UNIVERSIDADE FEDERAL DA PARAÍBA-UFPB CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE FITOTECNIA E CIENCIAS AMBIENTAIS CURSO: AGRONOMIA

MANEJO DA ADUBAÇÃO ORGÂNICA DA CANA DE AÇÚCAR (Saccarum officinarum L.).

ANTONIO HONÓRIO DO NASCIMENTO FILHO

AREIA- PB FEVEREIRO DE 2015

ANTONIO HONÓRIO DO NASCIMENTO FILHO

MANEJO DA ADUBAÇÃO ORGÂNICA DA CANA-DE AÇÚCAR (Saccarum officinarum L.).

Trabalho apresentado ao curso de Agronomia do Centro de Ciências Agrárias da Universidade Federal da Paraíba (UFPB) Campus II, como requisito básico para a obtenção do título de agrônomo.

Área de concentração: Grandes Culturas Linha de pesquisa: Cana de açúcar

Orientador: Prof. Dr. Severino Pereira Júnior

Areia - PB

Fevereiro de 2015

DEDICATÓRIA

Dedico esta monografia a minha família, que sem eles eu jamais existia, não seria o que sou hoje, a formação que tenho graças a estas pessoas amorosas que me deram apoio, sustento, estrutura, mais do que isso, sempre me ensinaram a fazer e nunca deixaram de me incentivar nos meus sonhos. A eles meu pai Antonio Honório do Nascimento, minha mãe Maria José Lacerda e os meus irmãos Aguinaldo e Edvânia, o meu muito obrigado a todos eles.

AGRADECIMENTOS

Agradecer: mostrar, demonstrar gratidão segundo o dicionário. Gratidão. Tenho muita, a muitas pessoas, em muitos momentos de minha vida. Ao deixar esses textos de agradecimentos as "minhas pessoas" me deparo com certo medo... Medo de esquecer alguém importante, em algum momento da vida...

Agradeço a minha família, especialmente aos meus pais, Antônio e Maria, que sempre foram exemplos para mim, me incentivaram a estudar e a dar valor ao conhecimento e à honestidade. Por meio do seu esforço e sacrifício, fui privilegiado por ter as oportunidades que precisei e por ser orientado a aproveitálas.

Quero dedicar este trabalho e minha especial gratidão à minha mãe, que estar sempre presente nos meus momentos de extrema alegria, como também nos momentos áridos de minha vida. Ao meu pai com seu exemplo de força de vontade e incentivo. Estendo o agradecimento a todos os meus familiares mais próximos, particularmente à minha irmã Edvânia e meu irmão Aguinaldo. Aos meus cunhados (a)s Fernando e Maria Mercês. Aos meus sobrinhos: Ana Camile, Felipe e também a pequena Ana Alice que Deus os bençoe.

Devo, também, um agradecimento especial aos professores componentes da mesa examinadora, que além de orientadores foram amigos, que tiveram a paciência de me ajudar nesta labuta. São eles: Severino Júnior, Francisco Júnior e João Batista, além dos amigos Djail Santos, Chico Ninha que não estão na banca, porém me acompanhou durante a maior parte do curso de Agronomia, onde tive oportunidades de aprendizado. Valeram todos estes anos de nesta Universidade.

Envio meus sinceros agradecimentos aos colegas e vizinhos representados por Rafael, Ismael, Daniel, Vinícius, David, Carlos, Aurélio, Guilherme, João, Josevan, Wiliam, Dayseana, Regina, Wilca, Rafael Medeiros, Aurélio, Wagner Leandro, Igor Lima, Lucas Vilar, Zé Marcos, Marcos Soares, Otalício, Matheus Cazimiro, Matheus Guimarães, aos gêmeos (Levi e Lucas), aos amigos que partiram antes de terminar os seus respectivos cursos Marcos Antonio (Vaqueiro da Med. Veterinária) e José Vitor (Agronomia) e tantos outros que pela minha vida pessoal e acadêmica aqui passaram.

Agradeço ao meu orientador, Severino pereira, que apesar de todo o conhecimento que detém, mostrou-se uma pessoa extremamente simples e paciente, disposto a dedicar uma parte significativa de seu tempo para auxiliar na elaboração deste modesto trabalho acadêmico.

Agradeço a todos os colegas que me ajudaram de maneira direta e indireta, mas em especial à Francisco Júnior (examinador), João Batista (examinador), Marciano e Jádison Carlos que me ajudaram em várias etapas tanto em campo como em pesquisa, facilitaram muito as coisas para mim quando precisei de ajuda. Também devo um agradecimento especial aos muitos amigos que fiz com quem espero manter contato pelo resto da vida.

Durante os anos em que estudei no Centro de Ciências Agrárias, aprendi a conviver com os mais diferentes tipos de pessoas e também a entender a forma como elas pensam. Este foi, sem dúvida, o maior conhecimento adquirido no tempo em que permaneci na graduação. Agradeço, portanto, às pessoas que me conviveram comigo, e estas eu com certeza as levarei na memória pelo resto da minha vida.

Por fim, a Deus, por proporcionar essas pessoas singulares na minha vida. Por me dar forças e altivez para percorrer nesta caminhada. Sem Ele nada disso seria possível. Obrigado!

LISTA DE GRÁFICOS

GRÁFICO 1. Representação da pluviosidade no município em que se insere o experimento
GRÁFICO 2. tratamentos sobre (diâmetro) de diferentes tipos de adubação35
GRÁFICO 3. Representação do crescimento (altura) das plantas sobre os três tratamentos em questão
GRÁFICO 4. Representação do crescimento das plantas sobre os três tratamentos em questão
GRÁFICO 5. Representação do crescimento das plantas sobre o tempo do experimento
GRÁFICO 6. Crescimento de diâmetro das plantas sobre o tempo do experimento

LISTA DE TABELA

Tabela 1. Precipitação ocorrida no município de Areia durante o experimento (EMATER)
Tabela 2. Pesagem, com média de 3 colmos de cana35
Tabela 3. Representação da altura sobre diferentes tipos de adubação36
LISTA DE FIGURAS
Figura 1. Mapa da cidade de areia- PB e cidades ciclo vizinhas (fonte: IBGE, 2014)24
Figura 2 . Mapa do território do Agreste Paraibano (Fonte: IBGE, 2014)
Figura 3. Área do experimento após ter sido feito a capina26
Figura 4 . Área do experimento, abertura dos sulcos
Figura 5 . Área do experimento, sementes colocadas aos sulcos)
Figura 6: Área do experimento, aplicação de adubo orgânico27
Figura 7 . Área do experimento, plantas no 3º mês de implantação
Figura 8 . Experimento no 5º mês, plantas obtêm crescimento após chuvas
Figura 9: Experimento no 8º mês, plantas obtêm crescimento após chuvas
Figura 10: Pesagem da cana de açúcar após o 12º mês de implantação

RESUMO

NASCIMENTO FILHO, A. H. MANEJO DA ADUBAÇÃO ORGÂNICA DA CANA DE AÇÚCAR (Saccarum officinarum L.)

A cana de açúcar no Brasil foi explorada por diversos séculos pelos grandes senhores de engenhos e latifundiários, os predadores e as plantas daninhas eram controlados por uso excessivo pulverizações químicas, desta forma poluindo os solos, exumando a macro e microfauna do ambiente, poluindo os rios e córregos locais. Este trabalho tem como objetivo proporcionar um cultivo orgânico de cana de açúcar (Saccarum officinarum L.), localizado na comunidade do Sitio Granja Santo Antônio à 6 Km da cidade de Areia, Paraíba na região do Brejo paraibano, neste sítio foi conduzido um plantio experimental de cana de açúcar como um sistema agroecológico. Foi realizado uma avaliação entre a adubação de esterco bovino e o composto orgânico com a combinação de (cinza, esterco bovino e restos de vegetal); ambas as adubações foram adquiridas na região, além do uso dos métodos alternativos de controles de insetos predadores com sistema agroecológico e identificação de plantas daninhas. O delineamento a ser utilizado foi em blocos casualizados com três repetições. A altura de plantas foi avaliada mensalmente, medição esta foi realizada com o auxílio de fita métrica para medir o comprimento, e um paquímetro para o diâmetro de colmos. A produtividade foi analisada de acordo com a quantidade de cana produzida em kg por há-1, uma vez que as amostras de colmos serão pesadas.

O projeto teve uma duração de um ano. Também foi avaliada à pluviosidade ao período chuvoso e no período de estiagem. Por fim este projeto teve como intuito principal mostrar que é possível produzir a cana de açúcar sem uso de fertilizantes químicos e fármacos, dessa forma preservando a fauna existente no solo do plantio, preservando as águas locais, sendo também viável economicamente para a agricultura familiar, enfim fazendo uma produção sustentável.

Palavras-chave: cana de açúcar; neossolos, adubo orgânico, sustentabilidade;

ABSTRACT

NASCIMENTO FILHO, A. H. MANAGEMENT OF ORGANIC SUGAR CANE MANURE (Saccarum officinarum L.)

Sugar cane in Brazil has been exploited for several centuries by the great masters of mills and landowners, predators and weeds were controlled by using excessive chemical sprays, thus polluting the soil, exhuming the macro and environmental microfauna, polluting rivers and local streams. This work aims to provide an organic cultivation of sugarcane (Saccarum officinarum L.), located in the community of Sitio Santo Antonio Granja to 6 km of the city of Areia, Paraíba in Paraíba Brejo region, this site an experimental planting was conducted of sugarcane as an agro-ecological system. an evaluation of the fertilization of manure and organic compound with the combination of (gray, manure and plant waste) was carried out; both fertilizations were acquired in the region, and the use of alternative methods of insect control predators agroecological system and identification of weeds. The design to be used will be a randomized block design with three replications. Plant height was measured every month, this measurement was performed with the aid tape measure to measure the length, and a caliper for the stalk diameter. The productivity will be analyzed according to the amount of sugar produced per kg ha-1, since the stalk samples are weighed.

The project had a duration of one year. It also evaluated the rainfall to the rainy season and dry season. Finally this project had as its main aim to show that it is possible to produce sugar cane without the use of chemical fertilizers and drugs, thereby preserving the existing fauna in the planting soil, preserving the local waters, and also economically viable for family farms, finally making a sustainable production.

Keywords: sugar cane; neossolos, organic fertilizer, sustainability

1. INTRODUÇÃO

A cana-de-açúcar (*Saccharum spp*) é uma das culturas mais importantes do país é plantada no Brasil há quase 500 anos e hoje o país se destaca como um dos maiores polos sucroalcooleiro. A planta é totalmente adaptada ás regiões tropicais, cujo cultivo se estende, atualmente, aos dois hemisférios. De acordo com a história, a cana de açúcar é uma das culturas de maior importância do Brasil. (ALMEIDA JUNIOR, 2010)

Segundo (Souza et al., 2008), as duas espécies de cana-de-açúcar foram descritas em 1753, por Lineu: *Saccharum officinarum* e *Sacharum spicatum* que, atualmente, foram classificadas como *S. officinarum*, *S. spontaneum*, *S. sinensis*, *S. barberi* e *S. robustum*, pertencentes à família *Poacea*. (ARANHA E YAN, 1987).

De acordo com (JAMES, 2004). A Nova Guiné é considerada o centro de origem da cultura haja vista foram encontrados registros com mais de 8000 anos. Desde então, a cana-de-açúcar é uma das culturas de metabolismo C4 mais importante do mundo para a produção de alimentos, fornecendo cerca de 75% da colheita mundial de açúcar para o consumo humano.

Para (ALMEIDA JUNIOR, 2010) esta espécie apresenta diversas variedades, nas quais cada uma existe pelo menos uma utilidade, desde o uso desta como planta forrageira até o uso atual como Biocombustíveis, para energia renovável. Do seu processo de industrialização obtêm-se como produtos o açúcar em diversos formas e tipos, o álcool (anidro e hidratado), a cachaça, o vinhoto, a rapadura, e o bagaço, dentre outros. De acordo com (MAPA, 2014) O Brasil não importa açúcar e etanol e é responsável por 61,8% das exportações de açúcar de cana no mundo.

Segundo (VITTI et al, 2005) o Brasil tem por volta de 5,421 milhões de Hectares deste cultivo.

A produção de açúcar deverá se estabilizar a 23,9 milhões de toneladas, enquanto a produção do álcool tanto o hidratado como o anidrido totalizando

15,14 bilhões de litros, principalmente com o aumento expansivo de carros com motores flex fuel (combustível), como consequência da variação de preços álcool/ gasolina.

A área onde foi estabelecido o canavial deverá apresentar topografia plana, a ligeiramente inclinada. Caso seja acidentada, lançar mão de práticas conservacionistas de solo. (ALMEIDA JUNIOR, 2010).

Assim, visou-se com este trabalho, estudar a produtividade agrícola, a qualidade dos solos, da matéria-prima e o rendimento da cana-de-açúcar, cultivada em sistema de adubação orgânica e colhida no intervalo de tempo de 12 meses enfrentando períodos secam e chuvoso. Devido à necessidade de manejos adequados e geração de dados de pesquisa característicos sobre a otimização da produção de cana-de-açúcar nesta região, evita-se deste modo o esgotamento dos solos, contribuindo para um melhor programa do uso da terra, e sensibilizando o pequeno agricultor a respeito dos efeitos econômicos, ambientais e sociais, o que justifica a concretização deste trabalho.

2 OBJETIVOS

2.1 Objetivo geral:

Produzir, avaliar e monitorar a cana de açúcar (Saccarum officinarum L.)
 de maneira agroecológica, e avaliar a sua produção.

2.2 Objetivo específicos

- Produção de cana de açúcar três variedades de tratamento para a diferenciação
- Avaliar se o solo da antiga Usina Santa Maria, ainda se encontra fertil, depois de tanto tempo de exploração da antiga usina falida.
- Atuar em campo, analisando todo o experimento, identificando a deficiência do solo, através das plantas daninhas.

3. REVISÃO BIBLIOGRÁFICA

3.1 A Cana- de- açúcar

De acordo com (VITTI, et al 2008) a cultura da cana de açúcar ocupa no Brasil 5,421 hectares, o crescimento é conseqüente de boa rentabilidade no setor. Atualmente, a maioria dos técnicos aceita a classificação, que seguem respectivamente em: Divisão: *Embryophyta siphonogama;* Subdivisão: *Angiospermae;* Classe: *Monocotyledoneae,* Ordem: *Glumiflorae,* Família: Poaceae, Tribo: *Andropogoneae;* Subtribo: *Sacchareae,* Gênero: *Saccharu,* e a Espécie que falada foi a *Saccharum officinarum.*

A Cana-de-açúcar (*Saccharum* spp) é uma cultura de grande importância econômica, caracterizada por apresentar o ciclo perene, da família, tem como adaptação a regiões de climas tropicais e subtropicais, e provavelmente tenha tido origem do sudeste da Ásia na região de Nova Guiné e Indonésia (CASCUDO, 1971;DANIELS & ROACH, 1987; ANDRADE, 2004; GOMES, 2006).

A espécie S. officinarum (L.), é largamente cultivada, e constitui-se a qualidade dessa espécie que serve de apoio para os programas de melhoramento, desta forma é feita a repetições de seleção, com o objetivo de alcançar características agronômicas desejadas pelos produtores, bem como: colmo suculento e maior teor de sacarose, doçura, boa pureza de caldo e teor de fibra adequado para moagem (CASTRO & KLUGER, 2001).

O procedimento produtivo da cana-de-açúcar distingue três finalidades: alta produção de biomassa por área, alto valor de açúcar dos colmos e maior produtividade e qualidade da matéria-prima em menor tempo possível obtida no sistema produtivo (CÂMARA, 1993).

De acordo com (PESSOA, 2009) A cana-de-açúcar encontra condições melhores quando ocorre um período quente e úmido alternados, com bastante radiação solar durante a etapa de desenvolvimento, seguida de um período seco durante as etapas de maturidade e colheita.

No Brasil, que contém as mais variadas condições climáticas, é o único país com duas épocas de colheita anuais. A cultura compõe o mais remoto setor agroindustrial do Brasil. Pelo meio da cana o Brasil gera açúcar e álcool para o

mercado interno e externo. Colabora ainda na alimentação animal, na produção de papel, plásticos, produtos químicos, e bebidas como cachaça, rum e vodka. Além disso, da cana de açúcar aproveita-se tudo, por exemplo: méis, bagaço, e resíduos de colheita (UNIÃO DA AGROINDÚSTRIA CANAVIEIRA DE SÃO PAULO, 2006)

(MATSUOKA et al. 2002) afirmam que a produção de cana orgânica é viável, pois conseguem-se produtividades agrícolas similares às obtidas com adubação mineral. Entre os custos de produção, destacam-se o esterco de curral e a compostagem sendo os mesmos usados com frequência por pequenos agricultores e aplicados de modo especial no sulco de plantio.

Para (Andrade, 1998) afirma que o uso de estercos poderá até mesmo substituir a adubação química de plantio. O período adequado para realizar a colheita da cana é de grande importância, pois se espera que o potencial produtivo seja mais bem explorado, contudo, com o cultivo orgânico da cultura sabe-se pouco quanto aos resultados dos fertilizantes orgânicos no desempenho das cultivares no transcorrer do período de colheita

3.2 Adubação orgânica da cana de açúcar

De acordo com a (EMBRABA, 2007) A adição de matéria orgânica melhora, consideravelmente, as características físicas e biológicas do solo. Os maiores benefícios constatados são: redução do processo erosivo; maior disponibilidade de nutrientes às plantas; maior retenção de água; menor diferença de temperatura do solo durante o dia e a noite; estimulação da atividade biológica; aumento da taxa de infiltração; maior agregação de partículas do solo.

Para a (EMBRABA, 2007) A principal vantagem do adubo mineral é a rápida resposta das plantas, visto que apresentam desenvolvimento acelerado em razão de suas necessidades imediatas serem atendidas. A utilização do adubo orgânico em relação à aplicação de fertilizantes minerais é significativa, principalmente pela liberação gradual.

Se os nutrientes forem imediatamente disponibilizados no solo, como ocorre com os fertilizantes minerais, podem ser perdidos por volatilização (em especial o N), fixação (P) ou lixiviação (principalmente o K) Com o aumento dos custos com adubação mineral, os produtores passaram a ter uma nova visão sobre a adubação orgânica, dando importância à utilização deste material como agente modificador das condições físicas, químicas e biológicas do solo, tornando o sistema mais sustentável. (ALMEIDA JUNIOR, 2010).

De acordo com (ALMEIDA JUNIOR, 2010), a matéria orgânica adicionada ao solo na forma de adubos orgânicos, de acordo com o grau de decomposição dos resíduos, pode ter efeito imediato no solo, ou efeito residual, por um processo mais lento de decomposição. No entanto se faz necessário o estudo da utilização de esterco bovino e compostos orgânicos na dinâmica de mineralização dos nutrientes com o intuito de aumentar a atividade microbiana no solo para uma melhor disponibilidade de nutrientes para a planta, isso quando utilizado em quantidades adequadas.

Segundo (SOUZA et al. 2006) na atualidade, grande parte das unidades produtoras de cana-de-açúcar ainda utiliza a adubação mineral, como fonte nutricional. Contudo, já é evidente a preocupação em conseguir um novo

manejo, que beneficie as propriedades químicas e em especial as partes físicas e biológicas dos solos com o aumento da matéria orgânica e consequentemente maior atividade biológica aperfeiçoando desta maneira uma melhor assimilação de elementos minerais pela cultivar por um vasto período de tempo. Algumas unidades já utilizam o princípio da adubação orgânica ou quase completamente orgânica.

(MATSUOKA et al. 2002) consideram que a produção de canavieira de maneira orgânica é viável, pois conseguem-se produtividades agrícolas semelhantes às produtividades obtidas com a tradicional adubação mineral. Sem falar nos custos de produção, destacam-se o esterco de curral e a compostagem sendo os mesmos utilizados frequentemente por pequenos produtores e aplicados especialmente no sulco de plantio.

Segundo a afirmação de (ANDRADE, 1998) o uso de estercos poderá até mesmo suprir a adubação química de plantio. Com o cultivo orgânico da cultura sabe-se pouco quanto aos resultados dos fertilizantes orgânicos no desempenho das cultivares no transcorrer do período de colheita.

De acordo com (SANTOS & MONTEIRO, 2004) para diminuir o risco de contaminação dos alimentos, a técnica recomendada é a compostagem, um processo biológico de decomposição de matéria orgânica na qual podem estar contido restos de origem animal ou vegetal. O produto obtido ao final do processo de compostagem pode ser considerado como um elemento enriquecedor do solo, ou seja, ele poderá ser aplicado para melhorar a suas características, sem que haja uma contaminação do meio ambiente. A faixa de temperatura considerada ótima para a compostagem vai de 50°C a 70°C, sendo 60°C a mais indicada, durante 60 a 90 dias.13

3.3 Aspectos econômicos da cultura da cana de açúcar

De acordo com (DIAS NETO, 2000) O complexo sucroalcooleiro ocupa um lugar de destaque no agronegócio do brasil e, assim produzindo açúcar e álcool combustível, além de vários outros produtos de grande destaque.

Para (DIAS NETO, 2000), aborda-se de um setor de acordo com a história marcado pela influência governamental direta, contendo o próprio planejamento da produção. O cultivo de cana de açúcar era esperado até a década de 70, em sua maior parte, à produção de açúcar. A partir daí alavancadas pela criação do PROÁLCOOL e pelos grandes aumentos nos preços no setor internacional do petróleo entre 1973 e 1979, foram registradas taxas altas de aumento da participação do álcool na produção das usinas.

Para (VEIGA et al., 2006) entre os anos 80 e 90, a produção de álcool etílico chegou a superar a de açúcar, por causa da grande ampliação da demanda com o aumento do uso de veículos abastecidos a álcool. Nos anos de 1983 a 1989, as percentagens de vendas de veículos a álcool foram maiores que as de veículos a gasolina, o que excitou diretamente no consumo de álcool hidratado.

De acordo com a (CONAB, 2012) A produção total de açúcar está avaliada em números de 38,85 milhões de toneladas, que isso equivale a 777,0 milhões de sacas de 50 kg. A produção de Etanol precisará de uma demanda de cana esmagada de aproximadamente 302,2 milhões de toneladas para a produção de 23,96 bilhões de litros de etanol, 4,81% maior que a produção da safra 2011/12. Desta totalidade, 9,74 bilhões de litros serão de etanol anidro e 14,21 bilhões de litros serão de etanol hidratado. Por estes números, o etanol anidro deverá ter uma um aumento de 7,44%, quando comparados ás produções de anos anteriores.

3.4 Tipos de plantio da cana de açúcar

Segundo a (Embrapa, 2012), para que seja feita a plantação de um plantio de cana, é preciso fazer, inicialmente, o plano da área, fazendo um levantamento topográfico. Nos ambientes aonde o plantio é feito um trabalho de engenharia, conhecido como sistematização do terreno, no qual subdivide-se a área em talhões e aloca-se os carreadores principais e secundários.

Atualmente, tenta-se obter talhões planos mantendo linhas de cana com ampla extensão para evitar manobras das máquinas, desta forma, melhorando operações mecânicas. Os princípios para a conservação do solo e a desempenho de terraços devem orientar toda uma estrutura para planejar o sistema do terreno. Antes do plantio, é imprescindível, planejar o plantio das mudas ou buscar no mercado um fornecedor adequado. O plantio da cana pode ser efetuado manualmente ou mecanicamente (EMBRAPA, 2012)

.

Segundo (RIPOLI, 2004), há três tipos de sistemas de plantio para uso de ação no Brasil: o manual, o semi mecanizado e o mecanizado. O primeiro tem um maior evento em regiões com relevos acima de 50 % do Nordeste brasileiro e é marcado pelo fato de todas as operações de plantio serem manuais.

No segundo sistema, os sulcos são efetuados mecanicamente, a deposição das mudas é manual, lançadas de caminhões de carga e a cobertura (e adubação na superfície) também acontece mecanicamente. No sistema mecanizado, realizam -se todas as operações citadas anteriormente (sulcação, deposição de mudas, adubação e cobrimento do sulco), e ainda se realiza a aplicação de agroquímicos direto no solo.

4. MATERIAL E MÉTODOS

4.1 Avaliação Inicial

O experimento foi conduzido em campo no sitio granja Santo Antônio, município de Areia na região do brejo paraibano, encontra-se a 120 Km da capital João Pessoa, apresenta área de neossolo com textura média. O solo indicou os seguintes resultados: pH= 5,79; P= 4,37 mg/dc³; K= 0,06 mg/dc³; Ca= 1,15 cmol/dm³; Mg= 0,70 cmol/dm³; H+Al= 2,06 cmol/dm³; Al trocável= 0,05 cmol/dm³.

No plantio utilizou-se a variedade 45/3 muito utilizada na região do brejo paraibano. Utilizou-se sistema de plantio em sulco com espaçamento de 0,80 m x 0,80 m entre fileiras. A área experimental foi dividida em parcelas de 1,5 x 2,4 m², com área total de 32,4 m². Cada parcela foi composta por três fileiras distanciadas de 0,80 m.

A área útil que foi avaliada consistiu em todas as plantas centrais da respectiva parcela. O delineamento utilizado foi em blocos casualizados com três repetições. A altura de plantas foi realizada mensalmente, com o auxílio de fita métrica para medir o comprimento e um paquímetro para o diâmetro de colmos. A produtividade foi analisada de acordo com a quantidade de cana produzida em kg por há-1, além das características fisiológicas. Foram realizadas análises do teor de umidade do solo, durante o período chuvoso e período seco. O solo foi coletado com o auxílio de um trado, a uma profundidade de 0 a 20 cm.

De acordo com a (Embrapa, 1997) as análises físicas foram realizadas as análises de densidade do solo empregando-se o método do torrão parafinado, densidade de partículas utilizando-se o princípio da água fervente, e estimando a porosidade total. A adubação orgânica consistiu em esterco bovino curtido de curral aplicado de acordo com análise do material e composto orgânico o qual foi preparado com: vegetação nativa seca de plantas encontradas na região, esterco de curral curtido, troncos e ramificações de arvores da região, cinza vegetal. A precipitação pluviométrica foi quantificada a cada evento por meio de um pluviômetro instalado na área experimental e por dados adquiridos na EMATER do município de Areia PB.

4.2 Caracterização da Microrregião

O Município de Areia localizado na microrregião do Brejo e na mesorregião do Agreste Paraibano possui uma população de 24.827 habitantes. O Índice de Desenvolvimento Humano local é de 0,611, o que deixa o município numa situação tida como de médio desenvolvimento humano. Em relação aos demais municípios brasileiros, Areia possui uma situação ruim, ocupando a 4.453ª, em relação ao Estado, o município ocupa uma situação intermediária, ocupando 67ª posição, na frente de 156 municípios.

Este quadro demonstra a situação de pobreza do município ocasionada, principalmente, depois da derrocada dos engenhos e da cultura da cana-deaçúcar. Areia, ainda possui o maior número de engenhos de aguardente e rapadura do estado da Paraíba e durante toda sua existência teve sua economia vinculada a estes produtos, que pelo paladar e sabor, tem colocado o município como forte referência nesta área. Apesar de, por muito tempo os engenhos terem sido o grande fator de desenvolvimento econômico da região, devido à falta de investimentos nesta área e o atraso tecnológico, aliada a queda da cultura canavieira, houve uma vertiginosa queda no setor, ocasionando o fechamento dos engenhos e Usinas, e com isso aumentando o desemprego e os problemas sociais.

4.3 Caracterização da área experimental

O Território da Borborema é banhado pelas bacias hidrográficas dos Rios Mamanguape, Curimataú e Paraíba. Apresenta clima tipo AS' (quente e úmido), com períodos chuvosos concentrados entre os meses de fevereiro-março até agosto, com meses subsequentes notadamente secos.

A vegetação atual é reflexo da degradação ambiental ocorrida em decorrência da implantação dos modelos produtivos dos ciclos econômicos acima mencionados e, portanto, apresenta um déficit de cobertura arbórea. Os solos representativos são os luvissolos, neossolos, regolíticos, argissolos, nitossolos e latossolos. O tipo do solo do experimento em quesão é tipo latossolos

Figura 1. Mapa da cidade de areia- PB e cidades ciclo vizinhas (fonte: IBGE, 2014)

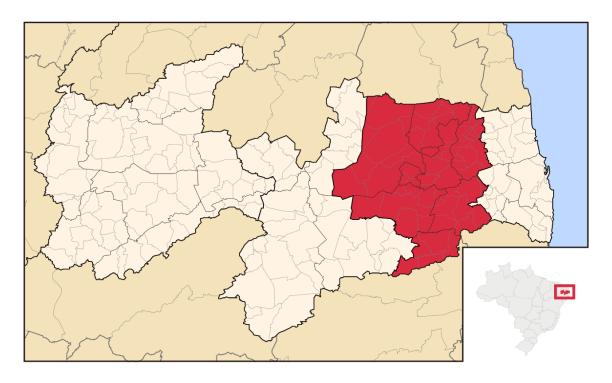


Figura 2. Mapa do território do Agreste Paraibano (Fonte: IBGE, 2014)

4.3.1 Preparo do solo

Atividades: capinar e retirar os materiais indesejáveis da área, medição de parcelas, blocos e colocação de piquetes.

4.3.2 Análise do Solo

O experimento foi conduzido em campo no sitio granja Santo Antonio, município de Areia na região do brejo paraibano em área de neossolo com textura media. O solo indicou os seguintes resultados: pH= 5,79; P= 4,37 mg/dc³; K= 0,06 mg/dc³; Ca= 1,15 cmol/dm³; Mg= 0,70 cmol/dm³; H+Al= 2,06 cmol/dm³; Al trocável= 0,05 cmol/dm³.

Figura 3. Área do experimento após ter sido feito a capina.

Figura 4. Área do experimento, abertura dos sulcos.

4.3.2 Implantação de cultivar especifica da cana-de-açúcar com adubação orgânica

Atividades: abertura de sulcos com deposição de adubo orgânico e distribuição da semente

Figura 5. Área do experimento, sementes colocadas aos sulcos.

Figura 6. Área do experimento, aplicação de adubo orgânico.

Figura 7. Área do experimento, plantas no 3º mês de implantação.

Figura 8. Experimento no 3º mês de plantas sofre a pouca pluviosidade.

Figura 9. Experimento no 5º mês, plantas obtêm crescimento após chuvas.

Figura 10. Experimento no 8º mês, plantas obtêm crescimento após chuvas.

Figura 11. Pesagem da cana de açúcar após o 12º mês de implantação.

4.3.4 Medição de plantas

Atividades: Mediar altura e diâmetro de plantas mensalmente. A altura só foi verificada do 1º (primeiro) mês até o 6º(sexto) de experimento, seguindo a metodologia de (ALMEIDA JÚNIOR, 2010)

4.3.5 Influência da adubação orgânica sob o solo

Atividades: visualizar e analisar as modificações do solo decorrentes da adubação. (gráfico 4; pag. 38)

4.3.6 Uso da variedade da cana -de-açúcar

A variedade utilizada foi a 45/3 muito utilizada na região, onde foi avaliada mensalmente a altura e circunferência dos colmos com uma régua e um escalimetro durante um período equivalente à 12 meses, a pesagem dos colmos foi feita após a colheita da cultivar para diferenciação de peso.

4.3.6 Coleta e análise do solo

Foram realizadas análises do teor de umidade do solo, durante o período chuvoso e período seco. O solo foi coletado com o auxílio de um trado, a uma profundidade de 0 a 20 cm.

Dentre as análises físicas serão realizadas as análises de densidade do solo empregando-se o método do torrão parafinado, densidade de partículas utilizando-se o princípio da água fervente, e estimado a porosidade total (Embrapa, 1997).

Nas análises químicas serão realizadas coletas sendo no início da implantação, em época intermediária e no final do ciclo, antes da colheita.

4.3. 8 Adubação orgânica

A adubação orgânica foi composta por esterco bovino curtido de curral aplicado de acordo com análise de solo e o composto orgânico o qual foi preparado com: vegetação nativa seca de plantas encontradas na região, esterco de curral curtido, troncos e ramificações de arvores da região, cinza vegetal e água em abundância.

Os principais efeitos da matéria orgânica sobre os atributos físicos do solo foram: aumento da capacidade de retenção de umidade de solo; boa porosidade do solo (macroporos); redução da densidade aparente; melhoria na taxa de infiltração de água, além do amortecimento térmico, evitando-se grandes oscilações de temperatura. Por outro lado, a matéria orgânica também promove efeitos sobre os atributos químicos do solo, dentre os principais, citam-se:

Aumento da capacidade de retenção de cátions; fornecimento de macro e micronutrientes; liberação gradual dos nutrientes; e redução da fixação de P, uma vez que os radicais orgânicos bloqueiam os sítios de fixação. Além disso, a matéria orgânica implica melhoria dos atributos biológicos do solo, pois proporciona melhores condições para o desenvolvimento dos organismos vivos (insetos, anelídeos etc.), especialmente da microbiota do solo, que conduzirá à disponibilização dos nutrientes para as plantas.

4.3.9 Precipitação pluviométrica

A precipitação pluviométrica foi quantificada pelo seguinte método, com auxilio de um pluviômetro artesanal feito com uma estaca de madeira e garrafa pet cortada ao meio para coleta da precipitação pluvial, e posto na área experimental, a coleta foi diária feita com auxilio de uma proveta graduada em mm, sendo feita após a coleta os cálculos de conversão para litro.

A precipitação pluviométrica foi quantificada a cada evento por meio de um pluviômetro instalado na área experimental e por dados adquiridos na EMATER do município de Areia.

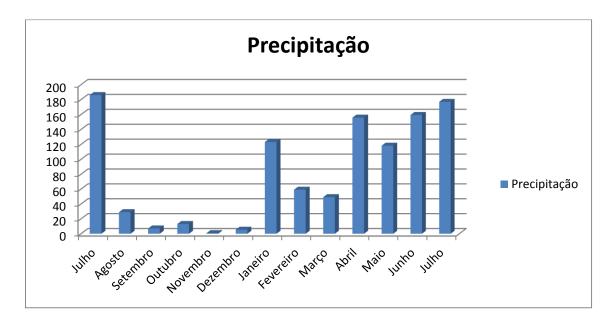


Gráfico 1: representação da pluviosidade no município em que se insere o experimento.

Como demonstra o gráfico 1, houve neste experimento bastante oscilação de precipitação. Tendo em vista que o mês em que foi implantado o experimento julho de 2013, as chuvas na região do experimento chegavam a altos níveis, 186 mm no mês em questão. Para a cana, esse cultivo que depende bastante de pluviosidade nesta etapa foi de grande relevância.

No segundo mês agosto, até o mês de dezembro, o experimento sofreu bastante estresse hídrico, começando com 29 mm e oscilando até chegar a quase 0 mm no último mês do ano de 2013. Nesse meio tempo as plantas experimentadas resistiram, porém não se mostraram vigorosas, devido a falta de água, uma vez que esta planta produz caldo e necessita bastante de água para sobrevivência e produção.

Ao iniciar o ano de 2014, a pluviosidade voltou a irrigar naturalmente a região, uma vez que em janeiro as chuvas chegaram a marca de uma média de 123,3 mm, fazendo assim com que a produção se recuperasse do estresse

hídrico. Logo após teve uma oscilação positiva das chuvas, numa média de quase 150 mm em abril, se mantendo entre 118,3 e 159,4 nos meses de maio e junho, e por fim no mês de colheita obteve-se a média de 177 mm. O experimento obteve como total final de precipitação 1083,84 mm durante um ano de projeto (julho de 2013 a julho de 2014)

TABELA1: Precipitação ocorrida no município de Areia durante o experimento (EMATER).

Meses	Precipitação	
Julho	186,1	
Agosto	29	
Setembro	7,1	
Outubro	13,1	
Novembro	0,8	
Dezembro	5,4	
Janeiro	123,3	
Fevereiro	59,2	
Março	49,24	
Abril	155,9	
Maio	118,3	
Junho	159,4	
Julho	177	
Total	1083,84	

4.3.10 Análise final do solo

Ao final do experimento o solo indicou os seguintes resultados: pH= 5,92; P= 4,97 mg/dc³; K= 0,09 mg/dc³; Ca= 1,65 cmol/dm³; Mg= 0,80 cmol/dm³; H+Al= 2,66 cmol/dm³; Al trocável= 0,09 cmol/dm³.

4.3.11 Pesagem da cana

Para seleção da pesagem foram retirados 3 colmos de um metro e meio de cada tratamento. O resultado obtido foram as seguintes médias:

As parcelas com tratamento Composto orgânico obtiveram a média de 2,57 Kg; o tratamento esterco bovino obteve a média de 2,37 Kg e por fim o tratamento testemunha obteve a média de 1,9Kg.

Tratamento	Composto	Esterco	Testemunha
Média (kg)	2,57	2,37	1,9

Tabela 2: Pesagem, com média de 3 colmos de cana.

5. RESULTADOS E DISCUSSÃO

Nesse gráfico apresenta-se a variação do crescimento em diâmetro da cana de açúcar sobre os três diferentes tratamentos (testemunha, esterco e comporto orgânico), No experimento foram analisadas as medições das respectivas plantas sobre o uso de um paquímetro, onde obteve-se os resultados a seguir, que constata-se o crescimento das plantas influenciadas sobre os três tratamentos, onde o tratamento composto orgânico libera em quase todos os meses, mesmo o tratamento de esterco está bem próximo, chegando até empatar no mês de dezembro pelo fato de pouca precipitação as plantas com estresse hídrico até então não obtinham totalmente a influência dos tratamentos.

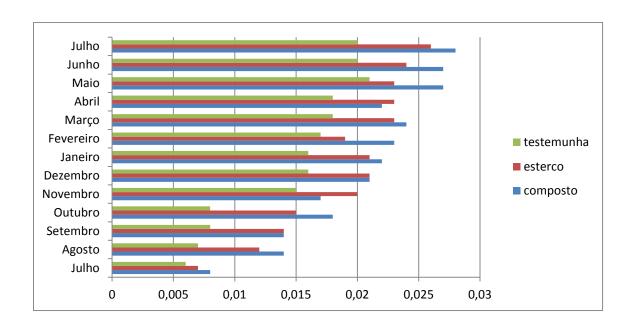


Gráfico 2: Os tratamentos sobre (diâmetro) de diferentes tipos de adubação.

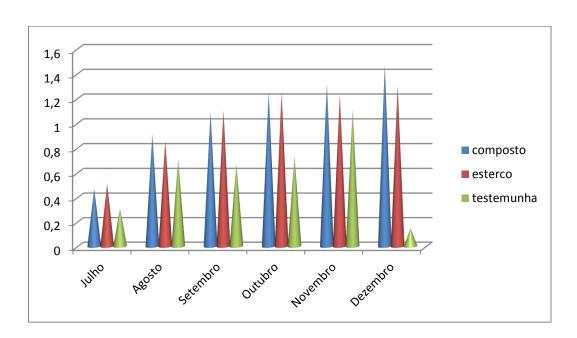


Gráfico 3: Os tratamentos sobre (altura) de diferentes tipos de adubação.

A altura das plantas foi medida por uma fita métrica, até o sexto mês, seguindo o exemplo de alguns trabalhos. Pois a altura propiciaria trabalhos complicados para a medição. Observa-se que a todo mês o composto lidera em crescimento no gráfico, apesar do tratamento esterco se aproximar, bastante, e

a testemunha tendo m bom crescimento, pois a espécie usada 45/3 é uma variedade bastante rústica e adaptada ao ambiente.

Meses	Composto	Esterco	Testemunha
Julho	0,47	0,51	0,31
Agosto	0,91	0,86	0,71
Setembro	1,09	1,1	0,67
Outubro	1,25	1,25	0,73
Novembro	1,32	1,23	1,11
Dezembro	1,47	1,3	0,15

Tabela 3: Representação da altura sobre diferentes tipos de adubação.

5.1 ANÁLISE ESTATÍSTICA DOS DADOS

Os resultados obtidos na caracterização das variáveis hidráulicas do escoamento e do fator de erodibilidade do solo em entressulcos serão avaliados por meio de análise de variância. Comparações de médias foram efetuadas com aplicação do teste de Tukey a 5% de probabilidade de erro, com o auxílio do software SISVAR (Ferreira, 2000).

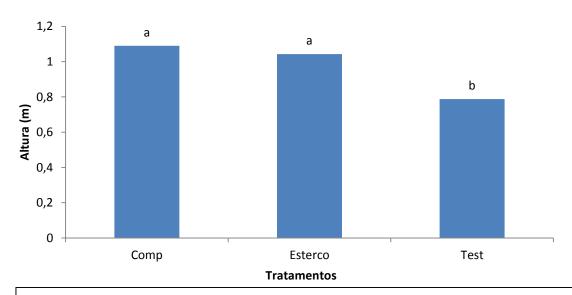


Gráfico 4: Representação do crescimento das plantas sobre os três tratamentos em questão

De acordo com o gráfico, observa-se que ao comparar os tratamentos onde se aplicou a adubação orgânica, constata-se que para altura da cana-de-açúcar não houve diferença significativa para aplicação de composto orgânico e esterco bovino. Logo se observa que a testemunha mostra valor inferior em relação ao esterco e composto orgânico.

Gráfico 5 : Representação do crescimento das plantas sobre o tempo do experimento.

A cultura da cana-de-açúcar alcançou desenvolvimento satisfatório de altura respectivamente de forma geral. Os resultados mostraram que independente dos tratamentos que foram usados, a cultura obteve desenvolvimento satisfatório.

Analisando a variável, altura da cana-de-açúcar em um período de 365 dias, observa-se que houve aumento em crescimento vertical, como já era esperado. O que pode ter influenciado para esses resultados foi o tipo de sementes utilizadas no plantio sementes sadias e de alto vigor. As sementes utilizadas no experimento foram provenientes do assentamento socorro, região do Brejo Paraibano. Por se tratar de sementes crioulas, possivelmente, já são adaptadas ao clima da região que foram trazidas, isso fez com que as plantas originadas destas sementes tivessem seu desenvolvimento comprometido, tendo em vista que a temperatura desta região é menor, variando entre 21 e 26 °C, enquanto que a temperatura média da região de onde as sementes foram

trazidas varia entre 27 e 28 °C. Segundo Magalhães *et al.* (2000) a temperatura noturna do ar baixa, geralmente atrasa o desenvolvimento no geral.

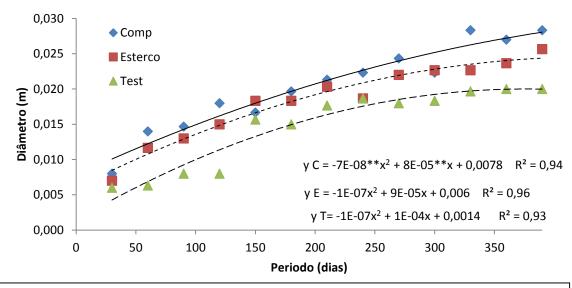


Gráfico 6 : Crescimento de diâmetro das plantas sobre o tempo do experimento.

Observa-se que para os diâmetros caulinares o tratamento onde se utilizou o composto orgânico foi significativo pelo teste de tukey ao nível de 5 % de probabilidade. Para todos os tratamentos testados, o modelo acima evidencia que as curvas estimadas ajustaram-se bem aos dados experimentais. Os valores de Y, nesse modelo, representa o diâmetro caulinar, e o valor de X corresponde ao tempo em dias.

Observa-se na figura acima que o diâmetro caulinar em função dos tratamentos e do tempo. Verifica-se que as plantas da testemunha tiveram menor diâmetro de caule do que as plantas cultivadas nos tratamentos adubados com esterco bovino e composto orgânico, contudo esse quadro permaneceu durante todo período do ciclo da cultura. Observa-se de uma maneira geral, o crescimento a partir dos 150 dias. Entre os tratamentos que receberam a adubação orgânica verifica-se um aumento do diâmetro caulinar , sendo que, efetivamente, a resposta da cultura para os tratamentos que receberam a adubação ficou muito expressiva, indicando que o fornecimento de nutrientes foi após os 180 dias de cultivo da cana-de-açúcar. Verificou-se que a aplicação do composto orgânico foi a responsável pelo maior valor do diâmetro caulinar.

6. CONCLUSÃO

Após o término deste trabalho, é possível compreender a importância do manejo orgânico da cana-de-açúcar para a produção agrícola, sua forma de atuação no melhoramento do solo, tanto fisicamente como quimicamente além de biologicamente. Os níveis de desenvolvimento das plantas influenciadas pelas adubações (composto orgânico e esterco bovino) desenvolveram de forma positiva ao crescimento da cana de açúcar, uma vez que as parcelas que foram expostas ao experimento de composto orgânico se sobressaíram numericamente pela maioria do tratamento, apesar de ter sido com pouca diferença razoável sobre o experimento de esterco, facilitando assim um melhor desenvolvimento do cultivar o que leva consequentemente o ganho na produção. De qualquer forma o melhor tratamento concluísse que é o composto orgânico. Outra finalidade importante deste projeto é poder criar por meio de pesquisas formas de preservação do meio ambiente.

7. REFERÊNCIAS

ALMEIDA JÚNIOR, de A. B. Adubação Orgânica em Cana-de-açúcar: Efeitos no Solo e na Planta. UFRPE; Pós-Graduação em Ciência do Solo (Dissertação). Recife, PE, P.12. 2010.

ALTIERI, M.A **Agroecologia: a dinâmica produtiva da agricultura sustentável** – 5ª.ed. – Porto Alegre : Programa de Pós-graduação em Desenvolvimento Rural-UFRGS.Editora da UFRGS, Julho de 2008.p.120.

ALTIERI, M.A.; PONTI, L.;NICHOLLS,C.L..Melhorando o Manejo de Pragas Através da Saúde do Solo: Estratégia de Manejo do Habitat Solo. Departamento de Ciência Política Ambiental. Universidade da Califórnia.2005. disponível em > agroeco3@nature.berkeley.edu.

ANDRADE, J.M.F.; DINIZ, K.M. Impactos Ambientais da Agroindústria da Cana-de-açúcar: Subsídios para a Gestão. Monografia apresentada a Escola superior de Agricultura: Luís de Queiróis. Uniersidade de São Paulo. Piracicaba.2007.p.131.

ARANHA, C.; YAHN, C. A. Botânica da cana-de-açúcar. In: Paranhos, S. B. (coord.) Cana-de-açúcar: Cultivo e utilização. Campinas: Fundação Cargill, 1987. Cap.1, p.3-13.

ASSOCIAÇÃO DOS MORADORES DA USINA SANTA MARIA. **Centro cultural usina do saber**. Areia, 2009.

DANIELS, J.; ROACH, B. T. Taxonomy and evolution. In: HEINZ, D.J (Ed). Sugarcane Improvement trough breeding. Armsterdam Elsevier, 1987. P. 7-84.

EMBRAPA. Centro Nacional de Pesquisa de Solos (Rio de Janeiro, RJ). Manual de métodos de análises de solo. 2ª ed. Revista e ampliada, atual. Rio de Janeiro, 1997. 212p.

GOLDEMBERG,J.;NIGRO,F.E.B.;COELHO,S.T. **BIOENERGIA NO ESTADO DE SÃO PAULO**. Situação atual,Perspectivas,Barreiras e Propostas. São Paulo, setembro de 2008.p.152.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATISTICAS. Sala de Imprensa: **Produção Agrícola Municipal 2005**. Disponível em:<(www.ibge.gov.br). > acesso em: 03/02/2012.

LIMA, S.A.A.; SILVA, I.F.;SANTIAGO, R.D.; SILVA NETO, L.F.;SOUZA, C.; CAVALCANTE, F.S. influência da adubação mineral sobre três cultivares de cana-de-açúcar na microrregião de Guarabira na Paraíba. Agropecuária Técnica, v.27, n.2, 2006.

CASCUDO, L. C. **Sociologia do açúcar: pesquisa e dedução.** Rio de Janeiro: Instituto do Açúcar e do Álcool, Serviço de Documentação, 1971. 478 p. (Coleção canavieira, 5).

ANDRADE, M. C. (Ed.). Pernambuco cinco séculos de colonização. João Pessoa: Grafset, 2004. 168p.

GOMES, G. (Ed.). Engenho e arquitetura. Recife: Massangana, 2006. 411 p.

BEZERRA, C. W. B. Caracterização química da aguardente de cana-de-açúcar: determinação de álcoois, ésteres e dos íons Li[†], Ca^{†2} e Mg^{†2}, Cu^{†2} e Hg^{†2}. 1995. 53 f. Dissertação (Mestrado) – Universidade Federal de São Carlos, São Carlos, 1995.

CÂMARA, G. M.S., OLIVEIRA, E. A. M. (Eds). **Produção de cana-de-açúcar.**Piracicaba: FEALQ, 1993. p.31-64.

UNIÃO AGROINDÚSTRIA CANAVIEIRA DE SÃO PAULO. UNICA. Estatísticas. São Paulo: União da Agroindústria Canavieira de São Paulo, 2006. Disponível em http://www.portalunica.com.br/ação/cana.jsp.. Acesso: em 12 dez. 2014.

VITTI, G.C.; QUEIRÓS, F.E.C.; OTTO,R.; QUINTINO,T.A. **Nutrição e Adubação da Cana de açúcar.**Palestra apresentada a equipe técnica de stoller-Bebedouro-SP. 2005.p.78.

SANTOS, G. C. MONTEIRO, M. **SISTEMA ORGÂNICO DE PRODUÇÃO DE ALIMENTOS. Alim. Nutr.**, Araraquara, v.15, n.1, p.73-86, 2004. * Departamento de Alimentos e Nutrição – Faculdade de Ciências Farmacêuticas – UNESP – 14801-902 – Araraquara – SP – Brasil.

SOUZA, A. P.; Gaspar, M.; Silva, E. A.; Ulian, E. C.; Waclawosky, A. J.; Nishiyama Jr., M. Y.; Santos, R. V.; Teixeira, M. M.; Souza, G. M.; Buckeridge, M. S. Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant, Cell & Environment, v.31, p.1116-1127, 2008.

Ministério do Desenvolvimento Agrário. Ministerio da agricultura. <u>SAPCANA</u> - <u>Sistema de Acompanhamento de Produção Canavieira.</u> <u>In<http://www.agricultura.gov.br/vegetal/culturas/cana-de-acucar</u> > Acesso em 21/12/1014.

VITTI, G.C.; LUZ, P.H.C.; ALTRAN, W.C. Nutrição e Adubação. CAPÍTULO 4. 2008. p.74-117.

RIPOLI, T.C.C.; RIPOLI, M.L.C.; CASAGRANDI, D.V. Plantio de cana-de-açúcar: estado da Arte. Piracicaba: Ed. dos Autores, 2006. 216 p.

VEIGA, C.F.M.; VIEIRA, J.R.; MARGADO, I.F. Diagnóstico da cadeia produtiva dacana-de-açúcar do Estado do Rio de Janeiro: relatório de pesquisa. Rio de Janeiro, FAERJ;

SEBRAE/RJ,

2006.

Disponívelem:http://www.ufrrj.br/institutos/ib/denf/diagnosticocanaRJ.pdf. Acesso em: 20set. 2015.

DIAS NETO, A.F. Aprimoramento de um mecanismo dosador de rebolos de canade - açúcar para o plantio mecanizado . 2000. 115 p. Disponível em:http://www.bibliotecadigital.unicamp.br/document/?code=vtls000197851&fd =y. Acesso em 20 ago. 2015.

CONAB-Companhia Nacional de Abastecimento . Acompanhamento da safra brasileira da cana-de-açúcar 2007/2008: primeiro levantamento.Brasília, 2015. 12 p.