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Resumo
Nesta dissertação, calculamos o desvio da luz usando o formalismo de campo forte e o
aplicamos no estudo das lentes gravitacionais. Este formalismo corresponde ao limite
em que a luz se aproxima da esfera de fótons, onde as geodésicas nulas definem órbitas
circulares. Neste limite, o parâmetro de impacto da trajetória do fóton tende ao parâmetro
de impacto crítico, abaixo do qual o fóton cai no horizonte de eventos. Supomos inicialmente
uma métrica estática, esfericamente simétrica e assintoticamente plana e depois aplicamos
o formalismo às métricas de Schwarzschild, de Reissner-Nordström e de black-bounce. No
campo forte, a integral do desvio da luz diverge, então extraímos a parte divergente e
expressamos o resultado através de alguns parâmetros. Por fim, definimos observáveis
no contexto das lentes gravitacionais para distinguir entre as métricas a partir de dados
experimentais futuros.

Palavras-chave: Relatividade Geral. Desvio da Luz. Lentes Gravitacionais.



Abstract
In this master thesis, we work out light deflection using the strong field approach and
apply the results in the study of gravitational lensing. This formalism becomes useful when
the light gets close to a photon sphere, where null geodesics trace circular orbits. In this
limit, the impact parameter of the photon approaches the critical impact parameter, and
if it is less than that the photon falls into the event horizon. We start assuming a static,
spherically symmetric and asymptotically flat metric and then we apply this formalism to
the Schwarzschild, Reissner-Nordström and black-bounce metrics. In the strong field limit,
the integral for the light deflection diverges, so that we have to extract the divergent term
and express the result in terms of some parameters. Ultimately, we define observables
in the context of gravitational lensing with the purpose of distinguishing between those
metrics from future experimental data.

Keywords: General Relativity. Light Deflection. Gravitational Lensing.



Lista de ilustrações

Figura 1 – Precessão do periélio de Mercúrio . . . . . . . . . . . . . . . . . . . . . 6
Figura 2 – Elevador acelerado no espaço . . . . . . . . . . . . . . . . . . . . . . . 8
Figura 3 – Elevador em repouso na Terra . . . . . . . . . . . . . . . . . . . . . . . 8
Figura 4 – Potencial efetivo na métrica de Schwarzschild . . . . . . . . . . . . . . 19
Figura 5 – Desvio da luz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figura 6 – Geodésicas com r0 ≈ rm . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figura 7 – Configuração geométrica da fonte (S), da imagem (I), do observador

(O) e da lente (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



Sumário

1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 RELATIVIDADE GERAL . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 O princípio de equivalência . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 A geometria do espaço-tempo . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Equações de Einstein . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Testes clássicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 DESVIO DA LUZ NO REGIME DE CAMPO FRACO . . . . . . . . 18

4 DESVIO DA LUZ NO REGIME DE CAMPO FORTE . . . . . . . . 25
4.1 Métrica de Schwarzschild . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Métrica de Reissner-Nordström . . . . . . . . . . . . . . . . . . . . . 32
4.3 Métrica black-bounce . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 LENTES GRAVITACIONAIS . . . . . . . . . . . . . . . . . . . . . . 35

6 CONCLUSÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



1 INTRODUÇÃO

A Relatividade Geral (RG) é a teoria de gravitação mais bem verificada atualmente.
Einstein desenvolveu este modelo físico baseando-se mais em sua intuição física do que nos
dados experimentais, publicando-o em 1915. Mesmo assim, apenas quatro anos depois, foi
observada a primeira evidência experimental da teoria, o desvio da luz, que juntamente
com o avanço do periélio de Mercúrio e o redshift gravitacional é um dos testes clássicos
propostos por Einstein. Estes fenômenos não são explicados pela gravitação newtoniana,
mas todos foram confirmados ao longo do século XX, alçando a RG ao papel desempenhado
por aquela desde o século XVIII.

Devido a limitações tecnológicas, por anos, a RG não encontrou muitas aplicações,
até que, a partir dos anos 1960, novos testes puderam ser conduzidos e novos efeitos
gravitacionais passaram a ser estudados. Um deles, o atraso temporal pela gravidade,
não só foi verificado como encontrou aplicação na comunicação com satélites, sendo
fundamental para o funcionamento do sistema de GPS [1]. Outro deles, um dos focos
desta dissertação, são as lentes gravitacionais, que serão detalhadas mais adiante.

Uma das previsões mais notáveis da RG é a existência de buracos negros: objetos tão
densos e com gravidade tão intensa, que nem a luz pode sair do horizonte de eventos. Tais
objetos foram previstos apenas como uma hipótese, mas posteriormente foram descobertos
mecanismos para a sua formação. Um desses processos é o colapso gravitacional de uma
estrela de massa muitas vezes maior que a do Sol ao esgotar seu combustível de fusão
nuclear. Toda a matéria que não foi ejetada durante a formação do buraco negro se
condensa num único ponto de densidade infinita chamado singularidade.

Por não emitirem luz, os buracos negros são difíceis de ser encontrados, sendo
detectados através de sua influência gravitacional sobre estrelas próximas ou através da
radiação emitida pelo disco de acreção, um disco de gás girando ao redor do buraco negro
e sendo aquecido pelo atrito antes de ser finalmente absorvido [2, 3]. Por isso eles são
mais facilmente encontrados nos centros das galáxias, sendo nestes casos buracos negros
supermassivos, pois absorvem continuamente muita matéria e gás interestelar. Em 2019,
atingimos uma resolução de imagem tão grande que pudemos ver pela primeira vez a
sombra de um buraco negro no centro da galáxia M87 [4], e depois novamente em 2022 com
o buraco negro no centro da Via Láctea [5], confirmando definitivamente que os buracos
negros não são meras construções matemáticas.

Outro fenômeno previsto pela RG que só pôde ser verificado recentemente são as
ondas gravitacionais, detectadas pela primeira vez em 2016 [6]. As ondas gravitacionais são
a forma como a interação gravitacional é transmitida pelo espaço-tempo. Ao contrário da
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gravitação newtoniana, que descreve a gravidade como instantânea, na RG, as modificações
na configuração de matéria são percebidas pelos objetos sob sua influência gravitacional
com um atraso. A propagação dessa influência ocorre à velocidade da luz, que é o limite
superior para a transmissão de qualquer tipo de informação. Essas ondas são, em geral,
muito fracas e instrumentos muito sensíveis são necessários para detectar até mesmo as
ondas geradas por grandes eventos como a fusão de dois buracos negros ou de estrelas de
nêutrons, mas servem como uma nova forma de explorar o Universo para além das ondas
eletromagnéticas.

Apesar de ser bem sucedida em alguns aspectos, a RG ainda possui limitações
tanto experimentais como teóricas. No campo experimental, ela não consegue explicar a
formação de grandes estruturas no Universo sem a necessidade de introduzir componentes
“escuras” (matéria escura e energia escura). A matéria escura é um tipo de matéria que
não interage com a radiação eletromagnética. Já a energia escura é de natureza incerta.
Estima-se que 25% do Universo é feito de matéria escura, 70% é energia escura e somente
até 5% é matéria bariônica (estrelas, gás), havendo também uma presença ínfima de
radiação [7]. A ideia de matéria escura foi concebida para explicar a curva de rotação
das galáxias [8, 9]. É possível que sua composição seja um novo tipo de matéria a ser
descoberta no futuro. Outra opção é que uma nova teoria possa explicar esse fenômeno
sem ser necessário postular uma forma misteriosa de matéria. Quanto à matéria escura,
experimentos como o WMAP, que mapeou a radiação cósmica de fundo [10, 11] e medidas
do redshift de supernovas distantes [12] confirmam que a expansão do Universo é acelerada.
A RG lida fenomenologicamente com esse fato, adicionando uma constante cosmológica às
equações de Einstein. Esta constante é identificada com uma forma de energia de vácuo
cujo valor está em desacordo com o previsto pela física de partículas [13].

Um outro tipo de limitação é de ordem teórica. A interação gravitacional é muito
fraca para ser percebida em sistemas quânticos, sendo necessário realizar experimentos
envolvendo energia tão altas que provavelmente serão inacessíveis por muito tempo. Devido
à falta de evidências empíricas, é muito difícil formular uma teoria quântica de gravitação.
Tal teoria poderia descrever apropriadamente as interações entre sistemas quânticos e
os buracos negros, ou fornecer algum mecanismo que impeça o colapso completo da
singularidade. As interações entre sistemas quânticos e o horizonte de eventos e problemas
com relação à termodinâmica dos buracos negros poderiam ser melhor compreendidos do
ponto de vista da gravitação quântica. Estes problemas estão relacionados com a perda
de informação nos buracos negros, a destruição das correlações quânticas ao atravessar o
horizonte de eventos, e a radiação de Hawking [14].

Acredita-se que as possíveis soluções para esses problemas são associadas a uma
teoria quântica de gravitação. São propostas de teorias quânticas a teoria de cordas e a
gravidade quântica em loop. Por outro lado, acredita-se que modificações da RG também
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possam ser um caminho promissor. Tais teorias são conhecidas como teorias alternativas
de gravitação. Alguns exemplos são teorias f(R) [15], galíleons [16] e, em geral, teorias
escalar tensoriais [17].

Nesta dissertação, porém, vamos nos ater ao estudo das lentes gravitacionais, que
além de se mostrarem como um instrumento de verificação experimental da RG, também
tiveram seu papel na medição da constante de Hubble e contribuem até hoje na exploração
do Universo em larga escala [18]. Lentes gravitacionais também podem ser usadas, por
exemplo, para tentar observar efeitos ou assinaturas de possíveis cordas cósmicas, que
acredita-se terem sido geradas no universo primordial [19].

O fenômeno das lentes gravitacionais foi previsto por Einstein em 1936 [20], mas
só despertou interesse da comunidade científica em 1963, com a descoberta dos quasares
[21, 18]. Os quasares são objetos distantes cuja luz é sujeita a ser desviada de tal forma
que sua imagem seja ampliada, distorcida e multiplicada pela gravidade de galáxias na
sua frente, na nossa perspectiva. A esse efeito, dá-se o nome de lente gravitacional.

Naquela época, procuravam-se principalmente imagens duplicadas de galáxias
distantes, mas há também outras manifestações do mesmo efeito, como os anéis de
Einstein, formados quando o alinhamento entre a fonte e a lente é praticamente perfeito
[18]. Esse efeito foi observado pela primeira vez em 1979 [22]. As lentes gravitacionais
foram estudadas somente no regime de campo fraco até a década de 90, ou seja, no contexto
de objetos não muito densos, como estrelas e galáxias. Para um resumo dos resultados
dos estudos sobre lentes gravitacionais no formalismo de campo fraco, consultar Lima e
Santos [23].

A descoberta dos buracos negros, por sua vez, instigou o estudo das lentes gravi-
tacionais no regime de campo forte, que ocorre na escala do horizonte de eventos, mais
precisamente na vizinhança de uma estrutura chamada esfera de fótons [24, 25, 26]. No
campo fraco, só é possível observar as imagens primária e secundária — imagens que
sofreram um desvio menor que 360°, uma de cada lado da lente. Para o campo forte, como
o desvio pode ser mais intenso, aparecem as imagens relativísticas, ou seja, imagens que
deram uma ou mais voltas ao redor do objeto espalhador.

As dificuldades para a observação de imagens relativísticas, no entanto, ainda não
foram superadas. É necessário um alinhamento muito preciso entre a fonte e a lente, pois as
imagens relativísticas são pequenas, fracas e aparecem por pouco tempo, sendo necessária
uma fonte de luz intensa, como um quasar ou uma supernova. Além disso, o método
VLBI (Very Long Baseline Interferometry) possui resolução teoricamente suficiente para
observá-las, mas a visibilidade é comprometida pela presença do disco de acreção [27].
Sendo assim, é pouco provável que observemos essas imagens, mas com sorte poderemos
verificar mais este fenômeno impressionante previsto pela RG.



4

Esta dissertação está estruturada da seguinte forma: no capítulo 2 falamos da RG
com foco nos princípios empregados em sua formulação, sua motivação física, matemática
básica e verificação experimental; no capítulo 3 é feito o cálculo do desvio da luz no
regime de campo fraco para as métricas de Schwarzschild, Reissner-Nordström (RN) e
black-bounce (BB); no capítulo 4 é apresentado o formalismo de campo forte e o cálculo dos
parâmetros que caracterizam o desvio da luz nesse regime, para as mesmas três métricas;
no capítulo 5 é exposto uma aplicação do desvio da luz no regime de campo forte para o
estudo de lentes gravitacionais e como correlacionar os parâmetros do campo forte com
os observáveis físicos; no capítulo 6 é feita a conclusão da dissertação, com considerações
finais e propostas de trabalhos futuros.



2 Relatividade geral

A Gravitação foi discutida de várias maneiras ao longo da História. O movimento
dos corpos na superfície da Terra era estudado pela Dinâmica. Aristóteles postulou uma lei
de movimento envolvendo os conceitos de “potência motriz” e “resistência” e que a queda
dos corpos é o resultado de um movimento natural das coisas pesadas para o centro da
Terra e das coisas leves para o alto, onde atingem o equilíbrio [28]. Alguns matemáticos da
Idade Média criticaram o modelo de Aristóteles e contribuíram para a futura formulação
matemática correta das leis da Dinâmica, mas não dispunham do formalismo adequado
(cálculo diferencial) e não puseram suas conclusões a teste [29]. Em particular, as leis de
movimento aristotélicas relacionavam a força à velocidade do móvel. Galileu foi pioneiro
em enunciar uma lei do movimento através da aceleração, em particular a queda dos
corpos, e expressar a relação correta entre aceleração, tempo e distância percorrida [29].

Já os movimentos dos corpos celestes eram estudados pela Astronomia, havendo
uma distinção muito marcada entre fenômenos celestes e terrenos. O modelo dominante
na Idade Média era geocêntrico e descrevia o movimento errante dos planetas através
do modelo de Ptolomeu, que concordava com as observações em tal grau que ideias
alternativas advinham de considerações filosóficas, em vez de empíricas. Foi esse o caso
de Copérnico, quando propôs seu modelo heliocêntrico, desafiando a Igreja e a Academia.
A base empírica para este modelo só foi firmada posteriormente, por Brahe. A precisão
de suas observações era maior que as disponíveis na época, antes mesmo da invenção do
telescópio. De posse desses dados, Kepler formulou a lei das órbitas elípticas, publicada
em 1609 [30] e conforme novas evidências foram surgindo, particularmente com a invenção
do telescópio, o modelo geocêntrico foi sendo descartado.

Antes de Newton publicar o Principia em 1687, desconhecia-se que a queda dos
corpos e o movimento dos corpos celestes tinham a mesma natureza. Newton fundamentou
sua lei de gravitação sobre os estudos de Galileu, Kepler e Huygens. Essa lei é descrita
abaixo

F⃗ = G
mM

r2
ˆ⃗r, (2.1)

onde G é a constante gravitacional newtoniana. A teoria de Newton descreve muito
bem os fenômenos gravitacionais a nível do sistema solar, ou seja, no regime de campo
fraco. Uma das aplicações mais importantes dessa lei é o experimento de Cavendish, que
mediu a densidade da Terra em 1798, fornecendo, além de uma verificação experimental, a
possibilidade de calcular G e as densidades de outros corpos do sistema solar [31].

O sucesso da teoria newtoniana também pode ser ilustrado pela previsão da
existência de Netuno por Adams e Le Verrier entre 1845 e 1846, através do cálculo
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perturbativo desenvolvido por Euler, Lagrange e Laplace no final do século XVIII e início
do século XIX. Ainda em 1846, o astrônomo Galle conseguiu comprovar sua existência [32].
A busca por uma nova teoria de gravitação, então, parecia desnecessária. Pensava-se que
outras anomalias poderiam ser explicadas de maneira análoga. A descoberta de Plutão
em 1930 por Tombaugh também foi precedida de uma previsão baseada numa anomalia
na órbita de Netuno [33].

Outras, porém, se mostraram incompatíveis com a teoria newtoniana. Dentre estas
estão algumas anomalias nas órbitas dos cometas e da Lua. A mais famosa, no entanto, é
o avanço do periélio de Mercúrio (figura 1). Antes de prever a existência de Netuno, Le
Verrier calculara, a partir das observações, que o periélio de Mercúrio avança 35” a cada
século, valor que foi posteriormente corrigido por Newcomb para 43”. Considerou-se, à
época, que essas anomalias podiam se originar de alguma forma de matéria interplanetária,
ou outras forças não gravitacionais, tamanha era a confiança nas leis de Newton [34].

Figura 1 – Precessão do periélio de Mercúrio

Fonte: autoria própria.

Há também o questionamento sobre o que caracteriza um observador inercial na
visão de Newton. Ele acreditava que o espaço era absoluto e somente observadores com
velocidades constantes em relação a esse podem ser usados para descrever as leis físicas.
Contudo num universo vazio ou com somente uma partícula, os conceitos de velocidade e
observadores inerciais não fazem sentido, segundo Mach. É necessário compará-los com o
restante do universo, e não com um referencial abstrato. Para definir quais observadores
são inerciais, deve-se comparar seu movimento ao das “estrelas distantes”. Esse é o
princípio de Mach, que pode ter inspirado Einstein, mas não foi empregado diretamente.
Somente em 1961 é que Brans e Dicke formularam uma teoria relativística de gravitação
que incorporava essa ideia [35]. Nesta teoria a constante gravitacional passa a ser um
campo escalar, porém tal modificação na RG precisa ainda impor que esse campo seja
estritamente positivo (gravidade atrativa) para permitir a renormalização.
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Por fim, a mecânica newtoniana é invariante sob as transformações de Galileu.
Todavia, o advento da Relatividade Restrita (RR) no século XX motivou a busca por uma
teoria de Gravitação que incorporasse as transformações de Lorentz. A ação instantânea à
distância prevista por Newton é incompatível com a RR, pois a velocidade da luz impõe um
limite sobre a velocidade de propagação dos campos. Mas em vez de adequar a gravitação
newtoniana ao formalismo relativístico, Einstein construiu uma nova teoria baseada em
outro princípio fundamental da física, chamada Relatividade Geral (RG).

2.1 O princípio de equivalência
Galileu, através dos seus experimentos com planos inclinados, já percebera que

corpos com diferentes massas e composições respondem igualmente ao campo gravitacional.
Essa característica contrasta com o eletromagnetismo, por exemplo, em que corpos com
cargas diversas respondem ao campo cada um à sua maneira. A gravidade, pelo contrário,
é universal. Nas próprias leis de Newton, há uma notável coincidência entre a massa
inercial e a massa gravitacional. Se não fosse assim, poderíamos ter partículas com “cargas
gravitacionais” diferentes, sem violação da mecânica newtoniana.

Além dos experimentos de Galileu, o próprio Newton também fez experimentos
com pêndulos de composições diferentes, mas com o mesmo comprimento. Esse mesmo
método foi utilizado por Bessel em 1830, com mais precisão. Um outro método, que obteve
precisão de uma parte em 109, foi usado por Eötvös, em 1889. Seu experimento consistiu
em um sistema com pesos presos por uma barra fixa pendurada por um fio. Qualquer
diferença entre as respostas dos pesos à gravidade e à rotação da Terra seria detectada
como um torque no fio, o que não foi observado [34, 36]. Portanto, apesar de termos um
conjunto de leis do movimento e uma lei de gravitação separados, as massas presentes
nelas são iguais.

Einstein, então, incorporou essa equivalência como postulado. Uma consequência
importante dela é ilustrada no experimento do elevador de Einstein. Imagine um cientista
dentro de um elevador sem acesso ao exterior. Ele dispõe de equipamento para verificar
o movimento dos objetos dentro do elevador. Se o elevador estiver no espaço sideral, os
objetos se movem com velocidades constantes, conforme a 1ª lei de Newton.

Porém duas situações distintas produzem efeitos iguais no referencial do cientista. A
primeira é o caso de um elevador com foguete, acelerando numa determinada direção (figura
2). Todos os objetos soltos caem com a mesma aceleração na direção contrária. O cientista
verifica que sua força é proporcional à massa, assim como a força peso gravitacional. Essas
forças são ditas fictícias, porque desaparecem com uma escolha apropriada de referencial.
Num referencial externo fixo, como as estrelas distante, os objetos permanecem em queda
livre até atingirem uma parede do elevador.
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Figura 2 – Elevador acelerado
no espaço

Fonte: [36]

Figura 3 – Elevador em repouso
na Terra

Fonte: [36]

A outra situação é a do elevador na superfície da Terra (figura 3). Aqui os objetos
também caem com a mesma aceleração em direção ao chão e o seu peso também é
proporcional à massa. Já no elevador em queda livre nas proximidades do planeta, os
objetos se comportam como se o elevador estivesse no espaço sideral, flutuando sem
aceleração, que é o que acontece nas naves espaciais em órbita, por exemplo.

Se o elevador percorrer um caminho suficientemente longo em queda livre na
Terra, os objetos começarão a se aproximar levemente uns dos outros, pois o campo
gravitacional da Terra é radial. Entretanto, numa região pequena do espaço, o efeito
do campo gravitacional é idêntico ao de um referencial não inercial, como o do elevador
em aceleração. Pode-se, então, tratar a força gravitacional como uma força fictícia local,
que surge em referenciais não inerciais, eliminando-a com uma escolha apropriada de
coordenadas. A limitação contra isso é que não existe uma escolha que a anule em todo
lugar, pois o campo gravitacional varia de ponto a ponto globalmente. Essa é uma forma
de expressar o princípio de equivalência, o maior pilar para a formulação da RG.

Até então só citamos o movimento de objetos com massa, mas e o caso dos fótons,
que não têm massa? Por não ser relativístico, o modelo newtoniano não prevê a interação
da luz com a gravidade. Logo, uma forma de diferenciar um referencial acelerado do
referencial com um campo gravitacional seria com algum experimento que não dependesse
de interação gravitacional. A luz, por não ter massa, é a cobaia ideal para esse experimento.
No elevador acelerado, o cientista poderia verificar que a luz se curva, enquanto que no
referencial do elevador com velocidade constante, a luz segue uma trajetória reta.

Na realidade, outra manifestação de energia, além da luz, poderia ser usada para
ilustrar uma relação entre massa, energia e gravidade. Sabemos que os objetos são feitos de
átomos, mas a massa de um átomo não é totalmente derivada da soma das suas partículas
constituintes. A energia de ligação entre as partículas também contribui com a massa dos
objetos. Considerando este fato, já poderíamos inferir uma relação entre os fenômenos
gravitacionais e a relatividade. Se o princípio de equivalência se aplicasse somente às leis
da dinâmica, essa energia de ligação (seja devida à força eletromagnética, à força nuclear
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ou à força forte) seria descontada nas interações gravitacionais.

Entretanto, a proposta de Einstein é que o princípio de equivalência se estende para
todas as leis da física, inclusive as equações de Maxwell, que dão origem à propagação da
luz e as interações nucleares e atômicas. Assim é o chamado princípio de equivalência forte.
A gravidade interage com toda forma de energia e matéria. Esse fato é a maior justificativa
para tratar a gravidade como uma característica intrínseca do próprio espaço-tempo, em
vez de uma simples força.

2.2 A geometria do espaço-tempo
A ferramenta que possibilitou lidar com a localidade do campo gravitacional

pertence à área da matemática chamada geometria diferencial, especificamente da geometria
riemanniana ou mais precisamente, da geometria pseudorriemaniana, ou semirriemaniana1.
Para descrições mais detalhadas, consultar [37] ou [38], por exemplo.

No modelo da RG, o espaço é uma variedade diferenciável pseudorriemaniana,
uma forma de generalizar o espaço euclidiano para além da inclusão de uma coordenada
temporal já presente no espaço-tempo de Minkowski, da RR, incluindo também uma
curvatura do espaço. Os fenômenos gravitacionais, na RG, são descritos inteiramente pela
deformação da geometria do espaço-tempo.

Posteriormente, Weyl, Kaluza e Eddington tentaram desenvolver uma teoria que
incluísse também o eletromagnetismo na geometria do espaço-tempo, usando diferentes
abordagens e com diferentes graus de sucesso no campo conceitual [39]. No campo experi-
mental, porém, as teorias quânticas do eletromagnetismo se mostram mais completas e bem
sucedidas, desencorajando avanços na geometrização clássica do campo eletromagnético e
outros.

Na RG, o potencial gravitacional escalar dá lugar ao tensor métrico, de componentes
gµν = gνµ (simétrico). A cada ponto da variedade, é associado um espaço tangente, onde se
encontram os vetores. A operação produto escalar entre dois vetores X e Y de componentes
Xµ e Y ν , respectivamente, é definida como:

⟨A, B⟩ = gµνAµBν . (2.2)

Dada uma curva na variedade, parametrizada por λ, com vetores tangentes V associados a
cada ponto, obtemos o comprimento da curva entre dois pontos, integrando a raiz quadrada
do produto escalar de V consigo mesmo (sua norma):

∆s =
∫ λ2

λ1
⟨V, V ⟩

1
2 dλ. (2.3)

1 A diferença entre a geometria riemanniana e a pseudorriemaniana está na assinatura da métrica, que
será discutida no decorrer do texto.



10

As componentes de V dependem do sistema de coordenadas usado na seção da variedade
onde ele se localiza. As componentes de V são escritas V µ = dxµ

dλ
, onde xµ são as

coordenadas usadas. Infinitesimalmente, descreve-se a métrica com o chamado elemento
de linha ds2, expresso a seguir:

ds2 = gµνdxµdxν , (2.4)

ou seja, o significado imediato da métrica é que podemos calcular o comprimento de uma
curva qualquer aplicando o elemento de linha ao seu vetor tangente e integrando (2.3).

As variedades pseudorriemannianas apresentam quatro coordenadas, uma temporal
(x0) e três espaciais (xi, com i = 1, 2, 3) e assinatura2 (+ − − −). Dessa forma, o elemento
de linha pode ser positivo (tipo tempo), negativo (tipo espaço) ou nulo (tipo luz). O
espaço de Minkowski é o caso mais simples desse tipo de variedade, cuja métrica é dada
por

ds2 = ηµνdxµdxν = dt2 − dx2 − dy2 − dz2, (2.5)

onde usamos a velocidade da luz c = 1.

Nos espaços planos, a derivada parcial é utilizada para quantificar a variação de
um escalar ou de um campo vetorial em uma direção. Nos espaços curvos, os vetores
em pontos diferentes não se localizam no mesmo espaço vetorial, então se define uma
conexão Γα

µν , que realiza a ponte entre espaços tangentes vizinhos, e a partir dela se define
uma derivada covariante, que generaliza a noção de derivada para espaços curvos. Para
grandezas escalares, a derivada covariante é igual à derivada parcial, mas para um vetor
V , a derivada covariante é escrita

∇µV α = ∂µV α + Γα
µνV ν . (2.6)

Percebe-se que a derivada covariante é igual à derivada parcial acrescida de um termo que
inclui a conexão, o que é necessário para ter as propriedades esperadas para uma derivada:
a regra de Leibniz e a linearidade. A derivada covariante, assim como a derivada parcial,
relaciona pontos vizinhos. Aplicações sucessivas da derivada covariante de um vetor ao
longo de uma curva são interpretados como o transporte paralelo do vetor ao longo da
curva.

Na forma (2.6), a conexão pode ser definida de maneira arbitrária, desde que
a derivada covariante tenha essas propriedades, mas na RG, ela tem uma propriedade
adicional, de que as derivadas covariantes da métrica e da métrica inversa sejam nulas.
Em outras palavras, o produto escalar e, portanto, o comprimento de um vetor, devem se
manter constantes quando transportados paralelamente. Só existe uma conexão com essa
propriedade, dada a seguir

Γα
µν = 1

2gαλ(gνλ,µ + gµλ,ν − gµν,λ), (2.7)
2 em algumas referências, adota-se a convenção (− + + +)
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onde gνλ,µ ≡ ∂µgνλ e gµν é o tensor métrico inverso, definido por

gµνgµλ = δν
λ. (2.8)

Em geral, nos espaços curvos, o transporte paralelo de um mesmo vetor por
caminhos diferentes resulta em vetores diferentes. A curvatura pode ser representada pelos
tensores de Riemann Rαβµν , de Ricci Rµν e pelo escalar de curvatura R, calculados a partir
da conexão e de suas derivadas:

Rαβµν = gαγ

(
Γγ

βν,µ − Γγ
βµ,ν + Γγ

µρΓρ
βν − Γγ

νρΓρ
βµ

)
(2.9)

Rµν = gαβRαµβν (2.10)
R = gµνRµν . (2.11)

Uma geodésica é o caminho mais curto entre dois pontos. No contexto da RG, é a
trajetória de uma partícula em queda livre (ausência de forças não gravitacionais). De
acordo com a geometria diferencial, as geodésicas obedecem à seguinte equação

ẍα + Γα
µν ẋµẋν = 0, (2.12)

onde ẋµ ≡ dxµ

dλ
e ẍµ ≡ d2xµ

dλ2 , sendo λ um parâmetro afim.

A luz percorre geodésicas nulas, que definem cones de luz locais. Geodésicas dentro
do cone de luz são tipo tempo, e correspondem a trajetórias de partículas livres com massa.
Já as geodésicas fora do cone de luz são tipo espaço, e são não causais. Uma forma mais
direta de se obter as equações geodésicas é a partir da lagrangiana

L = gµν ẋµẋν , (2.13)

onde L é igual a 0 para as geodésicas nulas, 1 para geodésicas tipo tempo e −1 para
geodésicas tipo espaço. Nesse caso, as equações de Euler-Lagrange,

d

dλ

(
∂L
∂ẋµ

)
− ∂L

∂xµ
= 0, (2.14)

também resultam nas equações geodésicas, mas sem precisar calcular previamente a conexão
Γα

µν a partir do tensor métrico. Dessa forma, podemos extrair a conexão diretamente a
partir de (2.14).

Variedades podem possuir isometrias, que são curvas ao longo das quais a métrica
é constante. Os vetores que definem essas curvas são chamados vetores de Killing. Em
termos físicos, os vetores de Killing representam quantidades físicas conservadas.

No espaço de Minkowski (plano), os vetores de translação espacial são vetores de
Killing, e indicam a conservação do momento linear. Um vetor de Killing tipo tempo
indica que a energia é conservada. Quando os vetores de rotação são vetores de Killing da
métrica, o momento angular é conservado.
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Para mostrar como a geometria diferencial pode ser usada para descrever os fenô-
menos gravitacionais, consideremos primeiramente o limite newtoniano, uma aproximação
válida para campo fraco e partículas com velocidades não relativísticas (dxi

dt
≪ 1, para

i = 1, 2, 3) [40, 41]. Na gravitação newtoniana, o movimento das partículas é descrito pela
seguinte equação de movimento:

d2xi

dt2 = − ∂Φ
∂xi

, (2.15)

onde Φ é o potencial gravitacional. Para o campo gravitacional de um objeto de massa M ,
Φ = MG

r
.

Numa aproximação de campo fraco, a perturbação pode ser considerada linear. A
métrica do limite newtoniana é descrita por

gµν = ηµν + ϵhµν , (2.16)

onde ϵhµν é uma perturbação em torno da métrica de Minkowski. Além disso, assumimos
que a métrica seja estática. Assim,

ds2 = dt2 − dx2 − dy2 − dz2 + ϵhµνdxµdxν . (2.17)

Logo, derivando em relação ao tempo e desprezando os termos de segunda ordem na
velocidade: (

ds

dt

)2

= 1 − δij
dxi

dt

dxj

dt
+ ϵhµν

dxµ

dt

dxν

dt
= 1 + ϵh00, (2.18)

As equações geodésicas, escritas usando o próprio elemento de linha (s) como parâmetro
afim, são dadas por:

d2xα

ds2 + Γα
µν

dxµ

ds

dxν

ds
= 0. (2.19)

Como a métrica é estática,

d

dt

(
dt

ds

)
= d

dt
(1 + ϵh00)− 1

2 = 0. (2.20)

Assim, (
dt

ds

)2
d2xα

dt2 + Γα
µν

(
dt

ds

)2
dxµ

dxν
= 0. (2.21)

Desprezando os termos das velocidades, sobra apenas

d2xα

dt2 + Γα
00 = 0, (2.22)

que implica em Γ0
00 = 0. Para calcular a conexão, precisamos da métrica inversa gµν , dada

a seguir
gµν = ηµν − ϵhµν . (2.23)
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Esta expressão pode ser verificada usando (2.8) e desprezando os termos de segunda ordem
em ϵ. Usando o fato que a métrica é estática e desprezando os termos de segunda ordem
de ϵ, Γα

00 é expresso:

Γα
00 = 1

2gαλ(2g0λ,0 − g00,λ) = −1
2gαλg00,λ

= −1
2(ηαλ + ϵhαλ)(ϵh00,λ) = −1

2ϵh00,α.

Substituindo esta expressão em (2.22), obtemos

d2xα

dt2 = 1
2ϵh00,α. (2.24)

Para α = 0, esta expressão não representa nenhuma novidade, mas para α = i = 1, 2, 3,
ela se compara a (2.15):

d2xi

dt2 = 1
2ϵ

∂h00

∂xi
. (2.25)

Assim, a perturbação que resulta no limite newtoniano é dada por:

−1
2ϵh00 = Φ. (2.26)

Então a componente g00 do limite newtoniano é dada por

g00 = 1 − 2Φ = 1 − 2m

r
, (2.27)

onde m = MG ou, recuperando a velocidade da luz, m = MG
c2 . Assim, concluímos a

geometrização da gravidade no limite newtoniano.

2.3 Equações de Einstein
A expressão completa da Relatividade Geral relaciona a curvatura do espaço-tempo

com o tensor momento-energia através das equações de Einstein:

Gµν ≡ Rµν − 1
2R gµν = κTµν , (2.28)

onde Gµν é o tensor de Einstein. Essas equações nos dizem como a matéria curva o espaço.
A propriedade que distingue as equações de Einstein da gravitação newtoniana é a sua
não linearidade. Soluções distintas destas equações geralmente não podem ser somadas
para se obter uma terceira. Como consequência disso, mesmo em regiões de vácuo pode
haver uma curvatura provocada pela matéria ao seu redor.

Obter soluções exatas dessas equações é, em geral, uma tarefa árdua. No entanto,
sob certas condições de simetria sobre a métrica, é possível encontrar soluções exatas
para as equações de Einstein. Em 1916, Schwarzschild encontrou a primeira solução
exata e uma das mais importantes. Já que a RG é uma teoria de gravitação, é natural
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procurar a métrica do espaço-tempo ao redor de um corpo esférico com massa, como os
planetas e as estrelas, e verificar se corresponde ao caso newtoniano tomado um certo
limite. Considera-se, para este cálculo, que a rotação é desprezada. A métrica onde são
considerados os efeitos de rotação foi estudada por Kerr. A seguir temos uma dedução
resumida da métrica de Schwarzschild, conforme apresentada em [40] e [41].

Em primeiro lugar, a métrica de Schwarzschild descreve a métrica externa de um
objeto com massa, logo Tµν = 0. Para esta métrica, Rµν = 0 e por consequência R = 0.

Esta métrica também apresenta simetria no tempo, pois os corpos em consideração
se mostram aproximadamente rígidos e imutáveis. O tensor métrico, portanto, não
deve depender do tempo. Neste caso, a métrica é estacionária, mas essa condição não
é suficiente, pois os termos cruzados dxidt ainda podem mudar de sinal por inversão
temporal (dt → −dt). Para evitar isso, também é necessário que as componentes g0i se
anulem. Com estas duas condições satisfeitas, a métrica é dita estática.

A simetria esférica, por sua vez, é evidenciada partindo do elemento de linha
minkowskiano em coordenadas polares, com xµ = (t, r, θ, ϕ) e multiplicando cada termo
por uma função de r:

ds2 = A(r) dt2 − B(r) dr2 − C(r) r2(dθ2 + sen2 θ dϕ2). (2.29)

Assim, também não há termos cruzados com dθ ou dϕ, assegurando que inversões nessas
coordenadas não afetem a métrica, nem funções dos ângulos além do sen2 θ no termo de
dϕ2, para não modificar a estrutura esférica. Além disso, o termo que multiplica r2dθ2

deve ser o mesmo que o de r2 sen2 θdϕ2, assegurando que um deslocamento r2dϕ ao longo
do equador (θ = π

2 ) seja equivalente a um deslocamento r2dθ ao longo dos meridianos, por
exemplo. Por ser fixo, vamos denotar por dΩ2 o elemento de ângulo sólido dθ2 + sen2 θdϕ2.

O termo C(r) pode ser eliminado com uma mudança de coordenadas r̄ =
√

Cr,
definindo também B̄ = B

C

(
1 + r

2C
dC
dr

)
, logo:

ds2 = A dt2 − B̄dr̄2 − r̄2dΩ2, (2.30)

de onde podemos retirar também a barra sem perda de generalidade, pois r ou r̄ são
apenas designações arbitrárias.

Por fim, precisamos que A e B sejam funções estritamente positivas neste ansatz,
para preservar a assinatura, ou seja, vamos trocá-las por exponenciais de funções arbitrárias
de r. Portanto, a métrica estática e esfericamente simétrica que buscamos é expressa por

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dΩ2. (2.31)

A partir de (2.13), obtém-se a lagrangiana para a métrica (2.31),

L = eν(r)ṫ2 − eλ(r)ṙ2 − r2θ̇2 − r2 sen2 θϕ̇2. (2.32)
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Usando (2.14), extraímos as componentes não nulas da conexão:

Γ0
10 = 1

2
dν

dr
Γ1

00 = 1
2eν−λ dν

dr
Γ1

11 = 1
2

dλ

dr

Γ1
22 = −re−λ Γ1

33 = −re−λ sen2 θ Γ2
12 = 1

r

Γ2
33 = − sen θ cos θ Γ3

13 = 1
r

Γ3
23 = cotg θ,

(2.33)

Na sequência, calcula-se o tensor de curvatura (2.9), com componentes não nulas

R0101 = eν

−1
2

d2ν

dr2 + 1
4

dν

dr

dλ

dr
− 1

4

(
dν

dr

)2
 R0202 = −1

2reν−λ dν

dr

R0303 = −1
2reν−λ sen2 θ

dν

dr
R1212 = −1

2r
dλ

dr

R1313 = −1
2r sen2 θ

dλ

dr
R2323 = r2 sen2 θ

(
e−λ − 1

)
.

(2.34)

Por fim, o tensor de Ricci é encontrado contraindo o tensor de curvatura (2.10):

R00 = eν−λ

1
2

d2ν

dr2 − 1
4

dν

dr

dλ

dr
+ 1

4

(
dν

dr

)2

+ 1
r

dν

dr


R11 = −1

2
d2ν

dr2 + 1
4

dν

dr

dλ

dr
− 1

4

(
dν

dr

)2

+ 1
r

dλ

dr

R22 = 1
2re−λ

(
dλ

dr
− dν

dr

)
+ 1 − e−λ = R33

sen2 θ
.

(2.35)

Como a solução que procuramos é no vácuo, todas as componentes do tensor de Ricci
devem ser iguais a zero. De R00 e R11, obtemos que

e−ν+λR00 + R11 = 1
r

d

dr
(ν + λ) = 0 =⇒ ν + λ = c, (2.36)

mas é possível escolher ν + λ = 0 redimensionando t → e− c
2 t. De R22,

re−λ dλ

dr
+ 1 − e−λ = 0 =⇒ d

dr

(
re−λ

)
= 1. (2.37)

Integrando (2.37):
re−λ = r + k =⇒ e−λ = 1 + k

r
, (2.38)

onde k é somente uma constante de integração. Desse resultado, verifica-se que essa métrica
corresponde assintoticamente à métrica de Minkowski. Além disso, para corresponder
ao limite newtoniano (2.27), fazemos k = −2m e obtemos a expressão da métrica de
Schwarzschild:

ds2 =
(

1 − 2m

r

)
dt2 −

(
1 − 2m

r

)−1
dr2 − r2dθ2 − r2 sen2 θdϕ2. (2.39)

Nesta seção, pressupôs-se uma métrica estática, mas esta premissa poderia ser
dispensada pelo Teorema de Birkhoff, que diz que qualquer solução esfericamente simétrica
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é também estática. Consequentemente, uma estrela cujo volume pulsa radialmente não
modifica a métrica ao seu redor e não emite ondas gravitacionais.

A métrica de Schwarzschild deu origem a uma das previsões mais surpreendentes
da RG. No raio r = 2m, denominado raio de Schwarzschild (rS), a componente g00 da
métrica é nula e a componente g11 diverge. Esta métrica também diverge em r = 0, mas
essa divergência não pode ser eliminada com uma simples mudança de coordenadas, e este
ponto é denominado singularidade. A divergência das componentes em rS, ao contrário,
pode ser regularizada com uma mudança de coordenadas adequada. A superfície definida
por rS é chamada de horizonte de eventos, e encerra uma região conhecida como buraco
negro. Para r < rS o caráter das curvas tipo tempo se inverte e os cones de luz apontam
todos para dentro. Nenhuma partícula pode ser emitida de dentro dessa região, inclusive
os fótons. Para corpos como a Terra e o Sol, rS fica muito abaixo de sua superfície, e
nessa região a métrica do espaço-tempo é outra, mas é possível que uma estrela de massa
muito grande sofra um colapso gravitacional no fim de seu ciclo estelar e os seus restos se
tornem um buraco negro.

2.4 Testes clássicos
Einstein propôs três testes para a RG, conhecidos como testes clássicos. O primeiro

é o avanço no periélio de Mercúrio, que a teoria newtoniana não explicava, mas é previsto
pela RG. O resultado já era conhecido desde o século XIX, então não foi preciso conduzir
um novo experimento para realizar este teste. Quanto aos outros planetas, esse efeito é
bastante reduzido, logo mais difícil de ser observado. A RG não só permite calcular o
avanço como também mostra que ele é inversamente proporcional à distância do Sol ao
planeta, sendo, por isso, mais evidente na órbita de Mercúrio.

Outro teste envolve um fenômeno até então não observado, o desvio gravitacional
da luz. Einstein usou o princípio de equivalência para calcular o desvio da luz que vem
de uma fonte distante, é espalhado pelo Sol e chega à Terra em uma posição diferente da
que é observada em sua ausência. Um primeiro cálculo, com a energia do fóton, forneceu
o valor atualmente conhecido como desvio newtoniano, δ = 2GM

c2b
, em 1911 [42], antes

do desenvolvimento da RG. Na década de 1920, descobriu-se que Soldner, em 1802, e
Cavendish, 20 anos antes, obtiveram um valor igual a este até primeira ordem, mas
considerando a luz como formada de partículas com massa [43]. Somente em 1916 [44] é
que Einstein publicou o artigo “Fundação da teoria da Relatividade Geral”, onde ele calcula
o desvio da luz novamente, mas agora levando em conta a curvatura do espaço-tempo e
obtendo 2δ, o valor considerado atualmente correto [45].

A primeira verificação do desvio da luz ocorreu em 1919, quando uma equipe
liderada por Eddington buscou observar se o fenômeno do desvio da luz realmente ocorre
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e se o valor correto é o newtoniano ou o da RG durante um eclipse total do Sol observado
em Sobral, no Brasil, e na ilha do Príncipe, embora as condições meteorológicas estivessem
mais favoráveis em Sobral, onde foi obtida uma precisão maior[46]. Esta observação
confirmou o resultado da RG, mas sem muita precisão. Outros experimentos similares
foram sendo realizados ao longo do século, com incerteza de no mínimo 30%. Resultados
quantitativos mais significativos só foram obtidos na década de 70, diferindo em até 1,5%
do previsto pela RG, através do método VLBI no espectro de ondas de rádio [47].

Um outro experimento só foi realizado anos mais tarde, pois exigia mais precisão.
É o redshift gravitacional, também uma interação com a luz, mas mostrando que o tempo
flui em ritmos distintos segundo a intensidade do campo gravitacional. Ao longo do século
XX, outros testes foram sendo desenvolvidos e os métodos para realizar os testes clássicos
foram sendo aperfeiçoados. Um exemplo de novo teste foi elaborado em 1964 por Shapiro
[48], que consistia em medir o atraso de um sinal de luz emitido na direção de Mercúrio ou
Vênus passando próximo ao Sol, sendo refletido e detectado. Um extenso compilado dos
testes da RG realizados até 2014 foi feito por Will [49], pouco antes da detecção de ondas
gravitacionais pelo LIGO [6]. Desde então, destaca-se também a captura em imagem da
sombra de buracos negros supermassivos [4, 5].



3 Desvio da luz no regime de campo fraco

Entre os testes clássicos, vamos examinar com mais detalhes o desvio da luz. Neste
capítulo, retemo-nos ao regime de campo fraco, ou seja, no espaço ao redor de objetos com
raio muito maior que rS ou a uma grande distância de um buraco negro, pois a curvatura
nessa região é insuficiente para desviar a luz de forma muito intensa. Diversas abordagens
podem ser empregadas para o cálculo do desvio da luz, conforme se vê nos livros-textos
[40, 34, 36]. Neste trabalho, seguiremos o método exposto por Wald [50].

Na métrica de Schwarzschild (2.39), conforme (2.13), as geodésicas nulas são
descritas pela lagrangiana

L =
(

1 − 2m

r

)
ṫ2 −

(
1 − 2m

r

)−1
ṙ2 − r2(θ̇2 + sen2 θ ϕ̇2) = 0. (3.1)

Usando as equações de Euler-Lagrange (2.14), podemos evidenciar as conservações da
energia e do momento angular, que decorrem das isometrias do sistema. Como a métrica
é estática, aplicando (2.14) à coordenada temporal, obtém-se que

d

dλ

2ṫ
(

1 − 2m

r

) = 0. (3.2)

Isto implica que (
1 − 2m

r

)
ṫ = E. (3.3)

onde E é uma constante, interpretada como a energia do fóton. Já sobre a coordenada
angular (ϕ), devido à simetria esférica, temos que

d

dλ

(
2r2 sen2 θ ϕ̇

)
= 0. (3.4)

Consequentemente, podemos dizer que

r2 sen2 θ ϕ̇ = L, (3.5)

onde L é uma outra constante, representando o momento angular do fóton. A conservação
do momento angular implica que o movimento fica contido em um plano. Com isso, caso
seja necessário, pode-se rotacionar o sistema de coordenadas para reposicionar o movimento
no plano equatorial θ = π

2 , reduzindo efetivamente a lagrangiana a três dimensões.

Substituindo (3.3), (3.5) em (3.1), eliminamos a dependência da lagrangiana das
coordenadas temporal e angular:

0 = E2
(

1 − 2m

r

)−1
−
(

1 − 2m

r

)−1
ṙ2 − L2

r2 =⇒
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=⇒ E2 = ṙ2 + L2

r2

(
1 − 2m

r

)
. (3.6)

Esta equação descreve o movimento radial da luz. Apesar de ter velocidade radial variável,
isso não significa que a c deixa de ser constante, pois a velocidade total também apresenta
uma componente tangencial, que corresponde ao desvio em relação à trajetória reta que
seguiria num espaço plano. O movimento radial é análogo ao de uma partícula com massa
unitária movendo-se em um potencial central. O termo ṙ2 representa a energia cinética,
E2 representa a energia mecânica, e a energia potencial (V ) é dada por

V = L2

r2

(
1 − 2m

r

)
. (3.7)

A figura 4 mostra a forma do potencial V . Na figura, observam-se o raio de Schwarzschild
r = 2m, onde o potencial é nulo, e a região interna ao horizonte de eventos, onde o
potencial é negativo. O máximo do potencial ocorre no raio da esfera de fótons r = 3m,
que será estudada no capítulo 4.

Figura 4 – Potencial efetivo na métrica de Schwarzschild

Fonte: Autoria própria, inspirada em figura presente em [50]

Vamos estudar o caso de um fóton que vem do infinito com determinada energia.
No infinito, o potencial tende a zero, ou seja, para r → ∞, a energia é totalmente cinética
(E2 = ṙ2). Conforme o fóton se aproxima, essa energia vai diminuindo e se convertendo
em energia potencial. Se a energia for maior que o potencial, ela não diminui o suficiente
para evitar que o fóton caia no horizonte de eventos.

Caso seja menor, a energia cinética só pode diminuir até zero. Quando isto acontece,
a trajetória apresenta um ponto de inflexão (r0) onde ṙ = 0, ou seja, r0 é o raio de maior
aproximação da origem, ou raio mínimo. Este fenômeno é análogo ao caso de uma
partícula que vem de longe, se depara com um potencial maior que sua energia cinética,
para momentaneamente e retorna para o infinito. A diferença é que para o fóton, isso só
ocorre na coordenada radial. Levando em conta o movimento angular, acontece a situação
ilustrada na figura 5. Nesta figura, δϕ é o desvio angular em relação a uma trajetória reta
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Figura 5 – Desvio da luz

Fonte: [50], editado pelo autor.

e b é o parâmetro de impacto, definido a partir da energia e do momento angular conforme
a seguir

b ≡ L

E
. (3.8)

Fisicamente, o parâmetro de impacto é a distância entre a origem e a trajetória que a luz
seguiria num espaço plano.

Escrevendo (3.6) com r = r0, podemos escrever o parâmetro de impacto b em
função de r0 e m da seguinte forma

E2 = 0 + L2

r02

(
1 − 2m

r0

)
(3.9)

L2

E2 = r0
2
(

1 − 2m

r0

)−1
(3.10)

b2 = r0
3

r0 − 2m
. (3.11)

Reescrevendo (3.6) usando b, obtemos que

ṙ2 = L2

 1
b2 − 1

r2

(
1 − 2m

r

). (3.12)

Para calcular o ângulo de desvio, reintroduzimos ϕ em (3.12) através de L e dividimos a
equação por ϕ̇, obtendo assim uma relação entre ϕ e r.

ṙ2 = r4ϕ̇2

 1
b2 − 1

r2

(
1 − 2m

r

) (3.13)

dϕ

dr
=
(

r4

b2 − r2 + 2mr

)− 1
2

. (3.14)

Costuma-se, no formalismo de campo fraco, escrever (3.14) substituindo a variável r por
u = 1

r
, assim

dϕ

du
= −

( 1
b2 − u2 + 2mu3

)− 1
2

. (3.15)
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Ou ainda, em termos de u0 ≡ 1
r0

, a partir de (3.11):

dϕ

du
= −

(
u0

2 − u2 − 2mu0
3 + 2mu3

)− 1
2 . (3.16)

Integrando essa expressão, obtém-se a variação da coordenada angular em um trecho da
trajetória.

Estamos interessados na trajetória de um fóton que vem do infinito (u = 0), passa
pelo ponto de inflexão (u = u0) e vai até o infinito em outra direção. Devido à simetria do
problema, esses trechos são iguais, então integra-se de 0 a u0 e multiplica-se por −2:

∆ϕ = 2
∫ u0

0

(
u0

2 − u2 − 2mu0
3 + 2mu3

)− 1
2 du. (3.17)

Esta integral não possui solução analítica, mas podemos aproximá-la no formalismo de
campo fraco expandindo o integrando para m → 0, calculando assim o desvio até primeira
ordem de m:

∆ϕ = ∆ϕ|m=0 + ∂(∆ϕ)
∂m

∣∣∣∣∣
m=0

m + O(m2). (3.18)

O termo ∆ϕ|m=0 corresponde à variação na coordenada angular correspondente ao espaço
de Minkowski (plano). Espera-se que seja igual a 180°, pois o feixe de luz vem do infinito
em uma direção e segue para o outro lado sem desvio. É isso que se verifica calculando a
integral

∆ϕ|m=0 = 2
∫ u0

0

du√
u02 − u2 . (3.19)

A substituição trigonométrica u = u0 sen x nos permite escrever

2
∫ π

2

0

u0 cos x dx√
u02 cos2 x

= 2
∫ π

2

0
dx = π. (3.20)

Ou seja, ∆ϕ|m=0 = π. Isto significa que quando não há atração gravitacional, a luz segue
uma trajetória reta. A grandeza δϕ, denominada “desvio da luz” é o que sobra na expressão
de ∆ϕ, pois é a diferença angular entre uma trajetória reta e a trajetória curvada pela
gravidade:

δϕ = ∆ϕ − π = ∂(∆ϕ)

∂m

∣∣∣∣∣
m=0

m. (3.21)

O desvio da luz até primeira ordem de m é calculado:

∂(∆ϕS)
∂m

∣∣∣∣∣
m=0

m = 2m
∫ u0

0

u0
3 − u3

(u02 − u2) 3
2
dr. (3.22)

Por substituição trigonométrica u = u0 sen x

2m
∫ π

2

0

u0
3 − u0

3 sen3 x

(u02 − u02 sen2 x) 3
2
u0 cos x dx = 2mu0

∫ π
2

0

1 + sen x + sen2 x

1 + sen x
dx (3.23)

Usando y = tg x
2

4mu0

∫ 1

0

(1 + y2)2 + 2y(1 + y)2

(1 + y)2(1 + y2) dy = 4mu0

(∫ 1

0

dy

(1 + y)2 +
∫ 1

0

2ydy

(1 + y2)2

)
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= 4mu0

(∫ 2

1
z−2dz +

∫ 2

1
w−2dw

)
= 4mu0

(1
2 + 1

2

)
= 4mu0. (3.24)

Na aproximação de campo fraco, 2m
r0

≪ 1, então u0 ≈ 1
b

e:

δϕ = 4m

b
. (3.25)

Em geral, prefere-se expressar observáveis, como o desvio da luz, usando b, pois esta é
independente de coordenadas, embora efetivamente essa escolha só provoque diferenças
quantitativas quando se trabalha com teorias modificadas de gravitação [51].

Recuperando as constantes de m, o desvio da luz na métrica de Schwarzschild é dado
por δϕ = 4MG

c2b
. Para um raio de luz passando rente à superfície do Sol (b = raio do Sol), o

desvio é de δϕ = 1,75 arco-segundos.

Pode-se aplicar esse procedimento para outras métricas com propriedades similares,
como a métrica de Reissner-Nordström (RN), que é solução das equações de Einstein no
eletrovácuo ao redor de um corpo com carga elétrica. Temos portanto, o surgimento de
um termo de carga (Q) na métrica, conforme a seguir

ds2 =
(

1 − 2m

r
+ Q2

r2

)
dt2 −

(
1 − 2m

r
+ Q2

r2

)−1

dr2 − r2dΩ2, (3.26)

O potencial efetivo neste caso é:

V = L2

r2

(
1 − 2m

r
+ Q2

r2

)
. (3.27)

Sua forma é similar ao de Schwarzschild, especialmente no que concerne fótons vindos de
longe sendo espalhados. O parâmetro de impacto em função de r0 e m é dado por:

b2 = r0
2
(

1 − 2m

r0
+ Q2

r02

)−1

= r0
4

r02 − 2mr0 + Q2 . (3.28)

A taxa de variação do ângulo em relação ao raio é expressa:

dϕ

dr
=
(

r4

r02
− 2mr4

r03
+ r4Q2

r04
− r2 + 2mr − Q2

)− 1
2

. (3.29)

Fazendo a mudança de variável para u = 1
r

e integrando,

∆ϕ = 2
∫ u0

0

(
u0

2 − u2 − 2mu0
3 + 2mu3 + Q2u0

4 − Q2u4
)− 1

2 du. (3.30)

Na aproximação de campo fraco, tomamos m e Q2 próximos de zero, expandindo
o integrando até primeira ordem. O termo em primeira ordem de m é idêntico ao de
Schwarzschild, restando apenas calcular o termo em primeira ordem de Q2, que representa
a correção introduzida pela carga na métrica. Mais uma vez, usamos a substituição
u = u0 sen x,

2Q2
∫ u0

0

u0
4 − u4

(u02 − u2) 3
2
du = 2Q2

∫ π
2

0

u0
3 − u0

3 sen3 x

(u02 − u02 sen2 x) 3
2
u0 cos x dx
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= 2Q2u0
2
∫ π

2

0

u0
3 cos x (1 − sen4 x)

(u02 cos2 x) 3
2

dx = 2Q2u0
2
∫ π

2

0

1 − sen4 x

cos2 x
dx

= 2Q2u2
0

(∫ π
2

0
dx +

∫ π
2

0
sen2 x dx

)
= 2Q2u2

0

(
π

2 + π

4

)
= 2

3Q2u2
0π. (3.31)

Além disso, assim como na métrica de Schwarzschild, para m e Q2 pequenos, u0 ≈ 1
b
, .

Portanto, o desvio da luz de campo fraco na métrica RN é calculado

δϕRN = 4m

b
+ 2Q2π

3b2 . (3.32)

Uma outra métrica de interesse é a métrica de black-bounce (BB), também chamada
de métrica de Simpson-Visser, onde um parâmetro de bouncing (a) é acrescentado de
forma que a métrica não apresente uma singularidade em r = 0, representando, portanto,
um buraco negro regular [52]. Este parâmetro pode ser ajustado de forma que a métrica
possa representar um buraco negro, um buraco de minhoca atravessável apenas por um
lado ou um buraco de minhoca atravessável bidirecional. Entretanto, esta métrica não é
solução para as equações de Einstein no vácuo, e requer alguma forma exótica de matéria
para poder existir. A métrica BB é dada a seguir

ds2 =
(

1 − 2m√
r2 + a2

)
dt2 −

(
1 − 2m√

r2 + a2

)−1

dr2 − (r2 + a2) dΩ2. (3.33)

O potencial é dado por

V = L2

r2 + a2

(
1 − 2m√

r2 + a2

)
. (3.34)

O parâmetro de impacto é expresso como

b2 = (r0
2 + a2)

(
1 − 2m√

r02 + a2

)−1

= (r0
2 + a2) 3

2
√

r02 + a2 − 2m
. (3.35)

A taxa de variação do ângulo em relação ao raio se torna:

dϕ

dr
=
(

(r2 + a2)2

r02 + a2 − 2m(r2 + a2)2

(r02 + a2) 3
2

− r2 − a2 + 2m(r2 + a2)√
r02 + a2

)− 1
2

. (3.36)

Para a = 0, esta métrica se reduz à de Schwarzschild, então vamos calcular apenas a
correção em segunda ordem de a em relação ao seu já conhecido resultado. Derivando em
relação a a2 e fazendo a → 0 e m → 0 em (3.36), temos

(
r4

r04
− 2r2

r02
+ 1

)(
r4

r02
− r2

)− 3
2

= 1
r3

√
r2

r02
− 1 = −

√
u02 − u2. (3.37)

Onde substituímos u = 1
r

depois de aproximar a → 0. Integrando de 0 a u0 (inverte-se o
sinal por causa da inversão dos limites de integração) e substituindo u = u0 sen x,

u0
2
∫ π

2

0
cos2 x dx = u0

2π

4 . (3.38)
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Novamente, para a = 0 e m = 0, u0 ≈ 1
b
. Dessa forma, a correção introduzida pelo

parâmetro de bouncing é igual a πa2

4b2 e o desvio da luz no regime de campo fraco é igual à
soma dessa correção com a já calculada correção em primeira ordem de m da métrica de
Schwarzschild:

δϕ = 4m

b
+ πa2

4b2 . (3.39)

Este resultado pode ser comparado com [53], onde foi calculado também um termo adicional
da ordem de ma2.



4 Desvio da luz no regime de campo forte

O segundo limite em que podemos estudar o desvio da luz é o de campo forte, ou
seja, com m grande. Esse limite corresponde às proximidades do buraco negro. Neste caso,
é necessário empregar um outro formalismo para calculá-lo. Um pouco mais distante em
relação à singularidade do que o horizonte de eventos, localiza-se a esfera de fótons, de
raio rm maior que rS, mas de mesma ordem de grandeza. Nesta esfera, os fótons podem
teoricamente orbitar a origem, contudo esta órbita é instável e a menor perturbação pode
ejetar os fótons ou enviá-los para dentro do buraco negro. No regime de campo fraco, a
luz se aproxima da origem a um raio mínimo r0 ≫ rS. Em contraste, o regime de campo
forte é definido como o limite em que r0 → rm.

O cálculo do desvio da luz no regime de campo forte foi desenvolvido por Bozza
[54, 27]. Posteriormente, Tsukamoto [55] modificou o cálculo de forma que resultados
analíticos fossem obtidos também para a métrica RN, portanto o seu método é o que será
empregado neste trabalho.

Considere uma variedade cuja métrica seja estática, esfericamente simétrica e
assintoticamente plana. Podemos escrever o elemento de linha ds2 de uma métrica com
essas propriedades usando (t, r, θ, ϕ) como coordenadas.

ds2 = A(r) dt2 − B(r) dr2 − C(r)(dθ + sen2θ dϕ)2. (4.1)

A métrica é assintoticamente plana (tende à métrica de Minkowski para r grande) quando
as seguintes condições sobre as funções A(r), B(r) e C(r) são satisfeitas

lim
r→∞

A(r) = 1 (4.2)

lim
r→∞

B(r) = 1 (4.3)

lim
r→∞

C(r) = r2. (4.4)

Considerações similares às feitas no capítulo 3 se aplicam às métricas com essas caracterís-
ticas. As geodésicas nulas são descritas pela lagrangiana

L = A(r) ṫ2 − B(r) ṙ2 − C(r)(θ̇2 + sen2 θ ϕ̇2) = 0, (4.5)

Pelas equações de Euler-Lagrange, definimos as grandezas conservadas E e L:

E = A(r) ṫ (4.6)
L = C(r) sen2 θ ϕ̇. (4.7)

Fazendo θ = π
2 e substituindo E e L em (4.5), obtém-se

0 = E2

A(r) − B(r) ṙ2 − L2

C(r) (4.8)
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ṙ2 + L2

B(r)C(r) = E2

A(r)B(r) . (4.9)

Nesta trajetória, quando o fóton chega a um raio mínimo r0, ṙ = 0, e assim a razão b = L
E

pode ser escrita em função de r0 conforme a seguir

b =

√√√√C(r0)
A(r0)

. (4.10)

Escrevendo (4.9) usando b,

ṙ2 = L2

B(r)

(
1

b2A(r) − 1
C(r)

)
, (4.11)

de onde tiramos, após substituir a expressão de L com ϕ̇

dϕ

dr
=
C(r)

B(r)

(
C(r)

b2A(r) − 1
)− 1

2

. (4.12)

Em geral, mesmo conhecendo A(r), B(r) e C(r), não há uma expressão analítica para o
desvio da luz, que é obtido integrando esta expressão, então se utilizam métodos numéricos
para calculá-lo, mas as integrais de algumas métricas possuem soluções analíticas no regime
de campo forte.

Vamos definir rm, o raio da esfera de fótons, em termos das componentes da métrica.
Multiplicando (4.9) por C(r)B(r), obtemos

C(r)B(r) ṙ2 + L2 = C(r)E2

A(r) . (4.13)

Derivando (4.13) em relação ao parâmetro afim, ficamos com

d

dr
[C(r)B(r)] ṙ3 + 2C(r)B(r) ṙr̈ = E2

(
C ′(r)
A(r) − C(r)A′(r)

A2(r)

)
ṙ, (4.14)

onde a linha denota derivada em relação a r. Multiplicando (4.14) por A(r)
E2C(r) ṙ

, ela se torna

A(r)
E2C(r)

d

dr
[C(r)B(r)] ṙ2 + 2A(r)B(r)

E2 r̈ = C ′(r)
C(r) − A′(r)

A(r) . (4.15)

Para simplificar a notação, define-se

D(r) ≡ C ′(r)
C(r) − A′(r)

A(r) . (4.16)

Usando o fato que a luz orbita circularmente em rm, temos que ṙ e r̈ são nulos para este
valor de r. Assim, usando r = rm em (4.15), temos:

D(rm) = C ′(rm)
C(rm) − A′(rm)

A(rm) = 0. (4.17)
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Esta equação é a definição de rm a partir da métrica. Para encontrar rm, é preciso resolver
(4.17). No caso de haver mais de uma solução, [55] utiliza a maior delas, mas em princípio,
nada impede de calcular o desvio provocado pelas esferas de fótons mais internas, contanto
que elas sejam externas ao horizonte de eventos (rm > rS). Fazer D(rm) = 0 corresponde
a calcular o máximo do potencial efetivo visto no capítulo 3. Este raio representa um
limite para que partículas externas possam ser espalhadas pelo buraco negro. Qualquer
fóton que ultrapasse para dentro da esfera de fótons necessariamente entra no horizonte
de eventos. É possível, no entanto, que um fóton seja emitido na região entre rS e rm e
escape.

Idealmente, se b for tal que o raio do ponto de inflexão da trajetória de um fóton
que vem do infinito (r0) seja igual a rm, pelo fato de que r̈ = 0, o fóton não volta para
o infinito e nem ultrapassa a esfera de fótons para dentro, mas continua a orbitar na
esfera de fótons. Na prática, uma pequena diferença entre r0 e rm faz com que o fóton dê
algumas voltas, depois caia ou escape. A figura 6 mostra o destino de vários fótons com
valores de r0 levemente diferentes de rm.

Figura 6 – Geodésicas com r0 ≈ rm

Fonte: [25]

Para calcular o desvio da luz no regime de campo forte, integramos (4.12), mas
antes façamos uma mudança de variável para z ≡ 1 − r0

r
. Assim, temos que

∆ϕ =
∫ 1

0

2r0

(1 − z)2

[
C( r0

1−z
)

B( r0
1−z

)

(
C( r0

1−z
)

b2A( r0
1−z

) − 1
)]− 1

2

dz. (4.18)

No limite inferior de integração, quando tomamos o limite forte r0 → rm, essa integral
diverge, mas podemos separar a parte que diverge da integral antes de aplicarmos o limite.
Para simplificar os cálculos, vamos definir

R(r) ≡ C(r)
b2A(r) − 1 (4.19)

G(z, r0) ≡ (1 − z)4 C
(

r0
1−z

)
R
(

r0
1−z

)
B
(

r0
1−z

) (4.20)
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f(z, r0) ≡ 2r0√
G(z, r0)

. (4.21)

Além disso, denotaremos as funções de r0 com o índice 0 também, por exemplo,
A(r0) ≡ A0, assim como as funções de rm, com um índice m, então Am ≡ A(rm). Como
estamos lidando com o limite inferior, vamos expandir G(z, r0) para z → 0:

G(z, r0) = c1(r0) z + c2(r0) z2 + O(z3), (4.22)

onde os coeficientes c1 e c2 são expressos

c1(r0) = r0C0D0

B0
(4.23)

c2(r0) =
[

r0

2

(
C ′′

0
C0

− A′′
0

A0

)
+ D0

(
1 − A′

0
A0

r0

)]
r0C0

B0
+ D0r0

(
r0C

′
0

B0
− B′

0C0

B0 2 − 4C0

B0

)
.

(4.24)

No limite r0 → rm, D0 → D(rm) = 0. Vamos definir também

D′
m ≡ C ′′

m

Cm

− A′′
m

Am

. (4.25)

Vamos usar D′
m, correspondendo à segunda derivada do potencial efetivo no limite forte,

lembrando que a primeira derivada é nula. Eliminando os termos envolvendo Dm, temos
que

G(z, r0 → rm) ≈ rm
2 CmD′

m

2Bm

z2 = c2(rm) z2. (4.26)

Ao integrarmos f(z, rm) = 2rm√
G(z, rm)

, no limite inferior (z = 0) obtemos o seguinte

∫ 2rm√
G(z, rm)

dz ≈ 2rm

∫ dz√
c2(rm) z2

∫ dz

z
∼ ln z. (4.27)

Logo, ∆ϕ (4.18) diverge se r0 for substituído diretamente por rm. Essa divergência
representa fisicamente que o ângulo de desvio se torna infinito para uma trajetória cujo
raio de maior aproximação coincide com o raio da esfera de fótons. Entretanto podemos
extrair a parte divergente da integral e só depois aplicarmos o limite forte r0 → rm. O
que sobra é uma parte regular que pode ser sondada fisicamente pelos observáveis a serem
definidos no capítulo 5. Vamos separar f(z, r0) em uma parte divergente fD(z, r0) e uma
parte regular fR(z, r0), definidas como:

fD(z, r0) = 2r0√
c1(r0) z + c2(r0) z2

(4.28)

fR(z, r0) ≡ f(z, r0) − fD(z, r0). (4.29)
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Calculamos a integral de fD(z, r0):∫ 1

0
fD(z, r0)dz = 2r0

∫ 1

0

dz√
c1(r0) z + c2(r0) z2

= 4 r0√
c2(r0)

ln
(√

c2(r0) +
√

c1(r0) + c2(r0)
)

− 2 r0√
c2(r0)

ln c1(r0). (4.30)

Percebe-se que podemos aplicar diretamente o limite forte r0 = rm, ao primeiro termo de
(4.30), mas o segundo termo precisa ser separado. Vamos expandi-lo em torno de r0 = rm,
em primeira ordem:

c1(r0) = c1(rm) + c′
1(rm)(r0 − rm) + O((r0 − rm)2) (4.31)

c1(r0) = rmCmD′
m

Bm

(r0 − rm) + O((r0 − rm)2). (4.32)

Como os valores de r0 são muito próximos a rm, vamos desprezar os termos de ordem
superior. Substituindo (4.32) no segundo termo de (4.30), ficamos com o seguinte

∫ 1

0
fD(z, rm)dz = 4rm√

c2(rm)
ln
(

2
√

c2(rm)
)

− 2rm√
c2(rm)

ln
(

rmCmD′
m

Bm

(r0 − rm)
)

= 2
√

2Bm

CmD′
m

ln 2 − ln
(

r0

rm

− 1
). (4.33)

Havendo separado o termo divergente de f(z, r0), aplicamos o limite r0 = rm

diretamente em fR(z, r0), assim

fR(z, rm) = 2rm√
G(z, rm)

− 2rm√
r2

mCmD′
m

2Bm

z2

= 2rm

(1 − z)2

√√√√√√√
C
(

rm

1 − z

)
R
(

rm

1 − z

)
B
(

rm

1 − z

)
− 2

z

√
CmD′

m

2Bm

. (4.34)

Finalmente, o desvio da luz no regime de campo forte é dado por:

δϕ = ∆ϕ − π = 2
√

2Bm

CmD′
m

(
ln (2rm) − ln (r0 − rm)

)
+
∫ 1

0
fR(z, rm) dz − π. (4.35)

Ou seja, para um dado r0 muito próximo de rm, o desvio pode ser arbitrariamente grande,
inclusive passando de 2π, o que significa que a luz pode dar várias voltas antes de escapar
para o observador, segundo vimos na figura 6. Este caso e outros, como o de uma esfera
de fótons estável, são discutidos em [25].

Alternativamente, seguindo a recomendação de usar b em vez de r0, conforme [51],
podemos escrever este desvio em termos do parâmetro de impacto. O limite inferior para
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b é o parâmetro de impacto crítico (bc). Como um valor menor que bc resulta em um r0

menor que rm, o limite b → bc é equivalente a r0 → rm. Definimos bc como segue

bc ≡ b (rm) =
√

Cm

Am

, (4.36)

Para escrever o desvio da luz no regime forte utilizando o parâmetro de impacto,
vamos expandir b em potências de r0 − rm partindo de (4.10). A derivada de b em relação
a r0 é:

b′(r0) = 1
2

(
C0

A0

)− 1
2
(

C ′
0

A0
+ C0A

′
0

A02

)

= 1
2

√
C0

A0
D0 = 1

2b(r0)D0. (4.37)

Como no limite r0 → rm, D0 → 0, então o termo de primeira ordem para rm é nulo. A
segunda derivada de b (r0) é:

b′′(r0) = 1
2(b′(r0)D0 + b(r0)D′

0). (4.38)

Assim, a expansão do parâmetro de impacto em potências de r0 − rm pode ser escrita:

b = b(rm) + b′(rm)(r0 − rm) + 1
2b′′(rm)(r0 − rm)2

= bc

(
1 + D′

m

4 (r0 − rm)2
)

. (4.39)

Isolando r0 − rm nesta expressão, obtemos

b

bc

− 1 = D′
m

4 (r0 − rm)2 (4.40)

r0 − rm =

√√√√ 4
D′

m

(
b

bc

− 1
)

. (4.41)

Sendo assim, o desvio da luz em termos do parâmetro de impacto se torna

δϕ = 2
√

2Bm

CmD′
m

ln (2rm) − ln

√√√√ 4
D′

m

(
b

bc

− 1
)+

∫ 1

0
fR(z, rm) dz

= −
√

2Bm

CmD′
m

ln
(

b

bc

− 1
)

+
√

2Bm

CmD′
m

(ln r2
mD′

m) +
∫ 1

0
fR(z, rm) dz − π, (4.42)

Podemos escrever resumidamente o desvio definindo os parâmetros do desvio forte ā e b̄:

ā ≡
√

2Bm

CmD′
m

(4.43)

b̄ ≡ ā ln (r2
mD′

m) +
∫ 1

0
fR(z, rm) dz − π, (4.44)
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ou seja,

δϕ = −ā ln
(

b

bc

− 1
)

+ b̄, (4.45)

de maneira que será mais conveniente para o cálculo da lente gravitacional. Cada métrica
resulta em parâmetros diferentes, possibilitando diferenciar experimentalmente entre as
métricas, conforme será exposto no capítulo 5. Para ilustrar o regime de campo forte,
vamos aplicar este método às métricas de Schwarzschild, RN e black-bounce, assim como
foi feito no capítulo 3 para o limite de campo fraco.

4.1 Métrica de Schwarzschild
O raio da esfera de fótons (rm) é dado por (4.17). Na métrica de Schwarzschild

(2.39), temos que

2rm

r2
m

− 2m

r2
m

(
1 − 2m

rm

)−1
=⇒ 1 − 2m

rm

= m

rm

=⇒ (4.46)

=⇒ rm − 2m = m =⇒ rm = 3m. (4.47)

com o qual calculamos o parâmetro de impacto crítico (4.36):

Am = 1 − 2m

3m
= 1

3 Cm = 9m2 (4.48)

b2
c = Cm

Am

= 27m2. (4.49)

O termo D′
m (4.25), que aparece na expressão do desvio, é dado por:

D′
m = 2

9m2 + 12
27m2 = 2

3m2 (4.50)

Com isso, ā (4.43) é dado por

ā =
√√√√ 6

9m2 2
3m2

= 1. (4.51)

e b̄ (4.44) é dado por

b̄ = ln
(

9m2 2
3m2

)
+
∫ 1

0
fR(z, rm) dz − π = ln 6 +

∫ 1

0
fR(z, rm) dz − π. (4.52)

A parte regular (4.29), no raio da esfera de fótons, é calculada:

6m

9m2(1 − z)2
(

1
3(1 − z)2 − 1 + 2

3(1 − z)
)− 1

2

− 2
z

= 2
z
√

1 − 2
3z

− 2
z

=
2(1 −

√
1 − 2

3z)

z
√

1 − 2
3z

. (4.53)
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Ao integrarmos a parte regular, substituindo u =
√

1 − 2
3z obtemos

4
∫ 1

1√
3

1 − u

1 − u2 du = 4
∫ 1

1√
3

1
1 + u

du

= 4
ln 2 − ln

(
1 + 1√

3

) = 4 ln (3 −
√

3). (4.54)

Portanto, o desvio de campo forte na métrica de Schwarzschild é expresso a seguir

δϕS = − ln
(

b

3
√

3m
− 1

)
+ ln 6 + 4 ln (3 −

√
3) − π. (4.55)

Este resultado é igual ao obtido por Bozza [27] e Tsukamoto [55].

4.2 Métrica de Reissner-Nordström
Nesta métrica, dada por (3.26), a equação para o raio da esfera de fótons (4.17)

possui duas raízes:

2rm

rm
2 =

(
2m

rm
2 − 2Q2

rm
3

)(
1 − 2m

rm

+ Q2

rm
2

)−1

(4.56)

rm
2 − 3mrm + 2Q2 = 0 (4.57)

rm = 3m ±
√

9m2 − 8Q2

2 . (4.58)

Porém a raiz interna (sinal negativo) só é possível quando Q2

m2 > 1, ou seja, o caso em que
não há horizonte de eventos em volta da singularidade. Mesmo assim, os resultados a
seguir valem para ambas as raízes. Vamos tomar rm como sendo o raio da esfera de fótons
externa. Assim

Cm = rm
2 = 18m2 + 6m

√
9m2 − 8Q2 − 8Q2

4 = 3mrm − 2Q2 (4.59)

Am = 1 − 2m

rm

+ Q2

rm
2 = r2

m − 2mrm + Q2

rm
2 = mrm − Q2

r2
m

(4.60)

bc =
√

rm
4

mrm − Q2 = rm
2

√
mrm − Q2 (4.61)

D′
m = 2

rm
2 − rm

2

mrm − Q2

(
−4m

rm
3 + 6Q2

rm
2

)
= 6mrm − 8Q2

rm
2(mrm − Q2) (4.62)

ā =
√

2
AmCmD′

m

=
√

2
(

2rm
2(mrm − Q2)(3mrm − 4Q2)

rm
4(mrm − Q2)

)− 1
2

= rm√
3mrm − 4Q2 =

(
1 − 2 Q2

rm
2

)− 1
2

(4.63)

b̄ = ā ln 6mrm − 8Q2

mrm − Q2 +
∫ 1

0
fR(z, rm) dz − π. (4.64)
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A parte regular (4.29) no RN é

2rm

rm
2(1 − z)2

(
rm

2(mrm − Q2)
rm

4(1 − z)2 − 1 + 2m(1 − z)
rm

− Q2(1 − z)2

rm
2

)− 1
2

− 2ā

z

= 2rm

(
−Q2z2 − 2(mrm − 2Q2)z + 3mrm − 4Q2

)− 1
2 − 2ā

z
. (4.65)

Ao integrarmos, obtemos∫
fR(z, rm) = 2rm√

3mrm − 4Q2

(
ln z − ln

(
2(3mrm − 4Q2) + (−2mrm + 4Q2) z+

+ 2
√

3mrm − 4Q2
√

−Q2z2 − 2mrmz + 4Q2z + 3mrm − 4Q2
)

− ln z
)

+ k. (4.66)

Ao aplicarmos os limites de integração∫ 1

0
fR(z, rm) = 2rm√

3mrm − 4Q2 ln 2(3mrm − 4Q2)
2mrm − 2Q2 +

√
3mrm − 4Q2

√
mrm − Q2 . (4.67)

Por fim, a expressão completa do desvio da luz no regime de campo forte, na métrica RN
é dada a seguir

δϕRN = rm

γ

− ln
(

ζb

r2
m

− 1
)

+ ln 2γ2

ζ2 + 2 ln 2γ2

2ζ2 + γζ

− π, (4.68)

onde ζ2 = mrm − Q2 e γ2 = 3mrm − 4Q2.

4.3 Métrica black-bounce
Para esta métrica, dada por (3.33), o raio da esfera de fótons (4.17) é calculado a

seguir

2rm

rm
2 + a2 = 2mrm

√
rm

2 + a2

(rm
2 + a2) 3

2 (
√

rm
2 + a2 − 2m)

=⇒ (4.69)

=⇒
√

rm
2 + a2 = 3m =⇒ rm = ±

√
9m2 − a2. (4.70)

Como rm sempre aparece ao quadrado na métrica, a solução negativa tem as mesmas
implicações que a solução positiva, que é a que vamos assumir daqui para frente. O
parâmetro de impacto crítico é dado por

Cm = rm
2 + a2 = 9m2 (4.71)

Am = 1 − 2m√
rm

2 + a2 = 1 − 2m

3m
= 1

3 (4.72)

bc =
√

27m2 = 3
√

3m. (4.73)

Repare que bc é o mesmo que na métrica de Schwarzschild. Para o cálculo dos parâmetros
ā e b̄, D′

m é dado por

D′
m = 2

9m2 − 6(a2 − 6m2)
(3m)4 = 6(9m2 − a2)

(3m)4 . (4.74)
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Logo, temos

ā =

√√√√ (3m)4

9m2(9m2 − a2) = 3m√
9m2 − a2

(4.75)

b̄ = ā ln 6(9m2 − a2)2

(3m)4 +
∫ 1

0
fR(z, rm) dz − π. (4.76)

Usando o fato que A = 1 − 2m√
C

, podemos escrever a parte regular como

fR(z, rm) = 2rm

(1 − z)4
(

C(r)2

bc
2 − C(r) + 2m

√
C(r)

)− 1
2

− 2ā

z

= 2
√

9m2 − a2


(
9m2 − a2 z(2 − z)

)2

27m2 −
(
9m2 − a2 z(2 − z)

)
(1 − z)2+

+ 2m(1 − z)3
√

9m2 − a2 z(2 − z)
− 1

2

− 6m

z
√

9m2 − a2
.

(4.77)

A integral deste termo não possui solução analítica, então é necessário usar métodos
numéricos para calcular b̄.



5 Lentes gravitacionais

Uma lente gravitacional é um objeto que desvia a luz vinda de um objeto mais
distante, a fonte, criando num certo observador a ilusão de que o objeto se localiza em
outra posição, onde fica a imagem. O efeito de lente gravitacional é medido pelo aumento
(µ), a razão entre o fluxo de luz da fonte (localizada a um ângulo θ) e o de sua imagem
gerada pela lente (localizada a um ângulo β), segundo a figura 7. Como a luz é apenas
redirecionada, a razão entre os fluxos só leva em conta a razão entre os ângulos sólidos do
objeto fonte e de sua imagem. Para encontrar essa relação, vamos seguir o procedimento
em [54].

Considere o esquema da figura 7. Neste caso, só vamos nos preocupar com o lado
da fonte, onde aparece a imagem primária, porque o importante é a relação entre ela e as
imagens relativísticas correspondentes. A imagem secundária e as imagens relativísticas
secundárias aparecem do outro lado, e considerações semelhantes poderiam ser feitas com
relação a elas, mas isso não será necessário para este estudo. Nesta figura, identificamos
o parâmetro de impacto (b), o raio mínimo (r0), e o ângulo α, igual ao desvio menos
as voltas completas que a luz deu ao redor da origem antes de chegar ao observador.
Matematicamente, esta definição é expressa por

α = δϕ − 2πn, (5.1)

Figura 7 – Configuração geométrica da fonte (S), da imagem (I), do observador (O) e da
lente (L)

Fonte: [54]
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onde índice n é o número de voltas.

No regime de campo forte, é necessário um alinhamento quase perfeito entre a
fonte e a lente para que o efeito seja apreciável. Portanto, o eixo horizontal nesta figura foi
exagerado para evidenciar as relações entre os ângulos mostrados. Na realidade, a fonte
e a lente se localizam aproximadamente na mesma linha reta DOS e os ângulos β, θ e α

são todos muito pequenos. Vamos buscar uma relação entre β e θ. Conforme a figura 7,
podemos escrever

DOS tg β + DLS

(
tg θ + tg(α − θ)

)
= DOS tg θ. (5.2)

Podemos reescrever esta relação como

tg β = tg θ − DLS

DOS

(
tg θ + tg(α − θ)

)
. (5.3)

Como os ângulos são pequenos, suas tangentes podem ser aproximadas pelos próprios
ângulos:

tg β ≈ β tg θ ≈ θ tg(α − θ) ≈ αn − θ. (5.4)

Assim, (5.3) se torna
β = θ − DLS

DOS

α. (5.5)

Devido ao alinhamento quase perfeito entre a fonte e a lente, o ângulo α depende do
parâmetro de impacto, que pode ser aproximado por

b ≈ DOL tg θ ≈ DOL θ, (5.6)

Portanto, de acordo com (4.45),

δϕ(θ) ≈ −ā ln
(

θDOL

bc

− 1
)

+ b̄. (5.7)

Vamos chamar de θ0
n o ângulo cujo desvio correspondente é igual a exatas n voltas

completas, ou seja, δϕ(θ0
n) = 2πn. Expandindo δϕ(θ) em torno de θ0

n, temos

δϕ(θ) ≈ δϕ(θ0
n) + ∂(δϕ)

∂θ

∣∣∣∣∣
θ0

n

(θ − θ0
n) = 2πn − āDOL

bcen

(θ − θ0
n), (5.8)

onde
en = e

b̄−2πn
ā . (5.9)

Assim, α (5.1) se torna
α = − āDOL

bcen

(θ − θ0
n). (5.10)

E então, expandindo β em torno de θ0
n, obtemos

β(θ) = θ0
n +

(
1 + āDOLDLS

bcenDOS

)
(θ − θ0

n) + O
(
(θ − θ0

n)2
)
, (5.11)
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onde podemos desprezar o 1 no termo de primeira ordem em (θn − θ0
n), tendo em vista

que bc é pequeno comparado às distâncias com relação à lente (DOL ou DLS). Portanto,
temos que

β ≈ θ0
n + āDOLDLS

bcenDOS

(θ − θ0
n). (5.12)

Ou ainda, escrevendo θn em função de β:

θn ≈ θ0
n + bcenDOS

āDOLDLS

(β − θ0
n). (5.13)

Podemos a partir dessa expressão calcular o aumento, definido como

µn = θ0
n

β

∂θ

∂β
. (5.14)

A expressão para θ0
n (5.7) é dada por

2πn = −ā ln
(

θ0
nDOL

bc

− 1
)

+ b̄ =⇒ θ0
n = bc

DOL

(1 + en). (5.15)

Logo, o aumento é calculado como

µn = bc
2DOS en(1 + en)
āβDOL

2DLS

. (5.16)

O termo exponencial en mostra que os fluxos das imagens diminuem com o número de
voltas, pois limn→∞ e

b̄−2πn
ā = 0 . Além disso, conforme β diminui, µn aumenta, então

quanto mais próxima a fonte estiver da reta OL, mais evidente se torna o lenteamento
gravitacional.

Podemos comparar as previsões teóricas com as observações através dos observáveis
θ1 e θ∞, que são respectivamente, os ângulos da imagem que deu uma volta e o de
uma imagem que deu um número arbitrariamente grande de voltas. Como as imagens
relativísticas são muito próximas umas das outras, podemos considerar que coalescem em
uma única imagem, separando a mais externa delas. O parâmetro de impacto crítico (bc)
pode ser calculado a partir da aproximação (5.6)

bc = DOL θ∞. (5.17)

O ângulo de separação (s) entre as imagens é definido como

s ≡ θ1 − θ∞. (5.18)

Se ignorarmos a correção bcenDOS

āDOLDLS

(β − θ0
n) em (5.13), devido à diferença de magnitude

entre bc e DOL, a expressão de s pode ser escrita

s ≈ θ0
1 − θ0

∞ = bc

DOL

(
1 + e

b̄−2π
ā

)
− bc

DOL

= θ∞e
b̄−2π

ā . (5.19)
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Pode-se observar também a razão (R) entre o fluxo (luminosidade sobre área) da imagem
correspondente a θ1 e o fluxo da imagem em θ∞

R ≡ µ1

( ∞∑
n=2

µn

)−1

= e1(1 + e1)
( ∞∑

n=2
en(1 + en)

)−1

=
(

e
2π
ā + e

b̄
ā

) e
2π
ā

e
2π
ā − 1

+ e
b̄
ā

e
4π
ā

−1

−1

. (5.20)

Mas, conforme visto no capítulo 4, ā é da ordem de 1 e b̄ é da ordem de −1, então e
2π
ā

prevalece sobre e
b̄
ā e sobre 1, onde usamos o fato que 2π é da ordem de 10. Portanto temos

R ≈ e
2π
ā . (5.21)

Sabendo disso, podemos extrair ā e b̄ a partir de R, s e θ∞

ā = 2π

ln R
(5.22)

b̄ = ā ln sR

θ∞
. (5.23)

Assim, poderíamos comparar os parâmetros calculados a partir das observações com os
parâmetros do campo forte específicos da métrica (Schwarzschild, RN, etc.) e apontar
qual melhor se encaixa com os dados experimentais, quando estes puderem ser obtidos. As
métricas podem ser comparadas na Tabela 1, onde usamos como referência o buraco negro
supermassivo no centro da Via Láctea (Sagitário A*), com massa igual a 4 · 106 vezes a
massa do Sol [56] e distante 8.15 kpc do Sistema Solar [57]. Na métrica RN, Q = 1m

Tabela 1 – Parâmetros do campo forte e observáveis (grandezas angulares medidas em
µarcsecs)

Schw.
Reissner-Nordström (Q) Black-bounce (a)

0,3m 0,6m 0,9m 1m 1,05m 0,5m 1m 1,8m 2,3m 2,8m

ā 1 1,01 1,05 1,20 1,41 2,01 1,01 1,06 1,25 1,56 2,79

b̄ −0,400 −0,398 −0,397 −0,462 −0,733 −2,44 −0,414 −0,465 −0,799 −1,44 −6,24
bc
2m

2,60 2,56 2,43 2,16 2 1,88 o mesmo que Schwarzschild

θ∞ 25,31 24,93 23,67 21,04 19,49 18,29 o mesmo que Schwarzschild

s 0,032 0,034 0,041 0,077 0,136 0,238 0,034 0,047 0,091 0,178 0,282

R 535 501 393 186 85,0 22,8 490 373 152 56,5 9,54

Fonte: Os valores desta tabela são originais, mas podem ser comparados com [27], de onde tiramos a
ideia de expor os resultados em forma de tabela e possui a métrica Janis-Newman-Winicour no
lugar da métrica BB, e com [53], que expôs o resultado em forma de gráfico. Além disso, esta
tabela utiliza dados atualizados de Sagitário A* em relação a essas fontes.

.

corresponde ao caso extremal. Para Q = 1,05m, o espaço possui duas esferas de fótons
(considerou-se somente a mais externa para o cálculo da tabela), mas não tem horizonte
de eventos. Para valores de Q2 acima de 9

8m2, não há esferas de fótons (mais detalhes
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deste caso em [58]). Na métrica BB (estudada no contexto de lentes gravitacionais em
[53, 59]), os dois maiores valores considerados correspondem ao caso do buraco de minhoca
atravessável. Nesta métrica, o limite superior para o parâmetro a é 3m, onde o valor de ā

(4.75) explode.

Infere-se pela tabela que a métrica RN é mais facilmente distinguível da métrica
de Schwarzschild do que a métrica BB, por apresentar diferença na posição angular da
imagem relativística mais interna, um parâmetro mais fácil de se detectar do que os outros
observáveis. Também é possível perceber um comportamento similar dos observáveis
em relação aos parâmetros específicos das métricas, pois tanto na métrica RN quanto
na métrica BB, o ângulo de separação aumenta com o parâmetro, enquanto que o fluxo
relativo da imagem relativística mais externa diminui em comparação com as demais.



6 Conclusão

O foco principal dessa dissertação foi fornecer um estudo detalhado do desvio
da luz usando o formalismo de campo forte, sendo um trabalho puramente de revisão.
Aplicamos este formalismo a diversos backgrounds, quais sejam: métricas de Schwarzschild,
Reissner-Nordström e de black-bounce. Além disso, estudamos o fenômeno de lentes
gravitacionais, um efeito que já fora bem estudado no regime de campo fraco, mas possui
características diferentes no regime de campo forte.

No capítulo 1, fizemos uma introdução genérica, abordando diversos tópicos re-
levantes da física gravitacional, desde a contextualização histórica na qual a RG fora
desenvolvida até a descrição de alguns fenômenos gravitacionais observados recentemente,
que podem motivar o desenvolvimento de uma nova física.

No capítulo 2, revisamos os principais aspectos da RG. Vimos que a RG é funda-
mentada no princípio de equivalência, que garante que, na vizinhança de um ponto do
espaço-tempo, um campo gravitacional e um referencial acelerado são equivalentes. Na
prática, a consequência disso é que, localmente (na vizinhança desse ponto), são válidas as
leis da Relatividade Especial. Dado o caráter lorentziano local da RG preconizado pelo
princípio de equivalência, seu caráter “global”, ou seja, quando o campo gravitacional não
pode ser mais tratado como sendo aproximadamente homogêneo, está intrinsecamente
relacionado com a curvatura do espaço-tempo, codificado através do tensor métrico. O
outro ingrediente fundamental são a matéria e a energia, que dão origem à curvatura do
espaço. Tal relação é explicitamente constatada através das equações de Einstein. Por fim,
tratamos dos testes clássicos que ratificaram o grande sucesso da RG.

A partir do capítulo 3, nos concentramos no desvio da luz. Nesse capítulo, des-
crevemos em detalhes o algoritmo que fornece o ângulo de deflexão da luz no regime de
campo fraco, considerando um background esfericamente simétrico e estático. Aplicamos o
algoritmo para três métricas esfericamente simétricas, a saber: métricas de Schwarzschild,
Reissner-Nordström e black-bounce. Por exemplo, vimos que, no caso da métrica de
black-bounce, o ângulo de deflexão é igual à soma do ângulo de deflexão da métrica de
Schwarzschild mais um termo proporcional ao quadrado do parâmetro de bouncing (a).

No capítulo 4, discutimos a deflexão da luz no regime de campo forte. Destacamos
que o limite de campo forte passa a ser relevante quando a luz passa pelo objeto defletor
(por exemplo, um buraco negro) a uma distância da ordem do raio da esfera de fótons
(rm). No que se segue, apresentamos detalhadamente o algoritmo desenvolvido por Bozza
[54] e Tsukamoto [55] e o aplicamos para as mesmas métricas estudadas no regime de
campo fraco. Verificamos que as expressões para os ângulos de deflexão da luz para essas
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métricas diferem drasticamente daquelas obtidas no capítulo anterior.

Finalmente, no capítulo 5, tratamos das lentes gravitacionais no regime de campo
forte, onde surgem as imagens relativísticas. Nesse contexto, definimos certos observáveis
(θ∞, s e R), quantidades físicas medidas experimentalmente, a partir dos quais é possí-
vel inferir os parâmetros definidos no regime de campo forte e comparar os resultados
experimentais com as previsões dadas por cada métrica. Esses resultados requerem mais
precisão do que os últimos avanços tecnológicos permitem, mas fizemos uma projeção dos
possíveis resultados tomando como exemplo o buraco negro no centro da Via Láctea.

Para o futuro, esperamos estudar as lentes gravitacionais em outras métricas, em
especial naquelas que levam em conta a rotação do buraco negro, como as métricas de
Kerr e de Kerr-Newman [60]. Nesses casos, não há a condição de simetria esférica utilizada
nesta dissertação, mas ainda é possível analisar as trajetórias de fótons no plano equatorial.
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