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RESUMO

Este estudo desenvolveu um modelo de ET, denominado Enhanced and Spatial-Temporal
Improvement of MODIS EvapoTranspiration (ESTIMET), para monitoramento local e
regional de ET nos trépicos, com base no modelo de evapotranspiracao (ET) MOD16
original. As principais caracteristicas distintivas do ESTIMET sao fornecer um produto
quase em tempo real com resolugdes espacial (de 500 para 250 m) e temporal (de 8 dias para
diaria) aumentadas, minimizando lacunas na cobertura de nuvens e ajustando caracteristicas
tropicais especificas de diversos tipos de vegetacao e microclima. Comparamos os resultados
do ESTIMET com os produtos ET MOD16A2GF, PML V2 e GLEAM 4.1a, usando dados
de covariancia de vortices turbulentos (EC) de 14 locais no Brasil, distribuidos entre cinco
biomas, bem como a ET anual baseada no balango hidrico em 25 bacias hidrograficas
brasileiras. As estimativas do modelo ESTIMET ainda foram utilizadas para analisar a
variabilidade e tendéncias da ET nos ultimos 20 anos em dois biomas brasileiros
contrastantes (Caatinga e Pantanal) e em regides com mudancas de uso do solo causadas
pela ocorréncia de incéndios e desmatamentos. No geral, as estimativas do ESTIMET
capturaram as variagdes sazonais diarias dos dados de EC, especialmente nos biomas
Caatinga, Pantanal e Cerrado, com coeficientes de correlacdo de concordancia (pc) variando
de 0,45 a 0,80 em oito locais desses trés biomas. As comparagdes da ET cumulativa de 8
dias com a ET das EC mostram que o modelo ESTIMET apresenta um pc médio de 0,63,
maior que o0 do MOD16A2GF (pc = 0,58), do GLEAM 4.1a (pc = 0,47) e do PML V2 (pc
=0,45). Da mesma forma, no balango hidrico da bacia hidrografica, o ESTIMET apresenta
uma melhor representagdo da ET anual do que outros produtos de ET nos trés principais
biomas sul-americanos — Amazonia, Mata Atlantica e Cerrado —, que cobrem mais de 85%
do territorio brasileiro. Além disso, a analise das estimativas da ET nos ultimos 20 anos
permitiu destacar que em ambos os biomas existem ciclos de variagdo da ET, com alta
correlacdo com a variagdo da precipitacdo e tendéncia geral de reducdo da ET nos diferentes
usos em ambos os biomas, bem como nas areas de ocorréncia de incéndios e desmatamento,
indicando que caracteristicas como disponibilidade de agua e mudancas na cobertura vegetal
sdo fatores importantes para explicar a variabilidade da ET neses ecossistemas. Assim, o
ESTIMET melhora as estimativas de ET baseadas em sensoriamento remoto em biomas
tropicais, operando em uma escala espaco-temporal e laténcia mais refinadas (ou seja,
mensal) em todas as condi¢des do céu e sendo capaz de representar a variabilidade da ET de
superficie naturais e com mudangas antropogénicas ao longo de décadas.

PALAVRAS-CHAVE: Sensoriamento remoto, MODIS, Evapotranspiragdo, Brasil.



ABSTRACT

This study developed an ET model, namely the Enhanced and Spatial-Temporal
Improvement of MODIS EvapoTranspiration (ESTIMET), for local-to-regional ET
monitoring and applications in the tropics, based on the original MOD16 evapotranspiration
(ET) model. The main distinguishing features of ESTIMET are providing a near-real-time
product with increased spatial (from 500 to 250 m) and temporal (from 8 days to daily)
resolutions, minimising gaps in cloud cover, and adjusting for specific tropical
characteristics of diverse vegetation and microclimate types. We compared the results of
ESTIMET with those of MOD16A2GF, PML V2, and GLEAM 4.1a ET products, using
eddy covariance (EC) data from 14 sites in Brazil, as well as the water balance-based annual
ET estimates in 25 Brazilian catchments. The results obtained from the ESTIMET model
were also used to analyse the variability and trends of ET over the past 20 years in contrasting
Brazilian biomes (Caatinga and Pantanal) and in regions with land-use changes caused by
the occurrence of wildfires and deforestation. Overall, the ESTIMET estimates captured the
daily seasonal variations of the EC data, especially in the Caatinga, Pantanal, and Cerrado
biomes, with concordance correlation coefficients (pc) ranging from 0.45 to 0.80 at eight
sites located in these three biomes. The comparisons of the 8-day cumulative ET show that
the ESTIMET model exhibits a mean pc of 0.63, greater than that of MOD16A2GF (pc =
0.58), GLEAM 4.1a (pc = 0.47), and PML_V2 (pc = 0.45). Similarly, for the catchment
water balance, ESTIMET exhibits a better representation of annual ET than other ET
products in the three major South American biomes, i.e. the Amazon, Atlantic Forest, and
Cerrado, which cover over 85 % of the Brazilian territory. In addition, the analysis of ET
estimates over the past 20 years highlighted that both biomes exhibit ET variation cycles
strongly correlated with precipitation variability, with a general trend of decreasing in
different land uses in both biomes and in areas affected by wildfires and deforestations,
indicating that factors such as water availability and changes in vegetation cover are
important drivers in explaining ET variability in these ecosystems. Thus, ESTIMET
improves remote sensing-based ET estimates in tropical biomes, operating at a finer
spatiotemporal scale and with lower latency (i.e. monthly) under all sky conditions, and it is
capable of representing the variability of ET in natural surfaces and under anthropogenic
changes over decades.

KEYWORDS: Remote sensing, MODIS, Evapotranspiration, Brazil.
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Figure 32 - Daily variability of ET in the Caatinga during the month preceding (a—c) and
during (d—f) wildfire events, and before (g—i) and after (j—k) deforestation events,
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Figure 33 - Daily variability of ET in the Pantanal during the month preceding (a—c) and
during (d—f) wildfire events, and before (g—i) and after (j—k) deforestation events,
respectively. The red dashed line indicates the day corresponding to the images shown on
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1 INTRODUCTION

Evapotranspiration (ET) plays a crucial role in the global water cycle, serving as the
primary pathway for water loss to the atmosphere. Accurately quantifying ET is essential for
many purposes, including drought prediction, efficient irrigation, plant productivity, water
management, and the elucidation of climate change processes (Hu et al., 2015; Machado et
al., 2014; Liu et al., 2020; Ahamed et al., 2022; Silva et al., 2024.). ET can be measured
through a variety of direct methods or estimated using indirect approaches, which include
measurements using the eddy covariance (EC) technique, surface renewal, lysimeters,
estimates from soil-water monitoring, and meteorological methods (Li et al., 2009; Silva et
al., 2015; Melo et al., 2021; Silva et al., 2024). However, these ground-based monitoring
techniques are costly and time-consuming (Luo et al., 2015; Grosso et al., 2018;).
Furthermore, landscape-level techniques are limited by their spatial coverage, due to the
large spatial heterogeneity of forests (Tang et al., 2013; Andrade et al., 2021; Khan et al.,
2021; Melo et al., 2021). This means that the information obtained from these field-based
approaches cannot be easily extrapolated to produce regional values of ET, which are
essential for driving hydrological models and monitoring systems that allow stakeholders to
make more effective decisions (Chen et al., 2005; Immerzeel and Droogers, 2008; Luo et al.,
2015; Grosso et al., 2018; Ollivier et al., 2021).

To provide spatially distributed information on ET at a regional scale, remotely
sensed observations by satellite sensors have become a viable solution in the past few
decades (Kalma et al., 2008; Wang and Dickinson, 2012; Zhang et al., 2016; Laipelt et al.,
2021; Bezerra et al., 2023). Data from various remote sensing methods are currently
available and used to produce regionally distributed ET at different spatiotemporal
resolutions (Tang et al., 2013; Chen and Liu, 2020; Filgueiras et al., 2020; Khan et al., 2021).
The most common remote sensing-based methods include: (1) empirical models that relate
ET to vegetation indexes or land-surface temperature (Petropoulos et al., 2009); (2) residual
methods based on the energy balance equation, such as the Two-Source Energy Budget
(TSEB) (Norman et al., 1995; Kustas and Norman, 1999), Surface Energy Balance Model
for Land (SEBAL) (Bastiaanssen et al., 1998a), and Mapping Evapotranspiration at high
Resolution and with Internalised Calibration (METRIC) (Allen et al., 2007); and (3) methods
based on the application of traditional calculations, such as the Penman-Monteith (Cleugh
et al., 2007; Mu et al., 2007, 2011) and Priestley-Taylor equations (Fisher et al., 2008; Jin et
al., 2011; Wong et al., 2021).
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The energy balance models, such as SEBAL, typically compute the instantaneous
latent heat flux (energy equivalent to instantaneous ET) as a residual term of the energy
balance equation, by estimating the other energy fluxes (Bastiaanssen et al., 1998b). Hence,
SEBAL is arguably one of the most common, validated and precise techniques for estimating
distributed ET from local to regional scales and at high spatial resolutions (Andrade et al.,
2024). This is valuable for hydrological modelling purposes in small and medium-sized river
basins. For instance, Biggs et al. (2016) highlighted that the implementation of SEBAL
yields lower errors over regions smaller than 10,000 km? compared to larger regions, due to
the model's moderate sensitivity to surface roughness. Although widely used and validated,
regionally, for a large number of different environments worldwide (e.g. Bastiaanssen et al.,
1998a; Timmermans et al., 2007; Teixeira et al., 2009; Allen et al., 2011; Silva et al., 2015;
Bala et al., 2016; Grosso et al., 2018; Ferreira et al., 2020; Mohan et al., 2020; Costa-Filho
et al., 2021; Laipelt et al., 2021; Liu et al., 2021; Bezerra et al., 2023), the SEBAL model
still has some limitations with regards to applications on seasonal timescales. This is
because: (1) a range of preliminary procedures are required to compute the sensible heat
flux, which include the selection of calibration pixels (hot and cold) and the availability of
two-level wind speed data from meteorological stations (Bezerra et al., 2023); (2) the high-
dependency of surface temperature and emissivity parameters, obtained from thermal
infrared satellite data, limits its application to clear-sky days (Bhattarai et al., 2019); and (3)
the errors generated when the instantaneous ET values for the satellite passage-time are
extrapolated to daily, monthly, or annual scales (Van Niel et al., 2012, 2011).

To overcome the complex procedures and data dependencies of the models based on
the energy balance, Cleugh et al. (2007) developed a more straightforward approach using
Penman-Monteith logic to estimate ET with data obtained from the MODerate Resolution
Spectroradiometer (MODIS) sensor onboard the Terra and Aqua satellites. Subsequently,
Mu et al. (2007; 2011) improved the method to generate the first ET global product using
MODIS and reanalysis-derived meteorological inputs (MOD16). The MOD16A2 dataset
provides ET information globally, with a spatial resolution of 500 m and three different
timescales (8 days, monthly, and annual) (Running et al., 2017). For example, the 8-day data
represents the sum of ET for all eight consecutive days. In 2023, MOD16 was upgraded to
version MOD16A2GF, where linear interpolations were used to fill data gaps caused by
cloud contamination in the 8-day Leaf Area Index/Fraction of Photosynthetically Active
Radiation (LAI/FPAR, MOD15A2H product) and surface albedo (MCD43 product) images.

This interpolation procedure occurs at the end of each year (Running et al., 2021).
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Several studies have tested the accuracy of the MOD16 ET product in complex areas
under distinct climatic and vegetation aspects worldwide, mainly using information from EC
flux towers (Vinukollu et al., 2011; Ramoelo et al., 2014; Chen et al., 2014; Hu et al., 2015;
Tang et al., 2015; Biggs et al., 2016; Aguilar et al., 2018; Khan et al., 2018; Filgueiras et al.,
2020; Zhu et al., 2022). More specifically, in Brazil, several studies showed that the accuracy
of the MOD16 product varies according to certain environmental characteristics, such as
climate, land cover, and a combination of both, depending on the biome classification
(Ruhoff et al., 2013; Souza et al., 2016; Maeda et al., 2017; Moreira et al., 2018; Melo et al.,
2021; Dias et al., 2021; Biudes et al., 2022). For instance, the assessment carried out by
Ruhoff et al. (2013), at two sites located in the Brazilian Cerrado biome, showed that the
MOD16 product overestimated the mean ET (8-days, monthly, and annual) but no long-term
over or underestimation was found for a sugar cane cropland area. Maeda et al. (2017) also
showed that the MOD16 model was unable to consistently represent the seasonal patterns of
the ET at a river basin scale in the Amazon Forest.

The limitations faced by the MOD16 ET product, especially for regional and local
applications, are the land cover and atmospheric characterisations, which are made through
the MODIS Land Cover Type (MOD12Q1) and the Modern-Era Retrospective analysis for
Research and Applications (MERRA-2) products; these inputs to the model obtain canopy
conductance and meteorological data, respectively (Running et al., 2017; 2021). The
meteorological input data have 0.5° x 0.6° or 1.0° x 1.25° spatial resolutions, which are too
coarse for accurate evaluations, especially in regions characterised by marked climatic
gradients (Alvares et al., 2013). Parallel to this, MCD12Q1 may misidentify some local or
regional vegetation characteristics and introduce significant errors in ET estimates (Ruhoff
et al., 2013; Laipelt et al., 2021). Moreover, the original MOD16 model was restricted to
being used in clear sky conditions until recently, as the orbital remote sensors cannot
measure cloud base parameters (Sur et al., 2015; Running et al., 2017). Consequently,
despite using the best observations during eight consecutive days, many grid cells of the
MOD16 ET product were still contaminated by clouds, especially in tropical regions,
presenting gaps in the ET time series (Running et al., 2017). This problem was partially
solved when the product was recently upgraded to version MOD16A2GF, in which the
cloud-contaminated pixels are filled through linear interpolation, a correction occurring at
the end of each year. Nevertheless, this renders the MOD16A2GF no longer a near-real-time

product because it can only be generated at the end of a given year (Running et al., 2021).
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Several studies have been undertaken in parallel, attempting to modify the MOD16
ET model to overcome the limitations mentioned earlier (e.g. Morillas et al., 2013; Yeom et
al., 2015; Ke et al., 2016; Wu et al., 2016; Srivastava et al., 2017; Ke et al., 2017; Chang et
al., 2018; El Masri et al., 2019; He et al., 2019; Zhang et al., 2019; Brust et al., 2021; Dias
et al., 2021; Astuti et al., 2022; Liu et al., 2022; Lu et al., 2022; Guo et al., 2023; Kumar et
al., 2023). These modifications generally involve the following processes: (1) improve the
spatiotemporal resolutions; (2) make adaptations for obtaining information for all sky
conditions; and (3) implement local parameterisations, such as land use and land cover
(LULC) information. All of these improvements used distinct adjustment approaches, but
none covered all aspects together for a more operational data extraction at local and regional
scales.

In this context, to address these limitations for local and regional applications in
tropical areas, this study developed and evaluated the Enhanced and Spatial-Temporal
Improvement of MODIS EvapoTranspiration model (ESTIMET). This model offers lower
latency (currently annual for the monthly MOD16A2GF) and improved temporal (from 8
days to daily) and spatial (from 500 m to 250 m) resolutions. Obtaining these distributed,
continuous, and accurate estimates of ET enables more precise trend analysis and correlation
of this component with biotic and climatic parameters in complex regions, which can be
more effectively utilised in hydrological modelling, water resource management, and

agricultural practices.
1.1 Hypotheses

This thesis is based on the hypotheses that modifications of the MOD16 model,
including the use of refined input remote sensing and reanalysis datasets, can improve the
long-term (2003-actual) spatiotemporal representativeness of distributed ET estimations in
heterogeneous tropical regions mostly covered by clouds, which can be more effectively

utilised for time sensitivity analyses or applications.

1.2 Main aims

To propose and evaluate the ESTIMET (Evolution and Spatial- Temporal
Improvement of MODIS EvapoTranspiration) model, able to consistently provide a finer
spatial (250 m) and temporal (daily) variability of long-term (2003-present) ET for tropical

biomes with low latency (monthly) when compared to the global current datasets.
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1.3  Specific aims

e Adjust a more regional/local model to estimate distributed evapotranspiration in
tropical climates, overcoming limitations related to frequent cloud cover;

e Evaluate the performance of the ESTIMET model in representative sites of the
main biomes found in tropical climates;

e Analyse long-term (2003—present) trends in evapotranspiration and their
correlations with precipitation and land use/land cover changes in contrasting
tropical biomes; and

e Assess the potential of ESTIMET for temporal sensitivity analyses in regions

experiencing vegetation cover degradation.

1.4 Thesis structure

The thesis is divided into six chapters. Chapter one presents a contextualisation and
justification that motivated the development of this study, including the hypotheses and
aims. Chapter two presents a literature review, covering conceptual and foundational topics
related to ET and orbital remote sensing, which are essential for a better understanding of
the study. Chapter three presents the physical characteristics of the region chosen for
applying and validating the ESTIMET model. Chapter four describes the materials and
methods used to develop the ESTIMET model, along with the results of its evaluation and
comparison with other ET satellite-based products. Chapter five presents the long-term trend
analyses of the ET estimated by ESTIMET in the Brazilian biomes, as well as the model's
potential for sensitivity analyses. Lastly, the final chapter presents the study's conclusions

and recommendations.
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2 LITERATURE REVIEW

2.1 Evapotranspiration

Evapotranspiration (ET) is a critical process in hydrology that involves the
conversion of water from the liquid phase to atmospheric vapour (Melo et al., 2021). This
loss of water to the atmosphere occurs through the process of evaporation, which involves
the transfer of water from various sources, including the soil surface, water bodies, and plants
(Allen et al., 2021). Vegetation releases water to the atmosphere by evaporation and
transpiration. The transpiration releases water through stomata. As evaporation and
transpiration occur simultaneously, they are not easily distinguishable, being estimated as
ET (Bezerra et al., 2023). The ET process is influenced by different hydrometeorological
factors, including available energy, precipitation, wind, temperature, and humidity (Oliveira,
2012; Gusmao, 2017).

ET represents between 50 and 80% of precipitation, being the second largest flux in
the hydrological cycle and playing a crucial role in the global water, carbon, energy, and
nutrient cycles, directly influencing climate at different spatial scales (Valle Junior et al.,
2020; Vargas Godoy et al., 2021). Quantifying ET is essential for several sectors, including
agriculture, reservoir management, meteorological and hydrological modelling, and flood
forecasting (Oliveira, 2012; Lima et al., 2013).

ET was defined in three types to approximate the quantification process for
estimations: potential evapotranspiration (ETp), which is the loss of water to the atmosphere
from a natural vegetated surface without water limitations for soil evaporation and plant
transpiration; actual evapotranspiration (ETr, , which occurs on vegetated surfaces under real
atmospheric and water conditions; and reference evapotranspiration (ETo), which considers
a hypothetical surface similar to green grass, with a height of 0.12 m, a plant resistance of
70 s m’!, and an albedo of 0.23 (Allen et al., 1998; Camargo and Camargo, 2000). In this
study, for simplicity, we use ET referring to actual evapotranspiration.

Quantifying ET is a major challenge in hydrological research due to its complex
interactions with atmospheric properties, vegetation, soil, and topography (Zheng et al.,
2016; Bhattarai et al., 2019). Various approaches, ranging from direct measurement
techniques to indirect energy balance models using remotely sensed data, have been
developed to estimate ET, keeping pace with technological and scientific advances (Allen et

al., 2011; Bezerra et al., 2023). The direct collection of ET is a complex and expensive task,
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because requires special facilities and equipment with high associated costs. Overall, this
approach is reserved for specific experimental conditions and is mainly used to calibrate
indirect ET estimation methods (Pereira et al., 1997; Gusmao, 2017), including:

1) Class A tank, which consists of a tank full of water exposed to the environment (Fig. 1).
Changes in the water level are recorded daily, and these data are adjusted by the amount of
precipitation measured at the same weather station during the same measurement period.
This is a traditional method to estimates ETp, which is widely used because of its simplicity

and low cost (Abtew and Melesse, 2013).

Figure 1 — A typical class A tank.
Source: NOAA (2005)

2) Lysimeters, which consist of impermeable tanks containing a volume of soil with certain
vegetation, making it possible to monitor the variation of the mass of water in this sampled
volume (Fig. 2) (Cunha et al., 2011; Abtew and Melesse, 2013). This method enables a more
detailed analysis of the water balance terms (e.g. precipitation, irrigation, and drainage) to
obtain ET as a residual component in the soil block. (Pereira et al., 1997). The use of
lysimeters is generally limited to short crops due to the size of the sampled area, which lacks

representativeness of plant diversity (Rana et al., 2005).
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Figure 2 — Lysimeter Installation.
Source: UFRGS (2004)

3) Basin water balance, where ET is calculated as the difference between precipitation and
streamflow, assuming no significant changes in soil water storage over long periods of time
(Bezerra, 2023). Although widely used for regional ET estimates, this approach mostly
provides average values for the studied area, not fully reflecting the spatial variability of ET
(Zhang et al., 2016).

4) Scintillometers, which are instruments with a transmitter and receiver unit separated by
a horizontal distance (102 to 104 m). These instruments measure small variations in the
refractive index of the air caused by changes in temperature, humidity, and pressure that
induce variations in air density, i.e. providing an average value of the sensible heat flux (H)
for a contribution area ranging from 50 to 12,000 m? (Fig. 3) (Allen et al., 2011). However,
obtaining ET makes the estimates of other energy balance necessary, such as net radiation
(Rn) and soil heat (G), at the same measurement scale as H (Allen et al., 2011; Cunha et al.,
2011; Allen et al., 2021). On the other hand, a microwave scintillometer enables the direct

obtaining of the H and latent (AET) heat fluxes (Lobos-Roco et al., 2022).
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Figure 3 - Microwave Scintillometer.
Source: OTT HydroMet (2016)

5) Turbulent vortex correlation (eddy covariance — EC), which is a technique to directly
measure the fluxes of sensible and latent heat, CO2, and methane between the Earth's surface
and the atmosphere, directly obtaining the AET for different surface types (Fig. 4). This is
technique obtain an average value of ET for an area of up to 10 km?, which varies depending
on the wind at the time of measurement (Chu et al., 2021). EC is considered the most accurate
method for estimating energy fluxes. At the same time, the EC technique is complex to
implement due to the need for rapid response instruments and the challenges of operation,
calibration, and maintenance (Baldocchi et al., 2001; Ruhoff, 2011). Although EC flux tower
data are often used to validate ET estimates, they can present energy balance closure
problems where the sum of heat fluxes does not adequately match net radiation, resulting in

errors of up to 10-30% (Foken, 2008; Allen et al., 2011; Mu et al., 2011; Ruhoffet al., 2013).
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Figure 4 - Eddy covariance sensors.
Source: AMERIFLUX (2022)

Given the complexity and cost associated with direct methods to measure ET, indirect
and empirical methods are also used to estimate ET. Several models and methods have been
developed over the years to estimate ET, differing in their concepts and the number of
variables considered (Araujo et al., 2007; Gusmao, 2017). The indirect and empirical
methods include:

1) Bowen's ratio, which uses the atmospheric variables and the energy available on the
studied surface to calculate the ratio between heat flows, allowing estimations of ET
(Bezerra, 2023). The ratio is based on the relationship between H and AET heat fluxes,
expressed by the formula B = H/AET (Bowen, 1926). The Bowen's ratio is theoretically
simple and widely recognised as one of the most used methods for determining H and AET
fluxes on a given surface (Shuttleworth, 2012; Allen et al., 2021).

2) Classical equations, which consist of using various specific equations formulated based
on mass transfer, energy balance, or water balance principles to estimate ET (BRUSAERT,
2005). The most widely used equations in hydrology for calculating ET include the Penman-
Monteith (Penman, 1948; Monteith, 1965), Priestley-Taylor (Priestley-Taylor, 1972), and
Thornthwaite (Thornthwaite, 1948).

2) Remote sensing (RS) approaches, based on empirical spectral indices (e.g. vegetation
indices) or energy balance measurements at the surface, mainly obtained from orbital sensors
(Bezerra, 2023). The estimation of ET from RS data has been applied to capture the spatial
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and temporal variability of ET over large and heterogeneous areas (Tang and L1, 2014; Fisher

etal., 2017; Trebs et al., 2021).

2.2 Remote sensing techniques

Remote sensing techniques are based on the acquisition and measurement of
information regarding objects, areas, or properties of specific phenomena through recording
devices that operate without requiring direct physical contact (Read et al., 2020). This
methodology enables the acquisition of a synoptic and multitemporal view of extensive
portions of the Earth’s surface, based on the use of sensors onboard artificial satellites in
orbit. Remote sensing has become a widely employed strategy in environmental analyses
and monitoring (Souza et al., 2022). The field of remote sensing applications is vast,
encompassing a range of applications, from agriculture (Li et al., 2023) and water resource
management (Zegait et al., 2024) to land use and land cover mapping (Coelho et al., 2014)
and climatology (Godoy and Markonis, 2023). This technology is essential for detecting and
monitoring changes on the Earth’s surface, resulting from both natural processes and
anthropogenic activities (Binetti et al., 2023).

The transmission of information between Earth’s surface objects and onboard
satellite sensors occurs at the speed of light through electromagnetic radiation waves
(Racetin and Krtali¢, 2021). This radiation can be arranged according to its wavelength or
frequency, which comprises the electromagnetic spectrum that ranges from gamma rays, x-
rays, ultraviolet, visible light, infrared (near-, mid-, and far-infrared), microwaves, to radio
waves. The most widely used regions of the electromagnetic spectrum for collecting
environmental information of the Earth’s surface include the microwaves (= 108 um), the
visible light (0.4 — 0.7 um), and the infrared spectra (Fig. 5) (Schumann and Moller, 2015).
Active sensors use the microwave bands, while passive sensors primarily use the visible and
infrared spectrums.

When electromagnetic radiation from the Sun reaches the Earth’s surface, its
intensity is partially or totally reduced due to interactions with atmospheric constituents,
including water vapour (H20), oxygen (O2), ozone (Os), and carbon dioxide (CO2), among
others. These gases play a fundamental role in the absorption of electromagnetic radiation,
making it impossible to use some wavelengths obtained by passive sensors for collecting
information about the Earth’s surface from space (Golubkov et al., 2018). However, the

visible and some infrared spectral regions present less interference from these gases, where
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solar radiation transmission occurs more efficiently, consequently favouring the acquisition

of the Earth’s surface data from orbital sensors (Wang et al., 2021).
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Figure 5 - The electromagnetic spectrum and atmospheric transmittance.
Source: Albertz (2007)

When the electromagnetic radiation interacts with the Earth’s surface, it can be
partially transmitted, reflected, or absorbed, with proportions varying according to the
physical, chemical, and biological characteristics of the materials. Only the reflected
shortwave radiation can be directly detectable by sensors and converted into processable
electrical signals. The absorbed fraction is re-emitted in long waves by the surface as a result
of thermal processes and/or dissipated in the form of heat, whose re-emission can also be
detectable by passive sensors operating in the far-infrared (i.e. thermal infrared) spectrum
(Farella et al., 2022). Changes in the reflectance and emittance signals, detected by passive
sensors, point to physicochemical and biological modifications in natural and/or
anthropogenic resources.

The radiation is captured and recorded by remote sensors according to four
fundamental detection capabilities: spectral, spatial, radiometric, and temporal resolutions
(Som-ard et al., 2021). The spectral resolution corresponds to the number and width of
wavelength intervals (bands) that the sensor can discriminate, directly influencing its
efficiency in distinguishing targets with similar spectral responses (Fig. 6). The spatial

resolution defines the level of geometric detail of the image, being represented by the
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smallest unit of the Earth’s surface individualised by the sensor, i.e. higher spatial resolutions
enable the identification of smaller features and subtle structures. The radiometric resolution
refers to the sensitivity of the detection system in recording variations in the intensity of
radiation reflected and/or emitted by targets, expressed by the number of binary digits (bits)
available to quantify the energy recorded in each pixel. Lastly, the temporal resolution
corresponds to the revisit frequency of the sensor to obtain data for the same region of the
Earth’s surface, i.e. a determining parameter for continuous and multitemporal monitoring
of dynamic phenomena (Kakic and Kuenzer, 2022).

Despite being a powerful tool for environmental monitoring on large scales, orbital
remote sensing presents limitations caused by cloud cover, scale factors, and low data

acquisition frequency (Prudente et al., 2020).
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2.3 Evapotranspiration by remote sensing

The electromagnetic radiation reflected or emitted by Earth’s surface and registered
by remote sensors has been used to spatially estimate ET in large and heterogeneous areas,
filling the gap left by direct measurements, which are punctual and only represent regions

with homogeneous coverage (Andrade, 2023). Remote sensing data is essential for
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understanding the factors that regulate ET, including radiative, atmospheric, and
phenological aspects (Bezerra, 2023).

Several remote sensing products have been provided by applying these models to
data obtained through remote sensing and field measurements, as listed in Table 1. The
availability of these products is a significant advancement in hydrometeorological research,
particularly in areas with limited data. However, it is crucial to assess the accuracy of these
products on a local scale before conducting the study.

The integration of remote sensing data into ET modelling has significantly enhanced
the understanding of hydrological processes at various temporal and spatial scales. However,
some challenges persist, such as the dependence on cloud-based image availability and the
management of large volumes of data (Gowda et al., 2008; Mu et al., 2011; Ruhoff et al.,
2012; Chen and Liu, 2020; Andrade et al., 2021). Planetary-scale platforms for Earth science
data and analysis, like Google Earth Engine (GEE), have made powerful cloud-based
processing resources accessible to everyone, promoting innovation and the use of advanced
techniques, including machine learning models to improve ET estimates (Lary et al., 2016;
McCabe et al., 2017; Kéfer et al., 2020; Andrade et al., 2021).

Over the past years, several models using satellite-based remote sensing data have
been developed and successfully applied to estimate spatially distributed ET rates. However,
none of these models is fully comprehensive, as they need to be adapted to different climatic
conditions and local characteristics (Li et al., 2009; Allen et al., 2011; Chen and Liu, 2020;
Seibert and Berstrom, 2022). These ET models can be categorised into two main remote
sensing approaches. The first approach considers land surface temperature from far-infrared,
while the second is based on vegetation indices using shortwave sensors (visible and near-
infrared) (Andrade, 2023).

Models that use satellite-retrieved surface temperature are based on the surface
energy balance (SEB) fluxes, which are known as SEB models. These models rely on
selecting boundary conditions in pixels where ET is zero or potential, where a fraction of
evapotranspiration for each pixel is calculated based on its land surface temperature value in
relation to the extremes. The main models in this category are: Surface Energy Balance Index
(SEBI) (Menenti and Choudhury, 1993), Two-Source Energy Budget (TSEB) (Norman et
al., 1995; Kustas and Norman, 1999), Surface Energy Balance Model for Land (SEBAL)
(Bastiaanssen et al., 1998), Mapping Evapotranspiration at high Resolution and with
Internalised Calibration (METRIC) (Allen et al., 2007); Atmosphere-Land Exchange

Inverse (ALEXI) (Anderson et al., 1996), Simplified Surface Energy Balance Index (S-
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SEBI) (Roerink et al., 2000), Surface Energy Balance System (SEBS) (Su, 2002),
Atmosphere-Land Exchange Inverse flux disaggregation approach (DisALEXI) (Norman et
al., 2003). Although widely used, these models have limitations in large-scale applications
and operationalisation due to subjectivity in the selection of boundary conditions, which
makes extrapolations to larger areas uncertain (Senay et al., 2013; Liou and Kar, 2014).
Ruhoff et al. (2012) highlight that the SEBAL model is a promising tool for determining
energy fluxes in cloudless conditions. However, estimating energy fluxes on cloudy days
remains a challenging yet crucial task for obtaining accurate seasonal, monthly, and annual
ET projections.

SEBAL is one of the most common SEB models. Bezerra et al. (2023) developed the
Seasonal Tropical Ecosystem Energy Partitioning (STEEP) model, which is an adaptation
of SEBAL for applications in seasonally dry tropical forests. The application of STEEP to
the Caatinga region in Brazil achieved comparable or superior performances to the original
SEBAL and some global ET products (MODI16 and PMLV2), representing a significant
improvement where ET is typically overestimated in this region by SEBAL. However, the
model has limitations in spatial representation, as it was applied and evaluated only in the
Caatinga region, which limits its generalizability to other tropical biomes. Furthermore, its
implementation depends on the availability of high-quality satellite imagery, a factor that
may limit the model's operational applicability in tropical regions with high cloud cover.

Andrade et al. (2024) developed the geeSEBAL-MODIS for monitoring climate
change and anthropogenic impacts of ET in different biomes in Latin America. geeSEBAL-
MODIS resulted in a 13% error reduction at the local scale and a 30% error reduction at the
basin scale. However, the study also has limitations in terms of temporal continuity.
geeSEBAL-MODIS still relies on cloud-free satellite images, which results in the exclusion
of rainy or transitional days, or even months, generating temporal gaps and greater
uncertainties in tropical regions with high cloud frequency.

On the other hand, models based on vegetation indices (e.g. leaf area index LAI;
normalised difference vegetation index, NDVI; Soil-Adjusted Vegetation Index, SAVI),
surface albedo, and land use and land cover classification are used to obtain the resistance
terms in the Penman-Monteith (PM) (Monteith, 1965) or Priestley-Taylor (PT) (Priestley
and Taylor, 1972) equations.

PM models provide a comprehensive solution for SEB and mass transport, while PT
models simplify the PM approach by replacing the mass transport component with an

empirical value that depends on the local climate (Monteith, 1965; Priestley and Taylor,
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1972). With the advancement of computational technology and the availability of space-
based remote sensors, the PT approach has become increasingly feasible. The main model
based on the PT methodology is the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL)
(Fisher et al., 2008), developed from the integration of concepts and improvements present
in previous models, such as Global Land Evaporation Amsterdam Model (GLEAM)
(Miralles et al., 2011), MOD16 (Mu et al., 2011), Penman-Monteith-Leuning (PML)
(Leuning et al., 2008), and Breathing Earth System Simulator (BESS) (Ryu et al., 2011).
However, although models based on the PT approach are widely used because they are
simpler and faster, they still have some limitations. The PT-JPL model relies on empirical
parameters and adjustments made for specific regions, meaning it cannot always accurately
represent ET variations, especially in areas with highly varied vegetation or extreme climatic
conditions (Fisher et al., 2008). Thus, due to the existing gaps identified in previous models,

this research focuses on developing a model based on the Penman-Monteith logic.
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2.4 Evapotranspiration models based on Penman-Monteith logic

The FAO (Food and Agriculture Organisation) Penman-Monteith method uses both
the energy balance and mass transport to calculate ET of a reference crop surface (ETr)
(Allen et al., 1998; ASCE-EWRI, 2005), combining crop (kc) and soil (ks) water stress

coefficients to determine daily ET using Equations 1 and 2.

ET = K x K. x ET, (1)

1600
0.408 A(Rp24n — Gaan) + Toon ¥ 273050 V X 2 241 (€s 240 — €q 24n )
ET, = : 2
r A+ y(l +0.38 U, 24h) ( )

where R,,,,p 1s the daily net radiation (MJ/ day m?), G4y, is the daily soil heat flux (MJ/ day
m?), Tyir24n 18 the daily mean air temperature (°C); y is the psychrometric constant (kPa/
°C), Uy 24p 1S the daily mean wind speed (m/s) at 2 m height; eg,4, and e, 54, are the
saturation and the actual vapour pressure for the daily time step (kPa), and A is the slope of
the saturation vapour pressure-temperature curve (kPa/°C).

As previously mentioned in item 2.3, the Penman-Monteith logic was used to develop
three well-known and widely used satellite-based products to estimate ET: PML, which
calculates surface conductance using LAI (Leuning et al., 2008); BESS, which calculates ET
for both soil and plant canopy, as well as estimates gross primary productivity (Ryu et al.,
2011); and MODI16, which uses vegetation indices and surface characteristics, along with
meteorological information (Mu et al., 2011).

PML is a diagnostic model used to estimate ET and gross primary productivity
through a simplified biophysical approach. The model couples carbon and water flows
through the canopy conductance used in the PM equation. PML is practical as it requires
only a few data, including LAI from MODIS sensors and meteorological information,
making it applicable on a large spatial scale and over the long term (Gan et al., 2018). The
product PML V2 provides global daily ET estimates with 500-m spatial resolution from
1981 to the present.

BESS is a simplified process-based model that integrates atmospheric and canopy
radiative transfers, canopy photosynthesis, transpiration, and energy balance. At a global
scale, this system continuously monitors and maps carbon and water fluxes using

atmospheric and land data from MODIS and other satellite sources, with spatial and temporal
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resolutions of 1-5 km and 8 days, respectively (Table 1) (Ryu et al., 2011). BESS is a
simplified model that couples a one-dimensional atmosphere radiative transfer module, a
two-leaf canopy radiative transfer module, and an integrated carbon assimilation-stomatal
and conductance-energy balance module (Jiang and Ryu, 2016). The model uses MODIS
information to calculate radiation, temperature, and humidity data, which triggers land
surface modules. Ryu et al. (2011) showed that GPP and ET estimates from BESS presented
good performance when compared to observed flows in various land cover types and climate
zones (arctic and tropical).

MOD 16 uses reflectance data from MODIS and climate information from MERRA
(Modern-Era Retrospective analysis for Research and Applications) to calculate ET as the
sum of soil evaporation (Es), canopy transpiration (Tc), and wet canopy evaporation (Ec)
(Fisher et al., 2008). Mu et al. (2007) proposed the model, which was improved by Mu et al.
(2011) to include soil heat flux (G) and restrictions on stomatal conductance. Further subtle
updates were carried out by Running et al. (2019, 2021). The latest version of the MOD16
product is currently available with a spatial resolution of 500 m, providing 8-day cumulative
values of ET. MOD16 is a single, advanced and accurate approach to estimating ET without
requiring specific data for parameterisation (Melo et al., 2021). However, Ruhoff et al.
(2013) found underestimations of ET related to misclassifications of land-use and land-cover
input data. Despite this, the MOD16 remains a crucial tool for hydrological studies on both

global and regional scales.

2.5 Application, evaluation and improvement studies of the MODI16

evapotranspiration model

Several studies have tested the accuracy of the MOD16 ET product in complex areas
under distinct climatic and vegetation aspects worldwide, mainly comparing ET estimates
obtained from EC flux towers (e.g. Vinukollu et al., 2011; Chen et al., 2014; Ramoelo et al.,
2014; Hu et al., 2015; Tang et al., 2015; Biggs et al., 2016; Aguilar et al., 2018; Khan et al.,
2018; Filgueiras et al., 2020; Zhu et al., 2022). These studies provided contrasted
evaluations. While Vinukollu et al. (2011), Chen et al. (2014), Hu et al. (2015), Aguilar et
al. (2018), Chen et al. (2020), Li et al. (2021) showed satisfactory agreements with local
ground-truth data, other studies observed some inaccuracies in different ecosystems (e.g.
Ramoelo et al., 2014; Tang et al., 2015; Autovino et al., 2016; Du and Song, 2018; Khan et

al., 2018; Zhu et al., 2022). More specifically in Brazil, Ruhoff et al. (2013), Souza et al.
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(2016), Maeda et al. (2017), Moreira et al. (2018), Melo et al. (2021), Dias et al. (2021),
Biudes et al. (2022) showed that the accuracy of the MOD16 product varies according to
some characteristics, such as climate, biome, and land cover. For instance, the assessment
carried out by Ruhoff et al. (2013) in two sites located in the Brazilian Cerrado biome
showed that the MOD16 product overestimated the mean ET (8-day, monthly, and annual),
while no long-term over- or underestimation was found for a sugar cane cropland area.
Maeda et al. (2017) also demonstrated that the MOD16 model was unable to consistently
represent ET seasonal patterns at the river basin scale in the Amazon Forest.

Recently, studies proposed some trajectories of improvements of the MOD16 ET
model for overcoming the limitations and operating at a regional scale and consistently with
its local characteristics (e.g. Morillas et al., 2013; Sur et al., 2015; Yeom et al., 2015; Ke et
al., 2016; Wu et al., 2016; Srivastava et al., 2017; Ke et al., 2017; Chang et al., 2018; El
Masri et al., 2019; He et al., 2019; Zhang et al., 2019; Brust et al., 2021; Dias et al., 2021;
Astuti et al., 2022; Liu et al., 2022; Lu et al., 2022; Guo et al., 2023; Kumar et al., 2023).
These modifications mainly include the following processes: (1) changes in the
spatiotemporal resolutions; (2) adaptations to obtain information for all sky conditions; and
(3) implementation of local parameterisations, such as land use and land cover information
(Table 2). All these improvements employed distinct adjustment approaches, but none of
them addressed all aspects simultaneously for a more effective extraction of data at local and
regional scales. Such modifications covering all aspects together may enable a more detailed
and continuous long-term analysis of ET in Brazil, considering that the patterns and factors
of this component remain poorly understood, especially in tropical regions (Fleischmann et

al., 2023).
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Table 2 - Summary of studies with enhancements of the MOD16 evapotranspiration model
to fit more local and regional characteristics.

Study Region Enhancements

Jang et al. Northeast Use of surface meteorological data from the Korea Land Data

(2013) Asia Assimilation System (KLDAS) and MODIS to facilitate continuous
regional ET estimates.

Di et al. United A combination of two layers of soil relative humidity parameters

(2015) States with a surface resistance model.

Yeom et al. South Application of a multilayer feed-forward neural network approach

(2015) Korea with Levenberg—Marquardt back propagation (LM-BP), using input
from various satellite-based products of ET, NDVI, NDWI, land
surface temperature, air temperature, and insolation.

Srivastava  Kangsabati ~ Use indirect ET estimation methods, such as MODIS and the water

etal. (2017)

River Basin,
India

budget approach, incorporated into the semi-distributed variable
infiltration capacity (VIC-3L).

Baik et al. Australia Applies two mixing approaches, Maximise R and simple Taylor
(2018) skill’s score, to generate a fused ET product using combinations of
the GLDAS, GLEAM, MOD16, and MERRA datasets.
Changetal. China Integration of wind speed and vegetation height to estimate
(2018) aerodynamic resistance, using the Fisher et al. method. (2008) to
constrain temperature and humidity for stomatal conductance and
reduce soil evaporation uncertainties.
He et al. United Calibration for agricultural land, model parameters according to
(2019) States crop types and incorporation of finer-scale satellite vegetation data.
(CONUYS)
Zhang et al. Global Application of the sensitivity analysis method, combined with the
(2019) Markov chain method of differential evolution, for each key
parameter in a variety of biomes, to obtain an optimised model.
Dias et al. Brazil Use of 8 regression algorithms (multiple linear regression, random
(2021) forest, cubist, partial least squares, principal components regression,
adaptive  forward-backwards greedy, generalised boosted
regression, and generalised linear model by likelihood-based
boosting) and machine learning.
Brust et al. United Use of SMAP soil moisture to constrain ET and local observations
(2021) States to calibrate ET.
Astuti et al. Brantas Application of an artificial neural network and machine learning to
(2022) river basin,  characterise the spatiotemporal patterns of ET in the basin.
Indonesia
Liu et al. Central Integrates NDWI as a soil moisture adjustment, enhancing the
(2022) China estimation of soil surface resistance and stomatal conductance.
Lu et al. Three Spatial downscaling based on the correlation between surface ET
(2022) different differences and corresponding land cover types and spectral mixture
scenic areas  analysis theory.
in China
Xue et al. South Sensitivity analysis of the MODI16 model and parameter
(2022) Korea, optimisation strategies (Radiation and temperature, and LAI and
Japan, Rn).
China, the
Philippines,
India,
Spain, Italy,
and the
USA
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Guo et al. China Restrictions of moisture based on the ratio of antecedent
(2023) accumulated precipitation to soil evaporation balance.

Kumar et Kangsabati  Use of a Genetic Algorithm (GA), inspired by natural selection, to
al. (2023)  River Basin determine whether a string will participate in the reproduction
(India) process, and thus improve the fit to local conditions.
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3 STUDY AREA CHARACTERISTICS

The ESTIMET model was applied to the entire Brazilian territory and evaluated in
different parts of the country. Brazil covers approximately 8.5 million km? between
coordinates 5°16'N-33°45'S and 34°47'W-73°59'W (Fig. 7). According to Alvares et al.
(2013), Brazil has twelve different Koppen climate types, divided into three main zones:
Tropical (Zone A), Semi-arid (Zone B), and Humid Subtropical (Zone C). Moreover, six
terrestrial biomes are featured in the territory, namely: Amazon Forest (rainforest, 49% of
land area), Cerrado (wooded savannah, 24% of land area), Atlantic Forest (13% of land area),
Caatinga (tropical dry forest, 10% of the land area), Pantanal (tropical wetland, 2% of the
land area), and Pampa (grassland, 2% of the land area) (Roesch et al., 2009) (Fig. 1a). The
mean annual rainfall in Brazil ranges from 380 (Caatinga) to 4000 mm (Amazon Forest),
while the mean annual air temperature ranges from below 10 °C to greater than 26 °C

(Gadelha et al., 2019).
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Figure 7 - (a) Brazilian biomes and (b) Kdppen climate classification for Brazil, according
to Alvares et al. (2013), showing the spatial distribution of the 14 eddy covariance flux
towers (red triangles) and the 25 catchments (black dots) used for this study. (¢) Data

availability in the flux towers.
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This variety of biomes not only contributes to the ecological richness but also plays
a crucial role in maintaining carbon stocks in its forests and soils, as well as in global
freshwater reserves (Berenguer et al., 2014; Bernoux et al., 2002). In recent decades,
Brazilian biomes have undergone significant spatiotemporal changes in terms of land use,
with emphasis on the replacement of natural vegetation by livestock and agricultural
activities (Souza et al., 2020). Considering the role of Brazil as a major producer of
agricultural commodities and one of the largest contributors to global greenhouse gas
emissions due to these activities (Sousa-Neto et al., 2017; Cait, 2024) these changes have
significant implications for biodiversity, water resources, carbon emissions, and climate
change (Butchart et al., 2010; Davidson et al., 2012; Verburg, 2015).

The impact of the land-use and land-cover changes can be observed by analysing
contrasting biomes in terms of water availability. On the one hand, Pantanal is a large
wetland, while Caatinga is a biome located in a semiarid region with water scarcity. In recent
decades, these biomes have experienced pressure on the hydrological cycle due to land-use
and land-cover conversion, with impacts on water availability. While Caatinga presented the
highest rate of surface water reduction, with an annual average of -5.1% in the 2010s, the
Pantanal biome has shown the greatest variation, with an increase in surface water of an
average of 5% per year after 2005 (Souza et al., 2020).

Despite being predominantly covered by primary forests, the Caatinga biome is
highly threatened by land conversion for agriculture, with deforestations that degrades the
environment and worsen the risk of desertification (Aragjo et al., 2023; Costa et al., 2024;
Rocha et al., 2024). Similarly, the Pantanal is under increasing pressure due to the expansion
of livestock and sugarcane cultivation, as well as the frequent occurrence of wildfires.
(Guerra et al., 2020; Hernandes et al., 2022; Galvanin and Caldas; 2025).

Livestock farming and the expansion of sugarcane drive deforestation, pasture
conversion, hydrological alteration, soil carbon loss, increased fire susceptibility, and
landscape fragmentation in the Pantanal, with cascading impacts on habitat, species
composition, and ecosystem services. Governance and policy gaps hinder effective
conservation.

Caatinga is a semi-arid climate biome with a unique biodiversity located in
northeastern Brazil (Rocha et al., 2024). The region is mainly characterised by the hot and
dry climate BSh (Fig. 2), with low precipitation typically concentrated in a period of 3 to 6
months (300 to 800 mm/year) and dry periods that can last more than 11 months per year,

facing challenges with water scarcity caused by intermittent rivers and irregular rainfall
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(Miranda et al., 2018; Bezerra et al., 2023). In addition, high temperatures (26° to 30°C) and
high potential ET rates (1,500 to 2,000 mm/year) are commonly observed in Caatinga (Moro
et al., 2016; Miranda et al., 2018; Paloschi et al., 2020). The region presents diverse
physiognomies, ranging from forests to sparse shrublands, composed mainly of xerophytic,
woody, and thorny species, as well as deciduous physiognomies adapted to heat and drought
(Silva et al.,2017; Sampaio, 1995; Bezerra et al., 2023).

Pantanal is considered one of the most significant wetlands in the world, with high
landscape and ecological diversity (Alho and Sabino, 2011; Bergier, 2013). The region
presents well-defined dry and rainy seasons, characteristic of the Aw climate, with flood
cycles that are crucial to its ecology (Fig. 2). In the Pantanal, the hydrological cycle is
characterised by a high rainfall index, contributing to river flow and evapotranspiration,
which account for half of the total flow (Hamilton, 2002; Valeriano et al., 2012). The
vegetation in this biome is characterised by the presence of forests, savannas, and wetlands.
Livestock, tourism, fishing, and mining are significant economic activities in Pantanal
(Seidl, 2001; Alho and Sabino, 2011). In this study, the analyses were carried out based on
the biome division proposed by IBGE (2004).
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4 DEVELOPMENT AND EVALUATION OF THE ESTIMET MODEL

4.1 Contextualisation

In this chapter, we focus on the development and validation of the ESTIMET
(Enhanced and Spatial-Temporal Improvement of MODIS EvapoTranspiration) model,
which uses reflectance data from the MODIS sensors (MOD and MYD), land use and land
cover data from the MapBiomas initiative, and climate reanalysis (ECMWF Climate
Reanalysis-ERAS5-Land and Global Land Data Assimilation System - Noah - GLDAS 2.1)
data as input to the adapted MOD16 model based on the Penman-Monteith equation. Thus,
the general and transferable strategy of this new model takes into account: (a) fitting a more
regional/local model by using LULC adjusted to the vegetation characteristics in Brazil; (b)
overcoming data loss due to frequent cloud cover, whilst reducing the latency period to
provide a near-real-time product; (¢) modifying the stomatal conductance and net incoming
radiation parameterisation schemes to generate a new product at a daily time scale (currently
being accumulated for 8 days with the MOD16A2GF) for all sky conditions; (d) enhancing
the spatial resolution of the MOD16A2GF ET product (from 500 to 250 m); and (e) changing
the meteorological forcing dataset to high-quality data for accurate flow estimates,
differentiating microclimates. The entire model was developed and processed on the cloud-

based platform Google Earth Engine (GEE).
4.2 Materials and methods
4.2.1 Development of the ESTIMET model

MODI16 ET, and its adaptation under the ESTIMET model, is based on the Penman-
Monteith equation (Monteith, 1965; Mu et al., 2011). Both models estimate the latent heat
flux density (AE; W m), allowing for the calculation of the total daily ET (mm) from the
conversion factor, corresponding to the sum of evaporation from the wet canopy surface
(LAEwet), the transpiration from vegetation with a dry surface (AEtrans), and the soil

evaporation (AEsoil) (Mu et al., 2011; Running et al., 2017) (Eq. 3):

SsA+pCp(es—ea)/ra
s
A+y(1+ra)

AE = AEuet + AEqrans + AEgo = 3)

45



where A is the slope of the curve relating saturated water vapour pressure to temperature
(kPa °C™'), A is the available energy (W.m™), p is the air density (kg.m™), Cp is the specific
heat capacity of air at a constant pressure (J kg-1 °C!), ea is the actual water vapour pressure
(kPa), es is the saturated water vapour pressure (kPa), rs is the surface resistance (s m™'), ra
is the aerodynamic resistance (s m™'), and vy is the psychrometric constant (kPa °C™).
Similar to Mu et al. (2011), ESTIMET also considers daytime and nighttime ET. We
modified specific procedures to adopt a more local/regional model that can be applied daily
and provide accurate ET estimates under all sky conditions (Fig. 9), as detailed in the
following subsections. These modifications are crucial for capturing ET's spatial and
temporal variability in Brazilian regions, where climate dynamics and vegetation cover
exhibit significant variations. We included calculations of the net radiation, vegetation cover
fraction, surface albedo, and vegetation indices. Furthermore, higher-resolution
spatiotemporal meteorological data were incorporated as input for obtaining the ET product,
as well as information on LULC, which is more closely aligned with the vegetation
characteristics in Brazilian forests. The model's modifications were made to adapt it to these

new, higher-resolution, or improved input datasets.

4.2.1.1 Changes in canopy conductance and plant transpiration

Canopy conductance and plant transpiration are important components of ET and
play a crucial role in the Penman-Monteith method (Shuttleworth and Wallace, 2007; Chang
etal., 2018). MOD16A2GF ET uses the leaf area index (LAI) to scale stomatal conductance
(Cs, leaf level) up to canopy conductance (C., surface level) (Landsberg and Gower, 1997).
Stomatal conductance is mainly expressed as a function of minimum air temperature (Tmin)
and vapour pressure deficit (VPD), as follows (Oren et al., 1999; Xu and Baldocchi, 2003)
(Eq. 4 and Eq. 5):

Cs = C, * m(Tyjn) * m(VPD) 4)

Cc = Cs * LAL* (1~ fiyed) = - 5)

where Cr. and fwe correspond to the mean potential stomatal conductance per leaf unit area
(m s™') and the water cover fraction (unitless) obtained from Fisher et al. (2008), respectively,

while m(Tmin) and m(VPD) are limiting factors of potential stomatal conductance for

46



minimum air temperatures and VPD high enough to reduce canopy conductance,
respectively. This step was estimated from a ratio established by Running et al. (2017), using

parameterised values for each land cover type (Table 3).
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Figure 9 - Flowchart of the ESTIMET model, indicating the adjustments made in this
study, in relation to the MOD16A2GF product (adapted from Mu et al., 2011).
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The MOD16A2GF model utilises two remote-sensing products as inputs for
calculating canopy conductance and plant transpiration. First, Cr, VPD (open indicates no
inhibition to transpiration and close indicates nearly complete inhibition with full stomatal
closure), and Tmin (Open and close) parameters were set differently, according to the biome
type from the MODIS Land Cover Type (MCD12Q1) product, which globally provides data
characterising 12 land cover types at 500-m spatial resolution. Because the values of these
parameters can significantly affect the calculation of plant transpiration, model accuracy is
essentially driven by the quality of that classification (Ruhoff et al., 2013). Hence, the global
representation of the MCD12Q1 product, associated with the limited number of classes
covering the globe, inevitably mischaracterises or ambiguously renders some local/regional
variations of LULC (Jung et al., 2006).

Regional LULC classification allows us to account for the more specific
characteristics and landscape complexity of some regions (Jung et al., 2006). A multi-
institutional initiative launched in 2015, the MapBiomas Project (http://mapbiomas.org),
provides annual national-level LULC maps for the entire Brazilian territory with a 30 m
spatial resolution. This project has data from 1985 to the present, based on a pixel-per-pixel
automatic classification of Landsat images. Therefore, to fit more regional/local information,
adjusted to the characteristics of the Brazilian vegetation, we merged the 33 LULC types
available from the MapBiomas project into seven classes of similar characteristics, to match
the biophysical parameters proposed by Running et al. (2017) (Table 2) and preserve the
heterogeneity of Brazilian land use and coverage.

Additionally, MOD16A2GF ET utilises LAI information from MODI15A2H, an 8-
day composite product with a spatial resolution of 500 m. This implies that LAI does not
vary during a given 8-day period and helps to provide information with less cloud
contamination. However, in some tropical regions, such as Brazil, the frequency of cloud
cover is high, which often leads to incorrect ET estimates (Running et al., 2017). To deal
with the cloud cover issue and increase the spatial resolution to 250 m, the ESTIMET model
uses the soil-adjusted vegetation index (SAVI) proposed by Huete (1988) to compute LAI
from both 8-day MOD09Q1 (Terra Satellite) and MYDO09Q1 (Aqua Satellite) reflectance
products, with a 250 m spatial resolution (Eq. 6 and Eq. 7):

0,69—SAVI)

LAI — ln( 0,59
0,91

(6)
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SAV] = {21y (7)

(L+ry+rq)

where r1 and 2 are the spectral reflectance of the bands 1 (red) and 2 (near-infrared) of the
MODO09Q1 and MYDO09Q!1 products, and L is an adjustment factor. In this study, the
adjustment factor is set to 0.1, the same value used by Silva et al. (2015) in a study conducted
in Brazil. To exclude the impact of as much cloud cover as possible, the SAVI data calculated
from both MOD09Q1 and MYD09Q1 were composed monthly, based on the selection of
pixels with higher values obtained from the eight images made available each month (i.e.
four from MOD09Q1 and four from MYDO09QI1), assuming that clouds possibly
contaminated the lower or negative values of this biophysical parameter. This overlapped
monthly SAVI was considered a fixed biophysical input parameter for each month, used to

estimate daily ET.

4.2.1.2 Changes in vegetation cover fraction

To distinguish the net radiation between the canopy and the soil surface, the cover
fraction (Fc) information is required, varying from 0 to 1. The latest version of the MOD16
product utilises 8-day information from the MOD15A2H (FPAR, Fraction of Absorbed
Photosynthetically Active Radiation) product, with a spatial resolution of 500 m, as a
substitute for Fc (Mu et al., 2011; Running et al., 2017). As an alternative, Cleugh et al.
(2007) used the Normalised Difference Vegetation Index (NDVI) to calculate Fc. Still, this
vegetation index is very sensitive to background canopy variations and atmospheric
influences (Huete et al., 2002). Conversely, Mu et al. (2007) calculated Fc in the
MOD16A2GF, replacing NDVI with the Enhanced Vegetation Index (EVI), to adjust for the
background canopy and reduce atmospheric influence (i.e. using three reflectance bands,
including blue). To reduce the pixel size and deliver a final ET product with a spatial
resolution of 250 m, we calculated the Fc using the 2-band EVI (EVI2), as suggested by
Jiang et al. (2008). Unlike EVI, EVI2 only uses red and infrared bands but presents
satisfactory results, especially when atmospheric effects are insignificant or corrected
(Rocha and Shaver, 2009; Bolton and Friedl, 2013), making it possible to use the MOD09Q1
and MYDO09Q1 products (Eq. 8 and Eq. 9):

_ EVI2-EVI2pin
" EVI2max—EVI2pin

(8)

50

F¢



EVI2 =25 x —2 - )

r2+2,4r1+1,0

where EVI2n, is the signal from bare soil (LAl — 0) and EVI2 .y is the signal from dense
green vegetation (LAl —o0) during the study period; these are generally set as invariant
constants varying between 0.05 and 0.95, respectively. Similar to the SAVI procedures,
EVI2 was also considered a fixed input parameter throughout the month, using the highest
values obtained from the eight available MODO09Q1 reflectance products and assuming that

the lower values reflect clouds.

4.2.1.3 Changes in net incoming radiation to the land surface

In the MOD16A2GF ET model, the net incoming radiation to the land surface (Ryer) is
calculated following Mu et al. (2011), using the same equation stemming from Mu et al.

(2007) and Cleugh et al. (2007) (Eq. 10).

Rpet = (1 —a) Rgy + 0 (g, — &) (273.15 + T)* (10)

where a corresponds to the surface albedo, Rs; is the downward shortwave of incoming
radiation, o is the Stefan-Boltzmann constant (5,67x108 W m™ K#), & is surface emissivity,
€a 1S atmospheric emissivity, and T represents the air temperature in °C.

The original model obtains a from the 8-day composite MCD43A2/A3 product with
500 m of spatial resolution. This evaluation may suffer from cloud contamination, resulting
in a dramatically increased o (Running et al., 2017). To minimise this risk, we made use of
the two 250 m reflectance bands of the MOD09Q1 product to calculate a, as proposed by
Teixeira et al. (2013) (Eq. 11):

a=a +bry +cr, (11)

where a, b, and ¢ are regression coefficients obtained by comparing remote sensing and field
measurements. The values of a, b and ¢ found by Teixeira et al. (2013), for the Caatinga
biome, were 0.08, 0.41, and 0.14, respectively. Since these values are not available in the
literature for the other Brazilian biomes, three flux towers (EUC, FM, and K34; see topic
4.2.2.1 for their descriptions), which are distributed throughout the country and located in

the other Brazilian biomes, were used to obtain their respective regression coefficients
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(Table 4). The same regression coefficients used for the Amazon and Pantanal biomes were
considered for the Atlantic Forest and Pampa biomes, respectively, due to the absence of
free available flux tower data for these two biomes and the most similarities between them.
Similar to SAVI and EVI2, the monthly composition of a was also considered in this step,
to reduce the influence of clouds in the ET estimates, using the lowest values obtained from
the eight MODO09Q1 reflectance products available within 30 days and assuming that the
highest values were possibly contaminated by clouds. Such monthly compositions applied
to the vegetation indexes and surface albedo result in a maximum latency of one month after
the event for ESTIMET, which remains significantly lower than the one-year latency of the

MODI16A2GF product.

Table 4 - Regression coefficients obtained for each biome using the data from the flux
towers and used for estimating surface albedo (o).

Biome Flux tower a b c
Amazon K34 0.118 -0.016 0.016
Atlantic Forest - 0.118 -0.016 0.016
Caatinga - 0.08 0.41 0.14
Cerrado PDG 0.124 -0.009 0.043
Pantanal FM 0.168 -0.032 0.117
Pampa - 0.168 -0.032 0.117

In addition, contrasting with the original MOD16 ET model, which considers surface
emissivity (gs) as a constant parameter of 0.97, this study used the following empirical
equation by Allen et al. (2007), integrating the effects of LAl and NDVI and calculated from
the two reflectance bands of the MODO09Q1 product (Eq. 12):
€5 = 0.95 + 0.01 LAI (12)
with &= 0.98 when LAI > 3 and &s = 0.99 when NDVI < 0 (Eq. 13).

NDVI = 2= (13)

ro+rq
4.2.1.4 Changes in the meteorological forcing data

The global meteorological re-analysis data MERRA-2, provided by NASA's Global
Modelling and Assimilation Office (GMAOQO), with a spatial resolution of 0.5° x 0.6° or 1.0°
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x 1.25°, were used as input to the original MOD16 model (Mu et al., 2007, 2011; Running
et al., 2017). MERRA-2 incorporates both ground-based and satellite-based observations,
providing information with a 6-hour resolution. However, some studies have emphasised
that some uncertainties of the MOD16 product may be mainly due to the coarse spatial
resolution of the MERRA-2 climate database (Ruhoff et al., 2013; Ramoelo et al., 2014;
Zhang et al., 2016; Chang et al., 2018). For instance, Chang et al. (2018) found a
considerably lower performance of MOD16 driven by GMAOQO data, compared to the same
model driven by observation data, which suggests that the re-analysis data led to substantial
errors in the ET estimation. Indeed, high-quality meteorological data are required for
accurate flow retrievals, which differentiate microclimates, although spatial resolution
requirements may be less stringent than for other land surface variables (Fischer et al., 2017).
Unlike the original model, we used the ERAS5-Land meteorological dataset (ECMWF
Climate Reanalysis) to obtain hourly information of T and dew point T at 2 m levels
(‘temperature 2m’ and ‘dewpoint temperature 2m’), and surface atmospheric pressure
(‘surface pressure’) with 0.1° x 0.1° spatial resolutions (Mufioz, 2019). In parallel,
downward shortwave solar radiation was retrieved from GLDAS 2.1 (Global Land Data
Assimilation System — Noah), making this variable available with 3-h and 0.25° resolutions
(Rodell et al., 2004). The ERAS5-Land and GLDAS 2.1 meteorological dataset was evaluated
in Brazil (Aratjo et al., 2022; Matsunaga et al., 2023) and other regions (Liu et al., 2024;
Vicente-Serrano et al., 2021; Wang et al., 2024; Zou et al., 2022), mostly presenting
improved results compared with MERRA-2 (Zuo et al., 2023; Kara et al., 2024; Liu et al.,
2025). We also found that T and solar radiation values from ERA-5 Land and GLDAS 2.1
are closest to the observed data recorded in some flux towers in Brazil, when compared with
MERRA-2 (Fig. 10). Additionally, meteorological data from ERAS5-Land and GLDAS 2.1
were also used as input by other models and products to estimate ET, such as geeSEBAL-
MODIS (Andrade et al., 2024), STEEP (Seasonal Tropical Ecosystem Energy Partitioning)
(Bezerra et al., 2023), and PML V2 (Penman-Monteith-Leuning Evapotranspiration,
Version 2) (Zhang et al., 2019).
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Figure 10 - (a) Pearson's coefficient correlation (r) of the solar radiation (W/m?) estimated
by MERRA-2 (red triangles) and GLDAS (green dots) versus the solar radiation (W/m?)
obtained at the flux towers. (b) Pearson's correlation coefficient (r) of the air temperature

(°C) estimated by MERRA-2 (red triangles) and ERAS (blue dots) versus the air
temperature (°C) obtained at the flux towers.

4.2.2 Model evaluation

4.2.2.1 Local scale

We compared daily and 8-day accumulated ET estimates from orbital remote sensing
with the eddy covariance (EC) data from flux towers at 14 sites throughout Brazil (Fig. 7).
The towers belong to the AmeriFlux network, EMBRAPA (Brazilian Agricultural Research
Cooperation), and three universities (the University of Sao Paulo — USP, the Federal
University of Mato Grosso — UFMT, and the Federal University of Mato Grosso do Sul —
UFMS). These flux towers represent all of the main climate zones and almost all the
terrestrial biomes found in Brazil. The land covers of the EC sites include both the natural
vegetation of the Brazilian Biomes and anthropised environments, such as irrigated

croplands, pasture, and eucalyptus plantations.
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The EC method is accepted as being the most reliable technique for the direct and
continuous measurement of sensible (H) and latent (LE) heat fluxes (Sun et al., 2013). The
EC data used in this study, and considered to be observed ET (ETows), were obtained for
different years, ranging from 2003 to 2021, according to their availability (Fig. 7b). The
altitude of the studied sites ranged from 90 to 710 m above sea level (Table 5).

For comparison, half-hour EC measurements were used to compute daily and §-day
flux data. In parallel, to achieve the spatial representativeness of the measured data for each
site, daily values of ET (estimated by ESTIMET) were spatially averaged over a 750 x 750
m? window, centred at each flux tower to ensure the spatial representativeness of the
estimations for each site (Ruhoffet al., 2012). ET product data from MOD16A2GF Version
6.1, covering the image cells of the proposed model at the flux tower sites, and were also
used for comparison. Additionally, ESTIMET was compared with two other consolidated
global satellite-based ET products at a local scale: (i) version 4.1a of the Global Land
Evaporation Amsterdam Model (GLEAM 4.1a) product, which is based on a set of models
and also uses re-analysis data to provide daily ET with grid cells of 0.1° x 0.1° (~10 km);
and (i1) version 02 of the Penman-Monteith-Leuning Evapotranspiration (PML_V2) product,
which provides ET at 500 m (spatial) and 8-day (temporal) resolutions. As MOD16A2GF
and PML_ V2 are 8-day composite products at a 500 m pixel resolution, we accumulated the
daily values initially obtained from ESTIMET, GLEAM 4.1a, and the EC systems, to
produce the 8-day values. Days with imbalances < 0.75 or > 1.25 in the surface energy
balance ratio were disregarded for the ETobs computation to ensure the quality of the data
used for the comparison. For the same reasons, we excluded the days with precipitation >
0.5 mm from the daily-based comparisons. For the accumulated 8-day comparisons, only the
ETops data featuring less than 50% of rainy days in each 8-day window were considered for
the comparison with ESTIMET and the other three products. In order to identify the rainy
days and analyse the response of remotely sensed ET (i.e. the ET variation in dry and wet

seasons), we used rainfall data from automatic rain gauges associated with the flux towers.
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4.2.2.2 Catchment scale

The annual performance of ESTIMET was also evaluated at a catchment scale. A
multi-criteria approach was applied to select these catchments. First, we filtered non-nested
catchments in each biome with a total area of 1-5 km? and without substantial surface water
reservoirs. After meeting this first criterion, we selected five catchments from each biome
that contained a larger area of natural land cover and exhibited high Kling-Gupta Efficiency
(> 0.5) during the calibration and validation of the simulated streamflow performed by
Andrade et al. (2024). As no streamflow data were available for the Pantanal, this biome was
excluded from this evaluation, resulting in a total of 25 catchments. The total annual ET at
the catchment scale (ETcawch) was calculated as a residual of the water balance between 2003—

2009 (Eq. 14):

ETcatch = P — Q — SAT (14)

where P is the observed catchment-scale total annual precipitation (mm), Q represents the
observed annual streamflow at the catchment's outlet (mm), and S represents annual changes
in the catchment's water storage (mm).

P and Q data were obtained from the Catchment Attributes for Brazil (CABra) dataset
(Almagro et al., 2021), while S was derived from the Gravity Recovery and Climate
Experiment (GRACE) (Tapley et al., 2004) by calculating the average of the three equivalent
water thickness products from GFZ (Geo Forschungs Zentrum Potsdam), CSR (University
of Texas Centre for Space Research), and JPL (NASA's Jet Propulsion Laboratory). The
calculation of the annual water balance was based on the hydrological year. We identified
the start of the rainy season by decomposing the monthly precipitation time series from each
catchment using the seasonal component of an additive data series decomposition method
(Kendall and Stuart, 1983), which is available through the 'decompose' function in R (R Core
Team, 2017). This method separates the series into three parts, namely the 'trend’,
'seasonality', and 'noise'. The seasonality was transformed into a binary vector, assigning a
value of 1 to rainy months and 0 to dry months. The transition from the dry season to the
rainy season was identified by detecting a change from 0 to 1, marking the beginning of the
rainy season. The month corresponding to this change was recorded as the starting point of

the rainy period.
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4.2.2.3 Evaluation metrics

We used three statistical metrics to evaluate the ESTIMET model's (ETEstiMET)
performance regarding the ground-based and water balance measurements. We also
compared its performance with that of global satellite-based ET products, including the
MOD16A2GF data (ETwmopis).

To measure both the precision and accuracy between the ET estimates and
observations, we computed the concordance correlation coefticient (pc), which evaluates

how well bivariate data fall on the 1:1 slope (Eq. 15).

_ 2 YN (0;-0)(E;-E)
PC = SN (01-0)2+3N, (E;—E)?+ (N-1)(0-E)2 (15)

1=1

where N is the sample size, O is the observed value, E is the estimated value, O is the
observed mean, and E is the estimated mean. The metric presents values ranging from -1 to
1, with desirable values close to 1, indicating perfect agreement.

To evaluate the model's errors against the ETobs and ETcawch data, we used: (1) the
Percent Bias (PBIAS), which measures the trend as a percentage of estimated values in
relation to observed values (Eq. 16); and (2) the root mean square error (RMSE), which gives

the sample standard deviation of the differences between ETs (Eq. 17).

N .—0:
PBIAS = [Zhiﬁ“—'ow]x 100 (16)
i=1v1
N .—0:
RMSE = w (17)

The metrics of this second group range from 0 to +oo] (RMSE) and from -oo to +o0
(PBIAS), with more desirable numbers close to 0 indicating smaller errors in the estimated

values, in relation to the ET obtained from flux towers.
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4.3 Results of the model's evaluation

4.3.1 Daily based evaluation of ESTIMET at the local scale

Fig. 3 shows the daily variations of ETestiver, ETobs, and precipitation. Overall, the
daily ETestiver similarly tracks seasonal fluctuations in ETops, with most curves showing
an upward trend during the wet season and a downward trend during the dry season. In the
Caatinga biome, very similar variations of ETestiver were observed (Fig. 11a-c), especially
at the ESEC (ETestiver = 1.15 mm/day and ETobs = 1.10 mm/day, on average) and CST
(ETestiver = 1.17 mm/day and ETops = 0.98 mm/day, on average) sites. In contrast, some
differences occurred at CAA (ETestiver = 2.17 mm/day and ETops = 1.91 mm/day, on
average), mainly in March 2011 (the rainy season), which was characterised by greater gaps
in ETops. Similar concurrent variations of ET were also observed at the SJO site, although
average ETestiver (2.39 mm/day, on average) was ~90% greater than ETops (1.25 mm/day,
on average) during the rainy period (April-September) (Fig. 11d).

In the Cerrado biome (Fig. 11e-i), the ETestiver and ETops remarkably overlapped
over the three years of continuous monitoring at the PDG site (ETestiver = 2.64 mm/day and
ETobs = 3.30 mm/day, on average). Conversely, notably lower and slightly greater values of
ETestiver were identified at the BAN (ETestiver = 1.05 mm/day and ETops= 3.85 mm/day,
on average) and USR (ETgstmiver 3.75 mm/day and ETops = 2.89 mm/day, on average) sites
in the Cerrado biome during the dry (May-September) and rainy (October-March) seasons,
respectively. In the Pantanal biome, daily ETestiver at the NPW (4.94 mm/day, on average)
site followed the seasonal fluctuations of ETops (4.03 mm/day, on average), with some
overestimations from October to April during the rainy season (ETestiver = 6.90 mm/day
and ETops = 4.70 mm/day, on average). At the FM site, the ETestiver (1.73 mm/day, on
average) was also close to ETobs (1.70 mm/day, on average) but exhibited small
underestimates in the dry period (May-September) (ETestiver = 0.70 mm/day and ETows =
1.22 mm/day, on average). For the Amazon biome, although ~62, ~74, and 93% of the time
series of the three flux towers (SIN, K83 and K34, respectively) were missing, a good
overlap was observed between the ETestiver and ETows, especially at K34 (ETestiver = 3.23
mm/day and ETops = 3.76 mm/day, on average) and K83 (ETgstiver = 3.80 mm/day and
ETobs= 3.99 mm/day, on average) (Fig. 111-n). Nevertheless, during the driest period at SIN
(from June to September), differences of ~40% between the ET values estimated by the two

sources were observed (ETestiver = 1.69 mm/day and ETows = 2.82 mm/day, on average).
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Figure 11 - Daily evapotranspiration (mm) obtained by the Eddy Covariance method
(ETobs) and modelled by the ESTIMET model (ETestiveT), plotted with the daily
precipitation data (mm) obtained by the flux towers located in the Caatinga (ESEC, CST,
CAA, and SJO), Cerrado (EUC, PDF, USR, BAN, and IAB), Pantanal (FM and NPW),
and Amazon (K34, K83, and SIN) biomes.
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Fig. 12 shows the scatter plots with the metrics to compare the daily similarity
between ETESTIMET and ETObs statistically. Overall, the ET variability was well
estimated by ESTIMET, with pc values ranging from 0.45 (EUC; Cerrado) to 0.80 (ESEC;
Caatinga) at eight control sites. For some sites presenting pc values lower than 0.45, the
clouds of points were nevertheless concentrated close to the lines of equality, as observed at
K34 (pc = 0.23) and SIN (pc = 0.28), in the Amazon. At eight control sites, ESTIMET
appears to underestimate ET (ESEC, EUC, PDG, BAN, IAB, FM, K34, and SIN), while at
the other six sites, ET appeared to be overestimated, compared to EC evaluations (CST,
CAA, SJO, K83, USR, and NPW), as shown by the trend lines above and below the lines of
equality, respectively.

ESTIMET exhibited better overall performance at the Caatinga sites (Fig. 12a-d),
with pc values ranging from 0.46 to 0.80 (pc = 0.62, on average). Satisfactory pc values of
ETestiver were also obtained for the Pantanal (Fig. 4j-k) (pc = 0.45, on average) and Cerrado
(Fig. 12e-i) (pc = 0.41, on average) biomes. On the other hand, the lowest agreements
between daily ETestiver and ETobs were noted for the sites in the Amazon biome (Fig. 121-
n), with a mean value of pc equal to 0.22 (0.28 for SIN, 0.23 for K34, and 0.15 for K83).

Compared to the ETobs data, ETestiver only showed positive PBIAS at CST, SJO,
and USR, and negative PBIAS at ESEC, CAA, EUC, PDG, BAN, IAB, FM, NPW, K34,
K83, and SIN. This suggests a more general trend of underestimating daily ET (Fig. 13 and
Table 6). The ETestiver at K83 (PBIAS = -4.00%; Amazon) and CST (PBIAS = 7.78%;
Caatinga) exhibited the lowest negative and positive biases, respectively. Conversely, the
highest positive and negative biases of ETestiver were identified for the USR (PBIAS =
26.95%) and BAN (PBIAS = -56.45%) sites in the Cerrado biome. The daily values of
RMSE varied between 0.66 mm/day (ESEC; Caatinga) and 3.08 mm/day (IAB; Cerrado),
with the highest average values for Cerrado (average RMSE = 2.06 mm/day) and the lowest
for Caatinga (average RMSE = 0.96 mm/day).

63



ETobs (mm/day)

ETobs (mm/day)

ETobs (mm/day)

ETobs (mm/day)

c) CAA N=292 d) SJO N=223
- 0.30 J pc: 0.%1
,/
7’ P
7 re
i JRe
jes 4
e L]
. A
g) USR N=458 h) BAN N=429
pc: 0.59 pc: 0.09
// //
7’ 7
7 7
// ® //
-’ -
*»
¢ ﬂ,
i) IAB 1) K34 N=33
pc: 0.23
7’
7
r
7’
7’
7
7 !! L]
T T
0 b 10 150 5 10 1=
ETestiver (mm/day) ETestimer (mm/day)
@® ETons (mmy/day)
= = Trend line ETESTIMET
0 5 10 150 5 10 15

ETesniver (mm/day)

ETesniver (mm/day)

Figure 12 - Scatter plots of daily evapotranspiration modelled by the ESTIMET
(ETestiver) model versus the daily estimations obtained by the Eddy Covariance (ETobs)

method in the 14 flux towers located in the Caatinga (ESEC, CST, CAA, and SJO),

Cerrado (EUC, PDF, USR, BAN, and IAB), Pantanal (FM and NPW), and Amazon (K34,
K83, and SIN) biomes. The metric pc (concordance correlation coefficient) is shown to
statistically compare the similarity between the daily variations of ETobs and ETestiver. N
represents the sample size.
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basis.
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Table 6 - Pearson's correlation coefficient (r) obtained for the daily and 8-day accumulated
evapotranspiration modelled by the (a) ESTIMET (ETESTIMET), (b) MOD16A2GF
(ETMODIS), (¢) PML_V2 (ETPML), and (d) GLEAM 4.1a (ETGLEAM) models, versus
the daily and 8-day accumulated estimations by the Eddy Covariance (ETObs) approach in

the 14 flux towers.

r r
Flux (mm/day) (mm/8-days)
towers | ETesriver X | ETestver X | ETwonis X ETpme X ETcream X
ETous ETous ETous ETons ETous
ESEC 0.81 0.94 0.89 0.69 0.64
CST 0.48 0.59 0.73 0.60 0.60
CAA 0.76 0.83 0.86 0.59 0.83
SJO 0.55 0.72 0.61 0.39 0.67
EUC 0.58 0.72 0.53 0.15 0.75
PDG 0.57 0.85 0.64 0.50 0.85
USR 0.64 0.75 0.85 0.85 0.77
BAN 0.37 0.25 0.29 0.16 0.19
IAB 0.66 0.74 0.81 0.65 0.91
M 0.82 0.81 0.72 0.63 0.11
NPW 0.41 0.51 0.36 0.62 0.76
K34 0.23 0.02 0.40 0.23 0.37
K83 0.18 0.03 0.12 0.46 0.40
SIN 0.35 0.41 0.73 -0.58 -0.23

4.3.2 8-day based evaluation of ESTIMET at the local scale

To assess the performance of the model in comparison to global satellite-based ET
products (MOD16A2GF, PML V2, and GLEAM 4.1a), we further evaluated the quality of
daily ETESTIMET accumulated over 8 days against ground-based measurements (ETobs).
Overall, similar behaviour was identified between the ETesrmmer and ETwmopis values,
especially in the Caatinga, Cerrado, and Pantanal biomes (Fig. 14). When compared to
MOD16A2GF, ESTIMET showed an improved linear relationship with the EC-based ET
values for six flux towers (Fig. 15) (i.e. ESEC and SJO in Caatinga; EUC, PDG, and IAB in
Cerrado; and NPW in Pantanal), with higher values of pc (0.93 vs 0.88, 0.61 vs 0.50, 0.51
vs 0.34, 0.68 vs 0.63, 0.37 vs 0.18, and 0.33 vs 0.24, respectively) (Fig. 7). Conversely,
ESTIMET presented lower values of pc (0.54 vs 0.61, 0.77 vs 0.85, 0.69 vs 0.81, 0.05 vs
0.21,0.05vs 0.21, 0,42 vs 0.45, 0.01 vs 0.38, 0.02 vs 0.09, and 0.30 vs 0.50) when compared
to the estimations of MOD16A2GF at eight control sites (i.e. CST and CAA in Caatinga,
USR and BAN in Cerrado, FM in Pantanal, and K34, K83, and SIN in the Amazon,

respectively). Although presenting lower linear relationships with the ETops in these sites,
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ETestiver also reached high or similar values of pc at CST, CAA, USR, and FM. At the
same time, at K34, K83, and SIN, the number of samples was low (i.e. 9, 15, and 19,
respectively) for this 8-day ET aggregation, which hampered a more in-depth analysis.
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Figure 14 - Accumulated 8-day ET (mm) modelled by the ESTIMET (ETgstiveT) and
MODI16A2GF (ETwmopis) models, compared to those obtained by the Eddy Covariance
method (ETows), at the flux towers located in the (a-d) Caatinga, (e-1) Cerrado, (j-k)
Pantanal, and (I-n) Amazon biomes. The measured daily precipitation data (mm) at each
site is also shown.
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Figure 15 - Scatterplots of 8-day accumulated evapotranspiration, modelled by the
ESTIMET (ETestiver) and MOD16A2GF (ETwmobis) models, versus the 8-day
accumulated estimations by the Eddy Covariance (ETobs) method at the 14 flux towers
located in the (a-d) Caatinga, (e-1) Cerrado, (j-k) Pantanal, and (I-n) Amazon biomes. The
metric pc (concordance correlation coefficient) is shown to statistically compare the
similarity between the §8-day variations of ETobs, ETestiveT, and ETmopis. N represents the
sample size.

The smallest bias between the accumulated 8-day ETestiver and ETobs was found at
the NPW (PBIAS = -3.28%; Pantanal) and K83 (PBIAS = 0.56%; Amazon) sites, while the
largest was at BAN (PBIAS = -58.92%; Cerrado) (Fig. 16). MOD16A2GF presented its
smallest accumulated 8-day biases at CAA (PBIAS = 2.43%; Caatinga) and its highest at
IAB (PBIAS =-60.60%; Cerrado). Overall, ETgstiver presented a mean PBIAS <+13% for
six sites (ESEC, CST, IAB, NPW, K83, and SIN), while this performance was reached for
ETwmopis at seven sites (CAA, SJO, EUC, PDG, USR, BAN, FM and K34) (Fig. 16d).

The lowest RMSE were observed at sites located in the Caatinga and Pantanal biomes
(i.e. ESEC, with RMSE = 3.32 mm/8-days; SJO, with RMSE = 4.84 mm/8-days; and FM,
with RMSE = 6.64 mm/8-days; respectively) (Fig. 16c). When comparing the mean 8-day

accumulated RMSE data from ETgstmver with that from ETwmopis, both were similar for

eleven sites (ESEC, CST, CAA, SJO, EUC, PDG, USR, FM, NPW, K83, and SIN), with
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differences lower than 3 mm/8-days and ETestiveT presenting the largest overall errors. The
largest mean RMSE for the ETestiver estimations were found at the BAN (Cerrado) and
NPW (Pantanal) sites (RMSE = 19.64 and 16.98 mm/8-days, respectively). The evaluation
of ESTIMET and MOD16A2GF for all 14 experimental sites indicates that both models
presented a reasonable performance for ET estimates (Fig. 8ab). However, using ESTIMET
statistically resulted in a slightly better performance in terms of similarity (pc = 0.63) when
compared to MOD16A2GF (pc = 0.58). A higher value of pc was also observed for
ESTIMET in comparison to PML_V2 (pc = 0.45) and GLEAM 4.1a (pc = 0.47) when all

experimental sites were considered (Fig. 16c-d).
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Figure 16 - Scatterplots of 8-day accumulated evapotranspiration modelled by the (a)
ESTIMET (ETestiver), (b) MOD16A2GF (ETwmonbis), (¢) PML V2 (ETpme), and (d)
GLEAM 4.1a (ETcLeam) models, versus the 8-day accumulated estimations using the Eddy
Covariance (ETops) method for all 14 experimental sites. The metrics pc (concordance
correlation coefficient), root mean square error (RMSE), and Percent Bias (PBIAS) are
shown to statistically compare the similarity between the 8-day variations of ETops and the
satellite-based datasets. N represents the sample size.

Overall, ESTIMET presented a better linear relationship than PML V2 and GLEAM
4.1a at ten and nine sites, respectively, highlighting the best performance of ESTIMET,

particularly at the Caatinga and Cerrado sites. This was particularly the case when compared

68



with the PML V2 product (Figs. 17 and Fig. 19). Regarding the RMSE, ETgstiver and

ETwmobis presented lower values (13.21 and 12.68 mm/8-days, respectively) compared to the
ET estimations by PML V2 (13.25 mm/8-days) and GLEAM 4.1a (14.11 mm/8-days),
considering all of the experimental sites (Fig. 16). The lower values of RMSE for ESTIMET
were observed in 8 and 9 out of 14 sites, compared to PML V2 and GLEAM 4.1a,

respectively (Fig. 17 and Fig. 18). All products presented negative values of PBIAS, with
values closer to zero being observed for PML V2 (-8.83%) and GLEAM 4.1a (-12.18%)
when compared to ETgstiver (-22.59%) and ETwmobis (-15.28%) (Fig. 16). This was probably

influenced by the mutual annulment between positive and negative differences. When

considering all metrics in the Taylor diagram (Fig. 20), ESTIMET exhibits the best

correlation, the second smallest RMSE, and the standard error closest to the observations.
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Figure 17 - Scatterplots of 8-day accumulated evapotranspiration modelled by the
ESTIMET (ETgstiver) and PML_ V2 (ETpmr) models, versus the 8-day accumulated
estimations by the Eddy Covariance (ETobs) method in the 14 flux towers located in the (a-
d) Caatinga, (e-1) Cerrado, (j-k) Pantanal, and (I-n) Amazon biomes. The metrics r
(Pearson’s correlation coefficient) and concordance correlation coefficient (pc) are shown
to statistically compare the similarity between the 8-day variations of ETobs, ETEsTIMET,

and ETmopbis. N represents the sample size.
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Figure 18 - Scatterplots of 8-day accumulated evapotranspiration modelled by the
ESTIMET (ETestiver) and GLEAM 4.1a (ETgLeam) models, versus the 8-day
accumulated estimations by the Eddy Covariance (ETobs) method in the 14 flux towers
located in the (a-d) Caatinga, (e-1) Cerrado, (j-k) Pantanal, and (I-n) Amazon biomes. The
metrics r (Pearson’s correlation coefficient) and concordance correlation coefficient (pc)
are shown to statistically compare the similarity between the 8-day variations of ETops,
ETestiveT, and ETmobis. N represents the sample size.
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Figure 19 - (a) RMSE and (b) PBIAS statistics for ESTIMET (ETgstiver), PML V2
(ETpme), and GLEAM 4.1a (ETGLeam) evapotranspiration data when compared to the Eddy
Covariance (ETobs) observations in the flux tower sites.
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Figure 20 - Taylor diagram of 8-day accumulated evapotranspiration modelled by the
ESTIMET (ETgstiver), MOD16A2GF (ETwmopis), PML V2 (ETpm), and GLEAM 4.1a
(ETGLeEam) models against the 8-day accumulated estimations using the Eddy Covariance

(ETovs) method for all 14 experimental sites.
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4.3.3 Annually based evaluation of ESTIMET at a catchment scale

Fig. 21 shows the scatterplots of annual accumulated ET modelled by ESTIMET and
the three global satellite-based ET products, compared to the ETcach calculated by the water
balance in 5 Brazilian biomes. The evaluations show that ETestiveT presented higher values
of pc in the Amazon (0.49), Atlantic Forest (0.37), and Cerrado (0.52) biomes when
compared to the other three products, which ranged from -0.08 (GLEAM 4.1a) to 0.36
(MOD16A2GF) in the Amazon, from 0.02 (PML V2) to 0.14 (GLEAM 4.1a) in Atlantic
Forest, and from 0.01 (PML V2) and 0.35 (MOD16A2GF) in Cerrado. Overall, ESTIMET
also exhibited low values of RMSE and PBIAS in the Amazon (RMSE = 170.77 mm/year
and PBIAS -1.49%), Atlantic Forest (RMSE = 152.99 mm/year and PBIAS 7.13%), and
Cerrado (RMSE = 164.57 mm/year and PBIAS -10.75%) biomes. This can be likened to the
other satellite-based products. For instance, the ET estimated by GLEAM 4.1a in the
Amazon presented an elevated RMSE (301.60 mm/year).

A low similarity was observed between all products and the water balance
calculations in the Caatinga biome, with a particular emphasis on ESTIMET, which
presented pc values close to 0 (-0.01) and high RMSE (422.27 mm/year) and PBIAS
(52.74%). These pronounced discrepancies between the ETcach and those estimated by the
products in the Caatinga biome were noted in three catchments (Fig. 22), with an overall
tendency for the satellite-based products to overestimate the ET calculated by the water
balance over the years, especially those modelled by ESTIMET. Similar statistic metrics (i.e.
pc = 0.10, RMSE = 220 mm/year, and PBIAS = 15%) were observed for the three Penman—
Monteith-based models (i.e. ESTIMET, MOD16A2GF, and PML_V2) in the Pampa biome,
where GLEAM 4.1a stood out (pc = 0.23, RMSE = 141.18 mm/year, and PBIAS = 3.05%).
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Figure 21 - Scatterplots of annual accumulated evapotranspiration modelled by the
ESTIMET (ETESTIMET), MOD16A2GF (ETMODls), PML_V2 (ETPML), and GLEAM 4.1a
(ETGLeam) models, versus the annual accumulated evapotranspiration calculated by the

water balance in the catchments (ETcatcn) of the (a-d) Amazon, (e-h) Atlantic Forest, (i-1)
Caatinga, (m-p) Cerrado, and (g-t) Pampa biomes. The metrics concordance correlation
coefficient (pc), root mean square error (RMSE), and Percent Bias (PBIAS) are shown to

statistically compare the similarity between the calculated and modelled annual
evapotranspiration. N represents the sample size.
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Figure 22 - Annual time series of actual evapotranspiration estimated by ESTIMET
(ETESTIMET), MOD16A2GF (ETMODIS), PML V2 (ETPML), and GLEAM 4.1a
(ETPML) compared to the evapotranspiration calculated by the water balance approach in
25 catchments located in the (a-e) Caatinga, (f-j) Cerrado, (k-0) Amazon, (p-t) Atlantic
Forest, and (u-z) Pampa biomes.

4.4 Discussion
4.4.1 Accuracy of ESTIMET in estimating ground ET in tropical biomes

The selection of ET products for scientific research necessitates consideration of their
varying performances at a spatial scale, as well as the impact of land cover and climate
conditions (Zhu et al., 2022). Our study indicates that the general trend is for ETestiveT and

ETwmobis to be underestimated at a local scale, with most ET values presenting the lowest
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PBIAS (Fig. 13cd) and located above the 1:1 line in the scatterplots (Fig. 15, 17, and 18).
This finding is consistent with those from other studies conducted in South America (e.g.
Salazar-Martinez et al., 2022; Andrade et al., 2024). Similar to the study by Melo et al.
(2021), which evaluated four remote sensing-based ET models forced by ground-based
meteorological data in South America, EC-based analyses also found that the best overall
performance of the Penman—Monteith-based models was noted at sites located in semi-arid
regions, such as the Caatinga biome. For such a biome, the correlations of the daily ET
estimations obtained in our study using ESTIMET (pc ranging from 0.46 to 0.80) were
similar to, or better than, those reported by Bezerra et al. (2023). This study employed two
remote sensing-based surface energy balance models (i.e. SEBAL and STEEP) at three
identical flux towers (i.e. ESEC, CAA, and CST), with values of pc ranging from 0.18 to
0.67 for SEBAL and from 0.41 to 0.80 for STEEP. The good performance of ESTIMET in
Caatinga was achieved after the monthly composition of the reflectance-based parameters
was carried out to mitigate the impact of clouds, which could affect the variability of land
surface information used as input for the model, especially in highly dynamic hydroclimatic
vegetation systems such as the Caatinga and Cerrado biomes. For instance, the
disagreements between ETestiver and ETops in these two biomes were not associated with
the beginning or end of the rainy seasons.

Regarding the quality of estimations at some of the flux towers, in which the
concordance/correlation between ETwmopis and ETons was already reasonable (Fig. 15)
because of the greater seasonality of ET drivers, significant improvements in the correlations
were observed between ETgstiver and ETows (i.e. ESEC, pasture in Caatinga; EUC,
monoculture in Cerrado; and PDG, Forest in Cerrado). Nevertheless, some flux towers,
already reasonably characterised through MODIS, featured a slight degradation of this
concordance/correlation by ESTIMET (i.e. USR, pluriculture in Cerrado; and CST and
CAA, deciduous forest in Caatinga). Lower quality RMSE and PBIAS are also found for
USR, suggesting that a patchwork-like zone might be more difficult to characterise for
ESTIMET. This is counterintuitive as ESTIMET has a finer spatial resolution. However,
these discrepancies seem to be related to some outliers in specific periods, with much higher
values of ETestiveT in February and March 2006 (Fig. 14g), while EC provided remarkably
low ET values. Except for this specific period, ESTIMET achieves better pc and RMSE for
daily (0.59-0.64 and 1.37-1.15 mm/day) and 8-day analyses (0.69-0.75 and 9.15-7.06 mm/8-
days). Similarly, despite a lower concordance/correlation for CST, the errors (PBIAS =

12.11% and RMSE = 6.99 mm/8-days) were lower when compared to MOD16A2GF
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(PBIAS = 41.45% and RMSE = 7.05 mm/8-days) and, especially, GLEAM 4.1a (PBIAS =
42.60.% and RMSE = 8.68 mm/8-days) and PML V2 (PBIAS = 125.33% and RMSE =
12.10 mm/8-days). These trends suggest that the variability and complexity of land use may
significantly impact the comparison between remote-sensing strategies and ground-based
estimations (Ruhoff et al., 2013).

This difficulty appears to be even greater in specific flux towers, where both MODIS
and ESTIMET present discrepancies with the in-situ measurements, such as SJO (Caatinga,
near the limit with the Atlantic Forest) and K34 (Amazon), in which RMSE increases when
using ESTIMET. These findings corroborate previous studies, which reported that the
performance of the MOD16 ET product was better in semi-arid regions than in semi-humid
or humid regions. The performance of MOD16 ET was also better during dry seasons than
in wet seasons (Mu et al., 2011; Degano et al., 2021). Apparently, ESTIMET followed the
same trend. This larger difference, already pointed out by Salazar-Martinez et al. (2022) and
Andrade et al. (2024) for tropical forested areas, is clearly the case for sites located in or near
to the Amazon basin featuring low seasonality, which was also observed for the GLEAM
4.1a and PML_ V2 products in our analyses and previous studies (Zhang et al., 2023; Yang,
2025). The weaker correlations of the satellite-based products in the tropics compared to
greater latitudes are thought to be the result of differences in seasonality rather than
differences in performance (Salazar-Martinez et al., 2022; Miralles et al., 2011; Yilmaz et
al., 2014). In or near the Amazon, the seasonal ET variability remains moderate, whereas
sites at greater latitudes typically exhibit a greater range of variability, which favours larger
correlations with ETops. This is consistent with the latitude effect on energy parameters (e.g.
T and Rn) identified by Patriota et al. (2024), which presents lower variations due to
moderate changes in the seasonal solar angle. In addition, precipitation seasonality is
generally lower in the Amazon than elsewhere in the tropics (Feng et al., 2013; Lemos et al.,
2023), which contributes to buffering vegetation (NDVI or EVI2) and surface parameter
changes (albedo) (Andrade et al., 2024). Such vegetation parameters, especially NDVI, often
saturate evergreen broad-leaved forests holding tropical climates (e.g. the Amazon and
Atlantic Forest), causing a non-linear response of such parameters in vegetation index-based
models (Laipelt et al., 2021; Oliveira et al., 2022). However, the calibrated equations of such
models are based on adjustments using linear regressions. Our results indicate that
ESTIMET, although not always improving the 8-day error estimations of ET (i.e. PBIAS
and RMSE) compared to MODIS, usually catches the seasonality (correlations) of ET for

some of these specific sites (e.g. SJO in Caatinga but in a transition zone near the limit with
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the Atlantic Forest) (Fig. 15). The ability of ESTIMET to capture the fluctuations of ET is
especially noted when analysing the daily-based comparisons (Fig. 12).

For NPW (Pantanal Biome) and BAN (Cerrado Biome), ESTIMET provided lower-
quality results with larger RMSE and, sometimes, weaker correlations compared to the three
global satellite-based ET products, although they presented low PBIAS in NPW (likely
compensated by the positive and negative values). For this site, ET is overestimated (Fig.
15), which is consistent with the observations in Andrade et al. (2024), who used a hybrid
SEBAL-MODIS-based model to analyse data between November and March of each year.
Likewise, in USR, such discrepancies in NPW seem to be related to some outliers during the
rainy seasons, presenting ET values higher than 60 mm/8-days (see Fig. 14). This
phenomenon is still not fully understood, and the reasons for the remote sensing data
deviating from the measured values should still be clarified in this context. Allen et al. (2021)
suggested that an artificial increase in atmospheric demand may occur, potentially
overcompensating for the reduction in available surface moisture observed during the dry
season, and thereby generating higher values of ET. In parallel, waterlogging is known to
occur during wet seasons at NPW (Pantanal Biome) and BAN (Cerrado Biome) (Table 5).
This would be a consistent explanation for the difference between ETops and ETestivMET
trends in some accumulated 8-day data, both of which could be highly altered for these sites.

Even though the energy balance closure issue has been addressed by excluding data
with higher energy imbalances at each flux tower, the assessment outcomes can still be
influenced by the difference in scale between the footprint of the eddy covariance
observations and the pixels of the ET products. The flux footprint typically spans less than
1 km? (Chu et al., 2021), depending on each site flux tower deployment, and the pixel sizes
of ET products range from 0.062 (ESTIMET) to 100 km? (GLEAM 4.1a). While the remote
sensing products should fit well within the flux footprint of each tower, there might still be
a disparity in the scales of the ET contributions, potentially combined with changing
meteorological conditions that can lead to a discrepancy in vegetation representativeness
between the pixels and the flux tower observations (Hobeichi et al., 2018; Jiménez et al.,
2018). Such a mismatch can also arise from inaccuracies in the models' vegetation and land
cover input data, such as incorrect classifications. Since many models compute ET using
parameters which are specific to land cover (Anderson et al., 2007; Miralles et al., 2011; Mu
et al., 2011), a mismatch between the actual vegetation at the observation site and that
detected in the model's pixels could potentially impact the assessment results (Hu et al.,

2015; Melo et al., 2021). This probably occurred at the SJO site, which is located in a
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transitional zone between the Caatinga and Atlantic Forest biomes, presenting a mixture of
cover vegetation (pasture and natural vegetation) (Machado et al., 2016), which was
probably not well represented by the MOD16A2GF, PML V2, and GLEAM 4.1a datasets.

Another potential limitation in the ground-truth data, for comparison with 8-day
accumulated satellite-based data (e.g. MOD16A2GF and PML V2), is related to the low
availability of EC data in tropical regions (Salazar-Martinez et al., 2022) like Brazil. When
excluding all rainy days from the analyses within this window, it consequently reduces the
data availability for validation even further. However, the gap-filling method used for the 8-
day EC data in this study (i.e. the average of ET on non-rainy days of the same week) also
introduces uncertainties into the accumulated analyses, which could compromise the
performance of the satellite-based datasets.

Regarding the catchment scale, ESTIMET presents better correlation/concordance
associated with the lower RMSE, when compared to the ET calculated by the water balance
in the three major biomes (i.e. Atlantic Forest, Amazon, and Cerrado), which cover more
than 85% of the Brazilian territory. Our regional analysis also revealed an overall tendency
for the MOD16A2GF product to overestimate the ETCatch in the Amazon biome, a finding
also observed in previous studies (Maeda et al., 2017; Andrade et al., 2024). For this larger
Brazilian biome, most mean estimations of MOD16A2GF were between 1,250 and 1,500
mm/year in the analysed catchments, while ESTIMET mostly presented annual mean values
lower than 1,250 mm/year. Such annual ranges of ET values in the Amazonian catchments
(as estimated by ESTIMET) were closer to those obtained from the other two satellite-based
products (i.e. PML V2 and GLEAM 4.1a) and by other studies using different approaches
(e.g. Ruhoff et al., 2022; Andrade et al., 2023). The map showing the mean annual ET
between 2003 and 2022 (estimated by ESTIMET and MOD16A2GF) illustrates that the
main (absolute and relative) differences between the two datasets are in the Amazonian
biome. ESTIMET presents lower overall values of ET and better captures the spatial
variability of ET in the Amazon region, possibly due to the higher spatial resolution and
more detailed LULC and meteorological data, which are able to better differentiate
vegetation types and microclimates (Fig. 23).

The general inclination of MOD16GFA2 to overestimate the ETcacn was also
identified in our analysis in the Atlantic Forest, featuring evergreen broad-leaved vegetation,
which was not observed in ESTIMET, GLEAM 4.1a, or PML V2. Such overestimation of
MOD16A2GF was not identified in previous studies (e.g. Ruhoff et al., 2022). Fig. 23 shows

that the twenty-year mean ET estimated by ESTIMET in the Atlantic Forest mostly ranges
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from 1,000 to 1,500 mm/year, whereas for MOD16A2GF, this value is generally equal to or
greater than 1,500 mm/year. Unlike the local analyses, where ESTIMET exhibited good
performance at daily and 8-day accumulated ET, when likened to the flux towers in Caatinga,
the comparisons at the catchment scale of ET estimated by the satellite-based products in
this biome overestimated the water balance calculations. These lower values of ETcawch in
Caatinga can be attributed to the predominance of catchments with non-perennial rivers in
this biome, which are primarily dependent on surface runoff (Almagro et al., 2021). Another
reason for this underestimation of ETcacn may be related to the underrepresentation of
ground-based rainfall, which can reduce ET calculations via water balance (Andrade et al.,
2022). Overall, Fig. 23 also shows that ESTIMET better captures ET variability, not only in

the Amazon but also in all other biomes.
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Figure 23 - Spatial distribution of the mean annual evapotranspiration between 2003 and
2022 estimated by (a) ESTIMET and (c) MOD16A2GF, with panels showing their
respective (b and d) latitudinal profiles. (¢) Spatial distribution of the absolute and (g)
relative differences between the estimations of ESTIMET and MOD16A2GF, with panels
showing their respective (f and h) latitudinal profiles. The symbols AMZ, CAT, PA, CER,
ATL, and PAM refer to the Amazon, Caatinga, Pantanal, Cerrado, Atlantic Forest, and
Pampa biomes, respectively.

Such local and regional observations suggest that ESTIMET may be a valuable tool

for estimating daily ET. However, some specific conditions may lead to a lack of confidence,
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such as wet conditions that favour waterlogging, which hinders robust comparison with
ground-based EC towers. Beyond this, the effect of the relative complexity of land use at a
fine scale could appear overwhelming. For future research, another option could be to utilise
reflectance data to estimate the biophysical parameters with even higher spatial resolution
than the 250 m MODIS data. This could involve using sources such as the 10-m Sentinel-2
NDVI or the 3-m Planet NDVI. An example of this approach is seen in the study by Aragon
et al. (2018), who utilised 3-m Planet NDVI to create ultra-high-resolution ET estimates
using the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model. In areas with a
tendency towards land use homogeneity, ESTIMET yielded better results than
MOD16A2GF (e.g., PDG and EUC), while more complex areas presented similar
difficulties in capturing seasonality, as also observed in GLEAM 4.1a and PML V2.

4.4.2 ESTIMET as new support for remote long-term ET evaluation at a finer

spatiotemporal resolution

Despite some specific limitations mentioned above, ESTIMET makes it possible to
evaluate continuous daily ET for any day since 2003 in tropical latitudes, even when the area
was overcast by clouds, with better latency (monthly) and spatial resolution (250 m) than
other global ET datasets (i.e. having the best 8-day and 500-m resolutions, as well as annual
latency). In the challenging context of a large cloud presence between the tropics (Liu et al.,
2020; Ahamed et al., 2021), the information from ESTIMET has the potential to be an
important tool for providing reliable and continuous regional ET series. For example, these
refined data can be used as input for water resource management strategies and agricultural
activities. Furthermore, the daily availability of ET data expands the potential for
hydrological analyses and simulations, allowing precise water balance modelling for
catchments (Guerschman et al., 2022). Indeed, ESTIMET allows access to one of the most
important terms of the hydrological balance, at the same temporal resolution usually
obtained for precipitation and, therefore, provides the possibility for estimating the water
deficit or water surplus at a daily scale from remote sensing; this being of great interest for
water resource, agricultural and risk management. This type of data also enables a more
detailed and continuous long-term analysis of ET in tropical latitudes, considering that the
patterns and (environmental and anthropogenic) factors of this component remain poorly

understood, especially in such regions (Fleischmann et al., 2023).
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The two insets exhibiting the spatial variability of ET around the EUC site (Cerrado),
obtained by MOD16A2GF (Fig. 24a) and ESTIMET (Fig. 24b) in an 8-day window between
18 May 2007 and 25 May 2007 during the beginning of the dry season, show how finer the
spatial resolution of ESTIMET (250 m) is when compared to MOD16A2GF (500 m). Such
improved spatial resolution enables a more accurate representation of land contrasts in ET
estimation. For instance, ESTIMET captured four distinct values of ET, ranging from 17.29
to 18.78 mm/8-days in a 0.25 km? inset containing eucalyptus-dominated vegetation with
different growth stages, as shown by the contrasting reflectance responses and textures (Fig.
24b). In contrast, this was represented by only one averaged value of ET (i.e. 22.6 mm/8-
days) by the MOD16A2GF product. The daily information in ESTIMET also enables a better
representation of the ET sensitivity to meteorological variations, as shown in Fig. 24e. For
instance, while the ETwmopis remains unchanged within the same 8-day window, represented
by an average of 2.86 mm/day of the accumulated ET, the values modelled by the ESTIMET
varied between 1.66 and 3.01 mm/day, presenting sensitivities to daily rain events observed

at the EUC site.
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Figure 24 - Spatial variability of 8-day accumulated evapotranspiration modelled by the (a)
MOD16A2GF (ETwmonbis) and (b) ESTIMET (ETgstiver) models between 18" May 2007
and 25" May 2007 in the surroundings of the EUC site (Cerrado), with 500 and 250 m
spatial resolutions, respectively. (¢) Temporal variability of daily evapotranspiration
modelled by the two models and precipitation within this temporal window. True coloured
satellite images (Landsat/Copernicus) of 30" December 2007 from Google Earth,
corresponding to the (d) largest and (e) smallest evapotranspiration map insets.
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5 POTENTIALITIES OF ESTIMET FOR TREND AND TIME-SENSITIVITY
ANALYSIS OF ET

5.1 Contextualisation

Several studies have been carried out to understand the trends and influences of other
biophysical and climatic parameters on ET at global (e.g. Zhang et al., 2016; Hobeichi et al.,
2021) and local (e.g. Adeyeri et al., 2021; Lang et al., 2024; Sabino et al., 2024) scales. ET
variability has already been analysed for Brazil and the entire South American continent
using the SEBAL model, where a general trend of increasing ET was identified, with
variations according to climates and biomes (Fleischmann et al., 2023; Laipelt et al., 2021;
Andrade et al., 2024). However, these studies have limitations in terms of temporal
continuity (i.e. due to the limited number of images used in the analysis caused by the
exclusion of many days with high cloud cover or rainy months) and scale (i.e. at the river
basin level, with the exclusion of some biomes from the analyses). As ET is the terrestrial
hydrological flux most sensitive to vegetation changes (DeBano et al., 1998; Collar et al.,
2023), its understanding associated with each type of land cover and land use modification
helps the sustainable management of natural resources (Saddique et al., 2020; Cabral Junior
et al., 2022; Antunes et al., 2024).

Due to the limitations of the regional and global products currently available for
obtaining distributed, continuous, and high-resolution ET information from satellite data, the
patterns and factors of this component remain poorly understood, especially in tropical
regions such as Brazil (Fleischmann et al., 2023). However, Claudino et al. (2025) have
recently proposed an improved model, specifically adapted for tropical areas, which
mitigates the impact of cloud cover. This model, called ESTIMET, is based on an
improvement of the MOD16 product and enables the daily estimation of ET at a 250 m
resolution, without temporal gaps, thereby permitting detailed spatiotemporal analysis of ET
variability.

Therefore, in order to evaluate the applicability of this refined product and illustrate
its interest in environmental studies, this chapter explores the potentialities of ESTIMET to
continuously estimates distributed daily ET, focusing on 1) the analysis of long-term (2003-
present) ET trends and their correlations with climatic (precipitation) and anthropogenic
(land use and land cover) factors in two contrasting Brazilian biomes (Caatinga and

Pantanal) to understand on a large scale the impacts of vegetation cover evolution/alteration
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and precipitation changes on this main output of the water balance; and the investigation of
ET variability in scenarios of land use and land cover changes caused by wildfires and

deforestation processes in these two contrasting biomes.

5.2 Materials and methods
5.2.1 Trend analysis

The long-term spatiotemporal trends of ET for the two biomes were statistically
analysed by the nonparametric Mann-Kendall test (Mann, 1945; Kendall, 1948) with a

significance level of 95%, calculated according to Eq. 17.
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where n is the number of observations, X; represents the observation at time i, X; represents

the observation at time j, and sign(x) is the sign function of x.
Egs. 18 and 19 were used to calculate the variance of S (Var(S)) and the standard

normal distribution (Z), respectively.
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where n is the number of data, m is the number of tied groups, which indicates sample data
with the same value in extension i.

Positive Z values indicate increasing trends, while negative Z values indicate
decreasing trends. In addition, the corresponding p-value was calculated to determine the
statistical significance of the trends, and the Theil-Sen slope (Sen, 1968) was used to estimate

the slope of the observed trends.
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5.2.2 Correlation between ET patterns and precipitation

The variability of ET can be amplified or constrained by several climatic factors (e.g.
precipitation, relative humidity, surface temperature, and biomass), with the precipitation
playing a key role (Moreira et al., 2019; Fleischmann et al., 2020). In this study, the
precipitation patterns were selected to analyse the variability of ET estimated by ESTIMET
in the face of changes in climatic patterns in the two contrasting biomes: Pantanal and
Caatinga.

The monthly and annual precipitation data (2003-2022) used to assess its correlation
with ET in the Caatinga and Pantanal biomes were obtained from the satellite-based IMERG
BraMaL product (Freitas et al., 2024). IMERG BraMaL provides monthly precipitation data
with a spatial resolution of 0.1° from 2001 to the present. This product improves the IMERG
Early Run data through machine learning techniques and meteorological reanalysis data
(MERRA-2), outperforming the IMERG Final Run product and other global precipitation
products (e.g. CHIRPS, PERSIANN-CDR, and MSWEP). IMERG BraMalL also presents
the following advantages when compared to most global products: lower latency for end-
users, no dependence on field data, and no relationship between errors and local
characteristics, greatly improving precipitation estimates in all regions of Brazil (Freitas et
al., 2024). The annual average precipitation values used in this analysis were obtained for
each area and for each representative land use and cover (vegetation, agriculture, urban, and
non-vegetated areas) to verify the evolution of precipitation spatiotemporal trends in the two
biomes during the last two decades. Pearson's correlation coefficient (r) was used to evaluate

this relationship between ET and precipitation (Eq. 20).

o L& -y
Jz (5 =22 3 (71— y)?

(20)

where x i is the value of variable x, y 1 is the value of variable y, x is the mean of variable x,
and y is the mean of variable y. Values of r range from -1 to 1, with -1 indicating the strongest
negative correlations and 1 indicating the strongest positive correlations.

In addition, the spatial variability of ET in the two biomes was analysed considering

different climatic patterns, i.e. distinguishing drier, average, and wetter years throughout the
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study period (2003-2020). In Caatinga, the year 2012 was selected as a dry year based on
the studies of Marengo et al. (2018), the year 2017 was chosen as an average year based on
the precipitation analyses of the biome obtained from IMERG BraMalL, while the year 2004
was selected as a wet year based on the studies of Alves et al. (2006). For Pantanal, the year
2020 was selected as a dry year (Costa et al., 2023), 2015 as an average year based on the
IMERG BraMaL data, and 2011 as a wet year (Pereira et al., 2021). Once the years were
defined, the annual ET maps for each entire biome were considered.

The restriction on the number of biomes and the temporal resolution of the analyses,
which was monthly instead of daily, resulted from processing limitations imposed by the
Google Earth Engine (GEE) platform. This cloud-based geospatial analysis platform limited
the size and processing time of files per user, resulting in prolonged processing of results
(e.g. 1 day to download the monthly shapefile of the Caatinga, 3 to 4 days for biomes with
larger territorial extents, such as the Amazon). Thus, to enable the analyses, regions and
temporal scales were selected, preserving the finer spatial scale (250 m) of ESTIMET. New

strategies for processing daily data are being developed.

5.2.3 Analysis of ET patterns in response to rapid land use and land cover changes

To demonstrate the potentialities of ESTIMET for obtaining finer spatiotemporal
resolution (daily with 500 m) data, the impacts of daily ET on rapid biophysical and/or
anthropogenic changes were analysed. For this analysis, the variability of ET in locations
where rapid and significant land use and land cover changes occurred due to wildfire and
deforestation processes was selected in two specific locations within each biome (Fig. 25a
and 25d).

The regions affected by forest fires were selected using the 1 km Burned Area system
from the INPE's Burned Area Program. This system provides annual and monthly
information on the burned areas (km?) for the Brazilian biomes, delimited using the AQ1Km
product, which is constructed from data from MODIS Collection 6, collected simultaneously
by the AQUA and TERRA satellites, with a 1-km spatial resolution (INPE, 2025). Thus,
based on the data provided by the system, and considering the analysis period (2003-2022),
the years and months with the highest occurrence of forest fires in each biome were defined.
In Caatinga, the year 2015 (47,543 km?, representing 5.6% of the biome's area) and the
month of September (9,797 km?) were selected, while in Pantanal, the year 2020 (39,768
km?, representing 26.4% of the biome's area) and the month of September (14,264 km?) were
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chosen. Given the large number of forest fire outbreaks identified for the two biomes,
protected areas were used as a selection criterion because they contain large portions of the
biome's native vegetation. Thus, for the Caatinga biome, the region of Chapada Diamantina
National Park (2,41 km? hotspot) was selected (Fig. 25b), which in 2015 was devastated by
several fires that occurred from September to December (Santos et al., 2020). For Pantanal,
the region of the Encontro das Aguas State Natural Park (a 1.82 km? hotspot) was selected
(Fig. 25e), one of the conservation units most severely affected by the 2020 forest fires

(Magalhaes Neto et al., 2022).
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Figure 25 — Location in the biome: (a) Caatinga, (b) Chapada Diamantina—BA where a fire
occurred, (c) Jeremoabo—BA where a deforestation alert was issued, and in the biome (d)
Pantanal, (¢) Encontro das Aguas State Park—MT where a fire occurred, (f) Aquidauana—

MS where a deforestation alert was issued.

The MapBiomas Alerta system (MapBiomas, 2025) was utilised to identify
deforested areas within the biomes. This system validates and refines deforestation alerts
with high-resolution imagery, gathering information from various systems for all Brazilian
biomes. The platform also provides detailed reports of each native vegetation loss event. For
the selection of deforestation events, the area needs to be protected and larger than the
ESTIMET pixel (62,500 m?, 0.0625 km?). In Caatinga, a legal reserve area in the
municipality of Jeremoabo-BA was selected (Alert Code 138612, an area of 1.4673 km?)

(Fig. 25¢), while in Pantanal, the region defined a Permanent Preservation Area in the

86



municipality of Aquidauana-MS (Alert Code 468462, an area of 3.23 km?) was chosen (Fig.
25%).

Once the regions were defined, the high temporal variability of ET (daily) was
analysed in cases of forest fires, in the month of the alert indicated by INPE, and in the same
month of the previous year, to ensure that the area had vegetation without degradation. For
deforestation scenarios, the analysis covered the months indicated in the MapBiomas alert

reports.

5.3 Results and discussion

5.3.1 Long-term (2002-2023) and continuous monthly ET trends

The Mann—Kendall test performed on the monthly time-series, considering the entire
biome extents, indicates decreasing trends (s < 0) in 7 months for both biomes (Table 7).
However, a significant increasing trend was identified for Pantanal in February (p = 0.03
and s = 1.48 mm/month), which represents the end of the rainy and flood season in most of
the biome, i.e. the period with higher water availability, with expanded floodplains, soil
saturation, maximum leaf area of vegetation, and intense solar radiation (Sanches et al.,
2011; Leivas et al., 2015; Fleischmann et al., 2023). Under these conditions, vegetation
maintains high transpiration rates, while the higher net radiation and surface temperatures
increase the atmospheric demand (VPD), favouring higher ET fluxes during this period
(Leivas et al., 2015; Marengo et al., 2016; Fleischmann et al., 2023). This increase tends to
reduce from March to June.

When analysing the trends for the monthly time series according to land use and land
cover, Caatinga showed a relative balance. For this biome, each land use generally exhibited
6 months of increasing and 6 months of decreasing ET trends, a behaviour that reflects the
defined high and low ET cycles throughout the year (Table 8). In contrast, a predominance
of decreasing trends was observed in non-vegetated and urban areas of Pantanal, with 11
months showing decreasing trends, including 3 months (January, November, and December)
that exhibited significant decreasing trends. This behaviour may reflect anthropogenic
changes in land cover (urban expansion, conversion of pastures, or agricultural lands) in the
region, which reduce the flooded areas and soil moisture with an increase in vegetation loss,
thereby reducing transpiration and modifying the energy balance. Thus, any decline in

flooding or baseflow reduces ET even during months of the rainy season in Pantanal, which
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historically exhibit high evaporative demand (Leivas et al., 2015; Marques and Rodriguez,
2022). Decreasing ET trends were also identified by Patriota et al. (2024) when analysing
21 metropolitan regions across different Brazilian biomes. Regarding agricultural areas in
Pantanal, most months (8 months) exhibited negative trends, while vegetated areas showed
increasing ET trends in 7 months, although none of these trends were significant.
Considering the entire extent of the biomes and all analysed land use and land covers, ET
values showed an annual decline, particularly in non-vegetated areas of the Pantanal (p =
0.04 and s = -7.37 mm/year). likely related to recent fire and deforestation impacts

(Fleischmann et al., 2023).
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5.3.2 Variability of ET according to precipitation and land use/land cover patterns

The analysis of ET between 2003 and 2022 reveals that the monthly variations (Fig.
26 and Fig. 27) in both biomes exhibited similar behaviour, with cyclical oscillations of
higher values during the rainy season and lower values during the dry season. In Caatinga,
the rainy season lasts 3 to 5 months, mainly from January to May, while in Pantanal, the
rainy season generally occurs from October to March (i.e. over 6 months). The interannual
analysis (Fig. 28e and Fig. 29¢) shows a greater discrepancy between the ET values observed
for the biomes, where Caatinga exhibits higher variability with abrupt oscillations, while the
Pantanal shows a more stable behaviour, with variation close to a linear pattern.

These cyclical patterns reflect the climate of the biomes, a factor indicated by the
significant correlation between ET and precipitation in the biomes (Caatinga, with r = 0.73
and Pantanal, with r = 0.78). In Caatinga, where predominates the semi-arid climate marked
by low annual precipitation, the lowest ET values were observed during the dry season (for
Full biome extent the ET= 13.42 mm/month in Nov/2015 and ET=483.41 mm/year in 2012)
making water availability a limiting factor for ET in this biome (Menezes et al., 2012;
Alvares et al., 2013; Pinheiro et al., 2013; Andrade et al., 2024). An example of this was the
sharp reduction in ET observed during the period 2012-2015 that can be attributed to the
severe drought that decreased water availability and limited ET (Silva et al., 2024).

In contrast, Pantanal exhibits well-defined dry and rainy seasons, with flooding
cycles that contribute to increased evaporation (Ribas and Schoereder, 2007). Other factors
influencing ET variability in biomes include latitudinal position, which affects radiation
availability and air temperature, with higher-latitude regions exhibiting well-defined intra-
annual periods (Andrade et al., 2024; Patriota et al., 2024).

When analysing the ET patterns in the main land uses and land covers of the biomes,
greater variations and higher ET values can be observed in vegetated regions (Fig. 26, Fig.
27, Fig. 28 and Fig. 29). In Caatinga, the average values of ET for the whole period were
81.91 mm/month for vegetated areas, 56.64 mm/month for agricultural areas, 44.88
mm/month for urban areas, and 36.55 mm/month for non-vegetated areas 36.55 mm/month.
Additionally, the ET values in vegetated regions, which comprise the majority of the
Caatinga biome, show rapid responses to precipitation variability, reflecting the behaviour
of vegetation predominantly composed of shrubs and small trees. The Caatinga vegetation

1s mostly composed of plant species that present structural and physiological adaptations to
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the climate type (i.e. spines, leaf shedding during the dry season, water storage in roots and
stems, stomatal closure during the hottest hours) (Palécio et al., 2016; Queiroz et al., 2017;
Miranda et al., 2020; Bezerra et al., 2023). This allows for differentiation of the behaviour
in the ET rates as vegetation changes between dry and rainy periods in response to rainfall
events. Besides precipitation, a combination of high atmospheric temperatures, wind speeds,
and radiation, along with low atmospheric water content, drives ET dynamics in the
Brazilian Northeast (Andrade et al., 2024).

In Pantanal, the average ET values for vegetated regions (i.e. 87.21 mm/month) were
over 30% higher than in agricultural areas (i.e. 75.12 mm/month, 86.15% of the ET in
vegetated regions) and 48% higher than in urban (i.e. 32.55 mm/month, 37.32% of the ET
in vegetated regions) and non-vegetated regions (i.e. 51.74 mm/month, 48.26% of the ET in
vegetated regions). However, the variations of ET in vegetation areas presented fewer
fluctuations, reflecting the vegetative behaviour of the region. The natural vegetation of the
region is mostly composed of seasonal floodplains that drive its ecological complexity in
vegetation patterns and contribute to a unique landscape with a diverse composition of
savanna vegetation, aquatic plants, and floodplain forests (Evans et al., 2014; Pereira et al.,
2021; Caballero et al., 2025), suggesting that water availability is not a limiting factor for
vegetative development and ET in the region. Fleischmann et al. (2023) observed that
tropical wetlands (e.g. Pantanal) and floodable savannas generally exhibit ET rates similar
to those of forests during floods, but the similarity decreases during the dry season. They
also concluded that river flood propagation and net radiation (Rn) drive ET dynamics in
these highly inundated areas. Furthermore, Caballero et al. (2025) concluded that there is
multidecadal variability in climate and extent of wetland areas, observing that potential
evapotranspiration shows a negative correlation with wetland extent, suggesting that as the
potential for water loss through evaporation and transpiration increases, the extent of the

wetland decreases.

92



- 0
€ ) : - 200 5
5 a)Agricultural and Pasture 7 b)Vdgetafio, =
£ Jr=065 r i g
£ | i =
£ | 400 E
& =
- - 600
0 T T T T T T T T
5 2005 2010 2015 2020 2005 2010 2015 2020
300 . T ‘ YT rT v Y 1 ] wr T °
250 1 ' ‘
s —
= 3 - 200 5
S 200 1 c)Non vegetated b 1]
£ r=0.69 r=071 g
E 150 4 =
E L - 400 £
£ 100 - - E
5 o
50 1 - - 600
0 T T T T T T T T
300 - 2005 2010 2015 2020 0 2005 2010 2015 2020
i | \ W L Years
250 - - ' |
= - - Agricultural and pasture
- £ .
E 200 A e)Full biome extent 200 = — Vegetation
E yey Jr= .73 g = Non vegetated
E | 400 € —— Urban
= 100 4 £ === Full biome extent
1] e e Precipitation
50 1 L 600
0 T T T T
2005 2010 2015 2020

Years

Figure 26 - Monthly mean variability of ET and precipitation over 20 years (2003—2020)
for each land use: (a) agriculture and pasture, (b) vegetation, (c) non-vegetated, (d) urban,
and (e) all land uses within the Caatinga biome. r denotes the correlation between ET and
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Figure 27 - Monthly mean variability of ET and precipitation over 20 years (2003—2020)

for each land use: (a) agriculture and pasture, (b) vegetation, (c) non-vegetated, (d) urban,

and (e) all land uses within the Pantanal biome. r denotes the correlation between ET and
precipitation.
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Figure 29 - Annual mean variability of ET and precipitation over 20 years (2003—-2020) for
each land use: (a) agriculture and pasture, (b) vegetation, (¢) non-vegetated, (d) urban, and
(e) all land uses within the Pantanal biome. r denotes the correlation between ET and
precipitation.
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The spatial variability patterns of ET in the dry, normal, and wet periods, correlated
to rainfall variability, can be observed in Figs. 30 31. For Caatinga, the lower ET values (0—
500 mm/year) were observed in the central region, while the higher values (ET > 1000
mm/year) were noticed in the northern (coastal) portion in a year without rainfall anomalies
(Fig. 30cd). In the dry year (Fig. 30ab), the lower values of ET (i.e. <500 mm/year) in the
central region were extended to almost the entire area of the biome. For the wet year, these
annual values of ET lower than 500 mm were concentrated in a small portion of the central
region (Fig. 30ef), a behaviour that clearly follows the rainfall dynamics.

In Pantanal, the ET variability partially follows the rainfall dynamics. In the analysed
year without anomalies, the lowest ET values (0-500 mm/year) were concentrated in a small
portion in the central area, with higher values in the north (ET > 1000 mm/year) (Fig. 31cd).
In the dry year, the lowest ET values are distributed across almost the entire region (Fig.
31ab), while in the wet year, despite higher rainfall concentrations throughout the region,
the lowest ET values occur in most of the southern portion (Fig. 31ef), contradicting the
rainfall pattern of that year, which shows higher concentrations in the southern portion

compared to the year without anomalies.
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Figure 31 - Spatial variability of annual ET and precipitation in the Pantanal: 2012, a dry
year (a) and (b); 2017, a year with normal rainfall (c¢) and (d); and 2004, a wet year (e) and
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5.3.3 Spatial variability of ET in response to deforestation and forest fires

The variability of the ET values before and after the land use and land cover change
events shows the impact of burns in the decrease of the water movement into the atmosphere,
with a decrease in the Caatinga natural vegetation from 2.7 mm/day to 1.27 mm/day (Fig.
32a-f), which represents a reduction of over 50% on the analysed day and over 20% in the
monthly average (Sep/2014 mean ET = 1.90 mm/day and Sep/2015 mean ET = 1.46
mm/day).

A more pronounced decrease in the ET values was observed in Pantanal, with
reductions of over 90% in the monthly average, as indicated by the comparison of the
September 2019 mean ET (1.36 mm/day) and the September 2020 mean ET (0.11 mm/day).
A similar pattern of ET decrease was identified in areas where native vegetation was
deforested and converted to agricultural use (Fig. 32g—k and Fig. 33g—k), with monthly mean
values in Caatinga decreasing by more than 50% (Apr/2021 mean ET = 4.76 mm/day and
Jul/2021 mean ET = 2.12 mm/day) and in Pantanal by more than 80% (May/2021 mean ET
= 1.33 mm/day and Sep/2021 mean ET = 0.18 mm/day). For these cases, in addition to
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deforestation events, ET may also have been influenced by monthly precipitation, but the
months were defined according to the alerts indicated by MapBiomas.

Land use changes caused by agricultural expansion, urban expansion, and fire events
have been investigated in other studies in Brazil, identifying substantial reductions in ET
rates (Laipelt et al., 2021; Carrillo-Quinete et al., 2022; Andrade et al., 2024). In Caatinga,
water scarcity significantly limits ET in this biome, contributing to the intensification of
drought events and vegetation loss. Thus, the combined effects of climatic variability and
environmental degradation from deforestation, agricultural expansion, and fire occurrence
lead to a significant reduction in ET (Oliveira et al., 2012; Andrade et al., 2024). In the
Pantanal, a critical scenario exists, with a 30% loss of its wetlands primarily due to the
expansion of pasture and agriculture. Moreover, the Pantanal has faced increasing challenges
from recurrent droughts and intensified wildfires, degradations that affect hydrological
regulation, aquifer recharge, and thermal control via evapotranspiration, thereby increasing
the ecological vulnerability of the biome (Fleischmann, 2023; Caballero et al., 2025).
Furthermore, the impacts of global climate change exacerbate the effects of land use changes
(Andrade et al., 2024).

This evidence suggests that ET plays a crucial role in regulating the hydrological
cycle. This reduction of ET, resulting from the replacement of native vegetation with
impermeable surfaces or areas of low vegetation cover, compromises the climatic and hydric
resilience of the affected regions (Patriota et al., 2024). Furthermore, these scenarios
demonstrate that ESTIMET is a valuable tool for quantifying the hydrological impacts of
deforestation and agricultural land expansion, as well as for monitoring the impacts of fires

on ET in the Brazilian biomes.
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Figure 32 - Daily variability of ET in the Caatinga during the month preceding (a—c) and
during (d—f) wildfire events, and before (g—i) and after (j—k) deforestation events,
respectively.
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Figure 33 - Daily variability of ET in the Pantanal during the month preceding (a—c) and

during (d—f) wildfire events, and before (g—i) and after (j—k) deforestation events,
respectively. The red dashed line indicates the day corresponding to the images shown on

the left.
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6 CONCLUSIONS AND RECOMMENDATIONS

ESTIMET provides a unique remote sensing-based ET assessment tool that operates
at a refined spatiotemporal scale and with low latency under any sky conditions. Such an
enhanced spatiotemporal resolution of this model may be suitable to upscale the daily flux
tower measurements, opening opportunities for a better understanding of this component of
the hydrological cycle, especially in data-scarce areas frequently overcast by substantial
cloud cover but playing a fundamental role in the broader analyses, in the context of water-
energy balance, agricultural practices (e.g. irrigation), and long-term climate change impact
monitoring.

The assessment of this model, developed for Brazil, demonstrated that the underlying
hypotheses to refine the MODIS evaluation are relevant and do not significantly degrade ET
evaluation, even allowing better assessment when compared to EC daily ET, especially for
the Caatinga, Cerrado, and Pantanal Biomes. Two potential issues should be considered
when using eddy covariance observations of ET as ground-truth data. Firstly, eddy
covariance data are affected by uncertainties due to the energy balance closure problem.
Secondly, discrepancies in scale and classification errors can cause a mismatch in vegetation
between the pixels and the site, complicating the comparisons. Nevertheless, the daily ET
simulated from ESTIMET usually present good representativeness of what is measured by
the EC towers and seems to be efficient for continuous assessment with a short latency (1
month at maximum), not only at the daily scale, by catching biophysical reactivity to
meteorological or ecological processes at a detailed scale, but also for applications at coarser
scales (e.g. 8-days, similar to MOD16A2GF and PML V2). The regional scale assessment
also demonstrated that ESTIMET was able to better capture the annual ET calculated by the
water balance approach in the three major Brazilian biomes (Amazon, Atlantic Forest, and
Cerrado) when compared to the analysed global products MOD16A2GF, PML V2, and
GLEAM 4.1a. Overall, this ESTIMET outperformance results from the higher resolution
and/or improved input datasets, as the model's modifications were made to incorporate this
adapted information. Although developed for Brazil, the model can be applied to other
tropical regions since a land cover map with 30-m spatial resolution or higher is available
and some empirical parameters (e.g. surface albedo) are recalibrated.

This model is sensitive to certain underlying hypotheses regarding land
characteristics (e.g. albedo and EVI12), which can be altered from both spatial and temporal

perspectives in anthropised landscapes, such as agricultural land and semi-urban zones. This
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can be an issue, especially for local applications of ESTIMET. Nevertheless, this model is
expected to be further adaptable to such local conditions. An illustration of this adaptability
is provided within the framework of this study. The lack of available data for some biomes
(Pampa and Atlantic Forest) has been fixed by assuming biophysical similarities (regarding
albedo) with other tropical biomes, before further adjustment, if relevant.

From a practical application, this study also demonstrated the possibilities of
ESTIMET to characterise the spatial-temporal variability of ET over the past 20 years,
considering intra- and interannual scales. This study assessed the correlation between ET
and another meteorological parameter (precipitation) and the responses to land use and land
cover changes. This highlighted the fact that contrasting Brazilian biomes (e.g. Pantanal and
Caatinga) present ET variation cycles correlated with precipitation variability, with an
overall decreasing trend in ET across different land uses in both biomes. This decrease in
ET was also identified at a more detailed temporal scale (daily) in areas where land use
changes occurred due to burn and deforestation events. Finally, further studies could
improve ESTIMET estimations through bias corrections of the daily data, based on machine
learning techniques and meteorological reanalysis data (i.e. not relying on observed data).
In addition, new analyses can be carried out through correlations of ET with other climatic
parameters (e.g. land surface temperature, wind speed, soil moisture) and in other Brazilian

biomes.
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