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RESUMO 
 

Este estudo desenvolveu um modelo de ET, denominado Enhanced and Spatial-Temporal 

Improvement of MODIS EvapoTranspiration (ESTIMET), para monitoramento local e 

regional de ET nos trópicos, com base no modelo de evapotranspiração (ET) MOD16 

original. As principais características distintivas do ESTIMET são fornecer um produto 

quase em tempo real com resoluções espacial (de 500 para 250 m) e temporal (de 8 dias para 

diária) aumentadas, minimizando lacunas na cobertura de nuvens e ajustando características 

tropicais específicas de diversos tipos de vegetação e microclima. Comparamos os resultados 

do ESTIMET com os produtos ET MOD16A2GF, PML_V2 e GLEAM 4.1a, usando dados 

de covariância de vórtices turbulentos (EC) de 14 locais no Brasil, distribuídos entre cinco 

biomas, bem como a ET anual baseada no balanço hídrico em 25 bacias hidrográficas 

brasileiras. As estimativas do modelo ESTIMET ainda foram utilizadas para analisar a 

variabilidade e tendências da ET nos últimos 20 anos em dois biomas brasileiros 

contrastantes (Caatinga e Pantanal) e em regiões com mudanças de uso do solo causadas 

pela ocorrência de incêndios e desmatamentos. No geral, as estimativas do ESTIMET 

capturaram as variações sazonais diárias dos dados de EC, especialmente nos biomas 

Caatinga, Pantanal e Cerrado, com coeficientes de correlação de concordância ( c) variando 

de 0,45 a 0,80 em oito locais desses três biomas. As comparações da ET cumulativa de 8 

dias com a ET das EC mostram que o modelo ESTIMET 

maior que  PML_V2 ( c 

= 0,45). Da mesma forma, no balanço hídrico da bacia hidrográfica, o ESTIMET apresenta 

uma melhor representação da ET anual do que outros produtos de ET nos três principais 

biomas sul-americanos  Amazônia, Mata Atlântica e Cerrado , que cobrem mais de 85% 

do território brasileiro. Além disso, a análise das estimativas da ET nos últimos 20 anos 

permitiu destacar que em ambos os biomas existem ciclos de variação da ET, com alta 

correlação com a variação da precipitação e tendência geral de redução da ET nos diferentes 

usos em ambos os biomas, bem como nas áreas de ocorrência de incêndios e desmatamento, 

indicando que características como disponibilidade de água e mudanças na cobertura vegetal 

são fatores importantes para explicar a variabilidade da ET neses ecossistemas. Assim, o 

ESTIMET melhora as estimativas de ET baseadas em sensoriamento remoto em biomas 

tropicais, operando em uma escala espaço-temporal e latência mais refinadas (ou seja, 

mensal) em todas as condições do céu e sendo capaz de representar a variabilidade da ET de 

superfície naturais e com mudanças antropogênicas ao longo de décadas.  

PALAVRAS-CHAVE: Sensoriamento remoto, MODIS, Evapotranspiração, Brasil. 



ABSTRACT 

This study developed an ET model, namely the Enhanced and Spatial-Temporal 

Improvement of MODIS EvapoTranspiration (ESTIMET), for local-to-regional ET 

monitoring and applications in the tropics, based on the original MOD16 evapotranspiration 

(ET) model. The main distinguishing features of ESTIMET are providing a near-real-time 

product with increased spatial (from 500 to 250 m) and temporal (from 8 days to daily) 

resolutions, minimising gaps in cloud cover, and adjusting for specific tropical 

characteristics of diverse vegetation and microclimate types. We compared the results of 

ESTIMET with those of MOD16A2GF, PML_V2, and GLEAM 4.1a ET products, using 

eddy covariance (EC) data from 14 sites in Brazil, as well as the water balance-based annual 

ET estimates in 25 Brazilian catchments. The results obtained from the ESTIMET model 

were also used to analyse the variability and trends of ET over the past 20 years in contrasting 

Brazilian biomes (Caatinga and Pantanal) and in regions with land-use changes caused by 

the occurrence of wildfires and deforestation. Overall, the ESTIMET estimates captured the 

daily seasonal variations of the EC data, especially in the Caatinga, Pantanal, and Cerrado 

sites located in these three biomes. The comparisons of the 8-day cumulative ET show that 

for the catchment 

water balance, ESTIMET exhibits a better representation of annual ET than other ET 

products in the three major South American biomes, i.e. the Amazon, Atlantic Forest, and 

Cerrado, which cover over 85 % of the Brazilian territory. In addition, the analysis of ET 

estimates over the past 20 years highlighted that both biomes exhibit ET variation cycles 

strongly correlated with precipitation variability, with a general trend of decreasing in 

different land uses in both biomes and in areas affected by wildfires and deforestations, 

indicating that factors such as water availability and changes in vegetation cover are 

important drivers in explaining ET variability in these ecosystems. Thus, ESTIMET 

improves remote sensing-based ET estimates in tropical biomes, operating at a finer 

spatiotemporal scale and with lower latency (i.e. monthly) under all sky conditions, and it is 

capable of representing the variability of ET in natural surfaces and under anthropogenic 

changes over decades. 

KEYWORDS: Remote sensing, MODIS, Evapotranspiration, Brazil.  
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ETp  Potential evapotranspiration 
ETr  Actual evapotranspiration 
ETo  Reference evapotranspiration 
ET  Latent heat flux 

EC  Eddy covariance 
EVI - Enhanced Vegetation Index 
EVI2 - 2-band EVI 
EVI2max -  
EVI2min -  

 - Actual vapour pressure (kPa) 
 - Saturation vapour pressure (kPa) 

a - Atmospheric emissivity (unitless) 
s - Surface emissivity (unitless) 

fwet - Water cover fraction (unitless) 
- Soil heat flux (MJ/ day m²) 

H  Sensible heat flux 
 - Crop coefficient (unitless) 
 - Water stress coefficient (unitless) 

L - Adjustment factor for SAVI (unitless, here L=0.1) 
LAI  Leaf area index 
m - Number of tied groups 
m(Tmin) - Limiting factor of potential stomatal conductance for minimum air temperature 
(unitless) 
m(VPD) - Limiting factor of potential stomatal conductance for high vapour pressure 
deficit (unitless) 
N - Sample size 
n - Number of observations 
NDVI  Normalised Difference Vegetation Index 
O - Observed value 

- Mean of observed values 
P - Observed catchment-scale total annual precipitation (mm) 
PM  Penman Monteith model 
PT  Priestley Taylor model 

- Correlation coefficient 
Q - Observed annual streamflow at the catchment outlet (mm) 
RS  Remote sensing 

 - Net radiation (MJ/ day m²) 
r - Pearson correlation coefficient 
r1- Spectral reflectance of band 1 (red)  
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r2 - Spectral reflectance of band 2 (near-infrared 
ra - Aerodynamic resistance (s m-1) 
rs - Surface resistance (s m-1) 
R  - Downward shortwave incoming radiation (W.m-2) 
S - Annual changes in catchment water storage (mm) 
SAVI - Soil Adjusted Vegetation Index (unitless) 

- Stefan Boltzmann constant (5,67x10-8 W m-2 K-4) 
sign(x) - Sign function of x 

 - Air temperature (°C) 
- wind speed at 2 m height (m/s) 

 - Observation at time i 
- Observation at time j 

x, y - Values of variables x and y 
x, y - Mean values of variables x and y 

 - Slope of the saturation vapour pressure temperature curve (kPa/°C) 
 - Psychrometric constant (kPa/ °C) 
- Air density (kg.m-3) 
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1 INTRODUCTION 

 
Evapotranspiration (ET) plays a crucial role in the global water cycle, serving as the 

primary pathway for water loss to the atmosphere. Accurately quantifying ET is essential for 

many purposes, including drought prediction, efficient irrigation, plant productivity, water 

management, and the elucidation of climate change processes (Hu et al., 2015; Machado et 

al., 2014; Liu et al., 2020; Ahamed et al., 2022; Silva et al., 2024.). ET can be measured 

through a variety of direct methods or estimated using indirect approaches, which include 

measurements using the eddy covariance (EC) technique, surface renewal, lysimeters, 

estimates from soil-water monitoring, and meteorological methods (Li et al., 2009; Silva et 

al., 2015; Melo et al., 2021; Silva et al., 2024). However, these ground-based monitoring 

techniques are costly and time-consuming (Luo et al., 2015; Grosso et al., 2018;). 

Furthermore, landscape-level techniques are limited by their spatial coverage, due to the 

large spatial heterogeneity of forests (Tang et al., 2013; Andrade et al., 2021; Khan et al., 

2021; Melo et al., 2021). This means that the information obtained from these field-based 

approaches cannot be easily extrapolated to produce regional values of ET, which are 

essential for driving hydrological models and monitoring systems that allow stakeholders to 

make more effective decisions (Chen et al., 2005; Immerzeel and Droogers, 2008; Luo et al., 

2015; Grosso et al., 2018; Ollivier et al., 2021).  

 To provide spatially distributed information on ET at a regional scale, remotely 

sensed observations by satellite sensors have become a viable solution in the past few 

decades (Kalma et al., 2008; Wang and Dickinson, 2012; Zhang et al., 2016; Laipelt et al., 

2021; Bezerra et al., 2023). Data from various remote sensing methods are currently 

available and used to produce regionally distributed ET at different spatiotemporal 

resolutions (Tang et al., 2013; Chen and Liu, 2020; Filgueiras et al., 2020; Khan et al., 2021). 

The most common remote sensing-based methods include: (1) empirical models that relate 

ET to vegetation indexes or land-surface temperature (Petropoulos et al., 2009); (2) residual 

methods based on the energy balance equation, such as the Two-Source Energy Budget 

(TSEB) (Norman et al., 1995; Kustas and Norman, 1999), Surface Energy Balance Model 

for Land (SEBAL) (Bastiaanssen et al., 1998a), and Mapping Evapotranspiration at high 

Resolution and with Internalised Calibration (METRIC) (Allen et al., 2007); and (3) methods 

based on the application of traditional calculations, such as the Penman-Monteith (Cleugh 

et al., 2007; Mu et al., 2007, 2011) and Priestley-Taylor equations (Fisher et al., 2008; Jin et 

al., 2011; Wong et al., 2021). 
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 The energy balance models, such as SEBAL, typically compute the instantaneous 

latent heat flux (energy equivalent to instantaneous ET) as a residual term of the energy 

balance equation, by estimating the other energy fluxes (Bastiaanssen et al., 1998b). Hence, 

SEBAL is arguably one of the most common, validated and precise techniques for estimating 

distributed ET from local to regional scales and at high spatial resolutions (Andrade et al., 

2024). This is valuable for hydrological modelling purposes in small and medium-sized river 

basins. For instance, Biggs et al. (2016) highlighted that the implementation of SEBAL 

yields lower errors over regions smaller than 10,000 km² compared to larger regions, due to 

the model's moderate sensitivity to surface roughness. Although widely used and validated, 

regionally, for a large number of different environments worldwide (e.g. Bastiaanssen et al., 

1998a; Timmermans et al., 2007; Teixeira et al., 2009; Allen et al., 2011; Silva et al., 2015; 

Bala et al., 2016; Grosso et al., 2018; Ferreira et al., 2020; Mohan et al., 2020; Costa-Filho 

et al., 2021; Laipelt et al., 2021; Liu et al., 2021; Bezerra et al., 2023), the SEBAL model 

still has some limitations with regards to applications on seasonal timescales. This is 

because: (1) a range of preliminary procedures are required to compute the sensible heat 

flux, which include the selection of calibration pixels (hot and cold) and the availability of 

two-level wind speed data from meteorological stations (Bezerra et al., 2023); (2) the high-

dependency of surface temperature and emissivity parameters, obtained from thermal 

infrared satellite data, limits its application to clear-sky days (Bhattarai et al., 2019); and (3) 

the errors generated when the instantaneous ET values for the satellite passage-time are 

extrapolated to daily, monthly, or annual scales (Van Niel et al., 2012, 2011). 

 To overcome the complex procedures and data dependencies of the models based on 

the energy balance, Cleugh et al. (2007) developed a more straightforward approach using 

Penman-Monteith logic to estimate ET with data obtained from the MODerate Resolution 

Spectroradiometer (MODIS) sensor onboard the Terra and Aqua satellites. Subsequently, 

Mu et al. (2007; 2011) improved the method to generate the first ET global product using 

MODIS and reanalysis-derived meteorological inputs (MOD16). The MOD16A2 dataset 

provides ET information globally, with a spatial resolution of 500 m and three different 

timescales (8 days, monthly, and annual) (Running et al., 2017). For example, the 8-day data 

represents the sum of ET for all eight consecutive days. In 2023, MOD16 was upgraded to 

version MOD16A2GF, where linear interpolations were used to fill data gaps caused by 

cloud contamination in the 8-day Leaf Area Index/Fraction of Photosynthetically Active 

Radiation (LAI/FPAR, MOD15A2H product) and surface albedo (MCD43 product) images. 

This interpolation procedure occurs at the end of each year (Running et al., 2021). 
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Several studies have tested the accuracy of the MOD16 ET product in complex areas 

under distinct climatic and vegetation aspects worldwide, mainly using information from EC 

flux towers (Vinukollu et al., 2011; Ramoelo et al., 2014; Chen et al., 2014; Hu et al., 2015; 

Tang et al., 2015; Biggs et al., 2016; Aguilar et al., 2018; Khan et al., 2018; Filgueiras et al., 

2020; Zhu et al., 2022). More specifically, in Brazil, several studies showed that the accuracy 

of the MOD16 product varies according to certain environmental characteristics, such as 

climate, land cover, and a combination of both, depending on the biome classification 

(Ruhoff et al., 2013; Souza et al., 2016; Maeda et al., 2017; Moreira et al., 2018; Melo et al., 

2021; Dias et al., 2021; Biudes et al., 2022). For instance, the assessment carried out by 

Ruhoff et al. (2013), at two sites located in the Brazilian Cerrado biome, showed that the 

MOD16 product overestimated the mean ET (8-days, monthly, and annual) but no long-term 

over or underestimation was found for a sugar cane cropland area. Maeda et al. (2017) also 

showed that the MOD16 model was unable to consistently represent the seasonal patterns of 

the ET at a river basin scale in the Amazon Forest. 

 The limitations faced by the MOD16 ET product, especially for regional and local 

applications, are the land cover and atmospheric characterisations, which are made through 

the MODIS Land Cover Type (MOD12Q1) and the Modern-Era Retrospective analysis for 

Research and Applications (MERRA-2) products; these inputs to the model obtain canopy 

conductance and meteorological data, respectively (Running et al., 2017; 2021). The 

meteorological input data have 0.5° x 0.6° or 1.0° x 1.25° spatial resolutions, which are too 

coarse for accurate evaluations, especially in regions characterised by marked climatic 

gradients (Alvares et al., 2013). Parallel to this, MCD12Q1 may misidentify some local or 

regional vegetation characteristics and introduce significant errors in ET estimates (Ruhoff 

et al., 2013; Laipelt et al., 2021). Moreover, the original MOD16 model was restricted to 

being used in clear sky conditions until recently, as the orbital remote sensors cannot 

measure cloud base parameters (Sur et al., 2015; Running et al., 2017). Consequently, 

despite using the best observations during eight consecutive days, many grid cells of the 

MOD16 ET product were still contaminated by clouds, especially in tropical regions, 

presenting gaps in the ET time series (Running et al., 2017). This problem was partially 

solved when the product was recently upgraded to version MOD16A2GF, in which the 

cloud-contaminated pixels are filled through linear interpolation, a correction occurring at 

the end of each year. Nevertheless, this renders the MOD16A2GF no longer a near-real-time 

product because it can only be generated at the end of a given year (Running et al., 2021). 
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Several studies have been undertaken in parallel, attempting to modify the MOD16 

ET model to overcome the limitations mentioned earlier (e.g. Morillas et al., 2013; Yeom et 

al., 2015; Ke et al., 2016; Wu et al., 2016; Srivastava et al., 2017; Ke et al., 2017; Chang et 

al., 2018; El Masri et al., 2019; He et al., 2019; Zhang et al., 2019; Brust et al., 2021; Dias 

et al., 2021; Astuti et al., 2022; Liu et al., 2022; Lu et al., 2022; Guo et al., 2023; Kumar et 

al., 2023). These modifications generally involve the following processes: (1) improve the 

spatiotemporal resolutions; (2) make adaptations for obtaining information for all sky 

conditions; and (3) implement local parameterisations, such as land use and land cover 

(LULC) information. All of these improvements used distinct adjustment approaches, but 

none covered all aspects together for a more operational data extraction at local and regional 

scales.  

In this context, to address these limitations for local and regional applications in 

tropical areas, this study developed and evaluated the Enhanced and Spatial-Temporal 

Improvement of MODIS EvapoTranspiration model (ESTIMET). This model offers lower 

latency (currently annual for the monthly MOD16A2GF) and improved temporal (from 8 

days to daily) and spatial (from 500 m to 250 m) resolutions. Obtaining these distributed, 

continuous, and accurate estimates of ET enables more precise trend analysis and correlation 

of this component with biotic and climatic parameters in complex regions, which can be 

more effectively utilised in hydrological modelling, water resource management, and 

agricultural practices. 

 
1.1 Hypotheses 

 
 This thesis is based on the hypotheses that modifications of the MOD16 model, 

including the use of refined input remote sensing and reanalysis datasets, can improve the 

long-term (2003-actual) spatiotemporal representativeness of distributed ET estimations in 

heterogeneous tropical regions mostly covered by clouds, which can be more effectively 

utilised for time sensitivity analyses or applications. 

 

1.2 Main aims 

 
To propose and evaluate the ESTIMET (Evolution and Spatial- Temporal 

Improvement of MODIS EvapoTranspiration) model, able to consistently provide a finer 

spatial (250 m) and temporal (daily) variability of long-term (2003-present) ET for tropical 

biomes with low latency (monthly) when compared to the global current datasets. 
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1.3 Specific aims 

 
 Adjust a more regional/local model to estimate distributed evapotranspiration in 

tropical climates, overcoming limitations related to frequent cloud cover; 

 Evaluate the performance of the ESTIMET model in representative sites of the 

main biomes found in tropical climates; 

 Analyse long-term (2003 present) trends in evapotranspiration and their 

correlations with precipitation and land use/land cover changes in contrasting 

tropical biomes; and 

 Assess the potential of ESTIMET for temporal sensitivity analyses in regions 

experiencing vegetation cover degradation. 

 

1.4 Thesis structure  

 

The thesis is divided into six chapters. Chapter one presents a contextualisation and 

justification that motivated the development of this study, including the hypotheses and 

aims. Chapter two presents a literature review, covering conceptual and foundational topics 

related to ET and orbital remote sensing, which are essential for a better understanding of 

the study. Chapter three presents the physical characteristics of the region chosen for 

applying and validating the ESTIMET model. Chapter four describes the materials and 

methods used to develop the ESTIMET model, along with the results of its evaluation and 

comparison with other ET satellite-based products. Chapter five presents the long-term trend 

analyses of the ET estimated by ESTIMET in the Brazilian biomes, as well as the model's 

potential for sensitivity analyses. Lastly, the final chapter presents the study's conclusions 

and recommendations. 
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2 LITERATURE REVIEW 

 

2.1 Evapotranspiration  

 

Evapotranspiration (ET) is a critical process in hydrology that involves the 

conversion of water from the liquid phase to atmospheric vapour (Melo et al., 2021). This 

loss of water to the atmosphere occurs through the process of evaporation, which involves 

the transfer of water from various sources, including the soil surface, water bodies, and plants 

(Allen et al., 2021). Vegetation releases water to the atmosphere by evaporation and 

transpiration. The transpiration releases water through stomata. As evaporation and 

transpiration occur simultaneously, they are not easily distinguishable, being estimated as 

ET (Bezerra et al., 2023). The ET process is influenced by different hydrometeorological 

factors, including available energy, precipitation, wind, temperature, and humidity (Oliveira, 

2012; Gusmão, 2017).  

ET represents between 50 and 80% of precipitation, being the second largest flux in 

the hydrological cycle and playing a crucial role in the global water, carbon, energy, and 

nutrient cycles, directly influencing climate at different spatial scales (Valle Júnior et al., 

2020; Vargas Godoy et al., 2021). Quantifying ET is essential for several sectors, including 

agriculture, reservoir management, meteorological and hydrological modelling, and flood 

forecasting (Oliveira, 2012; Lima et al., 2013). 

ET was defined in three types to approximate the quantification process for 

estimations: potential evapotranspiration (ETp), which is the loss of water to the atmosphere 

from a natural vegetated surface without water limitations for soil evaporation and plant 

transpiration; actual evapotranspiration (ETr, , which occurs on vegetated surfaces under real 

atmospheric and water conditions; and reference evapotranspiration (ETo), which considers 

a hypothetical surface similar to green grass, with a height of 0.12 m, a plant resistance of 

70 s m-1, and an albedo of 0.23 (Allen et al., 1998; Camargo and Camargo, 2000). In this 

study, for simplicity, we use ET referring to actual evapotranspiration. 

Quantifying ET is a major challenge in hydrological research due to its complex 

interactions with atmospheric properties, vegetation, soil, and topography (Zheng et al., 

2016; Bhattarai et al., 2019). Various approaches, ranging from direct measurement 

techniques to indirect energy balance models using remotely sensed data, have been 

developed to estimate ET, keeping pace with technological and scientific advances (Allen et 

al., 2011; Bezerra et al., 2023). The direct collection of ET is a complex and expensive task, 
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because requires special facilities and equipment with high associated costs. Overall, this 

approach is reserved for specific experimental conditions and is mainly used to calibrate 

indirect ET estimation methods (Pereira et al., 1997; Gusmão, 2017), including: 

1) Class A tank, which consists of a tank full of water exposed to the environment (Fig. 1). 

Changes in the water level are recorded daily, and these data are adjusted by the amount of 

precipitation measured at the same weather station during the same measurement period. 

This is a traditional method to estimates ETp, which is widely used because of its simplicity 

and low cost (Abtew and Melesse, 2013). 

 

 

Figure 1  A typical class A tank.  
Source: NOAA (2005) 

 

2) Lysimeters, which consist of impermeable tanks containing a volume of soil with certain 

vegetation, making it possible to monitor the variation of the mass of water in this sampled 

volume (Fig. 2) (Cunha et al., 2011; Abtew and Melesse, 2013). This method enables a more 

detailed analysis of the water balance terms (e.g. precipitation, irrigation, and drainage) to 

obtain ET as a residual component in the soil block. (Pereira et al., 1997). The use of 

lysimeters is generally limited to short crops due to the size of the sampled area, which lacks 

representativeness of plant diversity (Rana et al., 2005). 
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Figure 2 Lysimeter Installation. 
Source: UFRGS (2004)

3) Basin water balance, where ET is calculated as the difference between precipitation and 

streamflow, assuming no significant changes in soil water storage over long periods of time 

(Bezerra, 2023). Although widely used for regional ET estimates, this approach mostly 

provides average values for the studied area, not fully reflecting the spatial variability of ET 

(Zhang et al., 2016). 

4) Scintillometers, which are instruments with a transmitter and receiver unit separated by 

a horizontal distance (102 to 104 m). These instruments measure small variations in the 

refractive index of the air caused by changes in temperature, humidity, and pressure that 

induce variations in air density, i.e. providing an average value of the sensible heat flux (H)

for a contribution area ranging from 50 to 12,000 m² (Fig. 3) (Allen et al., 2011). However, 

obtaining ET makes the estimates of other energy balance necessary, such as net radiation 

(Rn) and soil heat (G), at the same measurement scale as H (Allen et al., 2011; Cunha et al., 

2011; Allen et al., 2021). On the other hand, a microwave scintillometer enables the direct 

obtaining of the H and latent ( ) heat fluxes (Lobos-Roco et al., 2022).
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Figure 3 - Microwave Scintillometer. 
Source: OTT HydroMet (2016) 

 

5) Turbulent vortex correlation (eddy covariance  EC), which is a technique to directly 

measure the fluxes of sensible and latent heat, CO2, and methane between the Earth's surface 

 (Fig. 4). This is 

technique obtain an average value of ET for an area of up to 10 km², which varies depending 

on the wind at the time of measurement (Chu et al., 2021). EC is considered the most accurate 

method for estimating energy fluxes. At the same time, the EC technique is complex to 

implement due to the need for rapid response instruments and the challenges of operation, 

calibration, and maintenance (Baldocchi et al., 2001; Ruhoff, 2011). Although EC flux tower 

data are often used to validate ET estimates, they can present energy balance closure 

problems where the sum of heat fluxes does not adequately match net radiation, resulting in 

errors of up to 10-30% (Foken, 2008; Allen et al., 2011; Mu et al., 2011; Ruhoff et al., 2013). 
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Figure 4 - Eddy covariance sensors. 
Source: AMERIFLUX (2022) 

 

Given the complexity and cost associated with direct methods to measure ET, indirect 

and empirical methods are also used to estimate ET. Several models and methods have been 

developed over the years to estimate ET, differing in their concepts and the number of 

variables considered (Araújo et al., 2007; Gusmão, 2017). The indirect and empirical 

methods include: 

1) Bowen's ratio, which uses the atmospheric variables and the energy available on the 

studied surface to calculate the ratio between heat flows, allowing estimations of ET 

 's ratio is theoretically 

simple and widely recognised as one of the most used methods for determining H and  

fluxes on a given surface (Shuttleworth, 2012; Allen et al., 2021).  

2) Classical equations, which consist of using various specific equations formulated based 

on mass transfer, energy balance, or water balance principles to estimate ET (BRUSAERT, 

2005). The most widely used equations in hydrology for calculating ET include the Penman-

Monteith (Penman, 1948; Monteith, 1965), Priestley-Taylor (Priestley-Taylor, 1972), and 

Thornthwaite (Thornthwaite, 1948).  

2) Remote sensing (RS) approaches, based on empirical spectral indices (e.g. vegetation 

indices) or energy balance measurements at the surface, mainly obtained from orbital sensors 

(Bezerra, 2023). The estimation of ET from RS data has been applied to capture the spatial 
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and temporal variability of ET over large and heterogeneous areas (Tang and Li, 2014; Fisher 

et al., 2017; Trebs et al., 2021).  

 

2.2 Remote sensing techniques 

 
Remote sensing techniques are based on the acquisition and measurement of 

information regarding objects, areas, or properties of specific phenomena through recording 

devices that operate without requiring direct physical contact (Read et al., 2020). This 

methodology enables the acquisition of a synoptic and multitemporal view of extensive 

based on the use of sensors onboard artificial satellites in 

orbit. Remote sensing has become a widely employed strategy in environmental analyses 

and monitoring (Souza et al., 2022). The field of remote sensing applications is vast, 

encompassing a range of applications, from agriculture (Li et al., 2023) and water resource 

management (Zegait et al., 2024) to land use and land cover mapping (Coelho et al., 2014) 

and climatology (Godoy and Markonis, 2023). This technology is essential for detecting and 

anthropogenic activities (Binetti et al., 2023).  

satellite sensors occurs at the speed of light through electromagnetic radiation waves 

(Racetin and 

frequency, which comprises the electromagnetic spectrum that ranges from gamma rays, x-

rays, ultraviolet, visible light, infrared (near-, mid-, and far-infrared), microwaves, to radio 

waves. The most widely used regions of the electromagnetic spectrum for collecting 

  m), the 

visible light (0.4  0.7 µm), and the infrared spectra (Fig. 5) (Schumann and Moller, 2015). 

Active sensors use the microwave bands, while passive sensors primarily use the visible and 

infrared spectrums. 

When electromagnetic radiation from the Sun 

intensity is partially or totally reduced due to interactions with atmospheric constituents, 

including water vapour and among 

others. These gases play a fundamental role in the absorption of electromagnetic radiation, 

making it impossible to use some wavelengths obtained by passive sensors for collecting 

 (Golubkov et al., 2018). However, the 

visible and some infrared spectral regions present less interference from these gases, where 
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solar radiation transmission occurs more efficiently, consequently favouring the acquisition 

data from orbital sensors (Wang et al., 2021).  

 

 
Figure 5 - The electromagnetic spectrum and atmospheric transmittance. 

Source: Albertz (2007)  
 

When the electromagnetic radiation be 

partially transmitted, reflected, or absorbed, with proportions varying according to the 

physical, chemical, and biological characteristics of the materials. Only the reflected 

shortwave radiation can be directly detectable by sensors and converted into processable 

electrical signals. The absorbed fraction is re-emitted in long waves by the surface as a result 

of thermal processes and/or dissipated in the form of heat, whose re-emission can also be 

detectable by passive sensors operating in the far-infrared (i.e. thermal infrared) spectrum 

(Farella et al., 2022). Changes in the reflectance and emittance signals, detected by passive 

sensors, point to physicochemical and biological modifications in natural and/or 

anthropogenic resources. 

The radiation is captured and recorded by remote sensors according to four 

fundamental detection capabilities: spectral, spatial, radiometric, and temporal resolutions 

(Som-ard et al., 2021). The spectral resolution corresponds to the number and width of 

wavelength intervals (bands) that the sensor can discriminate, directly influencing its 

efficiency in distinguishing targets with similar spectral responses (Fig. 6). The spatial 

resolution defines the level of geometric detail of the image, being represented by the 



 31 

individualised by the sensor, i.e. higher spatial resolutions 

enable the identification of smaller features and subtle structures. The radiometric resolution 

refers to the sensitivity of the detection system in recording variations in the intensity of 

radiation reflected and/or emitted by targets, expressed by the number of binary digits (bits) 

available to quantify the energy recorded in each pixel. Lastly, the temporal resolution 

corresponds to the revisit frequency of the sensor to obtain data for the same region of the 

face, i.e. a determining parameter for continuous and multitemporal monitoring 

of dynamic phenomena (Kakic and Kuenzer, 2022).  

Despite being a powerful tool for environmental monitoring on large scales, orbital 

remote sensing presents limitations caused by cloud cover, scale factors, and low data 

acquisition frequency (Prudente et al., 2020).  

 

 
Figure 6 - Spectral responses for selected features. 

Source: Horning (2019) 
 

2.3 Evapotranspiration by remote sensing 

 

The 

by remote sensors has been used to spatially estimate ET in large and heterogeneous areas, 

filling the gap left by direct measurements, which are punctual and only represent regions 

with homogeneous coverage (Andrade, 2023). Remote sensing data is essential for 
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understanding the factors that regulate ET, including radiative, atmospheric, and 

phenological aspects (Bezerra, 2023).  

Several remote sensing products have been provided by applying these models to 

data obtained through remote sensing and field measurements, as listed in Table 1. The 

availability of these products is a significant advancement in hydrometeorological research, 

particularly in areas with limited data. However, it is crucial to assess the accuracy of these 

products on a local scale before conducting the study. 

The integration of remote sensing data into ET modelling has significantly enhanced 

the understanding of hydrological processes at various temporal and spatial scales. However, 

some challenges persist, such as the dependence on cloud-based image availability and the 

management of large volumes of data (Gowda et al., 2008; Mu et al., 2011; Ruhoff et al., 

2012; Chen and Liu, 2020; Andrade et al., 2021). Planetary-scale platforms for Earth science 

data and analysis, like Google Earth Engine (GEE), have made powerful cloud-based 

processing resources accessible to everyone, promoting innovation and the use of advanced 

techniques, including machine learning models to improve ET estimates (Lary et al., 2016; 

McCabe et al., 2017; Käfer et al., 2020; Andrade et al., 2021). 

Over the past years, several models using satellite-based remote sensing data have 

been developed and successfully applied to estimate spatially distributed ET rates. However, 

none of these models is fully comprehensive, as they need to be adapted to different climatic 

conditions and local characteristics (Li et al., 2009; Allen et al., 2011; Chen and Liu, 2020; 

Seibert and Berstrom, 2022). These ET models can be categorised into two main remote 

sensing approaches. The first approach considers land surface temperature from far-infrared, 

while the second is based on vegetation indices using shortwave sensors (visible and near-

infrared) (Andrade, 2023). 

Models that use satellite-retrieved surface temperature are based on the surface 

energy balance (SEB) fluxes, which are known as SEB models. These models rely on 

selecting boundary conditions in pixels where ET is zero or potential, where a fraction of 

evapotranspiration for each pixel is calculated based on its land surface temperature value in 

relation to the extremes. The main models in this category are: Surface Energy Balance Index 

(SEBI) (Menenti and Choudhury, 1993), Two-Source Energy Budget (TSEB) (Norman et 

al., 1995; Kustas and Norman, 1999), Surface Energy Balance Model for Land (SEBAL) 

(Bastiaanssen et al., 1998), Mapping Evapotranspiration at high Resolution and with 

Internalised Calibration (METRIC) (Allen et al., 2007); Atmosphere-Land Exchange 

Inverse (ALEXI) (Anderson et al., 1996), Simplified Surface Energy Balance Index (S-
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SEBI) (Roerink et al., 2000), Surface Energy Balance System (SEBS) (Su, 2002), 

Atmosphere-Land Exchange Inverse flux disaggregation approach (DisALEXI) (Norman et 

al., 2003). Although widely used, these models have limitations in large-scale applications 

and operationalisation due to subjectivity in the selection of boundary conditions, which 

makes extrapolations to larger areas uncertain (Senay et al., 2013; Liou and Kar, 2014). 

Ruhoff et al. (2012) highlight that the SEBAL model is a promising tool for determining 

energy fluxes in cloudless conditions. However, estimating energy fluxes on cloudy days 

remains a challenging yet crucial task for obtaining accurate seasonal, monthly, and annual 

ET projections. 

SEBAL is one of the most common SEB models. Bezerra et al. (2023) developed the 

Seasonal Tropical Ecosystem Energy Partitioning (STEEP) model, which is an adaptation 

of SEBAL for applications in seasonally dry tropical forests. The application of STEEP to 

the Caatinga region in Brazil achieved comparable or superior performances to the original 

SEBAL and some global ET products (MOD16 and PMLv2), representing a significant 

improvement where ET is typically overestimated in this region by SEBAL. However, the 

model has limitations in spatial representation, as it was applied and evaluated only in the 

Caatinga region, which limits its generalizability to other tropical biomes. Furthermore, its 

implementation depends on the availability of high-quality satellite imagery, a factor that 

may limit the model's operational applicability in tropical regions with high cloud cover. 

Andrade et al. (2024) developed the geeSEBAL-MODIS for monitoring climate 

change and anthropogenic impacts of ET in different biomes in Latin America. geeSEBAL-

MODIS resulted in a 13% error reduction at the local scale and a 30% error reduction at the 

basin scale. However, the study also has limitations in terms of temporal continuity. 

geeSEBAL-MODIS still relies on cloud-free satellite images, which results in the exclusion 

of rainy or transitional days, or even months, generating temporal gaps and greater 

uncertainties in tropical regions with high cloud frequency. 

On the other hand, models based on vegetation indices (e.g. leaf area index LAI; 

normalised difference vegetation index, NDVI; Soil-Adjusted Vegetation Index, SAVI), 

surface albedo, and land use and land cover classification are used to obtain the resistance 

terms in the Penman-Monteith (PM) (Monteith, 1965) or Priestley-Taylor (PT) (Priestley 

and Taylor, 1972) equations. 

PM models provide a comprehensive solution for SEB and mass transport, while PT 

models simplify the PM approach by replacing the mass transport component with an 

empirical value that depends on the local climate (Monteith, 1965; Priestley and Taylor, 
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1972). With the advancement of computational technology and the availability of space-

based remote sensors, the PT approach has become increasingly feasible. The main model 

based on the PT methodology is the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) 

(Fisher et al., 2008), developed from the integration of concepts and improvements present 

in previous models, such as Global Land Evaporation Amsterdam Model (GLEAM) 

(Miralles et al., 2011), MOD16 (Mu et al., 2011), Penman-Monteith-Leuning (PML) 

(Leuning et al., 2008), and Breathing Earth System Simulator (BESS) (Ryu et al., 2011). 

However, although models based on the PT approach are widely used because they are 

simpler and faster, they still have some limitations. The PT-JPL model relies on empirical 

parameters and adjustments made for specific regions, meaning it cannot always accurately 

represent ET variations, especially in areas with highly varied vegetation or extreme climatic 

conditions (Fisher et al., 2008). Thus, due to the existing gaps identified in previous models, 

this research focuses on developing a model based on the Penman-Monteith logic.  
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2.4 Evapotranspiration models based on Penman-Monteith logic 

 

The FAO (Food and Agriculture Organisation) Penman-Monteith method uses both 

the energy balance and mass transport to calculate ET of a reference crop surface (ETr) 

(Allen et al., 1998; ASCE-EWRI, 2005), combining crop (kc) and soil (ks) water stress 

coefficients to determine daily ET using Equations 1 and 2. 

 

 

 

 

where  is the daily net radiation (MJ/ day m²),  is the daily soil heat flux (MJ/ day 

m²),  is the daily mean air temperature (°C);  is the psychrometric constant (kPa/ 

°C),  is the daily mean wind speed (m/s) at 2 m height;  and  are the 

saturation and the actual vapour pressure for the daily time step (kPa), and  is the slope of 

the saturation vapour pressure-temperature curve (kPa/°C). 
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2.5 Application, evaluation and improvement studies of the MOD16 

evapotranspiration model 

 

Several studies have tested the accuracy of the MOD16 ET product in complex areas 

under distinct climatic and vegetation aspects worldwide, mainly comparing ET estimates 

obtained from EC flux towers (e.g. Vinukollu et al., 2011; Chen et al., 2014; Ramoelo et al., 

2014; Hu et al., 2015; Tang et al., 2015; Biggs et al., 2016; Aguilar et al., 2018; Khan et al., 

2018; Filgueiras et al., 2020; Zhu et al., 2022). These studies provided contrasted 

evaluations. While Vinukollu et al. (2011), Chen et al. (2014), Hu et al. (2015), Aguilar et 

al. (2018), Chen et al. (2020), Li et al. (2021) showed satisfactory agreements with local 

ground-truth data, other studies observed some inaccuracies in different ecosystems (e.g. 

Ramoelo et al., 2014; Tang et al., 2015; Autovino et al., 2016; Du and Song, 2018; Khan et 

al., 2018; Zhu et al., 2022). More specifically in Brazil, Ruhoff et al. (2013), Souza et al. 
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(2016), Maeda et al. (2017), Moreira et al. (2018), Melo et al. (2021), Dias et al. (2021), 

Biudes et al. (2022) showed that the accuracy of the MOD16 product varies according to 

some characteristics, such as climate, biome, and land cover. For instance, the assessment 

carried out by Ruhoff et al. (2013) in two sites located in the Brazilian Cerrado biome 

showed that the MOD16 product overestimated the mean ET (8-day, monthly, and annual), 

while no long-term over- or underestimation was found for a sugar cane cropland area. 

Maeda et al. (2017) also demonstrated that the MOD16 model was unable to consistently 

represent ET seasonal patterns at the river basin scale in the Amazon Forest. 

Recently, studies proposed some trajectories of improvements of the MOD16 ET 

model for overcoming the limitations and operating at a regional scale and consistently with 

its local characteristics (e.g. Morillas et al., 2013; Sur et al., 2015; Yeom et al., 2015; Ke et 

al., 2016; Wu et al., 2016; Srivastava et al., 2017; Ke et al., 2017; Chang et al., 2018; El 

Masri et al., 2019; He et al., 2019; Zhang et al., 2019; Brust et al., 2021; Dias et al., 2021; 

Astuti et al., 2022; Liu et al., 2022; Lu et al., 2022; Guo et al., 2023; Kumar et al., 2023). 

These modifications mainly include the following processes: (1) changes in the 

spatiotemporal resolutions; (2) adaptations to obtain information for all sky conditions; and 

(3) implementation of local parameterisations, such as land use and land cover information 

(Table 2). All these improvements employed distinct adjustment approaches, but none of 

them addressed all aspects simultaneously for a more effective extraction of data at local and 

regional scales. Such modifications covering all aspects together may enable a more detailed 

and continuous long-term analysis of ET in Brazil, considering that the patterns and factors 

of this component remain poorly understood, especially in tropical regions (Fleischmann et 

al., 2023). 
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Table 2 - Summary of studies with enhancements of the MOD16 evapotranspiration model 
to fit more local and regional characteristics. 

Study Region Enhancements 

Jang et al. 
(2013) 

Northeast 
Asia 

Use of surface meteorological data from the Korea Land Data 
Assimilation System (KLDAS) and MODIS to facilitate continuous 
regional ET estimates. 

Di et al. 
(2015) 

United 
States 

A combination of two layers of soil relative humidity parameters 
with a surface resistance model. 

Yeom et al. 
(2015) 

South  
Korea 

Application of a multilayer feed-forward neural network approach 
with Levenberg Marquardt back propagation (LM-BP), using input 
from various satellite-based products of ET, NDVI, NDWI, land 
surface temperature, air temperature, and insolation. 

Srivastava 
et al. (2017) 

Kangsabati 
River Basin, 
India 

Use indirect ET estimation methods, such as MODIS and the water 
budget approach, incorporated into the semi-distributed variable 
infiltration capacity (VIC-3L). 

Baik et al. 
(2018) 

Australia Applies two mixing approaches, Maximise R and simple Taylor 

the GLDAS, GLEAM, MOD16, and MERRA datasets. 
Chang et al. 
(2018) 

China Integration of wind speed and vegetation height to estimate 
aerodynamic resistance, using the Fisher et al. method. (2008) to 
constrain temperature and humidity for stomatal conductance and 
reduce soil evaporation uncertainties. 

He et al. 
(2019) 

United 
States 
(CONUS) 

Calibration for agricultural land, model parameters according to 
crop types and incorporation of finer-scale satellite vegetation data. 

Zhang et al. 
(2019) 

Global Application of the sensitivity analysis method, combined with the 
Markov chain method of differential evolution, for each key 
parameter in a variety of biomes, to obtain an optimised model. 

Dias et al. 
(2021) 

Brazil Use of 8 regression algorithms (multiple linear regression, random 
forest, cubist, partial least squares, principal components regression, 
adaptive forward-backwards greedy, generalised boosted 
regression, and generalised linear model by likelihood-based 
boosting) and machine learning. 

Brust et al. 
(2021) 

United 
States 

Use of SMAP soil moisture to constrain ET and local observations 
to calibrate ET. 

Astuti et al. 
(2022) 

Brantas 
river basin, 
Indonesia 

Application of an artificial neural network and machine learning to 
characterise the spatiotemporal patterns of ET in the basin. 

Liu et al. 
(2022) 

Central 
China 

Integrates NDWI as a soil moisture adjustment, enhancing the 
estimation of soil surface resistance and stomatal conductance. 

Lu et al. 
(2022) 

Three 
different 
scenic areas 
in China 

Spatial downscaling based on the correlation between surface ET 
differences and corresponding land cover types and spectral mixture 
analysis theory. 

Xue et al. 
(2022) 

South 
Korea, 
Japan, 
China, the 
Philippines, 
India, 
Spain, Italy, 
and the 
USA 

Sensitivity analysis of the MOD16 model and parameter 
optimisation strategies (Radiation and temperature, and LAI and 
Rn). 
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Guo et al. 
(2023) 

China Restrictions of moisture based on the ratio of antecedent 
accumulated precipitation to soil evaporation balance. 

Kumar et 
al. (2023) 

Kangsabati 
River Basin 
(India) 

 Use of a Genetic Algorithm (GA), inspired by natural selection, to 
determine whether a string will participate in the reproduction 
process, and thus improve the fit to local conditions. 
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3 STUDY AREA CHARACTERISTICS  

 
The ESTIMET model was applied to the entire Brazilian territory and evaluated in 

different parts of the country. Brazil covers approximately 8.5 million km² between 

coordinates - -  (Fig. 7). According to Alvares et al. 

(2013), Brazil has twelve different Koppen climate types, divided into three main zones: 

Tropical (Zone A), Semi-arid (Zone B), and Humid Subtropical (Zone C). Moreover, six 

terrestrial biomes are featured in the territory, namely: Amazon Forest (rainforest, 49% of 

land area), Cerrado (wooded savannah, 24% of land area), Atlantic Forest (13% of land area), 

Caatinga (tropical dry forest, 10% of the land area), Pantanal (tropical wetland, 2% of the 

land area), and Pampa (grassland, 2% of the land area) (Roesch et al., 2009) (Fig. 1a). The 

mean annual rainfall in Brazil ranges from 380 (Caatinga) to 4000 mm (Amazon Forest), 

while the mean annual air temperature ranges from below 10 °C to greater than 26 °C 

(Gadelha et al., 2019). 

 

 

Figure 7 - (a) Brazilian biomes and (b) Köppen climate classification for Brazil, according 
to Alvares et al. (2013), showing the spatial distribution of the 14 eddy covariance flux 
towers (red triangles) and the 25 catchments (black dots) used for this study. (c) Data 

availability in the flux towers. 
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This variety of biomes not only contributes to the ecological richness but also plays 

a crucial role in maintaining carbon stocks in its forests and soils, as well as in global 

freshwater reserves (Berenguer et al., 2014; Bernoux et al., 2002). In recent decades, 

Brazilian biomes have undergone significant spatiotemporal changes in terms of land use, 

with emphasis on the replacement of natural vegetation by livestock and agricultural 

activities (Souza et al., 2020). Considering the role of Brazil as a major producer of 

agricultural commodities and one of the largest contributors to global greenhouse gas 

emissions due to these activities (Sousa-Neto et al., 2017; Cait, 2024) these changes have 

significant implications for biodiversity, water resources, carbon emissions, and climate 

change (Butchart et al., 2010; Davidson et al., 2012; Verburg, 2015).  

The impact of the land-use and land-cover changes can be observed by analysing 

contrasting biomes in terms of water availability. On the one hand, Pantanal is a large 

wetland, while Caatinga is a biome located in a semiarid region with water scarcity. In recent 

decades, these biomes have experienced pressure on the hydrological cycle due to land-use 

and land-cover conversion, with impacts on water availability. While Caatinga presented the 

highest rate of surface water reduction, with an annual average of -5.1% in the 2010s, the 

Pantanal biome has shown the greatest variation, with an increase in surface water of an 

average of 5% per year after 2005 (Souza et al., 2020). 

Despite being predominantly covered by primary forests, the Caatinga biome is 

highly threatened by land conversion for agriculture, with deforestations that degrades the 

environment and worsen the risk of desertification (Araújo et al., 2023; Costa et al., 2024; 

Rocha et al., 2024). Similarly, the Pantanal is under increasing pressure due to the expansion 

of livestock and sugarcane cultivation, as well as the frequent occurrence of wildfires. 

(Guerra et al., 2020; Hernandes et al., 2022; Galvanin and Caldas; 2025). 

Livestock farming and the expansion of sugarcane drive deforestation, pasture 

conversion, hydrological alteration, soil carbon loss, increased fire susceptibility, and 

landscape fragmentation in the Pantanal, with cascading impacts on habitat, species 

composition, and ecosystem services. Governance and policy gaps hinder effective 

conservation. 

Caatinga is a semi-arid climate biome with a unique biodiversity located in 

northeastern Brazil (Rocha et al., 2024). The region is mainly characterised by the hot and 

dry climate BSh (Fig. 2), with low precipitation typically concentrated in a period of 3 to 6 

months (300 to 800 mm/year) and dry periods that can last more than 11 months per year, 

facing challenges with water scarcity caused by intermittent rivers and irregular rainfall 
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(Miranda et al., 2018; Bezerra et al., 2023). In addition, high temperatures (26° to 30°C) and 

high potential ET rates (1,500 to 2,000 mm/year) are commonly observed in Caatinga (Moro 

et al., 2016; Miranda et al., 2018; Paloschi et al., 2020). The region presents diverse 

physiognomies, ranging from forests to sparse shrublands, composed mainly of xerophytic, 

woody, and thorny species, as well as deciduous physiognomies adapted to heat and drought 

(Silva et al.,2017; Sampaio, 1995; Bezerra et al., 2023). 

Pantanal is considered one of the most significant wetlands in the world, with high 

landscape and ecological diversity (Alho and Sabino, 2011; Bergier, 2013). The region 

presents well-defined dry and rainy seasons, characteristic of the Aw climate, with flood 

cycles that are crucial to its ecology (Fig. 2). In the Pantanal, the hydrological cycle is 

characterised by a high rainfall index, contributing to river flow and evapotranspiration, 

which account for half of the total flow (Hamilton, 2002; Valeriano et al., 2012). The 

vegetation in this biome is characterised by the presence of forests, savannas, and wetlands. 

Livestock, tourism, fishing, and mining are significant economic activities in Pantanal 

(Seidl, 2001; Alho and Sabino, 2011). In this study, the analyses were carried out based on 

the biome division proposed by IBGE (2004). 

 

 
Figure 8 - (a) Brazilian biomes and Köppen climate classification for (b) Caatinga (d) 

Pantanal according to Alvares et al. (2013), land use and land cover for (c) Caatinga and 
(e) Pantanal according to MapBiomas (2025). 
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4 DEVELOPMENT AND EVALUATION OF THE ESTIMET MODEL  

 

4.1 Contextualisation 

 
In this chapter, we focus on the development and validation of the ESTIMET 

(Enhanced and Spatial-Temporal Improvement of MODIS EvapoTranspiration) model, 

which uses reflectance data from the MODIS sensors (MOD and MYD), land use and land 

cover data from the MapBiomas initiative, and climate reanalysis (ECMWF Climate 

Reanalysis-ERA5-Land and Global Land Data Assimilation System - Noah - GLDAS 2.1) 

data as input to the adapted MOD16 model based on the Penman-Monteith equation. Thus, 

the general and transferable strategy of this new model takes into account: (a) fitting a more 

regional/local model by using LULC adjusted to the vegetation characteristics in Brazil; (b) 

overcoming data loss due to frequent cloud cover, whilst reducing the latency period to 

provide a near-real-time product; (c) modifying the stomatal conductance and net incoming 

radiation parameterisation schemes to generate a new product at a daily time scale (currently 

being accumulated for 8 days with the MOD16A2GF) for all sky conditions; (d) enhancing 

the spatial resolution of the MOD16A2GF ET product (from 500 to 250 m); and (e) changing 

the meteorological forcing dataset to high-quality data for accurate flow estimates, 

differentiating microclimates. The entire model was developed and processed on the cloud-

based platform Google Earth Engine (GEE). 

 
4.2 Materials and methods 

 
4.2.1 Development of the ESTIMET model  

 
MOD16 ET, and its adaptation under the ESTIMET model, is based on the Penman-

Monteith equation (Monteith, 1965; Mu et al., 2011). Both models estimate the latent heat 
-2), allowing for the calculation of the total daily ET (mm) from the 

conversion factor, corresponding to the sum of evaporation from the wet canopy surface 

soil) (Mu et al., 2011; Running et al., 2017) (Eq. 3):  

 

                                                            (3) 
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(kPa ºC-1), A is the available energy (W.m-2 -3), Cp is the specific 

heat capacity of air at a constant pressure (J kg-1 °C-1), ea is the actual water vapour pressure 

(kPa), es is the saturated water vapour pressure (kPa), rs is the surface resistance (s m-1), ra 

is the aerodynamic resistance (s m-1 -1). 

Similar to Mu et al. (2011), ESTIMET also considers daytime and nighttime ET. We 

modified specific procedures to adopt a more local/regional model that can be applied daily 

and provide accurate ET estimates under all sky conditions (Fig. 9), as detailed in the 

following subsections. These modifications are crucial for capturing ET's spatial and 

temporal variability in Brazilian regions, where climate dynamics and vegetation cover 

exhibit significant variations. We included calculations of the net radiation, vegetation cover 

fraction, surface albedo, and vegetation indices. Furthermore, higher-resolution 

spatiotemporal meteorological data were incorporated as input for obtaining the ET product, 

as well as information on LULC, which is more closely aligned with the vegetation 

characteristics in Brazilian forests. The model's modifications were made to adapt it to these 

new, higher-resolution, or improved input datasets. 

 

4.2.1.1 Changes in canopy conductance and plant transpiration 

 
Canopy conductance and plant transpiration are important components of ET and 

play a crucial role in the Penman-Monteith method (Shuttleworth and Wallace, 2007; Chang 

et al., 2018). MOD16A2GF ET uses the leaf area index (LAI) to scale stomatal conductance 

(Cs, leaf level) up to canopy conductance (Cc, surface level) (Landsberg and Gower, 1997). 

Stomatal conductance is mainly expressed as a function of minimum air temperature (Tmin) 

and vapour pressure deficit (VPD), as follows (Oren et al., 1999; Xu and Baldocchi, 2003) 

(Eq. 4 and Eq. 5): 

 

                                                                                            (4) 

                                                                                         (5) 

 

where CL and fwet correspond to the mean potential stomatal conductance per leaf unit area 

(m s-1) and the water cover fraction (unitless) obtained from Fisher et al. (2008), respectively, 

while m(Tmin) and m(VPD) are limiting factors of potential stomatal conductance for 
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minimum air temperatures and VPD high enough to reduce canopy conductance, 

respectively. This step was estimated from a ratio established by Running et al. (2017), using 

parameterised values for each land cover type (Table 3). 

 

  

Figure 9 - Flowchart of the ESTIMET model, indicating the adjustments made in this 
study, in relation to the MOD16A2GF product (adapted from Mu et al., 2011). 
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The MOD16A2GF model utilises two remote-sensing products as inputs for 

calculating canopy conductance and plant transpiration. First, CL, VPD (open indicates no 

inhibition to transpiration and close indicates nearly complete inhibition with full stomatal 

closure), and Tmin (open and close) parameters were set differently, according to the biome 

type from the MODIS Land Cover Type (MCD12Q1) product, which globally provides data 

characterising 12 land cover types at 500-m spatial resolution. Because the values of these 

parameters can significantly affect the calculation of plant transpiration, model accuracy is 

essentially driven by the quality of that classification (Ruhoff et al., 2013). Hence, the global 

representation of the MCD12Q1 product, associated with the limited number of classes 

covering the globe, inevitably mischaracterises or ambiguously renders some local/regional 

variations of LULC (Jung et al., 2006).  

Regional LULC classification allows us to account for the more specific 

characteristics and landscape complexity of some regions (Jung et al., 2006). A multi-

institutional initiative launched in 2015, the MapBiomas Project (http://mapbiomas.org), 

provides annual national-level LULC maps for the entire Brazilian territory with a 30 m 

spatial resolution. This project has data from 1985 to the present, based on a pixel-per-pixel 

automatic classification of Landsat images. Therefore, to fit more regional/local information, 

adjusted to the characteristics of the Brazilian vegetation, we merged the 33 LULC types 

available from the MapBiomas project into seven classes of similar characteristics, to match 

the biophysical parameters proposed by Running et al. (2017) (Table 2) and preserve the 

heterogeneity of Brazilian land use and coverage. 

 Additionally, MOD16A2GF ET utilises LAI information from MOD15A2H, an 8-

day composite product with a spatial resolution of 500 m. This implies that LAI does not 

vary during a given 8-day period and helps to provide information with less cloud 

contamination. However, in some tropical regions, such as Brazil, the frequency of cloud 

cover is high, which often leads to incorrect ET estimates (Running et al., 2017). To deal 

with the cloud cover issue and increase the spatial resolution to 250 m, the ESTIMET model 

uses the soil-adjusted vegetation index (SAVI) proposed by Huete (1988) to compute LAI 

from both 8-day MOD09Q1 (Terra Satellite) and MYD09Q1 (Aqua Satellite) reflectance 

products, with a 250 m spatial resolution (Eq. 6 and Eq. 7): 

 

                                                                                                             (6) 
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                                                                                                              (7) 

 

where r1 and r2 are the spectral reflectance of the bands 1 (red) and 2 (near-infrared) of the 

MOD09Q1 and MYD09Q1 products, and L is an adjustment factor. In this study, the 

adjustment factor is set to 0.1, the same value used by Silva et al. (2015) in a study conducted 

in Brazil. To exclude the impact of as much cloud cover as possible, the SAVI data calculated 

from both MOD09Q1 and MYD09Q1 were composed monthly, based on the selection of 

pixels with higher values obtained from the eight images made available each month (i.e. 

four from MOD09Q1 and four from MYD09Q1), assuming that clouds possibly 

contaminated the lower or negative values of this biophysical parameter. This overlapped 

monthly SAVI was considered a fixed biophysical input parameter for each month, used to 

estimate daily ET.  

 

4.2.1.2 Changes in vegetation cover fraction  

 
To distinguish the net radiation between the canopy and the soil surface, the cover 

fraction (FC) information is required, varying from 0 to 1. The latest version of the MOD16 

product utilises 8-day information from the MOD15A2H (FPAR, Fraction of Absorbed 

Photosynthetically Active Radiation) product, with a spatial resolution of 500 m, as a 

substitute for FC (Mu et al., 2011; Running et al., 2017). As an alternative, Cleugh et al. 

(2007) used the Normalised Difference Vegetation Index (NDVI) to calculate FC. Still, this 

vegetation index is very sensitive to background canopy variations and atmospheric 

influences (Huete et al., 2002). Conversely, Mu et al. (2007) calculated FC in the 

MOD16A2GF, replacing NDVI with the Enhanced Vegetation Index (EVI), to adjust for the 

background canopy and reduce atmospheric influence (i.e. using three reflectance bands, 

including blue). To reduce the pixel size and deliver a final ET product with a spatial 

resolution of 250 m, we calculated the FC using the 2-band EVI (EVI2), as suggested by 

Jiang et al. (2008). Unlike EVI, EVI2 only uses red and infrared bands but presents 

satisfactory results, especially when atmospheric effects are insignificant or corrected 

(Rocha and Shaver, 2009; Bolton and Friedl, 2013), making it possible to use the MOD09Q1 

and MYD09Q1 products (Eq. 8 and Eq. 9): 

 

                                                                                                          (8) 
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                                                                                                    (9) 

 
where EVI2min max is the signal from dense 

constants varying between 0.05 and 0.95, respectively. Similar to the SAVI procedures, 

EVI2 was also considered a fixed input parameter throughout the month, using the highest 

values obtained from the eight available MOD09Q1 reflectance products and assuming that 

the lower values reflect clouds. 

 

4.2.1.3 Changes in net incoming radiation to the land surface 

 
In the MOD16A2GF ET model, the net incoming radiation to the land surface (Rnet) is 

calculated following Mu et al. (2011), using the same equation stemming from Mu et al. 

(2007) and Cleugh et al. (2007) (Eq. 10). 

 

                                                          (10) 

 

 is the downward shortwave of incoming 

 is the Stefan-Boltzmann constant (5,67x10-8 W m-2 K-4) s is surface emissivity, 

a is atmospheric emissivity, and T represents the air temperature in °C. 

 The original model -day composite MCD43A2/A3 product with 

500 m of spatial resolution. This evaluation may suffer from cloud contamination, resulting 

the two 250 

Teixeira et al. (2013) (Eq. 11): 

 

                                                                                                             (11) 

 

where a, b, and c are regression coefficients obtained by comparing remote sensing and field 

measurements. The values of a, b and c found by Teixeira et al. (2013), for the Caatinga 

biome, were 0.08, 0.41, and 0.14, respectively. Since these values are not available in the 

literature for the other Brazilian biomes, three flux towers (EUC, FM, and K34; see topic 

4.2.2.1 for their descriptions), which are distributed throughout the country and located in 

the other Brazilian biomes, were used to obtain their respective regression coefficients 
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(Table 4). The same regression coefficients used for the Amazon and Pantanal biomes were 

considered for the Atlantic Forest and Pampa biomes, respectively, due to the absence of 

free available flux tower data for these two biomes and the most similarities between them. 

to reduce the influence of clouds in the ET estimates, using the lowest values obtained from 

the eight MOD09Q1 reflectance products available within 30 days and assuming that the 

highest values were possibly contaminated by clouds. Such monthly compositions applied 

to the vegetation indexes and surface albedo result in a maximum latency of one month after 

the event for ESTIMET, which remains significantly lower than the one-year latency of the 

MOD16A2GF product. 

 

Table 4 - Regression coefficients obtained for each biome using the data from the flux 
 

Biome Flux tower a b c 
Amazon K34 0.118 -0.016 0.016 

Atlantic Forest - 0.118 -0.016 0.016 
Caatinga - 0.08 0.41 0.14 
Cerrado PDG 0.124 -0.009 0.043 
Pantanal FM 0.168 -0.032 0.117 
Pampa - 0.168 -0.032 0.117 

 

 In addition, contrasting with the original MOD16 ET model, which considers surface 

s) as a constant parameter of 0.97, this study used the following empirical 

equation by Allen et al. (2007), integrating the effects of LAI and NDVI and calculated from 

the two reflectance bands of the MOD09Q1 product (Eq. 12): 

 

                                                                                                      (12) 

 with s = 0.98 when LAI > 3 and s = 0.99 when NDVI < 0 (Eq. 13).  

 

                                                                                                                    (13) 

 

4.2.1.4 Changes in the meteorological forcing data 

 

The global meteorological re-analysis data MERRA-2, provided by NASA's Global 

Modelling and Assimilation Office (GMAO), with a spatial resolution of 0.5° x 0.6° or 1.0° 
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x 1.25°, were used as input to the original MOD16 model (Mu et al., 2007, 2011; Running 

et al., 2017). MERRA-2 incorporates both ground-based and satellite-based observations, 

providing information with a 6-hour resolution. However, some studies have emphasised 

that some uncertainties of the MOD16 product may be mainly due to the coarse spatial 

resolution of the MERRA-2 climate database (Ruhoff et al., 2013; Ramoelo et al., 2014; 

Zhang et al., 2016; Chang et al., 2018). For instance, Chang et al. (2018) found a 

considerably lower performance of MOD16 driven by GMAO data, compared to the same 

model driven by observation data, which suggests that the re-analysis data led to substantial 

errors in the ET estimation. Indeed, high-quality meteorological data are required for 

accurate flow retrievals, which differentiate microclimates, although spatial resolution 

requirements may be less stringent than for other land surface variables (Fischer et al., 2017). 

Unlike the original model, we used the ERA5-Land meteorological dataset (ECMWF 

Climate Reanalysis) to obtain hourly information of T and dew point T at 2 m levels 

downward shortwave solar radiation was retrieved from GLDAS 2.1 (Global Land Data 

Assimilation System  Noah), making this variable available with 3-h and 0.25° resolutions 

(Rodell et al., 2004). The ERA5-Land and GLDAS 2.1 meteorological dataset was evaluated 

in Brazil (Araújo et al., 2022; Matsunaga et al., 2023) and other regions (Liu et al., 2024; 

Vicente-Serrano et al., 2021; Wang et al., 2024; Zou et al., 2022), mostly presenting 

improved results compared with MERRA-2 (Zuo et al., 2023; Kara et al., 2024; Liu et al., 

2025). We also found that T and solar radiation values from ERA-5 Land and GLDAS 2.1 

are closest to the observed data recorded in some flux towers in Brazil, when compared with 

MERRA-2 (Fig. 10). Additionally, meteorological data from ERA5-Land and GLDAS 2.1 

were also used as input by other models and products to estimate ET, such as geeSEBAL-

MODIS (Andrade et al., 2024), STEEP (Seasonal Tropical Ecosystem Energy Partitioning) 

(Bezerra et al., 2023), and PML_V2 (Penman-Monteith-Leuning Evapotranspiration, 

Version 2) (Zhang et al., 2019). 
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Figure 10 - (a) Pearson's coefficient correlation (r) of the solar radiation (W/m²) estimated 
by MERRA-2 (red triangles) and GLDAS (green dots) versus the solar radiation (W/m²) 
obtained at the flux towers. (b) Pearson's correlation coefficient (r) of the air temperature 

(ºC) estimated by MERRA-2 (red triangles) and ERA5 (blue dots) versus the air 
temperature (ºC) obtained at the flux towers. 

 

4.2.2 Model evaluation 

 
4.2.2.1 Local scale 

 

We compared daily and 8-day accumulated ET estimates from orbital remote sensing 

with the eddy covariance (EC) data from flux towers at 14 sites throughout Brazil (Fig. 7). 

The towers belong to the AmeriFlux network, EMBRAPA (Brazilian Agricultural Research 

Cooperation), and three universities (the University of São Paulo  USP, the Federal 

University of Mato Grosso  UFMT, and the Federal University of Mato Grosso do Sul  

UFMS). These flux towers represent all of the main climate zones and almost all the 

terrestrial biomes found in Brazil. The land covers of the EC sites include both the natural 

vegetation of the Brazilian Biomes and anthropised environments, such as irrigated 

croplands, pasture, and eucalyptus plantations. 



 55 

The EC method is accepted as being the most reliable technique for the direct and 

continuous measurement of sensible (H) and latent (LE) heat fluxes (Sun et al., 2013). The 

EC data used in this study, and considered to be observed ET (ETObs), were obtained for 

different years, ranging from 2003 to 2021, according to their availability (Fig. 7b). The 

altitude of the studied sites ranged from 90 to 710 m above sea level (Table 5). 

For comparison, half-hour EC measurements were used to compute daily and 8-day 

flux data. In parallel, to achieve the spatial representativeness of the measured data for each 

site, daily values of ET (estimated by ESTIMET) were spatially averaged over a 750 x 750 

m² window, centred at each flux tower to ensure the spatial representativeness of the 

estimations for each site (Ruhoff et al., 2012). ET product data from MOD16A2GF Version 

6.1, covering the image cells of the proposed model at the flux tower sites, and were also 

used for comparison. Additionally, ESTIMET was compared with two other consolidated 

global satellite-based ET products at a local scale: (i) version 4.1a of the Global Land 

Evaporation Amsterdam Model (GLEAM 4.1a) product, which is based on a set of models 

and also uses re-analysis data to provide daily ET with grid cells of 0.1º x 0.1º (~10 km); 

and (ii) version 02 of the Penman-Monteith-Leuning Evapotranspiration (PML_V2) product, 

which provides ET at 500 m (spatial) and 8-day (temporal) resolutions. As MOD16A2GF 

and PML_V2 are 8-day composite products at a 500 m pixel resolution, we accumulated the 

daily values initially obtained from ESTIMET, GLEAM 4.1a, and the EC systems, to 

produce the 8- 25 in the surface energy 

balance ratio were disregarded for the ETObs computation to ensure the quality of the data 

used for the comparison. For the same reasons, we excluded the days with precipitation > 

0.5 mm from the daily-based comparisons. For the accumulated 8-day comparisons, only the 

ETObs data featuring less than 50% of rainy days in each 8-day window were considered for 

the comparison with ESTIMET and the other three products. In order to identify the rainy 

days and analyse the response of remotely sensed ET (i.e. the ET variation in dry and wet 

seasons), we used rainfall data from automatic rain gauges associated with the flux towers. 
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4.2.2.2 Catchment scale 

 

The annual performance of ESTIMET was also evaluated at a catchment scale. A 

multi-criteria approach was applied to select these catchments. First, we filtered non-nested 

catchments in each biome with a total area of 1 5 km² and without substantial surface water 

reservoirs. After meeting this first criterion, we selected five catchments from each biome 

that contained a larger area of natural land cover and exhibited high Kling-Gupta Efficiency 

(> 0.5) during the calibration and validation of the simulated streamflow performed by 

Andrade et al. (2024). As no streamflow data were available for the Pantanal, this biome was 

excluded from this evaluation, resulting in a total of 25 catchments. The total annual ET at 

the catchment scale (ETCatch) was calculated as a residual of the water balance between 2003

2009 (Eq. 14): 

 

                                                                                                     (14) 

 

where P is the observed catchment-scale total annual precipitation (mm), Q represents the 

observed annual streamflow at the catchment's outlet (mm), and S represents annual changes 

in the catchment's water storage (mm). 

P and Q data were obtained from the Catchment Attributes for Brazil (CABra) dataset 

(Almagro et al., 2021), while S was derived from the Gravity Recovery and Climate 

Experiment (GRACE) (Tapley et al., 2004) by calculating the average of the three equivalent 

water thickness products from GFZ (Geo Forschungs Zentrum Potsdam), CSR (University 

of Texas Centre for Space Research), and JPL (NASA's Jet Propulsion Laboratory). The 

calculation of the annual water balance was based on the hydrological year. We identified 

the start of the rainy season by decomposing the monthly precipitation time series from each 

catchment using the seasonal component of an additive data series decomposition method 

(Kendall and Stuart, 1983), which is available through the 'decompose' function in R (R Core 

Team, 2017). This method separates the series into three parts, namely the 'trend', 

'seasonality', and 'noise'. The seasonality was transformed into a binary vector, assigning a 

value of 1 to rainy months and 0 to dry months. The transition from the dry season to the 

rainy season was identified by detecting a change from 0 to 1, marking the beginning of the 

rainy season. The month corresponding to this change was recorded as the starting point of 

the rainy period. 
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4.2.2.3 Evaluation metrics 

 
We used three statistical metrics to evaluate the ESTIMET model's (ETESTIMET) 

performance regarding the ground-based and water balance measurements. We also 

compared its performance with that of global satellite-based ET products, including the 

MOD16A2GF data (ETMODIS). 

To measure both the precision and accuracy between the ET estimates and 

how well bivariate data fall on the 1:1 slope (Eq. 15). 

 

                                                                           (15) 

 

where N is the sample size, O is the observed value,  

observed mean, and  is the estimated mean. The metric presents values ranging from -1 to 

1, with desirable values close to 1, indicating perfect agreement. 

To evaluate the model's errors against the ETObs and ETCatch data, we used: (1) the 

Percent Bias (PBIAS), which measures the trend as a percentage of estimated values in 

relation to observed values (Eq. 16); and (2) the root mean square error (RMSE), which gives 

the sample standard deviation of the differences between ETs (Eq. 17). 

 

                                                                                              (16) 

                                                                                                     (17) 

 

-

(PBIAS), with more desirable numbers close to 0 indicating smaller errors in the estimated 

values, in relation to the ET obtained from flux towers. 
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4.3 Results of the model's evaluation  

 

4.3.1 Daily based evaluation of ESTIMET at the local scale 

 
Fig. 3 shows the daily variations of ETESTIMET, ETObs, and precipitation. Overall, the 

daily ETESTIMET similarly tracks seasonal fluctuations in ETObs, with most curves showing 

an upward trend during the wet season and a downward trend during the dry season. In the 

Caatinga biome, very similar variations of ETESTIMET were observed (Fig. 11a-c), especially 

at the ESEC (ETESTIMET = 1.15 mm/day and ETObs = 1.10 mm/day, on average) and CST 

(ETESTIMET = 1.17 mm/day and ETObs = 0.98 mm/day, on average) sites. In contrast, some 

differences occurred at CAA (ETESTIMET = 2.17 mm/day and ETObs = 1.91 mm/day, on 

average), mainly in March 2011 (the rainy season), which was characterised by greater gaps 

in ETObs. Similar concurrent variations of ET were also observed at the SJO site, although 

average ETESTIMET (2.39 mm/day, on average) was ~90% greater than ETObs (1.25 mm/day, 

on average) during the rainy period (April-September) (Fig. 11d). 

In the Cerrado biome (Fig. 11e-i), the ETESTIMET and ETObs remarkably overlapped 

over the three years of continuous monitoring at the PDG site (ETESTIMET = 2.64 mm/day and 

ETObs = 3.30 mm/day, on average). Conversely, notably lower and slightly greater values of 

ETESTIMET were identified at the BAN (ETESTIMET = 1.05 mm/day and ETObs = 3.85 mm/day, 

on average) and USR (ETESTIMET 3.75 mm/day and ETObs = 2.89 mm/day, on average) sites 

in the Cerrado biome during the dry (May-September) and rainy (October-March) seasons, 

respectively. In the Pantanal biome, daily ETESTIMET at the NPW (4.94 mm/day, on average) 

site followed the seasonal fluctuations of ETObs (4.03 mm/day, on average), with some 

overestimations from October to April during the rainy season (ETESTIMET = 6.90 mm/day 

and ETObs = 4.70 mm/day, on average). At the FM site, the ETESTIMET (1.73 mm/day, on 

average) was also close to ETObs (1.70 mm/day, on average) but exhibited small 

underestimates in the dry period (May-September) (ETESTIMET = 0.70 mm/day and ETObs = 

1.22 mm/day, on average). For the Amazon biome, although ~62, ~74, and 93% of the time 

series of the three flux towers (SIN, K83 and K34, respectively) were missing, a good 

overlap was observed between the ETESTIMET and ETObs, especially at K34 (ETESTIMET = 3.23 

mm/day and ETObs = 3.76 mm/day, on average) and  K83 (ETESTIMET = 3.80 mm/day and 

ETObs = 3.99 mm/day, on average) (Fig. 11l-n). Nevertheless, during the driest period at SIN 

(from June to September), differences of ~40% between the ET values estimated by the two 

sources were observed (ETESTIMET = 1.69 mm/day and ETObs = 2.82 mm/day, on average). 
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Figure 11 - Daily evapotranspiration (mm) obtained by the Eddy Covariance method 
(ETObs) and modelled by the ESTIMET model (ETESTIMET), plotted with the daily 

precipitation data (mm) obtained by the flux towers located in the Caatinga (ESEC, CST, 
CAA, and SJO), Cerrado (EUC, PDF, USR, BAN, and IAB), Pantanal (FM and NPW), 

and Amazon (K34, K83, and SIN) biomes. 
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Fig. 12 shows the scatter plots with the metrics to compare the daily similarity 

between ETESTIMET and ETObs statistically. Overall, the ET variability was well 

ranging from 0.45 (EUC; Cerrado) to 0.80 (ESEC; 

clouds of points were nevertheless concentrated close to the lines of equality, as observed at 

ght control sites, ESTIMET 

appears to underestimate ET (ESEC, EUC, PDG, BAN, IAB, FM, K34, and SIN), while at 

the other six sites, ET appeared to be overestimated, compared to EC evaluations (CST, 

CAA, SJO, K83, USR, and NPW), as shown by the trend lines above and below the lines of 

equality, respectively. 

ESTIMET exhibited better overall performance at the Caatinga sites (Fig. 12a-d), 

ETESTIMET were also obtained for the Pantanal (Fig. 4j-

(Fig. 12e-

between daily ETESTIMET and ETObs were noted for the sites in the Amazon biome (Fig. 12l-

 and 0.15 for K83). 

Compared to the ETObs data, ETESTIMET only showed positive PBIAS at CST, SJO, 

and USR, and negative PBIAS at ESEC, CAA, EUC, PDG, BAN, IAB, FM, NPW, K34, 

K83, and SIN. This suggests a more general trend of underestimating daily ET (Fig. 13 and 

Table 6). The ETESTIMET at K83 (PBIAS = -4.00%; Amazon) and CST (PBIAS = 7.78%; 

Caatinga) exhibited the lowest negative and positive biases, respectively. Conversely, the 

highest positive and negative biases of ETESTIMET were identified for the USR (PBIAS = 

26.95%) and BAN (PBIAS = -56.45%) sites in the Cerrado biome. The daily values of 

RMSE varied between 0.66 mm/day (ESEC; Caatinga) and 3.08 mm/day (IAB; Cerrado), 

with the highest average values for Cerrado (average RMSE = 2.06 mm/day) and the lowest 

for Caatinga (average RMSE = 0.96 mm/day).  
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Figure 12 - Scatter plots of daily evapotranspiration modelled by the ESTIMET 
(ETESTIMET) model versus the daily estimations obtained by the Eddy Covariance (ETObs) 

method in the 14 flux towers located in the Caatinga (ESEC, CST, CAA, and SJO), 
Cerrado (EUC, PDF, USR, BAN, and IAB), Pantanal (FM and NPW), and Amazon (K34, 

statistically compare the similarity between the daily variations of ETObs and ETESTIMET. N 
represents the sample size. 

 

 

Figure 13 - (a-b) RMSE and (c-d) PBIAS statistics for ESTIMET (ETESTIMET) and 
MOD16A2GF (ETMODIS) evapotranspiration data when compared to the Eddy Covariance 
(ETObs) observations in the flux tower sites, on a (a-c) daily and (b-d) 8-day accumulated 

basis. 
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Table 6 - Pearson's correlation coefficient (r) obtained for the daily and 8-day accumulated 

evapotranspiration modelled by the (a) ESTIMET (ETESTIMET), (b) MOD16A2GF 
(ETMODIS), (c) PML_V2 (ETPML), and (d) GLEAM 4.1a (ETGLEAM) models, versus 
the daily and 8-day accumulated estimations by the Eddy Covariance (ETObs) approach in 

the 14 flux towers. 
 

Flux 
towers 

r  
(mm/day) 

r  
(mm/8-days) 

ETESTIMET X 
ETObs 

ETESTIMET X 
ETObs 

ETMODIS X 
ETObs 

ETPML X  
ETObs 

ETGLEAM X 
ETObs 

ESEC 0.81 0.94 0.89 0.69 0.64 

CST 0.48 0.59 0.73 0.60 0.60 

CAA 0.76 0.83 0.86 0.59 0.83 

SJO 0.55 0.72 0.61 0.39 0.67 

EUC 0.58 0.72 0.53 0.15 0.75 

PDG 0.57 0.85 0.64 0.50 0.85 

USR 0.64 0.75 0.85 0.85 0.77 

BAN 0.37 0.25 0.29 0.16 0.19 

IAB 0.66 0.74 0.81 0.65 0.91 

FM 0.82 0.81 0.72 0.63 0.11 

NPW 0.41 0.51 0.36 0.62 0.76 

K34 0.23 0.02 0.40 0.23 0.37 

K83 0.18 0.03 0.12 0.46 0.40 

SIN 0.35 0.41 0.73 -0.58 -0.23 

 

4.3.2 8-day based evaluation of ESTIMET at the local scale 

 
To assess the performance of the model in comparison to global satellite-based ET 

products (MOD16A2GF, PML_V2, and GLEAM 4.1a), we further evaluated the quality of 

daily ETESTIMET accumulated over 8 days against ground-based measurements (ETObs). 

Overall, similar behaviour was identified between the ETESTIMET and ETMODIS values, 

especially in the Caatinga, Cerrado, and Pantanal biomes (Fig. 14). When compared to 

MOD16A2GF, ESTIMET showed an improved linear relationship with the EC-based ET 

values for six flux towers (Fig. 15) (i.e. ESEC and SJO in Caatinga; EUC, PDG, and IAB in 

vs 0.34, 0.68 vs 0.63, 0.37 vs 0.18, and 0.33 vs 0.24, respectively) (Fig. 7). Conversely, 

0.21, 0.05 vs 0.21, 0,42 vs 0.45, 0.01 vs 0.38, 0.02 vs 0.09, and 0.30 vs 0.50) when compared 

to the estimations of MOD16A2GF at eight control sites (i.e. CST and CAA in Caatinga, 

USR and BAN in Cerrado, FM in Pantanal, and K34, K83, and SIN in the Amazon, 

respectively). Although presenting lower linear relationships with the ETObs in these sites, 
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ETESTIMET 

same time, at K34, K83, and SIN, the number of samples was low (i.e. 9, 15, and 19, 

respectively) for this 8-day ET aggregation, which hampered a more in-depth analysis. 

 

 

Figure 14 - Accumulated 8-day ET (mm) modelled by the ESTIMET (ETESTIMET) and 
MOD16A2GF (ETMODIS) models, compared to those obtained by the Eddy Covariance 

method (ETObs), at the flux towers located in the (a-d) Caatinga, (e-i) Cerrado, (j-k) 
Pantanal, and (l-n) Amazon biomes. The measured daily precipitation data (mm) at each 

site is also shown.  
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Figure 15 - Scatterplots of 8-day accumulated evapotranspiration, modelled by the 
ESTIMET (ETESTIMET) and MOD16A2GF (ETMODIS) models, versus the 8-day 

accumulated estimations by the Eddy Covariance (ETObs) method at the 14 flux towers 
located in the (a-d) Caatinga, (e-i) Cerrado, (j-k) Pantanal, and (l-n) Amazon biomes. The 

similarity between the 8-day variations of ETObs, ETESTIMET, and ETMODIS. N represents the 
sample size. 

 
The smallest bias between the accumulated 8-day ETESTIMET and ETObs was found at 

the NPW (PBIAS = -3.28%; Pantanal) and K83 (PBIAS = 0.56%; Amazon) sites, while the 

largest was at BAN (PBIAS = -58.92%; Cerrado) (Fig. 16). MOD16A2GF presented its 

smallest accumulated 8-day biases at CAA (PBIAS = 2.43%; Caatinga) and its highest at 

IAB (PBIAS = -60.60%; Cerrado). Overall, ETESTIMET 

six sites (ESEC, CST, IAB, NPW, K83, and SIN), while this performance was reached for 

ETMODIS at seven sites (CAA, SJO, EUC, PDG, USR, BAN, FM and K34) (Fig. 16d).   

The lowest RMSE were observed at sites located in the Caatinga and Pantanal biomes 

(i.e. ESEC, with RMSE = 3.32 mm/8-days; SJO, with RMSE = 4.84 mm/8-days; and FM, 

with RMSE = 6.64 mm/8-days; respectively) (Fig. 16c). When comparing the mean 8-day 

accumulated RMSE data from ETESTIMET with that from ETMODIS, both were similar for 

eleven sites (ESEC, CST, CAA, SJO, EUC, PDG, USR, FM, NPW, K83, and SIN), with 



 68 

differences lower than 3 mm/8-days and ETESTIMET presenting the largest overall errors. The 

largest mean RMSE for the ETESTIMET estimations were found at the BAN (Cerrado) and 

NPW (Pantanal) sites (RMSE = 19.64 and 16.98 mm/8-days, respectively). The evaluation 

of ESTIMET and MOD16A2GF for all 14 experimental sites indicates that both models 

presented a reasonable performance for ET estimates (Fig. 8ab). However, using ESTIMET 

c = 0.63) when 

experimental sites were considered (Fig. 16c-d). 

 

 

Figure 16 - Scatterplots of 8-day accumulated evapotranspiration modelled by the (a) 
ESTIMET (ETESTIMET), (b) MOD16A2GF (ETMODIS), (c) PML_V2 (ETPML), and (d) 

GLEAM 4.1a (ETGLEAM) models, versus the 8-day accumulated estimations using the Eddy 
Covariance (ETObs

correlation coefficient), root mean square error (RMSE), and Percent Bias (PBIAS) are 
shown to statistically compare the similarity between the 8-day variations of ETObs and the 

satellite-based datasets. N represents the sample size. 
 

Overall, ESTIMET presented a better linear relationship than PML_V2 and GLEAM 

4.1a at ten and nine sites, respectively, highlighting the best performance of ESTIMET, 

particularly at the Caatinga and Cerrado sites. This was particularly the case when compared 
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with the PML_V2 product (Figs. 17 and Fig. 19). Regarding the RMSE, ETESTIMET and 

ETMODIS presented lower values (13.21 and 12.68 mm/8-days, respectively) compared to the 

ET estimations by PML_V2 (13.25 mm/8-days) and GLEAM 4.1a (14.11 mm/8-days), 

considering all of the experimental sites (Fig. 16). The lower values of RMSE for ESTIMET 

were observed in 8 and 9 out of 14 sites, compared to PML_V2 and GLEAM 4.1a, 

respectively (Fig. 17 and Fig. 18). All products presented negative values of PBIAS, with 

values closer to zero being observed for PML_V2 (-8.83%) and GLEAM 4.1a (-12.18%) 

when compared to ETESTIMET (-22.59%) and ETMODIS (-15.28%) (Fig. 16). This was probably 

influenced by the mutual annulment between positive and negative differences. When 

considering all metrics in the Taylor diagram (Fig. 20), ESTIMET exhibits the best 

correlation, the second smallest RMSE, and the standard error closest to the observations. 

 

 

Figure 17 - Scatterplots of 8-day accumulated evapotranspiration modelled by the 
ESTIMET (ETESTIMET) and PML_V2 (ETPML) models, versus the 8-day accumulated 

estimations by the Eddy Covariance (ETObs) method in the 14 flux towers located in the (a-
d) Caatinga, (e-i) Cerrado, (j-k) Pantanal, and (l-n) Amazon biomes. The metrics r 

) are shown 
to statistically compare the similarity between the 8-day variations of ETObs, ETESTIMET, 

and ETMODIS. N represents the sample size. 
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Figure 18 - Scatterplots of 8-day accumulated evapotranspiration modelled by the 
ESTIMET (ETESTIMET) and GLEAM 4.1a (ETGLEAM) models, versus the 8-day 

accumulated estimations by the Eddy Covariance (ETObs) method in the 14 flux towers 
located in the (a-d) Caatinga, (e-i) Cerrado, (j-k) Pantanal, and (l-n) Amazon biomes. The 

) 
are shown to statistically compare the similarity between the 8-day variations of ETObs, 

ETESTIMET, and ETMODIS. N represents the sample size. 



 71 

 

Figure 19 - (a) RMSE and (b) PBIAS statistics for ESTIMET (ETESTIMET), PML_V2 
(ETPML), and GLEAM 4.1a (ETGLEAM) evapotranspiration data when compared to the Eddy 

Covariance (ETObs) observations in the flux tower sites. 
 

 

Figure 20 - Taylor diagram of 8-day accumulated evapotranspiration modelled by the 
ESTIMET (ETESTIMET), MOD16A2GF (ETMODIS), PML_V2 (ETPML), and GLEAM 4.1a 
(ETGLEAM) models against the 8-day accumulated estimations using the Eddy Covariance 

(ETObs) method for all 14 experimental sites. 



 72 

 
4.3.3 Annually based evaluation of ESTIMET at a catchment scale 

 
Fig. 21 shows the scatterplots of annual accumulated ET modelled by ESTIMET and 

the three global satellite-based ET products, compared to the ETCatch calculated by the water 

balance in 5 Brazilian biomes. The evaluations show that ETESTIMET presented higher values 

compared to the other three products, which ranged from -0.08 (GLEAM 4.1a) to 0.36 

(MOD16A2GF) in the Amazon, from 0.02 (PML_V2) to 0.14 (GLEAM 4.1a) in Atlantic 

Forest, and from 0.01 (PML_V2) and 0.35 (MOD16A2GF) in Cerrado. Overall, ESTIMET 

also exhibited low values of RMSE and PBIAS in the Amazon (RMSE = 170.77 mm/year 

and PBIAS -1.49%), Atlantic Forest (RMSE = 152.99 mm/year and PBIAS 7.13%), and 

Cerrado (RMSE = 164.57 mm/year and PBIAS -10.75%) biomes. This can be likened to the 

other satellite-based products. For instance, the ET estimated by GLEAM 4.1a in the 

Amazon presented an elevated RMSE (301.60 mm/year).  

A low similarity was observed between all products and the water balance 

calculations in the Caatinga biome, with a particular emphasis on ESTIMET, which 

-0.01) and high RMSE (422.27 mm/year) and PBIAS 

(52.74%). These pronounced discrepancies between the ETCatch and those estimated by the 

products in the Caatinga biome were noted in three catchments (Fig. 22), with an overall 

tendency for the satellite-based products to overestimate the ET calculated by the water 

balance over the years, especially those modelled by ESTIMET. Similar statistic metrics (i.e. 

Monteith-based models (i.e. ESTIMET, MOD16A2GF, and PML_V2) in the Pampa biome, 
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Figure 21 - Scatterplots of annual accumulated evapotranspiration modelled by the 
ESTIMET (ETESTIMET), MOD16A2GF (ETMODIS), PML_V2 (ETPML), and GLEAM 4.1a 
(ETGLEAM) models, versus the annual accumulated evapotranspiration calculated by the 

water balance in the catchments (ETCatch) of the (a-d) Amazon, (e-h) Atlantic Forest, (i-l) 
Caatinga, (m-p) Cerrado, and (q-t) Pampa biomes. The metrics concordance correlation 

statistically compare the similarity between the calculated and modelled annual 
evapotranspiration. N represents the sample size. 
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Figure 22 - Annual time series of actual evapotranspiration estimated by ESTIMET 
(ETESTIMET), MOD16A2GF (ETMODIS), PML_V2 (ETPML), and GLEAM 4.1a 

(ETPML) compared to the evapotranspiration calculated by the water balance approach in 
25 catchments located in the (a-e) Caatinga, (f-j) Cerrado, (k-o) Amazon, (p-t) Atlantic 

Forest, and (u-z) Pampa biomes. 
 
4.4 Discussion 

 
4.4.1 Accuracy of ESTIMET in estimating ground ET in tropical biomes 

 
The selection of ET products for scientific research necessitates consideration of their 

varying performances at a spatial scale, as well as the impact of land cover and climate 

conditions (Zhu et al., 2022). Our study indicates that the general trend is for ETESTIMET and 

ETMODIS to be underestimated at a local scale, with most ET values presenting the lowest 
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PBIAS (Fig. 13cd) and located above the 1:1 line in the scatterplots (Fig. 15, 17, and 18). 

This finding is consistent with those from other studies conducted in South America (e.g. 

Salazar-Martinez et al., 2022; Andrade et al., 2024). Similar to the study by Melo et al. 

(2021), which evaluated four remote sensing-based ET models forced by ground-based 

meteorological data in South America, EC-based analyses also found that the best overall 

performance of the Penman Monteith-based models was noted at sites located in semi-arid 

regions, such as the Caatinga biome. For such a biome, the correlations of the daily ET 

estimations 

similar to, or better than, those reported by Bezerra et al. (2023). This study employed two 

remote sensing-based surface energy balance models (i.e. SEBAL and STEEP) at three 

identical flux towers (i.e. 

0.67 for SEBAL and from 0.41 to 0.80 for STEEP. The good performance of ESTIMET in 

Caatinga was achieved after the monthly composition of the reflectance-based parameters 

was carried out to mitigate the impact of clouds, which could affect the variability of land 

surface information used as input for the model, especially in highly dynamic hydroclimatic 

vegetation systems such as the Caatinga and Cerrado biomes. For instance, the 

disagreements between ETESTIMET and ETObs in these two biomes were not associated with 

the beginning or end of the rainy seasons. 

Regarding the quality of estimations at some of the flux towers, in which the 

concordance/correlation between ETMODIS and ETObs was already reasonable (Fig. 15) 

because of the greater seasonality of ET drivers, significant improvements in the correlations 

were observed between ETESTIMET and ETObs (i.e. ESEC, pasture in Caatinga; EUC, 

monoculture in Cerrado; and PDG, Forest in Cerrado). Nevertheless, some flux towers, 

already reasonably characterised through MODIS, featured a slight degradation of this 

concordance/correlation by ESTIMET (i.e. USR, pluriculture in Cerrado; and CST and 

CAA, deciduous forest in Caatinga). Lower quality RMSE and PBIAS are also found for 

USR, suggesting that a patchwork-like zone might be more difficult to characterise for 

ESTIMET. This is counterintuitive as ESTIMET has a finer spatial resolution. However, 

these discrepancies seem to be related to some outliers in specific periods, with much higher 

values of ETESTIMET in February and March 2006 (Fig. 14g), while EC provided remarkably 

daily (0.59-0.64 and 1.37-1.15 mm/day) and 8-day analyses (0.69-0.75 and 9.15-7.06 mm/8-

days). Similarly, despite a lower concordance/correlation for CST, the errors (PBIAS = 

12.11% and RMSE = 6.99 mm/8-days) were lower when compared to MOD16A2GF 
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(PBIAS = 41.45% and RMSE = 7.05 mm/8-days) and, especially, GLEAM 4.1a (PBIAS = 

42.60.% and RMSE = 8.68 mm/8-days) and PML_V2 (PBIAS = 125.33% and RMSE = 

12.10 mm/8-days). These trends suggest that the variability and complexity of land use may 

significantly impact the comparison between remote-sensing strategies and ground-based 

estimations (Ruhoff et al., 2013). 

This difficulty appears to be even greater in specific flux towers, where both MODIS 

and ESTIMET present discrepancies with the in-situ measurements, such as SJO (Caatinga, 

near the limit with the Atlantic Forest) and K34 (Amazon), in which RMSE increases when 

using ESTIMET. These findings corroborate previous studies, which reported that the 

performance of the MOD16 ET product was better in semi-arid regions than in semi-humid 

or humid regions. The performance of MOD16 ET was also better during dry seasons than 

in wet seasons (Mu et al., 2011; Degano et al., 2021). Apparently, ESTIMET followed the 

same trend. This larger difference, already pointed out by Salazar-Martinez et al. (2022) and 

Andrade et al. (2024) for tropical forested areas, is clearly the case for sites located in or near 

to the Amazon basin featuring low seasonality, which was also observed for the GLEAM 

4.1a and PML_V2 products in our analyses and previous studies (Zhang et al., 2023; Yang, 

2025). The weaker correlations of the satellite-based products in the tropics compared to 

greater latitudes are thought to be the result of differences in seasonality rather than 

differences in performance (Salazar-Martinez et al., 2022; Miralles et al., 2011; Yilmaz et 

al., 2014). In or near the Amazon, the seasonal ET variability remains moderate, whereas 

sites at greater latitudes typically exhibit a greater range of variability, which favours larger 

correlations with ETObs. This is consistent with the latitude effect on energy parameters (e.g. 

T and Rn) identified by Patriota et al. (2024), which presents lower variations due to 

moderate changes in the seasonal solar angle. In addition, precipitation seasonality is 

generally lower in the Amazon than elsewhere in the tropics (Feng et al., 2013; Lemos et al., 

2023), which contributes to buffering vegetation (NDVI or EVI2) and surface parameter 

changes (albedo) (Andrade et al., 2024). Such vegetation parameters, especially NDVI, often 

saturate evergreen broad-leaved forests holding tropical climates (e.g. the Amazon and 

Atlantic Forest), causing a non-linear response of such parameters in vegetation index-based 

models (Laipelt et al., 2021; Oliveira et al., 2022). However, the calibrated equations of such 

models are based on adjustments using linear regressions. Our results indicate that 

ESTIMET, although not always improving the 8-day error estimations of ET (i.e. PBIAS 

and RMSE) compared to MODIS, usually catches the seasonality (correlations) of ET for 

some of these specific sites (e.g. SJO in Caatinga but in a transition zone near the limit with 
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the Atlantic Forest) (Fig. 15). The ability of ESTIMET to capture the fluctuations of ET is 

especially noted when analysing the daily-based comparisons (Fig. 12).  

For NPW (Pantanal Biome) and BAN (Cerrado Biome), ESTIMET provided lower-

quality results with larger RMSE and, sometimes, weaker correlations compared to the three 

global satellite-based ET products, although they presented low PBIAS in NPW (likely 

compensated by the positive and negative values). For this site, ET is overestimated (Fig. 

15), which is consistent with the observations in Andrade et al. (2024), who used a hybrid 

SEBAL-MODIS-based model to analyse data between November and March of each year. 

Likewise, in USR, such discrepancies in NPW seem to be related to some outliers during the 

rainy seasons, presenting ET values higher than 60 mm/8-days (see Fig. 14). This 

phenomenon is still not fully understood, and the reasons for the remote sensing data 

deviating from the measured values should still be clarified in this context. Allen et al. (2021) 

suggested that an artificial increase in atmospheric demand may occur, potentially 

overcompensating for the reduction in available surface moisture observed during the dry 

season, and thereby generating higher values of ET. In parallel, waterlogging is known to 

occur during wet seasons at NPW (Pantanal Biome) and BAN (Cerrado Biome) (Table 5). 

This would be a consistent explanation for the difference between ETObs and ETESTIMET 

trends in some accumulated 8-day data, both of which could be highly altered for these sites.  

Even though the energy balance closure issue has been addressed by excluding data 

with higher energy imbalances at each flux tower, the assessment outcomes can still be 

influenced by the difference in scale between the footprint of the eddy covariance 

observations and the pixels of the ET products. The flux footprint typically spans less than 

1 km² (Chu et al., 2021), depending on each site flux tower deployment, and the pixel sizes 

of ET products range from 0.062 (ESTIMET) to 100 km² (GLEAM 4.1a). While the remote 

sensing products should fit well within the flux footprint of each tower, there might still be 

a disparity in the scales of the ET contributions, potentially combined with changing 

meteorological conditions that can lead to a discrepancy in vegetation representativeness 

between the pixels and the flux tower observations (Hobeichi et al., 2018; Jiménez et al., 

2018). Such a mismatch can also arise from inaccuracies in the models' vegetation and land 

cover input data, such as incorrect classifications. Since many models compute ET using 

parameters which are specific to land cover (Anderson et al., 2007; Miralles et al., 2011; Mu 

et al., 2011), a mismatch between the actual vegetation at the observation site and that 

detected in the model's pixels could potentially impact the assessment results (Hu et al., 

2015; Melo et al., 2021). This probably occurred at the SJO site, which is located in a 
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transitional zone between the Caatinga and Atlantic Forest biomes, presenting a mixture of 

cover vegetation (pasture and natural vegetation) (Machado et al., 2016), which was 

probably not well represented by the MOD16A2GF, PML_V2, and GLEAM 4.1a datasets. 

Another potential limitation in the ground-truth data, for comparison with 8-day 

accumulated satellite-based data (e.g. MOD16A2GF and PML_V2), is related to the low 

availability of EC data in tropical regions (Salazar-Martínez et al., 2022) like Brazil. When 

excluding all rainy days from the analyses within this window, it consequently reduces the 

data availability for validation even further. However, the gap-filling method used for the 8-

day EC data in this study (i.e. the average of ET on non-rainy days of the same week) also 

introduces uncertainties into the accumulated analyses, which could compromise the 

performance of the satellite-based datasets. 

Regarding the catchment scale, ESTIMET presents better correlation/concordance 

associated with the lower RMSE, when compared to the ET calculated by the water balance 

in the three major biomes (i.e. Atlantic Forest, Amazon, and Cerrado), which cover more 

than 85% of the Brazilian territory. Our regional analysis also revealed an overall tendency 

for the MOD16A2GF product to overestimate the ETCatch in the Amazon biome, a finding 

also observed in previous studies (Maeda et al., 2017; Andrade et al., 2024). For this larger 

Brazilian biome, most mean estimations of MOD16A2GF were between 1,250 and 1,500 

mm/year in the analysed catchments, while ESTIMET mostly presented annual mean values 

lower than 1,250 mm/year. Such annual ranges of ET values in the Amazonian catchments 

(as estimated by ESTIMET) were closer to those obtained from the other two satellite-based 

products (i.e. PML_V2 and GLEAM 4.1a) and by other studies using different approaches 

(e.g. Ruhoff et al., 2022; Andrade et al., 2023). The map showing the mean annual ET 

between 2003 and 2022 (estimated by ESTIMET and MOD16A2GF) illustrates that the 

main (absolute and relative) differences between the two datasets are in the Amazonian 

biome. ESTIMET presents lower overall values of ET and better captures the spatial 

variability of ET in the Amazon region, possibly due to the higher spatial resolution and 

more detailed LULC and meteorological data, which are able to better differentiate 

vegetation types and microclimates (Fig. 23). 

The general inclination of MOD16GFA2 to overestimate the ETCatch was also 

identified in our analysis in the Atlantic Forest, featuring evergreen broad-leaved vegetation, 

which was not observed in ESTIMET, GLEAM 4.1a, or PML_V2. Such overestimation of 

MOD16A2GF was not identified in previous studies (e.g. Ruhoff et al., 2022). Fig. 23 shows 

that the twenty-year mean ET estimated by ESTIMET in the Atlantic Forest mostly ranges 
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from 1,000 to 1,500 mm/year, whereas for MOD16A2GF, this value is generally equal to or 

greater than 1,500 mm/year. Unlike the local analyses, where ESTIMET exhibited good 

performance at daily and 8-day accumulated ET, when likened to the flux towers in Caatinga, 

the comparisons at the catchment scale of ET estimated by the satellite-based products in 

this biome overestimated the water balance calculations. These lower values of ETCatch in 

Caatinga can be attributed to the predominance of catchments with non-perennial rivers in 

this biome, which are primarily dependent on surface runoff (Almagro et al., 2021). Another 

reason for this underestimation of ETCatch may be related to the underrepresentation of 

ground-based rainfall, which can reduce ET calculations via water balance (Andrade et al., 

2022). Overall, Fig. 23 also shows that ESTIMET better captures ET variability, not only in 

the Amazon but also in all other biomes.  

 

 

Figure 23 - Spatial distribution of the mean annual evapotranspiration between 2003 and 
2022 estimated by (a) ESTIMET and (c) MOD16A2GF, with panels showing their 

respective (b and d) latitudinal profiles. (e) Spatial distribution of the absolute and (g) 
relative differences between the estimations of ESTIMET and MOD16A2GF, with panels 
showing their respective (f and h) latitudinal profiles. The symbols AMZ, CAT, PA, CER, 

ATL, and PAM refer to the Amazon, Caatinga, Pantanal, Cerrado, Atlantic Forest, and 
Pampa biomes, respectively.  

 
Such local and regional observations suggest that ESTIMET may be a valuable tool 

for estimating daily ET. However, some specific conditions may lead to a lack of confidence, 
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such as wet conditions that favour waterlogging, which hinders robust comparison with 

ground-based EC towers. Beyond this, the effect of the relative complexity of land use at a 

fine scale could appear overwhelming. For future research, another option could be to utilise 

reflectance data to estimate the biophysical parameters with even higher spatial resolution 

than the 250 m MODIS data. This could involve using sources such as the 10-m Sentinel-2 

NDVI or the 3-m Planet NDVI. An example of this approach is seen in the study by Aragon 

et al. (2018), who utilised 3-m Planet NDVI to create ultra-high-resolution ET estimates 

using the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model. In areas with a 

tendency towards land use homogeneity, ESTIMET yielded better results than 

MOD16A2GF (e.g., PDG and EUC), while more complex areas presented similar 

difficulties in capturing seasonality, as also observed in GLEAM 4.1a and PML_V2. 

 

4.4.2 ESTIMET as new support for remote long-term ET evaluation at a finer 

spatiotemporal resolution 

 
Despite some specific limitations mentioned above, ESTIMET makes it possible to 

evaluate continuous daily ET for any day since 2003 in tropical latitudes, even when the area 

was overcast by clouds, with better latency (monthly) and spatial resolution (250 m) than 

other global ET datasets (i.e. having the best 8-day and 500-m resolutions, as well as annual 

latency). In the challenging context of a large cloud presence between the tropics (Liu et al., 

2020; Ahamed et al., 2021), the information from ESTIMET has the potential to be an 

important tool for providing reliable and continuous regional ET series. For example, these 

refined data can be used as input for water resource management strategies and agricultural 

activities. Furthermore, the daily availability of ET data expands the potential for 

hydrological analyses and simulations, allowing precise water balance modelling for 

catchments (Guerschman et al., 2022). Indeed, ESTIMET allows access to one of the most 

important terms of the hydrological balance, at the same temporal resolution usually 

obtained for precipitation and, therefore, provides the possibility for estimating the water 

deficit or water surplus at a daily scale from remote sensing; this being of great interest for 

water resource, agricultural and risk management. This type of data also enables a more 

detailed and continuous long-term analysis of ET in tropical latitudes, considering that the 

patterns and (environmental and anthropogenic) factors of this component remain poorly 

understood, especially in such regions (Fleischmann et al., 2023). 
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The two insets exhibiting the spatial variability of ET around the EUC site (Cerrado), 

obtained by MOD16A2GF (Fig. 24a) and ESTIMET (Fig. 24b) in an 8-day window between 

18 May 2007 and 25 May 2007 during the beginning of the dry season, show how finer the 

spatial resolution of ESTIMET (250 m) is when compared to MOD16A2GF (500 m). Such 

improved spatial resolution enables a more accurate representation of land contrasts in ET 

estimation. For instance, ESTIMET captured four distinct values of ET, ranging from 17.29 

to 18.78 mm/8-days in a 0.25 km² inset containing eucalyptus-dominated vegetation with 

different growth stages, as shown by the contrasting reflectance responses and textures (Fig. 

24b). In contrast, this was represented by only one averaged value of ET (i.e. 22.6 mm/8-

days) by the MOD16A2GF product. The daily information in ESTIMET also enables a better 

representation of the ET sensitivity to meteorological variations, as shown in Fig. 24e. For 

instance, while the ETMODIS remains unchanged within the same 8-day window, represented 

by an average of 2.86 mm/day of the accumulated ET, the values modelled by the ESTIMET 

varied between 1.66 and 3.01 mm/day, presenting sensitivities to daily rain events observed 

at the EUC site. 

 

Figure 24 - Spatial variability of 8-day accumulated evapotranspiration modelled by the (a) 
MOD16A2GF (ETMODIS) and (b) ESTIMET (ETESTIMET) models between 18th May 2007 
and 25th May 2007 in the surroundings of the EUC site (Cerrado), with 500 and 250 m 
spatial resolutions, respectively. (c) Temporal variability of daily evapotranspiration 

modelled by the two models and precipitation within this temporal window. True coloured 
satellite images (Landsat/Copernicus) of 30th December 2007 from Google Earth, 

corresponding to the (d) largest and (e) smallest evapotranspiration map insets. 
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5  POTENTIALITIES OF ESTIMET FOR TREND AND TIME-SENSITIVITY 

ANALYSIS OF ET 

 

5.1 Contextualisation  

 

Several studies have been carried out to understand the trends and influences of other 

biophysical and climatic parameters on ET at global (e.g. Zhang et al., 2016; Hobeichi et al., 

2021) and local (e.g. Adeyeri et al., 2021; Lang et al., 2024; Sabino et al., 2024) scales. ET 

variability has already been analysed for Brazil and the entire South American continent 

using the SEBAL model, where a general trend of increasing ET was identified, with 

variations according to climates and biomes (Fleischmann et al., 2023; Laipelt et al., 2021; 

Andrade et al., 2024). However, these studies have limitations in terms of temporal 

continuity (i.e. due to the limited number of images used in the analysis caused by the 

exclusion of many days with high cloud cover or rainy months) and scale (i.e. at the river 

basin level, with the exclusion of some biomes from the analyses). As ET is the terrestrial 

hydrological flux most sensitive to vegetation changes (DeBano et al., 1998; Collar et al., 

2023), its understanding associated with each type of land cover and land use modification 

helps the sustainable management of natural resources (Saddique et al., 2020; Cabral Júnior 

et al., 2022; Antunes et al., 2024).  

Due to the limitations of the regional and global products currently available for 

obtaining distributed, continuous, and high-resolution ET information from satellite data, the 

patterns and factors of this component remain poorly understood, especially in tropical 

regions such as Brazil (Fleischmann et al., 2023). However, Claudino et al. (2025) have 

recently proposed an improved model, specifically adapted for tropical areas, which 

mitigates the impact of cloud cover. This model, called ESTIMET, is based on an 

improvement of the MOD16 product and enables the daily estimation of ET at a 250 m 

resolution, without temporal gaps, thereby permitting detailed spatiotemporal analysis of ET 

variability. 

Therefore, in order to evaluate the applicability of this refined product and illustrate 

its interest in environmental studies, this chapter explores the potentialities of ESTIMET to 

continuously estimates distributed daily ET, focusing on i) the analysis of long-term (2003-

present) ET trends and their correlations with climatic (precipitation) and anthropogenic 

(land use and land cover) factors in two contrasting Brazilian biomes (Caatinga and 

Pantanal) to understand on a large scale the impacts of vegetation cover evolution/alteration 
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and precipitation changes on this main output of the water balance; and the investigation of 

ET variability in scenarios of land use and land cover changes caused by wildfires and 

deforestation processes in these two contrasting biomes. 

 

5.2 Materials and methods 

 
5.2.1 Trend analysis 

 
The long-term spatiotemporal trends of ET for the two biomes were statistically 

analysed by the nonparametric Mann-Kendall test (Mann, 1945; Kendall, 1948) with a 

significance level of 95%, calculated according to Eq. 17. 

 

 

 

where  is the number of observations,  represents the observation at time i,  represents 

the observation at time j, and sign(x) is the sign function of x. 

Eqs. 18 and 19 were used to calculate the variance of S (Var(S)) and the standard 

normal distribution (Z), respectively. 

 

 

 

 

where n is the number of data, m is the number of tied groups, which indicates sample data 

with the same value in extension i. 

Positive Z values indicate increasing trends, while negative Z values indicate 

decreasing trends. In addition, the corresponding p-value was calculated to determine the 

statistical significance of the trends, and the Theil-Sen slope (Sen, 1968) was used to estimate 

the slope of the observed trends. 
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5.2.2 Correlation between ET patterns and precipitation 

 
The variability of ET can be amplified or constrained by several climatic factors (e.g. 

precipitation, relative humidity, surface temperature, and biomass), with the precipitation 

playing a key role (Moreira et al., 2019; Fleischmann et al., 2020). In this study, the 

precipitation patterns were selected to analyse the variability of ET estimated by ESTIMET 

in the face of changes in climatic patterns in the two contrasting biomes: Pantanal and 

Caatinga. 

The monthly and annual precipitation data (2003-2022) used to assess its correlation 

with ET in the Caatinga and Pantanal biomes were obtained from the satellite-based IMERG 

BraMaL product (Freitas et al., 2024). IMERG BraMaL provides monthly precipitation data 

with a spatial resolution of 0.1º from 2001 to the present. This product improves the IMERG 

Early Run data through machine learning techniques and meteorological reanalysis data 

(MERRA-2), outperforming the IMERG Final Run product and other global precipitation 

products (e.g. CHIRPS, PERSIANN-CDR, and MSWEP). IMERG BraMaL also presents 

the following advantages when compared to most global products: lower latency for end-

users, no dependence on field data, and no relationship between errors and local 

characteristics, greatly improving precipitation estimates in all regions of Brazil (Freitas et 

al., 2024). The annual average precipitation values used in this analysis were obtained for 

each area and for each representative land use and cover (vegetation, agriculture, urban, and 

non-vegetated areas) to verify the evolution of precipitation spatiotemporal trends in the two 

biomes during the last two decades. Pearson's correlation coefficient (r) was used to evaluate 

this relationship between ET and precipitation (Eq. 20).  

 

 

 

where x i is the value of variable x, y i is the value of variable y, x is the mean of variable x, 

and y is the mean of variable y. Values of r range from -1 to 1, with -1 indicating the strongest 

negative correlations and 1 indicating the strongest positive correlations. 

In addition, the spatial variability of ET in the two biomes was analysed considering 

different climatic patterns, i.e. distinguishing drier, average, and wetter years throughout the 
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study period (2003 2020). In Caatinga, the year 2012 was selected as a dry year based on 

the studies of Marengo et al. (2018), the year 2017 was chosen as an average year based on 

the precipitation analyses of the biome obtained from IMERG BraMaL, while the year 2004 

was selected as a wet year based on the studies of Alves et al. (2006). For Pantanal, the year 

2020 was selected as a dry year (Costa et al., 2023), 2015 as an average year based on the 

IMERG BraMaL data, and 2011 as a wet year (Pereira et al., 2021). Once the years were 

defined, the annual ET maps for each entire biome were considered. 

The restriction on the number of biomes and the temporal resolution of the analyses, 

which was monthly instead of daily, resulted from processing limitations imposed by the 

Google Earth Engine (GEE) platform. This cloud-based geospatial analysis platform limited 

the size and processing time of files per user, resulting in prolonged processing of results 

(e.g. 1 day to download the monthly shapefile of the Caatinga, 3 to 4 days for biomes with 

larger territorial extents, such as the Amazon). Thus, to enable the analyses, regions and 

temporal scales were selected, preserving the finer spatial scale (250 m) of ESTIMET. New 

strategies for processing daily data are being developed. 

 

5.2.3 Analysis of ET patterns in response to rapid land use and land cover changes  

 
To demonstrate the potentialities of ESTIMET for obtaining finer spatiotemporal 

resolution (daily with 500 m) data, the impacts of daily ET on rapid biophysical and/or 

anthropogenic changes were analysed. For this analysis, the variability of ET in locations 

where rapid and significant land use and land cover changes occurred due to wildfire and 

deforestation processes was selected in two specific locations within each biome (Fig. 25a 

and 25d).  

The regions affected by forest fires were selected using the 1 km Burned Area system 

from the INPE's Burned Area Program. This system provides annual and monthly 

information on the burned areas (km²) for the Brazilian biomes, delimited using the AQ1Km 

product, which is constructed from data from MODIS Collection 6, collected simultaneously 

by the AQUA and TERRA satellites, with a 1-km spatial resolution (INPE, 2025). Thus, 

based on the data provided by the system, and considering the analysis period (2003-2022), 

the years and months with the highest occurrence of forest fires in each biome were defined. 

In Caatinga, the year 2015 (47,543 km², representing 5.6% of the biome's area) and the 

month of September (9,797 km²) were selected, while in Pantanal, the year 2020 (39,768 

km², representing 26.4% of the biome's area) and the month of September (14,264 km²) were 
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chosen. Given the large number of forest fire outbreaks identified for the two biomes, 

protected areas were used as a selection criterion because they contain large portions of the 

biome's native vegetation. Thus, for the Caatinga biome, the region of Chapada Diamantina 

National Park (2,41 km² hotspot) was selected (Fig. 25b), which in 2015 was devastated by 

several fires that occurred from September to December (Santos et al., 2020). For Pantanal, 

the region of the Encontro das Águas State Natural Park (a 1.82 km² hotspot) was selected 

(Fig. 25e), one of the conservation units most severely affected by the 2020 forest fires 

(Magalhães Neto et al., 2022).  

 

 

Figure 25  Location in the biome: (a) Caatinga, (b) Chapada Diamantina BA where a fire 
occurred, (c) Jeremoabo BA where a deforestation alert was issued, and in the biome (d) 
Pantanal, (e) Encontro das Águas State Park MT where a fire occurred, (f) Aquidauana

MS where a deforestation alert was issued. 
 

The MapBiomas Alerta system (MapBiomas, 2025) was utilised to identify 

deforested areas within the biomes. This system validates and refines deforestation alerts 

with high-resolution imagery, gathering information from various systems for all Brazilian 

biomes. The platform also provides detailed reports of each native vegetation loss event. For 

the selection of deforestation events, the area needs to be protected and larger than the 

ESTIMET pixel (62,500 m², 0.0625 km²). In Caatinga, a legal reserve area in the 

municipality of Jeremoabo-BA was selected (Alert Code 138612, an area of 1.4673 km²) 

(Fig. 25c), while in Pantanal, the region defined a Permanent Preservation Area in the 
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municipality of Aquidauana-MS (Alert Code 468462, an area of 3.23 km²) was chosen (Fig. 

25f). 

Once the regions were defined, the high temporal variability of ET (daily) was 

analysed in cases of forest fires, in the month of the alert indicated by INPE, and in the same 

month of the previous year, to ensure that the area had vegetation without degradation. For 

deforestation scenarios, the analysis covered the months indicated in the MapBiomas alert 

reports. 

 

5.3 Results and discussion 

 
5.3.1 Long-term (2002-2023) and continuous monthly ET trends 

 
The Mann Kendall test performed on the monthly time-series, considering the entire 

biome extents, indicates decreasing trends (s < 0) in 7 months for both biomes (Table 7). 

However, a significant increasing trend was identified for Pantanal in February (p = 0.03 

and s = 1.48 mm/month), which represents the end of the rainy and flood season in most of 

the biome, i.e. the period with higher water availability, with expanded floodplains, soil 

saturation, maximum leaf area of vegetation, and intense solar radiation (Sanches et al., 

2011; Leivas et al., 2015; Fleischmann et al., 2023). Under these conditions, vegetation 

maintains high transpiration rates, while the higher net radiation and surface temperatures 

increase the atmospheric demand (VPD), favouring higher ET fluxes during this period 

(Leivas et al., 2015; Marengo et al., 2016; Fleischmann et al., 2023). This increase tends to 

reduce from March to June.  

When analysing the trends for the monthly time series according to land use and land 

cover, Caatinga showed a relative balance. For this biome, each land use generally exhibited 

6 months of increasing and 6 months of decreasing ET trends, a behaviour that reflects the 

defined high and low ET cycles throughout the year (Table 8). In contrast, a predominance 

of decreasing trends was observed in non-vegetated and urban areas of Pantanal, with 11 

months showing decreasing trends, including 3 months (January, November, and December) 

that exhibited significant decreasing trends. This behaviour may reflect anthropogenic 

changes in land cover (urban expansion, conversion of pastures, or agricultural lands) in the 

region, which reduce the flooded areas and soil moisture with an increase in vegetation loss, 

thereby reducing transpiration and modifying the energy balance. Thus, any decline in 

flooding or baseflow reduces ET even during months of the rainy season in Pantanal, which 
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historically exhibit high evaporative demand (Leivas et al., 2015; Marques and Rodriguez, 

2022). Decreasing ET trends were also identified by Patriota et al. (2024) when analysing 

21 metropolitan regions across different Brazilian biomes. Regarding agricultural areas in 

Pantanal, most months (8 months) exhibited negative trends, while vegetated areas showed 

increasing ET trends in 7 months, although none of these trends were significant. 

Considering the entire extent of the biomes and all analysed land use and land covers, ET 

values showed an annual decline, particularly in non-vegetated areas of the Pantanal (p = 

0.04 and s = -7.37 mm/year). likely related to recent fire and deforestation impacts 

(Fleischmann et al., 2023).  







 91 

 
5.3.2 Variability of ET according to precipitation and land use/land cover patterns 

 
The analysis of ET between 2003 and 2022 reveals that the monthly variations (Fig. 

26 and Fig. 27) in both biomes exhibited similar behaviour, with cyclical oscillations of 

higher values during the rainy season and lower values during the dry season. In Caatinga, 

the rainy season lasts 3 to 5 months, mainly from January to May, while in Pantanal, the 

rainy season generally occurs from October to March (i.e. over 6 months). The interannual 

analysis (Fig. 28e and Fig. 29e) shows a greater discrepancy between the ET values observed 

for the biomes, where Caatinga exhibits higher variability with abrupt oscillations, while the 

Pantanal shows a more stable behaviour, with variation close to a linear pattern. 

These cyclical patterns reflect the climate of the biomes, a factor indicated by the 

significant correlation between ET and precipitation in the biomes (Caatinga, with r = 0.73 

and Pantanal, with r = 0.78). In Caatinga, where predominates the semi-arid climate marked 

by low annual precipitation, the lowest ET values were observed during the dry season (for 

Full biome extent the ET= 13.42 mm/month in Nov/2015 and ET= 483.41 mm/year in 2012) 

making water availability a limiting factor for ET in this biome (Menezes et al., 2012; 

Alvares et al., 2013; Pinheiro et al., 2013; Andrade et al., 2024). An example of this was the 

sharp reduction in ET observed during the period 2012-2015 that can be attributed to the 

severe drought that decreased water availability and limited ET (Silva et al., 2024). 

In contrast, Pantanal exhibits well-defined dry and rainy seasons, with flooding 

cycles that contribute to increased evaporation (Ribas and Schoereder, 2007). Other factors 

influencing ET variability in biomes include latitudinal position, which affects radiation 

availability and air temperature, with higher-latitude regions exhibiting well-defined intra-

annual periods (Andrade et al., 2024; Patriota et al., 2024). 

When analysing the ET patterns in the main land uses and land covers of the biomes, 

greater variations and higher ET values can be observed in vegetated regions (Fig. 26, Fig. 

27, Fig. 28 and Fig. 29). In Caatinga, the average values of ET for the whole period were 

81.91 mm/month for vegetated areas, 56.64 mm/month for agricultural areas, 44.88 

mm/month for urban areas, and 36.55 mm/month for non-vegetated areas 36.55 mm/month. 

Additionally, the ET values in vegetated regions, which comprise the majority of the 

Caatinga biome, show rapid responses to precipitation variability, reflecting the behaviour 

of vegetation predominantly composed of shrubs and small trees. The Caatinga vegetation 

is mostly composed of plant species that present structural and physiological adaptations to 
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the climate type (i.e. spines, leaf shedding during the dry season, water storage in roots and 

stems, stomatal closure during the hottest hours) (Palácio et al., 2016; Queiroz et al., 2017; 

Miranda et al., 2020; Bezerra et al., 2023). This allows for differentiation of the behaviour 

in the ET rates as vegetation changes between dry and rainy periods in response to rainfall 

events. Besides precipitation, a combination of high atmospheric temperatures, wind speeds, 

and radiation, along with low atmospheric water content, drives ET dynamics in the 

Brazilian Northeast (Andrade et al., 2024). 

In Pantanal, the average ET values for vegetated regions (i.e. 87.21 mm/month) were 

over 30% higher than in agricultural areas (i.e. 75.12 mm/month, 86.15% of the ET in 

vegetated regions) and 48% higher than in urban (i.e. 32.55 mm/month, 37.32% of the ET 

in vegetated regions) and non-vegetated regions (i.e. 51.74 mm/month, 48.26% of the ET in 

vegetated regions). However, the variations of ET in vegetation areas presented fewer 

fluctuations, reflecting the vegetative behaviour of the region. The natural vegetation of the 

region is mostly composed of seasonal floodplains that drive its ecological complexity in 

vegetation patterns and contribute to a unique landscape with a diverse composition of 

savanna vegetation, aquatic plants, and floodplain forests (Evans et al., 2014; Pereira et al., 

2021; Caballero et al., 2025), suggesting that water availability is not a limiting factor for 

vegetative development and ET in the region. Fleischmann et al. (2023) observed that 

tropical wetlands (e.g. Pantanal) and floodable savannas generally exhibit ET rates similar 

to those of forests during floods, but the similarity decreases during the dry season. They 

also concluded that river flood propagation and net radiation (Rn) drive ET dynamics in 

these highly inundated areas. Furthermore, Caballero et al. (2025) concluded that there is 

multidecadal variability in climate and extent of wetland areas, observing that potential 

evapotranspiration shows a negative correlation with wetland extent, suggesting that as the 

potential for water loss through evaporation and transpiration increases, the extent of the 

wetland decreases. 
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Figure 26 - Monthly mean variability of ET and precipitation over 20 years (2003 2020) 
for each land use: (a) agriculture and pasture, (b) vegetation, (c) non-vegetated, (d) urban, 
and (e) all land uses within the Caatinga biome. r denotes the correlation between ET and 

precipitation. 
 

 
Figure 27 - Monthly mean variability of ET and precipitation over 20 years (2003 2020) 
for each land use: (a) agriculture and pasture, (b) vegetation, (c) non-vegetated, (d) urban, 
and (e) all land uses within the Pantanal biome. r denotes the correlation between ET and 

precipitation. 
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Figure 28 - Annual mean variability of ET and precipitation over 20 years (2003 2020) for 
each land use: (a) agriculture and pasture, (b) vegetation, (c) non-vegetated, (d) urban, and 

(e) all land uses within the Caatinga biome. r denotes the correlation between ET and 
precipitation. 

 
 

 
Figure 29 - Annual mean variability of ET and precipitation over 20 years (2003 2020) for 
each land use: (a) agriculture and pasture, (b) vegetation, (c) non-vegetated, (d) urban, and 

(e) all land uses within the Pantanal biome. r denotes the correlation between ET and 
precipitation. 
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The spatial variability patterns of ET in the dry, normal, and wet periods, correlated 

to rainfall variability, can be observed in Figs. 30 31. For Caatinga, the lower ET values (0

500 mm/year) were observed in the central region, while the higher values (ET > 1000 

mm/year) were noticed in the northern (coastal) portion in a year without rainfall anomalies 

(Fig. 30cd). In the dry year (Fig. 30ab), the lower values of ET (i.e. <500 mm/year) in the 

central region were extended to almost the entire area of the biome. For the wet year, these 

annual values of ET lower than 500 mm were concentrated in a small portion of the central 

region (Fig. 30ef), a behaviour that clearly follows the rainfall dynamics.  

In Pantanal, the ET variability partially follows the rainfall dynamics. In the analysed 

year without anomalies, the lowest ET values (0 500 mm/year) were concentrated in a small 

portion in the central area, with higher values in the north (ET > 1000 mm/year) (Fig. 31cd). 

In the dry year, the lowest ET values are distributed across almost the entire region (Fig. 

31ab), while in the wet year, despite higher rainfall concentrations throughout the region, 

the lowest ET values occur in most of the southern portion (Fig. 31ef), contradicting the 

rainfall pattern of that year, which shows higher concentrations in the southern portion 

compared to the year without anomalies. 

 

 
Figure 30 - Spatial variability of annual ET and precipitation in the Caatinga: 2012, a dry 

year (a) and (b); 2017, a year with normal rainfall (c) and (d); and 2004, a wet year (e) and 
(f). 
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Figure 31 - Spatial variability of annual ET and precipitation in the Pantanal: 2012, a dry 

year (a) and (b); 2017, a year with normal rainfall (c) and (d); and 2004, a wet year (e) and 
(f). 

 
5.3.3 Spatial variability of ET in response to deforestation and forest fires 

 
The variability of the ET values before and after the land use and land cover change 

events shows the impact of burns in the decrease of the water movement into the atmosphere, 

with a decrease in the Caatinga natural vegetation from 2.7 mm/day to 1.27 mm/day (Fig. 

32a f), which represents a reduction of over 50% on the analysed day and over 20% in the 

monthly average (Sep/2014 mean ET = 1.90 mm/day and Sep/2015 mean ET = 1.46 

mm/day).  

A more pronounced decrease in the ET values was observed in Pantanal, with 

reductions of over 90% in the monthly average, as indicated by the comparison of the 

September 2019 mean ET (1.36 mm/day) and the September 2020 mean ET (0.11 mm/day). 

A similar pattern of ET decrease was identified in areas where native vegetation was 

deforested and converted to agricultural use (Fig. 32g k and Fig. 33g k), with monthly mean 

values in Caatinga decreasing by more than 50% (Apr/2021 mean ET = 4.76 mm/day and 

Jul/2021 mean ET = 2.12 mm/day) and in Pantanal by more than 80% (May/2021 mean ET 

= 1.33 mm/day and Sep/2021 mean ET = 0.18 mm/day). For these cases, in addition to 
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deforestation events, ET may also have been influenced by monthly precipitation, but the 

months were defined according to the alerts indicated by MapBiomas. 

Land use changes caused by agricultural expansion, urban expansion, and fire events 

have been investigated in other studies in Brazil, identifying substantial reductions in ET 

rates (Laipelt et al., 2021; Carrillo-Quinete et al., 2022; Andrade et al., 2024). In Caatinga, 

water scarcity significantly limits ET in this biome, contributing to the intensification of 

drought events and vegetation loss. Thus, the combined effects of climatic variability and 

environmental degradation from deforestation, agricultural expansion, and fire occurrence 

lead to a significant reduction in ET (Oliveira et al., 2012; Andrade et al., 2024). In the 

Pantanal, a critical scenario exists, with a 30% loss of its wetlands primarily due to the 

expansion of pasture and agriculture. Moreover, the Pantanal has faced increasing challenges 

from recurrent droughts and intensified wildfires, degradations that affect hydrological 

regulation, aquifer recharge, and thermal control via evapotranspiration, thereby increasing 

the ecological vulnerability of the biome (Fleischmann, 2023; Caballero et al., 2025). 

Furthermore, the impacts of global climate change exacerbate the effects of land use changes 

(Andrade et al., 2024). 

This evidence suggests that ET plays a crucial role in regulating the hydrological 

cycle. This reduction of ET, resulting from the replacement of native vegetation with 

impermeable surfaces or areas of low vegetation cover, compromises the climatic and hydric 

resilience of the affected regions (Patriota et al., 2024). Furthermore, these scenarios 

demonstrate that ESTIMET is a valuable tool for quantifying the hydrological impacts of 

deforestation and agricultural land expansion, as well as for monitoring the impacts of fires 

on ET in the Brazilian biomes. 
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Figure 32 - Daily variability of ET in the Caatinga during the month preceding (a c) and 

during (d f) wildfire events, and before (g i) and after (j k) deforestation events, 
respectively. 

 

 
Figure 33 - Daily variability of ET in the Pantanal during the month preceding (a c) and 

during (d f) wildfire events, and before (g i) and after (j k) deforestation events, 
respectively. The red dashed line indicates the day corresponding to the images shown on 

the left. 
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6 CONCLUSIONS AND RECOMMENDATIONS  

 
ESTIMET provides a unique remote sensing-based ET assessment tool that operates 

at a refined spatiotemporal scale and with low latency under any sky conditions. Such an 

enhanced spatiotemporal resolution of this model may be suitable to upscale the daily flux 

tower measurements, opening opportunities for a better understanding of this component of 

the hydrological cycle, especially in data-scarce areas frequently overcast by substantial 

cloud cover but playing a fundamental role in the broader analyses, in the context of water-

energy balance, agricultural practices (e.g. irrigation), and long-term climate change impact 

monitoring. 

The assessment of this model, developed for Brazil, demonstrated that the underlying 

hypotheses to refine the MODIS evaluation are relevant and do not significantly degrade ET 

evaluation, even allowing better assessment when compared to EC daily ET, especially for 

the Caatinga, Cerrado, and Pantanal Biomes. Two potential issues should be considered 

when using eddy covariance observations of ET as ground-truth data. Firstly, eddy 

covariance data are affected by uncertainties due to the energy balance closure problem. 

Secondly, discrepancies in scale and classification errors can cause a mismatch in vegetation 

between the pixels and the site, complicating the comparisons. Nevertheless, the daily ET 

simulated from ESTIMET usually present good representativeness of what is measured by 

the EC towers and seems to be efficient for continuous assessment with a short latency (1 

month at maximum), not only at the daily scale, by catching biophysical reactivity to 

meteorological or ecological processes at a detailed scale, but also for applications at coarser 

scales (e.g. 8-days, similar to MOD16A2GF and PML_V2). The regional scale assessment 

also demonstrated that ESTIMET was able to better capture the annual ET calculated by the 

water balance approach in the three major Brazilian biomes (Amazon, Atlantic Forest, and 

Cerrado) when compared to the analysed global products MOD16A2GF, PML_V2, and 

GLEAM 4.1a. Overall, this ESTIMET outperformance results from the higher resolution 

and/or improved input datasets, as the model's modifications were made to incorporate this 

adapted information. Although developed for Brazil, the model can be applied to other 

tropical regions since a land cover map with 30-m spatial resolution or higher is available 

and some empirical parameters (e.g. surface albedo) are recalibrated. 

This model is sensitive to certain underlying hypotheses regarding land 

characteristics (e.g. albedo and EVI2), which can be altered from both spatial and temporal 

perspectives in anthropised landscapes, such as agricultural land and semi-urban zones. This 
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can be an issue, especially for local applications of ESTIMET. Nevertheless, this model is 

expected to be further adaptable to such local conditions. An illustration of this adaptability 

is provided within the framework of this study. The lack of available data for some biomes 

(Pampa and Atlantic Forest) has been fixed by assuming biophysical similarities (regarding 

albedo) with other tropical biomes, before further adjustment, if relevant.  

From a practical application, this study also demonstrated the possibilities of 

ESTIMET to characterise the spatial-temporal variability of ET over the past 20 years, 

considering intra- and interannual scales. This study assessed the correlation between ET 

and another meteorological parameter (precipitation) and the responses to land use and land 

cover changes. This highlighted the fact that contrasting Brazilian biomes (e.g. Pantanal and 

Caatinga) present ET variation cycles correlated with precipitation variability, with an 

overall decreasing trend in ET across different land uses in both biomes. This decrease in 

ET was also identified at a more detailed temporal scale (daily) in areas where land use 

changes occurred due to burn and deforestation events. Finally, further studies could 

improve ESTIMET estimations through bias corrections of the daily data, based on machine 

learning techniques and meteorological reanalysis data (i.e. not relying on observed data). 

In addition, new analyses can be carried out through correlations of ET with other climatic 

parameters (e.g. land surface temperature, wind speed, soil moisture) and in other Brazilian 

biomes. 
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