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Resumo
Esta Tese discorre sobre teorias modificadas da gravitação, explorando aspectos inerentes
a causalidade, unitariedade, renormalizabilidade, invariância de Lorentz e quebra de
simetria CPT, com destaque aos resultados originais extraídos de duas novas categorias
de modelos: i) Modelos generalizados de gravidade Chern-Pontryagin; e ii) Modelo de
campo de spin-1/2 não-local, no espaço de Minkowski. No primeiro, formulamos uma
classe de modelos de gravidade modificada em 4 dimensões, cuja ação é caracterizada por
uma função arbitrária do escalar de Ricci e do termo topológico de Chern-Pontryagin ∗RR.
Dentro desta estrutura, para dois protótipos em particular, fI(R, ∗RR) = R+ β(∗RR)2 e
fII(R, ∗RR) = R + αR2 + β(∗RR)2, derivamos e resolvemos suas respectivas equações do
campo para dois ansatz: as métricas tipo-Gödel ST-homogêneas com perturbações em
primeira ordem e a métrica de Schwarzschild em rotação lenta, que produziu o efeito Lense-
Thirring com uma correção em primeira ordem, potencializado pelo parâmetro angular
L, que caracteriza os desvios dos resultados da relatividade geral. Mostramos que os
modelos generalizados de Chern-Pontryagin admitem uma representação escalar-tensorial,
cuja forma explícita apresenta dois campos escalares: Φ com grau de liberdade dinâmico
(scalaron), e ϕ não-dinâmico, que surge acoplado ao termo topológico de Chern-Pontryagin
∗RR, ou seja, ϕ ∗RR, chamado de termo de Chern-Simons gravitacional. Na segunda
categoria de modelo, elaboramos uma nova teoria de campo de spin-1/2 não-local, na qual
os fatores de forma dependem do operador de Dirac, e não do de d’Alembert. Em seu
nível clássico, investigamos a relação de dispersão das partículas livres, que se desvia cada
vez mais do caso padrão à medida que os efeitos não-locais se tornam relevantes. No nível
quântico, calculamos a ação não-local efetiva de um laço fermiônico com acoplamento de
Yukawa. Mostramos que as contribuições dos efeitos não-locais são significativas no limite
UV, enquanto no IR elas são suprimidas por uma escala de corte UV, que foi escolhida
ser coincidente com a escala da não-localidade Λ. Ademais, acoplamos minimamente um
campo de calibre U(1), com demonstração explícita da invariância de gauge do modelo.
Finalmente, obtivemos uma versão não-local da equação de Pauli, avaliando seu impacto
no fator gs das partículas massivas.

keywords: Teorias modificadas da gravitação. Relatividade geral. Teorias não-locais.
Termo Chern-Pontryagin. Gravidade de Chern-Simons. Invariância de Lorentz. Causali-
dade.



Abstract
This thesis discusses modified theories of gravitation, exploring aspects inherent to causality,
unitarity, renormalizability, Lorentz invariance and CPT symmetry breaking, with emphasis
on the original results extracted from two new categories of models: i) generalized Chern-
Pontryagin gravity models; and ii) the non-local spin-1/2 field model, in Minkowski
space. In the first case, we formulate a new class of modified gravity models in 4
dimensions, whose action is characterized by an arbitrary function of the Ricci scalar
and the topological Chern-Pontryagin term ∗RR. Within this framework, we derive the
gravitational field equations and solve them for a particular model fI(R, ∗RR) = R+β(∗RR)2

and fII(R, ∗RR) = R + αR2 + β(∗RR)2, considering two ansatzes: the slowly rotating
Schwarzschild metric and first-order perturbations of Gödel-type metrics. For the former,
considering slowly rotating Schwarzschild metric, we find a first-order correction to the
frame dragging effect boosted by the parameter L, which characterizes the departures from
general relativity results. We show that generalized four-dimensional Chern-Pontryagin
models admit a scalar-tensor representation, whose explicit form presents two scalar fields:
Φ, a dynamical degree of freedom (scalaron). In contrast, the second, ϕ, is a non-dynamical
degree of freedom, which arises coupled with the Chern-Pontryagin topological term ∗RR,
that is, ϕ ∗RR, which is nothing more than the gravitational Chern-Simons term. In the
latter model, we create a novel nonlocal spin-1/2 field theory in which the form factors
depend on the Dirac operator rather than on the d’Alembert operator. At the classical
level, we investigate the dispersion relation of free spin-1/2 particles and find that it
increasingly deviates from the standard case as the nonlocal effects become relevant. At
the quantum level, we compute the fermionic one-loop effective action for the nonlocal
spin-1/2 theory with Yukawa coupling and show that the contributions of nonlocal effects
are significant in the UV limit. At the same time, in the IR they are suppressed by a UV
cutoff scale, which has been chosen to coincide with the nonlocality scale Λ. We minimally
couple a U(1) gauge field to the non-local spin-1/2 field theory and explicitly demonstrate
that this theory is gauge invariant. Finally, we obtain a nonlocal version of the Pauli
equation and the impact of the nonlocality on the gs-factor of massive particles.

Keywords: Modified theories of gravitation. General relativity. Chern-Pontryagin gravity
models. Chern-Simons term. Non-local gravity. Lorentz invariance. Causality.
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1 Introdução

A teoria da Relatividade Geral (RG) de Albert Einstein (1879-1955), introduzida,
em 1915, pelo desdobramento da teoria da Relatividade Especial (RE), é considerada uma
das maiores conquistas da ciência, e uma das mais belas teorias da física, contendo em si
uma série de previsões físicas fundamentais, confirmadas experimentalmente com alto grau
de precisão no regime infravermelho (IR), ou seja, em grandes distâncias e em tempos
tardios [1, 2]. No entanto, a despeito de ser uma consagrada teoria científica, após suas
grandes conquistas obtidas nos testes clássicos1 [3], existem questões em aberto sugerindo
ser a gravitação de Einstein incompleta. Pois, a RG carece de previsibilidade no regime
ultravioleta (UV), não é perturbativamente renormalizável em seu regime quântico. E, na
perspectiva clássica, a RG padece com a presença de singularidades dos buracos negros
e cosmológicas, anomalias astrofísicas [4, 5] e, também, a existência de uma quimérica
energia escura2, sugerida pelas observações no espectro do IR [6, 7].

Assim sendo, o interesse pelo estudo das teorias estendidas3 da gravidade tem
ganhado cada vez mais destaque, devido à motivação combinada vindo da física de altas
energias, das questões em aberto na cosmologia e astrofísica, e das recentes descobertas
cosmológicas, quais sejam: aceleração cósmica [8], ondas gravitacionais de origem cósmica4

[9, 10, 11], obtenção da primeira imagem da sombra de um buraco negro supermassivo
e da sombra de um buraco negro no centro da nossa Via Láctea [12, 13]. Em síntese,
encontra-se duas maneiras principais de estender ou modificar a gravidade de Einstein.
Na primeira abordagem, modifica-se a ação de Einstein-Hilbert introduzindo-lhe termos
aditivos ao seu setor gravitacional. Dentro da segunda abordagem, tem-se uma descrição
completa da gravidade envolvendo, além do campo métrico, algum campo extra escalar
(vetorial ou tensorial), que não deve ser confundido com a matéria [14]. Este campo extra é
tratado como ingrediente da própria gravidade, podendo assim recuperar, no limite do IR
os resultados usuais da gravidade de Einstein [15]. Deve-se notar que nessa abordagem, um
papel importante é desempenhado pela adição de novos termos (e/ou campos) destinados
à quebra explícita da simetria de Lorentz/CPT ou mesmo para introduzir uma extensão
supersimétrica da gravidade.
1 Cujas predições estão em concordância com os resultados obtidos no avanço do periélio de Mercúrio,

deflexão da luz, redshift gravitacional, efeito da dilatação temporal devido à gravidade e o time delay.
2 Um conceito de energia com força repulsiva e mais forte que a gravidade em grandes distâncias. Com

natureza e origem não conhecidas, esta hipotética energia foi introduzida para justificar a expansão
acelerada do universo.

3 Neste presente trabalho, os termos teorias estendidas da gravidade e teorias alternativas da gravidade
terão o mesmo sentido e significado do termo teorias modificadas da gravitação, os quais são um tipo
de teoria da interação gravitacional que generaliza a teoria da RG.

4 Detectadas pelo LIGO (Laser Interferometer Gravitational-Wave Observatory) que opera em dois
observatórios em sincronia, localizados em Louisiana e Washington, nos Estados Unidos.
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No contexto histórico, as primeiras tentativas de modificar a RG surgiram logo
após sua publicação, aparentemente desencadeadas principalmente pelo simples desejo de
questionar a recém-criada teoria. Todavia, rapidamente, apareceram motivações teóricas e
fenomenológicas na busca de acrescentar novos termos a ação de Einstein-Hilbert. Em 1918,
Hermann Weyl (1885-1955), na tentativa de unificar à gravitação ao eletromagnetismo,
acrescentou um grau de liberdade a mais à geometria (pseudo)Riemanniana, dotou o
espaço-tempo de uma nova grandeza geométrica5, além do tensor métrico, tornado a RG
invariantes sob transformações gµν → Ω2(x)gµν , onde Ω é o fator conforme [16]. Em 1923,
Arthur Stanley Eddington (1882-1944), começou a considerar modificações da teoria da RG
pela inclusão de invariantes de ordem superior na ação de Einstein-Hilbert [17]. E, após as
observações astrofísicas apontarem haver anomalia nos movimentos das estrelas afastadas
do centro galático e de galáxias dentro dos seus aglomerados [18, 19, 20], apresentou-se a
hipótese de que grande parte da massa dos aglomerados e das galáxias é constituída por
um novo tipo de matéria, denominada como matéria escura. Diferentemente da matéria
usual, esta matéria exótica exerce atração gravitacional sobre outros corpos, mas não
interage com eles de nenhuma outra forma [21, 22].

Por sua vez, em 1928, Albert Einstein fez uso do formalismo das tetradas (ou
Vierbein6) na gravitação em uma tentativa de unificar sua teoria com o eletromagnetismo
[23]. Posteriormente tal formalismo mostrou-se útil também como forma de derivar leis de
conservação e realizar medições em espaços curvos, introduzindo o conceito de paralelismo
absoluto. Assim, surgiram as teorias teleparalelas de gravitação modificada, ou seja, teorias
de gauge baseadas na geometria de Weitzenböck [24, 25, 26]. Como resultado, o tensor de
curvatura é anulado e a torção desempenha o papel de força gravitacional, com o campo
fundamental representado por um campo não trivial de tetradas, dando origem a métrica
como subproduto (as várias estruturas geométricas da gravitação quadridimensional se
encontram na Tabela-B.4).

Ademais, no grau fenomenológico, os levantamentos de supernovas produziram
dados observacionais recentes indicando ser o balanço de energia do universo composto
de aproximadamente 6% de matéria bariônica comum, 26% de matéria escura, 68% de
energia escura e mais uma contribuição quase desprezível de radiação ∼ 10−3% [27]. Deste
modo, apenas aproximadamente 6% da composição da matéria e energia do universo é
explicada de maneira plausível. Em 1998, foi observado através dos dados fornecidos
pelo Cosmic Microwave Background (CMB) que o universo se apresenta em processo de
expansão acelerada, ao contrário das expectativas anteriores [28]. O modelo mais simples
5 Após Einstein ter apontado falhas na teoria, Weyl desistiu do seu modelo extensivo da RG. Atualmente,

a gravidade conforme de Weyl continua sendo um tópico ativo de discussão.
6 Termo em alemão que significa quatro pernas (Vielbein significa muitas pernas). Tal formalismo está

em concordância com o princípio da covariância geral na RG, onde as equações em sua forma tensorial
independem da base ou do sistema de referência.
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que se ajusta adequadamente aos dados observacionais cosmológicos e astrofísicos é o
modelo ΛCDM (Λ-Cold Dark Matter), complementado por algum cenário inflacionário,
geralmente baseado em algum campo escalar chamado inflaton [29]. Além de não explicar
a origem do inflaton ou a natureza do setor escuro do universo, o modelo ΛCDM está
sobrecarregado dos conhecidos problemas da constante cosmológica, segundo o qual o valor
observado da constante cosmológica é extravagantemente pequeno, cerca de 121 ordens
de magnitude menor, a ser comparado com o seu valor teórico, atribuído ao ajuste fino
(fine-tuning), à energia do vácuo dos campos de matéria. Vale ressaltar, a teoria quântica
de campos (TQC) interpreta a constante cosmológica Λ como sendo a densidade de energia
do vácuo associada à flutuação dos campos quânticos, definida em função da velocidade da
luz no vácuo c, da constante de Planck h e da constante gravitacional de Newton G [30].
Infelizmente, as tentativas de justificar a magnitude de Λ, através da ideia probabilística do
efeito de seleção de observação ou princípio antrópico [31] para o problema da coincidência
cosmológica7 [32] e, mesmo ainda, a forma fictícia da quintessência para a dinâmica da
energia escura [33], tornam o atual modelo cosmológico padrão, ΛCDM, mais um ajuste
empírico aos dados observacionais, cuja motivação teórica é apontada ser bastante pobre.
As notáveis e recentes observações apanhadas pelo satélite James Webb de exoplanetas,
galáxias antigas e de um buraco negro supermassivo no início do universo são descobertas
recentes, apontando ser necessária uma remodelação de nossa compreensão da formação
de galáxias no universo primitivo. [34, 35].

Não obstante, após estabelecida uma sólida teoria clássica da gravidade e com
o sucesso da teoria da eletrodinâmica quântica (Quantum Electrodynamics-QED), nas
décadas de 1940 e 1950, surgiram várias tentativas de quantizar a teoria gravitacional,
da mesma maneira realizada para as demais forças fundamentais da natureza. Nesse
panorama, buscou-se por uma possível teoria de campo unificado, baseada na insertação
de campos espinoriais no espaço curvo. Em 1960, Roger Penrose formulou uma abordagem
espinorial da RG, através da adoção de uma base ortonormal das tetradas, na qual o papel
básico dos tensores é assumido pelos espinores [36]. Tal conceito de espinor, introduzido
na geometria por Élie Cartan em 1913 [37], foi incorporado na física, por Paul Dirac
(1902-1984), a partir da simples exigência da invariância de Lorentz na representação do
grupo SO(1, 3). Mais tarde, H. Bondi e T. Gold apresentaram discussões interessantes
sobre uma teoria de campo espinorial que descreveria o elétron [38]. Destarte, a não
obtenção de uma teoria unificada é por existirem complicações decorrentes da própria
definição da gravitação de Einstein, pois sendo ela uma teoria de campo simétrico de rank
2 com correspondência direta com a geometria8.
7 O fato observacional de que os valores atuais das densidades da energia escura e da matéria escura são

da mesma ordem de grandeza.
8 Algumas abordagens da gravidade quântica foram propostas, como, por exemplo, supergravidade,

teoria de cordas, loop quantum gravity, teoria do campo unificado, geometria não comutativa. Todas
com certo nível de sucesso teórico e deficiências, tais como a falta de uma confirmação empírica.
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Neste contexto, em 1962, Utiyama e De Witt, mostraram que implementando
termos de curvatura de ordem superior9 na ação de Einstein-Hilbert conduz a renor-
malização em um laço [39, 40]. Em 1977, Stelle demonstrou que termos de derivadas
superiores podem levar a complicações no processo de renormalização, mas sob certas
condições, as teorias de ordem superior podem ser renormalizáveis [41]. Resultados mais
recentes mostram que quando correções quânticas ou advindas da teoria das cordas são
levadas em conta, na ação gravitacional efetiva ou a baixas energias, surgem naturalmente
invariantes de curvatura de ordem superior [42]. Inclusive, o famoso modelo de gravidade
de Starobinsky fs(R) = R + αR2 é um exemplo da classe particular de teorias, de ordem
superior, estudada em modelos de gravidade quântica e do universo primordial, também,
sendo uma forma alternativa ao modelo cosmológico padrão, sem a necessidade da hipótese
de uma constante cosmológica ou energia escura [43]. Contudo, modelos com termos
de derivadas de ordem superior na ação de Einstein-Hilbert, geralmente provocam, em
seu nível clássico, inevitáveis instabilidades do tipo Ostrogradsky, resultando em um
Hamiltoniano que não é limitado por baixo [44]. E, no nível quântico, tais modelos
contêm em seu espectro de partículas os estados “fantasmas” (ghosts), graus de liberdade
caracterizados por propagadores com sinais “errados” (negativos), que podem destruir o
princípio fundamental da unitariedade da teoria quântica [45].

Em contrapartida, mais recentemente, uma abordagem interessante foi o de incor-
porar o conceito de não localidade no Lagrangiano de Einstein-Hilbert, através da inclusão
de fatores de forma contendo derivadas de ordem infinita. Curiosamente, a abordagem
não-local, surgiu em 1934, quando Gleb V. Wataghin10 (1899-1986), sem fazer alusão ao
termo não-local, introduziu o fator exponencial e(w2−p2)/Π2 , em uma seção transversal, a
fim de aniquilar divergências na teoria quântica invariante de Lorentz [46]. A saber, a
partir de seus estudos dos objetos de tamanho finito, o propósito original de Wataghin
era dar tamanho/forma às partículas adimensionais. Indubitavelmente, os operadores
não-locais, ou seja, operadores não polinomiais, quando implementados adequadamente nas
teorias de campo, resolve dificuldades fundamentais existentes nas teorias gravitacionais,
sendo possível não apenas tornar a teoria renormalizável, mas também livrar-se dos modos
fantasmas, não adicionando novos polos ao propagador, que surgem nas teorias de ordem
superior. Por estes motivos o estudo de modelos de gravidade não-local tem recebido
um considerável estímulo, trazendo uma série de resultados interessantes, por modificar
minimamente a RG no regime IR e reproduzir resultados experimentais do modelo cos-
mológico ΛCDM. Assim, diversos importantes trabalhos foram apresentados seguindo a
9 Gravidade de ordem superior refere-se a teorias da gravidade onde o Lagrangiano inclui termos que

envolvem derivadas superiores do tensor métrico, como termos quadráticos no tensor de curvatura.
10 Físico russo-italiano foi um dos pioneiros da física moderna no Brasil, ele formou as primeiras gerações

do Departamento de Física da Faculdade de Filosofia, Ciências e Letras da USP. Sua trajetória
acadêmica, especialmente suas ações no Brasil entre 1934 e 1971, motivou o Instituto de Física da
Unicamp adotar o seu nome.
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proposta de adicionar termos não-locais à ação para o campo gravitacional. Em 1994, D.
Dalvit derivou equações efetivas para o campo gravitacional usando uma aproximação
não-local e calculou correções quânticas para o potencial Newtoniano [47]. Já em 1998, C.
Wetterich analisou as implicações cosmológicas para um modelo proposto com base numa
ação não-local de Einstein-Hilbert [48]. Uma revisão geral sobre os aspectos inerentes à
gravitação não-local e como formular uma teoria quântica da gravitação unitária, com
comportamento melhorado no regime UV, é apresentada em [49].

Progressivamente, muitos outros importantes modelos estendidos da gravitação
foram estabelecidos, dentre os quais podemos citar alguns: gravidade Lovelock, Gauss-
Bonnet, Weyl, Brans-Dicke (BD), Galileon, Horava-Lifshitz e f(R,Q, P ). Em especial,
nos últimos anos, os modelos topológicos têm atraído grande interesse. Por exemplo,
os modelos com o termo invariante de Nieh-Yan acoplado a um campo escalar, que
incorporam a torção e a não-metricidade, são empregados em cenários das branas e
estudos de singularidades cosmológicas [50, 51]. O modelo topológico quadridimensional de
Chern-Simons (Chern–Simons Modified Gravity - CSMG), originalmente proposto em [52],
inclui no Lagrangiano, além do escalar de curvatura R, o termo adicional composto de um
campo escalar ϕ, chamado coeficiente (ou escalar) de Chern–Simons (CS), multiplicado
pelo termo topológico de Chern-Pontryagin ∗RR. Na formulação não dinâmica, ϕ é
tratado como um campo de fundo, sendo a priori uma função prescrita, e sua equação
de evolução se reduz a uma restrição diferencial no espaço de soluções permitidas, a
chamada restrição de Pontryagin. Na formulação dinâmica, o escalar CS é tratado como
um campo dinâmico, dotado com seu próprio tensor energia-momento e equação de
evolução. O modelo quadridimensional CSMG, sendo uma extensão natural do modelo
gravitacional de CS em três dimensões [53], apresenta algumas propriedades interessantes.
Primeiro, dependendo da forma de ϕ, pode gerar explicitamente a quebra da paridade
e da simetria de Lorentz, no nível da ação. Em segundo lugar, verificou-se que CSMG
partilha algumas soluções com a RG11, como, por exemplo as métricas de Schwarzschild e
tipo-Gödel ST-homogêneas. Por outro lado, como contraexemplo, pode-se citar a métrica
de Kerr12 que notavelmente não é uma solução do CSMG, conforme discutido em [54].
Em particular, as métricas tipo-Gödel ST-homogêneas são célebres por gerarem curvas
tipo-tempo fechadas (Closed Time-like Curves - CTCs) para determinados valores de seus
parâmetros, promovendo a violação global da causalidade, mantendo, no entanto, em
cada ponto do espaço-tempo a causalidade local, que é assegurada pelo caráter localmente
Lorentziano do espaço-tempo [55]. O estudo do universo de Gödel fora verificado, além da
RG, com a análise da possibilidade de soluções causais, dentro da gravidade modificada de
11 Pode ser facilmente demonstrado que todas as métricas que atendem à restrição de Pontryagin ∗RR = 0

são soluções simultâneas da RG e destas teorias generalizadas de Chern-Pontryagin.
12 Uma solução estacionária e axissimétrica da RG onde descreve buracos negros supermassivos e giratórios,

que estão presentes no centro da maioria das galáxias e desempenham um papel crítico na evolução de
objetos compactos e na emissão de ondas gravitacionais.
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Chern-Simons [56, 57], gravidade de Brans-Dicke [58], gravidade f(R,Q) [59], gravidade
f(R,Q, P ) [60].

Cabe aqui salientar, o invariante topológico de Chern-Pontryagin, ∗RR, aparece
naturalmente especificamente compactando as dimensões extras da teoria-M (D = 11)
para as teorias efetivas quadridimensionais da CSMG. De fato, a teoria das cordas, no
seu limite de baixa energia, contém uma correção de cancelamento de anomalias, para a
ação de Einstein-Hilbert. Em particular, pode-se citar o modelo Starobinsky-Bel-Robinson
(SBR), cuja ação envolve termos quadráticos de Chern-Pontryagin, (∗RR)2, seus aspectos
cosmológicos foram estudados em [61]. De certo, o estudo das teorias que envolvem o
termo ∗RR, com suas generalizações, é motivado pela possibilidade de quebra das simetrias
de Lorentz e/ou CPT, justificada, entre várias razões heurísticas, pela: Teoria de cordas,
como é sugerida em [62], gravidade quântica em laço, hipótese de comprimento mínimo,
não comutatividade espaço-temporal e anisotropia na radiação cósmica de fundo, conhecida
como “eixo do mal” [63, 64, 65].

À vista disto, o ordenamento esquemático da presente Tese seguirá a seguinte
estrutura: no capítulo 2, iremos retratar à RG em seus diversos formalismos, destacando
o formalismo Riemanniano com suas soluções métricas de Schwarzschild, Friedmann-
Robertson-Walker (FRW) e (tipo)Gödel. Abordaremos as limitações da gravidade de
Einstein em tratar dos problemas da aceleração cósmica e da descrição quântica da
gravidade. Finalizaremos o capítulo com a abordagem do campo fermiônico de Dirac em
espaços curvos.

No capítulo 3, discorreremos sobre as teorias modificadas de gravitação, apresenta-
remos vários tipos de teorias, ressaltando dois destacados modelos: a gravidade não-local,
que quando bem aplicada, possui a peculiaridade de modificar a teoria, tornando-a renor-
malizável e unitária; e o modelo de gravidade modificada de Chern-Simons, que tem como
atributo em destaque a possibilidade da quebra de simetria de Lorentz e CPT, além de
compartilhar algumas soluções com a RG.

No capítulo 4, fundamentado no artigo originalmente publicado [66] e direcionado
pela teoria f(R), apresentaremos uma nova classe de teorias estendidas da gravitação
denominadas modelos generalizados de gravidade Chern-Pontryagin, cuja ação, ao invés
de ser linear ou quadrática em ∗RR, apresenta uma dependência funcional genérica deste
objeto e também do escalar de Ricci. Obteremos a ação clássica da teoria e suas respectivas
equações do movimento, adotando o protótipo fI(R, ∗RR) = R + β(∗RR)2, analisaremos a
consistência das soluções de buracos negros com rotação lenta, e para perturbações em
primeira ordem das métricas tipo-Gödel ST-homogêneo, consideraremos, também, uma
generalização do modelo Starobinsky, que corresponde a tomar fII(R, ∗RR) = R + αR2 +
β(∗RR)2.
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No capítulo 5, apresentaremos um modelo de campo espinorial não-local livre, com
acoplamento do campo magnético e com acoplamento de Yukawa, no espaço-tempo de
Minkowski. Construiremos a nova teoria de campo de spin-1/2 não-local promovendo o
operador de Dirac /∂ a um operador não-local, construído com base no operador de Dirac,
/∂f(/∂), em vez do operador de d’Alembert. Derivaremos cuidadosamente suas equações
de campo e mostraremos que no seu limite local recupera-se a equação padrão de Dirac.
Além disso, obteremos a relação de dispersão das partículas livres de spin-1/2 dentro do
modelo não-local.

Ademais, focaremos nos aspectos quânticos desta teoria, em particular, calculare-
mos a ação efetiva fermiônica de um laço para a teoria de campo de spin-1/2 não-local
com acoplamento Yukawa. E, veremos que as contribuições dos efeitos não-locais são
significativas no limite UV, enquanto no IR elas são suprimidas por uma escala de corte
UV, que foi escolhida para coincidir com a escala de não localidade Λ. Concluiremos o
capítulo obtendo uma versão não-local da equação de Pauli no espaço de Minkowski, com
avaliação do seu impacto no fator gs das partículas massivas.

No capítulo 6, forneceremos algumas considerações gerais sobre os temas discutidos
neste trabalho. Especialmente, analisaremos os resultados obtidos e apresentados nos
capítulos 4 e 5. Concluiremos a Tese expondo nossas perspectivas futuras sobre as possíveis
pesquisas no campo das teorias modificadas da gravitação, com destaque as possíveis
extensões e aplicações dos modelos originais apresentados: modelos generalizados de
gravidade Chern-Pontryagin e modelo de campo espinorial não-local.

Finalmente, no Apêndice-A e no Apêndice-B estão descritos, em detalhes, os
cálculos realizados para a obtenção das principais equações utilizadas e alguns teoremas e
conceitos, que foram mencionados no corpo desta Tese. Importante destacar, não adotamos
uma única assinatura da métrica. E, quando não explicitamente mencionado, estaremos
trabalhando com gravidade em quatro dimensões no formalismo Riemanniano, em unidades
naturais c = ℏ = 1. Alguns outros símbolos e convenções também foram aplicados, sendo
eles:

• ∑
µXµY

µ = XµY
µ - notação de Einstein.

• µ, ν, ρ, . . . - índices de letras gregas para índices do espaço-tempo.

• X[µYν] = 1
2(XµYν −XνYµ) - anti-simetrização dos índices [µ, ν].

• X(µYν) = 1
2(XµYν +XνYµ) - simetrização dos índices (µ, ν).
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2 Relatividade Geral

2.1 Uma Teoria de Descrição Essencialmente Geométrica
Diferentemente das demais forças da natureza, representadas por campos definidos

no próprio espaço-tempo, a RG de Einstein consiste no fato de que o campo gravitacional
se manifesta por meio de modificações da geometria do espaço-tempo [67]. Como resultado
disto, a RG se torna uma teoria essencialmente geométrica, contendo conceitos advindos
da geometria diferencial, onde cada ponto p na variedade1 quadridimensional M4 é
assinalado por um evento no espaço-tempo quadridimensional Euclidiano. Desta maneira,
M4 e R4 são considerados espaços topológicos homeomorfos, com aplicações contínuas e
com transformações inversas também contínuas, entre ambos os espaços [68]. Na teoria
gravitacional de Einstein, a variedade M4 contém quantidades das grandezas físicas e
entidades matemáticas essenciais, definidas por uma estrutura diferenciável [69]. Quando
fixada uma métrica ds2 = gµνdx

µ⊗dxν , a variedadeM4 é chamada de espaço Riemanniano
V 4, que passa a possuir o conceito de distância. A variedade M4 contendo estrutura
de conexão afim é chamada de espaço conectado afim L4, tendo isomorfismo local de
espaços tangentes em diferentes pontos na variedade, x ∈ M4. Desta maneira, pode-se
introduzir a noção de derivada covariante de tensores e definir a noção de transporte
paralelo de vetores, caracterizando uma série de objetos geométricos [70]. Assim, o campo
gravitacional pode ser descrito de oito maneiras distintas, mediante teorias geométricas
cuja classificação depende das estruturas métricas-afins subjacentes, construídas com base
em métricas e conexões: o tensor de curvatura da conexão, tensor torção e o tensor de
curvatura homotético [71] (ver Apêndice-B.4).

2.1.1 Formalismo Riemanniano: (M, g)

Aqui, nesta Tese, trataremos nomeadamente da gravidade quadridimensional na
descrição Riemanniana, onde a conexão é simétrica e completamente caracterizada pela
métrica (M, g). Nesta abordagem, mais utilizada nos estudos da gravidade, a ação
é descrita por funções de invariantes geométricos completamente caracterizados pela
métrica, ou seja, várias contrações do tensor de curvatura de Riemann, suas derivadas
covariantes e uma métrica, e possivelmente alguns campos extras escalares, vetoriais ou
tensoriais. Ademais, neste formalismo métrico, o produto interno de vetores transportados
paralelamente de um ponto a outro, na variedade ao longo de uma curva, é invariante,
1 Podemos definir a variedade como um espaço topológico contendo em cada ponto de sua superfície

uma vizinhança que é homeomorfa ao espaço aberto real. Assim, localmente,MD tem correspondência
biunívoca com RD, sendo D a dimensão do espaço.
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ou seja, o comprimento do vetor permanece inalterado durante o transporte paralelo.
Matematicamente, isso pode ser expresso pela condição de compatibilidade da métrica,
sendo dado pela equação ∇µgνα = 0.

Em decorrência do espaço-tempo curvo Riemanniano, o intervalo infinitesimal é
dado por ds2 = gµν(x)dxµdxν , sendo o tensor métrico gµν(x) a única variável dinâmica. Por
definição, a métrica é assumida como não degenerada, estabelecendo assim um isomorfismo,
entre os espaços tensoriais covariante e contravariante, descrito pela operação de subida e
descida de índices. A estrutura métrica Lorentziana forma a base da teoria da RG, cuja
assinatura pode ser ±2, ou seja, (−,+,+,+) ou (+,−,−,−). Como consequência, todas
as quantidades geométricas relevantes são determinadas pela métrica, como, por exemplo,
os símbolos de Christoffel2

Γρµν = 1
2g

ρα(∂νgαµ + ∂µgαν − ∂αgµν). (2.1)

Utilizando-se da definição dos símbolos de Christoffel (2.1), poderemos definir
a derivada covariante de um tensor, e este, por sua vez, é essencial para descrever a
dinâmica na RG, pois eles incorporam a curvatura do espaço-tempo. Em sentido amplo,
as derivativas covariantes de uma conexão afim arbitrária (não necessariamente métrica)
em uma base coordenada são normalmente chamadas de símbolos de Christoffel. Para as
variedades (pseudo)Riemannianas, a derivada covariante de um tensor genérico X de grau
(p+ q), será

∇µX
α1...αp

β1...βq
=∂µXα1...αp

β1...βq
+ Γα1

ρµX
ρα2...αp

β1...βq
+ . . .+ Γαp

ρµX
α1...ρ
β1...βq

− Γσβ1µX
α1...αp

σ...βq
− . . .− Γσβq µX

α1...αp

β1...σ .
(2.2)

Assim, pela definição da derivada covariante, o formalismo principal da teoria
da gravitação é construído, sendo fabricada a dinâmica da métrica na teoria. Na qual
a ideia-chave se fundamenta no princípio de que a derivada covariante de um tensor é
também um tensor. Deste modo, define-se o tensor de curvatura de Riemann pela seguinte
regra

[∇β,∇ν ]Xα = XµRα
µβν , (2.3)

onde, para qualquer Xα, o tensor de curvatura e de Ricci são dados por

Rα
µβν = ∂βΓαµν − ∂νΓαµβ + ΓσµνΓασβ − ΓασνΓσµβ, (2.4)

Rµν = Rα
µαν = ∂σΓσµν − ∂νΓσµσ + ΓαµνΓσασ − ΓαµσΓσαν , (2.5)

e o escalar de curvatura de Ricci R = gµνRµν . Agora, antes da definição da ação da teoria,
cumpre sublinhar um pouco sobre o formalismo Lagrangiano. Este potente ferramental
2 Assim nomeados por Elwin Bruno Christoffel (1829–1900), são expressões em coordenadas espaciais

para a conexão de Levi-Civita derivada do tensor métrico.
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matemático teve sua primeira aplicação na mecânica clássica, a partir dos trabalhos
pioneiros de Euler, Lagrange e Hamilton [72]. A extensão desse formalismo à mecânica
relativística e à eletrodinâmica, particularmente em sua forma covariante, mostrou-se
extremamente profícua [73], e rapidamente conduziu à generalização de sua aplicação
às teorias de campo em geral, onde se revelou de importância fundamental no processo
de quantização de campos [74]. Curiosamente, em 1915, antes do advento da teoria
quântica de campos, o matemático alemão David Hilbert (1862-1943) aplicou pela primeira
vez o princípio variacional à RG, em sua tentativa de encontrar as equações do campo
gravitacional independentemente de Einstein. Hilbert propôs a ação estacionária, conhecida
como ação de Einstein-Hilbert, sendo dada por

SEH = 1
2κ2

∫
d4x
√
−g R + Sm, (2.6)

onde κ2 = 8πGc−4, com dimensão de massa3 em um espaço-tempo D-dimensional igual a
2−D, G é a constante de Newton, c é a velocidade da luz no vácuo, g é o determinante
da métrica e Sm é a ação da fonte de matéria. Observa-se que a ação de Einstein-
Hilbert é definida em relação ao escalar de curvatura de Ricci, consequentemente, ela
envolve derivadas de segunda ordem do tensor métrico, em analogia a ação do campo
escalar eletromagnético e outros modelos de teoria de campo onde a ação envolve somente
segundas derivadas de sua variável dinâmica4. Por definição, o tensor energia-momento é
explicitamente dado em função do Lagrangiano da matéria Lm

T (m)
µν = − 2√

−g
δ (√−gLm)

δgµν
. (2.7)

As equações de campo de Einstein são obtidas através da variação da ação com
respeito ao tensor métrico (os cálculos estão demonstrados no Apêndice-A)

δSEH
δgµν

= Gµν ≡ Rµν −
1
2Rgµν = κ2Tµν . (2.8)

Essas equações de campo de Einstein (2.8) são formuladas de modo que assegure
a conservação do tensor energia-momento da matéria ∇µT

µν = 0, sendo claramente
consistente com as identidades de Bianchi ∇µG

µν = 0, garantindo assim o princípio da
equivalência, recuperando a RE na vizinhança de cada ponto no espaço-tempo, de modo
que o espaço-tempo local é bem descrito como espaço-tempo de Minkowski, cuja métrica
é dada por ds2 = ηµν(x)dxµdxν , onde ηµν é a matriz diagonal de assinaturas ±2. E,
também, se reduz à lei da gravidade de Newton no limite de baixas velocidades e campos
3 Na TQC, para c = ℏ = 1, uma quantidade física Q terá dimensão n em unidade de massa M , ou

seja, [Q] = n, quando [Q] = Mn. Logo, a ação gravitacional quadrimensional de Einstein-Hilbert
é adimensional [S] = 0, com elemento de volume [d4x] = −4 e valor negativo para a dimensão da
constante gravitacional [κ2] = −2.

4 Por exemplo, a ação eletrodinâmica é Se = − 1
a

∫
d4xFµνF µν .
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gravitacionais pouco intensos. Ademais, (2.8) descrevem como a matéria gera gravidade
e, inversamente, como a gravidade afeta a matéria, cuja força de acoplamento entre a
matéria e gravidade é determinada pela constante gravitacional κ2. Quando totalmente
escritas, as equações de campo de Einstein são um sistema de dez equações diferenciais
parciais de segunda ordem, não lineares e acopladas, por isso são de difícil solução. No
entanto, para certas conjecturas simplificadoras, como as de simetrias, obtêm-se várias
soluções exatas para (2.8).

2.1.2 Formalismo de Palatini: (gµν,Γλ
µν)

Nas derivações acima, o caráter Riemanniano da estrutura do espaço-tempo foi
essencial. No entanto, sabemos, a priori, que a métrica e a conexão são definidas como
estruturas independentes em uma variedade diferenciável. Portanto, a partir do ponto
de vista geométrico, seria mais natural considerar gµν e Γλµν como variáveis dinâmicas
independentes da teoria gravitacional. Assim, produzindo dois procedimentos variacionais
para duas diferentes suposições, sobre as estruturas geométricas da variedade, resultando
em diferentes equações modificadas da gravitação [75]. Nesta situação, a ideia subjacente
ao princípio variacional de Palatini é alcançada mantendo-se o tensor de torção nulo, mas
sem impor a condição de metricidade (compatibilidade da métrica), dada pela relação
∇αgµν = 0. Embora esse método é geralmente atribuído a Palatini, os autores M. Ferraris
e M. Francaviglia argumentaram que a abordagem de Palatini, como a conhecemos, foi de
fato inventada por Einstein em 1925 [76]. Neste formalismo, a ação de Einstein-Hilbert
(2.6) passa a ter a seguinte forma

SP = 1
2κ2

∫
d4x
√
−g gµνRµν(Γ) + Sm, (2.9)

onde Rµν(Γ) indica que o tensor de Ricci é definido em relação à conexão. Em geral, para
teorias modificadas da gravitação, o procedimento de Palatini gera equações de campo
diferentes das equações no formalismo métrico. Alguns autores fazem uma distinção entre
o formalismo de Palatini e o formalismo métrico-afim, que, além da conexão e da métrica
serem independentes, a ação deve incluir derivadas covariantes dos campos de matéria
[77]. Como resultado, há um acoplamento direto entre os campos de matéria (como os
férmions) e a conexão, podendo ser assimétrica, incluindo a torção na teoria [78]. Existem
outras abordagens para obtenção das equações de campos, por exemplo, o método de
Einstein-Eddington [79] e o princípio variacional bimétrico5, são uma reinterpretação
sutil da RG, assumindo a conexão gerada por uma métrica independente. Neste caso, ao
contrário do formalismo de Palatini, que promove a ligação num campo fundamental, o
princípio variacional resulta numa teoria fisicamente distinta, uma vez que o potencial para
a ligação acarreta novos graus de liberdade [80]. Além disso, a métrica geradora de conexão
5 Estes formalismos são frequentemente chamados de teorias da gravidade bimétricas ou tensor-tensor,

envolvendo dois tensores de posto 2.
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permite naturalmente um componente antissimétrico, definindo assim a propagação da
torção. A primeira formulação de uma teoria bimétrica parece ser devida a Rosen [81],
onde a adição de um tensor extra, não-dinâmico de posto 2, leva à existência de estados
de energia não limitados por baixo. Como resultado, a teoria de Rosen prevê a rotação
dos pulsares, à medida que ondas gravitacionais com energia negativa são emitidas. Isto
viola gravemente as restrições a estes sistemas que foram impostas pelas observações de
pulsares de milissegundos [82].

2.1.3 Formalismo de Tetradas: ea
µ(xµ)

A ideia do formalismo de tetradas (Vielbein6) foi introduzida por Weyl [83] e,
de maneira independente, por Fock e Ivanenko [84]. Em 1928, Albert Einstein fez uso
também deste formalismo quando tentou unificar o eletromagnetismo à gravitação [23], e
Eugene Paul Wigner (1902-1995) para incorporar espinores à teoria gravitacional [85]. O
estabelecimento de tetradas na gravitação resultou no conceito de paralelismo absoluto,
onde estipula que as tetradas devem ser transportadas paralelamente ao longo da variedade
espaço-temporal, garantindo a anulação da sua curvatura.

Por conseguinte, as teorias teleparalelas da gravitação são teorias de gauge baseadas
na geometria de Weitzenböck P 4, onde o tensor de curvatura é anulado e a torção
desempenha o papel da força gravitacional, com o campo fundamental representado por um
não trivial campo de tetradas, dando origem à métrica como um subproduto. Opostamente,
a variedade Riemanniana V 4 onde a torção é considerada nula, não a curvatura, temos
a variedade Weitzenböck P 4, desenvolvida em 1923 [86] a partir da variedade Riemann-
Cartan U4, equipada com uma métrica e uma conexão com propriedades, curvatura e
torção, não nulas. Tendo sua geometria estudada em termos de tetradas e não a partir
da métrica e da conexão. A tabela-B.4 expõe a classificação geométrica das variedades
quadridimensionais de acordo com suas estruturas métrica-afins subjacentes: o tensor de
curvatura da conexão, o tensor de torção e o tensor de curvatura homotético.

Dessarte, sabemos que em cada ponto p de uma variedadeM4 existe uma infinidade
de bases que podem ser escolhidas. Sendo o fibrado de base a estrutura construída das
várias escolhas de bases possíveis em todos os pontos p da variedade. Para expandir
um vetor v no espaço tangente TpM4, geralmente é escolhida a base coordenada, {∂µ}.
Mas, quando medidas estão envolvidas nos cálculos na RG, frequentemente eles são feitas
numa base ortonormal local {ea}, denominada base não coordenada ou tetradas. Assim
sendo, as tetradas define em cada ponto do espaço-tempo um sistema de “coordenadas”
não holônomas de Minkowski, como um referencial inercial local que pode ser construído
através dos vetores da base de coordenadas, como um campo de um conjunto de 4 vetores
ortonormais, um tipo tempo e três do tipo espaço, que são definidos em uma variedade
6 Palavra da língua alemã, que significa quatro pernas.
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Lorentziana, no intuito de modelar o espaço-tempo na RG. Logo, um vetor v na base {∂µ}
do espaço tangente TpM, poderá ser expandido em termos de uma nova base {ea}

v = vaea = vµ∂µ, (2.10)

as letras do alfabeto latino e do alfabeto grego são índices específicos que rotulam a base
não holonômica e base coordenada, respectivamente. De modo semelhante, um co-vetor
u expandido na base das 1-forma {dxµ} do espaço cotangente T ∗

pM, poderá também
ser expandido em termos de uma nova base 1-forma {ea}, u = uaw

a = uµdx
µ. Por

definição ea (eb) = δab . A relação de mudança de base será dada pelas seguintes equações:
ea = eaµ(x)dxµ, e sua inversa, ea = eµa(x)∂µ. A tetrada eaµ(xµ) é representada por uma
matriz de ordem n, dependente da coordenada xµ no ponto p do espaço tangente TpM4.
Tendo como inversa a matriz eµa(xµ) que geram as consequentes relações

eaµe
ν
a = δνµ; eaµe

µ
b = δab ; va = eaµv

µ e ua = eµauµ, (2.11)

cuja relação das componentes da métrica da nova base com a antiga base é

gab = g (ea, eb) = g (eµa∂µ, eνb∂ν) = eµae
ν
bg (∂µ, ∂ν) = eµae

ν
bgµν , (2.12)

∴ gµν = eaµe
b
νgab =⇒ g = gabe

aeb, (2.13)

onde g está expressado em termos das 1-forma {ea}. Das inúmeras possibilidades de
bases possíveis, podemos escolher aquela onde as componentes dos vetores ou tensores
em TpM4 da variedade se transformam de maneira similar às transformações de Lorentz
da RE, gab = ηab = diag(1,−1,−1,−1). Esta é a base ortonormal que corresponde ao
caso em que a métrica, com assinatura Lorentziana (+,−,−,−) é dada pela métrica de
Minkowski. Para isso, basta substituirmos a métrica pelos campos de tetrada eaµ, onde e é
o determinante da tetrada, que se relaciona com o determinante da métrica pela seguinte
relação gµν = eaµe

b
νηab, implicando em √−g = e. Para o escalar de Ricci R = gµνRµν nos

campos de tetrada teremos

R = gµνRα
µβγδ

[β
α δ

γ]
ν = 1

4R
αν
βγϵ

βγδσϵανδσ = 1
4e

α
ae

ν
bR

ab
βγϵ

βγδσϵανδσ = eαae
ν
bR

ab
αν , (2.14)

e para o elemento de volume, teremos

d4x
√
−g = d4x e = e(0) ∧ e(1) ∧ e(2) ∧ e(3) = − 1

4!εabcd e
a ∧ eb ∧ ec ∧ ed, (2.15)

aqui o símbolo ∧ representa o produto exterior, o produto dos elementos da base coordenada
em todas as combinações antissimétricas, ou seja

dxµ1 ∧ . . . ∧ dxµn = dx[µ1 ⊗ . . .⊗ dxµn], (2.16)

onde os índices entre colchetes explicitam a propriedade de antissimetria dos mesmos. Em
concordância com o princípio da covariância geral, as equações de Einstein independem da
base ou do sistema de referência. Logo, podemos reescrevê-las no formalismo das tetradas

Rµ
a −

1
2δ

µ
aR = κ2T µ(m)

a , (2.17)
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que multiplicada por eµb, resultará Rab −
1
2ηabR = κ2T

(m)
ab . Apresentaremos a seguir

algumas das soluções exatas das equações de Einstein.

2.2 Soluções das Equações de Einstein

2.2.1 Métrica de Schwarzschild

Em 1916, Karl Schwarzschild (1873-1916), astrônomo e físico alemão e um dos
fundadores da astrofísica moderna, apresentou a primeira solução analítica para as equações
de campo de Einstein, para um objeto compacto e estático

ds2 =
(

1− 2m
r

)
dt2 −

(
1− 2m

r

)−1
dr2 − r2(dθ2 + sin2 θ dϕ2), (2.18)

onde, m = GM/c2 é massa geométrica e M é a massa gravitacional da fonte de matéria.
Observe que na Eq.(2.18) temos duas singularidades, a singularidade física para r = 0
e a singularidade matemática para r = 2m. Pelo teorema de George David Birkhoff
(1884–1944), qualquer solução esfericamente simétrica das equações do campo no vácuo
deve ser estática e assintoticamente plana. Assim, para uma fonte esfericamente simétrica,
mesmo que seja um objeto com uma distribuição de massa irregular no seu interior, não
rotativa e restrita à região r ≤ a para algum a > 2m, a única solução que descreve o
campo gravitacional no exterior (r > a) é solução de Schwarzschild. No caso de fonte
esfericamente simétrica e carregada, a geometria exterior a fonte é descrita pela métrica de
Reissner-Nordström [67]. As classes de soluções da família de Kerr são assintoticamente
planas, estacionárias e axialmente simétricas, são soluções das equações de Einstein do
vácuo e é parametrizada pela massa M e pelo momento angular por unidade de massa a.

2.2.2 Métricas de Friedmann-Robertson-Walker e de Gödel

Em 1922, Alexander Friedmann (1888-1925) apresentou uma solução exata das
equações de campo de Einstein, posteriormente confirmada por Georges Lemaître (1894-
1966), que descreve um universo homogêneo e isotrópico em expansão ou contração,
conhecida como métrica de Friedmann-Robertson-Walker (FRW)7. Sendo esta a métrica
do modelo cosmológico padrão ΛCDM, dada por:

ds2 = dt2 − a(t)2
(

dr2

1− kr2 + r2(dθ2 + sin2 θdϕ2)
)
, (2.19)

em que a(t) é um fator de escala e k = 1, 0,−1, são valores para curvatura positiva, sem
curvatura e curvatura negativa, respectivamente.

Em 1949, Kurt Friedrich Gödel (1906-1978) apresentou a primeira solução para
um modelo matemático do universo [87], onde solucionou as equações de Einstein para
7 Também conhecida como métrica de Friedmann-Lemaître-Robertson-Walker (FLRW).
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um fluido perfeito, como fonte de matéria. Tal fluido com densidade de massa positiva e
pressão desprezível é geralmente chamado de poeira. A forma explícita de elemento de
linha no espaço-tempo em coordenadas cartesianas, para assinatura −2, é

ds2 = a2[(dt+ exdy)2 − dx2 − e2x

2 dy2 − dz2], (2.20)

onde o tensor energia-momento é composto pela densidade de matéria de uma distribuição
homogênea de partículas de poeira e da constante cosmológica negativa. Esta solução
apresenta uma característica peculiar, a existência de curvas tipo-tempo fechadas (Closed
Time-like Curves - CTC’s), que, por suposição, permitem viagens ao passado, ou seja,
o universo de Gödel admite violação da causalidade. A fim de eliminar tal paradoxo,
surgiu a proposta do princípio da autoconsistência das soluções das leis da física, onde
assevera ocorrer localmente no universo real somente soluções globalmente autoconsistentes,
assim não se permite alterar o passado dos eventos [88]. Além disso, existe a proposta
da conjectura de proteção cronológica de Hawking, assegurando que efeitos quânticos
na gravitação eliminariam quaisquer anomalias causais, devido a existência de CTC’s
classicamente produzidas [89]. Ademais, os teoremas de Geroch e da singularidade de
Hawking-Penrose-Geroch exigem a causalidade na RG [90]. Porém, ha muitos estudos
sobre a possibilidade da violação causal na RG, como nas teorias de interação superluminais
de grávitons acoplados a escalares, férmions e vetores [91]. As ações efetivas que descrevem
a dinâmica de baixa energia das TQC envolvendo a gravidade exibem genericamente
violações de causalidade [92], sendo discutida a existência dos táquions superluminais
[93, 94]. Descreveremos a seguir a generalização de (2.20), sendo elas chamadas de métricas
tipo-Gödel ST-homogêneas8.

2.2.3 Métricas Tipo-Gödel ST-Homogêneas

Nesta seção, aplicaremos o procedimento realizado em [95, 96] onde os autores ge-
neralizaram o elemento de linha de Gödel (2.20), em coordenadas cilíndricas. Reescrevendo
(2.20), para a mesma assinatura −2, teremos

ds2 = [dt+H(r)dθ]2 −D2(r)dθ2 − dr2 − dz2, (2.21)

onde H(r) e D(r) são funções arbitrárias na coordenada radial. Deste modo, está de-
monstrado em [95], que para alcançar as métricas tipo-Gödel ST-homogêneas, as funções
métricas devem satisfazer as seguintes necessárias e suficientes condições

H ′(r) = 2ωD(r), D′′(r) = m2 D(r), (2.22)

onde o primo (′) significa derivada em relação a r. O par (m2, ω) caracteriza completamente
todas as métricas tipo-Gödel ST-homogêneas. É permitido o parâmetro m assumir qualquer
8 Refere-se à homogeneidade do espaço-tempo, onde ST é a abreviação do termo em inglês Space-Time.



Capítulo 2. Relatividade Geral 16

valor real, −∞ ≤ m2 ≤ ∞, não tendo este uma interpretação física, sendo ω ̸= 0 a
vorticidade. As soluções da Eq.(2.22) definem três classes diferentes de métricas tipo-Gödel
para ω ̸= 0, dependendo do sinal do parâmetro m2. Nomeadamente,
i)classe hiperbólica, onde m2 > 0

H(r) = 2ω
m2 [cosh(mr)− 1], D(r) = 1

m
sinh(mr); (2.23)

ii)classe trigonométrica, onde m2 = −µ2 < 0

H(r) = 2ω
µ2 [1− cos(µr)], D(r) = 1

µ
sin(µr); (2.24)

iii)classe linear, onde m2 = 0

H(r) = ωr2, D(r) = r.

Não será considerada aqui a classe degenerada correspondente a ω = 0. A métrica
de Gödel é uma solução das equações de Einstein com uma constante cosmológica Λ,
suportada por uma poeira de densidade ρ, obtida tomando m2 = 2ω2 = −2Λ = κ2ρ.
Dessa maneira, a métrica Gödel está inserida na classe hiperbólica das métricas tipo-
Gödel. Os diferentes grupos de isometrias dependem das relações entre os parâmetros
m2 e ω2. Por exemplo, a classe especial m2 = 4ω2 admite G7 como grupo de isometria,
que é o maior grupo admitidos pelas métricas tipo-Gödel. De igual modo a métrica de
Gödel (2.20), as métricas tipo-Gödel apresentam a presença CTC’s, que são definidas por
círculos C = {(t, r, θ, z); t, r, z = const, θ ∈ [0, 2π]}, em uma região restrita pelo intervalo
r1 < r < r2, onde a função G(r) = D2(r)−H2(r) deve ser negativa nesta região.

Foi mostrado em [95] que todas as três classes destas métricas apresentam pelo
menos uma região (r1 < r < r2), onde existem CTC’s. Para a classe linear m = 0, existe
uma região não causal r > rc com curvas temporais fechadas, onde rc é o raio crítico,
definido como o raio máximo que permite a presença de CTC’s rc = 1/ω. Para a classe
trigonométrica m2 = −µ2 < 0, existe uma sequência infinita de regiões causais e não
causais alternadas. Para a classe hiperbólica de tais espaços-tempo, existe uma região
não causal r > rc, onde o raio crítico rc, quando 0 < m2 < 4ω2, é dado por

sinh2
(
mrc

2

)
=
(

4ω2

m2 − 1
)−1

. (2.25)

Podemos facilmente deduzir da Eq.(2.25) que quando a relação m2 ≥ 4ω2 é
satisfeita, a presença de CTC’s é totalmente evitável, isto é, não há violação de causalidade
e, para o caso especial, m2 = 4ω2, o raio crítico rc → ∞. Doravante, por questão de
simplificação, em muitas ocasiões, vamos referir às métricas tipo-Gödel ST-homogêneas
como simplesmente métricas tipo-Gödel.
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A Figura-1 mostra a violação da causalidade para uma geodésica de um raio de luz
emitido no ponto x = 0.5, no plano z = 0, considerando uma caso particular pertencente
à classe linear de métricas tipo-Gödel planas, em coordenadas cartesianas

ds2 = −dt2 + dx2 + (1− α2
0 x

2)dy2 − 2α0 x dtdy + dz2, (2.26)

onde α0 é um parâmetro real positivo. A geodésica descrita na Figura-1 tem coordenada
temporal que não aumenta monotonicamente, cujos parâmetros que definem as funções
arbitrárias são α0 = 2ω = 0.3 e m = 0. Os pontos A, B, C e D estão contidos na CTC,
que cruza o círculo pontilhado, que representa o raio crítico para um observador na origem
[97]. As métricas tipo-Gödel têm a feliz propriedade de facilitar a manipulação e estudo

Figura 1 – CTC de um raio de luz representada no plano azimutal z = 0 para classe linear
plana de métricas tipo-Gödel. Crédito da figura: Wave fronts in a causality
violating Godel-type metric, Kling, T. P.; Ahmed, F.; Lalumiere, M., 2020,
arXiv:2005.03417 [gr-qc].

das equações de Einstein, convertendo tais equações diferenciais parciais não lineares em
equações algébricas. Fora verificado a consistência das soluções do tipo-Gödel dentro
da gravidade modificada de CS, com o coeficiente de CS não-dinâmico, para diferentes
formas de matéria, incluindo poeira, fluido, campo escalar e campo eletromagnético. Com
discussões sobre questões de causalidade, diferentemente da RG, com solução no vácuo e
soluções causais hiperbólicas, para matéria fisicamente bem motivada [56]. Ademais, os
estudos sobre as métricas tipo-Gödel podem ser vistos na gravitação f(R) [98, 99], na
gravitação f(R, T ) para fluido perfeito, deixando a violação da causalidade em aberto [100],
na gravitação Horava-Lifshitz [101, 102]. Ainda, foi considerado pertubações estacionárias
em primeira ordem das métricas tipo-Gödel na gravidade Chern-Simons não-dinâmica [103].
Sendo obtidas soluções analíticas, quando assumidas certas condições para as equações de
campo perturbadas, com a métrica expandida. Recorreremos às métricas tipo-Gödel como
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ansatz para análise dos modelos de gravidade modificada, que serão apresentados mais
adiante.

2.3 Limitações da Gravitação de Einstein
Em princípio, o estudo da gravitação gera duas principais e não triviais tarefas. A

primeira tarefa seria o estudo dos aspectos quânticos da teoria (correções quânticas, ação
efetiva, renormalização, etc.). A segunda tarefa, em seu aspecto clássico, seria obter as
equações de movimento, através das soluções das equações não lineares de Einstein. Neste
caso, para encontrarmos e resolvermos as equações de movimento de Einstein, devemos
assumir ansatz, ou seja, devemos escolher métricas que permitam simplificar os cálculos,
reduzindo o número de variáveis nestas equações, que no caso quadridimensional são
dez componentes da métrica. Por exemplo, a métrica FRW se torna uma boa escolha
por motivo de ser ela descrita por somente uma incógnita dada pelo fator de escala a(t).
Outro exemplo de ansatz seriam as métricas tipo-Gödel, pois, como já mencionado, elas
convertem as equações de Einstein em simples equações algébricas. No entanto, como
referido, a gravidade de Einstein se depara com duas maiores dificuldades ainda não
resolvidas, sendo elas: (i) Uma explicação plausível para a aceleração cósmica; e (ii) Uma
consistente descrição quântica da gravidade. Abordaremos, em seguida, de maneira sucinta
estes dois grandes problemas existentes na física gravitacional. Primeiramente, iniciaremos
nossa abordagem no tema sobre aceleração cósmica.

2.3.1 Aceleração Cósmica

Em 2011, mediante observações de supernovas distantes, os astrofísicos norte-
americanos Saul Perlmutter, Brian Schmidt e Adam Riess ganharam o prêmio nobel de
Física pela descoberta, em 1998, da expansão acelerada do universo [104]. Com efeito, sendo
a RG incapaz de admitir uma possível argumentação teórica para explicar a aceleração
cósmica. A tentativa mais simples de resolver o problema se baseia na introdução da
constante cosmológica Λ. Esta constante, expressa em unidades do sistema internacional,
tem a dimensão de comprimento com grau negativo, isto é, [L] = −2. Ou seja, é adicionado
à ação de Einstein-Hilbert o termo extra

S(Λ) = − 1
κ2

∫
d4x
√
−gΛ, (2.27)

resultando na seguinte ação modificada de Einstein-Hilbert

S
(Λ)
EH =

∫
d4x
√
−g

[ 1
2κ2 (R− 2Λ) + Lm[gµν , ψ]

]
, (2.28)

que produz as equações proposta por Einstein, em 1917, em sua tentativa de explicar o
não colapso do universo.

Rµν −
1
2gµνR + Λgµν = κ2T (m)

µν . (2.29)
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A obtenção das equações de Einstein dentro do formalismo Lagrangiano, sem a
constante cosmológica, está descrita no Apêndice-A. No início, em 1917, Λ foi original-
mente introduzido por Einstein para fornecer uma solução para um universo estático.
Posteriormente, em 1922, Friedmann demonstra matematicamente que as equações de
Einstein permanecem válidas num universo dinâmico, qualquer que seja Λ. Em seguida,
no ano 1927, Lemaître, baseado nos dados observacionais astronômicas de Hubble, revela
um universo em expansão. Especula-se que provavelmente a expansão do universo poderia
ter sido prevista um século antes do Hubble, caso o paradoxo de Heinrich W. M. Olbers9

(1758-1840) fosse resolvido [105, 106]. Em 1931, Einstein aceitou a teoria de um universo
em expansão e propôs, em 1932, com Willem de Sitter (1872-1934), um modelo de um
universo em expansão contínua, com constante cosmológica nula. Willem de Sitter provou
que para valores negativos de Λ o espaço vazio se expandirá exponencialmente. Mais
recentemente, após a descoberta da aceleração cósmica, a ideia da constante cosmológica
foi novamente abraçada, mas sem o objetivo de resolver o problema da renormalizabilidade
da teoria da gravidade. Para a métrica FRW (2.19), a matéria é dada pelo seguinte fluido
relativístico

κ2T (m)
µν = (ρ+ p)vµvν + pgµν , (2.30)

onde ρ é a densidade de matéria e p é a pressão. Em muitos casos aplica-se a equação de
estado p = ωρ, com ω sendo a constante característica do tipo de matéria. É fácil de ver
que para a métrica FRW, as componentes do tensor de Ricci e o escalar curvatura serão
dados por

R00 =− 3ä
a

;

Rij = δij(aä+ 2ȧ2) ;

R = 6
(
ä

a
+ ȧ2

a2 + k

a2

)
.

(2.31)

Neste caso, a equação de Einstein para a componente (0,0), juntamente com a
equação obtida pela diferença entre as equações cujas componentes são (1,1), (2,2), (3,3) e
(0,0), são conhecidas como sendo as equações de Friedmann

ȧ2 + k

a2 = 8
3πGρ ;

ä

a
= −4

3πG(ρ+ 3p),
(2.32)

onde fizemos c = 1, e sabendo que k admite o valor +1, para o espaço com curvatura
positiva, 0 para o espaço sem curvatura, e −1 para o espaço com curvatura negativa.
Nestas equações percebe-se claramente que, para a matéria usual, isto é, ρ ≥ 0 e p ≥ 0,
teremos um universo em desaceleração, contrariando os resultados obtidos recentemente
9 Se o universo é estático, infinitamente grande e antigo e com um número infinito de estrelas distribuídas

uniformemente, então o céu noturno deveria ser brilhante.
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que apontam para um universo em expansão acelerada [28]. Portanto, a presença da
constante cosmológica não trivial (Λ ̸= 0) fora inserida, modificando as equações de
Friedmann, resultando na adição no lado direito das Eqs.(2.32) o termo Λ

3 . Por exemplo,
Willem de Sitter encontrou uma solução maximamente simétrica das equações de campo
de Einstein [107], para o vácuo (ρ = p = 0) no universo plano (k = 0). Logo, a aceleração é
a(t) = a0 e

√
Λ
3 t, sendo a taxa de expansão caracterizada pelo parâmetro de Hubble H = ȧ

a
,

tendo o valor constante para o parâmetro Hubble atual H0, com medições de valores entre
a faixa de 40 a 90 km/seg por Mpc (um parsec equivale a 3,26 anos-luz, 1Mpc = 1 .1024cm).
Existe também o parâmetro de desaceleração, que mede a taxa de variação da taxa de
expansão do universo q = −aä

ȧ2 .

O modelo cosmológico padrão ΛCDM10, também chamado de “modelo de con-
cordância”, é o modelo cosmológico simples e mais amplamente aceito, porque tem sido
bem-sucedido na interpretação de uma ampla gama de observações. Este modelo se utiliza
de vários métodos cosmológicos e observáveis astrofísicos, como a radiação cósmica de
fundo em micro-ondas (CMB), a nucleossíntese do Big Bang (ou nucleossíntese primordial),
a formação e evolução de estruturas em grande escala no universo e o fato de que o universo
está se expandindo [108]. Embora o modelo ΛCDM se ajuste razoavelmente bem aos
dados observacionais disponíveis, explicando várias observações, ele enfrenta vários desafios
teóricos e observacionais, o mais acentuado entre eles é o problema da grande discrepância
existente entre os valores da constante cosmológica previsto pela TQC e o observado pela
cosmologia [109]. Pois, a constante Λ é interpretada pela física das partículas como a
densidade de energia do vácuo, estado de mais baixa energia. Sua contribuição para o
vácuo quântico do estado fundamental de todos os campos de matéria conhecidos na escala
de Planck, ρ(vácuo)

Λ = 1074(GeV )4, é 121 ordens de grandeza maior que a densidade de
energia obtida por meio de dados observacionais, ρ(obs)

Λ = 10−47(GeV )4 [109].

Outro problema no modelo cosmológico padrão resulta do teorema da singularidade,
pois quando assumimos a condição de energia forte no modelo FRW, ou seja, para ρ+3p > 0
e Λ = 0, então ȧ(t0) > 0, implica que houve uma singularidade inicial em algum tempo
finito no passado, onde não é possível aplicar as leis conhecidas da física [110, 111]. Ademais,
também questiona-se sobre a tal “coincidência” cosmológica, na qual o período atual, em
que estamos medindo, a densidade de energia da matéria escura ρme é da mesma ordem da
densidade de energia da energia escura ρee. Consoante os dados observacionais, a igualdade
dos valores para os diferentes tipos de densidades de energia ocorreu recentemente, em
um desvio para o vermelho z ≈ 0, 55. Portanto, tal fato observacional, ρme/ρee ∼ O(1),
parece indicar que estamos atualmente vivendo em um período único da história cósmica,
uma enorme coincidência, pois requer muitas condições iniciais especiais (fine-tuning)
10 Composto por energia escura (Λ), matéria escura fria (não bariônica), bárions e radiação (fótons e

neutrinos sem massa).
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para o universo primordial [112]. Então, a pergunta correspondente: “Por que agora?”
constitui o problema da “coincidência” no modelo ΛCDM. Cálculos extraídos do próprio
modelo mostra que os valores iniciais das densidades de energia associadas à matéria e
a constante cosmológica provavelmente não seriam fixados por processos aleatórios. Na
escala de tempo de Planck, as condições iniciais são fortemente ajustadas em 95 ordens de
magnitude [113]. Os problemas que surgem das condições iniciais no modelo FRW levaram
ao estudo de diferentes modelos FRW alternativos, que sofrem problemas semelhantes de
ajuste fino e não se encaixam melhor nas observações que o modelo FRW [114].

2.3.2 A descrição Quântica da Gravidade

De modo suposto, é natural esperar que a gravidade seja quantizada, em analogia
com a QED e a teoria de Yang-Mills [115]. Mas, o fato da constante gravitacional ter
dimensão negativa κ2, precisamente 2−D para um espaço-tempo D-dimensional, torna à
gravidade de Einstein uma teoria de campo não renormalizável. Dessa forma, uma robusta
descrição da RG, no formalismo da TQC, exige o envolvimento de um número infinito de
contratermos, conforme discussão apresentada em [116]. Então, uma consolidada teoria
quântica da gravidade permitiria-nos compreender, por exemplo, o comportamento de
buracos negros. Uma das dificuldades de formular uma consistente teoria da gravidade
quântica é a carência de dados experimentais que possam avaliar as teorias propostas. Pois,
a observação direta dos efeitos gravitacionais quânticos só apareceria em escalas próximas
ao comprimento de Planck (10−35m), condições nas quais são inacessíveis aos experimentos
laboratoriais atuais. Uma outra dificuldade seria devido a interpretação dinâmica do
espaço-tempo na RG, diferentemente da MQ com um cenário de espaço-tempo fixo, como
encontrado também na mecânica Newtoniana e na RE. Na TQC relativística, assim como
na TQC clássica, o espaço-tempo de Minkowski é o pano de fundo fixo. Assim, até certo
ponto, a RG pode ser vista como uma teoria relacional, na qual a única informação
fisicamente relevante é a relação entre diferentes eventos no espaço-tempo [117]. Ideia esta
anteriormente defendida por Gottfried Wilhelm Leibniz (1646-1716) e o filósofo George
Berkeley (1685–1753), que nunca aceitaram os conceitos Newtonianos de espaço e tempo
absolutos. Ao invés disto, eles defenderam a ideia de que todo movimento é relativo, sendo
o espaço puramente relativo, como o tempo [118].

O princípio da localidade11 impõe obstáculo para a TQC no espaço-tempo curvo
com uma métrica fixa, onde campos do operador bosônico/fermiônico super comutam
para dois separados eventos do tipo espaço. Mas, na gravidade quântica a métrica é
dinâmica, de modo que dois separados eventos do tipo espaço dependerão de seus estados,
podendo eles estarem em uma superposição quântica [119]. Uma proposta à aparente
11 Afirma que um objeto é influenciado diretamente apenas pela sua vizinhança imediata. Uma teoria

que inclui o princípio da localidade é considerada uma teoria local.
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inconsistência da teoria quântica da gravitação se dá pela interpretação geométrica da RG
não ser fundamental, mas surgindo qualitativamente de alguma teoria mais primordial
[120]. Por exemplo, a gravidade induzida ou emergente propõe ser a curvatura do espaço-
tempo e sua dinâmica uma aproximação do campo médio de graus microscópicos de
liberdade subjacentes, semelhante à aproximação da mecânica dos fluidos dos condensados
de Bose-Einstein [121]. Um ponto de vista oposto seria o da independência de um
fundamental campo de fundo, necessitando ser a MQ generalizada por parâmetros onde
não foi especificado, a priori, o tempo. Progressos foram alcançados nas duas frentes,
conduzindo à teoria das cordas [122] e, por outro lado, à gravitação quântica em laço
[123]. Neste cenário, surgem as seguintes questões: (i) A MQ torna-se inconsistente
nas vizinhanças das singularidades, onde a RG prediz uma quebra de paradigma; (ii)
O princípio da incerteza de Heisenberg não deixa claro como determinar, com precisão
absoluta, o campo gravitacional de uma partícula; e (iii) A violação da desigualdade de
Bell indica uma influência superluminal, sendo, supostamente, incompatível com a RG,
onde a velocidade da luz é a velocidade limite [70].

2.3.3 Linearização da Relatividade Geral

Gerardt Hooft e Veltman desenvolveram um método de linearização da gravidade
[40], que é utilizado no estudo de ondas gravitacionais e lentes gravitacionais de campo
fraco. Neste método, divide-se a métrica dinâmica gµν em uma soma da parte de fundo
g̃µν , aqui escolhida ser a métrica de Minkowski ηµν , mais um pequeno termo de pertubação
de um campo simétrico hµν

gµν = ηµν + ϵhµν , com |hµν | ≪ 1, (2.33)

onde ϵ fora introduzida com a finalidade de alterar a dimensão do campo de flutuação para
[hµν ] = 1. No regime de sistemas para o qual a curvatura do espaço é pequena, aplica-se a
teoria da pertubação para o tensor métrico, como resultado, a ação pode ser expandida
em uma série infinita de potências de hµν . Para tal procedimento, teremos o tensor de
Ricci e o escalar de Ricci linearizados

R(0)
µν = 1

2(∂α∂µhαν + ∂α∂νh
α
µ − ∂µ∂νh−□hµν);

R(0) = ηµνR
µν = ∂µ∂νh

µν −□h,
(2.34)

onde h = ηµνhµν = hνν . A linearização do Lagrangiano de Einstein-Hilbert L(0), expandida
até a segunda ordem do campo dinâmico, é conhecido como Lagrangiano de Fierz-Pauli
[124], sendo ela

L(0) = 1
4(∂µh∂µh− 2∂µh∂νhµν − ∂µhαβ∂µhαβ + 2∂µhνβ∂νhµβ), (2.35)

onde os índices de hµν são levantados e abaixados com o uso da métrica de Minkowski.
Por consequência de cálculos diretos, teremos as correspondentes equações de movimento
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de segunda ordem, que são as equações de Einstein linearizadas

G(0)
µν = 1

2(∂α∂µhαν + ∂α∂νh
α
µ − ∂µ∂νh−□hµν − ηµν∂α∂βhαβ + ηµν□h) = 0. (2.36)

Observa-se que o tensor de Einstein linearizado, G(0)
µν , possui simetria de gauge

δhµν = ∂µξν+∂νξµ e obedece às identidades de Bianchi linearizadas ∂µGµν = 0. O processo
de decomposição do espaço-tempo genérico, para o espaço-tempo de Minkowski mais um
termo de perturbação (2.33), não é único. Isso se deve ao fato de que diferentes escolhas de
coordenadas podem resultar em diferentes formas para hµν . Para capturar esse fenômeno,
é introduzida a aplicação da simetria de gauge, assim sendo, escolheremos o termo de
fixação de gauge do tipo Feynman Cµ = ∂νhνµ − 1

2∂µh, cujo Lagrangiano de gauge será
adicionado ao Lagrangiano L0, resultando em

L = L0 −
1
2CµC

µ = 1
8(∂µh∂µh− 2∂µhνα∂µhνα). (2.37)

Podemos assim obter o propagador no espaço dos momentos

< hαβ(−k)hµν(k) >= i

k2 − iϵ

(
ηµαηνβ + ηναηµβ −

2
D − 2ηµνηαβ

)
, (2.38)

para a dimensão D = 2 teremos uma singularidade, uma vez que a ação de Einstein-
Hilbert (2.6) é um puro termo de superfície. Por fim, poderemos expandir a ação de
Einstein-Hilbert (2.6) em séries de hµν , utilizando-se de um campo de fundo genérico
g̃µν na Eq.(2.33), no lugar da métrica de Minkowski ηµν . Neste caso, o determinante da
métrica expandido até a segunda ordem de h será√

|g| −→
√
|g|(1 + h

2 −
hνµh

µ
ν

4 + h2

8 + . . . ), (2.39)

e a expressão do escalar de curvatura R, também expandido até a segunda ordem em h

será

R→ R + □hββ −∇α∇βhαβ −Rαβhαβ −
1
2∇α

(
hβµh

µ,α
β

)
+ 1

2∇β

[
hβν
(
2hνα,α − h α,ν

α

)]
+ 1

4
(
hνβ,α + hνα,β − hναβ

) (
h β,α
ν + hβα,ν − h α,β

ν

)
− 1

4
(
2hνα,α − h α,ν

α

)
hββ,ν −

1
2h

ναhββ,να + 1
2h

ν
α∇β

(
h β,α
ν + hβα,ν − h α,β

ν

)
+ hνβh

β
αR

α
ν .

(2.40)

Por meio de expressões (2.39) e (2.40) podemos realizar os cálculos de um laço.
Diante disso, o contratermo de um laço decorrente do setor gravitacional puro da RG [40]
será

δL =

√
|g|

8π2(D − 4)

(
R2

120 + 7RµνR
µν

20

)
, (2.41)

Então, percebe-se, claramente, que para o espaço-tempo quadridimensional a
expressão (2.41) diverge. Por consequência desse resultado, podemos considerar a gravidade
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de Einstein como uma teoria efetiva12. De outro modo, a fim de se obter uma teoria
renormalizável, podemos estender a ação acrescentando termos com o propósito de cancelar
os termos divergentes. Enfim, a RG fora estabelecida como uma teoria científica de
extraordinário sucesso, contendo em si resultados precisos quando utilizada nos modelos
gravitacionais e cosmológicos, no regime de campos fracos, na escala do sistema solar e
estelar. No entanto, no regime de campo forte e em outras escalas, aspectos fenomenológicos
e teóricos sugerem correções significativas para os efeitos clássicos e quânticos da RG.
Inquestionavelmente, a procura pela construção de uma consistente teoria quântica da
gravidade é um bom motivo para uma generalização da gravidade de Einstein.

2.4 Equação de Dirac no Espaço Curvo
Em 1928, Paul Dirac, em sua busca por uma equação relativística para o elé-

tron, modificou a equação de Schrödinger e obteve uma nova equação covariante sob
transformação de Lorentz, cuja forma compacta é dada por

(iγµ∂µ −m)Ψ(x) = 0. (2.42)

A equação de Dirac (2.42) desempenha um papel fundamental na MQ “relativís-
tica”13 e na TQC, descrevendo ela com muita precisão o comportamento das partículas de
spin-1/2, e prevendo a existência da antimatéria14. Quando usada com cuidado, a equação
(2.42) tem sido extremamente bem-sucedida, mesmo em sua interpretação para partícula
única, uma vez que ela descreve tanto partículas como antipartículas [125]. O espectro
relativístico do átomo de hidrogênio, o acoplamento spin-órbita, o fator giromagnético gs
do elétron15, o grafeno curvo e semimetais [126], a amplitude do espalhamento de Coulomb,
são alguns exemplos de cenários e fenômenos descritos pela equação de Dirac, até mesmo
em seu limite ultra-relativístico, m→ 0. Porém, em última análise, a melhor abordagem
consiste em considerar o espinor de Dirac Ψ(x) como um campo [125]. Devido a grande
dificuldade em seu tratamento matemático, são poucas as soluções autoconsistentes na
gravidade de Einstein-Dirac ou quando se tenta conectar a equação de Dirac num espaço
curvo. Soluções de espinor propagando-se sobre um fundo curvo estão expostas em [127],
e soluções cosmológicas com um campo de spin podem ser encontradas em [128, 129]. A
12 A teoria efetiva da gravidade de Einstein considera a RG uma teoria de campo eficaz em seus limites

de aplicabilidade, ou seja, no limite de baixa energia (baixa curvatura) e em escala de distância onde
os efeitos quânticos da gravidade são negligíveis.

13 Estritamente falando a MQ relativística não existe. O formalismo que aborda, concomitantemente, a
MQ e a teoria da relatividade é a TQC.

14 A primeira evidência experimental da previsão teórica de Dirac ocorreu em 1932, quando Carl David
Anderson (1905-1991), em suas pesquisas com raios cósmicos, descobriu o pósitron.

15 O fator giromagnético é uma constante adimensional que relaciona o momento magnético de spin com
o momento magnético orbital da partícula. Para o elétron gs = 2, de acordo com a teoria quântica
relativística de Dirac.
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equação de Dirac minimamente acoplada à RG usando a TQC, com um único campo
de Dirac quantizado canonicamente em um espaço-tempo curvo de fundo, estático e
esfericamente simétrico, foi estudada em [130]. Na qual as equações de campo de Einstein
foram obtidas pelo valor esperado do tensor energia-momento.

De forma abrangente, podemos afirmar que a generalização de uma equação de
onda no espaço Riemanniano é substancialmente determinada pela natureza da partícula
em análise. Os férmions, como constituintes cruciais da matéria, são descritos por campos
espinoriais. Em contraste, as interações são mediadas por bósons que não têm as mesmas
propriedades de transformação dos espinores. Via de regra, as equações tensoriais para
bósons são estendidas de uma forma mais simples do que as equações espinoriais para
férmions. Nesse contexto, um problema muito interessante é a extensão de uma equação
de onda para o campo de Dirac. Os autores em [131] relacionaram o formalismo tensorial,
geralmente covariante, a um formalismo espinorial, ambos aplicados à descrição do campo
de Dirac em um espaço-tempo Riemanniano, considerando os dois métodos equivalentes e
derivando as equações tensoriais das equações espinoriais.

É de conhecimento a pretensão de construir uma teoria gravitacional consistente
unificada ao modelo padrão (Standard Model-SM) das partículas, que incorpore não
somente os espinores, mas também, descreva os bósons como estados vinculados. Em
princípio, isto não representaria qualquer problema, uma vez que os bósons podem ser
compostos por um número par de férmions. Contudo, numa teoria fundamental, precisamos
de bósons com propriedades muito particulares. O gráviton, por exemplo, está ligado a
simetria das transformações de coordenadas gerais16 e as interações são mediadas por
bósons de gauge com spin-1. Além disso, campos escalares são necessários para alcançar a
quebra espontânea da simetria eletrofraca e, possivelmente também, estender as simetrias,
como as grandes simetrias de gauge unificado [132, 133].

Saliente-se, menciona parecer ser a assimetria tempo-espaço um grande obstáculo
para o sucesso da unificação das interações da natureza. Decerto, presume-se ser irremissível
considerar tal assimetria, representada por equações de movimento e leis de conservação
que operam de forma diferente ao longo do tempo e do espaço, nos sistemas físicos que
evoluem inevitavelmente ao longo do tempo [134]. Na RG o tempo e o espaço são tratados
em uma estrutura unificada, mas existindo entre esses dois conceitos uma básica assimetria
relacionada à assinatura da métrica. Já as equações de campo quânticas, com assinatura
euclidiana, geralmente admitem soluções para apenas um único estado fundamental,
ou às vezes, para estados degenerados. Em contraste, a assinatura das métricas semi-
Riemannianas na RG permite muitas soluções complexas com evolução temporal causal
16 Com difeomorfismo entre as duas variedades diferenciáveis envolvidas na transformação. Ou seja,

deve existir uma aplicação entre essas variedades que seja diferenciável, invertível e a sua inversa seja
diferenciável.
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e não-causal. Dentro das várias tentativas de construir uma teoria unificada, baseada
em TQC ou supercordas, a anisotropia espaço-temporal é tratada como um conceito
quântico fundamental em escala de altas energias. Outros modelos não incorporam nas
suas formulações iniciais a assimetria tempo-espaço, mas sendo gerada por processos de
quebra espontânea de simetria, resultante da dinâmica do sistema [135].

Em 1951, Achilles Papapetrou (1907-1997) desenvolveu um método para a derivação
das equações covariantes de movimento para partículas-teste em rotação sujeitas ao campo
gravitacional [136]. Tal trabalho serviu de inspiração para estudos de modelos de spin
em espaço curvo. Estudar a equação de Dirac em um espaço-tempo curvo requer alguns
cuidados especiais, pois existem sutilezas enfrentadas ao lidar com campos fermiônicos
[137]. Pois, é preciso transformar para suas formas adequadas as matrizes gama, as
derivadas parciais e a conexão de spin, para assim considerar suas corretas contribuições
geométricas no espaço curvo [138]. Desta forma, tem-se o formalismo de tetradas, discutido
na Seção-2.1.3, como o agente ativo da transformação da equação de Dirac usual do espaço-
tempo plano para o espaço-tempo curvo. De forma prática, as transformações deverão
ocorrer no espinor e nas matrizes de Dirac, conforme veremos a seguir

[iγµ∇µ −m]Ψ(x) = 0, (2.43)

com
∇µ = ∂µ + Ωµ (2.44)

e
Ωµ = 1

8ωabµ(x)[γa, γb], (2.45)

onde ωabµ são as conexões de spin, uma generalização das conexões afim, ou seja, o objeto
matemático que efetua o transporte paralelo em 4 dimensões, definidos por

ωabµ = ηacω
c
bµ = ηac

(
ecν∂µ(eνb ) + ecνe

σ
bΓνσµ

)
, (2.46)

onde observa-se ser ωabµ anti-simétrico nos dois primeiros índices. As matrizes de Dirac
em espaço-tempo curvo são dadas por γµ = eµaγ

a, com os índices do alfabeto grego(latino)
representando a coordenada geral(local) para o espaço curvo(plano). As matrizes γµ

devem satisfazer a bem conhecida relação de anti-comutação {γµ, γν} = 2gµν Î. Sendo
eµa as tetradas, descritas na Seção-2.1.3, que generalizam as transformações entre as
coordenadas globais e locais, através da relação entre duas métricas diferentes

gµν = eaµe
b
νηab. (2.47)

A seguir abordaremos o tema das teorias modificadas da gravitação, descreveremos
alguns de seus mais conhecidos modelos, com suas características mais importantes. Em
especial, daremos destaque a gravidade de Chern-Pontryagin e gravidade não-local.
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3 Teorias Modificadas da Gravitação

3.1 Modificações no Setor Gravitacional Puro
Na esteira do que foi dito no capítulo anterior, visando estender a RG, surgiram

propostas de modificar a gravidade de Einstein com a introdução de termos adicionais
ao seu setor gravitacional puro [139]. De início, apareceu o modelo mais simples de
gravidade-R2. Mas, logo apareceram novos modelos, que incorporaram na ação, outros
termos de qualquer grau n no escalar de curvatura. Nos quais foram atribuídos para
n valores negativos e, para as teorias exóticas, valores fracionários. Em consequência,
foi introduzido o conceito de gravidade f(R), com a implementação, na ação clássica de
Einstein-Hilbert, de funções com outros invariantes escalares, não somente com termos de
escalar de curvatura [140]. A inclusão dos novos termos é dada por escalares construídos
na base do tensor métrico, ou seja, esses escalares são funções do tensor de Riemann
e Ricci, suas derivadas covariantes e do escalar de curvatura. No caso mais simples, o
Lagrangiano depende de uma função sujeita somente à curvatura escalar f(R)

Sf(R) = 1
2κ2

∫
d4x
√
−g f(R), (3.1)

que leva às seguintes equações de campo de quarta ordem em relação ao tensor métrico:

fRRµν −
1
2f gµν + (gµν□−∇µ∇ν) fR = κ2T (m)

µν , (3.2)

onde f = f(R), fR é a derivada de f(R) com respeito a R, sendo o operador covariante
d’Alembertiano definido usualmente como □ ≡ gµν∇µ∇ν . Estas teorias, sob determinados
limites, são capazes de resolver algumas inconsistências fornecidas pela RG nas escalas
astrofísicas. Podendo ser restaurada a gravidade de Einstein, como um caso particular
delas [141]. Dentro deste contexto, o modelo de Starobinsky, proposto em 1980, foi
o primeiro modelo a descrever como o universo primordial poderia ter passado por um
período extremamente rápido de expansão exponencial - daí o nome inflação de Starobinsky.
sendo ele

fs(R) = R + αR2, (3.3)

onde o segundo termo, com α > 0, leva as previsões inflacionárias consoantes as medições
anisotrópicas das radiações cósmicas de fundo em micro-ondas, realizadas em 2018 pelo
satélite Planck [142, 143]. Sabendo ser a gravidade de Einstein muito bem confirmada
observacionalmente em seus limites e a curvatura do universo conhecida por ser pequena,
é natural sugerir modelos da forma f(R) = R + γRn, com n ≥ 2, e possuindo o termo
de Einstein-Hilbert dominante. Evidentemente, qualquer teoria da gravidade deve ser
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compatível com as evidências observacionais, não somente na escala cosmológica primordial,
mas também deverá ser submetida aos testes locais e astrofísicos, como os dados obtidos
das estrelas compactas. A esse respeito, foi demonstrado que as extensões de RG produzem
modificações significativas no regime de gravidade de campo forte. Na última década,
estrelas compactas foram estudadas em teorias da gravidade f(R) no formalismo métrico e
de Palatini [144, 145]. O desenvolvimento de ideias inspiradas na gravidade f(R), contendo
funções de outros invariantes escalares, não somente termos de escalar de curvatura,
produziu a gravidade Lovelock, Gauss-Bonnet, f(R,Q) e f(R,Q, P ), com R = gµνRµν ,
Q = RµνRµν e P = Rα

βµνR
βµν
α , cuja ação (ver referência [146]) tem a seguinte forma:

Sf(RPQ) = 1
2κ2

∫
d4x
√
−gf(R,Q, P ), (3.4)

com as respectivas equações de campo

fRRµν −
f

2 gµν + 2fQRβ
(µRν)β + gµν□fR −∇(µ∇ν)fR + □(fQRµν)− 2∇λ

[
∇(µ(fQRλ

ν))
]

+

+gµν∇α∇σ(fQRασ) + 2fPRαβσµR
αβσ

ν − 4∇α∇β[fPRα β
(µν) ] = κ2T (m)

µν , (3.5)

onde fR ≡
∂f

∂R
, fQ ≡

∂f

∂Q
e fp ≡

∂f

∂P
.

As equações (3.5), de segunda ordem nas curvaturas (de quarta ordem nas deriva-
das), são consideradas uma generalização das equações de movimento de outras teorias
da gravidade. Por exemplo, é de fácil verificação que (3.5) se tornará nas equações de
movimento para os modelos de gravidade f(R,Q) e f(R), quando definimos P = 0 e
P = Q = 0, respectivamente. E, ao avocarmos f(R,Q, P ) = R, recuperaremos as equações
de Einstein (2.8). Verifica-se ser a conhecida gravidade de Stelle um caso particular da
gravidade f(R,Q, P ), tendo ela a seguinte ação

SStelle = 1
2κ2

∫
d4x
√
−g

(
R + αR2 + βRµνRµν

)
. (3.6)

No caso acima citado da gravidade de Gauss-Bonnet, seu modelo foi construído
mediante o termo topológico de superfície (derivada total em quatro dimensões), conhecido
como invariante de Gauss-Bonnet G = R2 − 4RµνRµν +RµναβRµναβ, sua ação é

SG = 1
2κ2

∫
d4x
√
−gf(G). (3.7)

De acordo com o teorema generalizado de Gauss-Bonnet1, no espaço-tempo qua-
dridimensional, G é um termo de superfície, sua integração sobre a variedade M é uma
derivada total, ou seja, uma característica (ou densidade) de Euler χ(M). A característica
de Euler é um invariante topológico da variedade M, que descreve a forma de uma
1 O teorema de Gauss-Bonnet afirma que a curvatura gaussiana total de uma superfície fechada é igual

a 2π χ, onde χ = χ(M) é a característica de Euler da superfície, um invariante topológico.
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superfície ou objeto geométrico2. Neste caso, o quadrado do tensor de Riemann não é
independente, podendo ser ele fornecido em função do tensor Ricci e do escalar de Ricci.
O termo aditivo na ação (3.7) corresponde exatamente à estrutura da divergência em um
laço que surge na gravidade de Einstein (2.41). Portanto, conclui-se ser a gravidade de
Gauss-Bonnet (3.7) renormalizável em um laço.

Certamente, uma generalização da RG para dimensões superiores3, na sua aborda-
gem métrica, pode ser pensando através da conhecida teoria (ou modelo) de gravidade de
Lovelock, onde a ação contém, entre outros termos, o termo quadrático de Gauss-Bonnet,
ou seja, a característica quadridimensional de Euler estendida às dimensões D > 4, que
está presente na ação efetiva de baixa energia da teoria das cordas heteróticas e nas
compactificações hexadimensionais da teoria-M, com especial atenção à sua propriedade
de ser livre dos estados “ghosts”, no espaço de Minkowski. Tais estados “fantasmas” cria
espectro de partículas com graus de liberdade caracterizados por propagadores com sinais
“errados” (sinais negativos), por consequência, destrói o princípio fundamental da MQ da
conservação da probabilidade de sistemas em evolução temporal [147].

Em geral, a teoria de Lovelock representa um cenário muito interessante para
estudos da modificação da gravidade, com a intenção de plotar valores obtidos de dados
observacionais, devido à presença de termos de curvatura de ordem superior na ação. A
Lagrangiana de Lovelock é dada pela seguinte expressão

LL√
−g

=
N∑
n=0

bnLn = b0L0 + b1L1 + b2L2 + · · ·+ bNLN

= b0 + b1R + b2R2 + b3O(R3),
(3.8)

onde os bi′s são constantes e R2 é o termo quadrático de Gauss-Bonnet G. Um outro
exemplo paradigmático na classe de modelos f(R) é a gravidade de Weyl, uma teoria
baseada na ação de Weyl (SW ) conformalmente invariante4, onde o Lagrangiano é dado
pelo quadrado do tensor de Weyl

SW = 1
2κ2

∫
d4x
√
−g CµναβCµναβ, (3.9)

onde Cµναβ é o tensor de Weyl. As suas respectivas equações de campo de quarta ordem
não são manifestamente unitárias [148]. No SM, uma invariância conforme local é alcançada
quando um termo gravitacional adequado é adicionado à ação. Esta abordagem gera as
massas para os bósons vetoriais e campos de matéria semelhantes ao mecanismo de Higgs,
sem a tradicional quebra espontânea de simetria [149].
2 Para superfícies fechadas, χ(M) = nv − na + nf , onde nv é o número de vértices, na o número de

arestas e nf o número de faces. A característica de Euler é um número inteiro que permanece constante
mesmo quando a superfície é deformada, desde que não haja cortes ou colagens.

3 Para D = 3 e 4 a gravidade de Lovelock e de Einstein são semelhantes.
4 Invariante sob transformações de Weyl gµν → Ω2(x)gµν , sendo Ω2(x) uma função no espaço-tempo.
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3.1.1 Gravidade Escalar-Tensorial

Em 1937, Paul Dirac, com sua hipótese dos números grandes, inseriu pela primeira
vez a ideia de um campo escalar atuando no setor gravitacional [150]. Dirac, em suas
pesquisas motivadas pela constante cosmológica, na tentativa de encontrar uma explicação
para os valores de certas constantes da natureza. Ele formulou a hipótese que as cons-
tantes adimensionais não devem ser puros números matemáticos, que aparecem nas leis
fundamentais da física, mas sim variáveis que caracterizam o estado atual do universo
[151]. Neste parecer, adicionar um campo escalar na gravidade de Einstein, que é descrito
pelo tensor métrico usual, consiste no método mais simples objetivando a generalização
dos fenômenos gravitacionais. Pois o campo escalar, sendo um invariante de Lorentz, é
a entidade física mais simples que existe [152]. Ressalta-se, um campo escalar no setor
gravitacional surge, por exemplo, no contexto de teorias do tipo Kaluza-Klein e teorias de
cordas, quando considerados dimensões superiores [153].

Fundamentado na ideia de Dirac, os modelos gravitacionais escalar-tensoriais
promovem a constante gravitacional − que aparece como um parâmetro livre na ação de
Einstein-Hilbert, cujo valor é medido experimentalmente − a um campo escalar dinâmico.
Tais modelos sugerem uma descrição completa da gravidade quando construída pela
composição da métrica usual mais um campo escalar extra ϕ, não relacionado com a
matéria, mas sendo uma função da curvatura. A ação escalar-tensorial tem a seguinte
forma genérica

Sϕ =
∫
d4x
√
−g f(R,L(ϕ)), (3.10)

onde f é uma função que abrange o setor geométrico e da matéria conforme discutido
em [154]. Neste aspecto, o modelo de gravidade f(R) é dinamicamente equivalente aos
modelos gravitacionais cuja ação é dada pela soma do termo habitual de Einstein, mais
um novo termo dependente de um campo escalar extra [155]. Por conseguinte, modelos
descritos por scalaron surgem como uma alternativa à matéria escura [156, 157]. Sob
outro enfoque, foram propostos modelos de cenários inflacionários que envolvem um campo
escalar dinâmico, minimamente acoplado à gravidade, chamado de quintessência5, que são
conhecidos por descrever a expansão acelerada do universo [159, 160]. A vantagem destes
modelos consiste no fato do campo de quintessência possuir um valor de massa muito
pequeno, estimado em cerca de 10−33 eV, sendo assim muito mais razoável do ponto de
vista teórico, diante do problema do valor extremamente pequeno da constante cosmológica
[161]. A gravidade de Brans-Dicke (BD), Galileon e Chern-Simons, estão entre os modelos
que se utilizam da motivação da gravidade escalar-tensorial para modelos cosmológico
conhecidos, por tratar da expansão acelerada do universo [162]. A gravidade BD, um
dos exemplos mais antigos de gravitação modificada, originalmente proposto em 1961
5 Uma forma hipotética de energia do vácuo, primeiramente proposta, em 1988, por Ratra e Peebles.

Em 1998, o termo “quintessência” foi introduzido pela primeira vez por Robert R. Caldwell, Rahul
Dave e Paul Steinhardt [158], como sendo uma quinta força fundamental.
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[163], baseia-se na ideia de que o próprio espaço possui características geométricas além
daquelas geradas pela matéria, conforme sugere o chamado princípio de Mach6 [164, 165].
Sendo, portanto, sua ação uma generalização da ação de Einstein-Hilbert, tendo a seguinte
configuração

SBD =
∫
d4x
√
−g

(
ϕR + ω

ϕ
∂µϕ∂

µϕ+ 16πLmat
)
, (3.11)

onde ϕ ≠ 0 desempenha o papel da constante gravitacional efetiva, não contribuindo com
o Lagrangiano da matéria Lmat. Para o caso particular, assumindo ϕ = 1

2k2 , recupera-se a
gravidade de Einstein. Uma vantagem desta teoria consiste no fato de que a constante de
acoplamento ω é adimensional, em substituição da constante usual de dimensão negativa,
que compromete a renormalização da gravidade. Além disso, neste caso a constante
gravitacional tem uma origem dinâmica relacionada com um valor assintótico de ϕ.

3.1.2 Gravidade Vetor-Tensorial

No caso da gravidade vetor-tensorial, são introduzidos campos vetoriais com
direções privilegiadas no espaço-tempo, sendo eles tratados não como um campo de
matéria, mas como ingredientes da própria gravidade. O aspecto mais importante desses
modelos é a possibilidade do estudo no contexto da quebra espontânea de simetria de
Lorentz [166]. Os exemplos conhecidos dessas teorias são a gravidade Einstein-aether [167]
e a gravidade bumblebee [168], tendo esta a seguinte ação

Sbee =
∫

d4x
√
−g
( 1

16πG(R + ξBµBνRµν)−
1
4BµνB

µν − V (BµBµ ± b2)
)
, (3.12)

onde ξ é uma constante adimensional, Bµν = ∂µBν − ∂νBµ é o tensor stress para o campo
bumblebee Bµ e V é o potencial vetor que possui um conjunto infinito de mínimos B0µ

satisfazendo a condição Bµ
0B0µ = ±b2, aqui, os sinais positivo e negativo refletem o tipo

do vetor B0µ, se este é do tipo tempo ou do tipo espaço, sendo b2 > 0.

3.1.3 Gravidade Horava-Lifshitz

Em 2009, Petr Horava propôs seu modelo de gravidade, conhecido como gravidade
Horava-Lifshitz, na tentativa de resolver o problema dos diferentes conceitos de tempo na
TQC e na RG, tratando o conceito quântico como o mais fundamental, assumindo uma forte
anisotropia espaço-temporal, em altos níveis de energia [169]. Desta maneira, o princípio
da covariância geral foi sacrificado a fim de conciliar a desejada renormalizabilidade com
6 Em 1893, Ernst Waldfried Josef Wenzel Mach (1838-1916) questionou o conceito de movimento ao

afirmar que a inércia de qualquer sistema é o resultado da interação desse sistema com o resto do
universo. A ideia subjacente no princípio de Mach está na origem da inércia ou da massa de uma
partícula definida como quantidade dinâmica determinada pelo ambiente, em particular, pelo resto da
matéria no universo.
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ausência de fantasmas [170]. Possuindo o conceito relativista de tempo, com invariância
de Lorentz, emergindo a grandes distâncias, e a velocidade da luz tendendo ao infinito em
altas energias. Neste contexto, deve-se notar que a quebra da covariância geral também é
discutida nos modelos da gravidade sem forte assimetria espaço-tempo, que apresentam
quebra de simetria de Lorentz (QSL).

O modelo de gravidade modificada Horava-Lifshitz é um candidato na busca de
resolver o problema da energia escura, para estudos dos buracos negros e dos efeitos da inva-
riância de Lorentz em baixas energias [171]. No entanto, sua descrição quântica é bastante
problemática, pois envolve estruturas complicadas em sua ação clássica, potencialmente
implicando em um número muito grande de contribuições divergentes, não sendo possível
afirmar com certeza se é renormalizável multiplicativamente [111]. Ademais, embora tenha
havido progresso em sua reformulação inicial, inconsistências observacionais continuam
presentes no atual modelo. Por exemplo, as observações de ondas gravitacionais emitidas
pela fusão de certas estrelas de nêutrons contrariam as previsões feitas pela gravidade
Horava-Lifshitz [172, 173].

Outros Modelos Modificados - Existem muitos outros modelos de gravitação
modificada, todos derivados dos intensos estudos ao longo das últimas décadas, em
grande parte motivados pelo rápido progresso no campo da cosmologia observacional,
que permitiram testes mais precisos em diferentes níveis de escalas do universo. Entre
muitos modelos, podemos citar a gravidade Einstein-Cartan-Sciama-Kibble [174], gravidade
escalar-tensor-vetorial [175], bigravidade [176], os modelos de condensação de fantasmas
[177] e modelos de dimensões extras, incluindo Kaluza-Klein [178], Randall-Sundrum
[179], Dvali–Gabadadze–Porrati [180] e modelos brane-worlds de co-dimensão superior
[181]. E, também o formalismo pós-Friedmanniano parametrizado, usado para restringir
desvios da RG na cosmologia e adequado para comparação com dados em grandes escalas
cosmológicas [182]. Em especial, na seção seguinte, daremos ênfase ao modelo de gravitação
modificada de Chern-Pontryagin e, ao final deste capítulo, falaremos dos modelos não-locais
da gravitação. Estas duas teorias servirão de fundamento para a formulação de novas
classes de modelos que serão apresentadas no Capítulo-4 e Capítulo-5.

3.2 Modelos Topológicos de Chern-Simons
Uma das extensões da gravidade que tem atraído grande interesse nos últimos anos

é a gravidade modificada quadridimensional de Chern-Simons (CSMG), originalmente
proposta em [52], como um modelo gravitacional topológico massivo [53]. Vale ressaltar, o
termo de Chern-Simons (CS) foi descoberto pelo russo Albert Schawarz (1934- ), dentro
do contexto da geometria diferencial, em teorias das classes características. Posteriormente,
este termo foi estudado por Shiing-Shen Chern (1911-2004) e James Harris Simons (1938-
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2024), sempre como sendo propriedades globais das curvaturas nas variedades suaves
M [183]. A segunda classe característica de Chern é o invariante topológico7 de Chern-
Pontryagin, definido como a contração do tensor de Riemann com o seu dual ∗RR. A
integral deste termo numa variedade fechada quadridimensional é definida como o número
(ou densidade) de Pontryagin [184]. Na física, essas classes características surgiram no
cálculo da anomalia de corrente quiral nas teorias de gauge. Em sistemas onde a corrente é
conservada no regime clássico, mas quando consideradas correções quânticas, esta mesma
corrente passa a ser dissipada ou alterada8 [185]. Na próxima seção, apresentaremos o
início do surgimento do termo CS na gravitação, que ocorreu no cenário tridimensional
das teorias de gauge (não)abelianas, no contexto da eletrodinâmica massiva.

3.2.1 Modelos de Chern-Simons Tridimensionais

Em 1981, Deser, Jackiw e Templeton apresetaram modelos vetoriais de gauge e
gravitacional, no espaço-tempo tridimensional [53], formulando assim as teorias de gauge
topológicas e massivas. Neste trabalho, os modelos gravitacionais são constituídos com
termos de derivadas de terceira ordem, mas livres de fantasmas e causal. Quando inserido
na teoria de gauge abeliana9, o novo termo invariante de gauge de origem topológica
dá surgimento à massa para o campo de gauge. A Lagrangiana de CS não-abeliana foi
apresentada na seguinte forma

L(A)
CS = ϵµνα(Aaµ∂νAaα + 2

3f
abcAaµA

b
νA

c
α), (3.13)

onde Aµ = A a
µT

a é o campo de gauge dado pela estrutura algébrica dos grupos de Lie10,
fabc são as constantes da estrutura e ϵµνα é o símbolo de Levi-Civita, com valores assumidos
+1, 0,−1. Estudos do modelo planar decorrente da redução dimensional da eletrodinâmica
de Maxwell com o termo Carroll-Field-Jackiw (violador de Lorentz), com soluções que
indicam a clara manifestação da anisotropia espacial, o que é consistente com a existência
de uma direção privilegiada no espaço [186]. Tendo sua forma não-abeliana construída na
gravitação tridimensional, cuja a ação é

SCS = 1
2κ2ρ

∫
d3xϵµνα(ω b

µa ∂νω
a

αb + 2
3ω

b
µa ω

c
νb ω

a
αc ), (3.14)

onde ω é a conexão de spin (2.46) e ρ é uma constante com dimensão de massa [ρ] = 1.
No formalismo Riemanniano as conexões são os símbolos de Christoffel, construídos de
7 Em duas dimensões, temos a característica de Euler χ(S) = 2−2b como um outro exemplo de invariante

topológico, onde b é o gênero da superfície fechada S.
8 A não conservação resulta em uma quebra da simetria quiral, que pode ter consequências importantes,

como a quebra da unitariedade e da renormalizabilidade da teoria.
9 O eletromagnetismo é uma teoria de gauge abeliana devido à natureza única da carga elétrica (positiva

e negativa) e à simetria do grupo comutativo U(1) que a descreve. Diferentemente da cromodinâmica
quântica (QCD), teoria de gauge não-abeliana, onde existem múltiplos tipos de carga/cores.

10 As álgebras de Lie foram introduzidas como ferramenta para o estudo das rotação infinitesimais.
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modo usual, da variável dinâmica fundamental, o tensor métrico. Logo, a ação (3.14) se
apresentará no modo

SCS = 1
2κ2ρ

∫
d3xϵµνα(Γβµσ∂νΓσαβ + 2

3ΓβµσΓδνβΓσαδ). (3.15)

Na variação da ação (3.15) obtem-se

δSCS = 1
κ2ρ

∫
d3x ϵαβµ∇αR

ν
βδgµν = − 1

κ2ρ

∫
d3xCµνδgµν , (3.16)

onde Rν
µ é o tensor de Ricci no espaço tridimensional, ∇µ é a derivada covariante efetivada

em três dimensões, e

Cµν = − 1
2√−g

(
ϵµαβ∇αR

ν
β + ϵναβ∇αR

µ
β

)
, (3.17)

é o tensor de Cotton tridimensional simétrico Cµν = Cνµ e de traço nulo gµνCµν = 0. As
equações de Einstein modificadas, para o vácuo, são facilmente obtidas, sendo elas

Gµν + ρ−1Cµν = 0. (3.18)

Utilizando-se do procedimento descrito na Seção-2.3.3, ou seja, linearizando a ação
gravitacional CS (3.15), teremos

S
(0)
CS = 1

2ρ

∫
d3xhµνϵαµγ∂

γ(□ηδν − ∂δ∂ν)hδα. (3.19)

A ação linearizada (3.19) é invariante de gauge sob a transformação δhµν =
∂µξν + ∂νξµ e, apesar de conter termos de altas derivadas, suas equações de movimento
não apresentam problemas quanto ao surgimento dos estados de energia negativa [187].

3.2.2 Gravidade Modificada de Chern-Simons Quadridimensional

A generalização da teoria CS gravitacional em quatro dimensões foi realizada
em [188], com o envolvimento de alguns passos não corriqueiros. Primeiramente, se fez
necessária a seguinte substituição ϵµνα → vγϵ

γµνα, onde vγ faz o papel de converter o
termo CS no termo abeliano de Carrol-Field-Jackiw (CFJ), LCFJ = ϵγµναvγAµ∂νAα. Desta
maneira, os autores do artigo original pôde definir o termo CS do Lagrangiano gravitacional
quadridimensional

SCS = 1
2κ2

∫
d4x vγϵ

γµνα(Γβµσ∂νΓσαβ + 2
3ΓβµaΓcνbΓσαc), (3.20)

com sua forma linearizada

S
(0)
CS = − 1

2κ2

∫
d4xhµνϵαµργv

γ∂ρ(□ηδν − ∂δ∂ν)hδα, (3.21)
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igualmente a ação linearizada em 3D (3.19), a ação linearizada em 4D é invariante de
gauge sob a transformação δhµν = ∂µξν + ∂νξµ. Da ação (3.20) podemos definir a corrente
topológica

Kγ ≡ εγµνα(Γβµσ∂νΓσαβ + 2
3ΓβµσΓδνβΓσαδ), (3.22)

onde
εγµνα = ϵγµνα√

−g
(3.23)

é o tensor contravariante11 totalmente antissimétrico de Levi-Civita, definido a partir do
símbolo de Levi-Civita. A divergência de (3.22) será

∇µK
µ = 1

2
∗Rβ δρ

α Rα
βδρ ≡

1
2

∗RR, (3.24)

onde o tensor dual de Riemann contém contração com o tensor de Levi-Civita

∗Rβ δρ
α = 1

2ε
δρµνRβ

αµν . (3.25)

Pelas propriedades topológicas da densidade de Chern-Pontryagin, a integral de
∗RR no espaço-tempo é um termo de superfície. Por isso, para incluí-lo na ação de forma
consistente, deve-se introduzir um novo campo ϕ, denominado coeficiente CS. Como
resultado, podemos acrescentar à ação usual de Einstein-Hilbert o novo termo proporcional
a ϕ que chamamos de ação CS:

SCS = − 1
2κ2

∫
d4x
√
−g vµK

µ

2 = 1
2κ2

∫
d4x
√
−g ϕ4

∗RR, (3.26)

onde vµ = ∇µϕ. Ao analisarmos a paridade da ação CS, perceberemos que o produto
de tensores de curvatura de Riemann tem paridade par, mas o tensor de Levi-Civita
tem paridade ímpar, exigindo do campo CS uma paridade ímpar, portanto, ϕ seria um
pseudo-escalar. Isto considerado, ϕ ∗RR torna-se um invariante por transformações de
paridade, conforme se espera de todos os termos da ação da teoria. Quando vµ passa a ser
uma função das coordenadas do espaço-tempo, não um vetor constante, então, em geral, o
termo CS gravitacional quebra a simetria CPT. Sob outra perspectiva, ϕ pode ser tratado
como um campo externo não-dinâmico, e vµ um vetor constante. Nesta situação, CSMG
quadridimensional torna-se o primeiro exemplo de modelo gravitacional com QSL. A ação
completa de CSMG é composta pela ação de Einstein-Hilbert (2.6) mais a ação de CS
(3.26)

S(EH+CS) = 1
2κ2

∫
d4x
√
−g

(
R + 1

4ϕ
∗RR

)
+ Sm. (3.27)

A variação do termo geométrico de (3.27), com respeito à métrica, resultará

δS(EH+CS) − δSm = 1
2κ2

∫
d4x
√
−g [(Gµν + Cµν) δgµν ] + ΣEH + ΣCS. (3.28)

11 As componentes de um tensor (contravariante) covariante se transformam da mesma (oposta) forma à
transformação dos vetores da base, utilizando-se da (do inverso da) matriz de transformação da base.
O vetor (posição) gradiente é um exemplo de um tensor (contravariante) covariante.
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Sendo Gµν o tensor de Einstein, Cµν é o tensor de Cotton12, ΣEH e ΣCS são termos
de superfície, que surgem da variação da ação de Einstein-Hilbert e de Chern-Simons,
respectivamente. Para variedades compactas e sem fronteiras, estes termos de contorno
são identicamente nulos. Em contrapartida, para variedades com contorno, os termos de
fronteira não são triviais. Neste caso, objetivando o cancelamento de tais termos, se faz
necessário adicionar a ação de Gibbons-Hawking-York SGHY à ação de Einstein-Hilbert
[189, 190].

SGHY = 1
κ2

∫
∂M

d3x
√

g ϵT, (3.29)

onde ∂M é o contorno da variedade M, g é o determinante da métrica induzida no
contorno gµν , T é o traço do tensor de curvatura extrínseco, ϵ é igual −1(+1) quando o
vetor normal ao contorno é tipo-espaço(tipo-tempo), para a assinatura (+,−,−,−), xi são
as coordenadas no contorno, com (i = 1, 2, 3). O tensor de curvatura extrínseco, também
conhecido como segunda forma fundamental, é uma forma quadrática no plano tangente da
superfície no espaço euclidiano, que juntamente com a primeira forma fundamental, serve
para definir invariantes extrínsecos da superfície, suas curvaturas principais. Geralmente,
tal forma quadrática é definida para uma subvariedade suave imersa em uma variedade
(pseuda)Riemanniana [191]. Aqui assumiremos, por hipótese, condições de contorno que
asseguram que os termos de fronteira desaparecem. A forma explícita do tensor de Cotton
em (3.28) é:

Cµν ≡ −1
2
[
vαε

µαβλ(∇βR
ν
λ + εναβλ∇βR

µ
λ) + vσα(∗Rσνµα + ∗Rσµνα)

]
, (3.30)

sendo este um tensor quadridimensional de rank 2, simétrico de traço nulo. Os cálculos
realizados para a obtenção de Cµν e sua divergência estão contidos no Apêndice-A.2. Sendo
esta divergência dada pela seguinte equação

∇µC
µν = 1

8v
ν ∗RR, (3.31)

onde vσα = ∇σvα. No que se refere as equações de movimento oriundas da variação da
ação (3.27), elas serão facilmente alcançadas pela soma dos resultados provenientes da
variação da ação de Einstein-Hilbert (2.8) e da variação da ação de CS (3.20). Desta forma
obteremos as seguintes equações modificadas de Einstein

Gµν + Cµν = κ2T µν(m), (3.32)

onde a conservação do tensor energia-momento ∇µT
µν
(m) = 0 e a conservação do tensor de

Einstein, garantida pelas identidades de Bianchi ∇µG
µν = 0, demandam nulidade para

a divergência do tensor de Cotton (3.31). Neste caso, podemos assumir ϕ = const., que
implica em vν = 0, que por sua vez anula todas as componentes de Cµν , recuperando assim,
12 De início, o tensor de Cotton-York foi definido em terceira ordem. No contexto das identidades Bianchi,

o tensor de Cotton está presente em qualquer dimensão D.
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de modo trivial e direto, a RG. Por outro lado, temos uma situação interessante quando
assumimos vν ̸= 0. Desta maneira, geraremos uma adicional condição de consistência,
conhecida como vínculo de Pontryagin

∗RR = 0, (3.33)

que restringe o número de soluções permitidas para as equações modificadas de Einstein
(3.32). Contudo, muitas soluções da RG persiste na teoria modificada de CS. Por exemplo,
as métricas com simetria rotacional, cujas componentes não nulas do tensor de Riemann têm
a estrutura R[µν][αβ], ou seja, R0101, R0202, . . . , estão entre aquelas métricas que satisfazem
a condição de consistência extra dada por (3.33) [187]. Nestas circunstâncias estão as
métricas estáticas e esfericamente simétricas de Schwarzschild e Reissner-Nordström. Por
outro lado, pode-se citar a métrica de Kerr13 como um notável contraexemplo de solução
da CSMG, pois para esta métrica ∗RR ̸= 0, conforme discutido em [192, 193].

3.2.3 Gravidade Modificada de Chern-Simons Dinâmico

Na generalização do CSMG, o chamado CSMG dinâmico (DCSMG), o termo
cinético e um potencial para o campo dinâmico ϕ é adicionado na ação (3.26), produzindo
a seguinte ação

Sϕ = β

2κ2

∫
d4x
√
−g

(1
2∇

µϕ∇µϕ+ V (ϕ)
)
, (3.34)

onde β é uma constante de acoplamento adimensional. Assim sendo, o campo dinâmico
ϕ é dotado com seu próprio tensor energia-momento. Quando variamos S(EH+CS+ϕ), em
relação a ϕ, obteremos a equação de evolução de ϕ

∗RR = 4β
(
□ϕ− ∂V

∂ϕ

)
. (3.35)

No caso da ação S(EH+CS+ϕ), para ϕ = const, a gravidade CS, dinâmica (β ̸= 0) e
não-dinâmica (β = 0), se reduz a RG. Pois, a densidade de Pontryagin é a divergência
total da corrente topológica de CS, conforme a Eq.(3.24). No modelo não-dinâmico, não há
razões físicas bem motivadas para escolhas específicas do campo escalar, que geralmente é
escolhido com o objetivo de simplificar as equações. Distintivamente, no modelo dinâmico
a arbitrariedade na escolha de ϕ é reduzida ou mesmo completamente eliminada. Pois,
embora se possa prescrever livremente as condições iniciais para o campo, para uma grande
classe de espaço-tempo, a solução da equação ondulatória que ele deve satisfazer, impele a
evolução do campo para um único estado, independente das condições iniciais [194]. A
DCSMG foi utilizada para estudos de várias questões relacionadas às ondas gravitacionais
[195, 196, 197], com invariância projetiva desenvolvida na extensão métrica-afim [198], para
13 Descreve a geometria do espaço-tempo vazio em torno de um buraco negro rotativo, sem carga e

axialmente simétrico, com um horizonte de eventos quasi-esférico.
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análise de buracos negros giratórios numericamente estáveis às perturbações da métrica de
ordem inicial [199] e para cálculos das frequências orbitais dos buracos negros rotativos,
utilizando-se da métrica de Kerr deformada, próximo ao horizonte de eventos [200]. Convém
frisar, o invariante topológico de Chern-Pontryagin também aparece naturalmente no
contexto da teoria das cordas/M, especificamente, compactando as dimensões extras14 da
teoria M (D = 11) para teorias efetivas da gravidade [201, 202]. Em particular, pode-se
citar o modelo Starobinsky-Bel-Robinson (SBR), cuja ação envolve termos quadráticos de
Chern-Pontryagin, (∗RR)2, seus aspectos cosmológicos foram estudados em [203]. Outro
modelo interessante inspirado em cordas, intimamente relacionado ao modelo SBR, é a
teoria da gravidade efetiva de Einstein-Grisaru-Zanon, que foi investigada em [204].

3.3 Invariância de Lorentz
As simetrias desempenham um papel fundamental na nossa compreensão das leis

da natureza. A teoria dos grupos, por exemplo, se utilizam de técnicas de simetrias como
ferramentas indispensáveis nos estudos dos sistemas quânticos. Em 1931, Wigner formulou
um teorema onde afirma que a invariância dos observáveis sob certa transformação (rotação,
translação e CPT) implica na existência de um operador unitário no espaço de estados de
Hilbert [205]. O teorema de Emmy Noether (1882-1935), quando aplicado classicamente,
incorpora as simetrias diretamente aos observáveis físicos [206]. O fenômeno da quebra
espontânea de simetria, que ocorre em sistemas cuja dinâmica é invariante sob uma
transformação de simetria, é o alicerce para o entendimento do comportamento peculiar
dos supercondutores, superfluidos, ferromagnetos, e a origem das massas das partículas
elementares [207].

No caso específico da simetria de Lorentz, sua legitimidade é verificada com alto
grau de precisão [208]. Porém, como acontece em toda e qualquer teoria na física, a
simetria de Lorentz também é questionada quanto à existência dos limites inerentes à
sua aplicabilidade. Muitas são as razões conhecidas para a QSL, sendo algumas delas:
(i) Teoria das cordas; (ii) Possível variabilidade dos valores das constantes fundamentais,
especialmente, a velocidade da luz, cuja deformação das relações de dispersão que começou
a ser discutida para explicar a aceleração cósmica [209]. E, evidentemente, os cenários que
exigem a existência de alguma escala de distância mínima: (iii) Não comutatividade do
espaço-tempo, que numa versão mais usada, do tipo-Moyal, envolve um tensor antissimé-
trico constante de segunda ordem Θµν , que claramente não é invariante de Lorentz [210];
(iv) Gravidade quântica em laço, proposto como uma tentativa de quantizar a geometria
[211]; e (v) Conceito do espaço-tempo espumante [212, 213].
14 Não sendo necessariamente as variedades topologicamente triviais Kählerianas de Calabi-Yau, onde a

primeira classe de Chern (c1) é nula (Rµν = 0).
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Na verdade, as teorias da gravidade quântica preveem a violação da invariância de
Lorentz em altíssimas energias, próximas a escala de energia de Planck, inalcançáveis pelas
experiências atuais na terra [214, 215]. Podemos afirmar que o início dos estudos sobre
a QSL se deram, em 1951, quando Paul Dirac (1902-1984), profundamente influenciado
pela descoberta do princípio da relatividade por Einstein, inquiriu a anisotropia espacial,
através da existência do éter. Ou seja, na construção de uma nova teoria dos fenômenos
eletromagnéticos, Dirac lança um artigo com a proposta da presença de um certo vetor
com direção preferencial e onipresente, resultando assim na possibilidade da QSL [216].

Historicamente, no final da década de 1950, a descoberta da quebra de paridade
nas interações fracas, despertaram indagações sobre à violação de Lorentz (VL), propor-
cionando, na década de 1960, a produção de vários artigos sobre temas nesta direção.
Por exemplo, o artigo sobre a validade da RE em pequenas distâncias (10−16cm) [217].
Em 1989, conjecturou-se que no limite de baixa energia da corda bosônica, algum vetor,
ou, em geral, os campos tensoriais podem adquirir valores esperados diferentes de zero,
produzindo assim algumas direções privilegiadas no espaço-tempo e, portanto, resultando
na QSL [62]. Neste aspecto, Kostelesky e Samuel incorporaram a condição da violação de
Lorentz ao SM, no que hoje é chamado de Modelo Padrão Estendido15 (Standard-Model
Extension (SME). Nesse sentido, logo depois, foi proposto um modelo teórico modificado
da QED quadridimensional [218], como resultado do termo adicional denominado termo
Carroll-Field-Jackiw (CFJ), sendo ele

LCFJ = ϵµνσαkµAν∂σAα, (3.36)

aqui, o kµ é um vetor constante que produz anisotropia no espaço-tempo, o agente
responsável pela QSL. O termo (3.36) pode ser tratado como uma natural extensão
quadridimensional do conhecido termo de Chern-Simons, sendo um invariante de gauge.
Evidentemente, a introdução do termo CFJ despertou interesse na investigação de suas
implicações. No regime clássico, os estudos se concentraram especialmente nas relações de
dispersão e questões relacionadas com unitariedade e causalidade. Nesse aspecto, há uma
variedade de maneiras de construir extensões da VL para diferentes teorias que descrevem
campos escalares, espinor, eletromagnéticos e gravitacionais [219]. Seguramente, a mais
importante consequência da QSL é a deformação das relações de dispersão, que leva
ao conceito de velocidade variável da luz, como uma proposta das possíveis explicações
para a aceleração cósmica. A deformação das relações de dispersão também pode ser
implementada nas teorias massivas [220]. Em 2006, Cohen e Glashow apresentaram a
Very Special Relativity - (VSR), uma teoria de campo construída através do subgrupo
DISIMb(2) (ortócrona e de reversão temporal) contido no grupo de simetria de Lorentz
isomórfico e de Poincaré [221], que foi abordado por Bogoslovsky, em 1977 [222, 223].
15 É uma teoria de campo efetiva que contém o SM, a RG, e todos os operadores possíveis que quebram

a simetria de Lorentz.
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Mais tarde, Gibbons, Gomis e Pope conectaram essas duas distintas abordagens, quando
demostraram que as simetrias do VSR preservam o elemento de linha encontrado por
Bogoslovsky [224, 225].

ds = (ηcddxcdxd)
1−b

2 (nadxa)b, (3.37)

onde ηcd é a métrica de Minkowski, n = nadx
a é o campo 1-forma com componentes

constantes e b é um parâmetro adimensional. Sendo (3.37) o elemento de linha do espaço
plano de Finsler plano, que generaliza o elemento de linha da métrica da RE. No limite
b = 0, recuperamos o elemento de linha do espaço-tempo Minkowski. Desta forma, no
contexto da teoria quântica de campos local ou da conservação CP, a VSR fornece um
simulacro da RE [221]. Nos estudos do espectro de energia de um férmion de Dirac,
com invariância em um campo magnético estático e homogêneo, as correções de primeira
ordem da VSR para o fator gs do elétron, sugere a possibilidade da VSR ser a causa da
origem da massa do neutrino [226]. Outra implicação importante ocorre nos modelos
estendidos da eletrodinâmica com VL, onde o comportamento não trivial das possíveis
soluções clássicas podem exibir, no vácuo, os fenômenos característicos da propagação de
ondas eletromagnéticas em meios não triviais, como a birrefringência [227] e a rotação do
plano de polarização [228]. Deste modo, permite-se o uso de tais modelos de VL para
descrever de modo eficaz certos fenômenos da matéria condensada [229, 230]. Além disso,
muitos modelos de teoria com VL, nem a unitariedade nem a causalidade são atingidos,
especialmente quando atribuímos condições especiais para seus parâmetros, geralmente
quando estes têm valores pequenos [231, 232]. No regime quântico, as pesquisas ocorreram
nas possibilidades da geração de certos termos aditivos de VL pela abordagem perturbativa,
nos estudos de renormalizabilidade e sua relação com possíveis anomalias. Além disso,
outras extensões da VL foram propostas, não apenas para o campo eletromagnético, mas
também para o campo escalar e espinorial, o que permitiu formular o SME, tornando
assim a QSL um fenômeno testável experimentalmente [233, 234].

A primeira aplicação, no contexto da QSL, foi realizada na reprodução do termo
CFJ (3.36), sendo finito, embora formalmente seja superficialmente divergente e ambíguo
[235]. Por conseguinte suscitou discussão sobre as possíveis origens dessas ambiguidades e
sua relação com a anomalia quiral [236]. Além disso, foi demonstrado que tais ambiguidades
ocorrem não apenas para o termo CFJ, mas também para alguns outros termos de
VL, sendo elas também relacionadas com anomalias, generalizações diretas da anomalia
quiral e anomalias gravitacionais [188]. A possibilidade de gerar diferentes termos VL,
especialmente às modificações para a eletrodinâmica, tem sido estudada em diferentes
dimensões de espaço-tempo, 2 ≤ D ≤ 5. Também, existem propostas da construção
de teorias supersimétricas envolvendo a VL, com a introdução de supercampos extras,
cujas componentes estão relacionados com alguns vetores/tensores constantes, com toda
maquinaria dos supergráficos sendo aplicada para obtenção das correções quânticas [237].
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3.3.1 Quebra de Simetria de Lorentz e CPT na Gravitação

Em um espaço-tempo plano, a simetria de Lorentz pode ser violada explicitamente
por meio da introdução de novos termos proporcionais a vetores constantes (tensores), que
não podem ser introduzidos consistentemente no espaço curvo [238]. Pois, a modificação
direta dos modelos de gravidade com VL anula também a invariância geral de coordenadas
e, por sua vez, desfaz a necessária simetria de gauge para o campo gravitacional. Na
gravidade, o único conhecido termo aditivo de quebra de simetria Lorentz-CPT, que possui a
propriedade da invariância geral de coordenadas, é o termo gravitacional quadridimensional
de Chern-Simons [239]. Muitos problemas relacionados a este termo foram estudados
detalhadamente, incluindo a possibilidade de sua geração perturbativa, decorrentes de
ambiguidades, que, neste caso, estão ligadas à anomalias gravitacionais. Foi demonstrado
que, para uma teoria com VL, é possível que existam transformações de Lorentz distintas,
para observador e partícula, especialmente quando campos de fundo fixos estão presentes
[240, 241]. No caso dos campos de fundo, ou seja, apenas aqueles representados por vetores
ou tensores constantes, transfiguram-se sob transformações de Lorentz do observador, mas
não de partícula. Todavia, para os campos dinâmicos as transformações de Lorentz são de
partícula e do observador. Sendo assim, as teorias com Lagrangianos com VL continuam
sendo invariantes sob transformações de Lorentz do observador, mas não são invariantes sob
transformações de Lorentz das partículas16. Isto permite aplicar a metodologia relativística
dentro do quadro das transformações de Lorentz do observador.

Isto posto, no espaço-tempo curvo, o grupo de simetria é o das transformações de
coordenadas gerais xµ = xµ(x′), que, ao mesmo tempo, representa em si uma extensão
tanto do grupo de Lorentz quanto do grupo de gauge. Em muitos casos a QSL implica
também na quebra de simetria CPT. Um exemplo paradigmático é o termo CFJ que
preserva a simetria de gauge. Portanto, é natural exigir que as extensões de QSL da
gravidade sejam consistentes com a invariância geral de coordenadas, isto é, invariância
de gauge. Outra abordagem possível consiste na abordagem do limite de gravidade fraca
(linearizado), onde considera apenas a dinâmica do tensor simétrico de flutuação da métrica
hµν , neste caso aplica-se os métodos semelhantes usados nos estudos de extensões VL
da QED. Há estudos experimentais da QSL para a determinação de possíveis limites
de aplicabilidade para a RE, com fortes motivações cosmológicas, como, por exemplo, a
possibilidade hipotética de anisotropia da radiação cósmica, chamada de “eixo do mal”
[63]. Neste caso específico, foi argumentado que tal anisotropia é atribuída aos métodos
inapropriados de análise estatística e não aos efeitos físicos fundamentais [242]. Outra
linha importante de estudos experimentais para a possível QSL é baseada em estudos de
raios cósmicos. De fato, o efeito Greisen-Zatsepin-Kuzmin (GZK) foi interpretado na ideia
de que ele pode ser explicado por uma forte QSL em alguma escala ultra-energética, como
16 Também denominadas de transformações de Lorentz ativas.
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é sugerido pela RE dupla [243]. Nesta proposta, a RE se modifica na escala de energia
de Planck passando a ter um segundo invariante, que se junta à velocidade da luz. Mas,
sendo a RE de Einstein recuperada nos referenciais inerciais e em baixas energias [244].
Este evento é alcançado por uma modificação não linear da ação do grupo de Lorentz
no espaço de momentos, gerada pela adição de uma dilatação a cada boots, de tal forma
que a energia de Planck permanece invariante. Visando inserir esta nova teoria na RG,
discute-se modificações no princípio da equivalência [243, 245, 246].

Neste sentido, as relações de dispersão devem ser modificadas por termos extras,
que se tornam importantes em ultra-altas energias [247, 248, 249]. A emissão de radiação
de Cherenkov17 é vista também como um caso de VL no vácuo [250, 251, 252, 253]. Em
2001, visando detectar matéria escura, o experimento de Polarização do Vácuo com Laser
(PVLAS) fez medições da rotação do plano de polarização da luz, com análise da causa do
comportamento óptico não-linear em campos magnéticos no vácuo [254]. Foi alegado que
essa rotação pode ser atribuída à não-comutatividade espaço-temporal, que representa a
si mesma uma das formas conhecidas de QSL, com o parâmetro de não comutatividade
sendo estimado em γ ≈ 30GeV −2 [255]. No entanto, subsequentemente foi argumentado
que essa mesma rotação deveria ser atribuída ao acoplamento áxion-fóton, enquanto o
impacto da não-comutatividade deve ser inobservável [256].

3.4 Teorias Não-Locais da Gravitação

3.4.1 Aspectos Gerais

Numa teoria local, um objeto é influenciado diretamente somente pela sua vi-
zinhança imediata. Nestas teorias, a causa num ponto x1 afetará outro ponto x2, se
houver uma onda ou partícula, entre esses dois pontos, exercendo influência através do
espaço, mediando a ação entre a causa em x1 e o efeito em x2. Por outro lado, podemos
afirmar que as teorias não-locais são constituídas por elementos que podem interagir
ou se correlacionarem, em diferentes pontos do espaço-tempo, sem nenhuma mediação
[257]. Dessa forma, a RG é uma teoria estritamente local, diferentemente da gravitação
Newtoniana e da interação Coulombiana, pois suas interações ocorrem à distância sem a
ação de campos de forças [258]. Objetivando substituir este conceito, Michael Faraday
(1791-1867), por volta de 1830, introduziu o conceito de campo, um ente matemático que
associa cada ponto no espaço com uma (ou mais) variável dinâmica. Logo, todos os pontos
no espaço participam do processo físico, cujos efeitos da ação se propagam de um ponto
para os pontos de sua vizinhança. Assim sendo, as equações de Maxwell, com um número
finito de derivadas, descrevem a evolução dos campos elétrico e magnético em cada ponto
do espaço. Ainda no século XIX, surgiu a proposta alternativa em termos de ação contínua
17 Radiação emitida por uma partícula carregada, que se move uniformemente no vácuo.
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num meio invisível chamado “éter luminífero”18 [259]. A ideia da existência deste fluido
invisível e indetectável que preencheria todo o espaço foi desafiada por experimentos como
o de Michelson-Morley [260, 261], e abandonada em favor de modelos mais abstratos, como
o vácuo. Historicamente, é estabelecido em 1934 o início dos estudos com abordagens da
não localidade, quando Gleb Wataghin (1899-1986), sem fazer referência, em seu artigo, de
algum termo derivado da expressão não-local, introduziu um fator de forma exponencial
com o propósito de dar tamanho/forma às partículas adimensionais [46]. Posteriormente,
em diferentes contextos da física de altas energias, surgiram trabalhos que incorporaram
efeitos não-locais [262, 263].

É preciso destacar, uma teoria cineticamente não-local não implica necessariamente
em uma teoria dinamicamente não-local. A MQ, por exemplo, é de natureza probabilística
e cinematicamente não-local, pois, pelo princípio da incerteza, introduzido em 1927 por
Heisenberg [264], onde afirma existir um limite para a precisão de medida para certos
pares de propriedades físicas, conhecidas como variáveis canonicamente conjugadas. Diante
disso, a posição e o momento não podem ser conhecidos com exatidão por meio de medidas
simultâneas. Matematicamente descrita esta incerteza, por Earle Hesse Kennard (1885-
1968) e Weyl, pela desigualdade que relaciona o desvio padrão entre estas duas quantidades,
σxσp ≥ ℏ/2. Assim sendo, estados quânticos não podem ser localizados no espaço-tempo,
e o observável da posição não pode ser medido com precisão arbitrária. Avaliando o
caso específico do famoso paradoxo de Einstein-Podolsky-Rosen [265, 266], dois estados
emaranhados são separados espacialmente e, ao realizar a medida de um observável em
um desses estados, é imediatamente afetado a probabilidade da medida deste mesmo
observável no outro estado. Logo, a informação física, entre os estados emaranhados, se
propaga sem a mediação de nenhum campo. Mas, importa frisar, nos estados quânticos
emaranhados não há violação da causalidade, pois não existe transmissão de qualquer
informação/mensagem cuja velocidade seja superior à velocidade da luz [267]. No caso
do SM das interações elementares das partículas através da troca de bósons, como fótons
para a força eletromagnética e glúons para a força forte, os campos são avaliados em um
mesmo ponto, e são governados por Lagrangianas locais, dos quais se derivam as equações
de movimento [268].

Nas teorias locais os Lagrangianos são construídos em termos de polinômios de
campos e de suas derivadas, uma vez que estamos interessados em observáveis de baixas
energias, portanto, a ordem das derivadas é sempre finita L ≡ L(ϕ, ∂ϕ, ∂2ϕ, . . . , ∂nϕ), onde
n é um número inteiro positivo e finito. Para uma teoria ser dinamicamente não-local, a
sua ação deve conter a forma não-local. Ou seja, a teoria deve conter em sua estrutura
operadores de derivadas covariantes de ordem infinita19 (sendo n infinito, a equação ainda
18 Em certo sentido, o problema da procura pelo éter luminífero, no passado, se assemelha ao problema

da energia escura, na atualidade.
19 Quanto maior for a ordem da derivada, mais não-local é a teoria.
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pode conter um número finito de soluções, a depender da escolha específica do operador
não-local), que são incorporados no Lagrangiano através das funções inteiras, isto é, fatores
de forma não polinomiais, que não podem ser apresentados na forma de um produto de
multiplicadores primitivos (z − a1)(z − a2) . . . (z − an), onde a1, a2, . . . an são as raízes da
função representante do fator de forma [269].

Neste aspecto, fora investigado generalizações adequadas das equações de movi-
mento das teorias de campos de ordem superior, abandonando-se a condição de localiza-
bilidade ilimitada de qualquer evento espaço-temporal, visando, se possível, conciliar os
requisitos de convergência da teoria, de definição positiva da energia do campo livre e de
um comportamento estritamente causal do vetor de estado de um sistema físico [270]. Em
particular, as correções de um laço foram abordadas como generalização do modelo escalar
da QED não-local [271]. Sabe-se que os operadores não-locais emergem naturalmente no
limite de baixa energia nas teorias de cordas/M [272, 273], como resultado de correções-α′,
onde α′ é definido como o inverso da tensão das cordas. Dentro deste contexto, outro
exemplo de modelo não-local é dado pela teoria de cordas p-adic [274, 275, 276].

3.4.2 Cenário gravitacional

As propostas extensivas da gravitação de Einstein, no contexto das teorias não-
locais, surgem com o objetivo maior de resolver o problema do aparecimento de fantasmas e,
ao mesmo tempo, manter a teoria renormalizável ou finita no UV [277, 278, 279, 280, 281].
Pois, com o propósito de tornar a RG renormalizável, são incluídos contra-termos de
ordem superior da curvatura, que cancelam as divergências na ação efetiva e melhora o
seu comportamento UV. Contudo, a presença de tais termos de ordem superior prejudica,
no nível quântico, a unitariedade da teoria, levando inevitavelmente ao aparecimento de
estados de norma negativa, os chamados fantasmas [282]. No nível clássico, essas teorias
geralmente sofrem de instabilidades inevitáveis do tipo Ostrogradsky, resultando em um
Hamiltoniano que não é limitado por baixo [283, 284]. Para contornar esses problemas,
uma abordagem comum é empregar a teoria de campo, que surge naturalmente no limite
de baixa energia da teoria das cordas.

Estas essenciais questões vêm chamando a atenção e, como resultado, muitos
modelos clássicos de gravidade não-local foram realizados em diferentes cenários, por
exemplo, modelos cosmológicos não-locais [285, 286, 287, 288, 289, 290, 291], soluções
não-locais de buracos negros [292, 293] e outras soluções exatas dentro destas teorias
não-locais [294, 295, 296, 297], teorias não-locais de gauge e supersimétricas [298, 299], e,
também, o mecanismo de Higgs foi investigado dentro das teorias de campos não-locais
em [300, 301]. No nível quântico, os modelos gravitacionais onde retrata a matriz S

de campo escalar não-local estendida e finita no UV, são extremamente complicados do
ponto de vista técnico, pois as equações obtidas nesses modelos são de difíceis soluções
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em seus cálculos, sendo a unitariedade e causalidade, os principais problemas a serem
resolvidos [302]. Notavelmente, sendo atualmente um método conveniente e poderoso
para alcançar soluções consistentes dos problemas fundamentais da gravidade quântica, os
modelos de teoria de campos não-locais são considerados uma dos principais caminhos a
ser seguido na tentativa de fundir o formalismo da TQC com a RG, assim, tem-se estudado
e discutido extensivamente em muitas áreas da física teórica, como TQC não comutativo,
teoria de campos de cordas, teoria de campos efetivos e teoria de campos conformes
[303, 304, 305, 306, 307, 308]. Um exemplo bastante simples, mas consideravelmente útil,
da não localidade aplicada no contexto gravitacional é dado a seguir, onde se modifica a
equação de Poisson empenhada à lei da gravidade de Newton para uma partícula pontual.

3.4.3 Equação de Poisson Newtoniana Não-local

Em 1983, o físico israelense Mordehai Milgrom (1946- ) propôs modificações nas
leis de Newton como forma de explicar anomalias na curva de rotação das galáxias, dando
surgimento a dinâmica Newtoniana modificada (MOND-Modified Newtonian Dynamics)20

[309]. Entre as propostas da MOND, tem-se a modificação da equação de Poisson da
gravidade Newtoniana para uma partícula pontual, a qual é dada por:

∇2ϕ(r⃗) = 4πGmδ(r⃗ − r⃗0), (3.38)

onde ϕ(r⃗) é o potencial gravitacional, G é a constante gravitacional de Newton, m é a
massa pontual localizada em r⃗0. A equação (3.38) é uma consequência da lei da força do
inverso do quadrado, que se baseia, em última análise, em observações do sistema solar
que originalmente levaram às leis do movimento planetário de Kepler. Cuja generalização
são as equações do campo gravitacional de Einstein, com previsões consistente em boa
concordância com os dados atuais observados do sistema solar [310]. Alterando o termo
do laplaciano em (3.38), como descrita a seguir

∇2
(

1− ∇
2

M2

)
ϕ̃(r⃗) = 4πGmδ3(r⃗ − r⃗0), (3.39)

obteremos a solução modificada

ϕ̃(r⃗) = ϕ(r⃗)
(
1− e−Mr⃗

)
, (3.40)

onde ϕ(r⃗) = −Gm
r⃗

é a solução da equação de Poisson usual, não modificada. Na
equação (3.40), recuperamos a teoria Newtoniana quando Mr⃗ ≫ 1. A solução para o
campo gravitacional modificado ϕ̃ é regular em r⃗ = r⃗0. O campo gravitacional é obtido
pelo gradiente do potencial escalar −∇r⃗ϕ̃(r⃗) = g⃗(r⃗). Pode-se mostrar que para o caso
20 Teoria que propõe uma modificação das leis de Newton para explicar as propriedades observadas das

galáxias. Modificar a lei da gravidade de Newton resulta em gravidade modificada, enquanto modificar
a segunda lei de Newton resulta em inércia modificada.
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r⃗ = r⃗0 a solução de ∇r⃗ϕ̃(r⃗0) é diferente de zero, logo não representa um caso físico real
e mensurável, pois o campo gravitacional na origem da massa pontual m deve ser nulo,
g⃗(r⃗0) = 0. Contudo, podemos introduzir termos de escala de massa Mi (i = 1, . . . n), tendo
as funções de Green para tais teorias a seguinte propriedade:

G (r⃗ ′, r⃗) ∼
∇ n∏

i=1

(
1− ∇

2

M2
i

)−1

= ∇−1 +
n∑
i=1

ci(∇2 −M2
i )−1, (3.41)

onde os coeficientes ci serão dados pela expressão

1 +
n∑
i=1

ci = 0. (3.42)

Em análise da equação (3.42), constata-se a existência de pelo menos um valor de
i para o qual ci < 0. Como já dito, tal condição, onde ci possui sinal negativo, pode levar
para o sistema físico o surgimento das instabilidades de Ostrogradsky, tanto no regime
clássico, quanto no regime quântico o aparecimento dos estados fantasmas. Para contornar
tais problemas, a abordagem não-local é formulada na teoria, por intervenção de uma
função particular do operador de Laplace inserida na equação de Poisson. Com a exigência
de ser esta uma função transcendental de valor complexo e holomórfica em todo o plano
complexo21, conhecida na literatura como sendo o fator de forma. Para o presente caso,
escolheremos uma função inteira do tipo exponencial, F (∇) = e−∇2/M2 . Assim sendo,
teremos a equação de Poisson modificada, sendo agora uma equação não-local

∇2e−∇2/M2Φ(r⃗) = 4πGmδ(r⃗ − r⃗0), (3.43)

cujo solução é o potencial gravitacional regularizado Φ(r⃗), sendo ele dado por

Φ(r⃗) = −Gm
r⃗

erf
(
Mr⃗

2

)
, (3.44)

onde erf(x) é a função erro de Gauss conhecida pela expressão

erf(x) = 1√
π

∫ x

−x
e−t2dt. (3.45)

Por fim, no Capítulo-5, trataremos em mais detalhes a teoria de campo não-local,
mais especificamente discutiremos os fatores de forma, construídos mediante funções do
operador de d’Alembert F (□). No caso específico de um novo modelo não-local que será
apresentado, os fatores de forma serão formulados por funções cujo argumento é o operador
de Dirac F (/∂), não o operador de d’Alembert.
21 Pelo teorema da fatoração de Weierstrass (ver Apêndice-B.3), uma função complexa f(z) é holomórfica

em um ponto z0, se existir um disco aberto centrado em z0, onde f(z) é derivável em todos os seus
pontos. Logo, se f(z) é uma função inteira, ou seja, holomórfica em todo o plano complexo, ela pode
ser expressa como uma série de potências do seu argumento.
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4 Modelos Generalizados de Chern-
Pontryagin

4.1 Ação e Equações de Campo da Teoria
Neste capítulo, apresentaremos uma nova e mais genérica classe de modelos de

gravidade modificada, em quatro dimensões, que chamamos de modelos generalizados de
gravidade Chern-Pontryagin (GCPMG -Generalized Chern-Pontryagin Modified Gravity).
Direcionado pelas teorias f(R), GCPMG está originalmente publicado em [66], cuja ação
em vez de ser linear ou quadrática do termo topológico de Chern-Pontryagin ∗RR, exibe
uma dependência funcional arbitrária e genérica deste objeto e também do escalar de
curvatura R = gµνRµν . Desta forma, podemos definir a ação deste modelo como sendo,

S = 1
2κ2

∫
d4x
√
−g f(R, ∗RR) +

∫
d4x
√
−gLm(gµν ,Ψ) = Sf + Sm, (4.1)

onde (Sm)Lm é a (ação)Lagrangiana das fontes de matéria, representada simbolicamente
por Ψ, e ∗RR é o termo topológico de Chern-Pontryagin definido pelas equações (3.24)
e (3.25), como uma função do tensor contravariante de Levi-Civita (3.23). Conforme
demonstrado no Apêndice-A.2, os tensores de Levi-Civita, covariante εµναβ = √−g ϵµναβ e
contravariante, são totalmente antissimétricos definidos a partir do símbolo de Levi-Civita
ϵµναβ, cujo valor é +1 para permutação par de seus índices, -1 para permutação ímpar
de seus índices e 0 para os demais casos. Observa-se que em certos casos desse modelo,
nomeadamente, quando a função f(R, ∗RR) inclui graus ímpares do termo ∗RR, quebra-se
a paridade do modelo, como demonstrado em [52].

Portanto, para obter as equações de movimento, devemos variar (4.1) com respeito
à métrica. Para o termo genérico da ação da teoria, teremos

δSf = 1
2k2

∫
d4x

[
δ
√
−gf +

√
−g δf

]
= 1

2k2

∫
d4x
√
−g

[
−1

2gµνδg
µν f + fR(δgµνRµν + gµνδRµν) + f∗RR δ(∗RR)

]
,

(4.2)

onde f ≡ (R,∗RR), fR ≡
∂f

∂R
e f∗RR ≡

∂f

∂(∗RR) . Para os dois primeiros termos de (4.2)

temos a solução dada pela a Eq.(3.2), decorrente das teorias f(R). Assim sendo, iremos
aqui somente obter a variação do último termo de (4.2), para isso, calcularemos a variação
da densidade de Chern-Pontryagin dada por

f∗RR δ(∗RR) = f∗RR

[1
2

∗RRgµνδg
µν + 1

2ε
µναβδ(Rλ

θµνR
θ
λαβ)

]
= 1

2f
∗RR

∗RRgµνδg
µν + 2f∗RR ε

µναβRθ
λαβ∇µδΓλθν .

(4.3)



Capítulo 4. Modelos Generalizados de Chern-Pontryagin 48

A variação do tensor de Riemann, que se encontra no segundo termo do lado
direito de (4.3), fora obtido por meio da identidade de Palatini (A.6). E, o primeiro termo
vem da variação do tensor Levi-Civita

δ(εµναβ) = ϵµναβ δ

(
1√
−g

)
= 1

2
ϵµναβ√
−g

gµνδg
µν = 1

2ε
µναβgµνδg

µν . (4.4)

Para o segundo termo de (4.3), que definiremos de C̃, aplicaremos as propriedades
(anti)simétricas dos tensores, o método da integração por partes e, também, utilizaremos
a equação da variação dos símbolos de Christoffel (A.5). Deste modo, teremos

C̃ = −2εµναβ∇µ

(
Rθ

λαβf∗RR

) 1
2g

λγ (∇θδgνγ +∇νδgθγ −∇γδgθν)

= −εµναβRθγ
αβ∇µf∗RR (∇θδgνγ +∇νδgθγ −∇γδgθν)

= −εµναβRθγ
αβ∇µf∗RR (∇θδgνγ −∇γδgθν)

= −2εµναβRθγ
αβ∇µf∗RR∇γδgθν

= −2εµαβν
(
∇γR

θγ
αβ∇µf∗RR +Rθγ

αβ∇γ∇µf∗RR

)
δgθν

=
(
2εµαβ(ν∇γR

θ)γ
αβ∇µf∗RR + 4∗R(θ|γµ|ν)∇γ∇µf∗RR

)
δgθν .

Por meio da definição das seguintes quantidades vµ ≡ ∇µϕ, vγµ ≡ ∇γvµ e ϕ ≡ f∗RR,
alcançaremos

C̃ =
(
2vµ εµαβ(ν∇γR

θ)γ
αβ + 4vγµ∗R(θ|γµ|ν)

)
δgθν

=
(
−2vµ εµαβ(ν∇γR

γ)θ
αβ + 4vγµ∗Rγ(θν)µ

)
δgθν

=
(
2vµ εµαβ(ν(∇βR

θ)
α −∇αR

θ)
β) + 4vγµ∗Rγ(θν)µ

)
δgθν

= 4
(
vµ ε

µβα(ν∇αR
θ)
β + vγµ

∗Rγ(θν)µ
)
δgθν .

(4.5)

Substituindo (4.5) em (4.3) e adicionando-a a expressão da variação da ação da
gravidade f(R) dada por (3.2), encontraremos o resultado final para a variação da ação
(4.2)

δSf = 1
2κ2

∫
d4x
√
−g
[
− 1

2gµνf + fRRµν + gµν□fR −∇(µ∇ν)fR

+ 1
2

∗RRf∗RR gµν + 4
(
vλε

λβα
(µ∇|α|Rν)β + ∗Rγ λ

(νµ)∇γ∇λf∗RR

) ]
δgµν = 0.

(4.6)

Do resultado acima, poderemos obter as equações de campo da ação (4.1)

fRRµν −
1
2gµνf + gµν□fR −∇(µ∇ν)fR + 1

2
∗RRf∗RR gµν

+ 4
(
vλε

λβα
(µ∇|α|Rν)β + ∗Rγ λ

(νµ)∇γ∇λf∗RR

)
= κ2T (m)

µν ,
(4.7)

onde □ ≡ gµν∇µ∇ν . Por definição, o tensor energia-momento da contribuição das fontes de
matéria é dado pela variação com respeito a métrica do Lagrangiano da matéria, conforme
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a equação dada em (A.3). Deste modo, será mais conveniente reescrever as equações de
campo (4.7) da seguinte maneira

Rµν −
1
2Rgµν = κ2

effT
(m)
µν + T effµν , (4.8)

onde, κ2
eff ≡

k2

fR
, e

T effµν = 1
fR

[
− 1

2fRRgµν + 1
2gµνf − gµν□fR +∇(µ∇ν)fR − Cµν

]
, (4.9)

onde definimos o C-tensor

Cµν ≡ 4
(
vλε

λβα
(µ∇|α|Rν)β + ∗Rγ λ

(νµ)∇γ∇λf∗RR

)
+ 1

2
∗RRf∗RR gµν . (4.10)

Observa-se facilmente a natureza simétrica do C-tensor. Com relação ao traço de
(4.10), teremos para o seu primeiro termo o traço nulo, 4vλελβα(µ∇|α|R

µ)
β, isto se dá devido

a contração do tensor de Ricci simétrico com o tensor de Levi-Civita antissimétrico, já o
segundo termo, 2εγβα(µR

µλ
βα) ∇γ∇λf∗RR, se anula devido a identidade de Bianchi Rβ

[αµλ] = 0.
Por consequência, teremos

gµνCµν = 2f∗RR
∗RR. (4.11)

Conforme já mostrado no capítulo anterior (ver também o Apêndice-A.2), o tensor
simétrico de Cotton tem traço nulo, logo, podemos dizer que o C-tensor diferencia do
tensor de Cotton por um termo genérico dependente da densidade de Chern-Pontryagin.
Nos estudos da geometria diferencial, o tensor de Cotton (ou Cotton-York) é um tensor
originalmente definido em terceira ordem (3.17), em termos do tensor de Ricci e do tensor de
Weyl, sendo conformemente um invariante métrico de uma variedade (pseudo)Riemanniana.
No entanto, o tensor de Cotton surge no contexto das identidades Bianchi e está presente
em qualquer dimensão D, com aplicações importantes nos estudos das ondas gravitacionais
e abordagens das congruências no vácuo dos espaços-tempos estacionários [311, 312].

Nota-se que as equações de campo (4.7) envolvem termos de altas derivadas,
cuja presença conduz potencialmente ao surgimento de instabilidades de Ostrogradsky
(conforme demonstrado no Apêndice-B.1), em nível perturbativo, conhecidas como estados
fantasmas (“ghosts”), abolindo à restrição áurea da unitariedade na teoria quântica de
campos [313]. Uma investigação cuidadosa do número de graus de liberdade, usando uma
análise canônica, foi realizada para algumas teorias da gravidade de curvatura superior
[314], onde foi descoberto que essas teorias possuem pelo menos um modo fantasmagórico.
No entanto, essas dificuldades são contornadas seguindo a metodologia empregada nas
teorias de campos efetivos1 (TCE) [315], na qual os modos fantasmagóricos podem ser
1 TCE é uma técnica aproximativa que, na descrição e análise do comportamento de sistemas físicos,

considera apenas certas escalas de energias de interesse
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desconsiderados, uma vez que são suprimidos por uma escala típica de alta energia,
tornando-os modos pesados para se propagarem no limite de baixa energia. De agora em
diante, trataremos os modelos generalizados de gravidade Chern-Pontryagin como TCE.

4.1.1 Equações de Vínculo do Modelo f = f1(R) + f2(∗RR)

Aqui, assumiremos a função genérica do nosso modelo como tendo a seguinte
forma: f(R, ∗RR) = f1(R) + f2(∗RR). Logo, f é uma função constituída pela soma de
duas funções f1 e f2, cada qual composta por somente um destes argumentos, o escalar de
Ricci R e o termo topológico de Chern-Pontryagin ∗RR. Desta maneira, a escolha de f
simplifica a obtenção das equações de movimento e produz a possibilidade de recuperarmos
RG quando adotado certas condições para o modelo. Por exemplo, para o caso particular
f = R+ ∗RR, as equações de campo (4.7) se reduzem as equações de campo da RG (A.14).

Recorrendo à identidade de Bianchi, ∇µGµν = 0, e a conservação do tensor energia-
momento, ∇µT (m)

µν = 0, podemos calcular a divergência da Eq.(4.7), conforme cálculos
demonstrados no Apêndice-A.4, cujo resultado é

∇µC
µν = 1

2f
∗RR∇ν ∗RR. (4.12)

Os cálculos para se obter as equações de vínculo da Eq.(4.7) para o caso específico
de um função simples de f(R) foram realizados em [316]. Verifica-se que a divergência do
termo entre parênteses da Eq.(4.10) assemelha-se ao vínculo de Pontryagin da teoria de
gravidade modificada Chern-Simons (A.31), como demonstrado em [229], onde os autores
expõem uma discussão detalhada da consistência de várias métricas conhecidas dentro da
DCSMG.

Observa-se que as equações modificadas para f2(∗RR) ∝ ( ∗RR)n, com n ≥ 1,
reduzem à gravidade f(R) (para RG se f1(R) = R) para uma variedades de classes de
métricas, por exemplo, as estáticas esfericamente simétrica, Friedmann-Robertson-Walker,
(A)dS e tipo-Gödel, pois para todas essas métricas ∗RR = 0. De fato, esta condição é
nada mais que o vínculo de Pontryagin satisfeito para as métricas, uma vez que a relação
específica entre a correspondência do escalar Newman-Penrose é satisfeita, conforme
discussão apresentada em [229]. Em princípio tal vínculo também é satisfeito para outras
métricas. No entanto, para produzir equações de movimento de campo modificadas não
trivialmente é necessário ter Cµν ̸= 0 que resulta em ∗RR ̸= 0. Esta situação, por exemplo,
ocorre para a métrica de Kerr, conforme mostrado em [54]. Nota-se também, para a
teoria tipo “agravity” que não envolve o termo de Einstein-Hilbert [317], mas termos de
derivadas superiores estão presentes na sua ação, de modo que f1(R) = 0. As métricas
que satisfazem a restrição de Pontryagin resolveriam as equações de movimento de uma
maneira trivial, já que neste caso fR = 0 e f ∗RR = 0 se f(∗RR) ∝ (∗RR)n, com n > 1.
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Outra importante relação é obtida do modelo quando toma-se o traço da Eq.(4.8).
Tendo o conhecimento de (4.11), teremos o seu resultado abaixo

3□fR +RfR − 2f + 2 ∗RRf ∗RR = κ2T (m), (4.13)

onde T (m) = gµνT (m)
µν . Como se vê, a equação (4.13) depende da densidade Chern-

Pontryagin. Em outras palavras, o traço da equação (4.8) resulta na mesma equação das
teorias de gravidade f(R), acrescida de um termo proporcional a ∗RR. Tal resultado é
interessante pois descreve efetivamente uma equação com um grau de liberdade escalar de
propagação (ϕ = fR), como veremos com mais detalhes na seção seguinte.

4.1.2 Equações de Campo no Frame de Jordan

Começamos esta seção mostrando que os modelos generalizados de gravidade Chern-
Pontryagin admitem representações tanto no frame de Jordan como também no frame
de Einstein, semelhantemente ao que acontece com as teorias de gravidade f(R). Existe
uma certa correspondência entre modelos de gravidade f(R) e gravidade escalar-tensorial,
como se pode ver na discussão apresentada no artigo [316].

Para ver como a representação no frame de Jordan emerge com mais detalhes, é
útil observar que a ação (4.1) pode ser convertida na seguinte forma

S = 1
2κ2

∫
d4x
√
−g

[
f(ϕ1, ϕ2) + ∂f

∂ϕ1
(R− ϕ1) + ∂f

∂ϕ2
( ∗RR− ϕ2)

]
+ Sm(gµν ,Ψ), (4.14)

onde ϕ1 e ϕ2 são campos escalares auxiliares. Variando a Eq.(4.14) com respeito a ϕ1 e ϕ2,
respectivamente, obtemos

∂2f

∂ϕ2
1
(R− ϕ1) + ∂2f

∂ϕ1∂ϕ2
( ∗RR− ϕ2) = 0; (4.15)

∂2f

∂ϕ2
2
( ∗RR− ϕ2) + ∂2f

∂ϕ1∂ϕ2
(R− ϕ1) = 0, (4.16)

cuja solução é simplesmente dada por

R = ϕ1 e ∗RR = ϕ2. (4.17)

Agora, inserindo a Eq.(4.17) na Eq.(4.14), voltaremos para a Eq.(4.1).

Requerida a seguinte condição

∂2f

∂ϕ2
1

∂2f

∂ϕ2
2
−
(

∂2f

∂ϕ1∂ϕ2

)2

̸= 0. (4.18)

e definindo as seguintes quantidades

∂f

∂ϕ1
≡ Φ e ∂f

∂ϕ2
≡ ϕ, (4.19)
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desta forma, pode-se reescrever a Eq.(4.14) como uma teoria escalar-tensorial de dois
campos no frame de Jordan, ou seja,

S =
∫
d4x
√
−g

[ 1
2κ2 ΦR + 1

2κ2ϕ
∗RR− V (ϕ,Φ)

]
+ Sm(gµν ,Ψ), (4.20)

onde
V (Φ, ϕ) = 1

2κ2 [ϕϕ2(ϕ) + Φϕ1(Φ)− f(Φ, ϕ)] (4.21)

é o potencial de interação entre os dois campos escalares. Observe que o primeiro e o último
termo no setor gravitacional da ação (4.20) se assemelham a uma ação de Brans–Dicke com
a diferença de que o potencial é composto pelo campo escalar de Brans–Dicke Φ (scalaron),
além do campo escalar ϕ. O segundo termo na Eq.(4.20) é apenas o termo topológico de
Chern-Pontryagin acoplado não minimamente com ϕ, que é frequentemente chamado de
termo Chern-Simons [52]. Portanto, partindo da ação (4.1), encontramos uma maneira
natural, diferente da proposta original [52], de gerar o termo de Chern-Simons, com ϕ

desempenhando o papel do campo de acoplamento CS [54] e sendo um dos dois graus
escalares de liberdade que aparecem na representação escalar-tensorial. Nesse sentido, a
ação do modelo escrito na representação no frame de Jordan pode ser pensada como uma
generalização da gravidade modificada de Chern-Simons. Observe, entretanto, a escolha
do modelo, fI(R, ∗RR) = R + β( ∗RR)2, não admite uma representação escalar-tensorial
de dois campos, uma vez que a condição on-shell (4.17) não é garantida porque (4.18) não
é válida.

Variando a ação (4.20) em relação aos campos métrico e escalares: gµν , ϕ e Φ,
somos capazes de encontrar as seguintes equações de campo na representação no frame de
Jordan, a saber,

Gµν = κ2

Φ (T (m)
µν − gµνV ) + 1

Φ (∇µ∂νΦ− gµν□Φ)− 4
ΦCµν ; (4.22)

R = 2κ2∂V

∂Φ ; (4.23)

∗RR = 2κ2∂V

∂ϕ
, (4.24)

onde definimos o tensor de Cotton como

Cµν = vαϵ
α
βσ(µ
∇σRβ

ν) + vαβ
∗Rα β

(µν) , (4.25)

com vα = ∇αϕ e vαβ = ∇αvβ. Aplicando o traço na Eq.(4.22) e combinando-a com a
Eq.(4.23), obteremos

□Φ = 1
3Φ2κ2∂V

∂Φ + 1
3κ

2(T (m) − 4V ), (4.26)

o que significa que o scalaron cumpre uma equação de um campo dinâmico que depende
do traço do tensor energia-momento e também do potencial de interação entre ambos os
campos escalares. Por outro lado, o campo CS ϕ satisfaz uma equação não dinâmica (4.24),
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cuja solução fornece uma equação ϕ = ϕ(Φ), então ϕ pode ser completamente fatorado
(on-shell) da Eq.(4.20). Portanto, existe apenas um grau de liberdade de propagação
escalar na teoria.

Tomemos agora o exemplo anterior do modelo fI(R, ∗RR) = R + β( ∗RR)2. Neste
caso, o potencial correspondente é simplesmente dado por

V (ϕ) = ϕ2

8βκ2 , (4.27)

enquanto o scalaron se reduz para Φ = 1. Ao inserir esse potencial na Eq.(4.24), encontra-se

ϕ = 2β( ∗RR), (4.28)

que pode ser integrada a partir da Eq.(4.22) e, como resultado, obter as equações de campo
(4.7) para o modelo particular acima mencionado. Portanto, como esperado, conclui-se
que as equações de campo da gravidade generalizada de Chern-Pontryagin no frame de
Jordan são equivalentes àquelas na representação padrão.

4.1.3 Equações de Campo no Frame de Einstein

Para início, consideraremos a transformação conforme da métrica,

g̃µν = Ω2gµν , (4.29)

onde o til descreve quantidades geométricas no frame de Einstein e Ω é o fator conforme.
Observe que esta transformação é consistente apenas se ∂f/∂R > 0. Neste caso, o escalar
de Ricci no frame de Einstein está relacionado com o escalar de Ricci no frame de Jordam
pela seguinte equação

R = Ω2
[
R̃ + 6□̃ ln Ω− 6g̃µν∇̃µ ln Ω∇̃ν ln Ω

]
. (4.30)

Desta forma, o termo Chern-Pontryagin em (4.29) se transforma como

∗RR = Ω4 ∗R̃R̃. (4.31)

Usando as expressões acima e escolhendo Ω2 = Φ, a ação (4.20), no frame de Einstein,
terá a forma

S̃ = 1
2κ2

∫
d4x
√
−g̃

[
R̃− 3

2 g̃
µν∇̃µ ln Φ∇̃ν ln Φ + ϕ ∗R̃R̃− 2κ2

Φ2 V (ϕ,Φ)
]

+

+ Sm(Φ−1g̃µν ,Ψ), (4.32)

definindo Φ = e
√

2
3κψ, a equação anterior se torna na ação na representação do frame de

Einstein.

S̃ =
∫
d4x
√
−g̃

[ 1
2κ2 R̃−

1
2 g̃

µν∇̃µψ∇̃νψ + 1
2κ2ϕ

∗R̃R̃− U(ϕ, ψ)
]

+

+ Sm(e−
√

2
3κψg̃µν ,Ψ), (4.33)
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onde o potencial é

U(ϕ, ψ) = 1
2κ2e2

√
2
3κψ

[
ϕϕ2(ϕ) + e

√
2
3κψϕ1(ψ)− f(ϕ, ψ)

]
. (4.34)

Pode-se facilmente ver que ψ é o único grau de liberdade escalar de propagação, enquanto
o campo de acoplamento CS é um campo não propagador, de acordo com a proposta
original da gravidade modificada CS [52].

A fim de ilustrar a representação no frame de Einstein e sua conexão com
a gravidade modificada CS, consideremos um outro caso particular correspondente a
fII(R, ∗RR) = R + αR2 + β( ∗RR)2. Quando comparada com (3.3), a função escolhida
fII pode ser considerada como um modelo de Starobinsky generalizado. Neste cenário, o
potencial para este modelo específico, no frame de Einstein, assume a forma

U(ϕ, ψ) = 1
8κ2e2

√
2
3κψ

[
ϕ2

β
+ 1
α

(
e
√

2
3κψ − 1

)2
]
, (4.35)

e a ação parece

S̃ = 1
2κ2

∫
d4x
√
−g̃

{
R̃ + ϕ ∗R̃R̃− 1

4e2
√

2
3κψ

[
ϕ2

β
+ 1
α

(
e
√

2
3κψ − 1

)2
]}
−

− 1
2 g̃

µν∇̃µψ∇̃νψ + Sm(e−
√

2
3κψg̃µν ,Ψ), (4.36)

que é a gravidade modificada de Chern-Simons não dinâmica mais um Lagrangiano não
trivial dependendo de dois campos escalares em interação. Ao variar a ação (4.33) em
relação a g̃µν , ψ e ϕ, respectivamente, encontramos as seguintes equações de campo

G̃µν + 4C̃µν = κ2
(
T̃ (ψ,ϕ)
µν + T̃ (m)

µν

)
; (4.37)

∗R̃R̃

2κ2 = −∂U
∂ϕ

; (4.38)

□̃ψ = ∂U

∂ψ
+
√

1
6κT̃

(m), (4.39)

onde definimos as seguintes quantidades: o tensor de Cotton

C̃µν = ṽαϵ̃
α
βσ(µ
∇̃σR̃β

ν) + ṽαβ
∗R̃α β

(µν) , (4.40)

com ṽα = ∇̃αϕ e ṽαβ = ∇̃αvβ. O tensor energia-momento das fontes de matéria é definido
como usual

T̃ (m)
µν = − 2√

−g̃

δ
[
Sm(e−

√
2
3κψg̃µν ,Ψ)

]
δg̃µν

, (4.41)

como resultado, T̃ (m) ≡ g̃µνT̃ (m)
µν . O tensor energia-momento

T̃ (ψ,ϕ)
µν = ∇̃µψ∇̃νψ − g̃µν

(1
2∇̃αψ∇̃αψ + U(ϕ, ψ)

)
, (4.42)
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surge das contribuições exclusivas dos campos escalares ϕ e ψ. No caso de um potencial
trivial U = 0, as soluções tipo-Gödel, no vácuo, das equações de campo (adicionadas por
uma constante cosmológica) reduzem-se a uma forma semelhante àquelas encontradas em
[56], a menos que, aqui, g̃ seja a métrica dinâmica. Ao resolver as equações de campo, os
autores de [56] encontraram as seguintes soluções para os campos escalares: ϕ = b(z − z0)
e ψ = s(z − z0), onde z0 é uma constante real arbitrária. Portanto, formalmente, o caso
correspondente ao potencial trivial, U = 0, apenas se reduz aos encontrados para CSMG
[55, 56, 318], como esperado.

Obtidas as equações de campo, nossa intenção é principalmente investigar as
possíveis soluções para esta teoria. Para isso, na próxima seção, nos concentraremos em
dois tipos diferentes de fundos, a saber, métricas estáticas esfericamente simétricas e do
tipo-Gödel. Para a primeira métrica, as soluções são triviais, pois levam a ∗R̃R̃ = 0 e
C̃µν = 0, enquanto, para a última, a solução não é trivial, pois resulta em ∗R̃R̃ = 0 e
C̃µν ̸= 0.

4.2 Perturbação do espaço-tempo de Schwarzschild
Como dito nas seções anteriores, a métrica de Schwarzschild resolve as equações de

movimento da gravidade de Chern-Pontryagin trivialmente, queremos dizer que para tal
métrica ∗RR = 0, o que leva ao desaparecimento do C-tensor, assim sendo, é natural consi-
derarmos suas perturbações. Discutiremos aqui perturbações da métrica de Schwarzschild
dentro do modelo generalizado de Chern-Pontryagin, adotando primeiramente o protótipo
já apresentado nas seções anteriores, ou seja, fI(R, ∗RR) = R + β(∗RR)2, onde β é uma
constante de acoplamento.

Concentraremos em uma perturbação particular do espaço-tempo de Schwarzschild
que descreve soluções de rotação lenta, portanto consideraremos a métrica perturbada
dada por

ds2 =−
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2

[
dθ2 + sin2 θ(dϕ− ω(r, θ)dt)2

]
, (4.43)

onde M é a massa de qualquer distribuição de massa esfericamente simétrica e a função
ω(r, θ) é de primeira ordem em ϵ ∼ J/M2, aqui J é o momento angular. Neste esquema
de perturbação, ϵ é considerado um parâmetro pequeno. A seguir, consideramos equações
até a primeira ordem em ϵ. Nesta situação, o termo de Chern-Pontryagin para a métrica
(4.43) até a primeira ordem em ϵ é diferente de zero

∗RR = 24Mϵ

r3

(
2∂ω
∂r

cos θ − ∂2ω

∂θ∂r
sin θ

)
. (4.44)
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Convém salientar, muitos dos resultados fornecidos neste capítulo foram obtidos
através de cálculos executados no ambiente do software Wolfram Mathematica Versão
13.3.1.0 e do software GRTensorII2

Agora, vamos resolver as equações de campo (4.8) para o elemento de linha (4.43).
Quando considerado até a primeira ordem em ϵ, a única componente do C-tensor que não
desaparece é a componente (t, ϕ). Logo, a única equação de campo resultante será

Gtϕ − T efftϕ = 0, (4.45)

cuja forma explícita é

f1 +
(
rf2 + aL

r7 (4f3 − rf4)
)(

1− 2M
r

)
= 0, (4.46)

onde as funções fi = fi(r, θ) acima mencionadas são definidas da seguinte forma

f1 = ∂2ω

∂θ2 sin θ + 3∂ω
∂θ

cos θ;

f2 =
(
∂2ω

∂r2 r + 4∂ω
∂r

)
sin θ;

f3 =
(
∂3ω

∂θ2∂r
− 2∂ω

∂r

)
sin θ + 3 ∂

2ω

∂θ∂r
cos θ;

f4 =
(

∂4ω

∂θ2∂r2 − 2∂
2ω

∂r2

)
sin θ + 3 ∂3ω

∂θ∂r2 cos θ,

(4.47)

e as constantes são a = 1152 e L = βM2, que está relacionado à massa do buraco negro e
à constante de acoplamento que acompanha o termo de derivada superior na ação. Agora,
resolveremos a equação de campo acima (4.46) usando o método de separação de variáveis.
Portanto, vamos assumir ω(r, θ) = R(r)Θ(θ). Ao fazer isso, obtém-se um conjunto de duas
equações diferenciais ordinárias, a saber,

R′′ = CR + (4R′ + r)
(
r + aL

r7 (C − 2)
)(

1− 2M
r

)
(4.48)

e
Θ′′ = CΘ− 3Θ′ cot θ, (4.49)

onde o primo representa a derivada em relação aos seus correspondentes argumentos, e
C é a constante de separação. Portanto, chegaremos à seguinte solução para a equação
angular (4.49)

Θ(θ) =A 2F1

(
3 +
√

9− 4C
4 ,

3−
√

9− 4C
4 ,

1
2 , cos2 θ

)
+

B 2F1

(
5 +
√

9− 4C
4 ,

5−
√

9− 4C
4 ,

3
2 , cos2 θ

)
cos θ,

(4.50)

2 GRTensorII, Version 1.79 (R4), 6 February 2001, Developed by Peter Musgrave, Denis Poll-
ney and Kayll Lake, Copyright 1994-2001 by the authors. Latest version available from:
http://grtensor.phy.queensu.ca/ - (C:/Grtii(6)/Metrics).
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onde A, B são constantes arbitrárias e 2F1 é a função hipergeométrica. A equação radial
(4.48) é uma equação diferencial não linear, cuja solução analítica, no caso geral, não pode
ser encontrada. Porém, se considerarmos o caso particular onde a constante de separação
C = 0 nas equações (4.48, 4.49), conseguimos encontrar uma solução analítica. Nesta
situação, as soluções angular e radial reduzem-se a

R(r) = C1 + C2

∫ r4

aL+ r8 dr; (4.51)

Θ(θ) = C3 + C4 h(θ), (4.52)

onde Ci′s são constantes arbitrárias e h(θ) = cos θ
sin2 θ

−ln
(

1− cos θ
sin θ

)
. Para melhor esclarecer

esta solução, para as equações (4.51) e (4.52), faremos as seguintes escolhas, a saber:
C1 = 0, C2 = J , C3 = 1 e C4 = L. O parâmetro L caracteriza o desvio do nosso modelo em
relação à RG. Sendo ele um valor pequeno, suprimido por uma escala típica de alta energia.
Consequentemente, podemos expandir (4.51) até a primeira ordem em L, e, portanto,
encontrar os efeitos do termo aditivo não-Hilbert em nossa ação. Este procedimento levará
à seguinte solução aproximada:

ω(r, θ) = J

r3

1 +
(
h(θ)
sin2 θ

− a

11r8

)
L

+O(L2). (4.53)

4.2.1 Efeito Lense-Thirring do Modelo fI = R + β(∗RR)2

Em 1913, numa carta endereçada ao filósofo Ernst Mach, Einstein utilizou, pela
primeira vez, o termo “dragging” em referência ao fenômeno de arrasto do plano de
oscilações do pêndulo de Foucault devido a força de Coriolis [319]. Mas, só em 1965 o
termo “frame-dragging” apareceu pela primeira vez, quando Cohen consignou o arrasto
de referenciais para descrever a velocidade angular dos referenciais inerciais dentro de
uma casca esférica [320]. No entanto, muito tempo antes, em 1918, os físicos austríacos
Joseph Lense (1890-1985) e Hans Thirring (1888-1976), descobriram que as distribuições
estacionárias não estáticas de massa-energia altera o espaço-tempo. Em consequência,
os corpos nas proximidades desta massa-energia são arrastados, alterando ligeiramente
suas órbitas em comparação com a previsão oriunda da gravidade Newtoniana. Assim,
Lense e Thirring previram o efeito de arrasto de referenciais (ou efeito Lense-Thirring),
posteriormente confirmado através das observações de sistemas estelares e de experimentos,
como, por exemplo, da precessão das órbitas de satélites ao redor da Terra, solidificando a
teoria de Einstein. Medição obtida em 2002 com os satélites LAGEOS, ao longo de quase
8 anos de dados, confirmaram o efeito Lense-Thirring com valor experimental dentro da
margem dos 20% do que é previsto pela RG [321]. Experimento do satélite Gravity Probe
B (GP-B) mediu a precessão dos giroscópios, com alta precisão do efeito Lense-Thirring,
causado pela rotação da Terra [322]. Trabalho sobre a relação entre o princípio de Mach e
o efeito de arrasto no espaço-tempo de Kerr e de Gödel foi feito em [323].
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Figura 2 – Representação esquemática das linhas geodésicas: (a) Sem o efeito de arrasto
de referenciais; (b) Com o efeito de arrasto de referenciais. Crédito da figura:
Frame Dragging and Geodetic Effect Derived: Two More Tests of GR. Springer
International Publishing, 2020. Manoukian, E. B.

Na figura-2 está representado as linhas do campo gravitacional (a) sem o efeito
Lense-Thirring e (b) com o efeito Lense-Thirring previsto pela RG, onde vemos linhas de
campo gravitacional distorcidas pelo efeito de arrasto, provocado por um objeto massivo
em rotação, ao centro, que distorce e arrasta o espaço-tempo ao seu redor [324]. O
coeficiente de arrasto é definido como a razão entre a velocidade angular de uma massa
em rotação e a velocidade angular do referencial sob efeito da força de Coriolis [325]. O
princípio subjacente das forças de Coriolis é o efeito de arrasto de referenciais, que surgem
perto de um corpo em rotação, num referencial fixo às estrelas distantes. A precessão de
giroscópios é um evento descrito pelo efeito de arrasto de um sistema de eixos submetidos
ao transporte de Fermi-Walker, realizado fisicamente pelos vetores de spin de um conjunto
de giroscópios orientadores [326]. Portanto, sendo todos esses efeitos atribuídos à ação
de um campo de Coriolis ou de um campo gravitomagnético, gerado pelo movimento de
uma fonte massiva [327]. Logo, as previsões relativas aos efeitos de arrasto de referencial
gravitomagnético ocorrem entre o campo magnético e o campo relativístico de Coriolis,
mais conhecidas em aproximações de campo fraco, mas com versões exatas mantidas em
campos arbitrariamente fortes [328]. O arrasto de referenciais provocado pela rotação de
um corpo imerso num fluido foi inicialmente proposto em [329], como modelo de estudo
de outros efeitos de arrasto de referenciais [330].

Na análise da equação (4.53), percebe-se que o termo entre parênteses é o resultado
decorrente do termo em primeira ordem de β(∗RR)2, contido na ação do nosso modelo. O
primeiro termo, J

r3 , é a contribuição do efeito de arrasto de referenciais (frame-dragging)
vindo da RG. Observe que o segundo termo entre parênteses em (4.53) é proporcional
a r−11. Consequentemente, este termo é insignificante para valores grandes de r. Neste
caso, no limite assintótico para r ≫ 1, recupera-se RG, como esperado, mais o termo
proporcional a função h(θ), que surge da correção em primeira ordem do parâmetro
L = βM2.
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4.3 Esquema Perturbativo para Métricas Tipo-Gödel ST-Homogêneas

4.3.1 Modelo fI = R + β(∗RR)2

Nesta seção, dentro do modelo fI(R, ∗RR) = R + β(∗RR)2, examinaremos a possi-
bilidade da quebra da homogeneidade espaço-temporal para as métricas do tipo-Gödel3,
apresentadas na Seção-2.2.3. Para tanto, introduziremos uma abordagem perturbativa,
que será discutida em detalhes. Neste processo, substituiremos diretamente as métricas
perturbadas nas equações de campo, com o fim de encontrarmos as soluções completas até a
primeira ordem no parâmetro da perturbação ξ. Seguiremos o mesmo esquema empregado
em [331], onde perturbações de métricas do tipo-Gödel foram consideradas dentro da
gravidade modificada de Chern-Simons não-dinâmica. Esta abordagem perturbativa tem a
característica de aplicar funções perturbadas estacionárias e, como consequência, funções
que dependem apenas das coordenadas (r, θ, z). Observa-se que a dependência explícita
em θ e z sinaliza a possibilidade de quebra de invariância de ambas as translações, ao
longo da direção z e simetria axial. Como resultado, as métricas do tipo-Gödel perturba-
das não mais possuem homogeneidade espaço-temporal. Neste procedimento, para uma
assinatura +2, fixaremos as métricas de fundo do tipo Gödel a serem denotadas por g(0)

µν ,
cujo elemento de linha é dado por (2.21), enquanto as correções métricas de primeira
ordem são representadas por ξg(1)

µν

gµν = g(0)
µν + ξg(1)

µν +O
(
ξ2
)
, (4.54)

com seu elemento de linha até a primeira ordem em ξ

ds2 =− {[1 + ξh0(r, θ, z)] dt+ [1 + ξh1(r, θ, z)]H(r)dθ}2 + [1 + ξh2(r, θ, z)]D(r)2dθ2

+ [1 + ξh3(r, θ, z)] dr2 + [1 + ξh4(r, θ, z)] dz2,

(4.55)
onde hi′s(r, θ, z) representam as funções métricas perturbadas g(1)

µν . Como pode ser visto na
métrica perturbada (4.55), estamos restringindo nossa análise a perturbações métricas para
as quais g(1)

µν = 0 para todos os componentes fora da diagonal nesta base de coordenadas,
exceto para g(1)

tθ . Isso reflete a estrutura da métrica de fundo g(0)
µν , cujos únicos componentes

diferentes de zero são g(0)
tθ e os outros g(0)

µν com µ = ν. O termo de Chern-Pontryagin para
a métrica perturbada (4.55) até primeira ordem em ξ é dado por

∗RR = 4ξ(m2 − 4ω2)
[
2ω ∂

∂z
h0(r, θ, z) + 2ω ∂

∂z
h1(r, θ, z) + ω

∂

∂z
h2(r, θ, z)

−ω ∂

∂z
h3(r, θ, z) + H(r)

D(r)
∂2

∂z ∂r
h1(r, θ, z)−

H(r)
D(r)

∂2

∂z ∂r
h0(r, θ, z)

]
. (4.56)

3 Como dito na Seção-2.2.3, as métricas do tipo-Gödel se referem às métricas do tipo-Gödel homogêneas
no espaço-tempo. Como descritas naquela seção, elas são uma generalização da métrica de Gödel, que
permitem a existência de CTCs para certos valores de seus parâmetros.
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Com uma simples manipulação, a equação anterior pode ser definida de forma
mais conveniente, a saber,

∗RR = 4ξ(m2 − 4ω2)
(
H(r)
D(r)

∂2

∂z ∂r
P (r, θ, z) + ω

∂

∂z
Q(r, θ, z)

)
, (4.57)

onde

P (r, θ, z) ≡ h1(r, θ, z)− h0(r, θ, z); (4.58)
Q(r, θ, z) ≡ 2 [h0(r, θ, z) + h1(r, θ, z)] + h2(r, θ, z)− h3(r, θ, z). (4.59)

Agora, resolveremos a equação de Einstein modificada perturbada de primeira
ordem (4.7) para o modelo particular fI(R, ∗RR) = R + β(∗RR)2. Para começar, vamos
considerar a componente-(t, z)

∂2

∂z∂θ
h1(r, θ, z)−

∂2

∂z∂θ
h0(r, θ, z) = 0, (4.60)

o que implica h0(r, θ, z) = h1(r, θ, z). Seguindo o mesmo procedimento, a componente-(θ, z)

∂2

∂z∂θ
h3(r, θ, z) + 2 ∂2

∂z∂θ
h1(r, θ, z) = 0, (4.61)

leva à equação de restrição h3(r, θ, z) = −2h1(r, θ, z). Impondo esta última restrição,
encontramos a seguinte componente-(t, r) das equações de Einstein modificadas, ou seja,(

8 ∂

∂θ
h1(r, θ, z)−

∂

∂θ
h2(r, θ, z)

)
+

16(4ω2 −m2)2
(

6 ∂3

∂z2∂θ
h1(r, θ, z)−

∂3

∂z2∂θ
h2(r, θ, z)

)
= 0.

(4.62)

Exigindo m2 ̸= 4ω2, descobrimos que a única solução é a trivial,

h1(r, θ, z) = h2(r, θ, z) = h3(r, θ, z) = 0. (4.63)

Deve-se perceber que as Eqs.(4.60), (4.61) e (4.62) são automaticamente satisfeitas
considerando perturbações métricas específicas que dependem somente das coordenadas
(r, θ) ou (r, z). Contribuindo assim para a existência de dois casos particulares. O
primeiro caso, hi(r, θ, z) = hi(r, θ), revela a situação física onde as perturbações métricas
preservam a simetria axial ao longo da direção z. Este cenário se evidencia trivial, pois
leva ao desaparecimento do termo de Chern-Pontryagin (4.56), que por sua vez resulta
no desaparecimento do tensor C, assim forçando as equações de campo serem reduzidas
às equações da RG. Quanto ao segundo caso, teremos hi(r, θ, z) = hi(r, z), que reflete a
situação em que as perturbações métricas quebram a simetria axial ao longo da direção z.
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Esta condição requer uma inspeção mais cuidadosa das equações de campo resultantes.
Em particular, a componente-(r, z) das equações modificadas de Einstein é dada por

∂

∂z
h2(r, z)

dD(r)
dr

− ∂

∂z
h3(r, z)

dD(r)
dr

+ 2ωH(r) ∂
∂z
h0(r, z)− 2ωH(r) ∂

∂z
h1(r, z) +

+ 2D(r) ∂2

∂z∂r
h0(r, z) +D(r) ∂2

∂z∂r
h2(r, z) = 0, (4.64)

que impondo as seguintes relações entre as funções métricas perturbadas,

h0(r, z) = h1(r, z) = −1
2h2(r, z) = −1

2h3(r, z), (4.65)

uma solução particular é encontrada para a componente-zz

2h1(r, z)(m2 − 3ω2) = 0, (4.66)

sendo esta uma equação algébrica cuja única solução não trivial é h1(r, z) = 0. Assim,
conclui-se que o modelo particular generalizado de Pontryagin fI(R, ∗RR) = R + β(∗RR)2

não suporta perturbações de primeira ordem para as métricas tipo-Gödel. Em contraste, a
gravidade modificada de Chern-Simons exibe contribuições em primeira ordem não triviais,
conforme demonstrado em [331]. Neste artigo, a teoria perturbada permitiu quebrar a
simetria axial e a invariância translacional ao longo da direção z, nas métricas tipo-Gödel.
Foi permitida também a perturbação em primeira ordem para o campo pseudoescalar de
CS, ϕ = ϕ(r, θ, z), embora a restrição de Pontryagin produziu relações não triviais entre
as funções métricas perturbadas hi(r, θ, z), que não envolveram as perturbações para o
campo ϕ.

4.3.2 Modelo fII = R + αR2 + β(∗RR)2

Outro exemplo importante a considerar é uma generalização do modelo Starobinsky,
que corresponde a tomarmos fII(R, ∗RR) = R+αR2 + β(∗RR)2. Nesta situação procedere-
mos de forma semelhante ao caso anterior para resolver as equações de campo. No entanto,
devido à presença de termos de derivadas de ordem superior, as equações de campo são de
difíceis resoluções. Por consequência disto, iremos impor uma simplificação. Em particular,
consideraremos apenas funções métricas perturbadas que não dependem explicitamente da
coordenada θ, ou seja, hi(r, θ, z) = hi(r, z). Lembrando que a escolha hi(r, θ, z) = hi(r, θ)
não é bem motivada, porque as correções de Chern-Pontryagin desaparecem, conforme
explicado anteriormente. Para começar, consideraremos a componente-(r, z) das equações
de campo
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− 2D(r)h2(r′′′, z′)− 4D(r)h0(r′′′, z′)− 4h2(r′′, z′)D(r′)− 4h0(r′, z′)D(r′′)

− 4h0(r′′, z′)D(r′)− 2D(r)h2(r′, z′′′) + 2h3(r′, z′)D(r′′) + 2h3(r′′, z′)D(r′)
− 4D(r)h0(r′, z′′′)− 2D(r)h3(r′, z′′′)− 4h2(r′, z′)D(r′′) + 4D(r)h0(r′, z′)(ln(D(r′))2

− 4ωH(r)h1(r′, z′) lnD(r′) + 8ω2D(r)h1(r′, z′)′ − 4ωH(r′)h0(r′, z′)− 2m2h2(r, z′)D(r′)
− 4ω3H(r)h1(r, z′) + 28ω2D(r)h0(r′, z′)− 2ω2h3(r, z′)D(r′) + 4ω3H(r)h0(r, z′)
− 4ωH(r)h0(r′′, z′) + 2m2h3(r, z′)D(r′)− 14m2D(r)h2(r′, z′) + 2ω2h2(r, z′)D(r′)
+ 4ωH(r)h0(r′, z′) lnD(r′)− 4ωm2H(r)h0(r, z′) + 4ωm2H(r)h1(r, z′)
− 2h3(r′, z′)(lnD(r′))2D(r) + 4h2(r′, z′)(lnD(r′))2D(r) + 10ω2D(r)h2(r′, z′)
− 8D(r)m2h3(r′, z′) + 8ω2D(r)h3(r′, z′) + 4ωH(r′)h1(r′, z′)− 28m2D(r)h0(r′, z′)

+ 4ωH(r)h1(r′′, z′)
α + ωH(r)h1(r, z′) + 1

2h3(r, z′)D(r′)− 1
2h2(r, z′)D(r′)

− h0(r′, z′)D(r)− ωH(r)h0(r, z′)− 1
2h2(r′, z′)D(r) = 0. (4.67)

Para fins de simplificar a notação da extensa equação (4.67), foi utilizado na
equação acima a representação compacta para as expressões das derivadas parciais

f(x′
1, . . . , x

′
m) ≡ ∂nf(x1 . . . , xm)

∂ix1 . . . ∂jxm
, (4.68)

onde f representa as funções métricas perturbadas hi(r, z), e as funções arbitrárias das
métricas tipo-Gödel H(r) e D(r), e n = (i+ · · ·+ j) é a soma das ordens das derivadas
parciais que é retratada pela quantidade dos símbolos prime (′). Observe que (4.67) é uma
equação diferencial parcial (EDP) contendo termos de derivadas de ordem superior. A
relação particular entre as funções métricas perturbadas, que resolve a Eq.(4.67), são

h0(r, z) = h1(r, z) = F (r) +G(z);
h2(r, z) = h3(r, z) = −2h1(r, z).

(4.69)

Embora tenhamos obtido uma solução simples para a componente-(r, z), esta
solução não satisfaz as outras componentes das equações de campo. Na verdade, a
conclusão mais natural é que as equações de campo apresentam um conjunto altamente
restritivo de EDPs, cuja única solução possível é a trivial, ou seja,

h0(r, z) = h1(r, z) = h2(r, z) = h3(r, z) = 0. (4.70)

Portanto, conclui-se que ao impor a quebra de simetria axial ao longo da direção z,
o modelo fII(R, ∗RR) = R + αR2 + β(∗RR)2 não suporta perturbações de primeira ordem
das métricas tipo-Gödel.
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5 Teoria de Campo Espinorial Não-Local no
Espaço de Minkowski

5.1 Modelo de Campo Spin-1/2 Não-Local Livre
Neste capítulo, apresentaremos a construção de um novo e consistente modelo de

campo de espinor de Dirac não-local, livre e com interação. Na teoria, a implantação da
não localidade no setor fermiônico é concebida por meio de fatores de forma definidos
como funções do operador Dirac /∂, em vez de fatores de forma gerados por funções do
operador d’Alembertiano □, como normalmente ocorre nas demais teorias não-locais de
spin-1/2 discutidas na literatura. Destaca-se, as teorias de espinores não-locais não são
bem exploradas, por serem poucas as tentativas de construções modificadas do Lagrangiano
não-local do campo de Dirac, expostas na literatura. Em particular, o autor de [332]
propôs uma teoria da QED e eletrofraca, na qual foram consideradas extensões não-locais
no setor fermiônico. E, extensões não-locais das teorias de gauge finitas (não)abelianas,
em [333]. Nesses dois trabalhos, os autores consideraram o fator de forma como sendo
uma função do operador de d’Alembert, que parece não ser adequado para descrever uma
teoria de campo de spin-1/2 não-local, uma vez que o Lagrangiano de Dirac depende
apenas das derivadas de primeira ordem, através do operador de Dirac. Logo, o processo
mais natural para se construir uma teoria de campo de spin-1/2 não-local deveria estar
fundamentada no operador de Dirac ao invés do operador de d’Alembert. À vista disso,
para fundamentar os conceitos da nova teoria que será apresentada, se faz necessário
apresentarmos a abordagem não-local aplicada às teorias construídas com Lagrangianos
elaborados com fatores de forma compostos por função do operador d’Alembertiano.

5.1.1 Fator de Forma do Operador d’Alembertiano F (□)

Como discutido anteriormente na Seção-3.4, as teorias locais têm seus Lagrangianos
construídos em termos de polinômios de campos e de suas derivadas, L ≡ L(ϕ, ∂ϕ . . . , ∂nϕ),
que descrevem observáveis de baixas energias, onde n é um número inteiro positivo e
finito. Em contrapartida, as teorias não-locais, como, por exemplo, TQC não-comutativa,
teorias de cordas e as teorias de campos conforme, contêm em si a abordagem de múltiplos
campos avaliados em diferentes pontos de espaço-tempo. Neste caso, o Lagrangiano é
construído com operadores não polinomiais F (□), contendo em si derivadas covariantes
de ordem infinita, L ≡ L(ϕ, ∂ϕ, . . . , ∂nϕ, F (□)ϕ). Destarte, o conceito da não localidade
pode ser implementado na dinâmica das teorias de campos, ao nível da ação clássica,
visando resolver dificuldades fundamentais da gravitação de Einstein [334]. Na verdade, é
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notório que uma apropriada extensão não-local da gravitação de Einstein permite resolver
os problemas da não renormalização e dos indesejáveis estados de excitação fantasmagórica.
Isto se deve ao ótimo comportamento assintótico UV dos correspondentes propagadores, os
seus específicos desempenhos com respeito a variável de momento [335]. De maneira geral,
isto é realizado mediante a substituição, no Lagrangiano, do operador d’Alembertiano □

por uma função analítica transcendental deste operador de d’Alembert, F (□), batizada
de fator de forma. A representação mais simples de F (□) é dada pela função exponencial
do tipo ef(□), com f(□) também sendo uma função inteira analítica. Formalmente, pelo
teorema da fatoração de Weierstrass (ver demonstração no Apêndice-B.3), uma função
inteira pode ser expressa como uma série de potências de seu argumento. Em particular,
temos

F (□) = ef(□Λ) =
∞∑
n=0

cn□
n
Λ, (5.1)

onde cn são os coeficientes adimensionais da série de potências, satisfazendo a condição de
c0 = 1, e sendo definido □Λ ≡ □/Λ2. Aqui, introduzimos Λ, que representa uma escala
típica de alta energia, como a escala de Planck, na qual os efeitos não-locais se tornam
relevantes. Tal escala, também, torna f(□Λ) uma função adimensional. À medida que nos
aproximemos da escala Λ, queremos dizer O(□/Λ2)→ 1, então o regime UV é alcançado.
Por outro lado, o regime IR é alcançado quando Λ → ∞ e/ou quando integrando em
pequenos momentos, k → 0. Deste modo, a ação não-local passa a ser

S =
∫
d4x1

[1
2ϕ(x1)F (□)ϕ(x1)− V (ϕ(x1))

]
, (5.2)

onde ϕ(x1) é o campo escalar dependente das coordenadas em x1. Variando a ação (5.2)
com respeito ao campo, δS/δϕ(x1) = 0, obteremos a equação de movimento

F (□)ϕ(x1)−
dV

dϕ(x1)
= 0. (5.3)

A propriedade da não localidade no termo cinético da ação (5.2) fica notória
quando fizermos a seguinte manipulação

F (□)ϕ(x1) =
∫
d4k F (−k2)δ(4) (kµ − i∇µ)ϕ(x1)

=
∫
d4k

∫
d4x2e

−ix2·kK(x2)δ(4) (kµ − i∇µ)ϕ(x1)

=
∫
d4x2K(x2)ex2·∇ϕ(x1)

=
∫
d4x2K(x2)ϕ(x1 + x2)

=
∫
d4x2K(x2 − x1)ϕ(x2).

(5.4)

Na manipulação acima utilizamos a transformada de Fourier F (−k2) de K(x1−x2).
Na última passagem aplicou-se a mudança de variável. Para o resultado final encontrado
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em (5.4) também utilizamos a definição da função delta de Dirac

δ(4)(x1 − x2) =
∫ d4k

(2π)4 e
ik·(x1−x2). (5.5)

A Eq.5.4 revela que, em geral, qualquer função transcendental dos campos pode ser
representada por integrais de kernel de operadores diferenciais. Para o caso de F (□) = □−1,
os efeitos não locais de longo alcance são contabilizados, podendo ser eles descritos em
termos da função de Green

□−1ϕ(x1) =
∫
d4x2 G(x1, x2)ϕ(x2). (5.6)

Quando multiplicado pelo campo ϕ(x1), teremos o resultado para o primeiro termo
da ação (5.2)

ϕ(x1)F (□)ϕ(x1) =
∫
d4x2 ϕ(x1)K(x2 − x1)ϕ(x2). (5.7)

A Eq.(5.7) relaciona dois campos escalares avaliados em dois pontos diferentes do
espaço-tempo através do kernel de deslocalização K(x2 − x1). A representação integral
do fator de forma é válida para as teorias locais de altas derivadas. Nesta circunstância,
o fator de forma é um polinômio finito e seus expoentes são números inteiros positivos
[336]. Estranhamente, nota-se que qualquer termo cinético (5.7) pode ser formalmente
considerado como uma interação não-local. Mas ele é somente obtido em situações muito
especiais, sendo uma função do operador d’Alembertiano

K(x2 − x1) = F (□)δ(4)(x2 − x1), (5.8)

e como caso particular para V = 0 em (5.2), F (□) determina a relação de dispersão para
a teoria de campo escalar não massivo, F (−k2) = −k2 = 0, cujo kernel é

K(x1) = 1
(2π)4

∫
d4k e−ik·x1F (−k2) = F (□x1)δ(4)(x1). (5.9)

Observa-se que a unitariedade da teoria é garantida pelo fato do fator de forma
ser uma função completa do operador d’Alembertiano, evitando assim o surgimento dos
conhecidos e inapropriados estados ditos fantasmas. Em vista disso, o propagador não
inclui nenhum grau de liberdade adicional na teoria quando comparado com a teoria
padrão/local. Aplicando o teorema de fatoração da Weierstrass em (5.8), o fator de forma
produzirá a seguinte expressão

F (□) = e−f(□)
n∏
i=1

(□−m2), (5.10)

e por meio da transformada de Fourier, é possível mostrar que os ghosts aparecem quando
n > 1. Para n = 1 e f(□) = □/Λ2

F (□) = e−□/Λ2(□−m2), (5.11)
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o inverso de F (□) é o propagador nu, sendo ele, no espaço dos momentos, dado por

G = − e−k2/Λ2

k2 +m2 . (5.12)

Como esperado, na expressão (5.12) existe apenas um polo real em k2 = −m2, sem
a introdução de modos adicionais no espectro da teoria. Além disso, o comportamento
UV da teoria pode ser melhorado escolhendo uma bem motivada função inteira f(□),
sem introduzir graus de liberdade adicionais. Contudo, é importante notar que este
requisito por si só não é suficiente para garantir a renormalizabilidade da teoria, conforme
indicado na abordagem de supercampo, considerando a generalização do modelo Wess-
Zumino em sua versão não-local [298]. Pois, para obtenção de uma teoria unitária deve-se
aplicar de maneira apropriada o fator de forma não-local, que é escolhido de acordo com
o interesse proposto pelo modelo em questão, podendo ser ele classificado como sendo
fraco, forte e muito forte. No primeiro caso a não localidade é classificada como fraca
quando o termo cinético (5.7) é uma função analítica do operador d’Alembertiano, então
o fator de forma F (□) admite expansão regular em série de Taylor em torno do ponto
□ = z = 0, no regime IR. Dentro desta classe de fatores de forma fracamente não-locais,
podemos distinguir aqueles que são exponenciais em potências de □, aqueles que são
assintoticamente polinomiais no regime UV [337], e também os que são compostos por
potências fracionárias de □ [338]. A gravidade quântica não-local é caracterizado por não
localidade fraca e fatores de forma assintoticamentes polinomiais, embora pode-se formular
a gravidade quântica também com operadores em potências fracionárias [339].

Todavia, o regime forte da não localidade é obtido quando o fator de forma é do
tipo □−n (n = 1, 2, 3 . . . ) singular em z = □ = 0. No caso da não localidade ser classificada
como sendo muito forte, o termo cinético (5.7) é composto pelo kernel não convertível para
um operador derivativo F (□), ou seja, F (□) pode ser escrito formalmente, pois devido
aos problemas de divergências da inversa da transformada de Fourier, F (□) não existe.
Em geral, pode-se definir um operador não-local de duas maneiras ou representações
diferentes: a representação integral ou representação em série [340]. Os fatores de forma
fracamente não-locais admitem ambas as representações, embora possam dar resultados
muito diferentes quando aplicados a certas funções sementes. Como exemplo, o operador
não-local na representação em série de e□ não converge, enquanto na representação integral
dá-se uma resposta finita, no modelo cosmológico apresentado em [341].

Para o propósito de tornar a teoria quântica da gravidade renormalizável, foram
apresentados os fatores de forma de Kuzmin e Tomboulis, assintoticamente polinomiais.
E, também, os fatores de forma de Wataghin e Krasnikov [342], genericamente expressos

F (□) = ef(□) − 1
□

, (5.13)
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com fw(□) = −□/Λ2 para Wataghin, e fk(□) = □2/Λ4 para Krasnikov. O fator de forma
(5.13) não introduz novos polos, logo, teremos apenas a existência do polo advindo do
termo de Einstein-Hilbert (5.12). Ele permite não localidade fraca, pois □−1 é absorvido
pelo termo no numerador de ordem □. Outros modelos foram criados com mecanismo
de eliminação das singularidades clássicas, incluindo em r = 0, para uma fonte pontual
de Schwarzschild, recuperando a RG quando avaliados para ordem zero desses termos
não-locais [343]. Nestes modelos, os efeitos da não localidade passam a ser relevantes para
r < 2/M , e quando o raio cresce, a solução se aproxima da solução de Schwarzschild. Sua
ação não-local é

S = 1
2κ2

∫
d4x
√
−g
(
R−Gµν

ef(−□) − 1
□

Rµν
)
, (5.14)

com suas respectivas equações de campo

Gµν +O(R2) = κ2e−f(−□)T (m)
µν , (5.15)

onde T (m)
µν é o tensor energia-momento. Neste cenário, foi analisado perturbativamente uma

extensão da gravidade de Stelle, envolvendo um número infinito de termos de derivadas,
mas sem sofrer o problema da unitariedade devido à presença dos estados de norma
negativa (fantasmas) na teoria [344]. Por extensão, investigou-se uma teoria da gravidade
(super)renormalizável e livre de fantasmas, sob um ansatz do fator de forma exponencial,
oferecendo uma justificativa teórica da origem inflacionária para um modelo cosmológico de
Starobinsky [345]. Um modelo de universo acelerado, sem envolver qualquer contribuição
da energia escura, com integral de kernel do inverso do operador d’Alembertiano □−1, foi
considerada em [346]. A seguir apresentaremos uma nova teoria não-local aplicada aos
campos de espinores no espaço-tempo de Minkowski, construída com fatores de forma
definidos como funções exponencias do operador de Dirac, não de d’Alembert.

5.1.2 Fator de Forma do Operador de Dirac F (γµ∂µ)

Como referenciado no início deste capítulo, a formulação de uma original teoria de
campo de spin de Dirac não-local, que será aqui apresentada, tem a interessante proposta
fundamentada na adoção de fatores de forma fabricados por meio de função do operador
de Dirac. Convém ressaltar, a presente proposição se confirma ser mais coerente que as
teorias espinoriais construídas através de fatores de forma do operador de d’Alembert, em
razão do Lagrangiano de Dirac conter apenas termos de derivadas de primeira ordem. Com
este conceito em mãos, exibiremos a recém-criada teoria de campo espinorial não-local,
que será desenvolvida a partir da modificação do Lagrangiano da teoria, por meio da
substituição do operador de Dirac /∂ pelo termo /∂F (/∂). Dessa maneira, a função inteira
do operador de Dirac F (/∂) é o agente responsável pela implementação da propriedade da
não localidade no Lagrangiano. Sabendo que a definição do operador de Dirac é /∂ ≡ γµ∂µ,
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onde γµ são as matrizes gama, que na representação padrão de Dirac será

γ0 =

I 0

0 −I

 , γ⃗ =

 0 σ⃗

−σ⃗ 0

 , (5.16)

com σ⃗ = (σx, σy, σz), onde σi são as matrizes de Pauli, bidimensionais, de traço nulo,
complexas e hermitiana, que surgem na formulação da equação de Pauli, quando considera
a interação do spin de uma partícula com um campo eletromagnético externo. Sendo elas
explicitamente dadas por

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (5.17)

Através da relação de anticomutação padrão, {γµ, γν} = 2ηµν Î4, definida da álgebra
de Clifford1 sobre um espaço pseudo-ortogonal quadridimensional com assinatura métrica
−2, alcançaremos facilmente a forma quadrática do operador de Dirac, expressa em termos
do operador d’Alembertiano, /∂2 = □Î. Desta maneira, agora podemos iniciar o processo
da construção de um genérico modelo de Lagrangiano livre de spin-1/2 não-local, no espaço
de Minkowski, para ℏ = c = 1, dado por

Lo = 1
2Ψ̄

(
i
−→
/∂ F (/∂)−m

)
Ψ− 1

2Ψ̄
(
i
←−
/∂ F (/∂) +m

)
Ψ, (5.18)

onde F (/∂) é o fator de forma definido como uma função inteira do operador Dirac /∂.
Variando a Eq.(5.18) em relação a Ψ̄ e Ψ, obtém-se as respectivas equações não-locais de
Dirac (

i/∂F (/∂)−m
)

Ψ = 0 e Ψ̄
(
i/∂F (/∂) +m

)
= 0. (5.19)

As equações (5.19) estão inter-relacionadas, sendo a última equação o conjugado
hermitiano da primeira. Adotaremos o mesmo procedimento do caso padrão local de
“elevar ao quadrado” a primeira equação em (5.19). Assim, obteremos a equação não-local(

/∂
2
F 2(/∂) +m2

)
Ψ = 0. (5.20)

Esta equação (5.20) tem aparência da conhecida equação usual/local de Klein-
Gordon2, uma versão relativista da equação de Schrödinger que descreve partículas sem
spin. A depender do fator de forma escolhido, a equação (5.20) não pode ser considerada
1 A álgebra de Clifford representa um enorme avanço no desenvolvimento da teoria quântica. Esta

álgebra específica empregada na equação de Dirac é conhecida hoje como álgebra de Dirac.
2 A equação usual de Klein-Gordon não corresponde a uma densidade de probabilidade positivamente

definida, e, além disso, é de segunda ordem na derivada temporal, o que impede uma interpretação
física simples. Ela descreve uma partícula pontual que se propaga nos dois sentidos temporais e possui
uma interpretação na teoria de antipartículas desenvolvida por Feynman e Stueckelberg.
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como uma equação de Klein-Gordon não-local. Pois, cada componente do espinor de Dirac
não satisfaz uma equação de Klein-Gordon não-local, como ocorre no caso local. Isso
ocorre devido à presença de um termo adicional proporcional ao operador de Dirac livre,
como será mostrado no final desta seção. O correspondente propagador deste modelo
(5.20), será

⟨Ψ(−p)Ψ(p)⟩ = i

/pF̃ (/p)−m
=
i(/pF̃ (/p) +m)
p2F̃ 2(/p)−m2

, (5.21)

onde F̃ (/p) é a transformada de Fourier de F (/∂). Como já dito na Seção-5.1.1, F̃ (/p) é
uma função inteira, que evita a presença de polos adicionais no propagador, isto é, uma
função analítica em todo o plano complexo, por isso pode ser ela expandida como uma
série de potências de seu argumento (ver demonstração no Apêndice-B.3). É digno de ser
destacado, dessemelhantemente do caso usual, aqui no modelo proposto o fator de forma é
uma matriz. E, em nosso caso particular, será:

F (/∂) =
∞∑
n=0

cn/∂
n
Λ, (5.22)

onde /∂Λ ≡
/∂

Λ é adimensional, cn são os coeficientes (adimensionais) da série de potências,
satisfazendo a condição c0 = 1, e Λ é a escala típica de altas energias, como a escala de
Planck. Agora é importante investigar o espectro do quadrado do operador local de Dirac.
Para isso, definiremos λ2 como sendo o autovalor do operador □, ou seja, /∂2Ψ = □Ψ = λ2Ψ.
Então, multiplicando sucessivamente o lado esquerdo desta última equação pelo operador
/∂, teremos /∂3Ψ = /∂□Ψ = λ2/∂Ψ, /∂4Ψ = λ2/∂

2Ψ = λ4/∂Ψ. E, após uma simples manipulação
algébrica, conclui-se:

/∂
2nΨ = λ2nΨ; (5.23)

/∂
2n+1Ψ = λ2n/∂Ψ, (5.24)

onde n ∈ N. Então, com o uso das equações (5.23), (5.24) e expandindo a função
exponencial em termos de seno e cosseno, através da fórmula de Euler3, encontraremos o
valor para o primeiro termo da equação “tipo” Klein-Gordon (5.20)

/∂
2
F 2(/∂)Ψ = □

( ∞∑
k=0

c2k
λ2k

Λ2k Î +
∞∑
k=0

c2k+1
λ2k

Λ2k+1
/∂
)

Ψ, (5.25)

onde os cis são os coeficientes da série de potências de F 2(/∂), com c0 = 1. Por questões
práticas em busca de resultados mais concretos, é essencial explicitar o aspecto do fator
de forma. Em particular, consideraremos o seguinte fator de forma do tipo exponencial, a
saber,

F1(/∂) ≡ e
− /∂

Λ . (5.26)
3 A fórmula de Euler oferece uma conexão entre a geometria e a álgebra, mostrando como a multiplicação

complexa pode ser vista como uma rotação e um alongamento no plano complexo.
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Neste caso, podemos reescrevê-lo em série de potências do operador de Dirac, ou
seja,

F1(/∂) =
∞∑
n=0

1
2n!

/∂
2n

Λ2n −
∞∑
m=0

1
(2m+ 1)!

/∂
2m+1

Λ2m+1 . (5.27)

Substituindo as Eqs.(5.23) e (5.24) na Eq.(5.27). E, quando esta equação é aplicada
ao campo espinorial, F1(/∂)Ψ, encontraremos

F1(/∂) =
∞∑
n=0

λ2n

(2n)!Λ2n Î −
1
λ

∞∑
m=0

λ2m+1

(2m+ 1)!Λ2m+1
/∂

= cosh
(
λ

Λ

)
Î − 1

λ
sinh

(
λ

Λ

)
/∂, (5.28)

e, como consequência, F 2
1 (/∂)Ψ, teremos

F 2
1 (/∂) = cosh

(
2λ
Λ

)
Î − 1

λ
sinh

(
2λ
Λ

)
/∂. (5.29)

Escolhido um outro fator de forma, ligeiramente diferente de (5.26), F2(/∂) ≡ e−i /∂
Λ ,

para o mesmo procedimento adotado anteriormente, obteremos facilmente o seguinte
resultado

F 2
2 (/∂) = cos

(
2λ
Λ

)
Î − i

λ
sin

(
2λ
Λ

)
/∂. (5.30)

Assim, para os dois fatores de forma escolhidos, a equação do tipo Klein-Gordon
não-local (5.20) pode ser expressa de um uma forma mais compacta, a saber,(

□F 2
i (/∂) +m2

)
Ψ = 0 , para (i = 1, 2). (5.31)

É de fácil verificação que ao tomarmos o limite Λ → ∞ na Eq.(5.31), o termo
proporcional ao operador de Dirac desaparece, ou seja, F 2

1 = F 2
2 = 1, assim sendo, o

caso local é recuperado. Nota-se o fato de que, apesar da semelhança com a equação de
Klein-Gordon usual (local), a Eq.(5.31) não é uma equação de Klein-Gordon não-local.
Isso acontece devido à presença do operador de Dirac /∂ nas equações (5.29) e (5.30).
Portanto, cada componente espinor deve cumprir uma equação mais complexa do que a
equação de Klein-Gordon não-local. Da Eq.(5.22), podemos definir f1(□) e f2(□)

/∂F (/∂) = /∂
∞∑
n=0

c2n∂
2n + /∂

∞∑
m=0

c2m+1∂
2m+1

= /∂
∞∑
n=0

(−1n)c2n
□n

Λ2n︸ ︷︷ ︸
f1(□)

+
∞∑
m=0

(−1m+1)c2m+1
□m+1

Λ2m+1︸ ︷︷ ︸
f2(□)

, (5.32)

que substituindo (5.32) na primeira equação de (5.19), teremos[
i/∂f1(□)−m+ if2(□)

]
Ψ = 0, (5.33)
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onde /∂f1(□) é um operador matricial não-diagonal, que contém somente termos de
derivadas de ordem ímpar, sendo ele coincidente com termos cinéticos propostos em outras
teorias de campos não-locais. Em contrapartida, f2(□) é um operador matricial diagonal,
que contém só termos de derivadas de ordem par, sem analogia a outros termos cinéticos
propostos na literatura.

5.1.3 Relação de Dispersão da Teoria Livre de Spin-1/2 Não-Local

A relação de dispersão é frequentemente expressa como uma relação entre a
energia e o momento de uma onda/partícula, ou equivalentemente, entre a frequência e
comprimento de onda. Em meios dispersivos, diferentes frequências de uma onda podem
viajar em velocidades diferentes, a velocidade do grupo pode diferir da velocidade da fase.
Por exemplo, na dinâmica dos fluidos, os diferentes comprimentos de ondas que se propagam
na superfície da água viajam com diferentes velocidades de fase. Tendo a gravidade e
a tensão superficial como forças restauradoras, a água com superfície livre é geralmente
considerada um meio dispersivo [347]. Na TQC, foram questionadas as propriedades das
funções de 2 pontos, do ponto de vista das representação espectral de Källén-Lehmann e de
dispersão geral, onde a estrutura analítica das funções de pontos na teoria das perturbações
foi analisada através das equações de Landau e das regras de Cutkosky [348]. Em outro
cenário, foi demonstrado a equivalência lógica da causalidade estrita4 e da validade de
uma relação de dispersão que expressa a parte real de uma amplitude de espalhamento
generalizada como uma integral envolvendo sua parte imaginária [349]. Por outro lado,
mostrou-se que as relações de dispersão por si só não podem garantir causalidade, por
motivo das superposições lineares de ondas planas envolverem uma relação de dispersão
de valor único e covariantemente estável ω(k), sempre se propagando fora do cone de luz,
a menos que ω(k) = a+ bk. Isto implica que não há noção de causalidade para relações
de dispersão individuais, uma vez que a condição matemática da função ω(k) (com as
condições de velocidade de grupo assintótica) não podem servir de condição suficiente
para a propagação subluminal em meio dispersivo [350].

Nesta seção, analisaremos a relação de dispersão para o nosso modelo, para tanto,
iniciaremos expondo a solução de (5.31), sabendo ser ela dada por uma superposição de
ondas planas,

Ψ(x) =
∫
d4p e−ipµxµΨ̃(p), (5.34)

onde Ψ̃(p) é a transformada de Fourier do espinor Ψ(x), e satisfaz a equação de Dirac
não-local, no espaço dos momentos(

p2F̃ 2(/p) +m2
)

Ψ̃ = 0, (5.35)
4 Relação entre um evento causal A e um segundo evento B (o efeito), estabelecido a velocidade da luz

como o limite máximo para a propagação de informação ou matéria.
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onde F̃ (/p) é a transformada de Fourier dos operadores não-locais (5.29) e (5.30). Soluções
não triviais da equação anterior são obtidas exigindo que o determinante da matriz seja
nulo detS = 0, onde S ≡ p2F̃ 2(/p) +m2Î. Desta maneira, reescreveremos o fator de forma
(5.29) em função dos operadores não-locais â1 e â2

F 2(/∂) = (â1Î + â2/∂), (5.36)

sendo â1 e â2 obtidos de modo direto por comparação com (5.25) e (5.29)

â1 =
∞∑
k=0

c2k
λ2k

Λ2k = cosh
(

2λ
Λ

)
, e â2 =

∞∑
k=0

c2k+1
λ2k

Λ2k+1 = −1
λ

sinh
(

2λ
Λ

)
, (5.37)

sendo estes operadores não-locais definidos no espaço das coordenadas como funções não
polinomiais do operador d’Alembertiano, â1(□) e â2(□), e quando definidos no espaço
dos momentos, serão eles b̂1 = â1(p) e b̂2 = â2(p). Desse modo, com o intuito de obter a
relação de dispersão não-local explicitamente, teremos

detS = det
[
p2F̃ 2(/p) +m2Î

]
= det

[(
p2b̂1 +m2

)
Î + p2b̂2i/p

]
= det

[ (
p2b̂1 +m2

)
Î

]
× det

Î +
p2b̂2i/p

p2b̂1 +m2


=
(
p2b̂1 +m2

)4
× det

Î +
p2b̂2i/p

p2b̂1 +m2

 ,
(5.38)

onde realizaremos a expansão em séries de potências do termo do determinante, pois a sua
solução analítica é de difícil manipulação algébrica. E sabendo que apenas as combinações
pares das matrizes gama produzem um traço não trivial, teremos

det
Î +

p2b̂2i/p

p2b̂1 +m2

 = e

(
Tr ln

[
Î+ p2 b̂2 i/p

p2 b̂1+m2

])
= e

(
Tr

∞∑
n=1

(−1)n+1
n

[
p2 b̂2 i/p

p2 b̂1+m2

]n
)

= e

(
− 1

2 Tr

{
∞∑

k=1

1
k

[(
p2 b̂2

p2 b̂1+m2

)2
p2

]k

Î

})

= e

(
ln
[

1−
(

p3 b̂2
p2 b̂1+m2

)2
]2
)

=

1−
 p3b̂2

p2b̂1 +m2

2


2

.

(5.39)

A relação final em (5.38) implica na relação de dispersão

p2b̂1 +m2 = ± p3b̂2. (5.40)

A relação de dispersão (5.40) é obviamente não polinomial, uma vez que b̂1 e b̂2

são coeficientes não-locais definidos no espaço dos momentos. Em vista disso, não se pode



Capítulo 5. Teoria de Campo Espinorial Não-Local no Espaço de Minkowski 73

garantir soluções analíticas para tal relação, embora existam soluções para alguns casos
especiais. Por questão de ilustração, consideraremos os coeficientes não-locais dados por
(5.37), definidos na representação dos momentos. Neste caso, a relação de dispersão se
reduz a

|p|2e± 2|p|
Λ = m2, (5.41)

onde E2 = |p|2 + |p⃗|2. Como esperado da relação não-local (5.41), no seu limite Λ→∞,
recupera-se a relação de dispersão padrão (local). Além disso, (5.41) é uma equação
transcendental de Lambert, e apresenta soluções analíticas dadas por

|p| = ΛW0

(
m

Λ

)
, (5.42)

onde W0 (z) é o ramo principal da função W (z) de Lambert, também chamada de função
ômega ou logaritmo do produto, que é uma função transcendental complexa de múltiplos
valores, definida como o inverso de f(z) = z ez, com z ∈ C. Essas funções possuem um
número infinito de ramos Wk(z), onde k ∈ Z [351].

Porém, como estamos interessados apenas em soluções reais, podemos avaliar os
resultados para os dois ramos possíveis, a saber: W0(z) definido no intervalo z ≥ −e−1

e W−1(z) definido no intervalo 0 > z ≥ −e−1. No entanto, restringiremos nossa solução
ao ramo principal porque o ramo inferior, W−1(z), não está bem definido em z = 0.
Portanto, garante que |p| e m2 sejam positivos, como deve ser. Na Fig.(3), traçamos o
comportamento da solução da Eq.(5.42), |p| em função de Λ, para três diferentes valores da
massa: m = 1 (linha azul), m = 2 (linha amarela) e m = 3 (linha verde). Vale ressaltar que
à medida que Λ cresce, |p| se aproxima de m, recuperando o resultado padrão, conforme
esperado. Desta maneira, observa-se que ao expandir a relação de dispersão (5.42) em
torno de Λ→∞, produzirá

E2 = |p⃗|2 +m2 − 2m3

Λ +O
( 1

Λ2

)
. (5.43)

Esta equação exibe a correção de primeira ordem devido aos efeitos não-locais, que
permanece invariante sob transformações de paridade: E → −E e |p⃗| → −|p⃗|, diferente-
mente dos modelos de quebra de simetria de Lorentz cujas relações de dispersão quebram
espontaneamente as transformações de paridade [352, 353, 354]. um caso interessante
seria considerar os dois termos de massa na Eq.(5.43) como sendo um único termo de uma
certa massa efetiva, que resultaria dos efeitos não-locais. Em última análise, a Eq.(5.43)
revela que nossos resultados estão de acordo com modelos fenomenológicos da gravidade
quântica, nos quais a relação de dispersão padrão é modificada pela inclusão de termos de
escala típica de altas energias (como a escala de Planck), que são suprimidos no regime IR
[355, 356, 243].
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Figura 3 – Gráficos da relação de dispersão não-local dada pela Eq.(5.42) para diferentes
valores de massa: m = 1 (linha azul), m = 2 (linha amarela) e m = 3 (linha
verde).

5.2 Modelo de Campo Spin-1/2 Não-Local Acoplada

5.2.1 Interação de Yukawa

Para resolver o problema da interação nêutron-próton, em 1935, Hideki Yukawa
(1907—1981) combina a ideia de Heisenberg da interação de forças de curto alcance, entre
partículas dentro do núcleo, com a ideia de Fermi da partícula de troca [357]. Yukawa
apresenta em seu artigo um potencial de interação que inclui um termo de decaimento
exponencial e um termo eletromagnético

VY (r) = −β2 e
−αmr

r
, (5.44)

onde β é a constante de acoplamento. Para m = 0, o potencial de Yukawa de curto alcance
converte-se no potencial Coulombiano de alcance infinito, com β2 = q1q2

4πε0
. Por outro lado, o

potencial de Yukawa pode ser também pensado como resultante da modificação da equação
da onda eletromagnética, adicionando, sem afetar a invariância relativística, um múltiplo
de um campo escalar Φ, para descrever partículas massivas □Φ + µ2Φ = 0. Neste caso, se
considerarmos Φ = Φ(r), teremos em coordenadas esféricas, ∇2Φ = µ2Φ = 1

r

∂2

∂r2 (rΦ), o

que implica em ∂2

∂r2 (rΦ) = µ2(rΦ), cuja solução será dada por (5.44).

Em analogia à QED, que possui o fóton como partícula de troca, Yukawa idealizou
a existência de uma partícula de troca como resultado do potencial e do seu correspondente
campo, mas com m ≠ 0, que estaria relacionada com o alcance da interação (αm)−1. Sendo
o alcance da força nuclear conhecido, Yukawa estimou a massa da partícula mediadora
como tendo cerca de 200 vezes a massa do elétron. Em 1947, com o uso das técnicas de
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emulsão nuclear em placas fotográficas5 desenvolvidas por César Lattes, este e sua equipe
descobriram os píons, confirmando a previsão da teoria de Yukawa [358]. Desta forma, foi
desenvolvida a teoria da força forte entre hádrons, usada para descrever a força nuclear
entre núcleons mediada por píons. E, utilizada no Modelo Padrão (SM) para descrever o
acoplamento entre o campo de Higgs e os campos de quarks e léptons sem massa. Através
da quebra espontânea de simetria, os férmions adquirem uma massa proporcional ao valor
esperado do campo de Higgs no vácuo. Este acoplamento Higgs-férmion foi descrito pela
primeira vez por Steven Weinberg em 1967 para modelar massas leptônicas [359].

Em linhas gerais, a interação de Yukawa acopla o campo fermiônico de Dirac Ψ
ao campo (pseudo)escalar mesônico ϕ, do tipo LY (Φ,Ψ) = −βΨ̄ΦΨ para mésons escalares
e LY (Φ,Ψ) = −βΨ̄iγ5ΦΨ para mésons pseudoescalares, e seu potencial pode ser derivado
da amplitude de ordem mais baixa da interação de um par de férmions. O diagrama de

Figura 4 – Diagrama de Feynman: Amplitude de espalhamento para dois férmions, tro-
cando um méson. Crédito da figura: https://en.wikipedia.org/wiki/Yukawa-
potential/media/File: Momentum-exchange.sv

Feynman (Figura-4) exibe dois férmions com momento inicial p1 e p2, trocando um méson
com momento k, a linha pontilhada representando a troca de um méson massivo. Tendo
o fator β para cada vértice, a amplitude de Feynman será −β2DF , sendo o propagador
DF a função de Green da equação de Klein-Gordon obtido da transformada de Fourier do
potencial de Yukawa, para α = 1,

ṼY (k) = − β2

(2π)3

∫
d3k eik⃗.r⃗

4π
k2 + α2m2 =⇒ DF (x− x′) = 4π

k2 +m2 δ(x− x
′). (5.45)

5.2.2 Ação Efetiva Fermiônica Não-Local de Um-Laço com Acoplamento
Yukawa

No nosso modelo não-local, calcularemos a ação efetiva fermiônica de um laço na
presença de acoplamento Yukawa. Para começar, adicionaremos o acoplamento Yukawa ao
Lagrangiano espinorial não-local (5.18), que produzirá o Lagrangiano dado pela seguinte
5 Na época, o uso de emulsões nucleares, uma chapa fotográfica especial, nos experimentos com raios

cósmicos que visavam encontrar evidências de partículas subatômicas instáveis, começava a ganhar
espaço em substituição ao emprego das câmaras de nuvens, também conhecidas como câmaras de
Wilson.
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equação

LY (Φ,Ψ) = Ψ̄[i/∂F (/∂)−m+ βΦ]Ψ, (5.46)

onde β é a constante de acoplamento de Yukawa e Φ é o campo escalar. A equação de
campo associada ao Lagrangiano de Yukawa é

[i/∂F (/∂)−m+ βΦ]Ψ = 0 =⇒ [/∂2
F 2(/∂) + (m− βΦ)2]Ψ = 0, (5.47)

onde a última equação em (5.47) é a forma “quadrática” da primeira. Com o propósito de
abordar as correções quânticas existentes nos cálculos da ação efetiva fermiônica de um
laço, iremos agora revisar, de modo breve, o método do campo de fundo. Para fazer isso,
o primeiro ingrediente é permitir que os campos dinâmicos flutuem em torno dos campos
de fundo, ou seja,

Ψ→ Ψ +
√
ℏψ e Ψ̄→ Ψ̄ +

√
ℏψ̄, (5.48)

onde Ψ e Ψ̄ são os campos de fundo, enquanto ψ e ψ̄ são os campos quânticos. O segundo
ingrediente é a ação efetiva fermiônica Γ[Ψ, Ψ̄], definida como o funcional gerador de
funções de Green irredutíveis de uma partícula (1PI)

ei
Γ[Ψ,Ψ̄]

ℏ =
∫
Dψ̄Dψ e

i
ℏ (S[Ψ+

√
ℏψ,Ψ̄+

√
ℏψ̄]+(η̄ψ+ψ̄η)), (5.49)

onde η̄ e η são variáveis e fontes Grassmanianas para os campos quânticos, ψ e ψ̄,
respectivamente. Integrar as configurações gerais do campo quântico não é uma tarefa
simples, por isso é mais conveniente expandir a ação efetiva em séries de potências de ℏ de
modo que

Γ[Ψ, Ψ̄] = S[Ψ, Ψ̄] + ℏΓ(1)[Ψ, Ψ̄] +O(ℏ2), (5.50)

com a ação clássica S[Ψ, Ψ̄], e o termo de primeira ordem Γ̃(1)[Ψ, Ψ̄] sendo a ação efetiva
fermiônica de um laço cuja forma explícita se lê

Γ(1)[Ψ, Ψ̄] = − i2 ln
∫
Dψ̄Dψeiψ̄∆ψ = − i2 ln det ∆ = − i2Tr ln ∆, (5.51)

onde o núcleo do operador quadrático da ação clássica é

∆ = δS

δψ̄δψ

∣∣∣∣∣∣
ψ̄=Ψ̄,ψ=Ψ

. (5.52)

É preciso enfatizar, estamos interessados em capturar os efeitos não-locais devidos
apenas às flutuações quânticas. Nesse aspecto, utilizaremos o método do campo de fundo,
uma técnica que permite calcular os efeitos quânticos sem perda de invariância de gauge
presentes nas teorias em seu nível clássico. Nessa abordagem, a ação efetiva é um funcional
do campo de fundo que contém, em princípio, toda informação sobre a estrutura quântica
associada a teoria. Deste modo, aplicando o método do campo de fundo para a ação
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não-local (5.46), e supondo que os campos de fundo do espinor desaparecem, então a
contribuição para a ação efetiva fermiônica de um laço será dada por

Γ(1) = −iTr ln[i/∂F (/∂)−m+ βΦ]

= − i2Tr ln
(
[i/∂F (/∂)− Φ̃][−i/∂F (/∂)− Φ̃]

)
= − i2Tr ln

(
/∂

2
F 2(/∂) + Φ̃2

)
, (5.53)

onde fizemos a redefinição do campo Φ̃ = m− βΦ. Usando os resultados da seção anterior,
podemos escrever

Γ(1) = − i2Tr ln
(
â′

1 + â′
2γ

µ∂µ + Φ̃2
)

= − i2Tr ln
(
â′

1 + Φ̃2
)
− i

2Tr ln
(

1 + â′
2γ

µ∂µ

â′
1 + Φ̃2

)
, (5.54)

com,

â′
1 = □ â1 = □ cosh δ, e â′

2 = □ â2 =
√
□ sinh δ, (5.55)

onde δ = 2
√
□

Λ . Utilizamos (5.37) para definir explicitamente as aparências dos operadores
de formas não-locais expostos em (5.55). Para obtermos a solução da ação efetiva (5.54),
devemos efetuar a usual rotação de Wick, que é problemática para teorias de campos
não-locais, na presença de derivadas de ordem infinita. Uma vez que seu comportamento
no infinito, no espaço dos momentos, leva a contribuição não triviais, podendo ser ela
alcançada em alguns casos particulares, a depender do fator de forma. Por esta razão, as
teorias não-locais só são bem definidas no espaço euclidiano. No caso específico da Eq.(5.54),
a usual rotação de Wick não se aplica, pois os fatores de forma podem divergir ao longo
de certas direções do plano complexo [360]. Consequentemente, as funções de Green de n
pontos (os correlacionadores quânticos) não são bem definidas na assinatura de Minkowski
devido à acausalidade. Portanto, iremos primeiramente calcular os correlacionadores
quânticos no espaço Euclidiano SO(4) e, em seguida, voltar a considerar os apropriados
cálculos analíticos no espaço de Minkowski SO(1, 3). Seguindo essa linha de raciocínio,
usaremos a ação efetiva do campo de espinor não-local de um laço no espaço Euclidiano,
via a seguinte transformação iΓ(1) −→ Γ̃(1). Assim, teremos

Γ̃(1) = 1
2Tr ln

(
â′

1 + Φ̃2
)
− i

2Tr ln
(

1 + i
â′

2γ
µ∂µ

â′
1 + Φ̃2

)
≡ Γ̃1 + Γ̃2, (5.56)

onde, agora no espaço Euclidiano teremos, {γµ, γν} = 2δµν e ∂µ = (∂/∂x4, ∇⃗), levando
□ = (∂/∂x4)2 + ∇2, com x4 tendo dimensão espacial. Então, para primeiro termo de
(5.56), que denotamos por Γ̃1, envolve apenas o operador não-local â′

1, podendo ser avaliado
diretamente através da transformada de Fourier.

Γ̃1 = 1
2

∫ d4p

(2π)4 ln
[
p2 cosh

(2p
Λ

)
+ Φ̃2

]
= 1

16π2

∫
dp p3 ln

[
p2 cosh

(2p
Λ

)
+ Φ̃2

]
. (5.57)
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Esta integral é de difícil solução algébrica, por isso, executaremos o método de
aproximação semelhante ao esquema do cálculo adotado em [361], a saber,

Γ̃1 = IIR1 + IUV1 , (5.58)

onde

IIR1 = 1
16π2

∫ Ω

0
dp p3

(
ln(p2 + Φ̃2) + 2p4

(Φ̃2 + p2)Λ2

)
+O

( 1
Λ4

)

= 1
16π2

1
8

4Φ̃4 ln(Φ̃) + 2Φ̃2Ω2 + 2
(
Ω4 − Φ̃4

)
ln
(
Φ̃2 + Ω2

)
+ 1

Λ2 Φ̃4Ω2 − 1
2Λ2 Φ̃2Ω4 + 1

Λ2 Φ̃6 ln
(

Φ̃2

Φ̃2 + Ω2

)

+ 12Φ̃6

3Λ2 ln
(

Φ̃2 + Ω2

Φ̃2

)
− 12Φ̃6Ω2 + 6Φ̃4Ω4 − 2Φ̃2Ω6 + Ω8

(3Λ2)Φ̃2 + Ω2


+ O

( 1
Λ4

)
, (5.59)

com Ω sendo uma escala arbitrária intermediária de massa que satisfaz Φ̃ < Ω < Λ. Esta
integral é realizada sobre momentos pequenos (limite IR), o que é uma boa aproximação
do resultado exato quando p ∼ Φ̃ < Ω≪ Λ é válido. E, no limite UV, teremos

IUV1 = Φ̃2

8π2

∫ ∞

Ω
dp p e− 2p

Λ + · · ·

= Φ̃2

32π2

[
(Λ2 + 2ΩΛ)e− 2Ω

Λ
]

+ · · · , (5.60)

as reticências significam termos irrelevantes ou subdivididos, termos secundários para os
resultados obtidos de IUV1 . Deve-se notar que esta integral é uma boa aproximação do
resultado exato com Φ̃≪ Λ < p. Combinando ambas as Eqs. (5.59) e (5.60), encontra-se

Γ̃1 = 1
16π2

1
8

4Φ̃4 ln(Φ̃) + 2Φ̃2Ω2 + 2
(
Ω4 − Φ̃4

)
ln
(
Φ̃2 + Ω2

)
+

6Φ̃4Ω2 − 3Φ̃2Ω4 + 6Φ̃6 ln
(

Φ̃2

Φ̃2+Ω2

)
6Λ2

+ 4
Λ2 Φ̃6 ln

(
Φ̃2 + Ω2

Φ̃2

)

− 12Φ̃6Ω2 + 6Φ̃4Ω4 − 2Φ̃2Ω6 + Ω8

3Λ2(Φ̃2 + Ω2)
+ Φ̃2e− 2Ω

Λ

32π2

(
Λ2 + 2ΩΛ

)
, (5.61)

e, para o segundo termo Γ̃2, realizaremos o mesmo procedimento anterior. De início,
expandiremos este termo em séries de potências

Γ̃2 = − i2Tr ln
(

1 + â′
2γ

µ∂µ

â′
1 + Φ̃2

)
= − i2Tr

∞∑
n=1

(−1)n+1

n

(
â′

2γ
µ∂µ

â′
1 + Φ̃2

)n

= i

2Tr
∞∑
k=1

(−1)k
2k

(
â′

2

â′
1 + Φ̃2

)2k

□k = − i2Tr
∞∑
k=1

(−1)k+1

2k

( â′
2

â′
1 + Φ̃2

)2

□

k

= − i4 ln
1 +

(
â′

2

â′
1 + Φ̃2

)2

□

 = 1
4

∫ d4p

(2π)4 ln

1−
 p b̂′

2

b̂′
1 + Φ̃2

2
 . (5.62)
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Na passagem para a segunda linha de (5.62), levou-se em conta que apenas graus
pares de γµ produzem traços diferentes de zero, e o fato de que (γµ∂µ)2 = □. No último
passo da expressão (5.62) realizou-se a transformada de Fourier e a rotação de Wick, onde
b̂′

1 = â′
1(p2) e b̂′

2 = â′
2(p2). Agora, conectando as Eqs.(5.55) em (5.62), encontra-se

Γ̃2 = 1
4

∫ d4p

(2π)4 ln
1−

(
p2 sinh θ

p2 cosh θ + Φ̃2

)2


= 1
32π2

∫ ∞

0
dp p3 ln

1−
(

p2 sinh θ
p2 cosh θ + Φ̃2

)2
 , (5.63)

onde θ = 2p
Λ . Vê-se claramente que esta integral (5.63) diverge no limite UV. Então, em

vista disso, precisa-se regularizá-la, o que significa que devemos adotar um esquema de
regularização de corte no UV. Sendo assim, definiremos o regulador UV, ΛUV , cumprindo
as seguintes condições Φ̃≪ Ω≪ Λ ≤ ΛUV . Observe que a integral anterior não pode ser
resolvida analiticamente, então realizaremos uma aproximação semelhante a que foi feita
para Γ̃1, ou seja,

Γ̃2 = IIR2 + IUV2 , (5.64)

onde

IIR2 = − 1
8π2Λ2

∫ Ω

0
dp

p9

(p2 + Φ̃2)
+O

( 1
Λ4

)
(5.65)

= − 1
8π2Λ2

2Φ̃6 ln
(

Φ̃2

Φ̃2 + Ω2

)
+ 12Φ̃6Ω2 + 6Φ̃4Ω4 − 2Φ̃2Ω6 + Ω8

6
(
Φ̃2 + Ω2

)
+O

( 1
Λ4

)
,

corresponde à integração sobre pequenos momentos (limite IR), que é uma boa aproximação
do resultado exato quando p ≤ Φ̃ ∼ Ω≪ Λ é válido, e

IUV2 = Φ̃2

32π2

∫ ΛUV

Ω
dp p e

2p
Λ + · · ·

= Φ̃2Λ
128π2

[
(Λ− 2Ω)e 2Ω

Λ − (Λ− 2ΛUV )e
2ΛUV

Λ

]
+ · · · , (5.66)

com ΛUV sendo uma escala de massa do regulador de corte de UV. A integral IUV2 é
realizada em momentos altos (limite UV) e exibe um termo divergente que pode ser
renormalizado adicionando um contratermo na ação. Deve-se notar que esta integral é
uma boa aproximação do resultado exato como Φ̃ ≪ Ω < Λ ≤ p ∼ ΛUV . Combinando
ambas as Eqs. (5.65) e (5.66), encontraremos

Γ̃2 = 1
8π2Λ2

2Φ̃6 ln
(

Φ̃2

Φ̃2 + Ω2

)
+ 12Φ̃6Ω2 + 6Φ̃4Ω4 − 2Φ̃2Ω6 + Ω8

6
(
Φ̃2 + Ω2

)


+ Φ̃2Λ
128π2

[
−e

2ΛUV
Λ (Λ− 2ΛUV ) + e

2Ω
Λ (Λ− 2Ω)

]
. (5.67)
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Portanto, a ação efetiva completa (5.54) é simplesmente dada pela soma das
Eqs.(5.61) e (5.67). Agora, investigaremos os limites de IR e UV para obter mais infor-
mações sobre os resultados físicos. Observe que no regime IR, ou seja, quando Ω≫ Φ̃, a
ação efetiva fermiônica de um laço se reduz a

Γ̃IR1 = IIR1 + IIR2

=
 Φ̃4

32π2 −
3Φ̃6

8π2Λ2

 ln
(

Φ̃
Ω

)
+ Ω2Φ̃2

32π2Λ2

(
Ω2 + Λ2 − 4Φ̃2

)
+O

( 1
Λ4

)
. (5.68)

É importante observar que no limite IR a ação efetiva de um laço é altamente
suprimida pela escala de não localidade da massa (Λ → ∞). Assim, neste caso, as
principais contribuições para a ação efetiva de um laço provêm do termo local, como
esperado. Por outro lado, para sondar o regime UV, é razoável considerar que o regulador
UV é da ordem da escala de não localidade da massa, ΛUV = Λ. Neste cenário, a ação
efetiva de um laço é

Γ̃UV1 = IUV1 + IUV2 = (5 + e2)Λ2

128π2 Φ̃2 + · · · , (5.69)

onde (· · · ) representa os termos não dominantes. Isto significa que as contribuições não-
locais para a ação efetiva fermiônica de um laço tornam-se muito relevantes no limite
UV.

5.2.3 Acoplamento Espinorial Não-local com o Campo Eletromagnético

Esta seção tem como objetivo construir uma teoria de campo spin-1/2 não-local
minimamente acoplada a um campo eletromagnético com invariância de gauge. Primei-
ramente, construiremos a ação do modelo não-local com acoplamento, promovendo a
derivada parcial para a derivada covariante, permitindo assim estender o cálculo diferencial
para o caso de espaços mais gerias de variedades diferenciáveis. Para fazer isso, seguimos
a receita tradicional empregada na TQC, através da seguinte prescrição,

∂µ → Dµ = ∂µ + iqAµ, (5.70)

onde Aµ é o campo de gauge U(1) e q é a carga da partícula. Portanto, a ação não-local
de spin-1/2 acoplado com interação será

SI =
∫
d4x Ψ̄

(
i /DF ( /D)−m

)
Ψ, (5.71)

onde /D ≡ γµDµ é o operador covariante de Dirac. A ação (5.71) produz a seguinte equação
de campo

[i /DF ( /D)−m]Ψ = 0 =⇒ [ /D2
F 2( /D) +m2]Ψ = 0, (5.72)
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onde a última equação em (5.72) é a forma “quadrática” da primeira. Usando as proprie-
dades das matrizes gama (5.16), pode-se escrever

/D
2 =

[
□ + iq(∂µAµ + Aµ∂

µ)− q2AµA
µ
]
Î + q

2σ
µνFµν , (5.73)

onde Fµν = ∂µAν − ∂νAµ é a intensidade do campo e σµν = i

2[γµ, γν ]. Portanto, a equação
de campo pode ser escrita de forma compacta, como segue[(

D2Î + q

2σ
µνFµν

)
F 2( /D) +m2

]
Ψ = 0. (5.74)

Os mesmos argumentos para o caso livre são aplicados aqui em relação ao fator de
forma, para o caso acoplado, isto é, sendo uma função analítica em todo o plano complexo,
o fator de forma pode ser expandido como uma série de potências de seu argumento (ver
demonstração no Apêndice-B.3). Portanto, este é uma função inteira representada como
uma série de potências de /D, isto é,

F ( /D) =
∞∑
n=0

cn

(
/D

Λ

)n
, (5.75)

onde cn são os coeficientes adimensionais, com condição inicial c0 = 1. Neste caso,
semelhantemente à Seção-5.1.2, assumiremos o fator de forma em seu aspecto exponencial

F ( /D) ≡ e− /D
Λ . (5.76)

Diferentemente do caso livre, o espectro do quadrado do operador de Dirac
com interação é mais envolvente. Alternativamente, escreveremos a equação quadrática
de Dirac não-local com interação em termos do espectro do operador /∂. Aqui se faz
necessário destacar a fórmula Baker-Campbell-Hausdorff (BCH), utilizada para descrever
a exponenciação de elementos de uma álgebra de Lie, com operadores matriciais, que
não necessariamente comutam eAeB = e(A+B+ 1

2 [A,B]+ 1
12 ([A,[A,B]]+[B,[B,A]])+··· ), onde [A,B] é

o comutador da álgebra, e os termos posteriores são todos comutadores de comutadores.
Portanto, usando a fórmula BCH, a Eq.(5.74) será

(
D2Î + qσµν

2 Fµν

) [
e− 2iq /A

Λ

(
cosh (2λ/Λ)Î − 1

λ
sinh (2λ/Λ)/∂

)
−

− e
2iq

Λ2 (−2iσµνAµ∂ν− i
2σ

µνFµν+∂µAµ) +O
(
eq

2/Λ3) ]+m2

Ψ = 0, (5.77)

onde O
(
eq

2/Λ3
)

surge da fórmula BCH e representa comutadores de ordem superior entre
/∂ e /A. Efetivamente, a interação não-local produz uma torre de um número infinito de
interações locais não convencionais, envolvendo os campos eletromagnéticos e espinoriais.
No nível perturbativo, uma vez que Λ é considerado uma escala típica de alta energia,
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isso significa que a constante de acoplamento adimensional α = q

Λ ≪ 1. Assim, os efeitos
não-locais no campo eletromagnético são suprimidos na escala de energia de Planck. Em
termos práticos, cada vértice dos diagramas de Feynman carregará um fator proporcional
a e−iα /A, que pode ser expandido em séries de potências de α. Como resultado, apenas o
termo inicial será relevante numa primeira aproximação, enquanto os outros podem ser
negligenciados com segurança. Neste cenário, após algumas manipulações algébricas, a
equação quadrática de Dirac não-local com interação terá o seguinte aspecto{[

□ + iq(∂µAµ + Aµ∂
µ)− q2AµA

µ + q

2σ
µνFµν + · · ·

]
F 2(/∂) +m2

}
Ψ = 0, (5.78)

De acordo com o esperado, se desconsiderarmos os termos entre colchetes que
representam o acoplamento do campo eletromagnético com o operador de Dirac não-local,
a equação (5.78) se reduzirá à versão quadrática da equação de Dirac livre não-local (5.31).
As reticências representam correções no parâmetro adimensional α. Em derradeira análise
de (5.78), é facilmente verificável que o caso local é recuperado, quando o limite Λ→∞ é
alcançado.

5.2.4 Invariância de Gauge da Ação Acoplada

As raízes dos estudos sobre a invariância de gauge datam do ano de 1820, quando
a primeira teoria eletrodinâmica foi proposta. Desenvolvimentos subsequentes levaram
à descoberta de que diferentes formas do potencial vetor resultam nas mesmas forças
observáveis [362]. Em 1926, Vladimir Fock (1898–1974) estendeu a conhecida liberdade
de escolha dos potenciais eletromagnéticos, na eletrodinâmica clássica, para a mecânica
quântica das partículas carregadas interagindo com campos eletromagnéticos [363]. As
teorias de gauge são importantes na descrição de todas as interações fundamentais da
natureza. A QED, por exemplo, é uma teoria de gauge abeliana com o grupo de simetria
U(1), tendo o quadripotencial eletromagnético como seu campo de gauge, e os fótons
como sendo os bósons de gauge. A TQC de Yang-Mills, criada em 1953, cerne do SM,
descreve interações entre partículas elementares usando grupos de simetria não abelianos,
U(1)× SU(2)× SU(3), através de partículas mediadoras das forças, que podem interagir
entre si, o que leva à não linearidade da teoria6 [364].

No caso específico da gravitação, o princípio fundamental da equivalência, onde
cada ponto do espaço-tempo é permitido escolher um referencial local, pode ser visto como
um aspecto da teoria de gauge. Uma vez que as simetrias de gauge podem ser vistas como
análogas ao princípio da covariância geral, no qual o sistema de coordenadas pode ser
escolhido livremente sob difeomorfismos arbitrários do espaço-tempo. Deste modo, tanto
6 Um dos principais desafios na teoria de Yang-Mills vem da propriedade quântica que resulta m ≠ 0 para

partículas elementares que viajem à velocidade da luz. Construir uma teoria de TQC de Yang-Mills
matematicamente consistente e bem definida é um dos sete problemas do milênio.
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a invariância de gauge quanto a invariância do difeomorfismo refletem uma redundância
na descrição da gravitação, com transformações entre medidores que formam um grupo de
simetria de Lie, associada aos geradores de grupo da álgebra de Lie. Para cada gerador
de grupo surge necessariamente um campo de gauge correspondente, sendo geralmente
um campo vetorial [365]. Não obstante, na RG o campo de gauge é o tensor de Lanczos7

[366], que para a métrica de Schwarzschild é Htrt = GMr−2. Neste sentido, a gravitação
de Einstein é um tipo de teoria de campo em que o Lagrangiano e, portanto, a dinâmica
do próprio sistema, não muda sob transformações locais de acordo com certas famílias
suaves de operações do grupo de Lie. Em 1998, Lasenby, Doran e Gull apresentaram a
teoria alternativa da gravidade de gauge, a qual postula a existência do gráviton com
sendo o bóson de gauge, substituindo o princípio da covariância geral por um princípio
de gauge verdadeiro com novos campos de gauge. Esta teoria é construída em um
espaço-tempo de fundo plano e emprega campos de gauge para garantir que todas as
relações entre quantidades físicas são independentes da posição e orientação dos campos de
matéria. Um tensor de spin também pode ser suportado de maneira semelhante à teoria
de Einstein–Cartan–Sciama–Kibble [367, 368].

Aqui, daremos uma atenção especial ao processo de verificação da invariância de
gauge para o nosso modelo, que descreve um sistema físico onde existe um acoplamento
de um campo espinor não-local com um campo Eletromagnético. De modo prático,
aplicaremos um formalismo matemático específico para regular os graus de liberdade
redundantes no Lagrangiano não-local de (5.71). Tal verificação é valiosa, uma vez que
não é tão óbvio perceber que (5.71) é uma ação não-local, pois o seu fator de forma não é
uma função linear do operador de Dirac. Neste aspecto, é preciso mostrar que i /DF ( /D)Ψ
torna-se covariantemente sob as seguintes conhecidas transformações de gauge U(1),

Aµ
U(1)−−→ A

′

µ = Aµ + ∂µα(x);

Ψ U(1)−−→ Ψ′ = e−iqα(x)Ψ;

Ψ̄ U(1)−−→ Ψ̄′ = Ψ̄eiqα(x).

(5.79)

Assim sendo, demonstraremos a seguinte transformação de gauge

i /DF ( /D)Ψ U(1)−−→ [i /DF ( /D)Ψ]′ = e−iqα(x)i /DF ( /D)Ψ. (5.80)

Após uma simples manipulação algébrica em (5.80), isto é, expandindo o fator de
forma em série de potências de seu argumento

[
i /DF ( /D)Ψ

]′

=
[
iγµDµ

(
1− γν1Dν1

Λ + γν1γν2Dν1Dν2

2Λ2 + · · ·
)

Ψ
]′

. (5.81)
7 Ou potencial de Lanczos, introduzido por Cornelius Lanczos em 1949, é um tensor de posto 3 que gera

o tensor de Weyl.
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Agora, utilizaremos o método da indução matemática com o fim de provar a
invariância de gauge do nosso modelo. De início, analisaremos o termo de ordem zero na
série de potências (5.81). Verifica-se de imediato que este termo é apenas o caso do modelo
acoplado usual/local, que se transforma covariantemente sob transformações de gauge
U(1), ou seja, [iγµDµΨ]

′
= e−iqα(x)iγµDµΨ. De igual modo, para o termo de primeira

ordem, teremos o seguinte[
iγµDµ

(
−γ

ν1Dν1

Λ

)
Ψ
]′

= −iγ
µγν1

Λ (DµDν1Ψ)′

= −iγ
µγν1

Λ (∂µ + iqAµ + iq∂µα(x))e−iqα(x)Dν1Ψ

= −iγ
µγν1

Λ e−iqα(x)(−iq∂µα(x) + ∂µ + iqAµ + iq∂µα(x))Dν1Ψ

= e−iqα(x)iγµDµ

(
−γ

ν1Dν1

Λ

)
Ψ,

(5.82)
e por último, calcularemos a transformação do termo genérico j-ésimo, que será[
iγµDµ

(
(−1)j(γνDν)j

j!Λj
Ψ
)]′

= (−1)j
j!Λj

iγµγν1 . . . γνj (DµDν1 . . . Dνj
Ψ)′

= (−1)j
j!Λj

iγµγν1 . . . γνjD
′

µD
′

ν1 . . . e
−iqα(x)

(
∂νj−1 + iqAνj−1

)
DνnΨ,

aplicando sucessivos passos idênticos aos realizados anteriormente; Então, teremos como
resultado final[

iγµDµ

(
(−1)j(γνDν)j

j!Λj
Ψ
)]′

= e−iqα(x)iγµDµ

(
(−1)j(γνDν)j

j!Λj

)
Ψ. (5.83)

Finalmente, ao substituir (5.83) em (5.81), constata-se que i /DF ( /D)Ψ converte-se
covariantemente sob transformações de gauge U(1). Desta maneira, fica demonstrado que
a teoria campo de spin-1/2 não-local minimamente acoplada a um campo eletromagnético
(5.71) é invariante sob transformação de gauge.

5.3 O Limite Não Relativístico e a Equação de Pauli Não-Local
Em 1925, Samuel Goudsmit e George Uhlenbeck postularam a existência de uma

nova propriedade intrínseca do elétron, que se comportavam como um momento angular,
como forma de explicar a multiplicidade dos termos espectrais na estrutura fina devido ao
efeito Zeeman anômalo [369]. Posteriormente, Wolfgang Pauli (1900-1958) denominou de
spin esta propriedade intrínseca do elétron. E, em 1927, um ano antes de Dirac formular sua
equação, Pauli apresentou a equação que descreve partículas de spin-1/2 em interação com
o campo eletromagnético, em situações onde os efeitos relativísticos podem ser desprezados
[370]. Pauli, na sua análise da equação obtida por Goudsmit e Uhlenbeck, modificou a
equação de Schrödinger com a introdução de suas famosas matrizes de spin (5.17).
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Na sua forma linearizada, a equação de Pauli é conhecida como equação de Lévy-
Leblond [371]. Para o elétron de massa m e carga elétrica q, em um campo eletromagnético
descrito pelo potencial vetor magnético A⃗ e o potencial escalar elétrico ϕ, E⃗ = ∇ϕ+ ∂tA⃗,
a equação de Pauli é

EΨ(x) =
 1

2m

(
p⃗− q

c
A⃗
)2

+ qϕ− µ⃗s · B⃗

Ψ(x), (5.84)

onde µ⃗s ≡
(
qℏ

2mc

)
σ⃗ é magneton de Bohr, B⃗ = ∇ × A⃗ é o campo magnético externo,

Ψ(x) é um biespinor, com os usais operadores do momento p⃗ = iℏ∇ e da energia clássica
E = −iℏ∂t.

Na abordagem local da equação de Dirac, o limite não relativístico é alcançado
assumindo um campo de gauge fracamente acoplado aos férmions, o que impede a aceleração
das partículas fermiônicas alcance velocidades relativísticas. Agora, estudaremos como
este limite é aplicado na equação de Dirac não-local minimamente acoplada a um campo
eletromagnético. Para fazer isso, consideremos inicialmente a Eq.(5.72) no espaço de
momentos e em unidades naturais,[(

/p− q /A
)
F̃

(
/p

Λ − ρ
/A

)
−m

]
Ψ̃(p) = 0, (5.85)

Conforme discutido anteriormente, estamos tratando do limite do campo fraco,
com ρ = q

Λ ≪ 1. Aqui, sem perda de generalidade na equação anterior (5.85), podemos
assumir com segurança ρ = 0, uma vez que nosso objetivo nesta seção é investigar apenas
os efeitos da não localidade no limite não relativístico da equação (5.85). Desta maneira,
simplificaremos consideravelmente o fator de forma não-local, que não dependerá mais do
campo de gauge. Após tais considerações, o próximo passo é selecionarmos explicitamente o
fator de forma, que no presente caso será escolhido ser aquele correspondente à transformada
de Fourier do fator de forma (5.30). Logo, a Eq.(5.85), será[ (

/p− q /A
)
e− /p

Λ −m
]
Ψ̃(p) = 0. (5.86)

Portanto, utilizando as matrizes gama (5.16), o fator de forma pode ser convertido
na seguinte forma de matriz,

F̃ (/p) = e− /p

Λ =

cosh δ + (E/mc2) sinh δ (σ⃗ · p⃗/mc) sinh δ

−(σ⃗ · p⃗/mc) sinh δ cosh δ − (E/mc2) sinh δ

 , (5.87)

onde δ ≡ mc/Λ. Observe que, por conveniência, restauramos a velocidade da luz c.
Assumindo o biespinor Ψ(p) = (χ ξ) e o potencial vetorial Aµ =

(
ϕ/c, A⃗

)
. A Eq. (5.86)
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se reduz as seguintes equações para cada espinor

(a11b11 + a12b
∗
12 −mc)χ+ (a11b12 + a12b

∗
11) ξ = 0; (5.88)

(a12b11 + a11b
∗
12)χ+ (a12b12 + a11b

∗
11 +mc) ξ = 0, (5.89)

onde temos definido

a11 = (E − qϕ)/c; a12 = σ⃗ · Π⃗;
b11 = cosh δ − (E/mc2) sinh δ; b12 = −(σ⃗ · p⃗/mc) sinh δ;
b22 = cosh δ + (E/mc2) sinh δ

(5.90)

com Π⃗ = p⃗−(q/c)A⃗. Vamos agora levar em conta o limite não relativístico, que corresponde

a tomar E ≈ mc2 + Ec, onde a energia clássica Ec ≡
|p⃗|2

2m . Neste caso, considerando o
regime de campo fraco, a Eq.(5.89) torna-se

ξ = − 1
mc (1 + eδ)

(
(σ⃗ · Π⃗)e−δ + (σ⃗ · p⃗) sinh δ

)
χ, (5.91)

substituindo a Eq.(5.91) na Eq.(5.88) e usando os coeficientes (5.90), obteremos
(
Ec − qϕ

c

)
e−δ +mc(e−δ − 1) + (σ⃗ · Π⃗)(σ⃗ · p⃗)

mc
sinh δ

χ =

1
mc (1 + eδ)

{
(σ⃗ · Π⃗)2 − (σ⃗ · p⃗)2 sinh2 δ + (eδ − e−δ)(σ⃗ · p⃗)(σ⃗ · Π⃗) sinh δ

}
χ. (5.92)

Para simplificar (5.92), faremos uso de algumas identidades vetoriais,

(σ⃗ · Π⃗)(σ⃗ · p⃗) = 1
2 ({σi, σj}+ [σi, σj]) Πipj = Π⃗ · p⃗+ iσ⃗ ·

(
Π⃗× p⃗

)
= |Π⃗|2 + q

c
Π⃗ · A⃗+ i

q

c
σ⃗ · (A⃗× p⃗); (5.93)

(σ⃗ · Π⃗)2 = 1
2 ({σi, σj}+ [σi, σj]) ΠiΠj = |Π⃗|2 + i σ⃗ ·

(
Π⃗× Π⃗

)
= |Π⃗|2 − iq

c
σ⃗ · B⃗, (5.94)

onde, nas fórmulas acima, utilizamos a identidade Π⃗× Π⃗ = −q
c

(
p⃗× A⃗+ A⃗× p⃗

)
= i

q

c
B⃗.

Conectando as Eqs.(5.93) e (5.94) na Eq.(5.92) e após algumas manipulações algébricas,
encontra-se a equação de Pauli em sua versão não-local

Ecχ =
qϕ−mc(1− eδ) + eδ/2

2m cosh−1(δ/2) |Π⃗|2

− eδ/2 cosh−1 (δ/2)
2m

q
c

(
1 + e−δ sinh δ

)
σ⃗ · B⃗ − eδ/2|p⃗|2 sinh2 δ


− sinh δ

mc

[
cΠ⃗ · p⃗− iqσ⃗ · (A⃗× p⃗)− qe−δ/2 sinh δ

2 cosh (δ/2) (Π⃗ · A⃗− A⃗ · Π⃗)
]χ. (5.95)
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5.3.1 Fator gs Não-Local

Na física das partículas, existe um fator g para cada momento angular da partícula
(spin gs, orbital gz e total gL). Sendo o fator gs do elétron igual a 2.00231930436092(36),
com incerteza na medida de 1, 8. 10−13, o valor medido com maior precisão na física
[226, 372]. Onde as contribuições dos efeitos gravitacionais quânticos podem levar a um
desvio para o valor do fator gs do elétron [373]. Na QED, o momento magnético anômalo
resulta da contribuição dos efeitos da MQ ao momento magnético da partícula, cuja
previsão para o elétron concorda com o valor medido experimentalmente em mais de 10
algarismos significativos. Surpreendentemente, a previsão teórica do valor do momento
magnético do elétron é a previsão, verificada experimentalmente, com maior acerto já
encontrado na física. Contudo, o SM das partículas não consegue explicar as massas dos
neutrinos e a discrepância entre o valor previsto e o valor experimentalmente medido do
momento magnético anômalo do múon µ− [374].

Figura 5 – Diagrama de Feynman: Correções supersimétricas para o fator (gs − 2) do
múon devido ao envolvimento do bóson de gauge Z ′. Crédito da Figura:
Supersymmetric gauged U(1)Lµ-Lτ model for neutrinos and the muon (gs − 2)
anomaly. Banerjee, H.; Byakti, P.; Roy, S.: Physical Review D - (APS).

Os modelos supersimétricos (SUSY), que incorporam novas simetrias colocando
bósons e férmions em pé de igualdade, podem fornecer contribuições adicionais para o
momento magnético anômalo do múon (gs − 2) por meio da contribuição, em um laço,
advindos do acoplamento bóson-múon, conforme mostrado na Figura-5. O Modelo Mínimo
Supersimétrico (Minimal Supersymmetric Standard Model-MSSM), contendo cinco bósons
de Higgs e um grupo extra de medidores de simetria de gauge U(1), é uma proposta
para a solução do problema da hierarquia (discrepância entre as escalas de energia do
modelo padrão e a gravidade) e da massa de Higgs estável [375]. Além do mais, ele busca
esclarecer os desvios existentes no momento magnético anômalo do múon (gs− 2), que tem
contribuições dos bósons W e Z subdominantes, quando comparadas com as contribuições
do bóson de gauge Z ′ [376]. Outra diferença importante no caso do MSSM deve-se à mistura
dos estados associados pela supersimetria aos gauginos (bósons de Gauge) e aos higgsinos
(bósons de Higgs), cujos autoestados de massa são conhecidos como charginos e neutralinos.
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Estas partículas teóricas, que possuem propriedades peculiares, são conhecidas como
superparceiras, estando relacionadas as partículas do SM. As superparceiras desempenham
um papel fundamental na possível descoberta da supersimetria na escala de energia de TeV
(1012 eV) [377, 378]. No MSSM, para cada quark e lépton, existe uma superparceira squark
e slepton, respectivamente. No caso do bóson Z, do bóson de Higgs e de um dos neutrinos,
o superparceiro é o neutralino, sendo este um candidato a matéria escura. No entanto,
apesar do MSSM ter sido amplamente testado no Large Hadron Collider - (LHC) do
CERN, não foram encontradas evidências claras da existência destas partículas teóricas ou
de outras previsões do modelo [379, 380]. No caso da supergravidade (SUGRA), o número
de supersimetrias é estabelecido pelo número de campos de spin-3/2, isto é, os gravitinos,
que são as superparceiras do gráviton, o quantum do campo de spin-2 [381, 382, 383]. No
entanto, a teoria quântica da gravidade, com sua suposição da existência do gráviton,
apresenta falhas quando suas interações são analisadas e comparadas com as interações do
fóton e de outros bósons de gauge [384, 385].

Para o nosso modelo aqui exposto, verifica-se que quando definido o limite assintó-
tico Λ→∞ em (5.95) recupera-se a equação de Pauli padrão (local). Também, observa-se
que o termo multiplicativo do fator σ⃗ · B⃗ da equação (5.95) exibe uma correção não-local
para a razão giromagnética, fator gs, das partículas massivas de spin-1/2

gs = 2
 e

δ
2

cosh
(
δ
2

) + sinh δ
e

δ
2 cosh

(
δ
2

)
 . (5.96)

Para obter mais informações sobre esse resultado, expandiremos o fator gs em
séries de potências de δ, cujo resultado será

gs = 2 + 3δ +O(δ2). (5.97)

Por fim, como esperado, constata-se que quando a escala da não localidade satisfaz
Λ ≫ mc, implicando em δ → 0, a equação de Pauli na sua versão não-local reproduz
o valor usual/local do fator giromagnético da partícula, isto é, gs = 2 [386]. Este valor
clássico previsto pela equação de Pauli difere em 1% do valor observado. Neste cenário,
verifica-se que as flutuações quânticas da TQC introduzem pequenas correções, que para
o novo modelo aqui apresentado são devidas aos efeitos não-locais. Neste panorama,
obtivemos contribuições para o fator gs, advindas de termos não-locais, por consequência
produzindo uma anomalia magnética não trivial puramente de origem não-local, o que
implica (gs − 2) ̸= 0.
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6 CONCLUSÃO

Nesta tese, desenvolvemos estudos sobre teorias modificadas da gravitação, conside-
rando seus aspectos clássicos e quânticos, tanto no campo teórico quanto no fenomenológico.
Analisamos questões fundamentais relacionadas às teorias não-locais, à causalidade, à
unitariedade, à renormalizabilidade, bem como aos atributos da invariância de Lorentz e
à possível quebra da simetria CPT. Foram discutidos diferentes modelos de gravitação
modificada, propostos como alternativas para a resolução de problemas ainda em aberto
na física gravitacional e no contexto cosmológico. Em particular, apresentamos duas novas
classes de modelos: (i) modelos generalizados de gravidade de Chern–Pontryagin; e (ii)
um modelo de campo espinorial não-local no espaço de Minkowski.

6.1 Modelos Generalizados de Gravidade Chern-Pontryagin
No Capítulo-4, apresentamos os modelos generalizados de gravidade Chern-Pontryagin

que foram construídos através da inclusão de uma função composta pelos termos do escalar
de curvatura e do invariante de Chern-Pontryagin ∗RR, na ação de Einstein-Hilbert. Mos-
tramos que estes modelos são motivados pelo fato de que eles, sendo a generalização do
modelo de gravidade modificada Chern-Simons (CSMG), permitem a quebra de paridade
em determinadas situações. Mais especificamente, quando o Lagrangiano envolve graus
ímpares de ∗RR. Neste aspecto, o novo modelo promove os estudos de modelos de sistemas
físicos no contexto de quebra de simetria CPT e, com suas adequadas modificações, as
construções de modelos com quebra de simetria de Lorentz.

Verificamos algumas métricas conhecidas que resolvem as equações de movimento
dos modelos generalizados de Chern-Pontryagin, nomeadamente todas que produzem o
resultado ∗RR = 0. Neste caso, as equações de campo reduzem-se às equações modificadas
de Einstein das teorias f(R). Em particular, isto é verdade para todas as métricas
esfericamente simétricas. Este fato motivou a estudar perturbações de duas métricas bem
conhecidas, a saber, Schwarzschild e Tipo-Gödel. Em certo sentido, nossos estudos podem
ser tratados como uma continuação do artigo [331] onde as perturbações das métricas do
tipo-Gödel foram consideradas dentro do CSMG não-dinâmico. Investigamos a consistência
dessas métricas nos modelos específicos fI(R, ∗RR) = R + β(∗RR)2 e fII(R, ∗RR) =
R+αR2 + β(∗RR)2. Para as perturbações do buraco negro de Schwarzschild, encontramos
um efeito de arrasto de referencial de primeira ordem no parâmetro de perturbação
L = βM2, além do termo padrão da RG. Para as perturbações das métricas do tipo-Gödel,
investigamos tanto perturbações gerais de primeira ordem, quanto aquelas que apresentam
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quebra de simetria axial ao longo da direção z. Concluímos que, nesses cenários, todas as
funções métricas perturbadas devem ser iguais a zero para garantir consistência com as
equações de campo.

Demonstramos que, semelhante às teorias f(R), os modelos generalizados de
gravidade Chern-Pontryagin admitem uma representação escalar-tensorial de dois campos,
no frame de Jordan e de Einstein, com um potencial de interação para estes dois campos
escalares. Nestas representações, fica evidente existir uma certa equivalência entre estes
modelos e a gravidade modificada de Chern-Simons. Na verdade, ao descrever a teoria no
frame de Einstein, mostramos que a ação desta classe de modelos é, até certo ponto, um
caso intermediário entre o CSMG não-dinâmico e o dinâmico. Além disso, conseguimos
gerar o termo Chern-Simons de forma mais natural do que na proposta original do CSMG
[52].

6.2 Modelo de Campo Espinorial Não-Local
Na segunda proposta, apresentamos no Capítulo-5 a formulação de um novo modelo

de teoria de campo de spin-1/2 não-local no espaço plano, na qual o fator de forma não é
uma função inteira constituída pelo operador d’Alembertiano, como normalmente ocorre
nas demais teorias não-locais de spin-1/2 discutidas na literatura, mas é uma função
inteira do operador de Dirac. A ideia principal por trás desta teoria foi que, devido à
sua estrutura espinorial, é mais natural considerar um fator de forma que depende do
operador de Dirac em vez do operador de d’Alembert. De certa forma, preenchemos uma
lacuna na literatura ao propor uma nova teoria para campos fermiônicos não-locais. Pois,
por alguma razão desconhecida, existem poucos trabalhos publicados com propostas de
modelos não-locais para o campo de Dirac.

Para o modelo de campo espinorial não-local, adotamos fatores de forma expo-
nenciais como funções do operador de Dirac, onde a expressão analítica para as relações
de dispersão obtida se aproxima do resultado padrão à medida que os efeitos não-locais
são suprimidos, ou seja, quando o fator de escala de energia tende ao infinito Λ → ∞.
Outrossim, enquanto ela se afasta do resultado padrão à medida que os efeitos não-locais
se tornam relevantes no limite UV, ou seja, como Λ ∼ p, com p representando grandes
momentos. Além disso, as equações não-locais de campo alcançadas são compostas por
termos do espectro do quadrado do operador livre de Dirac, nas quais cada componente
do espinor de Dirac não satisfaz uma equação de Klein-Gordon não-local, diferentemente
do caso padrão local. Inclusive, usando um método aproximado, avaliamos as correções
quânticas do modelo na presença de um acoplamento Yukawa, para contribuições efetivas
de um laço. Concluímos que tal ação efetiva é altamente suprimida por um fator de escala
de energia Λ no limite do IR, deixando claro que os efeitos não-locais são não dominantes
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neste regime. Em contraste, no limite UV, os efeitos não-locais emergem como termos
principais. Demonstramos explicitamente a invariância de gauge para um acoplamento
mínimo não-local, entre um campo de gauge U(1) e o campo de spin-1/2, com a obtenção
da equação do campo espinorial, que descreve a interação não-local, descrita por uma
torre infinita de interações locais incomuns.

6.3 Perspectivas Futuras
Uma continuação natural do estudo dos modelos generalizados de gravidade Chern-

Pontryagin seria o de envolver a investigação das perturbações cosmológicas1 e analisar
as implicações da violação da paridade no contexto das ondas gravitacionais. Inclusive,
como proposta futura, seria importante verificar a consistência de diferentes soluções
conhecidas na RG, além de Schwarzschild e Tipo-Gödel, como, por exemplo, a métrica
cosmológica de Friedmann-Robertson-Walker (FRW), tanto no formalismo Riemanniano
como no formalismo de Palatini. Outra tarefa interessante seria incluir no modelo o termo
de invariante de Nieh-Yan acoplado a um campo escalar. Este invariante topológico, que
está relacionado à anomalia quiral, pode ser estendido para geometrias métricas-afins
mais gerais que incorporam a torção e a não-metricidade, sua interpretação é utilizada em
cenários de branas e na resolução de singularidades em cosmologias de Bianchi I.

Quanto ao modelo de campo espinorial não-local, nos próximos trabalhos pode-se
acrescentar o formalismo não-local para o campo eletromagnético minimamente acoplado,
e não somente ao campo fermiônico. A investigação do modelo continuará provavelmente
para fatores de forma não-locais mais sofisticados, outros além do gaussiano, como aqueles
construídos na base da função de Bessel e da função gama incompleta. Sem dúvida, as
próximas pesquisas certamente também estarão na direção de desenvolver o modelo de
campo espinorial aplicado aos espaços curvos, primeiramente no formalismo Riemanniano e,
em seguida, em espaços com tensor de torção e tensor de curvatura homotético (metricidade)
não nulos. Ademais, planejamos estudar os aspectos quânticos do modelo de campo
espinorial não-local acoplado com o campo eletromagnético. E mais ainda, analisar os
efeitos quânticos em modelos não-locais da gravitação, uma vez que a principal vantagem
dessas teorias é a possibilidade da obtenção de resultados consistentes no regime UV.
Assim sendo, escavar uma adequada descrição não-local para um modelo de gravidade
quântica, em quatro dimensões, que seja renormalizável e unitária. Por fim, uma outra
possibilidade de pesquisa futura seria a de estender a abordagem não-local para modelos
de campos bosônicos, como também, para modelos supersimétricos.

1 Pequenas flutuações na uniformidade do universo, que são postas como causas cruciais para a formação
das estruturas das galáxias e aglomerados. Logo, a análise do desenvolvimento dessas pequenas
desigualdades na densidade inicial do universo primordial, reveladas via colapsos gravitacionais,
direciona o entendimento do cosmos com os vazios e as galáxias que conhecemos.
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APÊNDICE A – Cálculos Auxiliares

A.1 Equações de Einstein no Formalismo Lagrangiano
Nesta seção, deduziremos as equações de Eintein no formalismo Lagrangiano, cuja

ação proposta por Hilbert é dada por

SEH = 1
2κ2

∫
d4x
√
−g R +

∫
d4x
√
−gLm[gµν , ψ] , (A.1)

cujas equações de movimento de Einstein são obtidas pelo princípio variacional aplicado
em (A.1)

δSEH =
∫

d4x

[
1

2κ2

(√
−g δR
δgµν

+ Rδ
√
−g

δgµν

)
+ δ(√−gLm)

δgµν

]
δgµν = 0 e (A.2)

δR

δgµν
+ Rδ

√
−g√

−gδgµν
= −2κ2 δ(

√
−gLm)√
−gδgµν

≡ κ2T (m)
µν , (A.3)

onde T (m)
µν o tensor momento-energia para campos de matéria. para a derivada covariante

da variação da métrica e a variação dos símbolos de Christoffel, teremos

∇νδgµσ = ∂νδgµσ − Γανµδgασ − Γανσδgµα , (A.4)

δΓαµν = 1
2g

ασ (∇µδgνσ +∇νδgµσ −∇σδgµν) , (A.5)

estas equações inseridas em (2.4) produzirá a identidade de Palatini

δRα
µβν = ∇βδΓαµν −∇νδΓαµβ, (A.6)

contraindo os índices α e β de (2.4)

δRµν = ∇αδΓαµν −∇νδΓαµα = gαβ (∇µ∇αδgνβ −∇µ∇νδgαβ) , (A.7)

onde para o escalar de Ricci R e sua variação δR, teremos

R = gµνRµν = gνα∂µΓµνα − gνα∂αΓµνµ + gναΓµναΓρµρ − gναΓρνµΓµαρ , (A.8)

δR = Rµνδg
µν + gµνgαβ (∇µ∇αδgνβ −∇µ∇νδgαβ) . (A.9)

Ademais, por meio do uso da célebre fórmula de Jacobi, obteremos

δ
√
−g = −1

2
√
−g gµνδgµν . (A.10)
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Desta forma, em posse de (A.9) e, (A.10), encontraremos a variação da termo
geométrico da ação (A.2)

δSEH = 1
2κ2

∫
d4x
√
−g

[
Rµνδg

µν − 1
2Rgµνδg

µν + gµνgαβ (∇µ∇αδgνβ −∇µ∇νδgαβ)
]

= 1
2κ2

∫
d4x

[√
−gGµνδg

µν +∇µ(
√
−ggµνgαβ(∇αδgνβ −∇νδgαβ))

]
, (A.11)

onde Gµν ≡ Rµν − 1
2gµνR é o tensor de Einstein. Vamos agora calcular o último termo da

Eq.(A.11), para isso definiremos V µ = gµνgαβ(∇αδgνβ −∇νδgαβ)

∇µ(
√
−gV µ) =

√
−g∇µV

µ =
√
−g(∂µV µ + ΓµµνV ν)

=
√
−g(∂µV µ + 1

2g
µα∂νgµαV

ν) = ∂µ(
√
−gV µ) ,

logo, a Eq.(A.11) torna-se em

δSEH = 1
2κ2

∫
d4x

[√
−gGµνδg

µν + ∂µ(
√
−ggµνgαβ(∇αδgνβ −∇νδgαβ))

]
. (A.12)

O último termo de (A.12) é conhecido como termo de fronteira, cujo valor depende
do tipo de espaço na ação em consideração. Por hipótese, aqui assumimos apropriadamente
condições de contorno no qual asseguram que o termo de fronteira desapareça, ou seja, ele
não contribui para o valor da variação total acima abordada. No caso de variedades com
contorno, onde tais termos de fronteira não se anulam, ver discussão na referência [191].
Finalmente chegaremos ao resultado da variação da parte geométrica do Lagrangiano de
Einstein-Hilbert

δSEH = 1
2κ2

∫
d4x
√
−g Gµνδg

µν . (A.13)

Desta forma, quando consideramos também o termo de matéria no Lagrangiano
Eq.(A.1), a equação de movimento (A.3) se reduz as conhecidas equações de Einstein:

Rµν −
1
2gµνR = κ2T (m)

µν . (A.14)

Quando considerada a existência da constante cosmológica, as equações de Einstein
terão a seguinte forma:

Rµν −
1
2gµνR + Λgµν = κ2T (m)

µν . (A.15)
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A.2 Variação do Termo de Pontryagin na Ação de Chern-Simons
Nesta seção, mostraremos como obter o tensor de Cotton através da variação, com

respeito à métrica, do termo de Pontryagin da ação de Chern-Simons, descrita a seguir

SCS = 1
4

∫
d4x
√
−g ϕ ∗RR, (A.16)

onde ∗RR = 1
2ε

µναβRσ
τµνR

τ
σαβ é a densidade de Chern-Pontryagin. Os tensores (covariante

e contravariante) totalmente antissimétrico de Levi-Civita são: εµναβ = √−g ϵµναβ e
εµναβ = (√−g)−1ϵµναβ, cujo valor de ϵ é +1 para permutação par de seus índices, -1 para
permutação ímpar de seus índices e 0 para os demais casos. Portanto, variando à ação
(A.16), teremos

δSCS = 1
4

∫
d4x δ

(√
−gϕ∗RR

)
= 1

4

∫
d4xδ

(
ϕϵµναβRσ

τµνR
τ
σαβ

)
= 1

4

∫
d4xϕ

(1
2ϵ

αβµνδRσ
τµνR

τ
σαβ + 1

2ϵ
µναβRσ

τµνδR
τ
σαβ

)
= 1

4

∫
d4xϕϵµναβRσ

τµνδR
τ
σαβ

= −1
2

∫
d4xϕϵµνβαRσ

τµν∇αδΓτσβ .

(A.17)

Na última passagem acima de (A.17), fora utilizado a identidade de Palatini (A.6).
A integração por partes da última igualdade de (A.17), resultará em

−1
2

∫
d4x

[
∇α

(√
−gϕεµνβαRσ

τµνδΓτσβ
)
− ϵµνβα

(
vαR

σ
τµν + ϕ∇αR

σ
τµν

)
δΓτσβ

]
, (A.18)

onde vα ≡ ∇αϕ. O primeiro termo de (A.18) se reduz à um termo de contorno, contribuindo
de modo trivial, sendo ele considerado a derivada covariante de uma densidade tensorial

∇α

(√
−gJα

)
= ∂α

(√
−gJα

)
+
√
−gJλΓααλ −

√
−gJλΓαλα

= ∂α
(√
−gJα

)
.

Pois na geometria Riemanniana tem-se Γλλα = ∂α ln√−g. Analisando o terceiro
termo de (A.18), através da identidade de Bianchi, se verá que tal termo também é
identicamente nulo

∇[αR
σ
|τ |µν] = 0. (A.19)

Portanto, a Eq.(A.18) se reduz à apenas ao termo proporcional a vα. Desta maneira,
quando substituída a expressão da variação dos símbolos de Christoffel (A.5) no termo
remanescente em (A.18), a variação do termo de Pontryagin da ação de Chern-Simons
resultará na seguinte forma

δSCS = 1
4

∫
d4xϵµνβαvαR

σλ
µν (−∇λδgσβ +∇σδgβλ +∇βδgλσ) . (A.20)
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Verifica-se que o último termo da Eq.(A.20) desaparece quando contraído o tensor
simétrico δgλσ com o tensor antissimétrico de Riemann, nos índices λ e σ. Após a
permutação entre os índices λ e σ no primeiro termo de (A.20), teremos

δSCS = 1
2

∫
d4xϵµνβαvαR

σλ
µν∇σδgβλ . (A.21)

Semelhantemente ao procedimento anterior realizado em (A.17), podemos inte-
grar por partes a Eq.(A.21). Neste caso, surgirá, também, um termo de contorno cuja
contribuição é nula.

δSCS = −1
2

∫
d4xϵµνβα

(
vα∇σR

σλ
µν + vσαR

σλ
µν

)
δgβλ , (A.22)

onde vσα ≡ ∇σ∇αϕ = ∇σvα. Podemos usar a identidade de Bianchi ∇σR
σλ
µν = ∇µR

λ
ν −

∇νR
λ
µ para simplificar a equação anterior, além disso o segundo termo pode ser expresso

em termos do tensor de Riemann dual, desta forma obtemos

δSCS = −
∫
d4x
√
−g

(
vαε

βαµν∇µR
λ
ν + vσα

∗Rσλβα
)
δgβλ

= −1
2

∫
d4x
√
−g
(
vαε

βαµν∇µR
λ
ν + vαε

λαµν∇µR
β
ν + vσα

∗Rσλβα + vσα
∗Rσβλα

)
δgβλ

=
∫
d4x
√
−g Cβλ .

(A.23)

Portanto, o tensor de Cotton é obtido através da variação, com respeito à métrica,
do termo de Pontryagin da ação de Chern-Simons, sendo explicitamente definido como
sendo

Cµν ≡ −1
2
[
vα(εµαβλ∇βR

ν
λ + εναβλ∇βR

µ
λ) + vσα(∗Rσνµα + ∗Rσµνα)

]
. (A.24)

É de fácil constatação a natureza simétrica do tensor de Cotton. Ademais, como
veremos a seguir, o tensor de Cotton possui traço nulo

gµνC
µν = −vαεαµβλ∇βRµλ −

1
2vσαε

αµβλRσ
µβλ = 0 , (A.25)

onde o primeiro termo de (A.25) é nulo, pois existe a contração do tensor de Ricci simétrico
com o tensor de Levi-Civita antissimétrico, enquanto que o segundo termo se anula devido
a identidade de Bianchi Rα

[µβλ] = 0.
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A.3 Divergência Covariante do Tensor de Cotton
Com o uso de tensor de Riemann dual e (A.23), podemos redefinir o tensor de

Cotton (A.24)
Cµν = −1

2∇τ

(
vα

∗Rτµαν + vα
∗Rτναµ

)
. (A.26)

Usando a antissimetria de ∗Rτµαν em [τ, µ], podemos apresentar

∇µC
µν = −1

2∇τ∇µ(vα∗Rτναµ) + 1
2 [∇τ ,∇µ]

(
vα

∗Rτναµ + 1
2vα

∗Rτµαν
)
. (A.27)

A primeira contribuição para ∇µC
µν é vazia. Isto é estabelecido notando o que

ocorre com
∇µ(vα ∗Rτναµ) = vµα

∗Rτναµ + vαε
αµσβ∇µR

τν
σβ. (A.28)

O primeiro termo do lado direito de (A.28) é nulo, pois há contração do tensor
antissimétrico ∗Rτναµ com o tensor simétrico vµα, com respeito aos seus índices [α, µ].
Nota-se, também, que não há contribuição para o segundo termo, pois a identidade de
Bianchi é satisfeita para o tensor de Riemann. Portanto, o termo remanescente de (A.27)
envolve o comutador das derivadas covariantes, e leva a

∇µC
µν = vα

2

[ (
∗Rλναµ + 1

2
∗Rλµαν

)
Rτ

λµτ + ∗RτλαµRν
λµτ + 1

2
∗RτλανRµ

λµτ

+ ∗RτναλRµ
λµτ + 1

2
∗R τµαλRν

λµτ

]
= vα

2

[
−
(

∗Rλναµ + 1
2

∗Rλµαν
)
Rλµ +

(
∗Rτναλ + 1

2
∗Rτλαν

)
Rλτ

+
(

∗Rτλαµ + 1
2

∗Rτµαλ
)
Rν

λµτ

]
.

(A.29)

Nesta equação, as quantidades envolvendo o tensor de Ricci desaparecem devido à
sua simetria. O último termo entre colchetes é expandido usando a antissimetria de ∗Rτλαµ

em [τ, λ]. Assim ficamos com

∇µC
µν = vα

4

[
∗Rτλαµ

(
Rν

λµτ −Rν
τµλ

)
+ ∗RτµαλRν

λµτ

]
= vα

4

[
∗RτλαµRν

µλτ + ∗RτµαλRν
λµτ

]
= vα

2
∗RτλαµRλτ

ν
µ.

(A.30)

As propriedades cíclicas do tensor de Riemann permitiram as passagens de uma
expressão para a outra em (A.30). Finalmente usando a identidade

∗Rτ
λ
αµRλ

τνµ = 1
4δ

α
ν

∗RR ,

resultará em
∇µC

µν = vν

8
∗RR (A.31)
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A.4 Divergência das Equações de Campo da Teoria f (R, ∗RR)

Nesta seção, calcularemos a divergência das equações de campo modificadas (4.7)

fRRµν −
1
2gµνf + gµν□fR −∇(µ∇ν)fR + 1

2
∗RRf∗RR gµν

+ 4
(
vλε

λβα
(µ∇|α|Rν)β + ∗Rγ λ

(νµ)∇γ∇λf∗RR

)
= κ2T (m)

µν .
(A.32)

Para início, apresentaremos as seguintes identidades de Bianchi, contraídas e não
contraídas,

0 = Rν
θµγ +Rν

µγθ +Rν
γθµ ;

0 = ∇δRαβµν +∇νRαβδµ +∇µRαβνδ ;
0 = ∇αRαβµν +∇νRβµ −∇µRβν;µ ;
0 = 2∇µRµν −∇νR ;
0 = 2∇µνRµν −□R .

(A.33)

Pela conservação de energia, ∇µT
µν
(m) = 0, a divergência das equações de campo

modificadas (4.7), terão a seguinte forma

−∇µC
µν = ∇µ(fRRµν)− 1

2g
µν∇µf + gµν∇µ□fR −∇µ∇(µ∇ν)fR

= (∇µfR)Rµν + fR∇µR
µν − 1

2∇
νf +∇ν□fR −□∇νfR ,

(A.34)

onde o último termo de (A.34), encontraremos

□∇νfR = gµα∇µ∇α∇νfR = gµα∇µ∇ν∇αfR = gµα∇µ∇νΦα

= gµαgνβ∇µ∇βΦα = gµαgνβ ([∇µ,∇β] +∇β∇µ) Φα

= gµαgνβ
[
−ΦλR

λ
αµβ +∇β∇µΦα

]
= −(∇λfR)Rλµ ν

µ +∇ν∇α∇αfR

= (∇λfR)Rλν +∇ν□fR.

(A.35)

Substituindo a quarta equação de (A.33) e (A.35) em (A.34), chegaremos a
Eq.(4.12), conforme os passos demonstrados a seguir

−∇µC
µν = (∇µfR)Rµν + 1

2fR∇
νR− 1

2∇
νf +∇ν□fR − (∇λfR)Rλν −∇ν□fR

= 1
2fR∇

νR− 1
2 (fR∇νR + f∗RR∇ν ∗RR) ,

(A.36)

enfim, a divergência covariante do C-tensor da teoria f(R, ∗RR) será

∇µC
µν = 1

2f
∗RR∇ν ∗RR . (A.37)
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Agora, vamos calcular a divergência do termo entre colchetes do C-tensor (4.10)

∇µχ
µν = 4∇µ

(
vλε

λβα(µ∇αR
ν)
β + ∗Rγ(νµ)λ∇γ∇λf∗RR

)
= 4∇µ∇γ

(
vλf∗RR

∗Rγ(νµ)λ
)

= 4 ([∇µ,∇γ] +∇γ∇µ)∇λf∗RR
∗Rγ(νµ)λ

= 4∇γ∇µ∇λf∗RR
∗Rγ(νµ)λ + 4[∇µ,∇γ]∇λf∗RR

∗Rγ(νµ)λ ,

(A.38)

sendo nulo o primeiro termo desta equação, devido a simetria dos índices (µ, λ). Logo

∇µχ
µν = 4[∇µ,∇γ]∇λf∗RR

∗
(

∗Rγνµλ + 1
2

∗Rγµνλ
)

= 4vλ
(

∗RθνµλRγ
θµγ + ∗RγθµλRν

θµγ + ∗RγνθλRµ
θµγ + 1

2
∗RθµνλRγ

θµγ

+ 1
2

∗RγθνλRµ
θµγ + 1

2
∗RγµθλRν

θµγ

)
= 4vλ

[ (
∗Rθνµλ + 1

2
∗Rθµνλ

)
Rγ
θµγ + ∗RγθµλRν

θµγ+
1
2

∗RγθνλRµ
θµγ + ∗RγνθλRµ

θµγ + 1
2

∗RγµθλRν
θµγ

]
= 4vλ

[ (
∗Rθνµλ + 1

2
∗Rθµνλ

)
Rθµ +

(
∗Rγθµλ + 1

2
∗Rγµθλ

)
Rν
θµγ +

(
∗Rµνθλ + 1

2
∗Rµθνλ

)
Rθµ

]
= 4vλ

[ (
∗Rµνθλ − ∗Rθνµλ + ∗Rµθνλ

)
Rθµ +

(
∗Rγθµλ + 1

2
∗Rγµθλ

)
Rν
θµγ

]
.

(A.39)

Nota-se que não há contribuição para os termos contidos no primeiro par de
parênteses de (A.39), devido à simetria de Ricci nos dois primeiros termos, e à identidade
de Bianchi no terceiro termo, logo (A.39) resultará em

∇µχ
µν = 2vλ

(
∗Rγθµλ(Rν

θµγ −Rν
γµθ) + ∗RγµθλRν

θµγ

)
= 2vλ

(
∗RγθµλRν

µθγ + ∗RγµθλRν
θµγ

)
= 2vλ∗Rγθµλ(Rν

µθγ +Rν
µθγ)

= 2vλ∗RγθµλRν
µθγ = 2vλ∗RµλγθR ν

µ γθ .

(A.40)

Na passagem da primeira linha de (A.40) foi utilizado a primeira identidade de
Bianchi (A.33). Note que

∗RµλγθR ν
µ γθ = 1

4g
λν ∗RR, (A.41)

logo
∇µX

µν = −1
2vλ g

λν ∗RR = −1
2v

ν ∗RR = −1
2

∗RR∇νf∗RR. (A.42)

Comparando os resultados encontrados em (A.42), (A.37) e (4.10), veremos que
eles estão em concordância

∇µC
µν = ∇µX

µν + 1
2∇µ (f∗RR

∗RR) gµν

= −1
2

∗RR∇νf∗RR + 1
2f

∗RR∇ν ∗RR + 1
2

∗RR∇νf∗RR

= 1
2f

∗RR∇ν ∗RR .

(A.43)
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A.5 Obtenção da Ação Efetiva Fermiônica Não-Local de Um-Laço
Aqui iremos demonstrar os procedimentos adotados no ambiente do software

Wolfram Mathematica, com seus respectivos resultados obtidos em respostas aos comandos
realizados que resultaram na ação efetiva fermiônica (5.54) descrita na seção (5.2.2).

Γ1 = Γ(1)
1 + Γ(2)

1 = I
(1)
IR + I

(1)
UV + I

(2)
IR + I

(2)
UV . (A.44)

no limite IR (Λ≫ 1), ou seja, quando Φ̃≪ p.

I
(2)
IR = − 1

8π2Λ2

∫ Ω

0
dp

p9

(p2 + Φ̃2)
+O

( 1
Λ4

)
(A.45)

= − 1
8π2Λ2

2Φ̃6 ln
(

Φ̃2

Φ̃2 + Ω2

)
+ 12Φ̃6Ω2 + 6Φ̃4Ω4 − 2Φ̃2Ω6 + Ω8

6
(
Φ̃2 + Ω2

)
+O

( 1
Λ4

)
.

Nesse caso, iniciamos os cálculos expandindo o termo entre colchetes da equação
(5.63)

1−

 p2 sinh
(2p

Λ

)
p2 cosh

(2p
Λ

)
+ Φ̃2


2

, (A.46)

em torno de Λ≫ 1, por meio do seguinte comando:

Series[1− ((p∧2 ∗ Sinh[2p/Λ])/(k∧2 ∗ Cosh[2p/Λ] + Φ̃∧2))∧2, {Λ, Infinity, 3}] ,

que resultou em
1− 4p6(

Φ̃2 + p2
)2

Λ2
+O(Λ−4) . (A.47)

Agora, expandindo em série do logaritmo da equação acima (A.47), cujo comando
no Wolfram Mathematica foi

Series

Log

1− 4p6(
Φ̃2 + p2

)2
Λ2

 , {Λ, Infinity, 3}

 .

Integrando o resultado acima, ou seja, colocando-o na forma da Eq.(5.65), foi dado
o comando:

(1/(32∗Pi∧2))∗Integrate
[
− 4k9

(a2 + k2)2 L2
, {k, 0,Ω}, Assumptions->a > 0&&L > 0&&b > 0,

]
,

cujo resultado obtido foi a expressão

−12Φ̃6Ω2 + 6Φ̃4Ω4 − 2Φ̃2Ω6 + Ω8

(Φ̃2 + Ω2)48Λ2π2
+ Φ̃6

4Λ2π2 Log
[
1 + Ω2

Φ̃2

]
,
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que é o resultado da Eq.(5.65). Agora, faremos o mesmo procedimento para integral (5.57).
Neste caso, para o limite IR, teremos o comando “Series” dado por

Series[Log[p∧2 ∗ Cosh[2 ∗ p/Λ] + Φ̃∧2], {Λ, Infinity, 3}],

resultando em
Log

(
Φ̃2 + p2

)
+ 2p4(

Φ̃2 + p2
)2

Λ2
+O(Λ−4)

Vamos integrar equação acima (substitutir na Eq.(5.57), cujo comando será

Integrate

p∧3 ∗
Log

[
Φ̃2 + p2

]
+ 2p4(

Φ̃2 + p2
)

Λ2

 , {p, 0,Ω},
 ,

que resultará em

1
6Λ2

(
6Φ̃4Ω2 − 3Φ̃2Ω4 + 2Ω6 + 6Φ̃6Log

[
Φ̃2

Φ̃2 + Ω2

] )
+ 1

8
(
2Φ̃2Ω2 − Ω4 + 4Φ̃4Log[Φ̃] + 2

(
−Φ̃4 + Ω4

)
Log

[
Φ̃2 + Ω2

])
.

(A.48)

Multiplicando (A.48) por π
2

16, teremos

6Φ̃4Ω2 − 3Φ̃2Ω4 + 2Ω6 + 6Φ̃6Log
(

Φ̃2

Φ̃2+Ω2

)
96Λ2π2

+ 1
128π2

[
2Φ̃2Ω2 − Ω4 + 4Φ̃4Log(Φ̃) + 2

(
−Φ̃4 + Ω4

)
Log

(
Φ̃2 + Ω2

)]
− 12Φ̃6Ω2 + 6Φ̃4Ω4 − 2Φ̃2Ω6 + Ω8

(Φ̃2 + Ω2)48Λ2π2
+ Φ̃6

4Λ2π2 Log
(

Φ̃2 + Ω2

Φ̃2

)
.

(A.49)

Rearrumando os termos de (A.49), obteremos

−12Φ̃6Ω2 + 6Φ̃4Ω4 − 2a2Ω6 + Ω8

(Φ̃2 + Ω2)48Λ2π2
+ Φ̃6

4Λ2π2 Log
(

Φ̃2 + Ω2

Φ̃2

)
. (A.50)

Sendo (A.50) a Eq.(5.59). No limite UV, ou seja, p ≈ Λ≫ Φ̃. Nesse caso, devemos
expandir (5.63) em torno de Φ̃ pequeno (Φ̃≪ 1).

Log[1− ((p∧2 ∗ Sinh[2p/Λ])/((p∧2 ∗ Cosh[2p/Λ]) + (Φ̃∧2)))∧2], (A.51)

Log

1−
p4Sinh

(
2p
Λ

)2

(
Φ̃2 + p2Cosh

(
2p
Λ

))2

 , (A.52)

Series[Log[1− ((p∧2 ∗ Sinh[2p/Λ])/((p∧2 ∗ Cosh[2p/Λ]) + (Φ̃∧2)))∧2], {Φ̃, 0, 4}]
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Log
[
1− Tanh

[2p
Λ

]2]
−

2
(

Sech
[

2p
Λ

]
Tanh

[
2p
Λ

]2)
Φ̃2

p2
(
−1 + Tanh

[
2p
Λ

]2)

+
Sech

[
2p
Λ

]2 (
−3Tanh

[
2p
Λ

]2
+ Tanh

[
2p
Λ

]4)
Φ̃4

p4
(
−1 + Tanh

[
2p
Λ

]2)2 +O[Φ̃5],

Log
(

Sech
(2p

Λ

)2)
+

2 Sinh
(

2p
Λ

)
Tanh

(
2p
Λ

)
Φ̃2

p2 −

(
2 + Cosh

(
4p
Λ

))
Tanh

(
2p
λ

)2
Φ̃4

p4 +O(Φ̃)5.

(A.53)

O primeiro termo não depende do campo de fundo, portanto, pode ser desconside-
rado, restando apenas o segundo termo. Apesar de p ≈ Λ, vamos considerar momentos
altíssimos (p −→∞), então o segundo termo se reduz a:

Exp[2 ∗ p/Λ] ∗ Φ̃∧2/p∧2 =⇒ Φ̃2e
2p
Λ

p2 (A.54)

Substituindo (A.54) em (5.65), encontraremos a integral (5.66):

((1/(32 ∗ Pi∧2))) ∗ Integrate[p ∗ Exp[2 ∗ p/Λ] ∗ Φ̃∧2, {p,ΛUV ,Ω}. (A.55)

Φ̃2

128π2

[
e

2ΛUV
Λ Λ(−2ΛUV + Λ)− e 2Ω

Λ Λ(Λ− 2Ω)
]
. (A.56)

Que é o resultado correspondente à segunda linha da Eq.(5.67). Procedendo
similarmente para a ação Γ(1)

1 , conforme Eq.(5.64). No limite UV, teremos:

Series[Log[p∧2 ∗ Exp[2 ∗ p/Λ]/2 + Φ̃∧2], {Φ̃, 0, 2}], (A.57)

Log
(1

2e
2p
Λ p2

)
+ 2e− 2p

Λ Φ̃2

p2 + O(Φ̃3). (A.58)

O primeiro termo não depende do campo de fundo, então descartaremos ele. Logo,
ao integrar o segundo termo de (5.61), obteremos:

(Φ̃∧2/(8 ∗ Pi∧2)) ∗ Integrate
[
e− 2p

Λ Φ̃2 ∗ p, {p,ΛUV , Infinity}
]
, (A.59)

Φ̃4e− 2ΛUV
Λ Λ(2ΛUV + Λ)

32π2 , se Re(Λ) > 0. (A.60)

Que corresponde a segunda linha de (5.61)

Φ̃2Ω2

4 + Φ̃4Ω2

Λ2 −
Ω4

8 −
Φ̃2Ω4

2Λ2 + Ω6

3L2 + 1
2Φ̃4Log(Φ̃). (A.61)

+
Φ̃6Log

(
Φ̃2

Φ̃2+Ω2

)
Λ2 − 1

4Φ̃4Log
(
Φ̃2 + Ω2

)
+ 1

4Ω4Log
(
Φ̃2 + Ω2

)
. (A.62)
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APÊNDICE B – Teoremas e Definições

B.1 Instabilidades de Ostrogradsky
Em 1850, Mikhail Ostrogradsky (1801-1862) demonstrou serem possuídos de

instabilidades todos os sistemas descritos por teorias clássicas de derivadas superiores
[284]. Tais instabilidades, no nível clássico, traduzem-se em decaimentos espontâneos do
vácuo, uma vez que estados de vácuo podem decair em estados excitados de partículas
e antipartículas, contribuindo positivamente e negativamente, respectivamente, para a
Hamiltoniana. Estes decaimentos não só são possíveis, mas são favorecidos se analisados a
partir do ponto de vista da entropia [283].

Por outro lado, no nível quântico, também, obter-se-ia um Hamiltoniano que
poderia ter valor negativo, sendo capaz de excitar indefinidamente um estado quântico com
energias ilimitadas e criar pares de partícula-antipartícula espontaneamente que, por sua
vez, decairia em pares de partícula-antipartícula de maior energia levando a um decaimento
contínuo do estado de vácuo. Ao contrário do que é visto, por exemplo, na QED. Em
síntese, conclui-se que este tipo de teoria é inconciliável com o Universo observado, porque
nosso estado fundamental seria atormentado por modos de energia altamente excitados
que não se desacoplam, como acontece em uma teoria estável.

A análise realizada por Ostrogradsky implica existir instabilidade linear nos
Hamiltonianos associados aos Lagrangianos que dependem de derivada temporal de ordem
superior a um, de tal forma que as derivadas de ordem superior não podem ser eliminadas
por integração parcial1. A construção de Ostrogradsky é a seguinte:

Para teorias com o Lagrangiano L = L(x, ẋ) dependente somente de x e ẋ, as
equações de Euler-Lagrange deste sistema são dadas por

∂L
∂x
− d

dt

∂L
∂ẋ

= 0 =⇒ ẍ = F (x, ẋ) =⇒ x(t) = x (t, x0, ẋ0) , (B.1)

seja o Lagrangiano (B.1) não degenerado ∂2L
∂ẋ2 ≠ 0, as soluções dependerá dos valores

iniciais
x0 = x(0) e ẋ0 = ẋ(0), (B.2)

isto assegura a existência de duas coordenadas canônicas, X ≡ x e P ≡ ∂L
∂ẋ

, sendo possível
a inversão do espaço de fase onde ẋ é dado em termos de X e P . Ou seja, existe uma
1 Nesse sentido, Isaac Newton (1642-1727) estava certo ao presumir que as leis da física tomam a

forma de equações diferenciais de segunda ordem, quando expressas em termos de variáveis dinâmicas
fundamentais.
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velocidade V (X,P ) tal que,
∂L
∂ẋ

∣∣∣∣∣x=X
ẋ=V

= P. (B.3)

Desse modo, teremos as seguintes equações em coordenadas generalizadas

Ẋ ≡ ∂H

∂P
= V + P

∂V

∂P
− ∂L
∂ẋ

∂V

∂P
= V ;

Ṗ ≡ −∂H
∂X

= −P ∂V
∂X

+ ∂L
∂x

+ ∂L
∂ẋ

∂V

∂X
= ∂L
∂x

.

O Hamiltoniano2 deste sistema é obtido quando aplicado a transformação de
Legendre em ẋ

H(X,P ) ≡ Pẋ− L = PV − L ≥ 0, (B.4)

com V = V (X,P ) e L = L(X, V ). Sendo (B.4) positivamente definido e, portanto,
limitado por baixo.

Um exemplo familiar é o oscilador harmônico simples de massa m e frequência ω,
cujo Lagrangiano é,

L = 1
2mẋ

2 − 1
2mω

2x2 =⇒ ẍ(t) = −ω2x(t) =⇒ x(t) = x0 cos(ωt) + ẋ0

ω
sin(ωt),

cujas variáveis canônicas são X = x, P = mẋ =⇒ V (X,P ) = P

m
, e sua Hamiltoniana

possui termos quadráticos em X e P , por isso é limitada por baixo

H = 1
2

(
P 2

m
+mω2X2

)
≥ 0 .

Outro exemplo de teoria estável, agora no contexto da teoria de campo escalar, é
a ação geratriz da equação de Klein-Gordon

S = −
∫
d4x

(1
2∂

µϕ∂µϕ+ 1
2m

2ϕ2
)

=⇒ (□−m2) = 0, (B.5)

ademais, quando definido P = ϕ̇, como sendo o momento associado do campo ϕ, decorrerá
na seguinte densidade Hamiltoniana limitada por baixo

H = 1
2P

2 + 1
2(∂iϕ∂iϕ) + 1

2m
2ϕ2 ≥ 0 . (B.6)

Agora considerando um sistema cujo Lagrangiano seja L(x, ẋ, ẍ), não degenerado
em ẍ. As equações de Euler-Lagrange serão

∂L
∂q
− d2

dt2
∂L
∂q̇

+ d2

dt2
∂L
∂q̈

= 0 =⇒ ....
x = F (x, ẋ, ẍ, ...

x ) =⇒ x(t) = x (t, x0, ẋ0, ẍ0,
...
x 0) . (B.7)

2 Quando ausente a dependência explícita do tempo, o Hamiltoniano é uma quantidade conservada.
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As quatro coordenadas canônicas de Ostrogradsky serão

X1 ≡ x;
X2 ≡ ẋ;

P1 ≡
∂L
∂ẋ
− d

dt

∂L
∂ẍ

;

P2 ≡
∂L
∂ẍ

.

(B.8)

Assim, o Hamiltoniano de Ostrogradsky é obtido pelas transformações de Legendre
em ẋ = x(1) e ẍ = x(2)

H ≡
2∑
i=1

Pix
i − L = P1X2 + P2A− L , (B.9)

onde
A = A (X1, X2, P2) ;
L = L(X1, X2, A);
H = H(X1, X2, P1, P2).

(B.10)

Mediante o exposto, percebe-se que o Hamiltoniano de Ostrogradsky (B.9) é
linear no momento canônico P1, podendo assumir quaisquer valores positivos ou negativos,
criando excitação patológica de graus de liberdade de energias positiva e negativa, portanto,
atribuindo instabilidades aos sistemas com esta forma.

Enfim, pode-se estender a análise da existência de instabilidades para os sistemas
de dimensões maiores que (B.7) cujo Lagrangiano tenha dependência, não degenerada,
nos termos de derivadas temporais de ordem n ≥ 3 ( ...

x ,
....
x , ...). E, sabendo que quanto

maior for a dependência do Lagrangiano nos termos superiores de derivadas do tempo,
maior será o espaço de fase, se comparado com o espaço de configuração.

Então, conclui-se que qualquer Lagrangiano não degenerado contendo termos
superiores à primeira ordem na derivada temporal sofre da instabilidade de Ostrogradsky.
Isto decorre do fato do Lagrangiano depender de um número menor de coordenadas do que
o número de coordenadas canônicas, que correspondem aos parâmetros iniciais necessários
para especificar o problema.



APÊNDICE B. Teoremas e Definições 105

B.2 Teorema de Lovelock
Em 1971, o físico britânico David Lovelock (1938- ) formulou um teorema onde

afirma ser as equações de campo de Einstein as únicas equações de movimento possíveis
quando provenientes de uma ação gravitacional local, que contém apenas termos de até
segunda ordem da derivada da métrica, num espaço-tempo quadridimensional [387, 388],
do tipo

S =
∫
d4xL(gµν) , (B.11)

onde (B.11) produz as seguintes equações de Euler-Lagrange

d

dxi

[
∂L
∂gµν,i

− d

dxj

(
∂L

∂gµν,ij

)]
− ∂L
∂gµν

= 0 . (B.12)

Nestas condições, as equações (B.12) produzirão a única possível expressão de
Euler-Lagrange de segunda ordem

√
−g

[
a0 g

µν + a1(Rµν − 1
2g

µνR)
]

= 0 , (B.13)

onde os ai′s são constantes, R o escalar de curvatura e Rµν o tensor de Ricci. Constata-se
por analogia que a equação (B.13) tem a mesma aparência da equação de Einstein (A.15),
para o vácuo, com constante cosmológica Λ = a0. Isto posto, este poderoso teorema impõe
limites para uma possível construção de uma teoria gravitacional num espaço Riemanniano
quadridimensional, a partir de um princípio de ação envolvendo apenas o tensor métrico e
suas derivadas. Pois, as únicas equações de campo que são de segunda ordem ou menos são
as equações de Einstein e/ou uma constante cosmológica [389]. Isto não implica, contudo,
que a ação de Einstein-Hilbert seja a única ação construída a partir de gµν que resultará
nas equações de Einstein [390]. Na verdade, em quatro dimensões ou menos, verifica-se
que a ação mais geral é

L =
√
−g

[
a1R− 2a2 + a3ϵ

µναβRρσ
µνRρσαβ + a4(R2 − 4Rµ

νR
ν
µ +Rµν

αβR
αβ
µν)
]
, (B.14)

onde os ai′s são constantes. Para qualquer dimensão D do espaço-tempo, o terceiro termo
em (B.14) não contribui para as equações de Euler-Lagrange (B.12). E, para D = 4, o
quarto termo em (B.14) é o termo de Gauss-Bonnet, que também não contribui para
(B.12). Portanto, o teorema de Lovelock pode ser interpretado como uma imposição de
limites as teorias que se podem construir a partir do tensor métrico, apontando cinco
opções ou caminhos para construção de teorias métricas da gravidade com equações de
campo diferentes daquelas da RG [391]. Sendo eles: (i) Considerar outros campos além do
tensor métrico gµν ; (ii) Trabalhar em espaço-tempo com D ̸= 4; (iii) Aceitar derivadas da
métrica de ordem superior a segunda ordem; (iv) Desconsiderar o princípio da localidade;
(v) Considerar a ideia de que as equações de campo não surgem da ação; e (vi) Desistir de
qualquer equação de campo tensorial de classificação (2, 0), simétrica sob troca de índices
ou livres de divergência.
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B.3 Teorema da Fatoração de Weierstrass
A função complexa f(z) é holomórfica em um ponto z0, se existir um disco aberto

centrado em z0 onde f(z) é derivável em todos os seus pontos. Logo, se f(z) é uma função
inteira, ou seja, holomórfica em todo o plano complexo, então existe um logaritmo bem
definido de f(z), isto é, existe uma função inteira g(z) tal que

eg(z) = f(z). (B.15)

Agora, considerando f(z) tendo um número finito de zeros [ak]nk=1, fora da origem,
então f(z) pode ser fatorado como

f(z) = zMeg(z)
n∏
k=1

(
1− z

ak

)
, (B.16)

onde M é a ordem de zero de f(z) em z = 0 e g(z) é alguma função inteira. Agora,
assumindo que f(z) tenha infinitos zeros, além do 0 (zero). Se o produto

∞∏
k=1

(
1− z

ak

)
, (B.17)

converge uniformemente em subconjuntos compactos de C, então ele define uma função
inteira com zeros apenas em [ak]. Portanto, podemos escrever

f(z)∏∞
k=1

(
1− z

ak

) = zMeg(z) =⇒ f(z) = zMeg(z)
∞∏
k=1

(
1− z

ak

)
. (B.18)

Para garantir que o produto ∏∞
k=1

(
1 − z

ak

)
convirja uniformemente em todo

conjunto compacto, basta assumir que a série Σ 1
|ak|

convirja. Na verdade, em cada disco

BR(0) para k grande o suficiente, teremos

| log(1− z

ak
)| < R

ak
. (B.19)

Então a soma dos logaritmos converge absolutamente. Para encontrar a fatoração
para f(z) em geral, temos que modificar fatores do produto infinito para torná-los absolu-
tamente convergentes. Isso pode ser feito por meio de um truque semelhante ao usado na
prova do teorema do matemático sueco Gösta Mittag-Leffler (1846-1927), que na análise
complexa, diz respeito à existência de funções meromorfas com polos prescritos, podendo
ser usado para expressar qualquer função meromorfa como uma soma de frações parciais
[392].
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B.4 Estruturas Geométricas da Gravitação Quadridimensional
Na abordagem geometrodinâmica3, pode-se descrever o campo gravitacional atra-

vés de teorias cuja classificação depende das estruturas geométricas definidas na própria
variedade quadridimensional suaveM4, cuja estrutura de conexão definida nela é chamada
de espaço conectado afim (L4), contendo 3 objetos geométricos básicos: o tensor de curva-
tura da conexão, o tensor de curvatura homotético e o tensor torção [71], respectivamente
descritos a seguir

Rα
βµν = ∂µΓαβν − ∂νΓαβµ + ΓαρµΓρβν − ΓαρνΓ

ρ
βµ;

Ωµν = ∂µΓααµ − ∂νΓααµ;

Qα
µν = Γα[µν] = 1

2
(
Γαµν − Γανµ

)
.

Nas coordenadas locais do transporte paralelo ao longo de um caminho fechado
são: a rotação de um vetor δV α ≈ Rα

βµνV
βdsµν , a mudança do comprimento δl ≈

l(V )Ωµνds
µν e a imagem do contorno no espaço tangente ξα ≈ 2Qα

µνds
µν . O estudo sobre

as principais definições, abordagens e métodos aplicados à geometria diferencial pode
ser encontrado numa exposição mais detalhada em [393]. A tabela-B.4 destaca uma
classificação geométrica natural às variedades4 de acordo com suas estruturas métrica-afins
subjacentes: o tensor de curvatura da conexão Rα

βµν ≡ R, tensor torção Qα
µν ≡ Q e o

tensor de curvatura homotético Ωµν ≡ Ω.

Tabela-B.4: Classificação geométrica das teorias métrico-afins.

Objetos geométricos Tipo de espaço Teoria
R = 0Q = 0 Ω = 0 M4−Minkowski Relatividade Especial

R = 0Q ̸= 0 Ω = 0 P 4−Weitzenböck
(Paralelismo absoluto)

Gravidade Gauge Translacional

R = 0Q = 0 Ω ̸= 0 s/n s/n
R = 0Q ̸= 0 Ω ̸= 0 s/n s/n
R ̸= 0Q = 0 Ω = 0 V 4−Riemann Relatividade Geral
R ̸= 0Q = 0 Ω ̸= 0 W 4−Weyl Gravidade de Weyl
R ̸= 0Q ̸= 0 Ω = 0 U4−Riemann-Cartan Gravidade Einstein-Cartan

R ̸= 0Q ̸= 0 Ω ̸= 0 G4−Métrico-afim
Campo Assimétrico
(Einstein-Schrödinger)

3 Todo o conteúdo apresentado nesta seção de Apêndice fora retirado da referência [71].
4 Onde “s/n” é a abreviação da expressão latina sine nomine, que significa “sem nome”, ou seja, se

refere a dizer que para o terceiro e quarto caso apresentados na tabela acima o tipo de espaço e sua
correspondente teoria não possuem um nome específico.
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