os feno-
menos gravitacionais, consideremos primeiramente o limite newtoniano, uma aproximagcao
71 , . ~ e s %
valida para campo fraco e particulas com velocidades nao relativisticas (ddit < 1, para
i=1,2,3) [40, 41]. Na gravitacao newtoniana, o movimento das particulas é descrito pela
seguinte equagao de movimento:
d*x’ 0P
= ——, (2.15)
dt? ox?
onde ® é o potencial gravitacional. Para o campo gravitacional de um objeto de massa M,
P = MG

T

Numa aproximagao de campo fraco, a perturbagao pode ser considerada linear. A

métrica do limite newtoniana é descrita por

Guw = Npw + €l (2.16)

onde €hy,, é uma perturbacao em torno da métrica de Minkowski. Além disso, assumimos

que a métrica seja estatica. Assim,
ds* = dt* — da* — dy* — d2° + eh,, dxtdx". (2.17)

Logo, derivando em relacao ao tempo e desprezando os termos de segunda ordem na

velocidade:

ds\? dxt dad dzt da”
(‘9) — g, T 1+ ehgo, (2.18)

dt Ydt dt MdE dt
As equagoes geodésicas, escritas usando o préprio elemento de linha (s) como pardmetro

afim, sdo dadas por:
d?>z® dxt dx¥
re = 0. 2.1
ds? N ds ds 0 (2.19)

Como a métrica é estatica,

d (dt d 1
— [ — | =—=(14¢€hg) 2 =0. 2.2
dat <ds) g T choo) 2 =0 (2.20)
Assim,
dt\? d?z° dt\* dat
— | —+T1° [ — =0. 2.21
<ds) az "t W(ds> d =" (2.21)
Desprezando os termos das velocidades, sobra apenas
d?z™ o
W + FOO = 0, (222)

que implica em T'Yj; = 0. Para calcular a conexdo, precisamos da métrica inversa g"*, dada
a seguir
g =" — e, (2.23)
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Esta expressao pode ser verificada usando (2.8) e desprezando os termos de segunda ordem
em e. Usando o fato que a métrica é estatica e desprezando os termos de segunda ordem

de €, I'f, é expresso:

1 1
6o = 59“(290%0 — Joop) = _igaAgoo,A
1 1
= _7(77(1)\ + Eha)\)(Ehoo’)\) = —*Ehoo’a.
2 2
Substituindo esta expressao em (2.22), obtemos

d?z> 1
Pl iﬁhoo,a- (2.24)

Para a = 0, esta expressao nao representa nenhuma novidade, mas para o =1 =1, 2, 3,

ela se compara a (2.15):

d2l‘i 1 6h00
= - = 2.25
dt? 2% 00 (225)
Assim, a perturbacao que resulta no limite newtoniano é dada por:
1
—56}100 = o. (226)
Entao a componente ggg do limite newtoniano é dada por
2
go=1-20=1-"", (2.27)
r
onde m = MG ou, recuperando a velocidade da luz, m = % Assim, concluimos a

geometrizagao da gravidade no limite newtoniano.

2.3 Equacoes de Einstein

A expressao completa da Relatividade Geral relaciona a curvatura do espaco-tempo

com o tensor momento-energia através das equacoes de Einstein:
. 1
le = Rp,u - iRgMV = /{T/uu (228)

onde G, ¢ o tensor de Einstein. Essas equagoes nos dizem como a matéria curva o espaco.
A propriedade que distingue as equacoes de Einstein da gravitacdo newtoniana é a sua
nao linearidade. Solugoes distintas destas equagoes geralmente nao podem ser somadas
para se obter uma terceira. Como consequéncia disso, mesmo em regioes de vacuo pode

haver uma curvatura provocada pela matéria ao seu redor.

Obter solucoes exatas dessas equacoes é, em geral, uma tarefa ardua. No entanto,
sob certas condigoes de simetria sobre a métrica, é possivel encontrar solugdes exatas
para as equacoes de Einstein. Em 1916, Schwarzschild encontrou a primeira solugao

exata e uma das mais importantes. Ja que a RG é uma teoria de gravitagao, é natural
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procurar a métrica do espago-tempo ao redor de um corpo esférico com massa, como os
planetas e as estrelas, e verificar se corresponde ao caso newtoniano tomado um certo
limite. Considera-se, para este cdlculo, que a rotagao é desprezada. A métrica onde sao
considerados os efeitos de rotacao foi estudada por Kerr. A seguir temos uma deducao

resumida da métrica de Schwarzschild, conforme apresentada em [40] e [41].

Em primeiro lugar, a métrica de Schwarzschild descreve a métrica externa de um

objeto com massa, logo T}, = 0. Para esta métrica, R,, = 0 e por consequéncia R = 0.

Esta métrica também apresenta simetria no tempo, pois os corpos em consideracao
se mostram aproximadamente rigidos e imutaveis. O tensor métrico, portanto, nao
deve depender do tempo. Neste caso, a métrica é estaciondria, mas essa condi¢ado nao
¢ suficiente, pois os termos cruzados dz'dt ainda podem mudar de sinal por inversao
temporal (dt — —dt). Para evitar isso, também é necessario que as componentes gg; se

anulem. Com estas duas condicoes satisfeitas, a métrica é dita estdtica.

A simetria esférica, por sua vez, é evidenciada partindo do elemento de linha
minkowskiano em coordenadas polares, com x* = (t,r,0, ¢) e multiplicando cada termo

por uma funcao de r:
ds®* = A(r)dt* — B(r) dr* — C(r) r*(d6* + sen? 0 d¢?). (2.29)

Assim, também nao ha termos cruzados com df ou d¢, assegurando que inversoes nessas
coordenadas nao afetem a métrica, nem funcoes dos angulos além do sen? § no termo de
d¢?, para nao modificar a estrutura esférica. Além disso, o termo que multiplica r2d6?
deve ser o mesmo que o de r?sen? d¢?, assegurando que um deslocamento 72d¢ ao longo
do equador (f = 7) seja equivalente a um deslocamento r2df ao longo dos meridianos, por

exemplo. Por ser fixo, vamos denotar por dQ? o elemento de angulo sélido df? + sen? Od¢>.

O termo C(r) pode ser eliminado com uma mudanga de coordenadas 7 = VCr,
definindo também B = g (1 + %%), logo:

ds* = Adt* — Bdi* — r2dQ?, (2.30)

de onde podemos retirar também a barra sem perda de generalidade, pois r ou r sao

apenas designacgoes arbitrarias.

Por fim, precisamos que A e B sejam fungoes estritamente positivas neste ansatz,
para preservar a assinatura, ou seja, vamos troca-las por exponenciais de fungoes arbitrarias

de r. Portanto, a métrica estatica e esfericamente simétrica que buscamos é expressa por
ds? = e’ at* — AMdr? — 1r2d02. (2.31)
A partir de (2.13), obtém-se a lagrangiana para a métrica (2.31),

L=e"M2 - M2 3202 _ 12 gen? 0. (2.32)
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Usando (2.14), extraimos as componentes nao nulas da conexao:

1dv 1 dv 1dA
FO _ - 1’\1 :7117)\7 1 _ -7
10" 9dr 0=5¢ g 1 9ar
1
I, = —re? I, = —re?sen?d T2, =— (2.33)
r
1
2, = —senflcosf Iy =— I3, = cotg,
r

Na sequéncia, calcula-se o tensor de curvatura (2.9), com componentes nao nulas

1%y  1ldvdx 1 [dv\® 1 dv
ROIOI - el/( + ——— — — ( ) ) R0202 = —77’61/_)‘7

2dr2 ' 4ddrdr 4 \dr 9 dr
1 d 1 dx
R0303 - _§T6V_>\ Sen2 Hdii R1212 = —5765 (234)
1 dA B
Hazis = 9 sen” 0% Ryso3 = 17 sen” 6 (e A 1) ,

Por fim, o tensor de Ricci é encontrado contraindo o tensor de curvatura (2.10):

frg — e[ LY _Ldvdd (L (dv\® 1dv
00— 2dr?2  4drdr 4 \dr rdr

1  1dvd\ ],<dy>2 1d) (2.35)

2@ Tigrar i\ar) Trar

1 .
Roy = —re™ (d)\ — dy) +l-e?= Has

Rll =

2 dr dr sen2 @’

Como a solu¢do que procuramos é no vacuo, todas as componentes do tensor de Ricci

devem ser iguais a zero. De Ry e R11, obtemos que

1d
e "Ry + Ry = fd—(y +A) =0 = v+A=cg (2.36)
rdr

mas é possivel escolher v 4+ A = 0 redimensionando ¢t — e~2¢. De Ry,

dA d
A A A
re %+1—e —O:>dr<re )—1. (2.37)
Integrando (2.37):
k
re*=r4+k = er=14-, (2.38)
r

onde k é somente uma constante de integracao. Desse resultado, verifica-se que essa métrica

corresponde assintoticamente a métrica de Minkowski. Além disso, para corresponder

ao limite newtoniano (2.27), fazemos k = —2m e obtemos a expressao da métrica de
Schwarzschild:
2 2mY\ o 2mN\Th o s o 2,0
ds :<1— >dt—(1— ) dr® — r°df* — r* sen” 0do-°. (2.39)
r r

Nesta secao, pressupds-se uma métrica estatica, mas esta premissa poderia ser

dispensada pelo Teorema de Birkhoff, que diz que qualquer solucao esfericamente simétrica
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é também estatica. Consequentemente, uma estrela cujo volume pulsa radialmente nao

modifica a métrica ao seu redor e ndo emite ondas gravitacionais.

A métrica de Schwarzschild deu origem a uma das previsdes mais surpreendentes
da RG. No raio r = 2m, denominado raio de Schwarzschild (rg), a componente gy da
métrica é nula e a componente g;; diverge. Esta métrica também diverge em r = 0, mas
essa divergéncia nao pode ser eliminada com uma simples mudanca de coordenadas, e este
ponto é denominado singularidade. A divergéncia das componentes em rg, a0 contrario,
pode ser regularizada com uma mudanga de coordenadas adequada. A superficie definida
por rg ¢ chamada de horizonte de eventos, e encerra uma regiao conhecida como buraco
negro. Para r < rg o carater das curvas tipo tempo se inverte e os cones de luz apontam
todos para dentro. Nenhuma particula pode ser emitida de dentro dessa regiao, inclusive
os fétons. Para corpos como a Terra e o Sol, rg fica muito abaixo de sua superficie, e
nessa regiao a métrica do espago-tempo é outra, mas é possivel que uma estrela de massa
muito grande sofra um colapso gravitacional no fim de seu ciclo estelar e os seus restos se

tornem um buraco negro.

2.4 Testes classicos

Einstein propds trés testes para a RG, conhecidos como testes classicos. O primeiro
¢ 0 avango no periélio de Mercirio, que a teoria newtoniana nao explicava, mas é previsto
pela RG. O resultado ja era conhecido desde o século XIX, entao nao foi preciso conduzir
um novo experimento para realizar este teste. Quanto aos outros planetas, esse efeito é
bastante reduzido, logo mais dificil de ser observado. A RG nao s6 permite calcular o
avanco como também mostra que ele é inversamente proporcional a distancia do Sol ao

planeta, sendo, por isso, mais evidente na érbita de Merctrio.

Outro teste envolve um fendmeno até entao nao observado, o desvio gravitacional
da luz. Einstein usou o principio de equivaléncia para calcular o desvio da luz que vem
de uma fonte distante, é espalhado pelo Sol e chega a Terra em uma posicao diferente da

que é observada em sua auséncia. Um primeiro cdlculo, com a energia do féton, forneceu

o valor atualmente conhecido como desvio newtoniano, § = 2(?224 , em 1911 [42], antes
do desenvolvimento da RG. Na década de 1920, descobriu-se que Soldner, em 1802, e
Cavendish, 20 anos antes, obtiveram um valor igual a este até primeira ordem, mas
considerando a luz como formada de particulas com massa [43]. Somente em 1916 [44] é
que Einstein publicou o artigo “Fundacao da teoria da Relatividade Geral”, onde ele calcula
o desvio da luz novamente, mas agora levando em conta a curvatura do espago-tempo e

obtendo 24, o valor considerado atualmente correto [45].

A primeira verificacdo do desvio da luz ocorreu em 1919, quando uma equipe

liderada por Eddington buscou observar se o fenomeno do desvio da luz realmente ocorre
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e se o valor correto é o newtoniano ou o da RG durante um eclipse total do Sol observado
em Sobral, no Brasil, e na ilha do Principe, embora as condi¢gdes meteoroldgicas estivessem
mais favordveis em Sobral, onde foi obtida uma precisdo maior[46]. Esta observagao
confirmou o resultado da RG, mas sem muita precisao. Outros experimentos similares
foram sendo realizados ao longo do século, com incerteza de no minimo 30%. Resultados
quantitativos mais significativos sé foram obtidos na década de 70, diferindo em até 1,5%

do previsto pela RG, através do método VLBI no espectro de ondas de radio [47].

Um outro experimento s6 foi realizado anos mais tarde, pois exigia mais precisao.
E o redshift gravitacional, também uma interacao com a luz, mas mostrando que o tempo
flui em ritmos distintos segundo a intensidade do campo gravitacional. Ao longo do século
XX, outros testes foram sendo desenvolvidos e os métodos para realizar os testes classicos
foram sendo aperfeicoados. Um exemplo de novo teste foi elaborado em 1964 por Shapiro
[48], que consistia em medir o atraso de um sinal de luz emitido na direcao de Merctrio ou
Vénus passando préximo ao Sol, sendo refletido e detectado. Um extenso compilado dos
testes da RG realizados até 2014 foi feito por Will [49], pouco antes da detecgao de ondas
gravitacionais pelo LIGO [6]. Desde entao, destaca-se também a captura em imagem da

sombra de buracos negros supermassivos [4, 5].



3 Desvio da luz no regime de campo fraco

Entre os testes classicos, vamos examinar com mais detalhes o desvio da luz. Neste
capitulo, retemo-nos ao regime de campo fraco, ou seja, no espaco ao redor de objetos com
raio muito maior que rg ou a uma grande distancia de um buraco negro, pois a curvatura
nessa regiao é insuficiente para desviar a luz de forma muito intensa. Diversas abordagens
podem ser empregadas para o calculo do desvio da luz, conforme se vé nos livros-textos

[40, 34, 36]. Neste trabalho, seguiremos o método exposto por Wald [50].

Na métrica de Schwarzschild (2.39), conforme (2.13), as geodésicas nulas sao

descritas pela lagrangiana
2 . o2m\ ! : :
L= <1—m> 2 (1—m) 72— 12(62 + sen® 0 ¢2) = 0. (3.1)
r r

Usando as equagdes de Euler-Lagrange (2.14), podemos evidenciar as conservagoes da
energia e do momento angular, que decorrem das isometrias do sistema. Como a métrica

é estética, aplicando (2.14) a coordenada temporal, obtém-se que
d . 2m
—(2t{1——)] =0. 3.2
dA ( ( r )) (3:2)

<1 _ 2;”) i—E. (3.3)

Isto implica que

onde F é uma constante, interpretada como a energia do féton. Ja sobre a coordenada
angular (¢), devido a simetria esférica, temos que

;i\ (27“2 sen” 0 ¢) = 0. (3.4)

Consequentemente, podemos dizer que
2 20 0
résen“0¢ =L, (3.5)

onde L é uma outra constante, representando o momento angular do féton. A conservacao
do momento angular implica que o movimento fica contido em um plano. Com isso, caso

seja necessario, pode-se rotacionar o sistema de coordenadas para reposicionar o movimento

s

no plano equatorial § = 7, reduzindo efetivamente a lagrangiana a trés dimensoes.

Substituindo (3.3), (3.5) em (3.1), eliminamos a dependéncia da lagrangiana das

coordenadas temporal e angular:

—1 -1 2
0:E2<1—2m) _<1_2m> 2o

r
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L? 2
iE2:7‘12+(1—m>. (3.6)

Esta equacao descreve o movimento radial da luz. Apesar de ter velocidade radial variavel,
isso nao significa que a ¢ deixa de ser constante, pois a velocidade total também apresenta
uma componente tangencial, que corresponde ao desvio em relagao a trajetoria reta que
seguiria num espaco plano. O movimento radial é analogo ao de uma particula com massa
unitaria movendo-se em um potencial central. O termo 72 representa a energia cinética,
E? representa a energia mecanica, e a energia potencial (V') é dada por
2
V:Z(—Qm). (3.7)
r r

A figura 4 mostra a forma do potencial V. Na figura, observam-se o raio de Schwarzschild
r = 2m, onde o potencial é nulo, e a regiao interna ao horizonte de eventos, onde o
potencial é negativo. O maximo do potencial ocorre no raio da esfera de fétons r = 3m,

que sera estudada no capitulo 4.

Figura 4 — Potencial efetivo na métrica de Schwarzschild

E2

Fonte: Autoria propria, inspirada em figura presente em [50]

Vamos estudar o caso de um féton que vem do infinito com determinada energia.
No infinito, o potencial tende a zero, ou seja, para r — 0o, a energia ¢ totalmente cinética
(E? = 7?). Conforme o féton se aproxima, essa energia vai diminuindo e se convertendo
em energia potencial. Se a energia for maior que o potencial, ela ndo diminui o suficiente

para evitar que o féton caia no horizonte de eventos.

Caso seja menor, a energia cinética s6 pode diminuir até zero. Quando isto acontece,
a trajetoria apresenta um ponto de inflexdao (rg) onde 7 = 0, ou seja, ry é o raio de maior
aproximacao da origem, ou raio minimo. Este fendmeno é analogo ao caso de uma
particula que vem de longe, se depara com um potencial maior que sua energia cinética,
para momentaneamente e retorna para o infinito. A diferenca é que para o féton, isso s6
ocorre na coordenada radial. Levando em conta o movimento angular, acontece a situacgao

ilustrada na figura 5. Nesta figura, d¢ é o desvio angular em relacao a uma trajetoria reta
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Figura 5 — Desvio da luz

Fonte: [50], editado pelo autor.

e b é o parametro de impacto, definido a partir da energia e do momento angular conforme
a seguir
b

L
= 3.8
Fisicamente, o parametro de impacto ¢ a distancia entre a origem e a trajetoria que a luz

seguiria num espacgo plano.

Escrevendo (3.6) com r = ry, podemos escrever o pardmetro de impacto b em

funcao de rg e m da seguinte forma

L? 2m
2 _
E _o+r02(1_m) (3.9)
L? 2 -1
= =1 (1 _ :) (3.10)
3

Reescrevendo (3.6) usando b, obtemos que

e (b(m)) (312

Para calcular o dngulo de desvio, reintroduzimos ¢ em (3.12) através de L e dividimos a

equacdo por ¢, obtendo assim uma relacdo entre ¢ e 7.

i = rtp? (b12 — :2 (1 — 2;”)) (3.13)

A -
Zf = (22 —r? 4 2mr> . (3.14)

N|=

Costuma-se, no formalismo de campo fraco, escrever (3.14) substituindo a variavel r por

u =2 assim
T

N

d 1 -
di =— <b2 —u® + 2mu3> . (3.15)
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Ou ainda, em termos de uy = %, a partir de (3.11):
do ( 2

- = — (ud — u® = 2mud + 2mu3>
du

Integrando essa expressao, obtém-se a variagao da coordenada angular em um trecho da

[SIE

(3.16)

trajetoria.

Estamos interessados na trajetéria de um féton que vem do infinito (u = 0), passa
pelo ponto de inflexdo (u = ug) e vai até o infinito em outra diregdo. Devido & simetria do

problema, esses trechos sao iguais, entao integra-se de 0 a uy e multiplica-se por —2:
uQ _1
Ap = 2/ (u02 —u? = 2mug + 2mu3> * du. (3.17)
0

Esta integral nao possui solu¢ao analitica, mas podemos aproximé-la no formalismo de
campo fraco expandindo o integrando para m — 0, calculando assim o desvio até primeira

ordem de m:
9(Ad)
om

O termo A¢|,—¢ corresponde a variagdo na coordenada angular correspondente ao espago

A= Adlyo + | m+ O(m?). (3.18)

m=0

de Minkowski (plano). Espera-se que seja igual a 180°, pois o feixe de luz vem do infinito

em uma direcao e segue para o outro lado sem desvio. E isso que se verifica calculando a

integral
Ad|m_o =2 / 3.19
A substituicao trigonométrica u = ugsen x nos permlte escrever
3 Ugcos T dx /’5
—— =2 dr = . 3.20
0 Vugcos’x 0 ( )

Ou seja, A@|—o = 7. Isto significa que quando nao ha atragao gravitacional, a luz segue
uma trajetéria reta. A grandeza d¢, denominada “desvio da luz” é o que sobra na expressao

de Ag, pois é a diferenca angular entre uma trajetéria reta e a trajetéria curvada pela

gravidade:
9(A¢)
b =Aod—1 = 3.21
o=dg-m="50 (3.21)
O desvio da luz até primeira ordem de m ¢é calculado:
J(A —
M — Qm/ W (3.22)
om 0 — u2 2
Por substituicao trigonométrica U = Ug sen x
_ 3 T 2
2m/ U’ — ug sen’z T o COS T dx = 2muy /2 Tsenr T sen L da (3.23)
(u@ — u sen? )2 0 1+senx

Usando y = tg §

e (R
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2 2 1 1
= 4dmuy (/ 22z + / w_2dw> = 4dmuy (2 + 2) = 4dmuy. (3.24)
1 1
Na aproximagao de campo fraco, 277: < 1, entao ug ~ % e:
4
5 = Tm (3.25)

Em geral, prefere-se expressar observaveis, como o desvio da luz, usando b, pois esta é
independente de coordenadas, embora efetivamente essa escolha s6 provoque diferencas

quantitativas quando se trabalha com teorias modificadas de gravitagao [51].

Recuperando as constantes de m, o desvio da luz na métrica de Schwarzschild é dado

por 6¢ = 4?245" . Para um raio de luz passando rente a superficie do Sol (b = raio do Sol), o

desvio é de d¢ = 1,75 arco-segundos.

Pode-se aplicar esse procedimento para outras métricas com propriedades similares,
como a métrica de Reissner-Nordstrom (RN), que é solu¢ao das equagdes de Einstein no
eletrovacuo ao redor de um corpo com carga elétrica. Temos portanto, o surgimento de

um termo de carga (()) na métrica, conforme a seguir

2 2 2 2\ 7!
gt = (1= g (122 L @) g g0, (3.26)
r r? r r?
O potencial efetivo neste caso é:
L? 2m  Q?
V=—(1-—+4+-=]. 3.27
r2 ( r + r2 (3.27)

Sua forma ¢ similar ao de Schwarzschild, especialmente no que concerne fétons vindos de
longe sendo espalhados. O parametro de impacto em funcao de ry e m é dado por:

9 2\ 1 4
b2 = 1 (1 -y Q) = o (3.28)

To 7’02 7’02—27717“0"‘@2.

A taxa de variagao do angulo em relacdo ao raio é expressa:

d 4 gy 42
qb_(r mr +TQ

dr ré rd rt

— 7%+ 2mr — Q2> : (3.29)

(NI

Fazendo a mudancga de variavel para u = % e integrando,
uo _1
Ap = 2/ (u02 —u? = 2mud + 2mud 4+ Q%ugt — Q2u4> ? du. (3.30)
0

Na aproximacao de campo fraco, tomamos m e Q? préximos de zero, expandindo
o integrando até primeira ordem. O termo em primeira ordem de m ¢é idéntico ao de
Schwarzschild, restando apenas calcular o termo em primeira ordem de Q?, que representa
a correcao introduzida pela carga na métrica. Mais uma vez, usamos a substituicao
U = U sen T,

5 U0 ugt —ut , (2 ug —ugdsen®x
20Q) ——du =2Q + Uy COS T dx
0 (ugf —u?)z 0 (uf — ug sen?x)?2
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4

— 20%u2 /g ug cos x (1 — Segn x) iz = 20%ul /g ﬂdw
0 (ug® cos? )2 0 COS* x
2,2 g g 2 9 o T T 2 9 9
0 0

Além disso, assim como na métrica de Schwarzschild, para m e Q? pequenos, 1y ~ %, .
Portanto, o desvio da luz de campo fraco na métrica RN ¢ calculado

dm  2Q%m
T

0prN = (3.32)

Uma outra métrica de interesse ¢ a métrica de black-bounce (BB), também chamada
de métrica de Simpson-Visser, onde um pardmetro de bouncing (a) é acrescentado de
forma que a métrica ndo apresente uma singularidade em r = 0, representando, portanto,
um buraco negro regular [52]. Este pardmetro pode ser ajustado de forma que a métrica
possa representar um buraco negro, um buraco de minhoca atravessavel apenas por um
lado ou um buraco de minhoca atravessavel bidirecional. Entretanto, esta métrica nao é
solugdo para as equagoes de Einstein no vacuo, e requer alguma forma exdtica de matéria

para poder existir. A métrica BB é dada a seguir

9 2 -

O potencial é dado por

L? 2m
= 1-— . .34
v T2+a2< \/m> (3.34)

O parametro de impacto é expresso como

2= rat) (1- 2\ o ) (3.35)
=(r a — = . :
’ Vg +a Vg +a - 2m
A taxa de variacao do angulo em relagao ao raio se torna:
_1
d¢ _ (r* + a?)? B 2m(r® + 0L23)2 2 2a 2m(r? +a?)\ 2 (3.36)
dr ré + a? (r¢ + a2)3 /ré + a2

Para a = 0, esta métrica se reduz a de Schwarzschild, entdo vamos calcular apenas a
correcao em segunda ordem de a em relacdo ao seu ja conhecido resultado. Derivando em

relagdo a a? e fazendo a — 0 e m — 0 em (3.36), temos

3
rt 2r? rt o) 2 1 [r?
(-G (5-r) —mfmrmw e e

Onde substituimos u = % depois de aproximar a — 0. Integrando de 0 a ug (inverte-se o

sinal por causa da inversao dos limites de integracao) e substituindo u = ug sen z,

jus 2
i /2 cos® x dr = %. (3.38)
0
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Novamente, para a = 0 e m = 0, uy =~ % Dessa forma, a correcao introduzida pelo

2 . . ;. N
Tz € o desvio da luz no regime de campo fraco ¢ igual a

soma dessa corre¢ao com a ja calculada corre¢do em primeira ordem de m da métrica de
Schwarzschild:

parametro de bouncing ¢é igual a

dm  wa?

Este resultado pode ser comparado com [53], onde foi calculado também um termo adicional

(3.39)

da ordem de maZ.



4 Desvio da luz no regime de campo forte

O segundo limite em que podemos estudar o desvio da luz é o de campo forte, ou
seja, com m grande. Esse limite corresponde as proximidades do buraco negro. Neste caso,
é necessario empregar um outro formalismo para calcula-lo. Um pouco mais distante em
relagdo a singularidade do que o horizonte de eventos, localiza-se a esfera de fotons, de
raio 7, maior que rg, mas de mesma ordem de grandeza. Nesta esfera, os fétons podem
teoricamente orbitar a origem, contudo esta érbita é instavel e a menor perturbagao pode
ejetar os fétons ou envia-los para dentro do buraco negro. No regime de campo fraco, a
luz se aproxima da origem a um raio minimo ro > rg. Em contraste, o regime de campo

forte é definido como o limite em que rg — r,,.

O célculo do desvio da luz no regime de campo forte foi desenvolvido por Bozza
[54, 27]. Posteriormente, Tsukamoto [55] modificou o célculo de forma que resultados
analiticos fossem obtidos também para a métrica RN, portanto o seu método é o que sera

empregado neste trabalho.

Considere uma variedade cuja métrica seja estatica, esfericamente simétrica e
assintoticamente plana. Podemos escrever o elemento de linha ds? de uma métrica com

essas propriedades usando (t, 7,6, ¢) como coordenadas.

ds* = A(r) dt* — B(r) dr* — C(r)(df + sen?0 dep)>. (4.1)

A métrica é assintoticamente plana (tende & métrica de Minkowski para r grande) quando
as seguintes condigoes sobre as fungoes A(r), B(r) e C(r) sao satisfeitas

lim A(r)=1 (4.2)

lim B(r)y=1 (4.3)

lim C(r) =12 (4.4)

Consideragoes similares as feitas no capitulo 3 se aplicam as métricas com essas caracteris-

ticas. As geodésicas nulas sao descritas pela lagrangiana
L= A(r) > — B(r)i* — C(r)(6* + sen 0 ¢?) = 0, (4.5)
Pelas equagoes de Euler-Lagrange, definimos as grandezas conservadas F e L:
E=A(r)t (4.6)
L = C(r)sen®6 ¢. (4.7)
Fazendo 0 = 7 e substituindo £ e L em (4.5), obtém-se

E? L?

=4 P e
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L? E?
-2 = : 4.9
" BmCe) ~ A0B6) )
Nesta trajetéria, quando o féton chega a um raio minimo ry, 7 = 0, e assim a razao b = %
pode ser escrita em funcao de ry conforme a seguir
C(ro)
b= 4.10
Alro) (4.10)
Escrevendo (4.9) usando b,
L? 1 1
2= - 4.11
= 5 (e ~ ) -

de onde tiramos, apds substituir a expressao de L com ¢

do (C(r) ( C@r) )
dr (B(@ <b2A(T) a 1)) ' (4.12)

Em geral, mesmo conhecendo A(r), B(r) e C(r), ndo hd uma expressao analitica para o

(NI

desvio da luz, que é obtido integrando esta expressao, entao se utilizam métodos numéricos
9 )
para calcula-lo, mas as integrais de algumas métricas possuem soluc¢oes analiticas no regime

de campo forte.

Vamos definir r,,, o raio da esfera de fétons, em termos das componentes da métrica.
Multiplicando (4.9) por C(r)B(r), obtemos

. C(r)E?
2 2 _
C(r)B(r)r + L* = A (4.13)
Derivando (4.13) em relacdo ao pardmetro afim, ficamos com
d 3 e (C'r)  C)A'(r)Y .

J[C(T)B(T)] 7> +2C(r)B(r)ri = E <A(r) 2(7) T, (4.14)
onde a linha denota derivada em relagdo a . Multiplicando (4.14) por %, ela se torna
Alr) d o5 2A(r)B(r). C'(r) A(r)

B0 ar C BT =T = w0y T A (4.15)
Para simplificar a notacao, define-se
c'(r)  A'(r)
D(r) = — 4.1
() o) A (4.16)

Usando o fato que a luz orbita circularmente em r,,, temos que 7 e ¥ sao nulos para este

valor de r. Assim, usando r =, em (4.15), temos:

D(ry,) = - = 0. (4.17)
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Esta equacao é a definicao de r,, a partir da métrica. Para encontrar r,,, é preciso resolver
(4.17). No caso de haver mais de uma solugdo, [55] utiliza a maior delas, mas em principio,
nada impede de calcular o desvio provocado pelas esferas de fétons mais internas, contanto
que elas sejam externas ao horizonte de eventos (r,, > rg). Fazer D(r,,) = 0 corresponde
a calcular o maximo do potencial efetivo visto no capitulo 3. Este raio representa um
limite para que particulas externas possam ser espalhadas pelo buraco negro. Qualquer
féton que ultrapasse para dentro da esfera de fotons necessariamente entra no horizonte
de eventos. E possivel, no entanto, que um féton seja emitido na regido entre rg e 7., €

escape.

Idealmente, se b for tal que o raio do ponto de inflexdo da trajetéria de um féton
que vem do infinito (r9) seja igual a r,,, pelo fato de que # = 0, o féton nao volta para
o infinito e nem ultrapassa a esfera de fétons para dentro, mas continua a orbitar na
esfera de fétons. Na pratica, uma pequena diferenca entre ry e r,, faz com que o féton dé
algumas voltas, depois caia ou escape. A figura 6 mostra o destino de varios fo6tons com

valores de ry levemente diferentes de r,,.

Figura 6 — Geodésicas com rg ~ 1,

—-r

o an 6m 8T

Fonte: [25]

Para calcular o desvio da luz no regime de campo forte, integramos (4.12), mas

.y To .
antes facamos uma mudanca de variavel para z =1 — —. Assim, temos que
r

R TC I R

1—z

[N

No limite inferior de integragao, quando tomamos o limite forte ry — r,,, essa integral
diverge, mas podemos separar a parte que diverge da integral antes de aplicarmos o limite.

Para simplificar os calculos, vamos definir

R(r) = 626;52) 1 (4.19)
C T0 R _To_
Glz,r0) = (1 —2)* () 7 (1) (4.20)
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27“0
f(z,10) = ———v=. 4.21
(2,70) o) (4.21)

Além disso, denotaremos as fungoes de ry com o indice 0 também, por exemplo,
A(rg) = Ay, assim como as fungoes de r,,, com um indice m, entdao A,, = A(r,,). Como

estamos lidando com o limite inferior, vamos expandir G(z,ry) para z — 0:
G(z,70) = c1(r0) 2 + ca(ro) 2% + O(2%), (4.22)

onde os coeficientes ¢; e ¢y S0 expressos

CoD
c1(rg) = L0 (4.23)
By
To 06/ A/O/ A6 7"000 7“006 B(/)Co 400
— (020 20 4 p (1 20 )| 0y p - - .
() [2 (Co a) TN T A™) By T\ By T B2 By
(4.24)
No limite ro — r,,, Dy = D(r,,) = 0. Vamos definir também
C// A//
D =-m__m 4.2
n=o T (4.25)

Vamos usar D! . correspondendo a segunda derivada do potencial efetivo no limite forte,

lembrando que a primeira derivada é nula. Eliminando os termos envolvendo D,,, temos

que
QC D!
G(z,r0 = Tm) &~ m “mZm 2 _ o) 22. (4.26)
2B,
2rm,
Ao integrarmos f(z,7,) = i , 1o limite inferior (z = 0) obtemos o seguinte
G(z,Tm)
2r dz dz
g [, o
‘/\/G(Z,Tm) vea(rm) 22/ %

Logo, A¢ (4.18) diverge se 1 for substituido diretamente por r,,. Essa divergéncia
representa fisicamente que o angulo de desvio se torna infinito para uma trajetoria cujo
raio de maior aproximacao coincide com o raio da esfera de fétons. Entretanto podemos
extrair a parte divergente da integral e s6 depois aplicarmos o limite forte rq — r,,,. O
que sobra é uma parte regular que pode ser sondada fisicamente pelos observaveis a serem
definidos no capitulo 5. Vamos separar f(z,79) em uma parte divergente fp(z,79) ¢ uma

parte regular fg(z, 7o), definidas como:

27"0
\/cl(ro) z + ¢o(ro) 22

fr(z,r0) = f(z,70) — fp(2,70). (4.29)

fp(z,m0) = (4.28)
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Calculamos a integral de fp(z,79):

) 1 dz
dz =2
/0 fp(zro)dz TO/O \/01(7“0)24‘02(7’0)32

_ 47 In (\/CQ(T’()) + \/01(7"0) + 02(7"0)> -

ca(ro)

27h

Ine(ro).  (4.30)
CQ(To)

Percebe-se que podemos aplicar diretamente o limite forte rq = r,,, ao primeiro termo de
(4.30), mas o segundo termo precisa ser separado. Vamos expandi-lo em torno de rg = r,,,

em primeira ordem:

c1(rg) = c1(rm) + & (rm)(ro — Tm) + O((1o — rm)?) (4.31)
c1(rg) = W(ro — 7)) + O((rg — m)?). (4.32)

Como os valores de rg sao muito préximos a r,,, vamos desprezar os termos de ordem

superior. Substituindo (4.32) no segundo termo de (4.30), ficamos com o seguinte

ca(rm) c2(rm)

_ o | 2Bm T _
=2 C%D%(mz m(Tm Q). (4.33)

Havendo separado o termo divergente de f(z,ry), aplicamos o limite g = 7,

diretamente em fr(z,7(), assim

2r
f Z,Tm) = = -
r(2:7m) JGGr) \/rgncmD;n 2

2 2
- L - . (4.34)

T'm T'm !

C(l >R<1 > N

(1—2)? —z - —z 2B,
b <1 —z>

Finalmente, o desvio da luz no regime de campo forte é dado por:

2B, 1
0p=A¢p—m=2 oD <1n (2r;,) —In(rg — rm)) + /o fr(z,rm)dz — . (4.35)

Ou seja, para um dado rg muito proximo de r,,, o desvio pode ser arbitrariamente grande,
inclusive passando de 27, o que significa que a luz pode dar varias voltas antes de escapar
para o observador, segundo vimos na figura 6. Este caso e outros, como o de uma esfera

de fétons estavel, sao discutidos em [25].

Alternativamente, seguindo a recomendagao de usar b em vez de ry, conforme [51],

podemos escrever este desvio em termos do pardmetro de impacto. O limite inferior para
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b é o pardmetro de impacto critico (b.). Como um valor menor que b, resulta em um

menor que r,,, o limite b — b. é equivalente a ry — r,,. Definimos b. como segue

Para escrever o desvio da luz no regime forte utilizando o parametro de impacto,

vamos expandir b em poténcias de ry — r,, partindo de (4.10). A derivada de b em relacao

: _1(00)‘5 Co , Coki
Vo) =5 (2, 4, T AZ
s 1

AO DO 2b<T0>D0. (437)

ary é:

Como no limite ry — r,,, Dy — 0, entdo o termo de primeira ordem para r,, é nulo. A

segunda derivada de b (1) é:
1
v (ro) = §(b'(T0)D0 + b(ro)Dy)). (4.38)
Assim, a expansao do parametro de impacto em poténcias de rq — r,,, pode ser escrita:
1
b="0(r,) +b(rm)(ro—rm) + §b”(rm)(r0 —Tm)?

=b, (1 + D4’/“ (ro — rm)2> : (4.39)

Isolando ry — r,, nesta expressao, obtemos

4’” (ro — Tm)? (4.40)

4 (D

Sendo assim, o desvio da luz em termos do parametro de impacto se torna

0o =2 CQmBijn (hl(??“m)—h’l\J; (—1)) /fRZTm

= CoD In (bc — 1) + coD” " _(Inr2 D) +/0 fr(z,7mm) dz — T, (4.42)

Podemos escrever resumidamente o desvio definindo os parametros do desvio forte a e b:

2B,
CnDl,

b=aln(r: D) +/ fr(z,rm)dz — 7, (4.44)

a

(4.43)
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ou seja,

6 = —aln (bb — 1) + b, (4.45)

C
de maneira que serd mais conveniente para o calculo da lente gravitacional. Cada métrica
resulta em parametros diferentes, possibilitando diferenciar experimentalmente entre as
métricas, conforme serd exposto no capitulo 5. Para ilustrar o regime de campo forte,
vamos aplicar este método as métricas de Schwarzschild, RN e black-bounce, assim como

foi feito no capitulo 3 para o limite de campo fraco.

4.1 Meétrica de Schwarzschild

O raio da esfera de fétons (r,,) é dado por (4.17). Na métrica de Schwarzschild

(2.39), temos que

% 2 2my ! 2
T‘_m< _m> g m (4.46)
= Ty —2m=m = r, = 3m. (4.47)

2m 1
Ap=1-"—=2 = 9m? 4.4
m 3 — 3 C,, = 9Im (4.48)
b = O _ 27m? (4.49)
© A, ‘ '

O termo D!, (4.25), que aparece na expressao do desvio, é dado por:

2 12 2
D = = 4.50
™ 9m2 + 27Tm?2  3m? ( )

Com isso, a (4.43) é dado por

6
a=,—5 =1 4.51
om? 2, (451)
e b (4.44) é dado por
_ 2 1 1
b=1In <9m2) + / fr(z,rm)dz —m=1n6+ / fr(z,rm)dz — . (4.52)
3m? 0 0

A parte regular (4.29), no raio da esfera de fétons, é calculada:

s (srrdo-a)) -2

__ 2 2 20— 1_32). (4.53)
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Ao integrarmos a parte regular, substituindo u = /1 — %z obtemos

1—u 1
4/ du =4 d
1—u2u 1—i—uu

1
:4(ln2—ln (Hﬁ)) = 41n (3 —V/3). (4.54)

Portanto, o desvio de campo forte na métrica de Schwarzschild é expresso a seguir

5

(5¢S:—ln<3\/b§m—1>+ln6+4ln(3—\/§)—7r. (4.55)

Este resultado ¢ igual ao obtido por Bozza [27] e Tsukamoto [55].

4.2 Meétrica de Reissner-Nordstrom

Nesta métrica, dada por (3.26), a equacao para o raio da esfera de fotons (4.17)

possui duas raizes:

2m  [(2m 202 om  Q*\
i e L S L 4.56
Tl (rm2 T ) ( T'm * T (4.56)
T — 3mry, +2Q* =0 (4.57)
3m + 1/9m? — 8Q)?
T = 5 : (4.58)

Porém a raiz interna (sinal negativo) sé é possivel quando ¥ ooy HES 1, ou seja, o caso em que
nao ha horizonte de eventos em volta da singularidade. Mesmo assim, os resultados a
seguir valem para ambas as raizes. Vamos tomar r,, como sendo o raio da esfera de fétons

externa. Assim

18m? + 6m\/9m2 8@2

Cop=rpl = 3mry, — 202 (4.59)
2 _9 2 N2
T T2 T r2,
Tl T
b, = — 4.61
mry, — Q? mry, — Q? ( )
9 2 A 2 o2
=2 T m  6Q°\  6mr, —3Q (4.62)
er mrm — Q2 Tm3 er T'm (mrm - QQ)
- 2 _ 3 2r,2(mry, — Q%) (3mr, — 4Q?) 2
AnCr D! it (7 — Q2)
. (4.63)
= 'm = 2Q72 ’
Vamr,, — 40Q? T
— . 6mr, —8Q? 1
=al — . 4.64
b=aln p—T + ; fr(z,mm)dz —m (4.64)
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A parte regular (4.29) no RN é

ST IR

ol

(1 = 2P n = 2
2 2 2 2\"3 20
= 2rm(—Q 2% = 2(mry, — 2Q°)z + 3mr, — 4Q ) - —. (4.65)
z

Ao integrarmos, obtemos
2rm,

/fR(z,rm) ~ Bmr, — 40)?
+ 2\/3mrm - 4Q2\/—Q2z2 —2mry,z + 4Q%z + 3mr, — 4Q2) —1In z) + k. (4.66)

<ln z— ln(?(Smrm —4Q%) + (—2mry, +4Q?) 2+

Ao aplicarmos os limites de integracao

1 27, 2(3mr,, — 4Q?)
| fazrm) = n 2 : 5
0 V3mry, —4Q?  2mr, — 2Q?% + /3mr,, — 4Q%*/mr,, — Q

Por fim, a expressao completa do desvio da luz no regime de campo forte, na métrica RN

(4.67)

¢ dada a seguir

T'm Ch 272 272
Sopy = 2= (2 —1) 4L 42m | - 4.68
o 7( (1) e g ) - o)

4.3 Meétrica black-bounce

Para esta métrica, dada por (3.33), o raio da esfera de fétons (4.17) é calculado a

seguir

2y 2mrp, /T + a2

= g == 4.69
PP (2t @) (Vi w @ — 2m) .
= \/rp2 +a?=3m = r, =£VIm? —a’. (4.70)

Como r,, sempre aparece ao quadrado na métrica, a solugdo negativa tem as mesmas
implicacoes que a solucao positiva, que é a que vamos assumir daqui para frente. O

parametro de impacto critico é dado por

Con =Ty’ + a* = 9m? (4.71)
2m 2m 1

L 4.72

VTl + a? 3m 3 (4.72)

b, = V27Tm? = 3v/3m. (4.73)

Ap=1-

Repare que b. é o mesmo que na métrica de Schwarzschild. Para o calculo dos parametros
aeb, D! édado por
2 6(a® — 6m?)  6(9m? — a?)

Pn= G2 = Gy T Gyt (4.74)
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Logo, temos

_ (3m)* 3m
= = 4.
a4 \J 9m2(9m2 — a2) Om?2 — g2 ( 75)
_ 6(9 2 . 2)\2 1
b=aln w + /0 fr(z,mm) dz — . (4.76)
Usando o fato que A =1 — 2—\/’%, podemos escrever a parte regular como
C(r)? Y
fr(z,rm) = 2ry, ((1 —2)* ( éz) —C(r)+2m C’(r))) — ?a

<9m2 —a’z(2 - z))2
27m?

= 2V/9m? — a? (
(4.77)

6m

B 2/9m?2 — a2’

A integral deste termo nao possui solucao analitica, entdo é necessario usar métodos

+2m(1 — 2)3\/9m2 —a?z(2 - z))

numéricos para calcular b.



5 Lentes gravitacionais

Uma lente gravitacional ¢ um objeto que desvia a luz vinda de um objeto mais
distante, a fonte, criando num certo observador a ilusao de que o objeto se localiza em
outra posicao, onde fica a imagem. O efeito de lente gravitacional é medido pelo aumento
(1), a razao entre o fluxo de luz da fonte (localizada a um adngulo 6) e o de sua imagem
gerada pela lente (localizada a um angulo ), segundo a figura 7. Como a luz é apenas
redirecionada, a razao entre os fluxos s6 leva em conta a razao entre os angulos solidos do
objeto fonte e de sua imagem. Para encontrar essa relagao, vamos seguir o procedimento
em [54].

Considere o esquema da figura 7. Neste caso, s6 vamos nos preocupar com o lado
da fonte, onde aparece a imagem primaria, porque o importante é a relacao entre ela e as
imagens relativisticas correspondentes. A imagem secundaria e as imagens relativisticas
secundarias aparecem do outro lado, e consideragoes semelhantes poderiam ser feitas com
relacao a elas, mas isso nao sera necessario para este estudo. Nesta figura, identificamos
o pardmetro de impacto (b), o raio minimo (r9), e o dngulo «, igual ao desvio menos
as voltas completas que a luz deu ao redor da origem antes de chegar ao observador.

Matematicamente, esta definicdo é expressa por

a=0¢ —2mn, (5.1)

Figura 7 — Configuragdo geométrica da fonte (S), da imagem (I), do observador (O) e da
lente (L)

Fonte: [54]
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onde indice n é o numero de voltas.

No regime de campo forte, é necessario um alinhamento quase perfeito entre a
fonte e a lente para que o efeito seja apreciavel. Portanto, o eixo horizontal nesta figura foi
exagerado para evidenciar as relagoes entre os angulos mostrados. Na realidade, a fonte
e a lente se localizam aproximadamente na mesma linha reta Dpg e os angulos 3, 6 e «
sao todos muito pequenos. Vamos buscar uma relagao entre 5 e . Conforme a figura 7,

pOdemOS escrever
Dostg5+DLs(tg9+tg(Oé —9)) = Dos tg 6. (5.2)

Podemos reescrever esta relacao como

D
tgﬂztgH——LS(tgH—ktg(a—@)). (5.3)
Dos
Como os angulos sdo pequenos, suas tangentes podem ser aproximadas pelos proprios
angulos:
tg S~ f tgl ~ 0 tg(a—0) = a,, — 0. (5.4)
Assim, (5.3) se torna
Dps
b=0—-——qa. 5.5
Dos (5.5)

Devido ao alinhamento quase perfeito entre a fonte e a lente, o angulo o depende do

parametro de impacto, que pode ser aproximado por
szOLtgH%DOLG, (56)

Portanto, de acordo com (4.45),

C

5¢(0) ~ —aln (912‘” - 1) +b. (5.7)

Vamos chamar de 6% o angulo cujo desvio correspondente ¢ igual a exatas n voltas

completas, ou seja, 6¢(0°) = 27n. Expandindo §¢(6) em torno de 69, temos

50(0) ~ 06(02) + 200 (9 - g8 = 2mn — “POL g _ gt (5.9
a0 |, c€n
onde )
en=c . (5.9)
Assim, « (5.1) se torna
aDor, 0
= — 0—0). 1
o ==k - 60) (5.10)
E entdo, expandindo 3 em torno de 62, obtemos
_ a0 aDOLDLS) A0 0,2
B(6) = 6° + (1 + GO ) (6 6) +0((6 - 60)°), (5.11)
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onde podemos desprezar o 1 no termo de primeira ordem em (6,, — %), tendo em vista
que b, é pequeno comparado as distancias com relagao a lente (Do, ou Dyg). Portanto,
temos que

aDorDrs

B+ (0 —6°). (5.12)

bcenDOS

Ou ainda, escrevendo 6,, em funcao de f:

4 JeenlDos 5 goy (5.9

Podemos a partir dessa expressao calcular o aumento, definido como

6° 00
i 5.14
A expressdo para 62 (5.7) é dada por
6°D . b
27m:—a1n< n Ok —1) +b = 0 =—""A(1+e,). (5.15)
c DOL

Logo, o aumento ¢ calculado como

. bCQDOS €n<1 —|— Gn)

— 5.16
afDor*Dys (5.16)

Lin

O termo exponencial e, mostra que os fluxos das imagens diminuem com o ntmero de

- b—2mn ) ) o .
voltas, pois lim, ,.ce @ = 0. Além disso, conforme § diminui, u, aumenta, entao

quanto mais préxima a fonte estiver da reta OL, mais evidente se torna o lenteamento

gravitacional.

Podemos comparar as previsoes tedricas com as observagoes através dos observaveis
0, e 0., que sao respectivamente, os angulos da imagem que deu uma volta e o de
uma imagem que deu um nimero arbitrariamente grande de voltas. Como as imagens
relativisticas sdo muito proximas umas das outras, podemos considerar que coalescem em
uma tnica imagem, separando a mais externa delas. O pardmetro de impacto critico (b.)

pode ser calculado a partir da aproximacao (5.6)

be = Dor Oso- (5.17)
O angulo de separagao (s) entre as imagens é definido como

s=0, — 0. (5.18)

Se ignorarmos a corregao (8 —6°%) em (5.13), devido a diferenga de magnitude

aDorDys _
entre b. e Do, a expressao de s pode ser escrita

bC b—27

- =0 . 5.19
Do: (5.19)

bc b—2m
8%9?—920:DOL (1+e a )
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Pode-se observar também a razao (R) entre o fluxo (luminosidade sobre drea) da imagem
correspondente a #; e o fluxo da imagem em 6.,

-1 -1

o0 [e.e]
R=u [ p" =ei(l14+e) | D en(l+ey)
n=2 n=2
] oz L\
_ ( + ) — (5.20)
e —1 ea”

Mas, conforme visto no capitulo 4, a ¢ da ordem de 1 ¢ b é da ordem de —1, entdo e

prevalece sobre es e sobre 1, onde usamos o fato que 2m é da ordem de 10. Portanto temos
27
R~ea. (5.21)

Sabendo disso, podemos extrair @ e b a partir de R, s e 0

2
i= " 22
“ InR (5-22)
b=aln ZR. (5.23)

Assim, poderiamos comparar os parametros calculados a partir das observagoes com os
parametros do campo forte especificos da métrica (Schwarzschild, RN, etc.) e apontar
qual melhor se encaixa com os dados experimentais, quando estes puderem ser obtidos. As
métricas podem ser comparadas na Tabela 1, onde usamos como referéncia o buraco negro
supermassivo no centro da Via Lactea (Sagitdrio A*), com massa igual a 4 - 10° vezes a
massa do Sol [56] e distante 8.15 kpc do Sistema Solar [57]. Na métrica RN, @ = 1m

Tabela 1 — Pardmetros do campo forte e observaveis (grandezas angulares medidas em

parcsecs)
Reissner-Nordstrom (Q) Black-bounce (a)
Schw.

0,3m 0,6m 0,9m 1m  1,05m 0,5m 1m 1,8m 2,3m 2.8m
a 1 1,01 1,05 1,20 1,41 2,01 1,01 1,06 125 1,56 2,79
b -0,400 -0,398 -0,397 -0462 -0,733 —-2,44 -0,414 -0465 -0,799 —-1,44 —6,24
217;1 2,60 2,56 2,43 2,16 2 1,88 o mesmo que Schwarzschild
0o 25,31 24,93 23,67 21,04 19,49 18,29 o mesmo que Schwarzschild
s 0,032 0,034 0,041 0,077 0,136 0,238 0,034 0,047 0,091 0,178 0,282
R 535 501 393 186 85,0 22,8 490 373 152 56,5 9,54

Fonte: Os valores desta tabela sdo originais, mas podem ser comparados com [27], de onde tiramos a
ideia de expor os resultados em forma de tabela e possui a métrica Janis-Newman-Winicour no
lugar da métrica BB, e com [53], que exp0s o resultado em forma de grafico. Além disso, esta
tabela utiliza dados atualizados de Sagitario A* em relagio a essas fontes.

corresponde ao caso extremal. Para () = 1,05m, o espago possui duas esferas de fétons
(considerou-se somente a mais externa para o calculo da tabela), mas ndo tem horizonte

de eventos. Para valores de (Q? acima de §m2, nao hé esferas de fotons (mais detalhes
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deste caso em [58]). Na métrica BB (estudada no contexto de lentes gravitacionais em
[53, 59]), os dois maiores valores considerados correspondem ao caso do buraco de minhoca
atravessavel. Nesta métrica, o limite superior para o parametro a ¢ 3m, onde o valor de a
(4.75) explode.

Infere-se pela tabela que a métrica RN é mais facilmente distinguivel da métrica
de Schwarzschild do que a métrica BB, por apresentar diferenca na posicao angular da
imagem relativistica mais interna, um parametro mais facil de se detectar do que os outros
observaveis. Também é possivel perceber um comportamento similar dos observaveis
em relacao aos parametros especificos das métricas, pois tanto na métrica RN quanto
na métrica BB, o angulo de separacdo aumenta com o parametro, enquanto que o fluxo

relativo da imagem relativistica mais externa diminui em comparacao com as demais.



6 Conclusao

O foco principal dessa dissertacao foi fornecer um estudo detalhado do desvio
da luz usando o formalismo de campo forte, sendo um trabalho puramente de revisao.
Aplicamos este formalismo a diversos backgrounds, quais sejam: métricas de Schwarzschild,
Reissner-Nordstrom e de black-bounce. Além disso, estudamos o fendémeno de lentes
gravitacionais, um efeito que ja fora bem estudado no regime de campo fraco, mas possui

caracteristicas diferentes no regime de campo forte.

No capitulo 1, fizemos uma introducao genérica, abordando diversos tépicos re-
levantes da fisica gravitacional, desde a contextualizag¢ao historica na qual a RG fora
desenvolvida até a descricao de alguns fendmenos gravitacionais observados recentemente,

que podem motivar o desenvolvimento de uma nova fisica.

No capitulo 2, revisamos os principais aspectos da RG. Vimos que a RG é funda-
mentada no principio de equivaléncia, que garante que, na vizinhanca de um ponto do
espaco-tempo, um campo gravitacional e um referencial acelerado sao equivalentes. Na
prética, a consequéncia disso é que, localmente (na vizinhanga desse ponto), sao validas as
leis da Relatividade Especial. Dado o carater lorentziano local da RG preconizado pelo
principio de equivaléncia, seu carater “global”, ou seja, quando o campo gravitacional nao
pode ser mais tratado como sendo aproximadamente homogéneo, estd intrinsecamente
relacionado com a curvatura do espago-tempo, codificado através do tensor métrico. O
outro ingrediente fundamental sao a matéria e a energia, que dao origem a curvatura do
espago. Tal relacao ¢é explicitamente constatada através das equagoes de Einstein. Por fim,

tratamos dos testes cléssicos que ratificaram o grande sucesso da RG.

A partir do capitulo 3, nos concentramos no desvio da luz. Nesse capitulo, des-
crevemos em detalhes o algoritmo que fornece o angulo de deflexao da luz no regime de
campo fraco, considerando um background esfericamente simétrico e estatico. Aplicamos o
algoritmo para trés métricas esfericamente simétricas, a saber: métricas de Schwarzschild,
Reissner-Nordstrom e black-bounce. Por exemplo, vimos que, no caso da métrica de
black-bounce, o angulo de deflexao é igual a soma do angulo de deflexdo da métrica de

Schwarzschild mais um termo proporcional ao quadrado do pardmetro de bouncing (a).

No capitulo 4, discutimos a deflexdo da luz no regime de campo forte. Destacamos
que o limite de campo forte passa a ser relevante quando a luz passa pelo objeto defletor
(por exemplo, um buraco negro) a uma distancia da ordem do raio da esfera de fotons
(rm). No que se segue, apresentamos detalhadamente o algoritmo desenvolvido por Bozza
[54] e Tsukamoto [55] e o aplicamos para as mesmas métricas estudadas no regime de

campo fraco. Verificamos que as expressoes para os angulos de deflexdo da luz para essas
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métricas diferem drasticamente daquelas obtidas no capitulo anterior.

Finalmente, no capitulo 5, tratamos das lentes gravitacionais no regime de campo
forte, onde surgem as imagens relativisticas. Nesse contexto, definimos certos observaveis
(0, s e R), quantidades fisicas medidas experimentalmente, a partir dos quais é possi-
vel inferir os parametros definidos no regime de campo forte e comparar os resultados
experimentais com as previsoes dadas por cada métrica. Esses resultados requerem mais
precisao do que os ultimos avangos tecnoldgicos permitem, mas fizemos uma projecao dos

possiveis resultados tomando como exemplo o buraco negro no centro da Via Lactea.

Para o futuro, esperamos estudar as lentes gravitacionais em outras métricas, em
especial naquelas que levam em conta a rotagao do buraco negro, como as métricas de
Kerr e de Kerr-Newman [60]. Nesses casos, nao ha a condi¢ao de simetria esférica utilizada

nesta dissertacao, mas ainda é possivel analisar as trajetorias de fotons no plano equatorial.
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