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Resumo

Esta Tese discorre sobre teorias modificadas da gravitagao, explorando aspectos inerentes
a causalidade, unitariedade, renormalizabilidade, invariancia de Lorentz e quebra de
simetria CPT, com destaque aos resultados originais extraidos de duas novas categorias
de modelos: i) Modelos generalizados de gravidade Chern-Pontryagin; e ii) Modelo de
campo de spin-1/2 nao-local, no espaco de Minkowski. No primeiro, formulamos uma
classe de modelos de gravidade modificada em 4 dimensdes, cuja agdo é caracterizada por
uma fungao arbitraria do escalar de Ricci e do termo topolégico de Chern-Pontryagin *RR.
Dentro desta estrutura, para dois protétipos em particular, f;(R,*RR) = R+ S(*RR)* e
fr1(R,"RR) = R+ aR* + B(*RR)?, derivamos e resolvemos suas respectivas equagoes do
campo para dois ansatz: as métricas tipo-Godel ST-homogéneas com perturbacoes em
primeira ordem e a métrica de Schwarzschild em rotagao lenta, que produziu o efeito Lense-
Thirring com uma corre¢ao em primeira ordem, potencializado pelo parametro angular
L, que caracteriza os desvios dos resultados da relatividade geral. Mostramos que os
modelos generalizados de Chern-Pontryagin admitem uma representacao escalar-tensorial,
cuja forma explicita apresenta dois campos escalares:  com grau de liberdade dinamico
(scalaron), e ¢ nao-dindmico, que surge acoplado ao termo topolégico de Chern-Pontryagin
RR, ou seja, ¢ *RR, chamado de termo de Chern-Simons gravitacional. Na segunda
categoria de modelo, elaboramos uma nova teoria de campo de spin-1/2 nao-local, na qual
os fatores de forma dependem do operador de Dirac, e ndo do de d’Alembert. Em seu
nivel classico, investigamos a relacao de dispersao das particulas livres, que se desvia cada
vez mais do caso padrao a medida que os efeitos nao-locais se tornam relevantes. No nivel
quantico, calculamos a agao nao-local efetiva de um laco fermiénico com acoplamento de
Yukawa. Mostramos que as contribui¢oes dos efeitos nao-locais sao significativas no limite
UV, enquanto no IR elas sao suprimidas por uma escala de corte UV, que foi escolhida
ser coincidente com a escala da nao-localidade A. Ademais, acoplamos minimamente um
campo de calibre U(1), com demonstragao explicita da invaridncia de gauge do modelo.
Finalmente, obtivemos uma versao nao-local da equacgao de Pauli, avaliando seu impacto

no fator g, das particulas massivas.

keywords: Teorias modificadas da gravitacao. Relatividade geral. Teorias nao-locais.
Termo Chern-Pontryagin. Gravidade de Chern-Simons. Invaridncia de Lorentz. Causali-

dade.



Abstract

This thesis discusses modified theories of gravitation, exploring aspects inherent to causality,
unitarity, renormalizability, Lorentz invariance and CPT symmetry breaking, with emphasis
on the original results extracted from two new categories of models: i) generalized Chern-
Pontryagin gravity models; and ii) the non-local spin-1/2 field model, in Minkowski
space. In the first case, we formulate a new class of modified gravity models in 4
dimensions, whose action is characterized by an arbitrary function of the Ricci scalar
and the topological Chern-Pontryagin term *RR. Within this framework, we derive the
gravitational field equations and solve them for a particular model f;(R,*RR) = R+[S(*RR)*
and fr;(R,"RR) = R + aR* + B(*RR)?, considering two ansatzes: the slowly rotating
Schwarzschild metric and first-order perturbations of Godel-type metrics. For the former,
considering slowly rotating Schwarzschild metric, we find a first-order correction to the
frame dragging effect boosted by the parameter L, which characterizes the departures from
general relativity results. We show that generalized four-dimensional Chern-Pontryagin
models admit a scalar-tensor representation, whose explicit form presents two scalar fields:
®, a dynamical degree of freedom (scalaron). In contrast, the second, ¢, is a non-dynamical
degree of freedom, which arises coupled with the Chern-Pontryagin topological term "RR,
that is, ¢ "RR, which is nothing more than the gravitational Chern-Simons term. In the
latter model, we create a novel nonlocal spin-1/2 field theory in which the form factors
depend on the Dirac operator rather than on the d’Alembert operator. At the classical
level, we investigate the dispersion relation of free spin-1/2 particles and find that it
increasingly deviates from the standard case as the nonlocal effects become relevant. At
the quantum level, we compute the fermionic one-loop effective action for the nonlocal
spin-1/2 theory with Yukawa coupling and show that the contributions of nonlocal effects
are significant in the UV limit. At the same time, in the IR they are suppressed by a UV
cutoff scale, which has been chosen to coincide with the nonlocality scale A. We minimally
couple a U(1) gauge field to the non-local spin-1/2 field theory and explicitly demonstrate
that this theory is gauge invariant. Finally, we obtain a nonlocal version of the Pauli

equation and the impact of the nonlocality on the gs-factor of massive particles.

Keywords: Modified theories of gravitation. General relativity. Chern-Pontryagin gravity

models. Chern-Simons term. Non-local gravity. Lorentz invariance. Causality.
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1 Introducao

A teoria da Relatividade Geral (RG) de Albert Einstein (1879-1955), introduzida,
em 1915, pelo desdobramento da teoria da Relatividade Especial (RE), é considerada uma
das maiores conquistas da ciéncia, e uma das mais belas teorias da fisica, contendo em si
uma série de previsoes fisicas fundamentais, confirmadas experimentalmente com alto grau
de precisao no regime infravermelho (IR), ou seja, em grandes distancias e em tempos
tardios [1, 2]. No entanto, a despeito de ser uma consagrada teoria cientifica, apds suas
grandes conquistas obtidas nos testes cldssicos' [3], existem questoes em aberto sugerindo
ser a gravitacao de Einstein incompleta. Pois, a RG carece de previsibilidade no regime
ultravioleta (UV), nao é perturbativamente renormalizdvel em seu regime quéantico. E, na
perspectiva classica, a RG padece com a presenca de singularidades dos buracos negros
e cosmoldgicas, anomalias astrofisicas [4, 5] e, também, a existéncia de uma quimérica

energia escura’, sugerida pelas observacoes no espectro do IR [6, 7].

Assim sendo, o interesse pelo estudo das teorias estendidas® da gravidade tem
ganhado cada vez mais destaque, devido a motivagao combinada vindo da fisica de altas
energias, das questoes em aberto na cosmologia e astrofisica, e das recentes descobertas
cosmoldgicas, quais sejam: aceleragio cosmica [8], ondas gravitacionais de origem césmica’
[9, 10, 11], obtengdo da primeira imagem da sombra de um buraco negro supermassivo
e da sombra de um buraco negro no centro da nossa Via Lactea [12, 13]. Em sintese,
encontra-se duas maneiras principais de estender ou modificar a gravidade de Einstein.
Na primeira abordagem, modifica-se a acao de Einstein-Hilbert introduzindo-lhe termos
aditivos ao seu setor gravitacional. Dentro da segunda abordagem, tem-se uma descri¢ao
completa da gravidade envolvendo, além do campo métrico, algum campo extra escalar
(vetorial ou tensorial), que nao deve ser confundido com a matéria [14]. Este campo extra é
tratado como ingrediente da prépria gravidade, podendo assim recuperar, no limite do IR
os resultados usuais da gravidade de Einstein [15]. Deve-se notar que nessa abordagem, um
papel importante é desempenhado pela adi¢do de novos termos (e/ou campos) destinados
a quebra explicita da simetria de Lorentz/CPT ou mesmo para introduzir uma extensao

supersimétrica da gravidade.

L Cujas predicdes estdo em concordancia com os resultados obtidos no avanco do periélio de Merctrio,

deflexdo da luz, redshift gravitacional, efeito da dilatagdo temporal devido a gravidade e o time delay.
Um conceito de energia com forga repulsiva e mais forte que a gravidade em grandes distancias. Com
natureza e origem nao conhecidas, esta hipotética energia foi introduzida para justificar a expansao
acelerada do universo.

Neste presente trabalho, os termos teorias estendidas da gravidade e teorias alternativas da gravidade
terdo o mesmo sentido e significado do termo teorias modificadas da gravitacdo, os quais sdo um tipo
de teoria da interacgdo gravitacional que generaliza a teoria da RG.

Detectadas pelo LIGO (Laser Interferometer Gravitational-Wave Observatory) que opera em dois
observatérios em sincronia, localizados em Louisiana e Washington, nos Estados Unidos.



Capitulo 1. Introdugdo 2

No contexto histérico, as primeiras tentativas de modificar a RG surgiram logo
apés sua publicacao, aparentemente desencadeadas principalmente pelo simples desejo de
questionar a recém-criada teoria. Todavia, rapidamente, apareceram motivacoes tedricas e
fenomenoldgicas na busca de acrescentar novos termos a ac¢ao de Einstein-Hilbert. Em 1918,
Hermann Weyl (1885-1955), na tentativa de unificar a gravitagdo ao eletromagnetismo,
acrescentou um grau de liberdade a mais & geometria (pseudo)Riemanniana, dotou o
espaco-tempo de uma nova grandeza geométrica®, além do tensor métrico, tornado a RG
invariantes sob transformagoes g,,, — Q2(2)g,.,, onde Q é o fator conforme [16]. Em 1923,
Arthur Stanley Eddington (1882-1944), comegou a considerar modificagoes da teoria da RG
pela inclusao de invariantes de ordem superior na agao de Einstein-Hilbert [17]. E, apds as
observacoes astrofisicas apontarem haver anomalia nos movimentos das estrelas afastadas
do centro galdtico e de galdxias dentro dos seus aglomerados [18, 19, 20], apresentou-se a
hipdtese de que grande parte da massa dos aglomerados e das galdxias ¢ constituida por
um novo tipo de matéria, denominada como matéria escura. Diferentemente da matéria
usual, esta matéria exotica exerce atragao gravitacional sobre outros corpos, mas nao

interage com eles de nenhuma outra forma [21, 22].

Por sua vez, em 1928, Albert Einstein fez uso do formalismo das tetradas (ou
Vierbein®) na gravitagao em uma tentativa de unificar sua teoria com o eletromagnetismo
[23]. Posteriormente tal formalismo mostrou-se 1til também como forma de derivar leis de
conservagcao e realizar medicoes em espagos curvos, introduzindo o conceito de paralelismo
absoluto. Assim, surgiram as teorias teleparalelas de gravitacao modificada, ou seja, teorias
de gauge baseadas na geometria de Weitzenbock [24, 25, 26]. Como resultado, o tensor de
curvatura é anulado e a tor¢cao desempenha o papel de forca gravitacional, com o campo
fundamental representado por um campo nao trivial de tetradas, dando origem a métrica
como subproduto (as varias estruturas geométricas da gravitagdo quadridimensional se

encontram na Tabela-B.4).

Ademais, no grau fenomenolégico, os levantamentos de supernovas produziram
dados observacionais recentes indicando ser o balango de energia do universo composto
de aproximadamente 6% de matéria barionica comum, 26% de matéria escura, 68% de
energia escura e mais uma contribuigao quase desprezivel de radiagdo ~ 1073% [27]. Deste
modo, apenas aproximadamente 6% da composi¢ao da matéria e energia do universo é
explicada de maneira plausivel. Em 1998, foi observado através dos dados fornecidos
pelo Cosmic Microwave Background (CMB) que o universo se apresenta em processo de

expansao acelerada, ao contrario das expectativas anteriores [28]. O modelo mais simples

> Apbs Einstein ter apontado falhas na teoria, Weyl desistiu do seu modelo extensivo da RG. Atualmente,

a gravidade conforme de Weyl continua sendo um tépico ativo de discussao.

Termo em aleméo que significa quatro pernas ( Vielbein significa muitas pernas). Tal formalismo estd
em concordancia com o principio da covaridncia geral na RG, onde as equagbes em sua forma tensorial
independem da base ou do sistema de referéncia.

6
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que se ajusta adequadamente aos dados observacionais cosmoldgicos e astrofisicos é o
modelo ACDM (A-Cold Dark Matter), complementado por algum cenério inflacionario,
geralmente baseado em algum campo escalar chamado inflaton [29]. Além de ndo explicar
a origem do inflaton ou a natureza do setor escuro do universo, o modelo ACDM esté
sobrecarregado dos conhecidos problemas da constante cosmoldgica, segundo o qual o valor
observado da constante cosmolodgica é extravagantemente pequeno, cerca de 121 ordens
de magnitude menor, a ser comparado com o seu valor tedrico, atribuido ao ajuste fino
(fine-tuning), a energia do vacuo dos campos de matéria. Vale ressaltar, a teoria quantica
de campos (TQC) interpreta a constante cosmoldgica A como sendo a densidade de energia
do vacuo associada a flutuagdo dos campos quénticos, definida em funcao da velocidade da
luz no vacuo ¢, da constante de Planck h e da constante gravitacional de Newton G [30].
Infelizmente, as tentativas de justificar a magnitude de A, através da ideia probabilistica do
efeito de sele¢ao de observagao ou principio antrépico [31] para o problema da coincidéncia
cosmoldgica’ [32] e, mesmo ainda, a forma ficticia da quintesséncia para a dindmica da
energia escura [33], tornam o atual modelo cosmolégico padrao, ACDM, mais um ajuste
empirico aos dados observacionais, cuja motivacao tedrica é apontada ser bastante pobre.
As notaveis e recentes observacoes apanhadas pelo satélite James Webb de exoplanetas,
galaxias antigas e de um buraco negro supermassivo no inicio do universo sdo descobertas
recentes, apontando ser necessaria uma remodelacao de nossa compreensao da formacao

de galdxias no universo primitivo. [34, 35].

Nao obstante, apos estabelecida uma sélida teoria classica da gravidade e com
o sucesso da teoria da eletrodindmica quéntica (Quantum Electrodynamics-QED), nas
décadas de 1940 e 1950, surgiram varias tentativas de quantizar a teoria gravitacional,
da mesma maneira realizada para as demais forcas fundamentais da natureza. Nesse
panorama, buscou-se por uma possivel teoria de campo unificado, baseada na insertacao
de campos espinoriais no espago curvo. Em 1960, Roger Penrose formulou uma abordagem
espinorial da RG, através da adoc¢ao de uma base ortonormal das tetradas, na qual o papel
bésico dos tensores é assumido pelos espinores [36]. Tal conceito de espinor, introduzido
na geometria por Elie Cartan em 1913 [37], foi incorporado na fisica, por Paul Dirac
(1902-1984), a partir da simples exigéncia da invaridncia de Lorentz na representacao do
grupo SO(1,3). Mais tarde, H. Bondi e T. Gold apresentaram discussoes interessantes
sobre uma teoria de campo espinorial que descreveria o elétron [38]. Destarte, a nao
obtencao de uma teoria unificada é por existirem complica¢des decorrentes da prépria
definicao da gravitacdao de Einstein, pois sendo ela uma teoria de campo simétrico de rank

2 com correspondéncia direta com a geometria®.

7O fato observacional de que os valores atuais das densidades da energia escura e da matéria escura sio

da mesma ordem de grandeza.

Algumas abordagens da gravidade quantica foram propostas, como, por exemplo, supergravidade,
teoria de cordas, loop quantum gravity, teoria do campo unificado, geometria ndo comutativa. Todas
com certo nivel de sucesso tedrico e deficiéncias, tais como a falta de uma confirmagdo empirica.

8
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Neste contexto, em 1962, Utiyama e De Witt, mostraram que implementando

% na acdo de Einstein-Hilbert conduz a renor-

termos de curvatura de ordem superior
malizagdo em um lago [39, 40]. Em 1977, Stelle demonstrou que termos de derivadas
superiores podem levar a complicagoes no processo de renormalizagao, mas sob certas
condigoes, as teorias de ordem superior podem ser renormalizéveis [41]. Resultados mais
recentes mostram que quando corre¢oes quanticas ou advindas da teoria das cordas sao
levadas em conta, na acdo gravitacional efetiva ou a baixas energias, surgem naturalmente
invariantes de curvatura de ordem superior [42]. Inclusive, o famoso modelo de gravidade
de Starobinsky f,(R) = R+ aR* ¢ um exemplo da classe particular de teorias, de ordem
superior, estudada em modelos de gravidade quantica e do universo primordial, também,
sendo uma forma alternativa ao modelo cosmolégico padrao, sem a necessidade da hipotese
de uma constante cosmolégica ou energia escura [43]. Contudo, modelos com termos
de derivadas de ordem superior na acao de Einstein-Hilbert, geralmente provocam, em
seu nivel classico, inevitaveis instabilidades do tipo Ostrogradsky, resultando em um
Hamiltoniano que nao é limitado por baixo [44]. E, no nivel quéntico, tais modelos
contém em seu espectro de particulas os estados “fantasmas” (ghosts), graus de liberdade
caracterizados por propagadores com sinais “errados” (negativos), que podem destruir o

principio fundamental da unitariedade da teoria quéntica [45].

Em contrapartida, mais recentemente, uma abordagem interessante foi o de incor-
porar o conceito de nao localidade no Lagrangiano de Einstein-Hilbert, através da inclusao
de fatores de forma contendo derivadas de ordem infinita. Curiosamente, a abordagem
nao-local, surgiu em 1934, quando Gleb V. Wataghin'® (1899-1986), sem fazer alusdo ao
termo nao-local, introduziu o fator exponencial e =P/ "em uma secao transversal, a
fim de aniquilar divergéncias na teoria quintica invariante de Lorentz [46]. A saber, a
partir de seus estudos dos objetos de tamanho finito, o propésito original de Wataghin
era dar tamanho/forma as particulas adimensionais. Indubitavelmente, os operadores
nao-locais, ou seja, operadores nao polinomiais, quando implementados adequadamente nas
teorias de campo, resolve dificuldades fundamentais existentes nas teorias gravitacionais,
sendo possivel ndo apenas tornar a teoria renormalizavel, mas também livrar-se dos modos
fantasmas, nao adicionando novos polos ao propagador, que surgem nas teorias de ordem
superior. Por estes motivos o estudo de modelos de gravidade nao-local tem recebido
um consideravel estimulo, trazendo uma série de resultados interessantes, por modificar
minimamente a RG no regime IR e reproduzir resultados experimentais do modelo cos-

mologico ACDM. Assim, diversos importantes trabalhos foram apresentados seguindo a

9 Gravidade de ordem superior refere-se a teorias da gravidade onde o Lagrangiano inclui termos que

envolvem derivadas superiores do tensor métrico, como termos quadraticos no tensor de curvatura.

10 Fisico russo-italiano foi um dos pioneiros da fisica moderna no Brasil, ele formou as primeiras geracoes
do Departamento de Fisica da Faculdade de Filosofia, Ciéncias e Letras da USP. Sua trajetoria
académica, especialmente suas agoes no Brasil entre 1934 e 1971, motivou o Instituto de Fisica da
Unicamp adotar o seu nome.
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proposta de adicionar termos nao-locais a agao para o campo gravitacional. Em 1994, D.
Dalvit derivou equagoes efetivas para o campo gravitacional usando uma aproximacgao
nao-local e calculou corregoes quanticas para o potencial Newtoniano [47]. J& em 1998, C.
Wetterich analisou as implicagoes cosmoldgicas para um modelo proposto com base numa
agao nao-local de Einstein-Hilbert [48]. Uma revisdo geral sobre os aspectos inerentes a
gravitagao nao-local e como formular uma teoria quantica da gravitagao unitaria, com

comportamento melhorado no regime UV, é apresentada em [49).

Progressivamente, muitos outros importantes modelos estendidos da gravitagao
foram estabelecidos, dentre os quais podemos citar alguns: gravidade Lovelock, Gauss-
Bonnet, Weyl, Brans-Dicke (BD), Galileon, Horava-Lifshitz e f(R, @, P). Em especial,
nos ultimos anos, os modelos topologicos tém atraido grande interesse. Por exemplo,
os modelos com o termo invariante de Nieh-Yan acoplado a um campo escalar, que
incorporam a tor¢ao e a nao-metricidade, sdo empregados em cenarios das branas e
estudos de singularidades cosmoldgicas [50, 51]. O modelo topoligico quadridimensional de
Chern-Simons ( Chern—Simons Modified Gravity - CSMQG), originalmente proposto em [52],
inclui no Lagrangiano, além do escalar de curvatura R, o termo adicional composto de um
campo escalar ¢, chamado coeficiente (ou escalar) de Chern—Simons (CS), multiplicado
pelo termo topolégico de Chern-Pontryagin *RE. Na formulacdo nao dinamica, ¢ é
tratado como um campo de fundo, sendo a priori uma funcao prescrita, e sua equacao
de evolucao se reduz a uma restricao diferencial no espago de solugoes permitidas, a
chamada restricao de Pontryagin. Na formulagdo dindmica, o escalar CS é tratado como
um campo dindmico, dotado com seu proéprio tensor energia-momento e equagao de
evolugao. O modelo quadridimensional CSMG, sendo uma extensao natural do modelo
gravitacional de CS em trés dimensoes [53], apresenta algumas propriedades interessantes.
Primeiro, dependendo da forma de ¢, pode gerar explicitamente a quebra da paridade
e da simetria de Lorentz, no nivel da acdo. Em segundo lugar, verificou-se que CSMG
partilha algumas solucoes com a RG!, como, por exemplo as métricas de Schwarzschild e
tipo-Godel ST-homogéneas. Por outro lado, como contraexemplo, pode-se citar a métrica
de Kerr'? que notavelmente nao é uma solu¢ao do CSMG, conforme discutido em [54].
Em particular, as métricas tipo-Godel ST-homogéneas sao célebres por gerarem curvas
tipo-tempo fechadas (Closed Time-like Curves - CTCs) para determinados valores de seus
parametros, promovendo a violagao global da causalidade, mantendo, no entanto, em
cada ponto do espago-tempo a causalidade local, que é assegurada pelo carater localmente
Lorentziano do espago-tempo [55]. O estudo do universo de Godel fora verificado, além da

RG, com a analise da possibilidade de solucoes causais, dentro da gravidade modificada de

1 Pode ser facilmente demonstrado que todas as métricas que atendem & restricio de Pontryagin *RR = 0
sdo solugoes simultaneas da RG e destas teorias generalizadas de Chern-Pontryagin.

12" Uma solucdo estaciondria e axissimétrica da RG onde descreve buracos negros supermassivos e giratorios,
que estao presentes no centro da maioria das galdxias e desempenham um papel critico na evolugao de
objetos compactos e na emissdo de ondas gravitacionais.
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Chern-Simons [56, 57|, gravidade de Brans-Dicke [58], gravidade f(R, Q) [59], gravidade
f(R,Q, P) [60].

Cabe aqui salientar, o invariante topolégico de Chern-Pontryagin, *RR, aparece
naturalmente especificamente compactando as dimensoes extras da teoria-M (D = 11)
para as teorias efetivas quadridimensionais da CSMG. De fato, a teoria das cordas, no
seu limite de baixa energia, contém uma correcao de cancelamento de anomalias, para a
acao de Einstein-Hilbert. Em particular, pode-se citar o modelo Starobinsky-Bel-Robinson
(SBR), cuja acdo envolve termos quadraticos de Chern-Pontryagin, (*RR)?, seus aspectos
cosmolégicos foram estudados em [61]. De certo, o estudo das teorias que envolvem o
termo "R R, com suas generalizagcoes, ¢ motivado pela possibilidade de quebra das simetrias
de Lorentz e/ou CPT, justificada, entre varias razoes heuristicas, pela: Teoria de cordas,
como é sugerida em [62], gravidade quéntica em lago, hip6tese de comprimento minimo,
nao comutatividade espago-temporal e anisotropia na radiacao césmica de fundo, conhecida

como “eixo do mal” [63, 64, 65].

A vista disto, o ordenamento esquemético da presente Tese seguird a seguinte
estrutura: no capitulo 2, iremos retratar & RG em seus diversos formalismos, destacando
o formalismo Riemanniano com suas solugoes métricas de Schwarzschild, Friedmann-
Robertson-Walker (FRW) e (tipo)Godel. Abordaremos as limitagdes da gravidade de
Einstein em tratar dos problemas da aceleracao cosmica e da descricao quantica da
gravidade. Finalizaremos o capitulo com a abordagem do campo fermionico de Dirac em

€eSpacos Ccurvos.

No capitulo 3, discorreremos sobre as teorias modificadas de gravitagao, apresenta-
remos varios tipos de teorias, ressaltando dois destacados modelos: a gravidade nao-local,
que quando bem aplicada, possui a peculiaridade de modificar a teoria, tornando-a renor-
malizavel e unitaria; e o modelo de gravidade modificada de Chern-Simons, que tem como
atributo em destaque a possibilidade da quebra de simetria de Lorentz e CPT, além de

compartilhar algumas solugdes com a RG.

No capitulo 4, fundamentado no artigo originalmente publicado [66] e direcionado
pela teoria f(R), apresentaremos uma nova classe de teorias estendidas da gravitagao
denominadas modelos generalizados de gravidade Chern-Pontryagin, cuja agao, ao invés
de ser linear ou quadratica em *RR, apresenta uma dependéncia funcional genérica deste
objeto e também do escalar de Ricci. Obteremos a acao classica da teoria e suas respectivas
equagoes do movimento, adotando o protétipo fr(R,*RR) = R + B(*RR)?, analisaremos a
consisténcia das solugoes de buracos negros com rotacao lenta, e para perturbacgoes em
primeira ordem das métricas tipo-Godel ST-homogéneo, consideraremos, também, uma
generalizagdo do modelo Starobinsky, que corresponde a tomar f;7(R,"RR) = R + aR* +
B(RR)2.
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No capitulo 5, apresentaremos um modelo de campo espinorial nao-local livre, com
acoplamento do campo magnético e com acoplamento de Yukawa, no espago-tempo de
Minkowski. Construiremos a nova teoria de campo de spin-1/2 nao-local promovendo o
operador de Dirac @ a um operador nio-local, construido com base no operador de Dirac,
df(?), em vez do operador de d’Alembert. Derivaremos cuidadosamente suas equagdes
de campo e mostraremos que no seu limite local recupera-se a equacao padrao de Dirac.
Além disso, obteremos a relacdo de dispersao das particulas livres de spin-1/2 dentro do

modelo nio-local.

Ademais, focaremos nos aspectos quanticos desta teoria, em particular, calculare-
mos a agao efetiva fermidnica de um lago para a teoria de campo de spin-1/2 nao-local
com acoplamento Yukawa. E, veremos que as contribuicoes dos efeitos nao-locais sao
significativas no limite UV, enquanto no IR elas sdo suprimidas por uma escala de corte
UV, que foi escolhida para coincidir com a escala de nao localidade A. Concluiremos o
capitulo obtendo uma versao nao-local da equacao de Pauli no espago de Minkowski, com

avaliacdo do seu impacto no fator g, das particulas massivas.

No capitulo 6, forneceremos algumas consideracoes gerais sobre os temas discutidos
neste trabalho. Especialmente, analisaremos os resultados obtidos e apresentados nos
capitulos 4 e 5. Concluiremos a Tese expondo nossas perspectivas futuras sobre as possiveis
pesquisas no campo das teorias modificadas da gravitacao, com destaque as possiveis
extensoes e aplicagoes dos modelos originais apresentados: modelos generalizados de

gravidade Chern-Pontryagin e modelo de campo espinorial nao-local.

Finalmente, no Apéndice-A e no Apéndice-B estao descritos, em detalhes, os
calculos realizados para a obtencao das principais equagoes utilizadas e alguns teoremas e
conceitos, que foram mencionados no corpo desta Tese. Importante destacar, ndo adotamos
uma Unica assinatura da métrica. E, quando nao explicitamente mencionado, estaremos
trabalhando com gravidade em quatro dimensoes no formalismo Riemanniano, em unidades
naturais ¢ = h = 1. Alguns outros simbolos e convenc¢oes também foram aplicados, sendo

eles:

o >, X, Y'=X,Y" -notacao de Einstein.
e 1,V p,... - indices de letras gregas para indices do espaco-tempo.

1
« XYy =g

5 (XY, — X,Y,) - anti-simetrizacao dos indices [y, v].

1
XY = §(XMYV + X,Y),) - simetrizacao dos indices (p, ).



2 Relatividade Geral

2.1 Uma Teoria de Descricao Essencialmente Geométrica

Diferentemente das demais forgas da natureza, representadas por campos definidos
no proprio espaco-tempo, a RG de Einstein consiste no fato de que o campo gravitacional
se manifesta por meio de modifica¢oes da geometria do espago-tempo [67]. Como resultado
disto, a RG se torna uma teoria essencialmente geométrica, contendo conceitos advindos
da geometria diferencial, onde cada ponto p na variedade' quadridimensional M* é
assinalado por um evento no espaco-tempo quadridimensional Euclidiano. Desta maneira,
M* e R* sdao considerados espacos topolégicos homeomorfos, com aplicacdes continuas e
com transformagdes inversas também continuas, entre ambos os espagos [68]. Na teoria
gravitacional de Einstein, a variedade M* contém quantidades das grandezas fisicas e
entidades matematicas essenciais, definidas por uma estrutura diferenciavel [69]. Quando
fixada uma métrica ds? = g, dz" ®@dz", a variedade M* é chamada de espago Riemanniano
V4, que passa a possuir o conceito de distancia. A variedade M* contendo estrutura
de conexao afim é chamada de espaco conectado afim L*, tendo isomorfismo local de
espacos tangentes em diferentes pontos na variedade, x € M*. Desta maneira, pode-se
introduzir a nocao de derivada covariante de tensores e definir a nogao de transporte
paralelo de vetores, caracterizando uma série de objetos geométricos [70]. Assim, o campo
gravitacional pode ser descrito de oito maneiras distintas, mediante teorias geométricas
cuja classificacdo depende das estruturas métricas-afins subjacentes, construidas com base
em métricas e conexoes: o tensor de curvatura da conexao, tensor tor¢ao e o tensor de

curvatura homotético [71] (ver Apéndice-B.4).

2.1.1 Formalismo Riemanniano: (M, g)

Aqui, nesta Tese, trataremos nomeadamente da gravidade quadridimensional na
descricdo Riemanniana, onde a conexao é simétrica e completamente caracterizada pela
métrica (M, g). Nesta abordagem, mais utilizada nos estudos da gravidade, a acao
é descrita por fungoes de invariantes geométricos completamente caracterizados pela
métrica, ou seja, varias contragoes do tensor de curvatura de Riemann, suas derivadas
covariantes e uma métrica, e possivelmente alguns campos extras escalares, vetoriais ou
tensoriais. Ademais, neste formalismo métrico, o produto interno de vetores transportados

paralelamente de um ponto a outro, na variedade ao longo de uma curva, é invariante,

1 Podemos definir a variedade como um espaco topolégico contendo em cada ponto de sua superficie

uma vizinhanca que é homeomorfa ao espaco aberto real. Assim, localmente, MP tem correspondéncia
biunivoca com R”, sendo D a dimensdo do espaco.
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ou seja, o comprimento do vetor permanece inalterado durante o transporte paralelo.
Matematicamente, isso pode ser expresso pela condi¢cao de compatibilidade da métrica,

sendo dado pela equacdo V.o = 0.

Em decorréncia do espago-tempo curvo Riemanniano, o intervalo infinitesimal é
dado por ds? = g, (z)dx#"dz”, sendo o tensor métrico g, () a inica variavel dindmica. Por
definicao, a métrica é assumida como nao degenerada, estabelecendo assim um isomorfismo,
entre os espacos tensoriais covariante e contravariante, descrito pela operagao de subida e
descida de indices. A estrutura métrica Lorentziana forma a base da teoria da RG, cuja
assinatura pode ser +2, ou seja, (—, +, +,+) ou (4, —, —, —). Como consequéncia, todas
as quantidades geométricas relevantes sao determmadas pela métrica, como, por exemplo,
os simbolos de Christoffel?

1
L = 59" (0vgan + Ouar = Oagyw). (2.1)

Utilizando-se da definigdo dos simbolos de Christoffel (2.1), poderemos definir
a derivada covariante de um tensor, e este, por sua vez, é essencial para descrever a
dindmica na RG, pois eles incorporam a curvatura do espaco-tempo. Em sentido amplo,
as derivativas covariantes de uma conexao afim arbitraria (ndo necessariamente métrica)
em uma base coordenada sdo normalmente chamadas de simbolos de Christoffel. Para as
variedades (pseudo)Riemannianas, a derivada covariante de um tensor genérico X de grau

(p+ q), sera

Qaig.. ap o ag.. ap al 042 ap « Qat...p
V. Xs, =0, Xp, 5. + 17 X + .+ X h, (2.2)
o ay...« aq...o :
ﬁmXa---qu - FﬂquXﬁl...ap :
Assim, pela definicao da derivada covariante, o formalismo principal da teoria
da gravitacao é construido, sendo fabricada a dindmica da métrica na teoria. Na qual
a ideia-chave se fundamenta no principio de que a derivada covariante de um tensor é

também um tensor. Deste modo, define-se o tensor de curvatura de Riemann pela seguinte

regra
Vs, V| XY= XIR B (2.3)
onde, para qualquer X, o tensor de curvatura e de Ricci sdo dados por
Ry =R, =01, -0, +T,1T0, — T To, (2.5)

e o escalar de curvatura de Ricci R = g" R,,,. Agora, antes da definicao da acao da teoria,

cumpre sublinhar um pouco sobre o formalismo Lagrangiano. Este potente ferramental

2 Assim nomeados por Elwin Bruno Christoffel (1829-1900), sdo expressdes em coordenadas espaciais

para a conexao de Levi-Civita derivada do tensor métrico.
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matematico teve sua primeira aplicacdo na mecanica classica, a partir dos trabalhos
pioneiros de Euler, Lagrange e Hamilton [72]. A extensao desse formalismo a mecanica
relativistica e a eletrodinamica, particularmente em sua forma covariante, mostrou-se
extremamente proficua [73], e rapidamente conduziu a generalizacdo de sua aplicagao
as teorias de campo em geral, onde se revelou de importancia fundamental no processo
de quantizagdo de campos [74]. Curiosamente, em 1915, antes do advento da teoria
quantica de campos, o matematico alemao David Hilbert (1862-1943) aplicou pela primeira
vez o principio variacional a RG, em sua tentativa de encontrar as equagoes do campo
gravitacional independentemente de Einstein. Hilbert propos a agao estacionaria, conhecida

como acao de Einstein-Hilbert, sendo dada por

1
SEH = 27/{/2/(:1433 vV —gR+Sm, (26)

onde k? = 87Gc™*, com dimensdo de massa® em um espaco-tempo D-dimensional igual a
2 — D, G é a constante de Newton, ¢ é a velocidade da luz no vacuo, g é o determinante
da métrica e S,, é a acao da fonte de matéria. Observa-se que a acao de Einstein-
Hilbert ¢é definida em relacao ao escalar de curvatura de Ricci, consequentemente, ela
envolve derivadas de segunda ordem do tensor métrico, em analogia a acdo do campo
escalar eletromagnético e outros modelos de teoria de campo onde a a¢do envolve somente
segundas derivadas de sua varidvel dinAmica*. Por definicdo, o tensor energia-momento é

explicitamente dado em fungdao do Lagrangiano da matéria L£,,

(m) _ _
T = v ra (2.7)

As equacgoes de campo de Einstein sao obtidas através da variacao da agdo com

respeito ao tensor métrico (os célculos estao demonstrados no Apéndice-A)

0SEH
ogrv

1
Ry, — §Rg,w = kT, (2.8)

Essas equagoes de campo de Einstein (2.8) sao formuladas de modo que assegure
a conservacao do tensor energia-momento da matéria V,T"” = 0, sendo claramente
consistente com as identidades de Bianchi V,G*” = 0, garantindo assim o principio da
equivaléncia, recuperando a RE na vizinhanca de cada ponto no espago-tempo, de modo
que o espaco-tempo local é bem descrito como espaco-tempo de Minkowski, cuja métrica
é dada por ds* = n,,(x)dz'dz”, onde 1, é a matriz diagonal de assinaturas £2. E,

também, se reduz a lei da gravidade de Newton no limite de baixas velocidades e campos

3 Na TQC, para ¢ = h = 1, uma quantidade fisica @ terd dimensio n em unidade de massa M, ou

seja, [@] = n, quando [@Q] = M™. Logo, a agdo gravitacional quadrimensional de Einstein-Hilbert
é adimensional [S] = 0, com elemento de volume [d*z] = —4 e valor negativo para a dimensio da
constante gravitacional [k?] = —2.

4 Por exemplo, a acdo eletrodinamica é S, = fé f d4o:FWF’“’.
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gravitacionais pouco intensos. Ademais, (2.8) descrevem como a matéria gera gravidade
e, inversamente, como a gravidade afeta a matéria, cuja forca de acoplamento entre a
téri idade ¢ determinada pel tant itacional x? do totalment
matéria e gravidade é determinada pela constante gravitacional x°. Quando totalmente
escritas, as equacoes de campo de Einstein sdo um sistema de dez equagoes diferenciais
parciais de segunda ordem, nao lineares e acopladas, por isso sao de dificil solugao. No
entanto, para certas conjecturas simplificadoras, como as de simetrias, obtém-se varias

solugoes exatas para (2.8).

2.1.2 Formalismo de Palatini: (¢",T},)

Nas derivagoes acima, o carater Riemanniano da estrutura do espaco-tempo foi
essencial. No entanto, sabemos, a priori, que a métrica e a conexao sao definidas como
estruturas independentes em uma variedade diferencidavel. Portanto, a partir do ponto
de vista geométrico, seria mais natural considerar g"” e Fl’)y como variaveis dindmicas
independentes da teoria gravitacional. Assim, produzindo dois procedimentos variacionais
para duas diferentes suposicoes, sobre as estruturas geométricas da variedade, resultando
em diferentes equagoes modificadas da gravitagao [75]. Nesta situagao, a ideia subjacente
ao principio variacional de Palatini é alcancada mantendo-se o tensor de torcao nulo, mas
sem impor a condi¢gdo de metricidade (compatibilidade da métrica), dada pela rela¢ao
Vaguw = 0. Embora esse método ¢ geralmente atribuido a Palatini, os autores M. Ferraris
e M. Francaviglia argumentaram que a abordagem de Palatini, como a conhecemos, foi de
fato inventada por Einstein em 1925 [76]. Neste formalismo, a agdo de Einstein-Hilbert

(2.6) passa a ter a seguinte forma

1
Sp = 5.2 /d4x V=99¢"R,,(I') + Sp, (2.9)

onde R,,(I') indica que o tensor de Ricci é definido em relagao a conexdo. Em geral, para
teorias modificadas da gravitacao, o procedimento de Palatini gera equacoes de campo
diferentes das equagoes no formalismo métrico. Alguns autores fazem uma distingao entre
o formalismo de Palatini e o formalismo métrico-afim, que, além da conexao e da métrica
serem independentes, a acao deve incluir derivadas covariantes dos campos de matéria
[77]. Como resultado, hd um acoplamento direto entre os campos de matéria (como os
férmions) e a conexao, podendo ser assimétrica, incluindo a tor¢ao na teoria [78]. Existem
outras abordagens para obtencao das equagoes de campos, por exemplo, o método de
Einstein-Eddington [79] e o principio variacional bimétrico®, sao uma reinterpretagao
sutil da RG, assumindo a conexao gerada por uma métrica independente. Neste caso, ao
contrario do formalismo de Palatini, que promove a ligacao num campo fundamental, o
principio variacional resulta numa teoria fisicamente distinta, uma vez que o potencial para

a ligacao acarreta novos graus de liberdade [80]. Além disso, a métrica geradora de conexao

5 Estes formalismos sdo frequentemente chamados de teorias da gravidade bimétricas ou tensor-tensor,

envolvendo dois tensores de posto 2.
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permite naturalmente um componente antissimétrico, definindo assim a propagacao da
torgdo. A primeira formula¢ao de uma teoria bimétrica parece ser devida a Rosen [81],
onde a adicao de um tensor extra, nao-dinamico de posto 2, leva a existéncia de estados
de energia nao limitados por baixo. Como resultado, a teoria de Rosen prevé a rotacao
dos pulsares, a medida que ondas gravitacionais com energia negativa sao emitidas. Isto
viola gravemente as restrigoes a estes sistemas que foram impostas pelas observagoes de

pulsares de milissegundos [82].

2.1.3  Formalismo de Tetradas: ef;(z")

A ideia do formalismo de tetradas (VielbeinS) foi introduzida por Weyl [83] e,
de maneira independente, por Fock e Ivanenko [84]. Em 1928, Albert Einstein fez uso
também deste formalismo quando tentou unificar o eletromagnetismo a gravitacao [23], e
Eugene Paul Wigner (1902-1995) para incorporar espinores a teoria gravitacional [85]. O
estabelecimento de tetradas na gravitagao resultou no conceito de paralelismo absoluto,
onde estipula que as tetradas devem ser transportadas paralelamente ao longo da variedade

espago-temporal, garantindo a anulagao da sua curvatura.

Por conseguinte, as teorias teleparalelas da gravitacao sao teorias de gauge baseadas
na geometria de Weitzenbock P?*, onde o tensor de curvatura é anulado e a torcdo
desempenha o papel da forca gravitacional, com o campo fundamental representado por um
nao trivial campo de tetradas, dando origem a métrica como um subproduto. Opostamente,
a variedade Riemanniana V* onde a torcao é considerada nula, ndo a curvatura, temos
a variedade Weitzenbock P?, desenvolvida em 1923 [86] a partir da variedade Riemann-
Cartan U*, equipada com uma métrica e uma conexdo com propriedades, curvatura e
torcao, nao nulas. Tendo sua geometria estudada em termos de tetradas e nao a partir
da métrica e da conexao. A tabela-B.4 expde a classificagao geométrica das variedades
quadridimensionais de acordo com suas estruturas métrica-afins subjacentes: o tensor de

curvatura da conexao, o tensor de torcao e o tensor de curvatura homotético.

Dessarte, sabemos que em cada ponto p de uma variedade M* existe uma infinidade
de bases que podem ser escolhidas. Sendo o fibrado de base a estrutura construida das
varias escolhas de bases possiveis em todos os pontos p da variedade. Para expandir
um vetor v no espago tangente 7, M*, geralmente é escolhida a base coordenada, {9,}.
Mas, quando medidas estao envolvidas nos célculos na RG, frequentemente eles sao feitas
numa base ortonormal local {e,}, denominada base nao coordenada ou tetradas. Assim
sendo, as tetradas define em cada ponto do espago-tempo um sistema de “coordenadas”
nao holéonomas de Minkowski, como um referencial inercial local que pode ser construido
através dos vetores da base de coordenadas, como um campo de um conjunto de 4 vetores

ortonormais, um tipo tempo e trés do tipo espaco, que sao definidos em uma variedade

6 Palavra da lingua alema, que significa quatro pernas.
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Lorentziana, no intuito de modelar o espago-tempo na RG. Logo, um vetor v na base {0, }

do espago tangente T, M, podera ser expandido em termos de uma nova base {e,}
v =0, = V"0, (2.10)

as letras do alfabeto latino e do alfabeto grego sao indices especificos que rotulam a base
nao holonémica e base coordenada, respectivamente. De modo semelhante, um co-vetor
u expandido na base das 1-forma {dxz*} do espaco cotangente T, M, podera também
ser expandido em termos de uma nova base 1-forma {e’}, u = w,w* = wu,dz*. Por
definigao e (ep) = 0y. A relagado de mudanga de base serd dada pelas seguintes equagoes:

ea

= e (v)dz", e sua inversa, e, = e}(z)d,. A tetrada e (z") é representada por uma
matriz de ordem n, dependente da coordenada z* no ponto p do espago tangente T, M?*.

Tendo como inversa a matriz e?(z*) que geram as consequentes relagoes

a v __ SV, a b __ ga, a __ _a,p o
enen =055 ehey =0y vt =epvt e u, = eluy, (2.11)

cuja relagao das componentes da métrica da nova base com a antiga base é
Gab = g (€a, ) = g (€0, €;0,) = ebeyg (0,,0,) = ebey g, (2.12)
Guv = ezeggab — g = gabeaeb> (213)

onde g estd expressado em termos das 1-forma {e®}. Das intimeras possibilidades de
bases possiveis, podemos escolher aquela onde as componentes dos vetores ou tensores
em T, M* da variedade se transformam de maneira similar as transformagoes de Lorentz
da RE, gu = 1w = diag(1,—1,—1,—1). Esta é a base ortonormal que corresponde ao
caso em que a métrica, com assinatura Lorentziana (4, —, —, —) é dada pela métrica de
Minkowski. Para isso, basta substituirmos a métrica pelos campos de tetrada ej;, onde e é
o determinante da tetrada, que se relaciona com o determinante da métrica pela seguinte
relacao g, = efjef’,nab, implicando em y/—g = e. Para o escalar de Ricci R = ¢"”R,,, nos

campos de tetrada teremos

1 1
R = " R, 000 = TR 5 cansr = S€0ei Ry sy = eief R, (2.14)

e para o elemento de volume, teremos

1
d'av/—g=d're=eD NeM AP A = Eapea € N €° A e A e, (2.15)

a4l
aqui o simbolo A representa o produto exterior, o produto dos elementos da base coordenada

em todas as combinagoes antissimétricas, ou seja
dzP AL AN det = delm @ L@ dat), (2.16)

onde os indices entre colchetes explicitam a propriedade de antissimetria dos mesmos. Em
concordancia com o principio da covariancia geral, as equagoes de Einstein independem da

base ou do sistema de referéncia. Logo, podemos reescrevé-las no formalismo das tetradas

1
Ri = S04R = RK2THOM) (2.17)
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1 m :
que multiplicada por e, resultard R, — §?7abR = RZTCEb ), Apresentaremos a seguir

algumas das solugoes exatas das equagoes de Einstein.

2.2 Solucoes das Equacdes de Einstein

2.2.1 Meétrica de Schwarzschild

Em 1916, Karl Schwarzschild (1873-1916), astronomo e fisico alemao e um dos
fundadores da astrofisica moderna, apresentou a primeira solucao analitica para as equagoes
de campo de Einstein, para um objeto compacto e estatico

2 2\~
ds? = (1 - m) dt? — (1 - m) dr? — r2(d6? + sin® 0 dg?), (2.18)

T r

onde, m = GM /c* é massa geométrica e M é a massa gravitacional da fonte de matéria.
Observe que na Eq.(2.18) temos duas singularidades, a singularidade fisica para r = 0
e a singularidade matematica para r = 2m. Pelo teorema de George David Birkhoff
(1884-1944), qualquer solugao esfericamente simétrica das equagdes do campo no vacuo
deve ser estatica e assintoticamente plana. Assim, para uma fonte esfericamente simétrica,
mesmo que seja um objeto com uma distribuicao de massa irregular no seu interior, nao
rotativa e restrita a regiao r < a para algum a > 2m, a Unica solucao que descreve o
campo gravitacional no exterior (r > a) é solugdo de Schwarzschild. No caso de fonte
esfericamente simétrica e carregada, a geometria exterior a fonte é descrita pela métrica de
Reissner-Nordstrom [67]. As classes de solugoes da familia de Kerr sdo assintoticamente
planas, estacionarias e axialmente simétricas, sao solugoes das equacoes de Einstein do

vacuo e é parametrizada pela massa M e pelo momento angular por unidade de massa a.

2.2.2 Meétricas de Friedmann-Robertson-Walker e de Godel

Em 1922, Alexander Friedmann (1888-1925) apresentou uma solucao exata das
equagoes de campo de Einstein, posteriormente confirmada por Georges Lemaitre (1894-
1966), que descreve um universo homogéneo e isotrépico em expansao ou contragao,
conhecida como métrica de Friedmann-Robertson-Walker (FRW). Sendo esta a métrica
do modelo cosmolégico padrao ACDM, dada por:
dr?

2 _ 2 2

+ 1r?(d6? + sin® 9d¢2)> : (2.19)

em que a(t) é um fator de escala e k = 1,0, —1, sdo valores para curvatura positiva, sem

curvatura e curvatura negativa, respectivamente.

Em 1949, Kurt Friedrich Gédel (1906-1978) apresentou a primeira solugao para

um modelo matemético do universo [87], onde solucionou as equagoes de Einstein para

T Também conhecida como métrica de Friedmann-Lemaitre-Robertson-Walker (FLRW).
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um fluido perfeito, como fonte de matéria. Tal fluido com densidade de massa positiva e
pressao desprezivel é geralmente chamado de poeira. A forma explicita de elemento de

linha no espaco-tempo em coordenadas cartesianas, para assinatura —2, é

62

ds* = a®[(dt + edy)? — da® — 7dy2 —dz¥, (2.20)

onde o tensor energia-momento é composto pela densidade de matéria de uma distribuicao
homogénea de particulas de poeira e da constante cosmoldgica negativa. Esta solucao
apresenta uma caracteristica peculiar, a existéncia de curvas tipo-tempo fechadas (Closed
Time-like Curves - CTC’s), que, por suposigao, permitem viagens ao passado, ou seja,
o universo de Godel admite violagao da causalidade. A fim de eliminar tal paradoxo,
surgiu a proposta do principio da autoconsisténcia das solugoes das leis da fisica, onde
assevera ocorrer localmente no universo real somente solu¢oes globalmente autoconsistentes,
assim nao se permite alterar o passado dos eventos [88]. Além disso, existe a proposta
da conjectura de protegao cronoldgica de Hawking, assegurando que efeitos quanticos
na gravitacao eliminariam quaisquer anomalias causais, devido a existéncia de CTC’s
classicamente produzidas [89]. Ademais, os teoremas de Geroch e da singularidade de
Hawking-Penrose-Geroch exigem a causalidade na RG [90]. Porém, ha muitos estudos
sobre a possibilidade da violagdo causal na RG, como nas teorias de interacao superluminais
de gréavitons acoplados a escalares, férmions e vetores [91]. As agoes efetivas que descrevem
a dindmica de baixa energia das TQC envolvendo a gravidade exibem genericamente
violagoes de causalidade [92], sendo discutida a existéncia dos tadquions superluminais
93, 94]. Descreveremos a seguir a generalizagao de (2.20), sendo elas chamadas de métricas

tipo-Godel ST-homogéneas®.

2.2.3 Métricas Tipo-Godel ST-Homogéneas

Nesta se¢do, aplicaremos o procedimento realizado em [95, 96] onde os autores ge-
neralizaram o elemento de linha de Godel (2.20), em coordenadas cilindricas. Reescrevendo

(2.20), para a mesma assinatura —2, teremos
ds® = [dt + H(r)d#]* — D*(r)d6?* — dr* — d2?, (2.21)

onde H(r) e D(r) sao fungoes arbitrarias na coordenada radial. Deste modo, esta de-
monstrado em [95], que para alcancar as métricas tipo-Godel ST-homogéneas, as fungoes

métricas devem satisfazer as seguintes necessarias e suficientes condigoes
H'(r) = 2w D(r), D"(r) =m?* D(r), (2.22)

onde o primo (') significa derivada em relacdo a r. O par (m?, w) caracteriza completamente

todas as métricas tipo-Godel ST-homogéneas. E permitido o pardmetro m assumir qualquer

8 Refere-se & homogeneidade do espaco-tempo, onde ST é a abreviacio do termo em inglés Space-Time.
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valor real, —oo < m? < oo, nao tendo este uma interpretacao fisica, sendo w # 0 a
vorticidade. As solugoes da Eq.(2.22) definem trés classes diferentes de métricas tipo-Godel
para w # 0, dependendo do sinal do pardmetro m?. Nomeadamente,

i)classe hiperbdlica, onde m? > ()

2w 1.
H(r)= W[cosh(mr) —1], D(r)= . sinh(mr); (2.23)
ii) classe trigonométrica, onde m? = —p? < 0
2w 1.
H(r) = —[1 —cos(ur)], D(r)= —sin(ur); (2.24)
M "

iii) classe linear, onde m? = 0

H(r) = wr?, D(r) =r.

Nao sera considerada aqui a classe degenerada correspondente a w = 0. A métrica
de Godel é uma solugao das equacoes de Einstein com uma constante cosmoldgica A,
suportada por uma poeira de densidade p, obtida tomando m? = 2w? = —2A = K?p.
Dessa maneira, a métrica Godel estd inserida na classe hiperbdlica das métricas tipo-
Godel. Os diferentes grupos de isometrias dependem das relagoes entre os parametros
m? e w?. Por exemplo, a classe especial m? = 4w? admite G7 como grupo de isometria,
que é o maior grupo admitidos pelas métricas tipo-Godel. De igual modo a métrica de
Godel (2.20), as métricas tipo-Godel apresentam a presenga CTC’s, que sdo definidas por
circulos C' = {(t,r,0,2); t,r,z = const, § € [0,27]}, em uma regiado restrita pelo intervalo

r1 < 1 < 19, onde a fungao G(r) = D*(r) — H?(r) deve ser negativa nesta regiao.

Foi mostrado em [95] que todas as trés classes destas métricas apresentam pelo
menos uma regiao (r; < r < rq), onde existem CTC’s. Para a classe linear m = 0, existe
uma regiao nao causal r > r. com curvas temporais fechadas, onde r. é o raio critico,
definido como o raio maximo que permite a presenga de CTC’s r, = 1/w. Para a classe

2 = — 1% <0, existe uma sequéncia infinita de regides causais e ndo

trigonométrica m
causais alternadas. Para a classe hiperbdlica de tais espagos-tempo, existe uma regiao

nao causal r > ., onde o raio critico ., quando 0 < m? < 4w?, é dado por

sinh (”Z) - (M - 1) o (2.25)

m2

Podemos facilmente deduzir da Eq.(2.25) que quando a relagdo m? > 4w? é
satisfeita, a presenca de CTC’s é totalmente evitavel, isto é, ndo ha violacao de causalidade
e, para o caso especial, m? = 4w?, o raio critico r, — co. Doravante, por questao de
simplificagdo, em muitas ocasides, vamos referir as métricas tipo-Godel ST-homogéneas

como simplesmente métricas tipo-Godel.
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A Figura-1 mostra a violagao da causalidade para uma geodésica de um raio de luz
emitido no ponto x = 0.5, no plano z = 0, considerando uma caso particular pertencente

a classe linear de métricas tipo-Godel planas, em coordenadas cartesianas
ds® = —dt* + do* + (1 — a2 2%)dy® — 2ap x dtdy + d2?, (2.26)

onde « é um parametro real positivo. A geodésica descrita na Figura-1 tem coordenada
temporal que ndo aumenta monotonicamente, cujos parametros que definem as fungoes
arbitrarias sao ag = 2w = 0.3 e m = 0. Os pontos A, B, C e D estao contidos na CTC,
que cruza o circulo pontilhado, que representa o raio critico para um observador na origem

[97]. As métricas tipo-Godel tém a feliz propriedade de facilitar a manipulagao e estudo

, 05f

-0.5

. -0.5F P

Figura 1 — CTC de um raio de luz representada no plano azimutal z = 0 para classe linear
plana de métricas tipo-Godel. Crédito da figura: Wave fronts in a causality
violating Godel-type metric, Kling, T. P.; Ahmed, F.; Lalumiere, M., 2020,
arXiv:2005.03417 [gr-qc].

das equagoes de Einstein, convertendo tais equagoes diferenciais parciais nao lineares em
equacgoes algébricas. Fora verificado a consisténcia das solugoes do tipo-Godel dentro
da gravidade modificada de CS, com o coeficiente de CS nao-dinamico, para diferentes
formas de matéria, incluindo poeira, fluido, campo escalar e campo eletromagnético. Com
discussoes sobre questoes de causalidade, diferentemente da RG, com solugdo no vacuo e
solugoes causais hiperbdlicas, para matéria fisicamente bem motivada [56]. Ademais, os
estudos sobre as métricas tipo-Godel podem ser vistos na gravitagao f(R) [98, 99], na
gravitagao f(R,T) para fluido perfeito, deixando a violacdo da causalidade em aberto [100],
na gravitagdo Horava-Lifshitz [101, 102]. Ainda, foi considerado pertubagoes estacionérias
em primeira ordem das métricas tipo-Godel na gravidade Chern-Simons nao-dindmica [103].
Sendo obtidas solugoes analiticas, quando assumidas certas condi¢oes para as equagoes de

campo perturbadas, com a métrica expandida. Recorreremos as métricas tipo-Godel como
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ansatz para analise dos modelos de gravidade modificada, que serao apresentados mais

adiante.

2.3 Limitacoes da Gravitacao de Einstein

Em principio, o estudo da gravitacao gera duas principais e ndo triviais tarefas. A
primeira tarefa seria o estudo dos aspectos quanticos da teoria (corre¢oes quanticas, agao
efetiva, renormalizacdo, etc.). A segunda tarefa, em seu aspecto classico, seria obter as
equagoes de movimento, através das solugoes das equagoes nao lineares de Einstein. Neste
caso, para encontrarmos e resolvermos as equacoes de movimento de Einstein, devemos
assumir ansatz, ou seja, devemos escolher métricas que permitam simplificar os cédlculos,
reduzindo o nimero de variaveis nestas equagoes, que no caso quadridimensional sao
dez componentes da métrica. Por exemplo, a métrica FRW se torna uma boa escolha
por motivo de ser ela descrita por somente uma incégnita dada pelo fator de escala a(t).
Outro exemplo de ansatz seriam as métricas tipo-Godel, pois, como ja mencionado, elas
convertem as equacoes de Einstein em simples equagoes algébricas. No entanto, como
referido, a gravidade de Einstein se depara com duas maiores dificuldades ainda nao
resolvidas, sendo elas: (i) Uma explicagao plausivel para a aceleragao césmica; e (ii) Uma
consistente descrigdo quantica da gravidade. Abordaremos, em seguida, de maneira sucinta
estes dois grandes problemas existentes na fisica gravitacional. Primeiramente, iniciaremos

nossa abordagem no tema sobre aceleracao coésmica.

2.3.1 Aceleracao Césmica

Em 2011, mediante observagoes de supernovas distantes, os astrofisicos norte-
americanos Saul Perlmutter, Brian Schmidt e Adam Riess ganharam o prémio nobel de
Fisica pela descoberta, em 1998, da expansao acelerada do universo [104]. Com efeito, sendo
a RG incapaz de admitir uma possivel argumentacgao tedrica para explicar a aceleracao
cHéHsmica. A tentativa mais simples de resolver o problema se baseia na introducao da
constante cosmolégica A. Esta constante, expressa em unidades do sistema internacional,
tem a dimensao de comprimento com grau negativo, isto é, [L] = —2. Ou seja, é adicionado

a acao de Einstein-Hilbert o termo extra
1
S(A) = —E /d4(£ vV —g A, (2.27)
resultando na seguinte acao modificada de Einstein-Hilbert
1
S — / d'z /=g {%2 (R —2A) + LG, V]| (2.28)

que produz as equacoes proposta por Einstein, em 1917, em sua tentativa de explicar o

nao colapso do universo.

1
Ryy = 59 B + Mg, = KT, (2.29)
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A obtencao das equagoes de Einstein dentro do formalismo Lagrangiano, sem a
constante cosmoldgica, estd descrita no Apéndice-A. No inicio, em 1917, A foi original-
mente introduzido por Einstein para fornecer uma solug¢ao para um universo estatico.
Posteriormente, em 1922, Friedmann demonstra matematicamente que as equacoes de
Einstein permanecem vélidas num universo dindmico, qualquer que seja A. Em seguida,
no ano 1927, Lemaitre, baseado nos dados observacionais astrondémicas de Hubble, revela
um universo em expansao. Especula-se que provavelmente a expansao do universo poderia
ter sido prevista um século antes do Hubble, caso o paradoxo de Heinrich W. M. Olbers’
(1758-1840) fosse resolvido [105, 106]. Em 1931, Einstein aceitou a teoria de um universo
em expansao e propos, em 1932, com Willem de Sitter (1872-1934), um modelo de um
universo em expansao continua, com constante cosmoldgica nula. Willem de Sitter provou
que para valores negativos de A o espaco vazio se expandird exponencialmente. Mais
recentemente, apds a descoberta da aceleragao césmica, a ideia da constante cosmologica
foi novamente abragada, mas sem o objetivo de resolver o problema da renormalizabilidade
da teoria da gravidade. Para a métrica FRW (2.19), a matéria é dada pelo seguinte fluido
relativistico

KT = (p+ P)vuty + DG, (2.30)

onde p ¢ a densidade de matéria e p é a pressao. Em muitos casos aplica-se a equagao de
estado p = wp, com w sendo a constante caracteristica do tipo de matéria. E facil de ver

que para a métrica FRW, as componentes do tensor de Ricci e o escalar curvatura serao

dados por
3
Roo = — —;
a
Rij = 6yj(aa + 24°) ; (2.31)
. .2 k
R=6(2+% 4+ 2.
a a®  a?

Neste caso, a equagao de Einstein para a componente (0,0), juntamente com a
equagao obtida pela diferenca entre as equagdes cujas componentes sao (1,1), (2,2), (3,3) e

(0,0), sao conhecidas como sendo as equagoes de Friedmann

2+k 8

- ﬁ = mGp;

R (2.32)
L = —37G(p +3p),

onde fizemos ¢ = 1, e sabendo que k£ admite o valor +1, para o espaco com curvatura
positiva, 0 para o espaco sem curvatura, e —1 para o espago com curvatura negativa.
Nestas equacoes percebe-se claramente que, para a matéria usual, isto é, p > 0 e p > 0,

teremos um universo em desaceleracao, contrariando os resultados obtidos recentemente

9 Se o universo é estatico, infinitamente grande e antigo e com um niimero infinito de estrelas distribuidas

uniformemente, entao o céu noturno deveria ser brilhante.
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que apontam para um universo em expansao acelerada [28]. Portanto, a presenga da

constante cosmoldgica nao trivial (A # 0) fora inserida, modificando as equagoes de

Friedmann, resultando na adi¢ao no lado direito das Egs.(2.32) o termo 3 Por exemplo,
Willem de Sitter encontrou uma solu¢gao maximamente simétrica das equacoes de campo
de Einstein [107], para o vicuo (p = p = 0) no universo plano (k = 0). Logo, a aceleragio ¢
a(t) = ag e\/gt, sendo a taxa de expansao caracterizada pelo parametro de Hubble H = g,
tendo o valor constante para o parametro Hubble atual Hy, com medicoes de valores entge
a faixa de 40 a 90 km/seg por Mpc (um parsec equivale a 3,26 anos-luz, 1Mpc = 1.10%*cm).
Existe também o parametro de desaceleracao, que mede a taxa de variagao da taxa de
ad

expansao do universo g = ——-
a

O modelo cosmolégico padrao ACDM!Y, também chamado de “modelo de con-
cordancia”, ¢ o modelo cosmoldgico simples e mais amplamente aceito, porque tem sido
bem-sucedido na interpretagdo de uma ampla gama de observacoes. Este modelo se utiliza
de varios métodos cosmoldgicos e observaveis astrofisicos, como a radiacao coésmica de
fundo em micro-ondas (CMB), a nucleossintese do Big Bang (ou nucleossintese primordial),
a formacao e evolucao de estruturas em grande escala no universo e o fato de que o universo
estd se expandindo [108]. Embora o modelo ACDM se ajuste razoavelmente bem aos
dados observacionais disponiveis, explicando varias observagoes, ele enfrenta varios desafios
teodricos e observacionais, o mais acentuado entre eles é o problema da grande discrepancia
existente entre os valores da constante cosmolégica previsto pela TQC e o observado pela
cosmologia [109]. Pois, a constante A ¢é interpretada pela fisica das particulas como a
densidade de energia do vacuo, estado de mais baixa energia. Sua contribuicao para o
vacuo quantico do estado fundamental de todos os campos de matéria conhecidos na escala
de Planck, p\#"* = 10™(GeV)4, é 121 ordens de grandeza maior que a densidade de

energia obtida por meio de dados observacionais, pE\ObS) = 107%"(GeV)* [109].

Outro problema no modelo cosmologico padrao resulta do teorema da singularidade,
pois quando assumimos a condicao de energia forte no modelo FRW, ou seja, para p+3p > 0
e A =0, entao a(tg) > 0, implica que houve uma singularidade inicial em algum tempo
finito no passado, onde nao ¢é possivel aplicar as leis conhecidas da fisica [110, 111]. Ademais,
também questiona-se sobre a tal “coincidéncia” cosmoldgica, na qual o periodo atual, em
que estamos medindo, a densidade de energia da matéria escura p,,. ¢ da mesma ordem da
densidade de energia da energia escura p... Consoante os dados observacionais, a igualdade
dos valores para os diferentes tipos de densidades de energia ocorreu recentemente, em
um desvio para o vermelho z = 0,55. Portanto, tal fato observacional, pe/pee ~ O(1),
parece indicar que estamos atualmente vivendo em um periodo tnico da historia césmica,

uma enorme coincidéncia, pois requer muitas condigoes iniciais especiais (fine-tuning)

10" Composto por energia escura (A), matéria escura fria (ndo baridnica), barions e radiagao (fétons e
neutrinos sem massa).



Capitulo 2. Relatividade Geral 21

para o universo primordial [112]. Entao, a pergunta correspondente: “Por que agora?”
constitui o problema da “coincidéncia” no modelo ACDM. Célculos extraidos do proprio
modelo mostra que os valores iniciais das densidades de energia associadas a matéria e
a constante cosmolégica provavelmente nao seriam fixados por processos aleatorios. Na
escala de tempo de Planck, as condigoes iniciais sao fortemente ajustadas em 95 ordens de
magnitude [113]. Os problemas que surgem das condigoes iniciais no modelo FRW levaram
ao estudo de diferentes modelos FRW alternativos, que sofrem problemas semelhantes de

ajuste fino e nao se encaixam melhor nas observagdes que o modelo FRW [114].

2.3.2 A descricao Quantica da Gravidade

De modo suposto, ¢ natural esperar que a gravidade seja quantizada, em analogia
com a QED e a teoria de Yang-Mills [115]. Mas, o fato da constante gravitacional ter
dimensdo negativa k2, precisamente 2 — D para um espaco-tempo D-dimensional, torna &
gravidade de Einstein uma teoria de campo nao renormalizavel. Dessa forma, uma robusta
descri¢ao da RG, no formalismo da TQC, exige o envolvimento de um ntmero infinito de
contratermos, conforme discussao apresentada em [116]. Entao, uma consolidada teoria
quantica da gravidade permitiria-nos compreender, por exemplo, o comportamento de
buracos negros. Uma das dificuldades de formular uma consistente teoria da gravidade
quantica é a caréncia de dados experimentais que possam avaliar as teorias propostas. Pois,
a observacao direta dos efeitos gravitacionais quanticos s6 apareceria em escalas proximas
ao comprimento de Planck (1073°m), condigdes nas quais sdo inacessiveis aos experimentos
laboratoriais atuais. Uma outra dificuldade seria devido a interpretagdo dinamica do
espaco-tempo na RG, diferentemente da M(Q com um cenario de espago-tempo fixo, como
encontrado também na mecanica Newtoniana e na RE. Na TQC relativistica, assim como
na TQC classica, o espaco-tempo de Minkowski é o pano de fundo fixo. Assim, até certo
ponto, a RG pode ser vista como uma teoria relacional, na qual a tnica informacao
fisicamente relevante é a relagao entre diferentes eventos no espago-tempo [117]. Ideia esta
anteriormente defendida por Gottfried Wilhelm Leibniz (1646-1716) e o filésofo George
Berkeley (1685-1753), que nunca aceitaram os conceitos Newtonianos de espago e tempo
absolutos. Ao invés disto, eles defenderam a ideia de que todo movimento é relativo, sendo

o0 espago puramente relativo, como o tempo [118].

O principio da localidade!'! impoe obstaculo para a TQC no espaco-tempo curvo
com uma métrica fixa, onde campos do operador bosonico/fermiénico super comutam
para dois separados eventos do tipo espaco. Mas, na gravidade quantica a métrica é
dindmica, de modo que dois separados eventos do tipo espaco dependerao de seus estados,

podendo eles estarem em uma superposi¢ao quantica [119]. Uma proposta a aparente

11 Afirma que um objeto é influenciado diretamente apenas pela sua vizinhanca imediata. Uma teoria
que inclui o principio da localidade é considerada uma teoria local.
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inconsisténcia da teoria quantica da gravitagdo se da pela interpretacao geométrica da RG
nao ser fundamental, mas surgindo qualitativamente de alguma teoria mais primordial
[120]. Por exemplo, a gravidade induzida ou emergente propoe ser a curvatura do espago-
tempo e sua dindmica uma aproximacgao do campo médio de graus microscopicos de
liberdade subjacentes, semelhante a aproximacao da mecanica dos fluidos dos condensados
de Bose-Einstein [121]. Um ponto de vista oposto seria o da independéncia de um
fundamental campo de fundo, necessitando ser a M(Q generalizada por parametros onde
nao foi especificado, a priori, o tempo. Progressos foram alcancados nas duas frentes,
conduzindo & teoria das cordas [122] e, por outro lado, & gravitacdo quantica em lago
[123]. Neste cendrio, surgem as seguintes questoes: (i) A M(Q torna-se inconsistente
nas vizinhangas das singularidades, onde a RG prediz uma quebra de paradigma; (ii)
O principio da incerteza de Heisenberg nao deixa claro como determinar, com precisao
absoluta, o campo gravitacional de uma particula; e (iii) A violagao da desigualdade de
Bell indica uma influéncia superluminal, sendo, supostamente, incompativel com a RG,

onde a velocidade da luz é a velocidade limite [70].

2.3.3 Linearizacao da Relatividade Geral

Gerardt Hooft e Veltman desenvolveram um método de linearizacao da gravidade
[40], que é utilizado no estudo de ondas gravitacionais e lentes gravitacionais de campo
fraco. Neste método, divide-se a métrica dinamica g,, em uma soma da parte de fundo
Juv, aqui escolhida ser a métrica de Minkowski 7),,,, mais um pequeno termo de pertubacao

de um campo simétrico h,
G = Ny + €hy, com |y, | < 1, (2.33)

onde € fora introduzida com a finalidade de alterar a dimensao do campo de flutuacao para
[huw] = 1. No regime de sistemas para o qual a curvatura do espago ¢ pequena, aplica-se a
teoria da pertubacao para o tensor métrico, como resultado, a agao pode ser expandida
em uma série infinita de poténcias de h,,. Para tal procedimento, teremos o tensor de

Ricci e o escalar de Ricci linearizados

1
) — ~(0a0,h% + 0a0,h%, — 0,0,h — Ohy,);
R = 50,0, + 0,005, — 9,0, )i 231

RO =y, R = 0,0,h" — Oh,

onde h = n*"h,, = h%,. A linearizagao do Lagrangiano de Einstein-Hilbert L) expandida
até a segunda ordem do campo dinamico, é conhecido como Lagrangiano de Fierz-Pauli
[124], sendo ela

1
£O = 7 (0uhd"h = 20,hd, W — OphagO"h™ + 20,h,50" h*9), (2.35)

onde os indices de h,, sao levantados e abaixados com o uso da métrica de Minkowski.

Por consequéncia de calculos diretos, teremos as correspondentes equagoes de movimento



Capitulo 2. Relatividade Geral 23

de segunda ordem, que sao as equacoes de Einstein linearizadas

1
GO = 5 (Qa0,h5, + 0u, b, — 0,0,h — Oy, — NuwOaOsh®® +1,,0n) =0.  (2.36)

Observa-se que o tensor de Einstein linearizado, Gfg), possui simetria de gauge
Ohy = 0,6 +0,&, e obedece as identidades de Bianchi linearizadas 0*G,,, = 0. O processo
de decomposicao do espago-tempo genérico, para o espago-tempo de Minkowski mais um
termo de perturbacao (2.33), ndo é tnico. Isso se deve ao fato de que diferentes escolhas de
coordenadas podem resultar em diferentes formas para h,,. Para capturar esse fendmeno,
¢ introduzida a aplicacao da simetria de gauge, assim sendo, escolheremos o termo de
fixacao de gauge do tipo Feynman C), = 0"h,,, — %@Lh, cujo Lagrangiano de gauge sera

adicionado ao Lagrangiano Lg, resultando em

1 1
L= Lo = 500" = L(D,h0" h = 20, h,0dh). (2.37)

Podemos assim obter o propagador no espaco dos momentos

0

2
< haﬁ(_k)hul/(k) >= M(nuanuﬁ + Nvafus — D_277,uu77aﬂ>, (238)

para a dimensao D = 2 teremos uma singularidade, uma vez que a acao de Einstein-
Hilbert (2.6) é um puro termo de superficie. Por fim, poderemos expandir a agdo de
Einstein-Hilbert (2.6) em séries de h

G na Eq.(2.33), no lugar da métrica de Minkowski 7),,,. Neste caso, o determinante da

w, utilizando-se de um campo de fundo genérico

métrica expandido até a segunda ordem de h sera

ho RYRE R
VIgh— gl + 5 = ==+ ), (2.39)

e a expressao do escalar de curvatura R, também expandido até a segunda ordem em h

sera
R — R+ 0 — VoV has — R hes — ;va (REhg") + ;vﬁ [ (2h, = b))

+ i (0 + W = Bag) (R + B2, = 2P
1

T (2n =) W, Lpwas ¢ ;h;vg (h, 2+ b7, = h,*7) + hh RS

2
(2.40)

Por meio de expressoes (2.39) e (2.40) podemos realizar os célculos de um lago.
Diante disso, o contratermo de um lago decorrente do setor gravitacional puro da RG [40]

sera

oL

2 Qv
9] (R L TRwR ) (2.41)

~ 872(D — 4)\120 20

Entao, percebe-se, claramente, que para o espago-tempo quadridimensional a

expressao (2.41) diverge. Por consequéncia desse resultado, podemos considerar a gravidade
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de Einstein como uma teoria efetiva'?. De outro modo, a fim de se obter uma teoria
renormalizavel, podemos estender a agao acrescentando termos com o proposito de cancelar
os termos divergentes. Enfim, a RG fora estabelecida como uma teoria cientifica de
extraordinario sucesso, contendo em si resultados precisos quando utilizada nos modelos
gravitacionais e cosmologicos, no regime de campos fracos, na escala do sistema solar e
estelar. No entanto, no regime de campo forte e em outras escalas, aspectos fenomenologicos
e tedricos sugerem corregoes significativas para os efeitos classicos e quanticos da RG.
Inquestionavelmente, a procura pela construcao de uma consistente teoria quantica da

gravidade ¢ um bom motivo para uma generalizacao da gravidade de Einstein.

2.4 Equacao de Dirac no Espaco Curvo

Em 1928, Paul Dirac, em sua busca por uma equacao relativistica para o elé-
tron, modificou a equagao de Schrodinger e obteve uma nova equagdo covariante sob

transformacao de Lorentz, cuja forma compacta é dada por

(iv*0, —m)¥(x) = 0. (2.42)

A equagao de Dirac (2.42) desempenha um papel fundamental na MQ “relativis-

"3 e na TQC, descrevendo ela com muita precisdo o comportamento das particulas de

tica
spin-1/2, e prevendo a existéncia da antimatéria'?. Quando usada com cuidado, a equacio
(2.42) tem sido extremamente bem-sucedida, mesmo em sua interpreta¢do para particula
tnica, uma vez que ela descreve tanto particulas como antiparticulas [125]. O espectro
relativistico do atomo de hidrogénio, o acoplamento spin-orbita, o fator giromagnético g,
do elétron'®; o grafeno curvo e semimetais [126], a amplitude do espalhamento de Coulomb,
sao alguns exemplos de cenarios e fendmenos descritos pela equacao de Dirac, até mesmo
em seu limite ultra-relativistico, m — 0. Porém, em tultima anéalise, a melhor abordagem
consiste em considerar o espinor de Dirac ¥(x) como um campo [125]. Devido a grande
dificuldade em seu tratamento matemaético, sdo poucas as solugoes autoconsistentes na
gravidade de Einstein-Dirac ou quando se tenta conectar a equacao de Dirac num espago
curvo. Solugoes de espinor propagando-se sobre um fundo curvo estdo expostas em [127],

e solugbes cosmoldgicas com um campo de spin podem ser encontradas em [128, 129]. A

12° A teoria efetiva da gravidade de Einstein considera a RG uma teoria de campo eficaz em seus limites
de aplicabilidade, ou seja, no limite de baixa energia (baixa curvatura) e em escala de distdncia onde
os efeitos quanticos da gravidade sao negligiveis.

Estritamente falando a MQ relativistica nao existe. O formalismo que aborda, concomitantemente, a
MQ e a teoria da relatividade é a TQC.

A primeira evidéncia experimental da previsdo tedrica de Dirac ocorreu em 1932, quando Carl David
Anderson (1905-1991), em suas pesquisas com raios cdsmicos, descobriu o pdsitron.

O fator giromagnético é uma constante adimensional que relaciona o momento magnético de spin com
o momento magnético orbital da particula. Para o elétron g, = 2, de acordo com a teoria quantica
relativistica de Dirac.

13

14

15
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equacao de Dirac minimamente acoplada a RG usando a TQC, com um tinico campo
de Dirac quantizado canonicamente em um espago-tempo curvo de fundo, estatico e
esfericamente simétrico, foi estudada em [130]. Na qual as equagoes de campo de Einstein

foram obtidas pelo valor esperado do tensor energia-momento.

De forma abrangente, podemos afirmar que a generalizacdo de uma equagao de
onda no espaco Riemanniano é substancialmente determinada pela natureza da particula
em andlise. Os férmions, como constituintes cruciais da matéria, sao descritos por campos
espinoriais. Em contraste, as interagoes sao mediadas por bdsons que nao tém as mesmas
propriedades de transformacao dos espinores. Via de regra, as equacoes tensoriais para
bésons sao estendidas de uma forma mais simples do que as equagodes espinoriais para
férmions. Nesse contexto, um problema muito interessante é a extensao de uma equagao
de onda para o campo de Dirac. Os autores em [131] relacionaram o formalismo tensorial,
geralmente covariante, a um formalismo espinorial, ambos aplicados a descricao do campo
de Dirac em um espago-tempo Riemanniano, considerando os dois métodos equivalentes e

derivando as equagoes tensoriais das equacoes espinoriais.

E de conhecimento a pretensdo de construir uma teoria gravitacional consistente
unificada ao modelo padrao (Standard Model-SM) das particulas, que incorpore nao
somente os espinores, mas também, descreva os bosons como estados vinculados. Em
principio, isto nao representaria qualquer problema, uma vez que os bésons podem ser
compostos por um nimero par de férmions. Contudo, numa teoria fundamental, precisamos
de bésons com propriedades muito particulares. O graviton, por exemplo, esta ligado a
simetria das transformacoes de coordenadas gerais'® e as interacoes sdo mediadas por
bosons de gauge com spin-1. Além disso, campos escalares sao necessarios para alcancar a
quebra espontanea da simetria eletrofraca e, possivelmente também, estender as simetrias,

como as grandes simetrias de gauge unificado [132, 133].

Saliente-se, menciona parecer ser a assimetria tempo-espago um grande obstaculo
para o sucesso da unificacao das interagdes da natureza. Decerto, presume-se ser irremissivel
considerar tal assimetria, representada por equagoes de movimento e leis de conservacao
que operam de forma diferente ao longo do tempo e do espago, nos sistemas fisicos que
evoluem inevitavelmente ao longo do tempo [134]. Na RG o tempo e o espago sao tratados
em uma estrutura unificada, mas existindo entre esses dois conceitos uma béasica assimetria
relacionada a assinatura da métrica. Ja as equagoes de campo quéanticas, com assinatura
euclidiana, geralmente admitem solucoes para apenas um unico estado fundamental,
ou as vezes, para estados degenerados. Em contraste, a assinatura das métricas semi-

Riemannianas na RG permite muitas solug¢oes complexas com evolucao temporal causal

16 Com difeomorfismo entre as duas variedades diferencidveis envolvidas na transformacio. Ou seja,
deve existir uma aplicacdo entre essas variedades que seja diferencidvel, invertivel e a sua inversa seja
diferenciavel.
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e nao-causal. Dentro das varias tentativas de construir uma teoria unificada, baseada
em TQC ou supercordas, a anisotropia espaco-temporal é tratada como um conceito
quantico fundamental em escala de altas energias. Outros modelos nao incorporam nas
suas formulagoes iniciais a assimetria tempo-espago, mas sendo gerada por processos de

quebra esponténea de simetria, resultante da dindmica do sistema [135].

Em 1951, Achilles Papapetrou (1907-1997) desenvolveu um método para a derivagao
das equagoes covariantes de movimento para particulas-teste em rotacgao sujeitas ao campo
gravitacional [136]. Tal trabalho serviu de inspiragao para estudos de modelos de spin
em espaco curvo. Estudar a equacao de Dirac em um espaco-tempo curvo requer alguns
cuidados especiais, pois existem sutilezas enfrentadas ao lidar com campos fermionicos
[137]. Pois, é preciso transformar para suas formas adequadas as matrizes gama, as
derivadas parciais e a conexao de spin, para assim considerar suas corretas contribuicoes
geométricas no espago curvo [138]. Desta forma, tem-se o formalismo de tetradas, discutido
na Secao-2.1.3, como o agente ativo da transformacao da equacao de Dirac usual do espago-
tempo plano para o espago-tempo curvo. De forma pratica, as transformagoes deverao

ocorrer no espinor e nas matrizes de Dirac, conforme veremos a seguir

iV, —m]¥(x) =0, (2.43)
com
V,=0,+Q, (2.44)
¢ 1
%, = a7} (2.45)

onde wyp, sdo as conexoes de spin, uma generalizacao das conexoes afim, ou seja, o objeto

matematico que efetua o transporte paralelo em 4 dimensoes, definidos por
Waty = Nacwy, = e (€50, (€}) + e5efT’,) (2.46)

onde observa-se ser wp, anti-simétrico nos dois primeiros indices. As matrizes de Dirac
em espago-tempo curvo sao dadas por v# = et~*, com os indices do alfabeto grego(latino)
representando a coordenada geral(local) para o espago curvo(plano). As matrizes ~*
devem satisfazer a bem conhecida relagao de anti-comutacao {y*,7"} = 2g’“’f . Sendo
e’ as tetradas, descritas na Segao-2.1.3, que generalizam as transformacoes entre as

coordenadas globais e locais, através da relacao entre duas métricas diferentes

Juv = ezegnab' (247)

A seguir abordaremos o tema das teorias modificadas da gravitacao, descreveremos
alguns de seus mais conhecidos modelos, com suas caracteristicas mais importantes. Em

especial, daremos destaque a gravidade de Chern-Pontryagin e gravidade nao-local.
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3 Teorias Modificadas da Gravitacao

3.1 Modificacdes no Setor Gravitacional Puro

Na esteira do que foi dito no capitulo anterior, visando estender a RG, surgiram
propostas de modificar a gravidade de Einstein com a introducao de termos adicionais
ao seu setor gravitacional puro [139]. De inicio, apareceu o modelo mais simples de
gravidade-R2. Mas, logo apareceram novos modelos, que incorporaram na acao, outros
termos de qualquer grau n no escalar de curvatura. Nos quais foram atribuidos para
n valores negativos e, para as teorias exéticas, valores fracionarios. Em consequéncia,
foi introduzido o conceito de gravidade f(R), com a implementagao, na agao classica de
Einstein-Hilbert, de fun¢des com outros invariantes escalares, nao somente com termos de
escalar de curvatura [140]. A inclusdo dos novos termos é dada por escalares construidos
na base do tensor métrico, ou seja, esses escalares sao fung¢des do tensor de Riemann
e Ricci, suas derivadas covariantes e do escalar de curvatura. No caso mais simples, o

Lagrangiano depende de uma fungao sujeita somente a curvatura escalar f(R)

Sir) = 21/12/014% V=9 f(R), (3.1)

que leva as seguintes equacoes de campo de quarta ordem em relacao ao tensor métrico:

1
fRRuu - §f Guv + (g;wD - Vuvu) fR = KZT/ET), (32)

onde f = f(R), fr é a derivada de f(R) com respeito a R, sendo o operador covariante
d’Alembertiano definido usualmente como U = ¢#*V,V,. Estas teorias, sob determinados
limites, sdo capazes de resolver algumas inconsisténcias fornecidas pela RG nas escalas
astrofisicas. Podendo ser restaurada a gravidade de Einstein, como um caso particular
delas [141]. Dentro deste contexto, o modelo de Starobinsky, proposto em 1980, foi
o primeiro modelo a descrever como o universo primordial poderia ter passado por um
periodo extremamente rapido de expansao exponencial - dai o nome inflacao de Starobinsky.
sendo ele

f+«(R) = R+ aR? (3.3)

onde o segundo termo, com « > 0, leva as previsoes inflacionarias consoantes as medi¢oes
anisotropicas das radiacoes coésmicas de fundo em micro-ondas, realizadas em 2018 pelo
satélite Planck [142, 143]. Sabendo ser a gravidade de Einstein muito bem confirmada
observacionalmente em seus limites e a curvatura do universo conhecida por ser pequena,
é natural sugerir modelos da forma f(R) = R+ yR"™, com n > 2, e possuindo o termo

de Einstein-Hilbert dominante. Evidentemente, qualquer teoria da gravidade deve ser
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compativel com as evidéncias observacionais, nao somente na escala cosmologica primordial,
mas também devera ser submetida aos testes locais e astrofisicos, como os dados obtidos
das estrelas compactas. A esse respeito, foi demonstrado que as extensoes de RG produzem
modificacoes significativas no regime de gravidade de campo forte. Na tltima década,
estrelas compactas foram estudadas em teorias da gravidade f(R) no formalismo métrico e
de Palatini [144, 145]. O desenvolvimento de ideias inspiradas na gravidade f(R), contendo
fungoes de outros invariantes escalares, nao somente termos de escalar de curvatura,
produziu a gravidade Lovelock, Gauss-Bonnet, f(R,Q) e f(R,Q, P), com R = g""R,,,

Q= R"R,, e P = R%, R/", cuja acio (ver referéncia [146]) tem a seguinte forma:

1
SirPQ) = 5.5 / d'z/=gf(R,Q, P), (3.4)

com as respectivas equagoes de campo

f
FrRu = 59w + 2fo R0, Ruys + 90 fr — V.V fr + D(foRuw) — 2V [Viu(foR))] +

2
+ 9wV aVo(foR) + 2fpRapo, R, — AV V[ fpR,,)] = K2T, (3.5)
of of of

ondefRzﬁ,fQE%epra—P.

As equagoes (3.5), de segunda ordem nas curvaturas (de quarta ordem nas deriva-
das), sdo consideradas uma generalizagdo das equagoes de movimento de outras teorias
da gravidade. Por exemplo, é de facil verificagdo que (3.5) se tornard nas equagoes de
movimento para os modelos de gravidade f(R,Q) e f(R), quando definimos P = 0 e
P =@ =0, respectivamente. E, ao avocarmos f(R, Q), P) = R, recuperaremos as equagoes
de Einstein (2.8). Verifica-se ser a conhecida gravidade de Stelle um caso particular da

gravidade f(R,Q, P), tendo ela a seguinte agao
1 4 2 v
Sstete = 5.5 / d'z /=g (R+ aR? + BR"R,,). (3.6)

No caso acima citado da gravidade de Gauss-Bonnet, seu modelo foi construido
mediante o termo topolégico de superficie (derivada total em quatro dimensées), conhecido

como invariante de Gauss-Bonnet G = R? — 4RM™ R, + RpwaB R,03, sua acao é
1
Sg = 55 [ d'vv/=3f(G). (3.7)

De acordo com o teorema generalizado de Gauss-Bonnet!, no espaco-tempo qua-
dridimensional, G é um termo de superficie, sua integracao sobre a variedade M é uma
derivada total, ou seja, uma caracteristica (ou densidade) de Euler y(M). A caracteristica

de Euler é um invariante topologico da variedade M, que descreve a forma de uma

L O teorema de Gauss-Bonnet afirma que a curvatura gaussiana total de uma superficie fechada é igual

a 2w x, onde x = x(M) é a caracteristica de Euler da superficie, um invariante topolégico.
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superficie ou objeto geométrico®. Neste caso, o quadrado do tensor de Riemann nao é
independente, podendo ser ele fornecido em funcao do tensor Ricci e do escalar de Ricci.
O termo aditivo na agao (3.7) corresponde exatamente a estrutura da divergéncia em um
lago que surge na gravidade de Einstein (2.41). Portanto, conclui-se ser a gravidade de

Gauss-Bonnet (3.7) renormalizével em um lago.

3 na sua aborda-

Certamente, uma generalizacao da RG para dimensoes superiores
gem métrica, pode ser pensando através da conhecida teoria (ou modelo) de gravidade de
Lovelock, onde a acdo contém, entre outros termos, o termo quadratico de Gauss-Bonnet,
ou seja, a caracteristica quadridimensional de Euler estendida as dimensées D > 4, que
estd presente na acao efetiva de baixa energia da teoria das cordas heterdticas e nas
compactificagoes hexadimensionais da teoria-M, com especial atencao a sua propriedade
de ser livre dos estados “ghosts”, no espaco de Minkowski. Tais estados “fantasmas” cria
espectro de particulas com graus de liberdade caracterizados por propagadores com sinais
“errados” (sinais negativos), por consequéncia, destréi o principio fundamental da MQ da

conservagao da probabilidade de sistemas em evolugao temporal [147].

Em geral, a teoria de Lovelock representa um cenario muito interessante para
estudos da modificagao da gravidade, com a intengao de plotar valores obtidos de dados
observacionais, devido a presenca de termos de curvatura de ordem superior na agao. A
Lagrangiana de Lovelock é dada pela seguinte expressao

Ly N
= Z b Ly =boLoy+ b1 Ly +boLo+ -+ +byLy

= by + b1 R + byR? + bsO(R?),

onde os by, sao constantes e R? é o termo quadratico de Gauss-Bonnet G. Um outro
exemplo paradigmético na classe de modelos f(R) é a gravidade de Weyl, uma teoria
baseada na agao de Weyl (Sy) conformalmente invariante?, onde o Lagrangiano é dado

pelo quadrado do tensor de Weyl

1
Sw =55 / 442 /=g CryasCH°8, (3.9)

onde C**P ¢é o tensor de Weyl. As suas respectivas equacdes de campo de quarta ordem
nao sao manifestamente unitdrias [148]. No SM, uma invaridncia conforme local é alcancada
quando um termo gravitacional adequado ¢ adicionado a agao. Esta abordagem gera as
massas para os bésons vetoriais e campos de matéria semelhantes ao mecanismo de Higgs,

sem a tradicional quebra esponténea de simetria [149].

2 Para superficies fechadas, X(M) =n, —ng + ny, onde n, é o nimero de vértices, n, o ntimero de

arestas e ny o nimero de faces. A caracteristica de Euler ¢ um ntimero inteiro que permanece constante
mesmo quando a superficie é deformada, desde que nao haja cortes ou colagens.

Para D = 3 e 4 a gravidade de Lovelock e de Einstein sdo semelhantes.

Invariante sob transformacdes de Weyl g** — Q2(z)g"¥, sendo Q?(x) uma fungio no espago-tempo.
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3.1.1 Gravidade Escalar-Tensorial

Em 1937, Paul Dirac, com sua hipdtese dos niimeros grandes, inseriu pela primeira
vez a ideia de um campo escalar atuando no setor gravitacional [150]. Dirac, em suas
pesquisas motivadas pela constante cosmolodgica, na tentativa de encontrar uma explicacao
para os valores de certas constantes da natureza. Ele formulou a hipdétese que as cons-
tantes adimensionais nao devem ser puros niimeros matematicos, que aparecem nas leis
fundamentais da fisica, mas sim variaveis que caracterizam o estado atual do universo
[151]. Neste parecer, adicionar um campo escalar na gravidade de Einstein, que é descrito
pelo tensor métrico usual, consiste no método mais simples objetivando a generalizacao
dos fendmenos gravitacionais. Pois o campo escalar, sendo um invariante de Lorentz, é
a entidade fisica mais simples que existe [152]. Ressalta-se, um campo escalar no setor
gravitacional surge, por exemplo, no contexto de teorias do tipo Kaluza-Klein e teorias de

cordas, quando considerados dimensoes superiores [153].

Fundamentado na ideia de Dirac, os modelos gravitacionais escalar-tensoriais
promovem a constante gravitacional — que aparece como um parametro livre na agao de
Einstein-Hilbert, cujo valor é medido experimentalmente — a um campo escalar dinamico.
Tais modelos sugerem uma descricao completa da gravidade quando construida pela
composicao da métrica usual mais um campo escalar extra ¢, nao relacionado com a
matéria, mas sendo uma funcao da curvatura. A acgao escalar-tensorial tem a seguinte

forma genérica
Sy = [ dlay/=g (R, £(9)), (3.10)

onde f é uma funcdo que abrange o setor geométrico e da matéria conforme discutido
em [154]. Neste aspecto, o modelo de gravidade f(R) é dinamicamente equivalente aos
modelos gravitacionais cuja acao é dada pela soma do termo habitual de Einstein, mais
um novo termo dependente de um campo escalar extra [155]. Por conseguinte, modelos
descritos por scalaron surgem como uma alternativa & matéria escura [156, 157]. Sob
outro enfoque, foram propostos modelos de cenérios inflacionarios que envolvem um campo
escalar dindmico, minimamente acoplado a gravidade, chamado de quintesséncia’, que sao
conhecidos por descrever a expansao acelerada do universo [159, 160]. A vantagem destes
modelos consiste no fato do campo de quintesséncia possuir um valor de massa muito
pequeno, estimado em cerca de 10733 eV, sendo assim muito mais razoavel do ponto de
vista tedrico, diante do problema do valor extremamente pequeno da constante cosmologica
[161]. A gravidade de Brans-Dicke (BD), Galileon e Chern-Simons, estao entre os modelos
que se utilizam da motivagdo da gravidade escalar-tensorial para modelos cosmologico
conhecidos, por tratar da expansao acelerada do universo [162]. A gravidade BD, um

dos exemplos mais antigos de gravitagao modificada, originalmente proposto em 1961

>  Uma forma hipotética de energia do vidcuo, primeiramente proposta, em 1988, por Ratra e Peebles.

Em 1998, o termo “quintesséncia” foi introduzido pela primeira vez por Robert R. Caldwell, Rahul
Dave e Paul Steinhardt [158], como sendo uma quinta for¢a fundamental.
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[163], baseia-se na ideia de que o proprio espago possui caracteristicas geométricas além
daquelas geradas pela matéria, conforme sugere o chamado principio de Mach® [164, 165].
Sendo, portanto, sua agdo uma generalizacao da agdo de Einstein-Hilbert, tendo a seguinte

configuragao
SBD = /d4ZL’\/ _g <¢R + Zaﬂgba“gb + 167T£mat> 9 (311)

onde ¢ # 0 desempenha o papel da constante gravitacional efetiva, nao contribuindo com
o Lagrangiano da matéria L,,,;. Para o caso particular, assumindo ¢ = 2 recupera-se a
gravidade de Einstein. Uma vantagem desta teoria consiste no fato de que a constante de
acoplamento w é adimensional, em substituicado da constante usual de dimensao negativa,
que compromete a renormalizagdo da gravidade. Além disso, neste caso a constante

gravitacional tem uma origem dindmica relacionada com um valor assintotico de ¢.

3.1.2 Gravidade Vetor-Tensorial

No caso da gravidade vetor-tensorial, sao introduzidos campos vetoriais com
direcoes privilegiadas no espaco-tempo, sendo eles tratados nao como um campo de
matéria, mas como ingredientes da propria gravidade. O aspecto mais importante desses
modelos é a possibilidade do estudo no contexto da quebra espontanea de simetria de
Lorentz [166]. Os exemplos conhecidos dessas teorias sao a gravidade Einstein-aether [167]

e a gravidade bumblebee [168], tendo esta a seguinte agao

| 1
Siee = [ \/_—g<167TG(R +EB"B'R,,) — (BB ~ V(B"B, % 52)), (3.12)

onde ¢ é uma constante adimensional, B, = 0,58, — 0,B,, é o tensor stress para o campo
bumblebee B, e V' é o potencial vetor que possui um conjunto infinito de minimos By,
satisfazendo a condi¢do BBy, = £b*, aqui, os sinais positivo e negativo refletem o tipo

do vetor By, se este é do tipo tempo ou do tipo espago, sendo b* > 0.

3.1.3 Gravidade Horava-Lifshitz

Em 2009, Petr Horava propos seu modelo de gravidade, conhecido como gravidade
Horava-Lifshitz, na tentativa de resolver o problema dos diferentes conceitos de tempo na
TQC e na RG, tratando o conceito quantico como o mais fundamental, assumindo uma forte
anisotropia espago-temporal, em altos niveis de energia [169]. Desta maneira, o principio

da covariancia geral foi sacrificado a fim de conciliar a desejada renormalizabilidade com

6 Em 1893, Ernst Waldfried Josef Wenzel Mach (1838-1916) questionou o conceito de movimento ao
afirmar que a inércia de qualquer sistema é o resultado da interacdo desse sistema com o resto do
universo. A ideia subjacente no principio de Mach estd na origem da inércia ou da massa de uma
particula definida como quantidade dindmica determinada pelo ambiente, em particular, pelo resto da
matéria no universo.
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auséncia de fantasmas [170]. Possuindo o conceito relativista de tempo, com invariancia
de Lorentz, emergindo a grandes distancias, e a velocidade da luz tendendo ao infinito em
altas energias. Neste contexto, deve-se notar que a quebra da covariancia geral também é
discutida nos modelos da gravidade sem forte assimetria espago-tempo, que apresentam
quebra de simetria de Lorentz (QSL).

O modelo de gravidade modificada Horava-Lifshitz é um candidato na busca de
resolver o problema da energia escura, para estudos dos buracos negros e dos efeitos da inva-
ridncia de Lorentz em baixas energias [171]. No entanto, sua descrigdo quéantica é bastante
problematica, pois envolve estruturas complicadas em sua agao classica, potencialmente
implicando em um nimero muito grande de contribuigoes divergentes, nao sendo possivel
afirmar com certeza se é renormalizdvel multiplicativamente [111]. Ademais, embora tenha
havido progresso em sua reformulacao inicial, inconsisténcias observacionais continuam
presentes no atual modelo. Por exemplo, as observac¢oes de ondas gravitacionais emitidas
pela fusao de certas estrelas de néutrons contrariam as previsoes feitas pela gravidade
Horava-Lifshitz [172, 173].

Outros Modelos Modificados - Existem muitos outros modelos de gravitagao
modificada, todos derivados dos intensos estudos ao longo das ultimas décadas, em
grande parte motivados pelo rapido progresso no campo da cosmologia observacional,
que permitiram testes mais precisos em diferentes niveis de escalas do universo. Entre
muitos modelos, podemos citar a gravidade Einstein-Cartan-Sciama-Kibble [174], gravidade
escalar-tensor-vetorial [175], bigravidade [176], os modelos de condensagao de fantasmas
[177] e modelos de dimensoes extras, incluindo Kaluza-Klein [178], Randall-Sundrum
[179], Dvali-Gabadadze—Porrati [180] e modelos brane-worlds de co-dimensao superior
[181]. E, também o formalismo pés-Friedmanniano parametrizado, usado para restringir
desvios da RG na cosmologia e adequado para comparacao com dados em grandes escalas
cosmoldgicas [182]. Em especial, na se¢ao seguinte, daremos énfase ao modelo de gravitagao
modificada de Chern-Pontryagin e, ao final deste capitulo, falaremos dos modelos nao-locais
da gravitacao. Estas duas teorias servirao de fundamento para a formulacao de novas

classes de modelos que serdao apresentadas no Capitulo-4 e Capitulo-5.

3.2 Modelos Topoldgicos de Chern-Simons

Uma das extensoes da gravidade que tem atraido grande interesse nos tltimos anos
¢ a gravidade modificada quadridimensional de Chern-Simons (CSMG@G), originalmente
proposta em [52], como um modelo gravitacional topoldgico massivo [53]. Vale ressaltar, o
termo de Chern-Simons (CS) foi descoberto pelo russo Albert Schawarz (1934- ), dentro
do contexto da geometria diferencial, em teorias das classes caracteristicas. Posteriormente,
este termo foi estudado por Shiing-Shen Chern (1911-2004) e James Harris Simons (1938-
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2024), sempre como sendo propriedades globais das curvaturas nas variedades suaves
M [183]. A segunda classe caracteristica de Chern é o invariante topolégico” de Chern-
Pontryagin, definido como a contragao do tensor de Riemann com o seu dual *RR. A
integral deste termo numa variedade fechada quadridimensional é definida como o ntimero
(ou densidade) de Pontryagin [184]. Na fisica, essas classes caracteristicas surgiram no
calculo da anomalia de corrente quiral nas teorias de gauge. Em sistemas onde a corrente é
conservada no regime classico, mas quando consideradas correcoes quanticas, esta mesma
corrente passa a ser dissipada ou alterada® [185]. Na proxima se¢do, apresentaremos o
inicio do surgimento do termo CS na gravitagdo, que ocorreu no cenario tridimensional

das teorias de gauge (ndo)abelianas, no contexto da eletrodindmica massiva.

3.2.1 Modelos de Chern-Simons Tridimensionais

Em 1981, Deser, Jackiw e Templeton apresetaram modelos vetoriais de gauge e
gravitacional, no espago-tempo tridimensional [53], formulando assim as teorias de gauge
topoldgicas e massivas. Neste trabalho, os modelos gravitacionais sao constituidos com
termos de derivadas de terceira ordem, mas livres de fantasmas e causal. Quando inserido
na teoria de gauge abeliana’, o novo termo invariante de gauge de origem topoldgica
da surgimento a massa para o campo de gauge. A Lagrangiana de CS nao-abeliana foi

apresentada na seguinte forma
L8 = (420, A% + 2 fote A2 AL A°) (3.13)
cs — pnoriia 3 wtvita)s :

onde A, = AJT* é o campo de gauge dado pela estrutura algébrica dos grupos de Lie!?,
f%¢ sdo as constantes da estrutura e ¢/ é o simbolo de Levi-Civita, com valores assumidos
+1,0, —1. Estudos do modelo planar decorrente da reducao dimensional da eletrodinamica
de Maxwell com o termo Carroll-Field-Jackiw (violador de Lorentz), com solugoes que
indicam a clara manifestagdo da anisotropia espacial, o que é consistente com a existéncia
de uma direcao privilegiada no espago [186]. Tendo sua forma nao-abeliana construida na
gravitacao tridimensional, cuja a agao é
1
2K2p

2
Seg = /d%e””o‘(wuab@ywab“ + W, bW, pwa ), (3.14)

3 a
onde w é a conexao de spin (2.46) e p ¢ uma constante com dimensao de massa [p] = 1.

No formalismo Riemanniano as conexoes sao os simbolos de Christoffel, construidos de

" Em duas dimensdes, temos a caracteristica de Euler x(S) = 2—2b como um outro exemplo de invariante

topolégico, onde b é o género da superficie fechada S.

A nao conservagao resulta em uma quebra da simetria quiral, que pode ter consequéncias importantes,
como a quebra da unitariedade e da renormalizabilidade da teoria.

O eletromagnetismo é uma teoria de gauge abeliana devido a natureza tnica da carga elétrica (positiva
e negativa) e a simetria do grupo comutativo U(1) que a descreve. Diferentemente da cromodinidmica
quéntica (QCD), teoria de gauge nao-abeliana, onde existem miiltiplos tipos de carga/cores.

10 As 4lgebras de Lie foram introduzidas como ferramenta para o estudo das rotacdo infinitesimais.

8
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modo usual, da varidvel dindmica fundamental, o tensor métrico. Logo, a acao (3.14) se

apresentard no modo

1
2K2p

2
Sos = 5 [ dwe™(08,0,00, + T4, T 5) (3.15)

3
Na variacdo da agao (3.15) obtem-se
0Scs = ! d*x €PIV R4 0 g, = ! d>xC*§ 3.16
CS_K,Tp Ze€ a ,Bg;w__?p x g,ul/a ( )

onde R}, ¢ o tensor de Ricci no espago tridimensional, V, é a derivada covariante efetivada

em trés dimensoes, e
1
2=

¢ o tensor de Cotton tridimensional simétrico C* = C** e de traco nulo g, C*"" = 0. As

o —

(0VaRY + €7V RY) | (3.17)

equacoes de Einstein modificadas, para o vacuo, sao facilmente obtidas, sendo elas

G" + p O™ = 0. (3.18)

Utilizando-se do procedimento descrito na Se¢ao-2.3.3, ou seja, linearizando a acao

gravitacional CS (3.15), teremos

1
SO = 2 / Brh? €0, @ (Onsy — 950, )1 (3.19)

A ac@o linearizada (3.19) é invariante de gauge sob a transformacdo dh,, =
0,& + 0,€,, e, apesar de conter termos de altas derivadas, suas equagoes de movimento

nao apresentam problemas quanto ao surgimento dos estados de energia negativa [187].

3.2.2 Gravidade Modificada de Chern-Simons Quadridimensional

A generalizacao da teoria CS gravitacional em quatro dimensoes foi realizada
em [188], com o envolvimento de alguns passos nao corriqueiros. Primeiramente, se fez
necessaria a seguinte substituigao e’ — v,e’*, onde v, faz o papel de converter o
termo CS no termo abeliano de Carrol-Field-Jackiw (CFJ), Lopy = €0, A,0,A,. Desta
maneira, os autores do artigo original pode definir o termo CS do Lagrangiano gravitacional

quadridimensional

1 ro g 2 C (o
Sos = 35 [ da v, (0,00, + ST, T0T0). (3.20)
com sua forma linearizada

1
Sgg = _T#/&xhuueaumvvap(D%V _ asa’/)héa’ (3'21)



Capitulo 3. Teorias Modificadas da Gravitag¢do 35

igualmente a acao linearizada em 3D (3.19), a acdo linearizada em 4D é invariante de

gauge sob a transformacao éh,, = 0,&, + 0,&,. Da acdo (3.20) podemos definir a corrente
topologica
1403 o 2 g
K7 = (0,0, + grﬁoriﬁrm;), (3.22)
onde
Ve
g = (3.23)

v—9
é o tensor contravariante!! totalmente antissimétrico de Levi-Civita, definido a partir do
simbolo de Levi-Civita. A divergéncia de (3.22) sera
1
2

onde o tensor dual de Riemann contém contracao com o tensor de Levi-Civita

1
vV, K" = 5*}25&5%%@ = —'RR, (3.24)

1
*RP 0P = §g5PWR5W. (3.25)

Pelas propriedades topolégicas da densidade de Chern-Pontryagin, a integral de
*RR no espago-tempo é um termo de superficie. Por isso, para inclui-lo na acao de forma
consistente, deve-se introduzir um novo campo ¢, denominado coeficiente CS. Como
resultado, podemos acrescentar a acao usual de Einstein-Hilbert o novo termo proporcional

a ¢ que chamamos de acao CS:

1 K*
Scs = —7/d4$\/—_9%

_ 1 4 ¢*
= o =53 | d'oV=g [ RR (3.26)

onde v, = V,¢. Ao analisarmos a paridade da acao CS, perceberemos que o produto
de tensores de curvatura de Riemann tem paridade par, mas o tensor de Levi-Civita
tem paridade impar, exigindo do campo CS uma paridade impar, portanto, ¢ seria um
pseudo-escalar. Isto considerado, ¢ *RR torna-se um invariante por transformacoes de
paridade, conforme se espera de todos os termos da acao da teoria. Quando v, passa a ser
uma fungao das coordenadas do espaco-tempo, ndao um vetor constante, entao, em geral, o
termo CS gravitacional quebra a simetria CPT. Sob outra perspectiva, ¢ pode ser tratado
como um campo externo nao-dinamico, e v, um vetor constante. Nesta situacao, CSMG
quadridimensional torna-se o primeiro exemplo de modelo gravitacional com QSL. A acéo
completa de CSMG é composta pela agao de Einstein-Hilbert (2.6) mais a agdo de CS
(3.26)

1 1
Semees) = 5o [ dov=g (R + 40 *RR) + S (3.27)
A variagdo do termo geométrico de (3.27), com respeito a métrica, resultard

1
OS(rcs) — 05m = 5.5 / d*2/=g [(G* + C") 6g,0] + Sgn + Ses. (3.28)

11 As componentes de um tensor (contravariante) covariante se transformam da mesma (oposta) forma a
transformacao dos vetores da base, utilizando-se da (do inverso da) matriz de transformagao da base.
O vetor (posicao) gradiente é um exemplo de um tensor (contravariante) covariante.
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Sendo G* o tensor de Einstein, C* é o tensor de Cotton'?, X pp e Xog sao termos
de superficie, que surgem da variacao da acao de Einstein-Hilbert e de Chern-Simons,
respectivamente. Para variedades compactas e sem fronteiras, estes termos de contorno
sao identicamente nulos. Em contrapartida, para variedades com contorno, os termos de
fronteira nao sao triviais. Neste caso, objetivando o cancelamento de tais termos, se faz
necessario adicionar a acao de Gibbons-Hawking-York Sgpy & acao de Einstein-Hilbert
(189, 190].

1 3
Samy = — /8 _d'aygeT. (3.29)

onde OM é o contorno da variedade M, g é o determinante da métrica induzida no
contorno g, 1" é o traco do tensor de curvatura extrinseco, € é igual —1(+1) quando o
vetor normal ao contorno é tipo-espago(tipo-tempo), para a assinatura (4, —, —, —), 2! 530
as coordenadas no contorno, com (i = 1,2, 3). O tensor de curvatura extrinseco, também
conhecido como segunda forma fundamental, é uma forma quadréatica no plano tangente da
superficie no espaco euclidiano, que juntamente com a primeira forma fundamental, serve
para definir invariantes extrinsecos da superficie, suas curvaturas principais. Geralmente,
tal forma quadratica é definida para uma subvariedade suave imersa em uma variedade
(pseuda)Riemanniana [191]. Aqui assumiremos, por hipdtese, condigbes de contorno que
asseguram que os termos de fronteira desaparecem. A forma explicita do tensor de Cotton
em (3.28) é:

1
O = =5 [0ae" N (VaRY + PV RN) 4 vga (RO + R, (3.30)

sendo este um tensor quadridimensional de rank 2, simétrico de traco nulo. Os céalculos
realizados para a obtencao de C'*" e sua divergéncia estao contidos no Apéndice-A.2. Sendo

esta divergéncia dada pela seguinte equacgao
14 1 UV *x
V,.C" = g? RR, (3.31)

onde v,, = V,v,. No que se refere as equagoes de movimento oriundas da variacao da
agao (3.27), elas serdo facilmente alcangadas pela soma dos resultados provenientes da
variacdo da acdo de Einstein-Hilbert (2.8) e da variacdo da ac¢ao de CS (3.20). Desta forma
obteremos as seguintes equagoes modificadas de Einstein

G + O = KT, (3.32)

onde a conservacao do tensor energia-momento VuT(’;';) = 0 e a conservacao do tensor de
Einstein, garantida pelas identidades de Bianchi V,G*” = 0, demandam nulidade para
a divergéncia do tensor de Cotton (3.31). Neste caso, podemos assumir ¢ = const., que

implica em v = 0, que por sua vez anula todas as componentes de C'*¥, recuperando assim,

12 De inicio, o tensor de Cotton-York foi definido em terceira ordem. No contexto das identidades Bianchi,
o tensor de Cotton estd presente em qualquer dimensao D.
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de modo trivial e direto, a RG. Por outro lado, temos uma situagao interessante quando
assumimos v¥ # 0. Desta maneira, geraremos uma adicional condi¢ao de consisténcia,

conhecida como vinculo de Pontryagin
RR =0, (3.33)

que restringe o nimero de solugdes permitidas para as equacoes modificadas de Einstein
(3.32). Contudo, muitas solugoes da RG persiste na teoria modificada de CS. Por exemplo,
as métricas com simetria rotacional, cujas componentes nao nulas do tensor de Riemann tém
a estrutura Rj,,)ag), ou seja, Roio1, Rozo2, - - -, estao entre aquelas métricas que satisfazem
a condicao de consisténcia extra dada por (3.33) [187]. Nestas circunstancias estao as
métricas estaticas e esfericamente simétricas de Schwarzschild e Reissner-Nordstrom. Por
outro lado, pode-se citar a métrica de Kerr'® como um notével contraexemplo de soluciao
da CSMG, pois para esta métrica *RR # 0, conforme discutido em [192, 193].

3.2.3 Gravidade Modificada de Chern-Simons Dindmico

Na generalizacdo do CSMG, o chamado CSMG dinamico (DCSMG), o termo
cinético e um potencial para o campo dindmico ¢ é adicionado na agao (3.26), produzindo
a seguinte acao

1
g, — ;/;/d‘lx\/_—g (zv“wm + v<¢)> , (3.34)
onde § é uma constante de acoplamento adimensional. Assim sendo, o campo dinamico

¢ € dotado com seu proprio tensor energia-momento. Quando variamos S(grics+g¢), €m

relagao a ¢, obteremos a equacao de evolugao de ¢

BR— _ov
RR = 483 (D a¢> . (3.35)

No caso da acdo S(gn+cste), Para ¢ = const, a gravidade CS, dinamica (8 # 0) e
nao-dinamica (5 = 0), se reduz a RG. Pois, a densidade de Pontryagin é a divergéncia
total da corrente topoldgica de CS, conforme a Eq.(3.24). No modelo ndo-dindmico, nao ha
razoes fisicas bem motivadas para escolhas especificas do campo escalar, que geralmente é
escolhido com o objetivo de simplificar as equagoes. Distintivamente, no modelo dindmico
a arbitrariedade na escolha de ¢ é reduzida ou mesmo completamente eliminada. Pois,
embora se possa prescrever livremente as condi¢oes iniciais para o campo, para uma grande
classe de espago-tempo, a solucdo da equagao ondulatoria que ele deve satisfazer, impele a
evolugao do campo para um tnico estado, independente das condigoes iniciais [194]. A
DCSMG foi utilizada para estudos de varias questoes relacionadas as ondas gravitacionais

(195, 196, 197], com invaridncia projetiva desenvolvida na extensao métrica-afim [198], para

13 Descreve a geometria do espaco-tempo vazio em torno de um buraco negro rotativo, sem carga e
axialmente simétrico, com um horizonte de eventos quasi-esférico.
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analise de buracos negros giratorios numericamente estaveis as perturbacoes da métrica de
ordem inicial [199] e para calculos das frequéncias orbitais dos buracos negros rotativos,
utilizando-se da métrica de Kerr deformada, préximo ao horizonte de eventos [200]. Convém
frisar, o invariante topolégico de Chern-Pontryagin também aparece naturalmente no
contexto da teoria das cordas/M, especificamente, compactando as dimensoes extras'* da
teoria M (D = 11) para teorias efetivas da gravidade [201, 202]. Em particular, pode-se
citar o modelo Starobinsky-Bel-Robinson (SBR), cuja a¢do envolve termos quadréticos de
Chern-Pontryagin, (*RR)?, seus aspectos cosmoldgicos foram estudados em [203]. Outro
modelo interessante inspirado em cordas, intimamente relacionado ao modelo SBR, ¢ a

teoria da gravidade efetiva de Einstein-Grisaru-Zanon, que foi investigada em [204].

3.3 Invariancia de Lorentz

As simetrias desempenham um papel fundamental na nossa compreensao das leis
da natureza. A teoria dos grupos, por exemplo, se utilizam de técnicas de simetrias como
ferramentas indispensaveis nos estudos dos sistemas quanticos. Em 1931, Wigner formulou
um teorema onde afirma que a invaridncia dos observéveis sob certa transformacao (rotacao,
translagdo e CPT) implica na existéncia de um operador unitério no espago de estados de
Hilbert [205]. O teorema de Emmy Noether (1882-1935), quando aplicado classicamente,
incorpora as simetrias diretamente aos observaveis fisicos [206]. O fenémeno da quebra
espontanea de simetria, que ocorre em sistemas cuja dindmica ¢ invariante sob uma
transformagcao de simetria, é o alicerce para o entendimento do comportamento peculiar
dos supercondutores, superfluidos, ferromagnetos, e a origem das massas das particulas

elementares [207].

No caso especifico da simetria de Lorentz, sua legitimidade é verificada com alto
grau de precisdo [208]. Porém, como acontece em toda e qualquer teoria na fisica, a
simetria de Lorentz também é questionada quanto a existéncia dos limites inerentes a
sua aplicabilidade. Muitas sao as razoes conhecidas para a QSL, sendo algumas delas:
(i) Teoria das cordas; (ii) Possivel variabilidade dos valores das constantes fundamentais,
especialmente, a velocidade da luz, cuja deformagao das relagoes de dispersao que comegou
a ser discutida para explicar a aceleragao césmica [209]. E, evidentemente, os cendrios que
exigem a existéncia de alguma escala de distdncia minima: (iii) Nao comutatividade do
espago-tempo, que numa versao mais usada, do tipo-Moyal, envolve um tensor antissimé-
trico constante de segunda ordem ©,,, que claramente nao ¢ invariante de Lorentz [210];
(iv) Gravidade quéntica em lago, proposto como uma tentativa de quantizar a geometria

[211]; e (v) Conceito do espago-tempo espumante [212, 213].

14 Nao sendo necessariamente as variedades topologicamente triviais Kéhlerianas de Calabi-Yau, onde a
primeira classe de Chern (c¢;) é nula (R, = 0).
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Na verdade, as teorias da gravidade quantica preveem a violagao da invariancia de
Lorentz em altissimas energias, proximas a escala de energia de Planck, inalcangaveis pelas
experiéncias atuais na terra [214, 215]. Podemos afirmar que o inicio dos estudos sobre
a QSL se deram, em 1951, quando Paul Dirac (1902-1984), profundamente influenciado
pela descoberta do principio da relatividade por Einstein, inquiriu a anisotropia espacial,
através da existéncia do éter. Ou seja, na construcao de uma nova teoria dos fenémenos
eletromagnéticos, Dirac langa um artigo com a proposta da presenca de um certo vetor

com diregao preferencial e onipresente, resultando assim na possibilidade da QSL [216].

Historicamente, no final da década de 1950, a descoberta da quebra de paridade
nas interagoes fracas, despertaram indagagoes sobre a violagdo de Lorentz (VL), propor-
cionando, na década de 1960, a producao de varios artigos sobre temas nesta direcao.
Por exemplo, o artigo sobre a validade da RE em pequenas distancias (107'%cm) [217].
Em 1989, conjecturou-se que no limite de baixa energia da corda bosonica, algum vetor,
ou, em geral, os campos tensoriais podem adquirir valores esperados diferentes de zero,
produzindo assim algumas dire¢oes privilegiadas no espaco-tempo e, portanto, resultando
na QSL [62]. Neste aspecto, Kostelesky e Samuel incorporaram a condi¢ao da violagao de
Lorentz ao SM, no que hoje é chamado de Modelo Padrao Estendido'® (Standard-Model
FExtension (SME). Nesse sentido, logo depois, foi proposto um modelo tedrico modificado

da QED quadridimensional [218], como resultado do termo adicional denominado termo
Carroll-Field-Jackiw (CFJ), sendo ele

Lopy = "k, A0y Aa, (3.36)

aqui, o k, ¢ um vetor constante que produz anisotropia no espaco-tempo, o agente
responsavel pela QSL. O termo (3.36) pode ser tratado como uma natural extensao
quadridimensional do conhecido termo de Chern-Simons, sendo um invariante de gauge.
Evidentemente, a introducao do termo CFJ despertou interesse na investigacao de suas
implicagoes. No regime classico, os estudos se concentraram especialmente nas relagoes de
dispersao e questoes relacionadas com unitariedade e causalidade. Nesse aspecto, ha uma
variedade de maneiras de construir extensoes da VL para diferentes teorias que descrevem
campos escalares, espinor, eletromagnéticos e gravitacionais [219]. Seguramente, a mais
importante consequéncia da QSL é a deformacao das relagoes de dispersao, que leva
ao conceito de velocidade variavel da luz, como uma proposta das possiveis explicagoes
para a aceleracao cosmica. A deformacgao das relacoes de dispersao também pode ser
implementada nas teorias massivas [220]. Em 2006, Cohen e Glashow apresentaram a
Very Special Relativity - (VSR), uma teoria de campo construida através do subgrupo
DISIM,(2) (ortécrona e de reversao temporal) contido no grupo de simetria de Lorentz

isomorfico e de Poincaré [221], que foi abordado por Bogoslovsky, em 1977 [222, 223].

15 E uma teoria de campo efetiva que contém o SM, a RG, e todos os operadores possiveis que quebram
a simetria de Lorentz.
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Mais tarde, Gibbons, Gomis e Pope conectaram essas duas distintas abordagens, quando
demostraram que as simetrias do VSR preservam o elemento de linha encontrado por
Bogoslovsky [224, 225].

ds = (ncddxcdxd)l%b(nadx“)b, (3.37)
onde 7.4 ¢ a métrica de Minkowski, n = n,dx® é o campo 1-forma com componentes
constantes e b ¢ um pardmetro adimensional. Sendo (3.37) o elemento de linha do espago
plano de Finsler plano, que generaliza o elemento de linha da métrica da RE. No limite
b = 0, recuperamos o elemento de linha do espago-tempo Minkowski. Desta forma, no
contexto da teoria quantica de campos local ou da conservagao CP, a VSR fornece um
simulacro da RE [221]. Nos estudos do espectro de energia de um férmion de Dirac,
com invariancia em um campo magnético estatico e homogéneo, as corre¢oes de primeira
ordem da VSR para o fator g, do elétron, sugere a possibilidade da VSR ser a causa da
origem da massa do neutrino [226]. Outra implicagdo importante ocorre nos modelos
estendidos da eletrodinamica com VL, onde o comportamento nao trivial das possiveis
solugoes classicas podem exibir, no vacuo, os fendmenos caracteristicos da propagacao de
ondas eletromagnéticas em meios ndo triviais, como a birrefringéncia [227] e a rotacao do
plano de polarizagao [228]. Deste modo, permite-se o uso de tais modelos de VL para
descrever de modo eficaz certos fenémenos da matéria condensada [229, 230]. Além disso,
muitos modelos de teoria com VL, nem a unitariedade nem a causalidade sdo atingidos,
especialmente quando atribuimos condigoes especiais para seus parametros, geralmente
quando estes tém valores pequenos [231, 232]. No regime quéantico, as pesquisas ocorreram
nas possibilidades da geracao de certos termos aditivos de VL pela abordagem perturbativa,
nos estudos de renormalizabilidade e sua relacdo com possiveis anomalias. Além disso,
outras extensoes da VL foram propostas, ndo apenas para o campo eletromagnético, mas
também para o campo escalar e espinorial, o que permitiu formular o SME, tornando

assim a QSL um fenémeno testével experimentalmente [233, 234].

A primeira aplicacdo, no contexto da QSL, foi realizada na reproducao do termo
CFJ (3.36), sendo finito, embora formalmente seja superficialmente divergente e ambiguo
[235]. Por conseguinte suscitou discussao sobre as possiveis origens dessas ambiguidades e
sua relagdo com a anomalia quiral [236]. Além disso, foi demonstrado que tais ambiguidades
ocorrem nao apenas para o termo CFJ, mas também para alguns outros termos de
VL, sendo elas também relacionadas com anomalias, generalizacoes diretas da anomalia
quiral e anomalias gravitacionais [188]. A possibilidade de gerar diferentes termos VL,
especialmente as modificagoes para a eletrodindmica, tem sido estudada em diferentes
dimensoes de espaco-tempo, 2 < D < 5. Também, existem propostas da construcao
de teorias supersimétricas envolvendo a VL, com a introducao de supercampos extras,
cujas componentes estao relacionados com alguns vetores/tensores constantes, com toda

maquinaria dos supergraficos sendo aplicada para obtencao das corregoes quanticas [237].
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3.3.1 Quebra de Simetria de Lorentz e CPT na Gravitacdo

Em um espaco-tempo plano, a simetria de Lorentz pode ser violada explicitamente
por meio da introducao de novos termos proporcionais a vetores constantes (tensores), que
nao podem ser introduzidos consistentemente no espago curvo [238]. Pois, a modificagao
direta dos modelos de gravidade com VL anula também a invariancia geral de coordenadas
e, por sua vez, desfaz a necessaria simetria de gauge para o campo gravitacional. Na
gravidade, o tinico conhecido termo aditivo de quebra de simetria Lorentz-CPT, que possui a
propriedade da invaridncia geral de coordenadas, é o termo gravitacional quadridimensional
de Chern-Simons [239]. Muitos problemas relacionados a este termo foram estudados
detalhadamente, incluindo a possibilidade de sua geracao perturbativa, decorrentes de
ambiguidades, que, neste caso, estao ligadas a anomalias gravitacionais. Foi demonstrado
que, para uma teoria com VL, é possivel que existam transformacgoes de Lorentz distintas,
para observador e particula, especialmente quando campos de fundo fixos estdao presentes
240, 241]. No caso dos campos de fundo, ou seja, apenas aqueles representados por vetores
ou tensores constantes, transfiguram-se sob transformacoes de Lorentz do observador, mas
nao de particula. Todavia, para os campos dindmicos as transformagoes de Lorentz sao de
particula e do observador. Sendo assim, as teorias com Lagrangianos com VL continuam
sendo invariantes sob transformagoes de Lorentz do observador, mas nao sao invariantes sob
transformacoes de Lorentz das particulas'®. Isto permite aplicar a metodologia relativistica,

dentro do quadro das transformagoes de Lorentz do observador.

Isto posto, no espaco-tempo curvo, o grupo de simetria é o das transformagoes de
coordenadas gerais x* = x*(2'), que, a0 mesmo tempo, representa em si uma extensao
tanto do grupo de Lorentz quanto do grupo de gauge. Em muitos casos a QSL implica
também na quebra de simetria CPT. Um exemplo paradigmatico é o termo CFJ que
preserva a simetria de gauge. Portanto, é natural exigir que as extensoes de QSL da
gravidade sejam consistentes com a invariancia geral de coordenadas, isto é, invariancia
de gauge. Outra abordagem possivel consiste na abordagem do limite de gravidade fraca
(linearizado), onde considera apenas a dindmica do tensor simétrico de flutuagao da métrica
h;un

da QED. H4 estudos experimentais da QSL para a determinagao de possiveis limites

neste caso aplica-se os métodos semelhantes usados nos estudos de extensoes VL

de aplicabilidade para a RE, com fortes motivagoes cosmolégicas, como, por exemplo, a
possibilidade hipotética de anisotropia da radiacao céosmica, chamada de “eixo do mal”
[63]. Neste caso especifico, foi argumentado que tal anisotropia é atribuida aos métodos
inapropriados de andlise estatistica e ndo aos efeitos fisicos fundamentais [242]. Outra
linha importante de estudos experimentais para a possivel QSL é baseada em estudos de
raios césmicos. De fato, o efeito Greisen-Zatsepin-Kuzmin (GZK) foi interpretado na ideia

de que ele pode ser explicado por uma forte QSL em alguma escala ultra-energética, como

16 Também denominadas de transformacées de Lorentz ativas.
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é sugerido pela RE dupla [243]. Nesta proposta, a RE se modifica na escala de energia
de Planck passando a ter um segundo invariante, que se junta a velocidade da luz. Mas,
sendo a RE de Einstein recuperada nos referenciais inerciais e em baixas energias [244].
Este evento é alcangado por uma modificacdo nao linear da agdo do grupo de Lorentz
no espaco de momentos, gerada pela adicao de uma dilatacao a cada boots, de tal forma
que a energia de Planck permanece invariante. Visando inserir esta nova teoria na RG,

discute-se modificagoes no principio da equivaléncia [243, 245, 246].

Neste sentido, as relagoes de dispersao devem ser modificadas por termos extras,
que se tornam importantes em ultra-altas energias [247, 248, 249]. A emissao de radiagao
de Cherenkov!” é vista também como um caso de VL no vécuo [250, 251, 252, 253]. Em
2001, visando detectar matéria escura, o experimento de Polarizacao do Vacuo com Laser
(PVLAS) fez medigoes da rotacao do plano de polarizagao da luz, com andlise da causa do
comportamento éptico ndo-linear em campos magnéticos no vacuo [254]. Foi alegado que
essa rotacao pode ser atribuida a nao-comutatividade espago-temporal, que representa a
si mesma uma das formas conhecidas de QSL, com o pardmetro de ndo comutatividade
sendo estimado em v &~ 30GeV 2 [255]. No entanto, subsequentemente foi argumentado
que essa mesma rotacao deveria ser atribuida ao acoplamento axion-féton, enquanto o

impacto da nao-comutatividade deve ser inobservavel [256].

3.4 Teorias Nao-Locais da Gravitacao

3.4.1 Aspectos Gerais

Numa teoria local, um objeto é influenciado diretamente somente pela sua vi-
zinhanca imediata. Nestas teorias, a causa num ponto x; afetara outro ponto x,, se
houver uma onda ou particula, entre esses dois pontos, exercendo influéncia através do
espago, mediando a acao entre a causa em x; e o efeito em x5. Por outro lado, podemos
afirmar que as teorias nao-locais sao constituidas por elementos que podem interagir
ou se correlacionarem, em diferentes pontos do espaco-tempo, sem nenhuma mediacao
[257]. Dessa forma, a RG é uma teoria estritamente local, diferentemente da gravitacao
Newtoniana e da interacao Coulombiana, pois suas interacoes ocorrem a distancia sem a
agao de campos de forcas [258]. Objetivando substituir este conceito, Michael Faraday
(1791-1867), por volta de 1830, introduziu o conceito de campo, um ente mateméatico que
associa cada ponto no espa¢o com uma (ou mais) variavel dindmica. Logo, todos os pontos
no espago participam do processo fisico, cujos efeitos da a¢do se propagam de um ponto
para os pontos de sua vizinhanga. Assim sendo, as equacoes de Maxwell, com um niimero
finito de derivadas, descrevem a evolucao dos campos elétrico e magnético em cada ponto

do espago. Ainda no século XIX, surgiu a proposta alternativa em termos de acao continua

17 Radiacdo emitida por uma particula carregada, que se move uniformemente no vacuo.



Capitulo 3. Teorias Modificadas da Gravitag¢do 43

num meio invisivel chamado “éter luminifero”'® [259]. A ideia da existéncia deste fluido
invisivel e indetectavel que preencheria todo o espaco foi desafiada por experimentos como
o de Michelson-Morley [260, 261], e abandonada em favor de modelos mais abstratos, como
o vacuo. Historicamente, é estabelecido em 1934 o inicio dos estudos com abordagens da
nao localidade, quando Gleb Wataghin (1899-1986), sem fazer referéncia, em seu artigo, de
algum termo derivado da expressao nao-local, introduziu um fator de forma exponencial
com o propédsito de dar tamanho/forma as particulas adimensionais [46]. Posteriormente,
em diferentes contextos da fisica de altas energias, surgiram trabalhos que incorporaram
efeitos nao-locais [262, 263].

E preciso destacar, uma teoria cineticamente nao-local nao implica necessariamente
em uma teoria dinamicamente nao-local. A MQ, por exemplo, é de natureza probabilistica
e cinematicamente nao-local, pois, pelo principio da incerteza, introduzido em 1927 por
Heisenberg [264], onde afirma existir um limite para a precisao de medida para certos
pares de propriedades fisicas, conhecidas como variaveis canonicamente conjugadas. Diante
disso, a posicao e o momento nao podem ser conhecidos com exatidao por meio de medidas
simultaneas. Matematicamente descrita esta incerteza, por Earle Hesse Kennard (1885-
1968) e Weyl, pela desigualdade que relaciona o desvio padrao entre estas duas quantidades,
0,0, > h/2. Assim sendo, estados quinticos ndo podem ser localizados no espago-tempo,
e o observavel da posicao nao pode ser medido com precisao arbitraria. Avaliando o
caso especifico do famoso paradoxo de Einstein-Podolsky-Rosen [265, 266], dois estados
emaranhados sao separados espacialmente e, ao realizar a medida de um observavel em
um desses estados, é imediatamente afetado a probabilidade da medida deste mesmo
observavel no outro estado. Logo, a informacao fisica, entre os estados emaranhados, se
propaga sem a mediacao de nenhum campo. Mas, importa frisar, nos estados quanticos
emaranhados nao ha violacao da causalidade, pois nao existe transmissao de qualquer
informacgao/mensagem cuja velocidade seja superior a velocidade da luz [267]. No caso
do SM das interagoes elementares das particulas através da troca de bdsons, como foétons
para a forca eletromagnética e gliions para a forca forte, os campos sao avaliados em um
mesmo ponto, e sao governados por Lagrangianas locais, dos quais se derivam as equagoes

de movimento [268].

Nas teorias locais os Lagrangianos sao construidos em termos de polinémios de
campos e de suas derivadas, uma vez que estamos interessados em observaveis de baixas
energias, portanto, a ordem das derivadas ¢ sempre finita £ = L(¢, ¢, 09, ..., 0"¢), onde
n é um numero inteiro positivo e finito. Para uma teoria ser dinamicamente nao-local, a
sua agao deve conter a forma nao-local. Ou seja, a teoria deve conter em sua estrutura

operadores de derivadas covariantes de ordem infinita' (sendo n infinito, a equagao ainda

18 Em certo sentido, o problema da procura pelo éter luminifero, no passado, se assemelha ao problema
da energia escura, na atualidade.
19 Quanto maior for a ordem da derivada, mais nio-local é a teoria.
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pode conter um numero finito de solugoes, a depender da escolha especifica do operador
nao-local), que sdo incorporados no Lagrangiano através das fungoes inteiras, isto é, fatores
de forma nao polinomiais, que ndo podem ser apresentados na forma de um produto de
multiplicadores primitivos (z — a1)(z — az) ... (2 — a,), onde ay, as, . . . a, sao as raizes da

fungao representante do fator de forma [269].

Neste aspecto, fora investigado generalizagoes adequadas das equagoes de movi-
mento das teorias de campos de ordem superior, abandonando-se a condi¢ao de localiza-
bilidade ilimitada de qualquer evento espaco-temporal, visando, se possivel, conciliar os
requisitos de convergéncia da teoria, de definicdo positiva da energia do campo livre e de
um comportamento estritamente causal do vetor de estado de um sistema fisico [270]. Em
particular, as corre¢oes de um laco foram abordadas como generalizacao do modelo escalar
da QED nao-local [271]. Sabe-se que os operadores nao-locais emergem naturalmente no
limite de baixa energia nas teorias de cordas/M [272, 273|, como resultado de corregoes-o/,
onde o' é definido como o inverso da tensao das cordas. Dentro deste contexto, outro

exemplo de modelo nao-local é dado pela teoria de cordas p-adic [274, 275, 276].

3.4.2 Cendrio gravitacional

As propostas extensivas da gravitacao de Einstein, no contexto das teorias nao-
locais, surgem com o objetivo maior de resolver o problema do aparecimento de fantasmas e,
a0 mesmo tempo, manter a teoria renormalizavel ou finita no UV [277, 278, 279, 280, 281].
Pois, com o propoésito de tornar a RG renormalizavel, sao incluidos contra-termos de
ordem superior da curvatura, que cancelam as divergéncias na agao efetiva e melhora o
seu comportamento UV. Contudo, a presenca de tais termos de ordem superior prejudica,
no nivel quantico, a unitariedade da teoria, levando inevitavelmente ao aparecimento de
estados de norma negativa, os chamados fantasmas [282]. No nivel classico, essas teorias
geralmente sofrem de instabilidades inevitaveis do tipo Ostrogradsky, resultando em um
Hamiltoniano que nao é limitado por baixo [283, 284]. Para contornar esses problemas,
uma abordagem comum ¢é empregar a teoria de campo, que surge naturalmente no limite

de baixa energia da teoria das cordas.

Estas essenciais questoes vém chamando a atencao e, como resultado, muitos
modelos classicos de gravidade nao-local foram realizados em diferentes cenarios, por
exemplo, modelos cosmoldgicos ndo-locais [285, 286, 287, 288, 289, 290, 291], solugdes
nao-locais de buracos negros [292, 293] e outras solugbes exatas dentro destas teorias
nao-locais [294, 295, 296, 297], teorias nao-locais de gauge e supersimétricas [298, 299], e,
também, o mecanismo de Higgs foi investigado dentro das teorias de campos nao-locais
em [300, 301]. No nivel quantico, os modelos gravitacionais onde retrata a matriz S
de campo escalar nao-local estendida e finita no UV, sdo extremamente complicados do

ponto de vista técnico, pois as equacoes obtidas nesses modelos sao de dificeis solugoes
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em seus calculos, sendo a unitariedade e causalidade, os principais problemas a serem
resolvidos [302]. Notavelmente, sendo atualmente um método conveniente e poderoso
para alcancar solucoes consistentes dos problemas fundamentais da gravidade quantica, os
modelos de teoria de campos nao-locais sao considerados uma dos principais caminhos a
ser seguido na tentativa de fundir o formalismo da TQC com a RG, assim, tem-se estudado
e discutido extensivamente em muitas areas da fisica tedrica, como TQC nao comutativo,
teoria de campos de cordas, teoria de campos efetivos e teoria de campos conformes
[303, 304, 305, 306, 307, 308]. Um exemplo bastante simples, mas consideravelmente 1til,
da nao localidade aplicada no contexto gravitacional é dado a seguir, onde se modifica a

equagao de Poisson empenhada a lei da gravidade de Newton para uma particula pontual.

3.4.3 Equacdo de Poisson Newtoniana Nao-local

Em 1983, o fisico israelense Mordehai Milgrom (1946- ) propds modificagoes nas
leis de Newton como forma de explicar anomalias na curva de rotagao das galdxias, dando
surgimento a dindmica Newtoniana modificada (MOND-Modified Newtonian Dynamics)®
[309]. Entre as propostas da MOND, tem-se a modificacdo da equagdo de Poisson da

gravidade Newtoniana para uma particula pontual, a qual é dada por:
V2¢(7) = 4rGm (7 — 7p), (3.38)

onde ¢(7) é o potencial gravitacional, G é a constante gravitacional de Newton, m é a
massa pontual localizada em 7. A equagao (3.38) é uma consequéncia da lei da forga do
inverso do quadrado, que se baseia, em ultima analise, em observacgoes do sistema solar
que originalmente levaram as leis do movimento planetario de Kepler. Cuja generalizagao
sao as equagoes do campo gravitacional de Einstein, com previsoes consistente em boa
concordancia com os dados atuais observados do sistema solar [310]. Alterando o termo

do laplaciano em (3.38), como descrita a seguir

V2 (1 — AZZ)&(F) = 4T Gmo3 (7 — 7), (3.39)

obteremos a solu¢ao modificada

6(F) = o(7) (1 — e M7) (3.40)
Gm

onde ¢(r) = ——— ¢é a solugdo da equacao de Poisson usual, ndo modificada. Na

—

equagao (3.40), recuperamos a teoria Newtoniana quando M7 > 1. A solugdo para o

campo gravitacional modificado ¢ é regular em 7 = 7. O campo gravitacional é obtido

—

pelo gradiente do potencial escalar —VFQE(F) = ¢(7). Pode-se mostrar que para o caso

20" Teoria que propde uma modificacdo das leis de Newton para explicar as propriedades observadas das
galaxias. Modificar a lei da gravidade de Newton resulta em gravidade modificada, enquanto modificar
a segunda lei de Newton resulta em inércia modificada.
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7 =79 a solu¢do de Vz¢(7p) é diferente de zero, logo nao representa um caso fisico real
e mensuravel, pois o campo gravitacional na origem da massa pontual m deve ser nulo,
G(75) = 0. Contudo, podemos introduzir termos de escala de massa M; (i = 1,...n), tendo

as fungoes de Green para tais teorias a seguinte propriedade:

n 2 n
G 7~ V]I (1 B sz> VY (VM) (3.41)
i=1 i '

onde os coeficientes ¢; serao dados pela expressao

n

14> ¢ =0. (3.42)

i=1

Em andlise da equagao (3.42), constata-se a existéncia de pelo menos um valor de
1 para o qual ¢; < 0. Como ja dito, tal condi¢do, onde ¢; possui sinal negativo, pode levar
para o sistema fisico o surgimento das instabilidades de Ostrogradsky, tanto no regime
classico, quanto no regime quantico o aparecimento dos estados fantasmas. Para contornar
tais problemas, a abordagem nao-local é formulada na teoria, por intervencao de uma
fungao particular do operador de Laplace inserida na equacgao de Poisson. Com a exigéncia
de ser esta uma func¢ao transcendental de valor complexo e holomoérfica em todo o plano
complexo?!, conhecida na literatura como sendo o fator de forma. Para o presente caso,
escolheremos uma funcio inteira do tipo exponencial, F(V) = e~ V/M* Assim sendo,

teremos a equacao de Poisson modificada, sendo agora uma equagao nao-local
V2e VMG (F) = ArGmd(F — ), (3.43)
cujo solugao é o potencial gravitacional regularizado ®(7), sendo ele dado por

o(F) = — ™ er (T) , (3.44)

T

onde erf(z) é a fungao erro de Gauss conhecida pela expressao

T

1 -
= — Ut 4
N e (3.45)

erf(x)

Por fim, no Capitulo-5, trataremos em mais detalhes a teoria de campo nao-local,
mais especificamente discutiremos os fatores de forma, construidos mediante fung¢oes do
operador de d’Alembert F([J). No caso especifico de um novo modelo nao-local que sera

apresentado, os fatores de forma serao formulados por fungoes cujo argumento é o operador
de Dirac F(@), ndo o operador de d’Alembert.

21 Pelo teorema da fatoracdo de Weierstrass (ver Apéndice-B.3), uma funcdo complexa f(z) é holomérfica
em um ponto zg, se existir um disco aberto centrado em zy, onde f(z) é derivdavel em todos os seus
pontos. Logo, se f(z) é uma funcio inteira, ou seja, holomoérfica em todo o plano complexo, ela pode
ser expressa como uma série de poténcias do seu argumento.
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4 Modelos Generalizados de  Chern-

Pontryagin

4.1 Acao e Equacoes de Campo da Teoria

Neste capitulo, apresentaremos uma nova e mais genérica classe de modelos de
gravidade modificada, em quatro dimensoes, que chamamos de modelos generalizados de
gravidade Chern-Pontryagin (GCPMG -Generalized Chern-Pontryagin Modified Gravity).
Direcionado pelas teorias f(R), GCPMG esta originalmente publicado em [66], cuja agao
em vez de ser linear ou quadratica do termo topolégico de Chern-Pontryagin "RR, exibe
uma dependéncia funcional arbitraria e genérica deste objeto e também do escalar de

curvatura R = g’ R,,,. Desta forma, podemos definir a acao deste modelo como sendo,

1
S= o [ deV=g SR RR) + [ dey/=g LG, ) = 85+ Sny (1)

onde (S,) L, é a (agdo)Lagrangiana das fontes de matéria, representada simbolicamente
por ¥, e *RR é o termo topoldgico de Chern-Pontryagin definido pelas equagoes (3.24)
e (3.25), como uma fungao do tensor contravariante de Levi-Civita (3.23). Conforme
demonstrado no Apéndice-A.2, os tensores de Levi-Civita, covariante €08 = v/—¢ €uvap €
contravariante, sao totalmente antissimétricos definidos a partir do simbolo de Levi-Civita
€wap, cujo valor é +1 para permutacao par de seus indices, -1 para permutagao impar
de seus indices e 0 para os demais casos. Observa-se que em certos casos desse modelo,
nomeadamente, quando a fun¢ao f(R, *RR) inclui graus impares do termo *RR, quebra-se

a paridade do modelo, como demonstrado em [52].

Portanto, para obter as equacoes de movimento, devemos variar (4.1) com respeito

a métrica. Para o termo genérico da acao da teoria, teremos

555 = o5 [ e (531 + V301 -

1 1
T 22 / d'a/=g [_ 5909 | + [r(69" R + 9" 0Ry) + frrd(RE) |,
de f = (R* _ 9f _of .
onde f = (RRR), fr = R e frr = m Para os dois primeiros termos de (4.2)

temos a solu¢ao dada pela a Eq.(3.2), decorrente das teorias f(R). Assim sendo, iremos
aqui somente obter a variacao do tltimo termo de (4.2), para isso, calcularemos a variagao

da densidade de Chern-Pontryagin dada por

1 1
frrO(RR) = frr ;RR G 0g"” + 55”'/&’85(3/\9W39Aa5)
1

= 5 mR RR §,,09"" + 2 fwrr 5“”“5R9AQ5VM5F’\9V.

(4.3)
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A variagao do tensor de Riemann, que se encontra no segundo termo do lado
direito de (4.3), fora obtido por meio da identidade de Palatini (A.6). E, o primeiro termo

vem da variagdo do tensor Levi-Civita

1 I S —
T —F——9uwog
V=9 2V

1
5(ee?) = el 5 ( = 589,89 (4.4)

Para o segundo termo de (4.3), que definiremos de C, aplicaremos as propriedades
(anti)simétricas dos tensores, o método da integragdo por partes e, também, utilizaremos

a equagao da variacao dos simbolos de Christoffel (A.5). Deste modo, teremos

C = =2V, (R, s fnn) ;gM (Vo8guy + V09, — V- 300,)
=~ BRM N, frr (Vebgu, + Vigs, — Va00a)

= —e"™ PR .V, frr (Vodguy — V090,)

= —2e"BRM N, FrrV 090,

= =24 (VR ;¥ frr + R 5V, Y uforr) 06

— (2€uaﬁ(vvvR9)vaﬂvu S 4*R(9|7"|”)V7V#f*33) S Gou.

Por meio da definicao das seguintes quantidades v, = V¢, v,, = V, v, e ¢ = fgg,

alcangaremos

C (2v gheb "V, RH)7 + 4v, R(eh“l”)) 0gou
( 20, " R 4 dw, RO )5%
(20, "¢ (V3R , = Vo)) + 40, RYO) by,

— 4 ( gnbatvy R )+ vy, R 91/)#) S5Gon.

Substituindo (4.5) em (4.3) e adicionando-a a expressao da variacao da agao da
gravidade f(R) dada por (3.2), encontraremos o resultado final para a variagdo da acao
(4.2)

5Sf —7/d TN — |: guuf + fRR,uV +guV|:|fR VV)fR

(4.6)
+ §*RR Fer s+ 4 (036 Via Rups + R}, ) V- Vi forr) }@w — 0.
Do resultado acima, poderemos obter as equagoes de campo da agao (4.1)
1 1
R, — -9u JLUOfr =V, V, —"RR f v
fR iz 29# f+gu fR (1 )fR‘i‘2 fRRgu (4'7)

+4 (UA&:A%VMRV)B + R, AV, Va f*RR) — 2T (m)

N2

onde [ = ¢"”V,V,. Por definigao, o tensor energia-momento da contribuicao das fontes de

matéria é dado pela variagdo com respeito a métrica do Lagrangiano da matéria, conforme
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a equacao dada em (A.3). Deste modo, serd mais conveniente reescrever as equagoes de

campo (4.7) da seguinte maneira

1
Ry = 5 Rgu = rig T + TRl (4.8)
k2
onde, KZ;; = = e
g 1 1 1
T;w = E { - ifRng/ + ig,uuf - gMVDfR + v(,uvl/)fR - C,uu ) (49)
onde definimos o C-tensor
« ES 1*
C =4 (%w 0 ViaRuys + R, AV, Y f*RR) + 5 RR kg (4.10)

Observa-se facilmente a natureza simétrica do C-tensor. Com relagdo ao trago de
(4.10), teremos para o seu primeiro termo o trago nulo, 4uye™ CEHVMR“ /)3, isto se da devido
a contragao do tensor de Ricci simétrico com o tensor de Levi-Civita antissimétrico, ja o
segundo termo, 267P ?uRﬁoS/\VVV rfrR, se anula devido a identidade de Bianchi Rﬁ[a A = 0.

Por consequéncia, teremos

g‘”’C’W = Qf*RR RR. (411)

Conforme ja mostrado no capitulo anterior (ver também o Apéndice-A.2), o tensor
simétrico de Cotton tem traco nulo, logo, podemos dizer que o C-tensor diferencia do
tensor de Cotton por um termo genérico dependente da densidade de Chern-Pontryagin.
Nos estudos da geometria diferencial, o tensor de Cotton (ou Cotton-York) é um tensor
originalmente definido em terceira ordem (3.17), em termos do tensor de Ricci e do tensor de
Weyl, sendo conformemente um invariante métrico de uma variedade (pseudo)Riemanniana.
No entanto, o tensor de Cotton surge no contexto das identidades Bianchi e esta presente
em qualquer dimensao D, com aplicagdes importantes nos estudos das ondas gravitacionais

e abordagens das congruéncias no vacuo dos espagos-tempos estacionarios [311, 312].

Nota-se que as equagbes de campo (4.7) envolvem termos de altas derivadas,
cuja presenca conduz potencialmente ao surgimento de instabilidades de Ostrogradsky
(conforme demonstrado no Apéndice-B.1), em nivel perturbativo, conhecidas como estados
fantasmas ( “ghosts”), abolindo a restrigdo durea da unitariedade na teoria quantica de
campos [313]. Uma investigagdo cuidadosa do nimero de graus de liberdade, usando uma
analise candnica, foi realizada para algumas teorias da gravidade de curvatura superior
[314], onde foi descoberto que essas teorias possuem pelo menos um modo fantasmagérico.
No entanto, essas dificuldades sdo contornadas seguindo a metodologia empregada nas

teorias de campos efetivos' (TCE) [315], na qual os modos fantasmagoéricos podem ser

I TCE é uma técnica aproximativa que, na descricio e analise do comportamento de sistemas fisicos,

considera apenas certas escalas de energias de interesse
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desconsiderados, uma vez que sao suprimidos por uma escala tipica de alta energia,
tornando-os modos pesados para se propagarem no limite de baixa energia. De agora em

diante, trataremos os modelos generalizados de gravidade Chern-Pontryagin como TCE.

4.1.1 Equacdes de Vinculo do Modelo f = f1(R) + fo(*RR)

Aqui, assumiremos a fun¢do genérica do nosso modelo como tendo a seguinte
forma: f(R,*RR) = fi(R) + f2('RR). Logo, f é uma fungao constituida pela soma de
duas fungoes f; e fs, cada qual composta por somente um destes argumentos, o escalar de
Ricci R e o termo topolégico de Chern-Pontryagin *RR. Desta maneira, a escolha de f
simplifica a obtencao das equagoes de movimento e produz a possibilidade de recuperarmos
RG quando adotado certas condigoes para o modelo. Por exemplo, para o caso particular

f = R+"RR, as equagoes de campo (4.7) se reduzem as equagoes de campo da RG (A.14).

Recorrendo a identidade de Bianchi, V*G),, = 0, e a conservagao do tensor energia-
momento, V“Tégl) = 0, podemos calcular a divergéncia da Eq.(4.7), conforme calculos

demonstrados no Apéndice-A.4, cujo resultado é

1
V,.CH = if*RRVV ‘RR. (4.12)
Os céalculos para se obter as equagoes de vinculo da Eq.(4.7) para o caso especifico
de um fungdo simples de f(R) foram realizados em [316]. Verifica-se que a divergéncia do
termo entre parénteses da Eq.(4.10) assemelha-se ao vinculo de Pontryagin da teoria de
gravidade modificada Chern-Simons (A.31), como demonstrado em [229], onde os autores

expoem uma discussdo detalhada da consisténcia de varias métricas conhecidas dentro da
DCSMG.

Observa-se que as equagoes modificadas para fo(*RR) o< (*RR)", com n > 1,
reduzem a gravidade f(R) (para RG se fi(R) = R) para uma variedades de classes de
métricas, por exemplo, as estaticas esfericamente simétrica, Friedmann-Robertson-Walker,
(A)dS e tipo-Godel, pois para todas essas métricas "'RR = 0. De fato, esta condigdo é
nada mais que o vinculo de Pontryagin satisfeito para as métricas, uma vez que a relacao
especifica entre a correspondéncia do escalar Newman-Penrose é satisfeita, conforme
discussao apresentada em [229]. Em principio tal vinculo também ¢é satisfeito para outras
métricas. No entanto, para produzir equacoes de movimento de campo modificadas nao
trivialmente é necessario ter C,, # 0 que resulta em "RR # 0. Esta situagao, por exemplo,
ocorre para a métrica de Kerr, conforme mostrado em [54]. Nota-se também, para a
teoria tipo “agravity” que nao envolve o termo de Einstein-Hilbert [317], mas termos de
derivadas superiores estdo presentes na sua ac¢ao, de modo que fi(R) = 0. As métricas
que satisfazem a restricdo de Pontryagin resolveriam as equacoes de movimento de uma

maneira trivial, j4 que neste caso fr =0 e frg = 0se f('RR) x ("RR)", com n > 1.
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Outra importante relagao é obtida do modelo quando toma-se o trago da Eq.(4.8).

Tendo o conhecimento de (4.11), teremos o seu resultado abaixo
30fr + Rfr — 2f +2'RRfr = k2T, (4.13)

onde T = QWT,ST)- Como se vé, a equagao (4.13) depende da densidade Chern-
Pontryagin. Em outras palavras, o trago da equagao (4.8) resulta na mesma equacao das
teorias de gravidade f(R), acrescida de um termo proporcional a *RR. Tal resultado é
interessante pois descreve efetivamente uma equacao com um grau de liberdade escalar de

propagagao (¢ = fr), como veremos com mais detalhes na se¢do seguinte.

4.1.2 Equacoes de Campo no Frame de Jordan

Comegamos esta se¢ao mostrando que os modelos generalizados de gravidade Chern-
Pontryagin admitem representacoes tanto no frame de Jordan como também no frame
de Einstein, semelhantemente ao que acontece com as teorias de gravidade f(R). Existe
uma certa correspondéncia entre modelos de gravidade f(R) e gravidade escalar-tensorial,

como se pode ver na discussao apresentada no artigo [316].

Para ver como a representagao no frame de Jordan emerge com mais detalhes, é

util observar que a agao (4.1) pode ser convertida na seguinte forma

1 0 0
S = @/d‘*as\/—_g [f(% ¢2) + %{1 (R— 1) + 3;; ("RR = ¢2)| + Sin(gu V), (4.14)

onde ¢ e ¢y sdo campos escalares auxiliares. Variando a Eq.(4.14) com respeito a ¢y e ¢,

respectivamente, obtemos

0*f *f . _
@(R —¢1) + 061003 (RR—¢2) = 0; (4.15)
*f . o*f _
@( RR — ¢9) + 36,005 (R—¢1) = 0, (4.16)
cuja solucao ¢é simplesmente dada por
R=¢1 e "RR = ¢s. (4.17)

Agora, inserindo a Eq.(4.17) na Eq.(4.14), voltaremos para a Eq.(4.1).

Requerida a seguinte condigao

OPfOrf ( O f )2
— 0. 4.18
00305 \00:00,) 7 (418
e definindo as seguintes quantidades
oF _ e of = o, (4.19)

g1 Oa
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desta forma, pode-se reescrever a Eq.(4.14) como uma teoria escalar-tensorial de dois

campos no frame de Jordan, ou seja,

S — /d4x\/_[<I>R+ RR — V(6 )| + S (g0 V), (4.20)

onde
V(®,6) = 5y [662(0) + 261(®) — F(®,6) (1.21)

é o potencial de interacao entre os dois campos escalares. Observe que o primeiro e o ultimo
termo no setor gravitacional da acao (4.20) se assemelham a uma agao de Brans—Dicke com
a diferenga de que o potencial é composto pelo campo escalar de Brans—Dicke ® (scalaron),
além do campo escalar ¢. O segundo termo na Eq.(4.20) é apenas o termo topoldgico de
Chern-Pontryagin acoplado ndao minimamente com ¢, que é frequentemente chamado de
termo Chern-Simons [52]. Portanto, partindo da ac¢ao (4.1), encontramos uma maneira
natural, diferente da proposta original [52], de gerar o termo de Chern-Simons, com ¢
desempenhando o papel do campo de acoplamento CS [54] e sendo um dos dois graus
escalares de liberdade que aparecem na representacao escalar-tensorial. Nesse sentido, a
acao do modelo escrito na representacao no frame de Jordan pode ser pensada como uma
generalizacao da gravidade modificada de Chern-Simons. Observe, entretanto, a escolha
do modelo, f;(R, *RR) = R+ B(*RR)?, ndo admite uma representacio escalar-tensorial
de dois campos, uma vez que a condi¢ao on-shell (4.17) ndo é garantida porque (4.18) nao

é valida.

Variando a ac@o (4.20) em relagao aos campos métrico e escalares: g¢,,, ¢ e D,
somos capazes de encontrar as seguintes equacoes de campo na representacao no frame de

Jordan, a saber,

2 1 4
d d d
8\/
= 2K —— 4.2
R K2 55 (4.23)
ov
‘RR = 2k* 4.24
% (1.24)
onde definimos o tensor de Cotton como
CMV = ?}afaﬁg(#vaRﬁy) + Uaﬁ *Ra(#y)ﬁ’ (425)

com v, = Va¢ € Va3 = Vavg. Aplicando o trago na Eq.(4.22) e combinando-a com a

Eq.(4.23), obteremos

v 1
Od = f(I>2 2% + —rRHT™ —4V), (4.26)

o que significa que o scalaron cumpre uma equa(;éo de um campo dinamico que depende
do trago do tensor energia-momento e também do potencial de interacao entre ambos os

campos escalares. Por outro lado, o campo CS ¢ satisfaz uma equagao nao dindmica (4.24),
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cuja solucdo fornece uma equagao ¢ = ¢(P), entdo ¢ pode ser completamente fatorado
(on-shell) da Eq.(4.20). Portanto, existe apenas um grau de liberdade de propagacao

escalar na teoria.

Tomemos agora o exemplo anterior do modelo f;(R, *RR) = R + 3(*RR)?. Neste
caso, o potencial correspondente é simplesmente dado por
¢2
8BK2’

enquanto o scalaron se reduz para ® = 1. Ao inserir esse potencial na Eq.(4.24), encontra-se

V(p) = (4.27)

¢ = 2B("RR), (4.28)

que pode ser integrada a partir da Eq.(4.22) e, como resultado, obter as equagoes de campo
(4.7) para o modelo particular acima mencionado. Portanto, como esperado, conclui-se
que as equagoes de campo da gravidade generalizada de Chern-Pontryagin no frame de

Jordan sao equivalentes aquelas na representacao padrao.

4.1.3 Equacoes de Campo no Frame de Einstein

Para inicio, consideraremos a transformacao conforme da métrica,
~ 2
G = Q 9uv, (429)

onde o til descreve quantidades geométricas no frame de Einstein e ) é o fator conforme.
Observe que esta transformagao é consistente apenas se df/JR > 0. Neste caso, o escalar
de Ricci no frame de Einstein esta relacionado com o escalar de Ricci no frame de Jordam

pela seguinte equacao

R=*|R+60mQ— 65"V, nQV,nQ|. (4.30)

Desta forma, o termo Chern-Pontryagin em (4.29) se transforma como
‘RR = Q" "RR. (4.31)

Usando as expressoes acima e escolhendo Q? = @, a acdo (4.20), no frame de Einstein,

teré a forma

~ 2% 2
S = /d%\/_ [R - —g’“’V In®V,Ind + ¢ RE — —V(gb, )1

K2

+ Sm(q)i guw\y): (432)

) pl N ) - -
definindo ® = e\/;”“l’ a equacao anterior se torna na acao na representacao do frame de
b

Einstein.
= [devTg [y R LV 0 RR - U,0)] +
Sm(e—\/gnwgw’ 0), (4.33)
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onde o potencial é

U(g, ) = 6 d3(6) + eV3™ gy (1) — f(o, )| (4.34)

1
2/@262\/g’w
Pode-se facilmente ver que v é o tinico grau de liberdade escalar de propagacao, enquanto

o campo de acoplamento CS é um campo nao propagador, de acordo com a proposta

original da gravidade modificada CS [52].

A fim de ilustrar a representacao no frame de Einstein e sua conexdo com
a gravidade modificada CS, consideremos um outro caso particular correspondente a
fir1(R, "RR) = R+ aR* + B(*RR)?*. Quando comparada com (3.3), a funcdo escolhida
f1r pode ser considerada como um modelo de Starobinsky generalizado. Neste cenério, o

potencial para este modelo especifico, no frame de Einstein, assume a forma

U(p,9) = - 21 yem l - ( ViR _ 1) ] (4.35)

e a acao parece
N 1 . - 1 ¢2
SZf/d‘*\/JR RR — ———— <fw >
2k2 * g{ +é 42V 3R [ o)
1~ y~ = — 25 ~
= 57Vt + Sl VI, W), (4.36)

que ¢é a gravidade modificada de Chern-Simons nao dinamica mais um Lagrangiano nao
trivial dependendo de dois campos escalares em interagao. Ao variar a agao (4.33) em

relagao a g, ¥ e ¢, respectivamente, encontramos as seguintes equacoes de campo

G +4C,, = 8 (TS + T30 (4.37)
RR ou
2 = g (4.38)
- ou 1 .
) = — +/=kT™ 4.
0 o TV (4.39)

onde definimos as seguintes quantidades: o tensor de Cotton

Chu = VR, + Tag RY, (4.40)

ﬁU(M

com ¥, = @aqb e Upg = @av/g. O tensor energia-momento das fontes de matéria é definido

2 5[ m(e \/_wguw )}
V& R T

como resultado, Tm = g’“’T IEL”). O tensor energia-momento

como usual

T = — : (4.41)

T = VbVt = G @%W% +U(, w)) , (4.42)
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surge das contribuigoes exclusivas dos campos escalares ¢ e ¢. No caso de um potencial
trivial U = 0, as solugoes tipo-Godel, no vacuo, das equagoes de campo (adicionadas por
uma constante cosmolégica) reduzem-se a uma forma semelhante aquelas encontradas em
[56], a menos que, aqui, § seja a métrica dindmica. Ao resolver as equagoes de campo, os
autores de [56] encontraram as seguintes solugoes para os campos escalares: ¢ = b(z — 2)
e = s(z — z), onde zy é uma constante real arbitraria. Portanto, formalmente, o caso
correspondente ao potencial trivial, U = 0, apenas se reduz aos encontrados para CSMG
[55, 56, 318], como esperado.

Obtidas as equagoes de campo, nossa intengao é principalmente investigar as
possiveis solugoes para esta teoria. Para isso, na préxima se¢do, nos concentraremos em
dois tipos diferentes de fundos, a saber, métricas estaticas esfericamente simétricas e do
tipo-Godel. Para a primeira métrica, as solugoes sdo triviais, pois levam a *RR = 0 e
CN'W = 0, enquanto, para a tltima, a solucdo nio é trivial, pois resulta em *RR = 0 e

Ch # 0.

4.2 Perturbac3o do espaco-tempo de Schwarzschild

Como dito nas sec¢Oes anteriores, a métrica de Schwarzschild resolve as equagoes de
movimento da gravidade de Chern-Pontryagin trivialmente, queremos dizer que para tal
métrica *RR = 0, o que leva ao desaparecimento do C-tensor, assim sendo, é natural consi-
derarmos suas perturbagoes. Discutiremos aqui perturbagoes da métrica de Schwarzschild
dentro do modelo generalizado de Chern-Pontryagin, adotando primeiramente o protdtipo
j4 apresentado nas secoes anteriores, ou seja, fr(R,"RR) = R+ B(*RR)?, onde 3 é uma

constante de acoplamento.

Concentraremos em uma perturbacao particular do espago-tempo de Schwarzschild
que descreve solugoes de rotagao lenta, portanto consideraremos a métrica perturbada

dada por

1
ds* = — (1 — W) dt* + (1 - W) dr® +1r? [d92 + sin® 0(d¢p — w(r, Q)dt)ﬂ o (4.43)

r r

onde M é a massa de qualquer distribuicao de massa esfericamente simétrica e a funcao
w(r,0) é de primeira ordem em ¢ ~ J/M?, aqui J é o momento angular. Neste esquema,
de perturbacao, € é considerado um parametro pequeno. A seguir, consideramos equagoes
até a primeira ordem em €. Nesta situacao, o termo de Chern-Pontryagin para a métrica

(4.43) até a primeira ordem em e é diferente de zero

. 24Me (0w Pw
RR = = <28r cos 0 — 500, S 9) . (4.44)
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Convém salientar, muitos dos resultados fornecidos neste capitulo foram obtidos

através de calculos executados no ambiente do software Wolfram Mathematica Versao

13.3.1.0 e do software GRTensorlI?

Agora, vamos resolver as equagoes de campo (4.8) para o elemento de linha (4.43).
Quando considerado até a primeira ordem em €, a tinica componente do C-tensor que nao

desaparece é a componente (¢, ¢). Logo, a inica equacao de campo resultante serd
G — T3] =0, (4.45)
cuja forma explicita é

L 2M
fl + <7”f2 + G/i? (4f3 — Tf4)) (1 — ) = O, (446)
T

r

onde as fungoes f; = f;(r, §) acima mencionadas sao definidas da seguinte forma

9w Oow
f; = wsm@—l—Bae cos 0;
0w ow\ .
f2 <82T+487”>S1n9’
fs = 78%} — 28—w sinf + 3 Ow cosb; e
s\ oezor  “or d00r
0w 0w PBw
fy = (89287“2 — 207“ ) Sm9+3898r2 cos b,

e as constantes sao a = 1152 e L = BM?, que esté relacionado a massa do buraco negro e
a constante de acoplamento que acompanha o termo de derivada superior na acao. Agora,
resolveremos a equagao de campo acima (4.46) usando o método de separagao de varidveis.
Portanto, vamos assumir w(r, ) = R(r)©(6). Ao fazer isso, obtém-se um conjunto de duas
equagoes diferenciais ordindrias, a saber,

R'=CR+ (4R +7) (r + ‘:f(o - 2)) (1 - 254”) (4.48)

0" =CO — 30 cot b, (4.49)

onde o primo representa a derivada em relagdo aos seus correspondentes argumentos, e

C é a constante de separacao. Portanto, chegaremos a seguinte solucao para a equacao
angular (4.49)

—4 — —4C 1
0(0) =A.F, <3+\/i C 3 \/_Z 072,60829>+
4.50
54+v9—-4C 5—+/9—-4C 3 ( )
B Fy 1 , 1 5 cos? 6 | cos#,

2 GRTensorll, Version 1.79 (R4), 6 February 2001, Developed by Peter Musgrave, Denis Poll-
ney and Kayll Lake, Copyright 1994-2001 by the authors. Latest version available from:
http://grtensor.phy.queensu.ca/ - (C:/Grtii(6)/Metrics).
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onde A, B sao constantes arbitrarias e oF7 é a fungao hipergeométrica. A equacao radial
(4.48) é uma equacao diferencial ndo linear, cuja solugao analitica, no caso geral, ndo pode
ser encontrada. Porém, se considerarmos o caso particular onde a constante de separacao
C' = 0 nas equagoes (4.48, 4.49), conseguimos encontrar uma solu¢do analitica. Nesta

situagao, as solugoes angular e radial reduzem-se a

-4
O(0) = C3 + Cy h(0), (4.52)
cos 1 — cos®

onde Cy sdo constantes arbitrarias e h(0) = . Para melhor esclarecer

92, n .
sin”® 0 sin 6
esta solugdo, para as equagoes (4.51) e (4.52), faremos as seguintes escolhas, a saber:
Ci=0,C,=J,C3=1eCy = L. O parametro L caracteriza o desvio do nosso modelo em
relagdo a RG. Sendo ele um valor pequeno, suprimido por uma escala tipica de alta energia.
Consequentemente, podemos expandir (4.51) até a primeira ordem em L, e, portanto,
encontrar os efeitos do termo aditivo nao-Hilbert em nossa agao. Este procedimento levara

a seguinte solucao aproximada:
J h(0) a
0)=—|1 — L
w(r,9) r3 [ + <Sin2¢9 117‘8>

4.2.1 Efeito Lense-Thirring do Modelo f; = R + B(*RR)?

+ O(L?). (4.53)

Em 1913, numa carta enderecada ao filésofo Ernst Mach, Einstein utilizou, pela
primeira vez, o termo “dragging” em referéncia ao fendmeno de arrasto do plano de
oscilagoes do péndulo de Foucault devido a forga de Coriolis [319]. Mas, s6é em 1965 o
termo “frame-dragging” apareceu pela primeira vez, quando Cohen consignou o arrasto
de referenciais para descrever a velocidade angular dos referenciais inerciais dentro de
uma casca esférica [320]. No entanto, muito tempo antes, em 1918, os fisicos austriacos
Joseph Lense (1890-1985) e Hans Thirring (1888-1976), descobriram que as distribui¢oes
estacionarias nao estaticas de massa-energia altera o espago-tempo. Em consequéncia,
os corpos nas proximidades desta massa-energia sao arrastados, alterando ligeiramente
suas Orbitas em comparagao com a previsao oriunda da gravidade Newtoniana. Assim,
Lense e Thirring previram o efeito de arrasto de referenciais (ou efeito Lense-Thirring),
posteriormente confirmado através das observacoes de sistemas estelares e de experimentos,
como, por exemplo, da precessao das érbitas de satélites ao redor da Terra, solidificando a
teoria de Einstein. Medigao obtida em 2002 com os satélites LAGEOS, ao longo de quase
8 anos de dados, confirmaram o efeito Lense-Thirring com valor experimental dentro da
margem dos 20% do que é previsto pela RG [321]. Experimento do satélite Gravity Probe
B (GP-B) mediu a precessao dos giroscépios, com alta precisdo do efeito Lense-Thirring,
causado pela rotagao da Terra [322]. Trabalho sobre a relagao entre o principio de Mach e

o efeito de arrasto no espago-tempo de Kerr e de Godel foi feito em [323].
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(b)

Figura 2 — Representacao esquemadtica das linhas geodésicas: (a) Sem o efeito de arrasto
de referenciais; (b) Com o efeito de arrasto de referenciais. Crédito da figura:
Frame Dragging and Geodetic Effect Derived: Two More Tests of GR. Springer
International Publishing, 2020. Manoukian, E. B.

Na figura-2 esté representado as linhas do campo gravitacional (a) sem o efeito
Lense-Thirring e (b) com o efeito Lense-Thirring previsto pela RG, onde vemos linhas de
campo gravitacional distorcidas pelo efeito de arrasto, provocado por um objeto massivo
em rotagao, ao centro, que distorce e arrasta o espaco-tempo ao seu redor [324]. O
coeficiente de arrasto é definido como a razao entre a velocidade angular de uma massa
em rotagao e a velocidade angular do referencial sob efeito da for¢a de Coriolis [325]. O
principio subjacente das forcas de Coriolis é o efeito de arrasto de referenciais, que surgem
perto de um corpo em rotacao, num referencial fixo as estrelas distantes. A precessao de
giroscopios ¢ um evento descrito pelo efeito de arrasto de um sistema de eixos submetidos
ao transporte de Fermi-Walker, realizado fisicamente pelos vetores de spin de um conjunto
de giroscopios orientadores [326]. Portanto, sendo todos esses efeitos atribuidos a acao
de um campo de Coriolis ou de um campo gravitomagnético, gerado pelo movimento de
uma fonte massiva [327]. Logo, as previsoes relativas aos efeitos de arrasto de referencial
gravitomagnético ocorrem entre o campo magnético e o campo relativistico de Coriolis,
mais conhecidas em aproximacoes de campo fraco, mas com versoes exatas mantidas em
campos arbitrariamente fortes [328]. O arrasto de referenciais provocado pela rotacao de
um corpo imerso num fluido foi inicialmente proposto em [329], como modelo de estudo

de outros efeitos de arrasto de referenciais [330].

Na andlise da equagao (4.53), percebe-se que o termo entre parénteses é o resultado

decorrente do termo em primeira ordem de 3(*RR)?, contido na acdo do nosso modelo. O

primeiro termo, é a contribuicao do efeito de arrasto de referenciais (frame-dragging)

30
vindo da RG. Observe que o segundo termo entre parénteses em (4.53) é proporcional

1 Consequentemente, este termo é insignificante para valores grandes de r. Neste

ar”
caso, no limite assintético para r > 1, recupera-se RG, como esperado, mais o termo

proporcional a fungdo h(#), que surge da corre¢do em primeira ordem do pardmetro
L = BM?2.
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4.3 Esquema Perturbativo para Métricas Tipo-Godel ST-Homogéneas

4.3.1 Modelo f; = R+ S(*RR)?

Nesta segao, dentro do modelo f;(R,*RR) = R + B(*RR)?, examinaremos a possi-
bilidade da quebra da homogeneidade espaco-temporal para as métricas do tipo-Godel?,
apresentadas na Sec¢ao-2.2.3. Para tanto, introduziremos uma abordagem perturbativa,
que sera discutida em detalhes. Neste processo, substituiremos diretamente as métricas
perturbadas nas equagoes de campo, com o fim de encontrarmos as solugoes completas até a
primeira ordem no parametro da perturbacao £. Seguiremos o mesmo esquema empregado
em [331], onde perturbacoes de métricas do tipo-Godel foram consideradas dentro da
gravidade modificada de Chern-Simons nao-dinamica. Esta abordagem perturbativa tem a
caracteristica de aplicar fungoes perturbadas estacionarias e, como consequéncia, funcoes
que dependem apenas das coordenadas (r, 6, z). Observa-se que a dependéncia explicita
em 6 e z sinaliza a possibilidade de quebra de invaridncia de ambas as translacoes, ao
longo da dire¢ao z e simetria axial. Como resultado, as métricas do tipo-Godel perturba-
das nao mais possuem homogeneidade espaco-temporal. Neste procedimento, para uma
assinatura +2, fixaremos as métricas de fundo do tipo Godel a serem denotadas por gff)y),
cujo elemento de linha é dado por (2.21), enquanto as corregbes métricas de primeira

ordem sao representadas por & gl(}y)

com seu elemento de linha até a primeira ordem em &

ds? = — {[1 + Eho(r, 0, 2)] dt + [1 + Ehy(r, 0, 2)] H(r)dO}® + [1 + Eho(r, 0, 2)] D(r)*d6>

+ [1+ Ehs(r, 0, 2)] dr? + [1 + Ehy(r, 0, 2)] d2?,
(4.55)
onde hy(r, 0, z) representam as fun¢oes métricas perturbadas gﬁ(i,) Como pode ser visto na
métrica perturbada (4.55), estamos restringindo nossa andlise a perturbac¢oes métricas para

as quais g/(}l,) = (0 para todos os componentes fora da diagonal nesta base de coordenadas,

exceto para gg). Isso reflete a estrutura da métrica de fundo gl(PV), cujos unicos componentes

diferentes de zero sao g,fg) e os outros gfg) com p = v. O termo de Chern-Pontryagin para

a métrica perturbada (4.55) até primeira ordem em £ é dado por

0 0 0
*RR = 4&(m? — 4w?) Zw%ho(r, 6,z)+ nghl(r, 6,z)+ W&hg(?”, 0,2)
0 H(r) 0* H(r) 0?
— L ha(r, 0 0,2) — -
Yoz 3(r.0,2) + D(r) 0z 0r 1(r6,2) D(r) 0z 0r
Como dito na Secao-2.2.3, as métricas do tipo-Godel se referem as métricas do tipo-Godel homogéneas

no espago-tempo. Como descritas naquela segao, elas sdo uma generalizacdo da métrica de Godel, que
permitem a existéncia de CTCs para certos valores de seus pardmetros.

ho(r,0,2)| . (4.56)

3
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Com uma simples manipulagao, a equacao anterior pode ser definida de forma

mais conveniente, a saber,

H 0? 0
RR = 4&£(m? — 4w?) <DE:§ 5 aTP(T, 0,z)+ OJ%Q(T’ 0, z)> , (4.57)
onde
P(r,0,z) = hy(r,0,z) — ho(r, 0, 2); (4.58)
Q(r,0,z) = 2[ho(r,0,2) + hi(r,0,2)] + ho(r,0,2) — hs(r,0, 2). (4.59)

Agora, resolveremos a equacao de Einstein modificada perturbada de primeira
ordem (4.7) para o modelo particular f;(R,"RR) = R+ S(*RR)?. Para comecar, vamos
considerar a componente-(t, z)

0? 0?

mhl(r,e,Z) — mho(T,@,Z) = O, (460)

o que implica ho(r, 0, z) = hq(r,0, z). Seguindo o mesmo procedimento, a componente-(6, z)

0? 0?
———hgs(r,0 2——hi(r,0,2) =0 4.61
9200 S(Ta ,Z) + 9200 1(’/", >Z) ) ( )
leva a equagao de restrigdo hs(r,0,z) = —2hy(r,0,z). Impondo esta tdltima restrigdo,

encontramos a seguinte componente-(t, ) das equagoes de Einstein modificadas, ou seja,

(8 ﬁhl(r,ﬁ,z) — 8h2(r,9,z)> +

00 ol
. . o 93 (4.62)
16(4W —m ) (6 mhl(T,@,Z) - mhg(r,e, Z)) =0.
Exigindo m? # 4w?, descobrimos que a tinica solucao é a trivial,
hi(r,0,z) = ha(r, 0, 2) = hs(r,0,2) = 0. (4.63)

Deve-se perceber que as Eqs.(4.60), (4.61) e (4.62) sdo automaticamente satisfeitas
considerando perturbagoes métricas especificas que dependem somente das coordenadas
(r,0) ou (r,z). Contribuindo assim para a existéncia de dois casos particulares. O
primeiro caso, h;(r, 0, z) = h;(r,0), revela a situacao fisica onde as perturbagoes métricas
preservam a simetria axial ao longo da direcao z. Este cenario se evidencia trivial, pois
leva ao desaparecimento do termo de Chern-Pontryagin (4.56), que por sua vez resulta
no desaparecimento do tensor (', assim forcando as equacoes de campo serem reduzidas
as equagoes da RG. Quanto ao segundo caso, teremos h;(r, 0, z) = h;(r, z), que reflete a

situagdo em que as perturbagoes métricas quebram a simetria axial ao longo da direcao z.
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Esta condigao requer uma inspeg¢ao mais cuidadosa das equagoes de campo resultantes.

Em particular, a componente-(r, z) das equagdes modificadas de Einstein é dada por

0 dD(r) 0 dD(r) 0 0
@hg(r, 2) i ahg(r, z) = + 2wH(r)$ho(r, z) — QwH(r)ghl (r,z) +
2 2
+ 2D(r)mho(r, 2) + D(r)th(r, z) =0, (4.64)

que impondo as seguintes relagoes entre as fungoes métricas perturbadas,
1 1
ho(r,z) = hy(r, z) = —§h2(7’, z) = —ihg(’f’, ), (4.65)
uma solucao particular é encontrada para a componente-zz
2hy (r, z)(m? — 3w?) = 0, (4.66)

sendo esta uma equagao algébrica cuja unica solugdo nao trivial é hi(r,z) = 0. Assim,
conclui-se que o modelo particular generalizado de Pontryagin f;(R,*RR) = R + B(*RR)?
nao suporta perturbacoes de primeira ordem para as métricas tipo-Godel. Em contraste, a
gravidade modificada de Chern-Simons exibe contribui¢ées em primeira ordem nao triviais,
conforme demonstrado em [331]. Neste artigo, a teoria perturbada permitiu quebrar a
simetria axial e a invariancia translacional ao longo da dire¢ao z, nas métricas tipo-Godel.
Foi permitida também a perturbacao em primeira ordem para o campo pseudoescalar de
CS, ¢ = ¢(r,0, z), embora a restricio de Pontryagin produziu relagoes nao triviais entre
as fungdes métricas perturbadas h;(r, 0, z), que ndo envolveram as perturbagoes para o

campo o.

4.3.2 Modelo f;; = R+ aR?+ B('RR)?

Outro exemplo importante a considerar ¢ uma generalizacdo do modelo Starobinsky,
que corresponde a tomarmos fr7(R,"RR) = R+ aR? + B(*RR)?. Nesta situacio procedere-
mos de forma semelhante ao caso anterior para resolver as equagoes de campo. No entanto,
devido a presenca de termos de derivadas de ordem superior, as equagoes de campo sao de
dificeis resolugoes. Por consequéncia disto, iremos impor uma simplificacdo. Em particular,
consideraremos apenas fungdes métricas perturbadas que nao dependem explicitamente da
coordenada 6, ou seja, h;(r,0,z) = h;(r, z). Lembrando que a escolha h;(r,0,z) = h;(r,0)
nao é bem motivada, porque as corre¢oes de Chern-Pontryagin desaparecem, conforme
explicado anteriormente. Para comegar, consideraremos a componente-(r, z) das equagoes

de campo
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—2D(r)ha(r", 2"y — AD(r)ho(r", 2') — 4ho(r", 2" YD (r") — 4ho(r', 2" YD (r")

— 4ho(r", 2")D(r") = 2D(r)ha(r', 2") 4 2hs(r', 2" YD (r") 4+ 2hs(r", 2")D(r")

—AD()ho(r, 27) — 2D( s, ") — ha(r, Z)D(") + 4D ha(r”, ) (n(D(r)?
—4wH (r)hi(r', 2) In D(r') + 8w*D(r)hy (v, 2') — dwH (r'Yho(r', 2") — 2m*hy(r, 2') D (1)
— 4w H (r)hy(r, 2') + 2802 D(r)ho (1!, 2') — 2w?hs(r, 2 )D(r") + 4w H (r)ho(r, 2')

— 4wH (r)ho(r", 2') 4+ 2m>hs(r, /) D(r") — 14m>*D(r)hy(r', 2') 4 2w?hy(r, 2/) D(r")
+4wH (r)ho(r', 2" ) In D(r") — dwm?H (r)ho(r, 2') + 4wm?H (r)hy(r, 2')

—2h3(r", 2 Y(In D(r"))2D(r) 4 4ho(r’, 2')(In D(r"))2D(r) 4+ 10w*D(r)ho(r', 2')

— 8D(r)ym?hs(r’, 2') + 8w’ D(r)hs(r', 2') + 4wH (r"hy (v, 2') — 28m>D(r)ho(1”, 2')

+4wH (r)h (X", 2" o+ wH (r)h (1, 2') + ;hg(T, 2\D(r') — ;hg(r, 2\D(r")
— ho(r',2")D(r) — wH(r)ho(r, 2') — ;h2(r’, 2)D(r) = 0. (4.67)

Para fins de simplificar a notacao da extensa equagao (4.67), foi utilizado na
equacao acima a representacao compacta para as expressoes das derivadas parciais

f(xy...,Tm)

f(oh, ... 2 )= — .
(z1, Tm) dxy...00x,,

rYm

, (4.68)

onde f representa as fungoes métricas perturbadas h;(r, z), e as fungoes arbitrarias das
métricas tipo-Godel H(r) e D(r),en = (i +--- + j) é a soma das ordens das derivadas
parciais que é retratada pela quantidade dos simbolos prime ("). Observe que (4.67) é uma
equagao diferencial parcial (EDP) contendo termos de derivadas de ordem superior. A

relagdo particular entre as fungoes métricas perturbadas, que resolve a Eq.(4.67), sao

ho(r,z) = hi(r,z) = F(r) + G(z2);

(4.69)
ho(r, z) = hs(r, z) = —2h4(r, 2).

Embora tenhamos obtido uma solu¢ao simples para a componente-(r, z), esta
solucdo nao satisfaz as outras componentes das equacgdes de campo. Na verdade, a
conclusao mais natural é que as equagodes de campo apresentam um conjunto altamente

restritivo de EDPs, cuja tnica solucao possivel ¢é a trivial, ou seja,
ho(r,z) = hyi(r, z) = ha(r, 2) = hs(r,z) = 0. (4.70)
Portanto, conclui-se que ao impor a quebra de simetria axial ao longo da diregao z,

o modelo f77(R,*RR) = R + aR?* + B(*RR)? nao suporta perturbagoes de primeira ordem

das métricas tipo-Godel.



63

5 Teoria de Campo Espinorial Nao-Local no

Espaco de Minkowski

5.1 Modelo de Campo Spin-1/2 N&o-Local Livre

Neste capitulo, apresentaremos a constru¢ao de um novo e consistente modelo de
campo de espinor de Dirac nao-local, livre e com interagao. Na teoria, a implantagao da
nao localidade no setor fermionico é concebida por meio de fatores de forma definidos
como funcoes do operador Dirac @, em vez de fatores de forma gerados por funcoes do
operador d’Alembertiano [J, como normalmente ocorre nas demais teorias nao-locais de
spin-1/2 discutidas na literatura. Destaca-se, as teorias de espinores nao-locais nao sao
bem exploradas, por serem poucas as tentativas de construcoes modificadas do Lagrangiano
nao-local do campo de Dirac, expostas na literatura. Em particular, o autor de [332]
propos uma teoria da QED e eletrofraca, na qual foram consideradas extensoes nao-locais
no setor fermionico. E, extensoes nao-locais das teorias de gauge finitas (nao)abelianas,
em [333]. Nesses dois trabalhos, os autores consideraram o fator de forma como sendo
uma funcao do operador de d’Alembert, que parece nao ser adequado para descrever uma
teoria de campo de spin-1/2 nao-local, uma vez que o Lagrangiano de Dirac depende
apenas das derivadas de primeira ordem, através do operador de Dirac. Logo, o processo
mais natural para se construir uma teoria de campo de spin-1/2 nao-local deveria estar
fundamentada no operador de Dirac ao invés do operador de d’Alembert. A vista disso,
para fundamentar os conceitos da nova teoria que serd apresentada, se faz necessario
apresentarmos a abordagem nao-local aplicada as teorias construidas com Lagrangianos

elaborados com fatores de forma compostos por funcao do operador d’Alembertiano.

5.1.1 Fator de Forma do Operador d'Alembertiano F'(0J)

Como discutido anteriormente na Se¢ao-3.4, as teorias locais tém seus Lagrangianos
construidos em termos de polindmios de campos e de suas derivadas, L = L($,0¢ ..., 0"¢),
que descrevem observaveis de baixas energias, onde n é um nimero inteiro positivo e
finito. Em contrapartida, as teorias nao-locais, como, por exemplo, TQC nao-comutativa,
teorias de cordas e as teorias de campos conforme, contém em si a abordagem de multiplos
campos avaliados em diferentes pontos de espaco-tempo. Neste caso, o Lagrangiano é
construido com operadores nao polinomiais F'(J), contendo em si derivadas covariantes
de ordem infinita, £ = L(¢,0¢,...,0"¢, F(O)¢). Destarte, o conceito da nao localidade
pode ser implementado na dindmica das teorias de campos, ao nivel da agao classica,

visando resolver dificuldades fundamentais da gravitacao de Einstein [334]. Na verdade, é
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notério que uma apropriada extensao nao-local da gravitacao de Einstein permite resolver
os problemas da nao renormalizagao e dos indesejaveis estados de excitagao fantasmagoérica.
Isto se deve ao 6timo comportamento assintotico UV dos correspondentes propagadores, os
seus especificos desempenhos com respeito a variavel de momento [335]. De maneira geral,
isto é realizado mediante a substituicao, no Lagrangiano, do operador d’Alembertiano []
por uma funcao analitica transcendental deste operador de d’Alembert, F([J), batizada
de fator de forma. A representagao mais simples de F((J) é dada pela fungao exponencial
do tipo /™ com f(O) também sendo uma funcio inteira analitica. Formalmente, pelo
teorema da fatoragao de Weierstrass (ver demonstragdo no Apéndice-B.3), uma fungao
inteira pode ser expressa como uma série de poténcias de seu argumento. Em particular,

temos -
F(O) = /O = > ¢ Or, (5.1)
n=0

onde ¢, sdo os coeficientes adimensionais da série de poténcias, satisfazendo a condicao de
co = 1, e sendo definido (Jy = [0/A?%. Aqui, introduzimos A, que representa uma escala
tipica de alta energia, como a escala de Planck, na qual os efeitos nao-locais se tornam
relevantes. Tal escala, também, torna f([J,) uma fungao adimensional. A medida que nos
aproximemos da escala A, queremos dizer O(CJ/A?) — 1, entdo o regime UV é alcangado.
Por outro lado, o regime IR é alcancado quando A — oo e/ou quando integrando em

pequenos momentos, k — 0. Deste modo, a acao nao-local passa a ser

S:/d4x1

onde ¢(z1) é o campo escalar dependente das coordenadas em x;. Variando a agao (5.2)

SO F(O)6(en) — V(o(r)] 52

com respeito ao campo, §S/d¢(z1) = 0, obteremos a equagao de movimento

av

~0. (5.3)

A propriedade da nao localidade no termo cinético da agao (5.2) fica notdria

quando fizermos a seguinte manipulagio
F(@)6(@1) = [ d'k F(=k)3" (" = V") (1)
_ / 'k / A0~ K (1) 0@ (K — iV*) ¢(a1)
— / 'z KK (22)e™ Y o) (5.4)
- / A2 K (22) (21 + )

- /d4x2K(SL’2 — 71)9(72).

Na manipulagao acima utilizamos a transformada de Fourier F/(—k?) de K (z1 —x2).

Na ultima passagem aplicou-se a mudanga de variavel. Para o resultado final encontrado
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em (5.4) também utilizamos a defini¢do da funcao delta de Dirac

d*k ik-(z1—x2)

59 (21 — p) = / 5 . (5.5)

A Eq.5.4 revela que, em geral, qualquer funcao transcendental dos campos pode ser
representada por integrais de kernel de operadores diferenciais. Para o caso de F/((J) = 7,
os efeitos nao locais de longo alcance sao contabilizados, podendo ser eles descritos em

termos da fungao de Green

02y = / A4y G(a1, 72)0(2). (5.6)

Quando multiplicado pelo campo ¢(x7), teremos o resultado para o primeiro termo
da agado (5.2)
O FO)olwr) = [ d'za d(an) K (w3 — 1)) (5.7)

A Eq.(5.7) relaciona dois campos escalares avaliados em dois pontos diferentes do
espago-tempo através do kernel de deslocalizacao K(xy — x1). A representacao integral
do fator de forma é valida para as teorias locais de altas derivadas. Nesta circunstancia,
o fator de forma é um polindmio finito e seus expoentes sao nimeros inteiros positivos
[336]. Estranhamente, nota-se que qualquer termo cinético (5.7) pode ser formalmente
considerado como uma interagao nao-local. Mas ele é somente obtido em situacoes muito

especiais, sendo uma fungao do operador d’Alembertiano

K(xy — 1) = F(O)6W (xy — 21), (5.8)
e como caso particular para V =0 em (5.2), F(O) determina a relagdo de dispersao para
a teoria de campo escalar nao massivo, F(—k?) = —k? = 0, cujo kernel é
1 4y, —ikay 2 4
K(0) = G /d ke~ f(—k2) = F(O,,)0@ (21). (5.9)

Observa-se que a unitariedade da teoria é garantida pelo fato do fator de forma
ser uma funcao completa do operador d’Alembertiano, evitando assim o surgimento dos
conhecidos e inapropriados estados ditos fantasmas. Em vista disso, o propagador nao
inclui nenhum grau de liberdade adicional na teoria quando comparado com a teoria
padrao/local. Aplicando o teorema de fatoragao da Weierstrass em (5.8), o fator de forma

produzird a seguinte expressao

F(O) =e /O ﬁ(m —m?), (5.10)

i=1
e por meio da transformada de Fourier, é possivel mostrar que os ghosts aparecem quando

n>1. Paran=1e f(O) =0/A?

F(O) = e P20 = m?), (5.11)
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o inverso de F'(0J) é o propagador nu, sendo ele, no espago dos momentos, dado por

€—k2/A2
G=——F1—. 5.12
k% 4+ m? (5.12)
Como esperado, na expressao (5.12) existe apenas um polo real em k? = —m?, sem

a introducdo de modos adicionais no espectro da teoria. Além disso, o comportamento
UV da teoria pode ser melhorado escolhendo uma bem motivada fun¢ao inteira f(OJ),
sem introduzir graus de liberdade adicionais. Contudo, é importante notar que este
requisito por si s6 nao é suficiente para garantir a renormalizabilidade da teoria, conforme
indicado na abordagem de supercampo, considerando a generaliza¢ao do modelo Wess-
Zumino em sua versao nao-local [298]. Pois, para obten¢ao de uma teoria unitéria deve-se
aplicar de maneira apropriada o fator de forma nao-local, que é escolhido de acordo com
o interesse proposto pelo modelo em questao, podendo ser ele classificado como sendo
fraco, forte e muito forte. No primeiro caso a nao localidade é classificada como fraca
quando o termo cinético (5.7) é uma fungao analitica do operador d’Alembertiano, entao
o fator de forma F([J) admite expansao regular em série de Taylor em torno do ponto
0 = 2z = 0, no regime IR. Dentro desta classe de fatores de forma fracamente nao-locais,
podemos distinguir aqueles que sdo exponenciais em poténcias de [, aqueles que sao
assintoticamente polinomiais no regime UV [337], e também os que sdo compostos por
poténcias fraciondrias de O [338]. A gravidade quéntica nao-local é caracterizado por nao
localidade fraca e fatores de forma assintoticamentes polinomiais, embora pode-se formular

a gravidade quantica também com operadores em poténcias fracionérias [339].

Todavia, o regime forte da nao localidade é obtido quando o fator de forma ¢ do
tipo 0™ (n =1,2,3...) singular em z = [0 = 0. No caso da nao localidade ser classificada
como sendo muito forte, o termo cinético (5.7) é composto pelo kernel nao convertivel para
um operador derivativo F'(OJ), ou seja, F'([J) pode ser escrito formalmente, pois devido
aos problemas de divergéncias da inversa da transformada de Fourier, F'({J) ndo existe.
Em geral, pode-se definir um operador nao-local de duas maneiras ou representacoes
diferentes: a representagao integral ou representacao em série [340]. Os fatores de forma
fracamente nao-locais admitem ambas as representacgoes, embora possam dar resultados
muito diferentes quando aplicados a certas fungdes sementes. Como exemplo, o operador
nao-local na representacdo em série de e” ndo converge, enquanto na representacdo integral

dé-se uma resposta finita, no modelo cosmolégico apresentado em [341].

Para o proposito de tornar a teoria quantica da gravidade renormalizavel, foram
apresentados os fatores de forma de Kuzmin e Tomboulis, assintoticamente polinomiais.

E, também, os fatores de forma de Wataghin e Krasnikov [342], genericamente expressos

POy ="_""", (5.13)
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com f,(00) = —J/A? para Wataghin, e f;(0J) = [J?/A* para Krasnikov. O fator de forma
(5.13) nao introduz novos polos, logo, teremos apenas a existéncia do polo advindo do
termo de Einstein-Hilbert (5.12). Ele permite nao localidade fraca, pois (07! é absorvido
pelo termo no numerador de ordem [J. Outros modelos foram criados com mecanismo
de eliminacao das singularidades classicas, incluindo em r = 0, para uma fonte pontual
de Schwarzschild, recuperando a RG quando avaliados para ordem zero desses termos
nao-locais [343]. Nestes modelos, os efeitos da nao localidade passam a ser relevantes para
r < 2/M, e quando o raio cresce, a solugao se aproxima da solu¢do de Schwarzschild. Sua

acao nao-local é

. ef=0) 1
5_22/d$\/ (R G R), (5.14)

com suas respectivas equagoes de campo

G + O(R?) = k2D TM) (5.15)

(U2

onde T’ ,EZL) é o tensor energia-momento. Neste cenario, foi analisado perturbativamente uma
extensao da gravidade de Stelle, envolvendo um nimero infinito de termos de derivadas,
mas sem sofrer o problema da unitariedade devido a presenca dos estados de norma
negativa (fantasmas) na teoria [344]. Por extensao, investigou-se uma teoria da gravidade
(super)renormalizavel e livre de fantasmas, sob um ansatz do fator de forma exponencial,
oferecendo uma justificativa tedrica da origem inflacionaria para um modelo cosmolégico de
Starobinsky [345]. Um modelo de universo acelerado, sem envolver qualquer contribui¢ao
da energia escura, com integral de kernel do inverso do operador d’Alembertiano (17!, foi
considerada em [346]. A seguir apresentaremos uma nova teoria nao-local aplicada aos
campos de espinores no espago-tempo de Minkowski, construida com fatores de forma

definidos como fungoes exponencias do operador de Dirac, ndo de d’Alembert.

5.1.2 Fator de Forma do Operador de Dirac F'(v*0,,)

Como referenciado no inicio deste capitulo, a formulagdo de uma original teoria de
campo de spin de Dirac nao-local, que serd aqui apresentada, tem a interessante proposta
fundamentada na adocao de fatores de forma fabricados por meio de funcao do operador
de Dirac. Convém ressaltar, a presente proposicao se confirma ser mais coerente que as
teorias espinoriais construidas através de fatores de forma do operador de d’Alembert, em
razao do Lagrangiano de Dirac conter apenas termos de derivadas de primeira ordem. Com
este conceito em maos, exibiremos a recém-criada teoria de campo espinorial nao-local,
que sera desenvolvida a partir da modificacdo do Lagrangiano da teoria, por meio da
substituicio do operador de Dirac @ pelo termo @F(@). Dessa maneira, a funcio inteira
do operador de Dirac F(@) é o agente responsavel pela implementacdo da propriedade da

nao localidade no Lagrangiano. Sabendo que a definicao do operador de Dirac é @ = YOy,
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onde v* sao as matrizes gama, que na representagdo padrao de Dirac sera

. (0 (o
7= , 7= : (5.16)

Qy

com ¢ = (04,0,,0,), onde 0; sao as matrizes de Pauli, bidimensionais, de trago nulo,
complexas e hermitiana, que surgem na formulacao da equacao de Pauli, quando considera
a interacao do spin de uma particula com um campo eletromagnético externo. Sendo elas

explicitamente dadas por

Op = , Oy = , 0, = . (5.17)

Através da relagao de anticomutagao padrao, {v*,7"} = 277“”f 4, definida da algebra
de Clifford! sobre um espaco pseudo-ortogonal quadridimensional com assinatura métrica
—2, alcancaremos facilmente a forma quadratica do operador de Dirac, expressa em termos
do operador d’Alembertiano, (?2 = /. Desta maneira, agora podemos iniciar o processo
da construgao de um genérico modelo de Lagrangiano livre de spin-1/2 nao-local, no espago

de Minkowski, para h = ¢ = 1, dado por
1= 1=/
L, = 2@(@1?(@) ) w = 019 F@)+m) v, (5.18)

onde F(@) é o fator de forma definido como uma funcio inteira do operador Dirac .
Variando a Eq.(5.18) em relagao a U e ¥, obtém-se as respectivas equacoes nio-locais de

Dirac

(zaF(a) _ m)lll —0 e \Il(z’@F(ﬂ) 4 m) 0. (5.19)

As equagdes (5.19) estao inter-relacionadas, sendo a tltima equagao o conjugado
hermitiano da primeira. Adotaremos o mesmo procedimento do caso padrao local de

“elevar ao quadrado” a primeira equagao em (5.19). Assim, obteremos a equagao nao-local

(&921?2(&) + m2> v =0. (5.20)

Esta equagdo (5.20) tem aparéncia da conhecida equagdo usual/local de Klein-
Gordon?, uma versao relativista da equacao de Schrodinger que descreve particulas sem

spin. A depender do fator de forma escolhido, a equagao (5.20) ndo pode ser considerada

L A 4lgebra de Clifford representa um enorme avanco no desenvolvimento da teoria quintica. Esta

algebra especifica empregada na equagao de Dirac é conhecida hoje como algebra de Dirac.

A equagao usual de Klein-Gordon nao corresponde a uma densidade de probabilidade positivamente
definida, e, além disso, é de segunda ordem na derivada temporal, o que impede uma interpretacao
fisica simples. Ela descreve uma particula pontual que se propaga nos dois sentidos temporais e possui
uma interpretacdo na teoria de antiparticulas desenvolvida por Feynman e Stueckelberg.

2
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como uma equacao de Klein-Gordon nao-local. Pois, cada componente do espinor de Dirac
nao satisfaz uma equacao de Klein-Gordon nao-local, como ocorre no caso local. Isso
ocorre devido a presenca de um termo adicional proporcional ao operador de Dirac livre,
como serd mostrado no final desta se¢ao. O correspondente propagador deste modelo
(5.20), sera
i i(pF(p) + m)
(V(=p)¥(p)) = = = f)~2 y > (5.21)
PEG) —m  pE2(p)—m
onde F(p) é a transformada de Fourier de F(@#). Como ja dito na Secdo-5.1.1, F(p) é

uma funcao inteira, que evita a presenca de polos adicionais no propagador, isto ¢, uma

funcao analitica em todo o plano complexo, por isso pode ser ela expandida como uma
série de poténcias de seu argumento (ver demonstragdo no Apéndice-B.3). E digno de ser
destacado, dessemelhantemente do caso usual, aqui no modelo proposto o fator de forma é
uma matriz. E, em nosso caso particular, sera:

[e.9]

F(@) =" cadly, (5.22)

n=0

onde @, = n é adimensional, ¢, sdo os coeficientes (adimensionais) da série de poténcias,
satisfazendo a condicao ¢y = 1, e A é a escala tipica de altas energias, como a escala de
Planck. Agora é importante investigar o espectro do quadrado do operador local de Dirac.
Para isso, definiremos A? como sendo o autovalor do operador [J, ou seja, @2\11 =00 = \20.
Entao, multiplicando sucessivamente o lado esquerdo desta ultima equacao pelo operador
d, teremos @0 = O = \2JU, §'U = N2 = \'PVU. E, apés uma simples manipulacio

algébrica, conclui-se:

P o= A (5.23)
P = AP, (5.24)

onde n € N. Entao, com o uso das equagdes (5.23), (5.24) e expandindo a fungao
exponencial em termos de seno e cosseno, através da férmula de Euler®, encontraremos o
valor para o primeiro termo da equagio “tipo” Klein-Gordon (5.20)

2k 2k

2

2 > A2E L 2 A
(3 F2(a)‘1/ = (I;)Cﬂc/\k] + ];)Cgk_HAQk_H@)‘I/, (525)

onde o0s ¢;, sdo os coeficientes da série de poténcias de F%(#), com ¢y = 1. Por questdes
praticas em busca de resultados mais concretos, ¢ essencial explicitar o aspecto do fator
de forma. Em particular, consideraremos o seguinte fator de forma do tipo exponencial, a
saber,
_a
Fi(@)=e ». (5.26)

A férmula de Euler oferece uma conexao entre a geometria e a algebra, mostrando como a multiplicacao
complexa pode ser vista como uma rotagdo e um alongamento no plano complexo.

3
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Neste caso, podemos reescrevé-lo em série de poténcias do operador de Dirac, ou

seja, . aZTL . . a2m+1
R0 = 2 5am ~ 2 o 1y A

n=0

(5.27)

Substituindo as Egs.(5.23) e (5.24) na Eq.(5.27). E, quando esta equacdo é aplicada
ao campo espinorial, F;(@)¥, encontraremos
e’} )\2n

= cosh (2)1 — ismh (2)@ (5.28)

e, como consequéncia, FZ(@)V, teremos

fe’e) )\2m+1

~ 1
=
A (2m 4 1)IAZm L

Fl(ﬁ) - &

F2(#) = cosh (2/3)[ — i\sinh (%3) d. (5.29)

Escolhido um outro fator de forma, ligeiramente diferente de (5.26), Fy(d) = e_i%,
para o mesmo procedimento adotado anteriormente, obteremos facilmente o seguinte

resultado

F2(#) = cos (?)I - isin (?)a (5.30)

Assim, para os dois fatores de forma escolhidos, a equacao do tipo Klein-Gordon

nao-local (5.20) pode ser expressa de um uma forma mais compacta, a saber,

(D F2 (@) + m2>\IJ =0, para (i=1,2). (5.31)

E de f4cil verificacio que ao tomarmos o limite A — co na Eq.(5.31), o termo
proporcional ao operador de Dirac desaparece, ou seja, F? = F2 = 1, assim sendo, o
caso local é recuperado. Nota-se o fato de que, apesar da semelhanca com a equacao de
Klein-Gordon usual (local), a Eq.(5.31) ndo é uma equagao de Klein-Gordon nao-local.
Isso acontece devido & presenga do operador de Dirac @ nas equacdes (5.29) e (5.30).
Portanto, cada componente espinor deve cumprir uma equagao mais complexa do que a
equacgao de Klein-Gordon nao-local. Da Eq.(5.22), podemos definir f;(0) e fo(O)

JF(@) = ¢ Z 2, 0°" + Z Com410°"H!
n=0 m=0

0o . g 00 . m+1
— aZ(_l )CZnﬁ_l_ Z(—l +1)62m+1m’ (532)
n=0 m=0
£0) F2(0)

que substituindo (5.32) na primeira equagao de (5.19), teremos

W A(O) —m+i fg(D)} U =0, (5.33)
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onde @f;(0) é um operador matricial ndo-diagonal, que contém somente termos de
derivadas de ordem impar, sendo ele coincidente com termos cinéticos propostos em outras
teorias de campos nao-locais. Em contrapartida, fo(CJ) é um operador matricial diagonal,
que contém sé termos de derivadas de ordem par, sem analogia a outros termos cinéticos

propostos na literatura.

5.1.3 Relacdo de Dispersido da Teoria Livre de Spin-1/2 Nao-Local

A relacdo de dispersao é frequentemente expressa como uma relagdao entre a
energia e o momento de uma onda/particula, ou equivalentemente, entre a frequéncia e
comprimento de onda. Em meios dispersivos, diferentes frequéncias de uma onda podem
viajar em velocidades diferentes, a velocidade do grupo pode diferir da velocidade da fase.
Por exemplo, na dindmica dos fluidos, os diferentes comprimentos de ondas que se propagam
na superficie da agua viajam com diferentes velocidades de fase. Tendo a gravidade e
a tensao superficial como forgas restauradoras, a agua com superficie livre é geralmente
considerada um meio dispersivo [347]. Na TQC, foram questionadas as propriedades das
funcgoes de 2 pontos, do ponto de vista das representacao espectral de Kallén-Lehmann e de
dispersao geral, onde a estrutura analitica das funcgoes de pontos na teoria das perturbagoes
foi analisada através das equagoes de Landau e das regras de Cutkosky [348]. Em outro
cendrio, foi demonstrado a equivaléncia légica da causalidade estrita? e da validade de
uma relagao de dispersao que expressa a parte real de uma amplitude de espalhamento
generalizada como uma integral envolvendo sua parte imaginaria [349]. Por outro lado,
mostrou-se que as relagoes de dispersao por si s6 nao podem garantir causalidade, por
motivo das superposicoes lineares de ondas planas envolverem uma relagao de dispersao
de valor tinico e covariantemente estavel w(k), sempre se propagando fora do cone de luz,
a menos que w(k) = a + bk. Isto implica que nao ha nogao de causalidade para relagoes
de dispersao individuais, uma vez que a condigdo matematica da fungdo w(k) (com as
condigoes de velocidade de grupo assintética) nao podem servir de condigao suficiente

para a propagacao subluminal em meio dispersivo [350].

Nesta secao, analisaremos a relagao de dispersao para o nosso modelo, para tanto,
iniciaremos expondo a solugao de (5.31), sabendo ser ela dada por uma superposigao de

ondas planas,
() = [dipe " b(p), (5.34)

onde ¥(p) é a transformada de Fourier do espinor W(z), e satisfaz a equacio de Dirac

nao-local, no espago dos momentos

<p2ﬁ2(p) + m2> U =0, (5.35)

Relagdo entre um evento causal A e um segundo evento B (o efeito), estabelecido a velocidade da luz
como o limite maximo para a propagacgao de informagao ou matéria.

4
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onde F (p) é a transformada de Fourier dos operadores ndo-locais (5.29) e (5.30). Solugoes
nao triviais da equacao anterior sao obtidas exigindo que o determinante da matriz seja
nulo det S = 0, onde S = p*F? (}/ﬁ) + m2]. Desta maneira, reescreveremos o fator de forma

(5.29) em func@o dos operadores nao-locais @, e as
FX(@) = (ar] + 420), (5.36)
sendo G, e a obtidos de modo direto por comparacao com (5.25) e (5.29)
) o\ 2\ ) o A2k 1 . 2\
a; = ];)CWCW = cosh <A> , € a9 = ’ﬂz:OCQk_i_lW = —X sinh <A> s (537)

sendo estes operadores nao-locais definidos no espaco das coordenadas como fung¢des nao
polinomiais do operador d’Alembertiano, a;(0J) e d»(0), e quando definidos no espago
dos momentos, serdo eles b, = a1(p) e by = d(p). Desse modo, com o intuito de obter a

relacao de dispersao nao-local explicitamente, teremos
det S = det [p2F2(p) + mQIA} = det [(p%l + m2) I+ nggip}

. R ) 2byi
1

R 2Dy
T

27 2\4
:(p b1+m) x det
p2by + m?

onde realizaremos a expansao em séries de poténcias do termo do determinante, pois a sua
solugao analitica é de dificil manipulacao algébrica. E sabendo que apenas as combinagoes

pares das matrizes gama produzem um traco nao trivial, teremos

7 oo n 25 . n
2byi - Dby ip Tr (=D +1|: p-by ip :|
det |/ -+ M = €<Trln |:I+;0251+m2 —e El m p2by+m?
p2b1 + m2

<1n [1_( . ” ) (5.39)

A relacao final em (5.38) implica na relacao de dispersao

p°b1 + m? = £ p°b,. (5.40)

A relacao de dispersao (5.40) é obviamente nao polinomial, uma vez que by e by

sao coeficientes nao-locais definidos no espaco dos momentos. Em vista disso, ndo se pode
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garantir solugdes analiticas para tal relacao, embora existam soluc¢oes para alguns casos
especiais. Por questao de ilustracao, consideraremos os coeficientes nao-locais dados por
(5.37), definidos na representagdo dos momentos. Neste caso, a relagdo de dispersao se

reduz a
lpl
e % =m?, (5.41)
onde E? = [p|> + [p]>. Como esperado da relagio nao-local (5.41), no seu limite A — oo,
recupera-se a relagao de dispersao padrao (local). Além disso, (5.41) é uma equacao
transcendental de Lambert, e apresenta solugoes analiticas dadas por

Ip| =AW, (7:) : (5.42)

onde Wy (z) é o ramo principal da funcao W (z) de Lambert, também chamada de funcao
omega ou logaritmo do produto, que é uma funcao transcendental complexa de multiplos
valores, definida como o inverso de f(z) = ze*, com z € C. Essas fungoes possuem um
ndimero infinito de ramos Wy(z), onde k € Z [351].

Porém, como estamos interessados apenas em solugoes reais, podemos avaliar os
resultados para os dois ramos possiveis, a saber: Wy(z) definido no intervalo z > —e™!
e W_1(z) definido no intervalo 0 > 2z > —e~!. No entanto, restringiremos nossa solucao
ao ramo principal porque o ramo inferior, W_;(z), nao estd bem definido em z = 0.
Portanto, garante que |p| e m? sejam positivos, como deve ser. Na Fig.(3), tracamos o
comportamento da solucao da Eq.(5.42), |p| em fungdo de A, para trés diferentes valores da
massa: m = 1 (linha azul), m = 2 (linha amarela) e m = 3 (linha verde). Vale ressaltar que
a medida que A cresce, |p| se aproxima de m, recuperando o resultado padrao, conforme
esperado. Desta maneira, observa-se que ao expandir a relacao de dispersao (5.42) em

torno de A — oo, produzira

E* = |p* + 2—2Amg+(9(A12>. (5.43)
Esta equacao exibe a correcao de primeira ordem devido aos efeitos nao-locais, que
permanece invariante sob transformacgoes de paridade: E — —E e [p] — —|p], diferente-
mente dos modelos de quebra de simetria de Lorentz cujas relagoes de dispersao quebram
espontaneamente as transformagoes de paridade [352, 353, 354]. um caso interessante
seria considerar os dois termos de massa na Eq.(5.43) como sendo um tnico termo de uma
certa massa efetiva, que resultaria dos efeitos nao-locais. Em ultima andlise, a Eq.(5.43)
revela que nossos resultados estdo de acordo com modelos fenomenolégicos da gravidade
quantica, nos quais a relacao de dispersao padrao ¢ modificada pela inclusao de termos de
escala tipica de altas energias (como a escala de Planck), que sdo suprimidos no regime IR
(355, 356, 243].
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Figura 3 — Gréficos da relagao de dispersao nao-local dada pela Eq.(5.42) para diferentes
valores de massa: m = 1 (linha azul), m = 2 (linha amarela) e m = 3 (linha
verde).

5.2 Modelo de Campo Spin-1/2 N&o-Local Acoplada

5.2.1 Interacdo de Yukawa

Para resolver o problema da interagao néutron-préton, em 1935, Hideki Yukawa
(1907—1981) combina a ideia de Heisenberg da interacao de forgas de curto alcance, entre
particulas dentro do niicleo, com a ideia de Fermi da particula de troca [357]. Yukawa
apresenta em seu artigo um potencial de interacdo que inclui um termo de decaimento

exponencial e um termo eletromagnético

Vy(r) = —p° : (5.44)

onde [ ¢ a constante de acoplamento. Para m = 0, o potencial de Yukawa de curto alcance
q192

4re 0
potencial de Yukawa pode ser também pensado como resultante da modificacao da equacao

converte-se no potencial Coulombiano de alcance infinito, com 32 = . Por outro lado, o
da onda eletromagnética, adicionando, sem afetar a invaridncia relativistica, um miltiplo
de um campo escalar @, para descrever particulas massivas (0® + p?® = 0. Neste caso, se
1 9
considerarmos ® = ®(r), teremos em coordenadas esféricas, V2® = p?® = fﬁ(r@), o
ror
2

que implica em ﬁ(ﬂb) = 12 (r®), cuja solugao sera dada por (5.44).
r

Em analogia & QED, que possui o féton como particula de troca, Yukawa idealizou
a existéncia de uma particula de troca como resultado do potencial e do seu correspondente
campo, mas com m # 0, que estaria relacionada com o alcance da interacao (am)~!. Sendo
o alcance da forga nuclear conhecido, Yukawa estimou a massa da particula mediadora

como tendo cerca de 200 vezes a massa do elétron. Em 1947, com o uso das técnicas de
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emulsao nuclear em placas fotogréaficas® desenvolvidas por César Lattes, este e sua equipe
descobriram os pions, confirmando a previsdo da teoria de Yukawa [358]. Desta forma, foi
desenvolvida a teoria da forca forte entre hadrons, usada para descrever a forca nuclear
entre nucleons mediada por pions. E, utilizada no Modelo Padrao (SM) para descrever o
acoplamento entre o campo de Higgs e os campos de quarks e 1éptons sem massa. Através
da quebra espontanea de simetria, os férmions adquirem uma massa proporcional ao valor
esperado do campo de Higgs no vacuo. Este acoplamento Higgs-férmion foi descrito pela

primeira vez por Steven Weinberg em 1967 para modelar massas leptonicas [359].

Em linhas gerais, a interacao de Yukawa acopla o campo fermiénico de Dirac ¥
ao campo (pseudo)escalar mesonico ¢, do tipo Ly (®, ¥) = — UV para mésons escalares
e Ly(P, V) =— BWinSDW para mésons pseudoescalares, e seu potencial pode ser derivado

da amplitude de ordem mais baixa da interagao de um par de férmions. O diagrama de

p1—k po+ k

p1 D2

Figura 4 — Diagrama de Feynman: Amplitude de espalhamento para dois férmions, tro-
cando um méson. Crédito da figura: https://en.wikipedia.org/wiki/Yukawa-
potential /media/File: Momentum-exchange.sv

Feynman (Figura-4) exibe dois férmions com momento inicial p; e p, trocando um méson
com momento k, a linha pontilhada representando a troca de um méson massivo. Tendo
o fator 8 para cada vértice, a amplitude de Feynman serd —32 Dy, sendo o propagador
Dp a funcao de Green da equacao de Klein-Gordon obtido da transformada de Fourier do

potencial de Yukawa, para a = 1,

Vy (k) = — 52 /d3 Am :D(—’)—Lé(—’) (5.45)
Y — k2+a2m2 F\T A —k2+m2 X X ). .

5.2.2 Acao Efetiva Fermidnica Nao-Local de Um-Laco com Acoplamento
Yukawa
No nosso modelo nao-local, calcularemos a agao efetiva fermionica de um lago na

presenca de acoplamento Yukawa. Para comecar, adicionaremos o acoplamento Yukawa ao

Lagrangiano espinorial nao-local (5.18), que produzirda o Lagrangiano dado pela seguinte

5 Na época, o uso de emulsdes nucleares, uma chapa fotogrifica especial, nos experimentos com raios
cosmicos que visavam encontrar evidéncias de particulas subatomicas instdveis, comegava a ganhar
espago em substituicdo ao emprego das camaras de nuvens, também conhecidas como camaras de
Wilson.
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equagao
Ly (P, V) = U[idF (@) — m + O], (5.46)

onde 3 é a constante de acoplamento de Yukawa e ® é o campo escalar. A equacgao de

campo associada ao Lagrangiano de Yukawa é
[(F () —m + BOIU =0 = [ F2(@) + (m — fD)2|¥ =0, (5.47)

onde a tltima equacao em (5.47) é a forma “quadratica” da primeira. Com o propésito de
abordar as corregoes quanticas existentes nos célculos da agao efetiva fermionica de um
lago, iremos agora revisar, de modo breve, o método do campo de fundo. Para fazer isso,
o primeiro ingrediente é permitir que os campos dindmicos flutuem em torno dos campos

de fundo, ou seja,
U U+Vip e U— U+ Vi, (5.48)

onde ¥ e W sdo os campos de fundo, enquanto 1 e ¢ sio os campos quanticos. O segundo
ingrediente é a acdo efetiva fermioénica I'[V, \If], definida como o funcional gerador de

fungoes de Green irredutiveis de uma particula (1PI)

[, 7]

et :/'Dl/;Dzb e%(S[\Iur\/ﬁw,\Ter\/ﬁlﬁ]Jr(ﬁd)ﬂ%))7 (5.49)

onde 7 e n sdo variaveis e fontes Grassmanianas para os campos quanticos, ¥ e 1,
respectivamente. Integrar as configuracoes gerais do campo quantico nao é uma tarefa
simples, por isso € mais conveniente expandir a acao efetiva em séries de poténcias de A de

modo que
T[W, 0] = S[W, V] + hATW[W, U] + O(h?), (5.50)

com a agdo classica S[W, ], e o termo de primeira ordem f‘(l)[\ll, U] sendo a acio efetiva

fermidnica de um lago cuja forma explicita se 1é
POy, §] = —%m/plzpwemw - —%m det A = —%Tr A, (5.51)

onde o ntucleo do operador quadratico da agao classica é

(5.52)

E preciso enfatizar, estamos interessados em capturar os efeitos nio-locais devidos
apenas as flutuagoes quanticas. Nesse aspecto, utilizaremos o método do campo de fundo,
uma técnica que permite calcular os efeitos quanticos sem perda de invaridncia de gauge
presentes nas teorias em seu nivel classico. Nessa abordagem, a acao efetiva é um funcional
do campo de fundo que contém, em principio, toda informagao sobre a estrutura quantica

associada a teoria. Deste modo, aplicando o método do campo de fundo para a acao
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nao-local (5.46), e supondo que os campos de fundo do espinor desaparecem, entao a

contribui¢ao para a acao efetiva fermionica de um lago serd dada por
'Y — —Trn[idF (@) —m + [P]

= L ([F @) - B[-F(9) - &)

- —;Tr In (@QFQ(a) + &Dz) , (5.53)

onde fizemos a redefinicao do campo ® = m — 3®. Usando os resultados da secdo anterior,

podemos escrever

r® = —%Tr In (@} + 457", + %)
B 1 N i ayy"o,
= —§Tr In (al + ¢ ) — §T7” In (1 + @ 1 a) (5.54)
com,
@) =0a, = Ocoshd, e a,=0ay =IO sinhd, (5.55)
/O o -
onde § = A Utilizamos (5.37) para definir explicitamente as aparéncias dos operadores

de formas nao-locais expostos em (5.55). Para obtermos a soluc¢ao da acao efetiva (5.54),
devemos efetuar a usual rotagao de Wick, que é problematica para teorias de campos
nao-locais, na presenca de derivadas de ordem infinita. Uma vez que seu comportamento
no infinito, no espago dos momentos, leva a contribuicdo nao triviais, podendo ser ela
alcancada em alguns casos particulares, a depender do fator de forma. Por esta razao, as
teorias nao-locais s6 sdo bem definidas no espago euclidiano. No caso especifico da Eq.(5.54),
a usual rotacao de Wick nao se aplica, pois os fatores de forma podem divergir ao longo
de certas dire¢oes do plano complexo [360]. Consequentemente, as fungoes de Green de n
pontos (os correlacionadores quanticos) nao sao bem definidas na assinatura de Minkowski
devido a acausalidade. Portanto, iremos primeiramente calcular os correlacionadores
quénticos no espago Euclidiano SO(4) e, em seguida, voltar a considerar os apropriados
célculos analiticos no espago de Minkowski SO(1,3). Seguindo essa linha de raciocinio,
usaremos a acao efetiva do campo de espinor nao-local de um lago no espaco Euclidiano,

via a seguinte transformacao iI'"Y) — ' Assim, teremos

. 1 a0,
ay _ 1+ 2\ _ ! 2
T = 2Trln( +®?) 2Trln <1+ 1+¢2> =T, +Ty, (5.56)
onde, agora no espaco Euclidiano teremos, {y*,7"} = 26" e 9, = (9/dz*, V), levando

= (0/02%)% + V2, com z* tendo dimensao espacial. Entdo, para primeiro termo de
5.56), que denotamos por f‘l, envolve apenas o operador nao-local @/, podendo ser avaliado
1

diretamente através da transformada de Fourier.

= 1 d'p 2 2p 52
r = 5/ 4ln{p cosh(A>+<I>}

= 1o 2/dpp In [p COSh<A) +<§2]. (5.57)
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Esta integral é de dificil solugao algébrica, por isso, executaremos o método de

aproximacao semelhante ao esquema do calculo adotado em [361], a saber,
Iy =1R4 10, (5.58)

onde
1

IIR _ /Qd 3 hl( 2_|_&)2)_{_27p4 —|—O<1>
! 1672 Jo PP p (D2 + p2)A2 A4
1 1 T4 T 71202 4 T4 7.2 2
= 8(4@ In(®) + 2020 + 2 (Q* — ') In (0 + Q?)
1 - 1 - 1 - P2
— 02 — — 20+ — PO In [ =
e oAze T e n<@2+92>
1256 | P2 4+ 2 129502 4 6P40* — 29206 + 8
n = — =
3A2 P2 (3A2)92 4 2

+

o (A14> , (5.59)

com (2 sendo uma escala arbitrdria intermedidria de massa que satisfaz ® < Q < A. Esta
integral é realizada sobre momentos pequenos (limite IR), o que é uma boa aproximagao
do resultado exato quando p ~ & < Q < A é vélido. E, no limite UV, teremos

&32 o0 _2p
[1UV — @/ﬂ dppe A+...
('I“)z
= 5 (A2 +20A)e™ %] + - (5.60)

as reticéncias significam termos irrelevantes ou subdivididos, termos secundarios para os

resultados obtidos de IVV. Deve-se notar que esta integral ¢ uma boa aproximagao do

resultado exato com ® < A < p. Combinando ambas as Eqs. (5.59) e (5.60), encontra-se

] . (@4 In(®) + 20202 4 2 (2 — *) In (2 + 92))

! 1672 |8

- - ; @2 i

69*0* — 302Q* + 69° In (W) 4 4 61 Ly
612 A >

120007 + 6010 — 29200+ QF P2 X
- 3A2(D2 + 02) + 39712 (A + 2QA) ; (5.61)

e, para o segundo termo ', realizaremos o mesmo procedimento anterior. De inicio,

expandiremos este termo em séries de poténcias

= i ayy" Oy i = (=)™ apyto, !
Iy = —Trln|14+ 2L )=—-Tr o’
’ 2 ( &’1+<I>2> TP DR e &
k
. ) _1k‘ ~t 2k . © (_1 k41 ~t 2
- zTrz( ) (A/ a2~2> Dk:—ETTZ< ) (A/ a2~2> 0O
2 i1 2k ay + ) 2 1 2k ay + )
) N 2
i a’ 1 d*p pb
= —1In|1+ 2| 0 —f/ In|l— |2 5.62
4 <&i+<1>2> 4 (2m)t (b’1+<1>2 (562)
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Na passagem para a segunda linha de (5.62), levou-se em conta que apenas graus
pares de v* produzem tragos diferentes de zero, e o fato de que (v*9,)? = 0. No tltimo
passo da expressao (5.62) realizou-se a transformada de Fourier e a rotagdo de Wick, onde

b, = ) (p?) e by = a4(p?). Agora, conectando as Eqs.(5.55) em (5.62), encontra-se
~ 4 2 - 2
UG R A
4.) (2m)4 p? cosh 0 + $2
1 o p?sinh 6 2
= dpp®In |1 — | ———<-
32m? /o by [ <p2 cosh 6 + @2)

2
onde 0 = Xp Vé-se claramente que esta integral (5.63) diverge no limite UV. Entao, em

vista disso, precisa-se regulariza-la, o que significa que devemos adotar um esquema de

, (5.63)

regularizacao de corte no UV. Sendo assim, definiremos o regulador UV, Ayy, cumprindo
as seguintes condicoes ¢ < Q < A < Ayy. Observe que a integral anterior ndo pode ser
resolvida analiticamente, entao realizaremos uma aproximagao semelhante a que foi feita

para I'y, ou seja,

Ty =141V, (5.64)
onde
1 Q P’ 1

T -

2 87T2A2 0 p(p2 —I— (DZ) + O A4 (5 65)
~ %9 H602 2404 05206 8
_ 1 955 In ~CI> 12 Q+6<I>~Q 20°00° 4 Q +O(1>,
STZA\2 P2 + 2 6(@2—1—92) A4

corresponde a integragao sobre pequenos momentos (limite IR), que é uma boa aproximagao

do resultado exato quando p < ® ~ Q < A é vélido, e

d2 Auv 2
BY = [ et
&32/\ 20 2Ayv
- W{(A—ZQ)@A (A =20 R (5.66)

com Ayy sendo uma escala de massa do regulador de corte de UV. A integral IJV é
realizada em momentos altos (limite UV) e exibe um termo divergente que pode ser
renormalizado adicionando um contratermo na acao. Deve-se notar que esta integral é
uma boa aproximacao do resultado exato como ® < Q < A < p ~ Ayy. Combinando

ambas as Egs. (5.65) e (5.66), encontraremos

. 1 - P2 129902 4 60*Q* — 2020 + 8
Iy = SN2 20" In = 5 = 5
m Q 6 (02 + 02)
D2A
e [—e“KV (A —2A0y) + X (A - 29)] . (5.67)
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Portanto, a agao efetiva completa (5.54) é simplesmente dada pela soma das
Egs.(5.61) e (5.67). Agora, investigaremos os limites de IR e UV para obter mais infor-
macoes sobre os resultados fisicos. Observe que no regime IR, ou seja, quando Q > @, a

acao efetiva fermionica de um lago se reduz a

R - [IR, IR
o4 36 1) 0202 - 1
S S — 02 + A% — 492 () .
327m2  8m2A? 1 (Q) + 32m2A2 ( + ) +0 A4 (5.68)

E importante observar que no limite IR a acéo efetiva de um laco é altamente
suprimida pela escala de nao localidade da massa (A — oo). Assim, neste caso, as
principais contribui¢oes para a acao efetiva de um lago provém do termo local, como
esperado. Por outro lado, para sondar o regime UV, é razoavel considerar que o regulador
UV é da ordem da escala de nao localidade da massa, Ayy = A. Neste cenario, a acao

efetiva de um lago é

PV = vy v = % 4. (5.69)

onde (---) representa os termos nao dominantes. Isto significa que as contribui¢oes nao-

locais para a agao efetiva fermionica de um laco tornam-se muito relevantes no limite

UV.

5.2.3 Acoplamento Espinorial Ndo-local com o Campo Eletromagnético

Esta se¢ao tem como objetivo construir uma teoria de campo spin-1/2 nao-local
minimamente acoplada a um campo eletromagnético com invariancia de gauge. Primei-
ramente, construiremos a a¢ado do modelo nao-local com acoplamento, promovendo a
derivada parcial para a derivada covariante, permitindo assim estender o calculo diferencial
para o caso de espacos mais gerias de variedades diferencidveis. Para fazer isso, seguimos

a receita tradicional empregada na TQC, através da seguinte prescrigao,
Oy — D, =0, +iqA,, (5.70)

onde A, é o campo de gauge U(1) e g é a carga da particula. Portanto, a acdo nao-local

de spin-1/2 acoplado com interacao sera
S = /d%; U (iPF(D) —m) v, (5.71)

onde P = D, é o operador covariante de Dirac. A acdo (5.71) produz a seguinte equacao

de campo
(DF(IP) —m]¥ =0 = [P°F*(IP) +m?]¥ =0, (5.72)
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onde a tdltima equagao em (5.72) é a forma “quadrética” da primeira. Usando as proprie-

dades das matrizes gama (5.16), pode-se escrever

D = [0+ iq(@,A" + A0") — A, A T + %UWFW, (5.73)

i
onde F,, = 9,A, — 0, A, ¢é a intensidade do campo e o = 5[7“, v"]. Portanto, a equagao

de campo pode ser escrita de forma compacta, como segue

[(sz + ga’”FW> (1) + mz] U= 0. (5.74)

Os mesmos argumentos para o caso livre sdo aplicados aqui em relacao ao fator de
forma, para o caso acoplado, isto ¢, sendo uma funcao analitica em todo o plano complexo,
o fator de forma pode ser expandido como uma série de poténcias de seu argumento (ver
demonstracao no Apéndice-B.3). Portanto, este é uma fungao inteira representada como

uma série de poténcias de D, isto é,

F(I) = ni . (f)n (5.75)

onde ¢, sao os coeficientes adimensionais, com condi¢ao inicial ¢g = 1. Neste caso,

semelhantemente a Se¢ao-5.1.2, assumiremos o fator de forma em seu aspecto exponencial

(5.76)

Diferentemente do caso livre, o espectro do quadrado do operador de Dirac
com interacao é mais envolvente. Alternativamente, escreveremos a equagao quadratica
de Dirac nao-local com interacdo em termos do espectro do operador @. Aqui se faz
necessario destacar a férmula Baker-Campbell-Hausdorff (BCH), utilizada para descrever
a exponenciacao de elementos de uma &lgebra de Lie, com operadores matriciais, que
ndo necessariamente comutam eAef = e(ATBHaABEL(ANBIHBIBADT) o e [A,B] é
o comutador da algebra, e os termos posteriores sao todos comutadores de comutadores.
Portanto, usando a férmula BCH, a Eq.(5.74) sera

{ (Dﬁ—l— qU;VF;w> lew (cosh(Q)\/A)f - ;sinh (2)\/A)@‘> _

- B i) o (1) 4 m}\v o 5.77)

2 3 , .
onde O (eq /A ) surge da féormula BCH e representa comutadores de ordem superior entre
@ e A. Efetivamente, a interacdo nao-local produz uma torre de um némero infinito de
interacoes locais nao convencionais, envolvendo os campos eletromagnéticos e espinoriais.

No nivel perturbativo, uma vez que A é considerado uma escala tipica de alta energia,
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isso significa que a constante de acoplamento adimensional o = a4 < 1. Assim, os efeitos
nao-locais no campo eletromagnético sao suprimidos na escala de energia de Planck. Em
termos praticos, cada vértice dos diagramas de Feynman carregara um fator proporcional
a e~ que pode ser expandido em séries de poténcias de a. Como resultado, apenas o
termo inicial sera relevante numa primeira aproximacao, enquanto os outros podem ser
negligenciados com seguranca. Neste cenario, apés algumas manipulagoes algébricas, a

equacao quadratica de Dirac nao-local com interacao tera o seguinte aspecto

{ lm +iq(9, A" + A 0") — * A AM + %O"WFW, + - -]F%ﬂ) + mQ}\I/ =0, (5.78)

De acordo com o esperado, se desconsiderarmos os termos entre colchetes que
representam o acoplamento do campo eletromagnético com o operador de Dirac nao-local,
a equagao (5.78) se reduzird a versao quadratica da equagao de Dirac livre ndo-local (5.31).
As reticéncias representam corre¢oes no parametro adimensional . Em derradeira analise
de (5.78), é facilmente verificavel que o caso local é recuperado, quando o limite A — oo é

alcangado.

5.2.4 Invariancia de Gauge da Acao Acoplada

As raizes dos estudos sobre a invariancia de gauge datam do ano de 1820, quando
a primeira teoria eletrodinamica foi proposta. Desenvolvimentos subsequentes levaram
a descoberta de que diferentes formas do potencial vetor resultam nas mesmas forcas
observaveis [362]. Em 1926, Vladimir Fock (1898-1974) estendeu a conhecida liberdade
de escolha dos potenciais eletromagnéticos, na eletrodinamica classica, para a mecanica
quantica das particulas carregadas interagindo com campos eletromagnéticos [363]. As
teorias de gauge sao importantes na descricao de todas as interagoes fundamentais da
natureza. A QED, por exemplo, é uma teoria de gauge abeliana com o grupo de simetria
U(1), tendo o quadripotencial eletromagnético como seu campo de gauge, e os fétons
como sendo os bosons de gauge. A TQC de Yang-Mills, criada em 1953, cerne do SM,
descreve interacoes entre particulas elementares usando grupos de simetria nao abelianos,
U(1l) x SU(2) x SU(3), através de particulas mediadoras das forgas, que podem interagir

entre si, o que leva a nio linearidade da teoria® [364].

No caso especifico da gravitacao, o principio fundamental da equivaléncia, onde
cada ponto do espago-tempo ¢é permitido escolher um referencial local, pode ser visto como
um aspecto da teoria de gauge. Uma vez que as simetrias de gauge podem ser vistas como
analogas ao principio da covariancia geral, no qual o sistema de coordenadas pode ser

escolhido livremente sob difeomorfismos arbitrarios do espago-tempo. Deste modo, tanto

6 Um dos principais desafios na teoria de Yang-Mills vem da propriedade quantica que resulta m # 0 para

particulas elementares que viajem a velocidade da luz. Construir uma teoria de TQC de Yang-Mills
matematicamente consistente e bem definida é um dos sete problemas do milénio.
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a invariancia de gauge quanto a invariancia do difeomorfismo refletem uma redundancia
na descricao da gravitagao, com transformacoes entre medidores que formam um grupo de
simetria de Lie, associada aos geradores de grupo da algebra de Lie. Para cada gerador
de grupo surge necessariamente um campo de gauge correspondente, sendo geralmente
um campo vetorial [365]. Ndo obstante, na RG o campo de gauge é o tensor de Lanczos’
[366], que para a métrica de Schwarzschild é Hy,; = GMr~2. Neste sentido, a gravitacio
de Einstein é um tipo de teoria de campo em que o Lagrangiano e, portanto, a dindmica
do proprio sistema, nao muda sob transformacoes locais de acordo com certas familias
suaves de operagoes do grupo de Lie. Em 1998, Lasenby, Doran e Gull apresentaram a
teoria alternativa da gravidade de gauge, a qual postula a existéncia do graviton com
sendo o boson de gauge, substituindo o principio da covariancia geral por um principio
de gauge verdadeiro com novos campos de gauge. Esta teoria é construida em um
espago-tempo de fundo plano e emprega campos de gauge para garantir que todas as
relacoes entre quantidades fisicas sdo independentes da posicao e orientacao dos campos de
matéria. Um tensor de spin também pode ser suportado de maneira semelhante a teoria

de Einstein—Cartan—Sciama—Kibble [367, 368].

Aqui, daremos uma atencao especial ao processo de verificacdo da invaridncia de
gauge para o nosso modelo, que descreve um sistema fisico onde existe um acoplamento
de um campo espinor nao-local com um campo Eletromagnético. De modo pratico,
aplicaremos um formalismo matematico especifico para regular os graus de liberdade
redundantes no Lagrangiano nao-local de (5.71). Tal verificagao é valiosa, uma vez que
nao é tao ébvio perceber que (5.71) é uma agao nao-local, pois o seu fator de forma nao é
uma funcdo linear do operador de Dirac. Neste aspecto, é preciso mostrar que i) F (D)W

torna-se covariantemente sob as seguintes conhecidas transformagoes de gauge U(1),

A, o, A = A, + 0,a(z);
U(1) \I/ _ efiqa(a:)\lj; (579)

S

v 2 = peirn@),

Assim sendo, demonstraremos a seguinte transformacao de gauge

ipF(P)v 2 GDF(D)Y] = e @i PE(H)D. (5.80)

Apbs uma simples manipulagao algébrica em (5.80), isto é, expandindo o fator de

forma em série de poténcias de seu argumento

. y “D,, | 792D, D, ’
[ipF(p)¥] = {MDM <1—7 X +1 72A2 +>\1/] . (5.81)

Ou potencial de Lanczos, introduzido por Cornelius Lanczos em 1949, é um tensor de posto 3 que gera
o tensor de Weyl.

7
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Agora, utilizaremos o método da indugao matemética com o fim de provar a
invariancia de gauge do nosso modelo. De inicio, analisaremos o termo de ordem zero na
série de poténcias (5.81). Verifica-se de imediato que este termo é apenas o caso do modelo
acoplado usual/local, que se transforma covariantemente sob transformagoes de gauge
U(1), ou seja, [M“DM\II]I = e~@jyr D, . De igual modo, para o termo de primeira
ordem, teremos o seguinte

) ,ylll DV ! Z"Y'u’)/ul ,
(2] <
y~A/MAVL .
= _Z’Y/;Y (Op +iqA, + iq@ua(m))e_lqo‘(x)Dm\If
7;’}"“"}/1/1 —iga(z) . . .
=—— ¢ 198 (—ig0,a(x) + 0, + 1qA, + 1q0,a(x)) D, ¥

| v D,
= ¢ @iyrD, (—7 N ) v,
(5.82)

e por ultimo, calcularemos a transformacao do termo genérico j-ésimo, que sera

. (-1(vDY N\ (=1 ,
|}7MDM (]'qu = j'AJ Z"}/u"}/ v ")/ J(DMDVl e D,jjqj)

<_1)] . v vi Y —iqa(x .
= A et Y ]DuDul e lga(z) (31/]'71 +qu,,j71) D, v,

aplicando sucessivos passos idénticos aos realizados anteriormente; Entao, teremos como
resultado final

[qu“ (W\yﬂ — efiqa(r)w#D# (W) V. (5.83)

Finalmente, ao substituir (5.83) em (5.81), constata-se que i[)F(IP))¥ converte-se
covariantemente sob transformagoes de gauge U(1). Desta maneira, fica demonstrado que
a teoria campo de spin-1/2 nao-local minimamente acoplada a um campo eletromagnético

(5.71) é invariante sob transformacao de gauge.

5.3 O Limite Nao Relativistico e a Equacao de Pauli Nao-Local

Em 1925, Samuel Goudsmit e George Uhlenbeck postularam a existéncia de uma
nova propriedade intrinseca do elétron, que se comportavam como um momento angular,
como forma de explicar a multiplicidade dos termos espectrais na estrutura fina devido ao
efeito Zeeman andmalo [369]. Posteriormente, Wolfgang Pauli (1900-1958) denominou de
spin esta propriedade intrinseca do elétron. E, em 1927, um ano antes de Dirac formular sua
equagao, Pauli apresentou a equagao que descreve particulas de spin-1/2 em intera¢ao com
o campo eletromagnético, em situagoes onde os efeitos relativisticos podem ser desprezados
[370]. Pauli, na sua andlise da equagao obtida por Goudsmit e Uhlenbeck, modificou a

equagao de Schrodinger com a introducao de suas famosas matrizes de spin (5.17).
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Na sua forma linearizada, a equacao de Pauli é conhecida como equacao de Lévy-
Leblond [371]. Para o elétron de massa m e carga elétrica ¢, em um campo eletromagnético
descrito pelo potencial vetor magnético Aeo potencial escalar elétrico ¢, E = Vo + 8th,

a equagao de Pauli é

EV(zx)=|—(p— A) — s+ BV (x), 5.84
(x) {Qm (7= 24) +a0 i B w(@ (5:84)
. ah \ . = a .
onde fiy = o) O ¢ magneton de Bohr, B = V x A é o campo magnético externo,
mc

U(z) é um biespinor, com os usais operadores do momento 7 = iAV e da energia cléssica

Na abordagem local da equacao de Dirac, o limite nao relativistico é alcancado
assumindo um campo de gauge fracamente acoplado aos férmions, o que impede a aceleracao
das particulas fermidnicas alcance velocidades relativisticas. Agora, estudaremos como
este limite é aplicado na equacao de Dirac nao-local minimamente acoplada a um campo
eletromagnético. Para fazer isso, consideremos inicialmente a Eq.(5.72) no espago de

momentos e em unidades naturais,
l(ﬁ - M)F @ - pA) - m] ¥ (p) =0, (5.85)

Conforme discutido anteriormente, estamos tratando do limite do campo fraco,
com p = % < 1. Aqui, sem perda de generalidade na equagao anterior (5.85), podemos
assumir com seguranca p = (), uma vez que nosso objetivo nesta secio é investigar apenas
os efeitos da nao localidade no limite nao relativistico da equagao (5.85). Desta maneira,
simplificaremos consideravelmente o fator de forma néao-local, que nao dependerd mais do
campo de gauge. Apds tais consideragoes, o proximo passo € selecionarmos explicitamente o
fator de forma, que no presente caso sera escolhido ser aquele correspondente a transformada
de Fourier do fator de forma (5.30). Logo, a Eq.(5.85), serd

[ (p—ad) ek - m] U(p) =0. (5.86)

Portanto, utilizando as matrizes gama (5.16), o fator de forma pode ser convertido

na seguinte forma de matriz,

N p cosh § + (E/mc?) sinh § (¢ - p/mc) sinh §
—= e_X = 3 .
F(p 5.87)
—(¢ - p/mc)sinhd  coshd — (E/mc?)sinh §

onde 6 = mc/A. Observe que, por conveniéncia, restauramos a velocidade da luz c.

Assumindo o biespinor ¥(p) = (x &) e o potencial vetorial A, = (gb/c, A) A Eq. (5.86)
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se reduz as seguintes equagoes para cada espinor

(aubu + algb’b — mc) X + (allblg + al?b{l)g = 0 (588)
(algbll + alleQ) X + (a12b12 + alleI + mc){ = O, (589)

onde temos definido
a1 = (E—qo)/c; apn =7 11
by = cosh§ — (E/mc?)sinh§; by = —(& - p/me) sinh §; (5.90)
byy = cosh & + (E/mc?) sinh &

com I = p— (q/ c)ff Vamos agora levar em conta o limite ndo relativistico, que corresponde

2
a tomar E ~ mc? + E., onde a energia classica E, = ﬂ Neste caso, considerando o
m
regime de campo fraco, a Eq.(5.89) torna-se
1 I .

substituindo a Eq.(5.91) na Eq.(5.88) e usando os coeficientes (5.90), obteremos
Ec . = . ﬁ = .
{ (ng> e +me(e™® — 1)+ ¢ 1E-p) sinh 5})( =
c me

1

WM{<5 . ﬁ)Q — (G- p)?*sinh® 6 + (2 — ™) (G - P)(F - ﬁ) Sinhé}x, (5.92)

Para simplificar (5.92), faremos uso de algumas identidades vetoriais,

— — — ]' — — .- — —
(-1 -p) = 5({ai,aj}+[ai,aj])l_[ipj:H~p+w~(pr)
= qp+ i A+ s (Ax ), (5.93)
c c

— — —

1 —
@G = 5 {ono}+ [on o)) LT = [T+ i - (1 x i)

= [ip-i%s. B, (5.94)
c
onde, nas formulas acima, utilizamos a identidade Mxti=-2 (_’x A+ Ax ﬁ) — 1B

c c
Conectando as Egs.(5.93) e (5.94) na Eq.(5.92) e ap6s algumas manipulagoes algébricas,

encontra-se a equacao de Pauli em sua versao nao-local

5/2 .
E.x = {ng —me(l —e°) + 62— cosh™'(§/2) |TIJ?
m

/2 cosh™ (§/2)
2m

4 (1 + ¢~ sinh 5) - B — e?|p|? sinh? 5]
c

ge~%/?sinh 6 -

sinh R a4
2COSh(5/2)(H-A—A-H)] }X- (5.95)

mc

[cﬁ-ﬁ—iq&’-(gxﬁ)—
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5.3.1 Fator g; Nao-Local

Na fisica das particulas, existe um fator g para cada momento angular da particula
(spin g, orbital g, e total g). Sendo o fator g5 do elétron igual a 2.00231930436092(36),
com incerteza na medida de 1,8.107!2, o valor medido com maior precisdo na fisica
[226, 372]. Onde as contribuigoes dos efeitos gravitacionais quanticos podem levar a um
desvio para o valor do fator gs do elétron [373]. Na QED, o momento magnético anémalo
resulta da contribuicao dos efeitos da MQ ao momento magnético da particula, cuja
previsao para o elétron concorda com o valor medido experimentalmente em mais de 10
algarismos significativos. Surpreendentemente, a previsao teérica do valor do momento
magnético do elétron é a previsao, verificada experimentalmente, com maior acerto ja
encontrado na fisica. Contudo, o SM das particulas nao consegue explicar as massas dos
neutrinos e a discrepancia entre o valor previsto e o valor experimentalmente medido do

momento magnético andémalo do mton p~ [374].

AVAVAVAV,

e

Figura 5 — Diagrama de Feynman: Corregoes supersimétricas para o fator (g; — 2) do
muon devido ao envolvimento do béson de gauge Z’. Crédito da Figura:
Supersymmetric gauged U(1)Lu-LT model for neutrinos and the muon (gs — 2)
anomaly. Banerjee, H.; Byakti, P.; Roy, S.: Physical Review D - (APS).

Os modelos supersimétricos (SUSY), que incorporam novas simetrias colocando
bésons e férmions em pé de igualdade, podem fornecer contribui¢oes adicionais para o
momento magnético anémalo do mion (gs — 2) por meio da contribuigdo, em um lago,
advindos do acoplamento béson-muon, conforme mostrado na Figura-5. O Modelo Minimo
Supersimétrico (Minimal Supersymmetric Standard Model-MSSM), contendo cinco bdsons
de Higgs e um grupo extra de medidores de simetria de gauge U(1), é uma proposta
para a solu¢ado do problema da hierarquia (discrepancia entre as escalas de energia do
modelo padrao e a gravidade) e da massa de Higgs estavel [375]. Além do mais, ele busca
esclarecer os desvios existentes no momento magnético anémalo do muon (g5 — 2), que tem
contribuicoes dos bésons W e Z subdominantes, quando comparadas com as contribui¢oes
do béson de gauge Z’ [376]. Outra diferenga importante no caso do MSSM deve-se & mistura
dos estados associados pela supersimetria aos gauginos (bésons de Gauge) e aos higgsinos

(bdésons de Higgs), cujos autoestados de massa sao conhecidos como charginos e neutralinos.
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Estas particulas tedricas, que possuem propriedades peculiares, sdo conhecidas como
superparceiras, estando relacionadas as particulas do SM. As superparceiras desempenham
um papel fundamental na possivel descoberta da supersimetria na escala de energia de TeV
(102 eV) [377, 378]. No MSSM, para cada quark e lépton, existe uma superparceira squark
e slepton, respectivamente. No caso do béson Z, do bdson de Higgs e de um dos neutrinos,
o superparceiro é o neutralino, sendo este um candidato a matéria escura. No entanto,
apesar do MSSM ter sido amplamente testado no Large Hadron Collider - (LHC) do
CERN, nao foram encontradas evidéncias claras da existéncia destas particulas tedricas ou
de outras previsoes do modelo [379, 380]. No caso da supergravidade (SUGRA), o niimero
de supersimetrias é estabelecido pelo nimero de campos de spin-3/2, isto é, os gravitinos,
que sdo as superparceiras do graviton, o quantum do campo de spin-2 [381, 382, 383]. No
entanto, a teoria quantica da gravidade, com sua suposi¢ao da existéncia do graviton,
apresenta falhas quando suas interagdes sao analisadas e comparadas com as interagoes do

féton e de outros bésons de gauge [384, 385].

Para o nosso modelo aqui exposto, verifica-se que quando definido o limite assinté-
tico A — oo em (5.95) recupera-se a equagao de Pauli padrao (local). Também, observa-se
que o termo multiplicativo do fator & - B da equagao (5.95) exibe uma corregao nao-local

para a razao giromagnética, fator gs, das particulas massivas de spin-1/2

e sinh o
9 =2 (cosh (g) - e cosh (g) ) . (5.96)

Para obter mais informagoes sobre esse resultado, expandiremos o fator g, em

séries de poténcias de 9, cujo resultado sera

gs =2+ 36 + O(6%). (5.97)

Por fim, como esperado, constata-se que quando a escala da nao localidade satisfaz
A > mec, implicando em § — 0, a equacao de Pauli na sua versao nao-local reproduz
o valor usual/local do fator giromagnético da particula, isto é, gs = 2 [386]. Este valor
classico previsto pela equacao de Pauli difere em 1% do valor observado. Neste cenério,
verifica-se que as flutuagoes quanticas da TQC introduzem pequenas corregoes, que para
o novo modelo aqui apresentado sao devidas aos efeitos nao-locais. Neste panorama,
obtivemos contribui¢bes para o fator gy, advindas de termos nao-locais, por consequéncia

produzindo uma anomalia magnética nao trivial puramente de origem nao-local, o que
implica (g5 — 2) # 0.
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6 CONCLUSAO

Nesta tese, desenvolvemos estudos sobre teorias modificadas da gravitagao, conside-
rando seus aspectos classicos e quanticos, tanto no campo tedrico quanto no fenomenolégico.
Analisamos questoes fundamentais relacionadas as teorias nao-locais, a causalidade, a
unitariedade, a renormalizabilidade, bem como aos atributos da invariancia de Lorentz e
a possivel quebra da simetria CPT. Foram discutidos diferentes modelos de gravitacao
modificada, propostos como alternativas para a resolucao de problemas ainda em aberto
na fisica gravitacional e no contexto cosmoldgico. Em particular, apresentamos duas novas
classes de modelos: (i) modelos generalizados de gravidade de Chern—Pontryagin; e (ii)

um modelo de campo espinorial nao-local no espago de Minkowski.

6.1 Modelos Generalizados de Gravidade Chern-Pontryagin

No Capitulo-4, apresentamos os modelos generalizados de gravidade Chern-Pontryagin
que foram construidos através da inclusao de uma fungdo composta pelos termos do escalar
de curvatura e do invariante de Chern-Pontryagin *RR, na agdo de Einstein-Hilbert. Mos-
tramos que estes modelos sao motivados pelo fato de que eles, sendo a generalizacao do
modelo de gravidade modificada Chern-Simons (CSMG), permitem a quebra de paridade
em determinadas situagoes. Mais especificamente, quando o Lagrangiano envolve graus
impares de *RR. Neste aspecto, o novo modelo promove os estudos de modelos de sistemas
fisicos no contexto de quebra de simetria CPT e, com suas adequadas modificagoes, as

construgoes de modelos com quebra de simetria de Lorentz.

Verificamos algumas métricas conhecidas que resolvem as equacoes de movimento
dos modelos generalizados de Chern-Pontryagin, nomeadamente todas que produzem o
resultado *RR = 0. Neste caso, as equagoes de campo reduzem-se as equacoes modificadas
de Einstein das teorias f(R). Em particular, isto é verdade para todas as métricas
esfericamente simétricas. Este fato motivou a estudar perturbacoes de duas métricas bem
conhecidas, a saber, Schwarzschild e Tipo-Godel. Em certo sentido, nossos estudos podem
ser tratados como uma continuagao do artigo [331] onde as perturbagdes das métricas do
tipo-Godel foram consideradas dentro do CSMG nao-dinamico. Investigamos a consisténcia
dessas métricas nos modelos especificos fi(R,"RR) = R + B(*RR)* e fi;(R,"RR) =
R+ aR? + B("RR)%. Para as perturbagdes do buraco negro de Schwarzschild, encontramos
um efeito de arrasto de referencial de primeira ordem no parametro de perturbacao
L = SM?, além do termo padrao da RG. Para as perturbacoes das métricas do tipo-Godel,

investigamos tanto perturbagoes gerais de primeira ordem, quanto aquelas que apresentam
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quebra de simetria axial ao longo da direcdo z. Concluimos que, nesses cenarios, todas as
funcoes métricas perturbadas devem ser iguais a zero para garantir consisténcia com as

equacgoes de campo.

Demonstramos que, semelhante as teorias f(R), os modelos generalizados de
gravidade Chern-Pontryagin admitem uma representacao escalar-tensorial de dois campos,
no frame de Jordan e de Einstein, com um potencial de interacao para estes dois campos
escalares. Nestas representacgoes, fica evidente existir uma certa equivaléncia entre estes
modelos e a gravidade modificada de Chern-Simons. Na verdade, ao descrever a teoria no
frame de Einstein, mostramos que a acao desta classe de modelos é, até certo ponto, um
caso intermediario entre o CSMG nao-dindmico e o dindmico. Além disso, conseguimos

gerar o termo Chern-Simons de forma mais natural do que na proposta original do CSMG
[52].

6.2 Modelo de Campo Espinorial Nao-Local

Na segunda proposta, apresentamos no Capitulo-5 a formulagao de um novo modelo
de teoria de campo de spin-1/2 nao-local no espago plano, na qual o fator de forma nao é
uma fungao inteira constituida pelo operador d’Alembertiano, como normalmente ocorre
nas demais teorias nao-locais de spin-1/2 discutidas na literatura, mas é uma fungao
inteira do operador de Dirac. A ideia principal por tras desta teoria foi que, devido a
sua estrutura espinorial, é mais natural considerar um fator de forma que depende do
operador de Dirac em vez do operador de d’Alembert. De certa forma, preenchemos uma
lacuna na literatura ao propor uma nova teoria para campos fermionicos nao-locais. Pois,
por alguma razao desconhecida, existem poucos trabalhos publicados com propostas de

modelos nao-locais para o campo de Dirac.

Para o modelo de campo espinorial nao-local, adotamos fatores de forma expo-
nenciais como fung¢oes do operador de Dirac, onde a expressao analitica para as relagoes
de dispersao obtida se aproxima do resultado padrao a medida que os efeitos nao-locais
sao suprimidos, ou seja, quando o fator de escala de energia tende ao infinito A — oo.
Outrossim, enquanto ela se afasta do resultado padrao a medida que os efeitos nao-locais
se tornam relevantes no limite UV, ou seja, como A ~ p, com p representando grandes
momentos. Além disso, as equagoes nao-locais de campo alcancadas sao compostas por
termos do espectro do quadrado do operador livre de Dirac, nas quais cada componente
do espinor de Dirac nao satisfaz uma equagao de Klein-Gordon nao-local, diferentemente
do caso padrao local. Inclusive, usando um método aproximado, avaliamos as corregoes
quanticas do modelo na presenca de um acoplamento Yukawa, para contribuigoes efetivas
de um lago. Concluimos que tal agdo efetiva é altamente suprimida por um fator de escala

de energia A no limite do IR, deixando claro que os efeitos nao-locais sao nao dominantes
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neste regime. Em contraste, no limite UV, os efeitos nao-locais emergem como termos
principais. Demonstramos explicitamente a invariancia de gauge para um acoplamento
minimo nao-local, entre um campo de gauge U(1) e o campo de spin-1/2, com a obtengao
da equacao do campo espinorial, que descreve a interagao nao-local, descrita por uma

torre infinita de interac¢oes locais incomuns.

6.3 Perspectivas Futuras

Uma continuagao natural do estudo dos modelos generalizados de gravidade Chern-
Pontryagin seria o de envolver a investigacao das perturbacoes cosmolégicas! e analisar
as implicagoes da violacao da paridade no contexto das ondas gravitacionais. Inclusive,
como proposta futura, seria importante verificar a consisténcia de diferentes solugoes
conhecidas na RG, além de Schwarzschild e Tipo-Gddel, como, por exemplo, a métrica
cosmoldgica de Friedmann-Robertson-Walker (FRW), tanto no formalismo Riemanniano
como no formalismo de Palatini. Outra tarefa interessante seria incluir no modelo o termo
de invariante de Nieh-Yan acoplado a um campo escalar. Este invariante topologico, que
esta relacionado a anomalia quiral, pode ser estendido para geometrias métricas-afins
mais gerais que incorporam a tor¢ao e a nao-metricidade, sua interpretacao ¢ utilizada em

cenarios de branas e na resolucao de singularidades em cosmologias de Bianchi I.

Quanto ao modelo de campo espinorial ndo-local, nos proximos trabalhos pode-se
acrescentar o formalismo nao-local para o campo eletromagnético minimamente acoplado,
e nao somente ao campo fermioénico. A investigacao do modelo continuara provavelmente
para fatores de forma nao-locais mais sofisticados, outros além do gaussiano, como aqueles
construidos na base da funcao de Bessel e da fung¢ao gama incompleta. Sem duavida, as
préoximas pesquisas certamente também estarao na direcao de desenvolver o modelo de
campo espinorial aplicado aos espagos curvos, primeiramente no formalismo Riemanniano e,
em seguida, em espagos com tensor de torgao e tensor de curvatura homotético (metricidade)
nao nulos. Ademais, planejamos estudar os aspectos quanticos do modelo de campo
espinorial nao-local acoplado com o campo eletromagnético. E mais ainda, analisar os
efeitos quanticos em modelos nao-locais da gravitagdo, uma vez que a principal vantagem
dessas teorias é a possibilidade da obtencao de resultados consistentes no regime UV.
Assim sendo, escavar uma adequada descri¢ao nao-local para um modelo de gravidade
quantica, em quatro dimensoes, que seja renormalizavel e unitaria. Por fim, uma outra
possibilidade de pesquisa futura seria a de estender a abordagem nao-local para modelos

de campos bosonicos, como também, para modelos supersimétricos.

L Pequenas flutuacdes na uniformidade do universo, que sdo postas como causas cruciais para a formacio

das estruturas das galaxias e aglomerados. Logo, a analise do desenvolvimento dessas pequenas
desigualdades na densidade inicial do universo primordial, reveladas via colapsos gravitacionais,
direciona o entendimento do cosmos com os vazios e as galaxias que conhecemos.
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APENDICE A - Calculos Auxiliares

A.1 Equacoes de Einstein no Formalismo Lagrangiano

Nesta secao, deduziremos as equagoes de Eintein no formalismo Lagrangiano, cuja

acao proposta por Hilbert é dada por

1
SEH = Tlﬁ/d4x\/__gR+/d4x\/__g£m[guww]7 (Al)

cujas equacoes de movimento de Einstein sao obtidas pelo principio variacional aplicado

em (A.1)

55 = [t [ ! (V__g(m L WTQ) + 5(\/__95’”)1 59" =0 ¢ (A2)

9k2 59#” 59!“’ 5gMV

2K2

OR | Rov=g _ , 20(V=0Ln) _ orm (A.3)

+ )
N V=98g" o
onde T’ /S,C”) o tensor momento-energia para campos de matéria. para a derivada covariante

da variagdo da métrica e a variagdo dos simbolos de Christoffel, teremos
VZ,(SgW = aVéglm - Fguégaa - FSadgua ) (A-4)

(03 1 (6702
0 = 59" (V9o + Vidguo = Vodgu) . (A.5)

estas equagoes inseridas em (2.4) produzird a identidade de Palatini
OR” 3, = Vgol'*,, — V,0I"" 3, (A.6)
contraindo os indices o e § de (2.4)
ORyu = Vol — V,0T% 0 = 6°° (V. Vabgus — VuV00Gas) (A7)

onde para o escalar de Ricci R e sua variagdo 0 R, teremos

R=g"Ry = g0, — g1}, + 9" T, 17, — 9" T7, 1'%, (A.8)
6R = R0g" + ¢" g*" (V. Vadgus — V. V00gas) - (A.9)

Ademais, por meio do uso da célebre férmula de Jacobi, obteremos

1
oN/—g = —5\/—99,”59“”. (A.10)
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Desta forma, em posse de (A.9) e, (A.10), encontraremos a varia¢ao da termo

geométrico da agao (A.2)
1 1
0SpH = 52 /d4x\/ —g |:R,uufsg/“’ _ §R9uu5gu'/ + g g*f (VuVabgus — Vuvyégaﬁ)}
1
e @ /d4x |:\/ _gGMV(SgMV + V}u(\/—gg/“/gaﬁ(vaagylﬁ — Vl,(sgalﬁ>>j| y (All)

onde G, = R, — % 9w € o tensor de Einstein. Vamos agora calcular o ultimo termo da
Eq.(A.11), para isso definiremos V* = g"*¢°%(V 4,09,5 — V,0gus)

V,.(V=gV") =/=gV, V" = /=g(8, V" + T" V")
1
=v—=9(0, V" + 59““&/9;@‘/”) = 0u(v/—9V"),

logo, a Eq.(A.11) torna-se em
1
0SEn = 22 /d4$ {v —gGm,(Sg’“' + au(\/ _ggwgaﬂ(vad‘]ﬁ - Vuégal?))} . (A-12)

O 1ltimo termo de (A.12) é conhecido como termo de fronteira, cujo valor depende
do tipo de espaco na acao em consideragao. Por hipdtese, aqui assumimos apropriadamente
condigoes de contorno no qual asseguram que o termo de fronteira desapareca, ou seja, ele
nao contribui para o valor da variagao total acima abordada. No caso de variedades com
contorno, onde tais termos de fronteira nao se anulam, ver discussao na referéncia [191].
Finalmente chegaremos ao resultado da variagao da parte geométrica do Lagrangiano de
Einstein-Hilbert

1
OSen = 5. / diz V=g G 09" (A.13)

Desta forma, quando consideramos também o termo de matéria no Lagrangiano

Eq.(A.1), a equagao de movimento (A.3) se reduz as conhecidas equagoes de Einstein:

1
Ry = 59 R = KT . (A.14)

Quando considerada a existéncia da constante cosmologica, as equagoes de Einstein

terao a seguinte forma:

1
Ry = 59 B+ Mgy = KT . (A.15)
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A.2 Variacao do Termo de Pontryagin na Acao de Chern-Simons

Nesta secao, mostraremos como obter o tensor de Cotton através da variacdao, com

respeito a métrica, do termo de Pontryagin da a¢ao de Chern-Simons, descrita a seguir
1
Sos = 4 / d'z/—g ¢ 'RR, (A.16)

1
onde RR = 25’“’0‘5 Re R, .5 ¢ adensidade de Chern-Pontryagin. Os tensores (covariante
e contravariante) totalmente antissimétrico de Levi-Civita sao: €uvap = V/—0 €uwas €
gl = ({/=g) et 8 cujo valor de € é +1 para permutagao par de seus indices, -1 para
permutacao impar de seus indices e 0 para os demais casos. Portanto, variando a agao

(A.16), teremos

5Ses = / d'z 5 (V=g¢'RR) = / d'ws (9 R, R, 5)
(0 v ag T 1 rox ag
4 / d‘{w( SR R + 5 R, OR mﬁ)

(A.17)
/ dwpe P RT SR

4 vBa T
/ dx¢e P BT V017

Na tultima passagem acima de (A.17), fora utilizado a identidade de Palatini (A.6).

A integragdo por partes da tltima igualdade de (A.17), resultara em

- / d'x [V (V=goe R, 010, ) — P (0, R7,,, + 0V R, ) T7,] . (A8)

onde v, = V,¢. O primeiro termo de (A.18) se reduz & um termo de contorno, contribuindo

de modo trivial, sendo ele considerado a derivada covariante de uma densidade tensorial

Vo (V=097) = 0 (V=97") + V=97'T2% — V=9I 'T%,
=0 (V=9J7).

Pois na geometria Riemanniana tem-se '}, = 0, In/—g. Analisando o terceiro
termo de (A.18), através da identidade de Bianchi, se vera que tal termo também é
identicamente nulo

g
|7 v

Portanto, a Eq.(A.18) se reduz a apenas ao termo proporcional a v,. Desta maneira,
quando substituida a expressao da variacdo dos simbolos de Christoffel (A.5) no termo
remanescente em (A.18), a variagao do termo de Pontryagin da a¢do de Chern-Simons

resultard na seguinte forma

1
8S0s = ; / 2P, R (= 3605 + Vobgss + Vadgas) - (A.20)
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Verifica-se que o ultimo termo da Eq.(A.20) desaparece quando contraido o tensor
simétrico dgy, com o tensor antissimétrico de Riemann, nos indices A\ e 0. Apéds a

permutagao entre os indices A e ¢ no primeiro termo de (A.20), teremos

1
0Scs = 5 /d4a:e””5avaR"fu,Vgégm. (A.21)

Semelhantemente ao procedimento anterior realizado em (A.17), podemos inte-
grar por partes a Eq.(A.21). Neste caso, surgird, também, um termo de contorno cuja

contribuigao é nula.
1
5S0s = =3 / B0 (0,V, R, + vsa 7)) 6951 (A.22)

onde v, = V,V4¢ = V,v,. Podemos usar a identidade de Bianchi VURU*W = V,LR’\,, —
V., R*, para simplificar a equagao anterior, além disso o segundo termo pode ser expresso

em termos do tensor de Riemann dual, desta forma obtemos

0Scs = — / d4x\/ —g (UagﬁaquuR)\y + ,Uaa*RUA/Ba) 595)\
1
=5 /d4x\/—_g<va€5a“”VuR)‘V + Uag’\o‘“”VuRﬁ,, + Ve RN 4 vga*Raﬁ)‘o‘>5g5>\

- / d*zy/—g CP.
(A.23)

Portanto, o tensor de Cotton é obtido através da variacao, com respeito a métrica,
do termo de Pontryagin da acdo de Chern-Simons, sendo explicitamente definido como

sendo

1
oW = _5 [’Ua(€'u'a'8>\V5RV)\ + €Va5)\VﬂR’u)\) + Uga(*RUV'ua + *Ra,uzza)] ' (A24)

E de facil constatacdo a natureza simétrica do tensor de Cotton. Ademais, como

veremos a seguir, o tensor de Cotton possui traco nulo
1
g;wclw = _Uaga#ﬁ')\vﬂR#)\ - §Uga5a#6>\RUuﬁ)\ = 0, (A25)

onde o primeiro termo de (A.25) é nulo, pois existe a contracao do tensor de Ricci simétrico
com o tensor de Levi-Civita antissimétrico, enquanto que o segundo termo se anula devido
a identidade de Bianchi ROE”B N =0
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A.3 Divergéncia Covariante do Tensor de Cotton

Com o uso de tensor de Riemann dual e (A.23), podemos redefinir o tensor de

Cotton (A.24)
1
AL (va R 4y, *R”’““) . (A.26)

sando a antissimetria de em |7 odemos apresentar
Usand t tria de *RTH , 1|, pod t

1 1 1
VO = =SV R) + 5 (Ve V) (0B 4 SR (A27)

A primeira contribuicao para V,C* ¢ vazia. Isto é estabelecido notando o que
ocorre com
V(v R™M) = 0,0 RT + 0,6V, R™ 4. (A.28)

O primeiro termo do lado direito de (A.28) é nulo, pois ha contragdo do tensor
antissimétrico "R™** com o tensor simétrico v,,, com respeito aos seus indices [, p].
Nota-se, também, que nao ha contribuicao para o segundo termo, pois a identidade de
Bianchi é satisfeita para o tensor de Riemann. Portanto, o termo remanescente de (A.27)

envolve o comutador das derivadas covariantes, e leva a

N 1 1
V”C,uu — 1 |: (*R)\Va,u + 2*R)\,uau> T + *RT)\a,uRI/ + 7*RT)\OU/RM

2 AT AT 2 AT

1
+ *Rﬂla)\R,u + 5*R ‘I‘,ua)\RV :|

AT AT
) 1 1 (A.29)
- @ |: _ (*R)\ua,u + *R)\,uau) R)\,u + (*Rﬂla)\ + *RT)\QI/) Ry~
2 2 2
*PTAQ, 1* T v

Nesta equacao, as quantidades envolvendo o tensor de Ricci desaparecem devido a
sua simetria. O 1ltimo termo entre colchetes é expandido usando a antissimetria de *R™#

em [7, A]. Assim ficamos com

14 Vo |« TAQ v v KT U v
s :4[R>\“( Apr T/l)\)+Ru>\R>\HT:|
_ % [*RTAOWRVH)\T + *Rﬂwc/\RV)\MT:| (A30)
— %*RT)\Q’MR,\TVM.

As propriedades ciclicas do tensor de Riemann permitiram as passagens de uma
expressao para a outra em (A.30). Finalmente usando a identidade

1
*RT)\auR)\ _ *53*RR 7

(e Z7 4

resultarda em

v

V,.CM = %*RR (A.31)
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A.4 Divergéncia das Equacdes de Campo da Teoria f(R,'RR)

Nesta segao, calcularemos a divergéncia das equagoes de campo modificadas (4.7)

1 1,
fRR;w - §g,uuf + guz/DfR - v(,uvu)fR + 5 RRf*RR Guv

- \ 2 (A.32)
+4 (U}ﬁ Vel ft)s + *R’ZW)VWVAJC*RR> = wTi .

Para inicio, apresentaremos as seguintes identidades de Bianchi, contraidas e nao

contraidas,
0= VGM + RZW + RVWGM )
0= VsRopuw + ViRagsu + Vi Rapus
0= vaRaﬁW + vvRﬁu - vuRﬁu;u ; (A,33)

0=2V*R,, — V,R;
0=2V,,R,, —OR.

Pela conservacao de energia, VT, (/ﬁ:) = 0, a divergéncia das equacoes de campo

modificadas (4.7), terdo a seguinte forma

1
~V,C" =V, (frR") — =g"'Vuf + ¢V, Ofr — V,V*V" fr
2 . (A.34)
= (Vufr) R + [V, R = SV + V' Ofr = OV fr,

onde o tltimo termo de (A.34), encontraremos

OVYfr = ¢"*V ,V V' fr = ¢"*V V'V fr = ¢""V,V"®,
= """V, V@0 = "¢ ([V,, V] + V5V,) o
= 99" [~ AR5+ VsV, 0] (A.35)
= —(Vafr) RN +V'VVa fr
= (Vafr)RY + V'Ofg.

Substituindo a quarta equagao de (A.33) e (A.35) em (A.34), chegaremos a

Eq.(4.12), conforme os passos demonstrados a seguir

1 1
—VuC" = (Vufr)R™ + §fRVVR - §V”f + V'Ofr — (Vafr)RY — V'Ofg (436
.36
1 1
= §fRVVR D) (fRV'R+ frrV"'RR) ,

enfim, a divergéncia covariante do C-tensor da teoria f(R,*RR) sera

1
V.C" = 3 farV" RR |, (A.37)
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Agora, vamos calcular a divergéncia do termo entre colchetes do C-tensor (4.10)
VX" = 4V, (0¥ 0V RY) + RN, fg)
=4V, Y, (vsfan R
= 4([Vy, V4] + V,V,.) Vi frr BT
= 4V, Vu Vo frn BN + 4[N, V|V forr B2

(A.38)

sendo nulo o primeiro termo desta equagao, devido a simetria dos indices (i, A). Logo

1
T = 9, Tt (09 4 L)

1
*OV U *YOUA DU *YVOA *OUVA
:4UA<R ARG+ BORG,, + RYORG, 4 SRR,

1 * v 1 * v
+5 R0 AR’;W +5 RW”RGW>

1
_ 41}/\{ (*ROV/L)\ + 2*R€w/)\> Rvg,,y + *RVOM)\R;WY
1 1

*YOU *YVON * O\ pv
SRR+ RORG, SRR,

1 1 1
_ 4UA|: <*R0uu)\ 4 Q*RH;UJ)\> RHM + (*R'Wu)\ + 2*R'yu9)\) v + (*R;UJG)\ + 2*Ru91//\) RGM]

Oy

— 41})\ { <*R;w9)\ _ *RHV;M + *RuGV)\) Rau + (*R’YHMA + ;*Rwe,\> v ]

Oy

(A.39)

Nota-se que nao ha contribuicao para os termos contidos no primeiro par de
parénteses de (A.39), devido a simetria de Ricci nos dois primeiros termos, e a identidade

de Bianchi no terceiro termo, logo (A.39) resultarda em

VMXMV — 2,0/\ (*R'yﬂu)\( VOWy _ VWLG) + *RWMQARVGMW)
_ 21})\ (*R’YGMARVMGW + *RWMGARVGHN) — QUA*R"/G/L/\( V'ug"/ + RV#@/}/) (A40)

= 20, R RY 5, = 20, R¥PRY .

Na passagem da primeira linha de (A.40) foi utilizado a primeira identidade de
Bianchi (A.33). Note que

* v 1 v ok
RMMQRM o= ng RR, (A.41)
logo
1 1 1
VX" = —Suy g% RR = =" RR = = 'RRV" fnp. (A42)

Comparando os resultados encontrados em (A.42), (A.37) e (4.10), veremos que

eles estao em concordancia
4 v 1 * v
V,.C" =V, X" + ivu (frr 'RR) g"

1

T2
1 *
- 5 *RRVV RR.

1 1
*RRva*RR + if*RRVV RR + i*RRVVf*RR (A.43)
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A.5 Obtencao da Acao Efetiva Fermionica Nao-Local de Um-Laco

Aqui iremos demonstrar os procedimentos adotados no ambiente do software
Wolfram Mathematica, com seus respectivos resultados obtidos em respostas aos comandos

realizados que resultaram na acao efetiva fermidnica (5.54) descrita na secao (5.2.2).

Dy =T + TP = I + 1) + I + 1) (A.44)

no limite IR (A > 1), ou seja, quando ® < p.

1 Q P’ 1
1y = —7/ dp———=— (’)() A .45
IR ST2A2 Jo p(p2 +5?) + A ( )
1 - P? 120902 + 60404 — 28206 + OB 1
S NG o2 0 o 1y
S22 P2 4 2 6 (@2 + QQ) A4

Nesse caso, iniciamos os cédlculos expandindo o termo entre colchetes da equacao
(5.63)

2 2
p? sinh (f)
1— % - , (A.46)
2 cosh [ X H2
p* cos < A) +
em torno de A > 1, por meio do seguinte comando:

Series[l — ((p"2 * Sinh[2p/A]) /("2 « Cosh[2p/A] + $"'2))"2, {A, Infinity, 3}],

que resultou em

1-— +O(A ™). (A.47)

(@2 + p2>2 A2

Agora, expandindo em série do logaritmo da equagao acima (A.47), cujo comando

no Wolfram Mathematica foi

4 6
Series |Log |1 — % , {A, Infinity, 3}| .
(@2 + p2) A2
Integrando o resultado acima, ou seja, colocando-o na forma da Eq.(5.65), foi dado

o comando:

4K°

ma {k,0,Q}, Assumptions->a > 0&&L > 0&&b > 0, |,
a

(1/(32%Pi"2))*Integrate [—

cujo resultado obtido foi a expressao

120602 + 640 — 25206 4 OB N b
(D2 + 02)48A272 4A272
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que é o resultado da Eq.(5.65). Agora, faremos o mesmo procedimento para integral (5.57).

Neste caso, para o limite IR, teremos o comando “Series” dado por
Series[Log[p"2 * Cosh[2 * p/A] + ®"2], {A, Infinity, 3}],

resultando em .

2p

LOg ((i)2 + pz) + m

+ O(A™)

Vamos integrar equacao acima (substitutir na Eq.(5.57), cujo comando sera

4

~ 2
Integrate lp/\?) * (Log [@2 +p2} + M) Ap,0,Q},
+p

)

que resultara em

1/ - - - P2
— <6c1>4Q2 3020 + 205 + 68 TLog l _ 1 )

6A21 o2 4 2 (A.48)
+3 (20202 — Q' + 40" Log[@] + 2 (— &' + Q') Log [®* + 7)) .
72
Multiplicando (A.48) por 6 teremos
- - - P
610? — 30201 + 205 + 60 Log (5525 )
96A27?2
+ 553 20207 — Q* + 40 Log(®) + 2 (" + Q') Log (22 + ?)] (A.49)
120502 4 60101 — 20206 + OF N P o2 + 02
- = 0 - :
(32 + 02)48A272 aher 8 T e
Rearrumando os termos de (A.49), obteremos
120602 + 6040 — 2200 + 08 @° 02 + )2
— i 6 o + Log s . (A.50)
(B2 + Q2)48A272 4N27? 2

Sendo (A.50) a Eq.(5.59). No limite UV, ou seja, p ~ A > ®. Nesse caso, devemos
expandir (5.63) em torno de ® pequeno (& < 1).

Log[l — ((p"2 * Sinh[2p/A])/((p"2 * Cosh[2p/A]) + ($"2)))"2], (A.51)
p*Sinh (2—/{9)2
@)2 + p?Cosh (%))2
Series[Log[l — ((p"2 * Sinh[2p/A])/((p"2 * Cosh[2p/A]) + (9"2)))"2], {®, 0, 4}]

Log |1 — (A.52)
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2017 2 (Sech [QKP} Tanh {

AH P < 1+Tanhm2>

Sech [%]” (~3Tanh []° + Taniq [7]") &
Pt (—1 + Tanh [i{’f)

Los (Sech (gj@z) , 2Sinh (%) Tanh (%) ®*  (2+ Cosh (7)) Tanh ()" & O

p? pt

Log [1 — Tanh {

+

(A.53)

O primeiro termo nao depende do campo de fundo, portanto, pode ser desconside-
rado, restando apenas o segundo termo. Apesar de p &~ A, vamos considerar momentos

altissimos (p — 00), entdo o segundo termo se reduz a:

- b2
Exp[2 % p/A] x @"2/p"2 = 5 (A.54)
D
Substituindo (A.54) em (5.65), encontraremos a integral (5.66):
((1/(32 % Pi2))) * Integrate[p * Exp[2 % p/A] * ®"2, {p, Ayy, Q1. (A.55)
P2 2y
552 |© A=2Apy + A) —en A(A —2Q)|. (A.56)

Que é o resultado correspondente a segunda linha da Eq.(5.67). Procedendo

similarmente para a acao Fgl), conforme Eq.(5.64). No limite UV, teremos:

Series[Log[p"2 * Exp[2 * p/A]/2 + &"2], {®,0,2}], (A.57)
1 2 2" KP2
Log (26Ap2) 42 SO, (A.58)

O primeiro termo nao depende do campo de fundo, entao descartaremos ele. Logo,

ao integrar o segundo termo de (5.61), obteremos:

(®"2/(8 % Pi"2)) % Integrate [e_zfpiﬂ xp,{p, A\yv, Infinity}} : (A.59)
2A A
32;2 ov +4) , se Re(A) > 0. (A.60)

Que corresponde a segunda linha de (5.61)

D202 P02 O 2t Q5 1
S e T D Loa(d). A .61
1 TTAe T8 o Ta;ta 0g(®) (A.61)
6 Log (q)Q > ) 1~ - 1 .
+02 4 2 2 4 2 2
4 o -0 Log (® +Q)+ZQ Log (9* + Q7). (A.62)
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APENDICE B - Teoremas e Definicdes

B.1 Instabilidades de Ostrogradsky

Em 1850, Mikhail Ostrogradsky (1801-1862) demonstrou serem possuidos de
instabilidades todos os sistemas descritos por teorias classicas de derivadas superiores
[284]. Tais instabilidades, no nivel classico, traduzem-se em decaimentos espontaneos do
vacuo, uma vez que estados de vacuo podem decair em estados excitados de particulas
e antiparticulas, contribuindo positivamente e negativamente, respectivamente, para a
Hamiltoniana. Estes decaimentos ndo s6 sdo possiveis, mas sdo favorecidos se analisados a

partir do ponto de vista da entropia [283].

Por outro lado, no nivel quantico, também, obter-se-ia um Hamiltoniano que
poderia ter valor negativo, sendo capaz de excitar indefinidamente um estado quantico com
energias ilimitadas e criar pares de particula-antiparticula espontaneamente que, por sua
vez, decairia em pares de particula-antiparticula de maior energia levando a um decaimento
continuo do estado de vacuo. Ao contrario do que é visto, por exemplo, na QED. Em
sintese, conclui-se que este tipo de teoria é inconciliavel com o Universo observado, porque
nosso estado fundamental seria atormentado por modos de energia altamente excitados

que nao se desacoplam, como acontece em uma teoria estavel.

A andlise realizada por Ostrogradsky implica existir instabilidade linear nos
Hamiltonianos associados aos Lagrangianos que dependem de derivada temporal de ordem
superior a um, de tal forma que as derivadas de ordem superior ndo podem ser eliminadas

por integracao parcial'. A construcao de Ostrogradsky é a seguinte:

Para teorias com o Lagrangiano £ = L(z,4) dependente somente de z e &, as

equacoes de Euler-Lagrange deste sistema sao dadas por

————=0 = i=F(r,t) = x(t)=x(t, x,T0), (B.1)

seja o Lagrangiano (B.1) ndo degenerado ‘927‘2; # 0, as solugoes dependera dos valores
iniciais
xg=2z(0) e dog=1x(0), (B.2)
— oL

isto assegura a existéncia de duas coordenadas candnicas, X =z e P = &z, sendo possivel

a inversao do espago de fase onde & é dado em termos de X e P. Ou seja, existe uma

1 Nesse sentido, Isaac Newton (1642-1727) estava certo ao presumir que as leis da fisica tomam a

forma de equagoes diferenciais de segunda ordem, quando expressas em termos de varidveis dinamicas
fundamentais.
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velocidade V (X, P) tal que,
oL

0T |p=x

=V

~-P (B.3)

Desse modo, teremos as seguintes equagoes em coordenadas generalizadas

. _OH oV aﬁav_
:_87]:7 Pav 8£ oLOV 0L
- 0X oxX ' Oz (91:5’)( ~ 9z

O Hamiltoniano? deste sistema é obtido quando aplicado a transformacao de
Legendre em &
H(X,P)=Pi—L=PV —-L>0, (B.4)

com V = V(X,P) e L = L(X,V). Sendo (B.4) positivamente definido e, portanto,

limitado por baixo.

Um exemplo familiar é o oscilador harmonico simples de massa m e frequéncia w,

cujo Lagrangiano é,

1 1 T
L= §mx'2 - imwaZ — i(t) = —w’z(t) = x(t) = zo cos(wt) + 2 sin(wt),
w
. o . . . P . .
cujas variaveis candnicas sao X = x, P = mi — V (X, P) = —, e sua Hamiltoniana
m
possui termos quadraticos em X e P, por isso é limitada por baixo
1 [ P?
H:<+mw2X> >0.

2\m

Outro exemplo de teoria estavel, agora no contexto da teoria de campo escalar, é

a acao geratriz da equagao de Klein-Gordon
1 1
~ [at (28%8“(;5 4 2m2¢2> — (O-m?) =0, (B.5)

ademais, quando definido P = ¢, como sendo o momento associado do campo ¢, decorrera

na seguinte densidade Hamiltoniana limitada por baixo

H = ;P2 + ;(a@aﬁgﬁ) + éngbZ >0. (B.6)

Agora considerando um sistema cujo Lagrangiano seja L(z, &, %), ndo degenerado

em &. As equagoes de Fuler-Lagrange serao

oL d? BE d*> oL
aq dt2 aq dtQ aq =0 =7 (.77,33',.1’, LE) = x(t) T (t,fﬂo,l'o,i[}o, 33'0) ( 7)

Quando ausente a dependéncia explicita do tempo, o Hamiltoniano é uma quantidade conservada.

2
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As quatro coordenadas canonicas de Ostrogradsky serao

Xl = I,
XQ = T,
_oL_doc (B5)
YT 08 dtoi’
oL
P, = %

Assim, o Hamiltoniano de Ostrogradsky é obtido pelas transformacoes de Legendre

em i = 2 e i =2?

2
H=) Pa'—L=PXo+PRA-L, (B.9)

i=1
onde
A=A(X1, Xy, BPy);
L=L(X, X5, A); (B.10)
H = H(X1, X5, P, P).

Mediante o exposto, percebe-se que o Hamiltoniano de Ostrogradsky (B.9) é
linear no momento canonico P;, podendo assumir quaisquer valores positivos ou negativos,
criando excitagao patoldgica de graus de liberdade de energias positiva e negativa, portanto,

atribuindo instabilidades aos sistemas com esta forma.

Enfim, pode-se estender a andlise da existéncia de instabilidades para os sistemas
de dimensoes maiores que (B.7) cujo Lagrangiano tenha dependéncia, ndo degenerada,
nos termos de derivadas temporais de ordem n > 3 (z', #’,...). E, sabendo que quanto
maior for a dependéncia do Lagrangiano nos termos superiores de derivadas do tempo,

maior sera o espago de fase, se comparado com o espaco de configuracao.

Entao, conclui-se que qualquer Lagrangiano nao degenerado contendo termos
superiores a primeira ordem na derivada temporal sofre da instabilidade de Ostrogradsky.
Isto decorre do fato do Lagrangiano depender de um ntimero menor de coordenadas do que
o numero de coordenadas canonicas, que correspondem aos parametros iniciais necessarios

para especificar o problema.



APENDICE B. Teoremas e Definigoes 105

B.2 Teorema de Lovelock

Em 1971, o fisico britdnico David Lovelock (1938- ) formulou um teorema onde
afirma ser as equagoes de campo de Einstein as tnicas equag¢oes de movimento possiveis
quando provenientes de uma acao gravitacional local, que contém apenas termos de até

segunda ordem da derivada da métrica, num espago-tempo quadridimensional [387, 388],

do tipo
S = /d%ﬁ(gw,), (B.11)
onde (B.11) produz as seguintes equagoes de Euler-Lagrange
d |06 4 (0L )| _9L (B.12)
dx’ aguu,i dx’ ag,uu,ij ag;w

Nestas condigoes, as equagoes (B.12) produzirdo a unica possivel expressao de

Euler-Lagrange de segunda ordem

1
V=g {ao g" + a (R — 29“”]%)] =0, (B.13)

onde os a; s sao constantes, R o escalar de curvatura e R, o tensor de Ricci. Constata-se
por analogia que a equagao (B.13) tem a mesma aparéncia da equagao de Einstein (A.15),
para o vacuo, com constante cosmologica A = ag. Isto posto, este poderoso teorema impoe
limites para uma possivel construgao de uma teoria gravitacional num espaco Riemanniano
quadridimensional, a partir de um principio de acao envolvendo apenas o tensor métrico e
suas derivadas. Pois, as tinicas equacoes de campo que sao de segunda ordem ou menos sao
as equagoes de Einstein e/ou uma constante cosmolégica [389]. Isto ndo implica, contudo,
que a acao de Einstein-Hilbert seja a tinica acao construida a partir de g"” que resultara
nas equagoes de Einstein [390]. Na verdade, em quatro dimensdes ou menos, verifica-se

que a agao mais geral é
L=+/—g [alR — 2a9 + ase””aﬁRpZ,,Rpga/g + ay(R* — AR",R", + R“Z;BRafy)] . (B.14)

onde o0s a;, sdo constantes. Para qualquer dimensao D do espaco-tempo, o terceiro termo
em (B.14) nao contribui para as equagoes de Euler-Lagrange (B.12). E, para D =4, o
quarto termo em (B.14) é o termo de Gauss-Bonnet, que também nao contribui para
(B.12). Portanto, o teorema de Lovelock pode ser interpretado como uma imposigao de
limites as teorias que se podem construir a partir do tensor métrico, apontando cinco
opcoes ou caminhos para construgao de teorias métricas da gravidade com equacgoes de
campo diferentes daquelas da RG [391]. Sendo eles: (i) Considerar outros campos além do
tensor métrico g"¥; (ii) Trabalhar em espago-tempo com D # 4; (iii) Aceitar derivadas da
métrica de ordem superior a segunda ordem; (iv) Desconsiderar o principio da localidade;
(v) Considerar a ideia de que as equagoes de campo nao surgem da agao; e (vi) Desistir de
qualquer equagao de campo tensorial de classificagdo (2,0), simétrica sob troca de indices

ou livres de divergéncia.
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B.3 Teorema da Fatoracao de Weierstrass

A fungao complexa f(z) é holomérfica em um ponto z, se existir um disco aberto
centrado em 2o onde f(z) é derivavel em todos os seus pontos. Logo, se f(z) é uma fungao
inteira, ou seja, holomérfica em todo o plano complexo, entao existe um logaritmo bem

definido de f(z), isto é, existe uma fungao inteira g(z) tal que

eI®) = f(2). (B.15)

Agora, considerando f(z) tendo um nimero finito de zeros [ax]}_;, fora da origem,

entdo f(z) pode ser fatorado como
f(z) = 2Mes I <1 - Z), (B.16)
k=1 ak

onde M é a ordem de zero de f(z) em z = 0 e g(z) é alguma funcdo inteira. Agora,

assumindo que f(z) tenha infinitos zeros, além do 0 (zero). Se o produto

ﬁ (1 - Z) (B.17)

k=1 Ak

converge uniformemente em subconjuntos compactos de C, entao ele define uma funcao

inteira com zeros apenas em [ay]. Portanto, podemos escrever

HzOle(lz) z> = M) — f(z) = M9 ,f[l <1 - ak) , (B.18)

Qg

z
Para garantir que o produto [[;2, (1 — ) convirja uniformemente em todo
af

conjunto compacto, basta assumir que a série Eﬁ convirja. Na verdade, em cada disco
ag
Bgr(0) para k grande o suficiente, teremos

z R
|log(1 — a—k)| < —. (B.19)

ag

Entao a soma dos logaritmos converge absolutamente. Para encontrar a fatoracao
para f(z) em geral, temos que modificar fatores do produto infinito para torné-los absolu-
tamente convergentes. Isso pode ser feito por meio de um truque semelhante ao usado na
prova do teorema do matematico sueco Gosta Mittag-Leffler (1846-1927), que na andlise
complexa, diz respeito a existéncia de fun¢des meromorfas com polos prescritos, podendo
ser usado para expressar qualquer funcao meromorfa como uma soma de fragoes parciais
[392].
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B.4 Estruturas Geométricas da Gravitacdo Quadridimensional

Na abordagem geometrodindmica®, pode-se descrever o campo gravitacional atra-
vés de teorias cuja classificacdo depende das estruturas geométricas definidas na prépria
variedade quadridimensional suave M?*, cuja estrutura de conexao definida nela é chamada
de espaco conectado afim (L?), contendo 3 objetos geométricos bésicos: o tensor de curva-
tura da conexdo, o tensor de curvatura homotético e o tensor torgao [71], respectivamente

descritos a seguir

Ry, = 9,0, — 9,0, + 19,10, — 1%
Oy = 9,12, — 9,19 ;

ap)

=T = 5 (T = T2

Nas coordenadas locais do transporte paralelo ao longo de um caminho fechado

(0%
Buv

[(V)§u,ds"” e a imagem do contorno no espago tangente £* =~ 2Qf,ds"”. O estudo sobre

sao: a rotagdo de um vetor V¢ =~ VPds* | a mudanca do comprimento d] ~
as principais defini¢coes, abordagens e métodos aplicados a geometria diferencial pode
ser encontrado numa exposigdo mais detalhada em [393]. A tabela-B.4 destaca uma
classificacdo geométrica natural as variedades* de acordo com suas estruturas métrica-afins
subjacentes: o tensor de curvatura da conexao Rj,, = R, tensor torgao @y, = () e o

tensor de curvatura homotético 2, = 2.

Tabela-B.4: Classificagdo geométrica das teorias métrico-afins.

Objetos geométricos Tipo de espaco Teoria
R=0Q=0 Q=0 M*—Minkowski Relatividade Especial
R=0Q#0 Q2=0 P4—Wei.tzenbf)ck Gravidade Gauge Translacional
(Paralelismo absoluto)
R=0[Q=0 Q#0 s/n s/n
R=0Q#0 Q+#0 s/n s/n
R#0/Q=0 Q= V4 —-Riemann Relatividade Geral
R#0Q=0 Q#0 W4 —Weyl Gravidade de Weyl
R#0Q #0 Q= U*—Riemann-Cartan Gravidade Einstein-Cartan
RA0Q#£0 Q+40 | G'—Métrico-afim Campo Assimétrico
(Einstein-Schrodinger)

Todo o contetido apresentado nesta segdo de Apéndice fora retirado da referéncia [71].

Onde “s/n” é a abreviagdo da expressao latina sine nomine, que significa “sem nome”, ou seja, se
refere a dizer que para o terceiro e quarto caso apresentados na tabela acima o tipo de espaco e sua
correspondente teoria ndo possuem um nome especifico.
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